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Program Synthesis With Types

Abstract
Program synthesis, the automatic generation of programs from specification, promises to fundamentally
change the way that we build software. By using synthesis tools, we can greatly speed up the time it takes to
build complex software artifacts as well as construct programs that are automatically correct by virtue of the
synthesis process. Studied since the 70s, researchers have applied techniques from many different sub-fields of
computer science to solve the program synthesis problem in a variety of domains and contexts. However, one
domain that has been less explored than others is the domain of typed, functional programs. This is
unfortunate because programs in richly-typed languages like OCaml and Haskell are known for ``writing
themselves'' once the programmer gets the types correct. In light of this observation, can we use type theory
to build more expressive and efficient type-directed synthesis systems for this domain of programs? This
dissertation answers this question in the affirmative by building novel type-theoretic foundations for program
synthesis. By using type theory as the basis of study for program synthesis, we are able to build core synthesis
calculi for typed, functional programs, analyze the calculi's meta-theoretic properties, and extend these calculi
to handle increasingly richer types and language features. In addition to these foundations, we also present an
implementation of these synthesis systems, Myth, that demonstrates the effectiveness of program synthesis
with types on real-world code.
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ABSTRACT
PROGRAM SYNTHESIS WITH TYPES

Peter-Michael Osera

Steve Zdancewic

Program synthesis, the automatic generation of programs from specification,

promises to fundamentally change the way that we build software. By using syn-

thesis tools, we can greatly speed up the time it takes to build complex software

artifacts as well as construct programs that are automatically correct by virtue of

the synthesis process. Studied since the 70s, researchers have applied techniques

from many different sub-fields of computer science to solve the program synthesis

problem in a variety of domains and contexts. However, one domain that has been

less explored than others is the domain of typed, functional programs. This is

unfortunate because programs in richly-typed languages like OCaml and Haskell

are known for “writing themselves” once the programmer gets the types correct.

In light of this observation, can we use type theory to build more expressive and

efficient type-directed synthesis systems for this domain of programs? This dis-

sertation answers this question in the affirmative by building novel type-theoretic

foundations for program synthesis. By using type theory as the basis of study for

program synthesis, we are able to build core synthesis calculi for typed, functional

programs, analyze the calculi’s meta-theoretic properties, and extend these calculi

to handle increasingly richer types and language features. In addition to these

foundations, we also present an implementation of these synthesis systems, Myth,

that demonstrates the effectiveness of program synthesis with types on real-world

code.
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Chapter 1

Introduction

Type systems are the most ubiquitous form of formal verification tool present in
programming languages today. They provide a number of important benefits for
programmers, for example, static checking of errors and opportunities for opti-
mizations. However, one of the most often overlooked benefits is that type systems
also help programmers design programs more efficiently. In particular, typed,
functional programming languages like ML and Haskell provide a compelling
combination of rich types coupled with a succinct, yet powerful set of languages
features. Programmers that use these languages frequently comment that once
they figure out the types of their program, the program just writes itself!

Let’s investigate this point in more detail. Consider writing a simple program,
say the map function over lists, in a ML-like language. First, let’s establish the type
of the overall function: map is a higher-order function that takes (1) a function
that transforms a single element of a list into some other type, (2) a list of the
first type, and produces a list of the second type. This means that map has type
(′a→ ′b)→ ′a list→ ′b list where ′a list is ML’s way of writing down a polymorphic
or generic list. Here, ′a is a type variable that represents the type of elements of that
list, its carrier type. Now, let’s develop this function incrementally in a type-directed
manner by keeping close track of the types of expressions we need to fill in at each
point of the program. Initially, we have the following goal,

� : (′a→ ′b)→ ′a list→ ′b list,

where � represents our goal—the hole in the program we need to fill with an
expression. Because the hole is at arrow type, it makes sense to introduce a
function:

let rec map ( f :′a→ ′b)(l:′a list) : ′b list = � : ′b list.

With the function written down, our goal is to now fill in the body of the
function which, by the definition of the function, must produce a ′b list. Note
how the rich types greatly constrain the set of programs we can write at this
point. Because the carrier type of the output list is unknown, we have no way of

1



constructing a non-empty ′b list. The only other value we can provide is the empty
list which means map would produce the empty list for any pair of inputs which
is not correct. We need more information to make progress, and we obtain that
information by pattern matching:

let rec map ( f :′a→ ′b)(l:′a list) : ′b list =
match l with
| Nil→ � : ′b list
| Cons(x, l′)→ � : ′b list.

By pattern matching, we perform case analysis on some value. In this case, we
know that a list in ML has two possible constructors or ways of making a value of
type list: Nil representing the empty list and Cons representing the list composed
of a single element x followed by the rest of the list l′. We are left with two goal
expressions to fill in, both of type ′b list, corresponding to the branches of the
pattern match.

In the Nil branch, we know the input l is the empty list at this point in the
program, so it is sensible to produce the empty list. In the Cons branch, we know
that the list has at least one element x of type ′a list and we have a handle on the
rest of the list l′. With x, we now have a way of manufacturing a ′b list: applying
x to f . With this, we can transform the head of list l and the cons that onto the
result of recursively mapping over the tail of l. Thus, the final program is:

let rec length (l:list) : nat =
match l with
| Nil→ Nil
| Cons(x, l′)→ Cons( f x, map l′).

At the end, we needed some ingenuity to recognize how to break down the
mapping operation over a list in terms of its components. However, we can see
how types guided our development process by constraining the allowable set
of programs at different points of the program. The question is simple: can we
automate this sort of type-directed reasoning? Given a type, and perhaps some
additional specification of how a program should behave, can we derive a program
of the appropriate type that meets this specification?

This process of generating programs automatically from specification is called
program synthesis and is one of the greatest, longest-standing pursuits of computer
science. At its core, program synthesis is a problem of combining search with
specification. The domain of the search is the infinite sea of possible programs
(for some particular programming language). Specification allows us to pick out
particular programs of interest that we find during search. This specification
can take many forms, for example, logical statements [Green, 1969; Manna and
Waldinger, 1979], input/output examples [Albarghouthi et al., 2013; Feser et al.,

2



2015; Kitzelmann, 2010b; Summers, 1976], and partial programs [Alur et al., 2013;
Singh et al., 2013; Solar-Lezama, 2008], among others. Regardless of the mode
of specification we choose, the search and specification components of synthesis
frequently inform each other; specification helps refine the space of possible
programs, making search tractable, and different search techniques are more
amendable to particular kinds of specification.

As you can imagine, program synthesis is a very difficult problem—we are still
writing programs by hand, after all—and undecidable in the general case. However,
it is worth pursuing because the benefits of program synthesis technology are
immense. By synthesizing a program from a specification, we guarantee that the
program agrees with that specification by virtue of the synthesis process. If that
specification includes properties such as correctness or safety, then the program will
enjoy those properties automatically. Furthermore, it is often easier to write down
a specification of how a program should work than to write the program itself,
especially if that specification is partial, for example, a collection of input/output
examples or a demonstration of how the program should work. Program synthesis
then becomes a tool that makes the power of computer programs more accessible to
people, especially non-programmers, who can signify their intent, but do not know
how to translate that intent into a program. Finally, because computer programs are
general-purpose, synthesizing programs means synthesizing methods of solving
any task we can express as a program. This might mean deriving a complex
program to determine the trajectory of a rocket or simply automating the task of
entering data into a spreadsheet [Gulwani, 2011].

In this work, we develop a type-theoretic interpretation of program synthesis. Type
theory [Martin-Löf, 1984] provides a constructive foundation for all of mathematics.
Programming language researchers leverage these foundations through the Curry-
Howard Isomorphism [Howard, 1980] which equates proofs of propositions with
programs of some type. By studying program synthesis through the lens of type
theory, we hope to bring to bear the large body of work on type systems and proof
search onto the program synthesis problem to enable efficient synthesis of typed,
functional programs.

1.1 The Landscape of Program Synthesis

Many sub-disciplines within computer science tackle the problem of search in
different ways, and as a result, these disciplines all have unique perspectives on
program synthesis. The earliest such efforts came out of artificial intelligence
and automatic theorem proving communities during the 60s and 70s [Green,
1969; Summers, 1976]. Since then approaches from machine learning [Briggs
and O’Neill, 2008; Lau, 2001; Weimer et al., 2009], formal methods [Bodik et al.,
2010; Kuncak et al., 2010; Srivastava et al., 2010], and programming language
theory [Albarghouthi et al., 2013; Gvero et al., 2013; Scherer and Rèmy, 2015]
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have all been applied to the program synthesis. Today, the field has seen a large
resurgence in interest due to a number of factors:

1. General computational power has increased at an exponential rate over the
last four decades. [Moore, 1965]

2. The rise of domain-specific languages, and more targeted programming
domains such as protocols [Alur et al., 2005; Udupa et al., 2013], concurrent
programs [Prountzos et al., 2012; Solar-Lezama et al., 2008; Černý et al., 2011],
education [Singh et al., 2013], and strings and spreadsheets [Gulwani, 2011]
has given synthesis tools smaller, more tractable domains to operate over.

3. Related to the first point, the rise of sophisticated solver technology, in
particular SAT and SMT solvers [Barrett et al., 2008] have helped make once
intractable problems of search more feasible in practice.

Here we briefly survey the field of program synthesis1 to get a sense of what
approaches have been previously studied and how they contrast with our own
type-theoretic style. We defer discussion of how these approaches contrast with our
own until after we present the details of how our type-directed program synthesis
systems operate in the presence of various types (Section 2.4 and Section 5.4).

1.1.1 Methodologies

AI and Logic-based Techniques The earliest methods for program synthesis
were developed from the automated theorem proving community. These re-
searchers were motivated by the promise of generating programs from specifica-
tions that were provably correct by virtue of being derived from specification. Some
methods used techniques lifted from early automated theorem prover technology,
such as Green’s resolution-based QA3 system, to translate programs from logical
specification [Green, 1969]. These specifications took the form of complete axiomi-
tizations of the problem space in first-order logic solved using resolution-based
proof search techniques. Others took to direct rewriting tactics over the specifica-
tion, for example, Manna and Waldinger’s Deadalus system which rewrote logical
specification [Manna and Waldinger, 1979] and Summers’s Thesys system which
rewrote examples [Summers, 1976]. Later, efforts from researchers such as Manna
and Waldinger sought to unify the use of provers and transformation rules [Manna
and Waldinger, 1980]. Because all of these early works were rooted within theorem
proving, the target language for synthesis was universally (a purely functional
subset of) Lisp.

1Because program synthesis is such a vast field of study, we don’t intend on capturing its full
breadth here. For more thorough introductions to program synthesis, we recommend reading the
surveys by Kreitz [1998], Flener and Yilmaz [1999], Gulwani [2010], and Kitzelmann [2010a].
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These methods were technically innovative, but ultimately lacked in practicality.
In particular, the logical specifications demanded by these tools were far removed
from the reasoning styles that programmers understood. They were also highly
constrained in the sorts of program symbols they were allowed to utilize. Finally,
they were extremely heavyweight and did not scale past anything but the smallest
of example programs [Kreitz, 1998].

Regardless, Thesys is particularly note worthy in that it is one of the first
inductive programming synthesis systems [Kitzelmann, 2010a] where it is able
to generate programs in the presence of partial specification such as examples.
Examples form a partial specification because most programs of interest have
an infinite range and a finite set of concrete examples can only specify a finite
subset of that range. More modern systems such as Igor2 have evolved from this
line of work, and have overcome many of issues listed above [Hofmann et al.,
2010; Kitzelmann, 2010b]. Igor2 uses a combination of examples, background
knowledge, and program schemes—program skeletons that capture recurring
patterns of program behavior such as folds or maps—to derive target functions
by discovering patterns in the examples and deriving a set of recursive rules for
generating them.

In contrast, other inductive programming systems do not perform manipulation
of the examples directly. Rather they employ a guess-and-check approach where they
enumerate candidate programs and evaluate them to verify that they satisfy the
examples. For example Katayama’s MagicHaskeller [Katayama, 2012] enumer-
ates programs according to a set of logical rules and permitted components and
evaluates them against user-provided input/output examples. And Albarghouthi’s
Escher [Albarghouthi et al., 2013] builds up increasingly complicated components
from atoms (i.e., variables and constants) and tests whether those atoms satisfy the
examples. Notably, when the system requires additional examples, such as when
it evaluates a recursive function call, Escher queries the user to provide additional
examples. LaSy [Perelman et al., 2014] provides an example-driven framework
for synthesizing programs in expert-written domain-specific languages. Finally,
Feser’s λ2 system [Feser et al., 2015] also enumerates programs and checks them
against examples. However, unlike previous efforts, they refine examples as they
synthesize expressions, producing new examples appropriate for synthesizing the
sub-expressions of this overall expression. Notably, these final approaches blur the
line between the AI/logical tradition of program synthesis born from the original
literature from the 70s and the more modern verification-based tradition that we
see today.2

Note that while not directly related to program synthesis, because they explore
the search space of programs through term enumeration, these guess-and-check

2At least, “modern” by the standards of when this thesis is written. While program synthesis
has proven to be an enduring problem, the different approaches understandably come and go as
computer science matures and our technology becomes more advanced.
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inductive programming approaches share many concerns with automatic test gener-
ation [Claessen et al., 2014; Grygiel and Lescanne, 2013; Rodriguez Yakushev and
Jeuring, 2010]. In particular when enumerating terms, we want to avoid generating
redundant or otherwise unnecessary terms, in particular, terms that are equivalent
to previously generated terms.

Machine Learning Techniques Bridging the gap between logic and machine
learning are inductive logic programming (ILP) [Muggleton and Raedt, 1994] tech-
niques that apply machine learning to problems expressed in first-order logic, i.e.,
Prolog programs. Inductive logic programming is an umbrella term representing
an entire sub-field of machine learning that employs this methodology for solving
learning-based problems.Researchers that study inductive logic programming
synthesis [Flener and Yilmaz, 1999] apply these techniques specifically to program
synthesis. For example, Sankaranarayanan et al. [2008] use ILP to mine library
specifications by running unit tests on a library to gather information about the
operations of the library. This information is then processed using ILP to produce
Prolog specifications of the library’s behavior.

Other approaches rooted in machine learning have been applied to program
synthesis as well. For example, genetic programming techniques have been used
by Briggs and O’Neill [2008] to synthesize combinator expressions in a typed,
functional programming language and by Weimer et al. [2009] to automatically
locate bugs and derive patches in legacy C code. Gulwani and Jojic [2007] used
probabilistic inference to synthesize imperative programs from input/output
examples. And finally, Lau [2001] in her thesis developed version space algebras
to synthesize text editor macros from examples—here, demonstrations by the user
of the text macro they intended for the system to synthesize.

Verification-based Techniques The most recent efforts in program synthesis lie
in the programming languages community. In particular, as off-the-shelf SAT and
SMT solver technology like the Z3 theorem prover [De Moura and Björner, 2008]
rapidly matured over the last decade, the verification community has been quick
to take advantage of their power. With respect to program synthesis, this means
transforming the specification given by the user into a series of constraints that can
be discharged by the solver. The output of the solver can then be used to guide
the search process accordingly.

The most well-known use of solver technology in program synthesis is Solar-
Lezama’s Sketch [Solar-Lezama, 2008]. Sketch allows users to write skeletons of
Java-like programs annotated with holes whose contents are specified by generator
expressions that describe the allowable set of program constructs for those holes.
Sketch then translates the constraints on those holes, e.g., assertions or reference
implementations, into satisfiability equations which are then discharged by a SMT
solver using Counterexample Guided Inductive Synthesis (CEGIS). Other work
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that uses solver technology in synthesis includes Bodik et al. [2010]’s work to
support incremental program develop with holes and examples, called angelic
nondeterminism and Torlak’s Rosette which supports the development of solver-
aided domain specific languages [Torlak and Bodik, 2014].

In many of these situations, we can refine the problem domain sufficiently that
we can restrict the syntax of allowed programs to a small subset, an approach
called syntax-guided synthesis [Alur et al., 2013]. For example, Singh et al. [2013]
use this approach in the context of generating automatic feedback for introductory
programs. The restricted syntax, provided by an instructor using their system,
captures the likely set of mistakes that a student might make on an assignment.
Gulwani [2011] also use a restricted synthesis domain to capture string processing
behavior. This synthesis technology is used, in turn, to implement the FlashFill

feature of Microsoft Excel.
In addition to satisfiability solvers, other verification technology has been re-

appropriated for the purposes of program synthesis. In particular, techniques
that leverage types, the focus of this dissertation, have been explored to some
degree. For example Djinn [Augustsson, 2004] synthesizes Haskell programs from
highly refined type signatures. Prospector [Mandelin et al., 2005], Perelman’s
auto-completion tool for C# programs [Perelman et al., 2012], and InSynth [Gvero
et al., 2013] all leverage types to accomplish code auto-completion. Most recently,
λ2 [Feser et al., 2015] uses types to refine the input/output examples that they
receive, and Scherer and Rèmy [2015] phrase program synthesis in terms of type
inhabitation.

1.2 Program Synthesis With Types

From Section 1.1, we see that a multitude of approaches to program synthesis
have been previously explored, each with their own strengths and weaknesses.
However, no single system has the combination of features necessary to fully
capture the type-directed programming style that motivated our journey into
program synthesis to begin with. In particular, this style requires support for
higher-order functions, recursive functions, and algebraic data types. Many of
the prior systems focus on languages that do not support one of more of these
features as they are based on variants of Lisp, C, or Java. Furthermore, many of
the systems that use solver technology are not capable of handling higher-order
and/or recursive data as these solvers work over first-order logics. Of the systems
that most closely target this space of language features:

• Escher [Albarghouthi et al., 2013] synthesizes recursive functions using
input/output examples, but in a Lisp-like untyped setting.

• Leon [Kuncak et al., 2010] and Igor2 [Hofmann et al., 2010] synthesize
recursive functions using input/output examples over algebraic data types,
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but they cannot handle higher-order functions. In particular, Leon’s reliance
on solver technology keeps them from handling higher-order functions.
Igor2 allows for usage of higher-order function components but it does not
appear to synthesize functions that take higher-order functions as arguments.

• λ2 [Feser et al., 2015] synthesizes recursive functions over algebraic data types
using input/output examples. However, is is entirely component driven—λ2

only synthesizes the composition of function applications efficiently—and
cannot pattern match over algebraic data types.

Furthermore, it is not clear whether any of these systems scale up to richer
type systems such as linear types [Girard, 1987], refinement types [Freeman and
Pfenning, 1991], and dependent types [Martin-Löf, 1984].

1.2.1 Foundations

To address these concerns, we create a theoretical foundation for program synthesis
using types. With this foundation, we answer several key questions:

• How can we take advantage of rich types in order to prune the search space
of possible programs?

• How can we use types to incremental refine the specification provided by the
user in step with the program that we synthesize?

• What are the meta-theoretic properties of synthesis systems based on types?
In particular, are they sound and complete?

The basis of our foundation is a technique for transforming a programming
language’s type system into a type-directed, example-powered program synthesis
system for that language. This transformation allows us to gain immediate insight
into how to synthesize programs and refine examples of particular types. In some
cases, this insight alone is sufficient to integrate a new type into our synthesis
systems; in others, we must address additional issues that arise when synthesizing
programs of these types.

We begin by applying this technique to the simplest type system possible, the
simply-typed lambda calculus (Chapter 2). The resulting synthesis calculus, λ→syn,
allows us to explore in detail the transformation process as well as how these
resulting synthesis systems operate. We then begin integrating additional types
into the mix with the goal of arriving at a synthesis system for a more realistic
typed, functional programming language. First, we consider simple extensions to
the simply-typed lambda calculus—products, records, and sums (Chapter 4). And
then, we build more complex synthesis calculi to handle complex type extensions—
MLsyn to handle recursion with algebraic data types (Chapter 5) and λ∀syn to handle
polymorphism (Chapter 9).
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1.2.2 Metatheory

We use our core calculi—λ→syn, MLsyn, and λ∀syn—to study the meta-theoretic prop-
erties of program synthesis with types. In particular, we are concerned with two
key properties of synthesis systems:

• Soundness: does the synthesized program obey our input specification?

• Completeness: can we synthesize all programs?

We first study the soundness and completeness of λ→syn in full detail (Chapter 3). By
doing so, we extract the key lemmas that we must prove to show that soundness
and completeness holds of the whole synthesis calculus. We then prove these
lemmas for our simple extensions to λ→syn (Chapter 4) as well as polymorphism
(Chapter 9). MLsyn proves to be much more complex due to recursion, so we also
investigate its metatheory in full detail (Chapter 6).

1.2.3 Implementation

The synthesis calculi we develop in our work give us a basic understanding of the
design and behavior of type-directed synthesis systems, but they are not practical
synthesis algorithms as-is because they are both unoptimized and highly non-
deterministic. Consequently, in addition to understanding type-directed program
synthesis from a theoretical perspective, we would like to know empirically how
these systems behave on real-world examples.

To do this, we take the calculus closest to a real-world typed, functional pro-
gramming language, MLsyn, and transform it into an actual program synthesizer,
Myth, for a core subset of the OCaml programming language (Chapter 7). Because
our program synthesizer is type-theoretic, we are able to adapt several proof
search techniques for our domain—various caching schemes and search pruning
heuristics—to greatly optimize the synthesis procedure. Furthermore, thanks to
our theoretical foundations, we are able to analyze the impact of these optimiza-
tions on the soundness and completeness of our system. Finally, we evaluate
Myth’s effectiveness on a benchmark suite of functional programs and explore
Myth’s behavior on these examples (Chapter 8).

1.2.4 Statement of Contributions

The synthesis calculi for ML-like programs, MLsyn, that we discuss in Chapter 5 as
well as the implementation, Myth, that we develop in Chapter 7 and evaluate in
Chapter 8 were originally presented in PLDI 2015 [Osera and Zdancewic, 2015].
The chapters listed above constitute a greatly expanded presentation of these
two artifacts. The presentation of tuples and records in Chapter 4 in our simply-
typed synthesis calculus, λ→syn, was adapted from Frankle [2015] and Shah [2015],
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respectively, who originally integrated these features into MLsyn. The remaining
content is original work.
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Chapter 2

A Simple Synthesis Calculus

Program synthesis is an undecidable problem, so when building practical synthesis
tools, we must resort to approximations and heuristics to not only make the
problem solvable, but also tractable. However, this reality is frequently at odds
with building a system that is understandable, as the approximations and heuristics
frequently bleed together so that their individual contributions are not clear. Ideally,
we would like to build synthesis systems in such a way that we know precisely the
impact of each feature and design choice. For example, does ruling out a certain
class of programs impact the completeness of the synthesis algorithm? If so, are
these programs relevant or are they safe to ignore for practical purposes?

To this end, we begin by constructing a theoretical foundation for program
synthesis with types. In typical programming language theory style, we strip
away everything but the essential components of typed, functional programming
languages by starting with the simply-typed lambda calculus, λ→. From λ→, we
build a generator for well-typed λ-terms and then integrate a notion of specification
into the system to create a program synthesis calculus, λ→syn.

λ→syn itself is far removed from a usable implementation of a program synthesizer.
However, it allows us to deeply study how to synthesize programs with types, and
the procedure’s meta-theoretic properties. For example, the synthesis judgment of
λ→syn is sound and complete with respect to synthesis. In successive chapters, we
evolve λ→syn into a practical program synthesizer for ML-like programs, sacrificing
some of these properties to handle advanced types and gain efficiency.

2.1 Generating λ-terms

Figure 2.1 gives the syntax and semantics for λ→ which contains the essence of a
typed, functional programming language—variables, functions, and application—
and their usual type checking rules. In addition to these essentials, we also
augment λ→ with a base type T and a finite, non-empty set of constants c1, . . ., ck
of type T. While multiple constants are not necessary—a single constant makes
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τ : := τ1 → τ2 | T Types
e : := x | e1 e2 | λx:τ. e | c Terms
v : := λx:τ. e | c Values
E : := � | E e | v E Evaluation Contexts
Γ : := · | x:τ, Γ Typing Contexts

Γ ` e : τ

t-var

x:τ ∈ Γ
Γ ` x : τ

t-app

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
t-lam

x:τ1, Γ ` e : τ2

Γ ` λx:τ1. e : τ1 → τ2

t-base

Γ ` c : T

e −→ e′
eval-ctx

e −→ e′

E [e] −→ E [e′]

eval-app

(λx:τ. e) v −→ [v/x]e

Figure 2.1: λ→ definition

T isomorphic to the standard Unit type—they allow us to synthesize interesting
programs. We also define a small-step, call-by-value operational semantics for
the language using evaluation contexts E which capture the standard congruence
rules for call-by-value evaluation.

To generate λ→ terms, we could simply enumerate terms according to the
grammar given in Figure 2.1, perhaps in order of increasing term size. We’ll define
the size of a term to be the number of abstract syntax tree (AST) nodes used to
represent the term. For example, the term λx:T. y x has size 5 because the type T
has size one, the application y x has size 3, and the lambda itself contributes one
additional AST node.

However, simple enumeration is not very practical, especially when we have
the type system at our disposal. To see why, consider the number of closed λ→-
terms—terms generated from the empty typing context—at a given size. Figure 2.2
gives the number of such untyped terms, well-typed terms, and well-typed terms
at type T when there are two constants c1 and c2 of type T. For example:

• c1 (λx:T. x) is a syntactically valid, yet ill-typed term of size five.

• c2 is a well-typed term of type T and size one.

• (λx:T → T. x) (λx:T. x) is a well-typed term of type T → T of size nine.

Noting that the y-axis scale of Figure 2.2 is at logscale, we can see that the
number of syntactically valid, but not necessarily well-typed terms is staggering.
Even in this extremely limited language, there are 11,084,176 such terms at size 15!
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Figure 2.2: Number of closed untyped terms, typed terms, terms of type T → T,
and normal forms of type T → T in λ→ with two constants of type T.

In contrast, if we limit ourselves to only the well-typed terms, we save an order
of magnitude of work; there are only 1,439,481 well-typed terms of size 15 in λ→.
Finally, if we consider only well-typed programs, we may as well further refine
our search to programs of a particular type that we are interested in. The savings
here is even larger; if we are trying to find terms of type T → T, we only have to
search 6,205 terms.

We could refine our term generation strategy by enumerating syntactically
well-typed terms and then filtering out terms that fail to type check. This has
the benefit of ensuring that any terms that we keep around will be well-typed.
However, we still pay the time and space overhead of generating such terms and
then type checking them, even if we end up throwing them away in the end. This
is undesirable in the presence of the steep combinatorial explosion of terms as
their size increases, for example, Grygiel and Lescanne [2013] show that there are
approximately 2219 closed-terms in the simply-typed lambda calculus of size 50.
Rather than type check after the fact, we should integrate type checking into term
enumeration so that we only ever consider well typed terms.

To arrive at such an algorithm, we start with the type checking relation pre-
sented in Figure 2.1:

Γ ` e : τ.

When implementing a type checker based on this relation, we note that Γ and e
serve as inputs and τ serves as either an input or output. To derive a type-aware
term enumeration system from this judgment, let’s simply flip the inputs and
outputs: Γ and τ will be inputs and the output will be an e. The resulting relation,
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Γ ` τ  e

gen-var

x:τ ∈ Γ
Γ ` τ  x

gen-app

Γ ` τ1 → τ2  e1 Γ ` τ1  e2

Γ ` τ2  e1 e2
gen-lam

x:τ1, Γ ` τ2  e
Γ ` τ1 → τ2  λx:τ1. e

gen-base

Γ ` T  c

Figure 2.3: λ→ typed term generation

Γ ` τ  e, describes the possible ways we can generate a term e of type τ.
Figure 2.3 gives the rules for λ→ well-typed term enumeration. A complete

derivation in this judgment corresponds to how we generate a particular term of a
given type. Therefore, searching for all the valid derivations for a particular Γ and
τ is equivalent to enumerating all programs of type τ under Γ.

As a concrete example, we generate the well-typed closed term (λx:T →
T. x) (λx:T. c1) through the following derivation:

x:T → T ∈ x:T → T
x:T → T ` T → T  x

· ` (T → T)→ (T → T) (λx:T → T. x)
x:T ` T  c1

· ` (T → T) (λx:T. c1)

· ` T → T  (λx:T → T. x) (λx:T. c1)

Note that the derivation for term enumeration is identical to the derivation for
type checking! This is because the rules for well-typed term enumeration mirror
the rules for type checking.1 This observation leads to two natural properties of
our term enumeration judgment:

Theorem 2.1.1 (Soundness of λ→ term enumeration). If Γ ` τ  e then Γ ` e : τ.

Theorem 2.1.2 (Completeness of λ→ term enumeration). If Γ ` e : τ then Γ `
τ  e.

Proof. Both theorems follow from straightforward inductions on the given term-
enumeration or type-checking derivations, respectively.

1In fact, because the type-checking and term-enumeration judgments describe relations which
do not have inputs or outputs, they are equivalent! But then, why did we bother including a
term-enumeration judgment at all? We use this term-enumeration judgment as a starting point to
arrive at a synthesis judgment that will do more than relate terms and types; it will relate examples
as well.
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Theorem 2.1.1 states that enumerated terms are well-typed, and Theorem 2.1.2
states that we are able to enumerate the well-typed terms. By combining both
theorems, we know that well-typed term enumeration produces exactly the set of
well-typed terms, i.e., the “All Typed” dataset from Figure 2.2.

2.1.1 Enumerating Normal Forms

By restricting term generation to well-typed terms, we substantially reduce the
search space of programs. However there are still many redundant terms that we
could generate. For example, the following terms are redundant:

• (λx:T. x) c1

• (λx:T → T. x) (λy:T. y).

These terms evaluate, according to our call-by-value semantics, to the values c1
and λy:T. y, respectively. In general, any term that is not a value, i.e., not in normal
form, is redundant with the value that it evaluates to. We say that the two terms
are β-equivalent, taking the standard definition of β-equivalence as the smallest
equivalence relation that contains our evaluation relation (−→).2

By restricting our search to these normal forms, we narrow the search space of
programs even further! Returning to Figure 2.2, we see that the number of closed
normal forms of size 15 and type T → T is another order of magnitude smaller
than the number of terms of type T → T (1,489 versus 6,205 such terms). To do
this, we restrict terms so that they cannot contain pending β-reductions. In λ→,
the only β-reduction available is function application which applies whenever we
have a term of the form (λx:τ. e) v. We avoid this situation by splitting expressions
into two sets of sub-terms.

E : := x | E I
I : := E | λx:τ. I | c

E-forms include variables and elimination forms, and I-forms include introduction
forms. For example, lambdas introduce values of arrow type, and function appli-
cation eliminates these values. In contrast, the base type T is introduced by its
constants c1, . . ., ck and have no corresponding elimination forms.

With this syntax, I and E terms are in normal form by construction! To see this,
note that function application requires that the head of a function application is an
E, and the syntax of Es bottoms out at variables. Therefore, all applications will
be of the form x I1. . .Im where a variable is always at the head of the application.
Arguments, in contrast, are allowed to be any I-term which includes Es because
Es are included in the definition of I.

2This is true of λ→ because it is strongly normalizing. In the presence of non-termination, this
does not hold because infinite loops do not have a corresponding normal form.
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Γ ` τ
E
 E

gen-Evar

x:τ ∈ Γ

Γ ` τ
E
 x

gen-Eapp

Γ ` τ1 → τ2
E
 E Γ ` τ1

I
 I

Γ ` τ2
E
 E I

Γ ` τ
I
 I

gen-Ielim

Γ ` τ
E
 E

Γ ` τ
I
 E

gen-Ilam

x:τ1, Γ ` τ2
I
 I

Γ ` τ1 → τ2
I
 λx:τ1. I

gen-Ibase

Γ ` T I
 c

Figure 2.4: λ→ typed normal-form term generation

This technique of splitting the syntax of expressions into introduction and elimi-
nation forms has several useful effects. In proof search, this syntax is useful for gen-
erating normal form proofs which, by the Curry-Howard Isomorphism [Howard,
1980], is equivalent to generating normal form programs in our setting. Dividing
the syntax in this manner also facilities a description of bidirectional type check-
ing [Pierce and Turner, 2000] where we explicitly state when a type is an input
or output in the type checking judgment. This distinction becomes very useful
when we talk about refining specification in the context of full program synthesis
in Section 2.3.

Figure 2.4 gives the rules for generating λ→ terms in this restricted term
language. Because there are two syntactic forms, we introduce two judgments to

synthesize E- and I-terms, E
 and I

 , respectively. Note that the judgments are
mutually recursive because the definitions of E and I terms are mutually recursive.
The rule gen-Ielim allows us to generate an E where ever an I is expected (because
Es are a proper subset of the Is). And the rule gen-Eapp generates the function
as an E and its argument as an I. Otherwise, the rules are identical to the e-term
generation judgment given in Figure 2.3.

2.2 Specifying λ-terms

With well-typed term enumeration, we can efficiently search the space of λ→ pro-
grams. In addition to this search method, we also require some way of specifying
which particular programs we would like to find during the synthesis process.
Specification can take many forms, for example, logical properties [Kuncak et al.,
2010; Solar-Lezama, 2008] or execution traces [Lau, 2001]. Here, we will consider
specifying programs with a combination of types and examples, in particular, in-
put/output pairs of the form (v ⇒ v′) that say a synthesized function should
produce the value v′ when given the value v.
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2.2.1 Examples as Specification

There are trade-offs involved in choosing examples as our means of specification
over other options. Examples typically act as incomplete specifications—for exam-
ple, a finite set of input/output example pairs can only specify a finite subset of a
function’s behavior. This is a significant limitation because many non-equivalent
programs satisfy a set of examples, and the synthesizer must choose among them
by inferring the intent of the user. For example, if the synthesizer is provided with
the single input/output example

c1 ⇒ c2 ⇒ c1

that states the synthesized program should return c1 when given c1 and c2 as input,
it isn’t clear if the user wanted the program that always selects its first argument

λx:T. λy:T. x,

or the program that always returns c1,

λx:T. λy:T. c1.

or some more elaborate function. To solve this problem, the user must specify
more examples which is burdensome, or the synthesizer must resort to heuristics
to choose a final program, e.g., choosing the smallest program with the fewest
number of variables. Thankfully, heuristics like this tend to work well in practice.
Furthermore, this ambiguity can be mitigated by smart interface design decisions,
e.g., displaying the top five synthesis results rather than a singular result and
allowing the user to choose.

In exchange for being incomplete, examples can be less burdensome for the
user to specify. Because examples are typically concrete instances of a function’s
behavior, they allow the user to reason more about what their function ought to do
rather than how the function ought to go about doing it. This is favorable because
the “how” is usually the sticking point for a user to create a program on their own,
whether it is because they do not understand the syntax of programming language
or the algorithms necessary to produce the desired behavior.

For example, consider the set of input/output examples specifying a function
in a language extended with natural numbers and lists:

[]⇒ []

[0]⇒ [0]
[0, 1]⇒ [1, 0]

[0, 1, 2]⇒ [2, 1, 0]

From this limited set of examples, the user’s intent seems obvious: they want to
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synthesize a function that sorts a list of natural numbers. In contrast, consider a
logical specification of how this function ought to behave:

sorted(l) = ∀x :: l′ v l. ∀y ∈ l. x < y

The sorted predicate states that for all sub-lists (v) of l, the head x of that sub-list
is the least element of that sub-list. While this logical specification more precisely
describes the behavior of any function that sorts a list, it takes a bit of ingenuity to
come up with this specification.

Finally and most importantly, we use examples because they decompose natu-
rally with types. For example, the input/output example [0, 1]⇒ [1, 0] decomposes
according to the arrow type list→ list. We know that when the synthesized func-
tion’s argument has the value [0, 1], the body of that function must evaluate to
[1, 0]. In contrast, it is not clear how to decompose the sorted predicate according
to the type of the function we are synthesizing.

2.2.2 Example Specification in λ→

To adopt example specifications into λ→, we need to account for the presence of
higher-order functions. Therefore, we adopt the following grammar of example
values χ that we use as our specification:

χ : := c | vi ⇒ χi
i<m

For each type of λ→, we include a term that stands in as an example of that type.
As we extend our language with additional features, we’ll find that most of the
time this term is simply the value form for that type, e.g., the constants ck for base
type T. However, lambdas serve as a poor example value for arrow types because
providing a function value is tantamount to describing exactly how the function
ought to behave! Instead, we make sets of input/output pairs first-class example
values with partial function terms written:

v1 ⇒ χ1 | . . . | vm ⇒ χm

A partial function introduces m input/output pairs of the form vi ⇒ χi that specify
that when the synthesized function is supplied a vi, it produces a χi. Like→,⇒
associates to the right, and as a result, functions of k arguments are represented
in curried style, v1 ⇒ . . . ⇒ vk ⇒ χ. Because of this, we restrict the right-hand
side of a ⇒ to be an example value. This ensures that lambdas never appear
as the goal of a synthesis problem. In contrast, the left-hand side of a ⇒ is a
regular value which includes lambdas (and not partial functions). This means that
when we give examples for higher-order functions, we provide function values for
the arguments of those functions. We disallow partial functions as examples for
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higher-order arguments as doing so has surprising effects on the metatheory of the
system; we explore this in more detail in Chapter 6 where we lift this restriction
to handle more advanced language features. For shorthand, we write the above
partial function as vi ⇒ χi

i<m where the partial function contains m input/output
pairs.

As a concrete example within λ→, consider the following synonyms for the
church encodings of booleans over base type T:

bool
def
= T → T → T

true
def
= λt:T. λ f :T. t

false
def
= λt:T. λ f :T. f

Then the following partial function:

true⇒ c1 ⇒ c2 ⇒ c1 | false⇒ c1 ⇒ c2 ⇒ c2

specifies the if function of type bool→ T → T → T, usually defined as:

if
def
= λb:bool. λt:T. λ f :T. b t f

Note that the convenience of specifying arguments to higher-order functions as
lambdas allows us to use true and false directly in the input/output examples.

2.3 λsyn: A Program Synthesis Calculus

So far, we modified the type checking judgment of λ→ to create a type-directed
term enumeration judgment and defined a grammar of example values to serve
as our specification. Let’s combine these two into a synthesis calculus, λ→syn, that
synthesizes λ→ terms.

2.3.1 Integrating Search and Specification

How do we use our example values in tandem with term enumeration? A simple
strategy is to simply enumerate terms as per Figure 2.4 and check each term to
see if it satisfies the example values. However, we waste effort with this approach
because example values ought to help rule out programs during term generation
rather than help us filter programs after the fact. For example, if we have following
input/output pairs in a partial function:

. . . | c1 ⇒ c2 | c2 ⇒ c1 | . . .
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We should never need to generate the constant functions λx:T. c1 and λx:T. c2
because the examples rule them out.

To develop a more robust strategy that uses examples in a productive way,
let’s imagine how we might synthesize a function by hand using input/output
examples. Consider synthesizing the if function of type bool→ T → T → T that
we discussed in Section 2.2.2 where bool is shorthand for the type T → T → T. We
were given the partial function

true→ c1 → c2 → c1 | false→ c1 → c2 → c2

as our example value with true and false of type bool serving as shorthand for
λt:T. λ f :T. t and λt:T. λ f :T. f , respectively.

Assuming that we have no top-level bindings to work with (i.e., we are operating
in a closed context), we know from the desired goal type, bool→ T → T → T, that
the synthesized program should have the shape:

λb:bool. λt:T. λ f :T.�

where the body of the function, denoted by the hole �, must be filled in with an
expression of type T. When considering what to fill in for �, we note that our two
input/output examples from our partial function give rise to two possible states:

b = true, t = c1, f = c2,� = c1

b = false, t = c1, f = c2,� = c2

Each state or example world corresponds to an imaginary execution of the function
being synthesized using each of the input/output examples. The first world
corresponds to the example where we select the True argument, and the second
world corresponds to the example where we select the False argument. In each
example world, we keep track of the value each argument is bound to as well as
what the function should produce: � = c1 and � = c2, respectively.

With all this information, the correct choice of program to fill in the hole is
clear. The term b t f has the correct type and satisfies our examples because we can
substitute the values bound to the variables in each example world and evaluate
to obtain

true c1 c2 −→∗ c1

false c1 c2 −→∗ c2

which are the values that each example world required.
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τ : := τ1 → τ2 | T Types
e : := x | e1 e2 | λx:τ. e | c Terms
v : := λx:τ. e | c Values
E : := � | E e | v E Evaluation Contexts
Γ : := · | x:τ, Γ Typing Contexts

E : := x | E I Elimination Terms
I : := E | λx:τ. I | c Introduction Terms
σ : := · | [v/x]σ Evaluation Environments
χ : := c | ρ Example Values
ρ : := vi ⇒ χi

i<m Partial Functions
X : := · | σ 7→ χ, X Example Worlds

Γ ` e : τ e −→ e′ (Same as λ→)

Γ ` E⇒ τ

t-Evar

x : τ ∈ Γ
Γ ` x ⇒ τ

t-Eapp

Γ ` E⇒ τ1 → τ2 Γ ` I ⇐ τ1

Γ ` E I ⇒ τ2

Γ ` I ⇐ τ

t-Ilam

x:τ1, Γ ` I ⇐ τ2

Γ ` λx:τ1. I ⇐ τ1 → τ2

t-Ibase

Γ ` c⇐ T

t-Ielim

Γ ` E⇒ τ

Γ ` E⇐ τ

Γ ` χ : τ

t-ex-base

Γ ` c : T

t-ex-pf

Γ ` vi : τ1
i<m

Γ ` χi : τ2
i<m

Γ ` vi ⇒ χi
i<m : τ1 → τ2

Γ ` σ

t-env-empty

Γ ` ·

t-env-cons

x:τ ∈ Γ ` v : τ Γ ` σ

Γ ` [v/x]σ

Γ ` X : τ

t-exw-empty

Γ ` · : τ

t-exw-cons

Γ ` σ ∀x:τ ∈ Γ. ∃v. [x/v] ∈ σ
Γ ` χ : τ Γ ` X : τ

Γ ` σ 7→ χ, X : τ

Figure 2.5: λ→syn syntax and typechecking
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2.3.2 Introducing λsyn

In the previous example, we performed a mixture of symbolic evaluation and type-
directed refinement to synthesize the program. We now formalize this process within
λ→syn, a core calculus for program synthesis with types.

