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ABSTRACT 
	

PROTEOSTASIS RESPONSES TO ENDOGENOUS ALPHA-SYNUCLEIN  

AGGREGATION IN THE BRAIN 

Scott Edward Ugras 

Harry Ischiropoulos 

 

α-Synuclein	aggregation	is	implicated	in	several	neurodegenerative	diseases,	including	

Parkinson’s	disease	(PD)	and	dementia	with	Lewy	Bodies	(DLB).	Changes	in	cellular	signaling	

pathways	induced	by	this	aggregation	may	contribute	to	cell	death	and	disease	pathogenesis.	To	

investigate	this,	we	used	quantitative	proteomics	to	measure	the	relative	abundance	changes	of	

the	proteome	and	phosphoproteome	in	response	to	aggregation	of	endogenous	α-synuclein	in	

the	brain	of	a	mouse	model.	Aggregation	in	this	model	is	induced	by	the	intrastriatal	injection	of	

α-synuclein	pre-formed	fibrils	and	recapitulates	several	cardinal	features	of	human	PD,	including	

progressive	aggregation	concomitant	with	dopaminergic	degeneration	and	motor	symptoms.	

We	quantified	the	relative	abundance	changes	of	5,290	proteins	and	2,763	phosphosites	in	

wildtype	mice	and	found	significant	changes	in	vesicle-mediated	transport,	RNA	processing	and	

the	immune	response.	The	immunoproteasome,	an	altered	form	of	the	constitutive	proteasome	

that	is	induced	in	response	to	stress,	was	elevated	in	response	to	α-synuclein	aggregation.	

Increased	levels	and	activity	of	the	immunoproteasome	were	found	in	human	DLB	compared	

with	age-matched	healthy	controls.	Additionally,	the	immunoproteasome	degrades	α-synuclein	

fibrils	more	efficiently	than	the	constitutive	proteasome.	This	is	the	first	documented	role	of	the	

immunoproteasome	in	synucleinopathies.		
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1.1	Proteostasis	
	

Proteins	have	an	intrinsic	ability	to	adopt	three-dimensional	conformations	that	are	necessary	

to	execute	proper	functions1,2.	Proteins	may	fail	to	adopt	or	maintain	their	proper	conformation,	

however,	due	to	errors	in	protein	folding,	mutations,	or	changes	in	binding	partners,	pH	or	

concentrations3.	To	combat	these	potentially	toxic	events,	cells	have	evolved	diverse	and	

integrated	cellular	machinery	that	maintains	proper	protein	homeostasis	through	various	

cellular	pathways.	These	proteostasis	networks	regulate	protein	expression,	degradation,	

binding	partners,	locations	and	conformations4.	A	key	element	of	proteostasis	is	its	ability	to	

dynamically	regulate	the	proteome,	through	transcriptional	and	post-translational	

modifications4,5.		

Perturbations	in	the	proteostasis	networks,	whether	through	age-related	decline,	environmental	

factors,	or	mutations,	can	contribute	to	diseases	including	neurodegenerative	diseases6,	aging7–

9,	cystic	fibrosis10,	cancer11,12	and	Diabetes13.	Intriguingly,	attempts	to	modulate	central	nodes	

within	proteostasis	networks,	such	as	the	molecular	chaperone	Hsp90,	have	shown	some	

therapeutic	promise14.	As	our	knowledge	of	proteostasis	continues	to	advance,	several	other	

targets	will	emerge	that	have	therapeutic	potential12.		

The	three	major	elements	of	the	proteostasis	network	include	chaperones	that	assist	in	proper	

protein	folding15,16,	chaperone-mediated	autophagy	that	clears	misfolded	proteins	by	

translocating	them	into	the	lysosomal	lumen,	and	the	ubiquitin-proteasome	system	that	targets	

specific	proteins	for	degradation.		

		

1.1.1	Chaperones	
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Despite	the	intrinsic	ability	of	proteins	to	spontaneously	adopt	their	native	three-dimensional	

conformations,	molecular	chaperones	often	assist	protein	folding17.	The	complexity	of	protein	

folding	in	vivo,	especially	due	to	the	crowded	molecular	environment	within	cells,	increases	the	

likelihood	of	aberrant	protein	aggregation18.	Furthermore,	large,	multidomain	proteins	have	a	

greater	propensity	to	fold	into	off-pathway,	misfolded	intermediates19.			

Molecular	chaperones	assist	in	protein	folding	without	being	part	of	the	final	protein	structure16.	

The	Heat	Shock	Proteins	(HSPs)	are	upregulated	in	times	of	stress	or	increased	protein	

aggregation20.	Several	classes	of	HSPs	exist	and	have	different	functions.	The	Hsp70	family	is	a	

group	of	constitutively	expressed,	highly	conserved,	ATP-dependent	chaperones	that	assist	

folding	of	nascent	proteins	emerging	from	the	ribosome	and	refold	misfolded	protein	

aggregates21,22.	The	Hsp90	chaperones	are	ATP-dependent	and	assist	in	proper	protein	folding	

events	downstream	of	Hsp70s	and	are	critical	in	many	signaling	events23–26.	Another	class	of	

chaperones,	chaperonins,	are	ATP-dependent	molecular	machines	that	include	the	well-studied	

GroEL/ES	system27,28.		

	

1.1.2	Chaperone-Mediated	Autophagy	

	

Chaperone-mediated	autophagy	(CMA)	is	a	degradation	pathway	that	targets	cytosolic	proteins	

for	lysosomal	destruction29.	CMA	upregulation	occurs	in	response	to	oxidative	stress30	and	

exposure	to	toxic	compounds31.	CMA	substrates	typically	contain	the	pentapeptide	KFERQ	that	

is	recognized	by	the	Hsp70	member	hsc70	when	the	motif	is	surface	exposed.	Hsc70	is	part	of	

the	larger	complex	known	as	the	CMA	cargo	recognition	complex32.	The	newly	formed	

substrate-CMA	cargo	recognition	complex	is	then	targeted	to	the	lysosomal	membrane	for	
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translocation.	Lysosome-associated	membrane	protein	type	2A	(LAMP-2A)	is	a	single-span	

membrane	protein	that	participates	in	substrate	binding	and	translocation	into	the	lumen	of	the	

lysosome29,33.	The	highly	acidic	intraluminal	environment	and	lysosomal	proteases	then	rapidly	

degrade	substrate	proteins.		

CMA	has	been	implicated	in	human	pathology,	including	aging34	and	neurodegenerative	

diseases35.	Age-related	disruptions	in	lysosomal	membrane	dynamics	cause	a	decline	in	total	

LAMP-2A	levels	that	contribute	to	the	decreased	rate	of	CMA	with	age36,37.	In	Parkinson’s	

disease	(PD),	where	mutations	and	aggregation	of	α-synuclein	are	implicated	in	disease	

pathology,	wildtype	α-synuclein	but	not	PD-linked	mutant	forms	can	be	degraded	by	CMA38,39.	

Wildtype	forms	of	leucine-rich	repeat	kinase	2	(LRKK2),	another	protein	that	is	mutated	in	some	

cases	of	familial	PD,	are	efficiently	degraded	by	CMA	but	PD-linked	mutant	forms	are	not40.	In	

Alzheimer’s	disease,	the	protein	tau	aggregates	in	the	brain	and	forms	intracellular	tangles41.	

Normally,	wildtype	tau	undergoes	degradation	by	CMA	but	mutant	tau	undergoes	differential	

degradation	that	may	contribute	to	AD42.	These	findings	suggest	that	the	CMA	arm	of	the	

proteostasis	network	plays	a	key	role	in	maintaining	functional	protein	networks.	 		

	

1.1.3	Ubiquitin-Proteasome	System	

	

1.1.3.1	Substrate	Targeting	

	

The	ubiquitin	proteasome	system	(UPS)	is	the	major	cellular	system	that	degrades	misfolded	

proteins43–45.	Proteins	are	targeted	for	degradation	through	a	serious	of	sequential	steps	

beginning	with	the	covalent	attachment	of	the	76-amino	acid,	highly	conserved	ubiquitin	(Ub)	
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protein.	First,	the	E1	Ub-activating	enzyme	covalently	binds	to	Ub	in	an	ATP-dependent	process.	

Then,	this	Ub	is	transferred	to	a	cysteine	residue	on	the	E2	Ub-conjugating	enzyme.	Then	this	

activated	E2	collaborates	with	the	E3	enzyme	to	transfer	the	Ub	to	the	target	substrate.	This	

mono-Ub	substrate	can	then	undergo	further	ubiquitination	resulting	in	a	polyubiquitinated	

protein.	Substrates	with	at	least	four	Ub	are	then	recognized	by	the	mature	proteasome	for	

degradation.			

	

1.1.3.2	Constitutive	Proteasome		

	

The	proteasome	is	composed	of	a	20S	core	catalytic	subunit	and	two	19S	regulatory	caps	that	

are	responsible	for	substrate	recognition46–48.	The	20S	core	is	composed	of	four	seven-subunit	

rings,	including	two	outer	rings	composed	of	seven	α	subunits	and	two	inner	rings	composed	of	

seven	β	subunits.	These	subunits	are	arranged	in	a	α1-7β1-7β1-7α1-7	configuration.	The	β1,	β2	and	β5	

subunits	confer	the	catalytic	activity	and	specificity	of	the	proteasome.	The	19S	caps	regulate	

several	steps	in	proteasomal	degradation	of	substrate	targets	in	an	ATP-dependent	manner,	

including	entry	into	the	20S	core,	disassembly	of	the	polyubiquitin	chains,	and	binding	to	

substrate46.		

	

1.1.3.3	Immunoproteasome	

	

The	immunoproteasome	is	an	alternative	form	of	the	constitutive	proteasome	that	is	expressed	

under	conditions	of	proinflammatory	stimuli	or	oxidative	stress49–51.	In	the	20S	core	of	the	

immunoproteasome,	the	three	catalytic	subunits,	β1,	β2	and	β5,	are	replaced	with	Lmp2,	MECL-1	
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and	Lmp7	(also	known	as	β1i,	β2i	and	β5i),	respectively52	(Figure	1.1).	β2	and	MECL-1	each	exhibit	

trypsin-like	activity	and	β5	and	Lmp7	each	exhibit	chymotrypsin-like	activity.	Lmp2	and	β1	differ,	

however,	in	that	Lmp2	exhibits	chymotrypsin-like	activity	whereas	β1	exhibits	caspase-like	

activity53.	Assembly	of	the	immunoproteasome	by	incorporation	of	the	catalytic	subunits	occurs	

in	response	to	interferon	gamma	(IFNγ)	and	is	4-fold	faster	than	assembly	of	the	constitutive	

proteasome54.	Additionally,	the	immunoproteasome	has	a	greater	degradation	efficiency	of	

basic	proteins	compared	with	the	constitutive	proteasome55.	These	differences	result	in	distinct	

kinetics	and	cleavage	site	preference	of	the	immunoproteasome,	resulting	in	the	generation	of	

antigenic	peptides	that	are	presented	to	major	histocompatibility	(MHC)	class	I	molecules56,57.		

	

	

	

Figure	1.1	Subunit	composition	of	the	constitutive	proteasome	and	the	immunoproteasome.	
Representation	of	the	subunits	present	in	the	constitutive	proteasome	and	the	immunoproteasome.	
Upon	stimulation	with	cytokines	such	as	IFNγ,	the	catalytic	subunits	of	the	immunoproteasome,	Lmp2,	
MECL-1	and	Lmp7	(also	known	as	β1i,	β2i	and	β5i),	replace	the	catalytic	subunits	of	the	constitutive	
proteasome,	namely	β1,	β2	and	β5.	Figure	adopted	from	McCarthy	and	Weinberg58.	
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The	immunoproteasome	has	been	implicated	in	a	number	of	human	diseases59,	including	

autoimmune	diseases60	and	neurodegenerative	diseases.	Mutations	in	the	PSMB8	gene	that	

encodes	Lmp7	have	been	found	to	cause	chronic	atypical	neutrophilic	dermatosis	with	

lipodystrophy	and	elevated	temperature	(CANDLE)61	and	joint	contractures,	muscle	atrophy,	

microcytic	anemia,	and	panniculitis-induced	childhood-onset	lipodystrophy	(JMP)62.	

Immunoproteasome	levels	and	activity	were	found	to	be	elevated	in	the	brains	of	patients	who	

had	Huntington’s	disease63.	Lmp2-positive	staining	was	also	found	predominantly	within	

neurons	and	overlapped	with	5%	of	cortical	aggregates.	Levels	of	the	immunoproteasome	have	

been	found	to	be	increased	in	the	Alzheimer’s	disease	(AD)	brain	compared	with	age-matched	

healthy	brain64.	Subsequent	studies	found	that	this	increase	is	predominantly	found	in	reactive	

glia	that	surrounds	amyloid-β	plaques	in	the	AD	brain65.				

	

1.2	Protein	Misfolding	in	Neurodegeneration	
	

1.2.1	Spreading	of	Protein	Aggregates	

	

Neurodegenerative	diseases	include	a	broad-array	of	progressive	diseases	afflicting	the	central	

nervous	system	(CNS)66.	They	are	a	major	burden	on	older	people	and	are	predicted	to	increase	

in	prevalence	as	populations	continue	to	age67.	Though	these	diseases	affect	different	neuronal	

populations	and	manifest	with	different	symptoms,	they	share	a	common	feature	of	the	

accumulation	of	insoluble	protein	aggregates.	These	culpable	proteins	include	amyloid-β	and	

tau	in	AD,	TDP43	and	FUS	in	Amyotrophic	Lateral	Sclerosis	(ALS),	and	α-synuclein	in	PD.	These	

aggregates	come	in	two	major	forms,	either	amyloid	fibrils	or	amorphous	aggregates.		
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While	amorphous	aggregates	do	not	contain	any	regular	structural	characteristics,	amyloid	

fibrils	are	highly	ordered	polymers	that	are	rich	in	β-sheets68.	Proteins	have	an	intrinsic	ability	to	

adopt	the	amyloid	conformation,	though	the	proteostasis	network	prevents	most	from	doing	

so69.	These	fibrils	contain	filaments	of	parallel	β-strands	that	run	perpendicular	to	the	fibrillar	

axis,	forming	a	cross-β	structure70.	The	hydrogen	bonds	that	form	between	the	backbones	of	

these	strands	provide	the	stability	that	is	a	characteristic	of	amyloid	fibrils.	This	stability	makes	

amyloid	fibrils	particularly	recalcitrant	to	proteostasis	pathways	that	degrade	misfolded	

proteins.	Amyloid	fibrils	are	generated	through	a	self-templating	process	composed	of	a	

nucleation	phase	followed	by	a	growth	phase71.	In	this	process,	oligomers	of	amyloid	fibrils	form	

first,	and	then	recruit	soluble	forms	of	the	same	protein	to	grow	at	their	ends.	Once	a	critical	

nucleus	is	formed,	growth	rapidly	proceeds	until	all	available	protein	is	consumed,	resulting	in	a	

thermodynamically	stable	amyloid	fibril.		

This	self-templating	process,	also	known	as	seeding,	is	thought	to	underlie	the	predictable	

pathological	spread	of	protein	aggregates	seen	in	neurodegenerative	diseases,	including	AD,	ALS	

and	PD67.	Strong	evidence	for	seeding	in	neurodegenerative	diseases	comes	from	studies	in	PD	

patients	who	received	fetal	nigral	transplants.	In	one	study,	human	fetal	neurons	that	were	

transplanted	into	a	61-year	old	patient	contained	Lewy	Body-like	aggregates	characteristic	of	

the	PD	brain	only	fourteen	years	after	transplantation72.	In	another	study,	two	patients	who	

received	fetal	mesencephalic	dopaminergic	neurons	developed	α-synuclein	positive,	Lewy	Body-

like	aggregates	in	the	grafted	neurons73.	These	studies	provide	evidence	that	in	humans,	protein	

aggregates	can	spread	from	host	to	graft,	supporting	the	theory	of	cell-to-cell	transmission	in	

protein	aggregation	disorders.	Additionally,	studies	in	model	organisms	also	support	this	theory,	

especially	a	recently	developed	mouse	model	of	progressive	α-synuclein	aggregation74.	In	this	
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model,	preformed	fibrils	of	α-synuclein	are	intrastriatally	injected	into	the	right	striatum	of	a	

non-transgenic	mouse,	resulting	in	progressive	aggregation	of	endogenous	α-synuclein	

concomitant	with	dopaminergic	degeneration	and	motor	phenotype.	Critically,	injection	into	α-

synuclein-null	mice	does	not	result	in	degeneration	or	motor	phenotype,	providing	evidence	for	

the	progressive	aggregation	of	endogenous	α-synuclein	as	being	critical	for	pathology.	This	

model	of	progressive	aggregation	of	endogenous	α-synuclein	driven	by	a	seeding	mechanism	

has	been	reproduced	in	both	mice75,76	and	rats77.			

	

1.2.2	Neurodegenerative	Disease	

	

1.2.2.1	Alzheimer’s	Disease	

	

AD	is	the	most	common	neurodegenerative	disease	worldwide,	affecting	over	45	million	people	

in	2015	and	is	expected	to	grow	to	115	million	people	by	205078.	An	estimated	9.9	million	new	

cases	of	AD	occur	each	year,	and	the	risk	of	developing	AD	increases	exponentially	with	age78.	

Accumulation	of	extracellular	aggregates	of	amyloid-β	and	cytoplasmic	aggregates	of	tau	are	the	

pathological	hallmarks	of	AD79.	There	is	strong	evidence	for	the	progressive	spreading	of	

aggregates	in	the	AD	brain.	

The	major	form	of	aggregated	amyloid-β	in	the	AD	brain	is	a	42	amino	acid	peptide	formed	from	

the	cleavage	of	amyloid	precursor	protein	(APP)80,81.	Recombinant	forms	of	this	peptide	form	

amyloid	fibrils,	and	these	fibrils	are	capable	of	accelerating	the	aggregation	of	soluble	forms	of	

the	same	protein82.	Injection	of	brain	extracts	from	AD	patients	into	APP	transgenic	mice	

induces	progressive	spread	of	pathology	in	the	brain83.	Additionally,	inoculation	with	synthetic	
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amyloid-β	aggregates	induced	aggregation	in	the	APP	transgenic	mouse	brain84.	The	aggregation	

of	tau,	a	protein	that	binds	to	and	stabilizes	microtubules,	is	linked	to	AD	and	other	

tauopathies85,86.	Injection	of	lysate	from	human	brain	that	suffered	from	tauopathy	into	

transgenic	mouse	that	expressed	human	tau	resulted	in	the	development	of	tau-positive	

aggregates87.	Collectively,	these	data	support	the	notion	that	spreading	of	aggregates	in	the	

brain	contributes	to	the	pathogenesis	of	AD.		

