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In the first chapter, Christian Goulding and I present a model of asset prices with recursive preferences and
the simple consumption growth dynamics of Mehra and Prescott (1985) but relax the assumption that
preference parameters are constant over time. We show that rare, temporary, and plausible fluctuations in the
elasticity of inter-temporal substitution (EIS) and risk aversion (RA) can quantitatively explain numerous
regularities in U.S. asset prices including: the equity premium and risk-free rate puzzles, excess return and
consumption growth predictability, a counter-cyclical risk premium and an upward-sloping real yield curve. A
novel implication is that time-varying EIS is more important than time-varying RA for explaining many of
these regularities, suggesting a new source of risk in investors' ability to plan their consumption over long
horizons. In addition, our model can accommodate a behavioral interpretation of psychological factors (e.g.
fear) that drive fluctuations in asset prices beyond traditional risk factors.

The second chapter is an empirical study of the value of star college athletes. Collegiate athletes in the U.S. are
not allowed to be paid directly for their athletic ability. Under the current regulations imposed by the NCAA,
any compensation beyond scholarships and grant-in-aid to cover some basic living expenses is forbidden. This
artificial constraint on athletes' wages, when university athletic programs are generating significant revenues,
has sparked much recent debate over the compensation of college athletes. To help inform this debate, I
quantify the value of a NCAA Division 1 FBS (Football Bowl Subdivision) star football and NCAA Division 1
star basketball players by estimating their marginal revenue product using a novel dataset of individual player
and team performance statistics and publicly available athletic program revenue data. I find that a star college
football player is worth up to $1.2-$2.1 million while star college basketball players are worth up to
$655,000-$1.1 million a year. Interestingly, I also find evidence suggesting that a college recruiter's ability to
identify revenue generating star players is limited and that the marginal revenue product of star college players
declines as the team's media coverage increases.
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ABSTRACT

ESSAYS IN ASSET PRICING AND APPLIED MICRO-ECONOMICS

Mark William Clements

Kent Smetters

In the first chapter, Christian Goulding and I present a model of asset prices with recursive

preferences and the simple consumption growth dynamics of Mehra and Prescott (1985)

but relax the assumption that preference parameters are constant over time. We show that

rare, temporary, and plausible fluctuations in the elasticity of inter-temporal substitution

(EIS) and risk aversion (RA) can quantitatively explain numerous regularities in U.S. asset

prices including: the equity premium and risk-free rate puzzles, excess return and consump-

tion growth predictability, a counter-cyclical risk premium and an upward-sloping real yield

curve. A novel implication is that time-varying EIS is more important than time-varying

RA for explaining many of these regularities, suggesting a new source of risk in investors’

ability to plan their consumption over long horizons. In addition, our model can accommo-

date a behavioral interpretation of psychological factors (e.g. fear) that drive fluctuations

in asset prices beyond traditional risk factors.

The second chapter is an empirical study of the value of star college athletes. Collegiate

athletes in the U.S. are not allowed to be paid directly for their athletic ability. Under

the current regulations imposed by the NCAA, any compensation beyond scholarships and

grant-in-aid to cover some basic living expenses is forbidden. This artificial constraint on

athletes’ wages, when university athletic programs are generating significant revenues, has

sparked much recent debate over the compensation of college athletes. To help inform this

debate, I quantify the value of a NCAA Division 1 FBS (Football Bowl Subdivision) star

football and NCAA Division 1 star basketball players by estimating their marginal revenue
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product using a novel dataset of individual player and team performance statistics and

publicly available athletic program revenue data. I find that a star college football player

is worth up to $1.2 − $2.1 million while star college basketball players are worth up to

$655, 000− $1.1 million a year. Interestingly, I also find evidence suggesting that a college

recruiter’s ability to identify revenue generating star players is limited and that the marginal

revenue product of star college players declines as the team’s media coverage increases.
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CHAPTER 1 : Preference Irregularities and Asset Pricing Regularities.

1.1 Introduction

Following Mehra and Prescott (1985), an enormous literature in consumption-based asset

pricing models has attempted to explain the equity premium puzzle and other stylized facts

of asset prices with varying degrees of success.1 Many models propose more complicated

consumption dynamics than those in Mehra and Prescott (1985) in an attempt to capture

sources of excluded risk in the consumption channel. However, the observed time series

for aggregate consumption growth in the U.S. data is very smooth (Campbell and Deaton

(1989), Campbell and Mankiw (1989)). Given this modest volatility, it is no surprise that

modeling the risk faced by investors as coming exclusively from consumption risk leads to

difficulty generating many of the stylized facts of asset prices.2 Other models (e.g. Con-

stantinides (1990), Weil (1989) and Epstein and Zin (1989)) propose alternative preference

specifications to the standard constant relative risk aversion (CRRA) preferences of Mehra

and Prescott (1985) with limited success. A more recent literature that explores alterna-

tives to standard CRRA preferences suggests that counter-cyclical risk aversion (RA) is an

important feature for improving the standard model.3 Moreover, recent empirical work by

1Leading models in this literature fall roughly into three schools of thought: habits, long-run risks and
rare disasters. The habits framework of Campbell and Cochrane (1999) argues that shocks to the current
level of consumption that move consumption relative to habit (a moving average of past consumption)
explain aggregate asset prices. The long-run risks models of Bansal and Yaron (2004) and Bansal, Kiku, and
Yaron (2012) argue that shocks to expected long-run consumption growth, an unobservable component in the
consumption growth process, and time-varying consumption volatility are crucial for explaining fluctuations
in asset prices. The rare disasters literature (Rietz (1988), Barro (2006), Gabaix (2012) and Wachter (2013),
among others) points to large and rare drops (disasters) in consumption and changes in the severity or
probability of these disasters as crucial for explaining asset prices.

2For example, Julliard and Ghosh (2012) provide arguments and evidence suggesting that the rare dis-
asters framework is an unlikely explanation of the equity premium puzzle.

3Campbell and Cochrane (1999) generate time-varying risk aversion through the surplus ratio of an exter-
nal habit relative to current consumption. Gordon and St-Amour (2000, 2004) accomplish this by modeling
the time-varying risk aversion parameter directly in the CRRA utility function. Melino and Yang (2003) do
something similar under recursive preferences. Barberis, Huang, and Santos (2001) generate time-varying
risk aversion through time-varying loss aversion that enters directly into Prospect Theory’s value function.
Routledge and Zin (2010) achieve this time-variation through variation in the endogenously determined prob-
ability of disappointment with generalized disappointment aversion preferences that overweights lower-tail
outcomes.
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Guiso, Sapienza, and Zingales (2013) and Cohn, Engelmann, Fehr, and Marechal (2013)

provides direct evidence for counter-cyclical (and hence time-varying) risk aversion from

survey and experimental data. These studies indicate that the standard assumption of con-

stant preference parameters is a source of model misspecification.

Much less has been done in the consumption-based asset pricing literature exploring the

assumption of a constant elasticity of inter-temporal substitution (EIS) as a potential source

of model misspecification. Crossley and Low (2011) provide empirical evidence from con-

sumer demand data that rejects the assumption of a constant EIS. Guvenen (2009) shows

that a two-agent model with limited stock market participation and heterogeneity in the

EIS is consistent with prominent features of asset prices.4 Melino and Yang (2003) present

an asset pricing model with recursive preferences that allows for both time-varying risk

aversion and EIS parameters that is able to match the first two moments of equity returns

and risk-free rates. A more recent paper by Kamstra, Kramer, Levi, and Wang (2014)

shows that seasonal variation in the EIS improves the ability of their representative agent

asset pricing model to match the seasonal patterns of equity and Treasury returns.

To explore further the importance of time-varying EIS for asset prices, we present a consumption-

based asset pricing model with recursive preferences, along the lines of Epstein and Zin

(1989), that relaxes the standard assumption of constant preference parameters but main-

tains the consumption dynamics of Mehra and Prescott (1985). We model rare and tempo-

rary changes in the preference parameters that govern RA and the EIS as a joint Markov

process with consumption growth, taking the shocks that drive temporary fluctuations in

these parameters as exogenous.5 Furthermore, changes in preference parameters are not

permanent structural breaks. They are temporary, anticipated by investors with rational

4A related household finance literature allows for the EIS to be heterogeneous across households and vary
with endogenous factors such as wealth (Attanasio and Browning (1995), Atkeson and Ogaki (1997, 1996),
Álvarez Peláez and Dı́az (2005), Guvenen (2006)).

5Possible interpretations of this modeling device are given in Section 1.2.9
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expectations, and are expected to revert to their regular values. Also, these changes are

small to moderate in magnitude and plausible based on guidance from empirical studies

(see Section 1.3). We show that allowing for time-varying preferences in this way is enough

to simultaneously generate many stylized facts that have proven historically challenging for

consumption-based asset pricing models to match. Furthermore, we show that time-varying

EIS is a source of uncertainty that affects an investor’s ability to plan their consumption

profile over long horizons. This source of risk is distinct from the usual consumption risk

that affects an investor’s ability to smooth consumption and is important for the model to

produce many of these challenging stylized facts.

In particular, under the baseline calibration of the model, the RA and EIS parameters

are at their regular values the majority of the time. However, once about every 42 years

RA is elevated to an irregular value while once about every 18 years the EIS parameter

is depressed to an irregular value. Both parameters stay in states of irregular values for

about 3 to 4 years on average. Our consumption process replicates that of Mehra and

Prescott (1985) but is calibrated to annual data over the sample 1930-2013. With these

dynamics for preference fluctuations and consumption growth our model is able to pro-

duce a high equity premium with a low risk-free rate, along with volatilities and first-order

auto-correlations, that are consistent with the data. The model also generates the more

challenging stylized facts on the predictability of price-dividends. For instance, the model

yields double-digit excess return predictability by price-dividend ratios over long horizons.

Furthermore, the model produces almost no predictability of consumption growth by price-

dividends or predictability of price-dividends by lagged consumption growth. These are

features that leading consumption-based asset pricing models are unable to generate simul-

taneously. The model also produces a volatile and counter-cyclical risk premium as well as

a counter-cyclical Sharpe Ratio. Finally, the model is able to generate an upward sloping

real yield curve with a ten-year yield of 1.62 and a 15 basis point spread over the short rate.

This last feature is particularly difficult for consumption-based asset pricing models with

3



Epstein and Zin (1989) preferences to produce.

Our model is also amenable to a framework of investor decisions influenced by anticipatory

emotions (Loewenstein, Weber, Hsee, and Welch (2001)).6 The shocks in our model that

shift preferences to irregular levels are exogenous but can be interpreted as external events

coinciding with low consumption growth that induce fear in the market. For example, a

terrorist attack or the perceived severity of a recession due to its portrayal in media coverage

might induce fear in the market unrelated to the actual decline in consumption. This fear is

an anticipatory emotion that immediately influences an investor’s choice, inducing irregular

preferences for risk and inter-temporal substitution in some states. However, investors have

rational expectations and anticipate possible future fear states when making investment

decisions today. Therefore, investors are “sophisticated” in the sense that they are aware

that future states of fear will influence their contemporaneous decision in those future pe-

riods and take this into account in their optimal investment decision. In our model, this

effect of anticipatory emotions on investor behavior will drive fluctuations in asset prices

beyond traditional, fundamental risk factors. Periods of fear-induced irregular EIS and

RA correspond to periods in which investors either pay “too much” for all assets (“excess

frugality” motive) or pay “too much” for the risk-free asset to rebalance their portfolios

(“excess safety” motive) relative to market fundamentals by accepting a lower and even

negative return.7 However, these returns are realized in an equilibrium that does not aban-

don investor rationality.

This behavioral interpretation of our model is consistent with evidence from Guiso et al.

6Loewenstein (2000, 1996) shows that visceral psychological factors such as fear can bypass the cognitive
decision process and immediately influence an investor’s decision. This contrasts to the traditional economic
modeling view of anticipated emotions that are expected consequences of the decision rather than emotions
experienced at the time of decision.

7We assume complete markets and the states of “excess frugality” and “excess savings” are fully antici-
pated under rational expectations, hence investors can fully hedge themselves against these states through
a set of state-contingent claims that span the state space.

4



(2013) who repeatedly survey clients of an Italian bank before and after the 2008 financial

crisis and find empirical evidence for substantially increased risk aversion after the crisis.

They find that this increase in risk aversion cannot be explained by the usual risk factors

such as changes in wealth, consumption habits, background risk or investor expectations.

The authors then test the hypothesis that visceral psychological factors such as fear might

be driving this change and give experimental evidence that a fear based explanation is

consistent with their survey results. Cohn et al. (2013) also provide experimental results

indicating that fear decreases an investor’s willingness to take risks even if the fear is com-

pletely unrelated to economic events.

Our model most closely resembles that of Melino and Yang (2003), which is nested as a

special case. Table 4 of Melino and Yang (2003) reports several combinations of parameter

values that allow their model to match the first two moments of the risk-free rate and eq-

uity returns exactly with values of risk aversion ranging from 19.91 to 52.89. In response

Donaldson and Mehra (2008) point out: “The reader may judge for herself whether any of

the reported combinations constitute a reasonable resolution of the equity premium and as-

sociated puzzles. We venture only to comment that, for all cases, the degree of risk aversion

implied by the low growth state seems high, especially in a context where the probability

that the low growth state will continue for more than one period is less than 50 percent.”8

However, we depart from the Melino and Yang (2003) setup in three important ways that

allow us to match more stylized facts with a reasonable calibration for risk aversion. First,

they impose perfect correlation between preference parameters and consumption growth

which we break by allowing co-movement between consumption growth and preference pa-

rameters to occur with some probability. Second, in their model RA and the EIS always

change together whereas we allow states where each, neither or both change. Lastly, the

8Donaldson and Mehra (2008), page 55.
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frequency of preference parameter changes in their model is tied directly to the persistence

in consumption growth and occurs 50% of the time. In contrast, our model is calibrated for

very small transition probabilities, allowing for rare time-variation in preference parameters.

Our model contributes to the literature in several ways. First, with a parsimonious model

that nests Mehra and Prescott (1985) as a special case, we are able to simultaneously

generate many regularities of U.S. asset prices that have been historically difficult for

consumption-based asset pricing models to produce. Second, the model captures an ad-

ditional source of risk unrelated to consumption risk per se: fluctuations in preferences for

smoothing consumption. This “smoothing risk” affects an investor’s ability to plan con-

sumption over long horizons, whereas consumption risk only affects an investor’s ability to

smooth, conditional on having a particular preference for smoothing. Third, while previous

models have disentangled the effects of RA and the EIS on asset prices using Epstein and Zin

(1989) preferences, our model disentangles the effect of time-variation in RA and the EIS on

asset prices. Our model shows that time-varying EIS is more important than time-varying

RA for many features of asset prices in the data, although time-varying RA can sharpen the

overall fit.9 This relationship is evident from the model’s reliance on time-varying EIS to

resolve the risk-free rate puzzle, generate an upward sloping real yield curve and generate

the predictability results for consumption growth and lagged consumption growth—results

not achieved with time-varying risk aversion alone. Fourth, the model provides additional

quantitative motivation for future theoretical and empirical research on time-variation in

preferences, especially time-varying EIS, which has received less attention in the literature.

Finally, our model provides a theoretical framework that is consistent with recent empirical

studies indicating that investor preferences can change for reasons unrelated to standard

fundamental risk factors like changes in wealth, income risk, or consumption habit. This

9Melino and Yang (2003) come to a similar conclusion that time-varying EIS matters more than time-
varying RA or a time-varying time discount factor for matching the first two moments of returns. Guvenen
(2009) concludes that heterogeneity in the EIS and not in risk aversion is essential to improve the classic
real business cycle model’s poor asset pricing implications. Kamstra et al. (2014) show seasonal variation in
the EIS parameter is important for matching seasonality in equity and Treasury returns.
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feature is something that the traditional consumption-based asset pricing literature, which

assumes marginal utility is driven exclusively by consumption innovations, is unable to do.

The remainder of the paper proceeds as follows. Section 1.2 describes the model economy;

describes the joint Markov process for preference parameters and consumption growth; and

derives the equilibrium stochastic discount factor. Section 1.3 presents the baseline cali-

bration and several alternative calibrations of the model. Section 1.4 presents the model

implications for matching asset pricing moments, predictability results, risk premium vari-

ation and the real term structure under the baseline and alternative calibrations. Section

1.5 presents a behavioral interpretation of the model results, defines the excess frugality

and excess safety motives and discusses how they are related to discount factors, returns

and the equity premium while Section 1.6 concludes.

1.2 The Model

1.2.1 Economy

We model a closed economy populated by a continuum of identical, infinitely-lived investors

with no idiosyncratic uncertainty in individual endowments. Output in the economy is a

homogenous good that is completely perishable as in the Lucas (1978) endowment economy.

There is a single, non-durable consumption good Ct with supply C = (Ct)
∞
t=0 and equity is

a claim to the endowment process (Yt)
∞
t=0, the only asset held in non-zero net supply.

1.2.2 Endowment Process

In order to be able to cleanly discuss any potential gains achieved by relaxing the constant

preference parameters assumption, we choose to model consumption dynamics as simply

as possible. One immediate consequence of this choice is that our model, by construction,
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cannot say anything about variance ratios or predictability of consumption volatility by

stock prices. However we gain the ability to isolate preference channels from other potential

dynamics and the ability to solve the model analytically. This parsimonious setup is coarse,

and in tying our hands with such simple consumption dynamics the fact that the model is

able to do as well as it does with fewer degrees of freedom is quite surprising. We specify

the stochastic process for the agent’s endowment as in Mehra and Prescott (1985). Let Yt

be the aggregate endowment of the representative investor and suppose (Yt)
∞
t=0 follows the

stochastic process

Yt+1 = λY,t+1Yt.

In the model economy, the aggregate endowment is equal to aggregate consumption in

equilibrium, hence λY,t+1 = Gt+1. Now suppose the growth rate of consumption process

(Gt)
∞
t=0 is a finite-state time-homogeneous Markov process on the following two states

gh = µc + σ,

gl = µc − σ,

where gh and gl indicate high and low consumption growth states. Here, µc is the mean

and σ the standard deviation for Gt+1. The transition probabilities are given by

P [Gt+1 = gh|Gt = gh] = P [Gt+1 = gl|Gt = gl] =
1 + ρ

2
,

P [Gt+1 = gh|Gt = gl] = P [Gt+1 = gl|Gt = gh] =
1− ρ

2
,

where ρ indicates the persistence of the consumption growth process. As is commonly done

in endowment economy asset-pricing models, we specify a scaled consumption process for

dividends that accounts for the fact that the volatility of dividend and consumption growth

can, in general, be different due to leveraging.10 Therefore, we specify the growth rate of

10See for example, Campbell (1986, 2003), Abel (1999), Lettau, Ludvigson, and Wachter (2008) and
Wachter (2013))
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dividends (Dt)
∞
t=0 as following the stochastic process

Dt+1 = λD,t+1Dt,

λD,t = µD + φD(Gt − µc), (1.1)

where µD is the mean of dividend growth and φD is the dividend leverage parameter.

1.2.3 Preferences

Individual preferences in this economy are defined recursively over current consumption as

in Epstein and Zin (1989) with the modification that the coefficient of relative risk aversion

γt and the elasticity of inter-temporal substitution (EIS) parameter ψt are allowed to vary

over time. Individuals investors choose ct, however, since they are identical and we assume

there is no idiosyncratic uncertainty in individual endowments, we can price assets in this

economy by solving the following representative agent’s choice of aggregate consumption Ct

and asset holdings ht according to

Vt(Wt) = max
{Ct,ht}

[
C

1−γt
θt

t + δ
(
Et

[
Vt+1(Wt+1)1−γt]) 1

θt

] θt
1−γt

subject to the period budget constraint

Ct + P ′tht+1 = d′tht + P ′tht ≡Wt

where θt ≡ 1−γt
1− 1

ψt

; Pt refers to a n× 1 vector of asset prices per share at date t that offers a

real dividend stream of dt+j , a n× 1 vector with j = (1, . . . ,∞); and ht is a n× 1 vector of

asset holdings at the end of period t− 1, which includes the risk-free asset.
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1.2.4 Model Dynamics

Discrete State Joint Markov Process

Let (st)
∞
t=0 ≡ (Gt, γt, ψt)

∞
t=0 be a joint stochastic process that captures the state of con-

sumption growth, risk aversion and the EIS parameter. Investors in the model have ratio-

nal expectations so they know the equilibrium aggregate growth rate will be Gt at time

t. However, since an individual investor is of measure zero, an investor’s choice of ct is

“external” to the state variable st.
11 That is, at time t, aggregate consumption growth Gt

and preference parameters γt and ψt are exogenous to an individual investor’s choice of ct.

Suppose that at time t consumption growth, risk aversion and the EIS parameter can each

realize one of two possible states Gt = {g`, gh}, γt = {γ0, γelev} and ψt = {ψ0, ψdepr} where

(γ0, ψ0) are the “regular” values of risk aversion and the EIS parameter while (γelev, ψdepr)

represent “irregular” preferences, driven by an exogenous shock, where risk aversion is ele-

vated from its regular level γ0 and the EIS parameter is depressed from its regular level ψ0.

We use the term “irregular” here in its literal sense: contrary to what is normal and do not

wish to invoke the imagery of irrationality or mistaken preferences. Furthermore, it should

be noted that changes in γt and ψt are not permanent structural breaks in investor prefer-

ences. Rather, they are temporary, anticipated by investors with rational expectations and

expected to revert to their regular values.

Suppose that st evolves according to a finite-state, time-homogenous Markov process over

11We use the notion of “external” in the same way it is used in the external habits models of Abel (1990)
and Campbell and Cochrane (1999).
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the states:

s1 : (gh, γ0, ψ0)

s2 : (g`, γ0, ψ0)

s3 : (g`, γelev, ψ0)

s4 : (g`, γ0, ψdepr)

s5 : (g`, γelev, ψdepr)

s6 : (gh, γelev, ψ0)

s7 : (gh, γ0, ψdepr)

s8 : (gh, γelev, ψdepr).

The states {s1, s2} are those where preferences are at their regular values and do not change

with the state of consumption growth. Guiso et al. (2013) and Cohn et al. (2013) provide

empirical evidence for counter-cyclical risk aversion while Melino and Yang (2003) find

counter-cyclical risk aversion necessary to match the first two moments of asset prices, so

we impose this assumption in our model by restricting γ0 < γelev and disregarding states

{s6, s8}. Crossley and Low (2011) show that the EIS is not constant over time, although, to

the best of our knowledge there are no empirical studies to date regarding the direction of

its cyclicality with the business cycle. However, Melino and Yang (2003) find a pro-cyclical

EIS parameter is necessary for their model to match the first two moments of asset prices,

so we impose this assumption by restricting ψ0 > ψdepr and disregarding state s7.

State Space Transition Matrix

Given our assumptions that risk aversion is counter-cyclical and the EIS parameter is pro-

cyclical, we restrict the state space to be S = {s1, s2, s3, s4, s5}. We specify the transition

matrix Πt,t+1 that governs the joint Markov process of consumption growth and preferences

as
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

(gh, γ0, ψ0) (g`, γ0, ψ0) (g`, γelev, ψ0) (g`, γ0, ψdepr) (g`, γelev, ψdepr)

(gh, γ0, ψ0) 1+ρ
2

[1− (b(1− d) + d)]
(

1−ρ
2

)
b(1− d)

(
1−ρ

2

)
d(1− b)

(
1−ρ

2

)
bd
(

1−ρ
2

)
(g`, γ0, ψ0) 1−ρ

2
[1− (b(1− d) + d)]

(
1+ρ

2

)
b(1− d)

(
1+ρ

2

)
d(1− b)

(
1+ρ

2

)
bd
(

1+ρ
2

)
(g`, γelev, ψ0) 1−ρ

2
0 (1− d)

(
1+ρ

2

)
0 d

(
1+ρ

2

)
(g`, γ0, ψdepr)

1−ρ
2

0 0 (1− b)
(

1+ρ
2

)
b
(

1+ρ
2

)
(g`, γelev, ψdepr)

1−ρ
2

0 0 0
(

1+ρ
2

)


,

(1.2)

where b is the conditional probability of transitioning from regular risk aversion (γ0) into a

state of elevated risk aversion (γelev) when an exogenous shock occurs that coincides with

low consumption growth next period. In other words, when a period of low consumption

growth occurs under regular risk aversion, the risk aversion will be elevated with probability

b where

b = Pr [γt+1 = γelev|γt = γ0, Gt+1 = g`] .

Similarly, d is the conditional probability of transitioning from a regular level of the EIS

parameter (ψ0) into a state where the EIS parameter is depressed (γelev) when an exogenous

shock occurs that coincides with low consumption growth next period. In other words, when

a period of low consumption growth occurs under the regular value of the EIS parameter,

the EIS parameter will be depressed with probability d where

d = Pr [ψt+1 = ψdepr|ψt = ψ0, Gt+1 = g`] .

Recall that we want to retain the simple consumption dynamics of Mehra and Prescott

(1985) in order to cleanly investigate whether relaxing the assumption of time-varying pref-

erences buys us any ability to explain asset prices. Notice that the transition matrix pre-
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serves these dynamics:

Pr{st+1 = s1|st = s1} = Pr{st+1 ∈ {s2, s3, s4, s5}|st ∈ {s2, s3, s4, s5}} =
1 + ρ

2

Pr{st+1 = s1|st ∈ {s2, s3, s4, s5}} = Pr{st+1 ∈ {s2, s3, s4, s5}|st = s1} =
1− ρ

2
.

Our transition matrix also generalizes the Markov transition specifications of both Mehra

and Prescott (1985) and Melino and Yang (2003). When b = d = 0 the transition matrix is

equivalent to the one in Mehra and Prescott (1985). Furthermore, because we are using the

same preference specification as in Melino and Yang (2003), their model is nested in ours

for when b = d = 1. This nesting comes from the fact that they only model states {s1, s5}

and impose perfect correlation between preference parameters and consumption growth.

In other words, their model is restricted so that preference parameters change every time

realized consumption growth changes from its previous value.

Our model departs from the Melino and Yang (2003) setup in three important ways. First,

we break this perfect correlation by allowing co-movement between consumption growth

and preference parameters to occur with probabilities 0 < b < 1 and 0 < d < 1. This

allows us to capture time-varying preferences and the desired cyclical relationship between

consumption growth and preference parameters while also allowing the potential for realized

states in which consumption growth transitions but preferences remain unchanged. Second,

in their model, γt and ψt always change together and we allow states where either γt

changes, ψt changes, or they both change. Finally, in Table 4 of Melino and Yang (2003)

they report several combinations of parameter values that allow their model to match the

first two moments of the risk-free rate and equity returns exactly with values of risk aversion

ranging from 19.91 to 52.89 with average levels of risk aversion ranging from 10.12 to 26.02,

which as Donaldson and Mehra (2008) suggest are too high and occur too frequently to

seem plausible. This occurs in their model because the frequency of preference parameter

changes is tied directly to the persistence in consumption growth and occurs 50% of the
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time.12 Our generalization addresses these issues and our model is calibrated for very small

values of b and d (shown below), allowing time variation in preference parameters but only

requiring them to change very rarely and implying a more reasonable value of the average

level of risk aversion.

1.2.5 Model Timing

The model timing goes as follows. At time t individual investors observe a realization of

state variable st = (Gt, γt, ψt), which contains all the information about the current state

of the economy Gt. Since individual investors are of measure zero, consumption growth

Gt and the preference parameters of the representative agent γt and ψt are exogenous to

an individual investor’s choice of ct, which they choose at time t given st. This is what

we mean by the individual investor’s choice of ct being external to the state variable st at

time t. With some probability b or d an exogenous shock occurs at time t, coincidentally

with the realization of Gt, resulting in a realization of state st where preference parameters

are at irregular levels. If a shock occurs, since individual investors are of measure zero and

have identical preferences, in equilibrium they will make their consumption choice given the

irregular preference parameter values of the representative agent.

1.2.6 Equilibrium Pricing Equations

We solve the representative agent’s problem and show in Appendix A.1 that the asset

pricing restrictions on any arbitrary asset j with gross return Rj,t+1 satisfy the equilibrium

condition

Et[Mt+1 ·Rj,t+1] = 1

12For instance, in an annual data sample of 84 years, their model restricts γt and ψt to both change 42 of
those years.
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where

Mt+1 = δθtZ1−θt
a,t G−γtt+1(Za,t+1 + 1)ζt,t+1−1 (1.3)

is the stochastic discount factor (SDF), Gt = Ct
Ct−1

is aggregate consumption growth and

Za,t is the price-dividend ratio for the unobservable asset with gross return Ra,t+1 that pays

aggregate consumption as a dividend given by

Za,t = δ
(
Et

[
G1−γt
t+1 (Za,t+1 + 1)ζt,t+1

]) 1
θt . (1.4)

The parameter θt is defined as before while ζt,t+1 ≡ 1−γt
1− 1

ψt+1

. All sources of risk in this econ-

omy will be generated by innovations in the equilibrium SDF in Equation (1.3). However,

a closed form expression for these innovations is not available without further assumptions

due to the fact that the SDF is non-linear in the state variable st and the fact that Za,t is a

recursive, non-linear function of st. To avoid this type of difficulty, researchers will typically

make simplifying assumptions such as assuming Za,t is linear in certain state variables or

log-linearizing the SDF. The advantage of our parsimonious setup is that it is relatively

straightforward to solve these equations exactly. This allows the model to produce exact

population values for all the moments we are interested in rather than relying on simulation.

We can gain insight into the structure of these risks by looking at an equivalent expression

for the equilibrium SDF in Equation (1.3), which we derive in Appendix A.2,

Mt+1 = M ez
t+1(γt, ψt) · (Za,t+1 + 1)ζt,t+1−θt (1.5)

where M ez
t+1(γ, ψ) ≡ δθG

− θ
ψ

t+1R
−(1−θ)
a,t+1 is the equilibrium stochastic discount factor under the

standard Epstein and Zin (1989) preferences. Taking logs of Equation (1.5) gives

mt+1 = mez
t+1(γt, ψt) + (ζt,t+1 − θt) · ln(Za,t+1 + 1) (1.6)
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where lower case m’s denote the log values of their M counterparts and define

srt+1 ≡ (ζt,t+1 − θt) · ln(Za,t+1 + 1).

Finally, it can be shown by straightforward algebra that

ζt,t+1 − θt = (γt − 1)

(
ψt+1 − ψt

(ψt+1 − 1)(ψt − 1)

)
.

The discussion that follows is meant to guide the intuition of the model’s results and should

be taken as illustrative given the fact that Equation (1.5) is nonlinear in the state variable st.

1.2.7 Smoothing Risk

Since consumption growth and preference parameters are the only sources of stochastic

fluctuations in our model, Equation (1.6) implies that innovations in mt+1 come through

two channels. The first channel is the usual innovations in consumption growth under the

standard Epstein and Zin (1989) stochastic discount factor mez
t+1 with the modification that

the market price of this risk, which is a function of preference parameters, will be ampli-

fied by fluctuations in preference parameters γt and ψt.
13 However, there is an additional

source of risk coming from innovations in srt+1. First, consider what happens if we shut

down time-variation in the EIS parameter so that only risk-aversion is time varying, then

ζt,t+1 = θt so that srt+1 = 0. This results in an SDF that gives the same pricing implications

as the standard recursive preference model although investors are willing to pay a much

higher premium for assets that pay them off in a recession state with elevated risk aversion

versus the premium they will pay for claims in a regular recession: the usual market price

of consumption growth risk associated with innovations in mez
t+1 are scaled up when γt is

13For instance, in the model of Bansal and Yaron (2004), the market price of risk for innovations in

consumption growth is given by λm,η =
(
− θ
ψ

+ θ − 1
)

.
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large because it is counter-cyclical.

However, consider shutting down time variation in risk aversion but allowing the EIS pa-

rameter to be time varying. Then from Equation (1.6) we see that srt+1 will either increase

or decrease the marginal utility relative to the standard recursive utility model depending

on which states are being transitioned into.14 From this expression, it is clear that if the

economy is transitioning into a state where the EIS parameter is depressed, then ψt > ψt+1

and since γ > 1 we have ζt+1 − θt < 0, which implies srt+1 < 0. Alternatively, if the econ-

omy is transitioning from a state where the EIS parameter is depressed to a state of regular

preferences then srt+1 > 0. If both parameters are allowed to vary over time, risk aversion

will amplify the magnitude of srt+1 because γt itself enters the expression ζt,t+1 − θt as a

scale factor.15

This identifies an additional risk channel in this economy that comes from innovations in

srt+1, which are due to fluctuations in investor’s preferences for inter-temporal substitu-

tion. This new risk channel we call “smoothing risk” and it operates through investors’

uncertainty about their preference for how much they should consume today versus save for

the future. That is, there is some uncertainty about what the investor’s optimal lifetime

consumption profile should look like when making consumption and savings decisions at

time t that inhibits the investor’s ability to plan for future periods. This risk channel is

distinct from the usual consumption risk channel that affects the investor’s ability to smooth

consumption conditional on having a particular preference for consumption smoothing. Of

course, because Za,t+1 is itself a function of Gt+1, γt and ψt we are unable to determine a

priori from the functional form of Equation (1.5) if the consumption risk or smoothing risk

is more important for equilibrium asset prices. Fortunately, the exact solution of our model

14We also have the standard market prices of risk being time-varying and scaled by the value of ψt as in
the case when only RA is time-varying.

15However, the overall effect on marginal utility is unclear due to the non-linear function Za,t being a
function of st.
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allows us to investigate this further by testing the sensitivity of the equilibrium SDF for

each of these risks, which we discuss in Section 1.4.1

1.2.8 Elasticity of Intertemporal Substitution

The previous section demonstrated that fluctuations in the parameter ψt generate a new

source of risk for asset prices. Up to this point, we have taken great care in referring to

ψt as the EIS parameter and not simply as “the EIS.” In models where the parameter ψ is

not time-varying, this is indeed the EIS. However, as Melino and Yang (2003) show, when

ψ is allowed to be time-varying with recursive preferences, the EIS is not simply just the

parameter ψt, it takes the following form:

EISt,t+1 =
1 +Mt+1Gt+1

1
ψt

(1 +Mt+1Gt+1) +
(

1
ψt+1
− 1

ψt

) , (1.7)

where Mt+1 is the stochastic discount factor and Gt+1 = Ct+1

Ct
is aggregate consumption

growth. The assumption we make restricting the transition matrix by only allowing prefer-

ences to revert to normal when high consumption growth is realized is sufficient to ensure

that pro-cyclicality in the EIS parameter ψt implies the EIS is also pro-cyclical. This is

stated formally in the following lemma

Lemma 1. If the discrete state, joint Markov process of st = (Gt, γt, ψt) is restricted over

states S = {s1, s2, s3, s4, s5} so that preferences do not revert from irregular (γelev or ψdepr)

to regular (γ0 or ψ0) states until high consumption growth is realized, then pro-cyclicality

of the EIS parameter ψt implies that EISt,t+1 (as given by Equation (1.7)) is pro-cyclical.

The proof of this lemma is given in Appendix A.5. In light of this, in the discussion that

follows regarding how the cyclicality of the EIS is related to asset prices, we will refer to

the EIS parameter ψt and the EIS given by Equation (1.7) interchangeably.

18



Given that rare fluctuations in the EIS generate a new source of risk crucial for many

of the model’s results, it is useful to discuss what the EIS is and what it means for the

EIS to be time-varying. Researchers often refer to the EIS in different ways. Two of the

most common ways are as consumption (savings) sensitivity to changes in interest rates

and as a preference for consumption smoothing. In general, the elasticity of inter-temporal

substitution is approximately defined to be

EIS ≈ ∂ ln(ct+1/ct)

∂r
, (1.8)

a percent change in consumption growth per percent increase in the net interest rate. Sup-

pose two investors A and B have preferences for inter-temporal substitution such that

EISA < EISB.16 In terms of an elasticity, investor A’s consumption choice is less sensitive

to changes in the interest rate than investor B’s choice. This is another way of saying that

investor A has a stronger preference for consumption smoothing than investor B.

To see why a lower EIS implies a stronger preference for consumption smoothing, take the

extreme case of investor A preferring a completely smooth consumption profile. This pref-

erence implies that ∂ ln(ct+1/ct) is constant. Then Equation (1.8) implies that if investors

A observes a large change in interest rates and she prefers to keep ∂ ln(ct+1/ct) constant

through her consumption choice, she must have a low EIS and lower than B who has a

weaker preference for consumption smoothing. We can think of A and B as the same in-

vestor over two different time periods, with future-self A having a stronger preference for

consumption smoothing than present-self B.

Finally, to assist our intuition on what it means for the EIS to vary over time, it is useful

to understand how it is different from investor risk aversion. The investor’s level of risk

16In an endowment economy, since the entire endowment is consumed in equilibrium, talking about the
sensitivity of investor consumption choice versus the growth rate of consumption relative to changes in
interest rates is equivalent since the former determines the latter.
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aversion measures how averse an investor is at time t to variation in consumption across

different states at time t + 1. Whereas the EIS measures how averse an investor is at

time t to consumption variation across future time periods along a deterministic path of

consumption. The EIS changing over time implies that there are periods when an investor

is more or less averse to fluctuations in consumption across time. In this way we can think

of the smoothing risk, associated with the EIS changing over time, as affecting an investor’s

ability to plan their consumption profile over long horizons.

1.2.9 Discussion

We do not explicitly model the shocks that drive changes in γt and ψt, they are taken to

be exogenous to the model. This simplifying assumption allows the model to be agnostic

to the stochastic process that is driving changes in preference parameters. However, we

present the following as one plausible behavioral interpretation for why preferences might

be time-varying that is consistent with the evidence presented in Guiso et al. (2013) and

Cohn et al. (2013): preferences are at their regular levels (γ0, ψ0) most of the time, however,

on rare occasion an exogenous shock that coincides with low consumption growth induces

a psychological reaction — such as fear — in individuals, which changes their appetite for

risk and/or their desire to smooth consumption across periods to irregular levels.

Under this behavioral interpretation, since the state st is taken as given at the time of the

investment decision, when fear induces a particular state st it is an anticipatory emotion

(Loewenstein et al. (2001)) that investors experience at the time they make their decisions.

Hence, this visceral psychological factor (Loewenstein (1996, 2000)) can bypass the cognitive

decision process and immediately influence an investor’s decision. This is in contrast to the

traditional economic modeling view of anticipated emotions that are expected consequences

of the decision (e.g. regret or disappointment) rather than emotions experienced at the

time of decision. However, investors in our model have rational expectations and anticipate
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possible future fear states when making investment decisions today. Furthermore, investors

are sophisticated in the sense that they know that future states of fear will influence their

contemporaneous decision in those future periods and they take this into account when

making their optimal investment decision. Therefore, there is no dynamic inconsistency in

the model because investors have rational expectations and take into account the fact that

there might be rare future periods when their preferences will be irregular, due to some fear

inducing shock.

Given this interpretation, states {s3, s4, s5} can be thought of as “fear states” under which

consumption growth is low and preferences are at irregular levels. While {s1, s2} are states

with preferences at regular levels and invariant to whether high or low consumption growth

is realized. In our model, the EIS is pro-cyclical so that when low consumption growth is

realized in a fear state, the EIS decreases from its regular level to its irregular level. This

implies when the economy is in a fear state—relative to a regular state of the economy—

investors are less sensitive to changes in the interest rate and have a stronger preferences for

consumption smoothing. Likewise, since risk aversion in counter-cyclical, when the economy

is in a fear state investors are more risk averse relative to regular states of the economy.

It is important to note that this behavioral interpretation merely provides a plausible ex-

planation for the source of variation in preference parameters (that is not being explicitly

modeled) that is, in part, driving fluctuations in equilibrium asset prices in the model.

With this in mind, there are a few modeling assumptions that are reflected in the structure

of the transition matrix. First, we assume that the probabilities b and d are independent,

an assumption made simply for modeling parsimony. Second, and more importantly, we do

not allow the state to revert from a fear state with irregular preferences (γelev or ψdepr) to

states with regular preferences (γ0 or ψ0) before consumption growth is high again. That

is, if investors are in a fear state, we assume that realized high consumption growth is taken

21



to be good news, which assuages investors fears and shifts their preferences back to regular

levels. The second assumption we make on the transition matrix might seem arbitrary,

especially abstracted from this behavioral interpretation. However, we did not set out with

the intent to match asset pricing moments and then back out the necessary restrictions on

the transition matrix to make the model work.17 Rather, we had this behavioral interpre-

tation in mind and constructed a transition matrix that is consistent with this view of what

might be driving preferences to vary over time.

The state space of our model also assumes that preference changes coincide with some reces-

sions and not with others. Malmendier and Nagel (2011) and Guiso et al. (2013) document

evidence that the Great Depression and Great Recession were associated with changes in

investor risk aversion. Of course, these studies just provide evidence for preference changes

coinciding with recessions but we cannot infer from them that there are recessions in the

U.S. data that do not coincide with preferences changing nor do they say anything about

the preference for consumption smoothing changing. One plausible explanation for the EIS

changing in some recessions and not in others is if the recession induces uncertainty about

the value of a long-term asset or the long-term path of the economy. For instance, two

recessions might look identical in terms of the observed decline in aggregate consumption.

However, suppose one is driven by all sectors being negatively affected by the same amount

while the other recession was driven by a particularly large decline in a sector like housing or

technology (the Dot Com bubble). Unprecedented or un-anticipated events that generate

uncertainty about consumption over the long-run can cause agents to re-evaluate every-

thing, possibly affecting their preferences to be more averse to consumption fluctuations

going forward.18

17Indeed, this might just be one of many transition matrix specifications that could potentially result in
the model matching the data.

18Most models of the housing market assumed no aggregate drop in prices since no aggregate price drop
had been observed in the data prior to the 2008 financial crisis.
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A different explanation, that is consistent with the behavioral interpretation given above, is

that fear might be the reason an investor’s preference for consumption smoothing changes

in some recessions and not others. For instance, if a recession coincides with an event

like a terrorist attack, this attack could induce fear about the long-term implications of

the attack on the economy. Likewise, if a recession is accompanied by a lot of negative

media coverage, this could induce fear as people perceive the recession to be much worse

than it actually is in terms of the economic fundamentals. The key is that the observed

consumption decline could be the same in a recession that coincided with a terrorist attack,

a lot of negative media coverage or neither. Therefore, one way to think of the effect of

fear on investor preferences is that fear induces a preference for consumption rationing.

That is, investors prefer to have a stable and smooth consumption profile in the face of fear

induced uncertainty about the long-term path of the economy that is unrelated to market

fundamentals.

1.3 Model Calibration

In order to derive the asset pricing implications from the model outlined in the previous

section, we calibrate aggregate consumption and dividend growth dynamics to annual U.S.

data from 1930-2013. Details on the data used for the calibration are provided in Appendix

A.3. Our baseline calibration is reported in Table 1, along with alternative calibrations for

a few special cases to be discussed in subsequent sections. The dividend leverage parameter

is chosen to be 4.5, which is a bit higher than the value used by others, but the same value

as used in Lettau et al. (2008).19 Furthermore, this choice of calibration results in a model

implied value for the standard deviation of dividends that is within the 95% confidence

interval from the data estimate over our sample as reported in Table 2. We also calibrate

the conditional probabilities b and d in the transition matrix to 5% and 12.5% respectively.

19For example, Abel (1999) uses 2.74 while Bansal and Yaron (2004) use 3. However, unlike here, these
models assume lognormal returns so the values are not directly comparable.
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Recall the regular (γ0, ψ0) and irregular (γelev, ψdepr) preference parameters. We define the

parameter kγ to be the elevated risk aversion factor where γelev = γ0kγ and kψ to be the

depressed EIS offset where ψdepr = ψ0 − kψ. The model calibration implies a constant

regular level of risk aversion of 7.25 for the vast majority of time periods. However, on

rare occasion (b = 0.05) an exogenous shock elevates investor risk aversion by a factor of

kγ = 3.24 times the regular level. This calibration is consistent with the empirical evidence

presented in Guiso et al. (2013) who estimate that after the 2008 financial crisis, risk aver-

sion increased 2.0-3.5 times the pre-crisis level.20 Mehra and Prescott (1985) argue that a

value of 10 for risk aversion is the maximum feasible value, a rule of thumb often invoked

in the asset pricing literature using the class of representative agent preferences. In our

baseline calibration, in the majority of periods, we require a value for risk aversion of only

7.25. However, the elevated value for risk aversion is γelev = γ0kγ = 23.5, which is high but

still much lower than, for example, the risk aversion of about 80 implied by Campbell and

Cochrane (1999) when consumption surplus is at its steady state (and in the hundreds for

low-consumption surplus ratios, which correspond with“recessions”) and in the low-end of

the range for this parameter reported in Table 4 of Melino and Yang (2003). Furthermore,

risk aversion is rarely this high in our model, elevated by the plausible factor of 3.24 only

once every 42 years on average and then reverting to its regular level in under four years

on average. If preference parameters, such as risk aversion, actually vary over time then

prior estimates of risk aversion from the data are estimates of the mean level of a random

variable. In the bottom panel of Table 1 we report the model implied unconditional means

of γt and ψt. Under this interpretation of previous acceptable benchmark values of risk

aversion being the mean of a random variable, our model requires E[γt] to be 8.60, which

is less than the plausible maximum benchmark of 10.

20They estimate a change in risk aversion by a factor of 2 for the average investor in their data and 3.5
for the median investor.
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We also calibrate the regular level of the EIS parameter to be 0.956. The “correct” value

of the EIS is widely debated and there is an extensive empirical literature that attempts

to estimate it with estimates ranging from very small (even negative) to larger than one.21

In our calibration, we did not set out with a particular value for this parameter in mind,

however, our model matches more regularities of asset prices with the EIS parameter at just

below one (E[ψt] = 0.9556), which implies a preference for early resolution of uncertainty

since 1/EISt,t+1 < γt in all states of our model. In the end, among other consumption

based asset pricing models in the literature, our calibration of ψt fits right between the

small values of around 0.1-0.3 (Campbell and Cochrane (1999) and Guvenen (2009)) and

the larger values of 1.0-1.5 (Wachter (2013), Bansal and Yaron (2004) and Bansal et al.

(2012)).

The calibrated level of the EIS parameter is 0.956 for the vast majority of years, how-

ever, on rare occasions (d = 0.125) an exogenous shock depresses the EIS parameter by

kψ = 0.002. It may seem striking that our calibration only requires such a small movement

in the EIS parameter. Since we have little empirical guidance on plausible variation in

the EIS, small movements are a conservative assumption. Moreover, given the difficulty in

statistical estimation of the EIS in the literature under the assumption of constant EIS,

the small movement in our calibration is very likely not to be rejected by statistical test.

However, this magnitude is in the range of values that Kamstra et al. (2014) require in

seasonal fluctuation of the EIS parameter. Also, the magnitude of kψ implies a 20 basis

point change in the sensitivity of consumption growth to a change in interest rates, which

does not strike us as implausibly small. The probability b in the baseline calibration implies

21Havranek, Horvath, Irsova, and Rusnak (2013) provides a recent broad survey of estimates across mul-
tiple studies and countries and show a wide variation in estimates. Campbell (1999) reports widely varying
and often imprecise estimates. Hall (1988), Vissing-Jorgensen (2002) and Guren, Manoli, Weber, and Chetty
(2011) estimate EIS to be small (around zero or less than one). While Hansen and Singleton (1982), Attana-
sio and Weber (1989), Beaudry and Wincoop (1996), Gruber (2006) and Engegelhardt and Kumar (2009)
estimate the EIS to be large (around one or greater than one). Guren et al. (2011) provides a good survey
on the various estimates of the EIS and how these estimates vary depending on if they are micro or macro
estimates.
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that risk aversion transitions into an irregular state about once every 42 years, with an

average duration of irregular risk aversion of about 3.8 years. Likewise, the probability d in

the baseline calibration implies that the EIS parameter transitions into an irregular state

about once every 18 years, with an average duration of about 3.8 years. If we assume the

Great Depression and the Great Recession were periods of low consumption growth that

corresponded with a state of fear shifting investor preferences, then our baseline calibration

is roughly consistent with the frequency and duration of these states of the U.S. economy

over the sample period 1930-2013.22

Before discussing the model’s ability to match the stylized facts of aggregate asset prices,

it is important to note the number of degrees of freedom our model exhibits. Of all the

parameters in Table 1, only the discount factor (δ), the regular values of risk aversion and

the EIS parameter (γ0, ψ0), the depressed EIS parameter offset (kψ) and the conditional

probabilities (b, d) are not calibrated directly to data or from empirical evidence. However,

the EIS parameter offset is very small, which would not obviously amplify the results of

the model a priori. Furthermore, b and d are closely tied to the average levels of RA and

EIS generated by the model, and those levels were targeted under the constraints that

the relevant literature implies a plausible risk aversion be less that 10 and estimates of

the EIS to be somewhere between 0 and 2. Hence, we only have six degrees of freedom

in calibrating our model. Given this feature, coupled with the fact that we assume very

simple consumption and dividend dynamics with a very coarse state space, it is actually

quite surprising the model does well in producing as large a number of asset price features

as it does, lending credibility to the model’s basic insights.

22This assumption is consistent with the empirical studies of Malmendier and Nagel (2011) and Guiso
et al. (2013) documenting evidence that these periods were associated with changes in investor preferences.
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1.4 Model Implications and Results

1.4.1 Equilibrium Discount Factors

The stochastic discount factor in Equation (1.5) is highly nonlinear because Za,t+1 will be

a recursive function of the model primitives, including the state variable st. As a result, we

do not have closed-form expressions for innovations in the SDF. However, our parsimonious

setup allows us to solve the model exactly without invoking a log-linear approximation and

simulation, which means we can look at the state contingent SDF being generated directly

from the model. Step by step details of our numerical solution method are outlined in

Appendix A.4. Let M denote the equilibrium stochastic discount factor generated by the

model where each row and column corresponds to one of the model’s five states at time t

and t+ 1 respectively. Under our baseline calibration, we obtain:

Mt,t+1 =



s1 s2 s3 s4 s5

s1 0.83 1.38 2.63 0.52 0.54

s2 0.68 1.13 2.15 0.42 0.44

s3 0.03 . 1.53 . 0.01

s4 1.46 . . 0.92 0.96

s5 2.08 . . . 0.73


. (1.9)

Recall the five states of the model:

{s1, s2, s3, s4, s5} = {(gh, γ0, ψ0), (g`, γ0, ψ0), (g`, γelev, ψ0), (g`, γ0, ψdepr), (g`, γelev, ψdepr)}.

In consumption-based asset pricing models, the equilibrium discount factor has a direct

relationship with investor marginal utility as discount factors for state contingent claims in

a complete market will reflect the relative marginal utility the investor faces in each possible

state of the world. More precisely, investors will pay a premium for state contingent assets
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that insure them against bad states of the world that pay them when marginal utility is

high. Likewise, investors will demand a discount for state contingent assets that pay them

in good states of the world when marginal utility is low. Looking at Matrix (1.9), in times

of regular preferences, and in recessions with only elevated risk aversion (state transition

paths between s1, s2 and s3), discount factors behave as expected under the standard model.

Investors are willing to pay a premium (1.38, 1.13, 2.63, 2.15, 1.53) and demand a discount

(0.83, 0.68, 0.03) for a claim in an expansion when marginal utility is low with the premiums

and discounts being higher under elevated risk aversion.

However, in recessions with a depressed EIS parameter, the SDF seems to price assets

counter to the standard model with discounts demanded to hold contingent claims paying

off in states s4 and s5 when consumption growth is low. Although this result may seem

counterintuitive, it turns out that it is not because investors in the model consider states

s4 and s5 to be states of low marginal utility from the perspective of time t, even though

consumption growth is low. To see why, we will compare states s2 = (g`, γ0, ψ0) and s4 =

(g`, γ0, ψdepr) that differ only in that s4 is a state of depressed EIS. Recall that the smoothing

risk relates to uncertainty about what the investor’s optimal lifetime consumption profile

should look like when making consumption and savings decisions at time t; whereas, the

consumption risk channel affects the investor’s ability to smooth consumption conditional

on having a particular preference for consumption smoothing. When consumption growth

is more persistent, this increases the investor’s ability to plan for future periods relative to,

say iid consumption. All else equal, an investor with a stronger preference for smoothing

consumption should prefer these states of the world. Note that the transition matrix (1.2)
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generated by the model calibration is given by

Πt,t+1 =



s1 s2 s3 s4 s5

s1 0.735 0.220 0.012 0.032 0.002

s2 0.265 0.611 0.032 0.087 0.005

s3 0.265 0 0.643 0 0.092

s4 0.265 0 0 0.698 0.037

s5 0.265 0 0 0 0.735


. (1.10)

From time t perspective, s2 and s4 have a probability of 73.5% of remaining in a low con-

sumption growth state, implying identical consumption persistence if the economy stays

in these relative states. However, in spite of the fact that these states are identical aside

from ψt and have identical consumption persistence over low consumption growth states,

the model implies from Matrix (1.9) that s2 is a state of high marginal utility while s4 is a

state of low marginal utility. The only way this can happen is if investors are better off in

utility terms when persistence in consumption growth is high when ψt = ψdepr relative to

states where ψt = ψ0. If this is the case, then we would expect discount factors for s2 and

s4 to diverge as consumption persistence increases. We can test this directly by solving the

model for a grid of ρC and reporting the discount factors for s2 and s4 if the economy is

in state s2 at time t (the second row of Matrix (1.9)). These results are shown in Figure 1

and we see that indeed, the discount factors diverge as consumption persistence increases.

The intuition of this result is that if consumption is persistent and investors have a stronger

preference for consumption smoothing, they will be better able to plan for future periods

in a way that will give them higher overall utility relative to states where they have a weak

preference for smoothing.

Given that states s4 = (g`, γ0, ψdepr) and s5 = (g`, γelev, ψdepr) are low marginal utility states

with low consumption growth, it may seem odd that these discount factors are always lower
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than when s1 = (gh, γ0, ψ0) for low marginal utility states since consumption growth is high

in this state. The only way for this to be true is if marginal utility is more sensitive to the

smoothing risk than consumption risk. Or equivalently, the proportion of equilibrium asset

prices explained by the smoothing risk investors face is larger than that of consumption

risk. To determine if this is true, we solve for the equilibrium discount factors for s4 and

s5 if the economy is in state s1 at time t (the first row of Matrix (1.9)) for values of con-

sumption growth volatility, the EIS offset parameter kψ and the risk aversion scale factor

kγ holding the other parameters fixed under the baseline calibration in each case. Varying

the size of the parameters kψ and kγ will lead to larger fluctuations in risk aversion and EIS

in the model. We also normalize all discount factors by the discount factor in s1 for ease

of comparison. The results of this exercise are shown in Figure 2. It is clear from the fig-

ure, comparing across panels, that discount factors, hence marginal utility and asset prices,

are much more sensitive to fluctuations in the EIS parameter than shocks to consumption

growth or fluctuations in risk aversion. This latter point is consistent with our previous

discussion that risk aversion will just scale up the effect of EIS fluctuations in states where

both shift to irregular levels. This can be seen in Panels (c) as risk aversion magnitudes

increase, for a fixed value of the EIS offset parameter, discount factors are shifted up and

the line for s5 lies strictly above the line for s4.

Given the discussion so far, it is clear where the smoothing risk enters discount factors. The

EIS measures how averse an investor is at time t to consumption variations across future

time periods along a deterministic path of consumption growth. In our model, there is some

uncertainty about the “right amount” of consumption variation given that an investor’s

preference for smoothing might increase with some small probability d as their EIS falls in

some future period. As argued above, from the perspective of time t, states where this event

is realized are not “bad” states per-se because this increased desire to smooth consumption

is complemented by persistence in consumption growth. However, once the investor is in

this state of an increased desire to smooth consumption, uncertainty about their ability to
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plan for the future will be seen as a risk. This is why investors are willing to pay a premium

for the s1 state contingent claim conditional on being in one of the rare states s4 or s5, to

insure themselves against this smoothing risk.

1.4.2 Aggregate Asset Price Moments

In Table 2, under our baseline calibration, we report the model implied first and second

moments and autocorrelations for equity returns, the risk-free rate, the equity premium,

price-dividend ratios, and the dividend yield as well as the Sharpe Ratio. Because we

are able to solve the model exactly, we do not rely on simulation or estimation to produce

moments from the model. This means the model moments reported in Table 2 and elsewhere

are population moments and are computed without sampling error. Also, since we do not

assume lognormal returns, all the returns, prices, and dividends reported in Table 2 are

exact (not transformed on a log basis) and our model can produce both price-dividends

and the dividend yield. Along with the population moments implied by the model, we

report the corresponding estimates for these moments from annual data over the sample

period 1930-2013. As shown in Table 2, the model produces values for all reported moments

within the 95% confidence interval (and in many cases within one standard error) of the

data estimates with the exceptions of the price-dividend and dividend yield volatilities and

the first order autocorrelations of price-dividends. In particular, the model does a good job

matching the equity premium and Sharpe Ratio while simultaneously producing both a low

expected risk free rate and high enough volatility of the risk free rate to match the data.

This feature is something that is typically difficult to generate in the class of representative

agent asset pricing models without assuming unreasonable levels of risk aversion. To further

understand how the model is generating these features, we can look at the model implied

31



equity and risk-free returns as well as expected returns to equity.



Rf

s1 1.0380

s2 1.0235

s3 1.0057

s4 0.9419

s5 0.9179





Et[Rm]

s1 1.0828

s2 1.0904

s3 1.4763

s4 0.9451

s5 0.9335





Et[Rm −Rf ]

s1 1.0448

s2 1.0669

s3 1.4706

s4 1.0032

s5 1.0156





π

s1 0.50

s2 0.28

s3 0.04

s4 0.13

s5 0.04



The first thing to notice is that relative to periods of high consumption growth (s1) if the

economy is in a recession (s2) then demand for the risk-free asset increases as agents re-

balance their portfolios toward less risky securities. This pushes the price of the risk-free

asset up and its net return down, as we see comparing s1 and s2 in the Rf vector. As ex-

pected, the inverse relationship shows up in expected equity returns as this rebalancing has

the opposite effect on equity prices. If an exogenous shock elevates risk aversion (s3) then

these effects are only magnified because higher risk aversion induces even more portfolio

rebalancing toward less risky securities driving the net return of the risk-free asset further

down and expected equity returns even higher.

However, if there is an exogenous shock that depresses the EIS (s4 and s5) so that investors

have a stronger preference for smoothing consumption returns for both the risk free rate

and expected equity returns fall. The reason is that all assets in the economy are vehicles

for transferring consumption across future periods, even risky ones. Therefore, even though

consumption growth is low, the investors prefer even smoother consumption and are will-

ing to buy assets that will achieve this goal. Investor demand pushes prices of both the

risk-free rate and equities higher and their preference for smoothing in these periods is so

strong that they are willing to accept negative returns to ensure a smooth consumption
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profile over future periods. Hence, investors end up paying a premium in the form of lower

returns to transfer consumption into these rare states of depressed EIS.

As argued above, elevated risk aversion only amplifies the effect of a depressed EIS on dis-

count factors so that if risk aversion is also elevated, demand for the risk-free asset is even

higher, pushing its price up and return down. This can be seen comparing the gross risk-free

return of 0.9419 in s4 (a net loss of about 5%) with the smaller gross return of 0.9179 in s5

(a net loss of about 8%). However, this accelerated increase in the price of the risk-free asset

would make the price of the risky asset that pays off in state s5 relatively more attractive

than the one that pays off in state s4. Therefore, equity prices go up slightly in s5 relative

to s4 taking pressure off the risk-free rate, which is consistent with the expected equity

returns being lower in state s5 than in state s4.

The dynamics just described generate volatility across states in the risk-free rate and ex-

pected returns and therefore, in the equity premium. As expected, in s3 investors demand

a very high risk premium to hold equities because low demand for risky assets in periods of

elevated risk aversion drives prices down and investors must be compensated for this risk in

the form of higher returns. In states with depressed EIS, we see that investors demand less

of a risk premium than in the other three states even though the economy is in a recession

due to a stronger preference for consumption smoothing, which increases demand for both

risk-free and risky assets. Overall, these effects generate variation in the equity premium but

with reasonable average levels for risk aversion because these states of irregular preferences

happen very rarely in the model. The steady state probabilities in the π vector show that

the model spends almost 80% of the time in states where investors have regular preferences.

We only require rare and temporary periods of irregular preferences to generate the model’s

equity premium of 6.21.
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Price Dividend Volatility

Although the model does a good job in matching the first moments of price-dividend ra-

tios and dividend yields, the most obvious area where the model struggles is in generating

enough volatility in these variables. Counterfactually low price-dividend volatility is an

issue that the long-run risks models of Bansal and Yaron (2004) and Bansal et al. (2012)

also struggle with, so despite this weakness our model is in good company. Those models

also use recursive preference specifications but very different consumption and dividend dy-

namics than our model assumes.

There are a few things we might do to improve the model’s ability to generate price-dividend

volatility. First, our model has a very small state space and expanding the state space for

consumption and dividend growth could potentially add additional variation that the cur-

rent model is unable to capture. Second, the dividend growth process we have specified

(leveraged consumption growth) is too auto-correlated and too strongly cross correlated

with consumption growth (it is equal to 1 by construction) relative to dividends data. This

strong correlation between dividend growth and consumption growth results in the model

producing an unconditional contemporaneous correlation of 0.46 between excess returns

and consumption growth, which is much too high relative to the low correlation found in

the data. However, even though we do not assume separate processes for consumption and

dividends, our model implied value of 0.46 is less than the value of 1.0 produced by the

standard time-separable model and close to the value of 0.47 produced by Campbell and

Cochrane (1999) from simulations at an annual frequency.23 The reason this correlation is

not 1.0 in our model is that some of the variation in returns is being explained by varia-

tion in preference parameters that are not directly tied to changes in consumption growth

(transitioning between states 2-5 in the model). This counterfactual result, as Cochrane and

Hansen (1992) point out, is a major factor in the empirical failures of the consumption-based

23The models of Barberis et al. (2001) and Bansal and Yaron (2004) produce a contemporaneous correlation
between consumption growth and returns of 0.15, which is much closer to estimates from the data.
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asset pricing model. Relaxing this unrealistic restriction in future iterations of the model

would introduce more dividend volatility into the model and could improve the model’s fit.

Alternative Calibrations

Given the model’s ability to match key asset pricing moments, it is useful to look at a few

alternative calibrations to reveal what features of the model are responsible for this success.

In Table 1 we presented several different alternative calibrations to our baseline calibration.

One point of debate between proponents of either long-run risk models following Bansal and

Yaron (2004) or habits models following Campbell and Cochrane (1999) is whether or not

consumption growth is independently and identically distributed (iid). The long-run risks

model assumes a predictable, long run component in consumption growth, while the habits

model assumes consumption is a random walk (ρC = 0). In our baseline calibration, we do

not assume consumption is a random walk, we calibrate ρC to the data sample we have.

However, in Table 1 we specify an alternative calibration (4) of the model with ρC = 0 that

is otherwise nearly identical to our baseline calibration with the exception that regular level

of risk aversion is calibrated to be 7.5 and the risk aversion scaling parameter kelev = 4.93.

We report the model fit in Table 3. As shown in the table, the model performs just as well

under the assumption of iid consumption growth with the exception that the volatility of

the risk-free rate is too high. The takeaway from this exercise is that the particular nature

of the consumption growth dynamics being assumed as either iid or having a predictable

component is not crucial for our model to fit the data.