Figure 2.5 gives the syntax of λ→syn which features an external language of
standard expressions e taken from λ→ and an internal language that splits up
expressions into introduction forms I and elimination forms E. The internal
language is a subset of the external language. As described in Section 2.1.1, it is
precisely the normal forms of the external language that we synthesize.

Type checking and evaluation in the external language is the same as λ→. We
provide additional rules for type checking the additional constructs introduced
in λ→syn. In particular, E and I terms are checked in a bidirectional type checking
style [Pierce and Turner, 2000]. We note that during regular type checking, E terms
generate types (as an output), and I terms check against types (as an input). To make
this explicit, we separate E and I type checking into two separate judgments where
we generate types (E⇒ τ) in the former case and check against types in (I ⇐ τ)
in the latter case. For example when type checking a variable (t-Evar), we can
extract the type of that variable from the context. In contrast, when type checking
a function (t-Ilam), while we know the type of the argument from the ascription,
we have no information about the body, so we must check the body against a
given input type. Type checking examples values χ, in contrast, is straightforward.
Constants ck all have type T (t-ex-base), and a partial function vi ⇒ χi

i<m has type
τ1 → τ2 if all of the vi have type τ1 and all of the χi have type τ2 (t-ex-pf).

2.3.3 Example Worlds

Example worlds were a critical component of the synthesis process for the if
function in Section 2.3.1. Recall that each example world contains not only an
example value that the synthesized program must evaluate to, but value bindings
for each of the free variable of the program. To codify this, we define an example
world as a pair σ 7→ χ of a goal example value χ and an environment σ that maps
variables to values. A collection of these example worlds is denoted with X, and
when it is unambiguous to do so, we refer to these collections of example worlds
as our “examples”.

When lifting typechecking of example values to example worlds, written
Γ ` X : τ, we ensure (via t-exw-cons) that for each pair σ 7→ χ that χ has type
τ but also that σ is well-typed. For an environment to be well-typed, it suffices
that for each binding in σ to be well-typed according to the type recorded in Γ
(t-env-cons). In addition, t-exw-cons requires that each σ contains a binding for
each variable bound in Γ. This, coupled with t-env-cons, gives us the following
consistency principle for example worlds:
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Γ ` τ  E

eguess-var

x:τ ∈ Γ
Γ ` τ  x

eguess-app

Γ ` τ1 → τ2  E Γ ` τ1B · I
Γ ` τ2  E I

Γ ` τB X I

irefine-arr

X = σ1 7→ ρ1, . . ., σn 7→ ρn
X′ = apply(x, σ1, ρ1) ++ . . . ++ apply(x, σn, ρn)

x:τ1, Γ ` τ2B X′  I
Γ ` τ1 → τ2B X λx:τ1. I

irefine-base

X = σ1 7→ ck, . . ., σn 7→ ck

Γ ` TB X ck

irefine-guess

Γ ` τ  E E � X
Γ ` τB X E

I � X

satisfies

∀σ 7→ χ ∈ X. σ(I) −→∗ v ∧ v ' χ

I � X

v ' χ

eq-ctor

ck ' ck

eq-lam-pf

∀i ∈ 1, . . ., m. (λx:τ. e) vi −→∗ v ∧ v ' χi

λx:τ. e ' vi ⇒ χi
i<m

apply(x, σ, vi ⇒ χi
i<m) = [v1/x]σ 7→ χ1, . . ., [vm/x]σ 7→ χm

Figure 2.6: λ→syn synthesis and equivalence

Lemma 2.3.1 (Consistency of Example Worlds). If Γ ` X : τ1, then ∀σ 7→ χ ∈
X. x:τ ∈ Γ↔ ([x/v] ∈ σ ∧ Γ ` v : τ).

Proof. t-exw-cons enforces the → direction, and t-env-cons enforces the ←
direction.

Because our synthesis strategy requires evaluation, Lemma 2.3.1 is necessary to
ensure that every free variable has a (well-typed) value.

2.3.4 Synthesis in λ→syn

In λ→syn, we further refine the term enumeration judgment we derived in Section 2.1
to create a full-fledged synthesis judgment that takes advantage of example values
as specification. We break up synthesis into two judgments as shown in Figure 2.6:

• Γ ` τ  E (eguess): guess an E of type τ.

• Γ ` τ B X  I (irefine): refine and synthesize an I of type τ that agrees
with examples X.
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The synthesis problem in λ→syn can be characterized as follows:

Given a context Γ, goal type τ, and examples X where Γ ` X : τ,
synthesize a program I of type τ that satisfies the examples X.

The two mutually recursive judgments combine to form a non-deterministic syn-
thesis system where a complete irefine derivation corresponds to a solution of
this synthesis problem.

Refinement In Section 2.3.2, we observed that distinguishing between introduc-
tory forms I and elimination forms E helped us identify when a type should be
treated as an input or output during typechecking. This insight also applies to how
we treat examples in tandem with term generation. With introduction forms, the
shape of the term and its corresponding type dictate how we refine example values.
For example, at base type, our example values consist of constants. irefine-base

says that we can synthesize a particular constant ck if the examples all agree on
that constant, i.e., the goal example value of each example world is ck. Note that if
the example worlds contain differing constants, then this rule does not apply, and
we would need to synthesize some other expression instead.

In contrast, at arrow type our example values consist of a set of partial functions.
irefine-arr says that we can synthesize a lambda if we are able to synthesize its
body. To understand how irefine-arr refines examples, first consider the case
where X is a single example world, σ 7→ vi ⇒ χi

i<m. The example value is a
single partial function consisting of m input/output examples. In this situation,
the apply meta-function generates a collection of m new example worlds. The goal
example value of each world is the right-hand side of each input/output example,
χi. The environment of each new world consists of the original environment σ
extended with a binding for the lambda’s variable, x. The value bound to that
variable is the left-hand side of each input/output example, vi. We then use these
new example worlds to synthesize the body of the lambda.

In general, X may contain n example worlds σ1 7→ ρ1, . . ., σn 7→ ρn. When there
are multiple example worlds, we simply apply each of the example worlds to
generate a collection X1, . . ., Xn of example worlds and then concatenate them all
together to create the final collection of example worlds X′ to be used to synthesize
the body of the lambda. This occurs if the user specifies multiple partial functions
rather than a single partial function.

Surprisingly, there is a subtle semantic distinction between a collection of partial
functions and a single partial function. To see this, consider synthesizing at goal
type T → T with the examples:

ρ1 = σ1 7→ c1 ⇒ c2 | c3 ⇒ c4

ρ2 = σ2 7→ c5 ⇒ c6 | c7 ⇒ c8 | c9 ⇒ c10.
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If we apply irefine-arr, the resulting set of example worlds that we use to
synthesize the body of lambda is:

X′ = [x/c1]σ1 7→ c2, [x/c3]σ1 7→ c4,
[x/c5]σ2 7→ c6, [x/c7]σ2 7→ c8, [x/c9]σ2 7→ c10.

In contrast, if we combined the two examples worlds into a single partial function,

ρ = σ 7→ c1 ⇒ c2 | c3 ⇒ c4 | c5 ⇒ c6 | c7 ⇒ c8 | c9 ⇒ c10,

then applying irefine-arr results in the following examples,

X′ = [x/c1]σ 7→ c2, [x/c3]σ 7→ c4,
[x/c5]σ 7→ c6, [x/c7]σ 7→ c8, [x/c9]σ 7→ c10.

The only difference between the two cases is the original environments, σ1 and
σ2 versus σ, that we extend when deriving X′. The initial environments shared
among all the example worlds ought to be identical (as the values for the free
variables of the program must be the same), so in our simply-typed setting, there
is no practical difference between a collection of partial functions and a single
partial function. However, in Chapter 5, we explore changes to irefine-arr that
make this fact no longer true.

Guessing In contrast, with E-terms, we are unable to refine the examples in
this manner. This is because an E-term can be generated at any type and the
shape of the E-term alone does not determine how we can decompose examples
in a meaningful way. In particular, say that we try to synthesize a function
application and choose a particular term E with some function type τ1 → τ2.
When synthesizing I, we would like to pass refined examples X′ such that E I
satisfies X. However, this requires reasoning about the behavior of E, an arbitrary
function, which is difficult to do. In the presence of richer language features, e.g.,
recursion, this is undecidable.

Therefore, for E-terms, the eguess judgment resorts to term enumeration as
developed in Section 2.1.1. The rules for generating variables (eguess-var) and
application (eguess-app) merely generate a term of an appropriate type. Note
that when generating the argument to an application I in eguess-app, we pass the
empty set of examples to the irefine judgment. When X is empty, you can see that
the irefine judgment degenerates to simple term enumeration.

However, we are not content generating any E-term of an appropriate type. We
want such a term that satisfies the provided examples. The bridge rule irefine-
guess enforces this by not only generating an E-term, but also explicitly ensuring
that E satisfies X, written I � X (noting that Es are a proper subset of the Is). This
satisfaction judgment ensures that, for each example world, evaluating I under
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that environment results in a value v that is compatible to the goal example value
for that world. Environment or substitution application, written σ(I), produces an
external language expression e suitable for evaluation.

This compatibility relation3, written v ' χ, only needs to compare a value v
and some goal example value χ. At base type, v and χ are constants so it suffices
to ensure they are the same constant (eq-ctor). At arrow type, v is a lambda and
χ is a partial function. To ensure compatibility, it is sufficient to check for each
input/output pair of the partial function that running v on the input of the pair
produces a value compatible with the output of the pair (eq-lam-pf).

2.3.5 Synthesis Examples

To better understand how λ→syn operates, let’s work through a number of examples.

Example 2.3.1. First, consider the degenerate case where the example set is empty
(X = ·). We claimed in Section 2.3.4 that the irefine judgment degenerates to raw
term enumeration when the example set is empty. To see that this is true, let’s look
at how each irefine rule behaves with no examples. At arrow type, irefine-arr

applies and passes along the empty example set (X′ = ·) when synthesizing the
body of the lambda. At base type, irefine-base applies and allows us to synthesize
any constant ck since X is empty. Finally, irefine-guess allows us to synthesize
any E because E � · holds vacuously.

Example 2.3.2. Consider the example X = · 7→ c1 ⇒ c1 | c2 ⇒ c2 with goal type
T → T in the empty context. The following is a valid synthesis derivation of the
identity function:

eguess-var

x:T ∈ x:T
x:T ` T  x

satisfies

[c1/x](x) −→∗ c1 ∧ [c2/x](x) −→∗ c2

x � [c1/x] 7→ c1, [c2/x] 7→ c2

x:T ` TB [c1/x] 7→ c1, [c2/x] 7→ c2  x
irefine-guess

· ` T → TB · 7→ c1 ⇒ c1 | c2 ⇒ c2  λx:T. x
irefine-arr

With our synthesis judgments, we always make a number of irefine derivations
ending in a number of eguess derivations. This observation leads to a critical
implementation optimization, refinement trees, that we explore in Chapter 7.

Example 2.3.3. Consider under-constraining the example set from the previous
example: X = c1 ⇒ c1 with goal type T → T in the empty context. We can now

3Because the compatibility relation is between two different syntactic classes, it is not an
equivalence as it cannot be reflexive, even though it tries to equate a value and an example value.
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synthesize the constant function with a simpler derivation:

X = [c1/x] 7→ c1

x:T ` TB [c1/x] 7→ c1  c1
irefine-base

· ` T → TB · 7→ c1 ⇒ c1  λx:T. c1
irefine-arr

Note that the identity function is still derivable in this context:

eguess-var

x:T ∈ x:T
x:T ` T  x

satisfies

[c1/x](x) −→∗ c1

x � [c1/x] 7→ c1

x:T ` TB [c1/x] 7→ c1  x
irefine-guess

· ` T → TB · 7→ c1 ⇒ c1  λx:T. x
irefine-arr

How might we choose one program over the other? While both programs are
the same size, we may choose the program with the smaller derivation tree (the
constant function), or we might choose the program that uses the most variables
(the identity function). With our synthesis relation, we are only concerned with
ensuring that every satisfying program has a corresponding derivation in the
system, so this ambiguity is irrelevant. However, in a synthesis procedure, we will
need to disambiguate between these programs in some manner, a topic we revisit
in Chapter 7.

Example 2.3.4. Next, consider synthesizing the if function from Section 2.2.2.
Again we use the shorthand:

bool
def
= T → T → T

true
def
= λt:T. λ f :T. t

false
def
= λt:T. λ f :T. f .

Here, we are trying to synthesize a program of type bool→ T → T → T with the
example set

X = · 7→ true⇒ c1 ⇒ c2 ⇒ c1, · 7→ false⇒ c1 ⇒ c2 ⇒ c2.

We can synthesize the desired if function in λ→syn as follows. First we can apply
irefine-arr three times to arrive at the synthesis state:

b:bool, t:T, f :T ` TB X �
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where the example set X is:

[true/b][c1/t][c2/ f ] 7→ c1

[false/b][c1/t][c2/ f ] 7→ c2

Now, we apply irefine-guess to generate the application. The following eguess

derivation generates the application itself (with Γ = b:bool, t:T, f :T).

eguess-app

eguess-var

b:T → T → T ∈ Γ
Γ ` T → T → T  b

eguess-var

t:T ∈ Γ
Γ ` T  t

Γ ` T → T  b t
f :T ∈ Γ

Γ ` T  f
eguess-var

Γ ` T  b t f
eguess-app

Finally, we verify that b t f satisfies the examples:

[true/b][c1/t][c2/ f ](b t f ) −→∗ c1

[false/b][c1/t][c2/ f ](b t f ) −→∗ c2.

Example 2.3.5. For our last example, consider what happens if we provide contra-
dictory examples. Suppose that we are synthesizing a program of type T → T and
provide the partial function c1 ⇒ c1 | c1 ⇒ c2. There is no function that we can
synthesize that satisfies this specification as c1 is mapped to two distinct outputs.
To see this within λ→syn, note that irefine-ctor will never apply because the goal
example values are different, and irefine-guess will never succeed because we
will never be able to generate an E that satisfies both c1 and c2 given that the
argument to the function is bound to c1. Consequently there are no valid synthesis
derivations in λ→syn for contradictory examples.

Detecting such contradictory examples turns out to be tricky and undecidable
given a sufficiently rich language. At first glance, it seems like a simple syntactic
check is sufficient: check to see that the partial functions involved map similar
inputs to similar outputs. However, because we allow lambdas as inputs to partial
functions, this problem reduces to deciding function equivalence. Furthermore,
even this check is insufficient. For example, consider the worlds [c1/x] 7→ c1 ⇒
c1, [c2/x]c1 ⇒ c2. While the partial functions map c1 to distinct outputs, they still
do not contradict each other because we fulfill the eventual goal example value
with the variable x. Thus, we must decide not only equivalence between example
values but also environments. Throughout this work, we assume that examples
given by the user are non-contradictory, leaving detection to future work.
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2.4 Related Work

In this chapter, we have demonstrated the fundamentals of program synthesis with
types. With these fundamentals established, we now make technical comparisons
of this program synthesis style with the prior approaches that we discussed
in Section 1.1. In particular, previous work has explored program synthesis
techniques using both types and examples as modes of specification, but not in
the type-theoretic style that we propose. With our foundations, we can explain the
salient features of these systems in terms of type theory and our own work.

2.4.1 Example Refinement

In λ→syn, we make a distinction between the terms that allow example refinement—
introduction terms—and the terms that do not—elimination forms. Ideally, we
would allow example refinement through all the terms of our language. However,
this is difficult to do for our elimination forms. In particular, recall λ→syn’s rule for
synthesizing function application:

eguess-app

Γ ` τ1 → τ2  E Γ ` τ1B · I
Γ ` τ2  E I

To refine examples through the function application E I, we may guess a particular
function E, refine the examples in some manner, and feed them to the synthesis sub-
problem for I. The examples should be refined in such a way that we synthesize
an I such that E I satisfies the original set of examples. The problem is that, in
general, this requires that we invert the behavior of E to discover how to refine the
examples to satisfy this property. For arbitrary E, this is impossible to do as the
function may not have an inverse (i.e., it is surjective but not a bijection).

However, we are able to make progress if we are able to make assumptions
about the possible set of functions that can appear in an application. These sorts
of assumptions are made by several combinator-based synthesis systems such as
λ2 [Feser et al., 2015] and FlashExtract [Le and Gulwani, 2014] to push examples
through the application of a fixed set of functions. For example, suppose that we
are synthesizing a function with the single input/output example:

[0, 1, 2, 3]⇒ [1, 2, 3, 4].

Then, because the behavior of the standard map function is

let rec map f l =
match l with
| []→ []
| x :: xs→ f x :: map f xs
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we know that we can synthesize a program of the form λl:list. map� l where the
hole is a function of type nat→ nat with refined examples:

0⇒ 1 | 1⇒ 2 | 2⇒ 3 | 3⇒ 4.

Both λ2 and FlashExtract admit variants of this rule for map and other functional
combinators.

Such rules are admissible in our system. For example, here is an equivalent
rule for I-refining map in our system extended with recursion (Chapter 5) and
polymorphism (Chapter 9).

irefine-map

X = σi 7→ [χ1i, . . ., χki]⇒ [χ′1i, . . ., χ′ki]
i<n

X′ = σi 7→ χ1i ⇒ χ′1i, . . ., σi 7→ χki ⇒ χ′ki
i<n

Γ ` α→ βB X′  f
Γ ` α list→ β listB X λl:α list. map f l

Intuitively, this rule synthesizes a function f for map by breaking up the in-
put/output examples between lists point-wise, creating new examples that de-
scribe the required behavior of f . Our E-guessing rules provide a necessary fall
back for when these shortcuts are not possible.

2.4.2 Forwards and Backwards Search

We can interpret synthesis in λ→syn as proof search through the Curry-Howard
isomorphism [Howard, 1980] where program synthesis at a particular type is
equivalent to proof search of a particular proposition. In this light, λ→syn specifies a
backwards search for a satisfying program. That is, λ→syn exclusively refines the goal
during the synthesis process. Other proof search-inspired also take advantage of
backwards search, e.g., InSynth [Gvero et al., 2013].

In contrast, we could instead perform a forward search by refining our context
during synthesis. Consider extending our context so that it hold arbitrary expres-
sions rather than just variables. Now, starting with our free variables, we can
incrementally grow the context by enumerating well-typed terms in some order,
for example, increasing size. At each step, we can check to see if we can construct a
program from the components in the context that satisfies our examples. This style
of forwards search-based program synthesis is performed by Escher [Albargh-
outhi et al., 2013] which creates a satisfying program (in a Lisp-like programming
language) from a set of components built up from atoms.

There are benefits and drawbacks to employing either a backwards or forwards-
based program search. Our backwards search allows us to decompose examples
during goal refinement which allows us to greatly cut down the space of programs
during synthesis. However, in the presence of other types such as products,
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pure backwards search can be inefficient because it introduces unnecessary non-
determinism into the search process. To obtain the best of both worlds, we can
adopt a search strategy that combines backwards and forwards by using focusing.
Scherer and Rèmy [2015] use a proof search strategy equipped with focusing to
efficiently find inhabitants of some given type, and we briefly explore the addition
of focusing to λ→syn in conjunction with products in Section 4.1.1.

2.4.3 Type-directed Synthesis Systems

An alternative view of λ→syn is that it solves the type inhabitation problem—given a
type, produce an inhabitant of that type. Several other systems have phrased the
synthesis problem in terms of type inhabitation. For example, Prospector [Man-
delin et al., 2005] auto-completes API queries by building up chains of object
method calls called jungloids. The discovery of these jungloids is type-directed:
given a pair of types (τ1, τ2) find a chain of jungloids whose composition has
type τ1 → τ2. It is analogous to repeated applications of our E-guessing rules, in
particular eguess-app which computes one such function in this chain.

Perelman et al. [2012] use types to provide auto-completion for the C# pro-
gramming language. To do this, they generate well-typed program completions
for a given completion query and rank those programs according to a number
of heuristics including depth, name, namespace, and type distance—the distance
between two types in the type hierarchy. InSynth [Gvero et al., 2013] performs
similar sorts of auto-completion for the Scala programming language, but it draws
its rankings or weights of components by analyzing corpora of code. These sorts
of heuristics are also admissible in our system, similar to the example refinement
heuristics discussed previously. In particular, these rankings could be adapted to
the E-term generation algorithms we discuss in Chapter 7 to prioritize particular
E-terms over others.

Finally, it is worthwhile to note that none of these type-directed systems that
we have discussed include examples as part of their specification. Really, λ→syn
solves the type inhabitation and example satisfaction problem where we are interested
in finding programs of a particular type that satisfy the given examples. The
example-refining techniques that we have developed here could be adapted to
these systems, so that they can benefit from the additional specification power that
examples provide.
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Chapter 3

The Metatheory of λ→syn

So far, we have introduced λ→syn, a core calculus for program synthesis with types.
λ→syn specifies a non-deterministic synthesis relation that requires modification
to become an algorithm. However, in moving towards an algorithm, we would
like to understand whether the design decisions we make to gain determinism,
tractability, and expressiveness are admissible in our system or result in weakening
the properties of λ→syn.

In this section, we establish these properties by proving soundness and com-
pleteness of synthesis in λ→syn. We present the full details of the proofs here to
provide a template for reasoning about the metatheory of the more complicated
type-directed program synthesis systems that we discuss in later chapters.

3.1 Soundness

Soundness states that the programs we synthesize are “correct”. In type-directed
program synthesis, correctness has two components:

• The synthesized program is well-typed at the goal type, type soundness, and

• The synthesized program satisfies the examples, example soundness.

First we show that type soundness holds for λ→syn.

Lemma 3.1.1 (Type Soundness of λ→syn).

1. If Γ ` τ  E, then Γ ` E⇒ τ.

2. If Γ ` X : τ and Γ ` τB X I, then Γ ` I ⇐ τ.

Proof. By mutual induction on the synthesis derivations for E- and I-terms. Con-
sider the final rule used in the derivation:
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Case eguess-var: E = x. By the premise of eguess-var, x:τ ∈ Γ which is sufficient
to conclude by t-Evar that x is well-typed.

Case eguess-app: E = E1 I. By the premises of eguess-app and our inductive hy-
potheses, we know that E1 and I are well-typed at τ1 → τ and τ1, respectively.
With this, we can conclude via t-Eapp that E1 I is well-typed at type τ.

Case irefine-guess: I = E. By the premises of irefine-guess and our inductive
hypothesis, we know that E is well-typed as an E-form and from t-Ielim E is
well-typed as an I-form.

Case irefine-ctor: I = c and τ = T. We can immediately conclude by t-Ictor

that c has type T.

Case irefine-arr: I = λx:τ1. I1 and τ = τ1 → τ2. By the premises of irefine-
arr and our inductive hypothesis, we know that I1 is well-typed at type
τ2. Therefore, we can conclude by t-Ilam that λx:τ1. I1 is well-typed at type
τ1 → τ2.

Intuitively, type soundness follows trivially from the fact that we derived the
synthesis algorithm from the type checking judgment. Because of this, we assume
that type soundness holds for all of the systems we consider in this work and focus
on example soundness, instead.

To prove example soundness, we need to show that each irefine rule (other
than irefine-guess) produces well-typed example sets in order to invoke our
inductive hypothesis. From there, we need to show that given satisfying sub-
expressions for the refined examples, our overall expression satisfies the original
examples. These two steps manifest themselves into two lemmas that we must
prove for each rule: type preservation and satisfaction soundness, respectively.

Lemma 3.1.2 (Type Preservation of apply). If Γ ` σ 7→ vi ⇒ χi
i<m : τ1 → τ2 then

x:τ1, Γ ` apply(x, σ, vi ⇒ χi
i<m) : τ2.

Proof. Unfolding the definition apply, we know that apply(x, σi, vi ⇒ χi
i<m) =

[v1/x]σ 7→ χ1, . . ., [vm/x]σ 7→ χm. To show that the new example set has type τ2,
it suffices to show (through t-exw-cons) that:

• For all i ∈ 1, . . ., m, [vi/x]σ is well-typed. We know that σ is well-typed
because the original example set is well-typed. The additional binding [vi/x]
is well-typed because the extended context demands that x has type τ1 and
vi has type τ1 because the partial function is well-typed.
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• For all i ∈ 1, . . ., m and y:τ ∈ x:τ1, Γ, there exists v such that [y/v] ∈ [vi/x]σ.
Because the original example set is well-typed, we know that σ covers all of
the bindings in Γ. We know that the additional type binding for x is covered
by the additional environment binding [vi/x].

• For all i ∈ 1, . . ., m, χi has type τ2. Because the partial function is well-typed,
we know through t-ex-pf that each χi has type τ2.

Lemma 3.1.3 (Type Preservation of Example World Concatenation). If Γ ` X : τ
and Γ ` X′ : τ then Γ ` X ++ X′ : τ.

Proof. From t-exw-cons, we know that each individual example world in X and
X′ is well-typed at type τ by a straightforward induction on X and X′, respectively.
By t-exw-cons, we can cons together all of these example worlds together to form
a single set of example worlds that is well-typed at type τ.

Lemma 3.1.4 (Satisfaction Soundness of apply). If I � X′ then λx:τ. I � σi 7→ ρi
i<n

where X′ = apply(x, σi 7→ ρ1) ++ . . . ++ apply(x, σn 7→ ρn).

Proof. Consider a single example world σ 7→ vi ⇒ χi
i<m ∈ X. Unfolding the

definition of the satisfies judgment for I shows that:

σ(I) = σ(λx:τ1. I1) −→∗ λx:τ1. σ(I1).

Therefore, it suffices to show that λx:τ1. σ(I1) ' vi ⇒ χi
i<m. By eq-lam-pf, this

means that we must show that for all i ∈ 1, . . ., m,

(λx:τ1. σ(I1)) vi −→ [vi/x]σ(I1) −→∗ v ∧ v ' χi

However, this follows directly from the fact that I1 � X′ where each example world
in X′ is of the form [vi/x]σ 7→ χi.

Lemma 3.1.2 and Lemma 3.1.3 allow us to conclude type preservation of
example refinement at arrow types. Lemma 3.1.4 tells that apply manipulates its
examples in a sound manner. With these two facts, we can now prove example
soundness.

Lemma 3.1.5 (Example Soundness of λ→syn). If Γ ` X : τ and Γ ` τB X  I, then
I � X.

Proof. By induction on the synthesis derivation of I.

Case irefine-guess: I = E. Satisfaction of X follows directly from the premises of
irefine-guess.
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Case irefine-base: I = c and τ = T. By the premise of irefine-base, we know
that X = σ1 7→ c, . . ., σn 7→ c. We conclude satisfaction directly by noting that
for all σ 7→ c ∈ X, σ(I) = σ(c) −→∗ c ' c.

Case irefine-arr: I = λx:τ1. I1 and τ = τ1 → τ2. To show that I � X, we first
must establish that the refined example set X′ is satisfied by the body of the
lambda I1. By the premise of irefine-arr, we know that

X = σ1 7→ ρ1, . . ., σn 7→ ρn

X′ = apply(x, σ1, ρ1) ++ . . . ++ apply(x, σn, ρn).

By Lemma 3.1.2, we know that each individual apply call produces a well-
typed set of example worlds at type τ2 and by Lemma 3.1.3, we know that
X′ is well-typed at τ2. Therefore, we can invoke our inductive hypothesis to
conclude that I1 � X′ and apply Lemma 3.1.4 to prove our goal.

3.2 Completeness

Before we prove completeness we need several auxiliary theorems and lemmas.
The first theorem is strong normalization which states that every term evaluates
to a value. The satisfaction judgment (satisfies) relies on evaluation to values, so
whenever we need to show that a program satisfies a set of examples, we implicitly
rely on strong normalization to guarantee that evaluation produces a value.

Lemma 3.2.1 (Strong Normalization of λ→syn). If Γ ` e : τ then either e is a value or
e −→∗ v.

Proof. The external language fragment of λ→syn is merely λ→ (extended with a base
type) which is known to be strongly normalizing [Tait, 1967].

Next, we need to reason about the shape of well-typed example values.

Lemma 3.2.2 (Example Value Canonicity). If Γ ` χ : τ then:

1. If τ = T then χ = c.

2. If τ = τ1 → τ2 then χ = ρ.

Proof. By case analysis on τ and the well-typedness of χ, noting that there is a
one-to-one correspondence between the shape of a type and an example value of
that type.
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Finally, we need to show example refinement performed by the irefine rules
preserve example satisfaction. Here is the relevant lemma for refining at arrow
types.

Lemma 3.2.3 (Satisfaction Preservation of apply). If λx:τ. I � σi 7→ ρi
i<n then I �

X′ where X′ = apply(x, σi 7→ ρ1) ++ . . . ++ apply(x, σn 7→ ρn).

Proof. Consider a single example world σ 7→ ρ. Unfolding the definition of
satisfies for λx:τ. I ` X and that example world:

σ(λx:τ1. I) −→ λx:τ1. σ(I) ∧ λx:τ1. σ(I) ' ρ.

If ρ = vi ⇒ χi
i<m, then by eq-lam-pf, we know that

∀i ∈ 1, . . ., n. (λx:τ1. σ(I)) vi −→ [vi/x]σ(I) −→∗ v ∧ v ' χi.

By unfolding the definition of apply and ++, we know that X’ contains exactly
every such vi ⇒ χi as an example world [vi/x]σ 7→ χi. Putting these two facts
together, we can conclude that I � X′.

Now we are ready to tackle completeness. Intuitively, completeness states that
we are able to synthesis all well-typed programs. First, we show the completeness
of term enumeration in λ→syn which is straightforward.

Lemma 3.2.4 (Completeness of λ→syn Term Enumeration).

1. If Γ ` E⇒ τ, then Γ ` τ  E.

2. If Γ ` I ⇐ τ, then Γ ` τB · I.

Proof. By mutual induction on the typing derivations for E- and I-terms.

Case t-Evar: E = x. By the premise of t-Evar, x:τ ∈ Γ which is sufficient to
conclude that Γ ` τ  x by eguess-var.

Case t-Eapp: E = E1 I. By the premises of t-Eapp, E1 and I are well-typed, so we
can invoke our inductive hypotheses to conclude that we can generate E1
and I. By eguess-app, we, therefore, can conclude that Γ ` τ  E1 I.

Case t-Ielim: I = E. By t-Ielim and our inductive hypothesis, we know that
Γ ` τ  E. By irefine-guess, we can conclude that Γ ` τB · E because
E ` · holds trivially.
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Case t-Ictor: I = c and τ = T. By irefine-base, we can conclude that Γ `
TB · c because the premise of irefine-base holds trivially.

Case t-Ilam: I = λx:τ1. I1 and τ = τ1 → τ2. By t-Ilam, we know that I1 is well-
typed so we can invoke our inductive hypothesis to conclude that x:τ1, Γ `
τ2B · I1. By irefine-arr, we can conclude that Γ ` τ1 → τ2B · λx:τ1. I1,
noting that X′ = · because X = ·.

Like type soundness, term enumeration follows directly from the fact that our
synthesis rules were derived from the type checking rules, so we focus on com-
pleteness of the system in the presence of examples.

One variant of synthesis completeness posits the existence of an example set
that satisfies some well-typed program we would like to synthesis. However, it
turns out this variant is trivially true!

Lemma 3.2.5 (Completeness of λ→syn). If Γ ` I ⇐ τ then there exists a X such if
Γ ` X : τ and I � X, then Γ ` τB X I.

Proof. Consider the empty example set, X = ·. By Lemma 3.2.4, from X we are
able to synthesize any well-typed I-term!

The more interesting statement of completeness instead chooses a particular
example set X. This statement makes the stronger claim that any example set
satisfied by a program is sufficient to synthesize that program in λ→syn.

Lemma 3.2.6 (Completeness of λ→syn). If Γ ` I ⇐ τ, Γ ` X : τ, and I � X, then
Γ ` τB X I.

Proof. By induction on the typing derivation of I.

Case t-Ielim: I = E. By Lemma 3.2.4, Γ ` τ  E. By irefine-guess and our
premises (in particular, E ` X), we can conclude that Γ ` τB X E.

Case t-Ictor: I = c and τ = T. Because X is well-typed at type T, we know by
Lemma 3.2.2 that X = σ1 7→ c1, . . ., σn 7→ cn. Furthermore, because c ` X, we know
that for all i ∈ 1, . . ., n, σi(c) −→ c so c ' ci. By eq-ctor, this means that each ci is
identical to c. Therefore, by irefine-base, we can conclude that Γ ` TB X c.

Case t-Ilam: I = λx:τ1. I1 and τ = τ1 → τ2. Because X is well-typed at τ1 → τ2, we
know by Lemma 3.2.2 that X = σ1 7→ ρ1, . . ., σn 7→ ρn. Let X′ = apply(x, σ1, ρ1) ++
. . . ++ apply(x, σn, ρn). To invoke our inductive hypothesis to conclude that we
can synthesize I1, we must show that:
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• x:τ1, Γ ` I1 ⇐ τ2 which follows by the premise of t-Ilam.

• x:τ1, Γ ` X′ : τ2 which follows by Lemma 3.1.2 and Lemma 3.1.3.

• I1 � X′ which follows by Lemma 3.2.3.

Therefore, we can invoke our inductive hypothesis to conclude that x:τ1, Γ `
τ2B X′  I1. By irefine-arr, we can therefore conclude that Γ ` τ1 → τ2B X  
λx:τ1. I1.

In the above proofs, the bulk of the work resided in showing that our example
refinement rules respected both type and example satisfaction. In summary,
we need the following critical lemmas to prove soundness and completeness of
synthesis in the presence of new language features:

• Type preservation lemmas stating that refined examples produced by the
irefine rules are well-typed.

• Satisfaction soundness lemmas stating that satisfying sub-expressions can
be put together to form a complete expression that satisfies the original
examples.

• Satisfaction preservation lemmas stating that a satisfying expression implies
that its component expressions satisfy the examples produced by the irefine

rules.
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Chapter 4

Simple Type Extensions

λ→syn is a core calculus for program synthesis with types. As such, it only contains
the bare essence of a typed, functional programming language, namely lambdas
and function application. However, one of the appeals of the type-directed syn-
thesis approach is that we derive the synthesis judgment directly from the type
checking judgment. In other words, type checking immediately gives us insight
into program synthesis for new types!

In this chapter, we explore the process of integrating new types into λ→syn by
considering a number of additional basic types: products, sums, and records. By
playing this game with the type system of flipping inputs and outputs, we learn
how to generate terms and refine examples of these types. In some cases, this is
sufficient to synthesize this type within λ→syn immediately. However in other cases,
in particular, the more complex types that we consider in future chapters, we must
do additional work to properly synthesize programs of these types.

4.1 Products

Figure 4.1 gives the modifications to λ→syn necessary to add products to the system.
The product type τ1 × τ2 has an introduction form, the pair (e1, e2), and two
elimination forms, left projection fst e and right projection snd e. We add both
forms to the external language e of expressions, and we add the pair introduction
form (I1, I2) to the I grammar and the projection elimination forms fst E and snd E
to the E grammar. This introduction form also serves as the value of the pair type
(v1, v2) as well as its example value (χ1, χ2).

Type checking a pair amounts to type checking its components (t-pair and
t-Ipair). Type checking a projection results in the left- or right-hand side of the
product type (t-fst and t-Efst, t-snd and t-Esnd). We enforce a left-to-right
ordering of evaluation with our evaluation contexts consistent with our choice
of call-by-value evaluation order. Finally, checking that two pairs are compatible
decomposes to checking that their components are compatible (eq-pair).
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τ : := . . . | τ1 × τ2 Types
e : := . . . | fst e | snd e | (e1, e2) Terms
v : := . . . | (v1, v2) Values
E : := . . . | (E , e) | (v, E) Evaluation Contexts
E : := . . . | fst E | snd E Elimination Terms
I : := . . . | (I1, I2) Introduction Terms
χ : := . . . | (χ1, χ2) Example Values

Γ ` e : τ

t-pair

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

t-fst

Γ ` e : τ1 × τ2

Γ ` fst e : τ1

t-snd

Γ ` e : τ1 × τ2

Γ ` snd e : τ2

Γ ` E⇒ τ

t-Efst

Γ ` E⇒ τ1 × τ2

Γ ` fst E⇒ τ1

t-Esnd

Γ ` E⇒ τ1 × τ2

Γ ` snd E⇒ τ2

Γ ` I ⇐ τ

t-Ipair

Γ ` I1 ⇐ τ1 Γ ` I2 ⇐ τ2

Γ ` (I1, I2)⇐ τ1 × τ2

e −→ e′
eval-fst

fst (v1, v2) −→ v1

eval-snd

snd (v1, v2) −→ v2

Γ ` τ  E

eguess-fst

Γ ` τ1 × τ2  E
Γ ` τ1  fst E

eguess-snd

Γ ` τ1 × τ2  E
Γ ` τ2  snd E

Γ ` τB X I

irefine-prod

X = σi 7→ (v1i, v2i)
i<n

proj(X) = (X1, X2)
Γ ` τ1B X1  I1 Γ ` τ2B X2  I2

Γ ` τ1 × τ2B X (I1, I2)

Γ ` χ : τ

t-ex-pair

Γ ` χ1 : τ1 Γ ` χ2 : τ2

Γ ` (χ1, χ2) : τ1 × τ2
v ' χ

eq-pair

v1 ' χ1 v2 ' χ2

(v1, v2) ' (χ1, χ2)

proj(σi 7→ (v1i, v2i)
i<n

) = (X1, X2)
where X1 = σi 7→ v1i

i<n, X2 = σi 7→ v2i
i<n

Figure 4.1: λ→syn products
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We derive the synthesis rules for projections (eguess-fst and eguess-snd) and
pairs (irefine-prod) directly from their typing rules. To synthesize a left-projection,
fst E, or a right-projection, snd E, it is sufficient to synthesize a pair E of the
appropriate product type. To refine a pair (t-ex-pair), we note that if our examples
are well-typed at a product type, then they must be all be pairs. We extract the
left-hand components of the example pairs and their corresponding environments.
These form the example worlds that we use to synthesize the left-hand component
of the pair I1. The right-hand components and their corresponding environments
become the example worlds that we use to synthesize the right-hand component,
I2. As a concrete example, consider the following example worlds:

X = σ1 7→ (c1, c2), σ2 7→ (c3, c4).

Then the two example worlds that we create in irefine-prod are

X1 = σ1 7→ c1, σ2 7→ c3

X2 = σ1 7→ c3, σ2 7→ c4.

To prove soundness, we need type preservation and satisfaction soundness
lemmas as discussed in Chapter 3. We can easily prove the necessary lemmas here:

Lemma 4.1.1 (Type Preservation of proj). If Γ ` X : τ1 × τ2 then Γ ` X1 : τ1 and
Γ ` X2 : τ2 where proj(X) = (X1, X2).

Proof. Immediate from the premise of the statement. t-exw-cons says that each σi
is well-typed and t-ex-pair says that the example pairs are well-typed and their
components are well-typed at τ1 and τ2.

Lemma 4.1.2 (Satisfaction Soundness of proj). If I1 � X1 and I2 � X2 then (I1, I2) �
X where proj(X) = (X1, X2).

Proof. Consider a single example world σ 7→ (χ1, χ2) ∈ X. Unfolding the definition
of satisfies for (I1, I2) shows that

σ(I) = σ(I1, I2) −→∗ (σ(I1), σ(I2))

Therefore, it suffices to show that (σ(I1), σ(I2)) ' (χ1, χ2), and by eq-pair, this
means that we must show that σ(I1) ' χ1 and σ(I2) ' χ2. By the definition of proj,
σ 7→ χ1 ∈ X1 and σ 7→ χ2 ∈ X2, so we know that by the definition of satisfies and
the fact that I1 � X1 and I2 � X2 that σ(I1) ' χ1 and σ(I2) ' χ2.

Completeness requires that we show that irefine-prod preserves satisfaction
of examples. The version of the lemma for proj is also straightforward to prove:
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Lemma 4.1.3 (Satisfaction Preservation of proj). If (I1, I2) � X then I1 � X1 and
I2 � X2 where proj(X) = (X1, X2).

Proof. Consider a single example world σ 7→ (χ1, χ2); the shape of the examples is
guaranteed by example value canonicity. By satisfies, we know that σ(I1) ' χ1
and σ(I2) ' χ2. By unfolding proj, we know that this covers each of the example
worlds in X1 and X2, so this is sufficient to conclude that I1 � X1 and I2 � X2.

To show how we apply these lemmas, let’s walk through the additional cases
for proving example soundness and completeness in λ→syn extended with products.

Lemma 4.1.4 (Example Soundness of λ→syn with Products). If Γ ` X : τ and Γ `
τB X I, then I � X.

Proof. Case irefine-prod: I = (I1, I2), τ = τ1 × τ2, with proj(X) = (X1, X2). By
Lemma 4.1.1, Γ ` X1 : τ1 and Γ ` X2 : τ2. Therefore, by our inductive
hypothesis, we can conclude that I1 � X1 and I2 � X2 and by Lemma 4.1.2
we can conclude our goal.

Lemma 4.1.5 (Completeness of λ→syn with Products). If Γ ` I ⇐ τ, Γ ` X : τ, and
I � X, then Γ ` τB X I.

Proof. Case t-prod: I = (I1, I2) and τ = τ1 × τ2. Because X is well-typed at

τ1× τ2, we know by Lemma 3.2.2 that X = σi 7→ (X1i, X2i)
i<n

. Let (X1, X2) =
proj(X). To invoke our inductive hypothesis to conclude that we can synthe-
size (I1, I2), we must show that:

• Γ ` I1 ⇐ τ1 and Γ ` I2 ⇐ τ2 which follows by the premise of t-Ipair.

• Γ ` X1 : τ1 and Γ ` X2 : τ2 which follows by Lemma 4.1.1.

• I1 � X1 and I2 � X2 which follows by Lemma 4.1.3.

Therefore, we can invoke our inductive hypothesis to conclude that Γ `
τ1 B X1  I1 and Γ ` τ2 B X2  I2. By irefine-prod, we can therefore
conclude that Γ ` τ1 × τ2B X (I1, I2).

