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Abstract
The ability of astrocytes to secrete proteins subserves many of its known function, such as synapse formation
during development and extracellular matrix remodeling after cellular injury. Protein secretion may also play
an important, but less clear, role in the propagation of inflammatory responses and neurodegenerative disease
pathogenesis. While potential astrocyte-secreted proteins may number in the thousands, known astrocyte-
secreted proteins are less than 100. To address this fundamental deficiency, mass spectrometry-based
proteomics and bioinformatic tools were utilized for global discovery, comparison, and quantification of
astrocyte-secreted proteins. A primary mouse astrocyte cell culture model was used to generate a collection of
astrocyte-secreted proteins termed the astrocyte secretome. A multidimensional protein and peptide
separation approach paired with mass spectrometric analysis interrogated the astrocyte secretome under
control and cytokine-exposed conditions, identifying cytokine-induced secreted proteins, while extending the
depth of known astrocyte-secreted proteins to 169. Several of these proteins were likely secreted by non-
conventional mechanisms. These non-conventional mechanisms were explored further using stable isotope
labeling by amino acids in cell culture, revealing 12 putative non-conventionally secreted proteins. These
qualitative and quantitative mass spectrometry approaches are broadly applicable for the study of cellular
secretomes as well as for extension to in vivo secretomes.
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ABSTRACT 
 
 
 
 

MASS SPECTROMETRY-BASED PROTEOMICS REVEALS DISTINCT  

MECHANISMS OF ASTROCYTE PROTEIN SECRETION 

 

Todd Michael Greco 
 
 

Harry Ischiropoulos, Ph.D. 
 

The ability of astrocytes to secrete proteins subserves many of its known function, such 

as synapse formation during development and extracellular matrix remodeling after 

cellular injury. Protein secretion may also play an important, but less clear, role in the 

propagation of inflammatory responses and neurodegenerative disease pathogenesis. 

While potential astrocyte-secreted proteins may number in the thousands, known 

astrocyte-secreted proteins are less than 100. To address this fundamental deficiency, 

mass spectrometry-based proteomics and bioinformatic tools were utilized for global 

discovery, comparison, and quantification of astrocyte-secreted proteins. A primary 

mouse astrocyte cell culture model was used to generate a collection of astrocyte-

secreted proteins termed the astrocyte secretome. A multidimensional protein and 

peptide separation approach paired with mass spectrometric analysis interrogated the 

astrocyte secretome under control and cytokine-exposed conditions, identifying 

cytokine-induced secreted proteins, while extending the depth of known astrocyte-

secreted proteins to 169. Several of these proteins were likely secreted by non-
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conventional mechanisms. These non-conventional mechanisms were explored further 

using stable isotope labeling by amino acids in cell culture, revealing 12 putative non-

conventionally secreted proteins. These qualitative and quantitative mass spectrometry 

approaches are broadly applicable for the study of cellular secretomes as well as for 

extension to in vivo secretomes. 
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CHAPTER 1 
1.1 Introduction 

 One of the first roles of astrocytes to be appreciated was the maintenance of 

extracellular ion balance by inward and delayed rectifying K+ channels (Ballanyi, Grafe 

& ten Bruggencate 1987) operating in concert with the Na+/K+ ATPase to clear 

extracellular K+ (Sontheimer et al. 1994). Yet, in the last 15 years, the idea that astrocytes 

sole function was only as a support for neuronal function has been continually challenged 

(Volterra, Meldolesi 2005). An active role for astrocytes in many brain processes has 

been demonstrated, including nervous system development, neuronal survival, synaptic 

transmission, and neurogenesis (Christopherson et al. 2005, Haydon, Carmignoto 2006, 

Ihrie, Alvarez-Buylla 2008, Song, Stevens & Gage 2002). Importantly, not only uptake of 

biomolecules but their active release subserves these functions (Haydon, Carmignoto 

2006). 

   An emerging field of astrocyte biology research seeks to understand astrocyte 

protein secretion under specific physiological and pathophysiological states. Thus far, 

studies have elegantly demonstrated secreted thrombospondins as regulators of 

synaptogenesis and angiogenesis during development and after recovery from stroke, 

respectively (Christopherson et al. 2005, Liauw et al. 2008). Astrocyte protein secretion 

may also play a fundamental role in the immune response as well as the pathogenesis of 

neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) disease, where 

astrocyte protein secretion was linked to motor neuron cell death (Nagai et al. 2007, 

Cassina et al. 2005, Di Giorgio et al. 2007). Yet in many cases, the proteins that mediate 
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these effects have not been identified, and thus the potential molecular mechanisms of 

disease pathogenesis remain unclear. 

Identification of unknown proteins that are important regulators of astrocyte 

function can be aided by unbiased, complementary proteomic and computational 

approaches. Previous studies have examined both the astrocyte intracellular proteome 

(Yang et al. 2005) as well as the secretome (Lafon-Cazal et al. 2003) by mass-

spectrometry-based proteomics. However, current advances in both proteomic 

methodology and mass spectrometric instrumentation allow significantly increased depth 

of proteome analysis (Tang et al. 2005, Graumann et al. 2008). In addition, stable isotope 

labeling tools are now more widely available for conducting proteome-wide relative 

quantification of protein abundance by mass spectrometry. Applying these new 

technologies to the astrocyte secretome would permit the identification and quantification 

of previously unknown astrocyte-secreted proteins as well as provide robust methods to 

functionally evaluate cellular protein secretion under a variety of biological conditions. 

Complementary to these functional proteomic studies of astrocyte protein 

secretion, this project also took a structural proteomics approach to explore consensus 

protein sequence motifs that may regulate the specificity of nitric oxide-mediated post-

translational modification of cysteine residues, termed S-nitrosylation. S-nitrosylation has 

garnered significant attention as a mechanism by which nitric oxide confers its 

bioactivity, independent of soluble guanylate cyclase activation (Hess et al. 2005). An 

understanding of the protein targets as well as the selectivity of S-nitrosylation will aid in 

defining its role in cell signaling. To achieve these goals, development of improved mass 

spectrometry-based methods that facilitate sensitive and site-specific identification of the 
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modified cysteine residues are necessary. Additionally, by obtaining the identity of the 

protein targets along with the modified cysteine, current hypotheses regarding protein 

sequence motifs that govern S-nitrosylation specificity can be tested (Sun et al. 2001, 

Stamler et al. 1997).    

 

1.2 Cellular pathways of protein secretion 

 The seminal discovery by Günter Blobel and colleagues (Lingappa, Lingappa & 

Blobel 1980) that newly synthesized proteins contain amino acid sequences that direct 

them to specific “zip codes” within the cell has paved the way for cell biologists to 

explore the mechanisms of protein sorting and secretion. The presence of an N-terminal 

signal peptide directs a protein for translocation across the endoplasmic reticulum (ER) in 

eukaryotes (von Heijne 1985). Proteins lacking an ER/Golgi retention signal (Davis, Tai 

1980) are then secreted outside the cell, termed “classical” protein secretion. Although 

there is no strict consensus sequence for signal peptides, they often share common 

features (Figure 1.2-1). A comparison of signal peptides from human alpha-1-

antichymotrypsin and E. coli class B acid phosphatase precursor shows both contain 

positively charged amino acids in the immediate N-terminus, a stretch of hydrophobic 

residues, and a C-terminal region of polar uncharged residues (Figure 1.2-1). As 

described in greater detail below (Chapter 1, Section 6), computational algorithms have 

been developed to effectively predict the presence of signal peptides, with at least 2,000 

secreted proteins predicted for the mouse genome (Grimmond et al. 2003). 

  



4 
 

Human alpha-1-antichymotrypsin precursor signal peptide 
N-term-MERMLPLLALGLLAAGFCPAVLCHPNSPLDEEN… 
 
Escherichia coli class B acid phosphatase precursor signal peptide 
N-term-MRKITQAISAVCLLFALNSSAVALASSPSPLNPGT… 

Figure 1.2-1. Comparison of N-terminal signal peptides between human and E.coli proteins. 
Across different species, most signal peptides share three distinct common features (underlined): 
(1) an N-terminal region of positively charged residues (orange), (2) a hydrophobic region (red), 
and (3) a C-terminal region of polar, uncharged residues around the cleavage site (green). 
 
 

Using a genetic fusion of Escherschia coli beta-lactamase to cytoplasmic 

globulin, researchers were able to demonstrate that an N-terminal signal sequence is 

sufficient for translocation of a protein to the ER and ultimately allow its secretion 

(Lingappa et al. 1984). Yet, there are some secreted proteins, such as interleukins, 

galectins, and fibroblast growth factors that do not contain signal peptides (Nickel, 

Seedorf 2008). These non-classically or non-conventionally secreted proteins are not 

translocated to the ER but reach the outside of the cell by alternative mechanisms (Figure 

1.2-2). While direct protein translocation or protein-assisted mechanisms have been 

proposed for transport of these substrates across the plasma membrane, the molecular 

details are not well understood (Nickel, Rabouille 2009).   
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Figure 1.2-2. Potential secretion mechanisms for proteins that lack an N-terminal signal 
peptide. Diagram illustrates several potential mechanisms for secretion of non-conventional 
proteins (red balls), representing both passive and protein-assisted mechanisms (Nickel, Rabouille 
2009). Although non-conventional proteins are produced in the cytoplasm and do not proceed via 
the canonical endoplasmic reticulum-Golgi pathway (A, blue balls), membrane affinity of some 
proteins could facilitate their entry into vesicles carrying classically secreted proteins (B, red and 
blue balls), or into vesicles recycled into the endosomal compartment (C). Alternatively, protein 
translocation could occur either through passive transfer (D) or membrane-associated flipping 
(E). In addition, yeast and mammalian systems suggest substrate-specific transporters may exist, 
for example, Nce102p-mediated galectin-1 secretion in yeast (Cleves et al. 1996). 
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In contrast, the mechanisms and pathways of classical protein secretion have been 

fairly well established. While classically secreted products are localized to the ER and 

Golgi compartments, there can be variation in the time (minutes to hours) and location 

(apical/basolateral) of secretion within the same cell (Kelly 1985). As illustrated in figure 

1.2-3, the existence of two parallel protein sorting pathways is likely (Pfeffer, Rothman 

1987). First, a “default” bulk-flow pathway exists where proteins are synthesized and 

secreted at a rate proportional to protein synthesis. In this pathway, no sorting or 

concentration of proteins occurs, with proteins reaching the surface in minutes. This 

mechanism would also support the flow of integral membrane proteins to the cell surface.  

 

 

Figure 1.2-3. Protein sorting pathways. In the absence of an ER-Golgi retention sequence, 
many secreted proteins follow a “bulk-flow” pathway that results in their transport from the ER to 
the cell surface (thin arrows). Alternatively, proteins may possess motifs or signals, such as post-
translational modifications (Pfeffer 1988), that result in their diversion from the bulk flow 
pathway at the level of the trans-Golgi (thick arrows). Two primary targets for these proteins are 
lysosomes and storage vesicles. 
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On the contrary, many proteins are diverted from bulk flow, entering a vesicular 

pool that can be released by stimulus-coupled or regulated secretion mechanisms (Kelly 

1985). It is hypothesized that “molecular traps” facilitate the diversion of proteins from 

bulk flow. These molecular traps may be receptors that recognize specific cargo, thereby 

enriching proteins through sequestration from bulk flow (Pfeffer 1988, Gorr, Darling 

1995, Chung et al. 1989). The identity of many of these receptors is unknown, but the 

molecular details for sequestration of lysosomal enzymes have been fairly well 

documented (Pfeffer 1988). Mannose-6-phosphate receptors, localized to Golgi, 

selectively bind proteins that have been tagged with asparagine-linked high mannose 

sugars, providing a molecular recognition system for removing proteins from bulk flow. 

Although the molecular mechanisms for sorting of secretory vesicle contents are not well 

understood, current evidence suggests secondary or tertiary structure in the N-terminal 

region may facilitate sorting (Gorr, Darling 1995). Further studies are needed to more 

clearly define these mechanisms, which include understanding the depth and diversity of 

secreted proteins, particularly with respect to regulated versus constitutive and classical 

versus non-classical secretion.   

 

1.3 Astrocyte secretion of biomolecules 

 Astrocytes, a subtype of glia cell, were described by Ramon y Cajal in the early 

20th century using Golgi stain, which enabled him to visualize the characteristic 

astrocyte-specific intermediate filaments, known today as glial fibrillary acidic protein 

(GFAP). While for many years the roles of astrocytes were limited to the support of 

neuronal networks, research in the past two decades has proven astrocytes hold a more 
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prominent, active role in the nervous system (Halassa, Fellin & Haydon 2007). The 

development of novel optical imaging techniques and fluorescent chemical probes has 

established astrocytes as active participants in synaptic signaling through the release and 

uptake of chemical transmitters such as glutamate, ATP, and D-serine (Volterra, 

Meldolesi 2005). Astrocytes release these transmitters by SNARE- and calcium-

dependent mechanisms similar to neurons; but unlike neurons, exhibit graded potentials, 

where G-protein-coupled and Ins(1,4,5)P3-induced calcium release drives vesicle fusion 

(Montana et al. 2006). In addition, astrocytes are known to synthesize and release 

eicosanoids in control of cerebral microvasculature (Mulligan, MacVicar 2004) and in 

response to microglia-derived pro-inflammatory cytokine mediators (Stella et al. 1997). 

These pro-inflammatory mediators, such as interleukin-1b and tumor necrosis factor-

alpha, can also stimulate expression of inducible nitric oxide synthase (iNOS) and 

subsequent production of nitric oxide (NO) (Saha, Pahan 2006).  

More recent studies have documented the ability to synthesize, package, and 

release peptide transmitters. Both secretogranin II and neuropeptide Y (NPY) were 

identified in dense-core granules similar in size to granules present in neuronal cells 

(Calegari et al. 1999, Kreft et al. 2009, Ramamoorthy, Whim 2008). Release of these 

peptide transmitters can be induced by specific stimuli, such as phorbol ester, in a 

calcium-dependent manner, consistent with regulated secretion. Yet the role of astrocyte-

secreted peptides in modulating neuronal circuits has not been explored and is currently 

an active area of research. 
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Figure 1.3-1. Astrocyte-secreted biomolecules. Active roles for astrocytes in neurotransmission, 
modulation of synaptic circuits, nervous system development, neurogenesis, and immune 
response are mediated by the secretion of several classes of signaling molecules from small 
molecule transmitters to proteins. 
 
 

Astrocytes have been identified as key regulators of nervous system development 

with prominent roles in synapse formation and neuronal differentiation (Christopherson 

et al. 2005, Ihrie, Alvarez-Buylla 2008, Song, Stevens & Gage 2002, Seth, Koul 2008, 

Ullian, Christopherson & Barres 2004). The molecular mechanisms underlying these 

processes are an area of great interest as recent evidence suggests protein secretion may 

subserve these critical functions. In particular, in vitro and in vivo synapse formation was 

promoted by thrombospondins that were secreted by immature, but not mature astrocytes 

(Christopherson et al. 2005). Moreover, meteorin, a secreted protein localized to 

astrocyte endfeet, elicited the secretion of thrombospondin-1 and –2, which attenuated 

angiogenesis (Park et al. 2008). Astrocytes can also provide trophic support to neurons, 
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as evidenced by co-culture experiments demonstrating increased neuronal survival and 

neurite formation (Banker 1980). Although the identity and mechanisms of release of 

these factors are not completely characterized, the release of nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor 

(GDNF) in response to purinergic pathway activation has been observed (Seth, Koul 

2008, Banker 1980, Ciccarelli et al. 1999, Sariola, Saarma 2003, Zafra et al. 1992) .   

Under pathological conditions, astrocyte protein secretion may play an important 

role in etiology or disease progression. Aberrant astrocyte protein secretion has been 

linked to neurodegenerative disorders such as multiple sclerosis, amyotrophic lateral 

sclerosis (ALS), and Alzheimer’s disease (Seth, Koul 2008). The neuroinflammatory 

components of multiple sclerosis implicate glia in disease pathogenesis as they are central 

to the generation of innate immune response in the nervous system. Specifically, 

astrocytes from patients with multiple sclerosis, but not those with other neurological 

impairments, were found to have increased expression of syncytin-1, an endogenous 

retroviral protein, which can modulate inflammatory cascades through the downstream 

production of cytokines (Antony et al. 2004, Antony et al. 2004, Antony et al. 2007). 

Moreover, during disease progression, the blood brain barrier breaks down, allowing 

CNS infiltration by somatic immune cells, including macrophages/monocyctes, which are 

attracted in part by chemokine production (Minagar, Alexander 2003, Krumbholz et al. 

2006). Although microglia are a major source of secreted chemokines, evidence also 

indicates astrocyte-secreted chemokines may participate in this infiltration process 

(Krumbholz et al. 2006).   
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In addition, soluble factors released from astrocytes have a documented role in 

ALS. For instance, astrocytes that express familial ALS-causing mutant forms of 

superoxide dismutase 1 induced greater motor neuron death than the wild-type 

counterparts (Nagai et al. 2007). Independent studies have implicated fibroblast growth 

factor 1 (FGF1), a non-classically secreted protein, as a potential signaling molecule 

involved in the pathogenesis of ALS. Specifically, FGF1-induced activation of astrocytes 

was found to promote the expression and secretion of NGF, which increased motor 

neuron death (Cassina et al. 2005).  

Also, Alzheimer’s disease, a neurodegenerative condition characterized by 

amyloid-beta-containing plaques, has also been linked to astrocyte activation and altered 

signaling. Astrocytes highly express and secrete apolipoprotein E (ApoE), the most 

abundant lipoprotein in the central nervous system. A primary function of astrocytes is to 

process amyloid precursor protein (APP) to amyloid-beta peptides via an ApoE-

dependent mechanism (Koistinaho et al. 2004). Since genetic isoforms of ApoE have 

been linked to increased risk of Alzheimer’s disease (Huang et al. 2004), ApoE’s role in 

astrocyte-derived APP processing may be particularly relevant to the development of 

Alzheimer’s disease. Additionally, astrocyte-secreted proteins including 

butyrylcholinesterase (BchE) and S100β were found as components of neuritic plaques 

(Meda, Baron & Scarlato 2001). Collectively, these studies suggest astrocytes are an 

important component of neurodegenerative disease pathogenesis.  
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1.4 Analysis of complex biological protein mixtures by mass 

spectrometry 

Comprehensive, whole cell biochemical and molecular approaches including 

RNA profiling arrays and mass spectrometry-based proteomics have the capacity to 

greatly accelerate progress in defining cell-specific secretomes. Genomic and 

computational approaches generate invaluable resources; comprehensive catalogs of 

potentially expressed and secreted proteins for many cells types within the mammalian 

CNS (Cahoy et al. 2008). Yet there is a need for global, unbiased protein-based methods 

that can directly document gene product expression and determine whether these 

expressed proteins are secreted under specific cellular conditions. While genomic and 

bioinformatic studies have predicted the number of secreted proteins into the thousands 

(Grimmond et al. 2003, Pickart et al. 2006), experimentally identified secreted proteins 

are currently in the hundreds for single cell types (Lafon-Cazal et al. 2003, Pellitteri-

Hahn et al. 2006, Gronborg et al. 2006). Towards these goals, mass spectrometry serves 

as an important technology enabling the protein composition of complex biological 

samples to be determined with unmatched depth of analysis. 

The first modern mass spectrometer was developed by Arthur Dempster in 1918 

(Figure 1.4-1) (Dempester 1918). For efficient detection of analytes, most mass 

spectrometric analyses require the sample to exist as ionized molecules in the gas phase. 

In early spectrometers, ionization was accomplished directly by electron impact. 

However, this relatively high-energy ionization was ineffective for large 

macromolecules. A major advancement in ion sources was achieved by the development 
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of chemical ionization (Munson, M.S.B and Field, F.H. 1966), considered a “soft” 

ionization technique. Later, the principles of chemical ionization were applied in the 

development of laser desorption and electrospray ionization techniques (Fenn et al. 1989, 

Nakanishi et al. 1994).  The widespread use of these techniques, which were the basis for 

the 2002 Nobel Prize in Chemistry, has ushered in a new era of mass spectrometric 

analyses of larger biomolecules such as peptides and proteins.   

Figure 1.4-1. First modern mass 
spectrometer. Arthur Dempster’s mass 
spectrometer as originally published in Phys. 
Rev. 11(4), 316-25, 1918. This design is 
considered the first modern mass 
spectrometer as current mass spectrometers 
still utilize these design concepts. Analytes, 
e.g. salts in the initial experiments, were 
introduced into a glass tube (G) and ionized 
by electron bombardment from the 
electrometer (E). The analyte ions were 
accelerated through a slit (S1) by a potential 
difference, entering into the analyzing 
chamber (A) where a strong magnetic field 
was applied. Using the potential difference, 
magnetic field strength, and radius of the 
curvature of the analyzing chamber, the 
charge to mass of the particles was 
determined. 

 
 

These techniques permit peptide or protein ionization to occur without significant 

in-source fragmentation. As shown in figure 1.4-2, peptides are ionized by a chemical-

assisted process in both matrix-assisted laster desorption ionization (MALDI) and 

electrospray ionization (ESI) techniques. In MALDI (Figure 1.4-2A), analytes are mixed 

with matrix compounds, evaporated on a target plate, and irradiated, usually with a UV 

laser source. The laser primarily induces matrix ionization as it is designed to readily 

Dempster AJ 
(1918)
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absorb UV light and is more concentrated than the analyte. Some ionized matrix then 

reacts with the analyte, in this case the peptides, generating peptide ions in the gas phase.  

Similarly, in electrospray ionization (Figure 1.4-2B) the analyte is mixed with 

solvent, often at low pH for peptide analysis. The solution is then infused through a 

capillary at high voltage, imparting charge to the molecules as they enter the evaporation 

chamber under nitrogen drying gas. These conditions facilitate progressive formation of 

smaller liquid droplets. As droplet size is decreased, positively charged species strongly 

repel, which causes a further decrease in droplet size until only a single ion species is 

present per droplet. 

 
Figure 1.4-2. Soft ionization techniques 
for analysis of peptides and large 
macromolecules. (A) Matrix-assisted 
laser desorption ionization mass 
spectrometry (MALDI) induces ionization 
through irradiation of the target plate by 
laser pulses. Analytes (red balls) are 
applied to the target plate after mixing 
with various matrix compounds (black 
circles), such as α-cyano-4-
hydroxycinnamic acid (CHCA). Matrix 
compounds more readily absorb UV 
energy, and therefore become the primary 
targets of direct ionization. Ionized matrix 
then reacts with the analyte to form 
molecular ions. (B) Electrospray 
introduces the sample in liquid phase 
through a heated capillary under a high 
potential difference. This favors the 
formation of solvent droplets containing 
the analyte (red balls). While in the 
evaporation chamber under low vacuum 
and nitrogen drying gas the analyte-
containing droplets shrink, facilitated by 
the coulombic forces that repel positively 
charged analytes. This process continues 
until a single ion is present per droplet. 
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For MALDI, ionization conditions favor the addition of a single proton (H+), 

usually to the N-terminal amino group, forming the molecular ion [M+H]+. In contrast, 

electrospray ionization predominantly generates multiply protonated molecular ions, 

resulting in charge states greater than one (M+H)n+. Higher charge states are observed for 

peptides containing amino acids with side chains that have high pKa values, such as 

lysine, arginine, and histidine, as the side-chain nitrogen is largely protonated under 

acidic pH (Fig 1.4-3). 

 

Figure 1.4-3. Chemical structures of basic amino acids. Amino acids lysine, arginine, and 
histidine exist as protonated species in aqueous solution at acidic pH due to the relatively high 
pKa of their side chain nitrogens, denoted above as pKR. This chemical property combined with 
their high occurrence in proteins makes the selection of trypsin an ideal protease for peptide mass 
spectrometric analysis.   
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Importantly, mass spectrometers measure the mass-to-charge ratio (m/z) of the 

peptide ion and not directly their mass. Therefore, in electrospray ionization, peptide ions 

that carry multiple charges (2+, 3+, 4+, etc) may exist in several distinct ionic species up 

to the maximum charge state. While multiple charge states result in increased spectral 

complexity, it does allow peptides with higher mass, which normally would be outside 

the suitable mass range for detection, to be observed as higher order charge states reduce 

the peptide’s observed mass-to-charge. Commonly, these positively charged peptides are 

generated from complex protein mixtures by enzymatic digestion with trypsin, as it 

cleaves at the C-terminus of lysine and arginine, often referred to as tryptic peptides 

(Olsen, Ong & Mann 2004).    

In summary, these “soft” ionization techniques are suitable for protein and peptide 

ionization as they provide efficient ionization with limited in-source fragmentation of the 

peptide backbone. Performed under acidic conditions, ionization of tryptic peptides can 

be extremely efficient due to positively-charged amino groups at the N- and C-terminus. 

As discussed in more detail below, electrospray ionization is more amendable than 

MALDI for direct coupling to multidimensional chromatographic separations, in 

particular liquid-based chromatrographies.       

 

1.4.1 Protein and peptide separation by multidimensional 

chromatography 

 The importance of effective protein and peptide separation of complex biological 

mixtures with respect to depth of analysis has been demonstrated on a theoretical 
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(Eriksson, Fenyo 2007) as well as experimental basis (Tang et al. 2005, Graumann et al. 

2008, Washburn, Wolters & Yates 2001). A core issue that protein and peptide separation 

techniques address is the issue of undersampling, where complexity (number of distinct 

proteins) and dynamic range (protein abundance) of biological samples limits the ability 

of the mass spectrometer to detect all peptides/proteins contained within the sample. 

Ideally, a sample should be fractionated and separated sufficiently so that the reduction in 

complexity eliminates undersampling. Practically, undersampling can occur despite 

multi-dimensional separation of complex cellular proteomes, as demonstrated by the need 

to analyze a single sample as many as ten times to identify greater than 95% of the 

proteins within the detectable range (Liu, Sadygov & Yates 2004). Moreover, 

experiments that involve whole cell proteomes and compare multiple biological 

conditions have become impractical for extensive fractionation and multiple technical 

replicates. Therefore, the experiment should always be designed to reduce complexity 

sufficiently such that the achieved sensitivity allows the biological question(s) to be 

answered.  

Fundamentally, methods should (1) use orthogonal chromatographic separations 

that maximize separation efficiency and (2) when possible, perform depletion/separation 

of known high abundance species to reduce dynamic range. An exemplary example of 

this strategy was performed by Tang and co-workers (2005), whose multidimensional 

strategy was employed for mass spectrometric analysis of the plasma proteome. This 

work clearly demonstrated the utility of performing protein depletion and orthogonal 

separations of both proteins and peptides. First, the top six most abundant plasma 

proteins, which comprise at least 80% of the total plasma proteins were depleted by 
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immunoaffinity chromatography (Tang et al. 2005). Next, proteins were separated by 

apparent molecular weight using SDS-PAGE, with the resolving distance optimized for 

the proteome of interest. Then, the entire gel lane was cut into equal 1-2 mm slices. Each 

slice was individually processed by in-gel trypsin digestion to yield tryptic peptides.  

Each fraction of tryptic peptides was then separated by pI using in-solution isoelectric 

focusing. Finally, the peptides contained within each pI range were separated by their 

hydrophobicity using reverse phase C18 liquid chromatography, which was directly 

coupled to the electrospray mass spectrometer (ESI-LC-MS/MS). This four-dimensional 

strategy resulted in the detection of plasma and serum proteins that differ in abundance 

by nine orders of magnitude (10 mg/mL to 10 pg/mL) (Tang et al. 2005). 

Although this study was performed with plasma and serum proteomes, these 

concepts are amenable to cellular secretomes as well. Conditioned media is one of the 

primary biological samples used for analysis of cellular secretomes, which traditionally 

contains extensive contamination by highly abundant serum proteins. One study 

documented that culturing smooth muscle cells in reduced serum media enabled 

significant improvement in depth of analysis of the secreted proteins (Pellitteri-Hahn et 

al. 2006). Since astrocytes can be cultured in serum-free media for up to 14 days without 

adverse effects on cell survival, a significant reduction in serum protein contamination 

prior to multidimensional chromatography and mass spectrometric analysis can be 

achieved.  
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1.4.2 Acquisition of mass spectra and automated sequence-to-spectrum 

database searching 

Most modern mass spectrometers are capable of performing at least two 

successive “rounds” of mass analysis, referred to as tandem mass spectrometry (MS/MS 

or MS2) (Figure 1.4.2-1). The first round determines the mass-to-charge (m/z) of the 

intact peptide ions, also known as the precursor ions. In liquid chromatography-mass 

spectrometry, a single mass spectrum represents the parents ions detected at a specific 

time during chromatographic separation. The second round of analysis involves selection 

and fragmentation of specific precursor ions within the mass spectrum, generating 

characteristic daughter or product ions. The collection of detected fragment ions derived 

from parent ion dissociation is stored within a single MS/MS spectrum. Acquisition of 

MS/MS spectra is often performed in a data-dependent fashion, which selects the most 

abundant parent ions contained within the MS spectrum for fragmentation. For instance, 

from a single MS spectrum, the top five most intense peptide ions can be selected for 

MS/MS analysis (Figure 1.4.2-1). This cycle is repeated over the entire chromatographic 

peptide separation. While the total MS/MS spectra collected during a single run can 

depend on LC gradient, sample abundance, and complexity, a typical gradient of 90 

minutes on a linear ion trap mass spectrometer can generate approximately 12,000 

MS/MS spectra. 
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Figure 1.4.2-1. Typical data acquisition workflow for liquid chromatography tandem mass 
spectrometry. Complex peptide mixtures are separated by reverse-phase liquid chromatography 
and introduced inline to the mass spectrometer, above pictured with an electrospray ionization 
source. Throughout the reverse-phase separation of peptides, the mass spectrometer acquires a 
single mass (MS) spectrum, determines the top 5 most abundant peptide ions, and individually 
fragments by collision-induced dissocation (CID; figure 1.4.2-2) each peptide ion to generate 5 
tandem (MS/MS) spectra. 
 
 

The sequence information contained with an MS/MS spectrum depends on the 

type of peptide fragmentation employed. One fragmentation method, collision-induced 

dissociation (CID), induces cleavage of the parent ion along the C-N amide bonds of the 

peptide backbone (Figure 1.4.2-2). This cleavage generates complementary N-terminal 

and C-terminal daughter ions, referred to as b-ions and y-ions, respectively. With 

significant backbone cleavage, a nearly complete peptide sequence can be determined by 

manual inspection of the MS/MS spectrum (Shevchenko et al. 1997). However, given 

that thousands of MS/MS spectra can be generated from a single sample, manual 

assignment of the sequence to each spectrum (sequence-to-spectrum assignments) is not 

feasible. 
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Figure 1.4.2-2. Collision-induced dissociation of peptide amide bonds. Shown are two amide 
bond cleavage sites of the tripeptide glutathione. These are the predominant cleavages produced 
by collision-induced dissociation (CID) fragmentation. CID is performed by selecting an intact 
peptide (precursor) ion, accumulating it in the mass analyzer, and then colliding it with an inert 
gas, often helium. These collisions impart kinetic energy to the peptide ion, and in CID, this 
kinetic energy is translated to internal energy that primarily breaks peptide amide (N-C) bonds. 
By convention, the fragment ions resulting from this cleavage are referred to as y- and b- ions, 
corresponding to the N- and C-terminal fragments, respectively. Usually for each collision only a 
single cleavage is generated, producing two complementary fragment ions, e.g. y1 and b2. 
 
    

As a result, several software algorithms have been designed to generate sequence-

to-spectrum assignments, including SEQUEST (Ducret et al. 1998), MASCOT (Perkins 

et al. 1999), and X!Tandem (Craig, Beavis 2004). Although each algorithm has been 

implemented differently, a shared concept of all the algorithms is to compare each 

experimental MS/MS spectrum to all the theoretical MS/MS spectra within a specified 

mass tolerance, generated from in silico tryptic digests of protein sequence databases. For 

each comparison the algorithm assigns a score and then returns the sequence-to-spectrum 

assignment that received the top score. This is performed for all experimental MS/MS 

spectra collected. From data acquisition to sequence assignment, this analysis workflow 

is often referred to as “shotgun” peptide sequencing (Wolters, Washburn & Yates 2001).  
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1.4.3 Probabilistic validation of sequence-to-spectrum assignments 

 Sequence-to-spectrum assignments for most database search algorithms return the 

top scoring hit, but this is not necessarily a measure of quality. It is necessary to apply 

score cutoff thresholds to retain the high quality (correct) assignments and eliminate poor 

quality (incorrect) assignments. The scoring parameters of the SEQUEST algorithm 

(Ducret et al. 1998) will be used for discussion as it was the primary algorithm used in in 

this work. SEQUEST’s primary score output is a cross correlation score (Xc). While the 

Xc score can be a useful measurement of assignment quality, it is dependent upon several 

factors that may not be constant between experimental samples, such as peptide length, 

protein sequence database size, and number of input spectra (Keller et al. 2002a). 

Therefore, selecting an absolute Xc score threshold that defines correct-incorrect spectra 

is not optimal. 

 Much effort has been placed on developing new algorithms that do not rely on 

single scoring thresholds (Searle, Turner & Nesvizhskii 2008). For example, two widely 

utilized algorithms are PeptideProphet and ProteinProphet (Keller et al. 2002a, 

Nesvizhskii et al. 2003). Conceptually, these algorithms take multiple scoring parameters 

as input, and then based on these parameters generate two score distributions, reflecting 

incorrect and correct peptide assignments (Figure 1.4.3-1A).  Using this two population 

model, a probabilistic value of being correct is calculated for each sequence-to-spectrum 

assignment depending on its normalized score within the distributions. Then, peptide 

assignment probabilities can be used as scoring thresholds, which allows the global error 

rate (at a defined scoring threshold) to be estimated. Peptide assignment probability 

thresholds are usually selected, which control global error rate to a desired value, for 
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instance, less than 1%. In addition, the ProteinProphet algorithm (Keller et al. 2002a) was 

developed to use individual peptide probabilities generated from PeptideProphet 

(Nesvizhskii et al. 2003) to calculate protein probabilities, allowing error rate control at 

the protein level. 

 

Figure 1.4.3-1. Probabilistic 
modeling of SEQUEST sequence-to-
spectrum assignments. Sequence-to-
spectrum scoring parameters are used 
to calculate a discriminant score. 
PeptideProphet uses an expectation 
maximization algorithm to model the 
distribution of discriminant scores as a 
function of the number of spectra (A) 
PeptideProphet modeling of 120,000 
spectra (14 LC-MS runs) generated 
from in-gel digest of 60 ug of protein. 
This dataset contains many high 
quality MS/MS spectra that received 
excellent discriminant scores. This is 
reflected by the efficient separation of 
incorrect and correct distributions. (B) 
PeptideProphet modeling of 16,000 
spectra from a single LC-MS/MS run 
examining low abundance post-
translationally modified peptides. Most 
MS/MS spectra receive lower 
discriminant scores, causing poor 
separation (arrow) of correct and 
incorrect peptides. 

 
 
 An important caveat of these algorithms is their predictive ability depends on how 

well the statistical modeling fits the experimental dataset. For example, poorer quality 

MS/MS data or small datasets can invalidate the assumptions made by these algorithms 

during the modeling procedure. An example is shown in figure 1.4.3-1B that results in 

poor distribution modeling of incorrect and correct assignments. While the poor modeling 
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shown in figure 1.4.3-1B is apparent, subtle deviations that affect the goodness-of-fit may 

not be immediately recognized without careful manual inspection of MS/MS spectra and 

evaluation of peptide assignment probabilities (Greco TM and Seeholzer SH, personal 

observations). These deviations often result in the underestimation of peptide assignment 

error rates. Therefore, a combination of error rate control strategies can be used as a more 

reliable measure of the true error rate. 

Another useful method for error rate control is to generate a sequence database 

that contains proteins not occurring in nature but that retains the same amino acid 

frequency, protein length, and overall size as the original database. A facile approach to 

generate this modified database is to reverse each of the protein sequences in the database 

of interest (Peng et al. 2003). This reverse sequence database is then appended to the 

forward sequence database, and sequence-to-spectrum assignments are generated as 

described in chapter 1, section 4.2. Since experimental spectra have equal opportunity to 

match forward (correct) and reverse (incorrect) sequences, sequence-to-spectrum 

assignments derived from reverse peptide sequences are considered false-positive 

assignments. These false-positive assignments can be used to rationally set scoring 

thresholds such that global error rate is controlled at a desired level (Peng et al. 2003).  

Alternatively, DTASelect (Cociorva, L Tabb & Yates 2007), an extensively 

developed open-source software package, uses reverse (incorrect) database assignments 

as the primary determinant for the statistical modeling. This improves the ability of the 

algorithm to distinguish between incorrect and correct peptides, thereby providing more 

robust prediction of the correct peptide assignment. A similar concept has also been 

recently integrated into the PeptideProphet algorithm (Choi, Nesvizhskii 2008)).  The 
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statistical methods and computational algorithms described above will be utilized to 

validate SEQUEST sequence-to-spectrum assignments, providing a controlled error rate 

(< 1%) at both the peptide and protein level. 

 

1.5 Quantitative mass spectrometry-based proteomics 

Currently, many methodologies for proteome-wide quantification of protein 

abundance have been developed, providing both relative and absolute quantification. The 

application of quantitative mass spectrometry to proteomic workflows can be divided into 

two broad categories: (1) label-free and (2) stable isotope labeling (Figure 1.5-1). Stable 

isotope labeling techniques use stable isotope-containing peptides/proteins as standards. 

These isotope standards do not significantly differ in their inherent physicochemical 

properties compared to the endogenously present peptides/proteins, but generate 

predictable shifts in mass-to-charge, which can be easily differentiated in mass 

spectrometric analyses. Therefore, the direct addition of a known amount of isotope-

labeled reference to the experimental sample, referred to as stable isotope dilution, 

provides a means to correct for systematic and random errors that are introduced during 

subsequent processing steps, including affinity enrichments, analytical separations, and 

mass spectrometric analysis.  

Depending on the experimental model and design, an appropriate stable isotope 

labeling method can be selected that incorporates the isotope label into the proteome at 

three different steps during sample preparation (Figure 1.5-1A, B, C). Figure 1.5-1 

illustrates three parallel experimental workflows where isotope labels are incorporated for 

analysis of a cellular proteome, either during (A) the cell culture phase, (B) at the level of 
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protein extracts, or (C) at the peptide level. Techniques which accomplish (A) include 

stable isotope labeling by amino acids in cell culture (SILAC) (Ong et al. 2002) and 

stable atom metabolic enrichment strategies (e.g. 15N) (Washburn et al. 2002, Oda et al. 

1999),  (B) isotope-coded protein labeling (ICPL) (Schmidt, Kellermann & Lottspeich 

2005), and (C) isotope-coded affinity tagging (ICAT) (Gygi et al. 1999), O18 water (Yao 

et al. 2001), and amine-reactive stable isotope peptide labeling (iTRAQ). SILAC labeling 

is the most attractive as it incorporates the isotope label at the earliest stage of the 

workflow and therefore facilitates accurate quantification with relatively high 

reproducibility; although it may not be feasible for all experimental model systems. 

Overall, stable isotope labeling strategies enable higher precision for low abundance 

proteins, allowing even small changes in relative protein abundance to be detected. 

As the name implies, label-free analysis is performed without the introduction of 

isotope label during sample preparation (Figure 1.5-1D, E), and therefore relies on mass 

spectrometric spectral data as an index of protein abundance. Although easier to 

implement and less costly than stable isotope labeling experiments, label-free analysis 

has reduced precision and often smaller dynamic range (Old et al. 2005). For this reason, 

most label-free methods are considered semi-quantitative. There are two main approaches 

for conducting label-free semi-quantitative analysis. The first method (Figure 1.5-1E) 

relies on the detection of spectral features in the precursor (MS1) spectra. These spectral 

features are extracted by comparing mass (MS1) spectra collected as a function of time 

across different biological samples. If inter-sample variability is high due to extensive 

sample preparation, then many technical (5 – 10) replicates per biological condition are 
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often required. This method of feature detection is also computationally intensive, 

requiring isotopic envelope modeling and retention time correction.  

An alternative label-free approach is spectral counting (Figure 1.5-1D). This 

method uses the total number of MS/MS spectra assigned to a particular protein as the 

basis for calculating relative protein abundance. Early work using spectral counting 

analysis demonstrated that in complex protein mixtures spectral counts correlated linearly 

with protein abundance for two orders of magnitude (Liu, Sadygov & Yates 2004). 

Further work has extended this range using corrective factors, such as total number of 

MS/MS spectra collected, protein molecular weight, and propensity to generate ionizable 

peptides (Old et al. 2005, Zybailov, Florens & Washburn 2007, Lu et al. 2007). Label-

free analyses benefit from direct incorporation into most standard proteomic workflows. 
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Figure 1.5-1. General workflows of quantitative mass spectrometric strategies. Strategies for 
performing quantitative analysis using mass spectrometry can be divided into isotope-labeling 
and label-free categories. The diagram illustrates these strategies applied to a cell culture model 
where comparison of relative protein expression between control and experimental groups is 
desired. For labeling approaches, the experimental sample has been illustrated to contain the 
stable isotope, but in practice the reverse can be performed as well. For label-free analyses, the 
two samples are analyzed in parallel with no mixing. (A) Stable isotope labeling by amino acids 
in cell culture (SILAC) incorporates isotope-coded amino acids, such as 13C6-lysine, for several 
cell divisions before the experiment is performed. (B) Post-harvest labeling of protein extracts. 
Often performed using amino group-reactive compounds that have been synthesized with either 
13C or 2H, such as d4-N-nicotinoyloxy-succinimide. The corresponding control protein extract 
would be labeled with light compound. (C) Peptide labeling is performed either during protein 
digestion or post-digestion. Enzymatic digestion of proteins in O18 water incorporates a single 
heavy oxygen atom into the carboxyl group of the C-terminal amino acid. Post-digestion labeling 
of peptides can be performed, often using commercially available reagents:   isotope-coded 
affinity tags (ICAT) (Gygi et al. 1999) or amine-reactive stable isotope peptide labeling (iTRAQ), 
that contain 12C or 13C reagents for light and heavy labeling, respectively. (D) Spectral counting 
analysis can be performed with most traditional LC-MS/MS workflows. Total spectra are 
calculated for proteins within each sample independently. After normalization, spectral counts for 
the same protein can be compared between the samples to determine relative abundance. (E) Raw 
spectral (MS1) data is compared over multiple (3 or more) LC-MS/MS technical replicates to 
identify common spectral features. Each feature is associated with either a peak height or area. 
Common spectral features between biological groups are then compared in terms of relative peak 
height or area. Significant features are then analyzed by database search algorithms to determine 
peptide and protein identity. 
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1.5.1 Spectral counting analysis for the quantification of relative protein 

abundance. 

Since the initial development of spectral counting for data-dependent MS 

acquisition methods (Liu, Sadygov & Yates 2004), several studies have been performed 

to further define the technique’s limit of detection, as well as improve linear range and 

accuracy in calculating relative protein abundance. In a study performed by Old et al (Old 

et al. 2005), the highest reproducibility was attained when the protein was identified with 

at least 4 spectra, as assessed by technical replicates within 95% confidence limits. They 

also noted the tendency for spectral counts to exhibit non-linearity above 30; however, 

this was likely due to specific instrument data acquisition parameters and limited 

chromatographic separations that reduced sampling depth.  

An important advancement in spectral counting analysis was the creation of a 

spectral abundance factor (SAF), which corrected a protein’s spectral counts by its length 

(Zybailov, Florens & Washburn 2007, Rappsilber et al. 2002). This reflects the concept 

that larger proteins have the potential to generate more spectra. Additionally, each SAF is 

normalized to the sum of all SAFs calculated from a single experiment. This normalized 

spectral abundance factor (NSAF) accounts for differences in depth of analysis between 

different experiments. NASF values can also be averaged allowing statistical significance 

to be assessed. Using this approach, Zybailov and colleague (Zybailov, Florens & 

Washburn 2007)) demonstrated that changes in relative protein abundance as small as 

1.4-fold and across approximately 3 orders of magnitude could be detected for membrane 

proteins of yeast grown in minimal media versus rich media.  
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Undoubtedly, correction of spectral counts by protein length resulted in improved 

power of analysis, yet work from the Aebersold lab and others (Craig, Cortens & Beavis 

2005, Mallick et al. 2007, Kuster et al. 2005) suggested that a protein’s length may not 

always be a determinant for its ability to “produce” spectral counts.  Specifically, 

proteotypic peptides, defined as peptides most readily detected during a mass 

spectrometric analysis, were observed, suggesting that the inherent physicochemical 

properties of peptides may be an even better measure to correct raw spectral counts. 

Comparing experimentally-derived proteotypic peptides between different experimental 

designs, biological samples, and proteins, an algorithm was developed that used 36 

physicochemical peptide properties to predict the proteotypic nature of a peptide; its 

likelihood to be observed in an experiment (Mallick et al. 2007).  

Using this strategy for proteotypic peptide prediction, a novel correction for 

spectral counts was developed which incorporated an individual protein’s propensity to 

“generate” observable peptides (Lu et al. 2007). This factor, termed an observability 

index (Oi) value, was determined empirically and extended the dynamic range of spectral 

counting to four orders of magnitude, supported by comparison of protein abundance 

measured workflow to protein concentration determined by Western and flow cytometry 

analysis of GFP-tagged fusion proteins in yeast. Due to improvements in reproducibility 

of the method as well as depth of analysis afforded by multidimensional chromatography, 

this algorithm, called APEX, provided a measure of absolute protein abundance (Lu et al. 

2007).  

In summary, semi-quantitative mass spectrometric analysis by spectral counting 

provides a rapid, cost-effective strategy to measure protein abundances from complex 
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biological samples. Strategies that correct raw spectral counts by sampling depth achieve 

the best accuracy and linear range (Zybailov, Florens & Washburn 2007, Lu et al. 2007). 

The benefits of multidimensional chromatography for increased sample depth have been 

well-established (Tang et al. 2005, Washburn, Wolters & Yates 2001), but include the 

drawbacks of increased time and cost of analysis, and potentially additional sample 

losses. Currently, a greater proportion of proteomic studies are performing single, 

comprehensive proteome analysis, which has created new challenges for the 

determination of statistical significance between multiple biological samples when only a 

single replicate is available (Choi, Fermin & Nesvizhskii 2008, Carvalho et al. 2008).  

 

1.5.2 Stable isotope labeling by amino acids in cell culture 

 Currently, stable isotope labeling by amino acids in cell culture (SILAC) can be 

implemented without issue in many different cell lines (refs). Initial development of this 

approach demonstrated that culturing NIH 3T3 fibroblasts for five population doublings 

in media depleted of natural abundance leucine and replaced with deuterium-labeled 

leucine (d3-leucine) resulted in at least 97% incorporation of stable isotope label for most 

proteins (Ong et al. 2002). These conditions had no measureable effect on cell viability or 

proliferation rate. The authors selected d3-leucine as it is the most frequently occurring 

amino acid; about half of the tryptic peptides detected were leucine-containing. Also, it 

enables the distinction between leucine and isoleucine and at the time was the most 

commercially accessible isotope-labeled amino acid.   