Calibrations (1)-(3) in Table 1 are special cases of the baseline calibration that maintain

the exact same calibration as the baseline but shut down variation in the EIS parameter,

risk aversion or both. Calibration (1) sets b = 0, which shuts down time-variation in the

risk aversion parameter and only allows the EIS parameter to be time-varying in order to

highlight the importance of variation in the EIS. Comparing this calibration to the baseline,
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two features stand out. The first is that the EIS seems to be entirely responsible for the

model’s ability to match the moments for the risk free rate. Furthermore, since γ0 = 7.25

in the baseline, this implies variation in the EIS is important for resolving the risk-free rate

puzzle. Second, variation in the EIS also seems important for the model to produce high

mean price-dividend ratios and what little variation in price-dividend ratios the model is

able to generate.

Turning to calibration (2), which shuts down time-variation in the EIS and only allows

risk aversion to be time-varying, we see that risk aversion is important for matching the

moments for equity returns and the equity premium; however, it does so at the expense of

the risk-free rate puzzle creeping in with almost no volatility and a much higher mean for

the risk-free rate. The last baseline special calibration (3) is the case where both param-

eters are constant over time so that the Markov transition matrix is equivalent to the one

in Mehra and Prescott (1985). As expected, this calibration is unable to generate a large

equity premium and is also prone to the risk-free rate puzzle with γ0 = 7.25.

Alternative calibrations (1b) and (2b) are different from the baseline calibration and at-

tempt a “best fit” for the case when b = 0 and d = 0. The purpose of these calibrations are

to answer the hypothetical question “if we had to choose just one parameter to be time-

varying, which one would we prefer?” Looking at calibration (1b), which only allows the

EIS parameter to be time-varying is similar to the baseline with two exceptions. First, the

dividend leverage parameter is higher at 5.83, however, at this value the model produces

the exact value of the sample estimate of dividend volatility (12.53) as seen in Table 3. In

other words, this is the value of the dividend leverage parameter that would be estimated

from Equation (1.1) using the sample moments of µD and σD. The second difference is that

the constant risk aversion parameter is set at 9.5, which is still below the benchmark of 10.

It is clear from the table that this calibration does as good or better in some cases than our
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baseline calibration.

Alternative calibration (2b) sets d = 0, which only allows risk aversion to vary over time.

The main difference between this calibration and our baseline is that kγ is now 4.75, im-

plying the model requires a higher level of irregular risk aversion (28.5) although the mean

risk aversion of 7.86 is still reasonable. Under this calibration the model does reasonably

well, although it does not generate enough risk-free rate volatility and does not perform as

well as the baseline or alternative calibrations (1b). The overall takeaway from the model

performance under these alternative calibrations is that, although both are important, al-

lowing the EIS to be time-varying seems to be more crucial in the model fitting these asset

pricing moments than time-varying risk aversion since calibration (1b) does better than

(2b). Time variation in the EIS parameter seems particularly important for simultaneously

generating both a low expected risk free rate and high enough volatility of the risk free rate,

matching the equity premium and Sharpe Ratio, and maintaining a risk aversion coefficient

of less than 10.

1.4.3 Predictability

A large empirical literature has formed documenting the ability of price-dividends to predict

excess stock returns and their inability to predict future dividend growth (Fama and French

(1988), Campbell and Shiller (1988) and Hodrick (1992) among others). This feature of ag-

gregate asset prices has become standard for evaluating the performance of asset pricing

models. In Table 4 we report the predictability results implied by our model under the

baseline calibration along with estimates from the data for both the price-dividend regres-

sor coefficient and R-squared. However, before discussing these results, a word of caution

regarding the validity of these estimations is in order. As Stambaugh (1999) points out,

because the price-dividend ratio time-series is highly persistent with innovations correlated

with the innovations in excess returns, the coefficient estimates from these predictive re-
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gressions will be biased. Furthermore, the results in Cavanagh, Elliot, and Stock (1995)

imply this bias is present as well in the t statistics and R-squared estimates. Therefore, as

Beeler and Campbell (2012) discuss, the predictability of excess returns can only be used

to reject a model statistically at horizons longer than one year in the annual data while the

bias is much less of a concern for consumption and dividend growth predictability.

With this in mind, the top panel in Table 4 shows that our model does quite well at pro-

ducing the predictability of excess returns by price-dividend ratios at long horizons. In

particular, the model implied R-squared statistics are within one standard deviation of

their data estimates. Moreover, as in the data, the model implied coefficients are decreas-

ing while predictability is increasing with the horizon.24 Our model also produces virtually

no predictability of consumption growth or dividend growth at all horizons with coefficient

estimates similar to those estimated from the data. Beeler and Campbell (2012) are critical

of the long run risks model for not generating enough excess return predictability and gen-

erating too much consumption and dividend growth predictability and the model output in

Table 4 indicates that our model is not subject to these critiques.25 Likewise Bansal et al.

(2012) point out a shortcoming of the Campbell and Cochrane (1999) habits framework is

that it counterfactually implies too much predictability of price-dividend ratios from past

consumption growth. The final panel in Table 4 shows that our model produces very little

predictability of price-dividend ratios by past consumption growth, which is consistent with

the data.26

24Bansal et al. (2012) suggest using dividend yields adjusted by subtracting the real risk-free rate to reduce
the persistence in the return predictability regressor to help counteract the bias pointed out by Stambaugh
(1999). They report that this adjustment leads to return predictability in the data that is weaker than when
using the price dividend ratio, with five-year horizon R-squared droping from 31% to %14. We do not report
our model’s results under this alternative specification, however, it appears that less predictability would
only serve to help our model match predictability in the data.

25Beeler and Campbell (2012) also conduct their analysis using the Bansal et al. (2012) calibration and
report the model does better at consumption and dividend predictability but need extreme movements in
volatility to produce results roughly in line with the data.

26The trend in the coefficient estimates is the opposite of what is estimated from the data. However,
these point estimates are clearly estimated with a lot of noise (very wide confidence intervals) and are not
statistically different from zero anyway.
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Our model is able to simultaneously match both forward and lagged consumption pre-

dictability features in the data because innovations in the stochastic discount factor are

driven by innovations in preferences and these parameters are only moderately correlated

with consumption growth as reported in Table 1. This results in a model implied con-

temporaneous correlation between price-dividend ratios and consumption growth of 0.0645,

compared with an estimate of 0.0643 (se 0.1196) in annual data over the 1930-2013 sample

period. This result is rather surprising given the fact that we assume, through our sim-

plifying assumptions about the dividend growth process, that consumption and dividends

are perfectly correlated. This result suggests the smoothing risk associated with fluctua-

tions in the EIS parameter is driving fluctuations in equity prices more than consumption

growth risk. That fluctuations in the EIS dominate fluctuations in consumption volatility

in terms of their effect on equilibrium discount factors, and hence their effect on marginal

utilities and equilibrium prices, speaks to this fact.27 The takeaway from these predictabil-

ity results is that our model is able to produce excess return predictability at long horizons

consistent with what we see in the data while simultaneously producing no predictability

of consumption or dividend growth and no predictability of price-dividend ratios by lagged

consumption, something (as far as we are aware) that the current asset pricing literature is

unable to do.

Alternative Calibrations

It is useful to look at the alternative calibrations of our model to see if we can identify what

is driving the predictability results. Table 5 reports the model implied predictability results

under the three baseline special cases as well as the best fit calibrations. Comparing excess

return predictability across calibrations, the model can still produce reasonable predictabil-

ity of excess returns under iid consumption growth, implying again that our particular

27This was shown previously in Figure 2.
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assumption of non-iid consumption growth is not what is driving our results. However it

is obvious from comparing calibrations (2) and (2b) to the other baseline special cases and

best fit calibration (1b) that excess return predictability is driven almost entirely by time-

varying risk aversion and that time-varying EIS has little or nothing to do with this result.

However, it is also clear from comparing calibrations (1) and (1b) to the other baseline spe-

cial cases and best fit calibration (2b) that time-variation in the EIS parameter is what is

driving the model’s ability to produce low consumption and dividend growth predictability,

as discussed in the previous section. Likewise, looking at the model implied predictability of

price-dividend ratios by lagged consumption growth it is clear from comparing calibrations

(1) and (1b) to the others that time-varying EIS is much more crucial in generating this

low predictability than time-varying risk aversion.

1.4.4 Countercyclical Variation of the Risk Premium

It is a well known empirical fact that risk premia vary over time and this variation in equity

risk premium leads to volatile asset prices and excess return predictability.28 We report

several features of the equity risk premium implied by our model that are consistent with

this fact in Table 6. Under the baseline calibration our model produces an equity risk pre-

mium that is quite volatile. In addition, the model produces risk premium volatility that is

itself quite volatile. Looking at the alternative calibrations, it is clear that time-variation

in risk aversion is crucial for generating this volatility, which is consistent with our earlier

finding that time-variation in risk aversion is what is driving excess return predictability

in the model. This is also consistent with Campbell and Cochrane (1999) that attribute

time-variation in the equity risk premium to countercyclical risk aversion.

Furthermore, Chou, Engle, and Kane (1992) show that, for U.S. data, the equity pre-

mium and the Sharpe Ratio are both counter-cyclical. Although we do not replicate their

28For example see Fama (1984), Harvey (1989), Fama and French (1989) and Li (2001).
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estimates here, we show in Table 6 under the baseline calibration, our model is able to qual-

itatively match the data by generating both a counter-cyclical risk premium and Sharpe

Ratio. Again, looking at the alternative calibration (4), the results still hold under iid con-

sumption so this results is not being driven by our assumptions about consumption growth.

Comparing across baseline special case calibrations (1)-(3) as well as the best fit calibrations

(1b) and (2b), the main takeaway from Table 6 is that time variation in the EIS parameter

is crucial for the model to produce counter-cyclicality of the Sharpe Ratio.

While this is an interesting result, more work needs to be done to understand why exactly the

smoothing risk associated with fluctuations in the EIS is important for generating a counter-

cyclical Sharpe Ratio in the model. Nevertheless, Guvenen (2009) states that “with few

exceptions this counter-cyclicality of the market price of risk has been difficult to generate

in consumption-based asset pricing models” and concludes that heterogeneity in the EIS is

crucial to produce the stylized facts in 6.29 That these exceptions include Campbell and

Cochrane (1999), Bansal and Yaron (2004), Bansal et al. (2012) and Wachter (2013) speaks

favorably to the fact that our model is also able to produce a counter-cyclical Sharpe Ratio.

1.4.5 Real Term Structure

Estimates for the real term structure are very limited due to the unavailability of long time

series for inflation indexed bonds. Because of this, there is some debate on the empirical

nature of the real term structure. Beeler and Campbell (2012) state that the observed term

structure on U.S. Treasury inflation-protected securities (TIPS) has never had a quantita-

tively significant negative slope. Wachter (2013) claims that U.S. Treasury yield curves are

upward sloping (on average) in the data. Piazzesi and Schneider (2006) also cite evidence

that the average real yield curve constructed from the U.S. TIPS data is upward sloping.

Other studies have shown evidence from real bonds in the U.K. of a downward sloping real

29Guvenen (2009) page 1735.
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yield curve.30 Although empirical estimates of the real yield curve should be taken with

caution, our model is calibrated to match U.S. equity data. Therefore, we think the upward

slope of the real yield curve in the U.S., as suggested by TIPS data, is the appropriate

stylized fact for our model. Table 7 reports the real term structure generated by our model

under the baseline calibration. The model is able to produce an upward sloping real yield

curve with a yield spread of 15 basis points at a 10 year horizon. In addition to the slope,

the real yields at long horizons produced by the model are never negative and are in the

ballpark of 2%, which is roughly consistent with what Campbell, Shiller, and Viceira (2009)

report for the real yield on long-term TIPS.

Backus, Gregory, and Zin (1989) point out that that under the standard CRRA utility

model with values of the coefficient of relative risk aversion below ten, the average returns

of long bonds in excess of the short rate are small and negative. This “bond premium puz-

zle” has traditionally been difficult for consumption-based asset pricing models to overcome.

Our model is primarily focused on matching aggregate stock prices and we do not use any

bond data in calibrating or solving the model. Given this, it is surprising that our model,

with reasonable values for risk aversion, is able to overcome the bond premium puzzle and

yield magnitudes that appear consistent with real bond data.31 Along this dimension, our

model compares favorably to several other asset pricing models. The habits framework of

Campbell and Cochrane (1999), as demonstrated by Wachter (2006), is able to overcome

the bond premium puzzle for real bonds. However, for instance, the long-run risk model of

Bansal and Yaron (2004) and Bansal et al. (2012) are unable to produce these features of

the real term structure while the rare disasters model of Wachter (2013) is also unable to

produce an upward sloping real term structure.

30See Piazzesi and Schneider (2006) for a more detailed discussion.
31In the baseline calibration, the coefficient of relative risk aversion is 7.25 in the vast majority of periods,

while the average level of risk aversion is 8.6, both values less than the benchmark of ten.
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Looking at calibrations (1) and (1b) in Table 7 compared with calibrations (2), (3) and (2b)

it is clear that time-variation in the EIS is important in generating a steeply, upward sloping

real yield curve. When b = 0, so that time-variation in risk aversion is shut down and only

the EIS parameter is allowed to vary, the yield spread between the 10 year and 1 year bond

is 28 basis points in the baseline special case and 95 basis points in the best fit case of b = 0.

Also, note that calibration (4) with iid consumption produces a yield spread of 0.57, again

indicating this feature of the model is not being driven by our assumption on consumption

dynamics. These results suggest that smoothing risk is important for long-term bonds to

be viewed as risky, which generates an upward sloping yield curve.

To investigate why smoothing risk is generating this result, it would be useful to look at the

model implied risk premium for long-term bonds.32 However, due to the non-linearity of

the stochastic discount factor, we do not have a closed form solution for this risk premium.

Instead, we report the risk premium on bonds for the standard Epstein and Zin (1989)

model under log-normal consumption growth shocks and an EIS set to one, as derived in

Piazzesi and Schneider (2006), to guide our discussion:
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t is the return on buying an n-period real bond at time t

for price p
(n)
t and selling it at time t+1 for p

(n−1)
t+1 in excess of the short rate. The covariance

term in Equation (1.11) is the risk premium on long-term bonds while the variance term

comes from Jensen’s inequality. From Equation (1.11), it is clear that the risk premium on

bonds is due to the covariance between marginal utility mt+1 and the price of the long-bond.

As Piazzesi and Schneider (2006) point out, the yield curve is upward sloping (on average)

if the right hand side of Equation (1.11) is positive on average. Therefore, Equation (1.11)

32We refer to the risk premium for bonds as defined in Piazzesi and Schneider (2006): the return on buying

an n−period real bond at time t for price p
(n)
t and selling it at time t + 1 for p

(n−1)
t+1 in excess of the short

rate.
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implies that the yield curve is upward sloping when marginal utility and bond prices are

negatively correlated.

First, consider what happens if we shut down time variation in both the EIS and risk

aversion. Then expected changes in marginal utilities are only driven by consumption

growth shocks. Piazzesi and Schneider (2006) show that under Epstein and Zin (1989)

preferences the risk premium on bonds implied by our model in this case should be negative,

which it is as shown in calibration (3) of Table 7. Recall that marginal utilities in our model

are driven by shocks to risk aversion and the EIS in addition to consumption growth shock

and are given by Equation (1.6). Ignoring the Jensen’s Inequality term (since bond prices

are not very volatile) we can re-write the bond risk premium as
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(
rx

(n)
t+1

)
= −covt

(
(mez

t+1(γt, ψt) + srt+1), Et+1
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where as before, the second term in the covariance expression of Equation (1.12) is the price

of a long-term bond. Of course, the model’s true risk premium on long-bonds will be a more

complicated function that will depend on covariances between all the random variables in

the model, so this expression is meant only to be roughly illustrative. Consider allowing

only the risk aversion to be time varying so that srt+1 = 0 in Equation (1.12). From the

perspective of time t, marginal utility is high in every state that risk aversion is elevated

(Section 1.4.1). Also, increased risk aversion should push prices for bonds up relative to

risky assets that pay off in those future states. Therefore the correlation between marginal

utilities and bond prices is positive, which implies risk premium on long-term bonds are

negative from Equation (1.12). This is indeed the case looking at the real yield curve for

calibrations (2) and (2b) in Table 7.
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Now consider allowing the EIS to be time varying so that srt+1 6= 0 for all t. From the

perspective of time t, marginal utility is low in every state that the EIS is depressed (Section

1.4.1). Also, we argued that when the EIS is depressed, investors have a stronger prefer-

ence for consumption smoothing and they will demand more of any asset that transfers

consumption across periods (Section 1.4.2). Therefore, the price of long-term bonds will be

pushed up as investors demand more of these bonds. Hence, marginal utility is negatively

correlated with bond prices, which generates a positive risk premium on bonds. This is

apparent looking at the real yield curve for calibrations (1) and (1b) in Table 7.

Allowing for both risk aversion and the EIS to be time-varying in our baseline calibration

also produces a positive risk premium on long-bonds. This is true even though shocks to

consumption growth and risk aversion fluctuations push the risk premium in the opposite

direction (negative) as fluctuations in the EIS (positive). The reason is that, as previously

shown in Figure 2, marginal utilities are more sensitive to fluctuations in the EIS than con-

sumption volatility or risk aversion fluctuations so the former effect on the risk premium on

long-term bonds dominates. Therefore, the consumption and risk aversion hedging of long-

term bonds is dominated by the positive risk premium being generated by the smoothing

risk.

This analysis supports the implication of the model that smoothing risk generates an upward

sloping real yield curve. Intuitively, the reason that long-term bonds are viewed as risky

by the investor is because these bonds give investors a stream of consumption in future

periods t+ i+ 1 (for i = 1, 2, . . . ) that is consistent with their preference for smoothing at

time t. However, if their preference for smooth consumption changes before these bonds

pay off, they are stuck holding assets that give them a different consumption profile than

what their new preferences would optimally choose. Hence, the uncertainty coming from

the smoothing risk affects an investor’s ability to plan over long horizons. However, agents
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in the model are rational and there is no dynamic inconsistency because this uncertainty is

priced into assets in equilibrium as a positive risk premium for long-term bonds.

1.5 Discussion

The model results in the previous section provide compelling evidence that time-variation in

the EIS parameter seems to be the primary channel allowing the model to match aggregate

asset pricing moments, consumption and dividends predictability, counter-cyclicality of the

market price of risk, and the real term structure. Time-varying risk aversion helps the model

fit better but is itself the primary channel through which the model is able match the em-

pirical evidence that price-dividend ratios predict excess stock returns at long horizons and

generate a volatile equity premium. Furthermore, we have argued that these fluctuations

in the EIS parameter effects equilibrium asset prices in the model through the smoothing

risk channel. However, the model remains agnostic as to why investor preferences fluctuate

in such a way as to introduce this additional risk being priced into assets.

In the discussion that follows, we provide arguments for these mechanisms under the behav-

ioral interpretation in Section 1.2.9 that rare exogenous shocks coinciding with recessions

induce fear in the market that shifts investor preferences to irregular levels. Given that mar-

ket fundamentals, which are captured by realized consumption growth, are the same across

regular and irregular preference states, we can think of these fluctuations in preferences as

overreactions to bad news. Hence, investors make decisions based on fear induced irregu-

lar preferences resulting in optimal consumption and savings choices that depart from what

these investors otherwise would have made given the same news about the fundamental state

of the economy. Under this interpretation, fear influences investor preferences through two

channels: investors’ contemporaneous appetite for risk and their desire to smooth consump-

tion across future states of the economy. We emphasize that this behavioral interpretation
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is not necessary for the model results to hold, it merely guided our assumptions restricting

the transition matrix and provides an intuitive explanation for how assets are priced in

this model economy; this interpretation is also consistent with the evidence presented by

Guiso et al. (2013) and Cohn et al. (2013) that fear influences investor choice in ways not

attributable to standard risk factors.

1.5.1 Excess Safety Motive

When an investor’s appetite for risk is elevated due to fear but their preference for con-

sumption smoothing is unchanged at its regular level, we have seen that discount factors

behave as expected in a standard consumption-based asset pricing model. However, look-

ing at Matrix (1.9), investors pay premiums (2.63, 2.15) for contingent claims paying off

in recessions when marginal utility is high under fear-induced elevated risk aversion that

are larger than premiums (1.38, 1.13) for claims in recessions when there is no fear in the

market. Likewise, investors require a larger discount for state contingent claims in periods

of fear than they otherwise would for claims paying in expansions when marginal utility

is low (0.03 versus 0.68). This appetite for risk results in investors paying too much for

the risk-free asset, in the form of accepting lower returns, as they rebalance their portfolios

away from risky assets. The key thing to note is that the value of realized consumption

growth is the same (Gt = g`) in states s2 and s3, hence relative to the market fundamentals

investors are overly conservative in taking risks when in irregular periods of elevated risk

aversion. So we can think of investors as having an “excess safety” motive, induced by fear,

for investments relative to what the market fundamentals would otherwise dictate.
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1.5.2 Excess Frugality Motive

Risk aversion only measures how averse an investor is at time t to variation in consumption

across different states at time t + 1. However, the EIS measures how averse an investor

is at time t to consumption variation across future time periods along a determinist path

of consumption. Therefore, when investors are fearful regarding the future states of the

economy they might prefer consumption profiles that are smoother because they are wor-

ried about not having enough to eat tomorrow and over longer horizons. In this case, fear

induces a stronger preference for smoothing consumption than what the fundamentals of

the economy dictate because the persistence of consumption growth is unchanged across

fear and regular states. The limiting case of this strong preference for smoothing would be

that investors guarantee for sure that they have the same amount of consumption in every

period, even if market fundamentals indicate a different consumption and savings decision

under regular preferences for smoothing. Hence, as mentioned previously, one way to think

of the effect of fear on investor preferences is that fear induces a preference for consumption

rationing that is unrelated to market fundamentals. This will tend to drive prices up on any

asset that allows the investor to smooth consumption and their fear induced preference for

smoothing is so strong that they are willing to accept negative returns in these fear states.

In this sense investors have an “excess frugality” motive in fear states because they will pay

more than they should in the form of lower (negative) returns given the fundamentals of

the economy.

This discussion points to the following conclusions. When rare shocks occur that induce

fear in the markets and cause investors to have temporary, elevated risk aversion, this shock

induces an excess safety motive: investors pay a lot for the risk-free asset—more than

the fundamentals say they should—and subsequently demand a large risk premium to hold

risky assets. However, if this fear shock causes a decreased EIS and a stronger preference for

consumption smoothing, the shock induces an excess frugality motive: investors are willing
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to pay a lot—more than the fundamentals say they should—for all assets that transfer

consumption to future periods. The low risk premiums in these states offset the very high

risk premiums in the excess safety state and result in a model implied equity premium

consistent with the data. Overall, these fluctuations generate the variation in asset prices

that are crucial for the model to match many of the stylized facts of aggregate U.S. asset

prices.

1.6 Conclusion

Much of the current literature on consumption based asset pricing attempts to explain

fluctuations in aggregate asset prices through shocks to the aggregate consumption pro-

cess, which is accomplished by specifying increasingly complex dynamics for consumption.

Many studies have considered alternative preference specifications to the standard CRRA

preferences. An influential subset of these studies has indicated that time variation in risk

aversion is important for matching various stylized facts of U.S. asset prices. In addition, a

few studies have suggested that accounting for time variation in the EIS is also potentially

important for explaining asset prices. We develop a model with recursive preferences along

the lines of Epstein and Zin (1989) that relaxes both assumptions of constant risk aversion

and constant EIS parameters without departing from the simple consumption dynamics of

Mehra and Prescott (1985).

Our parsimonious model with a limited state space nests the model of Mehra and Prescott

(1985). We show that rare and temporary periods of irregular levels of the EIS and risk

aversion can quantitatively explain numerous regularities in U.S. asset prices: the equity

premium and risk-free rate puzzles, excess return and consumption growth predictability,

a countercyclical risk premium, and an upward-sloping real yield curve. The ability of

our model to simultaneously generate excess return predictability and no predictability in
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consumption growth (or lagged consumption growth predicting price-dividend ratios) along

with a countercyclical risk premium and an upward sloping real yield curve is something

that models in the extensive consumption-based asset pricing literature appear to be un-

able to do. A novel implication of our model is that, although counter-cyclical risk aversion

is key for producing excess return predictability and countercyclical risk premium, small

pro-cyclical fluctuations in the EIS generate a new smoothing risk channel for asset prices;

furthermore, this new risk channel is important for producing most of the other challenging

asset pricing regularities. This smoothing risk reflects uncertainty in investors’ ability to

plan for future consumption due to fluctuations in the EIS. Therefore, the model identifies

a new risk channel that is distinct from the usual consumption risk governing investors’

ability to smooth consumption absent such EIS fluctuations.

We also present a behavioral interpretation of sophisticated investors with rational expec-

tations to explain our results: fear in the markets induces periods of excess safety or excess

frugality where investors pay “too much” to smooth consumption or hedge against risk in

the form of accepting lower returns relative to what market fundamentals dictate. Under

this interpretation, our model provides a theoretical framework, consistent with investor

behavior not reflected in traditional fundamental risk factors, to investigate the idea that

psychological factors, such as fear, might alter investor preferences and drive fluctuations

in aggregate asset prices.

Overall, our results suggest there is value in pursuing future research that relaxes the as-

sumption that preference parameters are constant over time, particularly the EIS parameter,

which has been largely neglected in the literature. Furthermore, our results motivate future

empirical work to estimate and provide further evidence regarding time-varying risk aver-

sion and the EIS. Exploring this channel as a source of model misspecification could lead to

fruitful advances in our understanding of what is driving asset prices and risk premiums.
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Table 1

Model Calibration

This table provides the baseline and alternative calibrations for the model at an annual frequency. The moments
for consumption and dividends are calibrated to the 1930-2013 sample period. Conditional on transitioning to a
state with low consumption growth, elevated risk aversion, γelev = kγγ0, occurs with probability b, and depressed
EIS, ψdepr = ψ0 − kψ , occurs independently with probability d. Calibrations (1-3) are special cases of the baseline
calibration, shutting down time variation in risk aversion (b = 0), the EIS parameter (d = 0) or both (b = 0
and d = 0) and are otherwise identical to the baseline calibration. Calibration (4) with ρC = 0 is an alternative
calibration from the baseline that specifies consumption growth as an iid process. Calibrations (1b) and (2b) are
alternative calibrations from the baseline that best fit two special cases of the model when time variation in risk
aversion (b = 0) or the EIS parameter (d = 0) is shut down.

Baseline Special Cases Best Fit

(1) (2) (3) (4) (1b) (2b)
b = 0

Baseline b = 0 d = 0 d = 0 ρC = 0 b = 0 d = 0

Time Varying Risk Aversion Y N Y N Y N Y
Time Varying EIS Y Y N N Y Y N

Parameter Symbol

Mean Consumption Growth µC 1.89 1.89 1.89 1.89 1.89 1.89 1.89
Consumption Growth Volatility σC 2.15 2.15 2.15 2.15 2.15 2.15 2.15
Consumption Growth Autocorr. ρC 0.47 0.47 0.47 0.47 0 0.47 0.47
Mean Dividend Growth µD 1.97 1.97 1.97 1.97 1.97 1.97 1.97
Dividend Leverage Factor φD 4.5 4.5 4.5 4.5 4.5 5.83 4.25

Time Discount Factor δ 0.993 0.993 0.993 0.993 0.993 0.993 0.999

Risk Aversion, Regular γ0 7.25 7.25 7.25 7.25 7.50 9.5 6
Elevated Risk Aversion Factor kγ 3.24 — 3.24 — 4.93 — 4.75
Low Growth Cond. Probability b 0.05 0 0.05 0 0.05 0 0.05

EIS Parameter, Regular ψ0 0.956 0.956 0.956 0.956 0.968 0.956 0.965
Depressed EIS Offset kψ 0.002 0.002 — — 0.002 0.003 —
Low Growth Cond. Probability d 0.125 0.125 0 0 0.125 0.100 0

E[γt] 8.60 7.25 8.60 7.25 8.90 9.5 7.86
E[ψt] 0.9556 0.9556 0.956 0.956 0.9678 0.9556 0.965
Corr(γt, Gt) -0.30 — -0.30 — -0.22 — -0.30
Corr(ψt, Gt) 0.39 0.40 — — 0.32 0.35 —
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Figure 1

This figure plots the equilibrium discount factors from st = {s2} to st+1 ∈ {s2, s4, s5}
where {s2, s4, s5} = {(gh, γ0, ψ0), (g`, γ0, ψ0), (g`, γ0, ψdepr), (g`, γelev, ψdepr)} for values for
the persistence of consumption volatility. The vertical line indicates the value of ρC =
0.47 in the baseline calibration of the model. The figure illustrates that as persis-
tence in consumption growth increases, discount factors in s2 and s4 diverge. This di-
vergence in discount factors implies that investors are better off in utility terms when
persistence in consumption growth is high when they have a strong preference for
smoothing ψdepr relative to states with a weaker preference for smoothing ψt = ψ0.
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(a)
Discount Factors and Consumption Growth Volatility
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(b) Discount Factors and EIS Fluctuations
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(c) Discount Factors and Risk Aversion Fluctuations
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Figure 2

This figure plots the equilibrium discount factors from st = {s1} to st+1 ∈ {s1, s4, s5}
where {s1, s4, s5} = {(gh, γ0, ψ0), (g`, γ0, ψdepr), (g`, γelev, ψdepr)}. All of the discount factors
reported in the figures are normalized by s1, hence all discount factors are relative to the
horizontal line at the value of 1. The vertical line in each panel indicates the value of that
parameter in the baseline calibration of the model. Panel (a) solves the model and generates
equilibrium discount factors for values of consumption volatility holding everything else fixed
according to the baseline calibration. Panels (b) and (c) do the same thing over values for the
EIS offset parameter kψ and the risk aversion scaling parameter kγ . The vertical line in each
graph indicates the parameter’s value in the baseline calibration of the model. Comparing
states s4 and s5 across the graphs, these figures illustrate clearly that equilibrium discount
factors and hence, marginal utility and asset prices are much more sensitive to fluctuations
in the EIS parameter than shocks to consumption growth or fluctuations in risk aversion.
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Table 2

Asset Price Moments

This table provides the model implied asset pricing moments at an annual frequency for the baseline
calibration in Table 1. The sample period is 1930-2013 and all data moments are estimated using 10
Newey West lags for heteroskedasticity and autocorrelation consistent standard errors. All returns,
prices and dividends are exact and not transformed on a log basis.

Moment Data SE 95% CI Model

E(Rm) 7.95 1.83 [4.35, 11.55] 7.68
σ(Rm) 19.50 1.78 [16.01, 22.98] 22.49
AC1(Rm) -0.02 0.08 [-0.17, 0.13] -0.08

E(Rf ) 0.41 0.74 [-1.04, 1.87 ] 1.47
σ(Rf ) 3.69 0.76 [2.20, 5.18] 3.73
AC1(Rf ) 0.61 0.07 [0.48, 0.74] 0.67

E(Rm −Rf ) 7.54 1.93 [3.75, 11.32] 6.21
σ(Rm −Rf ) 19.52 2.29 [15.02, 24.01] 21.99
AC1(Rm −Rf ) 0.01 0.09 [-0.15, 0.18] -0.12

Sharpe Ratio 0.39 0.12 [0.15, 0.62] 0.28

E(P/D) 32.17 4.94 [22.48, 41.86] 25.06
σ(P/D) 16.12 3.67 [8.93, 23.32] 4.25
AC1(P/D) 0.91 0.06 [0.80, 1.00] 0.65

E(D/P ) 3.82 0.46 [2.92, 4.72] 4.13
σ(D/P ) 1.68 0.23 [1.24, 2.12] 0.91
AC1(D/P ) 0.76 0.10 [0.57, 0.95] 0.63

σD 12.53 3.07 [6.52, 18.55] 9.68
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Table 3

Asset Price Moments - Alternative Calibrations

This table provides the model implied asset pricing moments at an annual frequency for the baseline and alternative
calibrations in Table 1. The sample period is 1930-2013 and all data moments are estimated using 10 Newey West
lags for heteroskedasticity and autocorrelation consistent standard errors. Calibrations (1-3) are special cases of the
baseline calibration, shutting down time variation in risk aversion (b = 0), the EIS parameter (d = 0) or both (b = 0
and d = 0) and are otherwise identical to the baseline calibration. Calibration (4) with ρC = 0 is an alternative
calibration from the baseline that specifies consumption growth as an iid process. Calibrations (1b) and (2b) are
alternative calibrations from the baseline that best fit two special cases of the model when time variation in risk
aversion (b = 0) or the EIS parameter (d = 0) is shut down.

Model

Baseline Special Cases Best Fit

(1) (2) (3) (4) (1b) (2b)
b = 0

Baseline b = 0 d = 0 d = 0 ρC = 0 b = 0 d = 0

Time Varying Risk Aversion Y N Y N Y N Y
Time Varying EIS Y Y N N Y Y N

Moment Data SE 95% CI

E(Rm) 7.95 1.83 [4.35, 11.55] 7.68 4.51 8.54 5.53 6.93 6.47 8.21
σ(Rm) 19.50 1.78 [16.01, 22.98] 22.49 13.70 21.33 14.35 22.70 19.75 22.42
AC1(Rm) -0.02 0.08 [-0.17, 0.13] -0.08 0.05 -0.04 0.08 -0.20 0.00 -0.05

E(Rf ) 0.41 0.74 [-1.04, 1.87 ] 1.47 1.78 2.16 2.25 1.13 0.71 1.57
σ(Rf ) 3.69 0.76 [2.20, 5.18] 3.73 3.45 1.07 1.01 6.17 5.40 1.08
AC1(Rf ) 0.61 0.07 [0.48, 0.74] 0.67 0.66 0.50 0.47 0.44 0.68 0.50

E(Rm −Rf ) 7.54 1.93 [3.75, 11.32] 6.21 2.73 6.38 3.28 5.80 5.77 6.64
σ(Rm −Rf ) 19.52 2.29 [15.02, 24.01] 21.99 12.93 21.41 14.30 21.86 18.54 22.56
AC1(Rm −Rf ) 0.01 0.09 [-0.15, 0.18] -0.12 -0.03 -0.07 0.01 -0.17 -0.05 -0.08

Sharpe Ratio 0.39 0.12 [0.15, 0.62] 0.28 0.21 0.30 0.23 0.27 0.31 0.29

E(P/D) 32.17 4.94 [22.48, 41.86] 25.06 48.76 20.12 33.44 30.81 29.88 22.45
σ(P/D) 16.12 3.67 [8.93, 23.32] 4.25 5.08 2.62 2.01 5.13 5.38 3.15
AC1(P/D) 0.91 0.06 [0.80, 1.00] 0.65 0.64 -0.07 0.47 0.45 0.67 0.63

E(D/P ) 3.82 0.46 [2.92, 4.72] 4.13 2.07 5.08 3.00 3.34 3.44 4.58
σ(D/P ) 1.68 0.23 [1.24, 2.12] 0.91 0.20 0.90 0.18 0.67 0.51 0.93
AC1(D/P ) 0.76 0.10 [0.57, 0.95] 0.63 0.62 0.67 0.47 0.43 0.64 0.68

σD 12.53 3.07 [6.52, 18.55] 9.68 9.68 9.68 9.68 9.68 12.53 9.14
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Table 4

Predictability Results

This table reports predictability of excess returns, consumption and dividend growth over one, three
and five year horizons at an annual frequency for the baseline calibration in Table 1. The data sample
is 1930-2013 and all coefficients and R-squared eestimates within each panel are jointly estimated
using the GMM method of Hansen and Singleton (1982) and 5 Newey West lags for heteroskedasticity
and autocorrelation consistent standard errors. The coefficient estimates are in units of basis points
(e.g. β = 0.0001 is 0.01% or 1 basis point).

Data Model

β̂ 95% CI R̂2 95% CI β R2

ΠJ
j=1(1 +Rm,t+j −Rf,t+j) = α+ βPDt + εt+j

1Y -0.002 [-0.004, -0.000] 0.033 [-0.033, 0.098] -0.016 0.093
(0.001) (0.033)

3Y -0.007 [-0.012, -0.003] 0.128 [-0.029, 0.284] -0.034 0.172
(0.002) (0.080)

5Y -0.015 [-0.022, -0.008] 0.225 [0.032, 0.418] -0.045 0.176
(0.004) (0.099)

ΠJ
j=1∆Ct+j = α+ βPDt + εt+j

1Y 0.0001 [-0.0002, 0.0005] 0.009 [ -0.037, 0.056] 0.0002 0.001
(0.0002) (0.024)

3Y -0.0002 [-0.0009, 0.0006] 0.004 [-0.034, 0.043] 0.0003 0.001
(0.0004) (0.020)

5Y -0.0006 [-0.0016, 0.0003] 0.043 [ -0.081, 0.167] 0.0003 0.000
(0.0005) (0.063)

ΠJ
j=1∆Dt+j = α+ βPDt + εt+j

1Y 0.0013 [-0.0009, 0.0036] 0.029 [ -0.045, 0.102] 0.0007 0.001
(0.0011) (0.037)

3Y 0.0015 [-0.0020, 0.0051] 0.012 [ -0.038, 0.062] 0.0012 0.001
(0.0018) (0.025)

5Y 0.0014 [-0.0022, 0.0051] 0.011 [ -0.049, 0.072] 0.0014 0.000
(0.0018) (0.031)

PDt+1 = α+ βΠJ
j=1∆Ct+1−j + εt+j

1Y -3.78 [-186.83, 179.28] 0.000 [-0.002, 0.002] -18.37 0.009
(93.40) ( 0.001)

3Y -35.69 [-109.63, 38.25] 0.012 [-0.037, 0.060] -12.02 0.021
(37.72) (0.025)

5Y -55.10 [-128.94, 18.75] 0.035 [ -0.060, 0.129] -8.57 0.023
(37.68) (0.048)
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Table 5

Predictability Results - Alternative Calibrations

This table reports predictability of excess returns, consumption and dividend growth over one, three and five year
horizons at an annual frequency for the calibrations in Table 1. The data sample is 1930-2013 and all coefficients
and R-squared eestimates within each panel are jointly estimated using the GMM method of Hansen and Singleton
(1982) and 5 Newey West lags for heteroskedasticity and autocorrelation consistent standard errors. Calibrations
(1-3) are special cases of the baseline calibration, shutting down time variation in risk aversion (b = 0), the EIS
parameter (d = 0) or both (b = 0 and d = 0) and are otherwise identical to the baseline calibration. Calibration
(4) with ρC = 0 is an alternative calibration from the baseline that specifies consumption growth as an iid process.
Calibrations (1b) and (2b) are alternative calibrations from the baseline that best fit two special cases of the model
when time variation in risk aversion (b = 0) or the EIS parameter (d = 0) is shut down. Coefficient estimates are
included for all calibrations in Table 37 in the Appendix.

Baseline Special Cases Best Fit

(1) (2) (3) (4) (1b) (2b)
b = 0

Data Baseline b = 0 d = 0 d = 0 ρC = 0 b = 0 d = 0

Time Varying Risk Aversion Y N Y N Y N Y
Time Varying EIS Y Y N N Y Y N

ΠJj=1(1 +Rm,t+j −Rf,t+j) = α+ βPDt + εt+j

R̂2 95% CI R2

1Y 0.033 [-0.033, 0.098] 0.093 0.011 0.058 0.000 0.097 0.011 0.079
(0.033)

3Y 0.128 [-0.029, 0.284] 0.172 0.015 0.109 0.000 0.129 0.016 0.152
(0.080)

5Y 0.225 [0.032, 0.418] 0.176 0.013 0.114 0.000 0.111 0.014 0.165
(0.099)

ΠJj=1∆Ct+j = α+ βPDt + εt+j

R̂2 95% CI R2

1Y 0.009 [ -0.037, 0.056] 0.001 0.000 0.125 0.221 0.000 0.001 0.118
(0.024)

3Y 0.004 [-0.034, 0.043] 0.001 0.000 0.067 0.119 0.000 0.000 0.064
(0.020)

5Y 0.043 [ -0.081, 0.167] 0.000 0.000 0.040 0.071 0.000 0.000 0.038
(0.063)

ΠJj=1∆Dt+j = α+ βPDt + εt+j

R̂2 95% CI R2

1Y 0.029 [ -0.045, 0.102] 0.001 0.000 0.125 0.221 0.000 0.001 0.118
(0.037)

3Y 0.012 [ -0.038, 0.062] 0.001 0.000 0.067 0.118 0.000 0.000 0.063
(0.025)

5Y 0.011 [ -0.049, 0.072] 0.000 0.000 0.040 0.070 0.000 0.000 0.037
(0.031)

PDt+1 = α+ βΠJj=1∆Ct+1−j + εt+j

R̂2 95% CI R2

1Y 0.000 [-0.002, 0.002] 0.009 0.027 0.186 0.221 0.006 0.033 0.179
( 0.001)

3Y 0.012 [-0.037, 0.060] 0.021 0.049 0.133 0.119 0.006 0.052 0.130
(0.025)

5Y 0.035 [ -0.060, 0.129] 0.023 0.048 0.095 0.071 0.005 0.050 0.093
(0.048)
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Table 6

Risk Premium Variation

This table provides the model implied risk premium and Sharpe Ratio correlations with consumption growth
at an annual frequency for the baseline and alternative calibrations in Table 1. Calibrations (1-3) are special
cases of the baseline calibration, shutting down time variation in risk aversion (b = 0), the EIS parameter
(d = 0) or both (b = 0 and d = 0) and are otherwise identical to the baseline calibration. Calibration
(4) with ρC = 0 is an alternative calibration from the baseline that specifies consumption growth as an iid
process. Calibrations (1b) and (2b) are alternative calibrations from the baseline that best fit two special
cases of the model when time variation in risk aversion (b = 0) or the EIS parameter (d = 0) is shut down.

Baseline Special Cases Best Fit

(1) (2) (3) (4) (1b) (2b)
b = 0

Moment Baseline b = 0 d = 0 d = 0 ρC = 0 b = 0 d = 0

Time Varying Risk Aversion Y N Y N Y N Y
Time Varying EIS Y Y N N Y Y N

σ(Et(Rm,t+1 −Rf,t+1)) 8.76 1.39 6.05 0.20 12.00 1.92 7.15

σ(σt(Rm,t+1 −Rf,t+1)) 8.02 0.87 5.04 0.25 7.29 1.81 6.39

Corr(Gt, Et(Rm,t+1 −Rf,t+1)) -0.20 0.16 -0.30 1.00 -0.18 -0.05 -0.33

Corr(Gt, σt(Rm,t+1 −Rf,t+1)) -0.23 -0.04 -0.39 -1.00 -0.16 -0.28 -0.37

Corr(Gt, SharpeRatiot) -0.42 -0.46 0.79 1.00 -0.31 -0.39 0.80

Table 7

Real Term Structure

This table provides the model implied real term structure at an annual frequency for the baseline and
alternative calibrations in Table 1. Calibrations (1-3) are special cases of the baseline calibration, shutting
down time variation in risk aversion (b = 0), the EIS parameter (d = 0) or both (b = 0 and d = 0) and are
otherwise identical to the baseline calibration. Calibration (4) with ρC = 0 is an alternative calibration from
the baseline that specifies consumption growth as an iid process. Calibrations (1b) and (2b) are alternative
calibrations from the baseline that best fit two special cases of the model when time variation in risk aversion
(b = 0) or the EIS parameter (d = 0) is shut down.

Maturity 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

Yield γt ψt

Baseline Y Y 1.47 1.58 1.63 1.66 1.67 1.67 1.66 1.65 1.64 1.62
(1) b = 0 N Y 1.78 1.86 1.92 1.96 1.99 2.01 2.02 2.04 2.05 2.06
(2) d = 0 Y N 2.16 2.01 1.91 1.83 1.77 1.72 1.68 1.64 1.61 1.57
(3) b = 0, d = 0 N N 2.25 2.14 2.08 2.03 2.00 1.98 1.96 1.95 1.94 1.93

Best Fit
(4) ρC = 0 Y Y 1.31 1.61 1.75 1.83 1.87 1.89 1.89 1.89 1.89 1.88
(1b) b = 0 N Y 0.71 1.01 1.21 1.34 1.43 1.50 1.56 1.60 1.63 1.66
(2b) d = 0 Y N 1.57 1.43 1.33 1.25 1.18 1.12 1.07 1.03 0.99 0.95
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CHAPTER 2 : Estimating the “I” in Team: The Value of Star College Football and

Basketball Players.

2.1 Introduction

Collegiate athletics in the United States have been regulated by The National Collegiate

Athletic Association (NCAA) since 1901.33 One of the many, and most controversial, as-

pects of collegiate athletics regulated by the NCAA involves the rules on paying college

athletes. Currently the NCAA restricts an athlete’s compensation to in-kind transfers of

institutional financial aid. The maximum amount of this “grant-in-aid” is based off the

cost of attendance as calculated by each institution’s financial aid office and is limited to

tuition, fees, room and board, and required course-related books.34 In addition to the rules

governing institutional financial aid, the NCAA explicitly forbids outside financial aid that

has any relationship to athletic ability in an effort to maintain their claims of amateurism

for student-athletes.35 As Tollison (2012) and Kahn (2007) point out, restricting compe-

tition by restricting payments to players is one of the most compelling arguments for the

claim that the NCAA effectively functions as a cartel.

In a pair of recent studies, Huma and Staurowsky (2011, 2012) document a shortfall that

exists between what a full athletic scholarship covers and the full cost of attending college

for collegiate football players. They also estimate the average full athletic scholarship at a

Division 1 FBS institutions to be worth approximately $23, 204 per year. Given the fact

that Division 1 FBS football programs, on average, generate millions of dollars in revenues

each year while compensating players relatively little, it is not surprising that questions of

fairness have recently emerged in a series of lawsuits centered around the NCAA’s cartel

33See Tollison (2012) for an overview of the formation for the NCAA and how its purpose has shifted over
time.

34See NCAA 2013–2014 Division I Manual, bylaw 15.02.
35See NCAA 2013–2014 Division I Manual, bylaws 12.1.2 and 15.01.3.
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practices.

Former UCLA basketball player Ed O’Bannon brought a case against the NCAA alleging

that the organization used the likeness and image of student-athletes for its own profits

while prohibiting them from being paid for their efforts. On April 14, 2014, the judge pre-

siding over the case ruled in favor of O’Bannon, allowing athletes to receive money from

schools that use their names, images, and likenesses. Although the NCAA can still set a

salary-cap (no lower than $5,000) and bar athletes from marketing themselves, this decision

has been viewed as an important step toward breaking down the NCAA’s cartel power.36

On March 26, 2014 the United States National Labor Relations Board ruled in favor of the

College Athletes Players Association (CAPA), which brought a suit against Northwestern

University to establish that their football players qualify as employees of the university

under federal law and should, therefore, be allowed to unionize.37

Most recently, an ongoing class action lawsuit filed in March 2014 against the NCAA and

and the “Big 5” athletic conferences alleges these institutions function as a cartel.38 The

lawsuit claims that the NCAA’s practice of price-fixing players’ compensation, by allowing

only full grant-in-aid, and boycotting institutions who do not comply with this rule, violates

U.S. anti-trust laws under the Sherman Act. The plaintiffs in this case claim that

The Plaintiffs—top-tier college football and men’s basketball players, along with

the class members whom the players seek to represent—are exploited by Defen-

dants and their member institutions under false claims of amateurism. The De-

fendants and their member institutions have lost their way far down the road of

commercialism, signing multi-billion dollar contracts wholly disconnected from

36The NCAA is currently appealing this decisons as of the time of this writing. For the full decision see
Edward C. O’Bannon v. National Collegiate Athletic Association, 2014, 4:09-cv-03329-CW.

37 Northwesern University v. College Athletes Players Association, 2014 13-RC-121359.
38The “Big 5” conferences named in the suit are: the Atlantic Coast Conferece, the Big 12 Conferece, the

Big Ten Conference, the PAC-12 Conference, and the Southeastern Conference.
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the interests of ‘student athletes,’ who are barred from receiving the benefits of

competitive markets for their services even though their services generate these

massive revenues.39

The central claim here is that college athletes are directly responsible for generating mil-

lions of dollars in revenues for the institutions they play for. Furthermore, these economic

rents–the difference between the revenues generated by the player and the costs associated

with fielding the player–produced by players are being captured entirely by NCAA member

institutions. The lawsuit’s argument implies that college athletes would be able to capture

a portion of these rents in the form of a market wage if they were allowed to sell their labor

in a competitive labor market. Therefore, players would be compensated far beyond the

value of their current compensation, which is artificially limited by the NCAA to athletic

scholarships of in-kind transfers.

However, there is another side to this “pay for play” debate. In the 2013 documentary film

Schooled: The Price of College Sports,40 Harvey Perlman, the Chancellor of the University

of Nebraska - Lincoln, is filmed saying

I understand the criticism that they are generating all the revenue and they

aren’t getting any of the money and I think that is utterly false. It’s because of

the investments that we made, it’s because of the attraction and passion that

alumni have for their institution, I dont think it’s because football players were

playing football.

Though Mr. Perlman is not speaking on behalf of NCAA member institutions as a whole,

his remarks indicate that the athletes themselves, while necessary, are not the driving force

behind the large revenues being generated by these Division 1 athletics programs. The

question on wether the NCAA’s pay restrictions are unfair and that college athletes should

39 Martin Jenkins et al. v. National Collegiate Athletic Association et al., 2014 3:33-av-00001.
40Directed by Ross Finkel and Trevor Martin, produced by Makuhari Media.
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be paid is a normative one. However, this paper attempts to inform this debate through a

careful empirical analysis of how much college athletes are “worth” to the institutions they

play for.

In a standard labor market, a natural measure of an employee’s worth is how much ad-

ditional revenue the employee generates for their firm. In a perfectly competitive labor

market, the employee’s wage would equal their marginal revenue product (MRP). Although

a formal labor market for college players does not exist, estimating the MRP of the best

performing “star” college players gives us an upper bound on how much the best college

athletes could be paid if they were able to sell their services in a perfectly competitive labor

market.41 Also, if a labor market for college players did exist, it is likely that players would

be paid less than their marginal revenue product. The size of the discrepancy would be

determined by the relative bargaining power of players and universities and if players are

close substitutes for one another. Nevertheless, the MRP of star players provides one useful

measure of how much these stand-out players are worth to their institutions and provides

a useful starting point in understanding the magnitude of the rents being captured by the

NCAA’s member institutions under the current pay restrictions.

In this paper I present fixed effects estimates of the MRP of star football and basketball

players at Division 1 programs using a novel panel dataset spanning 2003-2012.42 I find

that football players named to the All American team are worth just over $1.2 million a

year while Heisman Finalists and Heisman Nominees are worth just over $2.1 million and

41That is, of course, assuming that observed revenues would be similar to the revenues of university athletic
programs under a more competitive market structure.

42Kahn (2007) reports that, on average, the two big revenue sports of men’s basketball and football run
a surplus, however, college sports as a whole report operating losses. This suggests that these two sports
subsidize other athletic programs and non-athletic university expenses, which is why the literature has
primarily focused on men’s college football and basketball. Using the most current revenues data from the
U.S. Department of Education for 2012, Men’s Division 1 FBS football programs accounted for, on average,
54% of total athletic program revenues for the 123 programs contained in the data. Likiwise, men’s Division
1 basketball programs accounted for, on average, just over 18% of total athletic program revenues for the
344 programs contained in the data.
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$1.7 million a year respectively. I also find that having a top Quarterback, Running Back

or Wide Receiver is worth around $600, 000 a year and that star Quarterbacks and Wide

Receivers alone can be worth up to $4.6 and $2.9 million respectively. For basketball, I

find that players who won the Wooden Award, Naismith Award, or were named the most

outstanding player in the NCAA Tournament are worth up to $1.1 million a year while

players named to the All American First Team are worth up to $654, 000. Also, players

that were drafted, a top 5 or top 10 NBA draft pick, or were in the top 10 or 20 points

scorers in a season are worth up to around $200, 000− $400, 000 a year.

While the evidence suggests that star players are worth a lot to their teams, I find evidence

using data from the Yahoo! Sports Rivals.com database suggesting it is difficult for re-

cruiters to identify players ex-ante that will generate revenues above the average player on

the team. I also collect data on a team’s news media mentions and I find that the marginal

revenue produced by these star athletes above the average player on the team tends to

decline as the team is mentioned more frequently in the media. That is, star players seem

to be worth less relative to the average player for teams that are mentioned more often in

the media. To the extent that a team’s media coverage proxies for things like a university’s

long term investment in the sports program or the excitement generated by the team, this

finding gives some tentative support to Mr. Perlman’s claim. However, overall, the results

still suggest that star college football and basketball players generate a significant amount

of revenue for their institutions.

The remainder of this paper is organized as follows: Section 2.2 provides an overview of

the current literature estimating the MRP of college football and basketball players and

discusses this paper’s contributions to that literature. Section 2.3 explains the details of

the revenues data, the sports statistics data, the Yahoo! Sports Rivals.com data, the data

collected to measure a team’s media exposure, and various other data used in the analysis.
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This section also defines the various ways that star football and basketball players are mea-

sured. Section 2.4 describes the empirical strategy used to estimate a star player’s marginal

revenue product while Section 2.5 reports and discusses the MRP estimates. Section 2.6

presents the results from a first-difference estimation and an alternative model for revenues

for robustness. Section 2.7 estimates an ex-ante star player’s marginal revenue product and

discusses the difference between ex-post stars that were surprise stars in college. Section

2.8 reports instrumental variables and differences-in-differences estimates using the number

of injured star players for identification. Section 2.9 reports the MRP estimates for star

basketball players using the Scully Method. Section 2.10 describes a model of revenues that

is used to analyze how a college football or basketball team’s media exposure is related to

the MRP of star players and Section 2.11 concludes.

2.2 Literature Review

There are two main approaches to estimating an athlete’s MRP in the current literature:

the “Scully Method” and what I will call the “Direct Method”. Using data on Major League

Baseball players, Scully (1974) was the first to estimate an athlete’s MRP. His method em-

ploys a two-step procedure that involves first, estimating individual player contributions to

winning, then estimating the effect that winning has on team revenues. For the first step,

he estimates a team’s production function by regressing win-percentage on team inputs like

pitching and batting performance. The coefficients of this estimation can be interpreted

as marginal products. Step two is a regression of revenues on win-percentages and mar-

ket characteristics to estimate the marginal revenue generated by winning. The MRP of

baseball players is then computed by multiplying the marginal product coefficient with the

marginal revenue coefficient obtained from this two-step process.
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Zimbalist (1992) points out that the correct way to measure the marginal productivity of in-

dividual players should include an estimate of the marginal contribution of the replacement

player the team would have chosen instead of that player. Identifying the replacement play-

ers the team would have chosen is a nearly impossible task for the econometrician. This is

problematic for the Scully Method, as it relies on estimating a player’s marginal productivity

directly. Krautmann (1999, 2013) raises concerns that the Scully Method gives individual

players on the roster full credit for team wins while ignoring the contributions of factors like

coach quality and cross-player complementarities. An additional concern he raises is that

the researcher’s somewhat arbitrary choice of how to allocate team statistics to individual

players, in calculating the player’s marginal contribution to the team, represents a degree of

freedom that can significantly impact the estimate of a player’s marginal productivity. In

light of this, he uses wages and labor contracts of professional free agent baseball players to

estimate their marginal revenue product. This strategy is feasible for labor markets where

a market wage exist, however, since no market wage currently exists for collegiate athletes,

this approach is not viable for estimating the MRP of college players.

2.2.1 MRP Estimates of Star Football Players

Rather than compute the MRP from estimating the marginal productivity and marginal

revenues separately, an alternative approach is to estimate an athlete’s MRP directly from

revenues data (I will refer to this as the “Direct Method”). The first paper attempting to

do this for college football players was Brown (1993). He estimates the MRP of players that

were chosen in the 1989–1991 National Football League (NFL) draft directly from revenues

data gathered from 47 of the 101 Division 1 FBS football programs for the 1988 season.43

As Brown points out, the skill level of the players acquired by a college team is likely to be

endogenous to the team’s recruiting effort, so the MRP is estimated using an instrumental

variables framework. The author constructs three instruments for the number of players

43There are currently 120 Division 1 FBS football programs in the NCAA but only 101 at the time this
paper was written.
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on the team drafted into the NFL. The first instrument Pool is constructed by taking the

number of major college players produced in each team’s state relative to the number of

Division 1 FBS football teams the state supports. The second instrument Opponent Pool

is just Pool averaged over a team’s opponents. For the third instrument, Opponent Market,

each team’s market potential is divided by their market area then this is averaged over the

team’s conference opponents. The market area of a team is constructed by measuring the

population of each Metropolitan Statistical Area (MSA) within a 100 mile radius of each

team weighted by each MSA’s distance from the university. A team’s market potential is

measured by adding a quality index computed from cumulative point rankings to the num-

ber of other teams in the market area.

Using these three instruments, the author finds that recruiting an additional player with

NFL capabilities is worth $538, 760−$646, 150 in annual revenues for his institution. Brown

and Jewell (2004) update the estimates in Brown (1993) with more recent and extensive

football program revenues data collected by the Kansas City Star newspaper for 87 Divi-

sion 1 FBS football teams for the 1995 season. The instrumental variable methodology is

the same as in Brown (1993), however, state population is used as the instrument for the

number of players on a team drafted into the NFL. The instrumental variable estimation

implies an additional player with NFL capabilities is worth $406, 914 in annual revenues for

his college team.

Brown (2011), expanding the work of Brown (1993) and Brown and Jewell (2004), attempts

to disentangle the effects of a football team’s overall quality and individual players on rev-

enues by estimating a player’s MRP from a system of three equations in an instrumental

variables framework. He uses revenue data collected by the Indianapolis Star newspaper

for 86 Division 1 FBS football teams for the 2004 season. The author constructs three in-

struments for his analysis. The first instrument Recruiting Pool is constructed by dividing
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the university’s state population by the number of teams in its market area, weighted by

the quality of those teams.44 The second instrument is Academic Progress Report, which

measures the degree to which the university provides academic resources to assist student

athletes. The last instrument, Coach Salary is just the football coach’s base salary. The

first equation instruments the number of NFL draftees on the team with Recruiting Pool

and Academic Progress Report. The second equation instruments a measure of team per-

formance by Coach Salary. The predicted values for these two equations are then used in

the second stage regression of team revenues on the number of NFL draftees. Using this

methodology, the author finds that the MRP of a college football player who is drafted

by the NFL ranges from $737, 528 − $1, 195, 306 in 2004, depending on what categories of

revenues are included in the dependent variable.

In a more recent paper, Hunsberger and Gitter (2014) use the Scully Method to estimate the

MRP of Quarterbacks in the Bowl Championship Series conferences using football program

revenues data from 2004–2012 collected by the United States Department of Education.

The authors use a proprietary statistic computed by ESPN called the “Total Quarterback

Rating” (QBR) that attempts to account for the contribution of other players to a Quarter-

back’s passing performance through things like sack prevention and yards after the catch.

Star Quarterbacks are defined to be those with QBRs one standard deviation above the

mean. The authors first estimate a Quarterback’s marginal productivity by estimating the

marginal effect of QBR on win probability, then multiplying the average number of games

in a full season by the change in win probability that results from a change in the QBR.

This marginal productivity is then multiplied by the marginal revenue of an additional

win estimated from a regression of revenues on wins and other controls. Using the Scully

Method in this way, the author find that star Quarterbacks are worth about $2.3 million in

terms of marginal revenue product for their teams.

44Market area is definied to be the population of each Metropolitan Statistical Area (MSA) within a 100
mile radius of each university weighted by the distance each university is from each MSA.
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2.2.2 MRP Estimates of Star Basketball Players

Very few papers have attempted to estimate the MRP of college basketball players. Brown

(1994) was the first to attempt this, estimating the MRP of basketball players directly

from revenues data. In his paper, the MRP of basketball players is estimated for players

chosen in the 1989–1991 National Basketball Association (NBA) drafts using revenues data

for the 1988 season that he gathered from 46 Division 1 men’s basketball teams. Since

the skill level of the players acquired by a college team is likely to be endogenous to the

team’s recruiting effort, he estimates the MRP using an instrumental variables framework

and constructs four instruments for the number of players on the team drafted into the NBA.

For the first instrument, Opponent Market, each team’s market potential is divided by their

market area, which is then averaged over the team’s opponents within their own confer-

ence. A team’s market area is the population of each Metropolitan Statistical Area (MSA)

within a 100 mile radius of each team weighted by each MSA’s distance from the university.

Market potential counts the number of other basketball teams in the team’s market area

and adds to this a quality index, which is computed from cumulative point rankings. The

second instrument Pool is the number of college basketball players produced in each team’s

state relative to the number of Division 1 basketball teams in the state. The third instru-

ment, Opponent Pool, is the average of Pool for the team’s conference opponents. The last

instrument, Rank 85-88, is the team’s average weekly point ranking computed by aggregat-

ing their top-20 weekly rankings for the 1985–1987 seasons then dividing by the number of

weeks. Using these four instruments, the author finds that recruiting an additional player

with NBA capabilities is worth $871, 310 − $1, 283, 000 in annual revenues for his college

team. Brown and Jewell (2004) update the estimates in Brown (1994) with more recent and

extensive basketball program revenues data collected by the Kansas City Star newspaper
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for 95 Division 1 men’s basketball teams for the 1995 season. The instrumental variable

methodology is the same as in Brown (1994), however, only state population is used as the

instrument for the number of players on a team drafted into the NBA. The instrumental

variable estimation implies an additional player with NBA capabilities is worth $1, 194, 469

in annual revenues for his college team.

Lane, Nagel, and Netz (2014) provides the most recent paper (and to the best of my knowl-

edge, the only other paper) attempting to estimate a college basketball player’s MRP. They

use revenues data from 2001–2004 to estimate a player’s MRP using the Scully Method and

revenues data from 2002–2004 using the Direct Method for 169 Division 1 men’s basketball

teams. Using the Scully Method the authors first multiply the coefficients from a regression

predicting a team’s win-loss record with a player’s contribution to team performance.45 The

marginal revenue of a win is then estimated and the marginal product is multiplied by the

marginal revenue to compute a basketball player’s MRP. They find that college basketball

players are worth $91, 030 on average. They also estimate the MRP of players drafted into

the NBA directly from revenues using an instrumental variable approach. The authors use

fifteen instruments for the number of players on the team drafted into the NBA including:

the win-loss ratio; the numbers of points, goals, three-point goals, blocks, rebounds, steals,

and assists per game; the percentages of goals and free throws made; whether the team was

a contender or loser in the previous season; whether the head coach was new, a coach of

the year, or a “winningest” coach; and a measure of the market opportunities for the school

similar to that used in Brown (1993). They include team, year, and conference fixed effects

along with an interaction term for “large” schools, defined to be one if a team has revenues

larger than $10 million. Their results indicate that MRP for players at large schools that

are eventually drafted in the NBA is $1, 188, 945 while the MRP for players at small schools

is not statistically different from zero.

45A player’s contribution to team performance is obtained by multiplying each player’s individual perfor-
mance statistics by his weight on the team, which is just his share of the overall team’s statistic. Please see
the paper for details regarding the statistics used.

69



2.2.3 Contributions to Current Literature

This paper contributes to the current literature in several ways. First, I construct a dataset

containing football and basketball program revenues from the U.S. Department of Edu-

cation, geographic location, and detailed performance statistics for both the teams and

individual players. The dataset covers 104 Division 1 FBS college football programs and

282 Division 1 men’s basketball teams spanning 2003–2012. This dataset covers many more

years and athletic programs than the majority of the literature that only uses data from

individual seasons. The dataset also allows for richer control variables in the empirical

analyses than what has been used to date. The long panel structure and the number of

athletic programs included in the dataset allows me to take advantage of both variations in

revenues across time within universities and across universities to identify the effect of star

college players on university revenues in estimating the MRP directly from revenues data.

