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Detecting Selection on Noncoding Nucleotide Variation: Methods and
Applications

Abstract
There has been a long tradition in molecular evolution to study selective pressures operating at the amino-acid
level. But protein-coding variation is not the only level on which molecular adaptations occur, and it is not
clear what roles non-coding variation has played in evolutionary history, since they have not yet been
systematically explored. In this dissertation I systematically explore several aspects of selective pressures of
noncoding nucleotide variation:

The first project (Chapter 2) describes research on the determinants of eukaryotic translation dynamics,
which include selection on non-coding aspects of DNA variation. Deep sequencing of ribosome-protected
mRNA fragments and polysome gradients in various eukaryotic organisms have revealed an intriguing
pattern: shorter mRNAs tend to have a greater overall density of ribosomes than longer mRNAs. There is
debate about the cause of this trend. To resolve this open question, I systematically analysed 5’ mRNA
structure and codon usage patterns in short versus long genes across 100 sequenced eukaryotic genomes. My
results showed that compared with longer ones, short genes initiate faster, and also elongate faster. Thus the
higher ribosome density in short eukaryote genes cannot be explained by translation elongation. Rather it is
the translation initiation rate that sets the pace for eukaryotic protein translation. This work was followed by
modelling studies of translation dynamics in a yeast cell.

Chapter 3 concerns detecting selective pressures on the viral RNA structures. Most previous research on RNA
viruses has focused on identifying amino-acid residues under positive or purifying selection, whereas
selection on RNA structures has received less attention. I developed algorithms to scan along the viral genome
and identify regions that exhibit signals of purifying or diversifying selection on RNA structure, by comparing
the structural distances between actual viral RNA sequences against an appropriate null distribution. Unlike
other algorithms that identify structural constraints, my approach accounts for the phylogenetic relationships
among viral sequences, as well the observed variation in amino-acid sequences. Applied to Influenza viruses, I
found that a significant portion of influenza viral genomes have experienced purifying selection for RNA
structure, in both the positive- and negative-sense RNA forms, over the past few decades; and I found the first
evidence of positive selection on RNA structure in specific regions of these viral genomes.

Overall, the projects presented in these chapters represent a systematic look at several novel aspects of
selection on noncoding nucleotide variation. These projects should open up new directions in studying the
molecular signatures of natural selection, including studies on interactions between different layers at which
selection may operate simultaneously (e.g. RNA structure and protein sequence).
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ABSTRACT 
 

DETECTING SELECTION ON NONCODING NUCLEOTIDE VARIATION: 
METHODS AND APPLICATIONS 

 
There has been a long tradition in molecular evolution to study selective pressures 

operating at the amino-acid level. But protein-coding variation is not the only level on 

which molecular adaptations occur, and it is not clear what roles non-coding variation has 

played in evolutionary history, since they have not yet been systematically explored. In 

this dissertation I systematically explore several aspects of selective pressures of 

noncoding nucleotide variation: 

The first project (Chapter 2) describes research on the determinants of eukaryotic 

translation dynamics, which include selection on non-coding aspects of DNA variation. 

Deep sequencing of ribosome-protected mRNA fragments and polysome gradients in 

various eukaryotic organisms have revealed an intriguing pattern: shorter mRNAs tend to 

have a greater overall density of ribosomes than longer mRNAs. There is debate about 

the cause of this trend. To resolve this open question, I systematically analysed 5’ mRNA 

structure and codon usage patterns in short versus long genes across 100 sequenced 

eukaryotic genomes. My results showed that compared with longer ones, short genes 

initiate faster, and also elongate faster. Thus the higher ribosome density in short 

eukaryote genes cannot be explained by translation elongation. Rather it is the translation 

initiation rate that sets the pace for eukaryotic protein translation. This work was 

followed by modelling studies of translation dynamics in a yeast cell. 
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 Chapter 3 concerns detecting selective pressures on the viral RNA structures. 

Most previous research on RNA viruses has focused on identifying amino-acid residues 

under positive or purifying selection, whereas selection on RNA structures has received 

less attention. I developed algorithms to scan along the viral genome and identify regions 

that exhibit signals of purifying or diversifying selection on RNA structure, by comparing 

the structural distances between actual viral RNA sequences against an appropriate null 

distribution. Unlike other algorithms that identify structural constraints, my approach 

accounts for the phylogenetic relationships among viral sequences, as well the observed 

variation in amino-acid sequences. Applied to Influenza viruses, I found that a significant 

portion of influenza viral genomes have experienced purifying selection for RNA 

structure, in both the positive- and negative-sense RNA forms, over the past few decades; 

and I found the first evidence of positive selection on RNA structure in specific regions 

of these viral genomes.  

Overall, the projects presented in these chapters represent a systematic look at 

several novel aspects of selection on noncoding nucleotide variation. These projects 

should open up new directions in studying the molecular signatures of natural selection, 

including studies on interactions between different layers at which selection may operate 

simultaneously (e.g. RNA structure and protein sequence).  
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Chapter One 

  Introduction 
 
The role of natural selection in molecular evolution 

Genetic drift and natural selection are the two principal forces that shape the 

evolutionary history of cellular organisms and viruses. Genetic drift is a stochastic force 

that causes the random fluctuations in allele and phenotypic frequencies without 

conferring any fitness advantages, whereas natural selection influences allele frequencies 

deterministically by differential reproduction. Identifying genomic sites that are subject 

to natural selection has profound intellectual and practical implications.  

First, there has been a long-standing debate in evolutionary biology about the 

relative roles of genetic drift and natural selection in shaping observed molecular 

variation(Nei, Suzuki, and Nozawa 2010; Fay 2011; Barrett and Hoekstra 2011). Charles 

Darwin advocated natural selection as the main force in shaping evolutionary history in 

his On the Origin of Species (Darwin 1859), although, admittedly at the time he was not 

aware of or discussing molecular phenotypes. Since then, many instances of adaptation 

on the morphological level have been studied and documented in detail. With the dawn of 

molecular biology and the development and application of a series of techniques to 

measure protein sequence variation (Hubby and Lewontin 1966; Harris 1966) in the 

1960s, however, a surprisingly large amount of protein variation was observed among 

different species, as well as among individuals within a single species. This posed serious 

challenges to Darwin’s selectionist view, and motivated Motoo Kimura to develop his 
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neutral theory of molecular evolution (Kimura 1983). The neutral theory contends that 

most observed molecular variation is due to random fixation of neutral mutations that do 

not bear any selective advantages. Nonetheless, in the past decade, increasingly more 

convincing instances of molecular adaptation have been identified, with their fitness 

advantages and proximate molecular mechanism sorted out. The availability of whole 

genome assays and sequences from many different species and individuals has prompted 

many whole-genome scans (for a partial list see (Haasl and Payseur 2015) ) for sites 

under positive selection in human lineages (Grossman et al. 2013; Lachance and Tishkoff 

2013; Enard, Messer, and Petrov 2014), Drosophila Melanogaster (Sella et al. 2009; 

Langley et al. 2012; Pool et al. 2012; Fabian et al. 2012; Reinhardt et al. 2014; Bergland 

et al. 2014), Arabidopsis thaliana(Hancock et al. 2011; Huber et al. 2014), among many 

others. Now we know that there are many confirmed loci in the eukaryotic genomes that 

are undergoing adaptation, with many more candidate sites waiting to be validated. 

One of the central topics in evolutionary biology remains the study of the 

molecular and mechanistic basis of positive selection, i.e. adaptation. How do organisms 

respond to new environmental pressures? Do adaptive changes mostly happen in the 

protein-coding genes or regulatory sequences? Do adaptations mostly come from newly 

arisen advantageous alleles or from standing variations? Is genetic adaptation more likely 

to be driven by a small number of alleles that have a large effect, or by a large number of 

alleles that have relatively moderate effects? These questions are still attracting much 

attention from evolution researchers(Hendry 2013).  
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Studying genomic sites under selection has practical implications as well. 

Sequence and structural conservation, a strong signal for negative selection, has been 

used extensively in the comparative genomics and RNA bioinformatics community to 

identify functional genetic elements. The conserved sites in the genomes can be protein-

coding genes, noncoding RNAs, microRNA targets, transcription factor binding sites or 

other regulatory sequences. 

Identifying genomic sites under selection also offers great potential for 

biomedical applications. Infectious pathogens have been shown to be among the strongest 

sources of selective pressures on human populations during local adaptation (Fumagalli 

et al. 2011; Karlsson, Kwiatkowski, and Sabeti 2014). For example, analyzing the 

genomic loci that are associated with elevated immune response against malaria can 

potentially offer novel therapeutic strategies for malaria treatment (Kwiatkowski 2005). 

Also recent research suggests that even the contemporary human population is under 

constant selective pressures for certain phenotypic traits (Byars et al. 2010; Stearns et al. 

2010; Milot et al. 2011), many of which are probably related to human health and 

diseases. Understanding the selective pressures that we are currently experiencing is 

likely to help the treatment and prevention of these diseases.  

Understanding the major adaptations during human evolution will help us 

recapitulate important historical events that have shaped our species. A notable example 

is the research showing that lactase expression in adults has independently arisen at least 

twice during human evolution (Bersaglieri et al. 2004; Tishkoff et al. 2007), the timing of 

which are coincident with the introduction of cattle domestication in Europe and the 
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practice of pastoralism in East Africa, respectively. Further explorations of whole-

genome sequencing data from multiple human populations will undoubtedly reveal more 

interesting stories about important periods in human history. 

 Equally interesting, and just as practical, are the questions of selection pressures 

on microbial pathogens themselves, often mediated by host immune systems or 

requirements for host specificity. These questions are particularly acute for rapidly 

evolving viruses, which must regularly contend with immune or chemotherapeutic 

pressure, and whose course of evolution, in turn, may inform vaccination of drug 

treatment decisions.  

 

Different modes and sources of natural selection 

The simplest mode of natural selection is directional selection. There are two 

types of directional selection: negative (purifying) selection refers to the selective 

elimination of deleterious alleles, while positive selection drives evolutionary innovation 

by promoting the spread of beneficial alleles. The melanism of pepper moth (Cook et al. 

2012) is a classic example in directional natural selection. This happened in the mid - 19th 

century at Manchester, England, when industrial revolution turned Manchester into an 

industrial city, and the tree barks were darkened by soot from the new coal-burning 

factories. Previously dominant light-colored pepper moths suddenly contrasted with the 

color of the barks, while the dark-colored moths were camouflaged well by the darkened 

trees. This led to increased predation of the light-colored moths by predating birds, and 

by 1895, the percentage of dark-colored moths in Manchester increased to 98%, and the 
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light-colored moths almost went extinct. Whereas the mechanistic details of this classic 

example of directional selection remain hotly contested, because some of the original 

field experiments were flawed (Majerus 1998), the example remains a classic story (if 

partly fictional) of directional selection in the wild. 

More complicated selective scenarios include balancing selection, where multiple 

alleles are maintained at an appreciable frequency in the gene pool. One recent example 

(Bergland et al. 2014; Behrman et al. 2015; X. Zhao et al. 2015) is in Drosophila species. 

One study (Bergland et al. 2014) found hundreds of polymorphisms that undergo 

dramatic seasonal shift in allele frequencies in Drosophila Melanogaster, suggesting 

temporally varying selective pressures. In particular, stress tolerance traits such as chill 

coma recovery time and starvation tolerance seem to be favored in winter, and disfavored 

during summer, when they are no longer needed.  

 Not only there are different modes of natural selection, selective pressures can 

also occur on many different levels of biological organization. There can be a single 

preferred amino acid mutation - for example, a single amino acid mutation in 

melanocortin-1 receptor (Mc1r) turned Florida’s Gulf Coast beach mice into light-color, 

which helped them evade their visual predators (Hoekstra et al. 2006). There can also be 

mutations in regulatory elements – two different SNPs in the 13th introns of gene MCM6 

can enhance the promoter activity of the lactase encoding gene LCT in African and 

European populations (Tishkoff et al. 2007), thus gave them survival advantages for 

being able to consume milk products.  
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Recently it has been increasing appreciated that coding sequences harbor 

numerous regulatory sites that are independent of their protein-coding function (Plotkin 

and Kudla 2011), such as RNA localization(Jambhekar and Derisi 2007), translation 

efficiency(Sharp and Li 1987), mRNA splicing (Fairbrother et al. 2002), mRNA stability 

(Kudla et al. 2006) and accessibility to the translation machinery (Nackley et al. 2006). 

