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ABSTRACT

ESSAYS ON ONLINE ADVERTISING

Vibhanshu Abhishek

Kartik Hosanagar

Peter S. Fader

In this dissertation, we study different dimensions of online advertising by focusing on re-

search questions which are motivated by marketing and managerial considerations. The first

essay highlights the inadequacies of data standards that are commonly used in sponsored

search. We show that these datasets result in aggregation bias and propose alternate data

standards that do not suffer from this bias. An equilibrium analysis is performed to analyze

the effect of this bias on the search engine and advertisers and it is shown that the search

engine tend to lose the most from this bias. The second essay focuses on an advertiser’s

problem of bidding optimally in sponsored search. Uncertainty in the decision-making envi-

ronment, budget constraints and the presence of a large portfolio of keywords makes the bid

optimization problem non-trivial. We formulate this problem mathematically and propose

a “myopic” policy for one-period optimization. This policy is extended by incorporating

interactions between keywords, in the form of positive spillovers from generic keywords into

branded keywords. This multi-period “forward-looking” policy uses a Nerlove-Arrow model

to capture the long-term interactions between these keywords. The spillovers are estimated

using a dynamic linear model and used to jointly optimize the bids of the keywords using

an approximate dynamic programming approach. In the third essay we discuss the prob-

lem of attribution in the context of online ads. We formulate a dynamic Hidden Markov

Model to capture a consumer’s behavior during the purchase process and how this process

is affected by ads. This model is subsequently used to evaluate the role that each ad plays

in a consumer’s eventual conversion in order to solve the attribution problem.
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CHAPTER 1 : Introduction

The last several years have seen a dramatic increase in the amount of time and money

consumers spend online. A recent survey reports that consumers spend around 33% of

their time online (IAB 2011). As a consequence, the Internet has become an important

channel that firms can use to reach out and connect to consumers which has lead to the

emergence of online advertising. Several forms of online advertising has evolved over the

year, e.g. sponsored search, display advertising, email marketing, classifieds and more

recently social network advertising, sponsored search and display advertising dominating

the online marketing landscape. Internet advertising has become a significant component

of advertisers’ marketing mix. Firms spent close to US$ 35 Billion on online advertising

in the year 2011 and this expense is expected to double in the next 5 years. The online

advertising spend surpassed the amount spent on newspaper advertising in the year 2010

and is expected to surpass television advertising by the year 2016.

There are several factors that have contributed to this growth in online advertising – (i)

measurability, (ii) scale and (iii) targetability. Firstly, it has been extremely difficult to

quantify the returns from traditional advertising. Online advertising on the other hand is

highly measurable, with search engines and ad networks tracking every action of consumers.

This unprecedented amount of data has helped advertisersfine tune their campaigns and

increasing their returns from online advertising. Secondly, a huge amount of traffic flows

through channels like search engines and with the ever increasing time consumers spend on

the Internet, the ad inventory available online is significantly more than one could imagine

in a traditional medium like television or print. Thirdly, with development of technologies

like geolocation and persistent cookies, it is very easy to track and target customers at a

level of granularity which was impossible to imagine in traditional advertising.

Online advertising has lead to some fundamental changes in the field of advertising. Tra-

ditional advertising was the forte of large firms with large advertising budgets. Due to
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the incremental costs of online advertising, e.g. per-click or per-impression, advertising

expenses can be finely controlled at a daily level. For the first time small and medium sized

local firms can directly reach consumers through online advertising. The fine level of con-

trol has not only made advertising more efficient but might also lead to an increase in the

amount spent on advertising, most of this growth fueled by smaller local firms. In addition,

traditional advertising has primarily been push-based where ads are shown to consumers

when they are engaged in some unrelated activity like reading or watching television. New

innovations in advertising like sponsored search are primarily pull-based – they show ads

to consumers when they are looking for something and since these ads are contextually

relevant, consumers have a higher probability of engaging with these ads. The effectiveness

of sponsored search vis-a-vis other channels has been fairly well documented (Ghose and

Yang, 2009, Goldfarb and Tucker, 2010, Agarwal et. al., 2011). From an academic per-

spective online advertising presents very granular, individual level data which has eluded

researchers and marketeers in traditional advertising, allowing them to gain a better insight

into consumer behavior.

Given the scale and novelty of online advertising, there is a growing need to understand

how consumers respond to online ads and how firms should advertise using this medium.

In my dissertation, I study different aspects of sponsored search and display ads which

constitute the bulk of online advertising. In the first essay, I focus on the issues related to

the use of aggregate data in sponsored search. I demonstrate that models commonly used

in sponsored search research suffer from aggregation bias and present the implications of

this aggregation bias. In the second essay, I focus on the advertiser’s problem of bidding

optimally in sponsored search auctions. In the third essay, I study the interactions between

various forms of online advertising like banner ads, display ads and sponsored search ads

and address the problem of attribution. A detailed description of these essays is presented

below.

2



Essay 1: Aggregation Bias in Sponsored Search Data - Existence and Implications

There has been significant recent interest in studying consumer behavior in sponsored search

advertising (SSA). Researchers have typically used daily data from search engines containing

measures such as average bid, average ad position, total impressions, clicks and cost for

each keyword in the advertiser’s campaign. A variety of random utility models have been

estimated using such data and the results have helped researchers explore the factors that

drive consumer click and conversion propensities. However, virtually every analysis of this

kind has ignored the intra-day variation in ad position. We show that estimating random

utility models on aggregated (daily) data without accounting for this variation will lead to

systematically biased estimates – specifically, the impact of ad position on click-through rate

(CTR) is attenuated and the predicted CTR is higher than the actual CTR. We demonstrate

the existence of the bias analytically. These findings are empirically validated using a large

dataset from a major search engine. We show the effect of the bias on the equilibrium

of the SSA auction. Search engines are always affected adversely due to aggregation bias.

In addition, we show that advertisers receive a higher payoff from SSA when they all use

complete data. Finally, we empirically quantify the losses suffered by the search engine

and an advertiser using aggregate data. The search engine loses over 17% of its revenues

on average. We also observe that an advertiser could unilaterally increase his revenues by

around 6% if he used disaggregate data.

Essay 2: Optimal Bidding in Multi-Item Multi-Slot Sponsored Search Auctions

We study optimal bidding strategies for advertisers in sponsored search auctions. In general,

these auctions are run as variants of second-price auctions but have been shown to be incen-

tive incompatible. Thus, advertisers have to be strategic about bidding. Uncertainty in the

decision-making environment, budget constraints and the presence of a large portfolio of

keywords makes the bid optimization problem non-trivial. We present an analytical model

to compute the optimal bids for keywords in an advertiser’s portfolio. To validate our ap-

proach, we estimate the parameters of the model using data from an advertiser’s sponsored

3



search campaign and use the bids proposed by the model in a field experiment. The results

of the field implementation show that the proposed bidding technique is very effective in

practice and leads to a 75.38% increase in the advertiser’s profits. We extend our model to

account for interactions between keywords, in the form of positive spillovers from generic

keywords into branded keywords. We use a Nerlove-Arrow model to capture the effect of

generic click and impressions on awareness and the subsequent spillovers into branded search

activity. The spillovers are estimated using a dynamic linear model framework and used

to jointly optimize the bids of the keywords using an approximate dynamic programming

approach. This policy is slightly better than the policy that ignores interactions between

keywords. It leads to an overall increase of 83.25% in the advertiser’s profits.

Essay 3: The Long Road to Online Conversion: A Model of Multi-Touch Attribution

Consumers are exposed to advertisers across a number of channels. For example, a consumer

may be exposed to an advertiser’s display ads at multiple websites followed by sponsored

search ads for a number of queries. So a conversion or a sale may be the result of a series of

ads that were displayed to the consumer. This raises the key question of attribution: which

ads get credit for a conversion and how much credit do each of these ads get? The issue

has received considerable attention in the industry. Although the issue is well documented,

current solutions are often simplistic. For example, a common practice is to attribute the

sale to the most recent ad exposure. In some instances, firms apply exponentially decreas-

ing weights based on time of ad exposure. These methods of attribution penalize prior

exposures and give undue credit to ad exposures that occur just before the sale. As all

the ads collectively influence the consumer’s decision to make a purchase, it is difficult to

disentangle the contribution of various ads towards the eventual sale. The problem of attri-

bution is exacerbated because different entities manage different components of advertising

like sponsored search and display advertising which has impeded development of a unified

attribution frame work. In this paper, we address the problem of attribution using a unique

data-set from a digital ad agency that managed the entire online campaign during a car

4



launch. We present a Hidden Markov Model of an individual consumer’s behavior based

on the concept of a conversion funnel that captures the consumer’s deliberation process.

We observe that different ad formats, e.g. display and search ads, affect the consumers

differently and in different states of their decision process. Display ads usually have an

early impact on the consumer, moving him from a state of dormancy to a state where he

is aware of the product and it might enter his consideration set. However, when the con-

sumer actively interacts with these ads (e.g. by clicking on them), his likelihood to convert

considerably increases. Secondly, we present an attribution scheme based on the proposed

model that assigns credit to an ad based on the incremental impact it has the consumer’s

probability to convert.

5



CHAPTER 2 : Aggregation Bias in Sponsored Search Data: The Curse and The

Cure

2.1. Introduction

Sponsored search advertising (SSA) has not only transformed the way companies conduct

their marketing activities, but it has also been a tremendous resource to academic re-

searchers who seek to better understand how consumers respond to such ads. A myriad of

researchers have turned to SSA data to uncover new insights about consumer search (Ghose

and Yang, 2009; Rutz and Bucklin, 2011), choice and related purchasing behaviors (Jeziorski

and Segal, 2009; Yang and Ghose, 2010; Agarwal et al., 2011) and advertiser/search engine

strategies (Animesh et al., 2009; Yao and Mela, 2011; Rutz et al., 2012). Many of these

papers have used random utility models to study the effect of ad position, keyword length,

presence or absence of brand name, etc. on the click-through and conversion rates of the

ads.

Sponsored search refer to ads that are displayed alongside organic search results when a

user issues a query at a search engine. The advertisers submit bids for keywords that are

relevant to them, along with these ads.1 When a user enters a query, the search engine

identifies the advertisers bidding on keywords closely related to the query and uses data on

bids and ad quality/performance to rank order the ads in a list of sponsored results. The

most widely used pricing model is the pay-per-click model, in which the advertiser pays only

when a user clicks on his ad. The advertiser’s cost per click or CPC is determined using a

generalized second price auction (GSP), i.e. whenever a user clicks on an ad at a particular

position, the advertiser pays an amount equal to the minimum bid needed to secure that

position.

Although SSA is a relatively new practice, it already has fairly well-established data stan-

dards associated with it. Most researchers who have modeled SSA-related issues have

1The term keyword refers to term or phrase on which an advertiser bids. Query (or query term) is the
search phrase entered by the consumer when conducting the search
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worked with a data structure such as the one illustrated in Table 1. Advertisers also obtain

Table 1: Sample dataset for a particular keyword

date impressions clicks avg. pos avg. bid avg. CPC

01/11/09 180 1 19.33 1.00 0.30
01/12/09 202 0 18.42 1.00 0.00
01/13/09 212 0 17.12 1.00 0.00
01/14/09 223 5 8.19 2.00 1.24
01/15/09 166 4 7.59 2.00 1.03
01/16/09 198 3 7.94 2.00 0.89
01/17/09 197 5 8.08 2.00 1.21
01/18/09 321 21 2.00 3.00 2.12

similar datasets from search engines and analyze them to design their bidding policies. In

almost all cases, these data are aggregated to the daily level and contain summary statistics

for the day, such as the number of ad impressions, average position of the ad, number of

clicks received and the average CPC. It should be clear how this kind of dataset lends itself

to the types of models mentioned above, as well as analysis of a variety of other customer

behaviors (and related firm actions). But despite the creativity and methodological prowess

that has been demonstrated in this growing body of literature, we believe that these mod-

eling efforts are plagued by a major problem: an aggregation bias due to the way that the

raw (search-by-search) data are “rolled” up into Table 1.

In practice, the position of an ad can vary substantially within a day and aggregated data fail

to capture this variation. It is also widely known that the impact of position on CTR is non-

linear. For example, an ad at the topmost position tends to receive a disproportionately

large number of clicks as compared to the other positions. The convexity in the CTR,

coupled with the intra-day variation in position suggests that the daily aggregation might

lead to estimation bias. The goal of this paper is to provide a thorough evaluation of the

nature of this bias and to demonstrate its effects.

The paper makes the following contributions. Firstly, we show that applying logistic model

to aggregated SSA data can lead to biased estimation of the parameters of a random utility
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model. Due to the bias, the effect of position on CTR is attenuated and the predicted

CTR is higher than the actual CTR. Secondly, we study the changes in the equilibrium of

the SSA auction induced by the bias. Since the advertisers use aggregate data to arrive

at incorrect estimates of the ctr-position curve, one would assume that they are negatively

affected by this bias. Surprisingly, if all the advertisers use aggregate data, the consequence

of the bias is completely borne by the search engine. Thirdly, using a large disaggregate

dataset from a major search engine, we quantify the magnitude of the bias and measure

its economic impact. We extend the Hierarchical Bayesian (HB) model using a latent

instrumental variable (LIV) approach to address the issue of position endogeneity which is

common in sponsored search. We find that the search engine loses over 17% of its revenue on

average due to the aggregation bias. Our findings raise serious concerns for SSA researchers

and practitioners and also question the adequacy of the data standards that have become

common in SSA. Finally, we present some data summarization techniques that can reduce

or eliminate the bias.

The rest of the paper is organized as follows. Section 2 discusses related work and positions

our work in the literature. In Section 3, we analytically prove the existence of the bias and

build a game-theoretic model to study the economic impact of the bias. In Section 4 we

analyze a large disaggregate dataset from a search engine using the HB-LIV model. We

present the managerial implications of the bias in Section 5. Then we present various data

summarization techniques in Section 6 and finally discuss the implications of the bias on

research and practice and conclude the study in Section 7.

2.2. Related work

There has been a considerable amount of work on auction design and consumer choice

models in SSA (Weber and Zheng, 2007; Liu and Whinston, 2007; Hao et al., 2009; Goldfarb

and Tucker, 2007). More specifically, there are two streams of work that are closely related

to our study, namely empirical research on consumer click and conversion behavior in SSA

and work related to aggregation biases in choice models.
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Empirical Research in Sponsored Search

There has been a lot of recent interest in trying to understand the factors driving keyword

performance in SSA. Craswell et al. (2008) and Ali and Scarr (2007) propose individual

keyword-level models to study how consumers navigate sponsored links. Other researchers

have used logit models to measure the influence of factors like ad position and keyword

characteristics on the consumer behavior in SSA (Rutz et al., 2012; Rutz and Bucklin, 2011;

Ghose and Yang, 2009; Agarwal et al., 2011). Rutz et al. (2012) compare the performance

of several logit models in predicting the conversions for various keywords. Their results

show that keywords are heterogeneous in their conversion rate and a significant portion of

this variation can be explained by the presence of brand or geographical information in the

keyword. In another paper, Rutz and Bucklin (2011) measure the spill-over effect of generic

keywords on branded keywords. Ghose and Yang (2009) use a random effect logit model

to understand the relationship between different metrics such as CTR, conversion rates,

bid prices and ad position using the advertiser’s aggregate data. They show that keywords

containing retailer information have a higher CTR whereas keywords that are more specific

or contain brand information have a lower CTR. Recent work by Agarwal et al. (2011) uses

a logit model to show that although the CTR decreases with position, the conversion rate

is non-monotonic in position. They point out that the topmost position is not necessarily

the revenue maximizing position.

Most of this stream of research uses aggregate data to estimate the parameters of the

model. The aggregate data obfuscate the variation in ad position and research in this

area has overlooked this fact. Ignoring this variation can lead to potential biases in the

estimation of parameters and ultimately affect the conclusions from these studies.

Aggregation Bias

Though researchers have grappled with the issue of data aggregation for many years, there

is no clear consensus on this issue. The problems associated with aggregation have been
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commonly encountered in spatial and demographic studies and are referred to as the Yule-

Simpson effect (Good and Mittal, 1987). The drawbacks of aggregation have also been

pointed out in various studies in the economics and marketing literature. Neslin and Shoe-

maker (1989) point out the limitations of aggregate data by refuting the claim that sales

promotions undermine the consumer’s repeat-purchase propensity. They show that even if

the individual purchase propensities do not change before and after promotions, statistical

aggregation would lead to lower average repeat probabilities for post promotional purchases.

Yatchew and Griliches (1985) discuss the implications of aggregation in the context of probit

models. Issues related to data aggregation in the case of logit models have been presented

by Kelejian (1995). He discusses why aggregation bias might occur when logit models are

estimated on aggregate data and proposes a test for the existence of this bias.

On the other hand, several researchers believe that the effect of aggregation is negligible or

absent when the disaggregate model can be approximated by the aggregate model (Gupta

et al., 1996; Russell and Kamakura, 1994). Using household-level panel data and store-level

purchase data, Gupta et al. (1996) show that the price elasticity estimated from the two

models differ by a very small amount (4.7%). Allenby and Rossi (1991) present an analytical

proof for the non-existence of aggregation bias in nested logit models of consumer choice

when the products are close substitutes of each other, though they assume that the micro-

level consumer behavior is approximately linear in the product attributes.

The discussion reveals two themes. First, a number of recent studies have applied the

logit model on aggregated SSA data to study consumer choice behavior. Second, although

aggregation bias has been shown to exist in a number of environments, its non-existence

has also been demonstrated in several other environments. It is not clear which of these

arguments is most applicable in the SSA context, and it is thus not clear whether and to

what extent aggregation bias affects SSA research. This paper uses a theoretical model to

show why data aggregation might lead to biased estimates in the SSA context. An extensive

disaggregate search engine dataset is used to empirically measure the extent of aggregation
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bias in SSA research which we believe has been done for the first time. Finally, we discuss

the economic consequences of aggregation bias.

2.3. Aggregation Bias

In this section we explore the estimation bias due to the aggregation of SSA data. We

begin by pointing out the distinction between the complete (disaggregate) and the summary

(aggregate) data that have been referred to in the paper. Table 2 is a stylized example that

presents impression level data for an ad, reflecting every search query for a particular term.

Each observation contains the date on which the impression occurred, position of the ad,

bid placed by the advertiser, whether the consumer clicked on the ad and finally the CPC.

Search engines usually do not provide such granular data to advertisers or researchers.

They provide aggregated data at the daily level as shown in Table 1 earlier that mask the

intra-day variation in position.

The intra-day variation arises due to two major factors – Firstly, SSA auctions are extremely

dynamic with advertisers entering and exiting the auction or changing their bids contin-

uously. Change in the competitors’ behavior lead to a change in ad position. Secondly,

most of the ads, specifically broad match and phrase match ads are shown for a number

of different queries.2 As the set of competitors can be different for different queries, the

position of the ad also varies across queries.

2.3.1. Analytical Proof of Aggregation Bias

Logit utility model

The logit utility model has been extensively used in economics and marketing to explain

consumer choice behavior. Researchers have primarily focused on keyword-level models

to analyze the effect that factors like ad position, specificity of the keyword, presence of

2An exact match occurs when the users query term exactly matches the advertisers keyword. A phrase
match occurs when the advertisers keyword appears anywhere within the users query. Finally, a broad
match occurs when user query is determined to be broadly similar to advertisers keyword. Broad match is
commonly used by advertisers as it maximizes the number of ad impressions.
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Table 2: Complete dataset for a particular keyword

impression date click pos bid CPC

1 01/11/09 0 16 1 0.00
2 01/11/09 0 20 1 0.00
3 01/11/09 0 18 1 0.00
. . . . . . . . . . . . . . .
8190 02/15/09 0 6 2 0.00
8191 02/15/09 0 5 2 0.00
8195 02/15/09 0 6 2 0.00
. . . . . . . . . . . . . . .
9145 02/23/09 1 1 3 2.31

brand name and other variables have on the consumer’s propensity to click on the ad. The

consumer’s utility has been modeled as

U = X ′β + ϵ, (2.1)

where X is a vector of covariates, β is consumer sensitivity to these attributes and ϵ ∼

Logistic(0, 1). In binary choice models, this utility is not observed but constitutes a latent

variable. The consumer clicks on an ad when U > 0, i.e.

Yi =

 1 iff U > 0,

0 otherwise,

where Y is a variable that denotes whether a click was made or not. In accordance with prior

research, we build a keyword-level model that ignores other ad characteristics and focuses

our attention on the impact of ad position on click through rate, i.e. U = f(position). The

simple model allows us to clearly identify the existence and direction of the bias. However,

this assumption does not impose any restrictions on the model as all keyword characteristics

(which do not change during the day) are subsumed in the intercept term and the we focus

our attention on position which varies intra-day. Although we focus on a keyword level

model in this paper, our finding are applicable for different levels of analysis.

12



Estimation using complete dataset

We now discuss the estimation of β when the model is estimated using the complete dataset.

Let Vi be a random variable denoting the ad position on the ith impression. We assume that

Vi is independent and identically distributed and has a distribution given by FV (.) which

is assumed to be constant during the period of observation. The consumer’s utility is given

by the following expression

Ui = β0 + β1Vi + ϵi. (2.2)

As ϵi is extreme value distributed, the probability of clicking on an ad (CTR) is pi =

1/(1 + exp−{β0 + β1vi}). Note that pi might vary across impressions as the ad position is

varying as well. Let β̂c denote the maximum likelihood estimate from the complete dataset.

It can be shown that β̂c satisfies the following equation3

obsctr =
1

I

I∑
i=1

exp{β̂0,c + β̂1,cvi}
1 + exp{β̂0,c + β̂1,cvi}

. (2.3)

where obsctr, the observed click-through rate, is the fraction of the impressions that result

in a click and it equals C/I, where C is the total number of clicks from I ad impressions in

the entire dataset. vi is the realization of Vi for a particular ad impression. An important

property of β̂c is as follows.

Lemma 1 β̂c is a consistent and unbiased estimator of β.

Estimation using aggregate dataset

Researchers do not observe Vi when aggregate data are used. They only observe the mean

daily position W which is given by

W =
V1 + V2 + . . .+ VN

N
, (2.4)

3Derivations of all equations appear in the Online Appendix.
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where N is the random number of ad impressions on a particular day and V1, . . . , VN is the

ad position during each of those impressions. The distribution of W is FW (.) and it depends

on the distribution of V and N . If the effect of position is estimated from aggregate data,

the consumer utility from clicking the ad is effectively modeled as

Ud = β0 + β1Wd + ϵd, (2.5)

where Wd is the average position for the day and ϵd is the logistically distributed error

term. This formulation causes a mis-specification as the consumers do not observe the

ad at a position Wd but at position V . As the variable Z = V − Wd (E[Z|W ] = 0),

which affects the consumer’s click behavior, is not accounted for in the regression, the

mis-specification is similar to omitted variables bias pointed out by Yatchew and Griliches

(1985) and Wooldridge (2001). However, this issue arises primarily due to data aggregation

and our approach is closely related to prior work in Marketing by Christen et al. (1997),

Steenkamp et al. (2005) and Gupta et al. (1996). Further, as V ar(Z) is not constant (it

depends on the number of impressions in a days), the findings of Yatchew and Griliches

(1985) and Wooldridge (2001) are not directly applicable in this context. Hence, we derive

an important relationship between W and V in order to prove the aggregation bias.

Lemma 2 W is less than V in convex order.4

W ≤cx V (2.6)

This relationship between W and V is very general and holds for any distribution, FV (.).

Let the number of impressions on day d be denoted by nd and the number of clicks by cd;∑D
d=1 nd = I and

∑D
d=1 cd = C. The maximum likelihood estimate from summary data,

4X is less than Y in convex order if E[f(X)] ≤ E[f(Y )] for all real convex functions f such that the
expectation exists. All proofs appear in the Appendix.
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β̂s, satisfies the following equation,

obsctr =
1

I

D∑
d=1

nd exp{β0,s + β1,swd}
1 + exp{β0,s + β1,swd}

(2.7)

Using Lemma 2 and the preceding result, we prove an important result of this paper.

Proposition 1 β̂s is a biased estimator of β.

If β̂c is equal to β̂s then the convex order between W and V implies that

E

[
exp{β̂0,c + β̂1,cV }

1 + exp{β̂0,c + β̂1,cV }

]
> E

[
exp{β̂0,s + β̂1,sW}

1 + exp{β̂0,s + β̂1,sW}

]
.

As both the L.H.S. and the R.H.S. equal obsctr (as shown in Appendix A), this inequality

is incorrect and hence β̂c cannot equal β̂s. Since β̂c is a consistent and unbiased estimator

of β, β̂s is biased. This finding is contrary to earlier work by Allenby and Rossi (1991),

Gupta et al. (1996) and Russell and Kamakura (1994) which prove that aggregation bias

in market or store-level scanner data is negligible. Aggregation bias is significantly reduced

in these models as products are very close substitutes of each other and the consumers (or

house-holds) are exposed to very similar marketing activities. However, position has a very

strong effect in sponsored search (Craswell et al., 2008) and ads in different positions are

perceived very differently by consumers. Coupled with variation in ad position, aggregation

bias can be quite substantial in sponsored search, a hypothesis we test in Section 4.
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Figure 1: Logistic regression on complete and aggregate data.
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Due to the convexity of the CTR-position curve and the variation in position, the mean daily

CTR at every position lies above the true CTR (see Figure 1).The relationship between the

estimated and the actual CTR is presented in the following proposition.

Proposition 2 The direction of aggregation bias is such that (i) the CTR estimated from

the summary data is greater than or equal to the actual CTR at any position, and (ii)

β̂1,s > β̂1,c.

β̂s is biased and it predicts a CTR that is higher than the actual CTR at any position.

Incorrect estimation of CTR might lead advertisers to make suboptimal choices in sponsored

search auctions. The second part of Proposition 3 is consistent with Wooldridge (2001)

which shows that the estimates are scaled towards zero.

The omitted variable Z has the effect of increasing the disturbance term in the regression.