This panel data analysis is an important contribution to the cross-sectional analysis that

comprises nearly the entirety of this literature.

Another advantage of the panel structure and estimating the MRP directly from revenues

data is that I can avoid the potential problems with the Scully Method mentioned previ-

ously. In addition to these concerns, I would add that the MRP calculated using the Scully

Method is a non-linear combination of random variables, which also has a distribution in-

duced by the non-linear transformation of multiplying coefficients. As such, the standard

errors of the MRP should be computed by either the Delta Method or Bootstrapping to

determine if the calculated MRP is statistically significant. Researchers that employ the

Scully Method never report the standard errors of the MRP and it is not sufficient to as-

sume that the MRP will be statistically significant as long as the marginal revenue and

marginal productivity estimates are statistically significant. Also, the Scully Method im-

plicitly assumes that the only channel through which a star athlete can influence revenues

is through their contribution to producing wins. In Section 2.9 I show that Scully estimates
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for basketball are much lower than those found using the Direct Method. This suggests that

a sizable portion of player MRP comes through channels other than a star player’s ability

to generate wins. The direct estimation of MRP used in this paper allows for star football

and basketball players to impact revenues through multiple channels and is agnostic to the

mechanism through which stars are influencing revenues.

A degree of freedom that is often overlooked in this literature is how the researcher defines

a “star player”. The standard measure of star player in this literature is a player’s NFL or

NBA draft status. There are several reasons that the draft might not be the best metric to

measure a player’s contribution to the performance of his college team, which is discussed

in more depth in Section 2.3. That said, another contribution of this paper is that my data

allows me to report estimates for multiple measures of star player based on a player’s actual

performance in college that might more accurately reflect his ability to influence revenues

in a particular year. Furthermore, while the literature has largely focused on aggregate

measures (drafted players) or just Quarterbacks, this data allows me to look at more posi-

tions in football to investigate how much star players in various positions are worth to the

teams they play on. In addition to the analysis of ex-post measures of star player based on

performance, which is common in the literature, this paper analyzes “ex-ante” measures of

stars players. This novel analysis suggests that it is difficult for college recruiters to identify

players ex-ante that will generate significant revenues above those generated by the average

player on their teams. This result has potential implications for how universities might

prefer to compensate star athletes if they decide to compensate them beyond the current

arrangement.

As previous authors have pointed out, the most likely source of endogeneity in this analysis

is that the number of star players on a team might be driven by unobservable recruiting

effort. Most of the literature has relied on an instrumental variable approach to solve this
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problem of endogeneity. However, it is unclear that the exclusion restriction holds for most

of the instruments used, which is necessary for the instrumental variables estimates to be

consistent. For instance, in Brown (1993, 1994) football and basketball team revenues are

likely to be correlated with Opponent Pool in ways unrelated to the number of star players

on the team as a team’s opponents are not selected at random and consists largely of other

teams in their conference. This is because a team’s opponents are not selected at random

and consist largely of other teams in their own conference. It is well known that certain

conferences generate larger revenues through, for example, television contracts; these rev-

enues will not be directly related to the number of stars on that team. In Brown and Jewell

(2004), football team revenues are also likely correlated with Academic Progress Report and

Coach Salary. That is, if a school has higher football revenues, they potentially have more

resources to spend on improving the academic success of their football players regardless

of the number of stars on the team. Likewise, the coach’s salary is almost certainly corre-

lated with team revenues in ways unrelated to the number of star players on the team since

schools in wealthier conferences or with larger endowments can afford to pay higher salaries

to attract good coaches independent of the number of star players they have on a team in

any given year.

In the basketball studies employing instrumental variables, team revenues are also likely

correlated with Rank 85-88. This is because players other than star players will be con-

tributing to a team’s point ranking, which will be correlated with revenues as more points

means more wins and we know that wins are correlated with revenues. A similar argument

holds for the fifteen instruments used in Lane et al. (2014) because these instruments mea-

sure a team’s performance in ways that are indistinguishable from individual star player

performances. That is, there are players other than stars on the team that are contributing

to these performance measures that are correlated with winning, hence revenues, and in

ways not solely through the star player’s affect on revenues.46

46This problem with the exclusion restriction assumption persists even after accounting for the “included”
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Perhaps more worrisome than the exclusion restriction is that the instruments used in this

literature are fairly weak. As Stock, Wright, and Yogo (2002) point out, an F-statistic of

above ten in the first stage regression likely means that the instruments are strong enough

to assuage concerns regarding weak instruments. Although F-statistics are not reported,

a back of the envelope calculation results in F-statistics for the above instruments that

range from 7.32 to 7.84; the t-statistics for the instruments in the first stage regression in

Brown (1994) are -0.643, -0.062, 1.50 and 3.35 while the F-statistic is 1.00 for the instru-

ment used in Brown and Jewell (2006). Hahn and Hausman (2005) show that the problem

with weak instruments is that they cause severe finite sample bias in the 2SLS estimates.

This observation seems particularly relevant here given the sample sizes in the previous

football studies employing 2SLS are only 39 and 86 with the previous basketball studies

having sample sizes of 46 and 95. This suggests we should be concerned about potentially

large finite sample bias in the MRP estimates from these studies. Although Rank 85-88

in Brown (1994) has a t-statistic of 3.35, including three additional very weak instruments

and one strong one does not solve the problem of small sample bias being generated by the

other three weak instruments. Lane et al. (2014) do not report their first stage estimates

and instead claim that an over-identification test confirms the validity of the instruments.

However, this test implicitly assumes that both the relevance condition and exclusion re-

strictions hold for some subset of their instruments. As previously mentioned, the exclusion

restriction assumption is not plausible for their excluded instruments, which are based on

team performance measures.

Rather than attempt to build a better instrument to control for the potential endogeneity

caused by recruiting, I rely on the richness of my dataset, which includes variables that

attempt to control for a school’s recruiting efforts. Furthermore, as previously mentioned,

instruments used in their regression specification.
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my data suggests that a recruiter’s ability to identify revenue generating skill ex-ante is

limited, which should help assuage concerns over this source of potential endogeneity in

the MRP estimates using OLS methods. Even after controlling for these observables, there

might still be unobserved team and athletic conference characteristics driving revenues and

biasing the estimates of a star player’s MRP. To this end, the long panel structure of my

dataset allows me to reliably control for the time-invariant unobservable characteristics us-

ing fixed effects. Ultimately, concerns over endogeneity caused by omitted variables is nearly

impossible to rule out under the OLS framework. However, my dataset allows for several

alternative estimation techniques and robustness checks that might help to mitigate these

concerns. For instance, my data contains star players that suffered season ending injuries

or suspensions, which I use in a differences-in-differences framework to estimate star player

MRP. The results of this novel approach to estimating star player MRP provide tentative

support for this paper’s MRP estimates using OLS methods.

Finally, a novel contribution of this paper is the construction of a variable to measure the

number of times a university’s football or basketball team is mentioned in the news. This

variable is meant to capture the “excitement” a team generates over the season as more

exciting teams will generate more press coverage. This variable could also be thought of

as a proxy for unobservables involving a university’s long term investment in their football

or basketball programs if we believe that a concerted effort by the university to improve

the standing of their team is proxied for by their team’s media presence. I am able to use

this variable to estimate how a star player’s MRP is related to their ability to generate

excitement for their university’s sports program and how this MRP varies for teams along

the heterogeneous dimension of how often they are mentioned in the news media.

74



2.3 Primary Data Sources

The panel dataset used in this paper’s empirical analysis is constructed using data from the

various sources outlined below so that the unit of observation is the university’s football

or basketball team in a particular year. Since I am looking at the revenues generated by

a university’s football or basketball team, I will often refer to the team and the university

synonymously.

2.3.1 Revenues Data

The U.S. Department of Education, under the Equity in Athletics Disclosure Act (EADA),

requires all institutions with intercollegiate athletics programs that receive federal student

aid funding to report their athletic program revenues. These data are collected separately

each year through an online survey for revenues attributable to both men’s and women’s

athletics across all sports offered at the institution over the academic year. For instance,

these revenues data coded with calendar year 2003 are revenues generated for the academic

year beginning in the fall of calendar year 2003 and ending in the spring of calendar year

2004. Although these data includes both revenues and expenditures, I am not able to use

both revenues and expenditures to compute the profitability of each university’s sports pro-

gram. This is because the EADA survey specifies that the total reported revenues must

cover total reported expenses.47 However, since I am interested in estimating the marginal

revenue product of a star player, I focus just on the reported revenues and collect revenues

for each institution from 2003–2012 that are attributable to Division 1 FBS college football

and Division 1 men’s basketball programs.

The revenues reported in the EADA survey are for all revenues attributable to a university’s

47See Getz and Siegfried (2012) for a discussion of how accounting for revenues and expenses in academic
institutions is quite tricky, partially due to how revenues and expenditures are accounted for across different
departments within an academic institution.
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college football or basketball program and includes: revenues from appearance guarantees

and options, an athletic conference, tournament or bowl games, concessions, contributions

from alumni and others, fund-raising activities, institutional support, program advertising

and sales, radio and television, royalties, signage and other sponsorships, sports camps,

state or other government support, student activity fees, ticket and luxury box sales. Rev-

enues include more than earned income, such as gate receipts, and the basis for determining

whether revenue should be included is simply whether the item was attributable to the

university’s football or basketball program activities. Furthermore, these reported revenues

are actual amounts earned or received, not pledged, budgeted, or estimated amounts. What

is not included in the revenues data are capital assets and related debts (i.e. money specif-

ically identified to pay for capital assets) or money for indirect facilities.

The advantage of using these revenues data is that they are available over a long time hori-

zon for the entirety of universities fielding Division 1 FBS football and Division 1 men’s

basketball teams and they include a comprehensive list of revenue sources. The downside

of using these data is that revenues are not reported by category so that only an aggregate

revenue measure is available. Brown (2011) uses college football program revenues collected

by the Indianapolis Star for the 2004-2005 season that are disaggregated into categories

like ticket sales, game day sales, contributions, and NCAA conference distributions that he

claims are more likely associated with the quality of a team’s current players. His contention

is that if the aggregate revenues measure includes things like students fees, government and

institutional aid or endowment/investment income that are associated with past team qual-

ity and less dependent on the quality of the team’s current players, then the analysis might

overstate the effect of current players on team revenues. This observation is likely correct

although, given the panel structure of my data, these concerns can easily be controlled for

by including measures of past team performance as well as year, conference, and team fixed

effects. This is not possible with the Indianapolis Star data that only covers one season,

limiting the analysis to the cross-section.
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Finally, revenues are reported in nominal U.S. dollars and I convert them to real 2012

U.S. dollars using the headline Consumer Price Index for all urban consumers computed

by the Bureau of Labor Statistics. Tables 8 and 9 report summary statistics for football

and basketball program revenues, along with other variables used in the empirical analysis.

From the tables we see that the average Division 1 FBS football program over the sample

2003–2012 generated almost $24 million dollars in annual revenues with average revenues for

90% of teams being less than $55 million. Not surprisingly, the revenue distribution is right-

skewed as a few teams generate very large revenues. For instance, the University of Texas

at Austin tops the list with just over $111 million in 2012. Likewise, over 2003–2012, the

average Division 1 men’s basketball program generated almost $4 million dollars in annual

revenues with average revenues for 90% of teams being less than about $10 million. As with

football program revenues, the revenue distribution for basketball programs is right-skewed

with a few teams generating very large revenues. The University of Louisville’s basketball

program tops the list with just over $44 million in revenues for 2011.

2.3.2 Sports Statistics Data

For each academic year and the 104 Division 1 FBS football programs that I have rev-

enues data for, I collect team performance statistics from Sports Reference.48,49 Particular

statistics of interest that will be used to construct control variables for the empirical iden-

tification strategy are: wins, the current coach, the team’s bowl game appearances and

performance, and the team’s schedule strength.50 Several measures of the team’s defense

quality are also collected including: points allowed per game, total yards allowed per game,

48Each academic year corresponds to the football or basketball season over the same time period.
49Sports Reference LLC. 6757 Greene St. Suite 315 Philadelphia, PA 19119. The football data are accessed

from http://www.sports-reference.com/cfb/, while the basketball data are accessed from http://www.sports-
reference.com/cbb/.

50This statistic is denominated in points above or below average where zero is the average. For details
on how schedule strength is computed for football, please see http://www.sports-reference.com/cfb/about/
glossary.html.
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passing and rushing yards allowed per game, and passing and rushing touchdowns allowed

per game. The Sports Reference website also contains historical information on each college

football coach’s win record over their entire career, which are collected and included with

the team performance data. In addition to team level data, I collect performance statistics

for 25, 221 individual football players over the 2003-2012 sample period. These data include

the number of games played by each player in each season along with various performance

statistics like touchdowns and yards for offensive players and accolades such as if the player

was voted to the All-American Team or nominated for the Heisman Trophy.

I also collect team performance statistics from Sports Reference for each season and for

each of the 282 Division 1 men’s college basketball programs that I have revenues data for.

In particular, I collect: wins; the current coach; the team’s NCAA tournament appearances

and performance; the number of teams in each athletic conference that are ranked by the

Associated Press in the NCAA tournament that year, their tournament performance, and

the total number of teams in each conference; and the team’s schedule strength.51 The

Sports Reference website also has historical information for each college basketball coach’s

win record and NCAA Tournament appearances over their entire career, which are collected

and included with the team performance data. In addition to team performance data, I

collect performance statistics for 18, 855 individual basketball players over the 2003–2012

sample period. These data include the number of games played by each player in each

season, the number of points scored by each player in a season and accolades such as if the

player was voted to the All American First or Second Teams, was awarded the Naismith or

Wooden Awards, or named most outstanding player in the NCAA Tournament.

51For details on how schedule strength is computed for basketball, please see http://www.sports-reference.
com/cbb/about/glossary.html.
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2.3.3 Star Player Measures

If we are interested in measuring a college athelete’s MRP to inform the debate on whether

or not college athletes are being unfairly exploited, we need a way to separate an individual

player’s contribution from the team’s contribution to revenues. Conceptually this is a

difficult task since a football or basketball team is a collection of individuals whose direct

individual performances and complementarities with the performance of their teammates all

influence the team’s ability to generate revenue. One way we might attempt to distinguish

between the individual player and the team is to focus the analysis on exceptionally good

players measured by some metric of performance. While this will not allow us to estimate

the MRP of an average player on the team, focusing on the very best players that would

command the highest wages in a competitive labor market will give us an upper bound on

the economic rents being extracted from players by NCAA member institutions.

Star Football Player Measures

I construct six different measures of star player using performance statistics for 25, 221 in-

dividual football players. The first measure is if the player was selected to the consensus

All-American Team. Selection to the consensus All-American team is an honor given each

year to the best college football players at their respective positions. Selection to the team

is recognized by the NCAA and determined by a group of selector organizations.52 The All-

American measure of star allows me to measure star players across all positions in football

since the best player in each position are voted to the All-American team. The second and

third measures are if a player was a Heisman Trophy finalist or nominated for the Heis-

man Trophy. The Heisman Trophy is an award given each year to the most outstanding

player in college football. Selection for the Heisman is determined by sports journalists,

52Since 2009, the full list of selector organizations are: Associated Press, Football Writers Association
of America, American Football Coaches Association, Walter Camp Foundation and The Sporting News. If
three of these organizations select a player, he automatically receives the consensus honor.
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previous Heisman winners, and a fan survey collected by ESPN.53 Typically, around ten

players each year are nominated for the Heisman Trophy and I have defined a finalist as a

player who finished in the top five or better in the Heisman voting among all players who

were nominated. Unlike the All-American team measure, these measures are restricted to

Quarterbacks, Running Backs, and Wide Receivers since these positions make up 90% of

all positions nominated for the Heisman over the period 2003-2012.54

The last three measures of star player are computed from individual player performance

statistics. One downside to using performance statistics is that there is not very good data

coverage for positions other than Quarterbacks, Running Backs, and Wide Receivers. Al-

though this may seem like a limitation, it may also imply that these are the positions that

people focus their attention on. So to the extent that star players are able to generate

revenues through their salience to fans, it is likely that not much is lost by focusing on

these positions here. In determining how to measure star players based on performance, I

choose to focus on touchdowns scored and yards generated because these are likely to be the

more visible metrics that directly impact a team’s ability to win games, play in lucrative

bowl games, and generate fan excitement. Hence, the fourth measure of star player is if

a Quarterback, Running Back or Wide Receiver was among the top 10 players in scoring

touchdowns or generating yards within their position for that season. I choose the simple

rule for being in the top 10 in one or the other category (or both) to avoid having to ar-

bitrarily pick relative weights in combining statistics, which would otherwise be needed for

an index measure to rank players according to multiple statistics.

The last two measures of star player are the same for Running Backs and Wide Receivers

(top 10 in touchdowns or yards) but changes how star Quarterbacks are defined. The fifth

53For detailed information of the balloting and selection process please see http://heisman.com/sports/
2014/9/15/GEN 0915140346.aspx?.

54There are a total of five Defensive Linemen, four Linebackers and one Defensive Back nominated over
the ten years in the sample.

80



measure designates a Quarterback as a star if they are among the top 10 Quarterbacks in

touchdowns, or yards, or in their pass efficiency rating (PER). The PER is a common met-

ric used in sports statistics to rank Quarterbacks by taking into account interceptions, pass

completions, and pass attempts in addition to yards and touchdowns.55 The sixth measure

designates a Quarterback as a star if they are among the top 10 Quarterbacks ranked only

by their PER rating.

Table 10 gives a sense of how rare these star players are over the sample period for each

definition of star player. For example, All-American players make up just under 0.5% of all

players while Heisman Finalists are the most rare with only 0.08%. Among Quarterbacks,

All-American Quarterbacks are the most rare (0.37%) since there are only 11 of them cho-

sen whereas Quarterbacks are overrepresented among players nominated for the Heisman

Trophy.56 Even for the most permissive category (5), star players comprise about only 1%

of all players and 3% of all Quarterbacks, Running Backs, and Wide Receivers. Also, only

6% of Quarterbacks are designated as star players under measure (5) while star Running

Backs and Wide Receivers comprise 2.5% and 2% of players in their positions. Although

how one defines a star player is somewhat subjective, the purpose of presenting multiple

measures is to see how estimates of the MRP change depending on the definition since the

question under consideration is relative to how star players are defined.

While the previous literature has primarily focused on future NFL draftee status to define

a star college football player, I prefer the measures in Table 10 for several reasons. First,

these measures of star player are better able to capture a player’s potential contribution

to team revenues in each year they played for the team. Strictly speaking, the NFL Draft

reflects professional scout expectations of future performance at the professional level verses

55The forumula is (8.4×Y ards+330×Touchdowns−200×Interceptions+100×Completions)/Attempts.
56Typically there is just one All-American Quarterback per year, however, the reason there are 11 and not

10 is that there were two Quarterbacks chosen in 2008 as the six selector organizations were equally divided
over Sam Bradford and Colt McCoy.
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the player’s actual performance in college relative to their peers in a given year. Hence,

draft status is not directly connected to a player’s performance in a particular year in which

they might be contributing to school revenues other than in the season immediately before

they were drafted.57 There are also cases of outstanding college athletes that do not fare

well in the NFL draft. For example, Oklahoma quarterback Jason White won the Heis-

man in 2003 and led his team to the national championship but was not selected in the

NFL draft.58 Even more problematic is that NFL draft status may have less to do with

college performance than we think. Berri and Simmons (2011) looked at 121 quarterbacks

from 1999–2008 and found that nearly 20% of the variation in Quarterback draft position

is explained by just the NFL combine factors.59 When performance measures like wins

produced, net points and Quarterback score are added explanatory power only rises less

than 3%. Overall they find that combine factors appear to be more important than the

actual college performance of the Quarterbacks in terms of NFL draft pick.

The six measures of star football player just mentioned are “discrete” in the sense that they

do not account for the fact that there might be variation in how much stars are contributing

to a team’s revenues. For instance, suppose two players are among the top 10 players in

touchdowns or yards in a given year but one only played in half their team’s games while

the other played in all their team’s games that season. The current discrete measures

will treat these two players as identical since the star designation is binary. However, my

dataset contains the number of games played by each player as well as the number of games

played by the team in a given season. Therefore, the richness of my dataset allows me

to compute a more precise “continuous” measure of star player by multiplying the binary

star designation by the proportion of games played by that star player in that season. So

57Alternatively, I could use the NFL draft to designate a player as a star for every year they played college
football if they were drafted in their last year. However, if star players actually have an effect on revenues
such that revenues are higher when a team has a star player, this measure will likely underestimate a star
players effect on revenues as he will be mechanically designated a star player in years of low or average
revenues independent of his performance in that year.

58Hunsberger and Gitter (2014) page 4.
59The NFL combine factors examined were height, weight, Wonderlic score, and 40 yard dash times.
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in the previous example, one team would have 0.5 of a star player while the other team

would have 1 star player. Likewise, if one team had three star players, one of which only

played in 75% of the games that season, the team would have 2.75 star players under this

continuous measure rather than 3. This continuous measure is more precise in allowing for

a star player’s contribution to team revenues in a season than the discrete measure. The

continuous measure also allows for more variation in the number of star players on a team,

which will result in more precise estimates of a star player’s MRP.60

Star Basketball Player Measures

Using the performance statistics for 18, 855 individual basketball players I construct eight

different measures of star player. The first measure (Award Winners) is if the player was

named most outstanding player in the NCAA Tournament, or won the Naismith Award,

or won the Wooden Award. The most outstanding player in the NCAA Tournament is

selected by the Associated Press for their performance over the course of the tournament

and need not always be on the winning team. The Naismith Award is given by the Atlanta

Tipoff Club to the top men’s college basketball player each year, as selected by a committee

of sports media outlets.61 Another annual award recognizing the most outstanding men’s

college basketball player is the Wooden Award, given by the Los Angeles Athletic Club.62

The second measure of star player is if the player was selected to the consensus All-American

first team while the third measure is if the player was selected to the consensus All-American

first or second teams. Selection to the consensus All-American teams is recognized by the

NCAA and is an honor given each year to the best college basketball players, determined

by a group of selector organizations.63 The fourth measure is if a player was selected in the

60Unless explicitly noted, the continuous measure of star player will be used.
61For detailed information regarding the selection committe and selection process please see http://www.

naismithtrophy.com/about/atlanta-tipoff-club/board-of-selectors/.
62For detailed information regarding the selection process please see http://www.woodenaward.com/

about.
63The full list of selector organizations are: the Associated Press, the United States Basketball Writers

Association, the Sporting News, and the National Association of Basketball Coaches. Each selector chooses
a first and second team and consensus teams are determined by aggregating the results as determined by
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NBA draft while the fifth and sixth measures are if the player was among the top five and

top ten NBA draft picks respectively. The last two measures of star player are computed

from individual player performance statistics and designate a player as a star if he was

ranked among the top 10 or top 20 players in total points scored in that season.

As mentioned above, the previous literature has focused on NBA draft status to define

a star college basketball player. However, as with the NFL draft, it is not clear this is

the best measure of college performance since the NBA Draft reflects professional scout

expectations of future performance at the professional level rather than the player’s actual

performance in college relative to their peers in a given year. Therefore, player’s performance

in a particular year where they might be contributing to revenues will not necessarily be

captured by their NBA draft status. The alternative star player measures in Table 11 are

better able to capture a player’s potential contribution to basketball team revenues in each

year they played for their college team because, in any given season over their collegiate

career, a player may or may not be designated a star according to these metrics. In the

absence of empirical studies citing the questionable linkage between draft status and college

performance that exists in football for basketball, I include NBA draft based star player

measures to provide comparisons with the previous literature. Table 11 reports how few of

these star players there are over the sample period. For example, the rarest group, Award

Winners, make up just 0.05% of all players while drafted players, at 1.06% of all players, are

the most common. As with football, I construct the continuous star measure counterpart for

all eight basketball star player measures by multiplying the discrete star player designation

by the percentage of games played by that star in that season.

the NCAA.
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2.3.4 Yahoo! Sports Rivals.com Data

Each year, Yahoo! Sports collects information on the top high school football and bas-

ketball prospects and ranks them in their Rivals.com database.64 The measures of star

player discussed in the previous sections are all ex-post measures, which are based from

realized performance. However, because Rivals.com ranks players before they enter col-

lege, the Rivals.com ranking allows me to construct ex-ante measures of star player that

are based on a player’s expected performance in college. For all football and basketball

players from 2003–2012 in the Rivals.com database, I collected the rank assigned to them

by Rivals.com and matched these data with the individual data collected from Sports Ref-

erence. Since there is no unique identifier mapping between these two data sources, players

were matched based on the year, their name, and the school they signed with. Since there

was some differences with name spellings between the two datasets, a fuzzy match was

also conducted and then checked by hand to prevent erroneous matches. In the end, I

was able to match 16, 104 of the 25, 221 individual football players and 9, 982 of the 18, 855

individual basketball players in the Sport Reference data with their Rivals.com information.

The rankings published by Rivals.com are compiled by professional recruiting analysts with

both national and regional experts who evaluate hours of film and combine input from

professional, college, and high school coaches with personal observations to rank players

according to their expected impact in college sports. The Rivals.com ranking system ranks

prospects on a numerical scale from 4.9 − 6.1 with 6.1 denoting a “franchise player”, who

is considered one of the “elite of the elite” prospects in the country. For football, these

are players generally considered among the nation’s top 25 players overall and deemed to

have excellent professional potential. For basketball, these are players who are expected to

be college superstars, an upper-end lottery draft pick after one year of college. Football

recruits ranked with a 6.0 are those expected to be All-American candidates, considered

64The Yahoo! Rivals.com data can be accessed at: https://rivals.yahoo.com.

85



one of the nation’s top 300 prospects, and deemed to have professional potential with the

ability to make an impact on a college team. Basketball recruits ranked with a 6.0 are elite

prospects who are expected to dominate in college and pegged as a first-round draft pick

after a year or two in college. Rivals.com also provide an alternative star ranking to the

numerical one, with a five-star prospect denoting a player who is generally considered to be

one of the nation’s top 25-30 players.

I use these Rivals.com rankings to construct three ex-ante measures of football stars: Top

Rivals, which includes any player with a Rival.com rank of 6.1, High Rivals, which includes

any player with a Rival.com rank of 6.0 or better, and 5 Star, which includes any player with

a 5-star Rivals.com rating. For basketball, I only construct one ex-ante measure using the

Rivals.com 5-star ranking since the number of players ranked by the numerical Rivals.com

ranking are extremely sparse in my matched sample. Also, although the Rivals.com data

starts in 2003, I only use data for 2005-2012 as the number of ex-ante stars designated in my

matched sample for years prior to 2005 is sparse and fluctuates much more than in the later

years. Since I want to make sure that my results are not being biased by the mechanical

lack of ex-ante star players observed in these earlier years, I restrict the ex-ante analyses

to the 2005-2012 period. The relative frequency of ex-ante stars under these measures are

reported in Table 12 over the sample period 2005-2012. When comparing these relative

frequencies with those in Tables 10 and 11, we see that the ex-ante measures are less rare

than the ex-post measures. However, these ex-ante measures are as restrictive as possible

given how Rivals.com ranks recruits.

2.3.5 Distance and Regional Data

In the empirical strategy outlined in the following section, it will be useful to control for the

distance that each university is from the pool of talented players that it could potentially

recruit in a given year. Included in the Rivals.com data I collected is each football and
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basketball recruit’s hometown and/or where they went to high school. I used the 2013 Na-

tional Places Gazetteer files from the United States Census Bureau to get the latitude and

longitude coordinates for each university’s location and for where individual players went

to high school.65 Since the players listed in the Rivals.com data are the top high school

recruits each year, the college players in the Sports Reference data for which I have latitude

and longitude information represent the pool of players thought to be “good” at the time

they were being recruited by colleges. I use these latitudes and longitudes to compute the

distance that each player was from each university for each year. These distances are then

averaged across players within a year for each university. This calculated measure gives the

average distance in a given year that each university is from where college players in that

year went to high school that were considered top high school recruits.

Additional data is collected on the undergraduate population of each university from the

EADA database and the university’s city and state populations from the United States

Census Bureau’s historical population estimates to control for a team’s potential market

size and market demand. I also collect per-capita personal income for each university’s state

from the Bureau of Economic Analysis’ (BEA) Regional Personal Income Data and convert

these nominal values to Real 2012 U.S. dollars using the BEA’s personal consumption

expenditure price index for all goods and services.66

2.3.6 News Media Mentions

In an attempt to capture how a star player’s ability to generate “excitement” might relate

to their MRP, I collect data on the number of times a football or basketball team is men-

65The lattitude and longitudes for any towns or cities listed for players in the Rivals.com data that
did not show up as an official place in the Gazetteer files were searched by hand using Google Maps at
http://maps.google.com.

66Personal income data come from BEA Regional Accounts Tables: SA1-3 Personal Income Summary while
the price index is from BEA NIPA Table: 2.3.4 - Price Indexes for Personal Consumption Expenditures by
Major Type of Product.
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tioned in the news from the Newsbank Access World News database. Newsbank’s database

contains eleven source types including audio, blog, university newspapers, journals, maga-

zines, newsletters, newspapers, newswire, transcripts, video, and web-only sources for 4, 533

different publications across the world. The entire universe of publications and sources was

queried for any mention of the university’s football team and the number of “hits” was

collected to count the number of media mentions the team had in that year. Newsbank’s

web-based interface allows for multiple search fields; for instance, if “2012” was entered in

the “Year” field and “ “Texas A&M” + “college football” ” was entered in the “All Text”

field, then the number of results returned represent an entry published in 2012 in any of the

eleven source types across the universe of publications that mentions the phrases “Texas

A&M” and “college football”.

Colloquial team names were used in the search queries rather than official university titles.

For example, “UCLA” and “UNC” were used rather than “The University of California

at Los Angeles” and “University of North Carolina”. This provided a challenge for teams

whose colloquial names are the same as a state and/or have words in common with other

college teams. Take, for instance, the University of Texas at Austin using their colloquial

name “Texas” to search for news mentions using “Texas” + “college football”. To help

prevent hits coming back that mention the state of Texas or any of the other Division 1

FBS college football teams located in Texas with the word “Texas” in their name, the search

query used was: “Texas - Christian - A&M - Tech” + “college football”.67

Tables 8 and 9 gives summary statistics for the number of news mentions. Although the

distribution in both cases is right-skewed, the magnitude of the largest value for football

(7, 368) was in 2010 for the University of Auburn. This was the season when Cam New-

67One might think to search by the team’s mascot, for instance, “Longhorns” or “Texas Longhorns”. This
was tested out and seemed to produce far too few results. Specific details about the search method are
available from the author upon request.
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ton was the Quarterback and Auburn went undefeated in the regular season, beat South

Carolina for the SEC Championship game, and beat Oregon in the BCS National Cham-

pionship Game. That this year and team resulted in the most news mentions is consistent

with the buzz surrounding Cam Newton combined with the newsworthy accomplishment

of going undefeated in both the regular and post seasons that culminated with a national

championship win. For basketball, the largest value (3, 946) was in 2012-13 for the Univer-

sity of Louisville, which won the NCAA tournament that year with a school record 35 wins

that season. Other notable events for Louisville that season were a loss to Notre Dame in a

five over-time game (the longest regular season game in their athletic conference’s history)

and Louisville guard Kevin Ware suffering a compound fracture in their NCAA tournament

regional-final game against Duke; Louisville went on to come from behind and beat Duke by

22 points. Furthermore, while the number of news hits for Auburn and Louisville seem very

large relative to the distribution, they are not extreme outliers. Inspecting the football and

basketball teams that are in the right tail of the news distribution reveals well known teams

that would be expected to be mentioned frequently in the news. This indicates that the

news measure probably is not picking up erroneous news mentions by, for example, grab-

bing all entries with the word “Texas” in them that have little or nothing to do with college

football (basketball) or specifically with the University of Texas’ football (basketball) team.

Of course, it is impossible to guarantee that every resulting entry is directly commenting

on a particular football or basketball team, however, great care was taken to make sure the

queries were as accurate as possible so that the number of news hits provides a reasonable

proxy measure for the frequency of media mentions the team is getting in a given year.

2.4 Empirical Strategy

The empirical strategy employed in this paper is to estimate the MRP of star college ath-

letes directly from football and basketball program revenues data. This approach avoids

the concerns with the Scully Method previously discussed because it does not require direct
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estimates of the team’s marginal revenues nor a player’s marginal productivity. Further-

more, the Scully Method assumes that the only way star players can influence revenues

is through their contribution to producing wins and ignores factors such as star players

generating excitement for their teams in ways unrelated directly to the team winning. The

empirical strategy employed here provides more flexibility by allowing for other potential

channels through which star players might affect revenues and is agnostic to the particular

mechanism at work.

There are many team characteristics that cannot be directly observed by the econometrician

that are likely to be correlated with the team’s football and basketball revenues. For

instance, a team’s athletic legacy or a vibrant sporting culture associated with either a

particular team or the team’s surrounding geographic region probably impacts the team’s

ability to generate revenues. Likewise, unobserved characteristics of particular years or

athletic conferences might be correlated with the team’s football or basketball revenues in

ways that are not necessarily related to the number of star players on the team. Without

accounting for these effects, the ability of the econometric analysis to detect a star player’s

true contribution to revenues is likely to be confounded. Fortunately, the panel nature of

my data allows for these unobservable characteristics to be controlled for, which has not

been possible in the previous studies that focus solely on the cross-section of teams in a

particular season. Also, in contrast to previous studies on basketball using a panel dataset

with only three years, the length of my panel data mitigates concerns over potential bias in

the fixed effects estimation coming through the short time dimension.
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2.4.1 Econometric Specification

Consider the following reduced form model relating athletic program revenues to the number

of star players on the team

yi,t = βStari,t +Xi,tγ + θit+ δt + δc + δi + εi,t (2.1)

where the level of football or basketball program revenues yi,t for team i in year t is a func-

tion of: the number of star players on the team Stari,t; a vector of variables Xi,t influencing

revenues; a team specific linear trend θit; and unobserved year δt, athletic conference δc,

and team characteristics δi. The economic motivation behind choosing the functional form

of Equation (2.1) and using levels of program revenues is that the coefficient β has the direct

interpretation of a star player’s marginal revenue product.

To take advantage of the panel structure of my data, I estimate a star player’s MRP from

Equation (2.1) using a fixed effects specification including team, year, and athletic confer-

ence fixed effects. Year fixed effects will help control for trends in revenues that are unrelated

to star players. For instance, if a team’s conference renegotiates their revenue sharing agree-

ment or a team signs a lucrative televisions rights deal in a particular year over the sample

period. The athletic conference fixed effect controls for the fact that some conferences, like

the Big 5, are much more lucrative than others. Also included is a linear trend for each team

(γit) to allow for heterogeneity in revenue trend rates. For the estimates of a star’s MRP

to have a casual interpretation, the fixed effect specification requires the strict exogeneity

assumption, E(Stari,t, εs,t) 6= 0 for s = t, t− 1, . . . , which rules out feedback from past εi,s

shocks to current Stari,t. It is worth noting that the implied counterfactual of the estimate

β̂ under this empirical strategy is the additional revenue a team would have collected if they

had an additional star player, relative to an average player on that team. That is, since I

am using team fixed effects, the counterfactual is relative to the average player that a par-
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ticular team would have had, rather than the average college football player across all teams.

In addition to the fixed-effects, I include several control variables in the regression analysis in

an attempt to control for potential endogeneity. One and two year lags of Stari,t are included

to control for any residual effect that star players have on revenues. For example, Texas

A&M’s season ticket sales might increase for a season or two after Johnny Manziel leaves the

team due to residual excitement he generated for Texas A&M football. Likewise, I include

one and two year lags of the number of wins (Winsi,t−1, Winsi,t−2) to control for the residual

effects of the team’s recent performance on revenues. I also include several variables to

control for the potential market size and market demand for a team’s football or basketball

program. These include the size of the undergraduate student body (UndergradPopi,t), city

and state populations where the team resides (CityPopi,t, StatePopi,t), per-capita personal

income in the state where the team resides (PerCapPIi,t), and the growth rate of the state’s

per-capita income (GrPerCapPIi,t).

Football Controls

For the MRP estimates of star college football players from Equation (2.1), I include con-

trols for if the team went to a bowl game or won a bowl game last season (BowlGamei,t−1,

BowlWini,t−1). I also include two variables to control for the football coach’s impact on

revenues. The first is an indicator, CoachChangei,t, which takes the value of 1 if the team

had a new coach that year. I want to include a control for coach quality, however, it is

difficult to disentangle coach quality from team quality with team level statistics such as

win-loss record since the team’s record is the coach’s record over a given season. Since I

have data on coach performance from Sports Reference that precedes my 2003–2012 sample

for revenues data and since coaches change teams frequently, I am able to measure perfor-

mance of coaches over their entire careers. So I include the win percentage of the team’s

current coach (in year t) over his entire career up to and including the previous season

92



(CoachCareeri,t−1).

Completely disentangling an individual star player’s contribution from the rest of the team

is very difficult. In fact, great care must be taken when attempting to control for the

team’s quality that no variables are included that could themselves be outcomes of the

number of stars on a team. These variables would be bad controls and introduce bias

into the MRP estimates. For instance, including the number of wins in the current season

is a bad control since star players in that year are going to be directly contributing to

wins. Fortunately, with football, it is possible to partially control for team quality in the

regressions that use star measures 2–6 by including variables that measure the quality of a

team’s defense. This is because the aggregate star measures 2–6 only include the offensive

positions Quarterback, Running Back, and Wide Receiver. So I include the number of points

allowed (TDPtsi,t), the number of yards allowed (TDY dsi,t), the number of passing yards

allowed (TDPassY dsi,t), the number of passing touchdowns allowed (TDPassTDsi,t), the

number of rushing yards allowed (TDRushY dsi,t) and the number of rushing touchdowns

allowed (TDRushTDsi,t).
68 Note that these team defense variables are bad controls in the

regression using the All-American measure since both offensive and defensive positions are

included in that measure, so I omit them in that regression. I also include a measure of how

strong the team’s schedule is (SOSi,t) as the quality of a team’s opponents likely affects

their ability to generate revenues in that season.69

Basketball Controls

For the MRP estimates of star college basketball players from Equation (2.1), I include con-

trols for if the team went to the NCAA Tournament last season (NCAATourni,t−1) and

if the team made it to the second round (Round2i,t−1), the sweet sixteen (Sweet16i,t−1),

68The prefix “TD” in the variable names denotes “Team Defense”.
69The details of this strength of schedule measure are described in Section 2.3
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the elite eight (Elite8i,t−1), the final four (Final4i,t−1), the final (Finali,t−1), or won the

tournament (Winneri,t−1). As with football, I control for the basketball coach’s impact on

revenues using CoachChangei,t and CoachCareeri,t−1, however, the basketball data allows

me to include an additional control CoachCarTourni,t−1. This additional control variable

for coach quality measures number of times the coach has taken a team to the NCAA tour-

nament in his career up to an including the previous season.

Being selected as one of the 68 teams in the NCAA Tournament is quite lucrative for

these college basketball teams. The 32 teams that win their conference championship are

automatically admitted to the tournament while the 36 remaining slots are given to teams

by a selection committee comprised of athletic directors and conference commissioners. The

committee selects the remaining teams based on national ranking polls and various other

performance measures. This means that the strength of a team’s athletic conference in a

given year is directly related to the likelihood that a team attends the NCAA tournament,

hence correlated with team revenues. To control for this, I include several variables that

attempt to measure how competitive a team’s conference is including: the number of other

teams in the conference (NSchlsConfi,t), the number of conference teams ranked in the

AP poll (NSchlsConfAPi,t), the number of conference teams in the NCAA Tournament

that year (NSchlsConfTourni,t) and the number of conference teams that made it to the

final four that year (NSchlsConfFFi,t). As with football, I also control for the quality of

a team’s opponents using the team’s schedule strength (SOSi,t).

2.4.2 Recruiting Effort

The skill level of players acquired by a college team is likely to be endogenous to its recruit-

ing effort, which is unobserved by the econometrician, so that the number of star players

would likely be correlated with the error term in Equation (2.1). The recruiting process

potentially creates a two-sided selection problem where we might be concerned that teams
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with high revenues can afford to expend more effort to recruit better players and that

better players might select teams that historically generate higher revenues, even holding

recruiting effort constant. For basketball, this selection issue might be particularly acute

for student athletes already out of high school that transfer from one college to another, as

their ability to play college basketball has likely been revealed to a greater extent than a

student being recruited directly from high school. Transferring schools is not uncommon in

college basketball (and to a much lesser extend in football) and since my data allows me

to identify transfer students, I exclude them when designating star players to reduce the

potential for selection bias.

In theory, the relationship between recruiting effort and revenues should be mitigated by

the NCAA’s strict recruiting rules that attempt to level the playing field for recruiters.70

Nevertheless, recruiting effort and how it relates to revenues is still unobservable in the

data and detection of rule violations is far from perfect. If we assume that the recruiting ef-

fort at each university is roughly a constant proportion of revenues–the additional amount

spent on recruiting rises proportionally with revenues at a constant rate over time–then

this selection should not bias the estimates very much because I can control for trends in

revenues with year fixed effects and school specific time trends. However, selection in the

other direction might still be a problem since naturally good players might choose better

teams that generate higher revenues. I can potentially control for this if selection is based

on factors I can observe in the data. Dumond, Lynch, and Platania (2008) show that a

high school football recruit’s decisions are governed primarily by three factors: geographic

distance between the recruit and the college, the school’s recent football rankings and if the

school is in one of the BCS conferences. In particular, the authors find that recruits tend to

choose programs that are closer to where they are from, so I control for this with the variable

Distancei,t, which is the average distance in a given year that each university is from where

college players in that year went to high school that were considered top high school recruits.

70See NCAA 2013-2014 Division I Manual, bylaw 13.01.
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To account for the fact that college football players selected schools based on the school’s

recent football rankings (performance) at the time they were making their decision, I con-

struct three variables: HistWinsi,t, HistBowlsi,t, and HistBowlWinsi,t. The variable

HistWinsi,t computes the average number of wins the team had over the five years 4 years

prior to the current year. For example, the variable value for 2003 measures the average

number of wins the team had over the period 1995–1999. So for college football stars in 2003

that are in their Senior year, this variable measures their current team’s average number

of wins over the time they were in high school plus one year prior to high school.71 The

variables HistBowlsi,t and HistBowlWinsi,t are constructed in the analogous way for the

total number of bowl game appearances and bowl game wins. These variables are meant

to capture the information set that star college players had in terms of the team’s recent

performance when they were being recruited out of high school.

While the Dumond et al. (2008) study was done specifically for football players, it seems

reasonable to assume that the salient set of characteristics governing a player’s prefer-

ences and choice of where to play in college would be the same for basketball players. So

to control explicitly for the factors that drive a student athlete’s choice of school in the

basketball analysis, I include the variables Distancei,t and HistWinsi,t. I also construct

several variables to control for basketball players selecting schools based on recent perfor-

mance. The variables HistNCAATourni,t, HistRound2i,t, HistSweet16i,t, HistElite8i,t,

HistF inal4i,t, HistF inali,t and HistWinneri,t are constructed analogously to the variable

HistWinsi,t for the team’s total number of appearances in: the NCAA Tournament, the

second round, the sweet sixteen, the elite eight, the final four, the final and the number of

times the team won the tournament. As with football, these variables are meant to capture

71On the other end of the spectrum, for Freshman star players in 2003, this variable measures their current
team’s average number of wins over the time they were freshmen in high school back into junior high school.
However, the vast majority of star players in the data are college Seniors and Juniors.
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the information set that star college basketball players had regarding their team’s recent

performance at the time they were being recruited out of high school.

2.4.3 Discussion

As with any fixed effects identification strategy we should be concerned with the potential

for reverse causality and omitted variables bias to confound any causal interpretation of the

coefficient estimates. In this context, reverse causality would imply that football or basket-

ball program revenues generated in the current season are able to turn players into stars in

that season according to the ex-post performance measures used to define star players. For

instance, if teams have idiosyncratically high revenues over a particular season and then

used these revenues to develop player talents over that season, then we should be worried

about reverse causality.

However, there are two reasons why reverse causality should not be too worrisome in this

context. First, we would have to believe that a team is able to spend current revenues in

such a way as to make a marginal player into a star player. In reality, it is more likely that a

player’s status as a star is a function of their innate ability, which is something that money

cannot buy. That said, to the extent that a player with potential talent on the margin

of being star quality can be identified, it might be possible to develop that player over a

season and turn him into a star. However, I would argue that this is more a function of the

coaching staff recognizing a player’s potential and devoting more time and attention to the

player, rather than the affect of any direct monetary expenditure. It is also unlikely that

current season revenues are used to incetivize coaches to develop talent as coaching staff

salaries are already established at the beginning of the season. Furthermore, to the extent

that any financial incentive to develop talent exists, the coaching staff’s incentive is likely

forward-looking: developing talent in the hopes to make the team better and negotiate a

higher wage in the future. The second reason why we should not be worried about reverse
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causality is that athletic program budgets are set in the fiscal year prior to the start of the

football or basketball season. So even if a team is generating a lot of revenues in the current

season, their operating budgets for that season will have already been set the year before.

Hence, it is difficult to see how idiosyncratically high revenues in the current season could

be directly used to influence player development in that season when the team’s budget has

been set the year before revenues were idiosyncratically high.

More concerning than reverse causality is the potential for omitted variables to bias the

estimates of a star player’s MRP. In the current context, it is likely that these omitted

variables would come in one of two forms: either from selection bias causing the error term

in Equation (2.1) to be correlated with the number of star players on the team (since we

cannot observe all the factors influencing selection to teams in the recruiting process) or

from excluding team-level variables that are potentially driving revenues. In either case, the

omitted variable bias is likely to bias the MRP estimates upward as it is difficult to imagine

variables that would be positively correlated with revenues and negatively correlated with

the number of star players.

Although I attempt to control for the recruiting process using the variables described in

Section 2.3, these variables are only rough proxies for a complicated two-sided decision pro-

cess that involves both individual players’ choice of team and a recruiter’s choice of players.

My data allows me to attempt to control for a player’s choice of team based on the empirical

evidence that exists on how recruits select schools. Although, the process for how recruiters

choose players, and in particular, how that choice is related to athletic program revenues

in not directly observable in my data. However, in order for a recruiter’s choice of players

to bias the estimates, it must be the case that recruiters have some skill in choosing star

players that will generate revenues above those generated by the average player on the team

and my data does allow me to look at this. I present evidence in Section 2.7 that suggests
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recruiters are not particularly good at choosing players that will generate significantly more

revenues than the average player on the team ex-ante. This result might help to alleviate

some concerns over omitted variables related to the recruiting process biasing the MRP

estimates.

In terms of team-level variables, the most obvious and important omitted variables in the

empirical specification that affect revenues are the number of games the team won and if the

team went to a bowl game or the NCAA tournament in the current season. As previously

discussed, since these variables are themselves outcomes of the number of star players on

the team that season, including them in the regression results in bias from bad control

variables. Therefore, estimates of a star player’s MRP will be severely biased, which could

potentially be larger than the omitted variable bias resulting from excluding them from the

regression. In the following section, I re-run the regression specification in Equation (2.1)

that includes contemporaneous wins and discuss how these estimates can be thought of as a

lower-bound on the magnitude of a star player’s MRP.72 I also present results from several

alternative empirical strategies that attempt to alleviate concerns over the bias introduced

by potential omitted variables in Sections 2.6,2.7, and 2.8.

2.5 Results

2.5.1 Marginal Revenue Product of Football Stars

The results of the fixed effect estimation of Equation (2.1) for star football players are pre-

sented in Table 13.73 Marginal revenue product estimates are reported for all six measures

of star player. Recall that the All-American star measure includes all positions while the

72In unreported results, I also included indicators for bowl game and NCAA tournament appearances in
the current season with contemporaneous wins. The results are essentially unchanged and actually increase
the point estimates slightly.

73The estimates in this table and all other tables in Section 2.5 use the continuous measure of star players.
Estimates using the discrete measure of star players are similar and reported in Table 41 in Appendix A.7.
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other five measures consist solely of Quarterbacks, Running Backs, and Wide Receivers by

construction. Huber-White standard errors are computed, clustering by team, to account

for potential correlation in the error term within teams and are reported in parentheses.

The MRP estimates for all six measures of star player are statistically significant at the 5%

level or better. The within R-squared is around 77%, suggesting the included covariates

(after partialling out the fixed effects) explain a sizable portion of the variation in revenues.

Furthermore, the overall R-squared of around 97% suggests there is a lot of variation in

revenues accounted for by the unobserved heterogeneity being controlled for by team fixed

effects.

The first column in the table reports the estimation results using the All-American Team

measure of star and reveals that the MRP of an All-American player is just over $1.2 million

a year. In other words, having an additional All-American caliber football player on the

team generates, on average, just over $1.2 million of additional revenue for the team. The

regression results for Heisman finalists, reported in the second column, indicate that their

MRP is just over $2 million a year on average, while the third column reports the MRP of

a Heisman nominee is about $1.8 million a year on average. The fourth column reports the

MRP of a football player who is among the top 10 in touchdowns or yards while the fifth

column reports the MRP of a football player who is among the top 10 in touchdowns or

yards or a top 10 Quarterback in terms of their PER. The last column reports the MRP of

a football player who is a Running Back or Wide Receiver among the top 10 in touchdowns

or yards or a top 10 Quarterback in terms of their PER. In all three cases, the estimated

MRP of a star player according to these measures is just over $600, 000 on average.
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Individual Football Player Positions

A slight modification of Equation (2.1) allows me to estimate the MRP of star players in

specific football positions as follows

yi,t =
∑
pos

βposStarposi,t +Xi,tγ + θit+ δt + δc + δi + εi,t (2.2)

where
∑

pos Star
pos
i,t = Stari,t and pos ∈ {QB,RB,WR, TE,OL,K, P,DB,LB,DL} for

the All-American star measure while pos ∈ {QB,RB,WR} for the other measures.74 The

MRPs of star players in each position (βpos) are jointly estimated using fixed effects and

the same controls Xit, as in Equation (2.1). The results of this fixed effect estimation are

reported in Table 14.

Estimates for the MRP of an All-American Quarterback are $4.6 million a year while a

Heisman nominated and Heisman finalist Quarterback are worth $2.2 and $3.5 million a

year on average. It is worth noting that all 14 All-American Quarterbacks in the data

were also Heisman finalists so the reason that All-American Quarterbacks are worth more

than Heisman finalists might simply be because they are mechanically more rare in the

data. Also, a Quarterback among the top 10 in touchdowns and yards is worth just over

$1 million a year on average. All-American Wide Receivers are worth $2.9 million a year

on average while the MRPs for the rest of the positions across star measures were not sta-

tistically different from zero.

It might be surprising that the MRP estimates for Running Backs are not statistically

significant in Table 14. This might be due to the fact, as Wesseling (2014) observes, that

Running Backs are being devalued in college football due to an increase in college teams

74The positions abbreviations indicate: Quarterback (QB), Running Back (RB), Wide Receivers (WR),
Tight Ends (TE), Offensive Linemen (OL), Kickers (K), Punters (P), Defensive Backs (DB), Linebackers
(LB), and Defensive Linemen (DL).

101



emphasizing dual-threat quarterbacks operating out of a spread offense. He also reports that

there is a general sense that Running Backs are not emphasized as much in college football

as they are in the NFL. Nevertheless, the lack of statistical significance for positions other

than Quarterbacks and Wide Receivers does not mean that star players in other positions

are not generating large revenues for their schools. It simply means that the econometric

specification cannot detect the effect. One downside of the fixed effect regression is that

including fixed effects (in this case, team, year and conference) can also remove “good”

variation that would help to identify the true effect. It might be the case that there is just

not enough variation in the revenues data after controlling for these fixed effects to pick up

the true effect of a star Running Back or Offensive Lineman on revenues when trying to

jointly estimate multiple parameters.

2.5.2 Marginal Revenue Product of Basketball Stars

The estimates of star basketball player MRP from a fixed effects estimation of Equation

(2.1) are reported in Table 15 for all eight measures of star player.75 As with the football

regressions, Huber-White standard errors are computed, clustering by team, and reported

in parentheses. The MRP estimates for all eight measures of star player are statistically

significant at the 5% level or better, with the exception of players ranked among the Top 10

points scorers, which are only significant at the 10% level. The within R-squared is around

67%, suggesting that the covariates explain a large portion of the variation in program

revenues while the overall R-squared of around 97% suggests that the unobserved team

characteristics controlled for by the fixed effects explain a lot of the variation in revenues.

The first column in Table 15 reports that the MRP of players who were named the NCAA

Tournament’s most outstanding player of the year, or won the Naismith Award, or won

75Estimates using the discrete measure of star player are similar and reported in Table 42 in Appendix
A.7.
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the Wooden Award is just over $1 million a year. That is, having an additional player on

your basketball team that is good enough to be awarded one of these honors generates, on

average, just over $1 million of additional revenues for the team. The results in the second

column for players voted to the All-American first team indicate their MRP is over $654, 000

on average with the MRP for All-Americans in the third column just over $345, 000. Turning

to the NBA draft measures, the fourth column reports the MRP of a player drafted into the

NBA is just over $200, 000 while the MRPs of top 5 and top 10 NBA draft picks (columns

5 and 6) are around $400, 000. The previous studies that use instrumental variables report

MRP estimates of NBA drafted players of just over $1 million. However, this nearly five-fold

discrepancy might be a consequence of the use of weak instruments in previous studies as

a low correlation between the instrument(s) and the endogenous variable can cause a large

upward bias in the point estimates.76 The last column reports that the MRP of a player who

was among the top 10 or 20 point scorers in a season is just over $300, 000 a year on average.

Table 15 also reports the estimates for coach quality and NCAA tournament performance

that are of interest. For instance, each additional career NCAA tournament appearance

a coach has (up to and including the prior season) is worth around $53, 000 a year to

their current team and highly significant across all eight specifications. The variable

NCAATournt−1 indicates if the team appeared in the NCAA tournament last season

while Champt−1 indicates if they won the tournament last season. The resulting estimates

from Equation (2.1) are that a previous appearance in the NCAA tournament generates

$160, 000− $170, 000 in revenues while winning the tournament generates $1.8− $2 million

in revenues on average for the team.

76One can show that in the univariate case, plimβ̂IV = β + corr(z,u)
corr(z,x)

σ(u)
σ(x)

where z is the instrument for
endogenous x and u is the error term in the regression.
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2.5.3 Lower Bound Estimates

The empirical strategy presented above potentially overstates the marginal contribution

to revenues from individual players for two reasons. First, while excluding contemporane-

ous team control variables avoids introducing a potentially large bias from including bad

controls, it also means the estimates for star player MRP will be partially capturing any

revenues generated by the rest of the team’s performance that is not being controlled for

otherwise. This is precisely the omitted variable bias that results from excluding con-

temporaneous wins, bowl game and NCAA Tournament appearances from the regression.

Secondly, estimating an individual star player’s MRP in a team sport is further compli-

cated by the fact that the skills of individual players interact. Since we cannot perfectly

separate team from player and cannot identify cross-complementarities among players, the

star player’s MRP will include some indirect contributions to revenues coming from other

players making the star player better and vice-versa.

Although identifying player complementarities is extremely difficult, including contempo-

raneous wins into the regression is straightforward. Including contemporaneous wins might

result in a reasonable “lower-bound” for the MRP estimates reported in the previous sec-

tions for two reasons. First, since wins are positively correlated with football program

revenues, including them will reduce the upward omitted variable bias in the current MRP

estimates. Second, if wins are explicitly controlled for, then any impact on revenues that

star players have through channels other than a star’s contribution to the team winning

will be captured in the MRP estimates. It is reasonable to think that winning is one of

the most, if not the most, important factor for teams to generate revenue. Likewise, if star

players have any ability to generate revenues for their teams, a significant portion of this

effect is likely to come through their ability to produce wins. Hence, any residual effect that

star players have on revenue after controlling for wins can be thought of as a “lower-bound”

on the magnitude of a star player’s MRP. However, including contemporaneous wins into
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the regression comes with a large caveat. As previously discussed, since wins are themselves

an outcome of the number of star players on the team, including contemporaneous wins in

the regression is a bad control variable. Therefore, estimates of a star player’s MRP will

be severely biased. This means that finding no effect of star players on athletic program

revenues does not tell us much and that we can only really analyze results where both the

coefficients on wins and star players are significant.

With this caveat in mind, Tables 16 and 17 reports the results for football stars of the fixed

effects estimation of Equations (2.1) and (2.2) with the single modification that contempo-

raneous wins are included. From the tables, we see that the MRP for All-Americans (all

positions, Quarterbacks and Wide Receivers), Heisman finalists and Heisman nominees are

statistically significant and, while lower than the baseline estimates in Tables 13 and 14,

still rather large. This suggests that star players have a sizable impact on revenues in ways

unrelated directly to their contribution to producing wins for the team. If we view the

estimates in Tables 16 and 17 as reasonable lower bounds, then All-Americans are worth

$926k− $1.2 million, All-American Quarterbacks are worth $4− 4.6$ million, All-American

Wide Receivers are worth $2.7−2.9$ million, Hesiman finalists are worth $1.5−$2.1 million

and Heisman nominees are worth $1.2 − $1.8 million. While these lower bound estimates

are similar in economic magnitude to the baseline estimates that omit wins, it is also worth

noting that the coefficient estimates across all six measures of star player in Tables 13 and

16 are not statistically different from each other.

The results for basketball stars when contemporaneous wins are included are reported in

Table 18 with only All-American first team players statistically significant at the 5% level.

The MRP estimates for award winners, drafted players, top 10 draft picks and top 20 points

scorers are all statistically significant at the 10% level. As with football, the MRP estimates

including wins are lower than the baseline estimates in Table 15 but still quite large, sug-
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gesting that star basketball players also influence revenues in ways unrelated to their ability

to produce wins. Taking these estimates as lower bounds, we see that award winners are

worth $967k−$1.1 million, All-American first team players are worth $562k−655k, drafted

players are worth $165k − $204k, top 10 draft picks are worth $314k − $403k and top 20

points scorers are worth $261k − $320k. These lower bound estimates are very similar in

magnitude to the baseline estimates and all eight star player measures in Tables 15 and 18

are not statistically different from each other.

In unreported results, I included indicators for bowl game and NCAA Tournament appear-

ances for the current season along with contemporaneous wins. The results are essentially

unchanged from those in Tables 16 and 18 and in fact, produce slightly higher MRP esti-

mates for both football and basketball stars than when only including wins.77 If we believe

that a large portion of any potential omitted variables bias is coming through the omission

of contemporaneous wins, it is somewhat reassuring that the lower-bound estimates are

not drastically different in magnitude or statistically different than the baseline estimates.

However, even though I have argued that including contemporaneous wins might give us a

reasonable lower-bound on the MRP estimates, it is important to note that these estimates

might still be biased upward if any omitted variables remains. While including wins might

take care of a large portion of the omitted variables bias, there is still potential for omitted

variables bias in these lower-bound estimates. As discussed above, one potential source

of this bias might be my inability to perfectly control for the recruiting process with the

observable measures available in my data.

2.5.4 Discussion

Huma and Staurowsky (2012) report that the average full athletic scholarship is worth ap-

proximately $23, 204. While this does not capture the true marginal cost of a star college

77These results are available upon request.
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athlete, the difference between the marginal revenue products in Tables 13 and 15 and the

value of a full athletic scholarship gives a decent approximation of the economic rents being

captured by universities under the NCAA rules restricting payment.78 Furthermore, com-

paring the size of these rents with the average salaries for NFL and NBA players who are

able to sell their services in a more competitive labor market gives a sense of the economic

significance of the rents being captured.

The average salary for an NFL player in 2014 was $1, 673, 277.79 This figure is roughly

similar in magnitude to the MRP estimates for All-American players ($926k−$1.2 million),

which includes players in all positions that are likely to be good enough to be picked up

by a professional football team. Furthermore, the average salary in 2014 for NFL Quarter-

backs, Running Backs, and Wide Receivers collectively ($2, 058, 698) was very similar to the

MRP estimates for Heisman finalists ($1.5− $2.1 million) and Heisman nominated players

($1.2−$1.8 million). Turning to individual positions, average salaries for NFL Quarterbacks

($4, 183, 581) in 2014 were in the range of the MRP estimates for All-American Quarter-

backs ($4 − $4.6 million) while the average salaries for NFL Wide Receivers ($1, 743, 160)

was lower than the MRP estimates for All-American Wide Receivers ($2.7−$2.9 million).80

These results indicate that the rents of star college football players being captured by uni-

versities are economically significant considering they are similar, on average, to the wage

these star players might earn if they were allowed to be paid according to their marginal

productivity.

78See Getz and Siegfried (2012) for a discussion of the difficulty associated with accounting for revenues
and expenses in academic institutions. Also, the true marginal cost of fielding a star player might be much
larger than the cost of athletic scholarships. For instance, if star players require more attention or are more
difficult to manage than average player on the team, this marginal cost of an additional star player will not
be captured in the cost of an athletic scholarship.

79The data for 2014 NFL player salaries were collected from http://www.sportscity.com/nfl/salaries/ and
the nominal 2014 values were deflated to real 2012 USD using the consumer price index for all urban
consumers from the U.S. Bureau of Labor and Statistics.

80The data for 2014 NFL player salaries by position were collected from http://www.sportscity.com/
nfl/salaries/ and the nominal 2014 values were deflated to real 2012 USD using the consumer price index
for all urban consumers from the U.S. Bureau of Labor and Statistics. Sports Illustrated (2013) reports
average (nominal) 2014 salaries of simlar magnitudes for Quarterbacks ($3, 840, 017) and Wide Receivers
($1, 803, 338).
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The average salary for an NBA player in 2014 was $4, 390, 800.81 Hence, the average NBA

salary is just over four times the magnitude of the largest MRP estimates in Table 15 and

roughly 21 times the size of the MRP estimate for college players drafted into the NBA.

The size of this latter discrepancy might be surprising given the fact that the MRP estimate

is for college players that were drafted to play in the NBA. However, I would only expect

the average salary for NBA players and the average MRP of college players drafted into

the NBA to be similar if consumers of sports entertainment view college and professional

basketball as reasonably close substitutes and/or if the markets for college and professional

basketball are similar. There are several reasons why this might not be the case. For in-

stance, there are far more regular season games and far fewer teams in the NBA compared

to the NCAA.82 Also, the average NBA team has much more lucrative televisions contracts

and the NBA is consumed internationally, whereas there is virtually no demand for NCAA

basketball outside of the United States. All these factors allow NBA teams to generate

much larger revenues than NCAA teams, which is likely why there are large discrepancies

in the relative values “paid” to their inputs to production (players).83

Even though the player generated rents being captured by institutions are large, reasonable

counter-arguments against the exploitative nature of this arrangement could be made. For

instance, playing football or basketball in college gives players time to grow and mature

both physically and mentally; it also allows them to learn the technical aspects of the game

and improve their skills. These features of playing for a college team prepare athletes to

81The data for 2014 NBA player salaries were collected from http://www.sportscity.com/nba/salaries/
and include all teams excpet the New Orleans Hornets and the Portland Trailblazers, for which these data
were not available. The nominal 2014 average salary was $4, 527, 385, however for comparison with the
estimates, this nominal value has been deflated to real 2012 USD using the consumer price index for all
urban consumers from the U.S. Bureau of Labor and Statistics.

82There are 32 professional NBA teams that played 82 regular season games in the NBA 2013–2014 regular
season while there are 351 Division 1 men’s college basketball teams that typically play 30 regular season
games.