With the appropriate lemmas, the proof of soundness and completeness for prod-
ucts is identical to the analogous proof for functions (modulo the lemmas). This
reasoning template holds for the rest of the language extensions we consider in
this chapter. Therefore, for the remaining types, we merely provide the critical
lemmas for proving soundness and completeness.

42



4.1.1 Efficiency

Tuples bring up an interesting matter of efficiency. In order to use a tuple, we
must project out either its left or right component. From the perspective of an
implementation, this is undesirable because we must speculatively explore the
derivations where we project out either component with fst and snd . These
derivations may not be fruitful and become wasted work. Furthermore, if we
require both components, then the order in which we apply fst and snd matters
insofar as they represent two distinct-yet-equivalent derivations.

To alleviate these problems we import the technique of focusing from the proof
search literature [Liang and Miller, 2007] into program synthesis. Here, we briefly
describe the focusing procedure.1 Intuitively, whenever we introduce a value of
tuple type into the context, we greedily decompose the tuple down to base or arrow
types. For example, suppose we have a variable x of type T1 × ((T2 × T3)× T4).
Then by focusing on x, we obtain the following expressions of base type:

fst x : T1

fst fst snd x : T2

snd fst snd x : T3

snd snd x : T4

We extend our context Γ to not contain just free variables, but arbitrary E-terms.
After focusing, we add these expressions to our context, making them available for
use later in the synthesis derivation.

Essentially, focusing allows us to rip out all of the components of a product
for use immediately in our program. This has the cost of increasing the size of
our context which in turn affects the cost of raw E-term generation. But with
focusing, we are able to consider programs involving projections much earlier in
the synthesis process as well as avoid additional derivations involving projections.
For example, suppose we are generating E-terms of type nat and have a variable x
of type nat× nat in the context. Focusing brings fst x and snd x into the context
for us to use. If we are exploring these derivations in terms of increasing size (as
suggested in Section 2.1), then we can immediately use the projections of x rather
than explore derivations of greater size to generate expressions involving fst and
snd . If we need to use these projections in the final program, than this is a net win.
However, if we do not need these projections, then we will needlessly generate
E-terms involving them earlier in the synthesis process than we would without
focusing.

1For a full treatment of focusing in program synthesis to efficiently handle tuples, see Frankle
[2015].
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4.2 Records

We can easily take the machinery that we derived for products and lift it into
records. Figure 4.2 gives the syntax and semantics of records in λ→syn. The record

literal {li = Ii
i<m} introduces values of the record type {li:τi

i<m} and record
projection l.E eliminates those values according to eval-rproj.

Naturally, the example value of a record type is the record value {li = χi
i<m}.

Generating a projection is straightforward: guess a record expression that has a
field of the goal type that you are after and project out that field (eguess-rproj). To
make this efficient in practice, we can use focusing as we did with tuples to make
available all of the possible projections up front rather than speculatively guessing
them. Record I-refinement (irefine-record) is identical to product I-refinement
save for the presence of labels which are handled easily because they are recorded
in the goal type. We know that the example values are record examples assuming
that the examples are well-typed. Therefore, when synthesizing a field of a record,
we use the collected examples values for that field during synthesis. The rproj
meta-function performs this collection, generalizing the behavior of proj for pairs
to m-ary records.

Consequently, the necessary lemmas to verify soundness and completeness are
similar to the product case.

Lemma 4.2.1 (Type Preservation of rproj). If Γ ` X : {li:τi
i<m} then Γ ` Xi : τi

i<m

where rproj(X) = X1, . . ., Xm.

Proof. Similar to proj, the necessary conditions are immediate from the premise.
t-exw-cons says that each σi is well-typed and t-ex-record says that the example
records are well-typed and their components are well-typed at τ1, . . ., τm.

Lemma 4.2.2 (Satisfaction Soundness of rproj). If Ii � Xi
i<m

then {li = Ii
i<m}) �

X where rproj(X) = X1, . . ., Xm.

Proof. Consider a single example world σ 7→ {li = χi
i<m} ∈ X. By satisfies, we

know that we must show that σ(Ii) −→∗ vi and vi ' χi for each i ∈ 1, . . ., m.
However, by unfolding the definition of proj we see that each χi is distributed
to Xi with the environment σ, and we know from our premise that his example
world is satisfied by Ii.

Lemma 4.2.3 (Satisfaction Preservation of rproj). If {li = Ii
i<m}) � X then Ii � Xi

i<m

where rproj(X) = X1, . . ., Xm.
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τ : := . . . | {li:τi
i<m} Types

e : := . . . | {li = ei
i<m} | e.l Terms

v : := . . . | {li = vi
i<m} Values

E : := . . . | {l1 = v1, . . ., l = E , . . ., lm = em} | E .l Evaluation Contexts
E : := . . . | E.l Elimination Forms

I : := . . . | {li = Ii
i<m} Introduction Forms

χ : := . . . | {li = χi
i<m} Example Values

Γ ` e : τ

t-record

Γ ` ei : τi
i<m

Γ ` {li = ei
i<m} : {li:τi

i<m}

t-rproj

Γ ` e : {li:τi
i<m}

Γ ` e.li : τi

Γ ` I ⇐ τ

t-Irecord

Γ ` Ii ⇐ τi
i<m

Γ ` {li = Ii
i<m} : {li:τi

i<m}

Γ ` χ : τ

t-ex-record

Γ ` χi : τi
i<m

Γ ` {li = χi
i<m} : {li:τi

i<m}

e −→ e′
eval-rproj

{li = vi
i<m}.li −→ vi

Γ ` τ  E

eguess-rproj

Γ ` {li:τi
i<m} E

Γ ` τi  E.li
v ' χ

eq-record

vi ' χi
i<m

li = vi
i<m ' li = χi

i<m

Γ ` τB X I

irefine-record

X = σj 7→ {l1 = χ1j, . . ., lm = χmj}
j<n

rproj(X) = X1, . . ., Xm Γ ` τi B Xi  Ii
i<m

Γ ` {li:τi
i<m}B X {li = Ii

i<m}

rproj(σj 7→ {l1 = χ1j, . . ., lm = χmj}
j<n

) = X1, . . ., Xm
where
∀i ∈ 1, . . ., m. Xi = σj 7→ χij

i<m

Figure 4.2: λ→syn records definitions
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Proof. Consider a single example world σ 7→ {li = χi
i<m} ∈ X. By satisfies, we

know that σ(Ii) ' χi
i<m

. By unfolding rproj, we know that this covers each of
the example worlds among the X1, . . ., Xm, so this is sufficient to conclude that
I1 � X1, . . ., Im � Xm.

4.2.1 Subtyping and Synthesis

These rules do not introduce subtyping and the usual record rules for subtypes—
exchange, record width, and record depth subtyping. While we do not give a
full treatment of subtyping, it is worthwhile to briefly consider how we would
add it to λ→syn. We can certainly play the types-to-synthesis game with the usual
subsumption rule,

Γ ` e : τ′ τ′ <: τ

Γ ` e : τ
,

to produce synthesis subsumption rules for E and I terms:

Γ ` I B X τ′ τ′ <: τ

Γ ` I B X τ

Γ ` E τ′ τ′ <: τ

Γ ` E τ
.

In our non-deterministic system, both rules are perfectly admissible. Intuitively,
they state that rather than synthesizing at a particular goal type, we can synthesize
at any subtype. This justifies having a subsumption rule for both E and I terms;
would like to apply this logic to any goal type that admits subtyping.

Algorithmically this poses a great difficulty in that we now need to efficiently
and completely search the dimension of subtypes in addition to the dimension
of terms. For example, when E-guessing we may be able to satisfying a goal of
record type by synthesizing a record that is a width subtype of the goal, i.e., it
has additional fields. To get to this point, however, we must grow our goal type
so that we eventually search for terms of this (larger) subtype. One can imagine
using an iterative deepening approach on the number subtype derivations similar
to how we can enumerate terms in order of increasing size, but depending on
the types involved, the number of subtypes may grow very quickly with the size
of the subtyping derivation. Further implementation techniques might exploit
the behavior of particular subtyping rules that we introduce into the system or
heuristics to either prioritize likely subtypes or prune away unlikely or undesirable
subtypes, sacrificing some completeness for tractability.
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τ : := . . . | τ1 + τ2 Types
e : := . . . | match e with inl x1 → e1 | inr x2 → e2 | inl e | inr e Terms
v : := . . . | inl v | inr v Values
E : := . . . | match E with inl x1 → e1 | inr x2 → e2 Eval Ctx
E : := . . . Elim
I : := . . . | match E with inl x1 → I1 | inr x2 → I2 | inl I | inr I Intros
χ : := . . . | inl χ | inr χ Ex. Values

Γ ` e : τ

t-inl

Γ ` e : τ1

Γ ` inl e : τ1 + τ2

t-inr

Γ ` e : τ2

Γ ` inr e : τ1 + τ2
t-match

Γ ` e : τ1 + τ2
x1:τ1, Γ ` e1 : τ x2:τ2, Γ ` e2 : τ

Γ ` match e with inl x1 → e1 | inr x2 → e2 : τ

Γ ` I ⇐ τ

t-Iinl

Γ ` I ⇐ τ1

Γ ` inl I ⇐ τ1 + τ2

t-Iinr

Γ ` I ⇐ τ2

Γ ` inr I ⇐ τ1 + τ2
t-Imatch

Γ ` E⇒ τ1 + τ2
x1:τ1, Γ ` I1 ⇐ τ x2:τ2, Γ ` I2 ⇐ τ

Γ ` match E with inl x1 → I1 | inr x2 → I2 : τ

Γ ` χ : τ

t-ex-inl

Γ ` χ : τ1

Γ ` inl χ : τ1 + τ2

t-ex-inr

Γ ` χ : τ2

Γ ` inr χ⇐ τ1 + τ2

e −→ e′
eval-match-inl

match inl v with inl x1 → e1 | inr x2 → e2 −→ [v/x1]e1
eval-match-inr

match inr v with inl x1 → e1 | inr x2 → e2 −→ [v/x2]e2

Figure 4.3: λ→syn sums definitions
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4.3 Sums

Before adding algebraic data types (which we consider in Chapter 5), let’s consider
how we might add sums to λ→syn. Figure 4.3 gives the syntax, type checking, and
evaluation rules for sums. We introduce the sum type τ1 + τ2 with the constructors
inl e and inr e which inject a value of type τ1 and τ2, respectively, into the sum.
Note the fact that inl and inr are I-forms makes it evident that we do not need to
provide a type annotation stating the sum types they belong to. Because they are
I-forms, they are always checked against a sum type which renders the annotation
unnecessary.2

Sum types are eliminated via pattern matching, written:

match e with inl x1 → e1 | inr x2 → e2

which performs case analysis on a particular sum value to see which constructor
created it. eval-match-inl and eval-match-inr describes what happens when
we have either an inl or inr in the scrutinee position of the sum. In either situation,
we choose the appropriate branch of the pattern match, bind the value injected by
the sum to a variable, and produce the corresponding expression of that branch.

Perhaps surprisingly, pattern matching is an I form rather than an E form even
though it eliminates sums! This is because the branches of the pattern match act as
binders, similarly to the body of a lambda. They do not directly participate in the
reduction of the match and thus can be any (normal-form) expression. The result
of the pattern match is the (shared) type of these branches—note that t-Imatch

says that the result type is some τ which has no relation to the sum type that we
pattern match over. Therefore, when we type check the pattern match we need
some type to check these I-terms against (like t-Ilam) rather than generating a
type (like t-app).

Figure 4.4 gives the rules for synthesizing sums in λ→syn. Synthesizing injections
proceeds similarly to synthesizing constants in λ→syn. By assuming that the examples
are well-typed, we know that they are some collection of inl or inr values. We are
able to synthesize a inl value (irefine-sum-inl) or inr value (irefine-sum-inr) only
when all of the values agree on their head constructor. In other words, it is safe
to synthesize a constructor whenever the examples show that we can safely peel
away the top-most constructor.

Synthesizing pattern matches (irefine-match) proves to be a more complicated
affair. We proceed in three steps:

1. Guess a value of sum type to pattern match against.

2We also elide the type annotations from the external language to unify the syntax of inl and inr
although now their typing rules (t-inl and t-inr) must now guess the appropriate sum type. In an
actual implementation, we would be type checking these terms in a bidirectional style where the
sum type is given as input, so this is not a problem.
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Γ ` τB X I

irefine-sum-inl

Γ ` τ1B σi 7→ χi
i<n  I

Γ ` τ1 + τ2B σi 7→ inl χi
i<n
 inl I

irefine-sum-inr

Γ ` τ2B σi 7→ χi
i<n  I

Γ ` τ1 + τ2B σi 7→ inr χi
i<n
 inr I

irefine-match

Γ ` τ1 + τ2  E
distribute(E, X) = (Xl, Xr)

x1:τ1, Γ ` τB Xl  I1 x2:τ2, Γ ` τB Xr  I2

Γ ` τB X match E with inl x1 → I1 | inr x2 → I2

v ' χ

eq-inl

v ' χ

inl v ' inl χ

eq-inr

v ' χ

inr v ' inr χ

distribute(E, X) = (Xl, Xr)
where

Xl = {[v/x1]σ 7→ χ | σ 7→ χ ∈ X ∧ σ(E) −→∗ inl v}
Xr = {[v/x2]σ 7→ χ | σ 7→ χ ∈ X ∧ σ(E) −→∗ inr v}

Figure 4.4: λ→syn sums: synthesis rules
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2. Distribute the example worlds among the branches of the pattern match.

3. Recursively synthesize the branches of the pattern match.

The distribute function accomplishes the second step. To distribute the exam-
ples, we evaluate the scrutinee expression discovered in step (1) under each of the
example worlds. Because the examples are well-typed, we know that each such
evaluation results in either an inl or inr value. We then distribute all of the example
worlds that produce an inl value to the inl branch and all the example worlds that
produce a inr value to the inr branch. We update each of these example worlds
with a binding for the value contained in the constructor, but otherwise leave the
goal example value untouched.

To make this process concrete, consider the following set of example worlds:

X = [inl c1/x] 7→ c2, [inr c3/x] 7→ c4, [inl c5/x] 7→ c6.

If we guess the E-term x to pattern match against, then the examples are distributed
as follows

X1 = [c1/x1][inl c1/x] 7→ c2, [c5/x1][inl c5/x] 7→ c6

X2 = [c3/x2][inl c3/x] 7→ c4.

We synthesize the inl branch expression using X1 and the inr branch expression
using X2. Again, note that the example goal value has not changed during this
process.

Finally, to prove soundness and completeness in the presence of sums, we
require the following lemmas:

Lemma 4.3.1 (Type Preservation of distribute). If Γ ` X : τ and Γ ` E ⇐ τ1 + τ2
then x1:τ1, Γ ` Xl : τ and x2:τ2, Γ ` Xr : τ where distribute(E, X) = (Xl, Xr).

Proof. By t-exw-cons, we know that each example world σ 7→ χ ∈ X has type
τ. By the definition of distribute, we know that each such example world is
sent to either Xl or Xr with an additional binding, so it suffices to show that this
additional binding is well-typed. Consider a single example world σ 7→ χ ∈ X.
Unfolding the definition of distribute we see that we obtain the binding for this
example world from:

σ(E)→∗ inx v

where inx v is either inl v or inr v. We know this evaluation is possible because of
type safety, canonical forms, and strong normalization.

Consider the case where E evaluates to inl v; the inr case proceeds identically.
We know that v must have type τ1 because E and inl v, by preservation, have type
τ1 + τ2. Therefore, by t-env-cons, we know the binding is well-typed.
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Lemma 4.3.2 (Satisfaction Soundness of distribute). Let I be the expression

match E with
| inl x1 → I1
| inr x2 → I2.

If I1 � Xl and I2 � Xr and Γ ` E ⇐ τ1 + τ2 then I � X where distribute(E, X) =
(Xl, Xr).

Proof. Consider a single example world σ 7→ χ ∈ X. Because E is well-typed,
we know by type safety, strong normalization, and canonical forms that σ(E)
reduces to either inl v or inr v. Consider the inl case; the inr case proceeds identically.
If σ(E) −→∗ inl v, then by eval-match-inl we must show that v′ ' χ where
σ(I) −→ [v/x1]σ(I1) −→∗ v′. However, by unfolding the definition of distribute,
we know that [v/x1]σ 7→ χ ∈ Xl. Because I1 ' Xl, we can conclude that v′ ' χ.

Lemma 4.3.3 (Satisfaction Preservation of distribute). Let I be the expression

match E with
| inl x1 → I1
| inr x2 → I2.

If I � X and Γ ` E ⇐ τ1 + τ2 then I1 � Xl and I2 � Xr where distribute(E, X) =
(Xl, Xr).

Proof. Consider a single example world σ 7→ χ ∈ X. Because E is well-typed,
we know by type safety, strong normalization, and canonical forms that σ(E)
reduces to either inl v or inr v. Consider the inl case; the inr case proceeds identically.
If σ(E) −→∗ inl v, then by eval-match-inl and the fact that I � X, σ(I) −→
[v/x1]σ(I1) −→ ∗v′ and v′ ' χ. Note that every such [v/x1]σ 7→ χ ∈ Xl by the
definition of distribute. Therefore, we can conclude that I1 � Xl.

4.3.1 Example: Boolean Operators

With sums, we can now synthesize much more realistic programs. For example,
let’s encode booleans in a more standard style using sums with

bool
def
= T + T

true
def
= inl c

false
def
= inr c
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where we equipped T with a single constant c. Now consider the following set of
example values for a binary operation:

true⇒ true⇒ true

false⇒ true⇒ false

true⇒ false⇒ false

false⇒ false⇒ false

Let’s derive the and function implied by these examples. After two applications of
the irefine-arr rule to remove the arrows, we arrive at the following synthesis
state:

x:bool, y:bool ` boolB X′  λx:bool. λy:bool.�

where

X′ = [true/x][true/y] 7→ true

, [false/x][true/y] 7→ false

, [true/x][false/y] 7→ false

, [false/x][false/y] 7→ false.

We now apply irefine-match, guessing x to pattern match on which results in
the following distribution of examples:

Xl = [c/x1][true/x][true/y] 7→ true

, [c/x1][true/x][false/y] 7→ false

Xr = [c/x2][false/x][true/y] 7→ false

, [c/x2][false/x][false/y] 7→ false

and the hole filled in with the following program fragment:

match x with inl x1 → � | inr x2 → �

Synthesizing the inr branch is straightforward. We synthesize false for this
branch because all the examples agree that the synthesized program should be
false, i.e., all the example values are false. Note that this proceeds in two derivation
steps. In the first step, we apply irefine-sum-inr because all of the goal example
values are of the form of inr χ. In the second step, we apply irefine-base because
all of the goal example values left are c.

Synthesizing the inl branch is slightly trickier. We note that we cannot eguess an
E-term that satisfies X1. Furthermore, we cannot apply irefine-sum-inl because
the head constructors of the examples do not match. Therefore, we must apply
irefine-match one more time, pattern matching on y, to distribute the examples
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further

Xll = [c/x′1][c/x1][true/x][true/y] 7→ true

Xlr = [c/x1][true/x][false/y] 7→ false

where our program now looks like

λx:bool. λy:bool. match x with
| inl x1 →
(match y with
| inl x′1 → �
| inr x′2 → �)
| inr x2 → false.

In each of these branches, we can either guess the satisfying E-terms x and y
with irefine-eguess, or we can apply irefine-sum-inl and irefine-sum-inr to
synthesize true and false directly because there is only a single example in each
branch. In either case, the final result is the usual implementation of and that we
expect:

λx:bool. λy:bool. match x with
| inl x1 →
(match y with
| inl x′1 → true
| inr x′2 → false)
| inr x2 → false.

We can synthesize the other 23 − 1 = 7 possible boolean operators using appropri-
ate example sets with similar derivations in λ→syn.

4.3.2 Efficiency of Sums

In Section 4.3.1, note the irefine-match rule was highly non-deterministic in two
dimensions:

1. We guessed an arbitrary E-term to pattern match against.

2. We could pattern match at any time because irefine-match applies at any
type τ.

Both dimensions introduce extreme inefficiencies into an implementation of syn-
thesizer!

Building on the first point, not only can we pattern match against any E term,
we did not restrict ourselves from pattern matching on the same term twice! For
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example, while the following partial derivation

match x with
| inl x1 →
| match x with
| inl x′1 → true

. . .

is perfectly sound, it results in unnecessary work because the inner pattern match
duplicates the efforts of the outer pattern match. Such redundant pattern matches
are obvious, but with a richer language to draw from, the problem becomes more
subtle. For example, consider synthesizing programs over lists defined in the
standard recursive style along with an append function that appends lists. The
following pattern matches are semantically redundant:

match l with . . .
match append l [] with . . .
match append [] l with . . .

but are not obviously redundant unless you crack open the definition of append.
Building on the second point, because we can invoke irefine-match at any

point in an I-refinement, we can now get into situations such as this:

match x with
. . .
match y with

. . .

match y with
. . .
match x with

. . .

Here, we fall in the trap of synthesizing pattern matches over x and y, but we may
do them in any order. And furthermore, those pattern matches may appear far
apart in any branch of the program.

Historically, conditionals such as if statements and pattern matches have proven
to be the most difficult to reason about during synthesis [Albarghouthi et al.,
2013]. They not only represent points of non-determinism, they also greatly
expand the branching factor of the program. Furthermore many conditionals
are syntactically distinct but semantically equivalent, making search difficult to
optimize. In Chapter 7, we go through significant lengths to minimize these points
of inefficiencies.
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4.4 Let Binding

So far we have added basic types and language features to λ→syn with good results.
These features have admitted natural forms of examples and refinement rules and
have not disrupted soundness or completeness of λ→syn. However, the fact that a
feature is simple does not necessarily mean that we can synthesize it easily. Let
bindings are an excellent example of this fact.

Let bindings allow us to bind a value to a name, a function or some other type.
They are useful for implementing helper functions that cannot be inlined into the
main function’s definition, e.g.because it is recursive, or simply shrinking the size
of the program by avoiding code duplication. At first glance, we might introduce
let bindings with the standard syntactic sugar:

let x = e1 in e2
def
= (λx:τ. e2) e1.

This is perfectly serviceable for the external language e of λ→syn which would allow
us to use let-bindings in helper functions that we might feed to the synthesizer.
However, this doesn’t allow us to synthesize lets because the de-sugaring is not in
normal form.

To get around this, we might introduce let as a standard syntactic form with
the typing rule:

t-Ilet

Γ ` I1 ⇐ τ1 x:τ1, Γ ` I2 ⇐ τ2

Γ ` let x:τ1 = I1 in I2 ⇐ τ2

Transforming this into a synthesis rule, we obtain:

irefine-let

Γ ` τ1B · I1 X′ = . . .
x:τ1, Γ ` τ2B X′  I2

Γ ` τ2B X let x:τ1 = I1 in I2

On top of the fact that let is not type-directed—irefine-let applies at any type,
similarly to irefine-match—we must guess the “helper” type and term τ1 and I1
out of thin air!

Appealing to the Curry-Howard Isomorphism, synthesizing a let-binding is
tantamount to guessing and deriving a lemma and then using that lemma in your
proof. In the programming world, this is like guessing and deriving a helper
function to use in the solution of a problem. irefine-let precisely reflects our
intuition about this process: coming up with a seemingly unrelated lemma or
helper function is frequently as hard, if not harder, than solving the original
problem itself! We leave this difficult problem of discovering and employing such
let bindings to future work.
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Chapter 5

Recursion

So far, we have considered adding a variety of basic types to λ→syn. While these
types allow us to synthesize programs that more closely match those found in
actual functional programming languages, they have not significantly changed the
expressiveness of our core language. Next we will consider adding recursion to
λ→syn which greatly increases its expressiveness.

5.1 µ-types

One way to express recursion within a typed lambda calculus is with µ-types.
Figure 5.1 shows how we can add µ-types to λ→syn. The type µα. τ binds a recursive
occurrence of a type to the type variable α which appears in its definition τ. We
introduce a µ-type with the fold term and eliminate a µ-type with the unfold term.
For example, we may use µ-types, pair, sums, and Unit to encode a list type:

List
def
= µα. Unit + T ∗ α.

folds in a term explicitly mark points where the recursive type variable is used:

fold inl (c1, fold inl (c2, fold inr ())).

To use these recursive types, we explicitly unfold the folds where ever they appear,
for example:

(match unfold fold inl (c1, fold inr ()) with
inl x1 → fst x1
inr x2 → c2) −→∗ c1.

Synthesis rules, again, are derivable directly from the typing rules. To generate
an unfold (eguess-unfold), it is sufficient to guess a µ-type whose one-step un-
rolling is the goal type in question. When refining at µ-type (iguess-mu), we know
that all our examples are fold values. Refining such a value is straightforward;
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τ : := . . . | α | µα. τ Types
e : := . . . | fold e | unfold e Terms
v : := . . . | fold v Values
E : := . . . | fold E | unfold E Evaluation Contexts
E : := . . . | unfold E Elimination Terms
I : := . . . | fold I Introduction Terms
χ : := . . . | fold χ Example Values

Γ ` e : τ

t-fold

Γ ` e : [µα. τ/α]τ

Γ ` fold e : µα. τ

t-unfold

Γ ` e : µα. τ

Γ ` unfold e : [µα. τ/α]τ

Γ ` E⇒ τ

t-unfold

Γ ` E⇒ µα. τ

Γ ` unfold E⇒ [µα. τ/α]τ

Γ ` I ⇐ τ

t-Ifold

Γ ` I ⇐ [µα. τ]τ

Γ ` fold I ⇐ µα. τ

e −→ e′
eval-unfold-fold

unfold fold v −→ v

Γ ` τ  E

eguess-unfold

Γ ` µα. τ ⇒ E
Γ ` [µα. τ/α]τ ⇒ unfold E

Γ ` τB X I

irefine-mu

X = σi 7→ fold χi
i<n Γ ` [µα. τ/α]τB unfold(X′) I

Γ ` µα. τB X fold I

Γ ` χ : τ

t-ex-fold

Γ ` χ : [µα. τ/α]τ

Γ ` fold χ : µα. τ
v ' χ

eq-pair

v ' χ

fold v ' fold χ

unfold(σi 7→ fold χi
i<n

) = σi 7→ χi
i<n

Figure 5.1: λ→syn µ types
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because folds have no computational content, we simply shed the top-level fold
constructors of the examples, leaving behind example values of an appropriate
type that we can use to synthesize the unfolded program.

Up until now, I-refinement has always decomposed down a goal type down
into a base type. At first glance, µ-types seem to pose a problem for type-directed
example refinement because a µ-type can be unfolded infinitely, for example, our
List type:

µα. Unit + T ∗ α

≡ Unit + (T ∗ µα. Unit + T ∗ α)

≡ Unit + (T ∗ Unit + (T ∗ µα. Unit + T ∗ α))

≡ . . .

However, example values save us because while a µ-type represents an infinite
family of types, example values are necessarily finite structures. This simple
example value of type List:

fold inl (c, fold inr ())

Can only be unfolded twice, corresponding to the two folds in the value. Thus
application of irefine-mu stop once all the folds have been peeled away from the
example values.

5.1.1 Non-determinism

The rules in Figure 5.1 seem perfectly sensible. Indeed, they are sound as we can
show with the appropriate lemma.

Lemma 5.1.1 (Example-Type Preservation of unfold). If Γ ` X : µα. τ then Γ `
unfold(X) : [µα. τ/α]τ.

Proof. Immediate from our premise. t-exw-cons says that each σi is well-typed and
t-ex-fold says that each example fold is well typed along with their components
at type [µα. τ/α]τ.

It turns out that the necessary completeness lemma also holds rather trivially:

Lemma 5.1.2 (Satisfaction Preservation of unfold). If fold I � X then I � unfold(X).

Proof. Consider a single example world σ 7→ fold χ. By satisfies and eq-fold, we
know that σ(I) ' χ. We know from the definition of unfold that ∀σ 7→ fold χ. σ 7→
χ ∈ unfold(X) which is sufficient to conclude that I � unfold(X).

The problem is that we know that the addition of µ-types into the λ→ introduces
non-termination [Pierce, 2002]! In particular, let ω be diverging term. Then the
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expression λx : τ. ω cannot be synthesized in λ→syn extended with µ-types. Because
irefine-guess relies on evaluation, we will never be able to use it to synthesize ω
(which is an E-term). Thus in the presence of recursion, we lose completeness.

However, recursion poses even more of a problem than this. It is is unlikely
for us to encounter ω if we enumerate programs in order of size as suggested
in Chapter 2 because its encoding in λ→syn is roughly 30 AST nodes which is too
large to generate in a reasonable amount of time. However, such non-terminating
expressions in a standard functional programming language are much smaller by
comparison. For example imagine that we are synthesizing the body of a function
in an ML-like language:

let rec f (x:nat) : nat = �.

We may try to E-guess the expression f x for the body of f which produces an
infinite loop. This expression, in contrast to ω, is a mere 3 AST nodes which makes
it very likely that we would encounter this term during enumeration. Furthermore,
because this looping term is so small, we’ll enumerate many other equivalent terms
that contain it, e.g., f ( f x) or f ( f ( f x)). We could alter our evaluation strategy
to include a timeout or limit on number of evaluation steps, but with so many
non-terminating terms, this approach would not scale appropriately.

5.2 A Functional Synthesis Programming Language

Because we can easily enumerate infinite loops that ruin our generate-and-test
E-guess strategy, we need some way of restricting recursion so that we can regain
strong normalization. Rather than try to solve this problem within λ→syn where we
do not have many hooks for limiting recursive definitions, we graduate to MLsyn—
a core ML-like calculus for program synthesis—and adopt standard techniques
to obtain strong normalization in the system. Figure 5.2 defines the syntax of
MLsyn which is divided into an external language of expressions e and an internal
language of introduction terms I and elimination terms E that constitute the
β-normal forms of e.

MLsyn more closely approximates a real-world functional programming lan-
guage like OCaml, Haskell, or F# [Leroy et al., 2014; Peyton Jones et al., 2003;
Syme, 2013]. On top of the lambdas and application introduced in λ→syn, MLsyn
introduces two major features:

1. Algebraic data types and

2. Recursive function definitions.

Algebraic Data Types Rather than sums and products, MLsyn features algebraic
data types defined by a signature of constructors Σ. Constructors C are defined to
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τ : := T | τ1 → τ2
p : := C(x1, . . ., xk)
ρ : := vi ⇒ χi

i<m

e : := x | e1 e2 | ρ | fix f (x:τ1) : τ2 = e | C (e1, . . ., ek)
| match e with pi → ei

i<m | NoMatch
v : := ρ | fix f (x:τ1) : τ2 = e | C (v1, . . ., vk) | NoMatch
E : := � | E e | v E | C (v1, . . ., E , . . ., ek)

| match E with pi → ei
i<m

b : := · | rec | arg f | dec f
Γ : := · | x:τ{b}, Γ
Σ : := · | C:τ1 ∗ . . . ∗ τk → T, Σ

E : := x | E I
I : := E | fix f (x:τ1) : τ2 = I

| C(I1, . . ., Ik) | match E with pi → Ii
i<m

σ : := · | [v/x]σ
χ : := ρ | C(χ1, . . ., χk)
X : := · | σ 7→ χ, X

Figure 5.2: MLsyn syntax

take a tuple of arguments of type τ1 ∗ . . . ∗ τk and produce a value of a particular
data type T. This tuple may be empty in which case we define a nullary constructor,
i.e., a constructor that takes no arguments and is directly a value of type T. We
constrain patterns to be of the form C(x1, . . ., xk), disallowing nested patterns in
order to simplify our presentation without loss of expressiveness.

Note that this particular formulation of constructors implies that a constructor
C(e1, . . ., ek) must be fully saturated, that is, it is always provided all its arguments.
This choice mirrors OCaml and F# which also require that all constructor values
are fully saturated, but stands in opposition to Haskell which treats a constructor
as a function τ1 → . . .→ τk → T that may be partially applied. While this design
choice has implications for the implementation of data types in these languages, it
does not affect synthesis in any significant way as we have demonstrated that our
synthesis approach handles both tuples and partially applied functions without
problems.

Recursive Functions In addition to algebraic data types, MLsyn also features
recursive function values: fix f (x:τ1) : τ2 = e. By default MLsyn synthesizes
recursive functions where e may mention the function f . If f is not in the free
variables of e, then we use the usual lambda notion λx:τ1. e as syntactic sugar.

Recall from Section 2.3.4 that we synthesized a (non-recursive) function by
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splitting input/output examples (realized as partial function example values). This
way, we are able to provide a value binding for each argument that we record in
each example world’s environment σ. Because the functions we synthesize will
be recursive, we expect to add a binding for the function f itself in addition to its
argument. But then, what value binding can we provide for f , the function we are
currently synthesizing?

As we discuss in detail in Section 5.2.2, we use the partial function that specifies
f as its own value. To do this, we promote partial function values from mere exam-
ple values to (external language) values. In λ→syn, example values χ were a distinct
grammar production from v. The two productions differed in their representation
of values at arrow types: example values provide partial function terms χi ⇒ vi

i<m

and proper values provide lambdas λx:t. e. In MLsyn, the grammar of example
values χ is now a proper subset of the values. We continue to maintain that χ
does not include lambdas so that functions cannot appear in the goal position
of input/output pairs. This design decision has important ramifications for the
metatheory of MLsyn that we discuss in Chapter 6.

5.2.1 Static and Dynamic Semantics of MLsyn

Figure 5.3 and Figure 5.4 gives the rules for type checking the external and internal
languages of MLsyn, respectively. With some minor differences, the rules mirror
the type checking rules of λ→syn:

1. To admit recursive definitions, t-fix introduces a binder for the function
value f in addition to its argument x.

2. Expanding on the sum rule which binds a single variable, a constructor
pattern binds an arbitrary number of variables. t-match delegates this work
to the binders meta-function.

In addition to these standard rules, we enforce three additional properties to
ensure totality of the system:

Structural recursion: To ensure that a chain of recursive function calls always
terminates, we require that each recursive call is made to a structurally
smaller argument. This way, we know that the recursion bottoms out once we
have completely decomposed a value. To track this information, we introduce
binding specifications b to the bindings in Γ and update them as we type check
a program. There are four possible binding specifications:

• ·: no specification,

• rec: denotes a recursive function,

• arg f : denotes an argument to a function f , and
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Σ; Γ ` e : τ

t-var

x:τ ∈ Γ
Σ; Γ ` x : τ

t-app

Σ; Γ ` e1 : τ1 → τ2 Σ; Γ ` e2 : τ1
struct(Γ, e1, e2)

Σ; Γ ` e1 e2 : τ2
t-ctor

C : τ1, . . ., τk → T ∈ Σ Σ; Γ ` ei : τi
i<k

Σ; Γ ` C (e1, . . ., ek) : T
t-pf

Σ; Γ ` vi : τ1
i<m

Σ; Γ ` χi : τ2
i<m

Σ; Γ ` vi ⇒ χi
i<m : τ1 → τ2

t-fix

Σ; f :τ1 → τ2{rec}, x:τ1{arg f }, Γ ` e : τ2

Σ; Γ ` fix f (x:τ1) : τ2 = e : τ1 → τ2
t-match

Σ; Γ ` e : T complete(Σ, pi
i<m, T)

binders(Γ, e, pi) = Γi
i<m

Σ; Γi, Γ ` ei : τ
i<m

Σ; Γ ` match e with pi → ei
i<m : τ

t-nomatch

Σ; Γ ` NoMatch : τ

struct(e1, e2)

struct-var-rec

f :τ1 → τ2{rec} ∈ Γ x:τ1{dec f } ∈ Γ
struct(Γ, f , x)

struct-var-not-rec

f :τ1 → τ2{b} ∈ Γ b 6= rec

struct(Γ, f , e)

struct-not-var

e1 6= f
struct(Γ, e1, e2)

complete(Σ, pi
i<m, T)

complete

C ∈ τ1 ∗ . . . ∗ τk → T ∈ Σ↔ C(x1, . . ., xk) ∈ pi
i<m

complete(Σ, pi
i<m)

pos(T, τ)

pos-base

pos(T, T′)

pos-arr

τ1 6= T pos(T, τ1) pos(T, τ2)

pos(T, τ1 → τ2)

` Σ
sig-empty

` ·

sig-cons

pos(T, τ1). . .pos(T, τk) ` Σ
` C:τ1 ∗ . . . ∗ τk, Σ

binders(Γ, e, C(x1, . . ., xk)) = x1:τ1{b1}, . . ., xk:τk{bk}
where

∀i ∈ 1, . . ., k. bi =

{
dec f e = x, x:τ{b} ∈ Γ, b = arg f ∨ b = rec f , τi = τ

· otherwise

Figure 5.3: MLsyn external language type checking
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Σ; Γ ` E⇒ τ

t-Evar

x:τ ∈ Γ
Σ; Γ ` x ⇐ τ

t-Eapp

Σ; Γ ` E⇒ τ1 → τ2 Σ; Γ ` I ⇐ τ1
struct(Γ, E, I)
Σ; Γ ` E I : τ2

Σ; Γ ` I ⇐ τ

t-Ielim

Σ; Γ ` E⇒ τ

Σ; Γ ` I ⇐ τ

t-Ictor

C : τ1, . . ., τk → T ∈ Σ Σ; Γ ` Ii ⇐ τi
i<k

Σ; Γ ` C (I1, . . ., Ik)⇐ T
t-fix

Σ; f :τ1 → τ2{rec}, x:τ1{arg f }, Γ ` I ⇐ τ2

Σ; Γ ` fix f (x:τ1) : τ2 = I ⇐ τ1 → τ2
t-match

Σ; Γ ` E⇒ T complete(Σ, pi
i<m, T)

binders(Γ, E, pi) = Γi
i<m

Σ; Γi, Γ ` Ii ⇐ τ
i<m

Σ; Γ ` match E with pi → ei
i<m ⇐ τ

struct(E, I)

struct-var-rec

f :τ1 → τ2{rec} ∈ Γ x:τ1{dec f } ∈ Γ
struct(Γ, f , x)

struct-var-not-rec

f :τ1 → τ2{b} ∈ Γ b 6= rec

struct(Γ, f , I)

struct-not-var

E 6= f
struct(E, I)

complete(Σ, pi
i<m, T)

complete

C ∈ τ1 ∗ . . . ∗ τk → T ∈ Σ↔ C(x1, . . ., xk) ∈ pi
i<m

complete(Σ, pi
i<m)

binders(Γ, E, C(x1, . . ., xk)) = x1:τ1{b1}, . . ., xk:τk{bk}
where

∀i ∈ 1, . . ., k. bi =

{
dec f E = x, x:τ{b} ∈ Γ, b = arg f ∨ b = rec f , τi = τ

· otherwise

Figure 5.4: MLsyn internal language type checking
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• dec f : denotes a structurally decreasing variable to the function f .

When a binding has no specification, we avoid writing down the empty
specification in favor of the standard binding syntax x:τ.

The judgment struct(e1, e2) ensures that two expressions constitute a valid
function application. Non-recursive functions applications are always valid
(struct-var-not-rec and struct-not-var). If the function e1 is a recursive
function (currently being defined), i.e., is a variable f annotated with rec,
then the argument e2 must be a variable annotated with dec f . We require
that any recursive function application consists of a variable f annotated
with rec and a variable x annotated with dec f . In particular, a recursive
function application involving an argument that is not a variable is always
invalid. This is strictly more constraining than Coq which performs some
β-reductions to admit more programs [The Coq Development Team, 2012],
but is much easier to formalize and implement in practice.

t-app ensures that every application is structurally recursive (or non-recursive)
with struct. When type checking a function with t-fix, we record bindings
for both the argument x and the function itself f . f is marked as a recursive
function, rec, and the argument x is marked as an argument of f , arg f . The
only way to obtain a structurally decreasing value of f is to pattern match
on a variable that is either an argument of f , arg f , or is already structurally
decreasing with respect to f , dec f . When computing the binders of a pattern
match in t-match, we appeal to the helper function binders(Γ, e, p) which
creates binders for each of the pattern variables in p. When computing the
binding specifications for each variable, we check to see if the scrutinee of
the pattern match e is a variable that is annotated as arg f or dec f of some
recursive function f . If it is, then any sub-component of that pattern is
marked dec f if its type coincides with the type of e, i.e., it is a recursive
occurrence of a data type in a constructor.

Pattern completeness: We ensure that every pattern match over some data type T
covers all the possible constructor values of T. Because we require patterns
to be of the form C(x1, . . ., xk), this restriction amounts to having exactly
one branch for each constructor of type T. This constraint is enforced by
the judgment complete(Σ, pi

i<m, T) which ensures there is a one-to-one
correspondence between a set of patterns and constructors at type T.

Positivity restriction: Finally, we enforce a positivity restriction on data types
similar to Coq and Agda [Norell, 2007; The Coq Development Team, 2012]
that ensures that a recursive occurrence of a data type does not occur to the
left of an arrow in the type of a constructor. To see why this restriction is
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necessary, consider the data type:

data d = D of d→ τ

For some other data type τ. Now consider the function:

let f (x:d) : τ =
match d with
| D g→ g d.

Then the application f (D f ) is well-typed but goes into an infinite loop. The
judgment pos(T, τ) enforces this constraint for a particular argument type τ
against a data type T. When checking that a signature is well-formed (` Σ),
we ensure that each argument of each constructor in Σ obeys the positivity
restriction.

Figure 5.5 gives the evaluation rules and the compatibility judgment for the
system. On top of the usual evaluations rules, we also provide evaluation rules
for partial functions as they are now values. Partial functions values behave like
a pattern match (eval-pf-good): when applied to an argument vj, the partial
function vi ⇒ χi

i<m produces the output χj (where j ∈ 1, . . ., m), taking advantage
of the fact that example values are now a proper subset of the values.

However, if vj are not among the vi
i<m of the pattern match, evaluation pro-

duces a NoMatch exception value (eval-pf-bad) which then becomes the overall
result of the computation (eval-nomatch). The NoMatch value type checks at any
type T (t-nomatch), and it only exists in the external language as it arises as the
result of evaluating a partial function. Note that we’ve already restricted our match
expressions to be complete (via the complete judgment), so NoMatch values can
only arise due to pattern match failures when evaluating partial functions.