	

1.2.2.2	Amyotrophic	Lateral	Sclerosis	

	

ALS	(also	known	as	Lou	Gehrig’s	Disease)	is	a	progressive	motor	degenerative	disorder	with	a	

prevalence	of	4-6	per	100,000	that	is	uniformly	fatal	within	1-5	years	of	disease	onset88.	

Mutations	in	the	RNA-binding	proteins89	TDP4390–94	and	FUS95,96	cause	familial	forms	of	ALS.	

Cytoplasmic	inclusions	containing	these	proteins	have	been	found	in	ALS	patients,	indicating	

that	aggregation	may	contribute	to	disease97.	Recombinant	TDP43	forms	non-amyloid	

aggregates	in	vitro	under	standard	aggregating	conditions98.	The	ALS-linked	mutations	Q331K	

and	M337V	accelerate	this	aggregation	in	cell-free	systems	and	are	toxic	when	expressed	in	

cells98.	Similarly,	FUS	also	rapidly	misfolds	into	non-amyloid,	amorphous	aggregates,	and	is	toxic	

when	expressed	in	cells99.	Postmortem	analysis	of	ALS	patients	reveals	that	tissues	directly	

connected	to	the	cortex	develop	TDP43	inclusions	once	the	cortex	does,	but	those	tissues	not	

connected	do	not100.	These	findings	support	a	role	for	protein	aggregation	and	spreading	in	the	

pathology	of	ALS.		
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1.3	Parkinson’s	disease	
	

1.3.1	Disease	Overview		

	

PD	is	a	neurodegenerative	disorder	of	the	CNS	that	afflicts	over	50	million	people	worldwide101.	

First	described	in	an	1817	essay	by	the	English	surgeon	James	Parkinson102,	it	is	currently	the	

second	most	common	neurodegenerative	disease	worldwide103.	Degeneration	of	dopamine	

producing	neurons	in	the	substantia	nigra	pars	compacta	is	a	defining	feature	of	PD104.	This	

degeneration	contributes	to	both	motor	and	non-motor	symptoms	that	PD	patients	exhibit.	The	

five	major	motor	symptoms	of	PD	include	bradykinesia,	resting	tremor,	muscle	rigidity,	postural	

change	and	gait.	Non-motor	symptoms	include	cognitive	changes,	sleep	and	sensory	

deprivations,	and	constipation.	PD	patients	may	also	experience	dementia,	particularly	at	later	

stages	of	the	disease105.	Estimates	of	the	prevalence	of	dementia	with	patients	who	are	

diagnosed	with	PD	vary,	but	most	studies	estimate	30%-40%106,107.	Similar	to	other	

neurodegenerative	diseases,	age	is	the	greatest	risk	factor	for	developing	PD.	Approximately	

10%	of	PD	cases	are	familial	versus	90%	that	are	sporadic108.	

	

1.3.2	Pathology	of	Parkinson’s	disease	

	

The	histopathological	hallmark	of	PD	is	dense,	cytoplasmic	inclusions	known	as	Lewy	Bodies	

(LBs)104.	The	presence	of	LBs	in	different	brain	regions	defines	the	progression	of	PD,	starting	

from	the	olfactory	bulb	in	stage	1	and	progressing	to	the	neocortex	in	stage	6109.	Though	some	

exceptions	to	this	progression	have	been	found110,111,	most	cases	follow	this	staging	

scheme112,113.	LBs	contain	hyperphosphorylated	α-synuclein	fibrils114	(more	on	α-synuclein	in	
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Chapter	2).	The	aggregation	of	α-synuclein	and	formation	of	LBs	is	thought	to	contribute	to	the	

degeneration	of	dopamine-producing	neurons	in	PD115.	Additionally,	α-synuclein	mutations	that	

cause	PD	have	been	identified116–120,	along	with	gene	multiplications121–123.	These	data	strongly	

implicate	a	role	for	α-synuclein	aggregation	in	the	pathogenesis	of	PD.		

	

1.3.3	Treatments	

	 	

PD	is	currently	incurable	and	no	disease	modifying	therapies	exist.	Most	current	therapies	aim	

at	elevating	dopamine	levels	or	potentiating	dopamine	pathways.	The	first	therapy	shown	to	be	

effective	at	mitigating	PD	symptoms	was	levodopa	in	1967124.	Levodopa,	a	precursor	to	

dopamine	that	is	able	to	cross	the	blood-brain	barrier,	is	part	of	the	current	therapeutic	regime.	

It	is	typically	administered	along	with	carbidopa,	a	dopa	decarboxylase	inhibitor,	and	is	often	the	

first	line	treatment	for	patients	over	55	years	of	age.	This	regime	is	usually	effective	for	5	years	

at	delaying	motor	symptoms	of	PD125.	For	patients	under	55	years	of	age,	a	dopamine	agonist,	

such	as	ropinirole	or	rotigotine,	is	typically	the	first	line	treatment.	Selective	type	B	monoamine	

oxidase	inhibitors	can	also	be	administered	and	function	by	decreasing	the	conversion	of	

dopamine	to	3,4-Dihydroxyphenylacetic	acid	(DOPAC).	At	more	advanced	stages	of	PD,	deep	

brain	stimulation	of	the	subthalamic	nucleus	is	more	effective	at	managing	symptoms	in	the	

majority	of	patients	compared	with	medical	treatment	alone,	though	the	risk	of	adverse	effects	

is	greater126.		
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2.1	Abstract	
	

α-Synuclein	 is	 a	 conserved,	 abundantly	 expressed	 protein	 that	 is	 partially	 localized	 in	 pre-

synaptic	 terminals	 in	 the	 central	 nervous	 system.	 	 The	 precise	 biological	 function(s)	 and	

structure	 of	 α-synuclein	 are	 under	 investigation.	 	 Recently,	 the	 native	 conformation	 and	 the	

presence	 of	 naturally	 occurring	 multimeric	 assemblies	 have	 come	 under	 debate.	 	 These	 are	

important	deliberations	because	α-synuclein	assembles	into	highly	organized	amyloid-like	fibrils	

and	non-amyloid	amorphous	aggregates	 that	 constitute	 the	neuronal	 inclusions	 in	Parkinson’s	

disease	 and	 related	 disorders.	 	 Therefore	 understanding	 the	 nature	 of	 the	 native	 and	

pathological	 conformations	 is	 pivotal	 from	 the	 standpoint	 of	 therapeutic	 interventions	 that	

could	maintain	α-synuclein	in	its	physiological	state.		In	this	review,	we	will	discuss	the	existing	

evidence	 that	 define	 the	 physiological	 states	 of	 α-synuclein	 and	 highlight	 how	 the	 inherent	

structural	flexibility	of	this	protein	may	be	important	in	health	and	disease.		

2.2	Introduction	
	

α-Synuclein	 is	 a	 soluble	 protein	 that	 is	 highly	 conserved	 in	 vertebrates	 and	 abundantly	

expressed	 in	nervous	 tissue	 (Jakes	et	 al.,	 1994).	 	 It	was	 first	discovered	 in	1988	 in	 association	

with	 purified	 synaptic	 vesicles	 from	 the	 Torpedo	 electric	 ray	 (Maroteaux	 et	 al.,	 1988).	 	 Soon	

afterward	 α-synuclein	 was	 found	 to	 be	 widely	 distributed	 across	 the	 mammalian	 brain	 and	

localized	to	presynaptic	nerve	terminals,	suggesting	functions	related	to	neurotransmission	(Iwai	

et	 al.,	 1995).	 	 Independent	 of	 these	 reports,	 α-synuclein	was	 identified	 as	 the	 precursor	 to	 a	

hydrophobic	 peptide	 found	 in	 Alzheimer’s	 disease	 senile	 plaques,	 termed	 the	 non-Aβ	

component	of	Alzheimer’s	disease	amyloid	(NAC)	(Uéda	et	al.,	1993).		The	α-synuclein	gene	was	
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also	 dynamically	 regulated	 during	 song	 learning	 in	 zebra	 finch,	 supporting	 a	 role	 in	 synaptic	

plasticity	(George	et	al.,	1995).			

The	 discovery	 of	 a	 mutation	 in	 the	 α-synuclein	 gene	 that	 was	 associated	 with	 autosomal	

dominant	 inheritance	of	Parkinson’s	disease	 (PD)	provided	 the	 impetus	 for	 a	major	 shift	 in	α-

synuclein	research	(Polymeropoulos	et	al.,	1997).		PD	is	a	neurodegenerative	disorder	primarily	

characterized	by	the	loss	of	dopamine-producing	neurons	in	the	substantia	nigra	pars	compacta	

resulting	 in	 motor	 impairment.	 	 Since	 the	 original	 publication	 of	 the	 A53T	 mutation,	 several	

mutations,	as	well	as	multiplications	of	the	α-synuclein	gene	have	been	linked	to	PD	(Chartier-

Harlin	et	al.,	2004;	Krüger	et	al.,	1998;	Lesage	et	al.,	2013;	Pasanen	et	al.,	2014;	Proukakis	et	al.,	

2013;	 Singleton	 et	 al.,	 2003;	 Zarranz	 et	 al.,	 2004;	 Ferese	 et	 al.	 2015)	 	 Furthermore,	 several	

antibodies	against	α-synuclein	robustly	detect	the	well-known	pathoanatomical	features	of	PD,	

Lewy	bodies	and	Lewy	neurites,	 in	postmortem	brain	tissue	from	patients	with	sporadic	PD	as	

well	 as	 other	 related	 neurodegenerative	 disorders	 (Baba	 et	 al.,	 1998;	 Spillantini	 et	 al.,	 1997;	

Takeda	 et	 al.,	 1998).	 	 The	 finding	 that	wildtype	α-synuclein	was	 detected	 in	 Lewy	bodies	 and	

Lewy	neurites	prompted	the	publication	of	numerous	studies	that	investigated	the	biochemistry	

and	 biology	 of	 α-synuclein.	 	 Despite	 the	 rather	 impressive	 body	 of	work	 several	 fundamental	

questions	 remain:	What	 is	 the	physiological	 function	of	α-synuclein?	 	What	 is	 the	structure	of	

native	 α-synuclein?	 	 What	 factors	 contribute	 to	 the	 induction	 of	 aggregation-competent	

conformational	states	of	α-synuclein?		In	this	review,	we	will	briefly	review	the	evidence	for	the	

different	 biological	 functions	 and	 discuss	 ongoing	 efforts	 to	 precisely	 define	 physiological	

structures	of	α-synuclein.		
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2.3	The	physiological	function(s)	of	α-synuclein	
	

The	 initial	 studies	 indicated	 that	 α-synuclein	 is	 not	 required	 for	 neuronal	 development	 or	

synapse	 formation,	 but	 instead	 may	 modulate	 synaptic	 activity.	 	 In	 rodents,	 α-synuclein	 is	

detected	close	 to	 the	time	of	birth	and	continues	 to	 increase	until	one	month	of	age,	when	 it	

reaches	a	steady-state	 level	that	 is	maintained	throughout	adulthood	(Shibayama-Imazu	et	al.,	

1993).	 	 Similarly,	 in	 cultured	 rat	 neurons	 the	 development	 of	 synapses	 precedes	 α-synuclein	

expression	and	translocation	to	axonal	terminals	(Murphy	et	al.,	2000;	Withers	et	al.,	1997).		The	

hypothesis	 that	 α-synuclein	 regulates	 synaptic	 activity	 was	 directly	 tested	 in	 mice	 lacking	 α-

synuclein.	 	α-Synuclein	null	mice	develop	normal	brain	architecture	and	synaptic	contacts,	and	

do	 not	 exhibit	 gross	 behavioral	 phenotypes	 (Abeliovich	 et	 al.,	 2000).	 	 However,	 subtle	

abnormalities	 in	 activity-dependent	 neurotransmitter	 release	 have	 been	 observed.	 	 Upon	

repeated	stimulation,	dopaminergic	synapses	from	α-synuclein	null	mice	sustain	highly	elevated	

dopamine	release	(Abeliovich	et	al.,	2000;	Yavich	et	al.,	2004).		Functional	redundancy	among	α-

synuclein	and	the	other	synuclein	family	members,	β-	and	γ-synuclein,	may	account	for	the	mild	

phenotypes	observed	in	the	single	knockout.	 	 In	α/β-synuclein	double	knockout	mice,	synaptic	

plasticity	appears	unaltered	relative	to	α-synuclein	single	knockouts,	although	dopamine	levels	

in	the	striatum	are	reduced	(Chandra	et	al.,	2004).		The	importance	of	synucleins	is	particularly	

highlighted	by	α/β/γ-synuclein	triple	knockouts,	which	have	decreased	life	span	and	late-onset	

synaptic	 dysfunction	 compared	with	wildtype	mice	 (Burré	 et	 al.,	 2010;	Greten-Harrison	 et	 al.,	

2010).	 	Triple	knockouts	 in	another	study	had	motor	deficits	and	decreased	striatal	dopamine,	

along	 with	 abnormal	 dopamine	 neurotransmission	 (Anwar	 et	 al.,	 2011).	 	 Collectively,	 these	

reports	emphasize	the	important	role	of	the	synucleins	in	long-term	synaptic	maintenance	and	

plasticity.	
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Synaptic	vesicle	trafficking.	 	Examination	of	the	role	of	α-synuclein	in	the	synaptic	vesicle	cycle	

has	yielded	conflicting	results.		Depletion	of	α-synuclein	from	rodent	hippocampal	neurons	both	

in	 vivo	and	 in	 vitro	 induces	a	 significant	 loss	of	undocked	 synaptic	 vesicles,	 suggesting	 that	α-

synuclein	 acts	 to	 replenish	 or	maintain	 the	 resting	 and/or	 reserve	 vesicle	 pools	 (Cabin	 et	 al.,	

2002;	 Murphy	 et	 al.,	 2000).	 	 In	 contrast,	 another	 study	 found	 that	 increasing	 α-synuclein	 in	

rodent	hippocampal	neurons	reduces	the	recycling	pool	of	vesicles	(Nemani	et	al.,	2010).	 	The	

effect	of	α-synuclein	on	vesicles	docked	at	the	plasma	membrane	prior	to	exocytosis	is	similarly	

unclear.		Knockout	or	knockdown	of	α-synuclein	in	rodent	hippocampal	neurons	results	in	either	

a	decrease	or	no	 change	 in	 the	number	of	 docked	 vesicles	 (Cabin	et	 al.,	 2002;	Murphy	et	 al.,	

2000).		Conversely	α-synuclein	expression	in	PC12	cells	causes	an	accumulation	of	vesicles	at	the	

plasma	 membrane	 and	 impairment	 of	 exocytosis	 (Larsen	 et	 al.,	 2006).	 	 However,	 in	 mice	

modestly	overexpressing	α-synuclein	(levels	are	not	associated	with	neurotoxicity),	hippocampal	

synapses	display	a	redistribution	of	vesicles	away	from	the	active	zone.		The	density	of	vesicles	

in	 synaptic	boutons	 is	 also	 reduced,	 consistent	with	α-synuclein-mediated	 inhibition	of	 vesicle	

clustering.	 	 This	 is	 supported	 by	 α-synuclein-induced	 defects	 in	 vesicle	 re-clustering	 following	

endocytosis	in	rat	hippocampal	neurons	(Nemani	et	al.,	2010).		Still,	opposing	results	have	been	

obtained	 from	 yeast,	 in	 which	 α-synuclein	 expression	 results	 in	 massive	 accumulations	 of	

vesicles	that	co-localize	with	Rab	GTPases	(Gitler	et	al.,	2008;	Soper	et	al.,	2008).	 	Likewise,	α-

synuclein	 has	 been	 shown	 to	 restrict	 vesicle	 diffusion	 away	 from	 synapses	 in	 mouse	

hippocampal	 neurons	 (Wang	 et	 al.,	 2014).	 	 Several	 lines	 of	 evidence,	 therefore,	 support	 the	

participation	of	α-synuclein	in	synaptic	vesicle	trafficking,	though	the	specific	steps	for	which	it	

may	be	most	important,	i.e.	vesicle	docking,	recycling	and/or	re-clustering,	remain	unclear.		
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Chaperone-like	 activity	 and	 neurotransmitter	 release.	 	 α-Synuclein	 and	 the	 other	 synuclein	

family	 members	 may	 act	 as	 molecular	 chaperones,	 facilitating	 neurotransmitter	 release.		

Cysteine-string	protein	α	(CSPα)	is	a	chaperone	that	is	essential	for	synaptic	health;	its	deletion	

in	mice	 leads	 to	a	decrease	 in	 SNARE	protein	 complexes,	nerve	 terminal	degeneration,	motor	

impairment	and	death.	 	When	expressed	 in	CSPα-deficient	mice,	α-synuclein	 is	 able	 to	 rescue	

this	 degenerative	 phenotype	 and	 restore	 levels	 of	 SNARE	 complexes	 in	 synaptic	 terminals.		

Moreover,	mice	 lacking	both	α-synuclein	and	CSPα	exhibit	 an	exacerbated	phenotypic	decline	

(Chandra	 et	 al.,	 2005).	 	 These	 findings	 suggest	 that	 α-synuclein	 is	 able	 to	 complement	 the	

activity	 of	 CSPα	 in	 promoting	 synapse	 integrity.	 	 Direct	 evidence	 for	 the	 interaction	 of	 α-

synuclein	 with	 SNARE	 complexes	 was	 documented	 by	 co-immunoprecipitation	 of	 α-synuclein	

with	 SNARE	 proteins	 and	 specific	 binding	 to	 the	 vesicle-associated	 SNARE	 protein	

synaptobrevin-2.	 	 In	 mammalian	 cells	 and	 purified	 in	 vitro	 systems,	 α-synuclein	 dose-

dependently	 facilitates	 SNARE	 complex	 assembly	 (Burré	 et	 al.,	 2010).	 	 Additional	 support	 for	

chaperone-like	 activity	 includes	 sequence	 homology	 between	 α-synuclein	 and	 14-3-3	 protein	

chaperones	as	well	as	the	association	of	α-synuclein	with	14-3-3	and	its	binding	partners	in	rat	

brain	(Ostrerova	et	al.,	1999).		α-,	β-,	and	γ-synucleins	are	also	able	to	prevent	the	aggregation	

of	denatured	proteins	 in	vitro	(Souza	et	al.,	2000a),	further	supporting	a	conserved	chaperone-

like	 function	 of	 synucleins	 and	 the	 existence	 of	 several	 protein-protein	 interactions	 that	

facilitate	synaptic	function.	

