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Regulation of Anti-Viral Cd8+ T Cell Responses by the Pd-1 Pathway

Abstract
PD-1 and its ligands, PD-L1 and PD-L2, constitute a critical immunoregulatory pathway for modulating
CD8+ T cell responses. This pathway has become an important therapeutic target in cancer and chronic viral
infections, where blockade of PD-1/PD-L1 reverses CD8+ T cell exhaustion and improves outcomes.
However, it remains unclear how PD-1 pathway signals shape the development and maintenance of memory
CD8+ T cell responses following acutely-resolved infection or exhausted CD8+ T cell responses following
chronic infection. Absence of PD-1 results in early over-activation, excessive proliferation and diminished
survival of virus-specific CD8+ T cells during both acutely-resolved and chronic viral infections. Following
influenza infection, PD-1 pathway deficiency led to sub-optimal CD8+ T cell memory development. Defects
were observed in the magnitude of the influenza-specific CD8+ T cell responses, as well as in cytokine
production and recall capacity. Similarly, during chronic LCMV infection, PD-1 deficient CD8+ T cells were
more dysfunctional than their WT counterparts. Permanent absence of PD-1 dramatically dysregulated
lineage dynamics and long-term stability of exhausted CD8+ T cell populations through a mechanism
involving the transcription factors T-bet and Eomesodermin. As a result, PD-1 deficiency led to the
accumulation of terminally-differentiated, but more cytotoxic, exhausted CD8+ T cells. These findings reveal
a novel dual role for PD-1 signals during acutely-resolved and chronic viral infections. PD-1 pathway signals
clearly restrict CD8+ T cell activation, expansion and function early, consistent with previous work. However,
in doing this, PD-1 also preserves the quantity and quality of long-term memory or exhausted CD8+ T cell
responses. Thus, PD-1 acts as a critical "rheostat" on CD8+ T cells, balancing the need for activation to
achieve pathogen clearance with the establishment and maintenance of long-term memory or exhausted T cell
responses.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Cell & Molecular Biology

First Advisor
E. John Wherry

Keywords
CD8 T cells, Immunology, Infectious disease, PD-1

Subject Categories
Allergy and Immunology | Immunology and Infectious Disease | Medical Immunology | Microbiology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1109

http://repository.upenn.edu/edissertations/1109?utm_source=repository.upenn.edu%2Fedissertations%2F1109&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

REGULATION OF ANTI-VIRAL CD8+ T CELL RESPONSES BY  

THE PD-1 PATHWAY 

Pamela M. Odorizzi 

A DISSERTATION 

in 

Cell and Molecular Biology 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2015 

 

Supervisor of Dissertation    Graduate Group Chairperson 

_____________________    _______________________ 

E. John Wherry, Ph.D.    Daniel Kessler, Ph.D. 

Director of the Institute for Immunology  Associate Professor of Cell and 

Associate Professor of Microbiology  Developmental Biology 

 

Dissertation Committee  

Christopher Hunter, Ph.D. : Professor and Chair of Pathobiology 

Paula Oliver, Ph.D. : Associate Professor of Pathology and Laboratory Medicine 

Sara Cherry, Ph.D. : Associate Professor of Microbiology 

James Riley, Ph.D. : Associate Professor of Microbiology 

 



REGULATION OF ANTI-VIRAL CD8+ T CELL RESPONSES BY  

THE PD-1 PATHWAY 

COPYRIGHT 

2015 

Pamela Marie Odorizzi 

 



iii 
 

ACKNOWLEDGEMENTS 

 My journey through graduate school has been full of adventure and growth, both 

scientifically and personally, that was fostered by mentorship, friendship, and support 

from some amazing people. I have to start by thanking my incredible mentor, E. John 

Wherry, who challenged me to become a better scientist every day. I am forever grateful 

for your passion for science, your enthusiasm for data, your encouragement and 

support, your guidance and your tough love. I also have to thank all of the members of 

the Wherry lab, past and present, who made science fun on a daily basis: Michael Paley, 

Burton Barnett, Kristen Pauken, Erietta Stelekati, Makoto Kurachi, Doug Dolfi, Ramin 

Herati, Vesselin Tomov, Alison Crawford, Kathleen Mansfield, Mohammed Ali, Jonathan 

Johnnidis, Bertram Bengsch, Alexander Huang, and Ryan Staupe. I am so grateful to 

have worked with such a brilliant and wonderfully weird group of scientists. Thank you to 

my thesis committee: Christopher Hunter, James Riley, Sara Cherry, and Paula Oliver 

for valuable advice and constant support. Also, thank you to Bob Doms who always had 

advice on-hand about my scientific future. I wish to thank Paul Bates and the HIV 

Pathogenesis Training Grant for two years of financial support. I am also grateful for all 

of the help provided by the Microbiology Department and Microbiology, Virology and 

Parasitology graduate group, especially Anna Kline. I would like to thank my wonderful 

friends, who helped me through the tough times and celebrated with me during the good 

times, especially Adrienne Swanstrom, Sudil Mahendra, Brianna Morgan, Saloni Malik, 

Jill Alspach, Stephanie Weir and Heather Turnbach. Finally, I would like to thank my 

amazing family. Thank you to my brother, Mark Odorizzi, and my best friend and sister, 

Laura Odorizzi, for always being there to lean on for support, as a kick in the butt when I 



iv 
 

needed it or just a laugh. And, of course, thank you to my amazing parents, Mark and 

Mary Odorizzi, for all their love, support and guidance through the ups and downs of 

graduate school. Thank you for always encouraging me to reach for the stars and for 

being my biggest cheerleaders.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ABSTRACT 

REGULATION OF ANTI-VIRAL CD8+ T CELL RESPONSES BY  

THE PD-1 PATHWAY 

Pamela M Odorizzi 

E. John Wherry 

 

PD-1 and its ligands, PD-L1 and PD-L2, constitute a critical immunoregulatory 

pathway for modulating CD8+ T cell responses. This pathway has become an important 

therapeutic target in cancer and chronic viral infections, where blockade of PD-1/PD-L1 

reverses CD8+ T cell exhaustion and improves outcomes. However, it remains unclear 

how PD-1 pathway signals shape the development and maintenance of memory CD8+ T 

cell responses following acutely-resolved infection or exhausted CD8+ T cell responses 

following chronic infection. Absence of PD-1 results in early over-activation, excessive 

proliferation and diminished survival of virus-specific CD8+ T cells during both acutely-

resolved and chronic viral infections. Following influenza infection, PD-1 pathway 

deficiency led to sub-optimal CD8+ T cell memory development.  Defects were observed 

in the magnitude of the influenza-specific CD8+ T cell responses, as well as in cytokine 

production and recall capacity. Similarly, during chronic LCMV infection, PD-1 deficient 

CD8+ T cells were more dysfunctional than their WT counterparts. Permanent absence 

of PD-1 dramatically dysregulated lineage dynamics and long-term stability of exhausted 

CD8+ T cell populations through a mechanism involving the transcription factors T-bet 

and Eomesodermin. As a result, PD-1 deficiency led to the accumulation of terminally-

differentiated, but more cytotoxic, exhausted CD8+ T cells. These findings reveal a novel 
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dual role for PD-1 signals during acutely-resolved and chronic viral infections. PD-1 

pathway signals clearly restrict CD8+ T cell activation, expansion and function early, 

consistent with previous work. However, in doing this, PD-1 also preserves the quantity 

and quality of long-term memory or exhausted CD8+ T cell responses. Thus, PD-1 acts 

as a critical “rheostat” on CD8+ T cells, balancing the need for activation to achieve 

pathogen clearance with the establishment and maintenance of long-term memory or 

exhausted T cell responses.  
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CHAPTER 1: Introduction 

1.1: Global Heath Challenges: Infectious Disease 

 Infectious diseases place a significant burden on the health of individuals 

worldwide, as well as on healthcare infrastructure and global economy. Much of this 

burden is borne by developing countries, where poor sanitation and unsafe drinking 

water propagate the spread of disease. However, even in developed countries, many 

infectious diseases remain a considerable threat, particularly to the young and elderly.  

Over the past 60 years, the public health and research communities have made 

significant advances in the control and elimination of infectious diseases (Panhuis et al., 

2013). Arguably the most important medical intervention implemented has been 

vaccinations. It is estimated that vaccines have prevented over 100 million cases of 

disease in the United States and more than 2.5 million deaths worldwide (WHO, 2012). 

Perhaps one of the most notable successes of vaccinations is the elimination of 

smallpox in 1980 (Fenner et al.1988). However, infectious diseases are continually 

emerging and re-emerging. In fact, since 1980, there has been an increase in the 

number of new infectious agents, the number of outbreaks worldwide and also a 

resurgence of known diseases (Smolinski, Hamburg, & Lederberg, 2003). Many of these 

diseases cause significant mortality worldwide and challenge the current model of 

vaccine development. For example, seasonal influenza, an acutely-resolved infection, 

causes 3,000-49,000 deaths annually in the United States (CDC, 2010). Other 

infections, such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV), 

often cause chronic disease and death in patients. As of 2012, 35.3 million people were 

living with HIV, leading to 1.6 million HIV-related deaths per year (UNAIDS, 2013). In the 
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United States, there are over 3.2 million people chronically infected with HCV, resulting 

in approximately 16,000 deaths each year (CDC, 2011). While anti-viral drugs and other 

strategies can lower viral load and extend life span in many patients with chronic HIV, 

there are currently no medical interventions that can reliably cure this infection (Piacenti, 

2006). The recent introduction of direct-acting anti-viral drugs against HCV may provide 

a potential cure for some chronic HCV patients; however, the high cost of treatment 

makes this approach unattainable for many (Kiser and Flexner, 2013). Thus, a major 

goal remains the development of prophylactic vaccination strategies that can protect 

against these public health threats. Given the ineffectiveness of implementing our 

current vaccine platforms, an important next step is defining the adaptive immune 

components that contribute to effective immune responses against these diseases.  

1.2: The Adaptive Immune System 

 The adaptive immune system possesses the unique properties of diversity, 

specificity and memory. These properties allow the adaptive immune response to 

combat many different pathogens in a specific and targeted way, maximizing pathogen 

clearance and minimizing damage to the host. In addition, this strategy provides 

adaptive immune cells with the knowledge to “remember” a pathogen encounter and 

results in better protection against a pathogen upon subsequent exposure (Ahmed and 

Gray, 1996; Williams and Bevan, 2007). There are two major cell types that make up the 

adaptive immune system: B cells and T cells. Both cell types undergo genomic 

rearrangement to generate millions of unique surface receptors, known as B cell 

receptors (BCR; also known as antibodies) and T cell receptors (TCR). Each B cell and 

T cell expresses one unique version of a BCR or TCR, respectively, which generates a 
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repertoire of adaptive immune cells with immense diversity (Wong and Pamer, 2003; 

Zhang and Bevan, 2011).  

 The primary role of B cells is production of soluble antibodies that specifically bind 

intact pathogen proteins. While B cells are critical for neutralizing infectivity of 

pathogens, T cells are required for clearance of a pathogen after the establishment of 

infection. Broadly speaking, T cells can be sub-divided into CD4+ or CD8+ T cells.  

CD4+ T cells, or T helper cells, determine the type of immune response that will be 

mounted against an invading pathogen through production of distinct cytokines, as well 

as via specific interactions with other immune cells. CD8+ T cells, or cytotoxic T cells 

(CTLs), kill pathogen-infected cells through the recognition of short viral peptide 

fragments presented on the surface of infected cells in the context of major 

histocompatibility complex (MHC) (Zinkernagel and Doherty, 1974; Rock and Goldberg, 

1999). Collectively, B cells, CD4+ T cells and CD8+ T cells mount a coordinated immune 

response against an invading pathogen.   

1.3: CD8+ T cells 

 The critical role of CD8+ T cells during infection has been demonstrated in many 

mouse models where loss of CD8+ T cell effector functions leads to impairment in 

pathogen control. For example, mice deficient in the cytotoxic molecule perforin or the 

effector cytokine IFN-γ (discussed below) have defective CD8+ T cell responses that 

correlate with increased pathogen burden (Walsh et al., 1994; Matloubian et al., 1999; 

Dorman et al., 1999; Binder and Griffin, 2001; Bartholdy et al., 2000). Similarly, depletion 

of CD8+ T cells during undetectable, chronic SIV infection of rhesus macaques leads to 

rebound of the virus to high circulating levels (Jin et al., 1999; Schmitz et al., 1999). 
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Restoration of viral control in this setting is associated with the re-population of the CD8+ 

T cell compartment. HIV and the progression to acquired immunodeficiency syndrome 

(AIDS) is also associated with loss of CD8+ T cell populations and effector functions 

(Shankar et al., 2000; Appay et al., 2000; Kostense et al., 2002; Gruener et al., 2001b; 

Maini et al., 1999). As a result, late-stage HIV patients are more susceptible to new 

infections, as well as re-activatoin of latent infections, including herpes viruses (Siegal et 

al., 1981; Kaplan et al., 2000). Thus, CD8+ T cell anti-viral activities are associated with 

control of disease in both mice and humans.  

1.3.1: Initiation of CD8+ T cell Responses 

 Naïve CD8+ T cells become activated upon encounter with an antigen-presenting 

cell (APC) that is presenting pathogen-derived peptide in the context of MHC on its 

surface (signal 1) (Smith-Garvin et al., 2009). Co-stimulation (signal 2) fine-tunes TCR 

signaling through positive signals from molecules, such as CD28, ICOS, 4-1BB, CD27 

and many others (Crawford and Wherry, 2009; Chen and Flies, 2013). These co-

stimulatory signals augment and sustain T cell activation that is initiated by the TCR 

through a variety of mechanisms. For example, co-stimulation is known to augment 

cytokine and chemokine production, promote expression of anti-apoptosis proteins (such 

as Bcl-xL) and upregulate growth factor receptors (Chen and Flies, 2013; June et al., 

1987; Boise et al., 1995; Acuto and Michel, 2003). In addition, co-stimulation plays a 

critical role in regulating the metabolism of CD8+ T cells. For example, CD28 induces 

signaling through the P13K-Akt-mTor pathway, which, among other things, promotes 

glucose transport and protein synthesis in newly activated CD8+ T cells (McAdam et al., 

1998; Stein et al., 1994; Boomer and Green, 2010; Frauwirth et al., 2002). The positive 

signals propagated by co-stimulatory receptors are also counter-balanced by negative 
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signals from inhibitory receptors (discussed in detail below). Finally, optimal CD8+ T cell 

activation also requires signals from inflammatory cytokines (signal 3), such as IL-12, 

type 1 interferons, and TLR ligands (Curtsinger and Mescher, 2010; Curtsinger et al., 

2003, 2005; Valenzuela et al., 2002). The coordinated integration of these three signals 

is critical for generation of functional CD8+ T cells and, importantly, the quantity and 

quality of each signal can dramatically impact the type of response that is mounted. 

 Following activation, naïve CD8+ T cells expand and differentiate into a pool of 

effector cells. Proliferation of CD8+ T cells is extremely robust after pathogen encounter, 

with CD8+ T cells undergoing up to a 50,000-fold expansion (Badovinac et al., 2007; 

Zhang and Bevan, 2011). This proliferation is accompanied by migration to sites of 

infection and acquisition of properties to fight an invading pathogen. These properties 

include cytotoxic ability and production of pro-inflammatory cytokines. The killing of 

infected cells by CD8+ T cells can be executed by two major mechanisms: 

perforin/granzyme and Fas/FasL interactions (Kägi et al., 1995, 1994). Release of 

perforin at a target cell leads to the formation of a pore in the target cell membrane. This 

pore then allows for entry of granzymes into the cell that induce cell death of a 

pathogen-infected cell (Heusel et al., 1994; Kägi et al., 1996). Alternatively, the Fas 

death receptor pathway can be activated through Fas/FasL interactions, resulting in 

programmed death of an infected cell (Kägi et al., 1995, 1994). Co-production of multiple 

pro-inflammatory cytokines is another critical function of CD8+ T cells. Cytokines such 

as IL-2, TNF-α, Mip-1α, and IFN-γ augment immune responses while inducing an anti-

viral state (Harty and Bevan, 1999; Cocchi et al., 1995; Guidotti and Chisari, 2001). 

Following expansion, 90-95% of effector cells will die by apoptosis during the contraction 

phase (Badovinac et al., 2002). Depending on the type of infection, subsequent 
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differentiation of CD8+ T cells into memory cells or exhausted cells will follow (Figure 

1.1).  

 Differentiation of CD8+ T cells from naïve to effector cells is accompanied by 

dramatic changes in gene expression profiles, which are regulated by key transcription 

factors. A central regulator of CD8+ T cell effector differentiation appears to be BATF, a 

basic leucine zipper transcprion family member (Kurachi et al., 2014). Kurachi et al. 

demonstrated that, in the absence of BATF, CD8+ T cells undergo a dramatic metabolic 

crash that prevents subsequent differentiation and expansion into effector cells. BATF, 

along with IRF4, regulates effector differentiation by promoting the expression of the 

transcription factors Tbet, Blimp-1 and Runx3 (Kurachi et al., 2014). Notch has also 

recently been implicated as a key “hub” for integration of signals to promote CD8+ T cell 

effector differentiation.  These studies indicate that Notch forms a critical feedback loop 

with CD25 (IL-2Ra), Tbet and mTOR to drive differentiation of effector cells (Backer et 

al., 2014). Early expression of Tbet induced by TCR signaling, as well as BATF and 

Notch, has been shown to play a key role in the early induction of IFN-γ expression 

(Cruz-Guilloty et al., 2009; Backer et al., 2014). Subsequent expression of Runx3 and 

Blimp-1 re-enforces IFN-γ expression while also inducing the expression of cytotoxic 

molecules, such as granzyme B. Runx3 also induces the expression of the transcription 

factor Eomesodermin (Eomes), which controls expression of perforin and seems critical 

for late IFN-γ expression (Cruz-Guilloty et al., 2009; Pearce et al., 2003). Importantly, 

naïve CD8+ T cells that lack Tbet, Blimp-1, Notch 1/2, or Runx3 show defects in effector 

responses, including proliferation, cytotoxicity, and cytokine production (Chang et al., 

2014; Angelosanto and Wherry, 2010; Cruz-Guilloty et al., 2009; Pearce et al., 2003; 

Backer et al., 2014).  Thus, effector CD8+ T cell differentiation requires the temporal 
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induction of key transcription factors that regulate gene expression of effector molecules. 

In addition, these transcription factors play a central role in the fate of effector cells in 

acutely-resolved and chronic infections.  

1.3.2: Generation of CD8+ T cell Memory after Acutely-Resolved Infections 

 Expansion and differentiation of CD8+ T cells results in the generation of a 

phenotypically and functionally heterogenous pool of effector cells during acutely-

resolved infections. The majority of the effector cell population is comprised of short-

lived effector cells (SLECS), while a smaller population of memory precursor cells also 

exist. Studies of acute lymphocytic choriomeningitis virus (LCMV) and Listeria 

monocytogenes (L. monocytogenes) infections in mice found that SLECs could be 

readily identified by high expression of KLRG-1 and low expression of CD127 (IL-7R) 

(Joshi et al., 2007; Obar et al., 2011). In addition to this defining phenotype, SLECs also 

have higher expression of the transcription factors Tbet and Blimp-1, which corresponds 

with increased effector molecules, greater migration into non-lymphoid tissues and the 

more terminally-differentiated state of these cells (Rutishauser et al., 2009; Kallies et al., 

2009; Pearce et al., 2003; Intlekofer et al., 2005). During the contraction phase, the 

majority of SLECs will die by apoptosis, whereas memory precursor cells will persist and 

differentiate into long-lived memory cells. In contrast to SLECs, memory precursor cells 

are KLRG-1lo IL-7Rhi and memory differentiation of these cells is associated with higher 

levels of the transcription factors Eomes, Tcf-1, Foxo1, and Id3 (Joshi et al., 2007; 

Kaech et al., 2003a; Zhou et al., 2010; Hess Michelini et al., 2013; Kim et al., 2013; 

Yang et al., 2011; Intlekofer et al., 2005). 

