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Abstract
SRC homology 2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed cytosolic protein
tyrosine phosphatase. Downstream of epidermal growth factor receptor (EGFR) and other receptors, SHP2 is
activated by binding to phosphotyrosine-containing receptors and adapter proteins, is required for complete
extracellular regulated kinase 1/2 (ERK) pathway activity, which promotes cellular proliferation and survival,
and regulates other signaling processes. In this thesis, we explored the signaling functions of SHP2 in lung and
brain cancer cell systems with or without clinically relevant mutations that render EGFR constitutively active
and developed computational models of EGFR-mediated SHP2 activation. In non-small cell lung cancer cells,
SHP2 promoted ERK-dependent resistance to EGFR inhibition, but in cells with EGFR kinase-activating
mutations this SHP2 functional role was impaired through sequestration of biochemically active SHP2 with
internalization-impaired EGFR mutants. In glioblastoma multiforme cells, SHP2 simultaneously promoted
ERK activity and antagonized STAT3 phosphorylation such that SHP2 drove proliferation while also
promoting sensitivity to EGFR and c-MET co-inhibition. These SHP2 functions were perturbed by
sufficiently high expression of the EGFR variant III mutant. Furthermore, SHP2 was found to regulate
EGFRvIII and c-MET phosphorylation and control hypoxia-inducible factor expression in a way that may
regulate tumorigenesis. We next developed computational models and associated quantitative experimental
data sets to gain quantitative understanding of the regulation of protein complexes containing SHP2 and
GRB2-associated binder 1 (GAB1), the primary phosphorylated adapter with which SHP2 associates
following EGFR activation. Our analysis revealed that in some cell settings EGFR activity is amplified by
intermediary SRC family kinases (SFKs) which drive GAB1 phosphorylation and enable GAB1-SHP2
complexes to persist in the cytosol distal from EGFR. A reaction-diffusion model further predicted that
EGFR-initiated GAB1-SHP2 complexes persist over the entire cell length scale, which could permit
membrane-localized EGFR to regulate signaling events through SHP2 at subcellular locations where EGFR
itself is not present. Overall, these results motivate the continued search for specific SHP2 inhibitors, while
providing a contextual basis for predicting when such interventions may be particularly effective, and establish
a quantitative framework for understanding EGFR's ability to activate SHP2 and how this might be perturbed
in different pathological contexts.
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ABSTRACT 

 

THE PROTEIN TYROSINE PHOSPHATASE SHP2 AS A MEDIATOR OF 

DIFFERENTIAL CELLULAR SENSITIVITY TO EGFR KINASE INHIBITORS 

 

Christopher Mark Furcht 

Matthew J. Lazzara 

 

 SRC homology 2 domain-containing phosphatase 2 (SHP2) is a ubiquitously 

expressed cytosolic protein tyrosine phosphatase.  Downstream of epidermal growth 

factor receptor (EGFR) and other receptors, SHP2 is activated by binding to 

phosphotyrosine-containing receptors and adapter proteins, is required for complete 

extracellular regulated kinase 1/2 (ERK) pathway activity, which promotes cellular 

proliferation and survival, and regulates other signaling processes.  In this thesis, we 

explored the signaling functions of SHP2 in lung and brain cancer cell systems with or 

without clinically relevant mutations that render EGFR constitutively active and 

developed computational models of EGFR-mediated SHP2 activation.  In non-small cell 

lung cancer cells, SHP2 promoted ERK-dependent resistance to EGFR inhibition, but in 

cells with EGFR kinase-activating mutations this SHP2 functional role was impaired 

through sequestration of biochemically active SHP2 with internalization-impaired EGFR 

mutants. In glioblastoma multiforme cells, SHP2 simultaneously promoted ERK activity 

and antagonized STAT3 phosphorylation such that SHP2 drove proliferation while also 

promoting sensitivity to EGFR and c-MET co-inhibition.  These SHP2 functions were 
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perturbed by sufficiently high expression of the EGFR variant III mutant.  Furthermore, 

SHP2 was found to regulate EGFRvIII and c-MET phosphorylation and control hypoxia-

inducible factor expression in a way that may regulate tumorigenesis. We next developed 

computational models and associated quantitative experimental data sets to gain 

quantitative understanding of the regulation of protein complexes containing SHP2 and 

GRB2-associated binder 1 (GAB1), the primary phosphorylated adapter with which 

SHP2 associates following EGFR activation.  Our analysis revealed that in some cell 

settings EGFR activity is amplified by intermediary SRC family kinases (SFKs) which 

drive GAB1 phosphorylation and enable GAB1-SHP2 complexes to persist in the cytosol 

distal from EGFR.  A reaction-diffusion model further predicted that EGFR-initiated 

GAB1-SHP2 complexes persist over the entire cell length scale, which could permit 

membrane-localized EGFR to regulate signaling events through SHP2 at subcellular 

locations where EGFR itself is not present.  Overall, these results motivate the continued 

search for specific SHP2 inhibitors, while providing a contextual basis for predicting 

when such interventions may be particularly effective, and establish a quantitative 

framework for understanding EGFR’s ability to activate SHP2 and how this might be 

perturbed in different pathological contexts. 
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Chapter 1: Introduction 

 

1-1  RECEPTOR TYROSINE KINASE-MEDIATED CELL SIGNALING  

 The process of cell signaling enables the coordination of complex cellular 

decision-making, both within an individual cell and among several cells, through the 

sequential transfer of information between cellular proteins by processes such as protein 

modification and protein-protein binding, which ultimately influence cellular outcomes 

by altering gene transcription [1].  One key protein modification process involved in 

many aspects of cell signaling is phosphorylation, which is the covalent addition of a 

phosphate to a serine, threonine, or tyrosine residue on a substrate protein by enzymes 

known as kinases [2].  These phosphorylated residues can either alter the intrinsic activity 

of a phosphorylated protein, or activate other proteins by serving as binding sites for 

proteins containing phosphotyrosine binding (PTB) or Src-homology 2 (SH2) domains 

[3].  Both protein phosphorylation and binding are reversible processes, however, as 

bound proteins can dissociate from one another and phosphorylated proteins can have a 

phosphate removed through the process of dephosphorylation, which is catalyzed by 

enzymes known as phosphatases [4, 5].  

 Some of the major cellular components that initiate phosphorylation-dependent 

cell signaling pathways are receptor tyrosine kinases (RTKs), a family of transmembrane  

proteins that can translate extracellular cues into intracellular responses such as growth, 

differentiation, migration, and apoptosis [6].  RTKs typically function by binding 

extracellular ligands, which subsequently promotes the intrinsic kinase activity of these 

receptors.  These activated RTKs are then able to phosphorylate various tyrosine residues 
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on their cytoplasmic tails, which serve as binding sites for cytosolic adapter proteins that 

ultimately promote the activity of numerous downstream signaling pathways such as the 

extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K)/AKT, and 

signal transducer and activator of transcription (STAT) pathways [6].  This thesis 

specifically focuses on the epidermal growth factor receptor (EGFR), which binds ligands 

such as epidermal growth factor (EGF).  For the case of EGFR, ligand binding promotes 

dimerization of two receptors, which activates the kinase activity of each receptor by 

relieving kinase domain auto-inhibition and subsequently permits trans-auto-

phosphorylation of EGFR’s C-terminal tyrosine residues [6]. 

 

1-2  EPIDERMAL GROWTH FACTOR RECEPTOR AND CANCER 

 While EGFR plays an important role in normal physiology, because signaling 

initiated by EGFR is typically associated with promoting cellular growth and survival, 

EGFR-mediated signaling is also frequently dysregulated in cancer as a result of EGFR 

overexpression or EGFR mutation [7].  Examples of cancers where EGFR is frequently 

overexpressed or mutated include non-small cell lung carcinoma (NSCLC), where 70-

80% of tumors display elevated EGFR expression and 10-20% of tumors possess EGFR-

activating mutations [8, 9], and glioblastoma multiforme (GBM), a common and 

aggressive form of brain cancer where EGFR is overexpressed in ~50% of cases and 

mutated in 30-40% of cases [10, 11]. 

 As a way of combating EGFR-driven cancers, pharmaceutical companies have 

developed several classes of therapeutics targeted against EGFR [7].  One class of 

therapeutics is monoclonal antibodies that bind EGFR extracellular epitopes.  For 
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example, cetuximab inhibits EGFR activity by preventing EGFR from binding ligands 

[12].  Another class of therapeutics is EGFR tyrosine kinase inhibitors such as gefitinib, 

which function as ATP analogues and block the intrinsic kinase activity of EGFR by 

competing with ATP for binding [13].  Although these therapeutics have had remarkable 

success in certain NSCLC patients, generally response is limited to 10% of patients, who 

are typically those with EGFR-activating mutations [9, 14, 15].  Conversely, GBM 

patients generally do not respond at all to EGFR-targeted therapeutics except in rare 

cases [16, 17].  Furthermore, cancers from patients who initially respond well to these 

therapeutics often become resistant to therapy over time [18], which can result from 

secondary mutations in EGFR which inhibit the binding of tyrosine kinase inhibitors to 

EGFR, such as the T790M point mutation [19, 20], or overexpression of other RTKs 

including c-MET, which can compensate for reduced EGFR function [21]. 

The aforementioned NSCLC-associated EGFR mutants display enhanced kinase 

activity relative to wild-type EGFR [22], and are also endocytosis-impaired [23, 24], 

suggesting they remain in a hyper-active state at the plasma membrane with the inability 

to be efficiently degraded through internalization.  Consistent with these findings, 

NSCLC cells harboring EGFR mutations often display elevated phosphorylation of 

EGFR itself, as well as AKT, STAT3/5, ERBB3, and c-MET [15, 25, 26].  However, it 

was recently shown that these EGFR mutations surprisingly impair the phosphorylation 

of ERK, an important regulator of cell proliferation and survival whose activity can 

dampen cellular response to EGFR inhibition [24, 27].  These mutations were also shown 

to impair the phosphorylation of the protein tyrosine phosphatase SHP2, which is 

required for complete ERK activation downstream of EGFR and other RTKs [24, 28].  
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As phosphorylation of SHP2 is suggested to positively regulate its activity, these results 

imply that impaired function of SHP2 could potentially enhance sensitivity to EGFR-

targeted therapies by rendering cells in a less survival-prone state due to diminished 

SHP2-mediated ERK activity [28, 29].  Conversely, the normal function of SHP2 in 

promoting ERK activity in wild-type EGFR-expressing cells may be at least partially 

responsible for the resistance of these cells to EGFR-targeted therapies. 

The most frequent EGFR mutation in GBM is the in-frame deletion of exons 2-7, 

which encode a large portion of the extracellular domain, leading to expression of the 

EGFR variant III mutant (EGFRvIII) [11, 30-32].  EGFRvIII is found in ~50% of GBM 

with EGFR amplification [10, 11], and in other cancers, but not in normal tissues [33, 

34], making it an ideal therapeutic target.  In patients who have undergone major tumor 

resection followed by radiation, EGFRvIII expression is a negative indicator of ≥1 year 

survival [35].  The current standard of care for GBM involves tumor resection, followed 

by radiotherapy and subsequent temozolomide adjuvant chemotherapy [36-38].  Though 

EGFR amplification and EGFRvIII expression are observed in subsets of GBM, current 

clinical strategies are the same across GBM tumor sub-types because targeted therapeutic 

approaches have not produced substantial benefits.  Since c-MET amplification and 

pathway activation promote resistance to therapy, c-MET pathway-targeted therapeutics 

are being evaluated in clinical trials in glioma patients [39], but initial results do not 

suggest great promise [40].  In contrast, the VEGF-targeted monoclonal antibody, 

bevacizumab, was approved in 2009 for use in GBM following primary therapy [41]. 

In intracranial murine xenograft models, EGFRvIII expression promotes 

enhanced tumorigenicity compared to cells expressing wild-type EGFR [42, 43]. 
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EGFRvIII does not bind EGF with high affinity [44] but displays low constitutive 

phosphorylation compared to wild-type EGFR phosphorylation induced by EGF in 

PTEN-deficient U87MG glioblastoma cells [45].  EGFRvIII also potentiates downstream 

signaling differently than wild-type EGFR in ways that promote tumor aggressiveness.  

Similar to NSCLC-associated EGFR mutants, EGFRvIII expression impairs EGF-

mediated receptor internalization [45, 46].  In murine xenografts, EGFRvIII expression 

dampens response to erlotinib and sustains ERK and AKT activity in the presence of 

erlotinib or a monoclonal antibody against hepatocyte growth factor [43], compared to 

wild-type EGFR.  The STAT3 pathway may be over-activated in GBM cells, including 

those expressing EGFRvIII, and STAT3 inhibition can sensitize these cells to EGFR 

inhibition [47].  Such signaling perturbations may depend on EGFRvIII expression 

levels, as in U87MG cells where sufficiently high EGFRvIII expression drives AKT 

activation preferentially over the ERK and STAT3 pathways and results in c-MET 

phosphorylation [48].  When GBM cells from EGFRvIII transgenic mice are cultured ex 

vivo, EGFRvIII promotes AKT phosphorylation but impairs EGF-mediated ERK 

activation compared to wild-type EGFR [49], but the underlying mechanism remains 

unknown.  ERK impairment has also been observed in NIH3T3 cells expressing 

EGFRvIII versus wild-type EGFR [50, 51], which may be related to the phenomenon of 

impaired phosphorylation of ERK and SHP2 observed in the context of NSCLC-

associated EGFR mutants.   

 

1-3 SHP2 ACTIVATION AND FUNCTION 

 The protein tyrosine phosphatase (PTP) SHP2 is an important signaling 

intermediate downstream of most RTKs, including EGFR [28].  Receptor activation 
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results in recruitment of SHP2 to receptors, either by direct binding to the receptor or 

through adapter proteins, which activates SHP2 through relief of auto-inhibitory 

interactions between its N-terminal SH2 domain and its catalytic PTP domain (Figure 1-1 

; [28]).  A primary route of SHP2 recruitment to EGFR is through binding to GRB2-

associated binder 1 (GAB1) phosphorylated at Y627 and Y659 [52], an adapter protein 

whose association with EGFR is mediated by GRB2 upon EGFR phosphorylation at 

either Y1068 and Y1086 [7]. RTK activation also results in phosphorylation of SHP2 at 

Y542 and Y580, which is required for full function of SHP2 downstream of some but not 

all RTKs [29].   

 

Figure 1-1:  Activation of SHP2. 

Basally, SHP2 is stabilized in an inactive state through binding of its N-terminal SH2 

domain to its catalytic PTP domain.  Upon activation of receptor tyrosine kinases 

including EGFR, SHP2 binding partners such as receptors or cytosolic adapter proteins 

become tyrosine phosphorylated. These tyrosines serve as binding sites for SHP2’s N- 

and C-terminal SH2 domains, which when bound relieve basal auto-inhibition of SHP2 

and allow access of SHP2’s PTP domain to substrates.  

 

 SHP2’s most well-studied functional role downstream of EGFR is to activate 

ERK by positively regulating RAS [53], via dephosphorylation of a RAS GTPase-

activating protein (RASGAP) binding site on GAB1 (Figure 1-2 ; [54]) and c-SRC 

tyrosine kinase (CSK) binding sites on both paxillin [55] and phosphoprotein associated 

with glycolipid-enriched membranes (PAG), also known as CSK-binding protein (CBP) 
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[56].  Additionally, SHP2 is in some cases a regulator of the PI3K/AKT, c-Jun N-

terminal kinase (JNK), and STAT signaling pathways [57-59].   

 

Figure 1-2:  Function of SHP2 Downstream of EGFR. 

Phosphorylation of EGFR at a representative tyrosine (Y) results in recruitment of the 

adapter protein GRB2, which binds GAB1.  Following GAB1 phosphorylation, SHP2 is 

recruited to this EGFR-GRB2-GAB1 complex through interactions between GAB1 

phosphotyrosines and SHP2 SH2 domains.  Activated SHP2 is then able to promote the 

activation of RAS and subsequently ERK by several mechanisms including 

dephosphorylating RASGAP binding sites on GAB1. 

 

1-4 GAB1-SHP2 ASSOCIATION DYNAMICS AND LOCALIZATION 

 As previously noted, SHP2 is stabilized in an active state when it is bound with 

adapter proteins such as GAB1 [28].  Because cell phenotype can be determined by both 

the duration of a signaling protein’s activity as well as the specific cellular localization of 

that protein [60], it is important to appreciate the dynamics and cellular distribution of 
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GAB1-SHP2 complexes to fully understand SHP2-mediated signaling.  While GAB1-

SHP2 complexes can be detected for at least 30 min following activation of growth factor 

receptors such as EGFR [55], these complexes are unlikely to remain statically associated 

for this period of time due to rate constants which suggest that phosphotyrosine-SH2 

domain interactions fall apart on the order of seconds [61, 62].  This apparent discrepancy 

is resolved by similarly rapid rates of binding between phosphotyrosines and SH2 

domains, which also occur on the order of seconds [61, 62].  Thus, while SHP2 may 

generally exist in an active, GAB1-bound state on a time scale of ~1 hr, it rapidly cycles 

between GAB1-bound and –unbound states on a time scale of ~1 sec.  This notion is 

analogous to previous reports that suggest that protein post-translational modifications 

such as phosphorylation also frequently cycle between an “on” state (i.e. phosphorylated) 

and an “off” state (i.e. dephosphorylated) [63, 64]. 

 While GAB1 and SHP2 are both cytosolic proteins, RTKs including EGFR have 

been reported to phosphorylate GAB1 and promote GAB1-SHP2 association [65].  Other 

possibilities may exist, however, as it has also been found that cytosolic Src family 

kinases (SFK) members can phosphorylate GAB1 [52, 66], although it has not been 

determined whether SFKs phosphorylate GAB1 on the specific tyrosines responsible for 

binding SHP2.  Given that GAB1 and SHP2 rapidly dissociate, cytosolic kinases could 

play an important role in maintaining SHP2’s association with GAB1 distal from the 

plasma membrane due to the potential for cytosolic GAB1 to be quickly 

dephosphorylated.  This could be an important mechanism for allowing EGFR to regulate 

SHP2 activity at sites distal from EGFR, such as focal adhesions (Figure 1-3; [55]). 
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Figure 1-3:  Example for the importance of SHP2 activity distal from EGFR. 

A study from Ren et al. showed that downstream of EGFR, SHP2 is required to function 

at focal adhesions, where SHP2 dephosphorylates a tyrosine residue on the adapter 

protein paxillin. This tyrosine serves as a binding site for c-Src kinase (CSK), which 

negatively regulates the activity of Src family kinases (SFKs) by phosphorylating them 

on an inhibitory tyrosine.  As focal adhesions could be far from EGFR if EGFR were 

localized to the apical rather than the basolateral membrane, EGFR itself might not be 

able to maintain the association of GAB1 and SHP2 over the entire cellular length scale.  

Conversely, if EGFR were able to activate intermediary cytosolic kinases such as SFKs, 

EGFR could distally maintain SHP2 activity by allowing SFKs to phosphorylate GAB1 

within the cytosol.  This example also illustrates a potential mechanism by which SHP2 

and SFKs can act in a positive feedback loop.  

 

 In addition to the possibility for cytosolic kinases to extend the length scale over 

which GAB1 and SHP2 remain associated throughout the cytosol, the internalization of 
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RTKs may also permit GAB1-SHP2 complex nucleation to occur further from the plasma 

membrane.  EGFR has recently been shown to remain phosphorylated and associated 

with GRB2 in endosomes following EGF stimulation [67], suggesting that RTKs can 

remain active and signaling-competent inside the cell.  Indeed, recent evidence suggests 

that EGFR internalization is important for promoting SHP2-mediated signaling, as HeLa 

cells with a defect in clathrin-mediated endocytosis display impaired phosphorylation of 

both SHP2 and ERK in response to EGFR activation [24].   

 

1-5  IMPLICATIONS OF SHP2 IN CANCER AND DISEASE 

 Based on the important role SHP2 has in regulating pro-survival signaling 

pathways such as ERK/MAPK, it is not surprising that SHP2 has been implicated in 

tumorigenesis.  In fact, PTPN11, the gene encoding SHP2, was the first identified proto-

oncogene encoding a tyrosine phosphatase [68].  Expression of SHP2 has been found to 

be elevated in several different cancers, including lung cancer and breast cancer [69, 70].  

Additionally, SHP2 has been shown to be required for transformation downstream of 

oncoproteins such as CagA, Bcr-Abl, and EGFRvIII [71-73].  SHP2 has also recently 

been implicated in promoting epithelial-to-mesenchymal transition (EMT) in breast 

cancer cells [74], a process that is associated with cancer progression and metastasis [75, 

76].   

 SHP2-activating mutations have been identified in several cancers including lung 

cancer, neuroblastoma, juvenile myelomonocytic leukemias, and acute myelogenous 

leukemias [77].  These mutations, which typically occur within the N-SH2 domain of 

SHP2, disrupt the basal auto-inhibition of SHP2 and render it constitutively active even 

in the absence of SHP2 binding partners [78].  Active SHP2 mutants also contribute to 
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other diseases such as Noonan syndrome, an autosomal dominant disorder, which is 

caused by SHP2-activating mutations in approximately 50% of diagnosed cases [78, 79].  

 Despite SHP2’s well-defined role as an oncogene, in some cancer contexts SHP2 

serves as a tumor suppressor.  Hepatocyte-specific deletion of SHP2 can promote 

spontaneous tumor growth due to SHP2’s negative regulatory role in IL-6-mediated 

STAT3 activation [59].  In GBM cells, SHP2 was also found to negatively regulate 

STAT3 [80], an important pro-survival signaling intermediate in GBM [47, 81], although 

the implications of this negative regulation were not explored.  SHP2-inactivating 

mutations, which typically occur within the PTP domain of SHP2 and diminish the 

phosphatase activity of SHP2, can also promote diseases associated with diminished ERK 

activity such as LEOPARD syndrome [82]. 

 

1-6  THESIS SUMMARY 

 In this thesis, we explore the role of SHP2 in determining response to EGFR-

targeted therapeutics using experimental techniques, and build upon these findings by 

analyzing the spatiotemporal activation of SHP2 downstream of EGFR using 

experimental methods paired with computational modeling techniques. In Chapter 2, we 

study the role of SHP2 in NSCLC cells with or without EGFR mutation.  We find that 

SHP2 depletion in wild-type EGFR-expressing cells reduces ERK phosphorylation and 

enhances cellular response to the EGFR inhibitor gefitinib, confirming that SHP2-

mediated ERK activity promotes resistance to EGFR inhibition.  We also find that the 

functional role of SHP2 in mediating ERK phosphorylation is impaired in NSCLC cells 

expressing EGFR mutants compared to cells expressing wild-type EGFR, and that 
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impaired function of SHP2 at least partially contributes to the enhanced sensitivity of 

EGFR mutant-expressing cells to gefitinib.  Our findings also reveal that the mechanism 

by which SHP2’s function is impaired in the context of EGFR mutation is through 

apparent sequestration of biochemically active SHP2 at the plasma membrane with 

endocytosis-impaired EGFR mutants. 

 Based on these findings from Chapter 2, we sought to determine whether SHP2 

function could also mediate resistance to targeted therapeutics in another cancer.  In 

Chapter 3, we study the role of SHP2 in glioblastoma cells with or without expression of 

the constitutively active EGFRvIII mutant.  While SHP2 is required for ERK 

phosphorylation and proliferation, consistent with our findings in NSCLC cells, SHP2 

also simultaneously antagonizes STAT3 phosphorylation and promotes cell death 

response to gefitinib in combination with the c-MET inhibitor PHA665752.  These 

regulatory roles of SHP2 are diminished with sufficiently high expression of EGFRvIII, 

analogous to our finding of an impaired functional role of SHP2 in NSCLC cells 

expressing EGFR mutants.  SHP2 also antagonizes the phosphorylation of EGFRvIII and 

c-MET but concurrently promotes the expression of hypoxia inducible factors, thus 

providing further insight into SHP2’s capacity to serve as both an oncogene and a tumor 

suppressor in glioblastoma cells. 

 In Chapter 4, we explore the dynamic regulation of SHP2’s association with 

GAB1 downstream of EGFR.  Experimental studies show that constant kinase activity is 

required to maintain the association of GAB1 and SHP2, due to the rapid rate at which 

SHP2 dissociates from GAB1, which itself is rapidly dephosphorylated when not bound 

with SHP2.  Despite the rapid dephosphorylation of GAB1 following EGFR inactivation, 



13 

 

we find that GAB1 dephosphorylates more slowly relative to EGFR and can remain 

associated with SHP2 in the absence of EGFR’s presence within the complex.  To 

explain this apparent discrepancy, we go on to identify cytosolic SFKs as the primary 

kinases responsible for phosphorylating GAB1 and promoting GAB1-SHP2 association 

downstream of EGFR.  To interpret our experimental data we construct a computational 

model trained against our experimental data.  In order to best explain our data, the model 

requires that SFKs effectively amplify EGFR activity to buffer GAB1 phosphorylation, 

and thus GAB1-SHP2 association, when EGFR activity levels are diminished.  This 

amplification is required even with perturbations to the model parameters and topology, 

confirming the robustness of this finding. 

 In Chapter 5, we expand upon the findings of Chapter 4 by developing a 

computational reaction-diffusion model that includes the reactions contained in the 

mechanistic model from Chapter 4 but also accounts for the process of protein diffusion 

in order to predict where GAB1-bound SHP2 is distributed throughout a representative 

lung cancer cell.  While the concentration of active SFKs is predicted to quickly diminish 

distal from the plasma membrane, the concentration of phospho-GAB1 and GAB1-SHP2 

complexes are predicted to remain essentially constant throughout the entire cell volume.  

This finding is dependent on the capacity for SFKs to phosphorylate GAB1 throughout 

the cytosol, as changing the model topology to permit SFKs to only be active at the 

plasma membrane results in steep declines in the predicted concentrations of phospho-

GAB1 and GAB1-SHP2 complexes away from the plasma membrane.  A parameter 

sensitivity analysis identifies protein diffusion as the most important model process for 

dictating the length scale of GAB1-SHP2 association distal from the plasma membrane.  
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The relationships between model processes on determining the GAB1-SHP2 complex 

length scale are also explored, which identifies that SFK overexpression can compensate 

for a faster rate of GAB1 dephosphorylation throughout the cytosol to maintain GAB1-

SHP2 complexes distal from the plasma membrane, while SFK overexpression cannot 

compensate for a faster rate of SFK inactivation. 

 In Chapter 6, we discuss the implications of our findings, which offer support for 

both furthering the current understanding of SHP2 function in cancer as well as 

developing and testing SHP2-specific inhibitors for clinical applications.  Our findings, 

of specific importance to SHP2-containing protein complexes, also highlight the broad 

need to better understand the dynamics and spatial regulation of phospho-protein 

complex assemblies initiated downstream of RTKs. 
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Chapter 2: Diminished Functional Role and Altered 

Localization of SHP2 in Non-small Cell Lung Cancer Cells 

with EGFR-activating Mutations
1
 

 

2-1  ABSTRACT 

 Non-small cell lung cancer (NSCLC) cells harboring activating mutations of the 

epidermal growth factor receptor (EGFR) tend to display elevated activity of several 

survival signaling pathways.  Surprisingly, these mutations also correlate with reduced 

phosphorylation of ERK and SHP2, a protein tyrosine phosphatase required for complete 

ERK activation downstream of most receptor tyrosine kinases.  Since ERK activity 

influences cellular response to EGFR inhibition, altered SHP2 function could play a role 

in the striking response to gefitinib witnessed with EGFR mutation.  Here, we 

demonstrate that impaired SHP2 phosphorylation correlates with diminished SHP2 

function in NSCLC cells expressing mutant, versus wild-type, EGFR.  In NSCLC cells 

expressing wild-type EGFR, SHP2 knockdown decreased ERK phosphorylation, basally 

and in response to gefitinib, and increased cellular sensitivity to gefitinib.  In cells 

expressing EGFR mutants, these effects of SHP2 knockdown were less substantial, but 

expression of constitutively active SHP2 reduced cellular sensitivity to gefitinib.  In cells 

expressing EGFR mutants, which do not undergo efficient ligand-mediated endocytosis, 

SHP2 was basally associated with GAB1 and EGFR, and SHP2’s presence in membrane 

fractions was dependent on EGFR activity.  Whereas EGF promoted a more uniform 

intracellular distribution of initially centrally localized SHP2 in cells expressing wild-
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type EGFR, SHP2 was basally evenly distributed and did not redistribute in response to 

EGF in cells with EGFR mutation.  Thus, EGFR mutation may promote association of a 

fraction of SHP2 at the plasma membrane with adapters which promote SHP2 activity.  

Consistent with this, SHP2 immunoprecipitated from cells with EGFR mutation was 

active, and EGF treatment did not change this activity.  Overall, our data suggest that a 

fraction of SHP2 is sequestered at the plasma membrane in cells with EGFR mutation in 

a way that impedes SHP2’s ability to promote ERK activity and identify SHP2 as a 

potential target for co-inhibition with EGFR in NSCLC. 
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2-2  INTRODUCTION 

In non-small cell lung cancer (NSCLC), tumor response to the EGFR inhibitors 

gefitinib and erlotinib is generally limited to the 10-20% of NSCLCs carrying kinase-

activating EGFR mutations [9, 14, 15].  NSCLC cells harboring these mutations often 

display elevated phosphorylation of EGFR, AKT, signal transducer and activator of 

transcription 3/5 (STAT3/5), ERBB3, and MET [15, 25, 26, 83].  Recently, it was shown 

that these EGFR mutations also surprisingly result in impaired EGFR-mediated 

phosphorylation of both ERK, an important determinant of cell response to gefitinib, and 

the protein tyrosine phosphatase SHP2 [24], which is required for complete ERK 

activation by most receptor tyrosine kinases [28].  Thus, the striking responsiveness of 

tumors with EGFR mutation to EGFR inhibition may result from an imbalance in EGFR 

oncogenic signaling wherein activating mutations promote some signaling pathways 

while simultaneously impairing others. 

Activation of receptor tyrosine kinases, including EGFR, results in SHP2 

phosphorylation at Y542, which is required for normal SHP2-mediated ERK activation in 

response to many growth factors [29].  Receptor activation and phosphorylation also 

results in SHP2 recruitment to receptors via direct binding or through adapters, which 

activates SHP2 through relief of auto-inhibitory intramolecular interactions [28].  SHP2 

is recruited to EGFR through binding to phosphorylated adapter proteins including 

GRB2-associated binder 1 (GAB1) [52], whose association with EGFR is mediated by 

GRB2 upon EGFR phosphorylation at Y1068 and Y1086 [7].  Downstream of EGFR, 

SHP2 is primarily associated with promoting ERK activity by regulating RAS [53].  

SHP2-activating mutations have been identified in Noonan syndrome, juvenile 
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myelomonocytic leukemia, and acute myelogenous leukemia [82, 84].  SHP2-activating 

mutations have also been found in lung cancer, although the consequences of these 

mutations are not fully understood [77]. 

 The aforementioned differences in SHP2 and ERK phosphorylation in NSCLC 

cells with EGFR mutation suggest SHP2 function may be perturbed in this setting.  

However, the role of SHP2 in NSCLC has not been thoroughly evaluated.  In previous 

studies, HeLa cells expressing dominant-negative dynamin [85], a GTPase required for 

clathrin-mediated EGFR endocytosis, displayed diminished EGF-mediated 

phosphorylation of SHP2 and ERK.[24]  Since the EGFR-activating mutations observed 

in NSCLC result in impaired EGFR endocytosis [23, 24], differential EGFR trafficking 

may explain the defects in SHP2 and ERK phosphorylation in NSCLC cells expressing 

EGFR mutants.  SHP2 localization could also be altered in the context of EGFR mutation 

via association with internalization-impaired EGFR.    

In this study, we find diminished SHP2 function in NSCLC cells expressing 

mutant versus wild-type EGFR.  In cells expressing wild-type EGFR, SHP2 knockdown 

reduced ERK phosphorylation and increased cellular sensitivity to gefitinib.  In cells 

expressing EGFR mutants, the effects of SHP2 knockdown were less pronounced, but 

expression of constitutively active SHP2 reduced cellular sensitivity to gefitinib.  In cells 

expressing EGFR mutants, SHP2 was basally associated with GAB1 and EGFR, and the 

presence of SHP2 in membrane fractions was dependent on EGFR activity.  In cells 

expressing wild-type EGFR, EGF promoted redistribution of initially centrally localized 

SHP2, but SHP2 was basally evenly distributed and did not redistribute in response to 

EGF in cells expressing EGFR mutants.  SHP2 was catalytically active in cells 
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expressing EGFR mutants, consistent with the finding that SHP2 association with 

adapters was not impaired, but rather basally elevated, in these cells.  Overall, our data 

suggest that a fraction of SHP2 is sequestered at the plasma membrane in cells with 

EGFR mutation in a way that interferes with SHP2-mediated ERK activation and 

promotes cellular sensitivity to EGFR inhibition. 
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2-3  MATERIALS AND METHODS 

Cell culture. H1666 and H3255 cells were maintained in ACL4 [24].  All others 

were maintained in RPMI 1640 supplemented with 100 units/mL penicillin, 100 μg/mL 

streptomycin, 1 mM L-glutamine, and 10% fetal bovine serum (FBS).  H1666 cells were 

obtained from the American Type Culture Collection.  H3255, H322, and H1781 cells 

were provided by Dr. Pasi Jänne (Dana-Farber Cancer Institute).  H292 and HCC827 

cells were provided by Dr. Eric Haura (Moffitt Cancer Center).  For serum starvation, 

cells were switched to media containing 0.1% FBS for 16-18 hrs. 