Subsequent work by the Mann group and others (Ong, Kratchmarova & Mann 

2003) has shown the benefit of using different combinations of amino acids with alternate 
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isotopic labels. Notably, carbon-13 and nitrogen-15-labeled amino acids, available in 

leucine, lysine, and arginine, are currently the preferred SILAC reagents for several 

reasons. First, the C18 reverse-phase separation of protium (1H) versus deuterium (2H)-

labeled peptides is not identical, resulting in shorter retention times for deuterium-labeled 

peptides (Ong et al. 2002). Peptides with carbon or nitrogen isotopes do not show these 

isotope effects. Second, enrichment of 13-carbon-lysine and arginine generates a mass 

difference between the unlabeled and labeled amino acid of 6 mass units (daltons), which 

often prevents the occurrence of overlapping isotope envelopes between the unlabeled 

and labeled peptides. The lack of spectral overlap simplifies the calculation of abundance 

ratios between SILAC peptide pairs (Ong, Kratchmarova & Mann 2003). 

The decreasing cost of these reagents has allowed multiple isotopic amino acids to 

be utilized in a single experiment. In particular, the simultaneous use of isotopic arginine 

and lysine offers the potential to quantify all fully tryptic peptides. However, several 

studies have confirmed that some cells such as HeLa, HEK293, and embryonic stem cells 

have significant metabolic conversion of arginine to proline under traditional culture 

conditions where arginine is present in excess (Ong, Kratchmarova & Mann 2003). It is 

possible to reduce this conversion through arginine starvation (Ong, Mann 2006), proline 

supplementation (Bendall et al. 2008), or by computational approaches that account for 

isotopic proline-containing peptides (Park et al. 2008b, Park et al. 2009). Alternatively, 

utilizing isotope-labeled leucine in place of arginine obviates these workarounds while 

importantly maintaining a high occurrence of isotope-containing peptides available for 

quantification (Yocum et al. 2006). 
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Over 10,000 unique peptides are often identified in large-scale proteomic 

analyses. Therefore, a vital element of the SILAC workflow is automated extraction and 

quantification of SILAC peptide ratios. In addition, evaluation of the accuracy of SILAC 

peptide ratios and selection of appropriate filters to retain high quality (high signal-to-

noise) SILAC pairs is critical. Recently, two open source software tools, Census (Park et 

al. 2008a) and MaxQuant (Cox, Mann 2008), have been written to perform these 

functions using sequence-to-spectrum assignments generated by the SEQUEST and 

Mascot database search algorithms, respectively. As SEQUEST was used to generate all 

sequence-to-spectrum assignments, the functionality of Census is discussed. 

Census is a robust quantitative software tool that supports many labeling 

strategies (isotope and label-free) implemented at the level of single-stage (MS1) or 

tandem (MS2) mass spectrometry, using either low- or high-resolution instrumentation 

(Park et al. 2008a). To provide robust quantification accuracy over a broad dynamic 

range, Census uses multiple algorithms, including weighted peptide measurements, 

dynamic peak finding and post-analysis statistical filters. For isotope labeling 

experiments, raw MS1 spectra and unique sequence-to-spectrum assignments are used as 

input, as well as the specific isotope-labeled amino acids used in the experiment. From 

these data, Census computes the extracted ion chromatograms (XIC) for light (natural 

abundance) and heavy (labeled) peptide pairs, also called isopeptides. For high-resolution 

instruments, these XICs are constructed from each calculated isotope within the 

distribution using a narrow mass tolerance, usually 30ppm (Figure 1.5.2-1). This method 

increases signal-to-noise as a result of eliminating signal from nearly isobaric, co-eluting 

peptides.   
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Yet, for complex samples, signal from interfering species cannot be completely 

eliminated. For these cases, Census relies on a correlation factor (R2) calculated for each 

pair of XICs. If XICs are accurate, that is each isopeptide chromatogram is composed of 

one ion, then the correlation between the two extracted ion chromatograms is usually 

high (Figure 1.5.2-1A). In some cases, interfering signals differ by less than the specified 

mass tolerance. This occurrence is especially problematic for lower signal to noise XICs. 

However, since most of these signals are not entirely coincident in time with the 

identified peptide, the correlation coefficient between the XIC pair would be low (Figure 

1.5.2-1B). This correlation factor can be used to filter most incorrect SILAC peptide 

ratios. However, post-translational modifications occurring under one biological 

condition, but not the other would generate a highly correlated, but incorrect, XIC pair. In 

this case, the calculated XIC ratio would not be representative of the actual relative 

protein abundance. Therefore, Census applies statistical outlier testing to all peptide 

ratios belonging to the same protein group. Also, Census can detect singleton peptides, 

occurring when one isopeptide signal is at the detection limit, extending the dynamic 

range of peptide ratio calculation.  

After these post-analysis filters, Census computes the intensity-weighted average 

of peptide ratios belonging the same protein. Census can perform extracted ion 

chromatograms and ratio calculation for thousands of proteins in several hours on a 

modern, dual-core Pentium 4 processor. 
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Figure 1.5.2-1. Automatic evaluation of extracted ion chromatograms by Census. Extracted 
ion chromatograms (XICs) are constructed from raw spectral data using the calculated m/z 
isotope values for each light and heavy isopeptide (SILAC pair) within a mass window of 30ppm. 
XICs shown were generated from two different peptides identified from beta-hexoaminidase B. 
In both cases, the MS/MS spectrum identified the heavy isopeptide, with the software performing 
the calculation of the corresponding light isopeptide mass. The green bar indicates where the 
highest scoring MS/MS spectrum was acquired (A) XICs for the SILAC pair corresponding to the 
peptide sequence YYNYVFGFYK. Census calculation of the correlation coefficient between the 
light (blue) and heavy (red) XIC was extremely good (R2 = 0.99). The corresponding light/heavy 
(L/H) ratio calculated from the best-fit curve was 2.0. (B) XICs for the SILAC pair corresponding 
to the peptide sequence SEHYSYELK. For this pair of XICs, the correlation coefficient was poor 
(R2 = 0.11). Although the main peaks are likely composed only of the identified peptide (green 
bar), the relatively low signal-to-noise contributes to an overall poor correlation and therefore a 
less accurate L/H ratio determination. Given the correlation coefficient of 0.11, this ratio would 
be removed and would not contribute to the overall protein abundance ratio.  
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1.6 Computational tools for the analysis of cellular secretomes 

In large-scale mass spectrometry-based proteomics experiments, the initial 

characterization of a proteome is usually performed in an unbiased manner and often 

serves to generate novel hypotheses. These experiments generate extensive datasets that 

demand the use of bioinformatics and computational tools to distill the data into 

manageable sets that can uncover biological relevance. For the analysis of cellular 

secretomes obtained by mass spectrometry-based proteomics, bioinformatic tools that 

predict signal peptides and subcellular localization are invaluable (Bendtsen et al. 2004b, 

Emanuelsson et al. 2007).  

In particular, N-terminal signal peptide prediction algorithms, such as SignalP 

(Bendtsen et al. 2004b) and ProteinProwler (Hawkins, Boden 2006), are of great utility 

for predicting proteins that are classically secreted. The use of machine-learning 

algorithms, such as neural networks, has improved their predictive ability substantially 

over weight matrix approaches. For instance, SignalP 3.0 can routinely predict the 

presence of a signal peptide at a sensitivity of 0.99 and specificity of 0.85 (Bendtsen et al. 

2004b). This algorithm is publicly available for use at the Center for Biological Sequence 

Analysis (http://www.cbs.dtu.dk/services/).  

The presence of a signal peptide only assures that the protein enters the secretory 

pathway via the classical mechanism, but does not guarantee a protein is secreted, as N-

terminal signal peptides can direct proteins to membrane compartments other than the 

ER, such as mitochondria or lysosomes. Therefore, protein sequences predicted to have a 

signal peptide by SignalP should be analyzed by TargetP (Emanuelsson et al. 2000) to 

predict subcellular localization. Alternatively, for proteins that may be secreted by means 
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other than the classical pathway (Chapter 1, Section 2), the SecretomeP algorithm can be 

used to predict non-conventional or leaderless secretion (Bendtsen et al. 2004a). This 

algorithm utilizes protein features not contained within the protein N-terminus as 

predictive metrics, such as number of atoms, positively charged residues and propetide 

cleavage site. Utilizing the six features with highest discriminatory capacity, SecretomeP 

was able to perform at a sensitivity of 0.40 with less than 5% false positive rate. Reduced 

sensitivity could be attributed to the relatively small number of known nonconventionally 

secreted proteins available for the training dataset. Notwithstanding, this algorithm 

provides a useful tool to evaluate cellular secretomes and generate testable hypotheses 

regarding non-conventionally secreted proteins. 

As an adjunct to bioinformatic algorithms, gene ontology and functional analysis 

tools, such as FatiGO (Al-Shahrour, Diaz-Uriarte & Dopazo 2004) and Ingenuity 

Pathways analysis, which were originally developed for genome-wide datasets, are now 

commonly utilized for proteomic datasets. These tools enable rapid classification of 

proteins by annotated gene ontology and functional groups and provide methods for 

determining enrichment of functional groups relative to the whole genome. Statistical 

comparisons of proteomic datasets are routinely performed by approaches similar to gene 

array analyses, determining statistical significance by t-tests followed by p-value 

correction for multiple comparisons using the Benjamini and Hochberg method. While 

comparison to a specific tissue/cell proteome of interest would be ideal, these proteome-

centric datasets are rather incomplete. 

Evaluation of cellular secretomes by bioinformatics approaches assists with 

functional comparison of secretomes from multiple biological states. Also, it may 
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identify extracellular proteins that were predicted as false negatives by signal peptide 

prediction. Moreover, functional pathway tools, such as Ingenuity, incorporate relative 

expression/abundance measurements obtained by quantitative analysis, providing a way 

to identify molecular signaling pathways that may be perturbed between biological 

conditions (Liu et al. 2008). 

 

1.7 Nitric oxide signaling as a modulator of protein function 

 Nitric oxide (NO•), a gaseous, free radical, serves as an important cellular 

signaling molecule (refs). The production of nitric oxide is tightly regulated by nitric 

oxide synthase (NOS) enzymes (Moncada, Higgs 1993), which catalyze the five-electron 

oxidation of the guanidino group of L-arginine (Figure 1.7-1). Nitric oxide was first 

identified as one of the endogenous sources of endothelium-derived relaxing factor 

(EDRF) released from vascular endothelium, which then diffuses to smooth muscle, 

activates soluble guanylate cyclase (sGC) and initiates the downstream signaling that 

results in smooth muscle relaxation (Ignarro et al. 1986, Furchgott, Zawadzki 1980, 

Katsuki et al. 1977) . The elucidation of this signaling pathway, which was awarded the 

1999 Nobel Prize in Physiology and Medicine, currently reflects approximately 80,000 

publications referencing nitric oxide’s involvement in diverse physiological and 

pathophysiological processes such as neurotransmission, immune defense, cancer, and 

stroke. 
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Figure 1.7.1. Reaction scheme for enzymatic production of nitric oxide. The above two-step 
reaction is catalyzed by a family of nitric oxide synthase enzymes (NOS I, II, and III). Overall, 
the reaction is a five-electron oxidation of the guanidino group of arginine, producing citrulline as 
a by-product and nitric oxide. The reaction consumes 1.5 mols of NADPH and 2 mols of oxygen. 
In addition, all NOS enzymes require cofactors: FAD, FMN, Ca2+-calmodulin, heme, and 
tetrahydrobiopterin for full catalytic activity. 
 
 
 At the molecular level, nitric oxide bioactivity is conveyed through reaction with 

several classes of targets. Broadly, these targets can be grouped into iron-heme proteins, 

metalloproteins, protein and low molecular weight cysteine residues, as well as protein 

tyrosine residues. Nitric oxide reacts with the iron-heme moiety of soluble guanylate 

cyclase by forming a hexacoordinate iron-nitrosyl complex after cleavage of the axial 

histidine bond, which increases the enzyme activity of sGC by several hundred-fold 

(Stone, Marletta 1996). In contrast, reaction of nitric oxide with the metalloprotein 

aconitase, an Fe-S cluster protein, causes near complete enzyme inhibition, likely through 

the formation of a dinitrosyl iron complex (DNIC) (Duan et al. 2009). 

Lastly, a major target of nitric oxide is amino acids in proteins, predominantly the 

side chains of cysteine and tyrosine (Hess et al. 2005, Radi 2004), though also protein 

amines (Hansen, Croisy & Keefer 1982). In comparison to metal centers, reaction of NO 

with these residues does not occur by a direct mechanism. The mechanisms of NO-
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mediated tyrosine nitration to form 3-nitrotyrosine have been well documented (Radi 

2004, Ischiropoulos et al. 1992). Formation of this post-translational modification can 

occur through the reaction of nitric oxide with reactive oxygen species, such as 

superoxide anion (O2
-), to form peroxynitrite (Koppenol et al. 1992). Or under certain 

biological conditions, tyrosine nitration can be catalyzed by either superoxide dismutase 

(Ischiropoulos et al. 1992) or by myeloperoxidase if a source of nitrite and hydrogen 

peroxide (H2O2) is available (Sampson et al. 1998). In contrast, the intermediate reactive 

nitrogen/oxygen species, which may mediate S-nitrosocysteine formation, at least in vivo, 

have not been conclusively identified. Nonetheless, the existence of both low molecular 

weight cysteine-NO carriers, such as S-nitrosoglutathione, and protein S-nitrosocysteine 

residues have been clearly documented (Jaffrey, Snyder 2001, Gow et al. 2004). These 

issues will be discussed further in the following section. 

 

1.7.1 S-nitrosylation as a mediator of nitric oxide bioactivity 

  NO-mediated formation of protein S-nitrosocysteine, termed S-nitrosylation, has 

received significant interest as the modification of critical protein cysteine residues has 

been demonstrated as a regulator of enzyme activity (Choi, Lipton 2000, Whalen et al. 

2007), subcellular localization (Hara et al. 2005), and protein-protein interaction (Hara et 

al. 2005, Kim, Huri & Snyder 2005). These studies provided key evidence in support of 

the hypothesis that S-nitrosylation functions as a ubiquitous signaling system, akin to 

protein phosphorylation (Hess et al. 2005). Importantly, S-nitrosylation was stimulus-

coupled, that is dependent upon NOS activation and NO production, and was shown to 

occur on a physiologically relevant timescale (Kim, Huri & Snyder 2005, Choi et al. 
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2000). Yet there are several remaining issues that deserve attention before establishing S-

nitrosylation as a ubiquitous signaling event.  

One issue is the lack of knowledge regarding the proximal species that mediate S-

nitrosylation and denitrosylation in vivo. Although nitric oxide is a prerequisite for S-

nitrosylation, it cannot react with reduced cysteine to form the S-nitroso species directly. 

Based on in vitro studies, several potential mechanisms have been proposed (Figure 

1.7.1-1). Conceptually, the simplest reaction (Figure 1.7.1-1; Eq. 1) proposes reduced 

cysteine is not the primary target, but rather a thiyl radical, which reacts rapidly with 

nitric oxide to produce S-nitrosocysteine (Heo et al. 2005). This reaction is unlikely to 

participate in cell signaling, as there is little precedent for temporal and site-specific 

control of radical-radical recombination reactions in cell signaling. A more plausible 

mechanism (Figure 1.7.1-1; Eq. 2) could occur by the formation of an S-nitroso-radical 

intermediate, which is then immediately oxidized in the presence of an electron acceptor, 

such as oxygen or a transition metal (Gow, Buerk & Ischiropoulos 1997). Specificity may 

be achieved by the nature of the electron acceptor, for instance catalysis by a 

metalloprotein. Although physiologically relevant, evidence has not been advanced to 

define this mechanism in vivo.  

Third, the reaction of nitric oxide with oxygen in the presence of nitric oxide, 

leads to the formation of dinitrogen trioxide (N2O3) (Figure 1.7.1-1; Eq. 3). In aqueous 

solution, N2O3 is rapidly converted to nitrous acid (HNO2), a potent nitrosating (NO+) 

agent. Chemically, nitrosonium (NO+) equivalents are attractive mediators of S-

nitrosylation in vivo as nitrosonium can react directly with reduced cysteine. Yet in this 

mechanism, the rate-limiting step in N2O3 formation is NO autoxidation, the reaction 
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between nitric oxide and oxygen, which has an overall third-order rate constant of 1.5 - 3 

x 106 M-2 s-1 (Czapski, Goldstein 1995). Given that the reaction is second-order in nitric 

oxide concentration and that physiological nitric oxide concentration is in the nanomolar 

range, NO autoxidation would proceed slowly in vivo. However, an alternative 

mechanism of nitrosonium formation may occur under conditions of low pH and excess 

nitrite anion (NO2
-), where a sufficient concentration of nitrous acid may exist to 

facilitate nitrosation chemistries. Therefore, under specific conditions, nitrous acid can be 

a biologically relevant source of S-nitrosylation (Darwin et al. 2003). 

 

 

Figure 1.7.1-1. Potential mechanisms for S-nitrosocysteine formation in vivo. Each of the 
reactions has been demonstrated in vitro, but none has been shown in vivo to directly participate 
in S-nitrosylation. (Eq. 1) Radical-radical recombination of nitric oxide and protein thiol or 
cysteine thiyl radical form S-nitrosocysteine. (Eq. 2) Reaction of nitric oxide and reduced 
cysteine forms an S-nitroso-radical intermediate, which is oxidized by an electron acceptor, 
shown here as oxygen, to yield S-nitrosocysteine and superoxide. (Eq. 3) Overall third-order 
reaction between nitric oxide and oxygen, forming dinitrogen trioxide, a potent S-nitrosating 
agent that reacts with reduced cysteine to form S-nitrosocysteine and nitrous acid. (Eq. 4) A 
specific form of S-nitrosation, transnitrosation, which occurs by the transfer of nitrosonium from 
a low molecular weight or protein S-nitrosocysteine (R1) to a reduced cysteine (R2). 
 

  

Finally, low molecular weight cysteines, such as L-cysteine and glutathione 

(GSH), may serve as more stable carriers of nitric oxide equivalents as well as provide 

 
•

 
•
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specificity for protein S-nitrosylation (Hess et al. 2005). The S-nitroso derivative of GSH, 

S-nitrosoglutathione (GSNO), is a capable S-nitrosating agent (Tannenbaum, White 

2006, Padgett, Whorton 1995, Zhang, Hogg 2005). S-nitrosation occurs through a 

transnitrosation reaction (Figure 1.7.1-1; Eq. 4), the transfer of nitrosonium from S-

nitrosocysteine to reduced cysteine on proteins or other low molecular weight cysteines. 

Current evidence suggests this is a plausible mechanism for S-nitrosocysteine formation 

in vivo as a physiological role for GSNO as an NO carrier has been demonstrated (de 

Belder et al. 1994, Radomski et al. 1992). And moreover, GSNO reductase, an enzyme 

that metabolizes GSNO and can indirectly regulate the steady-state levels of protein S-

nitrosylation, provides strong evidence that a GSH/GSNO/protein-SNO equilibrium may 

regulate cellular S-nitrosylation (Liu et al. 2001). Also, protein S-nitrosocysteine 

residues, such as cysteine 73 of thioredoxin (Trx) can perform transnitrosation of 

caspase-3 (Cys163) in a site-specific fashion (Mitchell, Marletta 2005, Mitchell et al. 

2007). Admittedly, this mechanism still leaves open the question of how de novo S-

nitrosocysteine residues are formed, but given the relatively high intracellular 

concentration of GSH (5 mM), these conditions are favorable for overcoming kinetic 

barriers of S-nitrosocysteine formation through nitrosation chemistries. These hypotheses 

warrant further exploration into the potential in vivo mechanisms of GSNO-mediated S-

nitrosylation. 

While proteomics has been used extensively for identifying proteins and specific 

residues that may be S-nitrosylated (see discussion below), a complementary effort has 

been made to discover S-nitrosylation motifs that would predict potential cysteines 

susceptible to S-nitrosylation. These studies have focused on examining structural 
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elements in proteins that surround the modified cysteine residue. Ideally, these motifs are 

derived from known three-dimensional protein structures, but primary amino acidic 

sequences are also a viable alternative as post-translational modifications such as 

phosphorylation have been shown to possess consensus primary sequence motifs 

(Pearson, Kemp 1991).  

Collectively, evidence at both primary amino acid and tertiary structure level has 

suggested two potential motifs (Hess et al. 2005); an acid/base motif and a hydrophobic 

motif. The acid/base motif was initially proposed based on data that Cys93 in the β-chain 

of hemoglobin can be S-nitrosylated and was flanked by acidic and basic residues 

(Stamler et al. 1997). This motif involves acidic (D, E) and basic (K, H, R) amino acids 

surrounding the modified residue in close apposition, within approximately 6 angstroms. 

Functionally, this structural motif would alter the nucleophilicity (pKa) of the reduced 

cysteine and potentially modulate S-nitrosylation/denitrosylation. A hydrophobic motif 

has also been proposed based in part on the identification that a single cysteine, Cys3635, 

out of approximately 50 in the skeletal muscle calcium release channel (RyR1) is S-

nitrosylated in vivo (Sun et al. 2001). This residue is localized to a hydrophobic pocket 

based on primary amino acid sequence hydropathy calculations. This motif could 

increase the rate of NO autoxidation (Figure 1.7.1-1; Eq. 3) through partitioning of NO 

and O2 into the hydrophobic pocket, overcoming kinetic barriers by increasing their 

effective concentration (Liu et al. 1998, Moller et al. 2005). Despite these motifs, 

predictive algorithms have been unable to define consensus S-nitrosylation motifs. This 

may be due to the known datasets containing mostly in vitro identified S-nitrosocysteine 

residues or biased towards sites within peptides that are readily detected by mass 
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spectrometry (Hao et al. 2006a). This suggests that predictive capabilities could be 

improved using complementary approaches that increase depth and coverage of the S-

nitrosocysteine proteome. 

 

1.7.2 Mass spectrometry-based proteomic methods for identification of 

S-nitrosylated proteins 

 To enable in vivo studies, sensitive biochemical and analytical methods for 

detecting S-nitrosylated proteins are of critical importance. Hypothesis-generating 

proteomic methodologies are useful for identifying proteins that are targets of 

modification without a priori knowledge of which proteins may be modified. 

Additionally, tandem mass spectrometric methods can be employed to localize the sites 

of post-translational modification.   

The first proteomic method developed for the identification of S-nitrosylated 

proteins was the biotin switch method (Jaffrey, Snyder 2001). Given the labile nature of 

some S-nitrosocysteine bonds, direct detection greatly limits sensitivity. The biotin 

switch method resolved this issue by replacing the cysteine-bound NO group with a 

cysteine-bound biotinylated linker. As shown in figure 1.7.2-1, the biotin switch is 

carried out by blocking reduced cysteine with methyl methane thiosulfonate (MMTS), 

then selectively reducing S-nitrosocysteine by ascorbate while concomitantly labeling the 

newly generated reduced cysteines with N-[6-(biotinamido)hexyl]-3′-(2′-

pyridyldithio)propionamide (biotin-HPDP). Biotinylated proteins can then be resolved by 

SDS-PAGE for detection by anti-biotin Western blot analysis or enriched by avidin 
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affinity chromatography followed by mass spectrometry analysis. Using this approach, 

the original study identified 12 proteins endogenously S-nitrosylated in the mouse brain, 

which were absent from brains of nNOS-/- knockout mice (Jaffrey, Snyder 2001).           

Many proteomic studies have used this method to identify more than 100 S-

nitrosylated proteins, though usually lacking confirmation of the specific modified 

cysteine (Jaffrey, Snyder 2001, Kuncewicz et al. 2003, Yang, Loscalzo 2005, Zhang, 

Hogg 2004a). Moreover, apart from the original biotin switch work by Jaffrey and 

colleagues conducted in 2001 (Jaffrey, Snyder 2001), only one other publication has 

successfully identified endogenously S-nitrosylated proteins using a proteome-wide 

approach (Hao et al. 2006b). 
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Figure 1.7.2-1. Biotin switch 
method diagram. Adapted 
from (Jaffrey, Snyder 2001). 
this diagram illustrates the 
original biotin switch 
methodology. Using complex 
protein mixtures, this method 
“switches” labile S-
nitrosocyteine groups for 
more stable disulfide-linked 
biotinylated probes. The 
switch is accomplished by 
first blocking reduced 
cysteine residues with MMTS 
in the presence of SDS. After 

removal of excess MMTS, ascorbate is added to reduce S-nitrosocysteine residues and not other 
oxidation products of cysteine (see below), while concurrently labeling with biotin-HPDP. 
Omission of ascorbate would serve as a negative control accounting for artifactual biotin-HPDP 
labeling. Biotinylated proteins can then be enriched by streptavidin affinity capture and detected 
by Western blot or identified by mass spectrometric analysis. Abbreviations: RS-H, reduced 
cysteine; RS-SR, disulfide; RS-S-CH3, S-methylthiol; RS-NO, S-nitrosocysteine; RS-S-Biotin, S-
biotinylated cysteine; RS-SG, S-glutathionylated cysteine; RS-OH, sulfinic acid; RS-CR’, S-
alkylated cysteine. 
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1.8 Rationale and Objectives 

1.8.1 The astrocyte secretome (Aims 1 and 2) 

While significant progress has been made in understanding the functional roles of 

astrocyte signaling at the molecular level, the contribution of astrocyte protein secretion 

to paracrine and autocrine signaling in the nervous system has not been fully elucidated. 

For the mouse genome, at least 2000 proteins are predicted to be secreted by classical 

pathways (Grimmond et al. 2003), whereas the number of identified astrocyte-secreted 

proteins is an order of magnitude less. This suggests that improved techniques to identify 

additional astrocyte-secreted proteins would expedite progress in determining the roles of 

protein secretion in astrocyte biology and in disease. Although transcriptional profiling of 

neurons, astrocytes, and oligodendrocytes has provided relative expression levels for 

more than 20,000 genes (Cahoy et al. 2008); ultimately proteomic approaches are 

necessary to determine which transcripts give rise to expressed proteins and then which 

subset of proteins are present in the seretome.  

Methodological advances in the analysis of complex proteomes and technological 

developments in mass spectrometry has increased depth of proteome coverage and 

allowed robust, proteome-wide quantitative capabilities (Tang et al. 2005, Gilchrist et al. 

2006). Therefore, the overall goal of this project is to develop improved mass 

spectrometry-based proteomic approaches for evaluating cellular secretomes that enable 

(1) reproducible characterization and comparison under different cellular states, (2) 

secretome and proteome-wide relative quantification of protein abundance, and (3) 

evaluation of astrocyte protein secretion mechanisms. As outlined in figure 1.8.1, these 
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goals will be accomplished by using fundamental principles of protein and peptide 

separation, “shotgun” mass spectrometry paired with quantitative analysis, and automated 

computational/bioinformatics tools.  

Experiments will utilize well-established procedures to isolate enriched astrocytes 

at greater than 95% purity from postnatal day one mouse brain cortex. The ability to 

characterize and compare secretomes under multiple cellular states will be established 

using astrocyte-conditioned media (ACM) from cells exposed to inflammatory mediators 

or vehicle for either an acute, 1 day exposure, or a sustained, 7 day exposure. Previous 

studies have documented stereotypical astrocyte responses to cytokine exposure and 

therefore should be an ideal model to develop comparative mass spectrometry-based 

proteomic methods. Current secretome analyses lack robust, proteome-wide quantitative 

approaches; therefore, stable isotope labeling quantitative mass spectrometry, often 

employed in cell lines for determining relative protein abundance, will be developed in 

primary astrocyte cultures. This approach will permit the relative abundance of proteins 

to be calculated between intracellular and extracellular compartments, providing a means 

to quantify secretion independent of secretion pathway, e.g. classical and non-

conventional secretion. In addition, quantitative analysis will facilitate the classification 

of non-secreted proteins present in medium due to mechanisms independent of protein 

secretion. Overall, this work will provide an expanded, quantitative knowledgebase of the 

astrocyte secretome, identifying potentially novel astrocyte-secreted proteins that 

participate in intercellular signaling and/or disease pathogenesis. These potentially novel 

astrocyte-secreted factors can generate new, testable hypotheses concerning in vivo 

significance of astrocyte protein secretion in the nervous system. 
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Figure 1.8.1-1. Proposed workflow for the characterization and quantification of the 
astrocyte secretome by mass spectrometry. Primary murine astrocytes isolated from P1 
neonatal mice will be cultured to greater than 95% purity during a twelve day period, after which 
enriched astrocyte cultures will be placed in serum-free media. Then, the necessary cell 
treatments and controls will be performed while conditioning the media for between one and 
seven days after which media and cells are collected. For characterization of the astrocyte 
secretome, no isotope reference proteome will be added and only the flowchart to the left (A) will 
be performed. The protein fraction of the secretome will be separated by 1D SDS-PAGE, cut into 
equal gel slices, digested to peptides, and analyzed by reverse phase ESI-LC-MS/MS. MS/MS 
spectra will be subjected to protein sequence database searches, generating sequence-to-spectrum 
assignments that will be evaluated by probabilistic validation algorithms. Assignments meeting 1 
% false positive criteria will be assembled into protein groups, requiring at least two unique 
peptides. For quantitative experiments, an isotope reference proteome (IRP) is spiked into 
samples to be analyzed. The IRP is prepared in separate experiments using SILAC. The mixed 
samples are then analyzed as above, but with addition of Census quantitative analysis by XIC (B). 

A B 



51 
 

1.8.2 The S-nitrosocysteine proteome (Aim 3) 

 The formation of S-nitrosocysteine residues in proteins, termed S-nitrosylation, is 

an NO-mediated post-translational modification that can alter protein function, 

subcellular localization, and protein-protein interactions (Hara et al. 2005, Kim, Huri & 

Snyder 2005, Choi et al. 2000). Although over 100 proteins have been identified, largely 

by in vitro global proteomic methods, the most widely used method (Jaffrey, Snyder 

2001) does not provide the modified cysteine residue.  This precludes the structural basis 

for S-nitrosylation selectivity from being investigated and requires additional validation 

experiments, such as mutagenesis. In addition, the low abundance of endogenous S-

nitrosylated proteins creates enormous challenges for in vivo detection. Since the biotin 

switch method was published (see Chapter 1, section 7) it has mainly been used to 

identify endogenous S-nitrosylated proteins through coupling to Western blot detection. 

Identification of endogenous S-nitrosylated proteins on a proteome-wide scale with mass 

spectrometry-based detection has been largely unsuccessful, suggesting improvements in 

sensitivity are necessary.  

Based on previous work investigating the selectivity of cysteine modification by 

reactive electrophiles (Dennehy et al. 2006), this project will incorporate two additional 

steps into the biotin switch method following biotin-HPDP labeling (Figure 1.8.2-1) 

These steps generate biotinylated peptides by trypsin digestion, which are then subjected 

to avidin affinity enrichment of peptides, as opposed to proteins. A revised biotin switch 

method incorporating peptide affinity capture will afford greater sensitivity through a 

reducing in sample complexity and provide both identification of the S-nitrosylated 

protein and the site of modification in a single experiment.  
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Figure 1.8.2-1. Modification 
of biotin switch method for 
site-specific identification of 
S-nitrosocysteine. Adapted 
from Jaffrey et. al. (Jaffrey et 
al. 2001), this diagram 
illustrates a modified biotin 
switch methodology (see 
Figure 1.7.2-1). As 
previously, the biotin switch 
is performed whereby labile 
S-nitrosocysteine groups in 
complex protein mixtures are 
exchanged for more stable 
disulfide-linked biotinylated 
probes. First, blocking of 
reduced cysteine residues is 
performed with MMTS in the 
presence of SDS. After 
removal of excess MMTS, 
ascorbate is added to reduce 
S-nitrosocysteine residues and 
not other oxidation products 
of cysteine (see below), while 
concurrently labeling with 

biotin-HPDP. Omission of ascorbate would serve as a negative control accounting for artifactual 
biotin-HPDP labeling. After biotin-HPDP labeling, rather than performing streptavidin affinity 
capture, biotinylated proteins are digested with trypsin. Then, the mixture of biotinylated and 
non-biotinylated peptides is enriched by streptavidin affinity capture. The bound fraction of 
peptides is then analyzed by LC-MS/MS. The resulting MS/MS spectra are analyzed by database 
search algorithms and manually reviewed to confirm both the residue of modification and the 
protein. Abbreviations: RS-H, reduced cysteine; RS-SR, disulfide; RS-S-CH3, S-methylthiol; RS-
NO, S-nitrosocysteine; RS-S-Biotin, S-biotinylated cysteine; RS-SG, S-glutathionylated cysteine; 
RS-OH, sulfinic acid; RS-CR’, S-alkylated cysteine; LC-MS/MS, liquid chromatography-tandem 
mass spectrometry. 
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1.9 Specific Aims 

Aim 1: Utilize mass spectrometry-based proteomic methods to characterize the 

effects of acute and sustained cytokine exposure on astrocyte protein secretion. 

Hypothesis for Aim 1: Development of a sensitive and reproducible proteomic 

method will expand the current catalogue of known astrocyte-secreted proteins and 

identify time-dependent, cytokine-induced secreted proteins from primary mouse 

astrocyte cells.  

Previous studies have begun to characterize the astrocyte secretome by proteomic 

approaches, resulting in the identification of about 30 proteins. Based on computational 

predictions, a secretome could contain thousands of proteins (Grimmond et al. 2003), 

suggesting a more rigorous proteomic approach is necessary to improve detection of 

lower abundance proteins. In addition, comparative proteomic analyses are critical for 

identification of differentially secreted proteins across multiple biological conditions. 

Towards these goals, fundamental principles in chromatographic separation and the latest 

mass spectrometric instrumentation will be utilized to compare and contrast the astrocyte 

secretome under control and cytokine-exposed conditions with greatly improved depth of 

analysis and reproducibility.    

 

Aim 2: Develop quantitative mass spectrometry-based proteomic methods to 

distinguish between (1) secreted and non-secreted/intracellular proteins and (2) 

classically and non-conventionally secreted proteins in astrocyte-conditioned media. 

Hypothesis for Aim 2: Quantitative mass spectrometric analysis of protein 

abundance in astrocyte conditioned media, normalized to intracellular protein 

abundance, will show high abundance ratios for secreted proteins, while abundance 

ratios from non-secreted protein, intracellular proteins will be less than unity. Of 
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the proteins determined to be secreted by quantitative MS analysis, 10 to 20 percent 

may lack an N-terminal signal peptide.   

Quantitative mass spectrometry-based proteomics employing stable isotope 

labeling by amino acids in cell culture (SILAC) has become an important technique to 

assess differential intracellular protein expression (Ong et al. 2002). Though SILAC has 

been demonstrated in primary neuron cultures (Spellman et al. 2008), its feasibility has 

not been directly assessed in primary astrocyte cultures. In addition, SILAC has not been 

demonstrated for differential analysis of cellular secretomes. Therefore, incorporation of 

isotope-labeled amino acids into the astrocyte proteome and secretome will be evaluated. 

Using the proteomic techniques developed in aim 1 and high-resolution mass 

spectrometry, isotope-labeled astrocyte proteomes will be used as internal standards to 

quantify secreted protein abundance, relative to the corresponding abundance of 

intracellular protein expression. As a result, the classification of secreted versus non-

secreted proteins will be made primarily by quantitative mass spectrometry analysis. The 

subset of proteins that are identified as secreted by quantitative MS analysis will be 

analyzed by N-terminal signal peptide prediction algorithms. Those proteins lacking an 

N-terminal signal peptide are putative non-conventionally secreted proteins.  
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Aim 3: Investigate protein structure motifs that govern S-nitrosylation selectivity in 

human vascular smooth muscle cells using affinity enrichment of S-nitrosocysteine-

containing peptides paired with site-specific identification by tandem mass 

spectrometry. 

Hypothesis for aim 3: Modification of the biotin switch method for site-specific 

identification of S-nitrosocysteine residues will improve assay sensitivity and permit 

examination of structural motifs that may govern S-nitrosylation. 

 The biotin switch method (Jaffrey, Snyder 2001) has provided a valuable tool for 

researchers investigating the effects of S-nitrosylation on cellular function, which 

addressed the inability to assess the S-nitrosylation status of a particular protein or an 

entire proteome. Application of this method revealed many proteins that were S-

nitrosylated, but lacked confirmation of the specific modified cysteine residue. 

Identification of the modified cysteine residues is crucial to understanding the site 

specificity of S-nitrosylation, important both from a mechanistic as well as functional 

perspective. To address these issues, the biotin switch approach will be modified to allow 

identification of the S-nitrosylated cysteine residue as well as provide confidence in the 

corresponding protein identification. Based on previous work investigating cysteine 

reactivity towards reactive electrophiles (Dennehy et al. 2006), biotinylated (previously 

S-nitrosylated) proteins will be enzymatically digested to peptides, and enriched for 

biotinylated peptides. These biotinylated peptides will be analyzed by a linear ion trap 

tandem mass spectrometer to confirm the site of biotinylation, corresponding to the site 

of S-nitrosylation. This approach will be applied to S-nitrosocysteine- and NO donor-

treated human aortic smooth muscle cells, which will augment intracellular protein S-

nitrosocysteine. The identified S-nitrosylated cysteine residues will be evaluated for 

structural motifs that may govern S-nitrosylation selectivity. 
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2.1 Abstract 

The roles of astrocytes in the central nervous system (CNS) have been 

expanding beyond the long held view of providing passive, supportive functions.  

Recent evidence has identified roles in neuronal development, extracellular matrix 

maintenance, and response to inflammatory challenges.  Therefore, insights into 

astrocyte secretion are critically important for understanding physiological 

responses and pathological mechanisms in CNS diseases.  Primary astrocyte 

cultures were treated with inflammatory cytokines for either a short (1 day) or 

sustained (7 days) exposure.  Increased interleukin-6 secretion, nitric oxide 

production, cyclooxygenase-2 activation, and nerve growth factor secretion 

confirmed the astrocytic response to cytokine treatment.  Tandem mass 

spectrometry, computational prediction algorithms, and functional classification 

were used to compare the astrocyte protein secretome from control and cytokine-

exposed cultures.  In total, 169 secreted proteins were identified, including both 

classically and non-conventionally secreted proteins that comprised components of 

the extracellular matrix and enzymes involved in processing of glycoproteins and 

glycosaminoglycans.  Twelve proteins were detected exclusively in the secretome 

from cytokine-treated astrocytes, including matrix metalloproteinase-3 and 

members of the chemokine ligand family.  This compilation of secreted proteins 

provides a framework for identifying factors that influence the biochemical 

environment of the nervous system, regulate development, construct extracellular 

matrices, and coordinate the nervous system response to inflammation. 
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2.2 Introduction 

Appreciation for the function of astrocytes in the central nervous system has been 

growing with the identification of integral roles in neurogenesis and synaptogenesis 

(Garcia et al. 2004, Mauch et al. 2001).  Specifically, astrocytic secretion of glutamate, 

ATP, and D-serine serve as paracrine and autocrine factors regulating synaptic plasticity 

and the coordination of synaptic networks (Volterra, Meldolesi 2005, Pascual et al. 

2005).  Astrocytes are also important components of the blood brain barrier, providing 

dynamic regulation of the microvasculature through the release of nitric oxide and lipid 

metabolites (Mulligan, MacVicar 2004, Zonta et al. 2003), as well as modulating brain 

energy metabolism through the coordination of glutamate homeostasis between neurons 

and astrocytes (Bernardinelli, Magistretti & Chatton 2004, Escartin et al. 2006).   

In contrast, the release of proteins by astrocytes under non-disease states has not 

been extensively explored.  Proteins released by astrocytes include thrombospondin-1 

and apolipoprotein E, which were found to mediate synaptogenesis and processing of 

amyloid-β peptides, respectively (Christopherson et al. 2005, Koistinaho et al. 2004).  

The advent of mass spectrometry-based proteomics has allowed for the global 

interrogation of astrocyte proteomes, including intracellularly expressed proteins as well 

as secreted proteins (Yang et al. 2005, Lafon-Cazal et al. 2003, Delcourt et al. 2005, 

Egnaczyk et al. 2003).  However, only a limited number of proteins have been detected in 

the astrocyte secretome.  Therefore, an expanded proteome of astrocyte-secreted proteins 

employing recent advances in proteomic methodology, instrumentation, and 

computational analyses is warranted.  A more comprehensive astrocyte secretome would 
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provide new insights into astrocyte function and uncover novel mediators that can 

influence the extracellular biochemical environment in the central nervous system.   

Astrocytes play a critical role in regulating the type and extent of central nervous 

system immune response by responding to inflammatory mediators such as IFN-γ and 

TNF-alpha and by producing additional cytokines and chemokines (Dong, Benveniste 

2001).  While an inflammatory response is necessary following tissue and cellular injury, 

it is also seen as a central process in the development and progression of disease states. 

Under certain pathological conditions, recent studies provide evidence that astrocytes 

secrete factors that are toxic to other cells in the central nervous system.  For example, in 

patients with multiple sclerosis, astrocytes expressing syncytin released factors that were 

toxic to oligodendrocytes (Antony et al. 2004).  Recently, soluble factors released from 

astrocytes that expressed familial amyotrophic lateral sclerosis (ALS)-causing mutant 

forms of superoxide dismutase 1 induced motor neuron death (Nagai et al. 2007, Cassina 

et al. 2005, Di Giorgio et al. 2007, Vargas et al. 2005).  Collectively, these data 

emphasize that astrocytes under pathological conditions are capable of unleashing toxic, 

but in many cases unidentified factors.  Insights into the factors secreted by astrocytes 

after treatment with inflammatory mediators may identify disease mediators and reveal 

targets for therapy. 
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2.3 Materials and Methods 

Chemicals and Materials. The following primary antibodies were used to for Western 

blot validation experiments: anti-ApoE (1:1000, Biodesign, Saco, ME), anti-C3 

complement (1:500, Cedarlane, Burlington, NC), anti-ceruloplasmin (1:500, BD 

Biosciences, San Jose, CA), and anti-CXCL1 (1:2500, Abcam, Cambridge, MA).  9-Oxo-

10E,12Z-octadecadienoic acid (9-oxo-ODE), 13-oxo-9Z,11E-octadecadienoic acid (13-

oxo-ODE), 15-oxo-5Z,8Z,11Z,13E-eicosatetraenoic acid (15-oxo-ETE), 9(R)-hydroxy-

10E,12Z-octadecadienoic acid (9(R)-HODE), 9(S)-hydroxy-10E,12Z-octadecadienoic 

acid (9(S)-HODE), 13(R)-hydroxy-9Z,11E-octadecadienoic acid (13(R)-HODE), 13(S)-

hydroxy-9Z,11E-octadecadienoic acid (13(S)-HODE), 11(R)-hydroxy-5Z,8Z,12E,14Z-

eicosatetraenoic acid (11(R)-HETE), 11(S)-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic 

acid (11(S)-HETE), 12(R)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(R)-HETE), 

12(S)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE), 15(R)-hydroxy-

5Z,8Z,11Z,13E-eicosatetraenoic acid (15(R)-HETE), 15(S)-hydroxy-5Z,8Z,11Z,13E-

eicosatetraenoic acid (15(S)-HETE), 9-oxo-11α,15S-dihydroxy-prosta-5Z,13E-dien-1-oic 

acid (PGE2), 9-oxo-11β,15S-dihydroxy-prosta-5Z,13E-dien-1-oic acid (11β-PGE2), 9-

oxo-11α,15S-dihydroxy-(8β)-prosta-5Z,13E-dien-1-oic acid (8-iso-PGE2), 9α,15S-

dihydroxy-11-oxo-prosta-5Z,13E-dien-1-oic acid (PGD2), 9α,11α,15S-trihydroxy-prosta-

5Z,13E-dien-1-oic acid (PGF2α), 9α,11β,15S-trihydroxy-prosta-5Z,13E-dien-1-oic acid 

(11β-PGF2), 9α,11α,15S-trihydroxy-(8β)-prosta-5Z,13E-dien-1-oic acid (8-iso-PGF2α), 

9-oxo-11α,15S-dihydroxy-prosta-5Z,13E-dien-1-oic-3,3,4,4-2H4 acid ([2H4]-PGE2), 

9α,11α,15S-trihydroxy-prosta-5Z,13E-dien-1-oic-3,3,4,4-2H4 acid ([2H4]-PGF2α), [2H4]-
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13(S)-hydroxy-9Z,11E-octadecadienoic acid ([2H4]-13(S)-HODE), and [2H8]-15(S)-

hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid ([2H8]-15(S)-HETE), and NS-398, (N-[2-

cyclohexyloyl-4-nitrophenyl] methane-sulfonamide) were purchased from Cayman 

Chemical Co. (Ann Arbor, MI).  Diisopropylethylamine (DIPE), 2,3,4,5,6-

pentafluorobenzyl bromide (PFB-Br) was purchased from Sigma-Aldrich (St. Louis, 

MO).  HPLC grade hexane, methanol and isopropanol were obtained from Fisher 

Scientific Co. (Fair Lawn, NJ).  Gases were supplied by BOC Gases (Lebanon, NJ). 

Astrocyte culture and cytokine treatment. All mouse studies were reviewed and approved 

by the Institutional Animal Care and Use Committee of the Stokes Research Institute, 

Children’s Hospital of Philadelphia. Cortical astrocyte cultures were prepared from 

neonatal CD-1 mice (Charles River, Wilmington, MA) on DOL 1-2. Briefly, the animals 

were anesthetized, the brain removed and cortex dissected free. Cortices were washed 

twice with Earle’s Balanced Salt Solution (EBSS; Invitrogen, Carlsbad, CA) and 

trypsinized (0.05 %) for 12 min at 37°C.  Cortices were then titruated in Minimal 

Essential Media (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum 

(Hyclone), sodium pyruvate (1 mM), L-glutamine (2 mM), D-glucose (42 mM), sodium 

bicarbonate (14 mM), penicillin (100 U/ml), streptomycin (100µg/ml), fungizone (2.5 

µg/ml) and plated at one cortex per T-25 vent-cap flask (Corning, Corning, NY). Mixed 

cortical cultures were raised for 14 days in 37°C and 5% CO2 with media change every 3-

4 days. Cultures were then washed with cold EBSS and separated from neurons and 

microglia by shaking overnight at 37°C.  Adherent cells were trypsinized (0.25%) and 

seeded in 100 mm Petri dishes (Corning) at 5 x 106 cells/plate (6 ml). Forty-eight hours 

after plating, cells were washed with EBSS, and serum-free media was added containing 
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IL-1β (0.2 ng/ml), IFN-γ (1 ng/ml), and TNF-α (10 ng/ml) (Roche Pharmaceuticals, 

Switzerland). Control astrocytes were cultured in serum-free media alone. Astrocyte-

conditioned media (ACM) was either collected after 24 hours (1D ACM) or were either 

left untreated or treated with the cytokine cocktail (see above) every 48 hrs for an 

additional 6 days (3 total exposures) with no media change.  ACM was again collected 

(7D ACM).  For each collection, ACM was combined from two plates and centrifuged at 

200 x g for 5 min to remove cell debris.  The protein fraction (> 3 kDa) was obtained by 

ultrafiltration of ACM using CentriPrep Ultracel YM-3 filters (Millipore, Billerica, MA). 