The estimated error can be computed as a convolution of ϵ and Z, but this is analytically

intractable as ϵ is logistically distributed. If Z and ϵ can be approximated closely by a

normal distribution, the asymptotic behavior of β̂s is as follows:

β̂1,s
p→ β1√

1 + ϕV ar(V )
π2/3

, (2.8)

where ϕ = E[1/N ] and is bounded by (1−(1−e−λ))/λ ≤ ϕ ≤ (1−[1−Fλ(1)+3(1−Fλ(2))/m])

where λ = E[N ]. When there are a large number of daily impressions, i.e. λ → ∞, ϕ → 1.

Equation 2.8 shows that, if the variation in the the intra-day position is known, the actual

β1 can be approximated by multiplying β̂1,s by the scaling factor. However, this approach

suffers from several simplifying assumptions that are required for analytical tractability. In

Section 5, we provide more general and robust empirical methods to remove the bias.

2.3.2. Effect on Equilibrium Behavior

As advertisers use estimates from historical data to bid in SSA auctions, incorrect estimation

of the CTR might have a negative impact on the advertiser and search-engine profits. In
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this section, we analyze how the impact of the bias is shared between the advertisers and

the search engine and who is affected more by aggregation.

For our analysis, we make the following assumptions – (i) there are K advertising slots

and K + 1 advertisers, (ii) the advertisers’ valuation for a click, sk are drawn from a

continuous distribution with support on [0,∞), (iii) advertisers know their own valuation

and the distribution of bids and finally, (iv) the click-through rate αi decreases with the

position i. In addition, we also assume that advertisers estimate αi from historical data

and are unaware of the aggregation bias. The advertisers are indexed in decreasing order

of their valuations, i.e. s1 > s2 > . . . sK+1 and their bids are b1, . . . , bK+1, respectively.
5

In addition, h = (bi, . . . , bK+1) refers to the history of bids prior to assignment of position

i.6 The case where complete data are used is analyzed first. Here the advertisers correctly

estimate αi. Edelman et al. (2007) show that under the above assumptions, there exists

a unique envy-free perfect Bayesian equilibrium and the optimal strategy for advertiser k

under this equilibrium is to bid as follows,

bk(sk, i, h) = sk −
αi

αi−1
(sk − bi+1). (2.9)

This is the maximum CPC that the advertiser is willing to pay to move to position i − 1

and receive more clicks. At this point, Advertiser k is indifferent between getting position

i − 1 at a CPC of bk(sk, i, h) and position i at bi+1. This is an ex-post equilibrium, i.e., it

is optimal for Advertiser k to follow the equilibrium strategy for any realization of other

advertisers’ valuations. The search-engine revenue is ΠC
S =

∑K
i=1 αibi+1 and the payoffs

for advertiser i is ΠC
i = αi(si − bi+1). It should be noted that this equilibrium ensures an

assortive match, i.e., if si > sj then advertiser i bids higher than advertiser j and occupies

a slot above advertiser j in equilibrium. This case serves as a reference for the ensuing

discussion.

5bK+1 is set to 0.
6Positions K through i+ 1 are assignment before bidding for position i starts.
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Next, we consider the case in which aggregate data are used. Let the CTR estimated from

aggregate data be denoted as α
′
i.

Remark 1 When aggregate data are used to estimate CTR, the ratio αi/αi−1 is overesti-

mated due to the presence of the aggregation bias.7

Due to this overestimation, advertisers might bid incorrectly. As the equilibrium considered

here is ex-post, the advertisers’ bidding strategies depend neither on their beliefs about each

others valuations nor on the fact that some advertisers might be using aggregate data. The

bidding strategies continue to be similar to the one outlined in Equation 2.9, but the bids

in this case, b
′
1, . . . , b

′
K , might be different.8 We consider two extreme cases to study the

impact of aggregation bias – (i) all advertisers except one use complete data and, (ii) all

advertisers use aggregate data. Let the search-engine revenue in Case I(II) be denoted by

Π
AI(II)
S and advertisers’ profit by Π

AI(II)
i .

Case I: Suppose advertisers other than Advertiser j have access to complete data and can

compute αi correctly. Only Advertiser j uses aggregate data and overestimates β1. This

leads him to overestimate the ratio αi/αi−1 and he bids in the following manner.

b
′
j(sj , i, h) = sj −

α
′
i

α
′
i−1

(sj − b
′
i+1). (2.10)

As Advertiser j bids lower in equilibrium and occupies a position j
′ ≥ j. The follow-

ing proposition characterizes the equilibrium in this case (detailed analysis and proofs are

provided in Appendix C).

Proposition 3 (i) If only Advertiser j uses aggregate data, the top advertisers (i ≤ j) bid

lower, advertisers in between (j < i ≤ j
′
) bid higher and the remaining advertisers (i > j

′
)

bid the same as they would have when everyone had complete data. (ii) The payoffs of the

7Writing the CTR in terms of the logit model we get, αi
αi−1

= exp{β0+β1i}
1+exp{β0+β1i}

× 1+exp{β0+β1(i−1)}
exp{β0+β1(i−1)} ≈ exp{β1}

when CTRs are small. Since β̂1,s > β̂1,c ⇒ αi/αi−1 < α
′
i/α

′
i−1.

8We continue to assume that Advertiser K + 1 still bids 0.
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search engine and Advertiser j decrease (ΠAI
S < ΠC

S ,Π
AI
j < ΠC

j ) while all other advertisers

receive payoffs that are either the same or higher than payoffs they would have received if

all advertisers were using complete data (ΠAI
i ≥ ΠC

i , i ̸= j).

Advertiser j underestimates the impact of position and incorrectly bids lower which might

move him to a lower position. In turn, some advertisers who were below him move up one

position. The ordering of these advertisers does not change, which is a consequence of the

bidding policy (Edelman et al., 2007). As b
′
j < bj′ , bids required to acquire all positions

above j
′
decrease. As bids for all position are (weakly) lower, the search engine loses rev-

enue. Clearly, Advertiser j’s payoff is lower, because he deviates from the optimal policy.

However, the loss in revenue for the search engine is substantially higher than the loss in

revenue for the advertiser using aggregate data. Interestingly, all these losses are transferred

to the other advertisers (̸= j) as excess surplus since GSP is a zero-sum game. Hence, the

search engine suffers the most due to aggregation bias and all advertisers apart from j are

better off due to aggregation. In the subsequent case, we observe that the search engine

internalizes all the negative impact of aggregation.

Case II: When all advertisers use aggregate data, their estimate of the CTR, α
′
i are greater

than the actual CTR as shown in Proposition 3. For simplicity, we assume that all adver-

tisers arrive at the same estimates for α
′
i.
9 As a result, Advertiser k adopts the following

bidding strategy,

b
′
k(sj , i, h) = sk −

α
′
i

α
′
i−1

(sk − b
′
i+1).

It is easy to see that the bid placed by advertiser K (the last advertiser) is less than the

bid he would have placed had he estimated CTR from complete data. Proceeding in an

iterative fashion we can show that all advertisers place a lower bid. The equilibrium in this

case is specified in the following proposition.

9This result continues to hold even if the advertisers arrive at different estimates of α
′
i as long as αi/αi−1 <

α
′
i/α

′
i−1, which always hold true due to aggregation bias as shown earlier.
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Proposition 4 (i) When all advertisers use aggregate data, the advertisers are arranged

in assortive order. The resulting bids are lower than the bids when complete data are used

(b
′
i < bi, i = 1, . . . ,K). (ii) Search-engine revenue is lower (ΠA2

S < ΠC
S ) and advertisers’

payoff are higher (ΠA2
i > ΠC

i ) as compared to the complete case.

In Appendix C, we show that the advertisers bid less than what they would have had they

known the actual CTR. As all the advertisers use the same incorrect estimate of the CTR,

the eventual ranking remains the same as in the complete case. They receive the same

number of clicks but at a lower CPC and hence their payoffs are higher. Surprisingly, the

search-engine revenue suffers the most when all advertisers use aggregate data even though

the advertisers make the wrong decisions. These results question the data standards that

have become common in SSA and underscore the need to provide better data to advertisers.

We also show that it is incentive compatible for search engine to provide richer/better data

to advertisers.

Note that an advertiser always receives a higher payoff when he uses complete data as

compared to aggregate data, irrespective of the fraction of advertisers using aggregate data.

This intuition is formalized in the following corollary.

Corollary 1 An advertiser can always increase his payoff from SSA by unilaterally using

complete data instead of aggregate data.

The difference in payoff between the two cases (complete v/s aggregate) can be considered

as the value of complete data or alternately the disutility from aggregate data. In the

following section, we analyze a large dataset from a leading search engine. The purpose of

this analysis is two folds: Firstly, we quantify the magnitude of the bias and show that it is

significant in the context of SSA. Secondly, we use these estimates to compute the revenue

implications of the bias for the search engine and a representative advertiser.
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2.4. Empirical Analysis

2.4.1. Data Description

We analyze a disaggregate dataset from a major search engine that contains 22 million

unique impressions chosen randomly from all user queries between August 10, 2007 and

September 25, 2007. This is a very unique dataset as search engines rarely provide impres-

sion level data to advertisers or researchers. For every impression, the dataset contains the

user query, ads shown on the page and number of ads on the preceding pages. Each ad

is identified by a unique ad identifier, though the dataset does not contain any ad-specific

information. The dataset also contains information about clicks during this period of obser-

vation. We construct an ad-level dataset, that contains information about the keyword the

advertiser was bidding on and all the impressions of the ad associated with the keyword,

which is similar to the one presented in Table 2.

Table 3: Summary Statistics

Total impressions 8,142,210
Unique queries 24,235
Unique ads 229,960
Ads with more than one impression 184,481
Mean impressions for every ad 64.4
Median impressions for every ad 7.0

There is ample evidence that there is substantial variation in position and reporting the

average position alone results in the loss of information on actual position as shown in

Figure 2. We next investigate the impact of data aggregation.

The ad level data described earlier are aggregated at a daily level to create aggregate data.

The data thus generated are similar to the campaign summaries that search engines make

available to the advertisers (as presented in Table 1).
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Figure 2: Mean Intra-day Variation in Position.

2.4.2. Hierarchical Bayesian Model

We estimate a random-effect logit model using Hierarchical Bayesian (HB) techniques that

are commonly used in SSA. As our data do not contain any ad-specific attributes, the only

covariate included in our models is position. The effect of ad characteristics is captured in

the ad-specific intercept term. We demonstrate the aggregation bias for HB model.

We extend the binary choice logit model proposed earlier in Section 3 to account for multiple

keywords. Under this specification, the consumer’s utility from clicking on ad k during

impression i is given by

Uik = β0k + β1kposik + ϵik (2.11)

where ϵik is the idiosyncratic, logistically distributed error term. βk = (β0k, β1k)
′
are

keyword specific parameters which are assumed to be random and heterogeneous across

ads. It is drawn from a multivariate normal distribution in the following manner:

βk ∼ N2(µβ, Vβ) where Vβ =

 σβ0 σβ0β1

σβ0β1 σβ1

 .

Similar models have been extensively used in prior research in SSA (Ghose and Yang,
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2009; Yang and Ghose, 2010). Note that although this random coefficient model captures

heterogeneity across ads, it still fails to accounts for the intra-day variation in posik if the

model is estimated on aggregate data. As a result, we expect the aggregation bias to extend

to the random-coefficient model as well. To test this hypothesis, we take a random sample

of ads from our data and apply the model in Equation 2.11 to both the disaggregate and

aggregate datasets and compare the estimates.

The log-likelihood function for the complete data is as follows

LL(β|complete data) =

K∑
k=1

IK∑
i=1

Yik log pik + (1− Yik) log(1− pik), (2.12)

where Yik is the indicator variable that denotes whether the ith impression of keyword k

received a click or not and pik, the click-through probability is given by

pik =
exp{β0k + β1kvik}

1 + exp{β0k + β1kvik}
. (2.13)

The log-likelihood function for the aggregate data is as follows

LL(β|aggregate data) =

K∑
k=1

D∑
d=1

cdk log pdk + (ndk − cdk) log(1− pdk), (2.14)

where ndk and cdk denote the number of impressions and clicks on day d respectively and

pdk, the click-through probability is given by

pdk =
exp{β0k + β1kwdk}

1 + exp{β0k + β1kwdk}
. (2.15)

As the data on clicks are often sparse for most keywords in sponsored search, the SSA

literature primarily uses Hierarchical Bayesian models. We use a similar approach and
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assume that the mean and variance-covariance martix for βk have the following priors

µβ ∼ N2(µ,Σ), (2.16)

V −1
β ∼ Wishart(ν,∆). (2.17)

The parameters µ,Σ, ν,∆,µβ and V −1
β are estimated separately from the complete and

the aggregate datasets using a Markov Chain Monte Carlo (MCMC) approach. Before

discussing the details of the MCMC estimation procedure, we discuss some identification

issues associated with the model presented here.

2.4.3. Identification

The ad position in the previous exposition has been assumed to be exogenous. However,

the position is decided by the bids placed by the advertiser. In addition, we know that

past performance affects the quality score of the ad which in turn affects the position. The

auction process and historical performance jointly determine the position which is one of the

most important strategic variables advertisers focus on in SSA. This indicates that position

is endogenous (i.e. E[postϵt] ̸= 0) and the endogeneity should be explicitly incorporated in

the HB model presented earlier.

Endogenity has been a major concern in the SSA literature and researchers have proposed

several techniques to address this issue. Ghose and Yang (2009) and Yang and Ghose

(2010) use a simultaneous equation model to address this problem. Their simultaneous

model forms a triangular system of equations which can be identified without any further

identification constraints. Agarwal et al. (2011) use a series of random bids to address the

endogenous nature of position. In their specification, position is completely determined by

the random bids and quality score which are exogenous. Recent econometric advances have

lead to the development of the latent instrument variable (LIV) framework (Ebbes et al.,

2005) which has been used by Rutz et al. (2012) to account for position endogeneity. The

LIV framework uses a likelihood based approach, which can be easily integrated with the
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HB model proposed earlier, and can be estimated using the MCMC estimator.

In a LIV formulation, the endogenous covariate is decomposed into a stochastic term that

is uncorrelated with the error and another one that is possibly correlated with the error,

i.e. X = θ + η where θ is the uncorrelated part of X such that E[θϵ] = 0 and E[ηϵ] = σηϵ.

As θ varies in the dataset, it is possible to identify the correlation between η and ϵ, denoted

by σηϵ. The LIV approach is extended to binary choice models by introducing a latent

categorical variable with M categories (Rutz et al., 2012). Position can assume any of these

M categorical values with a probability Π = {π1, π2, . . . , πM},
∑M

m=1. More specifically,

poskt = Θ′
ktγ +Z ′

ktδ + ηkt, (2.18)

where Θ ∼ MultinomialM (Π) is stochastic part of poskt and is exogenous and ηkt is

endogenous. The errors (ηkt, ϵkt)
′ are MVN distributed in the following manner

 ηkt

ϵkt

 = MVN


 0

0

 ,

 ση σηϵ

σηϵ σϵ


 . (2.19)

Zkt represents the observed instruments, and in our analysis we use lagged position as IVs

which is consistent with the approach adopted by Rutz and Bucklin (2011).

2.4.4. Estimation Results

We estimate both the HB model and HB model with LIV (HB-LIV) to draw comparisons

between the two methods. A sample size of 200 ads is chosen for estimating the parameters.

We make this choice primarily for computational convenience as estimating the model on

disaggregate data takes a long time. The disaggregate dataset contains a large number of

observations, hence the estimation on the disaggregate dataset is really slow.10

We start off with diffused priors (µ = 0,Σ = 100I, ν = 5,∆ = νI) and refine them as the

estimation proceeds. The exact estimation procedure is outlined in the apendix. We run

10We estimate the HB model on 25 different samples and the qualitative findings remain the same.
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the MCMC simulation for 100,000 draws and the first 50,000 sample are discarded. The

MCMC chains are stationary after the burn-in period. The MCMC chains are thinned to

remove autocorrelation between draws and every 10th draw in the stationary period is used

for the subsequent analysis.

The estimation results are presented in Table 4. We observe that there are significant

differences in the µβ estimated on the complete and aggregate data, for both the HB

and HB-LIV models. µ1 is overestimated by 10% when the estimation is performed on

aggregate data indicating that aggregation bias exists when a HB model is used. The bias

in µ1 increases to 12.9% when a HB-LIV model is used. We also observe a statistically

significant difference in the estimates from the HB and the HB-LIV model, conforming the

endogenity of position in sponsored search.

Table 4: Estimates of Parameters

HB HB-LIV
Parameters Complete Aggregate Complete Aggregate

µβ:
µ0β -1.495(0.000) -1.459(0.001) -1.672(0.301) -1.612(0.189)
µ1β -0.793(0.085) -0.727(0.098) -0.642(0.120) -0.558(0.074)

Vβ :
σ1 0.654(0.128) 0.753(0.170) 0.678(0.107) 0.689(0.192)
σ2 0.153(0.037) 0.155(0.038) 0.147(0.033) 0.162(0.042)
σ12 0.025(0.067) -0.085(0.076) 0.019(0.052) -0.090(0.076)

Vξ:
σϵ 0.263(0.067) 0.389(0.082) 0.142(0.047) 0.196(0.065)
ση 1.733(0.238) 2.113(0.414)
σηϵ 0.136(0.039) 0.176(0.052)

Θ:
θ1 0.962 (0.083) 0.748 (0.091)
θ2 2.838 (0.029) 2.364 (0.037)
θ3 4.552 (0.012) 5.927 (0.045)

Π:
π1 0.523 (0.255) 0.322 (0.181)
π2 0.238 (0.173) 0.193 (0.127)

Instrument Variable:
post−1 0.885(0.096) 0.766(0.127)
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We use the differences between the estimates from summary and complete data for a random

sample of 5000 exact-match keywords to compute the empirical distribution of the error

(ε = β̂s − β̂c) due to aggregation (Figure 4). This empirical distribution is used in Section

6.2 to quantify the impact of aggregation bias on search engine and advertiser revenues.
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Figure 3: HB Estimation on complete and aggregate data. The red dotted lines represent
the mean of the respective coefficients’ distribution.
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Figure 4: Error distribution estimated by computing the difference between the estimates
from aggregate data and complete data.
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2.4.5. Insights from Empirical Analysis

In general, we observe considerable bias in the estimates presented earlier although there

is significant heterogeneity across keywords.11 The bias is more significant in the case of

broad-match ad compared to exact-match ads. Ads that have more competitors are prone to

more aggregation bias than ads that have fewer competing advertisers. As the competition

increases, there are more bidders in the keyword auction and frequent changes in bids by

them might lead to higher intra-day variability in the ad position. Due to the increased

intra-day variation, broad-match ads and ads with a large number of competitors are more

prone to aggregation bias. We also observe that the bias increases as the effect of position

becomes stronger. In summary, aggregation bias is significant when broad-match ads are

used, there is significant competition or the estimated effect of position on CTR is large.

Under such conditions, the model should explicitly account for the intra-day variation in

position to accurately recover the parameters of the model. Advertisers can ignore the

effects of aggregation when the impact of position on CTR is negligible.

2.5. Managerial Implications

In the previous section, we showed the existence of aggregation bias using the HB and

HB-LIV models. In this section, we discuss the managerial implications of the bias. We

start by quantifying the impact of aggregation bias on advertiser and search engine profits.

Then, we discuss how aggregation bias might affect other managerial decisions like keyword

selection.

2.5.1. Revenue implications

We now apply recent research by Ghose and Yang (2009) to quantify the impact of ag-

gregation on advertiser and search-engine revenues. The analysis complements the theo-

retical investigation in Section 6.1. Given the coefficients estimated from aggregate and

disaggregate data, Ghose and Yang’s model helps identify an advertiser’s optimal bids and

11M The regression is presented in Table 6 in the appendix
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associated payoffs for the two cases. It does not however elaborate on the bids and payoffs

of other advertisers. This precludes equilibrium analysis of all players in the market but

allows us to examine whether and to what extent a unilateral switch to disaggregate data

by an advertiser affects that advertiser’s payoff and the search engine’s revenues from that

advertiser.

This analysis requires three main inputs. First, for any keyword we need to know the

magnitude of the bias due to aggregation (i.e. coefficients β̂s and β̂c). Next, we need to

compute the impact of this bias on the bids placed by the advertiser (i.e. how an advertiser’s

bids depend on β̂). Finally, we need to quantify how any change in the advertiser’s bid

affects the advertiser’s and search engine’s revenues. Our analysis in Section 5 provides

the input for the first step. Specifically, Figure 4 identifies the distribution of the error

ε = β̂s − β̂c. Thus, given any β̂s, we can compute a distribution of the true coefficient

β̂c. In order to compute how these coefficients translate into bid choices and eventually to

advertiser/search-engine revenues, we rely on Ghose and Yang’s model. They model the

CTR for an ad as

CTR =
exp{β0 + β1pos+ β2Retailer + β3Brand+ β4Length}

1 + exp{β0 + β1pos+ β2Retailer + β3Brand+ β4Length}
,

where Retailer, Brand are dummies that equal 1 when the keyword associated with the

ad contains retailer and brand information, respectively. Length measures the number of

words in the keyword. The mean value of these variables in Ghose and Yang (2009) are

as follows: Retailer = 0.004, Brand = 0.427 and Length = 2.632.12 The position of the

ad, pos is a function of the advertiser’s bid; as the bid increases, the ad moves to a higher

position. In their model, pos = e1.98−1.93CPC, where CPC is the advertiser’s cost-per-click

or bid. Suppose I is the number of ad impressions for a keyword and m is the expected

revenue per-click, then the advertiser’s profit is given by the number of clicks (I × CTR)

12The CTR estimated from aggregate data = exp{−1.65+1.29∗0.08−0.23∗0.43−0.11∗2.63−0.31pos}
1+exp{−1.65+1.29∗0.08−0.23∗0.43−0.11∗2.63−0.31pos} =

exp{−1.96−0.31pos}
1+exp{−1.96−0.31pos}
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times the profit per click (m−CPC). The advertiser chooses CPC to maximize his profits,

CPC∗ = argmax
CPC

I × CTR× (m− CPC), (2.20)

It is easy to see the tradeoff between bidding high to get more clicks (CTR increases with

CPC) and bidding low to earn greater profit per click.

The optimal bids can be computed by substituting the expression for CTR (as a function

of advertiser’s CPC) into the profit function. In order to compute the optimal bids, we

use the mean estimates from Ghose and Yang (2009) ((β0, β1) = (−1.96,−0.31)
′
) and treat

them as coefficients estimated from aggregate data (β̂s) for a keyword of interest.13 Given

the coefficients from the aggregate data, the coefficients from the complete data are given

by β̂c = β̂s − ε, where ε is a random draw from the error distribution discussed earlier

in Section 5.3.2. The error distribution is used to arrive at an empirical distribution of

β̂c conditional on β̂s. We sample β̂c from this distribution and, for each β̂c, compute

the optimal bid that maximizes advertiser profit in Equation (2.20). Figure 5 shows the

distribution of optimal bids computed in this manner when the revenue per-click, m = $1,

and $4. The optimal CPCs computed from aggregate data are shown as the dashed lines in

Figure 5 and equal $0.48 and $1.29 when m=$1 and $4, respectively. The bids computed

using β̂s are less than almost all the bids computed using samples of β̂c. This finding

supports our earlier claim that aggregation bias results in the advertiser placing a bid lower

than is optimal.

We next use the computed CPC to estimate the effect of aggregation bias on advertiser

and search-engine revenues. Figure 6 shows the % loss suffered by the advertiser due to

aggregation bias. The average loss for the representative ad is around 6% in this example.

This loss is between 4-8% when the revenue per-click is less than $2, which is quite typical

for the ads considered in Ghose and Yang (2009). There is a great deal of variation in this

13The effect of factors like Retailer etc. is subsumed in the intercept term in accordance with the analysis
in Section 5.2.

30



Revenue per click (m) = $1

bids

de
ns

ity

0.45 0.50 0.55 0.60 0.65

0
2

4
6

8
10

Revenue per click (m) = $4

bids

de
ns

ity

1.2 1.3 1.4 1.5 1.6

0
1

2
3

4
5

Figure 5: Optimal bids computed by maximizing Equation (2.20) for different estimates of
β.

loss and in some cases the advertiser may lose more than 10-15% of his SSA profits. The

impact of aggregation bias is more pronounced when the advertiser’s valuation for the click

is low, as in this situation, he bids lower and even small deviations from the optimal bid can

lead to significant changes in the position leading to significantly lower payoffs. When the

advertiser’s valuation is high, he prefers to be ranked higher and his bid is correspondingly

higher. Under this condition, deviations from the optimal bid are small and hence the

profitability is not affected as much.
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Figure 6: Loss in revenues caused due to Aggregation bias.
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The effect of aggregation is considerably higher for the search engine. On average, it loses

more that 20% of its payments from the advertiser as a result of aggregation bias. Lower

bids, as a consequence of aggregation bias, negatively impact search-engine revenues in two

ways – Firstly, lower bids imply that the search engine generates lesser revenue per-click.

Secondly, the ad appears at a lower position due to the lower bid, which in turn leads to

fewer clicks. The advertiser pays the search engine for fewer clicks and pays less for each

click. In this example, we estimate that the search engine loses 1.4¢ for every impression

of the representative ad. Given the large number of impressions for this advertiser, the

search engine loses several thousand dollars in payment from the advertiser every week due

to aggregation bias.14
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Figure 7: Loss in search-engine revenue caused due to Aggregation bias.

In the preceding analysis we considered how payments of one advertiser to the search engine

are affected due to aggregation bias. Naturally, the dynamics are more complicated when we

try to quantify the effect that the bias has on payments by other advertisers and the overall

profitability of the search engine. For example, when an advertiser bids sub-optimally and

moves to a lower position, another advertiser moves up to occupy the vacant position.