As an example, it has been shown that in virtually all free-living (Keller et al. 2012; Gu, 

Zhou, and Wilke 2010) and many viral species (Zhou and Wilke 2011) the region around 

the translation start site of each mRNA transcript is under natural selection to be less 

structured, presumably for the efficient recognition of the start codon by initiator-tRNAs. 

The role of selection on these non-coding sites remains largely unexplored, and is the 

central theme in this dissertation. 

 

Methods to detect signatures of natural selection 

 Methods to detect signatures of natural selection can be broadly divided into two 

classes: Methods to detect selection on the macro-evolutionary level based on 

comparisons of different species and their relative rates of genetic change, and 

population-genetics methods to detect selection occurring within a population, often 

including comparison to one outgroup species (Vitti, Grossman, and Sabeti 2013).  

 Methods to detect micro-evolutionary (within-population) selection include site-

frequency based methods (Ewens 1972; Watterson 1978; Fu and Li 1993; Fu 1997; 

Tajima 1989; Tajima 1993; Fay 2011), linkage disequilibrium based methods (Sabeti et 

al. 2002; C. Zhang et al. 2006; Hanchard et al. 2006; Sabeti et al. 2007; Voight et al. 2006; 
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E. T. Wang et al. 2006; Cai et al. 2011; Han and Abney 2013) and population 

differentiation based methods (Bonhomme et al. 2010; Excoffier, Hofer, and Foll 2009; 

Lewontin and Krakauer 1973; Vitalis, Dawson, and Boursot 2001; Shriver et al. 2004; 

Fariello et al. 2013). There are also methods that combine the signals from these different 

methods (Kim and Nielsen 2004; Kim and Stephan 2002; Nielsen et al. 2009; Nielsen et 

al. 2005; Hua Chen, Patterson, and Reich 2010; Zeng et al. 2006; Zeng, Shi, and Wu 

2007; Grossman et al. 2010; Grossman et al. 2013). Site frequency methods consider the 

distribution of frequencies of a set of SNPs in a population, where a surplus of rare alleles 

would be indicative of recent positive selection or population expansion. Linkage 

disequilibrium methods search for genomic regions with an unexpected low degree of 

genetic diversity, called high linkage-disequilibrium, presumably because a newly 

emerged advantageous mutation has swept through the entire population. Population 

differentiation methods use measures such as the fixation index (FST) to measure genetic 

differences within a population vs. between populations, and a high level of FST would 

imply that all genetic variation could be explained by population structure, and the two 

populations do not share much gene flow.  

The methods for macro-evolutionary selection compare the orthologous genes from 

multiple species to see if there is a signal of natural selection over long timescales. There 

are two well-known methods in this category: the first is the McDonald-Kreitman test 

(Hudson, Kreitman, and Aguade 1987; McDonald and Kreitman 1991; Egea, Casillas, 

and Barbadilla 2008), which compares the ratio of synonymous vs. nonsynonymous 

mutation rates in individuals within single species vs. from multiple species. The idea is 
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that an advantageous mutation will quickly fix within a species and lead to the fixed 

differences among species, thus adaptive mutations should contribute more to between-

species substitutions than within-species polymorphisms. The second method, which uses 

no within-population data at all, is the dN/dS test (Goldman and Yang 1994; Yang 2000; 

Hurst 2002), which compares the rates of synonymous and non-synonymous substitution 

rates across evolutionarily divergent lineages. It is assumed that synonymous 

substitutions among species are strictly neutral. If there is no selective pressure operating, 

then the rates of synonymous and non-synonymous substitutions are expected to be equal. 

If the rate of synonymous substitution is higher, then it means the protein is under 

negative selection to keep the amino acid sequence intact, while a higher non-

synonymous substitution rate would imply the protein is under pressure to change its 

content, probably for the need to adapt to new environments.  

Several variations of dN/dS test have been introduced. For examples, (Hoffman 

and Birney 2007) proposed to use nucleotide substitution rate in pairs of orthologous 

introns, and use this measure dI as an alternative of dS. In another study, (Hoffman and 

Birney 2010) proposed a dT/dS test to study the natural selection on promoter sequences, 

in this test dT denotes the TF binding affinity changes of the promoter. Also inspired by 

the dN/dS test, (Han Chen et al. 2015; Han Chen, Xing, and He 2015) proposed dJ/dS 

and dT/dS to study cancer driver genes, where dJ denotes the mutation rate at exon/intron 

junction and dT denotes the rate of truncating mutations.     

Most of the methods mentioned above assume a scenario of hard sweep, i.e. a 

single beneficial mutation arises from the population and sweeps through the entire 
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population. However there are many more complicated scenarios of natural selection. For 

example, there may be soft selective sweeps (Messer and Petrov 2013), in which multiple 

adaptive alleles sweep through the population at the same time. This happened when 

brown rats rapidly developed several different allele variants of the gene encoding 

vitamin K epoxide reductase complex subunit 1 (VKORC1) in response to the 

rodenticide warfarin (Pelz et al. 2005). Several methods (Messer and Neher 2012; Garud 

et al. 2015) have been developed to detect selection in this more complicated scenario.  

 

Protein translation dynamics and ribosome profiling: a role for selection? 

One of the more intriguing objects of natural selection – which has not received 

considerable attention yet – is selection on translational efficiency and accuracy. Protein 

translation is arguably one of the most fundamental biological activities that occur in a 

living cell. Although individual steps in translation such as the formation of the 43S 

preinitiation complex are known intricate molecular detail, a global understanding of how 

these steps combine to set the pace of protein production for individual genes remains 

elusive (Jackson, Hellen, and Pestova 2010; Plotkin and Kudla 2011). Various factors 

such as codon usage bias, gene length, transcript abundance, and translation initiation rate 

are all known to modulate protein synthesis (Bulmer 1991; Chamary and Hurst 2005; 

Cannarozzi et al. 2010; Tuller et al. 2010; Shah and Gilchrist 2011; Plotkin and Kudla 

2011; Gingold and Pilpel 2011; Chu, Barnes, and Haar 2011; Chu and Haar 2012), but 

how they interact with each other to collectively determine translation rates of all genes 

in a cell was poorly understood. It remains difficult to make systematic measurements for 



 

 10 

some of the critical parameters in a cellular process, such as gene-specific rates of 5’UTR 

scanning and start codon recognition. As a result, fundamental questions such as the 

relative role of translation initiation vs. elongation in setting the pace of protein 

production were actively debated (Kudla et al. 2009; Tuller et al. 2010; Gingold and 

Pilpel 2011; Chu, Barnes, and Haar 2011; Chu and Haar 2012; Y. Ding, Shah, and 

Plotkin 2012).  

Thanks to the development of expression profiling technologies such as 

microarrays (Brown and Botstein 1999) and mRNA sequencing (RNA-seq) (Z. Wang, 

Gerstein, and Snyder 2009) in the past two decades, we now have the ability to 

simultaneously monitor the mRNA levels of tens of thousands of genes and their changes 

under various physiological conditions. However, it has been repeatedly shown that 

transcriptional regulation is only half the story (Plotkin 2010) – the correlation between 

protein levels and mRNA levels is often weak, and this is at least partially due to the 

effect of translational regulation. Thus direct analyses of the translation processes can 

provide a more complete and accurate picture of gene expression in cells than mRNA 

levels alone. Ribosome profiling, which was first introduced in 2009 (Ingolia et al. 2009), 

is a deep-sequencing based technology to measure the global cellular translational 

activity in vivo (Ingolia 2014; Brar et al. 2012). It leverages the observation that a 

translating ribosome can protect about 30 nucleotides of an mRNA from nuclease activity, 

and by sequencing these remaining 30 nucleotides one can see the “ribosome footprints” 

left on each mRNA transcript with a nucleotide-level resolution.      
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Ribosome profiling has provided us with a much more detailed view of protein 

translation dynamics, and helped us resolve many of the outstanding questions and debate 

in the field of protein translation dynamics (Ingolia 2014; Brar and Weissman 2015). For 

example, (Shah et al. 2013) developed a whole-cell stochastic model of yeast translation 

process and used the ribosome-profiling data from (Ingolia et al. 2009) to parameterize 

the model. The model showed translation initiation, rather than elongation, is the rate-

limiting step in yeast endogenous protein translation. (Weinberg et al. 2015) compared 

multiple ribosome profiling datasets from yeast (Ingolia et al. 2009; Gerashchenko, 

Lobanov, and Gladyshev 2012; Zinshteyn and Gilbert 2013; Artieri and Fraser 2014; 

Guydosh and Green 2014; McManus et al. 2014; Weinberg et al. 2015), and showed that 

a simple multiple linear regression using six features, including mRNA abundance, 

upstream open reading frames, cap-proximal RNA structure and GC content, length of 

coding and 5’UTR regions, can explain most of the observed variation in yeast translation 

efficiency.  

The extent to which selection on non-coding sequence variation is mediated by 

requirements for gene translation – and variation in these requirements across genes – 

remains largely unexplored and is one of the central topics of this dissertation.  

 

Prediction and measurement of RNA secondary structures  

 RNAs play vital roles in myriad cellular functions, including transcription, RNA 

processing, and translation. They adopt complex structures to perform their functional 

roles in living cells. One interesting example is riboswitches. Riboswitches are a class of 
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RNA molecules that can change their structural conformations (Breaker 2011; Breaker 

2012) upon the binding of certain metabolites, and switch a gene “on” or “off”. Here I 

review some basic biology and computational work on RNA structure, with an eye 

towards eventual analysis of natural election on RNA structures. 

RNA secondary structures refer to all the base-pairing inside the RNA molecule. 

Pseudoknots refer to a special class of secondary structures where a nucleotide inside a 

loop forms base pair with a nucleotide outside this region. The prediction of pseudoknots 

is NP-complete in general (Lyngsø and Pedersen 2000), but some restricted classes of 

pseudoknots are still computational tractable (Rivas and Eddy 1999; Dirks and Pierce 

2004; Ren et al. 2005; Cao and Chen 2006), although at a much higher computational 

complexity than predicting the plenary secondary structures. RNA tertiary structures refer 

to the 3D structure of an RNA molecule. Although there have been several recent 

attempts in prediction RNA tertiary structures (Das and Baker 2007; F. Ding et al. 2008; 

Parisien and Major 2008; Frellsen et al. 2009; Jonikas et al. 2009; Popenda et al. 2012; Y. 

Zhao et al. 2012; Kerpedjiev, Höner Zu Siederdissen, and Hofacker 2015), the field of 

RNA tertiary structure prediction is still in its infancy, and there are currently no 

algorithms that can reliably predict tertiary structures from RNA sequences alone. 

Because of the above reasons, in the remainder of this dissertation we will focus on 

pseudo-knot free RNA secondary structures.   

 Broadly speaking, there are three strategies in predicting RNA secondary 

structures: There are two approaches to predict RNA secondary structures: One is 

comparative genomics, in which structures are inferred by the base-pair covariation of 
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RNA sequences from multiple species (Knudsen and Hein 2003; J. S. Pedersen et al. 

2006; Nawrocki, Kolbe, and Eddy 2009). The idea is that although the primary sequences 

may change, RNA base pairs will co-vary so as to maintain the secondary structures. 