The protein retentate (final vol. = 0.8 to1.0 ml) was aliquoted and stored at -80 °C for 

future use.  Filtrates were reserved for lipid and small molecule analyses. To assess cell 

viability, astrocytes were trypsinized and combined with cell pellets obtained from the 

low speed centrifugation of ACM.  Cell death was quantified either by flow cytometry 

using Vybrant Apoptosis Assay Kit #3 according to the manufacturer’s instructions 

(Invitrogen, Carlsbad, CA) or by trypan blue exclusion.  For flow cytometry, a minimum 

of 20,000 events was required for each analysis performed in quadruplicate.   

Nitric oxide metabolite analysis. Nitric oxide-derived products (nitrate, nitrite, S-

nitrosothiols, N-nitroso-, and iron nitrosyl) were quantified by chemical reduction to 

nitric oxide followed by ozone-based chemiluminescent detection using Nitric Oxide 

Analyzer 280 (Sievers, Boulder, CO).  Briefly, helium gas was bubbled through an 

acidified (1 N) vanadium (III) chloride solution (50 mM) maintained at 90 °C in a 

jacketed glass purge vessel.  Aliquots (20 μL) of ACM, serum-free media, or nitrite 

standards were injected into the glass purge vessel.  Concentrations of nitric oxide 
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products were calculated using linear best-fit curves constructed against nitrite standards 

and were reported after correcting for the content of nitric oxide products quantified in 

serum-free media. 

Immunofluorescence and cell morphology analysis. Astrocyte cultures were fixed with cold 

methanol for 20 min at –20 °C, followed by 50:50 methanol:acetone for 5 min at –20 °C.  

Immunodetection of GFAP or Cd11b were performed using a mouse anti-GFAP antibody 

(1:250, BD Pharmingen, San Jose, CA) or a rat anti-CD11b antibody (1:100, AbD 

Serotec, Raleigh, NC), respectively.  Antigens were visualized with goat anti-mouse 

secondary antibodies conjugated to either Alexa Fluor 488 or 546 (Invitrogen, Carlsbad, 

CA).  The nuclei were visualized by DAPI staining (1:10,000).  Morphological analyses 

were performed by counting GFAP-positive cells with and without processes from 3-6 

fields from at least 3 independent experiments. 

Gel/LC-MS/MS Analysis of Conditioned Media. The protein fraction obtained from ACM 

was analyzed by Gel/LC-MS/MS as described previously (Tang et al. 2005).  For each 

treatment condition described above, the concentrated protein fraction was mixed with 

6X Laemmli sample buffer and equal volumes (30 μL) were loaded on NuPAGE 10% 

Bis-Tris gels (Invitrogen, Carlsbad, CA) and electrophoresed in MOPS running buffer for 

approximately 2 cm.  For experiments that assessed reproducibility, ACM was collected 

and proteins were separated by electrophoresis from independent astrocyte cultures 

(biological duplicates) treated for 7D with and without cytokines.  Proteins were 

visualized by Colloidal Blue (Invitrogen, Carlsbad, CA) and each lane was cut into 

uniform slices using a MEF-1.5 Gel Cutter (The Gel Company, San Francisco, CA).  Gel 

slices were digested in-gel with trypsin as previously described (Speicher et al. 2000).  
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Tryptic digests were analyzed on an LTQ linear IT mass spectrometer (Thermo Electron, 

San Jose, CA) coupled with a NanoLC pump (Eksigent Technologies, Livermore, CA) 

and autosampler.  Tryptic peptides were separated by RP-HPLC on a nanocapillary 

column, 75 μm id x 20 cm PicoFrit (New Objective, Woburn, MA, USA), packed with 

MAGIC C18 resin, 5 μm particle size (Michrom BioResources, Auburn, CA). Solvent A 

was 0.58% acetic acid in Milli-Q water, and solvent B was 0.58 % acetic acid in 

acetonitrile (ACN). Peptides were eluted into the mass spectrometer at 200 nL/min using 

an ACN gradient. Each RP-LC run consisted of a 10 min sample load at 1 % B; a 75 min 

total gradient consisting of 1–28 % B over 50 min, 28–50 % B over 14 min, 50–80 % B 

over 5 min, 80 % B for 5 min before returning to 1 % B in 1 min.  To minimize 

carryover, a 36 min blank cycle was run between each sample.  Hence, the total sample-

to-sample cycle time was 121 min.  The mass spectrometer was set to repetitively scan 

m/z from 375 to 1600 followed by data-dependent MS/MS scans on the ten most 

abundant ions with dynamic exclusion enabled. 

Protein Identification and Validation. DTA files were generated from MS/MS spectra 

extracted from the RAW data file (intensity threshold of 5000; minimum ion count of 30) 

and processed by the ZSA, CorrectIon, and IonQuest algorithms of the SEQUEST 

Browser program. Database searching was performed by TurboSEQUEST v.27 (rev. 14) 

against the NCBI non-redundant protein database (4,379,558 proteins; 1/2007), which 

had been indexed with the following parameters: average mass range of 500-3500, length 

of 6-100, tryptic cleavages with 1 internal missed cleavage sites, static modification of 

Cys by carboxyamidomethylation (+57 amu), and variable modification of methionine 

(+16 amu).  The DTA files were searched with a 2.5 amu peptide mass tolerance and 1.0 
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amu fragment ion mass tolerance.  Potential sequence-to-spectrum peptide assignments 

generated by SEQUEST were loaded into Scaffold (version Scaffold-01_06_17, 

Proteome Software Inc., Portland, OR) to validate MS/MS peptide and protein 

identifications as well as to compare protein identifications across experimental 

conditions.  Peptide and protein probabilities were calculated by the Peptide and Protein 

Prophet algorithms (Nesvizhskii et al. 2003, Keller et al. 2002b), respectively.  A protein 

was identified if it received ≥ 99.0% protein confidence with ≥ 3 unique peptides at ≥ 

95% confidence.  A protein that received ≥ 99.0% protein confidence with 2 peptides at ≥ 

50% probability was considered identified only if the same protein had been identified by 

the above criteria in another treatment group.  If either of these criteria were not satisfied, 

the protein was considered to be low confidence and was scored as not detected.  Proteins 

identifications not assigned to the Mus musculus taxonomy were manually inspected.  

These proteins were either contaminants and were removed in the final analysis, or 

contained identified peptides identical to the mouse sequence and therefore, based on 

rules of parsimony, were considered to be of mouse origin. 

Computational and functional gene ontology analysis. NCBI database protein identifiers 

(gi) were matched to equivalent entries (accession) in the Uniprot database 

(www.uniprot.org), and if known, were reported as unprocessed precursors. Protein 

Prowler (http://pprowler.imb.uq.edu.au/) was used to identify proteins that possess a 

secretory pathway (SP) signal peptide (SP score > mTP/Other). Cytoscape/BiNGO was 

used to perform gene ontology (GO) assignments and determine significantly under- and 

over-represented functional GO categories.  Cytoscape network visualization platform 

(ver 2.5; 7/23/2007; http://www.cytoscape.org/) implementing the latest release of the 
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BiNGO plugin (ver 2.0; 1/17/2007; http://www.psb.ugent.be/cbd/papers/BiNGO/) 

(Maere, Heymans & Kuiper 2005) was used to identify proteins that were annotated to 

the extracellular space (GO:5576) and cell surface (GO: 9986).  Analyses were 

performed using the default BiNGO mouse annotation containing 19224 members 

(1/12/2007; ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/) and either the GOSlim_GOA or 

GO_Full ontology (12/18/2006; http://www.geneontology.org).  Statistical significance 

was determined by hypergeomtric analysis followed by Benjamini and Hochberg false 

discovery rate (FDR) correction (p < 0.001).  SecretomeP 2.0 

(http://www.cbs.dtu.dk/services/SecretomeP/) was used to evaluate proteins that may be 

non-classically secreted (p>0.5) in conjunction with prior experimental evidence.  The 

proteins designated as secretory/extracellular were assigned to broad functional 

categories relevant to extracellular functions.  SledgeHMMER (Chukkapalli, Guda & 

Subramaniam 2004) was used to perform batch searching of the Pfam database, followed 

by conversion of Pfam entries to their equivalent InterPro domain (release 14.1; 

http://www.ebi.ac.uk/interpro/). 

Targeted lipid profiling of conditioned media. Astrocytes were cultured and treated for 7 

days as described above.  A portion of the ACM filtrate (3 ml) was transferred into a 

borosilicate glass tube.  Tubes containing cell culture media alone (3 ml) were spiked 

with the following amounts of authentic lipid standards: 20, 50, 100, 200, 500, 1000, 

2000 pg.  A mixture of internal standards ([2H8]-5(S)-HETE, [2H8]-12(S)-HETE, [2H8]-

15(S)-HETE, [2H4]-9(S)-HODE, [2H4]-13(S)-HODE, [2H4]-PGE2, [2H4]-PGD2, [2H4]-11β-

PGF2, [2H4]-PGF2α, [2H4]-8-iso-PGF2α-PFB, 1 ng each) was added to each analytical 

sample and standard solution.  The analytical samples and standard solutions were 
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adjusted to pH 3 with 2.5 N hydrochloric acid.  Lipids were extracted with diethyl ether 

(4 ml × 2) and the organic layer was then evaporated to dryness under nitrogen.  The 

residue was dissolved in 100 μL of acetonitrile and treated with 100 μL of PFB-Br in 

acetonitrile (1:19, v/v) followed by 100 μL of DIPE in acetonitrile (1:9, v/v).  The 

solution was heated at 60 oC for 60 min, allowed to cool, evaporated to dryness under 

nitrogen at room temperature, and re-dissolved in 100 μL of hexane/ethanol (97:3, v/v).  

Analysis of the PFB derivatives by normal phase chiral LC-electron capture 

APCI/MRM/MS analysis was conducted on a 20 μL aliquot of this solution along with 

PFB derivatives of 24 authentic lipids and 10 heavy isotope analog internal standards as 

described below. 

A Waters Alliance 2690 HPLC system (Waters Corp., Milford, MA) was used for 

separation of lipids.  For the normal phase chiral LC-APCI/MS analysis, a Chiralpak AD-

H column (250 × 4.6 mm i.d., 5 μm; Chiral Technologies, Inc., West Chester, PA) was 

employed with a flow rate of 1.0 mL/min.  Separations were performed at 30 oC using a 

linear gradient.  Solvent A was hexane and solvent B was methanol/isopropanol (1:1, 

v/v).  The mobile phase gradient was as follows: 2 % B at 0 min, 2 % B at 3 min, 3.6 % B 

at 11 min, 8 % B at 15 min, 8 % B at 27 min, 50 % B at 30 min, 50 % B at 35 min, and 2 

% B at 37 min. 

Liquid separation and mass spectrometric analysis of lipids. A Finnigan TSQ Quantum 

Ultra AM mass spectrometer (Thermo Fisher, San Jose, CA) was used for the detection 

of targeted lipids. The instrument was equipped with an APCI source and operated in the 

negative ion mode maintaining unit resolution for both parent and product ions during 
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MRM analyses.  Operating conditions were as follows: vaporizer temperature was 450 

oC, heated capillary temperature was 250 oC, with a discharge current of 30 μA applied to 

the corona needle.  Nitrogen was used for the sheath gas, auxiliary gas and ion sweep gas 

set at 25, 3 and 3 (in arbitrary units), respectively.  Collision-induced dissociation (CID) 

was performed using argon as the collision gas at 1.5 mTorr in the second (rf-only) 

quadrupole.  An additional dc offset voltage was applied to the region of the second 

multipole ion guide (Q0) at 10 V to impart enough translational kinetic energy to the ions 

so that solvent adduct ions dissociate to form sample ions. 

  Targeted chiral LC-electron capture APCI/MRM/MS analysis was conducted 

using PFB derivatives of 24 lipids and 10 heavy isotope analog internal standards using 

the following MRM transitions: 9- and 13-oxo-ODE-PFB, m/z 293 → 113 (collision 

energy, 21 eV); 15-oxo-ETE-PFB, m/z 317 → 273 (collision energy, 14 eV); 9(R)- and 

9(S)-HODE-PFB, m/z 295 → 171 (collision energy, 18 eV); [2H4]-9(S)-HODE-PFB, m/z 

299 → 172 (collision energy, 18 eV); 13(R)- and 13(S)-HODE-PFB, m/z 295 → 195 

(collision energy, 18 eV); [2H4]-13(S)-HODE-PFB, m/z 299 → 198 (collision energy, 18 

eV); 5(R)- and 5(S)-HETE-PFB, m/z 319 → 115 (collision energy, 15 eV); [2H8]-5(S)-

HETE-PFB, m/z 327 → 116 (collision energy, 15 eV); 8(R)- and 8(S)-HETE-PFB, m/z 

319 → 155 (collision energy, 16 eV); 11(R)- and 11(S)-HETE-PFB, m/z 319 → 167 

(collision energy, 16 eV); 12(R)- and 12(S)-HETE-PFB, m/z 319 → 179 (collision 

energy, 14 eV); [2H8]-12(S)-HETE-PFB, m/z 327 → 184 (collision energy, 14 eV); 

15(R)- and 15(S)-HETE-PFB, m/z 319 → 219 (collision energy, 13 eV); [2H8]-15(S)-

HETE-PFB, m/z 327 → 226 (collision energy, 13 eV); PGE2-PFB, PGD2-PFB, 11β-
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PGE2-PFB, 8-iso-PGE2-PFB, m/z 351 → 271 (collision energy, 18 eV); [2H4]-PGE2-PFB, 

[2H4]-PGD2-PFB, m/z 355 → 275 (collision energy, 18 eV); 11β-PGF2-PFB, PGF2α-PFB, 

8-iso-PGF2α-PFB, m/z 353 → 309 (collision energy, 18 eV); [2H4]-11β-PGF2-PFB, [2H4]-

PGF2α-PFB, [2H4]-8-iso-PGF2α-PFB, m/z 357 → 313 (collision energy, 18 eV). 

Enzyme-Linked ImmunoSorbent Assay (ELISA). The levels of IL-6 were deterimined by a 

colorimetric ELISA kit (Pierce, Rockford, IL), and the levels of NGF were measured by 

Chemikine Sandwich ELISA kit (Chemicon, Billerica, MA), following the 

manufacturer’s instructions.  Serum-free media was used for dilution of the standards and 

unknowns. 

Western blot analysis. Protein concentration was measured using the Bradford reagent 

(Bio-rad, Hercules, CA). ACM protein samples were boiled in Laemmli sample buffer 

and then separated by either 10 % 1-D SDS-PAGE or 10 % NuPAGE gels.  Unless 

otherwise stated, Western blot detection was performed on identical biological samples 

and protein amounts as was performed in mass spectrometry analysis. Following 

electrophoresis, proteins were transferred to PVDF membranes (Millipore, Billerica, MA) 

and blocked in TBS containing 0.5% tween (TBS-t) and 5 % milk.  Membranes were 

then incubated in TBS-t containing 5% milk and primary antibody (see Chemicals and 

Materials).  Membranes were then washed in TBS-t, incubated with appropriate 

secondary antibodies conjugated to Alexa Fluor 680 (1:5000, Invitrogen, Carlsbad, CA) 

for 1 hour in TBS-t containing 1% milk, and visualized using the Odyssey Infrared 

Imaging system (Licor Biosciences, Lincoln, NE). 
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Statistical analyses. Graphs were constructed and statistical analyses were performed 

using GraphPad Prism 5 (GraphPad Software, Inc., San Diego, CA).  Unless otherwise 

stated, statistical significance was performed by two-tailed unpaired t-test.  For data that 

did not conform to Gaussian distributions, the non-parametric Mann-Whitney test was 

performed. 
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2.4 Results 

Enriched neonatal cortical astrocyte cultures were prepared as described in the 

Materials and Methods and were treated under serum-free conditions with either vehicle 

(control) or TNF-alpha (10 ng/ml), interleukin (IL)-1β (0.2 ng/ml), and interferon (IFN)-γ 

(1 ng/ml) for either an acute (1D) or sustained (7D) exposure interval.  Cell viability 

evaluated by flow cytometry after 1D or 7D did not significantly differ between control 

and cytokine-exposed cells (Figure 2-1B). Astrocyte activation by inflammatory 

mediators induced stereotypical morphological changes such as process formation and 

elongation (Figure 2-1A).  These changes were quantified by counting the number of 

cells with processes, which revealed that 1D and 7D cytokine treatment significantly 

increased the percent of cells with processes compared to untreated cultures (Figure 2-

2A).  In addition, the percent of cells with processes was also significantly increased from 

1D to 7D of cytokine treatment (Figure 2-2A). 

 

 

Figure 2-1. Characterization of primary murine astrocyte cell cultures. (A) 
Immunofluorescence staining for glial fibrillary acidic protein (GFAP, green). Nuclei were 
visualized with DAPI. (B) Cell viability as measured by flow cytometry (see Materials and 
Methods).  Minimum event count 20,000 cells per condition (N = 4). 
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Figure 2-2. Morphological and biochemical responses of murine astrocytes to cytokine 
exposure. (A) Quantification of percent GFAP-positive cells with processes. The percent of cells 
with processes were calculated from 3-6 fields/condition taken from three independent 
experiments. **p < 0.01, ***p < 0.001 by unpaired, two-tailed t-test. (B)  IL-6 production 
measured by ELISA in ACM.  Data are reported as the mean ± SD.  **p < 0.01 by unpaired, two-
tailed t-test (n = 3-6). (C) Nitric oxide synthase (NOS) activity measured by nitric oxide 
metabolite accumulation in ACM. Metabolites were measured by reductive chemistries coupled 
to chemiluminescence.  Data are reported as the mean ± SD. *p < 0.05, **p < 0.01 by unpaired, 
two-tailed t-test (n = 3-6). (D) LC-electron capture APCI/MRM/MS analysis of PGE2 (a) and 
PGF2α (c) in ACM from 7D control-treated (left) and 7D cytokine-treated (right) astrocytes. 
Concentrations of PGE2 (retention time (rt) = 31.0 min) and PGF2α (rt = 33.0 min) were 
calculated by interpolation of linear regression curves constructed from authentic lipid standards.  
Variation due to sample processing and mass spectrometry analysis was accounted for by 
addition of [2H4]-PGE2 (b) and [2H4]-PGF2α (d) internal standards. 
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Astrocytic responses to cytokine treatment were further characterized for each 

exposure interval by quantifying well-characterized markers of inflammation, namely IL-

6, nitric oxide, and prostaglandin E2 (PGE2) in astrocyte-conditioned media (ACM) (See 

Materials and Methods).  After 1D and 7D treatment with inflammatory mediators, robust 

production of IL-6 was detected in ACM compared to the control conditions (Figure 2-

2B).  The concentration of nitric oxide metabolites measured by reductive chemistries 

coupled to chemiluminescence detection was significantly increased in ACM compared 

to controls following 1D and 7D inflammatory mediator treatment (Figure 2-2C).  

Astrocytic responses to inflammatory mediators are also characterized by increased 

production of prostaglandins, such as prostaglandin E2 (PGE2), which is the most 

abundant prostanoid in the central nervous system.  A lipidomic profile of 24 lipids was 

carried out on ACM using LC-electron capture atmospheric pressure chemical 

ionization/multiple reaction monitoring (APCI/MRM) MS analysis.  Absolute 

quantification was performed against standard curves constructed using authentic lipids 

and normalized to deuterated lipid internal standards (Figure 2-2D).  These analyses 

revealed a selective increase of PGE2 (retention time (rt) = 31.0 min) after 7D cytokine 

treatment (0.49 ± 0.03 pmol/106 cells to 1.50 ± 0.12 pmol/106 cells; Figure 2-2D).  In 

contrast, there was no difference in the levels of PGF2α (rt = 33.0 min) detected in ACM 

from control (0.12 ± 0.01 pmol/106 cells) and cytokine-treated (0.13 ± 0.01 pmol/106 

cells) astrocytes (Figure 2-2D). 

While controlled inflammation is critical for innate immune defense as well as 

cellular remodeling and tissue repair, unregulated inflammation would clearly be 

detrimental.  Therefore, glia, one of the primary immune cells in the central nervous 
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system, possesses compensatory, anti-inflammatory mechanisms to limit the scope of 

inflammation.  In particular, trophic factors such as nerve growth factor (NGF) have been 

identified as initiators of signaling cascades that promote anti-inflammatory processes 

following pro-inflammatory events (Villoslada, Genain 2004).  Consistent with this 

mechanism, we detected significantly elevated levels of NGF only after 7D cytokine 

treatment compared to 7D control (203.2 ± 158.4 pg/ml vs 964.2 ± 433.7 pg/ml; P = 

0.0025).  Collectively, morphological evaluation, flow cytometry analysis, and 

quantification of IL-6, nitric oxide, and lipid markers of inflammatory responses 

established the secretory capacity, viability and stereotypical responses to inflammatory 

mediators. 

Extracellular and secretory proteins play a fundamental role in transforming the 

extracellular space and facilitating cell-cell contacts, such as during development or after 

synaptic remodeling following brain injury (Lukes et al. 1999).  While neuron-neuron 

communication has been an area of intense study during synaptogenesis, the capacity of 

astrocytes to influence this process, specifically through secreted proteins, is not 

completely understood.  Towards this goal, we employed a proteomic approach to 

identify soluble proteins secreted by murine astrocytes under control and cytokine-treated 

conditions.  The protein fraction of ACM from control or cytokine-treated cultures was 

obtained by ultrafiltration and was subjected to Gel/LC-MS/MS analysis.  Briefly, 

proteins were separated by 1D SDS-PAGE for approximately 2 cm and visualized by 

Colloidal blue (Figure 2-3A).  Each lane was cut into 12 equal slices and digested in-gel 

with trypsin (Speicher et al. 2000).  Tryptic digests were then analyzed by nanocapillary 

reverse phase liquid chromatography (LC) interfaced directly with a linear ion trap mass 
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spectrometer (Thermo LTQ) operated in data dependent mode (Tang et al. 2005).  

MS/MS sequence-to-spectrum assignments were generated using the SEQUEST 

algorithm searching against the NCBI nr database.  SEQUEST search results from the 12 

LC-MS/MS runs that comprised a complete proteome, i.e, a complete gel lane, were 

combined into a single biological sample within Scaffold (Proteome Software, Portland, 

OR).  Scaffold served as a validation tool, employing the PeptideProphet and 

ProteinProphet algorithms, which provide statistical evaluation of the SEQUEST results 

by expressing potential sequence-to-spectrum assignments as confidence scores 

(Nesvizhskii et al. 2003, Keller et al. 2002b).  A protein was identified if it received ≥ 

99.0% protein confidence with ≥ 3 unique peptides at ≥ 95% confidence.  A protein that 

received ≥ 99.0% protein confidence with 2 peptides at ≥ 50% probability was considered 

identified only if the same protein had been identified by the criteria listed above in 

another treatment group.  If either of these criteria were not satisfied, the protein was 

considered to be low confidence and was scored as not detected.  In total, 290 proteins 

were identified across all treatment groups (Table 2-1 and 2-2). 
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Figure 2-3. Reproducibility of Gel/LC-MS/MS. (A) ACM protein fraction from biological 
duplicates were resolved 1D-SDS-PAGE and visualized with Colloidal Blue. Biological 
duplicates show similar protein staining patterns. Increased total protein in ACM is observed after 
cytokine stimulation and after 7 days. (B) Frequency versus spectral count fold difference 
calculated for secreted proteins identified in biological duplicates from 7D control (gray bars) and 
7D cytokine (black bars). Spectral counts between biological duplicates differed by less than 2.5-
fold for about ninety percent of proteins. 
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The ability to compare and contrast protein identifications across several 

conditions is highly dependent upon the reproducibility of the treatment conditions and 

the proteomic approach.  Gel/LC-MS/MS analysis of 7D ACM biological duplicates from 

control and cytokine-treated conditions showed 96% protein identity.  As an additional 

measure of technical reproducibility, frequency versus fold difference in spectral counts 

(redundant peptides) between biological duplicates for each confirmed protein was 

calculated (Figure 2-3B).  Both 7D control and cytokine-treated conditions showed 

similar reproducibility, with > 85 % of the confirmed proteins varying by ≤ 2.5 fold 

between biological duplicates.  Importantly, slicing and analyzing the entire gel lane 

enabled identification of substantially more proteins than single protein band excision 

while not compromising depth of analysis or reproducibility as 90% of the proteins 

identified by a single band excision were confirmed by the Gel/LC-MS/MS method (data 

not shown).  The high reproducibility of the experimental design and proteomic method 

paired with rigorous selection criteria permitted us to compare and contrast proteins 

identified between control and cytokine-treated conditions. 

Previous studies have investigated mouse astrocyte intracellular proteomes (Yang 

et al. 2005, Egnaczyk et al. 2003), but only two studies have explored the secreteome, 

identifying a total of 40 unique proteins by 2-D SDS-PAGE and MALDI-TOF-MS 

(Lafon-Cazal et al. 2003, Delcourt et al. 2005).  The current study found 38 of these 

proteins while identifying an additional 252.  Since previous studies identified primarily 

the most abundant proteins contained within the secreteome, a rigorous analysis to 

distinguish between secreted/extracellular proteins and other non-secreted/intracellular 

proteins, which may be present due to cell death, was not necessary.  In the current study, 
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cell death was unchanged (~15%) and cytokine-independent across all treatment 

conditions as quantified by flow cytometry (Figure 2-1A) and trypan blue exclusion (data 

not shown).  Yet given the increased sensitivity of the current approach it was critical that 

the potential contribution of differences in depth of analysis be considered. 

We addressed these potential differences in depth of analysis by evaluating the 

protein identifications using a multistep computational workflow.  For the human 

proteome, cellular localization for only about 30% of all proteins has been determined 

experimentally (Nair, Rost 2005), making in silico localization prediction algorithms 

valuable computational tools for the analysis of secreted proteomes (Klee, Sosa 2007).  

Since the majority of soluble proteins destined for secretion into the extracellular space 

contain an N-terminal signal peptide, many computational algorithms utilize this feature 

for subcellular localization prediction.  The use of trained neural networks and support 

vector machines has improved the overall performance of these algorithms.  In particular, 

we utilized Protein Prowler (Hawkins, Boden 2006) for its excellent specificity (0.99) 

and sensitivity (0.91; Non-membrane) (Klee, Sosa 2007). Protein Prowler analysis 

predicted 149 proteins to contain an N-terminal signal peptide (Table 2-3), yet recent 

studies have clearly documented that not all extracellular/secreted proteins adhere to the 

N-terminal rule (Nickel 2005).  To maximize inclusion of secreted proteins that may lack 

an N-terminal signal, we utilized two complementary approaches. First, gene ontology 

(GO) analysis was performed using Cytoscape network visualization software 

implementing the BiNGO plug-in.  An additional 14 proteins were classified that lacked 

an identifiable signal peptide, but had been annotated to the extracellular region 

(GO:5576) or the cell surface (GO: 9986).  Second, a sequence-based prediction 
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algorithm for non-classical secretion, SecretomeP (Bendtsen et al. 2004a), was employed 

in conjunction with existing experimental evidence.  An additional 6 proteins that likely 

proceed via non-classical secretion were included as a result of this analysis, including 

vimentin, an intermediate filament protein secreted by activated macrophages (Mor-

Vaknin et al. 2003), as well as annexin A2 (Zhao et al. 2003)and cyclophilin A (Suzuki et 

al. 2006). 

Given that the majority of secreted proteins should become enriched in 

conditioned media between 1D and 7D compared to non-secreted proteins, the average 

fold change in relative protein abundance for proteins classified as secreted should be 

significantly greater than the changes in relative protein abundance of non-secreted 

proteins, which are largely identified due to uniform cell death (Figure 2-1A).  To test 

this hypothesis, semi-quantitative mass spectrometry based on label-free spectral 

counting was employed.  This method has been previously used as an effective means to 

estimate relative protein abundance (Liu, Sadygov & Yates 2004, Old et al. 2005, 

Rappsilber et al. 2002, Schmidt et al. 2007, Liu et al. 2007, Ishihama et al. 2005).  While 

semi-quantitative MS based on spectral counting can be used to compare the relative 

abundance between different proteins, for example by normalizing spectral counts by 

either the protein molecular weight or by the number of observable tryptic peptides, our 

goal was to compare relative changes of the same protein across experimental conditions. 

Therefore, we simply compared the number of redundant peptides, i.e. spectral counts, 

for each protein between experimental conditions (Table 2-4 and 2-5).  Supporting this 

hypothesis, the average, absolute fold change of protein abundance from 1D to 7D was 

significantly different (P < 0.0001) for the proteins classified in the secretome (3.9 ± 0.4, 
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mean ± SEM, N = 79) (Table 2-4) than for the proteins that were assigned as “non-

secretory” (2.1 ± 0.1, mean ± SEM, N = 84) (Table 2-5).   

While post-hoc analyses cannot achieve complete sensitivity for the classification 

of secretory proteins, by utilizing multiple complementary analyses, namely in silico 

cellular localization prediction algorithms, functional GO classification, and published 

experimental evidence, we generated a list of 169 high confidence secretory proteins, 

which could be assigned to seven broad functional categories (Figure 2-4A).  The list 

included expected extracellular matrix proteins, such as laminins and collagens, proteins 

involved in processing and proteolysis, such as matrix metalloproteinase-3 (MMP-3) and 

cathepsins, as well as proteins that play critical roles in the immune response, such as the 

complement components and chemokine ligands.  A complete list of these proteins and 

their corresponding numbers of unique peptides are reported in Table 2-1.  InterPro 

domain analysis of these proteins was consistent with the InterPro domains of 2033 

proteins that were computationally predicted to be soluble, secreted proteins from the 

mouse genome (Grimmond et al. 2003).  Significantly, the EGF-like domain 

(IPR000561) was the most common domain in both the theoretical (Grimmond et al. 

2003) and experimental mouse secretomes (Figure 2-4B).  To ascertain specific 

molecular and biological processes that were represented among the proteins identified in 

the astrocyte secretome (Table 2-1), we used GO classification to assign proteins into 

molecular, biological, and cellular subcategories, followed by functional network analysis 

using hypergeometric statistics paired with multiple testing correction (p < 0.001) (see 

Materials and Methods).  As shown in figure 2-4C, proteins with molecular functions 

assigned to protein binding (P = 2.6E-5) as well as enzyme regulator (P = 1.5E-7), 
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hydrolase (P = 4.9E-7), isomerase (P = 6.4E-7), and oxidoreductase (P = 1.8E-4) 

activities were over-represented.  The biological process ontology contained proteins 

significantly over-represented in development (P = 4.1E-8) and response to stimulus (P = 

2.6E-5).  The proteins that remained unclassified (Table 2-2) were significantly over-

represented in catabolism (P = 1.5E-26) and macromolecule metabolism (P = 3.3E-5) 

(data not shown), further supporting the computational and functional analysis workflow 

employed was largely successful in classifying extracellular and secretory proteins. 
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Figure 2-4. Functional gene ontology (GO) analysis of the astrocyte protein secretome. (A) 
Astrocyte protein secretome containing 169 proteins classified into broad functional categories. 
(B) InterPro domains (Top 10) represented by the astrocyte protein secretome. (C) Over-
represented GO terms of the astrocyte protein secretome. Network visualization and statistical 
analysis was performed using BiNGO 2.0 implemented in the Cytoscape platform. Over-
representation was determined for each GO term individually by comparing the proportion of 
genes assigned to each term from the astrocyte secretome to the proportion of genes assigned to 
that same term from the annotated mouse genome. Statistically significant over-representation 
was calculated by hypergeometric analysis and Benjamini & Hochberg false discovery rate 
(FDR) correction (p<0.001). Key represents range of p-values for significantly over-represented 
GO terms. To maintain hierarchical accuracy, parental GO terms that were not significantly over-
represented are illustrated (white shapes). Relative sizes of shapes correspond to the number of 
members within that term. 
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The effects of pro-inflammatory cytokines on the astrocyte secretome (Table 2-1) 

were compared after 1D and 7D of conditioning.  Under control conditions, 80 proteins 

were identified from 1D ACM, which subsequently increased to 109 upon cytokine 

stimulation (Figure 2-4A).  In contrast, the total and unique numbers of proteins 

identified in 7D ACM between control and cytokine conditions were more similar 

(Figure 2-4B).  The relative decrease in unique proteins at 7D versus 1D cytokine 

exposure can be partially attributed to the substantial basal protein secretion, as 

evidenced by the 77 proteins that were unique to 7D control versus 1D control (Figure 2-

4C) and by the related increase in total secreted protein in 7D ACM as visualized by 

SDS-PAGE (Figure 2-3A).  Importantly, this did not preclude identification of proteins 

which were unique to 1D or 7D conditions.  Overall, 15 proteins were exclusively 

detected in control ACM (“c” in Table 2-1), while 12 proteins were exclusively detected 

in ACM only after cytokine treatment (“d” in Table 2-1).  These cytokine-specific 

proteins included MMP-3 and four members of the chemokine ligand family, consistent 

with their roles in propagating immune response.  Interestingly, three of the chemokine 

ligands, chemokine (C-C motif) ligand 7, chemokine (C-C motif) ligand 8, and 

chemokine (C-X3-C motif) ligand 1, were detected only after 7D cytokine treatment, 

while chemokine, (C-X-C motif) ligand 1 was also identified under the 1D exposure 

condition. 
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Figure 2-5. Basal and cytokine-induced protein identifications in the astrocyte protein 
secretome. (A) Comparison of 1D ACM between control and cytokine-treated astrocytes. (B) 
Comparison of 7D ACM between control and cytokine-treated astrocytes. (C) Evaluation of 
control ACM between 1D and 7D cultured astrocytes.  

 

 
Figure 2-6. Technical and 
biological reproducibility of 
spectral counting.  
(A) Histogram plotting frequency 
(number of proteins) versus fold 
difference in spectral counts 
between 7D control (gray bars) and 
7D cytokine (black bars) biological 
duplicates.  Data represents 
reproducibility of spectral count 
fold difference of a different set of 
biological duplicates (Set 2) from 
figure 2-3 (Set 1).(B) Scatterplot 
comparing fold-change in relative 
protein abundance (RPA) between 
two sets of biological duplicates 
from cytokine exposure. Values 
plotted are for proteins ≥ ±2.5-fold 
change relative to control. With one 
exception (quadrant I), proteins 
with increased (quadrant II) and 
decreased (quadrant IV) RPA were 
consistent between biological 
duplicates. 

To reveal potential 
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functional alterations in the population of secretory proteins resulting from 7D cytokine, 

changes in relative protein abundance (RPA) were examined with respect to functional 

category.  As previously described, spectral counting analysis can be used to calculate 

fold changes in relative protein abundance. The spectral count fold difference between 

7D control and cytokine samples that could be considered significant was determined 

empirically. For this purpose, the achieved reproducibility of two sets of biological 

duplicates for both 7D control and 7D cytokine was examined (Figure 2-3A vs Figure 2-

6). The first set, as shown in figure 2-3A, corresponds well with spectral count fold 

difference from independent experiments of two additional biological replicates (Figure 

2-6A). Overall, technical reproducibility is demonstrated by the fact that the spectral 

count fold difference across both sets of biological duplicates was less than 2.5-fold for 

nearly 90% of proteins (Figure 2-3A and Figure 2-6A). Defining a 2.5-fold significance 

threshold, 7D cytokine-induced changes in RPA were consistent in magnitude between 

set 1 and set 2 of biological duplicates for all proteins (76) except one (Figure 2-6B). 

Although the absolute fold changes calculated was not always consistent between the two 

sets of biological duplicates, especially for positive values, this was expected as spectral 

counting analysis often provides a semi-quantitative measure of relative protein 

abundance. Importantly, these data support our selection of a 2.5-fold significance 

threshold for evaluating changes in RPA after cytokine exposure. 

Based on these data, a protein was considered increased relative to control if it (1) 

was exclusively detected in 7D cytokine samples or (2) had a ≥ 2.5-fold increase in 

relative protein abundance (RPA) as assessed by the number of redundant peptides 

(spectral counts) (Table 2-4).  A protein was considered significantly decreased relative 
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to control if it (1) was exclusively detected in 7D control samples or (2) had a ≥ 2.5-fold 

decrease in RPA (Table 2-4).  RPA changes were calculated for the shared protein IDs 

between 7D control and 7D cytokine conditions (Figure 2-5B, circle overlap). Using 

these criteria, a total of 36 proteins (13 proteins unique to 7D cytokine ACM plus 23 

proteins with increased RPA) identified after 7D cytokine treatment were considered 

significantly increased relative to 7D control.  Of these, 28% and 33% were associated 

with immune response and extracellular matrix and adhesion, respectively (Figure 2-7A).  

In contrast, 40 proteins (19 proteins unique to 7D control ACM plus 21 proteins with 

decreased RPA) were considered significantly decreased after 7D cytokine stimulation.  

Interestingly, compared to the group of protein with increased RPA, proteins with 

decreased RPA comprised a smaller portion of immune response (8%) and extracellular 

matrix and adhesion (15 %), whereas those associated with metabolism (23%) were now 

the most prominent (Figure 2-7B).  Notably, there were no significant decreases in RPA 

under control conditions from 1D to 7D suggesting that the observed decreases in RPA of 

metabolic enzymes after 7D cytokine treatment was due to the cytokine exposure and not 

to a decreased secretion over time.  A similar analysis was not performed at the 1D time 

point, as there were too few proteins with significant decreases in RPA to perform 

functional comparisons. 
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Figure 2-7. Functional comparison of proteins with relative protein abundance (RPA) 
changes after 7D cytokine treatment. (A) Functional classification of proteins with increased 
RPA.  Thirty-six proteins were classified, composed of 23 proteins with ≥ 2.5-fold increase in 
redundant peptides and 13 proteins that were unique to 7D cytokine ACM. (B) Functional 
classification of proteins with decreased RPA. A total of 40 proteins were classified, composed of 
21 proteins with ≥ 2.5-fold decrease in redundant peptides and 19 proteins that were unique to 7D 
control ACM. 
 
 

Figure 2-8. Western blot 
validation of Gel/LC-MS/MS 
analysis. (A) Western blots for 
proteins predicted to have 
increased (complement C3, 
ceruloplasmin) or decreased 
(ApoE) relative protein 
abundance (RPA) based on 
spectral count analysis. For each 
treatment condition, equal 
volumes of biological duplicates 
were loaded, identical to the 
conditions under which the mass 
spectrometry analysis was 
performed. (B) Western blot for 
chemokine ligand 1 (CXCL1) 
showed detection only after 
cytokine stimulation. Equal 
protein (25 ug) was loaded per 
lane. 
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Western blot analysis was performed for several of the proteins identified in the 

astrocyte secretome to (1) confirm their identification by mass spectrometry and (2) 

corroborate the spectral counting analysis.  Consistent with the increase in spectral 

counts, complement C3 and ceruloplasmin show an increase upon cytokine treatment, 

while the cytokine-induced decrease in ApoE protein levels support the observed 

decrease in spectral counts (Figure 2-8A).  Importantly, chemokine ligand 1, which was 

exclusively identified by mass spectrometry under cytokine-treated conditions (Table 2-

1), was also only detected by Western analysis under these conditions (Figure 2-8B). 
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2.5 Discussion 
The astrocyte secretome represents a relatively unexplored proteome but one with 

increasing interest and importance as astrocytes play vital roles in central nervous system 

development and synaptic communication.  While activated astrocytes are a hallmark of 

many central nervous system pathologies, and as such their responses to inflammatory 

mediators have been studied extensively (Pekny, Nilsson 2005), a broad characterization 

of astrocyte-secreted biomolecules had not been performed.  Here, we report a systematic 

secretome analysis from murine astrocytes under control and cytokine-treated conditions, 

which mimicked both acute (1D) and more sustained (7D) exposure to inflammatory 

mediators.  Using validated proteomic approaches coupled with stringent selection 

criteria and a multistep bioinformatic workflow, 169 extracellular/secreted proteins were 

identified from astrocyte-conditioned media.  This study confirmed a majority of known 

astrocyte-secreted proteins (Christopherson et al. 2005, Lafon-Cazal et al. 2003, 

Koistinaho et al. 2004, Delcourt et al. 2005), while identifying more than 100 proteins not 

previously ascribed to astrocyte protein secretion.  Proteins identified in the secretome 

included components of the extracellular matrix and proteins involved in extracellular 

protein processing and metabolism, which are consistent with known functions of 

astrocytes in the maintenance and restructuring of the extracellular scaffolding.  The 

secretome also included members of the insulin-like growth factor binding proteins and 

cystatin C, known to provide growth support for stem cells, neurons and astrocytes.  In 

addition, we identified many lesser-known or studied components of the astrocyte ECM 

such as nidogen-2, cathepsins, proteinase inhibitors, and glucosamine transferases, which 

may not only regulate the composition of the ECM, but also serve as signaling molecules 
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in a paracrine or autocrine fashion.  Interestingly, one of the largest functional categories 

containing protein with decreased RPA was metabolism (Figure 2-7B).  This included 

several enzymes, such as hexosaminidase B and beta-glucuronidase, involved in protein 

glycosylation as well as the processing of glycosaminoglycans (GAGs).  Deficiencies in 

these classes of proteins are associated with various lysosomal storage diseases, such as 

Sandhoff’s disease and the mucopolysaccharidosis disorders, which can exhibit a 

diversity of central nervous system deficits (Donsante et al. 2007, Denny et al. 2007).   

The study also found the secretion of four ligands from the C-C, C-X-C and C-

X3-C chemokine ligand families upon cytokine stimulation.  These low molecular weight 

proteins have diverse biological function in the central nervous system, including the 

regulation of inflammation (Bezzi et al. 2001, Babcock et al. 2003) and the migration of 

oligondendrocyte precursors (Tsai et al. 2002) and neural stem cells (Imitola et al. 2004).  

The C-X-C ligand 1, which was the only chemokine identified 1 day after inflammatory 

stimulation, is expressed in reactive astrocytes in mice models of multiple sclerosis 

(Glabinski et al. 1997) and although not toxic to oligodendrocytes may prevent their 

migration into demyelinated regions.  The secretion of these chemokines may also have 

autocrine functions resulting in the elaboration of other inflammatory mediators such as 

products of the cyclooxygenase pathway and nitric oxide synthases.  Quantitative 

lipidomics determined that PGE2, and PGF2α, but not other lipid mediators of arachidonic 

acid metabolism were selectively secreted by astrocytes, and that only PGE2 is 

significantly elevated upon cytokine treatment.  Interestingly, elevated levels of PGE2 

have been documented in the cerebrospinal fluid (CSF) of patients with 

neurodegenerative diseases (Combrinck et al. 2006). 
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While the majority of classically secreted proteins are produced as unprocessed 

precursors that contain signal sequences, directing them through the traditional ER/Golgi 

secretion pathway, a limited number of proteins have been identified that do not contain 

signal sequences, but yet are still actively secreted (Nickel 2005).  Of the 169 proteins 

reported in the astrocyte secretome, 12% did not contain an N-terminal signal sequence.  

Many of these proteins have been documented as proceeding through non-classical 

secretory pathways including macrophage inhibitory factor (MIF), galectin-3, 

phosphatidylethanolamine-binding protein 1 (PEBP-1), vimentin, meteorin, and acyl 

CoA-binding protein (ACBP) (Nickel 2005, Mor-Vaknin et al. 2003, Flieger et al. 2003, 

Guidotti et al. 1983, Hengst et al. 2001).  Interestingly, the secretion of ACBP, also 

known as diazepam binding inhibitor (DBI), was originally described as a glial derived 

factor (Guidotti et al. 1983), and recent findings suggest that its secretion may require the 

Golgi-associated protein GRASP secretory pathway (Kinseth et al. 2007).  Another 

protein of potential interest, meteorin, has been previously identified as a 

developmentally secreted protein that facilitates astrocyte formation and glial cell 

differentiation and can support neuron axonal extension (Nishino et al. 2004).  

Global proteomic analyses of conditioned cellular media resulted in the 

identification of secreted and extracellular proteins as well as non-secreted proteins, 

which in part can be ascribed to cellular death.  Given the depth of analysis afforded by 

current proteomic approaches, computational means are necessary for rapid, unbiased 

evaluation of protein secretomes.  The current approach provides a computational 

workflow that can be applied in a systematic fashion to analyze protein identifications 

from any biological secretome.  Importantly, the identification of secreted proteins with 
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distinct export mechanisms highlights the utility of this model system for elucidating the 

molecular mechanisms that govern the regulation and functionality of protein secretion.  