Putative	role	 in	neurotransmitter	synthesis	and	reuptake.	 	Published	evidence	 indicates	that	α-

synuclein-mediated	 protein-protein	 interactions	 may	 modulate	 dopamine	 synthesis	 and	

recycling.	 	 α-Synuclein	 may	 inhibit	 the	 activity	 of	 tyrosine	 hydroxylase	 (TH),	 the	 rate-limiting	

enzyme	 in	 dopamine	 synthesis.	 	 α-Synuclein	 and	 TH	 co-immunoprecipitate	 from	 rat	 striatal	



	
	

26	

tissue	and	MN9D	dopaminergic	cells	and	α-synuclein	was	shown	to	inhibit	TH	activity	in	MN9D	

and	 PC12	 cells,	 potentially	 through	 PP2A	 phosphatase-mediated	 reduction	 of	 serine	 40	

phosphorylation	of	TH	(Peng	et	al.,	2005;	Perez	et	al.,	2002).		α-Synuclein	may	also	interact	with	

and	inhibit	the	activity	of	aromatic	amino	acid	decarboxylase,	which	catalyzes	the	conversion	of	

L-DOPA	 to	 dopamine	 (Tehranian	 et	 al.,	 2006).	 	 Thus,	 α-synuclein	 may	 serve	 as	 a	 negative	

regulator	 of	 dopamine	 synthesis,	 though	 further	 validation	 of	 these	 findings	 is	 necessary.		

Several	reports	have	also	implicated	α-synuclein	in	the	regulation	of	the	dopamine	transporter	

(DAT),	 though	 the	evidence	 is	 conflicting	with	 regards	 to	 the	 functional	 consequences.	 	Direct	

binding	of	α-synuclein	to	DAT	has	been	demonstrated	in	multiple	studies.		However,	α-synuclein	

does	not	 appear	 to	alter	DAT	 function,	but	 rather	 in	 various	 cellular	 contexts	 can	promote	or	

inhibit	 DAT	 trafficking	 to	 the	 plasma	 membrane	 (Oaks	 and	 Sidhu,	 2011).	 	 Elucidating	 the	

relationship	between	α-synuclein	and	DAT	requires	further	investigation.	

2.4	α-Synuclein	structural	flexibility		
	

Primary	 sequence.	 	 The	 primary	 sequence	 of	 α-synuclein	 consists	 of	 140	 amino	 acids	 with	 a	

predicted	 molecular	 mass	 of	 14,460.16	 Da	 and	 an	 isoelectric	 point	 of	 4.67	 (figure	 1).	 	 The	

sequence	 of	 α-synuclein	 is	 composed	 of	 three	 functionally	 defined	 domains.	 	 The	 N-terminal	

region	 (amino	 acids	 1-60)	 is	 characterized	 by	 the	 presence	 of	 unique	 and	 highly	 conserved	

sequence	 of	 imperfect	 tandem	 repeats	 with	 a	 central	 consensus	 motif	 of	 K(A)-T(A,V)-K(V)-

E(Q,T)-G(Q)-V(A).		These	motifs	spanning	residues	10-86	are	projected	to	form	two	amphipathic	

α-helices	and	are	characteristic	of	several	proteins	such	as	apolipoproteins	that	bind	reversibly	

to	membranes	(George	et	al.,	1995;	Maroteaux	et	al.,	1988).		Indeed	the	structure	of	membrane	

bound	α-synuclein	contains	two	α-helices	(amino	acids	3-37	and	45-92)	in	a	roughly	antiparallel	
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arrangement	with	 a	 short	 linking	 region	 (Ulmer	 et	 al.,	 2005).	 	 These	 helices	 are	 stabilized	 by	

interaction	with	 a	 variety	 of	 phospholipid	 bilayers,	 though	α-synuclein	 interacts	 preferentially	

with	 membranes	 of	 high	 curvature	 and	 an	 abundance	 of	 acidic	 phospholipids,	 properties	

consistent	 with	 those	 of	 synaptic	 vesicles	 (Davidson	 et	 al.,	 1998;	 Zhu	 et	 al.,	 2003).	 	 Upon	

interaction	with	membranes	of	low	curvature	α-synuclein	adopts	a	distinct	secondary	structure	

characterized	by	a	single	extended	helix	that	includes	both	previously	described	helical	domains	

and	the	 linker	 region	 (amino	acids	38-44)	 (Ferreon	et	al.,	2009;	Georgieva	et	al.,	2010;	Trexler	

and	Rhoades,	2009).		All	known	mutations	associated	with	familial	PD	(A30P,	E46K,	H50Q,	G51D,	

A53E,	and	A53T)	are	 found	 in	 the	N-terminal	domain	 (Krüger	et	al.,	2008;	 Lesage	et	al.,	2013;	

Pasanen	et	al.,	2014;	Polymeropoulos	et	al.,	1997;	Proukakis	et	al.,	2013;	Zarranz	et	al.,	2004).		

These	mutations,	with	 the	 exception	 of	G51D,	 A53E,	 and	A30P,	 increase	 the	 propensity	 of	 α-

synuclein	to	form	insoluble	aggregates	and	produce	morphologically	distinct	aggregate	species	

(Ghosh	et	al.,	 2014;	Giasson	et	al.,	 1999;	Greenbaum	et	al.,	 2005;	 Lesage	et	al.,	 2013;	Mahul-

Mellier	 et	 al.,	 2015;	 Narhi	 et	 al.,	 1999).	 	 Though	 the	 precise	 mechanism	 by	 which	 these	

mutations	 promote	 aggregation	 has	 not	 been	 conclusively	 shown,	 evidence	 implicate	 an	

accelerated	formation	of	oligomers	(Conway	et	al.,	2000)	likely	due	to	the	destabilization	of	the	

native	N-terminal	conformation	(Bertoncini	et	al.,	2005a;	Burré	et	al.,	2015;	Coskuner	and	Wise-

Scira,	2013;	Dettmer	et	al.,	2015).	

Amino	 acids	 61-95	 compose	 the	 hydrophobic	 NAC	 domain	 (Uéda	 et	 al.,	 1993).	 	 This	 region	

contains	 a	 sequence	 of	 amino	 acids	 (71-82)	 necessary	 and	 sufficient	 for	 α-synuclein	 self-

assembly	 into	amyloid	fibrils	 (Giasson	et	al.,	2001).	 	Recently	the	crystal	structures	of	residues	

68-78	 (termed	 NACore),	 and	 residues	 47-56	 (PreNAC)	 were	 resolved	 by	 the	 use	 of	 micro-
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electron	diffraction,	revealing	that	strands	in	this	region	stack	in-register	into	β-sheets	that	are	

typical	of	amyloid	assemblies	(Rodriguez	et	al.,	2015).	

The	C-terminal	domain	(96-140)	is	rich	in	negatively	charged	amino	acids	(contains	10	glutamate	

and	 5	 aspartate	 residues)	 and	 was	 originally	 proposed	 to	 be	 essential	 for	 maintaining	 the	

solubility	of	the	protein.	 	The	presence	of	5	proline	residues,	which	are	known	to	induce	turns	

and	 disrupt	 secondary	 protein	 structure,	 suggested	 that	 this	 region	 is	 devoid	 of	 secondary	

structure	(George	et	al.,	1995;	Ulmer	et	al.,	2005).		However,	the	C-terminus	was	shown	to	form	

transient,	 long-range	 interactions	 with	 the	 N-terminus	 resulting	 in	 the	 formation	 of	 multiple	

compact	 monomeric	 structures	 (Bertoncini	 et	 al.,	 2005a;	 Dedmon	 et	 al.,	 2005).	 	 These	

compacted	structures	of	α-synuclein	are	temperature	sensitive	and	are	resistant	to	aggregation.		

The	 data	 also	 indicated	 that	 at	 elevated	 temperatures	 the	 C-terminus	 assumes	 an	 extended	

conformation	that	 liberates	N-terminal	associations	and	enables	aggregation	(Bertoncini	et	al.,	

2005b;	Dedmon	et	al.,	2005).		Moreover,	C-terminally	truncated	forms	of	α-synuclein	aggregate	

faster	 than	 full	 length	 protein	 (Hoyer	 et	 al.,	 2004;	 Li	 et	 al.,	 2005).	 	 Truncated	α-synuclein	 has	

been	 detected	 in	 the	 brains	 of	 both	 control	 (non-disease)	 and	 PD	 patients.	 	 Cleavage	 of	 full-

length	protein	at	 residues	D115,	D119,	N122,	D125	and	Y133	was	documented	 in	α-synuclein	

extracted	from	LBs	(Anderson	et	al.,	2006).		

The	C-terminus	appears	to	be	 important	 for	 the	 interaction	of	α-synuclein	with	other	proteins	

and	for	the	interaction	with	small	molecules	(Burre	et	al.,	2012;	Burré	et	al.,	2010;	Conway	et	al.,	

2001;	Mazzulli	et	al.,	2006;	Souza	et	al.,	2000b;	Woods	et	al.,	2007).		Additionally,	it	contains	the	

major	sites	of	metal	binding	and	post-translational	modifications.	 	Binding	of	 iron,	copper,	and	

other	metals	has	been	shown	to	influence	α-synuclein	function	and	aggregation	(Uversky	et	al.,	

2001a).	 	 Addition	 of	 Fe(III),	 but	 not	 Fe(II)	 to	 preformed	 oligomers	 of	 α-synuclein	 accelerates	
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aggregation,	 raising	 the	 question	 of	 metal	 binding	 at	 different	 points	 during	 the	 aggregation	

process	 (Kostka	et	 al.,	 2008).	 	 Cu(II)	 is	 unique	among	metals	 at	 accelerating	aggregation	of	α-

synuclein	 at	 physiologically	 relevant	 concentrations.	 	 The	 sole	 histidine	 residue	 H50	 in	 α-

synuclein	was	 found	to	be	critical	 for	Cu(II)	binding	(Rasia	et	al.,	2005)	whereas	other	divalent	

metal	 ions,	 including	Mn(II),	Co(II),	Ni(II)	and	Fe(II),	preferentially	bind	 to	 the	C-terminus	of	α-

synuclein	at	residues	D121,	N122,	and	E123	(Binolfi	et	al.,	2006).			

Post-translational	 modifications.	 	 α-Synuclein	 undergoes	 a	 number	 of	 post-translational	

modifications,	 including	 N-terminal	 acetylation,	 serine	 and	 tyrosine	 phosphorylation,	 lysine	

ubiquitination	 and	 tyrosine	 nitration	 (Oueslati	 et	 al.,	 2010;	 Barrett	&	Greenamayer	 2015).	 	 α-

Synuclein	 purified	 under	 mild	 conditions	 is	 acetylated	 in	 the	 N-terminus.	 	 The	 N-terminal	

acetylation	may	account	for	the	formation	of	an	oligomeric	form	of	the	protein	with	partial	α-

helical	 structure	 (Trexler	 and	 Rhoades,	 2012).	 	 However,	 semisynthetic	 production	 of	 N-

terminally	acetylated	α-synuclein	demonstrated	 that	modified	and	unmodified	versions	of	 the	

protein	 share	 similar	 secondary	 structure,	 aggregation	 propensities,	 and	 membrane	 binding	

(Fauvet	et	al.,	2012a).		NMR	studies	indicated	that	the	first	12	residues	undergo	a	chemical	shift	

due	to	N-terminal	acetylation.		This	modification	also	appears	to	stabilize	the	helicity	of	the	N-

terminus	within	the	context	of	the	full-length	protein,	and	increases	the	affinity	of	α-synuclein	

for	lipids	(Dikiy	and	Eliezer,	2014).		

Mass	spectrometry-based	methodologies	revealed	that	α-synuclein	extracted	from	human	Lewy	

bodies	 was	 phosphorylated	 at	 S129	 (Fujiwara	 et	 al.,	 2002).	 	 An	 antibody	 raised	 against	

phosphorylated	S129	was	 then	used	 to	 show	 that	α-synuclein	was	phosphorylated	at	 this	 site	

only	in	subjects	with	disease	and	that	S129	phosphorylated	α-synuclein	was	present	only	in	the	

Triton-X-	and	Sarkosyl-insoluble,	urea	soluble	fraction.		These	data	indicated	that	some	form(s)	
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of	aggregated	α-synuclein	and	not	the	soluble	protein	 is	targeted	for	phosphorylation	at	S129.		

Indeed	in	vitro	data	showed	that	purified	fibrils	of	α-synuclein	are	substrates	for	casein	kinase	1	

or	2	(Waxman	and	Giasson,	2008).		Other	data	indicated	that	polo-like	kinase	(PLK)	2-mediated	

phosphorylation	of	S129	increased	autophagy-mediated	degradation	of	α-synuclein,	suggesting	

that	 phosphorylation	 may	 be	 a	 neuroprotective	 mechanism	 to	 accelerate	 clearance	 of	

aggregated	 protein	 (Oueslati	 et	 al.,	 2013).	 	 In	 addition	 to	 the	 monomeric	 α-synuclein,	 S129	

phosphorylated	bands	with	apparent	molecular	weight	of	22	kDa	and	29	kDa	were	observed	in	

the	detergent	insoluble	extract	(Hasegawa	et	al.,	2002).		These	bands	were	also	immunoreactive	

with	anti-ubiquitin	antibodies	suggesting	that	S129	phosphorylated	α-synuclein	is	also	targeted	

for	 mono-	 and	 di-ubiquitination.	 	 It	 has	 long	 been	 established	 that	 the	 core	 of	 Lewy	 bodies	

stains	 positive	 for	 both	 α-synuclein	 and	 ubiquitin	 whereas	 the	 surrounding	 halo	 is	

immunoreactive	 for	 α-synuclein	 (Hasegawa	 et	 al.,	 2002).	 	 Of	 the	 15	 lysine	 residues	 in	 α-

synuclein,	 the	 major	 sites	 of	 LB-derived	 α-synuclein	 undergoing	 ubiquitination	 were	 residues	

K12,	K21,	and	K23	(Anderson	et	al.,	2006;	Hasegawa	et	al.,	2002;	Sampathu	et	al.,	2003).		

A	number	of	spectroscopic	methodologies	(CD	and	NMR)	were	employed	to	explore	the	effect	

of	S129	phosphorylation	on	the	structure	of	α-synuclein.		CD	data	revealed	that	phosphorylation	

of	 S129	 did	 not	 affect	 secondary	 structure,	 such	 that	 both	 non-phosphorylated	 and	

phosphorylated	 S129	 exhibited	 random	 coil	 structure	 (Paleologou	 et	 al.,	 2008).	 	 NMR	 data	

revealed	 a	 number	 of	 chemical	 shifts	 that	 occur	 due	 to	 phosphorylation.	 	While	 the	 residues	

surrounding	S129	exhibited	 the	greatest	perturbation,	 residues	1-90	also	exhibited	detectable	

chemical	 shifts	 (Paleologou	 et	 al.,	 2008)	 	 This	 likely	 reflects	 the	 previously	 documented	 long-

range	interactions	of	the	C-	and	N-termini.		The	potential	effects	of	phosphorylation	of	S129	on	

the	structure	of	the	protein	were	not	faithfully	reproduced	by	mutation	of	S129	to	either	E	or	D,	
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two	 common	 phosphomimics	 used	 to	 study	 the	 structural	 consequences	 of	 phosphorylation.		

For	 example,	 phosphorylation	 at	 S129	 increased	 the	 hydrodynamic	 radius	 of	 the	 protein,	

whereas	S129	E/D	mutants	did	not	(Paleologou	et	al.,	2008).			

Subsequent	 studies	 found	 additional	 sites	 of	 phosphorylation.	 	 Elevated	 levels	 of	

phosphorylated	 α-synuclein	 at	 residue	 S87	 were	 detected	 in	 human	 brains	 with	 Alzheimer’s	

disease,	 Lewy	 Body	 disorders,	 and	 multiple	 system	 atrophy	 (Paleologou	 et	 al.,	 2010).	 	 S87	

phosphorylation	 alters	 the	 biophysical	 properties	 of	 α-synuclein,	 including	 inhibition	 of	 fibril	

formation	 and	 reduction	 in	 membrane	 binding	 (Paleologou	 et	 al.,	 2010).	 	 Additionally,	

phosphorylated	 α-synuclein	 at	 residue	 Y125	 was	 detected	 in	 Drosophila	 expressing	 human	

wildtype	 α-synuclein	 as	 well	 as	 in	 human	 brains,	 though	 levels	 were	 decreased	 in	 disease	

compared	with	aged-matched	healthy	controls	(Chen	et	al.,	2009).	

The	 proximity	 of	 the	 α-synuclein	 phosphorylation	 sites	 to	 the	 metal	 binding	 sites	 raised	 the	

question	of	 how	phosphorylation	may	affect	metal	 ion	 interactions.	 	 This	was	 investigated	by	

the	 use	 of	 C-terminal	 peptides	 containing	 residues	 119-132	 that	 were	 either	 unmodified,	

phosphorylated	 at	 Y125	 or	 at	 S129	 (Liu	 and	 Franz,	 2005).	 	 By	 exploiting	 the	 luminescence	

properties	 of	 Tb3+,	 it	 was	 found	 that	 phosphorylated	 Y125	 showed	 enhanced	 Tb3+	 binding	

relative	 to	wildtype	or	phosphorylated	S129.	 	Additionally,	phosphorylated	Y125	preferentially	

bound	to	trivalent	rather	than	divalent	metal	ions.		To	investigate	this	further,	longer	C-terminal	

fragments	comprised	of	residues	107-140	that	were	either	unmodified	of	monophosphorylated	

at	 Y125	 or	 S129	were	 tested	 for	 their	 affinity	 to	 various	metal	 ions.	 	 By	 using	 a	 fluorescence	

quenching	 assay,	 the	 dissociation	 constants	 of	 the	 metal	 ion	 complexes	 and	 the	 α-synuclein	

peptides	were	 determined.	 	 These	 data	 indicate	 that	 either	 phosphorylation	 at	 Y125	 or	 S129	

increases	the	binding	affinity	for	Cu	(II)	and	Fe(II),	but	not	Fe(III).		Furthermore,	phosphorylated	
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Y125	has	a	greater	affinity	for	Pb(II)	than	wildtype,	but	phosphorylated	S129	has	an	even	greater	

affinity	 than	 phosphorylated	 Y125.	 	 Additionally,	 tandem	 MS	 indicated	 that	 phosphorylation	

causes	the	metal	ion	binding	sites	to	shift	towards	the	C-terminal	end	of	α-synuclein	(Lu	et	al.,	

2011).	

