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ABSTRACT

STATISTICAL ANALYSIS AND DESIGN OF
CROWDSOURCING APPLICATIONS

Adam Kapelner

Abba Krieger

Ed George

This thesis develops methods for the analysis and design of crowdsourced experiments
and crowdsourced labeling tasks. Much of this document focuses on applications in-
cluding running natural field experiments, estimating the number of objects in images
and collecting labels for word sense disambiguation. Observed shortcomings of the
crowdsourced experiments inspired the development of methodology for running more
powerful experiments via matching on-the-fly. Using the label data to estimate re-
sponse functions inspired work on non-parametric function estimation using Bayesian
Additive Regression Trees (BART). This work then inspired extensions to BART such
as incorporation of missing data as well as a user-friendly R package.
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1
Introduction

The four parts of this thesis were inspired by the work I have done in the modern

phenomenon known as “crowdsourcing.” What is crowdsourcing? Imagine a world

where you can release a small task to an anonymous person located anywhere in the

world. This concept has experienced exponetial growth since its inception in both

industry and in academia with the largest platform being Amazon’s Mechanical Turk

(MTurk). In my observations over the past seven years, academic use of crowdsourcing

falls into two main categories:

(a) Experimentation — Using the crowd to run an experiment to elicit a causal effect

of an experimental condition on a prespecified outcome measure. With proper

Institutional Review Board approval, these experiments can be natural field ex-

periments, where the participants do not know they are part of an experiment

with a randomized experimental condition. A worker is only allowed to complete

one experimental task.

(b) Label Collection — Using the crowd to do a prespecified task such as mark an

image, or determine the meaning of a word in a paragraph, write about a musical

melody, etc. In this task, a worker is allowed to provide as many labels as he

wishes.
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This thesis and related research is motivated by my interest in understanding

these two uses of crowdsourcing. As a result of the various topics explored, it is split

into four parts:

(I) sequential experiments, Chapters 2, 3 and 4

(II) methodology that improves sequential experiments, Chapter 5

(III) label collection, Chapters 6 and 7

(IV) applied machine learning research, Chapters 8 and 9.

My contribution to Experimentation is covered in parts I and II of this thesis;

Label Collection is addressed in parts III and IV.

The majority of the work in this document is joint with my colleagues and each

chapter’s contributors are appropriately marked at the beginning of the chapter and

project-specific acknowledgements are appropriately marked at the close of each chap-

ter.

Part I

Here, I write about the work I did in sequential experiments, meaning that subjects

enter over time and must be immediately assigned a treatment.

Chapter 2 (published in Chandler and Kapelner, 2013) conducts the first natural

field experiment to explore the relationship between the “meaningfulness” of a task

and worker effort. We employed about 2,500 workers from Amazon’s Mechanical Turk

(MTurk, an online labor market which we introduce later in the introduction) to label

medical images. Although given an identical task, we experimentally manipulated

how the task was framed. Subjects in the meaningful treatment were told that they

were labeling tumor cells in order to assist medical researchers, subjects in the zero-

context condition (the control group) were not told the purpose of the task, and, in

2



stark contrast, subjects in the shredded treatment were not given context and were

additionally told that their work would be discarded. We found that when a task was

framed more meaningfully, workers were more likely to participate. We also found

that the meaningful treatment increased the quantity of output (with an insignificant

change in quality) while the shredded treatment decreased the quality of output (with

no change in quantity). We believe these results will generalize to other short-term

labor markets. This work also discusses MTurk as an exciting platform for running

natural field experiments in economics.

The experiment above made use of surveys for its post manipulation check. Peo-

ple are known to cheat or “satisfice” on surveys, especially when not being watched

such as the case over the Internet on MTurk. Without adequate controls, researchers

should be concerned that respondents may fill out surveys haphazardly in the unsuper-

vised environment of the Internet. Chapter 3 (published in Kapelner and Chandler,

2010) presents a question-presentation method, called Kapcha, which fades in words

slowly. This experiment demonstrates technology that reduces satisficing, thereby im-

proving the quality of survey results. This work also presents an open-source platform

for further survey experimentation on MTurk.

I then decided to use Mechanical Turk to attempt to detect heterogeneous treat-

ment effects between an experimental subject that chooses to be in a study versus

those who are randomly assigned to a study. We call this “selection-into-experiment

bias” and the work found in Chapter 4 tests its effects in three experiments run on

MTurk. We find no differential average treatment effects in the studies, an unex-

pected result. We believe the flaw in the study was lack of power: the differences in

effects is very small, so even with a large sample size, no result was found.

3



Part II

The last experiment in Part I inspired me to think about methodology that increases

power and efficiency in sequential experiments. This became part II, which consists

of Chapter 5 (published in Kapelner and Krieger, 2014). Here, we propose a dynamic

allocation procedure that increases power and efficiency when measuring an average

treatment effect in fixed sample size sequential randomized trials. Subjects arrive

iteratively and are either randomized or paired via a matching criterion to a pre-

viously randomized subject and administered the alternate treatment. We develop

estimators for the average treatment effect that combine information from both the

matched pairs and unmatched subjects as well as an exact test. Simulations illus-

trate the method’s higher efficiency and power over competing allocation procedures

in both controlled scenarios and historical clinical trial data.

Part III

Experimentation is not common on MTurk; quick and inexpensive label collection is

by far the dominant application.

Chapter 6 outlines a method that estimates the count of objects or features in

an image such as tallying the number of birds in a photograph or the the number

of cells in a microscopic image. The approach has two novel steps. We first develop

software that records the labelings of many naive workers via MTurk. We then view

each worker’s training as a “capture” in a set of capture-recapture experiments. We

use statistical learning to eliminate falsely-trained objects and then take a Bayesian

approach and use a Gibbs sampler to estimate the true number of objects.

Chapter 7 (published in Kapelner et al., 2012) demonstrates the use of MTurk to

disambiguate 1000 words from among coarse-grained senses, the most extensive in-

vestigation to date. Ten unique participants disambiguate each example, and, using

4



regression, we find surprising features which drive differential wordsense disambigua-

tion accuracy: (a) the number of rephrasings within a sense definition is associated

with higher accuracy; (b) as word frequency increases, accuracy decreases even if the

number of senses is kept constant; and (c) spending more time is associated with a

decrease in accuracy. We also observe that all participants are about equal in ability,

practice (without feedback) does not seem to lead to improvement, and that hav-

ing many participants label the same example provides a partial substitute for more

expensive annotation.

Part IV

While working on projects involving label collection in Part III, my interests shifted to

using labels to make predictions and I began thinking about applied machine learning

research.

Chapter 8 (published in Kapelner and Bleich, 2013a) presents bartMachine a new

package in R implementing Bayesian Additive Regression Trees (BART, Chipman et al.,

2010) The package introduces many new features for data analysis using BART such

as variable selection, interaction detection, model diagnostic plots, incorporation of

missing data and the ability to save trees for future prediction. It is significantly

faster than the current R implementation, parallelized, and capable of handling both

large sample sizes and high-dimensional data.

Chapter 9 (published in Kapelner and Bleich, 2013b) presents a method for incor-

porating missing data into general forecasting problems that use BART. We focus on

enhancing BART using “Missingness Incorporated in Attributes,” an approach recently

proposed for incorporating missingness into decision trees. This procedure extends

the native partitioning mechanisms found in tree-based models and does not require

imputation. Simulations on Rgenerated models and real data indicate that this pro-

5



cedure offers promise for both selection model and pattern mixture frameworks as

measured by out-of-sample predictive accuracy. We also illustrate BART’s abilities to

incorporate missingness into uncertainty intervals. The implementation outlined here

has been incorporated into the R package bartMachine.

I now outline further work which I have collaborated on within the domain of

applied machine learning which is not included in the body of this document.

An important problem when building forecasting engines using labeling data is to

understand which of the collected features drive the engine. Bleich et al. (2014) out-

line a procedure based on permutation testing to find features that drive the response

function. Further, Bleich and Kapelner (2014) outline a procedure that generalizes

BART to fit heteroskedastic models by incorporating linear models of heteroskedas-

ticity. Many times in crowdsourcing applications, workers complete more than one

labeling task. This induces a correlation structure in the design matrix. Extending

BART to accommodate this type of panel data is a work in progress. The current

implementation details are found in Appendix A.5.

It became frustrating to be a user of BART, a black-box algorithm, without being

able to “look inside” and understand the inner workings of the model fit. To this end,

I worked on a visualization procedure which highlight the variation in the fitted values

across the range of a covariate, suggesting where and to what extent heterogeneities

might exist. This work and its implementation in R as the package “ICEbox” is found

in Goldstein et al. (2014).
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2
Motivation in Crowdsourcing Markets∗

Abstract

We conduct the first natural field experiment to explore the relationship between the

“meaningfulness” of a task and worker effort. We employed about 2,500 workers from

Amazon’s Mechanical Turk (MTurk), an online labor market, to label medical images.

Although given an identical task, we experimentally manipulated how the task was

framed. Subjects in the meaningful treatment were told that they were labeling tumor

cells in order to assist medical researchers, subjects in the zero-context condition (the

control group) were not told the purpose of the task, and, in stark contrast, subjects

in the shredded treatment were not given context and were additionally told that their

work would be discarded. We found that when a task was framed more meaningfully,

workers were more likely to participate. We also found that the meaningful treatment

increased the quantity of output (with an insignificant change in quality) while the

shredded treatment decreased the quality of output (with no change in quantity).

We believe these results will generalize to other short-term labor markets. Our study

also discusses MTurk as an exciting platform for running natural field experiments in

economics.

∗Joint work with Dana Chandler
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2.1 Introduction

Economists, philosophers, and social scientists have long recognized that non-pecuniary

factors are powerful motivators that influence choice of occupation. For a multidisci-

plinary literature review on the role of meaning in the workplace, we recommend Rosso

et al. (2010). Previous studies in this area have generally been based on ethnogra-

phies, observational studies, or laboratory experiments. For instance, Wrzesniewski

et al. (1997) used ethnographies to classify work into jobs, careers, or callings. Using

an observation study, Preston (1989) demonstrated that workers may accept lower

wages in the non-profit sector in order to produce goods with social externalities.

Finally, Ariely et al. (2008) showed that labor had to be both recognizable and pur-

poseful to have meaning. In this paper, we limit our discussion to the role of meaning

in economics, particularly through the lens of competing differentials. We perform

the first natural field experiment (Harrison and List, 2004) in a real effort task that

manipulates levels of meaningfulness. This method overcomes a number of shortcom-

ings of the previous literature, including: interview bias, omitted variable bias, and

concerns of external validity beyond the laboratory.

We study whether employers can deliberately alter the perceived “meaningfulness”

of a task in order to induce people to do more and higher quality work and thereby

work for a lower wage. We chose a task that would appear meaningful for many

people if given the right context — helping cancer researchers mark tumor cells in

medical images. Subjects in the meaningful treatment were told the purpose of their

task is to “help researchers identify tumor cells;” subjects in our zero-context group

were not given any reason for their work and the cells were instead referred to as mere

“objects of interest” and laborers in the shredded group were given zero context but

also explicitly told that their labelings would be discarded upon submission. Hence,

the pay structure, task requirements, and working conditions were identical, but we
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added cues to alter the perceived meaningfulness of the task.

We recruited workers from the United States and India from Amazon’s Mechan-

ical Turk (MTurk), an online labor market where people around the world complete

short, “one-off” tasks for pay. The MTurk environment is a spot market for labor

characterized by relative anonymity and a lack of strong reputational mechanisms.

As a result, it is well-suited for an experiment involving the meaningfulness of a task

since the variation we introduce regarding a task’s meaningfulness is less affected by

desires to exhibit pro-social behavior or an anticipation of future work (career con-

cerns). We ensured that our task appeared like any other task in the marketplace

and was comparable in terms of difficulty, duration, and wage.

Our study is representative of the kinds of natural field experiments for which

MTurk is particularly suited. Section 2.2.2 explores MTurk’s potential as a platform

for field experimentation using the framework proposed in Levitt and List (2007,

2009).

We contribute to the literature on compensating wage differentials (Rosen, 1986)

and the organizational behavioral literature on the role of meaning in the workplace

(Rosso et al., 2010). Within economics, Stern (2004) provides quasi-experimental

evidence on compensating differentials within the labor market for scientists by com-

paring wages for academic and private sector job offers among recent Ph.D. graduates.

He finds that “scientists pay to be scientists” and require higher wages in order to

accept private sector research jobs because of the reduced intellectual freedom and a

reduced ability to interact with the scientific community and receive social recogni-

tion. Ariely et al. (2008) use a laboratory experiment with undergraduates to vary

the meaningfulness of two separate tasks: (1) assembling Legos and (2) finding 10

instances of consecutive letters from a sheet of random letters. Our experiment aug-

ments experiment 1 in Ariely et al. (2008) by testing whether their results extend

to the field. Additionally, we introduce a richer measure of task effort, namely task
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quality. Where our experiments are comparable, we find that our results parallel

theirs.

We find that the main effects of making our task more meaningful is to induce

a higher fraction of workers to complete our task, hereafter dubbed as “induced to

work.” In the meaningful treatment, 80.6% of people labeled at least one image

compared with 76.2% in the zero-context and 72.3% in the shredded treatments.

After labeling their first image, workers were given the opportunity to label ad-

ditional images at a declining piecerate. We also measure whether the treatments

increase the quantity of images labeled. We classify participants as “high-output”

workers if they label five or more images (an amount corresponding to roughly the

top tercile of those who label) and we find that workers are approximately 23% more

likely to be high-output workers in the meaningful group.

We introduce a measure of task quality by telling workers the importance of

accurately labeling each cell by clicking as close to the center as possible. We first

note that MTurk labor is high quality, with an average of 91% of cells found. The

meaning treatment had an ambiguous effect, but the shredded condition in both

countries lowered the proportion of cells found by about 7%.

By measuring both quantity and quality we are able to observe how task effort is

apportioned between these two “dimensions of effort.” Do workers work “harder” or

“longer” or both? We found an interesting result: the meaningful condition seems to

increase quantity without a corresponding increase in quality and the shredded treat-

ment decreases quality without a corresponding decrease in quantity. Investigating

whether this pattern generalizes to other domains may be a fruitful future research

avenue.

Finally, we calculate participants’ average hourly waged based on how long they

spent on the task. We find that subjects in the meaningful group work for $1.34 per

hour, which is 6 cents less per hour than zero context participants and 14 cents less
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per hour than shredded condition participants.

We expect our findings to generalize to other short-term work environments such

as temporary employment or piecework. In these environments, employers may not

consider that non-pecuniary incentives of meaningfulness matter; we argue that these

incentives do matter, and to a significant degree.

Section 2.2 provides background on MTurk and discusses its use as a platform for

conducting economic field experiments. Section 2.3 describes our experimental design.

Section 3.3 presents our results and discussion and Section 2.5 concludes. Appendices

in section A.1 provide full details on our experimental design and suggestions for

conducting experiments using the MTurk platform.

2.2 Mechanical Turk and its potential for field ex-

perimentation

Amazon’s Mechanical Turk (MTurk) is the largest online, task-based labor market and

is used by hundreds of thousands of people worldwide. Individuals and companies

can post tasks (known as Human Intelligence Tasks, or “HITs”) and have them

completed by an on-demand labor force. Typical tasks include image labeling, audio

transcription, and basic internet research. Academics also use MTurk to outsource

low-skilled resource tasks such as identifying linguistic patterns in text (Sprouse,

2011) and labeling medical images (Chapter 6 of this document). The image labeling

system from the latter study, known as “DistributeEyes,” was originally used by

breast cancer researchers and was modified for our experiment.

Beyond simply using MTurk as a source of labor, academics have also began

using MTurk as a way to conduct online experiments. The remainder of the section

highlights some of the ways this subject pool is used and places special emphasis on

the suitability of the environment for natural field experiments in economics.
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2.2.1 General use by social scientists

As Henrich et al. (2010) argue, many findings from social science are dispropor-

tionately based on what he calls “W.E.I.R.D.” subject pools (Western, Educated,

Industrialized, Rich, and Democratic) and as a result it is inappropriate to believe

the results generalize to larger populations. Since MTurk has users from around the

world, it is also possible to conduct research across cultures. For example, Eriksson

and Simpson (2010) use a cross-national sample from MTurk to test whether differ-

ential preferences for competitive environments are explained by females’ stronger

emotional reaction to losing, hypothesized by Croson and Gneezy (2009).

It is natural to ask whether results from MTurk generalize to other populations.

Paolacci et al. (2010a) assuage these concerns by replicating three classic framing

experiments on MTurk: The Asian Disease Problem, the Linda Problem and the

Physician Problem; Horton et al. (2011) provide additional replication evidence for

experiments related to framing, social preferences, and priming. Berinsky et al. (2012)

argues that the MTurk population has “attractive characteristics” because it approx-

imates gold-standard probability samples of the US population. All three studies

find that the direction and magnitude of the effects line up well compared with those

found in the laboratory.

An advantage of MTurk relative to the laboratory is that the researcher can rapidly

scale experiments and recruit hundreds of subjects within only a few days and at

substantially lower costs.2

2For example, in our study we paid 2,471 subjects $789 total and they worked 701 hours (equating

to 31 cents per observation). This includes 60 subjects whose data were not usable.
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2.2.2 Suitability for natural field experiments in Economics

Apart from general usage by academics, the MTurk environment offers additional

benefits for experimental economists and researchers conducting natural field exper-

iments. We analyze the MTurk environment within the framework laid out in Levitt

and List (2007, 2009).

In the ideal natural field experiment, “the environment is such that the subjects

naturally undertake these tasks and [do not know] that they are participants in an

experiment.” Additionally, the experimenter must exert a high degree of control

over the environment without attracting attention or causing participants to behave

unnaturally. MTurk’s power comes from the ability to construct customized and

highly-tailored environments related to the question being studied. It is possible

to collect very detailed measures of user behavior such as precise time spent on a

webpage, mouse movements, and positions of clicks. In our experiment, we use such

data to construct a precise quality measure.

MTurk is particularly well-suited to using experimenter-as-employer designs (Gneezy

and List, 2006) as a way to study worker incentives and the employment relationship

without having to rely on cooperation of private sector firms.3 For example, Barankay

(2010) posted identical image labeling tasks and varied whether workers were given

feedback on their relative performance (i.e., ranking) in order to study whether pro-

viding rank-order feedback led workers to return for a subsequent work opportunity.

For a more detailed overview of how online labor markets can be used in experiments,

see Horton et al. (2011).

Levitt and List (2007) enumerate possible complications that arise when experi-

mental findings are extrapolated outside the lab: scrutiny, anonymity, stakes, selec-

tion, and artificial restrictions. We analyze each complication in the context of our

3Barankay (2010) remarks that “the experimenter [posing] as the firm [gives] substantial control

about the protocol and thereby eliminates many project risks related to field experiments.
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experiment and in the context of experimentation using MTurk in general.

Scrutiny and anonymity. In the lab, experimenter effects can be powerful; sub-

jects behave differently if they are aware their behavior is being watched. Relatedly,

subjects frequently lack anonymity and believe their choices will be scrutinized after

the experiment. In MTurk, interaction between workers and employers is almost non-

existent; most tasks are completed without any communication and workers are only

identifiable by a numeric identifier. Consequently, we believe that MTurk experiments

are less likely to be biased by these complications.

Stakes. In the lab or field, it’s essential to “account properly for the differences

in stakes across settings” (Levitt and List, 2007). We believe that our results would

generalize to other short-term work environments, but would not expect them to be

generalizable to long-term employment decisions such as occupational choice. Stakes

must also be chosen adequately for the environment and so we were careful to match

wages to the market average.

Selection. Experiments fail to be generalizable when “participants in the study

differ in systematic ways from the actors engaged in the targeted real-world setting.”

We know that within MTurk, it is unlikely that there is selection into our experi-

ment since our task was designed similar in appearance to real tasks. The MTurk

population also seems representative along a number of observable demographic char-

acteristics (Berinsky et al., 2012); however, we acknowledge that there are potentially

unobservable differences between our subject pool and the broader population. Still,

we believe that MTurk subject behavior would generalize to workers’ behavior in

other short-term labor markets.

Artificial restrictions. Lab experiments place unusual and artificial restrictions

on the actions available to subjects and they examine only small, non-representative

windows of time because the experimenter typically doesn’t have subjects and time

horizons for an experiment. In structuring our experiment, workers had substan-
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tial latitude in how they performed their task. In contrast with the lab, subjects

could “show-up” to our task whenever they wanted, leave at will, and were not time-

constrained. Nevertheless, we acknowledge that while our experiment succeeded in

matching short-term labor environments like MTurk, that our results do not easily

generalize to longer-term employment relationships.

Levitt and List (2009) highlight two limitations of field experiments vis-a-vis lab-

oratory experiments: the need for cooperation with third parties and the difficulty of

replication. MTurk does not suffer from these limitations. Work environments can be

created by researchers without the need of a private sector partner, whose interests

may diverge substantially from that of the researcher. Further, MTurk experiments

can be replicated simply by downloading source code and re-running the experiment.

In many ways, this allows a push-button replication that is far better than that offered

in the lab.

2.3 Experimental Design

2.3.1 Subject recruitment

In running our randomized natural field experiment, we posted our experimental

task so that it would appear like any other task (image labeling tasks are among the

most commonly performed tasks on MTurk). Subjects had no indication they were

participating in an experiment. Moreover, since MTurk is a market where people

ordinarily perform one-off tasks, our experiment could be listed inconspicuously.

We hired a total of 2,471 workers (1,318 from the US and 1,153 from India).

Although we tried to recruit equally from both countries, there were fewer Indians in

our sample since attrition in India was higher. We collected each worker’s age and

gender during a “colorblindness” test that we administered as part of the task. These
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and other summary statistics can be found in Table 3.2. By contracting workers

from the US and India, we can also test whether workers from each country respond

differentially to the meaningfulness of a task.

Our task was presented so that it appeared like a one-time work opportunity

(subjects were barred from doing the experiment more than once) and our design

sought to maximize the amount of work we could extract during this short interaction.

The first image labeling paid $0.10, the next paid $0.09, etc, leveling off at $0.02 per

image. This wage structure was also used in Ariely et al. (2008) and has the benefit

of preventing people from working too long.

2.3.2 Description of experimental conditions

Upon accepting our task, workers provided basic demographic information and passed

a color-blindness test. Next, they were randomized into either the meaningful, the

zero-context, or the shredded condition. Those in the shredded condition were shown

a warning message stating that their labeling will not be recorded and we gave them

the option to leave. Then, all participants were forced to watch an instructional video

which they could not fast-forward. See Appendix A.1.1 for the full script of the video

as well as screenshots.

The video for the meaningful treatment began immediately with cues of meaning.

We adopt a similar working definition of “meaningfulness” as used in Ariely et al.

(2008): “Labor [or a task] is meaningful to the extent that (a) it is recognized and/or

(b) has some point or purpose.”

We varied the levels of meaningfulness by altering the degree of recognition and

the detail used to explain the purpose of our task. In our meaningful group, we

provided “recognition” by thanking the laborers for working on our task. We then

explained the “purpose” of the task by creating a narrative explaining how researchers
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were inundated with more medical images than they could possibly label and that

they needed the help of ordinary people. In contrast, the zero-context and shred-

ded groups were not given recognition, told the purpose of the task, or thanked for

participating; they were only given basic instructions. Analyzing the results from

a post-manipulation check (see section 2.4.4), we are confident that these cues of

meaning induced the desired affect.

Both videos identically described the wage structure and the mechanics of how to

label cells and properly use the task interface (including zooming in/out and deleting

points, which are metrics we analyze). However, in the meaningful treatment, cells

were referred to as “cancerous tumor cells” whereas in the zero-context and shredded

treatments, they were referred to as nondescript “objects of interest.” Except for this

phrase change, both scripts were identical during the instructional sections of the

videos. To emphasize these cues, workers in the meaningful group heard the words

“tumor,” “tumor cells,” “cells,” etc. 16 times before labeling their first image and

similar cues on the task interface reminded them of the purpose of the task as they

labeled.

2.3.3 Task interface, incentive structure, and response vari-
ables

After the video, we administered a short multiple-choice quiz testing workers’ com-

prehension of the task and user interface. In the shredded condition, we gave a final

question asking workers to again acknowledge that their work will not be recorded.

Upon passing the quiz, workers were directed to a task interface which displayed

the image to be labeled and allowed users to mark cancerous tumor cells (or “objects

of interest”) by clicking (see figure 2.1). The image shown was one of ten look-alike

photoshopped images displayed randomly. We also provide the workers with controls

— zoom functionality and the ability to delete points — whose proper use would allow
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them to produce high-quality labelings.

During the experiment, we measured three response variables: (1) induced to

work, (2) quantity of image labelings, and (3) quality of image labelings.

Figure 2.1: Main task portal for a subject in the meaningful treatment

Workers were asked to identify all tumors in the image. Each image had 90 cells and

took 5 minutes on average. Our interface reminds the workers in 8 places that they

are identifying tumor cells. The black circles around each point were not visible to

participants. We display them to illustrate the size of a 10-pixel radius.

Many subjects can – and – do stop performing a task even after agreeing to com-

plete it. While submitting bad work on MTurk is penalized, workers can abandon a

task with only nominal penalty. Hence, we measure attrition with the response vari-

able induced to work. Workers were only counted as induced to work if they watched

the video, passed the quiz, and completed one image labeling. Our experimental

design deliberately encourages attrition by imposing an upfront and unpaid cost of

watching a three-minute instructional video and passing a quiz before moving on to

the actual task.
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Workers were paid $0.10 for the first image labeling. They were then given an

option to label another image for $0.09, and then another image for $0.08, and so

on.4 At $0.02, we stopped decreasing the wage and the worker was allowed to label

images at this pay rate indefinitely. After each image, the worker could either collect

what they had earned thus far, or label more images. We used the quantity of image

labelings for our second response variable.

In our instructional video, we emphasized the importance of marking the exact

center of each cell. When a worker labeled a cell by clicking on the image, we measured

that click location to the nearest pixel. Thus, we were able to detect if the click came

“close” to the actual cell. Our third response variable, quality of image labelings is

the proportion of objects identified based on whether a worker’s click fell within a

pixel radius from the object’s true center. We will discuss the radii we picked in the

following section.

After workers chose to stop labeling images and collect their earnings, they were

given a five-question PMC survey which asked whether they thought the task (a)

was enjoyable (b) had purpose (c) gave them a sense of accomplishment (d) was

meaningful (e) made their efforts recognized. Responses were collected on a five-

point Likert scale. We also provided a text box to elicit free-response comments.5

2.3.4 Hypotheses

Hypothesis 1 We hypothesize that at equal wages, the meaningful treatment will

have the highest proportion of workers induced to work and the shredded condition

will have the lowest proportion. In the following section, we provide theoretical

justification for this prediction.

4Each image was randomly picked from a pool of ten look-alike images.
5About 24% of respondents left comments (no difference across treatments).
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Hypothesis 2 As in Ariely et al. (2008), we hypothesize that quantity of images

labeled will be increasing in the level of meaningfulness.

Hypothesis 3 In addition to quantity, we measure the quality of image labelings

and hypothesize that this is increasing in the level of meaningfulness.

Hypothesis 4 Based upon prior survey research on MTurk populations, we hy-

pothesize that Indian workers are less responsive to meaning. Ipeirotis (2010) finds

that Indians are more likely to have MTurk as a primary source of income (27% vs.

14% in the US). Likewise, people in the US are nearly twice as likely to report doing

tasks because they are fun (41% vs. 20%). Therefore, one might expect financial

motivations to be more important for Indian workers.6

2.3.5 Theoretical Framework

Hypothesis 1 is justified by modeling workers’ labor participation decisions using the

modified compensating differentials framework in Rosen (1986). Instead of analyzing

a worker’s choice between two jobs, a “dirty” and “clean” one, the worker has pref-

erences over jobs with different levels of meaningfulness as characterized by our three

treatments.7 Each worker is given a take-it-or-leave-it offer that includes a sequence

of wages and a meaning level and workers subsequently decide whether to participate

(defined as labeling one or more images).

We abstract from the multi-stage decision process and focus on the worker’s initial

decision. We suppose that workers have quasi-concave preferences U(C, T ) that are

strictly increasing in the continuous variables of consumption C and the degree of

6Although Horton et al. (2011) find that workers of both types are strongly motivated by money.
7Unlike (Rosen, 1986), workers are not presented with all three options at once and we do not

model the market environment since each worker only receives a take-it-or-leave-it offer.
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Figure 2.2: Example preferences as a function of task meaningfulness.

meaning associated with a task T . Depending on their treatment, workers are pre-

sented with one of three wage-meaning tuples (w, T ) (points e, b, or f) that correspond

to identical wage offers for our task with three levels of meaning (T ∈ {S,ZC,M},

with M > ZC > S). Figure 2.2 plots indifference curves representing the total utility

obtained from our offer. The three indifference curves plotted for workers A, B, and

C depict marginal participants in each group whose IR constraint would stop binding

if the wage or meaning levels were any lower.8 Consequently, workers’ preferences for

meaningfulness induce differential participation rates.

To illustrate, Worker A (whose indifference curve intersects points a, b, and c)

would participate in all but the shredded treatment since the points b and f are

above and to the right of the indifference curve. The line segments ae and fc represent

hypothetical compensating differentials that worker A would require to participate

in either the zero-context or meaningful treatment. We also link this framework

8If a worker is indifferent between working or not, we assume he works.
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to hypothesis 4, which discusses whether some workers may be less responsive to

meaning. The flatter indifference curve represented by arc dbg shows a worker who

is less responsive to meaning.

The data from our experiment help estimate the proportion of people who fall

between marginal workers A, B, and C. However, we are unable to estimate the

curvature of the utility function, changing costs of effort, or the extent of learning

since we don’t introduce additional treatments that vary wage and meaning simul-

taneously.9 In future experiments, it would be worthwhile to create new treatments

that target these elements.

2.4 Experimental Results and Discussion

We ran the experiment on N = 2, 471 subjects (1,318 from the United States and

1,153 from India). Table 3.2 shows summary statistics for our response variables

(induced to work, number of images, and quality), demographic variables, and hourly

wage.

Broadly speaking, as the level of meaning increases, subjects are more likely to

participate and they label more images and with higher quality. Across all treatments,

US workers participate more often, label more images, and mark points with greater

accuracy. Table 2.2 uses a heatmap to illustrate our main effect sizes and their

significance levels by treatment, country, and response variable. Each cell indicates

the size of a treatment effect relative to the control (i.e., zero context condition).

Statistically significant positive effects are indicated using green fill where darker

green indicates higher levels of significance. Statistically significant negative effects

are indicated using red fill where darker red indicates higher levels of significance.

Black text without fill indicates effects that are marginally significant (p < 0.10).

9For this reason, we omit these important factors from our model.
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Shredded Zero Meaningful US India

Context only only

% Induced to Work .723 .762 .806 .85 .666

# Images (if ≥ 1) 5.94 ± 6.8 6.11 ± 6.9 7.12 ± 7.6 5.86 ± 6.1 7.17 ± 8.3

Did ≥ 2 labelings .696 .706 .75 .797 .627

Did ≥ 5 labelings .343 .371 .456 .406 .373

Avg Hourly Wage $1.49 $1.41 $1.34 $1.50 $1.29

% Male .616 .615 .58 .483 .743

Age 29.6 ± 9.3 29.6 ± 9.5 29.3 ± 9.1 31.8 ± 10.5 26.9 ± 6.8

N 828 798 845 1318 1153

Coarse quality .883 ± .21 .904 ± .18 .930 ± .14 .924 ± .15 .881 ± .21

Fine quality .614 ± .22 .651 ± .21 .676 ± .18 .668 ± .19 .621 ± .26

PMC Meaning 3.44 ± 1.3 3.54 ± 1.2 4.37 ± 0.9 3.67 ± 1.3 3.98 ± 1.1

Table 2.1: Summary statistics for response variables and demographics by treatment

and country. The statistics for the quality metrics are computed by averaging each

worker’s average quality (only for workers who labeled one or more images). The

statistics for the PMC meaning question only include workers who finished the task

and survey.

Light gray text indicates significance levels above 0.10.

Overall, we observe that the meaningful condition induces an increase in quantity

without significantly increasing quality, and the shredded condition induces a quality

decrease with quantity remaining constant. This “checkerboard effect” may indicate

that meaning plays a role in moderating how workers trade quantity for quality i.e.

how their energy is channeled in the task.

We now investigate each response variable individually.
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Induced Did ≥ 5 Fine Average Hourly

to work labelings Quality Wage

Meaningful ↑ 4.6%* ↑ 8.5%*** ↑ 0.7% ↓ 4.5%

Meaningful (US) ↑ 5.1%* ↑ 8.9%** ↑ 3.9% ↓ 7.7%

Meaningful (India) ↓ 2.3% ↑ 7.0%* ↓ 3.1% ↑ 0.5%

Shredded ↓ 4.0% ↓ 2.8% ↓ 7.2%*** ↑ 5.6%

Shredded (US) ↓ 2.3% ↓ 5.0% ↓ 6.1%* ↑ 9.5%

Shredded (India) ↓ 6.8% ↓ 1.6% ↓ 8.7%** ↓ 1.4%

* p < .05, ** p < .01, *** p < .001, black text indicates p < .10 and grey

text indicates p > 0.10

Table 2.2: A heatmap illustration of our results. Rows 1 and 4 consider data from

both America and India combined. Columns 1, 2, 3 show the results of regressions and

column 4 shows the result of two-sample t-tests. Results reported are from regressions

without demographic controls.

2.4.1 Labor Participation Results: “Induced to work”

We investigate how treatment and country affects whether or not subjects chose to do

our task. Unlike in a laboratory environment, our subjects were workers in a relatively

anonymous labor market and were not paid a “show-up fee.” On MTurk, workers

frequently start but do not finish tasks; attrition is therefore a practical concern for

employers who hire from this market. In our experiment, on average, 25% of subjects

began, but did not follow-through by completing one full labeling.

Even in this difficult environment, we were able to increase participation among

workers by roughly 4.6% by framing the task as more meaningful (see columns 1 and

2 of table 2.3). The effect is robust to including various controls for age, gender, and

time of day effects. As a subject in the meaningful treatment told us, “It’s always
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nice to have [HITs] that take some thought and mean something to complete. Thank

you for bringing them to MTurk.” The shredded treatment discouraged workers and

caused them to work 4.0% less often but the effect was less significant (p = 0.057

without controls and p = 0.082 with controls). Thus, hypothesis 1 seems to be

correct.

Induced Induced Did ≥ 2 Did ≥ 2 Did ≥ 5 Did ≥ 5

Meaningful 0.046* 0.046* 0.047* 0.050* 0.085*** 0.088***

(0.020) (0.020) (0.022) (0.022) (0.024) (0.024)

Shredded -0.040 -0.037 -0.012 -0.005 -0.028 -0.023

(0.021) (0.021) (0.022) (0.022) (0.024) (0.024)

India -0.185*** -0.183*** -0.170*** -0.156*** -0.035 -0.003

(0.017) (0.018) (0.018) (0.019) (0.019) (0.021)

Male 0.006 -0.029 -0.081***

(0.018) (0.019) (0.021)

Constant 0.848*** 0.907*** 0.785*** 0.873*** 0.387*** 0.460***

Controls

Age 0.23 0.29 0.92

Time of Day 0.16 0.06 0.46

Day of Week 0.08 0.00** 0.55

R2 0.05 0.06 0.04 0.05 0.01 0.02

N 2471 2471 2471 2471 2471 2471

* p < .05, ** p < .01, *** p < .001

Table 2.3: Robust linear regression results for the main treatment effects on quantity

of images. Columns 1, 3 and 5 only include treatments and country. Columns 2, 4,

and 6 control for gender, age categories, time of day, and day of week. Rows 6-8 show

p-values for the partial F -test for sets of different types of control variables.
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Irrespective of treatment, subjects from India completed an image 18.5% less often

(p < 0.001) than subjects from the US. We were interested in interactions between

country and treatment, so we ran the separate induced-to-work regression results by

country (unshown). We did not find significant effects within the individual countries

because we were underpowered to detect this effect when the sample size was halved.

We find no difference in the treatment effect for induced to work between India and the

United States (p = 0.97). This is inconsistent with hypothesis 4 where we predicted

Indian subjects to respond more strongly to pecuniary incentives.

It is also possible that the effects for induced to work were weak because subjects

could have still attributed meaning to the zero context and shredded conditions, a

problem that will affect our results for quantiy and quality as well. This serves to bias

our treatment effects downward suggesting that the true effect of meaning would be

larger. For instance, one zero-context subject told us, “I assumed the ‘objects’ were

cells so I guess that was kind of interesting.” Another subject in the zero-context

treatment advised us, “you could put MTurkers to good use doing similar work with

images, e.g. in dosimetry or pathology ... and it would free up medical professionals

to do the heftier work.”

2.4.2 Quantity Results: Number of images labeled

Table 3.2 shows that the number of images increased with meaning. However, this

result is conditional on being induced to work and is therefore contaminated with

selection bias. We follow Angrist (2001) and handle selection by creating a dummy

variable for “did two or more labelings” and a dummy for “did five or more labelings”

and use them as responses (other cutoffs produced similar results).

We find mixed results regarding whether the the level of meaningfulness affects

the quantity of output. Being assigned to the meaningful treatment group did have
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a positive effect, but assignment to the shredded treatment did not result in a corre-

sponding decrease in output.

Analyzing the outcome “two or more labelings,” column 3 of table 2.3 shows that

the meaningful treatment induced 4.7% more subjects to label two or more images

(p < 0.05). The shredded treatment had no effect. Analyzing the outcome “five

or more labelings” (column 5), which we denote as “high-output workers,”10 the

meaningful treatment was highly significant and induced 8.5% more workers (p <

0.001 with and without controls), an increase of nearly 23 percent, and the shredded

treatment again has no effect.

Hypothesis 2 (quantity increases with meaningfulness) seems to be correct only

when comparing the meaningful treatment to the zero-context treatment. An am-

biguous effect of the shredded treatment on quantity is also reported by Ariely et al.

(2008).

We didn’t find differential effects between the United States and India. In an

unshown regression, we found that Americans were 9.5% more likely to label five or

more images (p < 0.01) and Indians were 8.4% more likely to label five or more (p <

0.05). These two effects were not found to be different (p = 0.84) which is inconsistent

with hypothesis 4 that Indians are more motivated by pecuniary incentives than

Americans.

Interestingly, we also observed a number of “target-earners” who stopped upon

reaching exactly one dollar in earnings. A mass of 16 participants stopped at one

dollar, while one participant stopped at $1.02 and not one stopped at $0.98, an effect

also observed by Horton et al. (2011). The worker who labored longest spent 2 hours

and 35 minutes and labeled 77 images.

10Labeling five or more images corresponds to the top tercile of quantity among people who were

induced to work.
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2.4.3 Quality Results: Accuracy of labeling

Quality was measured by the fraction of cells labeled at a distance of five pixels

(“coarse quality”) and two pixels (“fine quality”) from their true centers. In presenting

our results (see table 2.4), we analyze the treatment effects using our fine quality

measure. The coarse quality regression results were similar, but the fine quality had

a much more dispersed distribution.11

Our main result is that fine quality was 7.2% lower in the shredded treatment,

but there wasn’t a large corresponding increase in the meaningful treatment.12 This

makes sense; if the workers knew their labelings weren’t going to be checked, there is

no incentive to mark points carefully. This result was not different across countries

(regression unshown). The meaningful treatment has a marginally significant effect

only in the United States, where fine quality increased by 3.9% (p = 0.092 with-

out controls and p = 0.044 with controls), but there was no effect in India. Thus,

hypothesis 3 (quality increases with meaningfulness) seems to be correct only when

comparing the shredded to the zero context treatment which is surprising.

Although Indian workers were less accurate than United States workers and had

5.3% lower quality (p < 0.001 and robust to controls), United States and Indian

workers did not respond differentially to the shredded treatment (p = 0.53). This

again is inconsistent with hypothesis 4.

Experience matters. Once subjects had between 6 and 10 labelings under their

belt, they were 1.8% less accurate (p < 0.01), and if they had done more than 10

labelings, they were 14% less accurate (p < 0.001). This result may reflect negative

11The inter-quartile range of coarse quality overall was [93.3%, 97.2%] whereas the IQR of fine

quality was overall [54.7%, 80.0%].
12One caveat with our quality results is that we only observe quality for people who were induced

to work and selected into our experiment (we have “attrition bias”). Attrition was 4% higher in the

shredded treatment and we presume that the people who opted out of labeling images would have

labeled them with far worse quality had they remained in the experiment.
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Fine Quality

Both Countries United States India

Meaningful 0.007 0.014 0.039 0.039* -0.031 -0.013

(0.017) (0.014) (0.023) (0.019) (0.025) (0.021)

Shredded -0.072*** -0.074*** -0.061* -0.066** -0.087** -0.073**

(0.021) (0.017) (0.027) (0.023) (0.031) (0.023)

India -0.053*** -0.057***

(0.015) (0.013)

Male 0.053*** 0.014 0.100***

(0.013) (0.017) (0.021)

Labelings 6—10 -0.018** -0.024** -0.016*

(0.006) (0.008) (0.008)

Labelings ≥ 11 -0.140*** -0.116*** -0.148***

(0.017) (0.029) (0.020)

Constant 0.666*** 0.645*** 0.651*** 0.625*** 0.634*** 0.588***

Controls

Image 0.00*** 0.00*** 0.00***

Age 0.10 0.01** 0.25

Time of Day 0.33 0.29 0.78

Day of Week 0.12 0.46 0.26

R2 0.04 0.15 0.04 0.12 0.02 0.20

N 12724 12724 6777 6777 5947 5947

* p < .05, ** p < .01, *** p < .001

Table 2.4: Robust linear regression clustered by subject for country and treatment

on fine quality as measured by the number of cells found two pixels from their exact

centers. Columns 1, 3 and 5 include only treatments and country. Columns 2, 4, and

6 control for number of images, the particular image (of the ten images), gender, age

categories, time of day, and day of week.
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selection — subjects who labeled a very high number of images were probably working

too fast or not carefully enough.13 Finally, we found that some of the ten images were

substantial harder to label accurately than others (a partial F-test for equality of fixed

effects results in p < 0.001).

2.4.4 Post Manipulation Check Results

In order to understand how our treatments affected the perceived meaningfulness

of the task, we gave a post manipulation check to all subjects who completed at

least one image and did not abandon the task before payment. This data should be

interpreted cautiously given that subjects who completed the tasks and our survey

are not representative of all subjects in our experiment.14

We found that those in the meaningful treatment rated significantly higher in the

post manipulation check in both the United States and India. Using a five-point

Likert scale, we asked workers to rate the perceived level of meaningfulness, purpose,

enjoyment, accomplishment, and recognition. In the meaningful treatment, subjective

ratings were higher in all categories but the self-rated level of meaningfulness and

purpose were the highest. The level of meaningfulness was 1.3 points higher in the

US and 0.6 points higher in the India; the level of perceived porposefulness was 1.2

points higher in America and 0.5 points higher in India. In the United States, the level

of accomplishment only increased by 0.8 and the level of enjoyment and recognition

increased by 0.3 and 0.5 respectively with a marginal increase in India. As a US

13Anecdotally, subjects from the shredded condition who submitted comments regarding the task

were less likely to have expressed concerns about their accuracy. One subject from the meaningful

group remarked that “[his] mouse was too sensitive to click accurately, even all the way zoomed in,”

but we found no such apologies or comments from people in the shredded group.
14Ideally, we would have collected this information immediately after introducing the treatment

condition. However, doing so would have compromised the credibility of our natural field experiment.
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participant told us, “I felt it was a privilege to work on something so important and

I would like to thank you for the opportunity.”

We conclude that the meaningful frames accomplished their goal. Remarkably,

those in the shredded treatment in either country did not report significantly lower

ratings on any of the items in the post manipulation check. Thus, the shredded

treatment may not have had the desired effect.

2.5 Conclusion

Our experiment is the first that uses a natural field experiment in a real labor market

to examine how a task’s meaningfulness influences labor supply.