83Of course, in the case of the NBA the amount paid is the player’s actual salary, while the maximum
amount paid to college players would be (approximately) their MRP if they were allowed to sell their labor.
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enter into a potentially lucrative labor market as professional athletes. Furthermore, their

commitment to a college team is not a binding contract for the entire four years of an

undergraduate education as players that have developed their skills enough have the option

of leaving college early to pursue a professional career. One could view these forgone rents

as an implicit “tax” or licensing fee that athletes pay for access to the potentially lucrative

professional sports labor market. However, Brown (2012) shows that for the 2004–2005 sea-

son, only around one-third of college football players in his sample will earn NFL incomes

large enough to offset the rents forgone by these players.

There are other reasons why we might not want to compensate college athletes beyond

scholarships of in-kind transfers to cover basic costs and tuition. For instance, in my data,

only about 9% of Division 1 FBS college football players are drafted into the NFL while

only about 1% of Division 1 men’s college basketball players are drafted into the NBA. Keep

in mind, these are just players that are drafted and does not account for players that were

drafted, then subsequently cut from their NFL or NBA team’s full roster. Given that the

chances of making it into professional football or basketball’s labor market from college are

so small, we might worry about students’ unrealistic expectations distorting their human

capital allocation decision. That is, a student’s unrealistic aspirations might cause them

to tradeoff athletics over academics when deciding on what college to attend or to allocate

more time to athletics than academics once in college. Paying college athletes might only

serve to further encourage this distorted allocation of human capital as the additional fi-

nancial incentive might persuade a student on the margin to make the above tradeoff.

Overall, the purpose of this empirical analysis is to focus on the size of the rents being

captured by institutions to help inform the larger debate as to if this practice is exploitative.

Regardless of one’s position on the fairness of the arrangement, the analysis does seem to

indicate that rents generated by the very best college football and basketball players being
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captured by NCAA member institution are both economically and statistically significant.

2.6 Robustness

Given the panel nature of the data, there are several econometric methods that could

have been used to control for unobserved team characteristics, fixed effects being only

one. For example, a random effects model could have been used to estimate Equation

(2.1). Although the additional assumption needed that the time-constant unobserved team

heterogeneity is uncorrelated with the number of star players on a team is very unlikely

to hold, I estimated the random effects model and report the results of a Hausman Test.

For the models with each of the six different measures of star football players and eight

measures of star basketball players, the Hausman Test strongly rejected the null hypothesis

that the coefficients estimated by the random effects estimator are equal to those estimated

using fixed effects (Prob > χ2 = 0.0000 in all cases).84 Hence, the fixed effect specification

appears to be the appropriate one. In what follows, I present the results of a first difference

estimation of Equation (2.1) as well as a lag revenue model and compare these results with

the MRP estimates for star players in Ta bles 13 and 15. For basketball, I present an

additional robustness check and report fixed effects estimates for the subsample of Division

1 men’s basketball teams that also have Division 1 FBS football programs.

2.6.1 First Difference Model

An alternative way to account for unobserved team characteristics in Equation (2.1) is to

transform it using first differences

∆yi,t = η∆Stari,t + ∆Xi,tγ + θi + ∆δt + ∆δc + ∆εi,t (2.3)

84The value of the χ2 test statistic was at or above 40 for all six football star measure regressions and 61
for all eight basketball star measure regressions.
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and estimate the first difference estimator η̂. The first difference model requires a weaker

exogeneity assumption than the fixed effects estimator in that εi,s only has to be uncorre-

lated with the covariates for s = t, t−1. If there is any feedback from εi,t to Stari,t that goes

farther back than one period, the first difference estimator will be consistent whereas the

fixed effect estimator will not. Given this, I can compare the fixed effect and first-difference

estimators to see if they are similar. If the differences in these two estimates cannot be

attributed to sampling error, we should worry about the validity of the strict exogeneity

assumption in the fixed effect estimation.

For football, the first difference estimation of Equation (2.3) is reported in Table 19. Com-

paring the first difference estimates with the fixed effect estimates in Table 13 we see that

the estimates are fairly close to each other, particularly for star measures 1 and 3-6. It is

reasonable to conclude that these differences are likely attributable to sampling error since

the first-difference estimator uses 10% less observations than the fixed effect estimator and

these first-difference estimates are not statistically different from the fixed effect estimates.

Furthermore, recall that there are only 46 Heisman finalists in the full sample, which is

by far the smallest category. Therefore, this measure is likely to be the most sensitive to

sample size as it becomes increasingly difficult to detect any true effect of star players the

fewer number of stars we observe. This may be why the estimates for Heisman finalists are

not estimated as precisely in the first difference regression and the disparity between them

and the fixed effect estimates are the largest. In fact, the estimates that are the closest to

the fixed effects estimates (4-6) are the star player measures with the largest number of star

players. For basketball, the first difference estimation of Equation (2.3) is reported in Table

20. Comparing the first difference estimates to the fixed effect estimates in Table 15 we

see that the estimates are very close to each other, both in terms of size and statistical sig-

nificance with the first-difference and fixed effects estimates not statistically different from

each other. Therefore, as is the case with football, it seems reasonable to conclude that

any differences between first-difference and fixed effects estimates are likely attributable to
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sampling error.

Ultimately, the fixed effects model is my preferred specification for three reasons. First,

I prefer to estimate the star player’s MRP from a larger sample of observations and 10%

of the observations are lost using the first-difference estimator. Second, if the exogeneity

assumption holds contemporaneously and for one-period lag—which seems plausible after

controlling for one and two year lags of Stari,t, Winsi,t, and the other controls—then the

fixed effects estimator might be better because its inconsistency shrinks to zero at rate 1/T ,

which is not the case for the first difference estimator. Lastly, under the null hypothesis that

the model in Equation (2.1) is correctly specified, the fixed effect and first-difference esti-

mators will differ only because of sampling error if T ≥ 3. Then because the first-difference

estimates are relatively close to the fixed effect estimates and statistically indistinguishable,

I take this as evidence supporting the validity of the strict exogeneity assumption of the

fixed effect model. However, this does not provide a formal test ruling out the potential for

omitted variables because it might still be the case that omitted variables are biasing the

fixed effects and first-difference estimates in the same way. Although, in order for this to be

the case, the omitted variables that we should be worried about are those that are correlated

with the number of star players in t and t− 1 due to the weaker exogeneity assumption of

the first-difference estimator. This information is useful because it means that the omitted

variables that are likely to cause the most concern are those that are endogenous with at

most a one-period lag.

This could partially alleviate concerns discussed earlier regarding omitted variables associ-

ated with a team’s recruiting process. Since the recruiting process takes place more than

one year before these players are designated as stars, the results discussed in this section

might imply that team fixed effects and the included controls for recruiting effort are largely

sufficient to minimize concerns over omitted variables related to a team’s recruiting effort.
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As previously discussed, the other source of omitted variables are team-level variables that

are potentially driving revenues with contemporaneous wins being an obvious one. While I

do control for numerous macro-level and team-level variables that could influence a team’s

revenues over t − 1 and t − 2, I can never entirely rule out omitted variables bias in the

fixed effect framework of Section 2.4. That the difference between the fixed effects and first-

difference estimators is likely due to sampling error, coupled with the fact that including

contemporaneous wins does not drastically change the fixed effect MRP estimates, seems

to provide reasonable evidence that the estimates are not grossly biased due to omitted

variables.

2.6.2 Lag Revenues Model

One could argue that past football and basketball program revenues influence future rev-

enues and that omitting lagged values of revenues in Equation (2.1) is a potential source of

model misspecification or omitted variables bias. If so, a model for football or basketball

program revenues might look like this

yi,t = β1Stari,t + β2yi,t−1 + β3yi,t−2 +Xi,tγ + θit+ δt + εi,t (2.4)

where Xi,t contains the same control variables as before. The main differences between

this model and Equation (2.1) is the inclusion of one and two years of lagged football or

basketball program revenues and the exclusion of conference and team fixed effects. It is

important to exclude these fixed effects because, as Nickell (1981) points out, OLS estimates

of a dynamic panel model that includes fixed effects to control for unobserved heterogeneity

can be severely biased due to correlation between the fixed effects and the lag dependent

variable built into the specification.85

85Judson and Owen (1999) further show that this bias is inversely related to T and that the bias is
problematic even with T as large as 30.
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I estimate the model in (2.4) using OLS and present the results in Tables 21 and 22. The

coefficient on lagged football program revenues is highly significant for all six measures of

star player, indicating that an additional dollar of football program revenues in the previous

year is associated with around 63 cents of additional revenue in the current year. Likewise

the coefficient on lagged basketball program revenues is highly significant for all eight mea-

sures of star player, indicating that an additional dollar of basketball program revenues in

the previous year are associated with around 44 cents of additional revenue in the current

year.

For football, the robustness of the fixed effects results are encouraged by the fact that the

estimates of star player MRP for measures (1,4-6) under the lag model are close and statis-

tically indistinguishable to the fixed effects estimates in Table 13. However, the estimates

for Heisman finalists and Heisman nominees under the lag model are quite different and not

statistically significant (although still statistically indistinguishable from their fixed effect

estimates). This is likely due to the fact that I am unable to control for athletic conference

fixed effects in the lag model and a few conferences produce the majority of Heisman nomi-

nees and finalists. For instance, out of the thirteen conferences in the data from 2003-2012,

four of them produced just over 64% of Heisman nominees and almost 82% of Heisman

finalists.86 A similar feature of the data exists for All-Americans with the same four con-

ferences producing almost 77% of All-American players.87. Similarly, for basketball the

robustness of the fixed effects estimates are supported by the fact that the estimates for all

eight measures of star player MRP under the lag model are very close and not statistically

different from the fixed effects estimates in Table 15.

Although the lag model of Equation (2.4) might seem appealing, it is difficult to come

up with an economic reason for why past football and basketball program revenues would

86Those conferences were The Big 12, The Big Ten, The PAC-10 and the SEC.
87By contrast, these same four conferences only produce 43% of the star players measures (3-6).
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influence current football program revenues in ways not being controlled for in the fixed

effect regressions. However, it is easy to come up with examples of unobserved team char-

acteristics that might be correlated with the number of star players on a team that also

influence football and basketball program revenues. For instance, a team’s geographic lo-

cation, athletic legacy, and “sporting culture” are likely correlated with the number of star

players on those teams and affect their ability to generate revenues. Likewise, because some

athletic conferences generate both more revenues and star players, it is important to be able

to control for both team and conference fixed effects, which cannot be done under the lag

model specification. Hence, the fixed effect model is still preferred while the lag model

results provide evidence that the fixed effect estimates are fairly robust to this alternative

model specification.

2.6.3 Basketball Programs With Division 1 FBS Football Programs

The above analysis estimating star basketball player MRP includes 282 of the 351 men’s

Division 1 basketball teams. However, many of these teams come from small schools whose

basketball programs probably do not generate large revenues. One might argue that it

makes more sense to focus on the Division 1 basketball teams of schools that also field a

Division 1 FBS football program. The rational behind this idea is that using a sample

where the majority of programs are from smaller schools might result in smaller estimates

of a player’s MRP because basketball programs at schools that also have an FBS football

program tend to be big-name programs. These big-name athletics programs tend to be

housed at larger, more recognized universities and are able to generate higher revenues.

While the school fixed effects and other control variables included in the analysis should

account for this, it is useful as a robustness check to look at the subsample containing only

these big-name schools to see if the MRP estimates change significantly.

Table 23 reports summary statistics for 119 Division 1 men’s basketball teams whose insti-
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tutions also fielded Division 1 FBS football teams over the sample period 2003–2012. The

differences between this subsample and the full sample statistics in Table 9 are immediately

obvious with average basketball program revenues almost twice as high and the average

undergraduate population larger by nearly 7,000 students. This subsample of teams also

tends to perform better, winning two more games on average, going to the NCAA tourna-

ment more often and performing better in the tournament. The fixed effect estimates from

Equation (2.1) of the MRP for star players on Division 1 basketball teams that also field a

FBS football team are reported in 24. Comparing these estimates with those from the full

sample of teams in Table 15 reveals very similar results both in terms of magnitude and

statistical significance.

It is worth noting that the majority of star players in the data come from one of the big-

name teams in the subsample. For example, 60% of players drafted into the NBA come

from one of these teams along with 77% top 5 and 66% top 10 draft picks. Likewise, 89%

of Award Winners, 78% of All-American first team members and 76% of All-Americans

come from basketball teams whose institutions also have an FBS football team. Therefore,

it is not too surprising that the MPR estimates between the subsample and the full sample

are quite close. Nevertheless, it is reassuring that the MRP estimates do not change much

when considering this subsample of the data.

2.7 Ex-Ante Star Player Measures

The empirical analysis so far has focused on definitions of star players that rely on ex-post

measures of player performance. One advantage of my data is that it allows me to define

ex-ante measures that designate a player as a star based on how players are expected to

perform in college before signing with a college team. These measures are based on the Ya-

hoo! Sports Rivals.com rankings, which aggregates information from professional recruiting
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analysts, high school, and college coaches about high school football and basketball players’

expected performance at the collegiate level. To the extent that the Rivals.com rankings are

a good proxy for the information set of college recruiters looking to recruit top high school

talent, estimating the MRP of ex-ante star college players is interesting for two reasons.

First, since the previous analysis of ex-post star players seems to indicate that they generate

significant revenues for their teams, it is interesting to see if college recruiters are able to

identify players beforehand that will generate significant revenues for the team. This ability

(or inability) has important implications for how we might compensate college athletes if

they were to be compensated beyond the current arrangement. Second, the ability of college

recruiters to identify players ex-ante that will generate significantly more revenues than the

average player for the school is important for questions concerning omitted variables related

to the recruiting process biasing the MRP estimates of ex-post stars. That is, if recruiters

can identify talented players ex-ante that will generate significantly more revenues than the

average player for the school and since these players are likely to become ex-post stars play-

ers, then the MRP estimates will be biased as unobserved variables related to the recruiting

process will be correlated with both revenues and the number of ex-post star players on a

team.

Recall the six measures of ex-ante football star and the single measure of ex-ante basketball

star in Table 12 discussed in Section 2.3. Ideally, these ex-ante measures would result in

the same frequency of star players as the ex-post measures to facilitate comparison of the

estimates. The frequencies in Table 12 compared with those in Tables 10 and 11 reveal that

the ex-ante measures are slightly more permissive, however, the most restrictive definitions

of ex-ante star player were used given how Rivals.com ranks football and basketball recruits.

Equation (2.1) is used to estimate the MRP of ex-ante star players using fixed effects, where

the only modification from the empirical analysis in Section 2.4 is that the regression is run
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over the sample 2005 − 2012 and Starsi,t are defined to be one of the ex-ante star player

measures in Table 12.

2.7.1 Results

The estimates for ex-ante star football and basketball player MRPs from a fixed effects es-

timation of Equation (2.1) are reported in Tables 25 and 26. Huber-White standard errors

are computed, clustering by team, and reported in parentheses. For football, the MRP esti-

mates for all ex-ante measures of star player are not statistically significant while the MRP

estimates for ex-ante basketball stars are only statistically significant at the 10% level. It is

worth reiterating that the MRP estimates from Equation (2.1) using fixed effects measure

the marginal revenue generated by a star player on a team relative to the average player

on that team and the ex-ante estimates in Tables 25 and 26 have the same interpretation.

Therefore, these results suggest that there is no statistical evidence that recruiters are able

to identify players who will generate more revenues than the average player on the team.

To be clear, these results do not say that recruiters cannot identify revenue generating

talent ex-ante. For example, suppose that the average basketball player at Duke generates

$300, 000 in revenues while the average player at the University of Utah only generates

$50, 000. The results imply that even if Duke’s recruiters can sign players that will generate

higher revenues, neither Duke’s nor Utah’s recruiters can identify star players ex-ante that

will generate more revenues than what the average player on each team would generate.

Keep in mind, this conclusion relies on the assumption that the information aggregated by

Rivals.com is a reasonable approximation of the information set that recruiters have when

recruiting players to their teams. One implication of these results is that if the NCAA

were to allow athletes to be paid for their athletic ability, then universities should prefer a

compensation scheme that puts less weight on up-front compensation and more weight on

a performance bonus, paid after a player’s ability to generate revenues is revealed.
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Expected and Unexpected Star Players

From the previous section, there appears to be little evidence in football and weak evidence

in basketball that college recruiters can identify players ex-ante that will generate signifi-

cantly more revenues than the average player for their college teams. While this might help

assuage concerns of omitted variable bias associated with recruiting effort, this result holds

on average and does not rule out the possibility that certain recruiters might be able to

identify players ex-ante that will generate more revenues than the average player on their

team. Furthermore, if players that were expected to be good ex-ante turn out to be star

players ex-post and if these players generate significantly more revenues than the average

player relative to unexpected stars, we might still worry about omitted variables bias in

recruiting. Therefore, it is useful to decompose the ex-post measures of star player into

their “expected” and “unexpected” components.

For football, I define “expected” stars to be ex-post star players that were also designated

as a Top Rivals star ex-ante. These are players that college recruiters expected to be star

college players that turned out to be stars according to the relevant ex-post measure. I

choose to use only the Top Rivals ranking for football because this is the ex-ante measure

that is most analogous to the ex-post measures in Table 10, both in terms of the criteria

defining star players and in the relative frequency of these players in the data. Then “un-

expected” stars are just the ex-post star players that were not designated as Top Rivals

stars ex-ante. These are players that college recruiters did not expect to be star college

players that turned out to be stars ex-post. Likewise, for basketball, I define expected stars

to be ex-post star players that were also designated as a Rivals.com 5 Star recruit with

unexpected stars being ex-post star players that were not designated as a Rivlas.com 5 Star

recruit.
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Equation (2.1) is used to estimate the MRP of expected and unexpected star players us-

ing fixed effects, where the only modification from the empirical analysis in Section 2.4

is that the regression is run over the sample 2005 − 2012 and Starsi,t is decomposed

into its mutually exclusive components ExpectedStarsi,t and UnexpectedStarsi,t where

Starsi,t = ExpectedStarsi,t +UnexpectedStarsi,t. Table 27 reports the MRP for expected

and unexpected football stars with Huber-White standard errors, clustered by team, re-

ported in parentheses. Immediately from the table it is apparent that the MRPs of unex-

pected stars are statistically significant for all measures of star player except for Heisman

finalists. The fact that the MRP of expected stars are not statistically significant for all

but All-American and Heisman finalists might give one pause. However, this is likely due

to the fact that there are far fewer expected than unexpected stars across all measures and

there might just not be enough power to identify the effect for expected stars when jointly

estimating the two coefficients. The results for basketball are reported in 28 with the MRP

of unexpected stars being statistically significant at the 5% level for All-American first team

and drafted players with top draft picks and top 20 points scorers significant at the 10%

level. As with football, the fact that the MRP of expected stars are not statically significant

for many of the star measures is likely due to lack of power coming from few observations.

The fact that unexpected football and basketball stars tend to significantly impact revenues

helps mitigate concerns that skilled players who turn into stars are being selected by top

recruiters ex-ante and this selection is biasing the MRP estimates. Furthermore, F-stats

and p-vales reported at the bottom of Tables 27 and 28 reveal that we cannot reject the null

hypothesis that the coefficient estimates for expected and unexpected stars are statistically

different from each other for almost all star measures.88 Simply put, it appears there is

88The lone exception is the MRP estimates for expected and unexpected basketball players that were in the
top 20 point scorers. Looking at the individual data reveals that there are two well known NBA basketball
players that were Rivals.com 5 star rated and top 20 points scorers in college: James Harden and Chris
Humphries. Since there are only nineteen expected stars in this category this estimate is likely sensitive to
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no statistical difference between a star’s impact on team revenues who was expected to be

a star and one who was a surprise. Although concerns over omitted variables biasing the

MRP estimates through recruiting’s selection process cannot completely be ruled out, these

results are encouraging for the MRP estimates of ex-post stars.

2.8 Alternative Empirical Strategies

Although the empirical strategy presented thus far attempts to account for omitted vari-

ables as well as possible, we can never be completely sure that the MRP estimates presented

above have a causal interpretation. When thinking about methods for inferring causality,

one immediately looks for sources of exogenous variation in the number of star players un-

related to team revenues. In the current context, it is natural to think about using injuries

and suspensions as potential sources of exogenous variation as these are plausibly random

events that affect in the number of star players in a given season.

While injuries and suspensions are not identified directly in my data, I can use the per-

centage of games played by each player in my individual-level data to narrow down the

search for injuries and suspensions. To this end, for each measure of ex-post star football

and basketball player, I collected a list of players that were designated as stars in year t

and played no more than half of their team’s games in year t + 1. Then for each of these

players, I manually searched their player biographies on the websites of their respective

athletic programs to determine if the low games-played percentage was due to injury or

suspension. Having identified star players that played no more than 50% of games in the

outliers. That is, the fact that expected stars in this category are statistically different than unexpected
stars and much larger than the composite estimate in Table 15 might really be due to the “Harden” and
“Humphries” effect if they happen to be extremely valuable to their college teams realative to the average
unexpected star in that category. The reason we do not see this same pattern in the top 10 points scorers
measure is likely beacuse these two players are not included in that measure, which just suggests that top
points scorer might just be a fairly noisy measure of quality as it pertains to players ability to generate
revenues.
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subsequent season due to injury or suspension, I then determined which of these injuries or

suspensions were “season ending.” I define a season ending injury or suspension as being

one that causes a player to miss at least the last-half of the season and rule out players that

were “plagued by injury.” For instance, I do not count a player who was injured for part

of the season, then came back from injury to play the remaining games, even if they ended

up playing only 40% of games that season. The reason I do this is that I want the injury

or suspension to cleanly end a star player’s contribution to team output. For example, I do

not want to count players that were injured, then came back from injury to help their team

into the NCAA tournament or a bowl game as this will muddy any identification strategy

using injured players to estimate a star player’s effect on revenues.

Table 29 reports the number of injured star players I was able to identify in the data. As

seen in the table, there are shockingly few season ending injuries.89 This low number of

identified injuries does not appear to be due to missing data. For instance, checking my

team and individual-level data reveals that very few players and no teams are missing the

number of games played, which would cause my initial screening to potentially miss a num-

ber of injuries. Furthermore, in manually searching for the biographies of the screened list

of players, I did not encounter anyone that I could not find a biography for, which makes

sense given these are all star players. The likely explanation for the low number of identified

injuries is simply that season ending injuries are not extremely common events, which is

compounded by the fact that stars players are very rare in the first place. Despite the lim-

ited number of injuries and suspensions in the data, I use this source of exogenous variation

to supplement my previous estimates of star player MRP using instrumental variables and

a generalized difference-in-difference approach.

89Including players who had seasons “plagued by injury” does not add a significant number of injured stars
to the data. Therefore, I continue with season ending injuries and suspensions because these potentially
provide cleaner identification of the effect of interest.
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2.8.1 Instrumental Variables

An instrumental variables framework appears to be the method of choice in dealing with

potential exogeneity in the literature that attempts to estimate the MRP of star college ath-

letes. However, as already discussed, there are issues with the validity of the instruments

used in the literature, particularly with satisfying the exclusion restriction and the problem

with weak instruments. Although there is no guarantee that using injuries will provide a

better instrument, I use the number of injured star players last season as an instrument

for the number of star players in the current season.90 This instrument should satisfy the

exclusion restriction required for the instrumental variables estimator as it is plausible to

assume the number of injured stars last year should only affect the team’s current revenues

through its effect on the number of star players in in the current year.

I use this instrument to exactly identify the number of star players (Stari,t) in an instru-

mental variables estimation of star player MRP in Equation (2.1). All the control variables

used in the fixed effects analysis mentioned in Section 2.4 are included as well as team,

conference and year fixed effects. The instrumental variable regression results for football

are reported in Table 30. Immediately we see that none of the estimates are statistically

significant with the exception of the All-American estimates, which are significant at the

10% level. If one believes that the instrumental variables estimates captures the “true ef-

fect” in a way that the OLS fixed effects estimates do not, then one might be tempted to

conclude that star football players do not generate revenues for their teams. However, I

would argue that these results should not be taken very seriously for two reasons.

First, the instrument is, for the most part, very weak since almost every F-statistic from

the first stage regressions (reported at the bottom of the table) are less than ten.91 Further-

90In the remainder of the paper, when I refer to injuries, I am referring to injuries and suspensions.
91The full first stage results are reported in Table 55 of Appendix A.7.

123



more, even though the F-statistics for the instrument in the case of All-Americans appears

quite strong, in this context, it might be misleading. The reason is that since there are

so few injured stars, the instrument is going to contain mostly zeros. Likewise, there are

very few star players so the variable Starsi,t will also contain mostly zeros. Therefore, the

instrument might be “highly predictive” overall because it correctly “predicts” when there

are no star players even though it might almost never predict the number of star players

for non-zero values of injured players and star players.

Second, since any omitted variables are likely to be positively correlated with both the

number of star players and a team’s revenues, we would expect the instrumental variables

estimates to be lower than the OLS estimates reported in Table 13. Even if we think that

the instrument is valid for All-Americans, the MRP estimate using instrumental variables is

larger than the MRP estimate for All-Americans using OLS. For the instrumental variable

estimator β̂IV , one can show that in the univariate case plimβ̂IV = β + corr(z,u)
corr(z,x)

σ(u)
σ(x) where

z is the instrument for endogenous x and u is the error term in the regression. Recall that

there are very few star players, which means that Starsi,t contains mostly zeros. Hence,

there is not a lot of variation in the endogenous variable, which will bias β̂IV up as σ(x) is

very small.

For completeness, the instrumental variable results for basketball are reported in Table 31

for the only two measures of star player that had any injuries.92 Recall there was only

one injured star player in the top 10 and 20 points scorers, and in the former case, the

instrument happens to be collinear with some of the control variables in the regression,

which is why there is no estimate for this measure. The instrumental variable estimates for

basketball should not be taken seriously for the same reasons that the football estimates

are suspect. Overall, the instrumental variables approach does not seem feasible given the

92The full first stage results for basketball are also reported in Table 57 of Appendix A.7.
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limited number of injuries and suspensions in the data. It is likely that we would need

to observe many more seasons of player data to get enough star players and injuries or

suspensions if we are to reliably identify the true effect when using them as instrumental

variables.

2.8.2 Difference In Difference

Although the instrumental variables approach was not entirely feasible, I can use the loss

of a star player due to injury or suspension to estimate star player MRP in a generalized

Differences-In-Differences framework for multiple events. Consider the following model for

a single event

yi,t = β(di × pt) + αi + δt + εi,t

where yi,t are revenues for team i in year t, di is an indicator for team i being treated in

that particular event and pt is an indicator for treatment having occurred by period t. Also

included are team (αi) and year (δt) fixed effects. Losing a star player due to injury from

one season to the next is one event and this event can affect different teams at different

times. Following ? I create a sample for each event and stack these samples, identifying each

separate season (two adjacent years) as a cohort. This stacked data can then be represented

by the following model

yict = βdict + αic + δtc + εict (2.5)

where c denotes the cohort and dict, the interaction between treatment and the post-

treatment period, with β the difference-in-difference estimator. The fixed effect αic controls

for the treatment within each cohort while δtc controls for post-treatment within each cohort.

For the difference-in-difference estimator β to have a causual interpretation, the treatment
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must be random, which seems plausible in this context. However, the additional parallel

trends assumption needed for identification is that absent treatment, the change in team

revenues for a team that loses a star due to injury would not have been different than the

change in revenues for the teams that do not lose a star due to injury. The advantage of

the multiple events framework is that it allows different teams to be treated at different

points in time and the more events we have, the harder it is to argue that a particular set

of treated teams is driving the result. That is, we would need to come up with a compelling

story as to why the parallel trends assumption is violated for each unique event.

I will define a team as being treated in two ways. First, if the team had exactly one star

player in year t, lost that player due to injury in t + 1 and had zero star players in year

t+ 1. The second definition is identical to the first, except the treated team can have zero

or one star players in year t+ 1, that is, I allow the star to be replaced by exactly one other

star player. The control group of teams are those that had exactly one star player in year

t, did not loose a star player due to injury, and had exactly one star player in year t + 1.

This definition of treatment and control groups is very restrictive. The consequence of this

restriction is that only three measures of star football players (TDYds, PERTDsYDs, and

TopPER) and two measures of star basketball players (Top 10 and 20 points scorers) have

any treated teams in the sample. Furthermore, the number of treatment events is quite

small, which attenuates some of the strengths of this multiple event approach. However,

even though these definitions are restrictive, they help the identification strategy in two way.

First, the parallel trends assumption is more likely to hold as I have defined treatment and

control teams. The reason is that, as currently defined, the difference-in-difference regression

will only be comparing teams that had exactly one star player in a season. Teams that have

a lot of star players are likely much different than teams that have very few star players,

particularly in terms of revenues. Hence, it is more plausible that the trends in revenues

before and after treatment between the treated and untreated teams are similar in making

this restriction since I will not be comparing teams that have a lot of star players with

126



those that have few. Second, these definitions of treatment and control provide the cleanest

possible identification for the impact on revenues caused by the loss of a star player and

will not be confounded by the team having a lot of other star players, gaining star players,

or loosing multiple star players in a year.

Gaining Versus Losing a Star Player

Since the differences-in-differences estimator is identified in a completely different way than

the OLS estimates using fixed effects, it might be useful to compare the estimates of a

star player’s MRP under each method. However, the two methods produce MRP estimates

with slightly different interpretations. The differences-in-differences method will estimate

the team revenue lost when a team loses a star player due to injury while the OLS method

using fixed effects or first-differences assumes gaining and losing a star player is symmetric

in terms of its effect on revenues. Therefore, if we want to compare the estimates from

using these two methods, it will be useful to know if there is any difference in the impact

on team revenues between gaining and losing a star player under the OLS framework. To

answer this, consider the following model

∆yi,t = η1∆Stari,t × 1{∆≥0} + η2 |∆Stari,t| × 1{∆<0} + ∆Xi,tγ + θi + ∆δt + ∆δc + ∆εi,t

(2.6)

which is identical to the first-difference model of Equation (2.3) with the exception that the

change in the number of star players (∆Stari,t) is decomposed into its non-negative and

negative domains with an indicator function.93

The estimation results of Equation (2.6) for football are reported in Table 32 along with

93Note that the indicator function splits the number of star players into its non-negative and negative
domains using the discrete measure of star player rather than the continuous measure. Also, the absolute
value is taken over the negative domain to help improve the interpretation of the coefficient estimates in
Tables 32 and 33.
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F-statistics for the null hypothesis that the MRPs of gaining and losing a star player are the

same in absolute value. For all star player measures aside from Heisman finalists, the MRP

of gaining versus losing a star player are of similar magnitude (in absolute value) and the

F-statistics imply that they are not statistically different from each other. The asymmetry

in the MRP estimates for Heisman finalists is interesting, particularly because the MRP

of losing a Heisman finalist is not negative (though statistically insignificant). This makes

sense if gaining a Heisman finalist is extremely valuable for the team and if these players

tend to have an affect on revenues after they leave the school. This idea is supported by the

fact that lagged Heisman finalists have large MRP estimates that are highly statistically

significant in the previous first-difference and fixed effects regressions. Table 33 reports the

estimation results of Equation (2.6) for basketball. For all eight star player measures, the

MRP estimates for gaining and losing a star are not statistically different from each other.

Since these results indicate that the impact on revenues of gaining and losing a star football

or basketball player is symmetric, we can reasonably compare the differences-in-differences

MRP estimates in the next section with our previous OLS estimates for star player MRP.94

Difference In Difference Results

The differences-in-differences estimates for losing a star football player due to injury from

Equation (2.5) are reported in Table 34.95 Standard errors are clustered by cohort-athletic

conference because teams more often play teams in their own conference and if one team

94With the exception of Hesiman finalists, however, this measure is not included in the differences-in-
differences analysis since there were no treated teams in the sample under this definition of star football
player.

95The differences-in-differences regressions were run without additional control variables, which allows
me to use a slightly larger sample from 2000-2012. In theory, if the treatment is truly random, adding
controls would only increase the precision of the estimates and should not change the point estimates. In
unreported results, adding additional controls does tend to change the estimates, though not drastically so
in most cases. Although the treatment is plausibly random, the likely reason for this is that there are so few
observations that adding several additional controls makes it more difficult for the regressions to esimate
the coefficients of interest precisely. Therefore, the limited statistical power in these regressions makes it
difficult to distinguish between the point estimates changing due to concerns over the random treatment
assumption versus the demands on the estimates imposed by additional controls. The results reported in
Tables 34 and 35 with controls included are available upon request.
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has a star player injured, it will likely enhance the prospects of its competitors, which could

lead to them winning more often and generating higher revenues. Panel A of the table

reports the results under the definition of treatment that restricts treated teams to having

zero star players in year t+ 1, while Panel B contains the results from the more permissive

definition of treatment allowing for zero or one star players in year t+ 1.

The first thing to notice that these regressions contain very few observations leading to

unreliable standard errors. Furthermore, there are very few treatments that survive under

the current definitions of treatment and control groups. Hence, the lack of statistically sig-

nificant MRP estimates is likely due to low power, rather than the difference-in-difference

estimates revealing that star players do not have an impact on revenues. Much like the in-

strumental variable estimates, the scarcity of injured star players in the data makes it very

difficult for the differences-in-differences estimator to detect the true effect of star players

on revenues if it does indeed exist. In spite of the low power, these estimates might provide

a useful comparison since these estimated coefficients are identified in a completely differ-

ent way than the OLS estimates using fixed effects and first-differences. For instance, the

point estimates in the second and third column of Panel A all lie within the 95% confidence

intervals of the MRP estimates for their counterparts estimated under fixed effects and

first-differences including the MRP for losing a star player in Tables 13, 19 and 32. Under

the slightly more permissive treatment definition in Panel B that contains a few more ob-

servations and treatment events, the MRP estimates in all three columns lie within the 95%

confidence intervals of their counterpart estimates in the aforementioned tables. We see a

similar pattern for the differences-in-differences estimates for losing a star basketball player

due to injury in Table 35. The MRP estimates for both measures of star player in both

panels are within the 95% confidence interval of the MRP estimates for their counterparts

estimated under fixed effects and first-differences including the MRP for losing a star player

in Tables 13, 19 and 32. However, we should be even more cautious regarding the basketball

results due to the fact that there are under one hundred observations in these regressions
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and only two or three treatment events.

Although the differences-in-differences estimates suffer from very low power, the identifica-

tion strategy itself does allow for casual interpretation in a way that is free of the omitted

variables worries of the previous fixed effects estimates. Hence, it is somewhat comforting

that the differences-in-differences estimates of player MRP give similar results to the MRP

estimates for star players using fixed effects. However, we should be cautious in reading

too much into these results as the support is very weak given how few injured star players

we observe in the data. As with the case using instrumental variables, we would need to

observe many more seasons of player data to get enough star players and injuries in order to

have enough statistical power for the difference-in-difference approach to provide definitive

results.

2.9 Scully Method

In Section 2.5, I presented some evidence that star players generate revenues for their uni-

versities through more than just their ability to help the team win games. To provide

further insight into a star player’s ability to generate revenues through mechanisms other

than wins, I estimate the MRP for all eight star basketball player measures using the Scully

Method.96 Recall that the Scully Method assumes the only channel through which star

players can influence revenues is through their contribution to producing wins. In contrast,

the Direct Method I employ above implicitly assumes that star players can impact revenues

for reasons unrelated directly to their ability to produce wins. Hence, if most of the star

player’s ability to impact revenues comes through their contribution to team wins, we would

expect the estimates under the Scully Method and the Direct Method to be of comparable

96The Scully Method is only employed for basketball as it requires computing an individual player’s share
of a team’s wins, which is very difficult to do in football. This is why the Scully Method is really only used
in the context of basketball and baseball where computing a player’s share of wins is more feasible.
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magnitudes and statistical significance.

The first step in the Scully Method is to compute a player’s marginal productivity, which in

this context is a player’s contribution to team wins. Sports Reference provides an estimate

of the number of wins contributed by a player due to his offense and defense, so I use their

measure for win shares here.97 The marginal product for star players is then calculated

by simply taking the average of the win shares for star players across teams and years.

The second step involves estimating the marginal revenue. Given the following model of

basketball revenues

yi,t = ηWinsi,t +Xi,tγ + θit+ δt + δc + δi + εi,t (2.7)

where Xi,t contains the same control variables as before. The only difference between this

model and Equation (2.1) is that I have replaced Starsi,t with Winsi,t. Hence, the co-

efficient η is interpreted as the additional revenue associated with and an additional win.

I used fixed effects to estimate the revenue model in Equation (2.7) and report just the

estimate for η in the top panel of Table 36. The marginal products, computed as described,

are reported in the second panel of the table for the eight measures of star players. The

bottom panel of Table 36 reports the marginal revenue product using the Scully Method,

which is just the marginal revenue estimates multiplied by the marginal products for each

star measure.

The Scully Method estimates in Table 36 imply that the MRP of star players ranges from

just under $100, 000 to as much as $150, 000 depending on the star measure used. For

instance, the Scully Method estimates for the MRP of players drafted in the NBA is $99, 321,

which is very close to the estimate of $91, 030 reported by Lane et al. (2014) for the same

97Please see http://www.sports-reference.com/cbb/about/ws.html for details on how they compute the
win share for each player.
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measure of star player using the Scully Method. However, the more interesting comparison

is between the estimates using the Scully Method and the MRP estimates from the Direct

Method in Table 15. The MRPs from the Scully Method are only about 14% to 49% of the

MRP estimated from the Direct Method (depending on which star measure considered).

On balance, this suggests that a significant portion of a star basketball player’s ability

to generate revenues for their university comes through mechanisms other than the star

player’s ability to produce wins.

2.10 Media Exposure

There are many ways that a star football or basketball player might influence university

revenues that are not directly tied to their ability to win games. For instance, Texas A&M

Foundation President Ed Davis had this to say about the meteoric rise in recognition of

Johnny Manziel, Texas A&M’s star Quarterback from 2012–2013 and the first Freshman

ever to win the Heisman Trophy:

In an era where we are in, effectively, in the news everywhere and you have a

young man like our Quarterback who has been a media magnet and you have

the success you have, I do think that euphoria does spill over into success in

fundraising.98

While Mr. Davis is specifically referring to fundraising for the university, we might think

that football and basketball program revenues more generally can be influenced by a star

player’s media exposure. Consider the following model

yi,t =β1Stari,t + β2Stari,t ×NewsHitsi,t + β3NewsHitsi,t +Xi,tγ + θit+ δt + δc + δi + εi,t

(2.8)

98Allen Reed, “Texas A&M breaks fundraising record with $740 million in donations,” The Eagle, Septem-
ber 17, 2013.
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which is identical to Equation (2.1) with the addition of (NewsHitsi,t), measuring the

number of news media pieces about the football or basketball team, and its interaction

with the number of star players on the team. This interaction term captures the impact on

revenues of an additional news mention when the team has at least one star player. With

this modification, the MRP of a star player is now given by β1 +β2×NewsHits, and since

NewsHits is a continuous variable, I will report the MRP for star players at several points

in the distribution of news mentions.

The number of times a team is mentioned in the news could also be thought of as a proxy for

unobservables involving a university’s long term investment in their football or basketball

program. This is plausible if we believe that a concerted effort by the university to improve

the standing of their team is proxied for by their news media presence. Hence, the model in

Equation (2.8) allows me to indirectly assess the argument made by Harvey Perlman that

athletic programs generate revenues due to long term investments in the program and the

passion or excitement associated with the team. There is, however, another large caveat

here. When interpreting the estimation results of Equation (2.8) it is important to note

that team news mentions (NewsHits) is a bad control since it is also an outcome of the

number of star players. Hence, the statistical significance of the MRP estimates should be

viewed with caution. However, as long as the bad control is biasing the estimate in the

same way for teams across the distribution of news mentions, then the trend of star player

MRP as a function of news mentions is still informative.

With this caveat in mind, fixed effects estimates of a star football and basketball player’s

MRP from Equation (2.8) are presented in Figures 3 and 4 for several points in the distribu-

tion of news mentions. For football, since touchdowns and yards generate more excitement

and are more salient to fans than more technical measures of ability like the PER, I choose
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to focus just on star measures 1–4.99 The striking takeaway from Figure 3 is the MRP

of a star football player tends to decrease the more frequently a team is mentioned in

the news.100 For example, getting an additional star player is likely to be worth less for

Nebraska (90th percentile) than for Idaho, Ohio, or Utah State (10th percentile) because

Nebraska often has good players and has built a formidable football program and fan base

that always generates a lot of revenues. Whereas for Idaho, Ohio, or Utah State, getting an

additional star player can be quite valuable for the team; both through the star improving

the team’s performance and in producing revenues through increased media exposure and

generating excitement for the team.

For basketball, I focus on star measures 1–3 and include NBA drafted players as these

are likely to be the types of star players generating the most excitement and be the most

salient to basketball fans.101 The results for basketball in Figure 4 are more mixed than

is the case with football. The MRP for drafted players decreases the more frequently a

team is mentioned in the news wile the MRP under the other three measures is flat or

slightly increasing. However, the MRP estimates for drafted players are the only ones that

are statistically significant. Overall, the results from controlling for (and interacting) a

team’s media exposure for basketball and football suggest there might be something to Mr.

Perlman’s argument if we believe that news mentions are a proxy for university investment

into the success of their athletic programs. However, in spite of this observation, it seems

clear from the previous MRP estimates in Tables 13 and 15 that star players generate a

significant amount of revenues each year for their teams on average.

99The star measures 5 and 6 only differ from 4 in how star Quarterbacks are defined and the estimation
results for these measures are available upon request.

100Although the MRP of star players under measure 4 tends to increase, the estimates are not statistically
different from zero for any number of news mentions.

101The estimation results for the other basketball star measures are available upon request.
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2.10.1 Star Player Media Exposure By Position

Equation (2.8) can be slightly modified to estimate the MRP of star players in specific

football positions as follows

yi,t =
∑
pos

(
βpos1 Starposi,t + βpos2 Starposi,t ×NewsHitsi,t

)
+ β3NewsHitsi,t (2.9)

+Xi,tγ + θit+ δt + δc + δi + εi,t

where pos ∈ {QB,RB,WR}. I limit this analysis to just these three positions since these

are the major offensive positions that are likely to the most salient to the fans, hence

generating the most excitement.102 It is worth reiterating that because of the bad control

issue, the point estimates should be interpreted with caution, however, the trend in star

player MRPs along the news distribution is still informative. Fixed effects estimates of a

star football player’s MRP by position from Equation (2.8) are presented in Figures 5 and

6 for several points in the distribution of news mentions. The MRPs of star Quarterbacks

and Running Backs tend to decrease the more frequently a team is mentioned in the news.

The same is true for All-American and Heisman nominated Wide Receivers. However,

the trend is increasing for Wide Receivers that were Heisman finalists or among the top

10 in touchdowns or yards. For the former case this might be because Wide Receivers

are infrequently nominated for the Heisman relative to other positions, only four of which

were Heisman finalists.103 Hence, these four players might really be so much better than

an average Wide Receiver that they would generate higher revenues for any team, even

augmenting revenues for well known teams. Likewise, a Wide Receiver among the top 10 in

touchdowns or yards might also augment revenues through generating bigger, more exciting

plays with longer and more spectacular receptions. Although potentially interesting, these

102Also, the only measure of star that includes any positions other than these three is the All-American
measure and the MRP for All-Americans in other positions were not statistically significant in the prior
analysis.

103Over the sample 2003-2012, only 11% of players nominated for the Heisman are Wide Receivers while
28% were Running Backs and 51% were Quarterbacks. The four Wide Receiver Heisman finalists are Justin
Blackmon, Larry Fitzgerald, Marqise Lee and Michael Crabtree.
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speculations require further investigation. Overall, the position specific regressions give

results similar to the aggregate star regressions in the previous section, implying that having

a star player is worth less for teams that are more frequently mentioned in the news.

2.11 Conclusion

The NCAA has long prevented college athletes from being paid directly for their athletic

ability. This practice has been defended under the guise of amateurism, which seems at

odds with the public perception that college athletes generate millions of dollars in revenues

for their universities and receive little in return. Increasingly, the NCAA’s claims of am-

ateurism appear anachronistic as the business of collegiate athletics has begun to appear

indistinguishable from a professional sports organization. This observation has led many

people to question the fairness of restricting payment to players, which has pointedly mani-

fest itself in a series of recent lawsuits. One recent lawsuit claims that the NCAA’s practice

of price-fixing collegiate players’ compensation violates U.S. anti-trust laws under the Sher-

man Act. Central to this claim is that the NCAA restricts an athletes compensation to

grant-in-aid, limiting competition and capturing the rents that should rightfully go to play-

ers who generate millions of dollars a year in revenues for their universities. This argument

implies that if a competitive labor market for college players existed, they would be able

to capture a large proportion of these rents as players would be compensated according to

their marginal revenue product. In order to inform the debate, this paper provides esti-

mates for a college football and basketball player’s marginal revenue product by examining

the contribution of star players to athletic program revenues.

Overall, I find the marginal revenue product of a Division 1 FBS college football player

is just over $1.2 million for All-American players, while the marginal revenue product of

Heisman finalists and Heisman nominees are $2.1 and $1.8 million respectively. Also, the
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marginal revenue product is around $600, 000 for football players ranked among the top 10

by performance statistics. Looking at individual positions, I find marginal revenue prod-

ucts for star Quarterbacks ranging from $1 to $4.6 million a year on average and $2.9

million for star Wide Receivers. For basketball, I find that players who won the Wooden

Award, Naismith Award, or were named the most outstanding player in the NCAA Tour-

nament are worth up to $1.1 million a year while players named to the All American First

Team are worth up to $654, 000. Also, players that were drafted, a top 5 or top 10 NBA

draft pick, or were in the top 10 or 20 points scorers in a season are worth up to around

$200, 000−$400, 000 a year. These findings suggest that star football and basketball players

are worth a significant amount to the institutions whose teams they play for, which gives

us some insight into the magnitude of the economic rents generated by star players that are

being captured by universities with Division 1 football and basketball programs.

In response to claims of unfairness, some have argued that the reason top collegiate ath-

letics programs generate significant revenues is a function of the university’s long term

investment in these programs, fan enthusiasm, and alumni excitement for the team rather

than individual player efforts. To indirectly asses this claim, I use the number of times a

football or basketball team is mentioned in the news media as a measure of excitement for

the team. In addition, this measure is likely a reasonable proxy for a university’s long term

investment in their football or basketball programs. Incorporating this measure into the

analysis reveals that star football and basketball players tend to be worth less to teams who

are more frequently mentioned in the news. This result provides some tentative support

to the counter-argument, however, even in light of this observation it seems clear that star

football and basketball players generate a significant amount of revenues each year for their

universities. Ultimately, the normative question whether college athletes should be com-

pensated beyond what the current NCAA rules allow must be decided by the players, fans,

and institutions that make college athletics possible. This paper provides a quantitative

analysis to aid and inform that discussion.
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Table 8

College Football Summary Statistics

This table reports summary statistics for varibles used in the regression analysis over the sample period 2003-2012.

Mean Std. Dev. Min Max 10% 90%

Football Program Revenues† 23,662,588 19,671,888 2,392,553 111,329,618 5,346,434 54,708,011
Wins 6.59 3.03 0 14 2.00 11.00
Number of Bowl Games 5.55 2.88 0 10 1.00 9.00
Number of Bowl Games Won 2.79 2.00 0 8 0.00 6.00
Strength of Schedule 0.58 4.24 -10.89 9.68 -5.48 5.74
Points Allowed Per Game 25.87 6.82 8.20 47.60 17.30 35.15
Yards Allowed Per Game 371.98 57.33 183.60 526.10 298.85 450.05
Passing Yards Allowed Per Game 220.33 34.83 111.50 340.40 175.85 266.40
Passing TDs Allowed Per Game 1.52 0.49 0.40 3.30 0.90 2.20
Rushing TDs Allowed Per Game 151.65 39.39 43.40 276.80 102.60 207.10
Rushing Yards Allowed Per Game 1.49 0.61 0.20 4.10 0.80 2.30
Avg. Distance From Good Players‡ 1,022 271 747 1,833 801 1,529
Undergraduate Population 19,985 8,708 2,672 59,382 8,962 31,552
Per-Capita Personal Income† 39,615 4,911 29,081 56,713 34,086 46,221
Growth in Per-Cap. Personal Inc. 1.24 2.52 -11.26 10.22 -1.88 4.04
City Population 336,022 622,655 12,731 3,857,799 28,756 750,663
State Population 10,723,073 9,462,480 503,453 38,041,430 2,712,335 24,801,761
Number of News Articles 1,025 994 0 7,368 213 2,332

Observations 1,040
Number of Teams 104

†: Real 2012 U.S. Dollars. ‡: Miles.

Table 9

College Basketball Summary Statistics

This table reports summary statistics for varibles used in the regression analysis over the sample period 2003-2012.

Mean Std. Dev. Min Max 10% 90%

Basketball Program Revenues† 3,927,306 4,623,809 165,471 44,093,915 882,557 9,982,928
Wins 16.70 6.48 0 38 8 25
NCAA Tournament Appearances 0.74 0.94 0 4 0 2
NCAA Tournament Round 2 0.68 1.03 0 5 0 2
NCAA Tournament Sweet 16 0.44 0.88 0 5 0 2
NCAA Tournament Elite 8 0.14 0.49 0 3 0 0
NCAA Tournament Final 4 0.07 0.29 0 2 0 0
NCAA Tournament Final 0.04 0.20 0 2 0 0
NCAA Tournament Winner 0.04 0.24 0 2 0 0
Teams in Athletic Conference 10.95 1.97 4 16 8 13
AP Ranked Teams in Conference 1.04 1.62 0 7 0 3
NCAA Tournament Teams in Conference 2.45 2.15 0 11 1 6
Final Four Teams in Conference 0.17 0.43 0 2 0 1
Strength of Schedule 0.46 5.20 -13.38 12.04 -6.04 7.66
Avgerage Distance From Good Players‡ 991 303 704 1,880 744 1,638
Undergraduate Population 13,602 9,349 1,157 59,382 3,182 26,408
Per-Capita Personal Income† 41,525 6,140 29,081 60,748 34,670 51,441
Growth in Per-Capita Personal Income 1.25 2.34 -11.26 10.22 -1.76 3.93
City Population 507,864 1,357,731 328 8,336,697 13,864 817,159
State Population 11,032,143 9,384,200 503,453 38,041,430 2,783,785 24,309,039
Number of News Articles 273 407 0 3,946 35 705

Observations 2,820
Number of Teams 282

†: Real 2012 U.S. Dollars. ‡: Miles.
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Table 10

College Football Star Player Measures

This table reports the number of star players and their relative frequency in the data over the sample period 2003-2012
for six different measures of star players: (1) All Americans, (2) Heisman Finalists (voted 5th place or above), (3)
Heisman Nominees, and (4) Top 10 in offensive touchdowns or yards. The last two measures (5-6) are Top 10 in
offensive touchdowns or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is how star
Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency rating (PER) or touchdowns or
yards while (6) is a Top 10 Quarterback in pass efficiency rating alone. The column %Plyrs denotes the frequency
of star players (N/Total Number of Player-Years). The column %Pos denotes the frequency of star players relative
to the total number of player-years in positions eligible for that particular star measure given how the star player
measures are defined. So for star measures (2-6) the relevant denominator is the total number of player-years for
Quarterbacks, Running Backs and Wide Receivers while the denominator for (1) includes all player-years since all
positions are eligible to be designated an All American player. The numbers in parentheses denote the percentage of
players designated as a star player relative to the total number of players in their position.

Aggregated By Position

Star Measure N % Plyrs %Pos QB RB WR TE OL K P

(1) AA Team 256 0.45 0.45 11 27 26 11 47 10 10
(0.37) (0.42) (0.31) (0.35) (1.43) (0.52) (0.91)

(2) HF 46 0.08 0.26 28 14 4
(0.94) (0.22) (0.05)

(3) HN 88 0.15 0.50 50 27 11
(1.67) (0.42) (0.13)

(4) TDsYds 471 0.83 2.65 137 158 176
(4.58) (2.48) (2.10)

(5) PERTDsYds 514 0.98 2.90 180 158 176
(6.02) (2.48) (2.10)

(6) PER 435 0.77 2.45 131 158 176
(3.38) (2.48) (2.10)

LB DB DL
(1) AA Team 31 42 41
Continued (0.37) (0.39) (0.44)

Table 11

College Basketball Star Player Measures

This table reports the number of star players and their relative frequency in the data over the sample period 2003-
2012 for eight different measures of star players: (1) Wooden Award Winner, Naismith Award Winner or the NCAA
Tournament’s Most Outstanding Player, (2) All American First Team, (3) All American First or Second Team, (4)
NBA Drafted Players, (5) NBA Top 5 Draft Pick, (6) NBA Top 10 Draft Pick, (7) Top 10 Points Scorers, and (8) Top
20 Points Scorers. The column % All Plyrs denotes the frequency of star players (N/Total Number of Player-Years).

Star Measure N % All Players

(1) Award Winners 19 0.05
(2) All American First Team 49 0.12
(3) All Americans 105 0.27
(4) NBA Drafted 420 1.06
(5) NBA Top 5 Draft Pick 43 0.11
(6) NBA Top 10 Draft Pick 83 0.21
(7) Top 10 Points Scorers 90 0.23
(8) Top 20 Points Scorers 178 0.45
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Table 12

Ex-Ante Star Player Measures

This table reports the number of ex-ante star players and their relative frequency in the data over the sample period
2005-2012. Top Rivals is the number of players with a Rivals.com ranking of 6.1, High Rivals is the number of players
with a Rivals.com ranking of 6.0 or better, and 5 Star is the number of players with a 5-star Rivals.com ranking. The
measures denoted with an “OP” are identically defined but are restricted to the offensive positions of Quarterback,
Runningback and Wide Reciever. The column % Plyrs denotes the frequency of star players (N/total number of
player-years), where the denominator in the case of the “OP” measures only includes the total number of player-years
for offensive positions.

Football Star Measure N % Players

Top Rivals 565 1.15
High Rivals 1,355 2.76
5 Star 663 1.35

Top Rivals OP 246 1.71
High Rivals OP 522 3.63
5 Star OP 292 2.03

Basketball Star Measure N % Players

5 Star 422 1.34
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Table 13

Marginal Revenue Product of Star College Football Players. This table reports
fixed effects regression estimates of a star football player’s marginal revenue product from
Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates
for six different measures of star player are reported: (1) All Americans, (2) Heisman
Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive
touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touchdowns or
yards for Running Backs and Wide Receivers. The difference between (4,5,6) is how star
Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency rating
(PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency rating
alone. The full estimation results are reported in Table 38 in Appendix A.7.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 1246194.1∗∗∗ 2110456.4∗∗ 1772393.3∗∗∗ 635939.4∗∗ 620915.0∗∗ 634448.8∗∗

(371109.5) (933544.5) (557169.9) (273501.0) (258687.2) (283630.8)

Starst−1 784531.3∗ 1541987.4∗∗ 2125693.1∗∗∗ 463500.0∗∗ 482399.8∗∗ 629070.6∗∗∗

(407013.3) (746867.3) (613806.8) (209543.1) (199374.2) (222252.8)

Starst−2 549369.2 -211988.4 135553.5 2163.8 131353.3 156726.8
(409714.8) (625430.4) (497226.6) (191799.8) (217898.7) (230384.4)

Winst−1 -33715.1 2350.5 -65521.4 17886.1 10689.7 2674.8
(105185.3) (95311.6) (101668.3) (102868.0) (101990.9) (101220.6)

Winst−2 47950.9 102288.3 84403.1 94650.6 77305.9 74126.7
(56749.6) (61649.3) (62019.0) (66211.5) (68658.6) (65450.8)

CoachCareert−1 2571657.5 1933681.0 2473963.0 1252014.5 1252673.2 1423088.7
(2077061.6) (2066798.6) (2083839.1) (2063261.0) (2066246.2) (2077016.9)

BowlGamet−1 862673.1∗ 696357.4 805688.7∗ 612201.2 626535.5 622163.7
(463602.8) (443760.2) (457479.2) (458303.6) (455531.3) (452238.2)

BowlWint−1 -367095.4 -228156.7 -186535.8 -379685.7 -393601.2 -391951.8
(417701.8) (426506.3) (401965.8) (424937.9) (427281.8) (427480.3)

Distance -24893.5 -26074.5 -25418.8 -20941.5 -20871.2 -21590.8
(16516.5) (17347.0) (17021.0) (17282.3) (17333.0) (17225.4)

PerCapPI 184142.6 257071.2 271520.4 218391.4 212482.4 204275.8
(319267.5) (335018.5) (322485.3) (329132.8) (328377.7) (322979.3)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.773 0.775 0.779 0.774 0.774 0.774
Adjusted R2 0.972 0.972 0.972 0.972 0.972 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 14

Marginal Revenue Product of Star College Football Players by Position. This
table reports fixed effects regression estimates of a star football player’s marginal revenue
product from Model (2.2) over the sample period 2003-2012. Revenues are real 2012 USD
at an annual frequency. Standard errors are in parentheses and have been clustered by
team. Estimates for six different measures of star player are reported: (1) All Americans,
(2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in
offensive touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touch-
downs or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is
how star Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency
rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency
rating alone. One and two year lags for star players are included, but not reported here,
please see Table 39 in Appendix A.7 for the full results.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDYds PER

Star QB 4608930.9∗∗∗ 3471509.8∗∗ 2214355.5∗∗ 1019893.4∗∗ 924894.5∗∗ 850420.6∗

(1164765.0) (1351570.5) (934112.1) (478396.0) (392270.5) (481015.0)

Star RB 301788.4 608943.1 1048518.4 488427.7 421584.8 444569.6
(631539.7) (1309714.5) (915890.6) (429620.5) (414200.9) (418953.7)

Star WR 2905696.8∗∗ -767266.6 2472387.2 464649.9 423843.9 576679.4
(1405377.0) (3344772.8) (1949165.7) (536098.5) (544325.4) (516914.8)

Star TE 1276488.1
(1060995.6)

Star OL 1817052.2
(1902022.5)

Star K -1413320.6
(917291.1)

Star P 2254073.1
(2391757.8)

Star LB 1343434.9
(1161464.0)

Star DB 900250.4
(809392.0)

Star DL -152692.0
(1029483.9)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

1Y and 2Y Star Lags Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.784 0.777 0.782 0.774 0.775 0.776
Adjusted R2 0.972 0.972 0.973 0.972 0.972 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 16

Marginal Revenue Product of Star College Football Players - Wins Included.
This table reports fixed effects regression estimates of a star football player’s marginal
revenue product from Model (2.1) over the sample period 2003-2012. Revenues are real
2012 USD at an annual frequency. Standard errors are in parentheses and have been
clustered by team. Estimates for six different measures of star player are reported: (1)
All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees,
and (4) Top 10 in offensive touchdowns or yards. The last two measures (5-6) are Top 10
in offensive touchdowns or yards for Running Backs and Wide Receivers. The difference
between (4,5,6) is how star Quarterbacks are measured with (5) being a Top 10 Quarterback
in pass efficiency rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in
pass efficiency rating alone. The full estimation results are reported in Table 43 in Appendix
A.7.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 926451.1∗∗ 1522818.2∗ 1177237.5∗∗ 273485.5 256650.6 277127.5
(402026.1) (889228.6) (544071.6) (305633.1) (292662.4) (304313.0)

Wins 274939.7∗∗∗ 348969.4∗∗∗ 351564.9∗∗∗ 353074.9∗∗∗ 354350.2∗∗∗ 359789.8∗∗∗

(74995.2) (79970.3) (78791.9) (97875.9) (98355.4) (91981.8)

Winst−1 -7345.1 23825.2 -49181.1 42722.7 35500.1 26959.1
(106403.2) (96990.4) (101631.9) (104352.5) (103815.1) (102155.3)

Winst−2 111438.2∗ 149553.4∗∗ 133762.7∗∗ 143999.7∗∗ 128650.6∗ 124482.8∗

(61823.0) (65103.8) (65590.4) (69353.3) (71157.5) (67503.3)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
R2 0.779 0.781 0.785 0.780 0.780 0.780
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 17

Marginal Revenue Product of Star College Football Players by Position - Wins
Included. This table reports fixed effects regression estimates of a star football player’s
marginal revenue product from Model (2.2) over the sample period 2003-2012. Revenues
are real 2012 USD at an annual frequency. Standard errors are in parentheses and have
been clustered by team. Estimates for six different measures of star player are reported: (1)
All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees,
and (4) Top 10 in offensive touchdowns or yards. The last two measures (5-6) are Top 10
in offensive touchdowns or yards for Running Backs and Wide Receivers. The difference
between (4,5,6) is how star Quarterbacks are measured with (5) being a Top 10 Quarterback
in pass efficiency rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in
pass efficiency rating alone. The full estimation results are reported in Table 44 in Appendix
A.7.

(1) (2) (3) (4) (5) (6)

AA Team HF HN TDYds PERTDYds PER

Star QB 4002896.6∗∗∗ 2613205.7∗ 1338255.8 426270.7 344168.7 381371.0

(1144409.0) (1322656.6) (921253.7) (504839.4) (424145.3) (479613.7)

Star RB -71395.5 287602.6 822523.3 164893.3 117441.0 127832.2

(626403.8) (1260993.0) (914857.0) (446548.7) (437817.1) (441013.1)

Star WR 2671726.0∗ -430341.1 2275417.0 250983.5 230554.0 272862.4

(1379730.4) (3370752.1) (1911482.0) (534304.1) (543821.9) (521004.1)

Star TE 709435.3

(1101329.7)

Star OL 1441320.6

(1894931.1)

Star K -1713721.1∗

(943726.6)

Star P 2240380.6

(2448445.7)

Star LB 1100736.3

(1199072.9)

Star DB 514531.4

(879917.8)

Star DL -343706.0

(1057113.1)

Wins 273964.8∗∗∗ 330986.2∗∗∗ 357280.0∗∗∗ 347714.3∗∗∗ 345097.5∗∗∗ 352589.0∗∗∗
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(73651.1) (76827.9) (76999.7) (99527.1) (99837.8) (91104.1)

Winst−1 -26800.7 29252.4 -68389.3 38309.6 32381.0 3188.5

(107121.3) (98462.6) (104010.1) (108974.8) (108002.9) (107336.9)

Winst−2 105240.5∗ 144613.5∗∗ 129268.5∗ 144210.0∗ 117311.1 114024.1

(62154.1) (66425.7) (67525.4) (75426.6) (80101.5) (72453.8)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040

R2 0.790 0.783 0.788 0.780 0.781 0.782

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 19

Marginal Revenue Product of Star College Football Players. This table reports
first-difference estimates of a star football player’s marginal revenue product from Model
(2.3) over the sample period 2003-2012. Revenues are real 2012 USD at an annual frequency.
Standard errors are in parentheses and have been clustered by team. Estimates for six
different measures of star player are reported: (1) All Americans, (2) Heisman Finalists
(voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive touchdowns
or yards. The last two measures (5-6) are Top 10 in offensive touchdowns or yards for
Running Backs and Wide Receivers. The difference between (4,5,6) is how star Quarterbacks
are measured with (5) being a Top 10 Quarterback in pass efficiency rating (PER) or
touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency rating alone. The
full estimation results are reported in Table 46 in Appendix A.7.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

∆Starst 948869.0∗∗∗ 1469685.8∗ 1445711.1∗∗∗ 779553.1∗∗∗ 748806.3∗∗∗ 750360.7∗∗∗

(349418.3) (828796.5) (506010.5) (235433.4) (225132.4) (254279.4)

∆Starst−1 709250.0∗ 1649626.2∗∗ 2120098.8∗∗∗ 573737.5∗∗∗ 590639.4∗∗∗ 739697.0∗∗∗

(402677.7) (674256.7) (569801.0) (207958.1) (208535.9) (223208.1)

∆Starst−2 163983.3 49332.1 194599.5 -55141.1 76767.2 220992.2
(352823.6) (576912.1) (441350.4) (156582.1) (180291.6) (192410.0)

Team Dummies Yes Yes Yes Yes Yes Yes

Year Dummies Yes Yes Yes Yes Yes Yes

N 936 936 936 936 936 936
R2 0.145 0.155 0.169 0.168 0.165 0.162
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 21

Marginal Revenue Product of Star College Football Players. This table reports
OLS estimates of a star football player’s marginal revenue product from Model (2.4) over the
sample period 2003-2012. Revenues are real 2012 USD at an annual frequency. Standard
errors are in parentheses and have been clustered by team. Estimates for six different
measures of star player are reported: (1) All Americans, (2) Heisman Finalists (voted 5th
place or above), (3) Heisman Nominees, and (4) Top 10 in offensive touchdowns or yards.
The last two measures (5-6) are Top 10 in offensive touchdowns or yards for Running Backs
and Wide Receivers. The difference between (4,5,6) is how star Quarterbacks are measured
with (5) being a Top 10 Quarterback in pass efficiency rating (PER) or touchdowns or yards
while (6) is a Top 10 Quarterback in pass efficiency rating alone. The full estimation results
are reported in Table 48 in Appendix A.7

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 1079047.5∗∗∗ 1238360.9 1133259.8∗ 688562.2∗∗∗ 682939.7∗∗∗ 653164.6∗∗∗

(289289.4) (896004.8) (578029.1) (215182.7) (207103.7) (236700.4)

Revenuest−1 0.634∗∗∗ 0.632∗∗∗ 0.634∗∗∗ 0.631∗∗∗ 0.629∗∗∗ 0.629∗∗∗

(0.0518) (0.0469) (0.0466) (0.0463) (0.0465) (0.0468)

Revenuest−2 0.0682 0.0772 0.0802 0.0779 0.0783 0.0789
(0.0633) (0.0603) (0.0600) (0.0604) (0.0602) (0.0604)

Year Dummies Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
R2 0.972 0.972 0.972 0.972 0.972 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 23

College Basketball Summary Statistics

This table reports summary statistics for varibles used in the regression analysis on the subset of institutions with
both Division 1 men’s basketball and Division 1 FBS football programs over the sample period 2003-2012.