Though the search engine loses revenue from the advertiser that moved down, it earns

more from the advertiser that moved up, reducing the overall loss suffered by the search

14The advertiser considered in Ghose and Yang (2009) has a portfolio of 1878 unique ads and an ad on
average has 411 impressions weekly. Total weekly loss ≈ 411 impressions×1878 unique ad×$0.014 = $11, 038
(compare to weekly revenues of $19,377).
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engine. It is difficult to accurately measure this effect as we do not have data from multiple

advertisers, but we can estimate a lower bound for the loss suffered by the search engine.

To estimate a lower bound, we assume that, even though the advertiser with aggregate data

bids lower, his position does not change. As a result, the number of clicks on the ad do

not change. The search engine loses revenues only because this advertiser chooses a lower

CPC. The weekly loss suffered by the search engine in this case is 17% (∼ $3, 800/week or

0.43 ¢/impression) which is the lower bound for the overall loss experienced by the search

engine.

2.5.2. Effect on Keyword Selection

Until now, we have mainly focused on how aggregation affects the estimation of the coeffi-

cient of position and subsequently, equilibrium payoffs. Aggregation bias also affects other

managerial decisions like keyword selection. Given a limited budget, advertisers need to

select a portfolio of keywords from several billion keywords available to them. Ghose and

Yang (2009) and Rutz et al. (2012) propose several models that offer insights into keyword

selection. Ghose and Yang (2009) suggest that ads associated with retailer specific keywords

are more profitable than those associated with brand specific keyword. Rutz et al. (2012)

provide a strategy to select optimal keywords based on factors like wordographics, keyword

length, generic versus specific etc. It is important to note that aggregation bias also affects

the estimates of these factors. As the simulations in Section 4.2 show, the impact of brand

on click-through is, in fact, attenuated. Models that do not account for aggregation bias,

might cause advertisers to make suboptimal tradeoffs in their keyword selection decisions.

2.6. Suggested Cures

In the previous discussion we outlined the problem of aggregation bias and some of its im-

plications. As mentioned earlier, aggregation bias arises due to inadequate data. It might

not be infeasible for search engines to store and report impression level data due to the size

of such datasets and potential privacy concerns. However, the search engine can provide
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different data to reduce the effect of aggregation. In this section, we explore various sum-

mary statistics and measure the improvement they offer over the standard aggregate data

provided by search engines. We also consider a few modeling approaches which explicitly

account for the variation in position and estimate the improvement offered by them.15 We

continue to use the HB-LIV model for the subsequent analysis, but post varies based on

the summary statistics reported and the position model used. We first present the different

datasets and then discuss the comparison between these datasets in Table 5.

Table 5: Comparative performance of various data summarization approaches.

Method Data Requirement MAPE(ε0) MAPE(ε1)

Different Ways of Aggregation
Arithmetic Mean O(X) 53.4% 28.9%
Geometric Mean O(X) 42.1% 17.5%
Harmonic Mean O(X) 40.3% 10.2%

Poisson Model O(X) 43.3% 22.8%

Mean and Variance O(2X) 15.2% 7.8%

Empirical Distribution O(2X) 9.8% 4.2%

Position-level Summary O(NX) 0% 0%

2.6.1. Sample Mean

Different Ways of Aggregation

An important reason for bias is the non-linearity of the position-ctr curve. As a result, lin-

ear aggregation of the position does not yield the correct underlying response parameters.

Christen et al. (1997) and Danaher et al. (2008) show that when the response is multiplica-

tive, i.e. of the form αxβ1
1 xβ2

2 . . ., where xi are marketing mix variables, an aggregate model

should use geometric means to correctly estimate the coefficients. Unfortunately, there is

no analytical analog of this result when the underlying model is logit. We use both the ge-

15We thank the reviewers for recommending this extension.
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ometric and harmonic means and empirically compare which method of aggregation works

better in sponsored search. As the position-ctr curve is convex in nature, both these aggre-

gation methods perform better than linear aggregation, but the harmonic mean performs

better than the geometric mean. This implies that if the search engine wants to provide

only the mean position in the campaign reports, it should provide the harmonic mean of the

position. This result also suggests that researchers who aggregate sponsored search data at

a weekly or a monthly level for lack of sufficient data or computational reasons should use

the harmonic mean for aggregation.

Modeling Position Variation using a Poisson

We also consider a model where Vt is drawn from a Poisson distribution with mean equal

to the (arithmetic) mean u. The log-likelihood of observing the data in this case is given

by

LL(β|data, λ) =
K∑
k=1

D∑
d=1

cdk log

{ ∞∑
i=0

P (Vidk = v)pidk

}

+ (ndk − cdk) log

{
1−

∞∑
i=0

P (Vidk = v)pidk

}
,

(2.21)

where λ is a K × D matrix, and every column of λ contains the scale parameter of the

Poisson distribution for every day. The position of every impression Vidk for keyword k

on the dth day is drawn from a Poisson distribution with λkd = µkd and the probability

P (Vidk = v) = λv
dke

λdk/v!. As we see from Table 5, this approach does not perform very well

because the ad position does not follow a Poisson distribution. We confirm this observation

using the Neyman-Scott test.

2.6.2. Higher Order Statistics

If the search engine provided higher order moments in addition to the mean, the aggrega-

tion bias can be reduced significantly. We discuss three approaches with increasing data

requirements.
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Mean and Variance

In case the mean (µdk) and variance (σ2
dk) of position are provided, we assume that the

position has a negative binomial distribution (NBD). The NBD makes intuitive sense as the

success of probability p of an NBD, can can be thought of as the probability of a competing

advertiser placing a higher bid. The log-likelihood function is similar to Equation 2.21, but

the distribution of ad position in this model is given by

P (Vidk = v) =

 v + rdk − 1

v

 (1− pdk)
rdk(1− pdk)

v,

where pdk =
µdk

σdk
and rdk =

µ2
dk

σdk − µdk
.

We observe that using both the mean and the variance to model the variation in the position

significantly improves the parameter estimates.

Empirical Distribution

If the search engine provides the empirical distribution of the ad position, the variation

in position can be modeled non-parametrically. In this case, the log-likelihood is given by

Equation 2.21, where P (Vidk = v) is provided by the empirical distribution. This summa-

rization technique performs better than all the preceding techniques.

2.6.3. Sufficient Statistics

Position-Level Summary

Although the complete dataset entirely eliminates aggregation bias, it might difficult for

search engines due to privacy or technical concerns. However, the search engine can provide

a position-level summary which are sufficient statistics for the logit model as we show below.
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Equation 2.12 can be written as

LL(β|complete data) =

K∑
k=1

D∑
d=1

∞∑
v=1

cvdk log pvdk + (nvdk − cvdk) log(1− pvdk), (2.22)

where nvdk and cvdk are the number of impressions and clicks on the kth ad at position v on

the dth day, respectively. Hence, the position-level summary are sufficient to correctly esti-

mate the parameters of the model. It can observed from Table 5 that the model estimated

from a position-level data does not suffer from aggregation bias.

2.6.4. Discussion

The preceding analysis presents different data summarization techniques in increasing order

of the data requirement. Our analysis shows that if the search engine wishes to report only

the mean position, it is best to provide the harmonic mean. The aggregation bias decreases

significantly as more data is used for estimation. When both the mean and variance are

used in the estimation process, not only is there a reduction in the aggregation bias but

there is also a considerable decrease in the error in β̂0s. Using the empirical distribution

marginally improves the estimation performance. When the position-level summary is used,

the aggregation bias is completely eliminated. However, this technique requires substantially

more data as compared to the other techniques. As we show in the preceding sections, it

is in the search engine’s interest to provide better data to advertisers. The appropriate

dataset should be determined as a tradeoff between the loss due to aggregation and the

costs associated with providing richer data to advertisers.

2.7. Conclusions

Search engine advertising is fast emerging as an important and popular medium of adver-

tising for several firms. The medium offers rich data for advertisers on consumer click and

conversion behavior. As a result, there has been considerable interest in analyzing SSA

data among practitioners and researchers. Several models have been proposed to study

consumer behavior and inform advertiser strategies.
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This paper makes three main contributions. First, we demonstrate the existence of aggrega-

tion bias and its effect on the equilibrium of the SSA auction. We show that equilibrium bids

are lower when advertisers use aggregate data. As a result the search engine’s revenues are

always lower due to the bias. Second, we use a large search engine dataset and quantify the

magnitude of the bias and measure its economic impact. We also provide insights about the

drivers of the bias and suggest conditions under which practitioners and researchers can’t

ignore this bias. Third, we present various summarization techniques that can be used by

search engines to provide better datasets to advertisers.

These findings have important managerial and economic implications. Advertisers com-

monly use aggregate data provided by search engines to guide their bidding strategies. Our

results suggest that advertisers might not be bidding optimally in these auctions because

they overestimate the clicks obtainable at a given position. This not only impacts the ad-

vertisers negatively, but also leads to a reduction in the revenue of the advertiser. Given

the size of the SSA industry, these losses can translate into several million dollars of lost

revenues for the search engines. Our study points out that the current format of the data

provided to advertisers is not adequate, and search engines should take steps to address

this problem. We recognize that it might be infeasible for search engines to store and re-

port impression level data due to the size of such datasets and potential privacy concerns.

However, these constraints do not imply that it is infeasible to provide adequate data to ad-

vertisers. We provide guidelines to search engines about the nature of datasets that can be

provided to researchers and quantify the reduction in the bias that each of these techniques

can achieve.

We also find that, as a result of aggregation bias, consumer response to other ad attributes,

such as ad text or branding, may also have been incorrectly estimated. Thus advertisers

must be cautious in applying the biased estimates to guide key managerial decisions such

as ad design and keyword selection. In the absence of adequate data from search engines,

advertisers and researchers must take into account the variation in ad position within a day.
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This can be determined by examining if multiple queries are matched to a single keyword

(match type is broad) and if bids of competitors change considerably within a given day. If

the ad position for a keyword is somewhat stable across impressions within a day, the bias

is likely to be low and existing random utility models can be applied on aggregate data.

Our study focuses mainly on demonstrating the existence and direction of aggregation bias

in the coefficient of position and identifying some economic consequences of this bias. An

interesting and related question is how aggregation affects ad attributes like wordographics,

presence of brand information, ad creative etc. and whether their coefficients also suffer from

aggregation bias. In this paper, the effect of ad attributes is subsumed in the intercept term

as we do not have data on ad attributes. A richer dataset that contains ad characteristics

might help in a more extensive analysis of this issue. Another direction for future research

is building models that endogenize the variation in position. The variation in position

can be modeled using probabilistic models or structural methods. In ongoing work, we

are developing a model that explicitly accounts for the intra-day variation in position and

would therefore not suffer from aggregation bias.

SSA presents an exciting opportunity to understand consumer behavior and drivers of

firms’ advertising strategy. Through this paper we hope to inform the practitioners about

the inadequacies of the data standards commonly used in SSA so that they can take steps

to address these problems. We also identify issues with some common modeling techniques

in SSA so that subsequent research in this emerging area is informed about these issues.
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Appendix

Proofs of Equations and Propositions

Let Yi denote an indicator variable that equals 1 if the ith impression resulted in a click and

zero otherwise. We assume that the clicks are independent of each other and hence Yis are

independent.The log likelihood of observing the dataset with a total of I ad impressions is

given by

LL(β|data) =
I∑

i=1

yi log pi + (1− yi) log(1− pi).

Proof of Equations

Proof of Equation (2.3)

The first order condition (F.O.C) for Equation (2.23) is as follows

∂LL

∂β
=

I∑
i=1

{yi(1− pi)− (1− yi)pi} x′i = 0,

=
I∑

i=1

{yi − pi} x′i = 0.

where xi = (1 vi)
′. Since we know that LL(β|data) is a convex function in β (Hayashi,

2000) this F.O.C gives us the following two equations

C =

I∑
i=1

pi, (2.23)

I∑
i=1

yivi =

I∑
i=1

vipi. (2.24)
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Dividing Equation (2.23) by I we get

obsctr =
C

I
=

1

I

I∑
i=1

pi. (2.25)

Proof of Equation (2.7)

Let the number of impressions on day d be denoted by nd and the number of clicks by cd;∑D
d=1 nd = I and

∑D
d=1 cd = C. The probability of clicking on the ad on day d is given by

pd =
exp{β0 + β1wd}

1 + exp{β0 + β1wd}
. (2.26)

The log-likelihood of observing the aggregate data for D days is given by

LL(β|data) =
D∑

d=1

cd log pd + (nd − cd) log(1− pd) (2.27)

Evaluating the first order condition for Equation (2.27)

∂LL

∂β
=

D∑
d=1

{cd(1− pd)− (nd − cd)pd} x′d = 0,

=
D∑

d=1

{cd − ndpd} x′d = 0,

where xd = (1 wd)
′, which in turn gives us

D∑
d=1

cd = C =

D∑
d=1

ndpd, (2.28)

D∑
d=1

wdcd =

D∑
d=1

ndwdpd. (2.29)
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Dividing Equation (2.28) by I we get

obsctr =
C

I
=

D∑
d=1

ndpd
I

. (2.30)

Proof of Lemma 2

We use the following result from Muller and Stoyan (2002, page 27) to prove this result.

Let V1, ..., Vn be iid random variables and f1, ..., fn measurable real functions. Define the

function f̄ by

f̄(v) =
1

n

n∑
i=1

fi(v).

Then,
n∑

i=1

f̄(Vi) ≤cx

n∑
i=1

fi(Vi).

Using this result we now prove that Wn ≤cx V , where Wn is the average position when

there are exactly n impressions on the day. Let fi(v) = v/(n − 1) for all i = 1, . . . , n − 1

and fn(v) ≡ 0.

f̄(v) =
1

n

n−1∑
i=1

v/(n− 1) =
v

n
.

Since

n∑
i=1

f̄(Vi) =
1

n

n∑
i=1

Vi and

n∑
i=1

fi(Vi) =
1

n− 1

n−1∑
i=1

Vi ⇒
1

n

n∑
i=1

Vi ≤cx
1

n− 1

n−1∑
i=1

Vi.

Proceeding in a recursive manner

1

n− 1

n−1∑
i=1

Vi ≤cx
1

n− 2

n−2∑
i=1

Vi,

. . .

V1 + V2

2
≤cx V.

⇒ Wn =
1

n

n∑
i=1

Vi ≤cx
1

n− 1

n−1∑
i=1

Vi ≤cx . . . ≤cx
V1 + V2

2
≤cx V
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Let g be any convex function

As E[g(W )] =
∞∑
i=1

g(Wn)P (n),⇒ E [E[g(W )]] = E

[ ∞∑
i=1

g(Wn)P (n)

]
,

⇒ E [E[g(W )]] =
∞∑
i=1

E [g(Wn)]P (n) ≤
∞∑
i=1

E [g(V )]P (n) = E [g(V )]
∞∑
i=1

P (n) = E [g(V )] ,

as P (n) is a probability measure. Therefore W ≤cx V .

Proof of Proposition 1

Assuming I is large we can apply Chevychev’s law of large numbers to rewrite Equation

(2.3) as

obsctr = E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
. (2.31)

If we have a large enough observation period, Equation (2.7) can be simplified as

obsctr =

D∑
d=1

nde
β̂0,s+β̂1,swn

I(1 + eβ̂0,s+β̂1,swn)
= E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
.

As the observed ctr, obsctr is same in both the cases,

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
= E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
. (2.32)

As the convex ordering in Lemma 2 holds and logit is a convex in position for β0 < 0 (which

is a reasonable assumption in SSA as the CTR on the topmost position is less that 0.2 in

all cases), it follows from the definition of convex ordering that

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
≥ E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
, (2.33)

if β̂c = β̂s. The equality holds only when FV (.) = FW (.) i.e. which hold only under few

special cases (e.g. when there is exactly one impression every day or there is no intra-day

variation in position). Since Equation (2.32) and Equation (2.33) cannot simultaneously be
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true and Equation (2.32) always holds we prove by contradiction that β̂c ̸= β̂s.

Proof of Proposition 2

i) Since we know that

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
= E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
,

and by definition of convex order

E

[
eβ̂0,c+β̂1,cV

1 + eβ̂0,c+β̂1,cV

]
≥ E

[
eβ̂0,c+β̂1,cW

1 + eβ̂0,c+β̂1,cW

]
,

we can say that

E

[
eβ̂0,s+β̂1,sW

1 + eβ̂0,s+β̂1,sW

]
≥ E

[
eβ̂0,c+β̂1,cW

1 + eβ̂0,c+β̂1,cW

]
.

As this result hold for any distribution of W , this relation should hold pointwise for the

two function.

⇒ eβ̂0,s+β̂1,sx

1 + eβ̂0,s+β̂1,sx
≥ eβ̂0,c+β̂1,cx

1 + eβ̂0,c+β̂1,cx

ii) The preceding relationship implies that

eβ̂0,s+β̂1,sx ≥ eβ̂0,c+β̂1,cx ∀x ≥ 0

⇒ β̂1,s > β̂1,c
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Proof of Proposition 3

(i) We assume that advertiser j moves to position j
′
if he uses aggregate data. Since j

′
ends

up higher than j in equilibrium, b
′
j(sj , j

′
, h) < bj′(sj′ , j

′, h) or

1

αj
′−1

((αj
′−1 − αj

′ )sj′ + αj
′ bj′+1) >

1

α
′

j
′−1

((α
′

j′−1
− α

′

j′
)sj + α

′

j′
bj′+1), (2.34)

which also implies that his bid in the equilibrium decreases, i.e. b
′
j < bj′ . In addition, as b

′
j

is lower than bj , j
′ ≥ j. The bids for all the advertisers in this case are as follows:

b
′
i =

1

αi−1

(
K∑
k=i

(αk − αk+1)sk

)
for i > j

′
,

b
′
j =

1

α
′

j
′−1

(α
′

j′−1
− α

′

j′
)sj +

α
′

j′

αj
′

j
′
+1∑

k=i

(αk − αk+1)sk

 ,

b
′
i =

1

α
′
i−2

 j
′∑

k=i

(αi−2 − αi−1)si + αj
′
+1b

′
j

 for j
′ ≥ i > j,

b
′
i =

1

α
′
i−1

(
j−1∑
k=i

(αi−1 − αi)si + αj−1b
′
j+1

)
for i < j.

As h do not change for advertisers below j
′
, therefore their bids remain the same. It is easy

to see that advertisers j + 1 to j
′
end up bidding higher, i.e. b

′
i > bi for j < i ≤ j

′
though

they moves up by 1 position.

We now show that the bid associated with every position ≥ j
′
is lower than when complete

data is used. Lets consider the bid b
′

j′
, placed by advertiser j

′
who occupies position j

′ − 1.

We start off by showing that b
′

j′
< bj′−1.

b
′

j′
− bj′−1 =

1

αj
′−2

((αj′−2 − αj′−1) (sj′ − sj′−1)︸ ︷︷ ︸
<0 by construction

+αj′−1 (b
′
j − bj′ )︸ ︷︷ ︸

<0 by assumption

) < 0.

So the bid for position j
′ − 1 is lower than the bid in the complete case. Proceeding in a
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similar manner it is easy to show that bids for all positions above j
′ − 1 will also be lower.

This implies that b
′
i < bi for i < j (these ads do not change position). To summarize –

b
′
j < bj , b

′
i < bi for i < j, b

′
i > bi for j < i ≥ j

′
and b

′
i = bi for i > j

′
.

(ii) As all the bids are either the same or lower in this case, search-engine revenue is lower

(ΠA2
S < ΠC

S ). The payoff of advertiser j is lower as any deviation from the optimal bidding

policy results in a strictly lower payoff. Advertisers j
′
+ 1 onwards receive the same payoff

and all other advertisers are better off due to suboptimal bid by advertiser j. Starting off

with advertiser j
′
,

ΠA2
j′

−ΠC
j′

= (αj′−1 − αj′ )sj′ − αj′−1b
′
j + αj′ b

′

j′+1

= (αj′−1 − αj′ )sj′ + αj′ bj′+1 −
αj′−1

α
′

j
′−1

((α
′

j′−1
− α

′

j′
)sj + α

′

j′
bj′+1)

> 0 (by Equation 2.34)

Similarly, using induction we can show that ΠA2
i > ΠC

i for advertiser i, s.t. j < i ≤ j
′
. For

i < j, the revenues remain the same but the payment to the search engines is lower, hence

their payoff are higher for these advertisers too (ΠA2
i > ΠC

i , i ¡ j).

Proof of Proposition 4

(i) If all advertisers use the same incorrect estimate of αi, the optimal bidding policy is

the one proposed by Edelman et al. (2007). They just use α
′
i instead of αi to compute the

optimal bids. We can show by induction that b
′
j ≤ bj for all advertisers.

Step 0: Let b
′
K+1 = bK+1 = 0.

Step 1: b
′
K = sK

(
1− α

′
K

α
′
K−1

)
< sK

(
1− αK

αK−1

)
= bK .

Assuming b
′
j+1 < bj+1,
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Step j:

b
′
j = sj

(
1−

α
′
j

α
′
j−1

)
+

α
′
j

α
′
j−1

b
′
j+1

< sj

(
1−

α
′
j

α
′
j−1

)
+

α
′
j

α
′
j−1

bj+1

< sj

(
1− αj

αj−1

)
+

αj

αj−1
bj+1

< bj .

Hence, b
′
j < bj ∀j ≤ K.

(ii) Since all advertisers occupy the same position as they did earlier and pay less, search

engine profits are lower ( ΠA1
S < ΠC

S ). The advertisers’ payoff in the case are higher:

ΠA1
i = αi(si − b

′
i+1) > αi(si − bi+1) = ΠC

i from Proposition 5 (i).

Proof of Proposition 6

Lets assume that Advertiser j uses aggregate data and appears at a position j
′
. Let the

equilibrium bids be denoted by b
′
1, . . . , b

′
K , 0. In the equilibrium, αj

′ (sj−bj′ ) > αi(sj−bi+1)

∀ i ̸= j
′
. Now suppose that Advertiser j does not have access to aggregate data and

overestimates αi/αi−1. As a result, he bids lower and moves to position j
′′ ≥ j

′
. Following

the argument in the Proof of Proposition 4, the bids for all positions i, i ≤ j
′′
decrease

and all other advertisers are better off. As the bids are (weakly) lower, the search-engine

revenue is lower. The payoff to Advertiser j is αj′′ (sj − bj′′ ) < αj′ (sj − bj′ ) as he found it

optimal to bid for position j
′
when he could correctly estimate the CTR. This implies that

he is worse off using aggregate data.
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Hierarchical Bayesian Estimation

Complete Data

The consumer’s utility from clicking on an ad can be modeled as

Ui,k = β0,k + β1,kposi,t + ϵi,k (2.35)

where ϵi,k is the idiosyncratic error term. βk ∼ N2(µβ, Vβ), with the hyper-priors µβ ∼

N(µ,Σ) and V −1
β ∼ Wishart(ν,∆). This model can be estimated on the complete dataset

using MCMC in the following way.

Step 1: Draw β|y,X,µβ,Vβ,µ,Σ, ν,∆

The posterior density of βk can be expressed as

p(β|y,X,µβ, Vβ ,µ,Σ) ∝ l(y|β,X,µβ, Vβ ,µ,Σ)p(β|µ,Vβ ,µ,Σ)

where

l(y|β, X,µβ, Vβ) =
∏
k

∏
i

pyii (1− pi)
1−yi

and

p(β|µβ, Vβ) ∝
∏
k

|Vβ |−
1
2 exp

{
−1

2
(βk − µβ)

′V −1
β (βk − µβ)

}
is the prior density. A random walk Metropolis-Hastings algorithm is used for sampling βk.

Step 2: Draw µβ|y,X,β, Vβ ,µ,Σ, ν,∆ using Gibbs sampling

µβ|β,Σ ∼ N2(µ̃, Σ̃)

where Σ̃ =
[
KV −1

β +Σ−1
]−1

µ̃ = Σ̃
[
KV −1

β β̄ +Σ−1µ
]

48



Step 3: Draw Vβ |y,X, β,µβ , µ,Σ, ν,∆ using Gibbs sampling

V −1
β ∼ Wishart

(
ν +K,

[
∆+

K∑
k=1

(βk − µb)
′(βk − µb)

])

Initial values:

µ = 0

Σ = 100I

ν = number of β coefficients + 3

= 5

∆ = νI

β = MLE Estimates from the data

Aggregate Data

The estimation on the aggregate data is performed in a similar way. The consumer’s utility

from clicking on an ad on day d can be modeled as

Ud,k = β0,k + β1,kmeanposd,t + ϵd,k (2.36)

The MCMC steps are similar except the likelihood function in Step 1 which changes to

l(y|β,X,µβ, Vβ) =
∏
k

∏
d

 nd

cd

 pcdd (1− pd)
nd−cd
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Predictors of Aggregation Bias

Table 6: Predictors of Bias

DV |β̂0,s − β̂0,c| |β̂1,s − β̂1,c|

(Intercept) −0.166 −0.119∗

(0.153) (0.067)

β0 −0.046 −0.044∗∗∗

(0.030) 0.016

β1 −0.369∗∗∗

(0.066)

β2
1 0.294∗∗

(0.023)

BROAD −0.002 0.048∗∗∗

(0.047) (0.021)

U 0.221∗∗∗ 0.030∗∗

(0.023) (0.012)

σU −0.551∗∗∗ −0.062∗∗∗

(0.072) (0.015)

σ2
U 0.061∗∗∗

(0.009)

ctr −0.594 0.589∗∗∗

(0.597) (0.217)

ctr ∗ σU 1.414∗∗∗

(0.482)

Adj. R2 0.3815 0.4502
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CHAPTER 3 : Optimal Bidding in Multi-Item Multi-Slot Sponsored Search

Auctions

3.1. Introduction

With the growing popularity of search engines among consumers, advertising on search

engines has also grown considerably. Search engine advertising or sponsored search has

several unique characteristics in contrast to traditional advertising and other forms of online

advertising. Compared to traditional advertising in print/television, sponsored search is

highly measurable allowing advertisers to identify which keywords are generating clicks

and which clicks are getting converted to purchases. Compared to other forms of online

advertising such as banner ads, search advertising enjoys much higher click-through (CTR)

and conversion rates. Search queries entered by users convey significant information about

users current need and context which allow search engines to better target ads to users than

is possible in other forms of online advertising. Further, search engine users, unlike users on

another websites, primarily use the search engine to reach some other website. Advertising

is an effective way to enable that process.