Overall, this systematic proteomic analysis provides a comprehensive profile of the 

astrocyte secretome that can be used as a reference for evaluating the impact of individual 

or multiple components on central nervous system physiology. 
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Table 2-1. Basal and cytokine-induced astrocyte secretome 
   1D 

Control 1D Cyto 7D 
Control 7D Cyto

Protein Name (Synonym) Accessiona MW 
(kDa) Unique Peptidesb 

Extracellular Matrix and Adhesion       
Agrin A2ASQ0 205.0 6 26 8 27 
Basement membrane-specific heparan sulfate proteoglycan core protein  Q05793 398.3 3 18 17 46 
Cadherin-2 precursor (Neural-cadherin)  P15116 99.8 7 6 11 11 
Calsyntenin 1 Q9EPL2 108.9 7 6 10 6 
Collagen alpha-1(I) chain precursor  P11087 138.0 3 5 9 6 
Collagen alpha-1(IV) chain precursor  P02463 160.7 - - 2 3 
dCollagen alpha-1(VI) chain precursor  Q04857 108.5 - 2 - 3 
cCollagen alpha-1(XI) chain precursor  Q61245 181.0 - - 2 - 
Collagen alpha-1(XII) chain precursor  Q60847 340.2 3 13 41 27 
Collagen alpha-2(I) chain precursor  Q01149 129.6 - 2 6 4 
Collagen alpha-2(V) chain precursor  Q3U962 145.0 4 12 9 7 
EGF-containing fibulin-like extracellular matrix protein 2  Q9WVJ9 49.4 3 4 11 4 
Extracellular matrix protein  Q61508 62.8 - - 7 4 
Fat 1 cadherin Q9QXA3 506.0 - - 8 4 
Fibromodulin precursor (FM)  P50608 43.1 4 5 6 6 
Fibronectin 1 Q3UGY5 262.8 54 59 65 65 
Fibulin-5 precursor (FIBL-5)  Q9WVH9 50.2 4 2 8 3 
Galectin-3 (Galactose-specific lectin 3)  P16110 27.5 - 2 3 2 
Glypican-4 precursor (K-glypican)  P51655 62.6 - 3 6 6 
dIntercellular adhesion molecule (Icam1)  Q922B3 58.9 - - - 4 
dLaminin subunit alpha-4 precursor  P97927 201.8 - - - 7 
Laminin subunit alpha-5 precursor  Q61001 404.0 - 7 2 23 
dLaminin subunit beta-2 precursor (S-laminin)  Q61292 196.4 - 8 - 19 
Laminin subunit gamma-1 precursor (Laminin B2 chain)  P02468 177.3 - 11 4 25 
Legumain  A2RTI3 49.4 2 6 6 6 
Lysyl oxidase-like 3  Q91VN8 83.7 - - 3 2 
Mammalian ependymin related protein-2 Q99M71 25.5 7 7 8 7 
Mimecan precursor (Osteoglycin)  Q62000 34.0 - 4 6 3 
Mini-agrin Q5EBX5 103.4 2 2 2 3 
Neurocan core protein precursor (Chondroitin sulfate proteoglycan 3)  P55066 137.2 7 8 6 5 
Nidogen 2 protein  Q8R5G0 153.9 3 - 7 2 
SPARC-like protein 1 precursor (Matrix glycoprotein Sc1)  P70663 72.3 - 4 6 5 
Tenascin precursor (TN-C)  Q80YX1 231.8 3 14 7 24 
Tenascin-N precursor (TN-N)  Q80Z71 173.1 - - 5 14 
Thrombospondin 1  P35441 129.7 - 2 5 14 
Vascular cell adhesion protein 1 precursor (CD106 antigen)  P29533 81.3 5 4 13 19 
Vitamin K-dependent protein S precursor  Q08761 74.9 - - 4 5 

Protein Processing and Proteolysis       
78 kDa glucose-regulated protein precursor  P20029 72.4 8 8 9 5 
Alpha-2-macroglobulin-P precursor (Alpha-2-macroglobulin)  Q6GQT1 164.3 38 48 51 47 
Bone morphogenetic protein 1 P98063 111.7 2 4 3 4 
Calreticulin precursor  P14211 48.0 3 2 3 - 
Carboxypeptidase E precursor  Q00493 53.3 11 10 14 14 
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Cathepsin B precursor  P10605 37.3 13 11 13 13 
Cathepsin D precursor  P18242 45.0 7 8 13 12 
Cathepsin L1 precursor P06797 37.5 7 3 7 7 
Cathepsin S precursor O70370 38.4 - - 7 6 
Cathepsin Z precursor Q9WUU7 34.0 4 2 6 8 
Cystatin-C precursor (Cystatin-3) P21460 15.5 9 10 9 12 
Dipeptidyl-peptidase 1 precursor (Cathepsin C) P97821 52.4 - 2 2 3 
Dipeptidyl-peptidase 2 precursor Q9ET22 56.3 2 3 - 2 
cEndoplasmic reticulum protein ERp29 precursor P57759 28.8 - - 3 - 
Endoplasmin precursor (GRP94)  P08113 92.5 2 2 3 2 
Glia-derived nexin precursor (Serpine 2)  Q07235 44.2 - 8 9 9 
cInter-alpha-trypsin inhibitor heavy chain H3  Q61704 99.0 - - 7 - 
Inter-alpha-trypsin inhibitor heavy chain H5 Q8BJD1 106.7 - - 3 6 
Lysosomal protective protein precursor  P16675 53.8 - 6 7 9 
Metalloproteinase inhibitor 2 precursor (TIMP-2)  P25785 24.3 4 5 8 7 
Peptidyl-prolyl cis-trans isomerase A P17742 18.0 4 3 7 6 
Peptidyl-prolyl cis-trans isomerase B P24369 22.7 5 6 7 4 
Plasma glutamate carboxypeptidase precursor Q9WVJ3 51.8 6 6 7 5 
Plasma protease C1 inhibitor P97290 55.6 2 3 12 14 
Plasminogen activator inhibitor 1 P22777 45.0 - 7 3 9 
Pigment epithelium-derived factor (PEDF) P97298 46.2 13 14 15 13 
Protein disulfide-isomerase A3 precursor P27773 56.7 10 11 13 6 
Protein disulfide-isomerase A4 precursor P08003 72.0 - 3 7 2 
cProtein disulfide-isomerase A6 precursor Q922R8 48.1 - - 3 - 
Protein disulfide-isomerase precursor (PDI) P09103 57.1 3 3 5 - 
Puromycin-sensitive aminopeptidase Q11011 103.3 2 6 3 - 
Serine protease inhibitor A3N precursor (Serpin A3N) Q91WP6 46.7 5 11 11 10 
dStromelysin-1 precursor (MMP-3) P28862 53.8 - 3 - 8 
Sulfhydryl oxidase 1 precursor (Quiescin Q6) Q8BND5 82.8 - - 9 5 
Tripeptidyl-peptidase 1 precursor O89023 61.3 - - 2 4 

Metabolism       
Acid ceramidase precursor (Acylsphingosine deacylase) Q9WV54 44.7 - - 4 5 
Alpha-N-acetylglucosaminidase O88325 82.6 - - 3 3 
Aspartate aminotransferase  P05202 47.4 3 4 4 2 
cBeta-1,3-N-acetylglucosaminyltransferase lunatic fringe  O09010 42.0 - - 3 - 
cBeta-glucuronidase precursor  P12265 74.2 - - 5 - 
Beta-hexosaminidase alpha chain precursor (Hexosaminidase A) P29416 60.6 - - 4 2 
Beta-hexosaminidase beta chain precursor (Hexosaminidase B) P20060 61.1 4 3 13 4 
cBifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1 Q3UHN9 100.7 - - 3 - 
Chitinase-3-like protein 1 precursor (Cartilage glycoprotein 39) Q61362 43.0 5 16 14 15 
Epididymis-specific alpha-mannosidase precursor O54782 115.6 2 10 7 6 
Exostosin-2 P70428 82.1 - - 5 2 
Galactocerebrosidase precursor (GALCERase) P54818 75.5 - - 3 2 
Gamma-glutamyl hydrolase precursor Q9Z0L8 35.4 2 2 5 4 
Ganglioside GM2 activator precursor Q60648 20.8 3 3 3 2 
Glucose-6-phosphate isomerase (GPI) P06745 62.8 7 5 7 4 
dLysosomal alpha-glucosidase precursor (Acid maltase) P70699 106.2 - - - 4 
N-acetylglucosamine-6-sulfatase precursor (G6S) Q8BFR4 61.2 - 3 4 4 
cN-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase Q8BWP8 47.4 - - 4 - 
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N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase  precursor Q64191 37.0 - 3 3 4 
Palmitoyl-protein thioesterase 1 precursor (PPT-1) O88531 34.5 - - 5 5 
Platelet-activating factor acetylhydrolase Q60963 49.2 - 2 8 2 
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (Lysyl hydroxylase 
1) Q9R0E2 83.6 3 4 14 7 

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (Lysyl hydroxylase 
2) Q9R0B9 84.5 - 3 5 3 

Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Lysyl hydroxylase 
3) Q9R0E1 84.9 - - 7 6 

Putative phospholipase B-like 2 precursor Q3TCN2 66.7 - 2 2 5 
Ribonuclease T2 isoform 1 Q9CQ01 29.6 2 - 3 5 

Immune       
Beta-2-microglobulin precursor P01887 13.8 2 2 3 5 
cCell adhesion molecule 4 precursor Q8R464 42.7 - - 4 - 
dChemokine (C-C motif) ligand 7 Q03366 11.0 - - - 3 
dChemokine (C-C motif) ligand 8 Q9Z121 11.0 - - - 3 
dChemokine (C-X3-C motif) ligand 1 (Fractalkine) O35188 42.1 - - - 4 
dChemokine (C-X-C motif) ligand 1 (Growth-regulated alpha protein) P12850 10.3 - 3 - 3 
Complement C1q subcomponent subunit B precursor P14106 26.7 - - 2 3 
Complement C1q tumor necrosis factor-related protein 5 precursor Q8K479 25.4 3 5 3 4 
Complement C3 precursor P01027 186.5 33 72 66 89 
Complement C4-B precursor P01029 192.9 12 7 40 39 
Complement C1q subcomponent subunit C precursor Q02105 26.0 - - 3 3 
Complement C1r-A subcomponent Q8CG16 80.1 - 4 9 15 
Complement C1s-A subcomponent Q8CG14 77.4 - - 7 19 
Complement factor B precursor P04186 85.0 - - 4 18 
Cyclophilin C-associated protein O35649 64.1 4 - 8 12 
H-2 class I histocompatibility antigen, D-B alpha chain precursor P01899 40.8 - 2 4 4 
H-2 class I histocompatibility antigen, Q8 alpha chain P14430 37.5 - 5 3 4 
Immunoglobulin superfamily containing leucine-rich repeat Q6GU68 45.6 2 4 3 2 
Lysozyme C type M precursor P08905 16.7 - - 4 3 
Macrophage colony-stimulating factor 1 precursor (CSF-1) P07141 60.6 2 5 4 8 
cMacrophage colony-stimulating factor 1 receptor P09581 109.3 - - 3 - 
Macrophage migration inhibitory factor (MIF) P34884 12.5 3 2 2 3 
Monocyte differentiation antigen CD14 precursor P10810 39.2 - 2 9 6 
Pentraxin-related protein PTX3 precursor P48759 41.8 5 10 3 11 
Platelet-derived growth factor receptor-like protein precursor Q6PE55 41.9 - 2 2 3 

Binding and Transport       
45 kDa calcium-binding protein precursor (SDF-4) Q61112 42.1 2 2 4 5 
cAcyl-CoA-binding protein (ACBP) P31786 10.0 - - 3 - 
dAdipocyte enhancer-binding protein Q640N1 128.4 - - - 6 
Annexin A2 P07356 38.7 6 2 8 - 
Apolipoprotein E precursor (Apo-E) P08226 35.9 10 3 14 13 
cBiotinidase precursor Q8CIF4 58.6 - - 3 - 
Ceruloplasmin Q61147 121.2 12 34 24 47 
Dystroglycan precursor (Dystrophin-associated glycoprotein 1) Q62165 96.9 5 4 10 7 
Follistatin-related protein 1 precursor Q62356 34.6 5 9 7 12 
Gelsolin precursor (Actin-depolymerizing factor) P13020 85.9 2 - 8 3 
Lipopolysaccharide binding protein Q61805 53.1 - 5 5 6 
dLysosomal-associated membrane glycoprotein 1 (LAMP1) P11438 43.9 - - - 3 
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Neutrophil gelatinase-associated lipocalin precursor (Lipocalin 2) P11672 22.9 - 6 5 7 
Nucleobindin-1 precursor (CALNUC) Q02819 53.4 2 9 7 7 
Phosphatidylethanolamine-binding protein 1 (PEBP-1) P70296 20.8 4 5 6 4 
Phospholipid transfer protein precursor (Lipid transfer protein II) P55065 54.5 3 - 16 13 
Rab GDP dissociation inhibitor beta Q61598 50.5 4 5 9 3 
Renin receptor precursor Q9CYN9 39.1 - - 2 3 
SPARC precursor P07214 34.3 11 11 12 11 
Serotransferrin precursor (Transferrin) Q921I1 76.7 - - 12 3 
cSortilin-related receptor, LDLR class A repeats-containing O88307 247.1 - - 3 - 
Sulfated glycoprotein 1 precursor (Prosaposin) Q61207 61.4 2 4 12 13 
Superoxide dismutase, extracellular O09164 27.4 - - 5 6 
Transcobalamin-2 precursor O88968 47.6 7 7 8 9 
Vacuolar ATP synthase subunit S1 precursor Q9R1Q9 51.0 - 4 5 5 
Vesicular integral-membrane protein VIP36 precursor Q9DBH5 40.4 - - 3 4 

Cell Growth & Maintenance       
Epididymal secretory protein E1 precursor Q9Z0J0 16.4 4 5 5 5 
Growth-arrest-specific protein 6 precursor (GAS-6) Q61592 74.6 - - 6 4 
Insulin-like growth factor-binding protein 2 P47877 32.8 8 4 13 13 
Insulin-like growth factor-binding protein 3 P47878 31.7 - 2 3 3 
Insulin-like growth factor-binding protein 5 Q07079 30.4 3 4 4 6 
Insulin-like growth factor-binding protein 7 Q61581 28.9 - 2 5 12 
cPlexin domain-containing protein 2 precursor Q9DC11 59.6 - - 3 - 
Prolow-density lipoprotein receptor-related protein 1 precursor (A2MR) Q91ZX7 504.7 - - 4 5 
Ptprz1 protein (DSD-1 Proteoglycan) B2RXS8 164.4 3 3 6 5 

Other       
4632419I22Rik protein Q6NXM5 31.9 - - 4 3 
Acid sphingomyelinase-like phosphodiesterase 3a precursor P70158 49.9 - - 3 2 
Amyloid beta A4 protein precursor (APP) P12023 86.7 2 5 8 8 
CD109 antigen precursor Q8R422 161.7 - 5 10 3 
Clusterin precursor (Apolipoprotein J) Q06890 51.7 10 4 15 18 
cMeteorin-like protein Q8VE43 34.5 - - 3 - 
Profilin 1 P62962 11.8 6 6 6 5 
Retinoic acid receptor responder protein 2 precursor Q9DD06 18.4 - - 3 4 
Secretogranin 3 P47867 53.3 2 2 14 4 
Thioredoxin-dependent peroxide reductase P20108 28.1 - - 2 3 
Vimentin P20152 53.7 18 20 23 20 
Proteins are organized by functional category and reported with their corresponding Uniprot accession 
number, molecular weight (MW), and unique peptides identified for each treatment condition. 
a) Accession numbers are reported from the Uniprot database (www.uniprot.org) and, when available, 
refer to the unprocessed precursor protein. 
b) The average number of unique peptides identified is reported for protein identifications that passed 
the selection criteria as detailed in the Materials and Methods.  A null value indicates the protein did 
not meet the minimum criteria for identification. 
c) Protein was exclusively detected under control conditions. 
d) Protein was exclusively detected under cytokine-treated conditions. 
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 Table 2-2. Unique peptides from unclassified proteins. 
   1D 

Control 1D Cyto 7D 
Control 7D Cyto

Protein Name (Synonym) Accessiona MW 
(kDa) Unique Peptidesb 

14-3-3 protein beta  Q9CQV8 28,086 4 4 6 5 
14-3-3 protein epsilon  P62259 29,174 11 8 12 8 
14-3-3 protein eta  P68510 28,212 3 2 - 2 
14-3-3 protein gamma  P61982 28,303 4 4 6 3 
14-3-3 protein theta  P68254 27,778 3 4 8 4 
14-3-3 protein zeta  P63101 27,771 7 8 8 6 
Actin related protein 2/3 complex, subunit 2  Q9CVB6 34,357 2 4 2 3 
Actinin, alpha 1  Q7TPR4 103,068 24 24 39 8 
Actinin, alpha 4  P57780 104,977 6 32 17 17 
Aldehyde dehydrogenase 1 family, member L1  Q8R0Y6 98,709 - 3 4 - 
Aldo-keto reductase family 1, member A4  Q9JII6 36,587 4 2 2 3 
Aldolase 1, isoform A  Q5FWB7 39,356 4 8 11 6 
Aldolase 3, isoform C  Q5SYM1 39,395 2 10 2 4 
Annexin A3  O35639 36,371 2 - 6 - 
Annexin A5  P48036 35,752 5 3 6 2 
Asparaginase like 1  Q8C0M9 33,950 3 4 4 - 
Astrocytic phosphoprotein PEA-15 Q62048 15,054 - 4 3 3 
Brain glycogen phosphorylase  Q8CI94 96,730 - 2 5 - 
Calponin 3, acidic  Q9DAW9 36,429 - - 2 2 
Clathrin, heavy polypeptide (Hc)  Q68FD5 191,557 3 14 6 4 
Cofilin 1, non-muscle  P18760 18,560 - 5 5 4 
Creatine kinase, brain  Q04447 42,713 9 10 11 9 
Cytochrome c  P62897 11,605 3 2 2 2 
Dihydropyrimidinase-like 2  O08553 62,278 13 12 12 5 
Dimethylarginine dimethylaminohydrolase 1  Q9CWS0 31,381 3 5 3 2 
DJ-1 protein  Q99LX0 20,021 2 3 3 3 
Enolase 1, alpha non-neuron  P17182 47,141 7 9 8 7 
Eukaryotic initiation factor 4AII  P10630 46,402 - 2 5 3 
Eukaryotic translation elongation factor 2  P58252 95,314 4 4 5 3 
Eukaryotic translation initiation factor 5A  P63242 16,303 - 2 2 3 
Fatty acid binding protein 7, brain  P51880 14,893 3 4 4 2 
Fatty acid synthase  P19096 272,428 - 5 3 2 
Ferritin heavy chain 1  P09528 21,067 - 2 4 4 
Ferritin light chain 1  P29391 20,802 4 2 5 6 
Filamin-A  Q8BTM8 281,194 9 23 26 15 
Filamin-B  Q80X90 277,753 22 29 27 25 
Filamin-C  Q8VHX6 291,119 - - 8 2 
Gelsolin-like capping protein  Q99LB4 38,769 - - 2 4 
Glial fibrillary acidic protein (GFAP) P03995 46,492 11 9 12 12 
Glutathione S-transferase, alpha 4  P24472 25,564 3 2 3 2 
Glutathione S-transferase, mu 1 A2AE90 25,970 11 10 12 10 
Glutathione S-transferase, mu 5  P48774 26,635 - 3 3 - 
Glutathione S-transferase, pi 2  P46425 23,537 - - 5 4 
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) P16858 35,810 - - 2 4 
Glyoxalase domain containing 4  Q9CPV4 33,317 - - 4 - 
Guanosine diphosphate (GDP) dissociation inhibitor 1  P50396 50,522 2 3 5 - 
H4 histone family, member A  P62806 11,367 3 5 2 3 
Heat shock 70kDa protein 8 isoform 1  P63017 70,871 7 16 13 5 
Heat shock protein 4  Q5NCS5 94,209 5 6 7  
Heat shock protein 90kDa alpha (cytosolic), class A member 1 P07901 84,788 6 6 13 9 
Heat shock protein 90kDa alpha (cytosolic), class B member 1 Q71LX8 83,281 6 16 4 5 
Heterogeneous nuclear ribonucleoprotein A2/B1  O88569 37,403 - 3 2 3 
Hypoxanthine guanine phosphoribosyl transferase 1  P00493 24,570 - - 3 - 
Inositol monophosphatase  O55023 30,436 3 2 3 - 
Isocitrate dehydrogenase [NADP] cytoplasmic  O88844 46,660 2 2 4 - 
Lactate dehydrogenase 1, A chain  P06151 36,499 5 4 5 5 
Lactate dehydrogenase 2, B chain  P16125 36,572 12 10 11 7 
Lactoylglutathione lyase  Q9CPU0 20,810 - 3 2 2 
Lamin A isoform A   P48678 74,238 - - 3 2 
Leukotriene A4 hydrolase  Q3UY71 69,051 2 - 6 - 
Lysosomal alpha-mannosidase precursor (Mannosidase, alpha B) O09159 114,604 3 5 11 6 
Malate dehydrogenase 2, NAD (mitochondrial)  P08249 35,611 11 9 8 5 
Malate dehydrogenase, cytoplasmic  P14152 36,511 7 3 6 5 
Malic enzyme 1, supernatant  P06801 63,999 - - 2 2 
Mannosidase alpha, class 1A, member 1  Q544T7 73,276 2 2 10 5 
Myosin, heavy polypeptide 9, non-muscle isoform 1  Q8VDD5 226,357 - - 3 - 
Myosin, light polypeptide 6, alkali, smooth muscle and non-muscle Q60605 16,930 - 3 5 2 
Nestin Q6P5H2 202,011 - 7 4 - 
Nit protein 2  Q9JHW2 30,502 - - 2 - 
Nucleoside-diphosphate kinase 1  P15532 17,208 3 - 4 4 
Nucleoside-diphosphate kinase 2  Q01768 17,363 2 4 2 2 
Ornithine aminotransferase  P29758 48,355 - - 3 3 
Peroxiredoxin 1  A2AP16 22,176 4 6 7 6 
Peroxiredoxin 2 (Thioredoxin peroxidase 1)   Q61171 21,779 3 5 5 4 
Peroxiredoxin 5 precursor  P99029 21,897 9 12 8 8 
Peroxiredoxin 6 (Acidic calcium-independent phospholipase A2) O08709 24,871 - 2 4 7 
Phosphogluconate dehydrogenase  Q91V28 53,261 4 4 5 2 
Phosphoglycerate kinase 1  P09411 44,536 9 11 8 8 
Phosphoglycerate mutase 1 (brain)  Q9DBJ1 28,832 3 3 7 5 
Phosphoserine aminotransferase 1  Q99K85 40,473 7 - 2 - 
Plectin 1  Q9QXS1 534,216 - - 6 - 
Proteasome activator PA28 alpha subunit  P97371 28,673 - - 3 4 
Proteasome subunit, alpha type 1  Q9R1P4 29,547 3 2 3 - 
Proteasome subunit, alpha type 2  P49722 25,926 - 2 3 - 
Proteasome subunit, alpha type 3  Q9DCD8 28,490 4 2 2 - 
Proteasome subunit, alpha type 5  Q3UPK6 26,411 3 2 4 - 
Proteasome subunit, alpha type 6  Q9QUM9 27,372 2 3 3 3 
Proteasome subunit, alpha type 7  Q9Z2U0 27,855 6 4 5 4 
Proteasome subunit, beta type 1  O09061 26,372 4 - 4 - 
Proteasome subunit, beta type 3  Q545G0 22,965 2 3 4 - 
Proteasome subunit, beta type 5  Q3UZI1 28,532 3 7 4 - 
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Proteasome subunit, beta type 8   P28063 30,260 2 3 3 - 
Purine-nucleoside phosphorylase  P23492 32,277 4 - 5 4 
Pyruvate kinase isozyme M2  P52480 57,887 3 5 12 7 
Rho GDP dissociation inhibitor (GDI) alpha  Q99PT1 23,407 3 2 5 3 
Ribonuclease/angiogenesis inhibitor  Q91VI7 49,816 5 - 3 3 
S-adenosylhomocysteine hydrolase  Q5M9P0 47,674 2 - 2 - 
SH3-binding domain glutamic acid-rich protein like  Q9JJU8 12,811 2 3 4 4 
Soluble calcium-activated nucleotidase 1 Q8VCF1 45,653 2 2 4 3 
Spectrin alpha 2  P16546 284,597 - 3 14 - 
Spectrin beta 2 isoform 1 or 2  Q62261 274,223 - 2 5 - 
S-phase kinase-associated protein 1A  Q9WTX5 18,672 - 3 3 2 
Superoxide dismutase 1, soluble  P08228 15,943 4 4 4 5 
Thioredoxin reductase 1  Q8CI31 54,337 3 3 2 - 
Transaldolase 1  Q93092 37,387 5 - 3 - 
Transgelin  P37804 22,576 3 5 7 5 
Transgelin 2  Q91VU2 22,395 2 4 6 6 
Transitional endoplasmic reticulum ATPase (valosin-containing 
protein) Q01853 89,364 14 23 14 4 

Transketolase  P40142 67,630 - - 3 - 
Translin  Q62348 26,201 2 - 4 2 
Triosephosphate isomerase 1 P17751 26,713 6 4 4 2 
Tropomyosin 1, alpha  P58771 32,681 4 6 4 3 
Tropomyosin 4, alpha  Q6IRU2 28,468 5 3 6 2 
Tubulin, alpha  P05213 50,152 - 4 5 2 
Tubulin, beta  Q9ERD7 50,419 - 5 5 - 
Ubiquitin carboxy-terminal hydrolase L1  Q9R0P9 24,838 2 3 3 2 
Ubiquitin-activating enzyme E1, Chr X  Q02053 117,809 - 4 3 2 
UDP-glucose pyrophosphorylase 2  Q91ZJ5 56,979 3 3 3 - 
Villin 2  P26040 69,407 - - 5 4 
Vinculin  Q64727 116,717 11 17 19 6 
WD repeat domain 1  Q3TJY2 66,407 4 4 3 - 

Proteins are reported with their corresponding accession number, molecular weight (MW), and unique 
peptides identified for each treatment condition. 
a)Accession numbers are reported from the Uniprot database (www.uniprot.org) and, when available, refer 
to the unprocessed precursor protein. 
b)The average number of unique peptides identified after applying the selection criteria detailed in 
Materials and Methods.  A null value indicates the protein did not meet the minimum criteria for 
identification. 
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Table 2-3. Protein Prowler N-terminal signal peptide prediction. 
Protein Name (Synonym) Accessiona SPb MTPc Otherd

Acid ceramidase precursor (Acylsphingosine deacylase) Q9WV54 0.99 0 0.01 
Aminopeptidase (Plasma glutamate carboxypeptidase) Q9WVJ3 0.99 0 0.01 
Carboxypeptidase E precursor  Q00493 0.99 0 0.01 
Chemokine (C-X-C motif) ligand 1   P12850 0.99 0 0.01 
Collagen alpha-1(XII) chain precursor Q60847 0.99 0 0.01 
Extracellular matrix protein Q9QX30 0.99 0 0.01 
Growth-arrest-specific protein 6 precursor (GAS-6) Q61362 0.99 0 0.01 
Lysosomal-associated membrane glycoprotein 1 (LAMP1)  P11438 0.99 0 0.01 
Metalloproteinase inhibitor 2 precursor (TIMP-2) P25785 0.99 0 0.01 
Basement membrane-specific heparan sulfate proteoglycan core protein  Q05793 0.99 0 0.01 
SPARC precursor Q5NBV5 0.99 0 0.01 
Plasma protease C1 inhibitor P97290 0.99 0 0.01 
4632419I22Rik protein   Q6GU68 0.98 0 0.02 
Alpha-N-acetylglucosaminidase  O88325 0.98 0 0.02 
Amyloid beta A4 protein precursor (APP) P12023 0.98 0 0.02 
Astrocytic phosphoprotein PEA-15 Q62000 0.98 0 0.02 
Beta-2-microglobulin precursor P01887 0.98 0 0.02 
Beta-glucuronidase precursor P12265 0.98 0 0.02 
Bone morphogenetic protein 1   P09581 0.98 0 0.02 
Cadherin-2 precursor (Neural-cadherin) P15116 0.98 0 0.01 
Calreticulin precursor P14211 0.98 0 0.02 
Cathepsin B precursor  P10605 0.98 0 0.02 
Cathepsin L precursor  P06797 0.98 0 0.02 
CD109 antigen homolog precursor  Q8R422 0.98 0.01 0.02 
Chemokine (C-C motif) ligand 7   Q03366 0.98 0 0.02 
Chemokine (C-C motif) ligand 8   Q9Z121 0.98 0 0.02 
Chemokine (C-X3-C motif) ligand 1   O35188 0.98 0 0.02 
Clusterin precursor (Apolipoprotein J)   Q06890 0.98 0 0.02 
Collagen alpha-1(I) chain precursor P11087 0.98 0 0.02 
Collagen alpha-1(IV) chain precursor P02463 0.98 0 0.02 
Collagen alpha-1(VI) chain precursor Q04857 0.98 0 0.02 
Collagen alpha-2(I) chain precursor Q01149 0.98 0 0.02 
Macrophage colony-stimulating factor 1 receptor Q6NXM5 0.98 0 0.02 
Complement C1q tumor necrosis factor-related protein 5 precursor Q8K479 0.98 0 0.02 
Complement C1s-A subcomponent Q8CG14 0.98 0 0.02 
Complement factor B precursor P04186 0.98 0 0.02 
Cyclophilin C-associated protein   O35649 0.98 0 0.02 
Cystatin-C precursor (Cystatin-3) P21460 0.98 0 0.02 
Dipeptidyl-peptidase 1 precursor (Cathepsin C) P97821 0.98 0 0.02 
Epididymal secretory protein E1 precursor  Q9Z0J0 0.98 0 0.02 
Epididymis-specific alpha-mannosidase precursor O54782 0.98 0 0.02 
Fibromodulin precursor (FM) P50608 0.98 0 0.02 
Fibulin-5 precursor (FIBL-5) Q9WVH9 0.98 0 0.02 
Ganglioside GM2 activator precursor Q60648 0.98 0 0.02 
Glypican-4 precursor (K-glypican) P51655 0.98 0 0.02 
H-2 class I histocompatibility antigen, D-B alpha chain precursor P01899 0.98 0 0.02 
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H-2 class I histocompatibility antigen, Q8 alpha chain P14430 0.98 0 0.02 
Insulin-like growth factor-binding protein 5 Q07079 0.98 0 0.02 
Inter-alpha-trypsin inhibitor heavy chain H3 precursor Q61704 0.98 0 0.02 
Legumain   A2RTI3 0.98 0 0.02 
Lipopolysaccharide binding protein A2AC66 0.98 0 0.02 
Low-density lipoprotein receptor-related protein 1 precursor (A2MR) Q91ZX7 0.98 0 0.02 
Lysosomal protective protein precursor P16675 0.98 0 0.02 
Lysozyme C type M precursor  P08905 0.98 0 0.02 
Cell adhesion molecule 4 precursor Q8R464 0.98 0 0.02 
mouse fat 1 cadherin  Q9QXA3 0.98 0 0.02 
Neutrophil gelatinase-associated lipocalin precursor (Lipocalin 2) P11672 0.98 0 0.02 
Phospholipid transfer protein precursor (Lipid transfer protein II) P55065 0.98 0 0.02 
Platelet-derived growth factor receptor-like protein precursor Q61147 0.98 0 0.02 
Procollagen, type XI, alpha 1 P22777 0.98 0 0.02 
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (Lysyl hydroxylase 1) Q9R0E2 0.98 0 0.02 
protein disulfide isomerase associated 6  Q922R8 0.98 0 0.02 
Retinoic acid receptor responder protein 2 precursor Q9DD06 0.98 0 0.02 
Serotransferrin precursor (Transferrin)  Q921I1 0.98 0 0.02 
Sulfated glycoprotein 1 precursor (Prosaposin) Q61207 0.98 0 0.02 
Transcobalamin-2 precursor (Transcobalamin II) O88968 0.98 0 0.02 
Acid sphingomyelinase-like phosphodiesterase 3a precursor P70158 0.97 0 0.03 
Apolipoprotein E precursor (Apo-E) P08226 0.97 0 0.03 
Cathepsin D precursor  P18242 0.97 0 0.03 
Collagen alpha-2(V) chain precursor Q3U962 0.97 0 0.03 
Complement C1q subcomponent subunit C precursor Q640N1 0.97 0 0.03 
Complement C1r-A subcomponent Q8CG16 0.97 0 0.03 
Fibronectin 1   Q3UGY5 0.97 0.01 0.03 
Glia-derived nexin precursor (Serpine 2)  Q07235 0.97 0 0.03 
Igfbp3 protein (Insulin-like growth factor binding protein 3) Q6PE55 0.97 0 0.03 
Insulin-like growth factor binding protein 7 Q61581 0.97 0 0.03 
Lysyl oxidase-like 3 Q91VN8 0.97 0 0.03 
Mini-agrin   Q5EBX5 0.97 0 0.03 
Monocyte differentiation antigen CD14 precursor P10810 0.97 0 0.03 
Nidogen 2 protein   Q8R5G0 0.97 0 0.03 
Nucleobindin-1 precursor (CALNUC) Q02819 0.97 0 0.03 
Pentraxin-related protein PTX3 precursor  P48759 0.97 0 0.03 
Platelet-activating factor acetylhydrolase Q60963 0.97 0 0.02 
protein disulfide isomerase associated 4  P08003 0.97 0 0.03 
Renin receptor precursor   Q9CYN9 0.97 0 0.03 
Ribonuclease T2 isoform 1  Q9CQ01 0.97 0 0.03 
Secretogranin 3 Q8R1D7 0.97 0 0.03 
Tenascin precursor (TN-C) Q80YX1 0.97 0 0.03 
Complement C1q subcomponent subunit B precursor P14106 0.96 0 0.04 
Complement C3 precursor  P01027 0.96 0 0.03 
Immunoglobulin superfamily containing leucine-rich repeat Q62356 0.96 0 0.04 
Laminin subunit alpha-4 precursor P97927 0.96 0 0.04 
Laminin subunit gamma-1 precursor (Laminin B2 chain) P02468 0.96 0.01 0.04 
Mammalian ependymin related protein-2 Q99M71 0.96 0 0.04 
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Peptidyl-prolyl cis-trans isomerase B P24369 0.96 0 0.04 
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Lysyl hydroxylase 3) Q9R0E1 0.96 0 0.04 
Serine protease inhibitor A3N precursor (Serpin A3N) Q91WP6 0.96 0 0.04 
Superoxide dismutase, extracellular    O09164 0.96 0 0.04 
Tenascin-N precursor (TN-N) Q80Z71 0.96 0 0.04 
Alpha-2-macroglobulin-P precursor (Alpha-2-macroglobulin) Q02105 0.95 0 0.04 
Beta-1,3-N-acetylglucosaminyltransferase lunatic fringe O09010 0.95 0 0.05 
Biotinidase precursor  Q8CIF4 0.95 0 0.05 
Cathepsin S precursor O70370 0.95 0.01 0.05 
EGF-containing fibulin-like extracellular matrix protein 2 Q9JM06 0.95 0 0.05 
Insulin-like growth factor binding protein 2   P47877 0.95 0 0.04 
Calsyntenin 1   A2A800 0.94 0.02 0.04 
Inter-alpha-trypsin inhibitor heavy chain H5   Q8BJD1 0.94 0 0.06 
Ceruloplasmin Q6NZM2 0.93 0 0.07 
Complement C4-B precursor  P01029 0.93 0.01 0.06 
Sulfhydryl oxidase 1 precursor (Quiescin Q6) Q8BND5 0.93 0.01 0.06 
Neurocan core protein precursor (Chondroitin sulfate proteoglycan 3) P55066 0.92 0 0.08 
Palmitoyl-protein thioesterase 1 precursor (PPT-1) O88531 0.92 0.02 0.06 
N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase  Q64191 0.91 0.01 0.08 
Lysosomal alpha-glucosidase precursor (Acid maltase) P70699 0.91 0 0.09 
Chitinase-3-like protein 1 precursor (Cartilage glycoprotein 39) Q61292 0.9 0 0.1 
Cathepsin Z   Q9ES94 0.89 0.01 0.1 
Macrophage colony-stimulating factor 1 precursor (CSF-1) P07141 0.89 0.02 0.09 
Thrombospondin 1 Q8CGB2 0.87 0 0.13 
Vacuolar ATP synthase subunit S1 precursor  Q9R1Q9 0.87 0.02 0.11 
Laminin subunit beta-2 precursor (S-laminin) Q61245 0.86 0 0.13 
Pigment epithelium-derived factor (PEDF) P97298 0.84 0.02 0.14 
Galactocerebrosidase precursor (GALCERase)  P54818 0.83 0.03 0.14 
Vitamin K-dependent protein S precursor Q08761 0.83 0.02 0.15 
Endoplasmin precursor (GRP94) P08113 0.82 0.03 0.15 
Mimecan precursor (Osteoglycin) Q61592 0.81 0.03 0.16 
Follistatin-related protein 1 precursor Q6GQT1 0.8 0.02 0.17 
Putative phospholipase B-like 2 precursor Q3TCN2 0.8 0.02 0.18 
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (Lysyl hydroxylase 2) Q9R0B9 0.8 0.01 0.2 
Beta-hexosaminidase beta chain precursor (Hexosaminidase B) P20060 0.77 0.04 0.19 
N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase Q8BWP8 0.77 0.02 0.22 
Tripeptidyl-peptidase 1 precursor O89023 0.77 0.01 0.22 
Protein disulfide-isomerase A3 precursor P27773 0.73 0.03 0.25 
Plasminogen activator inhibitor 1  P47878 0.72 0.11 0.17 
Gamma-glutamyl hydrolase Q9Z0L8 0.69 0.06 0.25 
Endoplasmic reticulum protein ERp29 precursor P57759 0.67 0.06 0.28 
45 kDa calcium-binding protein precursor (SDF-4) Q61112 0.66 0.06 0.28 
N-acetylglucosamine-6-sulfatase precursor (G6S) Q8BFR4 0.66 0.06 0.28 
Protein disulfide-isomerase precursor (PDI) P09103 0.66 0.05 0.29 
Ptprz1 protein (DSD-1 Proteoglycan) B2RXS8 0.65 0.06 0.29 
Intercellular adhesion molecule  Q922B3 0.65 0.06 0.29 
Stromelysin-1 precursor (MMP-3) P28862 0.63 0.05 0.32 
Agrin A2ASQ0 0.61 0.04 0.35 
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Exostosin-2  P70428 0.54 0.05 0.41 
SPARC-like protein 1 precursor (Matrix glycoprotein Sc1) P70663 0.54 0.1 0.36 
78 kDa glucose-regulated protein precursor P20029 0.53 0.08 0.39 
Beta-hexosaminidase alpha chain precursor (Hexosaminidase A) P29416 0.53 0.08 0.39 
Dipeptidyl-peptidase 2 precursor Q9ET22 0.52 0.1 0.38 
Sortilin-related receptor, LDLR class A repeats-containing  O88307 0.49 0.27 0.24 
Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1; DAST-1 Q3UHN9 0.48 0.09 0.42 
Lysosomal alpha-mannosidase precursor (Mannosidase, alpha B) O09159 0.44 0.05 0.51 
Laminin subunit alpha-5 precursor Q61001 0.42 0.03 0.55 
Vesicular integral-membrane protein VIP36 precursor Q9DBH5 0.42 0.07 0.51 
Adipocyte enhancer-binding protein   Q62165 0.41 0.11 0.48 
Meteorin, glial cell differentiation regulator-like Q8VE43 0.38 0.12 0.5 
Plexin domain-containing protein 2 precursor  Q9DC11 0.31 0.07 0.62 
Phosphogluconate dehydrogenase  Q91V28 0.29 0.01 0.7 
Vascular cell adhesion protein 1 precursor (V-CAM 1) P29533 0.28 0.13 0.58 
Gelsolin precursor (Actin-depolymerizing factor) P13020 0.27 0.14 0.59 
Mannosidase alpha, class 1A, member 1  Q544T7 0.25 0.13 0.62 
Glutathione S-transferase, alpha 4  P24472 0.21 0.11 0.68 
Galectin-3 (Galactose-specific lectin 3) P16110 0.19 0.09 0.72 
Ferritin light chain 1  P29391 0.17 0.08 0.76 
Intermediate filament protein nestin  Q6P5H2 0.16 0.08 0.76 
Ca2+-dependent endoplasmic reticulum nucleoside diphosphatase  Q8VCF1 0.15 0.08 0.76 
Heat shock protein 90kDa alpha (cytosolic), class B member 1 Q71LX8 0.14 0.09 0.76 
Ubiquitin carboxy-terminal hydrolase L1  Q9R0P9 0.14 0.05 0.81 
Isocitrate dehydrogenase [NADP] cytoplasmic  O88844 0.11 0.08 0.8 
Heat shock protein 4  Q5NCS5 0.11 0.02 0.86 
Aminopeptidase puromycin sensitive Q5PR74 0.1 0.58 0.32 
Inositol monophosphatase  O55023 0.1 0.07 0.83 
Nit protein 2  Q9JHW2 0.1 0.1 0.8 
Vimentin   P20152 0.09 0.38 0.53 
Malate dehydrogenase, cytoplasmic  P14152 0.08 0.01 0.91 
S-adenosylhomocysteine hydrolase  Q5M9P0 0.07 0.05 0.88 
Hypoxanthine guanine phosphoribosyl transferase 1  P00493 0.06 0.05 0.89 
Heat shock protein 90kDa alpha (cytosolic), class A member 1  P07901 0.06 0.03 0.91 
Superoxide dismutase 1, soluble  P08228 0.06 0.05 0.88 
Glutathione S-transferase, mu 5  P48774 0.06 0.06 0.88 
Lactate dehydrogenase 1, A chain  P06151 0.04 0.01 0.95 
Translin  Q62348 0.04 0.01 0.96 
Asparaginase like 1  Q8C0M9 0.03 0.08 0.89 
Peroxiredoxin 6 (Acidic calcium-independent phospholipase A2) O08709 0.02 0.02 0.96 
Peptidyl-prolyl cis-trans isomerase A P17742 0.02 0.02 0.97 
Acyl-CoA-binding protein (diazepam-binding inhibitor) P31786 0.02 0.02 0.96 
Phosphatidylethanolamine-binding protein 1 (PEBP-1) P70296 0.02 0.01 0.96 
Profilin 1   P62962 0.02 0.02 0.97 
Dystroglycan precursor (Dystrophin-associated glycoprotein 1) Q62048 0.02 0.02 0.96 
Heterogeneous nuclear ribonucleoprotein A2/B1  O88569 0.02 0.02 0.97 
Tubulin, alpha  P05213 0.02 0.02 0.97 
Annexin A2  P07356 0.02 0.02 0.97 
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Eukaryotic initiation factor 4AII  P10630 0.02 0.03 0.96 
Lactate dehydrogenase 2, B chain  P16125 0.02 0.01 0.96 
Spectrin alpha 2  P16546 0.02 0.02 0.96 
Fatty acid synthase  P19096 0.02 0.02 0.96 
Purine-nucleoside phosphorylase  P23492 0.02 0.02 0.96 
Proteasome subunit, beta type 8   P28063 0.02 0.01 0.97 
Guanosine diphosphate (GDP) dissociation inhibitor 1  P50396 0.02 0.01 0.97 
Actinin, alpha 4  P57780 0.02 0.03 0.96 
14-3-3 protein epsilon  P62259 0.02 0.02 0.96 
Heat shock 70kDa protein 8 isoform 1  P63017 0.02 0.02 0.96 
14-3-3 protein zeta  P63101 0.02 0.02 0.96 
14-3-3 protein theta  P68254 0.02 0.02 0.96 
Myosin, light polypeptide 6, alkali, smooth muscle and non-muscle  Q60605 0.02 0.02 0.96 
Rab GDP dissociation inhibitor beta  Q61598 0.02 0.01 0.97 
Vinculin  Q64727 0.02 0.02 0.97 
Actinin, alpha 1  Q7TPR4 0.02 0.02 0.96 
Filamin-B  Q80X90 0.02 0.02 0.96 
Thioredoxin reductase 1  Q8CI31 0.02 0.02 0.96 
Aldehyde dehydrogenase 1 family, member L1  Q8R0Y6 0.02 0.01 0.97 
Ribonuclease/angiogenesis inhibitor  Q91VI7 0.02 0.02 0.97 
Rho GDP dissociation inhibitor (GDI) alpha  Q99PT1 0.02 0.02 0.96 
Lactoylglutathione lyase  Q9CPU0 0.02 0.02 0.96 
Actin related protein 2/3 complex, subunit 2  Q9CVB6 0.02 0.01 0.97 
Tubulin, beta  Q9ERD7 0.02 0.02 0.96 
S-phase kinase-associated protein 1A  Q9WTX5 0.02 0.02 0.96 
Macrophage migration inhibitory factor (MIF) P34884 0.01 0.02 0.97 
Peroxiredoxin 1  A2AP16 0.01 0.03 0.96 
Dihydropyrimidinase-like 2  O08553 0.01 0.03 0.96 
Proteasome subunit, beta type 1  O09061 0.01 0.03 0.96 
Annexin A3  O35639 0.01 0.03 0.96 
Glial fibrillary acidic protein  P03995 0.01 0.39 0.6 
Phosphoglycerate kinase 1  P09411 0.01 0.03 0.97 
Ferritin heavy chain 1  P09528 0.01 0.03 0.96 
Nucleoside-diphosphate kinase 1  P15532 0.01 0.03 0.96 
Triosephosphate isomerase 1  P17751 0.01 0.03 0.96 
Cofilin 1, non-muscle  P18760 0.01 0.02 0.97 
Peroxiredoxin 3  P20108 0.01 0.94 0.05 
Villin 2  P26040 0.01 0.02 0.97 
Transgelin  P37804 0.01 0.02 0.96 
Transketolase  P40142 0.01 0.03 0.96 
Glutathione S-transferase, pi 2  P46425 0.01 0.02 0.97 
Annexin A5  P48036 0.01 0.03 0.96 
Fatty acid binding protein 7, brain  P51880 0.01 0.02 0.97 
Pyruvate kinase isozyme M2  P52480 0.01 0.02 0.96 
Eukaryotic translation elongation factor 2  P58252 0.01 0.02 0.97 
Tropomyosin 1, alpha  P58771 0.01 0.02 0.96 
14-3-3 protein gamma  P61982 0.01 0.02 0.96 
Cytochrome c  P62897 0.01 0.03 0.96 
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Eukaryotic translation initiation factor 5A  P63242 0.01 0.03 0.96 
14-3-3 protein eta  P68510 0.01 0.02 0.97 
Proteasome activator PA28 alpha subunit  P97371 0.01 0.03 0.96 
Nucleoside-diphosphate kinase 2  Q01768 0.01 0.03 0.97 
Creatine kinase, brain  Q04447 0.01 0.03 0.96 
WD repeat domain 1  Q3TJY2 0.01 0.02 0.96 
Proteasome subunit, alpha type 5  Q3UPK6 0.01 0.03 0.96 
Proteasome subunit, beta type 5  Q3UZI1 0.01 0.03 0.96 
Aldolase 1, isoform A  Q5FWB7 0.01 0.02 0.96 
Aldolase 3, isoform C  Q5SYM1 0.01 0.02 0.96 
Peroxiredoxin 2 (Thioredoxin peroxidase 1)   Q61171 0.01 0.02 0.96 
Spectrin beta 2 isoform 1 or 2  Q62261 0.01 0.02 0.96 
Clathrin, heavy polypeptide (Hc)  Q68FD5 0.01 0.02 0.97 
Tropomyosin 4, alpha  Q6IRU2 0.01 0.02 0.97 
Brain glycogen phosphorylase  Q8CI94 0.01 0.03 0.97 
Myosin, heavy polypeptide 9, non-muscle isoform 1  Q8VDD5 0.01 0.02 0.96 
Filamin-C  Q8VHX6 0.01 0.02 0.97 
Transgelin 2  Q91VU2 0.01 0.03 0.96 
UDP-glucose pyrophosphorylase 2  Q91ZJ5 0.01 0.03 0.96 
Transaldolase 1  Q93092 0.01 0.03 0.97 
Phosphoserine aminotransferase 1  Q99K85 0.01 0.02 0.97 
Gelsolin-like capping protein  Q99LB4 0.01 0.02 0.96 
DJ-1 protein  Q99LX0 0.01 0.02 0.97 
14-3-3 protein beta  Q9CQV8 0.01 0.02 0.96 
Calponin 3, acidic  Q9DAW9 0.01 0.03 0.96 
Phosphoglycerate mutase 1 (brain)  Q9DBJ1 0.01 0.02 0.97 
Proteasome subunit, alpha type 3  Q9DCD8 0.01 0.02 0.96 
Aldo-keto reductase family 1, member A4  Q9JII6 0.01 0.03 0.96 
Plectin 1  Q9QXS1 0.01 0.03 0.96 
Proteasome subunit, alpha type 1  Q9R1P4 0.01 0.03 0.96 
Proteasome subunit, alpha type 7  Q9Z2U0 0.01 0.02 0.96 
Valosin containing protein  Q01853 0.01 0.02 0.96 
Glucose-6-phosphate isomerase (GPI) P06745 0 0.14 0.86 
Glutathione S-transferase, mu 1 P10649 0 0.02 0.97 
Aspartate aminotransferase P05202 0 0.95 0.04 
Malic enzyme 1, supernatant  P06801 0 0.03 0.97 
Malate dehydrogenase 2, NAD (mitochondrial)  P08249 0 0.99 0.01 
Glyceraldehyde-3-phosphate dehydrogenase  P16858 0 0.05 0.94 
Enolase 1, alpha non-neuron  P17182 0 0.03 0.96 
Ornithine aminotransferase  P29758 0 0.98 0.02 
Lamin A isoform A   P48678 0 0.04 0.96 
Proteasome subunit, alpha type 2  P49722 0 0.04 0.95 
H4 histone family, member A  P62806 0 0.03 0.97 
Peroxiredoxin 5 precursor  P99029 0 0.96 0.03 
Ubiquitin-activating enzyme E1, Chr X  Q02053 0 0.03 0.97 
Leukotriene A4 hydrolase  Q3UY71 0 0.08 0.92 
Proteasome subunit, beta type 3  Q545G0 0 0.02 0.97 
Filamin-A  Q8BTM8 0 0.05 0.95 
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Glyoxalase domain containing 4  Q9CPV4 0 0.98 0.01 
Dimethylarginine dimethylaminohydrolase 1  Q9CWS0 0 0.75 0.24 
SH3-binding domain glutamic acid-rich protein like  Q9JJU8 0 0.07 0.93 
Proteasome subunit, alpha type 6  Q9QUM9 0 0.04 0.96 
Proteins are reported in order of decreasing SP (secretory pathway) score 
calculated by Protein Prowler version 1.2 (pprowler.imb.uq.edu.au/index.jsp) 
a) Accession numbers are reported from the Uniprot database (www.uniprot.org) and, when 
available, refer to the unprocessed precursor protein. 
b) Secretory pathway targeting score (signal peptide) 
c) Mitochondrion targeting score (mitochondrial targeting peptide)  
d) Other targeting score (nucleus, cytoplasm, other) 
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Table 2-4. Redundant peptides from proteins in the astrocyte secretome. 
   1D 