Cell proliferation assay. Proliferative response to gefitinib was measured by XTT 

assay according to manufacturer’s specifications (Roche, Indianapolis, IN, USA).  Cells 

seeded in 96-well plates were treated with up to 10 M gefitinib for 4 days.  

Subsequently, fresh media and XTT reagent were added to wells, and plates were 

incubated for 2-4 hrs at 37°C to maximize signal-to-background.  Wells containing only 

media were used for background correction.  Each experiment was performed at least 

three times with each condition plated in three replicate wells on each day. 

shRNA and expression constructs. Sequences encoding short hairpins targeting 

human SHP2 and GAB1 were cloned in the pSicoR vector (Tyler Jacks, MIT; [86]).  The 

SHP2 shRNA targeted nucleotides 1780-1798 of SHP2 mRNA 

(GGACGTTCATTGTGATTGA) or, for reconstitution experiments, 5890-5908 

(GTATTGTACCAGAGTATTA).  The GAB1 shRNA targeted nucleotides 987-1005 of 

GAB1 mRNA (GAAACAGACTGCAATGATA).  Lentivirus was produced by calcium 

phosphate-mediated transfection of 293FT cells (Invitrogen, Carlsbad, CA, USA) with 

vector and the packaging plasmids pCMV-VSVG, pMDL-gp-RRE, and pRSV-Rev 
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(Marilyn Farquhar, UCSD).  Virus was harvested 48 and 72 hrs post-transfection and 

used to infect target cells, which were selected in puromycin. 

SHP2 cDNAs encoding wild-type, D61A, E76A, Y542F, and C459S SHP2 (Ben 

Neel, Ontario Cancer Institute) were inserted at the EcoRI site of the pBabe vector.  

Retrovirus was produced by calcium phosphate-mediated transfection of amphotropic 

Phoenix cells (Gary Nolan, Stanford University) with vector.  Virus was harvested 24, 

30, and 48 hrs post-transfection and used to infect target cells, which were selected in 

puromycin or hygromycin. 

Constructs were validated by sequencing.  SHP2 and GAB1 knockdowns were 

validated by Western blot and qPCR, respectively. 

Immunoblotting. Cell lysates were prepared using cell extraction buffer 

(Invitrogen; #FNN0011) supplemented with 1 mM PMSF, additional protease inhibitors 

(Sigma, St. Louis, MO, USA), and phosphatase inhibitors (Sigma).   Proteins were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes, which were 

blocked in Odyssey Blocking Buffer (OBB; LI-COR, Lincoln, NE, USA) and stripped 

with 0.2 M NaOH as needed.  Images were obtained using a LI-COR Odyssey Infrared 

Imaging System. 

 Immunoprecipitation. Cell lysates were prepared with immunoprecipitation lysis 

buffer (Cell Signaling Technology, Danvers, MA, USA; #9803) supplemented with 1 

mM PMSF, additional protease inhibitors, and phosphatase inhibitors.  500 μg of total 

protein was precleared with Dynabeads (Invitrogen) for 4 hrs and subsequently incubated 

with Dynabeads conjugated to SHP2 or control antibody at 4°C overnight.  Beads were 
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washed with lysis buffer, re-suspended in LDS sample buffer (Invitrogen), and boiled 

before SDS-PAGE.  

SHP2 activity assay. 500 μg of total protein from cell lysates was incubated 

overnight with agarose beads conjugated to an SHP2 antibody.  Beads were washed with 

lysis buffer and split into two equal fractions.  One fraction was reserved for 

immunoblotting.  Beads from the other fraction were washed with assay buffer 

(Millipore, Billerica, MA, USA; #20-180) and resuspended in assay buffer containing 

100 μM 6,8-difluoro-4-methylumbelliferyl phosphate (Invitrogen).  The reaction was 

performed at 37°C for 30 min with occasional mixing, and reaction product fluorescence 

was measured at excitation and emission wavelengths of 360 nm and 460 nm, 

respectively.  Linearity of signal with respect to time and protein concentration was 

validated for both cell lines.  

Immunofluorescence. Serum starved cells on coverslips were treated with EGF, 

fixed in 4% paraformaldehyde in PBS for 20 min, and permeabilized with 0.25% Triton 

X-100 for 5 min.  Coverslips were incubated with primary antibodies diluted in OBB 

(EGFR, SHP2) or 1% BSA/0.3% Triton X-100 in PBS (RAB5) for 3 hrs at 37°C.  

Coverslips were washed with 0.1% Tween-20 in PBS and incubated with Alexa Fluor 

488- and 594-conjugated secondary antibodies and Hoechst (Invitrogen) in the same 

diluents used for primary antibodies for 1 hr at 37°C.  Coverslips were washed again, 

mounted on glass slides, and treated with Prolong Gold antifade (Invitrogen).  Specificity 

of the SHP2 antibody was confirmed by comparison with SHP2 knockdown cells.  

Epifluorescence images were obtained with a Zeiss Axiovert 40 CFL microscope (100X 
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objective).  Confocal images were obtained with a Nikon Eclipse TE-300 microscope 

(60X objective). 

To analyze individual cells from these images, MATLAB was used to determine 

pixel intensities as a function of distance from the cell center.  This was done by outlining 

individual cells, locating cell centers, and generating lines from the center to the cell 

periphery in all angular directions, along which pixel intensities were quantified.  Data 

were averaged and normalized to obtain a vector of intensities versus normalized 

distances from the cell center. 

Subcellular fractionation.  Serum starved cells were treated with 0 or 5 M 

gefitinib, washed, and collected in hypotonic buffer (10 mM Tris-HCl, pH 7.4, 1 mM 

MgCl2, 1 mM EDTA) supplemented with 1 mM PMSF, additional protease inhibitors, 

and phosphatase inhibitors.  Crude lysates were generated with a Dounce homogenizer 

and centrifuged at 3000 and 9300 rpm, for 5 min at each speed, to remove nuclei and 

mitochondria, respectively.  Cleared lysates were centrifuged at 100 000 g for 60 min to 

separate membrane and cytosol fractions.  Membrane pellets were washed with PBS, 

resuspended in hypotonic buffer, and centrifuged again at 100 000 g.  After additional 

washes, membrane pellets were resuspended in immunoprecipitation lysis buffer to 

solubilize proteins before SDS-PAGE. 

Quantitative polymerase chain reaction (qPCR).  Cellular RNA was isolated 

using an RNEasy kit (Qiagen, Valencia, CA, USA), and cDNA was transcribed using a 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosciences, Foster City, CA, 

USA).  Using the cDNA as a template, qPCR was performed with previously developed 

primers for GAB1 mRNA using SYBR Green Master Mix (Applied Biosciences).[87]  



24 

 

Reactions were monitored on a Model 7300 Real Time PCR System (Applied 

Biosciences).  RNA polymerase II mRNA was quantified as a normalization control 

using 5’-GCACCACGTCCAATGACAT-3’ as the forward primer and 5’-

GTGCGGCTGCTTCCATAA-3’ as the reverse primer. 

Antibodies and other reagents. EGFR (immunoblotting; #2232), pAKT S473 

(#9271), AKT (#9272), pERK T202/Y204 (#4377), ERK (#4695), RAB5 (#3547), 

pSTAT3 Y705 (#9138), and pGAB1 Y627 (#3233) antibodies were from Cell Signaling 

Technology.  SHP2 (sc-280) and EGFR (immunofluorescence; sc-81449) antibodies were 

from Santa Cruz Biotechnology (Santa Cruz, CA, USA).  Actin (MAB 1501) and GAB1 

(#06-579) antibodies were from Millipore.  pEGFR Y1068 (#1727) and pSHP2 Y542 

(#2184) antibodies were from Epitomics (Burlingame, CA, USA), unless otherwise 

noted.  Infrared dye- and Alexa Fluor-conjugated secondary antibodies were from 

Rockland Immunochemicals (Gilbertsville, PA, USA) and Invitrogen, respectively. 

Gefitinib (LC Laboratories, Woburn, MA, USA) was diluted in DMSO.  

Recombinant human EGF was from Peprotech (Rocky Hill, NJ, USA).  Recombinant 

human HGF (R&D Systems, Minneapolis, MN, USA) was generously provided by Dr. 

Anil Rustgi (University of Pennsylvania). 

 Statistics.  Statistical analyses were performed using a paired two-tailed student’s 

t-test.  

IC50 calculations.  Gefitinib IC50 values were determined by fitting a four 

parameter logistic function to normalized data. 
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2-4  RESULTS 

Effects of SHP2 knockdown on ERK phosphorylation. To assess the signaling 

role of SHP2 in NSCLC cells, we examined the effects of SHP2 knockdown on ERK 

phosphorylation in response to gefitinib in a panel of cell lines (Figures 2-1 and S2-10).  

In H322 and H292 cells (EGFR
WT

), SHP2 knockdown reduced ERK phosphorylation in 

untreated cells by more than 90%.  In H1666 and H1781 cells (EGFR
WT

), SHP2 

knockdown resulted in notable, but more modest, reductions in baseline ERK 

phosphorylation of ~60% and 20%, respectively, as well as reductions in the gefitinib 

IC50 values for ERK phosphorylation.  In H3255 cells (EGFR
L858R

), which display 

impaired EGF-mediated SHP2 phosphorylation relative to cells expressing wild-type 

EGFR (Figure S2-11; [24]), SHP2 knockdown had no substantial effect on ERK 

phosphorylation at any concentration of gefitinib.  In HCC827 cells (EGFR
delE746-A750

), 

which also display impaired SHP2 phosphorylation (Figure S2-11; [24]), there was a 

reduction in baseline ERK phosphorylation with SHP2 knockdown compared to controls, 

but the effect was less substantial than that observed in cells expressing wild-type EGFR, 

other than H1781.  There was also no enhancement in gefitinib’s ability to inhibit ERK 

phosphorylation in SHP2-depleted HCC827 cells relative to controls.  Relative to ERK 

phosphorylation, SHP2 knockdown produced smaller changes in AKT and STAT3 

phosphorylation in H1666 and H292 cells (Figure S2-12). 
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Figure 2-1: SHP2 knockdown reduces ERK phosphorylation more in NSCLC cells 

expressing wild-type EGFR than in those expressing EGFR mutants. 

SHP2 knockdown reduces ERK phosphorylation more in NSCLC cells expressing wild-

type EGFR than in those expressing EGFR mutants.  H322 (A), H1666 (B), H292 (C), 

H1781 (D), H3255 (E), and HCC827 (F) cells expressing SHP2-targeting or non-

targeting control shRNA were treated with 0-10 μM gefitinib for 48 hrs, and lysates were 

analyzed by Western blotting with antibodies against phosphorylated and total ERK.  

Densitometry data are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05 relative to 

controls. 
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Effects of SHP2 knockdown on cellular response to gefitinib. In H322 and 

H1666 cells, SHP2 knockdown reduced gefitinib IC50 values for cell proliferation by 15- 

and 3-fold, respectively (Figure 2-2).  In H1781 cells, a gefitinib-resistant cell line, the 

IC50 was reduced from > 10 μM to 2.55 μM.  SHP2-depleted H292 cells were only 

modestly sensitized to gefitinib but were significantly growth inhibited in the absence of 

gefitinib (Figure S2-13A).  Thus, gefitinib may have been unable to enhance the already 

striking effects of SHP2 knockdown on H292 proliferation.  In contrast, H3255 cells 

showed virtually no effect of SHP2 knockdown on sensitivity to gefitinib (Figure 2-2E).  

HCC827 cells displayed a small shift in sensitivity to gefitinib in response to SHP2 

knockdown (Figure 2-2F), but we measured no proliferative effect in the absence of 

gefitinib (Figure S2-13B). 
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Figure 2-2: Knockdown of SHP2 enhances cellular sensitivity to gefitinib in subsets 

of NSCLC cells. 

H322 (A), H1666 (B), H292 (C), H1781 (D), H3255 (E), and HCC827 (F) cells 

expressing SHP2-targeting or non-targeting control shRNA were treated with 0-10 μM 

gefitinib for four days, and cell proliferation was measured by XTT assay.  Normalized 
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XTT signal values (y-axis) were computed at a given gefitinib concentration by dividing 

absorbances by those measured for cells treated with DMSO as a control.  Data are 

represented as mean ± s.e.m. for three experiments with three replicate wells in each 

experiment (n = 3). 

 

To ensure the measured effects were specific for SHP2, we knocked down SHP2 

in a representative cell line expressing wild-type EGFR using an independent hairpin 

targeting the 3’ untranslated region of SHP2 and reconstituted cells with SHP2
WT

 or 

SHP2
Y542F

 (Figure 2-3).  As before, SHP2-depleted cells displayed impaired ERK 

phosphorylation and enhanced sensitivity to gefitinib.  These effects were partially 

rescued by reconstitution with SHP2
WT

 or SHP2
Y542F

. 
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Figure 2-3: Observed effects of SHP2 knockdown on ERK phosphorylation and 

gefitinib response are specific to SHP2.   

H1666 cells expressing SHP2-targeting shRNA or an empty pSicoR vector were 

transduced with SHP2
WT

, SHP2
Y542F

, or an empty pBabe vector.  (A) Cells were treated 

with 0-10 μM gefitinib for 48 hrs, and lysates were analyzed by Western blotting with 

antibodies against indicated proteins. Images are representative of three sets of biological 

replicates.  Densitometry data for ERK are represented as mean ± s.e.m. (n = 3); * 

denotes p < 0.05 relative to pSicoR and pBabe controls.  (B)  Cells were treated with 0-10 

μM gefitinib for four days, and cell proliferation was measured by XTT assay.  

Normalized XTT signal values (y-axis) were computed at a given gefitinib concentration 

by dividing absorbances by those measured for cells treated with DMSO as a control.  

Data points are represented as mean ± s.e.m. for three replicate wells from at least three 

experiments. 
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SHP2 association with GAB1 and EGFR and subcellular 

compartmentalization. To investigate the mechanism underlying apparent differential 

SHP2 function in cells with or without EGFR mutation, we examined SHP2 association 

with GAB1 and EGFR.  In H3255 and HCC827 cells, SHP2 was basally associated with 

GAB1 and phosphorylated EGFR to a significantly greater degree than in either H322 or 

H1666 cells (Figure 2-4A).  In H3255 cells, these associations were diminished by 

gefitinib (Figure 2-4B).  EGF enhanced SHP2 association with GAB1 and EGFR in all 

cell lines, but the fold increases in association were generally smaller in H3255 and 

HCC827 cells (Figure 2-4A).  Since EGFR mutants fail to undergo efficient EGF-

mediated endocytosis [23, 24], we interpreted these findings as indicating that a fraction 

of SHP2 was sequestered at the plasma membrane in cells with EGFR mutation.  To 

further substantiate this, we analyzed SHP2’s distribution in a subset of these cells by 

subcellular fractionation.  In H1666 and H3255 cells, the majority of SHP2 was cytosolic.  

Only in H3255 cells, however, did gefitinib reduce SHP2 levels in crude membrane 

fractions, suggesting that SHP2 was membrane-localized in an EGFR-dependent manner 

(Figure 2-4C).  The EGFR activity-independent presence of SHP2 in H1666 membrane 

fractions could be explained by SHP2 localization to membrane compartments which 

settle with plasma membrane in the crude membrane fraction generated by our protocol.  

This possibility is suggested by previous studies [88].   
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Figure 2-4: GAB1 and EGFR are basally associated with SHP2 in NSCLC cells 

expressing EGFR mutants and are induced to associate with SHP2 by EGF in 

NSCLC cells expressing wild-type EGFR. 

Serum-starved cells treated with or without 10 ng/mL EGF for 5 min (A), or serum-

starved H3255 cells treated with or without 5 μM gefitinib for 15 min (B), were lysed.  

Lysates were immunoprecipitated with either an SHP2 or control antibody, and 

immunoprecipitates were analyzed by Western blotting using antibodies against the 

indicated proteins.  Images are representative of three sets of biological replicates.  

Densitometry data in (A) are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05 

relative to wild-type EGFR-expressing cells not stimulated with EGF. (C) Subcellular 

fractions were prepared from H1666 and H3255 cells treated with or without gefitinib, as 

described in Materials and Methods (Section 2-3), and equivalent relative amounts of the 

fractions for both cell lines were analyzed by Western blotting using antibodies against 

indicated proteins.  To improve signals, membrane fractions were 10× more concentrated 

than cytosolic fractions in terms of the relative amount of total lysate loaded.  Images are 
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representative of three sets of biological replicates.  Blots were quantified to determine 

the relative difference in membrane-localized SHP2 in H1666 versus H3255 cells.  For 

each condition, SHP2 signal from the membrane fraction was divided by the SHP2 signal 

from the cytosol fraction to determine a membrane/cytosol SHP2 signal.  Data are 

represented as mean ± s.e.m. (n = 4); * denotes p < 0.05 relative to untreated cells.   

 

Intracellular distribution of SHP2. We further examined EGF’s ability to alter 

the intracellular distribution of SHP2 in H1666 and H3255 cells by immunofluorescence.  

In H1666 cells, the distribution shifted from one where SHP2 was concentrated around 

the cell center to one where some SHP2 moved toward the cell periphery and SHP2 was 

distributed more uniformly (Figure 2-5).  Similar changes were noted by confocal 

microscopy, including movement of SHP2 to membrane ruffles (Figure S2-14).  EGF 

also caused the formation of EGFR- and RAB5-positive endocytic vesicles in H1666 

cells (Figure S2-15).  In H3255 cells, SHP2 was basally uniformly distributed.  EGF did 

not alter this distribution or generate endocytic vesicles (Figures 2-5, S2-14, and S2-15), 

consistent with previous reports of impaired EGFR internalization in these cells.    
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Figure 2-5: Intracellular redistribution of SHP2 in response to EGF is observed in 

H1666 cells, but not in H3255 cells.   

(A) Serum-starved H1666 and H3225 cells were treated with 10 ng/mL EGF for up to 15 

min, fixed, and stained with Hoechst (nucleus) and antibodies against EGFR and SHP2.  

Images are representative of three biological replicates. (B) As described in Materials 

and Methods (Section 2-3), intracellular SHP2 pixel intensities were quantified as a 

function of normalized radial distance from cell centers (x = 0) to the cell periphery (x = 

1).  Three images for each condition were used for this analysis, in which all cells entirely 

contained with the image were analyzed.  Data are represented as mean (solid line) ± 

s.e.m. (shaded area; n ≥ 7 cells).   
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Role of GAB1 in SHP2 localization and EGF-mediated effects.  GAB1 

knockdown (Figure S2-16A) did not alter basal association of SHP2 with Y1068-

phosphorylated EGFR in H3255 cells (Figure 2-6A), nor did it alter SHP2’s intracellular 

distribution in either H1666 or H3255 cells (Figure S2-16B), suggesting that recruitment 

of SHP2 to EGFR and the cell periphery can be accomplished independent of GAB1 

binding, potentially through GAB2.  GAB1 knockdown did, however, diminish EGF-

mediated ERK and SHP2 phosphorylation, reduce ERK and AKT phosphorylation in 

response to gefitinib, and increase cellular sensitivity to gefitinib in H1666 cells (Figures 

2-6B-D and S2-16C-D).  Although GAB1-depleted H3255 cells displayed a modest 

reduction in SHP2 phosphorylation, there was no effect on ERK phosphorylation (Figure 

2-6B), suggesting that the mechanism by which SHP2 function is impaired in these cells 

may simultaneously perturb GAB1 function. 
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Figure 2-6: GAB1 knockdown alters EGF-mediated ERK phosphorylation and 

response to gefitinib in H1666 cells. 

In H1666 and H3255 cells expressing GAB1-targeting or non-targeting control shRNA:  

(A) Serum-starved H3255 cells were lysed, and lysates were immunoprecipitated with 

either an SHP2 or control antibody.  Immunoprecipitates were analyzed by Western 

blotting using antibodies against indicated proteins.  Images are representative of three 

sets of biological replicates, and densitometry data are represented as mean ± s.e.m. (n = 

3).  (B) Serum-starved cells were treated with or without 10 ng/mL EGF for up to 15 min, 

and lysates were analyzed by Western blotting using antibodies against phosphorylated 

and total ERK and SHP2.  Densitometry data are represented as mean ± s.e.m. (n = 3).  

(C)  H1666 cells were treated with 0-10 μM gefitinib for 48 hrs, and lysates were 

analyzed by Western blotting with antibodies against phosphorylated and total ERK and 

AKT.  Densitometry data are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05 

relative to controls.  (D)  H1666 cells were treated with 0-10 μM gefitinib for four days, 

and cell proliferation was measured by XTT assay.  Normalized XTT signal (y-axis) 

represents the normalization of values obtained from cells at a given gefitinib 
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concentration by dividing these values by those obtained from cells treated with DMSO 

as a control.  Data are represented as mean ± s.e.m. for three experiments with three 

replicate wells in each experiment (n = 3). 

 

SHP2 activity. SHP2 knockdown in H1666 and H3255 cells resulted in fractional 

reductions of measured phosphatase activities comparable to the reductions in 

immunoprecipitated SHP2 levels (Figure 2-7A), indicating that SHP2 was active in both 

cell lines.  In response to EGF, SHP2 activity increased in H1666 cells, with p = 0.08 for 

this comparison (Figure 2-7B).  EGF elicited no change in SHP2 activity in H3255 cells 

(p = 0.50).  Note that comparison of activity between cell lines is not straightforward 

because more SHP2 was immunoprecipitated from H3255 lysates, lysates were not 

controlled for cell numbers due to proliferation differences, and only a fraction of SHP2 

was adapter-bound in each cell line.  Thus, the lower apparent normalized SHP2 activity 

in H3255 versus H1666 cells may not necessarily reflect a lower total SHP2 activity level 

on a per cell basis. 
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Figure 2-7: SHP2 is active in H1666 and H3255 cells, and EGF increases SHP2 

activity in H1666 cells. 

H1666 and H3255 cells expressing SHP2-targeting or non-targeting control shRNA (A), 

and serum-starved H1666 and H3255 cells treated with or without 10 ng/mL EGF for 5 

min (B) were lysed, and SHP2 was immunoprecipitated from whole cell lysates.  Half of 

each immunoprecipitate was used to determine phosphatase activity, as described in 

Materials and Methods (Section 2-3), while the remainder was used to determine SHP2 

levels by immunoblot.  Data are represented as mean ± s.e.m. (n = 3); AU, arbitrary units.  

Blot images in (A) are representative of three sets of biological replicates.  Values 
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reported in (B) were determined by dividing AU values from the phosphatase activity 

assay by the quantified SHP2 levels obtained from immunoblots. 

 

Effects of SHP2 mutation. In H1666 cells, expression of constitutively active 

SHP2
D61A

 or SHP2
E76A

 mitigated gefitinib-mediated reductions in ERK phosphorylation, 

and expression of catalytically-inactive SHP2
C459S

 reduced ERK phosphorylation basally 

and in response to gefitinib (Figure 2-8A).  Despite increased ERK phosphorylation in 

H1666 cells expressing SHP2
D61A

 or SHP2
E76A

, there was no change in gefitinib 

sensitivity in these cells (Figure 2-8B), suggesting that the parental cell line’s capacity to 

activate ERK was at a threshold level for maintaining cell survival.  However, H1666 

cells expressing SHP2
C459S

 were more responsive to gefitinib, mirroring the effects of 

SHP2 knockdown.  In H3255 cells, expression of SHP2
E76A

 augmented ERK 

phosphorylation in the presence of gefitinib and substantially decreased cellular 

sensitivity to gefitinib (Figure 2-8C-D).  As expected, SHP2
C459S

 expression had little 

effect on ERK phosphorylation or gefitinib response in H3255 cells. 
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Figure 2-8: Ectopic expression of SHP2 mutants alters cellular response to gefitinib 

in H1666 and H3255 cells. 
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The following experiments were carried out with H1666 and H3255 cells transduced with 

SHP2
D61A

 (H1666 only), SHP2
E76A

, SHP2
C459S

, or an empty pBabe vector:  (A and C) 

H1666 and H3255 cells were treated with the indicated concentrations of gefitinib for 48 

hrs, and lysates were analyzed by Western blotting with antibodies against indicated 

proteins.  Images for (A) and (C) are representative of three sets of biological replicates.  

Densitometry data for ERK are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05 

relative to controls.  (B and D) H1666 and H3255 cells were treated with up to 2.5 μM 

gefitinib for four days, and cellular proliferation was measured by XTT assay.  

Normalized XTT signal values (y-axis) were computed at a given gefitinib concentration 

by dividing absorbances by those measured for cells treated with DMSO as a control.  

Data are represented as mean ± s.e.m. for three experiments with three replicate wells in 

each experiment (n = 3).  

 

Importance of SHP2-mediated effects downstream of MET. Since SHP2-GAB1 

association is required for sustained ERK activation downstream of MET [89], we 

hypothesized that SHP2 could play a role in hepatocyte growth factor (HGF)-mediated 

resistance to EGFR inhibition in NSCLC cells by maintaining GAB1-mediated signaling 

in the presence of gefitinib [90, 91].  To explore this idea, we treated SHP2-depleted 

H1666 and HCC827 cells with gefitinib in the presence or absence of HGF.  Although 

HGF sustained phosphorylated GAB1 Y627, a SHP2 binding site, in the presence of 

gefitinib, SHP2 knockdown did not affect HGF-mediated rescue of ERK phosphorylation 

in either cell line (Figure S2-17). 
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2-5  DISCUSSION 

 Other than in H292 cells, where SHP2 knockdown substantially inhibited cell 

growth, SHP2 depletion in cells expressing wild-type EGFR increased sensitivity to 

gefitinib by 3- to 15-fold, as measured by XTT assay.  Gefitinib IC50 values for cells 

expressing wild-type or mutant EGFR typically differ by a factor of ten or more [92].  

Thus, SHP2 depletion in cells expressing wild-type EGFR generally produced an effect 

consistent with differences on the lower end of what is observed among NSCLC cells 

with or without EGFR mutation.  Of course, other factors contribute to differences in 

NSCLC cellular sensitivity to gefitinib, including differential regulation of 

phosphatidylinositol 3-kinase (PI3K)/AKT and STAT3/5 [15, 25, 83].  Our study appears 

to be the first, however, to identify a mechanism wherein a survival signaling pathway is 

impaired by EGFR-activating mutations in a way which impacts cellular response to 

EGFR inhibition. 

 We also found that SHP2 depletion most strongly impaired ERK phosphorylation 

in cells expressing wild-type versus mutant EGFR.  However, H1781 (EGFR
WT

) cells 

were an outlier in terms of the relatively modest effect of SHP2 knockdown on ERK 

phosphorylation.  Despite this, there was a substantial effect of SHP2 knockdown on 

cellular response to gefitinib.  H1781 cells express a constitutively active HER2 mutant 

(VC insertion at G776) and are dependent on HER2 for ERK and AKT phosphorylation 

[93].  Since HER2 can sequester EGFR at the plasma membrane [94, 95], the possibility 

exists for SHP2 to be sequestered with EGFR in these cells as well.  Indeed, this appeared 

to occur (Figure S2-18).  However, as SHP2 promotes RAS activity downstream of 

HER2 [96], HER2-mediated SHP2 function may contribute to the modest effect of SHP2 
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knockdown on ERK phosphorylation in these cells.  Further studies are needed to parse 

the effects of SHP2 downstream of EGFR and HER2 in these cells.   

A previous study demonstrated impaired SHP2 phosphorylation in NSCLC cells 

expressing EGFR mutants [24], but the phenotypic implications of SHP2 phosphorylation 

status were not directly evaluated.  Our finding that reconstitution of SHP2
Y542F

 in SHP2-

depleted H1666 cells rescued ERK phosphorylation as efficiently as SHP2
WT

 suggests 

that SHP2 Y542 phosphorylation is dispensable for SHP2-mediated activation of ERK, 

consistent with previous findings regarding EGF-mediated ERK activation in 3T3 

fibroblasts [29].  Thus, impaired SHP2 phosphorylation with EGFR mutation may not be 

the cause, but rather a result, of a mechanism whereby SHP2 function (but not activity) is 

diminished by SHP2 sequestration.  We also note that despite the lack of an effect of 

SHP2 knockdown in H3255 cells (EGFR
L858R

), there were small effects of SHP2 

knockdown in HCC827 cells (EGFR
E746_A750del

).  This difference between H3255 and 

HCC827 cells could reflect a functional difference between the two EGFR mutants or a 

differential role of receptors such as MET, which is basally phosphorylated to a higher 

degree in HCC827 cells [26]. 

Based on our studies of GAB1 knockdown, GAB1 function may also be perturbed 

by EGFR mutation.  GAB1 also appears to be an important determinant of cellular 

response to gefitinib in an NSCLC cell line expressing wild-type EGFR.  This could be 

due to the function of GAB1 upstream of SHP2 in regulating ERK phosphorylation, the 

function of GAB1 in promoting AKT phosphorylation by recruiting PI3K, or both.  

Additional work is needed to clarify the role and regulation of GAB1. 
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Our data suggest that EGFR mutation promotes constitutive binding of a fraction 

of SHP2 to EGFR through GAB1 and other adapters.  Since adapter engagement of 

SHP2’s SH2 domains promotes SHP2 activity, it is perhaps not surprising that SHP2 was 

biochemically active in cells with EGFR mutation.  Given these findings, our 

immunofluorescence microscopy and subcellular fractionation results, and previous 

findings that EGFR mutants are endocytosis-impaired, EGFR mutation appears to result 

in sequestration of at least some SHP2 at the plasma membrane in a state where it should 

be biochemically active.  The finding that not all SHP2 was sequestered at the plasma 

membrane in cells with EGFR mutation (as observed by immunofluorescence and 

fractionation) could be a stoichiometric effect.  Indeed, in A431 cells, with over 3 × 10
6
 

EGFR/cell, a more complete redistribution of SHP2 to the cell periphery was observed in 

response to EGF than we observed [97].  Moreover, in EGFR mutant cells, the SHP2 

which is not sequestered, and less likely to be adapter-bound, should be at a lower 

activity and therefore less functionally relevant.  This model is consistent with our 

findings that in EGFR mutant cells, where only a fraction of SHP2 was sequestered, 

SHP2 depletion had relatively small effects, but expression of constitutively active SHP2 

rescued ERK phosphorylation and sensitivity to gefitinib.  The reason why SHP2 

sequestration may impede SHP2’s ability to promote ERK phosphorylation could be 

related to previous findings that normal EGFR endocytosis is required for complete ERK 

activation in some cellular contexts [85].  This coupling between endocytosis and ERK 

could involve a role for SHP2 localization wherein normal trafficking of SHP2-

containing complexes promotes ERK activity by allowing complex access to substrates in 

the cell interior (Figure 2-9). 
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Figure 2-9: Sequestration of SHP2 at the plasma membrane may enhance gefitinib 

response in cells expressing EGFR mutants by reducing ERK activity.   

In the proposed mechanism, EGFR activation and phosphorylation leads to recruitment of 

GRB2, which is constitutively bound with GAB1 via an SH3 domain-mediated 

interaction.  Phosphorylated GAB1 (and possibly other adapters) recruits SHP2, whose 

activity leads to ERK activation through dephosphorylation of a RASGAP binding site on 

GAB1 (as shown) or through other mechanisms (as depicted by dotted arrow), such as 

dephosphorylation of CSK binding sites on PAG/CBP and paxillin.  The function of 

SHP2 in this complex at both the plasma membrane and the cell interior leads to 

complete ERK phosphorylation.  When SHP2 is sequestered at the plasma membrane in 

complex with internalization-impaired mutant EGFR (e.g. EGFR
L858R

), ERK 

phosphorylation is impaired.  Due in part to impaired ERK activity resulting from 

sequestration of SHP2, cells with EGFR mutants display increased sensitivity to EGFR 

inhibition.   