α-Synuclein	within	 Lewy	bodies	 is	 nitrated	on	all	 four	 tyrosine	 residues	 (Giasson	et	 al.,	 2000).		

Chemical	nitration	of	α-synuclein	 results	 in	 the	 formation	of	both	 tyrosine	nitrated	monomers	

and	nitrated	dimers	(Souza	et	al.	2000b).		Immunoelectron	microscopy	confirmed	that	nitrated	

monomers	 and	 dimers	 are	 incorporated	 into	 amyloid	 fibrils.	 	 Purified	 nitrated	 α-synuclein	

monomer	 by	 itself	 was	 unable	 to	 form	 fibrils,	 whereas	 the	 nitrated	 dimer	 accelerated	

aggregation	of	unmodified	α-synuclein	 (Hodara	et	al.,	2004).	 	Additionally,	nitration	at	 residue	

Y39	 in	the	N-terminus	decreased	binding	to	synthetic	vesicles	and	prevented	the	protein	from	

adopting	 α-helical	 conformation	 (Hodara	 et	 al.,	 2004).	 	 These	 observations	 were	 recently	

confirmed	 and	 elegantly	 expanded	 by	 the	 generation	 of	 site-specifically	 nitrated	 α-synuclein	

using	 protein	 semisynthetic	 chemistries	 (Burai	 et	 al.	 2015).	 	 Using	 the	 synthetic	 nitrated	 α-

synuclein	the	data	showed	that	nitration	did	not	interfere	with	phosphorylation	of	S129	by	PLK3	

and	 reaffirmed	 that	 intermolecular	 interactions	 between	 the	 N-	 and	 C-terminal	 regions	 of	 α-

synuclein	 are	 critical	 in	 directing	 nitration-induced	 oligomerization	 of	 α-synuclein	 (Burai	 et	 al.	

2015).			

Native	 conformation(s)	 of	 α-synuclein.	 	 Figure	 2	 depicts	 the	 rapid	 growth	 in	 the	 number	 of	

publications	 identified	 in	 PubMed	 using	 the	 term	 synuclein	 and	 highlights	 key	 studies	 that	

explored	the	native	structure	and	conformation	of	the	protein.		Early	biochemical	studies	of	α-

synuclein	isolated	from	bacterial	expression	systems	or	α-synuclein	expressed	in	rodent	tissues	

indicated	that	 it	 is	monomeric	with	 limited	secondary	structure.	 	Electrophoretic	separation	of	
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α-synuclein	 purified	without	 heating	 on	 6,	 10,	 or	 14%	 acrylamide	 gels	 estimated	 an	 apparent	

molecular	weight	of	20±3	kDa.		However,	the	values	of	sedimentation	coefficient	(S20,w	=	1.7S),	

stokes	radius	(34	Å),	analysis	on	native	gels	and	derivation	of	the	frictional	coefficient	(f/fo=2.09)	

indicated	 an	 apparent	 molecular	 weight	 in	 the	 range	 57-58	 kDa	 (Weinreb	 et	 al.,	 1996).	 	 To	

reconcile	 this	 apparently	 anomalous	 behavior	 it	 was	 proposed	 that	 monomeric	 α-synuclein	

achieves	 minimal	 structure	 in	 simple	 solutions	 and	 this	 rather	 extended	 unstructured	

conformation	 resembles	 a	 globular	 protein	 with	 a	 larger	 apparent	 molecular	 weight.	 	 This	

assumption	was	further	corroborated	by	examination	of	purified	monomeric	α-synuclein	by	CD,	

FTIR	 and	 small	 angle	 X-ray	 scattering,	which	 failed	 to	 identify	 significant	 secondary	 structural	

features.	 	 Furthermore,	 minimal	 shifts	 in	 the	 spectroscopic	 features	 of	 α-synuclein	 were	

observed	 when	 the	 protein	 was	 placed	 in	 solutions	 that	 would	 increase	 hydrophobicity	 and	

neutralize	 negative	 charges	 indicating	 that	 the	 protein	 is	 natively	 unstructured,	 joining	 a	

growing	group	of	proteins	sharing	similar	biochemical	and	biophysical	characteristics	(Uversky	et	

al.,	2001b).		NMR	and	CD	data,	however,	indicated	that	α-synuclein	assumes	increasingly	folded	

secondary	 structure	when	 exposed	 to	 conditions	 that	 promote	 aggregation	 (low	 pH	 and	 high	

temperature)	 or	 upon	 interaction	 with	 phospholipids.	 	 Collectively	 these	 data	 indicated	 that	

native	α-synuclein	is	primarily	an	unstructured	monomer,	which	can	assume	different	compact	

conformations	that	resist	aggregation,	adopts	α-helical	conformation	upon	binding	to	lipids	and	

undergoes	 conformational	 changes	 prior	 to	 oligomerization	 and	 formation	 of	 amyloid	 fibrils	

(Uversky	 et	 al.,	 2001b).	 	 However,	 the	 methodologies	 employed	 to	 quantify	 the	 molecular	

weight	of	α-synuclein	in	these	elegant	studies	were	not	based	on	first	principles	and	therefore	a	

lingering	uncertainty	 remains	 regarding	 the	native	 size	of	 the	protein.	 	Moreover,	 crosslinking	

experiments	 in	 both	 intact	 cells	 expressing	 α-synuclein	 and	 lipid-free	 lysates	 revealed	 the	



	
	

34	

stabilization	 of	 high	molecular	weight	 α-synuclein	multimers	 (consistent	with	 dimers,	 trimers,	

and	 larger	 multimers).	 	 These	 multimers	 were	 not	 reduced	 by	 dilution	 of	 lysates	 before	

crosslinking,	nor	by	 reducing	 the	concentration	of	 crosslinker	 from	1	mM	to	8	µM,	 suggesting	

that	they	represented	endogenous	protein	complexes	(Cole	et	al.,	2002).			

Examination	of	the	α-synuclein	native	state	was	reignited	in	2011	with	the	publication	of	results	

indicating	that	α-synuclein	exists	natively	as	a	tetramer,	rather	than	a	monomer.		Methodologies	

that	are	based	on	first	principles	were	employed	to	examine	the	molecular	weight	and	size	of	α-

synuclein	 extracted	 under	 non-denaturing	 conditions	 from	 human	 red	 blood	 cells.	 	 Analytical	

ultracentrifugation	produced	a	sedimentation	equilibrium	value	of	4.78	S,	indicating	a	molecular	

weight	of	57.8	kDa.		Analysis	of	particle	geometry	by	scanning	transmission	electron	microscopy	

revealed	the	presence	of	roughly	spherical	molecules	with	a	diameter	of	approximately	3.0-3.5	

nm.	 	 Automated	 sampling	 of	 1000	 α-synuclein	 particles	 showed	 a	 distribution	 of	 molecular	

weights	between	10	and	175	kDa	with	a	peak	distribution	at	55	kDa.		These	findings	constitute	

the	most	direct	measurements	of	 the	native	molecular	weight	of	α-synuclein.	 	 The	 tetrameric	

species	were	shown	to	have	α-helical	conformation	and	were	resistant	to	aggregation	(Bartels	et	

al.,	2011).			

Complimentary	 observations	 were	 made	 using	 recombinant	 GST-tagged	 α-synuclein	 purified	

from	 bacterial	 expression	 systems	 under	 non-denaturing	 conditions.	 	 Single-particle	 electron	

microscopy	 of	 purified	 α-synuclein	 revealed	 complexes	 of	 sizes	 and	 internal	 geometries	

consistent	 with	 trimers	 and	 dimers,	 which	 were	 corroborated	 by	 measurements	 of	 the	

hydrodynamic	 radii	 and	 elution	 on	 native	 state	 PAGE.	 	 As	 observed	 previously,	 these	 species	

were	more	resistant	to	aggregation	than	denatured	monomer.		CD	also	showed	that	several	α-

synuclein	 mutations	 associated	 with	 early	 onset	 PD	 (A30P,	 E46K,	 A53T)	 exist	 in	 less	 ordered	
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conformations	than	wildtype	α-synuclein.		These	mutants	were	also	more	prone	to	aggregation	

(Wang	et	al.,	2011).		However,	using	the	same	α-synuclein	construct	that	contains	a	10-residue	

N-terminal	extension,	which	forms	multimers	when	isolated	from	E.	coli,	NMR	studies	indicated	

that	only	a	small	fraction	of	α-synuclein	assembles	into	α-helical	trimers	and	tetramers	and	the	

majority	 remains	 as	 a	 disordered	 monomer	 (Gurry	 et	 al.,	 2013).	 	 These	 data	 indicated	 that	

several	potential	 conformers	of	α-synuclein	may	exist	 in	equilibrium.	 	The	observation	 that	α-

helical	 trimers	 and	 tetramers	 constitute	 only	 a	 small	 fraction	 of	 the	 total	 α-synuclein	 may	

explain	other	 studies	 in	which	 in-cell	NMR	was	used	 to	probe	 for	 the	 structure	of	α-synuclein	

and	 reported	 primarily	 the	 presence	 of	 unstructured	monomer.	 	 NMR	 data	 of	 α-synuclein	 in	

intact	cells	failed	to	detect	stable	or	highly	populated	α-synuclein	multimers	and	confirmed	the	

intrinsically	 disordered	 nature	 of	 the	 protein	 in	 E.	 coli	 regardless	 of	 its	 purification	 method	

(Binolfi	 et	 al.,	 2012).	 	 Collectively	 these	 studies	 generated	 an	 apparent	 controversy	 and	

stimulated	several	additional	studies	that	explored	the	native	size	and	structure	of	α-synuclein.			

A	re-examination	of	the	native	state	of	α-synuclein	reasserted	that	the	behavior	of	α-synuclein	

from	various	sources	was	consistent	with	a	disordered	monomer.	 	This	behavior	was	observed	

with	protein	extracted	and	isolated	under	both	denaturing	and	non-denaturing	conditions.		CD	

spectra	 previously	 attributed	 to	 tetrameric	 assemblies	 were	 not	 reproduced	 using	 isolated	

monomer,	but	were	replicated	with	the	addition	of	small	unilamellar	vesicles.		Natively	isolated	

α-synuclein	before	or	after	boiling	that	disrupts	secondary	structure	migrated	as	high	molecular	

weight	α-synuclein	bands	 in	native	PAGE,	which	was	attributed	to	the	rather	expanded	size	of	

the	unstructured	monomer	in	solution.		These	findings	reaffirmed	that	the	majority	of	native	α-

synuclein	 is	 a	 monomer	 with	 minimal	 secondary	 structure	 (Fauvet	 et	 al.,	 2012a).	 	 Further	

support	 was	 provided	 by	 similar	 explorations	 in	 the	 mouse	 brain,	 which	 indicated	 that	 the	
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predominant	 native	 form	 of	 α-synuclein	 is	 an	 unstructured	monomer.	 	 α-Synuclein	 exhibited	

random	coil	structure	in	solution,	readily	aggregated	over	time,	and	adopted	α-helical	structure	

only	upon	membrane	binding	(Burré	et	al.,	2013).			

α-Synuclein	 multimers	 were	 detected	 in	 postmortem	 non-diseased	 human	 brain	 using	 mild	

protein	 extraction	 methods,	 but	 no	 further	 purification.	 	 These	 α-synuclein	 multimers	 had	

Stokes	radii	ranging	from	33.2-37.5	Å,	sedimentation	coefficients	ranging	from	1.4S	to	3.8S	and	

apparent	molecular	weights	ranging	from	53-70	kDa	in	native	gradient	gels.		The	multimers	were	

detected	 by	 anti-α-synuclein	 antibodies	 that	 recognize	 different	 epitopes	 and	 the	 multimer	

identity	was	confirmed	by	mass	spectrometry.	 	Consistent	with	previous	observations,	melting	

point	thermostability	analysis	showed	progressive	loss	of	the	α-synuclein	multimers	and	heating	

of	the	brain	extracts	above	55	oC	collapsed	the	higher	molecular	weight	α-synuclein	conformers	

into	the	53	kDa	species,	which	corresponds	to	the	unstructured	monomer.		These	data	indicated	

the	 presence	 of	 α-synuclein	 conformers,	 defined	 as	 conformationally	 diverse	 α-synuclein	

multimers,	 in	 the	 human	 brain.	 	 Therefore	 it	 appears	 that	 both	 monomer	 and	 metastable	

multimers	 coexist	 and	 that	 interactions	 with	 lipids,	 other	 proteins,	 or	 small	 molecules	 may	

transiently	stabilize	these	species	(Gould	et	al.,	2014).		This	was	further	supported	by	controlled	

bimolecular	fluorescence	complementation	methodologies	 in	different	cell	types	that	found	α-

synuclein	metastable	conformers	assembled	in	synapses.		It	was	suggested	that	the	function	of	

these	multimeric	 α-synuclein	 conformers	 is	 to	 restrict	 recycling	 of	 synaptic	 vesicles	 and	 thus	

reduce	neurotransmitter	release	(Wang	et	al.	2014).			

Additional	 support	 for	 native	 multimeric	 species	 comes	 from	 recent	 studies	 in	 which	 serial	

purification	 of	 α-synuclein	 from	 non-pathological	 human	 cortical	 tissue	 was	 performed.		

Removal	of	 lysate	 components	other	 than	protein	 followed	by	 sequential	 removal	of	proteins	
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though	size	exclusion,	anion	chromatography,	and	thiopropyl	sepharose	6b	separation,	resulted	

in	 the	 isolation	 of	 >90%	 pure	 α-synuclein.	 	 Each	 step	 of	 serial	 purification	 resulted	 in	 a	

progressive	 loss	 of	 α-synuclein	 immunoreactive	 high	 molecular	 weight	 bands	 observed	 after	

disuccinimidyl	 glutarate	 crosslinking	 and	 SDS-PAGE	 separation.	 	 Analysis	 of	 α-synuclein	

secondary	 structure	 by	 CD	 found	 that	 the	 sequentially	 purified	 protein	 had	 greater	 α-helical	

content	than	the	recombinant	α-synuclein.	 	However,	a	high	degree	of	variability	 in	secondary	

structure	was	observed	between	purified	samples	raising	questions	about	the	stability	of	these	

helical	 conformations	 (Luth	et	al.,	2015).	 	 Furthermore,	 crosslinking	experiments	conducted	 in	

brain	tissue	from	mice	expressing	wildtype	or	A53T	human	α-synuclein	in	the	absence	of	mouse	

α-synuclein	 showed	 that	 the	 A53T	 mutation	 reduced	 the	 presence	 of	 soluble	 multimeric	 α-

synuclein	(Dettmer	et	al.,	2015).	

2.5	Concluding	remarks	and	perspectives.			
	

Collectively	the	studies	on	the	native	structure	 indicate	a	remarkable	conformational	plasticity	

and	structural	flexibility	of	α-synuclein.		The	ability	of	the	protein	to	adopt	N-terminal	α-helical	

conformation	 through	 its	 association	with	 lipids	 has	 been	well	 documented.	 	 The	 association	

with	lipids	has	been	shown	to	prevent	fibril	formation	(Martinez	et	al.,	2007;	Zhu	and	Fink,	2003)	

and	 may	 also	 stabilize	 physiological	 multimeric	 species	 that	 together	 with	 the	 monomer	

regulate	SNARE	complex	assembly	and	recycling	of	synaptic	vesicles	(Burré	et	al.,	2014;	Wang	et	

al.	 2014).	 	 However,	 other	 groups	 have	 demonstrated	 a	 role	 for	 phospholipid	membranes	 in	

promoting	pathological	α-synuclein	aggregation,	potentially	by	acting	as	a	scaffold	 for	amyloid	

nucleation.		This	event	may	preferentially	occur	at	low	lipid	to	protein	ratios,	when	monomeric	
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α-synuclein	 is	 free	 in	 solution	 and	 can	 participate	 in	 nucleation	 (Galvagnion	 et	 al.,	 2015;	

Ysselstein	et	al.,	2015).		

In	 figure	 3	 we	 propose	 a	 model	 which	 incorporates	 and	 summarizes	 the	 existing	 knowledge	

regarding	α-synuclein	biology	and	structure.		The	steady	state	levels	of	α-synuclein	are	carefully	

regulated	 by	 protein	 synthesis	 and	 removal	 by	 several	 pathways	 such	 as	 the	 ubiquitin-

proteasome	pathways	and	autophagy	(Webb	et	al.,	2003).		Controlling	the	steady	state	levels	of	

this	 protein	 by	 regulating	 synthesis	 and	 degradation	 may	 be	 the	 first	 critical	 defense	 in	

preventing	aggregation.		Conformational	change	to	α-helical	rich	structures,	and	stabilization	of	

metastable	 multimers	 is	 achieved	 by	 specific	 interactions	 with	 vesicular	 phospholipids	 and	

proteins.	 	 The	 sequestration	 of	 α-synuclein	 in	 association	 with	 membrane	 vesicles	 and	 with	

other	 proteins	 may	 be	 of	 critical	 importance	 for	 preventing	 aggregation.	 	 Therefore	 these	

dynamic	 equilibria	 maintain	 functionality	 and	 promote	 assemblies	 that	 are	 resistant	 to	

aggregation.	 	 Catastrophic	 events	 that	 may	 include	 inappropriate	 post-translational	

modifications	 will	 disassemble	 the	 multimers	 as	 well	 as	 transform	 aggregation-incompetent	

monomers	 to	 aggregation-competent	 species.	 	 The	 first	 step	 in	 the	 pathway	 to	 amyloid	 fibril	

formation	is	the	generation	of	a	dimer	that	is	either	held	together	by	hydrophobic	interactions	

induced	 by	 increased	 conformational	 transition	 to	 β-sheet	 structure	 or	 upon	 covalent	 cross-

linking.	 	 Following	 this	 nucleation	 event	 (Wood	 et	 al.,	 1999)	 the	 hydrophobic	 patch	 of	 amino	

acids	 between	 residues	 71-82	 appears	 to	 be	 primarily	 responsible	 for	 allowing	 additional	 α-

synuclein	 monomers	 to	 assemble	 to	 form	 oligomeric	 structures.	 	 This	 transition	 is	 the	

committed	 rate	 limiting	 step	 for	 aggregation	 and	 must	 overcome	 a	 relatively	 large	

thermodynamic	requirement	that	permits	the	conversion	from	an	unstructured	coil	to	organized	

β-sheet	 conformation.	 	Oligomers	 are	 soluble	 in	 aqueous	buffers	 and	 can	 appear	 spherical	 or	
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ring-like	 by	 atomic	 force	 and	 electron	microscopy	 (Conway	 et	 al.,	 2000;	 Lashuel	 et	 al.,	 2002).		