Overall, we found that the greater the amount of meaning, the more likely a

subject is to participate, the more output they produce, the higher quality output

they produce, and the less compensation they require for their time. We also observe

an interesting effect: high meaning increases quantity of output (with an insignificant

increase in quality) and low meaning decreases quality of output (with no change

in quantity). It is possible that the level of perceived meaning affects how workers

substitute their efforts between task quantity and task quality. The effect sizes were

found to be the same in the US and India.

Our finding has important implications for those who employ labor in any short-

term capacity besides crowdsourcing, such as temp-work or piecework. As the world

begins to outsource more of its work to anonymous pools of labor, it is vital to

understand the dynamics of this labor market and the degree to which non-pecuniary

incentives matter. This study demonstrates that they do matter, and they matter to

a significant degree.

This study also serves as an example of what MTurk offers economists: an excellent

platform for high internal validity natural field experiments while evading the external
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validity problems that may occur in laboratory environments.
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3
Preventing Satisficing in Surveys∗

Abstract

Researchers are increasingly using online labor markets such as Amazon’s Mechan-

ical Turk (MTurk) as a source of inexpensive data. One of the most popular tasks

is answering surveys. However, without adequate controls, researchers should be

concerned that respondents may fill out surveys haphazardly in the unsupervised en-

vironment of the Internet. Social scientists refer to mental shortcuts that people take

as “satisficing” and this concept has been applied to how respondents take surveys.

We examine the prevalence of survey satisficing on MTurk. We present a question-

presentation method, called Kapcha, which we believe reduces satisficing, thereby

improving the quality of survey results. We also present an open-source platform for

further survey experimentation on MTurk.

∗Joint work with Dana Chandler
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3.1 Introduction

It has been well established that survey-takers may “satisfice” (i.e., take mental short-

cuts) to economize on the amount of effort and attention they devote to filling out

a survey (Krosnick, 1991).2 As a result, the quality of data in surveys may be lower

than researchers’ expectations. Because surveys attempt to measure internal mental

processes, they are by their very nature not easily verifiable by external sources. This

presents a potential problem for the many researchers who are beginning to employ

Amazon’s Mechanical Turk (MTurk) workers to answer surveys and participate in

academic research (Paolacci et al., 2010b, Horton and Chilton, 2010, Chandler and

Kapelner, 2013 which is also Chapter 2 of this document). Moreover, unlike other

tasks completed on MTurk, inaccuracies in survey data cannot be remedied by having

multiple workers complete a survey, nor is there an easy way to check them against

“gold-standard” data.3

In our experiment, we examine alternative ways to present survey questions in

order to make respondents read and answer questions more carefully.

Our first treatment “exhorts” participants to take our survey seriously. We ask

for their careful consideration of our questions by placing a message in prominent red

text on the bottom of every question. Surprisingly, this has no effect.

Our two other treatments took a more economic approach and attempted to alter

the incentives of survey-takers who ordinarily have an incentive to fill out questions

as quickly as possible in order to maximize their hourly wage and exert minimal

2Krosnick (1991) applies Simon (1955)’s famous idea of satisficing to how respondents complete

surveys.
3In an MTurk context, “gold-standard” data refers to asking workers questions to which the

surveyor already knows the answer as a way to identify bad workers. Although this is straightforward

for an image labeling task (e.g. Holmes and Kapelner, 2010 which is also Chapter 6 of this document

and Sorokin and Forsyth, 2008), it is less clear how to apply this concept to surveys.
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cognitive effort. More specifically, both treatments force the participant to see the

question for a certain “waiting period”. Combined, these waiting period treatments

improved the quality of survey responses by 10.0% (p < 0.001). Under the waiting

period treatments, the participant is forced to spend more time on each question

and once there, we hypothesize that they will spend more time thinking about and

thoughtfully answering questions.

The first of these two treatments, called simply the Timing control treatment,

features a disabled continue button for the duration of the waiting period. The

second of these treatments, referred to as the Kapcha4 has a waiting period equal

to that of the Timing control treatment, but also attempts to attract the attention

of respondents by sequentially “fading in” each word in the question’s directions, its

prompt, and its answer choices. This treatment was the most effective and improved

quality by approximately 13%.

To proxy for quality, which is largely unobservable, we introduce a “trick question”

into the survey as a way of measuring whether people carefully read instructions. We

echo the methodology from Oppenheimer et al. (2009) who call this trick question

an instructional manipulation check (IMC). Additionally, we give respondents two

hypothetical thought experiments where we ask them to imagine how they would

behave under certain conditions. The conditions are identical except for a subtle

word change that would only be apparent if the instructions were read carefully —

hence, for close readers, there should be a greater difference in reported behavior as

compared with people who were merely skimming.5

4The name was inspired from the “Captcha” Internet challenge-response test to ensure a human

response (Von Ahn et al., 2003).
5This portion of our experiment replicates Study 1 in Oppenheimer et al. (2009). Their primary

focus was to identify subsamples of higher quality data and to eliminate the “noisy data” (i.e., the

participants who did not read the instructions carefully enough to pass the trick question). This

enables researchers to increase the statistical power of their experiments.
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This paper presents initial evidence on alternative ways to present survey ques-

tions in order to reduce satisficing. We hypothesize that altering the cost-benefit

analysis undertaken by survey respondents is the mechanism which reduces satisfic-

ing. The approach we present has the benefit of improving the quality of results

without increasing monetary cost or convenience for the surveyor. We also examine

the prevalence of satisficing and how it may vary across respondent demographics.

Finally, we discuss ideas for further improving how to present survey questions.

Section 5.2 explains our experimental methods. Section 3.3 illustrates our most

important results, section 9.6 concludes, and section 3.5 talks about future direc-

tions. Appendix 3.5 describes the TurkSurveyor open-source package for running

experiments and Appendix 3.5 provides links to our source code and data so that

others may replicate and verify our results.

3.2 Methods

3.2.1 Recruitment of Participants

We designed an MTurk HIT (our “task”) to appear as a nondescript survey task

similar to many others that are now popular on MTurk. By making our survey

appear like any other, we intended to recruit a population that is representative of

the MTurk survey-taking population.

We entitled our task “Take a short 30-question survey — $0.11USD” and its

description was “Answer a few short questions for a survey”. The preview pane of

the HIT only displayed, “Welcome to the short survey! In this survey you will answer

30 questions. You may only do one survey.” Our HIT was labeled with the keywords

“survey”, “questionnaire”, “survey, “poll”, “opinion”, “study”, and “experiment” so

that people specifically looking for survey tasks could easily find our task. However,
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we also wanted to attract workers who were not specifically looking for survey tasks.

Therefore, we posted batches of tasks at various times.

We recruited 784 MTurk workers from the United States.6 Each worker was only

allowed to complete one survey task and took one of four different versions of the

survey according to their randomized assignment. In total, 727 workers completed

the entire survey and each was paid $0.11USD.7

We posted in batches of 200 tasks at a time four times per day (at 10AM, 4PM,

10PM, and 4AM EST) as to not bias for early-riser or night-owl workers. Altogether,

18 bunches (of 200 HITs each) were posted between September 1 and September 5,

2010. All HITs expired six hours after creation as to not interfere with the subsequent

batch. Note that if we had posted our tasks as one gargantuan batch and waited

until completion (possibly a week or longer), we would have attracted a majority of

workers who were specifically looking for survey tasks (most likely searching for them

via keyword) rather than a more general sample of workers.8 The workers were given

a maximum of 45 minutes to complete the task.9

6This restriction reduces the influence of any confounding language-specific or cultural effects.

Generalizing our results to other countries and languages may be a fruitful future research direction.
7The workers worked 81.3 hours at an average wage of $0.98/hr and a total cash cost to the

experimenters of $87.97 (including Amazon’s fee of 10%). In this calculation, we ignore the time

they spent on the feedback question and the bonuses we paid.
8This phenomenon is due to HITs rapidly losing prominence in the public listings and eventually

being relegated to obscurity where they may only be found by those searching via keyword (see

Chilton et al., 2010). Also note that we save the time each HIT was created at and expires at. We

use this information to check at what point in the HIT listing life-cycle the worker accepted the

HIT.
9Even though the survey was short, we wanted to give ample time to be able to collect data on

task breaks. Note that few workers took advantage of the long time limit; 117 workers (16%) took

more than 15 minutes and only 61 workers (8%) took more than 30 minutes.
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3.2.2 Treatments

To test the satisficing-reducing effect of the Kapcha, we randomized each participant

into one of four treatments which are described below, summarized in table 3.1, and

pictured in figures 3.1a–d.10

Increase Force Attract att-

perceived value slow ention to ind-

Treatment of survey down ividual words

Control

Exhortation X

Timing control X

Kapcha X X

Table 3.1: Overview of treatments and how they improve data quality

The first treatment was the Control where the questions were displayed in a similar

fashion as any other online survey.

Our Exhortation treatment presents survey questions in an identical way as the

Control treatment except that we try to increase the survey taker’s motivation by

reminding them in alarming red text at the bottom of each question page to “Please

answer accurately. Your responses will be used for research.” Past research on survey

design has shown that respondents are more likely to devote effort to completing sur-

veys if they perceive them as valuable because they contribute to research (Krosnick,

1991).

Rather than using exhortation, our Timing control and Kapcha treatments induce

more careful survey taking by changing the incentives of a respondent. In short, we

10Videos llustrating the four treatments are available at

http://danachandler.com/kapchastudy.html
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lower the payoff to satisficing.11 When respondents can breeze through a survey and

click one answer after another without delay, they may be tempted to satisfice — i.e.,

click the first answer that seems correct or any answer at random. If, however, survey

respondents are forced to wait before proceeding to the next question, we hypothesize

that they will use this time to think more carefully about how to answer.

Our Timing control treatment is identical to the Control treatment except that

the continue button is disabled and has a spinning graphic during a waiting period12

after which the continue button is enabled.

The Kapcha treatment goes one step further and, in addition to slowing down the

respondent for a time equal to the Timing control treatment, also draws additional

attention to the instructions and answer choices by “fading-in” the survey’s words at

250 words per minute.

The delay time for the questions in the Timing control treatment were calibrated

to be the same total fade-in time for the Kapcha participant’s question. By controlling

for the timed delay, we were able to isolate the additional effect due to forcing the

respondent to pay attention to the words in the Kapcha.

Although this is the first research to our knowledge that studies waiting peri-

ods and textual fade-ins, there is a long history of research on how various forms

of survey implementation affect response. Two interesting examples include how

self-administration lead respondents to answer sensitive questions more truthfully

11If the Exhortation treatment increased the rate at which people passed the trick question (which

it did not), we might have worried that this framing could bias the way survey takers answer

questions, particularly socially sensitive ones, since it reminds the respondent that they are under

scrutiny. In social psychology, over-reporting “positive” behaviors is known as the “social desirability

bias” (DeMaio, 1984).
12We peg the waiting period to the time it takes an average person to read the number of words

in each question. Taylor (1965) finds that the average reading speed for college-level readers is 280

words per minute and 250 for twelfth-graders. We chose 250 words per minute.
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and how questions that are accompanied by audio do the same among people who

might not understand the text (especially among low-literacy respondents). Recently,

Couper et al. (2009) has helped separate the effect of the self-administration and the

audio component.13

3.2.3 Custom Survey Task Design

As soon as the worker accepted the HIT, they were given a page with directions that

explained the length of the survey and asked to begin when ready. Depending on the

treatment, we also added an additional sentence or two to the instructions in order to

explain the particularities associated with each treatment. For our Exhortation group,

we emphasized the importance of giving accurate and honest answers. In our Timing

control group, we told participants that the continue button would be disabled for a

short time so they would have more time to read and answer each question. For our

Kapcha group, we mentioned how words and answer choices would appear one at a

time.

After reading the directions, the worker began the survey task which consisted

of 30 questions plus two optional questions eliciting feedback. Each question was

presented individually so that the respondent must click submit before moving onto

the next question.14

Our first question, “question A”, is a hypothetical thought experiment (which

we call the soda-pricing example) that “demonstrates how different expectations can

change people’s willingness to pay for identical experiences” (Oppenheimer et al.,

13For an excellent, though slightly dated review of various survey presentation formats and the

issues they try to overcome, see Chapter 10.1 of Tourangeau et al. (2000)
14Note that most surveys on MTurk display all questions on one page. Presenting questions one

at a time, as we do in our study, probably serves to reduce satisficing. A future study would allow

us to determine how the number of questions on each page affects satisficing.
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2009). The question text is shown below. The subtle text manipulation which induces

an effect according to Thaler (1985) is shown in brackets and will be denoted as the

“run-down” vs. “fancy” treatments:

You are on the beach on a hot day. For the last hour you have been

thinking about how much you would enjoy an ice cold can of soda. Your

companion needs to make a phone call and offers to bring back a soda

from the only nearby place where drinks are sold, which happens to be a

[run-down grocery store / fancy resort]. Your companion asks how much

you are willing to pay for the soda and will only buy it if it is below the

price you state. How much are you willing to pay?

It has been shown repeatedly in the literature that people are willing to pay

more when the beverage comes from a fancy resort. If the workers were reading the

instructions carefully, we expect them to pay a higher price in the “fancy” treatment.

The worker was then given “question B,” another hypothetical thought experiment

(which we call the football attendance example), which demonstrates that people are

susceptible to the sunk cost fallacy (for screenshots, see figure 3.1a–d). The question

text is shown below. The subtle text manipulation which induces an effect according

to Thaler (1985) is shown in brackets and will be denoted as the “paid” vs “free”

treatments:

Imagine that your favorite football team is playing an important game.

You have a ticket to the game that you have [paid handsomely for /

received for free from a friend]. However, on the day of the game, it

happens to be freezing cold. What do you do?

Their intention was gauged on a nine-point scale where 1 was labeled “definitely

stay at home” and 9 was labeled “definitely go to the game”. It has been shown that
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(a) Control treatment (b) Exhortation treatment

(c) Timing control treatment (d) Kapcha treatment

Figure 3.1: The participant’s screen during question B, the intent to go to a football

game, shown for all four experimental treatments (in the “paid” treatment). The

Timing control and Kapcha treatments are both shown at 10 seconds since page

load.

people who read the treatment where they paid for the tickets are more likely to go

to the game.

By randomizing the text changes independently of treatments, we were able com-

pare the strength of these two well-established psychological effects across the four

types of survey-presentation.

The participant then answered an “instructional manipulation check” (IMC) ques-

tion. Once again, this is a trick question designed to gauge whether the participant

reads and follows directions carefully. The instructions of the IMC question asks

the participant which sports they like to play and provides many options. However,

within the question’s directions (i.e. the “fine print”), we tell the respondent to ig-

nore the question prompt and instead click on the title above (see Fig 3.2). If the
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participant clicked the title, they “pass” the IMC; any other behavior is considered

failure. We administer the IMC and consider it to be a proxy for satisficing behavior

in general15 which we were able to compare across the four treatments.

Figure 3.2: A screenshot of the instructional manipulation check in the Control treat-

ment.

After this point, there are no longer any differences in how we present survey

questions across the treatments. We turn off the Kapcha fade-in, the Timing control,

and the Exhortation message. This allows us to collect demographics and need for

cognition measures in a way that is comparable and independent of treatment.16

The next eight questions collect demographic information. We ask for birth year,

gender, and level of education. We then ask a few questions about their general work

habits on MTurk: “Why do you complete tasks in Mechanical Turk?”, “How much do

15Oppenheimer et al. (2009) could not detect a significant difference between the “fancy resort”

and the “run-down grocery store” conditions in question A using the full sample, but could detect a

significant difference using data only from the participants who passed the IMC. This is an intuitive

result; the psychological effect that occurs due to subtle word changes would only be detectable if a

respondent carefully read the instructions.
16Naturally, the influence of the treatment from the first three questions may linger.
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you earn per week on Mechanical Turk?”, “How much time do you spend per week on

Mechanical Turk?”17, and “Do you generally multi-task while doing HITs?” To see

if people who take surveys more often are any different, we also ask: “What percent

of your time on MTurk do you spend answering surveys, polls, or questionnaires?”.

After the eight demographic questions, we administer an 18-question abbreviated

version of the full “Need for Cognition” (NFC) scale (see Cacioppo et al., 1984). Re-

spondents say how characteristic each of the statements are of their personality (e.g.

“I find satisfaction in deliberating hard and for long hours”) on a five-point scale

where 1 indicates “extremely uncharacteristic” and 5 indicates “extremely character-

istic”.18 In short, the NFC scale assesses how much an individual has a need to think

meticulously and abstractly. This is of interest to our study because an individual’s

NFC may itself affect the probability of satisficing during a survey. People who have

a higher NFC are also more likely to fill out the survey diligently and appear with

high scores. Those with low NFC will have scores that are attenuated toward the

center (i.e., 3) because they are more likely to haphazardly guess.

For the 30th question, we ask the participant to rate how motivated they were to

take this survey on a nine-point scale.

We then give two optional feedback questions. On both questions, we indicated

that responses would be given either a $0.01, $0.05 USD bonus, or no bonus (these

three levels were randomized in order to test the effect of bonus level on feedback

quality). The amount of feedback is also used as a measure of respondent engagement.

The first question inquired, “What did you like most about this survey? What

did you like least about this survey? Is there anything you would recommend to

make it better?” The second feedback prompt was only relevant for the Kapcha or

17This question was used in Ipeirotis (2010), which presents result from a large MTurk survey
18Approximately half of the questions are also reverse-coded so that noisy survey responses would

cancel themselves out and tend toward the center.
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Timing control treatments. We asked, “Certain respondents had to wait for each

survey question to complete before filling in answers. We are especially interested in

knowing how this affected the way you took the survey.”

3.2.4 Other Data Collected

During our recruitment period, we posted HIT bunches (see section 3.2.1 for details)

with an equal number of tasks in each of the four experimental treatments.

In addition to the participants’ responses, we recorded how long survey respon-

dents spent on each part of the survey. This gave us some indication of how seriously

people took our survey (i.e., read instructions, considered answers to questions). We

also recorded when the participant’s task window was focused on our task or focused

on another window.19

In the future, we hope to collect much more detailed information on the user’s

activity including timestamps of exact mouse position locations, mouse clicks, and

keystrokes. Ultimately, it would be an asset to researchers to be able to “playback”

the task by watching the worker’s mouse movements in a short video in order to gain

greater insight into how respondents answer surveys.20 This would help identify sat-

isficing behavior in a way that would go undetected using other rigid rules, but would

be obvious from watching a video (e.g., instantaneously and haphazardly clicking on

random answer choices).

19Unfortunately, this variable was not compatible with all Internet browsers and was too noisy to

use in analysis.
20Everything mentioned here is possible by using http://clicktale.com’s premium service.
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3.3 Results

Table 3.2 shows the main results of the experiment. In short, we find that the

Kapcha treatment increases the proportion of respondents that pass the instructional

manipulation check (the IMC pass rate) relative to other treatments but causes more

people to leave the task midway. We find the Kapcha treatment induces a highly

significant effect on question A, but not on question B. Overall, we confirm both of

Thaler (1985)’s economic effects if we combine all treatments.

3.3.1 Timed Treatments Lead to More Attrition

Table 3.3 shows the observed attrition for each treatment as well as comparisons

against the Control.21 Our two timed treatments timing control and Kapcha led to

higher attrition as compared with the Control treatment. This result is not surprising

since by forcing some respondents to spend more time on our survey, we effectively

are lowering their hourly wage and testing their patience. As we might expect, the

Exhortation treatment, which reminds the respondent of the importance of our survey,

slightly lowers attrition (though not significantly).22

Ordinarily, survey designers seek to minimize attrition (i.e., maximize completion

rates of their surveys). However, in the MTurk environment, where the number of

potential respondents is larger than the desired sample size, the researcher may want

to restrict the sample to those who yield the highest quality data.23 If the decision

21We employ two-sample two-sided z-tests for difference in proportion.
22Assuming that the true difference in the proportion of attrition between the Control and Ex-

hortation treatment was 3.4%, we would need 620 observations in both treatments to have an 80%

chance of detecting it.
23In many survey situations such as surveying current members of an organization, maximizing

the response rate is a good strategy. However, in academic research, especially behavioral economics

and psychology, weeding out non-serious respondents may be desirable.
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Over- Con- Exhort- Tim- Kap-

all trol ation ing cha

N 784 178 208 210 188

Attrition

(%) 7.3 5.6 2.4 8.1 13.3

IMC Pass

Rate (%) 81.7 77.4 76.4 83.9 90.2

Question A price ($)

“fancy” 2.21 2.14 2.17 2.27 2.23

“rundown” 1.97 2.06 2.10 1.96 1.69

difference 0.24** 0.08 0.07 0.31 0.54***

Question B intent

“paid” 7.28 7.55 7.31 7.14 7.16

“free” 6.91 6.79 7.24 6.35 7.12

difference 0.37* 0.76 0.07 0.79* 0.04

*p < 0.05, **p < 0.01, ***p < 0.001

Table 3.2: Summary statistics by treatment
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comparison

with Control

treatment

Treatment N Attrition (%) (p-value)

Control 178 5.6 —

Exhortation 208 2.4 0.12

Timing control 210 8.1 0.46

Kapcha 188 13.3 0.02

All 784 7.3 —

Table 3.3: Attrition by treatment

to leave a survey midway through indicates that these people are “less serious”, we

probably would not want them in our sample.24

Note that going forward, we only analyze tasks that were fully completed (i.e.

workers who did not attrit).

3.3.2 Kapcha Alone is a Successful Mechanism for Reducing
Satisficing

We investigate the IMC pass rate by experimental treatment and demographic con-

trols.

Table 3.4 illustrates that the Control and Exhortation treatments differ signifi-

cantly from the Kapcha treatment.25 The difference between the Timing Control and

24Oppenheimer et al. (2009) discusses how excluding data based on whether people fail the in-

structional manipulation check may lead to a non-representative population. This is a concern that

should be considered by the researcher, but is unlikely to be relevant unless the non-representative

subset of workers would bias the study.
25Via two-sample, two-tailed z-tests
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comparisons (p-value)

Treatment IMC Pass Rate (%) Exhortation Timing Kapcha

Control 77.4 0.734 0.143 0.002**

Exhortation 76.4 0.057 < 0.001***

Timing control 83.9 0.076

Kapcha 90.2

Table 3.4: IMC pass rate (%) by treatments with comparisons

Kapcha was almost significant (p = 0.076). We suspect this difference is real but we

most likely do not have enough data to detect it.26

Table 3.5 demonstrates that the only experimental treatment which significantly

impacts the IMC pass rate is the Kapcha fade-in treatment, increasing the pass rate

by 12.8± 4.0% (p < 0.01). Controlling for demographics27 makes the effect more sta-

tistically significant while leaving the estimate unchanged (p < 0.001). As expected,

controlling for demographics also significantly improves the overall fit of the model,

as measured by R2. Demographic factors that affect the IMC pass rate are discussed

in section 3.3.4.

Are the higher IMC pass rates in those groups simply the result of “less serious”

respondents removing themselves from our sample? We investigate whether the higher

attrition rates in the Kapcha treatment can explain the differences in IMC pass rates

we have been exploring.

Under the most conservative assumptions, we assume that all of the additional

26If the true proportions were equal to the means that we observed, we would need 492 observations

in each treatment to have an 80% chance of detecting it.
27The other covariates in table 3.5 represent covariates that were not significant and jointly, barely

significant. These include frequency of survey-taking on MTurk, hours per week on MTurk, earning

per week on MTurk, task day of week, task hour of day, reported multitasking behavior, minutes

since HIT was listed, and average time spent on first 30 questions.
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without with

(N = 727) controls b (se) controls b (se)

Treatment

Exhortation -1.0 (4.4) -1.0 (4.4)

Timing Control 6.6 (4.2) 7.3 (4.2)

Kapcha 12.8** (4.0) 13.0*** (3.9)

Gender (male) -7.7* (3.1)

Age (26-35) 11.4** (4.0)

Age (36-45) 16.3*** (4.3)

Age (over 45) 17.1*** (4.6)

Completed college 4.2 (2.9)

Reported motivation 1.9 (1.1)

# words in feedback 0.3*** (0.1)

Need for cognition 3.8 (2.5)

Break for ≥ 2min -13.1 (7.7)

Other covariates X

Intercept 77.4*** (3.2) 27.1 (14.3)

R2 0.020 0.165

*p < 0.05, **p < 0.01, ***p < 0.001

Table 3.5: IMC pass rate (in %) explained by treatment and other covariates
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workers who left the Kapcha would have stayed and subsequently failed the IMC.

More specifically, we assume that the differential attrition between the Kapcha and the

Control treatments (13.3% - 5.6% = 7.7%) stayed and fail the IMC (188× 7.7% = 14

new failing workers). This lower IMC pass rate would become 83.05% which is greater

than the 77.4% pass rate of the Control (p = 0.09, one-tailed two-sample z-test).

Under these conservative assumptions, attrition can only explain 5.65% of the total

12.8% effect, or 44% of Kapcha’s success. It is reasonable to assume that the Kapcha

adds an additional boost beyond merely annoying people until they leave.

3.3.3 Finding Larger Effects in the Economic Behavior Ques-
tions

Assuming that the subtle word changes from questions A and B cause real differences,

we hypothesize that the largest effects in both questions will be found within the

Kapcha treatment which is designed to force people to pay close attention to the

words in the question text.

Tables 3.6 and 3.7 show the effect of subtle word changes on the price subjects

pay for a soda when it comes from a “fancy resort” and the increased intent to go to

a game whose tickets were “paid handsomely” for as opposed to received for free.

Overall, workers would pay $0.24 more for sodas bought at a “fancy resort” over a

“run-down grocery store” (p < 0.01). As expected, in our Timing control and Kapcha

treatments, this effect is stronger than average and is largest and highly statistically

significant in the Kapcha treatment. Controlling for demographics leaves this result

unchanged, but substantially improves the overall fit of our model.

Overall, workers who paid for the football ticket were more likely to go than

workers who received the ticket for free with a difference of 0.37 intention units

on a nine-point scale (p < 0.05). The effect was not robust when controlling for

demographic variables.
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Overall Control Exhortation Timing control Kapcha

No controls

“fancy” b (se) 0.239** 0.080 0.072 0.303 0.543***

(0.086) (0.173) (0.176) (0.176) (0.148)

R2 0.011 0.001 0.001 0.015 0.077

With controlsa

“fancy” b (se) 0.249** 0.143 -0.021 0.319 0.533**

(0.089) (0.180) (0.184) (0.180) (0.182)

R2 0.083 0.210 0.185 0.254 0.205

N b 714 163 201 190 160

*p < 0.05, **p < 0.01, ***p < 0.001

a Includes same controls as table 3.5

b We excluded 13 prices that were not numbers between $0 and $10

Table 3.6: Question A: Increase in willingness to pay for a soda due to subtle word

changes involving whether source of soda was a fancy resort or run-down grocery

store (with and without other controls)

The effect of questions B’s phrasal change is estimated to be between 0.29 and 0.37

depending on whether we control for demographics. In no individual treatment are

there significant differences both with and without control variables. That said, the

Timing control and the Control treatment appear to have a larger effect. However,

these results are barely significant and vacillate upon the introduction or removal

of the demographic controls. We consider these effects to be spurious and conclude

that the standard errors in each treatment are too large (approximately 0.31 to 0.44

depending on the treatment) relative to the hypothesized effect size. Most likely,
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there was not enough data to detect the small effects given the considerable spread

in responses.

The analysis of question A lends legitimacy to the Kapcha treatment’s power to

reduce satisficing. However, we were unable to draw conclusions from the responses

to question B. We again note that both investigations were underpowered. We hope

to get more data in the future so we can use the effects found in questions A and B

to proxy for satisficing behavior.

3.3.4 Observations on the MTurk Survey-taking Population

MTurkers Beat Stanford and NYU Students

We compare the IMC pass rates from Oppenheimer et al. (2009) with our data. In

Oppenheimer et al. (2009), using n = 213 New York University undergraduates, the

IMC pass rate was 54%, which is lower than our Control group (n = 167) with a pass

rate of 77.3% (p < 0.001). This Control treatment pass rate is similar to the 82.5%

pass rate in Oppenheimer et al. (2009) during administration of a paper and pencil

exam using n = 336 Stanford university undergraduates who were believed to be

“motivated” (because they were interested in either a major or minor in psychology).

Demographic and Behavioral Drivers

Which demographic groups paid the closest attention to our survey? In table 3.5, we

find that women on average pass the IMC 7.7±3.1% more often than men (p < 0.05).

We find that older workers do better than younger workers; 26–35 year olds pass

11.4 ± 4.0% more often (p < 0.01); 36–45 year olds pass 16.3 ± 4.3% more often

(p < 0.001); and workers over 45 years of age pass 17.1±4.6% more often (p < 0.001).

We also find that workers who completed college pass 4.2% more often (this result

was nearly significant).
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Two of our variables which measure respondent engagement, the NFC and self-

reported motivation, are not significant when included together and with the number

of words in feedback. However, these variables are both highly significant (when

included only with the indicator variables for treatments).

Surprisingly, the worker’s average number of hours worked on MTurk per week,

the average earnings on MTurk per week, the reported level of multitasking, nor the

frequency of survey-related tasks were significant in predicting IMC pass rate.

Feedback

The final significant relationship found was the number of words written as feedback

(question #31). We find that for each word of additional feedback, the probability

of passing increased by 0.3± 0.1%. A one standard deviation change in the number

of words of feedback (equal to 28.2 words) is associated with an 8.5% increase in the

IMC pass rate even controlling for other measures of engagement. Therefore, the

length of a free response can be used as a proxy for survey engagement, a result also

reported by Bush and Parasuraman (1984).

We also did a small experiment studying how to incentivize feedback. We varied

how much we offered respondents for providing feedback (offering either one, zero

or five cents). The average feedback in the group without a bonus is 28.3 words.

Compared with an unpaid bonus, paying a one cent reward garners 5.0 more words

on average (p < 0.05) and the five cent bonus garners 7.6 more words (p < 0.01).

Further, we could not reject the hypothesis that the two effects were equal (p = 0.364).

This indicates that paying a minimum bonus of one cent elicits almost as lengthy

feedback as paying almost five times that much (and roughly half the value of the

full HIT). Interestingly, although we expected the Exhortation group to provide more

feedback since they were reminded that they were participating in the study, neither

that group nor any other treatments received significantly more feedback (although
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the groups were jointly significant at the p < .05 level).

Furthermore, the workers are eager to give feedback. Researchers can rapidly pilot

their studies and get real-time feedback on how they are perceived by survey-takers.

Asking feedback also gave us a wealth of insight into how survey respondents

perceived our various treatments including the Kapcha. One danger of setting the

reading speed too slow for fast readers was illustrated by this worker from Colorado

Springs, CO:28

“Text needs to be instantaneous. No apparent reason for it to appear

slowly other than to aggravate the participant.”

However, this comment from another worker in Detroit, MI illustrates the intended

purpose:

“I didn’t enjoy the way the words scrolled slowly, as I read fast, but

in its defense the slow scrolling words lead me to pay closer attention to

what I was reading and skim less.”

In addition, many workers are survey-savvy and eager to offer design suggestions

such as this worker from San Bernardino, CA who is also familiar with Likert scales:

“I liked the situational question about the soda cost... I do not like

the black background color, it hurts my eyes when contrasted with the

white. Would prefer a 7 point likert scale if possible.”

3.4 Discussion

The main goal of our study is to investigate a survey platform that reduces satisficing

across the board. We propose the idea of Kapcha, a method which involves slowing

28We recorded each worker’s IP address which allowed us to determine their location.
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Overall Control Exhortation Timing control Kapcha

No controls

“paid” 0.370* 0.716 0.066 0.797* 0.039

b (se) (0.176) (0.365) (0.314) (0.376) (0.381)

R2 0.006 0.024 0.000 0.024 0.000

With controlsa

“paid” 0.285 0.981* 0.150 0.726 -0.026

b (se) (0.177) (0.443) (0.330) (0.385) (0.378)

R2 0.066 0.203 0.162 0.256 0.322

N 727 168 203 193 163

*p < 0.05, **p < 0.01, ***p < 0.001

a Includes same controls as table 3.5

Table 3.7: Question B: Increase in intention to attend the football game due to subtle

word changes involving whether the participant paid for or received a ticket for free

(with and without other controls)

people down by fading-in the question text, thereby accentuating each word. We have

found evidence that Kapcha has the potential to reduce satisficing in online surveys.

We then open-source the platform (see Appendix 3.5) so that the surveyor can simply

“plugin” the platform and be confident of obtaining more accurate results.

MTurk workers that participated in a survey task employing the Kapcha passed

an instructional manipulation check about 13% more often than those who were given

a standard survey and it is reasonable to assume that this pass rate can be used as

a proxy for general satisficing behavior. At most, only 44% of this effect can be

explained by a higher proportion of people leaving the Kapcha survey task.
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The treatment where we merely exhorted the participant to pay more attention

had no significant effect on satisficing. The treatment that imposed a waiting period

but did not accentuate the words, did better than the standard survey group, but the

difference was not significant.

Upon analyzing demographic data, we find the segment of workers least likely to

satisfice are females over the age of 26 who leave thoughtful feedback.

We must also emphasize that the trick question was very difficult and requires

carefully reading the fine print.29 As a testament to the quality of work on MTurk,

we find it absolutely incredible that even in the Control treatment, people pass the

trick question with such high proportion.

3.5 Future directions

Our study indicates that using Kapcha can significantly increase the amount of at-

tention respondents give to reading directions and answering questions. For future

research, we would like to study how the Kapcha is affected by other variables such

as levels of motivation or monetary incentives as well as among different populations.

We would also like to conduct further experiment with how the Kapcha could be

optimized using principles of psychology and perception so as to draw the attention

of respondents. Finally, we would like to design a survey task that is deliberately de-

signed to impose a high cognitive burden and cause respondents to satisfice. Testing

the Kapcha under these circumstances will provide a clearer picture of its power.

Kapcha may be moderated by other variables

For one reason or another, the Kapcha may be more effective on certain populations.

For instance, the degree to which a respondent pays closer attention when being forced

29One of the authors gave it to colleagues in their department and each of them failed.
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to wait, or when text is faded in, may differ by language or culture. A study drawing

participants from various countries may elucidate its differential effectiveness.

Apart from interactions with demographic variables, the effectiveness of the Kapcha

may vary with monetary or non-monetary incentives.

For example, can you pay people to pay more attention? If people are paid higher

monetary awards, does that reduce the advantages of using a Kapcha? It could be

that incentives simply cannot induce people to pay more attention beyond a certain

point and that the only way to increase attention to the highest levels is through

attention-grabbing techniques.

Though not statistically significant, it appears that telling respondents that their

answers will be used for research (our Exhortation treatment) motivates people to

complete our survey at higher rates. This is most likely because reminding them

about the survey’s research value imbues the survey with a sense of meaning (a

similar result was found in Chandler and Kapelner, 2013 which is also Chapter 2 of

this document). Therefore, it may be wise to insert an exhortative statement into

the Kapcha to get an “added boost.”

The Kapcha appearance should be optimized

Further, we would like to experiment with the particulars of the Kapcha presentation.

In our experiment, we used white text on a black background and faded the words in

at 250 words per minute. Does the choice of color schemes and text font matter?30

What is the speed at which words should fade-in to optimize attention to our survey?

Research suggests that forcing a person to direct their gaze toward an area cor-

relates highly with the attention they pay to that area (Hoffman and Subramaniam,

1995) and the psychology of perception is ripe with many other examples of how

30Many respondents complained that the white-on-black background was distracting which may

have affected how well the Kapcha worked.
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color, contrast, and movement could be used to draw attention.

We must admit that many of our faster reading respondents in the Kapcha group

expressed that they did not like the unfamiliar method of fading-in survey questions

(34 of 163 respondents left negative feedback compared with 7 positive feedbacks).

Although it had its desired effect of increasing the attention people paid to the sur-

vey questions, we certainly would like to further calibrate the Kapcha so as to slow

respondents down without annoying them.

We propose a survey task that measures satisficing more generally

The IMC and the behavioral questions are both noisy and incomplete measures of

satisficing. Using only these response variables as proxies for satisficing is a weakness

in our present study.

We propose to create a survey task that has several measures of satisficing in order

to demonstrate that the Kapcha can reduce satisficing in the broadest context.

We will review the findings from the literature of survey response psychology (e.g.

Krosnick et al., 1996, Krosnick, 1999, Tourangeau et al., 2000) which provide guidance

for how to design surveys to minimize participant satisficing. Using these principles,

we will reverse-engineer a survey that is deliberately constructed so that respondents

are likely to satisfice. We will then see how well the Kapcha prevents satisficing even

under the most difficult of circumstances.

To offer an example, Krosnick (2000) provides a framework for how respondents

satisfice depending on the structure of questions, the survey’s difficulty, the respon-

dent’s ability, and the respondent’s motivation. Three commonly cited examples of

satisficing due to question structure are response order effects whereby people choose

the first answer of surveys, no opinion filters whereby people who are lazy will sooner

choose “no opinion” than take the time to think of what their opinion is, and ac-

quiescence bias. where respondents are more likely to choose “agree” if the choices
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are “agree or disagree”. The difficulty of a survey can be related to the “readability”

of the survey questions (higher readability implies shorter question length and basic

vocabulary (Chall and Dale, 1995)). The respondent’s motivation may be related to

how meaningful they perceive the task to be. Presumably, higher ability respondents

and respondents who are motivated would also tend to satisfice less.

If the Kapcha is found to be effective here, we will be confident that the Kapcha

method prevents satisficing under very general conditions.

Data Sharing

We cross-validated some of the self-reported demographic information using data

provided by Panos Ipeirotis from Ipeirotis (2010). 23 people who reported their age

in our survey also reported their date of birth in Ipeirotis (2010)’s survey. In all but

one case, the age and date of birth were consistent. This offers evidence that even

over a time period of more than 6 months, time invariant demographic data can be

reliably collected on separate occasions. Broadly speaking, MTurk workers seem to

be honest in sharing their personal information.

Data sharing among academics using MTurk provides not only the possibility of

validating data, but also of using demographics or other covariates from one study as

controls in others. For example, in our present study, we evaluated respondent’s Need

for Cognition which could be a useful control variable in other studies. In many cases,

it may be highly useful to match demographic and other behavioral characteristics

as a way to increase precision without using the limited time of respondents. Using

data from other studies is especially beneficial in the case of natural field experiments

where the researcher will not want insinuate that the task is an experiment.

We propose that researchers agree on a central, shared repository of data related

to the MTurk workers and offer an API for easy access.
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TurkSurveyor: An Open-Source Experimental Platform

We would like to introduce “TurkSurveyor”, an open-source experimental system de-

signed for running surveys (or survey-based experiments) on Amazon’s Mechanical

Turk. TurkSurveyor is written in a mixture of Ruby (on Rails), HTML, CSS, and

Javascript and is available under the MIT license and includes an instruction manual

at http://code.google.com/p/turksurveyor/. The goal of its development is to

have a simple push-button system which allows one, with a minimum of customiza-

tion, to use MTurk to collect data for a custom survey.

Replication

At http://danachandler.com/kapchastudy.html, you can find the source code, the raw

data, and the analysis used to run this study.
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4
Detecting Heterogeneous Effects via Crowdsourcing

Abstract

We attempt to detect heterogeneous treatment effects between an experimental pop-

ulation that chooses to be in a study versus those who are randomly assigned to a

study. We call this “selection-into-experiment bias” and we test its effects in three ex-

periments run on Amazon Mechanical Turk (MTurk). We find no differential average

treatment effects in the studies, but we were also underpowered to do so. We feel that

external validity is not a concern when making inference to the MTurk population at

large for the studies illustrated here.

4.1 Introduction

Imagine a typical study with subjects randomized into treatment and control. As-

suming a linear model,

Y = β0 + βT1T + E , E ∼ Nn
(
0, σ2In

)
the investigator can estimate the “average treatment effect,” βT and they’ll most
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likely write in their paper that:

“We found on average, bT = 1.23 with a pval = 0.0456 and thus we

recommend treatment T to the general population.”

The text in red above may be over ambitious. The investigators are essentially

vouching for their results’ external validity which means the truth of their results

in this limited experimental setting can be extended to some larger population of

interest. Pictured in figure 4.1, the population of interest is usually humanity at

large and the sample is ususally a convenience sample and the context of the study

is a laboratory.

Figure 4.1: Experimental samples are drawn from the “research population” which

may be different than the whole population of interest.

External validity is a well-known problem; it’s a fundamental problem in RCT

inference and has been noted since the times of Fisher. It is well discussed in many

fields: statistics, philosophy, political science, economics, and medicine.

An article in the Lancet (Rothwell, 2005) discusses how RCT’s were designed to

have great internal validity, but the pioneers knew about the problem of applicability

/ generalizability, a problem which has now seemingly been forgotten. He bemoans
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the ignorance and lack of guidelines for researchers and sites interesting studies where

the treatment effect can vary even by small changes in latitude of the patient.

A recent article (Druckman and Kam, 2011) discusses how using undergraduates as

subjects may not be a problem for generalizing experimental results; they argue that

undergraduates in fact do reflect the American population at-large. Of course they

don’t speak about the additional selection problem that undergraduates are generally

paid or given course credit, and those that participate are not even representative of

their peers. The problem is open to speculation.

Figure 4.2: External validity can be had at the expense of internal validity and vice

versa.

Philosophically, Cartwright (2007) argues that wringing truth out of nature is sort

of like an arcade game of whack-a-mole illustrated in figure 4.2. “Clinching” methods,

such as RCTs and theory, prove the conclusion but are narrow in scope; “vouching”

methods , such as qualitative comparative analysis hint at the conclusion without

unequivocal proof, but are more broader in application.

4.1.1 Heterogeneous Effects

External validity is suspect when it can be proven that there exists both:

(a) selection bias into the study itself, meaning that the “research population” is

different than the “total population” on one or many demographic variables,

X := X1, . . . , Xp.
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(b) an interaction between treatment and demographic variables.

If the true model were as follows, selection bias into the study itself would be unprob-

lematic.

Y = βT1T + f(X) + E

As we move from the research population to the true population, the f function will

change, but the ATE, E [Y | 1T = 1]−E [Y | 1T = 0] = βT , would remain unchanged.

However, if there are interactions between the treatment and the demographic vari-

ables,

Y = βT1T + f(1T ,X) + E

there is no longer an “average treatment effect” unless we either slice the population

on fixed levels of X or expectorate over the population covariate distribution, since:

E [Y | 1T = 1]− E [Y | 1T = 0] = βT + f(1,X)− f(0,X)

whose behavior as subjects move around X space may vary considerably due to the

unknown properties of the f function.

4.1.2 Goals of the Study and Outline of this Report

This study attempts to detect if external validity is compromised in behavioral studies

which involve text manipulation run on Amazon’s Mechanical Turk (MTurk). We pick
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three studies that are designed to elicit cognitive biases. The first measures the price

of beer between two groups that experience differential framing from a luxury hotel or

a run-down grocery store. The second measures whether people decide to cooperate

with one another after being primed with religious text. The third measures the sunk

cost fallacy, we ask whether or not people are likely to go to a theatre event after

paying dearly for tickets or being given them for free.

We measure if there is a difference if people are administered a study at random

or if they are allowed to select which study they want to participate in when they

are told the general idea of the study. This “selection” wing is designed to create

different research populations for each study.

For the reader unfamiliar with MTurk and/or natural field experiments, we suggest

reading Chandler and Kapelner (2013) where it is described how one major external

validity concern that is manifest in most studies, laboratory bias, is not characteristic

of carefully designed MTurk experiments. We explain the experiment in detail in

section 5.2, analyze the data in 4.3, and conclude in section 4.4.

4.2 Experimental Methods and Design

We create a HIT on MTurk paying $0.05 posing as a major marketing company asking

for consumer opinions (see figure 4.3). Subjects were not told they were part of a

study in order to create a real-effort task in a natural field experiment. We limited

experimental subjects to be from America because the experimental manipulations

relied on fluency in English.

Once the HIT was accepted, we move them to a demographic survey page pictured

in figure 4.4 (for a list of questions asked, refer to appendix A.2.1). To avoid any

systematic bias, we randomized the order of these questions as well as their answer

choices (within reason).
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Figure 4.3: The splash page shown to a Turker viewing our HIT for the first time.

The Turker will make their decision whether or not to participate in the task based

on this screen and the wage offered.