Mean Std. Dev. Min Max 10% 90%

Basketball Program Revenues† 6,755,197 5,698,829 436,805 44,093,915 1,343,627 14,287,537
Wins 18.71 6.54 3 38 10 27
NCAA Tournament Appearances 0.90 1.00 0 4 0 2
NCAA Tournament Round 2 1.08 1.23 0 5 0 3
NCAA Tournament Sweet 16 0.76 1.06 0 4 0 2
NCAA Tournament Elite 8 0.29 0.68 0 3 0 1
NCAA Tournament Final 4 0.13 0.40 0 2 0 1
NCAA Tournament Final 0.07 0.25 0 1 0 0
NCAA Tournament Winner 0.08 0.36 0 2 0 0
Teams in Athletic Conference 11.65 1.69 8 16 9 14
AP Ranked Teams in Conference 1.95 1.78 0 7 0 4
NCAA Tournament Teams in Conference 3.72 2.31 1 11 1 7
Final Four Teams in Conference 0.31 0.54 0 2 0 1
Strength of Schedule 4.19 4.10 -8.78 12.04 -1.77 8.53
Avgerage Distance From Good Players‡ 1,000 291 722 1,833 762 1,578
Undergraduate Population 20,084 8,856 1,826 59,382 9,096 31,746
Per-Capita Personal Income† 39,781 5,275 29,081 60,748 34,193 46,603
Growth in Per-Capita Personal Income 1.21 2.51 -11.26 10.22 -1.94 4.04
City Population 370,786 917,482 12,004 8,336,697 28,704 668,877
State Population 10,732,329 9,224,355 503,453 38,041,430 2,723,421 24,309,039

Observations 1,190
Number of Teams 119

†: Real 2012 U.S. Dollars. ‡: Miles.
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Table 25

Marginal Revenue Product of Ex-Ante Star College Football Players. This table
reports fixed effects estimates of an ex-ante star football player’s marginal revenue product
from Model (2.1) over the sample period 2005-2012. Revenues are real 2012 USD at an
annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for six different measures of star player are reported: (1) Top Rivals.com Recruits
(Rivals.com rating of 6.1), (2) High Rivals.com Recruits (Rivals.com rating of 6 or better),
(3) Rivals.com Five Star Rated Recruit. The last three measures (4-6) are the same as (1-3)
except isolated to only the Offensive Positions (OP) of Quarterback, Running Back, and
Wide Receiver. The full estimation results are reported in Table 51 in Appendix A.7.

(1) (2) (3) (4) (5) (6)
Top Riv High Riv 5 Star Top Riv OP High Riv OP 5 Star OP

Stars 291572.2 100964.3 452130.7 844171.8 208951.9 829356.5
(475612.5) (258900.2) (489486.5) (735283.7) (515711.0) (739502.1)

Starst−1 88005.2 -238273.1 447989.4 -478993.5 -315699.6 -366974.8
(359552.0) (263211.1) (287902.5) (422948.6) (293817.5) (405187.3)

Starst−2 477074.7 437018.8 138076.7 174979.9 638371.0 -227883.6
(652932.0) (388483.6) (505997.3) (794618.4) (558654.2) (708797.3)

Winst−1 90967.2 85302.2 61987.1 108444.2 108437.7 93652.0
(102195.1) (93046.1) (102009.4) (95976.1) (92164.1) (96464.9)

Winst−2 25800.3 40110.4 18517.3 62339.0 58695.5 68866.7
(70556.3) (72178.3) (67634.0) (66038.7) (69015.4) (64484.4)

CoachCareert−1 68154.7 139515.6 49078.6 -793740.5 -715548.8 -655175.2
(1985339.3) (2033843.8) (2013093.7) (2029059.8) (2018001.2) (2026444.9)

BowlGamet−1 470586.9 509647.8 546839.3 402070.1 411870.6 450003.5
(434039.5) (411079.8) (443868.3) (448999.1) (424706.8) (434029.7)

BowlWint−1 -368951.0 -373960.5 -355865.7 -276082.9 -342034.9 -248283.7
(462170.7) (448379.6) (459427.9) (443369.3) (442506.3) (451776.9)

Distance -62052.5∗∗ -62379.8∗∗ -56486.6∗ -59148.7∗ -60412.0∗∗ -58522.0∗

(31220.9) (30441.2) (32607.0) (29997.7) (29340.7) (30238.3)

PerCapPI 278907.1 258284.5 242587.2 164184.5 206456.1 169113.4
(355905.3) (348088.1) (347007.7) (365438.6) (369615.6) (360989.3)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 832 832 832 832 832 832
Within R2 0.745 0.744 0.747 0.747 0.747 0.748
Adjusted R2 0.977 0.977 0.978 0.977 0.977 0.977
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 26

Marginal Revenue Product of Ex-Ante Star College Basketball Players. This
table reports fixed effects estimates of an ex-ante star basketball player’s marginal revenue
product from Model (2.1) over the sample period 2005-2012. Revenues are real 2012 USD at
an annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for the ex-ante star measure using the Rivals.com Five Star Rated Recruits are
reported. The full estimation results are reported in Table 52 in Appendix A.7.

(1)
5 Star

Stars 317810.8∗ (172843.9)

Starst−1 -153329.7 (111547.7)

Starst−2 275291.1∗∗∗ (98460.6)

Winst−1 1000.3 (5259.5)

Winst−2 8061.1 (5549.4)

CoachCarTournt−1 72803.8∗∗∗ (25416.2)

NCAATournt−1 222111.5∗∗ (96680.5)

Champt−1 2081114.0∗∗ (813929.5)

Distance -427.9 (1880.0)

Team Fixed Effects Yes

Year Fixed Effects Yes

Confr. Fixed Effects Yes

N 2256
Within R2 0.641
Adjusted R2 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 27

Marginal Revenue Product of Expected and Unexpected Star College Football
Players. This table reports fixed effects estimates of the marginal revenue products of
expected and unexpected star football players from Model (2.1) over the sample period
2005-2012. Star players are measured according to one of six ex-post performance metrics:
(1) All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees,
and (4) Top 10 in offensive touchdowns or yards. The last two measures (5-6) are Top 10
in offensive touchdowns or yards for Running Backs and Wide Receivers. The difference
between (4,5,6) is how star Quarterbacks are measured with (5) being a Top 10 Quarterback
in pass efficiency rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback
in pass efficiency rating alone. The number of star players on a team are then decomposed
into “expected” and “unexpected” star players. Expected stars are those who are stars as
measured by ex-post performance who were also top Rivals.com recruits (rated as a 6.1 by
Rivals.com). Unexpected stars are those who are stars as measured by ex-post performance
who were not rated as a top Rivals.com recruit. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. The full
estimation results are reported in Table 53 in Appendix A.7.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Expected Stars 2720071.0∗∗∗ 3734700.3∗∗∗ 2168631.6 1554102.7 1465080.5 1117334.7
(922689.4) (1100931.1) (1435615.8) (1100580.6) (985100.7) (1021568.3)

Unexpected Stars 1105101.6∗∗∗ 1744591.8 1710230.3∗∗∗ 598792.6∗∗ 582975.9∗∗ 610990.1∗∗

(371108.2) (1114123.8) (609148.3) (273821.4) (259170.2) (281788.8)

Starst−1 768413.4∗ 1443313.9∗ 2117296.5∗∗∗ 463260.7∗∗ 481265.2∗∗ 631606.8∗∗∗

(410486.8) (793151.1) (619475.5) (206689.1) (197573.7) (222658.0)

Starst−2 562101.1 -272997.7 122207.5 4177.3 130089.2 155496.2
(412305.3) (637024.6) (500808.9) (191223.5) (215417.6) (228011.4)

Winst−1 -32711.4 3947.3 -65568.7 18878.6 10558.2 2806.8
(105049.4) (96470.6) (101804.2) (103449.3) (102256.7) (101503.3)

Winst−2 41883.4 104381.9∗ 85021.8 94179.9 77280.7 74368.0
(56659.1) (61508.8) (61971.4) (65550.6) (67989.5) (65025.5)

CoachCareert−1 2590453.4 1959475.8 2491360.8 1370681.5 1347287.4 1466239.9
(2063239.9) (2062362.3) (2079642.2) (2052005.7) (2057270.6) (2071838.5)

BowlGamet−1 859515.7∗ 702657.6 807492.9∗ 619397.3 639135.4 625602.6
(462473.7) (444804.2) (455981.4) (457832.0) (452720.1) (451378.9)

BowlWint−1 -382303.9 -234871.3 -185765.7 -384303.1 -397112.6 -391574.2
(420180.1) (427313.7) (403261.7) (422752.6) (426789.8) (427719.2)

Distance -25887.2 -26121.9 -25630.8 -21458.9 -21585.4 -22095.6
(16511.1) (17388.0) (17055.4) (17326.9) (17406.1) (17307.2)

PerCapPI 177110.4 246154.4 270217.5 220570.6 215235.2 207043.5
(317008.1) (332009.2) (321752.5) (327971.9) (327810.2) (322773.5)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040

Within R2 0.774 0.775 0.779 0.774 0.774 0.774

Adjusted R2 0.972 0.972 0.972 0.972 0.972 0.972
F-Stat 3.155 1.592 0.0847 0.743 0.799 0.257
P-Value 0.0787 0.210 0.772 0.391 0.373 0.613

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 29

Injured Star Players

This table reports the number of star players that had season ending injuries or suspensions in the data over the
sample periods 2000-2012 and 2003-2012. Injuries or suspensions are deemed to be “season ending” if they caused a
player to miss the last half of the season (or more). Injured or suspended stars are those that were designated stars
in year t and suffered a season ending injury in year t+ 1 (or in the offseason if they took a medical redshirt in year
t+ 1).

Number of Injuries

Football Star Measure 2000-2012 2003-2012

(1) All-Americans 3 3
(2) Heisman Finalists 1 1
(3) Heisman Nominees 2 2
(4) Top 10 TDs or YDs 12 8
(5) Top 10 TDs or YDs or PER 12 8
(6) Top 10 TDs or YDs (Top 10 QB by PER only) 12 8

Number of Injuries

Basketball Star Measure 2000-2012 2003-2012

(1) Award Winners 0 0
(2) All American First Team 0 0
(3) All Americans 0 0
(4) NBA Drafted 0 0
(5) NBA Top 5 Draft Pick 0 0
(6) NBA Top 10 Draft Pick 0 0
(7) Top 10 Points Scorers 2 1
(8) Top 20 Points Scorers 3 1
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Table 30

Marginal Revenue Product of Star College Football Players. This table reports
instrumental variable estimates of a star football player’s marginal revenue product from
Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates
for six different measures of star player are reported: (1) All Americans, (2) Heisman
Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive
touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touchdowns
or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is how
star Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency
rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency
rating alone. The F-statistics and corresponding p-values from the first stage regression are
reported at the bottom of the table. The first stage estimation and full estimation results
are reported in Tables 55 and 56 in Appendix A.7.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 3352048.8∗ 31016231.2 4461936.1 -325897.0 -451761.8 -638610.6
(2029944.2) (63869507.7) (4631794.7) (1761384.2) (1925194.5) (3548987.3)

Starst−1 1145799.4∗∗ 4683159.5 2482640.5∗∗∗ 336907.6 315453.9 374615.7
(449170.6) (7042909.1) (774044.5) (307185.4) (356973.7) (740135.0)

Starst−2 939580.0∗∗ 5721367.3 719271.2 -182067.4 -72906.5 -115251.2
(466323.3) (13159114.6) (1104045.3) (392099.1) (414365.1) (786394.5)

Winst−1 -84306.6 -178687.0 -89140.2 47064.3 43107.9 40095.6
(107624.2) (440717.8) (102550.1) (106177.7) (109552.0) (139836.1)

Winst−2 65369.0 143180.8 82589.2 100274.1 85756.2 85903.6
(66246.3) (154561.8) (64187.3) (67170.6) (68894.9) (74135.2)

CoachCareert−1 3085225.6∗ 4644883.5 2880010.4 1544703.0 1627646.1 1628212.6
(1709751.7) (6796621.5) (1757220.8) (1694773.6) (1751238.6) (1720642.1)

BowlGamet−1 941503.6∗∗ 505151.5 769309.4∗ 554650.7 578689.7 602101.5
(451919.7) (962634.1) (438882.7) (448386.7) (445757.8) (441982.9)

BowlWint−1 -339821.8 116548.9 -107854.0 -366926.5 -352897.6 -328632.0
(344562.8) (1019531.5) (362519.6) (336782.8) (345584.6) (382430.0)

Distance -22733.9 -40357.4 -25887.6∗ -23063.5 -22641.2 -22712.3
(14176.4) (41881.0) (13796.1) (14421.4) (14316.8) (14327.6)

PerCapPI 169103.1 821280.9 339000.2 195442.0 196669.3 195767.3
(231400.6) (1327571.9) (255842.7) (232845.0) (232035.0) (232387.3)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.755 0.0766 0.769 0.766 0.764 0.762
FS F-Stat 14.81 0.273 7.944 9.458 7.346 2.607
FS p-value 0.000129 0.602 0.00494 0.00217 0.00687 0.107
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

159



Table 31

Marginal Revenue Product of Star College Basketball Players. This table reports
instrumental variable estimates of a star basketball player’s marginal revenue product from
Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates
for two different measures of star player are reported: (1) Top 10 Points Scorers and (2)
Top 20 Points Scorers. The F-statistics and corresponding p-values from the first stage
regression are reported at the bottom of the table. The first stage estimation and full
estimation results are reported in Tables 57 and 58 in Appendix A.7.

(1) (2)

PTS 10 PTS 20

Stars -2060650.7 (4712952.1)

Starst−1 -14324.8 (109625.6) -341069.3 (742329.6)

Starst−2 109321.6 (110055.9) -482453.9 (1119310.9)

Winst−1 5621.2 (5236.7) 11295.1 (14340.6)

Winst−2 11545.7∗∗∗ (4428.7) 20542.6 (19901.9)

CoachCarTournt−1 54048.2∗∗∗ (11019.9) 62527.3∗∗∗ (24077.2)

NCAATournt−1 164567.1∗∗ (73133.0) 205250.6 (125761.7)

Champt−1 1802254.2∗∗∗ (322007.8) 1391137.2 (1020610.9)

Distance -1348.6 (1768.0) -1580.6 (2201.1)

Team Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

Confr. Fixed Effects Yes Yes

N 2820 2820

Within R2 0.667 0.533

FS F-Stat . 0.876

FS p-value . 0.349

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 32

Marginal Revenue Product of Gaining Versus Losing a Star College Football
Player. This table reports first-difference estimates of the marginal revenue product asso-
ciated with gaining or losing a star football player from Model (2.6) over the sample period
2003-2012. Revenues are real 2012 USD at an annual frequency. Standard errors are in
parentheses and have been clustered by team. Estimates for six different measures of star
player are reported: (1) All Americans, (2) Heisman Finalists (voted 5th place or above),
(3) Heisman Nominees, and (4) Top 10 in offensive touchdowns or yards. The last two
measures (5-6) are Top 10 in offensive touchdowns or yards for Running Backs and Wide
Receivers. The difference between (4,5,6) is how star Quarterbacks are measured with (5)
being a Top 10 Quarterback in pass efficiency rating (PER) or touchdowns or yards while
(6) is a Top 10 Quarterback in pass efficiency rating alone. F-statistics and corresponding
p-values for the null hypothesis that gaining a star and losing a star are statistically equiv-
alent are reported at the bottom of the table. The full estimation results are reported in
Tables 59 in Appendix A.7.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

∆Starst×GainStars 767259.7∗ 2591514.5∗∗ 1541978.3∗ 764154.7∗∗ 732774.2∗∗ 751373.8∗∗

(409898.9) (1012532.7) (822193.9) (340852.0) (318469.5) (349115.1)

|∆Starst|×LoseStars -971939.3∗ 343956.3 -1333385.4∗ -814791.5∗∗∗ -771677.6∗∗∗ -747472.0∗∗∗

(501617.8) (1150132.4) (802480.9) (265015.4) (252527.0) (281734.2)

∆Starst−1 612304.6∗ 887716.4 2065735.2∗∗∗ 580330.8∗∗∗ 586439.8∗∗∗ 722016.3∗∗∗

(346843.1) (900151.3) (757039.8) (205986.1) (208918.3) (217054.1)

∆Starst−2 213627.3 -364581.0 213379.7 -40878.9 90550.3 227177.4
(354136.4) (755705.8) (548891.4) (172334.5) (189095.0) (207782.0)

Team Dummies Yes Yes Yes Yes Yes Yes

Year Dummies Yes Yes Yes Yes Yes Yes

N 936 936 936 936 936 936
R2 0.145 0.160 0.169 0.168 0.166 0.162
F-Stat 0.0884 4.703 0.0252 0.0142 0.00972 0.0000817
P-Value 0.767 0.0324 0.874 0.905 0.922 0.993
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 34

Marginal Revenue Product of Losing a Star College Football Player Due to In-
jury. This table reports difference-in-difference estimates of the marginal revenue product
associated with losing a star football player due to injury from Model (2.5) over the sample
period 2000-2012. The control group is defined to be teams that had exactly one star player
in year t and exactly one star player in year t+1. The treatment goup in Panel A is defined
to be teams that had exactly one star player in year t that had a season ending injury in
t+ 1 and zero star players in t+ 1. The treatment group in Panel B is defined to be teams
that had exactly one star player in year t that had a season ending injury in t+ 1 and zero
or one star player in t+ 1. Revenues are real 2012 USD at an annual frequency. Standard
errors are in parentheses and have been clustered by team. Estimates for three different
measures of star player are reported: (1) Top 10 in offensive touchdowns or yards, (2-3)
are Top 10 in offensive touchdowns or yards for Running Backs and Wide Receivers. The
difference between (1,2,3) is how star Quarterbacks are measured with (2) being a Top 10
Quarterback in pass efficiency rating (PER) or touchdowns or yards while (3) is a Top 10
Quarterback in pass efficiency rating alone. The number of treatments are reported at the
bottom of each panel in the table.

Panel A

(1) (2) (3)
TDYds PERTDsYds TopPER

Lose Star -1417026.7 -1026420.7 -1029946.9
(2848835.0) (2126490.2) (2023918.2)

Team-Cohort Fixed Effects Yes Yes Yes

Year-Cohort Fixed Effects Yes Yes Yes

N 186 172 160
Treatments 3 3 3
R2 0.993 0.995 0.996

Panel B

(1) (2) (3)
TDYds PERTDsYds TopPER

Lose Star -1091500.4 -650645.3 -793007.5
(3030460.0) (2322512.8) (2033321.2)

Team-Cohort Fixed Effects Yes Yes Yes

Year-Cohort Fixed Effects Yes Yes Yes

N 190 176 166
Treatments 5 5 6
R2 0.993 0.995 0.996
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 35

Marginal Revenue Product of Losing a Star College Basketball Player Due
to Injury. This table reports difference-in-difference estimates of the marginal revenue
product associated with losing a star basketball player due to injury from Model (2.5) over
the sample period 2000-2012. The control group is defined to be teams that had exactly
one star player in year t and exactly one star player in year t + 1. The treatment goup in
Panel A is defined to be teams that had exactly one star player in year t that had a season
ending injury in t + 1 and zero star players in t + 1. The treatment group in Panel B is
defined to be teams that had exactly one star player in year t that had a season ending
injury in t+1 and zero or one star player in t+1. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates
for two different measures of star player are reported: (1) Top 10 Points Scorers and (2)
Top 20 Points Scorers. The number of treatments are reported at the bottom of each panel
in the table.

Panel A

(1) (2)
PTS 10 PTS 20

Lose Star -254948.5∗∗∗ -194976.8
(51918.1) (506034.7)

Team-Cohort Fixed Effects Yes Yes

Year-Cohort Fixed Effects Yes Yes

N 44 94
Treatments 2 2
R2 0.996 0.993

Panel B

(1) (2)
PTS 10 PTS 20

Lose Star -254948.5∗∗∗ -587166.6
(51918.1) (541189.0)

Team-Cohort Fixed Effects Yes Yes

Year-Cohort Fixed Effects Yes Yes

N 44 96
Treatments 2 3
R2 0.996 0.993
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 3

This figure plots the marginal revenue product of star college football players from Model
(2.8) for various percentiles of media exposure, as measured by the number of media articles
mentioning the football team, over the sample period 2003-2012. Revenues are real 2012
USD at an annual frequency. Standard errors bands for the marginal effect are computed
using the delta method at the 5% significance level. Estimates for four different measures
of star player are reported: (1) All Americans, (2) Heisman Finalists (voted 5th place or
above), (3) Heisman Nominees, and (4) Top 10 in offensive touchdowns or yards. The full
estimation results used in these figures are reported in Tables 62 and 63 in Appendix A.7.
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Figure 4

This figure plots the marginal revenue product of star college basketball players from Model
(2.8) for various percentiles of media exposure, as measured by the number of media ar-
ticles mentioning the basketball team, over the sample period 2003-2012. Revenues are
real 2012 USD at an annual frequency. Standard errors bands for the marginal effect are
computed using the delta method at the 5% significance level. Estimates for four differ-
ent measures of star player are reported: (1) Wooden Award Winner, Naismith Award
Winner, or the NCAA Tournament’s Most Outstanding Player, (2) All American First
Team, (3) All American First or Second Team, and (4) NBA Drafted Players. The full
estimation results used in these figures are reported in Tables 68 and 69 in Appendix A.7.
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Figure 5

This figure plots the marginal revenue product of star college football Quarterbacks and
Running Backs from Model (2.9) for various percentiles of media exposure, as mea-
sured by the number of media articles mentioning the football team, over the sam-
ple period 2003-2012. Revenues are real 2012 USD at an annual frequency. Stan-
dard errors bands for the marginal effect are computed using the delta method at
the 5% significance level. Estimates for four different measures of star player are re-
ported: (1) All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heis-
man Nominees, and (4) Top 10 in offensive touchdowns or yards. The full estimation
results used in these figures are reported in Tables 64, 65 and 67 in the Appendix A.7.
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Figure 6

This figure plots the marginal revenue product of star college football Running Backs
and Wide Receivers from Model (2.9) for various percentiles of media exposure, as mea-
sured by the number of media articles mentioning the football team, over the sam-
ple period 2003-2012. Revenues are real 2012 USD at an annual frequency. Stan-
dard errors bands for the marginal effect are computed using the delta method at
the 5% significance level. Estimates for four different measures of star player are re-
ported: (1) All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heis-
man Nominees, and (4) Top 10 in offensive touchdowns or yards. The full estima-
tion results used in these figures are reported in Tables 64 and 66 in Appendix A.7.
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APPENDIX

A.1 Derivation of the Stochastic Discount Factor

A.1.1 Solving the Representative Agent’s Problem

We derive the general form for the stochastic discount factor. Suppose investors have

preferences as in Epstein and Zin (1989) where the preference parameters γt and ψt are

allowed to vary over time. Let θt = 1−γt
1− 1

ψt

. Then the investor in this economy solves the

following portfolio allocation problem

Vt(Wt) = max
{Ct,ht}

[
C

1−γt
θt

t + δ
(
Et

[
Vt+1(Wt+1)1−γt]) 1

θt

] θt
1−γt

(A.1)

s.t.

Ct + P ′tht+1 = d′tht + P ′tht ≡Wt (A.2)

where Pt refers to a n×1 vector of asset prices per share at date t that offers a real dividend

stream of dt+j , an n×1 vector with j = (1, . . . ,∞), and ht is an n×1 vector of asset holdings

at the end of period t− 1, which includes the risk-free asset. We can rewrite equation A.2

as

(Wt − Ct)Ra,t+1 = Wt+1 (A.3)

where Wt − Ct = P ′tht+1 is the amount of capital invested in the asset market and

Ra,t+1 =
P ′t+1ht+1 + d′t+1ht+1

P ′tht+1
=

Wt+1

Wt − Ct
(A.4)

is the return on the agent’s asset portfolio, which in this economy is just the gross return
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on the asset that pays aggregate consumption as dividend. Given that the value function is

homogeneous of degree one in Wt and the linearity of Wt+1 in (Wt, Ct), we conjecture the

solution Vt = φtWt. Using this conjecture and plugging (A.3) into Equation (A.1) gives

φtWt = max
{Ct,ht}

[
C

1−γt
θt

t + δ(Wt − Ct)
1−γt
θt

(
Et

[
(φt+1Ra,t+1)1−γt]) 1

θt

] θt
1−γt

.

We can decompose the investor’s problem into two parts

φtWt = max
Ct∈[0,Wt]

[
C

1−γt
θt

t + δ [(Wt − Ct)µ∗]
1−γt
θt

] θt
1−γt

(A.5)

µ∗ = max
ht∈Rn+,htι′=1

(
Et

[
(φt+1htR

′
t+1)1−γt]) 1

1−γt (A.6)

Where ht and Rt+1 are 1 × N vectors of portfolio weights and returns with ι′ a N × 1

column vector of ones. Equation (A.5) is the investor’s consumption choice problem, while

Equation (A.6) is the investor’s portfolio choice problem. We will first solve the investor’s

consumption problem for an arbitrary µ∗ and then use the result to find the solution to the

portfolio choice problem. Since Equation (A.5) is homogenous of degree one, we conjecture

the following solution to the optimal consumption policy

C∗t = BtWt

where Bt is the consumption wealth ratio. Using this conjecture in Equation (A.5) gives

φ
1−γt
θt

t = max
Bt∈[0,1]

[
B

1−γt
θt

t + δ [(1−Bt)µ∗]
1−γt
θt

]
(A.7)

The first order condition of this equation yields

B
1−γt
θt
−1

t = δ [(1−Bt)µ∗]
1−γt
θt
−1
µ∗ (A.8)
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Using equations (A.7) and (A.8) we obtain

φt = B
1

1−ψt
t

hence

φt+1 = B
1

1−ψt+1

t+1 (A.9)

which is an invertible function of φt+1, which we can use to solve the investor’s portfolio

choice problem by plugging Equation (A.9) into Equation (A.6) to get

µ∗ =

(
Et

[(
B

1
1−ψt+1

t+1 Ra,t+1

)1−γt
]) 1

1−γt

where Ra,t+1 = h∗tR
′
t+1 is the gross return of the optimal portfolio. We can then use this

with Equation (A.8) that comes from the optimal consumption decision to get

(
Bt

1−Bt

)− 1
ψt

= δ

(
Et

[(
B

1
1−ψt+1

t+1 Ra,t+1

)1−γt
]) 1

θt

Rearranging this expression gives the following Euler equation

1 = δθtEt

( Bt
1−Bt

) θt
ψt

B

1−γt
1−ψt+1

t+1 R1−γt
a,t+1

 (A.10)

From the budget constraint (A.3) and the fact that Ct = BtWt, we know

Bt
1−Bt

=
Ct
Wt

Wt

(Wt − Ct)
=

Ct
Wt+1

Ra,t+1 =
Ct
Ct+1

Ct+1

Wt+1
Ra,t+1 = Bt+1

Ra,t+1

Gt+1
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plugging this into Equation (A.10) and rearranging gives

1 = δθtEt

(Bt+1
Ra,t+1

Gt+1

) θt
ψt

B

1−γt
1−ψt+1

t+1 R1−γt
a,t+1


1 = δθtEt

[
G
− θt
ψt

t+1 B

θt
ψt

+
1−γt

1−ψt+1

t+1 R
θt
ψt

+1−γt
a,t+1

]
(A.11)

Let ξt,t+1 ≡ θt − 1−γt
1− 1

ψt+1

and notice that

θt
ψt

+ 1− γt =
1− γt
ψt − 1

+ (1− γt) =
(1− γt)(1 + ψt − 1)

ψt − 1
=

(1− γt)ψt
ψt − 1

= θt

and after a few algebraic manipulations, it can be shown that

θt
ψt

+
1− γt

1− ψt+1
= θt −

1− γt
1− 1

ψt+1

= ξt,t+1

So the Equation (A.11) becomes

Et

[
δθtG

− θt
ψt

t+1 B
ξt,t+1

t+1 Rθta,t+1

]
= 1

Factoring out a Ra,t+1 then gives

Et

[
δθtG

− θt
ψt

t+1 B
ξt,t+1

t+1 Rθt−1
a,t+1Ra,t+1

]
= 1

Hence, the general form for the stochastic discount factor is given by

Mt+1 = δθtG
− θt
ψt

t+1 B
ξt,t+1

t+1 R
−(1−θt)
a,t+1 (A.12)

Notice that when time variation in the preference parameters is shut down so that γt = γ

and ψt = ψ for all t we have ξt,t+1 = 0 and this stochastic discount factor collapses to the

usual one under standard Epstein and Zin (1989) preferences.
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A.1.2 Equilibrium Stochastic Discount Factor and Pricing Equations

Note that Equation (A.12) is derived only from information about the agent’s preferences

and budget constraint. Given the assumed Lucas endowment economy, we know there is a

single non-durable consumption good Ct with total supply given by the process C = {Ct}.

Equity in this economy is simply a claim to the endowment process and is the only asset

held in non-zero net supply. Let this asset be the first element in vector P ′t above and nor-

malize the number of shares in this economy to 1. Hence, the equilibrium in this economy

is the price process P = {Pt} and consumption allocation C such that the goods market

and asset market clears. Specifically, the P such that Ct = d′te1 and h′t = e1 for t ≥ 1 where

e1 = (1, 0, . . . , 0)′.

Let Pk,t and Dk,t be the price and dividend (respectively) of asset k. Define the dividend

growth rate of asset k as λk,t+1 =
Dk,t+1

Dk,t
. Lastly, let Zk,t =

Pk,t
Dk,t

be the price dividend

ratio of asset k. Notice that in the Lucas endowment economy, in equilibrium the budget

constraint (A.2) reduces to Wt = Ct + Pt, hence

Bt =
Ct
Wt

=
Ct

Ct + Pt
=

1

1 + Pt
Ct

=
1

1 + Za,t
(A.13)

The gross return of asset k, is given by

Rk,t+1 =
Pk,t+1 +Dk,t+1

Pk,t
=
Zk,t+1 + 1

Zk,t
λk,t+1. (A.14)

We can now use Equations (A.13) and (A.14) along with Equation (A.12) to derive an

expression for the SDF in equilibrium:

Mt+1 = δθtZ1−θt
a,t G−γtt+1(Za,t+1 + 1)ζt,t+1−1 (A.15)

where ζt,t+1 = 1−γt
1− 1

ψt+1

. Given this expression for the SDF, in equilibrium, we have the
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following Euler equation

Et [Mt+1Rk,t+1] = 1 (A.16)

which is the pricing equation for any arbitrary asset k with gross return Rk,t+1. We can

now derive expressions for the price-dividend ratio and excess returns for an arbitrary asset

k as well as the risk-free rate in terms of observables. Substituting equations (A.14) and

(A.15) into Equation (A.16), and keeping in mind that ζt,t+1 is a non-linear function of

expressions not in the information set at time t, gives

Zk,t = δθtZ1−θt
a,t Et

[
G−γtt+1(Za,t+1 + 1)ζt,t+1−1(Zk,t+1 + 1)λk,t+1

]
(A.17)

which gives us an expression for the price-dividend ratio of any arbitrary asset k. Using the

Euler equation along with Equation (A.14) and the formula for covariance, it can be shown

that the conditional risk-free gross return satisfies

Et[Rf,t+1] =
1

Et[Mt+1]
(A.18)

and the conditional excess return on asset k satisfies the following expression

Et[Rk,t+1 −Rf,t+1] = Z−1
k,tEt [(Zk,t+1 + 1)λk,t+1]− (Et[Mt+1])−1 (A.19)

Equations (A.17)-(A.19) allow us to compute price-dividend ratios, as well as moments for

the risk-free rate and equity premium in terms of observables.

A.2 Equivalent Representation of the Equilibrium SDF

This appendix shows how the equilibrium stochastic discount factor implied by the model

can be equivalently expressed as a function of prices multiplied by the usual stochastic
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discount factor under standard Epstein and Zin (1989) preferences where the parameters

are allow to be time varying. Recall the definitions of

θt =
1− γt
1− 1

ψt

ζt,t+j =
1− γt

1− 1
ψt+1

.

The equilibrium stochastic discount factor derived in Equation (A.15) can be written as

Mt+1 = δθtZ1−θt
a,t G−γtt+1(Za,t+1 + 1)ζt,t+1−1

= δθtZ1−θt
a,t G−γtt+1(Za,t+1 + 1)θt−1+ζt,t+1−θt

= δθtZ1−θt
a,t G−γtt+1(Za,t+1 + 1)θt−1(Za,t+1 + 1)ζt,t+1−θt

= δθtG−γtt+1

(
Za,t+1 + 1

Za,t

)θt−1

(Za,t+1 + 1)ζt,t+1−θt

= δθtG1−γt−θt
t+1

(
Za,t+1 + 1

Za,t
Gt+1

)θt−1

(Za,t+1 + 1)ζt,t+1−θt

= δθtG1−γt−θt
t+1 Rθt−1

a,t+1(Za,t+1 + 1)ζt,t+1−θt

= δθtG
(1−γt)(1− 1

1− 1
ψt

)

t+1 Rθt−1
a,t+1(Za,t+1 + 1)ζt,t+1−θt

= δθtG
(1−γt)(

− 1
ψt

1− 1
ψt

)

t+1 Rθt−1
a,t+1(Za,t+1 + 1)ζt,t+1−θt

= δθtG
− θt
ψt

t+1 R
θt−1
a,t+1(Za,t+1 + 1)ζt,t+1−θt

= M ez
t+1(γt, ψt) · (Za,t+1 + 1)ζt,t+1−θt

Where M ez
t+1(γt, ψt) is the equilibrium stochastic discount factor under the standard Epstein

and Zin (1989) preferences where the parameters γ and ψ are allowed to vary over time.
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A.3 Data

In this appendix we give a detailed description of the data used in calibrating the model.

A.3.1 Macroeconomy Variables

Real Consumption Growth

The data for real per capita chained (2009) consumption for 1929-2013 comes from the

Bureau of Economic Analysis, NIPA Table 7.1. The real consumption per capita level is is

computed by adding real expenditures on non-durable goods and services (Table 7.1, lines

16 and 17). All level series are converted to logs and first differences are taken to compute

growth rates.

Inflation Rate

The annual CPI for all urban consumers (NSA) for 1925-2013 is taken from the Bureau of

Labor Statistics. Inflation rates are calculated by taking log differences of the price indices.

A.3.2 Financial Market Variables

Interest Rates

The annual risk free rate from 1920-2013 is taken from the Global Financial Database

at https://www.globalfinancialdata.com/platform/Welcome.aspx. Specifically, we use the

yield on 90 day U.S. Government Treasury Bills with ticker symbol ITUSA3D. These nom-

inal rates are converted to real risk free rates by subtracting the inflation rate as calculated

above.
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Aggregate Stock Returns, Dividends and Price-Dividend Ratio

Value-weighted returns on the S&P 500 stock index from January 1926-December 2013 not

including dividends (VWRETX) and including dividends (VWRETD) are obtained from

the monthly CRSP update. The series VWRETX and VWRETD are used to compute

annual market returns, price-dividend ratios and dividend yields as follows.

Given the monthly data series

(1 + VWRETXt) =
Pt+1

Pt

(1 + VWRETDt) =
Pt+1 +Dt+1

Pt

We initialize P0 = 1 and recursively update Pt = Pt−1(1 + VWRETXt) to construct the

market price series. To aggregate up to annual data, for year t we take the sum of dividend

levels from January until December over the corresponding year

Dt =
11∑
s=0

Dt−s for t > s

Then the annual market return for year t is just the price as of December 31st plus the

annual dividend, divided by the price level as of December 31st of the previous year. That

is

Rm,t =
Pt +Dt

Pt−12

Similarly, dividend growth rates and price-dividend ratios are calculated by

Gdt =
Dt

Dt−1
− 1

PDt =
Pt
Dt
.
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A.4 Numerical Solution Method

In this appendix, we outline the steps to implement and exactly solve the model numeri-

cally. Given the discrete state space S = {s1, s2, s3, s4, s5}

• Obtain values for the consumption and dividend growth parameters

{µC , σ, ρ, µD, φD}

from the sample moments in Table 1 of the data. Then set values for consumption

and dividend growth states i ∈ S according to

gh = µC + σ

gl = µC − σ

G(s1) = gh

G(i) = gl for i ∈ {s2, s3, s4, s5}

λD(i) = µD + φD(G(i)− µC) for i ∈ S

• Given values for

{γ0, γelev, ψ0, ψdepr}
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set the values for risk aversion and the EIS parameter in states i ∈ S according to

γ(i) = γ0 for i ∈ {s1, s2, s4}

γ(i) = γelev for i ∈ {s3, s5}

θ(i) =
1− γ(i)

1− 1
ψ(i)

for i ∈ S

ζ(i, j) =
1− γ(i)

1− 1
ψ(j)

for i, j ∈ S

• Choose a value for belev, which is the conditional probability of transitioning from a

high to low growth state where risk aversion is elevated. Also, choose a value for and

bdepr, which is the conditional probability of transitioning from a high to low growth

state where the EIS parameter is depressed. Use these values and ρ to calculate the

transition matrix

Π =



1+ρ
2 [1− (b(1− d) + d)]

(
1−ρ

2

)
b(1− d)

(
1−ρ

2

)
d(1− b)

(
1−ρ

2

)
bd
(

1−ρ
2

)

1−ρ
2 [1− (b(1− d) + d)]

(
1+ρ

2

)
b(1− d)

(
1+ρ

2

)
d(1− b)

(
1+ρ

2

)
bd
(

1+ρ
2

)

1−ρ
2 0 (1− d)

(
1+ρ

2

)
0 d

(
1+ρ

2

)

1−ρ
2 0 0 (1− b)

(
1+ρ

2

)
b
(

1+ρ
2

)

1−ρ
2 0 0 0

(
1+ρ

2

)


and steady state probabilities
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π =



1
2

(1−b)(1−d)(1−ρ)
2[(1−ρ)+(1+ρ)(b(1−d)+d)]

b(1−d)(1−ρ)
2[1+d−ρ(1−d)][(1−ρ)+(1+ρ)(b(1−d)+d)]

d(1−b)(1−ρ)
2[1+b−ρ(1−b)][(1−ρ)+(1+ρ)(b(1−d)+d)]

d
1+d−ρ(1−d) −

d(1−b)(1−ρ)
2[1+b−ρ(1−b)][(1−ρ)+(1+ρ)(b(1−d)+d)]



where b = belev and d = bdepr are written to save space.

• Solve the following system of nonlinear equations for the price-dividend ratio associ-

ated with the asset that pays consumption as dividend given by Equation A.17

Za(i) = δ

∑
j

Π(i, j)G(j)1−γ(i)(Za(j) + 1)ζ(i,j)

 1
θ(i)

i ∈ S, (A.20)

The values of {Za(i)}i∈S can be computed numerically from these equations via fixed-

point methods. However, care must be taken in numerical computations to effectively

check a proposed solution {Za(i)∗}i∈S since the above expression involves the sum of

potentially numerically large quantities (with potentially large exponents) that may

encounter the limits of machine precision. Note that the term inside the brackets can

be expressed equivalently as

∑
j

Π(i, j)G(j)1−γ(i)(Za(j) + 1)ζ(i,j) =
∑
j

Π(i, j)e(1−γ(i)) lnG(j)+ζ(i,j) ln(Za(j)+1).
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Let

Zmax(i) := max
j
{(1− γ(i)) lnG(j) + ζ(i, j) ln(Za(j) + 1)},

such that

Za(i) = δe
Zmax(i)
θ(i)

∑
j

Π(i, j)e[(1−γ(i)) lnG(j)+ζ(i,j) ln(Za(j)+1)−Zmax(i)]

 1
θ(i)

.

Then, the largest exponent inside the sum is always 1, which ensures that the sum can

always be stably computed for any candidate solution. Extremely small components

of the sum (those with small exponents) can potentially reach minimum machine

precision and become effectively numerically zero. However, the potential associated

approximation error will then be below any positive numerical tolerance that is se-

lected for evaluating convergence of a given fixed-point method. Then exponentiate

to derive the final result.

• Compute the discrete state SDF

M(i, j) = δθ(i)G(j)−γ(i)

[
Za(j) + 1

Za(i)

]θ(i)−1

i, j ∈ S, (A.21)

and for the same reasons as given above, to compute stably, we make the following

transformation and compute the exponent in the equivalent expression,

M(i, j) = e[θ(i) ln δ+(1−θ(i)) lnZa(i)−γ(i) lnG(j)+(ζ(i,j)−1) ln(Za(j)+1)],

and then exponentiate to compute the final result.

• Use equations (A.17) and (A.21) to solve the following system of linear equations

for the price-dividend ratio associated with the levered consumption asset (market

portfolio)

Zm(i) =
∑
j

Π(i, j)M(i, j)(Zm(j) + 1)λm(j) i ∈ S,
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• Compute the conditional gross return on the risk free asset

Rf (i) =

∑
j

Π(i, j)M(i, j)

−1

i ∈ S,

and then compute the conditional gross return on the market porfolio

Rm(i) = [Zm(i)]−1
∑
j

Π(i, j)(Zm(j) + 1)λm(j) i ∈ S,

From the equations computed in this section,all model implied moments reported in the

paper are straightforward to compute.

A.5 Procyclical Elasticity of Intertemporal Substitution

In this appendix, we formally prove the following Lemma

Lemma. If the discrete state, joint Markov process of st = (Gt, γt, ψt) is restricted over

states S = {s1, s2, s3, s4, s5} so that preferences do not revert from irregular (γelev or ψdepr)

to regular (γ0 or ψ0) states until high consumption growth is realized, then pro-cyclicality

of the EIS parameter ψt implies that the EISt,t+1

EISt,t+1 =
1 +Mt+1Gt+1

1
ψt

(1 +Mt+1Gt+1) +
(

1
ψt+1
− 1

ψt

) (A.22)

is pro-cyclical where Mt+1 is the stochastic discount factor and Gt+1 = Ct+1

Ct
is aggregate

consumption growth.

Proof. Assume that the EIS parameter ψt is pro-cyclical in the sense that ψt tends to be

large when Gt > Gt−1 and tends to be small when Gt < Gt−1. Let st = (Gt, γt, ψt) be the

joint state of consumption growth Gt, risk aversion γt and the EIS parameter ψt at time t.

Denote the set of all potential realizations of state st by S̃ so that the pair {s̃t−1, s̃t} defines
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a particular transition path between two arbitrary adjacent periods of the joint Markov

process from time t− 1 to t. Define the sets of transition paths

St = {{st−1, st} : ψt−1 = ψt, ∀t}

∆t = {{st−1, st} : ψt−1 6= ψt, ∀t}

Where St is the set of transition paths at time t such that the EIS parameter is constant

and ∆t is that set of transition paths at time t such that the EIS parameter is time varying.

Furthermore, define the following subsets of St

Sut = {{st−1, st} : ψt−1 = ψt and Gt−1 < Gt, ∀t}

Smt = {{st−1, st} : ψt−1 = ψt and Gt−1 = Gt, ∀t}

Sdt = {{st−1, st} : ψt−1 = ψt and Gt−1 > Gt, ∀t}

and the following subsets of ∆t

∆u
t = {{st−1, st} : ψt−1 6= ψt and Gt−1 < Gt, ∀t}

∆m
t = {{st−1, st} : ψt−1 6= ψt and Gt−1 = Gt, ∀t}

∆d
t = {{st−1, st} : ψt−1 6= ψt and Gt−1 > Gt, ∀t}

Let the notation {x̃, ỹ} ∈ A → {z, w} ∈ B denote the realization of states {x̃, ỹ} ∈ A

transitioning to any state {z, w} ∈ B. Given the model setup, there are sixteen cases to

check to ensure that all possible transitions paths for the state variable are considered:
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Case 1: {s̃t−1, s̃t} ∈ St → {st, st+1} ∈ St+1

In this case, the EIS parameter never changes, ψt−1 = ψt = ψt+1 = ψ and Equation (A.22)

gives

EISt−1,t = EISt,t+1 = ψ

So the cyclicality of the EIS is moot.

Case 2: {s̃t−1, s̃t} ∈ St → {st, st+1} ∈ ∆d
t+1

Consider any {s̃t−1, s̃t} ∈ St. So the EIS at time t− 1 is

EISt−1,t =
1 +Mt−1,tGt

1
ψt−1

(1 +Mt−1,tGt) +
(

1
ψt
− 1

ψt−1

)
However, since the EIS parameter did not change ψt−1 = ψt we know EISt−1,t = ψt. Now,

suppose at time t that we transition to any {st, st+1} ∈ ∆d
t+1. Given the equation for the

EIS

EISt,t+1 =
1 +Mt,t+1Gt+1

1
ψt

(1 +Mt,t+1Gt+1) +
(

1
ψt+1
− 1

ψt

)
but since Gt > Gt+1 and by the pro-cyclicality of ψt it follows that ψt+1 < ψt and hence(

1
ψt+1
− 1

ψt

)
> 0 so that

EISt,t+1 =
1 +Mt,t+1Gt+1

1
ψt

(1 +Mt,t+1Gt+1) +
(

1
ψt+1
− 1

ψt

)
EISt,t+1

EISt−1,t
=

1 +Mt,t+1Gt+1

(1 +Mt,t+1Gt+1) + EISt−1,t

(
1

ψt+1
− 1

ψt

)
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since EISt−1,t > 0 this implies

EISt,t+1

EISt−1,t
< 1

EISt,t+1 < EISt−1,t

Therefore the pro-cyclicality of the EIS parameter implies pro-cyclical EIS.

Case 3: {s̃t−1, s̃t} ∈ St → {st, st+1} ∈ ∆u
t+1

Consider any {s̃t−1, s̃t} ∈ St. So the EIS at time t − 1 is again, just EISt−1,t = ψt. Now,

suppose at time t that we transition to any {st, st+1} ∈ ∆u
t+1 so that Gt < Gt+1, which by

the pro-cyclicality of ψt implies ψt+1 > ψt and hence
(

1
ψt+1
− 1

ψt

)
< 0. Notice that since

EIS is always positive that

EISt,t+1

EISt−1,t
> 0

and since Mt,t+1 ≥ 0 and Gt+1 ≥ 0 (the gross consumption growth rate) we have

0 <
1 +Mt,t+1Gt+1

(1 +Mt,t+1Gt+1) + EISt−1,t

(
1

ψt+1
− 1

ψt

)
but since

(
1

ψt+1
− 1

ψt

)
< 0 and EISt−1,t > 0 we know

(1 +Mt,t+1Gt+1) + EISt−1,t

(
1

ψt+1
− 1

ψt

)
< (1 +Mt,t+1Gt+1)

which implies

EISt,t+1

EISt−1,t
=

1 +Mt,t+1Gt+1

(1 +Mt,t+1Gt+1) + EISt−1,t

(
1

ψt+1
− 1

ψt

) > 1
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hence

EISt,t+1

EISt−1,t
> 1

EISt,t+1 > EISt−1,t

Therefore the pro-cyclical nature of the EIS parameter implies pro-cyclical EIS.

Case 4: {s̃t−1, s̃t} ∈ St → {st, st+1} ∈ ∆m
t+1

Under the assumption restricting the joint Markov process, the set ∆m
t+1 = ∅. Therefore,

these transition paths are irrelevant.

Case 5: {s̃t−1, s̃t} ∈ ∆d
t → {st, st+1} ∈ St+1

Consider any {s̃t−1, s̃t} ∈ ∆d
t and suppose at time t that we transition to any {st, st+1} ∈

St+1. So we know EISt,t+1 = ψt and Gt−1 > Gt which implies ψt−1 > ψt so that

EISt−1,t =
1 +Mt−1,tGt

1
ψt−1

(1 +Mt−1,tGt) +
(

1
ψt
− 1

ψt−1

)
=

1 +Mt−1,tGt
1

ψt−1
(Mt−1,tGt) + 1

ψt

>
1 +Mt−1,tGt

1
ψt

(Mt−1,tGt) + 1
ψt

= ψt = EISt,t+1

EISt−1,t > EISt,t+1

Therefore the pro-cyclical nature of the EIS parameter implies pro-cyclical EIS.
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Case 6: {s̃t−1, s̃t} ∈ ∆u
t → {st, st+1} ∈ St+1

Consider any {s̃t−1, s̃t} ∈ ∆u
t and suppose at time t that we transition to any {st, st+1} ∈

St+1. So we know EISt,t+1 = ψt and Gt−1 < Gt which implies ψt−1 < ψt so that

EISt−1,t =
1 +Mt−1,tGt

1
ψt−1

(1 +Mt−1,tGt) +
(

1
ψt
− 1

ψt−1

)
=

1 +Mt−1,tGt
1

ψt−1
(Mt−1,tGt) + 1

ψt

<
1 +Mt−1,tGt

1
ψt

(Mt−1,tGt) + 1
ψt

= ψt = EISt,t+1

EISt−1,t < EISt,t+1

Therefore the pro-cyclical nature of the EIS parameter implies pro-cyclical EIS.

Case 7: {s̃t−1, s̃t} ∈ ∆m
t → {st, st+1} ∈ St+1

Under the assumption restricting the joint Markov process, the set ∆m
t = ∅. Therefore,

these transition paths are irrelevant.

Case 8: {s̃t−1, s̃t} ∈ ∆u
t → {st, st+1} ∈ ∆u

t+1

Consider any {s̃t−1, s̃t} ∈ ∆u
t and suppose at time t that we transition to any {st, st+1} ∈

∆u
t+1. So we know Gt−1 < Gt and Gt < Gt+1 which by the cyclicality of the EIS parameter

implies ψt−1 < ψt and ψt < ψt+1. It follows that

EISt,t+1 =
1 +Mt,t+1Gt+1

1
ψt

(1 +Mt,t+1Gt+1) +
(

1
ψt+1
− 1

ψt

) > 1 +Mt,t+1Gt+1
1
ψt

(1 +Mt−1,tGt)
= ψt
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Now consider rewriting EISt−1,t as follows

EISt−1,t =
1 +Mt−1,tGt

1
ψt−1

(1 +Mt−1,tGt) +
(

1
ψt
− 1

ψt−1

) =
1 +Mt−1,tGt

1
ψt−1

(Mt−1,tGt) + 1
ψt

=
ψt−1ψt (1 +Mt−1,tGt)

ψt (Mt−1,tGt) + ψt−1
<

ψt−1ψt (1 +Mt−1,tGt)

ψt−1 (Mt−1,tGt) + ψt−1

=
ψt−1ψt (1 +Mt−1,tGt)

ψt−1 (1 +Mt−1,tGt)
= ψt

Where the inequality follows from the fact that ψt−1 < ψt. Since EISt−1,t < ψt it follows

from above that EISt−1,t < EISt,t+1. Hence the pro-cyclical nature of the EIS parameter

implies pro-cyclical EIS.

Case 9: {s̃t−1, s̃t} ∈ ∆u
t → {st, st+1} ∈ ∆m

t+1

Under the assumption restricting the joint Markov process, the set ∆m
t+1 = ∅. Therefore,

these transition paths are irrelevant.

Case 10: {s̃t−1, s̃t} ∈ ∆u
t → {st, st+1} ∈ ∆d

t+1

Consider any {s̃t−1, s̃t} ∈ ∆u
t and suppose at time t that we transition to any {st, st+1} ∈

∆d
t+1. So we know Gt−1 < gt and gt > gt+1 which by the cyclicality of the EIS parameter

implies ψt−1 < ψt and ψt > ψt+1. It follows that

EISt−1,t =
1 +Mt−1,tGt

1
ψt−1

(1 +Mt−1,tGt) +
(

1
ψt
− 1

ψt−1

) < 1 +Mt−1,tGt
1

ψt−1
(1 +Mt−1,tGt)

= ψt−1

EISt,t+1 =
1 +Mt,t+1Gt+1

1
ψt

(1 +Mt,t+1Gt+1) +
(

1
ψt+1
− 1

ψt

) < 1 +Mt,t+1Gt+1
1
ψt

(1 +Mt−1,tGt)
= ψt

which implies

EISt−1,t

EISt,t+1
<
ψt−1

ψt
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and since ψt−1 < ψt it follows that

EISt−1,t

EISt,t+1
<
ψt−1

ψt
< 1

EISt−1,t < EISt,t+1

Therefore the pro-cyclical nature of the EIS parameter implies pro-cyclical EIS.

Case 11: {s̃t−1, s̃t} ∈ ∆m
t → {st, st+1} ∈ ∆m

t+1

Under the assumption restricting the joint Markov process, the sets ∆m
t+1 = ∅ and ∆m

t = ∅.

Therefore, these transition paths are irrelevant.

Case 12: {s̃t−1, s̃t} ∈ ∆m
t → {st, st+1} ∈ ∆u

t+1

Under the assumption restricting the joint Markov process, the set ∆m
t = ∅. Therefore,

these transition paths are irrelevant.

Case 13: {s̃t−1, s̃t} ∈ ∆m
t → {st, st+1} ∈ ∆d

t+1

Under the assumption restricting the joint Markov process, the set ∆m
t = ∅. Therefore,

these transition paths are irrelevant.

Case 14: {s̃t−1, s̃t} ∈ ∆d
t → {st, st+1} ∈ ∆d

t+1

Consider any {s̃t−1, s̃t} ∈ ∆d
t and suppose at time t that we transition to any {st, st+1} ∈

∆d
t+1. So we know Gt−1 > Gt and Gt > Gt+1 which by the cyclicality of the EIS parameter
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implies ψt−1 > ψt and ψt > ψt+1. It follows that

EISt,t+1 =
1 +Mt,t+1Gt+1

1
ψt

(1 +Mt,t+1Gt+1) +
(

1
ψt+1
− 1

ψt

) < 1 +Mt,t+1Gt+1
1
ψt

(1 +Mt−1,tGt)
= ψt

Now consider rewriting EISt−1,t as follows

EISt−1,t =
1 +Mt−1,tGt

1
ψt−1

(1 +Mt−1,tGt) +
(

1
ψt
− 1

ψt−1

) =
1 +Mt−1,tGt

1
ψt−1

(Mt−1,tGt) + 1
ψt

=
ψt−1ψt (1 +Mt−1,tGt)

ψt (Mt−1,tGt) + ψt−1
>

ψt−1ψt (1 +Mt−1,tGt)

ψt−1 (Mt−1,tGt) + ψt−1

=
ψt−1ψt (1 +Mt−1,tGt)

ψt−1 (1 +Mt−1,tGt)
= ψt

Where the inequality follows from the fact that ψt−1 > ψt. Since EISt−1,t > ψt it follows

from above that EISt,t+1 < EISt−1,t. Hence the pro-cyclical nature of the EIS parameter

implies pro-cyclical EIS.

Case 15: {s̃t−1, s̃t} ∈ ∆d
t → {st, st+1} ∈ ∆m

t+1

Under the assumption restricting the joint Markov process, the set ∆m
t+1 = ∅. Therefore,

these transition paths are irrelevant.

Case 16: {s̃t−1, s̃t} ∈ ∆d
t → {st, st+1} ∈ ∆u

t+1

Consider any {s̃t−1, s̃t} ∈ ∆d
t and suppose at time t that we transition to any {st, st+1} ∈

∆u
t+1. So we know Gt−1 > Gt and Gt < Gt+1 which by the cyclicality of the EIS parameter

191



implies ψt−1 > ψt and ψt < ψt+1. It follows that

EISt−1,t =
1 +Mt−1,tGt

1
ψt−1

(1 +Mt−1,tGt) +
(

1
ψt
− 1

ψt−1

) > 1 +Mt−1,tGt
1

ψt−1
(1 +Mt−1,tGt)

= ψt−1

EISt,t+1 =
1 +Mt,t+1Gt+1

1
ψt

(1 +Mt,t+1Gt+1) +
(

1
ψt+1
− 1

ψt

) > 1 +Mt,t+1Gt+1
1
ψt

(1 +Mt−1,tGt)
= ψt

which implies

EISt−1,t

EISt,t+1
>
ψt−1

ψt

and since ψt−1 > ψt it follows that

EISt−1,t

EISt,t+1
>
ψt−1

ψt
> 1

EISt−1,t > EISt,t+1

Hence the pro-cyclical nature of the EIS parameter implies pro-cyclical EIS. We have shown

that this holds for every possible transition path for the state variable st, therefore pro-

cyclicality of the EIS parameter ψt implies the EISt,t+1 is pro-cyclical.

A.6 Full Predictability Results
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Table 37

Full Predictability Results - Alternative Calibrations

This table reports predictability of excess returns, consumption and dividend growth over one, three and five year horizons at an annual frequency for the calibrations in Table 1. The data
sample is 1930-2013 and all coefficients and R-squared eestimates within each panel are jointly estimated using the GMM method of Hansen and Singleton (1982) and 5 Newey West lags for
heteroskedasticity and autocorrelation consistent standard errors. The coefficient estimates are in units of basis points (e.g. β = 0.0001 is 0.01% or 1 basis point). Calibrations (1-3) are special
cases of the baseline calibration, shutting down time variation in risk aversion (b = 0), the EIS parameter (d = 0) or both (b = 0 and d = 0) and are otherwise identical to the baseline calibration.
Calibration (4) with ρC = 0 is an alternative calibration from the baseline that specifies consumption growth as an iid process. Calibrations (1b) and (2b) are alternative calibrations from the
baseline that best fit two special cases of the model when time variation in risk aversion (b = 0) or the EIS parameter (d = 0) is shut down.