Soluble,	 high	 molecular	 weight	 oligomers	 have	 been	 extracted	 from	 human	 brain	 tissue	 and	

their	levels	appear	to	be	increased	in	PD	brain	(Sharon	et	al.,	2003)	as	well	as	mouse	models	of	

α-synuclein	aggregation	(Tsika	et	al.,	2010).		As	oligomers	grow,	they	reach	an	undefined	critical	

length	and	are	able	to	assume	additional	quaternary	structure.	 	At	this	stage,	these	structures	

may	 continue	 to	 grow	 in	 linear	 β-sheets,	 forming	 polarized	 protofibrils	 and	 eventually	 fibrils.	

Fibrils	may	further	arrange	into	protein	inclusions	although	it	remains	unclear	if	other	proteins	

within	 these	 inclusions	 anchor	 these	 fibrils.	 	 Alternatively,	 oligomers	 may	 remain	 soluble	 by	

interacting	with	 small	molecules	 (Conway	et	al.,	 2001)	or	by	 incorporating	post-translationally	

modified	α-synuclein	molecules.	 	These	structures	remain	“off	the	amyloid	fibril	pathway”	and	

may	constitute	what	has	been	described	 in	human	postmortem	tissue	as	“dots”	or	“dust-like”	

amorphous	 aggregates	 (Braak	 et	 al.,	 2001;	 Duda	 et	 al.,	 2002).	 	 At	 this	 juncture,	 it	 remains	

unclear	 which	 of	 these	 assemblies	 are	 toxic	 to	 neurons.	 	 Recent	 data	 indicate	 that	 several	

conformationally	distinct	assemblies	(possibly	different	strains)	of	α-synuclein	generated	in	vitro	

will	 induce	the	aggregation	of	endogenous	α-synuclein	resulting	 in	neurodegeneration	(Guo	et	

al.,	 2013;	 Luk	 et	 al.,	 2012;	 Peelaerts	 et	 al.,	 2015;	 Sacino	 et	 al.,	 2014).	 	 The	 appreciation	 of	

different	 α-synuclein	 conformers	 and	 assemblies	 as	 well	 as	 their	 roles	 in	 disease	 may	 guide	

potential	 therapeutic	 approaches.	 	 For	 example,	 therapeutic	 strategies	 can	 be	 centered	 on	

preserving	 and	 stabilizing	 the	 physiological	 multimeric	 conformers	 as	 well	 as	 preventing	

monomers	 from	 aggregating.	 	 Alternatively,	 sequestration	 and	 removal	 of	 aggregation-

competent	monomers	and	oligomers	can	be	considered.		

	
	 	
Acknowledgements		
	



	
	

40	

This	work	was	 supported	by	 the	National	 Institutes	of	Health	Grant	AG13966;	 the	 Intellectual	
and	 Developmental	 Disabilities	 Center	 Gant	 U54	 HD086984;	 and	 the	 National	 Institute	 of	
Environmental	 Health	 Sciences	 Center	 of	 Excellence	 in	 Environmental	 Toxicology	 Grant	
ES013508.	 	 DM	 was	 supported	 by	 National	 Institutes	 of	 Health	 Ruth	 L.	 Kirschstein	 National	
Research	 Service	 Award	 Individual	 Predoctoral	 Fellowship	 F31NS087779-01A1.	 	 SU	 was	
supported	 by	 the	 NIH	 Chemistry-Biology	 Interface	 Training	 Grant	 T32GM07133-08.	 MD	 was	
supported	by	National	 Institutes	of	Health	Training	Grant	T32GM008076.	 	HI	 is	 the	Gisela	and	
Dennis	Alter	Research	Professor	of	Pediatrics.			

References 
	
Abeliovich,	 A.,	 Schmitz,	 Y.,	 Fariñas,	 I.,	 Choi-Lundberg,	 D.,	 Ho,	W.H.,	 Castillo,	 P.E.,	 Shinsky,	 N.,	
Verdugo,	 J.M.,	 Armanini,	 M.,	 Ryan,	 A.,	 et	 al.	 (2000).	 Mice	 lacking	 alpha-synuclein	 display	
functional	deficits	in	the	nigrostriatal	dopamine	system.	Neuron	25,	239–252.	
	
Anderson,	J.P.,	Walker,	D.E.,	Goldstein,	J.M.,	de	Laat,	R.,	Banducci,	K.,	Caccavello,	R.J.,	Barbour,	
R.,	 Huang,	 J.,	 Kling,	 K.,	 Lee,	 M.,	 et	 al.	 (2006).	 Phosphorylation	 of	 Ser-129	 is	 the	 dominant	
pathological	 modification	 of	 α-synuclein	 in	 familial	 and	 sporadic	 Lewy	 body	 disease.	 J.	 Biol.	
Chem.	281,	29739–29752.	
	
Anwar,	 S.,	 Peters,	 O.,	 Millership,	 S.,	 Ninkina,	 N.,	 Doig,	 N.,	 Connor-Robson,	 N.,	 Threlfell,	 S.,	
Kooner,	 G.,	 Deacon,	 R.M.,	 Bannerman,	 D.M.,	 et	 al.	 (2011).	 Functional	 alterations	 to	 the	
nigrostriatal	 system	 in	mice	 lacking	all	 three	members	of	 the	synuclein	 family.	 J.	Neurosci.	31,	
7264–7274.	
	
Baba,	M.,	Nakajo,	S.,	Tu,	P.H.,	Tomita,	T.,	Nakaya,	K.,	Lee,	V.M.,	Trojanowski,	J.Q.,	and	Iwatsubo,	
T.	 (1998).	 Aggregation	 of	 alpha-synuclein	 in	 Lewy	 bodies	 of	 sporadic	 Parkinson’s	 disease	 and	
dementia	with	Lewy	bodies.	Am.	J.	Pathol.	152,	879–884.	
	
Barrett,	 P.J.,	 and	 Greenamyre,	 J.T.	 (2015).	 Post-translational	 modification	 of	 α-synuclein	 in	
Parkinson׳s	disease.	Brain	Res.	1628,	247–253.	
	
Bartels,	 T.,	 Choi,	 J.G.,	 and	 Selkoe,	 D.J.	 (2011).	 α-Synuclein	 occurs	 physiologically	 as	 a	 helically	
folded	tetramer	that	resists	aggregation.	Nature	477,	107–110.	
	
Bertoncini,	 C.W.,	 Fernandez,	 C.O.,	 Griesinger,	 C.,	 Jovin,	 T.M.,	 and	 Zweckstetter,	 M.	 (2005a).	
Familial	mutants	of	α-synuclein	with	increased	neurotoxicity	have	a	destabilized	conformation.	
J.	Biol.	Chem.	280,	30649–30652.	
	
Bertoncini,	 C.W.,	 Jung,	 Y.,	 Fernandez,	 C.O.,	 Hoyer,	 W.,	 Griesinger,	 C.,	 Jovin,	 T.M.,	 and	
Zweckstetter,	M.	(2005b).	Release	of	long-range	tertiary	interactions	potentiates	aggregation	of	
natively	unstructured	α-synuclein.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	102,	1430–1435.	
	
Binolfi,	A.,	Rasia,	R.M.,	Bertoncini,	C.W.,	Ceolin,	M.,	Zweckstetter,	M.,	Griesinger,	C.,	Jovin,	T.M.,	
and	 Fernandez,	 C.O.	 (2006).	 Interaction	 of	 α-synuclein	 with	 divalent	 metal	 ions	 reveals	 key	
differences:	A	link	between	structure,	binding	specificity	and	fibrillation	enhancement	21.	J.	Am.	
Chem.	Soc.	128,	9893–9901.	



	
	

41	

	
Binolfi,	A.,	Theillet,	F.-X.,	and	Selenko,	P.	(2012).	Bacterial	 in-cell	NMR	of	human	α-synuclein:	a	
disordered	monomer	by	nature?	Biochem.	Soc.	Trans.	40,	950–954.	
	
Braak,	E.,	Sandmann-Keil,	D.,	Rüb,	U.,	Gai,	W.P.,	de	Vos,	R.A.I.,	Jansen	Steur,	E.N.H.,	Arai,	K.,	and	
Braak,	 H.	 (2001).	 α-synuclein	 immunopositive	 Parkinson’s	 disease-related	 inclusion	 bodies	 in	
lower	brain	stem	nuclei.	Acta	Neuropathol.	101,	195–201.	
	
Burré,	J.,	Sharma,	M.,	Tsetsenis,	T.,	Buchman,	V.,	Etherton,	M.R.,	and	Südhof,	T.C.	(2010).	Alpha-
synuclein	promotes	SNARE-complex	assembly	in	vivo	and	in	vitro.	Science	329,	1663–1667.	
	
Burré,	 J.,	 Sharma,	M.,	 and	 Südhof,	 T.C.	 (2012).	 Systematic	mutagenesis	 of	 α-synuclein	 reveals	
distinct	 sequence	 requirements	 for	 physiological	 and	 pathological	 activities.	 J.	 Neurosci.	 32,	
15227–15242.	
	
Burré,	 J.,	Vivona,	S.,	Diao,	 J.,	 Sharma,	M.,	Brunger,	A.T.,	and	Südhof,	T.C.	 (2013).	Properties	of	
native	brain	α-synuclein.	Nature	498,	E4–E6.	
	
Burré,	 J.,	 Sharma,	 M.,	 and	 Südhof,	 T.C.	 (2014).	 α-Synuclein	 assembles	 into	 higher-order	
multimers	upon	membrane	binding	to	promote	SNARE	complex	formation.	Proc.	Natl.	Acad.	Sci.	
111,	E4274–E4283.	
	
Burré,	J.,	Sharma,	M.,	and	Südhof,	T.C.	 (2015).	Definition	of	a	molecular	pathway	mediating	α-
synuclein	neurotoxicity.	J.	Neurosci.	35,	5221–5232.	
	
Cabin,	D.E.,	Shimazu,	K.,	Murphy,	D.,	Cole,	N.B.,	Gottschalk,	W.,	McIlwain,	K.L.,	Orrison,	B.,	Chen,	
A.,	 Ellis,	 C.E.,	 Paylor,	 R.,	 et	 al.	 (2002).	 Synaptic	 vesicle	 depletion	 correlates	 with	 attenuated	
synaptic	 responses	 to	 prolonged	 repetitive	 stimulation	 in	 mice	 lacking	 alpha-synuclein.	 J.	
Neurosci.	22,	8797–8807.	
	
Chandra,	S.,	Fornai,	F.,	Kwon,	H.-B.,	Yazdani,	U.,	Atasoy,	D.,	Liu,	X.,	Hammer,	R.E.,	Battaglia,	G.,	
German,	D.C.,	Castillo,	P.E.,	et	al.	(2004).	Double-knockout	mice	for	alpha-	and	beta-synucleins:	
effect	on	synaptic	functions.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	101,	14966–14971.	
	
Chandra,	 S.,	 Gallardo,	 G.,	 Fernández-Chacón,	 R.,	 Schlüter,	 O.M.,	 and	 Südhof,	 T.C.	 (2005).	 α-
Synuclein	cooperates	with	CSPα	in	preventing	neurodegeneration.	Cell	123,	383–396.	
	
Chartier-Harlin,	M.-C.,	Kachergus,	J.,	Roumier,	C.,	Mouroux,	V.,	Douay,	X.,	Lincoln,	S.,	Levecque,	
C.,	Larvor,	L.,	Andrieux,	J.,	Hulihan,	M.,	et	al.	(2004).	Alpha-synuclein	locus	duplication	as	a	cause	
of	familial	Parkinson’s	disease.	Lancet	364,	1167–1169.	
	
Chen,	L.,	Periquet,	M.,	Wang,	X.,	Negro,	A.,	McLean,	P.J.,	Hyman,	B.T.,	and	Feany,	M.B.	(2009).	
Tyrosine	and	serine	phosphorylation	of	α-synuclein	have	opposing	effects	on	neurotoxicity	and	
soluble	oligomer	formation.	J.	Clin.	Invest.	119,	3257–3265.	
	



	
	

42	

Cole,	N.B.,	Murphy,	D.D.,	Grider,	T.,	Rueter,	S.,	Brasaemle,	D.,	and	Nussbaum,	R.L.	(2002).	Lipid	
droplet	binding	and	oligomerization	properties	of	the	Parkinson’s	disease	protein	α-synuclein.	J.	
Biol.	Chem.	277,	6344–6352.	
	
Conway,	 K.	 a,	 Lee,	 S.J.,	 Rochet,	 J.C.,	 Ding,	 T.T.,	 Williamson,	 R.E.,	 and	 Lansbury,	 P.T.	 (2000).	
Acceleration	of	oligomerization,	 not	 fibrillization,	 is	 a	 shared	property	of	 both	alpha-synuclein	
mutations	linked	to	early-onset	Parkinson’s	disease:	implications	for	pathogenesis	and	therapy.	
Proc.	Natl.	Acad.	Sci.	U.	S.	A.	97,	571–576.	
	
Conway,	K.	a,	Rochet,	J.C.,	Bieganski,	R.M.,	and	Lansbury,	P.T.	(2001).	Kinetic	stabilization	of	the	
alpha-synuclein	protofibril	by	a	dopamine-alpha-synuclein	adduct.	Science	294,	1346–1349.	
	
Coskuner,	 O.,	 and	 Wise-Scira,	 O.	 (2013).	 Structures	 and	 free	 energy	 landscapes	 of	 the	 A53T	
mutant-type	α-synuclein	protein	and	impact	of	A53T	mutation	on	the	structures	of	the	wild-type	
α-synuclein	protein	with	dynamics.	ACS	Chem.	Neurosci.	4,	1101–1113.	
	
Davidson,	W.S.,	 Jonas,	 A.,	 Clayton,	 D.F.,	 and	 George,	 J.M.	 (1998).	 Stabilization	 of	 α-synuclein	
secondary	structure	upon	binding	to	synthetic	membranes.	J.	Biol.	Chem.	273,	9443–9449.	
	
Dedmon,	 M.M.,	 Lindorff-Larsen,	 K.,	 Christodoulou,	 J.,	 Vendruscolo,	 M.,	 and	 Dobson,	 C.M.	
(2005).	 Mapping	 long-range	 interactions	 in	 α-synuclein	 using	 spin-label	 NMR	 and	 ensemble	
molecular	dynamics	simulations.	J.	Am.	Chem.	Soc.	127,	476–477.	
	
Dettmer,	U.,	Newman,	A.J.,	Soldner,	F.,	Luth,	E.S.,	Kim,	N.C.,	von	Saucken,	V.E.,	Sanderson,	J.B.,	
Jaenisch,	 R.,	 Bartels,	 T.,	 and	 Selkoe,	 D.	 (2015).	 Parkinson-causing	 α-synuclein	 missense	
mutations	 shift	 native	 tetramers	 to	 monomers	 as	 a	 mechanism	 for	 disease	 initiation.	 Nat.	
Commun.	6.	
	
Dikiy,	I.,	and	Eliezer,	D.	(2014).	N-terminal	acetylation	stabilizes	N-terminal	helicity	in	lipid-	and	
micelle-bound	α-synuclein	and	increases	its	affinity	for	physiological	membranes.	J.	Biol.	Chem.	
289,	3652–3665.	
	
Duda,	 J.E.,	 Giasson,	 B.I.,	 Mabon,	 M.E.,	 Lee,	 V.M.-Y.,	 and	 Trojanowski,	 J.Q.	 (2002).	 Novel	
antibodies	 to	 synuclein	 show	abundant	 striatal	pathology	 in	Lewy	body	diseases.	Ann.	Neurol.	
52,	205–210.	
	
Fauvet,	 B.,	 Fares,	M.-B.,	 Samuel,	 F.,	 Dikiy,	 I.,	 Tandon,	A.,	 Eliezer,	D.,	 and	 Lashuel,	H.A.	 (2012).	
Characterization	of	semisynthetic	and	naturally	Nα-acetylated	α-synuclein	in	vitro	and	in	intact	
cells:	 implications	 for	 aggregation	 and	 cellular	 properties	 of	 α-synuclein.	 J.	 Biol.	 Chem.	 287,	
28243–28262.	
	
Ferreon,	 A.C.M.,	 Gambin,	 Y.,	 Lemke,	 E.A.,	 and	 Deniz,	 A.A.	 (2009).	 Interplay	 of	 α-synuclein	
binding	and	conformational	switching	probed	by	single-molecule	fluorescence.	Proc.	Natl.	Acad.	
Sci.	U.	S.	A.	106,	5645–5650.	
	



	
	

43	

Ferese	R,	Modugno	N,	Campopiano	R,	Santilli	M,	Zampatti	S,	Giardina	E,	Nardone	A,	Postorivo	D,	
Fornai	F,	Novelli	G,	Romoli	E,	Ruggieri	S,	Gambardella	S.	(2015)	Four	copies	of	SNCA	responsible	
for	 autosomal	 dominant	 Parkinson's	 Disease	 in	 two	 Italian	 siblings.	 Parkinsons	 Dis.	 2015:546-
462.		
	