Figure 4.4: Part of the survey page which collects demographic covariates about the

subjects.
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Upon completion of this survey, they were randomized into the “random study”

wing, which we’ll call “R,” or the “select study” wing which we’ll denote “S.”1 If they

were placed into the “R” wing, they were then randomized into one of the three studies

described in the next subsection. If they were placed into the “S” wing, the subjects

were allowed to choose which study they wanted to participate in. This selection is

described more fully in a following subsection. Once they were assigned one of the

three studies, they were further randomized evenly between treatment and control

particular to the study.2 The experimental flowchart illustrating this description is

pictured in figure 4.5.

4.2.1 The Three Studies

We are trying to detect sampling bias into experiments on MTurk for behavioral

experiments whose experimental manipulations involve text. To make any general

claim, studies would ideally be sampled from the space of all possible studies that fit

this criteria.

Our initial thought would be to sample from cognitive bias studies, of which there

are many, and they are currently of great interest to behavioral scientists. We selected

three studies investigating three different cognitive biases: framing, priming, and sunk

cost. Each of the studies’ experimental manipulation consisted of subtle text changes

between the control and the treatment. We briefly describe the studies below. Full

text of the experimental screenst can be found in appendix A.2.3.

1For this randomization, we used complete randomization with a standard bernoulli. This would

prevent any systematic bias in the order in which the participants showed up but would most likely

result in inbalance. Since we planned on collecting a large number of subjects, an imbalance here

was not a concern.
2Once again, we employed complete randomization. We admittedly should’ve used a block design

here to obtain higher power because any bias from time admitted is most likely taken care of by the

R/S randomization.
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Figure 4.5: The experimental flow: wings and randomizations. The above illustration

is for any number of studies. Here k = 3.

People are known to differentially pay higher or lower prices for identical items

based on how the item is “framed.” We take a verbatim study from Thaler (1985)

where participants are asked how much they would pay for a beer which comes from

either a fancy resort hotel (treatment) or a run-down grocery store (control). The

outcome measure would be a real number greater than zero.

It is known that people differentially change their behavior if they were “primed”

before with religious ideas. We test whether subjects differentially choose to coop-

erate in a prisoner’s dilemma if they were given an excerpt from the bible about

charity (treatment) or an excerpt of an encyclopedia page about fish (control). This

experiment is a replication of one found in Horton and Chilton (2010) with minor

modifications. The outcome measure is cooperate or not cooperate.

People are also known to differentially make decisions to consume if based on a cost
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that has previously been sunk. According to economic theory, the cost already sunk

should not affect the amount of utility, or enjoyment, one should get from a product.

We design a study where the subject is hypothetically going to a theatre production

on a night with extreme weather. We test whether the subjects are more likely to

indicate a strong desire to go when they paid dearly for the tickets (treatment) or

received tickets for free (control). The response was measured on a Likert scale from

zero to nine.

Since the studies rely on subtly text manipulations, we employ the anti-satisficing

technique of fading in each word of the experiment text at a high school reading page

to ensure respondents pay more attention to the text (Kapelner and Chandler, 2010).

4.2.2 The Selection Wing

How are subjects to choose which study to participate in when they are randomized

into the “S” wing? The purpose of the experiment is to detect selection bias into

the experiments; thus, we ideally want to bias the subjects as much as possible into

their study of preference to create the most conspicuous heterogeneous effects. We

attempt to do this without giving away what the study is trying to measure (which

would raise concerns about the studies’ internal validity).

We chose to give subjects the screen shown in figure 4.6. They know the marketing

question-of-interest has something to do with beer, religion, or theatre, but they don’t

know what the treatment manipulations are. This can create heterogeneous effects in

two ways (1) having knowledge about the question at-hand may bias their responses

and induce a different ATE vis-a-vis subjects who did not have prior knowledge (2)

subjects who are more interested in “beer” may represent a different subpopulation

than those who are interested in “religion” and likewise those who are interested in

“theatre.”
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Figure 4.6: The screen shown to subjects in the “S” wing immediately after complet-

ing the demographic survey.

4.2.3 Formal Experimental Design

We are trying to demonstrate heterogeneous effects which amount to a differential

ATE between the “R” and “S” wings. This can be tested via the following model (its

design matrix is illustrated in figure 4.7). For study k,

Y k = Xβ + βT,k1Tk + βS,k1S + βST,k1Tk1S + E , k ∈ {1, 2, 3}

The β represents the nuisance parameters for the slopes of the demographic vari-

ables. The βT,k’s are the ATE’s for each study in the “R” wing which is of ancillary

interest — we only wish to check these to ensure the study worked as designed to

arrive at an estimate to the causal effect of the manipulations. The βS,k’s are offsets

for belonging to the “S” wing. Being allowed to select the study may shift your level
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X =



X·1 ... X·p 1S 1T 1S1T

... · · ·
... 1nS 1nST 1nST

... · · ·
...

... 0nS−nST 0nS−nST
... · · ·

... 0N−nS 1nRT 0N−nS
... · · ·

...
... 0N−nS−nRT

...



Figure 4.7: The design matrix for each of the k studies.

of response; this is interesting to check, but still ancillary to our question of interest.

The βST,k are the parameters of interest. They model the differential ATE between

the “R” and “S” wings which is the average heterogeneous effect induced by hav-

ing two different research populations participate in the same study. Based on our

hypothesis, we wish to reject these being zero:

H0 : βST,1 = 0, H0 : βST,2 = 0, H0 : βST,3 = 0

For each of the studies, we have a 2× 2 factorial design with nS random (thus it

cannot be balanced).

4.2.4 Pilot Study to Estimate Power

We first ran a pilot study of N = 100 to inform ourselves about power for the full

study. For the framing study, Y is continuous, but for the sunk cost study, Y is

ordinal, and for the priming study, Y is dichotomous, so the following calculation is

for the framing effect study at α = 5% since power calculations for non-continuous

responses are more difficult.

We estimate MSE of the pilot study regression to be 11.42 and we assume this to
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be our variance of the experimental error term going forward.3 We wish to calculate

power for many possible values of βST which is the interaction effect in our factorial

design. Letting r be the number of duplicates in each wing-treatment cell, N be the

total sample size for the study, power can be calculated following Morris (2011, page

159):

F ∗ := F (95%, 1, 4(r − 1)), W ∼ F

(
1, 4(r − 1),

4rβ2
ST

σ2

)
, POW := P (W > F ∗)

Power for a range of possible r and βST values appears below in table 4.1.

βST

Nstudy r 0.01 0.05 0.1 0.15 0.2 0.25 0.5 0.75

400 100 0.05 0.06 0.09 0.14 0.22 0.31 0.84 0.99

800 200 0.05 0.07 0.13 0.24 0.39 0.55 0.99 1.00

1200 300 0.05 0.08 0.18 0.34 0.53 0.73 1.00 1.00

1600 400 0.05 0.09 0.22 0.43 0.66 0.84 1.00 1.00

2000 500 0.05 0.10 0.26 0.51 0.75 0.91 1.00 1.00

2400 600 0.05 0.11 0.30 0.58 0.83 0.95 1.00 1.00

2800 700 0.05 0.12 0.35 0.65 0.88 0.97 1.00 1.00

Table 4.1: Power by number of duplicates and interaction effect size.

3The variance found after the experiment was complete was around 14, so this was a good

estimate.
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4.3 Results

We hired 2112 total Turkers as subjects with total cost of about $116. Sample sizes

are reported for each wing and treatment cell for all studies in table 4.2. Note that

r, the cell size, varies between 140 and 214.

Arm Study Treatment Control Total

Framing 169 172 341

R Priming 171 176 347 1053

Sunk Cost 199 166 365

Framing 167 145 312

S Priming 203 214 417 1059

Sunk Cost 169 161 330

Table 4.2: Experimental sample sizes.

We analyzed data from all studies using ordinary least squares4 to estimate param-

eters noted in figure 4.7. The nuisance parameters include the demographic variables

discussed in appendix A.2.1 as well as other experimental covariates we collected from

subject behavior which we describe in appendix A.2.2. We summarize our main re-

sults in table 4.3, results for the framing study in figure 4.8, results for the priming

study in figure 4.9, and results for the sunk cost study in figure 4.10.

In short, we did not detect significant heterogeneous effects in any of the three

studies. Referencing table 4.1, we note that we only have sufficient power to detect

interaction effects above $0.50 in the framing study.

4Technically, this is inappropriate for the priming study which has dichotomous response and the

sunk cost study which has ordinal response. Since the data turned out too noisy for effect detection,

we did not try other models because we feel they would have been equally unsuccessful.
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Framing Study Priming Study Sunk Cost Study

bT sbT pval bT sbT pval bT sbT pval

ATE in “R” wing 0.69 0.43 0.107 0.06 0.03 0.078 0.19 0.29 0.507

Offset for “S” wing 0.32 0.44 0.475 -0.01 0.03 0.662 -0.20 0.31 0.525

Heterogeneous Effect -0.19 0.61 0.752 -0.04 0.04 0.369 -0.06 0.42 0.891

Table 4.3: Experimental estimates of ATE, selection offset, and average heterogeneous

effects for all studies.

●●

●

●

●●

●●●●●●

●●●

●

●

●●●● ●

●●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●

●

●

●● ●●●●●●

R S T C RT ST RC SC

0
5

10
15

20
25

Framing Study Results

A
m

ou
nt

 fo
r 

B
ee

r 
P

ai
d

● ● ●
●

● ●

●
●

Figure 4.8: Box and whisker plots for the framing study by row, column, and cell in

the factorial design. Blue dots indicate sample averages.
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in the factorial design. Blue dots indicate sample averages.
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4.4 Conclusions and Future Directions

We ran a natural field experiment on MTurk to detect selection-into-experiment bias

for three behavioral studies. We did so by placing half of the participants into a

random study and allowing the other half to pick the study they wished to complete.

We then tried to measure selection-into-experiment bias by calculating differential

ATE estimates between the random study participants and the select-your-own study

participants.

We did not find significant heterogeneous treatment effects for any of the studies

between the two populations either because they don’t exist or because we were

underpowered to find them. If we were to make a recommendation to investigators

using MTurk to study behavioral phenomena using experiments that involve text

manipulations, we would still recommend to not let them know anything about the

study, but if they had to inform the participants it most likely would not affect the

results.

We would like to run the study again with better design. First, each of the three

studies should be designed to elicit a larger ATE. This would allow more room for

heterogeneous effects. Second, we should employ techniques to reduce noise in the

data. We are currently developing sequential matching methods for this very purpose.

Third, the selection mechanism should be better designed.

Acknowledgements

Thanks to Dean Foster, Abba Krieger, Mary Putt and Paul Rosenbaum for helpful

discussions.

77



5
Matching on-the-fly in Sequential Experiments∗

Abstract

We propose a dynamic allocation procedure that increases power and efficiency when

measuring an average treatment effect in fixed sample size sequential randomized tri-

als. Subjects arrive iteratively and are either randomized or paired via a matching

criterion to a previously randomized subject and administered the alternate treat-

ment. We develop estimators for the average treatment effect that combine infor-

mation from both the matched pairs and unmatched subjects as well as an exact

test. Simulations illustrate the method’s higher efficiency and power over competing

allocation procedures in both controlled scenarios and historical clinical trial data.

5.1 Introduction

Randomization in experimentation is likely to work well with large sample size. With

small sample size, the empirical distributions of relevant covariates can be different

across treatments possibly masking an effect by creating bias and inflating variance.

∗Joint work with Abba Krieger
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Some improvements over completely randomized design are rerandomization (Mor-

gan and Rubin, 2012), a priori matching (Raudenbush et al., 2007), and adaptive

design which involves any change to the experiment or statistical procedures while

the experiment is underway (Chow and Chang, 2008).

We limit our focus to sequential experiments, where subjects enter iteratively over

time and the experimental condition is administered upon entrance, but the outcome

does not necessarily have to be assessed before the next subject is enrolled. We

develop a new adaptive design for sequential experiments whose goal is to elucidate

an average treatment effect (ATE) between two arms, which we call treatment (T)

and control (C). Sequential experiments are very popular in both clinical trials and

recently, crowdsourced-Internet experimentation (Horton et al., 2011; Chandler and

Kapelner, 2013).

Our design is a new type of dynamic allocation, a means of assigning T/C to newly-

arrived subjects based on decisions about previous assignments, covariates, and/or

responses (Hu and Rosenberger, 2006). Proposals of dynamic allocation began with

Efron (1971)’s biased coin design. Here, a coin is biased in favor of the treatment

with the fewest subjects, hence leading to better balance in treatment allocation.

However, this procedure ignores subjects’ covariates.

The first line of defense to balance covariates is stratification (or “blocking”),

a classic strategy dating back to Fisher’s agricultural experiments. Stratification

becomes quickly impractical when the number of total covariate levels is large relative

to sample size. Taves (1974) and others tackle these shortcomings by “minimizing”

the imbalance between the treatments among all levels of covariates present. The

most popular and widely implemented among these methods is found in Pocock and

Simon (1975) whose procedure involves picking a few arbitrary functions to tailor

the imbalances. The selection of these functions is still an ongoing area of research

(for instance, see Han et al., 2009). Concerned by this arbitrariness, Atkinson (1982)
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posits a method solidly rooted in linear model theory using DA optimality.

If the end goal of experimentation is to find an effect when one is present, then

the primary concern is estimator efficiency and test power. Stratification and mini-

mization methods rely on the logic that greater balance among the covariates implies

greater efficiency which is mathematically true only in homoskedastic linear models

(Rosenberger and Sverdlov, 2008). DA optimality iteratively maximizes efficiency

assuming the linear model without explicitly focusing on balance. Thus, we see one

of the fundamental problems in previous allocation procedures is the reliance on the

homoskedastic linear model, an assumption that is rarely true in practice. We wish

to develop a dynamic allocation which is robust when the covariates combine non-

linearly and with interactions to produce the response and no worse than current

methods when the linear model holds.

The seminal guidebook, Cook and Campbell (1979), states “whenever possible, it

is recommended to minimize error terms.” They then recommend matching subjects

before randomization on covariates to create better stratification. It was not a novel

idea; Student (1931) commented on the n = 20, 000 children Lanarkshire Milk Ex-

periment proposing the experiment should be performed exclusively on 50 identical

twin pairs which would be randomly assigned T/C.

We propose matching iteratively, on-the-fly. As subjects walk in the door or

engage a survey online they should be matched with people “similar” to them who

came in previously, a procedure which Whitehead (1997) believes to be “especially

difficult.” Imagine the following scenario of a trial testing whether a pill decreases

blood pressure. The investigators determine that age, height, weight, and race should

be collected as covariates as they are known to be related to blood pressure. Bob, 28,

5’10”, 180lb and White enters and is determined to fit the requirements of the study.

By the flip of a coin, he receives the pill. The next day, Grace, 45, 5’2”, 105lb and

Asian enters. Based on inspection of this demographic data, she is clearly different
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from Bob; thus she is also randomized. Soon after, Joe, 29, 5’11”, 185lb and White

enters. We determine that he is similar to Bob, pair them, and deterministically

administer to him the placebo. The trial continues and Grace would then await

someone to be matched with, which may or may not occur.

The algorithm is simple: incoming subjects are either randomized and placed

in a holding pool, called the “reservoir,” or if they’re found to match a subject

already in the reservoir, they’re matched and given their match’s alternate treatment.

The matches and the reservoir form two independent samples yielding two different

estimators which are combined to estimate the ATE.

The closest idea we find in the literature is in Raghavarao (1980) who computes the

Mahalanobis distances between a new subject’s covariates and the average covariates

in the different treatment groups. The allocation to the treatment is then made via

a biased coin with probabilities proportional to these distances. We use the idea of

Mahalanobis distance which creates robustness to collinearity in the covariates, but

we use it to match individual subjects together in pairs.

We layout our scenario assumptions, explain our algorithm and develop testing

procedures in Section 5.2. We demonstrate our procedure’s improvements over previ-

ous procedures via simulations in Section 5.3. Our method performs particularly well

in the case where the model is non-linear, performs respectably with linear models,

and also performs respectively when the covariates do not inform the response. We

then demonstrate higher efficiency using historical data from randomized controlled

trials (RCT’s) in Section 5.4, where the covariate-response model was unknown but

most likely non-linear. We discuss and describe future directions in Section 9.6.
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5.2 The Algorithm, Estimation, and Testing

5.2.1 Problem Formulation

Subjects arrive sequentially and their covariates, denoted by xi := [xi1, . . . , xip] which

are either continuous or binary, are immediately recorded. The subjects must then

be assigned to a treatment on-the-spot. We develop our method for allocating one

of two treatments, T or C, to subject i denoted by the treatment indicator 1T,i. The

response yi can be collected at any time after allocation. We assume the following

model with independent observations, an additive treatment effect, a possibly non-

linear covariate effect, normal and homoskedastic errors, fixed covariate design, and

sample size n fixed in advance:

Yi = βT1T,i + zi + Ei, zi := f(xi), (5.1)

Ei
iid∼ N

(
0, σ2

e

)
, i ∈ {1, . . . , n} .

We wish to develop a dynamic allocation method followed by an unbiased estima-

tor for βT with higher efficiency and thereby more powerful when testing classic null

hypotheses compared to popular approaches.

5.2.2 The Algorithm

The first n0 subjects enter the experiment and are randomized to T or C with the flip

of a coin. These subjects comprise the initial “reservoir.” After a certain point, we

would like to potentially match an incoming subject with subjects in the reservoir.

We would like to match them on f(x), which is latent, so we match on what we

consider is the next best thing, the x’s themselves. We hope that x1 ≈ x2 implies
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f(x1) ≈ f(x2) which is true if the function is sufficiently smooth.

We match using squared Mahalanobis distance which gives a convenient scalar

distance between points in Rp adjusting for collinearities. This metric has a long im-

plementation history in matching applications dating back to Rubin (1979). Matching

using Mahalanobis distance and then randomizing the pairs to T/C has been demon-

strated to result in better balance and higher power (Greevy et al., 2004). Further,

the assumption of normal covariates seems to work well with real data even when

the covariates are non-normal (see Section 5.4). After matches are produced, we do

not make use of the normality assumption of the x’s further in the development of

the estimator. Improvements to the matching machinery that may be more robust

to real-world covariate distributions are also discussed in Section 9.6.

Thus, the new subject enters and the squared Mahalanobis distance between its

covariate vector, xnew, and each of the previous subject covariate vectors, the xold’s,

are calculated. Denote S as the covariates’ sample variance-covariance matrix calcu-

lated with all subjects including the new subject. Assuming normal covariates, the

squared Mahalanobis distance then has a scaled F distribution given below:

D2 := (Xnew −Xold)>S−1(Xnew −Xold), (5.2)

n− p
2p(n− 1)

D2 approx∼ Fp,n−p.

We then take the minimum of the squared Mahalanobis distances between the new

observation and each observation in the reservoir and calculate its probability. Let the

minimum distance squared come from the previous subject, x∗old. If the probability is

less than λ, a pre-specified hyperparameter, then xnew and x∗old are matched together;

if it’s not, xnew is randomized and added to the reservoir. If xnew is matched, it is

not added to the reservoir and x∗old is removed from the reservoir. 1T,new is then
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assigned to be 1 − 1T,old∗ , i.e. x∗old’s opposite treatment. The process is repeated

until the nth entrant. We left out other implementation details in this discussion but

make them explicit in algorithm 1. Note that our proposed procedure is considered a

form of covariate-adaptive randomization (Rosenberger and Sverdlov, 2008, Section

2) because we are using the covariates to determine the dynamic allocation.

Note that upon matching, the treatment indicator is assigned deterministically to

be the opposite of its match. This can cause selection bias if the investigator is not

properly blinded. In defense of our decision to make allocation deterministic for a lit-

tle less than half the subjects, note that our algorithm is sufficiently complicated that

a duplicitous investigator would not be able to guess whether the entering subject

will be assigned T or C based on previous information during a clinical trial. McEnte-

gart (2003) discusses how this type of machination is unrealistic even in multi-center

block permuted designs, which is much simpler than the allocation strategy proposed

here. Further, if the procedure is implemented in an Internet-based experiment, the

algorithm would be hard-coded and would not be subject to human tampering.

5.2.3 Estimation and Hypothesis Testing

We assume the covariate design matrix is fixed, the classic regression assumption. If

so, the subjects ultimately matched and the subjects ultimately found in the reservoir

are fixed as well. Thus conditioning on the design is equivalent to conditioning on

the sigma field given below:

F = σ
(
〈xT,1,xC,1〉 , 〈xT,2,xC,2〉 , . . . , 〈xT,m,xC,m〉︸ ︷︷ ︸

matched pairs

,

xR,1,xR,2, . . . ,xR,nR︸ ︷︷ ︸
reservoir

)
.
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Algorithm 1 The sequential matching algorithm for subjects entering the experi-

ment. The algorithm requires λ and n0 to be prespecified, which controls the ease of

creating matches.

1: for t← {1, . . . , n} do . n is the total sample size, fixed a priori

2: if t ≤ n0 or reservoir empty then

3: 1T,t ← Bern
(

1
2

)
and subject t is added to the reservoir . randomize

4: else

5: S−1
t is calculated using x1,x2, . . . ,xt . Estimate the true var-cov matrix

6: Lookup F ∗λ,p,t−p . F
∗ is the critical cutoff from the F distribution quantile

7: for all xr in the reservoir do

8: Fr ← t−p
2p(n−1)

(xt − xr)>S−1
t (xt − xr)

9: end for

10: Fr∗ ← min {r} {Fr} , r∗ ← arg min
r

{Fr} . among ties, randomly select

11: if Fr∗ ≤ F ∗λ,p,t−p then . a match is found

12: 1T,t ← 1− 1T,r∗ . assign subject t the opposite of r∗’s assignment

13: [xr∗ ,1T,r∗ ] is removed from the reservoir

14: record 〈xt,xr∗〉 as a new match

15: else . a match is not found

16: 1T,t ← Bern
(

1
2

)
and subject t is added to the reservoir . randomize

17: end if

18: end if

19: end for
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Upon completion of the experiment, there are m matched pairs and nR subjects

in the reservoir, both quantities fixed since the sample size and the design are fixed

(n = 2m+ nR). In our development of estimators and testing procedures, we always

assume conditioning on F , thus this notation is withheld going forward.

We focus on testing the classic hypotheses H0 : βT = β0 versus Ha : βT 6= β0. We

consider testing under three model assumptions (a) the response has normal noise

and may possibly depend on covariates but we do not wish to model their effect (b)

the response has normal noise and depends linearly on covariates (c) the response

has mean-centered noise and depends on covariates through an unknown model. We

develop testing procedures for each of these models: (a) a modification to the classic

ȲT − ȲC in Section 5.2.3.1, (b) a modification to ordinary least squares regression in

Section 5.2.3.2 and (c) an exact permutation test in Section 5.2.3.3.

5.2.3.1 The Classic Test

We define D̄ as the estimator for the average of the differences of the m matched pairs

(treatment response minus control response) and R̄ := ȲR,T − ȲR,C as the difference

in averages of the treatments and controls in the reservoir. We combine these two

estimators of the treatment effect using a weight parameter, wD̄ + (1 − w)R̄ . We

can find a w∗ to minimize variance thereby obtaining the estimator

BT =
σ2
R̄
D̄ + σ2

D̄
R̄

σ2
R̄

+ σ2
D̄

with Var [BT ] =
σ2
R̄
σ2
D̄

σ2
R̄

+ σ2
D̄

. (5.3)

BT is unbiased because under the assumption of fixed covariates, taking the ex-

pectation over treatment allocation and noise yields E
[
E
[
D̄
]]

= E
[
E
[
R̄
]]

= βT .

Standardizing BT gives a standard normal due to the assumption of normal noise.

To create a usable test statistic, note that the true variances are unknown, so we
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plugin S2
D̄

, the matched pairs sample variance estimator, and S2
R̄

, the pooled two-

sample reservoir difference variance estimator. Note that the standard calculation of

S2
R̄

assumes the number of treatments and controls in the reservoir is fixed in advance

but in our algorithm, these quantities are random. A more careful calculation could

include this randomness.

Equation 5.4 shows the resulting statistic which has an asymptotically standard

normal distribution.

BT − β0

SE [BT ]
≈

S2
R̄
D̄ + S2

D̄
R̄

S2
R̄

+ S2
D̄

− β0√
S2
R̄
S2
D̄

S2
R̄

+ S2
D̄

D→ N (0, 1) (5.4)

This asymptotic result holds if both m → ∞ and nR → ∞ since S2
D

p→ σ2
D and

S2
R

p→ σ2
R. The results also holds if m → ∞ and nR is bounded which would occur

in practice as the covariates are typically categorial or have compact support. In this

case, S2
R̄
/(S2

R̄
+S2

D̄
)
a.s.→ 1 which reduces Equation 5.4 above to

(
D̄ − β0

)
/SD̄

D→N (0, 1).

Also, by the assumption of additive and normal noise, the estimator is unbiased for

finite n.

Note that in the case where there are no matched pairs, we default to the classic

estimator and in the case where there are fewer than two treatments or controls in

the reservoir, we default to the matched pairs estimator.

When is this estimator more efficient than the standard classic estimator, ∆Ȳ :=

ȲT − ȲC? In other words, when is σ2
∆Ȳ
/σ2

D̄
> 1? Assuming perfect balance in its

treatment allocation (nT = nC = n
2
) for the classic estimator and taking the expec-

tation over both noise and treatment allocation, it can be shown that the variances

are:
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σ2
D̄ =

1

m2

m∑
k=1

(zT,k − zC,k)2 +
2

m
σ2
e , (5.5)

σ2
∆Ȳ ≈ 4

n2

n∑
i=1

z2
i +

4

n
σ2
e .

This means that the better the matching, the smaller
∑m

k=1 (zT,k − zC,k)2 will be,

the smaller the variance becomes, and the higher the power. If we further allow

nR = 0 (all the subjects matched), then it’s clear that σ2
∆Ȳ
/σ2

D̄
> 1 if and only

if
∑m

k=1 zT,kzC,k > 0. Note that the approximation in the last expression is due to

ignoring covariance terms which do not exist when conditioning on nT and nC .

5.2.3.2 The Least Squares Test

To construct a test when the response is linear in the covariates or when we wish

to make linear adjustments, we extend the idea in the previous section where we

combined an effect estimate from the matched pairs data and an effect estimate

from the reservoir data to regression models. Consider the model for the response

differences among the matched pairs: Dk = β0,D + β1,D∆x1,k + . . . + βp,D∆xp,k +

Ek,D where Ek,D is
iid∼ normal noise and k ranges from 1 to m. The parameter of

interest is the intercept, β0,D, with OLS estimator B0,D, the analogue of D̄ in the

previous section. ∆x1,k, . . . ,∆xp,k are the differences between treatment and control

within match k for each of the p covariates respectively. β1,D, . . . , βp,D are nuisance

parameters that adjust for linear imbalances in the covariate differences not accounted

for in the matching procedure.

For the responses in the reservoir, consider the classic model: Yi = βT,R1T,R,i +

β0,R + β1,Rx1,i + . . .+ βp,Rxp,i + Ei,R where Ei,R is
iid∼ normal noise and i ranges from

1 to nR. The parameter of interest is the additive effect of the treatment, βT,R, with
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OLS estimator BT,R, the analogue of R̄ in the previous section. β0,R, β1,R, . . . , βp,R

are nuisance parameters that adjust for a mean offset and linear imbalances in the

covariates.

Using the parallel construction in Equations 5.3 and 5.4, our modified OLS esti-

mator has the form

S2
BT,R

B0,D + S2
B0,D

BT,R

S2
BT,R

+ S2
B0,D

− β0√
S2
BT,R

S2
B0,D

S2
BT,R

+ S2
B0,D

D→ N (0, 1) (5.6)

with the same asymptotics described in the last section below Equation 5.4. S2
BT,R

is the sample variance of BT,R and S2
B0,D

is the sample variance of B0,D .

5.2.3.3 The Permutation Test

An application of Fisher’s exact test is straightforward. For the matched pairs com-

ponent of the data, we examine the 2m configurations (each match can have T-C or

C-T) to compute all d̄’s. For the reservoir portion of the estimator, we condition on

nR,T and examine every possible arrangement of the treatment vector to compute ev-

ery ȳR,T − ȳR,C . For each arrangement, we also compute s2
D̄

and s2
R̄

to create values of

the test statistic in Equation 5.3. In practice, the 2-sided p-value is approximated by

comparing the observed |bT | from the true sample data to absolute values of Monte-

Carlo samples from the space of all possible test statistics. A similar exact test is

available using the modified OLS estimates but we do not explore it in this study.
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5.2.4 Properties of the Reservoir Size

We wish to gain insight about how λ, n0 and n affect nR. Assume for now that we

only have one covariate, x (which may also be the largest principal component of a

collection of covariates) and we allow immediate matching (n0 = 1). Mahalanobis

distance matches on standardized distance. For this illustration, assume we match

if the two x’s sample quantiles are within λ of each other. For example, the latest

subject in the experiment had a sample quantile of 0.96, they would be matched to

the closest subject in the reservoir with quantile between 0.91 and 1 at λ = 0.10.

Consider dividing the unit interval into K := 1/λ intervals of equal length. Two

items in one interval qualify to be matched. Assume that K is even (similar results

follow for K odd). Consider the Markov process that transitions after each pair of

subjects. Let s be the state that 2m of theK cells are occupied for s ∈ {0, 1, . . . , K/2}.

It is straightforward that Pi,j, the transition probability of pairs from state i to j,

satisfies:

Ps,j =



2s(2s−1)
K2 , j = s− 1, s 6= 0

K(4s+1)−8s2

K2 , j = s

K2−K(4s+1)+2s(2s+1)
K2 , j = s+ 1, s 6= K

2
.

Note the inherent symmetry: Ps,j = PK/2−s,K/2−j. Hence, the steady-state prob-

abilities are symmetric about s = K/4. Therefore, the mean number of items in

the reservoir goes to K/2 = (2λ)−1 as n grows arbitrarily large. For example,

limn→∞ E [NR | λ = 0.10] = 5.
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5.3 Simulation Studies

We demonstrate our method’s performance by simulating in three scenarios: co-

variates affect the response non-linearly (the “NL” scenario), covariates affect the

response linearly (the “LI” scenario) and covariates do not affect the response (the

“ZE” scenario). These scenarios were simulated via the settings found in Table 5.1.

In practice, we simulated many settings for the NL and LI scenarios with similar

results.

Scenario Yi

NL βT1T,i + x1,i + x2,i

+ x2
1,i + x2

2,i + x1,ix2,i + Ei

LI βT1T,i + 2x1,i + 2x2,i + Ei

ZE βT1T,i + Ei

Table 5.1: The response models for the three scenarios proposed. The covariates were

X1,i
iid∼ N (0, 1) and X2,i

iid∼ N (0, 1) and the errors were Ei
iid∼ N (0, σ2

e).

We set the treatment effect to be βT = 1. n was varied over {50, 100, 200}, n0 was

set to the minimum to admit calculation of S−1 (at n0 = p = 2) and λ was varied

over nine settings between 0.01 and 0.75. We then used σ2
e to modulate the resolution

in our comparisons. We chose σ2
e = 3 to be a good balance because even at n = 200

comparisons were clear.

In choosing which competitor dynamic allocation methods to simulate against,

we wanted to pick methods that are in use in sequential trials. According to Scott

et al. (2002), stratification is very popular and Efron’s biased coin has been used in

a few studies. Most popular is minimization which has been used in over 1,000 trials

(McEntegart, 2003).

Thus, we choose to compare our method against (1) complete randomization (CR).
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(2) stratification: both x1 and x2 were stratified into three levels based on the tertiles

of the standard normal distributions, creating 3 × 3 = 9 blocks. Within blocks

we alternate T / C in order to coerce nT ≈ nC so no power is lost on allocation

imbalance. (3) Efron’s biased coin design (BCD): we use the bias parameter of α =

2/3 which is Efron’s “personal favorite.” (4) Minimization: we used the same blocks as

stratification, the “D” function (Begg and Iglewicz, 1980 found the variance method

performed slightly better than alternatives), the “G” function, and we set p = 1 for

deterministic assignments in order to force nT ≈ nC so no power is lost on allocation

imbalance. (5) stratification as above followed by post-matching which we detail in

Web Appendix A in the Supplementary Materials.

Note that power for our stratification and minimization simulations may be higher

than what is expected in practice due to two reaons. First, we use deterministic as-

signments. Second and more importantly, real world covariates are collinear which

reduces the effectiveness of stratification and minimization. Here, we generate covari-

ates independently. Note that collinearity is not an issue for our sequential matching

proposal due to the use of Mahalanobis distance.

There are three scenarios (NL, LI, and ZE) and four competitors. Naturally, we

want to gauge performance if we assumed the correct underlying model, but we also

want to ensure we are robust if the model is misspecified. Therefore, we simulate

each of these under the three model assumptions discussed in Section 5.2.3. For

the classic estimator, all competitors employed ȲT − ȲC ; for the linear estimator,

all competitors employed OLS; and for the exact test, all competitors employed the

standard conditional permutation test.

We hypothesize that in the case of no effects (the ZE scenario), we will slightly

underperform against competitors under all three testing procedures because of the

loss of power due to the lower effective sample size when analyzing paired differences.

If the effects are linear, we hypothesize to do slightly worse against the OLS procedures
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due to lower effective sample size. Under all other scenarios and models, we expect

to do better.

We simulated each scenario 2,000 times and for exact testing, we Monte-Carlo

sampled 1,000 times within each simulation.

Our main metric for comparison is power, the proportion of the times the null

was rejected under the Type I error rate of α = 5%. We also record standard error of

the estimate (when the estimator was parametric) as well as balance (the maximum

standardized difference in the averages of covariates between treatment and control

samples: maxj∈{1,2} {(x̄j,T − x̄j,C)/sj}). Results for power under λ = 10% against the

null of no treatment effect are illustrated in Figure A.17c and results for balance and

relative efficiency vis-a-vis other methods are found in Table 5.2. Power results for

other values of λ appear as Web Figures 1 to 8 in the Supplementary Materials. The

levels of λ have little effect the comparisons against the four competitors. A table of

empirical bias results appears as Web Table 1 in the Supplementary Materials.

In the NL scenario, our sequential matching procedure dominates competitors in

power and efficiency, sometimes doubling power and nearly tripling efficiency. Even

at n = 200, the gains are large. Regression adjustment helps the competitors, but it

cannot adjust for the non-linear portion of the quadratic terms and interaction term;

they will appear as higher noise.

In the LI scenario, sequential matching dominates competitors in the classic and

the exact test because the competitors do not use the covariate information. In

the linear assumption, sequential matching performs similarly in power but has a

lower efficiency across all n’s. This loss is due to a lower effective sample size when

using matched pairs. The gap decreases as n increases because there are benefits

to matching even when employing regression adjustment. As Greevy et al. (2004)

explain, better balance reduces collinearity resulting in a smaller standard error for

the estimate. Balance is improved over competitors that do not allocate based on the
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(g) Scen ZE, Classic Test
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(h) Scen ZE, Linear Test
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(i) Scen ZE, Exact Test

Figure 5.1: Power at α = 0.05 illustrated for matching parameter λ = 10% for the

three scenarios by the three testing procedures, all five allocation methods (C: Com-

plete Randomization, E: Efron’s BCD, S: Stratification, M: Minimization and SM:

our sequential matching algorithm) and sample sizes (squares illustrates results for

n = 50, triangles for n = 100 and circles for n = 200). Plotted points represent

the sample proportion of null hypothesis rejections in 2,000 simulations and segments

represent 95% confidence intervals. The grey points and segments plot the T approx-

imation to the finite distribution of Equations 5.4 and 5.6.
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Sample Relative Efficiency Over Competitors

Allocation Scenario NL Scenario LI Scenario ZE

n Method Balance Classic Linear Classic Linear Classic Linear

50

CR 0.812 2.233 1.645 2.543 0.814 0.896 0.779

Efron’s BCD 0.810 2.134 1.744 2.358 0.805 0.854 0.825

Stratification 0.422 1.664 1.282 1.125 0.780 0.798 0.717

Minimization 0.397 1.750 1.478 1.163 0.778 0.842 0.718

Seq. Matching 0.506 — — — — — —

100

CR 0.804 2.610 1.762 2.637 0.898 0.944 0.885

Efron’s BCD 0.802 2.500 1.688 2.709 0.855 0.967 0.885

Stratification 0.392 1.785 1.401 1.224 0.820 0.928 0.879

Minimization 0.376 2.975 1.532 1.132 0.842 0.932 0.879

Seq. Matching 0.430 — — — — — —

200

CR 0.801 3.139 2.011 3.183 0.969 0.991 0.851

Efron’s BCD 0.796 2.695 2.034 3.187 0.979 1.005 0.866

Stratification 0.378 2.084 1.586 1.400 0.977 1.002 0.917

Minimization 0.370 2.241 1.757 1.289 0.938 0.964 0.883

Seq. Matching 0.361 — — — — — —

Table 5.2: Balance results and relative sample efficiency results (the ratio of the two

unbiased sample variances) of sequential matching (λ = 0.10, Z approximation) ver-

sus competitors by scenario and testing procedure. Balance results are averages over

all scenarios and model assumptions (60,000 simulations for SM and 36,000 for other

allocations). Efficiencies in gray indicate our algorithm performed worse than a

competitor and efficiencies in bold indicate our algorithm performed better (as mea-

sured by an F-test with 1% significance level unadjusted for multiple comparisons).

Exact tests are not shown because they do not admit a standard error calculation.
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covariates and this better balance implies higher power and efficiency. Parenthetically,

we note that as n increases, it appears as if balance is approaching levels observed in

both stratification and minimization. This is expected and is an added bonus of our

procedure.

In the ZE scenario, our approach is most severely impacted by lower effective

sample size. However, power is not as low as expected. Efficiency seems to be lost

for all simulated n’s but most significantly when n = 50 as expected.

All in all, sequential matching shines in the case of non-linear covariate models

which is the most realistic case in practice. If the covariate model is truly linear,

sequential matching does worse when OLS is employed but our relative inefficiency

is only observed for small sample sizes. In the case when covariates do not matter at

all, we begin to perform about equally with competitors when n ≥ 100. This is an

important result in practice because investigators sometimes choose useless covariates

which do not affect the outcome measure.

A possible criticism of the high power achieved is we assume our n was large enough

for the estimators in Equations 5.4 and 5.6 to converge. Via unshown simulations, we

have reason to believe the true density to be similar to a T with degrees of freedom

max (m− 1,min (nR,T , nR,C)) where nR,T and nR,C are the number of treatments and

controls left in the reservoir respectively. We illustrate power results for this putatitve

T distribution in gray in Figure A.17c. To further investigate the convergence, we

also simulated the size of the tests in Table 5.3. For the classic estimator, at n = 50,

the size of the Z approximation test is generally larger than the Type I error rate

of 5% even with the T procedure (in most cases). At n = 100 and 200, the Z

approximation is appropriately sized for most scenario-model situations, and the T

procedure is appropriately sized for almost all cases. Other anomalies observed in

this table are discussed in Section 9.6.
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Allocation Scenario NL Scenario LI Scenario ZE

n Method Classic Linear Exact Classic Linear Exact Classic Linear Exact

50

CR 0.047 0.047 0.052 0.046 0.046 0.056 0.053 0.050 0.048

Efron’s BCD 0.050 0.046 0.040* 0.054 0.055 0.046 0.053 0.051 0.046

Stratification 0.016** 0.031** 0.018** 0.006** 0.051 0.006** 0.050 0.049 0.046

Minimization 0.021** 0.041 0.024 0.004** 0.046 0.005** 0.046 0.055 0.050

Seq. Match (Z) 0.078** 0.072**
0.052

0.077** 0.089**
0.046

0.087** 0.093**
0.044

Seq. Match (T) 0.056 0.052 0.061* 0.077* 0.076** 0.073**

100

CR 0.050 0.047 0.050 0.042 0.053 0.054 0.054 0.049 0.048

Efron’s BCD 0.053 0.050 0.048 0.054 0.046 0.046 0.052 0.054 0.050

Stratification 0.034* 0.034* 0.023** 0.004** 0.046 0.004** 0.048 0.050 0.046

Minimization 0.032** 0.040* 0.043 0.004** 0.048 0.061* 0.046 0.046 0.050

Seq. Match (Z) 0.054 0.054
0.051

0.054 0.062*
0.050

0.063* 0.061**
0.048

Seq. Match (T) 0.047 0.052 0.050 0.063* 0.060* 0.070**

200

CR 0.052 0.043 0.051 0.051 0.053 0.050 0.043 0.053 0.060*

Efron’s BCD 0.052 0.050 0.050 0.044 0.052 0.048 0.052 0.051 0.050

Stratification 0.018** 0.027** 0.014** 0.004** 0.054 0.003** 0.051 0.050 0.048

Minimization 0.018** 0.032* 0.024** 0.004** 0.053 0.001** 0.054 0.046 0.052

Seq. Match (Z) 0.053 0.056
0.049

0.052 0.049
0.048

0.054 0.062*
0.054

Seq. Match (T) 0.049 0.060 0.054 0.058 0.050 0.058

Table 5.3: Simulated size of tests for all scenarios, competitors, and all tests at

λ = 10%. Numbers followed by a ** indicate they are different from the purported 5%

size at a Bonferroni-corrected significance level (162 comparisons). Numbers followed

by a * indicate they are different from the purported 5% size without Bonferroni

correction.

5.4 Demonstration Using Real Data

5.4.1 Behavioral Experiment

Kapelner and Chandler (2010) (Chapter 3 of this document) ran experiments using

the Amazon Mechanical Turk platform, a global outsourcing website for small one-off

tasks that can be completed anonymously on the Internet. They focused on mea-

suring subjects’ stated preference for a beer price when the beer came from different
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purchasing locations (an online replication of Thaler, 1985’s demonstration of the

“framing effect,” a cognitive bias). The treatment involved subtle text manipula-

tions: the same beer came from either a fancy resort or a run-down grocery store. In

their control wing (n = 168), no tricks were employed to ensure the subjects were

paying attention to the text. Thus, in this wing, the subtle text manipulation did

not seem to affect the subjects’ stated beer prices. The effect may have been real,

but the data was either too noisy or there was insufficient sample size to find it. We

demonstrate here that if our sequential matching procedure was employed, the effect

estimator would have been more efficient.

For matching, we first used most of the covariates found in the original dataset:

age, gender, level of earnings, number of weekly hours spent doing one-off tasks,

level of multitasking when performing tasks, stated motivation level, passing the

“instructional manipulation check” (Oppenheimer et al., 2009) and a survey gauging

the subject’s “need for cognition” (Cacioppo and Petty, 1982).

We note that R2 under OLS was about 18.7%. We then run two off-the-shelf

machine learning algorithms that are designed to find interactions and non-linearities

in the response function. The in-sample pseudo-R2 using Chipman et al. (2010)’s

Bayesian Additive Regressive Trees (BART) was 42.4% and Breiman (2001b)’s Ran-

dom Forests (RF) was 70.4%. Although this is not a formal test, it is pretty com-

pelling evidence that the covariates do not combine strictly linearly to inform beer

price. Thus, as demonstrated in figure A.17a and column 4 of table 5.2, our method

should be more powerful and more efficient than using previous dynamic allocation

strategies with a classic estimator. The results for 200 simulations at λ = 0.10 are

shown in table 5.4a. Many of the covariates are binary. Thus, the variance-covariance

matrix was not invertible in line 5 of algorithm 1 for many of the early iterations, so

we used the Moore-Penrose generalized inverse instead.

We now match on four selected covariates that come out most significant in an
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average average approx. sample

purported n actual n efficiency size reduction

(a)

50 37.8 1.84 45.7%

100 71.9 1.23 16.9%

168 (all) 116.1 1.06 5.4%

(b)

50 34.9 2.01 50.1%

100 67.8 1.60 37.3%

168 (all) 112.1 1.57 36.3%

Table 5.4: Results for 200 simulations of the sequential matching procedure over

many values of n and λ = 0.10. (a) all covariates matched on (b) four cherry-picked

covariates are matched on (OLS has an R2 = 20.8%, BART, 32.1% and RF, 26.5%).

Note that many of the covariates were binary, and thus the variance-covariance matrix

was not invertible in line 5 of algorithm 1 for many of the early iterations of these

simulations, so we used the Moore-Penrose generalized inverse.