 

SHP2 knockdown in an NSCLC cell line was previously shown to slow xenograft 

growth in mice [98].  In addition, SHP2-activating mutations have been found in solid 
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tumors, including NSCLC [77].  As far as we are aware, however, the effects of SHP2 

expression and mutation on cellular response to EGFR inhibition have not previously 

been evaluated.  Our finding that SHP2 knockdown in NSCLC cells expressing wild-type 

EGFR enhanced cellular response to gefitinib suggests that combined inhibition of EGFR 

and SHP2 may improve response in tumors that are unresponsive to EGFR inhibition 

alone.  The largest effects of SHP2 knockdown on enhancing response to EGFR 

inhibition in cells with wild-type EGFR tended to occur at or below 1 μM gefitinib, the 

maximum achievable plasma concentration at a clinically relevant dose [99].  Thus, it is 

conceivable that such a co-inhibition strategy could have clinical impact.  Our finding 

that expression of constitutively active SHP2 mutants mitigated the effects of gefitinib on 

ERK phosphorylation in H1666 and H3255 cells suggests that SHP2 activity can 

maintain the activity of ERK in the presence of EGFR inhibitors.  Although we noted no 

major effect of ectopic expression of these mutants on sensitivity to gefitinib in H1666 

cells, H3255 cells expressing SHP2
E76A

 displayed decreased sensitivity to gefitinib.  It 

would therefore be interesting to explore the implications for drug resistance in cells with 

SHP2 mutation. 

 Our findings point to SHP2 as a potential target to be co-inhibited with EGFR in 

the treatment of NSCLC cells expressing wild-type EGFR.  Expanding these studies to an 

in vivo model would be helpful in determining if a clinical benefit for combined 

SHP2/EGFR inhibition exists, although such studies would be hampered by the present 

lack of effective and specific SHP2 inhibitors.  Our findings also highlight the non-

intuitive possibility for activating mutations of receptors such as EGFR to impair the 
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function of specific signaling pathways in ways which promote cellular response to 

receptor-targeting therapeutics. 
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2-7  SUPPLEMENTAL MATERIAL 

 

Figure S2-10: SHP2 knockdown reduces ERK phosphorylation more in NSCLC 

cells expressing wild-type, versus mutant, EGFR.   

H322 (A), H1666 (B), H292 (C), H1781 (D), H3255 (E), and HCC827 (F) cells 

expressing control or SHP2-targeting shRNA were treated with up to 10 μM gefitinib for 
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48 hrs.  Lysates were analyzed by Western blotting with antibodies against indicated 

proteins.  Images are representative of three sets of biological replicates.  EGFR was 

probed to ensure there was no significant change in its expression due to SHP2 

knockdown. 
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Figure S2-11: EGF-mediated phosphorylation of SHP2 at Y542 is impaired in 

H3255 and HCC827 cells relative to H1666 cells.   

Serum-starved cells were treated with 10 ng/mL EGF for up to 15 min and lysed.  Whole 

cell lysates (A) or SHP2 immunoprecipates from whole cell lysates (B) were then 

analyzed by Western blotting using antibodies against the indicated proteins.  For each 

panel, images for different cell lines were obtained from the same membrane; the 

cropping is due to removal of irrelevant lanes.  The pSHP2 Y542 antibody was from Cell 

Signaling Technology for the analysis in (A) and from Epitomics for the analysis in (B).  

The specificity of both antibodies for SHP2 was validated by comparisons with lysates 

from cells with SHP2 knockdown.   
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Figure S2-12: SHP2 knockdown more strongly influences the phosphorylation of 

ERK than phosphorylation of AKT or STAT3 in NSCLC cells expressing wild-type 

EGFR.   

(A) H292 and H1666 cells expressing control or SHP2-targeting shRNA were treated 

with the indicated concentrations of gefitinib for 48 hrs, and lysates were analyzed by 

Western blotting with antibodies against indicated proteins.  Images are representative of 

three sets of biological replicates.  Densitometry data for H292 (B) and H1666 (C) blots 

from (A) are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05 relative to controls. 
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Figure S2-13: H292 cells are significantly growth inhibited by SHP2 knockdown, 

while HCC827 cells are not.   

H292 (A) and HCC827 (B) cells expressing control or SHP2-targeting shRNA were 

plated in 6-well plates at 75 000 and 100 000 cells per well, respectively.  Cells were 

counted by hemocytometer one day after plating to ensure similar numbers of adherent 

cells had been plated.  Cells were also counted three days after plating to determine the 

difference in proliferation between cells with or without knockdown of SHP2.  Data are 

represented as mean ± s.e.m. of two replicate wells from two distinct experiments (n = 4). 

* denotes p < 0.05 relative to controls.   
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Figure S2-14: EGF promotes membrane localization of SHP2 in H1666 cells, but not 

in H3255 cells.   

Serum-starved H1666 and H3255 cells were treated with or without 10 ng/mL EGF for 5 

min (H1666) or 15 min (H3255), and subsequently fixed and stained with antibodies 

against EGFR (red) and SHP2 (green).  Images represent single frames from z-stacks 

obtained on a confocal microscope.  Red arrows denote localization of SHP2 at 

membrane ruffles. 

 

 



56 

 

 

Figure S2-15: EGF promotes the formation of EGFR-positive endocytic vesicles in 

H1666 cells, but not in H3255 cells. 

Serum-starved H1666 and H3255 cells were treated with or without 10 ng/mL EGF for 

up to 15 min, fixed, and stained with antibodies against EGFR (red) and RAB5 (green), a 

marker for early endosomes.  Sections of merged images (white rectangles) were 

magnified to show co-localization of EGFR and RAB5 (yellow vesicles), which were 
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present in EGF-treated H1666 cells.  Images are representative of three separate pictures 

taken from three biological replicates. 
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Figure S2-16: GAB1 does not influence the localization of SHP2 in H1666 or H3255 

cells, but does alter EGF-mediated ERK phosphorylation and response to gefitinib 

in H1666 cells.   

In H1666 and H3255 cells expressing GAB1-targeting or non-targeting control shRNA: 

(A) RNA was isolated from cells, and relative levels of GAB1 mRNA were determined 

by qPCR as described in Materials and Methods (Section 2-3).  (B) Serum-starved cells 

were treated with or without 10 ng/mL EGF for 5 min, and subsequently fixed and 
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stained with Hoescht nuclear stain (blue) and antibodies against EGFR (red) and SHP2 

(green).  Images are representative of three separate pictures taken from three biological 

replicates. (C)  Cells were treated with 10 ng/mL EGF for up to 15 min, and lysates were 

analyzed by Western blotting with antibodies against the indicated proteins.  Images are 

representative of three biological replicates.  (D)  H1666 cells were treated with up to 0-

10 μM gefitinib for 48 hrs, and lysates were analyzed by Western blotting with antibodies 

against indicated proteins.  Images are representative of three biological triplicates. 
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Figure S2-17: SHP2 is not required for HGF-mediated rescue of ERK 

phosphorylation in NSCLC cells treated with gefitinib. 

H1666 and HCC827 cells expressing SHP2-targeting or control shRNA were treated with 

1 μM gefitinib, with or without 50 ng/mL HGF, for 6 hrs.  Lysates were analyzed by 

Western blotting with antibodies against indicated proteins. 
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Figure S2-18: SHP2 is basally associated with GAB1 and pEGFR in H1781 cells.     

Serum-starved H1781 cells were treated with or without 10 ng/mL EGF for 5 min and 

lysed.  SHP2 was immunoprecipated from whole cell lysates, and immunoprecipitates 

were analyzed by Western blotting using antibodies against the indicated proteins.  

Images are representative of three biological replicates. 
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Chapter 3: Multivariate Signaling Regulation by SHP2 

Differentially Controls Proliferation and Therapeutic 

Response in Glioma Cells
2
 

 

3-1  ABSTRACT 

 Information from multiple signaling axes is integrated in the determination of 

cellular phenotypes.  Here, we demonstrate this aspect of cellular decision making in 

glioblastoma multiforme (GBM) cells by investigating the multivariate signaling 

regulatory functions of the protein tyrosine phosphatase SHP2.  Specifically, we 

demonstrate that SHP2’s ability to simultaneously drive ERK and antagonize STAT3 

pathway activities produces qualitatively different effects on the phenotypes of 

proliferation and resistance to EGFR and c-MET co-inhibition.  While the ERK and 

STAT3 pathways independently promote proliferation and resistance to EGFR and c-

MET co-inhibition, SHP2-driven ERK activity is dominant in driving cellular 

proliferation, and SHP2’s antagonism of STAT3 phosphorylation prevails in promoting 

GBM cell death in response to EGFR and c-MET co-inhibition.  Interestingly, the extent 

of these SHP2 signaling regulatory functions is diminished in glioblastoma cells 

expressing sufficiently high levels of the EGFR variant III (EGFRvIII) mutant, which is 

commonly expressed in GBM.  In cells and tumors expressing EGFRvIII, SHP2 also 

antagonizes EGFRvIII and c-MET phosphorylation and drives expression of HIF-1/2α, 

adding complexity to the evolving understanding of SHP2’s regulatory functions in 

GBM. 
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3-2  INTRODUCTION 

Cells integrate information from multiple signaling pathways to execute decision-

making processes [100-103].  While some signaling pathway intermediates act 

predominantly in one pathway, others exert substantial effects in multiple pathways, thus 

expanding their ability to control cell fate determination.  One such protein is SH2 

domain-containing phosphatase-2 (SHP2), which plays key roles in development, 

homeostatic maintenance, and disease.  Here, we investigate SHP2’s ability to 

simultaneously regulate the extracellular signal-regulated kinase (ERK) and signal 

transducer and activator of transcription-3 (STAT3) pathways, as well as other signaling 

events that we identify as SHP2-regulated for the first time, and the net effect of this 

regulation on cellular proliferation and response to co-inhibition of EGFR and the HGF 

receptor c-MET. 

SHP2 was the first phosphatase to be identified as a proto-oncogene [68, 84], and 

it is primarily regarded as a mediator of pro-survival signaling.  Indeed, SHP2’s most 

well-studied signaling role is to promote ERK activity [28].  SHP2’s catalytic activity, 

which is required for this function, is promoted through engagement of its N-terminal 

SH2 domains by phosphotyrosines on various receptor tyrosine kinases or adapter 

proteins such as GRB2 associated binding protein-1 (GAB1) [28, 52].  SHP2 can also 

negatively regulate STAT3 activation downstream of the interleukin-6 receptor [104], 

and one recent study even described a “tumor-suppressor” role for SHP2 in 

hepatocellular carcinoma through its regulation of STAT3 [105].  SHP2 can also 

positively or negatively impact AKT pathway activity [58, 106].  Through these signaling 

regulatory functions, the magnitude of which may depend on cell type or disease context, 
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SHP2 is able to control cellular phenotypes including proliferation [107, 108], oncogenic 

transformation [73], tumor progression [109], response to therapeutics [108], and 

senescence [80].  

A specific setting of interest where SHP2 influences multiple complex phenotypes 

is glioblastoma multiforme (GBM), the most common and lethal form of adult brain 

cancer [36].  One study described SHP2’s ability to suppress cellular senescence in the 

GBM cell lines U87MG and A172 and reported simultaneous SHP2-mediated ERK 

activation and STAT3 inhibition, though no causal relationships between ERK or STAT3 

signaling and the senescence phenotype were established [80].  SHP2 function has also 

been linked to tumorigenicity of GBM cells expressing EGFR variant III (EGFRvIII), a 

mutant prevalent in GBM [73].  Of course, ERK and STAT3 are both well-described as 

promoting proliferation and survival across cancer types [110, 111].  For example, in 

GBM cells, ERK activity promotes resistance to cisplatin [112], and STAT3 is an 

important regulator of proliferation that has been recognized as a potential therapeutic 

target [47, 81].  Since SHP2 regulates the ERK and STAT3 pathways in qualitatively 

different ways, and since the ERK and STAT3 signaling pathways promote qualitatively 

similar effects across multiple phenotypes, how SHP2’s multivariate signaling roles are 

integrated to determine phenotype in GBM cells remains unclear.  A more complete 

understanding of this could help address a number of outstanding issues, including the 

identification of ways to overcome GBM resistance to targeted inhibitors [37, 113, 114] 

and the potential efficacy of targeting SHP2 in glioblastoma.   

 Here, we evaluate the effects of SHP2’s signaling roles on GBM cell proliferation 

and resistance to inhibitors of EGFR and c-MET, oncogenic receptors that drive GBM 
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progression and chemoresistance.  In a panel of GBM cells, SHP2 depletion reduced 

cellular proliferation but surprisingly also promoted resistance to EGFR and c-MET co-

inhibition.  These results appear to derive from SHP2’s ability to drive ERK and 

antagonize STAT3 pathway activities in the panel of cell lines and the differential 

abilities of those pathways to control different phenotypes.  That is, even though ERK 

and STAT3 both promote proliferation and survival, SHP2-mediated ERK activity is 

dominant in determining cellular proliferation rates, while SHP2 suppression of STAT3 

phosphorylation exerts the dominant effect in determining response to EGFR and c-MET 

co-inhibition.  Interestingly, SHP2’s ability to regulate these pathways was greatly 

diminished in cells with sufficiently high EGFRvIII expression, where SHP2 became 

basally sequestered with the receptor.  We further found that SHP2 negatively regulates 

EGFRvIII and c-MET phosphorylation and drives expression of hypoxia-inducible 

factors 1 and 2 alpha (HIF-1/2α in cultured cells and tumor xenografts.  These results 

expand our understanding of SHP2 as a multivariate regulator of signaling and GBM cell 

phenotype and raise additional questions about how SHP2 function may be perturbed in 

different GBM contexts. 
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3-3  MATERIALS AND METHODS 

 Cell culture. LN18, T98G, and U118MG cells were obtained from the American 

Type Culture Collection (Manassas, VA, USA).  U87MG parental cells and cells 

expressing low (1×10
6
 receptors/cell), medium (1.5×10

6
 receptors/cell), or high (2×10

6
 

receptors/cell) levels of EGFRvIII (U87MG-L, -M, and -H, respectively) or a dead kinase 

mutant of EGFRvIII (U87MG-DK, 2×10
6
 receptors/cell) were a generous gift from Dr. 

Frank Furnari (University of California San Diego).  All cells were maintained in DMEM 

supplemented with 10% FBS, 1 mM L-glutamine, 100 units/mL penicillin, and 100 

μg/mL streptomycin.  U87MG cells expressing EGFRvIII were cultured with 400 μg/mL 

G418.  Where indicated, cells were treated with EGF (Peprotech, Rocky Hill, NJ, USA) 

following 8-16 hrs starvation in media containing 0.1% FBS.  All cell culture reagents 

were from Life Technologies (Carlsbad, CA, USA).  For experiments in hypoxic 

conditions, cells were cultured for 24 hrs in 0.5% O2 using an Invivo2 400 hypoxia 

workstation (Ruskinn Technology, Grandview, MO, USA) prior to lysis. 

 shRNA and stable expression constructs. DNA oligonucleotides encoding short 

hairpins targeting human SHP2 (Integrated DNA Technologies, San Jose, CA, USA) 

were cloned into the pSicoR vector (Tyler Jacks, MIT; [86]).  The main shRNA targeted 

nucleotides 1780-1798 of SHP2 mRNA (5’-GGACGTTCATTGTGATTGA-3’).  Control 

vectors were created using shRNA sequences that do not target a known human mRNA.  

We also used an alternative, non-overlapping SHP2 shRNA targeting nucleotides 5890-

5908 (5’-GTATTGTACCAGAGTATTA-3’) of human SHP2 in a cell proliferation 

experiment in the presence of drugs (Figure S3-9A).  Combined with the data showing 

the effects of SHP2
E76A

 expression, the data in Figure S3-9A help to demonstrate the 
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SHP2 specificity of effects observed using the primary SHP2-targeting hairpin.  To 

engineer cells with shRNA expression, lentivirus was produced by calcium phosphate-

mediated transfection of 293FT cells (Life Technologies) with pSicoR plasmids along 

with the packaging plasmids pCMV-VSV-G, pMDL-gp-RRE, and pRSV-Rev (Dr. 

Marilyn Farquhar, University of California San Diego).  Virus was collected 48 and 72 

hrs post-transfection and filtered using 0.45 µm syringe filters prior to infecting target 

cells.   

 SHP2 cDNA encoding SHP2
E76A

 (Ben Neel, Ontario Cancer Institute) was 

inserted at the EcoRI site of the pBabe vector.  Retrovirus was produced by calcium 

phosphate-mediated transfection of amphotropic Phoenix cells (Dr. Gary Nolan, Stanford 

University) with vector.  Virus was harvested 24, 30, and 48 hrs post-transfection and 

used to infect target cells, which were selected in 2 μg/mL puromycin (Sigma-Aldrich, 

St. Louis, MO, USA).  All expression and shRNA constructs were validated by 

sequencing, and protein knockdown was validated by western blot. 

 Transient expression of wild-type or substrate-trapping SHP2. Expression 

constructs for wild-type and substrate-trapping double mutant (DM; D425A/C459S) 

SHP2 in the pMT2 vector backbone were provided by Dr. Yehenew Agazie (West 

Virginia University).  U87MG cells were transfected with pMT2 plasmids using calcium 

phosphate.  Cells were lysed in immunoprecipitation lysis buffer (Cell Signaling 

Technology, Danvers, MA, USA; #9803) 48 hrs after transfection. 

 Inhibitors. Stocks of gefitinib (LC Laboratories, Woburn, MA, USA), U0126 (LC 

Laboratories), CI-1040 (LC Laboratories), PHA665752 (Santa Cruz Biotechnologies, 

Dallas, TX, USA), and Stattic (Sigma-Aldrich) were prepared in DMSO.   
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 Cell death quantification. Cells were seeded at a density of 75,000-100,000 

cells/well in six-well dishes and treated 24 hrs later with different combinations of 

gefitinib, PHA665752, CI-1040, and Stattic or DMSO (control).  After 72-96 hrs, floating 

and adherent cells were pooled and stained for permeability to TO-PRO-3 (Life 

Technologies).  Cells were analyzed by flow cytometry within 1 hr of resuspension.  

Flow cytometry was performed on a Becton Dickinson Biosciences FACSCalibur 

cytometer, and data were analyzed using FlowJo. 

 Proliferation measurements. Cells were seeded at an initial density of 75,000 or 

100,000 cells/well in six-well dishes.  After growing for 72 hrs, cells were trypsinized, 

suspended in complete media, and counted using a hemocytometer. 

 XTT viability assay. Cell proliferation in the presence of inhibitors was assessed 

using the XTT Cell Proliferation Assay (Roche, Indianapolis, IN, USA).   Cells were 

seeded in 96-well plates, grown for 16-24 hrs, and switched to complete media 

containing up to 20 µM gefitinib and/or 1 μM PHA665752 for an additional 3 days. 

 Subsequently, fresh media and XTT reagent were added to wells, and plates were 

incubated for 2-4 hrs at 37°C to maximize signal-to-background.  Absorbance was 

measured at 450 nm with a reference wavelength at 660 nm.  The percentage of viable 

cells was determined by normalizing absorbance to that of cells treated with DMSO. 

 Each experiment was performed on at least three separate days with each condition 

plated in three replicate wells on each day, except where noted. 

 Tumor xenografts. Female Nu/Nu mice (Charles River, Wilmington, MA, USA) 

were subcutaneously injected in both flanks with control or SHP2-depleted U87MG-M 

cells (control shRNA: 750,000 cells; SHP2 shRNA: 2,500,000 cells).  The difference in 
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injected cell numbers was based upon observations of different rates of proliferation in 

vivo and in vitro with or without SHP2 knockdown.  When tumors reached an average 

size of 50 mm
3
 (achieved by control tumors only), 7 day treatment with gefitinib and 

PHA665752 (Selleck Chemicals, Houston, TX, USA) began.  Gefitinib was resuspended 

in an aqueous solution containing 0.5% hydroxypropylmethylcellulose (Sigma-Aldrich) 

and 0.1% Tween-80 (Sigma-Aldrich), and was delivered at 100 mg/kg/day daily by oral 

gavage.  PHA665752 was resuspended in an aqueous solution containing 1% dimethyl 

acetamide (Sigma-Aldrich), 10% propylene glycol (Sigma-Aldrich), and 1.05 moles L-

lactic acid (Sigma-Aldrich) per mole of PHA665752, and was delivered at 30 mg/kg/day 

daily by intraperitoneal injection.  Tumors were measured with a caliper before and 

throughout treatment, and tumor volume was calculated as π/6 × A × 2B, where A and B 

are the larger and smaller tumor diameters, respectively.  Excised tumors were 

homogenized in immunoprecipitation lysis buffer before proceeding with western 

blotting.  All experiments were approved by the University of Pennsylvania Institutional 

Animal Care and Use Committee and performed in accordance with NIH guidelines. 

 Subcellular fractionation. Serum-starved cells were washed with PBS and 

collected in hypotonic buffer (10 mM Tris-HCl, pH 7.4, 1 mM MgCl2, 1 mM EDTA) 

supplemented with 1 mM PMSF, additional protease inhibitors, and phosphatase 

inhibitors.  Crude lysates were generated with a Dounce homogenizer and centrifuged at 

3,000 and 9,300 rpm, for 5 min at each speed, to remove nuclei and mitochondria, 

respectively.  Cleared lysates were centrifuged at 100,000 g for 60 min to separate 

membrane and cytosol fractions.  Membrane pellets were washed with PBS, resuspended 

in hypotonic buffer, and centrifuged again at 100,000 g.  After additional washes, 
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membrane pellets were resuspended in immunoprecipitation lysis buffer to solubilize 

proteins. To improve signals, membrane fractions were 10× more concentrated than 

cytosolic fractions in terms of the relative amount of total lysate loaded. 

 EGF internalization assay. EGF-mediated EGFR endocytosis rate constants (ke) 

were measured using 
125

I-EGF as described previously [115, 116]. 

 Western blotting. Whole cell lysates were prepared in a standard cell extraction 

buffer (Life Technologies; FNN0011) prepared with protease inhibitors and phosphatase 

inhibitors (Sigma-Aldrich).  Lysates were cleared by centrifugation at 13,200 rpm for 10 

min, and total protein concentrations were determined by micro-bicinchoninic acid 

(BCA) assay (Thermo Fisher Scientific, Waltham, MA, USA).  Proteins were resolved on 

4-12% gradient polyacrylamide gels (Life Technologies) under denaturing and reducing 

conditions and transferred to 0.2 μm nitrocellulose membranes (Bio-Rad Laboratories, 

Hercules, CA, USA).  Membranes were imaged using a LI-COR Odyssey Imaging 

System.  As needed, membranes were stripped with 0.2 M NaOH. 

 Immunofluorescence. Cells were seeded at 150,000 cells/well on 18 mm glass 

coverslips in six-well culture dishes.  After serum starvation for 16 hrs, cells were treated 

with 10 ng/mL EGF for up to 30 min.  Cells were then washed and fixed for 20 min in 

4% paraformaldehyde and permeabilized with 0.25% Triton X-100 in PBS for 5 min.  

Coverslips were again washed and incubated with the SHP2 antibody in a humidified 

chamber for 3 hrs at 37ºC.  Washed coverslips were incubated with Alexa Fluor 488-

conjugated secondary antibody (Life Technologies) and Hoescht DNA stain (Sigma-

Aldrich) for 1 hr at 37ºC.  Coverslips were mounted on microscope slides using Prolong 

Gold Antifade mounting media (Life Technologies) and dried overnight.  Fixed slides 
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were imaged on a Zeiss Axiovert 40 CFL microscope using an A-Plan 100X oil objective 

and a SPOT Insight CCD camera.  Specificity of the SHP2 antibody for 

immunofluorescence was verified using U87MG-M cells with or without SHP2 

knockdown (supplementary material Fig. S3C). 

 Immunoprecipitation. Cells were lysed in immunoprecipitation lysis buffer, with 

1 mM PMSF, protease inhibitors, and phosphatase inhibitors.  After lysate centrifugation 

at 13,200 rpm and 4°C for 10 min and determination of protein concentrations by BCA 

assay, 400-500 μg of protein was incubated with agarose beads conjugated to SHP2 or 

STAT3 antibodies at 4°C overnight.  Beads were washed three times with cold lysis 

buffer, re-suspended in LDS sample buffer (Life Technologies) and boiled before western 

blotting.  Immunoprecipitation specificity was validated with comparisons to a rabbit 

control antibody (IgG; Santa Cruz Biotechnology) (supplementary material Fig. S2D, 

S3A, S4C).  

 Antibodies. EGFR (#2232), c-MET pY1234/1235 (#3126), STAT3 pY705 

(#9145), ERK (#4695), and ERK pT202/Y204 (#4377) antibodies were from Cell 

Signaling Technology. SHP2 (sc-280) and STAT3 (sc-482) antibodies were from Santa 

Cruz Biotechnology.  Actin (MAB1501) and GAB1 (#06-579) were from Millipore 

(Billerica, MA, USA).  EGFR pY1068 (#1727) was from Epitomics (Burlingame, CA, 

USA).  Antibodies against HIF-1α (#10006421) and HIF-2α (NB100-122) were from 

Cayman Chemical (Ann Arbor, MI, USA) and Novus Biologicals (Littleton, CO, USA), 

respectively.  Infrared dye-conjugated secondary antibodies were from Rockland 

Immunochemicals (Gilbertsville, PA, USA).  All antibodies were used according to 

manufacturers’ recommendations.  
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 Statistics. Statistical analyses were performed using a paired two-tailed student’s 

t-test. 
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3-4  RESULTS 

 SHP2 depletion differentially impacts key GBM cell phenotypes and associated 

signaling pathways. In the GBM cell lines U87MG, LN18, T98G, and U118MG, we first 

evaluated the effect of shRNA-mediated SHP2 knockdown on cellular proliferation.  As 

expected based on reports in other glioblastoma cells [73] and numerous other cell 

settings, SHP2 knockdown reduced cellular proliferation rates in all four cell lines 

(Figure 3-1A).  Interestingly, SHP2 knockdown also promoted cell survival in response 

to co-inhibition of EGFR and c-MET using the inhibitors gefitinib and PHA665752 

(Figure 3-1B).  Thus, in response to SHP2 knockdown, cells were generally less 

proliferative, but significantly more resistant to EGFR and c-MET co-inhibition.  The 

latter effect was unexpected given previous findings that SHP2 knockdown enhances 

death response to EGFR inhibition in non-small cell lung cancer (NSCLC) cells [108] 

and that SHP2 antagonizes p73-dependent apoptosis [117].  Western blot analysis 

revealed that SHP2 knockdown was accompanied by decreases in ERK phosphorylation 

and simultaneous increases in STAT3 phosphorylation (Figure 3-1C), which could 

explain how proliferation was impeded while survival in response to EGFR and c-MET 

co-inhibition could be enhanced.  That is, ERK activity could contribute more 

significantly to determining proliferation rates, and STAT3 activity could contribute 

more significantly to survival response to EGFR and c-MET co-inhibition.  

 To explore that idea further, we used the data from Figures 3-1A-C to assign 

quantitative values to the individual contributions of SHP2-controlled ERK and STAT3 

activation toward cellular proliferation and survival. We assumed that the quantitative 

measure of a particular phenotype Xi for a particular cellular condition i (in this case, 
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control or SHP2 knockdown) can be described as a linear combination of the 

phosphorylation levels of ERK and STAT3, pE,i and pS,i, respectively, where the 

contribution of each pathway to Xi is determined as the product of a weighting coefficient 

for ERK or STAT3, wE or wS, respectively, and the phosphorylation level of the protein.  

With these assumptions, Xi takes the form: 

 

( ) ( )
i,SSi,EEi pwpwX +=  

 

To evaluate pathway contributions to survival response to therapeutics, the percentages of 

dead cells shown in Figure 3-1B were subtracted from 100%. Phosphorylated ERK and 

STAT3 signals were normalized to the corresponding total protein signals, as in Figure 3-

1C.  Finally, phosphorylation and phenotype data were normalized to values from control 

shRNA cells for each cell line, which leads to wE and wS summing to unity when the 

equation above is evaluated for the control condition. Performing the analysis for the 

proliferation phenotype for each cell line and averaging, we found average wE and wS 

values of 0.77 and 0.23, respectively.  For cell survival response to combined EGFR and 

c-MET inhibition, we found average wE and wS values of -0.14 and 1.14, respectively.  

These results suggest that ERK and STAT3 play dominant roles in proliferation and 

survival responses, respectively. We note that a negative value for wE in the survival 

analysis may seem to suggest that ERK activity somehow negatively contributes to cell 

survival, but this is not the case.  Rather, this result arises due to the form of our model 

structure, which produces a wE < 0 whenever the fold-increase in survival exceeds the 

fold-increase in STAT3 phosphorylation and the fold-increase in ERK phosphorylation 
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does not exceed that for STAT3 phosphorylation, which is the case for three of the four 

cell lines analyzed. 

 

 

Figure 3-1: SHP2 knockdown differentially impacts GBM cell proliferation and 

survival. 

(A) U87MG, LN18, T98G, and U118MG cells expressing control or SHP2-targeting 

shRNA were seeded at 100,000 cells/well and cells were counted 72 hrs later.  Counts are 

represented as mean ± s.e.m. (n = 3); * denotes p < 0.05. (B) The indicated cell lines were 

co-treated with 20 μM gefitinib (G) and 1 μM PHA665752 (P).  After 72 hrs, the 

percentage of TO-PRO-3-positive cells was measured by flow cytometry (n = 3); * 

denotes p < 0.05.  (C) The indicated cell lines were maintained in complete media, and 

lysates were analyzed by western blotting using antibodies against the indicated proteins.  

Densitometry data are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05.   
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 ERK and STAT3 inhibition further suggests differential pathway control of 

proliferation and survival in GBM cells. We next used the ERK and STAT3 inhibitors 

CI-1040 and Stattic to confirm experimentally the pathways’ relative contributions to cell 

phenotypes.  Cellular proliferation was reduced with either ERK or STAT3 pathway 

inhibition (Figures 3-2A-B and S3-8A).  Note that the incomplete inhibition of STAT3 

Y705 phosphorylation (37% reduction) observed in Figure 3-2B resulted from our 

selection of a STAT3 inhibitor concentration that was low enough to produce relatively 

low cell death as a single agent across the panel of cell lines.  Using a lower 

concentration of gefitinib than in Figure 3-1B to reduce baseline cell death, we also found 

that ERK or STAT3 inhibition promoted cell death response to EGFR and c-MET co-

inhibition (Figure 3-2C).  With the exception of U118MG cells where Stattic produced a 

substantial amount of cell death by itself, the effect of ERK inhibition on proliferation 

was generally greater than that of STAT3 inhibition.  Conversely, the effect of STAT3 

inhibition on death response to gefitinib and PHA665752 was larger than that of ERK 

inhibition.  Given that the same concentrations of CI-1040 and Stattic were used in 

Figures 3-2A and 3-2C, we interpret these data as indicating that both the ERK and 

STAT3 pathways participate in regulating cellular proliferation and survival, but 

confirming the weighting coefficient analysis that ERK is the stronger determinant of 

proliferation and STAT3 the stronger determinant of survival response to EGFR and c-

MET co-inhibition.  This suggests that the elevated phosphorylated STAT3 levels 

observed with SHP2 knockdown promoted resistance to EGFR and c-MET co-inhibition 

despite the impairment of ERK activity.  To confirm this, we demonstrated that 
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combining Stattic with the concentrations of gefitinib and PHA665752 used in Figure 3-

1B increased cell death response of cells with SHP2 knockdown (Figure 3-2D).  

We note as well that, in some cell lines, increases in STAT3 Y705 

phosphorylation may involve a mechanism wherein ERK negatively regulates STAT3 

Y705 phosphorylation by phosphorylating STAT3 S727 [118].  Evidence for this 

potential connectivity between ERK and STAT3 is provided by our finding that MEK 

inhibition promoted STAT3 phosphorylation in some cell lines (Figure S3-8B). 
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Figure 3-2: ERK and STAT3 pathways both control proliferation and survival of 

GBM cells. 

(A) U87MG, LN18, T98G, and U118MG cells were seeded at 100,000 cells/well and 

treated 24 hrs later with 6 μM CI-1040 (C), 4 μM Stattic (S), or DMSO control for 72 hrs 

prior to cell counting.  Counts are represented as mean ± s.e.m. (n = 3); * denotes p < 

0.05. (B) The indicated cell lines were treated with the same inhibitor concentrations as in 

panel (A) for 30 min prior to lysis.  Lysates were analyzed by western blotting with 
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antibodies against the indicated proteins. Images are representative of three sets of 

biological replicates. (C) The indicated cell lines were treated with the indicated 

combinations of 10 μM gefitinib (G) and 1 μM PHA665752 (P), 6 μM CI-1040 (C), 4 

μM Stattic (S), or DMSO. Gefitinib concentration was lower compared to Figure 3-1 and 

(D) below to reduce cellular death in response to G and P.  After 96 hrs, the percentage of 

TO-PRO-3-positive cells was measured by flow cytometry (n = 3); * denotes p < 0.05. 