Fujiwara,	H.,	Hasegawa,	M.,	Dohmae,	N.,	Kawashima,	A.,	Masliah,	E.,	Goldberg,	M.S.,	 Shen,	 J.,	
Takio,	K.,	and	Iwatsubo,	T.	(2002).	α-Synuclein	is	phosphorylated	in	synucleinopathy	lesions.	Nat.	
Cell	Biol.	4,	160–164.	
	
Galvagnion,	 C.,	 Buell,	 A.K.,	 Meisl,	 G.,	 Michaels,	 T.C.T.,	 Vendruscolo,	 M.,	 Knowles,	 T.P.J.,	 and	
Dobson,	 C.M.	 (2015).	 Lipid	 vesicles	 trigger	 α-synuclein	 aggregation	 by	 stimulating	 primary	
nucleation.	Nat.	Chem.	Biol.	11,	229–234.	
	
George,	J.M.,	Jin,	H.,	Woods,	W.S.,	and	Clayton,	D.F.	(1995).	Characterization	of	a	novel	protein	
regulated	during	the	critical	period	for	song	learning	in	the	zebra	finch.	Neuron	15,	361–372.	
	
Georgieva,	E.R.,	Ramlall,	 T.F.,	Borbat,	P.P.,	 Freed,	 J.H.,	and	Eliezer,	D.	 (2010).	The	 lipid-binding	
domain	of	wild	type	and	mutant	α-synuclein.	J.	Biol.	Chem.	285,	28261–28274.	
	
Ghosh,	 D.,	 Sahay,	 S.,	 Ranjan,	 P.,	 Salot,	 S.,	Mohite,	 G.M.,	 Singh,	 P.K.,	 Dwivedi,	 S.,	 Carvalho,	 E.,	
Banerjee,	 R.,	 Kumar,	 A.,	 et	 al.	 (2014).	 The	 newly	 discovered	 Parkinson’	 s	 disease	 associated	
finnish	 mutation	 (A53E)	 attenuates	 α-synuclein	 aggregation	 and	 membrane	 binding.	
Biochemistry	53,	6419–6421.	
	
Giasson,	B.I.,	Uryu,	K.,	Trojanowski,	J.Q.,	and	Lee,	V.M.-Y.	(1999).	Mutant	and	wild	type	human	
α-synucleins	 assemble	 into	 elongated	 filaments	 with	 distinct	 morphologies	 in	 vitro.	 J.	 Biol.	
Chem.	274,	7619–7622.	
	
Giasson,	 B.I.,	 Duda,	 J.E.,	 Murray,	 I.	 V,	 Chen,	 Q.,	 Souza,	 J.M.,	 Hurtig,	 H.I.,	 Ischiropoulos,	 H.,	
Trojanowski,	 J.Q.,	 and	 Lee,	 V.M.-Y.	 (2000).	 Oxidative	 damage	 linked	 to	 neurodegeneration	 by	
selective	alpha-synuclein	nitration	in	synucleinopathy	lesions.	Science	290,	985–989.	
	
Giasson,	B.I.,	Murray,	 I.	V,	Trojanowski,	 J.Q.,	and	Lee,	V.M.-Y.	 (2001).	A	hydrophobic	stretch	of	
12	amino	acid	 residues	 in	 the	middle	of	α-synuclein	 is	 essential	 for	 filament	assembly.	 J.	Biol.	
Chem.	276,	2380–2386.	
	
Gitler,	 A.D.,	 Bevis,	 B.J.,	 Shorter,	 J.,	 Strathearn,	 K.E.,	 Hamamichi,	 S.,	 Su,	 L.J.,	 Caldwell,	 K.A.,	
Caldwell,	G.A.,	 Rochet,	 J.-C.,	McCaffery,	 J.M.,	 et	 al.	 (2008).	 The	Parkinson’s	 disease	protein	α-
synuclein	disrupts	cellular	Rab	homeostasis.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	105,	145–150.	
	
Gould,	N.,	Mor,	D.E.,	Lightfoot,	R.,	Malkus,	K.,	Giasson,	B.,	and	Ischiropoulos,	H.	(2014).	Evidence	
of	native	α-synuclein	conformers	in	the	human	brain.	J.	Biol.	Chem.	289,	7929–7934.	
	
Greenbaum,	E.A.,	Graves,	C.L.,	Mishizen-Eberz,	A.J.,	 Lupoli,	M.A.,	 Lynch,	D.R.,	 Englander,	 S.W.,	
Axelsen,	P.H.,	and	Giasson,	B.I.	(2005).	The	E46K	mutation	in	alpha-synuclein	increases	amyloid	
fibril	formation.	J.	Biol.	Chem.	280,	7800–7807.	



	
	

44	

	
Greten-Harrison,	 B.,	 Polydoro,	M.,	Morimoto-Tomita,	M.,	 Diao,	 L.,	Williams,	 	 a.	M.,	 Nie,	 E.H.,	
Makani,	S.,	Tian,	N.,	Castillo,	P.E.,	Buchman,	V.L.,	et	al.	(2010).	α-Synuclein	triple	knockout	mice	
reveal	age-dependent	neuronal	dysfunction.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	107,	19573–19578.	
	
Guo,	J.L.,	Covell,	D.J.,	Daniels,	J.P.,	 Iba,	M.,	Stieber,	A.,	Zhang,	B.,	Riddle,	D.M.,	Kwong,	L.K.,	Xu,	
Y.,	 Trojanowski,	 J.Q.,	 et	 al.	 (2013).	 Distinct	 α-synuclein	 strains	 differentially	 promote	 tau	
inclusions	in	neurons.	Cell	154,	103–117.	
	
Gurry,	T.,	Ullman,	O.,	Fisher,	C.K.,	Perovic,	I.,	Pochapsky,	T.,	and	Stultz,	C.M.	(2013).	The	dynamic	
structure	of	α-synuclein	multimers.	J.	Am.	Chem.	Soc.	135,	3865–3872.	
	
Hasegawa,	 M.,	 Fujiwara,	 H.,	 Nonaka,	 T.,	 Wakabayashi,	 K.,	 Takahashi,	 H.,	 Lee,	 V.M.-Y.,	
Trojanowski,	 J.Q.,	 Mann,	 D.,	 and	 Iwatsubo,	 T.	 (2002).	 Phosphorylated	 α-synuclein	 is	
ubiquitinated	in	α-synucleinopathy	lesions.	J.	Biol.	Chem.	277,	49071–49076.	
	
Hodara,	 R.,	 Norris,	 E.H.,	 Giasson,	 B.I.,	 Mishizen-Eberz,	 	 a.	 J.,	 Lynch,	 D.R.,	 Lee,	 V.M.-Y.,	 and	
Ischiropoulos,	H.	(2004).	Functional	consequences	of	α-synuclein	tyrosine	nitration:	diminished	
binding	to	lipid	vesicles	and	increased	fibril	formation.	J.	Biol.	Chem.	279,	47746–47753.	
	
Hoyer,	W.,	Cherny,	D.,	Subramaniam,	V.,	and	Jovin,	T.M.	(2004).	Impact	of	the	acidic	C-terminal	
region	 comprising	 amino	 acids	 109-140	 on	 α-synuclein	 aggregation	 in	 vitro.	 Biochemistry	 43,	
16233–16242.	
	
Iwai,	A.,	Masliah,	E.,	Yoshimoto,	M.,	Ge,	N.,	Fianagan,	L.,	Silva,	H.A.R.	De,	Kittei,	A.,	and	Saitoh,	T.	
(1995).	 The	 precursor	 protein	 of	 non-Aβ	 component	 of	 Alzheimer’s	 disease	 amyloid	 is	 a	
presynaptic	protein	of	the	central	nervous	system.	Neuron	14,	467–475.	
	
Jakes,	R.,	Spillantini,	M.G.,	and	Goedert,	M.	(1994).	Identification	of	two	distinct	synucleins	from	
human	brain.	FEBS	Lett.	345,	27–32.	
	
Kostka,	M.,	 Hogen,	 T.,	 Danzer,	 K.M.,	 Levin,	 J.,	 Habeck,	M.,	Wirth,	 A.,	Wagner,	 R.,	 Glabe,	 C.G.,	
Finger,	S.,	Heinzelmann,	U.,	et	al.	 (2008).	Single	particle	characterization	of	 iron-induced	pore-
forming	α-synuclein	oligomers.	J.	Biol.	Chem.	283,	10992–11003.	
	
Krüger,	M.,	Moser,	M.,	Ussar,	S.,	Thievessen,	I.,	Luber,	C.A.,	Forner,	F.,	Schmidt,	S.,	Zanivan,	S.,	
Fässler,	R.,	and	Mann,	M.	(2008).	SILAC	mouse	for	quantitative	proteomics	uncovers	kindlin-3	as	
an	essential	factor	for	red	blood	cell	function.	Cell	134,	353–364.	
	
Krüger,	R.,	Kuhn,	W.,	Müller,	T.,	Woitalla,	D.,	Przuntek,	H.,	Epplen,	J.T.,	Schols,	L.,	and	Riess,	O.	
(1998).	Ala30Pro	mutation	in	the	gene	encoding	α-synuclein	in	Parkinson’s	disease.	Nat.	Genet.	
18,	106–108.	
	
Larsen,	 K.E.,	 Schmitz,	 Y.,	 Troyer,	 M.D.,	 Mosharov,	 E.,	 Dietrich,	 P.,	 Quazi,	 A.Z.,	 Savalle,	 M.,	
Nemani,	V.,	Chaudhry,	F.A.,	Edwards,	R.H.,	et	al.	(2006).	α-Synuclein	overexpression	in	PC12	and	



	
	

45	

chromaffin	 cells	 impairs	 catecholamine	 release	by	 interfering	with	 a	 late	 step	 in	 exocytosis.	 J.	
Neurosci.	26,	11915–11922.	
	
Lashuel,	H.A.,	Petre,	B.M.,	Wall,	J.,	Simon,	M.,	Nowak,	R.J.,	Walz,	T.,	and	Lansbury,	P.T.	(2002).	α-
Synuclein,	 especially	 the	 Parkinson’s	 disease-associated	mutants,	 forms	 pore-like	 annular	 and	
tubular	protofibrils.	J.	Mol.	Biol.	322,	1089–1102.	
	
Lesage,	 S.,	Anheim,	M.,	 Letournel,	 F.,	Bousset,	 L.,	Honoré,	A.,	Rozas,	N.,	Pieri,	 L.,	Madiona,	K.,	
Dürr,	 A.,	 Melki,	 R.,	 et	 al.	 (2013).	 G51D	 α-synuclein	 mutation	 causes	 a	 novel	 parkinsonian-
pyramidal	syndrome.	Ann.	Neurol.	73,	459–471.	
	
Li,	W.,	West,	N.,	Colla,	E.,	Pletnikova,	O.,	Troncoso,	J.C.,	Marsh,	L.,	Dawson,	T.M.,	Hartmann,	T.,	
Price,	D.L.,	and	Lee,	M.K.	(2005).	Aggregation	promoting	C-terminal	truncation	of	α-synuclein	is	
a	normal	cellular	process	and	is	enhanced	by	the	familial	Parkinson’s	disease-linked	mutations.	
Proc.	Natl.	Acad.	Sci.	U.	S.	A.	102,	2162–2167.	
	
Liu,	 L.L.,	 and	 Franz,	 K.J.	 (2005).	 Phosphorylation	 of	 an	 alpha-synuclein	 peptide	 fragment	
enhances	metal	binding.	J.	Am.	Chem.	Soc.	127,	9662–9663.	
	
Lu,	 Y.,	 Prudent,	M.,	 Fauvet,	 B.,	 Lashuel,	 H.A.,	 and	 Girault,	 H.H.	 (2011).	 Phosphorylation	 of	 α-
synuclein	at	Y125	and	S129	alters	 its	metal	binding	properties:	 Implications	 for	understanding	
the	 role	 of	 α-synuclein	 in	 the	 pathogenesis	 of	 Parkinson’s	 disease	 and	 related	 disorders.	 ACS	
Chem.	Neurosci.	2,	667–675.	
	
Luk,	K.C.,	Kehm,	V.,	Carroll,	J.,	Zhang,	B.,	O’Brien,	P.,	Trojanowski,	J.Q.,	and	Lee,	V.M.-Y.	(2012).	
Pathological	 α-synuclein	 transmission	 initiates	 Parkinson-like	 neurodegeneration	 in	
nontransgenic	mice.	Science	338,	949–953.	
	
Luth,	E.S.,	Bartels,	T.,	Dettmer,	U.,	Kim,	N.C.,	and	Selkoe,	D.J.	(2015).	Purification	of	α-synuclein	
from	 human	 brain	 reveals	 an	 instability	 of	 endogenous	multimers	 as	 the	 protein	 approaches	
purity.	Biochemistry	54,	279–292.	
	
Mahul-Mellier,	 A-L.,	 Vercruysse,	 F.,	 Maco,	 B.,	 Ait-Bouziad,	 N.,	 De	 Roo,	 M.,	 Muller,	 D.,	 and	
Lashuel,	H.	a	 (2015).	Fibril	growth	and	seeding	capacity	play	key	roles	 in	α-synuclein-mediated	
apoptotic	cell	death.	Cell	Death	Differ.	22,	2107–2122.	
	
Maroteaux,	 L.,	 Campanelli,	 J.T.,	 and	Scheller,	 R.H.	 (1988).	 Synuclein:	A	neuron-specific	protein	
localized	to	the	nucleus	and	presynaptic	nerve	terminal.	J.	Neurosci.	8,	2804–2815.	
	
Martinez,	Z.,	Zhu,	M.,	Han,	S.,	and	Fink,	A.L.	(2007).	GM1	specifically	interacts	with	α-synuclein	
and	inhibits	fibrillation.	Biochemistry	46,	1868–1877.	
	
Mazzulli,	J.R.,	Mishizen,	A.J.,	Giasson,	B.I.,	Lynch,	D.R.,	Thomas,	S.A.,	Nakashima,	A.,	Nagatsu,	T.,	
Ota,	 A.,	 and	 Ischiropoulos,	 H.	 (2006).	 Cytosolic	 catechols	 inhibit	 α-synuclein	 aggregation	 and	
facilitate	the	formation	of	intracellular	soluble	oligomeric	intermediates.	J.	Neurosci.	26,	10068–
10078.	



	
	

46	

	
Murphy,	 D.D.,	 Rueter,	 S.M.,	 Trojanowski,	 J.Q.,	 and	 Lee,	 V.M.-Y.	 (2000).	 Synucleins	 are	
developmentally	expressed,	and	alpha-synuclein	regulates	the	size	of	the	presynaptic	vesicular	
pool	in	primary	hippocampal	neurons.	J.	Neurosci.	20,	3214–3220.	
	
Narhi,	 L.,	Wood,	 S.J.,	 Steavenson,	 S.,	 Jiang,	 Y.,	Wu,	G.M.,	Anafi,	D.,	 Kaufman,	 S.	 a.,	Martin,	 F.,	
Sitney,	 K.,	 Denis,	 P.,	 et	 al.	 (1999).	 Both	 familial	 Parkinson’s	 disease	 mutations	 accelerate	 α-
synuclein	aggregation.	J.	Biol.	Chem.	274,	9843–9846.	
	
Nemani,	V.M.,	Lu,	W.,	Berge,	V.,	Nakamura,	K.,	Onoa,	B.,	Lee,	M.K.,	Chaudhry,	F.	a,	Nicoll,	R.	a,	
and	 Edwards,	 R.H.	 (2010).	 Increased	 expression	 of	 alpha-synuclein	 reduces	 neurotransmitter	
release	by	inhibiting	synaptic	vesicle	reclustering	after	endocytosis.	Neuron	65,	66–79.	
	
Oaks,	A.W.,	and	Sidhu,	A.	(2011).	Synuclein	modulation	of	monoamine	transporters.	FEBS	Lett.	
585,	1001–1006.	
	
Ostrerova,	N.,	Petrucelli,	L.,	Farrer,	M.,	Mehta,	N.,	Choi,	P.,	Hardy,	J.,	and	Wolozin,	B.	(1999).	α-
Synuclein	shares	physical	and	functional	homology	with	14-3-3	proteins.	J.	Neurosci.	19,	5782–
5791.	
	
Oueslati,	A.,	 Fournier,	M.,	and	Lashuel,	H.A.	 (2010).	Role	of	post-translational	modifications	 in	
modulating	 the	structure,	 function	and	toxicity	of	alpha-synuclein:	 implications	 for	Parkinson’s	
disease	pathogenesis	and	therapies.	Prog.	Brain	Res.	183,	115–145.	
	
Oueslati,	A.,	Schneider,	B.L.,	Aebischer,	P.,	and	Lashuel,	H.A.	(2013).	Polo-like	kinase	2	regulates	
selective	autophagic	α-synuclein	clearance	and	suppresses	 its	toxicity	 in	vivo.	Proc.	Natl.	Acad.	
Sci.	110,	E3945–E3954.	
	
Paleologou,	 K.E.,	 Schmid,	 A.W.,	 Rospigliosi,	 C.C.,	 Kim,	 H.-Y.,	 Lamberto,	 G.R.,	 Fredenburg,	 R.	 a,	
Lansbury,	P.T.,	 Fernandez,	C.O.,	 Eliezer,	D.,	 Zweckstetter,	M.,	et	 al.	 (2008).	Phosphorylation	at	
Ser-129	but	not	the	phosphomimics	S129E/D	 inhibits	 the	fibrillation	of	alpha-synuclein.	 J.	Biol.	
Chem.	283,	16895–16905.	
	
Paleologou,	 K.E.,	 Oueslati,	 A.,	 Shakked,	 G.,	 Rospigliosi,	 C.C.,	 Kim,	 H.-Y.,	 Lamberto,	 G.R.,	
Fernandez,	 C.O.,	 Schmid,	 A.,	 Chegini,	 F.,	 Gai,	 W.P.,	 et	 al.	 (2010).	 Phosphorylation	 at	 S87	 is	
enhanced	 in	 synucleinopathies,	 inhibits	 α-synuclein	 oligomerization,	 and	 influences	 synuclein-
membrane	interactions.	J.	Neurosci.	30,	3184–3198.	
	