Control 1D Cyto 7D 
Control 7D Cyto

Protein Name (Synonym) Accessiona MW 
(kDa) Redundant Peptidesb 

Extracellular Matrix and Adhesion       
Agrin A2ASQ0 205.0 8 46 10 60 
Cadherin-2 precursor (Neural-cadherin) P15116 99.8 19 18 43 35 
Calsyntenin 1 A2A800 108.9 18 9 29 15 
Collagen alpha-1(I) chain precursor P11087 138.0 3 7 26 11 
Collagen alpha-1(IV) chain precursor P02463 160.7 - - 2 4 
dCollagen alpha-1(VI) chain precursor Q04857 108.5 - 2 - 5 
cCollagen alpha-1(XI) chain precursor Q61245 181.0 - - 5 - 
Collagen alpha-1(XII) chain precursor Q60847 340.2 4 21 85 52 
Collagen alpha-2(I) chain precursor Q01149 129.6 - 2 10 8 
Collagen alpha-2(V) chain precursor Q3U962 145.0 4 15 24 11 
EGF-containing fibulin-like extracellular matrix protein 2 Q9JM06 49.5 4 8 29 8 
Extracellular matrix protein Q9QX30 62.8 - - 15 8 
Fat 1 cadherin Q9QXA3 506.0 - - 13 7 
Fibromodulin precursor (FM) P50608 43.1 6 9 21 10 
Fibronectin 1 Q3UGY5 262.8 146 238 375 355 
Fibulin-5 precursor (FIBL-5) Q9WVH9 50.2 7 2 25 3 
Galectin-3 (Galactose-specific lectin 3) P16110 27.5 - 2 6 3 
Glypican-4 precursor (K-glypican) P51655 62.6 - 3 11 10 
*Intercellular adhesion molecule (Icam1) Q922B3 58.9 - - - 5 
*Laminin subunit alpha-4 precursor P97927 201.8 - - - 11 
Laminin subunit alpha-5 precursor Q61001 404.0 - 12 2 46 
*Laminin subunit beta-2 precursor (S-laminin) Q61292 196.4 - 10 - 34 
Laminin subunit gamma-1 precursor (Laminin B2 chain) P02468 177.3 - 20 5 46 
Legumain A2RTI3 49.4 6 18 25 15 
Lysyl oxidase-like 3 Q91VN8 83.7 - - 4 2 
Mammalian ependymin related protein-2 Q99M71 25.5 14 21 20 24 
Mimecan precursor (Osteoglycin) Q62000 34.0 - 4 26 6 
Mini-agrin Q5EBX5 103.4 2 4 2 5 
Neurocan core protein precursor (Chondroitin sulfate proteoglycan 3) P55066 137.2 24 27 31 14 
Nidogen 2 protein Q8R5G0 153.9 4 - 13 3 
Basement membrane-specific heparan sulfate proteoglycan core protein  Q05793 469.0 3 34 32 117 
SPARC-like protein 1 precursor (Matrix glycoprotein Sc1) P70663 72.3 - 5 13 11 
Tenascin precursor (TN-C) Q80YX1 231.8 8 28 11 73 
Tenascin-N precursor (TN-N) Q80Z71 173.1 - - 5 29 
Thrombospondin 1 Q8CGB2 129.7 - 2 9 21 
Vascular cell adhesion protein 1 precursor (CD106 antigen) P29533 81.3 9 5 34 66 
Vitamin K-dependent protein S precursor Q08761 74.9 - - 14 10 

Protein Processing and Proteolysis       
78 kDa glucose-regulated protein precursor P20029 72.4 12 14 15 8 
Alpha-2-macroglobulin-P precursor (Alpha-2-macroglobulin) Q6GQT1 164.3 116 204 301 189 
Aminopeptidase (Plasma glutamate carboxypeptidase) Q9WVJ3 51.8 9 11 19 9 
Aminopeptidase puromycin sensitive Q5PR74 103.3 2 9 4 - 
Bone morphogenetic protein 1 Q6NZM2 111.7 2 4 5 4 
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Calreticulin precursor P14211 48.0 5 3 4 - 
Carboxypeptidase E precursor Q00493 53.3 27 41 90 71 
Cathepsin B precursor P10605 37.3 47 71 131 136 
Cathepsin D precursor  P18242 45.0 21 28 79 69 
Cathepsin L precursor P06797 37.5 17 9 28 39 
Cathepsin S precursor O70370 38.4 - - 26 15 
Cathepsin Z precursor Q9WUU7 34.0 5 6 13 15 
Cystatin-C precursor (Cystatin-3) P21460 15.5 77 109 232 287 
Dipeptidyl-peptidase 1 precursor (Cathepsin C) P97821 52.4 - 4 2 5 
Dipeptidyl-peptidase 2 precursor Q9ET22 56.3 3 6 - 3 
dEndoplasmic reticulum protein ERp29 precursor P57759 28.8 - - 3 - 
Endoplasmin precursor (GRP94) P08113 92.5 4 3 9 2 
Glia-derived nexin precursor (Serpine 2) Q07235 44.2 - 15 14 29 
^Inter-alpha-trypsin inhibitor heavy chain H3 Q61704 99.0 - - 11 - 
Inter-alpha-trypsin inhibitor heavy chain H5 Q8BJD1 106.7 - - 3 11 
Lysosomal protective protein precursor P16675 53.8 - 8 14 16 
Metalloproteinase inhibitor 2 precursor (TIMP-2) P25785 24.3 9 23 22 19 
Peptidyl-prolyl cis-trans isomerase A P17742 18.0 9 6 15 11 
Peptidyl-prolyl cis-trans isomerase B  P24369 22.7 9 14 11 10 
Protein disulfide-isomerase A3 precursor P27773 56.7 14 24 22 9 
Protein disulfide-isomerase A4 precursor P08003 72.0 - 3 10 2 
^Protein disulfide-isomerase A6 precursor Q922R8 48.1 - - 4 - 
Protein disulfide-isomerase precursor (PDI) P09103 57.1 4 6 7 - 
Pigment epithelium-derived factor (PEDF) P97298 46.2 57 59 61 57 
Plasma protease C1 inhibitor P97290 55.6 7 3 40 73 
Plasminogen activator inhibitor 1  P22777 45.0 - 12 5 17 
Serine protease inhibitor A3N precursor (Serpin A3N) Q91WP6 46.7 12 30 43 51 
*Stromelysin-1 precursor (MMP-3) P28862 53.8 - 3 - 14 
Sulfhydryl oxidase 1 precursor (Quiescin Q6) Q8BND5 82.8 - - 23 7 
Tripeptidyl-peptidase 1 precursor O89023 61.3 - - 4 7 

Metabolism       
Acid ceramidase precursor (Acylsphingosine deacylase) Q9WV54 44.7 - - 8 15 

Alpha-N-acetylglucosaminidase O88325 82.6 - - 4 5 
Aspartate aminotransferase P05202 47.4 6 5 5 2 
^Beta-1,3-N-acetylglucosaminyltransferase lunatic fringe O09010 42.0 - - 7 - 
^Beta-glucuronidase precursor P12265 74.2 - - 6 - 
Beta-hexosaminidase alpha chain precursor (Hexosaminidase A) P29416 60.6 - - 6 3 
Beta-hexosaminidase beta chain precursor (Hexosaminidase B) P20060 61.1 8 3 27 6 
^Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1 Q3UHN9 100.7 - - 3 - 
Chitinase-3-like protein 1 precursor (Cartilage glycoprotein 39) Q61362 43.0 9 75 42 130 
Epididymis-specific alpha-mannosidase precursor O54782 115.6 2 2 16 9 
Exostosin-2 P70428 82.1 - - 5 2 
Galactocerebrosidase precursor (GALCERase) P54818 75.5 - - 6 3 
Gamma-glutamyl hydrolase Q9Z0L8 35.4 2 2 8 5 
Ganglioside GM2 activator precursor Q60648 20.8 3 9 12 10 
Glucose-6-phosphate isomerase (GPI) P06745 62.8 18 15 15 6 
*Lysosomal alpha-glucosidase precursor (Acid maltase) P70699 106.2 - - - 11 
N-acetylglucosamine-6-sulfatase precursor (G6S) Q8BFR4 61.2 - 7 7 6 
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^N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase Q8BWP8 47.4 - - 7 - 
N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase  Q64191 37.0 - 8 5 10 
Palmitoyl-protein thioesterase 1 precursor (PPT-1) O88531 34.5 - - 11 14 
Platelet-activating factor acetylhydrolase Q60963 49.2 - 2 29 3 
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (Lysyl hydroxylase 1) Q9R0E2 83.6 4 6 24 10 
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (Lysyl hydroxylase 2) Q9R0B9 84.5 - 5 8 4 
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (Lysyl hydroxylase 3) Q9R0E1 84.9 - - 15 11 
Putative phospholipase B-like 2 precursor Q3TCN2 66.7 - 3 10 2 
Ribonuclease T2 isoform 1 Q9CQ01 29.6 2 - 6 9 

Immune       
Beta-2-microglobulin precursor P01887 13.8 5 24 24 56 

^Cell adhesion molecule 4 precursor Q8R464 42.7 - - 6 - 
*Chemokine (C-C motif) ligand 7 Q03366 11.0 - - - 11 
*Chemokine (C-C motif) ligand 8 Q9Z121 11.0 - - - 3 
*Chemokine (C-X3-C motif) ligand 1 (Fractalkine) O35188 42.1 - - - 9 
*Chemokine (C-X-C motif) ligand 1 (Growth-regulated alpha protein) P12850 10.3 - 6 - 15 
Complement C1q subcomponent subunit B precursor P14106 26.7 - - 4 5 
Complement C1q tumor necrosis factor-related protein 5 precursor Q8K479 25.4 4 8 7 11 
Complement C3 precursor P01027 186.5 95 575 484 2036 
Complement C4-B precursor P01029 192.9 18 14 156 112 
Complement C1q subcomponent subunit C precursor Q02105 26.0 - - 7 5 
Complement C1r-A subcomponent Q8CG16 80.1 - 10 23 67 
Complement C1s-A subcomponent Q8CG14 77.4 - - 18 132 
Complement factor B precursor P04186 85.0 - - 5 41 
Cyclophilin C-associated protein O35649 64.1 5 - 20 43 
H-2 class I histocompatibility antigen, D-B alpha chain precursor P01899 40.8 - 5 6 13 
H-2 class I histocompatibility antigen, Q8 alpha chain P14430 37.5 - 13 6 22 
Immunoglobulin superfamily containing leucine-rich repeat Q6GU68 45.6 2 7 7 2 
Lysozyme C type M precursor P08905 16.7 - - 45 66 
Macrophage colony-stimulating factor 1 precursor (CSF-1) P07141 60.6 - 41 39 90 
^Macrophage colony-stimulating factor 1 receptor P09581 109.3 - - 4 - 
Macrophage migration inhibitory factor (MIF) P34884 12.5 10 8 8 7 
Monocyte differentiation antigen CD14 precursor P10810 39.2 - 2 21 10 
Pentraxin-related protein PTX3 precursor P48759 41.8 6 38 3 34 
Platelet-derived growth factor receptor-like protein precursor Q6PE55 41.9 - 4 4 7 

Binding and Transport       
45 kDa calcium-binding protein precursor (SDF-4) Q61112 42.1 2 2 7 6 

^Acyl-CoA-binding protein (DBI) P31786 10.0 - - 4 - 
*Adipocyte enhancer-binding protein Q640N1 128.4 - - - 12 
Annexin A2 P07356 38.7 9 2 13 - 
Apolipoprotein E precursor (Apo-E) P08226 35.9 64 7 177 128 
^Biotinidase precursor Q8CIF4 58.6 - - 4 - 
Ceruloplasmin Q61147 121.2 19 97 64 300 
Dystroglycan precursor (Dystrophin-associated glycoprotein 1) Q62165 96.9 10 7 26 21 
Follistatin-related protein 1 precursor Q62356 34.6 11 29 16 31 
Gelsolin precursor (Actin-depolymerizing factor) P13020 85.9 6 - 18 3 
Rab GDP dissociation inhibitor beta Q61598 50.5 9 11 20 3 
Lipopolysaccharide binding protein A2AC66 53.1 - 10 10 15 
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*Lysosomal-associated membrane glycoprotein 1 (LAMP1)  P11438 43.9 - - - 7 
Neutrophil gelatinase-associated lipocalin precursor (Lipocalin 2) P11672 22.9 - 33 25 283 
Nucleobindin-1 precursor (CALNUC) Q02819 53.4 2 18 8 8 
Phosphatidylethanolamine-binding protein 1 (PEBP-1) P70296 20.8 11 20 17 14 
Phospholipid transfer protein precursor (Lipid transfer protein II) P55065 54.5 4 - 78 31 
Renin receptor precursor Q9CYN9 39.1 - - 2 6 
SPARC precursor P07214 34.3 126 73 82 61 
Serotransferrin precursor (Transferrin) Q921I1 76.7 - - 15 3 
^Sortilin-related receptor, LDLR class A repeats-containing O88307 247.1 - - 3 - 
Sulfated glycoprotein 1 precursor (Prosaposin) Q61207 61.4 2 7 35 48 
Superoxide dismutase, extracellular O09164 27.4 - - 8 20 
Transcobalamin-2 precursor O88968 47.6 11 11 33 24 
Vacuolar ATP synthase subunit S1 precursor Q9R1Q9 51.0 - 9 9 16 
Vesicular integral-membrane protein VIP36 precursor Q9DBH5 40.4 - - 4 5 

Cell Growth & Maintenance       
Epididymal secretory protein E1 precursor Q9Z0J0 16.4 5 13 14 21 

Growth-arrest-specific protein 6 precursor (GAS-6) Q61592 74.6 - - 11 7 
Insulin-like growth factor binding protein 2 P47877 32.8 32 17 86 98 
Insulin-like growth factor binding protein 3 P47878 31.7 - 5 6 5 
Insulin-like growth factor binding protein 7 Q61581 28.9 - 7 11 71 
Insulin-like growth factor-binding protein 5 Q07079 30.4 8 8 20 21 
Prolow-density lipoprotein receptor-related protein 1 precursor (A2MR) Q91ZX7 504.7 - - 4 8 
^Plexin domain-containing protein 2 precursor  Q9DC11 59.6 - - 4 - 
Ptprz1 protein (DSD-1 Proteoglycan) B2RXS8 175.2 7 5 33 9 

Other       
4632419I22Rik protein Q6NXM5 31.9 - - 6 3 

Acid sphingomyelinase-like phosphodiesterase 3a precursor P70158 49.9 - - 4 2 
Amyloid beta A4 protein precursor (APP) P12023 86.7 4 11 25 28 
CD109 antigen homolog precursor Q8R422 161.7 - 5 19 3 
Clusterin precursor (Apolipoprotein J) Q06890 51.7 20 14 119 154 
^Meteorin, glial cell differentiation regulator-like Q8VE43 34.5 - - 4 - 
Peroxiredoxin 3 P20108 28.1 - - 6 9 
Profilin 1 P62962 11.8 16 19 19 14 
Retinoic acid receptor responder protein 2 precursor Q9DD06 18.4 - - 4 12 
Secretogranin 3 P47867 53.3 2 2 32 6 
Vimentin P20152 53.7 77 132 172 108 
Proteins are organized by functional category and reported with their corresponding accession number, molecular weight (MW), 
and redundant peptides identified for each treatment condition. 
a) Accession numbers are reported from the Uniprot database (www.uniprot.org) and, when available, refer to the unprocessed 
precursor protein. 
b) The average numbers of redundant peptides identified are reported for protein identifications that passed the selection criteria 
as detailed in the Experimental Procedures.  A null value indicates the protein did not meet the minimum criteria for 
identification. 
c) Protein was exclusively detected under control conditions. 
d) Protein was exclusively detected under cytokine-treated conditions. 
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Table 2-5. Redundant peptides from unclassified proteins. 
   1D 

Control 
1D 

Cytokine 
7D 

Control 
7D 

Cytokine 
Protein Name (Synonym) Accessiona MW (kDa) Redundant Peptidesb 
14-3-3 protein beta  Q9CQV8 28,086 8 8 13 8 
14-3-3 protein epsilon  P62259 29,174 29 39 41 24 
14-3-3 protein eta  P68510 28,212 6 5 - 3 
14-3-3 protein gamma  P61982 28,303 10 12 14 9 
14-3-3 protein theta  P68254 27,778 4 10 14 5 
14-3-3 protein zeta  P63101 27,771 16 35 25 19 
Actin related protein 2/3 complex, subunit 2  Q9CVB6 34,357 2 4 4 4 
Actinin, alpha 1  Q7TPR4 103,068 50 53 104 14 
Actinin, alpha 4  P57780 104,977 8 88 29 23 
Aldehyde dehydrogenase 1 family, member L1  Q8R0Y6 98,709 - 4 4 - 
Aldo-keto reductase family 1, member A4  Q9JII6 36,587 6 6 3 5 
Aldolase 1, isoform A  Q5FWB7 39,356 12 17 27 10 
Aldolase 3, isoform C  Q5SYM1 39,395 4 24 4 8 
Annexin A3  O35639 36,371 3 - 10 - 
Annexin A5  P48036 35,752 12 5 12 2 
Asparaginase like 1  Q8C0M9 33,950 6 7 5 - 
Astrocytic phosphoprotein PEA-15 Q62048 15,054 - 11 5 6 
Brain glycogen phosphorylase  Q8CI94 96,730 - 3 5 - 
Calponin 3, acidic  Q9DAW9 36,429 - - 2 2 
Clathrin, heavy polypeptide (Hc)  Q68FD5 191,557 4 16 8 4 
Cofilin 1, non-muscle  P18760 18,560 - 7 8 7 
Creatine kinase, brain  Q04447 42,713 25 44 74 38 
Cytochrome c  P62897 11,605 7 4 4 2 
Dihydropyrimidinase-like 2  O08553 62,278 23 21 25 8 
Dimethylarginine dimethylaminohydrolase 1  Q9CWS0 31,381 6 9 4 2 
DJ-1 protein  Q99LX0 20,021 2 5 7 3 
Enolase 1, alpha non-neuron  P17182 47,141 11 20 17 11 
Eukaryotic initiation factor 4AII  P10630 46,402 - 3 6 4 
Eukaryotic translation elongation factor 2  P58252 95,314 4 8 11 4 
Eukaryotic translation initiation factor 5A  P63242 16,303 - 2 3 3 
Fatty acid binding protein 7, brain  P51880 14,893 6 8 10 5 
Fatty acid synthase  P19096 272,428 - 6 4 2 
Ferritin heavy chain 1  P09528 21,067 - 6 9 17 
Ferritin light chain 1  P29391 20,802 5 2 11 19 
Filamin-A  Q8BTM8 281,194 16 67 66 28 
Filamin-B  Q80X90 277,753 28 66 86 55 
Filamin-C  Q8VHX6 291,119 - - 11 2 
Gelsolin-like capping protein  Q99LB4 38,769 - - 5 4 
Glial fibrillary acidic protein (GFAP) P03995 46,492 38 40 73 42 
Glutathione S-transferase, alpha 4  P24472 25,564 9 4 9 5 
Glutathione S-transferase, mu 1 A2AE90 25,970 48 44 61 38 
Glutathione S-transferase, mu 5  P48774 26,635 - 3 6 - 
Glutathione S-transferase, pi 2  P46425 23,537 - - 8 7 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) P16858 35,810 - - 2 7 
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Glyoxalase domain containing 4  Q9CPV4 33,317 - - 9 - 
Guanosine diphosphate (GDP) dissociation inhibitor 1  P50396 50,522 2 3 6 - 
H4 histone family, member A  P62806 11,367 5 12 5 6 
Heat shock 70kDa protein 8 isoform 1  P63017 70,871 10 22 30 8 
Heat shock protein 4  Q5NCS5 94,209 6 7 10 - 
Heat shock protein 90kDa alpha (cytosolic), class A member 1 P07901 84,788 13 12 30 8 
Heat shock protein 90kDa alpha (cytosolic), class B member 1 Q71LX8 83,281 13 34 10 5 
Heterogeneous nuclear ribonucleoprotein A2/B1  O88569 37,403 - 7 8 8 
Hypoxanthine guanine phosphoribosyl transferase 1  P00493 24,570 - - 3 - 
Inositol monophosphatase  O55023 30,436 4 4 3 - 
Isocitrate dehydrogenase [NADP] cytoplasmic  O88844 46,660 3 3 5 - 
Lactate dehydrogenase 1, A chain  P06151 36,499 15 11 14 15 
Lactate dehydrogenase 2, B chain  P16125 36,572 38 31 34 14 
Lactoylglutathione lyase  Q9CPU0 20,810 - 6 2 2 
Lamin A isoform A   P48678 74,238 - - 7 4 
Leukotriene A4 hydrolase  Q3UY71 69,051 3 - 7 - 
Lysosomal alpha-mannosidase precursor (Mannosidase, alpha 
B) O09159 114,604 3 10 26 10 

Malate dehydrogenase 2, NAD (mitochondrial)  P08249 35,611 25 24 15 9 
Malate dehydrogenase, cytoplasmic  P14152 36,511 14 6 8 5 
Malic enzyme 1, supernatant  P06801 63,999 - - 2 2 
Mannosidase alpha, class 1A, member 1  Q544T7 73,276 2 16 16 13 
Myosin, heavy polypeptide 9, non-muscle isoform 1  Q8VDD5 226,357 - - 9 - 
Myosin, light polypeptide 6, alkali, smooth muscle and non-
muscle  Q60605 16,930 - 5 7 4 

Nestin Q6P5H2 202,011 - 9 5 - 
Nit protein 2  Q9JHW2 30,502 - - 2 - 
Nucleoside-diphosphate kinase 1  P15532 17,208 3 - 6 9 
Nucleoside-diphosphate kinase 2  Q01768 17,363 3 11 3 4 
Ornithine aminotransferase  P29758 48,355 - - 3 3 
Peroxiredoxin 1  A2AP16 22,176 14 20 19 24 
Peroxiredoxin 2 (Thioredoxin peroxidase 1)   Q61171 21,779 7 14 14 12 
Peroxiredoxin 5 precursor  P99029 21,897 - 9 8 20 
Peroxiredoxin 6 (Acidic calcium-independent phospholipase 
A2) O08709 24,871 38 48 35 19 

Phosphogluconate dehydrogenase  Q91V28 53,261 9 13 10 4 
Phosphoglycerate kinase 1  P09411 44,536 22 18 13 12 
Phosphoglycerate mutase 1 (brain)  Q9DBJ1 28,832 3 6 12 9 
Phosphoserine aminotransferase 1  Q99K85 40,473 8 - 2 - 
Plectin 1  Q9QXS1 534,216 - - 7 - 
Proteasome activator PA28 alpha subunit  P97371 28,673 - - 4 4 
Proteasome subunit, alpha type 1  Q9R1P4 29,547 7 4 4 - 
Proteasome subunit, alpha type 2  P49722 25,926 - 2 6 - 
Proteasome subunit, alpha type 3  Q9DCD8 28,490 9 3 2 - 
Proteasome subunit, alpha type 5  Q3UPK6 26,411 4 3 5 - 
Proteasome subunit, alpha type 6  Q9QUM9 27,372 4 8 4 4 
Proteasome subunit, alpha type 7  Q9Z2U0 27,855 10 8 8 7 
Proteasome subunit, beta type 1  O09061 26,372 8 - 7 - 
Proteasome subunit, beta type 3  Q545G0 22,965 4 6 7 - 
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Proteasome subunit, beta type 5  Q3UZI1 28,532 6 11 7 - 
Proteasome subunit, beta type 8   P28063 30,260 2 4 5 - 
Purine-nucleoside phosphorylase  P23492 32,277 5 - 7 4 
Pyruvate kinase isozyme M2  P52480 57,887 4 7 17 12 
Rho GDP dissociation inhibitor (GDI) alpha  Q99PT1 23,407 8 8 13 14 
Ribonuclease/angiogenesis inhibitor  Q91VI7 49,816 6 - 3 3 
S-adenosylhomocysteine hydrolase  Q5M9P0 47,674 3 - 3 - 
SH3-binding domain glutamic acid-rich protein like  Q9JJU8 12,811 3 4 5 5 
Soluble calcium-activated nucleotidase 1 Q8VCF1 45,653 2 4 5 4 
Spectrin alpha 2  P16546 284,597 - 3 18 - 
Spectrin beta 2 isoform 1 or 2  Q62261 274,223 - 2 5 - 
S-phase kinase-associated protein 1A  Q9WTX5 18,672 - 5 4 3 
Superoxide dismutase 1, soluble  P08228 15,943 18 30 15 27 
Thioredoxin reductase 1  Q8CI31 54,337 6 5 2 - 
Transaldolase 1  Q93092 37,387 6 - 3 - 
Transgelin  P37804 22,576 9 15 18 13 
Transgelin 2  Q91VU2 22,395 4 11 12 10 
Transitional endoplasmic reticulum ATPase (valosin-containing 
protein) Q01853 89,364 27 57 31 5 

Transketolase  P40142 67,630 - - 4 - 
Translin  Q62348 26,201 3 - 7 3 
Triosephosphate isomerase 1 P17751 26,713 9 6 6 3 
Tropomyosin 1, alpha  P58771 32,681 7 11 7 4 
Tropomyosin 4, alpha  Q6IRU2 28,468 8 4 14 6 
Tubulin, alpha  P05213 50,152 - 7 8 2 
Tubulin, beta  Q9ERD7 50,419 - 5 7 - 
Ubiquitin carboxy-terminal hydrolase L1  Q9R0P9 24,838 2 6 6 2 
Ubiquitin-activating enzyme E1, Chr X  Q02053 117,809 - 4 4 2 
UDP-glucose pyrophosphorylase 2  Q91ZJ5 56,979 3 4 3 - 
Villin 2  P26040 69,407 - - 8 6 
Vinculin  Q64727 116,717 14 30 46 8 
WD repeat domain 1  Q3TJY2 66,407 7 6 4 - 

Proteins are reported with their corresponding accession number, molecular weight (MW), and 
redundant peptides identified for each treatment condition. 

a) Accession numbers are reported from the Uniprot database (www.uniprot.org) and, when 
available, refer to the unprocessed precursor protein. 

b) The average number of redundant peptides identified after applying the selection criteria 
detailed in Experimental Procedures.  A null value indicates the protein did not meet the 
minimum criteria for identification. 
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3.1 Abstract 

Growing appreciation for astrocytes as active participants in nervous system 

development, neurovascular metabolic coupling, as well as neurological disease 

progression has stimulated investigation into specific astrocyte-secreted proteins 

that mediate these functions. Collections of secreted proteins, known as cellular 

secretomes, have been investigated by mass spectrometry-based proteomics in 

diverse organisms, biological fluids, and cell types. While improvements in the 

depth of the astrocyte secretome have been significant over the last several years, 

integration of stable isotope dilution mass spectrometric approaches for astrocyte 

secretome analysis has not been performed. The current work implemented a stable 

isotope labeling by amino acids in cell culture (SILAC)-based method to quantify 

relative changes in protein abundance in the astrocyte secretome and intracellular 

proteome. Paired with multidimensional Gel-LC-MS/MS, SILAC quantitative 

analysis of astrocyte conditioned media quantified 516 proteins relative to the 

intracellular proteome. Ninety-two of these proteins were greater than 1.5-fold 

enriched in ACM, including twelve proteins that lacked N-terminal signal peptides, 

including vimentin, 2 histones, and ferritin light and heavy chains, suggesting their 

enrichment was due to secretion through nonconventional pathways. In summary, 

this work demonstrated the relative quantification of astrocyte-secreted proteins by 

SILAC quantitative mass spectrometry. This SILAC approach can aid in 

deciphering the distinct pathways and molecular mechanisms of protein secretion in 

across different cellular model systems. 
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3.2 Introduction 

For intact tissues and whole organisms, cells rarely operate autonomously, but 

rather in concert with or in response to the cellular physiology of their neighbors. While 

these responses can be generated by direct cell-cell coupling, such as the propagation of 

calcium waves through gap junctions in astrocytic cellular networks (Nedergaard 1994), 

other responses are elicited as a result of secreted biomolecules. Stimulus-coupled 

neurotransmitter release is the prototypic intercellular signal in the brain; responsible for 

initiating activity-dependent synapse formation during development (Zito, Svoboda 

2002) as well as synaptic remodeling after learning (De Roo et al. 2008). In addition, 

there is growing appreciation for the roles secreted proteins play in nervous system 

function, particularly in distinct developmental stages or disease states (Christopherson et 

al. 2005, Liauw et al. 2008, Nagai et al. 2007, Park et al. 2008, Krumbholz et al. 2006, 

Koistinaho et al. 2004, Glabinski et al. 1997). However, the intracellular molecular 

pathways underlying protein secretion and the subsequent extracellular signaling 

cascades are not completely understood.   

Recent studies suggest that astrocyte protein secretion may subserve a host of 

critical functions within the nervous system, including synapse formation and trophic 

support during development (Christopherson et al. 2005), adult neurogenesis (Song, 

Stevens & Gage 2002) , and immune response (Dong, Benveniste 2001, Babcock et al. 

2003). In particular, in vitro and in vivo synapse formation was promoted by 

thrombospondins secreted by immature, but not mature astrocytes (Christopherson et al. 

2005). While astrocytes provide trophic, pro-survival support to neurons (Banker 1980), 

under cellular or physiological states associated with disease, astrocytes can shift to a 
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highly “reactive” phenotype (Pekny, Nilsson 2005). Under these conditions, astrocytes 

secret pro-inflammatory mediators, such as cytokines and chemokines (Dong, Benveniste 

2001, Babcock et al. 2003) and give rise to increased levels of extracellular excitatory 

amino acids, such as glutamate, which can significantly impair neuronal survival (Abele 

et al. 1990, Ding et al. 2007). In contrast, the involvement of astrocyte-secreted proteins 

in these processes has not been extensively investigated.    

In efforts to define the potential physiological and pathological implications of 

astrocyte protein secretion, several studies have begun to characterize the astrocyte 

secretome using cell culture conditioned medium, identifying classically secreted and 

nonconventionally secreted proteins as well as cytosolic proteins (Keene et al. 2009, 

Dowell, Johnson & Li 2009, Moore et al. 2009). Although the identification of classically 

secreted proteins can be confirmed by signal peptide prediction algorithms, the 

identification of novel nonconventionally secreted proteins is more difficult, due in part 

to poorly understood secretion mechanisms and lack of extensive training datasets for 

prediction algorithms (Bendtsen et al. 2004a). Therefore, a proteome-wide quantitative 

mass spectrometry-based approach that measures extracellular protein enrichment would 

accelerate the identification of proteins secreted by these alternative mechanisms.  

Although a quantitative MS-based approach was recently applied to study protein 

secretion in primary astrocytes using isotopic chemical labeling of protein lysates 

(Delcourt et al. 2005), metabolic stable isotope labeling strategies have not been 

demonstrated. Metabolic labeling techniques provide accurate quantitation at low signal-

to-noise and reduce errors introduced during sample preparation prior to mass 

spectrometry analysis (Ong, Mann 2005). SILAC has been applied in transformed cell 
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lines to assess relative changes in protein expression as a function of temporal and 

stimulus-dependent variables (Ong et al. 2002). More recent work has demonstrated 

success in application of SILAC to non-transformed cells, such as embryonic stem cells 

(Graumann et al. 2008) and primary neurons (Spellman et al. 2008). In the current work, 

SILAC in primary astrocyte cultures achieved at least 98 % incorporation of isotope label 

into the astrocyte proteome and secretome. These isotope reference proteome standards 

were used to evaluate astrocytic protein secretory pathways by quantitative analysis of 

relative protein abundance within and between the astrocyte secretome and intracellular 

proteome.   
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3.3 Materials and Methods 

Chemicals and Materials. All reagents were purchased from Sigma-Aldrich (St. Louis, 

MO) unless otherwise stated. Custom Minimal Essential Media (MEM) lacking natural 

abundance L-leucine and L-lysine was purchased from AthenaES (Baltimore, MD). 13C6-

15N2-lysine and 13C6-15N1-leucine were purchased from Cambridge Isotope Laboratories 

(Boston, MA). 

Astrocyte culture and media conditioning.  Cortical astrocyte cultures were prepared from 

neonatal CD-1 mice (Charles River, Wilmington, MA) on postnatal day 1 as previously 

described (Chapter 2, section 3) but with minor modifications. Neonatal cortices were 

triturated in Minimal Essential Media (Invitrogen, Carlsbad, CA) supplemented with 10% 

fetal bovine serum (Hyclone), sodium pyruvate (1 mM), L-glutamine (2 mM), D-glucose 

(42 mM), sodium bicarbonate (14 mM), penicillin (100 U/ml), streptomycin (100µg/ml), 

fungizone (2.5 µg/ml) and plated at 3 cortices per T-75 vent-cap flask (Corning, Corning, 

NY). Mixed cortical cultures were raised for 10 days in 37°C and 5% CO2 with media 

change every 3-4 days. Cultures were then washed with cold EBSS and separated from 

neurons and microglia by shaking overnight at 37°C. Adherent cells were trypsinized 

(0.25%) and seeded in 100 mm Petri dishes (Corning) at 5 x 106 cells/plate (5 ml). Forty-

two hours after plating, cells were washed three times with EBSS and then with serum-

free media for 6 hours. Washing media was replaced with fresh serum-free media 

containing 1 ug/ml of brefeldin A or DMSO vehicle. Cell viability was quantified by 

trypan blue exclusion. For brefeldin A treatments, astrocyte-conditioned media (ACM) 

was collected after 24 hours, while all other experiments were conducted for 7 days. 
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ACM was pooled between three culture dishes (15 mL) and centrifuged at 500 x g for 5 

min to remove cell debris.  The protein fraction (> 3 kDa) was obtained by 30-fold 

concentration by ultrafiltration of ACM at 4 °C using CentriPrep Ultracel YM-3 filters 

(Millipore, Billerica, MA). Filtrates were then adjusted with protease inhibitors, 2ug/ml 

aprotinin, 3.3 ug/ml bestatin, 3.3 ug/ml E-64, and aliquoted and stored at -80 °C.  Cell 

pellets were lysed by homogenization in 50 mM HEPES-NaOH, pH 7.2, containing 50 

mM NaCl, 1 mM EDTA, 1% Triton-X100, and protease inhibitors (as above), incubated 

on ice for 20 min, and centrifuged at 20,000 x g for 20 min at 4 °C.   Protein 

concentration of conditioned media and soluble lysates was determined by the Bradford 

method. 

Astrocyte Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). SILAC 

labeling of primary astrocytes was used to generate isotope reference proteomes for both 

intracellular and extracellular proteomes. Astrocytes were cultured by the protocol 

described above, except for the modification of culture medium and culture flasks. MEM 

devoid of natural abundance lysine and leucine was adjusted to 10% dialyzed FBS and 

repleted with 13C6-15N2-lysine and 13C6-15N1-leucine (Cambridge Isotope Laboratories, 

Boston, MA). In preparation for media conditioning, enriched astrocytes were seeded in 

T-175 flasks at 12.7 x 106 cells/plate (20 mL) in serum-containing heavy medium. Forty-

eight hours later, serum was withdrawn as described above, and media conditioning was 

performed for 7 days. Collection and processing of media and cells was performed as 

described above, except ACM was concentrated about 300-fold. From this protocol, one 

can expect about 1.5 mg of heavy labeled ACM and 25 mg of heavy labeled cell lysates. 

IRPs were spiked into non-labeled (light) samples at a nominal protein ratio of 1:1 or 2:3 
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(light:heavy). Given a single gel-LC-MS/MS analysis was performed with between 50 

and 100 ug of total protein, 1.5 mg of heavy labeled ACM is sufficient for about 25 to 50 

experiments. 

Gel/LC-MS/MS analysis. The protein fraction obtained from ACM was analyzed by 

Gel/LC-MS/MS as described previously (Tang et al. 2005) with modification. 

Concentrated ACM was mixed with 6X LDS sample buffer and equal protein (20 – 50 

ug) were loaded per lane on NuPAGE 10% Bis-Tris gels (Invitrogen, Carlsbad, CA) and 

electrophoresed in MOPS running buffer until the dye front reached either 1.6 or 3.2 cm. 

Proteins were visualized by Colloidal Blue (Invitrogen, Carlsbad, CA) and each lane was 

cut into uniform (2 mm) slices using a MEF-1.5 Gel Cutter (The Gel Company, San 

Francisco, CA). Individual gel slices were cut into 1 x 1 mm cubes and digested in-gel 

with trypsin as previously described (Speicher et al. 2000).  Tryptic digests were 

analyzed on either an LTQ or hybrid LTQ-Orbitrap mass spectrometer (Thermofisher 

Scientific, San Jose, CA) coupled with a NanoLC pump (Eksigent Technologies, 

Livermore, CA) and autosampler.  Tryptic peptides were separated by reverse phase 

(RP)-HPLC on a nanocapillary column, 75 μm id x 20 cm ProteoPep (New Objective, 

Woburn, MA, USA). Peptides were eluted into the mass spectrometer at 300 nL/min, 

running a gradient of ACN (solvent B). Each RP-LC run comprised a 15 min sample load 

at 1 % B and a 90 min total gradient from 5 to 45 % B.  The mass spectrometer was set to 

repetitively scan m/z from 300 to 1700 (R = 30,000 for Orbitrap) followed by data-

dependent MS/MS scans on the five most abundant ions, with a minimum signal of 1000, 

isolation width of 2.0, normalized collision energy of 28, and waveform injection and 

dynamic exclusion enabled. FTMS full scan AGC target value was 1e6, while MSn AGC 
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was 5e3, respectively. FTMS full scan maximum fill time was 500 ms, while ion trap 

MSn fill time was 50 ms; microscans were set at one. A hybrid LTQ-Oribtrap was 

utilized for all SILAC experiments with additional instrument parameters as follows: a 

reject mass list containing 272 fully tryptic peptide m/z values from bovine serum 

albumin; a 5 ppm reject mass width; FT preview mode; charge state screening, and 

monoisotopic precursor selection were all enabled with rejection of unassigned and 1+ 

charge states. 

Protein Identification and Validation. DTA files were generated from MS/MS spectra 

extracted from the RAW data file (intensity threshold of 1000; minimum ion count 30). 

DTA files generated from LC-MS/MS runs belonging to the same biological samples 

were submitted to Sorcrerer-SEQUEST (ver. 4.0.3, rev 11; SagenResearch, San Jose, 

CA). Database searching was performed against a Uniprot database (Release 14.6) 

containing Mus musculus sequences from SwissProt and TrEMBL plus common 

contaminants, which were then reversed and appended to the forward sequences (121,248 

sequences). The database was indexed with the following parameters: mass range of 600 

- 4200, semi-tryptic cleavages with a maximum of 2 missed cleavage sites and static 

modification of cysteine by S-carbamidomethylation (+57 amu). Database searching was 

performed with the following parameters:  precursor tolerance, 30 ppm; fragment 

tolerance, 1.0 amu; variable modification of methionine (+16 amu), and for SILAC 

experiments, variable modification of leucine (+7.017 amu) and lysine (+8.014 amu). The 

maximum number of variable modifications per instance and per peptide was 3 and 4, 

respectively. 13C isotope mass check was enabled. SEQUEST sequence-to-spectrum 

assignments were analyzed by either Scaffold (Proteome Software, Portland, OR), the 
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TransProteomic Pipeline (TPP ver. 4.0.2), or DTASelect (ver. 2.0). Reverse database hits 

were used to control error rate at the peptide and protein level to less than 1 %. The 

following command-line parameters were used for modeling and filtering of sequence-to-

spectrum assignments by DTASelect: -s 100 -d 0.1 -Smn 7 -e CON_ --iso --sp --mass --

ionstat --trypstat. Peptides were assembled into protein groups to satisfy rules of 

parsimony requiring at least two unique peptides. 

Census quantitative isotope labeling analysis. The isotope labeling feature of Census 

(ver. 1.44) was used for automated computation and filtering of extracted ion 

chromatograms and peptide ratios, respectively. Individual isotope extraction of SILAC 

pairs was performed with a mass tolerance of 30 ppm and a.p.e of 0.98. Default values 

for filtering of peptide ratios were used except an outlier p-value of 0.2 was selected. 

Proteins with 2 or more unique, quantified spectra were retained. Protein ratio calculation 

was repeated for additional sample sets and normalized ratios were calcaulted between 

two experimental conditions to obtain relative fold differences in protein abundance. 

These normalized protein ratios were utilized for downstream functional and statistical 

analyses. 

LC-MRM-MS/MS analysis of SILAC pairs. This approach was used to determine the 

degree of isotope incorporation into the astrocyte proteome and to validate SILAC ratios 

obtained by proteome-wide SILAC quantification. Data-independent analysis of light and 

heavy isotope-labeled peptides was conducted using a “pseudo-MRM” approach on an 

LTQ instrument (Thermofisher Scientific, San Jose, CA). The RP-LC gradient was 

identical to the method described above. The mass spectrometer was set to repetitively 

perform data-independent MS2 acquisition on specific precursor masses corresponding to 
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selected light and heavy labeled SILAC pairs identified from data-dependent 

experiments. Between 4 and 8 precursor masses (2 - 4 SILAC pairs) were monitored in a 

single segment, with an isolation width of 3.0, normalized collision energy of 28, 2 

microscans, and accumulation time and target value of 100 ms and 5e3, respectively. 

Xcalibur was used to reconstruct precursor-product ion chromatograms. SILAC peptide 

pair ratios were computed by AUC measurements and the average of four SILAC ratios 

(two precursors per protein x two product ions per precursor) reflected the final protein 

ratio. This calculation was repeated for the same protein in the second sample to 

determine relative protein abundance. 

Computational and functional gene ontology analysis. For computational analysis of 

classically secreted proteins, FASTA sequences were submitted to SignalP (Bendtsen et 

al. 2004b) to predict proteins containing signal peptides, followed by TargetP 

(Emanuelsson et al. 2000) to predict the localization (Extracellular, Mitochondria, Other). 

For prediction of nonconventionally secreted proteins, SecretomeP 2.0 (Bendtsen et al. 

2004a) was used. FatiGO (Al-Shahrour, Diaz-Uriarte & Dopazo 2004) and Ingenuity 

Pathways Analysis software (Ingenuity® Systems, www.ingenuity.com) were used to 

provide gene ontology annotation and analysis of functional pathways, respectively.  

Statistical analysis of normalized protein ratios. Histograms were constructed and 

statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, Inc., 

San Diego, CA). For brefeldin A experiments, significantly altered protein ratios were 

determined from large-scale protein profiling experiments using the complementary error 

function (erfc) within Microsoft Excel (see Eq. 1), which determines the probability that 

each individual protein ratio is not significantly different from the average protein ratio 
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erfc  log r r 2 Δ log r Δ log r σ   (Eq. 1); 

 
where Δ log r 0.4343 Δr r⁄  , Δ log r 0.4343 Δr r⁄ ,  rp and Δrp = 
protein abundance ratio and its associated error, r0 and Δr0 = average curve fit ratio and 
its associated error, and σ = mean error of the background distribution. 

(Li et al. 2003). The average ratio and other parameters (shown below) were calculated 

from a Gaussian least-squares nonlinear regression of the distribution of protein ratios. 

Gaussian fits were constructed using the normal distribution equation provided in 

GraphPad Prism with automatic outlier detection enabled.  
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3.3 Results  

Work from our lab and others have established astrocytes as a viable model for 

the study of protein secretion under various cellular conditions (Lafon-Cazal et al. 2003, 

Keene et al. 2009, Dowell, Johnson & Li 2009, Moore et al. 2009). In an effort to further 

understand and define the pathways of astrocyte protein secretion, we used SILAC in 

primary mouse astrocyte cultures. Using this approach, isotope reference proteomes 

(IRPs) were generated in independent experiments and then spiked into samples collected 

from natural abundance culture conditions. This strategy has been previously used to 

uncover novel biomarkers and pharmacological targets for leukemias with MLL 

translocations (Yocum et al. 2006). Except for the addition of heavy labeled amino acids, 

13C6-15N2-lysine and 13C6-15N1-leucine, to medium that was devoid of their light 

counterparts, this approach did not require significant changes in preparation of enriched 

astrocyte cultures as compared to our previous work (Keene et al. 2009). Briefly, mixed 

glial/neuronal cortical cultures were established from cortices dissected from a total of 20 

P1 neonatal CD-1 mice and maintained in heavy labeled medium from in vitro day 0 until 

the end of the experiment at day 20. At 11 days in vitro, cells were washed, trypsinized 

and combined into a single cell stock, which was used to establish enriched cultures (> 

95% astrocytes). After 48 hours, astrocytes were switched to serum-free heavy isotope-

containing media and remained in culture without media change for additional 7 days. No 

apparent differences in rate of proliferation, gross morphology (as visualized by light 

microscopy), or cell viability were observed (data not shown).  After collection of both 

astrocyte-conditioned media (ACM) and cells, ACM was concentrated by 300-fold and 
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cells were lysed. The heavy labeled ACM IRP yielded about 1.5 mg of protein, while the 

astrocyte lysate IRP yielded approximately 25 mg of protein. 