(D) The indicated cell lines expressing control or SHP2-targeting shRNA were treated 

with the indicated combinations of 20 μM gefitinib (G) and 1 μM PHA665752 (P), 4 μM 

Stattic (S), or DMSO.  After 72 hrs, the percentage of TO-PRO-3-positive cells was 

measured by flow cytometry (n = 3); * denotes p < 0.05. 

 

 SHP2’s ability to regulate signaling and phenotypes is modulated by elevated 

EGFRvIII expression. To evaluate SHP2’s regulatory functions in the context of 

EGFRvIII expression, we stably depleted SHP2 in a panel of U87MG cells expressing 

low, medium, or high levels of EGFRvIII or a high level of kinase-dead EGFRvIII 

(U87MG-L, -M, -H, and -DK, respectively) [48].  SHP2 depletion reduced proliferation 

in all four cell lines (Figure 3-3A).  Similar to effects observed in Figure 3-1B, SHP2 

knockdown also promoted survival in response to EGFR and c-MET co-inhibition in 

U87MG-DK, -L, and -M cells, but there was no effect in U87MG-H cells Figure 3-3B).  

To confirm specificity of the effects of SHP2 knockdown, we used an additional, non-

overlapping SHP2 shRNA to deplete SHP2 in U87MG-M cells, where cells with SHP2 

knockdown were once again more resistance to EGFR and c-MET co-inhibition (Figure 

S3-9A).  To understand the basis for the lack of effect of SHP2 knockdown on survival 

response in U87MG-H cells, we first probed signaling pathways by western blot in 

resting cells (Figures 3-3C and S3-9B).  STAT3 phosphorylation was increased by SHP2 

depletion in all cell lines, including U87MG-H, which was surprising given our previous 
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findings that STAT3 controls survival response and that SHP2 knockdown did not rescue 

U87MG-H cells from gefitinib and PHA665752 co-treatment.  We also noticed reduced 

ERK phosphorylation in all cell lines with SHP2 knockdown, although the reduction in 

ERK phosphorylation in U87MG-H cells was very modest, an effect which we explore 

further in Figure 3-4.  In addition, we noticed potential effects of SHP2 knockdown on 

the expression and phosphorylation of EGFRvIII and on phosphorylation of c-MET, 

findings which we also revisit later.   

 To delve further into the lack of effect of SHP2 knockdown on cellular response 

to inhibitors in U87MG-H cells, we compared the effects of SHP2 knockdown in 

U87MG-M and -H cells co-treated with gefitinib and PHA665752 (Figures 3-3D and S3-

9C).  Interestingly, in the presence of the inhibitors, SHP2 depletion significantly 

increased STAT3 phosphorylation in U87MG-M cells, but had essentially no effect in 

U87MG-H cells.   Since STAT3 can be activated through direct binding with EGFR [81, 

119] or EGFRvIII [120], we hypothesized that elevated STAT3 Y705 phosphorylation is 

EGFRvIII-dependent in SHP2-depleted U87MG-H cells but potentially EGFRvIII-

independent in SHP2-depleted U87MG-M cells.  This scenario would lead to a 

preferential reduction in STAT3 phosphorylation with EGFR inhibition in U87MG-H 

cells.  Consistent with this model, STAT3-pEGFRvIII association was much higher in 

U87MG-H cells than in any other line (Figures 3-3E and S3-9D).  In U87MG-H cells, 

STAT3-pEGFRvIII association was further promoted by SHP2 knockdown, presumably 

because of the concomitant increase in phosphorylated EGFRvIII levels observed in that 

cell line with SHP2 depletion.  The unchanged STAT3-pEGFRvIII association for SHP2-

depleted U87MG-M cells is consistent with the notion that EGFRvIII is not a primary 
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driver of STAT3 phosphorylation below a threshold level of EGFRvIII expression.  

Moreover, co-treatment with gefitinib and PHA665752 eliminated STAT3-pEGFRvIII 

association in U87MG-H cells, consistent with reduced STAT3 phosphorylation in 

response to gefitinib and PHA665752 co-treatment (Figure 3-3E).  It should also be noted 

that EGFRvIII and c-MET phosphorylation were greatly reduced in cells co-treated with 

gefitinib and PHA665752 relative to DMSO-treated cells with or without SHP2 

knockdown, which eliminates the possibility that a failure to reduce receptor 

phosphorylation was responsible for resistance to EGFR and c-MET co-inhibition with 

SHP2 knockdown (Figure S3-9E).   Finally, as in parental U87MG cells, combining 

Stattic with gefitinib and PHA665752 enhanced cell death in SHP2-depleted U87MG-M 

cells (Figure 3-3F).   
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Figure 3-3: Sufficiently high EGFRvIII expression diminishes the ability of SHP2 to 

promote ERK activity and to reduce STAT3 phosphorylation in the presence of 

EGFR and c-MET inhibitors. 

(A) U87MG-DK, -L, -M, and -H cells expressing control or SHP2-targeting shRNA were 

seeded at 75,000 cells/well and were counted 72 hrs later. Counts are represented as mean 

± s.e.m. (n = 3); * denotes p < 0.05. (B) The indicated cell lines were co-treated with 20 

μM gefitinib (G) and 1 μM PHA665752 (P).  After 72 hrs, the percentage of TO-PRO-3-
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positive cells was measured by flow cytometry (n = 3); * denotes p < 0.05.  (C) The 

indicated cell lines were grown in complete media for 72 hrs, and lysates were analyzed 

by western blotting using antibodies against the indicated proteins. Images are 

representative of five sets of biological replicates. (D) U87MG-M and -H cells were co-

treated with 20 μM gefitinib (G) and 1 μM PHA665752 (P) for 24 hrs were analyzed by 

western blotting using antibodies against the indicated proteins.  Images are 

representative of three sets of biological replicates. (E) The indicated cell lines were 

treated with or without 20 μM gefitinib (G) and 1 μM PHA665752 (P) for 24 hrs and 

lysed.  STAT3 immunoprecipitates were analyzed by western blotting using antibodies 

against the indicated proteins.  Images are representative of three sets of biological 

replicates. (F) U87MG-M cells were analyzed as in panel (B) with the addition of 4 μM 

Stattic (S) where indicated (n = 3); * denotes p < 0.05. 

 

 SHP2 can be sequestered with EGFRvIII at high receptor expression levels. In 

the same way that STAT3 can become preferentially bound with EGFRvIII, other 

proteins may become EGFRvIII-sequestered when the receptor is expressed at high 

levels.  We hypothesized that such a preferential binding effect for SHP2 might explain 

the modest effect of SHP2 knockdown on ERK phosphorylation in U87MG-H cells as 

well as the gradual reduction in basal ERK phosphorylation in control cells with 

increasing EGFRvIII expression in Figure 3-3C.  Such an effect for SHP2 would be 

analogous to one we described in lung cancer cells wherein kinase-activated and 

internalization-impaired EGFR mutants appear to sequester adapter-bound SHP2 in such 

a way that full ERK activation is prevented [108].  To explore this, we first probed the 

basal and EGF-induced associations of SHP2 with GAB1 and EGFRvIII.  Increasing 

EGFRvIII expression clearly promoted GAB1-SHP2 association (Figure 3-4A and S3-

10A), as well as pEGFRvIII-SHP2 association as previously reported [73].  Although 
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GAB1-SHP2 association was EGF-inducible in U87MG-DK, -L, and –M cells, the high 

basal association observed in U87MG-H cells was so elevated that it was not augmented 

by EGF.  We further noted a larger fraction of SHP2 in the membrane compartment along 

with EGFRvIII in U87MG-H cells than in -DK cells (Figures 3-4B and S3-10B) with an 

approximately 1.5-fold increase in SHP2 signal in the membrane compartment in 

U87MG-H cells relative to U87MG-DK cells.  Thus, the activity of the EGFRvIII 

receptor can promote sequestration of SHP2 in the membrane fraction.  We also found 

that elevated EGFRvIII expression altered the basal intracellular distribution of SHP2, as 

observed by immunofluorescence.  Whereas SHP2 moved from the cell interior toward 

the cell periphery in response to EGF in U87MG-L cells, SHP2 was already more 

peripherally distributed in U87MG-H cells in the basal condition and did not redistribute 

in response to EGF (Figures 3-4C and S3-10C-D).  Given that EGF-mediated endocytosis 

of wild-type EGFR was significantly reduced in U87MG-H cells (Figure 3-4D), and that 

EGFRvIII itself is also endocytosis impaired [45, 46], our data are indeed consistent with 

the notion that active adapter- and EGFRvIII-bound SHP2 is sequestered at the plasma 

membrane in U87MG-H cells.  The effect of this on ERK activation is apparently so 

pronounced that ERK phosphorylation cannot be induced in U87MG-H cells by 

exogenous EGF, whereas ERK induction does occur in U87MG-DK, -L, and -M cells 

(Figures 3-4E and S3-10E).  To explore the possibility that altered expression of MKP3, 

the primary phosphatase for ERK, was responsible for the failure of ERK to be induced 

by EGF in U87MG-H cells, we probed for MKP3 expression across the panel of cells.  

However, we observed no trends in MKP3 expression that would explain our data (Figure 

S3-10F). 
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Figure 3-4: Sufficiently high EGFRvIII expression suppresses EGF-mediated ERK 

phosphorylation by SHP2 sequestration. 

(A) Serum-starved U87MG-DK, -L, -M, and -H cells were treated with or without 10 

ng/mL EGF for 5 min and lysed.  SHP2 immunoprecipitates were analyzed by western 

blotting using antibodies against the indicated proteins.  Images are representative of 

three sets of biological replicates. (B) Membrane and cytosolic fractions from serum-

starved U87MG-DK and -H cells were analyzed by western blotting using antibodies 
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against indicated proteins.  Images are representative of four sets of biological replicates. 

(C) Serum-starved U87MG-L and -H cells were treated with or without 10 ng/mL EGF 

for 5 min, and slides were prepared for SHP2 immunofluorescence. Images are 

representative of multiple frames from three biological replicates.  (D)  EGF endocytosis 

rate constants (ke) were measured for the indicated cell lines using 
125

I-EGF.  Data are 

represented as mean ± s.e.m. (n = 6); * denotes p < 0.05.  (E) The indicated serum-

starved cell lines were treated with 10 ng/mL EGF for up to 15 min and lysates were 

analyzed by western blotting using antibodies against the indicated proteins. Images are 

representative of three sets of biological replicates. 

 

 SHP2 negatively regulates EGFRvIII and c-MET phosphorylation. As 

previously noted, the results of Figure 3-3C suggest the potential ability for SHP2 to 

regulate EGFRvIII and c-MET phosphorylation.  Specifically, the data showed that total 

levels of phosphorylated EGFRvIII and c-MET were increased by SHP2 knockdown in 

U87MG-H cells, but that EGFRvIII phosphorylation was reduced by SHP2 knockdown 

in U87MG-L and -M cells.  The apparent effect in U87MG-L and -M cells may arise 

because of the concomitant decrease in EGFRvIII expression with SHP2 knockdown, 

which may result from impaired ERK activity (Figure S3-11A).  To clarify this further, 

we ectopically expressed a constitutively active SHP2 (SHP2
E76A

) in all four cell lines.  

This had a minimal effect on EGFRvIII expression, but increased ERK phosphorylation 

and reduced EGFRvIII, c-MET, and STAT3 phosphorylation (Figures 3-5A and S3-11B).  

SHP2
E76A

 expression also promoted cell sensitivity to gefitinib and PHA665752 co-

treatment in U87MG-M cells (Figure 3-5B).  To further probe SHP2’s regulation of 

EGFRvIII, c-MET, and STAT3, we transiently expressed SHP2
WT

 or the substrate-

trapping SHP2 double mutant SHP2
D425A/C459S

 (SHP2
DM

; [121]) in all four U87MG cell 

lines.  This double point mutation abrogates SHP2’s catalytic activity and causes 
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irreversible binding of the catalytic domain to its substrates. Importantly, expression and 

immunoprecipitation of SHP2
DM

 has previously allowed for the identification of direct 

substrates of SHP2 including receptors such as EGFR
WT

 and HER2 [96, 121]. 

Phosphorylated EGFRvIII and c-MET co-immunoprecipitated with SHP2
DM

 (Figures 3-

5C and S3-11C), but STAT3 did not (Figure S3-11D), suggesting that EGFRvIII and c-

MET may be substrates of SHP2. These specific interactions have not been reported 

previously, but it has been reported that SHP2 can directly dephosphorylate other 

receptors, including HER2 [96], based on experiments using SHP2
DM

.   
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Figure 3-5: SHP2 mutant expression reveals negative regulation of EGFRvIII, c-

MET, and STAT3 phosphorylation. 

(A) Lysates of U87MG-DK, -L, -M, and -H cells transduced with an empty pBabe vector 

(pBP) or SHP2
E76A

 (E76A) and grown in full media for 72 hrs were analyzed by western 

blotting using antibodies against the indicated proteins.  Images are representative of 

three sets of biological replicates. (B) U87MG-M cells transduced with pBP or SHP2
E76A

 

were co-treated with 20 μM gefitinib (G) and 1 μM PHA665752 (P).  After 72 hrs, the 

percentage of TO-PRO-3-positive cells was measured by flow cytometry (n = 3); * 

denotes p < 0.05. (C) Serum-starved cells of the indicated cell lines transiently 

transfected with SHP2
WT

 or the double mutant SHP2
D425A/C459S

 (SHP2
DM

) were lysed.  
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SHP2 immunoprecipitates were analyzed by western blotting using antibodies against the 

indicated proteins.  Images are representative of three sets of biological replicates. 

 

 SHP2 knockdown impedes tumor xenograft growth and expression of hypoxia-

inducible factors. Female Nu/Nu mice were injected subcutaneously in both flanks with 

U87MG-M control or SHP2 knockdown cells.  Tumors arising from control cells grew 

well and were highly responsive to gefitinib and PHA665752 co-treatment (Figures 3-

6A-B), suggesting that this co-treatment strategy can be effective in EGFRvIII-

expressing GBM.  We had hoped to be able to grow tumors arising from SHP2 

knockdown cells to probe for the potential ability of SHP2 depletion to promote tumor 

resistance to gefitinib and PHA665752 co-treatment.  However, after reaching an average 

maximum volume of 40 mm
3
, tumors arising from cells with SHP2 knockdown gradually 

shrank and never reached a sufficient size to begin treatment (Figure 3-6B).  

Interestingly, HIF-1α and HIF-2α expression was reduced in tumors arising from SHP2 

knockdown cells compared to controls (Figure 3-6C), which may explain their failure to 

form tumors.  In vitro studies revealed a similar effect of SHP2 knockdown on HIF-2α 

expression under hypoxic and normoxic conditions and on HIF-1α expression for 

normoxic culture (Figure 3-6D).  Control cells treated with the MEK inhibitor U0126 

displayed diminished HIF-1α expression in normoxia and HIF-2α expression in both 

normoxia and hypoxia, suggesting that SHP2’s regulation of ERK is involved in 

controlling HIF-1/2α expression. 



91 

 

 

Figure 3-6: Gefitinib and PHA665752 co-treatment or SHP2 knockdown impairs 

U87MG tumor xenograft growth. 

Mice were subcutaneously injected with control or SHP2-depleted U87MG-M cells.  

When tumors reached an average size of 50 mm
3
 (control shRNA only), mice were 

treated with vehicle or 100 mg/kg gefitinib (G) and 30 mg/kg PHA665752 (P) daily for 7 

days (treatment initiation indicated by black arrow). (A) After treatment concluded, 

pictures were taken and tumors were harvested. (B) Tumor volumes were measured 

before and throughout treatment.  Data are shown as mean ± s.e.m. (control shRNA: 
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vehicle, SHP2 shRNA: no treatment, control shRNA: G + P; n = 12, 26, and 14 tumors, 

respectively). (C) Tumor lysates were analyzed by western blotting using antibodies 

against the indicated proteins.  Densitometry data are shown as mean ± s.e.m. (n = 3). (D) 

U87MG-M cells with control or SHP2-targeting shRNA were pretreated with DMSO or 

40 μM U0126 (control shRNA only) for 24 hrs prior to hypoxic culture for 24 hrs.  

Lysates were analyzed by western blotting using antibodies against the indicated proteins.  

Densitometry data are shown as mean ± s.e.m. (n = 3); * denotes p < 0.05. 
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3-5  DISCUSSION 

 Our results demonstrate for the first time that SHP2’s ability to exert multivariate 

control over signaling in GBM cells enables it to regulate simultaneously and 

differentially the phenotypes of proliferation and resistance to therapy.  This effect arises, 

at least in part, because ERK and STAT3, which are regulated in qualitatively different 

ways by SHP2, play dominant roles in the regulation of proliferation and therapeutic 

resistance, respectively.  We uncovered a number of other previously undocumented 

SHP2 regulatory functions, including SHP2-mediated antagonism of EGFRvIII and c-

MET phosphorylation and regulation of HIF-1/2α expression, which may also play roles 

in determining GBM cell and tumor phenotypes.  These integrated SHP2 signaling 

mechanisms and the ways they impact GBM cell phenotypes are summarized in Figure 3-

7. 
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Figure 3-7: Summary of SHP2’s oncogenic and anti-survival functions in GBM cells. 

Consistent with its most well described role, SHP2 has oncogenic functions by promoting 

the phosphorylation of ERK, which augments expression of EGFRvIII and HIF-1/2α.  

Conversely, SHP2 antagonizes survival signaling by apparent activity against EGFRvIII 

and c-MET as well as negative regulation of multiple modes of STAT3 phosphorylation. 

 

 A focus of our study is the impact of SHP2’s ability to simultaneously promote 

ERK activity and suppress STAT3 phosphorylation.  It has been shown in other contexts, 

and we show it explicitly for GBM cells, that the ERK and STAT3 pathways both 

promote proliferation and survival (here in response to EGFR and c-MET co-inhibition).  

Overlap in the control of transcriptional events by ERK and STAT3 helps to explain their 

overlapping control of phenotypes.  For example, ERK and STAT3 both drive expression 

of proteins that promote cell cycle progression and proliferation, promote expression of 

anti-apoptotic proteins, and down-regulate proteins in apoptotic pathways [122-126].  
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This functional overlap in the regulation of broad classes of genes also contains overlap 

of specific gene products such as VEGF [122, 124] and c-MYC [124, 126].  Even with 

this partial overlap, in GBM cell lines SHP2’s positive regulation of ERK is dominant in 

determining the effect of SHP2 expression on cellular proliferation while SHP2-mediated 

suppression of STAT3 dominates in determining the effect of SHP2 expression on 

cellular sensitivity to EGFR and c-MET co-inhibition.  This updated view of the 

consequences of SHP2’s multivariate control of signaling and phenotype fits within the 

general paradigm that cells integrate and interpret multivariate signaling information in 

different ways in the execution of cellular decisions [100-102]. 

 Other novel aspects of our findings include the discovery that sufficiently high 

expression of EGFRvIII diminishes the antagonism of STAT3 phosphorylation in the 

presence of kinase inhibitors, in addition to diminishing SHP2’s contributions to ERK 

activation, and the mechanisms underlying these effects.  Others have noted a 

suppression of ERK activity with EGFRvIII expression [51], but the mechanistic basis 

for this had not previously been explored.  Our data suggest this effect may be related to a 

mechanism we previously elucidated for structurally distinct EGFR mutants in NSCLC 

cells wherein the kinase-activated EGFR mutants, which display a reduced ability to 

activate ERK and a reduced rate of ligand-mediated endocytosis, also promote basal 

sequestration of SHP2 with EGFR and GAB1 at the cell periphery [24, 108].  It is also 

interesting to note that in NSCLC cells expressing wild-type EGFR, SHP2 knockdown 

promotes response to gefitinib [108], rather than resistance.  This presumably occurs 

because SHP2 knockdown produces generally small effects on STAT3 Y705 

phosphorylation in NSCLC cells [108] by comparison to what we observed here in GBM 
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cell lines, further highlighting the contextual dependence of SHP2’s functions.  

Interestingly, the ability of EGFRvIII to sequester proteins also underlies loss of SHP2 

control of STAT3 phosphorylation in the presence of EGFR and c-MET inhibitors at high 

EGFRvIII levels.  As we demonstrate in Figure 3-3E, this effect involves a shift in 

EGFRvIII’s ability to bind STAT3 when EGFRvIII is expressed at the highest levels.  It 

is also worth noting that SHP2’s ability to negatively regulate EGFR and c-MET 

phosphorylation was most apparent with high EGFRvIII expression.  This could also 

result from sequestration of active SHP2 at the plasma membrane where it has ready 

access to these receptors.  We also note that the range of EGFRvIII expression explored 

here is consistent with that observed in tumors [34].  Thus, the dependence of SHP2 

functions on EGFRvIII expression may be clinically relevant.   

 There are of course additional signaling pathways regulated by EGFRvIII and 

SHP2 that have not been explored here but which could play roles in some apparent 

quantitative inconsistencies between the effects of altered SHP2 expression on signaling 

pathways and the phenotypic roles we have ascribed to those pathways.  One example 

pertains to our observations in Figure 3-3 in U87MG-H cells, where control cells were 

highly proliferative despite displaying relatively low basal ERK phosphorylation and 

SHP2 knockdown produced a modest effect on ERK phosphorylation but a large effect 

on proliferation.  As just one possible explanation for this, we note that the increased 

abundance of EGFRvIII in U87MG-H cells could drive other pathways which may 

compensate for ERK in promoting proliferation.  If the activities of those other pathways 

are also regulated by SHP2 in a way that promotes proliferation, a large drop in 

proliferation could still accompany SHP2 knockdown with only a modest effect on ERK.  
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In the future, it will be important to probe these issues more broadly and quantitatively in 

order to more fully understand the potential impact of targeting SHP2 or EGFRvIII in 

GBM. 

 Our data on the effects of SHP2 knockdown, expression of constitutively active 

SHP2, and expression of substrate-trapping SHP2 all suggest that SHP2 negatively 

regulates EGFRvIII phosphorylation, potentially through direct interaction.  This 

contrasts with previous reports that SHP2-mediated ERK activity increases levels of 

phosphorylated EGFRvIII [112].  This discrepancy may be explained by our additional 

finding that SHP2-mediated ERK activity enhances EGFRvIII expression, an effect 

which has also been noted by others with SHP2 knockdown in certain GBM cell lines 

[73].  Thus, SHP2 appears to exert two countervailing effects, either of which may be 

dominant, in the determination of total cellular phosphorylated EGFRvIII levels.  The 

notion that SHP2 can negatively regulate EGFRvIII phosphorylation may seem at odds 

with our finding that SHP2 knockdown impairs xenograft growth or the analogous 

findings of Zhan et al. (2009) where a catalytically inactive SHP2 was expressed in an 

EGFRvIII-positive tumor model.  We interpret these aggregate results as indicating that 

any potential ability for SHP2 to impair tumorigenesis by negatively regulating 

EGFRvIII phosphorylation is trumped by SHP2’s positive regulatory functions in 

tumorigenesis, including its apparent ability to control HIF-1/2α expression, at least in 

the cell line model used here. 

 Given ongoing efforts to develop specific SHP2 inhibitors for clinical use, it is 

worth noting that two distinct effects of SHP2 inhibition could arise in GBM cells and 

tumors.  Based on our results, SHP2 inhibition would be expected to inhibit ERK 
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activity, but simultaneously to promote STAT3 phosphorylation.  In cell culture, the 

integrated effect of these signaling perturbations was to slow cell growth while 

simultaneously promoting resistance to EGFR and c-MET co-inhibition.  Based on this 

alone, it is unclear if SHP2 inhibition would be a useful therapeutic approach.  Our 

finding that SHP2 controls HIF-1/2α expression and GBM tumor xenograft growth may 

obviate potential concerns about the ability of SHP2 inhibition to promote survival 

signaling through the STAT3 pathway, but this remains to be demonstrated in more 

detailed GBM tumor models that include exploration of the potential ability of very high 

EGFRvIII expression to modulate SHP2 function.  Assuming that SHP2 function is 

indeed controlled by EGFRvIII levels in vivo, recent advances in detecting EGFRvIII 

protein through magnetic resonance imaging [127], as opposed to traditional tumor tissue 

biopsy approaches, may eventually advance our ability to predict the impact of SHP2 

inhibition.  

 It should also be noted that our xenograft studies suggest promise for combining 

EGFR and c-MET inhibitors in EGFRvIII-positive GBM.  This has not been previously 

demonstrated in vivo, but a previous study did demonstrate the utility of combining an 

HGF-targeted antibody with an EGFR inhibitor [43].  Interestingly, the utility of certain 

irreversible EGFR inhibitors in EGFRvIII-positive GBM may obviate the need to 

combine c-MET and EGFR inhibitors [128].  Whether or not c-MET inhibitors are 

needed moving forward, SHP2 inhibitors may eventually be an attractive alternative for 

treating GBM where resistance to other inhibitors arises.  Of course, our data support the 

potential utility of STAT3 inhibitors in treating GBM.  STAT3 has previously been 

identified as a key regulator of GBM cell survival [47, 81], and at least one clinical trial 
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(ClinicalTrials.gov NCT01904123) is scheduled to begin recruiting patients later this 

year to test the efficacy of STAT3 inhibition in cancers including GBM. 
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3-7  SUPPLEMENTARY MATERIAL 

 

Figure S3-8: ERK and STAT3 inhibition differentially regulate GBM cell 

phenotype. 

(A) The indicated cell lines were treated with 6 μM CI-1040 (C), 4 μM Stattic (S), or 

DMSO control for 30 min prior to lysis.  Lysates were analyzed by western blotting using 

antibodies against the indicated proteins.  Densitometry data are represented as mean ± 

s.e.m. (n = 3); * denotes p < 0.05. (B) LN18, T98G, and U118MG cells were treated with 

3 μM CI-1040 for up to 360 min, and lysates were analyzed by western blotting using 

antibodies against the indicated proteins. 
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Figure S3-9: SHP2’s abilities to promote ERK phosphorylation in resting cells and 

to antagonize STAT3 phosphorylation in drug-treated cells are diminished with 

sufficiently high EGFRvIII expression. 

(A) U87MG-M cells expressing a control shRNA or an SHP2 shRNA distinct from the 

shRNA used in other experiments were lysed.  Lysates were analyzed by western blotting 

using antibodies against the indicated proteins. These cells were also treated with the 

indicated concentrations of gefitinib (G) and/or PHA665752 (P) for 72 hrs, and cell 

proliferation was measured by XTT assay.  XTT signal (y-axis) from cells in a given 

treatment condition was normalized by the signal measured from cells treated with 

DMSO.  Data are represented as mean ± s.e.m. for one experiment with six replicate 

wells (n = 6); * denotes p < 0.05. (B) Lysates prepared from U87MG-DK, -L, -M, and -H 

cells stably expressing control or SHP2-targeting shRNA grown in full media for 72 hrs 

were analyzed by western blotting using antibodies against the indicated proteins.  

Densitometry data are represented as mean ± s.e.m. (n = 5); * denotes p < 0.05. (C) 

U87MG-M and -H cells with or without SHP2 knockdown were co-treated with 20 μM 

gefitinib and 1 μM PHA665752 for 24 hrs, and lysates were analyzed by western blotting 

using antibodies against the indicated proteins.  Due to the large decrease in STAT3 

expression in gefitinib/PHA665752-treated U87MG-H cells with SHP2 knockdown, 

pSTAT3 was normalized by ERK to compare total relative levels of phospho-STAT3 

among cell lines.  Data are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05. (D) 

U87MG-DK, -L, -M, and -H cells expressing a SHP2-targeting or non-targeting control 

shRNA were lysed.  Lysates were immunoprecipitated with either a STAT3 antibody or a 

control antibody (IgG), and immunoprecipitates were analyzed by western blotting using 

antibodies against the indicated proteins. (E) U87MG-DK, -L, -M, and –H cells with or 

without SHP2 knockdown were treated with DMSO or 20 μM gefitinib (G) and 1 μM 

PHA665752 (P) for 24 hrs, and lysates were analyzed by western blotting using 

antibodies against the indicated proteins. 
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Figure S3-10: With high levels of EGFRvIII expression, SHP2 becomes increasingly 

basally associated with EGFRvIII, SHP2 intracellular distribution is perturbed, and 

EGF-mediated ERK induction becomes impaired. 

(A) Serum-starved U87MG-DK, -L, -M, and -H cells treated with 10 ng/mL EGF for 5 

min were lysed.  Lysates were immunoprecipitated with either an SHP2 antibody or a 

control antibody (IgG), and immunoprecipitates were analyzed by western blotting using 

antibodies against the indicated proteins. (B) Membrane and cytosolic fractions from 

serum-starved U87MG-DK and -H cells were analyzed by western blotting.  Data are 

represented as mean ± s.e.m. (n = 4); * denotes p < 0.05. (C) Slides of serum-starved 

U87MG-M cells expressing a non-targeting control shRNA or an SHP2 shRNA were 

prepared for SHP2 immunofluorescence and subsequently imaged using the same 

exposure time. (D) Serum-starved U87MG-L and -H cells were treated with EGF and 

slides were prepared for SHP2 immunofluorescence. Intracellular pixel intensities from 

images were quantified as a function of normalized radial distance from cell centers (x = 

0) to the cell periphery (x = 1).  For seven images per condition, all cells contained within 

the image were analyzed.  Lines represent mean and shaded areas represent s.e.m. (n ≥ 10 

cells). (E) Lysates from serum-starved U87MG-DK, -L, -M, and -H cells treated with or 

without 10 ng/mL EGF for up to 15 min were analyzed by western blotting.  

Densitometry data are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05 relative to 

DK cells. (F) U87MG-DK, -L, -M, and -H were lysed, and lysates were analyzed by 

western blotting using antibodies against the indicated proteins.  Densitometry data are 

represented as mean ± s.e.m. (n = 3). 
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Figure S3-11: SHP2 regulatory roles identified by SHP2 knockdown are confirmed 

by ectopic expression of SHP2 mutants. 

(A) U87MG-M and -H cells with or without SHP2 knockdown treated with 20 μM 

U0126 or 3 μM CI-1040 for 24 hrs were lysed.  Lysates were analyzed by western 

blotting using antibodies against the indicated proteins.  (B) U87MG-DK, -L, -M, and -H 

cells were transduced with an empty pBabe vector or a pBabe vector encoding SHP2
E76A

.  

Whole-cell lysates prepared from cells grown in complete media for 72 hrs were 

analyzed by western blotting using antibodies against the indicated proteins.  

Densitometry data are represented as mean ± s.e.m. (n = 3); * denotes p < 0.05. (C) 

Serum-starved U87MG-DK, -L, -M, -H cells transiently transfected with SHP2
WT

 or the 

double mutant SHP2
D425A/C459S

 (SHP2
DM

) were lysed.  Lysates were immunoprecipitated 

with either an SHP2 antibody or a control antibody (IgG), and immunoprecipitates were 

analyzed by western blotting using antibodies against the indicated proteins.  Images are 

representative of three sets of biological replicates. (D) An SHP2 immunoprecipitate 

from U87MG-H cells expressing SHP2
DM

 and a cell lysate positive for phospho-EGFR, 

phospho-MET, phospho-STAT3, and phospho-ERK were analyzed by western blotting 

using antibodies against the indicated proteins. 
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Chapter 4: EGFR-activated Kinases Counteract GAB1 

Dephosphorylation to Maintain GAB1-SHP2 Complexes Distal 

from EGFR 

 

4-1  ABSTRACT 

 Multi-membered complexes of signaling proteins nucleated in response to 

receptor activation are often represented as static assemblies held together by 

phosphotyrosine-SH2 domain and other interactions. However, reversible binding, 

phosphatase activity, and other topological details allow for dynamic modes of protein 

complex regulation that can significantly impact signal transduction. Here, we explore 

these aspects of signaling protein complex regulation using EGFR as a model system. 

Specifically, we demonstrate the ability of EGFR-activated SRC family kinases (SFKs) 

to repeatedly counteract GAB1 dephosphorylation to maintain the association of SHP2 

with phosphorylated GAB1, which promotes SHP2 activity, in the cytosolic compartment 

distal from EGFR. Interpretation of our data using a computational model reveals that 

SFKs amplify EGFR activity to enable GAB1 phosphorylation and GAB1-SHP2 

complexes to decay more slowly than EGFR phosphorylation. Interestingly, this SFK-

dependent mechanism is not used downstream of c-MET. Thus, our results quantitatively 

describe a regulatory mechanism used by some receptors to control signaling complex 

persistence remotely. 
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4-2  INTRODUCTION 

In receptor-mediated cell signaling, outside-in information transfer occurs 

because ligand-receptor binding in the extracellular compartment promotes 

intermolecular binding events in the cell interior mediated by phosphotyrosine-SH2 

domain and other types of protein-protein interactions. Static textbook representations of 

this process belie the fact that phosphotyrosine-SH2 domain interactions (and other 

relevant protein-protein interactions) are reversible and relatively weak [64], and that 

phosphotyrosines can be regulated by protein tyrosine phosphatases (PTPs) with times 

scales that are small compared to the overall time scale for signal transduction [63, 64]. 