Baseline Special Cases Best Fit

(1) (2) (3) (4) (1b) (2b)
b = 0

Data b = 0 d = 0 d = 0 ρC = 0 b = 0 d = 0

Time Varying Risk Aversion N Y N Y N Y
Time Varying EIS Y N N Y Y N

β̂ 95% CI R̂2 95% CI β R2 β R2 β R2 β R2 β R2 β R2

ΠJ
j=1(1 + Rm,t+j − Rf,t+j) = α + βPDt + εt+j

1Y -0.002 [-0.004, -0.000] 0.033 [-0.033, 0.098] -0.003 0.011 -0.020 0.058 0.001 0.000 -0.014 0.097 -0.004 0.011 -0.020 0.079
(0.001) (0.033)

3Y -0.007 [-0.012, -0.003] 0.128 [-0.029, 0.284] -0.006 0.015 -0.047 0.109 0.002 0.000 -0.024 0.129 -0.008 0.016 -0.048 0.152
(0.002) (0.080)

5Y -0.015 [-0.022, -0.008] 0.225 [0.032, 0.418] -0.007 0.013 -0.065 0.114 0.002 0.000 -0.028 0.111 -0.011 0.014 -0.066 0.165
(0.004) (0.099)

ΠJ
j=1∆Ct+j = α + βPDt + εt+j

1Y 0.0001 [-0.0002, 0.0005] 0.009 [ -0.037, 0.056] 0.0000 0.000 0.0029 0.125 0.0050 0.221 0.0000 0.000 -0.0001 0.001 0.0023 0.118
(0.0002) (0.024)

3Y -0.0002 [-0.0009, 0.0006] 0.004 [-0.034, 0.043] 0.0000 0.000 0.0051 0.067 0.0088 0.119 0.0000 0.000 -0.0001 0.000 0.0041 0.064
(0.0004) (0.020)

5Y -0.0006 [-0.0016, 0.0003] 0.043 [ -0.081, 0.167] 0.0000 0.000 0.0058 0.040 0.0100 0.071 0.0000 0.000 -0.0002 0.000 0.0047 0.038
(0.0005) (0.063)

ΠJ
j=1∆Dt+j = α + βPDt + εt+j

1Y 0.0013 [-0.0009, 0.0036] 0.029 [ -0.045, 0.102] 0.0000 0.000 0.0131 0.125 0.0226 0.221 0.0000 0.000 -0.0005 0.001 0.0100 0.118
(0.0011) (0.037)

3Y 0.0015 [-0.0020, 0.0051] 0.012 [ -0.038, 0.062] 0.0000 0.000 0.0231 0.067 0.0398 0.118 0.0000 0.000 -0.0008 0.000 0.0175 0.063
(0.0018) (0.025)

5Y 0.0014 [-0.0022, 0.0051] 0.011 [ -0.049, 0.072] 0.0000 0.000 0.0264 0.040 0.0456 0.070 0.0000 0.000 -0.0010 0.000 0.0201 0.037
(0.0018) (0.031)

PDt+1 = α + βΠJ
j=1∆Ct+1−j + εt+j

1Y -3.78 [-186.83, 179.28] 0.000 [-0.002, 0.002] -38.68 0.027 52.48 0.186 44.03 0.221 -17.79 0.006 -45.27 0.033 62.09 0.179
(93.40) ( 0.001)

3Y -35.69 [-109.63, 38.25] 0.012 [-0.037, 0.060] -21.83 0.049 18.54 0.133 13.47 0.119 -9.85 0.006 -23.81 0.052 22.10 0.130
(37.72) (0.025)

5Y -55.10 [-128.94, 18.75] 0.035 [ -0.060, 0.129] -14.72 0.048 10.66 0.095 7.10 0.071 -6.24 0.005 -15.88 0.050 12.77 0.093
(37.68) (0.048)
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A.7 Full Estimation Tables

Table 38

Marginal Revenue Product of Star College Football Players. This table reports
fixed effects estimates of a star football player’s marginal revenue product from Model (2.1)
over the sample period 2003-2012. Revenues are real 2012 USD at an annual frequency.
Standard errors are in parentheses and have been clustered by team. Estimates for six
different measures of star player are reported: (1) All Americans, (2) Heisman Finalists
(voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive touchdowns
or yards. The last two measures (5-6) are Top 10 in offensive touchdowns or yards for
Running Backs and Wide Receivers. The difference between (4,5,6) is how star Quarterbacks
are measured with (5) being a Top 10 Quarterback in pass efficiency rating (PER) or
touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency rating alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 1246194.1∗∗∗ 2110456.4∗∗ 1772393.3∗∗∗ 635939.4∗∗ 620915.0∗∗ 634448.8∗∗

(371109.5) (933544.5) (557169.9) (273501.0) (258687.2) (283630.8)

Starst−1 784531.3∗ 1541987.4∗∗ 2125693.1∗∗∗ 463500.0∗∗ 482399.8∗∗ 629070.6∗∗∗

(407013.3) (746867.3) (613806.8) (209543.1) (199374.2) (222252.8)

Starst−2 549369.2 -211988.4 135553.5 2163.8 131353.3 156726.8
(409714.8) (625430.4) (497226.6) (191799.8) (217898.7) (230384.4)

Winst−1 -33715.1 2350.5 -65521.4 17886.1 10689.7 2674.8
(105185.3) (95311.6) (101668.3) (102868.0) (101990.9) (101220.6)

Winst−2 47950.9 102288.3 84403.1 94650.6 77305.9 74126.7
(56749.6) (61649.3) (62019.0) (66211.5) (68658.6) (65450.8)

CoachCareert−1 2571657.5 1933681.0 2473963.0 1252014.5 1252673.2 1423088.7
(2077061.6) (2066798.6) (2083839.1) (2063261.0) (2066246.2) (2077016.9)

CoachChange -219077.0 -141394.1 -167370.1 -90464.0 -71287.1 -78582.5
(319562.9) (307939.1) (305613.8) (316793.4) (317650.5) (315596.4)

BowlGamet−1 862673.1∗ 696357.4 805688.7∗ 612201.2 626535.5 622163.7
(463602.8) (443760.2) (457479.2) (458303.6) (455531.3) (452238.2)

BowlWint−1 -367095.4 -228156.7 -186535.8 -379685.7 -393601.2 -391951.8
(417701.8) (426506.3) (401965.8) (424937.9) (427281.8) (427480.3)

SOS 4271.7 14754.5 10927.6 43752.0 44927.4 43343.3
(53786.2) (57691.0) (55885.7) (57116.1) (56724.4) (56769.4)

TDPts -78863.2 -64150.4 -57364.1 -53461.7 -53654.6
(76314.7) (72631.8) (77264.9) (77646.9) (77439.7)

TDYds 1500386.6 1657437.3 950269.4 1025833.8 1087674.7
(2959422.3) (2991585.0) (3050531.6) (3049305.4) (3027356.8)

TDPassYds -1497058.4 -1654554.4 -948102.7 -1023268.2 -1085497.0
(2959896.7) (2992292.3) (3051440.0) (3050172.4) (3028225.1)

TDPassTDs -751663.0 -742934.7 -919743.8 -969915.2 -952002.9
(785910.7) (771658.0) (780685.2) (780771.1) (773783.8)

TDRushYds -1495327.3 -1653492.3 -946798.2 -1022720.0 -1084533.8
(2959229.5) (2991477.6) (3050698.3) (3049472.3) (3027495.9)

TDRushTDs 327305.5 260740.1 238916.9 246696.6 279805.0
(636022.6) (610659.0) (652031.6) (656716.1) (650560.1)
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HistWins -21868.4 -15778.1 -13973.0 -28041.5 -29499.3 -27052.4
(46763.7) (51021.9) (50663.7) (50885.8) (50808.9) (50762.5)

HistBowls -489220.2 -527785.0 -491664.8 -481393.7 -480626.9 -500249.5
(347974.5) (362683.0) (359855.6) (369600.2) (368296.9) (365399.9)

HistBowlWins 404944.6 396534.3 346237.0 477048.1 477640.9 455972.0
(431381.2) (438590.6) (435241.9) (454890.1) (453306.9) (445922.6)

Distance -24893.5 -26074.5 -25418.8 -20941.5 -20871.2 -21590.8
(16516.5) (17347.0) (17021.0) (17282.3) (17333.0) (17225.4)

UndergradPop -138243.3 -199825.2 -212833.2 -174896.7 -161813.5 -139273.3
(206439.8) (207066.6) (204399.3) (206220.2) (204779.1) (201240.2)

PerCapPI 184142.6 257071.2 271520.4 218391.4 212482.4 204275.8
(319267.5) (335018.5) (322485.3) (329132.8) (328377.7) (322979.3)

GrPerCapPI 20459.3 16687.3 7857.6 4989.6 11021.8 17480.4
(128637.6) (127462.8) (126174.2) (129573.2) (128469.5) (128432.2)

CityPop 12642171.7 -7324344.3 -7259534.8 4158844.5 5759898.7 2590694.1
(25034085.1) (29139427.5) (27668730.0) (30375296.5) (30644687.1) (30155684.9)

StatePop 10569.9 -122667.0 -170673.5 91495.6 102759.9 139855.1
(4089596.0) (4150891.0) (4208402.6) (4162556.3) (4199445.6) (4138946.2)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.773 0.775 0.779 0.774 0.774 0.774
Adjusted R2 0.972 0.972 0.972 0.972 0.972 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 39

Marginal Revenue Product of Star College Football Players by Position. This
table reports fixed effects estimates of a star football player’s marginal revenue product from
Model (2.2) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates
for six different measures of star player are reported: (1) All Americans, (2) Heisman
Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive
touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touchdowns or
yards for Running Backs and Wide Receivers. The difference between (4,5,6) is how star
Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency rating
(PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency rating
alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDYds PER

Star QB 4608930.9∗∗∗ 3471509.8∗∗ 2214355.5∗∗ 1019893.4∗∗ 924894.5∗∗ 850420.6∗

(1164765.0) (1351570.5) (934112.1) (478396.0) (392270.5) (481015.0)

Star RB 301788.4 608943.1 1048518.4 488427.7 421584.8 444569.6
(631539.7) (1309714.5) (915890.6) (429620.5) (414200.9) (418953.7)

Star WR 2905696.8∗∗ -767266.6 2472387.2 464649.9 423843.9 576679.4
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(1405377.0) (3344772.8) (1949165.7) (536098.5) (544325.4) (516914.8)

Star TE 1276488.1
(1060995.6)

Star OL 1817052.2
(1902022.5)

Star K -1413320.6
(917291.1)

Star P 2254073.1
(2391757.8)

Star LB 1343434.9
(1161464.0)

Star DB 900250.4
(809392.0)

Star DL -152692.0
(1029483.9)

Star QBt−1 2607322.5 1616299.2 2736083.1∗∗∗ 521386.4 612889.9 1334497.5∗∗

(2006577.4) (1059789.0) (826011.0) (524194.5) (486862.9) (626311.7)

Star RBt−1 421282.0 995844.6 804851.1 514506.9 527243.5 527565.3
(1348817.2) (1496832.9) (1143632.9) (452007.8) (446920.2) (447038.5)

Star WRt−1 2163652.1 527242.2 3184923.0 376250.6 323235.6 300713.9
(1341206.1) (3141604.3) (2157792.0) (411840.5) (422264.0) (394164.2)

Star TEt−1 1581637.5
(1089486.2)

Star OLt−1 -779066.9
(1958113.3)

Star Kt−1 -2275590.3∗

(1169638.9)

Star Pt−1 845999.7
(1355701.1)

Star LBt−1 -222293.2
(841733.8)

Star DBt−1 1410565.2
(1061535.3)

Star DLt−1 -877913.4
(1144656.4)

Star QBt−2 222676.6 970598.2 1242415.4∗ 283381.3 844437.1 1215640.2∗

(1646554.8) (844426.8) (630114.6) (531849.9) (595708.5) (622824.9)

Star RBt−2 -291669.7 -1886976.8 -1752297.4∗ -291948.0 -272552.0 -248493.1
(1031439.8) (1441911.8) (927098.0) (455772.0) (448109.3) (436319.5)

Star WRt−2 984218.9 -1581986.8 165715.1 29221.4 -129764.1 -115558.6
(860688.3) (2279872.5) (1416804.7) (394391.0) (404670.7) (378890.5)

Star TEt−2 2402861.2
(1891760.7)

Star OLt−2 -593484.6
(1731323.7)

Star Kt−2 -1486708.5
(1444019.2)

Star Pt−2 -1225415.9
(1463157.4)

Star LBt−2 938578.5
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(1402728.0)

Star DBt−2 1134369.4
(940905.3)

Star DLt−2 412546.1
(1213959.7)

Winst−1 -52336.9 11531.0 -81840.9 11875.8 7538.6 -23485.3
(106419.9) (97070.3) (104071.1) (106889.6) (105521.7) (106066.1)

Winst−2 38390.7 99251.1 79031.0 95108.3 65122.9 63821.0
(57716.3) (63047.3) (64175.8) (71878.1) (77026.1) (70326.5)

CoachCareert−1 3213553.8 1835760.3 2627403.3 1319614.2 1355460.9 1706857.8
(2134175.4) (2025476.9) (2079157.4) (2120277.5) (2104740.1) (2143148.5)

CoachChange -231065.5 -121945.0 -163568.0 -85606.8 -81523.4 -108553.3
(307360.7) (303639.0) (311992.4) (314014.5) (315913.8) (312753.5)

BowlGamet−1 777880.6∗ 658882.5 835970.0∗ 639978.7 660592.3 700971.8
(438856.7) (448743.3) (467343.8) (463505.2) (457427.3) (459879.4)

BowlWint−1 -308446.0 -240996.5 -151007.2 -379342.0 -406487.8 -382459.2
(401160.9) (432680.8) (400402.2) (426606.3) (429053.6) (427362.6)

SOS 19470.9 14867.5 20330.5 42959.8 39048.9 42425.0
(52473.9) (59897.4) (57990.2) (57924.7) (57893.6) (58254.1)

TDPts -76570.0 -70043.3 -54291.3 -45022.7 -54743.2
(76028.0) (72883.5) (78084.4) (77528.8) (77546.7)

TDYds 1351330.1 1601607.0 965753.3 1097500.7 1484895.8
(2992151.0) (2980740.9) (3003318.5) (3003149.9) (3007275.4)

TDPassYds -1347939.7 -1598624.7 -963620.0 -1094602.7 -1483540.0
(2992470.3) (2981402.8) (3004145.8) (3003977.1) (3008135.5)

TDPassTDs -794188.3 -729846.2 -945375.5 -1040211.1 -930344.2
(789236.0) (773235.5) (773754.7) (772104.6) (762462.3)

TDRushYds -1345858.4 -1597042.7 -962289.6 -1094454.2 -1482186.1
(2992074.7) (2980555.7) (3003419.3) (3003282.3) (3007327.0)

TDRushTDs 302388.4 298673.9 216929.3 193897.5 330587.5
(635163.7) (619666.6) (657399.7) (655205.6) (658114.3)

HistWins -23758.9 -24106.9 -24122.7 -30798.3 -37716.8 -34010.9
(49766.3) (51678.6) (51016.7) (51136.4) (51501.7) (51445.5)

HistBowls -515923.9 -474251.6 -452495.4 -456432.9 -452180.6 -480332.2
(368178.1) (361817.6) (361365.3) (363918.4) (358918.6) (358232.0)

HistBowlWins 466421.6 445286.4 440893.7 490069.0 510823.1 465463.3
(448103.8) (433391.5) (446533.0) (455338.5) (449406.3) (441247.3)

Distance -21569.8 -23639.4 -22686.0 -21075.3 -20994.4 -23309.0
(17363.9) (17401.6) (16776.1) (17260.4) (17163.4) (17294.5)

UndergradPop -161144.1 -193149.6 -240074.6 -180239.3 -169777.3 -120250.4
(213332.5) (207897.3) (211872.7) (208366.3) (206100.6) (200985.9)

PerCapPI 85935.8 247697.6 259538.2 209177.1 196049.1 192825.7
(294998.2) (337534.0) (326460.5) (331948.0) (332823.7) (328663.7)

GrPerCapPI 9221.3 14574.6 952.0 1340.5 9013.6 30709.9
(126126.2) (128483.3) (125401.1) (130548.6) (130146.6) (131524.1)

CityPop -9218094.6 -1782102.5 -11199866.7 6515370.4 10912586.8 5272433.8
(26430954.7) (30818562.4) (28836276.3) (29774863.2) (31018994.5) (30524539.7)

StatePop -869332.4 -115674.4 -53742.7 -21432.8 80254.8 386332.3
(3675206.2) (4211033.9) (4277078.3) (4184630.6) (4261748.9) (4226497.2)

Team Fixed Effects Yes Yes Yes Yes Yes Yes
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Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.784 0.777 0.782 0.774 0.775 0.776
Adjusted R2 0.972 0.972 0.973 0.972 0.972 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 40

Marginal Revenue Product of Star College Basketball Players. This table reports fixed effects estimates of a star basketball
player’s marginal revenue product from Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates for eight different measures of star
player are reported: (1) Wooden Award Winner, Naismith Award Winner or the NCAA Tournament’s Most Outstanding Player,
(2) All American First Team, (3) All American First or Second Team, (4) NBA Drafted Players, (5) NBA Top 5 Draft Pick, (6)
NBA Top 10 Draft Pick, (7) Top 10 Points Scorers, and (8) Top 20 Points Scorers.

(1) (2) (3) (4) (5) (6) (7) (8)

Stars 1087765.3∗∗ 654710.8∗∗∗ 345336.8∗∗ 204304.3∗∗ 382382.2∗∗ 402533.9∗∗ 310260.3∗ 319721.4∗∗

(493080.3) (194042.4) (171755.6) (88775.4) (191897.4) (192852.0) (181824.4) (145587.1)

Starst−1 217558.3 12327.7 88669.0 -11202.2 186547.7 -5263.1 14561.2 30787.2
(374357.0) (291240.1) (177561.3) (88077.2) (294223.2) (228566.6) (102755.7) (81964.0)

Starst−2 205491.5 149084.8 207909.7 224483.7∗∗ 252300.1 106031.9 174220.5 80851.8
(336928.1) (215135.9) (157622.5) (100847.0) (245098.3) (202592.1) (113390.1) (85780.5)

Winst−1 5500.7 4737.6 4803.9 6675.7 4912.5 5211.9 5529.2 4768.9
(4740.8) (4654.8) (4704.4) (4620.0) (4565.3) (4611.5) (4768.7) (4879.6)

Winst−2 11700.8∗∗∗ 11033.7∗∗ 10379.1∗∗ 7470.9 11046.7∗∗∗ 11099.0∗∗∗ 10877.3∗∗ 10851.1∗∗

(4346.4) (4372.0) (4388.4) (4631.2) (3932.6) (4106.4) (4501.2) (4605.0)

CoachCarTournt−1 53036.4∗∗∗ 53587.8∗∗∗ 52917.5∗∗∗ 53109.5∗∗∗ 53300.7∗∗∗ 54220.0∗∗∗ 54132.1∗∗∗ 52295.5∗∗∗

(16309.4) (16423.3) (16448.0) (16397.5) (16396.1) (16327.9) (16345.8) (16446.8)

CoachCareert−1 -90371.2 -43852.9 -58691.2 -95287.7 -94945.2 -91601.0 -78380.4 -72456.0
(296260.8) (292797.7) (296030.0) (291734.8) (294358.8) (294552.7) (295056.3) (293596.7)

CoachChange 2584.2 -283.6 5442.5 5694.5 2596.8 2906.3 -2338.9 -1447.5
(61633.1) (61697.9) (61112.9) (61636.3) (61858.0) (61534.7) (61566.3) (61742.1)

NCAATournt−1 166471.4∗∗ 169729.4∗∗ 164773.6∗∗ 170940.6∗∗ 166791.3∗∗ 159770.3∗∗ 159670.5∗∗ 159186.5∗∗

(75438.0) (74536.1) (74413.7) (76855.4) (73208.1) (75031.2) (74594.7) (75231.3)

Round2t−1 -69474.9 -60521.7 -58626.8 -62519.4 -60851.5 -60525.5 -57685.2 -55454.7
(127587.9) (124549.9) (129013.3) (129844.1) (129323.9) (127547.7) (128474.2) (127233.5)

Sweet16t−1 269822.6 259114.3 259282.3 311046.4∗ 280034.6 271213.4 303302.1∗ 287229.0∗

(175423.2) (183746.1) (180748.2) (171514.0) (180879.1) (180337.0) (175339.2) (173614.7)

Elitet8t−1 -139996.8 -144637.5 -92711.7 -21008.0 -120372.0 -100366.0 -118801.8 -125168.0
(455596.0) (460315.9) (475971.8) (438282.8) (467622.7) (476086.8) (453607.7) (452016.7)
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Final4t−1 343911.0 347028.2 372391.9 380139.1 356001.9 414610.1 391677.7 391363.2
(375468.1) (380341.5) (371678.6) (386948.9) (412695.7) (412792.3) (392998.6) (391782.5)

Finalt−1 -38560.7 32290.4 -66063.7 26618.6 -128696.6 -52997.7 -26463.4 -17221.9
(260301.5) (340616.9) (299234.9) (284129.2) (314746.0) (338112.3) (267654.3) (272431.6)

Champt−1 1766340.3∗∗ 1900785.4∗∗∗ 1899835.5∗∗∗ 2040793.9∗∗∗ 1793747.7∗∗ 1773651.1∗∗ 1822732.5∗∗∗ 1868723.7∗∗∗

(862499.7) (574563.6) (657183.3) (647180.9) (752011.7) (736771.7) (617623.3) (618632.4)

NSchlsConf 1597.9 643.3 1146.6 2727.7 3598.7 2535.8 5855.1 4328.0
(40495.4) (40249.6) (40056.5) (40557.4) (40108.9) (40223.5) (40202.9) (40285.7)

NSchlsConfAP -42507.0 -44208.6 -46226.4 -38351.2 -37726.9 -41862.1 -42184.5 -39373.7
(40012.1) (41527.4) (41211.3) (40894.9) (41784.2) (42282.7) (40775.5) (40345.1)

NSchlsConfTourn 5588.9 5151.3 4908.0 82.42 6918.3 6162.2 6446.4 7143.4
(39038.3) (38721.0) (38681.8) (38758.1) (38824.8) (38620.2) (39511.7) (39339.0)

NSchlsConfFF -98339.8 -93396.3 -84183.4 -86897.0 -92170.3 -93787.2 -87031.1 -87327.8
(82336.8) (80792.0) (81503.3) (84174.2) (80721.6) (81051.3) (81299.2) (81085.9)

SOS 3171.8 2104.8 2277.8 1250.6 1571.2 1381.6 1359.0 388.3
(12225.5) (12177.8) (12320.2) (12193.9) (12160.8) (12107.1) (12256.3) (12319.4)

HistWins -3339.3 -3489.0 -3692.1 -3790.9 -3766.7 -3604.8 -3403.5 -3287.8
(2979.9) (2973.0) (2975.3) (2986.8) (3011.8) (3032.5) (2976.1) (2966.4)

HistNCAATrn -24692.0 -21625.1 -20544.8 -38894.2 -29861.0 -26729.9 -27267.5 -34361.8
(59605.9) (60731.5) (60426.8) (59135.1) (60123.9) (59840.0) (60473.9) (59837.3)

HistRound2 -70516.4 -48324.9 -46896.5 -60332.6 -65835.0 -71370.7 -62074.7 -66508.5
(111100.2) (112854.9) (112528.5) (112171.3) (112792.9) (112505.2) (112727.3) (112997.5)

HistSweet16 -105085.4 -108151.2 -90631.1 -56679.8 -77141.0 -70457.7 -96033.2 -100927.8
(146123.0) (146471.2) (141988.0) (137944.0) (142556.4) (142982.6) (150636.9) (149967.4)

HistElite8 122918.1 137631.2 151930.7 161923.4 127612.1 122314.2 98892.1 102881.1
(189428.4) (194172.7) (195132.2) (189286.0) (189005.4) (191677.5) (195406.0) (197563.2)

HistFinal4 288728.2 373800.4 405548.9 407783.7 314072.8 298481.2 319478.5 290306.4
(312376.9) (314445.6) (316790.0) (324777.9) (316427.1) (320106.9) (323484.2) (320863.9)

HistFinal 66589.0 215159.0 219301.6 148310.0 230876.8 215724.5 165225.1 178414.5
(604624.8) (590013.9) (591344.3) (577803.6) (565544.9) (570762.7) (589264.2) (593520.2)

HistChamp -761595.7 -830886.5 -794815.5 -751941.5 -790368.2 -803171.5 -793072.3 -834846.1
(864712.3) (807223.6) (802713.0) (785328.2) (792108.8) (815147.9) (796655.2) (805341.5)

Distance -1186.9 -1003.1 -1076.7 -1295.0 -1243.4 -1145.3 -1390.8 -1233.8
(1555.8) (1564.4) (1548.8) (1571.5) (1593.4) (1568.2) (1542.9) (1532.9)

UndergradPop -51238.0 -48681.8 -50053.8 -46757.0 -48358.0 -47220.9 -44490.3 -45640.1
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(39268.9) (38035.4) (38894.5) (39404.7) (38536.3) (39037.6) (38722.6) (38021.5)

PerCapPI 12632.5 10041.7 9382.0 2916.0 14931.7 14857.1 9983.7 9889.4
(41123.9) (40759.8) (39747.8) (40061.4) (40497.9) (40544.8) (40065.8) (40667.4)

GrPerCapPI 7602.4 9374.4 10665.1 11437.5 8135.4 10325.6 8650.5 10131.3
(15679.9) (15709.6) (15623.5) (15874.9) (15719.9) (15875.1) (15642.0) (15693.4)

CityPop 861614.4 918168.3 918507.3 882563.6 1056439.6 1089678.8 813444.8 790469.6
(1896441.6) (1857321.6) (1871040.8) (1896670.6) (1849183.3) (1837110.6) (1861156.0) (1887477.5)

StatePop 6654.2 59037.8 34208.8 77296.1 106871.3 103832.1 71506.4 90510.5
(431937.2) (407988.3) (416686.1) (429759.3) (421011.7) (421270.8) (417325.0) (424944.7)

Team Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

N 2820 2820 2820 2820 2820 2820 2820 2820
Within R2 0.670 0.669 0.668 0.672 0.668 0.669 0.668 0.669
Adjusted R2 0.968 0.968 0.968 0.969 0.968 0.968 0.968 0.968
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 41

Marginal Revenue Product of Star College Football Players - Discrete Measure.
This table reports fixed effects estimates of a star football player’s marginal revenue prod-
uct from Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at
an annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for six different discrete measures of star player are reported: (1) All Americans,
(2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in
offensive touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touch-
downs or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is
how star Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency
rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency
rating alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 1062929.4∗∗∗ 2051659.7∗∗ 1766358.2∗∗∗ 634777.4∗∗ 605809.7∗∗ 616670.4∗∗

(323298.3) (936657.7) (551921.2) (267899.3) (251991.4) (276390.5)

Starst−1 551891.3 1518086.1∗∗ 2103329.1∗∗∗ 458333.2∗∗ 461327.5∗∗ 600524.1∗∗∗

(344300.2) (734827.8) (605137.5) (206375.5) (194273.4) (216799.7)

Starst−2 417832.9 -188455.0 146703.1 11668.6 132517.0 157749.8
(356129.9) (627577.9) (492218.2) (190181.8) (215776.6) (229355.4)

Winst−1 -27231.2 4158.1 -63777.2 17081.4 12992.2 5601.4
(102417.3) (95379.8) (101454.9) (102893.8) (101681.6) (100957.0)

Winst−2 50873.3 101411.6 83395.9 92623.3 76577.5 73520.9
(55157.2) (61689.7) (62012.1) (66321.5) (68893.6) (65860.7)

CoachCareert−1 2599678.9 1924428.4 2466749.7 1261797.4 1240299.6 1401226.6
(2050449.2) (2066560.1) (2082921.4) (2063484.7) (2066252.3) (2076842.8)

CoachChange -245813.1 -141586.6 -165120.8 -88634.3 -70796.1 -79297.9
(315570.1) (308000.0) (305454.2) (317248.1) (317641.2) (315323.7)

BowlGamet−1 820920.0∗ 692397.0 799736.1∗ 612761.4 623940.8 618465.1
(455566.7) (444160.5) (457270.3) (458518.9) (455447.5) (452236.2)

BowlWint−1 -376924.5 -230265.1 -189103.1 -377017.8 -394140.6 -394020.0
(417213.6) (426427.8) (402269.7) (424689.0) (427523.6) (427710.5)

SOS -1020.0 15138.6 10712.1 43312.5 44019.0 42589.3
(53829.9) (57707.7) (55873.3) (57100.1) (56750.4) (56801.0)

TDPts -79692.7 -64547.0 -57311.2 -54110.8 -54274.2
(76474.7) (72613.3) (77176.8) (77629.0) (77468.0)

TDYds 1477484.4 1660810.1 942337.3 1019783.3 1064622.9
(2959529.3) (2991096.3) (3051166.1) (3049731.0) (3028266.1)

TDPassYds -1474201.8 -1657996.1 -940199.3 -1017197.3 -1062440.4
(2960015.2) (2991817.4) (3052074.1) (3050604.2) (3029137.3)

TDPassTDs -743696.4 -738882.2 -917040.1 -963800.8 -945139.4
(787166.5) (771871.2) (779775.7) (779646.5) (773119.8)

TDRushYds -1472448.7 -1656916.2 -938883.9 -1016670.8 -1061482.2
(2959334.5) (2990992.1) (3051322.6) (3049885.4) (3028393.5)

TDRushTDs 334096.9 266543.4 240959.6 250649.9 282785.4
(637357.3) (610804.1) (651548.9) (656370.7) (650819.4)

HistWins -21083.1 -15825.1 -13798.1 -28203.2 -29254.9 -26796.9
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(47988.5) (50993.9) (50685.3) (50918.2) (50876.8) (50815.9)

HistBowls -489901.2 -527450.6 -491419.9 -480458.5 -478263.0 -497763.5
(349342.7) (362670.6) (360016.5) (369729.0) (368490.3) (365953.0)

HistBowlWins 353130.0 393628.9 344570.4 478785.4 473072.5 451164.3
(432565.7) (438187.4) (434839.1) (455271.2) (452625.0) (445541.7)

Distance -25335.8 -26158.5 -25508.0 -20780.2 -21008.9 -21732.2
(16575.0) (17366.9) (17033.4) (17285.8) (17352.2) (17245.3)

UndergradPop -144432.9 -198322.5 -211986.9 -175075.8 -161411.3 -138610.3
(209157.6) (207117.2) (204483.3) (206386.0) (204727.8) (201382.8)

PerCapPI 207362.8 258319.9 271139.1 218118.8 212022.8 204415.4
(316857.0) (335339.6) (322526.2) (328745.0) (328520.8) (323380.0)

GrPerCapPI 14993.7 16218.1 7780.2 5990.2 12818.8 19304.6
(127251.5) (127386.3) (126064.8) (129406.3) (128288.8) (128293.9)

CityPop 10299203.0 -7124452.5 -6802474.5 4040661.5 5240369.1 2240536.0
(27464918.6) (29198594.3) (27623484.5) (30326624.6) (30749121.4) (30342188.7)

StatePop 132676.4 -120170.4 -170546.6 128098.0 120093.6 159464.1
(4062267.6) (4156206.6) (4210051.3) (4153424.0) (4193018.9) (4134860.8)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.772 0.775 0.779 0.774 0.774 0.774
Adjusted R2 0.972 0.972 0.972 0.972 0.972 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 42

Marginal Revenue Product of Star College Basketball Players - Discrete Measure. This table reports fixed effects
regression estimates of a star basketball player’s marginal revenue product from Model (2.1) over the sample period 2003-2012.
Revenues are real 2012 USD at an annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for eight different measures of star player are reported: (1) Wooden Award Winner, Naismith Award Winner or the
NCAA Tournament’s Most Outstanding Player, (2) All American First Team, (3) All American First or Second Team, (4) NBA
Drafted Players, (5) NBA Top 5 Draft Pick, (6) NBA Top 10 Draft Pick, (7) Top 10 Points Scorers, and (8) Top 20 Points Scorers.

(1) (2) (3) (4) (5) (6) (7) (8)

Stars 1035975.5∗∗ 634754.2∗∗∗ 327818.2∗ 192254.3∗∗ 421983.3∗∗ 411124.2∗∗ 309455.9∗ 318445.0∗∗

(481752.9) (192764.6) (168625.4) (83649.3) (179149.7) (180324.0) (182795.1) (145860.5)

Starst−1 194461.6 8473.9 82188.9 -14549.2 174676.9 -10149.0 13162.1 28743.7
(371341.1) (286415.5) (172535.2) (84974.2) (283398.5) (220033.8) (103503.4) (81866.8)

Starst−2 206669.7 153881.9 209186.9 220039.8∗∗ 213156.7 89265.3 175345.3 80635.9
(331762.9) (211748.9) (154025.7) (99184.1) (241205.9) (198312.6) (114327.3) (85592.8)

Winst−1 5529.0 4776.0 4846.5 6757.3 5020.8 5292.8 5551.4 4781.9
(4742.3) (4657.2) (4705.6) (4625.8) (4575.1) (4615.9) (4769.6) (4884.2)

Winst−2 11716.4∗∗∗ 11029.5∗∗ 10361.0∗∗ 7532.0 11243.5∗∗∗ 11273.8∗∗∗ 10862.3∗∗ 10847.6∗∗

(4345.4) (4363.2) (4380.1) (4648.0) (3962.6) (4142.3) (4503.1) (4608.4)

CoachCarTournt−1 53083.7∗∗∗ 53626.0∗∗∗ 52935.3∗∗∗ 53162.8∗∗∗ 53551.0∗∗∗ 54305.4∗∗∗ 54136.9∗∗∗ 52288.7∗∗∗

(16306.9) (16414.4) (16429.4) (16371.7) (16406.8) (16332.7) (16346.1) (16445.8)

CoachCareert−1 -91166.2 -44805.8 -60914.1 -98085.3 -102776.2 -96296.4 -78484.9 -72669.6
(296381.7) (292904.9) (296076.0) (291984.2) (294665.7) (294914.5) (295065.4) (293573.0)

CoachChange 2452.8 -275.9 5554.8 5264.0 2777.8 3317.3 -2090.3 -1125.0
(61637.2) (61708.8) (61113.2) (61690.5) (61809.2) (61528.5) (61564.1) (61732.9)

NCAATournt−1 165707.5∗∗ 169176.5∗∗ 164988.3∗∗ 170940.9∗∗ 164945.1∗∗ 158050.6∗∗ 159541.2∗∗ 159117.0∗∗

(75465.7) (74520.5) (74402.0) (76866.8) (73251.8) (75267.2) (74623.5) (75248.3)

Round2t−1 -69038.3 -60268.4 -58272.1 -62077.8 -61318.3 -62271.0 -57981.5 -55552.3
(127659.3) (124653.9) (129193.8) (130187.3) (129248.8) (127873.6) (128511.4) (127258.0)

Sweet16t−1 270800.3 259998.1 261608.6 312686.6∗ 275681.2 268020.4 303088.9∗ 287116.1∗

(175680.1) (183635.0) (180615.3) (172649.6) (180518.7) (180901.5) (175329.3) (173623.7)

Elitet8t−1 -136884.7 -142804.7 -89478.4 -17143.5 -121840.4 -102216.9 -119136.7 -124414.5
(455690.1) (460409.7) (475193.2) (438530.6) (466560.9) (474973.5) (453659.7) (452048.6)
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Final4t−1 351632.7 349480.6 375530.9 386899.2 346330.2 413008.0 391612.5 390373.4
(375564.4) (379766.1) (371722.8) (384616.4) (402529.2) (407865.3) (392964.8) (391150.8)

Finalt−1 -33963.4 39289.0 -55952.2 37131.6 -123554.7 -48175.6 -26776.1 -16368.9
(260029.9) (339254.4) (300001.4) (278665.9) (315417.5) (338183.6) (267683.9) (272701.7)

Champt−1 1771496.1∗∗ 1903215.4∗∗∗ 1905184.0∗∗∗ 2042126.6∗∗∗ 1764883.6∗∗ 1724465.6∗∗ 1822491.5∗∗∗ 1870786.0∗∗∗

(865166.8) (578110.3) (658356.3) (631771.2) (718556.6) (693729.8) (617872.8) (619292.9)

NSchlsConf 1680.8 639.0 1194.2 2868.0 3573.5 2461.5 5811.9 4360.0
(40505.5) (40251.9) (40054.1) (40551.9) (40084.7) (40195.2) (40192.6) (40279.9)

NSchlsConfAP -42734.3 -44607.2 -46004.7 -38223.3 -38457.1 -42033.7 -42350.7 -39586.9
(40109.3) (41520.7) (41206.0) (40966.0) (41838.3) (42272.5) (40773.7) (40344.1)

NSchlsConfTourn 5858.7 5287.9 4848.0 108.4 7872.5 6481.5 6310.0 7005.5
(39021.4) (38716.5) (38703.8) (38766.4) (38727.4) (38561.1) (39525.1) (39340.4)

NSchlsConfFF -98040.1 -93344.4 -84333.1 -87580.2 -93536.6 -94346.8 -87021.4 -87438.7
(82226.0) (80789.9) (81426.7) (84212.0) (80549.9) (80884.2) (81286.1) (81080.8)

SOS 3152.0 2133.5 2240.6 1193.0 1270.5 1198.2 1344.2 422.6
(12216.2) (12176.0) (12321.9) (12233.1) (12124.3) (12112.0) (12256.3) (12316.6)

HistWins -3347.5 -3497.9 -3697.7 -3774.6 -3765.0 -3546.1 -3401.1 -3286.6
(2980.6) (2973.2) (2974.4) (2987.0) (3014.2) (3033.0) (2975.9) (2966.2)

HistNCAATrn -24491.9 -21700.5 -20750.6 -38853.0 -29547.2 -26788.5 -27276.6 -34331.5
(59651.6) (60763.3) (60443.4) (59183.4) (60076.5) (59758.3) (60474.4) (59840.7)

HistRound2 -70874.2 -48177.2 -46950.6 -60957.0 -66607.8 -72361.7 -62110.5 -66557.2
(111145.0) (112891.4) (112680.7) (112134.6) (112869.7) (112441.7) (112727.4) (112991.8)

HistSweet16 -103854.7 -108188.9 -89588.0 -57247.4 -77118.8 -71718.5 -96102.1 -100915.3
(146105.9) (146550.0) (142043.5) (137908.8) (142331.8) (143020.5) (150629.0) (149977.7)

HistElite8 122300.6 138398.8 153850.8 162086.9 124354.5 121118.3 98796.8 103269.6
(189441.3) (193896.8) (194892.6) (188380.6) (189793.4) (191902.8) (195405.5) (197614.7)

HistFinal4 289465.5 377790.8 406189.7 415666.3 305769.2 293215.8 319416.5 291240.3
(311958.6) (315873.5) (316946.9) (325441.4) (315849.6) (318912.6) (323489.2) (320987.7)

HistFinal 76384.6 218851.3 222528.8 147453.3 233731.0 220428.5 165220.1 177643.2
(604034.9) (589117.3) (590556.8) (578323.8) (564666.0) (569304.5) (589247.0) (593586.4)

HistChamp -757015.4 -831763.7 -795219.9 -747316.1 -787152.8 -807170.5 -793168.3 -835264.3
(866337.1) (807261.1) (802923.5) (786097.6) (798581.3) (818616.4) (796598.1) (805453.0)

Distance -1192.0 -1013.8 -1077.2 -1318.0 -1227.4 -1162.8 -1394.8 -1237.0
(1555.5) (1563.9) (1550.0) (1570.9) (1585.9) (1563.3) (1543.0) (1533.2)

UndergradPop -51259.9 -48763.9 -50143.6 -46632.0 -48126.5 -47259.7 -44468.6 -45673.7
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(39268.3) (38059.1) (38903.2) (39431.3) (38392.1) (38942.3) (38719.0) (38026.7)

PerCapPI 12579.7 10218.0 9573.1 2809.1 15049.7 14994.5 10002.1 9902.9
(41141.5) (40770.1) (39744.4) (40066.6) (40472.4) (40552.3) (40072.0) (40656.6)

GrPerCapPI 7613.0 9297.5 10574.9 11407.1 8066.5 10435.9 8614.0 10130.2
(15682.7) (15716.1) (15620.1) (15868.6) (15725.1) (15893.2) (15639.5) (15687.9)

CityPop 863023.6 917742.1 917852.3 871686.9 1066028.3 1094021.0 814208.2 792952.1
(1895758.1) (1857622.1) (1872259.8) (1899514.2) (1848478.2) (1837561.0) (1861378.2) (1888037.6)

StatePop 8894.7 57700.6 32295.7 88462.9 109731.0 108940.9 71209.5 89252.1
(431382.2) (408344.6) (417235.3) (430550.1) (420068.0) (420439.0) (417406.2) (424929.5)

Team Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

N 2820 2820 2820 2820 2820 2820 2820 2820
Within R2 0.669 0.669 0.668 0.672 0.668 0.669 0.668 0.669
Adjusted R2 0.968 0.968 0.968 0.969 0.968 0.968 0.968 0.968
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 43

Marginal Revenue Product of Star College Football Players - Wins Included.
This table reports fixed effects estimates of a star football player’s marginal revenue prod-
uct from Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at
an annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for six different measures of star player are reported: (1) All Americans, (2)
Heisman Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in
offensive touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touch-
downs or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is
how star Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency
rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency
rating alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 926451.1∗∗ 1522818.2∗ 1177237.5∗∗ 273485.5 256650.6 277127.5
(402026.1) (889228.6) (544071.6) (305633.1) (292662.4) (304313.0)

Starst−1 714289.9∗ 1384924.8∗ 2087051.6∗∗∗ 407647.8∗ 420308.5∗∗ 550044.6∗∗

(401453.2) (717023.7) (612357.0) (212809.1) (202678.8) (222842.6)

Starst−2 553711.2 -166349.4 64077.5 -26593.6 90578.7 135176.5
(402675.8) (622212.6) (497332.3) (189135.5) (214063.2) (225604.2)

Wins 274939.7∗∗∗ 348969.4∗∗∗ 351564.9∗∗∗ 353074.9∗∗∗ 354350.2∗∗∗ 359789.8∗∗∗

(74995.2) (79970.3) (78791.9) (97875.9) (98355.4) (91981.8)

Winst−1 -7345.1 23825.2 -49181.1 42722.7 35500.1 26959.1
(106403.2) (96990.4) (101631.9) (104352.5) (103815.1) (102155.3)

Winst−2 111438.2∗ 149553.4∗∗ 133762.7∗∗ 143999.7∗∗ 128650.6∗ 124482.8∗

(61823.0) (65103.8) (65590.4) (69353.3) (71157.5) (67503.3)

CoachCareert−1 2244305.0 1661061.4 2206707.1 1168961.9 1186148.5 1286603.7
(1998891.1) (1991400.9) (2009452.1) (1976103.4) (1976750.1) (1986751.7)

CoachChange -55083.8 -29198.8 -62648.6 -12324.3 -3541.0 -514.7
(305421.8) (297499.9) (294240.4) (306141.2) (307776.3) (306411.0)

BowlGamet−1 801635.7∗ 723398.0 845546.6∗ 622907.4 641113.7 646112.5
(461419.2) (439903.5) (452157.6) (451821.9) (451479.1) (448383.8)

BowlWint−1 -271550.9 -176341.5 -129392.2 -301405.2 -305649.5 -296419.7
(407506.8) (407253.4) (387193.3) (409197.9) (412077.7) (410269.2)

SOS 45560.8 29477.5 26287.0 50658.7 52705.6 52385.9
(55548.3) (58009.3) (56205.9) (57307.7) (57051.7) (57041.7)

TDPts 74672.2 84785.5 83866.3 82976.3 84887.9
(83567.8) (81452.0) (86434.4) (85962.2) (84937.7)

TDYds 1158166.3 1305509.4 730781.6 747587.8 901059.4
(2889808.5) (2907281.6) (2956665.7) (2962185.4) (2943115.8)

TDPassYds -1161127.5 -1308425.5 -733965.1 -750574.5 -904544.3
(2890623.5) (2908321.2) (2957886.9) (2963352.7) (2944318.7)

TDPassTDs -1075468.6 -1071795.9 -1155084.1 -1160122.2 -1157127.4
(763016.7) (750287.5) (762421.5) (760016.8) (754203.0)

TDRushYds -1152505.8 -1300663.4 -725911.2 -742927.7 -896492.5
(2889549.7) (2907052.7) (2956597.9) (2962143.3) (2943083.3)

TDRushTDs -90349.1 -133409.4 -133326.8 -104657.9 -71493.2
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(641483.0) (619525.5) (654339.3) (657695.1) (652923.5)

HistWins 13532.2 9949.9 10333.7 -360.7 -1775.8 329.2
(49402.3) (52154.6) (51783.3) (53120.3) (53010.1) (52579.7)

HistBowls -501296.9 -512727.8 -478500.4 -468326.5 -465992.1 -476874.5
(346434.2) (356643.2) (354552.6) (363926.7) (363195.1) (360418.9)

HistBowlWins 436554.0 376816.3 339666.7 415866.6 418814.4 410279.0
(433675.7) (438859.6) (433828.8) (453364.7) (453213.5) (445523.7)

Distance -24424.5 -26603.5 -26341.1 -22643.4 -22404.8 -22828.6
(16134.2) (16540.2) (16341.6) (16320.0) (16408.3) (16331.7)

UndergradPop -76567.4 -129901.7 -145432.6 -115893.4 -103678.5 -83662.8
(204645.5) (205740.9) (202726.9) (206019.8) (205628.7) (202931.6)

PerCapPI 225222.2 265734.4 275442.6 228780.8 226346.0 222839.1
(308465.8) (325624.8) (315066.1) (321018.5) (320216.1) (315866.4)

GrPerCapPI -6672.3 -2557.0 -8119.6 -8332.0 -4664.3 -2066.0
(127053.0) (125048.5) (124119.7) (127343.9) (126199.2) (125789.1)

CityPop 10267321.2 -10874167.3 -10852029.7 -1933163.1 -704208.1 -2967084.0
(25803325.3) (31029740.9) (28743940.4) (32277043.2) (32708796.7) (32309187.1)

StatePop -548663.0 -266620.9 -270917.6 -11510.8 659.7 28459.8
(3848678.8) (3889121.5) (3939800.6) (3874431.7) (3903313.8) (3860861.2)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
R2 0.779 0.781 0.785 0.780 0.780 0.780
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 44

Marginal Revenue Product of Star College Football Players by Position - Wins
Included. This table reports fixed effects regression estimates of a star football player’s
marginal revenue product from Model (2.2) over the sample period 2003-2012. Revenues
are real 2012 USD at an annual frequency. Standard errors are in parentheses and have
been clustered by team. Estimates for six different measures of star player are reported: (1)
All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees,
and (4) Top 10 in offensive touchdowns or yards. The last two measures (5-6) are Top 10
in offensive touchdowns or yards for Running Backs and Wide Receivers. The difference
between (4,5,6) is how star Quarterbacks are measured with (5) being a Top 10 Quarterback
in pass efficiency rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback
in pass efficiency rating alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDYds PER

Star QB 4002896.6∗∗∗ 2613205.7∗ 1338255.8 426270.7 344168.7 381371.0
(1144409.0) (1322656.6) (921253.7) (504839.4) (424145.3) (479613.7)

Star RB -71395.5 287602.6 822523.3 164893.3 117441.0 127832.2
(626403.8) (1260993.0) (914857.0) (446548.7) (437817.1) (441013.1)

Star WR 2671726.0∗ -430341.1 2275417.0 250983.5 230554.0 272862.4
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(1379730.4) (3370752.1) (1911482.0) (534304.1) (543821.9) (521004.1)

Star TE 709435.3
(1101329.7)

Star OL 1441320.6
(1894931.1)

Star K -1713721.1∗

(943726.6)

Star P 2240380.6
(2448445.7)

Star LB 1100736.3
(1199072.9)

Star DB 514531.4
(879917.8)

Star DL -343706.0
(1057113.1)

Wins 273964.8∗∗∗ 330986.2∗∗∗ 357280.0∗∗∗ 347714.3∗∗∗ 345097.5∗∗∗ 352589.0∗∗∗

(73651.1) (76827.9) (76999.7) (99527.1) (99837.8) (91104.1)

Star QBt−1 2611597.4 1490620.9 2684710.6∗∗∗ 425406.8 515950.5 1172038.1∗

(1955824.1) (1053164.0) (814824.0) (516100.8) (483480.0) (602783.9)

Star RBt−1 323916.9 895299.9 810298.9 455126.4 463177.9 456263.1
(1239196.0) (1503292.4) (1132294.3) (448895.1) (446222.7) (446421.7)

Star WRt−1 2038881.9 509920.8 3318746.5 361750.8 300917.1 264215.1
(1315882.4) (2867703.5) (2131557.1) (405450.3) (419007.1) (386977.8)

Star TEt−1 1447442.1
(1094682.6)

Star OLt−1 -777566.8
(1822117.5)

Star Kt−1 -2374622.5∗

(1315189.9)

Star Pt−1 538349.8
(1336473.7)

Star LBt−1 -282106.8
(846489.4)

Star DBt−1 1334047.2
(1070753.7)

Star DLt−1 -970607.7
(1124523.7)

Star QBt−2 518013.2 877899.6 1180250.7∗ 139692.4 665871.4 1118972.1∗

(1592941.8) (845853.0) (651010.3) (524457.7) (601209.9) (618899.0)

Star RBt−2 -366207.2 -1709926.3 -1882554.0∗∗ -271338.9 -257297.4 -253156.5
(989744.5) (1443421.8) (924455.5) (447091.1) (440654.0) (431273.5)

Star WRt−2 879686.7 -1207240.5 152284.6 33209.9 -116997.9 -114984.8
(854836.2) (2292921.4) (1344609.2) (370415.3) (386422.3) (358751.9)

Star TEt−2 2437961.3
(1905816.6)

Star OLt−2 -416375.1
(1585694.0)

Star Kt−2 -1459077.4
(1402101.4)

Star Pt−2 -1134644.3
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(1464326.1)

Star LBt−2 978819.0
(1382759.7)

Star DBt−2 984002.7
(947930.2)

Star DLt−2 475560.2
(1186928.7)

Winst−1 -26800.7 29252.4 -68389.3 38309.6 32381.0 3188.5
(107121.3) (98462.6) (104010.1) (108974.8) (108002.9) (107336.9)

Winst−2 105240.5∗ 144613.5∗∗ 129268.5∗ 144210.0∗ 117311.1 114024.1
(62154.1) (66425.7) (67525.4) (75426.6) (80101.5) (72453.8)

CoachCareert−1 2894797.6 1593888.0 2401403.5 1200533.5 1256494.9 1522845.0
(2051077.1) (1957219.9) (2002934.8) (2040956.1) (2024867.2) (2060175.3)

CoachChange -58782.0 -16192.1 -55150.5 -12145.5 -20256.5 -31704.9
(292807.9) (294118.4) (301118.6) (304540.2) (307027.6) (304636.3)

BowlGamet−1 722329.3 694577.7 873857.2∗ 646693.4 675347.4 720120.6
(436796.3) (443767.6) (462884.6) (457642.8) (454049.7) (456172.4)

L1BowlWin -206651.2 -187959.4 -66582.0 -302569.4 -315833.4 -285164.0
(388881.0) (413549.1) (382501.4) (410367.2) (413683.8) (409427.2)

SOS 61314.5 29729.7 35534.6 49401.1 47400.9 51349.7
(54809.0) (60470.8) (58149.0) (58117.8) (58254.0) (58426.1)

TDPts 68144.8 78120.9 83385.3 83494.4 78923.6
(83815.0) (81707.3) (87131.1) (86458.3) (85837.7)

TDYds 1044767.3 1292737.8 714811.7 754280.4 1265975.5
(2927930.6) (2912489.9) (2923737.4) (2935680.7) (2943891.5)

TDPassYds -1047346.8 -1295474.6 -717841.1 -756821.8 -1270048.9
(2928554.5) (2913457.7) (2924896.7) (2936819.8) (2945113.7)

TDPassTDs -1091752.6 -1054979.2 -1168780.8 -1191102.9 -1121070.5
(770792.5) (749082.5) (755174.9) (751124.9) (743910.0)

TDRushYds -1038794.0 -1287346.5 -709936.7 -749633.7 -1261770.4
(2927774.0) (2912188.0) (2923612.9) (2935630.9) (2943829.2)

TDRushTDs -86636.2 -68778.9 -139077.0 -124242.6 -6860.5
(643778.4) (626067.1) (657717.8) (657380.3) (663593.9)

HistWins 11270.5 1326.6 1496.2 -2420.9 -9263.4 -6782.9
(51132.0) (52817.6) (52253.8) (53336.4) (53902.2) (53346.8)

HistBowls -521435.6 -464489.7 -439494.7 -459686.2 -452940.4 -461940.3
(368074.2) (359064.3) (357380.4) (357687.1) (354971.2) (355114.6)

HistBowlWins 501636.9 417571.2 426305.2 427727.8 452831.3 424508.7
(450773.7) (436889.4) (447415.3) (455830.6) (451921.4) (440332.2)

Distance -21716.0 -24421.3 -23668.5 -22460.6 -22041.8 -24094.7
(16822.8) (16568.4) (16047.0) (16289.5) (16272.1) (16464.6)

UndergradPop -102650.5 -128413.9 -174520.3 -119192.5 -111109.3 -68576.0
(209441.7) (206741.0) (208344.2) (209422.3) (207827.5) (202903.2)

PerCapPI 146883.4 257749.5 265500.9 220867.2 212988.5 213644.3
(286195.9) (328628.3) (318848.8) (322632.0) (323552.2) (321480.4)

GrPerCapPI -22275.7 -4719.5 -16751.0 -8338.8 -4020.3 10219.7
(124128.7) (125816.2) (123405.0) (128331.5) (128030.5) (128727.7)

CityPop -11923135.7 -7057157.9 -15834654.8 -706009.7 3058621.4 -552574.7
(26824968.4) (32268054.1) (28364104.5) (31675075.3) (32890494.5) (32124381.9)

StatePop -1400913.1 -242314.9 -137139.9 -79764.7 -2597.2 271169.6
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(3492057.1) (3963926.5) (4004886.8) (3891568.5) (3964285.1) (3951960.3)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
R2 0.790 0.783 0.788 0.780 0.781 0.782
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 45

Marginal Revenue Product of Star College Basketball Players - Wins Included. This table reports fixed effects estimates
of a star basketball player’s marginal revenue product from Model (2.1) over the sample period 2003-2012. Revenues are real 2012
USD at an annual frequency. Standard errors are in parentheses and have been clustered by team. Estimates for eight different
measures of star player are reported: (1) Wooden Award Winner, Naismith Award Winner or the NCAA Tournament’s Most
Outstanding Player, (2) All American First Team, (3) All American First or Second Team, (4) NBA Drafted Players, (5) NBA
Top 5 Draft Pick, (6) NBA Top 10 Draft Pick, (7) Top 10 Points Scorers, and (8) Top 20 Points Scorers.

(1) (2) (3) (4) (5) (6) (7) (8)

Stars 966953.5∗ 561750.5∗∗∗ 255794.2 165147.4∗ 276439.2 314342.4∗ 239950.0 261080.0∗

(491931.7) (188740.4) (168360.1) (88732.0) (191644.3) (189002.7) (179922.3) (144643.1)

Starst−1 226425.3 13283.8 88317.9 -3280.9 167345.1 -1644.5 22131.5 33415.2
(380815.1) (285594.4) (174900.9) (87014.6) (287882.3) (224140.2) (102344.0) (82020.7)

Starst−2 203893.4 165585.0 205185.0 221952.9∗∗ 234977.4 108587.0 159468.7 69587.1
(336693.0) (218117.7) (155300.2) (100080.7) (243293.3) (199662.2) (113475.9) (86536.2)

Wins 16401.4∗∗∗ 16095.1∗∗∗ 16532.0∗∗∗ 14674.9∗∗∗ 17132.9∗∗∗ 16137.1∗∗∗ 17154.5∗∗∗ 16032.2∗∗∗

(4022.4) (4050.8) (4061.7) (3968.5) (4304.9) (4126.2) (4226.7) (4179.2)

Winst−1 4748.5 4102.8 4100.7 5912.3 4171.2 4528.4 4721.5 4122.7
(4697.1) (4621.6) (4668.8) (4595.2) (4522.4) (4586.8) (4724.2) (4828.4)

Winst−2 15495.5∗∗∗ 14761.6∗∗∗ 14219.9∗∗∗ 10899.3∗∗ 15062.1∗∗∗ 14880.7∗∗∗ 15002.4∗∗∗ 14752.4∗∗∗

(4544.6) (4571.7) (4520.0) (4782.4) (4172.7) (4291.8) (4736.9) (4854.2)

CoachCarTournt−1 53608.3∗∗∗ 53939.5∗∗∗ 53237.4∗∗∗ 53561.2∗∗∗ 53678.2∗∗∗ 54457.3∗∗∗ 54653.0∗∗∗ 52980.0∗∗∗

(16243.8) (16323.8) (16347.0) (16315.1) (16304.6) (16256.2) (16259.3) (16376.0)

CoachCareert−1 -72663.3 -30560.9 -43597.0 -72923.5 -70991.4 -72693.8 -64191.8 -59716.8
(295769.7) (292317.2) (295390.0) (291685.5) (293372.3) (293534.3) (294674.0) (292786.1)

CoachChange 21303.7 18328.6 23666.7 21192.4 21836.9 20925.1 17639.8 17187.5
(61326.5) (61403.0) (60989.1) (61483.0) (61618.5) (61350.9) (61259.9) (61464.8)

NCAATournt−1 165630.5∗∗ 167951.2∗∗ 165258.0∗∗ 172095.1∗∗ 166695.3∗∗ 161106.1∗∗ 159724.4∗∗ 159488.4∗∗

(74989.6) (74251.6) (74014.2) (76384.5) (72835.6) (74381.4) (74244.2) (74821.3)

Round2t−1 -73105.3 -64545.4 -62367.3 -64309.2 -65697.6 -64115.5 -62807.1 -60811.1
(126983.3) (124158.5) (128221.5) (129147.1) (128643.0) (127160.8) (127817.7) (126639.0)

Sweet16t−1 268201.0 262449.6 267328.5 308551.4∗ 284234.0 276561.4 298365.6∗ 286065.7∗

(173635.3) (181712.2) (178524.2) (170488.4) (178246.7) (178620.6) (173498.7) (171741.4)
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Elitet8t−1 -106558.5 -108711.1 -69385.5 2207.8 -87065.8 -69938.5 -86071.3 -93301.6
(453717.0) (459412.9) (473096.7) (434909.6) (465610.0) (474432.6) (451961.7) (451327.7)

Final4t−1 351330.9 357252.4 385537.2 398992.6 372331.3 418360.6 396717.3 394768.0
(363656.3) (372603.0) (365858.7) (379135.5) (402738.2) (402114.1) (377745.2) (377032.3)

Finalt−1 -31004.4 33779.7 -51028.4 36693.2 -112965.9 -44692.1 -23126.8 -17714.0
(269017.4) (338853.1) (307084.9) (287027.4) (322843.0) (344107.1) (274565.3) (277970.8)

Champt−1 1804407.2∗∗ 1954931.9∗∗∗ 1952856.5∗∗∗ 2079971.4∗∗∗ 1858425.7∗∗ 1853390.6∗∗ 1883220.4∗∗∗ 1914658.2∗∗∗

(852024.8) (585288.6) (657342.2) (643846.0) (747454.4) (726504.3) (618545.2) (619006.2)

NSchlsConf 3419.9 2487.8 3225.9 4183.5 5268.2 4192.6 7060.5 5710.4
(40489.6) (40283.4) (40090.1) (40602.0) (40177.5) (40238.4) (40212.9) (40307.5)

NSchlsConfAP -43949.2 -45507.3 -46672.0 -40075.3 -39685.4 -43315.3 -43840.1 -41422.0
(39761.7) (41144.6) (40921.4) (40815.3) (41500.5) (41984.2) (40413.7) (39998.3)

NSchlsConfTourn 862.6 513.1 59.56 -2832.3 1605.7 1610.3 1709.9 2704.3
(39096.3) (38838.1) (38871.9) (38864.5) (39006.7) (38770.9) (39511.4) (39355.3)

NSchlsConfFF -104395.1 -99768.9 -91551.5 -91890.9 -97524.2 -99203.7 -94643.9 -94380.4
(81984.3) (80600.9) (81199.2) (83667.6) (80585.9) (80888.9) (81145.0) (80966.2)

SOS 3635.6 2691.7 2858.0 1951.1 2434.3 2164.3 2137.8 1291.0
(12091.4) (12059.1) (12211.9) (12127.1) (12059.1) (12025.6) (12136.8) (12222.4)

HistWins -1890.8 -2059.8 -2205.8 -2478.7 -2182.4 -2145.9 -1887.2 -1882.4
(2930.4) (2927.4) (2925.2) (2945.1) (2953.5) (2982.9) (2926.2) (2933.6)

HistNCAATrn -30751.4 -28369.8 -27395.3 -43587.4 -35616.1 -32640.8 -33161.1 -38655.7
(58566.4) (59741.7) (59610.3) (58438.7) (59062.4) (58883.9) (59304.3) (58834.5)

HistRound2 -75644.3 -55178.8 -55176.0 -65482.6 -71222.5 -74954.1 -68607.5 -71657.3
(109898.8) (111504.5) (111355.5) (111102.8) (111143.8) (111161.1) (111236.5) (111515.5)

HistSweet16 -109348.1 -110798.2 -92988.2 -63467.9 -84814.2 -78889.9 -100619.0 -104764.2
(141491.3) (142123.7) (138063.4) (134181.5) (139171.6) (139861.1) (145514.9) (145375.8)

HistElite8 132811.7 146398.0 158075.9 170779.1 135952.8 131605.7 112933.1 114534.6
(188347.9) (193316.9) (194087.6) (188281.9) (187836.7) (190321.0) (193890.5) (196082.9)

HistFinal4 277229.8 357279.0 383176.7 399495.3 304066.8 290587.7 303076.4 278903.0
(312838.5) (314248.9) (314886.2) (321911.4) (313574.3) (317596.8) (323032.2) (320433.7)

HistFinal 65092.5 201973.6 205616.7 146366.0 206075.8 195219.3 151495.7 164653.3
(601270.3) (585697.9) (587330.0) (575733.5) (566610.0) (569223.1) (584343.1) (587752.8)

HistChamp -761925.7 -829906.6 -793943.8 -754868.5 -790988.1 -798037.6 -797728.5 -832113.6
(846758.3) (789728.3) (786464.4) (773601.1) (775861.5) (802985.7) (778815.9) (789454.9)

Distance -1028.3 -894.8 -942.9 -1182.5 -1082.4 -1007.9 -1205.4 -1075.8
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(1538.6) (1543.9) (1533.3) (1555.5) (1568.2) (1549.4) (1527.0) (1521.5)

UndergradPop -51465.9 -49241.4 -50692.7 -47641.2 -48865.7 -47912.8 -45444.4 -46252.7
(38075.5) (36967.0) (37792.9) (38400.5) (37508.6) (37989.5) (37532.9) (37093.9)

PerCapPI 13549.5 11129.1 10495.8 3777.8 15420.3 15022.1 11228.6 11050.3
(40711.4) (40368.0) (39494.8) (39902.8) (40113.4) (40208.8) (39757.1) (40299.5)

GrPerCapPI 7657.9 9120.8 10200.8 10847.5 8239.5 9923.4 8541.1 9837.2
(15454.6) (15486.8) (15375.4) (15698.8) (15484.6) (15630.4) (15421.7) (15486.3)

CityPop 838632.4 892973.9 885192.5 844416.6 984081.3 1017251.7 795369.5 774215.2
(1919777.3) (1884569.5) (1900613.0) (1922628.1) (1882562.4) (1869222.3) (1884797.4) (1908816.8)

StatePop -34504.8 13468.7 -9179.8 30621.3 55668.1 52754.1 23559.9 44373.3
(431570.3) (410095.8) (417833.8) (432343.8) (423219.5) (423250.4) (417888.4) (424301.9)

Team Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

N 2820 2820 2820 2820 2820 2820 2820 2820
Within R2 0.672 0.672 0.671 0.674 0.670 0.671 0.670 0.671
Adjusted R2 0.969 0.969 0.968 0.969 0.968 0.968 0.968 0.969
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 46

Marginal Revenue Product of Star College Football Players. This table reports
first-difference estimates of a star football player’s marginal revenue product from Model
(2.3) over the sample period 2003-2012. Revenues are real 2012 USD at an annual frequency.
Standard errors are in parentheses and have been clustered by team. Estimates for six
different measures of star player are reported: (1) All Americans, (2) Heisman Finalists
(voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive touchdowns
or yards. The last two measures (5-6) are Top 10 in offensive touchdowns or yards for
Running Backs and Wide Receivers. The difference between (4,5,6) is how star Quarterbacks
are measured with (5) being a Top 10 Quarterback in pass efficiency rating (PER) or
touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency rating alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

∆Starst 948869.0∗∗∗ 1469685.8∗ 1445711.1∗∗∗ 779553.1∗∗∗ 748806.3∗∗∗ 750360.7∗∗∗

(349418.3) (828796.5) (506010.5) (235433.4) (225132.4) (254279.4)

∆Starst−1 709250.0∗ 1649626.2∗∗ 2120098.8∗∗∗ 573737.5∗∗∗ 590639.4∗∗∗ 739697.0∗∗∗

(402677.7) (674256.7) (569801.0) (207958.1) (208535.9) (223208.1)

∆Starst−2 163983.3 49332.1 194599.5 -55141.1 76767.2 220992.2
(352823.6) (576912.1) (441350.4) (156582.1) (180291.6) (192410.0)

∆Winst−1 -54146.5 -33695.2 -91383.2 -28327.0 -36400.5 -43853.1
(80711.3) (75255.9) (83775.1) (82789.0) (83264.7) (83922.2)

∆Winst−2 20750.4 36759.6 24862.7 42802.2 25832.4 11422.1
(58634.4) (55110.4) (55154.6) (61054.7) (64107.2) (62159.7)

∆CoachCareert−1 884195.7 430509.6 880297.2 -136643.1 -140116.1 -21058.4
(1312309.0) (1255639.2) (1278001.1) (1306426.0) (1301108.3) (1297892.7)

∆CoachChange -73262.0 -26467.6 -54643.8 -4393.0 5901.6 2825.6
(251181.7) (251073.2) (241656.4) (247955.4) (248133.9) (247039.7)

∆BowlGamet−1 439741.8 373694.9 431727.3 371401.8 384588.8 368532.4
(359784.3) (352783.9) (359075.4) (356970.6) (356305.0) (356858.1)

∆BowlWint−1 -215497.7 -93293.9 -47035.8 -228514.3 -241983.2 -242143.6
(354696.1) (340856.9) (325671.5) (342739.8) (345832.5) (347101.1)

∆SOSt 27455.5 37255.0 36421.3 52637.3 52301.9 49399.7
(48864.5) (52187.1) (52476.9) (50442.0) (50416.6) (51039.1)

∆TDPtst -1764.7 2640.5 37705.6 40245.8 37889.2
(69707.7) (69057.6) (70520.5) (71058.5) (70989.1)

∆TDYdst 1541229.3 1510846.0 1168792.7 1222291.0 1247976.1
(2104018.2) (2091956.9) (2096167.0) (2103501.9) (2124458.2)

∆TDPassYdst -1539497.4 -1508668.2 -1168688.1 -1222021.8 -1247752.8
(2103651.2) (2091728.8) (2096283.9) (2103566.6) (2124552.2)

∆TDPassTDst -913215.8 -879058.7 -1138818.8∗ -1163441.9∗ -1139000.7∗

(624718.7) (613457.9) (630121.0) (637136.4) (633583.4)

∆TDRushYdst -1534036.7 -1503408.4 -1162771.0 -1216373.5 -1241862.4
(2103109.5) (2091016.2) (2095591.4) (2102916.2) (2123882.9)

∆TDRushTDst -324770.9 -356404.6 -546340.6 -534016.4 -498471.1
(497808.1) (488928.7) (499535.4) (500650.3) (496791.9)

∆HistWinst 477.1 4820.3 8041.6 -4001.5 -2100.1 -1302.8
(52168.7) (57253.8) (57092.3) (55785.0) (55855.2) (55761.7)
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∆HistBowlst -429669.0 -474205.6 -456987.1 -424740.3 -429260.0 -458484.8
(324241.9) (331002.7) (323843.5) (320931.3) (322325.8) (324853.4)

∆HistBowlWinst 354137.7 372959.8 350225.7 462937.2 447073.5 458095.4
(372663.6) (361051.6) (358653.7) (357565.9) (357698.0) (355794.7)

∆Distancet -27509.6∗ -29520.7∗ -32039.9∗∗ -26164.8∗ -25140.5 -24894.1
(14851.1) (15635.2) (15683.3) (15470.1) (15580.5) (15741.2)

∆UndergradPopt -305926.3∗ -355366.1∗ -351079.5∗ -311359.9∗ -308788.2∗ -306699.0∗

(177753.5) (185453.5) (186002.7) (166927.6) (168213.6) (168737.4)

∆PerCapPIt 175881.2 245285.9 259355.0 237906.1 237430.8 219978.5
(289991.6) (305125.9) (299039.0) (303836.3) (303764.8) (299368.6)

∆GrPerCapPIt -3727.7 7836.6 1401.2 -11569.6 -8007.5 2029.2
(106066.3) (104850.2) (104294.6) (109688.7) (109104.4) (107490.6)

∆CityPopt 28054638.2 16664412.0 14035656.0 18365911.2 18833592.2 16952734.7
(23269063.7) (23092406.6) (22175343.5) (23958552.0) (23516072.6) (23040343.3)

∆StatePopt -1215251.8 -650802.3 -859168.4 -1058134.8 -1029541.7 -787390.3
(2801694.5) (2778169.5) (2812999.1) (2745399.2) (2809285.5) (2786095.6)

∆Conference 216108.4 187016.2 148304.5 222704.3 219111.6 209820.7
(231504.8) (217321.0) (223844.3) (224161.5) (230133.0) (232429.1)

Team Dummies Yes Yes Yes Yes Yes Yes

Year Dummies Yes Yes Yes Yes Yes Yes

N 936 936 936 936 936 936
R2 0.145 0.155 0.169 0.168 0.165 0.162
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

216



Table 47

Marginal Revenue Product of Star College Basketball Players. This table reports first-difference estimates of a star
basketballl player’s marginal revenue product from Model (2.3) over the sample period 2003-2012. Revenues are real 2012 USD at
an annual frequency. Standard errors are in parentheses and have been clustered by team. Estimates for eight different measures
of star player are reported: (1) Wooden Award Winner, Naismith Award Winner or the NCAA Tournament’s Most Outstanding
Player, (2) All American First Team, (3) All American First or Second Team, (4) NBA Drafted Players, (5) NBA Top 5 Draft
Pick, (6) NBA Top 10 Draft Pick, (7) Top 10 Points Scorers and, (8) Top 20 Points Scorers.