Search engines commonly use Pay Per Click (PPC) auctions to sell their available inventory

of ad positions for any search query. The auction mechanism is referred to as the Generalized

Second Price (GSP) auction. In these auctions, advertisers select keywords of interest, create

brief text ads for the keywords and submit a bid for each keyword which indicates their

willingness to pay for every click. For example, a meat seller may submit the following

set of two tuples {(pork chop, $2), (fillet mignon, $5), (steak deals, $3),...} where the first

element in any two-tuple is the keyword and the second element is the advertiser’s bid. Large

advertisers typically bid on hundreds of thousands of keywords at any instant. When a user

types a query, the search engine identifies all advertisers bidding on that (or a closely related)

keyword and displays their ads in an ordered list. The search engine uses the advertisers’

bids along with measures of ad relevance to rank order the submitted ads. Whenever a
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consumer clicks on an ad in a given position, the search engine charges the corresponding

advertiser a cost per click (CPC) which is the minimum bid needed to secure that position.

The auctions are continuous sealed bid auctions. That is, advertisers can change their bids

at any time and cannot observe the bids of their competitors. Typically advertisers are

only given summary reports with details such as the total number of impressions, clicks

and conversions, average rank and average CPC for each keyword on a given day. Several

of these auctions are very competitive. For example, it is not uncommon to have 100 or

more advertisers bidding for the same keyword. The average CPC on search engines has

been continually rising over the last couple of years and search advertising is increasingly

becoming a major advertising channel for a large number of firms.

The GSP auction described above differs from traditional auctions in a number of ways.

First, search engines display multiple ads in response to a user query. However, the auction

cannot be treated as a multi-unit auction because each ad position is different in the sense

that top positions generate more clicks for the same number of ad impressions. Further,

the CPC decreases as the rank of an ad increases (i.e. the CPC is higher for top ranked

ad than a lower ranked ad). Thus, the advertiser has to trade-off a higher number of clicks

attained at a top position against the lower margin per click. Due to this trade-off, it

may sometimes be better for an advertiser to underbid and sacrifice a few clicks in order

to get a higher margin per click. Indeed, several authors have demonstrated that popular

second-price search auctions such as those used by Google and Yahoo are not incentive

compatible (Aggarwal et al., 2006; Edelman et al., 2007). Thus, bidding one’s true valuation

is often suboptimal. Further, advertisers have short-term budget constraints which imply

that bids cannot be submitted independently for keywords. For example, if the advertiser

submits a very high bid for the keyword “fillet mignon” then it may leave a very limited

portion of the budget for another keyword. The performance of the keywords may also

be interdependent, wherein clicks for one keyword may help generate more searches and

clicks for another. Therefore the bids for the thousands of keywords are inextricably linked.

Finally, considerable uncertainty exists in the sponsored search environment. For example,
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the number of queries for “fillet mignon” on any given day is stochastic and is a function of

the weather, special events and a variety of other unknown factors. Similarly, consumer click

behavior cannot be precisely predicted and the bids of competitors are also unknown due

to the sealed bid nature of the auction. The stochasticity in query arrival, consumer click

behavior and competitors’ bids imply that the number of clicks and total cost associated

with any bid are all stochastic. All these factors - namely the incentive incompatibility of the

auction, budget constraints, large portfolio of keywords with interdependent performance

and uncertainty in the decision environment - make the advertiser’s problem of bidding in

sponsored search a non-trivial optimization problem. In this paper, we formulate and solve

the advertiser’s decision problem.

We propose two bidding policies in our paper. The first policy ignores the interaction be-

tween keywords and is referred to as the “myopic” policy in this paper. We extend this

bidding policy to incorporate interaction between keywords, and refer to this policy as the

“forward-looking” policy since it entails decision making over several time horizons. De-

pending on the advertiser’s intent, level of sophistication and nature of the products being

advertised, the advertiser might choose the myopic or the forward-looking policy. This pa-

per makes three main contributions. The first contribution is towards improving managerial

practice. Advertisers spend billions of dollars on sponsored search. An entire industry of

Search Engine Marketing (SEM) firms have emerged that provide bid management services.

The techniques described in the paper can help increase the Return on Investment (RoI)

for advertisers and SEM firms, as demonstrated in our field implementation. The second

key contribution is that our approach represents a significant step forward for the academic

literature on bidding in multi-slot auctions. All the papers to date have studied the problem

either in a deterministic setting or in a single-slot setting and have relied on heuristic solu-

tion techniques due to the complexity of the optimization problem. In contrast, we compute

optimal bids in the more realistic stochastic multi-slot setting. The third contribution of

this paper is that it is the first paper on bidding in sponsored search to incorporate the

interdependence between keywords into a multi-period bidding problem. The interdepen-
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dence in keyword performance, commonly referred to as spillovers, is a well-documented

feature of sponsored search (Rutz et al., 2012) but has not been considered in the bidding

literature.

The rest of the paper is organized as follows. In Section 2, we review the relevant literature

and position our work within the literature on sponsored search. In Section 3, we formulate

the problem, derive the optimality condition for the myopic policy and discuss how it may

be used to compute the optimal bids. In Section 4, we describe the dataset used for the

analysis presented in this paper. In Section 5, we present the empirical analysis where we

estimate the parameters of our model and run a field experiment with the bids suggested

by the myopic policy. We compare the optimal bids computed by our model with those

used by the firm and present results from a field implementation of the bids. We extend

the myopic policy in Section 6 to incorporate interdependence between keywords. Finally,

we discuss some limitations of our work in Section 7 and conclude in Section 8.

3.2. Literature review

In this section, we review three streams of active research within the field of sponsored

search with a particular emphasis on prior work on bidding in sponsored search.

Mechanism Design: Search engines run PPC auctions in which they charge advertisers

whenever a consumer clicks on an ad.1 A primary area of focus in sponsored search research

has been the design of the auction mechanism. Two important questions from a mechanism

design perspective are the rules used to rank order the ads and the rules used to determine

the amount paid by advertisers. Feng et al. (2006) compare the performance of various

ad ranking mechanisms and find that a yield-optimized auction, that ranks ads based on

the product of the submitted bid and ad relevance, provides the highest revenue to the

search engine. In terms of payment rules, Edelman and Ostrovsky (2007) study first price

1Other payment rules are also feasible. These include Pay Per Action (PPA) auctions in which advertisers
are charged only if the consumer performs a valid action such as a purchase. Hybrid schemes are also feasible.
For example, in the context of banner ads, Kumar et al. (2007) propose a hybrid pricing model based on a
combination of ad impressions and clicks.
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sponsored search auctions in which advertisers pay the amount they bid and find empirical

evidence of bidding cycles in such auctions. The authors indicate that a VCG-based mech-

anism eliminates such bidding cycles and generates higher revenues for the search engine

compared to the first price auction. In a related paper, Edelman et al. (2007) demonstrate

that the commonly used GSP auction, unlike Vickrey-Clarke-Groves (VCG) mechanism, is

not incentive compatible. Thus, advertisers have to bid strategically even in the absence of

budget constraints. Aggarwal et al. (2006) propose a “laddered” auction mechanism that

is incentive compatible but the mechanism has not been adopted possibly due to the com-

plexity of the payment rules. Mehta et al. (2007) solve the problem of matching ad slots to

advertisers using a generalization of the online bipartite matching problem. Given adver-

tisers’ bids and budget constraints, Mehta et al. (2007) provide a deterministic algorithm

that achieves a competitive ratio of 1−1/e for this problem.2 Mahdian et al. (2007) extend

this work and provide a solution which is nearly optimal when the frequencies of keywords

are accurately known and provides a good competitive ratio even when these estimates

are completely inaccurate. Aggarwal and Hartline (2006), on the other hand, model this

problem as a knapsack auction. However, they consider only truthful mechanism designs

and analyze various pricing schemes and the payoffs under each of these pricing schemes.

Most of the above referenced papers focus on the search engine’s problem and analyze how

different mechanisms affect the search engine’s revenues.

Consumer behavior in sponsored search: The sponsored search environment presents

rich data on consumer behavior. Modeling user’s propensity to click on ads and to pur-

chase upon clicking is an important area of recent focus. Several approaches have been

proposed to model clicks for individual keywords and ads (Ali and Scarr, 2007; Craswell

et al., 2008; Feng et al., 2006). Ali and Scarr (2007) compare several distributions to pre-

dict click-through rates and suggest that Pareto-Zipf distribution is the most appropriate

for explaining CTR as a function of position. Feng et al. (2006) alternately assume an

exponential decay in CTR with position and demonstrate that the model fits observed data

2Competitive ratio is the measure for comparing online algorithms to offline algorithms where all the
information is known apriori.
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well. Several other papers build richer models of consumer behavior incorporating the effect

that ad attributes have on click-through and conversion (Ghose and Yang, 2009; Yang and

Ghose, 2010; Rutz et al., 2012; Agarwal et al., 2011). Rutz et al. (2012) propose a model

that measures the interaction between keywords and show that there are significant positive

spillovers from generic keywords to branded keywords in consumer search.

Optimal Bidding in Sponsored Search: The stream of work closely related to our

paper is that on budget constrained bidding in sponsored search. Rusmevichientong and

Williamson (2006) propose a model for selecting keywords from a large pool of candidates.

Their model does not however address optimal bidding for these keywords and ignores the

multi-slot context. Feldman et al. (2007) study the bid optimization problem and indicate

that randomizing between two uniform strategies that bid equally on all keywords works

well. The authors assume that all clicks have the same value independent of the keyword.

Further, their results are derived in a deterministic setting where the advertisers position,

clicks and the cost associated with a bid are known precisely. Borgs et al. (2007) propose

a bidding heuristic that sets the same average Return on Investment (RoI) across all key-

words. Their model is also derived for a deterministic setting. Finally, Muthukrishnan et al.

(2007) study bidding in a stochastic environment where there is uncertainty in the number

of queries for any keyword. The authors focus on a single slot auction and find that prefix

bidding strategies that bid on the cheapest keywords work well in many cases. However,

they find that the strategies for single slot auctions do not always extend to multi-slot auc-

tions and that many cases are NP hard .

The prior work reveals three themes. The first is that the literature on sponsored search

mechanism design has established that GSP auctions are not incentive compatible. This

feature combined with the advertiser’s budget constraint suggests a need to develop bidding

policies. Secondly, the empirical work in sponsored search provides a variety of useful models

that can be applied towards modeling consumer click behavior and the bidding behavior of

advertisers. These can ultimately be used to develop data-driven optimization strategies.
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Three, the issue of budget constrained bidding has received some attention. While these

early papers on bid optimization have helped advance the literature, they tend to focus on

deterministic settings or single slot auctions, both of which are restrictive assumptions in the

sponsored search context. None of these papers account for any interdependence in keyword

performance. Further, these papers develop heuristic strategies due to the complexity of

the optimization problem. In contrast, we determine optimal bids in a budget-constrained

multi-unit multi-slot auction under uncertainty in the decision-making environment. We

also extend our basic model to incorporate interaction between keywords.

3.3. Analytical Model

Advertisers usually maintain a portfolio of thousands of keywords for a particular search

engine. They submit bids for each keyword on a regular basis during a billing cycle. During

each time period when bids need to be computed, the bid management system accepts a

budget for that time period as an input and computes the bids for all keywords. We adopt

the same framework and focus on the bid optimization problem during a specific time period

in which the budget and the set of keywords have been specified.3 Although we consider

the advertiser’s problem of optimizing the bid for a particular search engine in this paper,

our approach can be extended to multiple search engines by treating each keyword-search

engine pair as a unique keyword.

Ads placed in response to consumer search queries can play two roles for advertisers. They

can help generate purchases. Or they can help build awareness, which may translate into

purchases in later periods. Consumers often start their search process with generic search

terms e.g. “fillet mignon”. Bidding on these generic keywords might help the advertiser gen-

erate brand-specific (or retailer-specific) exposure. This in turn might enhance the aware-

ness of a particular brand and can lead to increased branded search activity (“spillover”).

3A common practice in the SEM industry is to use Daily Budget = (Remaining Balance)/(Number of
days left in cycle), where remaining balance is the initial monthly budget less the amount spent thus far. We
do not focus on how the budget for a given time period is computed and treat it as an exogenous parameter
in our formulation.
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There is evidence of spillovers from generic to branded keywords in sponsored search ads

(Rutz et al., 2012).

In this section, we ignore spillovers between keywords and assume keywords are indepen-

dent. We propose a “myopic” bidding policy that solves the one-shot decision problem

of the advertiser and does not factor in indirect benefits from keywords such as aware-

ness. We relax this assumption in Section 6 and incorporate interactions between keywords.

The bidding policy that incorporates interactions between keywords is referred to as the

“forward-looking” policy. The forward-looking policy solves the advertising problem in a

multi-period context. The motivation for developing two bidding policies is twofold. First,

the myopic policy is easier to implement and also relevant in the context of commoditized

products where branding is not very relevant. The complexity of a forward-looking policy

may be unnecessary for many advertisers. In addition, the forward-looking policy builds on

the myopic policy and it is useful for the purpose of exposition to outline the myopic policy

first.

3.3.1. Notation and Setup

In this section we introduce our notation and the general framework used to study the

advertiser’s decision problem.

During a given time period (say a day) a keyword k is searched Sk times, where Sk is

a random variable. Sk also represents the total number of impressions, i.e. the number

of times the advertiser’s ad is displayed by the search engine. The expected number of

impressions is defined as µk = E[Sk]. We denote the bid of the advertiser for the keyword

as bk, and assume that the advertiser does not change the bid during the day. Every

time the keyphrase is searched, the advertiser’s ad is placed at some position in the list

of all sponsored results. Let pos
(s)
k be the position at which the ad was shown in the sth

search, with the topmost position denoted position 0. Let δ
(s)
k be an indicator of whether

a person who was searching for the keyword clicked on the advertiser’s link, or not: δ
(s)
k =
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I
(
click

(s)
k

)
.

The advertiser’s value from a click is denoted by an independent random variable wk. We

assume that the precise value from a click is not known a priori but that it’s expected

value E[wk] is known and equals Ewk. In Section 5, we discuss how Ewk is estimated from

historical data. v
(s)
k denotes the advertiser’s value from the sth impression. v

(s)
k = δ

(s)
k wk,

i.e. it equals wk if the user clicks on the ad or 0 otherwise. Let b
(s)
k be the advertiser’s cost

per click i.e. the bid of the advertiser at the next position pos
(s)
k + 1. The cost associated

with impression s may then be expressed as c
(s)
k = δ

(s)
k b

(s)
k .4 Because consumers do not know

the bids placed by advertisers, it seems reasonable to assume that given an ad’s position

in the list, the probability that a person clicks on the ad does not depend on the bid of

the next advertiser. That is, conditional on the position pos
(i)
k , the vector

(
b
(i)
k , δ

(i)
k

)
has

independent components. We also assume that Sk is independent of other variables.

Besides the advertiser, there are Nk other advertisers who place their bids for keyword

k. We assume that Nk is known to the advertiser. It can be observed, for example, by

submitting sample queries to the search engine and observing the number of ads displayed.

We note that the number of competitors may in reality vary a bit from one impression to

another due to advertiser budget constraints, but we do not observe significant variation

in this to warrant a random treatment for Nk.
5 The bids of the competitors cannot be

directly observed because the auction is a sealed bid auction. The key assumption we make

is that the competitors place their bids according to some distribution Fk (.) and this does

not change during the estimation period. The bids of competing advertisers are based on

two factors - their intrinsic valuations for a click and their competitive responses in the GSP

auction. We assume that there is an underlying valuation distribution (for clicks) which

4The discussion assumes that ads are ordered by bid and that the advertiser pays the bid of the next
advertiser. A common practice is to use the product of bid and a quality score to rank order the advertisers,
and the payment is the minimum bid needed to secure the position (e.g. the payment per click for an
advertiser in position i is bid(i+1)∗Quality(i+1)/Quality(i). This does not affect our model. If we normalize
the bid of all competitors by the ratio of their quality score relative to our advertiser (NormalizedBid =
bid ∗QualityCompetitor/QualityAdvertiser), our analysis can be interpreted as based on this normalized bid.

5The coefficient of intra-day variation in Nk = 0.031 and the coefficient of inter-day varation in Nk =
0.102.
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when combined with the advertisers’ bidding strategies gives rise to the bid distribution

Fk (.).
6 Finally, D denotes the advertiser’s budget in a given time period of interest. Table

7 summarizes our notation.

Table 7: Summary of notation

k Variable that indexes keywords
Sk Random variable denoting number of searches for keyword k
µk Expected number of search for keyword k (E[Sk])
(s) Superscript to denote sth search
bk Bid for keyword k

pos
(s)
k Position for keyword k in sth search. pos

(s)
k = 0 denotes the top position.

δ
(s)
k Indicator variable for click on sth search.
wk Random variable indicating value of a click
Ewk Expected value of a click on keyword k (E[wk])

v
(s)
k Value of the sth search (v

(s)
k = δ

(s)
k wk)

b
(s)
k The bid of the next advertiser

c
(s)
k The cost of the sth search (c

(s)
k = δ

(s)
k b

(s)
k )

Nk Number of competitors
Fk(.) Distribution of bids of competitors
D Advertiser’s budget

3.3.2. Model Formulation

The advertiser faces the following decision problem:

max
{bk}

E

[∑
k

Sk∑
s=1

v
(s)
k |bk

]
, s.t. E

[∑
k

Sk∑
s=1

c
(s)
k |bk

]
≤ D. (3.1)

The objective is to determine bids bk in order to maximize the advertiser’s expected rev-

enues. The constraint implies that the expected cost should be less than or equal to a budget

D. Note that the budget is not modeled as a hard constraint. This is a common format

in which budget constraint is specified by advertisers in the SEM industry, and reflects an

objective function of the form max{bk} E
[∑

k

∑Sk
s=1(v

(s)
k − λc

(s)
k )|bk

]
. Thus, the objective is

to maximize expected profit but the shadow price of ad dollars is specified in the form of a

6The proposed bids might change Fk(.), but for identification purposes we assume that this competitive
reaction is minimal in the short-term. Later in the paper, we discuss how the competitive reaction can be
factored in by re-estimating parameters periodically and updating bids.
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constraint on the expected cost. The optimization problem in Equation (3.1) always has a

solution as shown in Appendix A1 (All important proofs appear in the Appendix). Solving

the problem gives the following optimality condition

∀k :
d

dbk
E

[
Sk∑
s=1

v
(s)
k |bk

]
= λ

d

dbk
E

[
Sk∑
s=1

c
(s)
k |bk

]
. (3.2)

where λ is the Lagrange multiplier. The optimality condition states that at the optimal bids

the ratio of the marginal change in the advertiser’s expected revenues over the marginal

change in the advertiser’s expected cost should be constant across keywords. An alternative

way to interpret it is as follows. If we decrease the bid for keyphrase k′ by ε, then the

expected cost will decrease by ε d
dbk′

E
∑Sk′

s=1

[
c
(s)
k′ |bk′

]
and, hence, we may increase the bid

for another keyphrase k by ε d
dbk′

E
∑Sk′

s=1

[
c
(s)
k′ |bk′

]
/ d
dbk

E
∑Sk

s=1

[
c
(s)
k |bk

]
. In this case the

expected increase in profits will be

ε

d
dbk

E
∑Sk

s=1

[
v
(s)
k |bk

]
d

dbk′

d
dbk

E
∑Sk

s=1

[
c
(s)
k |bk

] E
Sk′∑
s=1

[
c
(s)
k′ |bk′

]
− ε

d

dbk′
E

Sk′∑
s=1

[
v
(s)
k′ |bk′

]
= 0.

We assume that consumer click behavior and competitor bidding behavior is i.i.d across ad

impressions during the given time period. Hence, in Expression (3.2) we may cancel the

sums over s. Therefore, the optimal vector of bids should satisfy the following condition:

∀k :
d

dbk
E [vk|bk] = λ

d

dbk
E [ck|bk] . (3.3)

3.3.3. Optimality Condition

It is hard to use the optimality condition (3.3) to compute the optimal bids. In order

to apply (3.3), the advertiser needs to compute E [vk|bk] and E [ck|bk] accounting for the

uncertainty in competing bids and consumer query and click behavior. In this section, we

express the optimality condition in terms of parameters that can be estimated. We assume

that the number of competitors Nk is known and is constant during the day. We can identify
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the number of competitors by performing a search on keyword k at a search engine.

Consider a specific keyword k . We tentatively drop the subscript k as we focus on an

individual keyword. In order to compute E [v|b], we need to identify the probability of

a click given the bid b, which in turn depends on the probability distribution of the ad

position. Given that the competing advertisers’ bids are drawn from F (.), the probability

of being at position i conditional on a bid b is

Pr {pos = i|b} =

 N

i

 (1− F (b))i F (b)N−i . (3.4)

The position is determined by a Bernoulli process, where the probability that a competitor

bids more than b and is placed higher is equal to 1 − F (b). Recollect that the positions

start from 0, i.e., the topmost ad has position pos = 0, and position i indicates that there

are i other advertisers ranked above. Feng, Bhargava and Pennock’s (2007) analysis of

click-through data suggests that the probability that a user clicks on an ad in position pos

is

Pr {δ = 1|pos = i} =
α

γi
, (3.5)

where α and γ are keyword specific constants. α represents the overall attractiveness of

the ad and γ captures the impact of position on clicks. This functional form does not

explicitly consider a number of other factors, e.g. number of words in the keyword, whether

the advertiser appears in the organic results or not, presence of dominant competitors etc.,

that might affect CTR (Yao and Mela, 2011; Agarwal et al., 2011; Katona and Sarvary,

2010; Ghose and Yang, 2009). It focuses only on the impact of position on CTR because ad

position is the primary mechanism through which bid impacts CTR. However, the parameter

α captures the effect that ad/keyword-level attributes like the number of words in the

keyword etc. have on the overall attractiveness of the ad. γ on the other hand captures the

change in CTR with respect to position, all other factors held constant, which is consistent
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with prior research (Katona and Sarvary, 2010; Ghose and Yang, 2009).7 This function also

assumes that consumer behavior is i.i.d and ignores heterogeneity across consumers. We

use this assumption not only for model tractability but also because search engines do not

provide user-level data on impressions and clicks. Several papers that focus on keyword-level

models, also assume i.i.d. consumer behavior (Agarwal et al., 2011; Yang and Ghose, 2010;

Ghose and Yang, 2009). Given that the consumers click in the aforementioned manner, the

probability of a click conditional on the bid b is given by

Pr {δ = 1|b} =
∑
i

Pr {δ = 1|pos = i}Pr {pos = i|b} (3.6)

=
∑
i

α

γi

 N

i

 (1− F (b))i F (b)N−i

= αγ−N (1 + (γ − 1)F (b))N .

Proposition 1: The expected value of an impression is given by

E [v|b] = E [δw|b] = Pr {δ = 1|b}E[w] = αγ−N (1 + (γ − 1)F (b))N Ew. (3.7)

It follows from Proposition 1 that

d

db
E [v|b] = αNγ−N (γ − 1)f (b) (1 + (γ − 1)F (b))N−1. (3.8)

We now derive an expression for E [c|b]. In order to do so, we need to characterize the

probability distribution function of the bid of the next advertiser in the list of sponsored

results. We first derive some intermediate results.

Lemma 1: The distribution function of the bid of the next advertiser in the list conditional

7However, if the presence of a dominant competitor introduces discontinuities in how position affects CTR
(e.g., CTR depends on whether the advertiser is above or below the dominant competitor), the functional
form fails to capture the same.
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on the bid and the position is given by

F (b|b, pos = i) =

(
F (b)

F (b)

)N−i

. (3.9)

Applying,

F (b|b, pos = i, δ = 1) = F (b|b, pos = i) =

(
F (b)

F (b)

)N−i

, (3.10)

we can derive the following lemma.

Lemma 2: The conditional distribution of the bid of the next advertiser conditional on

the bid and the fact that the ad was clicked is

F (b|b, δ = 1) =

N∑
i=0

F (b|b, δ = 1, pos = i)× Pr {pos = i|b, δ = 1} (3.11)

=

(
1− F (b) + γF (b)

1 + (γ − 1)F (b)

)N

.

When a user clicks on an ad, the advertiser has to pay the bid of the next advertiser in the

list. Applying Lemma 2 and Equation (3.6) gives us

Proposition 2: The expected cost of an impression is given by

E [c|b] = E [δb|b] (3.12)

= E [b|b, δ = 1]Pr {δ = 1|b}

= αγ−N

(
b[1 + (γ − 1)F (b)]N −

∫ b

0
[1− F (b) + γF (b)]Ndb

)
.

Using Proposition 2 we can derive that

dE[c|b]
db

= αNγ−Nf(b)

(
(γ − 1)b[1 + (γ − 1)F (b)]N−1 +

∫ b

0
[1− F (b) + γF (b)]N−1db

)
.(3.13)

Substituting Expressions (3.8) and (3.13) in Equation (3.3),

dE[v|b]
db

= λ
dE[c|b]
db

,
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1

λ
=

1

Ew

(
b+

∫ b
0 [1− F (b) + γF (b)]N−1db

(γ − 1)[1 + (γ − 1)F (b)]N−1

)
.

Proposition 3: The optimality condition (expressed in terms of estimable parameters) is

∀k :
1

Ewk

(
bk +

∫ bk
0 [1− Fk(bk) + γkFk(b)]

Nk−1db

(γk − 1)[1 + (γk − 1)F (bk)]Nk−1

)
= const. (3.14)

Proposition 4: A unique bid b∗k satisfies the optimality condition (Equation 3.14) for

keyword k when

γk > 1 +
1

Fk(b)

[
fk(b)(Nk − 1)

∫ b
0 [1− Fk(b) + γkFk(x)]

Nk−2dx

[1 + (γk − 1)Fk(b)]Nk−2
− 1

]
.