These issues, coupled with sometimes receptor- or cell context-dependent details of how 

specific downstream protein-protein interactions are regulated, create complexities that 

are typically absent in schematic representations of signaling pathways but which can 

have significant impact on signal transduction. Many investigators undoubtedly recognize 

these issues, but their full implications on the regulation of signaling protein complexes 

and overall signaling dynamics have not been widely pursued or quantitatively 

investigated.  Here, we explore these issues to understand the ability of the epidermal 

growth factor receptor (EGFR) to drive and maintain the association of SRC homology 2 

domain-containing phosphatase 2 (SHP2) with the adaptor protein GRB2-associated 

binder 1 (GAB1), a binding event that promotes SHP2 activity [52]. 

SHP2 regulates signaling through numerous pathways, with its most well-

described function being to promote ERK activity [52]. SHP2 is basally auto-inhibited by 

an intramolecular interaction between its N-terminal SH2 domain and its PTP domain 

that limits PTP domain access to substrates [52]. Phosphotyrosine engagement of SHP2’s 
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SH2 domains relieves this inhibition and activates SHP2 [52]. Downstream of EGFR, the 

most common event leading to SHP2 activation involves SHP2 binding to 

phosphorylated GAB1, which can complex with EGFR indirectly by binding with the 

EGFR adaptor GRB2 and be phosphorylated by receptor tyrosine kinases (RTKs) 

including EGFR [52, 65]. SHP2 binding to GAB1 occurs through phosphorylated GAB1 

tyrosines 627 and 659, though binding of SHP2’s N-terminal SH2 domain to GAB1 

Y627 is thought to be the dominant event in promoting SHP2 activity [52]. Interestingly, 

compared to EGF, HGF promotes more sustained phosphorylation of GAB1 and ERK 

[89, 129], as well as more substantial redistribution of GAB1 to the cell periphery [130]. 

Thus, well-characterized differences in ERK activation by different RTKs may involve 

spatiotemporal differences in SHP2 engagement by GAB1.  

Although GAB1-SHP2 complexes can be observed for 30 min or more in 

response to RTK activation [e.g., [55]], the complexes are unlikely to exist in a stable 

form for this amount of time since SH2 domain-containing proteins generally dissociate 

from phosphotyrosines within seconds after initial complex formation [61, 62]. Given 

that EGFR phosphotyrosines can be dephosphorylated with relatively small time scales 

[63], it seems likely that similarly rapid regulation of GAB1 tyrosines could occur. 

However, the kinetics of GAB1 dephosphorylation have not been quantified. If PTP-

mediated regulation of GAB1 is relevant during the time scale of overall GAB1-SHP2 

complex persistence, re-phosphorylation of GAB1 by a tyrosine kinase could play an 

important role in the persistence of GAB1-SHP2 complexes. Moreover, if RTKs were the 

only kinases able to play this role, GAB1-SHP2 complexes might exist mainly as 

membrane-associated species, as suggested by typical representations of the RTK-GRB2-
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GAB1-SHP2 complex [e.g., [52, 54, 131]]. Conversely, the ability of a cytosolic kinase 

to drive GAB1 phosphorylation could extend the effective persistence time and length 

scales of GAB1-SHP2 complexes distal from a signal-initiating receptor. 

 Here, we identify a mechanism in adenocarcinoma cells wherein EGFR regulates 

the persistence of GAB1-SHP2 complexes distal from the receptor through many cycles 

of GAB1 dephosphorylation by activating SRC family kinases (SFKs), a substantial 

fraction of which are present in the cytosol. This picture stands in stark contrast to the 

typical view of EGFR-mediated SHP2 activation involving the linear multi-protein 

complex consisting of EGFR, GRB2, GAB1, and SHP2.  To interpret our data, we 

constructed a kinetic model comprised of 386 reactions and characterized by parameters 

taken from the literature or fit to our data. To best recapitulate our data, the model 

requires that SFKs effectively amplify EGFR activity to buffer GAB1 phosphorylation, 

and thus GAB1-SHP2 association, against decreasing EGFR phosphorylation. This 

amplification is required even with perturbations to the model topology motivated by 

previously described feedback mechanisms involving SHP2’s ability to promote SFK 

activity [55, 56] or to dephosphorylate GAB1 [132]. Interestingly, in response to HGF, 

GAB1-SHP2 complexes form in an SFK-independent manner and remain in complex 

with c-MET, suggesting that the mechanism identified downstream of EGFR may not be 

generic. Thus, our findings quantitatively describe a previously undocumented “remote 

control” mechanism wherein membrane-associated receptors amplify a signal originating 

from the membrane by activating intracellular kinases to regulate the persistence of 

functional protein complexes held together by phosphotyrosine-SH2 domain interactions.   
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4-3  MATERIALS AND METHODS 

Experiments 

Cell culture. H1666 cells (American Type Culture Collection) were maintained in 

ACL4 [24]. 293T and HeLa cells (American Type Culture Collection) were maintained 

in DMEM supplemented with 10% fetal bovine serum (FBS). For serum starvation, cells 

were switched to media containing 0.1% FBS for 16-18 hrs. 

Immunoblotting. Cell lysates were prepared using a standard buffer (Cell 

Signaling Technology, Danvers, MA, USA; #9803) supplemented with 1 mM PMSF, 

additional protease inhibitors (Sigma, St. Louis, MO, USA), and phosphatase inhibitors 

(Sigma).  Proteins were resolved by SDS-PAGE and transferred to nitrocellulose 

membranes, which were blocked in Odyssey Blocking Buffer (OBB; LI-COR, Lincoln, 

NE, USA) and stripped with 0.2 M NaOH as needed. Images were obtained using a LI-

COR Odyssey Infrared Imaging System. 

 Immunoprecipitation. Cell lysates were prepared per the immunoblotting 

protocol. 500 μg of total protein was incubated at 4°C overnight with agarose beads 

conjugated to SHP2 or control antibody. Beads were washed three times with lysis 

buffer, re-suspended in LDS sample buffer (Invitrogen), and boiled before 

immunoblotting. 

Stable shRNA and expression constructs. The pLKO vector containing a short 

hairpin sequence targeting the 3’ UTR of human EGFR (5’-

AGAATGTGGAATACCTAAGG-3’) was provided by Daniel Haber (Harvard Medical 

School). Lentivirus was produced by calcium phosphate-mediated transfection of 293FT 

cells (Invitrogen, Carlsbad, CA, USA) with vector and the packaging plasmids pCMV-
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VSVG, pMDL-gp-RRE, and pRSV-Rev (Marilyn Farquhar, UCSD). Virus was harvested 

48 and 72 hrs post-transfection and used to infect target cells, which were selected in 

puromycin. EGFR cDNA encoding Y845F EGFR (Sarah Parsons, University of Virginia) 

was inserted in the pMSCV vector. Retrovirus was produced by calcium phosphate-

mediated transfection of amphotropic Phoenix cells (Gary Nolan, Stanford University) 

with vector. Virus was harvested 24, 30, and 48 hrs post-transfection and used to infect 

target cells, which were selected in hygromycin. Constructs were validated by 

sequencing. EGFR knockdown was validated by Western blot. 

Transient expression constructs. The p3xFlag-CMV-7.1 vector containing 

SRC
Y527F

 cDNA was provided by Todd Miller (Stony Brook University). The pcDNA3 

vector containing HA-tagged GAB1 was provided by Toshio Hirano (Osaka University). 

Cells were plated in 6-well plates in media lacking antibiotics, and were transfected the 

following day with 1 μg SRC
Y527F

 DNA and 1 μg GAB1 DNA using 6 μL Lipofectamine 

2000 (Invitrogen). Cells were switched to serum-free media 4 hrs later, and treated and 

lysed the next day before proceeding to immunoblotting/immunoprecipitation. 

pCMV5 vector containing SRC
WT

 and SRC
K295R/Y527F

 cDNA were from Addgene 

(Joan Brugge, Harvard University). Cells were plated in 6-well plates in media lacking 

antibiotics, and were transfected the following day with 2 μg SRC DNA using 6 μL 

Lipofectamine 2000 (Invitrogen). Cells were switched to serum-free media 4 hrs later, 

and treated and lysed the next day before proceeding to immunoblotting. 

Antibodies and other reagents. EGFR antibody (Ab-12) was from Thermo Fisher 

Scientific (Waltham, MA, USA). ERK (#4695), pGAB1 Y627 (#3233), p-MET 

Y1234/1235 (#3126), and MET (#8198) antibodies were from Cell Signaling 
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Technology. SHP2 (sc-280), GAB1 (sc-9049), SRC (sc-8056; also detects the SFKs YES 

and FYN), and GRB2 (sc-255) antibodies were from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA). Actin (MAB 1501) antibody was from Millipore. pEGFR Y1068 

(#1727) antibody was from Epitomics (Burlingame, CA, USA). Infrared dye-conjugated 

secondary antibodies were from Rockland Immunochemicals (Gilbertsville, PA, USA) 

and Invitrogen, respectively. Gefitinib (LC Laboratories, Woburn, MA, USA), GDC-

0941 (LC Laboratories), and PP2 (Sigma) were reconstituted in DMSO. Recombinant 

human EGF and HGF were from Peprotech (Rocky Hill, NJ, USA). Pervanadate was 

prepared as previously described [63]. 

 Subcellular fractionation.  Membrane and cytosolic fractions were prepared as 

described previously [108]. 

Statistics. Statistical analyses were performed using a paired two-tailed student’s 

t-test. 

 

Computational model 

General model considerations and topology. The model consists of a set of 

coupled ordinary differential equations to describe the processes leading to EGFR 

phosphorylation, but includes the additions of the processes of SFK activation, GAB1 

phosphorylation, and EGFR-GRB2, GRB2-GAB1, and GAB1-SHP2 associations.  The 

model topology leading from EGF binding to EGFR phosphorylation is based in part 

upon a previously published model [63]. Essential processes and model parameters are 

summarized in Figure 4-5A and Table S4-1, respectively. In total, the model includes 386 

reactions, 101 species, and 29 parameters. 
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EGF binding and concentration. EGF binding at the plasma membrane was 

modeled as a reversible process characterized by association [133] and dissociation [134] 

rate constants. EGF was modeled at a constant concentration of 10 ng/mL. 

ATP and inhibitor binding. Association and dissociation rate constants for ATP 

and gefitinib with EGFR were previously calculated [63]. ATP was assumed to be at a 

constant cellular concentration of 1 mM [135]. Gefitinib, when included, was modeled at 

a constant cellular concentration of 1 μM.  

EGFR dimerization. The EGFR dimerization rate constant was calculated as 

described previously [63] assuming 6×10
5
 EGFR per H1666 cell, which was estimated by 

a western blot based comparison of total EGFR levels in H1666 cells relative to PC9 

cells, for which we have previously determined EGFR levels at the membrane using 
125

I-

EGF. Dimer uncoupling rate constants in the presence or absence of EGF were described 

previously [136, 137]. All dimer species were assumed to be symmetric, with the 

exception of allowing for asymmetric EGF binding. 

EGFR phosphorylation. EGFR phosphorylation was modeled as a process which 

occurs between ATP-bound EGFR dimers where both receptors are simultaneously 

phosphorylated at a representative tyrosine which is able to bind GRB2, with distinct rate 

constants for phosphorylation occurring in the presence or absence of EGF [138]. 

GAB1 phosphorylation. GAB1 phosphorylation at a representative tyrosine 

which is able to bind SHP2 was modeled as a process catalyzed by an active SFK. 

Because our experimental data suggest SFKs are the primary mediator of GAB1 

phosphorylation in H1666 cells, we did not include the possibility of EGFR 

phosphorylating GAB1. 
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PTP activity. EGFR and GAB1 dephosphorylation were modeled as zeroth order 

with respect to PTPs, which precludes the requirement for considering distinct PTP 

species.  

EGFR degradation. EGFR degradation was modeled as being permitted for any 

GRB2-bound EGFR species since GRB2 mediates the interaction of CBL with EGFR, 

which plays a primary role in ligand-mediated EGFR degradation [139]. Any proteins 

bound to EGFR targeted for degradation were assumed to become instantaneously 

unbound from that EGFR species. 

GRB2, GAB1, and SHP2 binding. GRB2 was modeled as being able to bind 

phosphorylated EGFR using experimentally derived rate constants for association and 

dissociation [61]. GAB1 was modeled as being able to bind all GRB2 species through an 

SH3 domain-mediated interaction using previously described rate constants for 

association and dissociation [140]. SHP2 was modeled as being able to bind 

phosphorylated GAB1 using the same association and dissociation rate constants as for 

GRB2 binding EGFR, based on an assumption of similar SH2-domain mediated 

interactions for GRB2-EGFR and GAB1-SHP2.  

SFK activation. The biochemical steps leading to SFK activation are complex, 

including separate steps for the dephosphorylation of a C-terminal regulatory tyrosine 

(e.g., SRC Y530), autophosphorylation of SRC Y418, and binding of SRC’s SH2 domain 

to proteins including EGFR [141]. We simplified this to a first-order rate equation where 

phosphorylated EGFR activates SFK, using a previously derived kS,a for EGF-bound 

EGFR [138], similar to topologies used in previous models [142]. Even with this 

simplification, our model fit is able to accurately recapitulate our experimental data, 
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indicating that our approach allows for sufficiently rapid SFK activation to reproduce the 

GAB1 phosphorylation kinetics observed experimentally. SFK inactivation was modeled 

as having c-SRC kinase (CSK) serve as the reaction enzyme, using a previously derived 

kS,i for CSK [143, 144]. 

Parameter fitting. The four unknown parameters (kG1p, kG1dp, kdp, kdeg) were 

determined by fitting the model to data gathered from parental H1666 cells, including the 

phosphorylation of GAB Y627 and association of GAB1 with SHP2 in response to 10 

ng/ml EGF or EGF chased with 1 μM gefitinib, dephosphorylation dynamics of EGFR in 

response to gefitinib, and degradation of EGFR in response to EGF. Parameter fitting was 

done using simulated annealing to minimize the total error between model output and 

experimental data. Error was computed as the sum of the squares of the differences 

between model outputs and the experimental values. The best-fit parameter results are 

included in Table S4-1. 

Sensitivity analysis. Model sensitivity to changes in parameters was computed by 

increasing and decreasing parameter values by a factor of 10. Sensitivity was measured 

by summing the integrated differences between the original model and the two perturbed 

outputs over time. To compare differences among parameter perturbations, sensitivities 

were reported as percentages of the maximum perturbed parameter. 

Representative H1666 cell. Calculations reflect 6×10
5
 EGFR per H1666 cell, as 

noted previously. GRB2, GAB1, SHP2, SFK, and CSK were also assumed to be at 

cellular concentrations of 6×10
5
 species per cell, which is within the range of previously 

reported intracellular protein concentrations [140]. 
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Model implementation. Codes were generated and compiled using the Systems 

Biology Toolbox 2 (SBT2) package for MATLAB [145]. The simulannealbnd function in 

the Global Optimization Toolbox was used to fit the unknown rate constants to 

experimental data. 

Process timescale calculations. Various process timescales () were estimated as:  

-1
11 )])([(= maxpGphos_GAB aSFKk , where aSFKmax is the maximum concentration of active 

SFKs possible in response to EGF (10 ng/mL). 

-1
11 = dpGylationdephosphor,GAB k  

-1= catEationphosphoryl,EGFR k  

-1= dpylationdephosphor,EGFR k  

-1
22 )]1)([(= maxf,Sbinding,SHP pGABk , where pGAB1max is the maximum concentration of 

phosphorylated GAB1 possible in response to EGF (10 ng/mL). 

-1
22 = r,Sondissociati,SHP k  

ii,diffusion D/r 6= 2 , where r is the cell radius, and Di is the diffusivity of species i. 
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4-4  RESULTS 

In response to EGF, SHP2 remains in complex with GAB1 longer than with 

EGFR, and GAB1-SHP2 maintenance requires kinase activity to counteract multiple 

rounds of GAB1 dephosphorylation. To understand the dynamics of SHP2-containing 

protein complex assembly in response to EGFR activation, we probed the 

phosphorylation of EGFR Y1068 and GAB1 Y627 over 120 min in response to 10 ng/mL 

EGFR in SHP2 immunoprecipitates and whole cell lysates from H1666 lung 

adenocarcinoma cells, a cell line where the importance of SHP2 in driving ERK 

phosphorylation has been demonstrated [108]. EGFR and GAB1 both associated with 

SHP2 in response to EGF, but EGFR was lost more quickly than GAB1 from SHP2 

immunoprecipitates, an effect that was most visible by western blot at t = 120 min and 

which suggests a change in the stoichiometry of SHP2 complex assembly over time 

(Figure 4-1A). In whole cell lysates, we observed measureable amounts of 

phosphorylated EGFR at t = 120 min (Figure 4-1B), prompting the question of how and 

why EGFR levels were so clearly reduced in SHP2 immunoprecipitates at 120 min. 

Similar, but even more pronounced, trends were observed in HeLa cells (Figure S4-8A). 

To determine if these findings were related to a potential difference in EGFR and 

GAB1 dephosphorylation rates, we measured phosphorylated EGFR and GAB1 levels in 

EGF-treated cells chased with 1 µM gefitinib, an EGFR kinase inhibitor. In response to 

gefitinib, EGFR dephosphorylation occurred within about 1 min, similar to the rate we 

previously observed in HeLa cells [63].  GAB1 dephosphorylation proceeded slightly 

more slowly, but the dephosphorylation timescale was one to two min for both proteins 

(Figures 4-1C and S4-8B), which is significantly shorter than the timescale with which 
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Figure 4-1: Timescales of protein dephosphorylation and signaling complex 

disassembly. 
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H1666 cells were treated with 10 ng/mL EGF for up to 120 min, and SHP2 

immunoprecipitates (A) or whole cell lysates (B) were analyzed by western blotting with 

antibodies against the indicated proteins. (C and D) H1666 cells were treated with 10 

ng/mL EGF for 15 or 120 min prior to a 1 μM gefitinib chase for up to 5 min. Whole cell 

lysates and SHP2 immunoprecipitates were analyzed by western blotting with antibodies 

against the indicated proteins. (E and F) H1666 cells were treated with 10 ng/ml EGF for 

up to 15 min, with or without 100 μM pervanadate, followed by a 1 μM gefitinib chase 

for 5 min. Whole cell lysates and SHP2 immunoprecipitates were analyzed by western 

blotting with antibodies against the indicated proteins. Throughout the figure panels, blot 

signals for phosphorylated GAB1 were quantified and normalized by ERK signal (whole 

cell lysates) or SHP2 signal (SHP2 immunoprecipitates). All blot images are 

representative of three sets of biological replicates, and densitometry data are represented 

as mean ± s.e.m. (n = 3); * denotes p < 0.05 when comparing normalized pGAB1 signals 

to pEGFR signals at a given time point. 

 

SHP2 appears to stay in complex with GAB1 even without EGFR in the complex. We 

also noted that GAB1 remained associated with SHP2 for several min following gefitinib 

treatment, at times when EGFR was no longer present in the immunoprecipitated 

complex (Figures 4-1D and S4-8C). Using pervanadate as a PTP inhibitor, we also 

demonstrated that PTP inhibition resulted in EGFR and GAB1 phosphorylation and 

EGFR-SHP2 and GAB1-SHP2 associations that were insensitive to EGFR inhibition 

(Figures 4-1E-F). The apparent decreased expression and electrophoretic mobility of 

GAB1 with pervanadate treatment have been reported in cells displaying elevated GAB1 

phosphorylation [52, 90].  

The results shown thus far demonstrate the need for multiple rounds of GAB1 re-

phosphorylation to counteract the effects of PTPs in the maintenance of GAB1-SHP2 

complexes over hours of EGF-mediated signaling. The fact that GAB1 can remain in 
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complex with SHP2 in the absence of EGFR, with GAB1 undergoing many rounds of 

dephosphorylation during the time of the maintenance of the complex, may suggest that 

kinases other than EGFR may be responsible for playing this re-phosphorylation role. 

SRC family kinases are required for EGFR-initiated GAB1 phosphorylation 

and maintenance of GAB1-SHP2 association. In COS7 cells, SRC family kinases 

(SFKs) play a major role in EGF-mediated GAB1 total tyrosine phosphorylation [52, 66]. 

We thus explored the possibility that SFKs play a role in maintaining GAB1 Y627 

phosphorylation and GAB1-SHP2 association in response to EGF. We used H1666 cells 

with stable knockdown of endogenous EGFR and EGFR
Y845F

 reconstitution to decouple 

SFK activity from regulation of EGFR activity, which arises through SRC’s ability to 

phosphorylate EGFR Y845 [146]. Pretreating cells with the SFK inhibitor PP2 prior to 

EGF treatment did not affect EGFR phosphorylation, but it greatly reduced GAB1 

phosphorylation and GAB1 binding to SHP2 (Figure 4-2A-B). We note that some 

pEGFR immunoprecipitated with SHP2 with PP2 treatment, but the amount was reduced 

relative to that found without PP2 and also dissociated from SHP2 with similar kinetics 

(Figure S4-9A). We interpret this result, which we discuss in further detail later, to 

indicate that some fraction of SHP2 associated with EGFR in a GAB1-independent 

manner, perhaps through direct SHP2-EGFR interaction. Chasing EGF-treated cells with 

PP2 also greatly reduced GAB1-SHP2 association (Figures 4-2C and S4-9B-C).  In 293T 

cells expressing constitutively active SRC
Y527F

, GAB1 was constitutively phosphorylated  
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Figure 4-2: Requirement of SFKs for EGF-initiated GAB1 phosphorylation and 

GAB1-SHP2 binding. 
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(A, B, and C) H1666 cells with knockdown of endogenous EGFR and reconstitution with 

EGFR
Y845F

 were pretreated with DMSO or 10 μM PP2 for 30 min and subsequently 

treated with 10 ng/mL EGF for up to 120 min and lysed, or treated with 10 ng/mL EGF 

for up to 120 min and subsequently chased with DMSO or 10 μM PP2 for up to 15 min 

prior to lysing cells. Whole cell lysates and SHP2 immunoprecipitates were analyzed by 

western blotting. Blot signals for phosphorylated GAB1 were quantified and normalized 

by ERK signal (whole cell lysate) or SHP2 signal (SHP2 immunoprecipitate). * denotes p 

< 0.05 when comparing normalized pGAB1 signals from DMSO-treated cells to signals 

from PP2-treated cells at a given time point. (D) 293T cells transiently expressing either: 

1) GAB1 and p3xFlag empty vector (EV); 2) GAB1 and SRC
Y527F

; 3) pcDNA3 empty 

vector (EV) and SRC
Y527F

, were treated with 10 ng/mL EGF for 15 min and subsequently 

chased with 1 μM gefitinib for 5 min prior to lysing cells. SHP2 immunoprecipitates 

were analyzed by western blotting with antibodies against the indicated proteins. 

Throughout the figure panels, all blot images are representative of three sets of biological 

replicates, and densitometry data are represented as mean ± s.e.m. (n = 3). 

 

and constitutively associated with SHP2 in the absence of EGF and in the presence of 

gefitinib (Figures 4-2D and S4-9D). However, expression of dominant negative 

SRC
K295R/Y527F

 did not impair GAB1 phosphorylation (Figure S4-9E), consistent with 

findings that SRC, YES, and FYN, the only three ubiquitously expressed SFK members 

[147], can compensate for one another [141]. Combined with the fact that the antibody 

used here detects SRC, FYN, and YES, these data create ambiguity regarding the specific 

SFK member that is primarily responsible for GAB1 phosphorylation.  Accordingly, we 

will refer to SFKs as the intermediary species driving GAB1 phosphorylation henceforth. 

GAB1-SHP2 complexes exist mainly in the cytosol. The fact that GAB1-SHP2 

complexes lacking EGFR can exist suggests, but does not guarantee, that GAB1-SHP2 
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complexes could be present in the cytosol. When we performed subcellular fractionation, 

essentially all EGF-induced GAB1-SHP2 complexes were found in the cytosolic fraction,  

 

Figure 4-3: Subcellular localization of GAB1-SHP2 complexes. 

(A and B) Membrane and cytosolic fractions were prepared from H1666 cells treated 

with or without 10 ng/mL EGF for 15 min. SHP2 immunoprecipitates (A) or whole cell 

lysates (B) were analyzed by Western blotting with antibodies against the indicated 

proteins. (C and D) H1666 cells were pretreated with DMSO or 0.5 μM GDC-0941 for 

30 min and subsequently treated with 10 ng/mL EGF for 15 min and lysed. Whole cell 

lysates (C) or SHP2 immunoprecipitates (D) were analyzed by western blotting with 

antibodies against the indicated proteins.  All blot images are representative of three sets 

of biological replicates. 

 

whereas essentially all SHP2 complexes containing EGFR were located in the membrane 

fraction (Figure 4-3A). While some reports suggest that SFKs are mainly located in the 

membrane due to myristoylation [148] and that a significant amount of GRB2 may be 

associated with EGFR in response to EGFR activation [149, 150], we also note that the 
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majority of SFKs and GRB2 were located in the cytosol, suggesting that SFKs can 

regulate GAB1 phosphorylation in the cytosol and that GRB2-GAB1-SHP2 (and GAB1-

SHP2) complexes can exist there (Figure 4-3B). The presence of non-specific protein 

bands prevented the unequivocal detection of GRB2 in SHP2 immunoprecipitate western 

blots, but we assume GRB2 was present in at least some fraction of GAB1-SHP2 

complexes due to the nature of the interaction between GRB2 and GAB1. Since the 

PI3K-dependent recruitment of GAB1 to the plasma membrane is essential for GAB1’s 

function in some cell settings [130], we also probed the effect of PI3K inhibition on 

GAB1-SHP2 complexes, even though we did not detect a significant amount of GAB1 in 

membrane fractions. In H1666 cells treated with the PI3K inhibitor GDC-0941, EGF-

mediated AKT S473 phosphorylation was inhibited but GAB1-SHP2 association was not 

impaired (Figure 4-3C-D).  

EGF and HGF promote different dynamics of GAB1-SHP2 complex 

persistence. In some cell systems, GAB1 phosphorylation and GAB1-SHP2 association 

are sustained longer in response to HGF than EGF. This has been proposed as an 

explanation for HGF’s ability to promote more sustained ERK phosphorylation in these 

cell systems [89, 129], but the mechanistic details by which c-MET and EGFR promote 

GAB1-SHP2 association for different time scales have not been fully explored. To 

compare GAB1-SHP2 association in response to EGF or HGF on a fair basis, we used 

equivalent dissociation constant-normalized concentrations of the ligands (38 or 50 

ng/mL for EGF or HGF, respectively) [151, 152]. In H1666 cells, HGF promoted a lower 

but more persistent GAB1-SHP2 association than EGF, and c-MET remained in complex 

with SHP2 throughout the duration of GAB1-SHP2 binding (Figures 4-4A and S4-10A). 
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This may have occurred because c-MET phosphorylation was more persistent and the 

total protein level was more stable compared to EGFR (Figures 4-4B and S4-10B).  

 

Figure 4-4: Sustained association of GAB1 and SHP2 downstream of c-MET. 

H1666 cells were treated with 38 ng/mL EGF or 50 ng/mL HGF for up to 240 min, and 

SHP2 immunoprecipitates (A) or whole cell lysates (B) were analyzed by western 

blotting. Blot signals for MET, phospho-EGFR, and phospho-GAB1 were quantified and 

normalized by SHP2 signal (SHP2 immunoprecipitate loading control) for (A) and ERK 

signal (whole cell lysate loading control) for (B). (C) Cells were pretreated with DMSO 

or 10 μM of the SFK inhibitor PP2 for 30 min and subsequently treated with HGF or 

EGF for 15 min and lysed, or treated with HGF or EGF for 15 min and subsequently 

chased with DMSO or 10 μM PP2 for 5 min prior to lysing cells (D). SHP2 

immunoprecipitates were analyzed by western blotting. Blot signals for c-MET and 
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phosphorylated GAB1 were quantified and normalized by SHP2 signal. (E) Cells were 

treated with HGF for 15 min and subsequently chased with 1 μM PHA665752 for up to 5 

min prior to lysing cells. SHP2 immunoprecipitates were analyzed by western blotting. 

Blot signals for c-MET and phosphorylated GAB1 were quantified and normalized by 

SHP2 signal (loading control).  Throughout the figure panels, densitometry data are 

represented as mean ± s.e.m. (n = 3). 

 

Although SFKs can be activated by c-MET [153], pretreating cells with PP2 prior to 

HGF addition or chasing HGF-treated cells with PP2 did not significantly reduce GAB1-

SHP2 association, suggesting that a kinase other than a SFK (possibly c-MET itself) 

regulates GAB1 phosphorylation in response to HGF (Figures 4-4C-D and S4-10C-D). 

We note that the smaller effect of PP2 on EGF-mediated GAB1-SHP2 association 

observed in Figure 4-4 compared to that observed in Figure 4-2 is probably due to the 

larger EGF concentration used in Figure 4-4.  Similar to observations with EGF 

treatments and gefitinib chases, GAB1-SHP2 association was prolonged relative to c-

MET-SHP2 association in cells treated with HGF and chased with the c-MET inhibitor 

PHA665752 (Figures 4-4E and S4-10D).  

A computational model reveals that SFKs amplify EGFR activity to maintain 

GAB1-SHP2 complexes distal from EGFR. To quantitatively explore the relationships 

between EGFR and GAB1 phosphorylation, SFK activity, and GAB1-SHP2 binding, we 

developed a computational mechanistic model of GAB1-SHP2 complex dynamics that 

includes the processes of protein phosphorylation and dephosphorylation and reversible 

protein binding for the complexes shown in Figure 4-5A. Model development details are 

provided in Materials and Methods (Section 4-3). Most parameters were taken from the 

literature, as indicated in Table S4-1. Importantly, four key rate constants were 
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determined through fitting. The rate constant for EGFR dephosphorylation (kdp) was fit to 

the decrease in pEGFR levels throughout the course of a 5 min gefitinib treatment (Figure  

 

Figure 4-5: Model topology and validation. 
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(A) The model topology includes the depicted processes leading to EGFR and SFK 

phosphorylation and activation, respectively, as well as all allowed protein complexes 

which can exist with EGFR monomers (not shown) and dimers (shown). Model 

predictions for EGFR-SHP2 and GAB1-SHP2 association (lines) were compared to 

experimental data (points) from: (B) an EGF-pulse gefitinib-chase experiment and (C) an 

EGF stimulation time course. (D) H1666 cells were treated with 10 ng/mL EGF for 15 

min, and lysates were immunoprecipitated with SHP2 antibody. Percent SHP2-bound 

GAB1 was determined for experimental data by first calculating the percent of GAB1 

unbound with SHP2, which was calculated by dividing the normalized GAB1 signal in 

the SHP2 immunoprecipitate supernatant by that of the GAB1 signal in whole cell 

lysates. This value was subtracted from 100% to calculate percent SHP2-bound GAB1, 

which was then compared to the model prediction for percent SHP2-bound GAB1 in 

response to 15 min EGF. (E) Model predictions for normalized levels of phosphorylated 

EGFR and GAB1 and active SFK following a gefitinib chase were calculated. (F) Model 

predictions for the number of EGFR and GAB1 molecules phosphorylated throughout a 

120 min EGF treatment were calculated. (G) Model error was calculated for ranges of kdp 

and kG1dp. Red circle indicates error minimum. (H) Based on rapid forward and reverse 

cycling of several cellular components leading to GAB1-SHP2 binding, the picture which 

emerges is that phosphorylation and binding events leading to SHP2 activation are 

exceedingly transient, rather than static. 

 

S4-11A). The rate constants for GAB1 phosphorylation (kG1p) and dephosphorylation 

(kG1dp) were fit to the response of GAB1 Y627 phosphorylation and GAB1-SHP2 

association to both long and short EGF treatments (Figures 4-1A-B and S4-11B) and an 

EGF-gefitinib pulse-chase experiment (Figures 4-1C-D). The rate constant for EGFR 

degradation (kdeg), a process needed to allow pEGFR and pGAB1 levels to decrease with 

time (Figure S4-11C) because we assume a constant activity level of protein tyrosine 
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phosphatases, was fit to the response of EGFR levels over the course of a 2 hrs EGF 

treatment (Figure 4-1B).  

Before proceeding, we note that the previously mentioned GAB1-independent 

mechanism of SHP2-EGFR association is not accounted for in our model topology. 