To determine which value to produce, we use the compatibility judgment (')
that we used before to verify that an E-guessed term satisfies our examples. In
λ→syn the compatibility judgment compared an example value χ and a value v.
However, when evaluating partial functions, we will compare two values—the
argument and the input of each alternative—so we must expand compatibility to
compare two values. Now that the syntactic classes are the same on both sides, we
use symmetry (eq-sym) to account for the new case when we compare a partial
function on the left to a function on the right, i.e., the flipped version of eq-fix-pf.
We can now also compare two partial functions for compatibility. eq-pf-pf says
that two partial functions are compatible if and only if we can draw a one-to-
one correspondence between their alternatives where compatible inputs produce
compatible outputs. Finally, because we are comparing two values, we may end up
comparing two functions for compatibility. In λ→syn such a comparison is possible
because functions are non-recursive so we can resort to a strategy based off of βη-
equivalence. However, in MLsyn this is not the case as our functions are recursive
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e→ e′
eval-ctx

e −→ e′

E [e] −→ E [e′]

eval-nomatch

E [NoMatch] −→ NoMatch

eval-app

(λx:τ. e) v −→ [v/x]e

eval-pf-good

v ' vj j ∈ 1, . . ., m

(vi ⇒ χi
i<m) v→ χj

eval-pf-bad

∀i ∈ 1, . . ., m. v 6' vi

(vi ⇒ χi
i<m) v→ NoMatch

eval-match

match C(v1, . . ., vk) with p1 → e1 | . . . | C(x1, . . ., xk)→ e | . . . | pm → em
−→ [v1/x1]. . .[vk/xk](e)

v ' v′
eq-refl

v ' v

eq-sym

v′ ' v
v ' v′

eq-pf-pf

∀i ∈ 1, . . ., m. ∃j ∈ 1, . . ., n. vi ' vj ∧ χi ' χj
∀j ∈ 1, . . ., n. ∃i ∈ 1, . . ., m. vi ' vj ∧ χi ' χj

vi ⇒ χi
i<m ' vj ⇒ χj

j<n

eq-fix-pf

∀i ∈ 1, . . ., m. (fix f (x:τ1) : τ2 = e) vi −→∗ v ∧ v ' χi

fix f (x:τ1) : τ2 = e ' vi ⇒ χi
i<m

eq-ctor

v11 ' v21 . . . v1k ' v2k

C(v11, . . ., v1k) ' C(v21, . . ., v2k)

Figure 5.5: MLsyn evaluation and compatibility rules
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Σ; Γ ` τ  E

eguess-var

x:τ ∈ Γ
Σ; Γ ` τ  x

eguess-app

Σ; Γ ` τ1 → τ2  E Σ; Γ ` τ1B · I
struct(Γ, E, I)

Σ; Γ ` τ2  E I

I � X

satisfies

∀σ 7→ χ ∈ X. σ(I) −→∗ v ∧ v ' χ

I � X

Σ; Γ ` τB X I

irefine-guess

Σ; Γ ` τ  E E � X
Σ; Γ ` τB X E

irefine-base

C : τ1, . . ., τk → T ∈ Σ X = σi 7→ C(Ii1, . . ., Iik)
i<n

proj(X) = X1, . . ., Xk Σ; Γ ` τj B Xj  Ij
j<k

Σ; Γ ` TB X C (I1, . . ., Ik)⇐ T
irefine-arr

X = σ1 7→ ρ1, . . ., σn 7→ ρn
X′ = apply( f , x, σ1 7→ ρ1) ++ . . . ++ apply( f , x, σn 7→ ρn)

Σ; f :τ1 → τ2{rec}, x:τ1{arg f }, Γ ` I B X′  τ2

Σ; Γ ` τ1 → τ2B X fix f (x:τ1) : τ2 = I
irefine-match

Σ; Γ ` T  E distribute(Σ, T, X, E) = (pi, X′i)
i<m

binders(Γ, E, pi) = Γi
i<m

Σ; Γi, Γ ` τB X Ii
i<m

Σ; Γ ` τB X match E with pi → ei
i<m

Figure 5.6: MLsyn synthesis

by default; in general, determining compatibility in this case is undecidable (a
point we discuss in Chapter 6). To remedy this, we add a reflexivity rule (eq-refl)
that equates two syntactically identical terms. This is only an approximation, as we
only consider a function equivalent to itself, but this works well in MLsyn because
comparing syntactically distinct, yet equivalent functions only occurs at higher
type and is, therefore, uncommon in practice.

5.2.2 Synthesis in MLsyn

Like λ→syn, we simply adapt the internal language typing judgment to perform
synthesis by making the type of the judgment an input and the term an output
as shown in Figure 5.6. With the irefine rules, we proceed by the shape of the
goal type, synthesizing an introduction form I along with refining the examples
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proj(X) = σi 7→ χ1i
i<n, . . ., σi 7→ χki

i<n

where X = σi 7→ C(χ1i, . . ., χki)
i<n

apply( f , x, σ 7→ p f ) = [p f / f ][vi/x]σ 7→ χi
i<m

where p f = vi ⇒ χi
i<m

distribute(Σ, T, X, E) = (p1, X′1), . . ., (pm, X′m)
where

ctors(Σ, T) = C1, . . ., Cm
∀i ∈ 1, . . ., n. pi = pattern(Σ, Ci)
∀i ∈ 1, . . ., n. X′i = [σ′σ 7→ χ | σ 7→ χ ∈ X, σ(E) −→∗ Ci(χ1, . . ., χk),

vbinders(pi, χ1, . . ., χk) = σ′]

ctors(Σ, T) = C1, . . ., Cn
where ∀i ∈ 1, . . ., n. Ci : τ1 ∗ . . . ∗ τk → T ∈ Σ

pattern(Σ, C) = C(x1, . . ., xk)
where C : τ1 ∗ . . . ∗ τk → T ∈ Σ

vbinders(p, e1, . . ., ek) = [e1/x1]. . .[ek/xk]
where p = C(x1, . . ., xk)

Figure 5.7: MLsyn synthesis auxiliary functions
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X. As with our presentation of λ→syn, we make this transformation explicit by
delegating all of this additional example refinement behavior to meta-functions—
proj, apply, and distribute for constructors (irefine-base), functions (irefine-
arr), and matches (irefine-match), respectively. The definition of these meta-
functions are found in Figure 5.7.

Constructor synthesis generalizes both product and sum synthesis from λ→syn.
Whereas products only have two components in λ→syn, constructors have arbitrary,
finite arity in MLsyn. And whereas sums only have two “tags”, inl and inr, con-
structors have an arbitrary, finite amount of tags as dictated by Σ. At base type,
we are free to I-refine a particular constructor C with irefine-base if all the ex-
amples share the same head constructor C. To synthesize the ith argument of the
constructor expression, we extract the ith argument of each of the examples and
use those—along with their respective environments—as our example values. For
example, if we had the following collection of example worlds:

X = σ1 7→ C(χ11, χ12, χ13),
σ2 7→ C(χ21, χ22, χ23).

Then irefine-base would split the examples into three collections of example
worlds,

X1 = σ1 7→ χ11, σ2 7→ χ21

X2 = σ1 7→ χ12, σ2 7→ χ22

X3 = σ1 7→ χ13, σ2 7→ χ23,

which would be used to synthesize the arguments I1, I2, and I3 to C, respectively.
Synthesizing at arrow type is comparatively straightforward. In fact, the

irefine-arr rule is almost identical to its λ→syn variant. The only difference is
that with fix, we must create a binding for f , the function that we are currently
defining or synthesizing. The binding has the goal type, τ1 → τ2, and as mentioned
previously, we use the example itself—a partial function—as its value.

Note that X is a collection of example worlds where each example world has
the form σ 7→ χ. Because of this, we may be refining several example worlds
when applying irefine-arr, each of which contains its own partial function value.
In λ→syn, refining a single example world versus multiple example worlds using
irefine-arr produced the same set of example values and bindings; only the
original environments differed. Assuming that the initial environments paired
with the example worlds are the same, then the two situations were equivalent.

In MLsyn, this is no longer the case. Consider the same collection of example
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worlds from Section 2.3.4:

X = σ1 7→ ρ1, σ2 7→ ρ2

ρ1 = v1 ⇒ χ1 | v2 ⇒ χ2

ρ2 = v3 ⇒ χ3 | v4 ⇒ χ4 | v5 ⇒ χ5.

Applying irefine-arr in MLsyn produces the following collection of example
worlds:

X′ = [ρ1/ f ][v1/x]σ1 7→ χ1, [ρ1/ f ][v2/x]σ1 7→ χ2

[ρ2/ f ][v3/x]σ2 7→ χ3, [ρ2/ f ][v4/x]σ2 7→ χ4, [ρ2/ f ][v5/x]σ2 7→ χ5

Even if σ1 and σ2 are identical, f is bound to either ρ1 or ρ2 When evaluating
applications to f in these example worlds, we will get different results as ρ1 and
ρ2 are different partial functions. In particular, we will likely encounter NoMatch
exceptions when evaluating one partial function but not the other because they
will likely have distinct branches.

In contrast, if we included all the input/output examples in a single partial
function:

X = σ 7→ ρ

ρ = v1 ⇒ χ1 | v2 ⇒ χ2

v3 ⇒ χ3 | v4 ⇒ χ4 | v5 ⇒ χ5.

then apply produces the following example worlds:

X′ = [ρ/ f ][v1/x]σ 7→ χ1, [ρ/ f ][v2/x]σ 7→ χ2

[ρ/ f ][v3/x]σ 7→ χ3, [ρ/ f ][v4/x]σ 7→ χ4, [ρ/ f ][v5/x]σ 7→ χ5

where each example world has all of the input/output examples available in the
value of f .

Finally, irefine-match generalizes the synthesis of sums to data types with
an arbitrary number of constructors of arbitrary arity. Like λ→syn, irefine-match

proceeds in three steps:

1. Guess a value of sum type to pattern match against.

2. Distribute the example worlds among the branches of the pattern match.

3. Recursively synthesize the branches of the pattern match.

The distribute takes care of the critical second step, creating m sets of example
worlds X1, . . ., Xm corresponding to the m possible constructors of the data type.
It proceeds by evaluating the scrutinee, E, within each example world of X and
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sends that example world to the branch corresponding to the constructor that E
evaluates to. Along the way, it binds the appropriate variables and constructor
argument values for that branch.

As a concrete example, consider a definition of a bool data type with construc-
tors true and false. That is,

Σ = true : bool, false : bool.

Then, if we have the following example worlds,

X = [true/b] 7→ false, [false/b] 7→ true,

applying irefine-match with b as the scrutinee results in the following two sets
of example worlds

X1 =[true/b] 7→ false

X2 =[false/b] 7→ true

where X1 are the examples for the true branch of the pattern match (because b
evaluates to true in those example worlds) and X2 are the examples for the false
branch of the pattern match (because b evaluates to false).

5.2.3 Structural Recursion in Synthesis

In Chapter 4 we saw that our type-directed synthesis strategy lent itself well to
extending the synthesis procedure to new language features. We were able to
re-appropriate the type checking rules for a new language feature into synthesis
rules. In MLsyn we see that these benefits extend beyond language features to
any property that a type system may enforce! In particular, we carry over the
structural checks (i.e., the struct judgment) to ensure that we only synthesize
total functions. The apply meta-function of irefine-arr annotates the function
binding f as recursive (rec) and the argument binding x as an argument of f (arg f ).
The distribute meta-function of irefine-match checks to see if an argument of a
recursive function is decomposed with a pattern match and annotates any recursive
bindings as structurally decreasing (dec f ). And finally, eguess-app ensures that for
any synthesized application involving a function f marked as rec that its argument
is marked as dec f .

Note that the other judgments that we used to ensure totality during type
checking are unnecessary, so we omit them in the synthesis judgment. The com-
pleteness check completeness is implicitly realized because we always synthesize
complete pattern matches for a data type. And the positivity restriction on data
types is irrelevant because synthesis takes (a well-formed) Σ as a given input.
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5.3 Examples in MLsyn

Let’s explore the expressive power of MLsyn with a number of examples. To begin
with, data types allow us to directly synthesize programs that we had to encode in
λ→syn and its extensions.

5.3.1 Specification for Multi-argument Functions

First, consider synthesizing the boolean and operator from Section 4.3.1. We require
a signature corresponding to the boolean data type:

Σ = true : bool, false : bool.

Now, we can synthesize a program at goal type bool → bool → bool. Originally,
we presented the examples from before as

true⇒ true⇒ true

| false⇒ true⇒ false

| true⇒ false⇒ false

| false⇒ false⇒ false,

a partial function with four input/output examples. An alternative specification
groups together similar inputs

true⇒ (true⇒ true | false⇒ false)

false⇒ (true⇒ false | false⇒ false)

so that we now have a partial function with two outer input/output examples that
feature two nested input/output examples each. In λ→syn, there was no semantic
distinction between these two presentations so we stuck with the former approach
as it appears more natural-looking. However, in MLsyn, the second approach is
preferred for the reasons described in Section 5.2.2. More specifically, in either
case, we will synthesize the following program skeleton:

fix f (b:bool) : bool→ bool =
fix g (b:bool) : bool = �.

Using the second set of examples, we will have four example worlds when syn-
thesizing the body of the inner function. In the first two, g will be bound to the
partial function true⇒ true | false⇒ false, and in the second two, g will be bound
to the partial function true ⇒ false | false ⇒ false. If we use the second set of
examples, we will have also four example worlds. However, in one of them, g will
be bound to the partial function true⇒ true, another true⇒ false, and in the last
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two false⇒ false. In this particular case, we do not need to synthesize a recursive
call, so the value assigned to g does not matter. But if it did, then evaluation of
g using the second set of examples will likely fail because none of the example
worlds received a complete definition of g. Because of this, we always specify
multi-argument function examples in a nested style a la the second set of examples.

5.3.2 Example: The And Function

With that digression out of the way, let’s continue synthesizing the and function
using the examples

ρ = true⇒ (true⇒ true | false⇒ false)

false⇒ (true⇒ false | false⇒ false).

First, we apply irefine-arr twice to refine away the arrows. This produces the
following synthesis state:

Γ ` boolB X fix f (b1:bool) : bool = fix g (b2:bool) : bool = �

where

ρ1 = true⇒ true | false⇒ false

ρ2 = true⇒ false | false⇒ false

Γ = f :bool→ bool→ bool{rec}, b1:bool{arg f }
, g:bool→ bool{rec}, b2:bool ` bool

X = [ρ/ f ][true/b1][ρ1/g][true/b1] 7→ true,
[ρ/ f ][false/b1][ρ2/g][true/b1] 7→ false,
[ρ/ f ][true/b1][ρ1/g][false/b1] 7→ false,
[ρ/ f ][false/b1][ρ2/g][false/b1] 7→ false.

Even though we have recursive functions, we will never be able to use them in
this synthesis derivation. This is because we will never be able to manufacture a
binding that is structurally decreasing with respect to f or g as neither of the bool
constructors contain recursive instances of bool in their types.

Because of this, synthesis proceeds identically to λ→syn from this point on. We
apply irefine-match to synthesize a match pattern matching on b1 with two
branches. In the first branch, the true branch, we have to apply irefine-match

a second time to pattern match over b2. From there, we can use irefine-base to
synthesize true and false. In the second branch, the false branch, both example
world’s goal values are false, so we can synthesize false directly using irefine-base.
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5.3.3 Example: The Stutter Function

Next, let’s consider synthesizing a recursive function over some inductive data
types. Suppose that we have the following signature corresponding to natural
numbers nat and lists over natural numbers list,

Σ = O : nat, S : nat→ nat,
Nil : list, Cons : nat→ list→ list,

and our goal type is list→ list.
First, let’s introduce shorthand for these data types. We use numbers in the

place of natural numbers, e.g.,

0 def
= O

1 def
= S(O)

2 def
= S(S(O))

3 def
= S(S(S(O))).

And we use standard list notation in the place of successive invocations of Nil and
Cons, e.g.,

[]
def
= Nil

[0] def
= Cons(O, Nil)

[1, 0] def
= Cons(S(O), Cons(O, Nil))

[2, 1, 0] def
= Cons(S(S(O)), Cons(S(O), Cons(O, Nil)))

Now, let’s consider the example:

ρ = []⇒ []

| [0]⇒ [0, 0]
| [1, 0]⇒ [1, 1, 0, 0]

which is a single partial function with three alternatives. The examples suggest that
we should synthesize the standard stutter function that duplicates every element
of a list.

First, we apply irefine-arr to refine the goal to a base type. This leaves us
with the following synthesis state:

f :list→ list{rec}, l:list{arg f } ` listB X fix f (l:list) : list = �
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where

X = [ρ/ f ][[]/l] 7→ []

[ρ/ f ][[0]/l] 7→ [0, 0]
[ρ/ f ][[1, 0]/l] 7→ [1, 1, 0, 0].

In each of the three resulting example worlds, f is bound to the original partial
function ρ and the argument l is bound to each of the left-hand side values of the
partial function alternatives.

At this point, we cannot apply irefine-base because the goal example values
do not share the same head constructor (Nil for the first values and Cons for the
others). We can try to E-guess with irefine-guess but no E-term we can generate
at this point satisfies all the examples. Therefore, we must apply irefine-match to
try to make more progress.

The only E-term that we can guess as a scrutinee of the match is l. The list
data type has two constructors, so we have to synthesize two branches for the
match corresponding to when l is Nil and l is Cons, respectively. Correspondingly,
distribute creates two sets of example worlds, one for each branch. It sends the
first example world to the first branch (because l evaluates to Nil in that branch)
and the remaining example worlds to the second branch (because l evaluates to
some Cons(v1, v2) in those branches).

Let’s consider synthesizing the Nil branch first. The synthesis state in this
branch is

f :list→ list{rec}, l:list{arg f } ` listB X �

where
X = [ρ/ f ][[]/l] 7→ [].

This synthesis problem is straightforward to solve. We can either apply irefine-base

to synthesize Nil since our only example value is Nil or irefine-guess to guess l
which evaluates to Nil as desired.

Now, let’s turn our attention to the Cons branch. The synthesis state for this
branch is:

x:nat, l′:list{dec f }, f :list→ list{rec}, l:list{arg f } ` listB X �

where

X = [0/x][[]/l′][ρ/ f ][[0]/l] 7→ [0, 0]

[1/x][[0]/l′][ρ/ f ][[1, 0]/l] 7→ [1, 1, 0, 0].

First, we can immediately apply irefine-base because the example goal values
share the same head constructor, Cons. This results in two more synthesis sub-goals
to fill in the arguments to Cons. The first sub-goal corresponds to the following
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refined examples:

X = [0/x][[]/l′][ρ/ f ][[0]/l] 7→ 0

[1/x][[0]/l′][ρ/ f ][[1, 0]/l] 7→ 1.

which we can satisfy by applying irefine-guess and E-guessing x. The second
sub-goal corresponds to the following refined examples:

X = [0/x][[]/l′][ρ/ f ][[0]/l] 7→ [0]

[1/x][[0]/l′][ρ/ f ][[1, 0]/l] 7→ [1, 0, 0].

which is identical to the original set of examples except with the head of the
example values peeled off. We can apply irefine-base and irefine-guess again to
arrive at the following partial program for the Cons branch of the pattern match

Cons(x, Cons(x,�))

where the final hole has type list and the examples have been refined to:

X = [0/x][[]/l′][ρ/ f ][[0]/l] 7→ []

[1/x][[0]/l′][ρ/ f ][[1, 0]/l] 7→ [0, 0].

Finally, we can apply irefine-guess to guess the recursive function call f l′. To
verify that this E-term satisfies the example, we must evaluate f l′ in each example
world:

• In the first world, l′ = [], so ρ [] −→ [] which is identical to the first world’s
goal value.

• In the second world, l′ = [0], so ρ [0] −→ [0, 0] which is identical to the
second world’s goal value.

Because f l′ satisfies the examples, it is a valid completion of the term, leaving us
with the final program:

fix f (l:list) : list =
match l with
| Nil→ Nil
| Cons(x, l′)→ Cons(x, Cons(x, f l′))

which is a correct implementation of the desired stutter function.
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5.3.4 Trace Completeness

Note that verifying that the recursive call f l′ when synthesizing stutter depends on
the value assigned to f ′. Because f ′ was the stutter function we were synthesizing,
we used the partial function ρ that we used as our initial specification of the
synthesis problem as f ′’s value. It turns out our choice of alternatives for ρ was
quite convenient as it allowed us to deduce that f l′ was a satisfying E-term.
However, what if we aren’t as careful with our specification?

Consider synthesizing the stutter function with this alternative partial function:

ρ′ = []⇒ []

| [1, 0]⇒ [1, 1, 0, 0]

which is identical to ρ except that we removed the alternative [0] ⇒ [0, 0]. With
this set of examples, we can, of course, synthesize a simpler function:

fix f (l:list) : list =
match l with
| Nil→ []
| Cons(x, l′)→ [1, 1, 0, 0]

which satisfies the examples but doesn’t generalize to the stutter function that we
want. But, regardless, the stutter function we synthesized previously certainly
satisfies these examples as it is a subset of the input/output examples we gave
in ρ, so we ought to be able to derive it with ρ′. The synthesis derivation with ρ′

proceeds identically to the derivation with ρ until we arrive at determining if f l′

satisfies the examples. In this case, there is a single example world:

X = [1/x][[0]/l′][ρ′/ f ][[1, 0]/l] 7→ [0, 0].

However, ρ′ [0] −→ NoMatch because ρ′ does not provide an input/output example
for [0]. According to our compatibility rules, NoMatch is not compatible with
anything (including itself), and so we cannot conclude that f l′ is a satisfying
expression.

In general, when we synthesize recursive function calls, for every input/output
example we provide, we must provide a corresponding input/output example
that describes that function’s behavior on an input that is structurally smaller with
respect to the original example’s input. We call this property of our input/output
examples trace completeness. For example, consider the input/output examples for
ρ above:

• The example [1, 0]⇒ [1, 1, 0, 0] requires the example [0]⇒ [0, 0] where [0] is
structurally smaller than [1, 0].

• In turn, the example [0] ⇒ [0, 0] requires the example [] ⇒ [] where [] is
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structurally smaller than [0].

• Finally, [] is a base case, so the example [] ⇒ [] does not require any struc-
turally smaller examples.

Note that the input of each additional example that we require is the largest term
possible that is structurally smaller than the original example’s input. Theoretically
this is not necessary; we only require a descending chain of input/output examples
that satisfies the pattern of decomposition the candidate program takes. In the case
of stutter and most other recursive functions, decreasing the size of the input by a
single constructor, i.e., what a single match produces, is sufficient. However, other
recursive functions may demand different decompositions of the arguments to the
function. For example, we may attempt to synthesize a function of the following
form

fix f (l:list) : τ =
match x with
| Cons(x, l′)→

match l′ with
| Cons(y, l′′)→ . . . f l′′. . .

. . .

where we peel away two constructors before making a recursive call.
Our input/output examples need only mimic this behavior. For example, the

partial function

[]⇒ 0
| [1, 0]⇒ 1
| [3, 2, 1, 0]⇒ 2

is trace complete with respect to this recursion pattern, so the above program would
satisfy it. However, developing such an example set requires some knowledge
about how the eventual implementation of the function behaves, partially defeating
the purpose of using a program synthesizer in the first place! Furthermore, we
may not be able to avoid specifying other input/output examples even though our
desired function has this behavior. For example, if we needed to specify odd-length
example lists to synthesize the hypothetical function above, for example, [2, 1, 0],
then we would need to specify the missing example lists of odd-length.

Therefore, in practice, to fulfill trace completeness we always peel away single
constructors—in other words, we choose the largest structurally decreasing value
with respect to an example—when completing the trace. For example, the partial
function specification of stutter satisfies this property. In some cases we may be
able to get away with fewer examples, but this approach has the benefit of:

1. Completeness with respect to synthesis as this choice ensures that any recur-
sive function call with any decomposition of that call’s original argument
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will have a corresponding input/output example in the partial function.

2. Requiring that we only know which argument of a recursive function will be
structurally decreasing which is much more reasonable to assume than the
corresponding pattern of recursive calls.

The downside to trace completeness is that it can greatly increase the number of
examples needed to synthesize a program, especially when multiple arguments
are involved. In Chapter 8, we explore this phenomenon in more detail once we
have built up a synthesis procedure from this synthesis judgment.

Trace completeness allows us to overcome the fact that we do not have a
complete value available for the recursive function that we are trying to synthesize.
However, we typically have part of that function—sometimes even the whole
function—already synthesized. For example, when we were synthesizing stutter,
the recursive call that we synthesized completed the program, and yet we didn’t
use this value for the recursive function. If we did, then we wouldn’t need our
examples to be trace complete because we can simply evaluate the recursive
function like normal instead of appealing to a partial function value. The problem
is that, in general, this may not be true as we may have only synthesized some of
the branches of a pattern match before needing to evaluate a recursive function call.
In Chapter 10, we briefly explore how we can use this partial program information
to reduce the number of examples we need to provide to the synthesizer.

5.4 Related Work

In this chapter, we extended λ→syn to synthesize recursive programs and algebraic
data types. We now compare our approach to other example-based systems that
synthesize recursive functional programs.

5.4.1 Example Rewriting

The earliest example-based synthesis systems such as Thesys [Summers, 1976]
took an analytical approach to example refinement where the examples were
incrementally rewritten to a set of Lisp-like primitives and generalized to create
a final program. Modern improvements on Thesys such as Igor2 [Kitzelmann,
2010b] and MagicHaskeller [Katayama, 2012] improve upon Thesys in a variety
of ways, in particular, generalizing the rewriting of examples to arbitrary term-
rewriting of constructors. This process finds the least general generalization of the
set of input/output examples through antiunification. This amounts to equating
the parts of the examples that are the same and abstracting away the parts that are
different as new synthesis sub-problems to solve. For example, for the following
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example constructor values:

Cons(0, Nil)⇒ Cons(0, Cons(0, Nil))

Cons(1, Cons(0, Nil))⇒ Cons(1, Cons(1, Cons(0, Cons(0, Nil))))

the least general generalization creates the following constructor value:

Cons(x, l1)⇒ Cons(x, Cons(x, l2))

Where the variable l2 is a synthesis sub-problem that must be solved.
This process of antiunification describes exactly the behavior of MLsyn’s I-

refinement rules. In particular, you can think of the constructor peeling behavior
of the irefine-base rule as performing one step of anti-unification on the top-most
constructor value. Once I-refinement bottoms out, i.e., irefine-base or irefine-arr

no longer apply, we resort to other means to complete the program, similarly to
Igor2 and its related systems.

5.4.2 Examples and Generalization

For MLsyn, we must utilize E-guessing to complete the program once I-refinement
has been exhausted. In the case that we need to synthesize a recursive function
call, we require that the examples are trace complete so that evaluation of the
recursive call can be performed by the examples, realized now as a partial function.
Other example-based synthesis systems also have variants of this requirement.
Thesys calls this relationship between examples differences, something that Igor2
also requires. Escher [Albarghouthi et al., 2013] also requires a similar sort of
property of the examples to evaluate recursive function calls. However, rather
than demand this property of the examples upfront, Escher queries the user for
additional examples as synthesis demands it.

While MLsyn and Escher both enumerate arbitrary recursive function calls
in a generate-and-test style, Thesys and its descendants maintain an analytical
approach by recognizing a fixed set of recurrence patterns in the rewritten examples
in order to generate recursive calls. The two approaches represent a trade-off in
completeness and scalability. The assumption of a fixed set of patterns, similar to
a fixed set of combinators [Feser et al., 2015], limits the search space significantly
but means that certain patterns of recursive calls cannot be synthesized.
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Chapter 6

The Metatheory of MLsyn

The simple type extensions to λ→syn that we explored in Chapter 4 did not change
λ→syn’s metatheory. In particular, soundness and completeness followed from
straightforward lemmas about the behavior of the new language features. However,
the introduction of recursion in MLsyn is significant enough to reexamine whether
the key properties we established in Chapter 3 hold and if not, why we lost them.

6.1 Auxiliary Lemmas

When proving soundness and completeness for λ→syn and its extensions in Chapter 3
and Chapter 4, we required a number of auxiliary facts for each example-refinement
function we introduced:

• Type preservation lemmas stating that the example-refinement function
produced well-typed examples.

• Satisfaction soundness lemmas stating that if we had satisfying sub-expressions
for examples produced by the example-refinement function, we could con-
structor an overall satisfying expression for the original examples.

• Satisfaction preservation lemmas stating that if an expression satisfied some
examples, then its sub-expressions satisfied the examples produced by the
example-refinement function.

We state these lemmas here for MLsyn.

Lemma 6.1.1 (Type Preservation of apply (MLsyn)). If Σ; Γ ` σ 7→ vi ⇒ χi
i<m :

τ1 → τ2 then Σ; x:τ1, Γ ` apply(x, σ, vi ⇒ χi
i<m) : τ2.

Lemma 6.1.2 (Type Preservation of Example World Concatenation (MLsyn)). If Σ; Γ `
X : τ and Σ; Γ ` X′ : τ then Σ; Γ ` X ++ X′ : τ.

81



Lemma 6.1.3 (Satisfaction Soundness of apply (MLsyn)). If I � X′ then fix f (x:τ1) :
τ2 = I � X where X′ = apply( f , x, σi 7→ ρ1) ++ . . . ++ apply( f , x, σn 7→ ρn).

Lemma 6.1.4 (Type Preservation of proj (MLsyn)). If X = σi 7→ C(I1i, . . ., ki)
i<n

,

C : τ1 ∗ . . . ∗ τk → T, Σ; Γ ` X : T then Σ; Γ ` Xj : τj
j<k

where proj(X) = X1, . . .Xk.

Lemma 6.1.5 (Satisfaction Soundness of proj (MLsyn)). If Ij � Xj
j<k

then C(I1, . . ., Ik) �
X where proj(X) = X1, . . ., Xk.

Lemma 6.1.6 (Satisfaction Preservation of proj (MLsyn)). If C(I1, . . ., Ik) � X then

Ij � Xj
j<k

where proj(X) = X1, . . ., Xk.

Lemma 6.1.7 (Type Preservation of distribute (MLsyn)). If Σ; Γ ` X : τ and Σ; Γ `
E ⇒ T, then Σ; Γi, Γ ` Xi : τ

i<m
where distribute(Σ, T, X, E) = (pi, Xi)

i<m
and

binders(Γ, E, pi) = Γi
i<m

.

Lemma 6.1.8 (Satisfaction Soundness of distribute (MLsyn)). Let I be the expres-
sion

match E with
| p1 → I1

. . .
| pm → Im.

If Ii � Xi
i<m

then I � X where distribute(Σ, T, X, E) = (pi, Xi)
i<m

.

Lemma 6.1.9 (Satisfaction Preservation of distribute (MLsyn)). Let I be the expres-
sion

match E with
| p1 → I1

. . .
| pm → Im.

If I � X then Ii � Xi
i<m

where distribute(Σ, T, X, E) = (pi, Xi)
i<m

.

Most of the proofs follow analogously from similar language features we explored
in Chapter 3 and Chapter 4, so we do not restate them here. The exceptions to this
rule are satisfaction soundness and preservation for apply. To see this, let’s follow
the proof of satisfaction soundness for apply:

Consider a single example world σ 7→ vi ⇒ χi
i<m ∈ X. Unfolding the definition

of the satisfies judgment for I shows that:

σ(I) = σ(fix f (x:τ1) : τ2 = I1) −→∗ fix f (x:τ1) : τ2 = σ(I1).
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Therefore, it suffices to show that fix f (x:τ1) : τ2 = σ(I1) ' vi ⇒ χi
i<m. By

eq-fix-pf, this means that we must show that for all i ∈ 1, . . ., m,

Iσ vi −→ [Iσ/ f ][vi/x]σ(I1) −→∗ v ∧ v ' χi

where Iσ = fix f (x:τ1) : τ2 = σ(I1). However, this follows directly from the fact
that I1 � X′ where each example world in X′ is of the form [vi/x]σ 7→ χi.

At this point in the proof, we would appeal to the fact that I1 � X′ from our
inductive hypothesis. But expanding the definition apply, we find that we know
that for each i ∈ 1, . . ., m,

[ρ/ f ][vi/x]σ(I1)→∗ v ∧ v ' χi.

This looks like what we want, but in our goal, we have that the recursive function
is substituted for f whereas we know from the inductive hypothesis that ρ is
substituted for f instead! However, we know substituting the recursive function
for the partial function is sound because, by design of the synthesis algorithm, the
recursive function agrees on all the behavior defined by ρ. The reverse direction is
more sketchy; we discuss it in Section 6.3.

6.2 Soundness

Recall that soundness of type-directed program synthesis can be broken up into
two components:

1. We synthesize well-typed programs.

2. We synthesize programs that satisfy the examples.

Unsurprisingly, both properties hold in MLsyn.

Lemma 6.2.1 (Type Soundness of MLsyn).

1. If Γ ` τ  E, then Γ ` E⇒ τ.

2. If Γ ` X : τ and Γ ` τB X I, then Γ ` I ⇐ τ.

Proof. By mutual induction on the synthesis derivations for E- and I-terms. Con-
sider the final rule used in the derivation:

Case eguess-var E = x. By the premise of eguess-var, x : τ which is sufficient to
conclude by t-Evar that x is well-typed.
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Case eguess-app E = E1 I. By the premises of eguess-app and our inductive
hypotheses, we know that E1 and I are well-typed at τ1 → τ and τ1,
respectively. With this, we can conclude via t-Eapp that E1 I is well-typed at
type τ.

Case irefine-guess I = E. By the premises of irefine-guess and our inductive
hypothesis, we know that E is well-typed as an E-form and from t-Ielim E is
well-typed as an I-form.

Case irefine-arr I = fix f (x:τ1) : τ2 = I1. By the premises of irefine-arr and
our inductive hypothesis, we know that I1 is well-typed. Therefore, by t-Iarr,
we know that I is well-typed.

Case irefine-base I = C(I1, . . ., Ik). By the premises of irefine-base and our
inductive hypothesis, we know that each Ik is well-typed. Therefore, by
t-Ictor, we know that I is well-typed.

Case irefine-match I = match E with pi → Ii
i<m. By the premises of irefine-

match and our inductive hypotheses, we know that each sub-component of
the match expression is well-typed. Therefore, by t-Imatch, we know that I
is well-typed.

Lemma 6.2.2 (Example Soundness of MLsyn). If Γ ` X : τ and Γ ` τ B X  I,
then I � X.

Proof. By induction on the synthesis derivation of I. Consider the final rule used
in the derivation:

Case irefine-guess I = E. By the premises of irefine-guess and our inductive
hypothesis, we know that E is well-typed as an E-form and from t-Ielim E is
well-typed as an I-form.

Case irefine-arr I = fix f (x:τ1) : τ2 = I1. By the premises of irefine-arr we
know that X = σ1 7→ ρ1, . . ., σn 7→ ρn and X′ = apply(σ1 7→ ρ1) ++ . . . ++
apply(σ1 7→ ρn). By Lemma 6.1.1 and Lemma 6.1.2, we know that X′ is
well-typed. This allows us to use our inductive hypothesis to conclude that
I1 � X′, and with Lemma 6.1.3, we can conclude our goal.

Case irefine-base I = C(I1, . . ., Ik). By the premises of irefine-base we know

that X = σi 7→ C(χi1, . . ., χik)
i<n

and proj(X) = X1, . . ., Xk. By Lemma 6.1.4,
we know that the X1, . . ., Xk are well-typed. This allows us to use our

inductive hypothesis to conclude that Ii � Xi
i<k

, and with Lemma 6.1.5, we
can conclude our goal.
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Case irefine-match I = match E with pi → Ii
i<m. By the premises of irefine-

match we know that we have generated an arbitrary E of type T and

distribute(Σ, T, X, E) = (pi, Xi)
i<m

. By Lemma 6.1.7, we know that the
X1, . . ., Xm are well-typed. This allows us to use our inductive hypothe-
sis to conclude that Ii � Xi

i<m
, and with Lemma 6.1.8, we can conclude our

goal.

6.3 Completeness

Soundness ensures that any program that we synthesize is correct with respect
to its specification (i.e., types and examples). Completeness ensures that we
can synthesize any program expressible in the language. MLsyn poses multiple
potential difficulties for completeness. The most obvious problem is the presence of
recursion. Because the synthesis judgment relies heavily on evaluation—in irefine-
match when evaluating a scrutinee and in irefine-guess when normalizing
an E-term to perform a compatibility check—synthesis may not terminate on
certain inputs if evaluation goes into an infinite loop. Luckily, the MLsyn type
system employs the same checks as other languages believed to be total to ensure
termination (such as Coq [The Coq Development Team, 2012]).

Theorem 6.3.1 (Termination of MLsyn). If ` Σ and Σ; Γ ` e : τ, then either e is some
v or e −→∗ v and Σ; Γ ` v : τ.

Because of this theorem (which we do not prove), recursion is not a problem for
completeness. However, our use of partial functions as values in MLsyn causes dire
complications for completeness.

6.3.1 Partial Functions Approximating Recursive Behavior

One problem is related to the proofs of satisfaction soundness and preservation
above. We showed that soundness holds, but we needed to reason about where
it was safe to substitute a recursive function for a partial function that is its
specification. This is ok because we know that the recursive function agrees on
all the behavior specified by the partial function. The problem is that satisfaction
preservation requires us to reason in the opposite direction: is it ok to substitute a
partial function for a recursive function that it specifies? The answer is negative
because the partial function will likely to evaluate to NoMatch on inputs that the
recursive function would not.

85



For example, recall the correct implementation of the stutter function that we
synthesized earlier:

fix f (l:list) : list =
match l with
| Nil→ Nil
| Cons(x, l′)→ Cons(x, Cons(x, f l′)).

Here, it is clear that if we substitute for f the partial function ρ that we used to
synthesize stutter,

ρ = []⇒ [] | [0]⇒ [0, 0] | [1, 0]⇒ [1, 1, 0, 0],

we will get NoMatch errors on values not specified by ρ.

6.3.2 Partial Functions as Values

To support partial functions as the program value for recursive functions, we
added partial functions to the grammar of plain values. It turns out that this
modification alone is sufficient to make MLsyn incomplete! This is because as
discussed in Section 5.2.1, the evaluation rule for partial functions eval-pf-good

requires that we compare the inputs of the partial function to the argument of the
function call. The compatibility relation from λ→syn is insufficient for this purpose
because it compares an example value χ and a value v. We therefore extend the
compatibility relation to compare two values, taking advantage of the fact that
because we needed to extend values with partial functions, example values are
now a proper subset of plain values.

Because the compatibility relation now compares values, we must contend
with comparing functions for equality. This arises when evaluating higher-order
partial functions. For example, if we evaluate (v1 ⇒ χ) v2, then we may compare
two function values for equality if v1 and v2 are fixes. In λ→syn, βη-equivalence
over functions is decidable. However, in the presence of recursion, equivalence
of functions is no longer decidable. To see this, note that MLsyn is at least as
expressive as the primitive recursive functions whose equality is known to be
undecidable [Kahrs].

Therefore, we must resort to eq-refl that only equates two function values if
they are syntactically identical (up to renaming of bound variables). However, this
approximation means that we cannot solve some higher-order synthesis problems.
For example, consider synthesizing at the higher goal type ((nat→ nat)→ nat)→
nat. Now suppose that we have a partial function with a single input/output
example

(λx:nat. x ⇒ O)⇒ O
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and synthesize in a context

Γ = plus : nat→ nat→ nat, id : nat→ nat.

In our starting environment, plus is bound to the usual definition of addition over
natural numbers and id is bound to the value λx:nat. plus x O. Then, we are unable
to synthesize the candidate function:

λ f :(nat→ nat)→ nat. f id.

To see why, note that we must evaluate the body of the function, f id, when
applying irefine-guess. Evaluation results in NoMatch because the functions
λx:nat. plus x O and λx:nat. x are not syntactically identical.
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Chapter 7

Implementation

So far, we have explored the theoretical foundations of program synthesis with
types in detail by developing and extending core synthesis calculi equipped
with increasingly complex types. Now that we have a core calculus that closely
resembles a subset of a real-world functional programming language, MLsyn, we
now turn our attention to deriving a synthesis procedure from our synthesis
calculus and then making that procedure efficient.

7.1 Synthesis Trees

Given a specification—a goal type and examples—the possible synthesis deriva-
tions form a tree of possible satisfying programs, a synthesis tree. For example,
consider synthesizing a function of goal type bool→ bool→ bool from the partial
function with a single input/output example

true⇒ true⇒ true.

There are many programs that fulfill this specification, for example, the constant
true function

λb1:bool. λb2:bool. true,

the left-select function
λb1:bool. λb2:bool. b1,

the right-select function,
λb1:bool. λb2:bool. b2,

and the and operator,

λb1:bool. λb2:bool. match b1 with
| true→ b2
| false→ false.
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� : bool→ bool→ bool

irefine-arr

λb1:bool.� : bool→ bool

irefine-arr

λb2:bool.� : bool

irefine-base

true
irefine-guess

eguess-var

b1

irefine-guess

eguess-var

b2

irefine-match

match b1 with
| true→ �1 : bool
| false→ �2 : bool

(1)
irefine-base

true

(2)
irefine-guess

eguess-var

b2

Figure 7.1: Example synthesis tree.

We give the synthesis tree corresponding to these potential derivations in
Figure 7.1. Nodes in this tree correspond to potential application of rules from
our synthesis judgment, and edges connects the rule applications to the sub-
goals, denoted by holes �, that they fulfill. The root of the tree, the single hole,
corresponds to our initial synthesis goal. In some cases, a single sub-goal is left
behind after applying a rule, for example, when applying irefine-arr, so the
children of that node represent the different ways we can complete that sub-goal.
In other cases, multiple sub-goals are left behind, for example, when applying
irefine-match. When this happens, we annotate the corresponding child nodes
so it is clear which sub-goal they are meant fulfill.

When we talked about synthesizing a program in earlier chapters, we have
chosen a particular derivation out of this tree. For example, the derivation corre-
sponding to the and function that we synthesized in Chapter 4 is given by:
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� : bool→ bool→ bool

irefine-arr

λb1:bool.� : bool→ bool

irefine-arr

λb2:bool.� : bool

irefine-match

match b1 with
| true→ �1 : bool
| false→ �2 : bool

(1)
irefine-base

true

(2)
irefine-guess

eguess-var

b2.