Pasanen,	 P.,	 Myllykangas,	 L.,	 Siitonen,	 M.,	 Raunio,	 A.,	 Kaakkola,	 S.,	 Lyytinen,	 J.,	 Tienari,	 P.J.,	
Pöyhönen,	 M.,	 and	 Paetau,	 A.	 (2014).	 A	 novel	 α-synuclein	 mutation	 A53E	 associated	 with	
atypical	multiple	system	atrophy	and	Parkinson’s	disease-type	pathology.	Neurobiol.	Aging	35,	
2180.e1–e2180.e5.	
	
Peelaerts,	W.,	Bousset,	L.,	Van	der	Perren,	A.,	Moskalyuk,	A.,	Pulizzi,	R.,	Giugliano,	M.,	Van	den	
Haute,	 C.,	 Melki,	 R.,	 and	 Baekelandt,	 V.	 (2015).	 α-Synuclein	 strains	 cause	 distinct	
synucleinopathies	after	local	and	systemic	administration.	Nature	522,	340–344.	



	
	

47	

	
Peng,	X.M.,	Tehranian,	R.,	Dietrich,	P.,	Stefanis,	L.,	and	Perez,	R.G.	(2005).	α-Synuclein	activation	
of	protein	phosphatase	2A	reduces	tyrosine	hydroxylase	phosphorylation	in	dopaminergic	cells.	
J.	Cell	Sci.	118,	3523–3530.	
	
Perez,	 R.G.,	 Waymire,	 J.C.,	 Lin,	 E.,	 Liu,	 J.J.,	 Guo,	 F.,	 and	 Zigmond,	 M.J.	 (2002).	 A	 role	 for	 α-
synuclein	in	the	regulation	of	dopamine	biosynthesis.	J.	Neurosci.	22,	3090–3099.	
	
Polymeropoulos,	M.H.,	Lavedan,	C.,	Leroy,	E.,	 Ide,	S.E.,	Dehejia,	A.,	Dutra,	A.,	Pike,	B.,	Root,	H.,	
Rubenstein,	 J.,	 Boyer,	 R.,	 et	 al.	 (1997).	Mutation	 in	 the	α-synuclein	 gene	 identified	 in	 families	
with	Parkinson’s	disease.	Science	276,	2045–2047.	
	
Proukakis,	C.,	Dudzik,	C.G.,	Brier,	T.,	Mackay,	D.S.,	Cooper,	J.M.,	Millhauser,	G.L.,	and	Houlden,	
H.	 (2013).	 A	 novel	 α-synuclein	missense	mutation	 in	 Parkinson	 disease.	 Neurology	 80,	 1062–
1064.	
	
Rasia,	R.M.,	Bertoncini,	C.W.,	Marsh,	D.,	Hoyer,	W.,	Cherny,	D.,	Zweckstetter,	M.,	Griesinger,	C.,	
Jovin,	T.M.,	and	Fernández,	C.O.	 (2005).	Structural	characterization	of	copper	 (II)	binding	to	α-
synuclein:	 Insights	 into	the	bioinorganic	chemistry	of	Parkinson’s	disease.	Proc.	Natl.	Acad.	Sci.	
U.	S.	A.	102,	4294–4299.	
	
Rodriguez,	 J.A.,	 Ivanova,	 M.I.,	 Sawaya,	 M.R.,	 Cascio,	 D.,	 Reyes,	 F.E.,	 Shi,	 D.,	 Sangwan,	 S.,	
Guenther,	E.L.,	Johnson,	L.M.,	Zhang,	M.,	et	al.	(2015).	Structure	of	the	toxic	core	of	α-synuclein	
from	invisible	crystals.	Nature	525,	486–490.	
	
Sacino,	A.N.,	Brooks,	M.,	Thomas,	M.A.,	McKinney,	A.B.,	 Lee,	 S.,	Regenhardt,	R.W.,	McGarvey,	
N.H.,	Ayers,	J.I.,	Notterpek,	L.,	Borchelt,	D.R.,	et	al.	(2014).	Intramuscular	injection	of	α-synuclein	
induces	CNS	α-synuclein	pathology	and	a	rapid-onset	motor	phenotype	in	transgenic	mice.	Proc.	
Natl.	Acad.	Sci.	111,	10732–10737.	
	
Sampathu,	 D.M.,	 Giasson,	 B.I.,	 Pawlyk,	 A.C.,	 Trojanowski,	 J.Q.,	 and	 Lee,	 V.M.-Y.	 (2003).	
Ubiquitination	 of	 α-synuclein	 is	 not	 required	 for	 formation	 of	 pathological	 inclusions	 in	 α-
synucleinopathies.	Am.	J.	Pathol.	163,	91–100.	
	
Sharon,	R.,	Bar-Joseph,	I.,	Frosch,	M.P.,	Walsh,	D.M.,	Hamilton,	J.A.,	and	Selkoe,	D.J.	(2003).	The	
formation	of	highly	soluble	oligomers	of	α-synuclein	is	regulated	by	fatty	acids	and	enhanced	in	
Parkinson’s	disease.	Neuron	37,	583–595.	
	
Shibayama-Imazu,	 T.,	 Okahashi,	 I.,	 Omata,	 K.,	 Nakajo,	 S.,	 Ochiai,	 H.,	 Nakai,	 Y.,	 Hama,	 T.,	
Nakamura,	Y.,	and	Nakaya,	K.	(1993).	Cell	and	tissue	distribution	and	developmental	change	of	
neuron	specific	14	kDa	protein	(phosphoneuroprotein	14).	Brain	Res.	622,	17–25.	
	
Singleton,	 A.B.,	 Farrer,	 M.,	 Johnson,	 J.,	 Singleton,	 A.,	 Hague,	 S.,	 Kachergus,	 J.,	 Hulihan,	 M.,	
Peuralinna,	 T.,	 Dutra,	 A.,	 Nussbaum,	 R.,	 et	 al.	 (2003).	 α-Synuclein	 locus	 triplication	 causes	
Parkinson’s	disease.	Science	302,	841.	
	



	
	

48	

Soper,	J.H.,	Roy,	S.,	Stieber,	A.,	Lee,	E.,	Wilson,	R.B.,	Trojanowski,	J.Q.,	Burd,	C.G.,	and	Lee,	V.M.-
Y.	 (2008).	Multiple	pathways	differentially	 regulate	 global	 oxidative	 stress	 responses	 in	 fission	
yeast.	Mol.	Biol.	Cell	19,	308–317.	
	
Souza,	J.M.,	Giasson,	B.I.,	Lee,	V.M.-Y.,	and	Ischiropoulos,	H.	(2000a).	Chaperone-like	activity	of	
synucleins.	FEBS	Lett.	474,	116–119.	
	
Souza,	J.M.,	Giasson,	B.I.,	Chen,	Q.,	Lee,	V.M.-Y.,	and	Ischiropoulos,	H.	(2000b).	Dityrosine	cross-
linking	 promotes	 formation	 of	 stable	 alpha-synuclein	 polymers.	 Implication	 of	 nitrative	 and	
oxidative	stress	in	the	pathogenesis	of	neurodegenerative	synucleinopathies.	J.	Biol.	Chem.	275,	
18344–18349.	
	
Spillantini,	 M.G.,	 Schmidt,	 M.L.,	 Lee,	 V.M.-Y.,	 Trojanowski,	 J.Q.,	 Jakes,	 R.,	 and	 Goedert,	 M.	
(1997).	α-synuclein	in	Lewy	bodies.	Nature	388,	839–840.	
	
Takeda,	A.,	Mallory,	M.,	Sundsmo,	M.,	Honer,	W.,	Hansen,	L.,	and	Masliah,	E.	(1998).	Abnormal	
accumulation	of	NACP/α-synuclein	in	neurodegenerative	disorders.	Am.	J.	Pathol.	152,	367–372.	
	
Tehranian,	 R.,	 Montoya,	 S.E.,	 Van	 Laar,	 A.D.,	 Hastings,	 T.G.,	 and	 Perez,	 R.G.	 (2006).	 Alpha-
synuclein	 inhibits	 aromatic	 amino	 acid	 decarboxylase	 activity	 in	 dopaminergic	 cells.	 J.	
Neurochem.	99,	1188–1196.	
	
Trexler,	A.J.,	and	Rhoades,	E.	(2009).	α-Synuclein	binds	large	unilamellar	vesicles	as	an	extended	
helix.	Biochemistry	48,	2304–2306.	
	
Trexler,	 A.J.,	 and	 Rhoades,	 E.	 (2012).	 N-terminal	 acetylation	 is	 critical	 for	 forming	 α-helical	
oligomer	of	α-synuclein.	Protein	Sci.	21,	601–605.	
	
Tsika,	 E.,	Moysidou,	M.,	 Guo,	 J.,	 Cushman,	M.,	 Gannon,	 P.,	 Sandaltzopoulos,	 R.,	 Giasson,	 B.I.,	
Krainc,	 D.,	 Ischiropoulos,	 H.,	 and	 Mazzulli,	 J.R.	 (2010).	 Distinct	 region-specific	 α-synuclein	
oligomers	 in	A53T	transgenic	mice:	 Implications	 for	neurodegeneration.	 J.	Neurosci.	30,	3409–
3418.	
	
Uéda,	K.,	Masliah,	E.,	Xia,	Y.U.,	Iwai,	A.,	Yoshimoto,	M.,	Otero,	D.A.C.,	and	Kondo,	J.U.N.	(1993).	
Molecular	 cloning	 of	 cDNA	 encoding	 an	 unrecognized	 component	 of	 amyloid	 in	 Alzheimer	
disease.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	90,	11282–11286.	
	
Ulmer,	T.S.,	Bax,	A.,	Cole,	N.B.,	and	Nussbaum,	R.L.	 (2005).	Structure	and	dynamics	of	micelle-
bound	human	α-synuclein.	J.	Biol.	Chem.	280,	9595–9603.	
	
Uversky,	 V.N.,	 Li,	 J.,	 and	 Fink,	 A.L.	 (2001a).	 Metal-triggered	 structural	 transformations,	
aggregation,	 and	 fibrillation	 of	 human	 α-synuclein:	 A	 possible	 molecular	 link	 between	
Parkinson’s	disease	and	heavy	metal	exposure.	J.	Biol.	Chem.	276,	44284–44296.	
	
Uversky,	 V.N.,	 Li,	 J.,	 and	 Fink,	 A.L.	 (2001b).	 Evidence	 for	 a	 partially	 folded	 intermediate	 in	 α-
synuclein	fibril	formation.	J.	Biol.	Chem.	276,	10737–10744.	



	
	

49	

	
Wang,	L.,	Das,	U.,	Scott,	D.A.,	Tang,	Y.,	McLean,	P.J.,	and	Roy,	S.	(2014).	α-Synuclein	multimers	
cluster	synaptic	vesicles	and	attenuate	recycling.	Curr.	Biol.	24,	2319–2326.	
	
Wang,	W.,	Perovic,	I.,	Chittuluru,	J.,	Kaganovich,	A.,	Nguyen,	L.T.T.,	Liao,	J.,	Auclair,	J.R.,	Johnson,	
D.,	Landeru,	A.,	Simorellis,	A.K.,	et	al.	 (2011).	A	soluble	α-synuclein	construct	 forms	a	dynamic	
tetramer.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	108,	17797–17802.	
	
Waxman,	 E.A.,	 and	 Giasson,	 B.I.	 (2008).	 Specifcity	 and	 regulation	 of	 casein	 kinase-mediated	
phosphorylation	of	α-synuclein.	J.	Neuropathol.	Exp.	Neurol.	67,	402–416.	
	
Webb,	 J.L.,	Ravikumar,	B.,	Atkins,	 J.,	Skepper,	 J.N.,	and	Rubinsztein,	D.C.	 (2003).	α-Synuclein	 is	
degraded	by	both	autophagy	and	the	proteasome.	J.	Biol.	Chem.	278,	25009–25013.	
	
Weinreb,	P.H.,	Zhen,	W.,	Poon,	A.W.,	Conway,	K.A.,	and	Lansbury,	P.T.	(1996).	NACP,	a	protein	
implicated	 in	 Alzheimer’s	 disease	 and	 learning,	 is	 natively	 unfolded.	 Biochemistry	35,	 13709–
13715.	
	
Withers,	 G.S.,	 George,	 J.M.,	 Banker,	 G.	 a.,	 and	 Clayton,	 D.F.	 (1997).	 Delayed	 localization	 of	
synelfin	 (synuclein,	NACP)	 to	presynaptic	 terminals	 in	 cultured	 rat	hippocampal	neurons.	Dev.	
Brain	Res.	99,	87–94.	
	
Wood,	S.J.,	Wypych,	 J.,	Steavenson,	S.,	Louis,	 J.,	Citron,	M.,	and	Biere,	A.L.	 (1999).	α-Synuclein	
fibrillogenesis	is	nucleation-dependent.	Biochemistry	19509–19512.	
	
Woods,	 W.S.,	 Boettcher,	 J.M.,	 Zhou,	 D.H.,	 Kloepper,	 K.D.,	 Hartman,	 K.L.,	 Ladror,	 D.T.,	 Qi,	 Z.,	
Rienstra,	 C.M.,	 and	 George,	 J.M.	 (2007).	 Conformation-specific	 binding	 of	 alpha-synuclein	 to	
novel	 protein	 partners	 detected	 by	 phage	 display	 and	NMR	 spectroscopy.	 J.	 Biol.	 Chem.	282,	
34555–34567.	
	
Yavich,	 L.,	 Tanila,	H.,	 Vepsäläinen,	 S.,	 and	 Jäkälä,	 P.	 (2004).	 Role	 of	α-synuclein	 in	 presynaptic	
dopamine	recruitment.	J.	Neurosci.	24,	11165–11170.	
	
Ysselstein,	D.,	Joshi,	M.,	Mishra,	V.,	Griggs,	A.M.,	Asiago,	J.M.,	McCabe,	G.P.,	Stanciu,	L.A.,	Post,	
C.B.,	 and	 Rochet,	 J.-C.	 (2015).	 Effects	 of	 impaired	 membrane	 interactions	 on	 α-synuclein	
aggregation	and	neurotoxicity.	Neurobiol.	Dis.	79,	150–163.	
	
Zarranz,	J.J.,	Alegre,	J.,	Gómez-Esteban,	J.C.,	Lezcano,	E.,	Ros,	R.,	Ampuero,	I.,	Vidal,	L.,	Hoenicka,	
J.,	 Rodriguez,	 O.,	 Atarés,	 B.,	 et	 al.	 (2004).	 The	 new	 mutation,	 E46K,	 of	 α-synuclein	 causes	
Parkinson	and	Lewy	body	dementia.	Ann.	Neurol.	55,	164–173.	
	
Zhu,	M.,	and	Fink,	A.L.	 (2003).	Lipid	binding	 inhibits	α-synuclein	 fibril	 formation.	 J.	Biol.	Chem.	
278,	16873–16877.	
	
Zhu,	 M.,	 Li,	 J.,	 and	 Fink,	 A.L.	 (2003).	 The	 association	 of	 α-synuclein	 with	 membranes	 affects	
bilayer	structure,	stability,	and	fibril	formation.	J.	Biol.	Chem.	278,	40186–40197.	



	
	

50	

	
	

	

	

	

	

	

 

 

 

 

 
Figure 2.1.  Primary sequence of human α-synuclein.  Green color indicates the 
imperfect tandem repeats.  Known mutations are indicated in red.  The hydrophobic 
NAC domain is underlined.  The major sites of posttranslational modifications identified 
in vivo are highlighted in blue (Ac, acetylation; Ub, ubiquitination; NO2, nitration; and 
PO3

- phosphorylation).   
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Figure 2.2. The graph depicts the number of publications retrieved from PuBMed using 
the search term “alpha synuclein” from a single publication in 1998 to 862 in 2015.  
Significant milestones that examined the native structure and conformations of α-
synuclein are displayed.   
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Figure 2.3.  Free energy landscape of possible α-synuclein conformers and multimeric 
assemblies.  The conversion of native α-synuclein to aggregation-competent monomers 
may depend on dissociation from stabilizing interactions with lipids and/or proteins as 
well as dissociation of the metastable tetrameric species.  α-Synuclein aggregation-
competent monomers can then assemble into dimers and larger oligomeric conformers.  
The generation of α-synuclein oligomers can rapidly lead to formation of stable amyloid 
fibrils, or ‘off-pathway’ amorphous aggregates, both of which have been observed in 
postmortem brain tissue from patients with PD and related disorders.      
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3.1	Abstract	
	

Aggregation	of	α-synuclein	contributes	to	dopaminergic	degeneration	in	Parkinson’s	disease	and	

related	neurodegenerative	disorders.		A	decline	in	proteostasis	is	associated	with	protein	

aggregation	but	how	α-synuclein	aggregation	affects	the	brain	proteome	remains	

undetermined.		A	global	proteomic	approach	applied	to	wild	type	mouse	midbrain	and	striatum	

quantified	5,290	proteins	of	which	311	exhibited	significant	change	in	relative	abundance	in	

response	to	α-synuclein	aggregation	induced	by	pre-formed	fibril	injection.		These	proteins	were	

not	affected	in	α-synuclein	null	mice,	which	do	not	undergo	α-synuclein	aggregation	or	

dopaminergic	neuron	degeneration.		Interestingly,	an	increase	in	the	immunoproteasome,	

which	is	linked	with	preservation	of	proteostasis,	was	documented	in	wild	type	mice	and	in	

human	synucleinopathies.		The	increase	in	immunoproteasome	resulted	in	augmented	

proteolytic	activity	and	improved	efficiency	to	degrade	α-synuclein	fibrils.		The	induction	of	the	

immunoproteasome	in	response	to	α-synuclein	aggregation	could	be	exploited	as	a	protective	

strategy	to	preserve	proteostasis	in	α-synuclein	aggregation	disorders.		

	

3.2	Introduction	
	

Cells	have	developed	proteostasis	networks	to	maintain	proper	protein	homeostasis	and	to	

combat	potentially	toxic	protein	aggregation1.		Deficiencies	in	proteostasis	are	linked	to	several	

diseases,	including	cystic	fibrosis2,	diabetes3,	and	cancer4,5.		Additionally,	a	failure	in	proteostasis	

associated	with	protein	aggregation	is	considered	a	pathogenetic	mechanism	of	several	

neurodegenerative	diseases	of	aging	such	as	Parkinson’s	disease	(PD),	Alzheimer’s	disease	(AD)	

and	Amyotrophic	Lateral	Sclerosis	(ALS)6–8.		The	aggregated	proteins	in	these	diseases	have	been	
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identified,	including	α-synuclein	in	PD,	amyloid-β	and	tau	in	AD,	and	SOD1,	FUS,	and	TDP43	in	

ALS9–12.	The	indomitable	progression	of	aggregation	and	cell	death	suggests	that	the	

proteostasis	network	is	unable	to	cope	in	these	neurodegenerative	diseases.		However,	

reorganization	and	reallocation	of	proteostatic	resources	may	be	a	viable	strategy	to	combat	

toxic	protein	aggregation.		The	effects	of	endogenous	protein	aggregation	on	the	overall	

proteome	have	never	been	studied	in	vivo,	and	may	uncover	proteostatic	responses	to	protein	

aggregation	that	could	be	modulated	to	mitigate	disease.				