 Memory CD8+ T cells acquire several cardinal properties that endow them with the 

ability to more quickly and effectively respond to a secondary encounter with a pathogen 
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(Figure 1.1). These properties include rapid reactivation of effector functions, robust 

proliferation and enhanced homing to secondary lymphoid organs (Wherry and Ahmed, 

2004; Kaech et al., 2002; Bevan, 2011). In addition, memory cells persist via antigen-

independent, cytokine-driven homeostatic proliferation in response to IL-7 and IL-15 

(Kaech et al., 2003b). Given the heterogeneity of effector CD8+ T cells, it is not 

surprising that many sub-populations of memory cells also exist (Huster et al., 2004; 

Kaech et al., 2003b; Hamann et al., 1997). The most notable of these are central 

memory T cells (Tcm), effector-memory T cells (Tem), tissue-resident memory cells 

(Trm) and stem memory T cells (Tsm) (Sallusto et al., 1999; Hamann et al., 1997; 

Carbone et al., 2013; Turtle et al., 2009; Zhang et al., 2005). Generally, Tcm are 

CD62Lhi CCR7hi, which leads to increased retention of these cells in lymphoid tissue. In 

contrast, Tem are CD62Llo CCR7lo, which endows them with the ability to circulate 

through non-lymphoid tissues more readily. Tem are also thought to be more “effector” 

like, possessing greater cytotoxicity (Wherry et al., 2003b; Wherry and Ahmed, 2004).  

 The signals that govern and shape memory CD8+ T cell development remain 

poorly understood. One factor that seems to play an important role in the generation of 

memory cells is the strength and duration of antigenic stimulus. This includes the 

strength of TCR:pepide-MHC interactions, as well as the collective input from co-

stimulatory, inhibitory and inflammatory signals (Iezzi et al., 1998; Tubo et al., 2013). For 

example, the cytokine milieu and inflammatory environment have been shown to 

influence the acquisition of CD8+ T cell memory properties (Plumlee et al., 2013). IL-

12R-deficiency or Tbet-deficiency in mice leads to more rapid development of memory 

characteristics during L. monocytogenes infection (Takemoto et al., 2006). The mTOR 

pathway, which is upregulated by TCR and co-stimulatory signals, also controls effector-

memory differentiation. LCMV-infected mice who received low does treatment with 
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rapamycin, an inhibitor of mTOR signaling, had enhanced generation of MPECs during 

the expansion phase as well as accelerated development of memory properties (Araki et 

al., 2009). Nevertheless, exactly how signals 1, 2 and 3 contribute to the differentiation 

of memory CD8+ T cells remains unclear. 

Figure 1.1 

 

Figure 1.1: Model of CD8+ T cell memory versus exhaustion during acute and 

chronic viral infection. Naïve CD8+ T cells become activated, leading to proliferation 

and differentiation into a pool of effector CD8+ T cells. During acutely-resolved infection, 

effector CD8+ T cells facilitate pathogen clearance after which most short-lived effector 

cells will die. Memory precursor cells will transition into a pool of long-lived memory 

CD8+ T cells that acquire cardinal memory properties, such as homeostatic proliferation 

and recall capacity. In contrast, failure to achieve pathogen clearance results in 

sustained antigen loads and inflammation that result in exhausted CD8+ T cell 

responses. Exhausted CD8+ T cells are characterized by loss of effector functions and 

antigen-driven proliferation.  
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1.3.3: CD8+ T cell Exhaustion and the Response to Chronic Infection and 

Cancer 

 During chronic infections, pathogen-specific CD8+ T cells are initially activated and 

gain effector functions; however these cells become progressively dysfunctional, or 

exhausted, over time (Zajac and Ahmed, 1998; Gallimore and Zinkernagel, 1998; 

Wherry, 2011). Exhaustion of CD8+ T cells during chronic infection is hierarchical, with 

early defects in proliferation, IL-2 production, and cytotoxicity, followed by the loss of 

TNF-α, IFN-γ, and β-chemokine production at late stages (Wherry et al., 2003a). 

Ultimately, exhausted CD8+ T cells can be physically deleted (Figure 1.1). The severity 

of CD8+ T cell exhaustion correlates with the strength and duration of antigen 

stimulation. For example, high levels of persistent epitope presentation during chronic 

LCMV infection in mice leads to severe exhaustion and physical deletion of 

corresponding epitope-specific CD8+ T cells. In contrast, in the same mice, epitopes that 

are presented at lower levels of stimulation induce less severe exhaustion of their 

respective epitope-specific CD8+ T cells (Wherry et al., 2003a). Viral load during chronic 

infection also correlates with the severity of CD8+ T cell exhaustion (Fuller and Zajac, 

2003; Wherry et al., 2003a; Virgin et al., 2009).  

 CD8+ T cell exhaustion was first described during chronic LCMV infection in mice; 

however, similar dysfunction has now been described in many human chronic infections, 

including HIV, HCV, HBV and others (Zajac and Ahmed, 1998; Gallimore and 

Zinkernagel, 1998; Moskophidis et al., 1993; Boni et al., 2007; Urbani et al., 2006). In 

addition, exhausted CD8+ T cells have also been identified in many cancer models, as 

well as in human cancer patients (Blank et al., 2004; Iwai et al., 2002; Muenst et al., 

2013, 2010). Along with loss of poly-functionality, exhausted CD8+ T cells have several 
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other defining features. These include the up-regulation of negative regulatory pathways, 

altered expression of key transcription factors and antigen-dependent maintenance.  

First, exhausted CD8+ T cells aberrantly express high levels of multiple inhibitory 

receptors (discussed below) (Crawford and Wherry, 2009; Wherry et al., 2007; 

Blackburn et al., 2009). Immunoregulatory cytokines, such as IL-10 and TGF-β, have 

also been shown to contribute to CD8+ T cell dysfunction during chronic infection 

(Brooks et al., 2006; Tinoco et al., 2009; Wherry, 2011). Second, exhausted CD8+ T 

cells have a unique gene expression profile that is regulated by altered expression of 

effector- and memory-associated transcription factors (Wherry et al., 2007; Chang et al., 

2014). For example, Blimp-1 is associated with terminal-differentiation of effector cells 

during acutely-resolved infection; however, elevated and sustained expression of Blimp-

1 is associated with dysfunction of exhausted CD8+ T cells (Rutishauser et al., 2009; 

Kallies et al., 2009; Shin et al., 2009). Dysregulation of the central transcription factor 

BATF also seems to occur during T cell exhaustion (discussed below) (Quigley et al., 

2010). In addition, Tbet and Eomes have been demonstrated to play critical roles in 

distinct subsets of exhausted CD8+ T cells during chronic infection (Kao et al., 2011; 

Paley et al., 2012). How these transcription factors cooperate to regulate gene 

expression and function of exhausted CD8+ T cells remains poorly understood. Finally, 

CD8+ T cell exhaustion is accompanied by the loss of classical memory properties, 

including poor antigen-independent maintenance and lack of responsiveness to IL-7 and 

IL-15 (Wherry et al., 2004). As a result, exhausted CD8+ T cells become “addicted” to 

antigen for survival and proliferation throughout the course of a chronic infection (Shin et 

al., 2007). Recent work has further characterized the mechanism responsible for long-

term proliferation of exhausted CD8+ T cells. Subsets of exhausted CD8+ T cells exist in 
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a progenitor-progeny relationship and cooperate to balance continued proliferation with 

maintenance of CD8+ T cells for many years. High levels of Tbet expression and low 

levels of Eomes expression maintain the progenitor subset of exhausted CD8+ T cells. 

These Tbethi cells have the ability to self-renew and also, through a process of extensive 

proliferation, give rise to progeny that are maintained by high expression of Eomes. In 

contrast to Tbethi progenitor cells, Eomeshi cells cannot self renew and are more 

terminally-differentiated. These subsets have distinct phenotypic and functional 

properties (discussed below) and both are critical for durability of exhausted CD8+ T cell 

responses (Paley et al., 2012). The signals that regulate the establishment and 

maintenance of this progenitor-progeny relationship during chronic infection are unclear. 

1.4: Inhibitory Receptors on Lymphocytes 

Co-stimulatory and inhibitory receptors are critical regulators of adaptive immune 

cell function. In general, signal 2 from co-stimulation fine tunes TCR signaling through 

positive signals from molecules, such as CD28, ICOS, 4-1BB, CD27 and many others 

(Chen and Flies, 2013). These co-stimulatory signals can augment survival, T cell 

function, enhance metabolic activity of developing effector T cells and generally promote 

sustained responses. However, negative signals from inhibitory receptors, such as 

CTLA-4, PD-1 and others, balance and tune these positive signals from TCR and/or co-

stimulation. A central role for inhibitory receptors is the regulation of autoimmunity and 

tolerance (Francisco et al., 2010). It is not surprising, therefore, that deficiencies in many 

inhibitory receptor pathways have been associated with autoimmunity in mice, including 

CTLA-4, PD-1 and others (Waterhouse et al., 1995; Tivol and and Sharpe, 2004; 

Nishimura and Honjo, 1998; Nishimura et al., 1999, 2001). Polymorphisms in inhibitory 

receptor genes are also associated with susceptibility to several human autoimmune 
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diseases, including diabetes, multiple sclerosis, and rheumatoid arthritis (James et al., 

2005; Zhang et al., 2012; Velázquez-Cruz et al., 2007). This negative regulatory system 

has been co-opted, and perhaps diversified, to temper the immune response to 

infections, tumors, allografts, and perhaps even allergens (Keir et al., 2008). In many 

settings, efficient negative regulation by inhibitory receptor pathways may be critical to 

restrain and terminate immune responses, particularly those that could result in 

immunopathology. However, inhibitory receptors have also been shown to hinder the 

effective immune responses needed to clear some pathogens and tumors.  

1.5: The Programmed Death-1 Pathway 

The Programmed Death-1 (PD-1) pathway consists of the inhibitory receptor PD-

1 and its ligands PD-L1 (B7-H1) and PD-L2 (B7-DC) (Ishida et al., 1992; Freeman et al., 

2000a; Latchman et al., 2001). PD-1, a member of the immunoglobulin (Ig) superfamily, 

is a 288 amino acid, type 1 transmembrane protein encoded by the PDCD1 gene. 

Structurally, PD-1 is composed of an N-terminal IgV-like domain, a short stalk region, a 

transmembrane domain and a cytoplasmic tail. The cytoplasmic tail of PD-1 contains two 

tyrosine-based signaling motifs: an immunoreceptor tyrosine-based inhibition motif 

(ITIM) followed by an immunoreceptor tyrosine-based switch motif (ITSM) (Chemnitz et 

al., 2004; Okazaki et al., 2001; Zhang et al., 2004; Riley, 2009). PD-1 is expressed 

during thymic development on immature CD4- CD8- thymocytes and is inducibly 

expressed in the periphery on T cells, B cells, some NK cells and myeloid cells upon 

activation (Agata et al., 1996; Nishimura et al., 1996). Induction of PD-1 expression 

occurs by multiple mechanisms in different cell types. Signaling via the T cell receptor 

(TCR) or B cell receptor (BCR) induces upregulation of PD-1 expression within a few 

hours on T cells and B cells, respectively (Agata et al., 1996; Nishimura et al., 1996). 
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PD-1 expression is also induced by common γ-chain cytokines, including IL-2, IL-7, IL-

15, and IL-12, or by IFN-α in some settings (Kinter et al., 2008; Terawaki et al., 2011).  

The expression profiles of the PD-1 ligands, PD-L1 and PD-L2, differ 

dramatically. PD-L1 is expressed ubiquitously by many cell types, including myeloid cells 

(DCs and macrophages), B cells, T cells, stromal cells and a range of non-hematopoietic 

cells. PD-L2 expression is restricted primarily to professional antigen-presenting cells, 

such as DCs, macrophages and some B cells (Eppihimer et al., 2002; Yamazaki and 

Yagita, 2002; Keir et al., 2008). Of note, both PD-L1 and PD-L2 have binding partners in 

addition to PD-1. PD-L1 can also interact with B7-1 and PD-L2 with RGMb (Butte et al., 

2007; Xiao et al., 2014). Inflammatory signals seem to regulate the expression of PD-L1 

and PD-L2 in most cell types. Type I and II interferons induce expression of PD-L1 via 

two interferon regulatory factor-1 (IRF-1) bindings sites upstream of the transcriptional 

start site (Lee et al., 2006; Liang et al., 2003). Cytokine signaling also regulates 

expression of PD-L1 and PD-L2 (Loke and Allison, 2003). 

1.5.1: PD-1 Signaling in T cells 

PD-1 primarily mediates its inhibitory effects via the local and transient 

intracellular attenuation of positive signals from activating receptors, including TCR/CD3 

and co-stimulatory receptors. Upon ligation, both the ITIM and ITSM within the 

cytoplasmic domain of PD-1 are phosphorylated, leading to recruitment of Src homology 

2 (SH2) domain-containing tyrosine phosphatases (Parry and Riley, 2005; Okazaki et 

al., 2001; Riley, 2009). In T cells, mutagenesis and microscopy studies have implicated 

the interaction between phosphorylated ITSM and the phosphatase SHP2 as critical for 

PD-1 inhibitory function (Parry and Riley, 2005; Yokosuka et al., 2012). SHP2 can then 
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mediate the dephosphoryation of signaling molecules downstream of TCR/CD3 and 

CD28, including CD3z, Zap70, and PKCθ (Parry and Riley, 2005; Yokosuka et al., 2012; 

Riley, 2009). PD-1 also inhibits both the PI3K-Akt and Ras-MEK-ERK pathways, which 

dramatically impacts glucose metabolism and cell cycle regulation (Parry and Riley, 

2005; Patsoukis et al., 2012). Recent work in primary CD4+ T cells has demonstrated 

that PD-1 inhibits cell cycle progression through the G1 phase by preventing the 

activation of cyclin-dependent kinases (Cdks). PD-1 signaling can directly affect the 

expression, phosphorylation and degradation of key cell-cycle regulators (Patsoukis et 

al., 2012). Importantly, CD28 and/or IL-2 can override some, but not all, of PD-1 

mediated inhibitory effects (Parry and Riley, 2005; Bennett et al., 2003; Freeman et al., 

2000a). Thus, PD-1 causes a broad, quantitative reduction in TCR/CD3 activation-

induced signal transduction and downstream gene expression. In addition, by interfering 

with co-stimulatory signaling pathways, PD-1 also hampers T cell metabolism, which has 

profound consequences on proliferation and survival.  

Recently, other mechanisms of PD-1 mediated inhibition in T cells have also 

been elucidated. Using integrated genomic approaches, PD-1 signaling was shown to 

upregulate the expression of BATF in exhausted T cells from humans chronically 

infected with HIV and mice chronically infected with LCMV. Over-expression of BATF in 

primary human T cells reduced proliferation and IL-2 secretion upon stimulation. 

Conversely, effector functions could be rescued in exhausted T cells by shRNA-

mediated silencing of BATF, further supporting an inhibitory function of BATF in T cells 

(Quigley et al., 2010). Thus, a mechanism of PD-1 inhibition may be to promote the 

aberrant upregulation of BATF expression in exhausted CD8+ T cells, which, in turn, has 

negative functional consequences. These findings suggest that inhibitory receptors not 
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only blunt positive signaling events from TCR and co-stimulatory receptors, but may also 

be capable of inducing transcriptional pathways that actively regulate immune cell 

function. Since BATF might not only act as a dominant negative regulator of normal AP-

1 activity, but also have unique transcriptional activity, this mechanism of inhibitory 

receptor activity also suggests the potential to influence cellular differentiation. 

1.5.2: Regulation of Effector and Memory CD8+ T cells by the PD-1 

Pathway 

 PD-1 and its ligands are rapidly upregulated upon activation and throughout the 

effector phase of immune responses to acutely-resolved infections. Following antigen 

clearance, however, expression of PD-1 decreases to low levels similar to that on naïve 

CD8+ T cells (Barber et al., 2006; Brown et al., 2010). The potent ability of PD-1 to 

modulate TCR and co-stimulatory signals suggests that the PD-1 pathway could have 

both short-term and/or long-term consequences on CD8+ T cell responses to acutely-

resolved infections. For example, PD-1 could regulate the activation and expansion of 

CD8+ T cells during the effector phase, as well as the differentiation of CD8+ T cells into 

long-lived memory cells. In addition, PD-1 pathway signals on CD8+ T cells, as well as 

other immune cells, could substantially alter the pathogenesis and outcome of infection.  

 Many groups have investigated the role of the PD-1 pathway in various settings of 

acutely-resolved infection using mice genetically deficient in PD-1 or PD-L1, as well as 

through the use of monoclonal blocking antibodies. In some cases, loss of PD-1 signals 

increases the effectiveness of anti-pathogen immune responses. For example, knocking 

out or blocking the PD-1 pathway in mice increases effector CD8+ T cell responses and 

survival following infection with Histoplasma capsulatum, rabies virus, human 

metapneumovirus (HMPV), influenza virus or respiratory syncytial virus (Lázár-Molnár et 
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al., 2008; Lafon and Wiendl, 2008; Erickson et al., 2012; Telcian et al., 2011). However, 

PD-1 pathway deficiency has also been shown to be detrimental in some settings of 

acutely-resolved infection. Although PD-1–deficient mice can more efficiently clear 

adenovirus from the liver than wild-type mice, they also develop more severe 

hepatocellular injury, likely due to an overaggressive adaptive immune response (Iwai et 

al., 2003). Other studies showed that the absence or blockade of PD-L1 reduced effector 

CD8+ T cell responses to L.  monocytogenes in mice. In these examples, PD-L1 on 

innate immune cells, such as DCs and macrophages, plays an important role in CD8+ T 

cell activation and survival (Rowe and Sing Way, 2008; Talay et al., 2009; Yamazaki and 

Okumura, 2005; Yao et al., 2009). Thus, the PD-1 pathway seems to restrict effector 

CD8+ T cell responses during acutely-resolved infection. In some settings, this prolongs 

pathogen clearance, however, can promote the survival of highly activated effector 

CD8+ T cells and prevent detrimental immunopathology.  

 The PD-1 pathway has also been shown to regulate the differentiation and 

development of memory CD8+ T cells following acutely-resolved infections. Similar to 

regulation of the effector response by PD-1, there is conflicting data about how PD-1 

pathway signals skew memory differentiation. Transient blockade of PD-1 signals can 

improve recall responses of memory CD8+ T cells in some settings (Erickson et al., 

2012, 2014). There is also evidence that genetic absence of PD-1 can skew memory 

CD8+ T cell differentiation towards either effector memory or central memory 

phenotypes in different contexts. Allie et al demonstrated that PD-1 pathway deficiency 

leads to enhancement of the quantity and quality of memory CD8+ T cell responses. In 

addition, these memory CD8+ T cells were skewed towards a central memory 

phenotype, with elevated expression of CD62L and CCR7 (Allie et al., 2011). In contrast, 
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other studies have demonstrated that PD-1 deficiency results in accumulation of effector 

memory CD8+ T cells that are CD62Llo CCR7lo (Charlton et al., 2013).  

 Thus, the precise role of PD-1 in regulating CD8+ T cell responses to acutely-

resolved infections remains unclear. It is likely that the strength and duration of antigen 

stimulation, as well as the amount of inflammation, induced by different pathogens 

dramatically impacts how PD-1 regulates CD8+ T cell effector and memory formation 

(Obar and Lefrançois, 2010; Joshi et al., 2007; Kaech and Ahmed, 2001). In addition to 

regulating CD8+ T cell responses, the PD-1 pathway also appears critical for prevention 

of immunopathology during many acutely resolved infections, particularly for pathogens 

that infect sensitive tissues, such as the lung, liver, and brain (Iwai et al., 2003; Barber et 

al., 2006; Frebel et al., 2012; Lafon and Wiendl, 2008). Chapter 2 in this thesis will 

investigate the role of PD-1 in effector and memory development to acutely-resolved 

viral infection.  