Data-dependent and –independent mass spectrometric analyses were performed 

on each IRP to determine atom percent excess of stable isotope incorporation. Protein 

aliquots (25 ug) from each IRP were in-solution trypsin digested. Tryptic peptides (5 ug) 

were separated by reverse-phase LC and analyzed by either data-dependent MS/MS 

conducted on an LTQ-Orbitrap or by a data-independent “pseudo-MRM” approach on an 

LTQ mass spectrometer. For the former approach, 1085 and 2067 unique peptides were 

identified from ACM and lysate IRPs, respectively, with less than 1 % of unique peptides 

containing a light leucine or lysine. Atom percent excess was estimated by Census, a 

quantitative software tool that provides automated reconstruction of light/heavy (SILAC) 

extracted ion chromatograms and computation of SILAC peptide ratios (see Materials 

and Methods). For greater than 98% of the leucine and/or lysine-containing peptides, the 

light component was below the limit of quantification, resulting in a SILAC ratio of zero. 

In contrast, vimentin was identified with 3 light peptide sequences (30 unique peptides 

total), which allowed more accurate quantification. Reconstruction of extracted ion 

chromatograms from two of the SILAC peptide pairs, EEAESTLQSFR and 

DNLAEDIMR, gave SILAC ratios that were 0.02 (1:50), corresponding to an estimated 

atom percent excess of about 98% (Figure 3-1A, B). 
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Figure 3-1. Extracted ion chromatograms of vimentin peptides identified from ACM isotope 
reference proteome. Extracted ion chromatograms were constructed by the Census quantitation 
tool with automatic thresholds for acceptance of light/heavy extracted ion chromatograms were 
set at a correlation coefficient of 0.7 and outlier detection value of 0.2. Extracted ion 
chromatograms shown above are from two peptides from vimentin, (A) EEAESTLQSFR and (B) 
DNLAEDIMR, which were identified from the ACM isotope reference proteome. Extracted ion 
chromatograms have excellent correlation coefficients, reflecting a light (blue trace) to heavy 
(red trace) ratio of 0.02, which would be the equivalent of 98 % isotopic enrichment. 
  
 

Data-independent mass spectrometric analysis of IRPs supported the Census 

analysis. In these experiments, 16 SILAC peptide pairs were selected for MS/MS analysis 

(2 unique peptides from 4 ACM proteins and from 4 cell lysate proteins). Reconstruction 

of precursor-product ion chromatograms for peptide pairs from GAPDH showed greater 

than 98 % incorporation (data not shown). Moreover, for the remaining 14 peptides, the 

intensity of the light component was undetectable. Collectively, these data demonstrate 

that culturing primary mouse astrocytes in isotope-containing medium for 20 days in 

vitro achieved at least 98 % incorporation for the majority of the intracellular and 

extracellular proteome.    

As a proof-of-concept, the IRPs were used to quantify alterations in the astrocyte 

proteome and secretome following exposure of cells to brefeldin A (BFA), an inhibitor of 
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vesicular transport between the ER and Golgi compartments. A previous study clearly 

documented inhibition of classically secreted proteins in astrocytes after treatment with 1 

ug/mL of BFA for 24 hours (Lafon-Cazal et al. 2003); and therefore would serve as a 

useful model to develop SILAC quantitative analysis of the astrocyte secretome and 

proteome. Consistent with the previous work, BFA exposure did not significantly impair 

cell viability (data not shown). ACM and soluble intracellular protein lysates were 

isolated from control and BFA-treated astrocytes, normalized by protein, and mixed in 

equal amounts with their respective IRP. Samples were separated by SDS-PAGE and in-

gel digested with trypsin. Peptides (~2.5 ug) from each gel slice were analyzed by LC-

MS/MS using an LTQ-Orbitrap XL.  

SEQUEST sequence-to-spectrum assignments were generated and probabilistic 

validation of peptides was performed by PeptideProphet (Keller et al. 2002a).  Peptide 

assignments were filtered by probability to achieve an error rate of less than 1 % and then 

analyzed by Census. In total, 231 and 535 normalized protein ratios (RatioBFA/RatioCtl) 

were calculated for proteins in ACM and cellular lysates, respectively. (Figure 3-2A). 

Large-scale protein expression profiling studies by isotopic labeling have different 

statistical approaches to classify proteins that exhibit differential expression or abundance 

(Oda et al. 1999, Li et al. 2003). One approach, implemented by Li and colleagues in the 

ASAPRatio algorithm (Li et al. 2003), modeled a best-fit Gaussian curve to the 

distribution of protein ratios, and then computed the complementary error function to test 

the null hypothesis that each protein ratio was not significantly different from the mean 

curve fit ratio (see Materials and Methods). Using this approach, the distribution of 

cellular lysate protein ratios showed a good fit to the Gaussian curve and resulted in a 
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mean curve fit ratio close to the expected 1:1 (1.28 ± 0.01) (Figure 3-2B). Statistical 

analysis identified 21 out of 535 proteins that were significantly altered due to BFA 

treatment (p < 0.05) (Figure 3-2C). Proteins such as coatomer subunit beta and gamma as 

well as RAP guanine nucleotide exchange factor 2 were down-regulated due to BFA 

treatment (Table 3-1). In contrast, the relative intracellular abundance of several 

classically secreted proteins were found significantly increased, including cathepsin L1 

precursor (9.4-fold), apolipoprotein E precursor (21-fold), and thrombospondin-1 

precursor (28-fold). Also, the ATP-binding cassette sub-family A member 1 (ABCA1) 

was increased five-fold, consistent with its functional relationship between apolipoprotein 

E lipidation and promotion of mature lipoparticle secretion from astrocytes (Hirsch-

Reinshagen et al. 2004) as well as macrophages (Von Eckardstein et al. 2001).  

Moreover, the glucose-regulated proteins, grp78 and grp94, were 3.4±1.5-fold (p = 0.06) 

and 2.32±1.05-fold (p = 0.25) increased after BFA treatment, respectively, though these 

changes did not reach significance. These data support the SILAC methodology as a 

useful tool in relative quantification of intracellular protein abundance in primary 

astrocytes.   

This analysis was then performed to quantify the concomitant changes in protein 

abundance in ACM after BFA treatment.  In contrast to cellular lysate protein ratios, the 

distribution of ACM protein ratios deviated from normality (Fig 3-2D), which was not 

unexpected given that a significant proportion of proteins identified in ACM contain an 

N-terminal signal peptide and therefore would be potential targets of BFA-mediated 

inhibition.  Although this resulted in curve fit values with a larger standard deviation and 

a wider distribution (σ) (see Fig 3-2), the strong inhibitory effect of BFA on classical 



131 
 

secretion permitted the identification of 55 proteins that were significantly decreased in 

ACM after BFA treatment (p < 0.05)  (Table 3-2 and Figure 3-2E); 51 of which 

contained an N-terminal signal peptide. Overall, these experiments demonstrated that 

SILAC-generated IRPs can be employed to identify proteins with relative abundance 

changes in the astrocyte secretome and intracellular proteome.  
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Figure 3-2. Brefeldin A-
induced changes in 
relative protein 
abundance. Relative 
protein abundance ratios 
were calculated by 
normalizing protein ratios 
calculated in the BFA-
treated astrocyte sample 
to the corresponding 
protein ratio from the 
control sample. Gaussian 
curve fit parameters; 
mean ratio (r0), standard 
deviation of the mean 
ratio (SD), and the 
background distribution 
(σ) were calculated for 
protein ratio distributions. 
(A) Individual log2 protein 
ratios from ACM (blue; N 
= 231) and cell lysates 
(red; N=535) plotted in 
order of increasing 
relative abundance. (B) 
Histogram of BFA-
induced changes in cell 
lysates as a function of 
log2 normalized protein 
ratio. Protein ratio 
distribution provided a 

good fit to the Gaussian curve (r0 ± SD = 1.28 ± 0.01, σ = 1.28). (C) Significantly altered cell 
lysate protein ratios (black) versus non-significant protein ratios (white) calculated using the 
complementary error function (p < 0.05) and Gaussian curve fit values. (D) Histogram of BFA-
induced changes in relative protein abundance of ACM proteins. Curve fit values for ACM 
protein ratios were r0 ± SD = 1.97 ± 0.10, σ = 1.75. (Ε) Significantly altered cell lysate protein 
ratios (black) versus non-significant ratios (white) calculated using the complementary error 
function  (p < 0.05)  and Gaussian curve fit values. 
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Next, this SILAC workflow was employed to assemble a quantitative protein 

enrichment profile of astrocyte conditioned media under basal cell culture conditions. 

The degree of enrichment for each protein would be calculated by the relative abundance 

between the extracellular and intracellular compartments, essentially reflecting the extent 

of protein secretion. For this purpose, a combined “whole cell” IRP was generated that 

contained reference proteins from both the intracellular and extracellular proteomes. This 

IRP was then spiked into ACM and cell lysates samples obtained from the same astrocyte 

culture after 7 days of conditioning in light isotope-containing media. Samples (100 ug) 

were split between two lanes, resolved by SDS-PAGE and in-gel trypsin digested. 

Extracted peptides corresponding to gel slices from replicate lanes were pooled and 

analyzed by LC-MS/MS. SEQUEST sequence-to-spectrum assignments were analyzed 

by DTASelect and Census, resulting in the relative quantification of 516 proteins. 

Normalized protein ratios (RatioACM/RatioLysate) represent the fold difference in 

abundance between the extracellular and intracellular proteomes.  The distribution of 

protein enrichment ratios spanned at least 4 orders of magnitude (Figure 3-3A) and 

included cytosolic proteins such as filamins and ribosomal subunits that were 20-fold to 

50-fold more abundant in cell lysates, as well as known secreted proteins such as SPARC 

and alpha-2-macroglobulin, which were 20- to 50-fold more abundant in ACM (see Table 

3-3).  An additional 109 protein ratios were calculated in the ACM sample, but could not 

be normalized by the respective protein ratio in cellular lysates as the ratio was zero. 

As MRM quantitative MS analysis can provide improved selectivity and 

sensitivity compared to non-targeted, global approaches based on precursor (MS1) ion 

abundances, the former approach was used to estimate the linear range of ACM 
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enrichment ratios calculated by global SILAC analysis. Six proteins were selected, 

GAPDH, triosphosphate isomerase, glyoxylase domain-containing protein 4, alpha-N-

acetylglucosaminidase, histone H4, and SPARC, which ranged in relative enrichment 

from -6 to +6 (log2 units), respectively.  Light-to-heavy peptide ratios were calculated 

from data-independent collection of MS/MS spectra and reconstruction of precursor-

product ion chromatograms by Xcalibur. MRM protein enrichment ratios were then 

calculated as the average ratio from two unique peptides and two distinct precursor-

product ion transitions per peptide. As shown in figure 3-3B, the global SILAC method 

yielded enrichment ratios that were in good agreement with targeted MRM ratios 

between +4 and -4 log2 units, while for ratios outside this range, enrichment ratios 

measured by SILAC were systematically greater than those measured by MRM. 

Segregation of ACM enrichment ratios by subcellular localization showed a 

strong clustering as a function of degree of enrichment (Figure 3-3C). A 1.5-fold or 

greater enrichment ratio cut-off was selected to represent significantly enriched proteins 

in ACM as this ratio equaled two times the median relative standard deviation of all 

enrichment ratios (RSD = 25 %; N = 516). As expected, the extracellular/membrane 

protein group had the largest proportion of significantly enriched ratios (N = 52/62; 

median = 8.92-fold) (Figure 3-3C).  These proteins also showed the widest range of 

enrichment ratios, consisting of constitutively secreted proteins with large (> 50-fold) 

enrichment ratios such as extracellular superoxide dismutase and osteopontin, as well as 

secreted proteins with enrichment ratios less than one, such as mesencephalic astrocyte-

derived neurotrophic factor/protein ARMET (0.32-fold) and gelsolin (0.48-fold).  

Additionally, a majority of proteins localized to the endosomal/lysosomal compartment 
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were significantly enriched (N = 22/31; median = 1.96-fold). In contrast, median 

enrichment ratios for proteins localized to the ER/Golgi/mitochondria were not 

significantly enriched, though six proteins were enriched on an individual basis (Figure 

3-3C). The remaining 392 proteins quantified did not contain N-terminal signal peptides, 

consistent with the observation that the majority (378/390) had enrichment ratios below 

1.5-fold (Figure 3-3C).  The 12 proteins lacking signal peptides but which were enriched 

in ACM were analyzed by SecretomeP, a computational prediction algorithm for 

nonconventional protein secretion (Bendtsen et al. 2004a). Interestingly, 7 of these 

proteins were predicted as nonconventionally secreted including vimentin (26-fold), 

ferritin heavy chain (3.6-fold), and histone H2A.x (6.8-fold), while the other 5 proteins 

included ferritin light chain (3.8-fold), Rho GDP-dissociation inhibitor 2 (4.8-fold), and 

histone H4 (16.2-fold). 
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Figure 3-3. Quantification of relative protein enrichment in ACM by SILAC. ACM and cell 
lysates were collected following 7 days of media conditioning. Equivalent amounts of an isotopic 
reference proteome were spiked into ACM and cell lysates and analyzed by quantitative mass 
spectrometry. (A) Histogram of 516 relative enrichment ratios, expressed as normalized log2 
ratios of ACM protein ratios to their corresponding cell lysate protein ratios. Positive values 
represent proteins that were enriched in ACM, while negative values represent proteins that were 
enriched in cell lysates. A linear protein ratio of 1.5-fold is depicted by a vertical dashed line. 
Protein ratios greater than 1.5-fold were considered significantly enriched in ACM.  (B) 
Comparison of protein abundance ratios obtained by global SILAC MS/MS analysis to 
abundance ratios for the same proteins calculated by targeted MRM-MS/MS analysis. Six 
proteins that ranged from -6 to +6 log2-fold enriched in ACM were selected for MRM-MS/MS 
analyses. MRM protein ratios were calculated as the average light-to-heavy ratio of at least 2 
unique peptides with two different precursor-product ion transitions per peptide. A dashed line 
representing the ideal 1:1 correlation is plotted for reference. (C) Protein ratios from A were 
separated by subcellular localization. Subcellular localization prediction was performed using 
SignalP and TargetP algorithms as well as the Uniprot Knowledgebase. Proteins which did not 
contain a predicted signal peptide were placed in the “cytosol/nucleus/other” category. A protein 
ratio of 1.5-fold is indicated by the dashed horizontal line, while solid horizontal lines represent 
median relative enrichment ratios.  
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Extracted ion chromatograms for these proteins were derived from at least two 

unique peptides and showed correlation coefficients of greater than 0.7. A representative 

example is shown for histone H4 in figure 3-4. Reasonable sequence coverage (42 %) 

was obtained for histone H4 and high quality MS/MS spectra were acquired for both the 

light (Figure 3-4B, top) and heavy (Figure 3-4B, bottom) TVTAMDVVYALK peptides. 

ACM enrichment of H4 was supported by extracted ion chromatograms (XICs) that 

provided relatively SILAC peptide ratios with a relative standard deviation of 26 % (N = 

6). A typical XIC (Figure 3-4C) for the TVTAMDVVYALK SILAC pair quantified in 

ACM (Figure 3-4C, top) and cell lysates (Figure 3-4C, bottom) showed identical 

reference peptide intensities (4.0 x 106) for both samples (Figure 3-5C, red traces), while 

only the endogenous  intensities were significantly different (Figure 3-5C, blue traces).   

Finally, SecretomeP was used to evaluate potential proteins that proceed by 

nonconventional secretion from the group of 378 proteins that were not significantly 

enriched in ACM. Interestingly, 153 were predicted to be nonconventionally secreted 

including known nonconventionally secreted proteins such as galectins, macrophage 

migration inhibitory factor, and acyl-CoA-binding protein (Nickel, Rabouille 2009, 

Kinseth et al. 2007, Seelenmeyer, Stegmayer & Nickel 2008, Merk et al. 2009). 
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Figure 3-4. Identification and quantification of histone H4. Excellent sequence coverage and 
high quality MS/MS spectra and extracted ion chromatograms support the identification and 
relative quantification of histone H4. (A) Amino acid sequence of histone H4. Sequence coverage 
is highlighted in yellow based on peptides identified; variable modifications are indicated in 
green. (B) MS/MS spectra corresponding to the light (top) and heavy labeled (bottom) doubly 
charged tryptic peptide, TVTAMDVVYALK, identified from ACM sample with less than 5 ppm 
error. (C) Extracted ion chromatograms constructed by Census, representing light and heavy 
peptide intensity as a function of time for the same peptide, TVTAMDVVYALK, compared 
between ACM (top) and cell lysates (bottom). The yellow highlighted area represents the region 
used for integration and the green bar indicates the time of MS/MS acquisition. 
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3.5 Discussion 

Cellular and tissue secretomes represent an important, but often overlooked 

cellular sub-proteome. Recently, the astrocyte secretome has gained greater interest in the 

neuroscience community as astrocyte-derived protein secretion has recognized roles in 

nervous system development, neurogenesis, and neurological diseases, such as 

Alzheimer’s, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (Cassina et al. 

2005, Seth, Koul 2008, Antony et al. 2004). Also, methodological and technical 

improvements in mass spectrometry-based proteomics have enabled greater depth of 

analysis for the astrocyte secretome, allowing comparative analyses of secretomes under 

different conditions and the identification of novel astrocyte-secreted factors (Keene et al. 

2009, Dowell, Johnson & Li 2009, Moore et al. 2009). Yet quantitative analysis of 

cellular secretomes is necessary to adequately define protein secretion, particularly with 

respect to distinct secretory pathways and molecular mechanisms. Although global 

quantitative MS strategies have been developed to study differential protein secretion in 

primary astrocytes (Delcourt et al. 2005), strategies incorporating stable isotope labeling 

in primary astrocytes have not been demonstrated. Here, a modified SILAC approach was 

employed in primary astrocyte cultures, providing a quantitative profile of ACM protein 

enrichment. 

The feasibility of SILAC quantitative MS for primary astrocytes was confirmed 

with stable isotope incorporation at 98 % or greater at 20 days in vitro. Previous SILAC 

studies conducted in primary neurons demonstrated incorporation to a maximum of 80 % 

incorporation (Spellman et al. 2008). The difference in isotope incorporation between 

neurons and astrocytes likely resulted from the ability of P1 astrocytes to maintain their 
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proliferative state when cultured under serum conditions. The generation of isotope 

reference proteomes (IRPs) made generating a heavy isotope culture unnecessary for 

each new experiment, which for a primary culture system is particularly useful as their 

preparation is often more technically challenging and laborious. Also, IRPs provided a 

reproducible proteome standard, which is sufficient to conduct hundreds of large-scale 

quantitative experiments. And since the same IRP serves as a reference for all samples, 

any error introduced due to culturing under heavy-labeled conditions would be 

normalized in the calculation of the final protein abundance ratio. 

These isotope reference proteomes were used to quantify changes in protein 

abundance within intracellular and extracellular proteomes after brefeldin A treatment.  

BFA treatment was selected as a proof-of-concept for several reasons: (1) the direct 

effects of BFA on classical protein secretion have been well-documented (Donaldson, 

Finazzi & Klausner 1992, Helms, Rothman 1992), (2) predictive capabilities of N-

terminal signal peptides for classical protein secretion are specific and sensitive 

(Bendtsen et al. 2004b, Emanuelsson et al. 2000), and (3) the treatment conditions and 

effects of BFA on primary astrocyte cultures have been previously documented (Lafon-

Cazal et al. 2003). Overall, the proteins identified as differentially expressed in the 

intracellular proteome due to BFA treatment were consistent with the targeting of the ER-

Golgi trafficking system, including downregulation of several vesicular transport proteins 

as well as increased abundance of classically secreted proteins, which likely resulted 

from an inhibition of secretion. Grp78 and grp94 were both upregulated, and though their 

changes did not reach statistical significance (p > 0.05), upregulation of glucose-

regulated proteins is a known consequence of ER stress and the unfolded protein 
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response (Price, Mannheim-Rodman & Calderwood 1992). The observation that BFA 

exposure only induced a modest upregulation of these glucose-regulated proteins, while 

clearly inhibiting classical proteins secretion, suggested that the concentration and time 

course of BFA treatment was appropriate. For the extracellular proteome, statistical 

analysis of SILAC ratios identified classically secreted proteins with greater than 90 % 

specificity.  

On the other hand, quantitative analysis failed to identify 49 signal peptide-

containing proteins as significantly inhibited after BFA treatment. Several possibilities 

could explain this result. For instance, not all luminal or integral membrane proteins 

(which have a signal peptide) would actively accumulate in conditioned media. 

Alternatively, some signal peptide-containing proteins, such as CD45 and cystic fibrosis 

transmembrane conductance regulator (CFTR), can be secreted by Golgi- or COPII-

independent mechanisms (Fatal et al. 2004, Baldwin, Ostergaard 2002, Wang et al. 2004) 

and therefore would be BFA-insensitive. Also, statistical analysis of protein ratios 

distributions maintained a high specificity, which could lower overall sensitivity for the 

identification of classically secreted proteins. Also, deviation of the protein ratio 

distribution from normality was a contributor to reduced sensitivity as the distribution 

around the mean ratio (σ) was wider than for the cellular lysate distribution. This 

highlights a challenge for differential quantitative proteomic experiments where a large 

proportion of the proteome is significantly altered. For these cases, development and 

validation of more sophisticated statistical analyses will be valuable for improving 

sensitivity and accuracy while maintaining low error rates.   
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The primary goal of this work was to utilize SILAC in primary astrocytes to 

generate a quantitative protein enrichment profile of astrocyte conditioned media under 

basal culture conditions. For this purpose, a “whole cell” (lysate + secretome) isotope 

reference proteome was employed to quantify 516 proteins in ACM. An additional 109 

proteins had to be excluded as valid ratios were only obtained in the ACM sample, but 

not in the cellular lysate sample. Yet these proteins were identified by reference peptides 

in the cellular lysate sample.  As seventy-five percent of the proteins possessing a signal 

peptide, this suggests that low intracellular abundance of these proteins precluded their 

quantification. Also, increased sample complexity in cellular lysates may have impaired 

the calculation of protein ratios, especially at low signal-to-noise. Therefore, SILAC 

quantitative MS studies will benefit from advances in instrument sensitivity as well as in 

quantitative software development. The current Census quantitative analysis tool supports 

an alternative algorithm to detect and quantify instances where only a single light or 

heavy peptide is identified, referred to as “singleton” peptide quantification (Park et al. 

2008a). Although this feature was available in the current software version, it was not 

integrated into the automated workflow at the time this study was performed. Further 

improvements in detection and quantification algorithms will aid in increasing the 

dynamic range of quantitative MS experiments. 

Correlation of relative enrichment ratios with subcellular localization (Figure 3-

3C) served not only as validation of the SILAC ACM enrichment analysis, but also 

facilitated the identification of proteins with enrichment ratios that differed from the 

mean ratio within each subcellular compartment. For instance, ten extracellularly-

localized proteins (containing N-terminal signal peptides) were not found significantly 
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enriched in ACM (< 1.5-fold), such as thrombospondin 1 (1.42-fold) and angiotensin-

converting enzyme (1.30-fold), which were just below the significance threshold. Yet 

other proteins such as ARMET (0.32-fold) and gelsolin (0.48-fold) had relative 

enrichment ratios that were more similar to intracellular protein ratios. Interestingly, 

gelsolin can exist in three different isoforms derived due to alternative mRNA splicing 

(Kwiatkowski, Mehl & Yin 1988, Vouyiouklis, Brophy 1997). One isoforms lacks a 

signal peptide and functions predominantly in the cytosol as an actin-binding protein. The 

other isoforms are identical in sequence except for the addition of an N-terminal signal 

peptide. Upon secretion, these proteins retain their actin-binding ability and may function 

extracellularly in actin filament clearance after tissue injury (Kwiatkowski, Mehl & Yin 

1988). Given the enrichment ratio of gelsolin was significantly less than one, the steady-

state levels of total gelsolin under basal conditions are predominantly cytosol, consistent 

with the proposal that secreted gelsolins function primarily after injury. These data 

suggest that secreted proteins with enrichment ratios significantly less than one 

correspond to proteins that have dual extra/intracellular function or to proteins that enter 

stimulus-dependent, regulated secretory pathways.  

A subset of proteins was identified that traditionally reside in membrane-bound 

compartments such as lysosomes or ER, but which exhibited ratios with significant 

enrichment in ACM, suggesting they may be actively secreted products. The most 

prominent of these proteins included 22 lysosomal proteins such as cathepsin B (2.2-

fold), D (5.25-fold), S (10.1-fold), and Z (1.5-fold), alpha-N-acetylglucosaminidase (3.5-

fold), and beta-mannosidase (5.0-fold). Cell types from the haematopoietic lineage, such 

as neutrophils, basophils, and cytotoxic T lymphocytes, possess secretory lysosomes 
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(Stinchcombe, Bossi & Griffiths 2004, Holt, Gallo & Griffiths 2006), which function 

primarily in immune defense. Although astrocytes are not derived from this lineage, the 

role of astrocyte in CNS immune responses has been well studied (Dong, Benveniste 

2001) and recent work has shown that cultured astrocytes spontaneously internalize styryl 

dyes into a lysosomal/endosomal vesicular pool, a subset of which could undergo 

calcium-depenent exocytosis (Li et al. 2008). Also, ATP release from astrocytes, which 

subserves vital astrocyte functions including calcium wave propagation (Nedergaard 

1994) and modulation of synaptic transmission (Haydon, Carmignoto 2006), was found 

to occur from a lysosomal vesicular pool (Zhang et al. 2007). While the roles of 

lysosomal secreted proteins in astrocytes are unclear, one could speculate that lysosomal 

enzymes may function in the extracellular space for tissue remodeling following cellular 

injury.  

Proteins with typical cytosolic or nuclear subcellular localizations were also 

identified enriched in ACM, suggesting they proceed by nonconventional secretion. The 

most prominent of these being vimentin, which has been previously identified in 

astrocyte conditioned media by mass spectrometry-based proteomics (Keene et al. 2009) 

and as secreted by a nonconventional mechanism from  by activated macrophages (Mor-

Vaknin et al. 2003). Moreover, this study identified ferritin light and heavy chains as 

enriched in ACM. The secretion of ferritin chains has recently been documented in 

macrophages, which was shown to provide a functional ferritin-iron source for cultured 

erthyroid precursor (Leimberg et al. 2008).  Although glial cells possess abundant ferritin 

and are able to accumulate iron, they lack transferrin receptors, which are thought to 
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mediate much of brain-derived cellular import of iron (Dringen et al. 2007). Therefore, 

the role of astrocytes in brain iron homeostasis is still unclear.  

The extracellular enrichment of histone H4 (16-fold) as well as histone H2A (6-

fold) was an unexpected finding, though several lines of evidence argue against non-

specific release. Histone H4 showed confident MS/MS spectral assignments and 

quantitative analysis showed a 16-fold ACM enrichment, calculated from 6 unique 

peptides with a relative standard deviation of 26 % (Figure 3-4). In contrast, other nuclear 

proteins, exportin-1 and exportin-2, had enrichment ratios of 0.20 and 0.32, respectively. 

Moreover, the intracellular abundance ratio of GAPDH to histone H4 was nearly 70:1, 

while the extracellular abundance ratio was 1:15, suggesting that the enrichment of H4 in 

conditioned media was independent of cell death/lysis. Functionally, histones have been 

proposed to serve as extracellular messengers stimulating the secretion of growth factors, 

as demonstrated by the stimulation of prolactin release in rat pituitary cells (Brown et al. 

2000). Also, secreted histone H4 was recently found responsible for a majority of the 

antimicrobial action of human sebocytes (Lee et al. 2009). Also, nuclear proteins 

HMGB1 and YC-1 have been shown to be nonconventionally secreted, exerting 

mitogenic extracellular functions such as proliferation and migration (Gardella et al. 

2002, Frye et al. 2009). Yet the function(s) that secreted histone H4 may serve in 

astrocytes is currently unknown and will require further investigation.   

Large-scale, proteomic approaches to identify proteins secreted by 

nonconventional pathways can be of great use as prediction algorithms for non-

conventional secretion achieve about half the sensitivity of their classical counterparts 

(Bendtsen et al. 2004b, Bendtsen et al. 2004a). As this may be due in part to the lack of 
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robust training datasets, quantitative proteomics studies are a valuable complement to 

these bioinformatic tools as they do not rely on a priori knowledge and may aid in 

refining predictive algorithms by providing additional nonconventionally secreted 

proteins for training data sets.    

In summary, this work demonstrated a SILAC-based quantitative proteomics 

method using isotope reference proteomes which were used to quantify relative protein 

abundance changes within intracellular and extracellular proteomes as demonstrated by 

brefeldin A treatment of primary astrocyte cultures.  A “whole-cell” isotope reference 

proteome was utilized to assemble a quantitative protein enrichment profile of ACM 

under basal culture conditions. In combination with computational prediction algorithms 

and subcellular localization, the ACM enrichment profile revealed a large dynamic range 

of protein abundance in conditioned media that provided clues as to the potential 

functional roles of these proteins. For signal peptide-containing proteins, protein 

enrichment was consistent with the functional difference between constitutively secreted 

proteins, which are predominantly extracellular, and proteins that undergo regulated 

release, which largely exist intracellularly in secretory storage vesicles. The enrichment 

of lysosomal proteins in ACM further supports the capacity of astrocytes to undergo 

exocytosis of secretory lysosomes, suggesting that in addition to ATP release, secretory 

lysosomes may release luminal contents as an extracellular signal. More broadly, the 

comparison of ACM protein enrichment profiles between cellular states where protein 

secretion has been altered will further advance our understanding of these diverse 

secretory pathways, encompassing both classical as well as non-conventional secretion. 
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Table 3-1. BFA-sensitive proteins in cell lysates. 

Accession Protein name Protein 
ratio1 

SD 
ratio2 P-value3 CV 

(%) SP4 

P35441 Thrombospondin-1 precursor 28.08 8.50 1.67E-15 30.3 Y 
Q61207 Sulfated glycoprotein 1 precursor 21.98 13.81 2.28E-05 62.8 Y 
P08226 Apolipoprotein E precursor 21.19 6.10 8.66E-14 28.8 Y 
P06797 Cathepsin L1 precursor 9.39 0.81 1.04E-14 8.6 Y 

O70310 Glycylpeptide N-
tetradecanoyltransferase 1 7.41 0.81 4.20E-11 11.0 N 

P41233 ATP-binding cassette sub-family 
A member 1 5.63 2.15 1.01E-03 38.2 Y 

P03995 Glial fibrillary acidic protein 3.31 0.41 4.58E-04 12.4 N 

Q8BU30 Isoleucyl-tRNA synthetase, 
cytoplasmic 2.88 0.65 1.35E-02 22.6 N 

P55937 Golgin subfamily A member 3 2.71 0.50 1.31E-02 18.6 N 
Q9CZ44 NSFL1 cofactor p47 2.19 0.22 3.85E-02 10.1 N 

Q99K01 
Pyridoxal-dependent 
decarboxylase domain-containing 
protein 1 

0.75 0.04 3.68E-02 5.4 N 

Q62446 FK506-binding protein 3 0.71 0.08 3.35E-02 12.0 N 
P17439 Glucosylceramidase precursor 0.67 0.00 1.01E-02 0.6 Y 
Q9JIF7 Coatomer subunit beta 0.66 0.14 4.29E-02 21.4 N 

P29758 Ornithine aminotransferase, 
mitochondrial precursor 0.64 0.10 1.86E-02 15.9 Y 

Q61292 Laminin subunit beta-2 precursor 0.58 0.11 1.33E-02 19.7 Y 

Q8CHG7 Rap guanine nucleotide exchange 
factor 2 0.58 0.03 1.73E-03 4.5 N 

Q9QZE5 Coatomer subunit gamma 0.56 0.15 2.38E-02 26.8 N 
Q8BYM7 Radial spokehead-like protein 3 0.44 0.10 1.54E-03 22.2 N 
Q9DB41 Mitochondrial glutamate carrier 2 0.31 0.09 1.71E-04 27.8 N 

Q8VDQ8 NAD-dependent deacetylase 
sirtuin-2 0.17 0.11 2.62E-03 61.6 N 

Proteins are sorted in order of decreasing protein ratio. 
1Calculated from the intensity weighted average of individual peptide ratios. Ratio reflects the 
relative protein abundance fold change due to BFA treatment. 
2Standard deviation of the average protein ratio calculated based on variance in peptide ratios. 
3P-value calculated by the complementary error function (see Materials and Methods). P < 0.05 
was required for significance. 
4Indicates whether the protein contained a predicted N-terminal signal peptide (SignalP 3.0). 
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Table 3-2. BFA-sensitive proteins in ACM. 

Accession Protein name Protein 
ratio1 

SD 
ratio2 P-value3 CV 

(%) SP4 

Q04857 Collagen alpha-1(VI) chain 0.007 0.005 1.62E-10 68.5 Y 
Q6GQT1 Alpha-2-macroglobulin-P 0.014 0.020 1.27E-03 142.9 Y 
Q61362 Chitinase-3-like protein 1 0.015 0.004 5.88E-15 28.0 Y 
Q60847 Collagen alpha-1(XII) chain 0.016 0.003 1.22E-15 22.0 Y 
P70663 SPARC-like protein 1 0.018 0.013 1.70E-07 70.9 Y 
P01027 Complement C3 0.019 0.018 1.49E-05 91.3 Y 

P07214 SPARC (Secreted protein acidic 
and rich in cysteine) 0.021 0.028 1.63E-03 133.4 Y 

O88968 Transcobalamin-2 0.022 0.004 4.17E-14 19.8 Y 
P12023 Amyloid beta A4 protein 0.024 0.014 3.56E-08 57.2 Y 

P07141 Macrophage colony-stimulating 
factor 1  0.028 0.022 1.02E-05 79.2 Y 

Q07079 Insulin-like growth factor-binding 
protein 5 0.028 0.006 1.20E-12 20.7 Y 

P11087 Collagen alpha-1(I) chain 0.030 0.023 8.20E-06 75.9 Y 
Q00493 Carboxypeptidase E 0.032 0.026 2.38E-05 80.2 Y 

P97298 Pigment epithelium-derived factor 
(PEDF) 0.032 0.044 4.85E-03 135.4 Y 

Q61147 Ceruloplasmin 0.035 0.015 1.12E-08 42.8 Y 

Q9R0E2 Procollagen-lysine,2-oxoglutarate 
5-dioxygenase 1 0.038 0.012 7.26E-10 31.6 Y 

O09159 Lysosomal alpha-mannosidase 0.038 0.013 1.62E-09 34.3 Y 
Q05895 Thrombospondin-3 0.040 0.021 4.91E-07 54.0 Y 
P01029 Complement C4-B 0.040 0.068 2.79E-02 169.2 Y 
P06797 Cathepsin L1 0.041 0.025 2.80E-06 60.8 Y 

O09164 Extracellular superoxide dismutase 
[Cu-Zn] 0.049 0.017 2.17E-08 35.1 Y 

P08226 Apolipoprotein E 0.057 0.067 6.07E-03 116.9 Y 
P11276 Fibronectin 0.059 0.030 2.91E-06 50.3 Y 

P47877 Insulin-like growth factor-binding 
protein 2 0.059 0.061 2.85E-03 104.2 Y 

Q06890 Clusterin (Apo-J) 0.059 0.062 3.25E-03 106.0 Y 
A2ASQ1 Agrin 0.059 0.025 6.50E-07 43.1 Y 
Q02819 Nucleobindin-1 0.063 0.014 1.11E-08 22.0 Y 
P08905 Lysozyme C-2 0.076 0.103 2.46E-02 134.3 Y 
O89017 Legumain 0.080 0.094 1.31E-02 117.0 Y 
P10605 Cathepsin B 0.102 0.115 1.76E-02 112.6 Y 
P55066 Neurocan core protein 0.106 0.068 5.58E-04 64.0 Y 
Q76KF0 Semaphorin-6D 0.108 0.119 1.77E-02 109.9 Y 
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Q9WVJ3 Plasma glutamate 
carboxypeptidase 0.112 0.044 2.52E-05 39.0 Y 

Q9R0E1 Procollagen-lysine,2-oxoglutarate 
5-dioxygenase 3 0.126 0.013 1.34E-06 10.4 Y 

Q61508 Extracellular matrix protein 1 0.149 0.018 6.37E-06 11.9 Y 

O88531 Palmitoyl-protein thioesterase 1 
(PPT-1) 0.163 0.055 1.29E-04 33.6 Y 

O88322 Nidogen-2 0.165 0.080 7.84E-04 48.6 Y 
O70370 Cathepsin S 0.178 0.080 7.70E-04 44.9 Y 
P18242 Cathepsin D 0.179 0.116 4.92E-03 65.1 Y 
P01887 Beta-2-microglobulin 0.200 0.060 2.99E-04 30.0 Y 
P97290 Plasma protease C1 inhibitor 0.222 0.138 8.49E-03 62.0 Y 
Q8K2I4 Beta-mannosidase 0.237 0.006 1.50E-04 2.7 Y 
B2RXS8 Ptprz1 protein 0.262 0.177 2.05E-02 67.7 Y 
P51655 Glypican-4 (K-glypican) 0.283 0.070 1.45E-03 24.8 Y 

P70158 Acid sphingomyelinase-like 
phosphodiesterase 3a 0.284 0.123 5.84E-03 43.4 Y 

Q9Z0J0 Epididymal secretory protein E1 0.308 0.110 4.87E-03 35.7 Y 

Q9DBH5 Vesicular integral-membrane 
protein VIP36 0.313 0.045 1.37E-03 14.3 Y 

Q9WTQ5 A-kinase anchor protein 12 0.333 0.187 2.37E-02 56.1 N 
Q9QWR8 Alpha-N-acetylgalactosaminidase 0.381 0.100 7.42E-03 26.3 Y 

P29416 Beta-hexosaminidase subunit 
alpha 0.437 0.064 8.67E-03 14.7 Y 

A2BFA6 Alpha-N-acetylglucosaminidase 0.480 0.099 1.69E-02 20.7 Y 

Q99M71 Mammalian ependymin-related 
protein 1 0.494 0.134 2.45E-02 27.1 Y 

Q6PDJ1 VWFA and cache domain-
containing protein 1 0.571 0.120 3.62E-02 21.1 N 

P16858 Glyceraldehyde-3-phosphate 
dehydrogenase  0.628 0.098 4.63E-02 15.7 N 

O54990 Prominin-1 0.632 0.095 4.66E-02 15.0 Y 
Q9WVA4 Transgelin-2 7.896 0.492 1.64E-02 6.2 N 
Proteins are sorted in order of increasing protein ratio. 
1Calculated from the intensity weighted average of individual peptide ratios. Ratio reflects the 
relative protein abundance fold change due to BFA treatment. 
2Standard deviation of the average protein ratio calculated based on variance in peptide ratios. 
3P-value calculated from the complementary error function (see Materials and Methods). P < 0.05 
was required for significance. 
4Indicates whether the protein contained a predicted N-terminal signal peptide (SignalP 3.0). 
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Table 3-3. Quantified ACM proteins from control astrocytes.  

Accession Protein name Protein 
ratio1 

SD 
ratio2 

CV 
(%) 

P08226 Apolipoprotein E 414.00 244.00 58.9 
O09164 Extracellular superoxide dismutase [Cu-Zn] 327.00 50.00 15.3 
P10923 Osteopontin 187.25 93.50 49.9 
Q8R422 CD109 antigen 76.00 22.50 29.6 
Q00493 Carboxypeptidase E 74.33 26.33 35.4 
P07214 SPARC 67.00 35.93 53.6 

A2APM1 CD44 antigen 65.33 4.33 6.6 
P47867 Secretogranin-3 64.00 16.00 25.0 

Q3UGY5 Fibronectin 1 57.67 87.06 151.0 
Q6GQT1 Alpha-2-macroglobulin-P 45.60 28.62 62.8 
P02463 Collagen alpha-1(IV) chain 41.89 12.13 29.0 
O88307 Sortilin-related receptor 31.45 5.76 18.3 
P43025 Tetranectin 30.62 5.62 18.4 
P29533 Vascular cell adhesion protein 1 30.15 4.23 14.0 

Q921T4 Phospholipase A2, group VII (Platelet-activating 
factor acetylhydrolase, plasma) 29.70 4.80 16.2 

P20152 Vimentin 27.43 19.36 70.6 
Q80YX1 Tenascin 27.30 10.10 37.0 
Q9Z0J0 Epididymal secretory protein E1 22.00 12.65 57.5 
Q80W15 Insulin-like growth factor-binding protein-like 1 21.33 2.83 13.3 
Q9R0E1 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 18.40 3.02 16.4 
P51655 Glypican-4 16.91 17.02 100.6 
P62806 Histone H4 16.17 4.64 28.7 
Q06890 Clusterin 15.71 12.44 79.2 
Q61592 Growth arrest-specific protein 6 14.67 2.33 15.9 
P21460 Cystatin-C 14.00 2.45 17.5 

Q9WTR5 Cadherin-13 13.27 2.27 17.1 
Q02819 Nucleobindin-1 12.29 2.22 18.1 

Q3UHN9 Bifunctional heparan sulfate N-deacetylase/N-
sulfotransferase 1 12.13 2.33 19.2 

Q61147 Ceruloplasmin 12.00 14.40 120.0 
Q61361 Brevican core protein 11.23 2.39 21.3 

Q9WVJ3 Plasma glutamate carboxypeptidase 10.37 1.74 16.8 
P30412 Peptidyl-prolyl cis-trans isomerase C 10.36 0.57 5.5 
O70370 Cathepsin S 10.09 2.09 20.7 
Q80XP1 Complement component 3 9.75 11.25 115.4 
Q91ZX7 Prolow-density lipoprotein receptor-related protein 9.48 4.78 50.5 
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1 
Q9QXA3 Fat 1 cadherin (Fragment) 9.40 1.52 16.2 
Q99LJ1 Tissue alpha-L-fucosidase 8.56 1.73 20.2 
P55066 Neurocan core protein 8.47 10.22 120.7 
P97298 Pigment epithelium-derived factor 7.65 9.26 121.0 
Q9ES89 Exostosin-like 2 7.50 0.38 5.0 
Q60847 Collagen alpha-1(XII) chain 7.25 16.12 222.3 
Q99M71 Mammalian ependymin-related protein 1 7.00 1.76 25.1 
P13595 Neural cell adhesion molecule 1 7.00 1.71 24.4 
P27661 Histone H2A.x 6.82 1.93 28.3 

Q91VU0 Protein FAM3C 6.81 3.28 48.1 
Q8BND5 Sulfhydryl oxidase 1 5.88 1.08 18.3 
P18242 Cathepsin D 5.25 8.52 162.3 
Q8K2I4 Beta-mannosidase 5.03 1.31 26.0 
Q91WP6 Serine protease inhibitor A3N 5.02 2.23 44.4 
Q8BFR4 N-acetylglucosamine-6-sulfatase 4.92 1.18 24.0 
Q61599 Rho GDP-dissociation inhibitor 2 4.80 2.56 53.2 
Q8R464 Cell adhesion molecule 4 3.83 0.50 13.0 
B2RXS4 Plexin B2 (MCG140951) (Plxnb2 protein) 3.79 7.13 188.0 
Q04857 Collagen alpha-1(VI) chain 3.76 0.68 18.1 

Q3UCL5 Ferritin 3.75 0.79 21.0 
Q61233 Plastin-2 3.75 1.04 27.8 
P09528 Ferritin heavy chain 3.59 1.25 34.9 

Q8K479 Complement C1q tumor necrosis factor-related 
protein 5 3.55 0.35 9.8 

O88325 Alpha-N-acetylglucosaminidase (Sanfilippo 
disease IIIB) 3.50 0.47 13.3 

Q9R0B9 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 3.44 0.64 18.6 
Q9WUT8 DSD-1-proteoglycan 3.22 4.07 126.3 
Q61207 Sulfated glycoprotein 1 3.04 0.72 23.5 
O88668 Protein CREG1 2.95 0.71 24.0 
Q197W7 N-glycan processing alpha-mannosidase IIx 2.94 0.60 20.3 
Q64191 N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase 2.88 2.13 74.1 
O88531 Palmitoyl-protein thioesterase 1 2.79 0.41 14.9 
P20060 Beta-hexosaminidase subunit beta 2.78 1.77 63.8 
P70158 Acid sphingomyelinase-like phosphodiesterase 3a 2.77 0.36 13.0 
Q9ET22 Dipeptidyl-peptidase 2 2.70 0.66 24.5 
P00493 Hypoxanthine-guanine phosphoribosyltransferase 2.63 0.60 23.0 
O89017 Legumain 2.60 0.57 21.9 
P17047 Lysosome-associated membrane glycoprotein 2 2.55 1.53 60.1 

Q3TCN2 Putative phospholipase B-like 2 2.43 0.58 24.1 
P80314 T-complex protein 1 subunit beta 2.40 0.39 16.0 
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A2ARV4 Low-density lipoprotein receptor-related protein 2 2.24 0.62 27.8 
Q9EQH2 Endoplasmic reticulum aminopeptidase 1 2.20 0.57 25.8 
P10605 Cathepsin B 2.16 1.34 62.0 
P50429 Arylsulfatase B 2.12 0.72 34.1 
O88569 Heterogeneous nuclear ribonucleoproteins A2/B1 2.06 0.65 31.5 
P01029 Complement C4-B 2.03 0.77 38.2 

Q8CHQ7 UPF0727 protein C6orf115 homolog 2.01 0.00 0.0 
Q9WV54 Acid ceramidase 1.96 0.36 18.2 
Q91XG3 Hexosaminidase A 1.93 1.36 70.5 
Q60648 Ganglioside GM2 activator 1.87 0.40 21.2 
P16675 Lysosomal protective protein 1.87 0.73 39.2 
Q07797 Galectin-3-binding protein 1.78 0.22 12.3 
O09159 Lysosomal alpha-mannosidase 1.69 0.21 12.6 
O54782 Epididymis-specific alpha-mannosidase 1.64 0.89 54.2 
Q9CT10 Ran-binding protein 3 1.64 0.00 0.0 
P23780 Beta-galactosidase 1.55 0.38 24.5 
P97290 Plasma protease C1 inhibitor 1.54 1.53 99.7 

Q9WUU7 Cathepsin Z 1.53 0.48 31.5 
P10852 4F2 cell-surface antigen heavy chain 1.48 0.34 22.8 
Q6P5H2 Nestin 1.44 0.29 19.8 
P35441 Thrombospondin-1 1.42 0.50 35.0 

Q9CPT4 UPF0556 protein C19orf10 homolog 1.42 0.53 37.8 
Q7TPR4 Alpha-actinin-1 1.41 0.37 26.0 
P57780 Alpha-actinin-4 1.39 0.33 23.6 
P09470 Angiotensin-converting enzyme, somatic isoform 1.30 0.36 27.9 
P23492 Purine nucleoside phosphorylase 1.29 0.35 27.4 
Q62422 Osteoclast-stimulating factor 1 1.23 0.39 31.4 