The optimality condition can be used in conjunction with the budget constraint to compute

the optimal bids. For several common distributions and a wide range of parameters, we

show in the appendix that the conditions for a unique bid (Proposition 4) are satisfied.

In order to compute the optimal bids, the following keyword-specific constants need to be

known: αk (the click-through rate at the top position), γk (rate at which CTR decays with

position), Ewk (expected revenue per-click (RPC)), Nk (number of competing bidders), and

Fk(.) (distribution of competing bids). We estimate these parameters using a real-world

dataset and illustrate how bids may be computed in Section 5. The optimal bids should

satisfy equation (3.14) and the budget constraint,

∑
k

µkE [ck] = D.

These conditions are sufficient to compute bids. The budget constraint can be rewritten as

∑
k

µkαkγ
−Nk
k

(
bk[1 + (γk − 1)Fk(bk)]

Nk −
∫ bk

0
[1− Fk(bk) + γkFk(b)]

Nkdb

)
= D. (3.15)

For a given const in Equation (3.15), we compute the bid that satisfies the equation for
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every keyword. Then we use Equation (3.15) to calculate the expected total cost for the

computed bids. If the expected cost is lower than D, we increase the constant, otherwise

we decrease it. The process repeats until the expected total cost is sufficiently close to the

budget.

3.4. Data Description

Our dataset is from a leading meat distributor that sells through company owned retail

stores as well as online and through mail-order catalogs. This firm bids on thousands of

keywords across several search engines and has a substantial online presence. Our dataset

consists of daily summary records for 247 keywords that the firm uses to advertise on Google.

The daily record for each keyword has the following fields,

(id, t, b, i, cl, avgcpc, avgpos)

where

id - Unique identifier for each keyword
t - date
b - bid submitted by advertiser
i - number of impressions during the day
cl - number of clicks during the day

avgcpc - average cost per click on the day
avgpos- average position during the day

This dataset is representative of the the type of data available to advertisers in sponsored

search. Advertisers only get summary reports from search engines and do not usually

have information on clicks and position for each individual ad impression. We present the

summary statistics at the keyword-level for a three-month period (March 01-May 31, 2011)

prior to the field implementation in Table 8.
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Table 8: Summary Statistics

Mean Standard Deviation Minimum Maximum

Avg Bid 1.18 1.01 0.35 10.00
Avg CPC 0.73 0.59 0.00 4.42
Avg Pos 3.15 1.90 1.00 12.41
Impressions 5637.22 13106.39 1.00 98373.00
Clicks 48.37 86.76 0.00 593.00
CTR 0.03 0.07 0.00 0.60
Cost 45.95 95.11 0.00 747.43
Revenue 83.26 132.47 0.00 974.31
Gross Profit 37.31 140.78 -747.43 902.20
Avg RPC 4.33 14.30 0.00 158.96

The mean average bid across all keywords during this period is $1.18 and the minimum and

maximum average bids for any keyword during this period is 35¢and $10, respectively. We

also observe that the mean average RPC is $4.33 where as the mean average CPC is 75¢,

however there is a huge variation in the profitability across the keywords as indicated by

the large standard deviation in the average RPC. These 247 keywords belong to 29 unique

product categories which span frozen meats, sea foods and desserts. A comprehensive list

of these product categories appears in Table 9. We randomly divided these 29 product

categories into three distinct treatment groups. The bids for the first group continued to be

controlled by the firm. This group forms the control group for our experiment. The other

two groups represent the two treated groups and their bids are determined by the myopic

bidding policy (Group I) outlined in Section 3 and the forward looking policy (Group II)

that we outline in Section 6. The control group is used to account for any time trends that

might enter the analysis due to seasonality in retail, search engine design changes and other

such factors. The three groups are fairly well matched in terms of impressions, clicks, cost

and revenues of their keywords. Summary statistics for the three groups are presented in

Table 10.

Our dataset is divided into three distinct periods as shown in Figure 8. The first period

runs from March 1-May 31, 2011. This period forms the “before” period for our analysis

during which the bids for these 247 keywords were decided by the firm (summary statistics
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Table 9: Product Categories

Bacon Flat Iron Pork
Beef Gift Basket Porterhouse
Beef Jerky Gifts Prime Rib
Beef Sirloin Halibut Salmon
Burgers Ham Shrimp
Catfish Hot Dogs Sole
Cheesecake Lobster Surf and Turf
Corned Beef Lobster Bisque Swordfish
Crab London Broil Trout
Fillet Mignon Orange Roughy

Table 10: Summary for the three groups of keywords.

Control Group I Group II

Products Categories 8 10 11
Keywords 55 89 103
Impressions 7474.7 5336.1 4335.8
Clicks 66.6 52.2 30.6
Avg Bid 1.32 1.27 1.14
Avg CPC 0.84 0.91 0.74
Avg Pos 3.22 3.60 2.55
CTR 0.03 0.03 0.04
Avg RPC 4.80 5.36 4.35

for this period is in Table 8). During this period, there were 1.36 million impressions of the

ads for the 247 keywords and they received 11,651 clicks in total. The total weekly cost of

these ads was $964 and the weekly gross revenue generated from these keywords was $1728.

We use the data from this period to compute the expected value per-click (Ew) and the

expected daily impressions (µ) for each keyword.

The second period spans July 1-July 31, 2011 which we refer to as the “estimation period”

for our analysis. We ignore the month of June from our analysis as there is a significant

increase in online activity during this month due to Father’s Day. The summary statistics

for this period is presented in Table 11. During the estimation period, we submit random

bids for the keywords in Groups I and II. The bids are uniformly drawn from $0.10× [1, 30]

resulting in a minimum bid of 10¢to a maximum bid of $3.00. The upper limit of $3.00 was

prescribed by the advertiser. The bids are drawn weekly which leads to four unique bids
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Figure 8: Illustration of the Timeline for the various data collection periods.

per keyword in the estimation period. This variation in bids leads to a significant variation

in the ad position. The variation in position causes changes in the CTR and CPC and

helps the identification of the parameters of our model. The exact identification strategy

is discussed in Section 5. We also observe that there is decrease in the profitability of the

campaign during this period as the bids for keywords in Group I and Group II are chosen

randomly.

Table 11: Summary Statistics for the Random Bidding Period

Mean Standard Deviation Minimum Maximum

Bid 1.01 0.93 0.05 3.00
Avg CPC 0.77 0.58 0.00 2.89
Avg Pos 2.96 1.87 1.00 11.08
Impressions 2100.45 5115.73 1.00 43498.00
Clicks 19.00 35.78 0.00 277.00
CTR 0.03 0.06 0.00 0.50
Cost 18.29 38.51 0.00 278.97
Revenue 23.46 75.65 0.00 586.92
Gross Profit 5.18 67.51 -150.43 541.22
RPC 1.28 4.31 0.00 29.32

Finally, optimal bids are computed based on estimated parameters and deployed by the firm

between August 21 and September 21, 2011. Data from the after period is used to assess

the effectiveness of the bidding policies proposed in this paper. In Section 5, we discuss
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the estimation of parameters using data from the “estimation period”. Subsequently, we

discuss the results from the field implementation of the myopic policy.

3.5. Empirical Analysis

We now apply our technique to a real-world dataset of clicks and costs for several keywords

and derive the optimal bids for these keywords. We then describe the results from a field

implementation of the suggested bids.

3.5.1. Estimation Approach

Our data provide daily summary measures (average position, average cost per click, total

clicks) but not the outcome of each individual impression. Given just these daily summary

measures, it is hard to apply regression or Maximum Likelihood Estimation techniques

directly on the aggregated data, hence we use the Generalized Methods of Moment (GMM)

approach to estimate these parameters. Following the idea of the method of moments, we

derive analytical expressions for the moments we observe empirically, namely, the expected

position (avgpost), cost per click (avgcpct) and click-through rate (ctrt = clt/it) given the

bid for each keyword. These moments are as follows:

E [post|bt] = Nt (1− F (bt)) , (3.16)

E [bt|bt, δt = 1] =

∫
x<bt

x d

(
1− F (bt) + γF (x)

1− (1− γ)F (bt)

)Nt

, (3.17)

E [δt|bt] = αγ−Nt (1− (1− γ)F (bt))
Nt . (3.18)

The observed moments can be expressed in terms of the analytical moments as follows:

avgpost = E [post|bt] + ξ1t,

avgcpct = E [bt|bt, δt = 1] + ξ2t,
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ctrt = E [δt|bt] + ξ3t,

where ξt = (ξ1t, ξ2t, ξ3t)
′ are the random shocks. As the dataset contains only daily ag-

gregates, we cannot directly estimate the distribution function F (.) using nonparametric

approaches since we have very few bids for each keyword. We therefore use a parametric

form for F (.), and estimate its parameters using the first moments associated with the posi-

tion, cost per click and click-through rate. For the parametric form of the distribution F (.)

we choose the Weibull distribution. This choice is based on two factors. Firstly, the Weibull

distribution can take on diverse shapes and offers a great deal of flexibility. Secondly, an

analysis of a secondary dataset of bids submitted to a search engine for several keywords

in the insurance sector (Abhishek et al., 2011) shows that the Weibull distribution is rea-

sonably good for modeling the bids.8 Note that we are not assuming that the distribution

of bids for keywords is the same across the two datasets, rather the bids are from the same

family (Weibull) and the parameters can vary across keywords. The Weibull distribution

has the following cumulative distribution function

F (x; θ, λ) = 1− exp

{
−
(x
λ

)θ}
.

It is defined by two parameters θ and λ. Therefore, we have four unknown parameters for

any keyword (λ, θ, α, γ) and 3 moment conditions for every unique bid.

The estimates of the parameter β = (α, γ, λ, θ) is given by

β̂ = argmin
β∈B

ξ(β)′Wξ(β),

where ξ(β) is a vector of error between the observed and computed moments for a particular

keyword during the observation period and W is a weighting matrix. The choice of W is

critical as it determines the asymptotic properties of the estimator. Hansen et al. (1996) and

8The authors test several distributions such as Normal, Log-Normal, Gamma, Exponential and Logit but
the Weibull distribution fits their data the best. Note however that our framework is flexible enough and
other distribution can be easily accommodated.
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Wooldridge (2001) suggest that the optimal weighting matrix is given by E[ξ(β)′ξ(β)]−1.

As we do not know E[ξ(β)′ξ(β)], an iterative-GMM estimator is used (see Hansen et al.,

1996) wherein the weighting matrix is iteratively re-estimated till it converges.

In order to compute the optimal bids we also need to know Ew, the expected revenue

per-click. The expected revenue per-click is computed by taking the total revenues from

the keyword in the “before” period and dividing it by the total number of clicks for that

keyword in the same period. The advertiser attributes revenues from a purchase to the

keyword that generated the session in which the purchase was made. One drawback with

the approach is that it does not account for indirect benefits such as awareness. As stated

above, we address that later in the paper.

3.5.2. Identification Strategy

The parameters of this model can be estimated if we have at least 2 unique bids per keyword

in the data. However, there are two important reasons why data from the “before” period

cannot be used to estimate the parameters of this model - (i) insufficient variation in bids,

and (ii) potential endogeneity in advertiser’s bids.

Limited Variation in Bids

In typical SSA campaigns advertisers change their bids infrequently, sometimes once in

several months. Hence it is difficult to identify the parameters of the model. In our dataset,

there are very few changes in the bids for the keywords and the average number of unique

bids per keyword are 1.12. Because our model is under-identified with less than two unique

bids, we use the period of random bidding to generate random bids which would lead to

sufficient variability in the bids drawn for a particular keyword across days.
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Endogeneity of Bids

The second concern with using historical data is the potential endogeneity of bids. In order

for the GMM to provide consistent estimate we require that E[bξ] = 0 or the bids and the

random shock are independent of each other. However, the firm might increase the bid for a

particular keyword if there is a random increase in demand, e.g. on a sunny weekend. These

random shocks are observed by the advertisers but we as researchers are not aware of them.

Since the firm is bidding strategically, it is very likely that the bids for a particular keyword

are correlated with these random shock in the before period. We address this endogeneity

issue by using random bids in the estimation period. This randomization of bids ensures

that they are independent of the random shocks.

We also require that the distribution F (.) does not change during the estimation period

as competitive response to the random bids being set during this period. This seems like

a reasonable assumption given the muted short-term competitive response in sponsored

search as pointed out by Rutz et al. (2012). We revisit this assumption in Section 7.2.

3.5.3. Estimation Details and Results

In order to estimate the parameters, a nonlinear solver is used in our implementation.9 The

parameter estimates for a few representative keywords are shown in Table 12. N represents

the mean number of daily competitive ads in the observation period. For brevity, we plot

the distribution of the estimated parameters for all keywords in Groups I and II in Figure

9. A complete table is available from the authors upon request.

Although there is significant heterogeneity across keywords, the estimated parameter values

are fairly typical in sponsored search. The mean click-through rate (α) at the topmost

position is 0.026 and the mean decay parameter (γ) is 1.68 which is similar to the values

reported earlier (Feng et al., 2006; Craswell et al., 2008). There is also considerable variation

in the expected revenue per-click (Ew) and the bid distributions (λ,θ) across keywords.

9We use the Fletcher-Xu hybrid method provided as a part of the ClsSolve routine in TOMLAB.
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Table 12: Parameter estimates for a sample subset of keywords.

keyword λ θ α γ N Ew($)

beef sirloin steak 1.7651 0.5351 0.0266 2.1237 9.5 0.00
(0.4927) (0.2821) (0.0115) (0.2742)

Steak Burger 0.6697 2.1944 0.0069 1.2915 5.1 1.53
(0.4035) (0.3731) (0.0008) (0.0902)

cheesecakes 0.9736 1.3265 0.0004 1.6091 7.0 1.08
(0.2064) (0.4270) (0.0000) (0.2405)

Porterhouse Steak 1.1413 0.8639 0.0085 1.1661 4.6 0.43
(0.5118) (0.1821) (0.0015) (0.3711)

smoke salmon 1.3414 1.1752 0.0073 1.0255 10.1 6.62
(0.5429) (0.4520) (0.0012) (0.3989)

corned beef 1.5368 0.7492 0.0018 1.0175 10.7 3.80
(0.8126) (0.5781) (0.0004) (0.7045)

hot dog order 1.0769 1.0869 0.0101 1.6486 7.3 3.00
(0.4410) (0.7503) (0.0036) (0.2446)

birthday gifts 1.1756 0.8420 0.0009 1.0659 40.2 5.74
(0.6781) (0.4176) (0.0000) (0.7850)

birthday present 0.7524 1.3841 0.0122 1.0434 7.1 0.45
(0.6721) (0.4816) (0.0057) (0.9381)

lobster bisque 1.311 1.0074 0.0145 1.9293 11.3 0.00
(0.3928) (0.5025) (0.0037) (0.4117)

3.5.4. Field Implementation

Once we estimate parameters α, γ, λ and θ for all keywords, we estimate the optimal bids

for these keywords. In this section we focus on the myopic policy outlined in Section 3 and

discuss the results of the field implementation for keywords in Group I.

For the keywords in Group I, we use a daily budget D = $72.00 based on the mean weekly

spend of around $500 during the 3 month “before” period. The bids are recomputed after

two weeks when we re-estimate the parameters (α, γ, λ, θ) using newly available data. The

bids are recomputed to account for changes in competitor bids and consumer click behavior.

However, the bids do not change much during this re-computation. Bids for a sample of

keywords are below in Table 13.

The rationale for these bids can be inferred from the parameters listed in Table 12. Consider,

for example, bids for keywords “smoke salmon”, “hot dogs order” and “birthday gifts”. Our
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Figure 9: Distribution of estimated parameters across keywords.

algorithm suggests increasing their bids. From Table 12, we observe that their expected

value per click (Ew) is high and it makes sense that the algorithm is suggesting that we

increase their bids. Interestingly, the keyword “birthday gifts” has a very high Ew, yet its

bid is not raised by a significant amount. This is because the keyword is very expensive

(low θ) and it is very difficult to attain the top position. There are other keywords where

it is worthwhile to spend the advertising dollars. This policy also decreases the bids for

keywords like “beef sirloin steak”, “lobster bisque” and “birthday present”. The bids for

“beef sirloin steak” and “lobster bisque” are decreased because they are not profitable. The

bid for “birthday present” is decreased because (i) it is not very profitable and (ii) it is

possible to get a similar number of clicks at a lower position (low γ) for much cheaper.

The suggested bids were deployed in the field by the advertiser for a period of 4 weeks.
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Table 13: Parameter estimates for a sample subset of keywords.

keyword Old Bids ($) New Bids ($)

beef sirloin steak 0.82 0.00
Steak Burger 2.19 0.95
cheesecakes 0.66 0.70
Porterhouse Steak 0.76 0.30
smoke salmon 1.16 2.55
corned beef 0.31 3.00
hot dogs order 0.76 1.85
birthday gifts 0.96 1.75
birthday present 1.61 0.20
lobster bisque 0.46 0.00

During the 12 weeks in the “before” period, the firm spent a total of $5937.58 on the

keywords in Group I and obtained revenues of $9776.10. In the “after” period, the total cost

and total revenues associated with the keywords were $3178.82 and $4594.43 respectively.

In the same period, the total cost (revenues) associated with the control keywords was

$4701.52 ($9776.2) and $1667.54 ($1480.80), respectively. We use a Difference-in-Difference

approach to compute the effect of our algorithm. The improvement in performance due to

the algorithm is given by

τM = ∆ROIGroup I −∆ROIControl

= (44.53%− 64.65%)− (−11.20%− 84.30%)

= 75.38%

The performance of the advertising campaign increases by 75.38% on a DiD basis indicating

that the myopic policy outperforms the advertisers bidding policy. In the next section we

discuss some of the drivers of this performance gain. Surprisingly, we notice that there is

an absolute decrease in the ROI in the campaign compared to the “before” time period

and this decrease is particularly notable for the Control group. This is partly because of

seasonality in meat sales. In addition, there were changes in the manner in which the search

engine displayed search results. From July onwards, the search engine started highlighting
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the top ads by using a light pink background color, which resulted in an increase in the

CTR of the top ads.10 For the Control group we see an increase in the CTR from 0.89% to

1.4% and for the keywords in Group II we see a change from 1.04% to 1.15%. We observed

that this not only resulted in an increased CTR for the keywords, but also a decrease

in their performance during this time. This change negatively affects the performance of

our policy as the underlying parameters that were used to compute the optimal bids have

changed. However, the control group allows us to control for such changes in the search

engine policy. Since the keywords in the Control Group and Group I are matched as a

result of the randomization procedure, the change in the display scheme has the same effect

(on average) on the keywords in either groups. Hence, the DiD approach eliminates the

influence of the policy change and measure the difference in performance between the myopic

policy and the policy adopted by our partner advertiser. It should be noted that, although

the parameters of the model are recomputed during the experiment, the estimates did not

capture the changes in the CTR. Since the data during the field experiment (1.5 week) were

pooled with data from the estimation period (4 weeks), the changes during the experiment

did not have a significant impact on the parameter estimates.

3.5.5. Analysis of the Field Experiment

In the previous section we presented the improvement that the myopic policy offers over the

advertiser’s policy. In this section, we discuss in further detail the factors that lead to the

improvement in the campaign’s performance. There are two main sources of improvement –

Firstly, a comprehensive model that captures the effect of bid on position, position on CTR

and eventually the bid on vk and ck, helps us in improving the bids for each keywords. Sec-

ondly, since bids for the entire portfolio are determined jointly, the advertising budget can

be distributed from less profitable keywords to relatively more profitable keywords (based

on on the aforementioned model). As both these approaches are concurrently applied to

10Several analysts suggest that the pink background for the ads is indistinguishable from the page back-
ground and users mistake these ads for organic links.
http://www.plymarketing.com/ppc/6-reasons-googles-new-ad-layout-should-really-piss-you-off/
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the portfolio, it is difficult to disentangle the effect of these drivers on the campaign perfor-

mance. However, we demonstrate how both these decisions affect the bids and profitability

of keywords in the campaign. The following table contains a list of sample keywords and

their performance in during the field experiment.

Table 14: Changes in keyword performance

keyword Avg RPC($) Old bids($) New bids($) Avg CPC ∆Gross Profit

buy orange roughy 2.95 0.35 0.85 0.29 343.33
filet mignon 5.00 1.50 2.55 1.83 210.37
buy lobster online 3.92 1.91 2.35 1.86 148.19
smoked salmon lox 5.85 1.00 3.00 2.03 38.24
bbq Beef 3.83 1.52 1.00 0.96 42.56
lobster delivery 1.62 2.25 0.95 0.87 -1.310
precooked bacon 1.57 1.50 1.05 0.68 -38.73
birthday gifts 5.74 0.96 1.75 1.73 -204.92

From the sample presented in Table 14 we observe that the advertiser was initially placing a

much lower bids for keywords like “buy orange roughy”, “filet mignon” etc. These keywords

are not only very profitable (have a high RPC), they are considerably cheap (have a lower

CPC) as they do not face intense competition. Using the analytical model presented in

Section 3, we can ascertain not only the consumer response parameter (CTR v/s position)

but also the competitive landscape associated with a keyword, which are subsequently in-

corporated in the bidding process. E.g. since there is very little competition for “buy orange

roughy”, the myopic policy recommends increasing the bid for this keyword. Even though

the bid has been increased significantly, the CPC in the “after” period is considerably low

(29¢), which further validates the low level of competition for this keyword. Interestingly,

the policy reduces the bid for “bbq Beef”. This decay in the CTR with position is very

low for this keyword (γ = 1.0338), hence the policy choses a smaller bid to decrease the

costs without affecting the revenues considerably. This complex interaction between the

bid, the revenue and the cost associated with a keyword cannot be predicted in a modeless

manner. Our approach explictly captures the relationship between these variable and hence

outperforms the heurtistics adopted by our partner advertiser.
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We also observe that the bids for several moderately profitable keywords like “lobster

delivery” and “precooked bacon” have been reduced in the after period. The joint bid-

optimization reduces the bids for these keywords as the budget invested in these keywords

can be diverted to keywords that deliver higher profits. Since their bids are decreased,

their position drops and hence they lead to fewer clicks. As a result they generate much

less revenue and their gross profits are lower during the field experiment as compared to

the “before” period. It should be noted that this decrease in profits is compensated for

by the investment in relatively more profitable keywords. In summary, the myopic policy

focuses on relatively cheap and profitable keywords and reduces the bids of other keywords

to maximize the profits from these keywords. Surprising, we see that the gross profits for

“birthday gifts”, a high performing keyword in the “before” period, decrease considerably

during the field experiment. The myopic policy increases the bid for “birthday gifts” given

its high RPC. However, as the CTR increase significantly during the field experiment (due

to the changes by the search engine), the value per impression vk drops considerably and

this keyword incurs a loss.

3.6. Incorporating Interdependence between Keywords

The preceding discussion assumes that keywords are independent of each other and the

consumer click behavior is i.i.d.. In reality, consumers may search across several keywords

before making a purchase decision and this might lead to interaction between keywords. For

example, a consumer might begin his search with a generic keyword like “fillet mignon” but

may eventually purchase using another keyword such as “Walmart fillet mignon”. While

searching for fillet mignon, he could have been exposed to ads from Walmart, causing

Walmart to be part of his consideration set. Not accounting for such spillovers may cause

the advertiser to undervalue “fillet mignon” and overvalue “Walmart fillet mignon”. This

example illustrates that there is value in accounting for these interactions while making

bidding decisions. One way to capture this interaction is a full factorial design, where we

consider spillovers for every possible subset of the portfolio of keywords and decide the
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optimal bids for keywords in this subset. However, the problem is NP hard and requires

significant resources to assess the performance of each subset. In this paper we will focus

on a specific kind of interaction proposed by Rutz et al. (2012). We categorize the keywords

into two groups – generic and branded – and explore how these two groups of keywords

interact.

A generic keyword does not contain the brand name of the firm (e.g. “fillet mignon”)

whereas a branded keyword does (e.g. “Walmart fillet mignon”). Advertising on generic

keywords can help create awareness about the brand/product which can then increase the

likelihood that the brand is a part of the consumer’s consideration set and, in turn, result

in greater number of branded searches. Rutz et al. (2012) show that there are considerable

spillovers from generic to branded search activity in sponsored search. Methods which do

not account for awareness might undervalue some keywords. E.g., in our dataset, clicks

on generic keywords are usually more expensive than on branded keywords (e.g., $0.88 v/s

$0.45) and less profitable (e.g., $2.89 v/s $7.80). If we just look at the RPC and CPC of

the keywords, it is more profitable to invest in branded keywords as compared to generic

keywords. However, as pointed out earlier, bidding on expensive generic keywords might

lead to future branded search and more clicks on the profitable branded keywords. Hence,

the advertiser should incorporate this spillover effect while making his bidding decisions.

In the following discussion we present a model that accounts for this dynamic interaction

between the generic and branded keywords while computing optimal bids.

3.6.1. Measuring Interactions

In order to incorporate the spillover effect in our decision model we first need to estimate

the changes in awareness due to search activity and its effect on future search activity. We

use the Nerlove-Arrow model (Rutz et al., 2012; Naik and Sawyer, 1998; Nerlove and Arrow,

1962) to capture the evolution of awareness

dAt

dt
= −(1− ηA)At + βXt, (3.19)

80



where At refers to the awareness level at time t, (1− ηA) measures the decay of awareness

with time, Xt is a vector of covariates that capture the search activity at time t and β

captures the extent to which different kinds of search activity affect the level of awareness.

According to the Nerlove-Arrow model, brand awareness decays over time since consumers

forget about a brand as time goes by. Search activity, on the other hand, reinforces brand

awareness. This increased awareness, in turn, can lead to further branded search activity.