Another approach is to use thermodynamics-based algorithms (Zuker 1989; Hofacker et 

al. 1994; Reuter and Mathews 2010), in which the RNA secondary structures are 

classified as structural motifs such as hairpins, bulges, internal loops and multiloops, each 

of which are assigned an experimentally-derived energy score, and the secondary 

structure is predicted as the one with the minimum free energy. Also there are algorithms 

that combine these two signals(Havgaard, Torarinsson, and Gorodkin 2007; Reuter and 

Mathews 2010), but they are also computationally more expensive. Although these 

approaches have been widely used by experimental and computational biologists, the 

accuracy of the structure prediction algorithms is still pretty limited. The RNA 

community has long suffered from the lack of high-throughput, accurate measurements of 

RNA secondary structures. The situation has recently changed due to the development of 

several sequencing-based RNA structure probing technologies(Kwok et al. 2015; Foley et 

al. 2015). These techniques have allowed the experimental measurements of RNA base 

pairings on a whole transcriptome level and will greatly facilitate our understanding of 

the roles that RNA structures play in various cellular processes. 

 As with translation, the extent to which non-coding variation in genomes is 

subject to selection pressures mediated by requirements for proper RNA structure 

remains largely unexplored, and is a central question in this dissertation. 
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Evolution of influenza A viral genomes 

Influenza A viruses (Nelson and Holmes 2007; Bouvier and Palese 2008) are 

single-stranded, negative-sense RNA viruses that can infect and cause seasonal epidemics 

in humans, birds, and other animal species. The genome of influenza A viruses comprise 

eight viral RNA segments, and each segment encodes 1-2 viral proteins. Influenza A 

viruses are further characterized by the subtype of their surface glycoproteins, the 

hemagglutinin (HA) and the neuraminidase (NA). While many genetically distinct 

subtypes (16 for HA, 9 for NA) have been found in circulating influenza A viruses, only 

three HA (H1, H2 and H3) and two NA (N1 and N2) have caused human epidemics 

(Bouvier and Palese 2008). These surface proteins are the targets of human immune 

system and possibly antiviral drugs (Nelson and Holmes 2007; Bloom, Gong, and 

Baltimore 2010), so they are under strong selective pressure to evolve resistance. The 

influenza A genome can achieve this through two processes: one is antigenic drift, 

characterized by the gradual accumulation of mutations on the antibody-binding sites of 

the surface proteins so that it can evade the surveillance of the immune system, and this 

sometimes will cause seasonal epidemics. The other mechanism is called antigenic shift, 

a much more rare incidence where two or more strains of influenza viruses combine to 

form a new subtype that has a mixture of surface antigens from these strains. This kind of 

segment reassortment can happen when the same cells were simultaneously infected by 

different strains of human and animal viruses, and the resulting viruses can potentially 

encode novel surface antigens that human populations have no preexisting immunity. 

Influenza viruses which have undergone antigenic shift has caused many recent flu 
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pandemics, including the most recent 2009 H1N1 outbreak, where viral reassortment 

happened between human, avian and swine viruses (Smith et al. 2009).  

Since influenza A viruses are such global public health threat, there have been 

many efforts trying to understand the evolutionary constraints that are imposed upon the 

influenza A genome, and potentially use these information to predict the flu strains that 

may become prevalent in the following year. Numerous methods have been proposed to 

search for amino acid residues or patches that are under selective pressures from 

influenza sequences.(Bush et al. 1999; Yang 2000; Suzuki 2006; Kosakovsky Pond et al. 

2008; X. Ding et al. 2010; Tusche, Steinbruck, and McHardy 2012). Some recent studies 

(Kryazhimskiy et al. 2011; Neverov et al. 2015) also attempt to identify the pairs of 

amino acid residues within or among segments that co-evolve each other, so the 

knowledge of one residue mutated in the “epistatic pair” may help one make the 

prediction that the other residue may also mutate soon. Another cellular process that is 

vital to the integrity of influenza viral life cycle is the viral packaging. One challenge the 

nascent virion needs to face is to assemble its complete genome from a pool of RNA 

segments. It is known that the presence of conserved terminal promoter sequences at the 

5’ and 3’ end of each viral RNA is necessary to distinguish itself from cellular RNAs 

(Hutchinson et al. 2010). The 5’ and 3’ sequences are partially base-paired to form a 

characteristic panhandle or corkscrew structure. However, to correctly assemble its 8 

distinct viral segment, influenza A viruses also need segment-specific packaging signals. 

Various methods, 1) including studying defective-interfering RNAs, 2) finding the 

sequence required to efficient package reporter genes, 3) sequence conservation and 4) 
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analyzing the effect of point mutations on packaging, have been used to probe segment-

specific packaging signals.  

Besides identifying evolutionary constraints on the influenza A genome, there 

have also been several studies that try to predict the prevalent strains of influenza viruses 

in the near future by building a sequence-based influenza viral fitness model (Luksza and 

Lässig 2014) or by extracting the information from the influenza viral phylogeny (Neher, 

Russell, and Shraiman 2014). These represent the new frontiers in understanding and 

predicting influenza viral evolution.  

 

Overview of the dissertation 

There has been a long tradition in molecular evolution to study selective pressures 

operating at the protein level. But protein-coding variation is not the only level on which 

molecular adaptations occur, and it is not clear what roles non-coding variation has 

played in evolutionary history, since they have not yet been systematically explored. The 

absence of technical tools to detect positive selection on non-coding variation is one of 

the major obstacles along this road.  

In this dissertation I systematically explore several aspects of the selective 

pressures of noncoding nucleotide variation:   

     Chapter 1 is the General Introduction. It provides the necessary background for 

the entire dissertation, and it sets the stage for the following discussions of selection on 

noncoding nucleotide variations.  
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 Chapter 2 describes a research project on the determinants of eukaryotic 

translation dynamics, which includes selection on non-coding aspects of DNA variation. 

Deep sequencing of ribosome-protected mRNA fragments (Ingolia et al. 2009) and 

polysome gradients in budding yeast (Arava et al. 2003) have revealed an intriguing 

pattern: shorter mRNAs tend to have a greater overall density of ribosomes than longer 

mRNAs.  The same trend has been found in mouse, human, fruit fly, Arabidopsis, 

malaria, and fission yeast: shorter Open Reading Frames (ORFs) tend do exhibit more 

densely packed ribosomes (Ingolia et al. 2009; Cataldo, Mastrangelo, and Kleene 1999; 

Branco-Price et al. 2005; Qin et al. 2007; Hendrickson et al. 2009; Lacsina et al. 2011). 

There is debate about the cause of this trend. To resolve this open question, I used 

5’mRNA secondary structure as a proxy for translation initiation rate, Codon Adaptation 

Index (CAI, a measure of biased synonymous codon usage) as a proxy for translation 

elongate rate, and systematically analysed 5’mRNA and CAI patterns in short versus long 

genes, within each of about 100 sequenced eukaryotic genomes. My results showed that 

compared with longer ones, short genes initiate faster, and also elongate faster. Thus the 

higher ribosome density in short eukaryote genes cannot be explained by translation 

elongation. Rather it is the translation initiation rate that sets the pace for eukaryotic 

protein translation.  

The published research paper arising from Chapter 2, describing my studies on 

ORF length and 5’ mRNA structure (Y. Ding, Shah, and Plotkin 2012), provides a 

statistical analysis and gives us a global view of the relative roles of translation initiation 

vs. elongation. To get a mechanistic understanding of the various aspects of protein 
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translation dynamics, I also helped to develop and parameterize a whole-cell stochastic 

model of the protein translation process that keeps track of every mRNA, tRNA, and 

ribosome in a cell (Shah et al. 2013). Using this mechanistic model, we showed that 

indeed translation initiation is the rate-limiting step in yeast endogenous protein 

translation, at least in healthy growing cells. Even though I am an author on that paper 

(Shah et al. 2013), I do not describe my work on the mechanistic modeling of translation 

in this dissertation, because the project was highly collaborative involving other members 

of the Plotkin lab and it is not directly related to selection pressures on non-coding 

variation. 

 Chapter 3 concerns detecting selective pressures on the influenza A viral RNA 

structures. Influenza A viruses are negative-sense RNA viruses that cause significant 

human morbidity and mortality each year. Rapid evolution of antigenic surface proteins 

allows the virus to re-infect hosts who have recovered from prior strains. It is therefore 

important to understand the selective pressures that shape the evolutionary trajectories of 

influenza viral genomes. Most previous research has focused on identifying amino acid 

residues experiencing positive or purifying selection, whereas selection on RNA 

structures has received less attention. Here we develop algorithms to scan along the viral 

genome and identify regions that exhibit signals of purifying or diversifying selection on 

RNA structure, by comparing the structural distances between actual viral RNA 

sequences against an appropriate null distribution. Unlike other algorithms that identify 

structural constraints, our approach accounts for the phylogenetic relationships among 

viral sequences, as well the observed variation in amino-acid sequences. Our approach 
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can also detect recent selective pressures, which are of considerable practical interest, 

including recent positive selection. Our results indicate that a significant portion of 

influenza A viral genomes have experienced purifying selection for RNA structure, in 

both the positive- and negative-sense RNA forms, over the past few decades; and we 

provide the first evidence of recent positive selection on RNA structure in specific 

regions of these viral genomes. We also identify genomic regions where viral RNA 

structures may have played a role during shifts from avian to human hosts. 

 Chapter 4 summarizes the results from previous chapters and provides some 

perspective on the possible future developments in areas related to the research presented 

in this dissertation.   

Overall, the projects presented in these chapters represent a systematic look at 

several novel aspects of selection on noncoding nucleotide variation. These projects 

should open up new directions in studying the molecular signatures of natural selection, 

including studies on interactions between different layers at which selection may operate 

(e.g. RNA structure, protein sequence, etc).  

Besides the papers discussed above, from 2010-2015 I have also been involved in 

the following additional publications which are not described explicitly in this 

dissertation document: (Y. Ding, Grünewald, and Humphries 2011) is a theoretical paper 

in phylogenetic analysis, where we improved the upper and lower bounds between 

maximal possible distance between two trees of n leaves. This improves our 

understanding of the mathematical properties of several tree-editing distance measures. 

(Y. Ding, Lorenz, and Chuang 2012) presents a motif discovery algorithm to search for 
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over-representative motifs in protein-coding sequences, correcting for the amino acid 

background. This, together with a conservation-based algorithm I helped develop earlier 

(Kural et al. 2009), gives us a set of computational tools to search for functional sequence 

motifs in protein coding sequences. (Y. Ding et al. 2014) presents algorithms to calculate 

the partition functions and probabilities of an RNA molecule adopting a secondary 

structure with k hairpins or multiloops, where k is a positive integer. This gives us a tool 

to calculate the probability that an RNA molecule can adopt a certain shape. (McCandlish 

et al. 2013) examines the analysis of (Breen et al. 2012) and showed that their analysis 

didn’t prove epistasis is the primary factor in molecular evolution, as they initially 

suggested in the paper.  
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Chapter Two 

Systematically Weaker 5’-mRNA Secondary Structures in Short Eukaryotic 

Genes 

 

Abstract 

 Experimental studies of translation have found that short genes tend to exhibit greater 

densities of ribosomes than long genes in eukaryotic species. It remains an open question 

whether the elevated ribosome density on short genes is due to faster initiation or slower 

elongation dynamics.  Here we address this question computationally using 5’ mRNA 

folding energy as a proxy for translation initiation rates, and codon bias as a proxy for 

elongation rates. We report a significant trend towards reduced 5’ secondary structure in 

shorter coding sequences, suggesting that short genes initiate faster during translation. 

We also find a trend towards higher 5’ codon bias in short genes, suggesting that short 

genes elongate faster than long genes.  Both of these trends hold across a diverse set of 

eukaryotic taxa.  Thus, the elevated ribosome density on short eukaryotic genes is likely 

caused by differential rates of initiation, rather than differential rates of elongation. 