(1) (2) (3) (4) (5) (6) (7) (8)

∆Starst 1244669.4∗∗∗ 682364.7∗∗∗ 332745.2 197634.8∗∗ 475602.4∗∗ 435118.6∗∗ 369001.0∗ 395939.8∗∗

(473789.8) (152435.6) (204309.7) (90979.0) (188524.0) (174028.1) (204126.7) (162427.6)

∆Starst−1 1316327.3∗∗∗ 355506.6∗ 157342.8 53072.7 328429.3 271346.3 129652.0 177974.9∗

(339865.8) (197409.3) (157492.2) (87034.0) (254837.0) (187689.1) (123510.3) (104788.6)

∆Starst−2 605049.6 270524.5 37812.9 197711.5∗∗ 125740.9 34561.9 111437.7 102171.0
(369234.7) (188809.1) (159556.9) (99526.1) (231342.9) (200534.0) (115025.0) (96238.5)

∆Winst−1 -1301.9 -1603.7 -934.6 1277.0 -763.9 -1028.1 -407.9 -1202.9
(4706.4) (4601.7) (4711.0) (4571.6) (4688.1) (4743.9) (4704.1) (4713.2)

∆Winst−2 6140.3 5933.1 7128.9 4308.6 7100.3 7057.4 6653.0 5910.6
(5056.1) (4980.6) (5098.9) (5349.8) (5149.0) (5205.0) (5239.5) (5090.4)

∆CoachCarTournt−1 33305.8∗ 33326.3∗ 34080.3∗ 34753.3∗ 33151.4∗ 33005.1∗ 33498.5∗ 33115.2∗

(18660.4) (18780.8) (18727.3) (18652.8) (18535.2) (18281.2) (18778.8) (18692.8)

∆CoachCareert−1 262163.2 295546.3 270967.0 183813.2 236739.8 253957.1 265972.6 270420.7
(259980.7) (258929.2) (264018.8) (257315.3) (260180.0) (260983.4) (257039.7) (256011.5)

∆CoachChanget -4611.6 -6869.6 -4689.7 -4844.7 -5278.7 -4711.1 -8270.4 -9081.9
(54886.6) (54844.0) (54889.6) (54770.4) (54771.8) (54472.8) (54813.7) (55005.8)

∆NCAATournt−1 74719.7 74675.0 67046.6 70089.8 68273.4 61816.5 69830.1 64272.1
(68202.2) (67167.5) (66767.5) (68009.1) (67868.5) (69181.8) (68045.5) (67700.6)

∆Round2t−1 -85080.5 -85634.6 -78693.5 -76779.6 -80149.4 -82603.7 -74958.7 -75548.6
(103244.2) (102833.0) (104510.7) (106486.2) (104118.6) (104476.9) (103440.2) (102373.0)

∆Sweet16t−1 95587.9 119129.6 118149.8 168226.7 119035.8 118929.7 162602.3 141597.7
(118749.5) (126224.0) (126882.1) (121669.4) (127498.6) (125137.8) (124654.8) (123438.1)

∆Elite8t−1 -313071.5 -292302.4 -258628.3 -179807.7 -279848.1 -299177.7 -303678.9 -303212.8
(337691.0) (339913.1) (342523.1) (322040.4) (340484.4) (345180.8) (334222.0) (335192.5)
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∆Final4t−1 -219095.3 -170690.6 -195919.7 -210148.5 -230657.8 -224554.6 -154629.5 -160398.5
(403620.2) (412452.1) (387443.2) (403956.8) (425532.7) (420284.7) (408967.9) (407983.0)

∆Finalt−1 -20853.5 72935.7 -22729.9 111227.5 1639.0 -16337.9 12868.9 33950.7
(258131.2) (334494.6) (310338.5) (222601.8) (261274.0) (268731.4) (267721.0) (275527.2)

∆Winnert−1 515218.4 1121796.8∗∗∗ 1015056.5∗∗ 1308687.3∗∗∗ 943865.2∗∗ 847829.4∗ 1039990.5∗∗ 1067729.4∗∗

(489234.2) (393829.8) (433272.2) (352109.5) (450760.4) (479111.8) (413073.1) (423185.6)

∆NSchlsConft 43502.9 41396.7 39349.8 46093.3 42205.8 39228.4 46549.1 43871.9
(46441.1) (46218.8) (46566.7) (46286.6) (45887.1) (46334.5) (46441.6) (45467.9)

∆NSchlsConfAPt -13052.3 -15469.7 -18245.2 -8652.0 -13483.5 -12887.4 -14829.5 -12345.1
(46963.1) (48238.3) (48605.9) (49411.1) (48440.7) (48940.4) (47794.7) (46554.3)

∆NSchlsConfTournt -12350.8 -12946.5 -9729.0 -16912.5 -8889.4 -9493.0 -11588.6 -10277.3
(45308.9) (45319.5) (45403.0) (44873.6) (45066.1) (44871.2) (45610.7) (45345.5)

∆NSchlsConfFFt -57304.9 -56821.6 -56589.0 -60358.2 -60979.0 -61468.1 -57036.6 -59452.5
(63766.9) (62216.7) (63476.0) (64899.7) (62150.1) (61644.2) (61963.9) (61862.0)

∆SOSt−1 13187.2 12593.2 13027.8 11312.8 12107.4 12144.1 12113.7 11368.7
(9932.5) (9907.4) (10032.1) (10025.9) (9938.5) (10085.9) (9959.7) (9960.6)

∆HistWinst -6248.3∗∗ -6076.0∗∗ -6260.4∗∗ -6379.7∗∗ -6408.1∗∗ -6509.8∗∗ -6419.0∗∗ -5988.2∗

(3096.3) (3070.5) (3114.8) (3093.3) (3148.6) (3169.9) (3105.8) (3075.6)

∆HistNCAATrnt 14157.4 15811.5 19392.1 17058.6 16445.2 20267.4 18377.4 14935.6
(65658.1) (66096.7) (65211.2) (65551.6) (65702.3) (65453.8) (66087.2) (65878.3)

∆HistRnd2t -32880.5 -15504.0 -13549.5 -19867.8 -25276.1 -25021.1 -13155.0 -19326.6
(130537.3) (129231.4) (131319.9) (127476.7) (131509.0) (131654.6) (131030.2) (131018.2)

∆HistSwt16t 24887.9 38188.8 34712.4 56581.1 59016.0 71304.5 44849.9 35880.7
(136107.5) (138638.7) (138781.2) (133537.2) (135459.6) (140942.6) (139387.9) (131827.6)

∆HistElite8t -58198.2 -67712.9 -83369.0 -47078.2 -68912.9 -79856.8 -102662.3 -94145.5
(146252.2) (147578.3) (152915.5) (145376.3) (147409.8) (148945.9) (151412.6) (153192.8)

∆HistFin4t 282957.6 346493.3 305677.5 432115.7 248681.7 239408.4 298909.8 281965.4
(305170.3) (315927.5) (312649.5) (319617.8) (298725.9) (304325.5) (308255.6) (308102.1)

∆HistFinalt -339759.5 -160841.0 -228586.7 -195778.1 -200579.6 -247918.7 -193488.7 -206363.6
(384959.2) (347211.1) (369356.3) (378611.7) (365343.3) (355409.6) (368204.7) (355766.8)

∆HistWinnert -755366.8 -864673.7 -787832.7 -768445.5 -739792.4 -767086.0 -772197.9 -836478.2
(909030.1) (941372.5) (938316.7) (918507.9) (941995.7) (928306.1) (926269.9) (918290.0)

∆Distancet -537.6 -555.9 -587.1 -798.1 -643.4 -542.7 -792.7 -781.2
(1589.6) (1635.2) (1584.8) (1625.6) (1615.3) (1609.3) (1593.6) (1605.8)

∆UndergradPopt -55936.6 -58120.0∗ -51045.9 -51872.6 -54945.6 -53246.9 -46710.5 -49400.2
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(36042.9) (34025.1) (35180.4) (34385.2) (33696.1) (34348.9) (35373.6) (32964.8)

∆PerCapPIt 33400.8 30174.2 31512.5 23621.3 34446.1 37192.6 31129.1 32844.3
(37742.9) (36756.3) (37080.4) (37450.6) (37712.5) (37465.6) (37433.7) (36809.1)

∆GrPerCapPIt 15075.3 16015.3 17198.2 19420.4 15033.4 16145.8 15763.7 15988.7
(14224.1) (14449.2) (14469.3) (14358.1) (14119.5) (14138.6) (14317.5) (14249.5)

∆CityPopt 810717.9 890468.9 845822.9 814232.8 1080732.3 1069248.4 602207.3 585040.1
(1761651.3) (1735986.2) (1726862.9) (1681573.7) (1703770.9) (1716922.6) (1692809.1) (1687281.1)

∆StatePopt 95573.2 249783.1 269071.9 287891.1 290827.5 281120.3 274095.2 291216.1
(379218.7) (344333.9) (353527.4) (363255.5) (352489.5) (354104.0) (353083.6) (357574.8)

Team Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 2819 2819 2819 2819 2819 2819 2819 2819
R2 0.103 0.0990 0.0951 0.106 0.0950 0.0967 0.0952 0.100
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 48

Marginal Revenue Product of Star College Football Players. This table reports
OLS estimates of a star football player’s marginal revenue product from Model (2.4) over the
sample period 2003-2012. Revenues are real 2012 USD at an annual frequency. Standard
errors are in parentheses and have been clustered by team. Estimates for six different
measures of star player are reported: (1) All Americans, (2) Heisman Finalists (voted 5th
place or above), (3) Heisman Nominees, and (4) Top 10 in offensive touchdowns or yards.
The last two measures (5-6) are Top 10 in offensive touchdowns or yards for Running Backs
and Wide Receivers. The difference between (4,5,6) is how star Quarterbacks are measured
with (5) being a Top 10 Quarterback in pass efficiency rating (PER) or touchdowns or yards
while (6) is a Top 10 Quarterback in pass efficiency rating alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 1079047.5∗∗∗ 1238360.9 1133259.8∗ 688562.2∗∗∗ 682939.7∗∗∗ 653164.6∗∗∗

(289289.4) (896004.8) (578029.1) (215182.7) (207103.7) (236700.4)

Starst−1 231460.8 538886.5 1058006.7∗∗ 279846.5 280493.5 407705.1∗∗

(397490.4) (665666.7) (523856.6) (227686.1) (209903.5) (198800.1)

Starst−2 256403.5 -948961.4∗ -1106412.0∗∗ -279814.4 -191538.5 -149343.2
(361902.0) (510459.2) (524545.0) (219815.8) (217130.7) (208955.2)

Revenuest−1 0.634∗∗∗ 0.632∗∗∗ 0.634∗∗∗ 0.631∗∗∗ 0.629∗∗∗ 0.629∗∗∗

(0.0518) (0.0469) (0.0466) (0.0463) (0.0465) (0.0468)

Revenuest−2 0.0682 0.0772 0.0802 0.0779 0.0783 0.0789
(0.0633) (0.0603) (0.0600) (0.0604) (0.0602) (0.0604)

Winst−1 -14847.2 -862.0 -55154.9 -14746.7 -18032.2 -22011.3
(99422.4) (98353.1) (104678.3) (103253.5) (102582.5) (104112.3)

Winst−2 -77429.7 -41513.6 -27225.5 -33286.2 -41261.8 -53439.4
(56617.1) (58860.2) (59779.5) (68664.5) (69703.1) (66024.5)

CoachCareert−1 1715688.8 1517318.8 1618001.6 925489.1 929471.6 1089903.8
(1512631.9) (1409909.3) (1397621.8) (1414940.7) (1412892.8) (1403736.1)

CoachChange -95462.1 -66663.3 -77862.1 -51784.0 -28522.2 -32981.2
(337630.7) (352351.2) (345736.8) (345418.0) (344997.4) (342469.0)

BowlGamet−1 -687927.9 -756760.7 -672961.4 -788983.7 -775863.1 -772709.5
(475596.6) (466738.1) (472307.6) (475429.3) (468414.4) (469621.9)

BowlWint−1 288046.4 400718.0 458361.7 351149.8 326236.1 309829.1
(393782.9) (390772.7) (379398.1) (389794.5) (393323.1) (396806.5)

SOS 51809.1 58921.8 58962.0 73413.7 74622.0 70219.9
(57004.3) (57313.8) (58992.9) (59515.3) (59211.3) (58987.1)

TDPts -30825.8 -22234.3 -9301.5 -1996.3 -4059.2
(85977.6) (85755.9) (83582.6) (83820.1) (83620.2)

TDYds 376665.3 380610.4 247775.3 330994.5 293402.8
(3186572.5) (3209443.1) (3226591.8) (3218781.3) (3220367.3)

TDPassYds -369597.3 -373845.8 -243323.0 -326252.1 -288229.1
(3186568.2) (3209592.7) (3226908.6) (3219044.5) (3220573.8)

TDPassTDs -820347.3 -836225.0 -973055.8 -1037798.0 -1015333.0
(721809.2) (712863.6) (709903.2) (716561.5) (712744.3)

TDRushYds -367740.3 -371835.3 -239840.2 -323314.4 -285408.0
(3187225.1) (3210032.9) (3227510.5) (3219736.8) (3221238.5)
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TDRushTDs -101315.3 -179351.9 -185732.9 -207994.5 -185822.5
(660016.3) (666941.3) (636734.7) (638233.7) (633879.0)

HistWins 30915.3 20417.2 18211.6 14585.9 14962.8 14834.6
(37546.8) (37860.7) (37779.8) (36976.7) (37145.9) (37289.6)

HistBowls -554841.7∗∗ -560824.3∗∗ -555038.6∗∗ -496530.3∗∗ -502466.8∗∗ -515950.2∗∗

(260390.5) (255401.8) (256815.4) (249715.7) (249787.9) (251578.2)

HistBowlWins -109935.1 -52253.8 -40695.2 -24408.0 -17567.1 -22140.1
(326160.7) (310007.7) (308163.2) (314767.6) (319018.1) (320639.3)

Distance -3256.2 -3500.2 -2536.3 -4478.5 -4221.5 -4335.6
(10022.0) (9673.9) (9746.8) (10060.9) (10001.4) (9875.2)

UndergradPop 1988.1 -12161.5 -14228.9 -21101.1 -27141.8 -26943.7
(97804.0) (103585.6) (103399.0) (103480.7) (103954.5) (104028.7)

PerCapPI 52178.7 66961.2 76344.3 80875.7 75583.5 71641.2
(141963.3) (137297.4) (135854.6) (139639.8) (139588.3) (139017.6)

GrPerCapPI 40208.4 44195.0 43275.8 19036.3 23879.7 30274.8
(100621.3) (100180.3) (99411.9) (100907.6) (100474.7) (100463.8)

CityPop 14690061.1 10350327.0 8011106.6 9461579.5 9401550.8 9344938.5
(12124261.1) (12335007.7) (12749482.5) (12343110.3) (12313243.0) (12434151.0)

StatePop 177521.1 194540.6 248217.4 174234.3 159525.0 143899.3
(358162.7) (362490.7) (369669.9) (370581.2) (372859.6) (375933.4)

Year Dummies Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
R2 0.972 0.972 0.972 0.972 0.972 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 49

Marginal Revenue Product of Star College Basketball Players. This table reports OLS estimates of a star basketball
player’s marginal revenue product from Model (2.4) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates for eight different measures of star
player are reported: (1) Wooden Award Winner, Naismith Award Winner or the NCAA Tournament’s Most Outstanding Player,
(2) All American First Team, (3) All American First or Second Team, (4) NBA Drafted Players, (5) NBA Top 5 Draft Pick, (6)
NBA Top 10 Draft Pick, (7) Top 10 Points Scorers, and (8) Top 20 Points Scorers.

(1) (2) (3) (4) (5) (6) (7) (8)

Stars 1206300.1∗∗ 635196.1∗∗ 341945.7 247469.1∗∗ 527306.9∗∗ 421527.9∗ 414020.6∗∗ 370848.7∗∗

(501780.2) (245445.2) (212881.3) (99151.5) (236665.1) (254394.8) (190465.1) (155549.9)

Starst−1 462913.2 54083.6 -19918.0 -38558.9 198894.2 17053.7 -42974.3 -10924.1
(315212.3) (279577.9) (189781.5) (88269.1) (325219.3) (246099.5) (126430.0) (78065.5)

Starst−2 -413247.1 26767.6 -50709.7 164020.0∗ -59523.1 -168030.2 8130.3 -91041.0
(362317.1) (227605.2) (213869.0) (98863.0) (369112.6) (261677.2) (194254.3) (120111.6)

Revenuest−1 0.448∗∗∗ 0.441∗∗∗ 0.441∗∗∗ 0.439∗∗∗ 0.441∗∗∗ 0.442∗∗∗ 0.441∗∗∗ 0.443∗∗∗

(0.0823) (0.0813) (0.0816) (0.0813) (0.0816) (0.0818) (0.0814) (0.0813)

Revenuest−2 0.192∗∗∗ 0.193∗∗∗ 0.190∗∗∗ 0.185∗∗∗ 0.190∗∗∗ 0.189∗∗∗ 0.189∗∗∗ 0.189∗∗∗

(0.0297) (0.0290) (0.0291) (0.0293) (0.0301) (0.0299) (0.0293) (0.0293)

Winst−1 6011.0 5756.8 6123.9 7507.6∗ 6079.7 5911.1 6474.5 5223.1
(4261.9) (4412.6) (4470.7) (4181.1) (4291.2) (4306.0) (4334.6) (4433.7)

Winst−2 8202.0∗ 6776.9 7673.1 3817.7 7985.6∗ 8356.2∗ 6720.7 7482.8
(4754.0) (4513.5) (4702.4) (4466.6) (4315.5) (4515.0) (4753.7) (4855.8)

CoachCarTournt−1 44632.1∗∗ 43999.3∗∗ 44541.0∗∗ 43340.3∗∗ 45355.4∗∗ 44480.5∗∗ 44033.6∗∗ 44079.1∗∗

(19463.0) (19894.6) (20074.0) (20158.1) (19608.0) (19728.9) (19540.5) (19713.0)

CoachCareert−1 -186613.9 -135308.9 -145741.7 -134982.8 -185301.1 -156790.9 -133499.5 -106543.8
(288071.0) (289959.1) (296798.2) (291648.2) (288015.8) (291108.2) (287163.3) (284059.0)

CoachChange -13247.6 -11962.3 -10224.8 -5233.5 -11763.5 -11399.0 -15070.8 -13199.0
(68897.7) (68803.0) (68826.9) (68953.7) (69037.2) (68553.2) (68938.2) (69266.6)

NCAATournt−1 115584.5 120983.6 110093.5 108834.6 110537.4 100205.7 112591.4 109957.2
(81227.7) (80445.5) (80642.3) (83139.0) (81157.3) (82190.2) (80798.3) (80977.8)

Round2t−1 -164543.6 -150598.0 -151782.0 -160243.5 -146019.8 -152483.0 -143364.9 -141868.2
(129270.4) (126884.6) (126975.1) (129578.2) (128882.0) (127360.3) (128413.8) (128374.6)
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Sweet16t−1 445793.1∗∗∗ 419172.0∗∗ 427315.2∗∗ 465840.0∗∗∗ 426405.7∗∗ 427571.5∗∗ 477195.9∗∗∗ 450454.4∗∗∗

(165884.8) (173351.1) (166647.8) (164354.3) (166727.8) (167560.5) (163760.6) (163199.3)

Elite8t−1 -10392.7 14934.9 93325.4 112250.4 33918.8 38258.1 50490.7 26337.4
(385419.6) (390238.5) (387504.4) (356189.2) (383041.2) (391301.9) (383554.1) (377051.0)

Final4t−1 -57227.5 13557.5 59427.7 8286.0 -10943.9 60890.5 80826.5 62259.4
(421818.6) (446281.2) (429546.8) (430123.2) (460996.2) (460609.7) (452564.4) (455293.6)

Finalt−1 -300987.7 -247369.9 -299080.4 -235792.1 -340469.2 -290243.9 -245262.2 -232758.4
(350685.4) (376541.0) (356213.1) (359965.2) (353018.6) (360152.7) (340895.3) (344554.2)

Winnert−1 1297594.2 1663255.5∗∗ 1607968.5∗∗ 1747320.4∗∗ 1487041.1∗ 1420246.4∗ 1648517.3∗∗ 1672243.8∗∗

(849166.7) (695375.0) (712887.6) (738563.8) (820233.7) (834295.7) (695408.9) (691206.4)

NSchlsConf 27822.9 29991.8 29914.8 32539.3 30691.9 29324.8 32909.2 31387.2
(31629.0) (31709.3) (31826.6) (31790.5) (31540.6) (31734.9) (32136.8) (31784.6)

NSchlsConfAP 22454.7 15360.0 14727.9 24797.3 20556.7 18865.2 19203.0 19769.4
(56494.3) (58410.2) (58432.3) (59055.3) (59834.8) (59595.1) (58948.2) (58101.1)

NSchlsConfTourn 28202.0 30175.6 31082.3 20921.7 32437.7 30782.6 29549.7 30898.2
(48003.6) (48410.3) (48639.3) (48410.4) (48064.3) (48282.7) (48824.9) (49039.3)

NSchlsConfFF -36140.8 -27923.7 -21836.2 -26704.9 -31000.8 -30224.3 -21458.4 -23343.0
(68650.8) (68877.3) (69733.7) (68920.6) (67538.7) (67163.0) (68215.0) (67792.8)

SOS 13337.5 12274.2 12781.6 11714.9 11902.6 11967.7 11678.8 10914.9
(11787.8) (11907.9) (11979.5) (12003.8) (11898.9) (11886.5) (11991.5) (12044.2)

HistWins 101.8 -56.41 -33.10 -22.15 -63.17 -12.25 -68.71 201.0
(1929.2) (1915.4) (1954.4) (1911.9) (1941.3) (1976.4) (1969.3) (1939.0)

HistNCAATourn -53565.8 -54934.7 -56008.6 -62778.2 -57725.7 -57067.0 -57452.6 -60085.8
(45451.5) (46243.4) (45414.1) (46404.5) (46614.8) (47194.7) (46097.8) (45931.2)

HistRound2 21720.0 30445.9 37104.7 26629.5 25622.1 24147.9 33372.2 32558.6
(80744.7) (82476.3) (86308.0) (83036.3) (82043.8) (82092.4) (83584.2) (83175.1)

HistSweet16 -20948.5 643.0 1899.6 39178.8 19471.0 16897.8 2004.0 -703.5
(128013.4) (137708.6) (136452.6) (128342.4) (121424.7) (117290.1) (137979.0) (135976.4)

HistElite8 45765.9 50387.4 43036.8 51390.3 32674.4 31669.0 25604.2 28053.2
(133967.0) (136052.8) (133963.6) (133829.8) (133475.4) (132064.9) (131072.0) (132264.4)

HistFinal4 431610.9 520572.6 479226.8 531320.8 438941.5 438856.3 476489.6 452650.3
(316134.2) (315784.0) (328219.2) (330413.6) (331864.7) (326186.2) (318149.3) (315675.3)

HistFinal -1068049.1∗∗ -953288.7∗∗ -924933.0∗∗ -895721.7∗ -867513.9∗ -909060.1∗∗ -955645.0∗∗ -975649.9∗∗

(465705.0) (445241.6) (449436.9) (462139.6) (459266.3) (455122.4) (433085.5) (438775.0)

HistWinner -622707.1 -633117.7 -657391.7 -596307.2 -639083.6 -691910.3∗ -639940.2 -678648.0∗
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(411160.2) (414867.8) (403935.0) (398700.7) (421273.8) (415081.1) (396892.8) (390302.8)

Distance -2321.8 -2184.2 -2354.5 -2309.5 -2377.4 -2428.4 -2353.1 -2349.4
(1509.1) (1543.4) (1497.7) (1547.4) (1535.9) (1517.5) (1514.7) (1503.8)

UndergradPop 950.5 1459.5 3002.9 4046.8 1847.1 2877.6 3848.0 3755.5
(14195.6) (13949.0) (14735.0) (14831.3) (14285.8) (14971.4) (14797.3) (14022.5)

PerCapPI -23875.3 -23996.7 -25879.5 -26487.4 -23514.8 -23564.2 -23918.8 -23726.5
(22653.2) (23478.6) (23435.4) (22946.4) (22908.5) (22930.6) (22545.1) (23328.4)

GrPerCapPI 22062.7 22657.7 23895.3 24645.1 22503.1 24007.5 22923.0 23037.0
(14613.8) (14803.8) (15089.2) (15086.1) (15111.5) (15106.0) (14991.9) (15024.3)

CityPop 1267825.9 1251383.2 1293222.0 1206210.7 1323921.0 1329166.8 1250995.7 1272407.6
(855346.9) (848467.6) (847420.6) (839509.0) (842134.5) (848038.5) (851817.9) (847076.3)

StatePop -95560.3 -90816.2 -97540.3∗ -104757.4∗ -99733.3∗ -97209.7 -99716.7∗ -98358.2∗

(59285.8) (58174.8) (58981.9) (58671.4) (60255.3) (60474.5) (59292.9) (57900.0)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 2820 2820 2820 2820 2820 2820 2820 2820
R2 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01224



Table 50

Marginal Revenue Product of Star College Basketball Players at Schools With Division 1 FBS Programs. This
table reports fixed effects estimates of a star basketball player’s marginal revenue product from Model (2.1) on the subset of schools
that also have a Division 1 FBS football program over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates for eight different measures of star
player are reported: (1) Wooden Award Winner, Naismith Award Winner or the NCAA Tournament’s Most Outstanding Player,
(2) All American First Team, (3) All American First or Second Team, (4) NBA Drafted Players, (5) NBA Top 5 Draft Pick, (6)
NBA Top 10 Draft Pick, (7) Top 10 Points Scorers, and (8) Top 20 Points Scorers.

(1) (2) (3) (4) (5) (6) (7) (8)

Stars 1114532.9∗∗ 707635.5∗∗∗ 375421.7∗ 234764.9∗∗ 367265.6∗ 394478.2∗ 505290.1∗∗ 407254.8∗∗

(551453.9) (212897.4) (191674.2) (103653.3) (190847.6) (208448.9) (238299.5) (203111.9)

Starst−1 104860.9 32287.0 113548.0 -12997.5 251296.3 -16303.1 130230.0 94249.4
(455975.9) (340511.3) (213514.4) (108401.2) (321824.0) (260249.4) (148243.0) (134762.3)

Starst−2 150825.9 160804.2 247456.9 234387.1∗∗ 300116.0 111073.8 124997.9 -3839.7
(387708.2) (245773.4) (189350.9) (117911.1) (236329.2) (210690.6) (152950.6) (133744.6)

Winst−1 12154.8 10160.2 10750.6 15136.5 10211.4 11411.3 10771.6 11238.3
(11816.8) (11670.9) (11931.7) (11751.4) (11609.2) (11671.5) (12034.0) (12206.7)

Winst−2 21788.9∗∗ 19898.4∗∗ 18709.4∗ 13020.9 19679.9∗∗ 20551.7∗∗ 19042.6∗ 24763.4∗∗

(9552.0) (9880.7) (10015.8) (10982.6) (9275.3) (9732.1) (10592.7) (10784.8)

CoachCarTournt−1 51009.4∗∗∗ 51767.4∗∗∗ 51052.1∗∗ 52421.2∗∗∗ 52211.4∗∗∗ 53427.2∗∗∗ 49956.9∗∗ 52697.7∗∗∗

(19438.7) (19446.2) (19578.9) (19398.8) (19642.8) (19506.6) (19720.0) (19559.4)

CoachCareert−1 467654.1 572089.0 515476.9 450088.1 460972.5 474254.7 506618.6 478221.6
(793992.9) (785786.8) (798968.9) (794863.0) (797211.6) (798979.0) (790794.5) (779719.6)

CoachChange 28324.9 20682.5 39182.2 32091.6 26958.0 27224.5 16675.0 24523.1
(150820.8) (150872.2) (150140.8) (151659.0) (151426.9) (150583.0) (151181.8) (150388.1)

NCAATournt−1 266317.1∗ 270618.4∗∗ 259113.4∗ 266463.9∗ 264986.5∗∗ 252185.6∗ 273269.3∗∗ 240664.6∗

(135093.2) (133685.7) (133819.4) (136466.6) (130821.9) (135882.6) (133577.5) (134010.9)

Round2t−1 -56943.3 -42232.2 -43396.7 -64286.0 -44760.7 -42026.0 -32585.4 -54558.7
(189833.9) (188802.7) (195067.4) (193804.0) (193160.1) (190874.0) (188410.3) (191329.1)

Sweet16t−1 322257.1 316975.5 306076.0 373163.6 345566.1 332514.7 354051.8 338248.3
(251965.7) (261671.7) (258920.6) (247710.5) (257849.7) (255575.3) (252629.5) (251137.4)

Elitet8t−1 -153198.0 -130213.7 -80153.7 -37801.3 -120363.5 -76703.7 -125195.1 -108277.4
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(530757.9) (530574.6) (540611.9) (517744.0) (551028.8) (554340.0) (520071.6) (529136.4)

Final4t−1 406411.0 459061.9 454975.2 396057.6 437395.7 508797.3 439610.9 432551.5
(475356.1) (476840.8) (468096.5) (504943.7) (528058.7) (520541.9) (487029.1) (473471.8)

Finalt−1 -230925.4 -122765.8 -249438.2 -163529.0 -346225.4 -240376.9 -204145.3 -244965.1
(342458.8) (451213.3) (383082.9) (378637.8) (403089.1) (415502.9) (354405.3) (330940.6)

Champt−1 1842348.1∗ 1895952.4∗∗∗ 1888025.9∗∗∗ 2004486.5∗∗∗ 1749210.4∗∗ 1758590.7∗∗ 1841494.2∗∗∗ 1718239.4∗∗∗

(964111.2) (632171.8) (719208.1) (705646.0) (834333.3) (808820.0) (681780.7) (608902.7)

NSchlsConf 69494.6 72098.3 75743.2 75450.8 75697.5 72469.5 68573.7 60506.3
(91282.2) (91147.6) (91318.6) (92675.5) (90957.3) (90998.7) (91490.3) (91469.7)

NSchlsConfAP -7815.9 -8770.7 -11758.8 -3693.9 1029.6 -5423.5 683.2 -5564.6
(51896.6) (53469.5) (52947.0) (53218.8) (54304.4) (55569.0) (51960.0) (53398.4)

NSchlsConfTourn -983.4 -1375.1 -2296.0 -11265.5 -1211.5 -574.7 -1172.9 3756.6
(55710.6) (54999.8) (55140.3) (55358.9) (55193.4) (54791.9) (56924.3) (56164.3)

NSchlsConfFF -129228.1 -120836.3 -110797.4 -106437.9 -116672.4 -120829.1 -115340.6 -127809.3
(92046.1) (91145.2) (90939.4) (94537.5) (90295.1) (91367.4) (90724.8) (89948.1)

SOS 11467.5 7362.0 9025.0 5291.1 6830.0 6016.8 6930.8 7024.4
(33072.5) (33264.4) (33527.1) (33337.6) (33310.2) (33112.0) (33199.5) (33378.9)

HistWins -9424.4 -9713.8 -10401.3 -10403.5 -10574.2 -9871.3 -10580.0 -8451.6
(7028.5) (6980.1) (6968.6) (6875.4) (7084.4) (7135.8) (7118.7) (7074.0)

HistNCAATrn -25166.4 -33732.8 -27954.5 -66065.7 -36879.5 -32679.2 -52902.2 -56483.6
(126454.7) (128802.7) (125829.9) (124589.8) (127620.6) (126624.5) (125681.0) (124777.4)

HistRound2 64195.4 84287.3 92310.1 72440.0 82163.7 66529.7 84180.0 85653.9
(148610.4) (150974.6) (150891.0) (153221.0) (153594.6) (152179.6) (153531.8) (156400.1)

HistSweet16 -21679.0 -31544.9 -11948.0 16898.5 8811.3 5419.2 -19566.8 -37108.0
(174757.2) (176368.8) (170345.0) (166193.9) (172502.7) (176390.9) (181140.4) (177234.8)

HistElite8 203838.5 234248.3 246010.3 240327.5 218886.8 202919.2 198824.2 159471.1
(217905.3) (227847.5) (228047.5) (214120.9) (219623.8) (221931.7) (230552.5) (230544.5)

HistFinal4 237281.9 339847.6 388352.6 350177.0 280456.0 251142.8 264863.7 217503.7
(315338.5) (334806.4) (330441.7) (328198.8) (325830.1) (331158.4) (343121.0) (321177.6)

HistFinal 173366.6 314995.0 329923.2 224499.1 335478.5 310589.7 304178.9 216906.6
(598644.0) (585211.7) (585669.4) (568731.3) (559107.1) (563603.5) (591517.6) (607001.4)

HistChamp -684621.1 -751687.2 -704615.5 -670633.7 -685337.4 -709848.6 -740033.5 -727526.0
(897664.5) (836951.5) (831011.2) (816167.6) (821086.6) (847529.8) (834396.2) (807876.3)

Distance -944.2 -724.4 -897.0 -817.3 -1083.7 -972.4 -741.9 -1208.4
(4392.0) (4420.9) (4372.9) (4389.2) (4499.1) (4459.4) (4375.0) (4421.1)
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UndergradPop -27995.3 -27031.3 -29701.6 -22686.7 -24773.9 -22541.3 -14464.6 -33090.4
(55132.5) (53425.0) (54700.5) (54545.6) (54311.1) (55193.1) (53506.8) (54929.7)

PerCapPI 51620.5 45285.6 45682.7 34633.9 50462.3 50194.6 49149.9 48540.3
(76495.5) (75133.7) (73032.6) (74317.1) (74856.1) (74506.3) (76114.4) (75626.1)

GrPerCapPI 22156.6 27596.5 29149.2 30568.1 26176.8 29169.3 29526.0 26837.0
(29242.8) (29204.3) (29270.5) (29384.9) (29189.2) (29436.0) (29454.9) (28576.9)

CityPop -4969357.8 -4646198.4 -4880432.6 -4663065.5 -3987118.6 -3812831.7 -5683805.4 -4384222.2
(4726563.4) (4375639.7) (4490119.7) (4409855.4) (4007287.1) (3984494.3) (4785989.6) (4391061.3)

StatePop 164476.3 322829.7 258785.1 371388.0 406174.1 391414.9 369963.8 449593.8
(961606.1) (897004.5) (923547.7) (959991.6) (937911.7) (937879.3) (968491.0) (951488.5)

Team Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

N 1190 1190 1190 1190 1190 1190 1190 1190
Within R2 0.686 0.686 0.685 0.690 0.685 0.685 0.687 0.688
Adjusted R2 0.957 0.957 0.957 0.958 0.957 0.957 0.958 0.958
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01227



Table 51

Marginal Revenue Product of Ex-Ante Star College Football Players. This table
reports fixed effects estimates of an ex-ante star football player’s marginal revenue product
from Model (2.1) over the sample period 2005-2012. Revenues are real 2012 USD at an
annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for six different measures of star player are reported: (1) Top Rivals.com Recruits
(Rivals.com rating of 6.1), (2) High Rivals.com Recruits (Rivals.com rating of 6 or better),
(3) Rivals.com Five Star Rated Recruit. The last three measures (4-6) are the same as (1-3)
except isolated to only the Offensive Positions (OP) of Quarterback, Running Back, and
Wide Receiver.

(1) (2) (3) (4) (5) (6)
Top Riv High Riv 5 Star Top Riv OP High Riv OP 5 Star OP

Stars 291572.2 100964.3 452130.7 844171.8 208951.9 829356.5
(475612.5) (258900.2) (489486.5) (735283.7) (515711.0) (739502.1)

Starst−1 88005.2 -238273.1 447989.4 -478993.5 -315699.6 -366974.8
(359552.0) (263211.1) (287902.5) (422948.6) (293817.5) (405187.3)

Starst−2 477074.7 437018.8 138076.7 174979.9 638371.0 -227883.6
(652932.0) (388483.6) (505997.3) (794618.4) (558654.2) (708797.3)

Winst−1 90967.2 85302.2 61987.1 108444.2 108437.7 93652.0
(102195.1) (93046.1) (102009.4) (95976.1) (92164.1) (96464.9)

Winst−2 25800.3 40110.4 18517.3 62339.0 58695.5 68866.7
(70556.3) (72178.3) (67634.0) (66038.7) (69015.4) (64484.4)

CoachCareert−1 68154.7 139515.6 49078.6 -793740.5 -715548.8 -655175.2
(1985339.3) (2033843.8) (2013093.7) (2029059.8) (2018001.2) (2026444.9)

CoachChange -316877.7 -318515.1 -278585.2 -196192.6 -266078.7 -168104.7
(380130.5) (378732.1) (381359.0) (382650.4) (375641.9) (383067.2)

BowlGamet−1 470586.9 509647.8 546839.3 402070.1 411870.6 450003.5
(434039.5) (411079.8) (443868.3) (448999.1) (424706.8) (434029.7)

BowlWint−1 -368951.0 -373960.5 -355865.7 -276082.9 -342034.9 -248283.7
(462170.7) (448379.6) (459427.9) (443369.3) (442506.3) (451776.9)

SOS 59731.4 47276.1 75504.1 65062.0 67897.2 61438.7
(77225.5) (76807.1) (76774.9) (82551.3) (78234.9) (80314.4)

TDPts 17143.5 14437.4 21653.0
(88496.5) (91088.0) (88995.5)

TDYds -737646.8 -564138.7 -660369.2
(3848779.4) (3873073.1) (3894293.5)

TDPassYds 740048.9 565695.0 662956.9
(3849812.0) (3873762.0) (3895411.7)

TDPassTDs -1090879.0 -981836.9 -1095760.1
(838052.1) (842089.9) (841130.1)

TDRushYds 740323.8 566024.4 663069.9
(3848707.1) (3872831.2) (3894283.6)

TDRushTDs -417648.9 -400670.5 -455236.2
(714010.1) (723405.8) (719863.4)

HistWins -16718.8 -10491.5 -20939.5 -11235.2 -17321.1 -4056.9
(68023.6) (70742.4) (69053.1) (69022.0) (69583.2) (70899.3)

HistBowls -517298.6 -483981.0 -545308.9 -403795.0 -444903.8 -396255.0
(437519.8) (440142.0) (437363.1) (449847.2) (448212.7) (445888.1)
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HistBowlWins 114090.4 62807.3 144896.4 -8646.2 75364.9 -26268.0
(395633.8) (399301.8) (386280.8) (395085.8) (413892.7) (398151.1)

Distance -62052.5∗∗ -62379.8∗∗ -56486.6∗ -59148.7∗ -60412.0∗∗ -58522.0∗

(31220.9) (30441.2) (32607.0) (29997.7) (29340.7) (30238.3)

UndergradPop -129957.2 -128451.1 -135448.2 -171202.7 -151694.6 -183911.0
(202802.3) (212487.1) (200569.6) (227020.5) (219874.1) (234391.7)

PerCapPI 278907.1 258284.5 242587.2 164184.5 206456.1 169113.4
(355905.3) (348088.1) (347007.7) (365438.6) (369615.6) (360989.3)

GrPerCapPI 7268.9 16402.2 3060.9 39581.2 36382.0 28794.3
(122013.6) (123395.1) (120572.6) (126992.7) (127395.7) (127831.3)

CityPop 2461957.5 -23328931.1 16277245.3 -6244719.4 -22601809.2 -5559699.8
(47063936.1) (41714573.9) (52998112.2) (42375664.6) (37904015.9) (41697652.9)

StatePop 1413565.3 1575566.4 899872.7 739259.9 1571602.0 754123.4
(3830581.7) (3770146.1) (3718579.4) (3987264.6) (3829126.2) (3819461.2)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 832 832 832 832 832 832
Within R2 0.745 0.744 0.747 0.747 0.747 0.748
Adjusted R2 0.977 0.977 0.978 0.977 0.977 0.977
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 52

Marginal Revenue Product of Ex-Ante Star College Basketball Players. This
table reports fixed effects estimates of an ex-ante star basketball player’s marginal revenue
product from Model (2.1) over the sample period 2005-2012. Revenues are real 2012 USD at
an annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for the ex-ante star measure using the Rivals.com Five Star Rated Recruits are
reported.

(1)
5 Star

Stars 317810.8∗ (172843.9)

Starst−1 -153329.7 (111547.7)

Starst−2 275291.1∗∗∗ (98460.6)

Winst−1 1000.3 (5259.5)

Winst−2 8061.1 (5549.4)

CoachCarTournt−1 72803.8∗∗∗ (25416.2)

CoachCareert−1 -60088.0 (370705.7)

CoachChange -15788.3 (61146.6)

NCAATournt−1 222111.5∗∗ (96680.5)

Round2t−1 -135047.1 (129603.5)

Sweet16t−1 261181.3 (199306.2)

Elitet8t−1 40738.7 (628306.7)
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Final4t−1 204745.1 (497045.2)

Finalt−1 207945.0 (324407.0)

Champt−1 2081114.0∗∗ (813929.5)

NSchlsConf -36771.4 (40831.8)

NSchlsConfAP 2375.0 (42989.8)

NSchlsConfTourn -26117.4 (59486.5)

NSchlsConfFF -61030.1 (84950.2)

SOS -2996.7 (14171.2)

HistWins -4910.3 (5227.3)

HistNCAATrn -27659.0 (74007.5)

HistRound2 -81646.0 (158551.4)

HistSweet16 249765.6 (185963.7)

HistElite8 88674.4 (180113.1)

HistFinal4 -2736.3 (383081.5)

HistFinal 238603.8 (779867.5)

HistChamp -1951539.0∗ (1081441.5)

Distance -427.9 (1880.0)

UndergradPop -54183.8 (56809.1)

PerCapPI 12058.9 (38966.3)

GrPerCapPI 13936.7 (16770.2)

CityPop -1894125.3 (2256818.3)

StatePop 885682.9 (575400.9)

Team Fixed Effects Yes

Year Fixed Effects Yes

Confr. Fixed Effects Yes

N 2256
Within R2 0.641
Adjusted R2 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

230



Table 53

Marginal Revenue Product of Expected and Unexpected Star College Football
Players. This table reports fixed effects estimates of the marginal revenue products of
expected and unexpected star football players from Model (2.1) over the sample period
2005-2012. Star players are measured according to one of six ex-post performance metrics:
(1) All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees,
and (4) Top 10 in offensive touchdowns or yards. The last two measures (5-6) are Top 10
in offensive touchdowns or yards for Running Backs and Wide Receivers. The difference
between (4,5,6) is how star Quarterbacks are measured with (5) being a Top 10 Quarterback
in pass efficiency rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback
in pass efficiency rating alone. The number of star players on a team are then decomposed
into “expected” and “unexpected” star players. Expected stars are those who are stars as
measured by ex-post performance who were also top Rivals.com recruits (rated as a 6.1 by
Rivals.com). Unexpected stars are those who are stars as measured by ex-post performance
who were not rated as a top Rivals.com recruit. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Expected Stars 2720071.0∗∗∗ 3734700.3∗∗∗ 2168631.6 1554102.7 1465080.5 1117334.7
(922689.4) (1100931.1) (1435615.8) (1100580.6) (985100.7) (1021568.3)

Unexpected Stars 1105101.6∗∗∗ 1744591.8 1710230.3∗∗∗ 598792.6∗∗ 582975.9∗∗ 610990.1∗∗

(371108.2) (1114123.8) (609148.3) (273821.4) (259170.2) (281788.8)

Starst−1 768413.4∗ 1443313.9∗ 2117296.5∗∗∗ 463260.7∗∗ 481265.2∗∗ 631606.8∗∗∗

(410486.8) (793151.1) (619475.5) (206689.1) (197573.7) (222658.0)

Starst−2 562101.1 -272997.7 122207.5 4177.3 130089.2 155496.2
(412305.3) (637024.6) (500808.9) (191223.5) (215417.6) (228011.4)

Winst−1 -32711.4 3947.3 -65568.7 18878.6 10558.2 2806.8
(105049.4) (96470.6) (101804.2) (103449.3) (102256.7) (101503.3)

Winst−2 41883.4 104381.9∗ 85021.8 94179.9 77280.7 74368.0
(56659.1) (61508.8) (61971.4) (65550.6) (67989.5) (65025.5)

CoachCareert−1 2590453.4 1959475.8 2491360.8 1370681.5 1347287.4 1466239.9
(2063239.9) (2062362.3) (2079642.2) (2052005.7) (2057270.6) (2071838.5)

CoachChange -228214.8 -129726.3 -168029.4 -90879.8 -68539.6 -77813.9
(317638.0) (305109.5) (306090.1) (316197.9) (316031.3) (314640.8)

BowlGamet−1 859515.7∗ 702657.6 807492.9∗ 619397.3 639135.4 625602.6
(462473.7) (444804.2) (455981.4) (457832.0) (452720.1) (451378.9)

BowlWint−1 -382303.9 -234871.3 -185765.7 -384303.1 -397112.6 -391574.2
(420180.1) (427313.7) (403261.7) (422752.6) (426789.8) (427719.2)

SOS 2205.9 13736.9 10276.9 43144.7 44136.7 42736.9
(53785.8) (57691.9) (55583.1) (56986.1) (56502.3) (56737.6)

TDPts -78795.8 -65124.4 -63258.8 -58334.1 -55882.7
(76454.5) (72174.5) (77500.2) (77699.1) (77406.4)

TDYds 1601733.1 1679710.8 1009981.9 1108282.5 1130228.6
(2954367.3) (2989466.0) (3062251.7) (3058822.4) (3035647.1)

TDPassYds -1598204.2 -1676728.1 -1007750.5 -1105647.5 -1128000.7
(2954865.7) (2990182.0) (3063177.9) (3059702.5) (3036520.0)

TDPassTDs -760665.4 -742350.0 -882894.1 -935091.1 -937112.7
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(787011.6) (771677.1) (781887.4) (780463.0) (774128.3)

TDRushYds -1596545.1 -1675693.9 -1006269.5 -1104997.3 -1126982.9
(2954208.7) (2989375.7) (3062493.7) (3059063.0) (3035847.6)

TDRushTDs 325701.8 266876.2 275879.7 281676.4 295808.3
(637221.7) (609615.5) (655166.9) (660425.3) (653769.6)

HistWins -16545.2 -10323.9 -12596.6 -26207.1 -27405.9 -25882.5
(46958.4) (52072.5) (51087.1) (50586.9) (50739.7) (50567.6)

HistBowls -525595.8 -580740.3 -502373.1 -498124.0 -498988.4 -511390.4
(351223.1) (374918.4) (365935.8) (364337.6) (362668.4) (360055.0)

HistBowlWins 387046.6 403531.5 345629.4 481730.0 481679.2 458897.2
(424395.0) (433124.1) (434286.9) (450237.5) (447948.0) (442219.8)

Distance -25887.2 -26121.9 -25630.8 -21458.9 -21585.4 -22095.6
(16511.1) (17388.0) (17055.4) (17326.9) (17406.1) (17307.2)

UndergradPop -152482.3 -214628.4 -216651.2 -174962.9 -165311.8 -140994.1
(204249.3) (203805.9) (202791.2) (205692.2) (202840.5) (199823.5)

PerCapPI 177110.4 246154.4 270217.5 220570.6 215235.2 207043.5
(317008.1) (332009.2) (321752.5) (327971.9) (327810.2) (322773.5)

GrPerCapPI 31115.0 24619.5 9261.3 5827.7 13506.2 19186.2
(126520.1) (128915.1) (126606.9) (129516.1) (128582.5) (128759.2)

CityPop 16538677.2 -5689565.2 -7176015.7 3746307.5 5152470.8 3054931.6
(25765585.1) (29266968.9) (27632733.9) (30089762.6) (30430080.3) (30159861.3)

StatePop -158738.0 -274072.4 -215313.1 7725.0 23041.0 89334.8
(4028068.8) (4114559.9) (4197933.3) (4122496.7) (4158990.1) (4108354.4)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.774 0.775 0.779 0.774 0.774 0.774
Adjusted R2 0.972 0.972 0.972 0.972 0.972 0.972
F-Stat 3.155 1.592 0.0847 0.743 0.799 0.257
P-Value 0.0787 0.210 0.772 0.391 0.373 0.613
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

232



Table 54

Marginal Revenue Product of Expected and Unexpected Star College Basketball Players. This table reports fixed
effects estimates of the marginal revenue products of expected and unexpected star basketball players from Model (2.1) over the
sample period 2005-2012. Star players are measured according to one of eight ex-post performance metrics: (1) Wooden Award
Winner, Naismith Award Winner or the NCAA Tournament’s Most Outstanding Player, (2) All American First Team, (3) All
American First or Second Team, (4) NBA Drafted Players, (5) NBA Top 5 Draft Pick, (6) NBA Top 10 Draft Pick, (7) Top 10
Points Scorers, and (8) Top 20 Points Scorers. The number of star players on a team are then decomposed into “expected” and
“unexpected” star players. Expected stars are those who are stars as measured by ex-post performance who were also a Five Star
Rivals.com recruit. Unexpected stars are those who are stars as measured by ex-post performance who were not rated as a Five
Star Rivals.com recruit. Revenues are real 2012 USD at an annual frequency. Standard errors are in parentheses and have been
clustered by team.

(1) (2) (3) (4) (5) (6) (7) (8)

Expected Stars 1861841.5∗∗ 464789.8∗ 329225.9 180444.1 179831.3 306729.6 351755.1 998639.6∗∗∗

(865063.9) (273430.6) (249630.0) (127554.4) (172113.0) (186153.0) (371360.9) (342904.8)

Unexpected Stars 333899.7 776734.2∗∗ 352397.1 216737.3∗∗ 714362.0∗ 495444.7∗ 305419.4 238009.9∗

(738243.7) (316859.4) (255635.8) (105786.4) (412900.4) (298607.7) (197988.3) (129040.5)

Starst−1 134905.6 24465.2 89835.5 -10156.3 203925.4 1087.7 14305.8 29458.2
(400322.9) (293195.0) (179641.7) (88102.8) (299590.9) (231498.6) (103486.1) (81657.1)

Starst−2 207972.0 156328.3 207951.5 224509.8∗∗ 248992.5 104352.5 174122.5 84942.4
(326755.0) (215013.3) (157744.2) (100878.3) (245767.6) (201283.0) (113355.3) (83915.0)

Winst−1 5543.7 4694.5 4810.1 6687.5 5017.2 5243.2 5527.5 4591.3
(4770.4) (4672.1) (4707.3) (4630.3) (4578.1) (4611.1) (4769.1) (4853.3)

Winst−2 11622.1∗∗∗ 10809.6∗∗ 10366.6∗∗ 7456.1 10949.4∗∗∗ 11040.6∗∗∗ 10884.9∗∗ 11263.5∗∗

(4338.1) (4405.4) (4409.5) (4627.5) (3914.1) (4097.3) (4496.4) (4571.0)

CoachCarTournt−1 53172.9∗∗∗ 53859.3∗∗∗ 52980.5∗∗∗ 53234.5∗∗∗ 53647.5∗∗∗ 54757.7∗∗∗ 54038.6∗∗∗ 49759.6∗∗∗

(16315.8) (16450.1) (16460.1) (16410.5) (16279.7) (16333.9) (16408.0) (16567.3)

CoachCareert−1 -108292.0 -37460.2 -58694.4 -96194.1 -91797.4 -90213.0 -78342.4 -81172.7
(295339.3) (294202.6) (296196.7) (291432.3) (292420.3) (293586.7) (295103.0) (291725.8)

CoachChange 7141.1 -441.5 5439.5 6026.9 3318.5 1929.6 -2300.2 1314.6
(61931.0) (61666.9) (61114.3) (61716.1) (61828.3) (61519.9) (61572.5) (61789.2)

NCAATournt−1 173884.1∗∗ 167026.7∗∗ 164312.6∗∗ 170068.9∗∗ 161540.0∗∗ 158358.8∗∗ 160024.8∗∗ 165053.1∗∗

(76207.2) (74672.9) (75261.0) (77372.7) (73351.3) (74985.9) (75034.4) (75412.5)
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Round2t−1 -64393.0 -64887.7 -58821.0 -64222.8 -54651.5 -58980.4 -57982.9 -55521.2
(126197.8) (125133.2) (129917.2) (130414.1) (128941.6) (127547.4) (128295.7) (126907.9)

Sweet16t−1 269934.2 263658.7 259254.9 308977.5∗ 270254.8 266852.2 304098.4∗ 282864.3
(174618.7) (183854.5) (180824.0) (171083.1) (182308.7) (181546.6) (175207.4) (172288.3)

Elitet8t−1 -183570.1 -154258.8 -93125.7 -23522.8 -114181.1 -95468.9 -120068.8 -137422.8
(459748.3) (460704.4) (476539.7) (439939.4) (468234.2) (476211.1) (455800.1) (453053.4)

Final4t−1 262868.4 345596.7 372028.8 384196.6 338496.2 401319.7 391685.9 390541.6
(340468.7) (381278.1) (370712.4) (387034.4) (408233.7) (413376.0) (393669.2) (395324.0)

Finalt−1 -49520.9 53317.8 -64363.3 28049.1 -86646.0 -44944.4 -26441.7 -27676.4
(261964.9) (336945.4) (300189.3) (284678.7) (326591.1) (340518.1) (267465.1) (262781.9)

Champt−1 2011876.3∗∗ 1848919.8∗∗∗ 1898268.1∗∗∗ 2030169.0∗∗∗ 1756136.6∗∗ 1748700.6∗∗ 1826897.4∗∗∗ 2001601.0∗∗∗

(983545.1) (546635.7) (647804.9) (640066.7) (773877.7) (742747.4) (610354.7) (650977.6)

NSchlsConf 715.7 1342.4 1273.9 2858.1 3783.8 2417.8 5708.0 -136.0
(40634.1) (40315.6) (40310.1) (40489.9) (39983.3) (40115.1) (40289.9) (40457.8)

NSchlsConfAP -39922.9 -43521.1 -46133.2 -38250.9 -38967.9 -41762.8 -42048.4 -41731.0
(38762.4) (41250.5) (40962.9) (40905.1) (41741.5) (42169.4) (41064.8) (40204.5)

NSchlsConfTourn 2638.4 6490.1 4997.1 520.0 8494.3 7314.8 6282.6 4506.9
(39649.6) (38937.3) (38745.2) (39111.6) (38799.4) (38833.9) (39544.7) (39318.3)

NSchlsConfFF -96038.3 -95249.2 -84515.5 -87378.8 -99437.2 -96075.8 -87009.4 -86949.2
(81320.3) (80445.3) (81295.5) (84186.5) (81884.6) (81127.4) (81277.0) (80790.5)

SOS 3653.7 2017.5 2270.3 1310.9 1762.3 1512.0 1374.0 1013.3
(12285.8) (12168.6) (12315.9) (12175.9) (12195.2) (12127.6) (12252.9) (12199.5)

HistWins -3275.3 -3606.0 -3702.0 -3820.5 -3797.1 -3596.3 -3394.6 -3289.9
(2988.2) (2985.3) (2990.0) (2980.8) (3007.9) (3032.3) (2973.8) (2963.1)

HistNCAATrn -22581.9 -21408.3 -20511.1 -38384.8 -29280.6 -25905.1 -27405.0 -31626.3
(59513.1) (60650.2) (60475.8) (59013.6) (59886.1) (59691.1) (60373.6) (59712.2)

HistRound2 -73686.3 -47186.6 -46813.1 -58698.4 -62770.5 -69370.4 -62061.1 -65518.0
(111950.8) (112900.5) (112751.6) (113242.3) (112907.6) (113545.8) (112763.7) (112931.8)

HistSweet16 -94271.4 -112834.9 -91054.2 -57515.5 -78928.9 -76390.2 -95879.0 -104352.8
(144639.0) (146956.7) (141947.9) (138001.4) (141253.1) (144594.2) (150578.5) (149206.9)

HistElite8 151893.0 132758.8 152479.2 160620.1 125282.4 126904.8 99417.2 102743.8
(192402.0) (195962.9) (195915.5) (189163.5) (190183.8) (191309.5) (196454.9) (197994.3)

HistFinal4 243743.3 373651.6 406694.9 415969.1 344176.5 309269.4 319211.5 252523.1
(300480.6) (317226.6) (323887.9) (332454.9) (321350.1) (324644.4) (323956.9) (323615.6)

HistFinal 46621.3 249335.6 221522.8 151931.6 260305.0 227185.3 164304.2 149642.0
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(600326.1) (596545.3) (596074.5) (574160.5) (565424.3) (573067.2) (588679.7) (596535.0)

HistChamp -732156.3 -838407.1 -795661.5 -748260.4 -768595.0 -802130.4 -791374.5 -795041.8
(816413.4) (810434.0) (808279.5) (782478.9) (785216.7) (814934.1) (803125.9) (789442.9)

Distance -1028.5 -969.5 -1074.7 -1296.0 -1257.8 -1186.8 -1387.3 -1145.0
(1511.8) (1557.6) (1543.0) (1572.4) (1588.1) (1552.1) (1547.5) (1529.8)

UndergradPop -50406.9 -47128.0 -49909.3 -46795.7 -49340.5 -47731.9 -44455.8 -51790.0
(39091.6) (38514.6) (38966.0) (39404.1) (38666.3) (39170.2) (38746.4) (37071.7)

PerCapPI 14919.1 10811.5 9450.8 2647.3 15184.9 14988.6 9968.5 9645.4
(41201.9) (40806.3) (39813.0) (39926.3) (40578.8) (40492.9) (40076.8) (40661.7)

GrPerCapPI 5392.7 9524.1 10728.7 11610.9 9186.8 10785.9 8613.6 9186.7
(15781.7) (15596.3) (15528.0) (15876.3) (15655.1) (15886.4) (15677.8) (15875.9)

CityPop 833048.0 916194.4 918594.8 889769.3 1080767.6 1098545.0 812712.7 900306.0
(1887909.2) (1862919.2) (1871686.3) (1894949.3) (1848625.0) (1834969.5) (1862170.1) (1893539.6)

StatePop 3224.6 57476.8 33880.0 73960.6 87689.1 87860.3 71387.8 53784.5
(425925.1) (409078.4) (417295.5) (431915.5) (422900.1) (422559.0) (417247.8) (422258.5)

Team Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

N 2820 2820 2820 2820 2820 2820 2820 2820
Within R2 0.671 0.670 0.668 0.672 0.668 0.669 0.668 0.670
Adjusted R2 0.969 0.968 0.968 0.969 0.968 0.968 0.968 0.968
F-Stat 1.560 0.431 0.00326 0.0594 1.476 0.369 0.0122 5.967
P-Value 0.213 0.512 0.954 0.808 0.225 0.544 0.912 0.0152
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 55

First Stage Regression of the Number of Star Football Players on the Number of
Injured Star Players in the Previous Season. This table reports the first stage of the
instrumental variable estimates in Table 56. Standard errors are in parentheses and have
been clustered by team. Estimates for six different measures of star player are reported: (1)
All Americans, (2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees,
and (4) Top 10 in offensive touchdowns or yards. The last two measures (5-6) are Top 10
in offensive touchdowns or yards for Running Backs and Wide Receivers. The difference
between (4,5,6) is how star Quarterbacks are measured with (5) being a Top 10 Quarterback
in pass efficiency rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback
in pass efficiency rating alone.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Injured Starst−1 3.792∗∗∗ 0.513 2.467∗∗∗ 2.845∗∗∗ 2.618∗∗∗ 1.436
(0.986) (0.982) (0.875) (0.925) (0.966) (0.889)

Starst−1 -0.170∗∗∗ -0.109∗∗∗ -0.130∗∗∗ -0.123∗∗∗ -0.148∗∗∗ -0.195∗∗∗

(0.0363) (0.0360) (0.0360) (0.0373) (0.0373) (0.0370)

Starst−2 -0.196∗∗∗ -0.207∗∗∗ -0.230∗∗∗ -0.202∗∗∗ -0.200∗∗∗ -0.222∗∗∗

(0.0354) (0.0343) (0.0353) (0.0370) (0.0372) (0.0368)

Winst−1 0.0258∗∗ 0.00647 0.0101 0.0291∗ 0.0289 0.0287∗

(0.0123) (0.00558) (0.00723) (0.0169) (0.0178) (0.0163)

Winst−2 -0.00888 -0.00140 0.000586 0.00298 0.00531 0.00813
(0.00821) (0.00377) (0.00491) (0.0123) (0.0129) (0.0116)

CoachCareert−1 -0.259 -0.0940 -0.157 0.306 0.351 0.162
(0.210) (0.0966) (0.124) (0.297) (0.310) (0.283)

CoachChange -0.0552 -0.000168 -0.0174 -0.126∗∗ -0.150∗∗ -0.126∗∗

(0.0393) (0.0181) (0.0231) (0.0560) (0.0584) (0.0534)

BowlGamet−1 -0.0407 0.00615 0.0140 -0.0720 -0.0553 -0.0212
(0.0570) (0.0260) (0.0333) (0.0806) (0.0839) (0.0766)

BowlWint−1 -0.0211 -0.0125 -0.0320 0.0225 0.0463 0.0539
(0.0440) (0.0204) (0.0258) (0.0621) (0.0648) (0.0593)

SOS 0.00126 0.00921∗∗ 0.0108∗∗ -0.00576 -0.00307 -0.00195
(0.00798) (0.00375) (0.00478) (0.0116) (0.0121) (0.0111)

TDPts -0.00623 -0.0180∗∗∗ -0.0491∗∗∗ -0.0647∗∗∗ -0.0638∗∗∗

(0.00527) (0.00669) (0.0163) (0.0170) (0.0155)

TDYds -0.373∗∗ -0.467∗∗ -0.339 -0.510 -0.189
(0.151) (0.192) (0.466) (0.487) (0.445)

TDPassYds 0.373∗∗ 0.468∗∗ 0.343 0.513 0.192
(0.151) (0.192) (0.466) (0.487) (0.445)

TDPassTDs 0.0217 0.0376 0.304∗∗ 0.437∗∗∗ 0.392∗∗∗

(0.0400) (0.0509) (0.124) (0.129) (0.118)

TDRushYds 0.373∗∗ 0.467∗∗ 0.341 0.512 0.192
(0.151) (0.192) (0.466) (0.487) (0.445)

TDRushTDs 0.0134 0.0772 0.169 0.239∗ 0.224∗

(0.0406) (0.0516) (0.125) (0.131) (0.120)

HistWins -0.0103 -0.00523∗ -0.00754∗∗ -0.00335 -0.00353 -0.00542
(0.00649) (0.00299) (0.00380) (0.00924) (0.00964) (0.00880)
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HistBowls -0.00220 0.0171 0.0110 0.0160 0.0225 0.0519
(0.0400) (0.0184) (0.0234) (0.0566) (0.0591) (0.0540)

HistBowlWins -0.0172 -0.0224 0.00111 -0.151∗∗∗ -0.145∗∗∗ -0.117∗∗

(0.0362) (0.0166) (0.0212) (0.0515) (0.0538) (0.0490)

Distance -0.000793 0.000485 0.000201 -0.00163 -0.00112 -0.000597
(0.00180) (0.000828) (0.00106) (0.00257) (0.00268) (0.00245)

UndergradPop -0.0363 -0.00142 -0.00306 -0.0345 -0.0366 -0.0545∗

(0.0230) (0.0105) (0.0134) (0.0326) (0.0341) (0.0312)

PerCapPI 0.00806 -0.0191 -0.0236 -0.0146 -0.00635 -0.00232
(0.0296) (0.0137) (0.0175) (0.0424) (0.0442) (0.0404)

GrPerCapPI -0.00287 0.00656 0.00842 0.0204 0.0144 0.00554
(0.0116) (0.00538) (0.00685) (0.0166) (0.0173) (0.0158)

CityPop 1.498 4.596∗∗∗ 5.176∗∗ 1.236 0.560 3.020
(3.551) (1.626) (2.075) (5.019) (5.239) (4.782)

StatePop -0.249 0.147 0.228 0.504 0.476 0.430
(0.329) (0.153) (0.195) (0.471) (0.492) (0.449)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.263 0.232 0.280 0.312 0.311 0.304
F-Stat 14.81 0.273 7.944 9.458 7.346 2.607
p-value 0.000129 0.602 0.00494 0.00217 0.00687 0.107
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 56

Marginal Revenue Product of Star College Football Players. This table reports
instrumental variable estimates of a star football player’s marginal revenue product from
Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates
for six different measures of star player are reported: (1) All Americans, (2) Heisman
Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive
touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touchdowns
or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is how
star Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency
rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency
rating alone. The F-statistics and corresponding p-values from the first stage regression are
reported at the bottom of the table.