We divide the keywords into two groups – G (generic) and B (branded) – and explore how

search activity related to these keywords affects the level of awareness. The two search

activities that we observe in our dataset are impressions and clicks for each keyword in

the campaign. Prior results suggest that ad impressions do not have a significant impact

on brand awareness but clicks on ads increase brand awareness (Rutz et al., 2012). This

is because an ad impression does not guarantee that the ad is seen by the consumer and,

further, mere exposure to an ad may not have an impact on the consumer unless the

consumer pays sufficient attention to the ad (e.g., by clicking it). We incorporate this finding

in our model and assume that generic and branded clicks may increase brand awareness

(which is latent in our model and cannot be directly observed). An increase in this latent

awareness can lead to more search and hence more generic or branded impressions.11 This

interaction is demonstrated in Figure 10.

Figure 10: Interaction between search activity and latent awareness.

We first describe how generic and branded clicks affect awareness. The total number of

11We validate this assumption in our dataset by performing a Granger causality test and infer that
impressions (both generic and branded) do not lead to more clicks but generic clicks lead to more branded
impressions.
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generic and branded clicks at time t are defined as CLKG
t =

∑
k∈G clk,t and CLKB

t =∑
k∈B clk,t, respectively. As we only observe daily data, we use a discrete time analogue of

the model presented in Equation (3.19),

At+1 = ηAAt + βGCLKG
t + βBCLKB

t + εAt+1, (3.20)

where ηA captures the carry-over rate of awareness and εAt+1 is the idiosyncratic error term.

Like Rutz and Bucklin (2010), we assume that the awareness at time t + 1 is affected by

the generic search activity at time t but in addition we allow for branded search activity

to also impact awareness. As highlighted earlier, awareness is not observed in the data and

is latent in this state-space model. Next, we outline how awareness affects both generic

and branded search activity. In our model, we assume that awareness only affects the

consumer’s propensity to search but it has no effect on the consumer behavior after the

search is executed. This implies that awareness affects the number of impressions (queries)

but has no impact on the click-through or conversion rates. This assumption is in keeping

with the findings of Rutz et al. (2012) who show that awareness does not have a statistically

significant impact on click−through and conversion rates. The expected number of generic

impressions at time t is defined as µG
t =

∑
k∈G µk,t and the expected number of branded

impressions at time t is defined as µB
t =

∑
k∈B µk,t, where µk,t are the expected number

of impressions for keyword k at time t. The expected number of generic and branded

impressions evolve with awareness in the following manner,

µG
t+1 = ηGµ

G
t + γGAt+1 + εGt+1, (3.21)

µB
t+1 = ηBµ

B
t + γBAt+1 + εBt+1. (3.22)

It should be noted that the effect of awareness is computed from aggregate data (not

individually for each pair of generic/branded keyword).12 In order to have a parsimonious

12One can conduct this analysis at a generic-branded keyword-pair level or a product level if there is
sufficient data and variation in that data. Our dataset is very sparse to get statistical significance at
keyword-pair or product level.
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model we assume that the effect of awareness is homogeneous across all branded keywords.

Similarly, the effect across generic keywords is homogeneous.

Combining Equations (3.20)-(3.22), we get a state space model whose evolution is as follows


µG
t+1

µB
t+1

At+1

 =


ηG γG

ηB γB

ηA




µG
t

µB
t

At

+


βG βB


 CLKG

t

CLKB
t

+


εGt+1

εBt+1

εAt+1

 (3.23)

where the correlated error terms ε...t+1 account for random shocks and ε ∼ N(0, Vε). The

following equation represents how these latent states are linked to the observations,

 IMPG
t+1

IMPB
t+1

 =

 1 0 0

0 1 0




µG
t+1

µB
t+1

At+1

+

 νGt+1

νBt+1


where IMPG

t+1 and IMPB
t+1 are generic and branded impressions at time t + 1, ν...t+1 ∼

N(0, Vν) is the random shock. We estimate this system of equations using a Dynamic Linear

Model (DLM). DLMs have been used in several situations where an important component

of the model is unobserved (Rutz et al., 2012; Bass et al., 2007; Naik and Sawyer, 1998).

We estimate this model using a Markov Chain Monte Carlo (MCMC) approach as proposed

by West and Harrison (1997). Details of the estimation procedure are outlined in Appendix

A3. The variation in the number of impressions and clicks for generic and branded keywords

help us identify the parameters of the model. The estimated parameters of the model are

presented in Table 15.

First, we note that there is a strong positive impact of generic clicks on awareness (βG > 0).

Second, increased awareness leads to increased branded search activity (γB > 0). Com-

bining these results, we conclude that every click on a generic ad increases the number of

branded impressions by γBβG (= 0.38). We also observe that the effects of branded clicks

on awareness and of awareness on generic search activity are insignificant (βB ≈ 0, γG ≈ 0).
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Table 15: Estimated Parameters

Parameter Mean 95% Conf. Interval

ηG 0.9515 [0.9735, 0.9321]
ηB 0.8664 [0.8411, 0.8842]
ηA 0.2418 [0.2297, 0.2547]
γG 0.0232 [-0.0006, 0.0427]
γB 0.1088 [0.0997, 0.1132]
βG 3.4018 [3.2656, 3.6123]
βB 0.0208 [-0.0105, 0.0461]

The figures in bold are statistically significant at the 95% level.

These findings are consistent with the results reported by Rutz et al. (2012). It appears

reasonable that if a consumer is already aware of a brand, then clicking on a branded ad is

less likely to change his awareness about that brand. Similarly, awareness about a particular

brand does not affect consumer’s generic search behavior.

We incorporate these estimates of spillovers into our decision theoretic model in the following

manner. Given the statistically insignificant estimates of βB and γG, we assume that only

generic clicks affect future search behavior and this effect is limited to branded searches.

We also assume that all generic clicks are identical and lead to the same relative increase

in the search (or impressions) for these branded keywords. More formally,

µk,t+1 = ηBµk,t + γk,BβGCLKG,t ∀ k ∈ B, (3.24)

µk,t+1 = ηGµk,t ∀ k ∈ G.

where γk,B = γB
µk,t

µG,t
is the increase in the expected impressions of keyword k ∈ B at

time period t + 1 for every generic click at time t. The increased impressions for branded

keywords, which are usually more profitable, leads to higher revenues in future periods.

3.6.2. Forward-Looking Policy

As discussed in the previous section, bidding on keywords has two effects - current period

revenues and future awareness. As a result, the advertiser faces a trade-off between max-

imizing current period revenues and increasing awareness (through more generic clicks) to
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increase revenues in the future. We consider the advertiser’s problem of deciding the bids

for the keywords in each time period so as to maximize the total profits for a finite time

horizon. Lets denote the planning horizon by T . We assume that the budget in each time

period should be less than or equal to D. The multi-period bidding problem is as follows

max
{b̄t}

T∑
t=1

r(µ̄t, b̄t) s.t.
∑
k

µk,tck(bk,t) ≤ D, t = 1, . . . , T

where µ̄t = (µ1,t, . . . µK,t)
T is a vector of the expected number of impressions and b̄t is a

vector of bids for each keyword in period t. r(µ̄t, b̄t), the expected current period profit,

is computed using the formula in Equation (3.1). For ease of exposition, we define the ad

spend in time period t as C(µ̄t, b̄t) =
∑

k µk,tck(bk,t). We formulate a finite horizon dynamic

program with T periods to solve this problem.

V (1, µ̄1) = max
{b̄t}

T∑
t=1

r(µ̄t, b̄t) s.t. C(µ̄t, b̄t) ≤ D, t = 1, . . . , T,

= max
b̄1 s.t. C(µ̄1,b̄1)≤D

{
r(µ̄1, b̄1) +

(
max

{b̄t s.t. C(µ̄t,b̄t)≤D}

T∑
t=2

r(µ̄t, b̄t)

)}
,

= max
b̄1 s.t. C(µ̄1,b̄1)≤D

{
r(µ̄1, b̄1) + E[V (2, µ̄2)]

}
,

where V (t, µ̄t) is the value function at time t. More generally, the Bellman equation for

this problem is as follows

V (t, µ̄t) = max
b̄t s.t. C(µ̄t,b̄t)≤D

{
r(µ̄t, b̄t) + E[V (t+ 1, µ̄t+1)]

}
.

µ̄, the vectors of mean impressions, constitute the state-space and the bids, b̄, are the

control variable. The state evolves in a manner shown earlier in Equation (3.24). As this

is a finite horizon problem, we use backward induction to solve for the optimal bids. At

t = T , the advertiser does not care about awareness and the optimal policy in the last stage

is to bid according to the “myopic” policy. In order to find the optimal bids for t < T , we

use approximate dynamic programming. We assume that the expected number of generic
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clicks at time t belongs to the set CLK = {0, 1, . . . ,M}, where M is an arbitrarily large

number.13 For every CLK ∈ {0, 1, . . . ,M}, we evaluate the subsequent state and optimal

revenues in period t + 1. We now solve the problem in Equation (3.1) with the additional

constraint that there are exactly CLK generic clicks in period t. This problem is stated as

follows

max
{bt}

∑
k

µk,tE [vk,t|bk,t] s.t. C(µ̄t, b̄t) ≤ D and
∑
k∈G

µk,tE [δk,t|bk,t] = CLK.

The optimal policy in this period is to choose a CLK (and the associated bids, b̄t) that

maximize the sum of current reward and the optimal future rewards. For the field experi-

ment, we update bids once every two weeks and there are T = 2 time periods in total. The

optimal bids under this forward-looking policy for some keywords are shown in Table 16

below. We also present the bids that would have been placed if we had used a myopic bid-

ding policy instead. The forward-looking policy increases the bids for some of the generic

keywords if they are likely to generate clicks. Accordingly, the bids for some of the less

profitable branded keywords are reduced.

Table 16: Bids under the forward-looking policy

Keyword Ew($) Myopic Bids Forward-Looking Bids

buy barbecue 1.94 0.65 0.85
porterhouse steaks 5.50 2.30 2.40
lobster bisque 0.00 0.00 0.20
Nebraska beef 2.69 1.25 1.25
purchase hot dog 4.47 2.45 2.65
buy top sirloins online 0.00 0.00 0.05
trout fillets 0.00 0.00 0.00
beef sirloin online 0.00 0.00 0.00
BRAND-NAME lobster bisque 6.43 2.45 2.15
BRAND-NAME steak burgers 14.59 3.00 3.00

13M = 200 in our analysis.
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3.6.3. Field Implementation

We apply the forward-looking policy to keywords in Group II. A daily budget D = $35.00 is

used based on the mean weekly spending of $250 during the 3 month “before” period. We

consider two time periods in our forward looking policy and compute the bids accordingly.

The bids computed for the first period are deployed in the field for a period of 2 weeks and

the bids computed for the second (last) period are deployed for two weeks thereafter.

During the 12 weeks in the “before” period, the advertiser incurred a cost of $3052.60

and earned revenues of $5646.03 for Group II keywords. In the “after” period the cost

and revenues were $1201.67 and $2075.43, respectively. Using the Difference-in-Difference

approach, as in Section 5.4, the improvement in performance is estimated to be

τFL = ∆ROIGroup II −∆ROIControl

= (72.71%− 84.96%)− (−11.20%− 84.30%)

= 83.25%

There is a notable increase in the performance of Group II keywords relative to the control

group. Further, the forward-looking policy provides performance gains over and above that

delivered by the myopic policy (τFL−τM = 7.87%). The effectiveness of the forward-looking

policy is likely to depend on prior brand awareness among search engine users and also on

the duration of the experiment. Thus, the gains may vary in other settings based on prior

brand awareness. We expect that the gains from the forward-looking policy will be greater

if the field experiment is conducted over a longer duration. We were unable to experiment

for an extended period of time due to limitations imposed by our partner advertiser.

3.7. Discussion

In this section, we contrast our proposed approach with policies commonly used by adver-

tisers in sponsored search. Then we shall discuss some caveats to our models which might
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limit the applicability of our bidding policies.

3.7.1. Contrast with Commonly Used Strategies

Our agreement with the advertiser precludes sharing their exact bidding strategy. However,

their strategy is fairly typical of strategies used by most advertisers in sponsored search.

There are three main reasons why our policies perform better than the policies adopted by

these advertisers. Firstly, because of the complexity of bid determination, most advertisers

use simple heuristics to determine bids. One common heuristic is to simply raise bids for

keywords that generate purchases at a relatively low cost and to reduce bids for keywords

that do not generate purchases. While this is a reasonable heuristic, it does not account

for details of the bid distribution or how the CTR decays with position. For e.g., for some

keywords, reducing bids may reduce clicks significantly but it may not have a significant

impact on cost-per-click. Parameters tied to competing bids and click decay have a sig-

nificant impact on optimal bids. As shown in Table 13 it might not be optimal to invest

heavily in a profitable but highly competitive ad (birthday gifts). Another challenge for

advertisers is that they often manage bids for keywords individually without optimizing

the portfolio as a whole. Raising and lowering bids for keywords in equal increments to

manage the budget constraint is suboptimal. Optimizing the bids over the entire portfolio

helps to move the advertising dollars from poorly performing keywords to profitable ones

in the right increments. Thirdly, the forward-looking policy accounts for the two-fold effect

that sponsored search ads have - awareness and profits. By ignoring the awareness benefits

of generic keywords, advertisers often under-invest in generic keywords and over-invest in

branded keywords.

3.7.2. Competitive Reaction

This paper adopts a decision-theoretic perspective of the bid problem as opposed to an

equilibrium perspective. Advertisers have to submit bids based on their current beliefs and

may choose to update these bids as their beliefs evolve. Our framework accommodates
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that by assuming that advertisers can use new data to re-estimate the model parameters

and update their bids. If competing advertisers respond instantaneously to changes in bids

then this may reduce the effectiveness of our bidding policies or at the very least suggest

that bids need to be rapidly and continuously updated. However, current research suggests

that competition in sponsored search advertising is fairly subdued (Rutz and Bucklin 2010,

Steenkamp et. al. 2005). Our discussions with several managers indicates that bids for

these keywords are rarely updated continuously. This is also reflected in our dataset where

bids for less than 10% of the keywords were changed in the 12 week “before” period when

the advertiser was deciding the bids.

To test whether rapid reaction by competitors render our computed bids ineffective, we

compare the difference between the predicted and observed average (i) position and (ii)

cost per-click in the after period (presented earlier in Equations (3.16) and (3.18)). If com-

petitors react soon to our advertiser’s new bids, it would introduce notable errors in our

predictions regarding the expected position and cost-per-clicks. For most of the keywords,

there is no significant difference between the predicted moments and the daily summaries

reported by the search engine, which indicates that there is no significant short-term com-

petitive reaction.14 There can however be long-term competitive reaction and the model

parameters (λ, θ, α, γ) can be periodically re-estimated and the bids updated to account for

these changes. This estimation would not suffer from endogeneity issues as long as the bids

are determined through the proposed algorithm and are uncorrelated with random shocks.

Since the issue of endogeneity no longer arises, there might not be a need for a random

bidding period.

3.7.3. Spillover across Groups

While computing the effectiveness of the “forward-looking” bidding policy in Section 6, we

implicitly assumed that there are no spillovers across groups. However, spillovers from key-

14The Mean Absolute Error (MAE) of these moments averaged across all keywords are shown in Table 17
in Appendix A2.
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words in one treatment group into keywords in another group might influence the estimate

of τFL. To control for this, we divide keywords into product categories and assign all key-

words from a product category into the same treatment group. This experimental design is

motivated by the intuition that clicks on keywords related to a particular product will not

have any impact on the search behavior for other products, e.g. while clicks for “hot dogs”

can spill over to branded keywords within the same product category “BRAND-NAME

hot dog”, it will have insignificant impact on searches for “salmon” or “BRAND-NAME

salmon” . This procedure of random assignment by product categories helps ensure such

that most of the spillovers are within treatment groups. This experimental design is based

on Angelucci and Giorgi (2009) where they propose a methodology to measure treatment

effects with spillovers. Note that the random assignment of the product categories to groups

also ensures that even if there are some spillovers across groups, these effects are similar

between any given pair of groups. A more sophisticated way to incorporate the spillover

effect might be a multi-tier design as proposed by McConnell, Sinclair and Green (2010)

but this approach would severely affect the analytical tractability of our approach and has

been left as a direction for future research.

3.8. Conclusions

The presence of a large portfolio of keywords, multiple slots for each keyword and signif-

icant uncertainty in the decision environment make an advertiser’s problem of bidding in

sponsored search a challenging optimization problem. In this paper, we formulated the

advertiser’s decision problem and analytically derived the optimality condition. Our bid

optimization model addresses a major gap in prior work related to incorporating multiple

slots per item, uncertainty in competitor bidding behavior and consumer query and click

behavior. We illustrated the technique using a real-world dataset. A field test suggests that

the approach can substantially boost advertiser’s RoI. We extend our basic model to ac-

count for secondary effect of these ads - awareness - and show that incorporating awareness

into a multi-period bidding problem can help increase revenues further.
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There are a number of interesting avenues along which our work can be extended. We

discuss these below.

Exploration and Learning : Our analysis assumes that keyword-specific parameters are

known or can be easily estimated based on recent historical data. If there has been sufficient

bid exploration in the recent history, these parameters can be estimated as demonstrated

in our empirical study. However, new keywords and keywords for which bids have settled

down into a relatively narrow range present a challenge. Thus an important area of oppor-

tunity to further extend our work is to combine optimization with a suitable exploration

technique. Exploration is clearly expensive but facilitates more accurate estimation of pa-

rameters. Heuristics proposed for Multi-armed Bandit and budget constrained Multi-armed

Bandit problems are particularly relevant for balancing exploration and exploitation.

Modeling Advertiser Heterogeneity : The key assumption we make in this paper is that

competitor bids are drawn from the same distribution. This allows us to keep the model

tractable and solve the complex stochastic optimization problem faced by an advertiser but

ignores heterogeneity among competitors. Modeling heterogeneity in advertisers’ bidding

policies is an important next step for our research. Additionally, our focus in this paper,

like that of the stream of work on optimal bidding, is the operational bid determination

problem faced by an advertiser at any given instant rather than an economic analysis of the

long-term equilibrium that results from the bidding strategies of advertisers in a market.

Equilibrium analysis is another interesting direction, albeit a complex one in this setting

due to the presence of multiple keywords and a budget constraint.
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Appendix

Proofs of Equations and Propositions

Solution of Equation (3.1)

The constrained optimization problem is as follows

max
{bk}

E

[∑
k

Sk∑
s=1

v
(s)
k

]
, s.t. D − E

[∑
k

Sk∑
s=1

c
(s)
k

]
≥ 0.

The Lagrangian can be written as:

L = E

[∑
k

Sk∑
s=1

v
(s)
k

]
+ λ

{
D − E

[∑
k

Sk∑
s=1

c
(s)
k

]}
.

KKT Conditions

∀k :
dL
dbk

=
d

dbk
E

[
Sk∑
s=1

v
(s)
k |bk

]
− λ

d

dbk
E

[
Sk∑
s=1

c
(s)
k |bk

]
= 0

λ ≥ 0,

D − E

[∑
k

Sk∑
s=1

c
(s)
k

]
≥ 0.

Assuming the budget constraint is binding (i.e.λ > 0 ), then there exists an extremum s.t.

∀k :
d

dbk
E

[
Sk∑
s=1

v
(s)
k |bk

]
= λ

d

dbk
E

[
Sk∑
s=1

c
(s)
k |bk

]

As rank

(
d(D−E

[∑
k

∑Sk
s=1 c

(s)
k

]
)

db

)
> 0, there exists at least one local maxima, and it maxi-

mizes the objective function if it is unique.

Assuming v
(s)
k , c

(s)
k are i.i.d., the optimality condition reduces to

E[Sk]
dE[vk|bk]

dbk
= λµk

dE[ck|bk]
dbk

,
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or
dE[vk|bk]

dbk
= λ

dE[ck|bk]
dbk

.

Proof of Lemma 1

The probability that the bid of the next advertiser is less than x for some x < b conditional

on the bid b and the position i is equal to the probability that exactly i advertisers bid

more than b and exactly N − i advertisers bid less than x divided by the probability that

the position is i. That is,

F (b = x|b, pos = i)

= Pr {b < x|b, pos = i} ,

=
Pr {b < x, pos = i|b}

Pr {pos = i|b}
,

=

 N

i

 (1− F (b))i F (x)N−i

 N

i

 (1− F (b))i F (b)N−i

,

=
F (x)N−i

F (b)N−i
.

Proof of Lemma 2

F (b = x|b, δ = 1)

= Pr {b < x|b, δ = 1} ,

=

N∑
i=0

Pr {b < x|b, δ = 1, pos = i} ×

Pr {pos = i|b, δ = 1} ,

=

N∑
i=0

F (x|b, pos = i)×
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Pr {δ = 1|b, pos = i}Pr {pos = i|b}
Pr {δ = 1|b}

,

=

N∑
i=0

(
F (x)

F (b)

)N−i

×

α
γi

 N

i

 (1− F (b))i F (b)N−i

αγ−N (1 + (γ − 1)F (b))N
,

=

N∑
i=0

 N

i

 (γF (x))N−i (1− F (b))i

(1 + (γ − 1)F (b))N
,

=
(1− F (b) + γF (x))N

(1 + (γ − 1)F (b))N
.

Proof of Proposition 2

E [c|b] = E [δb|b] ,

= Pr {δ = 1|b}E [b|b, δ = 1] ,

= αγ−N [1 + (γ − 1)F (b)]N
∫ b

0
bd

(
1− F (b) + γF (b)

1 + (γ − 1)F (b)

)N

,

= αγ−N

∫ b

0
bd[1− F (b) + γF (b)]N ,

= αγ−N

(
b[1 + (γ − 1)F (b)]N −

∫ b

0
[1− F (b) + γF (b)]Ndb

)
. (Integrating by parts)

Proof of Equation 3.13

dE[c|b]
db

= αγ−N
(
[1 + (γ − 1)F (b)]N +N(γ − 1)bf(b)[1 + (γ − 1)F (b)]N−1

−[1− F (b) + γF (b)]N .1 +Nf(b)

∫ b

0
[1− F (b) + γF (x)]N−1dx

)
,

= αNγ−Nf(b)
(
(γ − 1)b[1 + (γ − 1)F (b)]N−1 +

∫ b

0
[1− F (b) + γF (x)]N−1dx

)
.

Proof of Proposition 4

Let hN (b) =
∫ b
0 [1 − F (b) + γF (x)]Ndx, gN (b) = [1 + (γ − 1)F (b)]N and Ψ(b) = b +

hN−1(b)/((γ − 1)gN−1(b)). If Ψ(b) is monotonically increasing then there is a unique b∗
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Figure 11: hN (b)/gN (b) v/s b assuming the competitors bids are Weibull(λ = 1.59, θ =
1.37, γ = 1.42). The ratio hN (b)/gN (b) decreases as N increases.

that satisfies the optimality condition (Equation 3.14).

Ψ(b) = b+
hN−1(b)

(γ − 1)gN−1(b)

Ψ′(b) = 1 +
h′N−1(b)

(γ − 1)gN−1(b)
−

hN−1(b)g
′
N−1(b)

(γ − 1)g2N−1(b)
,

=
gN−1(b)[(γ − 1)gN−1(b) + h′N−1(b)]− hN−1(b)g

′
N−1(b)

(γ − 1)g2N−1(b)
.

Ψ′(b) > 0 if gN−1(b)[(γ − 1)gN−1(b) + h′N−1(b)]− hN−1(b)g
′
N−1(b) > 0, or

γ[1 + (γ − 1)F (b)] > (N − 1)f(b)×[
(γ − 1)

∫ b
0 [1− F (b) + γF (x)]N−1dx

[1 + (γ − 1)F (b)]N−1
+

∫ b
0 [1− F (b) + γF (x)]N−2dx

[1 + (γ − 1)F (b)]N−2

]
,

= (N − 1)f(b)

[
(γ − 1)

hN−1(b)

gN−1(b)
+

hN−2(b)

gN−2(b)

]
.

We can show that the ratio hN (b)/gN (b) is decreasing in N implying hN−2(b)/gN−2(b) ≥

hN−1(b)/gN−1(b) for all N ≥ 2. This intuition is illustrated in Figure (11) for a sample

distribution. It can be seen that hN (b)/gN (b) decreases as N is increased.
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This implies that Ψ′(b) > 0 if (write substituting )

γ[1 + (γ − 1)F (b)] > γf(b)(N − 1)
hN−2(b)

gN−2(b)
,

or γ > 1 +
1

F (b)

[
f(b)(N − 1)

hN−2(b)

gN−2(b)
− 1

]

If the rate of decay of the ctr with respect to position (γ) is high enough, then there exists

a unique b∗ that satisfies the optimality condition. For some common distributions like the

Weibull, Gamma and Log-Normal we numerically find that Ψ(b) is always increasing in b

and there exists a unique bid for every keyword k that satisfies the optimality condition.

This is illustrated in Figure (12) for some sample parameters.
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Figure 12: Ψ(b) for various distributions.
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Measuring Competitive Reaction

If there is competitive reaction then the predicted average position and CPC would be

considerably different from the observed position or CPC as the competitors might change

their bids as a response to the changes in bids by the advertiser. If the predicted and

observed moments of these quantities are not very different, it suggests that the competitive

reaction is subdued. In order to measure competitive reaction, we compute the difference

between the predicted daily average position and cpc and the mean of these quantities. The

MAE is reported in the table below.

Table 17: MAE between the predicted and observed moments

Quantity MAE

position 0.141
cpc $0.064

Given that these observed quantities are very close to the predicted values, this provides

evidence to suggest that there is very weak competitive reaction during the experimental

phase.