 

Introduction 

Synonymous sites in coding sequences have long been used as a neutral yardstick 

against which to compare amino-acid changing substitutions, in the hope of detecting 

either purifying or positive selection on proteins (Goldman and Yang 1994; Kimura 1977; 
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McDonald and Kreitman 1991; Muse and Gaut 1994). Nonetheless, synonymous 

mutations are known to experience selection in many cases (Andersson and Kurland 1990; 

Chamary and Hurst 2005; Duret 2002; Hershberg and Petrov 2008; Sawyer and Hartl 

1992; Sharp et al. 1995; Sharp, Emery, and Zeng 2010) for a variety of mechanisms, 

including the efficiency of gene translation, the stability of mRNAs (Capon et al. 2004; 

Chamary and Hurst 2005; Chamary, Parmley, and Hurst 2006; Duan et al. 2003; Shah 

and Gilchrist 2011; Shen, Basilion, and Stanton 1999) especially near the translation 

initiation site (Gu, Zhou, and Wilke 2010; Keller et al. 2012; Kudla et al. 2009), the 

regulation of splicing, among others (Plotkin and Kudla 2011). The fact that synonymous 

mutations have phenotypic and fitness consequences complicate the interpretation of 

measures of selection, such as the ratio of substitution rates at synonymous and non-

synonymous sites, dN/dS [(Goldman and Yang 1994; Kimura 1977; Muse and Gaut 1994) 

but see (Hirsh, Fraser, and Wall 2005)]. 

Selection for translational efficiency remains the dominant explanation for 

systematic variation in codon usage among the genes in a genome, in diverse taxa 

(Plotkin and Kudla 2011). In accordance with this explanation, codon bias towards the 

most abundant iso-accepting tRNA species is generally strongest in those genes 

expressed at high levels, where efficiency would confer the greatest selective benefit to 

the cell. Nonetheless, the specific mechanisms by which codon bias confers relative 

fitness gains are actively debated (Plotkin and Kudla 2011; Shah and Gilchrist 2010).  

Our understanding of the dynamics of gene translation, and the role of codon bias in 

translation, will benefit from new experimental techniques that parse the detailed kinetics 
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of translation across the entire transcriptome. Especially promising are techniques that 

use high-throughput sequencing of ribosome-protected RNA to determine a “ribosomal 

footprint” on each mRNA (Bazzini, Lee, and Giraldez 2012; Brar et al. 2012; Guo et al. 

2010; Ingolia et al. 2009; Ingolia, Lareau, and Weissman 2011; G. W. Li, Oh, and 

Weissman 2012; Oh et al. 2011; Reid and Nicchitta 2012) with greater accuracy than 

earlier, polysome-based techniques (Arava et al. 2003). Among many other intriguing 

findings, these experiments have shown that the cell-wide average profile of ribosome 

densities in yeast exhibits a trend of decreasing ribosome density with codon position, 

from 5’ to 3’ – an observation that has been explained, in part, by a trend towards less 

biased codon usage in the 5’ ends of genes, associated presumably with slower elongation 

and thus higher ribosome density (Tuller et al. 2010). 

Aside from the 5’ ramp of elevated ribosome densities, sequencing (Ingolia et al. 

2009) and polysome gradients in budding yeast (Arava et al. 2003) have also revealed 

another, possibly independent finding: shorter mRNAs tend to have a greater overall 

density of ribosomes than longer mRNAs.  The same trend has been found in mouse, 

human, fruit fly, Arabidopsis, malaria, and fission yeast: shorter ORFs tend to exhibit 

more densely packed ribosomes (Branco-Price et al. 2005; Cataldo, Mastrangelo, and 

Kleene 1999; Hendrickson et al. 2009; Ingolia et al. 2009; Lackner et al. 2007; Lacsina et 

al. 2011; Qin et al. 2007).There is debate about the cause of this trend. Some authors have 

attributed this relationship to a constant-length ramp of elevated 5’ density on all 

transcripts due to elongation dynamics (Ingolia et al. 2009) (so that shorter transcripts 

would be observed to have larger overall ribosome density); and others have attributed 
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this trend to an increased rate of initiation in short yeast genes causing an increased 

density of ribosomes (Arava et al. 2003; Arava et al. 2005; Lackner et al. 2007). As a 

result, at present it is unclear whether the greater overall density of ribosomes on short 

yeast genes is caused by a greater rate of initiation for such genes, or a slower rate of 

early elongation in those genes. 

Against this backdrop of open questions, here we analyze the relationship between 

ORF length and measures of initiation and early elongation rates, across a diverse set of 

eukaryotic species. As a proxy for the initiation rate of a gene we use the computationally 

predicted energy of its 5’ mRNA structure – a quantity that has been shown 

experimentally to correlate strongly with protein levels (Kudla et al. 2009) and which has 

been subject to natural selection in virtually all free-living (Gu, Zhou, and Wilke 2010; 

Keller et al. 2012; Tuller et al. 2010) and many viral species (Zhou and Wilke 2011). As 

a proxy for the early elongation rate of a gene we use the codon adaptation index (CAI) 

(Sharp and Li 1987) of its early codons (Tuller et al. 2010). In general, by performing 

these analyses we seek to understand whether the trend towards elevated ribosome 

densities in short genes (Arava et al. 2003; Arava et al. 2005; Branco-Price et al. 2005; 

Cataldo, Mastrangelo, and Kleene 1999; Hendrickson et al. 2009; Ingolia et al. 2009; 

Lackner et al. 2007; Lacsina et al. 2011; Qin et al. 2007) is caused by faster initiation in 

those genes, slower early elongation in those genes, or both.  

 

Results 

Codon bias, mRNA structure, and ORF length in C. elegans 
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We first investigated the relationship between ORF length and 5’ mRNA folding in 

the model species C. elegans, as well as the relationship between ORF length and 5’ 

codon bias. As described above, we use these two measures as proxies for the initiation 

rates and early elongation rates of genes. In particular, for each C. elegans transcript, we 

computed its predicted folding energy from nucleotide -4 to +37 (Kudla et al. 2009) 

relative to start, using RNAfold (Hofacker et al. 1994), and we computed the CAI of its 

first 50 codons. (We systematically explore alternative definitions of 5’ CAI below.) 

  We performed a Spearman rank correlation test between 5’ mRNA folding energy 

and ORF length, among the 29857 transcripts in C. elegans (Assembly WS220). We 

likewise performed a rank correlation test between 5’ CAI values and ORF lengths. Our 

expectation was that compared with long genes, short genes should tend to have faster 

initiation rates and/or slower early elongation rates – in order to explain the tendency 

towards elevated ribosome densities on short genes (Arava et al. 2003; Arava et al. 2005; 

Branco-Price et al. 2005; Cataldo, Mastrangelo, and Kleene 1999; Hendrickson et al. 

2009; Ingolia et al. 2009; Lackner et al. 2007; Lacsina et al. 2011; Qin et al. 2007). Of 

these two alternative mechanisms we might in principal expect the initiation-driven 

mechanism to be a stronger determinant of ribosome densities(Andersson and Kurland 

1990; Bulmer 1991; Lackner et al. 2007). 

In accordance with these expectations, we found a significant negative rank 

correlation (Spearman rho = -0.12, p < 7e-90) between 5’ mRNA folding energy and 

ORF length, indicating a tendency towards weaker mRNA structure and presumably 

faster initiation in short C. elegans genes (Fig. 1). On the other hand, we also found a 
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significant negative rank correlation (Spearman rho = -0.16, p < 5e-179) between 5’ CAI 

and length, suggesting shorter genes tend to have faster early elongate rates (Fig. 2). 

Given that shorter genes have higher CAI and hence faster elongation rates, we would 

expect a lower ribosomal density for shorter genes contrary to the observed patterns. As a 

result, we conclude that higher ribosomal densities of shorter genes is most likely 

explained by faster initiation rates as shown by weaker 5’ mRNA secondary structures.  
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Figure 1. Short C.elegans genes have higher 5’ mRNA folding energies than long 

C. elegans genes, suggesting faster initiation in short genes.  Genes have been 

binned according to their log (ORF length), with dots showing the mean 

computed 5’ mRNA folding energy in each bin, and lines showing ± 1 standard 

deviation. The solid line shows best-fit regression (Spearman rho = -0.12, p < 7e-

90). 

 

 

Figure 2. Short C.elegans genes have higher 5’ CAIs than long C. elegans genes, 

suggesting faster elongation in short genes. Genes have been binned according to 
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their log (ORF length), with dots showing the mean computed 5’ CAI in each bin, 

and lines showing ± 1 standard deviation. The solid line shows best-fit regression 

(Spearman rho = -0.16, p < 5e-179). 

 

Codon bias, mRNA structure, and ORF length in 120 Eukaryotic Species 

Given our results in C. elegans we then asked how broadly these trends in gene 

length and 5’ mRNA structure hold across eukaryotes. We repeated the 5’ mRNA folding 

energy calculations in 120 eukaryote species, and the 5’ CAI calculations in 89 of those 

species for which a reliable reference set of genes was available for computing CAI. (The 

sets of species used in 5’ mRNA folding energy and 5’ CAI calculations are listed in 

supplementary table S1). The results of these calculations and their correlations with 

ORF length are summarized in table 1.  

Table 1 summarizes the proportion of species tested that exhibit a negative rank 

correlation between 5’ mRNA folding energy and ORF length, or between 5’ CAI and 

ORF length. In addition we report the proportion of species that feature a significant 

negative correlation, at the 5% significance level. As the table shows, the results found in 

C. elegans hold very broadly across eukaryotes: about 80% of tested eukaryotes exhibit 

negative correlations between mRNA folding and length, and between 5’ CAI and length. 

The preponderance of significant negative correlations with ORF length among 

eukaryotes is itself highly significant, for both 5’ mRNA folding energy (binomial p<1e-

11) and 5’ CAI (binomial p<1e-9) – suggesting a systematic eukaryotic trend towards 

faster translation initiation and faster early elongation in short versus long genes. Thus 
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our results suggest that the higher ribosome density observed in shorter eukaryotes genes 

is likely due to faster initiation rates in shorter genes.  

 

correlations with ORF length  

5’ free energy 

(120 species) 

5’ CAI 

(89 species) 

% species with 

negative correlation  

82% 83% 

% species with 

significant negative 

correlation 

73% 67% 

% species with 

positive correlation 

18% 17% 

% species with 

significant positive correlation 

11% 15% 

two-sided Binomial P value 1.2 e-12 1.5 e-10 

 

Table 1. Most eukaryotic species show a tendency towards weak 5’ mRNA 

structure and high 5’ codon bias in shorter genes. In particular, there is a negative 

rank correlation between 5’mRNA folding energy and ORF length 82% of the 

120 eukaryotic species tested, and likewise a negative rank correlation between 5’ 
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CAI and ORF length in 83% of the 89 species tested. The overall tendency 

towards negative correlations is highly significant, in both cases. 

 

The distribution of correlations for energy and CAI are presented in Fig. 3 and Fig. 4, and 

the complete results for each species used in the energy and CAI calculations are 

presented in supplementary tables S2 and S3, respectively. 

 

 

Figure 3. The distribution of Spearman Rank Correlation Coefficients between 5’ 

Energy and ORF length in 120 eukaryotic species.  
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Figure 4. The distribution of Spearman Rank Correlation Coefficients between 5’ 

CAI and ORF length in 89 eukaryotic species.  

 

Weak 5’ mRNA folding in short genes, controlling for 5’ CAI 

In the previous sections we have established a systematic trend towards weaker 5’ 

mRNA structure in short genes, as opposed to long genes; and we argued that the 

resulting increase in initiation rates is responsible for the greater density of ribosomes 
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typically found in short eukaryotic genes.  Nonetheless, we have also found a trend 

towards increased CAI in the same region, in short genes – and so the possibility remains 

that some subtle patterns of 5’ CAI might be responsible for the trend observed in mRNA 

structure.  To resolve this issue, we have performed a randomization procedure that 

isolates the effects of synonymous codons on 5’ mRNA structure, controlling for 5’ CAI.  

For each species, we randomly shuffled the first 50 codons of each coding sequence, 

and we repeated this process 100 times for each gene. In each such permutation the 5’ 

CAI of the gene is preserved, whereas the mRNA structure is possibly perturbed. We 

then computed the quantile of the 5’ mRNA folding energy for the true gene sequence 

with respect to this null distribution of permuted sequences. Since our hypothesis is that 

shorter genes are under selection for weaker 5’ mRNA folding (i.e. higher energy) 

regardless of 5’ CAI, we expect a higher quantile for shorter genes. We tested this 

expectation by computing the Spearman rank correlation between the length of each ORF 

in the genome and the quantile of its true mRNA folding energy compared to the null 

distribution. 