Q9DBH5 Vesicular integral-membrane protein VIP36 1.23 0.30 24.3 
Q9ERR7 15 kDa selenoprotein 1.19 0.03 2.6 
P11438 Lysosome-associated membrane glycoprotein 1 1.18 0.38 32.1 
P28063 Proteasome subunit beta type-8 1.12 0.94 84.4 
P54818 Galactocerebrosidase 1.12 0.15 13.5 
Q62426 Cystatin-B 1.10 0.16 14.9 
Q80YA8 Crumbs homolog 2 1.10 0.31 28.0 
O35955 Proteasome subunit beta type-10 1.07 0.65 60.8 
P49935 Cathepsin H 1.07 0.27 24.9 

Q9WV32 Actin-related protein 2/3 complex subunit 1B 1.06 0.45 42.8 
Q99020 Heterogeneous nuclear ribonucleoprotein A/B 1.06 0.05 4.7 
P16110 Galectin-3 1.05 0.22 20.5 

Q9D7V9 N-acylethanolamine-hydrolyzing acid amidase 1.04 0.12 11.9 
Q921M7 Protein FAM49B 1.02 0.08 7.6 
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Q9Z1N5 Spliceosome RNA helicase Bat1 1.01 0.60 59.7 
P05201 Aspartate aminotransferase, cytoplasmic 0.98 0.18 18.1 

P20108 Thioredoxin-dependent peroxide reductase, 
mitochondrial 0.96 0.31 31.9 

P62962 Profilin-1 0.96 0.15 15.5 
P26041 Moesin 0.95 0.32 34.3 
Q01768 Nucleoside diphosphate kinase B 0.93 0.13 14.5 
P70665 Sialate O-acetylesterase 0.92 0.09 10.1 
Q93092 Transaldolase 0.91 0.21 22.8 
P16045 Galectin-1 0.87 0.13 14.6 
P17439 Glucosylceramidase 0.86 0.00 0.0 
P14901 Heme oxygenase 1 0.86 0.00 0.0 

Q6NXZ0 Dipeptidylpeptidase 3 0.86 0.14 16.6 
P06151 L-lactate dehydrogenase A chain 0.85 0.20 23.0 
P62991 Ubiquitin 0.85 0.24 28.0 
P63028 Translationally-controlled tumor protein 0.85 0.14 16.5 
P70699 Lysosomal alpha-glucosidase 0.84 0.33 39.6 
Q05816 Fatty acid-binding protein, epidermal 0.83 0.28 33.3 
Q06138 Calcium-binding protein 39 0.82 0.82 99.3 

Q9QWR8 Alpha-N-acetylgalactosaminidase 0.82 0.16 19.5 
Q60709 Amyloid-like protein 2, isoform 751 0.82 0.20 24.3 

Q3TW96 UDP-N-acetylhexosamine pyrophosphorylase-like 
protein 1 0.78 0.00 0.0 

P10639 Thioredoxin 0.78 0.37 47.0 
P00920 Carbonic anhydrase 2 0.78 0.12 15.8 
Q9JII6 Alcohol dehydrogenase [NADP+] 0.78 0.26 33.8 

Q920E5 Farnesyl pyrophosphate synthetase 0.78 0.12 15.7 

Q9CQF3 Cleavage and polyadenylation specificity factor 
subunit 5 0.78 0.09 11.0 

Q8C845 Efhd2 protein 0.77 0.54 69.9 
Q58E70 Putative uncharacterized protein 0.77 0.20 26.3 
Q60854 Serpin B6 0.77 0.10 13.5 
Q9DCJ9 N-acetylneuraminate lyase 0.77 0.13 16.7 

P97822 Acidic leucine-rich nuclear phosphoprotein 32 
family member E 0.76 0.23 30.7 

P15532 Nucleoside diphosphate kinase A 0.74 0.09 11.7 
Q60631 Growth factor receptor-bound protein 2 0.73 0.36 49.4 
P08228 Superoxide dismutase [Cu-Zn] 0.72 0.07 9.1 

Q9CVB6 Actin-related protein 2/3 complex subunit 2 0.72 0.18 25.5 

Q9DCD0 6-phosphogluconate dehydrogenase, 
decarboxylating 0.72 0.27 37.9 

P24369 Peptidyl-prolyl cis-trans isomerase B 0.69 0.15 21.2 
P61982 14-3-3 protein gamma 0.69 0.14 20.7 
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P68510 14-3-3 protein eta 0.68 0.17 25.4 
P47791 Glutathione reductase, mitochondrial 0.68 0.13 18.8 

Q9Z2U0 Proteasome subunit alpha type-7 0.68 0.18 26.9 
Q9JMH6 Thioredoxin reductase 1, cytoplasmic 0.67 0.08 11.3 
Q01279 Epidermal growth factor receptor 0.67 0.03 5.2 

Q8BHG1 Nardilysin 0.67 0.28 41.8 
P05064 Fructose-bisphosphate aldolase A 0.67 0.14 20.8 
P63280 SUMO-conjugating enzyme UBC9 0.67 0.00 0.0 
Q99LB4 Capping protein (Actin filament), gelsolin-like 0.66 0.55 82.4 
P49722 Proteasome subunit alpha type-2 0.66 0.12 19.0 
P54923 [Protein ADP-ribosylarginine] hydrolase 0.66 0.24 37.2 
Q3U962 Collagen alpha-2(V) chain 0.65 0.31 47.9 
Q99K51 Plastin-3 0.64 0.59 92.3 
Q3TIH9 Ubiquitin carrier protein 0.64 0.11 17.1 
Q9D0B6 UPF0368 protein Cxorf26 homolog 0.63 0.00 0.0 
P06745 Glucose-6-phosphate isomerase 0.63 0.11 17.6 
O88958 Glucosamine-6-phosphate isomerase 1 0.63 0.25 40.1 
O70435 Proteasome subunit alpha type-3 0.62 0.21 34.3 
O55135 Eukaryotic translation initiation factor 6 0.62 0.28 45.3 
P62897 Cytochrome c, somatic 0.61 0.15 25.1 
P17742 Peptidyl-prolyl cis-trans isomerase A 0.61 0.14 22.5 

Q3TH46 Putative uncharacterized protein (Fragment) 0.60 0.16 26.9 
P59999 Actin-related protein 2/3 complex subunit 4 0.60 0.07 11.1 
P51880 Fatty acid-binding protein, brain 0.59 0.60 101.1 

Q9Z2W0 Aspartyl aminopeptidase 0.59 0.11 18.0 
P14602 Heat shock protein beta-1 0.58 0.03 5.1 

Q9JJU8 SH3 domain-binding glutamic acid-rich-like 
protein 0.58 0.27 46.1 

Q9CR09 Ufm1-conjugating enzyme 1 0.58 0.12 21.6 
P61161 Actin-related protein 2 0.57 0.23 40.4 
P14211 Calreticulin 0.57 0.09 14.9 
Q9R1P3 Proteasome subunit beta type-2 0.57 0.09 16.1 
P46664 Adenylosuccinate synthetase isozyme 2 0.57 0.06 10.3 
O09061 Proteasome subunit beta type-1 0.57 0.17 30.2 
O89023 Tripeptidyl-peptidase 1 0.57 0.15 25.8 
Q91VI7 Ribonuclease inhibitor 0.57 0.32 56.0 
Q61035 Histidyl-tRNA synthetase, cytoplasmic 0.55 0.20 35.7 
Q4FJY5 Ltb4dh protein 0.55 0.07 13.5 
P27773 Protein disulfide-isomerase A3 0.55 0.11 20.8 
P53810 Phosphatidylinositol transfer protein alpha isoform 0.55 0.09 16.9 

Q9QUM9 Proteasome subunit alpha type-6 0.55 0.13 23.4 
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O08795 Glucosidase 2 subunit beta 0.55 0.00 0.0 
Q9R1P1 Proteasome subunit beta type-3 0.55 0.13 23.5 
P24527 Leukotriene A-4 hydrolase 0.54 0.14 26.1 
P63101 14-3-3 protein zeta/delta 0.54 0.12 21.9 
P10518 Delta-aminolevulinic acid dehydratase 0.53 0.15 28.6 
Q9D8S4 Oligoribonuclease, mitochondrial 0.53 0.11 20.1 

Q6WVG3 BTB/POZ domain-containing protein KCTD12 0.53 0.64 121.2 
Q64727 Vinculin 0.52 0.18 35.0 
P61979 Heterogeneous nuclear ribonucleoprotein K 0.52 0.53 102.3 
Q61508 Extracellular matrix protein 1 0.52 0.09 16.4 

Q9JHW2 Nitrilase homolog 2 0.52 0.19 36.1 
Q3TGE1 Putative uncharacterized protein 0.52 0.11 20.6 
Q9R1P0 Proteasome subunit alpha type-4 0.52 0.16 31.4 
Q9DBJ1 Phosphoglycerate mutase 1 0.52 0.10 18.5 
P62204 Calmodulin 0.51 0.26 50.5 

Q9CQV8 14-3-3 protein beta/alpha 0.51 0.15 29.3 
Q6IRU2 Tropomyosin alpha-4 chain 0.51 0.10 19.0 
Q9R1P4 Proteasome subunit alpha type-1 0.50 0.11 21.6 
P57759 Endoplasmic reticulum protein ERp29 0.50 0.05 10.5 
Q3U561 Ribosomal protein L1 0.49 0.17 33.6 
O54983 Mu-crystallin homolog 0.48 0.24 48.9 
P13020 Gelsolin 0.48 0.15 30.3 
O35215 D-dopachrome decarboxylase 0.48 0.06 11.7 
Q60692 Proteasome subunit beta type-6 0.48 0.25 52.4 
Q9D1K7 Uncharacterized protein C20orf27 homolog 0.48 0.51 107.5 
Q9CQI6 Coactosin-like protein 0.47 0.11 23.9 
P58044 Isopentenyl-diphosphate Delta-isomerase 1 0.47 0.08 16.4 
Q3TI11 Putative uncharacterized protein 0.47 0.10 21.8 
O55234 Proteasome subunit beta type-5 0.46 0.06 12.9 
Q921S3 Malic enzyme 0.46 0.09 20.5 
P70195 Proteasome subunit beta type-7 0.46 0.09 20.6 

Q9CQ60 6-phosphogluconolactonase 0.45 0.11 24.5 
Q9CPY7 Cytosol aminopeptidase 0.45 0.22 48.7 
Q07813 Apoptosis regulator BAX 0.45 0.03 7.8 
Q9D967 Magnesium-dependent phosphatase 1 0.45 0.14 30.2 
O88844 Isocitrate dehydrogenase [NADP] cytoplasmic 0.45 0.02 4.4 
Q64010 Proto-oncogene C-crk 0.45 0.14 32.2 
Q3U136 Putative uncharacterized protein (Fragment) 0.44 0.18 39.6 
P45591 Cofilin-2 0.44 0.03 7.0 
O55023 Inositol monophosphatase 0.44 0.14 31.1 
Q8BFS6 Uncharacterized metallophosphoesterase CSTP1 0.44 0.12 27.0 
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Q66JR7 Pgm2 protein (Fragment) 0.43 0.16 38.1 
P58252 Elongation factor 2 0.43 0.13 28.9 
Q8C0E2 Vacuolar protein sorting-associated protein 26B 0.43 0.00 0.0 
O09131 Glutathione S-transferase omega-1 0.43 0.00 0.0 
Q3U6V5 Putative uncharacterized protein 0.43 0.02 3.6 
Q9Z2U1 Proteasome subunit alpha type-5 0.43 0.18 42.5 
Q99KQ4 Nicotinamide phosphoribosyltransferase 0.43 0.11 26.2 
Q9WTQ5 A-kinase anchor protein 12 0.42 0.12 28.2 
P60843 Eukaryotic initiation factor 4A-I 0.42 0.20 48.5 
Q3U449 Putative uncharacterized protein 0.41 0.14 34.2 
P09103 Protein disulfide-isomerase 0.41 0.05 12.7 
P97371 Proteasome activator complex subunit 1 0.40 0.07 17.5 
Q3U1J4 DNA damage-binding protein 1 0.40 0.35 88.0 
Q99LS3 Phosphoserine phosphatase 0.40 0.10 26.0 
Q99PT1 Rho GDP-dissociation inhibitor 1 0.40 0.13 32.9 
Q62348 Translin 0.39 0.09 24.1 
P31786 Acyl-CoA-binding protein 0.39 0.29 73.6 
P97372 Proteasome activator complex subunit 2 0.39 0.06 14.8 
P05202 Aspartate aminotransferase, mitochondrial 0.39 0.11 27.9 

Q9CRC9 Glucosamine-6-phosphate isomerase 2 0.39 0.11 28.0 
Q8C1A5 Thimet oligopeptidase 0.38 0.08 21.7 
Q8BHN3 Neutral alpha-glucosidase AB 0.38 0.16 42.5 
P61087 Ubiquitin-conjugating enzyme E2 K 0.38 0.23 61.0 
Q9JM76 Actin-related protein 2/3 complex subunit 3 0.37 0.08 21.4 

P58389 Serine/threonine-protein phosphatase 2A 
regulatory subunit B' 0.37 0.15 40.9 

Q61598 Rab GDP dissociation inhibitor beta 0.36 0.08 21.7 
P20029 78 kDa glucose-regulated protein 0.36 0.13 35.1 
P47753 F-actin-capping protein subunit alpha-1 0.36 0.20 56.5 
P58771 Tropomyosin alpha-1 chain 0.36 0.05 13.0 
P26040 Ezrin 0.36 0.12 32.2 

Q8BKC5 Importin-5 0.36 0.09 24.0 
P62259 14-3-3 protein epsilon 0.36 0.06 17.7 
P34884 Macrophage migration inhibitory factor 0.35 0.05 14.4 

Q9DBP5 UMP-CMP kinase 0.35 0.04 12.6 
P63242 Eukaryotic translation initiation factor 5A-1 0.34 0.07 19.6 
P45376 Aldose reductase 0.34 0.05 14.2 
P42932 T-complex protein 1 subunit theta 0.34 0.44 128.5 
Q922R8 Protein disulfide-isomerase A6 0.34 0.06 19.0 
P05063 Fructose-bisphosphate aldolase C 0.34 0.06 18.1 

Q8CDN6 Thioredoxin-like protein 1 0.34 0.14 41.5 
Q66JR8 Ptms protein 0.34 0.07 20.6 
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P24472 Glutathione S-transferase A4 0.34 0.05 14.7 
P09671 Superoxide dismutase [Mn], mitochondrial 0.34 0.15 44.2 
Q99LP6 GrpE protein homolog 1, mitochondrial 0.33 0.13 38.6 
P62257 Ubiquitin-conjugating enzyme E2 H 0.33 0.16 50.6 

Q8BHG2 UPF0587 protein C1orf123 homolog 0.33 0.05 15.2 
Q8CHP8 Phosphoglycolate phosphatase 0.33 0.36 109.8 
Q9ERK4 Exportin-2 0.32 0.30 92.7 
B1AXW7 Peroxiredoxin 1 0.32 0.04 13.9 

Q99JI4 26S proteasome non-ATPase regulatory subunit 6 0.32 0.12 38.8 
O88456 Calpain small subunit 1 0.32 0.17 54.0 
Q9JKB1 Ubiquitin carboxyl-terminal hydrolase isozyme L3 0.32 0.41 128.2 
Q9CXI5 Protein ARMET 0.32 0.13 41.1 
O55013 Trafficking protein particle complex subunit 3 0.31 0.00 0.0 
Q61171 Peroxiredoxin-2 0.31 0.07 21.2 

Q9DAW9 Calponin-3 0.31 0.38 122.0 
P47955 60S acidic ribosomal protein P1 0.30 0.00 0.0 

Q9Z2Y8 Proline synthetase co-transcribed bacterial 
homolog protein 0.30 0.05 16.1 

Q9DB16 Calcium-binding protein 39-like 0.30 0.21 68.9 
O88851 Retinoblastoma-binding protein 9 0.30 0.02 7.3 
P61089 Ubiquitin-conjugating enzyme E2 N 0.30 0.11 37.3 

Q9CZY3 Ubiquitin-conjugating enzyme E2 variant 1 0.29 0.00 0.0 
Q8BG32 26S proteasome non-ATPase regulatory subunit 11 0.29 0.07 23.2 
O88543 COP9 signalosome complex subunit 3 0.29 0.00 0.0 
Q9JKR6 Hypoxia up-regulated protein 1 0.29 0.07 24.0 

O35381 Acidic leucine-rich nuclear phosphoprotein 32 
family member A 0.28 0.10 34.8 

O08807 Peroxiredoxin-4 0.28 0.22 76.8 

P23506 Protein-L-isoaspartate(D-aspartate) O-
methyltransferase 0.28 0.15 53.6 

Q9D1Q6 Thioredoxin domain-containing protein 4 0.28 0.00 0.0 
P50396 Rab GDP dissociation inhibitor alpha 0.28 0.06 20.9 
P29341 Polyadenylate-binding protein 1 0.28 0.02 7.3 

Q91W90 Thioredoxin domain-containing protein 5 0.28 0.04 15.2 
Q9WVJ2 26S proteasome non-ATPase regulatory subunit 13 0.27 0.25 89.6 
Q9QZ88 Vacuolar protein sorting-associated protein 29 0.27 0.06 20.7 
Q01730 Ras suppressor protein 1 0.27 0.06 22.1 
Q04447 Creatine kinase B-type 0.27 0.07 27.8 

Q8C0M9 L-asparaginase 0.27 0.17 62.2 
P37804 Transgelin 0.27 0.12 44.6 
P68254 14-3-3 protein theta 0.27 0.09 35.6 

Q8C1B7 Septin-11 0.27 0.44 164.6 
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O35593 26S proteasome non-ATPase regulatory subunit 14 0.27 0.22 83.6 
Q9WTX5 S-phase kinase-associated protein 1 0.27 0.04 14.1 
Q7TQI3 Ubiquitin thioesterase OTUB1 0.26 0.04 16.3 
Q01405 Protein transport protein Sec23A 0.26 0.02 6.2 

Q3UGR5 Haloacid dehalogenase-like hydrolase domain-
containing protein 2 0.26 0.12 45.8 

Q99LX0 Protein DJ-1 0.26 0.15 58.5 
P14869 60S acidic ribosomal protein P0 0.26 0.17 66.6 
P70168 Importin subunit beta-1 0.25 0.07 29.0 

Q9DBG3 AP-2 complex subunit beta-1 0.25 0.07 28.0 
Q91V76 Ester hydrolase C11orf54 homolog 0.25 0.03 13.4 
P70296 Phosphatidylethanolamine-binding protein 1 0.25 0.06 25.9 

Q9CPU0 Lactoylglutathione lyase 0.25 0.04 16.8 

Q9JI75 Ribosyldihydronicotinamide dehydrogenase 
[quinone] 0.25 0.00 1.2 

Q9CPV4 Glyoxalase domain-containing protein 4 0.25 0.05 18.6 
P11499 Heat shock protein HSP 90-beta 0.25 0.10 39.9 

Q6P1F6 Serine/threonine-protein phosphatase 2A 55 kDa 
regulatory subunit B alpha isoform 0.25 0.05 22.2 

Q7TMB8 Cytoplasmic FMR1-interacting protein 1 0.24 0.09 35.2 
P52480 Pyruvate kinase isozymes M1/M2 0.24 0.08 32.9 
Q01853 Transitional endoplasmic reticulum ATPase 0.24 0.07 28.9 
Q9CX56 26S proteasome non-ATPase regulatory subunit 8 0.24 0.10 42.6 
Q9QYR9 Acyl-coenzyme A thioesterase 2, mitochondrial 0.23 0.07 31.3 
Q60605 Myosin light polypeptide 6 0.23 0.04 17.1 
O08553 Dihydropyrimidinase-related protein 2 0.23 0.13 56.2 
Q6P5E4 UDP-glucose:glycoprotein glucosyltransferase 1 0.23 0.05 20.6 
Q8BJY1 26S proteasome non-ATPase regulatory subunit 5 0.23 0.05 20.9 
Q8R0Y6 10-formyltetrahydrofolate dehydrogenase 0.23 0.06 24.5 
Q9EQH3 Vacuolar protein sorting-associated protein 35 0.23 0.07 29.5 
P17156 Heat shock-related 70 kDa protein 2 0.23 0.18 78.9 

Q61205 Platelet-activating factor acetylhydrolase IB 
subunit gamma 0.23 0.00 0.0 

P48758 Carbonyl reductase [NADPH] 1 0.23 0.32 140.7 
Q61553 Fascin 0.22 0.05 24.7 
Q922B2 Aspartyl-tRNA synthetase, cytoplasmic 0.22 0.08 36.0 

Q61425 Hydroxyacyl-coenzyme A dehydrogenase, 
mitochondrial 0.22 0.07 34.7 

Q9CZD3 Glycyl-tRNA synthetase 0.21 0.01 6.4 
O88545 COP9 signalosome complex subunit 6 0.21 0.05 24.5 

Q9D898 Actin-related protein 2/3 complex subunit 5-like 
protein 0.21 0.00 0.0 

P62137 Serine/threonine-protein phosphatase PP1-alpha 0.21 0.15 73.0 
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catalytic subunit 
Q9D8N0 Elongation factor 1-gamma 0.21 0.08 36.5 
Q6P5F9 Exportin-1 0.20 0.02 11.7 
Q6ZQ38 Cullin-associated NEDD8-dissociated protein 1 0.20 0.04 21.8 
Q9CQM5 Thioredoxin domain-containing protein 17 0.20 0.00 0.0 
P14152 Malate dehydrogenase, cytoplasmic 0.20 0.04 19.2 
O55137 Acyl-coenzyme A thioesterase 1 0.20 0.07 34.6 

Q9WU78 Programmed cell death 6-interacting protein 0.20 0.05 23.1 

Q80Y52 Heat shock protein 90, alpha (Cytosolic), class A 
member 1 0.19 0.07 38.3 

Q9CZ04 COP9 signalosome complex subunit 7a 0.19 0.03 15.1 
Q8K4Z3 Apolipoprotein A-I-binding protein 0.19 0.05 27.8 
Q9Z1Z2 Serine-threonine kinase receptor-associated protein 0.19 0.04 22.4 
Q564P4 Adenine phosphoribosyl transferase 0.19 0.03 14.1 
O08749 Dihydrolipoyl dehydrogenase, mitochondrial 0.18 0.05 26.5 

Q61206 Platelet-activating factor acetylhydrolase IB 
subunit beta 0.18 0.03 18.0 

Q6ZWX6 Eukaryotic translation initiation factor 2 subunit 1 0.18 0.10 53.8 
P60122 RuvB-like 1 0.18 0.01 8.3 
P08113 Endoplasmin 0.18 0.07 37.6 
O70251 Elongation factor 1-beta 0.17 0.06 33.6 
P40142 Transketolase 0.17 0.04 25.5 
Q64433 10 kDa heat shock protein, mitochondrial 0.17 0.02 9.3 
Q6PJ91 Gstm7 protein 0.17 0.04 21.9 

Q99KC8 Loss of heterozygosity 11 chromosomal region 2 
gene A protein homolog 0.17 0.09 50.0 

Q62048 Astrocytic phosphoprotein PEA-15 0.17 0.04 21.8 
P40124 Adenylyl cyclase-associated protein 1 0.17 0.02 13.0 
P17710 Hexokinase-1 0.17 0.07 42.1 

P68040 Guanine nucleotide-binding protein subunit beta-2-
like 1 0.17 0.09 51.9 

P47754 F-actin-capping protein subunit alpha-2 0.17 0.07 39.3 
P09411 Phosphoglycerate kinase 1 0.17 0.05 28.2 

Q8VHX6 Filamin-C 0.17 0.06 33.8 
Q9R0Y5 Adenylate kinase isoenzyme 1 0.16 0.08 48.2 

Q76MZ3 Serine/threonine-protein phosphatase 2A 65 kDa 
regulatory subunit A alpha isoform 0.16 0.12 72.2 

P26516 26S proteasome non-ATPase regulatory subunit 7 0.16 0.06 36.4 
O35643 AP-1 complex subunit beta-1 0.16 0.10 63.5 
Q99P72 Reticulon-4 0.16 0.08 47.5 
P99029 Peroxiredoxin-5, mitochondrial 0.16 0.04 26.2 
Q9R0P9 Ubiquitin carboxyl-terminal hydrolase isozyme L1 0.16 0.04 26.0 
P99027 60S acidic ribosomal protein P2 0.16 0.03 21.6 
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Q91ZJ5 UTP--glucose-1-phosphate uridylyltransferase 0.16 0.20 130.6 
P80315 T-complex protein 1 subunit delta 0.16 0.24 151.3 
P14685 26S proteasome non-ATPase regulatory subunit 3 0.16 0.07 42.5 

Q9Z1Q5 Chloride intracellular channel protein 1 0.15 0.03 18.4 
Q80X90 Filamin-B 0.15 0.05 35.8 
P61164 Alpha-centractin 0.15 0.00 0.0 
P70202 Latexin 0.15 0.04 23.8 
P08003 Protein disulfide-isomerase A4 0.15 0.05 31.1 
P10649 Glutathione S-transferase Mu 1 0.15 0.03 17.5 
P15626 Glutathione S-transferase Mu 2 0.14 0.05 34.6 
P97823 Acyl-protein thioesterase 1 0.14 0.00 0.0 
P16125 L-lactate dehydrogenase B chain 0.14 0.05 39.5 
P60710 Actin, cytoplasmic 1 0.14 0.04 32.5 

Q9QXT0 Protein canopy homolog 2 0.13 0.11 81.5 
P48774 Glutathione S-transferase Mu 5 0.13 0.02 19.2 

Q9WVA4 Transgelin-2 0.13 0.03 25.4 
Q9JIF7 Coatomer subunit beta 0.13 0.00 1.5 
P18760 Cofilin-1 0.13 0.02 16.3 
Q62261 Spectrin beta chain, brain 1 0.13 0.08 60.0 
P63017 Heat shock cognate 71 kDa protein 0.13 0.06 45.8 
P50247 Adenosylhomocysteinase 0.12 0.05 38.1 
Q11011 Puromycin-sensitive aminopeptidase 0.12 0.05 36.5 

Q9DBE0 Cysteine sulfinic acid decarboxylase 0.12 0.00 0.0 
P34022 Ran-specific GTPase-activating protein 0.12 0.04 34.3 
Q68FD5 Clathrin heavy chain 1 0.12 0.03 23.4 
P68033 Actin, alpha cardiac muscle 1 0.12 0.05 39.9 
P12815 Programmed cell death protein 6 0.12 0.04 34.6 
Q6P069 Sorcin 0.12 0.05 40.6 
Q99L47 Hsc70-interacting protein 0.12 0.01 10.8 

P70670 Nascent polypeptide-associated complex subunit 
alpha, muscle-specific form 0.12 0.06 48.9 

Q91V41 Ras-related protein Rab-14 0.11 0.18 160.1 

P62141 Serine/threonine-protein phosphatase PP1-beta 
catalytic subunit 0.11 0.03 29.6 

O70492 Sorting nexin-3 0.11 0.02 14.6 
Q9D3D9 ATP synthase subunit delta, mitochondrial 0.11 0.03 27.7 
Q61316 Heat shock 70 kDa protein 4 0.11 0.03 25.7 
P19096 Fatty acid synthase 0.11 0.03 27.1 

Q80UW2 F-box only protein 2 0.11 0.03 29.3 
P63085 Mitogen-activated protein kinase 1 0.11 0.05 50.6 

Q9QZE5 Coatomer subunit gamma 0.11 0.02 18.5 
P42125 3,2-trans-enoyl-CoA isomerase, mitochondrial 0.11 0.03 31.9 
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P17182 Alpha-enolase 0.11 0.03 30.2 
P05213 Tubulin alpha-1B chain 0.10 0.06 53.4 

B1ATE2 Ring finger protein 213 (Fragment) 0.10 0.07 68.3 
P62737 Actin, aortic smooth muscle 0.10 0.04 37.3 

Q9CZC8 Secernin-1 0.10 0.01 12.7 
P61082 NEDD8-conjugating enzyme Ubc12 0.09 0.14 151.3 

Q9QXS1 Plectin-1 0.09 0.07 82.0 
P62827 GTP-binding nuclear protein Ran 0.09 0.03 37.9 
P80317 T-complex protein 1 subunit zeta 0.09 0.01 7.4 
P68373 Tubulin alpha-1C chain 0.09 0.05 55.6 
Q99K85 Phosphoserine aminotransferase 0.09 0.02 25.9 
Q8CIE6 Coatomer subunit alpha 0.09 0.05 55.7 
Q9DB79 Putative uncharacterized protein 0.09 0.02 27.8 
A3QM89 Reticulon 1 (Fragment) 0.09 0.02 25.4 
Q9EPQ7 StAR-related lipid transfer protein 5 0.08 0.00 1.5 
P14131 40S ribosomal protein S16 0.08 0.02 27.4 
Q9JKF1 Ras GTPase-activating-like protein IQGAP1 0.08 0.02 25.6 
P35979 60S ribosomal protein L12 0.08 0.02 20.3 
Q02053 Ubiquitin-like modifier-activating enzyme 1 0.08 0.02 24.4 
Q3THE2 Myosin regulatory light chain MRLC2 0.08 0.05 61.9 

Q9D6J6 NADH dehydrogenase [ubiquinone] flavoprotein 
2, mitochondrial 0.08 0.02 25.2 

P68369 Tubulin alpha-1A chain 0.08 0.04 56.1 

P62715 Serine/threonine-protein phosphatase 2A catalytic 
subunit beta isoform 0.07 0.01 16.8 

Q9WUL7 ADP-ribosylation factor-like protein 3 0.07 0.06 76.6 
P08249 Malate dehydrogenase, mitochondrial 0.07 0.02 23.4 
Q8CI94 Glycogen phosphorylase, brain form 0.07 0.03 38.3 
P26039 Talin-1 0.07 0.02 32.6 
P62908 40S ribosomal protein S3 0.07 0.03 38.1 
P70349 Histidine triad nucleotide-binding protein 1 0.07 0.01 21.1 
P28656 Nucleosome assembly protein 1-like 1 0.07 0.01 16.8 

Q8VDM4 26S proteasome non-ATPase regulatory subunit 2 0.07 0.01 13.4 
P57776 Elongation factor 1-delta 0.07 0.02 29.5 

Q6GT24 Peroxiredoxin 6 0.07 0.02 23.8 
P47199 Quinone oxidoreductase 0.06 0.01 10.1 

Q9CWS0 N(G),N(G)-dimethylarginine 
dimethylaminohydrolase 1 0.06 0.02 26.2 

Q9EQF6 Dihydropyrimidinase-related protein 5 0.06 0.03 41.5 
P54071 Isocitrate dehydrogenase [NADP], mitochondrial 0.06 0.06 94.1 

Q71LX4 Talin-2 0.06 0.02 29.3 
Q8BTM8 Filamin-A 0.06 0.05 80.9 
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P17751 Triosephosphate isomerase 0.06 0.01 21.4 
P63038 60 kDa heat shock protein, mitochondrial 0.06 0.02 32.0 

Q9ERD7 Tubulin beta-3 chain 0.05 0.04 74.4 
P80318 T-complex protein 1 subunit gamma 0.05 0.01 18.9 
P29758 Ornithine aminotransferase, mitochondrial 0.05 0.03 61.9 

Q9JHU4 Cytoplasmic dynein 1 heavy chain 1 0.05 0.02 40.0 
P19157 Glutathione S-transferase P 1 0.05 0.02 31.7 
Q9QUI0 Transforming protein RhoA 0.05 0.04 70.5 
Q6ZWZ6 40S ribosomal protein S12 0.05 0.02 33.1 
P46638 Ras-related protein Rab-11B 0.05 0.00 1.3 
Q9R0P3 S-formylglutathione hydrolase 0.05 0.04 76.2 
Q4FE56 Ubiquitin carboxyl-terminal hydrolase 0.05 0.01 20.7 
Q9R0Q7 Prostaglandin E synthase 3 0.05 0.01 18.0 
Q3UL78 Putative uncharacterized protein 0.05 0.02 37.3 
Q3UBK2 Putative uncharacterized protein 0.05 0.02 33.8 
A2AN08 E3 ubiquitin-protein ligase UBR4 0.05 0.01 26.6 
P62821 Ras-related protein Rab-1A 0.04 0.01 32.4 
P56480 ATP synthase subunit beta, mitochondrial 0.04 0.01 16.3 
P50518 V-type proton ATPase subunit E 1 0.04 0.00 6.4 
P99024 Tubulin beta-5 chain 0.04 0.01 21.0 
P62835 Ras-related protein Rap-1A 0.04 0.01 14.5 

Q9CRB6 Tubulin polymerization-promoting protein family 
member 3 0.04 0.00 8.1 

P61750 ADP-ribosylation factor 4 0.04 0.01 25.7 
P62270 40S ribosomal protein S18 0.04 0.00 13.2 
P68372 Tubulin beta-2C chain 0.03 0.01 22.9 
P25444 40S ribosomal protein S2 0.03 0.00 11.4 
Q922F4 Tubulin beta-6 chain 0.03 0.00 12.5 

Q9WTP7 GTP:AMP phosphotransferase mitochondrial 0.03 0.01 24.2 
P26443 Glutamate dehydrogenase 1, mitochondrial 0.03 0.02 69.5 

Q9WUA3 6-phosphofructokinase type C 0.03 0.02 74.3 
Q7TMM9 Tubulin beta-2A chain 0.03 0.01 22.2 

P10126 Elongation factor 1-alpha 1 0.03 0.01 27.6 
P61027 Ras-related protein Rab-10 0.03 0.02 71.0 

P62880 Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-2 0.03 0.02 86.9 

Q6ZWN5 40S ribosomal protein S9 0.03 0.01 25.1 
Q8C1X9 Anxa3 protein 0.03 0.01 22.8 
P07356 Annexin A2 0.02 0.00 20.5 

P62874 Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-1 0.02 0.01 63.6 

O08638 Myosin-11 0.02 0.01 42.7 
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P97447 Four and a half LIM domains protein 1 0.02 0.00 19.1 
Q8VDD5 Myosin-9 0.02 0.01 37.5 
P35278 Ras-related protein Rab-5C 0.02 0.00 15.8 
P63325 40S ribosomal protein S10 0.02 0.00 0.1 
Q91V55 Putative uncharacterized protein 0.02 0.00 3.6 
P16858 Glyceraldehyde-3-phosphate dehydrogenase 0.01 0.00 29.6 
Q61879 Myosin-10 0.01 0.01 77.5 

Q8VDN2 Sodium/potassium-transporting ATPase subunit 
alpha-1 0.01 0.00 41.9 

Q9R0P5 Destrin 0.01 0.00 38.3 
P48036 Annexin A5 0.01 0.00 23.8 

Proteins are sorted in order of decreasing protein ratio. 
1Calculated from the intensity weighted average of individual peptide ratios. Ratio reflects the 
fold difference in protein abundance between ACM and cell lysates. 
2Standard deviation of the average protein ratio calculated based on variance in peptide ratios. If 
unique peptides resulted in the same peptide ratio, then the standard deviation was zero. 
3P-value calculated from the complementary error function (see Materials and Methods). P < 0.05 
was required for significance. 
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Table 3-4. ACM proteins with significant enrichment in ACM.  

Accession Protein name Protein 
ratio1 

SD 
ratio2 

CV 
(%) SP4 

P20152 Vimentin 27.43 19.36 70.6 N 
P62806 Histone H4 16.17 4.64 28.7 N 
P27661 Histone H2A.x 6.82 1.93 28.3 N 
Q61599 Rho GDP-dissociation inhibitor 2 4.80 2.56 53.2 N 

Q3UCL5 Ferritin 3.75 0.79 21.0 N 
Q61233 Plastin-2 3.75 1.04 27.8 N 
P09528 Ferritin heavy chain 3.59 1.25 34.9 N 

P00493 Hypoxanthine-guanine 
phosphoribosyltransferase 2.63 0.60 23.0 N 

P80314 T-complex protein 1 subunit beta 2.40 0.39 16.0 N 

O88569 Heterogeneous nuclear 
ribonucleoproteins A2/B1 2.06 0.65 31.5 N 

Q8CHQ7 UPF0727 protein C6orf115 homolog 2.01 0.00 0.0 N 
P10852 4F2 cell-surface antigen heavy chain 1.48 0.34 22.8 N 
P08226 Apolipoprotein E 414.00 244.00 58.9 Y 

O09164 Extracellular superoxide dismutase [Cu-
Zn] 327.00 50.00 15.3 Y 

P10923 Osteopontin 187.25 93.50 49.9 Y 
Q8R422 CD109 antigen 76.00 22.50 29.6 Y 
Q00493 Carboxypeptidase E 74.33 26.33 35.4 Y 
P07214 SPARC 67.00 35.93 53.6 Y 

A2APM1 CD44 antigen 65.33 4.33 6.6 Y 
P47867 Secretogranin-3 64.00 16.00 25.0 Y 

Q3UGY5 Fibronectin 1 57.67 87.06 151.0 Y 
Q6GQT1 Alpha-2-macroglobulin-P 45.60 28.62 62.8 Y 
P02463 Collagen alpha-1(IV) chain 41.89 12.13 29.0 Y 
O88307 Sortilin-related receptor 31.45 5.76 18.3 Y 
P43025 Tetranectin 30.62 5.62 18.4 Y 
P29533 Vascular cell adhesion protein 1 30.15 4.23 14.0 Y 

Q921T4 
Phospholipase A2, group VII (Platelet-
activating factor acetylhydrolase, 
plasma) 

29.70 4.80 16.2 Y 

Q80YX1 Tenascin 27.30 10.10 37.0 Y 
Q9Z0J0 Epididymal secretory protein E1 22.00 12.65 57.5 Y 

Q80W15 Insulin-like growth factor-binding 
protein-like 1 21.33 2.83 13.3 Y 

Q9R0E1 Procollagen-lysine,2-oxoglutarate 5-
dioxygenase 3 18.40 3.02 16.4 Y 

P51655 Glypican-4 16.91 17.02 100.6 Y 
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Q06890 Clusterin 15.71 12.44 79.2 Y 
Q61592 Growth arrest-specific protein 6 14.67 2.33 15.9 Y 
P21460 Cystatin-C 14.00 2.45 17.5 Y 

Q9WTR5 Cadherin-13 13.27 2.27 17.1 Y 
Q02819 Nucleobindin-1 12.29 2.22 18.1 Y 

Q3UHN9 Bifunctional heparan sulfate N-
deacetylase/N-sulfotransferase 1 12.13 2.33 19.2 Y 

Q61147 Ceruloplasmin 12.00 14.40 120.0 Y 
Q61361 Brevican core protein 11.23 2.39 21.3 Y 

Q9WVJ3 Plasma glutamate carboxypeptidase 10.37 1.74 16.8 Y 
P30412 Peptidyl-prolyl cis-trans isomerase C 10.36 0.57 5.5 Y 
O70370 Cathepsin S 10.09 2.09 20.7 Y 
Q80XP1 Complement component 3 9.75 11.25 115.4 Y 

Q91ZX7 Prolow-density lipoprotein receptor-
related protein 1 9.48 4.78 50.5 Y 

Q9QXA3 Fat 1 cadherin (Fragment) 9.40 1.52 16.2 Y 
Q99LJ1 Tissue alpha-L-fucosidase 8.56 1.73 20.2 Y 
P55066 Neurocan core protein 8.47 10.22 120.7 Y 
P97298 Pigment epithelium-derived factor 7.65 9.26 121.0 Y 
Q9ES89 Exostosin-like 2 7.50 0.38 5.0 Y 
Q60847 Collagen alpha-1(XII) chain 7.25 16.12 222.3 Y 
P13595 Neural cell adhesion molecule 1 7.00 1.71 24.4 Y 

Q99M71 Mammalian ependymin-related protein 1 7.00 1.76 25.1 Y 
Q91VU0 Protein FAM3C 6.81 3.28 48.1 Y 
Q8BND5 Sulfhydryl oxidase 1 5.88 1.08 18.3 Y 
P18242 Cathepsin D 5.25 8.52 162.3 Y 
Q8K2I4 Beta-mannosidase 5.03 1.31 26.0 Y 
Q91WP6 Serine protease inhibitor A3N 5.02 2.23 44.4 Y 
Q8BFR4 N-acetylglucosamine-6-sulfatase 4.92 1.18 24.0 Y 
Q8R464 Cell adhesion molecule 4 3.83 0.50 13.0 Y 

B2RXS4 Plexin B2 (MCG140951) (Plxnb2 
protein) 3.79 7.13 188.0 Y 

Q04857 Collagen alpha-1(VI) chain 3.76 0.68 18.1 Y 

Q8K479 Complement C1q tumor necrosis factor-
related protein 5 3.55 0.35 9.8 Y 

O88325 Alpha-N-acetylglucosaminidase 
(Sanfilippo disease IIIB) 3.50 0.47 13.3 Y 

Q9R0B9 Procollagen-lysine,2-oxoglutarate 5-
dioxygenase 2 3.44 0.64 18.6 Y 

Q9WUT8 DSD-1-proteoglycan 3.22 4.07 126.3 Y 
Q61207 Sulfated glycoprotein 1 3.04 0.72 23.5 Y 
O88668 Protein CREG1 2.95 0.71 24.0 Y 
Q197W7 N-glycan processing alpha-mannosidase 2.94 0.60 20.3 Y 
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IIx 

Q64191 N(4)-(beta-N-acetylglucosaminyl)-L-
asparaginase 2.88 2.13 74.1 Y 

O88531 Palmitoyl-protein thioesterase 1 2.79 0.41 14.9 Y 
P20060 Beta-hexosaminidase subunit beta 2.78 1.77 63.8 Y 

P70158 Acid sphingomyelinase-like 
phosphodiesterase 3a 2.77 0.36 13.0 Y 

Q9ET22 Dipeptidyl-peptidase 2 2.70 0.66 24.5 Y 
O89017 Legumain 2.60 0.57 21.9 Y 

P17047 Lysosome-associated membrane 
glycoprotein 2 2.55 1.53 60.1 Y 

Q3TCN2 Putative phospholipase B-like 2 2.43 0.58 24.1 Y 

A2ARV4 Low-density lipoprotein receptor-related 
protein 2 2.24 0.62 27.8 Y 

Q9EQH2 Endoplasmic reticulum aminopeptidase 1 2.20 0.57 25.8 Y 
P10605 Cathepsin B 2.16 1.34 62.0 Y 
P50429 Arylsulfatase B 2.12 0.72 34.1 Y 
P01029 Complement C4-B 2.03 0.77 38.2 Y 

Q9WV54 Acid ceramidase 1.96 0.36 18.2 Y 
Q91XG3 Hexosaminidase A 1.93 1.36 70.5 Y 
Q60648 Ganglioside GM2 activator 1.87 0.40 21.2 Y 
P16675 Lysosomal protective protein 1.87 0.73 39.2 Y 
Q07797 Galectin-3-binding protein 1.78 0.22 12.3 Y 
O54782 Epididymis-specific alpha-mannosidase 1.64 0.89 54.2 Y 
P23780 Beta-galactosidase 1.55 0.38 24.5 Y 
P97290 Plasma protease C1 inhibitor 1.54 1.53 99.7 Y 

Q9WUU7 Cathepsin Z 1.53 0.48 31.5 Y 
Proteins are sorted in order of decreasing protein ratio, as well as by predicted classical (SP = Y) 
and putatively non-conventional section (SP = N). Non-conventional proteins are listed at the top. 
1Calculated from the correlation-weighted average of individual peptide ratios. Ratio reflects the 
fold difference in protein abundance between ACM and cellular lysates. 
2Standard deviation of the average protein ratio calculated based on variance of peptide ratios. 
Standard deviations of zero occurred when unique peptides had the same peptide ratio. 
3P-value calculated from the complementary error function (see Materials and Methods). P < 0.05 
was required for significance. 
4Indicates whether the protein contained a predicted N-terminal signal peptide (SignalP 3.0) and 
was secreted (TargetP). 
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4.1 Abstract 

S-nitrosylation, the selective modification of cysteine residues in proteins to form S-

nitrosocysteine, is a major emerging mechanism by which nitric oxide acts as a 

signaling molecule.  While nitric oxide is intimately involved in the regulation of 

vascular smooth muscle cell functions, the potential protein targets for nitric oxide 

modification as well as structural features that underlie the specificity of protein S-

nitrosocysteine formation in these cells remain unknown.  Therefore, we employed a 

proteomic approach using selective peptide capturing and site-specific adduct 

mapping to identify the targets of S-nitrosylation in human aortic smooth muscle 

cells upon exposure to S-nitrosocysteine and propylamine propylamine NONOate.  

This strategy identified 20 unique S-nitrosocysteine-containing peptides belonging 

to 18 proteins including cytoskeletal proteins, chaperones, proteins of the 

translational machinery, vesicular transport, and signaling.  Sequence analysis of 

the S-nitrosocysteine-containing peptides revealed the presence of acid-base motifs, 

as well as hydrophobic motifs surrounding the identified cysteine residues.  High-

resolution immunogold electron microscopy supported the cellular localization of 

several of these proteins.  Interestingly, seven of the 18 proteins identified are 

localized within the ER/Golgi complex, suggesting a role for S-nitrosylation in 

membrane trafficking and ER stress response in vascular smooth muscle. 
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4.2 Introduction 

S-Nitrosylation, the formal transfer of nitrosonium to a reduced cysteine, is a 

reversible and selective post-translational modification, regulating protein activity, 

localization, and stability, while also functioning as a general sensor for cellular redox 

balance (Hess et al. 2005, Hara et al. 2005, Rizzo, Piston 2003, Huang et al. 2005, Wang 

et al. 2006, Matsushita et al. 2003, Morrell et al. 2005).  The formation of protein S-

nitrosocysteine requires the removal of a single electron, i.e. the conversion of the 

nitrogen in nitric oxide from an oxidation state of 2 to 3.  Several distinct pathways could 

satisfy the formation of protein S-nitrosocysteine adducts in biological systems, such as 

auto-oxidation of nitric oxide forming higher oxides of nitrogen, radical recombination of 

thiyl radical with nitric oxide, catalysis by metal centers, the direct reaction of nitric 

oxide with a reduced cysteine followed by electron abstraction, and transnitrosation 

reactions carried out by S-nitrosoglutathione, small molecular mass S-nitrosothiols and 

more recently by thioredoxin (Gow, Buerk & Ischiropoulos 1997, Mitchell, Marletta 

2005, Pawloski, Hess & Stamler 2005).  

In vascular smooth muscle cells, nitric oxide derived from endothelium regulates 

important biological functions beyond relaxation, such as phenotypic changes, 

proliferation, and commitment to undergo apoptosis (Bennett, Evan & Schwartz 1995, 

Lincoln et al. 2006).  Previous studies have shown that the molecular mechanisms 

underlying the functions of nitric oxide in vascular smooth muscle are mediated by both 

soluble guanylate cyclase-dependent and independent mechanisms (Ignarro et al. 1986, 

Lincoln et al. 2006, Bolotina et al. 1994).  It has been suggested that selective S-

nitrosylation of protein targets are responsible for the guanylate cyclase-independent 

regulation of vascular smooth muscle cell biology (Bolotina et al. 1994).  Despite these 

critical roles for nitric oxide, the targets of S-nitrosylation in vascular smooth muscle 

cells are largely unknown.  To that end, proteomic approaches are highly informative in 
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providing a global assessment of the modified proteins in cells and tissues.   