1.5.3: Regulation of Exhausted CD8+ T cells by the PD-1 pathway 

 In contrast to acutely-resolved infections where PD-1 expression is transient, 

expression of PD-1 is highly elevated and sustained on exhausted CD8+ T cells for 

many months or years during chronic infection and cancer (Barber et al., 2006; Freeman 

et al., 2006; Blank et al., 2005; Wherry, 2011). Expression of PD-L1 and PD-L2 also 

remains elevated in these settings of sustained inflammation, particularly in the tumor 

microenvironment or in organs that harbor high pathogen loads (Blank et al., 2005; 

Blackburn et al., 2010b). This high level of PD-1/PD-L expression has profound 

consequences on anti-viral and anti-tumoral CD8+ T cell responses, which, in turn, 

influences the outcome of chronic infections and cancers. For example, high PD-1 

expression on T cells has been shown to correlate with disease progression in several 
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human chronic infections, including HIV and HCV (Day et al., 2006; Freeman et al., 

2006; Urbani et al., 2006). In addition, expression of PD-L1 on tumors corresponds with 

poor prognosis in many cancer settings (Muenst et al., 2013, 2010; Kozako et al., 2009; 

Topalian et al., 2012). The profound negative consequences of high PD-1/PD-L 

expression on exhausted CD8+ T cells has been demonstrated in many settings of 

chronic infection and cancer. Barber et al demonstrated that in vivo antibody-mediated 

blockade of the PD-1 pathway during chronic LCMV infection in mice significantly 

improves the magnitude and functionality of virus-specific CD8+ T cell responses. 

Administration of anti-PD-L1 blocking antibody resulted in virus-specific CD8+ T cells 

with improved cytokine production and cytotoxicity, which corresponded with a 

significant decline in viral loads (Barber et al., 2006). Soon thereafter, several groups 

showed upregulation of PD-1 expression on exhausted CD8+ T cells during human 

chronic viral infections, such as HIV, HCV, and HBV, and demonstrated improved 

function of T cells following in vitro PD-1/PD-L1 blockade or in vivo blockade of the PD-1 

pathway in SIV-infected primates (Day et al., 2006; Freeman et al., 2006; Urbani et al., 

2006; Maini et al., 1999; Velu et al., 2009). Increased expression of PD-1 and its ligands 

also impairs the effector responses against other persisting pathogens, such as 

Helicobacter pylori, Mycobacterium tuberculosis, Schistosoma mansoni, Leishmania 

donovani, and Toxoplasma gondii (Wu et al., 2010; Jurado and Garcia, 2008; Lázár-

Molnár et al., 2010; Liang et al., 2006; Bhadra et al., 2011). In mouse tumor models, 

similar improvements in exhausted CD8+ T cell functions have been demonstrated with 

loss of PD-1/PD-L signals. For example, knocking out or blocking PD-1 increases anti-

tumor CD8+ T cell responses and improves survival in models of melanoma, renal cell 

carcinoma, and others (Blank et al., 2004, 2005; Okazaki et al., 2013). Thus, the PD-

1/PD-L pathway is a central negative regulator of exhausted CD8+ T cells during 
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persisting infections and cancer. However, the mechanisms by which PD-1 regulates the 

development and maintenance of exhausted CD8+ T cells remain unclear. Chapter 3 of 

this thesis will investigate the role of PD-1 in the induction of CD8+ T cell exhaustion.  

 Recent work has begun to elucidate the nuances of PD-1 regulation of exhausted 

CD8+ T cells (Blackburn et al., 2008; Paley et al., 2012; Kao et al., 2011). For example, 

Tbethi and Eomeshi subsets of exhausted CD8+ T cells express different levels of PD-1 

during chronic infection. Tbethi progenitor cells express intermediate levels of PD-1. 

These PD-1int Tbethi cells reside mainly in lymphoid tissues and maintain some ability to 

produce cytokines. While they possess low intrinsic turnover, PD-1int Tbethi cells can 

robustly proliferate to give rise to a large population of CD8+ T cells that express high 

levels of PD-1 and the transcription factor Eomes. PD-1hi Eomeshi cells abundantly 

populate non-lymphoid organs, co-express several other inhibitory receptors and, while 

they are less efficient cytokine producers, maintain the ability to kill. The cooperative 

balance between PD-1int Tbethi progenitor cells and PD-1hi Eomeshi progeny cells is 

critical for long-term maintenance of CD8+ T cell responses to chronic LCMV infection in 

mice (Paley et al., 2012).  Importantly, while PD-1int Tbethi cells are partially rescued by 

in vivo PD-1/L1 blockade, PD-1hi Eomeshi cells appear more terminally-differentiated and 

unresponsive to in vivo PD-1 pathway blockade (Blackburn and Wherry, 2008). Similar 

subsets of Eomeshi and Tbethi CD8+ T cells have also been identified during chronic 

HCV and HIV infections (Paley et al., 2012; Buggert et al., 2014). How PD-1 regulates 

these different subsets of exhausted CD8+ T cells remains unclear. Chapter 3 in this 

thesis will extend our understanding of the role of PD-1 on Tbethi and Eomeshi cells. 
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1.5.4: Clinical Use of PD-1 Pathway Blockade 

 Recent clinical trials have extended many of these observations from mouse 

models to humans, demonstrating a potent ability of PD-1 pathway blockade to revitalize 

anti-tumor immunity in late-stage cancer patients. Phase 1 clinical trials with a fully 

human IgG4 anti-PD-1 antibody (nivolumab: Bristol-Myers Squibb) began in 2006. 

Tumor regression was observed by 18% of patients with non-small-cell lung cancer, 

28% of patients with melanoma, and 27% of patients with rencal cell carcinoma, with 

very few immune-related toxicities observed (Topalian et al., 2012). Similar results were 

obtained around the same time in clinical trials using a fully human antibody against PD-

L1 (Brahmer et al., 2012). Clinical responses were associated with infiltration of 

lymphocytes into metastatic tumors and with the expression of PD-L1 by tumors 

(Brahmer et al., 2012; Topalian et al., 2012; Pardoll, 2012). Importantly, these PD-1 

pathway inhibitors demonstrated the greatest anti-tumor activity of any 

immunotherapeutic approach tested in the clinic for the past 30 years. Several 

antibodies targeting PD-1 and/or PD-L1 are currently in the clinical trial pipeline 

(ClinicalTrials.gov). Recently, Keytruda (pembrolizumab: Merck) became the first PD-1 

inhibitor to be approved by the FDA for use in patients with advanced melanoma 

(FDA.gov).  

1.6: The Lymphocytic Choriomeningitis Virus Model 

 The lymphocytic choriomeningitis virus, or LCMV, model of infection has been 

invaluable in the research community as a tool to study viral persistence, host-pathogen 

interactions, and anti-viral immunology. LCMV is an enveloped, ambisense RNA virus in 

the Arenaviridae family.  The natural reservoir of LCMV is the common mouse, Mus 
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musculus.  However, LCMV can cause disease in humans who are exposed to an 

infected rodent (Zhou et al., 2012; De La Torre, 2009). LCMV enters cells via binding of 

the GP-1 protein to its receptor, α-dystroglycan (Cao et al., 1998; Kunz, 2009). Due to 

the broad tissue expression of α-dystroglycan, LCMV can infect multiple cell types and, 

as a result, causes a systemic infection in mice. Despite widespread tissue distribution, 

LCMV is a non-cytopathic virus, which means that in naturally-infected mice there is 

minimal or no pathology associated with infection. In contrast, during experimental 

infection with LCMV strains, pathology is strictly immune-mediated (Zhou et al., 2012; 

Frebel et al., 2012; Borrow and Oldstone, 1999; Oldstone, 2006). There are multiple 

strains of LCMV that cause distinct courses of infection in mice. Here, the primary strains 

of interest are LCMV Armstrong (Arm), which causes an acutely-resolved infection in 

mice, and LCMV clone 13, which causes a systemic, chronic infection in mice 

(Matloubian and Ahmed, 2003; Ahmed et al., 1984; Dutko and Oldstone, 2011). 

Importantly, CD8+ T cell anti-viral activity is critical for the control of both of these strains 

of LCMV. For example, loss of IFN-γ or perforin results in lack of viral clearance and/or 

control during LCMV infection (Walsh et al., 1994; Dorman et al., 1999; Bartholdy et al., 

2000). Dominant epitopes of LCMV that are recognized by CD8+ T cells are conserved 

between LCMV Armstrong and clone 13, allowing for analysis of CD8+ T cells with the 

same TCR specificity in these two different infection scenarios (Matloubian et al., 1990; 

Butz and Bevan, 1998; van der Most et al., 1998). Thus, LCMV infection of mice is an 

ideal model for the investigation of anti-viral CD8+ T cell responses.  
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1.6.1: LCMV Strains: Armstrong and clone 13 

 Infection with LCMV Arm causes an acutely-resolved infection in 

immunocompetent mice, with viral replication in the spleen, liver and kidney for 

approximately 10 days. Clearance of virus is associated with a potent anti-viral CD8+ T 

cell response that generates robust T cell memory (Salvato et al., 1988; Wherry et al., 

2003a; Dutko and Oldstone, 2011). A variant of LCMV Arm, known as LCMV clone 13, 

leads to the establishment of a chronic infection in mice.  LCMV clone 13 differs from 

LCMV Arm by only 2 amino acid changes, a single change in the polymerase protein 

and a single change in the GP-1 protein. Alterations in polymerase lead to enhanced 

replication of LCMV in dendritic cells, as well as increased viral titers in macrophages 

(Sevilla et al., 2000; Cao et al., 1998). In addition, the mutation in GP-1 results in higher 

affinity binding of LCMV to α-dystroglycan, which causes increased early infection of 

follicular dendritic cells and more severe destruction of lymphoid architecture (Mueller et 

al., 2007; Matloubian et al., 1990; Borrow and Oldstone, 1995). Infection of mice with 

LCMV clone 13 leads to systemic viral replication, with viremia lasting 2-3 months and 

viral reservoirs persisting in many tissues for the life of the mouse (Oldstone, 2009; 

Wherry et al., 2003a). CD8+ T cell responses to LCMV clone 13 become exhausted over 

time and are also diminished in magnitude compared to LCMV Arm (Zajac and Ahmed, 

1998; Gallimore and Zinkernagel, 1998). Loss of CD4+ T cell help leads to life-long 

viremia during LCMV clone 13 and, as a result, more severe CD8+ T cell exhaustion 

(Matloubian et al., 1994; Blackburn et al., 2009). Chapter 3 will utilize LCMV clone 13 as 

a model of chronic viral infection. 
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1.7: Influenza Virus Infection 

 Influenza A virus is a pathogen of significant human public health concern, as 

thousands of deaths occur from influenza infection each year (CDC, 2013). Influenza A 

belongs to the Orthomyxoviridae family and contains a negative-sense, segmented RNA 

genome. Subtyping of influenza strains is determined by properties of the two major 

influenza surface glycoproteins: haemagglutinin (HA) and neuraminadase (NA) (Bouvier 

and Lowen, 2010). Both proteins play important roles in the binding of influenza to its 

receptor, sialic acid, and entry into cells (Medina and García-Sastre, 2011; Mueller et al., 

2010). Mice are not a natural host of influenza; however, several strains have been 

adapted by serial passage for use in mouse models. Intranasal infection of mice leads to 

infection of epithelial cells in the bronchi and alveoli. As influenza is a cytopathic virus, 

infection of epithelial cells leads to severe lung damage and pneumonitis (Rutigliano et 

al., 2014; Askovich et al., 2013; Bouvier and Lowen, 2010). Pathogenesis in mice can be 

monitored by weight loss, decreased blood oxygen saturation and, ultimately, survival 

(Blazejewska et al., 2011; Laidlaw et al., 2013; Askovich et al., 2013).  Studies have 

shown that many arms of the immune response, including CD8+ T cells, CD4+ T cells, B 

cells, and NK cells, are important for viral clearance during primary infection, as well as 

for protection against secondary infection (Laidlaw et al., 2013). The focus of these 

studies is on CD8+ T cell responses to influenza infection. Following infection of lung 

epithelial cells, respiratory dendritic cells (DCs) carrying viral antigen drain to the 

mediastinal lymph node where CD8+ T cell priming occurs (Kim and Braciale, 2009; 

Yoon et al., 2007).  Some CD8+ T cell priming also likely occurs in the spleen, mediated 

by DCs migrating from the lungs. Activated CD8+ T cells then migrate back to the 
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infected lung where lung-resident DC populations sustain effector T cell responses that 

mediate viral clearance (McGill et al., 2008; Kim and Braciale, 2009). 

1.7.1: Influenza Virus Mouse Model Strains: PR8 and X31 

 While many mouse adapted strains of influenza virus exist, these studies focus on 

the viruses PR8 and X31. PR8 (A/Puerto Rico/8/1934) is an H1N1 virus that was 

originally derived from a human influenza isolate. X31, in contrast, is an H3N2 virus with 

6 of the internal genes of PR8 and the HA and NA genes derived from A/Aichi/2/1968 

(Bouvier and Lowen, 2010; Medina and García-Sastre, 2011; Mueller et al., 2010).  

Intranasal infection with X31 virus leads to approximately 20-25% weight loss by day 4-

5; however, all mice will recover and survive the infection. In contrast, PR8 infection 

typically leads to death of mice by day 5-6 post-infection. Consistent with these disease 

outcomes, PR8 virus infection was shown to result in 4x higher viral load in the lungs of 

mice at 18 hours post-infection compared to X31 virus infection (Askovich et al., 2013; 

Bouvier and Lowen, 2010; Laidlaw et al., 2013). In the following studies, recombinant 

PR8 and X31 viruses were utilized that contain the GP33-41 epitope of LCMV within the 

NA stalk region. These recombinant influenza viruses induce robust GP33-specific CD8+ 

T cell responses in mice (Mueller et al., 2010).  
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CHAPTER 2: PD-1 regulates the development and function of 

memory CD8+ T cells following respiratory viral infection 

Equal contribution by Jernej Godec and Arlene Sharpe, Ph.D. 

 

2.1: Introduction 

The development of functional effector and memory CD8+ T cells following acute 

infection or vaccination requires the coordinated integration of key signals from antigen-

TCR (signal 1), co-stimulation (signal 2) and inflammation (signal 3) (Curtsinger et al., 

1999; Smith-Garvin et al., 2009; Acuto and Michel, 2003). The quantity and quality of 

signals 1, 2, and 3 can impact CD8+ T cell activation and the subsequent development 

of memory, but exactly how such signals regulate memory CD8+ T cell differentiation is 

unclear (Iezzi et al., 1998; Tubo et al., 2013; Obar and Lefrançois, 2010). In particular, 

signal 2 from co-stimulatory and/or co-inhibitory pathways has come under intense focus 

given the recent application of antibodies blocking co-inhibitory receptors, such as PD-1, 

for the treatment of cancer and chronic infections (Pardoll, 2012). Disrupting the PD-

1:PD-L pathway during chronic infections and cancer can enhance T cell activity and 

improve outcomes (Barber et al., 2006; Topalian et al., 2012; Okazaki et al., 2013). In 

addition, clinical trials with monoclonal antibodies targeting this pathway have shown 

impressive 30–50% response rates in melanoma and multiple other cancers, including 

renal cell and non-small cell lung carcinoma (Brahmer et al., 2012; Topalian et al., 

2012). Despite the clinical promise of PD-1 pathway blockade, how this pathway 

regulates the formation and/or differentiation of CD8+ T cell memory remains poorly 

understood.  
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In contrast to the well-established role for PD-1 inhibitory functions in mediating T 

cell exhaustion, there are conflicting data about the role of the PD-1 pathway in 

controlling effector and memory CD8+ T cell differentiation during the acute phase of 

infection. Lack of PD-1:PD-L signals during primary infection with rapidly disseminating 

strains of LCMV results in lethal T cell-mediated immunopathology during the first week 

of infection, consistent with an inhibitory role for this pathway during acute infection 

(Frebel et al., 2012; Barber et al., 2006). Absence of PD-1 signals was also reported to 

enhance the establishment of CD8+ T cell memory and/or skew T cells toward central 

memory in some cases (Allie et al., 2011). In addition, the secondary expansion of 

unhelped memory CD8+ T cells during acute re-challenge could be improved by the 

blockade of PD-1:PD-L signals (Fuse et al., 2009). Other studies, in contrast, have 

reported that loss or blockade of the PD-1 pathway during acute infection can diminish T 

cell responses, suggesting a positive role for PD-1:PD-L interactions in other settings 

(Rowe and Sing Way, 2008; Talay et al., 2009; Yao et al., 2009). The reasons for these 

discrepancies and the precise role of the PD-1 pathway in the development of effector 

and memory CD8+ T cells following acute infections, therefore, remains incompletely 

understood.  

One setting where the PD-1:PD-L pathway may be particularly important is in the 

respiratory tract. During virulent LCMV infection in PD-1 KO mice, damage to the 

pulmonary endothelium ultimately causes respiratory failure and contributes to mortality 

(Frebel et al., 2012). In addition, while human anti-PD-1 cancer immunotherapy has 

been generally well tolerated, several incidents of pneumonitis have raised concerns 

about respiratory complications of PD-1 blockade (Brahmer et al., 2012; Topalian et al., 

2012). In mouse models of respiratory infections, PD-1:PD-L signals also have been 

implicated in regulating immune responses. PD-1 expression is upregulated on 
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responding CD8+ T cells during highly pathogenic influenza virus infection in mice and 

during human metapneumovirus (HMPV) infection. Furthermore, increased PD-L1 and 

PD-L2 expression in the respiratory tract during infection and inflammation may enhance 

signals through this pathway (Erickson et al., 2012; Keir et al., 2008). Thus, in the 

respiratory tract, PD-1:PD-L interactions have the potential to inhibit CD8+ T cell 

function, which may limit pulmonary tissue damage, but could also impair optimal 

pathogen control (Erickson et al., 2012). A better understanding of the consequences of 

PD-1 signals during acute respiratory infections is needed to determine how PD-1 

controls the balance between the generation of protective immunity and 

immunopathology. 

To address these issues we interrogated the role of the PD-1 pathway in effector 

and memory CD8+ T cell differentiation during influenza virus infection in the respiratory 

tract. Specifically, we investigated how disruption of PD-1:PD-L interactions impacted 

the induction, stability, and longevity of effector and memory CD8+ T cells following 

respiratory infection of mice lacking PD-1 (PD-1 KO) or both PD-L1 and PD-L2 (PD-

L1/L2 DKO). Lack of PD-1:PD-L signals led to a striking compromise in CD8+ T cell 

memory, including reduced memory CD8+ T cell numbers and impaired secondary 

responses. This defect in influenza-specific CD8+ T cell memory in PD-1 KO and PD-

L1/L2 DKO mice was associated with increased CD8+ T cell proliferation and expansion 

early during infection, as well as increased contraction and loss of developing memory 

CD8+ T cells during the effector to memory transition compared to WT mice. These 

effects were cell intrinsic because PD-1 KO CD8+ T cells adoptively transferred to WT 

mice had similar defects. These results are consistent with a role for PD-1:PD-L signals 

in limiting CD8+ T cell activation during acute infection. However, these data also 

indicate a crucial and previously unappreciated role for PD-1:PD-L signals in tempering 
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the strength of initial activation to promote or “tune” optimal CD8+ T cell memory 

formation. This tuning function of the PD-1 pathway during acute infection has 

implications for clinical use of PD-1/PD-L1 blockade, including important effects on the 

generation of CD8+ T cell memory following PD-1 cancer immunotherapy. This novel 

tuning function also suggests that it may be possible to exploit the PD-1:PD-L pathway 

to optimize immune memory following acute infection or vaccination 

2.2: Methods 

2.2.1: Mouse Strains 

Wild-type C57BL/6 mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME). C57BL/6 mice lacking PD-1 (PD-1 KO) or both PD-1 ligands, PD-L1 and 

PD-L2 (PD-L1/L2 DKO), have been described previously (Keir et al., 2007a, 2006). PD-1 

KO P14 mice were generated by crossing germline PD-1 KO mice to P14 TCR 

transgenic mice (Pircher et al., 1989). PD-1 KO (Ly5.2+ or Ly5.2+Ly5.1+) and WT 

(Ly5.2+Ly5.1+ or Ly5.2+) P14 cells were isolated from peripheral blood and transferred 

i.v into C57BL/6 recipient mice at a 1:1 ratio (500 WT P14 cells:500 KO P14 cells). All 

mice were maintained in a pathogen-free facility and used according to institutional and 

National Institutes of Health guidelines. Harvard Medical School and the University of 

Pennsylvania School of Medicine are accredited by the American Association of 

Accreditation of Laboratory Animal Care. 