As shown in table 2, we observed a negative rank correlation between the energy 

quantile and the ORF length in the great majority species (binomial p-value < 6e-15) – 

indicating that the trend towards weak mRNA structure in short genes holds even after 

controlling for 5’ CAI. These analyses substantiate our hypothesis that shorter eukaryotic 

genes are under selection to have faster translation initiation rates, achieved through 

weaker 5’mRNA folding. 
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Correlation between ORF length and 

quantile of observed 5’ free energy 

% species  

(of 120 tested) 

negative correlation 84% 

significant negative correlation 65% 

positive correlation 16% 

significant positive correlation 2.5% 

one-sided Binomial P value 5.38e-015 

 

Table 2. Most species exhibit a tendency towards weak 5’ free energy in short 

genes, even after controlling for 5’ CAI. In the majority of species tested we find 

a negative rank correlation between ORF length and the quantile of the observed 

5’ mRNA free energy among the free energies of permuted sequences that retain 

the same 5’ CAI value. The tendency towards negative correlations across species 

is highly significant. 

 

Robustness of Results 

In the preceding analyses we calculated 5’ CAI using the first 50 codons of each 

ORF. We chose this region to coincide as much as possible with the ramp of slow codons 

reported by Tuller et al. (Tuller et al. 2010). We repeated the 5’ CAI calculations using 

the first 13, 15, 20, 30, 40, and 60 codons, and obtained similar qualitative results in each 
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case (See supplementary table S4). The ribosomal density on a gene might be affected by 

codons beyond the 5' region of gene as well. For instance, slow codons in the middle or 

end of a gene might cause a bottleneck for ribosomes, leading to higher ribosomal 

densities irrespective of the codon composition in the 5' region. As a result, we also 

verified the robustness of our results by considering the CAI of entire ORF, producing 

the same qualitative, but slightly weaker, result (36% positive correlations, 64% negative 

correlations, two-sided Binomial P value < 0.011. For the complete tabulation of these 

results see supplementary table S8). 

Another potential concern that may arise from our 5’ CAI calculation is that we 

excluded sequences shorter than 51 codons. Is it possible that the sequences shorter than 

51 codons could have a different CAI pattern and somehow diluted the observed CAI 

pattern? To answer this question we modified the definition of 5’ CAI to include coding 

sequences shorter than 51 codons long, by computing the geometric mean of the relative 

adaptiveness of all the non-stop codons in the sequence. Again, this did not change our 

qualitative results. (See supplementary table S5).   

 

Discussion 

We have reported a strong trend towards weaker 5’ mRNA structure in short genes, 

as compared to long genes, among eukaryotic species. Moreover, we also observed a 

trend towards higher 5’ codon bias in short versus long genes – indicating that elongation 

dynamics driven by codon bias are unlikely to be the cause of higher ribosomal densities 

on short genes. For each individual species, the correlation between ORF length and 
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5’mRNA folding energy/ 5’CAI is usually statistically significant but not strong. 

Nonetheless, the trend of reduced 5’ secondary structure in short coding sequences was 

observed in the vast majority of eukaryotic species (82%) tested. The statistical 

significance of this trend is extraordinarily strong, and so too is the biological 

significance: more than three-quarters of eukaryotic species exhibit reduced 5’ mRNA 

structure in short genes.  

To the extent that 5’ mRNA structure modulates initiation (Bettany et al. 1989; de 

Smit and van Duin 1990; Eyre-Walker and Bulmer 1993; Gu, Zhou, and Wilke 2010; 

Keller et al. 2012; Kudla et al. 2009), our results suggest that faster initiation is 

responsible for the empirical observation in diverse eukaryotes (Arava et al. 2003; 

Branco-Price et al. 2005; Cataldo, Mastrangelo, and Kleene 1999; Hendrickson et al. 

2009; Lackner et al. 2007; Lacsina et al. 2011; Qin et al. 2007) that short mRNAs are 

more densely packed with ribosomes than long mRNAs.  

Our analyses across a diverse set of eukaryotic species substantiates several authors’ 

interpretation of patterns of ribosomal densities and ORF length, which have been 

attributed to initiation-driven mechanisms as opposed to elongation effects (Arava et al. 

2003; Arava et al. 2005; Lackner et al. 2007). Our results confirm that the effects of 

initiation, modulated by ribosomal binding to the 5’ end of mRNA and scanning to start 

codon, strongly outweigh those of elongation dynamics, modulated by codon bias. This 

view is in contrast, however, with other studies that propose a dominant role of codon 

usage in shaping ribosomal occupancies(Tuller et al. 2010). Our results do not directly 

contradict those of Tuller et al (Tuller et al. 2010), however, because those authors 
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considered relative codon usage within each ORF, whereas we have studied absolute 

codon usage across different ORFs. 

Other factors such as protein folding(Kimchi-Sarfaty et al. 2007) and sequence 

similarity to ribosome binding sites (G. W. Li, Oh, and Weissman 2012) may also 

influence ribosome density. However, such effects are generally not considered as major 

determinants in shaping overall ribosome density(G. W. Li, Oh, and Weissman 2012; 

Plotkin and Kudla 2011). These factors, which are difficult to quantify systematically, are 

probably less likely to show systematic trends with respect to ORF length, such as those 

we have observed for 5’CAI and 5’ mRNA secondary structure.  

It is interesting to ask whether there are any commonalities among the 22 

“counterexample” species in which we observed a positive rank correlation between 

5’energy and ORF length. What differentiates these organisms from the other eukaryotes 

we have studied? To answer this question, we examined the phylogenetic relationship of 

all the studied species, and the distribution along this phylogeny of those 22 species 

exhibiting a positive rank correlation between ORF length and 5’ free energy (see 

supplementary fig. S1). Although a few of these counter-examples are clearly closely 

related sister species, overall these 22 species are distributed relatively uniformly among 

eukaryotes, as opposed to being mostly monophyletic. And so we do not find any obvious 

commonality among these species with respect to their evolutionary history and, likely, 

ecological contexts.   

Our results on systematically weaker 5’ mRNA structure in short genes beg the 

question: why should short genes experience selection for fast translation initiation?  It 
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has been suggested that highly expressed genes are shorter in many eukaryotes (Duret 

and Mouchiroud 1999; Eisenberg and Levanon 2003; Eyre-Walker 1996; Rao et al. 2010), 

also short genes are enriched for constitutively expressed housekeeping and ribosomal 

genes (Hurowitz and Brown 2003), which must produce protein as rapidly as possible. 

This alone might explain why short genes experience selection for faster 

initiation(Reuveni et al. 2011). In addition, housekeeping genes tend to have shorter 5' 

untranslated regions (UTRs) and are under weaker post-transcriptional regulation (David 

et al. 2006; Hurowitz and Brown 2003; Lin and Li 2012). The probability of successful 

ribosomal binding and scanning on an mRNA may depend on the length of its 5' UTRs. 

As a result, genes that require post-transcriptional regulation tend to have longer 5' UTRs, 

leading to lower initiation probabilities(Lin and Li 2012). 

In summary, we find that shorter genes have higher 5’ mRNA folding energies and 

codon bias, suggesting that shorter genes both initiate and elongate faster than longer 

genes. Both of these trends hold across a diverse set of eukaryotic taxa. Since faster 

elongation leads to lower ribosome densities, the elevated ribosome densities of short 

eukaryotic genes is a result of initiation rates, rather than elongation rates. 

 

Methods 

Datasets 

Coding sequences with 4bp upstream data for most species were downloaded from 

ensembl genomes servers (http://www.ensemblgenomes.org). The coding sequences of 

Y.lipolytica with 1000bp upstream sequences and 300 bp downstream sequences were 
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downloaded from Génolevures (Sherman et al. 2009) (www.genolevures.org/yali.html). 

All the coding sequences were preprocessed so that sequences whose length are not a 

multiple of 3, those with premature stop codons, or a continuous string of more than 3 

ambiguous “N” symbols are discarded. We only considered coding sequences at least 42 

nucleotides long. The complete list of species used in this study is listed in supplementary 

table S1. 

We identified ribosomal genes for the purpose of computing CAI from one of three 

sources: 1. The ribosomal gene sequences for 24 species were downloaded from the 

HOGENOMDNA (Penel et al. 2009) database  

(http://pbil.univ-lyon1.fr/databases/hogenom/acceuil.php).   

Orthologous groups of ribosomal genes from the HOGENOM database are listed in 

supplementary table S6.  2. The ribosomal genes for 64 species were obtained from 

Orthologous MAtrix Project (Altenhoff et al. 2011) (http://omabrowser.org). We used S. 

cerevisiae as our genome of reference and obtained orthologues of its ribosomal genes. 

The OMA orthologous groups and organism-specific ribosomal genes are listed in 

supplementary table S7. 3.The ribosomal genes for Y. lipolytica were obtained by 

performing a protein blast search against the ribosomal gene coding sequences for S. 

cerevisiae, and taking the top hit for each gene provided it has an E-value less than 1e-05.  

The number of identified ribosomal genes per species in our dataset ranged from 19 to 

184 genes with a median value of 44. 

Calculating 5’ mRNA folding free energy 
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To get an estimate of the translation initiation rates, we used the program RNAfold 

from Vienna RNA package (Hofacker et al. 1994) to calculate the mRNA folding energy 

from base -4 to 37 for each gene. For each species we calculated the 5’ folding energy 

and length of every gene, and then obtained the Spearman’s rank correlation coefficient 

and a two-tailed p-value using the function spearmanr in the SciPy (Jones, Oliphant, and 

Pearu 2001) package of Python (Van Rossum and Drake 2001). We chose 0.05 as the 

significance level. 

We then counted the number of species in which the 5’ free energy has a negative 

Spearman’s rank correlation with sequence length, and also the number of species in 

which the correlations are significant. We calculated a two-tailed P value to assess if 

there is an overall trend in the direction of rank correlation between 5’ mRNA folding 

energy and coding sequence length.  

Calculating 5’ Codon Adaptation Index   

To obtain an estimate of the translation early elongation rates, we calculated the 

Codon Adaptation Index (CAI) (Sharp and Li 1987) for the first 50 codons of each gene. 

The 5’ CAI of a gene is defined as the geometric mean of the relative adaptiveness values 

of all the considered codons in a particular gene. The relative adaptiveness values of each 

codon is defined as ratio of occurrences of the codon to occurrences of the most abundant 

synonymous codon, using the ribosomal gene sequences from each species. In the above 

calculations, we removed coding sequences less than 51 codons long. Alternatively, for 

these short sequences we also calculated 5’ CAI using the whole sequence, and obtained 

the same qualitative results (see supplementary table S5).  
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Chapter Three 

Signatures of Natural Selection on RNA Structures in  

Influenza A Viruses 

 

Abstract 

Influenza A viruses cause significant human morbidity and mortality each year. 

Rapid evolution of antigenic surface proteins allows the virus to re-infect hosts who have 

recovered from prior strains. It is important therefore to understand the selective 

pressures that shape the evolutionary trajectories of influenza viral genomes. Most 

previous research has focused on identifying amino-acid residues experiencing positive 

or purifying selection, whereas selection on RNA structures in the negative-sense viral 

genome or in the positive-sense viral mRNA has received less attention. Here we develop 

algorithms to scan along a viral genome and identify regions that exhibit signals of 

purifying or diversifying selection on RNA structure. The algorithms work by computing 

predicted secondary RNA structures, and comparing the structural distances observed 

between actual viral RNA sequences against an appropriate null distribution. Unlike other 

algorithms that identify structural constraints by permutation of sites, our approach 

accounts for the phylogenetic relationships among viral sequences, as well the observed 

variation in amino-acid sequences. Unlike other algorithms, our approach can also detect 

recent selective pressures, which are of considerable practical interest in the context of 

viral evolution. Our analysis of viral sequence data indicates that a significant portion of 

influenza A viral genomes have experienced purifying selection for RNA structure, in 
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both the positive- and negative-sense RNA forms, especially since the divergence of 

human and avian strains. And we provide the first evidence of positive selection on RNA 

structure in specific regions of these viral genomes. We also identify genomic regions 

where viral RNA structures may have played a role during shifts from avian to human 

hosts. 