Appendix A3: Estimation of DLM parameters

This appendix provides an overview of the sampling procedure used to estimate parameters

of the Dynamic Linear Model mentioned in Section 6.1. The sampling procedure mentioned

here is an application of the method proposed by West and Harrison (1997). We need to

estimate the parameters of the transition matrix (ηA,ηB,ηG, γG,γB), the effect of generic

and branded clicks (βG,βB), the covariance matrices (Vε,Vν) and the sequence of state

vectors ΦT = {ϕ1, . . . , ϕT }. We start off with non-informative Gaussian priors for these

parameters Ψ =(ηA,ηB,ηG, γG,γB,βG,βB). We also assume that εt and νt are independent

and the priors for Vε and Vν are assumed to be inverse Wishart. Given these assumptions,

the posteriors distributions of Vε and Vν are inverse Wishart and the posteriors for the

parameters (ηA,ηB,ηG, γG,γB,βG,βB) are Gaussian.
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Let Dt = {Yt,Dt−1} denote all the information available to the researcher till time t, e.g.

the clicks and impressions till time t. We use a forward-filtering and backward smoothing

algorithm (e.g. Rutz and Bucklin, 2011) to sample the state spaces, Φt|Dt. Then we sam-

ple the parameters (ηA,ηB,ηG, γG,γB,βG,βB) given Φt and Dt. These estimation steps are

described below.

Step 1: Simulation for ΦT

i) For t = 1, . . . , T , compute mt and Σt, the mean and the variance of the state space

at time t. mt and Σtare derived sequentially from the priors m0 and Σ0 according to the

procedure outlined in West and Harrison (1997, Chapter 4).

ii) Filter-forward step: For t = T , sample p(ϕT |DT ) from the posterior distribution

N(mT ,ΣT ).

iii) Backward-smoothing step: For t = T, . . . , 1, sample p(ϕt−1|ϕt,DT ) conditional on

the latest draw ϕt.

Step 2: Sampling from p(Ψ, Vε, Vν |ΦT , DT )

We sample the parameters Ψ, Vε and Vν sequentially. This is reasonable as the elements of

the transition matrix, drift vectors and the error terms are assumed to be independent of

each other. Based on these assumptions the Gibbs sampler can be used in a straight-forward

manner to draw samples of ηA, ηB, ηG, γG, γB, βG, βB, Vε and Vν separately.
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CHAPTER 4 : The Long Road to Online Conversion: A Model of Multi-Touch

Attribution

4.1. Introduction

Online advertising has enabled advertisers to target their consumers using various channels

like Hulu, Yahoo, nytimes.com, search engines or social networks. The PEW Internet report

estimates the total online advertising expenditure to be US$ 40 billion by the year 2012.

Although the Internet surpassed print and radio as an advertising medium in 2011 and

currently accounts for 13-19% of the advertising spend, there continues to be tremendous

room for growth given the amount of time consumers spend online. Online advertising has

been embraced by a large number of advertisers as it not only allows for very granular

targeting but is also extremely quantifiable, enabling advertisers to measure the impact of

their advertising dollars. Although there are various forms of digital advertising like email

marketing, social media and mobile marketing, it continues to be dominated by display

and search advertising which account for almost ¾ of this expenditure. Search advertising

comprises ads shown on search engines whereas display advertising consists of banner ads

and emerging video formats on websites like You tube and Hulu.

A typical advertiser uses different channels and various ad formats to convey his message

to consumers. This can include both traditional channels like television, newspapers, direct

mailing or digital channels like sponsored search, display or social ads. In this paper,

we focus primarily on the digital channels. Since the advertisers uses multiple channels

for advertising, a consumer can be exposed to several different ads during his browsing

sessions. These repeated interactions with an advertiser’s campaign are termed “multi-

touch” in popular press (Kaushik, 2012). When the user buys a product or signs up for

a service (converts), his decision is influenced by prior ad exposures as shown in Figure 1.

The advertiser wants to ascertain which ads across the different channels has an influence

on the consumer’s decision and to what extent. This problem of quantifying the influence
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Figure 13: Multiple ad exposures across different online channels.

of each ad on the consumer’s decision is referred to as the attribution problem. Once the

advertiser can measure the contribution of each ad, he can use this information to optimize

his ad spending.

Online channels offer a unique opportunity to address the attribution problem as advertisers

have disaggregate individual level data which was not available in the case of traditional

channels like television and newspapers. Given the lack of disaggregate data, the marketing

literature has focused primarily on the marketing mix models (Naik et al., 2005; Ansari

et al., 1995; Ramaswamy et al., 1993) which perform inter-temporal analysis of marketing

channels but fail to provide insights at an individual customer level. Online advertising

allows advertisers to not only observe the ads that a consumer was exposed to but also

when the exposure took place. This granular data can be used to build rich models of

consumer response to online ads. Unfortunately, there is very little academic research that

analyzes multi-channel advertising data or addresses the problem of attribution.

In the absence of appropriate techniques, marketers have adopted rule based techniques

like last-touch attribution (LTA), which assigns all the credit for a conversion to the click

or impression that took place right before the conversion. Although the LTA is commonly

used in the advertising industry, it completely ignores the influence that ads before the
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last clicked (or viewed) ad had on the consumer’s decision. This causes ads that appear

much earlier in the conversion funnel, e.g. display ads, to receive much less credit and ads

that occur closer to the conversion event, e.g. search ads, to receive most of the credit

for the conversion event. A consumer might have started down the path of conversion

after being influenced by a display ad, but the LTA would suggest that the display ad

had no impact on the consumer’s decision. Incorrect attribution methods might move

advertising dollars away from important channels and have a detrimental impact on the

advertiser’s revenues in the long term. This is evident in the case of display ads as the lack

of appropriate attribution models have led advertisers to believe that display advertising is

not very effective, thereby hindering the growth of this format of advertising. It should be

noted that incorrect measurement also alters the publishers incentives (Jordan et al., 2011).

If an ad displayed by the publisher is undervalued, she might be incentivized to display

“seemingly” more profitable ads. This not only has an adverse effect on the advertiser but

also increases the inefficiency in the marketplace.

Some heuristics have been proposed to address the problems associated with LTA, e.g. first-

touch attribution or exponentially weighted attribution, but these techniques are plagued

with similar problems and do not take a data-driven approach to address the issue of at-

tribution. In the past few years, as several online channels have gained importance, most

advertisers have come to realize the inadequacies associated with their current method-

ologies (Chandler-Pepelnjak, 2009; Kaushik, 2012). Developing an appropriate advertising

attribution model is one of the biggest challenges facing the online advertising industry

(Quinn, 2012; Khatibloo, 2010; New York Times, 2012; Szulc, 2012). In recent years, com-

panies like Microsoft, Adometry and Clear Saleing have proposed heuristics that address

this issue, but there is no clear consensus on which approach is the most appropriate.

Surprisingly, there is very little academic research on this problem given its managerial

relevance. There are some recent papers that adopt a more rigorous data-driven approach

(Shao and Li, 2011; Dalessandro et al., 2012). Shao and Li (2011) propose a simple prob-

abilistic model that solves the attribution problem using a combination of first and second
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order conditional probabilities. Dalessandro et al. (2012) formulate multi-touch attribution

as a causal estimation problem and present a general model for multi-touch attribution.

Jordan et. al. (2012) approach this problem from a mechanism designer’s perspective and

analytically devise an allocation and pricing rule for these ads.

In this paper we propose a model for online ad-attribution using a dynamic hidden Markov

model (HMM). We present a model of individual consumer behavior based on the concept of

a conversion funnel that captures a consumer’s deliberation process. The conversion funnel

is a model of a consumer’s search and purchase process that is commonly used by marketeers

(Kotler and Armstrong, 2011). A consumer moves in a staged manner from a dormant state

to the state of conversion and ads affect the movement through the different stages. This

model is estimated using a unique dataset from a car manufacturer that contains all the

online advertising data from the beginning of a campaign. We observe that different ad

formats, e.g. display and search ads, affect the consumers differently and in different states

of their decision process. Display ads usually have an early impact on the consumer, moving

him from a state of dormancy to a state where he is aware of the product and it might enter

his consideration set. However, when the consumer actively interacts with these ads (e.g.

by clicking on them), his likelihood to convert considerably increases. Secondly, we present

an attribution scheme based on the proposed model that assigns credit to an ad based on

the incremental impact it has on the consumer’s probability to convert. This method is

subsequently compared to the LTA scheme.

The paper is organized as followed. We discuss the relevant literature in Section 2 and

position our research in the existing literature. In Section 3, we describe the data that we

use in our empirical application. We present the dynamic HMM in Section 4 and discuss

the estimation technique. The empirical results are present in Section 5. In section 6, we

discuss some limitations of our model. We finally conclude in Section 7 with directions for

future research.
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4.2. Prior Literature

There has been significant managerial interest in the attribution problem, but the academic

literature in this area has been sparse particularly due the absence of suitable multi-channel

data. Access to these data has led to recent work by Shao and Li (2011) and Dalessandro

et al. (2012) who adopt a data-driven strategy to address the problem of attribution. Shao

and Li (2011) develop a bagged logistic regression model to predict how ads from differ-

ent channels lead to a conversion. This model is further used to estimate an advertising

channel’s contribution towards a conversion. They also propose another probabilistic model

based on a combination of first and second-order conditional probabilities to directly quan-

tify the impact of an advertising channel on the conversion decision. In their models, an

ad has the same effect whether it was the first ad that the consumer saw or the tenth ad

he saw, which is clearly not a reasonable assumption. Dalessandro et al. (2012) extend this

research by incorporating the sequence of ads that lead a consumer to his final decision.

They use a logistic regression similar to Shao and Li (2011) to construct a mapping from

advertising exposures to conversion probability, however while performing the attribution,

they consider how an ad incrementally alters the transition probability conditional on all

the prior exposures. These papers are statistically motivated and do not incorporate a

model that underlies observed consumer behavior. As a result they might not be able to

capture the different stages of a consumer’s deliberation process and the varied susceptibil-

ity to advertising activities in these stages. In this paper, we try to extend this literature by

incorporating well established theories from the information processing literature (Bettman

et al., 1998; Howard and Sheth, 1969; Hawkins et al., 1995). This literature suggests that

consumer decision making involve a multi-stage process of – (i) awareness, (ii) information

search, (iii) evaluation, (iv) purchase and finally (v) post-purchase activity (Jansen and

Schuster, 2011). More specifically, we base our model of consumer behavior on the conver-

sion funnel which is commonly used in practice (Mulpuru, 2011; Court et al., 2009) and

analyzed in the marketing literature (Strong, 1925; Howard and Sheth, 1969; Barry, 1987).

103



Our research is closely related to the literature on online advertising (Tucker, 2012; Goldfarb

and Tucker, 2011; Ghose and Yang, 2009; Agarwal et al., 2011). Most of the work in this area

has focused on sponsored search where researchers have tried to analyze what factors affect

consumer behavior (Rutz et al., 2012; Ghose and Yang, 2009) and firm profitability (Agarwal

et al., 2011; Ghose and Yang, 2009). More recently, researchers have turned to other forms

of advertising like display (Goldfarb and Tucker, 2011) and facebook ads (Tucker, 2012).

Goldfarb and Tucker (2011) show that matching an ad to the website content and increasing

an ad’s obtrusiveness independently increase purchase intent. However, in combination,

these two strategies negate each other due to privacy concerns. Tucker (2012) investigates

how users’ perception of control over their personal information affects their likelihood to

click ads on Facebook. She shows that with an increase in privacy controls, users are twice

as likely to click on these ads. Although there is a lot of research on different formats of

online advertising, researchers haven’t looked at how these ads interacts in a multi-channel

context. This paper tries to address this gap in the extant literature and proposes a model

to a gain a better understanding of consumer response to different types of online ads.

From a methodological viewpoint, our research belongs to the extensive literature on HMMs

in computer science (Rabiner, 1989) and more recently in marketing (Netzer et al., 2008;

Montoya et al., 2010; Schwartz et al., 2011). HMM is a workhorse technique in computer

science that has been applied to various application like speech recognition (Rabiner, 1989),

message parsing (Molina and Pla, 2002) and facial recognition (Nefian et al., 1998) among

other things. In the marketing literature, HMMs are used to capture dynamic consumer

behavior when the consumer’s state is unobservable (Netzer et al., 2008; Schweidel et al.,

2011). HMM have been used to study physicians’ prescription behavior (Montoya et al.,

2010), customer relationships (Netzer et al., 2008) and online viewing behavior (Schwartz

et al., 2011). Most of the papers in the literature incorporate time varying covariates

to account for marketing actions, e.g. Montoya et al. (2010) analyze how detailing and

sampling activities can move physicians from one state to another and alter their propensity

to prescribe a newly introduced medicine. We adopt a similar approach in our paper to
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model the dynamics of the HMM.

4.3. Data Description

Our data is provided by a large digital advertising agency that managed the entire online

campaign for a car manufacturer. This data spans a period of around 11 weeks from

June 8, 2009 to August 23, 2009. The ad agency promoted display ads on several generic

websites like Yahoo, MSN and Facebook and auto-specific websites like KBB and Edmunds.

In addition, it also advertised on search engines like Google and Yahoo. Users are tracked

across the different advertising channels and on the car manufacturer’s website using cookies.

The context of car sales is very relevant to the attribution problem as consumers spend a lot

of time researching cars online, sometimes several weeks and as a consequence are exposed

to ads in various format, across different online channels.

This dataset is unique as it contains all the display and search advertising data at an

individual level since the start of the campaign. Our sample comprises a panel of 6432

randomly chosen users with a total of 146,165 observations. An observation in our dataset

comprises a display ad impression or click (generic/specific), a search click or activity (page

view/conversion) on the advertiser’s website. We do not observe the search ads that were

shown to consumers (as this data is not reported by the search engine), however when a

consumer clicks on one of these ads and arrives at the advertiser’s website, this click is

recorded in our data and referred to as a search click. A conversion in this data is said

to occur when the user performs one of the following activities on the advertiser’s website

- search inventory, find a dealer, build & price and get a quote. We do not focus on the

different conversion activities and treat them similarly. Furthermore, as we are interested

in how the ads drive the first conversion, we discard all the observations for a particular

consumer after the first conversion. Since we are interested in the effect of advertising on the

conversion process, we also eliminate users in our data that do not have any ad exposures.

This results in a panel size of 5121 users with 112,619 observations. Summary statistics of

this data at an individual level is presented in Table 18 below.
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Mean S.D.

Generic display impressions 13.756 34.725
Generic display clicks 0.072 0.180
Generic click-through rate 0.007 0.054
Specific display impressions 4.211 10.06
Specific display clicks 0.143 0.32
Specific click-through rate 0.020 0.062
Search clicks 0.246 0.719
Web pages viewed 3.471 8.187
Conversions 0.152 0.359

Table 18: Summary Statistics

On an average there are 13.756 display impressions per customer on generic websites and

4.211 impressions on auto-specific websites. Consumers click 0.007 of these display ads on

generic websites and 0.143 on auto-specific websites. We see that the click-through rate

for display ads on auto-specific websites is much higher than on generic websites which

indicates that context plays an important role in the consumer’s click-through and decision

making process. Consumers browse 3.471 pages on the car manufacturer’s website in this

dataset. Most of ads in this campaign are “call to action” ads, which explains the high

conversion rate – 15.2% of all the consumers in this dataset end up engaging in one of the

four conversion activities mentioned earlier.

4.4. Model of Multi-Touch Attribution

In this section we first present a HMM of consumer behavior and then show how this model

can be used to solve the attribution problem

4.4.1. The Conversion Funnel

Our model is inspired by the idea of a conversion funnel that has been at the center of

the marketing literature for several decades (Strong, 1925; Howard and Sheth, 1969; Barry,

1987). The conversion funnel is also widely adopted by practitioners and managers who

frequently base their marketing decision on the conversion funnel (Mulpuru, 2011; Court

et al., 2009). The conversion funnel is grounded in the information processing theory which
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postulates how consumers behave while taking a decision (Bettman et al., 1998). This

literature suggests that consumers move through different stages of deliberation during

their purchase decision process. Several marketing actions, e.g. advertising, help the user

in moving closer to the end goal, i.e. an eventual purchase. This framework is also similar to

the AIDA (attention, interest, desire and action) model (Kotler and Armstrong, 2011) and

hierarchy of effects model (Bruner and Kumar, 2000) that are commonly used in marketing.

Several variants of the conversion funnel have been proposed, but the most commonly used

funnel has following stages - awareness, consideration and purchase (Jansen and Schuster,

2011; Mulpuru, 2011; Court et al., 2009). A consumer is initially in a dormant state when

he is unaware of the product or is not deliberating a purchase. When he is exposed to an

ad, he might move into a state of awareness. Subsequently, if he is interested in the product,

he transitions to a consideration stage where he engages in information seeking activities

like visiting the website of the advertiser and reading product reviews (this is sometimes

referred to as the research stage in the purchase funnel). Finally, based on his consideration,

the consumer decides to engage in the conversion event or not. In the following discussion,

we introduce a parsimonious model that captures the dynamics of the conversion funnel.

Although the conversion funnel is widely accepted and used, it has been difficult to analyze

the movement of a consumer down the funnel in the context of traditional advertising.

Most of the data in traditional advertising is available at an aggregate level which makes

it difficult to tease apart the different stages of the consumer deliberation process outlined

earlier. The individual level data presented in Section 3 offers a unique opportunity to

analyze the consumer behavior at a much granular level and examine the conversion funnel

using observational data.

4.4.2. Hidden Markov Model

In our data, we do not observe a consumer’s underlying state and it can be inferred only

through the consumer’s observable actions, i.e. website visits and conversion. In this sense
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the consumer’s state is latent and his progression through the conversion funnel is hidden.

In this paper, we use a HMM to capture the user’s deliberation process and his movement

down the conversion funnel as a result of the different ad exposures he experiences. Several

researchers have uses HMMs to model latent consumer states (Montoya et al., 2010; Netzer

et al., 2008; Schwartz et al., 2011; Schweidel et al., 2011) and they are particularly suited

for the problem of attribution as we explain in the next section.
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Figure 14: Diagram representing the latent states and the outcomes of the HMM. qss′ denote
the transition probabilities from state s to state s′ and Ys is the binary random variable
that captures conversion in state s.

In accordance with the conversion funnel, we construct an HMM with four states (S), where

the four states are “dormant”, “awareness”, “consideration” and “conversion” (Figure 14).

At any time t, consumer i can be in one of the four states, Sit ∈ S.1 As mentioned earlier,

we do not observe sit, but we observe the bivariate outcome variable Yit = (Nit, Cit) which

arises from a stochastic process conditional on the state Sit. Nit is a Poisson random variable

that denotes the number of pages viewed by the consumer between time t and t + 1 and

Cit is a binary random variable which captures whether there was a conversion between

time t and t + 1. When the user is in a dormant state, he is unaware of the product or

1Variables in uppercase denote random variables and variable in lowercase denote their realizations. In
addition, set notation supersedes notation for random variables unless otherwise noted.
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is not deliberating a purchase. In this state, there is no activity from the consumers and

the outcomes variables, page views and conversion, are set to zero. As the consumer is

exposed to different ads, he might move into a state of awareness where he knows about

the product and might be willing to purchase it. On further deliberation, he moves into a

consideration state, where he can actively look for product related information and engage

with the firm’s website. Consumers can also go directly from the dormant state to the state

of consideration. In this model, the research stage is implicitly captured by the consumer’s

interaction with the advertiser’s website (measured through page views). As we model only

the first conversion behavior of the consumer, the consumer moves into the “conversion”

state as soon as a conversion occurs. “Conversion” is a dummy absorbing state which

captures the fact that once a consumer has engaged in a conversion activity, he ceases to

exist in our data.

We assume that a consumer’s propensity to purchase (or convert) is zero in the dormant

state and it steadily increases as he moves down the different states. We also assume that the

consumer’s research behavior becomes more intense as he moves down the funnel, e.g.. he

is likely to visit the advertiser’s website more often when he is in the consideration state as

opposed to the awareness state. The transition between the states take place in a stochastic

manner when an ad event ait occurs and is influenced by the firm’s advertising activities

so far. Ads from different channels can have different effects on these transitions and these

effects can be state specific. The transitions between the different states also follow a Markov

process, i.e. the transitions out of a particular state depend only on the current state and

not on the path that the user took to get to the state. Let Ai = {ai1, ai2, . . . , aiT } denote

a sequence of T ad events that consumer i is exposed to, due to which the consumer ends

up in states Si = {Si1, Si2, . . . , SiT }. x′
it captures the running sum of the different kinds of

advertising activities till time t and contains covariates like number of display impressions

at a generic website, number of display impressions at an auto-specific website and search

clicks. We do not observe Si but observe the observation vector Yi = {Yi1, Yi2, . . . , YiT }.

The joint probability of observing the sequence of observations {Yi1 = yi1, . . . , YiT = yiT }
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is a function of three main components: (i) the transition probabilities between the different

states – Qit, (ii) the distribution of the observational variables conditional on the state –

Mit denotes the probability of conversion and Nit ∼ Poisson(λits) , and (3) the initial state

distribution – π. We describe each of these components in detail below.

Markov Chain Transition Matrix

In our model, there might be a transition from the current state sit only under two conditions

- (i) when a consumer is exposed to an ad event ait, or (ii) when a conversion takes place

and the consumer moves to the “conversion” state with certainty. If the transition occurs

due to an ad event, consumer i’s transition from one latent state to another is stochastically

based on the transition matrix Qit which is a function of the advertising activities, x′
it at

time t. The probability that a consumer transitions to state s′ at time t+ 1 conditional on

him being in state s at time t is given by P (Sit = s′|Sit−1 = s) = qitss′ . Let Ts be the set of

states (s′) that can be reached from state s. The elements of the transitions matrix specific

to state s are given by

qitss′ =
exp{x′

itβss′}
1 +

∑
s′∈Ts

exp{x′
itβss′}

∀ s′ ̸= s, (4.1)

qitss =
1

1 +
∑

s′∈Ts
exp{x′

itβss′}
, (4.2)

where βss′ is the response parameter that captures how the advertising related activities

affect the consumer’s propensity to transition from state s to s′. βss′ is different across

states as the advertising activities x′
it might have different effects on the transition based

on the receiving state. For e.g. display clicks might affect the transition to the “dormant”

state differently than the transition to the “consideration” state.

Consumer Research and Conversion Behavior

For every consumer, the bivariate outcome variable Yit = (Nit, Cit) is modeled in the

following manner.
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Modeling page views: Nit is drawn from a Poisson distribution with a rate parameter λits

which is a function of the current state s and advertising activity, xit. The probability of

observing nit page views is given by

P (Nit = nit|Sit = s) =
λnit
its e

−λits

nist!
,

where λits = η̃s + x′
itτs, i.e. the rate parameter is the a function of the intrinsic research

activity in state s and the time varying covariates xitτs. Note that there is no research

activity in the dormant state, therefore λit1 ≡ 0. We also assume that the research intensity

increases as the consumer moves down the conversion funnel. This constraint is enforced

by setting

η̃2 = η2,

η̃3 = η̃2 + exp{η3},

where η2 and η3 are parameters to be estimated from the data.

Modeling conversions: The consumer’s probability to convert depends on the state in which

he is present. We follow Montoya et al. (2010) in modeling the conversion Cit which is binary

random variable. The conditional probability P (Cit = 1|Sit = s) = mits is given by

mits =
exp{α̃s + z′

itγs}
1 + exp{α̃s + z′

itγs}
.

z′
it a vector of time varying covariates which contains the advertising related activities in

addition to the number of web pages the consumer has viewed on the advertiser’s website.

The number of page views are included in addition to the marketing activities because a

consumer might be more likely to convert if he has viewed more web pages and has gathered

more information about the product. γs captures how these covariates affect the conversion

probability. We assume that there are no conversions in the dormant state (mit1 = 0) and

the probability to convert, on average, increases as we move down the conversion funnel.
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This assumption is operationalized in the following manner,

α̃2 = α2,

α̃3 = α̃2 + exp{α3},

where α2 and α3 are the parameters to be estimated from the data. This structure enforces

that mit3 ≥ mit2, ceteris paribus. This assumption ensures the identification of the different

states and is consistent with the approach adopted by Netzer et al. (2008) and Montoya

et al. (2010).

Joint density : In our model we also assume that Nit and Cit are independent once the effect

of Nit on zit has been accounted for. Hence, the conditional probability of observing yit is

given by

P (Yit = yit|Sit = s) = mcit
its(1−mits)

(1−cit)P (Nits = nit|Sit = s) (4.3)

where yit = (nit, cit)
′ is the realized outcome variable.

Initial State Membership

Let πs denote the probability that consumers are in initially in state s, where
∑

s∈S πs = 1.2

Consumers can start out in different states because of their exposure to ads on other media

like television or print which can affect the initial membership probability. However, we do

not have data about other forms of advertising and hence we assume that all consumers

start out in the dormant state and move down the conversion funnel, i.e. initial membership

probability is given by π = {1, 0, 0, 0} which is an assumption we make for the identification

of the model as explained in the Appendix. We think this is a reasonable assumption

because the advertising campaign pertains to a new brand of cars and consumers might

have been completely unaware of the product before the launch of the online campaign.

In summary, the dynamic HMM captures the consumers’ behavior as they transition across

2Note that the subscript for the consumer is dropped because all consumers are considered homogeneous
ex-ante.
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the different states of the funnel and eventually convert. This model allows the ads to have

an effect on consumers behavior – they affect the transition probabilities as well as the

product research and conversion activities. Thus, these ads not only have an immediate

impact on the consumers by changing their conversion probabilities, but they can also move

consumers to different stages in the conversion funnel which can have an impact on their

future conversion behavior. It should be noted that we do not incorporate consumer het-

erogeneity in our model for simplicity. However, there might be differences in consumers’

behavior due to their prior relationship with the brand, offline advertising activity or un-

derlying demographic variables. We extend the current model to account for observed and

unobserved consumer heterogeneity in Section 6. Thus, the model allows us to attribute

suitable credit to an ad even if it does not contribute to a conversion right away but helps in

moving the consumer to a state with higher conversion probability. In this sense, our model

differs considerably from the approach adopted by Shao and Li (2011) and Dalessandro

et al. (2012) which attribute credit to an ad only when it directly leads to conversion. In

the following discussion, we explain how the ad events affect these transitions and how the

aforementioned model can be used to solve the attribution problem.