OLS regression on the full dataset: age, level of earnings, level of multitasking when

performing tasks and one question from the survey gauging the subject’s “need for

cognition.” The results are found in table 5.4b. Note that the efficiencies are higher

and do not drop off as quickly when n increases. Thus, matching on relevant covariates

yields a performance enhancement in our procedure.

5.4.2 Clinical Trial

We now examine sequential clinical trial data from Foster et al. (2010), a twelve-

week, multicenter, double-blind, placebo-controlled clinical trial studying whether

amitriptyline, an anti-depressant drug, can effectively treat painful bladder syndrome.

The study measured many outcomes, including change in pain after 12 weeks (dif-

ference in Likert scale scores). The confidence interval for the ATE between pill and
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placebo for this outcome measure was [−1.00, 0.30] with ap value of 0.29 (Table 2, row

1, page 1856). Such results indicate the effect may have been real but there wasn’t

enough power to detect it due to low sample size or a high error variance.

For matching, we first use most of the covariates found in the original dataset:

age, gender, race (White / Hispanic), level of education, level of employment, living

with a partner, presence of sexually transmitted diseases and urinary tract infection,

as well as baseline measures of pain, urination frequency and urgency, quality of life,

anxiety and depression as well as syndrome symptom levels.

R2 was about 25.2% in an OLS regression. We then run two off-the-shelf machine

learning algorithms that are designed to find interactions and non-linearities in the

response function. The in-sample pseudo-R2 using Chipman et al. (2010)’s Bayesian

Additive Regressive Trees (BART) was 42.6% and Breiman (2001b)’s Random Forests

(RF) was 82.4%. Although this is not a formal test, it is pretty compelling evidence

that the covariates do not combine strictly linearly to inform change in pain after 12

weeks. Thus, as demonstrated in Figure A.17a and column 4 of Table 5.2, our method

should be more powerful and more efficient than using previous dynamic allocation

strategies with a classic estimator.

We simulate the subjects being dynamically allocated using the sequential match-

ing procedure by first assuming the entering subjects do not exhibit any time trend;

this will allow us to permute their order. During the iterative procedure, all subjects

assigned to the reservoir keep whichever assignment they had during the experiment.

During matching, if the subject happened to have been assigned the treatment which

the sequential matching procedure allocated, they are kept in the subject pool; if not,

they are discarded (this is illustrated in Figure 5.2). Thus, during our simulations,

we result in a subset of the data we began with. Note that we only show results

for the classic estimator versus the modified estimator in Equation 5.4, not the OLS

modified estimator whose results we suspect to be similar.

100



nsim: 1 .............o.xx....o....xxx.ooxx.o.xxooxooxx.xo. (37)

nsim: 2 ................xxx..x.xxoo.xxx.o.o.oo..ox.xxxxx.o (35)

nsim: 3 ................x.x..oo.xxxo.x.xxxxxxxo.x.ox.oox.o (34)

nsim: 4 ...........o...o...ox.o.o.xo.ox.o....xxooox.oox.xo (42)

nsim: 5 ................x.xoo.o.o..xxoxx.o.x.x.oo.o.xoxx.. (39)

nsim: 6 ................x..xx.x..xx.oo.xoxoxxx.ooxo.o.xxxo (35)

nsim: 7 .............x.o..oo..oxx.x..o.oxo.xxox.o.xoxxxoxo (37)

nsim: 8 ............xx.oxoxxo..x.xxx.x..oxoo.o.xx.x..xox.o (34)

nsim: 9 ..............o...xxoo.xo.ooo.....o.ooxox.oxx..o.x (42)

Figure 5.2: Running an n = 50 subset of historical data through the sequential

procedure. The dots represent a subject being placed into the reservoir. The “o”

signifies that the subject was matched and that their treatment allocation was opposite

of their matching partner. The “x” signifies that the subject was matched but their

treatment allocation was the same as their matching partner, resulting in the subject

being discarded. The number in parenthesis at the end of the line is the sample size

retained of the purported 50.

The results for 200 simulations are shown in Table 5.5a. We also match on the

top four covariates which are the most significant in an OLS of the full dataset: living

with a partner, baseline pain, frequency of pain and syndrome symptom levels. The

results are found in Table 5.5b. Note that these efficiencies are higher when compared

to matching on all covariates and they do not suffer the steep drop off as n increases.

5.5 Discussion

Estimation in sequential experiments, of which many are clinical trials, can have

higher power and efficiency if the covariate information is leveraged. We present

a dynamic allocation of treatment and control that matches subjects on-the-fly via

a novel algorithm and present modified estimators of classic approaches: average

difference, linear regression, and permutation testing. We simulate under different

scenarios and illustrate higher power in scenarios where competing methods cannot
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average average approx. sample

purported n actual n efficiency size reduction

(a)

50 38.9 1.30 23.0%

100 75.2 1.10 9.2%

150 111.3 1.05 4.9%

224 (all) 165.5 1.07 6.7%

(b)

50 38.0 1.27 21.2%

100 72.9 1.23 18.8%

150 108.6 1.15 13.2%

224 (all) 160.3 1.13 11.3%

Table 5.5: Results for 200 simulations of the sequential matching procedure over

many values of n and λ = 0.10. (a) all covariates matched on (b) four cherry-picked

covariates are matched on (OLS has an R2 = 18.9%, BART, 35.1% and RF, 45.0%).

Note that many of the covariates were binary, and thus the variance-covariance matrix

was not invertible in line 5 of algorithm 1 for many of the early iterations of these

simulations, so we used the Moore-Penrose generalized inverse.

make proper use of covariate information. We underperform only in the case of low

sample size when the covariate model is linear or non-existent. In simulations with

real clinical data, we find the efficiency of our method over complete randomization

increases as the covariates become more important. This is most likely due to the fact

that real-world response functions, such as this one in the clinical setting, combine

covariates non-linearly, and this is when our procedure is most advantageous.

We note that “analysis assumptions may be compromised due to the ‘pseudo’-

random allocation” (Scott et al., 2002) and would like to address this criticism which

can be made about our procedure. Note that in Table 5.3, the size of the tests under

stratification and minimization are less than 5%. One should not use the classic
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estimator in these cases because one implicitly tried to balance on the covariates,

but then did not include the covariates in the model (as seen by the poor sizes using

the classic model in scenario NL using the classic model in scenario LI in Table

5.3). Simon (1979) and Senn (2000) have very good discussions about this issue

and recommend using regression adjustment (as seen in the competitors in scenario

LI, linear response model in the Table 5.3 for n > 50). As for exact testing under

dynamic allocation, Kalish and Begg (1987) and many others warn that permutation

distributions in stratification and minimization are incorrect unless the investigator

permuted the treatment allocation according to how the allocation was determined

by the covariates. This is not straightforward in practice for stratification and even

less straightforward for minimization.

In contrast, the sizes of the test for our approach seem to be correct in Table

5.3, especially when making use of the low-sample T approximation. Usage of our

classic estimator seems ill-advised for the same reasons that the classic estimator is

not recommended under stratification and minimization. However, using linear re-

gression on the covariates is also ill-advised when the model is non-linear or otherwise

does not satisfy the OLS model assumptions (Freedman, 2008) although Rubin (1979)

finds that covariance adjustment of matched pair differences is robust to model mis-

specification. Thus, since our permutation test performs well in the non-linear case,

properly sized and can avoid many of the above issues, we recommend the permutation

test in practice. We permuted according to the structure of our dynamic matching

allocation, thus our permutation tests are valid.

5.5.1 Further Developments

We view this contribution as a step forward in covariate-adaptive randomization in

sequential experiments but it is far from complete. We list extensions below which
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we believe are in difficulty order.

Sequential Analysis Although we assume fixed n in our construction, it is rela-

tively straightforward to adapt to a fully or group sequential design whose methods

can be found in Jennison and Turnbull (2000). It would be hard to tabulate val-

ues when our estimator has unknown convergence properties, thus it would probably

have to be done by waiting until the estimator most likely converged, and then using

standard sequential analysis software.

Multi-armed designs This paper is devoted to studies where there are only two

arms. If the study is multi-armed, the approach can be modified. Upon matching, the

newly matched subject could be randomly assigned to a random treatment (an arm

other than the treatment of the reservoir subject) or perhaps, alternatively, assigned

to one of the other arms to best achieve balance. Analagous estimators can then be

created for contrasts of interest.

Non-continuous outcomes We believe with adjustment of the estimators, our

method can apply beyond continuous responses to binary, ordinal, or count responses.

Imbalance protection Complete randomization when allocating subjects in the

reservoir may result in treatment imbalances in the reservoir after the experiment

is completed. In clinical trials, block permutations are popularly employed to avoid

imbalance. In our case, blocks for reservoir allocation would not work since, upon

matching, the block sequences would be broken. A solution would be to use a biased

coin allocation scheme (Efron, 1971) or an urn model. This would involve modification

of the exact test of Section 5.2.3.3 to reflect the restricted randomization scheme.

Multi-centered designs Clinical trial recruitment is frequently spread across mul-

tiple centers and center-center variation is expected. Our procedure can be modified
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in two ways to be of use in multiple centers. First, if large enrollment is expected

in each center, the procedure can run independently in each center and resulting es-

timates from each center can be combined upon study completion. Second, if small

enrollment is expected in each center, the subjects can be matched across centers and

the least squares estimator of section 5.2.3.2 can be used to adjust for center-center

variation.

Better matching distance We feel that the most significant improvement would

be better matching. Mahalanobis distance is logical, but prone to strange behavior

with departures from the normality assumption. Another natural extension is to

bootstrap the distribution of the nominal metric in Equation 5.2 as to not rely on

probabilities from the scaled F distribution. Also, practitioners may want to weight

the variables in the matching as well as force some variables to always match (see

Rosenbaum, 2010, chapter 8).

On-the-fly variable selection Of course, our procedure suffers from the central

issue of all matching: selecting the variables to match on. A poor choice makes a big

difference as evidenced by the simulations on clinical trial data (Table 5.5a vs. 5.5b).

There may be a way to iteratively match and differentially weight by covariates that

are found to be important, so the set of perceived important covariates is updated

during the sequential experiment.

Reservoir optimization We have begun to consider how large nR grows asymptot-

ically as a function of n0 and λ (Section 5.2.4). To understand the optimal tradeoff of

n0 and λ to maximize estimator efficiency as functions of n, p, the variance-covariance

matrix of the covariates, and how strong the signal of f is to the noise will involve

a lot of theory. Also, perhaps a variable rule for λ would be effective: if the sample

size is large, the algorithm can afford to be conservative about the matches during
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the beginning of the experiment, but then become less conservative as time passes.

Waiting until n0 is almost half n can be another strategy.

Supplementary Materials

Original data and source code for reproduction can be found at github.com/kapelner/

sequential_matching_simulations_2.

Acknowledgements

We wish to thank Larry Brown, Dean Foster, John Horton, Stephen Kapelner,

Katherine Propert, Paul Rosenbaum, Andrea Troxel, and the reviewers for helpful

suggestions and Hugh MacMullan for help with grid computing. Adam Kapelner also

acknowledges the National Science Foundation for his graduate research fellowship.

106

github.com/kapelner/sequential_matching_simulations_2
github.com/kapelner/sequential_matching_simulations_2


6
Estimating the Number of Objects in Images∗

Abstract

We develop a method to estimate the count of objects or features in an image such

as tallying the number of birds in a photograph or the the number of cells in a

microscopic image. Our approach has two novel steps. We first develop software

that records the labelings of many naive workers via Amazon’s Mechanical Turk.

We then view each worker’s training as a “capture” in a set of capture-recapture

experiments. We use statistical learning to eliminate falsely-trained objects and then

take a Bayesian approach and use a Gibbs sampler to estimate the true number of

objects.

6.1 Introduction

Counting and locating specific features in an image has many applications such as

cell counting, harvest estimation, and crowd counting. Standard methods in counting

(how many words did Shakespeare known? (Efron and Thisted, 1976) and animal

∗Joint work with Susan Holmes
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abundance) use models where the frequencies of counts form sufficient statistics. How-

ever, with large amounts of noisy data, such models have to be refined. In this paper,

we develop a two-stage solution to the counting and localization of objects in images.

Some images feature objects that are easy to locate, thus the count is obvious; other

images are difficult featuring ambiguous and obfuscated objects, this is where our

solution can be applied.

In section 6.2 we give an introduction to object identification in the field of com-

puter vision and our previous research that served as the inspiration for this project.

In section 6.3 we talk about the engineering effort of our new tool, DistributeEyes,

that uses crowd labor to label images. The use of this new tool has many applications,

but we focus here on improving the estimate of the number of objects in an image.

In section 6.4 we talk about statistical methods that use data from DistributeEyes

to estimate the number of objects in images using Bayesian capture-recapture meth-

ods. In section 6.5 we run an experiment with a wide variety of images, and test our

count estimation method on the experimental data. We are also able to present a

quality control analysis and present observations about spatial and temporal patterns

in workers’ training points. We conclude and talk about future directions in the final

section 6.6.

6.2 Crowdsourcing Object Identification in Images

Many automated computer vision algorithms are available and have been tailored for

specific types of images and object identification questions. Cell recognition tech-

niques applied to microscopy images are transforming the field of pathology (Kapel-

ner et al., 2007b), thermal/aerial photographs can be analyzed for car detection and

counts used in traffic analysis.

Projects like LabelMe (Russell et al., 2008) provide annotation for objects in an
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image but have concentrated on images where there are less than 15 objects, most

are of different types. In contrast, we are interested in counting and locating many

objects of similar types; in general, there will be more than 50 objects of each type

which need to be counted. In our implementation, we ask the participants to identify

the object by clicking on one central pixel, instead of providing a full outline of the

object, or textual annotation.

Our previous research (Holmes et al., 2009; Kapelner et al., 2007b) yielded an

interactive statistical learning software named “GemIdent” (Kapelner et al., 2007a)

which was designed to locate cells in histological samples. The program can be

adapted to any object recognition task on images with few colors and relative con-

formity in the shape and size of the sought objects. GemIdent was instrumental

in the localization and identification of T-cells and cancer cells in immunhistolog-

ically stained microscope images enabling an architectural comparative analysis in

tumor-draining lymph nodes from breast cancer patients and healthy lymph nodes

(Setiadi et al., 2010). The software package has been open-sourced and available for

download since May, 2007. We have received much feedback about its shortcomings.

Overwhelmingly, users feel that the training step for the different object instances is

too time-consuming. We were inspired to address this weakness by introducing a new

possibility for incorporating training data — from a crowd of inexperienced trainers,

located around the world, who assist in identifying objects of interest. “‘Crowd-

sourcing’ is the act of outsourcing tasks, traditionally performed by an employee or

contractor, to an undefined, large group of people or community (a crowd), through

an open call”.2

Why charge anonymous laborers with such as task? General automatic object

identification using statistical learning is difficult in cases where the contexts are

heterogeneous but the objects are not. Manually marking the objects would yield the

2http://en.wikipedia.org/wiki/Crowdsourcing
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most accurate solution, but would be too time-consuming in real applications such

as cell counting where there could be millions of cells in a single histological sample.

Our solution is to provide training data through a set of points collected via

Internet-based crowdsourcing. We facilitate the distribution of the task of mark-

ing the objects. We thus extended our image segmentation software and names it

“DistributeEyes”3. It is an HTML application that plugs into a crowdsourcing plat-

form, currently Amazon’s Mechanical Turk4 and communicates with a Gemident-

enhanced client. We give the details of the integration of these platforms in the

following section.

6.3 Engineering

The data acquisition solution has several different components which communicate

with each other for an integrated solution (see figure 6.1).

DistributeEyes
    Client

DistributeEyes
Central Server

     HTML
    Training
   application

MTurk

Figure 6.1: The DistributeEyes Components and their interactions

3http://www.distributeeyes.com
4http://www.mturk.com
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Figure 6.2: DistributeEyes Project Settings Dialog Window

6.3.1 The DistributeEyes client

A user of the client (the “user”) creates a new project and identifies the different

objects of interest types (for historical reasons, we call these “phenotypes”) and then

provides a few examples of each. The user then initializes the project on the central

DistributeEyes server (the “server”). Then, images that we would like to extract

training data from (“images”) are added to the project.

The “Distribute Images” panel (not shown) shows each image as a row in a table

and allows users to select which images they want to distribute for online mark-

ing. The marking of one image is done as a “Human Intelligence Task” (“HIT”) on

Amazon’s MTurk by a worker and is dubbed a “submission.”

A project settings panel allows customization of the following parameters: min-

imum number of total points, minimum number of positive points (objects) sought,

minimum number of negative points (non-objects) sought, monetary reward for train-

ing, bonus reward for training, time-to-expire for the HIT, and special instructions.

After images are distributed, the client polls the server regularly to see if the HITs

have been completed. Once a submission is detected, the client provides two means

of assessing the quality of the work. The first is a window that shows the local area

around each marked point which allows for quick deletions of simple mistakes (see

figure 6.3). The second is the phenotype training window which displays the original
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Figure 6.3: Worker submission check window

image with an overlay of the training points (not shown, see Holmes et al., 2009

Figure 8, p9).

Usually within 5-10 seconds the user can recognize if the worker did a satisfactory

job and accept or reject accordingly. A rejection means zero compensation for the

worker. The client also provides common canned feedback responses such as “Great

job!” or “You missed too many objects. Try again.” If the worker went above and

beyond, a bonus can be rewarded. As an additional tool, the worker’s historical record

(acceptances, rejections, bonuses, and feedback) are displayed.

It is this speed-up of the training process which makes DistributeEyes a powerful
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research tool with enormous potential.

6.3.2 The Central DistributeEyes Server

The function of the server is to be an intermediary for passing data between the

client and MTurk’s workers, to render the HTML training application, and to serve

the public homepage URL.5 User accounts are created via the public portal and after

email verification, the user can download the DistributeEyes client.

6.3.3 The HTML Training Application and the Raw Data

Each image can be rendered inside of a training application for marking by a worker.

The training application comes complete with each example image of each phenotype,

a magnified view of the image where the user marks / deletes points, magnification

adjustments, a thumbnail, a scaled-to-fit view, and a help link.

Before the worker is allowed to use the application, he must “qualify” by watching

a five-minute tutorial video which teaches traning concepts and techniques, pass a

six-question quiz (see figure 6.4), and agree that DistributeEyes can monitor his

usage. Workers must pass the quiz in order to be able to work on a HIT. The

worker is forced to watch the entire video before having the opportunity to answer

the questions. Workers that pass the qualification quiz are recorded on the central

server and no longer need to re-qualify to work on future HITs.

Then, the worker moves to the training application (see figure 6.5). The worker

marks points via point-and-click until all goals set by the user are met and all special

instructions are fulfilled. The “submit training” button becomes enabled, and the

worker can upload his points to the central server. When the worker submits, he is

led through a series of dialogs inquiring if he has made the common mistakes that

5The server was written in Ruby on Rails using MySQL for the database.
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Figure 6.4: The training video and example quiz questions

lead to rejections, and only then is he allowed to submit.

While the worker trains, we collect information about his actions e.g. when and

where he clicked, when he switched phenotypes, when he used the magnification tools,

and we log these actions every ten seconds.

To be clear, we refer equivalently to a “training” or a “labeling” as a worker’s

submitted points for one image which are coordinates (xip , yip) where ip ∈ {1, . . . , np},

p ∈ {1, . . . , P} where P denotes the total number of phenotypes (usually one) and np

denotes the total number of points per phenotype that the worker labeled.

In our setup using DistributeEyes, acquiring many workers’ labelings is quick
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Figure 6.5: The HTML training application embedded into MTurk. The worker is

training the project “birds” as part of our experiment (see section 6.5).

and inexpensive.

6.3.4 Interfacing with MTurk

Amazon Mechanical Turk (MTurk) is a marketplace that coordinates the use of human

intelligence to perform tasks which computers are unable to do. This labor paradigm

has been coined “crowdsourcing” which Amazon whimsically refers to as “artificial,

artificial intelligence.”

Since it is the largest such crowdsourcing marketplace on the Internet, and it pro-

vides a convenient Applications Programming Interface, it was chosen as the venue to

host DistributeEyes tasks. To create an MTurk HIT, the HTML Training Application

is rendered inside an IFrame which is wrapped inside of MTurk’s worker interface.

From the perspective of the worker, everything occurs within MTurk; he is completely

unaware of DistributeEyes.

After submission, the client will detect the completion within 10 minutes. Accep-

tances or rejections are relayed from the client to MTurk via the central server using
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the MTurk API. The server records each acceptance or rejection. The workers are

warned upon rejections. If a worker receives many rejections, he may be banned from

working on DistributeEyes HITs.

6.4 Statistical Model and Implementation

In many instances pooling together work done by many naive workers can have greater

quality than an expert. Suppose we have one type of object (one phenotype) we would

like to count (e.g. faces in a photograph of a crowd or cell nuclei in a microscopic

field-of-view) and suppose we have W workers who submit training coordinates for

where the objects are located. Our goal is to combine all W trainings together to

create N̂ , an estimate for N , the total number of objects.6

To first approximation, we can view each of the W trainings as “captures” of

different objects and all trainings together as a capture-recapture experiment in a

closed population: that of the actual objects.

6.4.1 Capture-Recapture Models

Capture-Recapture experiments trace their history back to estimating the number of

animals in a certain locality. The number of animals caught in a particular sample

n may give little information about N , the total population size, considered to be

static. Hence, many captures are done where all animals in a capture are marked via

a unique identifier and released. In subsequent capture trials, the number of animals

previously marked is noted. It is for this reason that this procedure is sometimes

known as a discrete-time capture-mark-recapture experiment. For a more thorough

6We also use their most likely locations in practical applications, but this is not addressed in this

investigation.
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introduction we refer the reader to the beginning of Otis et al. (1978) and Robert

(2007, Chapter 5.1 and 5.2).

Methods for combining the data from the different captures to provide an estimate

for N can vary based on the assumptions one makes about the heterogeneity of the

animals and the way they are captured. Otis et al. (1978) notes three types of

heterogeneity:

t The probability of capturing an animal varies with the time of the capture, that

is it varies trial-trial within the capture-recapture experiment.

b The probability of capture of an animal is dependent on its behavioral response

to a previous capture.

h There is heterogeneity in each of the animal’s capture probability.

Each type of heterogeneity can be combined together for a total of eight possible

models.

6.4.2 Object Identification as a Capture-Recapture Model

The objects in the image of interest can be thought of analagously in the Capture-

Recapture paradigm as animals. The number of objects are now the closed population

size. Each of the W worker labelings are now viewed as capture trials. If two different

workers mark the same object, it is counted as a “recapture”.

In an arbitrary image, some objects are more difficult to detect then others, there-

fore heterogeneity of type h must be accounted for. Since the objects are pixels un-

changed in an image, there cannot be any heterogeneity due to previous captures,

hence heterogeneity of type b does not need to be considered. Lastly, we assume that

all workers have the same ability. This may not be fully justified, but we do this to
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avoid extra parameterization and to keep our model simple. There is also substan-

tial evidence that all workers can be considered the same in ability for a variety of

crowdsourced tasks (for example, see Kapelner et al., 2012 which is also Chapter 7

of this document). Therefore, capture probabilities are assumed not vary with the

trial number, hence heterogeneity of type t does not apply. In conclusion, we believe

that the Mh model (notation being standard in the literature) with W trials is a

reasonable model that we can apply to our data in order to estimate the number of

objects in images.

There is one conceptual issue that does not perfectly adhere to the Mh model.

Workers are charged with the task of clicking on the objects. Sometimes, they make

mistakes by clicking on a point that is not actually an object, i.e. they label a “false

positive” (these can be likened to traps capturing “ghost” animals), an intractable

problem. We first present the model without this complication below and then we

address this problem in section 6.5.5 using statistical learning.

6.4.3 Estimating N in an Mh model

Let Xi denote the number of times object i has been labeled when all W labelings of

one image of interest are aggregated. Let pi denote the probability that object i is

detected by any worker (we assumed worker ability is homogenous). It is clear that

the number of objects found is binomial. We further assume that the pi’s are drawn

from a beta distribution, an assumption that is justified in section 6.5.3.

X1 | p1 ∼ Binomial (W, p1) , . . . , XN | pN ∼ Binomial (W, pN)

p1, . . . , pN
iid∼ Beta (α, Sα)

Following the work of George and Robert (1992) and Gilks et al. (1996), we choose to

estimateN via Bayesian estimation. The Bayesian paradigm fits our purposes because
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we have built up sufficient prior information that can be incorporated into a realistic

coherent model. We now outline the prior setup and Gibbs sampling procedure used

in the hierarchical model found in Yip et al. (2005).

Let r denote the number of unique objects detected when all W labelings are

pooled. Denote M = N − r as the number of objects left undetected. Let f1 denote

the number of objects detected only by one worker, let f2 denote the number of

objected detected by only two workers, etc, and let fW denote the number of objects

detected by all workers. We now use the following flexible conjugate priors:

α ∼ Gamma (k, λ) , S ∼ Gamma (`, τ) , M ∼ Geometric (ρ)

Integrating out p1, . . . , pN , we arrive at the following Gibbs conditional sampling

scheme:7,8

M | α, S, r, f1, . . . , fW ,W, ρ ∼ NegBin

(
r + 1, 1− ρΓ (α + Sα) Γ (Sα +W )

Γ (Sα) Γ (α + Sα +W )

)
α | M,S, r, f1, . . . , fW ,W, k, λ ∝

(
Γ (α + Sα)

Γ (Sα) Γ (α + Sα +W )

)r+M
Γ (Sα +W )M

Γ (α)r

× αk−1e−λα
W∏
j=1

(Γ (α + j) Γ (Sα +W − j))fj

S | α,M, r, f1, . . . , fW ,W, `, λ ∝
(

Γ (α + Sα)

Γ (Sα + α) Γ (α + Sα +W )

)r+M
Γ (Sα +W )M

× S`−1e−λα
W∏
j=1

Γ (Sα +W − j)fj

N can now be sampled by using the posterior samples of M , the number of undetected

7Note that the distributions for α and S are non-standard, and further, can only be obtained up

to a norming constant, therefore they are sampled via a Metropolis-Hastings acceptance or rejection.
8Note that the parameterization of the beta distribution in the model definition as [α, Sα] is

done for computational reasons to reduce the correlation of the beta’s two parameters during Gibbs

sampling which is a common trick.
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objects, and adding back the number of detected objects, r.

6.4.4 The Gibbs Sampler Implementation

For the prior distributions of α and S we pick hyperparameters to have a target mean

probability of detection of 66% with large spread which is reasonable for both easy

and difficult images. We aim for a target mean α = 4 and mean Sα = 2 but with

considerable variance in order to be relatively uninformative. Therefore we choose

hyperparameters:

α ∼ Gamma (k = 2, λ = 0.5) and S ∼ Gamma (` = 1, τ = 0.25)

As for the prior distribution on M , the number of undetected objects, note that the

geometric distribution has one parameter and thereby is difficult to control both the

mean and variance. We choose rather arbitrarily a mean µM = 5 (σ2
M = 20) which

coerces ρ to be 0.8. Note that the results in this study were not sensitive to these

choices.

For the Gibbs sampling, we do 100,000 sample iterations and we discard the first

10,000 as a burn-in and we thin by using only 10% of the remaining samples evenly

spaced (after which autocorrelation is negligible for all three parameters), leaving us

with empirical posterior distributions of 9,000 samples.

We use logs of the densities and proportional densities to avoid computational

overflow when large values of the gamma function are required. For the Metropolis-

Hastings steps, we follow Yip et al. (2005) and generate α1 from the current α0 using

the lognormal distribution with scale parameter 1 (which we found moves us around

the parameter space sufficiently quickly).

α1 ∼ logN (ln (α0) , 1) and S1 ∼ logN (ln (S0) , 1)
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We then accept α1 if:

ln (U (0, 1)) < ln

(
P (α1 | M,S, r, f1, . . . , fW ,W, k, λ)

P (α0 | M,S, r, f1, . . . , fW ,W, k, λ)
· α0

α1

)

where U (0, 1) denotes a draw from a standard uniform distribution. S1 is sampled

analagously.

6.5 Experiment and Results

To test the DistributeEyes system and our count estimation techniques, we allowed

up to 50 workers on MTurk to label the locations of objects in twelve diverse images.

We then used the labelings to estimate the total number of objects, N . Since we

also have the baseline truth, we were able to build a reasonable model to account for

the workers’ false positive mistakes. Finally, we were able to assess trends of worker

trainings over time, bias, difficulty, spatial effects, and others.

6.5.1 Experimental Setup

We designed three types of object-recognition tasks increasing in complexity: (a)

find all the objects of one phenotype (b) find all the objects of one phenotype and

mark points that do not serve as examples of the object, the“NONs” (c) find all the

objects of multiple phenotypes and mark points that do not serve as examples of

any of the objects, the “NONs.” Complexity class (c) features projects with multiple

phenotypes. For the analyses and estimation found in the following sections, these

multiple phenotypes were collapsed into one. In each complexity class we tested four

images for a total of 12 “projects”. We tried to represent a diverse range of phenotype

types (see figure 6.6) across the projects.

For each of the projects, we created 50 identical HITs which was enough to inves-
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Figure 6.6: Cropped selections from the project images. From left to right then top to

bottom: Faces, Ants, Scales, Fish, Tree, Birds, Mushrooms, Sunflowers, Fans, Cells,

Candies, Beans

tigate the distribution of quality in worker submissions. Workers were barred from

marking the same image more than once. Our reward for a completed HIT was

constant at $0.15 USD. HITs were given a 60-minute time limit. The HITs were

opened to the MTurk community at large without geographical restrictions. Worker

submissions were checked within 10-20 seconds using the tools described in Section

X.

If the submission was especially poor, or if a server error caused an incorrect

submission, it was rejected and the data was not analzyed. This is the reason that

W varies between 23 and 47 in the next section.

6.5.2 Data and Basic Results

Worker training data is output from the server into csv files that are then analyzed

using R (R Development Core Team, 2005). A truth set was manually created for

each of the twelve images. The data for each worker’s training was then compared to
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the truth set. If the worker’s object coordinate was within an average object radius

from the truth point, it was marked as correct i.e. a “true positive”, otherwise, it

was tallied as a “false positive.” Therefore, for each project we have a true positive

binary matrix with workers on the rows and the true positives as the columns where

a 1 represents worker j found object i. We also have a false positive binary ma-

trix structured analagously. Overall, rejected trainings aside, the workers performed

well. We measured “accuracy” for training a certain phenotype by the F1-score — a

harmonic average between precision (the percentage of worker’s training points that

successfully corresponded to an object) and recall (the percentage of total objects

found by the worker). The results for the positive phenotypes are summed up in

table 6.1. The NONs (the negative phenotype) results were not analyzed, but anec-

dotally appear to be accurate as well. Broadly speaking, MTurk laborers seem to

take this image-labeling task seriously.

6.5.3 Object Detection Probabilities are Distributed as a
Mixture of Betas

Before we begin estimating N , we justify the assumption that the probability of

detecting an object is beta-distributed.

We did not find compelling evidence that the probability of detecting the objects

are beta-distributed for all 12 projects. However, we found strong evidence that

the percent of objects detected by each worker (the true-positive rates) are beta

distributed.

Because we know the truth, we know if each worker detected each true positive.

We compute the proportion of true positives detected for each worker by taking the

number found over the total number of true points. We then estimate the α, β pa-

rameters of a putative beta distribution using maximum likelihood, and then test the

appropriateness of the sample being drawn from the Beta (α, β) using an Anderson-
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Project F1-score (x̄± SD) W

Faces 0.96± 0.03 27

Ants 0.96± 0.02 47

Scales 0.89± 0.05 28

Fish 0.90± 0.04 42

Tree 0.73± 0.16 27

Birds 0.97± 0.02 39

Mushrooms 0.92± 0.06 36

Sunflowers 0.88± 0.07 35

Fans 0.96± 0.04 33

Cells 0.79± 0.06 23

Candies 0.92± 0.04 28

Beans 0.90± 0.06 29

Table 6.1: Averages and standard deviations of F1 scores for worker labelings. For the

four images that had multiple phenotypes, we report the average F1 score considering

all points over all phenotypes. 50 image tasks were released for each project. The W

is the number of trainings that were accepted and therefore the number of trainings

that were analyzed.
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Darling test (table 6.2). For each project, the test passed at α = 0.05 implying that

the true positives are beta-distributed (for an example, see figure 6.7).
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Figure 6.7: Top: Putative beta fit (found via maximum likelihood estimation) overlaid

atop the true positive rate for workers in the “Fish” project. Bottom: a Q-Q plot for

the putative beta distribution.

Since the workers and the true positives are exchangable, we have a jointly ex-

changeable binary array. We already know the probability model among workers is

plausibly beta in all projects. Hence, by the Aldous-Hoover theorem, we know that

the probability model across the true positives (the detection probabilities p1, . . . , pN)

must be a mixture of betas.

6.5.4 Estimating N using the Experimental Data when the
Truth is Known

We now apply the methods from section 6.4.3 to the data collected from the 12 images.
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Project Anderson-Darling p-value

Faces 0.94

Ants 0.74

Scales 0.99

Fish 0.50

Tree 0.76

Birds 0.31

Mushrooms 0.13

Sunflowers 0.53

Fans 0.89

Cells 0.90

Candies 0.87

Beans 0.97

Apples 0.95

Table 6.2: The results of the Anderson-Darling test for the number of true positives

of being Beta-distributed for all 12 projects.

In the situtation where the “truth is known”, we know the locations of the TP’s

and can generate the statistics r and f1, . . . , fW using the binary true positive matrix

(see section 6.5.2 for information about this construction). Note that we ignore all

false positive points. We then proceed to use the Gibbs sampler explained in section

6.4.4.

The results for all projects are presented in figure 6.8. All of the 12 projects feature

95% posterior predictive intervals that capture the true number of TP’s. These results

inform us that the model works very well when we have oracular knowledge.
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Figure 6.8: Histograms of the empirical posterior of N for each project considering

the truth is known. The blue line is the number of true positives (labeled as “nt”

below each histogram); the red lines are the bounds of a 95% posterior predictive

interval (labeled as “95% PPI = [a, b]”); the green line is the posterior mean (labeled

as “N hat”). Note that 6 of the 12 projects were extremely easy, featuring large and

unambiguous objects and hence there was no variation in the estimates.
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6.5.5 Estimating N when the Truth is Unknown

In the realistic situation where “truth is unknown”, we only have the workers’ label-

ings. In order to estimate N without changing the model nor the Bayesian framework,

we must estimate the sufficient statistics r and f1, . . . , fW . Recall in the Mh model

that these sufficient statistics are computed only from true captures. Therefore, we

proceed in three steps: (1) we group the worker training points into common objects

via a clustering algorithm, (2) we estimate the likelihood that each cluster is a true

object, and finally (3) we update the Gibbs sampler to account for this uncertainty.

6.5.5.1 Grouping Training Points into Common Objects

We start with an unsophisticated clustering algorithm that resolves the workers’ train-

ings to common objects. We construct the clusters through agglomeration. Starting

with an initial point, we then agglomerate the closest point (measured by Euclidean

distance) within a user-defined radius, then agglomerate the next closest point to the

center of the intial two points, etc. We allow 10% of the workers to label a point

twice as a duplicate.9

The total number of clusters represents the total number of objects found (both

true objects and false objects) and the number of points in each cluster represents

the number of workers that found that object.

Now we must estimate the probability that each cluster represents a false positive.

We take a statistical learning approach.

6.5.5.2 Classifying Clusters as True Captures or False Captures

The goal is to build a machine that accepts a set of points (a cluster of workers’

coordinates), and outputs the probability that the cluster is a true positive (or a false

9Our results were not sensitive to this choice.
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positive).

We build a design matrix X where each row represents a cluster and the column

entries are features of the cluster. The raw features are found in table 6.3.10 Note

that the radius of the objects of interest are not used during the computations of any

of the features.

Number Name Description

1 n The number of points in the cluster

2 ε The eccentricity of the minimum volume enclosing ellipse

(MVEE)

3 foc The focus of the MVEE

4 a` The length of the semi-major axis of the MVEE

5 b` The length of the semi-minor axis of the MVEE

6 SSE The sum squared Euclidean distances of each point

from the cluster centroid

7 A The area of the α-hull of the points (where α� 0)

8 xc, yc The centroid (coordinates) of the cluster

9 d1, d2, d3, d4 The centroid - centroid Euclidean distance of the first

closest cluster, second closest, etc

Table 6.3: The raw features used to discriminate a cluster between being a true

positive and a false positive. We also add many derived features as A/n, a`/n, etc.

The total number of features used was 14.

We use the statistical learning algorithm Classification and Regression Trees (CART,

10The minimum volume enclosing ellipse (MVEE) was computed using an R-implementation of

the Khachiyan Algorithm (Gacs and Lovász, 1981). The α-hull was computed using the alphahull

package.
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Breiman et al., 1984)11. We built the classifier in-sample and achieved an average er-

ror rate of 3.1%. Examining the tree split rules, we found that the features that were

the most important in the discrimination were n, A, and SSE.

6.5.5.3 Updating the Capture-Recapture Gibbs Sampler

We use CART to output the probability of being a true positive.12 We use these

estimates to augment the M,α, and S Gibbs sampler (from section 6.4.4) by adding

a sampling step for which simulates whether or not each cluster is a true positive

based on the probability estimate from CART.13

M | α, S, r, f1, . . . , fW ,W, ρ ∼ same as before

α | M,S, r, f1, . . . , fW ,W, k, λ ∝ same as before

S | α,M, r, f1, . . . , fW ,W, `, λ ∝ same as before

cluster1 ∼ Bern (P (cluster 1 is a TP according to CART))

cluster2 ∼ Bern (P (cluster 2 is a TP according to CART))

...

f1 = The number of clusters with 1 training point

...

fW = The number of clusters with W training points

r =
W∑
i=1

fi

11The implementation used was the R package rpart with standard options
12This is estimated by examining the empirical distribution in each of the leaves of the pruned

classification tree.
13If the outputted probability is zero or one, we draw from a Beta (1, ro + 1) or Beta (ro + 1, 1)

respectively where ro is the number of total clusters found across all workers for the given project.
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To compute f1, we count the the number of clusters that have one training point; to

compute f2, we count the number of clusters that have two training points, etc. r

represents the total number of clusters found, which is equivalent to summing all the

fi’s.

Figure 6.9 shows our promising results. The scales and beans project features very

ambiguous or hidden objects. We would argue that this type of object estimateion is

not possible with our system due to the difficulty in distinguishing FP’s from TP’s.
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Figure 6.9: Histograms of the empirical posterior of N for each project when truth is

unknown. f1, . . . , fw, r are sampled via a three-step procedure. Layout follows figure

6.8.

6.5.6 Spatial and Temporal Findings

In addition to estimating counts using the Bayesian capture-recapture model, we

carried out other investigations on the worker labelings. Below are the most important

of our findings.
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6.5.6.1 Jumping Around Improves Accuracy

We find weak evidence that workers who “jump around” the image during training

tend to have more accurate trainings. This is expected, since workers that go back

and check their work do indeed jump around (see figure 6.10a). The effect was weak;

on average over all projects, a one standard deviation increase in training distance

yields a two-tenths standard deviation increase in F1 score (p = 0.0001).
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Figure 6.10: Left: Standardized accuracy regressed on standardized training distance

(across all projects). Right: Standardized accuracy regressed on log 10 cumulative

time training in minutes beyond first image (across all projects and workers who

completed more than three images)

6.5.6.2 Workers Improve with Time

We found evidence that workers overall become more accurate in training with more

experience. Investigating workers that finished 3 or more projects (see figure 6.10b),

we found on average that beyond the first training, for each order of magnitude in-

crease in cumulative time training, the F1 score increases by half of a standard devia-

tion (p < 0.001). Also expected, we find a similar effect when regressing standardized
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F1 scores on total number of projects instead of cumulative time training.

6.5.6.3 Longer Training does not Yield More Accurate Results

Surprisingly, spending more time training within a single image does not correspond

to more accurate results. We regressed F1 scores on time training for all twelve

projects individually. Not one of the twelve projects features a signficant correlation

at a Bonferroni-corrected level.

6.5.6.4 Some Images are More Difficult than Others

We ordered each project by average F1 score and then compared the F1 score dis-

tributions using Wilcoxon-rank tests. Anecdotally, the easy projects seem to have

easily identifiable objects all in the spatial foreground; the intermediate projects ei-

ther had ambiguous objects in either the foreground background; the difficult projects

had very ambiguous objects in the foreground and/or background. The best results

from DistributeEyes seem to come from images that have features that are both

easily-identifiable and in a single spatial perspective.

We find that our capture-recapture expresses image difficulty via the width of the

posterior distribution that it outputted. These widths more or less correspond to the

results we present here.

6.5.6.5 Trainings Can be Biased

We investigated whether workers on average tend to train above, below, or exactly

the number of true objects. We find in projects where objects are ambiguous (i.e. the

intermediate difficulty level described in section 6.5.6.4), the training is unbiased. We

hypothesize that lazy trainers and over-ambitious trainers balance each other out. We

also find that on projects where objects are well-defined (i.e. the easy difficulty level),
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the trainings are generally biased downwards. Since there was a clear maximum, the

assiduous trainers could never balance the lazy trainers. We find that our capture-

recapture approach is excellent for mitigating these effects.

6.6 Conclusion

As large amounts of data are accumulated over many images and image-contexts, we

can build data-based prior distributions for recognizing situations where many small

objects could be located and counted. Eventually, we plan to construct a generalized

“salience” classifier. A lofty goal would be to perform unsupervised machine learning

to find objects of interest given an arbitrary context.

Another potential application is that DistributeEyes-trained data can lead to

more efficient object tracking in videos and 3D extensions. One of the applications

of the training/segmentation/counting paradigm presented here is to the tracking of

animals leading to behavioral analysis (the “Ants” project). An example of passing

from the static image analysis to video tracking has been developed recently (Pinter-

Wollman et al., 2011).

DistributeEyes provides a platform for combining human generated data of high

quality with computer based segmentation and feature detection output. This bridges

the gap between areas when only human based systems are available (cell counting)

and those where automated systems provide adequate data (image segmentation).

We can now use this on future studies both to determine the number of workers

needed to acquire a reasonable estimate of a crowd count and for the collection of

training data of a necessary accuracy level to be fed into automated learning algo-

rithms.
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7
Collecting labels for Word Sense Disambiguation∗

Abstract

We use crowdsourcing to disambiguate 1000 words from among coarse-grained senses,

the most extensive investigation to date. Ten unique participants disambiguate each

example, and, using regression, we find surprising features which drive differential

WSD accuracy: (a) the number of rephrasings within a sense definition is associated

with higher accuracy; (b) as word frequency increases, accuracy decreases even if the

number of senses is kept constant; and (c) spending more time is associated with

a decrease in accuracy. We also observe that all participants are about equal in

ability, practice (without feedback) does not seem to lead to improvement, and that

having many participants label the same example provides a partial substitute for

more expensive annotation.

∗Joint work with Krishna Kaliannan, Lyle Ungar and Dean Foster
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7.1 Introduction

Word sense disambiguation (WSD) is the process of identifying the meaning, or

“sense,” of a word in a written context (Ide and Véronis, 1998). In his compre-

hensive survey, Navigli (2009) considers WSD an AI-complete problem — a task

which is at least as hard as the most difficult problems in artificial intelligence. Why

is WSD difficult and what is driving its difficulty? This study examines human WSD

performance and tries to identify drivers of accuracy. We hope that our findings can

be incorporated into future WSD systems.

To examine human WSD performance, we tap pools of anonymous untrained hu-

man labor; this is known as “crowdsourcing.” A thriving pool of crowdsourced labor is

Amazon’s Mechanical Turk (MTurk), an Internet-based microtask marketplace where

the workers (called “Turkers”) do simple, one-off tasks (called “human intelligence

tasks” or “HITs”), for small payments. See Snow et al. (2008); Callison-Burch (2010);

and Akkaya et al. (2010) for MTurk’s use in NLP, and Chandler and Kapelner (2013)

which is also Chapter 2 of this document and Mason and Suri (2011) for further

reading on MTurk as a research platform.

We performed the first extensive look at coarse-grained WSD on MTurk. We

studied a large and variegated set of words: 1,000 contextual examples of 89 distinct

words annotated by 10 unique Turkers each. In the closest related literature, Snow

et al. (2008) found high Turker annotation accuracy but only annotated a single word,

while Passonneau et al. (2011) focused on only a few words and annotated fine-grained

senses. The extensive size of our study lends itself to the discovery of new factors

affecting annotator accuracy.