 

Introduction 

Influenza A viruses circulate widely in human hosts and cause considerable 

illnesses and death around the globe every year. Therefore it is of interest and importance 

to identify the evolutionary constraints operating on influenza A genomes, which consist 

of eight negative-sense RNA segments. However, most of the previous research efforts in 

this direction have been concentrated on identifying the amino acid residues that are 

under purifying or positive selection, whereas the selective pressure on the RNA 

structures in their negative-sense viral genome has received little attention. In this paper 

we will focus on this level of potential constraints on the evolutionary trajectories of 

influenza genomes: RNA structures.  

RNA structures have been shown to play important roles during various stages of 

the influenza life cycle. For example, the panhandle structure (Hutchinson et al. 2010) at 

the two ends of each viral segment is critical for the virus to distinguish cellular RNA 

from viral RNAs. There has also been recent evidence suggesting RNA structures may 

have played a role during the host shift from avian to human (Brower-Sinning et al. 2009). 

This begs the question: are there other evolutionary constraints on the RNA structures in 
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influenza A viruses? It has been shown in other prokaryotic (Chursov, Frishman, and 

Shneider 2013; Gu et al. 2014), eukaryotic (Gu et al. 2014) and viral (Tuplin et al. 2002; 

Tuplin, Evans, and Simmonds 2004; Zanini and Neher 2013) species that evolution tends 

to preserve RNA structures. Does this also hold for influenza A viral RNA? And, 

conversely, are there any regions in influenza virus genomes or mRNA that are under 

selective pressures to change their RNA structures?  

Several prior studies in influenza viruses have explored conserved RNA structures 

and their functions in influenza genomes (Moss, Priore, and Turner 2011; Priore, Moss, 

and Turner 2012; Moss et al. 2012; Priore, Moss, and Turner 2013; Priore et al. 2013; 

Dela-Moss, Moss, and Turner 2014; Jiang et al. 2014; Gultyaev et al. 2014). Our 

research is different from these studies in two major aspects: First, for one portion of our 

analysis, we leverage the influenza sequences that have been accumulated during the past 

half a century, and we base our estimates of selection pressures only on those 

substitutions that have accrued during this time period. As a result, our analysis quantifies 

the extent of recent selection pressures on viral RNA structures. Second, in addition of 

purifying selection on RNA structures, our approach can identify diversifying selective as 

well. And indeed we find evidence to support the view that some genomic regions have 

experienced selection to change RNA structures, especially during the transition from 

avian to human hosts. 

 

Results 

Adaptation from avian hosts to human hosts 
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We first want to investigate whether the influenza A genomes have been under 

selective pressure for conserved or variable RNA structures during the shift from avian to 

human hosts. To answer this question, we developed a simple algorithm to detect 

selection on RNA structures by pairwise sequence analyses, applied to two distinct sets of 

influenza genomic sequences: those collected from human and avian hosts, respectively. 

The basic idea behind the method that compares two sequences is to scan along the 

positive- or negative-sense viral RNA in a moving window, compute predicted secondary 

structures for an avian and human form of the viral sequence, in a given window, 

compute a structural distance metric to quantify the structural divergence between the 

human and avian RNA forms, and finally compare this observed structural distance to an 

appropriate null distribution based on the randomly permuting the positions at which the 

two sequences differ synonymously, whilst preserving the total number of synonymous 

mutations between the two sequences. 

This algorithm for detecting selection is described in detail in the Method. But, 

briefly, the algorithm scans along each viral segment with a sliding window of 60 bases 

and step size of 9 bases. In order to calculate the actual pairwise RNA structural distances 

for a particular window, we selected non-redundant datasets of human and avian 

influenza sequences, and we randomly paired each human influenza viral sequence with 

an avian influenza viral sequence. We computed the average RNA structural distance in 

each window among all such pairs, to be compared to a null distribution. The null 

distribution was generated by starting with the avian influenza sequence of each human-

avian pair (avian influenza evolves more slowly, so they were considered “ancestral 
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sequences”, but the result is robust with respect to choice of “ancestral genome”), and 

introducing the observed number of synonymous mutations in random positions, while 

preserving all non-synonymous mutations, so that the resulting “simulated” human 

influenza sequences encode the same amino acid sequences as the “original” human 

influenza sequences. We then calculated the RNA structural distance between the 

resulting “simulated” human influenza sequence with the original influenza sequence, 

and the average from all such pairs contributes value in the null distribution. Finally, by 

comparing the average RNA structural distance in the true data with this null distribution 

we derived a quantile score for each window of the genome. If the average pairwise 

structural distance among the actual pairs of human-avian viral sequences is smaller than 

most the distances in the null distribution, then this suggests that purifying selection has 

constrained synonymous mutations along the phylogeny to preserve RNA structures. On 

the other hand, if the average structural distance among the actual viral sequences is 

larger than most of the distances in the null distribution, then this suggests there has been 

diversifying selection to change RNA structures in the recent past, presumably adapting 

to some novel environmental or genetic context after the host shift from avian to human 

hosts.  

We first studied the overall distribution of quantile scores for all windows in all 

eight segments of human vs. avian influenza A viral genomes (Figure 1). Our dataset of 

human and avian influenza A viruses contained 2,699 non-redundant sequences (meaning 

the pairwise sequence similarity is below a specified threshold; see the description of the 

pairwise algorithm in Materials and Methods) selected from a total of 81,997 viral 
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segments that were isolated from infected hosts between the years 1918 and 2013. In the 

absence of any selective pressure, we would expect the quantile scores to be distributed 

uniformly between 0 and 1. We found the observed distribution is bi-modal: we observed 

both an excessive number of windows with low quantiles, suggesting purifying selection,  

as well as an excessive number of windows with high quantiles, suggesting diversifying 

selection. There have been reports in some prokaryotic, eukaryotic and other viral species 

(Chursov, Frishman, and Shneider 2013; Zanini and Neher 2013; Gu et al. 2014) that a 

significant proportion of the genome is under purifying selection to preserve RNA 

structures, and our analysis confirms these findings. Moreover, our results provide 

evidence that some portions of influenza genomes are under diversifying selective to 

change their RNA structures. These analyses provide a global view of recent diversifying 

and purifying selective pressures on RNA structures that influenced the synonymous 

substitution accrued in influenza A genomes.   
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Figure 1: Distribution of quantile scores from all the 8 segments of Human vs. Avian 

influenza A viruses, under pairwise analysis. Both purifying and diversifying selective 

pressure are observed in avian- vs. human-derived influenza viral samples, as evidenced 

by enrichment for low and high quantiles of the observed test statistic compared to the 

null distribution (two-sided p-value of Kolmogorov-Smirnov test against uniform 

distribution<2.2 e-16). 
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Next we examined the results from each viral segment in more detail. As an 

example, we looked at the predictions for a particular Influenza A segment: the PA 

segment (Figure 2).  Our algorithm predicts regions 244-313, 883-952, 1738-1798, 1963-

2041 on the (+) strand, and regions 1-70, 226-286, 334-394, 496-565, 892-961,1108-

1177, 1639-1717 on the (-) strand show signs of purifying selection on RNA secondary 

structures (quantile scores less than 0.05). In a previous study (Moss, Priore, and Turner 

2011) that investigated the conserved RNA secondary structures in influenza A coding 

regions, authors compared six genome sequences from H5N1, H1N1 subtypes, isolated 

from human, swine and avian hosts. They predicted positions 1611-1860, 1941-2120 on 

the (+) strand, and positions 41-290,1161-1280 with ambiguous strand bias, as conserved 

regions for RNA structures. Our results for segment 3 are thus in qualitative agreement 

with those of Moss et al (2011). In addition to this, our algorithm has the unique ability to 

detect genomic regions that exhibit signs of positive selection for RNA secondary 

structural change, and indeed the algorithm predicts positions 100-205, 523-583, 1036-

1114 on the (+) strand, as well as positions 118-187, 568-628, 1009-1078, 1585-1645, 

2026-2086 on the (-) strand of the PA segment that may be under selective pressure to 

change RNA secondary structures (quantiles exceeding 0.95). 

We summarized the quantile scores for each segment of Human vs. Avian 

influenza A viruses in Figure 3. We found the same general conclusions hold for other 7 

segments as well – we observed many regions that are likely to be under purifying and 

diversifying selective pressure in other segments, especially in segments 3 (PA), 5 (NP), 

7 (M1/M2), 8 (NS1/NS2). This largely agrees with several previous reports that found 
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segment 5 (Gultyaev et al. 2014), segment 7(Moss, Priore, and Turner 2011; Moss et al. 

2012) and segment 8 (Plotch and Krug 1986; Nemeroff et al. 1992; Moss, Priore, and 

Turner 2011) to be potentially enriched for conserved RNA structures, although the exact 

location of the preserved secondary structures sometimes differ. Unique to this study, we 

also observed that segments 3,5,7,8 also harbor regions under diversifying selective 

pressures on RNA structure. This not only suggests that indeed RNA secondary 

structures in these segments are functionally important, it also suggests that these four 

viral segments may have played important roles in influenza A viral host shift from avian 

to human hosts, such as structural changes to accommodate different host body 

temperatures. 
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Figure 2: Quantile scores from Pairwise Selection Detection Algorithm for influenza 

A segment 3 (PA) using avian- and human-derived influenza viral samples. The two 

grey curves are the predicted position-specific structural quantile scores for two strands, 

smoothed by Local Polynomial Regression Fitting. The blue bars represent regions where 

there is evidence for purifying selection for RNA secondary structures; whereas red bars 

represent regions there is evidence for diversifying selection. We chose a quantile cut-off 
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score of 0.05 as the threshold for purifying selection, and a quantile cut-off of 0.95 as the 

threshold for diversifying selection. For comparison, the green bars represent the regions 

predicted to have conserved RNA structures by (Moss, Priore, and Turner 2011), where 

dark green indicates the predicted structure is on the (+) strand, while light green 

indicates regions with ambiguous strand biases.  
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segments using avian- and human-derived influenza A viral samples. The blue bars 

represent regions where there is evidence for purifying selection for RNA secondary 

structures; whereas red bars represent regions there is evidence for diversifying selection. 

We chose a cut-off score of 0.05 as the threshold for purifying selection, and a cut-off of 

0.95 as the threshold for diversifying selection. For comparison, the green bars represent 

the regions predicted to have conserved RNA structures by (Moss, Priore, and Turner 

2011), where dark green indicates the predicted structure is on the (+) strand, while light 

green indicates regions with ambiguous strand biases.  

 

A previous report (Brower-Sinning et al. 2009) found a clear separation in the 

RNA folding energies between human and avian influenza polymerase genes, and further 

suggested that the body temperature differences between human and avian hosts may 

cause RNA structures to fold differently in the two hosts, thus creating selective pressures 

for the proper folding of RNAs. In our reported results so far, all the viral RNA 

sequences were folded at human body temperature (37 °C). We repeated the above 

analysis for three polymerase genes (PB1, PB2, PA) except this time folding the avian 

influenza viruses at avian body temperature (40 °C), and the results are qualitatively 

unchanged.  