However, this omission should not affect model conclusions since our parameter fits do 

not rely upon EGFR-SHP2 association data. Moreover, since our data suggest EGFR and 

SHP2 dissociate immediately following a gefitinib chase (Figure 4-1D), and since GAB1-

dependent and -independent EGFR-SHP2 complexes dissociate with similar kinetics over 

the course of a 2 hrs EGF treatment (Figure S4-9A), our model predictions for relative 

abundances of EGFR-SHP2 and GAB1-SHP2 complexes would be unchanged even if 

model fits did account for EGFR-SHP2 association data.  We also note that 

approximately half of EGFR-SHP2 complexes are dependent on SFK activity and thus 

likely GAB1-dependent (Figure 4-2B). Therefore, the capacity for GAB1 to recruit SHP2 

to EGFR is an important mechanism of EGFR-SHP2 complex formation and a valid 

inclusion for our model topology. 

The parameterized model recapitulates differences in the rates of EGFR-SHP2 

and GAB1-SHP2 dissociation following a gefitinib chase (Figure 4-5B). While both 

EGFR-SHP2 and GAB1-SHP2 complexes return to basal levels after 1-2 min of gefitinib 

treatment, EGFR-SHP2 complexes fall to 50% of their peak concentration approximately 

5 times faster than do GAB1-SHP2 complexes. The model also accurately predicts 

differences in the relative abundances of EGFR-SHP2 and GAB1-SHP2 complexes over 

a 120 min EGF treatment time course (Figure 4-5C). The model further predicts that 22% 

of GAB1 was bound with SHP2 15 min after treatment with EGF, which is in line with 
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an experimental measurement of 26 ± 5% (Figures 4-5D and S4-11D). Finally, the model 

predicts that even at peak levels of EGFR phosphorylation, only 1.5% of SHP2 exists in 

complex with EGFR (Figure S4-11E), which is qualitatively consistent with our 

experimental findings of SHP2 and GAB1-SHP2 complexes existing almost exclusively 

in the cytosol (Figures 4-3A-B).  

Interestingly, the fitted rate constant for GAB1 dephosphorylation (kG1dp) is 

similar in magnitude to that for EGFR dephosphorylation (kdp), with each implying a 

dephosphorylation timescale of ~0.1 min, despite a GAB1 dephosphorylation rate in cells 

that is smaller than the rate of EGFR dephosphorylation following a gefitinib chase Table 

S4-1, Figure 4-1B, and Figure 4-5E). This apparent contradiction is explained by a time 

lag between the reductions in EGFR and GAB1 phosphorylation rates following gefitinib 

addition (Figure S4-11F), which arises because SFK inactivation, which is tied to EGFR 

phosphorylation, does not occur instantaneously after EGFR inactivation (Figure 4-5E). 

If SFKs are instead assumed to deactivate instantaneously upon EGFR inactivation, the 

rates of EGFR and GAB1 dephosphorylation are nearly identical, with GAB1 actually 

being slightly faster because of a difference in dephosphorylation rate constants (Figure 

S4-11G). Beyond this time lag in SFK inactivation, the difference in cellular EGFR and 

GAB1 dephosphorylation rates is exacerbated by an SFK-mediated amplification process 

that occurs in the parameterized model and generally produces a larger concentration of 

phosphorylated GAB1 (pGAB1) than pEGFR at any time, as can be seen in predictions 

of absolute phosphorylated levels of EGFR and GAB1 in response to EGF (Figure 4-5F). 

This amplification occurs as a combined result of a smaller timescale for the GAB1 

phosphorylation step (~3 s) than for EGFR phosphorylation (~4.5 s) and as a result of the 
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relative slowness of other process steps leading to EGFR phosphorylation, including 

ligand binding and EGFR dimerization (Figure S4-11H). When parameter values are 

adjusted to remove this amplification process from the model, the difference between 

EGFR and GAB1 dephosphorylation rates is reduced, but not eliminated because of the 

time lag for SFK inactivation (Figure S4-11G).  

Plotting the model error for a range of kG1dp and kdp values provides additional 

insight into the system’s behavior (Figure 4-5G).  While the error minimum is achieved 

for kG1dp and kdp of similar magnitudes, a relatively low model error is still achieved if one 

rate constant is increased and the other is decreased by up to an order of magnitude. 

Model error significantly increases when either rate constant is changed by more than an 

order of magnitude from its best-fit value. Thus, there is some capacity to explain the 

data by speeding one dephosphorylation process and slowing the other, but both rate 

processes must be fairly rapid to explain the experimental data reasonably.   

Returning to the values of our fitted parameters for GAB1 phosphorylation and 

dephosphorylation and making some order of magnitude estimates, we note that the 

parameters suggest that when phosphorylation/dephosphorylation reaction rates are 

maximized, GAB1 Y627 undergoes ~6 cycles of dephosphorylation and re-

phosphorylation per minute in response to EGF (Figure 4-5H), based on characteristic 

GAB1 phosphorylation and dephosphorylation times (see Materials and Methods).  

SHP2 cycles between GAB1-bound and -unbound states ~14 times during the time that 

GAB1 is phosphorylated in each GAB1 cycle, or ~100 times per minute at maximal rates.  

Robustness and sensitivity analyses confirm the need for an SFK-mediated 

amplification mechanism and reveal key processes controlling system behavior. To 
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further explore model predictions surrounding the need for the amplification process that 

produces pGAB1/pEGFR ratios greater than one, we undertook two types of robustness 

analyses.  Since we had no direct quantitative data available for the cellular  

 

Figure 4-6: Model requirement for SFK-mediated amplification of EGFR and 

model sensitivity. 

(A) A metric for the degree of amplified EGFR signal, pGAB1/pEGFR, and model error 

were calculated for 10-fold combinatorial variations in GAB1, SHP2, and SFK 

concentrations. (B) Model predictions for pGAB1/pEGFR were calculated for 300 

random parameter sets, where each parameter was randomly varied up to an order of 
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magnitude above or below its base value. (C) Sensitivity of model predictions for time-

integrated GAB1-SHP2 association for a 5 min, 1 μM gefitinib-chase (preceded by a 15 

min, 10 ng/mL EGF-pulse) to 10-fold changes in the model parameters was calculated. 

(D and E) Model predictions for the percent of GAB1-bound SHP2 following a gefitinib 

chase were compared with predictions when kdp and kG1dp were varied by a factor of 10. 

Representative times for GAB1-SHP2 dissociation (dashed lines) were calculated by 

determining the time at which 50% of dissociation had occurred relative to maximum and 

minimum values. (F) Model predictions for percent phosphorylated GAB1 and 

representative GAB1 dephosphorylation times following a gefitinib chase were 

calculated when SHP2 concentration was increased by a factor of ten or set to zero. 

Representative times for GAB1 dephosphorylation (dashed lines) were calculated by 

determining the time at which 50% of dephosphorylation had occurred relative to 

maximum and minimum values. 

 

concentrations of GAB1, SHP2, and SFKs, we checked if our assumption of equivalent 

expression levels of these proteins could somehow be responsible for the model’s 

identification of a need for the SFK-mediated amplification mechanism. For a range of 

GAB1, SHP2, and SFK concentrations, we refit the model and calculated errors and an 

average pGAB1/pEGFR ratio, a metric for amplification of EGFR’s activity through 

SFKs. Across all combinations of concentrations tested, the smallest model errors were 

associated with amplification (pGAB1/pEGFR > 1) (Figure 4-6A). We further tested the 

robustness of our model’s prediction of SFK-mediated amplification by creating random 

parameter sets, where each parameter was randomly perturbed by up to an order of 

magnitude above or below its base value.  For 78% of the parameter sets (234/300), 

pGAB1/pEGFR was greater than unity (Figure 4-6B). Therefore, even if the base model 

parameters are not well estimated, the model prediction of amplification of EGFR’s 

signal by SFKs appears robust.  
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To further understand the processes that control amplification and its effects, we 

performed a parameter sensitivity analysis to identify processes controlling the 

persistence of GAB1-SHP2 complexes following a gefitinib chase (preceded by an EGF 

pulse), since complex persistence is augmented by the amplification processes, as we 

have already discussed. GAB1-SHP2 persistence had a strong dependence on a number 

of model parameters, but kdp was chief among these (Figure 4-6C). EGF-gefitinib pulse-

chase simulations show that either elevating or decreasing kdp by an order of magnitude 

altered both the dynamic and steady state percentage of SHP2 bound by GAB1, as well as 

the rate at which GAB1-SHP2 dissociation occurred following a gefitinib-chase (Figure 

4-6D). Analogous, but smaller, predicted effects were seen when altering kG1dp (Figure 4-

6E). The finding that altering kdp has a larger effect on GAB1-SHP2 association than 

altering kG1dp is further indication of the importance of the amplification of the EGFR 

signal by SFKs. Not surprisingly, the model was sensitive to perturbations to other 

parameters that affect EGFR phosphorylation, such as parameters for EGF, ATP, 

gefitinib, and GRB2 binding, and parameters that affect SFK activity including kS,a and 

kS,i. GAB1-SHP2 association was also sensitive to changes in kS2,f and kS2,r. 

As others have shown that binding of SH2 domains to phosphotyrosines can 

protect them from dephosphorylation, as in the case of overexpression of PLCγ SH2 

domains preventing EGFR tyrosine dephosphorylation [154], we used the model to 

predict the consequences of SHP2 overexpression or depletion on the dynamics of GAB1 

dephosphorylation (Figure 4-6F). Compared to the base model, elevating the cellular 

concentration of SHP2 by an order of magnitude resulted in little change to the dynamics 

of GAB1 dephosphorylation, but did produce a roughly two-fold increase in steady state 
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GAB1 phosphorylation. Conversely, complete removal of SHP2 from the model had 

relatively no effect on either the dynamics or steady state levels of GAB1 

phosphorylation, suggesting that SHP2 offers little protection against GAB1 

dephosphorylation at endogenous expression levels. This is due to the rate of SHP2 

unbinding from GAB1 being over an order of magnitude faster than GAB1 

dephosphorylation, such that GAB1 will generally be accessible to phosphatases unless 

there is a massive surplus of SHP2. 

We went on to explore the potential effects of changes to the model topology 

motivated by several previously documented findings. Since SHP2 can promote SFK 

activity for some SFK members by preventing proper localization of c-SRC kinase (CSK) 

[55, 56], we updated the model to allow for active SHP2, in addition to EGFR, to activate 

SFKs. Relative to the base model (Figure S4-12A), allowing SHP2 activity to enhance 

SFK activity resulted in a significant effect on GAB1 phosphorylation (Figure S4-12B), 

as the rate constant for GAB1 phosphorylation needed to be reduced by several orders of 

magnitude to counteract the addition of this positive feedback loop. The rate constant for 

GAB1 dephosphorylation was unchanged with the model extension, as 

dephosphorylation kinetics were sufficiently rapid such that gefitinib addition still 

quickly returned GAB1 phosphorylation to basal levels. However, this topological 

addition did not reduce the minimum model error relative to the base model (Figures S4-

12A-B). We also computed model error by adding in a distinct reaction for GAB1 

dephosphorylation mediated by SHP2 [132], but this topological addition also did not 

result in an improved ability for the model to more accurately recapitulate the 

experimental data despite broadening the error basin (Figure S4-12C). 
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4-5  DISCUSSION 

 Here, we describe a mechanism in which EGFR drives the persistence of 

cytosolic GAB1-SHP2 complexes through many cycles of GAB1-SHP2 dissociation and 

GAB1 dephosphorylation via the ability of SFKs, activated by EGFR, to re-

phosphorylate GAB1 repeatedly in a way that effectively amplifies EGFR activity 

(Figure 4-7).  This mechanism may allow EGFR to control signaling processes via SHP2 

at intracellular locations where it may not otherwise be able to do so because of EGFR’s 

confinement to the cell surface or endomembrane compartments. Moreover, the 

amplification aspect of this process may enable a relatively small amount of activated 

EGFR to exert significant control over signaling events via GAB1-bound and active 

SHP2.   

 

Figure 4-7: Schematic of EGFR-mediated GAB1-SHP2 complex maintenance. 

Basally, SHP2 activity is suppressed through an intramolecular interaction between 

SHP2’s N-terminal SH2 domain and the catalytic domain. When SHP2 SH2 domains 

engage tyrosine phosphorylated GAB1, the SHP2 intramolecular tethering is relieved and 

SHP2 activity increases. EGFR activation appears to promote this process primarily 

through the intermediary SFKs, which counteract many rounds of GAB1 tyrosine 
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dephosphorylation to enable GAB1-SHP2 complexes to persist distal from the receptor.  

With a lower abundance, GAB1-SHP2 complexes may also exist at the membrane in 

complex with EGFR, and some SHP2 may also engage with EGFR directly in GAB1-

independent fashion. 

 

The quantitative insights achieved here were possible because of the application 

of a mechanistic model in the interpretation of experimental data. In particular, the model 

provides confidence that an amplification step from EGFR to GAB1 is needed to fully 

explain the kinetics we measured and that this conclusion is robust even accounting for 

uncertainty in certain system properties (e.g., quantitative expression levels for certain 

proteins). The model also enables quantitative estimates of the phosphorylation cycles 

EGFR and GAB1 undergo in response to EGFR activation.  Of course, other EGFR 

signaling models have been developed, with a few even considering EGFR-induced 

GAB1-SHP2 association [140, 142, 155]. However, none of those previous models 

included rigorous consideration of differential compartmentation of GAB1, SHP2, and 

the GAB1-SHP2 complex, realistic timescales for EGFR and GAB1 dephosphorylation, 

or the role for intermediary kinases in maintaining GAB1 phosphorylation.  

The amplification mechanism described here bears some resemblance to ERK 

pathway amplification mechanisms wherein one RAF can promote the phosphorylation 

of a larger number of ERKs [156].  By analogy, our model requires that EGFR-activated 

SFKs effectively amplify EGFR activity such that stoichiometric ratios of 

pEGFR/pGAB1 exceed unity in order to explain our data reasonably well.  It is worth 

noting that the model results reveal that there may be several ways to achieve such 

amplification. For example, SFKs need not be in stoichiometric excess of EGFR or 

GAB1 to produce an amplification from EGFR to GAB1 (Figure 4-6A), which appears to 
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be required for reasonable explanation of the data. Within the framework of our model, 

this is achieved by an increased fitted value of kG1p permitting a decreased number of 

SFKs to phosphorylate GAB1 as efficiently as an elevated number of SFKs. Another 

commonly discussed feature of the ERK cascade is ultrasensitivity, which enables a 

graded input at the level of RAF to produce a switch-like output at the level of ERK 

[157]. The mechanism we describe here does not involve an analogous kind of 

ultrasensitivity. That is, a switch-like GAB1 phosphorylation response to increasing EGF 

concentration is not predicted by our model.  

The specific location within the cell where SFKs phosphorylate GAB1 has 

important potential implications for how far within the cell GAB1-SHP2 complexes 

persist. While our results with PI3K inhibition may argue against a need for GAB1 to be 

membrane bound to be phosphorylated by SFKs, certain lines of evidence argue for SFK 

activity mainly at the membrane.  Indeed, SFKs are typically thought of as membrane-

bound species due in part to N-terminal myristoylation. Myristoylation itself may 

promote SFK activity [148], and some studies do suggest a requirement for SFKs to 

move to the membrane to become activated [158]. Still, in some cancer cell settings 

significant SFK fractions are found in the cytosol [159], as found here for H1666 cells, 

and other studies have demonstrated the presence of activated SFKs in the cytosol [160].  

The potential importance of this detail can be further understood through order of 

magnitude estimates of specific process time scales. Assuming a cell radius of 10 μm 

[161] and a diffusivity of 0.94 μm
2
/s, based on the diffusivity of tubulin and an 

adjustment due to estimated hydrodynamic radii of tubulin and the GAB1-SHP2 complex 

[162, 163], the characteristic time for a GAB1-SHP2 complex to diffuse from the plasma 
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membrane to the cell center is ~18 s. Comparison of that timescale with the characteristic 

time for GAB1 dephosphorylation of ~6 s, computed as the inverse of the rate constant 

for GAB1 dephosphorylation from our model fits, suggests that GAB1-SHP2 complexes 

formed exclusively at the plasma membrane may not persist over the entire cellular 

length scale. The ability of SFKs to drive GAB1 phosphorylation in the cytosol would 

overcome this limitation, potentially increasing SHP2’s ability to regulate signaling 

processes over a larger intracellular length scale.  

Of course, the endocytic trafficking of EGFR may also move the most upstream 

processes in this signaling pathway into the cell interior in ways that could help to 

overcome diffusional limitations that might otherwise limit GAB1-SHP2 complex access 

to intracellular locations. Along those lines, it should be noted that the ability of 

endocytosis-impaired and constitutively active EGFR mutants to sequester SHP2 at the 

cell periphery appears to antagonize SHP2’s ability to participate fully in the activation of 

ERK [164]. To what extent this functional impairment of SHP2 activity involves a 

perturbation to the ability of GAB1-SHP2 complexes to exist distal from EGFR mutants 

remains unclear, but this will be worth pursuing in future studies.  

The work presented here may also offer insight into the documented ability of 

HGF to drive more sustained GAB1 phosphorylation, GAB1-SHP2 association, and ERK 

activation than EGF [89, 129]. In our experiments, EGF-mediated EGFR activation 

resulted in relatively rapid degradation of EGFR over the course of an hour (55% 

degraded; Figure 4-1B), which may diminish GAB1 phosphorylation and GAB1-SHP2 

association by reducing the pool of EGFR available to drive SFK activity. By 

comparison, c-MET degradation following HGF addition occurs quite slowly, which may 
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explain the more protracted downstream activation of ERK. Differences in the dynamics 

of HGF- and EGF-mediated ERK activation may also be due to differential recruitment 

of GAB1 to the cell periphery, given HGF but not EGF addition results in recruitment of 

GAB1 to the plasma membrane [130]. We also note that while SFKs are required for 

EGF-mediated GAB1 phosphorylation, our experiments suggest that SFKs are 

dispensable for GAB1 phosphorylation downstream of c-MET, suggesting there are 

different modes for RTK-mediated induction of GAB1-SHP2 association. 
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4-7  SUPPLEMENTARY MATERIAL 

 

Figure S4-8: Differential rates of EGFR-SHP2 and GAB1-SHP2 complex 

disassemblies. 

(A) HeLa cells were treated with 10 ng/mL EGF for up to 30 min, and lysates were 

immunoprecipitated with SHP2 antibody. Immunoprecipitates were analyzed by western 

blotting using antibodies against the indicated proteins. Blot signals for phosphorylated 

EGFR and GAB1 were quantified and normalized by SHP2 signal (loading control). (B 

and C) H1666 cells were treated with 10 ng/mL EGF for 15 or 120 min, and 

subsequently chased with 1 μM gefitinib for up to 5 min prior to lysing cells. Whole cell 

lysates (B) and SHP2 immunoprecipitates (C) were analyzed by western blotting, and 
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blot signals for phosphorylated EGFR and GAB1 were quantified and normalized by 

ERK signal (whole cell lysate loading control) or SHP2 signal (SHP2 immunoprecipitate 

loading control). Throughout the figure panels, all blot images are representative of three 

sets of biological replicates, and densitometry data are represented as mean ± s.e.m. (n = 

3); * denotes p < 0.05 when comparing normalized pGAB1 signals to pEGFR signals at a 

given time point. 
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Figure S4-9: SFK-mediated GAB1 phosphorylation and GAB1-SHP2 binding. 

(A) Blot signals for phosphorylated EGFR from Figure 2B were quantified and 

normalized by SHP2 signal. In order to compare pEGFR-SHP2 association kinetics with 
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or without PP2 pretreatment, all data points for each treatment condition were further 

normalized by their respective maximum pEGFR/SHP2 signal (i.e., pEGFR/SHP2 at 15 

min EGF).  (B and C) H1666 cells with knockdown of endogenous EGFR and 

reconstitution with EGFR
Y845F

 were treated with 10 ng/mL EGF for up to 120 min and 

subsequently chased with DMSO or 10 μM PP2 for up to 15 min prior to lysing cells. 

Whole cell lysates (B) and SHP2 immunoprecipitates (C) were analyzed by western 

blotting with antibodies against the indicated proteins. Blot signals from whole cell 

lysates for phosphorylated GAB1 were quantified and normalized by ERK signal 

(loading control). (D) 293T cells transiently expressing either: 1) GAB1 and p3xFlag 

empty vector (EV); 2) GAB1 and SRC
Y527F

; 3) pcDNA3 empty vector (EV) and 

SRC
Y527F

, were treated with 10 ng/mL EGF for 15 min and subsequently chased with 1 

μM gefitinib for 5 min prior to lysing cells. Whole cell lysates were analyzed by western 

blotting with antibodies against the indicated proteins. (E) H1666 cells with knockdown 

of endogenous EGFR and reconstitution with EGFR
Y845F

 were transfected with SRC
WT

 

cDNA, SRC
DM

 cDNA (dominant negative SRC
K295R/Y527F

), or no DNA and were treated 

with or without 10 ng/mL EGF for 15 min. Whole cell lysates were analyzed by western 

blotting with antibodies against the indicated proteins. Throughout the figure panels, all 

blot images are representative of three sets of biological replicates, and densitometry data 

are represented as mean ± s.e.m. (n = 3). 
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Figure S4-10: Sustained HGF-mediated association of GAB1 and SHP2. 

H1666 cells were treated with 38 ng/mL EGF or 50 ng/mL HGF for up to 240 min, and 

SHP2 immunoprecipitates (A) or whole cell lysates (B) were analyzed by western 

blotting with antibodies against the indicated proteins. (C and D) Cells were pretreated 

with DMSO or 10 μM PP2 for 30 minutes and subsequently treated with HGF or EGF for 

15 min and lysed, or treated with HGF or EGF for 15 min and subsequently chased with 

DMSO, 10 μM PP2, or 1 μM PHA665752 for up to 5 min prior to lysing cells. SHP2 

immunoprecipitates were analyzed by western blotting with antibodies against the 

indicated proteins. Throughout the figure panels, all blot images are representative of 

three sets of biological replicates. 
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Figure S4-11: Model fitting to experimental data. 

H1666 cells were treated with 10 ng/mL EGF for 15 min and subsequently chased with 1 

μM gefitinib for up to 2 min prior to lysing cells (A), or treated with 10 ng/mL EGF for 

up to 45 s and lysed (B). Lysates were analyzed by western blotting with antibodies 

against the indicated proteins. Blot signals for phosphorylated EGFR and GAB1 were 
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quantified and normalized by ERK signal (loading control), which were then compared 

with model predictions. (C) Normalized percent phosphorylated EGFR and GAB1 

throughout a 2 hr EGF treatment model simulation were computed when EGFR 

degradation was neglected. (D) H1666 cells were treated with 10 ng/mL EGF for 15 min, 

and lysates were immunoprecipitated using an SHP2 antibody. Immunoprecipitates 

(capture), non-immunoprecipitated proteins (supernatant), and the original whole cell 

lysate were analyzed by western blotting using antibodies against the indicated proteins. 

(E) Model predictions for the percent of SHP2 bound with EGFR throughout a 120 min 

EGF treatment were calculated. (F) Normalized net rates of EGFR and GAB1 

phosphorylation were predicted throughout a 1 min gefitinib treatment. (G) Model 

predictions for the normalized number of phosphorylated EGFR or GAB1 molecules 

throughout a 1 min gefitinib treatment were calculated, either for the base model 

topology, for a model topology where SFK-mediated amplification of GAB1 

phosphorylation does not occur, or for a model topology where SFKs inactivate instantly 

following gefitinib addition. (H) Model predictions for the number of phosphorylated 

EGFR or GAB1 molecules throughout a 5 min EGF treatment were calculated, either for 

the base model parameters, for model parameters where the timescales for EGFR and 

GAB1 phosphorylation (τEGFRphos and τGAB1phos) are equal, or for model parameters where 

both the EGFR and GAB1 phosphorylation timescales are equal and all forward and 

reverse rate constants for EGF binding, ATP binding, and EGFR dimerization are 

increased or decreased by an order of magnitude to speed up the processes which occur 

prior to EGFR phosphorylation. Throughout the figure panels, all blot images are 

representative of three sets of biological replicates, and densitometry data are represented 

as mean ± s.e.m. (n = 3). 
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Figure S4-12: Effect of variations in GAB1 phosphorylation (kG1p) and 

dephosphorylation (kG1dp) rate constants on model error. 

Model error was calculated for ranges of kG1p and kG1dp for the base model (A), a model 

which includes the capacity for GAB1-bound (active) SHP2 to contribute to SFK activity 

(B), and a model which includes the capacity for GAB1-bound (active) SHP2 to 

dephosphorylate GAB1 (C). Red circles indicate error minima. 
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Table S4-1: Model parameters 

Parameter (units) Description Value Source 

kE,f (μM
-1

 min
-1

) 

 

EGF binding to EGFR, forward 

 

3.1×10
2
 

 

[133] 

kE,r (min
-1

) 

 

EGF binding to EGFR, reverse 

 

8.0×10
-1

 

 

[134] 

kA,f (μM
-1

 min
-1

) 

 

ATP binding to EGFR, forward 

 

1.0×10
5
 

 

[63] 

kA,r (min
-1

) 

 

ATP binding to EGFR, reverse 

 

1.1×10
7
 

 

[63] 

ki,f (μM
-1

 min
-1

) 

 

Gefitinib binding to EGFR, forward 

 

1.0×10
5
 

 

[63] 

ki,r (min
-1

) 

 

Gefitinib binding to EGFR, reverse 

 

2.1×10
2
 

 

[63] 

kd,f (cell min
-1

) 

 

EGFR dimerization, forward 

 

9.2×10
-4

 

 

Calculated 

kd,r (min
-1

) 

 

EGFR dimerization, reverse, unoccupied 

 

1.4×10
4
 

 

[137] 

kdE,r (min
-1

) 

 

EGFR dimerization, reverse, EGF-occupied 

 

1.0×10
-1

 

 

[136] 

kcat (min
-1

) 

 

EGFR phosphorylation, unoccupied dimer 

 

2.7×10
0
 

 

[138] 

kcatE (min
-1

) 

 

EGFR phosphorylation, EGF-occupied dimer 

 

1.3×10
1
 

 

[138] 

kdp (min
-1

) 

 

EGFR dephosphorylation 

 

8.0×10
0
 

 

Fit 

kS,a (cell min
-1

) 

 

SFK activation 

 

1.3×10
1
 

 

[138] 

kS,i (cell min
-1

) 

 

SFK inactivation 

 

1.0×10
1
 

 

[143, 144] 

kG2,f (cell min
-1

) 

 

GRB2 binding to EGFR, forward 

 

3.8×10
-3

 

 

[61] 

kG2,r (min
-1

) 

 

GRB2 binding to EGFR, reverse 

 

4.6×10
2
 

 

[61] 

kG1,f (cell min
-1

) 

 

GAB1 binding to GRB2, forward 

 

2.4×10
-3

 

 

[140] 

kG1,r (min
-1

) 

 

GAB1 binding to GRB2, reverse 

 

6.0×10
1
 

 

[140] 

kG1p (cell min
-1

) 

 

GAB1 phosphorylation 

 

1.0×10
-4

 

 

Fit 

kG1dp (min
-1

) 

 

GAB1 dephosphorylation 

 

9.5×10
0
 

 

Fit 

kS2,f (cell min
-1

) 

 

SHP2 binding to phosphorylated GAB1, forward 

 

3.8×10
-3

 

 

[62] 

kS2,r (min
-1

) 

 

SHP2 binding to phosphorylated GAB1, reverse 

 

4.6×10
2 

 

[62] 

kdeg (min
-1

) 

 

EGFR degradation 

 

1.1×10
-1

 

 

Fit 

ATP (μM) 

 

Cellular ATP concentration 

 

1.0×10
3
 

 

[135] 

EGF (μM) 

 

Extracellular EGF concentration 

 

1.7×10
-3

 

 

See text 

gefitinib (μM) 

 

Gefitinib concentration 

 

1.0×10
0
 

 

See text 

EGFR (cell
-1

) 

 

EGFR molecules per cell 

 

6.0×10
5
 

 

See text 

GRB2 (cell
-1

) 

 

GRB2 molecules per cell 

 

6.0×10
5
 

 

[140] 

GAB1 (cell
-1

) 

 

GAB1 molecules per cell 

 

6.0×10
5
 

 

[140] 

SHP2 (cell
-1

) 

 

SHP2 molecules per cell 

 

6.0×10
5
 

 

[140] 

SFK (cell
-1

) 

 

SFK molecules per cell 

 

6.0×10
5
 

 

[140] 

CSK (cell
-1

) 

 

CSK molecules per cell 

 

6.0×10
5
 

 

[140] 
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Chapter 5: A Reaction-diffusion Model Predicts the 

Intracellular Length Scale Over Which EGFR-initiated GAB1-

SHP2 Complexes Persist 

 

5-1  ABSTRACT 

Activation of receptor tyrosine kinases (RTKs) leads to the assembly of cytosolic 

protein complexes linked through interactions including those between phosphotyrosines 

and SH2 domains.  However, these interactions are relatively weak and reversible, 

allowing for complex disassembly to occur on a time scale that permits intracellular 

phosphatases to dephosphorylate complex members and ultimately regulate complex 

persistence, which may limit the intracellular length scale over which RTKs can maintain 

the association of distal complexes.  Here, we develop a computational reaction-diffusion 

model using the epidermal growth factor receptor (EGFR) as a model system to gain 

quantitative understanding of the regulation of cytosolic protein complexes containing 

SRC homology 2 domain-containing phosphatase 2 (SHP2) and GRB2-associated binder 

1 (GAB1), the primary phosphorylated adapter protein which binds and activates SHP2 

downstream of EGFR.  The model predicts that by activating intermediary SRC family 

kinases (SFKs), which phosphorylate GAB1, EGFR can remotely maintain the 

association of GAB1 and SHP2 throughout the entire cell volume, a finding which is 

dependent on the capacity for SFKs to diffuse through the cytosol after being activated by 

EGFR at the plasma membrane.  Further model investigation through a parameter 

sensitivity analysis identifies protein diffusivity and the rate constants for SFK 
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inactivation and GAB1 dephosphorylation as the most important parameters for 

determining the intracellular length scale of GAB1-SHP2 complex persistence.  Based on 

calculations for characteristic protein diffusion, dephosphorylation, and dissociation 

times, our model suggests that each GAB1 molecule needs to be phosphorylated ~4 times 

throughout the cytosol to permit a GAB1-SHP2 complex originating from the plasma 

membrane to reach the cell center.  Overall, our results suggest that GAB1-SHP2 

complexes can persist distal from EGFR due to re-phosphorylation of GAB1 throughout 

the cytosol by EGFR-activated SFKs, which could allow membrane-bound EGFR to 

remotely control signaling events through SHP2 at subcellular locations where EGFR is 

not present. 
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5-2  INTRODUCTION 

 Receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor 

(EGFR), promote the activity of downstream signaling pathways by initially recruiting 

SH2 and PTB domain-containing cytosolic adapter proteins to RTK phosphotyrosines.  

However, receptor-adapter and other phosphorylation-dependent protein complexes 

exhibit rapid dissociation kinetics [61, 64], enabling protein tyrosine phosphatases (PTPs) 

to promote reversible complex disassembly by dephosphorylating tyrosines that 

participate in complex formation.  In addition to directly binding cytosolic proteins to 

facilitate the formation of phosphorylation-dependent multi-membered protein complexes 

[150], RTKs can also activate cytosolic kinases to promote complex assembly (Chapter 

4), which may serve as a means of extending the length scale of complex persistence 

distal from RTKs by counteracting the activity of cytosolic phosphatases that 

dephosphorylate key tyrosines.  However, the intracellular length scales over which 

RTKs can remotely control the association of such complexes via this type of mechanism 

are unknown.  Here, we use EGFR as a model RTK to computationally investigate the 

distance from the plasma membrane over which EGFR maintains the association of the 

cytosolic protein tyrosine phosphatase SRC homology 2 domain-containing phosphatase 

2 (SHP2) with the adapter protein GRB2-associated binder 1 (GAB1) via the action of 

intermediary SRC family kinases (SFKs). 