Our contribution is three-fold. First, we use regression to identify a variety of

factors that drive accuracy such as (a) the number of rephrasings within a sense def-

inition is associated with higher accuracy; (b) as word frequency increases, accuracy
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decreases even if the number of senses is kept constant; and (c) time-spent on an

annotation is associated with lower accuracy.

Second, we echo previous findings, mostly from non-WSD experiments, demon-

strating that Turkers are respectably accurate (Snow et al., 2008), they’re approx-

imately equal in ability (Parent, 2010; Passonneau et al., 2011), spam is virtually

non-existent (Akkaya et al., 2010), responses from multiple Turkers can be pooled to

achieve high quality results (Snow et al., 2008; Akkaya et al., 2010), and that workers

do not improve with experience (Akkaya et al., 2010). Third, we present a system of

crowdsourcing WSD boasting a throughput of about 5,000 disambiguations per day

at $0.011 per annotation.

7.2 Methods and data collection

We selected a subset of the OntoNotes data (Hovy et al., 2006), the SemEval-2007

coarse-grained English Lexical Sample WSD task training data (Pradhan et al., 2007).

The coarse-grained senses in OntoNotes address a concern that nuanced differences

in sense inventories drives disagreement among annotators (Brown et al., 2010). We

picked 1,000 contextual examples at random from the full set of 22,281.2 Our sample

is detailed in table 1. It consisted of 590 nouns and 410 verb examples that had

between 2-15 senses each (nouns: 5.7± 3.0 senses, verbs: 4.7± 3.3 senses). For each

snippet, ten annotations were completed by ten unique Turkers.

2We later disqualified 9 of the 1,000 because they had words with only one sense.
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7.2.1 The WSD HIT

We designed a simple WSD task that was rendered inside an MTurk HIT.3 The Turker

read one example in context with the target word emboldened, and then picked the

best choice from among a set of coarse-grained senses (see Figure 7.1). We gave a

text box for soliciting optional feedback and there was a submit button below. We

term a completed HIT an “annotation.”

We employed anti-spam and survey bias minimizing techniques to obtain better

data. We faded in each word in the context and the sense choices one-by-one at

300 words/min.4 Additionally, we randomized the display order of the sense choices.

This reduces “first response alternative bias” as explained in Krosnick (1991), but may

decrease accuracy when compared to displaying the senses in descending frequency

order as observed by Fellbaum et al. (1997). We also limited participation to US

Turkers to encourage fluency in English.

Upon completion, the Turker was given an option to do another of our WSD tasks

(this is the MTurk default). A Turker was not limited in the number of annotations

they could do.5 The entire study took 51 hours and cost $110. The code, raw data,

and analysis scripts are available under GPL2 at github.com/kapelner/wordturk_

pilot.

3The HIT was entitled “Tell us the best meaning of a word... do many and earn a lot! Really

Easy!”, the wage was $0.01, the time limit for each task was seven minutes, and the HITs expired

after one hour. We posted batches of 750 new HITs to MTurk hourly upon expiration of the previous

batch. Thus, the task was found readily on the homepage which drove the rapid completion.
4As Kapelner and Chandler (2010) found (also Chapter 3 of this document), this accomplishes

three things: (1) Turkers who plan on cheating will be more likely to leave our task, (2) Turkers

will spend more time on the task and, most importantly, (3) Turkers will more carefully read and

concentrate on the meaning of the text.
5The actual upper limit was all 1,000 examples but in practice, not one Turker came close to

completing all of them. The most productive Turker completed 405 annotations while the median

completed was 4.
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target # # target # # target # #
word inst senses word inst senses word inst senses
affect-v 1 3 end-v 8 4 policy-n 10 3
allow-v 8 2 enjoy-v 3 2 position-n 13 7
announce-v 4 3 examine-v 3 3 power-n 12 4
approve-v 3 2 exchange-n 17 6 president-n 34 3
area-n 15 5 exist-v 1 2 produce-v 6 3
ask-v 16 6 explain-v 2 2 promise-v 3 2
attempt-v 2 2 express-v 3 3 propose-v 1 3
authority-n 3 6 feel-v 24 3 prove-v 2 6
avoid-v 2 2 find-v 7 6 raise-v 6 9
base-n 5 12 fix-v 2 6 rate-n 49 2
begin-v 7 4 future-n 16 4 recall-v 2 4
believe-v 9 2 go-v 12 14 receive-v 4 2
bill-n 18 9 hold-v 5 10 regard-v 1 3
build-v 1 4 hour-n 9 4 remember-v 8 6
buy-v 7 7 job-n 6 10 remove-v 4 2
capital-n 15 5 join-v 2 4 report-v 7 4
care-v 6 3 keep-v 11 8 rush-v 1 4
carrier-n 4 13 kill-v 5 9 say-v 104 5
chance-n 5 4 lead-v 9 7 see-v 9 10
claim-v 4 4 maintain-v 3 4 set-v 10 12
come-v 7 11 management-n 13 2 share-n 103 3
complain-v 2 2 move-n 19 4 source-n 10 6
complete-v 1 3 need-v 11 2 space-n 2 8
condition-n 7 4 network-n 9 4 start-v 8 7
defense-n 8 8 occur-v 2 4 state-n 33 4
development-n 8 3 order-n 11 9 system-n 15 7
disclose-v 5 2 part-n 14 7 turn-v 19 15
do-v 4 6 people-n 38 6 value-n 16 5
drug-n 7 3 plant-n 12 3 work-v 4 9
effect-n 7 5 point-n 27 14

Table 7.1: The 89 words of the sample of 1000 OntoNotes snippets used in this study.

“# inst” is the number of instances in the 1,000 with the corresponding target word.

“# senses” is the number of sense choices provided by OntoNotes.
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Figure 7.1: An example of the WSD task that appears inside an MTurk HIT. This

was displayed piecewise as each word in the example (”snippet”) and senses faded-in

slowly.

7.3 Results and data analysis

We were interested in investigating (1) which features in the target word, the con-

text, and sense definition text affect Turker accuracy, (2) which characteristics in the

Turker’s engagement of the task affect accuracy, (3) heterogeneity in worker perfor-

mance, and (4) the combination of Turker responses to boost accuracy.

We recruited 595 Turkers to work on our tasks, yielding an average accuracy of

73.4%.
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We measured inter-tagger agreement (ITA) using the alpha-reliability coefficient

(Krippendorff, 1970) to be 0.66 (0.70 for nouns and 0.60 for verbs) which comports

with Chklovski and Mihalcea (2003)’s Open Mind Word Expert system.

However, OntoNotes was specially designed by Hovy et al. (2006) to have 90%

ITA by experts. Our measure is significantly less. Untrained Turkers should not be

expected to be experts.

7.3.1 Performance and language characteristics

What makes WSD difficult for untrained Turkers? Are there too many senses to

choose from? Is the example difficult to read? With 10,000 instances from 600

workers, we can attempt to answer these questions.

We first construct the features of interest:

• target word part-of-speech (target word is noun?)

• target word length in characters (# chars in target word)

• target word frequency (log target word frequency)

log of frequency in the contemporary corpus of American English (Davies, 2008).

• number of senses to choose from (# senses to disambiguate)

• number of characters in the correct sense definition (# chars in definition)

• number of rephrasings in definition text (# rephrasings in definition)

For example, the word “allot” has a sense with definition text “let, make possible,

give permission” which would be counted as three rephrasings.

• number of characters in context (# chars in context)

We add a fixed intercept for each Turker to account for correlation among tasks

completed by the same worker. The result of an ordinary least squares (OLS) regres-

sion of correct (as binary) on the variables above is presented in table 2.6

6We also ran a variety of fixed and random effects linear and logit models, all of which gave
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estimate |t|

target word is noun? 8.4% 7.5 ***

# chars in target word -1.0% 3.6 ***

log target word frequency -3.7% 7.6 ***

# senses to disambiguate -2.9% 19.8 ***

# chars in definition -0.063% 2.6**

# rephrasings in definition 3.4% 5.4 ***

# chars in context -0.0062% 2.6 **

Table 7.2: OLS regression of instance correctness on features of the target word,

context, and senses. Fixed effects for each of the 595 Turkers are not shown. **

indicates significance at the < .01 level, *** indicates significance at the <0.001 level.

We found that, controlling for all other variables, nouns have 8% higher disam-

biguation accuracy. This difference between noun and verb accuracy is also reflected

in automatic system performance on the SemEval-2007 task Pradhan et al. (2007),

and often attributed to the idea that nouns “commonly denote concrete, imagible

referents” (Fellbaum et al., 1997). For each extra sense, accuracy suffers 3% which

also is expected since the Turkers have more choices. We show accuracy by number of

senses and part of speech in figure 7.2. We also found the longer the target word, the

more difficult the task, reflecting the fact that longer words are often more complex.

Similarly, the longer the context or length of definitions decreased accuracy but the

effect was quite small.

Surprisingly, with each extra rephrasing of the definition of the correct sense there

is a gain of 3.5%. This suggests untrained annotators benefit from receiving a variety

of sense descriptions, or that more rephrasings suggests a more coarse-grained sense

the same significance results. We chose to present the OLS output because of its familiarity and

interpretability.
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which is easier for annotators to understand.

Finally, as the word becomes more common in the English language (controlling

for all other variables, including length of word and number of senses) accuracy still

suffers. Possibly the more prevalent the word in our language, the more likely it will

have senses that overlap conceptually.
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Figure 7.2: Predicted accuracy vs. number of senses for a sample of the words in our

study. Nouns are blue; verbs are red. The densities are smoothed histograms of the

noun and verb predicted accuracies. Note that the word display is jittered; there are

at least two senses for each word.

7.3.2 Performance and Turker characteristics

Are there any characteristics about the Turker’s engagement with our task that im-

pacts accuracy? We create the following features: time spent on task, the number of

words in their optional feedback message, and the number of annotations that worker

completed prior to the response being examined. To control for the difficulty of each
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task, we added 1,000 fixed intercepts — one for each unique task; and to control

for correlation among the workers, we added a fixed intercept for each worker. An

ordinary least squares regression of the WSD task being correct (as binary) on the

variables above6 was run. We found that for each additional second spent on the

task, accuracy drops by 0.06% (p < 0.001). We found that, contrary to Kapelner and

Chandler (2010) (also Chapter 3 of this document), leaving comments does not cor-

respond to higher accuracy, and, in agreement with Akkaya et al. (2010), the number

of tasks completed prior does not impact accuracy. This may imply that a learning

effect does not exist; practice (without feedback) does not make perfect.

Surprisingly, spending more time on the disambiguation task associates with a

significant reduction in accuracy (p < 0.001).7 Note that this is after we non-

parametrically control for instance difficulty and worker ability. For every additional

minute spent, a Turker is 3.6% less likely to answer correctly. We posit three theories:

(1) taking breaks leads to loss of concentration (2) the “knee-jerk” response is best

(rumination should be discouraged), and (3) although we control for instance diffi-

culty, an instance may only be difficult for particular workers as evidenced by their

taking longer.

7.3.3 Turker equality

In order to replicate previous work, we investigate Turker equality and the presence

of spammers and superstars via plotting the number of annotations correct by the

number of annotations completed in figure 7.3. To test the null hypothesis that all

workers are equal (and thus, average), each worker’s total contributions are assumed

to be drawn from independent Binomial random variables with probability of success

p = 73.4% (the experimental average). Does the worker’s confidence interval (CI)

7We validated this linear approximation by regressing time spent as a polynomial and found the

effect to be monotonically decreasing with a flat stretch in the middle.
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contain p? Figure 7.3 reveals that every worker has approximately the same capacity

for performing coarse-grained WSD except for two above-average superstars and two

below-average.

To test for spammers, we test against the null hypothesis of random answering,

p = 25.5% (determined by simulation). Among workers who did a significant number

of tasks,8 we find only one worker who may be a spammer. We echo Akkaya et al.

(2010), Snow et al. (2008), and Singh et al. (2002) and conclude there is minimal

spammer contribution. Once again, we do not observe a change in accuracy by

quantity of tasks completed, an observation confirmed using regression (table 3).

7.3.4 Combining responses to optimize prediction

We can combine the 10 unique disambiguation responses for each of the 1000 examples

to yield higher accuracy. Our algorithm is naive — we take the plurality vote and

arbitrate ties randomly. Snow et al. (2008) found such an approach results in higher

accuracy for disambiguating ‘president’. We wondered if the same is true for our more

extensive dataset and annotations.

# of 2.4

Annotations 2 3 4 5 6 7 8 9 10 (1st plurality)

Accuracy .734 .795 .808 .824 .830 .837 .840 .843 .857 .811

Table 7.3: Accuracy of the WSD task using plurality voting for different numbers of

Turkers. The last column is the accuracy of the variable algorithm: starting with two

workers and adding an additional worker until plurality.

Table 4 illustrates our results. There is an overall accuracy of 85.7% when anno-

8We do not have significant power to claim a worker has accuracy of even 50% until about n = 79

at the Bonferroni-corrected α level.
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Figure 7.3: Accuracy of all 595 Turkers. The black line is the average accuracy

(p = 73.4%) and the purple line represents random sense choice accuracy (25.5%).

We plot the Bonferroni-corrected Binomial proportion confidence intervals in green

if they include p, yellow if the non-Bonferroni-corrected confidence intervals do not

include p, and red if neither include p.

tations from all workers are aggregated. This is in the ballpark of the best supervised

statistical learning techniques which boast almost 90% (Pradhan et al., 2007).9 We

determined the marginal accuracy of each added Turker by simulating random subsets

of two Turkers, three Turkers, etc and employed the same plurality vote.

With techniques such as discarding results from annotators who often disagree,

and giving the annotators sense choices in order of sense frequency, we could likely

achieve higher accuracy.

9Note that this is not a fair comparison. These supervised algorithms were given all the training

data while Turkers were not given any previous examples. They also arbitrated based on the senses’

frequencies while we randomized the order that the senses appeared in. Finally, they were not

limited to polysemous words as we were.
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Given MTurk annotation costs, we believe this system can be extended to accu-

rately disambiguate a million words a year at 80% accuracy for about $25,000. This

demonstrates the system’s potential for mass annotation, but we reiterate that the

main goal of this current work was to gain insight into drivers of WSD accuracy.

7.4 Conclusion

We performed the first extensive study of crowdsourced coarse-grained word sense

disambiguation in order to gain insight into the behavioral and linguistic features

that affect accuracy of the untrained annotations. As expected, we found results im-

proved when there were less sense choices or when the target word was a noun, and

that untrained workers did not improve with experience. However, we also discov-

ered surprising insights: (1) the number of rephrasings in the correct sense definition

corresponded with improved annotator accuracy, (2) frequency of target word corre-

sponded with lower accuracy, and (3) time-spent on an individual annotation corre-

sponded with lower accuracy. It also seems that time pressure may increase accuracy.

Future experiments that prove these relationships causally may be fruitful. Lastly,

we looked at Turker ability and found that they are all roughly equal in ability, and

although individually not as accurate as experts, many Turkers may be pooled to

improve accuracy.
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8
Bayesian Additive Regression Trees Implementation∗

Abstract

We present a new package in R implementing Bayesian Additive Regression Trees

(BART). The package introduces many new features for data analysis using BART such

as variable selection, interaction detection, model diagnostic plots, incorporation of

missing data and the ability to save trees for future prediction. It is significantly

faster than the current R implementation, parallelized, and capable of handling both

large sample sizes and high-dimensional data.

8.1 Introduction

Ensemble-of-trees methods have become popular choices for forecasting in both re-

gression and classification problems. Algorithms such as Random Forests (Breiman,

2001b) and stochastic gradient boosting (Friedman, 2002) are two well-established and

widely employed procedures. Recent advances in ensemble methods include Dynamic

Trees (Taddy et al., 2011) and Chipman et al. (2010)’s Bayesian Additive Regres-

∗Joint work with Justin Bleich
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sion Trees (BART), which depart from predecessors in that they rely on an underlying

Bayesian probability model rather than a pure algorithm. BART has demonstrated

substantial promise in a wide variety of simulations and real world applications such

as predicting avalanches on mountain roads (Blattenberger and Fowles, 2014), predict-

ing how transcription factors interact with DNA (Zhou and Liu, 2008) and predicting

movie box office revenues (Eliashberg, 2010). This paper introduces bartMachine,

a new R package that significantly expands the capabilities of using BART for data

analysis.

Currently, there exists a single implementation of BART on CRAN: BayesTree, the

package developed by the algorithm’s original authors. One of the major drawbacks

of this implementation is its lack of a predict function. Test data must be provided

as an argument during the training phase of the model. Hence it is impossible to

generate forecasts on future data without re-fitting withe entire model. Since the run

time is not trivial, forecasting becomes an arduous exercise. A significantly faster

implementation of BART that contains master-slave parallelization exists as Pratola

et al. (2013), but this is only available as standalone C++ source code and not

integrated with R.

The goal of bartMachine is to provide a fast, easy-to-use, visualization-rich ma-

chine learning package for R users. Our implementation of BART is in Java and is

integrated into R via rJava (Urbanek, 2011). From a runtime perspective, our algo-

rithm is significantly faster and is parallelized, allowing computation on as many cores

as desired. Not only is the model construction itself parallelized, but the additional

features such as prediction, variable selection, and many others can be divided across

cores as well.

Additionally, we include a variety of expanded and new features. We implement

the ability to save trees in memory and provide convenience functions for prediction

on test data. We also include plotting functions for both credible and predictive
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intervals and plots for visually inspecting convergence of BART’s Gibbs sampler. We

expand variable importance exploration to include permutation tests and interaction

detection. We implement recently developed features for BART including a principled

approach to variable selection and the ability to incorporate in prior information for

covariates (Bleich et al., 2013). We also implement the strategy found in Chapter 9

of this document (Kapelner and Bleich, 2013a) to incorporate missing data during

training and handle missingness during prediction.

In Section 9.2, we provide an overview of BART with a special emphasis on the

features that have been extended. In Section 8.3 we provide a general introduction

to the package, highlighting the novel features. Section 8.4 provides step-by-step

examples of the regression capabilities and Section 8.5 introduces additional step-by-

step examples of features unique to classification problems. We conclude in Section

9.6. Appendix A.4.1 discusses the details of our implementation and how it differs

from BayesTree. Appendix A.4.5 offers predictive performance comparisons.

8.2 Overview of BART

BART provides a unique approach to nonparametric function estimation using regres-

sion trees. Regression trees rely on recursive binary partitioning of predictor space

into a set of hyperrectangles in order to approximate some unknown function f . Such

trees have received praise for their ability to flexibly fit interactions and nonlineari-

ties. Models composed of sums of regression trees are able to capture additive effects

in f better than single trees.

BART can be considered a sum-of-trees ensemble, with a novel estimation approach

which relies on a fully Bayesian probability model. Specifically, the BART model can

be expressed as:
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Y = f(X) + E ≈ i
l

1 (X) + i
l

2 (X) + . . .+ i
l

m(X) + E , E ∼ Nn
(
0, σ2In

)
(8.1)

Here we have m distinct regression trees, each composed of a tree structure, de-

noted by i, and the parameters at the terminal nodes (also called leaves), denoted by

l. The two together, denoted as i
l

represents an entire tree with both its structure

and set of leaf parameters.

The structure of a given tree it includes information on how any observation

recurses down the tree. For each nonterminal (internal) node of the tree, there is a

“splitting rule” taking the form xj < c consisting of the “splitting variable” xj and the

“splitting value” c. An observation moves to the left daughter node if the condition

set by the splitting rule is satisfied and to the right daughter node otherwise. The

process continues until a terminal node is reached. Then, the observation receives the

leaf value of the terminal node as its predicted value. We denote the set of tree’s leaf

parameters as lt =
{
µt,1, µt,2, . . . , µtbt

}
where bt is the number of terminal nodes for

a given tree.

BART can be distinguished from other ensemble-of-trees models due to its under-

lying probability model. As a Bayesian model, BART consists of a set of priors for the

structure and the leaf parameters and a likelihood for data in the terminal nodes.

The aim of the priors is to provide regularization, preventing any single regression

tree from dominating the total fit.

We provide an overview of the BART priors and likelihood and then discuss how

draws from the posterior distribution are made. A more complete exposition can be

found in Chipman et al. (2010).
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8.2.1 Priors and Likelihood

There are three priors for the BART model: a prior on the tree structure itself, a prior

on the leaf parameters, and a prior on the error variance σ2. The prior on σ2 is

independent from the other two and each tree is independent, yielding:

P
(
i

l

1 , . . . ,i
l

m, σ
2
)

=

[∏
t

P
(
i

l

t

)]
P
(
σ2
)

=

[∏
t

P
(

lt | it
)
P
(
it
)]

P
(
σ2
)

=

[∏
t

∏
`

P
(
µt,` | it

)
P
(
it
)]

P
(
σ2
)

where the last line follows from an additional assumption of conditional independence

of the leaf parameters given the tree’s structure.

The first prior is on the locations of nodes within the tree. Nodes at depth d are

nonterminal with probability α(1 + d)−β where α ∈ (0, 1) and β ∈ [0,∞]. This prior

keeps the trees shallow, limiting complexity of any single tree. Default values for

these hyperparameters of α = 0.95 and β = 2 are recommended by Chipman et al.

(2010).

For nonterminal nodes, splitting rules have the following prior. First, a predictor

is randomly selected to serve as the splitting variable. In the original formulation,

each available predictor is equally likely to be chosen, but this is relaxed in our

implementation to allow an arbitrary discrete distribution (see Section 8.4.11). Then,

the splitting value is selected by randomly choosing a value of the selected predictor

with equal probability.

The third prior is on the leaf parameters. Given a tree with a set of terminal

nodes, each terminal node (or leaf) has a continuous parameter (the leaf parameter)

representing the “best guess” of the response in this partition of predictor space. This

parameter is the fitted value assigned to any observation that lands in that node. The
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prior on each of the leaf parameters is given as: µ`
iid∼ N

(
µµ, σ

2
µ

)
. The expectation,

µµ, is picked to be the range center, (ymin + ymax)/2. The variance is empirically

chosen so that the range center plus or minus k = 2 variances cover 95% of the

provided response values in the training set (by default). The aim of this prior is to

provide model regularization by shrinking the leaf parameters towards the center of

the distribution of the response.

The final prior is on the error variance and is chosen to be InvGamma (ν/2, νλ/2).

λ is determined from the data so that there is a q = 90% a priori chance (by default)

that the BART model will improve upon the RMSE from an ordinary least squares

regression. Therefore, the majority of the prior probability mass lies below the RMSE

from least squares regression. Additionally, this prior limits the probability mass

placed on small values of σ2 to prevent overfitting.

Note that the adjustable hyperparameters are α, β, k, ν and q. Default values

generally provide good performance, but optimal tuning can be achieved via cross-

validation, an automatic feature implemented and described in Section 8.4.2.

Along with a set of priors, BART specifies the likelihood of responses in the terminal

nodes. They are assumed a priori Normal with the mean being the “best guess” in

the leaf at the current moment (in the Gibbs sampler) and variance being the best

guess of the variance at the moment i.e. y` ∼ N (µ`, σ
2/m). Note that σ2 is scaled

by the number of trees in order that the sum of the variances across the m trees is

σ2.

8.2.2 Posterior Distribution and Prediction

A Gibbs sampler (Geman and Geman, 1984) is employed to generate draws from the

posterior distribution of P(i
l

1 , . . . ,i
l

m, σ
2 | y). A key feature of the Gibbs sampler

for BART is to employ a form of “Bayesian backfitting” (Hastie and Tibshirani, 2000)
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where the jth tree is fit iteratively, holding all other m−1 trees constant by exposing

only the residual response that remains unfitted:

Rj := y −
∑
t6=j

i
l

t (X). (8.2)

The Gibbs sampler,

1 : i1 | R−1, σ
2 (8.3)

2 : l1 | i1,R−1, σ
2

3 : i2 | R−2, σ
2

4 : l2 | i2,R−2, σ
2

...

2m− 1 : im | R−m, σ2

2m : lm | im,R−m, σ2

2m+ 1 : σ2 | i1,l1, . . . ,im,lm,E,

proceeds by first proposing a change to the first tree’s structure i which are accepted

or rejected via a Metropolis-Hastings step (Hastings, 1970). Note that sampling from

the posterior of the tree structure does not depend on the leaf parameters, as they can

be analytically margined out of the computation (see Appendix A.5.3.1). Given the

tree structure, samples from the posterior of the b leaf parameters l1 := {µ1, . . . , µb}

are then drawn. This procedure proceeeds iteratively for each tree, using the updated

set of partial residuals Rj. Finally, conditional on the updated set of tree structures

and leaf parameters, a draw from the posterior of σ2 is made based on the full model

residuals E := y −
∑m

t=1 i
l

t (X).
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Within a given terminal node, since both the prior and likelihood are normally

distributed, the posterior of each of the leaf parameters in l is conjugate normal

with its mean being a weighted combination of the likelihood and prior parameters

(lines 2, 4, . . . , 2m in equation set A.7). Due to the normal-inverse-gamma conjugacy,

the posterior of σ2 is inverse gamma as well (line 2m + 1 in equation set A.7). The

complete expressions for these posteriors can be found in Gelman et al. (2004).

Lines 1, 3, . . . , 2m−1 in equation set A.7 rely on Metropolis-Hastings draws from

the posterior of the tree distributions. These involve introducing small perturbations

to the tree structure: growing a terminal node by adding two daughter nodes, prun-

ing two daughter nodes (rendering their parent node terminal), or changing a split

rule. We denote these possible alterations as: GROW, PRUNE, and CHANGE.2 The

mathematics associated with the Metropolis-Hastings step is simple but is tedious,

and we refer the interested reader to Appendix A.4.1 for the explicit calculations.

Once again, over many Gibbs samples, trees can dynamically morph their structure

in an effort to capture the fit left currently unexplained.

Pratola et al. (2013) argue that a CHANGE step is unnecessary for sufficient

mixing of the Gibbs sampler. While we too observed this to be true for estimates

of the posterior means, we found that omitting CHANGE can negatively impact the

variable inclusion proportions (the feature introduced in Section 8.4.6). As a result,

we implement a modified CHANGE where we only propose new splits for nodes

that are singly internal: both children nodes are terminal nodes (details are given in

Appendix A.5.3.3).

All 2m + 1 steps represent a single Gibbs iteration. We have observed that gen-

erally no more than 1,000 iterations are needed as “burn-in” (see Section 8.4.4 for

convergence diagnostics). An additional 1,000 iterations is usually sufficient to serve

2In the original formulation, Chipman et al. (2010) include an additional alteration called SWAP.

Due to the complexity of bookkeeping associated with this alteration, we do not implement it.

156



as draws from the posterior for f(x). A single predicted value f̂(x) can be obtained

by taking the average of the posterior values and a quantile estimate can be obtained

by computing the appropriate quantile of the posterior values. Additional features of

the posterior distribution will be discussed in Section 8.4.

8.2.3 BART for Classification

BART can easily be modified to handle classification problems for categorical response

variables. In Chipman et al. (2010), only binary outcomes were explored but recent

work has extended BART to the multiclass problem (Kindo et al., 2013). Our imple-

mentation handles binary classification and we plan to implement multiclass outcomes

in a future release.

For the binary classification problem (coded with outcomes “0” and “1”), we

assume a probit model,

P (Y = 1 | X) = Φ
(
i

l

1 (X) + i
l

2 (X) + . . .+ i
l

m(X)
)
,

where Φ denotes the cumulative density function of the standard normal distribution.

In this formulation, the sum-of-trees model serves as an estimate of the conditional

probit at x which can be easily transformed into a conditional probability estimate

of Y = 1.

In the classification setting, the prior on σ2 is not needed as the model assumes

σ2 = 1. The prior on the tree structure remains the same as in the regression setting

and a few minor modifications are required for the prior on the leaf parameters.

Sampling from the posterior distribution is again obtained via Gibbs sampling with

a Metropolis-Hastings step outlined in Section 8.2.2. Following the data augmentation

approach of (Albert and Chib, 1993) an additional vector of latent variables Z is
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introduced into the Gibbs sampler. Then, a new step is created in the Gibbs sampler

where draws of Z |y are obtained by conditioning on the sum-of-trees model:

Zi | yi = 1 ∼ maxN

(∑
t

i
l

t (X) , 1

)
, 0 and

Zi | yi = 0 ∼ min

{
N

(∑
t

i
l

t (X) , 1

)
, 0

}
.

Next, Z is used as the response vector instead of y in all steps of Equation A.7.

Upon obtaining a sufficient number of samples from the posterior, inferences can

be made using the the posterior distribution of conditional probabilities and clas-

sification can be undertaken by applying a threshold to the to the means (or an-

other summary) of these posterior probabilities. The relevant classification features

of bartMachine are discussed in Section 8.5.

8.3 The bartMachine package

The package bartMachine provides a novel implementation of Bayesian Additive Re-

gression Trees in R. The algorithm is substantially faster than the current R package

BayesTree and our implementation is parallelized at the Gibbs sample level during

prediction. Additionally, the interface with rJava allows for the entire posterior dis-

tribution of tree ensembles to persist throughout the R session, allowing for prediction

and other calls to the trees without having to re-run the Gibbs sampler (a limitation

in the current implementation). The model object cannot persist across sessions (us-

ing R’s save command for instance) and we view the addition of this feature as future

work. Since our implementation is different from BayesTree, we provide a predictive

accuracy bakeoff on different datasets in Appendix A.4.5 which illustrates that the

two are about equal.
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8.3.1 Speed Improvements and Parallelization

We make a number of significant speed improvements over the original implementa-

tion.

First, bartMachine is fully parallelized (with the number of cores customizable)

during model creation, prediction, and many of the other features. During model

creation, we chose to parallelize by creating one independent Gibbs chain per core.

Thus, if we have 500 burn-in samples and 1,000 post burn-in samples and four cores,

each core would sample 750 samples: 500 for a burn-in and 250 post burn-in samples.

The final model will aggregate the 250 post burn-in samples for the four cores yielding

the desired 1,000 total post burn-in samples. This has the drawback of effectively

running the burn-in serially, but has the added benefit of reducing auto-correlation

of the sum-of-trees samples in the posterior samples since the chains are independent

which may provide greater predictive performance. Parallelization at the level of

likelihood calculations is left for a future release. Parallelization for prediction and

other features scale linearly in the number of cores.

Additionally, we take advantage of a number of additional computational short-

cuts:

1. Computing the unfitted responses for each tree (Equation 8.2) can be accomplished

by keeping a running vector and making entry-wise updates as the Gibbs sampler

(Equation A.7) progresses from step 1 to 2m. Additionally, during the σ2 step

2m+ 1, the residuals do not have to be computed by dropping the data down all

the trees.

2. Each node caches its acceptable variables for split rules and the acceptable unique

split values so they do not need to be calculated at each tree sampling step. This

speed enhancement, which we call memcache comes at the expense of memory and

may cause issues for large data sets. We include a toggle in our implementation
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defaulted to “on.”

3. Careful calculations in Appendix A.4.1 eliminate many unnecessary computations.

For instance, the likelihood ratios are only functions of the squared sum of re-

sponses and no longer require computing the sum of the responses squared.

Figure 8.1 displays model creation speeds for different values of n on a linear model

with p = 20, normally distributed covariates, β1, . . . , β20
iid∼ U (−1, 1), and standard

normal noise. Note that we do not vary p as it was already shown in Chipman et al.

(2010) that BART’s computation time is largely unaffected by the dimensionality of

the problem (relative to the influence of sample size). We include results for BART

using BayesTree (Chipman et al., 2010), bartMachine with one and four cores, the

memcache option on and off, as well as four cores, memcache off and computation of

in-sample statistics off (all with m = 50 trees). We also include Random Forests via

the package randomForest (Liaw and Wiener, 2002) with its default settings.

We first note that Figure 8.1a demonstrates that the bartMachine model creation

runtime is approximately linear in n. There is about a 30% speed-up when using four

cores instead of one. The memcache enhancement should be turned off only with

sample sizes larger than n = 20, 000. Noteworthy is the 50% reduction in time of

constructing the model when not computing in-sample statistics. In-sample statistics

are computed by default because the user generally wishes to see them. Also, for the

purposes of this comparison, BayesTree models compute the in-sample statistics by

necessity since the trees are not saved. The randomForest implementation becomes

slower just after n = 1, 000 due to its reliance on a greedy exhaustive search at each

node.

Figure 8.1b displays results for smaller sample sizes (n ≤ 2, 000) that are often

encountered in practice. We observe the memcache enhancement provides about a

10% speed improvement. Thus, if memory is an issue, it can be turned off with little
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Figure 8.1: Model creation times as a function of sample size for a number of set-

tings of bartMachine, BayesTree and RandomForests. Simulations were run on a

quad-core 3.4GHz Intel i5 desktop with 24GB of RAM running the Windows 7 64bit

operating system.

performance degradation.

8.3.2 Missing Data in BART

bartMachine implements a native method for incorporating missing data into both

model creation and future prediction with test data. The details are given in Chap-

ter 9 of this document (Kapelner and Bleich, 2013a) but we provide a brief summary

here.

There are a number of ways to incorporate missingness into tree-based methods

(see Ding and Simonoff, 2010 for a review). The method implemented here is known

as “Missing Incorporated in Attributes” (MIA, Twala et al., 2008, section 2) which

natively incorporates missingness by augmenting the nodes’ splitting rules to (a) also
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handle sorting the missing data to the left or right and (b) use missingness itself as

a variable to be considered in a splitting rule. Algorithm 3 summarizes these new

splitting rules as they are implemented within the package.

Implementing MIA into the BART procedure is straightforward. These new split-

ting rules are sampled uniformly during the GROW or CHANGE steps. For example,

a splitting rule might be “xj < c or xj is missing.” To account for splitting on missing-

ness itself, we create dummy vectors of length n for each of the p attributes, denoted

M 1, . . . ,M p, which assume the value 1 when the entry is missing and 0 when the

entry is present. The original training matrix is then augmented with these dummies,

giving the opportunity to select missingness itself when choosing a new splitting rule

during the grow or change steps. Note that this can increase the number of predictors

by up to a factor of 2. We illustrate the building a BART model with missing data in

Section 8.4.9. As described in Chipman et al. (2010, Section 6), BART’s runtime in-

creases negligibly in the number of covariates and this has been our experience using

the augmented training matrix.

Algorithm 2 The MIA choices for all attributes j ∈ {1, . . . , p} and all split points

x∗ij where i ∈ {1, . . . , n} during a GROW or CHANGE step in bartMachine.

1: If xij is missing, send it ←−; if it is present and xij ≤ x∗ij, send it ←−, otherwise

−→.

2: If xij is missing, send it −→; if it is present and xij ≤ x∗ij, send it ←−, otherwise

−→.

3: If xij is missing, send it ←−; if it is present, send it −→.

8.3.3 Principled Variable Selection

Our package also implements the variable selection procedures developed in Bleich

et al. (2013), which is best applied to data problems where the number of covariates
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influencing the response is small relative to the total number of covariates. We give

a brief summary of the procedures here.

In order to select variables, we make use of the “variable inclusion proportions,”

the proportion of times each predictor is chosen as a splitting rule divided by the total

number of splitting rules appearing in the model (see Section 8.4.6 for more details).

The variable selection procedure can be outlined as follows:

1. Compute the model’s variable inclusion proportions.

2. Permute the response vector, thereby breaking the relationship between the co-

variates and the response. Rebuild the model and compute the “null” variable

inclusion proportions. Repeat this a number of times to create a null permutation

distribution.

3. Three selection rules are can be used depending on the desired stringency of selec-

tion:

(a) Local Threshold: Include a predictor xk if its variable inclusion proportion

exceeds the 1− α quantile of its own null distribution.

(b) Global Max Threshold: Include a predictor xk if its variable inclusion pro-

portion exceeds the 1−α quantile of the distribution of the maximum of the

null variable inclusion proportions from each permutation of the response.

(c) Global SE Threshold: Select xk if its variable inclusion proportion exceeds

a threshold based from its own null distribution mean and SD with a global

multiplier shared by all predictors.

The Local procedure is the least stringent in terms of selection and the Global

Max procedure the most. The Global SE procedure is a compromise, but behaves

more similarly to the Global Max. Bleich et al. (2013) demonstrate that the best
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procedure depends on the underlying sparsity of the problem, which is often unknown.

Therefore, the authors include an additional procedure that chooses the best of these

thresholds via cross-validation and this method is also implemented in bartMachine.

Examples of these procedures for variable selection are provided in Section 8.4.10.

8.4 Regression Features

We illustrate the package features by using both real and simulated data, focusing

first on regression problems.

8.4.1 Computing parameters

We first set some computing parameters. We allow up to 5GB of RAM for the Java

heap (although we never used more than 1GB during this paper’s exploration)3 and

we set the number of computing cores available for use to 4.

> library(bartMachine)

> set_bart_machine_num_cores(4)

> init_java_for_bart_machine_with_mem_in_mb(5000)

The following Sections 8.4.2 – 8.4.10 use a dataset obtained from UCI (Bache

and Lichman, 2013). The n = 201 observations are automobiles and the goal is to

predict each automobile’s price from 25 features (15 continuous and 10 nominal), first

explored by Kibler et al. (1989).4 This dataset also contains missing data.

3Note that the maximum amount of memory can be set only once at the beginning of the R

session (a limitation of rJava since only one Java Virtual Machine can be initiated per session), but

the number of cores can be respecified at any time.
4We first preprocess the data. We first drop one of the nominal predictors (car company) due

to too many categories (22). We then coerce two of the of the nominal predictors to be continuous.

Further, the response variable, price, was logged to reduce right skew in its distribution.
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8.4.2 Model Building

We are now are ready to construct a bartMachine model. The default hyperparam-

eters generally follow the recommendations of Chipman et al. (2010) and provide a

ready-to-use algorithm for many data problems. Our hyperparameter settings are

m = 50,5 α = 0.95, β = 2, k = 2, q = 0.9, ν = 3, probabilities of the GROW /

PRUNE / CHANGE steps is 39% / 39% /44%. We set the number of burn-in Gibbs

samples to 250 and number of post-burn-in samples to 1,000. We default the missing

data feature to be off. We default the covariates to be equally important a priori.

Other parameters and their defaults can be found in the package’s online manual.

Below is a default bartMachine model. Here, X denotes automobile attributes and

y denotes the log price of the automobile.

> bart_machine = build_bart_machine(X, y)

Building BART for regression ... evaluating in sample data...done

If one wishes to see the iterations of the Gibbs sampler of Equation A.7, the

flag verbose can be set to “TRUE”. One can see more debug information from the

Java program by setting the flag debug log to true and the program will print to

unnamed.log in the current working directory. We now inspect the model object to

query its in-sample performance and to be reminded of the input data and model

hyperparameters.

Since the response was considered continuous, we employ BART for regression. The

dimensions of the design matrix are given. Note that we dropped 45 observations

that contained missing data (which we will retain in Section 8.4.9). We then have

5In contrast to Chipman et al. (2010), we recommend this default as a good starting point rather

than m = 200 due to our experience experimenting with the “RMSE by number of trees” feature

found in later in this section. Performance is often similar and computational time and memory

requirements are dramatically reduced.
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> bart_machine

Bart Machine v1.0b for regression

training data n = 160 and p = 46

built in 1 secs on 4 cores, 50 trees, 250 burn in and 1000 post. samples

sigsq est for y beforehand: 0.014

avg sigsq estimate after burn-in: 0.00886

in-sample statistics:

L1 = 9.03

L2 = 0.8

rmse = 0.07

Pseudo-Rsq = 0.9741

p-val for shapiro-wilk test of normality of residuals: 0.01785

p-val for zero-mean noise: 0.97692

Figure 8.2: The summary for the default bartMachine model built with the automo-

bile data

a recording of the MSE for the OLS model and our average estimate of σ2
e . We are

then given in-sample statistics on error. Pseudo-R2 is calculated via 1− SSE/SST .

Also provided are outputs from tests of the error distribution being mean centered

and normal. In this case, we cannot conclude normality of the residuals using the

Shapiro-Wilk test.

We can also obtain out-of-sample statistics to assess level of overfitting by using

k-fold cross validation. Using 10 folds we find:

> k_fold_cv(X, y, k_folds = 10)

$L1_err $L2_err $rmse $PseudoRsq

[1] 22.63155 [1] 5.202831 [1] 0.1803266 [1] 0.831917

The Pseudo-R2 being lower out-of-sample versus in-sample suggests evidence that

BART is slightly overfitting (note that the training sample during cross-validation is

10% smaller).
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It may also be of interest how the number of trees m affects performance. One

can examine how out-of-sample predictions vary by the number of trees via

> rmse_by_num_trees(bart_machine, num_replicates = 20)

and the output is shown in Figure 8.3.
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Figure 8.3: Out-of-sample predictive performance by number of trees

It seems that increasing m > 50 does not result in any substantial increase in

performance. We can now try to build a better bartMachine by grid-searching over

a set of hyperparameter combinations, including m (for more details, see BART-cv

in Chipman et al., 2010). The default grid search is small and it can be customized

by the user.

> bart_machine_cv = build_bart_machine_cv(X, y)

...

BART CV win: k: 2 nu, q: 10, 0.75 m: 200
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This function returns the “winning” model, which is the one with lowest out-of-

sample RMSE over a 5-fold cross-validation. Here, the cross-validated bartMachine

model has slightly better in-sample performance (L1 = 8.18, L2 = 0.68 and Pseudo-

R2 = 0.978) as well as slightly better out-of-sample performance:

> k_fold_cv(X, y, k_folds = 10, k = 2, nu = 3, q = 0.9, num_trees = 200)

$L1_err $L2_err $rmse $PseudoRsq

[1] 21.21557 [1] 4.517916 [1] 0.1680386 [1] 0.8540439

Predictions are handled with the predict function:

predict(bart_machine_cv, X[1 : 14, ])

9.479963 9.775766 9.799110 10.050041 9.659138 9.697902 9.873622

9.931972 8.550436 8.688874 8.794351 8.647986 8.690300 9.029066

We also include a convenience method bart predict for test data that will predict

and return out-of-sample error metrics when the test outcomes are known.

8.4.3 Model Destroying

As noted in the introduction to Section 8.3, bartMachine objects persist in Java for

the entirety of an R session. These model objects can use a substantial amount of

RAM and it is prudent to release this memory when it is no longer needed. Simply

removing a bartMachine in R does not destroy the Java object and release the RAM

(resulting in a memory leak).

Therefore, we provide a utility function destroy bart machine that cleans up the

Java object. This function should be called when a bartMachine object is no longer

needed and before removing or overwriting the R variable. Since we no longer are

using the original bart machine object, we now release its memory via:

destroy_bart_machine(bart_machine)
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8.4.4 Assumption Checking

The package includes features that assess the plausibility of the BART model assump-

tions. Checking the mean-centeredness of the noise is addressed in the summary

output of Figure 8.2 and is simply a one-sample t-test of the average residual value

against a null hypothesis of true mean zero. We assess both normality and het-

eroskedasticity via:

> check_bart_error_assumptions(bart_machine_cv)

This will display a window similar to Figure 8.4 which contains a QQ-plot (to

assess normality) as well as a residual-by-predicted plot (to assess homoskedasticity).

It appears that the errors are most likely normal and homoskedastic.

In addition to the model assumptions, BART requires convergence of its Gibbs

sampler. Figure 8.5 displays four types of convergence diagnostics.

8.4.5 Credible Intervals and Prediction Intervals

An advantage of BART is that if we believe the priors and model assumptions, the

Bayesian probability model and corresponding burned-in Gibbs samples provide the

approximate posterior distribution of f (x). Thus, one can compute uncertainty es-

timates via quantiles of the posterior samples. These provide Bayesian “credible

intervals” which are intervals for the conditional expectation function, E [y | X].

Another useful uncertainty interval can be computed for individual predictions

by combining uncertainty from the conditional expectation function with the system-

atic, homoskedastic normal noise produceed by E . Since we have draws from the

posterior of the conditional expectation distribution and concomitant draws from the

posterior of the variance distribution, we can simulate the distribution of the response

by drawing many realizations from N (f(x)n, σ
2
n) for each the post-burn-in samples
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Figure 8.4: Test of normality of errors using QQ-plot and the Shapiro-Wilk test (top),

residual plot to assess heteroskedasticity (bottom).

and aggregating them. The prediction interval is then provided by the appropriate

quantiles of the posterior samples.