4.4.3. Ad Attribution

When consumer i is exposed to an ordered set of ad related activities Ai = {ai1, ai2, . . . aiT },

he moves through the different states of the HMM in the manner described above. ait is

a categorical variable that captures the ad related activity the consumer is exposed to,

i.e. ait ∈ {“display impression on generic website”, “display impression on auto-specific

website”, “click on generic website”, “click on auto-specific website”, “search click”}. The

total number of ad related events experienced by a consumer, T , can vary across customers.

In our model, the ad related event ait affects the customer i’s underlying time varying

parameters x′
it and z′

it as shown below,

xit−1
ait−→ xit,
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zit−1
ait−→ zit.

Hence, ait has a two fold effect on the consumer’s probability to convert which is shown

below – (i) it alters the conditional conversion probability, through changes in z′
it and (ii)

it can lead to a transition of the consumer from one state to another by affecting x′
it.

Attribution in the context of online advertising involves measuring the incremental change

ait provides in the conversion propensity. Keeping these factors in mind, we provide two

approaches to measure the value of an ad related event. For simplicity we assume that the

advertiser earns $1 whenever a conversion occurs.

Forward-Looking Attribution

Let Ait be a subset of Ai which contains the ad events until time t ≤ T . In the forward-

looking approach, Vit, the value of an ad event ait, is measured by the effect it has in

expectation on the consumer i’s conversion decision.

Vit = E[Ci|Ait = {ai1, ai2, . . . , ait}]− E[Ci|Ait−1 = {ai1, ai2, . . . , ait−1}], (4.4)

= P (Cit = 1|Ait)− P (Cit−1 = 1|Ait−1).

The effect of an ad depends on the consumer’s underlying state which in turn is affected

by the ads that preceded ait. The value of an ad is not only a function of the impact of

the ad going forward, but also depends on the other ad exposures that took place before

time t, and the attribution method presented in Equation (4.4) explicitly accounts for the

effect of preceding ads. This approach is similar to Shao and Li (2011) and Dalessandro

et al. (2012), but P (Cit = 1|Ait) is estimated using a dynamic HMM in our case whereas

they use simplistic approaches like a logistic regression and sample means to compute these

probabilities. It should be noted that this method differs vastly from LTA which attributes

100% of the conversion to the last ad event and completely disregards the effects of ads that

came earlier. The value ascribed to a specific type of ad event, k ∈ {“display impression on
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generic website”, . . ., “search click”}, can be computed by summing across all ad activities

of that type,

Πk =
∑
i

T∑
t=1

1{ait=k}Vit, (4.5)

where 1{ait=k} is an indicator function that equals one if ad event ait is of type k.

Backward-Looking Attribution

The prior approach addresses the problem of attribution based on the marginal effect an

ad has on the conversion probability. In this formulation, we measure the effect of an ad

conditional on a conversion event. An ad ait’s value in this case is computed by

Ṽit =
P (Cit = 1|Ait)− P (Cit−1 = 1|Ait−1)

P (Ci = 1|Ai)
.

This method attributes all the proceeds from a conversion to ads that occurred before the

conversion took place, although their relative contribution is weighted by Ṽ it. The value

assigned to a specific type of an ad event can be computed by

Π̃k =
∑
i

Ci

T∑
t=1

1{ait=k}Ṽit, (4.6)

where Ci denotes whether we observe a conversion for customer i in the data.

In order to solve the attribution problem, we need to estimate the parameters of the HMM

which is presented in the subsequent section.

4.5. Empirical Analysis

In this section, we illustrate how the HMM model can be estimated and interpreted. A

richer model of consumer behavior which incorporates consumer heterogeneity is presented

in Section 5. The dynamic HMM is estimated on the car campaign data presented in Section

3. We first outline the estimation procedure, briefly discuss the model validity and continue
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to present the estimated parameters. A sample of 4121 users is used for estimating the

model and the remaining 1000 users are used for validation.

4.5.1. Estimation Procedure

Here, we outline the procedure of estimating the HMM on the data shown in Section 3. Our

model differs from standard HMMs as the transition probabilities depend on the covariates

that vary over time. Several techniques have been proposed to incorporate the time varying

covariates in the HMM which are collectively referred to as the latent transition models.

Three of the most common techniques used to estimate these models are maximum like-

lihood estimation (ML), expectation maximization (EM) and Markov chain Monte Carlo

(MCMC) methods. In one step maximum likelihood approaches like Newton Raphson, the

entire joint likelihood of observing the data is maximized to arrive at the parameter esti-

mates (Satten and Longini, 1996; Cooper and Lipsitch, 2004). The EM techniques involves

two steps - in the first step, the likelihood of observing the data is derived conditional on

the parameters (expectation step), and subsequently the parameters are updated to fit the

data better (maximization step) (Baum et al., 1970; Bureau et al., 2003). A third step

is incorporated to estimate the effect of the time varying covariates on the transitions be-

tween the states and the observations associated with these states (Visser et al., 2009).

More recently, some researchers have adopted a Bayesian approach, where the parameters

are drawn from a posterior distribution using MCMC simulations. The Bayesian approach

allows for easy model diagnostics using the posterior predictive checks (Berkhof et al., 2000;

Schwartz et al., 2011) and also provides an easy way to compute standard errors for the

parameters which might be difficult in the ML and EM techniques under certain conditions

(Chung et al., 2007). MCMC techniques have also been employed extensively in the latent

state literature in marketing (Montoya et al., 2010; Netzer et al., 2008). EM and MCMC

techniques are generally used for their computational speed and efficiency. Computing the

joint probability of the observed data can be computationally intensive for large values of

T . However, maximum likelihood approaches like Newton Raphson have better convergence
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properties as compared to the EM and MCMC techniques which tend to converge to local

minimas. As T is relatively small in our data (T = 18.3) and computational complexity is

not a big concern, we adopt the maximum likelihood approach to estimate our parameters.

We begin by deriving the likelihood of observing the data. Given a sequence of ad events

Ai, the consumer can take several different paths s0 → s1 → . . . → sT . The sequence

of the states during this transition determines the probability of the observations yi =

{yi1,yi2, . . .yiT }. The likelihood of a matrix (2 × T ) of outcome variables yi after being

exposed to these actions Ai can be computed by evaluating the probabilities of each of these

path s0 → . . . → sT and the conditional probability of P (Yi1 = yi1, . . . , YiT = yiT , |S0 =

s0, . . . , ST = sT ) which is given by

Li =

|S|∑
s1=1

|S|∑
s2=1

. . .

|S|∑
sT=1

[
T∏
t=1

P (Sit = st|Sit−1 = st−1)

T∏
t=1

P (Yit = yit|Sit = st)

]
, (4.7)

where P (Yit = yit|Sit = st) can be computed as shown in Equation (4.3). This approach of

summing over all possible paths has a complexity O(|S|T ) and might be computationally

infeasible even for moderately small values of |S| and T (Cooper and Lipsitch, 2004). In

order to overcome this computational complexity, McDonald and Zucchini (1997) propose

an approach that significantly reduced the amount of computation required. Let

Φit(yit) = Diag(P (Yit = yt|Sit = 1), . . . , P (Yit = yt|Sit = |S|)),

where P (Yit = yt|Sit = s) is as mentioned in Equation (4.3). The likelihood of the observed

data (Equation (4.7)) can be simplified to

Li = π′Φi0(yi0)Qi1Φi1(yi2)Qi2 . . . QiTΦiT (yiT ).1, (4.8)

where 1 is a 1 × |S| vector of ones. This computation is significantly much faster and can

be evaluated in O(T |S|2) time. The log-likelihood of observing the entire data is given by

the sum of the log-likelihood across all consumers in the data,
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LL =
∑
i

log
[
π′Φi0(yi0)Qi1Φi1(yi2)Qi2 . . . QiTΦiT (yiT ).1

]
. (4.9)

The parameters of the model can be estimated by maximizing the log-likelihood function

shown in Equation (4.9) using any non-linear optimization technique. We use the ClsSolve

routine from TOMLAB to perform the unconstrained numerical optimization.

4.5.2. Model Validity

To test the validity of our model, we compare the predictive ability of the model with the

commonly used logit model (Dalessandro et al., 2012; Ghose and Yang, 2009; Agarwal et al.,

2011). The comparison is performed using two different approaches. First, we compare

the log-likelihood of observing the outcome (conversion/no conversion) in the validation

dataset. Secondly, we compute the root mean-squared error (RMSE) by calculating the

difference between the observed outcome and the predicted outcome from the two models.

These results are presented in Table 19 below. We observe that the HMM considerably

outperforms the logit model on both these measures.

Table 19: Predictive validity

Validation RMSE
log-likelihood

HMM -1692.7 0.097
Logit -2039.5 0.182

4.5.3. Parameter Estimates

Estimates of the Transition Parameters

Estimates of the transition parameters are reported in Table 20. The intercept terms are

significantly negative which indicates that these states are relatively sticky and consumers

do not easily transition between them. We also observe that ad related activities have a

significant impact on the transition from the dormant state to the awareness state. Contrary

to popular belief that display ads are ineffective (de Vries, 2012; Claburn, 2012), we see that
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display ads have an important effect of moving consumers from a dormant state to a state of

awareness. They might not have a high conversion rate, but our model predicts that these

ads significantly impact the consumer’s deliberation process. This finding has significant

implications for marketeers as they need to understand that display advertising has an

indirect effect on conversions and they should account for this difference (as compared to

search ads) in their attribution approach. In addition, display ads on auto-specific websites

have a larger impact on the transition from the dormant state to the awareness state.

Consumers might be more likely to notice these car related ads when they are visiting auto-

specific website. Yi (1990) shows that consumers’ response to ads can change significantly

when they are primed by relevant context.

Table 20: Estimates of the transition parameters (β)

β12 β13 β21 β23 β31 β32

(intercept) -2.864*** -5.632*** -3.713*** -2.206*** -3.405*** -4.327***
(0.033) (1.073) (0.078) (0.384) (0.471) (0.732)

generic imp 0.009*** 0.003 0.102*** 0.002 0.009 0.003
(0.029) (0.003) (0.008) (0.007) (0.009) (0.008)

specific imp 0.014*** 0.002 0.008 0.003 -0.001 0.003
(0.009) (0.005) (0.010) (0.032) (0.001) (0.007)

generic clk 0.126*** 0.020 -0.098 0.383*** -0.001 -0.079
(0.048) (0.063) (0.150) (0.049) (0.038) (0.312)

specific clk 0.189*** 0.003 0.077 0.501*** 0.021* 0.000
(0.003) (0.048) (0.083) (0.077) (0.017) (0.000)

search clk 0.550*** 0.031* -0.029* 0.413*** 0.048 -0.002**
(0.135) (0.025) (0.023) (0.138) (0.057) (0.001)

***, **, * denotes coefficients that are significant at a 99%, 95%, 90% level, respectively

Although display ads have an impact on moving consumers from a dormant state to a state

of awareness, they do not have a significant impact on moving consumers further down the

conversion funnel, i.e. from a state of awareness to a state of consideration (β23). In fact,

we observe that too many display ads on generic websites can have a detrimental effect

on the consumer’s movement towards the conversion state. As the coefficient of generic

impression is positive and significant (0.102), it suggests that if consumers are shown too

many display ads on generic websites, their probability to transition back to the dormant
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state increases considerably. We also observe that impressions do no have an impact later

on in the conversion funnel. Thus, current attribution techniques which focus mostly at the

end of the funnel, give negligible credit to these ads.

Not surprisingly, we observe that clicks have a significant impact on the consumer’s move-

ment from the awareness to the consideration state with search clicks having the largest

effect. Once the consumer moves to the consideration state, there is a very low probability

of him transitioning out of that state. This probability is further reduced when the con-

sumer performs more searches and clicks on search ads. When a consumer actively starts

to gather information about a product (by searching for the product at a search engine),

he is likely to be at the very end of the funnel, contemplating his decision just prior to the

eventual conversion.

Now we analyze the effect of different ad events on the HMM transition matrix. Qi0 denotes

the transition matrix when consumer i is not exposed to any ads. Let Qis, Qic and Qid

represent the transition matrices when we observe exactly one search click, one display click

and 10 display impression for the consumer, respectively. These matrices are presented

below,

Qi0 =


0.95 0.05 0.00

0.02 0.88 0.10

0.03 0.01 0.96

 , Qis =


0.91 0.09 0.00

0.02 0.84 0.14

0.03 0.01 0.96

 ,

Qic =


0.94 0.06 0.00

0.02 0.84 0.14

0.03 0.01 0.96

 , Qid =


0.87 0.12 0.00

0.06 0.85 0.09

0.03 0.01 0.96

 .

In the absence of any ad related activity, the states are extremely sticky and it is unlikely

that consumer transitions between the different states of the HMM. When the consumer
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clicks on a search ad, the probability (Qis) that he moves down the search funnel increases

considerably (qi12 : 0.05 → 0.09 and qi23 : 0.10 → 0.14). The effect of a display click

is similar but not as pronounced (Qic). We look at the effect of 10 impressions as one

impression has a very small impact on the transition probabilities. Interestingly, we observe

that when the consumer is exposed to too many generic display impressions his likelihood

to move to the dormant state (in the opposite direction of the funnel) increases (qi21 :

0.02 → 0.06). One possible explanation for this behavior is advertising avoidance which has

been documented by Goldfarb and Tucker (2011) and Johnson (2011) in the literature. A

consumer might completely abandon his search if he considers these ads to be too intrusive

(Goldfarb and Tucker, 2011). These transition matrices also demonstrate that consumers

move down the conversion funnel in a sequential manner, e.g. from one state to another

and we do not observe abrupt jumps from a dormant state to a state of consideration.

Estimates of the Response Parameters

Now we discuss the underlying parameters that affect the observations of the HMM. We

first discuss the factors that affect the number of pages viewed by a customer which are

presented in Table 21. We can see that consumers in the awareness and consideration

states differ considerably when it comes to their browsing behavior. Consumers in the

consideration state view three times as many pages on the car manufacturer’s website as

the consumers in the awareness state. Since the consumers in these two states behave so

differently, we are certain that the model is both empirically and behaviorally identified.

Advertising activities tend to increase the consumers’ propensity to view more web pages

but the increase is more pronounced when the consumers actively interact with the ads

(e.g. by clicking on them) than when they passively enter the consumers’ perception (e.g.

through display impressions).

Next we consider factors that influence the consumers’ conversion probability. The esti-

mated coefficients of these factors are presented in Table 22. We notice that the probability
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Table 21: Estimate of factors affecting the page views (λ)

τ2 τ3

η 0.781*** 0.534***
(0.037) (0.003)

η̃ 0.781 2.487
generic imp 0.004** 0.008***

(0.002) (0.000)
specific imp 0.004*** 0.005

(0.001) (0.009)
generic clk 0.089*** 0.123***

(0.008) (0.007)
specific clk 0.132** 0.207***

(0.060) (0.008)
search clk 0.169*** 0.288***

(0.004) (0.004)

to convert is higher in the consideration state than it is in the awareness state, ceteris

paribus. Apart from impressions on generic websites, all advertising activities lead to an

increase in the conversion probability in the state of awareness. However, conditional on

being in the consideration state, impressions of any kind do not have an incremental impact

on the likelihood to convert. Interestingly, the effect of a specific click in the awareness

state is more prominent than the effect of a generic or a search click. We also observe that

an increase in the visits to the car manufacturer’s website tends to increase the conversion

rate in both states. Surprisingly, this effect is stronger in the state of awareness than in

the consideration state. This decrease might be attributed to the diminishing returns from

further interactions with the consumer. Once the consumer is sufficiently primed to convert,

increased interactions only have a small marginal effect on him.

In Table 23, we present how different activities affect the conversion probability in the

awareness and the consideration states. As the consumers interact more with the advertiser

(through clicks and page views), there is a substantial increase in the conversion probability.

It should be kept in mind that the conversion probabilities shown here are atypical of online

campaigns which usually have very few conversions following a click.
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Table 22: Estimates of conversion parameters

γ2 γ3

α -4.155*** -3.087**
(0.433) (1.050)

α̃ -4.155 -3.072
generic imp 0.015 0.008

(0.010) (0.019)
specific imp 0.017** 0.020

(0.009) (0.019)
generic clk 0.289*** 0.318***

(0.084) (0.095)
specific clk 0.607*** 0.303***

(0.090) (0.083)
search clk 0.146*** 0.588***

(0.027) (0.100)
nw activity 0.091*** 0.067***

0.005 0.007

4.5.4. Ad Attribution

In this section we compare our proposed attribution scheme with the LTA and the logit

attribution method proposed by Dalessandro et al. (2012). We use the entire (training

+ validation) data and apply the attribution methodologies – LTA, logistic multi-touch

attribution (Logit-MTA) and HMM multi-touch attribution (HMM-MTA) to compute the

contribution of each ad towards the final conversions. This result is presented in Table 24.

The last column labeled “%∆ ” shows the % difference between the attribution computed

by the HMM-MTA and the LTA.

We observe from Table 24 that all three methods attribute a significant portion of the

conversions to display and search clicks, which is in agreement with the coefficients presented

in Table 22. Surprisingly, we see that the HMM-MTA attributes less credit to display

impressions on generic websites. In this data, generic impression occur very frequently and

as a consequence they have a high chance of being the last ad activity that took place before

a conversion event. Since they are likely to appear last, the LTA gives them undue credits

for the conversions even through they might not have had an impact on the consumer’s
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Table 23: Conversion probability as a result of various factors.

awareness consideration

No Activity 0.016 0.046
Generic Imp 0.016 0.046
Specific Imp 0.016 0.046
Generic Click 0.021 0.064
Specific Click 0.024 0.063
Search Click 0.018 0.083
Network Activity 0.017 0.050
Generic + Specific Clicks 0.032 0.086
Generic + Search Clicks 0.024 0.115
Specific + Search Clicks 0.028 0.113
Generic + Specific + Search Clicks 0.037 0.155
Generic + Specific + Search Clicks + Network Activity 0.040 0.166

Table 24: A comparison of attribution methodologies

Ad activity #Ads LTA Logit-MTA HMM-MTA %∆

Generic Impression 70,444 171 152.2 124.9 -27.5
Specific Impression 21,564 78 96.5 116.2 48.7
Generic Click 369 54 84.6 75.1 37.7
Specific Click 732 150 140.7 167.6 11.3
Search Click 1,260 328 310.9 294.3 -10.3

conversion probability. These ads that get credit just due to their sheer volume have been

referred to as “carpet bombers” by Dalessandro et al. (2012). We also see that the HMM-

MTA increases the number of conversions attributed to display impressions on specific

websites which illustrates that our attribution method rewards events that influenced the

consumer’s deliberation process early on in the conversion funnel. There is a marginal

increase in the conversions attributed to display clicks. The HMM-MTA assigns some the

conversions from the generic impression to these activities that had a positive influence on

the conversions. Even though there is a slight decrease in the conversions attributed to

search clicks, it continues to remain as the most important factor under all the attribution

methodologies. This finding is consistent with the results reported by Dalessandro et al.

(2012) who show that the Logit-MTA does not lead to significant change in the conversion

attributed to search ads. In order to compute the overall contribution of a specific channel,

e.g. generic display ads we need to account for the conversions attributed to generic display
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impressions and generic display clicks. In the present context, generic display ads are

responsible for 200 conversions and specific display ads are responsible for 283.8 conversions.

4.6. Discussion

In this section we present a few limitations of our current model and discuss how these

limitations might affect our findings. We also provide a few directions for addressing the

limitations of our model.

4.6.1. Interactions with Other Advertising Media

In our model, we ignore the effect that other factors like traditional advertising might have

on the consumer’s behavior and eventual conversion. Here, we try to explore how ignoring

these factors might bias our estimates. Let’s first consider the transition probabilities. The

transition probabilities arise from an underlying utility model that has the following form

Uitss′ = x′
itβss′ + xaitβass′ + ϵitss′ ∀ s′ ∈ S, s′ ̸= s

where xait captures the offline advertising activity at time t and ϵitss′ is an extreme value

distributed error term. If the advertising activity xait is ignored, the estimates of βss′ will

be biased. The exact nature of the bias depends on the relationship between xait and x′
it

and the sign of βass′ (Lee, 1982). If xait and x′
it are independent, the estimates of βss′

will be biased upwards if βass′ ≥ 0 and biased downward otherwise. On the other hand, if

xait = x′
itδ + ε, then the estimates of βss′ will be further biased by βass′δ.

Hence, if the offline advertising activity is independent of the online advertising activity,

the effect of this omission on the estimation procedure depends on how consumers react

to offline ads. If offline ads have a positive (negative) impact on transition from state s

to s′, then βss′ will be overestimated (underestimated). In addition, if there is a relation

between offline and online advertising activities which is likely as an advertiser’s activities

across various channels are coordinated, the bias depends on the exact relationship between
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these channels. As these activities are usually positively correlated, this would lead to an

overestimation of the transition parameters. The parameters of the conversion probabilities

are affected in a similar manner.

4.6.2. Incorporating Consumer Heterogeneity

The model proposed in Section 4 does not incorporate heterogenity in consumer behavior.

Consumers might be affected differently due to the advertising activities. This could occur

for several brand specific reasons such as prior knowledge or interaction with the brand,

exposure to ads from different media or due to inherent differences in underlying consumer

behavior. In order to incorporate consumer heterogeneity in our model, we modify the

different components of the HMM in the following manner:

Transition Probabilities

The transition probabilities between the states in presence of consumer heterogeneity can

be written as

qitss′ =
exp{µis + x′

itβiss′}
1 +

∑
s′∈Ts

exp{x′
itβiss′}

∀ s′ ̸= s,

qitss =
1

1 +
∑

s′∈Ts
exp{µis′ + x′

itβiss′}
,

where unlike Equation 4.1, the coefficient βiss′ is specific to a consumer. This indicates

that consumers can respond differently to the time-varying covariates in our model. x′
it, in

addition to the ad related activities mentioned earlier, can contain observed demographic

variables and exposure to other media that vary across consumers. The parameter µis cap-

tures the time-invariant unobserved consumer heterogeneity in our model. We assume that

the coefficients (µis βiss′)
′ are drawn from a multivariate normal distribution N(β̄s,Σβs).
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Conversion Probability

In this extension, we assume that consumers can have different propensities to convert,

ceteris paribus. Some consumer might be automobile aficionados who are not only more

likely to convert, but are also differently affected by the different advertising activities.

In order to incorporate this heterogeneity between consumers, we model the conversion

probability in the following manner,

mits =
exp{α̃s + αis + z′

itγis}
1 + exp{α̃s + αis + z′

itγis}
.

where α̃s is the intrinsic propensity to convert in state s, αis is a time-invariant consumer

affinity to convert and γis is the consumer specific response to the time varying covariates.

Parameter Estimation

The likelihood for the observed data presented in Equation (4.9) can be written in terms

of the heterogenous probabilities mentioned here. The estimation can be performed using

a MCMC estimation approach similar to the method adopted by Netzer et al. (2008).

This model that incorporates consumer heterogeneity allows us to perform attribution for

a specific consumer. Some consumers might have an higher probability to convert even

without the influence of online ads. The homogenous HMM would incorrectly ascribe credit

to the online ads when such consumers convert. However, the heterogenous HMM accounts

for a consumer’s proclivity to convert and performs the attribution based on the underlying

consumer heterogeneity.

4.7. Conclusion

In this paper, we present a model that analyzes how consumers behave when they are ex-

posed to advertising from multiple online channels. The consumer behavior is captured

using a dynamic HMM which is modeled based on conversion funnel. A consumer moves
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through the states of the HMM in a stochastic manner when they are exposed to advertis-

ing activity. Conditional on being in a certain state, he can engage in a conversion activity

with a certain probability which is a function of his current state and other time varying

covariates. This model is estimated on campaign data from a car manufacturer. We show

that although display ads do not have an immediate impact on conversion, they have a sig-

nificant impact on the consumer behavior early on in the deliberation process. This result

is contrary to the popularly held belief that display ads do not work. They work but not

in the manner advertisers expect them to work. This finding has significant implications

for the online advertising industry and it underscores the importance of better attribution

methodologies particularly for display networks and firms like Facebook that derive most of

their revenues from display advertising. We subsequently propose an attribution methodol-

ogy that attributes credit to the ads based on the marginal effect they have on a consumer’s

conversion probability. This method not only takes into account the prior history of a

consumer before being exposed to an ad, it also considers the long-term future impact the

ad might have on the consumer’s decision. We apply this methodology to the campaign

data and show that there are considerable differences in the attribution performed by the

commonly used LTA and our methodology.

To our knowledge, this is the first paper that analyzes the affect of online ads in a multi-

channel context. We hope that this paper can lead to a better understanding of consumer

behavior in a multi-channel context which might help researchers build better models in

the future. We also believe that this research can serve as a foundation for an integrative

approach to optimal budget allocation when an advertiser uses different channels for his

campaign.
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Appendix

Identification Assumption

For simplicity, let’s assume that there are only two states where the initial membership

probabilities are denoted by π = {π1, π2}. When a consumer sees an ad, he can follow one

of three possible paths - (1) He starts out in the first state and transitions to the second

state, (2) he starts out from the first state and stays in the same state after the ad event or

(3) starts out from the second state and stays in the same state. The likelihood of observing

an outcome y1 = (n1, c1)
′ after the first ad is shown is given by

L = π1q11p
c1
1 (1− p1)

1−c1P (N1 = n1|S1 = 1) + π1q12p
1−c1
2 (1− p2)

c2P (N1 = n1|S1 = 2)

+π2q22p
1−c1
2 (1− p2)

c2P (N1 = n1|S1 = 2)

As p1 = 0 in our model, the likelihood reduces to pc12 (1− p2)
c2P (N1 = n1|S1 = 2)(π1q12 +

π2q22). It can be shown that irrespective of what events follow afterward we can only

identify (π1q12 + π2q22) in our model. Hence we impose the restriction that π2 = 0.
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