7.2 Collection Semantics

Now that we are concerned with implementation, it is no longer sufficient to
merely assert that a single derivation or path exists in this synthesis tree. We must,
instead, derive a synthesis procedure that constructs a refinement tree and extracts
a derivation from that tree which corresponds to a satisfying program. Note that it
may be useful to construct more of a refinement tree than a single derivation. For
example, it may be more efficient to derive parts of the refinement tree first, leaving
more time-consuming portions of the tree for later as we explore in Section 7.3.3.
We may also want to be able to choose from among multiple satisfying programs
using additional heuristics, for example, the number of variables or external
functions used. Or, we may want to display the list of potential programs to the
user and let them choose.

For the purposes of our work, we’ll restrict ourselves to generating a single
satisfying program. To build a synthesis procedure, we observe that we can classify
the synthesis rules of MLsyn into three sorts:

1. Refinement rules that allow us to act in a type-directed manner by refining a
synthesis goal according to the goal type and examples,
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2. Guessing rules that allow us to guess an E-term and check it against the
examples, and

3. Matching which allows us to generate more information by performing case
analysis on a value.

The refinement rules, irefine-arr and irefine-base apply at distinct types, so
there is never any question as to which refinement rule to apply at a particular
synthesis state. Guessing via irefine-guess, on the other hand, may apply at any
time whenever we can generate an E-term from the context of the appropriate
type. Likewise, irefine-match also applies whenever we can generate an E-term
of base type to pattern match over.

We can explore these possibilities by using an iterative deepening approach
by the size of the derivation. First let’s define a collection semantics derived from
our synthesis rules. Let the function refine(Σ; Γ; τ; X; k) produce the set of all
programs of goal type τ that satisfy the examples X that are exactly of size k
(as determined by the number of nodes in their abstract syntax trees). With this
function, we can define a simple synthesis procedure over an initial synthesis state
(Σ, Γ, τ, X) as follows:

1. Let k = 1 initially.

2. Calculate E = refine(Σ; Γ; τ; X; k).

• If E 6= ∅, then return any program from E .

• If E = ∅, then increment k and repeat step (2).

Figure 7.2 and Figure 7.3 give the definition of these semantics, appealing to the
auxiliary functions and definitions for synthesis we defined earlier in Figure 5.6
and Figure 5.7. This collection of functions improves on the synthesis judgments
of MLsyn in a number of ways:

1. The non-deterministic choice of application of the rules at each synthesis step
is made explicit. In particular, with each call of refine, we calculate the set of
programs we would generate if we refined by type (refine), guessed E-terms
(guess), or pattern matched (match) and take the union of them as the final
result.

2. By placing an upper bound on the size of the synthesized programs, indi-
vidual calls to refine always terminate as the size of the desired programs
always decreases with each successive call to refine or one of its helper
functions.

3. All implicitly quantified variables are made explicit. For example, match
implicitly quantifies over all base types, so we take the union of performing
pattern matching over each of these types.

91



guess(Σ; Γ; τ; X; 0) = {}
guess(Σ; Γ; τ; X; k) = {E | E ∈ gen(Σ; Γ; τ; k), E � X}

types(Σ) = {T | C : τ1 ∗ . . . ∗ τm → T ∈ Σ}
match(Σ; Γ; τ; X; 0) = {}
match(Σ; Γ; τ; X; k) =

⋃
T∈types(Σ)

⋃
k′,k1,...,km for

1+k′+k1+...+km=k

{match E with pi → Ii
i<m |

E ∈ gen(Σ; Γ; T; k′),

(pi, Xi)
i<m

= distribute(Σ, T, X, E),
Γi

i<m
= binders(Γ, E, pi),

Ii ∈ refine(Σ; Γi, Γ; τ; Xi; ki)
i<m}

refine(Σ; Γ; τ; X; 0) = {}

refine(Σ; Γ; τ1 → τ2; X; k) = {fix f (x:τ1) : τ2 = I |
X′ = apply( f , x, σ1 7→ ρ1) ++ . . . ++ apply( f , x, σn 7→ ρn),
I ∈ refine(Σ; f :τ1 → τ2{rec}, x:τ1{arg f }; Γ; X′; k− 1)

} ∪ guess(Σ; Γ; τ; X; k) ∪match(Σ; Γ; τ; X, k)
where

X = σ1 7→ ρ1, . . ., σn 7→ ρn

refine(Σ; Γ; T; X; k) =
⋃

k1,...,km for

1+k1+...+km=k

{C(I1, . . ., Im) |
X1, . . ., Xm = proj(X),

Ii ∈ refine(Σ; Γ; τi; Xi; ki)
i<m

} ∪ guess(Σ; Γ; τ; X; k) ∪match(Σ; Γ; τ; X; k)
where

X = σi 7→ C(Ii1, . . ., Cim)
i<n

C : τ1 ∗ . . . ∗ τm ∈ Σ

Figure 7.2: MLsyn collection semantics
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gen(Σ; Γ; τ; 0) = {}
gen(Σ; Γ; τ; 1) = {x | x:τ ∈ Γ}
gen(Σ; Γ; τ; k) =

⋃
x:τ1→τ∈Γ

⋃
k1,k2 for

1+k1+k2=k

{E I | E ∈ gen(Σ; Γ; τ1 → τ; k1), I ∈ refine(Σ; Γ; τ1; ·; k2), struct(Γ, E, I)}

Figure 7.3: MLsyn term generation

These changes result in a synthesis procedure that is a straightforward translation
of our original synthesis judgment.

The three main synthesis operations that we identified are divided up into
three functions: guess, match, and refine. guess implements the behavior of the
irefine-guess rule, generating the set of E-terms of size k that satisfy the examples,
written E � X. The satisfaction check, reproduced below from Chapter 5

∀σ 7→ χ ∈ X. σ(E) −→∗ v ∧ v ' χ.

requires that, within each example world, the synthesized program evaluates
to a value that is compatible the goal value for that world. guess generates
candidate E-terms through the gen helper function which performs simple raw-
term enumeration over a particular type. When enumerating applications, the
argument may be an I-term according to the grammar of MLsyn. To generate
I-terms, we appeal back to refine but pass in the empty set of examples. Like the
synthesis judgments from which it is derived, refine degenerates into raw-term
enumeration when given no examples.

match corresponds to invocations of irefine-match that generate matches for
all possible scrutinee base types at a particular goal type. For a particular base
type, we generate sets of expressions for all of the components of the match—the
scrutinee and each of the branches—and form matches by taking the Cartesian
product of these sets. To create match expressions of size k, we also consider all
the ways that we can distribute the size among these match components. Note
that if any of the sets of expressions are empty—i.e., we were not able to generate
any scrutinees of the given base type or a satisfying expression for a particular
branch—we do not produce a match expression for the base type that we are
pattern matching over.

Finally, refine performs type-directed program and example refinement. At
arrow type, we perform refinement according to irefine-arr, and at base type
when the examples share the same head constructor, we perform refinement
according to irefine-base. In either case, we also invoke guess and match as
discussed earlier to capture the full set of possible synthesis derivations.
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7.2.1 The Minimum Program Principle

The refine function is governed by the size of the derivation k. Because each rule
application adds one abstract syntax tree (AST) node to the size of the synthesized
programs, k also corresponds to program size. Therefore, the above procedure
produces the smallest program possible that satisfies the input examples. However,
is this a desirable property of a program synthesizer? The following principle
answers this question in the affirmative:

Definition 7.2.1 (The Minimum Program Principle). In program synthesis, smaller
satisfying programs (in terms of program size) are more likely to generalize to the desired
behavior intended by the user.

The Minimum Program Principle is not a provable theorem, but a search heuristic
inspired by Occam’s razor that many program synthesis tools exploit [Albarghouthi
et al., 2013; Feser et al., 2015; Perelman et al., 2014; Summers, 1976] to refine the
space of programs even further.

Intuitively, the Minimum Program Principle observes that a smaller program is
less likely to over-specialize on the examples given to the synthesizer. To see this,
consider the specification we gave for stutter in Chapter 5:

[]⇒ []

| [0]⇒ [0, 0]
| [1, 0]⇒ [1, 1, 0, 0]

The desired function that we wanted to synthesize was

fix f (l:list) : list =
match l with
| Nil→ Nil
| Cons(x, l′)→ Cons(x, Cons(x, f l′)),

and we demonstrated that there is a synthesis derivation of this program in MLsyn.
However, this is not the only synthesis derivation possible. For example, the
following satisfying program is derivable in MLsyn:

fix f (l:list) : list =
match l with
| Nil→ []
| Cons(x, l′)→ match l′ with
| Nil→ [0, 0]
| Cons(y, l′′)→ match l′′ with
| Nil→ [1, 1, 0, 0]
| Cons(z, l′′′)→ [].
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which is the program that pattern matches repeatedly looking for the inputs speci-
fied by the partial function, produces the corresponding outputs, and produces an
arbitrary value when the input is not specified.

This second program is less desirable than the first because it overspecializes
on the given examples. While it satisfies those particular examples, it does not
generalize appropriately to other cases. Note that the overspecializing program is
necessarily large because it must use repeated pattern matches and literal values
to reproduce the behavior of the partial function. By our size metric of counting
AST nodes, this overspecialized program has size 25 whereas the desired program
only has size 11. In contrast, a smaller program is likely to use more E-terms—
variables and applications—to satisfy the examples because they require less size
to accomplish more varied behavior.

7.2.2 Restricting the Search Space with Examples

Now that we have our synthesis procedure, it now makes sense to talk about the
effect of examples on the output of the synthesis process. In the previous section,
we saw that the examples that we have used to synthesize stutter admit multiple
programs. In particular, we were able to derive the standard implementation of
stutter along with a program that overspecialized on the examples. Consider a
simpler example: synthesizing a program at goal type list→ list with the example

[]⇒ [].

Certainly, we can synthesize both the implementation of stutter and the overspe-
cialized program from this single example. However, this simple partial function
example admits many more programs, for example, the constant [] function
λl:list. [] and the identity function λl:list. l. Because our synthesis procedure favors
smaller programs, we will either produce the constant or identity functions from
this example.

From this, we can see that the effect of adding examples is to rule out these
simpler programs from consideration. In the case where we have all three examples
for stutter, the constant and identity functions are no longer satisfying programs.
Suppose that we instead provide only two input/output examples for stutter:

[]⇒ []

| [0]⇒ [0, 0].

Is this sufficient to synthesize stutter with our synthesis procedure? It turns out
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the answer is no as the procedure produces the following program:

fix f (l:list) : list =
match l with
| Nil→ Nil
| Cons(x, l′)→ Cons(x, l).

This program is smaller than the desired stutter—size 7 versus size 11—so our
synthesis procedure would choose it first. Thus it turns out that all three examples
are necessary for our procedure to rule out enough smaller programs to produce
stutter.

What happens if we include more input/output examples with the caveat that
these new examples still imply the stutter function and preserve trace complete-
ness? For example, consider the partial function

[]⇒ []

| [0]⇒ [0, 0]
| [1, 0]⇒ [1, 1, 0, 0]
| [2, 1, 0]⇒ [2, 2, 1, 1, 0, 0]
| [3, 2, 1, 0]⇒ [3, 3, 2, 2, 1, 1, 0, 0]

which contains two additional input/output examples over the previous case. The
program corresponding to the overspecialization of the examples is substantially
larger at 76 AST nodes.

fix f (l:list) : list =
match l with
| Nil→ []
| Cons(v, l1)→ match l1 with
| Nil→ [0, 0]
| Cons(w, l2)→ match l2 with
| Nil→ [1, 1, 0, 0]
| Cons(x, l3)→ match l3 with
| Nil→ [2, 2, 1, 1, 0, 0]
| Cons(y, l4)→ match l4 with
| Nil→ [3, 3, 2, 2, 1, 1, 0, 0]
| Cons(z, l5)→ [].

However, by definition the desired implementation of stutter satisfies these addi-
tional input/output examples. Furthermore, we know the original examples rule
out all programs smaller than the desired program. So these additional examples
neither change the output of our synthesis procedure nor rule out additional
programs that we would have considered during the synthesis process. In fact,
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these additional examples only add additional overhead (a slight amount, as we
discuss in Chapter 8) to the synthesis procedure as we must refine and check for
satisfaction against more example worlds.

Therefore, there is a balance to providing examples to our synthesis procedure.
We must provide enough examples to rule out smaller, trivial programs while
satisfying trace completeness. But we should avoid providing too many examples
as extra examples do not contribute to the synthesis process. In Chapter 8, we
discuss our experience developing examples sets for this synthesis procedure with
these considerations in mind.

7.3 Optimizing The Synthesis Procedure

Now that we have defined our synthesis procedure, we turn our attention towards
optimizing it. We have already pruned the search space significantly by consid-
ering only normal forms and limiting ourselves to structural recursion. Now, we
introduce additional techniques inspired from logic and the proof search literature
to further optimize our search.

7.3.1 Invertible Rules

One trouble we have with our synthesis judgment and consequently our synthesis
procedure is the order in which we invoke particular rules. For example, suppose
that we are synthesizing at base type and we have the opportunity to either
synthesize a constructor value or a pattern match. Does the order in which we
invoke the rules matter? Certainly it seems undesirable to have pattern matches as
the arguments to the constructor value, but you can imagine scenarios in which
this might occur in the desired program. We reflect this possibility by always
invoking the various synthesis functions at every step when possible. But we can
clearly save ourselves some work if we can rule out some of these possibilities,
preferably without losing completeness.

One such optimization along these lines concerns invertible rules in logic. An
invertible rule is one where the premises of the rule are derivable whenever the
conclusion is. For example, consider irefine-arr, reproduced below:

irefine-arr

X = σ1 7→ p f1, . . ., σn 7→ p fn
X′ = apply( f , x, σ1 7→ p f1) ++ . . . ++ apply( f , x, σn 7→ p fn)

Σ; f :τ1 → τ2{rec}, x:τ1{arg f }, Γ ` I B X′  τ2

Σ; Γ ` τ1 → τ2B X fix f (x:τ1) : τ2 = I
.

Invertibility states that if we are able to synthesize a program at type τ1 → τ2
that satisfies X, then we are able to synthesize an I at type τ2 that satisfies X′.
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The usual interpretation of the inference rule makes the opposite claim—if we
can synthesize I, then we can synthesize a fix at type τ1 → τ2. This is true for
irefine-arr because of η-expansion; if we have a program I of type τ1 → τ2, it is
equivalent to its η-expansion: fix f (x:τ1) : τ2 = I x.

Because of this property, we can always apply irefine-arr first when searching
for a program until it no longer applies without loss of completeness. irefine-arr

acts in a type-directed manner over arrow types which are finite in length, so this
process always terminates. In our collection semantics, we change refine to only
perform program-and-example refinement at arrows:

refine(Σ; Γ; τ1 → τ2; X; k) = {fix f (x:τ1) : τ2 = I |
X′ = apply( f , x, σ1 7→ ρ1) ++ . . . ++ apply( f , x, σn 7→ ρn),
I ∈ refine(Σ; f :τ1 → τ2{rec}, x:τ1{arg f }; Γ; X′; k− 1)

}
where

X = σ1 7→ ρ1, . . ., σn 7→ ρn.

Note that we no longer need to calculate guess and match at arrow types, saving
us a significant amount of work.

With this optimization, we will always synthesize programs that are η-long in
addition to β-normal. Concretely, this means that if we are producing a program
of type τ1 → τ2 and can synthesize some non-fix expression I of that type to
fulfill the goal, our synthesis procedure will produce its η-expansion rather than
it directly. This results in slightly more verbose programs but prunes the search
space significantly.

7.3.2 Reigning in Matches

In all program synthesis systems, the conditional proves to be most tricky to
generate efficiently. This is because conditionals only add information to our
synthesis problem, increasing the space of possible programs. In the case of
pattern matching, it is clear that this information comes in the form of additional
variables into the context. However, with plain old if-expressions,

if e1 then e2 else,

the information is implicit; we get to assume that e1 is true in the first branch and
false in the second branch. In either case, the difficulty is choosing an appropriate
match or conditional scrutinee to make progress. The problem is that there is no
indication that our choice will ultimately help us satisfy our goal! As a result, we
need to explore each such scrutinee to completion because we don’t know if it will
result in a satisfying program.

These problems clearly manifest themselves in our synthesis procedure. While
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we invoke match only at base types thanks to our invertibility optimization from
Section 7.3.1, match still chooses arbitrary scrutinees generated via gen. For a
given target program size k, there are, thankfully, a finite number of scrutinees so a
call to match terminates. However, the number of scrutinees scales exponentially
with k as well as the size of the context. Therefore, to remain tractable, we need
some additional heuristics to keep the number of scrutinees manageable.

Informativeness In general, we cannot tell upfront if a particular match scrutinee
will allow us to create a satisfying program. However, we can apply heuristics
to prune out scrutinees that are unlikely to help us to make progress. Some of
these heuristics weaken completeness further; we will be unable to synthesis some
programs given example sets that the programs otherwise satisfy. However, in
return we can make synthesis with match expressions much more efficient.

Recall that when we synthesize a match, we distribute the example worlds to
the branches of the match according to how the match scrutinee evaluates in each
world. For example, when we synthesized stutter, we had the three input/output
examples:

[]⇒ []

| [0]⇒ [0, 0]
| [1, 0]⇒ [1, 1, 0, 0].

When we synthesized a match expression of the form:

match l with
| Nil→ �
| Cons(x, l′)→ �

We sent the first example world to the Nil branch (because l = [] in that world) and
the remaining two example worlds to the Cons branch (because l = Cons(. . .) in
those worlds). Because at least one example was sent into each branch, we were
able to employ type-and-example-directed guidance to complete the program.

However, in general, this may not be the case. We may end up in situations, for
example, where we synthesize a m-way pattern match:

match e with
| C1 p1 → �

. . .
| Cm pm → �

and the examples are distributed in such a way that some branches do not receive
any examples. This is not a problem theoretically as our collection semantics
degenerates to raw term enumeration in the absence of examples. However,

99



because any well-typed expression is a valid completion for these branches with
no examples (the satisfaction condition is trivially satisfied), we will likely choose
a small expression such as a single variable or a constant that will not generalize
to the behavior that the user intends with the examples they provide.

Worst yet, imagine if all of the examples were sent to a single branch.1 An
expression for that branch would need to satisfy all of the original examples
with only the additional information provided by the binders introduced by the
pattern of the match for support. All of the remaining branches would need to be
generated using raw-term enumeration. In this situation, we have done little to
refine the synthesis state as we have not taken advantage of the case analysis that
the pattern match provides. As a result, it is unlikely that this pattern match will
actually help us in generating a final, satisfying program.

We call the likelihood that a pattern match contributes to a satisfying program
its informativeness. The shape of a particular pattern match alone does not tell
us much about its informativeness, but our examples gives us the additional
insight we need. Intuitively, an informative pattern match is one that distributes
the examples evenly among the branches of the pattern match. In contrast, an
uninformative pattern match distributes most of the examples to a minority of the
branches. In the worst case, a pattern match distributes all of the examples to a
single branch which signifies that we did not “learn” anything about the examples
by pattern matching on the given scrutinee.

Elaborate heuristics are possible where we prioritize the exploration particular
pattern matches based on their informativeness. For our purposes, we implement
a simple heuristic to rule out this worst case scenario for informativeness.

Definition 7.3.1 (Informativeness Restriction (A)). A pattern match is valid if when-
ever the pattern match is over a data type with more than one constructor that distribute
sends examples to at least two distinct branches.

This restriction, applied to the match function from Figure 7.2 is sufficient to rule
out the worst case pattern matches described above. However, it still allows for
branches to be synthesized in the absence of examples. The following version of
the informativeness restriction fixes this problem.

Definition 7.3.2 (Informativeness Restriction (B)). A pattern match is valid if when-
ever the pattern match is over a data type with more than one constructor that distribute
sends at least one example to each branch of the match.

The two restrictions represent a trade-off between performance and complete-
ness. Restriction (A) allows for strictly more valid pattern matches than (B) at the

1Throughout this discussion, we assume that the data types in question have more than one
constructor. A data type with a single non-inductive constructor of arity k is equivalent to a
k-tuple. Pattern matching here amounts to extracting its components which has the same efficiency
problems as tuples, namely the trade-off between lazily or eagerly decomposing such data types.
See Section 4.1.1 for ways of dealing with these problems.
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cost of potentially dealing with synthesizing branches without examples. However,
the performance gains with using restriction (B) over (A) are smaller than might
be expected for a pair of reasons:

1. For many simple synthesis problems of the sort that we explore in Chapter 8,
we deal with algebraic data types that only have two constructors—a base and
inductive constructor. In this setting, restrictions (A) and (B) are isomorphic.

2. More generally, it turns out that almost all scrutinees fall into the extreme
categories—completely uninformative or very informative, according to the
definition of informativeness given above. That is, if a pattern match is
actually informative, it will send examples to all of its branches as long as
there is an appropriate number of examples to begin with.

Because of this, either restriction is suitable for recovering performance in the
presence of matches. When referring to these restrictions in future discussion,
we’ll refer to a single “Informativeness Restriction” but really mean either Infor-
mativeness Restriction (A) or (B).

Repetitive Matches The informativeness restriction takes care of situations where
pattern matches do not help us make progress. However, there are other problems
with matches that we must consider. For example, our collection semantics does
not keep us from pattern matching on the same expression more than once. We
could solve this by tracking the expressions that we pattern match over, but then
we are still susceptible to chains of equivalent yet redundant scrutinees such as

match l with
. . .

match append l [] with
. . .

match append [] l with
. . .

match append (append [] l) [] with
. . . .

This means that the problem of repetitive matches is really a problem of program
equivalence where we want to avoid generating semantically equivalent terms as
scrutinees.

Thankfully in this situation, our informative restriction are sufficient to rule out
redundant matches as Lemma 7.3.1 shows:

Lemma 7.3.1 (Informativeness Rules Out Repetition). Consider a pattern match over
some scrutinee e of some data type with constructors C1, . . ., Cm and an expression e′ such
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that e is equivalent to e′. Then any inner pattern match whose scrutinee is e′ in any of
these branches is invalid with respect to our informativeness restriction.

Proof. distribute creates example worlds X1, . . ., Xm for each branch of the pattern
match by evaluating e. Consider a single such branch k ∈ 1, . . ., m and pattern
matching on a scrutinee e′ that is equivalent to e in that branch. (It could be e
itself). By definition Xk contains only the example worlds under which e evaluated
to a constructor value with head Ck. Therefore, all of the example worlds in Xk
will evaluate to the same constructor value with head Ck. This means that the
inner pattern match will send all of its examples to branch Ck which by definition
of both Informativeness Restrictions is invalid.

Thus, we do not need to do anything special to handle repetitive pattern matches
as long as we employ the informativeness restriction to prune down the space of
possible match expressions.

Restricting Generation of Matches The informativeness restriction that we have
developed in this section is designed to limit pattern matches that don’t make
progress towards the synthesis goal or otherwise cause us to degenerate to raw-
term enumeration. With either restriction in effect, it is clear that we can no longer
generate match expressions in the absence of examples. Therefore, it no longer
makes sense to try to generate pattern matches during E-term generation where
we explicitly enumerate terms in the absence of examples.

In Figure 7.2, we took advantage of the fact that the refine function degenerated
to raw term enumeration when given no examples. This occurs in one place where
we need to generate an I-form in the absence of examples: generating a function
argument in the gen function. However, if we avoid pattern match generation in
this situation altogether, we require a separate generation function for introduction
forms rather than relying on the degenerate behavior of refine.

Figure 7.4 splits up raw-term enumeration into two functions, genE and genI ,
which enumerates E- and I-forms respectively. The refinement portions of our
collection semantics in Figure 7.2 are modified to call either generation function
when an E- or I-form must be generated without examples. Notably, we never
generate match expressions in either raw-term generation function because of
our informativeness restrictions. This implies that we will never have a match
expression appear as an argument to a function or constructor. However, this
does not change the expressiveness of our synthesis procedure as any pattern
match that occurred within the arguments of an application or constructor can
be hoisted outside of it. In our collection semantics, we obtain this result by
generating a match via match first and then generating the application through
gen or constructor through refine.
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genE(Σ; Γ; τ; k) = E

genE(Σ; Γ; τ; 0) = {}
genE(Σ; Γ; τ; 1) = {x | x:τ ∈ Γ}
genE(Σ; Γ; τ; k) =

⋃
x:τ1→τ∈Γ

⋃
k1,k2 for

1+k1+k2=k

{E I | E ∈ genE(Σ; Γ; τ1 → τ; k1), I ∈ genI(Σ; Γ; τ1; k2), struct(Γ, E, I)}

genI(Σ; Γ; τ; k) = I

genI(Σ; Γ; τ; 0) = {}
genI(Σ; Γ; τ1 → τ2; k) = {λx:τ1. I | I ∈ genI(Σ; x:τ1, Γ; τ2; k− 1)}
genI(Σ; Γ; T; k) = genE(Σ; Γ; T; k)∪
{C(I1, . . ., Im) | C : τ1 ∗ . . . ∗ tm → T ∈ Σ,

1 + k1 + . . . + km = k, Ij ∈ genI(Σ; Γ; τj; k j)
j<m}

Figure 7.4: MLsyn raw-term collection semantics

7.3.3 Refinement Trees

The synthesis procedure we described in Section 7.2 performs a ton of redundant
work. A naïve implementation of our iterative deepening search strategy coupled
with the decomposition of types and examples means that we end up solving many
identical synthesis subproblems throughout the synthesis process. To mitigate
this cost we pre-compute and cache the results of our various collection semantics
functions whenever possible.

First, let’s reexamine the synthesis tree structure we discussed in Section 7.1.
As discussed in Section 7.2, we can divide up the rules of our synthesis judgment
into refinement, guessing, and matching rules. Note that the refinement rules are
dictated entirely by the goal type and examples. In particular, irefine-arr applies
at arrow type at any time and irefine-base applies at base type whenever the
examples agree on their head constructor. Both rules always decomposes both
the goal type and the examples on every invocation. Because our goal type and
examples are necessarily finite structures, this leads to an important property of
I-refinements with respect to the synthesis tree structure.

Lemma 7.3.2 (Finiteness of Refinement Derivations). In any branch of a synthesis
tree, the number of irefine-arr and irefine-base applications is finite.
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Proof. We make the stronger claim that the number of such applications is bounded
by the sum of the goal type and the size of the example values. Consider the
effects of each irefine rule on the synthesis state.

• irefine-guess ends the branch with a series of eguess derivations. If a eguess

derivation calls back into the irefine judgment, it is without any examples.

• irefine-arr decomposes the goal type and example values while growing
number of example worlds.

• irefine-base decomposes the example values, keeps the number of example
worlds, and may grow the goal type, e.g., moving from a base type to an
arrow type if one of the constructor arguments is higher order.

• irefine-guess distributes the examples, keeping the size of the examples and
the goal type the size, but decreasing the number of example worlds.

From this, it is clear that the number of possible irefine-arr and irefine-base

applications in a single branch is finite because the example values are necessarily
finite and no irefine rule grows those example values.

Now, let’s consider applications of irefine-match. There are two dimensions
of match applications to consider:

Width: At any given point in the synthesis tree, if we have a way of generating an
infinite number of expressions of base type, e.g., lists and the append function,
then we can use those expressions as scrutinees of an infinite number of
match expressions.

Depth: In any given branch of a synthesis tree, we may be able to generate an
infinite chain of nested matches.

Our informativeness restriction from Section 7.3.2 ensures that match depth is
finite. In contrast, we must add additional restrictions to ensure that the number
of possible scrutinees at any given point in a synthesis tree is finite.

With these considerations, we can formulate a lemma about the finiteness of
irefine-match applications in any synthesis tree:

Lemma 7.3.3 (Finiteness of Match Derivations). Suppose that we fix the maximum
size of any match scrutinee expression to some constant k. Then, in any synthesis tree,
the number of possible irefine-match applications is finite (assuming that we apply an
informativeness restriction on match expressions).
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Proof. Our bound k on the size of match scrutinees artificially limits match width.
As mentioned above, match depth is limited by our informativeness restriction.
To see why, note that match expressions distribute the example worlds among
the branches of the match. The number of example worlds does not grow.2

Furthermore, our informativeness restriction ensures that once we reach branches
with one or no examples, we will not be able to pattern match further as we will
not be able to fulfill the requirement that at least two branches of the inner pattern
match have examples.3

Lemma 7.3.2 and Lemma 7.3.3 assert that type-directed refinement—application
of the irefine rules—is finite given a particular synthesis problem. In contrast, it
is clear that E-guessing or raw-term generation is potentially limitless depending
on the input context Γ. In light of this revelation, we can separate I-refinement
from E-guessing completely. Rather than searching the space of derivations given
by a synthesis tree all at once, we can break up our synthesis procedure into two
phases. Given a synthesis problem (a context Γ, a goal type τ, and examples X):

1. Compute the portion of the synthesis tree corresponding to the set of possible
I-refinements for the synthesis problem.

2. Search the space of possible E-guesses that correspond to the remainder of
the synthesis tree.

We call the portion of the synthesis tree pre-calculated in step (1) a refinement
tree which describes the possible shapes of satisfying programs as dictated by
the synthesis specification—the goal type and examples. For example, Figure 7.1
gives the synthesis tree corresponding to the synthesis problem we explored in
Section 5.3 where our goal type was list→ list and our examples were

[]⇒ []

| [0]⇒ [0, 0]
| [1, 0]⇒ [1, 1, 0, 0]

which correspond to the stutter function.
We can construct a refinement tree by slightly modifying our collection se-

mantics from Section 7.2. Figure 7.6 gives the definition of rtree which creates a
refinement tree given a signature Σ, context Γ, goal type τ, examples X, maximum

2From the proof of 7.3.2, we see that the number of example worlds increases when applying
irefine-arr. However, these additional example worlds are drawn from the structure of the goal
example values, so it is really the size of the example values that is decreasing here.

3This requires that we handle pattern matches over data types with single constructors differently,
e.g., greedily expanding them with focusing as described in Section 4.1.1, as the informativeness
restriction does not apply to them.
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� : list→ list

irefine-arr

fix f (l:list) : list = � : list

irefine-match

match l with

| Nil→ �1 : list

| Cons(x, l′)→ �2 : list

(1)
irefine-base

true

(2)
irefine-base

Cons( �1 : nat , �2 : list )

(2)
irefine-base

Cons( �1 : nat , �2 : list )

Figure 7.5: Example refinement tree.
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types(Σ) = {T | C : τ1 ∗ . . . ∗ τm → T ∈ Σ}
rmatchs(Σ; Γ; τ; X; 0) = {}
rmatchs(Σ; Γ; τ; X; k) =

⋃
T∈types(Σ)

{match E with pi → �i
i<m |

E ∈ genE(Σ; Γ; T; s),

(pi, Xi)
i<m

= distribute(Σ, T, X, E),
Γi

i<m
= binders(Γ, E, pi),

�i = rtrees(Σ; Γi, Γ; τ; Xi; k− 1)
i<m}

rtrees(Σ; Γ; τ1 → τ2; X; k) = {fix f (x:τ1) : τ2 = � |
X′ = apply( f , x, σ1 7→ ρ1) ++ . . . ++ apply( f , x, σn 7→ ρn),
� = rtrees(Σ; f :τ1 → τ2{rec}, x:τ1{arg f }; Γ; X′; k)
}

where
X = σ1 7→ ρ1, . . ., σn 7→ ρn

rtrees(Σ; Γ; T; X; k) = {C(�1, . . .,�m) |
X1, . . ., Xm = proj(X),

�i ∈ rtrees(Σ; Γ; τi; Xi; k)
i<m

} ∪ rmatchs(Σ; Γ; τ; X; k)
where

X = σi 7→ C(Ii1, . . ., Cim)
i<n

C : τ1 ∗ . . . ∗ τm ∈ Σ

Figure 7.6: MLsyn refinement tree creation
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number of matches k, and maximum scrutinee size s. rtree behaves similarly
to refine except that rather than constructing complete programs of a certain
size, rtree derives the set of possible I-refinements for a given synthesis problem
without performing any E-guessing. To ensure finiteness (as per our discussion in
Section 7.3.2), we must fix the scrutinee size of all matches to some fixed value,
s. We also parameterize the number of matches that appear in any branch of the
refinement tree by k. (Note that k no longer dictates overall program size.) This is
unnecessary to ensure that the refinement tree is finite (i.e., that rtree terminates),
but is useful in a practical implementation as the branching induced by match
expressions is still problematic for scaling. The rtree function produces a set
of refinement tree nodes which carry the synthesis state as well as a possible
I-term at that point in a synthesis derivation. We denote these with an under-
line to remind us that these are tree nodes rather than expressions, for example,
fix f (x:τ1) : τ2 = � for a refinement tree node denoting a fix.

After using rtree to construct the refinement tree, we can now E-guess up to
some fixed term size with the guess function defined in our original collection
semantics (but calling into the raw-term enumeration functions we developed in
Section 7.3.2 instead). We E-guess at every node in the refinement tree where the
goal is a base type; these points are indicated by boxes in our example synthesis
tree found in Figure 7.1. This these boxes coincide with invocations of the guess
function in our original collection semantics.

Finally, if we are able synthesize a solution in some branch of the refinement
tree either through refinement or guessing, we propagate the result up the tree to
try to synthesize a solution to the original synthesis problem. For example, if we
are able to E-guess a satisfying program E to the synthesis problem at a function
node fix f (x:τ1) : τ2 = �, then we are able to synthesize the satisfying program
fix f (x:τ1) : τ2 = E at that point in the refinement tree. We can then continue to
propagate this function upwards in the refinement tree or return it as the result of
the overall synthesis process if this node is the root of the tree.

Synthesis with Refinement Trees With refinement trees, we arrive at a much
more efficient synthesis procedure observing that I-refinement and E-guessing are
separable. I-refinements are dictated by the goal type and examples and so they
can be computed first. From there, we can use raw-term enumeration to perform
E-guessing as before. In summary, our new synthesis procedure with refinement
trees operates as follows:

Given a signature Σ, context Γ, goal type τ, and examples X:

1. Let our search parameters be s, the maximum match scrutinee size, m, the
maximum match depth, and k, the maximum E-term size.

2. Generate a refinement tree, refines(Σ; Γ; τ; m).

108



3. Perform E-guessing (using guess) at each node of the refinement tree whose
goal is a base type.

4. Propagate successfully synthesized problems upwards in the refinement tree
to try to synthesize a solution to the overall synthesis problem.

5. If we are unable to create such a solution, increment our search parameters
and repeat starting at step (2).

With this algorithm, we may not synthesize smallest program possible as we
are no longer exploring the synthesis tree in a breadth-first manner. We can think
of synthesis with refinement trees as performing some partial depth-first search
to explore the set of refinements before proceeding in a breadth first manner
with matches and E-guessing. The precise description of the programs generated
by this algorithm is dependent on our choice of how we explore the search
parameters on each iteration of the search. We discuss our particular choice of
search metric exploration in Chapter 8. Suffice to say, in practice, the programs that
this approach generates are usually identical to the smallest programs guaranteed
by straightforward breadth-first search. If not, then they are either equivalent but
larger or require an extra example or two to produce the desired program.

As an example, consider applying this procedure towards synthesizing the
stutter function of type list→ list using the examples:

[]⇒ []

| [0]⇒ [0, 0]
| [1, 0]⇒ [1, 1, 0, 0]

from before. Let’s suppose that we start with the following search parameters:

• Maximum match scrutinee size: s = 1.

• Maximum match depth: m = 0.

• Maximum E-term size: k = 5.

Then, the resulting refinement tree tree looks like this:

� : list→ list

irefine-arr

fix f (l:list) : list = � : list .

We can make no further progress because the examples at the irefine-arr node do
not share the same head constructor, and we are not allowed to introduce matches
as the match depth is zero.
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While we can E-guess terms up to size 5, the only term we can generate (in the
empty context) is l which does not satisfy the body of the fix. We therefore need
to iterate by incrementing our search parameters and repeating the process. Let’s
increase the match depth by one. The resulting refinement tree is:

� : list→ list

irefine-arr

fix f (l:list) : list = � : list

irefine-match

match l with
| Nil→ �1 : list
| Cons(x, l′)→ �2 : list

(1)
irefine-base

true

(2)
irefine-base

Cons(�1 : nat,�2 : list)

(2)
irefine-base

Cons(�1 : nat,�2 : list)

which is precisely the refinement tree we presented in Figure 7.5. When performing
E-guessing on this tree, we synthesize the following satisfying sub-expressions:

• x as the first argument to the first Cons constructor in the Cons branch of the
pattern match,

• x as the first argument to the second Cons constructor in the Cons branch of
the pattern match, and

• f l′ as the second argument to the second Cons constructor in the Cons branch
of the pattern match.

Propagating these results upwards in the tree allows us to synthesize the final,
expected stutter program:

fix f (l:list) : list =
match l with
| Nil→ Nil
| Cons(x, l′)→ Cons(x, Cons(x, f l′)).
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The biggest win we receive in factoring out E-guessing from I-refinement is
that we have to enumerate far smaller terms. Rather than enumerating all terms of
up to size 11 to derive stutter, we only need to enumerate terms up to size three
to obtain the E-guessed expressions above. This is a dramatic savings in term
enumeration which turns out to be the bottleneck in our type-directed synthesis
style.

Furthermore, this factoring allows us to take advantage of the fact that we de-
compose our synthesis problems into smaller, independent synthesis sub-problems.
For example, in the second iteration of our search, we do not need to E-guess
terms in the Nil branch of the pattern match because we already have a completed
expression for that branch, Nil, which we obtained in the refinement tree portion
of the synthesis process. After discovering that x is a valid completion as the first
arguments of the Cons constructors, we do not need to enumerate larger terms at
those points in the refinement tree because any valid solution there is equivalent
to x with respect to satisfying the examples. This ability to short-circuit synthesis
once we find local solutions to synthesis problems is instrumental to scaling up
our synthesis procedure. This means that if one branch of a pattern match requires
a large expression, but the remaining branches require small expressions, we only
pay the (exponential) cost of searching for the large expression in that one branch,
rather than among all of the branches by performing unnecessary search.

7.3.4 Efficient Raw-term Enumeration

Our refinement tree structure allows us to cache I-refinements, allowing us to
optimize the synthesis procedure greatly. Can we perform similar caching for
E-guessing as well? We observe that the inefficiency here lies in repetitive calls
to our term-generation functions genE and genI . For example, we may need
to repeatedly call genE(Σ; Γ; list; k) to synthesize expressions of type list as the
potential body of our function, the leaf expression of a pattern match branch,
as an argument to a function application, or otherwise part of some complex
expression we are building up. Ideally, we should cache the results of genE and
genI for particular combinations of arguments to ensure that we only ever generate
a particular term once during the enumeration process.

If we examine the arguments to gen we see that the signature Σ remains
constant and the goal type τ and term size k are natural “keys” by which we can
cache results to gen. However, our context Γ does not remain constant throughout
the synthesis process. For example, in our refinement tree example above, we
generate terms of type list in several contexts:

• Γ1 = f :list→ list, l:list just inside the body of the fix and in the Nil branch of
the match.

• Γ2 = x:nat, l′:list, f :list→ list, l:list in the Cons branch of the match.

111



genE(Σ; Γ; τ; n)

genE(Σ; ·; τ; n) = {}
genE(Σ; ·; τ; 0) = {}

genE(Σ; x:τ1, Γ; τ; n) = genx:τ1
E (Σ; Γ; τ; n) ∪ genE(Σ; Γ; τ; n)

genx:τ1
E (Σ; Γ; τ; n)

genx:τ1
E (Σ; Γ; τ; 0) = {}

genx:τ
E (Σ; Γ; τ; 1) = {x}

genx:τ1
E (Σ; Γ; τ; 1) = {} (τ 6= τ1)

genx:τ1
E (Σ; Γ; τ; n) =

⋃
τ2→τ∈Γ

n−1⋃
k=1

(genx:τ1
E (Σ; Γ; τ2 → τ; k) ⊗

app
genI(Σ; Γ; τ2; n− k))

∪ (genE(Σ; Γ; τ2 → τ; k) ⊗
app

genx:τ1
I (Σ; Γ; τ2; n− k))

∪ (genx:τ1
E (Σ; Γ; τ2 → τ; k) ⊗

app
genx:τ1

I (Σ; Γ; τ2; n− k))

Figure 7.7: Relevant E-term generation

Clearly, we cannot interchange the results of genE(Σ; Γ1; list; k) and genE(Σ; Γ2; list; k)
because they contain different sets of expressions. But the two calls to gen also
clearly share some expressions in common. We would like to be be able to realize
this sharing in our term caches as well to avoid redundant work.

To do this, we present a technique for efficiently performing term enumeration
in the presence of contexts called relevant term generation. Critically, we note that
our contexts during the synthesis process only grow; they never shrink or shuffle
their contents. As a result, we can factor the term generation function as follows:

genE(Σ; x:τ1, Γ; τ; n) = genx:τ1
E (Σ; Γ; τ; n)

∪ genE(Σ; Γ; τ; n)

genI(Σ; x:τ1, Γ; τ; n) = genx:τ1
I (Σ; Γ; τ; n)

∪ genI(Σ; Γ; τ; n)

This factorization ensures that for a given goal type τ and size n, two calls to
gen in different contexts Γ and x:τ1, Γ share the same set terms under the shared
context Γ.