 SHP2 is a key signaling intermediate responsible for promoting the activity of 

ERK downstream of many RTKs [28].  SHP2 is basally auto-inhibited by intramolecular 

interactions between its N-SH2 and PTP domains [28].  In most cell lines, activation of 

SHP2 downstream of EGFR primarily results from binding of SHP2 to phosphorylated 
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GAB1, where GAB1 phosphorylation can potentially occur through EGFR-activated 

SFKs (Chapter 4; [52, 66] ) or through the activity of EGFR itself [65].  GAB1-SHP2 

association is mediated through binding of SHP2’s N- and C-SH2 domains to 

phosphorylated GAB1 tyrosines 627 and 659, which disrupts auto-inhibitory SHP2 

interactions and activates SHP2 [28].  In addition to activating SHP2, binding of SHP2 to 

GAB1 also permits the redistribution of cytosolic SHP2 to the plasma membrane through 

an EGFR-GRB2-GAB1-SHP2 protein linkage [54].  Via similar mechanisms receptor 

tyrosine kinases such as Ret, HER2, and c-MET can also recruit SHP2 to the plasma 

membrane [96, 131, 165].  However, some RTKs may more preferentially promote the 

association of GAB1 with SHP2 at the plasma membrane than others. Indeed HGF 

promotes more substantial recruitment of GAB1 to the plasma membrane than EGF in 

Madin-Darby canine kidney (MDCK) cells [130].  In a lung adenocarcinoma cell line, 

EGF-initiated GAB1-SHP2 complexes exist primarily in the cytosol with SFKs serving 

as the primary driver of GAB1 phosphorylation (Chapter 4). 

 As SFKs can be activated at the plasma membrane through events including 

binding of SRC’s SH2 domain to EGFR [141], yet are inactivated within the cytosol 

through c-SRC kinase-mediated phosphorylation of negative regulatory tyrosines on 

SFKs [143], the number of active SFKs able to phosphorylate GAB1 may rapidly decline 

distal from the plasma membrane (i.e., towards the cell center). Furthermore, because 

GAB1 and SHP2 continuously dissociate and re-associate throughout the cytosol due to 

relatively fast rates of phosphotyrosine-SH2 domain binding/unbinding (Chapter 4; [64] 

), which permits GAB1 to be dephosphorylated by cytosolic phosphatases throughout 

these binding cycles (Chapter 4), the local cytosolic concentration of GAB1-bound SHP2 
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may decline as this complex becomes inaccessible to active SFKs.  Ultimately, the 

distance over which GAB1-SHP2 complexes persist distal from EGFR depends on how 

quickly SFKs and GAB1-SHP2 complexes are able to diffuse through the cytosol before 

becoming irreversibly inactivated and dissociated, respectively. Of course, in addition to 

diffusion, processes such as receptor internalization may also serve to extend the length 

scale of GAB1-SHP2 complexes distal from the plasma membrane, as others have shown 

that receptors including EGFR and TrkA continue to remain active and serve as 

nucleation sites for signaling complex formation within endosomes [67, 166-168]. 

 Previous findings from our group suggest an important aspect of SHP2-mediated 

signaling involves the subcellular localization of active, GAB1-bound SHP2 [164, 169], 

although no prior studies have attempted to explore the spatial distribution of GAB1-

SHP2 complexes throughout a cell.  Here, we predict the spatiotemporal behavior of 

GAB1-SHP2 complexes within a representative EGF-treated cell by constructing a 

computational reaction-diffusion model of the processes that regulate GAB1-SHP2 

complex assembly both at the plasma membrane and throughout the cytosol.  The model 

predicts that GAB1 and SHP2 remain highly associated distal from EGFR, with the 

concentration of GAB1-SHP2 complexes at the cell center being 84% of the 

concentration of GAB1-SHP2 complexes at the plasma membrane.  This result is 

sensitive to our assumption that EGFR-activated SFKs diffuse away from EGFR to 

phosphorylate GAB1 throughout the cytosol, as modifying the model topology to only 

permit GAB1 phosphorylation at the plasma membrane results in the concentration of 

GAB1-SHP2 complexes at the cell center being only 30% of that at the plasma 

membrane.  A parameter sensitivity analysis further revealed that the total concentration 
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of GAB1-SHP2 complexes is most sensitive to perturbations in the rate constant for 

SHP2 binding GAB1, while the distance over which GAB1-SHP2 complexes persist 

distal from EGFR is most sensitive to perturbations in protein diffusivities and the rate 

constants for SFK inactivation and GAB1 dephosphorylation.  Altogether, our findings 

suggest that in the absence of kinase activity distal from the plasma membrane, the extent 

of GAB1-SHP2 association rapidly decays due to the processes of GAB1-SHP2 

unbinding and GAB1 dephosphorylation occurring more quickly than diffusion can 

permit GAB1-bound SHP2 to traverse the radius of a cell.  Furthermore, our results 

suggest that EGFR-mediated activation of SFKs could permit membrane-localized EGFR 

to regulate signaling events at a distance through the cytosolic activity of SHP2. 
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5-3  MATERIALS AND METHODS 

General model considerations and topology.  The model consists of a set of 

coupled reaction-diffusion equations which describe the processes of protein diffusion, 

protein binding, and protein phosphorylation for a representative H1666 lung 

adenocarcinoma cell with a radius of 10 μm.  The resulting ordinary and partial 

differential equations for surface-associated proteins and cytosolic proteins, respectively, 

were solved in MATLAB using finite difference methods.  Boundary conditions were 

also approximated using finite difference methods to solve for relevant protein 

concentrations at the cell surface and center.  The system of equations was modeled in 

rectangular coordinates, based on the assumption of radial symmetry throughout the cell. 

At a given time point, all partial differential equations for cytosolic proteins were 

approximated using an explicit finite difference method, where the first-order time and 

second-order space derivatives were approximated using forward and central differences, 

respectively.  The system of algebraic equations which results from discretizing over the 

entire space domain was then explicitly solved for using known concentrations from the 

previous time point. 

Next, the equations for surface-associated proteins and the boundary conditions 

for cytosolic proteins, which are coupled through the cell surface boundary, were 

simultaneously solved using an implicit finite difference method.  The discretized 

boundary conditions for cytosolic proteins were evaluated first, where initial guesses for 

the concentrations of surface-associated proteins were provided.  Subsequently, the 

discretized equations for surface-associated proteins were evaluated using the 

concentrations of cytosolic proteins previously solved for.  This scheme was then 
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iterated, where the initial guess for concentrations of surface-associated was updated until 

convergence was reached. 

This system of equations was then advanced to the next time point, where this 

process was repeated until the final time point was reached. The overall method is 

summarized according to the steps below: 

1) All partial and ordinary differential equations for cytosolic and membrane-

associated species, respectively, were discretized using finite difference 

methods. 

2) Concentrations of all protein species were defined for the initial time. 

3) The model was advanced one time step, and the concentrations of all cytosolic 

species were solved for throughout the bulk (i.e., everywhere except the cell 

center and cell surface boundaries). 

4) At the same time step, the concentrations of all cytosolic species at the cell 

center were solved for using the appropriate boundary conditions at the cell 

center. 

5) At the same time step, the concentrations of all cytosolic species at the cell 

surface were solved for using the appropriate boundary conditions at the cell 

surface, where initial guesses for concentrations of all membrane-associated 

species were provided. 

6) The concentrations of all membrane-associated species were solved for using 

the concentrations of cytosolic species at the cell surface calculated in step 5. 

7) Steps 5 and 6 were repeated, where the initial guesses for the concentrations 

of membrane-associated species in step 5 were updated using the 
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concentrations calculated in the previous iteration of step 6.  This process was 

iterated until the concentrations solved for in step 5 and 6 converged. 

8) Steps 3-7 were repeated until the final time point was reached.  

Boundary conditions.  No-flux boundary conditions were imposed on all 

cytosolic proteins at the cell center.  The boundary conditions for SFKs at the cell surface 

consist of flux conditions, where the inward flux of inactive or active SFKs is equal to the 

reaction for EGFR-catalyzed conversion of inactive SFK to active SFK.  Thus, the 

inward flux for inactive SFKs will be negative because inactive SFKs are being depleted 

at the surface, while the inward flux for active SFKs will be positive because active SFKs 

are being generated at the surface.  The boundary conditions for all other cytosolic 

proteins at the cell surface consist of flux conditions, where the outward flux is equal to 

the reaction rate for these proteins binding to EGFR at the cell surface and the inward 

flux is equal to the reaction rate for these proteins unbinding from EGFR at the cell 

surface. 

Example equations. Concentrations of cytosolic species were solved for as a 

function of time (t) and space (x) using equations of the following form: 

i
i

i
i R

x

C
D

t

C










2

2

, where Di and Ci correspond to the diffusivity and concentration of 

a given cytosolic protein, respectively, and Rνi corresponds to the net volumetric rate of 

production [moles per volume per time] for a given cellular process leading to the 

generation or consumption of the cytosolic species designated by Ci. 

 Boundary conditions at the cell center for cytosolic species were implemented 

using equations of the following form: 
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0




x

C
D i

i
, which corresponds to no flux of the cytosolic species designated by Ci 

across the cell center boundary. 

 Boundary conditions at the plasma membrane for cytosolic species were 

implemented using equations of the following form: 

si
i

i R
x

C
D 




, where Ci corresponds to the concentration of a given cytosolic protein and 

Rsi corresponds to the net volumetric rate of production at a surface [moles per area per 

time] for a given cellular process leading to the generation or consumption of that protein 

at the cell surface boundary.  

Concentrations of membrane-associated species were solved for as a function of 

time (t) only, based on the assumption that membrane-associated species do not diffuse 

through the plasma membrane or endocytose, using equations of the following form: 

si
i R

t

C





, where Ci corresponds to the concentration of a given membrane-associated 

species and Rsi corresponds to the net volumetric rate of production at a surface [moles 

per area per time] for a given cellular process leading to the generation or consumption of 

that protein. 

EGFR phosphorylation.  The process of EGFR phosphorylation was simplified 

to sequentially depend on the processes of EGF binding, EGFR dimerization, and EGFR 

phosphorylation. EGF binding at the plasma membrane was modeled as a reversible 

process characterized by association [133] and dissociation [134] rate constants. EGF was 

modeled at a constant concentration of 10 ng/mL.  The EGFR dimerization rate constant 

was calculated as described previously (Chapter 4).  Dimer uncoupling rate constants in 

the presence of EGF were described previously [137].  All dimer species were assumed 
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to be symmetric.  EGFR phosphorylation was modeled as a process which occurs 

between EGF-bound EGFR dimers, where both receptors are simultaneously 

phosphorylated at a representative tyrosine (Y1068) which is able to bind GRB2.  EGFR 

dephosphorylation was modeled as a zeroth order process with a previously described 

rate constant (Chapter 4). 

GAB1 phosphorylation.  GAB1 phosphorylation at a representative tyrosine 

(Y627) which is able to bind SHP2 was modeled as a process catalyzed by active SFKs 

throughout the cytosol.  GAB1 dephosphorylation was modeled as zeroth order and 

occurred throughout the cytosol. 

SFK activation.  Similar to our previous model (Chapter 4), the process of SFK 

activation was modeled as a first-order rate equation where phosphorylated EGFR 

activates SFK, which only occurs at the cell surface boundary for this model.  SFK 

inactivation was modeled as zeroth order and occurred throughout the cytosol. 

GRB2, GAB1, and SHP2 binding. Reactions for GRB2, GAB1, and SHP2 

association/dissociation were described previously (Chapter 4). 

Phosphatase activity. EGFR and GAB1 dephosphorylation were modeled as 

zeroth order with respect to protein tyrosine phosphatases, which precludes the 

requirement for considering distinct phosphatase species. 

EGFR inhibition.  Following treatment with EGF, EGFR inhibition was 

simulated by setting the rate constant for EGFR phosphorylation to zero at the desired 

timepoint post-EGF addition. 

Protein diffusivity.  Diffusivities for each cytosolic protein monomer or complex 

were calculated based on the diffusivity of tubulin [162], which was adjusted based on 
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differences in the hydrodynamic radii of tubulin and a given protein monomer or 

complex [163].   

Parameter fitting.  Due to topological differences between this model and our 

previously developed model which did not include spatial considerations, we chose to 

refit parameters for SFK activation/inactivation and GAB1 

phosphorylation/dephosphorylation to match our previous model’s predictions for 

concentrations of phosphorylated GAB1 and active SFKs in response to EGF addition.  

The four relevant parameters (kG1p, kG1dp, kS,a, kS,i) were determined by computing the 

spatial average of [pGAB1] and [aSFK] in response to EGF and fitting these 

concentrations to prior predictions for [pGAB1] and [aSFK].  Parameter fitting was done 

using simulated annealing to minimize the total error between model output and 

experimental data.  The error was computed as the square of the difference between 

model output and the experimental value.  The best-fit results are included in Table 1. 

Sensitivity analysis.  Model sensitivity to changes in parameters was computed by 

increasing and decreasing parameter values by a factor of 10.  Sensitivity was measured 

by summing the integrated differences between the original model and the two perturbed 

outputs over time.  To compare differences among parameter perturbations, sensitivities 

were reported as percentages of the maximum perturbed parameter. 

Representative Cell.  EGFR, GRB2, GAB1, SHP2, and SFKs were assumed to be 

at cellular concentrations of 6×10
5
 species per cell, as described previously (Chapter 4).  

The cell radius was assumed to be 10 μm, as described previously for other epithelial 

cells [161]. 
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Model implementation.  Codes were generated and compiled in MATLAB. The 

simulannealbnd function in the Global Optimization Toolbox was used to fit the 

unknown rate constants.  For all calculations, the space dimension was discretized into 

100 nodes.  For base model calculations, a time step of 0.00001s was used, while a time 

step of 0.000001s was used for parameter sensitivity analyses.  To reduce the memory 

required to store solutions at every time point, solutions were only stored once per 100 

time steps. 
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Table 5-1: Model parameters 

Parameter (units) Description Value Source 

kE,f (μM
-1

 min
-1

) 

 

EGF binding to EGFR, forward 

 

3.1×10
2
 

 

[133] 

kE,r (min
-1

) 

 

EGF binding to EGFR, reverse 

 

8.0×10
-1

 

 

[134] 

kd,f (cell min
-1

) 

 

EGFR dimerization, forward 

 

9.2×10
-4

 

 

(Chapter 4) 

kdE,r (min
-1

) 

 

EGFR dimerization, reverse 

 

1.0×10
-1

 

 

[136] 

kcatE (min
-1

) 

 

EGFR phosphorylation, EGF-occupied dimer 

 

1.3×10
1
 

 

[138] 

kdp (min
-1

) 

 

EGFR dephosphorylation 

 

8.0×10
0
 

 

(Chapter 4) 

kS,a (cell min
-1

) 

 

SFK activation 

 

4.0×10
-4

 

 

Fit 

kS,i (min
-1

) 

 

SFK inactivation 

 

5.0×10
0
 

 

Fit 

kG2,f (cell min
-1

) 

 

GRB2 binding to EGFR, forward 

 

3.8×10
-3

 

 

[61] 

kG2,r (min
-1

) 

 

GRB2 binding to EGFR, reverse 

 

4.6×10
2
 

 

[61] 

kG1,f (cell min
-1

) 

 

GAB1 binding to GRB2, forward 

 

2.4×10
-3

 

 

[140] 

kG1,r (min
-1

) 

 

GAB1 binding to GRB2, reverse 

 

6.0×10
1
 

 

[140] 

kG1p (cell min
-1

) 

 

GAB1 phosphorylation 

 

1.0×10
-4

 

 

Fit 

kG1dp (min
-1

) 

 

GAB1 dephosphorylation 

 

9.5×10
0
 

 

Fit 

kS2,f (cell min
-1

) 

 

SHP2 binding to phosphorylated GAB1, forward 

 

3.8×10
-3

 

 

[62] 

kS2,r (min
-1

) 

 

SHP2 binding to phosphorylated GAB1, reverse 

 

4.6×10
2 

 

[62] 

EGF (μM) 

 

Extracellular EGF concentration 

 

1.7×10
-3

 

 

See text 

EGFR (cell
-1

) 

 

EGFR molecules per cell 

 

6.0×10
5
 

 

(Chapter 4) 

GRB2 (cell
-1

) 

 

GRB2 molecules per cell 

 

6.0×10
5
 

 

[140] 

GAB1 (cell
-1

) 

 

GAB1 molecules per cell 

 

6.0×10
5
 

 

[140] 

SHP2 (cell
-1

) 

 

SHP2 molecules per cell 

 

6.0×10
5
 

 

[140] 

SFK (cell
-1

) 

 

 

 

SFK molecules per cell 

 

6.0×10
5
 

 

[140] 

DS (μm
2
 min

-1
) 

 

Diffusivity of SFK molecules 

 

8.2×10
1
 

 

[162, 163] 

DG2 (μm
2
 min

-1
) 

 

Diffusivity of GRB2 molecules 1.3×10
2
 

 

[162, 163] 

DG2G1 (μm
2
 min

-1
) 

 

Diffusivity of GRB2-GAB1 molecules 6.1×10
1
 

 

[162, 163] 

DG2G1S2 (μm
2
 min

-1
) 

 

Diffusivity of GRB-GAB1-SHP2 molecules 5.5×10
1
 

 

[162, 163] 

DG1 (μm
2
 min

-1
) 

 

Diffusivity of GAB1 molecules 6.6×10
1
 

 

[162, 163] 

DG1S2 (μm
2
 min

-1
) 

 

Diffusivity of GAB1-SHP2 molecules 5.6×10
1
 

 

[162, 163] 

DS2 (μm
2
 min

-1
) 

 

Diffusivity of SHP2 molecules 7.8×10
1
 

 

[162, 163] 

R (μm) 

 

Cell radius 

 

1.0×10
1
 

 

[161] 
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5-4  RESULTS 

 Model predictions with baseline parameterization.  To predict the concentration 

of GAB1-SHP2 complexes as a function of time and position following EGFR activation 

within a representative H1666 lung adenocarcinoma cell with an assumed radius of 10 

μm, we developed a computational model, the full details of which can be found in 

Materials and Methods (Section 5-3). The model considers cellular processes including 

EGFR phosphorylation, SFK activation, GAB1 phosphorylation, GAB1-SHP2 binding, 

and diffusion of cytosolic proteins.  Model parameters were taken from a previous model 

we developed (Chapter 4), with the exception of parameters for SFK activation and 

inactivation and GAB1 phosphorylation and dephosphorylation, which were re-fit due to 

topological differences between the models.  The rate constants for these processes were 

fit to predictions from our previously developed model to preserve similar average 

concentrations of active SFK and phosphorylated GAB1.  The model thus fit is able to 

accurately recapitulate the previously predicted dynamics of SFK activation and GAB1 

phosphorylation in response to EGF (Figure 5-1A).  While the rate constants for GAB1 

phosphorylation and dephosphorylation were relatively consistent between the models, 

the fitted parameters for SFK activation and inactivation had to be decreased by roughly 

four and six orders of magnitude, respectively.  Consistent with our previous model’s 

finding of amplification of SFK activity downstream of EGFR, this model predicts that 

each active EGFR molecule leads to the phosphorylation of an average of ~2 GAB1 

molecules throughout a 5 minute EGF treatment simulation (Figure 5-1B). 
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Figure 5-1: Base model predictions and fits. 

(A) Reaction-diffusion model predictions for the spatially averaged concentrations of 

active SFKs and phosphorylated GAB1 were fit to predictions from our previous model 

(reaction-only), as described in Materials and Methods. (B) Average concentrations of 

phosphorylated EGFR and GAB1 throughout 5 min of EGF treatment were calculated 

and normalized to the average concentration of phosphorylated EGFR. (C-E) Model 

predictions for the cellular concentrations of active SFKs (aSFK), phosphorylated GAB1 

(pGAB1), and GAB1-SHP2 complexes were plotted as a function of distance from the 

cell center and time following treatment with 10 ng/mL EGF. (F)  For 100 random 
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parameter sets, the frequency with which the distance for the concentration of GAB1-

SHP2 complexes to decay to 50%, 20%, or 10% of the plasma membrane GAB1-SHP2 

concentration was greater than the cell radius R (10 μm) was calculated. 

 

We next used the model to calculate protein concentrations as a function of 

distance from the cell surface.  We found that the concentration of active SFKs rapidly 

decayed throughout the cytosol while the concentration of phosphorylated GAB1 

remained relatively unchanged (Figures 5-1C-D).  We also note that the concentration of 

GAB1-SHP2 complexes was essentially unchanged as a function of position with the 

cell, suggesting that EGFR-activated SHP2 retains its activity distal from the plasma 

membrane (Figure 5-1E). We tested the robustness of this prediction by creating random 

parameter sets, where each model parameter was randomly perturbed by up to an order of 

magnitude above or below its base value. For 75%, 88%, and 93% of the 100 parameter 

sets generated, the length scale for the concentration of GAB1-SHP2 complexes to reach 

50%, 20%, and 10% of the maximal GAB1-SHP2 concentration at the cell surface, 

respectively, was greater than the cell radius R (10 μm; Figure 5-1F).  Therefore, the 

model prediction of GAB1-SHP2 complexes being maintained distal from the cell 

surface appears robust even if the model parameters are not well estimated. 

 Model parameter sensitivity.  To identify model processes that strongly influence 

both the average concentration and concentration gradient of GAB1-SHP2 complexes 

within the cell, we performed a parameter sensitivity analysis for steady state GAB1-

SHP2 complex formation in response to EGF treatment when individually perturbing 

each model parameter by a factor of ten (Figure 5-2A).  We found that the average 

GAB1-SHP2 concentration was most sensitive to perturbations to the rate constants for 
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SHP2 binding to or unbinding from GAB1.  To determine parameters which control the 

spatial distribution of GAB1-SHP2 complexes, we calculated the ratio of the 

concentration of GAB1-SHP2 complexes at the cell center to the cell surface and also 

defined r1/2 and r1/10 as length scales for GAB1-SHP2 association distal from the cell 

surface, which are the distances from the cell surface where the concentration of GAB1-

SHP2 reaches 50% or 10% of its maximal value, respectively.  Here, model predictions 

were exquisitely sensitive to changes in protein diffusivity, as well as rate constants for 

SFK inactivation and GAB1 dephosphorylation (Figure 5-2A-D). 

 We next performed a sensitivity analysis where the concentration of each protein 

considered in the model was perturbed by a factor of ten to determine which species most 

strongly control the steady state ratio of the GAB1-SHP2 concentration at the cell center 

to that at the cell surface.  We noted that SFKs most strongly control the spatial 

distribution of GAB1-SHP2 complexes, while interestingly EGFR had relatively little 

control over the GAB1-SHP2 complex distribution (Figures 5-2E-F).  Given that we 

previously identified the processes of SFK inactivation and GAB1 dephosphorylation as 

strong determinants of the GAB1-SHP2 length scale, we sought to determine the 

relationship between SFK concentration and the rates of these two processes in 

determining the GAB1-SHP2 length scale.  As noted previously, a ten-fold increase in 

the rate constant for GAB1 dephosphorylation greatly reduces the GAB1-SHP2 

persistence length scale, but, interestingly, a simultaneous ten-fold increase in SFK 

concentration negates the effect of an increased GAB1 dephosphorylation rate constant 

(Figure 5-2G).  Similarly, a ten-fold increase in the rate constant for SFK inactivation 

also greatly reduces the GAB1-SHP2 length scale, but in this case an increase in SFK  
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Figure 5-2: Model sensitivity analysis. 

(A)  The sensitivity of model predictions of the spatially averaged concentration of 

GAB1-SHP2 complexes, distances over which the GAB1-SHP2 concentration decays to 

50% (r1/2) or 10% (r1/10) of the maximum GAB1-SHP2 concentration (i.e., at the cell 

surface), and the ratio of GAB1-SHP2 concentrations at the cell center to the cell surface 

to 10-fold changes in model parameters was calculated for a 5 min treatment with 10 

ng/mL EGF.  Sensitivity to diffusivity (D) was calculated by making simultaneous 10-

fold increases or decreases in the diffusivity of every cytosolic protein.  Sensitivity of 

each model parameter was normalized to the maximum sensitivity for a given 

calculation.  (B-D) Model predictions for the normalized concentration of GAB1-SHP2 
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after 5 min 10 ng/mL EGF treatment were compared with predictions when all protein 

diffusivities (D), kG1dp, and kS,i were increased or decreased by a factor of 10.  (E) The 

sensitivity of model predictions for the ratio of GAB1-SHP2 concentration at the cell 

center to the cell surface to 10-fold changes in the indicated protein concentrations was 

calculated for a 5 min 10 ng/mL EGF treatment.  (F-G) Model predictions for the 

concentration of GAB1-SHP2 as a function of distance from the cell center, which was 

normalized to the concentration of GAB1-SHP2 at the plasma membrane, after 5 min 

EGF treatment were compared with predictions when the indicated parameters or protein 

concentrations were varied by a factor of 10.  (H)  Model predictions for the 

concentration of phosphorylated GAB1 as a function of distance from the cell center, 

which was normalized to the concentration of phosphorylated GAB1 at the plasma 

membrane, after a 5 min 10ng/mL EGF treatment were compared with predictions when 

the concentration of SHP2 was either increased 10-fold or set to zero. 

 

concentration is unable to overcome a faster rate of SFK inactivation due to the elevated 

number of active SFKs generated at the plasma membrane becoming more quickly 

inactivated throughout the cytosol.  Based on previous findings from our lab and others 

(Chapter 4; [154] ), we also sought to determine if SHP2’s binding to GAB1 could 

protect GAB1 from being dephosphorylated throughout the cytosol.  While our previous 

model, which did not take the spatial distribution of proteins into consideration, found 

very little effect of SHP2 depletion or overexpression on altering the total concentration 

of GAB1 phosphorylation, the current model predicts that both SHP2 depletion and 

overexpression can greatly change the extent of GAB1 phosphorylation throughout the 

cytosol (Figure 5-2H).  This is due to the fact that in the current model, unbound and 

dephosphorylated GAB1 molecules near the cell center are in the proximity of a 

relatively low concentration of active SFKs compared to the cell surface, which makes 
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the protective effect of SHP2’s binding to GAB1 much more apparent as there are fewer 

SFKs available to rephosphorylate GAB1 upon GAB1’s dissociation from SHP2 and 

subsequent dephosphorylation.    

EGFR pulse-chase dynamics.  To determine the consequences of acute EGFR 

inhibition on the spatiotemporal profile of GAB1-SHP2 complexes, we simulated a 

pulse-chase experiment where 10 ng/mL EGF was added for 5 min, followed by the 

simulated inhibition of EGFR modeled by setting the rate constant for EGFR 

phosphorylation to zero.  We verified that this pulse-chase topology produced EGFR 

dephosphorylation kinetics similar to those achieved by our previous model, which 

explicitly included the EGFR inhibitor gefitinib in the model topology (Figure 5-3A; 

Chapter 4).  When predicting the concentration of GAB1-SHP2 complexes as a function 

of cell position over a 2 min period following EGFR inhibition, we noted that this 

concentration decayed most rapidly near the cell surface throughout the chase (Figure 5-

3B).  A similar and even more pronounced trend was observed for the rate of SFK 

inactivation based on cell position (Figure 5-3C).  Since our previous predictions suggest 

that both GAB1-SHP2 and active SFK concentrations are highest near the cell surface 

(Figures 5-1B and D), these data suggest that the net rate of GAB1-SHP2 dissociation 

and SFK inactivation are largest where these proteins and protein complexes are most 

highly concentrated.  This result has interesting implications related to protein complex 

cycling, as this suggests that the total number of GAB1-SHP2 dissociation and re-

association events, as well as GAB1 dephosphorylation and re-phosphorylation events, is 

largest closer to the cell surface over a given time interval. 
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Figure 5-3: EGF-pulse EGFR inhibition-chase predictions. 

(A) The concentration of phosphorylated EGFR at the plasma membrane, which was 

normalized to the maximum phospho-EGFR concentration, was predicted for an EGF-

pulse EGFR inhibitor-chase simulation, where a 5 min 10 ng/mL EGF treatment was 

followed by a 2 min EGFR inhibition simulation.  The reaction-diffusion model 

prediction for the concentration of phosphorylated EGFR as a function of time following 

EGFR inhibition was compared to predictions from our previous model (reaction-only) 

where the EGFR inhibitor gefitinib was explicitly included in the model topology.  (B-C)  

The concentrations of GAB1-SHP2 complexes and active SFKs at the indicated times 

following EGFR inhibition were normalized by their concentrations prior to EGFR 

inhibition and plotted as a function of distance from the cell center. 
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 Model extensions.  While our previous experimental data suggest that a 

significant fraction of SFKs exist within the cytosol (Chapter 4), where in some cases 

SFKs have been shown to be phosphorylated at the active site [160], other reports suggest 

that SFKs may only exist in an active state primarily at the plasma membrane due to SFK 

myristoylation [158].  To investigate how this aspect of SFK localization would affect 

our model prediction of the cellular GAB1-SHP2 length scale, we altered our model 

topology to allow SFKs to exist in an active state only at the plasma membrane.  This 

change caused GAB1-SHP2 association to drop rapidly away from the cell surface 

(Figure 5-4A), with the length scale for GAB1-SHP2 association mirroring that for active 

SFKs from the base model topology (Figure 5-1C).  The model parameters can be 

adjusted for this topology to generate a steady-state GAB1-SHP2 concentration gradient 

similar to that predicted by the base model, such as by increasing protein diffusivity or 

decreasing the GAB1 dephosphorylation rate constant (Figures 5-4B-C), however these 

adjustments do not fully recapitulate the average concentration of GAB1-SHP2 

complexes or the precise dynamics of GAB1-SHP2 complex formation represented by 

the best-fit model. 
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Figure 5-4: Model predictions for SFKs only existing at the cell surface. 



177 

 

(A-C) Model predictions for the concentrations GAB1-SHP2 complexes were plotted as 

a function of distance from the cell center and time following treatment with 10 ng/mL 

EGF when SFKs were only permitted to be active at the cell surface for either the base 

model parameters (A), a 10-fold increase in the diffusivity (D) of all cytosolic proteins 

(B), or a 10-fold decrease in kG1dp (C). 
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5-5  DISCUSSION 

 Our analysis reveals that GAB1 and SHP2 are predicted to remain associated 

throughout the cytosol to a significant degree due to the capacity for EGFR to activate 

intermediary SFKs to maintain cytosolic GAB1 phosphorylation throughout GAB1 

phosphorylation/dephosphorylation cycles (Figure 5-5).  This mechanism could permit 

EGFR to regulate signaling events through SHP2 at intracellular locations where EGFR 

is not present.  Indeed, this possibility is suggested by a previous study which found that 

EGFR-activated SHP2 was required to dephosphorylate paxillin at focal adhesions, 

which themselves could be located a cell diameter away from EGFR if EGFR were 

activated at the apical membrane, rather than the basolateral membrane [55]. 

We note that the model conclusion of GAB1 and SHP2 remaining associated 

throughout the cytosol is based in part on this model’s parameterization to previous 

experimental data gathered from a representative lung adenocarcinoma cell line 

expressing wild-type EGFR (Chapter 4), and that this conclusion may not be broadly 

applicable to EGFR-mediated induction of GAB1-SHP2 association in all cell 

backgrounds.  This possibility is suggested by a previous study which noted impaired 

phosphorylation of the SFK member SRC at Y418 [24], an autophosphorylation site 

required for SRC activity, in an NSCLC cell line expressing a kinase-activated EGFR 

mutant, suggesting that SFK activity may be impaired in this setting.  However, these 

cells still exhibited GAB1 phosphorylation on par with wild-type EGFR-expressing cells, 

which require SFKs for GAB1 phosphorylation (Chapter 4; [24] ).  Thus, there may be a 

different mode of GAB1 phosphorylation in the context of EGFR mutation, potentially 

via direct phosphorylation of GAB1 by constitutively active mutant EGFR.  Based on our 
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model predictions for GAB1 phosphorylation occurring only at the plasma membrane 

(Figure 5-4A), this mechanism would significantly decrease the length scale over which 

phospho-GAB1 and GAB1-SHP2 complexes extend into the cytosol away from the 

membrane.  This possibility may offer additional insight into the impairment of SHP2’s 

function observed in cells with EGFR mutation [164], as a previous study from our group 

revealed that SHP2 function is impaired in mutant EGFR-expressing cells through 

apparent sequestration of active SHP2 at the plasma membrane with internalization-

impaired EGFR mutants [164]. 

 

 

Figure 5-5: Cytosolic SRC family kinases (SFKs) extend the intracellular GAB1-

SHP2 length scale by rephosphorylating GAB1. 

Because SFKs can only be activated at the plasma membrane by EGFR and can be 

inactivated ubiquitously throughout the cytosol by c-SRC kinase, our model predictions 

suggest that the local cytosolic concentration of active SFKs drops steeply as a function 
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of distance from the plasma membrane.  Conversely, while GAB1 and SHP2 dissociate 

and GAB1 is dephosphorylated throughout the cytosol, the length scale of GAB1 

phosphorylation and GAB1-SHP2 association are extended relative to that of active SFKs 

due to the capacity for GAB1 to be phosphorylated throughout the cytosol. 