2.2.2: Viral Infection 

For primary infection, 6 to 12 week old mice were infected with recombinant 

influenza virus expressing the LCMV GP33-41 peptide (X31-GP33; 1.6x105 TCID50) 



30 
 

intranasally (i.n.). For re-challenge infection, mice were infected with PR8-GP33 (10LD50 

i.n) at least 35 days after primary infection. Recombinant influenza strains containing the 

LCMV GP33-41 epitope inserted into the neuraminidase protein stalk region were provided 

by Dr. Richard Webby (St. Jude Children’s Research Hospital, Memphis, TN) (Decman 

et al., 2010; Mueller et al., 2010). These recombinant influenza strains replicate and 

exhibit pathogenicity similar to their non-recombinant counterparts. Prior to infections, 

mice were anesthetized by intraperitoneal (i.p.) injection of 2.5% Avertin (Sigma-Aldrich). 

Viral titers in lungs were determined by quantitative real-time PCR as described (Laidlaw 

et al., 2013). 

2.2.3: Isolation of Cells from Tissues  

Mouse lungs were mechanically disrupted in a GentleMACS Tissue Dissociator 

(Miltenyi Biotech) and incubated with 2 mg/ml collagenase D (Worthington Biochemical 

Corp.), and 3 µg/ml DNase I (Sigma) at 37°C for 30 min. Red blood cells (RBCs) were 

lysed using ACK lysis buffer (Lonza). The resulting single cell suspensions were filtered 

through a 70 mM cell strainer (BD Falcon). Spleen and lymph nodes were homogenized 

using a cell strainer and RBCs lysed with ACK lysing buffer. Single cell suspensions 

were stained, fixed with 2% paraformaldehyde (Electron Microscopy Sciences) and 

analyzed on an LSR II (BD Biosciences). For intracellular cytokine staining (IFN-γ and 

TNF-α), samples were stimulated with 0.5 µg/ml influenza A NP366-374 peptide or GP33-41 

peptide (both Genscript) or no peptide for 5 hours at 37°C in the presence of GolgiPlug 

(BD Biosciences), and then surface stained, fixed/permeabilized, and intracellularly 

stained using the Cytofix/Cytoperm kit (BD Biosciences), as directed by the 

manufacturer. For live/dead dye analysis, samples were washed in PBS (Gibco) and 
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stained with Live/Dead green fluorescent reactive dye (Invitrogen) in PBS at room 

temperature for 15 minutes, washed twice with PBS and then surface stained for 

analysis. 

2.2.4: Antibodies, Tetramers, and Flow Cytometry 

Antibodies to CD8 (53-6.7), CD44 (IM7), IFN-γ (XMG1.2), TNF-α (MP6-XT22), 

CD127 (SB/199), CD122 (TM-b1), CD62L (MEL-14) CD45.1 (A20), CD45.2 (104), 

CD103 (2E7) were purchased from Biolegend. Antibody to Ki-67 was purchased from 

BD Biosciences. The KLRG1 mAb (2F1) was purchased from Abcam. Poly-caspase 

analysis was performed with Flica Vybrant FAM Poly Caspases Assay Kit (Life 

Technologies). Dead cell exclusion was performed by live/dead fluorescent reactive dye 

(Invitrogen) staining. Tetramers for GP33-41, NP366-374, and PA224-233 were prepared and 

used as described (Laidlaw et al., 2013). Flow cytometry data were acquired on BD LSR 

II flow cytometer and analyzed using FlowJo software (Tree Star). 

2.2.5: BrdU Treatment and Detection 

Animals were treated with 2mg of BrdU (Sigma-Aldrich) i.p. at the indicated time 

prior to tissue harvest and analysis. BrdU incorporation was assessed by the BrdU Flow 

Kit per manufacturer’s instructions (BD Biosciences). 

2.2.6: Statistical Analysis 

Data were analyzed using Student’s t-test for normally distributed data and p 

values <0.05 were considered significant.  
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2.3: Results 

2.3.1: Virus-specific CD8+ T cell memory development is impaired in mice 

lacking PD-1 signals 

To investigate the impact of PD-1 pathway deficiency on CD8+ T cell memory 

development following acute respiratory viral infection, we infected WT, PD-1 KO or PD-

L1/L2 DKO mice with influenza virus X31-GP33 (H3N2) and examined virus-specific 

CD8+ T cells 60-85 days later (Figure 2.1A). The frequency and total number of virus-

specific memory CD8+ T cells were reduced in the lungs of PD-L1/L2 DKO (Figure 2.1B) 

and PD-1 KO mice (Figure 2.1C). While true for all responses examined, the magnitude 

of the difference was greater for subdominant CD8+ T cell responses (PA224-specific and 

GP33-specific) than for immunodominant NP366-specific responses (Figure 2.1B and 

2.1C). A similar decrease in CD8+ T cell responses was observed in the spleen, 

mediastinal (lung-draining) lymph node (dLN), and bone marrow (data not shown). While 

the expression of KLRG1, CD127 (IL-7R), CD103, and CD69 was similar between WT 

and PD-L1/L2 DKO mice (Figure 2.2A), fewer memory CD8+ T cells from the DKO mice 

produced IFN-γ and TNF-α upon ex vivo re-stimulation with influenza peptides (Figure 

2.2B).  
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Figure 2.1 

 

Figure 2.1: Magnitude of CD8+ T cell memory response is impaired in PD-1 

pathway-deficient mice. (A) Schematic of experimental design. (B) Representative 

plots (left) show the frequency of H-2Db PA224+ CD8+ T cells in the lungs of WT or PD-

L1/L2 DKO mice on d60+ p.i. with X31-GP33. Numbers indicate percent CD8+ T cells 

positive for PA224+ tetramer. Summary of frequencies of CD8+ T cells specific for other 

influenza epitopes is shown to the right. (C) Representative plots (left) show the 

frequency of H-2Db PA224+ CD8+ T cells in the lungs of WT or PD-1 KO mice on d60+ 

p.i. with X31-GP33. Numbers indicate percent CD8+ T cells positive for PA224+ 

tetramer. Summary of frequencies of CD8+ T cells specific for other influenza epitopes is 

shown to the right. 
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Figure 2.2  

 

Figure 2.2: Quality of CD8+ T cell memory is impaired in PD-1 pathway-deficient 

mice. (A) Representative plots of flow-cytometric analyses of expression of memory and 

resident-memory markers on PA224+ CD8+ T cells in the lungs of WT or PD-L1/L2 DKO 

mice on d60+ p.i. with X31-GP33 (B) Summary of fraction of cytokine-producing CD8+ T 

cells from the lung following ex vivo stimulation with NP366 peptide on d60+ p.i.  
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A hallmark property of memory T cells is the ability to mount robust secondary 

responses upon re-infection. Recent studies suggest that disruption of PD-1:PD-L 

interactions during secondary challenge may improve CD8+ T cell recall responses 

(Erickson et al., 2012, 2014). However, it is unclear whether PD-1:PD-L interactions 

during primary viral infection promote or limit the formation of memory CD8+ T cell 

populations capable of mounting potent secondary responses. To test the ability of 

memory CD8+ T cells that developed without the PD-1:PD-L pathway to mount 

secondary responses, we re-challenged X31-GP33 immune WT, PD-1 KO and PD-

L1/L2 DKO mice with the heterotypic H1N1 strain of influenza virus, PR8-GP33. Since 

neutralizing antibodies do not cross-react between these viruses, memory CD8+ T cells 

play a central role in recall responses and protective immunity in this setting (Flynn et al., 

1998; Mueller et al., 2010). PD-1 KO and PD-L1/L2 DKO mice had significantly 

increased viral titers in the lung compared to WT mice 3.5 days (d3.5) following re-

challenge (Figure 2.3A). This defect in viral control was accompanied by more severe 

weight loss in PD-1 KO and PD-L1/L2 DKO mice, while WT mice showed minimal 

morbidity (Figure 2.3B). Failure to efficiently control re-challenge in PD-1 KO and PD-

L1/L2 DKO mice was associated with lower frequencies and absolute numbers of 

influenza-specific CD8+ T cells in the lung at d3.5 post re-challenge (Figure 2.3C and 

data not shown). Furthermore, fewer CD8+ T cells from PD-L1/L2 DKO mice produced 

cytokines upon influenza peptide stimulation at d3.5 post re-challenge (Figure 2.3D). By 

d7 post re-challenge, however, the frequencies and numbers of virus-specific CD8+ T 

cells in the lungs were comparable in WT and PD-L1/L2 DKO mice and virus was 

cleared (data not shown).  Thus, the defect in memory CD8+ T cell responses in PD-

L1/L2 DKO mice manifests as a delay in the kinetics of viral clearance. This change in 

protective immunity is associated with reduced ability to mount a robust influenza-
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specific secondary CD8+ T cell response. Taken together, these data indicate a key role 

for the PD-1 pathway in regulating the development of optimally functional CD8+ T cell 

memory.  

Figure 2.3 

 

Figure 2.3: Defective recall capacity of memory CD8+ T cells in PD-1 pathway 

deficient mice. (A) Influenza viral titers in the lung at d3.5 p.i. and longitudinal weight 

loss (B) in X31-GP33 immune WT and PD-L1/L2 DKO mice following re-challenge with 

PR8-GP33. (C) Frequencies of indicated tetramer+ CD8+ T cells in lungs of X31-GP33 

immune WT and PD-L1/L2 DKO mice at d3.5 following re-challenge. (D) Representative 

plots of intracellular cytokine staining (ICS) for IFN-γ and TNF-α production in lung CD8+ 

T cells from (D) stimulated ex vivo with NP366. Fraction of responding cells summarized 

to the right. Data are representative of 3-5 independent experiments with 4-5 mice per 

experiment. 
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2.3.2: The PD-1 pathway regulates the memory CD8+ T cell compartment 

by controlling initial CD8+ T cell expansion and contraction. 

Given the ability of PD-1 to modulate T cell activation, we hypothesized that 

alterations in CD8+ T cell memory may stem from early changes in T cell priming and 

effector differentiation. To test this possibility, we compared influenza-specific CD8+ T 

cell responses at the height of the primary response, d8-10 post-infection, in WT and 

PD-L1/L2 DKO mice infected with X31-GP33 virus. While all mice had similar 

frequencies of influenza-specific effector CD8+ T cells in the lung (Figure 2.4A), there 

was a significant increase in the total number of CD8+ T cells in PD-L1/L2 DKO mice, 

consistent with a negative regulatory role for this pathway (Figure 2.4B). However, this 

enhanced expansion of CD8+ T cells in PD-L1/L2 DKO mice was associated with a 

subsequent decrease in the frequency of influenza-specific CD8+ T cells in these mice 

during the contraction phase, d15-20 p.i. (data not shown). While there was no 

significant difference in total numbers at d15-20 (data not shown), the ratio of DKO:WT 

virus-specific CD8+ T cells began to dramatically decline after d10 p.i. (Figure 2.4C). Of 

note, the immunodominant NP366-specific CD8+ T cell responses displayed slower 

kinetics in this deterioration (Figure 2.4C). Thus, while PD-1 pathway deficiency led to 

an initial increase in virus-specific CD8+ T cells, there was an erosion of virus-specific 

CD8+ T cell responses in PD-L1/L2 DKO mice during the establishment of 

immunological memory. Analysis of CD8+ T cell functionality at d10 p.i. revealed no 

significant differences in the frequency of cytokine-producing cells in the lungs of WT, 

PD-1 KO or PD-L1/L2 DKO mice or the quality of the cytokine response on a per cell 

basis (Figure 2.4D), suggesting that the major effect of removing PD-1 signals was 

enhanced numerical expansion. These findings suggest that PD-1 negatively regulates 



38 
 

CD8+ T cell effector differentiation predominantly by limiting overall CD8+ T cell 

expansion. Furthermore, these data also suggest suboptimal transition to memory 

without PD-1 or PD-L1/L2 signals.  

Figure 2.4 

 

Figure 2.4: Altered effector CD8+ T cell expansion and contraction in the absence 

of PD-1 pathway signals. (A, B) Frequencies (A) and numbers (B) of indicated 

tetramer+ CD8+ T cells in the lungs of WT and PD-L1/L2 DKO mice at d10 after primary 

X31-GP33 infection. (C) Ratios of numbers of influenza-specific CD8+ T cells in PD-

L1/L2 DKO vs. WT mice over time after primary X31-GP33 infection. (D) Representative 

plots of intracellular cytokine staining for IFN-γ and TNF-α production in lung CD8+ T 

cells following ex vivo stimulation with NP366. Representative plots gated on CD8+ 
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CD44+ T cells (left) and summary of fraction of percent responding cells (right) from 5 

mice per group. 

2.3.3: Increased turnover of CD8+ T cells in the absence of PD-1 signaling.  

To better understand the differences in effector and memory CD8+ T cell 

development in the absence of PD-1 signals, we performed transcriptional profiling of 

influenza-specific CD8+ T cells from the lungs of WT and PD-L1/L2 DKO mice at d8 p.i. 

We focused these analyses on subdominant (PA244 and GP33) influenza-specific CD8+ 

T cells, since profound phenotypic and functional differences were observed in these 

populations at d8 p.i. Gene set enrichment analysis (GSEA) using Gene Ontology (GO) 

was used to elucidate pathways and biological processes uniquely regulated in the 

absence of PD-1 signals. Most of the significantly enriched pathways (p<0.001, 

FDR<0.001) were related to cell division (Figure 2.5A). We further analyzed three 

representative pathways enriched in the WT cells – mitosis, spindle assembly, and DNA 

replication (Figure 2.5B). Among those genes highly over-expressed in WT relative to 

PD-L1/L2 DKO CD8+ T cells, the majority were members of one or more of these 

enriched pathways (Figure 2.5C). These data suggest a direct link between PD-1:PD-L 

signals and control of cell cycle during early activation and proliferation of virus-specific 

CD8+ T cells during influenza infection.  

 

 

 

 

 



40 
 

Figure 2.5 

 

Figure 2.5: Altered expression of genes representing cell division pathways in WT 

versus PD-L1/L2 DKO virus-specific CD8+ T cells. (A) Top and bottom 250 

differentially expressed genes in subdominant-epitope specific WT and DKO CD8+ T 

cells ranked by signal-to-noise values following filtration to top 10% of genes with 

highest mean absolute deviation across samples. Membership of genes in the three 

representative GO terms is shown on the right. (B) Significantly enriched (FDR<0.01) 

gene sets in WT CD8+ T cells clustered based on the extent of gene member overlap 

and annotated for the biological states/processes they represent. (C) Representative GO 

gene sets enriched in transcriptional profiles from virus-specific CD8+ T cells from the 

WT versus PD-L1/L2 DKO mice. Gene expression microarray was performed to 

compare subdominant influenza epitope-specific lung CD8+ T cells isolated from WT 

and PD-L1/L2 DKO mice at d8 following primary X31-GP33 infection. 
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Based on GSEA alone, it is challenging to determine whether enrichment of 

replication and cell division pathways in CD8+ T cells from WT versus PD-L1/L2 DKO 

mice reflects altered proliferation or if these gene expression changes could simply be 

due to differences in the contraction of WT versus DKO CD8+ T cell responses. To 

directly investigate the mechanism responsible for the quantitative differences in early 

WT and PD-1 pathway deficient CD8+ T cell responses, we compared proliferation and 

cell death of influenza-specific CD8+ T cells on d6-8 p.i. in the lung, spleen, and dLN of 

WT and PD-L1/L2 DKO mice. At d8 p.i., more influenza-specific CD8+ T cells  in the 

spleens of PD-L1/L2 DKO mice expressed the cell cycle protein Ki-67 compared to WT 

mice, suggesting increased proliferation in the absence of PD-1 signaling (Figure 2.6A). 

These findings are consistent with the higher cell numbers observed in the lung of PD-

L1/L2 DKO mice at d10 p.i. (Figure 2.4B). However, significantly fewer virus-specific 

CD8+ T cells were Ki-67+ in the lungs of PD-L1/L2 DKO mice (Figure 2.6A).  These 

findings suggest that the increased number of CD8+ T cells in the lungs of PD-1 KO and 

PD-L1/L2 DKO mice at the early stages of infection is largely due to robust proliferation 

in lymphoid organs and homing/trafficking of these CD8+ T cells to the lung.  

Interestingly, PD-L1/L2 DKO mice had a higher frequency of influenza-specific CD8+ T 

cells that were positive for active caspase staining (FLICA) in the lung, but not in the 

spleen on day 8 p.i. (Figure 2.6B and data not shown) compared to WT mice, 

consistent with the increased contraction of the DKO populations. This increase in 

apoptosis of PD-L1/L2 was further confirmed by Annexin V staining in the lung (data not 

shown). Thus, the PD-1 pathway plays an important role in tempering early CD8+ T cell 

proliferation in lymphoid tissues, which is critical for CD8+ T cell survival at the site of 

infection and subsequent memory formation. 
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Figure 2.6 

 

Figure 2.6: CD8+ T cells undergo robust proliferation but have reduced survival in 

the absence of PD-1 signaling in influenza-infected mice. (A) Flow cytometric 

analysis of Ki-67 expression by NP366-specific CD8+ T cells from WT and PD-L1/L2 

DKO mice at d8 p.i. in the spleen (top) and lung (bottom). Numbers indicate fraction of 

Ki-67-expressing influenza-specific CD8+ T cells. Representative plots shown to the left. 

Summary of Ki-67+ cells shown for indicated tetramers to the right. (B) Flow cytometric 

analysis of active caspase by FLICA staining of NP366-specific CD8+ T cells from WT 

and PD-L1/L2 DKO mice at d8 p.i. in the lung. Numbers indicate fraction of influenza-

specific T cells positive for FLICA staining based on unstained controls. Representative 

plots shown on the left and summary of FLICA+ cells shown for indicated tetramers to 

the right. 
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2.3.4: The regulation of CD8+ T cell memory differentiation by PD-1 is cell-

intrinsic. 

One possible reason for altered proliferation and survival dynamics of the effector 

CD8+ T cell responses in PD-1 pathway deficient mice is that these mice clear a primary 

influenza infection faster than WT mice. Such an accelerated clearance of primary 

infection could result in truncated exposure of T cells to the optimal levels of antigen and 

inflammation needed for proper memory development. Indeed, PD-1 pathway deficient 

mice cleared influenza virus more rapidly than WT mice and had significantly decreased 

viral titers in the lungs on d3.5 after primary infection (Figure 2.7A). Enhanced control of 

infection was associated with reduced weight loss and faster recovery of PD-1 pathway 

deficient mice (Figure 2.7B). These observations suggest that early viral clearance may 

contribute to altered CD8+ T cell responses in PD-1 KO and PD-L1/L2 DKO mice. Thus, 

defective T cell memory in the absence of PD-1 signals could be due to accelerated 

control of infection and/or differences in T cell differentiation when cell-intrinsic PD-1 

signals are absent.  
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Figure 2.7 

 

Figure 2.7: WT mice clear primary influenza infection more quickly than PD-1 

pathway deficient mice. (A) Influenza viral titers in the lung at d3.5 p.i. and longitudinal 

weight loss (B) in WT and PD-L1/L2 DKO mice following primary infection with X31-

GP33. 
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To directly test whether PD-1 signals had a cell-intrinsic role in regulating CD8+ T 

cell memory differentiation during influenza infection, we co-transferred equal numbers 

of WT and PD-1 KO P14 TCR transgenic CD8+ T cells (recognizing GP33-41 peptide 

presented by H-2Db) into WT mice followed by infection with X31-GP33 virus (Figure 

2.8A). This approach allows for direct comparison of WT and PD-1 deficient CD8+ T 

cells in the same mice and excludes differences in precursor frequency, TCR repertoire, 

viral control, effects of PD-L1 and/or PD-L2 on APCs or influenza pathogenesis. 