Here, genx:τ1
E and genx:τ1

I are relevant term generation functions. Inspired by
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genI(Σ, Γ, τ, n)

genI(Σ; ·; τ; n) = {}
genI(Σ; Γ; τ; 0) = {}

genI(Σ; x : τ1, Γ; τ; n) = genx:τ1
I (Σ; Γ; τ; n) ∪ genI(Σ; Γ; τ; n)

genI(Σ; ·; τ1 → τ2; n) =
{fix f (x:τ1) : τ2 = I | I ∈ genI(Σ; f : τ1 → τ2, x : τ1; τ2; n− 1)}

genx:τ
I (Σ; Γ; T; n) = genx:τ

E (Σ; Γ; T; n)⋃
C:τ1∗...∗τk→T∈Σ

⋃
n1,...,nk for

n1+...+nk=n

{C(I1, . . ., Ik) | Ij ∈ genI(Σ; Γ; τj; nj)}

genx:τ1
I (Σ; Γ; τ; n)

genx:τ
I (Σ; Γ; τ1 → τ2; n) = genx:τ

E (Σ; Γ; τ1 → τ2; n) ∪
{fix f (y:τ1) : τ2 = I | I ∈ genx:τ

I (Σ; f : τ1 → τ2, y : τ1, Γ; τ2; n− 1)}

genx:τ
I (Σ; Γ; T; n) = genx:τ

E (Σ; Γ; T; n)⋃
C:τ1∗...∗τk→T∈Σ

⋃
n1,...,nk for

n1+...+nk=n

⋃
r1,...,rk∈
parts(k)

{C(I1, . . ., Ik) | Ij ∈ genp
mj;x:τ
I (Σ; Γ; τj; nj)}

parts(k) = {Not, . . ., Not︸ ︷︷ ︸
i−1

, Must, May, . . ., May︸ ︷︷ ︸
k−i

| i ∈ 1, . . ., k}

genpr;x:τ1
I (Σ; Γ; τ; n) =


genx:τ1

I (Σ; Γ; τ; n) r = Must

genI(Σ; x : τ1, Γ; τ; n) r = May

genI(Σ; Γ; τ; n) r = Not

Figure 7.8: Relevant I-term generation

relevance logic [Anderson et al., 1992], these functions are variants of our standard
term-enumeration functions except that they require that all expressions they
generate must contain the relevant variable x. Figure 7.7 and Figure 7.8 gives the
definition of relevant E- and I-term generation. The functions operate similarly
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to the gen functions we developed in Figure 7.4. The critical difference is that
when our relevant E-term generation functions bottoms out at size one, rather than
generating all terms of goal type τ, we generate only a single term, the relevant
variable x, when the goal type is the relevant variable’s type.

The relevant term-generation functions ensure that the relevant variable x
appears in every term generated by the function. When we generate terms that
contain multiple sub-expressions in a relevant context, we must be careful to
ensure that this property holds. For example, we can break up generation of a
function application E I with a relevant variable x into three cases:

1. x must appear in E and must not appear in I.

2. x must not appear in E and must appear in I.

3. x must appear in both E and I.

These cases are reflected in the definition of relevant term generation for function
applications in Figure 7.7. To ensure that x appears in a particular sub-term, we
invoke the relevant term generation function with x, genx:τ

E or genx:τ
I . To ensure

that x does not appear in a particular sub-term, we invoke the non-relevant term
generation function in a context not containing x.

For constructors (Figure 7.8), we must generalize this factorization to k subex-
pressions rather than just two. To do this, employ a “sliding window” factorization
(realized by the parts helper function) where we walk the list of sub-expressions,
distinguishing the current expression Im as the one that must contain the relevant
variable x. Throughout this process, we note that x has been required to appear in
all of the expressions before Im. Therefore, we require that x must not appear in the
expressions before Im. In contrast, x may appear in the expressions after Im as we
have not placed any restrictions on them yet.

Now we have three cases of sub-term generation that we handle with the genp
helper function. The cases where x must and must not appear in the sub-term are
handled similarly to the function application case. To generate terms that may
contain x, we appeal to the non-relevant term generation function, adding x into
the context.
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Chapter 8

Evaluating Myth

In Chapter 7, we developed an efficient synthesis procedure from our core synthesis
calculus MLsyn. In this chapter, we explore our implementation of this synthesis
procedure, a prototype program synthesizer called Myth.1

Our goal with Myth is to further explore the type-theoretic foundations for
program synthesis that we have developed so far. We started our exploration
by carefully analyzing the metatheory of type-directed program synthesis, in
particular the soundness and completeness of λ→syn and MLsyn. However, this is
insufficient for getting a complete sense of how program synthesis systems built on
top of these foundations will perform in practice. By exploring the behavior of an
actual implementation, we can better understand the capabilities and limitations
of our approach and identify areas for future improvement.

Note that an explicit non-goal of this exploration is to justify Myth-the-artifact
as a practical tool for program synthesis. While we explore some aspects of the
viability of Myth as an end-user tool, e.g., performance, we intentionally do not
explore the usability of the tool. We do this primarily as a matter of pragmatics.
There are plenty of empirical questions to investigate about Myth—How many
examples do we need to synthesize a particular program? How long does it take
to synthesize a particular program?—without delving into the usability side of the
project. However, we also want to stress that, throughout this work, we have been
less concerned with building a practical tool and more interested in answering
foundational questions about the integration of types into program synthesis. We
do not want to overshadow these important results with claims about usability
that we do not have the time to develop thoroughly. We leave such investigation to
future work.

1We provide a summary of the final synthesis procedure as a reference in Appendix A.
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8.1 Search Parameter Tuning

Originally we started with a simple synthesis procedure that searched the space
of programs according to program size in a breadth-first manner. When we
introduced refinement trees, we also introduced a number of search parameters
into the procedure:

• s, the maximum scrutinee size of any match expression,

• m, the maximum match depth, i.e., the maximum number of matches that
can appear in any branch of a refinement tree, and

• k, the maximum size of E-terms that we generate during the E-guess phase
of the procedure.

Rather than performing a breadth-first search by program size alone, we now
perform a breadth-first search according to these three parameters. Thus, choosing
appropriate initial values along with a strategy for traversing through successive
iterations of the algorithm is imperative for obtaining good synthesis results.

Scrutinee Size Let’s consider the effects of each of these parameters on the
programs that the synthesis algorithm produces. First, the scrutinee size affects the
complexity of the pattern matches that we can synthesize. At s = 1, we can only
synthesize variables as scrutinees. This has been sufficient for the examples we
have used so far, but in general we need the ability to synthesize richer scrutinees.
As an example, suppose in OCaml that we have the standard lookup function of
type ′a→ (′a,′ b) list→′ b option in our context. Then we need richer scrutinees to
synthesize programs that use association lists such as:

match (lookup x l) with
| Some r → �
| None→ �

However, we want to avoid opening the door to complex scrutinees too quickly.
This is because the number of possible scrutinees (and consequently, the number of
possible matches) grows exponentially with the scrutinee size and in the common
case (based on personal experience and analysis of our benchmark suite), we only
need to pattern match over a single variable. Our informativeness restriction rules
out some of these scrutinees, but in practice, many scrutinees make it through
the restriction, requiring us to add these branches to our refinement tree. These
additional branches become more points where we have to E-guess, making
synthesis more costly. Furthermore, on top of these scrutinees, as we increase the
scrutinee size s, we also increase the likelihood of generating scrutinees that are
equivalent to previously generated scrutinees.
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Match Depth Related to the scrutinee size, the match depth m controls the
number of match expressions that can appear in any branch of the refinement
tree. Whereas the scrutinee size controls the width of matches, i.e., the amount
of possible match expressions at any point in a refinement tree, the match depth
controls the depth of matches, i.e., how deeply we can nest pattern matches in
a candidate program. In many cases, a single match expression is sufficient to
satisfy a given synthesis problem. However, sometimes we may also need to
resort to nested matching to access successive elements of a structure or to make
decisions based off of case analysis of multiple pieces of data. The danger is that
unnecessary nested matches greatly impact performance because in addition to
the branching factor, each branch introduces additional binders which accelerates
the exponential blow-up associated with raw-term enumeration. Thankfully, we
rule out equivalent, nested matches thanks to our informativeness restriction (see
Section 7.3.2), although the cost of stacking up binders due to nested matches is
very significant.

An additional problem with setting the match depth too high is overspe-
cialization. For example, consider the overspecializing function for stutter from
Section 7.2.1.

fix f (l:list) : list =
match l with
| Nil→ []
| Cons(x, l′)→ match l′ with
| Nil→ [0, 0]
| Cons(y, l′′)→ match l′′ with
| Nil→ [1, 1, 0, 0]
| Cons(z, l′′′)→ [].

By synthesizing programs in order of increasing size, we guaranteed that our
original synthesis procedure would not synthesize this program before synthe-
sizing the desired recursive function. However, imagine in our new synthesis
procedure that we started with the match depth m = 3. Notice that because the
overspecialization contains no E-guessed terms, our initial refinement tree would
contain this program immediately and we would be done! Because of this, we have
to start with a small match depth and be careful about increasing it too quickly.

E-term Size Finally, k controls the maximum size of E-terms that the algorithm
is allowed to guess at any node in the refinement tree. The primary benefit of our
refinement tree structure, is that we have localized the expensive procedure of
E-term enumeration to the leaves of the refinement tree. This allows us to generate
much smaller E-terms on average. For example, in our original algorithm, when
we synthesized terms up to size 11, we would need to explore the space of E-terms
of size 11 if our context allowed us to generate E-terms of that size. In our updated
algorithm, rather than having to synthesize E-terms up to size 11 to find stutter,
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we only need to synthesize E-terms up to size 3 to find the recursive function call
f l′. This is a tremendous win in terms of efficiency because of the exponential
cost of enumerating large E-terms.

Unlike match depth, we do not run into issues of overspecialization if k begins
too large. In fact, by admitting larger E-terms, we use more variables and function
applications which, by our Minimum Programming Principle (Section 7.2.1) makes
it more likely that our synthesized program generalizes to the behavior that the
user intends. Furthermore, the cost of synthesizing E-terms of modest size is
very small. It is not until we reach the critical point in the exponential cliff that
generation time jumps from milliseconds to minutes. So we are safe in starting
with an E-term size of reasonable size.

8.1.1 Search Strategy

With these considerations in mind, we can now discuss the particular search
strategy we implemented in Myth. With multiple search parameters, we could
devise an adaptive strategy that responds to the performance of the synthesizer
for the particular synthesize problem at hand. For example, we may vary the
initial E-term size k or how much we increment the k depending on the size of the
context we synthesize under. Because our context grows as we move down in the
refinement tree as we add binders with functions or matches, we would need to
vary the search parameters at different points in the tree.

For these experiments, we opted for a simpler static strategy suitable for the
domain of programs we intended to synthesize—simple functional programs over
recursive data types such as lists and trees. We begin with the following initial
search parameter values:

• The maximum scrutinee size, s = 1.

• The maximum match depth, m = 0.

• The maximum E-guess size, k = 13.

We then move through the following phases of I-refinement. In each phase of
I-refinement, we increase one of our search parameters and then extend the
refinement tree accordingly. In particular, when we increase the match depth or
scrutinee size, we traverse the refinement tree, create new match expressions as
necessary, and carry out further I-refinements (in particular, application of irefine-
arr and irefine-base) where ever possible. Finally, after each I-refinement phase,
we allocate 0.25 seconds to generates E-terms up to the size limit k at each eligible
refinement tree node and then propagate the results to see if we can synthesize a
complete, satisfying program.

The phases of I-refinement we go through are:

1. Create an initial refinement tree with the search parameters s and m.
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type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_stutter : list -> list |>
{ [] => []
| [0] => [0;0]
| [1;0] => [1;1;0;0]
} = ?

Figure 8.1: Example Myth program: stutter. (Throughout this chapter we typeset
Myth source code and output in a fixed-width, syntax highlighted font.)

2. Increase m by one (m = 1) and extend the refinement tree accordingly.

3. Increase m by one (m = 2) and extend the refinement tree accordingly.

4. Increase s by five (s = 6) and extend the refinement tree accordingly.

5. Increase m by one (m = 3).

By the end of the process, we synthesize programs with E-terms of size 13, triply-
nested pattern matches, with scrutinees up to size six. This is simple strategy is
sufficient to handle all of the examples that we discuss in Section 8.3.

8.2 Example Development

The input to the Myth synthesizer is a series of top-level declarations in the subset
of OCaml identified by MLsyn along with a synthesis problem—a name, goal type,
and example values. For example, Figure 8.1 gives the source code for the stutter
in Myth that we have studied extensively in the previous chapters. Myth has
no built-in data types, so we must provide them all ourselves using algebraic
data types. Here, we declare a type of monomorphic lists whose carrier type is
nat. The declaration of stutter contains the familiar three input/output examples2

suggesting the intended behavior of sutter.
We arrived at this set of examples by using the following process:

2Myth provides syntactic sugar for representing lists and natural numbers.
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1. We observed that the likely data type we need to perform induction over was
list, so we provided examples of how the function should work in both cases
of list as defined its constructors: []⇒ [] | [0]⇒ [0, 0].

2. We ran Myth with these examples, obtaining the program:

let list_stutter : list -> list =
fun (l1:list) -> match l1 with

| Nil -> []
| Cons (n1, l2) -> [0; 0]

;;

Upon inspection, this program is not sufficient because while it has the
correct behavior in the Nil case, it does not have the correct behavior in the
Cons case, returning a constant list rather than performing a more general
calculation.

3. To fix this problem, we need to add additional examples to rule out this
expression in the Cons branch. Keeping in mind our trace completeness
restriction to power recursive function calls (Section 5.3.4), we add one addi-
tional example that is trace complete with respect to the original examples,
[1, 0] ⇒ [1, 1, 0, 0], and see if that creates a satisfactory program. Updating
our program with this additional example and running it through Myth

yields:

let list_stutter : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> []
| Cons (n1, l2) -> Cons (n1, Cons (n1, f1 l2))

in
f1

;;

Which is the standard implementation of stutter, so we are done!

We use this process of iterative example refinement based on the inductive
structure of the data type to develop all of the programs we supply to Myth.

Multi-argument Functions When synthesizing single argument functions, we
can perform case analysis using our examples as described above in a straight for-
ward manner. However, the process becomes more complex with multi-argument

120



functions. In general, we will need additional examples demonstrating how our
function behaves with each argument.

As a simple example, consider synthesizing the append function of type list→
list → list. Since the only argument type is list, it makes sense that we ought to
perform case analysis on one of the list arguments. Let’s choose the first argument
and try the following examples:

[]⇒ []⇒ []

| [0]⇒ []⇒ [0]
| [1, 0]⇒ []⇒ [1, 0]

Feeding these examples to Myth produces the following function
let list_append : list -> list -> list =

fun (l1:list) -> fun (l2:list) -> l1
;;

This is not the append function we want; it is the function that always chooses
its first argument! Of course, looking at the examples we provided, this is certainly
the simplest program that satisfies the examples.

The problem is that we have not specified the behavior of append on non-trivial
second arguments. Let’s try doing so incrementally, first introducing a single extra
example:

[]⇒ ([]⇒ [] | [0]⇒ [0])
| [0]⇒ []⇒ [0]
| [1, 0]⇒ []⇒ [1, 0]

Running Myth on these examples yields the refined function:
let list_append : list -> list -> list =

fun (l1:list) ->
fun (l2:list) -> match l2 with

| Nil -> l1
| Cons (n1, l3) -> Cons (0, l1)

;;

This function is closer to append but still not there. In particular, it only appends
a 0 onto l1 in the Cons case, completely ignoring l2 in the process. Adding another
example to handle when we call append [0] [0] results in the same program. We
must add one additional example,

[]⇒ ([]⇒ [] | [0]⇒ [0])
| [0]⇒ ([]⇒ [0] | [0]⇒ [0, 0])
| [1, 0]⇒ ([]⇒ [1, 0] | [0]⇒ [1, 0, 0]).
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On these examples Myth produces the program

let list_append : list -> list -> list =
let rec f1 (l1:list) : list -> list =

fun (l2:list) ->
match l1 with

| Nil -> l2
| Cons (n1, l3) -> Cons (n1, f1 l3 l2)

in
f1

;;

This final program is the standard implementation of append.

Validation An immediate question one might ask about this process is: “How
do you validate that the programs that Myth produces are correct?” Indeed, this
proves to be a tricky issue. Even though we proved soundness of the system
(Lemma 6.2.1 and Lemma 6.2.2), this only guarantees that the programs Myth

produces are well-typed and satisfy the examples. However, concrete examples
only specify a finite subset of behavior which is insufficient to express the behavior
of most functions we care to synthesis such as recursive functions. We appeal to
the Minimum Program Principle (Section 7.2.1) to maximize the likelihood that
the synthesized program agrees with the behavior that the user intends with their
examples. However, at the end of the day, the user needs to validate for themselves
that the resulting program meets their needs.

They might accomplish this by inspecting their program for obvious defects as
we did in the above example. Or they may test their program on a wider variety of
examples than what they presented to Myth. To validate our own examples, we
went through this process. Because we synthesized common recursive functional
programs, we were able to verify the correctness of Myth’s output by inspection.
In a minority of cases (some of which we explore in Section 8.4), the synthesized
program’s correctness was non-obvious and required additional testing to verify.

This work flow, as is, has some clear downsides in the context of an end-user
tool. In particular, validation is problematic because in a real-world scenario, the
user may not know what program they want in the end. After all, they are using
program synthesis to try to discover this program! However, this work flow is
adequate for discovering how our type-directed synthesis algorithm works and its
behavior on real world examples.

8.3 Benchmark Suite

To assess the effectiveness of Myth, we created a synthesis benchmark suite con-
sisting of 43 sample Myth programs developed using the methodology discussed
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in Section 8.2. These benchmarks were developed in tandem with Myth to test
the implementation as well as well as its expressiveness as we added features
and optimized its synthesis engine. These programs provide specifications of
simple functions over fundamental functional data types—booleans, natural num-
bers, lists, and trees—exercising all of the core functional programming features
that Myth provides: inductive algebraic data types, higher-order functions, and
recursion.

Booleans: Our simplest benchmarks involve synthesizing functions over booleans
values. These programs include common boolean operators: neg, and, or,
impl, and xor. Because these boolean functions are all non-recursive, we can
fully specify their behavior through straightforward case analysis with our
examples, demonstrating the power of pure type-directed refinement.

Natural Numbers: To graduate from the world from non-recursive functions to
recursive functions, we introduce example programs over the most basic of
inductive algebraic data types, the natural numbers:

type nat = O | S of nat.

These functions include unary functions over nats (e.g., is_even and prev) as
well as binary operators over nat (e.g., max and sum).

Lists: Expanding on nats, the bulk of our benchmarks feature operations over
lists. MLsyn and Myth do not have polymorphism. Therefore, our list data
type is monomorphic, fixed to a particular carrier type, usually nat or bool.
Our example programs include simple operations over a single list or pair
of lists (e.g., length and append) as well as more complex operations (e.g.,
compress and reverse). Note that because our type-directed synthesis style
does not not admit synthesis of let-bindings (Section 4.4), we must provide
the appropriate helper functions to synthesize these programs. In particular,
we explore synthesizing reverse with a variety of approaches: “cons-on-
end” (snoc), append, fold, and a tail-recursive variant that requires a second
argument. Finally, we use lists to explore synthesis of higher-order functions,
providing specifications for implementations of map, fold and filter as well as
usages of these higher-order functions as helpers.

Trees: Finally, we also explore richer data types with functions over tree data
types which require richer sets of examples to capture their behavior. These
operations include simple tree processing functions such as counting the
number of nodes and performing different sorts of traversals over a tree as
well as more complicated operations such as binary insertion (assuming that
the tree is a binary search tree).

The full text of all these sample Myth programs as well as the resulting
synthesized programs can be found in Appendix B.
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8.3.1 Analysis

Now, let us examine the results of running Myth over our benchmark suite. In
this section, we present performance numbers for an implementation of Myth in
the OCaml programming language [Leroy et al., 2014]. This implementation was
exercised on a desktop PC equipped with the openSUSE operating system (version
13.1), an Intel i7-3770 quad-core CPU clocked at 3.40 GHz, and 8 Gb of ram. Note
that because the version of OCaml we used features a runtime with a global lock,
we were unable to take advantage of more than one core. We expect that there are
substantial performance benefits to moving to an implementation that can utilize
multiple cores. All benchmarks were run five times in succession, and we report
the average runtime collected from those trials.

Figure 8.2 presents the complete performance data of running Myth over our
benchmark suite. The benchmark suite contains 42 test programs. On average,
we provided Myth with 7 examples and it produced a program of size 13 in
0.092 seconds. Since every program that we synthesize is a function, we count
an example as a single collection of input/output examples that determines one
execution of the function in question. For example, we count the partial function
we provided to Myth to synthesis the append function,

[]⇒ ([]⇒ [] | [0]⇒ [0])
| [0]⇒ ([]⇒ [0] | [0]⇒ [0, 0])
| [1, 0]⇒ ([]⇒ [1, 0] | [0]⇒ [1, 0, 0]),

as six examples, corresponding to the following executions of append:

append [] [] = []

append [] [0] = [0]
append [0] [] = [0]

append [0] [0] = [0, 0]
append [1, 0] [] = [1, 0]

append [1, 0] [0] = [0, 0, 0]

The number of examples given to Myth for these benchmarks were the minimal
amount, i.e., removing any examples from that set would result in Myth synthesiz-
ing an incorrect program.

Examples and Program Complexity Let’s take a deeper look at the data, first by
examining the interplay between the number of examples required to synthesize a
program and its final size. From Section 8.2, we saw that examples in Myth have
the practical effect of forcing Myth to discriminate between cases. For example,
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Test #/Examples Prog. size Time (s)
Booleans

bool_band 4 6 0.0028
bool_bor 4 6 0.0024

bool_impl 4 6 0.0024
bool_neg 2 5 0.001
bool_xor 4 9 0.0026

Lists
list_append 6 12 0.005

list_compress 13 28 0.0932
list_concat 6 11 0.008
list_drop 11 13 0.013

list_even_parity 7 13 0.005
list_filter 8 15 0.016
list_fold 9 13 0.1724
list_hd 3 5 0.001
list_inc 4 8 0.001
list_last 6 11 0.003

list_length 3 8 0.001
list_map 8 12 0.0108
list_nth 13 16 0.0152

list_pairwise_swap 7 19 0.007
list_rev_append 5 13 0.0144

list_rev_fold 5 12 0.008
list_rev_snoc 5 11 0.0068

list_rev_tailcall 8 12 0.005
list_snoc 8 14 0.0036

list_sort_sorted_insert 7 11 0.0094
list_sorted_insert 12 24 0.1592

list_stutter 3 11 0.001
list_sum 3 8 0.0028
list_take 12 15 0.1488

list_tl 3 5 0.001
Natural Numbers

nat_iseven 4 10 0.001
nat_max 9 14 0.0166
nat_pred 3 5 0.001
nat_add 9 11 0.0028

Trees
tree_binsert 20 31 0.4834

tree_collect_leaves 6 15 0.0208
tree_count_leaves 7 14 0.0118
tree_count_nodes 6 14 0.0112

tree_inorder 5 15 0.0192
tree_map 7 15 0.017

tree_nodes_at_level 11 22 1.1078
tree_postorder 9 32 1.467

Figure 8.2: Myth benchmark suite performance results
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Figure 8.3: Myth benchmark suite graphs—counts. Programs are grouped by the
class of data type that they operate over. The first graph shows the number of
examples used to generate each program (median = 6 examples). The second
graph shows the size of the synthesized program (median = 12 AST nodes). The
third graph shows the ratio of synthesized program size to the number of examples
used to generate that program (median = 1.875 seconds).
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two examples distinguishing between the base case and inductive case of a data
type can result in a pattern match on an appropriate value. Or, two different
examples might force the synthesizer to choose an E-term involving variables and
function application rather than a constant. In either case, Myth discriminates
between examples by adding complexity to the synthesized program in the form
of additional language constructs.

Our hope is that our type-directed synthesis style requires a minimal amount
of examples to create complex programs. To assess this, in Figure 8.3 we graph
the 42 benchmark programs against the number of examples used, the size of the
resulting program, and the ratio of the synthesized program to the number of
examples used. These graphs better allow us to see trends in the data that we
presented in table form in Figure 8.2. In particular, we see from the first graph
that the average size of our synthesized programs scales with the complexity of
the data types that we are operating over: bool = 6.4, nat = 10, list = 12.8, and
tree = 19.75 AST nodes. However, aside from the non-recursive boolean programs
whose examples completely determine their functionality (at an average of 3.6
examples per program), the second graph shows that we require roughly the same
number of examples—6–7 such examples—to synthesize recursive functions over
nats, lists, and trees (nat = 6.25, list = 7, and tree = 7.29).

Consequently, this means that it appears as our programs operate over more
complex data types, we require comparatively fewer examples to produce more
complex programs. To see this, in the third graph we compare the ratio of
synthesized program size to the number of examples used to synthesize that
program. While the ratios are fairly close between the bool, nat, and list programs
(bool = 1.78, nat = 1.6, and tree = 1.83), the more complex tree programs benefit
more with each example that we provide (tree = 2.71). The programs with the best
ratios are list_stutter (11 AST nodes, 3 examples, 3.67 size/example ratio) and
tree_inorder (15 AST nodes, 5 examples, 3.0 size/example ratio). In particular, the
list_stutter we’ve studied throughout this work is “optimal” for list programs
in the (informal) sense that we only need to present one example for each case
of the list data type as well as an additional example for the Cons case to avoid
synthesizing a constant. list_stutter also benefits greatly from I-refinement
when synthesizing the Cons(x, Cons(x,�)) portion of the Cons branch because this
program fragment is entirely dictated by the two examples that are distributed to it.
The program with the worst ratio is list_drop (13 AST nodes, 11 examples, 1.18
size/example ratio) which provides particularly tricky because we must provide
several additional examples to handle the partial behavior of the function when
we try to drop more elements than the length of the input list.

Synthesis Speed In addition to understanding how Myth uses examples, we
would also like to understand how quickly it can synthesize programs. Figure 8.4
shows the time taken to synthesize each program of the benchmark suite, classified
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Figure 8.4: Myth benchmark suite timing graph. Shows the execution time
(averaged over five trials) to synthesize each program of the benchmark suite
(median = 0.0075).

by the primary data type that the program operates over. With two exceptions,
tree_nodes_at_level and tree_postorder, all the benchmark programs synthe-
size in sub-second time, effectively instantaneous. Looking at the average runtime
of each class of programs, we see that the synthesis time scales with the com-
plexity of the subject data type (bool = 0.00061, nat = 0.00068, list = 0.0029, and
tree = 0.020 seconds). However, within each class, the run times vary wildly with a
standard deviation of 0.19 seconds across all the examples. One might expect that
the runtime ought to consistently scale with the size of the program, but this isn’t
the case because our refined synthesis procedure does not perform a breadth-first
search. By effectively adopting a hybrid depth-first/breadth-first search of the
refinement tree, we are able to synthesis some programs that take advantage of
I-refinements very quickly even though they are comparatively large.

In contrast, performance stalls when we are forced to E-guess terms whose size
crosses the exponential barrier of term generation or explore lots of nested matches.
tree_nodes_at_level and tree_postorder both fall into the former category. For
example, Myth produces the following program for tree_nodes_at_level

let tree_nodes_at_level : tree -> nat -> nat =
let rec f1 (t1:tree) : nat -> nat =

fun (n1:nat) ->
match t1 with

| Leaf -> O
| Node (t2, b1, t3) -> (match n1 with

| O -> S (O)
| S (n2) -> sum (f1 t3 n2) (f1 t2 n2))

in
f1

;;

The function application in the S branch of the inner match has size 12 which
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type bool = True | False
type nat = O | S of nat
type list = Nil | Cons of nat * list
type cmp = LT | EQ | GT
type tree = Leaf | Node of tree * nat * tree

val andb : bool -> bool -> bool
val orb : bool -> bool -> bool
val compare : nat -> nat -> cmp
val plus : nat -> nat -> nat
val div2 : nat -> nat
val append : list -> list -> list

Figure 8.5: Myth benchmarks: extended context

takes significantly longer to generate.

8.3.2 Context Size and Performance

In the previous section, we synthesized the example programs in the minimal
context necessary. In practice, a synthesis tool can achieve this by allowing the user
to choose which functions in scope ought to be usable during the synthesis process.
However, if there are many such functions available, or the user is unsure of what
functions the program might use, we will need to synthesize in a rich context.
To simulate this, we also ran our benchmark suite in a context with a number of
helper functions comparable to the prior work [Albarghouthi et al., 2013; Kuncak
et al., 2010]. Figure 8.5 gives the signatures of the types and functions found in
this context. Whenever, a benchmark program is one of the functions found in the
context, we remove that function from the context so we don’t end up synthesizing
the trivial invocation of that top-level function.

Figure 8.6 compares the performance numbers between synthesizing the bench-
mark suite in a minimal context versus the extended context. It also reports the
percentage difference between synthesizing in the minimal versus extended con-
texts. Figure 8.7 provides plots of synthesis times in the extended context along
with the percentage differences in execution time between minimal and extended
contexts. From the data, it is clear that the context has a very significant effect
on the execution time of Myth. Overall, there is a 101% increase in performance
moving from the minimal context to the extended context. Thankfully, because
the synthesis times were already sub-second, the median execution time remains
imperceptible at 0.0234 seconds.

However, several benchmarks experience a dramatic, noticeable change in run
time. The most egregious of these examples is list_compress which jumps up
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Test Time (s), No Ctx Time (s), w/ Ctx Percent Diff
Booleans

bool_band 0.0028 0.0052 0.6000
bool_bor 0.0024 0.0048 0.6667

bool_impl 0.0024 0.005 0.7027
bool_neg 0.001 0.002 0.6667
bool_xor 0.0026 0.0048 0.5946

Lists
list_append 0.005 0.012 0.8235

list_compress 0.0932 163.4742 1.998
list_concat 0.008 0.0176 0.7500
list_drop 0.013 1.6316 1.968

list_even_parity 0.005 0.6274 1.968
list_filter 0.016 1.6792 1.962
list_fold 0.1724 0.591 1.097
list_hd 0.001 0.0234 1.836
list_inc 0.001 0.004 1.200
list_last 0.003 0.106 1.890

list_length 0.001 0.022 1.826
list_map 0.0108 0.0944 1.589
list_nth 0.0152 0.9 1.933

list_pairwise_swap 0.007 5.807 1.995
list_rev_append 0.0144 0.0314 0.7424

list_rev_fold 0.008 0.0158 0.6555
list_rev_snoc 0.0068 0.02 0.9851

list_rev_tailcall 0.005 0.0052 0.0392
list_snoc 0.0036 0.078 1.824

list_sort_sorted_insert 0.0094 0.008 -0.1609
list_sorted_insert 0.1592 27.107 1.977

list_stutter 0.001 0.0208 1.817
list_sum 0.0028 0.006 0.7273
list_take 0.1488 1.2964 1.588

list_tl 0.001 0.0216 1.823
Natural Numbers

nat_iseven 0.001 0.0222 1.828
nat_max 0.0166 0.0158 -0.0494
nat_pred 0.001 0.0016 0.4615
nat_add 0.0028 0.0038 0.3030

Trees
tree_binsert 0.4834 9.8018 1.812

tree_collect_leaves 0.0208 0.0392 0.6133
tree_count_leaves 0.0118 0.0414 1.113
tree_count_nodes 0.0112 0.035 1.030

tree_inorder 0.0192 0.0396 0.6939
tree_map 0.017 0.0362 0.7218

tree_nodes_at_level 1.1078 4.4172 1.198
tree_postorder 1.467 9.8668 1.482

Figure 8.6: Myth benchmark suite performance results in context.
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Figure 8.7: Myth benchmark suite graphs in the extended context specified by
Figure 8.5 The first graph shows the execution time (in log scale) of Myth on
each benchmark program in context (median = 0.0234). The second graph shows
percentage difference in execution time between Myth synthesizing in a minimal
context and in the extended context (median = 1.097).

to an average run time of 2.5 minutes! Examining the output for list_compress
reveals the problem:

let list_compress : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> Nil
| Cons (n1, l2) ->

(match f1 l2 with
| Nil -> l1
| Cons (n2, l3) ->

(match compare n2 n1 with
| LT -> Cons (n1, Cons (n2, l3))
| EQ -> Cons (n1, l3)
| GT -> Cons (n1, Cons (n2, l3))))

in
f1

;;

The triply nested match is relatively quick to synthesize in the minimal context
because we only have the compare function with which to make complex match
scrutinees. However, with the addition of append and plus from the extended
context, we now gain many more possible informative scrutinees that must be
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Test #/Examples Prog. size Time (s)
Arithmetic Language Interpreter

arith 22 47 12.5408
Type Dynamic

dyn_app_twice 6 11 0.9038
dyn_sum 25 23 24.5702

Free Variable Collector
fvs_small 6 16 0.0372

fvs_medium 22 45 0.6782
fvs_large 31 78 3.024

Figure 8.8: Myth extended examples results

explored in the refinement tree. The other cases where the execution time explodes,
e.g., tree_binsert and list_sorted_insert, have similar problem where deep
matching is necessary, but the space of possible matches explodes under the
extended context.

8.4 Extended Examples

In addition to the benchmark suite, we also tested Myth on a variety of extended
examples to better understand the limits of the system. Figure 8.8 gives an overview
of the examples and their execution time with Myth.

Interpreters Typed, functional programming languages are excellent for writing
compilers and interpreters because abstract syntax trees line up well algebraic
data types. As a result, our type-directed program synthesis style works well for
synthesizing these sorts of programs. To demonstrate this, we provide an example
of synthesizing an interpreter for the following calculator language:

type exp =
| Const of nat
| Sum of exp * exp
| Prod of exp * exp
| Pred of exp
| Max of exp * exp

The interpreter for this language has size 47 and requires 22 examples to
synthesize in approximately 12 seconds.
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let arith : exp -> nat =
let rec f1 (e1:exp) : nat =

match e1 with
| Const (n1) -> n1
| Sum (e2, e3) -> sum (f1 e2) (f1 e3)
| Prod (e2, e3) -> mult (f1 e2) (f1 e3)
| Pred (e2) -> (match f1 e2 with

| O -> O
| S (n1) -> n1)

| Max (e2, e3) -> (match compare (f1 e2) (f1 e3) with
| LT -> f1 e3
| EQ -> f1 e3
| GT -> f1 e2)

in
f1

;;

It utilizes several helper functions, sum, mult, and compare, and the function
itself contains multiple nested pattern matches with complex scrutinees which,
from Section 8.3.1, explains why it takes significantly longer to synthesize than the
benchmark suite’s programs.

Type Dynamic Recall from Section 5.2.1 that part of our checks to ensure that
MLsyn is well-founded is enforcing a positivity restriction on data types. This
restrictions says that a recursive occurrence of a data type cannot appear to the left
of an arrow in the type of any of its constructors. For example, consider the data
type encoding type dynamic:

type dyn =
| Error
| Base of nat
| Dyn of dyn→ dyn

dyn provides dynamic typing functionality over nats (Base) and functions (Dyn).
This data type breaks the positivity restriction because of the signature of Dyn, so
we would not allow it in MLsyn.

However, as we showed in Section 5.2.1, the simplest infinite loop you can
produce using this loophole requires the use of an external function (call it f :
dyn→ dyn) and its subsequent double application f (Dyn f ). Because MLsyn does
not have let-bindings, we must synthesize a much larger program to produce this
infinite loop. Furthermore, it is not clear if this is even possible to produce in
MLsyn without the positivity restriction because we can only synthesize function
applications in normal form. It is very likely that we will not encounter this
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program during normal execution of Myth because if such a program with an
infinite loop exists, it is likely too complicated for Myth synthesize in practice.

In light of this revelation, we left out the positivity restriction from Myth and
attempted to synthesize a pair of recursive functions over dyn, dyn_app_twice
which applies a Dyn function twice and dyn_sum which performs the addition
operation through dyns. In either case, we produce Error if the types do not line
up appropriately. In both cases we are able to synthesize the correct function,
lending weight to the argument that we would not encounter infinite loops via
the positivity restriction in practice. In particular, dyn_sum is a particular hairy
function, requiring two triply nested pattern matches to correctly raise Error at all
the correct points in the program.

let dyn_sum : dyn -> dyn -> dyn =
fun (d1:dyn) ->

fun (d2:dyn) ->
match d1 with

| Error -> Error
| Base (n1) -> (match n1 with

| O -> (match d2 with
| Error -> Error
| Base (n2) -> d2
| Dyn (f3) -> Error)

| S (n2) -> (match n2 with
| O -> succ d2
| S (n3) -> succ (succ d2)))

| Dyn (f3) -> Error
;;

Note that this pattern of programming is similar to error handling with an
option/maybe type. In lieu of additional constructs to avoid excessive match
expressions, we would need to use deeply nested pattern matches to crack open
option/maybe values.

Free Variables Collector Myth combines depth-first and breadth-first search of
the refinement tree in a particular way: first it efficiently computes the possible set
of I-refinement all at once and then it E-guesses at the leaves. This makes Myth

very efficient when synthesizing programs that feature shallow pattern matches
over large data types. To illustrate this point, we synthesize programs that collect
the free variables of a simply typed lambda calculus encoded in a locally nameless
style [Aydemir et al., 2008]. The largest such program, fvs_large, operates over
the following data type:
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type exp =
| Unit
| BVar of nat
| FVar of nat
| Lam of nat * exp
| App of exp * exp
| Pair of exp * exp
| Fst of exp
| Snd of exp
| Inl of exp
| Inr of exp
| Const of nat
| Add of exp * exp
| Sub of exp * exp
| Mult of exp * exp
| Div of exp * exp

Passing the necessary 31 examples to Myth produces the following function in
3.024 seconds:

let fvs_large : exp -> list =
let rec f1 (e1:exp) : list =

match e1 with
| Unit -> []
| BVar (n1) -> []
| FVar (n1) -> [n1]
| Lam (n1, e2) -> f1 e2
| App (e2, e3) -> append (f1 e2) (f1 e3)
| Pair (e2, e3) -> append (f1 e2) (f1 e3)
| Fst (e2) -> f1 e2
| Snd (e2) -> f1 e2
| Inl (e2) -> f1 e2
| Inr (e2) -> f1 e2
| Const (n1) -> []
| Add (e2, e3) -> append (f1 e2) (f1 e3)
| Sub (e2, e3) -> append (f1 e2) (f1 e3)
| Mult (e2, e3) -> append (f1 e2) (f1 e3)
| Div (e2, e3) -> append (f1 e2) (f1 e3)

in
f1

;;

Note that the number of examples is necessary with our synthesis scheme
because we must specify several examples per constructor to produce meaningful
expressions in each branch.
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While this program is larger than any that we have synthesized so far, it is not
the slowest by far. This is because even though the match is tall, we discover it via
I-refinement and synthesize the relatively thin branches (maximum size 9) through
E-guessing very quickly. Note that we are unable to synthesize an extension
of the exp data type above with a Match constructor and our naïve parameter
search strategy because we would need the E-guess the function application
append ( f1 e1) (append ( f1 e2) ( f1 e3)) of size 15, and Myth times out before it can
do so. With a better tuned search strategy, synthesizing these larger branches is
certainly possible for Myth

Inside-out Recursion A hallmark of a good program synthesis tool is that it
can produce surprising results. To illustrate this, we close by examining a more
complicated example from our benchmarks, list_pairwise_swap, which swaps
consecutive pairs of elements in a list. When the list has odd length, we choose to
return the empty list. When we provide Myth with the following set of examples,

[]⇒ []

| [0]⇒ []

| [1]⇒ []

| [1, 0]⇒ [0, 1]
| [0, 1]⇒ [1, 0]
| [0, 1, 0, 1]⇒ [1, 0, 1, 0],

it produces the following function:

let list_pairwise_swap : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> []
| Cons (n1, l2) ->

(match l2 with
| Nil -> []
| Cons (n2, l3) -> Cons (n2, Cons (n1, f1 l3)))

in
f1

;;

This implementation seems to be correct as it performs the expected double
pattern match, swaps the two head elements, and recursively swaps the rest.
However, in the case where we call the function with the list [1, 0, 1, 0, 1], it produces
the list [0, 1, 0, 1], truncating the last element off the list rather than returning []. To
remedy this, we provide one additional example to Myth, [1, 0, 1]⇒ [], and it now
produces the correct result:
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let list_pairwise_swap : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> []
| Cons (n1, l2) ->

(match f1 l2 with
| Nil -> (match l2 with

| Nil -> []
| Cons (n2, l3) -> Cons (n2, Cons (n1, f1 l3)))

| Cons (n2, l3) -> [])
in

f1
;;

Rather than immediately pattern matching on the list twice, list_pairwise_swap
instead pattern matches on a recursive call to the function. This seemingly odd be-
havior has a surprising effect: f 1 l2 becomes a test to see if the list has even (Nil)
length or odd length (Cons)! In the case when the list has odd length, we return [],
otherwise we proceed as normal.

In many situations, Myth elects to perform this behavior, a phenomenon we call
inside-out recursion, because it turns out to save an AST node (see list_compress,
list_even_parity, and tree_postorder). However, it turns out this behavior is
necessary to implement list_pairwise_swap correctly because in the absence of
let-bindings or a helper function to judge whether the list has odd length, there
is no other way to perform the necessary test. In this sense, even though Myth

is performing relatively naïve search, it is still able to produce results that are
surprising, yet correct, at first glance!
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Chapter 9

Polymorphism

One of the most glaring omissions from MLsyn and Myth is polymorphism. With-
out polymorphism, our list and tree data types from Chapter 5 must have concrete
carrier types. Beyond not being able to synthesize programs that more closely
resemble real-world typed, functional programs, the lack of polymorphism also
impacts efficiency. To see this, consider performing raw term enumeration at the
list data type (carrier type nat) with the append function of type list → list → list.
Suppose that we also have variables l1 and l2 of type list in the context. Then we
will enumerate E-terms such as:

append l1 l2
append l1 (append l1 l2)
append (append l1 l2) l2

As we observed in Chapter 8, functions like append pose a problem for E-term
generation as they greatly increase the number of programs that we synthesize,
many of which are equivalent. However, on top of these E-terms, we will also
enumerate these E-terms:

append l1 [0]
append l2 [1]
append [0] [0]
append [1] [0]
append [0] [1]
append [1] [1].