Below is an example of how both types of intervals are computed in the package

(for the 100th observation of the training data):

> calc_credible_intervals(bart_machine_cv, X[100, ], ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.725202 8.971687

> calc_prediction_intervals(bart_machine_cv, X[100, ], pi_conf = 0.95)

pi_lower_bd pi_upper_bd
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Figure 8.5: Convergence diagnostics for the cross-validated bartMachine model. Top

left: σ2 by Gibbs sample. Samples to the left of the first vertical grey line are burn-in

from the first computing core’s Gibbs sample chain. The four subsequent plots sepa-

rated by grey lines are the post-burn-in samples from each of the four computing cores

employed during model construction. Top right: percent acceptance of Metropolis-

Hastings proposals across the m trees where each point plots one iteration. Points

before the grey vertical line illustrate burn-in samples and points after illustrate post

burn-in. Each computing core is colored differently. Bottom left: average number of

leaves across the m trees by sample (post burn-in only where computing cores sepa-

rated by vertical grey lines). Bottom right: average tree depth across the m trees by

sample (post burn-in only where computing cores separated by vertical grey lines).
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[1,] 8.631243 9.06353

Note that the prediction intervals are wider than the credible intervals because

they reflect the uncertainty from the error term.

We can then plot these intervals in sample:

> plot_y_vs_yhat(bart_machine_cv, credible_intervals = TRUE)

> plot_y_vs_yhat(bart_machine_cv, prediction_intervals = TRUE)

Figure 8.6a shows how our prediction fared against the original response (in-

sample) with 95% credible intervals. Figure 8.6b shows the same prediction versus

the original response plot now with 95% prediction intervals.

8.4.6 Variable Importance

After a BART model is built, it is natural to ask the question: which variables are

most important? This is assessed by examining the splitting rules in the m trees

across the post burn-in gibbs samples which are known as “inclusion proportions”

(Chipman et al., 2010). The inclusion proportion for any given predictor represents

the proportion of times that variable is chosen as a spliting rule out of all splitting

rules among the posterior draws of the sum-of-trees model. Figure 8.7 illustrates the

inclusion proportions for all variables obtained via:

> investigate_var_importance(bart_machine_cv,

num_replicates_for_avg = 20)

Actual selection of variables significantly affecting the response is addressed con-

ceptually in Section 8.3.3 and examples are provided in Section 8.4.10.
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Figure 8.6: Fitted versus actual response values for the automobile dataset. Segments

are 95% credible intervals (a) or 95% prediction intervals (b). Green dots indicate the

true response is within the stated interval and red dots indicate otherwise. Note that

the percent coverage in (a) is not expected to be 95% because the response includes

a noise term.
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Figure 8.7: Average variable inclusion proportions in the cross-validated bartMachine

model for the automobile data averaged over 100 model constructions to obtain stable

estimates across many posterior modes in the sum-of-trees distribution (as recom-

mended in Bleich et al., 2013). The segments atop the bars represent 95% confidence

intervals. The eight predictors with inclusion proportions of zero feature identically

one value (after missing data was dropped).

8.4.7 Variable Effects

It is also natural to ask: does xj affect the response, controlling for other variables in

the model? This is roughly analogous to the t-test in ordinary least squares regression

of no linear effect of xj on y while controlling for x−j. The null hypothesis here is the

same but the linearity constraint is relaxed. To test this, we employ a permutation

approach where we record the observed Pseudo-R2 from the bartMachine model built

with the original data. Then we permute the xjth column, thereby destroying any

relationship between xj and y, construct a new duplicate bartMachine model from

this permuted design matrix and record a “null” Pseudo-R2. We then repeat this

process to obtain a null distribution of Pseudo-R2’s. Since the alternative hypothesis

is that xj has an effect on y in terms of predictive power, our pval is the proportion

of null Pseudo-R2’s greater than the observed Pseudo-R2, making our procedure a
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natural one-sided test. Note, however, that this test is conditional on the BART model

and its selected priors being true, similar to the assumptions of the linear model.

If we wish to test if a set of covariates A ⊂ {x1, . . . ,xp} affect the response

after controlling for other variables, we repeat the procedure outlined in the above

paragraph by permuting the columns of A in every null sample. This is roughly

analogous to the partial F -test in ordinary least squares regression.

If we wish to test if any of the covariates matter in predicting y, roughly analogous

to the omnibus F -test in ordinary least squares regression, we simply permute y

during the null sampling. This procedure breaks the relationship between the response

and the predictors but does not alter the existing associations between predictors.

At α = 0.05, Figure 8.8a demonstrates an insignificant effect of the variable width

of car on price. Even though width is putatively the “most important” variable as

measured by proportions of splits in the posterior sum-of-trees model (Figure 8.7),

note that this is largely an easy prediction problem with many collinear predictors.

Figure 8.8b shows the results of a test of the putatively most important categorical

variable, body style (which involves permuting the categories, then dummifying the

levels to preserve the structure of the variable). We find a marginally significant

effect (p = 0.0495). A test of the top ten most important variables is convincingly

significant (Figure 8.8c). For the omnibus test, Figure 8.8d illustrates an extremely

statistically significant result, as would be expected. The code to run these tests is

shown below (output suppressed).

> cov_importance_test(bart_machine_cv, covariates = c("width"))

> cov_importance_test(bart_machine_cv, covariates = c("body_style"))

> cov_importance_test(bart_machine_cv, covariates = c("width",

"curb_weight", "city_mpg", "length", "horsepower", "body_style",

"engine_size", "highway_mpg", "peak_rpm", "normalized_losses"))

> cov_importance_test(bart_machine_cv)
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Figure 8.8: Tests of covariate importance conditional on the cross-validated

bartMachine model. All tests performed with 100 null samples.

8.4.8 Partial Dependence

A data analyst may also be interested in understanding how xj affects the response on

average, after controlling for other predictors. This can be examined using Friedman

(2001)’s Partial Dependence Function (PDP),

fj(xj) = Ex−j [f(xj,x−j)] =

∫
f(xj,x−j)dP (x−j) , (8.4)

where x−j denotes all variables except xj. The PDP of predictor xj gives the average

value of f when xj is fixed and x−j varies over its marginal distribution, dP (x−j). As
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neither the true model f nor the distribution of the predictors dP (x−j) are known,

we estimate Equation 8.4 by computing

f̂j(xj) =
1

n

n∑
i=1

f̂(xj,x−j,i) (8.5)

where n is the number of observations in the training data and f̂ denotes the bartMachine

model. Since BART provides an estimated posterior distribution, we can plot credible

bands for the PDP function. In Equation 8.5, the f̂ can be replaced with a function

that calculates the qth quantile of the post-burned-in Gibbs samples for ŷ. Figure 8.9a

plots the PDP along with the 2.5%ile and the 97.5%ile for the variable horsepower.

By varying over most of the range of horsepower, the price is predicted to increase by

about $1000. Figure 8.9b plots the PDP along with the 2.5%ile and the 97.5%ile for

the variable stroke. This predictor seemed to be relatively unimportant according

to Figure 8.7 and the PDP confirms this, with a very small, yet nonlinear average

partial effect. The code for both plots is below.

> pd_plot(bart_machine_cv, j = "horsepower")

> pd_plot(bart_machine_cv, j = "stroke")

8.4.9 Incorporating Missing Data

The procedure for incorporating missing data was introduced in Section 8.3.2. We

now build a bartMachine model using this procedure below:

> bart_machine = build_bart_machine(X, y, use_missing_data = TRUE,

use_missing_data_dummies_as_covars = TRUE)

> bart_machine

Bart Machine v1.0b for regression
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Figure 8.9: PDPs plotted in black and 95% credible intervals plotted in blue for

variables in the automobile dataset. Points plotted are at the 5%ile, 10%ile, 20%ile,

. . . , 90%ile and 95%ile of the values of the predictor. Lines plotted between the points

approximate the PDP by linear interpolation.

Missing data feature ON

training data n = 201 and p = 50

built in 1.3 secs on 1 core, 50 trees, 250 burn-in and 1000 post. samples

sigsq est for y beforehand: 0.016

avg sigsq estimate after burn-in: 0.01055

in-sample statistics:

L1 = 12.77

L2 = 1.28

rmse = 0.08
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Pseudo-Rsq = 0.9746

p-val for shapiro-wilk test of normality of residuals: 0.6638

p-val for zero-mean noise: 0.95693

Note that we now use the complete data set including the 41 observations for which

there were missing features. Also note that p has now increased from 46 to 51. The five

new predictors are dummy variables which indicate missingness constructed from the

predictors which exhibited missingness (due to the use missing data dummies as covars

parameter being set to true). These variables are important if missingness itself shifts

the response, as was the case in models explored in Chapter 9 of this document (Kapel-

ner and Bleich, 2013a). One way to test if this type of missingness is important is to

run a covariate test (Section 8.4.7) on these new 5 covariates:

> cov_importance_test(bart_machine, covariates = c("M_normalized_losses",

"M_bore", "M_stroke", "M_horsepower", "M_peak_rpm"))

BART test for importance of 5 covariates....p_val = 0.673

From the p-value, we cannot conclude that these variables have an effect on the

response. This seems reasonable given that only 5 predictors featured missingness

among only 40 observations. This suggests that it may be appropriate to shrink the

model by leaving out these missing dummies, but still allow for missingness to be

incorporated into the split rules:

> bart_machine = build_bart_machine(X, y, use_missing_data = TRUE)

The procedure of Section 8.3.2 also natively incorporates missing data during

prediction. Missingness will yield larger credible intervals. In the example below,

we suppose that the curb weight and symboling values were unavailable for 20th

automobile.
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> x_star = X[20, ]

> calc_credible_intervals(bart_machine, x_star, ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.650093 8.824515

> x_star[c("curb_weight", "symboling")] = NA

> calc_credible_intervals(bart_machine, x_star, ci_conf = 0.95)

ci_lower_bd ci_upper_bd

[1,] 8.622582 8.978313

8.4.10 Variable Selection

In this section we demonstrate the principled variable selection procedure introduced

in Section 8.3.3. The following code will select variables based on the three thresholds

and also displays the plot in Figure 8.10.6

> vs = var_selection_by_permute_response_three_methods(bart_machine,

bottom_margin = 10, num_permute_samples = 10)

> vs$important_vars_local_names

"curb_weight" "city_mpg" "engine_size" "horsepower"

"length" "width" "num_cylinders" "body_style_convertible"

"wheel_base" "peak_rpm" "highway_mpg" "wheel_drive_fwd"

> vs$important_vars_global_max_names

"curb_weight" "city_mpg" "engine_size" "horsepower" "length"

> vs$important_vars_global_se_names

"curb_weight" "city_mpg" "engine_size" "horsepower" "length"

6By default, variable selection is performed individually on dummy variables for a factor. The

variable selection procedures return the permutation distribution and an aggregation of the dummy

variables’ inclusion proportions can allow for variable selection to be performed on an entire factor.
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"width" "num_cylinders" "wheel_base" "wheel_drive_fwd"

Usually, “Global Max” and “Global SE” perform similarly, as they are both more

stringent in selection. However, in many situations it will not be clear to the data

analyst which threshold is most appropriate. The “best” procedure can be chosen via

cross-validation on out-of-sample RMSE as follows:

var_selection_by_permute_response_cv(bart_machine)

$best_method

[1] "important_vars_local_names"

$important_vars_cv

[1] "body_style_convertible" "city_mpg" "curb_weight"

[4] "engine_size" "engine_type_ohc" "horsepower"

[7] "length" "num_cylinders" "peak_rpm"

[10] "wheel_base" "wheel_drive_fwd" "wheel_drive_rwd"

[13] "width"

On this dataset, the “best” approach (as defined by out-of-sample prediction er-

ror) is the “Local” procedure.

The following sections (8.4.11 and 8.4.12) demostrate additional features using

Friedman (1991)’s function:

y = 10sin (πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + E , E ∼ Nn
(
0, σ2I

)
. (8.6)
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Figure 8.10: Visualization of the three variable selection procedures outlined in Sec-

tion 8.3.3 with α = 0.05. The top plot illustrates the “Local” procedure. The green

lines are the threshold levels determined from the permutation distributions that must

be exceeded for a variable to be selected. The plotted points are the variable inclusion

proportions for the observed data (averaged over five duplicate bartMachine mod-

els). If the observed value is higher than the green bar, the variable is included and

is displayed as a solid dot; if not, it is not included and it is displayed as an open dot.

The bottom plot illustrates both the “Global SE” and “Global Max” thresholds. The

red line is the cutoff for “Global Max” and variables pass this threshold are displayed

as solid dots. The blue lines represent the thresholds for the “Global SE” procedure.

Variables that exceed this cutoff but not the “Global Max” threshold are displayed

as asterisks. Open dots exceed neither threshold.
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8.4.11 Informed Prior Information on Covariates

Bleich et al. (2013) propose a method for incorporating informed prior information

about the predictors into BART. This can be achieved by modifying the prior on the

splitting rules as well as the corresponding calculations in the Metropolis-Hastings

step. In particular, covariates believed to influence the response can be proposed

more often as candidates for splitting rules. Useful prior information can aid in

both variable selection and prediction tasks. We illustrate the impact of a correctly

informed prior in the context of the Friedman function (Equation 8.6). We include

the 5 predictors which influence the response as well as 95 that do not.

All that is required is a specification of relative weights for each predictor. These

are converted internally to probabilities. We assign 5 times the weight to the 5 true

covariates of the model relative to the 95 useless covariates.

> prior = c(rep(5, times = 5), rep(1, times = 95))

We now sample 500 observations from the Friedman function and construct a

default bartMachine model as well as a bartMachine model with the informed prior

and compare their performance on a test set of another 500 observations.

> bart_machine = build_bart_machine(X, y)

> bart_machine_informed = build_bart_machine(X, y, cov_prior_vec = prior)

> bart_predict_for_test_data(bart_machine, Xtest, ytest)$rmse

[1] 1.661159

> bart_predict_for_test_data(bart_machine_informed, Xtest, ytest)$rmse

[1] 1.232925

There is a substantial improvement in out-of-sample predictive performance when

a properly informed prior is used.
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Note that we recommend use of the prior vector to down-weight the indicator

variables that result from dummifying factors so that the total set of dummy variables

has the same weight as a continuous covariate.

8.4.12 Interaction Effect Detection

In Section 8.4.6, we explored using variable inclusion proportions to understand the

relative influences of different covariates. A similar procedure can be carried out

for examining interaction effects within a BART model. This question was initially

explored in Damien et al. (2013) where an interaction was considered to exist between

two variables if they both appeared in at least one splitting rule in a given tree. We

refine the definition of an interaction as follows.

We first begin with a p × p matrix of zeroes. Within a given tree, for each split

rule variable j, we look at all split rule variables of child nodes, k, and we increment

the j, k element of the matrix. Hence variables are considered to interact in a given

tree only if they appear together in a contiguous downward path from the root node

to a terminal node. Note that a variable may interact with itself (when fitting a linear

effect, for instance). Since there is no order between the parent and child, we then

add the j, k counts together with the k, j counts (if j 6= k). Summing across trees

and Gibbs samples gives the total number of interactions for each pair of variables

from which relative importance can be assessed.

We demonstrate interaction detection on the Friedman function using 10 covari-

ates using the code below:

> interaction_investigator(bart_machine, num_replicates_for_avg = 25,

num_var_plot = 10, bottom_margin = 5)

Shown in Figure 8.11 are the ten most important interactions in the model. The

illustration is averaged over many model constructions to obtain stable estimates
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across many posterior modes in the sum-of-trees distribution. Notice that the inter-

action between x1 and x2 dominates all other terms, as BART is correctly capturing

the single true interaction effect in Equation 8.6. Choosing which of these interac-

tions significantly affect the response is not addressed in this paper. The methods

suggested in Section 8.3.3 may be applicable here and we consider this to be fruitful

future work.
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Figure 8.11: The top 10 average variable interaction counts (termed “relative impor-

tance”) in the default bartMachine model for the Friedman function data averaged

over 25 model constructions. The segments atop the bars represent 95% confidence

intervals.

8.5 Classification Features

In this section we highlight the features that differ from the regression case when

the response is dichotomous. The illustrative dataset consists of 332 Pima Indians

obtained from the UCI repository. Of the 332 subjects, 109 were diagnosed with

diabetes, the binary response variable. There are seven continuous predictors which

are body metrics such as blood pressure, glucose concentration, etc. and there is no

missing data.
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Building a bartMachine model for classification has the same computing param-

eters except that q, ν cannot be specified since there is no longer a prior on σ2 (see

Section 8.2.3). We first build a cross-validated model below.

> bart_machine_cv = build_bart_machine_cv(X, y)

... BART CV win: k: 3 m: 50

> bart_machine_cv

Bart Machine v1.0b for classification

training data n = 332 and p = 7

built in 0.5 secs on 4 cores, 50 trees, 250 burn-in and 1000 post. samples

confusion matrix:

predicted No predicted Yes model errors

actual No 211.000 12.00 0.054

actual Yes 41.000 68.00 0.376

use errors 0.163 0.15 0.160

Classification models have an added hyperparameter, prob rule class, which is

the rule for determining if the probability estimate is great enough to be classified into

the positive category. We can see above that the bartMachine at times predicts “NO”

for true “YES” outcomes and we suffer from a 37.6% error rate for this outcome. We

can try to mitigate this error by lowering the threshold to increase the number of

“YES” labels predicted:

> build_bart_machine(X, y, prob_rule_class = 0.3)

Bart Machine v1.0b for classification
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training data n = 332 and p = 7

built in 0.5 secs on 4 cores, 50 trees, 250 burn-in and 1000 post. samples

confusion matrix:

predicted No predicted Yes model errors

actual No 178.000 45.000 0.202

actual Yes 12.000 97.000 0.110

use errors 0.063 0.317 0.172

This lowers the model error to 11% for the “YES” class, but at the expense of

increasing the error rate for the “NO” class. We encourage the user to cross-validate

this rule based on the appropriate objective function for the problem at hand.

We can also check out-of-sample statistics:

> oos_stats = k_fold_cv(X, y, k_folds = 10)

> oos_stats$confusion_matrix

predicted No predicted Yes model errors

actual No 203.000 20.000 0.090

actual Yes 47.000 62.000 0.431

use errors 0.188 0.244 0.202

Note that it is possible to predict both class labels and probability estimates for given

observations:

> predict(bart_machine_cv, X[1 : 2, ], type = "prob")

[1] 0.6253160 0.1055975

> predict(bart_machine_cv, X[1 : 2, ], type = "class")

[1] "Yes" "No"
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When using the covariate tests of Section 8.4.7,total misclassification error be-

comes the statistic of interest instead of Pseudo-R2. The p value is calculated now

as the proportion of null samples with higher misclassification error. Figure 8.12

illustrates the test showing that predictor age seems to matter in the prediction of

Diabetes, controlling for other predictors.

BART test for importance of covariate(s): age 
 Null Samples of Misclassification Errors

permutation samples
 pval =  0

F
re

qu
en

cy

0.16 0.17 0.18 0.19

0
10

20
30

Figure 8.12: Test of covariate importance for predictor age on whether or not the

subject will contract Diabetes.

The partial dependence plots of Section 8.4.8 are now scaled as probit of the

probability estimate. Figure 8.13 illustrates that as glucose increases, the probability

of contracting Diabetes increases linearly on a probit scale.

Credible intervals are implemented for classification bartMachine and are dis-

played on the probit scale. Note that the prediction intervals of Section 8.4.5 do not

exist for classification.

> calc_credible_intervals(bart_machine_cv, X[1 : 2, ])

ci_lower_bd ci_upper_bd

[1,] 0.34865355 0.8406097

[2,] 0.01686486 0.2673171

Other functions work similarly to regression except those that plot the responses

and those that explicitly depend on RMSE as an error metric.
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Figure 8.13: PDP for predictor glu. The blue lines are 95% credible intervals.

8.6 Discussion

This article introduced bartMachine, a new R package which implements Bayesian

Additive Regression Trees. The goal of this package is to provide a fast, extensive and

user-friendly implementation accessible to a wide range of data analysts, and increase

the visibility of BART to a broader statistical audience. We hope we have provided

organized, well-documented open-source code and we encourage the community to

make innovations on this package.

Replication

The code for bartMachine is located at http://github.com/kapelner/bartMachine

under the MIT license. Results, tables, and figures found in this paper can be repli-

cated via the scripts located in the bart package paper folder within this git repos-

itory.
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9
Incorporating Missingness into BART∗

Abstract

We present a method for incorporating missing data into general forecasting prob-

lems which use non-parametric statistical learning. We focus on a tree-based method,

Bayesian Additive Regression Trees (BART), enhanced with “Missingness Incorporated

in Attributes,” an approach recently proposed for incorporating missingness into de-

cision trees. This procedure extends the native partitioning mechanisms found in

tree-based models and does not require imputation. Simulations on generated mod-

els and real data indicate that our procedure offers promise for both selection model

and pattern mixture frameworks as measured by out-of-sample predictive accuracy.

We also illustrate BART’s abilities to incorporate missingness into uncertainty inter-

vals. Our implementation is readily available in the R package bartMachine.

∗Joint work with Justin Bleich
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9.1 Introduction

This article addresses prediction problems where covariate information is missing

during model construction and is also missing in future observations for which we

are obligated to generate a forecast. Our aim is to innovate a non-parametric sta-

tistical learning extension which incorporates missingness into both the training and

the forecasting phases. In the spirit of non-parametric learning, we wish to incorpo-

rate the missingness in both phases automatically, without the need for pre-specified

modeling.

We limit our focus to tree-based statistical learning, which has demonstrated

strong predictive performance and has consequently received considerable attention

in recent years. State-of-the-art algorithms include Random Forests (RF, Breiman,

2001a), stochastic gradient boosting (Friedman, 2002), and Bayesian Additive and Re-

gression Trees (BART, Chipman et al., 2010), the algorithm of interest in this study.

Popular implementations of these methods do not incorporate covariate missingness

natively without relying on either imputation or a complete case analysis of observa-

tions with no missing information.

Previous simulations and real data set applications have indicated that BART is ca-

pable of achieving excellent predictive accuracy. Unlike most competing techniques,

BART is composed of a probability model, rather than a procedure that is purely

“algorithmic” (Breiman, 2001b). BART presents an alternative approach to statis-

tical learning for those comfortable with the Bayesian framework. This framework

provides certain advantages, such as built-in estimates of uncertainty in the form of

credible intervals as well as the ability to incorporate prior information on covariates

(Bleich et al., 2013). However, no means for incorporating missing data in BART has

been published to date. Our goal here is to develop a principled way of adapting

BART’s machinery to incorporate missing data that takes advantage of the Bayesian
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framework.

Our proposed method, henceforth named BARTm, modifies the recursive partition-

ing scheme during construction of the decision trees to incorporate missing data into

splitting rules. By relying on the Metropolis-Hastings algorithm embedded in BART,

our method attempts to send missing data to whichever of the two daughter nodes

increases overall model likelihood. Missingness itself also becomes a valid splitting

criterion.

During model construction, taking advantage of this modified set of splitting rules

does not require imputation, which relies on assumptions that cannot be easily ver-

ified. Our approach is equally viable for continuous and nominal covariate data and

both selection and pattern mixture models. The latter models do not assume that

missing data is necessarily free of information; the data may have gone missing for a

reason crucial to the response function and therefore crucial to our forecast. BARTm

is able to exploit this relationship when appropriate.

Since missingness is handled natively within the algorithm, BARTm can generate

predictions on future data with missing entries as well. Additionally, BART’s Bayesian

framework also naturally provides estimates of uncertainty in the form of credible in-

tervals. The amount of uncertainty increases with the amount of information lost due

to missingness; thereby missingness is appropriately incorporated into the standard

error of the prediction. Also, our proposed procedure has negligible impact on the

runtime during both model construction and prediction phases.

In Sections 9.2.1 - 9.2.3, we provide a framework for statistical learning with

missingness with a focus on decision trees. We give a brief overview of the BART

algorithm in Section 9.2.4 and explain the internals of BARTm in Section 9.3. We then

demonstrate BARTm’s predictive performance on generated models in Section 9.4 as

well as real data with a variety of missing data scenarios in Section 9.5. We conclude

with Section 9.6. BARTm can be found in the R package bartMachine which is available
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on CRAN (Kapelner and Bleich, 2013a).

9.2 Background

9.2.1 A Framework for Missing Data in Statistical Learning

Consider p covariates X := [X1, . . . , Xp], a continuous response Y and an unknown

function f where Y = f(X) + E . When Y is binary, we use a similar framework

with an appropriate link function encapsulating f . We denote E as the noise in the

response unexplained by f . The goal of statistical learning is to use the training set,

[ytrain,Xtrain] which consists of n observations drawn from the population P (Y , X),

to produce an estimate, f̂ , the best guess of E [Y | X]. This function estimate can

then be used to generate predictions on future test observations with an unknown

response. We denote these future observations as X∗ which we assume are likewise

drawn from the same population as the training set.

Missingness is one of the scourges of data analysis, plaguing statistical learning by

causing missing entries in both the training matrix Xtrain as well as missing entries in

the future records, X∗. In the statistical learning context, the training set is defined

by observations which do not exhibit missingness in their response, ytrain. Records

with missing responses cannot be used to build models for estimation of f . “Imputing

missing values in the response” for the new X∗ is equivalent to “prediction” and is

the primary goal of statistical learning. Thus, “missingness” considered in this paper

is missingness only in Xtrain and X∗. We denote missingness in the pM ≤ p features

of X which suffer from missingness as M := [M1, . . . ,MpM ], binary vectors where

1 indicates missing and 0 indicates present, and covariates that are present with

Xobs :=
[
Xobs1 , . . . , Xobsp

]
. The main goal of statistical learning with missingness is

to estimate E [Y | Xobs,M ].
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We now frame missing data models in statistical learning using the canonical

framework of selection and pattern-mixture models (Little, 1993). Conditional on X,

selection models factor the full data likelihood as

P (Y ,M | X,θ,γ) = P (Y | X,θ)P (M | X,γ) (9.1)

where θ and γ are parameter vectors and are assumed distinct. The first term on the

right hand side reflects that the marginal likelihood for the response P (Y | X,θ) is

independent of missingness. The second term on the right conventionally conditions

on Y . In the forecasting paradigm, missingness is assumed independent of the re-

sponse because Y is often yet to be realized and thus its unknown value should not

influence M , the missingness of the previously realized covariates.

Conditional on X, pattern mixture models partition the full data likelihood as

P (Y ,M | X,θ,γ) = P (Y |M ,X,θ)P (M | X,γ) . (9.2)

where θ and γ are parameter vectors and again assumed distinct. The difference

between the above and Equation 9.1 is the marginal likelihood of the response is now

a function of M . This means there can be different response models under different

patterns of missingness in the pM covariates.

In both selection and pattern-mixture paradigms, the term on the right is the miss-

ing data mechanism (MDM), which traditionally is the mechanism controlling miss-

ingness in the response. In our framework however, the MDM controls missingness

only in X: the covariates (and parameters γ) create missingness within themselves

which inevitably needs to be incorporated during model construction and forecasting.

Thus, the MDM is conceptually equivalent in both the selection and pattern mixture
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paradigms.

The conceptual difference between the selection and pattern mixture models in

the statistical learning framework can be envisioned as follows. Imagine the full

covariates X are realized but due to the MDM, X is latent and we instead observe

Xobs andM . In the selection paradigm, Y is realized only from the full covariates via

P (Y | X,θ). However, in the pattern-mixture paradigm, both X and M intermix

to create many collated response models {P (Y | X,θ,M = m)}m∈M corresponding

to different points in M -space. Thus, under our assumptions, selection models are a

subset of pattern mixture models. Note that pattern-mixture models are chronically

under-identified and difficult to explicitly model in practice. We address why our

proposed method is well-suited to handle prediction problems under this framework

in Section 9.3.

We now present Little and Rubin (2002)’s taxonomy of MDM’s which are tradi-

tionally framed in the selection model paradigm but here apply to both paradigms:

(1) missing completely at random (MCAR), (2) missing at random (MAR) and (3)

not missing at random (NMAR). MCAR is a mechanism that generates missingness

in covariate j without regard to the value of Xj itself nor the values and missingness

of any other covariates, denoted X−j. MCAR is exclusively determined by exogenous

parameter(s) γ. The MAR mechanism generates missingness without regard to Xj,

its own value, but can depend on values of other attributes X−j as well as γ. The

NMAR mechanism features the additional dependence on the value of Xj itself as well

as unobserved covariates (note that explicit dependence on unobserved covariates was

not explored as MDM’s in this paper). We summarize these mechanisms in Table

9.1. In our framework, each of the pM ≤ p covariates with missingness, denoted as

Xj’s, are assumed to have their own MDMj. Thus, the full MDM for the whole co-

variate space, P (M | X,γ), can be arbitrarily convoluted, exhibiting combinations

of MCAR, MAR and NMAR among its pM covariates and each MDMj relationship
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may be highly non-linear with complicated interactions.

MDM P (M j | Xj,miss,X−j,miss,X−j,obs,γ) = . . .

MCAR P (M j | γ)

MAR P (M j | X−j,miss,X−j,obs,γ)

NMAR (does not simplify)

Table 9.1: MDM models in the context of statistical learning. M j is an indicator

vector which takes the value one when the jth covariate is missing for the ith obser-

vation. X−j,obs are the observed values of the other covariates, besides j. X−j,miss

are the values of the other covariates, besides j, which are not observed because they

are missing.

We conclude this section by emphasizing that in the non-parametric statistical

learning framework where predictive performance is the objective, there is no need

for explicit inference of θ (which may have unknown structure and arbitrary, possi-

bly infinite, dimension). Instead, the algorithm performs “black-box” estimation of

the data generating process such that the output f̂ estimates the E [Y | Xobs,M ]

function. Thus, if we can successfully estimate this conditional expectation function

directly, then accurate forecasts can be obtained. This is the approach that BARTm

takes.

9.2.2 Strategies for Incorporating Missing Data

A simple strategy for incorporating missingness into model building is to simply ig-

nore the observations inXtrain that contain at least one missing measurement. This is

called “list-wise deletion” or “complete case analysis.” It is well known that complete

case analysis will be unbiased for MCAR and MAR selection models where missing-

ness does not depend on the response when the target of estimation is E [Y | X].
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However, when forecasting, the data analyst must additionally be guaranteed that

X∗ has no missing observations, since it is not possible to generate forecasts for these

cases.

By properly modeling missingness, incomplete cases can be used and more in-

formation about E [Y | X] becomes available, potentially yielding higher predictive

performance. One popular strategy is to guess or “impute” the missing entries. These

guesses are then used to “fill in” the holes in Xtrain and X∗. The imputed Xtrain is

then used as if it were the real covariate data when constructing f̂ and the imputed

X∗ is then used as if it were the real covariate data during forecasting. To carry out

imputation, the recommended strategy is to properly model the predictive distribu-

tion and then draws from the model are used to fill in the missing entries. Multiple

imputation involves imputing many times and averaging over the results from each

imputation (Rubin, 1978). In statistical learning, a prediction could be calculated by

averaging the predictions from many f̂ ’s built from many imputed Xtrain’s and then

further averaging over many imputed X∗’s. In practice, having knowledge of both

the missing data mechanism and each probability model is very difficult and has usu-

ally given way to nonparametric methods such as k-nearest neighbors (Troyanskaya

et al., 2001) for continuous covariates and saturated multinomial modeling (Schafer,

1997) for categorical covariates. The widely used R package randomForest (Liaw and

Wiener, 2002) imputes via “hot-decking” (Little and Rubin, 2002).

A more recent approach, MissForest (Stekhoven and Bühlmann, 2012), fits non-

parametric imputation models for any combination of continuous and categorical

input data, even when the response is unobserved. In this unsupervised procedure

(i.e., no response variable needed), initial guesses for the imputed values are made.

Then, for each attribute with missingness, the observed values of that attribute are

treated as the response and a RF model is fit using the remaining attributes as pre-

dictors. Predictions for the missing values are made via the trained RF and serve as
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updated imputations. The process proceeds iteratively through each attribute with

missingness and then repeats until a stopping criterion is achieved. The authors

argue that their procedure intrinsically constitutes multiple imputation due to Ran-

dom Forest’s averaging over many unpruned decision trees. The authors also state

that their method will perform particularly well when “the data include complex

interactions or non-linear relations between variables of unequal scales and different

type.” Although no explicit reference is given to Little and Rubin (2002)’s taxon-

omy in their work, we expect MissForest to perform well in situations generally

well-suited for imputation, namely, the MCAR and MAR selection models discussed

in Section 9.2.1. MissForest would not be suited for NMAR MDMs as imputation

values for Xj can only be modeled from X−j in their implementation. Additionally,

implementing MissForest would not be recommended for pattern-mixture scenarios

because imputation is insufficient to capture differing response patterns.

Since BART is composed primarily of a sum-of-regression-trees model, we now

review strategies for incorporating missing data in tree-based models.

9.2.3 Missing data in Binary Decision Trees

Binary decision trees are composed of a set of connecting nodes. Internal nodes

contain a splitting rule, for example, xj < c, where xj is the splitting attribute and

c is the splitting value. An observation that satisfies the rule is passed to the left

daughter node otherwise it is passed to the right daughter node. This partitioning

proceeds until an observation reaches a terminal node. Terminal nodes (also known as

leaves) do not have splitting rules and instead have leaf values. When an observation

“lands” in a terminal node it is assigned the leaf value of the terminal node in which

it has landed. In regression trees, this leaf value is a real number, and is the estimate

of the response y for the given covariates. Thus, regression trees are a nonparametric
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fitting procedure where the estimate of f is a partition of predictor space into various

hyperrectangles. Regression trees are well-known for their ability to approximate

complicated response surfaces containing both nonlinearities and interaction effects.

There are many different ways to build decision trees. Many classic approaches

rely on a greedy procedure to choose the best splitting rule at each node based on

some pre-determined criterion. Once the construction of the tree is completed, the

tree is then pruned back to prevent overfitting.

Previous efforts to handle missingness in trees include surrogate variable splitting

(Therneau and Atkinson, 1997), “Missing Incorporated in Attributes” (MIA, Twala

et al., 2008, section 2) and many others (see Ding and Simonoff, 2010 and Twala,

2009). MIA, the particular focus for this work, is a procedure that natively uses

missingness when greedily constructing the rules for the decision tree’s internal nodes.

We summarize the procedure in Algorithm 3 and we explain how the expanded set

of rules is injected into the BART procedure in Section 9.3.

Algorithm 3 Splitting rule choices during construction of a new tree branch in MIA.

The algorithm chooses one of the following three rules for all splitting attributes and

all splitting values c. Since there are p splitting attributes and at most n− 1 unique

values to split on, the greedy splitting algorithm with MIA checks 2(n − 1)p + p

possible splitting rules at each iteration instead of the classic (n− 1)p.

1: If xij is present and xij ≤ c, send this observation left (←−); otherwise, send this

observation right (−→). If xij is missing, send this observation left (←−).

2: If xij is present and xij ≤ c, send this observation left (←−); otherwise, send this

observation right (−→). If xij is missing, send this observation right (−→).

3: If xij is missing, send this observation left (←−); if it is present, regardless of its

value, send this observation right (−→) .

There are many advantages of the MIA approach. First, MIA has the ability to
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model complex MAR and NMAR relationships, as evidenced in both Twala et al.

(2008) and the results of Sections 9.4 and 9.5. Since missingness is integrated into

the splitting rules, forecasts can be made without imputing when X∗ contains miss-

ingness.

Another strong advantage of MIA is the ability to split on feature missingness

(line 3 of Algorithm 3). This splitting rule choice allows for the tree to better capture

pattern mixture models where missingness directly influences the response model.

Generally speaking, imputation ignores pattern mixture models; missingness is only

viewed as holes to be filled-in and forgotten.

Due to these benefits as well as conceptual simplicity, we chose to implement

MIA-within-BART, denoted “BARTm”, when enhancing BART to handle missing data.

9.2.4 BART

Bayesian Additive Regression Trees is a combination of many regression trees esti-

mated via a Bayesian model. Imagine the true response function can be approximated

by the sum of m trees with additive normal and homoskedastic noise:

Y = f(X) + E ≈ i
l

1 (X) + i
l

2 (X) + . . .+ i
l

m(X) + E , E ∼ Nn
(
0, σ2In

)
.(9.3)

The notation, i
l

, denotes both structure and splitting rules (i) as well as leaf values

(l). Note that BART can be adapted for classification problems by using a probit link

function and a data augmentation approach relying on latent variables (Albert and

Chib, 1993).

BART can be distinguished from other purely algorithmic ensemble-of-trees mod-

els by its full Bayesian model, consisting of both a set of independent priors and

likelihoods. Its posterior distribution is estimated via Gibbs Sampling (Geman and
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Geman, 1984) with a Metropolis-Hastings step (Hastings, 1970).

There are three regularizing priors within the BART model which are designed to

prevent overfitting. The first prior, placed on the tree structure is designed to prevent

trees from growing too deep, thereby limiting the complexity that can be captured by

a single tree. The second prior is placed on the leaf value parameters (the predicted

values found in the terminal nodes) and is designed to shrink the leaf values towards

the overall center of the response’s empirical distribution. The third prior is placed

on the variance of the noise σ2 and is designed to curtail overfitting by introducing

noise into the model if it begins to fit too snugly. Our development of BARTm uses the

default hyperparameters recommended in the original work (Chipman et al., 2010).

For those who do not favor a pure Bayesian approach, these priors can be thought of

as tuning parameters.

In addition to the regularization priors, BART imposes an agnostic prior on the

splitting rules within the decision tree branches. First, for a given branch, the splitting

attribute is uniformly drawn from the set {x1, . . . , xp} of variables available at the

branch. The splitting value is then selected by drawing uniformly from the available

values conditional on the splitting attribute j. Selecting attributes and values from

a uniform discrete distribution represents a digression from the approach used in

decision tree algorithms of greedily choosing splits based on some splitting criteria.

Extending this prior allows for BART to incorporate MIA, which is discussed in Section

9.3.

To generate draws from the posterior distribution, each tree is fit iteratively, hold-

ing the other m − 1 trees constant, by using only the portion of the response left

unfitted. To sample trees, changes to the tree structure are proposed then accepted

or rejected via a Metropolis-Hastings step. The tree proposals are equally-likely al-

terations: growing a leaf by adding two daughter nodes, pruning two twin leaves

(rendering their parent node into a leaf), or changing a splitting rule. Following the
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tree sampling, the posterior for the leaf value parameters are Gibbs sampled. The

likelihood of the predictions in each node is assumed to be normal. Therefore, the

normal-normal conjugacy yields the canonical posterior normal distribution. After

sampling all tree changes and terminal node parameters, the variance parameter σ2 is

Gibbs sampled. By model assumption, the likelihood for the errors is normal and the

conjugacy with the inverse-gamma prior yields the canonical posterior inverse-gamma.

Usually around 1,000 Metropolis-within-Gibbs iterations are run as “burn-in” un-

til σ2 converges (by visual inspection). Another 1,000 or so are sampled to obtain

“burned-in” draws from the posterior, which define the BART model. Forecasts are

then obtained by dropping the observations of X∗ down the collection of sampled

trees within each burned-in Gibbs sample. A point prediction ŷ is generated by sum-

ming the posterior leaf values across the trees as in Equation A.5. Credible intervals,

which are intervals containing a desired percentage (e.g. 95%) of the posterior prob-

ability mass for a Bayesian parameter of interest, can be computed via the desired

empirical quantiles over the burned-in samples.

For a thorough description about the internals of BART see Chipman et al. (2010)

and Kapelner and Bleich (2013a).

9.3 Missing Incorporated in Attributes within BART

Implementing BARTm is straightforward. We previously described the prior on the

splitting rules within the decision tree branches as being discrete uniform on the

possible splitting attributes and discrete uniform on the possible splitting values. To

account for Lines 1 and 2 in the MIA procedure (Algorithm 3), the splitting attribute

xj and split value are proposed as explained in Section 9.2.4, but now we additionally

propose a direction (left or right with equal probability) for records to be sent when

the records have with missing values in xj. A possible splitting rule would therefore
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be “xij < c and move left if xij is missing.” To account for Line 3 in the algorithm,

splitting on missingness itself, we create dummy vectors of length n for each of the

pM attributes with missingness, denoted M 1, . . . ,M pM , which assume the value 1

when the entry is missing and 0 when the entry is present. We then augment the

original training matrix together with these dummies and use the augmented training

matrix, X ′train := [Xtrain,M1, . . . ,MpM ], as the training data in the BARTm algorithm.

Once again, the prior on splitting rules is the same as the original BART but now with

the additional consideration that the direction of missingness is equally likely left or

right conditional on the splitting attribute and value. But why should this algorithm

yield good predictive performance under the framework discussed in Section 9.2.1?

We expect BARTm to exhibit greater predictive performance over MIA in classical

decision trees for two reasons. First, BARTm’s sum-of-trees model offers much greater

fitting flexibility of interactions and non-linearities compared to a single tree; this

flexibility will explore models that the data analyst may not have thought of. Addi-

tionally, due to the greedy nature of decision trees, once a split is chosen, the direction

in which missingness is sent cannot be reversed. BARTm can alter its trees by pruning

and regrowing nodes or changing splitting rules. These proposed modifications to the

trees are accepted or rejected stochastically using the Metropolis-Hastings machinery

depending on how strongly the proposed move increases the model’s likelihood.

We hypothesize that BARTm’s stochastic search for splitting rules allows obser-

vations with missingness to be grouped with observations having similar response

values. Due to the Metropolis-Hastings step, only splitting rules and corresponding

groupings that increase overall model likelihood P (Y | X,M ) will be accepted. In

essence, BARTm is “feeling around” predictor space for a location where the missing

data would most increase the overall marginal likelihood. For selection models, since

splitting rules can depend on any covariate including the covariate with missing data,

it should be possible to generate successful groupings for the missing data under both
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MAR and NMAR mechanisms.

As a simple MAR example, suppose there are two covariates X1 and X2 and a

MAR mechanism where X2 is increasingly likely to go missing for large values of X1.

BARTm can partition this data in two steps to increase overall likelihood: (1) A split

on a large value of X1 and then (2) a split on M2. As a simple NMAR example,

suppose a mechanism where X2 is more likely to be missing for large values of X2.

BARTm can select splits of the form “x2 > c and x2 is missing” with c large. Here,

the missing data is appropriately kept with larger values of X2 and overall likelihood

should be increased.

When missingness does not depend on any other covariates, it should be more

difficult to find appropriate ways to partition the missing data, and we hypothesize

that BARTm will be least effective for selection models with MCAR MDMs. We believe

this is due to the regularization prior on the depths of the trees coupled with the fact

that all missing data must move to the same daughter node. Thus, the trees do not

grow deep enough to create sufficiently complex partitioning schemes to handle the

MCAR mechanism. Additionally, we hypothesize that BARTm has potential to perform

well on pattern mixture models due to the partitioning nature of the regression tree.

BARTm can partition the data based on different patterns of missingness by creating

splits based on missingness itself. Then, underneath these splits, different submodels

for the different patterns can be constructed. If missingness is related to the response,

there is a good chance BARTm will find it and exploit it, yielding accurate forecasts.

Another motivation for adapting MIA to BART arises from computational concerns.

BART is a computationally intensive algorithm, but its runtime increases negligibly

in the number of covariates (see Chipman et al., 2010, Section 6). Hence, BARTm

leaves the computational time virtually unchanged with the addition of the pM new

missingness dummy covariates. Another possible strategy would be to develop an

iterative imputation procedure using BART similar to that in Stekhoven and Bühlmann
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(2012) or a model averaging procedure using a multiple imputation framework, but

we believe these approaches would be substantially more computationally intensive.