Consistent with findings in PD-1 KO and PD-L1/L2 DKO mice, the frequency (Figure 

2.8B) and total numbers (Figure 2.8C) of PD-1 KO P14 cells were significantly higher 

than WT P14 cells in the lung and spleen at d7 p.i., with similar trends in the blood and 

dLN. The increased frequency of PD-1 KO P14 cells was associated with increased 

BrdU incorporation in the spleen and dLN (Figure 2.9A) and increased Ki-67 expression 

in the spleen (data not shown), indicating that PD-1 regulates CD8+ T cell proliferation in 

a cell-intrinsic manner. Similar to virus-specific T cells in influenza-infected PD-1 and 

PD-L1/L2 DKO mice, PD-1 KO P14 cells and WT P14 cells incorporated BrdU to a 

similar extent in the lung at d7 p.i. (Figure 2.9A). However, PD-1 KO P14 cells were 

more prone to cell death, as demonstrated by increased FLICA staining and surface 

Annexin V at d10 p.i. (Figure 2.9B and data not shown).  
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Figure 2.8 

 

Figure 2.8: PD-1 controls the magnitude of the CD8+ T cell response in a cell-

intrinsic manner. (A) Schematic of experimental design utilizing TCR transgenic P14 

transfer (B) Representative plots (left) show the frequency of WT and PD-1 KO P14 cells 

in indicated organs at d7 p.i. with X31-GP33. Numbers indicate frequency of P14 cells 

as a percent of CD8+ T cells. Summary of frequencies of P14 cells is shown to the right. 

(C) Summary of absolute numbers of WT and PD-1 KO P14 cells at d7 p.i. with X31-

GP33 in the spleen.  
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Figure 2.9 

 

Figure 2.9: PD-1 regulates CD8+ T cell proliferation and cell death in a cell-intrinsic 

manner. (A) Flow cytometric analysis of BrdU incorporation by WT and PD-1 KO P14 

cells in the spleen at d7 p.i. Numbers indicate fraction of BrdU+ P14 cells. 

Representative plots shown to the left. Summary of BrdU+ P14 cells in different organs 

shown to the right. (B) Flow cytometric analysis of active caspase by FLICA staining of 

WT and PD-1 KO P14 T cells on d8 p.i. in the lung. Numbers indicate fraction of P14 

cells positive for FLICA staining based on unstained controls. Representative plot shown 

to the left. Summary of FLICA+ cells shown to the right. 
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We used the P14 co-transfer system to interrogate whether these early cell-

intrinsic alterations in proliferation and cell death also resulted in aberrant memory 

development. We assessed the number, phenotype and functionality of WT and PD-1 

KO P14 cells 35-100 days p.i. While WT P14 cells formed stable memory, PD-1 KO P14 

cells underwent progressive contraction and were less abundant than WT P14 cells in 

the lung and spleen after 3 months (Figure 2.10A), consistent with the memory attrition 

observed in the whole animal KO experiments described above. Although no differences 

in the differentiation state were observed based on expression of key memory markers 

(data not shown), significantly fewer PD-1 KO memory P14 cells from the lung or spleen 

were capable of producing IFN-γ and TNF-α upon re-stimulation compared to WT cells 

(Figure 2.10B). To test whether memory recall capacity was compromised as a result of 

cell-intrinsic deficiency in PD-1 signals, influenza X31-GP33 immune mice containing 

WT and PD-1 KO P14 cells were re-challenged with PR8-GP33. Following re-challenge, 

PD-1 KO P14 memory cells displayed dramatically impaired secondary expansion 

compared to WT P14 cells in the same animals (Figure 2.10C). These results point to a 

key function for PD-1 signals in regulating T cell proliferation and survival during the 

acute phase of infection and indicate that the proper regulation of these events during T 

cell priming and expansion has a major impact on subsequent CD8+ T cell memory. 

Collectively, these data indicate that PD-1 regulates the differentiation and establishment 

of CD8+ T cell memory in a cell-intrinsic manner. 
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Figure 2.10 

 

Figure 2.10: Cell-intrinsic defect in CD8+ T cell memory in the absence of PD-1. (A) 

Summary of WT and PD-1 KO P14 absolute cell numbers in the lung and spleen during 

primary X31-GP33 infection. (B) Representative plots of intracellular cytokine staining for 

IFN-γ and TNF-α production in WT and PD-1 P14 cells from spleen and lung (left) and 

summary data (right). (C) Representative plots of WT and PD-1 KO P14 cell 

percentages 35 days after primary infection with X31-GP33 (d35) and 7 days post re-

challenge with PR8-GP33 (d42 after primary infection). Summary of fold change of 

numbers of P14 cells pre- and post- re-challenge shown to the right.  
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Figure 2.11 

 

Figure 2.11: Model of the role for PD-1 signals in effector and memory CD8+ T cell 

responses to influenza virus infection. In WT mice (left), PD-1 pathway signals early 

during influenza virus infection restrict early activation and proliferation of virus-specific 

CD8+ T cells in dLNs. These T cells then migrate into the infected lung, where inhibition 

by the PD-1 pathway promotes their survival and continued proliferation, allowing for 

clearance of influenza virus and the development of optimally-functional memory CD8+ T 

cells. In settings of PD-1 pathway deficiency (right), virus-specific CD8+ T cells undergo 

excessive proliferation in dLNs and migrate to the lungs in high numbers. While this 

leads to faster clearance of primary influenza infection, virus-specific CD8+ T cells 

undergo increased apoptosis in the lung and, ultimately, develop into poorly functional 

and unstable memory cells. 

!"#$%&'() *+,)-.)%/0%1234%,"5-6#"-5

!"#$%&#$'(
)*'+$,-*&#$'(

*(/(&/,",

17/#"0)76&"/-

!.'.#'/$/

0123454"-++4-,,-"#'*46$,,-*-(#$&#$'(

7&$%- 8,,-"#'*

9+':-*4%$*&+4"+-&*&("- 86,&)7%9"76#%.#)676-.)
*(/(&/,",

)*'+$,-*&#$'(

*.&"96&"/-
17/#"0)76&"/-
!.'.#'/$/;.#$<&++=4,>("#$'(&+

<-<'*=
)''*+=4,>("#$'(&+

<-<'*=

:2;<%=)>/7'

?-<'*=

1
$,,
-*
-(
#$&
#$'
(

@7@7



51 
 

2.4: Discussion  

The PD-1 pathway has a key role in regulating T cell responses. This pathway 

has become an important immunotherapeutic target in cancer and has promise for the 

treatment of chronic infections. The rapid up-regulation of the PD-1 pathway during the 

effector phase of immune responses suggests that PD-1:PD-L signals also exert 

important immunoregulatory functions during effector and memory responses following 

acute infection or vaccination. However, the role of PD-1 signals in this context is poorly 

understood. Here we have investigated how the PD-1 pathway regulates the generation 

and maintenance of CD8+ T cell memory. We found that PD-1 KO and PD-L1/L2 DKO 

mice developed suboptimal memory CD8+ T cells that lack long-term stability and 

protect poorly against secondary re-challenge. This defect in memory was associated 

with early excessive proliferation of effector CD8+ T cells, coupled with increased cell 

death. Ultimately, without PD-1 signals, virus-specific CD8+ T cells lose or never 

develop the robust recall capacity and secondary proliferation that is characteristic of 

memory T cells. Taken together, our work reveals an important role for the PD-1 

pathway in the optimal development of long-lived memory responses by acting to tune 

the strength of stimulation and temper early proliferation of CD8+ T cells (Figure 2.11).  

During acute respiratory infections, the PD-1:PD-L pathway might have a  

particularly important role in controlling the balance between immunopathology and 

effective anti-pathogen immunity and memory development. For example, virulent LCMV 

infection in PD-1 KO mice leads to damage of the pulmonary endothelium that ultimately 

causes respiratory failure and contributes to mortality (Frebel et al., 2012). These studies 

suggest that PD-1 restricts T cell responses to acute stimulation in the lung, likely to 

prevent excessive immune-mediated damage. Studies of pathogenic respiratory 
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infections also suggest a role for PD-1:PD-L1 signals in limiting immunopathology 

(Erickson et al., 2012). Our findings now reveal that another key function of this negative 

regulation by PD-1 during acute stimulation is to moderate excessive T cell stimulation 

and thereby facilitate the development of optimal CD8+ T cell memory.  

Several groups have demonstrated the potent ability of PD-1 to inhibit TCR and 

co-stimulatory signals, implicating the PD-1 pathway in effector and memory T cell 

responses (Butte et al., 2007; Freeman et al., 2000a; Parry and Riley, 2005; Yokosuka 

et al., 2012). However, there are conflicting data about how PD-1:PD-L signals impact 

effector and memory T cell responses during acute infection. In the respiratory tract, for 

example, antibody blockade of PD-L1 during human metapneumovirus (HMPV) and or 

genetic deletion of PD-1 during influenza virus infection enhanced CD8+ T cell 

functionality early in the immune response, consistent with our findings (Erickson et al., 

2012, 2014). In addition, blockade of PD-L1 just prior to HMPV re-challenge leads to a 

more robust secondary CD8+ T cell response and enhanced viral clearance compared 

to control treated mice. However, other reports demonstrate that the lack of PD-1:PD-L 

signals can either enhance or inhibit primary effector CD8+ T cell responses following 

acute infection, depending on the model (Allie et al., 2011; Fuse et al., 2009; Rowe and 

Sing Way, 2008; Talay et al., 2009; Yao et al., 2009). While transient blockade of PD-1 

signals can improve recall responses of memory CD8+ T cells, there is also evidence 

that genetic absence of PD-1 can skew memory CD8+ T cell differentiation towards 

either effector memory or central memory depending on the context. Thus, the precise 

role of PD-1:PD-L signals in the formation of long-term immunity and T cell memory has 

remained unclear. 

Our results highlight the importance of PD-1 inhibitory signals in tempering initial 

CD8+ T priming. While DCs are a prime candidate for the specific APC involved in these 
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interactions, it is possible that PD-L1/L2 on other cell types could also negatively 

regulate T cells. The inhibition by the PD-1 pathway in lymphoid tissues likely plays a 

central role in early skewing of effector T cell differentiation. However, interactions 

between CD8+ T cells with PD-L1/L2 on resident DCs, infected epithelial cells and/or 

lung macrophage populations in the infected lung are also likely to be important. We find 

that CD8+ T cells have decreased survival in the lung between d10-20 p.i. when PD-1 

signaling is absent. Taken together, these findings suggest that PD-1-mediated restraint 

during the early expansion of CD8+ T cells in draining lymphoid tissue is needed to 

promote the generation and survival of developing effector and memory CD8+ T cells.  

The ability of the PD-1 pathway to modulate effector and memory CD8+ T cell 

differentiation makes it an attractive therapeutic target for infectious diseases and 

cancer, as well as for augmenting vaccination strategies. Blocking PD-1 pathway signals 

may prove beneficial in boosting early effector responses to promote pathogen or tumor 

clearance. The long-term effects of PD-1 pathway blockade, however, may improve 

memory T cell development in some settings, while preventing optimal memory 

formation in others. Better understanding of how the PD-1 pathway regulates CD8+ T 

cell responses in divergent settings of infectious disease and cancer will help inform how 

to administer PD-1 or PD-L1 blocking antibodies to enhance memory T cell responses.  

In order to most effectively target the PD-1 pathway to improve T cell memory 

development, several key questions must be addressed. It is not yet clear when during 

the course of infection it is most beneficial to block the PD-1 pathway. The timing of PD-

1 blockade appears to be key, and blockade at the time of initial CD8+ T cell priming 

may have different consequences from blockade of pre-existing memory T cells during a 

recall response. Indeed, our data suggest that very early removal of PD-1 signals during 

primary infection can prevent optimal memory differentiation, while other data 
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demonstrate that blockade of PD-1 just prior to re-challenge improves secondary 

expansion of memory CD8+ T cells. It may be that targeting the PD-1 pathway during 

different stages of infection (i.e. priming, expansion, contraction, or memory phase) will 

result in distinct effects on CD8+ T cell differentiation, recall responses and/or memory 

maintenance. The answers to these questions will be critical for determining how to best 

modulate PD-1 to enhance responses to vaccines for infectious agents and cancer. 

Additionally, while we have focused primarily on the CD8+ T cell-intrinsic role of PD-1 on 

memory development, the PD-1 pathway regulates many other important cell types, 

including CD4+ T cells, B cells, NK cells, and APCs. It will be interesting to investigate 

how the loss of PD-1 pathway signals affects the behavior of these cell types during 

infection with influenza virus and infections.  

In summary, we have identified a key role for the PD-1 pathway in controlling 

effector and memory CD8+ T cell differentiation during influenza virus infection. Negative 

regulation by PD-1 and its ligands is needed to promote optimal formation of long-lived, 

protective memory CD8+ T cells. Our studies implicate the PD-1 pathway as a prime 

target for altering development of effector and memory CD8+ T cell responses during 

therapeutic and vaccination strategies. We have identified control of cell cycle and 

apoptosis as one mechanism by which PD-1:PD-L signals influence CD8+ T cell 

memory.  Future studies are needed to identify additional molecular pathways by which 

PD-1:PD-L signals regulate CD8+ T cell differentiation in different disease settings, as 

well as to further test the potential of combining PD-1 pathway manipulation with current 

vaccine strategies.  
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CHAPTER 3: Genetic Absence of PD-1 promotes accumulation 

of terminally-differentiated exhausted CD8+ T cells during 

chronic viral infection 

 

3.1: Introduction 

Chronic viral infections, such as HIV, HCV, and others, place a significant strain 

on anti-viral T cell responses, forcing continued proliferation, cytokine production, and 

killing of infected cells for months or years. As a result, anti-viral CD8+ T cell functions 

become sub-optimal over time, a phenomenon known as T cell exhaustion (Shankar et 

al., 2000; Zajac and Ahmed, 1998; Gallimore et al., 1998; Gruener et al., 2001a; Wherry, 

2011). Two of the cardinal features of exhausted CD8+ T cells are the gradual loss of 

effector capabilities and the sustained high expression of multiple inhibitory receptors. 

Exhausted CD8+ T cells also have altered expression of key transcription factors, 

including Tbet, Eomesodermin (Eomes), and Blimp-1 (Wherry, 2011; Wherry et al., 

2003a; Blackburn et al., 2009). Importantly, CD8+ T cell exhaustion contributes to failed 

immune control during chronic infection and cancer.  

The inhibitory receptor Programmed Death-1 (PD-1) is considered to be a central 

regulator of CD8+ T cell exhaustion. Expression of PD-1 and its primary ligand, PD-L1, 

is highly upregulated during chronic infection and cancer (Barber et al., 2006; Freeman 

et al., 2006; Blank et al., 2005). The importance of this elevated PD-1 pathway 

expression has been demonstrated in several animal models where in vivo antibody-

mediated blockade of PD-1 or PD-L1 re-invigorates exhausted CD8+ T cell responses 

and decreases viral load or tumor burden (Barber et al., 2006). Recent clinical trials have 
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extended these observations from mouse models to humans, demonstrating a potent 

ability of PD-1 pathway blockade to revitalize anti-tumor immunity in late-stage cancer 

patients (Brahmer et al., 2012; Topalian et al., 2012). The observations of reversibility of 

exhaustion by PD-1 pathway blockade demonstrate that exhausted CD8+ T cells, or at 

least a subset of the population, are not terminally dysfunctional. Furthermore, blockade 

of various other inhibitory receptors alone and in combination with PD-1/PD-L1 blockade 

suggests that PD-1 is the major inhibitory receptor controlling exhaustion (Blackburn and 

Wherry, 2008; Blackburn et al., 2009; Kassu et al., 2010; Wherry et al., 2007). While it is 

clear that PD-1 based therapies have exciting clinical potential and can dramatically 

improve exhausted T cell responses, the precise role of PD-1 in exhausted CD8+ T cells 

remains undefined.   

A fundamental unresolved question is what role PD-1 signals play in initiating 

and/or establishing the program of T cell exhaustion. One possibility is that PD-1 directly 

causes the development of CD8+ T cell exhaustion. This question has previously been 

challenging to address since PD-1 pathway deficiency results in excessive CD8+ T cell-

mediated immunopathology and altered viral pathogenesis, preventing analysis of T cell 

responses after the first week post-infection (Barber et al., 2006; Frebel et al., 2012). 

However, the robust functionality of CD8+ T cells in the absence of PD-1 at these early 

time-points suggests that T cell exhaustion may not develop without PD-1 signals. This 

outcome would implicate the PD-1 pathway as a major regulatory pathway inducing the 

development of exhausted T cell populations.  Alternatively, PD-1 could inhibit CD8+ T 

cell function during chronic infection but may not play a direct role as the initiator of the 

program of exhaustion. In this scenario, CD8+ T cells could still become exhausted even 

in settings of PD-1 deficiency. The implications of these two distinct possibilities are 
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important for the design and implementation of therapies blocking or manipulating the 

PD-1 pathway in cancer, infections and other diseases. 

Here we have used a dual adoptive transfer approach that allowed us to study 

the development of PD-1 deficient (PD-1 KO) anti-viral CD8+ T cell responses during 

chronic LCMV infection in the absence of lethal immune-mediated damage and altered 

viral pathogenesis. Surprisingly, genetic deletion of PD-1 on virus-specific CD8+ T cells 

was insufficient to prevent the development of exhaustion. In fact, PD-1 KO virus-

specific CD8+ T cells were less functional and had higher expression of other inhibitory 

receptors compared to WT virus-specific CD8+ T cells. Early over-stimulation and robust 

proliferation in the absence of PD-1 led to disruption of a critical proliferative hierarchy 

between T-bethi and Eomeshi subsets of exhausted CD8+ T cells that is necessary for 

sustained responses during chronic infections (Paley et al., 2012). As a result, long-term 

proliferation and stability of exhausted T cell responses was compromised without PD-1. 

However, improved cytotoxic ability and increased localization of exhausted CD8+ T 

cells to peripheral tissues without PD-1 suggests that the PD-1 pathway has previously 

unappreciated roles in shaping exhausted CD8+ T cell populations. These findings 

demonstrate that PD-1 signals do not instruct the development of CD8+ T cell 

exhaustion. PD-1 is, however, required to prevent terminal-differentiation of exhausted 

CD8+ T cells while simultaneously controlling important anatomical and functional 

aspects of these cells. These findings have important implications for understanding the 

long-term impact of PD-1 based therapies in humans. 



58 
 

3.2: Methods 

3.2.1: Mice and Infections 

PD-1 deficient (PD-1 KO) mice were crossed to C57BL/6 P14 mice to generate 

PD-1 KO P14 mice (Keir et al., 2007b; Pircher et al., 1989).  Mice were infected with 

either 2 x 105 PFU of lymphocytic choriomeningitis virus (LCMV) Armstrong strain by i.p. 

injection to generate an acutely resolved infection or 4 x 106 PFU of LCMV clone 13 

strain by i.v. injection to generate a chronic infection. In experiments with CD4 depletion, 

200 mg of anti-CD4 antibody (GK1.5; BioXcell) was administered i.p. on d-1 and d1 of 

LCMV infection. Viral titers were measured as previously described (Kao et al., 2011). 

All animals were housed at the University of Pennsylvania (Philadelphia, PA). 

Experiments were performed in accordance with protocols approved by the University of 

Pennsylvania Institutional Animal Care and Use Committee. 