These E-terms are problematic because they expose the fact that the carrier type of
list is concrete even though it is likely that the satisfying program does not require
operating over a particular carrier type. While we are forced to explore all of these
possible programs, they are all very unlikely to be satisfying the examples for this
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τ : := ∀α. τ | α | τ1 → τ2 | T Types
e : := x | e [τ] | Λα. e | e1 e2 | λx:τ. e | c Terms
E : := x | E [τ] | E I Elimination Terms
I : := E | Λα. Iλx:τ. I | c Introduction Terms
v : := Λα. e | λx:τ. e | c Values
E : := � | E [τ] | E e | v E Evaluation Contexts
Γ : := · | x:τ, Γ | α:∗, Γ Typing Contexts

(Extends the definition of λ→syn—Figure 2.5)

e −→ e′
eval-tapp

(Λα. e) [τ] −→ [τ/α]e

Γ ` E⇒ τ
Γ ` I ⇐ τ

t-Etapp

Γ ` E⇒ ∀α. τ1 Γ ` τ

Γ ` E [τ]⇒ [τ/α]τ1

t-Itabs

α:∗, Γ ` I ⇐ τ

Γ ` Λα. I ⇐ ∀α. τ

Γ ` τ

wf-forall

α:∗, Γ ` τ

Γ ` ∀α. τ

wf-tvar

α:∗ ∈ Γ
Γ ` α

wf-arr

Γ ` τ1 Γ ` τ2

Γ ` τ1 → τ2

wf-base

Γ ` T

Figure 9.1: λ∀syn syntax and typechecking

reason.
If we had polymorphic types, then we could assign append the polymorphic

type ∀α. α list → α list → α list. With this type, we would simply be unable to
synthesize E-terms like the latter set above; they would be ill-typed because the
carrier type of the list is held abstract! This has the potential to be an enormous
performance win as we are able to prune a large number of candidate terms from
the search space when synthesizing programs over lists, trees, and other generic
data types.

9.1 From System F to Polymorphic Program Synthesis

To add polymorphism to our synthesis calculi, we apply the same trick of turning
the type checking rules for polymorphic values into synthesis rules. We start
our exploration with System F [Girard, 1972], the simply-typed lambda calculus
extended with universal quantification. Figure 9.1 gives the definition of λ∀syn,
our extension of System F for type-directed program synthesis. The polymorphic
type ∀α. τ possesses an introduction form, the type abstraction Λα. e, and an
elimination form, the type application e [τ]. For example, we would write down
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the polymorphic identity function of type ∀α. α→ α as

Λα. λx:α. x.

The static and dynamic semantics of these new constructs is straightforward.
Type checking a type abstraction (t-Itabs) requires that we check the abstracted
type under an extended context that records the type variable α. A type application
is well-typed (t-Etapp) whenever a type abstraction of type ∀α. τ1 is applied to
a well-formed type (checked with the well-formed type judgment Γ ` τ). The
result of the type application is an instantiated version of the polymorphic type τ1
where all occurrences of α have been replaced by the argument type τ. Finally, the
reduction rule for type application is also simple (eval-tapp) where we substitute
the type argument throughout the body of the type abstraction.

9.2 Synthesizing Type Applications

With the typing rules for λ∀syn set, we can now begin the process of creating
synthesis rules for polymorphic values from λ∀syn’s typing judgment. Let us
start with synthesizing type applications. Naïvely transforming the rule for type
checking type applications, t-Etapp, into an E-guessing rule yields:

Γ ` τ  E

eguess-tapp

Γ ` ∀α. τ1  E Γ τ

Γ ` [τ/α]τ1  E [τ]

A straightforward reading of this synthesis rule says that we can synthesize a type
application whenever our goal type anti-unifies with some universal type that we
can E-guess and a well-formed type that we can generate. Like the E-guessing
rule for µ-types (Section 5.1), eguess-tapp requires that we guess the universal
type and the instantiation that will allow us to synthesize a term of the goal type
through a single type application.

With recursive types, we circumvented this problem by rolling recursive types
into algebraic data types and functions. And with other simple type extensions,
we appealed to focusing (Section 4.1.1) to avoid guessing. However, in those
cases, there were a finite number of eliminations we could perform, i.e., a finite
number of tuple or record components. With polymorphism, there are an infinite
number of type applications we could perform because a polymorphic value can
be instantiated to any type!

We can mitigate this problem by performing a breadth-first search of the
polymorphic instantiations in order of increasing size of type. That is, when
E-guessing, we can initially focus on the possible complete instantiations of all
polymorphic variables in the context of base type (size one). For example, with
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nat and bool in the context, we would explore the following instantiations of the
polymorphic map function:

map [nat] [nat]

map [nat] [bool]

map [bool] [nat]

map [bool] [bool]

In successive E-guessing phases, we would expand our search to types of increasing
size, e.g., arrows at base types, arrows of arrows, and so forth. In the presence of
many base types and polymorphic types with multiple arguments, the number
of instantiations grows quickly as we must consider all the possible ways of
combining these base types to fully instantiate each polymorphic type. This blows
up the size of our context, but in practice, we will likely only need to explore
instantiations at depth one or two (corresponding to base types and instantiated
polymorphic types).

9.3 Examples for Polymorphic Values

Now, let’s turn our attention towards synthesizing the polymorphic introduction
form, the type abstraction. This requires that we define our example value χ for a
polymorphic type. Because type abstractions are values, it is tempting to designate
the type abstraction as the example value of polymorphic type, i.e.,

χ : := . . . | Λα. χ.

However, this turns out to be a bad choice of example value! To see this, imagine
defining an example corresponding to the polymorphic identity function:

Λα. ?⇒?

If we were in a monomorphic setting, for example, we were defining the identity
function over nats, we could write a concrete input/output pair 0⇒ 0. But here
we must fill in the question marks with values of the abstract type α, and we have
no such values available!

9.3.1 Polymorphic Constants

Thus, the type abstraction value is not suitable as an example value on its own as it
does not provide any values of abstract type for us to use. However, we can simply
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enhance our type abstraction example value construct to provide this information!

v : := . . . | q
χ : := . . . | Λq1, . . ., qk : α. χ | q

Rather than just introducing an abstract type α, the type abstraction example value
also introduces polymorphic constants q1, . . ., qk that can be used in χ. For example,
we can now specify the polymorphic identity function easily,

Λq : α. q⇒ q.

We allow the type abstraction example value to specify multiple constants so
that we can capture relationship between polymorphic values in examples. For
example, suppose that we lifted our polymorphic system to MLsyn. Then the
polymorphic stutter function might take the following examples as specification:

Λq1, q2 : α. []⇒ []

| [q1]⇒ [q1]

| [q2, q1]⇒ [q2, q2, q1, q1]

Importantly, our polymorphic constants have decidability, identity-based equality
that we employ in our compatibility check,

eq-pconst

q ' q

which allows us to distinguish between q1 and q2 in the above example during
synthesis.

Note that our polymorphic values are not constructs that the user can synthe-
size.1 You can think of them as abstract values or placeholders for polymorphic
values that will be bound to variables in our example worlds’ environments. For ex-
ample, in the above example of the polymorphic identity function, if we synthesize
the partial program:

Λα. λx:α.�.

Then at the program hole, x would be bound to the polymorphic constant q in our
sole example world. This means that while we can write down example values of
type ∀α. α, for example, Λq : α. q, we will be unable to synthesize any terms of this
type. (Which is good, because ∀α. α is uninhabited!)

Figure 9.2 gives the enhanced syntax and synthesis rules for λ∀syn. I-refinement
of universal quantification is handled by irefine-forall where we synthesize
a type abstraction. Because the examples are well-typed, they must be type
abstraction example values. We assume that before synthesis (e.g., during type

1Indeed, no rule of λ∀syn can synthesize a polymorphic constant q.

142



v : := . . . | q Values
χ : := . . . | Λq1, . . ., qk : α. χ | q Example Values
Γ : := · | x:τ, Γ | α:∗, Γ | q:α, Γ Typing Contexts

Γ τ

wf-forall

α:∗, Γ τ

Γ ∀α. τ

wf-tvar

α:∗ ∈ Γ
Γ α

wf-arr

Γ τ1 Γ τ2

Γ τ1 → τ2

wf-base

Γ T

Γ ` τ  E
Γ ` τB X I

eguess-tapp

Γ ` ∀α. τ1  E Γ τ

Γ ` [τ/α]τ1  E [τ]
irefine-forall

X = Λq1, . . ., qk:α. χi
i<m X′ = χi

i<m

q1:α, . . ., qk:α, α:∗, Γ ` τB X′  I
Γ ` ∀α. τB X Λα. I

v ' χ

eq-pconst

q ' q

eq-tabs

I −→∗ v v ' χ

Λα. I ' Λq1, . . ., qk:α. χ

Γ ` χ : τ

ex-pconst

q:α ∈ Γ
Γ ` q : α

ex-tabs

q1:α, . . ., qk:α, α:∗, Γ ` χ : τ

Γ ` Λq1, . . ., qk:α. χ : ∀α:. τ

Figure 9.2: λ∀syn synthesis rules
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checking), that we normalize the type abstraction example values so that they all
declare exactly the same set of polymorphic constants. Then, example refinement
simply amounts to stripping off the binders of the example values, recording
them in the context, and synthesizing with the remaining nested example values.
While we record the type variable associated with the polymorphic constants, this
is unnecessary because we never need to refer to their types again; we merely
compare the constants for equality via ex-pconst during the synthesis process.

Finally, closing the loop on synthesis with polymorphic values, we must extend
our compatibility check to type abstractions. Because we only check compatibil-
ity at well-typed program values and example values, we know that we must
be comparing a type abstraction value to a type abstraction example value at
universal type. (Recall that in λ→syn, we separated the syntax of program values
and example values, only joining them together in MLsyn to support partial-
functions-as-program values). To do this, we simply want to check their bodies for
compatibility. However, we encounter a slight complication: the body of a type
abstraction program value is an arbitrary I rather than a v—in particular, the body
could be an E with pending reductions. To get around this, we evaluate the body
of the value type abstraction and compare the resulting value to the example value
body (eq-tabs).

As a complete example, we revisit the encoding of the boolean if function from
Section 2.2.2. With polymorphic types, we can assign the boolean type and values
the following lambda terms:

bool
def
= ∀α. α→ α→ α

true
def
= Λα. λt:α. λ f :α. t

false
def
= Λα. λt:α. λ f :α. f

In this setting, if has the type ∀α. bool → α → α → α. (Note that this type has
a nested quantifier in the type synonym bool.) Our specification of the desired
function is the example value:

χ = Λq1, q2:α. true⇒ q1 ⇒ q2 ⇒ q1 | false⇒ q1 ⇒ q2 ⇒ q2.

Starting with the initial goal of

� : ∀α. bool→ α→ α→ α,

we apply irefine-forall to create the top-level type abstraction

Λα.� : bool→ α→ α→ α,

where we have introduced two polymorphic constants q1 and q2 into the context.
From here, synthesis proceeds almost identically to our λ→syn development. We
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apply irefine-arr multiple times to arrive a base goal type

Λα. λb:bool. λt:α. λ f :α.� : α.

Our examples have been refined to two worlds:

[true/b][q1/t][q2/ f ] 7→ q1
[false/b][q1/t][q2/ f ] 7→ q2.

To guess the body of the function, we invoke irefine-eguess to guess an elimination
form. We would like to synthesize the satisfying expression b t f as in Chapter 2.
However, because bool is now polymorphic, we must first instantiate it to the
correct type, α, using eguess-tapp. The complete derivation tree corresponding to
this E-guessed expression is:

eguess-app

eguess-app

eguess-tapp

eguess-var

b:∀α. α→ α→ α ∈ Γ
Γ ` ∀α. α→ α→ α b

tguess-tvar

α:∗ ∈ Γ
Γ α

Γ ` α→ α→ α b [α]

eguess-var

t:α ∈ Γ
Γ ` α t

Γ ` α→ α b [α] t

eguess-var

f :α ∈ Γ
Γ ` α f

Γ ` α b [α] t f

9.3.2 Polymorphic Instances

The type abstraction example value that we developed in the previous section
works for specifying values of polymorphic type. However, they are not the most
natural way of specifying such examples. For example, rather than declaring and
using abstract polymorphic constants to specify the behavior of stutter,

Λq1, q2 : α. []⇒ []

| [q1]⇒ [q1]

| [q2, q1]⇒ [q2, q2, q1, q1],

it would be more convenient to specify concrete instantiations of stutter such as

[nat]([]⇒ []

[0]⇒ [0]
[1, 0]⇒ [1, 1, 0, 0]),
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which is identical to the monomorphic case but an explicit type annotations for
the universal type.2

This suggests an alternative example value for polymorphic types—the poly-
morphic instance:

χ : := . . . | [τ] χ.

Rather than requiring the user to specify polymorphic binders, we allow them to
use concrete values along with a concrete type instantiation instead. When using
these concrete values, we need to remember in each example world what these
type instantiations are so that we can move between type variables and concrete
types as necessary. We might do this by recording type equalities for each example
world. For example, when refining the single example world [nat] 0⇒ 0 for a goal
type ∀α. α→ α, we will eventually end up with the refined world

[α nat][0/x] 7→ 0

where we remember the top-level polymorphic type variable α is instantiated to
nat in this world, written α nat. However, the problem is that we can easily abuse
this type equality to create invalid code. Say that we have this example world
with the partial program skeleton Λα.λx:α. (� : α). It would be unsound to use
this type equality to synthesize 0 for the hole, even if this value agrees with the
example, because the hole is held to an abstract type α.

Rather than recording type equalities that could apply to an entire example
world, we must instead record that the example values really have polymorphic
type even though they are concrete values (of a particular, known type). To do
this, we introduce boxed polymorphic expression, written deeα, that records that a
particular expression ought to be treated as if had type α. These boxes behave
similarly to the polymorphic constants in that they are opaque to the outside
world, but allow for testable equality (as long as the carrier type of the box also
has testable equality). When refining a polymorphic instance value of the form
[τ1] χ at goal type ∀α. τ, we box any sub-expression of χ that would have type
α when type checking χ against the polymorphic type ∀. τ. For example, if our
example value was:

[nat]λx:nat. x ⇒ 0⇒ 1⇒ 0

and our goal type at this point in the synthesis process was ∀α. (α→ α)⇒ nat⇒
α⇒ α. Then our boxing operation would result in the following modified example
value

λx:α. dxeα ⇒ 0⇒ d1eα ⇒ d0eα.

Note that in addition to adding boxes in every position where we expected a
value of type α according to the goal type, we also modified the lambda’s type

2In a real implementation, we could instead infer these type annotations making the in-
put/output examples identical to our original presentation of stutter.
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annotation to reflect the fact that it is also takes an α as an argument according
to the goal type. Because we are interested in determining every sub-term that
has type α according to the goal type, the box transformation function box is the
standard type checking algorithm but modified to box every such sub-term along
the way.

Rather than formalize this approach completely, we observe that the instances
based-approach to providing polymorphic examples is functionally equivalent
to the constants-based approach we discussed in Section 9.3.1! The effect of the
box transformation function is to take a concrete example value and abstract
it according to the polymorphic goal type. And the polymorphic constants are
equivalent to the boxed terms that box creates—they are both opaque values that
we can test for equality. With this in mind, we can view polymorphic constants as
the form of our example values that is simpler to reason about while polymorphic
instantiations offer the user a more flexible way of specifying examples but at the
cost of additional complexity.

9.4 The Metatheory of Polymorphism

We close our discussion of polymorphism by stating and proving the necessary
lemmas for soundness and completeness of λ∀syn.

Lemma 9.4.1 (Type Preservation of Polymorphism). If Γ ` X : ∀α. τ then Γ′ `
X′ : τ where Γ′ = q1:α, . . ., qk:α, α:∗, Γ, X = σi 7→ Λq1, . . ., qk:α. χi

i<m and X′ =
σi 7→ χi

i<m.

Proof. Consider σ 7→ Λq1, . . ., qk:α. χi ∈ X. Because X is well-typed, we know that
σ and the type abstraction are well-typed. By inversion on ex-tabs, we know that χ
is well-typed under the context q1:α, . . ., qk:α, α:∗, Γ which is sufficient to conclude
that X′ is well-typed.

Lemma 9.4.2 (Satisfaction Soundness of Polymorphism). If I � X′, then Λα. I �
X where X = σi 7→ Λq1, . . ., qk:α. χi

i<m and X′ = σi 7→ χi
i<m.

Proof. Consider a single σ 7→ χ ∈ X′. By the definition of satisfaction for I,
σ(I) −→∗ v and v ' χ. Now, by unrolling the definition of satisfaction for Λα. I,
we learn that we must show that

σ(Λα. I) = Λα. σ(I) ' Λq1, . . ., qk:α. χi.

However, this is immediate from eq-tabs and the fact that v ' χ.
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Lemma 9.4.3 (Satisfaction Preservation of Polymorphism). If Λα. I � X then I �
X′ where X = σi 7→ Λq1, . . ., qk:α. χi

i<m and X′ = σi 7→ χi
i<m.

Proof. Consider a single σ 7→ Λq1, . . ., qk:α. χi ∈ X. By the definition of satisfaction
for Λα. I,

σ(Λα. I) = Λα. σ(I) ' Λq1, . . ., qk:α. χi.

Now, by unrolling the definition of satisfaction for I, we learn that we must show
that v ' χ where σ(I) −→∗ v. However, we know this by inversion of ex-tabs on
the compatibility of the type abstraction values above.
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Chapter 10

Conclusion

In this thesis, we have explored the integration of type theory into program
synthesis for typed, functional programming languages. By using type theory as
the basis of our synthesis techniques, we were able to:

1. Build core calculi for program synthesis rooted in the simply-typed lambda
calculus and its extensions.

2. Synthesize programs that previous program synthesis systems have found
difficult to address: typed, recursive functional programs over algebraic data
types with higher-order functions.

3. Exploit the logical nature of types to greatly reduce the search space of
possible programs, refine specification, and decompose synthesis problems
into smaller, independent synthesis sub-problems.

4. Gain insight into how to synthesize programs with advanced languages
features like recursion and polymorphism by inspection of the type system.

5. Leverage the power of the proof search to help optimize our search proce-
dures in a variety of ways.

6. Reason carefully about the behavior of our core program synthesis calculi,
proving soundness and completeness of the relevant synthesis procedure
when possible and explaining why these properties fail when they do not
hold.

In short, we have laid down a foundation for program synthesis with types and
demonstrated its effectiveness. We hope that others can build upon our work to
integrate types into other existing synthesis systems or begin exploring the space
of program synthesis in the presence of rich types.
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10.1 Future Directions

There are many areas left to explore to increase the expressiveness of the program
synthesis calculi we have developed, improve the performance of Myth, or apply
these program synthesis techniques to solve problems in more targeted domains.
We close by exploring these future directions in more detail.

10.1.1 Synthesis with Richer Types

The fundamental technique we introduced in this work was how to convert a
standard typing judgment into a type-directed program synthesis judgment. For
simple types (Chapter 4), this conversion alone was sufficient to begin synthesizing
programs that use those new types. However, for more complex language features
such as recursion and polymorphism, we required additional insight to integrate
these features into our synthesis system.

Regardless, we have only scratched the surface of types and language features
we could add to our synthesis calculi. Here are some richer types to consider as
next steps and the potential challenges they present for synthesis.

Linear Types: Linear logic [Girard, 1987], linear type systems [Wadler, 1991], and
other sub-structural logics [Walker, 2005] allow developers to reason about
resource management policies of their programs. The heart of the linear type
system is the rule for type checking (linear) variables:

t-var

x:τ ` x : τ

If we maintain the invariant that the context only contains (linear) variables
interpreted as resources, this modified type checking rules states that a linear
resource must be used exactly once in a program. Turning this rule into a
corresponding synthesis rule is natural and straightforward. However, the
difficulty lies in managing the context in the other rules to maintain our
invariant. For example, when type checking pairs

t-pair

Γ = Γ1 ◦ Γ2 Γ1 ` e1 : τ1 Γ2 ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

we must non-deterministically partition our resources to satisfy each of the
component expression of the pair. A type checking algorithm can mitigate
this non-determinism by type checking e1 first, noting what resources are
used, and then type check e2 with the remaining resources. In a synthesis
system we do not know e1 or e2 up front, so a naíve strategy must con-
sider all possible partitions of the contexts to generate the pair components.
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Smarter search strategy and memoization techniques are required to avoid
this potential combinatorial explosion of possible synthesis sub-problems.

Generalized Algebraic Data Types: Generalized Algebraic Data Types (GADTs) [Xi
et al., 2003] allow for the type parameters of the return type of a constructor
to vary rather than being fixed to a (polymorphic) type. The quintessential
example of GADT usage is the tagless interpreter. Suppose that we have a
data type corresponding to the terms of some simple language:

type ′a exp =
| Const : nat→ nat exp
| Pair : ′a exp→ ′b exp→ (′a ∗ ′b) exp

. . .

Then when we pattern match on exp values, for example, during evaluation,

let rec eval (e:′a exp) : ′a =
match e with
| Const i→ i

. . .

we know that the i in the Const branch of the match has type nat because
our Const constructor produces a value of type ′a exp. Thus the function
application eval (Const 1) has type nat rather than some polymorphic type.
This is accomplished by recording the type equalities that we acquire during
pattern matching (′a ∼ nat).

The primary complexity of GADTs come from the generation, propagation,
and proper usage of these type equalities, in particular during type infer-
ence [Peyton Jones et al., 2006]. While a synthesis procedure does not need
to directly worry about generation and propagation of these type equalities—
type checking proper handles this—the synthesis procedure needs to be made
aware of utilizing type equalities and anti-unification of type variables when
generating terms. This is analogous to the problem of efficiently determining
instantiations of polymorphic values during term generation (Section 9.2).
For example, if the eval function above was in our context, our synthesis
procedure needs to be able to recognize that it can produce a nat by applying
eval to a Const.

Dependent Types: Finally, dependent types [Martin-Löf, 1984] allow us to express
arbitrary properties of our programs that are verified during type checking.
This is accomplished by allowing types to be indexed by terms of the lan-
guage. For example, we might parameterize our list type to be indexed by a
natural number that we intend to be the length of all lists of that type: list 0
is the type of the empty list, list 3 is the type of lists of length three, and so
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forth. With this data type, we can then give our append function the richer
type signature:

(n1:nat)→ (n2:nat)→ list n1 → list n2 → list (n1 + n2)

which encodes the fact that the length of the list created by appending two
lists together is the sum of their lengths.

This precision is great for program synthesis because it can dramatically
reduce the search space of programs. For example, with append, there are
only a few ways to produce a list of type list (n1 + n2) within the body of the
function. However, at the same time, the search space of types is now much
larger because it includes the space of programs!

10.1.2 Additional Specification

We have only considered input/output examples as our mode of specification
(in addition to types). This is because input/output examples are amendable to
refinement using the type-directed style we have developed in this thesis. However,
there are many other modes of specification that we can use in tandem with
examples to refine the search space of programs or reduce the number of examples
we must provide to the synthesizer.

Recursive Back-patching As a concrete example, consider our approach to syn-
thesizing recursive functions (Chapter 5). When evaluating a recursive function
call, we use the input/output examples, interpreted as a partial function that
specifies the behavior of the recursive function, as its value. This was because
our recursive function may not be completed by synthesizing this function call,
for example, if we had multiple branches of a pattern match requiring recursive
function calls. But this seems wasteful; could we not use the partial function we
have synthesized so far in some way?

With our normalize-and-compare strategy, we seem to be stuck without em-
ploying some kind of partial evaluation strategy. An alternative is to simply defer
evaluation until we have a complete program to try. In the case where the candi-
date expression completes our recursive function, we achieve the behavior that
we want. But what if we are in the troublesome situation where we have multiple
branches that need to be completed, e.g.,

match x with
| p1 → �
| p2 → �
| p3 → �.

Here, we must generate candidate expressions in each of the branches of the match.
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Now, when we E-guess a term E in these branches, three outcomes are possible:

1. E satisfies the examples,

2. E does not satisfy the examples, or

3. E cannot be safely evaluated because it contains a recursive function call.

In the first case, we can obviously accept E as a satisfying expression. In the second
case, we can safely discard E because it certainly does not contribute to an overall
solution. In the third case, we need to propagate this expression upwards to a point
where it can be evaluated safely. In the example above, this point is at the top of
the match expression once we have potential candidate expressions from the other
branches.

Suppose that our synthesis procedure determines that branches p1, p2, and
p3 have candidate expressions E1, E2, and E3 that could complete their respective
branches. Then it is sufficient to test all combinations of potentially satisfying
expressions in each branch to see if any of the combinations result in an overall sat-
isfying program. With this approach to synthesizing recursive programs, we have
to coordinate synthesis among the branches of a match rather than synthesizing
them completely independently. In return, we are able to use the function currently
being synthesized as part of the specification, reducing the number of examples we
need to provide to the synthesizer. We call this approach to synthesizing recursive
functions recursive back-patching because we are deferring evaluation of a recursive
function until we have patched in all the points where it must make recursive calls.

First-order Constraints Another example of additional specification are first-
order constraints. We have conveniently left out dealing with first-order data
such as integers or strings in our type-directed approach to synthesis. This is
because such data types are not inductive in nature and thus do not benefit from
the proof search techniques we employ. Existing solver technology such as SMT
solvers [Barrett et al., 2008] deal with constraints well; can we integrate both forms
of specification into our synthesis algorithm?

Consider synthesizing a pattern match,

let n : int = � in
match x with
| p1 → �
| p2 → �
| p3 → �,

whose branches will perform operations over the integer n that we have yet to
synthesize. Each branch will generate constraints on n, e.g., inequalities such
as n > 3, that will constrain what n can be. We cannot solve those constraints
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locally in the branches, we must propagate those constraints back to the definition
of n. At this point, we can discharge those constraints to a solver to generate an
appropriate n. In the case where no such n can be generated from the constraints,
we know that our choices of sub-expressions in the branches are bad, and we must
revise them somehow, for example by using counter-examples to help refine the
program [Solar-Lezama, 2008].

Push-down versus Bubble-up Evidence Recursive back-patching and first-order
constraints seem like unrelated modes of specification. However, from our discus-
sion above, we can tell that they are actually related! They are both forms of what
we call “bubble-up“ evidence where we generate information at the leaves of a
synthesis derivation—potential programs or constraints—and must propagate that
information upwards in the derivation to a point where we can utilize that infor-
mation correctly—evaluating a complete program or invoking a solver. In contrast,
the example refinement mechanisms we have developed in this thesis work in the
opposite direction: they decompose examples and push information downward
into the leaves of the synthesis derivation. Thus, characterizing specification or
evidence by their flow in the synthesis procedure, push-down or bubble-up, gives
us important insight into how we might integrate both forms of specification into
a robust synthesis system.

10.1.3 Enumeration Modulo Equivalences

From Chapter 8, we see that the largest bottleneck in a practical synthesis system
based on our type-and-example driven style is E-guessing. Back in Chapter 2, we
demonstrated that the search space of programs grows exponentially with the size
of the programs under consideration (Figure 2.2). Virtually all of the optimizations
we have considered were designed to keep us from falling off this “exponential cliff”
where it becomes infeasible to enumerate E-terms. We can consider additional
ways of refining examples to push the cliff further away, e.g., asserting particular
example-refining axioms about known functions [Feser et al., 2015], but we still
have the fundamental problem of generating terms more efficiently.

One large area of optimization we did not consider in this work is enumerating
programs modulo equivalence classes. We already do this to some degree, for
example, syntactically restricting synthesized programs to be in normal form,
immediately ruling out all non-normal programs in the process. However, there
are many other ways to derive equivalence classes such as employing congruence
closure [Nelson and Oppen, 1980], recording evaluation results [Albarghouthi
et al., 2013], or user-defined equivalences [Feser et al., 2015]. The latter form of
equivalences classes are important to consider because user-defined types and
operations carry their own equational reasoning principles. For example, addition-
by-zero of natural numbers or appending empty lists are both equivalences that
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depend on the data types (nat and list) and the behavior of the operations (plus
and append) involved. We might even want to derive these equations automatically
based on observation during the synthesis process, specialized to the examples
that we are synthesizing over.

Nevertheless, there are many opportunities for employing reasoning about
equivalence to cut down on the search space of programs, and it is very likely that
no single technique will prove to be a silver bullet to this problem. For synthesis,
we must consider an appropriate combination of techniques that allow us to scale
up our technology to larger and more complex programs.

10.1.4 Applications of Program Synthesis with Types

With the foundations of type-directed program synthesis set, a final question
worth asking is “What is the practical use of this technology?” Certainly, we will
likely never reach the point where we can synthesize all of our programs from
input/output examples or other forms of specification. So what applications of
type-directed program synthesis are more realistic to aim for?

Programming Assistance Tools Rather than trying to synthesize a program
from scratch, can we involve the user in meaningful ways to guide the synthesis
process or provide alternative forms of synthesis output such as visualization
or code skeletons (such as those provided by the Leon synthesis tool for Scala
programs [Kneuss et al., 2013]) to help the developer? Our refinement tree data
structure offers promising insight into this area. Recall that the refinement tree
represents all of the decisions about the design of a program that we can derive
from the examples given by the user. By prioritizing particular branches of the
refinement tree using heuristics, we can present the code skeletons to the user
that are most likely to lead to a satisfying program. For example, consider the
arithmetic language interpreter that we presented in Section 8.4. Suppose that
rather than trying to generate a completed program, we instead presented the
code skeleton:
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let rec arith (e:exp) : nat =
match e with
| Const (n1) -> n1
| Sum (e2, e3) -> ??
| Prod (e2, e3) -> ??
| Pred (e2) -> (match f1 e2 with

| O -> O
| S (n1) -> ??)

| Max (e2, e3) -> (match compare (f1 e2) (f1 e3) with
| LT -> ??
| EQ -> ??
| GT -> ??)

where the user was tasked to fill in the E-guessed holes themselves armed with the
knowledge of the input/output examples they need to satisfy at those positions.
The code skeleton is relatively quick to complete because it is dictated by I-
refinements, but still has the potential to provide a lot of value to the programmer
as the problem of designing the complex interpreter has been distilled into filling
in a number of smaller holes.

From Enforcement to Synthesis Finally, let us come full circle on the ideas that
we developed at the beginning of this work. We observed that the primary role
of rich type systems was to enforce increasingly complex properties of programs,
for example concurrency protocols [Mazurak and Zdancewic, 2010], information
flow properties [Jia et al., 2008], differential privacy [Gaboardi et al., 2013], and
other domain-specific concerns [Hudak, 1998], among others. However, the same
mechanisms that enforce properties of programs also allow us to constrain the
space of possible programs, so we were able to appropriate type systems towards
the goal of synthesizing programs. A natural end-goal of this work, therefore,
is to turn type systems designed to enforce particular properties of programs
into program synthesizers that synthesize programs who possess these properties
automatically by construction!

Currently, the types that we are able to handle efficiently in our program
synthesis tools are too weak to handle these more advanced properties. But by
designing synthesis strategies around richer classes of types, we can piggy back on
top of the large body of existing work on type systems to synthesize more relevant
and interesting programs. This final goal is perhaps the most ambitious, but also
the most rewarding if we can achieve it: for every interesting, specialized type
system that we develop, we can build a related synthesizer that builds programs
for that type system automatically. In this ideal world, program synthesis and
types enjoy a close, synergistic relationship where types help build programs and
synthesizers help make types even more relevant and useful!
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Appendix A

The Implementation of Myth

In Chapter 7 we evolved the synthesis judgment of MLsyn into an efficient synthesis
procedure. This procedure went through several iterations in the chapter, so we
summarize the final product here.

The synthesis procedure that we implement directly in our prototype program
synthesis tool, Myth (Chapter 8), consists of:

• A refinement tree generation algorithm (Figure A.1),

• A relevant term generation algorithm (Figure A.2 and Figure A.3), and

• An overall synthesis procedure that, given a synthesis specification, synthe-
sizes the first program it finds that satisfies that specification.

Given a signature Σ, context Γ, goal type τ, and examples X, our synthesis
procedure operates as follows:

1. Let our search parameter initial values be s = 1 (the maximum match scru-
tinee size), m = 0 (the maximum match depth), and k = 13 (the maximum
E-term size).

2. Starting with the initial synthesis I-refinement phase of the synthesis plan
described below:

(a) Execute the next phase of I-refinement.
(b) Perform E-guessing for 0.25 seconds (using guess defined in Figure A.1)

up to size k at all elligible nodes in the current refinement tree. A
refinement tree node is elligible for E-guessing if we have not yet found
a satisfying expression at that node and its corresponding goal type is a
base type T.

(c) Propogate newly found satisfying programs upwards in the refinement
tree. If we construct an overall, satisfying program to the original syn-
thesis problem then we terminate and return that program. Otherwise,
we move onto the next phase of I-refinement and repeat.
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The phases of I-refinement in our synthesis plan are:

1. Create an initial refinement tree with the search parameters s and m.

2. Increase m by one (m = 1) and extend the refinement tree accordingly.

3. Increase m by one (m = 2) and extend the refinement tree accordingly.

4. Increase s by five (s = 6) and extend the refinement tree accordingly.

5. Increase m by one (m = 3).

If we are unable to find a satisfying program and run out of synthesis steps, we
return an error stating that the procedure could not find a satisfying program.
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types(Σ) = {T | C : τ1 ∗ . . . ∗ τm → T ∈ Σ}
rmatchs(Σ; Γ; τ; X; 0) = {}
rmatchs(Σ; Γ; τ; X; k) =

⋃
T∈types(Σ)

{match E with pi → �i
i<m |

E ∈ genE(Σ; Γ; T; s),

(pi, Xi)
i<m

= distribute(Σ, T, X, E),
Γi

i<m
= binders(Γ, E, pi),

�i = rtrees(Σ; Γi, Γ; τ; Xi; k− 1)
i<m}

rtrees(Σ; Γ; τ1 → τ2; X; k) = {fix f (x:τ1) : τ2 = � |
X′ = apply( f , x, σ1 7→ ρ1) ++ . . . ++ apply( f , x, σn 7→ ρn),
� = rtrees(Σ; f :τ1 → τ2{rec}, x:τ1{arg f }; Γ; X′; k)
}

where
X = σ1 7→ ρ1, . . ., σn 7→ ρn

rtrees(Σ; Γ; T; X; k) = {C(�1, . . .,�m) |
X1, . . ., Xm = proj(X),

�i ∈ rtrees(Σ; Γ; τi; Xi; k)
i<m

} ∪ rmatchs(Σ; Γ; τ; X; k)
where

X = σi 7→ C(Ii1, . . ., Cim)
i<n

C : τ1 ∗ . . . ∗ τm ∈ Σ

guess(Σ; Γ; τ; X; 0) = {}
guess(Σ; Γ; τ; X; k) = {E | E ∈ genE(Σ; Γ; τ; k), E � X}

Figure A.1: Refinement tree creation and E-guessing
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genE(Σ; Γ; τ; n)

genE(Σ; ·; τ; n) = {}
genE(Σ; ·; τ; 0) = {}

genE(Σ; x:τ1, Γ; τ; n) = genx:τ1
E (Σ; Γ; τ; n) ∪ genE(Σ; Γ; τ; n)

genx:τ1
E (Σ; Γ; τ; n)

genx:τ1
E (Σ; Γ; τ; 0) = {}

genx:τ
E (Σ; Γ; τ; 1) = {x}

genx:τ1
E (Σ; Γ; τ; 1) = {} (τ 6= τ1)

genx:τ1
E (Σ; Γ; τ; n) =

⋃
τ2→τ∈Γ

n−1⋃
k=1

(genx:τ1
E (Σ; Γ; τ2 → τ; k) ⊗

app
genI(Σ; Γ; τ2; n− k))

∪ (genE(Σ; Γ; τ2 → τ; k) ⊗
app

genx:τ1
I (Σ; Γ; τ2; n− k))

∪ (genx:τ1
E (Σ; Γ; τ2 → τ; k) ⊗

app
genx:τ1

I (Σ; Γ; τ2; n− k))

Figure A.2: Relevant E-term generation
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genI(Σ, Γ, τ, n)

genI(Σ; ·; τ; n) = {}
genI(Σ; Γ; τ; 0) = {}

genI(Σ; x : τ1, Γ; τ; n) = genx:τ1
I (Σ; Γ; τ; n) ∪ genI(Σ; Γ; τ; n)

genI(Σ; ·; τ1 → τ2; n) =
{fix f (x:τ1) : τ2 = I | I ∈ genI(Σ; f : τ1 → τ2, x : τ1; τ2; n− 1)}

genx:τ
I (Σ; Γ; T; n) = genx:τ

E (Σ; Γ; T; n)⋃
C:τ1∗...∗τk→T∈Σ

⋃
n1,...,nk for

n1+...+nk=n

{C(I1, . . ., Ik) | Ij ∈ genI(Σ; Γ; τj; nj)}

genx:τ1
I (Σ; Γ; τ; n)

genx:τ
I (Σ; Γ; τ1 → τ2; n) = genx:τ

E (Σ; Γ; τ1 → τ2; n) ∪
{fix f (y:τ1) : τ2 = I | I ∈ genx:τ

I (Σ; f : τ1 → τ2, y : τ1, Γ; τ2; n− 1)}

genx:τ
I (Σ; Γ; T; n) = genx:τ

E (Σ; Γ; T; n)⋃
C:τ1∗...∗τk→T∈Σ

⋃
n1,...,nk for

n1+...+nk=n

⋃
r1,...,rk∈
parts(k)

{C(I1, . . ., Ik) | Ij ∈ genp
mj;x:τ
I (Σ; Γ; τj; nj)}

parts(k) = {Not, . . ., Not︸ ︷︷ ︸
i−1

, Must, May, . . ., May︸ ︷︷ ︸
k−i

| i ∈ 1, . . ., k}

genpr;x:τ1
I (Σ; Γ; τ; n) =


genx:τ1

I (Σ; Γ; τ; n) r = Must

genI(Σ; x : τ1, Γ; τ; n) r = May

genI(Σ; Γ; τ; n) r = Not

Figure A.3: Relevant I-term generation
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Appendix B

The Myth Test Suite

In Chapter 8, we analyzed Myth over a variety of benchmark programs. In this
chapter, we present the full source code these benchmarks as well as the output of
Myth on these benchmarks. The current code for Myth is freely available from
the author’s website.