Proteomic approaches based on the biotin-switch method have been employed to 

identify potential targets of S-nitrosylation in various model systems including murine 

brain tissue (Jaffrey et al. 2001) and RAW 264.7 cells (Gao et al. 2005), Mycobacterium 

tuberculosis (Rhee et al. 2005), mouse mesangial cells (Kuncewicz et al. 2003), and 

human aortic endothelial cells (Yang, Loscalzo 2005, Martinez-Ruiz, Lamas 2004), yet 

the structural features which subserve the specificity of S-nitrosylation remain 

contentious.  Recently, a peptide capture approach simultaneously identified 68 unique S-

nitrosocysteine residues belonging to 56 proteins from GSNO-treated rat cerebellar 

lysates (Hao et al. 2006a).  Analysis of the identified peptides by a machine learning 

approach did not reveal linear sequence motifs under the experimental conditions used 

(Hao et al. 2006a).  However, subsequent inspection of the identified peptides indicated a 

prevalence of an acid/base motif, suggesting that exploration of additional S-

nitrosocysteine proteomes may further clarify the structural motifs that underlie the 

specificity of S-nitrosylation. 

To this end, in intact human aortic smooth muscle cells (HASMC) exposed to S-

nitrosocysteine (CysNO) or propylamine propylamine NONOate (PAPANO), we 

identified potential targets of S-nitrosylation and evaluated S-nitrosylation motifs under 

conditions that preserve the cellular localization of the proteins as well as endogenous 

protein-protein interactions.  Utilizing a proteomic approach that selectively identified the 

modified S-nitrosocysteine residues, 18 proteins were identified.  The localization of 

several of these proteins was further supported by high-resolution immunogold electron 

microscopy.  Primary sequence analysis of the S-nitrosocysteine-containing peptides 

revealed the presence of acid-base motifs as well as the occurrence of cysteine residues 

within hydrophobic pockets.  
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4.3  Materials and Methods 

Chemicals and Reagents. Unless otherwise indicated, chemicals were purchased from 

Sigma (St Louis, MO). Kaighn’s modification of Ham’s F12 medium with 2 mM L-

Glutamine (F12K), Earle’s Balanced Salt Solution (EBSS), and SDS-PAGE 4-12% Bis-

Tris gradient gels were purchased from Invitrogen (Carlsbad, CA). Micro Bio-spin P6 

columns were obtained from Biorad (Hercules, CA). Propylamine propylamine 

NONOate (PAPANO) was purchased from Cayman Chemicals (Ann Arbor, MI). N-

[6(Biotinamido)hexyl]-3’-(2’-pyridyldithio) propionamide (biotin-HPDP) and 

streptavidin-agarose were purchased from Pierce (Rockford, IL). Ultrafree-MC filters, 

PVDF Immobilon-FL, and ZipTipC18 P10 were from Millipore (Billerica, MA). Trypsin 

Gold, Mass Spectrometry Grade was purchased from Promega (Madison, WI). Mouse 

monoclonal and rat polyclonal anti-nitrosocysteine antibodies were obtained from A.G. 

Scientific (San Diego, CA). 

S-nitroso-L-cysteine (CysNO) was prepared by mixing equimolar amounts of L-cysteine 

and NaNO2 under acidic conditions (0.25 M HCl) in the presence of 0.1 mM DTPA. 

CysNO stock solutions (500 mM) were prepared fresh. The final concentration of CysNO 

was determined from absorbance at 334 nm using the extinction coefficient 900 M-1cm-1. 

Immediately before exposure to cell cultures, an intermediate dilution of the stock 

solution was prepared in HEN buffer (250 mM HEPES, pH 7.7, 1 mM EDTA, 0.1 mM 

neocuproine). PAPANO was prepared as a concentrated stock in 0.01 M NaOH and the 

final concentration was determined by absorbance at 250 nm using the extinction 

coefficient 8050 M-1cm-1. All stock solutions were stored on ice in the dark.  
Cell culture and treatment with NO agents. Human Aortic Smooth Muscle Cells 

(HASMC) were obtained at passage 15 or 16 from American Type Culture Collection 

(Manassas, VA) and cultured in F12K supplemented with 10 mM HEPES, 10 mM TES, 

10% FBS, ITS (0.01 mg/mL insulin, 0.01 mg/mL transferrin, 10 ng/mL sodium selenite), 
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0.03 mg/mL ECGS, 0.05 mg/mL ascorbic acid. Cells were maintained in a 5% CO2 

incubator at 37 °C in T175 flasks. Experiments were performed between passages 16-21. 

When intact cells were ready for analysis (~85% confluency) they were washed twice 

with EBSS and incubated in the dark for 20 min with 100 μM L-cysteine or 100 μM 

CysNO at 37 °C. For PAPANO treatments, cells were exposed to 2 mM PAPANO for 1 

hr at 37 °C in FBS/ITS/Asc-free medium (basal media) or in basal media alone as a 

control.  

Quantitation of protein S-nitrosocysteine. Intracellular S-nitrosoprotein content was 

determined from HASMC cellular lysates by chemiluminescence using a Sievers 280 

nitric oxide analyzer. HASMC were treated with NO agents as described above and cell 

extracts were obtained as described below. Lysates were then passed over two successive 

Micro Biospin P6 columns to remove low molecular weight S-nitrosothiols and protein 

concentration was determined.  Lysates were incubated with 0.1% SNA/10% glacial 

acetic acid for at least 15 min to remove nitrite contamination. Approximately 0.12 mg of 

cellular lysates were routinely injected into the reaction vessel containing 5 mL of 60 mM 

potassium iodide (KI) and 10 mM iodine (I2) in glacial acetic acid at 37 °C. Under these 

conditions, the lower limit of detection was 0.03 pmol SNO/mg total protein. Equivalent 

results for S-nitrosoprotein content were also obtained using Cu(I)/ascorbate reduction 

method. As a negative control for detection of S-nitrosocysteine, lysates were incubated 

with 3.5 mM HgCl2 for 20 min at 4 °C.  

Cell extract preparation and biotin switch assay. Unless otherwise indicated all steps 

were performed in the dark. After the treatment medium was removed, the cells were 

quickly trypsinized at 37 °C, inactivated with F12K containing 0.1% FBS, and 
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centrifuged at 130 x g for 6 min at 4 °C. Cell pellets were washed three times with ice-

cold PBS containing 1 mM EDTA and 0.1 mM neocuproine. The biotin-switch assay was 

performed with between 0.5 and 1 mg of cellular protein as previously described (14) 

with minor modification. Cell pellets were resuspended in lysis buffer (HEN buffer 

containing 1% Triton X-100).   

Resuspended pellets were then centrifuged at 12, 000 x g, 4 °C for 10 min. The biotin 

switch assay was performed with between 0.5 and 1 mg of protein. The lysates were 

adjusted to 0.5 mg/mL containing 2.5% SDS and 200 mM methyl methanethiosulfonate 

(MMTS) and incubated at 50 °C for 20 min, vortexing every 4 minutes to block free 

thiols. After blocking, cell extracts were precipitated with 2 volumes of -20 °C acetone, 

incubated at -20 °C for 20 minutes, centrifuged at 12, 000 x g, 4 °C for 10 min, washed 

four times with acetone, and resuspended in 0.2 mL of HENS buffer (25 mM HEPES, pH 

7.7, 0.1 mM EDTA, 0.01 mM neocuproine, and 1% SDS). To the blocked proteins, 0.4 

mM biotin-HPDP and 5 mM ascorbate were added and incubated at 25 °C for 1 hour 

while rotating. To control for non-specific HPDP labeling of unmodified cysteines, 

ascorbate was omitted. Following incubation, proteins were precipitated with acetone as 

described above. Samples in which protein digestion was performed were resuspended in 

0.45 mL of 0.1 M ammonium bicarbonate and 0.5% SDS.  Protein concentration was 

checked by the BCA assay (Pierce). 

Protein digestion and affinity peptide capture. Biotinylated proteins were incubated with 

trypsin (1:30 enzyme:protein ratio) at 37 °C for 18-24 hrs in the dark. Samples were then 

passed through Ultrafree-MC 10 kDa cutoff filters that had been previously rinsed with 

methanol and washed with H2O. The filtrate containing the peptides was recovered and 
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incubated with ~50 uL of dry, washed streptavidin-agarose beads per mg of initial protein 

for 30 min with gentle mixing. Samples were centrifuged at 5, 000 x g for 5 min and the 

supernatants were discarded. The beads were washed five times with 10 volumes of 1 M 

ammonium bicarbonate, followed by five washes with 10 volumes of deionized water.  

Between washes samples were centrifuged at 1, 000 x g for 1 min. Elution buffer 

containing 70% formic acid (FA) was incubated with the beads for 30 min with gentle 

mixing. The captured peptides were recovered by centrifuging beads at 5, 000 x g for 4 

min and collecting the supernatant. To ensure complete removal of streptavidin-agarose, 

the samples were centrifuged again. The captured peptides were evaporated to ~5 uL in 

vacuo, resuspended in 20 uL of 0.1% FA and desalted using Zip-Tips.  

Analysis by LC-MS/MS. Desalted samples were analyzed on a Thermo LTQ linear trap 

instrument equipped with a Thermo micro electrospray source, and a Thermo Surveyor 

pump and autosampler (Thermo Electron Corporation, San Jose, CA). LC-MS/MS 

analyses were done by reverse phase chromatography on an 11 cm fused silica capillary 

column (100 µm ID) packed with Monitor C-18 (5 µm) (Column Engineering, Ontario, 

CA) with the flow set at 700 nL/min. The mobile phase consisted of 0.1% formic acid in 

either HPLC grade water A) or acetonitrile (B). Peptides were eluted initially with 99% 

A, then 95% A from 3-5 min, then a linear gradient to 72% A by 33 min, then to 20% A 

at 40 min and held to 45 min, then to 99% A at 52 min and held until 60 min. MS/MS 

spectra were acquired using a full scan which was followed by four data dependent scans 

on the four most intense precursor ions. Precursors that were detected twice within 15 

seconds were put on a dynamic exclusion list for a period of 60 seconds. 
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Assigning peptide sequences. MS/MS spectra were matched to human NCBI RefSeq 

database sequences with Sequest (Bioworks Browser 3.1 SR1) (Thermo Electron, San 

Jose, CA). Cysteine modification by MMTS (+46 amu) and by biotin-HPDP (+428 amu) 

was specified as variable modifications. MS/MS spectra were extracted from the raw files 

using Sequest with the following parameters: MW Range, 250-2000; threshold, 1000; 

precursor mass tolerance, 3; group scan tolerance, 2; minimum group count, 1; minimum 

number of ions, 26, precursor charge state, auto; MSn level, 2. Sequest output files were 

created using the following parameters: peptide mass tolerance, 2.5 and fragment ion 

tolerance, 0.0, as well as the charge state analysis (ZSA) algorithm.  

Evaluating Sequest peptide sequence assignments. To efficiently compare Sequest 

peptide assignments within replicate samples and between experimental conditions 

Sequest output files were loaded into Scaffold (Proteome Software, Portland, OR). 

Sequest peptide sequences were accepted for a given sample if it passed the following 

selection criteria. First, the peptide assignment must contain a biotin-HPDP modified 

cysteine (+428) included in the y- or b-ion series were considered. Second, the peptide 

must be identified in 3 out of the 4 replicate experiments, and it must have the following 

Sequest scores: XC > 2 for doubly charged and > 2.5 for triply charged ions; ΔCn > 0.1; 

RSp < 10; and preliminary score (Sp) >300. Finally, assigned spectra that meet the above 

criteria were manually reviewed. For peptide assignments to be accepted they must have 

(i) a continuous b or y-ion series of at least 5 residues and (ii) the top 3 most intense 

fragment peaks assigned to either an a, b, y-ion, to an a, b, y-ion resulting from a neutral 

loss of water or ammonia, or to a multiply protonated fragment ion. In addition, a peptide 

assignment with below threshold scores and marginal MS/MS spectra was accepted if it 
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showed a similar pattern of ion fragments and relative fragment ion peak intensity as a 

high scoring assignment present in another replicate. Manual review of MS/MS spectra 

was performed using Scaffold’s built-in MS/MS spectrum view window. 

Immunoelectron Microscopy. HASMC cells were treated with CysNO as described above 

and immediately fixed in 2% paraformaldehyde (PFA) and 0.2% glutaraldehyde in 0.1 M 

sodium phosphate buffer (pH 7.4) for 2 hours at room temperature. Fixed cells were 

stored at 4 °C in 1% PFA until cyrosectioning. 50 nm thick cryosections were cut at -120 

°C using an Ultracut S ultramicrotome (Leica). The sections were collected on carbon-

coated formvar grids using a mixture of 1.8% methylcellulose and 2.3 M sucrose (Liou, 

Geuze & Slot 1996) and incubated with primary nitrosocysteine antibodies (Gow et al. 

2004) and 10 nm protein A–gold (Slot et al. 1991). After labeling, the sections were fixed 

with 1% glutaraldehyde, counterstained with uranyl acetate, and embedded in 

methylcellulose–uranyl acetate. The specificity of the labeling was verified in control 

experiments where sections were treated with 3.5 mM p-hydroxymercuricbenzoate 

(PHMB) for 30 min (3 x 10 min). Immunogold double labeling was performed using 10- 

and 15 nm protein A gold. After labeling, the sections were fixed with 1% 

glutaraldehyde, counterstained with uranyl acetate, and embedded in methyl cellulose–

uranyl acetate. The sections were viewed in a JEOL 1200CX electron microscope. 
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4.4 Results and Discussion 

The intracellular protein S-nitrosocysteine content was evaluated by reductive 

chemistries coupled with chemiluminescence detection (Fang et al. 1998).  Naïve 

HASMC in culture had levels of protein S-nitrosocysteine below the lower limits of 

detection and western blot analysis failed to document expression of nitric oxide 

synthases in these cells (not shown).  Therefore, to generate endogenous S-nitrosylated 

proteins, intact cells were exposed to either propylamine propylamine NONOate 

(PAPANO), a nitric oxide donor with defined release kinetics, or S-nitrosocysteine 

(CysNO), an effective transnitrosating agent.  Exposure of HASMC to 100 μM CysNO 

for 20 min generated 3.0 ± 0.3 nmol of protein S-nitrosocysteine per mg of protein, 

whereas exposure to 2 mM PAPANO for 1 hour generated 0.40 ± 0.03 nmol protein S-

nitrosocysteine per mg of protein (mean ± std, n=4).  These two conditions were used to 

explore the S-nitrosoproteome of HASMC.  The difference in the yield of protein S-

nitrosocysteine between CysNO and the nitric oxide donor treatment may reflect the 

higher efficiency of S-nitrosylation by CysNO consistent with previous results (Zhang, 

Hogg 2004b).   Cell culture studies have shown that exogenous CysNO is effectively 

transported intracellularly via the amino acid transporter system (L-AT) transporter 

system (Zhang, Hogg 2004b).  Consequently, intracellular CysNO may facilitate the 

formation of protein S-nitrosocysteine adducts primarily by replenishment of endogenous 

S-nitrosoglutathione or by direct transnitrosation.  In contrast, nitric oxide could be 

consumed by other cellular targets such as soluble guanylate cyclase and thus a smaller 

fraction may participate in S-nitrosative chemistries.  Therefore, the treatment of 

HASMC with either CysNO or PAPANO, followed by site-specific proteomic analysis of 
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protein S-nitrosocysteine formation, allowed us to evaluate the potential selectivity of S-

nitrosylation. 

Due to the selectivity of S-nitrosocysteine modification and the peptide 

enrichment strategy employed, rigorous selection criteria based on manual inspection of 

MS/MS spectra was performed to evaluate each sequence-to-spectrum assignment 

(Figure 4-1).  Typical MS/MS spectra that either met (Figure 4-1A) or failed (Figure 4-

1B) these criteria are shown. Importantly, the mass shift due to the Cys-HPDP-biotin 

adduct (+428) was present in either the y- or b-ion series for accepted peptide 

assignments. While these selection criteria would minimize false peptide identifications 

resulting from MS/MS sequence-to-spectrum assignments, they would not prevent false 

positive peptide assignments arising from biotin-HPDP labeling of cysteine residues that 

were not completely blocked by MMTS.  As a control for this non-specific labeling, 

ascorbate was omitted to largely prevent reduction of S-nitrosocysteine. Although 

ascorbate-independent biotin-HPDP labeling of S-nitrosocysteine is possible, naïve and 

cysteine-treated HASMC did not contain significant levels of endogenous S-

nitrosoproteins quantified by reductive chemistries coupled to chemiluminescence 

detection.  Therefore, omission of ascorbate from these conditions served as an 

appropriate false positive control.  MS/MS sequence-to-spectrum assignments from these 

treatments were evaluated by the same criteria as described in Fig. 1 and were used to 

eliminate peptide identifications if they were also identified in the NO-treated samples.  

A total of 18 peptides belonging to 16 proteins were identified as possible false positives 

(Table 4-2), and therefore, were not considered targets of S-nitrosylation under our 

experimental conditions.  
  



179 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1. Evaluation of Sequest peptide assignments. (A) An MS/MS spectrum (XCorr 3.6) 
assigned to an S-nitrosocysteine-containing peptide from 14-3-3 protein ζ that met all selection 
criteria and was accepted. (B) An MS/MS spectrum (Xcorr 4.1) assigned to a peptide from 
vimentin. Although this assignment passed the initial selection criteria, it was ultimately rejected 
because the top 3 most intense fragment peaks were not assigned (arrow).  The evaluation of 
Sequest peptide assignments was assessed by multiple selection criteria as follows: 1) Only 
peptide assignments that identified a biotin-HPDP derivitized cysteine (+428) included in the y- 
or b-ion series were considered.  2) Each experimental condition was performed in quadruplicate, 
with peptide assignments evaluated if they appeared in at least 3 out of the 4 independent 
replicates. 3) Peptide assignments that passed these two selection filters were then evaluated by 
output scores assigned by Sequest and were rejected if they did not meet specific threshold values 
as described in the Materials and Methods. 4) If peptide assignments passed this scoring filter, 
the corresponding MS/MS spectra were manually reviewed. For an assignment to be accepted the 
MS/MS spectrum must have (i) a continuous b-or y-ion series of at least 5 residues and (ii) the 3 
most intense fragment peaks assigned to either an a-, b-, or y-ion, to an a-, b-, or y-ion resulting 
from a neutral loss of water or ammonia, or to a multiply protonated fragment ion. All review of 
peptide assignments and manual interpretation of MS/MS spectra were facilitated by Scaffold, a 
proteome software package. 
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Employing selective peptide capture followed by LC-MS/MS analysis, 18 S-

nitrosocysteine-containing peptides belonging to 16 proteins were identified in HASMC 

exposed to CysNO (Table 4-1, Figures 4-5 to 4-23). The identification of S-nitrosylated 

proteins with diverse molecular weights and cellular roles such as cytoskeletal proteins, 

chaperones, proteins of the translational machinery, calcium-binding proteins and an ion 

channel protein supported the robustness of this technique.  From the 16 proteins 

identified as potential targets of S-nitrosylation, 14-3-3 protein θ, 14-3-3 protein ζ, 

annexin A2, elongation factor 2, and elongation factor 1 A-1 had been previously 

identified by the biotin switch method in various other systems (Zhang, Hogg 2005, 

Kuncewicz et al. 2003, Kuncewicz et al. 2003, Gao et al. 2005, Rhee et al. 2005, Rhee et 

al. 2005, Martinez-Ruiz, Lamas 2004).  In addition, Cys137 of RAB3B has been 

proposed as susceptible to S-nitrosylation based on a conserved NKCD motif (Lander et 

al. 1997).   Since these experiments identified S-nitrosocysteine at residue 184, further 

work will be necessary to examine the site-specificity of S-nitrosylation in RAB3B.  

Additionally, 4 S-nitrosocysteine-containing peptides belonging to 4 proteins were 

identified following exposure to a nitric oxide donor (Table 4-1, Figures 4-9, 4-19, 4-22, 

4-23).  Two of the proteins, 14-3-3 ζ and GRP75, were also identified as S-nitrosylated at 

the same residue following CysNO treatment, while microtubule-associated protein 4 and 

myoneurin were exclusive to PAPANO-treated HASMC. 

The ability of this method to identify S-nitrosylated proteins from as little as 0.4 

nmol of S-nitrosocysteine per mg of protein is an improvement in sensitivity and hence 

proteome coverage over the traditional biotin-switch approach.  For example, exposure of 

RAW 264.7 cells to 250 μΜ CysNO generated approximately 5.5 nmol of S-
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nitrosocysteine per mg of protein from which the standard biotin-switch assay identified 

3 S-nitrosylated proteins (Zhang, Hogg 2005).  This increase in sensitivity was likely due 

to the enrichment of S-nitrosocysteine-containing peptides and subsequent MS/MS 

analysis using electrospray ionization and linear ion trap detection.  Critically, the 

increase in sensitivity did not sacrifice selectivity as nearly 90% (43 out of 49) of the 

unique peptides that passed the selection criteria contained a Cys-HPDP-biotin adduct.  

The capture of 6 nonspecific peptides lacking a biotinylated adduct was likely due to the 

harsher elution conditions required to denature avidin and release the biotinylated 

peptides.  Overall, the selectivity and increased sensitivity of this method, as well as the 

ability to identify both the modified proteins and the sites of S-nitrosylation in a single 

experiment represent a significant advantage for elucidating the S-nitrosoproteome in 

complex biological mixtures. 

The cellular distribution of protein S-nitrosocysteine was explored by high-

resolution electron microscopy and immunogold labeling using monoclonal and 

polyclonal anti-S-nitrosocysteine antibodies.  Following treatment of HASMC with 100 

μM CysNO, significant immunoreactivity for protein S-nitrosocysteine was observed in 

distinct cellular compartments such as the endoplasmic reticulum membrane and 

vesicular membrane structures near the Golgi complex (Figure 4-2B, C), consistent with 

the proposed subcellular localizations of several of the identified proteins in Table 4-1. 

Treatment with para-hydroxymercuricbenzoate (PHMB), which displaces S-

nitrosocysteine, significantly abolished S-nitrosocysteine immunoreactivity (Figure 4-

2A).  Of particular interest was the immunogold labeling located in close vicinity to the 

Golgi complex, which was largely associated with membranes of the endoplasmic 
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reticulum and on vesicular membrane profiles near the Golgi (Figure 4-2B, C).  Based on 

the proteomic data and the specific location of these vesicles at lateral rims and cis-Golgi 

facing ER exit sites these membranes could represent COP-I-coated vesicles. 

Immunogold double labeling against S-nitrosocysteine and COP-I was performed, 

revealing low but distinct labeling on ER membranes (Figure 4-2D) as well as occasional 

localization on vesicular membranes of the Golgi complex. (Figure 4-2D, arrow).  Recent 

studies have suggested that besides the COP-I vesicle coat, proteins of the 14-3-3 family 

also recognize arginine-based ER localization signals on multimeric membrane proteins 

(Yuan, Michelsen & Schwappach 2003).  Since this proteomic study identified COP-A, 

14-3-3 ζ, RAB3B, cyclophilin B, and chloride intracellular channel protein, which have 

proposed roles in ER/Golgi transport and ER protein folding, this suggested a regulatory 

role for S-nitrosylation in these cellular processes.  Interestingly, recent studies have 

revealed a role for S-nitrosylation in the regulation of vesicular trafficking in endothelial 

and epithelial cells (Wang et al. 2006, Matsushita et al. 2003), platelets (Morrell et al. 

2005), and neurons (Huang et al. 2005).  In addition, nitric oxide has been identified as a 

proximal mediator of ER stress responses, although the role of S-nitrosylation was not 

evaluated (Xu et al. 2004). 
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Figure 4-2.  High-resolution immunoelectron microscopy.  HASMC exposed to 100 μM 
CysNO for 20 min were fixed and processed for EM. Immunoreactivity for S-nitrosocysteine-
containing proteins was visualized by 10-nm protein A gold particles. COP-1 immunoreactivity 
was visualized by 15-nm protein A gold particles. (A) Sections were treated with para-
hydroxymercuricbenzoate (PHMB) to displace the S-nitrosocysteine adducts and then stained 
with monoclonal anti-S-nitrosocysteine antibody (26). (B) S-nitrosocysteine immunoreactivity 
(monoclonal antibody) was associated with endoplasmic reticulum, er, and small vesicular 
structures (arrows) in the vicinity of the Golgi complex, g. (C) A similar pattern of staining 
obtained with a polyclonal anti-S-nitrosocysteine antibody (asterisk indicates labeling of small 
vesicle). (D) Double labeling for S-nitrosocysteine (10-nm gold) and COP-1 (15-nm gold) 
showed localization on vesicular membrane profiles (arrow). Bar 200 nm. 
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The site-specific mapping of S-nitrosocysteine residues allowed direct 

comparison of primary peptide sequences for motifs that may govern S-nitrosylation 

specificity.  It has been proposed that there is a predisposition towards flanking basic 

(Lys, Arg, His) and acidic (Asp, Glu) residues (Hess et al. 2005), and if positioned within 

6 Å of the modified cysteine, these residues could regulate S-nitrosylation and de-

nitrosation by altering thiol nucleophilicity.  Sequence alignment of the 18 S-nitrosylated 

peptides identified from CysNO-treated smooth muscle cells revealed that the highest 

occurrence of acidic (D, E) residues was about 50% and 40%, at positions –3 and –4, 

respectively, relative to the modified cysteine.  The highest occurrence of basic (K, R, H) 

residues was approximately 30% at position 2 (Figure 4-3A).  Interestingly, there were no 

basic residues in position –3 and –4, while acidic residues at position 2 only occurred at a 

10% frequency. Given the relatively small number of peptides being compared, the 

differences observed may result by chance; therefore, the same analysis was performed 

for the 18 false positive peptide identifications (Figure 4-3B).  These peptides were 

excluded as they were not thought to contain S-nitrosocysteine, and therefore they served 

as an appropriate peptide population for comparison. Sequence alignment of these 18 

sequences revealed that at positions –3 and –4 acidic residues occurred at lower 

frequency, 34% and 17%, compared to 50% and 40% for the S-nitrosocysteine-

containing peptides, respectively. Similarly, the frequency of basic residues at position 2 

dropped to 6% compared to the S-nitrosocysteine-containing peptides (30%).  Given the 

strong trend for flanking acidic/basic residues revealed by alignment of S-

nitrosocysteine-containing peptides, this provides some of the best direct evidence 

supporting the acid/base motif.  Another factor that may govern S-nitrosylation 
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specificity is the occurrence of local hydrophobicity surrounding the cysteine residue 

(Hess et al. 2005, Hess et al. 2001).  Construction of Kyte-Doolittle hydropathy plots 

revealed that the S-nitrosocysteine residues identified in T-complex protein 1, ζ subunit, 

annexin A11, and elongation factor 1 A-1 were located in discrete motifs of increased 

hydrophobicity (Figure 4-3C). 

  



186 
 

 
Figure 4-3. S-nitrosylation specificity motifs.  (A) Sequence alignments of 18 S-
nitrosocysteine-containing peptides identified from CysNO-treated HASMC comparing the 
occurrence of amino acids at positions flanking the modified cysteine. (B) Sequence alignments 
of 18 false positive peptides comparing the occurrence of amino acids at positions flanking the 
cysteine residue. (C) Kyte-Doolittle hydropathy plots from regions flanking the identified S-
nitrosocysteine residue (arrow). The identified S-nitrosocysteine residues from T-complex protein 
1, ζ subunit, annexin A11, and elongation factor 1 A-1 were located within hydrophobic pockets.  
Hydropathy plots were constructed using a window of 13 amino acids. 
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Although primary sequence analyses are useful for determining structural features 

that underlie the specificity of post-translational modifications, they do not reveal motifs 

that result from three-dimensional protein structure.  Therefore, proteins identified in 

Table 1 and for which the crystal structures (>85% homology to the identified proteins) 

have been determined were evaluated for acid/base motifs.  Four out of the 20 proteins, 

14-3-3 ζ, 14-3-3 θ, RAB3B, and chloride intracellular channel 4 met these criteria.  

Evaluation of the molecular models revealed that for each protein, an acid/base motif 

opposing the identified cysteine was present within a molecular radius ranging from 2.4 

to 7.1 Å (Figure 4-4).  Since the proteomic studies identified 14-3-3 ζ and GRP75 as 

targets of S-nitrosylation in both CysNO and PAPANO-treated HASMC, these agents 

may share similar molecular specificities with respect to protein S-nitrosocysteine 

formation.  On the other hand, myoneurin and microtubule-associated protein 4, which 

were identified only from PAPANO-treated HASMC, did not contain acid/base or 

hydrophobic motifs by primary sequence analysis and the crystal structures have not been 

determined.  Therefore, the presence of common motifs for some but not all proteins 

identified from CysNO and PAPANO treatments suggests that protein S-nitrosocysteine 

formation derived from the nitric oxide radical donor include both secondary reactions of 

nitric oxide to generate transnitrosating species as well as other potential chemistries (8, 

9). 
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Figure 4-4. Evaluation of acid/base motifs by 3D structure analysis. Three-dimensional 
structures that had >85% homology to the identified proteins were obtained from the RCSB 
Protein Data Bank. (A) An acid/base motif was observed in human 14-3-3 ζ, where Cys25 was in 
close apposition to Asp21 and Lys9. A nearly identical structural arrangement was also observed 
for 14-3-3 θ (not shown). Similarly apposed acidic and basic residues were observed for Cys184 
in rat RAB3B (B) and Cys234 in human chloride intracellular channel 4 (C).  Three-dimensional 
models were loaded into the Swiss-Pdbviewer 3.7 (SP5) and molecular distances were calculated 
(Å, angstroms).  
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In summary, the proteomic approach employed permitted not only the evaluation 

of the S-nitrosoproteome in human aortic smooth muscle cells, but facilitated the 

elucidation of 2 S-nitrosylation motifs that govern the selectivity of modification.  By 

systematically evaluating potential peptide sequence-to-spectrum assignments and by 

eliminating false positive S-nitrosocysteine-containing peptide identifications, 20 unique 

S-nitrosocysteine-containing peptides belonging to 18 proteins were identified.  The 

identification of cytoskeletal, signal transduction, and ER-associated proteins implicates 

S-nitrosylation in the regulation of smooth muscle cell proliferation, apoptosis, and ER 

protein folding.  The detection of proteins that participate in the ER/Golgi transport 

system is consistent with previous reports implicating S-nitrosylation in the regulation of 

vesicular trafficking in other cell types (Huang et al. 2005, Wang et al. 2006, Matsushita 

et al. 2003, Morrell et al. 2005).  Significantly, through regulation of vascular smooth 

muscle ER/Golgi function, S-nitrosylation may influence vascular wall stress responses. 
  



190 
 

 
Table 4-1. Human aortic smooth muscle cell S-nitrosoproteome  

Biological Function              

    Protein Name  Acc. Sequencea AAb Zc XCorrd ΔCne Nf

        
Cell Growth and Maintenance        
    Myosin heavy chain 9 P35579 KQELEEIC*HDLEAR 916 3 4.3 0.40 6

  LQLQEQLQAETELC*AEAEELR 895 3 5.8 0.60 5

  VEDMAELTC*LNEASVLHNLK 90 3 3.7 0.44 3

    Vinculin Q5SWX2 VENAC*TK 85 2 2.8 0.23 5

  ^Microtubule-associated protein 4     P27816 C*SLPAEEDSVLEK 635 3 3.9 0.39 3

Signal Transduction        

    14-3-3 protein ζ P63104 YDDMAAC*MK 25 2 3.6 0.43 8

  ^14-3-3 protein ζ P63104 YDDMAAC*MK 25 2 3.7 0.44 4

    14-3-3 protein θ P27348 YDDMATC*MK 25 2 3.5 0.38 5

    Annexin A2 Q567R4 GLGTDEDSLIEIIC*SR 133 3 4.2 0.33 5

    Annexin A11 P50995 GVGTDEAC*LIEILASR 294 3 3.5 0.31 7

    VAV-like protein Q6TPQ2 C*RSLSQGMELSC#PGSR 33 3 3.0 0.19 4

Protein Metabolism        

    Elongation factor 2 P13639 DLEEDHAC*IPIK 567 3 2.9 0.13 3

    Elongation factor 1 A-1 P68104 DGNASGTTLLEALDC*ILPPTR 234 3 4.1 0.45 4

    Eukaryotic initiation factor 5AII Q9GZV4 YEDIC*PSTHNMDVPNIK 73 3 4.0 0.52 10

    T-complex protein 1, ζ subunit P40227 NAIDDGC*VVPGAGAVEVAMAEALIK 405 3 5.0 0.50 4

    Cyclophilin B P23284 DVIIADC*GK 194 2 3.1 0.37 3

    GRP75 P38646 VC*QGER 487 2 2.4 0.19 4

   ^GRP75 P38646 VC*QGER 487 2 2.3 0.16 4

Transport        

    COP-A Q8IXZ9 AWEVDTC*R 245 2 2.5 0.31 6

    Ras-associated protein 3B P20337 LVDAIC*DK 184 2 3.1 0.25 8

    Chloride intracellular channel 4 Q9Y696 DEFTNTC*PSDK 234 2 3.5 0.34 3

Nucleic Acid Metabolism        

  ^Myoneurin                                      Q8WX93 VSSC*EQR 740 2 2.7 0.16 3
^ indicates proteins were identified from PAPANO-treated HASMC; all other identifications were from CysNO-treated 
HASMC. aS-nitrosocysteine-containing tryptic peptide sequences; * specifies biotin-HPDP labeled cysteine, # indicates 
methyl disulfide. bResidue numbers refer to UniRef database sequences (www.uniprot.org). cThe charge state of the 
precursor peptide associated with the highest XCorr value. dThe highest XCorr value obtained for that peptide 
assignment across four independent experiments. eThe delta correlation value associated with the highest XCorr value; 
a measure of similarity between the two best hits matched to the MS-MS spectra. fThe number of times the assignment 
was accepted across four independent experiments. 
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Table 4-2. False positive S-nitrosocysteine-containing peptides 

Protein Name Uniprot 
Acc Sequencea AAb Zc XCorrd

β-actin P60709 C*DVDIR 285 2 2.4 

  LC*YVALDFEQEMATAASSSSLEK 217 3 6.3 

β-tubulin P07437 TAVC*DIPPR 354 2 2.3 

Peroxiredoxin 6 Q5TAH4 DFTPVC*TTELGR 47 2 3.0 

Pyruvate kinase M2 isozyme P14618 AEGSDVANAVLDGADC*IMLSGETAK 357 3 5.8 

Plastin 3 Q86YI6 VDLNSNGFIC*DYELHELFK 33 3 3.4 

Myosin heavy chain 9 P35579 C*QHLQAEK 930 2 2.8 

  KLEEEQIILEDQNC*K 987 3 5.1 

Filamin C Q14315 TPC*EEVYVK 2660 2 3.1 

Galectin-1 P09382 FNAHGDANTIVC*NSK 60 3 3.6 

Calreticulin precursor Q6IAT4 HEQNIDC*GGGYVK 105 2 4.4 

Protein disulfide isomerase precursor P07237 KEEC*PAVR 312 3 2.9 

Polyposis locus protein 1 Q00765 NC*MTDLLAK 14 2 3.1 

Cyclophilin A P62937 KITIADC*GQLE 160 2 3.9 

Alpha-2HS-glycoprotein P02765 C*DSSPDSAEDVR 132 2 4.4 

Thioredoxin domain containing 5 Q5TCQ0 IAEVDC*TAER 381 2 3.3 

KDEL ER Receptor 1 P24390 SC*AGISGK 29 2 2.9 

Desmoyokin Q09666 LEGDLTGPSVGVEVPDVELEC*PDAK 1653 3 6.4 
aFalse positive tryptic peptide sequences; * indicates biotin-HPDP labeled cysteine. bResidue numbers refer 
to UniRef database sequences (www.uniprot.org). cThe charge state of the precursor peptide associated 
with the highest XCorr value. dThe highest XCorr value obtained for that peptide assignment across four 
independent experiments. 
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CHAPTER 5 

SUMMARY AND GENERAL DISCUSSION 

In the post-genomic era, mass spectrometry-based proteomics has become the tool 

of choice for global, unbiased investigation of cellular and tissue proteomes. Recent 

advances in mass spectrometer technology and proteomic methodologies have enabled 

improved sensitivity and resolution as well as the ability to reduce sample complexity, 

respectively. Current technology provides the necessary tools to begin defining what 

could be called a “complete” cellular proteome (Graumann et al. 2008). This increased 

depth of analysis permits the identification of biologically significant proteins at low 

abundance, with a depth of seven to eight orders of magnitude lower than the most 

abundant protein (Tang et al. 2005). The challenge therefore with these tools is to utilize 

them to answer biologically relevant questions. 

 This project utilized mass spectrometry-based proteomics to explore two different 

aspects of cellular signaling. The first aspect focused on the identification and 

quantification of proteins secreted into the extracellular space (Chapters 2 & 3). Primary 

postnatal astrocytes in culture were used as a model system to address such fundamental 

questions as, what proteins are secreted by primary astrocyte cultures under naïve 

conditions, and how is this secretion altered upon exposure to inflammatory mediators?  

To answer these questions, comparative proteomics was used to assess changes between 

proteomes as a function of stimuli and time. An interesting observation from these 

experiments was the identification of several proteins that lacked an N-terminal signal 

peptide. This suggested secretory pathway(s) other than the classical ER-Golgi route of 
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export may be functional in astrocytes. To explore this hypothesis, a quantitative strategy 

was developed using stable isotope labeling by amino acids in culture (SILAC). Using 

this strategy, proteins from conditioned media were quantified relative to their 

intracellular abundance. The relative fold increase (or decrease) represented the 

enrichment of a protein in the extracellular medium. Enrichment values were related to 

protein subcellular localization and signal peptide status to identify proteins that may be 

secreted by alternative pathways. 

 The other focus of this project was to utilize mass spectrometry-based proteomics 

to address the selectivity of nitric oxide-mediated post translational modification of 

cysteine residues, termed S-nitrosylation (Chapter 4). This question could not be 

addressed at the proteome level with existing methodologies as they did not directly 

identify the site of modification, nor was the sensitivity sufficient to identify an 

endogenous proteome. Therefore, experiments were designed to reduce the complexity of 

biological samples by affinity enrichment of cysteinyl-containing peptides that previously 

contained S-nitrosocysteine residues. A linear ion trap was employed to achieve higher 

sensitivity compared to previous studies and to enable peptide sequencing by tandem 

mass spectrometry. With appropriate selection criteria, this enabled both the protein and 

the site of modification to be identified in a single experiment. 

 

5.1 Characterization of the astrocyte secretome 

The astrocyte was chosen as a robust model system for the development of global 

mass spectrometry-based proteomic approaches for two mains reasons: (1) biologically, 

growing evidence indicates proteins secreted by astrocytes mediate both physiological 
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and pathophysiological responses in vivo, yet often the proteins that may mediate these 

effects have not been identified, and (2) the astrocyte can be cultured in serum-free 

conditions which depletes the most abundant proteins that have a negative impact on 

depth of analysis for secretome studies (Pellitteri-Hahn et al. 2006). The increase in depth 

as well as high reproducibility was a direct result of the multidimensional 

chromatography approach developed by Tang et al., 2005. Even for complex proteomes, 

technical reproducibility of protein identifications was 80 - 90 % for biological 

duplicates. This high reproducibility allowed us to make direct comparisons of protein 

identifications between secretomes generated under control and cytokine-exposed 

conditions. We identified three chemokines secreted after cytokine exposure, with two 

not yet described in the literature as being secreted from astrocytes. From these 

preliminary mass spectrometric finding, it would be possible to develop quantitative 

assays for these chemokines in other complex biological samples using targeted, MRM-

based mass spectrometry.   

It was also apparent after conducting the initial mass spectrometry analysis that 

the increased depth of analysis facilitated the identification of lower abundance 

intracellular proteins. Initially, classification of bona fide secreted proteins was 

performed by computational prediction algorithms. The sensitivity of prediction for 

classical secretion by N-terminal signal peptide is at least 90 %, allowing most classically 

secreted proteins to be identified. Yet this would not be useful to distinguish between 

non-secreted cytosolic proteins in ACM due to cell death and proteins secreted by 

nonconventional mechanisms. As nonconventional prediction algorithms have achieved 

only 40 % sensitivity, a quantitative mass spectrometry approach was developed to assess 
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relative protein enrichment in astrocyte conditioned media compared to the intracellular 

proteome. 

 

5.2 Quantification of the astrocyte secretome by SILAC 

Although it would be possible to quantify putative nonconventionally secreted 

proteins by Western blot analysis of conditioned media and cell lysates, the efficiency 

and coverage of the proteome by quantitative mass spectrometry-based strategies would 

be more economical. For example, from the same amount of protein used for a Western 

blot of two proteins, one could quantify hundreds of proteins by quantitative mass 

spectrometry using stable isotope labeling techniques. Stable Isotope Labeling by Amino 

Acids in Culture (SILAC) was used generate isotope-labeled reference proteomes (IRPs). 

IRPs generated from primary astrocytes are the ideal proteome standards as they 

represent the identical protein composition to the model system, except for the 

incorporation of a stable isotope which alters protein/peptide mass. Moreover, IRPs can 

be added to the sample immediately after sample collection, greatly reducing variability 

from sample handling and processing, as well as mass spectrometric analysis. 

Additionally, SILAC had not yet been applied in primary astrocytes cultures, which could 

serve as a useful quantitative method for neuroscientists investigating a multitude of 

cellular states where astrocyte protein expression or secretion is altered.  

While SILAC in primary astrocyte cultures achieved greater than 98 % isotope 

incorporation, an interesting observation was made when examining the isotope profiles 

of heavy-labeled peptides (containing heavy leucine or lysine amino acids). Specifically, 

an anomalous shift in ion abundance towards higher m/z was readily apparent from 
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peptides that were derived from the isotope-labeled reference proteome, but not from the 

proteomes that correspond to natural abundance (light) conditions. Although this degree 

of isotope shift was variable between different heavy-labeled peptides, the shift was 

highly reproducible for the same peptide across many reference-spiked samples. The shift 

towards higher m/z suggests heavy label had been transferred and incorporated into other 

amino acids. To my knowledge, “back incorporation” from heavy-labeled leucine or 

lysine has not been reported in other SILAC studies. Fortunately, these anomalous 

isotope profiles did not impact quantification as (1) the m/z values were identical to the 

calculated values, (2) the isotope profiles were consistent for the same peptide across 

multiple samples, and (3) the computation of protein ratios was performed with a ratio of 

ratios, negating any effect this anomaly would have on the accuracy of peptide ratios. 

Additional experiments are necessary to determine the source of this phenomenon. 

Another interesting observation taken from the ACM enrichment distribution was 

the wide range of ratios. For instance, proteins containing an N-terminal signal peptide 

ranged from an enrichment ratio of 0.25-fold (similar to many cytosolic proteins) to ratios 

well outside the dynamic range of the method (>100-fold). This likely reflects the 

functional localization of signal peptide-containing proteins into respective cellular 

compartments, such as endoplasmic reticulum and mitochondria versus secretory proteins 

stored in storage vesicles versus constitutively secreted proteins in the extracellular space. 

Interestingly, the sorting of proteins between storage vesicles and constitutive export is 

not well understood, though the presence of hydrophobic patches in the N-terminal 

region to divert proteins from bulk flow has been proposed (Gorr, Darling 1995). Based 

on this, a prediction would be that signal peptide-containing proteins with lower 
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enrichment ratios would also possess hydrophobic patches, which would be absent in 

proteins with larger enrichment ratios. 

The observation that a majority of lysosomal-localized proteins were significantly 

enriched in ACM is supported by several publications demonstrating the presence of 

exocytotic secretory lysosomes in astrocytes (Li et al. 2008). Although these novel 

vesicular pools were found to release ATP in a calcium-dependent manner (Zhang et al. 

2007), the functional consequences of lysosomal proteins/enzymes release were not 

explored. This quantitative approach would be a useful tool to investigate secretory 

lysosome function in terms of the stimuli regulating exocytosis as well as the identity and 

specificity of proteins released under those conditions.  

The identification of a 12 proteins with significant enrichment ratios, but which 

lacked an N-terminal signal peptide suggested these proteins may be nonconventionally 

secreted under basal conditions. For example, enrichment of histones (H4 and H2a) as 

well as ferritin light and heavy chain was observed. The quantitative mass spectrometry 

data clearly supported histone enrichment in ACM. Also, two studies investigating 

secreted histones have identified functional roles in the extracellular space (Brown et al. 

2000, Lee et al. 2009). Clearly, future experiments to explore the functional implications 

of nonconventional histone secretion in astrocytes are warranted. On the other hand, the 

observation that the large majority of proteins predicted as nonconventionally secreted 

were in fact enriched in the intracellular proteome implies that the mechanisms of 

nonconventional secretion are stimulus-dependent rather than constitutive. The proteome-

wide quantitative approach developed in this project would be ideal for comparison of 

ACM enrichment profiles from astrocytes exposed to different stimuli known to affect 
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secretory pathways. In this way, novel proteins that proceed by nonconventional 

secretion could be identified. 

 

5.3 Proteomic identification of S-nitrosylated proteins. 

Overall, the goal to develop a complementary approach for identification of S-

nitrosylated proteins based on peptide affinity enrichment and tandem mass spectrometry 

analysis was largely successful. Compared to previous studies examining in vitro S-

nitrosylation in cell culture models, a significant increase in sensitivity was achieved with 

20 proteins being identified (with sites of modification) from as little as 1 nmol of protein 

S-nitrosocysteine. However, despite this gain in sensitivity afforded by peptide affinity 

enrichment and detection by an ion trap mass spectrometer, the current sensitivity still 

falls short of approaching most endogenous proteomes. Endogenous S-nitrosylation 

likely occurs 10 to 100-fold less in abundance than what is generated by exposure of cells 

or tissues to S-nitrosating agents. Given starting material in our experiments was usually 

between 1-2 mg, 20 to 200 mg of soluble protein would be required to achieve the same 

depth of analysis in an endogenous S-nitrosoproteome. The most likely weakness in the 

methodology lies in the ascorbate-mediated reduction of S-nitrosocysteine, which is 

relatively inefficient. 

 Development of methods for the identification of endogenous S-nitrosylated 

proteins will provide tools to address several fundamental questions that remain 

unanswered in the field of NO-mediated S-nitrosylation. Most notably, what are the in 

vivo mechanism of protein S-nitrosylation and denitrosylation. Current genetics 

approaches have generated mice which lack an enzyme that breaks down GSNO (Liu et 

al. 2001), providing an attractive model to test the in vivo mechanisms for regulating 

protein S-nitrosocysteine levels. 
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