3.2.2: Adoptive Transfer and Lymphocyte Isolation  

CD8+ T cells were isolated from peripheral blood or spleens of naïve WT or PD-1 

KO P14 mice. For spleen isolation, P14 cells were purified by CD8 negative selection 

(Stem Cell Technologies). Depending on the experiment, the appropriate number of WT 

or PD-1 KO cells was transferred into separate naïve recipient mice or mixed at a 1:1 

ratio at indicated cell numbers and transferred into naïve recipient mice. For proliferation 

assays, P14 cells were labeled with 10 mM CellTraceViolent (Life Technologies) before 

transfer. For flow cytometry after infection, major organs were removed on indicated 

days and single-cell suspensions were prepared as described.  
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3.2.3: Flow Cytometry and Cell Sorting 

All cells were stained with LIVE/DEAD® Fixable Dead Cell Stain (Life 

Technologies) to discriminate live from dead cells. Surface staining was performed as 

described previously (Kao et al., 2011). For intracellular cytokine staining, single-cell 

suspensions were incubated for 5h at 37 °C with or without 1 µM gp33 peptide 

(KAVYNFATM) and were stained with a Cytofix/Cytoperm kit according to 

manufacturer’s instructions (BD Biosciences). For intracellular staining of transcription 

factors, a Foxp3 staining kit was used according to the manufacturer's instruction 

(eBioscience). Antibodies used for flow cytometry were purchased from BD Biosciences 

(CD4, CD8, CD19, CD44, 2B4, Ki67), Biolegend (PD-1 (RMPI-30 clone), Tim-3, TNFa, 

IFNg, Tbet; San Diego, CA), R&D Systems (MIP-1a; Minneapolis, MN), or eBioscience 

(CD8, Lag3, CD160, 2B4, CD45.1, CD45.2, CD107a, Eomes). MHC class I peptide 

tetramers were made and used as described previously (Wherry et al., 2003a; Kao et al., 

2011). Poly-caspase analysis was performed with Flica Vybrant FAM Poly Caspases 

Assay Kit (Life Technologies). Data were collected on a BD LSRII (BD Biosciences) and 

analyzed with FlowJo software (Tree Star). Cell sorting was performed using a BD Aria II 

(BD Biosciences).  

3.2.4: BrdU Treatment and Detection  

Animals were treated with 2mg of BrdU (Sigma-Aldrich) i.p. daily for 1-5 days 

prior to tissue harvest and analysis. BrdU incorporation was assessed by the BrdU Flow 

Kit per manufacturer’s instructions (BD Biosciences). 
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3.2.5: In vitro Stimulation 

Naïve WT and PD-1 KO P14 cells were isolated from spleens by CD8 negative 

selection (Stem Cell Technologies) and cultured in RPMI-1640 medium in the presence 

of recombinant human IL-2 (100 U/mL; R&D Systems.) Naive P14 cells were stimulated 

for 4d by co-culturing with GP33 peptide-pulsed naïve splenocytes.  

3.2.6: Statistical Analysis 

Student’s t-test (Paired and Unpaired) were performed using Prism software 

(Graphpad). 

3.3: Results 

3.3.1: Co-adoptive transfer strategy allows for examination of PD-1 

deficient virus-specific CD8+ T cells during chronic LCMV infection 

Direct infection of PD-1 or PD-L1 KO mice with LCMV clone 13 causes lethal 

immunopathology. Previous studies using adoptive transfer of LCMV-specific TCR-

transgenic CD8+ T cells (P14 cells) also resulted in immunopathology when 104 PD-1 

KO P14 cells were transferred (Frebel et al., 2012; Barber et al., 2006). We 

hypothesized that using lower numbers of P14 cells would avoid immune-mediated 

damage, allowing for analysis of PD-1 KO P14 cell exhaustion during chronic infection. 

Thus, a co-adoptive transfer strategy was employed in which equal numbers of WT and 

PD-1 KO P14 cells were transferred into congenically-disparate WT mice, followed by 

infection with LCMV clone 13 (Figure 3.1A and 3.1B). This strategy allows for direct 

comparison of WT and PD-1 KO P14 cell responses in the same recipient mice during 

chronic viral infection while controlling for precursor frequency, TCR repertoire, viral 
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load, inflammatory environment, and immunopathology. To determine if this co-adoptive 

transfer strategy mitigated alterations in viral load and/or morbidity that occur as a result 

of P14 transfer, viremia and adjusted survival were assessed in mice that received 

varying numbers of WT and PD-1 KO P14 cells (Pircher et al., 1989; Blattman et al., 

2009; Frebel et al., 2012). Transfer of greater than 1000 total P14 cells (500 WT + 500 

PD-1 KO) resulted in reduced viral load (Figure 3.1C) and significant morbidity (Figure 

3.1D) in mice compared to no P14 transfer, consistent with previous reports (Frebel et 

al., 2012).  However, transfer of 500 total P14 cells (250 WT + 250 PD-1 KO) did not 

alter significantly viremia or morbidity during chronic LCMV infection compared to mice 

that did not receive P14 cells (Figure 3.1C and 3.1D). These results demonstrate that a 

co-adoptive transfer approach with small numbers of WT and PD-1 KO P14 cells can be 

used to address the development of CD8+ T cell exhaustion in the absence of cell-

intrinsic PD-1 signals.  
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Figure 3.1 

 

Figure 3.1: Adoptive transfer of WT and PD-1 KO P14 cells as a model to study T 

cell exhaustion in the absence of PD-1.  (A) Schematic of co-adoptive transfer model. 

(B) Representative FACS plots of gating scheme for WT and PD-1 KO P14 cells. P14 

cells are gated from total CD8+ T cells (far left) by expression of H-2Db GP33 tetramer, 

congenic markers, and PD-1. (C) Longitudinal analysis of viral load in serum of mice that 

received indicated numbers of WT and PD-1 KO P14 cells followed by infection with 

LCMV clone 13 (+/- s.e.m.), *p < 0.05 (unpaired Student’s t-test). (D) Survival curve of 

mice that received indicated numbers of WT and PD-1 KO P14 cells following LCMV 

clone 13 infection. “Adjusted Survival” indicates time to loss of >25% of total body weight 

and subsequent euthanasia. 
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3.3.2: CD8+ T cell exhaustion develops in the absence of PD-1 

Previous studies demonstrating potent inhibition of CD8+ T cells by the PD-1 

pathway suggest that PD-1 may be essential for the development of T cell exhaustion 

(Barber et al., 2006; Parry and Riley, 2005; Okazaki et al., 2013). Thus, we tested the 

hypothesis that PD-1 KO P14 cells would not become exhausted during chronic LCMV 

infection. First, we examined the ability of WT versus PD-1 KO P14 cells to produce 

cytokines at d42 p.i. following ex vivo peptide re-stimulation. At this time-point, WT P14 

cells showed signs of classical exhaustion. Compared to control memory P14 cells 

generated following acute LCMV infection, these exhausted P14 cells less efficiently 

produced IFN-γ (average of 86% vs 51%) or co-produced IFN-γ and TNF-α (average of 

76% vs 8%) (Figure 3.2A). Surprisingly, production of IFN-γ and TNF-α was even more 

severely reduced in the PD-1 KO P14 population, with an average of only 39% of cells 

producing IFN-γ and 1.6% of cells co-producing IFN-γ and TNF-α (Figure 3.2A). In 

addition, PD-1 KO P14 cells developed a significant reduction in IFN-γ production per 

cell, as evidenced by lower MFI of IFN-γ expression compared to WT P14 cells in the 

same mice (data not shown). PD-1 KO P14 cells also exhibited reduced poly-

functionality compared to WT P14 cells, with minimal co-production of IFN-γ, TNF-α, and 

Mip1-α (Figure 3.2B). However, the ability to de-granulate, as measured by LAMP-

1/CD107a expression, was retained (Figure 3.2B). Analysis of WT and PD-1 KO P14 

cells in separate mice resulted in similar findings, confirming the CD8+ T cell intrinsic 

nature of this effect (Figure 3.2C). 
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Figure 3.2 

 

Figure 3.2: Severe loss of exhausted CD8+ T cell cytokine production in the 

absence of PD-1. (A) Intracellular cytokine staining for IFN-γ and TNF-α after 

stimulation with GP33 peptide (left). Values indicate frequency of P14 cells producing 

IFN-γ and/or TNF-α for individual (left) and multiple mice (right) at d42 p.i. in the spleen 

(B) Intracellular staining for Mip1-α and CD107a after stimulation with GP33 peptide 

(left). Values indicate frequency of P14 cells producing Mip1-α and/or CD107a for 

individual (left) and multiple mice (right) at d42 p.i. in the spleen.  (C) Intracellular 

cytokine staining for IFN-γ and TNF-α after stimulation with GP33 peptide from mice with 

separate transfer of WT or PD-1 KO P14 cells compared to mice with co-transferred WT 

and PD-1 KO P14 cells (left). Values indicate frequency of P14 cells co-producing IFN-γ 

and TNF-α for individual (left) and multiple mice (right). (+/- s.e.m.) *p < 0.05 **p < 0.01 

(paired Student’s t-test) 
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Reduced cytokine production in the absence of PD-1 also corresponded with 

higher expression of multiple other inhibitory receptors, a second key feature of 

exhaustion. PD-1 KO P14 cells expressed higher Lag-3, 2B4, CD160, and Tigit than WT 

P14 cells at day 42 p.i. (Figure 3.3A and 3.3B). A higher frequency of PD-1 KO P14 

cells also simultaneously co-expressed Lag-3, 2B4, Tim-3 and CD160 compared to WT 

(Figure 3.3C). These findings indicate that CD8+ T cell exhaustion can develop in the 

absence of PD-1.  In fact, two defining features of exhausted CD8+ T cells, loss of 

cytokine poly-functionality and elevated inhibitory receptor co-expression, were more 

severe when CD8+ T cell intrinsic PD-1 signals were absent.  
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Figure 3.3 

 

Figure 3.3: Increased inhibitory receptor expression on exhausted CD8+ T cells in 

the absence of PD-1. (A) Expression of indicated inhibitory receptors on naïve CD8+ T 

cells, WT P14 cells, and PD-1 KO P14 cells at d42 p.i. in the spleens of representative 

mice. Values indicate MFI of expression. (B) Summary of inhibitory receptor MFI on WT 

and PD-1 KO P4 cells at d42 p.i. in the spleen (C) Boolean gating analysis of the 

simultaneous expression of multiple inhibitory receptors (Lag-3, 2B4, CD160 and Tim-3) 

on WT and PD-1 KO P14 cells at d42 p.i. in the spleen. Pie charts display individual 

populations grouped according to total number of inhibitory receptors expressed (left). 

Bar graph displays relative abundance of each possible individual inhibitory receptor 

expression profile (right). (+/- s.e.m.) *p < 0.05 **p < 0.01 ***p < 0.001 (paired Student’s 

t-test). 
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3.3.3: Despite early signs of dysfunction, PD-1 deficient CD8+ T cells 

proliferate robustly during the acute phase of infection 

We next investigated if this increased exhaustion in the absence of PD-1 started 

early during chronic infection. To test this, the phenotype and function of WT and PD-1 

KO P14 cells was analyzed at the peak of the effector response, d8 post-infection. Both 

WT and PD-1 KO P14 cells were highly capable of producing IFN-γ at d8 p.i. (Figure 

3.4A), consistent with previous work (Parry and Riley, 2005; Frebel et al., 2012; 

Patsoukis et al., 2012; Yokosuka et al., 2012). However, PD-1 KO P14 cells displayed a 

subtle, but significant, reduction in production of IFN-γ and co-production of IFN-γ and 

TNF-α (Figure 3.4A). PD-1 KO P14 cells also had elevated expression and co-

expression of several other inhibitory receptors at this time-point (Figure 3.4B and data 

not shown). Taken together, these data suggest that dysfunction of PD-1 KO P14 cells 

may begin early during the course of chronic infection. However, despite slight defects in 

cytokine production and elevated inhibitory receptor expression, PD-1 KO P14 cells 

greatly outnumbered WT P14 cells in the spleen, blood, and other organs at d8 p.i. 

(Figure 3.5A and data not shown). Therefore, we hypothesized that loss of PD-1 

signals might improve the activation and proliferation of virus-specific CD8+ T cells.  In 

the first few days following T cell activation, PD-1 KO P14 cells had a trend towards a 

proliferative advantage from d2-3 p.i. in the spleen compared to WT P14 cells, but there 

was no difference in proliferation by d4 p.i. (Figure 3.5B). There was also no difference 

in the early proliferation of WT versus PD-1 KO P14 cells when co-cultured with GP33 

peptide-pulsed splenocytes in vitro (Figure 3.5B). However, PD-1 KO P14 cells 

proliferated significantly more robustly than WT P14 cells between d7-8 p.i., as 

measured by Ki67 expression (Figure 3.5C) and BrdU incorporation (Figure 3.5D). 
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Despite this robust prolieration, WT and PD-1 KO P14 cells had similar expression of 

activation and differentiation markers, such as CD69, KLRG-1, CD27, CD44, CD62L, 

and CD25 during early activation (d1-4 p.i.) and during the effector phase (d8 p.i.) (data 

not shown). These findings suggest that PD-1 restricts virus-specific CD8+ T cell 

responses during chronic infection primarily by restraining proliferation during the 

effector phase. These data also suggest that control of proliferation during the effector 

phase corresponds with the degree of preservation of T cell function in the chronic 

phase of infection. 
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Figure 3.4 

 

Figure 3.4: Early signs of CD8+ T cell exhaustion in PD-1 KO P14 cells. (A) 

Intracellular cytokine staining for IFN-γ and TNF-α after stimulation with GP33 peptide 

(left). Values indicate frequency of P14 cells producing IFN-γ and TNF-α for individual 

(left) and multiple mice (right) at d8 p.i. in the spleen. (B) Expression of indicated 

inhibitory receptors on naïve CD8+ T cells, WT P14 cells, and PD-1 KO P14 cells at d8 

p.i. in the spleens of representative mice and multiple mice (C) Values indicate MFI of 

expression. Data are representative of 3 independent experiments with 5-8 mice per 

group. (+/- s.e.m.) *p < 0.05 **p < 0.01 ***p < 0.001 (paired Student’s t-test). 
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Figure 3.5 

 

Figure 3.5: Increased expansion and proliferation of PD-1 KO P14 cells during 

effector phase (A) Absolute number of WT and PD-1 KO P14 cells at d8 p.i. in the 

spleen (+/- s.e.m.). (B) Expression of CellTraceViolet on WT and PD-1 KO P14 cells on 

indicated days post-infection with LCMV clone 13 in the spleen (left) or following in vitro 

stimulation with GP33-pulsed splenocytes (right). (C) Expression of Ki67 on WT and PD-

1 KO P14 cells at d8 p.i. in the spleen (D) Expression of CD44 versus BrdU 

incorporation in WT and PD-1 KO P14 cells at d8 p.i. in the spleen following 24h BrdU 

pulse. Values indicate frequency of P14 cells positive for BrdU based on FMO staining 

control. (+/- s.e.m.), *p < 0.05 **p < 0.01  *** p < 0.001 (paired Student’s t-test). All data 

are representative of 2-5 independent experiments with 5-8 mice per group. 
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3.3.4: Decreased survival of CD8+ T cells after the effector phase in the 

absence of PD-1 

Because of the increased proliferation of PD-1 KO P14 during the effector phase, 

we next examined how the absence of PD-1 affected the transition to later stages of 

infection.  After initial expansion, PD-1 KO P14 cells underwent a significantly greater 

contraction between days 15-42 p.i. (88% decrease) compared to WT P14 cells (75% 

decrease) (Figure 3.6A). We hypothesized that this more dramatic contraction was due 

to decreased survival in the absence of inhibitory signals from the PD-1 pathway. To test 

this, WT and PD-1 KO P14 cells were assessed for markers of cell death between days 

14-20 p.i. in the spleen. A higher frequency of PD-1 KO P14 cells expressed Live/dead 

Aqua (Figure 3.6B) and Annexin V (Figure 3.6C), markers of compromised cell 

membrane integrity that are associated with apoptosis and cell death. PD-1 KO P14 

cells also displayed increased staining with fluorescent caspase substrates (FLICA) at 

d15 p.i. (Figure 3.6D). In addition, ex vivo survival of PD-1 KO P14 cells was decreased, 

as demonstrated by a significant reduction in the total frequency of live cells remaining 

after a 10-hour in vitro culture (data not shown). Thus, in the absence of PD-1, virus-

specific CD8+ T cells experience considerably more cell death than WT CD8+ T cells of 

the same specificity in the same inflammatory environment. These findings suggest that 

PD-1 prevents over-stimulation of CD8+ T cells and subsequent excessive cell death 

during chronic viral infection.  
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Figure 3.6 

 

Figure 3.6: Reduced survival of PD-1 KO P14 cells during T cell contraction. (A) 

Fold decrease in frequency of WT and PD-1 KO P14 cells from peak of T cell response 

(d15 p.i.) to chronic phase of infection (d42 p.i.). Values indicate average fold decrease 

for each population (+/- s.e.m.), *p < 0.05 (unpaired Student’s t-test). (B) Expression of 

Live/dead Aqua and  (C) Annexin V in WT and PD-1 KO P14 cells at d18 p.i. in the 

spleen for individual (histograms) and multiple mice (bar graphs) (+/- s.e.m.). Values 

indicate frequency of P14 cells positive for staining based on FMO staining controls. (D) 

Expression of CD44 versus FLICA in WT and PD-1 KO P14 cells at d14 p.i. in the 

spleen for individual (left) and multiple mice (right). Values indicate frequency of P14 

cells positive for FLICA dye based on FMO staining control, *p < 0.05 **p < 0.01 (paired 

Student’s t-test). All data are representative of 2-4 independent experiments with at least 

5 mice per group. 
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3.3.5: Decreased proliferation and long-term durability of PD-1 KO 

exhausted CD8+ T cells  

The increase in cell death of PD-1 KO P14 cells suggests that long-term 

durability of virus-specific CD8+ T cells may be compromised in the absence of PD-1. 

During LCMV clone 13 infection, the frequency and absolute number of WT P14 cells 

began to stabilize in the spleen and blood between d22-42 p.i. (Figure 3.7A and data 

not shown). PD-1 KO P14 cells, in contrast, declined in both frequency and absolute 

number until d42 p.i., suggesting that long-term durability of virus-specific CD8+ T cell 

responses may be compromised in the absence of PD-1 (Figure 3.7A). However, 

viremia during LCMV clone 13 infection of B6 mice gradually resolves by d40-60 p.i, 

complicating the interpretation of changes in exhaustion at late time-points. Therefore, 

we utilized a model of exhaustion where transient depletion of CD4+ T cells prior to 

infection with LCMV clone 13 leads to persistent, life-long high viremia (Matloubian et al., 

1994). As observed in CD4+ T cell-sufficient clone 13 infection, WT P14 cell responses 

stabilized in frequency and absolute number after d48 p.i. in CD4+ T cell-depleted mice 

(Figure 3.7B). In contrast, while PD-1 KO P14 cell numbers were higher than WT P14 

cells, the number of PD-1 KO P14 cells failed to stabilize and continued to decline for 

many months (Figure 3.7B). The inability of PD-1 KO P14 cells to form a stable, long-

term population of exhausted CD8+ T cells in the spleen could be due, at least in part, to 

the increased cell death observed in this population. However, on-going antigen-driven 

proliferation is central to the durability of exhausted CD8+ T cell populations (Paley et 

al., 2012; Shin et al., 2007). Given the early robust expansion of virus-specific CD8+ T 

cells in the absence of PD-1, we asked if PD-1 KO P14 cells were able to sustain this 

proliferation into the chronic phase of infection. PD-1 KO P14 cells had dramatically 
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reduced expression of Ki67 at d42 p.i. in both CD4+ T cell-sufficient (clone 13) and 

CD4+ T cell-depleted (clone 13 + GK1.5) mice (Figure 3.7C). In addition, PD-1 KO P14 

cells incorporated significantly less BrdU from days 35-42 p.i. than WT P14 cells (data 

not shown). Taken together, these findings suggest that increased cell death and loss of 

sustained proliferative ability contribute to the deceased stability of PD-1 KO P14 cells in 

chronic infection.  
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Figure 3.7 

 

Figure 3.7: Diminished long-term proliferation and stability of CD8+ T cells in the 

absence of PD-1.  (A) Longitudinal analysis of frequency (left) and absolute numbers 

(right) of WT and PD-1 KO P14 cells in the spleen during LCMV clone 13 infection. (B) 

Longitudinal analysis of absolute number of WT and PD-1 KO P14 cells in the spleen of 

mice treated with anti-CD4-antibody at d-1 and d1 of LCMV clone 13 infection. (C) 

Expression of PD-1 versus Ki67 in WT and PD-1 KO P14 cells at d42 p.i. in the spleen 

during infection with LCMV clone 13 with or without CD4 depletion. Values indicate 

frequency of P14 cells positive for Ki67 (+/- s.e.m.), *p < 0.05 **p < 0.01 (paired 

Student’s t-test). All data are representative of 3 independent experiments with at least 5 

mice per group. 
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3.3.6: PD-1 controls exhausted CD8+ T cell proliferative dynamics by 

regulating Tbethi and Eomeshi subsets  

Recent work has demonstrated that two subsets of exhausted CD8+ T cells, 

Tbethi progenitors and Eomeshi progeny, exist in a proliferative hierarchy to sustain long-

term CD8+ T cell responses during chronic viral infections (Paley et al., 2012). Based on 

these observations, we next investigated whether loss of PD-1 impacted the balance 

between these two subsets and if changes in these subsets could account for the altered 

proliferation and stability of the PD-1 KO P14 population. To test this idea, we assessed 

expression of Tbet and Eomes at days 8, 15 and 42 p.i. in WT and PD-1 KO P14 cells. 