 

Detecting recent selection on Influenza A viral RNA structures within a single host 

species  

In the previous section we developed a pairwise selection detection algorithm to 
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compare human vs. avian influenza viruses and detected genomic regions exhibit signs of 

purifying or diversifying selection for RNA structures. In this section, we develop a 

phylogeny-controlled selection detection algorithm and use it to detect RNA structural 

selective pressures that have operated in the recent past – that is over the timescale of 

decades, while viruses have remained within a single (human) host species. Similar to the 

pairwise selection algorithm, the algorithm scans along each viral segment with a sliding 

window of 60 bases and step size of 9 bases. For each window we computed a quantile 

score by comparing the average pairwise RNA structural distances between actual 

influenza isolates against a null distribution. The null distribution preserves (i) the amino 

acid sequence of each viral isolate (ii) the phylogenetic topology relating all the viral 

isolates and (iii) the number of substitutions along each branch in the phylogeny, but 

otherwise randomizes the locations of the synonymous mutations (see Materials and 

Methods for details).  

We ran the phylogeny-controlled algorithm for all the eight segments of human 

H1N1 influenza viruses. Our dataset of human H1N1 viruses contained sequences from 

54,465 viral segments, sampled between the years 1918 and 2013. The distribution of the 

quantile scores from all the windows of the 8 segments is shown in Figure 4. Our results 

are qualitatively different from the results we found when comparing human vs. avian 

influenza A viruses: We only see an enrichment of genomic regions on the side of 

purifying selection; while the side indicating diversifying selection is conspicuously flat.  

Since the approach used in this section leverages the information from thousands 

of sequence polymorphisms that existed in the past few decades, our analysis confirms 
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the purifying selective pressures on RNA structures have persisted in the recent past (that 

is, on substitutions accrued over the past 50 years). On the other hand, it is not surprising 

that we do not find as many regions that are under diversifying selection as in the human 

vs. avian comparison, since presumably the diversifying selective pressures on RNA 

structures to adapt to novel environment should be much milder, if exists, during the viral 

evolution inside a single host species. We constructed the same histogram of quantile 

scores for human H3N2 viruses (34,393 viral segments, sampled between the years 1968 

and 2013) and observed qualitatively similar results as for H1N1 human viruses (see 

Supplementary Figure 1).  
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Figure 4: Distribution of quantile scores from all the 8 segments of Human H1N1 

influenza A viruses. Only purifying selective pressure are observed within Human H1N1 

influenza viral samples, as evidenced by enrichment for low quantiles of the observed test 

statistic compared to the null distribution (two-sided p-value of Kolmogorov-Smirnov 

test against uniform distribution<2.2 e-16). 
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In Figure 5 we gave a survey of analysis of selection on RNA structures for each 

human H1N1 and H3N2 viral segment. As the figure indicates, we identify many fewer 

regions that show signs of selection on RNA structures, except for segment 7(M1/M2) 

and 8(S1/S2). This is consistent with previous reports (Moss, Priore, and Turner 2011) 

suggesting that segment 7 and 8 are most enriched for functional RNA structures. Our 

results suggest purifying selective pressures on RNA secondary structures likely had 

some effect on the shape of the evolutionary trajectory of influenza A genome in the past 

half a century, within human hosts alone. This highlights the importance of detecting the 

selective pressure “in action”, which is what our phylogeny-controlled algorithm is 

specifically designed for. The fact that we identify many fewer genomic regions under 

selection is likely because we only used influenza sequences from a single subtype within 

a single host species collected in the past few decades, there is less sequence variation to 

provide power for detection. 
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Figure 5: Quantile scores for all segments of influenza A H1N1 and H3N2 subtypes. 

The blue bars represent regions where there is evidence for purifying selection for RNA 

secondary structures; whereas red bars represent regions there is evidence for 

diversifying selection. We chose a cut-off score of 0.05 as the threshold for purifying 

selection, and a cut-off of 0.95 as the threshold for diversifying selection. For comparison, 

the green bars represent the regions predicted to have conserved RNA structures by 
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(Moss, Priore, and Turner 2011), where dark green indicates the predicted structure is on 

the (+) strand, while light green indicates regions with ambiguous strand biases.  

 

No coordination in selection for RNA structures and for amino acid residues 

Numerous studies on Influenza viruses (Bush et al. 1999; Yang 2000; Suzuki 

2006; Kosakovsky Pond et al. 2008; X. Ding et al. 2010; Tusche, Steinbruck, and 

McHardy 2012) have analyzed amino-acid residues or collections of residues that may 

experience selective pressures. It is thus of interest to ask whether selection on the level 

of RNA structure which we identified in the previous sections are coordinated with 

selection  on the level of amino acid, i.e. if they both act as diversifying or purifying 

selective forces on the same genomic regions. To answer this question, we calculated the 

dN/dS ratio at each individual site within each influenza A segment using the standard 

counting approach (Nei and Gojobori 1986), adapted for an entire phylogenetic tree 

instead of two sequences (See Materials and Methods for more details). Figure 5 displays 

the result for all 8 segments of H1N1 influenza viral sequences from all hosts, where the 

dN/dS ratio for each amino acid residue is shown in conjunction with the quantile score 

of RNA structural selection as we calculated previously. As the figure shows, there is 

generally a lack of coordination between the amino acid and RNA structural levels of 

selective pressures, suggesting the two levels are under selection for independent 

selective forces. This is perhaps to be expected as we hypothesize that the selection on 

RNA structures is likely due to the requirements for genome packaging (Hutchinson et al. 

2010) and potentially other regulatory functions, whereas the amino acid level selection 
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may act in various stages of the virus life cycle, including for efficient replication, 

transmission, virulence, host adaptation etc. In any case, this result helps to confirm that 

our RNA structural selection detection algorithm has controlled for potential amino acid 

selection effects.  

 

 

Figure 6: Quantile scores vs. dN/dS values for all segments of the human H1N1 
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subtype. The blue bars represent regions where there is evidence for purifying selection 

for RNA secondary structures; whereas red bars represent regions there is evidence for 

diversifying selection. We chose a cut-off score of 0.05 as the threshold for purifying 

selection, and a cut-off of 0.95 as the threshold for diversifying selection. Positions with 

extreme high dN/dS values (>4) are represented with vertical bars above the red line, 

while positions with extreme low dN/dS values (<0.00001) are represented with vertical 

bars below the red line.  

 

Robustness of results 

In the last four sections we reported regions of influenza A genomes are selective 

pressures for RNA structures, at two different timescales using two different, but closely 

related, algorithms. These algorithms required several arbitrary choices, and here we 

query: how robust are our results with respect to different parameters and choices made. 

To address this question, we investigated the robustness of our results with respect to two 

most critical aspects in our algorithms: the choice of RNA secondary structural distance 

metric, and window size for the moving-window analysis.  

There are two widely used RNA distance metrics: base-pair distance and tree-edit 

distance (Shapiro 1988; Shapiro and Zhang 1990; Fontana et al. 1993; Hofacker et al. 

1994). The base-pair distance reflects the naïve notion of Hamming distance between two 

dot-bracket representations of RNA structures. This metric suffers from the defect of not 

considering the interactions between base pairs, as well as any shift in the RNA structures. 

Tree-edit distance, on the other hand, is a metric of RNA structural distances based on 
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graph theory, in which the secondary structures are modeled as tree graphs, and the 

distance between two secondary structures is defined as the number of operations needed 

to transform one tree into another. In addition to the full-structure tree-edit distance we 

used in the previous sections, we repeated our analysis to compare human vs. avian 

influenza A viruses using base-pair distance and a coarse-grain (HIT) tree-edit distance. 

We calculated the Spearman rank correlation coefficients of the per-window quantile 

scores between full-structure tree-edit distance and each of these two alternatives for the 

NP segment. Both correlations are highly significant (full-structure vs. HIT: rho=0.81, p-

value<2.2e-16, full-structure vs. base pair distance: rho=0.54, p-value<2.2e-16), which 

indicate our results are generally robust with respect to different RNA structural distance 

metrics.  

Next we investigated the robustness of our results with respect to different 

window sizes. For the considerations of genome scan resolution and computational time, 

our default window size was 60 bases. Since limiting the shifting window size can 

potentially omit base pairs that happen across a long distance, we repeated our 

experiment to compare human vs. avian influenza A viruses, scanned along the NP 

segment of influenza genomes with our algorithm using a window size of 120 bases, and 

computed the Spearman rank correlation coefficient between corresponding quantile 

scores for two window sizes (there were a few more windows if using 60 bases as the 

window size and they were discarded for comparison). The high correlation (rho=0.18, p-

value=0.00099) between results for two different window sizes confirms the robustness 

of our results with respect to different window sizes. 
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Discussion 

In this study we developed two algorithms to systematically detect selective 

pressures on RNA structures in genomic sequences, and applied it to influenza A viral 

genomes. We identified candidate regions in influenza A genomes that are under 

purifying or diversifying selection for RNA structures. The results are robust with respect 

to various parameters including different distance metrics, window size etc. Our analyses 

suggest a significant proportion of the influenza A genomes are under selection for RNA 

structures, and the selective pressures for RNA structures are still operating in recent 

times. And we also found evidence of diversifying selective pressures for RNA structures 

especially when comparing human and avian influenza A viruses, suggesting they may 

have played important roles during the viral host shifts. 

For the task of predicting consensus secondary structure using a multiple 

sequence alignment for noncoding RNA sequences, RNA folding algorithms based on a 

single sequence are generally considered not as accurate as algorithms that leverage the 

information of all the aligned sequences, such as Dynalign (Mathews and Turner 2002) 

and RNAalifold (Hofacker, Fekete, and Stadler 2002; Bernhart et al. 2008). However, 

there are several problems with alignment-based approaches if they were to be applied to 

influenza viral sequences. First, one of the major novelties of this work is that we 

discovered candidate regions that are under diversifying selection. This finding cannot be 

achieved, even in principle, by looking for the consensus base-pairing patterns in the 

aligned RNA sequences. Another major feature of our algorithms is that compared with 

alignment-based algorithms we can study relatively recent selective pressures, based on 
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mutations accrued over the past 50 years alone within a single host. The basic rational 

behind previous approaches such as (Moss, Priore, and Turner 2011) is the idea that the 

actual RNA sequence alignment should be structurally more stable than the permuted 

sequences, and so they mostly detect sequence features that have are fixed in all influenza 

subtypes. Lastly, in our null distributions, all the simulated sequences respect the same 

amino acid sequence and phylogenetic relationships as the actual sequences. One of the 

major signals used in other, alignment-based approaches is to compare the energy profile 

of the real influenza sequence alignment with the dinucleotide/dicodon shuffled sequence 

alignment. This signal is very effective in detecting functional noncoding RNA sequences, 

but is not well justified when applied to coding RNA sequences because such shuffling 

will disrupt the amino acid sequences, which are arguably is the strongest objects of 

selective pressure on the influenza genomes. Even disregarding the problems that such 

algorithms have suffer by not respecting amino-acid sequences, it not clear whether 

functional RNAs in the protein coding regions should have lower energy than randomly-

shuffled RNAs (Clote et al. 2005). Finally, in the alignment-based approach every 

sequence is treated as of equally distance from each other phylogenetically, which 

assuredly false for the influenza viruses we and earlier authors have analyzed. 

Despite some advantages, our approach is surely not without limitations. First, 

there are three influenza viral segments: PB1, M1/M2, NS1/NS2 that have a small 

portion of overlapping open reading frames (ORFs). Since our algorithm compares the 

average pairwise structural distance of the real influenza sequences with a null 

distribution where the simulated sequences have the same synonymous and non-
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synonymous distance, our algorithm does not produce results for these regions, as there is 

typically no distinction between synonymous and non-synonymous mutations in those 

regions.  Second, since our algorithm use the commonly used software RNAfold to 

predict RNA secondary structures, and then uses RNAdistance to calculate pairwise RNA 

structural distances, our algorithm shares the same limitations and these structural 

algorithms: we cannot predict or use information about pseudo-knots. There are some 

structure-predictions algorithms that can potentially predict the existence of pseudo-

knotted RNA structures, but there are no well-accepted distance metrics to compare two 

pseudo-knotted structures, and so we have used the more traditional and widely used 

RNAfold approach. 

 

Materials and Methods 

Datasets and Preprocessing 

The influenza genome datasets were downloaded from NCBI influenza virus 

resource (cite, http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html, last accessed: 

08/21/2013). Because the noncoding regions for each influenza segment consists of a tiny 

proportion of the genome in length, and they were only occasionally sequenced and 

collected, in this study we focus on protein-coding regions.  