9.4 Generated Data Simulations

9.4.1 A Simple Pattern Mixture Model

We begin with an illustration of BARTm’s ability to directly estimate E [Y | Xobs,M ]

and additionally provide uncertainty intervals. We consider the following nonlinear

response surface:

Y = g(X1, X2, X3) +BM3 + E , E iid∼ N
(
0, σ2

e

)
, B

iid∼ N
(
µb, σ

2
b

)
, (9.4)

g(X1, X2, X3) = X1 +X2 + 2X3 −X2
1 +X2

2 +X1X2

[X1, X2, X3]
iid∼ N3

0, σ2
x


1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1


 ,

where σ2
x = 1, ρ1 = 0.2, ρ2 = 0.4, σ2

e = 1, µb = 10 and σ2
b = 0.5. Note that

the pattern mixture model is induced by missingness in X3. Under this missingness

pattern, the response is offset by B, a draw from a normal distribution. Figure 9.1a

displays the n = 500 sample of the response from the model colored by M3 to illustrate

the separation of the two response patterns. We choose the following jointly NMAR

MDM for X2 and X3 which were chosen to be simple for the sake of ensuring that

the illustration is clear. The next section features more realistic mechanisms.

1 : X2 is missing with probability 0.3 if X2 ≥ 0 (9.5)
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2 : X3 is missing with probability 0.3 if X1 ≥ 0.

If the BARTm model assumptions hold and is successfully able to estimate the

conditional expectation function E [Y | Xobs,M ], then the true E [Y | Xobs,M ] is

highly likely to be contained within a 95% credible interval for the prediction. We first

check to see whether BARTm can capture the correct response when Xtrain has missing

entries but X∗ does not. Predicting on x∗ = [0 0 0] should give E [Y | X = x∗] = 0

for the prediction. Figure 9.1b illustrates that BARTm captures the expected value

within its 95% credible interval.
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(e) x∗ = [0 · ·] , ŷ = 10.5± 1.14

Figure 9.1: (a) A n = 500 sample of the responses of the model in Equation 9.4.

Colored in blue are the responses when X3 is present and red are responses when X3

is missing. (b-e) 1,000 burned-in posterior draws from a BARTm model for different

values of x∗ drawn from the data generating process found in Equation 9.4. The

green line is BARTm’s forecast ŷ (the average of the posterior burned-in samples).

The blue line is the true model expectation. The two yellow lines are the bounds of

the 95% credible interval for E [Y | Xobs = x∗, M = m∗].
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Next we explore how well BARTm estimates the conditional expectation when miss-

ingness occurs within the new observation x∗. We examine how BARTm handles miss-

ingness in attribute X2 by predicting on x∗ = [0 · 0] where the “·” denotes miss-

ingness. By Equation 9.5, X2 is missing 30% of the time if X2 itself is greater than

0. By evaluating the moments of a truncated normal distribution, it follows that

BARTm should guess E [X2 +X2
2 | X2 > 0] =

√
2/π + 1 ≈ 1.80. Figure 9.1c indicates

that BARTm’s credible interval captures this expected value. Note the larger variance

of the posterior distribution relative to Figure 9.1b reflecting the higher uncertainty

due to x∗2 going missing. This larger interval is a great benefit of MIA. As the trees

are built during the Gibbs sampling, the splitting rules on X2 are accompanied by

a protocol for missingness: missing data will flow left or right in the direction that

increases model likelihood and this direction is chosen with randomness. Thus, when

x∗ is predicted with x∗2 missing, missing records flow left and right over the many

burned-in Gibbs samples creating a wider distribution of predicted values, and thus

a wider credible interval. This is an important point — BARTm can give a rough es-

timate of how much information is lost when values in new records become missing

by looking at the change in the standard error of a predicted value. Note that if

BART’s hyperparameters are considered “tuning parameters,” the credible intervals’

endpoints are not interpretable. However, the relative lengths of the intervals still

signify different levels of forecast confidence to the practitioner.

We next consider how BARTm performs when X3 is missing by predicting on x∗ =

[0 0 ·]. By Equation 9.5, BARTm should guess E [X3 | X1 > 0] = .4
√

2/π ≈ .32 (which

follows directly from the properties of the conditional distribution of bivariate normal

distribution, recalling that Corr [X1, X3] = 0.4). When X3 is missing, there is a

different response pattern, and the response is shifted up by B. Since E [B] = 10,

BARTm should predict approximately 10.32. The credible interval found in Figure 9.1d

indicates that BARTm’s credible interval again covers the conditional expectation.
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Finally, we consider the case where X2 and X3 are simultaneously missing. Pre-

dicting on x∗ = [0 · ·] has a conditional expectation of E [X2 +X2
2 | X2 > 0] +

E [X3 | X1 > 0] + E [B] ≈ 12.12. Once again, the posterior draws displayed in Fig-

ure 9.1e indicate that BARTm reasonably estimates the conditional expectation. Note

that the credible interval here is wider than in Figure 9.1d due to the additional

missingness of X2.

9.4.2 Selection Model Performance

In order to gauge BARTm’s out-of-sample predictive performance on selection models

and to evaluate the improvement over model-building on complete cases, we construct

the same model as Equation 9.4 withholding the offset B (which previously induced

the pattern mixture). Thus Y = g(X1, X2, X3) + E . We imposed three scenarios

illustrating performance under the following missingness mechanisms. The first is

MCAR; X1 is missing with probability γ. The second is MAR; X3 is missing according

to a non-linear probit model depending on the other two covariates:

P (M3 = 1 | X1, X2) = Φ
(
γ0 + γ1X1 + γ1X

2
2

)
. (9.6)

The last is NMAR; X2 goes missing according to a similar non-linear probit model

this time depending on itself and X1:

P (M2 = 1 | X1, X2) = Φ
(
γ0 + γ1X

2
1 + γ1X2

)
. (9.7)

For each simulation, we set the number of training observations to n = 250

and simulate 500 times. Additionally, each simulation is carried out with differ-

ent levels of missing data, approximately {0, 10, . . . , 70} percent of rows have at
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least one missing covariate entry. For the MCAR dataset, the corresponding γ =

{0, 0.03, 0.07, 0.11, 0.16, 0.26, 0.33} and for both the MAR and NMAR datasets it was

γ0 = −3 and γ1 = {0, 0.8, 1.4, 2.0, 2.7, 4.0, 7.0, 30}.

We record results for four different scenarios: (1) Xtrain and X∗ contain missing-

ness (2) Xtrain contains missingness and X∗ is devoid of missing data (in this case,

X∗ is generated without the MDM to maintain a constant number of rows). (3) only

complete cases of Xtrain are used to build the model but X∗ contains missingness

and (4) only complete cases of Xtrain are used to build the model and X∗ is devoid

of missing data.

We make a number of hypotheses about the relationship between the predictive

performance of using incomplete cases (all observations) compared to the complete

case performance. As we discussed in Section 9.3, BARTm should be able model the

expectation of the marginal likelihood in selection models, thus we expect models built

with incomplete cases to predict better than models that were built with only the

complete cases. The complete case models suffer from performance degradation for

two main reasons (1) these models are built with a smaller sample size and hence their

estimate of E [Y | Xobs,M ] is higher in bias and variance (2) the lack of missingness

during the training phase does not allow the model to learn how to properly model

the missingness, resulting in the missing data being filtered randomly from node to

node during forecasting. These hypotheses are explored in Figure 9.2 by comparing

the solid blue and solid red lines.

Further, during forecasting, we expect X∗ samples with incomplete cases to have

worse performance than the full X∗ samples (devoid of missingness) simply because

missingness is equivalent to information loss. However, for the NMAR model, we ex-

pect prediction performance on X∗ without missingness to eventually, as the amount

of missingness increases, be beaten by the predictive performance on X∗ with miss-

ingness. Eventually there will be so much missingness in X2 that (1) the trained
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model on missingness will only be able to create models by using M 2 and expect M 2

in the future X∗ and (2) the trained model on complete cases will never observe the

response of the function where X2 went missing. These hypotheses are explored in

Figure 9.2 by comparing the solid lines to the dashed lines within the same color.

The results for the four scenarios under the three MDM’s comport with our hy-

potheses. The solid red line is uniformly higher than the solid blue line confirming

degradation for complete-case model forecasting on data with missingness. The dot-

ted lines are lower than their solid counterparts indicating that providing more covari-

ate information yields higher predictive accuracy. The one exception is for NMAR.

After the number of rows with missingness is more than 40%, forecasts on complete-

cases only begin to perform worse than the forecast data with missingness for models

built with missingness (BARTm).
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(c) NMAR

Figure 9.2: Simulation results of the response model for the three MDM’s explained

in the text. The y-axis measures the multiple of out-of-sample root mean square error

(oosRMSE) relative to the performance under the absence of missingness. Blue lines

correspond to the two scenarios where BART was built with all cases in Xtrain and red

lines correspond to the two scenarios where BART was built with only the complete

cases ofXtrain. Solid lines correspond to the two scenarios whereX∗ included missing

data and dotted lines correspond to the two scenarios where the MDM was turned

off in X∗.
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In conclusion, for this set of simulations, BARTm performs better than BART models

that ignore missingness in the training phase. The next section demonstrates BARTm’s

performance in a real data set and compares its performance to a non-parametric

statistical learning procedure that relies on imputation.

9.5 Real Data Example

The Boston Housing data (BHD) measures 14 features about housing in the n = 506

census tracts in Boston in 1970. For model building, the response variable is usually

taken to be the median home value. For this set of simulations, we evaluate the

performance of three procedures (1) BARTm (2) RF with Xtrain and X∗ imputed via

MissForest and (3) BART with Xtrain and X∗ imputed via MissForest. Note that

in these simulations we assume a priori that X∗ will have missing data. Thus,

the complete-case comparisons a la Section 9.4.2 were not possible. We gauge out-of-

sample predictive performance as measured by the oosRMSE for the three procedures

on the simulation scenarios described in Table 9.2.

Similar to Section 9.4.2, each simulation is carried out with different levels of miss-

ing data, approximately {0, 10, 20, . . . , 70} percent of rows have at least one missing

covariate entry. For the MCAR scenario, γ = {0, 0.02, 0.04, 0.07, 0.10, 0.13, 0.17}, for

the MAR scenario and pattern mixture scenario, γ1 = {0, 1.3, 1.5, 1.7, 2.1, 2.6, 3.1, 3.8}

and γ0 = −3 and for the NMAR scenario γ1 = {0, 3.3, 3.6, 3.9, 4.1, 4.3, 4.6, 4.8} and

γ0 = −3. Similar to Section 9.4.1, we induce a pattern mixture model by creating

a normally distributed offset based on missingness (we create two such offsets here).

Here, we choose µb to be 25% of the range in y and σb to be µb/4. These values are

arbitrarily set for illustration purposes. It is important to note that the performance

gap of BARTm versus RF with imputation can be arbitrarily increased by making µb

larger.
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Scenario Description

Selection Model MCAR rm, crim, lstat, nox and tax are each missing w.p. γ

Selection Model MAR rm and crim are missing according to the following models:

P (M rm = 1) = Φ(γ0 + γ1(indus + lstat + age))

P (M crim = 1) = Φ(γ0 + γ1(nox + rad + tax))

Selection Model NMAR rm and crim are missing according to the following models:

P (M rm = 1) = Φ(γ0 + γ1(rm + lstat))

P (M crim = 1) = Φ(γ0 + γ1(crim + nox))

Pattern Mixture The MAR selection model above and two offsets:

(1) if M rm = 1, the response is increased by N (µb, σ
2
b )

(2) if M crim = 1, the response is decreased by N (µb, σ
2
b )

Table 9.2: Missingness scenarios for the BHD simulations. Monospace codes are

names of covariates in the BHD. Note that rm has sample correlations with indus,

lstat and age of -0.39, -0.61 and -0.24 and crim has sample correlations with nox,

rad, and tax of 0.42, 0.63 and 0.58. These high correlations should allow for impu-

tations that perform well.

For each scenario and each level of missing data, we run 500 simulations. In each

simulation, we first draw missingness via the designated scenario found in Table 9.2.

Then, we randomly partition 80% of the 506 BHD observations (now with missing-

ness) as Xtrain and the remaining 20% as X∗. We build all three models (BARTm, RF

with MissForest and BART with MissForest) on Xtrain, forecast on X∗ and record

the oosRMSE. Thus, we integrate over idiosyncrasies that could be found in a single

draw from the MDM and idiosyncrasies that could be found in a single train-test

partition. When using MissForest during training, we impute values for the missing

entries in Xtrain using [Xtrain,ytrain] column-binded together. To obtain forecasts, we

impute the missing values in X∗ using [Xtrain,X∗] row-binded together then predict
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using the bottom rows (i.e. those corresponding to the imputed test data). Note that

we use MissForest in both RF and BART to ensure that the difference in predictive

capabilities of BART and RF are not driving the results.

For the MCAR selection model, we hypothesize that the MissForest-based im-

putation procedures will outperform BARTm due to the conceptual reasons discussed

in Section 9.3. For the MAR selection model, we hypothesize similar performance be-

tween BARTm and both MissForest-based imputation procedures, as both MIA and

imputation are designed to perform well in this scenario. In the NMAR selection

model and pattern mixture model, we hypothesize that BARTm will outperform both

MissForest-based imputation procedures, as MissForest (1) cannot make use of the

values in the missingness columns it is trying to impute and (2) cannot construct

different submodels based on missingness. Although imputation methods are not de-

signed to handle these scenarios, it is important to run this simulation to ensure that

BARTm, which is designed to succeed in these scenarios, has superior out-of-sample

predictive performance.

The results displayed in Figure 9.3 largely comport with our hypotheses. Methods

based on MissForest perform better on the MCAR selection model scenario (Fig-

ure 9.3a) and BARTm is stronger in the NMAR scenario (Figure 9.3c) and pattern

mixture scenario (Figure 9.3d). It is worth noting that in the MAR selection model

scenario (Figure 9.3b), BARTm begins to outperform the imputation-based methods

once the percentage of missing data becomes greater than 20%. The performance of

the imputation-based algorithms degrades rapidly here, while BARTm’s performance

remains fairly stable, even with 70% of the rows having at least one missing entry.

In conclusion, BARTm will generally perform better than MissForest because it is not

“limited” to what can be imputed from the data on-hand. This advantage generally

grows with the amount of missingness.
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(d) Pattern Mixture

Figure 9.3: Simulations for different probabilities of missingness across the four

simulated missing data scenarios in the BHD. The y-axis is oosRMSE relative to

BART’s oosRMSE on the full dataset. Lines in green plot BARTm’s performance,

lines in red plot RF-with-MissForest’s performance, and lines in blue plot BART-

with-MissForest’s performance. Note that the MissForest-based imputation might

perform worse in practice because here we allow imputation of the entire test set. In

practice, it is likely that test observations appear sequentially.
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9.6 Discussion

We propose a means of incorporating missing data into statistical learning for predic-

tion problems where missingness may appear during both the training and forecast-

ing phases. Our procedure, BARTm, implements “missing incorporated in attributes”

(MIA), a technique recently explored for use in decision trees, into Bayesian Addi-

tive Regression Trees, a newly developed tree-based statistical learning algorithm for

classification and regression. MIA natively incorporates missingness by sending miss-

ing observations to one of the two daughter nodes. Due to the Bayesian framework

and the Metropolis-Hastings sampling, missingness is incorporated into splitting rules

which are chosen to increase overall model likelihood. This innovation allows miss-

ingness itself to be used as a legitimate value within splitting criteria, resulting in no

need for imputing in the training or new data and no need to drop incomplete cases.

For the simulations explored in this article, BARTm’s performance was superior to

models built using complete cases, especially when missingness appeared in the test

data as well. Additionally, BARTm provided higher predictive performance on the MAR

selection model relative to MissForest, a non-parametric imputation technique. We

also observe promising performance on NMAR selection models and pattern mixture

models in simulations. To the best of our knowledge, there is no clear evidence of

other techniques that will exhibit uniformly better predictive performance in both

selection and pattern mixture missingness models. Additionally, BARTm’s Bayesian

nature provides informative credible intervals reflecting uncertainty when the fore-

casting data has missing covariates.

Although the exploration in this article was focused on regression, we have ob-

served BARTm performing well in binary classification settings. BARTm for both classi-

fication and regression is implemented in the R package bartMachine.

Due to MIA’s observed promise, we recommend it as a viable strategy to handle
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missingness in other tree-based statistical learning methods. Future work should also

consider exploration of methods that combine imputation with MIA appropriately,

in order to enhance predictive performance for MCAR missing data mechanisms.

Supplementary Materials

Simulated results, tables, and figures can be replicated via the scripts located at http:

//github.com/kapelner/bartMachine (the home of the CRAN package bartMachine)

in the missing data paper folder.
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A
Appendices

A.1 Supplement for Chapter 2

A.1.1 Detailed Experimental Design

This section details exact screens shown to users in the experimental groups. The

worker begins by encountering the HIT on the MTurk platform (see Figure A.1).

Figure A.1: The HIT as initially encountered on MTurk. Note: we used an alias in

order to appear as a non-corporate and non-institutional employer.

The worker can then click on the HIT and they see the “preview screen” which

describes the HIT (not shown) with text. In retrospect, a flashy image enticing the

worker into the HIT would most likely have increased throughput. If the worker
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chooses to accept, they are immediately directed to a multi-purpose page which hosts

a colorblindness test, demographic survey, and an audio test for functioning speakers

(see Figure A.2). Although many tasks require workers to answer questions before

working, we avoided asking too many survey-like questions to avoid appearing as an

experiment.

Figure A.2: The colorblindness test.

At this point, the worker is randomized into one of the three treatments and
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transitioned to the “qualification test.” The page displays an instructional video

varying by treatment which they cannot fast-forward. Screenshots of the video are

shown in Figures A.3, A.4, and A.5.1

We include the verbatim script for the videos below. Text that differs between

treatments is typeset in square brackets separated by a slash. The text before the

slash in red belongs to the meaningful treatment and the text following the slash in

blue belongs to both the zero-context and shredded treatments.

Thanks for participating in this task. [Your job will be to help identify tumor cells in images and we

appreciate your help. / In this task, you’ll look at images and find objects of interest.]

In this video tutorial, we’ll explain [three / two] things:

[First, why you’re labeling the images, which is to help researchers identify tumorous cancer cells.

Next, we’ll show you how to identify those tumor cells. / First, we’ll show you how to identify objects

of interest in images.] [Finally, / Then,] we’ll explain how after labeling your first image you’ll have

a chance to label some more.

(a) Zero-context / Shredded treatments (b) Meaningful treatment

Figure A.3: Opening screen of training video.

Now we’re ready to learn how to identify [tumor cells / objects of interest] in images. Some example

pictures of the [tumor cells / objects of interest] you’ll be identifying can be found at the bottom left.

Each [tumor cell / object of interest] is blue and circular and surrounded by a red border.

When you begin each image, the magnification will be set to the lowest resolution. This gives you an

overview of all points on the image, but you’ll need to zoom in and out in order to make the most

precise clicks in the center of the [tumor cells / objects of interest].

Let’s scroll through the image and find some [tumor cells / objects of interest] to identify.

1We thank Rob Cohen who did an excellent job narrating both scripts.
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Figure A.4: Examples of meaningful cues which are not present in the Zero-context

and Shredded treatment instructional video.

(a) Zero-context / Shredded treatments (b) Meaningful treatment

Figure A.5: Describing the training process.

Here’s a large cluster of [tumor cells / objects of interest]. To identify them, it is very important to

click as closely to the center as possible on each [cell / object] . If I make a mistake and don’t click

in the center, I can undo the point by right-clicking.

Notice that this [cell / point] isn’t entirely surrounded by red, [probably because the cell broke off].

Even though it’s not entirely surrounded by red, we still want to identify it as a [tumor cell / object

of interest].

In order to ensure that you’ve located all [tumor cells / objects of interest], you should use the

thumbnail view in the top right. You can also use the magnification buttons to zoom out.

It looks like we missed a cluster of [tumor cells / objects of interest] at the bottom. Let’s go identify

those points.

Remember once again, that if you click on something that is not a [tumor cell / object of interest],

you can unclick by right-clicking.

Using the scroll bars, we’ll navigate to the other points ... and here’s some more to the left ... Now

that we think we’ve identified all points, let’s zoom out to be sure and scroll around.

Before submitting, we should be sure of three things: (1) That we’ve identified all [tumor cells /

objects of interest] (2) That we’ve clicked in the center of each one (3) That we haven’t clicked on
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anything that’s not a [tumor cell / object of interest].

Once we’ve done that, we’re ready to submit.

Finally, after you complete your first image, you’ll have an opportunity to label additional images as

part of this HIT.

The first images you label will pay more to compensate for training.

After that, as part of this HIT you’ll have the chance to identify as many additional images as you

like as long as you aren’t taking more than 15 minutes per image.

Although you can label unlimited images in this HIT, you won’t be able to accept more HITs. This

is to give a variety of turkers an opportunity to identify the images.

[Thank you for your time and effort. Advances in the field of cancer and treatment prevention rely

on the selfless contributions of countless individuals such as yourself.]

Then, workers must take a quiz (see Figure A.6). During the quiz, they can watch

the video freely (which was rarely done).

Upon passing, they began labeling their first image (see Figure A.7). The training

interface includes the master training window where workers can create and delete

points and scroll across the entire image. To the left, there is a small image displaying

example tumor cells. Above the master window, they have zoom in / out buttons.

And on the top right there is a thumbnail view of the overall image.

Participants were given 15 minutes to mark an image. Above the training win-

dow, we displayed a countdown timer that indicated the amount of time left. The

participant’s total earnings was also prominently displayed atop. On the very top,

we provided a submit button that allowed the worker to submit results at any time.

Each image had the same 90 cells from various-sized clusters. The cell clusters were

selected for their unambiguous examples of cells, thereby eliminating the difficulty of

training the difficult-to-identify tumor cells. In each image, the same clusters were

arranged and rotated haphazardly, then pasted on one of five different believable

backgrounds using Adobe Photoshop. Those clusters were then further rotated to

create a set of ten images. This setup guarantees that the difficulty was relatively the

same image-image. Images were displayed in random order for each worker, repeating
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Figure A.6: The quiz after watching the training video for the meaningful treatment.

In the zero-context and shredded treatments, all mention of “tumor cells” are replaced

by “objects of interest.” The shredded treatment has an additional question asking

them to acknowledge that they are working on a test system and their work will be

discarded. Green indicates a correct response; red indicates an incorrect response.
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(a) Zero-context / Shredded treatments (b) Meaningful treatment

Figure A.7: The training interface as seen by workers. The meaningful interface re-

minds the subjects in 8 places that they are identifying tumor cells. The zero-context

interface only says “objects of interest” and the shredded condition in addition has a

message in red indicating that their points will not be saved (unshown). The circles

around each point were not visible to participants. We display them to illustrate the

size of a 10-pixel radius.

after each set of ten (repetition was not an issue since it was rare for a participant to

label more than ten).

After the worker is finished labeling, the worker presses submit and they are led

to an intermediate page which asks if they would like to label another image and the

new wage is prominently displayed (see Figure A.8). In the meaningful treatment,

we add one last cue of meaning — a stock photo of a researcher to emphasize the

purpose of the task. In the shredded treatment, we append the text “NONE of your

points will be saved because we are testing our system, but you will still be paid.” If

the worker wishes to continue, they are led to another labeling task; otherwise, they

are directed to the post manipulation check survey shown in figure A.9.

The program ensures that the worker is being honest. We require them to find

more than 20% of the cells (the workers were unaware that we were able to monitor

their accuracy). If they are found cheating on three images, they are deemed fraud-
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ulent and not allowed to train more images. Since payment is automatic, this is to

protect us from a worker depleting our research account. In practice, this happened

rarely and was not correlated with treatment.

(a) Zero-context / Shredded treatments (b) Meaningful treatment

Figure A.8: The landing page after a labeling task is completed. At this point,

workers are asked if they’d like to label another image or quit and be paid what

they’ve earned so far.

The majority of data (70%) was collected over three days (January 5-8, 2010).

However, since Indians in our sample had high attrition, we collected the remaining

30% from January 29 - February 2. In order to be balanced on time-of-day, we posted

tasks so that the local time in the US and India would be as similar as possible. TK

-we don’t need this anymore, it’s not common to talk about dates of data collection

anyway.
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Figure A.9: The survey a subject fills out upon completion of the task.
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A.1.2 A Technical Guide to Running Field Experiments on
Mechanical Turk

Institutional Review Board (IRB) Requirements

This study requires the use of deception in order to observe social preferences in a

natural environment and thus is not exempted under category 2’s survey procedures.

The issue is you cannot give the subjects an initial consent form indicating that they

are part of an experiment.

Upon waiving the requirement of consent, the IRB will most likely require you

to issue a debrief statement to your subjects stating that they were part of an ex-

periment, a blurb about the purpose of the experiment, and contact information to

your institution’s IRB. In order for the experiment to work properly, you can only

issue the debriefing after data collection is completed. Otherwise, MTurk subjects

can communicate to each other that this is a study and this may be a problem for

internal validity.

Engineering Required

The implementation of an experiment of similar scale to the one we describe in the

paper requires no more than two weeks of full-time work for an experienced software

engineer.

It is critical that the engineer be fluent in “front-end” design. The front-end

is what your subjects will use throughout the experiment and it can be highly dy-

namic, responding to the individual participant’s actions. MTurk tasks are rendered

in HTML and CSS. Javascript controls the dynamism and AJAX provides smooth

client-server communication. Although not used in this study, the front-end can be-

come even more fancy by implementing Adobe Flash or Microsoft Silverlight applets.
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An MTurk experiment also requires a back-end web stack consisting of an http

server, a database, and a server-side platform. The back-end’s function is to render

webpages and store the experiment’s data. We recommend Ruby on Rails 3.1 because

of its rapid development speed, inexpensive and instant deployment to rented space

in “the Cloud,” and because it is free and open-source.

Since the server must communicate with MTurk, it is convenient for the engineer

to also have experience using the Amazon web services application programming

interface (MTurk’s API) as well as CRON jobs on Linux.

We recommend setting up two cron jobs for effective experimentation:

(a) A CRON that creates HITs every 15 minutes. In order for subjects to see your

task, it must remain fresh on Amazon’s main page. Creating tasks every 15 min

with short expiration times (an hour or so) will allow for maximum throughput.

(b) Another CRON that automatically pays workers. We recommend doing this

every hour or so. It’s important that this be done automatically including the

bonuses and rejections otherwise it will be cumbersome for the experimenter to

check through each and every assignment.

Apart from technical skills, the engineer should also have knowledge of the prin-

ciples of experimental design.

A.1.3 Instructions for Replication of this Study

(a) Obtain the source from http://github.com/kapelner/breaking_monotony.

(b) Create a Ruby on Rails hosting account on EngineYard cloud at

http://cloud.engineyard.com and configure for Rails 3.1.

(c) Modify the PersonalInformation.rb file by adding your MTurk account in-

formation, server IP address, and the administrator login and password.
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(d) Deploy the application and setup the two CRON jobs recommended in the

previous section.
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A.2 Supplement for Chapter 4

A.2.1 Demographics Questions

Questions and answer choices will be displayed in random order to reduce possible

satisficing bias. The fade-in a la Kapelner and Chandler (2010) will not be used

here to reduce burden to the subject. Questions marked “NFC” are a subset of the

“need for cognition” survey, a scale which measures to what degree subjects desire

to think abstractly and expend mental effort (see Cacioppo et al., 1984). Questions

marked “BIG5” measure attributes on the well-accepted NEO five-factor model of

personality traits (see McCrae and Costa, 1987); we employ a highly modified survey

that includes only one question per factor.

1) Age (natural number ≥ 18)

2) Gender (binary: 1 for male)

3) Urban or Rural location (binary: 1 for urban)

4) Highest Education Attainment (categorical: high school, some college, bachelors,

masters, doctorate)

5) Marital Status (categorical: married, divorced, single, widowed, in a relationship)

6) Employment Status (categorical: full-time, part-time, self-employed, unemployed)

7) Number of children (natural number)

8) Annual Personal Income (approximated to the nearest dollar)

9) Religion by Birth (categorical: Protestant Christian, Roman Catholic, Evangelical

Christian, Jewish, Muslim, Hindu, Buddhist, Other)
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10) Belief in a divine being (binary: 1 for belief)

11) Race (categorical: White, Hispanic, Black, Asian, Native American, Other)

12) Would you want to participate in an academic study? (binary: 1 for participate)

13) NFC: I prefer my life to be filled with puzzles I must solve (binary: 1 for prefer)

14) NFC: It’s enough for me that something gets the job done; l I don’t care how or

why it works (binary: prefer)

15) BIG5: I am more (i) inventive and curious (ii) consistent and cautious (binary: 1

for i)

16) BIG5: I am more (i) efficient and organized (ii) easy-going and more careless

(binary: 1 for i)

17) BIG5: I am more (i) outgoing and energetic (ii) solitary and reserved (binary: 1

for i)

18) BIG5: I am more (i) friendly and compassionate (ii) cold and unkind (binary: 1

for i)

19) BIG5: I am more (i) sensitive and nervous (ii) secure and confident (binary: 1 for

i)

A.2.2 Experimental Covariates

In addition to the demographic questions, we will also collected as much information

as we could during the experiment about subject behavior:

1) Time (in seconds) it takes the subject to accept the HIT and begin the task.

2) Time (in seconds) it takes for the subject to fill in the demographic questions.
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3) Time (in seconds) it takes the subject to do the experimental question.

4) Number of page reloads on the experimental question.

5) Number of characters in the free-response comments box after the experiment is

completed.

A.2.3 Full Text of the Studies

Below is the full text of each of the studies. Text displayed for subjects in the

treatment group is colored red and text displayed for subjects in the control group is

colored green.

(a) Framing Study

You are lying on the beach on a hot day. All you have to drink is ice water. For

the last hour you have been thinking about how much you would enjoy a nice

cold bottle of your favorite brand of beer.

A companion gets up to go make a phone call and offers to bring back a beer

from the only nearby place where beer is sold, a fancy resort hotel / a small,

run-down grocery store

He says that the beer might be expensive and so asks how much you are willing

to pay for the beer. He says that he will buy the beer if it costs as much or less

than the price you state. But if it costs more than the price you state he will not

buy it.

You trust your friend, and there is no possibility of bargaining with the bar-

tender. / store owner. What price do you tell him?

(b) Priming Study
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As Jesus started on his way, a man ran up to him and fell on his knees

before him. “Good teacher,” he asked, “what must I do to inherit

eternal life?”

“Why do you call me good?” Jesus answered. “No one is good-except

God alone. You know the commandments: You shall not murder, you

shall not commit adultery, you shall not steal, you shall not give false

testimony, you shall not defraud, honor your father and mother.”

“Teacher,” he declared, “all these I have kept since I was a boy.”

Jesus looked at him and loved him. “One thing you lack,” he said.

“Go, sell everything you have and give to the poor, and you will have

treasure in heaven. Then come, follow me.”

At this the man’s face fell. He went away sad, because he had great

wealth.

Jesus looked around and said to his disciples, “How hard it is for the

rich to enter the kingdom of God!”

Some species of fish are viviparous. In such species the mother retains

the eggs and nourishes the embryos. Typically, viviparous fish have

a strucure analogous to the placenta seen in mammals connecting the

mother’s blood supply with that of the embryo.

Examples of viviparous fish include the surf-perches, spltfins, and lemon

shark. Some viviparous fish exhibit oophagy, in which the develop-

ing embryos eat other eggs produced by the mother. This has been

observed primarily among sharks, such as the shortfin mako and por-

beagle, but is known for a few bony fish as well, such as the halfbeak

Nomorhamphus ebrardtii.

Intrauterine canniblism is an even more unusual mode of vivipary, in
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which the largest embryos eat weaker and smaller siblings. This be-

havior is also most commonly found among sharks, such as the grey

nurse shark, but has also been reported for Nomorhamphus ebrardtii.

Aquarists commonly refer to ovoviviparous and viviparous fish as live-

bearers although they are known by other colloquial names as well.

You have just been randomly paired with another Turker. He or she is seeing the

same thing you are right now and you can choose to cooperate with each other or

not to cooperate. If both of you choose to cooperate, you will both be awarded

a bonus of 10 cents.

However, if you choose to cooperate and the other person doesn’t, you make a

bonus of 20 cents and the other person gets nothing.

If you both choose to not cooperate with each other at the same time, you both

will get 4 cents as a bonus.

Would you like to cooperate with this other person?”

(c) Sunk Cost

You paid handsomely for tickets / Your friend gave you tickets for free

for a theater production that received rave reviews. You’ve been wanting to see

this show for quite some time and it only plays once in your city.

However, during the night of the show, the weather turned for the worst. There’s

heavy rain and some hail. Your city’s mayor is not recommending anyone drive on

the roads. Despite the inclement weather, the show is still going to be performed.

How likely are you to go? 0 means “you’re not going” and 9 means “you’re defi-

nitely going” while 5 would mean that “you’re unsure about going.”
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A.3 Supplement for Chapter 5

An additional strategy is to match after the experiment has completed. We choose

to dynamically allocate using the stratification procedure found in Section 3. Once

all n subjects are allocated, we then calculate all
(
n
2

)
Mahalanobis-squared distances

according to Equation 2. Note that we have the luxury here of using all n subjects

to calculate S−1. Then, using the Fp,n−p approximation, we convert the squared

distances to nominal probabilities. We then use λ as a cutoff: if the probability

distance between two subjects is greater than λ, we set this distance to ∞. We then

use Hansen and Klopfer (2006)’s optmatch package in R to do an optimal matching

based on this enhanced distance matrix. The optimal matches found become the

matched data and the data that was not optimally matched becomes the unmatched

data. The unmatched data is the analogue of the reservoir during the on-the-fly

matching as explained in Section 2.2. Using these two subsets of the data, we can

now generate estimates according to Equations 4 and 6. Over many repeated samples,

we can estimate power, just like among the other competitors.

Figures A.10 to A.17 show the power results of Section 3’s simulations for many

different values of λ. We include the post-matching results in these figures under

“SPM.”

Table A.1 displays results for bias including post-matching results.
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Sample Average Absolute Bias

Allocation Scenario NL Scenario LI Scenario ZE

n Method Classic Linear Classic Linear Classic Linear

50

CR 0.704 0.635 0.752 0.404 0.402 0.395

Efron’s BCD 0.685 0.654 0.730 0.395 0.391 0.412

Stratification 0.612 0.556 0.509 0.395 0.380 0.385

Minimization 0.618 0.601 0.519 0.392 0.387 0.382

Seq. Matching 0.466 0.466 0.478 0.434 0.418 0.455

Seq. Post Matching 0.552 0.552 0.504 0.419 0.400 0.427

100

CR 0.515 0.454 0.530 0.287 0.280 0.283

Efron’s BCD 0.502 0.447 0.534 0.279 0.285 0.282

Stratification 0.427 0.409 0.362 0.270 0.276 0.277

Minimization 0.441 0.424 0.340 0.275 0.278 0.277

Seq. Matching 0.318 0.322 0.324 0.298 0.286 0.295

Seq. Post Matching 0.388 0.420 0.350 0.295 0.272 0.291

200

CR 0.369 0.321 0.376 0.198 0.196 0.193

Efron’s BCD 0.340 0.321 0.379 0.201 0.197 0.195

Stratification 0.304 0.284 0.255 0.197 0.196 0.198

Minimization 0.315 0.299 0.240 0.194 0.193 0.196

Seq. Matching 0.210 0.221 0.210 0.199 0.195 0.207

Seq. Post Matching 0.290 0.313 0.242 0.200 0.198 0.194

Table A.1: Average absolute bias of sequential matching and post matching using

stratification to allocate versus competitors by scenario and testing procedure. Both

matching methods used λ = 0.10 (other values yielded similar results) and the Z

approximation of Equations 4 and 6. Exact tests are not shown because they do not

admit an estimate, only a p value.
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(g) Scen ZE, Classic Test
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(h) Scen ZE, Linear Test
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(i) Scen ZE, Exact Test

Figure A.10: Power illustrated for matching parameter λ = 1%. We also include the

post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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(g) Scen ZE, Classic Test
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(h) Scen ZE, Linear Test
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(i) Scen ZE, Exact Test

Figure A.11: Power illustrated for matching parameter λ = 2.5%. We also include

the post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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(g) Scen ZE, Classic Test
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(h) Scen ZE, Linear Test
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(i) Scen ZE, Exact Test

Figure A.12: Power illustrated for matching parameter λ = 5%. We also include the

post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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Figure A.13: Power illustrated for matching parameter λ = 7.5%. We also include

the post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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Figure A.14: Power illustrated for matching parameter λ = 10%. We also include

the post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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Figure A.15: Power illustrated for matching parameter λ = 20%. We also include

the post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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Figure A.16: Power illustrated for matching parameter λ = 35%. We also include

the post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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Figure A.17: Power illustrated for matching parameter λ = 50%. We also include

the post matching procedure of Appendix A.3 as “SPM.” See paper, Figure 1 for full

caption information.
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A.4 Supplement for Chapter 8

A.4.1 Sampling New Trees

This section provides details on the implementation of Equation A.7 (steps 1, 3,

. . . , 2m − 1), the Metropolis-Hastings step for sampling new trees. Recall from

Section 8.2.2 that trees can be altered via growing new daughter nodes from an

existing terminal node, pruning two terminal nodes such that their parent becomes

terminal, or changing the splitting rule in a node.

Below is the Metropolis ratio (Gelman et al., 2004, p.291) where the parameter

sampled is the tree and the data is the responses unexplained by other trees denoted

byR. We denote the new, proposal tree with an asterisk and the original tree without

the asterisk.

r =
P
(
i∗ → i

)
P
(
i → i∗

) P
(
i∗ | R, σ2

)
P
(
i | R, σ2

) (A.1)

We accept a draw from the posterior distribution of trees if a draw from a standard

uniform distribution is less than the value of r. Immediately we note that it is difficult

(if not impossible) to calculate the posterior probabilities for the trees themselves.

Instead, we employ Bayes’ Rule,

P
(
i | R, σ2

)
=

P
(
R | i, σ2

)
P
(
i | σ2

)
P (R | σ2)

,

and plug the result into Equation A.15 to obtain:
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r =
P
(
i∗ → i

)
P
(
i → i∗

)
︸ ︷︷ ︸
transition ratio

×
P
(
R | i∗, σ2

)
P
(
R | i, σ2

)
︸ ︷︷ ︸

likelihood ratio

×
P
(
i∗
)

P
(
i
)

︸ ︷︷ ︸
tree structure ratio

.

Note that the probability of the tree structure is independent of σ2.

The goal of this section is to explicitly calculate r for all possible tree proposals

— GROW, PRUNE and CHANGE. For each proposal, the calculations are organized

into separate sections detailing each of the three ratios — transition, likelihood and

tree structure. Note that our actual implementation uses the following expressions in

log form for numerical accuracy.

A.4.2 Grow Proposal

Transition Ratio

Transitioning from the original tree to a new tree involves growing two daughter nodes

from a current terminal node:

P
(
i → i∗

)
= P (GROW)P (selecting η to grow from)× (A.2)

P (selecting the jth attribute to split on)×

P (selecting the ith value to split on)

= P (GROW)
1

b

1

padj(η)

1

nj·adj(η)
.

We chose one of the current b terminal nodes which we denote the ηth node, and

then we pick an attribute and split point. padj(η) denotes the number of predictors

left available to split on. This can be less than p if certain predictors do not have
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two or more unique values once the data reaches the ηth node. For example, this

regularly occurs if a dummy variable was split on in some node higher up in the

lineage. nj·adj(η) denotes the number of unique values left in the pth attribute after

adjusting for parents’ splits.

Transitioning from the new tree back to the original tree involves pruning that

node:

P
(
i∗ → i

)
= P (PRUNE)P (selecting η to prune from) = P (PRUNE)

1

w∗2

where w∗2 denotes the number of second generation internal nodes (nodes with two

terminal daughter nodes) in the new tree. Thus, the full transition ratio is:

P
(
i∗ → i

)
P
(
i → i∗

) =
P (PRUNE)

P (GROW)

b padj(η) nj·adj(η)

w∗2
.

Note that when there are no variables with more two or more unique values, the

probability of GROW is set to zero and the step will be automatically rejected.

Likelihood Ratio

To calculate the likelihood, the tree structure determines which responses fall into

which of the b terminal nodes. Thus,

P
(
R1, . . . , Rn | i, σ2

)
=

b∏
`=1

P
(
R`1 , . . . , R`n`

| σ2
)

where each term on the right hand side is the probability of responses in one of the

b terminal nodes, which are independent by assumption. The R`’s denote the data
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in the `th terminal node and where n` denotes how many observations are in each

terminal node and n =
∑b

`=1 n`.

We now find an analytic expression for the node likelihood term. Remember, if

the mean in each terminal node, which we denote µ`, was known, then we would have

R`1 , . . . , R`n`
|µ`, σ2 iid∼ N (µ`, σ

2). BART requires µ` to be margined out, allowing

the Gibbs sampler in Equation A.7 to avoid dealing with jumping between continuous

spaces of varying dimensions (Chipman et al., 2010, page 275). Recall that one of the

BART model assumptions is a prior on the average value of µ ∼ N
(
0, σ2

µ

)
and thus,

P
(
R`1 , . . . , R`n`

| σ2
)

=

∫
R
P
(
R`1 , . . . , R`n`

| µ`, σ2
)
P
(
µ`;σ

2
µ

)
dµ`

which can be shown via completion of the square or convolution to be

P
(
R`1 , . . . , R`n`

| σ2
)

=
1

(2πσ2)n`/2

√
σ2

σ2 + n`σ2
µ

× (A.3)

exp

(
− 1

2σ2

(
n∑̀
i=1

(
R`i − R̄`

)2 − R̄2
`n

2
`

n` + σ2

σ2
µ

+ n`R̄
2
`

))

where R̄` denotes the mean response in the node and R`i denotes the observations

i = 1 . . . n` in the node.

Since the likelihoods are solely determined by the terminal nodes, the proposal

tree differs from the original tree by only the selected node to be grown, denoted by

`, which becomes two daughters after the GROW step denoted by `L and `R. Hence,

the likelihood ratio becomes:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =
P
(
R`L,1 , . . . , R`L,n`,L

| σ2
)
P
(
R`R,1 , . . . , RR,`n`,R

| σ2
)

P
(
R`1 , . . . , R`n`

| σ2
) (A.4)
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Plugging Equation A.16 into Equation A.17 three times yields the ratio for the

GROW step:

√
σ2
(
σ2 + n`σ2

µ

)(
σ2 + n`Lσ

2
µ

) (
σ2 + n`Rσ

2
µ

) exp

 σ2
µ

2σ2


(∑n`L

i=1 R`L,i

)2

σ2 + n`Lσ
2
µ

+

(∑n`R
i=1 R`R,i

)2

σ2 + n`Rσ
2
µ

−
(
∑n`

i=1R`,i)
2

σ2 + n`σ2
µ




where n`L and n`R denote the number of data points in the newly grown left and right

daughter nodes.

Tree Structure Ratio

In Section 8.2.1 we discussed the prior on the tree structure (where the splits occur)

as well as the tree rules. For the entire tree,

P
(
i
)

=
∏

η∈Hterminals

(1− PSPLIT (η))
∏

η∈Hinternals

PSPLIT (η)
∏

η∈Hinternals

PRULE (η)

where Hterminals denotes the set of terminal nodes and Hinternals denotes the internal

nodes.

Recall that the probability of splitting on a given node η is PSPLIT (η) = α/ (1 + dη)
β.

The probability is controlled by two hyperparameters, α and β, and dη is the depth

(number of parent generations) of node η. When assigning a rule, recall that BART

picks from all available attributes and then from all available unique split points. Us-

ing the notation from the transition ratio section, PRULE (η) = 1/padj(η)×1/nj·adj(η).

Once again, the original tree features a node η that was selected to be grown. The

proposal tree differs with two daughter nodes denoted ηL and ηR. We can now form

the ratio:
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P
(
i∗
)

P
(
i
) =

(1− PSPLIT (ηL)) (1− PSPLIT (ηR))PSPLIT (η)PRULE (η)

(1− PSPLIT (η))

=

(
1− α

(1 + dηL)β

)(
1− α

(1 + dηR)β

)
α

(1 + dη)
β

1

padj(η)

1

nj·adj(η)

1− α

(1+dη)β

= α

(
1− α

(2+dη)β

)2(
(1 + dη)

β − α
)
padj(η)nj·adj(η)

The last line follows from algebra and using the fact that the depth of the grown

nodes is the depth of the parent node incremented by one (dηL = dηR = dη + 1).