At day 8 p.i., increased expression of both Tbet and Eomes was observed in PD-1 KO 

P14 cells, which is consistent with the increased activation of these cells early in 

infection (Figure 3.8A). However by day 15 p.i., PD-1 KO P14 cells had a significant 

decrease in Tbet MFI (Figure 3.8A) that was followed by a dramatic loss of Tbethi cells 

at day 42 p.i. (Figure 3.8B and Figure 3.8C). This loss of Tbethi cells corresponded with 

a skewing of the PD-1 KO P14 cell population towards the Eomeshi subset, as 

demonstrated by an increase in both frequency of Eomeshi cells and Eomes MFI at d15 

(Figure 3.8A) and 42 p.i. (Figure 3.8B and Figure 3.8C). We next asked if this change 

in Tbet observed in exhausted PD-1 KO P14 cells truly represented a shift in subset 

dynamics to Eomeshi progeny. To test this idea, PD-1 KO P14 cells were assessed for 

other cardinal features of Eomeshi cells (Paley et al., 2012). PD-1 KO P14 cells, like WT 

Eomeshi exhausted CD8+ T cells, were significantly increased in frequency in peripheral 

tissues, including the bone marrow and liver (Figure 3.9A). 
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Figure 3.8 

 

Figure 3.8: Altered dynamics of exhausted CD8+ T cell subsets in the absence of 

PD-1. (A) Expression of Tbet and Eomes in WT and PD-1 KO P14 cells in the spleen at 

d0 (naïve), d8 and d15 p.i. with LCMV clone 13 (+/- s.e.m.) (B) Expression of Tbet 

versus Eomes in WT and PD-1 KO P14 cells at d42 p.i. in the spleen of individual (top) 

and multiple mice (bottom). Values indicate frequency of P14 cells that are T-bethi 

Eomeslo or Eomeshi T-betlo (C) Representative plots of MFI of Tbet and Eomes 

expression in WT (black) and PD-1 KO (red) P14 cells at d42 p.i. in the spleen **p < 0.01 

(paired Student’s t-test). All data are representative of 2-5 independent experiments with 

at least 5 mice per group. 
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Key functional properties of Eomeshi cells were also observed in PD-1 KO P14 

cells. Despite decreased cytokine production (Figure 3.2A) and proliferation (Figure 

3.7C), PD-1 KO P14 cells possessed higher cytotoxicity than WT P14 cells (Figure 

3.9B), as well as increased expression of Granzyme B at d42 p.i. (Figure 3.9C). This is 

also consistent with the high expression of multiple inhibitory receptors observed on both 

PD-1 KO P14 cells and WT Eomeshi cells (Figure 3.3A and Figure 3.3B). Thus, PD-1 

KO P14 cells accumulate mainly as terminally-differentiated Eomeshi progeny. These 

findings suggest that PD-1 controls proliferation dynamics during chronic viral infection, 

at least in part, by preventing loss of Tbethi progenitor cells. In addition to changes in 

proliferation, loss of PD-1 signals leads to an exhausted CD8+ T cell pool with more 

extensive tissue distribution and enhanced cytotoxicity, which may be an important 

consideration when using PD-1 blockade for chronic infections and cancer.  
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Figure 3.9 

 

Figure 3.9: PD-1 KO P14 cells accumulate as Eomeshi progeny with the same 

cardinal properties. (A) Frequency of P14 cells as a percentage of total CD8+ T cells in 

multiple organs at d42 p.i. with LCMV clone 13 (+/- s.e.m.). (B) Cytotoxicity of sorted WT 

and PD-1 KO P14 cells on d22 p.i. at E:T ratio of 4:1 following 18h incubation (+/- 

s.e.m.), *p < 0.05 (unpaired Student’s t-test). (C) Expression of Granzyme B in naïve 

CD8+ T cells, WT P14 cells and PD-1 KO P14 cells in individual (left) and multiple mice 

(right), **p < 0.01 (paired Student’s t-test). All data are representative of 2-5 independent 

experiments with at least 5 mice per group. 
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Figure 3.10 

 

Figure 3.10: Model of the role for PD-1 in the development of CD8+ T cell 

exhaustion during chronic viral infection. In WT settings (black), PD-1 tempers the 

early activation and proliferation of CD8+ T cell responses to chronic infection, promoting 

survival of exhausted CD8+ T cells into the chronic phase of infection and the 

establishment of Tbethi and Eomeshi subsets. In contrast, PD-1 deficiency (red) leads to 

the hyper-activation and excessive proliferation of early CD8+ T cell responses to 

chronic infection, resulting in increased cell death. This is associated with loss of the 

Tbethi subset of exhausted CD8+ T cells and the accumulation of terminally-

differentiated Eomeshi cells. As a result, PD-1 deficient exhausted CD8+ T cells exhibit 

unique functional properties and have largely lost their antigen-dependent proliferative 

ability, resulting in decreased population stability long-term.  
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3.3.7: Discussion 

Expression of the inhibitory receptor PD-1 is strongly associated with CD8+ T cell 

exhaustion in chronic infection and cancer. The ability to partially restore T cell functions 

by PD-1/PD-L1 pathway blockade suggests a fundamental link between this pathway 

and the development of CD8+ T cell exhaustion (Barber et al., 2006; Freeman et al., 

2006; Petrovas et al., 2006; Blank et al., 2005; Wherry, 2011). A key unanswered 

question, however, is whether or not PD-1 directly causes or induces T cell exhaustion.  

Here, we tested this idea using approaches that control for a number of confounding 

issues that previously obscured clear answers to this question.  We found that genetic 

absence of PD-1 on antigen-specific CD8+ T cells did not prevent exhaustion during 

chronic LCMV infection. Consistent with the negative regulatory role of this pathway, 

CD8+ T cell expansion was greatly enhanced by the absence of PD-1 during the acute 

phase of infection (Barber et al., 2006; Parry and Riley, 2005; Patsoukis et al., 2012; 

Okazaki et al., 2013). However, PD-1 deficiency also led to increased apoptosis during 

the contraction phase. Moreover, permanent absence of PD-1 resulted in the 

dysregulation of a key proliferative hierarchy required to sustain exhausted CD8+ T cell 

populations during chronic infection. Without PD-1, exhausted CD8+ T cells 

accumulated as Eomeshi cells, while the T-bethi progenitor pool was depleted. In addition, 

this shift was accompanied by functional changes associated with an altered balance of 

these subsets.  Cytokine production declined in the absence of PD-1 due to loss of the 

slightly more functional T-bethi population, but cytotoxicity was improved since the 

Eomeshi subset has better killing capacity.  These findings reveal an unexpected dual 

role for PD-1 signals during chronic viral infection.  While PD-1 clearly negatively 

regulates CD8+ T cell responses during the chronic phase of infection (Barber et al., 
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2006; Wherry, 2011), this pathway also plays a critical role in protecting exhausted 

CD8+ T cells from excessive stimulation, terminal exhaustion and erosion of the 

population over time.  These findings have implications for prolonged clinical treatments 

with PD-1 pathway antagonists where the benefit of rejuvenating exhausted CD8 T cells 

may have to be balanced with the risk of over-stimulation and lack of long-term stability. 

While complete genetic absence of PD-1 is unlikely to manifest clinically, several 

important genetic variants in and around the PDCD1 gene have been described that are 

associated with autoimmunity, cancer prognosis or chronic viral infection (James et al., 

2005; Zhang et al., 2012; Velázquez-Cruz et al., 2007; Muenst et al., 2010).  While 

mechanistically it remains unclear how most of these genetic variants affect the 

expression or function of PD-1, these observations do suggest that genetic variation in 

the PD-1 pathway could be an important parameter affecting the development of T cell 

responses in humans.  It will be interesting to determine whether there are any 

relationships between these human PDCD1 polymorphisms and changes in the 

development and/or dynamics of exhausted T cells we have observed in mice.  The 

potential impact of genetic variation in genes in the PD-1 pathway and outcomes of 

clinical PD-1 treatments remains to be defined.  In addition to natural genetic variation, it 

is now possible to genetically engineer T cells for adoptive immunotherapeutic 

approaches (Restifo et al., 2012).  PD-1 might be an interesting target to consider in 

such therapeutically modified T cell adoptive immunotherapy approaches.  However, our 

data suggest that such approaches to modify or genetically ablate PD-1 should be 

considered with caution. 

One interesting aspect of the PD-1 deficient CD8+ T cell response that develops 

during chronic LCMV infection is the elevated expression of many other inhibitory 

receptors.  In the absence of PD-1, we observed higher expression of Lag-3, 
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2B4/CD244, CD160, and Tigit.  Most, if not all, of these inhibitory receptors are 

upregulated following TCR signaling in acutely activated T cells and their elevated 

expression by PD-1 deficient CD8+ T cells may indicate a greater degree of ongoing 

TCR stimulation.  These observations are consistent with the idea that TCR signaling is 

increased in the absence of PD-1 and that PD-1 is an essential rheostat or tuner of in 

vivo TCR signaling (Okazaki et al., 2013; Honda et al., 2014).  In addition, the 

upregulation of other inhibitory receptors in the absence of PD-1 signals could partially 

explain the synergy observed during co-blockade of PD-1 and other inhibitory receptors 

and reveal opportunities for targeting other inhibitory receptors in conjunction with PD-1. 

Thus, these observations support use of co-blockade of multiple inhibitory receptors in 

cancer patients for optimal reversal of T cell exhaustion. This issue will be interesting to 

examine clinically as the timing and/or sequence with which different inhibitory receptor 

blockades are introduced may influence the therapeutic outcome.   

Our data provide a cellular mechanism to explain the population-based effects of 

PD-1 deficiency during chronic infection. PD-1 appears critical for regulation of a 

proliferative hierarchy necessary to maintain exhausted CD8+ T cell populations.  We 

have previously described a lineage relationship within the exhausted CD8+ T cell pool 

where exhausted PD-1int T-bethi cells give rise to PD-1hi Eomeshi cells.  This transition is 

driven by persisting antigen and is accompanied by extensive division, downregulation of 

T-bet and upregulation of Eomes (Paley et al., 2012). These Eomeshi progeny are 

terminally differentiated and lack future proliferative capacity (Paley et al., 2012).  Such 

exhausted CD8+ T cells subsets are found not only in chronic LCMV infection of mice, 

but also in human HCV and HIV infection.  Our current data indicate a critical, but 

perhaps somewhat paradoxical, role for PD-1 in this proliferative hierarchy.  Without PD-

1, exhausted CD8+ T cells accumulate as Eomeshi terminally differentiated progeny.  
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This observation suggests that permanent loss of PD-1 signals may progressively erode 

exhausted CD8+ T cell populations. These data also indicate that PD-1 tempers the 

continual activation and differentiation of the T-bethi progenitor pool, in effect protecting 

this subset from chronic overstimulation and preserving these cells for future activation 

and generation of terminal progeny.  Previous work demonstrated that T-bet directly 

represses expression of the PDCD1 gene (Kao et al., 2011).  In addition, persisting 

antigen stimulation can lead to loss of T-bet expression (Kao et al., 2011; Paley et al., 

2012). Taken together, these observations suggest a model whereby PD-1 inhibits TCR 

signaling during chronic infection, which helps maintain T-bet expression.  T-bet, in turn, 

prevents the highest level of PD-1 expression that may preserve cytokine production and 

proliferative potential in the Tbethi progenitor population.  We would predict that 

variations in antigen and/or viral load would lead to an imbalance in this feedback loop. 

Settings of high antigen stimulation may favor the activation and proliferation of Tbethi 

progenitors followed by loss of T-bet expression, further upregulation of PD-1 and 

Eomes expression and, ultimately, terminal differentiation.  Thus, our data suggest a 

novel dual role for PD-1 signals in negatively regulating CD8+ T cell proliferation and 

function during chronic infection, but also in sustaining Tbethi progenitor cells, a 

population critical for a proliferative hierarchy that contains chronic infection.  

In summary, we have identified a novel role for the PD-1 pathway in regulating 

CD8+ T cell exhaustion during chronic viral infection. PD-1 signals are critical for 

preventing the early over-activation and proliferation of CD8+ T cells in response to 

chronic infection, thus promoting the establishment and stability of exhausted T cell 

responses. Additional work will be necessary to further characterize the molecular 

pathways regulated by PD-1 in exhausted CD8+ T cells and to compare genetic loss of 

PD-1 to the more clinically relevant setting of PD-1 pathway blockade.  
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Chapter 4: Concluding Remarks and Future Directions 

 

4.1 Overview of Results 

 The PD-1 pathway regulates T cell activation and function by inhibiting TCR and 

co-stimulatory signals. A previously unresolved question, however, is how PD-1 pathway 

inhibition impacts the differentiation of CD8+ T cells in settings of acutely-resolved or 

chronic infection. In chapter 2 of this thesis, the role of PD-1 signals in the development 

of effector and memory CD8+ T cells during acutely-resolved influenza infection was 

investigated. While loss of PD-1 or PD-1 ligands enhanced the expansion of effector 

CD8+ T cells, the development of long-lasting CD8+ T cell memory responses was 

impaired. Defects in the magnitude of the response, as well as in cytokine production 

and recall capacity of memory CD8+ T cells were observed in the absence of the PD-1 

pathway. Thus, the inhibition of effector CD8+ T cell responses by PD-1 signals 

promotes the generation and longevity of memory responses in a setting of acutely-

resolved infection (Figure 2.11).  

 The PD-1 pathway also plays a prominent role in settings of chronic antigen 

stimulation and CD8+ T cell exhaustion, including chronic infections and cancer. 

Previous work has demonstrated regulation of established exhausted CD8+ T cell 

responses by the PD-1 pathway; however, the role of PD-1 signals in the development 

of CD8+ T cell exhaustion is not well understood. In chapter 3 of this thesis, PD-1 

signals were shown to inhibit the early proliferation and expansion of virus-specific CD8+ 

T cells during chronic LCMV infection. Loss of PD-1 from the onset of infection, however, 

resulted in increased cell death during the contraction phase. Ultimately, PD-1 deficiency 

led to more severe dysfunction of cytokine production and proliferation in the chronic 
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phase of infection. However, PD-1 deficient CD8+ T cells retained cytotoxic ability and 

had enhanced infiltration into peripheral tissues. This PD-1-deficient exhaustion 

phenotype was associated with loss of Tbethi progenitor cells and the accumulation of 

terminally-differentiated Eomeshi progeny (Figure 3.10).  

 Taken together, chapters 2 and 3 of this thesis demonstrate a critical role of PD-1 

signals in restricting the early activation, proliferation and expansion of CD8+ T cells 

during both acutely-resolved and chronic infections. Importantly, this early regulation of 

CD8+ T cell responses by the PD-1 pathway has profound long-term consequences on 

the development of memory or exhausted T cell responses. PD-1, therefore, acts to tune 

CD8+ T cell responses, allowing for a robust and effective anti-pathogen response but 

balancing this with the need generate long-lived memory or exhausted responses. This 

work has important implications for clinical targeting of the PD-1 pathway in both 

prophylactic vaccination and therapeutic treatment strategies. Given the recent FDA 

approval of PD-1 blocking monoclonal antibodies (FDA.gov), these novel roles for PD-1 

should also be considered when designing therapy regimens. 

4.2 Context dependent roles of PD-1 on CD8+ T cells 

 PD-1 has been demonstrated to modulate T cell responses in many areas of 

disease, including auto-immunity, cancer and infections (Francisco et al., 2010; Okazaki 

et al., 2013). In all of these settings, PD-1 plays a role in “tuning” the threshold of TCR 

activation; however, it has become apparent in recent years that PD-1 has unique, 

context-dependent functions, as well. Chapters 2 and 3 of this thesis expand on this 

idea and identify novel similarities and differences in how PD-1 regulates the CD8+ T 

cell response to acutely-resolved vs. chronic viral infection.  Specifically, the factors that 

seem to impact PD-1 mediated inhibition of CD8+ T cells include: the strength of TCR 
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stimulation, the duration of antigen exposure and the anatomical location of TCR:antigen 

signals. Below, these factors will be discussed in the context of the findings in this thesis.   

4.2.1 PD-1 and TCR signal strength 

 The idea that strength of TCR:antigen stimulation impacts the extent of PD-1 

mediated inhibition has been investigated in several in vitro settings (Bennett and 

Carreno, 2002; Yokosuka et al., 2012; Parry and Riley, 2005; Freeman et al., 2000b). 

Using a titration of CD3 and CD28 concentrations, Freeman et al. demonstrated that PD-

1 inhibition of T cell proliferation was most robust at low or suboptimal levels of TCR 

engagement and CD28 signaling. However, higher or more optimal levels of TCR and 

CD28 signals seemed to circumvent the negative effects of PD-1 ligation (Freeman et 

al., 2000a).  These studies were the first to suggest that the consequences of PD-1/L1 

ligation depend on the strength of signaling through TCR and CD28. Recently, additional 

in vitro work has demonstrated that the level of PD-1 expression on the cell surface also 

impacts the amount of T cell inhibition, with higher levels of PD-1 corresponding with 

greater inhibition of T cell activation and functions (Wei et al., 2013). Importantly, it is the 

amount of PD-1 within the immunological synapse that appears to be most relevant 

(Yokosuka et al., 2012). These ideas are consistent with work presented in chapter 2 of 

this thesis, where differences in PD-1 mediated inhibition in vivo seemed to correspond 

with TCR signal strength. For example, CD8+ T cells specific for sub-dominant epitopes 

of influenza seem to be most dramatically impacted by loss of PD-1 pathway signals. It 

may be that, within the same environment, CD8+ T cells with a TCR that receives lower 

levels of stimulation are more sensitive to PD-1-mediated inhibition, consistent with 

previous in vitro findings. Similar observations have been made anecdotally in our lab 

during LCMV clone 13 infection. Previous work has demonstrated that different epitopes 
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of LCMV receive different “levels” of epitope presentation (Wherry et al., 2003a). These 

varying amounts of TCR stimulation correlate with different outcomes of CD8+ T cell 

exhaustion.  For example the NP396 epitope is displayed at high levels during LCMV 

clone 13, which results in rapid exhaustion and clonal deletion of NP396-specific CD8+ T 

cells. Other epitopes of LCMV, such as GP33 and G276, have lower MHC class 1 

binding affinities and T cell stimulatory capacities. As a result, GP33-specific and 

GP276-specific CD8+ T cells become functionally exhausted but not clonally deleted 

(Wherry et al., 2003a). Unpublished work in our lab suggests that virus-specific CD8+ T 

cells that receive less TCR stimulation in vivo during chronic viral infection, particularly 

GP276-specific CD8+ T cells, are most responsive to PD-1 pathway blockade. This 

would be consistent with the idea that the TCR signal strength is a major contributing 

factor to the extent of PD-1 pathway inhibition in vivo during both acutely-resolved and 

chronic infections.  