We first translate all the influenza nucleotide sequences into amino acid 

sequences, then align the amino acid sequences using multiple sequence alignment 

package MUSCLE version 3.8 (Edgar 2004), the aligned amino acid sequences are then 
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back-translated into nucleotide sequences. For all the gaps in the alignment, we filled the 

gapped position with the 50% consensus nucleotide (for segment 4 and 6 the threshold is 

30%) in that position, and if there is no single nucleotide that appears more than 50% of 

the time in the particular position, we remove the sequences with this gap from the 

collection. For segment 7 and 8, where the segments have two overlapping open reading 

frames, we concatenate the two pieces into a single sequence.  After this step, we have 

the necessary data for the pairwise selection detection algorithm. For the phylogeny-

controlled algorithm, we then reconstructed the phylogeny of the influenza sequences 

using RAXML 7.3.0 (Stamatakis 2006) with model GTRGAMMA, and inferred the 

internal and root sequences using PAUP* version 4.0 (Swofford 2003). So for each viral 

segment, we inferred a phylogenetic tree and all the internal and root sequences. And 

together with the actual observed influenza sequences as leaves of the phylogenetic tree, 

for each node of the phylogeny we have their nucleotide sequence. We inferred the 

phylogeny for each segment separately because of the influenza viral re-assortment 

events, in which different strains of influenza viruses exchange their viral segments. Now 

we have all the necessary data for the phylogeny-controlled algorithm.  

 

Description of the pairwise algorithm to detect selection  

In this algorithm, we are given two distinct sets of influenza sequences, and want 

to ask if there are diversifying or purifying selective pressures on RNA structures 

between the two groups. The pairwise selection detection algorithm (Figure 7 is an 

illustration of the pipeline of this algorithm.) works by scanning along each viral segment 
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in a window size of 60 bases and step size 9 bases. Since in this algorithm the 

phylogenetic relationships between the viral samples were not explicitly accounted, we 

selected a non-redundant dataset of ~ 150 sequences from each host. Then we randomly 

pair the same segment from a human influenza viral sequence with an avian influenza 

viral sequence. For each window, we first computationally fold the RNA sequences using 

the program RNAfold from Vienna RNA package (Hofacker et al. 1994). We then 

calculate the average pairwise structural distances among each pair of these sequences 

using the program RNAdistance (with full-structure tree-edit distance, also available 

from Vienna RNA package). We compute a quantile score for this observed average 

distance by comparing it to a null distribution of average structural distances. The null 

distribution is generated in the following manner: we start from the avian influenza 

sequence of each human-avian flu pair (Avian influenza evolve more slowly, so they are 

considered “ancestral sequences”), and introduce the same number of synonymous 

mutations, as well as preserve all the non-synonymous mutations, so that the “simulated” 

human flu sequence has the same number of synonymous and non-synonymous 

mutations as the actual pair. We also preserved the 3rd base codon usage when 

introducing mutations. We calculated the RNA structural distance between the resulting 

“simulated” human influenza sequence with the original influenza sequence, and the 

average from all such pairs contributes one data point to the null distribution. We 

repeated this process 200 times, so the null distribution consists of the distances from 200 

simulations. We also explored a couple of different RNA structural metrics (Shapiro 

1988; Shapiro and Zhang 1990; Fontana et al. 1993; Hofacker, Fekete, and Stadler 
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2002): tree-edit distance with full structure, tree-edit distance with coarse grained HIT 

structure and base pair distance (all available from RNAdistance program in the Vienna 

RNA package (Hofacker et al. 1994)), and they all yielded very similar results.  

 

 

Figure 7: An illustration of the pairwise algorithm to detect selection. 
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each window we computed a quantile score by comparing the average pairwise RNA 

structural distances between actual influenza samples with a null distribution where all 

the average RNA pairwise structural distances come from simulated sets of influenza 

viral sequences that have the same amino acid sequences and phylogenetic relationship as 

the actual influenza sequences. The initial null distribution consists of average pairwise 

RNA structural distances from 20 simulations. For the windows that have extreme 

quantile scores (<0.1 or >0.9), we run 80 additional simulations (100 in total, so the 

minimum quantile score is 0.01) to get a more accurate estimate of the quantile score. 

The null distribution was generated as follows: starting from the root sequence, we 

introduced the same number of synonymous mutations along each branch (We kept all 

the non-synonymous changes along the trees so the resulting pool of simulated sequences 

will have the exact same amino acid sequences as the actual influenza sequences), until 

we reach the leaves of the phylogenetic tree. This process ensures that the resulting 

simulated sequences respect the exact phylogenetic relationships of the actual sequences, 

so that we can avoid the biased quantile scores produced by a subset of highly correlated 

sequences. We computed the average pairwise structural distance of these simulated 

sequences, and add this distance to the null distribution. The average pairwise RNA 

structural distance is calculated in the following manner: 1. For each window we first 

collect the set of RNA sequences, fold them using the program RNAfold from Vienna 

RNA package (Hofacker et al. 1994). 2. We calculated the average pairwise structural 

distances among each pair of these sequences using the program RNAdistance (with full-

structure tree-edit distance, also available from Vienna RNA package).  
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Figure 8: An illustration of the phylogeny-controlled algorithm to detect selection. 
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and non-synonymous sites (N), as well as the total number of synonymous (Sd) and non-

synonymous (Nd) differences, for each parent-child amino-acid pair. We calculate 

proportion of synonymous (pS) and non-synonymous (pN) differences as pS=Sd/S, pN = 

Nd/N. One then use the Juke-Cantor correction(Jukes Th 1969) to compute dN and dS. 

Then the dN/dS value is simply the ratio of these count-based estimates for dN and dS. 

 

Supplementary Figures 



 

 71 

 
Supplementary Figure 1: Distribution of quantile scores from all the 8 segments of 
Human H3N2 influenza A viruses. The two-sided p-value of Kolmogorov-Smirnov test 
against uniform distribution is <2.2 e-16. 
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Chapter Four 

Conclusion and Future Directions 

In my PhD study I mainly pursued two sets of research projects: 1) I analyzed 

genomes of eukaryotic species, and found evidence that short eukaryotic genes are 

selected to initiate faster, and also elongate faster. This implies that initiation is likely 

responsible for the pattern of higher ribosome densities on short eukaryotic genes. I also 

helped build and parameterize a mechanistic model of yeast protein translation to further 

identify the source of this selection. 2) In a very different domain of life, I developed two 

new algorithms to detect selective pressures on RNA structures in genomic sequences, 

applied to influenza A viruses. My analyses suggest a significant proportion of the 

influenza A genomes are under negative selection for RNA structures, primarily over 

long timescales. And I provided the first evidence of diversifying selective for RNA 

structures between human and avian influenza A viruses, suggesting a role for RNA 

structural changes in adaptation to host. Overall, this research suggests that we can find 

signatures of natural selection on noncoding nucleotide variation in completely different 

systems, across different time scales and for various phenotypic features. Selection on 

noncoding nucleotide variation seems to be widespread.  

The research I described in this dissertation is only the tip of the iceberg in this 

important and currently underexplored field. There can potentially be many other 

noncoding nucleotide features that are under selection, for example epigenetic markers 

such as nucleosome positions(Prendergast and Semple 2011) and methylation sites. 
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Further research can be done to develop methods to detect selection on these important 

features. 

In chapter 2 we discussed the relative importance of translation initiation vs. 

elongation in determining the various patterns of ribosome density. However other 

factors may also influence ribosome density. For example, some mRNA transcripts may 

be are more “accessible” to ribosomes, while others are membrane-bound, and thus are 

more difficult for ribosome to bind to them. This property can potentially influence 

ribosome densities, too, although its importance in determining patterns of observed 

ribosome densities still needs to be explored.  

In this study, we found that short eukaryotic genes are selected for weak 5’mRNA 

structures, but are there other cases where there may be selection for strong mRNA 

structures? This will require us to have a sense of “neutral” variation, so that we can turn 

from relative selective pressure to study absolute selective pressure on RNA structures. 

Also gene length is likely a proxy for some other functional factors that are directly under 

selection, which we should strive to find. For example, we can divide genes into different 

functional categories, such as essential vs. nonessential genes, and see if there is stronger 

signal for the differential selection for translation initiation and elongation rates.  

As to selection on codon bias, there has been a tremendous amount of research on the 

causes of this phenomenon. Besides selection for translation elongation rate, there have 

also been suggestions that codons that have more abundant corresponding tRNAs can 

cause less translational error(Drummond and Wilke 2009; Akashi 2001; Akashi 1994; 

Arava et al. 2005; Stoletzki and Eyre-Walker 2007), because more abundant tRNAs will 
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make it much easier for ribosomes to find the tRNAs that are the correct fit. However 

some recent studies challenge this assumption (Shah and Gilchrist 2010). There is still no 

consensus on what is the most important source of selection on codon usage. Overall, 

selection for faster elongation is probably more important, since this is a more universal 

source of selection. On the other hand, in most cases selection for less translational error 

may not be too strong, except for a few very important amino acid residues. However 

there is currently no firm evidence to support this view, more computational studies and 

clever experiments need to be done to distinguish the relative importance of these sources 

of selection.  

Another important future research direction is to study the interaction between 

multiple layers of selection, for example selection for specific amino acid residues vs. 

RNA structure. We now know that controlling for the amino acid background, there is 

selection for RNA structures, however there may be cases where selection for RNA 

structures can be so strong that they can influence the choice of amino acids in certain 

regions, such as the 5’ ends of genes. That is a very interesting question to be explored in 

the future.  

For the stochastic simulation model for yeast protein translation, the model only 

considers the protein translation process. For application to multicellular differentiated 

eukaryotic organisms, our model needs to include more complicated features such as 

post-translational regulation and cell type. Another direction is to integrate more cellular 

processes such as transcription, translation, and metabolic reactions to build whole-cell 

computational models, and use them to predict cellular phenotypes. 
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For the algorithms to detect selection on RNA structures described in Chapter 3, 

there are also a number of future directions that we can pursue. First, in the dissertation 

we compared the influenza sequences derived from human vs. avian hosts and asked if 

there is a signature of selection for RNA structures. The same can be asked for other 

hosts, for example it would be interesting to do human vs. swine and avian vs. swine 

comparisons and see if there is some consistency in the genomic regions we detect. For 

the comparisons of human vs. swine influenza viruses, we would expect to see less 

positive selection for RNA structures, since human and swine hosts are closer, as 

compared to avian hosts. Second, another interesting question to ask if what are the 

functions of the RNA structural selection we detected? One hypothesis is that they are the 

regions that bind to the host RNA-binding-proteins (RBPs). There is a curated database 

for known human RBPs and their binding motifs. One can use them to search against 

influenza viral genomes and see if there are potential regions that may serve as the human 

RBP binding sites. There are also a number of longer-term future directions. For example, 

our algorithm takes RNA folding algorithms as given, so improved RNA folding 

algorithm can certainly improve the accuracy of our predictions as well. Several studies 

(for example(Vandivier et al. 2015)) have shown that chemical modifications on 

nucleotides can influence RNA base pairings, however these information are generally 

not taken into account in RNA folding algorithms, nor are they available for influenza 

viral sequences. Future progress in RNA folding algorithms can improve the predictions 

of our algorithm as well. Fourth, in the past few years a series of high-throughput 

methods to experimentally measure RNA structures have been developed, by combining 
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these measurement with RNA folding algorithms, one can get much more accurate RNA 

structure predictions. However our current version of the algorithm cannot use these 

experimentally RNA structural data, since our algorithm is based on comparing the 

observed RNA structural distances with a null distribution of simulated RNA structural 

distances. One can potentially measure the RNA structures for the observed RNA 

sequences, but it will be unrealistic to synthesize all the simulated RNA sequences and 

measure their RNA structures. How to leverage the available RNA structural 

measurements to improve our analysis of selection on RNA structure is the next 

important step in this direction.  
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