B.1 Contexts

tests/pldi-2015-benchmarks/bool.decls

type bool =
| True
| False

tests/pldi-2015-benchmarks/nat.decls

type nat =
| O
| S of nat

type bool =
| True
| False

tests/pldi-2015-benchmarks/compare.decls

type cmp =
| LT
| EQ
| GT
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let rec compare (n1:nat) (n2:nat) : cmp =
match n1 with
| O ->

(match n2 with
| O -> EQ
| S (m) -> LT)

| S (m1) ->
(match n2 with
| O -> GT
| S (m2) -> (compare m1 m2))

;;

tests/pldi-2015-contexts/context.decls

type bool =
| True
| False

let rec andb (n1:bool) (n2:bool) : bool =
match n1 with
| True -> n2
| False -> False

;;

let rec orb (n1:bool) (n2:bool) : bool =
match n1 with
| True -> True
| False -> n2

;;

type nat =
| O
| S of nat

let rec plus (n1:nat) (n2:nat) : nat =
match n1 with
| O -> n2
| S (n1) -> S (plus n1 n2)

;;

let rec div2 (n:nat) : nat =
match n with
| O -> O
| S (n1) -> match n1 with

| O -> O
| S (n2) -> S (div2 n2)

;;

type list =
| Nil
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| Cons of nat * list

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1) -> Cons (x, append l1 l2)

;;

type cmp =
| LT
| EQ
| GT

let rec compare (n1 : nat) (n2 :nat) : cmp =
match n1 with
| O -> (match n2 with

| O -> EQ
| S (m) -> LT

)
| S (m1) ->

( match n2 with
| O -> GT
| S (m2) -> (compare m1 m2) )

;;

type tree =
| Leaf
| Node of tree * nat * tree

B.2 Benchmark Suite

tests/pldi-2015-benchmarks/bool_band.ml

#use "bool.decls"

let bool_band : bool -> bool -> bool |>
{ True => True => True
; True => False => False
; False => True => False
; False => False => False } = ?

let bool_band : bool -> bool -> bool =
fun (b1:bool) -> fun (b2:bool) -> match b1 with

| True -> b2
| False -> False

;;
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tests/pldi-2015-benchmarks/bool_bor.ml

#use "bool.decls"

let bool_bor : bool -> bool -> bool |>
{ True => True => True
; True => False => True
; False => True => True
; False => False => False } = ?

let bool_bor : bool -> bool -> bool =
fun (b1:bool) -> fun (b2:bool) -> match b1 with

| True -> True
| False -> b2

;;

tests/pldi-2015-benchmarks/bool_impl.ml

#use "bool.decls"

let bool_impl : bool -> bool -> bool |>
{ True => True => True
; True => False => False
; False => True => True
; False => False => True } = ?

let bool_impl : bool -> bool -> bool =
fun (b1:bool) -> fun (b2:bool) -> match b1 with

| True -> b2
| False -> True

;;

tests/pldi-2015-benchmarks/bool_neg.ml

#use "bool.decls"

let bool_neg : bool -> bool |>
{ True => False
; False => True } = ?

let bool_neg : bool -> bool =
fun (b1:bool) -> match b1 with

| True -> False
| False -> True

;;
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tests/pldi-2015-benchmarks/bool_xor.ml

#use "bool.decls"

let bool_xor : bool -> bool -> bool |>
{ True => True => False
; True => False => True
; False => True => True
; False => False => False } = ?

let bool_xor : bool -> bool -> bool =
fun (b1:bool) ->

fun (b2:bool) ->
match b1 with

| True -> (match b2 with
| True -> False
| False -> True)

| False -> b2
;;

tests/pldi-2015-benchmarks/list_append.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_append : list -> list -> list |>
{ [] => ( [] => []

| [0] => [0])
| [0] => ( [] => [0]

| [0] => [0; 0])
| [1;0] => ( [] => [1; 0]

| [0] => [1; 0; 0])
} = ?

let list_append : list -> list -> list =
let rec f1 (l1:list) : list -> list =

fun (l2:list) ->
match l1 with

| Nil -> l2
| Cons (n1, l3) -> Cons (n1, f1 l3 l2)

in
f1

;;
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tests/pldi-2015-benchmarks/list_compress.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type cmp =
| LT
| EQ
| GT

let rec compare (n1 : nat) (n2 :nat) : cmp =
match n1 with
| O -> (match n2 with

| O -> EQ
| S (m) -> LT

)
| S (m1) ->

( match n2 with
| O -> GT
| S (m2) -> (compare m1 m2) )

;;

let list_compress : list -> list |>
{ [] => []

| [0] => [0]
| [1] => [1]
| [0;0] => [0]
| [1;1] => [1]
| [2;0] => [2;0]
| [1;0;0] => [1;0]
| [0;1;1] => [0;1]
| [2;1;0;0] => [2;1;0]
| [2;2;1;0;0] => [2;1;0]
| [2;2;0] => [2;0]
| [2;2;2;0] => [2;0]
| [1;2;2;2;0] => [1;2;0]

} = ?

let list_compress : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> Nil
| Cons (n1, l2) -> (match f1 l2 with

| Nil -> l1
| Cons (n2, l3) -> (match compare n2 n1 with
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| LT -> Cons (n1,
Cons (n2, l3))

| EQ -> Cons (n1, l3)
| GT -> Cons (n1,

Cons (n2, l3))))
in

f1
;;

tests/pldi-2015-benchmarks/list_concat.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type llist =
| LNil
| LCons of list * llist

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1p) -> Cons (x, append l1p l2)

;;

let list_concat : llist -> list |>
{ LNil => []
| LCons ([], LNil) => []
| LCons ([0], LNil) => [0]
| LCons ([0], LCons([0], LNil)) => [0;0]
| LCons ([1], LNil) => [1]
| LCons ([1], LCons([1], LNil)) => [1;1]
} = ?

let list_concat : llist -> list =
let rec f1 (l1:llist) : list =

match l1 with
| LNil -> Nil
| LCons (l2, l3) -> append l2 (f1 l3)

in
f1

;;

tests/pldi-2015-benchmarks/list_drop.ml
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type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_drop : list -> nat -> list |>
{ [] => ( 0 => []

| 1 => [] )
| [0] => ( 0 => [0]

| 1 => [] )
| [1] => ( 0 => [1]

| 1 => [] )
| [1; 0] => ( 0 => [1; 0]

| 1 => [0] )
| [0; 1] => ( 0 => [0; 1]

| 1 => [1]
| 2 => [] )

} = ?

let list_drop : list -> nat -> list =
let rec f1 (l1:list) : nat -> list =

fun (n1:nat) ->
match n1 with

| O -> l1
| S (n2) -> (match l1 with

| Nil -> Nil
| Cons (n3, l2) -> f1 l2 n2)

in
f1

;;

tests/pldi-2015-benchmarks/list_even_parity.ml

type nat =
| O
| S of nat

type bool =
| True
| False

type list =
| Nil
| Cons of bool * list
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let list_even_parity : list -> bool |>
{ [] => True
| [ False ] => True
| [ True ] => False
| [ False ; False ] => True
| [ False ; True ] => False
| [ True ; False ] => False
| [ True ; True ] => True
} = ?

let list_even_parity : list -> bool =
let rec f1 (l1:list) : bool =

match l1 with
| Nil -> True
| Cons (b1, l2) -> (match f1 l2 with

| True -> (match b1 with
| True -> False
| False -> True)

| False -> b1)
in

f1
;;

tests/pldi-2015-benchmarks/list_filter.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type bool =
| True
| False

let rec is_even (n:nat) : bool =
match n with
| O -> True
| S (n1) ->

match n1 with
| O -> False
| S (n2) -> is_even n2

;;

let rec is_nonzero (n:nat) : bool =
match n with
| O -> False
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| S (n1) -> True
;;

let list_filter : (nat -> bool) -> list -> list |>
{

is_even => ( [] => []
| [0] => [0]
| [1] => []
| [2] => [2]
| [0;0] => [0;0]
| [0;1] => [0] )

| is_nonzero => ( [] => []
| [0] => [] )

} = ?

let list_filter : (nat -> bool) -> list -> list =
fun (f2:nat -> bool) ->

let rec f3 (l1:list) : list =
match l1 with

| Nil -> Nil
| Cons (n1, l2) -> (match f2 n1 with

| True -> Cons (n1, f3 l2)
| False -> Nil)

in
f3

;;

tests/pldi-2015-benchmarks/list_fold.ml

type nat =
| O
| S of nat

type bool =
| True
| False

type list =
| Nil
| Cons of nat * list

let rec sum (n1:nat) (n2:nat) : nat =
match n1 with
| O -> n2
| S (n1) -> S (sum n1 n2)

;;

let rec is_odd (n:nat) : bool =
match n with
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| O -> False
| S (n) ->

(match n with
| O -> True
| S (n1) -> is_odd n1)

;;

let count_odd : nat -> nat -> nat =
fun (n1:nat) -> fun (n2:nat) ->

match is_odd n2 with
| True -> S (n1)
| False -> n1

;;

let list_fold : (nat -> nat -> nat) -> nat -> list -> nat |>
{ sum => ( 0 => ( [] => 0

| [1] => 1
| [2; 1] => 3
| [3; 2; 1] => 6 )

| 1 => [] => 1 )
| count_odd => ( 0 => ( [] => 0

| [1] => 1
| [2; 1] => 1
| [3; 2; 1] => 2 ) )

} = ?

let list_fold : (nat -> nat -> nat) -> nat -> list -> nat =
fun (f2:nat -> nat -> nat) ->

fun (n1:nat) ->
let rec f4 (l1:list) : nat =

match l1 with
| Nil -> n1
| Cons (n2, l2) -> f2 (f4 l2) n2

in
f4

;;

tests/pldi-2015-benchmarks/list_hd.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_hd : list -> nat |>
{ [] => 0
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| [0] => 0
| [1] => 1
} = ?

let list_hd : list -> nat =
fun (l1:list) -> match l1 with

| Nil -> O
| Cons (n1, l2) -> n1

;;

tests/pldi-2015-benchmarks/list_inc.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let rec map (l:list) (f : nat -> nat) : list =
match l with

| Nil -> Nil
| Cons (n, ls) -> Cons (f n, map ls f)

;;

let list_inc : list -> list |>
{ [] => []
| [1;2] => [2;3]
| [0;0] => [1;1]
| [3;4;5] => [4;5;6]
} = ?

let list_inc : list -> list =
fun (l1:list) -> map l1 (fun (n1:nat) -> S (n1))

;;

tests/pldi-2015-benchmarks/list_last.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list
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type natopt =
| None
| Some of nat

let list_last : list -> natopt |>
{ [] => None
| [1] => Some (1)
| [2] => Some (2)
| [2; 1] => Some (1)
| [1; 2] => Some (2)
| [3; 2; 1] => Some (1)
} = ?

let list_last : list -> natopt =
let rec f1 (l1:list) : natopt =

match l1 with
| Nil -> None
| Cons (n1, l2) -> (match l2 with

| Nil -> Some (n1)
| Cons (n2, l3) -> f1 l2)

in
f1

;;

tests/pldi-2015-benchmarks/list_length.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_length : list -> nat |>
{ [] => 0
| [0] => 1
| [0;0] => 2 } = ?

let list_length : list -> nat =
let rec f1 (l1:list) : nat =

match l1 with
| Nil -> O
| Cons (n1, l2) -> S (f1 l2)

in
f1

;;
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tests/pldi-2015-benchmarks/list_map.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let zero (n:nat) : nat = O ;;
let inc (n:nat): nat = S (n) ;;

let list_map : (nat -> nat) -> list -> list |>
{ inc => ( [] => []

| [0] => [1]
| [0; 0] => [1; 1]
| [1] => [2]
| [1; 1] => [2; 2] )

| zero => ( [] => []
| [0] => [0]
| [0; 0] => [0; 0] )

} = ?

let list_map : (nat -> nat) -> list -> list =
fun (f2:nat -> nat) ->

let rec f3 (l1:list) : list =
match l1 with

| Nil -> Nil
| Cons (n1, l2) -> Cons (f2 n1, f3 l2)

in
f3

;;

tests/pldi-2015-benchmarks/list_nth.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_nth : list -> nat -> nat |>
{ [] => ( 0 => 0

| 1 => 0 )
| [2] => ( 0 => 2
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| 1 => 0 )
| [1; 2] => ( 0 => 1

| 1 => 2 )
| [1] => ( 0 => 1

| 1 => 0 )
| [2; 1] => ( 0 => 2

| 1 => 1 )
| [3; 2; 1] => ( 0 => 3

| 1 => 2
| 2 => 1 )

} = ?

let list_nth : list -> nat -> nat =
let rec f1 (l1:list) : nat -> nat =

fun (n1:nat) ->
match n1 with

| O -> (match l1 with
| Nil -> O
| Cons (n2, l2) -> n2)

| S (n2) -> (match l1 with
| Nil -> O
| Cons (n3, l2) -> f1 l2 n2)

in
f1

;;

tests/pldi-2015-benchmarks/list_pairwise_swap.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_pairwise_swap : list -> list |>
{ [] => []
| [0] => []
| [1] => []
| [0;1] => [1;0]
| [1;0] => [0;1]
| [1;0;1] => []
| [0;1;0;1] => [1;0;1;0]
} = ?
(*
{ [] => []
| [0] => []
| [1] => []
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| [2] => []
| [2;2] => [2;2]
| [0;1] => [1;0]
| [1;0] => [0;1]
| [1;2] => [2;1]
| [2;1] => [1;2]
| [0;2] => [2;0]
| [0;1;0] => []
| [0;1;0;1] => [1;0;1;0]
| [1;0;1;0] => [0;1;0;1]
| [1;2;1;2] => [2;1;2;1]
| [2;1;2;1] => [1;2;1;2]
| [0;2;0;2] => [2;0;2;0]
} = ?
*)

let list_pairwise_swap : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> Nil
| Cons (n1, l2) -> (match f1 l2 with

| Nil -> (match l2 with
| Nil -> Nil
| Cons (n2, l3) -> Cons (n2,

Cons (n1, f1 l3)))
| Cons (n2, l3) -> Nil)

in
f1

;;

tests/pldi-2015-benchmarks/list_rev_append.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1) -> Cons (x, append l1 l2)

;;

let list_rev_append : list -> list |>
{ [] => []
| [0] => [0]
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| [1] => [1]
| [0;1] => [1;0]
| [0;0;1] => [1;0;0]
} = ?

let list_rev_append : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> Nil
| Cons (n1, l2) -> append (f1 l2) (Cons (n1, Nil))

in
f1

;;

tests/pldi-2015-benchmarks/list_rev_fold.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let rec fold (l:list) (f:list -> nat -> list) (acc:list) : list =
match l with
| Nil -> acc
| Cons (x, l) -> fold l f (f acc x)

;;

let snoc : list -> nat -> list =
let rec f (l:list) : nat -> list =

fun (n:nat) ->
match l with
| Nil -> Cons (n, Nil)
| Cons (x, xs) -> Cons (x, f xs n)

in
f

;;

let list_rev_fold : list -> list |>
{ [] => []
| [0] => [0]
| [1] => [1]
| [0;1] => [1;0]
| [0;0;1] => [1;0;0]
} = ?
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let list_rev_fold : list -> list =
fun (l1:list) ->

fold l1 (fun (l1:list) -> fun (n1:nat) -> Cons (n1, l1)) Nil
;;

tests/pldi-2015-benchmarks/list_rev_snoc.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let snoc : list -> nat -> list =
let rec f (l:list) : nat -> list =

fun (n:nat) ->
match l with
| Nil -> Cons (n, Nil)
| Cons (x, xs) -> Cons (x, f xs n)

in
f

;;

let list_rev_snoc : list -> list |>
{ [] => []
| [0] => [0]
| [1] => [1]
| [0;1] => [1;0]
| [0;0;1] => [1;0;0]
} = ?

let list_rev_snoc : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> Nil
| Cons (n1, l2) -> snoc (f1 l2) n1

in
f1

;;

tests/pldi-2015-benchmarks/list_rev_tailcall.ml

type nat =
| O
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| S of nat

type list =
| Nil
| Cons of nat * list

let list_rev_tailcall : list -> list -> list |>
{ [] => ( [] => []

| [0] => [0]
| [1] => [1]
| [1;0] => [1;0]
)

| [0] => ( [] => [0] )
| [1] => ( [] => [1]

| [0] => [1;0]
)

| [0;1] => ( [] => [1;0] )
} = ?

let list_rev_tailcall : list -> list -> list =
let rec f1 (l1:list) : list -> list =

fun (l2:list) ->
match l1 with

| Nil -> l2
| Cons (n1, l3) -> f1 l3 (Cons (n1, l2))

in
f1

;;

tests/pldi-2015-benchmarks/list_snoc.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_snoc : list -> nat -> list |>
{ [] => ( 0 => [0]

| 1 => [1] )
| [0] => ( 0 => [0; 0]

| 1 => [0; 1] )
| [1; 0] => ( 0 => [1; 0; 0]

| 1 => [1; 0; 1] )
| [2; 1; 0] => ( 0 => [2; 1; 0; 0]

| 1 => [2; 1; 0; 1] )
} = ?
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let list_snoc : list -> nat -> list =
let rec f1 (l1:list) : nat -> list =

fun (n1:nat) ->
match l1 with

| Nil -> Cons (n1, Nil)
| Cons (n2, l2) -> Cons (n2, f1 l2 n1)

in
f1

;;

tests/pldi-2015-benchmarks/list_sort_sorted_insert.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type cmp =
| LT
| EQ
| GT

let rec compare (n1 : nat) (n2 :nat) : cmp =
match n1 with
| O -> ( match n2 with

| O -> EQ
| S (m) -> LT

)
| S (m1) ->

( match n2 with
| O -> GT
| S (m2) -> (compare m1 m2) )

;;

let rec insert (l : list) (n :nat) : list =
match l with
| Nil -> Cons(n, Nil)
| Cons(m, tl) ->

(match compare n m with
| LT -> Cons (n, Cons(m, tl))
| EQ -> l
| GT -> Cons (m, insert tl n)

)
;;

let list_sort_sorted_insert : list -> list |>
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{ [] => []
| [0] => [0]
| [1] => [1]
| [0;0] => [0]
| [1;0] => [0;1]
| [1;1] => [1]
| [0;1;1] => [0;1]
} = ?

let list_sort_sorted_insert : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> Nil
| Cons (n1, l2) -> insert (f1 l2) n1

in
f1

;;

tests/pldi-2015-benchmarks/list_sorted_insert.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type cmp =
| LT
| EQ
| GT

let rec compare (n1 : nat) (n2 :nat) : cmp =
match n1 with
| O -> ( match n2 with

| O -> EQ
| S (m) -> LT

)
| S (m1) ->

( match n2 with
| O -> GT
| S (m2) -> (compare m1 m2) )

;;

let list_sorted_insert : list -> nat -> list |>
{ [] => ( 0 => [0]

| 1 => [1]
| 2 => [2] )

182



| [0] => ( 0 => [0]
| 1 => [0;1] )

| [1] => ( 0 => [0;1]
| 1 => [1]
| 2 => [1;2] )

| [2] => ( 0 => [0;2]
| 1 => [1;2])

| [0;1] => ( 0 => [0;1]
| 2 => [0;1;2] )

} = ?

let list_sorted_insert : list -> nat -> list =
let rec f1 (l1:list) : nat -> list =

fun (n1:nat) ->
match l1 with

| Nil -> Cons (n1, Nil)
| Cons (n2, l2) -> (match compare n2 n1 with

| LT -> Cons (n2, f1 l2 n1)
| EQ -> l1
| GT -> Cons (n1, l1))

in
f1

;;

tests/pldi-2015-benchmarks/list_stutter.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_stutter : list -> list |>
{ [] => []
| [0] => [0;0]
| [1;0] => [1;1;0;0]
} = ?

let list_stutter : list -> list =
let rec f1 (l1:list) : list =

match l1 with
| Nil -> Nil
| Cons (n1, l2) -> Cons (n1, Cons (n1, f1 l2))

in
f1

;;
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tests/pldi-2015-benchmarks/list_sum.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let rec fold (l:list) (f:nat -> nat -> nat) (acc:nat) : nat =
match l with
| Nil -> acc
| Cons (x, l) -> fold l f (f acc x)

;;

let rec add (n1:nat) (n2:nat) : nat =
match n1 with
| O -> n2
| S (n1) -> S (add n1 n2)

;;

let list_sum : list -> nat |>
{ [] => 0
| [1] => 1
| [2; 1] => 3
} = ?

let list_sum : list -> nat =
fun (l1:list) -> fold l1 add O

;;

tests/pldi-2015-benchmarks/list_take.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_take : nat -> list -> list |>
{ 0 => ( [] => []

| [1] => []
| [0;1] => []
| [1;0;1] => [] )

| 1 => ( [] => []
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| [1] => [1]
| [0;1] => [0]
| [1;0;1] => [1] )

| 2 => ( [] => []
| [1] => [1]
| [0;1] => [0;1]
| [1;0;1] => [1;0] )

} = ?

let list_take : nat -> list -> list =
let rec f1 (n1:nat) : list -> list =

fun (l1:list) ->
match n1 with

| O -> Nil
| S (n2) -> (match l1 with

| Nil -> Nil
| Cons (n3, l2) -> Cons (n3, f1 n2 l2))

in
f1

;;

tests/pldi-2015-benchmarks/list_tl.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

let list_tl : list -> list |>
{ [] => []
| [0] => []
| [0; 0] => [0] } = ?

let list_tl : list -> list =
fun (l1:list) -> match l1 with

| Nil -> Nil
| Cons (n1, l2) -> l2

;;

tests/pldi-2015-benchmarks/nat_iseven.ml

#use "nat.decls"
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let nat_iseven : nat -> bool |>
{ 0 => True
| 1 => False
| 2 => True
| 3 => False
} = ?

let nat_iseven : nat -> bool =
let rec f1 (n1:nat) : bool =

match n1 with
| O -> True
| S (n2) -> (match n2 with

| O -> False
| S (n3) -> f1 n3)

in
f1

;;

tests/pldi-2015-benchmarks/nat_max.ml

#use "nat.decls"
#use "compare.decls"

let nat_max : nat -> nat -> nat |>
{

0 => ( 0 => 0
| 1 => 1
| 2 => 2 )

| 1 => ( 0 => 1
| 1 => 1
| 2 => 2 )

| 2 => ( 0 => 2
| 1 => 2
| 2 => 2 )

} = ?

let nat_max : nat -> nat -> nat =
let rec f1 (n1:nat) : nat -> nat =

fun (n2:nat) ->
match n1 with

| O -> n2
| S (n3) -> (match n2 with

| O -> n1
| S (n4) -> S (f1 n3 n4))

in
f1

;;
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tests/pldi-2015-benchmarks/nat_pred.ml

#use "nat.decls"

let nat_pred : nat -> nat |>
{ O => O
; S (O) => O
; S (S (O)) => S (O) } = ?

let nat_pred : nat -> nat =
fun (n1:nat) -> match n1 with

| O -> O
| S (n2) -> n2

;;

tests/pldi-2015-benchmarks/nat_sum.ml

#use "nat.decls"

let nat_add : nat -> nat -> nat |>
{ 0 => ( 0 => 0

| 1 => 1
| 2 => 2 )

| 1 => ( 0 => 1
| 1 => 2
| 2 => 3 )

| 2 => ( 0 => 2
| 1 => 3
| 2 => 4 )

} = ?

let nat_add : nat -> nat -> nat =
let rec f1 (n1:nat) : nat -> nat =

fun (n2:nat) -> match n1 with
| O -> n2
| S (n3) -> S (f1 n3 n2)

in
f1

;;

tests/pldi-2015-benchmarks/tree_binsert.ml

type cmp =
| CEq
| CGt
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| CLt

type nat =
| O
| S of nat

type tree =
| Leaf
| Node of tree * nat * tree

let rec comp_nat (n1:nat) (n2:nat) : cmp =
match n1 with
| O -> (match n2 with

| O -> CEq
| S (n2) -> CLt)

| S (n1) -> (match n2 with
| O -> CGt
| S (n2) -> comp_nat n1 n2)

;;

let tree_binsert : tree -> nat -> tree |>
{ Leaf => ( 0 => Node (Leaf, 0, Leaf)

| 1 => Node (Leaf, 1, Leaf)
| 2 => Node (Leaf, 2, Leaf))

| Node (Leaf, 1, Leaf) => ( 0 => Node (Node (Leaf, 0, Leaf), 1, Leaf)
| 1 => Node (Leaf, 1, Leaf)
| 2 => Node (Leaf, 1, Node (Leaf, 2, Leaf)))

| Node (Leaf, 0, Leaf) => ( 0 => Node (Leaf, 0, Leaf)
| 1 => Node (Leaf, 0, Node (Leaf, 1, Leaf))
| 2 => Node (Leaf, 0, Node (Leaf, 2, Leaf)))

| Node (Leaf, 2, Leaf) => ( 0 => Node (Node (Leaf, 0, Leaf), 2, Leaf)
| 1 => Node (Node (Leaf, 1, Leaf), 2, Leaf)
| 2 => Node (Leaf, 2, Leaf))

| Node (Node (Leaf, 0, Leaf), 1, Leaf) =>
( 0 => Node (Node (Leaf, 0, Leaf), 1, Leaf)
| 1 => Node (Node (Leaf, 0, Leaf), 1, Leaf)
| 2 => Node (Node (Leaf, 0, Leaf), 1, Node(Leaf, 2, Leaf)))

| Node (Leaf, 0, Node (Leaf, 1, Leaf)) =>
( 2 => Node (Leaf, 0, Node (Leaf, 1, Node(Leaf, 2, Leaf))))

| Node (Node (Leaf, 1, Leaf), 2, Leaf) =>
( 0 => Node (Node (Node(Leaf, 0, Leaf), 1, Leaf), 2, Leaf))

| Node (Leaf, 1, Node (Leaf, 2, Leaf)) =>
( 0 => Node (Node (Leaf, 0, Leaf), 1, Node (Leaf, 2, Leaf))
| 1 => Node (Leaf, 1, Node (Leaf, 2, Leaf)))

| Node (Node (Leaf, 1, Leaf), 2, Leaf) =>
( 0 => Node (Node (Node(Leaf, 0, Leaf), 1, Leaf), 2, Leaf))

} = ?

let tree_binsert : tree -> nat -> tree =
let rec f1 (t1:tree) : nat -> tree =
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fun (n1:nat) ->
match t1 with

| Leaf -> Node (Leaf, n1, Leaf)
| Node (t2, n2, t3) -> (match comp_nat n2 n1 with

| CEq -> t1
| CGt -> Node (f1 t2 n1, n2, t3)
| CLt -> Node (t2, n2, f1 t3 n1))

in
f1

;;

tests/pldi-2015-benchmarks/tree_collect_leaves.ml

type bool =
| True
| False

type tree =
| Leaf
| Node of tree * bool * tree

type list =
| Nil
| Cons of bool * list

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1) -> Cons (x, append l1 l2)

;;

let tree_collect_leaves : tree -> list |>
{ Leaf => []
| Node (Leaf, True, Leaf) => [True]
| Node (Leaf, False, Leaf) => [False]
| Node (Node (Leaf, True, Leaf), False, Leaf) => [True; False]
| Node (Node (Leaf, False, Leaf), True, Leaf) => [False; True]
| Node (Leaf, False, Node (Leaf, True, Leaf)) => [False; True]
} = ?

let tree_collect_leaves : tree -> list =
let rec f1 (t1:tree) : list =

match t1 with
| Leaf -> Nil
| Node (t2, b1, t3) -> append (f1 t2) (Cons (b1, f1 t3))

in
f1

;;

189



tests/pldi-2015-benchmarks/tree_count_leaves.ml

type bool =
| True
| False

type tree =
| Leaf
| Node of tree * bool * tree

type nat =
| O
| S of nat

let rec sum (n1:nat) (n2:nat) : nat =
match n1 with
| O -> n2
| S (n1) -> S (sum n1 n2)

;;

let tree_count_leaves : tree -> nat |>
{ Leaf => 1
| Node (Leaf, True, Leaf) => 2
| Node (Node (Leaf, True, Leaf), True, Leaf) => 3
| Node (Leaf, True, Node (Leaf, True, Leaf)) => 3
| Node (Node (Node (Leaf, True, Leaf), True, Leaf), True, Leaf) => 4
| Node (Node (Leaf, True, Leaf), True, Node (Leaf, True, Leaf)) => 4
| Node (Node (Leaf, True, Leaf), True,

Node (Node (Leaf, True, Leaf), True, Node (Leaf, True, Leaf))) => 6
} = ?

let tree_count_leaves : tree -> nat =
let rec f1 (t1:tree) : nat =

match t1 with
| Leaf -> S (O)
| Node (t2, b1, t3) -> sum (f1 t2) (f1 t3)

in
f1

;;

tests/pldi-2015-benchmarks/tree_count_nodes.ml

type nat =
| O
| S of nat

type tree =
| Leaf
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| Node of tree * nat * tree

let rec sum (n1:nat) (n2:nat) : nat =
match n1 with
| O -> n2
| S (n1) -> S (sum n1 n2)

;;

let tree_count_nodes : tree -> nat |>
{ Leaf => 0
| Node(Leaf, 0, Leaf) => 1
| Node(Node(Leaf, 0, Leaf), 0, Leaf) => 2
| Node(Leaf, 0, Node(Leaf, 0, Leaf)) => 2
| Node(Node(Leaf, 0, Node(Leaf, 0, Leaf)), 0, Leaf) => 3
| Node(Leaf, 0, Node(Leaf, 0, Node(Leaf, 0, Leaf))) => 3
} = ?

let tree_count_nodes : tree -> nat =
let rec f1 (t1:tree) : nat =

match t1 with
| Leaf -> O
| Node (t2, n1, t3) -> S (sum (f1 t2) (f1 t3))

in
f1

;;

tests/pldi-2015-benchmarks/tree_inorder.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type tree =
| Leaf
| Node of tree * nat * tree

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1) -> Cons (x, append l1 l2)

;;

let tree_inorder: tree -> list |>
{ Leaf => []
| Node (Leaf, 1, Leaf) => [1]
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| Node (Leaf, 2, Leaf) => [2]
| Node (Node (Leaf, 1, Leaf), 2, Leaf) => [1;2]
| Node (Leaf, 1, Node (Leaf, 2, Leaf)) => [1;2]
} = ?

let tree_inorder : tree -> list =
let rec f1 (t1:tree) : list =

match t1 with
| Leaf -> Nil
| Node (t2, n1, t3) -> append (f1 t2) (Cons (n1, f1 t3))

in
f1

;;

tests/pldi-2015-benchmarks/tree_map.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type tree =
| Leaf
| Node of tree * nat * tree

let rec div2 (n:nat) : nat =
match n with
| O -> O
| S (n1) -> match n1 with

| O -> O
| S (n2) -> S (div2 n2)

;;

let rec inc (n:nat) : nat =
S( n )

;;

let tree_map : (nat -> nat) -> tree -> tree |>
{ div2 => ( Leaf => Leaf

| Node (Leaf, 0, Leaf) => Node (Leaf, 0, Leaf)
| Node (Leaf, 2, Leaf) => Node (Leaf, 1, Leaf)
| Node (Node (Leaf, 2, Leaf), 2, Leaf) =>

Node (Node (Leaf, 1, Leaf), 1, Leaf)
| Node (Leaf, 1, Node (Leaf, 2, Leaf)) =>

Node (Leaf, 0, Node (Leaf, 1, Leaf))
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)
| inc => ( Leaf => Leaf

| Node (Leaf, 0, Leaf) => Node (Leaf, 1, Leaf) )
} = ?

let tree_map : (nat -> nat) -> tree -> tree =
fun (f2:nat -> nat) ->

let rec f3 (t1:tree) : tree =
match t1 with

| Leaf -> Leaf
| Node (t2, n1, t3) -> Node (f3 t2, f2 n1, f3 t3)

in
f3

;;

tests/pldi-2015-benchmarks/tree_nodes_at_level.ml

type bool =
| True
| False

type tree =
| Leaf
| Node of tree * bool * tree

type nat =
| O
| S of nat

let rec sum (n1:nat) (n2:nat) : nat =
match n1 with
| O -> n2
| S (n1p) -> S (sum n1p n2)

;;

let tree_nodes_at_level : tree -> nat -> nat |>
{ Leaf =>

( 0 => 0
| 1 => 0
)

| Node (Leaf, True, Leaf) =>
( 0 => 1
| 1 => 0
)

| Node (Node (Leaf, True, Leaf), True, Leaf) =>
( 0 => 1
| 1 => 1
)

| Node (Node (Leaf, True, Leaf), True, Node (Leaf, True, Leaf)) =>
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( 0 => 1
| 1 => 2
| 2 => 0
)

| Node (Node
(Node (Leaf, True, Leaf), True, Node (Leaf, True, Leaf)), True, Leaf) =>

( 0 => 1
| 1 => 1
)

} = ?

let tree_nodes_at_level : tree -> nat -> nat =
let rec f1 (t1:tree) : nat -> nat =

fun (n1:nat) ->
match t1 with

| Leaf -> O
| Node (t2, b1, t3) -> (match n1 with

| O -> S (O)
| S (n2) -> sum (f1 t3 n2) (f1 t2 n2))

in
f1

;;

tests/pldi-2015-benchmarks/tree_postorder.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type tree =
| Leaf
| Node of tree * nat * tree

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1) -> Cons (x, append l1 l2)

;;

let tree_postorder : tree -> list |>
{ Leaf => []
| Node (Leaf, 1, Leaf) => [1]
| Node (Leaf, 2, Leaf) => [2]
| Node (Node (Leaf, 1, Leaf), 2, Leaf) => [1;2]
| Node (Leaf, 1, Node (Leaf, 2, Leaf)) => [2;1]
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| Node (Node (Leaf, 1, Leaf), 0, Node (Leaf, 2, Leaf) ) => [1;2;0]
| Node (Node (Leaf, 2, Leaf), 0, Node (Leaf, 1, Leaf) ) => [2;1;0]
| Node (Node (Node (Leaf, 2, Leaf), 0, Node (Leaf, 1, Leaf) ), 0, Leaf) =>

[2;1;0;0]
| Node (Leaf, 2, Node (Node (Leaf, 2, Leaf), 0, Node (Leaf, 1, Leaf) )) =>

[2;1;0;2]
} = ?

let tree_postorder : tree -> list =
let rec f1 (t1:tree) : list =

match t1 with
| Leaf -> Nil
| Node (t2, n1, t3) -> (match f1 t2 with

| Nil -> append (f1 t3) (Cons (n1, Nil))
| Cons (n2, l1) -> Cons (n2,

append
(append l1 (f1 t3))
(Cons (n1, Nil))))

in
f1

;;

tests/pldi-2015-benchmarks/tree_preorder.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type tree =
| Leaf
| Node of tree * nat * tree

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1) -> Cons (x, append l1 l2)

;;

let tree_preorder : tree -> list |>
{ Leaf => []
| Node (Leaf, 1, Leaf) => [1]
| Node (Leaf, 2, Leaf) => [2]
| Node (Node (Leaf, 1, Leaf), 2, Leaf) => [2;1]
| Node (Leaf, 1, Node (Leaf, 2, Leaf)) => [1;2]
} = ?

195



let tree_preorder : tree -> list =
let rec f1 (t1:tree) : list =

match t1 with
| Leaf -> Nil
| Node (t2, n1, t3) -> Cons (n1, append (f1 t2) (f1 t3))

in
f1

;;

B.3 Extended Examples

tests/pldi-2015-extended/arith.ml

(* -matches 2 -scrutinee 8 *)

type nat =
| O
| S of nat

type cmp =
| LT
| EQ
| GT

type exp =
| Const of nat
| Sum of exp * exp
| Prod of exp * exp
| Pred of exp
| Max of exp * exp

let rec sum (n1:nat) (n2:nat) : nat =
match n1 with
| O -> n2
| S (n1) -> S (sum n1 n2)

;;

let rec mult (n1:nat) (n2:nat) : nat =
match n1 with
| O -> O
| S (n1) -> sum n2 (mult n1 n2)

;;

let rec compare (n1 : nat) (n2 :nat) : cmp =
match n1 with
| O -> ( match n2 with

| O -> EQ
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| S (m) -> LT
)

| S (m1) ->
( match n2 with
| O -> GT
| S (m2) -> (compare m1 m2) )

;;

let arith : exp -> nat |>
{ Const (0) => 0
| Const (1) => 1
| Const (2) => 2
| Sum (Const(2), Const(2)) => 4
| Sum (Const(2), Const(1)) => 3
| Sum (Const(0), Const(2)) => 2
| Prod (Const(0), Const(2)) => 0
| Prod (Const(2), Const(1)) => 2
| Prod (Const(2), Const(2)) => 4
| Prod (Prod(Const(2), Const(2)), Const(2)) => 8
| Prod (Sum(Const(2), Const(1)), Const(2)) => 6
| Pred (Const(0)) => 0
| Pred (Const(1)) => 0
| Pred (Const(2)) => 1
| Max (Const(0), Const(0)) => 0
| Max (Const(0), Const(1)) => 1
| Max (Const(0), Const(2)) => 2
| Max (Const(1), Const(0)) => 1
| Max (Const(1), Const(1)) => 1
| Max (Const(1), Const(2)) => 2
| Max (Const(2), Const(0)) => 2
| Max (Const(2), Const(1)) => 2
} = ?

let arith : exp -> nat =
let rec f1 (e1:exp) : nat =

match e1 with
| Const (n1) -> n1
| Sum (e2, e3) -> sum (f1 e2) (f1 e3)
| Prod (e2, e3) -> mult (f1 e2) (f1 e3)
| Pred (e2) -> (match f1 e2 with

| O -> O
| S (n1) -> n1)

| Max (e2, e3) -> (match compare (f1 e2) (f1 e3) with
| LT -> f1 e3
| EQ -> f1 e3
| GT -> f1 e2)

in
f1

;;
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tests/pldi-2015-extended/dyn_app_twice.ml

type nat =
| O
| S of nat

type dyn =
| Error
| Base of nat
| Dyn of (dyn -> dyn)

let succ (d:dyn) : dyn =
match d with
| Error -> Error
| Base ( n ) -> Base (S(n))
| Dyn ( f ) -> Error

;;

let pred (d:dyn) : dyn =
match d with
| Error -> Error
| Base ( n ) ->

(match n with
| O -> Base ( O )
| S ( n ) -> Base ( n ))

| Dyn ( f ) -> Error
;;

let dyn_app_twice : dyn -> dyn -> dyn |>
{

Dyn (succ) => ( Base( 0 ) => Base( 2 )
| Base( 1 ) => Base( 3 ) )

| Dyn (pred) => ( Base( 0 ) => Base( 0 )
| Base( 1 ) => Base( 0 ) )

| Error => Error => Error
| Base( 0 ) => Error => Error
} = ?

let dyn_app_twice : dyn -> dyn -> dyn =
fun (d1:dyn) ->

fun (d2:dyn) ->
match d1 with

| Error -> Error
| Base (n1) -> Error
| Dyn (f3) -> f3 (f3 d2)

;;

tests/pldi-2015-extended/dyn_sum.ml
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type nat =
| O
| S of nat

type dyn =
| Error
| Base of nat
| Dyn of (dyn -> dyn)

let succ (d:dyn) : dyn =
match d with
| Error -> Error
| Base ( n ) -> Base (S(n))
| Dyn ( f ) -> Error

;;

let id (d:dyn) : dyn = d ;;

let dyn_sum : dyn -> dyn -> dyn |>
{ Dyn (id) =>

( Error => Error
| Dyn (id) => Error
| Base (0) => Error
| Base (1) => Error
| Base (2) => Error )

| Error =>
( Error => Error
| Dyn (id) => Error
| Base (0) => Error
| Base (1) => Error
| Base (2) => Error )

| Base (0) =>
( Error => Error
| Dyn (id) => Error
| Base (0) => Base (0)
| Base (1) => Base (1)
| Base (2) => Base (2) )

| Base (1) =>
( Error => Error
| Dyn (id) => Error
| Base (0) => Base (1)
| Base (1) => Base (2)
| Base (2) => Base (3) )

| Base (2) =>
( Error => Error
| Dyn (id) => Error
| Base (0) => Base (2)
| Base (1) => Base (3)
| Base (2) => Base (4) )
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} = ?

let dyn_sum : dyn -> dyn -> dyn =
fun (d1:dyn) ->

fun (d2:dyn) ->
match d1 with

| Error -> Error
| Base (n1) -> (match n1 with

| O -> (match d2 with
| Error -> Error
| Base (n2) -> d2
| Dyn (f3) -> Error)

| S (n2) -> (match n2 with
| O -> succ d2
| S (n3) -> succ (succ d2)))

| Dyn (f3) -> Error
;;

tests/pldi-2015-extended/fvs_large.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type exp =
| Unit
| BVar of nat
| FVar of nat
| Lam of nat * exp
| App of exp * exp
| Pair of exp * exp
| Fst of exp
| Snd of exp
| Inl of exp
| Inr of exp
| Const of nat
| Add of exp * exp
| Sub of exp * exp
| Mult of exp * exp
| Div of exp * exp

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1p) -> Cons (x, append l1p l2)
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;;

let fvs_large : exp -> list |>
{ Unit => []
| FVar (0) => [0]
| FVar (1) => [1]
| FVar (2) => [2]
| BVar (0) => []
| Lam (0, Unit) => []
| Lam (0, FVar (1)) => [1]
| App (Unit, Unit) => []
| App (FVar (0), Unit) => [0]
| App (Unit, FVar (1)) => [1]
| Fst (Unit) => []
| Fst (FVar (1)) => [1]
| Snd (Unit) => []
| Snd (FVar (1)) => [1]
| Pair (Unit, Unit) => []
| Pair (FVar (0), Unit) => [0]
| Pair (Unit, FVar (1)) => [1]
| Pair (FVar (0), FVar (1)) => [0; 1]
| Inl (Unit) => []
| Inl (FVar (1)) => [1]
| Inr (Unit) => []
| Inr (FVar (1)) => [1]
| Const (0) => []
| Add (FVar (0), Unit) => [0]
| Add (Unit, FVar (1)) => [1]
| Sub (FVar (0), Unit) => [0]
| Sub (Unit, FVar (1)) => [1]
| Mult (FVar (0), Unit) => [0]
| Mult (Unit, FVar (1)) => [1]
| Div (FVar (0), Unit) => [0]
| Div (Unit, FVar (1)) => [1]
} = ?

let fvs_large : exp -> list =
let rec f1 (e1:exp) : list =

match e1 with
| Unit -> []
| BVar (n1) -> []
| FVar (n1) -> [n1]
| Lam (n1, e2) -> f1 e2
| App (e2, e3) -> append (f1 e2) (f1 e3)
| Pair (e2, e3) -> append (f1 e2) (f1 e3)
| Fst (e2) -> f1 e2
| Snd (e2) -> f1 e2
| Inl (e2) -> f1 e2
| Inr (e2) -> f1 e2
| Const (n1) -> []
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| Add (e2, e3) -> append (f1 e2) (f1 e3)
| Sub (e2, e3) -> append (f1 e2) (f1 e3)
| Mult (e2, e3) -> append (f1 e2) (f1 e3)
| Div (e2, e3) -> append (f1 e2) (f1 e3)

in
f1

;;

tests/pldi-2015-extended/fvs_medium.ml

type nat =
| O
| S of nat

type list =
| Nil
| Cons of nat * list

type binop =
| Add
| Sub
| Mul
| Div

type exp =
| Unit
| BVar of nat
| FVar of nat
| Lam of nat * exp
| App of exp * exp
| Pair of exp * exp
| Fst of exp
| Snd of exp
| Const of nat
| Binop of exp * binop * exp

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1p) -> Cons (x, append l1p l2)

;;

let fvs_medium : exp -> list |>
{ Unit => []
| BVar (0) => [0]
| BVar (1) => [1]
| BVar (2) => [2]
| FVar (0) => []
| Lam (0, Unit) => []
| Lam (0, BVar (1)) => [1]
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| App (Unit, Unit) => []
| App (BVar (0), Unit) => [0]
| App (Unit, BVar (1)) => [1]
| App (BVar (0), BVar (1)) => [0; 1]
| Fst (Unit) => []
| Fst (BVar (1)) => [1]
| Snd (Unit) => []
| Snd (BVar (1)) => [1]
| Pair (Unit, Unit) => []
| Pair (BVar (0), Unit) => [0]
| Pair (Unit, BVar (1)) => [1]
| Pair (BVar (0), BVar (1)) => [0; 1]
| Const (0) => []
| Binop (BVar (0), Add, Unit) => [0]
| Binop (Unit, Add, BVar (1)) => [1]
} = ?

let fvs_medium : exp -> list =
let rec f1 (e1:exp) : list =

match e1 with
| Unit -> Nil
| BVar (n1) -> Cons (n1, Nil)
| FVar (n1) -> Nil
| Lam (n1, e2) -> f1 e2
| App (e2, e3) -> append (f1 e2) (f1 e3)
| Pair (e2, e3) -> append (f1 e2) (f1 e3)
| Fst (e2) -> f1 e2
| Snd (e2) -> f1 e2
| Const (n1) -> Nil
| Binop (e2, b1, e3) -> append (f1 e2) (f1 e3)

in
f1

;;

tests/pldi-2015-extended/fvs_small.ml

type id =
| A
| B
| C

type nat =
| O
| S of nat

type list =
| Nil
| Cons of id * list
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type exp =
| EBVar of nat
| EFVar of id
| EApp of exp * exp

let rec append (l1:list) (l2:list) : list =
match l1 with
| Nil -> l2
| Cons (x, l1p) -> Cons (x, append l1p l2)

;;

let fvs_small : exp -> list |>
{ EBVar (0) => []
| EFVar (A) => [A]
| EFVar (B) => [B]
| EApp (EBVar (0), EBVar (0)) => []
| EApp (EFVar (A), EBVar (0)) => [A]
| EApp (EBVar (0), EFVar (A)) => [A]
} = ?

let fvs_small : exp -> list =
let rec f1 (e1:exp) : list =

match e1 with
| EBVar (n1) -> Nil
| EFVar (i1) -> Cons (i1, Nil)
| EApp (e2, e3) -> append (f1 e2) (f1 e3)

in
f1

;;

204



Bibliography

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program
synthesis. In Proceedings of the 25th Conference on Computer-Aided Verification,
2013.
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