4.2.2: PD-1 and duration of antigen stimulation 

 The duration of antigen stimulation is another critical parameter that impacts PD-1 

pathway inhibition. An example of this is demonstrated in chapters 2 and 3 of this 

thesis, where absence of cell-intrinsic PD-1 results in different outcomes for CD8+ T cell 

responses to acutely-resolved influenza infection and chronic LCMV infection. Although 

there are many differences between influenza infection vs. LCMV clone-13 infection, PD-

1 deficient P14 cells were used in both settings allowing for comparison of CD8+ T cells 

with same TCR specificity and affinity in the context of different durations of antigen 

exposure. Absence of PD-1 led to robust proliferation and expansion during the effector 

phase of acute influenza infection and chronic LCMV infection, a period when pathogen 

load is high in both settings. It should also be noted that this is a period when PD-1 
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expression is also normally elevated during acute or chronic infections. However, the 

role of PD-1 on the long-term CD8+ T cell responses is different following either the 

clearance or persistence of pathogen. PD-1 KO P14 cells upregulate properties of 

memory CD8+ T cells following acutely-resolved influenza infection, including cytokine 

production, recall capacity, and phenotypic memory markers. In contrast, during chronic 

LCMV infection, PD-1 KO P14 cells become severely exhausted, up-regulate multiple 

other inhibitory receptors and become terminally-differentiated. It may be that the 

continued exposure of virus-specific CD8+ T cells to antigen during chronic infection 

requires the counter-balance of inhibitory signals from PD-1. Thus, absence of PD-1 in 

settings of persistent antigen may be more detrimental to the long-term phenotype, 

function and survival of CD8+ T cells. Of note, despite these very different functional 

outcomes, in both settings of acutely-resolved and chronic infection loss of PD-1 

pathway signals results in more defective memory or exhausted CD8+ T cell responses 

compared to wildtype CD8+ T cells.  

4.2.3: PD-1 and anatomical location 

 The anatomical location of TCR:antigen and PD-1:PD-L1/2 interactions also seems 

to be an important factor in the amount of PD-1 mediated inhibition. Several studies 

support the idea that the “tuning” function of PD-1 protects the host from immune-

mediated damage, particularly in sensitive and inflamed tissues (Frebel et al., 2012; 

Honda et al., 2014; Okazaki et al., 2013). For example, recent work has described that 

PD-1/PD-L1 signals are part of a regulatory mechanism that prevents prolonged T cell 

responses in inflamed tissues. Honda et al. show that PD-1 inhibits antigen-driven CD4+ 

T cell arrest and subsequent effector functions in a model of delayed hypersensitivity, 

essentially “desensitizing” CD4+ T cells at the site of inflammation. As a result, a system 



90 
 

is established where new effectors migrate into the inflamed tissue, perform their 

function and are subsequently desensitized. This pattern can then continue to effectively 

clear a pathogen while maximizing tissue viability (Honda et al., 2014). Similarly, in 

chapter 2 of this thesis, the regulation of CD8+ T cell proliferation and survival by PD-1 

was different in lymphoid tissues vs. the inflamed site of infection during influenza 

infection.  PD-1 pathway deficiency led to increased CD8+ T cell proliferation in the 

spleen and dLN, but not in the lung. While this robust proliferation resulted in greater 

CD8+ T cell numbers in the lung, there was a subsequent increase in cell death of PD-1 

pathway deficient CD8+ T cells at the site of infection. These findings are consistent with 

the idea that PD-1 can curb immune-mediated damage in inflamed sites by restricting 

the proliferation and effector functions of CD8+ T cells. It is interesting that, even in the 

absence of PD-1 signals, effector CD8+ T cells in the lung experienced more cell death. 

While one contributing factor is likely over-stimulation of PD-1 pathway deficient CD8+ T 

cells in lymphoid tissue, it may also be that other regulatory mechanisms in the lung are 

activated to prevent immunopathology.   

  Interestingly, during LCMV clone 13 infection, PD-1 KO P14 cells seem to 

preferentially localize to peripheral tissues at very high frequencies during the chronic 

phase of infection. It may also be that exhausted CD8+ T cells become “desensitized” at 

these sites; however, whether PD-1 is mediating this effect in exhausted CD8+ T cells is 

less clear. Overall, it seems that the anatomical location of TCR:antigen stimulation, as 

well as the context in which PD-1 engages PD-L1/2, can alter the effects and outcome of 

PD-1 inhibition on T cells. It may be that inflammatory cues or other signals at the site of 

infection collectively influence the role of PD-1 signals in areas of high pathogen load.  
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4.3: Temporal Regulation by the PD-1 pathway 

 The idea that strength, duration and location of antigen stimulation can impact PD-

1 mediated inhibition also suggests that PD-1 will have different effects on T cells during 

different phases of an immune response. In other words, PD-1 may be playing distinct 

roles on naïve, effector, and memory or exhausted CD8+ T cells, which have very 

different exposures to TCR:antigen. For example, in an infection setting, PD-1 pathway 

signals will be present during initial naïve CD8+ T cell priming in lymphoid tissue. 

Previous work has demonstrated that on naïve T cells, PD-1 can impact TCR signaling 

cascades, T cell motility, cell cycle progression and, ultimately, effector functions (Parry 

and Riley, 2005; Patsoukis et al., 2012; Zinselmeyer et al., 2013; Yokosuka et al., 2012; 

Freeman et al., 2000a; Butte et al., 2007). Much of this work has been performed in vitro 

and it still remains unclear if identical mechanisms are in place during in vivo T cell 

priming. Given the robust expansion of PD-1 deficient CD8+ T cells during the effector 

phase (discussed below), it is likely that PD-1 regulates TCR signaling, metabolism, and 

cell-cycle progression during in vivo T cell priming.  

 The work presented in chapters 2 and 3 extend our knowledge of the role of PD-1 

during the effector phase of the immune response. In the absence of PD-1, CD8+ T cells 

undergo increased proliferation and expansion compared to wildtype CD8+ T cells 

during the effector phase of both acutely-resolved influenza infection and chronic LCMV 

infection. However, loss of PD-1 signals also resulted in decreased survival of CD8+ T 

cells during the contraction phase. These findings demonstrate that a central role for PD-

1 is to prevent over-activation of CD8+ T cells during the effector phase and to promote 

survival CD8+ T cells long-term as they differentiate into memory or exhausted cells. 

This tempering of T cell activation during the effector phase is also likely a mechanism to 
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prevent immune-mediated damage in the host. Indeed, PD-L1 deficient mice die from 

LCMV clone-13 infection between days 7-9 from severe T cell-mediated 

immunopathology (Barber et al., 2006).    

 The data presented in chapters 2 and 3 of this thesis also suggest that early PD-1 

signals may not only quantitatively tune activation-induced signals, but also impact the 

differentiation pathway of CD8+ T cells. During acutely-resolved influenza infection, early 

PD-1 pathway signals seem to promote the development of optimally-functional CD8+ 

memory T cells. The defect in memory CD8+ T cells in the absence of PD-1 may be due 

to selective over-activation and loss of memory precursor cells. However, it could also 

be that PD-1 signals qualitatively change the gene expression pattern of CD8+ T cells 

early during priming or effector differentiation in a way that promotes memory 

development. Given the changes in gene expression observed in PD-L1/2 deficient mice 

during influenza infection, it may be that both mechanisms are in place. During LCMV 

clone 13 infection, excessive proliferation and cell death in the absence of PD-1 leads to 

loss of Tbethi progenitor cells and accumulation of Eomeshi progeny, which corresponds 

with altered functionality and durability of exhausted CD8+ T cells. While this is certainly 

one mechanism that explains the observed phenotype, it is possible that the resulting 

Eomeshi cells also have a different “program” of dysfunction in the absence of PD-1. 

Gene expression analysis of these cells should reveal any additional changes in 

differentiation status of these PD-1 deficient exhausted CD8+ T cells.  

 Overall, these findings suggest that early regulation of naïve and/or effector CD8+ 

T cells can dramatically impact long-term memory or exhausted T cell responses. 

Interestingly, previous work has demonstrated distinct regulation of established memory 

or exhausted CD8+ T cells by the PD-1 pathway during later stages of infection. 

Blockade of the PD-1 pathway on memory cells just prior to re-challenge has been 
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demonstrated to improve recall capacity of CD8+ T cells (Erickson et al., 2012, 2014). 

Similarly, PD-1/L1 blockade during the chronic phase of LCMV clone 13 infection 

improves CD8+ T cell functionality and lowers viral loads (Barber et al., 2006). One 

potential explanation for this discrepancy is that PD-1 signals differently in CD8+ T cells 

during later stages of infection. Exhausted and memory CD8+ T cells have distinct 

transcriptional profiles and changes in the expression of genes involved in signal 

transduction and metabolism (Wherry et al., 2007). Thus, making direct extrapolations of 

in vitro PD-1 signaling observations to in vivo generated exhausted and memory CD8+ T 

cells is not straightforward. In addition, the technical challenges of performing detailed 

biochemical analysis of signaling in exhausted CD8+ T cells generated in vivo have 

hampered direct interrogation of these questions. Furthermore, it is not known how 

different subsets of memory and exhausted cells, with different TCR affinities and levels 

of PD-1 expression, are regulated by the PD-1 pathway. Future work should help 

elucidate how early PD-1 signals alter the differentiation program of memory and 

exhausted CD8+ T cells. It will also be interesting to investigate the potentially different 

effects of PD-1 inhibition on naïve, effector, memory or exhausted CD8+ T cells. A better 

understanding of how PD-1 regulates CD8+ T cells at different stages of differentiation 

and in different phases of the immune responses will inform design of therapeutic 

strategies to target the PD-1 pathway.  

4.4: Similarities between exhausted PD-1 deficient CD8+ T cells and 

exhausted PD-1hi CD8+ T cells in chronic infection 

A somewhat unexpected finding of the work presented in chapter 3 of this thesis 

is that PD-1 deficiency leads to an exhausted CD8+ T cell pool with similar 

characteristics to PD-1hi exhausted CD8+ T cells. Both PD-1 KO and PD-1hi exhausted 
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cells are more terminally-differentiated, upregulate several other inhibitory receptors and 

have largely lost their ability to produce cytokines and proliferate. However, PD-1 KO 

and PD-1hi cells retain cytotoxic ability and also preferentially localize to and accumulate 

in peripheral tissues. Transcriptional regulation of these cells seems to occur via high 

expression of Eomes and low expression of Tbet (Blackburn et al., 2008; Paley et al., 

2012; Kao et al., 2011). So why do similar states of exhaustion develop in the complete 

absence of PD-1 and with the highest levels of PD-1 expression? One hypothesis is that 

in this state of terminal-exhaustion, PD-1 signals do not play a significant role in 

regulating the functionality or survival of these Eomeshi cells.  It may be that Eomeshi 

cells do not get stimulated as frequently through their TCR and/or that PD-1 ligation is 

less frequent on this cells. The distinct localization of these cells could, in part, support 

this idea. Previous work in the lab has demonstrated that sites, such as the bone 

marrow, have similar viral clearance to the spleen and blood but lower expression levels 

of PD-L1. An idea that has emerged from this finding is that peripheral tissues can serve 

as a survival niche for more terminally-differentiated cells that are sensitive to cell death 

(Blackburn et al., 2010a). While the levels of PD-L1 may account for this, it could also be 

that other inflammatory or survival cues are present in these organs that provide a “safe” 

environment for Eomeshi cells. Of note, it is still not clear what signals direct Eomeshi 

cells to peripheral tissues and promote their accumulation there. The idea that PD-1 

signals are not critical for regulation of Eomeshi cells could also explain the observation 

that PD-1hi cells are not responsive to PD-1 pathway blockade.  

A complementary hypothesis to explain the similarities between PD-1 KO and 

PD-1hi cells is that other inhibitory receptors play a more central role in regulating 

Eomeshi cell functions. Both PD-1 KO and PD-1hi cells upregulate the expression and co-

expression of CD160, 2B4, and Lag-3 (Blackburn et al., 2009; Paley et al., 2012).  It’s 
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possible that these or other inhibitory receptors “take over” as the central negative 

regulators of terminally-differentiated exhausted cells. It will be interesting to determine if 

co-blockade of PD-1 and other inhibitory receptors can potentially re-invigorate PD-1 KO 

or PD-1hi cell functions.  

Although there are many similarities between PD-1 KO and PD-1hi exhausted 

CD8+ T cells, future work should begin to dissect differences between these cell 

populations. It may be that other transcription factors play important and distinct roles in 

these cell types, including BATF or Blimp-1. Transcriptional profiling of these cells will 

provide key insights into these differences and also may inform strategies to improve 

functionality of these terminally-differentiated cells.  

4.5: How do you most effectively target the PD-1 pathway? 

Despite the clear clinical promise and many early successes of PD-1/L1 

blockade, the optimal therapeutic approach for targeting the PD-1 pathway remains to 

be determined. Transient blockade of PD-1 or PD-L1 can have profound effects on the 

re-invigoration of exhausted CD8+ T cell populations during chronic infections and 

cancer, including numerical expansion, improved effector function and reduced viral or 

tumor burden (Barber et al., 2006; Day et al., 2006; Freeman et al., 2006; Blank et al., 

2005). However, permanent absence of PD-1 did not prevent the development of 

exhaustion during chronic LCMV infection, as described in chapter 3. In fact, CD8+ T 

cell dysfunction was increased with genetic PD-1 deficiency, resulting in terminal-

exhaustion and decreased stability of the CD8+ T cell population. These findings have 

important implications for different therapeutic clinical approaches since long-term and/or 

“maintenance” PD-1 pathway blockade and genetically engineered T cells with altered 

PD-1 are being considered in human cancer patients. There are several key questions 
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that should be addressed to determine the most effective strategies for use of PD-1 

pathway inhibitors in patients.  

First, in the experimental model used here, PD-1 signaling is absent for both 

CD8+ T cell priming and throughout chronic stimulation.  It remains unclear if PD-1 

deficiency has the same effect in different stages of T cell differentiation, as previously 

discussed. It may be that loss of PD-1 signals during CD8+ T cell priming is detrimental, 

while removing PD-1 during later stages of infection will have more beneficial effects.  

The use of ER-Cre PD-1 floxed P14 mice will allow for selective deletion of PD-1 in 

CD8+ T cells during various stages of infection to begin to address this question.  

 Second, it is unclear whether genetic absence of PD-1 is equivalent to antibody-

mediated blockade.  Given the broad expression of PD-1 and PD-1 ligands, blockade of 

the PD-1 pathway will likely impact a variety of immune and non-immune cell types. In 

fact, unpublished work in our lab has demonstrated that PD-1/L1 blockade not only 

impacts CD8+ T cells, but also the frequency of B cells, regulatory T cells, neutrophils, 

and other key immune cells (Odorizzi, unpublished data). In addition, some preliminary 

studies in ER-Cre PD-1 flox mice have shown that genetic deletion of PD-1 during the 

chronic phase of LCMV infection improves CD8+ T cell effector functions to a different 

extent than antibody-mediated PD-1 blockade during the chronic phase of infection 

(Odorizzi, unpublished data). Therefore, the use of monoclonal antibodies with different 

binding affinities and in vivo half lives should be considered carefully, as the prolonged 

and complete loss of PD-1 signals may be significantly different than shorter term or 

incomplete blockade of the PD-1 pathway. In addition, it should be carefully considered 

how prolonged inhibition of PD-1 signals in cancer patients would subsequently impact 

their immune responses to vaccination or infection. The data presented here suggest 
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that pathogen-specific CD8+ T cell responses will be dysregulated without the PD-1 

pathway.  

Finally, the impact of prolonged inhibition of the PD-1 pathway may be 

considerably different in the presence versus absence of high-level antigen stimulation.  

In the current setting of chronic LCMV infection, where the antigen stimulation and 

“stress” on the CD8+ T cell compartment is high and constant, absence of a key 

negative regulatory pathway may result in T cell over-stimulation.  In setting where 

antigen levels have been controlled to a low level, continued loss of PD-1 signals may 

be less detrimental to the stability to the T cell population, may promote CD8+ T cell 

functionality and may even be beneficial.  Future studies will be necessary to dissect 

these important and clinically relevant possibilities.  

4.6: Biomarkers for successful PD-1-based therapies 

 One interesting idea that arises from this work is that the effects of losing PD-1 

signals can be monitored by changes in the phenotype of virus-specific CD8+ T cells. In 

chapter 3 of this thesis, genetic absence of PD-1 leads to a dramatic loss of Tbethi cells 

and accumulation of terminally-differentiated, Eomeshi exhausted CD8+ T cells. Although 

PD-1 blockade during the chronic phase of infection has different short-term functional 

consequences on CD8+ T cells, there is also a significant shift towards Eomeshi PD-1hi 

progeny in this setting. In addition, this accumulation of Eomeshi PD-1hi cells can be seen 

in the bulk CD8+ T cell population, along with increased Ki67 expression that 

accompanies the conversion of Tbethi progenitors into Eomeshi cells. Of note, changes in 

Tbet expression seem more challenging to resolve in the bulk CD8+ T cell population 

(Odorizzi and Pauken, unpublished data). These findings suggest that expression of 

Eomes, PD-1 and perhaps Ki67 could be examined as a way to screen for successful 
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induction of immune responses following clinical use of PD-1 pathway blockade. Indeed, 

in collaboration with Bob Vonderhide and Andy Minn’s lab, a mouse model of melanoma 

was used to demonstrate that successful radiation and checkpoint blockade correlated 

with induction of Ki67+ Granzyme B+ Eomeshi PD-1hi cells (Tywman and Rech et al. 

Submitted). Thus, the mechanisms of PD-1 mediated exhausted CD8+ T cell inhibition 

elucidated in this thesis may provide insight into biomarkers for clinical use.  

4.7: Safety of PD-1-based therapies in patients 

 An additional consideration for the use of PD-1 pathway blockade is the safety of 

targeting a molecule with such profound and widespread immunoregulatory functions. 

Given the predisposition of pdcd1 deficient mice for autoimmune disease, a major 

concern for targeting the PD-1 pathway is the potential for autoimmune side effects 

(James et al., 2005; Velázquez-Cruz et al., 2007; Francisco et al., 2010). This is 

especially concerning given the off-target effects of CTLA-4 blockade (Ipilimumab) in the 

clinic (Pardoll, 2012; Peggs and Allison, 2006). However, while some pulmonary and 

gastrointestinal adverse effects have been reported in PD-1/L1 blockade clinical trials, 

most patients tolerate PD-1 pathway blockade very well (Brahmer et al., 2012; Topalian 

et al., 2012). As we begin to better understand PD-1 pathway regulation of exhausted 

CD8+ T cells, it may even be possible to further decrease adverse effects by directly 

targeting molecules downstream of PD-1 signaling.  

 In addition to potential off-target effects, the work presented in chapters 2 and 3 

of this thesis also suggests that loss of PD-1 signals may alter CD8+ T cell responses to 

subsequent infections or vaccinations. With over 39 clinical trials currently underway with 

PD-1/L1 blockade, many patients will be armed with an immune system that has 

essentially lost the ability to signal through PD-1 (ClinicalTrials.gov). This may negatively 
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impact the formation of memory responses following vaccination, including CD8+ T cell 

memory but also potentially B cell and antibody responses (Good-Jacobson et al., 

2010). In addition, exposure to infections may also lead to altered immune responses 

and, as a result, pathogen clearance. Future work should investigate these possibilities 

in patients who received PD-1 pathway blockade.  

4.8 Summary 

The work presented in this thesis provides novel insight into the role of PD-1 in 

regulating in vivo anti-viral CD8+ T cell responses.  PD-1 plays a prominent role in 

regulating effector CD8+ T cell proliferation, expansion and survival, consistent with 

previous findings. However, studies in chapters 2 and 3 of this thesis extend these 

observations to show that PD-1 also has a previously unappreciated role in shaping the 

development and maintenance of long-term memory or exhausted CD8+ T cell 

responses. This novel role for PD-1 signals highlights the complex regulation of CD8+ T 

cell responses by inhibitory receptors. Specifically, PD-1 balances the need for an 

effective anti-pathogen CD8+ T cell response with prevention of immunopathology and 

the generation of long-lived memory or exhausted T cell responses. Future studies will 

further dissect the molecular mechanisms responsible for the observed effects of PD-1 

on effector, memory and exhausted CD8+ T cells. These findings also provide insight 

into targeting this clinically relevant pathway and stress the importance of further studies 

to better understand PD-1 mediated inhibition of CD8+ T cells and other immune cells.  
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