A.4.3 Prune Proposal

A prune proposal is the “opposite” of a grow proposal. Prune selects a node with

two daughters and removes them. Thus, each ratio will be approximately the inverse

of the ratios found in the previous section concerning the grow proposal. Note also

that prune steps are not considered in trees that consist of a single root node.

Transition Ratio

We begin with transitioning from the original tree to the proposal tree:

P
(
i → i∗

)
= P (PRUNE)P (selecting η to prune from) = P (PRUNE)

1

w2

where w2 denotes the number of parent nodes that have two daughters but no grand-

daughters. To transition in the opposite direction, we are obligated to grow from node

η. This is similar to Equation A.2 except the proposed tree has one less terminal node
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due to the pruning of the original tree, resulting in a 1/(b− 1) term:

P
(
i∗ → i

)
= P (GROW)

1

b− 1

1

padj(η∗)

1

nj∗·adj(η∗)
.

Thus, the transition ratio is:

P
(
i∗ → i

)
P
(
i → i∗

) =
P (GROW)

P (PRUNE)

w2

(b− 1)padj(η∗)nj∗·adj(η∗)
.

Likelihood Ratio

This is simply the inverse of the likelihood ratio for the grow proposal:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =

√(
σ2 + n`Lσ

2
µ

) (
σ2 + n`Rσ

2
µ

)
σ2
(
σ2 + n`σ2

µ

) ×

exp

 σ2
µ

2σ2

(∑n`
i=1R`,i

)2

σ2 + n`σ2
µ

−

(∑n`L
i=1 R`L,i

)2

σ2 + n`Lσ
2
µ

−

(∑n`R
i=1 R`R,i

)2

σ2 + n`Rσ
2
µ


 .

Tree Structure Ratio

This is also simply the inverse of the tree structure ratio for the grow proposal:

P
(
i∗
)

P
(
i
) =

(
(1 + dη)

β − α
)
padj(η

∗)nj∗·adj(η
∗)

α
(

1− α

(2+dη)β

)2 .

251



A.4.4 Change

A change proposal involves picking an internal node and changing its rule by picking

both a new available predictor to split on and a new valid split value among values

of the selected predictor. Although this could be implemented for use in any internal

node in the tree, for simplicity we limit our implementation to singly internal nodes:

those that have two terminal daughter nodes and thus, no grand-daughters.

Transition Ratio

The transition to a proposal tree is below:

P
(
i → i∗

)
= P (CHANGE)P (selecting node η to change)×

P (selecting the new attribute to split on)×

P (selecting the new value to split on)

When calculating the ratio, the first three terms are shared in both numerator

and denominator. The probability of selecting the new value to split on will differ as

different split features have different numbers of unique values available. Thus we are

left with

P
(
i∗ → i

)
P
(
i → i∗

) =
nj∗·adj(η

∗)

nj·adj(η)

where nj∗·adj(η
∗) is the number of split values available under the proposal tree’s

splitting rule and nj·adj(η) is the number of split values available under the original

tree’s splitting rule.
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Likelihood Ratio

The proposal tree differs from the original tree only in the two daughter nodes of

the selected change node. These two terminal nodes have the unexplained responses

apportioned differently. Denote R1· as the residuals of the first daughter node and

R2· as the unexplained responses in the second daughter node. Thus we begin with:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =
P (R1∗,1, . . . , R1∗,n1∗ | σ2)P (R2∗,1, . . . , R2∗,n2∗ | σ2)

P (R1,1, . . . , R1,n1 | σ2)P (R2,1, . . . , R2,n2 | σ2)

where the responses denoted with an asterisk are the responses in the proposal tree’s

daughter nodes.

Substituting Equation A.16 four times and using algebra, the following expression

is obtained for the ratio:

√√√√√
(
σ2

σ2
µ

+ n1

)(
σ2

σ2
µ

+ n2

)
(
σ2

σ2
µ

+ n∗1

)(
σ2

σ2
µ

+ n∗2

) ×
exp

(
1

2σ2

(
(
∑n1∗

i=1R1∗,i)
2

n1∗ + σ2

σ2
µ

+
(
∑n2∗

i=1 R2∗,i)
2

n2∗ + σ2

σ2
µ

− (
∑n1

i=1R1,i)
2

n1 + σ2

σ2
µ

− (
∑n2

i=1R2,i)
2

n2 + σ2

σ2
µ

))

which simplifies to

exp

(
1

2σ2

(
(
∑n1∗

i=1 R1∗,i)
2 − (

∑n1∗
i=1R1,i)

2

n1 + σ2

σ2
µ

+
(
∑n1∗

i=1R2∗,i)
2 − (

∑n1∗
i=1 R2,i)

2

n2 + σ2

σ2
µ

))

if the number of responses in the children do not change in the proposal (n1 = n∗1

and n2 = n∗2).
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Tree Structure Ratio

The proposal tree has the same structure as the original tree. Thus we only need to

take into account the changed node’s daughters:

P
(
i∗
)

P
(
i
) =

(1− PSPLIT (η1∗)) (1− PSPLIT (η2∗))PSPLIT (η∗)PRULE (η∗)

(1− PSPLIT (η1) (1− PSPLIT (η2)))PSPLIT (η)PRULE (η)
.

The probability of splits remain the same because the daughter nodes are at the

same depths. Thus we only need to consider the ratio of the probability of the rules.

Once again, the probability of selecting the new value to split on will differ as different

split features have different numbers of unique values available. We are left with

P
(
i∗
)

P
(
i
) =

nj·adj(η)

nj∗·adj(η∗)
.

Note that this is the inverse of the transition ratio. Hence, for the change step,

only the likelihood ratio needs to be computed to determine the Metropolis-Hastings

ratio r.

A.4.5 Bakeoff

We baked off nine regression data sets and assessed out-of-sample RMSE using 10-fold

cross-validation. The results are displayed in Table A.2.

We conclude that the implementation outlined in this paper performs approxi-

mately the same as the previous implementation with regards to predictive accuracy.
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Dataset Name bartMachine BayesTree randomForest

boston 4.66 4.59 4.58

triazine 0.04* 0.05 0.04

ozone 48.02 47.75 48.77

baseball 0.02 0.02* 0.02

wine.red 0.73 0.69* 0.76

ankara 2.62 2.61 3.46

wine.white 0.49 0.49 0.54

pole 4.00 3.65 11.56

compactiv 46.17* 47.92 40.74

Table A.2: Average of 20 replicates of out-of-sample RMSE values on 9 datasets

using three machine learning algorithms. Asterisks indicate a significant difference

between bartMachine and BayesTree at a significance level of 5% with a Bonferroni

correction. Comparisons with randomForest’s performance were not conducted.
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A.5 BART for Panel Data

Sometimes data is collected in a panel, meaning the n observations are collected from

w people or “workers” (the usual notation is m but this is being used for number

of trees in the BART setup). Many times all observations for a given worker have

things in common, i.e. they are correlated. The higher the correlation, the closer

the effective sample size is to w and not n. The lower the correlation, the closer the

sample size is to n and not w. The goal of this project is to create BART models

that can account for these correlations.

A.5.1 The Updated Model

Denote n1, n2, . . . , nw as the number of observations collected from all w workers

(n =
∑w

q=1 nq). We further assume that each worker’s submissiong are exchangable

meaning there is no time dependency. And further, we assume each worker shares

the same correlation. The BART model now becomes:

Y = f(X) + E ≈ i
l

1 (X) + i
l

2 (X) + . . .+ i
l

m(X) + E, E ∼ Nn
(
0, σ2B

)
(A.5)

where X is the n × p design matrix sorted by from the first worker’s contributions

to the last worker’s contribution and B is a block diagonal matrix with the blocks

being intraclass correlation matrices of dimensions n1, n2, . . . , nw:

B :=



Dn1 0 · · · 0

0 Dn2 · · · 0

...
...

. . .
...

0 0 · · · Dnw


where

256



Dnq :=



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


nq

= ρ(Jnq − Inq) + Inq (A.6)

Thus, we need to just update the Gibbs sampler to sample for ρ and update the

likelihood calculations.

A.5.2 The Update Metropolis-within-Gibbs Sampler

The new Gibbs sampler is below and we spend the rest of the section going over each

piece that has changed.

1 : i1 | R−1, σ
2, ρ (A.7)

2 : l1 | i1,R−1, σ
2, ρ

3 : i2 | R−2, σ
2, ρ

4 : l2 | i2,R−2, σ
2, ρ

...

2m− 1 : im | R−m, σ2, ρ

2m : lm | im,R−m, σ2, ρ

2m+ 1 : σ2 | i1,l1, . . . ,im,lm,E, ρ

2m+ 2 : ρ | i1,l1, . . . ,im,lm,E, σ
2

We now tackle each posterior sampling in its own subsection.
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A.5.2.1 Posterior Sampling of lt

The posterior lt | it,R−t, σ2, ρ is actually a compound step sampling µ` for all

` = 1, . . . , b terminal nodes in the tree, µ` | R−t,`, σ2, ρ. In the standard Bayesian

setup, we have:

P
(
µ` | R−t,`, σ2, ρ

)
∝ P

(
R−t,` | µ`, σ2, ρ

)︸ ︷︷ ︸
likelihood

P
(
µ`;σ

2
µ

)︸ ︷︷ ︸
prior

The likelihood is multivariate normal sharing the same mean and the prior is

univariate normal. Let µ` := µ`1n`

P
(
µ` | R−t,`, σ2, ρ

)
∝ Nn`

(
µ`, σ

2B`

)
N
(
0, σ2

µ

)
=

1

(2π)n`/2 |σ2B`|1/2
exp

(
−1

2
(R−t,` − µ`)

> (σ2B`

)−1
(R−t,` − µ`)

)
×

1√
2πσ2

µ

exp

(
− 1

2σ2
µ

µ2
`

)

∝ exp

−1

2

︷ ︸︸ ︷(
1

σ2
(R−t,` − µ`)

>B−1
` (R−t,` − µ`)︸ ︷︷ ︸+

1

σ2
µ

µ2
`

)
The underbraced above is a quadratic form which can be written as:

(R−t,` − µ`)
>B−1

` (R−t,` − µ`) =

n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri − µ`)(rj − µ`)

where b−1
`,ij is the i, jth entry of B−1

` and ri is the ith entry of R−t,`. Rewriting

everything inside the overbraced terms, we find:

1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ijrirj −

1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ijriµ` −

1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ijrjµ` +

1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ijµ

2
` +

1

σ2
µ

µ2
`
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We now collect terms to arrive at the coefficients for a quadratic equation:

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)
︸ ︷︷ ︸

a

µ2
` +

(
− 1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

)
︸ ︷︷ ︸

b

µ`

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ijrirj︸ ︷︷ ︸

c

(A.8)

We can safely ignore c since within the proportionality of the posterior, this term

does not depend on our parameter of interest µ`. In order to complete the square,

we need the above form to look like d(µ` − e)2 which means d = a and e = − b
2a

(the d2 term can be safely ignored since it is not a function of µ` and disappears as

a proportionality constant). Thus, we arrive at:

P
(
µ` | R−t,`, σ2, ρ

)
∝ exp

(
−1

2
a

(
µ` −

(
− b

2a

))2
)
∝ N

(
− b

2a
,

1

a

)

= N


1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

2

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

) , 1

1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij



We can further simplify this expression. If we organize the elements of R−t,`

by worker, then since all workers are independent, we can add their contributions

together because the elements of B−1 are zeroes outside of a common worker’s rows

and columns.
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µ` | R−t,`, σ2, ρ ∼ N


1

σ2

w∑
q=1

n`q∑
i=1

n`q∑
j=1

d−1
`q ,ij

(ri + rj)

2

 1

σ2
µ

+
1

σ2

w∑
q=1

n`q∑
i=1

n`q∑
j=1

d−1
`q ,ij

 ,
1

1

σ2
µ

+
1

σ2

w∑
q=1

n`q∑
i=1

n`q∑
j=1

d−1
`q ,ij

 (A.9)

The notation n`q refers to the number of the qth worker in the `th node. The

notation d−1
`q ,ij

is the i, jth term of the qth diagonal matrix in B (see Equation A.6).

Each of the matrices D is an “equicorrelation matrix” whose inverse is:

D−1
n`q

=
1

1− ρ
In`q +− ρ

(1− ρ)(1 + (n`q − 1)ρ)
Jn`q

⇒ d−1
`q ,ij

=


− ρ

(1− ρ)(1 + (n`q − 1)ρ)
+

1

1− ρ
when i = j

− ρ

(1− ρ)(1 + (n`q − 1)ρ)
when i 6= j

Now we can simplify some of the terms in the normal notation:

n`q∑
i=1

n`q∑
j=1

d−1
`q ,ij

= n`q

(
1

1− ρ

)
+ n`

2
q

(
− ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
=

n`q
1− ρ

(
1−

n`qρ

1 + (n`q − 1)ρ

)
=

n`q
1− ρ

(
1 + (n`q − 1)ρ

1 + (n`q − 1)ρ
−

n`qρ

1 + (n`q − 1)ρ

)
=

n`q
1− ρ

1− ρ
1 + (n`q − 1)ρ

=
n`q

1 + (n`q − 1)ρ
(A.10)

Now we consider the term
∑n`q

i=1

∑n`q
j=1 d

−1
`q ,ij

(ri + rj). On the diagonal we have:
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n∑
i=1

(
1

1− ρ
− ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
(ri + ri)

= 2n`q

(
1

1− ρ
− ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
r̄q

On the off-diagonal we have:

∑
i 6=j

− ρ

(1− ρ)(1 + (n`q − 1)ρ)
(ri + rj) = −2

(
ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
(n`q − 1)n`qr̄q

Adding these two together we have:

n`q

(
1

1− ρ
− ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
r̄q −

2

(
ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
(n`q − 1)n`qr̄q

= 2n`qr̄q

(
1

1− ρ
− ρ

(1− ρ)(1 + (n`q − 1)ρ)
− (n`q − 1)

ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
= 2n`qr̄q

(
1

1− ρ
− n`q

ρ

(1− ρ)(1 + (n`q − 1)ρ)

)
= 2n`qr̄q

1

1− ρ

(
1− n`q

ρ

1 + (n`q − 1)ρ

)
= 2n`qr̄q

1

1− ρ

(
1− ρ

1 + (n`q − 1)ρ

)
=

2n`qr̄q
1 + (n`q − 1)ρ

=
2
∑n`q

i=1 ri
1 + (n`q − 1)ρ

(A.11)

Thus, our posterior sampling becomes:
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P
(
µ` | R−t,`, σ2, ρ

)
= N


1

σ2

w∑
q=1

∑n`q
i=1 ri

1 + (n`q − 1)ρ

1

σ2
µ

+
1

σ2

w∑
q=1

n`q
1 + (n`q − 1)ρ

,
1

1

σ2
µ

+
w∑
q=1

n`q
1 + (n`q − 1)ρ



A.5.2.2 Posterior Sampling of σ2

The standard Bayes Rule gives us:

P
(
σ2 | E, ρ

)
∝ P

(
E | σ2, ρ

)︸ ︷︷ ︸
likelihood

P
(
σ2; ν, λ

)︸ ︷︷ ︸
prior

= Nn
(
0, σ2B

)
InvGamma

(
ν

2
,
νλ

2

)
=

1

(2π)n/2 |σ2B|1/2
exp

(
−1

2
E>

(
σ2B

)−1
E

)
×(

νλ
2

) ν
2

Γ
(
ν
2

) (σ2
)−( ν2 +1)

exp

(
−

νλ
2

σ2

)

∝ 1

(σ2)n/2
(
σ2
)−( ν2 +1)

exp

(
− 1

2σ2

(
E>B−1E + νλ

))
=

(
σ2
)−( ν+n2 +1)

exp

(
−

1
2

(
E>B−1E + νλ

)
σ2

)

= InvGamma

(
ν + n

2
,
E>B−1E + νλ

2

)

Now, we can simplify the quadratic form above. Ordering E by worker and using

the fact that B is diagonal,

E>B−1E =
w∑
q=1

E>qD
−1
q Eq =

w∑
q=1

n`q∑
i=1

n`q∑
j=1

d−1
`q ,ij

eq,ieq,j︸ ︷︷ ︸
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where Eq is the error vector for worker q. The underbraced above becomes:

(
1

1− ρ
− ρ

(1− ρ)(1 + (n`q − 1)ρ)

) n`q∑
i=1

e2
i −

ρ

(1− ρ)(1 + (n`q − 1)ρ)

n`q∑
i=1

n`q∑
j=1

eq,ieq,j1i 6=j

=
1

1− ρ

(
1− ρ

1 + (n`q − 1)ρ

n`q∑
i=1

e2
i −

ρ

1 + (n`q − 1)ρ

n`q∑
i=1

n`q∑
j=1

eq,ieq,j1i 6=j

)

=
1

1− ρ

(
1 + n`qρ− 2ρ

1 + (n`q − 1)ρ

n`q∑
i=1

e2
i −

ρ

1 + (n`q − 1)ρ

n`q∑
i=1

n`q∑
j=1

eq,ieq,j1i 6=j

)

=
1

(1− ρ)(1 + (n`q − 1)ρ)

(1 + n`qρ− 2ρ)

n`q∑
i=1

e2
i︸ ︷︷ ︸−ρ

n`q∑
i=1

n`q∑
j=1

eq,ieq,j1i 6=j︸ ︷︷ ︸


=
1

(1− ρ)(1 + (n`q − 1)ρ)

(
(1 + n`qρ− 2ρ)SSEq − ρCPEq

)
(A.12)

where SSEq is the sum of squared error in worker q and CPEq is the sum of the

cross products in worker q save the diagonal elements.

Thus, the sampling for σ2 becomes:

P
(
σ2 | E, ρ

)
= InvGamma

ν + n

2
,
νλ

2
+

 1

2(1− ρ)

w∑
q=1

(1 + n`qρ− 2ρ)SSEq − ρCPEq
1 + (n`q − 1)ρ



A.5.2.3 Posterior Sampling of ρ

The standard Bayes Rule gives us:

P
(
ρ | E, σ2

)
∝ P

(
E | σ2, ρ

)︸ ︷︷ ︸
likelihood

P (ρ)︸︷︷︸
prior

263



We now assume the prior is:

P (ρ) = U (−1, 1)

This leaves us with:

P
(
ρ | E, σ2

)
∝ Nn

(
0, σ2B

)
U (−1, 1)

∝ 1

(2π)n/2 |σ2B|1/2
exp

(
−1

2
E>

(
σ2B

)−1
E

)
(1)

∝ 1

|B|1/2
exp

(
− 1

2σ2
E>B−1E

)

The determinant term above becomes:

|B`|1/2 = (|D1| · . . . · |Dw` |)
1/2

=
(
((n1 − 1)ρ+ 1) (1− ρ)n1−1 · . . . · ((nw` − 1)ρ+ 1) (1− ρ)nw`−1)1/2

=

(
w∏̀
q=1

((nq − 1)ρ+ 1) (1− ρ)nq−1

) 1
2

=

(
(1− ρ)n`−w`

w∏̀
q=1

((nq − 1)ρ+ 1)

) 1
2

(A.13)

Using the formula we found before, we have:

P
(
ρ | E, σ2

)
∝ (1− ρ)−

n−w
2

(
w∏
q=1

(nq − 1)ρ+ 1

)− 1
2

×

exp

(
− 1

2σ2(1− ρ)(1 + (n`q − 1)ρ)

w∑
q=1

(
(1 + n`qρ− 2ρ)SSEq − ρCPEq

))
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This is clearly not a distribution we can directly sample from. Thus, we now

use a Metropolis-Hastings step which can be accepted or rejected. Denote ρ∗ as the

proposed value of ρ.

r =
P (ρ∗ → ρ)

P (ρ→ ρ∗)

P (ρ∗ | E, σ2)

P (ρ | E, σ2)
(A.14)

We will propose a very simple jump distribution as P (ρ→ ρ∗) = U (−1, 1). The

risk is a sampler that converges slowly. We will revisit this jump distribution later

if the proportion of acceptances is too low. Since the jump ratio cancels, we are left

with:

r =
P (ρ∗ | E, σ2)

P (ρ | E, σ2)

=

√√√√( 1− ρ
1− ρ∗

)n−w w∏
q=1

(nq − 1)ρ+ 1

(nq − 1)ρ∗ + 1
exp

(
− 1

2σ2

(
(

1

(1− ρ∗)(1 + (n`q − 1)ρ∗)

) w∑
q=1

(
(1 + n`qρ∗ − 2ρ∗)SSEq − ρ∗CPEq

)
+

(
1

(1− ρ)(1 + (n`q − 1)ρ)

) w∑
q=1

(
(1 + n`qρ− 2ρ)SSEq − ρCPEq

)))

This in log form becomes

ln (r) =
1

2

(
(n− w) ln

(
1− ρ
1− ρ∗

)
+

w∑
q=1

ln

(
(nq − 1)ρ+ 1

(nq − 1)ρ∗ + 1

))
− 1

2σ2

(
(

1

(1− ρ∗)(1 + (n`q − 1)ρ∗)

) w∑
q=1

(
(1 + n`qρ∗ − 2ρ∗)SSEq − ρ∗CPEq

)
+

(
1

(1− ρ)(1 + (n`q − 1)ρ)

) w∑
q=1

(
(1 + n`qρ− 2ρ)SSEq − ρCPEq

))
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A.5.3 Posterior Sampling of it

We now handle the Metropolis steps 1, 3, . . . , 2m− 1 for all three tree proposal steps.

Below is the Metropolis ratio where the parameter sampled is the tree and the

data is the responses unexplained by other trees denoted by R. We denote the new,

proposal tree with an asterisk and the original tree without the asterisk.

r =
P
(
i∗ → i

)
P
(
i → i∗

) P
(
i∗ | R, σ2, ρ

)
P
(
i | R, σ2, ρ

) (A.15)

We accept a draw from the posterior distribution of trees if a draw from a standard

uniform distribution is less than the value of r. Immediately we note that it is difficult

(if not impossible) to calculate the posterior probabilities for the trees themselves.

Instead, we employ Bayes’ Rule,

P
(
i | R, σ2

)
=

P
(
R | i, σ2, ρ

)
P
(
i | σ2, ρ

)
P (R | σ2, ρ)

,

and plug the result into Equation A.15 to obtain:

r =
P
(
i∗ → i

)
P
(
i → i∗

)
︸ ︷︷ ︸
transition ratio

×
P
(
R | i∗, σ2, ρ

)
P
(
R | i, σ2, ρ

)
︸ ︷︷ ︸

likelihood ratio

×
P
(
i∗
)

P
(
i
)

︸ ︷︷ ︸
tree structure ratio

.

Note that the probability of the tree structure is independent of σ2 and ρ.

The goal of this section is to explicitly calculate r for all possible tree proposals

— GROW, PRUNE and CHANGE. Note that the transition ratio and tree structure

ratios are the same between iidBART and panel data BART and these expressions

are explained in the arxiv document. Thus, we only talk derive the likelihood ratios
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here.

Note that our actual implementation uses the following expressions in log form

for numerical accuracy.

A.5.3.1 Grow Proposal

To calculate the likelihood, the tree structure determines which responses fall into

which of the b terminal nodes. Thus,

P
(
R1, . . . , Rn | i, σ2, ρ

)
=

b∏
`=1

P
(
R`1 , . . . , R`n`

| σ2, ρ
)

where each term on the right hand side is the probability of responses in one of the

b terminal nodes, which are independent by assumption. The R`’s denote the data

in the `th terminal node and where n` denotes how many observations are in each

terminal node and n =
∑b

`=1 n`.

We now find an analytic expression for the node likelihood term. Remember, if

the mean in each terminal node, which we denote µ`, was known, then we would have

R`1 , . . . , R`n`
|µ`, σ2 iid∼ N (µ`, σ

2). BART requires µ` to be margined out, allowing

the Gibbs sampler in Equation A.7 to avoid dealing with jumping between continuous

spaces of varying dimensions (Chipman et al., 2010, page 275). Recall that one of the

BART model assumptions is a prior on the average value of µ ∼ N
(
0, σ2

µ

)
and thus,

P
(
R`1 , . . . , R`n`

| σ2, ρ
)

=

∫
R
P
(
R`1 , . . . , R`n`

| µ`, σ2, ρ
)
P
(
µ`;σ

2
µ

)
dµ`

Substituting, we find
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1(
(2π)n`+1 (σ2)n` |B|σ2

µ

) 1
2

×∫
R

exp

(
−1

2

(
1

σ2
(R−t,` − µ`)

>B−1
` (R−t,` − µ`) +

1

σ2
µ

µ2
`

))
dµ`

we need to complete the square and account for the constant additive term:

aµ2 + bµ+ c = d (µ− e)2 + f ⇒ d = a and e = − b

2a
and f = c− b2

4a

Thus the integral above using using Equation A.8 should become

exp (f)

∫
R

exp
(
d (µ− e)2) dµ`

Substituting, we find:

exp

−
1

2σ2


n∑̀
i=1

n∑̀
j=1

b−1
`,ijrirj −

(
n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

)2

4σ2

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)


×∫
R

exp

−
1

2

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)µ` −
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

2

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)


2 dµ`

The above integral is a Gaussian integral which resolves to
√

2πvar where “var”

is the variance parameter. Thus the margined likelihood becomes:
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P
(
R`1 , . . . , R`n`

| σ2, ρ
)

=
1(

(2π)n`+1 (σ2)n` |B`|σ2
µ

) 1
2

√√√√√√
2π

1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

×

exp

−
1

2σ2


n∑̀
i=1

n∑̀
j=1

b−1
`,ijrirj −

(
n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

)2

4σ2

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)



=

(
(2π)n`

(
σ2
)n` |B`|σ2

µ

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

))− 1
2

×

exp

−
1

2σ2


n∑̀
i=1

n∑̀
j=1

b−1
`,ijrirj −

(
n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

)2

4σ2

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)


 (A.16)

Since the likelihoods are solely determined by the terminal nodes, the proposal

tree differs from the original tree by only the selected node to be grown, denoted by

`, which becomes two daughters after the GROW step denoted by `L and `R. Hence,

the likelihood ratio becomes:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =
P
(
R`L,1 , . . . , R`L,n`,L | σ

2
)
P
(
R`R,1 , . . . , RR,`n`,R | σ

2
)

P
(
R`1 , . . . , R`n` | σ

2
) (A.17)

Plugging Equation A.16 into Equation A.17 three times yields the ratio for the

GROW step. We begin with the non-exponential term. We can reduce it to
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√√√√√√√√√√
|B`|

|B`L| |B`R|︸ ︷︷ ︸

(
1 +

σ2
µ

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)
(

1 +
σ2
µ

σ2

n`L∑
i=1

n`L∑
j=1

b−1
`L,ij

)(
1 +

σ2
µ

σ2

n`R∑
i=1

n`R∑
j=1

b−1
`R,ij

) (A.18)

where n`L and n`R denote the number of data points in the newly grown left and right

daughter nodes.

We can now use the determinant formula of Equation A.13 to simplify the under-

braced term above:

(1− ρ)w`L+w`R−w`
w∏
q=1

((
n`q − 1

)
ρ+ 1

)((
n`Lq − 1

)
ρ+ 1

)((
n`Rq − 1

)
ρ+ 1

) (A.19)

Since the B`’s are diagonal, the second term can be rewritten as sums over the

workers from Equation A.9:

(
1 +

σ2
µ

σ2

w∑
q=1

n`q∑
i=1

n`q∑
j=1

d−1
`q ,ij

)
1 +

σ2
µ

σ2

w∑
q=1

n`Lq∑
i=1

n`Lq∑
j=1

d−1
`Lq ,ij

1 +
σ2
µ

σ2

w∑
q=1

n`Rq∑
i=1

n`Rq∑
j=1

d−1
`Rq ,ij


Now we have expressions for the d−1

`q ,ij
terms from Equation A.10 which we sub-

stitute in to become:
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(
1 +

σ2
µ

σ2

w∑̀
q=1

n`q
1 + (n`q − 1)ρ)

)
(

1 +
σ2
µ

σ2

w`L∑
q=1

n`Lq
1 + (n`Lq − 1)ρ)

)(
1 +

σ2
µ

σ2

w`R∑
q=1

n`Rq
1 + (n`Rq − 1)ρ)

)

=

σ2

(
σ2 + σ2

µ

w∑̀
q=1

n`q
1 + (n`q − 1)ρ)

)
(
σ2 + σ2

µ

w`L∑
q=1

n`Lq
1 + (n`Lq − 1)ρ)

)(
σ2 + σ2

µ

w`R∑
q=1

n`Rq
1 + (n`Rq − 1)ρ)

) (A.20)

Thus, the whole term becomes:

√√√√√σ2 (1− ρ)w`L+w`R−w`

 w∏
q=1

(
n`q − 1

)
ρ+ 1((

n`Lq − 1
)
ρ+ 1

)((
n`Rq − 1

)
ρ+ 1

)
×

√√√√√√√√√√
σ2 + σ2

µ

w∑̀
q=1

n`q
1 + (n`q − 1)ρ(

σ2 + σ2
µ

w`L∑
q=1

n`Lq
1 + (n`Lq − 1)ρ

)(
σ2 + σ2

µ

w`R∑
q=1

n`Rq
1 + (n`Rq − 1)ρ

)

Now we examine the portion of the exponential term and we find:

exp

−
1

2σ2


n`L∑
i=1

n`L∑
j=1

b−1
`L,ij

rirj −

(n`L∑
i=1

n`L∑
j=1

b−1
`L,ij

(ri + rj)

)2

4σ2

(
1

σ2
µ

+
1

σ2

n`L∑
i=1

n`L∑
j=1

b−1
`L,ij

)


×

exp

−
1

2σ2


n`R∑
i=1

n`R∑
j=1

b−1
`R,ij

rirj −

(n`R∑
i=1

n`R∑
j=1

b−1
`R,ij

(ri + rj)

)2

4σ2

(
1

σ2
µ

+
1

σ2

n`R∑
i=1

n`R∑
j=1

b−1
`R,ij

)


×
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exp


1

2σ2


n∑̀
i=1

n∑̀
j=1

b−1
`,ijrirj −

(
n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

)2

4σ2

(
1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

)



Collecting terms inside the exponential and dropping the exponential notation

and the − 1
2σ2 term, we arrive at:

n`L∑
i=1

n`L∑
j=1

b−1
`L,ij

rirj +

n`R∑
i=1

n`R∑
j=1

b−1
`R,ij

rirj −
n∑̀
i=1

n∑̀
j=1

b−1
`,ijrirj +

1

4σ2



 n∑̀
i=1

n∑̀
j=1

b−1
`,ij(ri + rj)

2

1

σ2
µ

+
1

σ2

n∑̀
i=1

n∑̀
j=1

b−1
`,ij

−

n`L∑
i=1

n`L∑
j=1

b−1
`L,ij

(ri + rj)

2

1

σ2
µ

+
1

σ2

n`L∑
i=1

n`L∑
j=1

b−1
`L,ij

−

n`R∑
i=1

n`R∑
j=1

b−1
`R,ij

(ri + rj)

2

1

σ2
µ

+
1

σ2

n`R∑
i=1

n`R∑
j=1

b−1
`R,ij



Since the B`’s are diagonal, all terms can be rewritten as sums over the workers

from Equation A.9:

w`L∑
q=1

n`L∑
i=1

n`L∑
j=1

d−1
`Lq ,ij

rirj +

w`R∑
q=1

n`R∑
i=1

n`R∑
j=1

d−1
`Rq ,ij

rirj −
w∑̀
q=1

n∑̀
i=1

n∑̀
j=1

d−1
`q,ij

rirj + (A.21)

1

4σ2



 w∑̀
q=1

n∑̀
i=1

n∑̀
j=1

d−1
`q,ij

(ri + rj)

2

1

σ2
µ

+
1

σ2

w∑̀
q=1

n∑̀
i=1

n∑̀
j=1

d−1
`q,ij

−

w`L∑
q=1

n`L∑
i=1

n`L∑
j=1

d−1
`Lq ,ij

(ri + rj)

2

1

σ2
µ

+
1

σ2

w`L∑
q=1

n`L∑
i=1

n`L∑
j=1

d−1
`Lq ,ij

−

w`R∑
q=1

n`R∑
i=1

n`R∑
j=1

d−1
`Rq ,ij

(ri + rj)

2

1

σ2
µ

+
1

σ2

w`R∑
q=1

n`R∑
i=1

n`R∑
j=1

d−1
`Rq ,ij



Now we can use the simplification found in Equation A.12 to reduce the first line

in the above expression to:

1

1− ρ

( w`L∑
q=1

1

1 + (n`Lq − 1)ρ

(
(1 + n`Lqρ− 2ρ)SSRLq − ρCPRLq

)
+

w`R∑
q=1

1

1 + (n`Rq − 1)ρ

(
(1 + n`Rqρ− 2ρ)SSRRq − ρCPRRq

)
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−
w∑̀
q=1

1

1 + (n`q − 1)ρ

(
(1 + n`qρ− 2ρ)SSRq − ρCPRq

))
(A.22)

Now we can use simplifications found in Equations A.11 and A.10 to reduce the

second line of the above expression to (and then we further simplify it):

1

4σ2



 w∑̀
q=1

2
∑n`q

i=1 ri

1 + (n`q − 1)ρ

2

1

σ2
µ

+
1

σ2

w∑̀
q=1

n`q

1 + (n`q − 1)ρ

−

w`L∑
q=1

2
∑n`Lq

i=1 ri

1 + (n`Lq − 1)ρ

2

1

σ2
µ

+
1

σ2

w`L∑
q=1

n`Lq

1 + (n`Lq − 1)ρ

−

w`R∑
q=1

2
∑n`Rq

i=1 ri

1 + (n`Rq − 1)ρ

2

1

σ2
µ

+
1

σ2

w`R∑
q=1

n`Rq

1 + (n`Rq − 1)ρ



=
1

4



 w∑̀
q=1

2
∑n`q

i=1 ri

1 + (n`q − 1)ρ

2

σ2

σ2
µ

+

w∑̀
q=1

n`q

1 + (n`q − 1)ρ

−

w`L∑
q=1

2
∑n`Lq

i=1 ri

1 + (n`Lq − 1)ρ

2

σ2

σ2
µ

+

w`L∑
q=1

n`Lq

1 + (n`Lq − 1)ρ

−

w`R∑
q=1

2
∑n`Rq

i=1 ri

1 + (n`Rq − 1)ρ

2

σ2

σ2
µ

+

w`R∑
q=1

n`Rq

1 + (n`Rq − 1)ρ



= σ2
µ



 w∑̀
q=1

∑n`q

i=1 ri

1 + (n`q − 1)ρ

2

σ2 + σ2
µ

w∑̀
q=1

n`q

1 + (n`q − 1)ρ

−

w`L∑
q=1

∑n`Lq

i=1 ri

1 + (n`Lq − 1)ρ

2

σ2 + σ2
µ

w`L∑
q=1

n`Lq

1 + (n`Lq − 1)ρ

−

w`R∑
q=1

∑n`Rq

i=1 ri

1 + (n`Rq − 1)ρ

2

σ2 + σ2
µ

w`R∑
q=1

n`Rq

1 + (n`Rq − 1)ρ


(A.23)

Putting it all together, the log ratio is:

1

2

(
ln
(
σ2
)

+
(
w`L + w`R − w`

)
ln (1− ρ) +

w∑̀
q=1

ln

 (
n`q − 1

)
ρ+ 1((

n`Lq − 1
)
ρ+ 1

)((
n`Rq − 1

)
ρ+ 1

)
+

ln

σ2 + σ2
µ

w∑̀
q=1

n`q

1 + (n`q − 1)ρ

− ln

σ2 + σ2
µ

w`L∑
q=1

n`Lq

1 + (n`Lq − 1)ρ

− ln

σ2 + σ2
µ

w`R∑
q=1

n`Rq

1 + (n`Rq − 1)ρ

)

+
σ2
µ

2σ2



w`L∑
q=1

∑n`Lq

i=1 ri

1 + (n`Lq − 1)ρ

2

σ2 + σ2
µ

w`L∑
q=1

n`Lq

1 + (n`Lq − 1)ρ

+

w`R∑
q=1

∑n`Rq

i=1 ri

1 + (n`Rq − 1)ρ

2

σ2 + σ2
µ

w`R∑
q=1

n`Rq

1 + (n`Rq − 1)ρ

−

 w∑̀
q=1

∑n`q

i=1 ri

1 + (n`q − 1)ρ

2

σ2 + σ2
µ

w∑̀
q=1

n`q

1 + (n`q − 1)ρ


−

1

2σ2(1− ρ)

(w`L∑
q=1

1

1 + (n`Lq − 1)ρ

(
(1 + n`Lqρ− 2ρ)SSRLq − ρCPRLq

)
+

w`R∑
q=1

1

1 + (n`Rq − 1)ρ

(
(1 + n`Rqρ− 2ρ)SSRRq − ρCPRRq

)
−

w∑̀
q=1

1

1 + (n`q − 1)ρ

(
(1 + n`qρ− 2ρ)SSRq − ρCPRq

))
(A.24)

A good way to check if this is correct is to set ρ = 0 and it should simplify to the
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log form of the iidBART GROW ratio.

A.5.3.2 Prune Proposal

This is simply the inverse of the likelihood ratio for the grow proposal. Thus the

log-likelihood ratio is just the negative of Equation A.24.

A.5.3.3 Change

The proposal tree differs from the original tree only in the two daughter nodes of

the selected change node. These two terminal nodes have the unexplained responses

apportioned differently. Denote R1· as the residuals of the first daughter node and

R2· as the unexplained responses in the second daughter node. Thus we begin with:

P
(
R | i∗, σ2

)
P
(
R | i, σ2

) =
P
(
RL∗1, . . . , RL∗nL∗

| σ2
)
P
(
RR∗1, . . . , RR∗nR∗

| σ2
)

P
(
RL1 , . . . , RLNL

| σ2
)
P
(
RR1 , . . . , RRNR

| σ2
) (A.25)

Substitution Equation A.16 four times into the above Equation A.25, we find a

constant term and an exponential term. We begin with the constant term which is

similar to Equation A.18:

√√√√√√√√√√
|BL∗| |BR∗|
|BL| |BR|︸ ︷︷ ︸

(
1 +

σ2
µ

σ2

n∑̀
i=1

n∑̀
j=1

b−1
L∗,ij

)(
1 +

σ2
µ

σ2

n∑̀
i=1

n∑̀
j=1

b−1
R∗,ij

)
(

1 +
σ2
µ

σ2

n`L∑
i=1

n`L∑
j=1

b−1
L,ij

)(
1 +

σ2
µ

σ2

n`R∑
i=1

n`R∑
j=1

b−1
R,ij

)

We can simplify the above underbraced term similar to Equation A.19 to find:
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(1− ρ)(wL∗+wR∗ )−(wL+wR)
w∏
q=1

((
nLq − 1

)
ρ+ 1

) ((
nRq − 1

)
ρ+ 1

)((
nL∗q − 1

)
ρ+ 1

) ((
nR∗q − 1

)
ρ+ 1

)
We can then simplify the other term and it is similar to what we found in Equa-

tion A.20:

(
σ2 + σ2

µ

wL∗∑
q=1

nL∗q

1 + (nL∗q − 1)ρ)

)(
σ2 + σ2

µ

wR∗∑
q=1

nR∗q

1 + (nR∗q − 1)ρ)

)
(
σ2 + σ2

µ

wL∑
q=1

nLq
1 + (nLq − 1)ρ)

)(
σ2 + σ2

µ

wR∑
q=1

nRq
1 + (nRq − 1)ρ)

)

Now for the exponential component of Equation A.25. Collecting terms inside the

exponential and dropping the exponential notation and the − 1
2σ2 term, we arrive at

an expression similar to Equation A.21:

wL∗∑
q=1

nL∗∑
i=1

nL∗∑
j=1

d−1
L∗q ,ij

rirj +

wR∗∑
q=1

nR∗∑
i=1

nR∗∑
j=1

d−1
R∗q ,ij

rirj −

wL∑
q=1

nL∑
i=1

nL∑
j=1

d−1
Lq ,ij

rirj −
wR∑
q=1

nR∑
i=1

nR∑
j=1

d−1
Rq ,ij

rirj

plus 1
4σ2 times the following

(
wL∑
q=1

nL∑
i=1

nL∑
j=1

d−1
Lq ,ij

(ri + rj)

)2

1

σ2
µ

+
1

σ2

wL∑
q=1

nL∑
i=1

nL∑
j=1

d−1
Lq ,ij

+

(
wR∑
q=1

nR∑
i=1

nR∑
j=1

d−1
Rq ,ij

(ri + rj)

)2

1

σ2
µ

+
1

σ2

wL∑
q=1

nR∑
i=1

nR∑
j=1

d−1
Rq ,ij

−
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(
wL∗∑
q=1

nL∗∑
i=1

nL∗∑
j=1

d−1
L∗q ,ij

(ri + rj)

)2

1

σ2
µ

+
1

σ2

wL∗∑
q=1

nL∗∑
i=1

nL∗∑
j=1

d−1
L∗q ,ij

−

(
wR∗∑
q=1

nR∗∑
i=1

nR∗∑
j=1

d−1
R∗q ,ij

(ri + rj)

)2

1

σ2
µ

+
1

σ2

wR∗∑
q=1

nR∗∑
i=1

nR∗∑
j=1

d−1
R∗q ,ij

The first line of the tiny formula above can be reduced similarly to Equation A.22:

1

1− ρ

(
wL∗∑
q=1

1

1 + (nL∗q − 1)ρ

(
(1 + nL∗qρ− 2ρ)SSRL∗q − ρCPRL∗q

)
+

wR∗∑
q=1

1

1 + (nR∗q − 1)ρ

(
(1 + nR∗qρ− 2ρ)SSRR∗q − ρCPRR∗q

)
−

wL∑
q=1

1

1 + (nLq − 1)ρ

(
(1 + nLqρ− 2ρ)SSRLq − ρCPRLq

)
−

wR∑
q=1

1

1 + (nRq − 1)ρ

(
(1 + nRqρ− 2ρ)SSRRq − ρCPRRq

))

And the second line of the tiny formula can be reduced similarly to Equation A.23

as σ2
µ times:

(
wL∑
q=1

∑nLq
i=1 ri

1 + (nLq − 1)ρ

)2

σ2 + σ2
µ

wL∑
q=1

nLq
1 + (nLq − 1)ρ

+

(
wR∑
q=1

∑nRq
i=1 ri

1 + (nRq − 1)ρ

)2

σ2 + σ2
µ

wR∑
q=1

nRq
1 + (nRq − 1)ρ

−

(
wL∗∑
q=1

∑nL∗q
i=1 ri

1 + (nL∗q − 1)ρ

)2

σ2 + σ2
µ

wL∗∑
q=1

nL∗q

1 + (nL∗q − 1)ρ

−

(
wR∗∑
q=1

∑nR∗q
i=1 ri

1 + (nR∗q − 1)ρ

)2

σ2 + σ2
µ

wR∗∑
q=1

nR∗q

1 + (nR∗q − 1)ρ

Thus, the log ratio is below and similar to Equation A.24:
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1

2

(
((wL∗ + wR∗)− (wL + wR)) ln (1− ρ)

+

w∑̀
q=1

(
ln

( ((
nLq − 1

)
ρ+ 1

) ((
nRq − 1

)
ρ+ 1

)((
nL∗q − 1

)
ρ+ 1

) ((
nR∗q − 1

)
ρ+ 1

)))

+ ln

(
σ2 + σ2

µ

wL∗∑
q=1

nL∗q

1 + (nL∗q − 1)ρ)

)
+ ln

(
σ2 + σ2

µ

wR∗∑
q=1

nR∗q

1 + (nR∗q − 1)ρ)

)

− ln

(
σ2 + σ2

µ

wL∑
q=1

nLq
1 + (nLq − 1)ρ)

)

− ln

(
σ2 + σ2

µ

wR∑
q=1

nRq
1 + (nRq − 1)ρ)

))
(A.26)

plus
σ2
µ

2σ2 times:

(
wL∗∑
q=1

∑nL∗q
i=1 ri

1 + (nL∗q − 1)ρ

)2

σ2 + σ2
µ

wL∗∑
q=1

nL∗q

1 + (nL∗q − 1)ρ

+

(
wR∗∑
q=1
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µ
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−
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i=1 ri

1 + (nLq − 1)ρ
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µ
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−
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µ

wR∑
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−
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)
−

wR∑
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