 

 Our analysis revealed that the GAB1-SHP2 length scale was sensitive to 

perturbations in the rate constants for SFK inactivation and GAB1 dephosphorylation, but 

interestingly was much less sensitive to the rate constants for SFK activation and GAB1 

phosphorylation (Figure 5-2A).  In fact, the rate constant for SFK activation had 

essentially no control over the steady state cellular distribution of GAB1-SHP2 

complexes.  This is likely the result of the model topology only permitting SFKs to be 

activated at the cell surface by membrane-bound EGFR, as SFKs will still be rapidly 

inactivated throughout the cytosol even if the surface concentration of active SFKs is 

increased or reaches steady state more quickly.  This is similar to our finding that shows 

that despite the requirement for surface-associated EGFR to temporally activate cytosolic 

SFKs, EGFR only weakly controls the spatial gradient of GAB1-SHP2 complexes within 

the cell (Figure 5-2E).  Our parameter analysis also revealed that an increased 

concentration of SFKs can offset a reduction in the GAB1-SHP2 length scale caused by 

an enhanced rate of GAB1 dephosphorylation, but not a reduction in this length scale 

caused by an enhanced rate of SFK inactivation, exemplifying that there are diverse 

relationships among cellular processes in dictating the spatial distribution of GAB1-SHP2 

complexes.   

 Characteristic GAB1-SHP2 reaction-diffusion time scales based on the diffusivity 

of a GAB1-SHP2 complex and the rate constant for GAB1 dephosphorylation suggest 

that GAB1 needs to be phosphorylated ~4 times by SFKs throughout the cytosol to 
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permit an individual GAB1-SHP2 complex to diffuse to the cell center from the cell 

surface.  While our model suggests that this does occur, as the concentration of GAB1-

SHP2 complexes remain essentially the same at the cell center relative to the cell surface, 

the concentration of active SFKs is substantially reduced distal from the plasma 

membrane.  However, even this relatively low concentration of intracellular active SFKs 

is still sufficient to permit the necessary number of GAB1 phosphorylation events 

required to maintain a much higher extent of GAB1 phosphorylation and GAB1-SHP2 

association in proximity to the cell center, consistent with findings from our previous 

study which showed that SFKs amplify EGFR activity to maintain GAB1-SHP2 

association at low levels of EGFR phosphorylation (Chapter 4). 

 While our model utilized parameters either taken from literature or fit to 

predictions from a model we previously developed (Chapter 4), the refinement and 

verification of this model’s parameters will be aided by the generation of experimental 

data specifying the spatial distribution of GAB1-SHP2 complexes within a cell, such as 

data which could be obtained from FRET microscopy.  While no such data currently 

exists, our previous findings show that GAB1-SHP2 complexes do exist primarily in the 

cytosol rather than membrane compartments (Chapter 4).  It would also be beneficial to 

experimentally measure the diffusivity of all the cytosolic proteins included in the model 

by microscopy techniques such as fluorescence recovery after photobleaching (FRAP), as 

current predictions rely on the assumption of a previously reported estimate for protein 

diffusivity in the cytosol [161], which is assumed to be the same for all species in our 

model.  In addition to the verification of model predictions through refining model 

parameters based on fitting to newly acquired experimental data, additional cellular 
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processes can be incorporated into the model to more completely recapitulate all cellular 

processes relevant to cytosolic protein complex assemblies.  Some of these processes to 

consider which can control the spatial organization of multiprotein complexes include 

receptor internalization [166-168] and coordinated protein complex assembly via 

cytosolic scaffold proteins [170]. 

  In a broad sense, the model described in this study offers a platform to study the 

spatial distribution of cytosolic phospho-proteins or protein complexes initiated by the 

activity of plasma membrane-associated receptors.  In cases where experimental data is 

unavailable to compare against model predictions, the model can still be used to both 

identify individual cellular processes which strongly control a protein’s spatial 

distribution and to study how multiple processes interact with or compensate for one 

another.  The capacity for relevant model parameters to be fit to experimental data such 

as that which could be obtained by FRET microscopy will enable a more quantitative 

understanding of how the dynamics of cellular reactions such as dephosphorylation 

compete against diffusion to ultimately control the cellular length scale over which a 

receptor tyrosine kinase can orchestrate the assembly of cytosolic protein complexes. 
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5-7  SUPPLEMENTAL MODEL DEVELOPMENT 

 Reaction-diffusion equations and initial and boundary conditions. The 

equations and initial and boundary conditions for all protein monomers and complexes 

included in the model are described according to the following abbreviations: 

Concentrations of cytosolic protein monomers and complexes: 

CSFK,i = inactive SFK 

CSFK,a = active SFK 

CG1 = GAB1 

CPG1 = pGAB1 

CG2 = GRB2 

CG2G1 = GRB2-GAB1 

CG2PG1 = GRB2-pGAB1 

CS = SHP2 

CPG1S = pGAB1-SHP2 

CG2PG1S = GRB2-pGAB1-SHP2 

 

Concentrations of membrane protein monomers and complexes: 

CmE = EGFR monomer 

CmES = EGF-bound EGFR monomer 

CmESmES = EGF-bound EGFR dimer 

CE_p = EGF-bound pEGFR dimer 

CEG2 = EGF-bound, GRB2-bound pEGFR dimer  

CEG2G1 = EGF-bound, GRB2-GAB1-bound pEGFR dimer 

CEG2PG1 = EGF-bound, GRB2-pGAB1-bound pEGFR dimer 

CEG2PG1S = EGF-bound, GRB2-pGAB1-SHP2-bound pEGFR dimer 

 

Model parameters: 

DS = SFK diffusivity 

DG2 = GRB2 diffusivity 

DG2G1 = GRB2-GAB1 diffusivity 

DG2G1S2 = GRB2-GAB1-SHP2 diffusivity 

DG1 = GAB1 diffusivity 

DG1S2 = GAB1-SHP2 diffusivity 

DS2 = SHP2 diffusivity 

kS,i = SFK inactivation 

kS,a = SFK activation 

kG1,f = GAB1 binding, forward 

kG1,r = GAB1 binding, reverse 

kG1p = GAB1 phosphorylation 

kG1dp = GAB1 dephosphorylation 

kG2,f = GRB2 binding, forward 

kG2,r = GRB2 binding, reverse 
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kS2,f = SHP2 binding, forward 

kS2,r = SHP2 binding, reverse 

kE,f = EGF binding, forward 

kE,r = EGF binding, reverse 

kdE,f = EGFR dimerization, forward 

kdE,r = EGFR dimerization, reverse 

kcatE = EGFR phosphorylation 

kdp = EGFR dephosphorylation 

[EGF] = EGF concentration 

 

Equations and boundary conditions: 

Equation and initial and boundary conditions for CSFK,i as a function of time (t) and space 

(x), where t = 0 corresponds to the initial time prior to EGF treatment, x = 0 corresponds 

to the cell center, and x = 10 corresponds to the cell surface: 
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Equation and initial and boundary conditions for CSFK,a: 
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Equation and initial and boundary conditions for CG1: 
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Equation and initial and boundary conditions for CPG1: 
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Equation and initial and boundary conditions for CG2: 
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Equation and initial and boundary conditions for CG2G1: 
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Equation and initial and boundary conditions for CG2PG1: 
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Equation and initial and boundary conditions for CS: 
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Equation and initial and boundary conditions for CPG1S: 
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Equation and initial and boundary conditions for CG2PG1S: 
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Equation and initial condition for CmE: 
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Equation and initial condition for CmES: 
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Equation and initial condition for CE: 
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 Discretization scheme using finite difference methods.  Ordinary differential 

equations were discretized using a forward explicit finite difference method as follows, 

where h is the step size between two discretized time points (h = ti+1 – ti): 

 Ck
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This discretized equation can then be rearranged to solve for C at time point ti+1, given 

that values for C at time point ti are known: 
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 Partial differential equations were discretized using a forward explicit finite 

difference method for first-order derivatives, where h is the step size between two 

discretized time points (h = ti+1 – ti), and a central explicit finite difference method for 

second-order derivatives, where r is the step size between two discretized space points (r 

= xj+1 – xj), as follows: 
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This discretized equation can then be rearranged to solve for C at time point ti+1 and space 

point xj, given that values for C at space points xj-1, xj, and xj+1 at time point ti are known. 
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 To simultaneously solve the discretized equations for membrane-associated 

species which are coupled with the discretized boundary conditions for cytosolic species, 
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an implicit finite difference method was utilized as follows, shown here for an example 

involving the discretized equations for two membrane-associated species (C1 and C2) 

and the discretized boundary condition for one cytosolic species (C3): 

Discretized equation for C1: 
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Discretized equation for C2: 
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Discretized boundary condition for C3: 
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Due to the fact that C1i+1, C2i+1, and C3i+1,j are all unknown, initial guesses are provided 

for C1i+1 and C2i+1 to solve for C3i+1,j, which is then used to solve for C1i+1 and C2i+1 

according to the discretized equations above.  These updated values are then used to 

resolve for C3i+1,j, and this process is iterated until convergence is reached. 

 Discretization of boundary conditions for cytosolic species at the cell center 

results in the requirement for the concentration of a given cytosolic species to be 

equivalent at the cell center node and the space node immediately adjacent to it, as 

illustrated below: 
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Chapter 6: Conclusions and Future Work 

 

6-1  SUMMARY 

 One of the more clinically relevant findings of this thesis is that SHP2, as a driver 

of cell proliferative and survival through its activation of ERK, can promote resistance to 

the EGFR inhibitor gefitinib in wild-type EGFR-expressing NSCLC cells (Chapter 2).  

Consequently, NSCLC cells expressing kinase-activated EGFR mutants display enhanced 

cellular sensitivity to gefitinib at least partially due to impaired cellular function of SHP2.  

This study further identified a mechanism for impairment of SHP2’s function in these 

cells via sequestration of biochemically active SHP2 with internalization-impaired 

mutant EGFR at the plasma membrane, a phenomenon that could also potentially be of 

relevance to other cytosolic signaling proteins that can either directly or indirectly bind 

EGFR.  While this work identified SHP2 as a potential therapeutic target for subsets of 

NSCLCs, additional studies conversely identified SHP2 as a promoter of sensitivity to 

targeted therapeutics in GBM cells (Chapter 3).  Despite the necessity of SHP2 

expression for optimal response of GBM cells to EGFR/c-MET co-inhibition, SHP2 was 

also required for GBM tumorigenesis in a mouse xenograft model, potentially as a result 

of a newly discovered regulatory role for SHP2 in promoting the expression of hypoxia 

inducible factors.  While previous studies have explored either oncogenic or tumor 

suppressor roles of SHP2 in various cell backgrounds [59, 71, 73, 109], this work 

provides the first evidence for SHP2 to simultaneously promote and antagonize 

proliferative/survival phenotypes in the same cell line. 
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 Additional experimental and computational work undertaken in this thesis 

resulted in an improved understanding of the dynamics of SHP2’s activation downstream 

of EGFR through SHP2’s association with GAB1 (Chapter 4), as well as computational 

modeling predictions that suggest EGFR can potentially regulate SHP2’s association with 

GAB1 throughout the entire cell volume as a result of EGFR’s activation of cytosolic 

SFKs (Chapter 5).  These results not only offer an updated view on how EGFR activates 

SHP2, which was traditionally considered to only be maintained in an active state when 

in complex with receptors such as EGFR [28], but may also offer broad insight into the 

means by which receptor proteins regulate the assembly of phosphorylation-dependent 

cytosolic signaling protein complexes, given that phosphotyrosine-SH2 domain 

interactions are exceedingly transient [61, 62] and cellular phosphatase activity is high  

[63, 64].  In the remainder of this chapter, we discuss the implications of our findings and 

suggest directions for future studies. 

 

6-2  DEVELOPMENT AND APPLICATION OF SHP2 INHIBITORS 

 As SHP2 was shown to promote resistance to EGFR inhibitors in NSCLC cells 

and to promote tumorigenesis in GBM cells (Chapters 2 and 3), and also given that there 

exist numerous other reports detailing SHP2’s oncogenic roles and overexpression in 

many cancers [69-71], it would be worthwhile to develop a specific and effective SHP2 

inhibitor as a possible cancer therapeutic to use as either a single agent or in combination 

with other therapeutics such as EGFR inhibitors.  While the development of specific and 

cell permeable small molecular inhibitors for protein kinases has been relatively 

successful, with 26 currently approved by the FDA, the development of inhibitors for 
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protein tyrosine phosphatases has been far more challenging.  Due to the highly polar 

nature of the active site of phosphatases, compounds that tightly bind this site and inhibit 

phosphatase activity tend to be highly charged anionic phosphate mimics that are unable 

to pass through the plasma membrane [171].  In addition, since the phosphatase active 

site tends to be highly conserved among PTP family members, such as for PTP1B and 

TCPTP [171], the development of phosphatase inhibitors lacking undesirable off-target 

effects is also difficult. 

 Despite these challenges, several promising SHP2 inhibitors have been identified 

and tested in both cell culture and mouse models [171].  Among these include NSC-

87877, an SHP2 inhibitor with a reported IC50 value of 0.3 μM in vitro [172].  However, 

this inhibitor has not been widely used in laboratory studies, suggesting its specificity and 

efficacy may not be on par with other methods of antagonizing cellular SHP2 activity 

such as SHP2 knockdown.  While this inhibitor was selective over most other 

phosphatases, it unfortunately also targets SHP1 [172], a submember of the SHP family 

of phosphatases that is highly homologous to SHP2 [28].  Additional screens that sought 

to identify SHP2 inhibitors that target both the active site of SHP2 as well as an adjacent 

region for specificity identified the inhibitor II-B08, that possesses an IC50 value of 5.5 

μM for SHP2 and includes the added benefit of selectivity against SHP1 [173].  While 

not an exceptionally potent inhibitor, a recent study found that II-B08 could slow 

proliferation of H1975 NSCLC cells in vitro and could also slightly reduce the growth 

rate of H1975 tumor xenografts [174].  Given the promising results from this study, it 

will be interesting to see if the development of improved SHP2 inhibitors will be able to 

more closely resemble the effects achieved with near complete knockdown of SHP2 
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observed with SHP2 shRNA or siRNA, which in some cases can completely inhibit the 

growth of certain tumors in mouse models [109].   

 As potent, selective, and cell permeable inhibitors developed for the phosphatase 

PTP1B have made it to clinical trial testing [171], the possibility for the development of 

similarly functional SHP2 inhibitors seems promising.  While clinical trials involving the 

inhibition of SHP2 will require the development of better SHP2 inhibitors than currently 

available, it may still be useful now to examine whether SHP2 serves as a biomarker for 

cancer aggressiveness and patient survival.  Due to the high frequency with which SHP2 

has been found to be overexpressed in cancers including those of the lung and breast [69, 

70, 175], it is highly likely that SHP2 plays an important role in the tumorigenesis and 

progression of solid tumors in humans, as suggested by the copious number of studies 

identifying oncogenic roles of SHP2 in cell culture and xenograft models [71].  Given 

that increasingly more paired data for protein expression with patient outcome is 

becoming publicly available through programs such as The Cancer Genome Atlas, we 

would recommend a study seeking to correlate the expression level of SHP2 in various 

cancers with patient outcomes including survival, metastasis, and response to therapy.  

Furthermore, it would be interesting to undertake additional studies similar to those 

performed in Chapters 2 and 3 of this thesis to explore the role of SHP2 in mediating 

therapeutic response, both for other cancers that are dependent on EGFR as well as 

cancers normally treated with chemotherapeutics or other targeted inhibitors.  It would 

also be worthwhile to explore the potential requirement for SHP2 in the tumorigenesis of 

cancers originating from aberrant phosphorylation of SHP2 adapters, such as for 



197 

 

BCR/ABL-mediated lymphoid cancers requiring GAB2 hyperphosphorylation for 

transformation [176]. 

 

6-3 INVOLVEMENT OF SHP2 IN EPITHELIAL-TO-MESENCHYMAL 

TRANSITION 

 A recent study from Buonato and Lazzara showed that NSCLC cells require ERK 

for epithelial-to-mesenchymal transition (EMT) [177], a process whereby epithelial cells 

lose cell-cell adhesions to obtain a mesenchymal cell phenotype that imparts enhanced 

motility, invasiveness, and resistance to therapeutics [178, 179].  Specifically, Buonato 

and Lazzara showed that inhibiting ERK for a sufficiently long time caused NSCLC cells 

to revert from a mesenchymal phenotype to an epithelial phenotype, which enhanced 

cellular response to the EGFR inhibitor gefitinib [177].  Given that the study performed 

in Chapter 2 of this thesis showed that SHP2 strongly controls both ERK activity and 

cellular response to EGFR inhibition, it is possible that SHP2 also regulates EMT in a 

way which may connect SHP2’s control over ERK with determining therapeutic 

response.  While this hypothesis has not been explored in the context of NSCLC cells, 

other studies showed that SHP2 can regulate EMT in breast cancer cells [74], although 

the mechanism by which SHP2 regulated EMT and the implications of SHP2’s control 

over EMT on dictating cellular response to therapeutics were not explored.  

 To investigate a possible link between SHP2 function and EMT in NSCLC cells, 

we propose a study that would first seek to measure the impact of SHP2 knockdown on 

the expression of epithelial and mesenchymal markers, such as E-cadherin and vimentin, 

respectively, in cells exhibiting a mesenchymal phenotype.  Provided SHP2 regulates 
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EMT in these cells and SHP2 knockdown shifts cells to a more epithelial phenotype, it 

could then be determined whether SHP2 controls EMT in an ERK-dependent or –

independent manner by attempting to restore cells to their basal mesenchymal status by 

expressing kinase-activated mutant MEK, the kinase immediately upstream of ERK in 

the MAPK cascade [180].  If constitutively active MEK expression overrides the effect of 

SHP2 knockdown on ERK phosphorylation and restores the mesenchymal status of cells, 

this would suggest that SHP2’s control over ERK regulates EMT.  However, if 

constitutively active MEK expression in SHP2-depleted cells restores ERK 

phosphorylation to basal levels but fails to revert cells back to a mesenchymal phenotype, 

this would suggest that SHP2 regulates EMT through an ERK-independent pathway. 

 Since the study by Buonato and Lazzara determined that cells co-treated with a 

MEK and EGFR inhibitor are optimally sensitized when initially pretreated with a MEK 

inhibitor to first induce a mesenchymal-to-epithelial transition before initiating treatment 

with an EGFR inhibitor [177], it would be worthwhile to relate this finding to the study 

performed in Chapter 2 of this thesis.  Because our study utilized stable rather than 

transient knockdown of SHP2, it is likely that our study would have essentially mimicked 

that of Buonato and Lazzara in that SHP2-depleted cells would have had decreased levels 

of ERK activity and potentially an epithelial phenotype for a prolonged period of time 

prior to treatment with gefitinib.  To determine whether SHP2 regulates response to 

EGFR inhibition by controlling cellular processes that occur over a long period of time, 

such as EMT, or solely by transiently controlling the activity of signaling pathways, such 

as ERK, we would recommend the use of an inducible SHP2 shRNA or an SHP2 

inhibitor to transiently inhibit SHP2 immediately before treating cells with gefitinib.  



199 

 

Alternatively, if SHP2 is confirmed to regulate EMT in NSCLC cells, a study attempting 

to restore SHP2-depleted cells back to a mesenchymal phenotype through the 

overexpression of transcription factors known to be promote EMT, such as ZEB1, could 

be performed.  It would be interesting to see if merely converting SHP2-depleted cells 

back to a mesenchymal phenotype is sufficient to prevent SHP2 knockdown from 

enhancing cellular response to gefitinib. 

 

6-4  INDUCIBLE KNOCKDOWN OF SHP2 IN GLIOBLASTOMA XENOGRAFTS 

 In Chapter 3 of this thesis, we sought to determine whether the net effect of SHP2 

function in glioblastoma cells in vitro, where SHP2 simultaneously promotes 

proliferation and antagonizes cell survival in response to co-inhibition of EGFR and c-

MET, could be reproduced in vivo through the use of a mouse xenograft model.  While 

tumors arising from glioblastoma cells with SHP2 knockdown grew much more slowly 

than tumors arising from control cells, tumors consisting of cells with SHP2 knockdown 

never grew to a sufficient size to compare treatment with gefitinib and PHA665752 

against control tumors.  To confirm whether SHP2 function still enhances response to 

EGFR/c-MET co-inhibition in vivo, we propose the use of a xenograft model using cells 

where SHP2 can be conditionally knocked down using shRNA-expression systems such 

as pSico [86].  This would allow for tumors consisting of cells that conditionally express 

control or SHP2-targeted shRNA to grow to the appropriate size before inducing shRNA 

expression, at which point treatment with gefitinib and PHA665752 could begin after 

SHP2 protein levels are reduced in the appropriate tumors.  While STAT3 appears to be 

the most important determinant downstream of SHP2 in dictating glioblastoma cell 
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response to EGFR/c-MET co-inhibition in vitro, it is possible that SHP2-mediated 

antagonism of STAT3 may be superseded by pro-survival functions of SHP2 in vivo such 

that tumors with reduced SHP2 expression respond as well if not better than control 

tumors to gefitinib and PHA665752. 

 

6-5  ROLE OF SHP2 PHOSPHORYLATION 

 While not focused upon in this thesis, an additional purported aspect of SHP2 

regulation asides from SHP2’s association with adapter proteins such as GAB1 is the 

phosphorylation of SHP2 on C-terminal tyrosines 542 and 580 [28].  Some studies 

suggest that these tyrosines, when phosphorylated, enhance SHP2’s catalytic activity and 

ability to activate ERK [29, 181].  When phosphorylated, Y542 and Y580 are suggested 

to recruit GRB2 [182] or bind SHP2’s N-SH2 and C-SH2 domains, respectively, to 

mimic binding of SHP2 to an adapter protein and thus promote SHP2’s catalytic activity 

[181, 182].  However, SHP2 phosphorylation does not appear to be required for SHP2-

mediated ERK activation downstream of all receptor tyrosine kinases, including EGFR 

[29].  Consistent with this finding, the work performed in Chapter 2 of this thesis 

determined that rescue of SHP2-depleted NSCLC cells with re-expression of SHP2
Y542F

 

was able to restore ERK phosphorylation and reduce cellular response to gefitinib just as 

effectively as rescue with re-expression of wild-type SHP2 (Figure 2-3).  However, this 

study also found that there was a diminished functional role of SHP2 in activating ERK 

in EGFR mutant-expressing cells exhibiting impaired phosphorylation of SHP2, although 

sequestration of SHP2 with internalization-impaired EGFR mutants is more likely the 

direct cause of reduced SHP2 function rather than impaired SHP2 phosphorylation [24].  
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Given the conflicting evidence for the role of SHP2 phosphorylation in regulating SHP2-

mediated ERK activation, both from the work in this thesis and from other studies, 

additional work aimed at elucidating the importance of SHP2 phosphorylation in SHP2-

mediated signaling would be worthwhile to undertake.  It would be useful to screen for 

proteins besides GRB2 that bind phosphorylated SHP2, as GRB2-SHP2 binding does not 

appear to be required for ERK phosphorylation downstream of growth factor receptors 

where SHP2 phosphorylation itself is required for maximal ERK phosphorylation [29].  

This screen could be accomplished through quantitative mass spectrometry experiments, 

where SHP2 immunoprecipitates obtained from ligand-treated cells expressing wild-type 

SHP2 are compared against SHP2 immunoprecipitates from cells expressing SHP2
Y542F

, 

SHP2
Y580F

, or SHP2
Y542F/Y580F

 to determine differences in proteins that co-

immunoprecipitate with wild-type or mutant SHP2. 

 

6-6  LOCALIZATION OF SHP2 COMPLEXES IN MUTANT EGFR-EXPRESSING 

CELLS 

While our initial work in NSCLC cells suggested that SHP2 function can be 

impaired via its sequestration with GAB1 and EGFR at the plasma membrane in cells 

expressing EGFR mutants (Chapter 2), our following studies in a representative cell line 

expressing wild-type EGFR found that nearly all GAB1-SHP2 complexes were present 

within the cytosol (Chapter 4).  It will be interesting to perform the appropriate 

subcellular fractionation and subsequent SHP2 immunoprecipitation experiments to 

determine whether this also occurs in cells expressing mutant EGFR, or whether GAB1-

bound SHP2 exists primarily at the plasma membrane as suggested by our hypothesis of 
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sequestration of activated SHP2 with membrane-bound EGFR.  The fraction of bound 

SHP2 in mutant EGFR-expressing cells could potentially be shifted towards a higher 

ratio of EGFR:GAB1-bound SHP2 relative to wild-type cells, possibly through 

sequestration of SHP2 with EGFR in a GAB1-independent manner, such that cytosolic 

GAB1-SHP2 complexes only represent a small proportion of bound and active SHP2 in 

cells with EGFR mutation.  Regardless of whether there are a significant number of 

GAB1-SHP2 complexes in the cytosol of mutant EGFR-expressing cells, it is clear that 

GAB1 and thus GAB1-SHP2 complexes are not required for ERK phosphorylation in 

these cells based on GAB1 knockdown experiments (Figure 2-6). 

 While we determined that SFKs were required for GAB1 phosphorylation in a 

wild-type EGFR-expressing NSCLC cell line (Chapter 4), data from a previous study by 

Lazzara et al. hints that this may not necessarily be true for NSCLC cells expressing 

mutant EGFR [24].  While GAB1 is phosphorylated to roughly similar extents in H1666 

(EGFR
WT

) and H3255 (EGFR
L858R

) NSCLC cells, phosphorylation of the SFK member c-

SRC at Y418, an autophosphorylation site required for c-SRC’s activity, is severely 

impaired in H3255 cells relative to H1666 cells [24].  This suggests that there may 

potentially be different modes of GAB1 phosphorylation depending on EGFR mutation 

status, where wild-type EGFR utilizes cytosolic SFKs to promote GAB1 phosphorylation 

in the cytosol, while mutant EGFR can sufficiently phosphorylate GAB1 directly at the 

plasma membrane due to the enhanced kinase activity of this mutant receptor [22].  To 

test this hypothesis, mutant EGFR-expressing H3255 cells could be treated with the SFK 

inhibitor PP2 either in the presence of absence of EGF to determine whether SFKs are 

required for GAB1 phosphorylation in these cells.  However, these results could be 
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confounded by several factors related to either non-specific effects related to PP2’s 

potential inhibition of EGFR [183] or the capacity for SFKs to phosphorylate and 

increase the activity of EGFR [146], either of which would lead to the false conclusion 

that SFKs, rather than EGFR, are responsible for phosphorylating GAB1 in these cells.  

Similar to experiments performed in Chapter 4, H3255 cells would need to be engineered 

to have knockdown of endogenous EGFR
L858R

 and ectopic expression of EGFR
L858R/Y845F

 

to decouple SFKs from promoting EGFR activity through SFK-mediated phosphorylation 

of EGFR at Y845.  If PP2 addition still results in a significant effect on EGFR 

phosphorylation, which we did not see for cells expressing wild-type EGFR, either a 

more specific SFK inhibitor would need to be used, or the ubiquitously expressed SFK 

members SRC, YES, and FYN will need to be simultaneously knocked down instead, as 

has been done for previous studies seeking to draw conclusions about the net activity of 

all SFK members [184].  The results from this study could have important implications 

for better understanding the impaired functional role of SHP2 in mutant EGFR-

expressing cells, which could occur not only due to impairments in the rate of cellular 

processes such as EGFR internalization (Chapter 2) but also by potential impairments in 

the activity of cytosolic kinases that regulate SHP2’s activity.  There also exists the 

possibility that impaired EGFR internalization prevents the activation of SFKs within the 

cytosol by endosomal EGFR in such a way that active SFKs are only located near the 

plasma membrane, as a previous study showed that the SFK member c-SRC traffics with 

activated EGFR following EGF stimulation [185].  Furthermore, if SFK activity is altered 

in EGFR mutant-expressing cells in such a way that SFK-mediated amplification of 

EGFR activity does not occur as it does in a representative cell line expressing wild-type 
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EGFR, this could cause GAB1-SHP2 dissociation and GAB1 dephosphorylation to occur 

more quickly in EGFR mutant-expressing cells relative to their wild-type counterparts.  

This could be tested by comparing the rates of GAB1 dephosphorylation and GAB1-

SHP2 dissociation in these cells by western blotting and SHP2 immunoprecipitation 

EGF-pulse gefitinib-chase experiments, as performed in Chapter 4. 

 

6-7  CYTOSOLIC DISTRIBUTION OF GAB1-SHP2 COMPLEXES 

 Experiments performed in Chapter 4 concluded that the majority of GAB1-SHP2 

complexes exist in the cytosol, at least for a wild-type EGFR-expressing cell line.  

Computational studies performed in Chapter 5 predicted that these cytosolic GAB1-SHP2 

complexes are present at a fairly constant concentration throughout the entire cell 

volume.  Given our findings from Chapter 2 that suggest the importance of SHP2’s 

activity within the cytosol, it will be essential to validate these computational predictions 

experimentally to determine if SHP2 is indeed active and GAB1-bound at a constant 

concentration throughout the cytosol.  However, live-cell experiments that could measure 

the catalytic activity of SHP2 as a function of cellular localization would be impossible to 

develop.  As an alternative, fluorescence resonance energy transfer (FRET) microscopy, a 

technique that utilizes the capacity for energy to be transferred between fluorophores 

located within 10-100 angstroms of one another [186], would be a much more feasible 

approach to determine where GAB1 and SHP2 are bound within a cell based on transfer 

of energy between fluorophore-tagged GAB1 and SHP2.   

 In fact, as part of this thesis work, we attempted to use fluorescence-lifetime 

imaging microscopy (FLIM), an imaging technique based on FRET principles, to 
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measure GAB1-SHP2 association in live cells by ectopically expressing fluorophore-

tagged GAB1 and SHP2 fusion proteins, GAB1-YPET and SHP2-Cerulean, in cells.  

Despite attempting these measurements with: 1. all combinations of GAB1 and SHP2 

fusion proteins with either N-terminal or C-terminal fluorophore tags, 2. all combinations 

of GAB1 and SHP2 fusion proteins with fluorophore-protein linkers consisting of either 

6, 15, 25, or 35 amino acids, and 3. GAB1-Cerulean and SHP2-YPET instead of the 

original fluorophore-protein pairs, we were unable to obtain a positive signal from FLIM 

indicating interaction between GAB1 and SHP2, despite using conditions known to 

promote association between fluorescently-tagged GAB1 and SHP2 based on 

immunoprecipitation experiments.   While FRET microscopy and FLIM are inherently 

challenging techniques [187], suggesting that technical issues may have potentially 

impeded our ability to detect association of GAB1-YPET and SHP2-Cerulean by live-cell 

microscopy, it is also possible that GAB1 and SHP2 are inherently poorly suited for 

FRET measurements.  The requirement for an extremely small distance to exist between 

two fluorophores in order to elicit energy transfer, paired with the necessity for the 

fluorophores to be tagged on only the N- or C-terminus of GAB1 and SHP2, suggests the 

possibility that even when GAB1 and SHP2 are bound, their termini may not reach a 

sufficient distance from one another to permit the fluorophores to come within close 

enough proximity to generate a FRET signal. 

 Despite these experimental difficulties, additional considerations and topologies 

could also be added to our computational reaction-diffusion model in order to more 

completely represent all cellular processes that could regulate the spatial distribution of 

GAB1-SHP2 complexes.  The parameter value for protein diffusivity, which we 
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estimated based on diffusion coefficients used in previous models [161], was considered 

to be constant among all the cytosolic proteins and protein complexes included in our 

model, which may or may not be a valid simplification.  As the effective diffusivity of 

proteins such as GRB2 can be altered due to sequestration with phosphorylated EGFR at 

the plasma membrane [61], it may be worthwhile to experimentally measure relative rates 

of diffusion for GRB2, GAB1, SHP2, and a representative SFK member using 

microscopy techniques such as fluorescence recovery after photobleaching (FRAP).  

Additional model processes could also be included in the model topology such as the 

process of EGFR internalization, which has been incorporated in previous computational 

models of EGFR-mediated signaling [63].  As endosomal EGFR has been shown to retain 

its phosphorylation and capacity to bind GRB2 and regulate signaling pathways such as 

ERK [67], the propensity for endosomal EGFR to activate SFKs from within the cytosol 

could have a significant effect on the predicted intracellular distribution of GAB1-SHP2 

complexes.  The inclusion of this process in our reaction-diffusion model would require 

modifying the topology such that all EGFR species capable of internalizing, which could 

initially be simplified to include all phosphorylated EGFR, translocate from the plasma 

membrane through the cytosol.  The velocity with which internalized EGFR traverses the 

cytosol could be approximated experimentally by using microscopy to measure the rate at 

which fluorescently-tagged EGFR moves through a cell following stimulation with EGF.  

However, fully modeling the process of EGFR internalization would necessitate many 

other considerations beyond a constant rate of EGFR trafficking, such as recycling of 

endosomal EGFR back to the plasma membrane and degradation of internalized EGFR. 
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