(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

Stars 3352048.8∗ 31016231.2 4461936.1 -325897.0 -451761.8 -638610.6
(2029944.2) (63869507.7) (4631794.7) (1761384.2) (1925194.5) (3548987.3)

Starst−1 1145799.4∗∗ 4683159.5 2482640.5∗∗∗ 336907.6 315453.9 374615.7
(449170.6) (7042909.1) (774044.5) (307185.4) (356973.7) (740135.0)

Starst−2 939580.0∗∗ 5721367.3 719271.2 -182067.4 -72906.5 -115251.2
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(466323.3) (13159114.6) (1104045.3) (392099.1) (414365.1) (786394.5)

Winst−1 -84306.6 -178687.0 -89140.2 47064.3 43107.9 40095.6
(107624.2) (440717.8) (102550.1) (106177.7) (109552.0) (139836.1)

Winst−2 65369.0 143180.8 82589.2 100274.1 85756.2 85903.6
(66246.3) (154561.8) (64187.3) (67170.6) (68894.9) (74135.2)

CoachCareert−1 3085225.6∗ 4644883.5 2880010.4 1544703.0 1627646.1 1628212.6
(1709751.7) (6796621.5) (1757220.8) (1694773.6) (1751238.6) (1720642.1)

CoachChange -92800.2 -134222.5 -114945.5 -205497.6 -226326.7 -235655.8
(330065.1) (603436.0) (314978.0) (369170.3) (412573.9) (533989.0)

BowlGamet−1 941503.6∗∗ 505151.5 769309.4∗ 554650.7 578689.7 602101.5
(451919.7) (962634.1) (438882.7) (448386.7) (445757.8) (441982.9)

BowlWint−1 -339821.8 116548.9 -107854.0 -366926.5 -352897.6 -328632.0
(344562.8) (1019531.5) (362519.6) (336782.8) (345584.6) (382430.0)

SOS 2808.4 -251188.5 -17497.1 36891.5 40216.5 40041.3
(62313.5) (600709.3) (79332.7) (64082.0) (63776.4) (64081.8)

TDPts 95283.4 -16914.4 -103381.2 -121634.2 -134189.5
(422573.0) (119356.1) (121864.3) (150995.6) (241448.5)

TDYds 12124605.3 2783724.8 732582.7 589777.6 916281.0
(24000468.9) (3165958.8) (2548832.4) (2649268.3) (2587671.8)

TDPassYds -12134939.9 -2784401.9 -727063.8 -583979.0 -910093.9
(24030000.1) (3169718.9) (2549810.5) (2650994.6) (2589766.5)

TDPassTDs -1337491.2 -835120.9 -639208.3 -513437.1 -459697.3
(1854185.0) (682423.5) (843389.6) (1059830.2) (1529477.3)

TDRushYds -12121168.6 -2781272.4 -726947.2 -583839.7 -910006.1
(24004226.4) (3168012.2) (2550054.2) (2651352.9) (2589907.8)

TDRushTDs -7320.5 72452.6 383251.2 483927.6 554289.3
(1535094.0) (746527.1) (728374.6) (804437.9) (1027878.3)

HistWins -204.9 136354.3 6045.6 -30329.2 -32342.2 -33341.9
(54792.1) (350503.6) (60459.9) (50183.9) (50555.4) (53359.4)

HistBowls -480759.0 -1027815.2 -530246.5∗ -458221.4 -448684.9 -429201.8
(312590.2) (1262074.9) (312218.4) (309453.7) (313479.2) (367237.6)

HistBowlWins 422329.2 1046815.1 353565.4 321786.8 311813.6 300306.4
(282442.1) (1538861.8) (276004.7) (398068.3) (408742.9) (516667.7)

Distance -22733.9 -40357.4 -25887.6∗ -23063.5 -22641.2 -22712.3
(14176.4) (41881.0) (13796.1) (14421.4) (14316.8) (14327.6)

UndergradPop -59394.4 -157068.6 -205559.1 -209251.8 -202254.1 -209097.8
(194915.1) (362905.3) (175858.0) (187389.2) (191935.6) (264231.7)

PerCapPI 169103.1 821280.9 339000.2 195442.0 196669.3 195767.3
(231400.6) (1327571.9) (255842.7) (232845.0) (232035.0) (232387.3)

GrPerCapPI 25720.7 -175530.1 -16468.8 26424.2 28226.6 25687.8
(91006.8) (460864.0) (98700.0) (97968.4) (95411.5) (93421.9)

CityPop 10240343.5 -140315603.5 -21170577.7 5516002.0 6535518.0 6590143.6
(27824837.4) (298784720.9) (36166628.4) (27302002.9) (27369371.1) (29579455.6)

StatePop 548420.4 -4408405.5 -799029.5 541864.3 579277.8 666830.0
(2620870.0) (10743151.1) (2761825.7) (2681236.6) (2703656.7) (2963498.3)

Team Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes Yes Yes

N 1040 1040 1040 1040 1040 1040
Within R2 0.755 0.0766 0.769 0.766 0.764 0.762
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FS F-Stat 14.81 0.273 7.944 9.458 7.346 2.607
FS p-value 0.000129 0.602 0.00494 0.00217 0.00687 0.107
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 57

First Stage Regression of the Number of Star Basketball Players on the Number
of Injured Star Players in the Previous Season. This table reports the first stage of
the instrumental variable estimates in Table 58. Standard errors are in parentheses and have
been clustered by team. Estimates for two different measures of star player are reported:
(1) Top 10 Points Scorers and (2) Top 20 Points Scorers.

(1) (2)
PTS 10 PTS 20

Injured Starst−1 2.586 (2.762)

Starst−1 -0.0931∗∗∗ (0.0212) -0.158∗∗∗ (0.0216)

Starst−2 -0.209∗∗∗ (0.0213) -0.238∗∗∗ (0.0215)

Winst−1 0.000296 (0.00101) 0.00275∗ (0.00141)

Winst−2 0.00215∗∗ (0.000856) 0.00405∗∗∗ (0.00120)

CoachCarTournt−1 -0.000271 (0.00213) 0.00430 (0.00295)

CoachCareert−1 -0.0371 (0.0669) -0.0602 (0.0929)

CoachChange 0.00326 (0.00922) 0.00307 (0.0128)

NCAATournt−1 0.0158 (0.0141) 0.0194 (0.0196)

Round2t−1 0.00118 (0.0172) -0.00363 (0.0239)

Sweet16t−1 -0.0174 (0.0225) 0.0411 (0.0313)

Elitet8t−1 0.0562∗ (0.0334) 0.0928∗∗ (0.0465)

Final4t−1 0.0644 (0.0451) 0.0606 (0.0628)

Finalt−1 -0.0412 (0.0625) -0.0502 (0.0871)

Champt−1 -0.0660 (0.0623) -0.200∗∗ (0.0871)

NSchlsConf -0.00756 (0.00580) -0.00471 (0.00806)

NSchlsConfAP -0.00300 (0.00612) -0.0121 (0.00850)

NSchlsConfTourn 0.00499 (0.00491) 0.00610 (0.00682)

NSchlsConfFF 0.00221 (0.0100) 0.00525 (0.0139)

SOS 0.00281 (0.00255) 0.00556 (0.00354)

HistWins -0.000111 (0.000563) -0.000373 (0.000782)

HistNCAATrn 0.000888 (0.00966) 0.0248∗ (0.0134)

HistRound2 -0.00983 (0.0126) 0.00563 (0.0175)

HistSweet16 0.0230 (0.0167) 0.0304 (0.0232)

HistElite8 0.0375 (0.0242) 0.0122 (0.0336)

HistFinal4 -0.0195 (0.0308) 0.0560 (0.0428)

HistFinal -0.0465 (0.0444) -0.0810 (0.0617)

HistChamp -0.120∗∗∗ (0.0452) 0.0107 (0.0627)
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Distance 0.000136 (0.000342) -0.000139 (0.000474)

UndergradPop -0.00969 (0.00596) -0.00982 (0.00829)

PerCapPI 0.00178 (0.00680) 0.00465 (0.00945)

GrPerCapPI 0.000635 (0.00289) -0.00178 (0.00401)

CityPop 0.0606 (0.313) 0.141 (0.435)

StatePop 0.0760 (0.0683) 0.0456 (0.0948)

Team Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

Confr. Fixed Effects Yes Yes

N 2820 2820
Within R2 0.199 0.222
F-Stat . 0.876
p-value . 0.349
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 58

Marginal Revenue Product of Star College Basketball Players. This table reports
instrumental variable estimates of a star basketball player’s marginal revenue product from
Model (2.1) over the sample period 2003-2012. Revenues are real 2012 USD at an annual
frequency. Standard errors are in parentheses and have been clustered by team. Estimates
for two different measures of star player are reported: (1) Top 10 Points Scorers and (2)
Top 20 Points Scorers. The F-statistics and corresponding p-values from the first stage
regression are reported at the bottom of the table.

(1) (2)
PTS 10 PTS 20

Stars -2060650.7 (4712952.1)

Starst−1 -14324.8 (109625.6) -341069.3 (742329.6)

Starst−2 109321.6 (110055.9) -482453.9 (1119310.9)

Winst−1 5621.2 (5236.7) 11295.1 (14340.6)

Winst−2 11545.7∗∗∗ (4428.7) 20542.6 (19901.9)

CoachCarTournt−1 54048.2∗∗∗ (11019.9) 62527.3∗∗∗ (24077.2)

CoachCareert−1 -89894.0 (346243.7) -215499.8 (498255.9)

CoachChange -1326.2 (47678.2) 5237.9 (57968.6)

NCAATournt−1 164567.1∗∗ (73133.0) 205250.6 (125761.7)

Round2t−1 -57319.5 (88987.7) -64365.0 (106811.9)

Sweet16t−1 297907.1∗∗ (116506.6) 384564.2 (237000.8)

Elitet8t−1 -101380.5 (172997.3) 95150.5 (481962.8)

Final4t−1 411656.3∗ (233528.9) 535165.9 (397265.9)

Finalt−1 -39245.0 (323023.4) -138343.0 (452842.0)

Champt−1 1802254.2∗∗∗ (322007.8) 1391137.2 (1020610.9)

NSchlsConf 3510.1 (30022.5) -6613.3 (41622.8)
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NSchlsConfAP -43115.1 (31677.8) -68294.1 (68451.3)

NSchlsConfTourn 7994.4 (25413.8) 21652.5 (41610.2)

NSchlsConfFF -86345.9∗ (51939.1) -74744.8 (66352.6)

SOS 2231.1 (13166.1) 13503.0 (30288.3)

HistWins -3437.9 (2912.1) -4224.9 (3915.4)

HistNCAATrn -26991.9 (49974.5) 24703.1 (131056.4)

HistRound2 -65125.8 (65300.6) -52673.9 (82022.6)

HistSweet16 -88887.3 (86527.4) -27972.7 (177136.3)

HistElite8 110520.5 (125260.0) 133288.4 (160069.4)

HistFinal4 313416.4∗∗ (159279.9) 424863.5 (326582.1)

HistFinal 150795.5 (229661.3) -13264.2 (466980.9)

HistChamp -830267.5∗∗∗ (233714.0) -808790.9∗∗∗ (281542.2)

Distance -1348.6 (1768.0) -1580.6 (2201.1)

UndergradPop -47495.4 (30836.0) -68863.8 (58763.4)

PerCapPI 10535.1 (35178.4) 21206.2 (47344.4)

GrPerCapPI 8847.5 (14948.2) 5920.1 (19544.1)

CityPop 832254.9 (1620582.9) 1119659.8 (2026988.6)

StatePop 95094.5 (353365.5) 198732.0 (470018.7)

Team Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

Confr. Fixed Effects Yes Yes

N 2820 2820
Within R2 0.667 0.533
FS F-Stat . 0.876
FS p-value . 0.349
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 59

Marginal Revenue Product of Gaining Versus Losing a Star College Football
Player. This table reports first-difference estimates of the marginal revenue product asso-
caited with gaining or losing a star football player from Model (2.6) over the sample period
2003-2012. Revenues are real 2012 USD at an annual frequency. Standard errors are in
parentheses and have been clustered by team. Estimates for six different measures of star
player are reported: (1) All Americans, (2) Heisman Finalists (voted 5th place or above),
(3) Heisman Nominees, and (4) Top 10 in offensive touchdowns or yards. The last two
measures (5-6) are Top 10 in offensive touchdowns or yards for Running Backs and Wide
Receivers. The difference between (4,5,6) is how star Quarterbacks are measured with (5)
being a Top 10 Quarterback in pass efficiency rating (PER) or touchdowns or yards while
(6) is a Top 10 Quarterback in pass efficiency rating alone. F-statistics and correspond-
ing p-values for the null hypothesis that gaining a star and losing a star are statistically
equivalent are reported at the bottom of the table.
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(1) (2) (3) (4) (5) (6)
AA Team HF HN TDYds PERTDsYds PER

∆Starst×GainStars 767259.7∗ 2591514.5∗∗ 1541978.3∗ 764154.7∗∗ 732774.2∗∗ 751373.8∗∗

(409898.9) (1012532.7) (822193.9) (340852.0) (318469.5) (349115.1)

|∆Starst|×LoseStars -971939.3∗ 343956.3 -1333385.4∗ -814791.5∗∗∗ -771677.6∗∗∗ -747472.0∗∗∗

(501617.8) (1150132.4) (802480.9) (265015.4) (252527.0) (281734.2)

∆Starst−1 612304.6∗ 887716.4 2065735.2∗∗∗ 580330.8∗∗∗ 586439.8∗∗∗ 722016.3∗∗∗

(346843.1) (900151.3) (757039.8) (205986.1) (208918.3) (217054.1)

∆Starst−2 213627.3 -364581.0 213379.7 -40878.9 90550.3 227177.4
(354136.4) (755705.8) (548891.4) (172334.5) (189095.0) (207782.0)

∆Winst−1 -50677.6 -43497.2 -91160.7 -29362.4 -35728.6 -42665.2
(77187.3) (73615.2) (84659.0) (82896.8) (83423.3) (83930.2)

∆Winst−2 21278.1 29304.0 22302.5 41061.2 23842.6 9814.5
(57648.9) (54673.9) (55369.7) (61214.9) (64296.4) (62399.9)

∆CoachCareert−1 912558.7 454746.2 876351.3 -122683.0 -152453.2 -47862.7
(1286349.9) (1244946.3) (1279144.8) (1317458.3) (1316553.7) (1319062.2)

∆CoachChange -97085.9 -20920.0 -52804.1 -3982.4 8676.0 5092.7
(250904.1) (251909.8) (241798.2) (248061.4) (248196.3) (246851.6)

∆BowlGamet−1 424009.9 379995.9 425971.7 372331.5 384951.3 367084.9
(357984.3) (348605.9) (358855.9) (356627.4) (357303.5) (357193.9)

∆BowlWint−1 -217844.4 -81500.2 -48854.6 -225603.7 -243262.9 -244554.3
(352866.9) (340343.9) (327967.9) (342580.7) (346082.7) (347783.0)

∆SOSt 25226.9 36307.1 36386.7 51763.8 51629.4 49329.6
(48376.9) (52666.6) (52568.4) (49806.2) (49935.8) (50717.7)

∆TDPtst 7601.7 2953.0 37239.0 40078.3 38347.0
(68879.7) (69007.9) (71909.8) (72314.3) (71997.4)

∆TDYdst 1559251.2 1500897.1 1158677.4 1224378.9 1239798.8
(2068758.5) (2097760.7) (2102810.0) (2115404.3) (2129462.3)

∆TDPassYdst -1558340.9 -1498897.8 -1158655.2 -1224202.8 -1239681.9
(2068368.6) (2097498.8) (2102910.7) (2115458.5) (2129562.8)

∆TDPassTDst -934702.4 -874256.5 -1129918.6∗ -1156894.6∗ -1136985.5∗

(623161.2) (612242.4) (636568.1) (642907.3) (634898.1)

∆TDRushYdst -1552520.9 -1493471.6 -1152702.2 -1218503.7 -1233715.0
(2067733.5) (2096871.4) (2102205.6) (2114792.7) (2128867.4)

∆TDRushTDst -370275.5 -355365.1 -536451.4 -525915.9 -497106.9
(501973.3) (488963.1) (509249.8) (509500.7) (501959.0)

∆HistWinst 2185.7 944.9 7966.4 -3497.8 -916.2 -421.8
(53352.1) (57340.9) (57150.2) (56075.4) (56298.1) (56233.8)

∆HistBowlst -426902.0 -472651.5 -456521.2 -426150.3 -434185.5 -464150.7
(322349.8) (333650.0) (323375.6) (320136.2) (321525.5) (324118.2)

∆HistBowlWinst 339511.3 379703.9 348653.6 464824.7 446929.8 458321.2
(380937.8) (358864.7) (355292.0) (359584.5) (358118.4) (356427.6)

∆Distancet -28744.0∗ -26242.5 -32002.6∗∗ -26050.0∗ -25089.5 -24823.9
(15314.8) (16055.5) (15693.9) (15472.6) (15520.4) (15606.8)

∆UndergradPopt -315703.1∗ -347044.6∗ -348604.4∗ -312620.9∗ -310304.3∗ -304849.5∗

(175956.8) (185787.1) (186828.5) (168214.9) (169465.8) (170093.7)

∆PerCapPIt 203744.0 208831.6 255825.8 239254.2 238047.8 221228.8
(291264.7) (305451.8) (297124.9) (303221.7) (303020.1) (297156.6)

∆GrPerCapPIt -7641.1 11150.3 1484.3 -11145.8 -6783.0 3410.9
(105097.0) (104790.2) (104050.2) (109388.5) (108585.8) (106166.4)

242



∆CityPopt 26402100.7 23576891.4 15161309.6 18179455.9 18569451.6 16778202.8
(23311337.4) (25722588.5) (22852332.3) (24443375.9) (23810869.3) (23500378.3)

∆StatePopt -1139331.8 -831547.0 -840449.8 -1045157.7 -1032282.4 -779417.3
(2790221.1) (2851582.6) (2822177.6) (2761412.6) (2820483.5) (2805165.1)

∆Conference 203195.8 177432.1 147283.0 222451.9 218244.9 208360.7
(225037.5) (219374.1) (223933.8) (224730.7) (231127.3) (233022.0)

Team Dummies Yes Yes Yes Yes Yes Yes

Year Dummies Yes Yes Yes Yes Yes Yes

N 936 936 936 936 936 936
R2 0.145 0.160 0.169 0.168 0.166 0.162
F-Stat 0.0884 4.703 0.0252 0.0142 0.00972 0.0000817
P-Value 0.767 0.0324 0.874 0.905 0.922 0.993
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 60

Marginal Revenue Product of Gaining Versus Losing a Star College Basketball Player. This table reports first-
difference estimates of the marginal revenue product associated with gaining or losing a star basketball player from Model (2.6)
over the sample period 2003-2012. Revenues are real 2012 USD at an annual frequency. Standard errors are in parentheses and
have been clustered by team. Estimates for eight different measures of star player are reported: (1) Wooden Award Winner,
Naismith Award Winner or the NCAA Tournament’s Most Outstanding Player, (2) All American First Team, (3) All American
First or Second Team, (4) NBA Drafted Players, (5) NBA Top 5 Draft Pick, (6) NBA Top 10 Draft Pick, (7) Top 10 Points Scorers,
and (8) Top 20 Points Scorers. F-statistics and corresponding p-values for the null hypothesis that gaining a star and losing a star
are statistically equivalent are reported at the bottom of the table.

(1) (2) (3) (4) (5) (6) (7) (8)

∆Starst×GainStars 1249401.5∗∗ 1022006.2∗∗∗ 385237.4 262206.6∗∗ 612977.8∗∗ 542524.9∗∗ 438588.8 454806.1∗∗

(567449.1) (251755.9) (255794.4) (114139.3) (259816.6) (222327.7) (273236.2) (213839.4)

|∆Starst|×LoseStars -1069510.3∗ 18293.2 -178812.8 -7130.9 -42078.2 -80122.6 -239836.4 -283733.6∗

(609260.0) (406132.0) (226092.5) (130412.1) (527181.9) (242545.4) (190480.7) (160232.2)

∆Starst−1 1207782.7∗∗∗ -21121.5 80006.9 -35134.1 22517.7 59302.2 68989.6 123678.1
(440837.3) (216268.1) (129649.5) (105900.3) (397336.2) (191673.0) (119312.7) (109812.7)

∆Starst−2 556357.4 79487.6 3385.2 150899.9 -30961.0 -61833.0 79607.9 73114.6
(373802.4) (213477.4) (156103.7) (108005.0) (250395.0) (201046.3) (111521.2) (91096.6)

∆Winst−1 -1247.9 -1627.2 -925.6 1387.3 -570.7 -870.8 -387.1 -1093.8
(4714.6) (4596.3) (4713.5) (4595.5) (4713.6) (4777.7) (4709.6) (4727.7)

∆Winst−2 6196.2 5979.2 7156.4 4459.1 7047.2 7190.0 6641.6 5928.1
(5072.0) (5003.6) (5111.0) (5392.1) (5214.1) (5277.7) (5244.8) (5091.1)

∆CoachCarTournt−1 33322.0∗ 32429.0∗ 33551.3∗ 34339.5∗ 33184.8∗ 33185.7∗ 33460.9∗ 32869.6∗

(18719.3) (18740.7) (18768.4) (18589.9) (18539.4) (18330.8) (18767.7) (18733.4)

∆CoachCareert−1 261375.0 306004.8 270328.0 173724.8 228596.8 245944.5 271100.2 270579.4
(260165.1) (259158.7) (263841.6) (257149.4) (259998.5) (261600.1) (255880.3) (255592.1)

∆CoachChanget -4662.0 -5621.6 -3551.2 -4648.5 -4245.9 -5000.7 -8226.6 -8423.6
(54892.4) (54904.7) (54898.3) (54791.6) (54830.2) (54502.3) (54825.1) (55038.8)

∆NCAATournt−1 74306.0 75031.6 64787.6 73656.1 64953.1 61950.2 69087.9 63015.1
(68325.6) (67682.6) (67249.6) (67680.5) (68292.0) (69341.9) (68127.8) (68072.0)

∆Round2t−1 -85566.5 -87958.0 -78463.5 -78593.4 -79557.4 -80160.0 -74907.3 -76394.1
(103404.2) (102920.8) (104784.9) (107142.6) (104542.7) (105230.9) (103345.5) (102453.6)
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∆Sweet16t−1 94961.9 129503.1 119467.6 163591.8 119382.4 117748.4 162388.7 140004.0
(118727.7) (125350.5) (127108.9) (122943.3) (128062.4) (126737.5) (124593.4) (123426.1)

∆Elite8t−1 -313415.6 -300767.6 -260119.8 -177421.6 -285888.7 -314854.4 -300653.1 -302507.1
(338725.2) (335751.8) (342806.3) (321332.5) (341478.4) (344208.1) (335867.0) (334730.9)

∆Final4t−1 -212224.6 -146280.5 -190996.4 -195684.9 -230527.4 -218177.9 -163739.8 -161077.6
(405958.8) (412048.7) (387459.7) (404429.2) (423498.6) (418915.5) (404755.2) (406860.1)

∆Finalt−1 -18821.5 28868.6 -24866.4 175601.5 50331.6 23258.8 8452.3 25085.8
(257894.2) (364194.3) (315975.9) (221087.0) (237051.3) (261103.2) (264954.9) (270258.4)

∆Winnert−1 509139.3 1142686.0∗∗∗ 1010633.3∗∗ 1253753.5∗∗∗ 893806.3∗ 806893.7∗ 1047106.2∗∗ 1066573.2∗∗

(488615.4) (378916.4) (441369.9) (360178.5) (461283.2) (476800.0) (422135.8) (424646.5)

∆NSchlsConft 43565.7 39086.8 38999.6 45340.3 40658.4 37977.5 46164.2 43453.0
(46534.4) (46219.4) (46685.8) (46526.9) (45925.2) (46274.6) (46400.9) (45489.1)

∆NSchlsConfAPt -13223.1 -15063.1 -18015.9 -8326.7 -13161.5 -12519.7 -14444.4 -12056.0
(47198.3) (48696.7) (48558.0) (49813.4) (49081.6) (49199.4) (47567.6) (46331.6)

∆NSchlsConfTournt -12230.0 -13728.5 -9542.5 -15756.4 -7652.7 -8219.7 -12117.1 -10485.2
(45353.9) (45363.6) (45443.1) (44860.6) (45163.6) (44970.9) (45709.2) (45368.3)

∆NSchlsConfFFt -56618.2 -52555.6 -56434.4 -64438.6 -59816.9 -59716.8 -58105.2 -59302.0
(63733.8) (61708.4) (63367.8) (64900.9) (61963.4) (61385.9) (61695.8) (61930.0)

∆SOSt−1 13231.3 12325.2 12846.7 11254.5 11819.7 11835.3 12145.7 11264.5
(9953.0) (9970.2) (10090.9) (9944.5) (9939.0) (10084.5) (9976.2) (9956.1)

∆HistWinst -6222.3∗∗ -5818.7∗ -6305.5∗∗ -6493.2∗∗ -6247.7∗∗ -6407.3∗∗ -6502.9∗∗ -6082.2∗∗

(3094.4) (3082.1) (3117.0) (3095.3) (3147.7) (3166.9) (3083.4) (3041.5)

∆HistNCAATrnt 14013.2 5408.3 17941.3 10563.6 15451.9 18739.7 19069.8 15001.7
(65225.8) (65488.5) (64698.8) (66931.3) (65450.8) (65126.7) (65956.8) (65770.3)

∆HistRnd2t -34142.4 -27453.0 -17689.8 -26478.9 -25598.4 -22550.1 -13689.2 -21391.6
(130393.8) (129651.7) (131531.5) (127870.7) (131487.3) (131762.4) (131042.1) (131514.6)

∆HistSwt16t 27132.6 51058.6 34473.6 59971.5 66405.7 70084.9 47461.6 40256.9
(136897.7) (136597.6) (138411.5) (131247.4) (133073.8) (138172.1) (139717.8) (132236.6)

∆HistElite8t -57027.0 -37887.0 -79264.1 -49440.4 -56036.6 -67480.2 -98448.3 -86627.6
(147449.0) (146422.6) (150858.8) (142602.6) (144040.1) (146066.3) (152677.4) (154122.2)

∆HistFin4t 279799.6 313592.9 305928.5 414293.9 271937.7 259408.1 305566.7 280406.5
(309776.9) (319021.0) (312481.2) (324415.5) (304535.8) (305471.3) (310948.4) (307718.3)

∆HistFinalt -334486.4 -127561.5 -224075.7 -186329.9 -183194.0 -195981.4 -184229.5 -199755.6
(389581.6) (348778.4) (366984.8) (388185.9) (364808.2) (352818.8) (365163.4) (350848.3)

∆HistWinnert -743118.3 -927335.4 -803576.4 -771712.5 -779762.2 -767436.4 -782459.0 -841295.0
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(915554.8) (955214.7) (948226.0) (921832.3) (925451.0) (939362.4) (929336.6) (919229.2)

∆Distancet -542.4 -644.9 -564.8 -965.8 -709.6 -605.0 -805.9 -798.3
(1593.3) (1609.2) (1580.1) (1608.1) (1608.9) (1606.4) (1594.4) (1611.1)

∆UndergradPopt -55864.5 -61866.8∗ -51539.0 -53419.3 -57538.9∗ -54363.7 -46457.9 -49147.5
(36025.5) (33932.3) (35210.2) (34036.0) (33228.6) (34187.3) (35479.7) (32878.2)

∆PerCapPIt 33299.8 29647.5 31822.9 20864.5 34637.8 36597.4 30895.9 33977.7
(37835.7) (37240.4) (37232.4) (37455.8) (37624.8) (37588.8) (37399.5) (37107.0)

∆GrPerCapPIt 15090.8 15783.0 17005.9 19979.8 15119.9 16022.8 15992.7 15724.9
(14224.3) (14418.7) (14487.8) (14645.9) (14166.1) (14133.0) (14399.1) (14201.0)

∆CityPopt 813343.7 960690.9 834331.9 747303.2 1089339.7 1051517.3 624404.9 642793.3
(1759133.0) (1717367.4) (1730453.9) (1651766.4) (1705043.0) (1709831.5) (1727711.7) (1709668.1)

∆StatePopt 103214.9 222000.4 272023.5 310423.6 302706.0 300106.8 274197.9 296181.1
(376536.0) (345488.2) (354413.4) (352520.8) (351630.2) (350233.0) (353222.9) (358030.8)

Team Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes

N 2819 2819 2819 2819 2819 2819 2819 2819
R2 0.103 0.101 0.095 0.107 0.096 0.097 0.095 0.101
F-Stat 0.0575 3.149 0.504 2.131 0.707 1.758 0.499 0.558
P-Value 0.811 0.0771 0.478 0.145 0.401 0.186 0.480 0.456
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 61

Marginal Revenue of Winning a Basketball Game. This table reports fixed effects
estimates of the marginal revenue of basketball team wins from Model (2.7) over the sample
period 2003-2012.

Program Revenue

Wins 18451.6∗∗∗ (4378.1)

Winst−1 4659.5 (4669.1)

Winst−2 16436.2∗∗∗ (4713.7)

CoachCarTournt−1 54184.5∗∗∗ (16246.8)

CoachCareert−1 -72184.7 (297230.3)

CoachChange 20731.5 (61281.9)

NCAATournt−1 164562.8∗∗ (73893.8)

Round2t−1 -62584.3 (128861.9)

Sweet16t−1 295672.6∗ (170950.7)

Elitet8t−1 -66536.0 (450841.8)

Final4t−1 408528.8 (380143.9)

Finalt−1 -33387.1 (270810.3)

Champt−1 1866059.7∗∗∗ (621434.4)

NSchlsConf 4725.3 (40379.4)

NSchlsConfAP -44714.4 (40760.6)

NSchlsConfTourn 3778.8 (39181.9)

NSchlsConfFF -94229.6 (81111.3)

SOS 2833.8 (12194.3)

HistWins -1764.6 (2928.0)

HistNCAATrn -33022.4 (58785.5)

HistRound2 -71070.3 (111163.3)

HistSweet16 -98047.8 (145989.8)

HistElite8 119522.2 (194549.7)

HistFinal4 289881.7 (319786.8)

HistFinal 141240.8 (588022.9)

HistChamp -829580.6 (792166.4)

Distance -1086.2 (1539.2)

UndergradPop -48837.7 (38063.6)

PerCapPI 12547.1 (39852.3)

GrPerCapPI 9334.8 (15435.1)

CityPop 802241.6 (1910127.9)

StatePop 50491.1 (418001.9)

Team Fixed Effects Yes

Year Fixed Effects Yes

Confr. Fixed Effects Yes
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N 2820
Within R2 0.670
Marginal Product 8.174
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 62

Marginal Revenue Product of Star College Football Players With Media Ex-
posure Interactions. This table reports fixed effects estimates of a star football player’s
marginal revenue product from Model (2.8) over the sample period 2003-2012. The vari-
able NewsHits captures a team’s media exposure and is measured by the number of media
articles mentioning the football team in a given year. Revenues are real 2012 USD at an
annual frequency. Standard errors are in parentheses and have been clustered by team.
Estimates for six different measures of star player are reported: (1) All Americans, (2)
Heisman Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in
offensive touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touch-
downs or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is
how star Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency
rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency
rating alone.

(1) (2) (3) (4)
AA Team HF HN TDYds

Stars 1527847.0∗∗ 4633685.3∗∗ 2311160.9∗∗ 283874.9
(592293.1) (2171812.6) (1018131.7) (268901.5)

News Hits 1260.6∗∗∗ 1084.3∗∗∗ 1047.0∗∗ 811.2∗∗

(472.7) (390.1) (401.2) (405.0)

Star×NewsHits -305.9 -1152.3∗∗ -534.9∗ 149.7
(205.0) (571.6) (320.6) (171.3)

Starst−1 656178.3 1443532.2∗ 2069323.9∗∗∗ 394184.5∗

(408542.9) (766749.5) (648624.0) (212148.4)

Starst−2 610146.0 -52440.1 200107.1 -27675.7
(409370.9) (629591.7) (492664.2) (187548.1)

Winst−1 -58770.7 -22780.3 -92091.8 -7950.2
(106170.9) (97190.8) (103520.7) (102070.0)

Winst−2 54694.8 107594.5∗ 87616.7 108449.8
(55605.6) (61775.8) (62151.0) (66117.6)

CoachCareert−1 2339675.1 1621998.3 2217796.3 1307032.6
(2045885.0) (2027532.5) (2053493.2) (2017477.9)

CoachChange -117218.9 -68692.2 -93433.2 -34050.5
(314723.8) (297139.0) (300646.0) (314094.0)

BowlGamet−1 832412.8∗ 702335.0 826800.1∗ 647347.9
(462162.7) (434767.6) (454843.2) (452718.4)

BowlWint−1 -323201.5 -257157.9 -198700.0 -359446.5
(407543.8) (417412.3) (395952.0) (418356.1)

SOS -11039.8 124.0 -5667.0 16229.7
(53030.1) (58149.3) (56795.6) (57044.3)

TDPts -32425.7 -25783.4 -29444.2
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(75466.2) (71175.9) (74917.3)

TDYds 1258287.9 1367952.7 945734.5
(2862584.7) (2914654.0) (2973556.5)

TDPassYds -1255423.6 -1365482.6 -943855.2
(2863167.6) (2915489.0) (2974577.2)

TDPassTDs -939128.9 -875102.6 -969194.7
(764527.5) (756904.7) (754886.9)

TDRushYds -1252121.1 -1363012.4 -941362.6
(2862315.2) (2914503.1) (2973592.7)

TDRushTDs 80470.7 59253.4 72260.1
(635488.2) (609356.7) (640994.8)

HistWins -12057.6 -10630.2 -8393.3 -19576.1
(47851.8) (50734.3) (50579.2) (51194.0)

HistBowls -566957.6 -571202.9 -542685.6 -535363.4
(352943.0) (367792.8) (363931.3) (364701.0)

HistBowlWins 431837.6 367572.6 332935.5 471647.9
(428699.3) (444457.2) (437196.4) (449091.5)

Distance -23699.3 -22474.0 -23263.5 -19462.8
(16502.9) (16964.0) (16887.1) (17139.7)

UndergradPop -118826.1 -153796.2 -176927.6 -157810.9
(201994.2) (204239.6) (201006.7) (198825.1)

PerCapPI 168200.5 241221.7 244011.9 202068.8
(307982.0) (327805.6) (318255.4) (321929.4)

GrPerCapPI 25505.0 23641.4 18780.0 8860.3
(127285.8) (125230.2) (124645.6) (129938.1)

CityPop 20139116.1 5160507.1 4868070.5 3167093.7
(25406185.5) (31856067.9) (29240474.6) (30301661.0)

StatePop -775902.2 -100550.6 -301018.3 -70724.3
(3974229.0) (4039599.5) (4104705.0) (4001179.3)

Team Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes

N 1040 1040 1040 1040
Within R2 0.777 0.779 0.782 0.778
Adjusted R2 0.972 0.972 0.973 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 63

Marginal Revenue Product of Star College Football Players as a Function of the
Team’s Media Exposure. This table reports the marginal effects from the regressions
in Table 62 for various percentiles of media exposure, as measured by the number of media
articles mentioning the football team, over the sample period 2003-2012. Standard errors
are in parentheses and have been computed using the delta method. Estimates for four
different measures of star player are reported: (1) All Americans, (2) Heisman Finalists
(voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive touchdowns
or yards. This table reports the estimates that are displayed in Figure 3.

(1) (2) (3) (4)
AA Team HF HN TDYds

1st Percentile: News Articles 1520198.5∗∗∗ 4604877.6∗∗ 2297789.5∗∗ 287617.6
(588860.3) (2158927.4) (1011577.1) (267338.2)

5th Percentile: News Articles 1495111.6∗∗∗ 4510388.3∗∗ 2253931.4∗∗ 299893.4
(577776.7) (2116790.6) (990228.7) (262636.0)

10th Percentile: News Articles 1477367.2∗∗∗ 4443554.4∗∗ 2222909.9∗∗ 308576.2
(570106.3) (2087108.3) (975274.2) (259717.9)

25th Percentile: News Articles 1431629.6∗∗∗ 4271284.3∗∗ 2142949.2∗∗ 330957.1
(551026.1) (2011099.4) (937328.2) (253841.1)

Median: News Articles 1341378.0∗∗∗ 3931353.4∗∗ 1985167.1∗∗ 375120.1
(516652.3) (1863516.0) (865360.4) (249659.4)

Mean: News Articles 1245116.0∗∗ 3568784.5∗∗ 1816877.5∗∗ 422224.1∗

(485640.1) (1710394.1) (793841.3) (256351.7)

75th Percentile: News Articles 1170358.8∗∗ 3287213.0∗∗ 1686183.5∗∗ 458805.1∗

(466312.1) (1595330.9) (743010.4) (268991.7)

90th Percentile: News Articles 880788.9∗∗ 2196553.2∗ 1179943.9∗ 600500.8∗

(439935.8) (1199983.4) (604392.6) (362175.9)

95th Percentile: News Articles 627472.5 1242441.9 737084.5 724456.5
(484124.1) (976316.6) (594033.9) (475144.1)

99th Percentile: News Articles 134607.0 -613926.7 -124565.9 965631.1
(692054.4) (1135667.6) (855844.7) (724684.0)

N 1040 1040 1040 1040
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 64

Marginal Revenue Product of Star College Football Players With Media Expo-
sure Interactions by Position. This table reports fixed effects estimates of a star football
player’s marginal revenue product from Model (2.9) over the sample period 2003-2012. The
variable NewsHits captures a team’s media exposure and is measured by the number of
media articles mentioning the football team in a given year. Revenues are real 2012 USD
at an annual frequency. Standard errors are in parentheses and have been clustered by
team. Estimates for six different measures of star player are reported: (1) All Americans,
(2) Heisman Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in
offensive touchdowns or yards. The last two measures (5-6) are Top 10 in offensive touch-
downs or yards for Running Backs and Wide Receivers. The difference between (4,5,6) is
how star Quarterbacks are measured with (5) being a Top 10 Quarterback in pass efficiency
rating (PER) or touchdowns or yards while (6) is a Top 10 Quarterback in pass efficiency
rating alone.

(1) (2) (3) (4)
AA Team HF HN TDYds

Star QB 5332184.3∗∗ 6022057.7∗∗ 2227635.3 458146.7
(2459216.1) (2936698.6) (1763110.4) (617663.4)

Star RB 1893386.0 7346421.2∗∗∗ 3110843.8 743821.2
(1683276.1) (2331204.1) (2016302.9) (544053.1)

Star WR 5033484.0∗∗ -3008518.8 7164596.3∗ -380705.7
(2424484.2) (5474681.1) (3929266.1) (446168.5)

News Hits 1105.4∗∗ 928.8∗∗ 1034.6∗∗ 900.6∗∗

(472.6) (381.8) (404.5) (388.0)

StarQB×NewsHits -559.0 -1026.5 -347.0 112.9
(763.3) (756.5) (491.2) (352.3)

StarRB×NewsHits -927.6 -2763.8∗∗∗ -1280.2∗ -351.1
(696.4) (936.7) (741.3) (353.9)

StarWR×NewsHits -1186.0 673.1 -2345.2 722.8
(776.7) (2485.1) (1700.2) (505.2)

Star TE 878247.4
(1172084.3)

Star OL 1533496.0
(2089403.0)

Star K -1182293.1
(788807.7)

Star P 2299127.3
(2407059.2)

Star LB 1005372.0
(1219271.2)

Star DB 370359.9
(919084.2)

Star DL -492170.5
(1099973.4)

Star QBt−1 2685964.4 1714592.1∗ 2850792.1∗∗∗ 419844.1
(2172106.3) (1009546.0) (856200.4) (507064.7)

Star RBt−1 512294.6 1164631.7 587157.8 455831.5
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(1361063.5) (1565306.9) (1153191.6) (440201.5)

Star WRt−1 2261409.7 -82343.4 3329514.0 264635.8
(1414959.2) (2748815.0) (2117586.8) (406324.4)

Star TEt−1 1588584.9
(977471.9)

Star OLt−1 -710863.9
(1965691.0)

Star Kt−1 -1997853.1
(1280828.5)

Star Pt−1 640109.0
(1353522.6)

Star DLt−1 -1022854.1
(1158229.3)

Star LBt−1 -452561.8
(862596.8)

Star DBt−1 1261088.6
(1094766.0)

Star QBt−2 152973.5 1139158.5 1264182.2∗∗ 308399.3
(1722587.8) (854272.2) (614252.3) (508275.4)

Star RBt−2 -269915.1 -1779313.2 -1556697.8 -294616.2
(995989.1) (1429351.4) (950286.8) (444607.2)

Star WRt−2 1232381.7 -1681622.1 763024.3 49862.2
(882645.8) (2122625.7) (1335241.8) (396092.9)

Star TEt−2 2435922.7
(1859375.8)

Star OLt−2 -372205.3
(1648809.0)

Star Kt−2 -1177121.6
(1338451.1)

Star Pt−2 -1166057.2
(1444158.0)

Star DLt−2 693310.1
(1263470.6)

Star LBt−2 970667.6
(1381379.3)

Star DBt−2 1146414.6
(999671.8)

Winst−1 -76645.4 -16783.0 -107737.8 -3898.1
(108166.0) (98638.7) (107062.5) (109253.0)

Winst−2 43306.5 109015.6∗ 79831.0 104538.3
(56167.1) (63068.6) (64771.7) (71464.3)

CoachCareert−1 3000223.6 1673765.4 2383259.1 1329643.4
(2101270.3) (1999507.2) (2056283.0) (2077973.7)

CoachChange -147900.4 -43539.1 -103611.1 25132.9
(305778.7) (297695.4) (309014.1) (323062.5)

BowlGamet−1 758473.0∗ 697892.6 851781.7∗ 637465.1
(431070.2) (432396.9) (463519.1) (457367.3)

BowlWint−1 -301992.0 -281157.6 -186185.9 -336725.6
(383750.5) (422520.3) (395540.3) (418792.9)

SOS 14189.8 6692.6 10587.0 12519.5
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(52582.6) (59661.2) (58461.6) (57942.2)

TDPts -37907.8 -28048.6 -26072.8
(76065.1) (70924.8) (75743.3)

TDYds 1274005.5 1166833.7 732467.6
(2871222.9) (2932863.2) (2921513.5)

TDPassYds -1270975.1 -1164529.5 -730395.0
(2871748.5) (2933650.3) (2922461.0)

TDPassTDs -972605.6 -879431.2 -980479.1
(772462.0) (757462.8) (738680.4)

TDRushYds -1267421.7 -1161220.7 -728254.2
(2871061.7) (2932642.1) (2921521.3)

TDRushTDs 108586.5 77624.3 73206.7
(635161.7) (618244.8) (640767.3)

HistWins -15869.2 -19892.5 -22199.9 -20833.8
(49866.7) (51182.5) (51037.6) (49678.3)

HistBowls -585951.3 -523087.7 -480686.4 -531257.6
(378029.8) (362290.3) (365162.9) (346037.8)

HistBowlWins 457912.6 426048.5 422671.4 515111.3
(451677.3) (442259.4) (445961.0) (447398.9)

Distance -19826.5 -18412.2 -20893.0 -17135.8
(17510.2) (17320.1) (16896.6) (16817.1)

UndergradPop -119577.8 -147548.5 -203113.1 -149713.3
(210509.7) (205176.0) (206885.1) (201870.7)

PerCapPI 66131.6 234402.9 225447.9 186953.2
(283358.4) (330892.0) (319379.2) (324312.1)

GrPerCapPI 23690.8 20461.6 20490.8 10166.1
(125383.0) (126776.8) (125181.9) (131038.8)

CityPop 7253527.8 11305331.5 7790789.6 4139477.1
(28662474.4) (34187086.2) (29655178.0) (29338509.5)

StatePop -1114556.5 153169.4 -189221.4 -136208.9
(3579536.0) (4076199.6) (4177540.6) (3986050.2)

Team Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes

N 1040 1040 1040 1040
Within R2 0.788 0.783 0.786 0.779
Adjusted R2 0.973 0.973 0.973 0.972
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 65

Marginal Revenue Product of Star College Quarterbacks as a Function of the
Team’s Media Exposure. This table reports the marginal effects for Quarterbacks from
the regressions in Table 64 for various percentiles of media exposure, as measured by the
number of media articles mentioning the football team, over the sample period 2003-2012.
Standard errors are in parentheses and have been computed using the delta method. Esti-
mates for four different measures of star player are reported: (1) All Americans, (2) Heisman
Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in offensive
touchdowns or yards. This table reports the estimates that are displayed in Figure 5.

(1) (2) (3) (4)
AA Team HF HN TDYds

1st Percentile: News Articles 5318210.5∗∗ 5996394.2∗∗ 2218960.1 460969.2
(2442394.8) (2919788.6) (1752356.1) (611816.7)

5th Percentile: News Articles 5272376.5∗∗ 5912217.9∗∗ 2190505.3 470227.0
(2387460.0) (2864499.5) (1717225.8) (593152.8)

10th Percentile: News Articles 5239957.3∗∗ 5852678.6∗∗ 2170378.8 476775.2
(2348835.0) (2825561.7) (1692516.1) (580457.3)

25th Percentile: News Articles 5156394.1∗∗ 5699210.8∗∗ 2118501.0 493653.7
(2250235.6) (2725887.7) (1629394.5) (549886.1)

Median: News Articles 4991503.4∗∗ 5396381.3∗∗ 2016133.3 526959.2
(2060380.8) (2532515.5) (1507584.8) (500457.8)

Mean: News Articles 4815631.7∗∗∗ 5073384.8∗∗ 1906948.4 562482.7
(1866560.9) (2332136.1) (1382585.2) (467851.9)

75th Percentile: News Articles 4679049.6∗∗∗ 4822545.3∗∗ 1822155.3 590070.3
(1724110.0) (2181745.0) (1289938.9) (459689.8)

90th Percentile: News Articles 4150002.1∗∗∗ 3850924.8∗∗ 1493711.3 696930.1
(1283772.9) (1665987.1) (988372.6) (567315.6)

95th Percentile: News Articles 3687190.3∗∗∗ 3000949.3∗∗ 1206387.8 790411.3
(1159980.1) (1371225.3) (854641.4) (775145.9)

99th Percentile: News Articles 2786719.6 1347192.7 647356.4 972293.2
(1745418.4) (1544953.0) (1095029.7) (1277199.5)

N 1040 1040 1040 1040
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 66

Marginal Revenue Product of Star College Wide Receivers as a Function of the
Team’s Media Exposure. This table reports the marginal effects for Wide Receivers
from the regressions in Table 64 for various percentiles of media exposure, as measured by
the number of media articles mentioning the football team, over the sample period 2003-
2012. Standard errors are in parentheses and have been computed using the delta method.
Estimates for four different measures of star player are reported: (1) All Americans, (2)
Heisman Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in
offensive touchdowns or yards. This table reports the estimates that are displayed in Figure
6.

(1) (2) (3) (4)
AA Team HF HN TDYds

1st Percentile: News Articles 5003833.5∗∗ -2991691.6 7105967.0∗ -362636.1
(2408114.7) (5422487.7) (3891184.4) (439785.3)

5th Percentile: News Articles 4906579.9∗∗ -2936498.5 6913662.7∗ -303367.7
(2354748.1) (5252811.0) (3766940.7) (420833.7)

10th Percentile: News Articles 4837790.7∗∗ -2897459.5 6777642.6∗ -261446.2
(2317315.8) (5134293.7) (3679717.6) (409434.7)

25th Percentile: News Articles 4660480.6∗∗ -2796833.0 6427039.2∗ -153389.8
(2222134.5) (4835226.1) (3457716.3) (388791.2)

Median: News Articles 4310604.6∗∗ -2598272.3 5735213.0∗ 59831.9
(2040686.6) (4278536.8) (3034504.9) (390008.3)

Mean: News Articles 3937428.3∗∗ -2386488.4 4997314.2∗ 287253.2
(1858797.1) (3752215.1) (2613843.5) (449522.0)

75th Percentile: News Articles 3647619.1∗∗ -2222016.7 4424261.0∗ 463868.9
(1728207.5) (3411771.5) (2319871.6) (525100.2)

90th Percentile: News Articles 2525050.8∗ -1584939.9 2204554.1 1147985.2
(1360957.6) (3025560.3) (1738433.0) (921246.6)

95th Percentile: News Articles 1543025.9 -1027623.9 262750.4 1746451.4
(1321392.3) (4006629.3) (2281514.3) (1313348.4)

99th Percentile: News Articles -367653.1 56719.1 -3515324.2 2910858.5
(1977335.4) (7330911.3) (4561965.4) (2105319.9)

N 1040 1040 1040 1040
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 67

Marginal Revenue Product of Star College Running Backs as a Function of
the Team’s Media Exposure. This table reports the marginal effects for Runningbacks
from the regressions in Table 64 for various percentiles of media exposure, as measured by
the number of media articles mentioning the football team, over the sample period 2003-
2012. Standard errors are in parentheses and have been computed using the delta method.
Estimates for four different measures of star player are reported: (1) All Americans, (2)
Heisman Finalists (voted 5th place or above), (3) Heisman Nominees, and (4) Top 10 in
offensive touchdowns or yards. This table reports the estimates that are displayed in Figure
5.

(1) (2) (3) (4)
AA Team HF HN TDYds

1st Percentile: News Articles 1870197.0 7277325.7∗∗∗ 3078838.3 735044.1
(1666992.0) (2310349.7) (1999583.3) (538541.4)

5th Percentile: News Articles 1794136.9 7050692.4∗∗∗ 2973860.3 706255.3
(1613745.1) (2242302.5) (1944973.4) (521108.8)

10th Percentile: News Articles 1740338.3 6890390.9∗∗∗ 2899607.6 685892.5
(1576245.7) (2194521.0) (1906572.5) (509416.6)

25th Percentile: News Articles 1601667.9 6477199.8∗∗∗ 2708214.8 633405.5
(1480289.5) (2072848.1) (1808544.4) (482009.0)

Median: News Articles 1328037.1 5661872.9∗∗∗ 2330550.0 529835.9
(1294646.4) (1840436.1) (1619956.2) (441742.1)

Mean: News Articles 1036183.8 4792248.7∗∗∗ 1927734.5 419369.1
(1104392.1) (1607937.0) (1428295.7) (423656.4)

75th Percentile: News Articles 809530.0 4116897.5∗∗∗ 1614907.4 333580.4
(965123.3) (1443150.4) (1288942.2) (429460.1)

90th Percentile: News Articles -68407.2 1500941.8 403179.7 1280.1
(601397.0) (1060292.1) (902224.1) (587171.3)

95th Percentile: News Articles -836428.4 -787501.2 -656842.0 -289416.9
(758802.0) (1254993.1) (938130.5) (817944.8)

99th Percentile: News Articles -2330730.6 -5240015.3∗∗ -2719275.5 -855012.0
(1702317.0) (2428964.0) (1779810.5) (1338658.7)

N 1040 1040 1040 1040
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 68

Marginal Revenue Product of Star College Basketball Players With Media Ex-
posure Interactions. This table reports estimates of a star basketball player’s marginal
revenue product from Model (2.8) over the sample period 2003-2012. The variable NewsHits
captures a team’s media exposure and is measured by the number of media articles mention-
ing the basketball team in a given year. Revenues are real 2012 USD at an annual frequency.
Standard errors are in parentheses and have been clustered by team. Estimates for eight
different measures of star player are reported: (1) Wooden Award Winner, Naismith Award
Winner or the NCAA Tournament’s Most Outstanding Player, (2) All American First Team,
(3) All American First or Second Team and (4) NBA Drafted Players.

(1) (2) (3) (4)
AW AAFt AA Drafted

Stars 588472.6 395654.3 -93061.5 232661.0∗∗

(849430.7) (324183.3) (328625.0) (114617.1)

Starst−1 157025.1 15131.3 112783.4 9315.8
(379744.4) (287768.8) (173239.5) (92096.2)

Starst−2 200920.0 167969.9 201555.6 235651.1∗∗

(328418.7) (221090.4) (154874.8) (101868.2)

News Hits 446.7∗∗∗ 444.2∗∗ 448.2∗∗ 583.0∗∗∗

(159.8) (182.8) (205.7) (206.6)

Stars×NewsHits 122.5 11.28 163.7 -109.8
(610.6) (177.7) (209.1) (94.54)

Winst−1 4537.3 3999.5 3813.1 5279.3
(4682.2) (4623.6) (4638.1) (4573.3)

Winst−2 12346.3∗∗∗ 11819.3∗∗∗ 11104.2∗∗ 8178.9∗

(4321.2) (4395.5) (4359.1) (4619.7)

CoachCarTournt−1 52528.2∗∗∗ 52526.3∗∗∗ 52217.8∗∗∗ 51623.5∗∗∗

(16288.0) (16347.0) (16529.8) (16371.7)

CoachCareert−1 -67393.3 -31969.4 -41421.6 -54890.4
(295827.2) (293222.0) (295276.0) (290423.7)

CoachChange 9487.0 7056.4 10431.8 12642.0
(61218.2) (61286.2) (60971.1) (61058.9)

NCAATournt−1 155183.0∗∗ 156048.0∗∗ 159387.6∗∗ 158003.4∗∗

(74734.8) (75034.6) (73998.4) (76073.5)

Round2t−1 -75453.6 -68600.0 -66214.4 -71452.5
(127022.9) (124950.7) (128181.3) (129267.9)

Sweet16t−1 235718.6 237722.4 234165.7 276679.6
(170321.1) (178978.1) (173296.2) (169804.0)

Elitet8t−1 -147538.5 -155104.1 -150278.0 -47642.5
(455950.8) (456147.8) (467063.7) (424085.1)

Final4t−1 294967.2 295383.8 309361.9 391479.5
(387936.7) (383458.8) (379385.0) (401090.3)

Finalt−1 -113990.8 -64720.5 -125992.1 -49994.4
(309674.1) (363908.5) (347783.4) (327206.6)

Champt−1 1773324.1∗∗ 1873470.1∗∗∗ 1856519.0∗∗∗ 2079244.7∗∗∗

(858311.9) (610972.8) (678905.9) (655752.8)

NSchlsConf 1578.5 844.9 925.8 472.5
(40030.2) (39915.3) (39437.2) (40515.0)
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NSchlsConfAP -53395.3 -54596.2 -55297.0 -50798.8
(39588.2) (41279.3) (40506.7) (41024.4)

NSchlsConfTourn -72.31 -140.0 -269.2 -6971.3
(40178.3) (40065.3) (40039.8) (38525.9)

NSchlsConfFF -120766.3 -116491.7 -114384.4 -103640.9
(83418.8) (82859.5) (83514.2) (84102.1)

SOS -4199.6 -4821.7 -5255.2 -6439.6
(12317.7) (12394.2) (12471.3) (12502.9)

HistWins -2963.0 -3047.8 -3193.1 -3296.0
(2908.1) (2913.6) (2910.5) (2923.7)

HistNCAATrn -21079.7 -20178.6 -19123.2 -33086.6
(58438.0) (59883.5) (60071.3) (58375.0)

HistRound2 -63994.4 -47475.1 -53692.2 -42805.8
(109256.3) (111212.1) (112508.3) (109715.0)

HistSweet16 -116742.0 -114420.6 -95267.2 -72617.8
(144241.1) (142943.8) (137927.0) (134728.7)

HistElite8 113112.5 123497.9 126328.6 153465.9
(178719.2) (184541.0) (184250.4) (179517.0)

HistFinal4 289992.4 357069.9 392826.7 418482.5
(322075.7) (317900.1) (328469.4) (326402.8)

HistFinal 121801.5 226104.2 226640.5 207799.0
(599612.6) (592969.7) (597996.7) (578786.7)

HistChamp -705770.9 -775991.9 -748345.7 -713955.6
(845244.3) (795785.6) (797703.6) (781527.7)

Distance -748.6 -671.7 -673.9 -768.7
(1569.4) (1558.2) (1583.2) (1525.9)

UndergradPop -47590.0 -45863.9 -47014.3 -43557.0
(38776.8) (37715.5) (38401.7) (39003.7)

PerCapPI 18195.3 16484.9 15493.5 8589.7
(40359.3) (39882.0) (39224.3) (39652.7)

GrPerCapPI 6879.7 8177.3 8356.7 10353.4
(15567.2) (15527.1) (15363.5) (15616.5)

CityPop 847637.3 889131.5 877856.8 779643.1
(1845638.1) (1816622.7) (1827867.8) (1851544.0)

StatePop -149.1 43559.0 18591.8 56614.8
(432716.0) (412377.8) (419491.4) (436959.5)

Team Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

Confr. Fixed Effects Yes Yes Yes Yes

N 2820 2820 2820 2820
Within R2 0.673 0.672 0.672 0.675
Adjusted R2 0.969 0.969 0.969 0.969
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 69

Marginal Revenue Product of Star College Basketball Players as a Function of
the Team’s Media Exposure. This table reports the marginal effects from the regressions
in Table 68 for various percentiles of media exposure, as measured by the number of media
articles mentioning the basketball team, over the sample period 2003-2012. Standard errors
are in parentheses and have been computed using the delta method. Estimates for four
different measures of star player are reported: (1) Wooden Award Winner, Naismith Award
Winner or the NCAA Tournament’s Most Outstanding Player, (2) All American First Team,
(3) All American First or Second Team, and (4) NBA Drafted Players. This table reports
the estimates that are displayed in Figure 4.

(1) (2) (3) (4)
AW AAFt AA Drafted

1st Percentile: News Articles 588962.5 395699.4 -92406.7 232221.9∗∗

(847323.6) (323621.7) (327938.5) (114371.4)

5th Percentile: News Articles 590799.9 395868.5 -89951.3 230575.6∗∗

(839437.9) (321520.9) (325370.6) (113456.4)

10th Percentile: News Articles 592147.3 395992.6 -88150.7 229368.2∗∗

(833671.7) (319985.6) (323493.8) (112792.0)

25th Percentile: News Articles 595454.5 396297.0 -83730.9 226404.7∗∗

(819579.6) (316237.0) (318910.7) (111185.7)

Median: News Articles 602191.4 396917.2 -74727.7 220368.0∗∗

(791159.9) (308690.7) (309683.1) (108026.4)

Mean: News Articles 619777.6 398536.3 -51225.4 204609.4∗∗

(719073.9) (289620.5) (286370.9) (100581.2)

75th Percentile: News Articles 622892.0 398823.0 -47063.3 201818.7∗∗

(706675.4) (286347.9) (282374.6) (99397.9)

90th Percentile: News Articles 668580.5 403029.2∗ 13994.8 160878.6∗

(543578.6) (242976.9) (229972.5) (87958.2)

95th Percentile: News Articles 707042.0 406570.0∗ 65394.9 126414.3
(451946.3) (215697.5) (199287.0) (88658.4)

99th Percentile: News Articles 835900.6 418433.0∗ 237601.5 10947.8
(659140.2) (223596.4) (241659.1) (145320.2)

N 2820 2820 2820 2820
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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