α-Synuclein	is	a	140	amino	acid	protein	that	has	roles	in	synaptic	plasticity	and	has	been	linked	

to	neurodegenerative	disease13–15.		Aggregated	forms	of	the	protein	are	deposited	into	

cytoplasmic	inclusions	known	as	Lewy	Bodies,	which	are	the	histopathological	hallmarks	of	PD	

and	several	other	related	neurodegenerative	disorders16.		Recombinant	wild	type	(WT)	α-

synuclein	aggregates	and	forms	amyloid-like	fibrils17.		Several	point	mutations	in	α-synuclein	

that	cause	early-onset	PD	have	been	identified,	including	A30P,	E46K,	H50Q,	G51D	and	A53T18–

22.		These	point	mutations	accelerate	aggregation,	supporting	the	role	of	protein	aggregation	in	

causing	pathology23–26.		Additionally,	multiplications	of	the	gene	encoding	α-synuclein	cause	

PD27–29.		Collectively,	these	data	demonstrate	a	role	for	α-synuclein	aggregation	in	human	

disease.			

A	recently	developed	mouse	model	of	α-synuclein	combines	several	cardinal	features	of	PD,	

including	endogenous	α-synuclein	aggregation	concomitant	with	progressive	dopaminergic	

degeneration	and	motor	impairment30.		In	this	model	preformed	fibrils	(PFFs)	of	recombinant	

WT	mouse	α-synuclein	were	unilaterally	injected	into	the	striatum	of	non-transgenic	mice.		This	

induced	a	cascade	whereby	endogenous	α-synuclein	progressively	aggregates,	first	in	the	

regions	near	the	injection	site	and	then	to	synaptically	connected	regions.		Eventually,	the	mice	
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exhibited	dopaminergic	neuron	degeneration	and	impaired	balance	and	motor	coordination.		

Importantly,	dopaminergic	degeneration	and	α-synuclein	inclusions	were	confined	to	the	

injected	side	and	not	found	in	the	non-injected	side	of	the	brain.		Additionally,	injection	of	PFFs	

into	α-synuclein	null	(Snca	-/-)	mice	failed	to	induce	these	effects,	indicating	that	the	presence	

of	endogenous	α-synuclein	was	required.		This	PFF	injection	model	has	been	successfully	

reproduced	in	both	mice31,32	and	rats33.		

This	model	(both	WT	and	Snca	-/-	injected	mice)	provides	a	unique	opportunity	to	study,	in	vivo,	

the	changes	in	the	proteome	upon	aggregation	of	endogenous	α-synuclein.		To	study	these	

proteome	responses,	we	used	mass	spectrometry	(MS)-based	proteomics	in	combination	with	

Stable	Isotope	Labeling	in	Mammals	(SILAM)34,35	to	quantify	changes	in	the	relative	abundance	

of	proteins	in	the	brain	in	response	to	endogenous	α-synuclein	aggregation.		

	

3.3	Experimental	Procedures	
	

Animals:	Wild	type	(WT)	C57BL6/C3H	mice	were	obtained	from	the	Jackson	Laboratories	(Bar	

Harbor,	ME).	Snca	-/-	mice36	were	maintained	on	a	C57BL6	background.		13C-Stable	Isotope	

Labeling	in	Mammals	(SILAM)	mouse	brain	tissue	(Female,	L-Lysine	13C6,	97%)	was	purchased	

from	Cambridge	Isotope	Laboratories,	Inc.		All	housing,	breeding,	and	procedures	were	

performed	according	to	the	NIH	Guide	for	the	Care	and	Use	of	Experimental	Animals	and	

approved	by	the	University	of	Pennsylvania	Institutional	Animal	Care	and	Use	Committee	

(IACUC).	
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Stereotaxic	injection	of	PFFs:	For	stereotaxic	injection,	PFFs	were	first	diluted	in	sterile	PBS	and	

fragmented	using	a	Bioruptor	bath	sonicator	(Diagenode;	Denville,	NJ).		Sonication	was	

performed	at	high	power	for	10	cycles	(30s	on,	30s	off,	at	10°C).	Mice	(2-3	months	old)	were	

anesthetized	with	ketamine	hydrochloride	(100	mg/kg,	i.p.)	and	xylazine	(10	mg/kg,	i.p.).		For	

each	animal,	PFFs	were	stereotaxically	targeted	into	the	ventral	striatum	(AP:	+0.2	mm	Bregma,	

lateral:	2.0	mm	from	midline,	depth:	3.6	mm	beneath	the	dura),	dorsal	striatum	(AP:	+0.2	mm,	

lateral:	2.0	mm,	depth:	2.6	mm),	and	overlaying	cortex	(AP:	+0.2	mm,	lateral:	2.0	mm,	depth:	0.8	

mm).		Injections	were	made	through	a	single	needle	tract	using	10	µL	syringes	(Hamilton,	NV)	at	

a	rate	of	0.1	µL	per	min	(2.5	µL	total	per	site)	with	the	needle	in	place	for	>	5	min	at	each	target.		

Animals	were	monitored	regularly	following	recovery	from	surgery.		Mice	were	sacrificed	at	90	

days	post	injection	by	overdose	with	ketamine/xylazine.		For	biochemical	studies,	dorsal	

striatum	and	ventral	midbrain	from	ipsilateral	and	contralateral	sides	were	dissected	and	stored	

at	-80°C	until	used.		For	histological	studies	the	brain	and	spinal	cord	were	removed	after	

transcardial	perfusion	with	PBS	and	underwent	overnight	postfixation	in	either	neutral	buffered	

formalin	(Fisher	Scientific)	or	70%	ethanol	(in	150	mM	NaCl,	pH	7.4),	before	being	processed	and	

embedded	in	paraffin.	

	

Immunohistochemistry:	Immunohistochemistry	for	α-synuclein	phosphorylated	at	Ser-129	and	

tyrosine	hydroxylase	(TH)	were	performed	on	6	µm	thick	coronal	sections	as	previously	

described30,37.		Digitized	images	of	stained	sections	were	acquired	using	a	Perkin	Elmer	Lamina	

scanner	at	20x	magnification.		Midbrain	DA	neurons	belonging	to	the	substantia	nigra	pars	

compacta	(SNpc)	and	the	ventral	tegmental	area	(VTA)	were	quantified	from	TH-immunostained	

coronal	sections	spanning	the	entire	extent	of	the	midbrain	(every	9th	section).		Immunoreactive	
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neurons	were	counted	following	previously	described	criteria	for	each	subgroup38.		Only	intact	

neurons	with	defined	nuclei	were	included.		Statistical	analysis	between	groups	was	compared	

using	one-way	ANOVA	with	Tukey’s	post-hoc	test.	

	

Sample	Preparation	for	LC-MS/MS:		For	each	mouse	injected,	the	midbrain	and	striatum	of	the	

injected	and	non-injected	sides	were	dissected	and	kept	separate.		Two	midbrain	and	striatum	

regions	of	the	injected	hemisphere	were	combined	to	generate	one	biological	sample	for	the	

proteomic	analysis.		The	same	approach	was	employed	for	the	non-injected	side.		Four	

biological	samples	for	WT	and	three	for	Snca	-/-	for	each	injected	and	non-injected	side	were	

analyzed	through	the	proteomic	work	flow	depicted	in	Figure	3.1C.		Sample	preparation	was	

done	as	previously	described39.		Briefly,	tissues	were	homogenized	with	a	tissue	grinder	in	cold	

urea	buffer:	8	M	urea,	75	mM	NaCl,	50	mM	Tris	HCl	pH	8.0,	1	mM	EDTA,	2	µg/mL	aprotinin	

(Sigma,	A6103),	10	µg/mL	leupeptin	(Roche,	#11017101001),	1	mM	PMSF	(Sigma,	78830),	10	

mM	NaF,	5	mM	sodium	butyrate,	5	mM	iodoacetamide	(Sigma,	A3221),	Phosphatase	Inhibitor	

Cocktail	2	(1:100,	Sigma,	P5726),	and	Phosphatase	Inhibitor	Cocktail	3	(1:100,	Sigma,	P0044).		

Following	10	min	centrifugation	at	20,000g,	protein	concentration	was	determined	by	a	BCA	

assay	(Thermo,	Prod#	23235)	on	the	supernatant	and	then	combined	with	13C-labeled	brain	

lysates	in	a	1:1	ratio	(5µg:5µg)	in	a	mini	scale.	Samples	were	reduced	for	45	min	with	5	mM	

dithiothreitol	followed	by	alkylation	with	20	mM	iodoacetamide	for	45	min.	Samples	were	then	

diluted	1:4	with	50	mM	Tris	HCl	pH	8.0	(to	reduce	urea	concentration	to	2	M),	then	digested	

overnight	with	Trypsin	(Promega,	Cat#	V5111)	at	37°C	overnight.	1%	formic	acid	was	added	to	

the	digests	to	remove	urea	by	pelleting.		The	tryptic	peptides	were	desalted	by	ultraMicroSpin	

Vydac	C18	column	(Nestgroup,	Inc,	cat#	SUMSS18V).		The	peptides	were	analyzed	by	mass	
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spectrometry	(MS)	and	the	data	was	analyzed	with	MaxQuant	(described	below).		The	SILAC	

ratio	of	injected/non-injected	was	calculated	by	dividing	the	injected/heavy	ratio	by	the	non-

injected/heavy	ratio.	The	SILAC	ratio	of	light/heavy	generated	from	the	MaxQuant	was	

converted	to	log2	scale	and	the	median	of	the	SILAC	ratios	therefore	was	calculated.	If	the	SILAC	

ratio	was	close	to	1:1,	a	larger	scale	sample	prep	was	performed	similarly	as	described	above.	

Protein	(2	mg:2	mg,	heavy:light)	was	digested	with	Trypsin/Lys-C	mix	(Promega,	Cat#	V5073)	at	

1:25	(enzyme:protein,	w:w).		The	peptide	fragments	were	desalted	on	tC18	SepPak	cartridge	

(Waters,	cat#	WAT036815)	and	the	peptides	were	lyophilized	and	stored	in	-80°C.	For	reverse	

phase	(RP)-HPLC,	the	peptides	were	reconstituted	in	20	mM	ammonium	formate,	pH	10.0.		

Peptide	concentration	was	determined	by	UV280	before	they	were	separated	by	high-pH	

reverse	phase	chromatography	to	72	fractions	detected	at	UV-214	nm	via	ACQUITY	UPLC	H-

Class	instrument	(Waters).		Solvent	A	(2%	acetonitrile,	5mM	ammonium	formate,	pH10)	and	

solvent	B	(90%	acetonitrile,	5mM	ammonium	formate,	pH	10)	were	used	to	separate	peptides	

with	a	ZPRBAX	300Extend-C18	column	(4.6mmx250mm,	5	Micron,	Agilent).	The	gradient	for	

separation	was	1mL/min	flow	rate	as	at	9	min,	100%	A;	13	min,	94%	A;	63	min,	71.5%	;	68.5	min,	

66%	A;	81.5	min,	40%	A;	83	min;	0%	A;	at	88-120	min	with	1.2mL/min	with	100%	A.	5%	of	

samples	were	taken	and	recombined	in	a	concatenated	pattern	into	24	fractions	for	proteomics	

analysis.		

	

LC-MS/MS:	Peptide	digests	were	analyzed	on	a	hybrid	LTQ	Orbitrap	mass	spectrometer	

(Thermofisher	Scientific,	San	Jose,	CA)	coupled	with	a	NanoLC	Ultra	(Eksigent	Technologies)	as	

previously	described40.		Briefly,	peptides	were	separated	by	RP-HPLC.		Mobile	phase	A	consisted	

of	1%	methanol/0.1%	formic	acid	and	mobile	phase	B	consisted	of	1%	methanol/0.1%	formic	
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acid/79%	acetonitrile.		Peptides	were	eluted	into	the	MS	at	200	nL/min	with	each	RP-LC	run	

comprising	a	15	min	sample	load	at	3%	B	and	a	90	min	linear	gradient	from	5	to	45%	B.		The	

mass	spectrometer	repetitively	scanned	m/z	from	300	to	1800	(R	=	100,000	for	LTQ-Orbitrap).		

FTMS	full	scan	maximum	fill	time	was	set	to	500	ms,	while	ion	trap	MSn	fill	time	was	50	ms;	

microscans	were	set	at	one.		FT	preview	mode,	charge	state	screening,	and	monoisotopic	

precursor	selection	were	all	enabled	with	rejection	of	unassigned	and	1+	charge	states.	

	

MS	Database	Searching	and	Data	Processing:		Protein	identification	was	performed	with	

MaxQuant	(1.5.1.2)	using	a	mouse	UniProt	database.		Carbamidomethyl	was	defined	as	a	fixed	

modification.	The	False	Discovery	Rate	for	peptides	was	set	at	1%.	Fragment	ion	tolerance	was	

set	to	0.5	Da.	The	MS/MS	tolerance	was	set	at	20	ppm.		The	minimum	peptide	length	was	set	at	

7	amino	acids.		The	requantification	option	was	left	unchecked	and	the	match-between-runs	

was	turned	on.		For	a	protein	to	be	quantified,	the	peptide	must	be	identified	at	least	once	in	

light	and	once	in	heavy.		To	calculate	the	injected/non-injected	ratio,	the	heavy/non-injected	

ratio	was	divided	by	the	heavy/injected	ratio.		

	

Construction	of	the	Mouse	Brain	Reference	Proteome:		To	make	a	unified	set	of	literature	and	

experimental	proteins,	UniProt	accessions	were	cross-referenced	by	gene	or	protein	name.	

UniProt's	retrieve	function	was	used	to	get	protein	and	gene	names	for	all	UniProt	accessions.		

For	literature	proteins,	we	selected	several	studies41–44	that	used	MS-based	proteomics	to	

identify	proteins	in	the	unperturbed	mouse	brain.		Proteins	identified	in	at	least	3	of	4	biological	

replicates	in	the	non-injected	side	of	WT	mice	were	checked	for	presence	in	the	literature	list	

using	gene	and	protein	names	rather	than	UniProt	accessions.	Genes	and	proteins	not	found	in	



	
	

62	

the	experimental	protein	list	are	included	as	literature-only	proteins.	Multiple	UniProt	

accessions	can	annotate	one	gene	or	protein	name.	

	

Statistical	Analyses:	The	Heavy/Light	(H/L)	ratio	in	the	non-injected	side	was	divided	by	the	H/L	

ratio	in	the	injected	side	to	compute	the	injected/non-injected	ratio	of	ratios.		A	protein	was	

considered	quantified	in	WT	if	this	ratio	of	ratios	was	computed	in	at	least	3	of	the	4	biological	

replicates;	it	was	considered	quantified	in	Snca	-/-	if	this	ratio	of	ratios	was	computed	in	all	3	

biological	replicates.		This	resulted	in	5,290	proteins	quantified	in	WT	(of	which	3,331	were	also	

quantified	in	Snca	-/-,	and	1,959	were	quantified	only	in	WT),	and	3,335	proteins	quantified	in	

Snca	-/-.		A	separate	statistical	analysis	was	performed	for	these	two	groups	of	proteins.	For	the	

3,331	proteins	quantified	in	both	WT	and	Snca	-/-,	the	ratio	of	ratios	were	scaled	using	the	

standard	z-score.		p-Values	were	determined	for	each	protein	with	the	z-scaled	values	using	a	

Welch’s	T-Test.		The	Welch’s	T-Test	was	employed	rather	than	a	simple	Students	T-Test	because	

the	samples	sizes	between	the	WT	and	Snca	-/-	experiments	were	unequal	(4	replicates	in	WT	

and	3	in	Snca	-/-).		p-Values	<	0.05	were	considered	significant,	yielding	201	proteins	for	those	

quantified	in	both	WT	and	Snca	-/-.	Of	the	1,959	proteins	quantified	only	in	the	WT	experiments,	

the	H/L	ratios	in	the	injected	side	and	the	H/L	ratios	in	the	non-injected	sides	were	scaled	using	

the	standard	z-score.	A	paired	Student’s	T-Test	was	performed	to	calculate	p-values,	comparing	

the	injected	to	non-injected	sides.	p-Values	<	0.05	were	considered	significant,	resulting	in	110	

proteins.	Thus	the	relative	abundance	of	a	total	of	311	proteins	were	found	to	significantly	

change	(201	from	those	quantified	in	WT	and	Snca	-/-,	and	110	from	those	only	quantified	in	

WT).		
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Heat	Map	Generation:	Heat	maps	are	undirected	clustering	of	experimental	values,	z-scaled	

ratio	of	ratios	with	a	p-value	<	0.05.	Heat	maps	were	created	using	pHeatmap	in	Rstudio	

(version	1.0.8).	Clustering	distances	were	calculated	by	row	and	column	with	Euclidean	math	

and	clustered	by	the	Ward.D2	methodology.	The	scale	and	intensity	of	color,	blue	to	white	to	

red,	is	representative	of	the	direction	and	degree	of	differential	expression.	

	

Mouse	Immunoblot	Analysis:		Mouse	brain	samples	were	extracted	using	the	same	method	

described	above	for	the	MS	analysis.		For	each	analysis,	5-20	μg	of	sample	was	added	per	lane	

and	separated	in	a	12%	Bis-Tris	Pre-Cast	gel	(ThermoFisher)	and	transferred	to	a	PVDF	

membrane	and	blocked	using	7.5%	BSA	in	TBS.		Primary	antibody	(Table	3.1)	was	used	

overnight.		Antigens-antibody	complexes	were	detected	using	an	Odyssey	LC	scanner	(LiCor)	

after	incubation	with	appropriate	secondary	antibodies.	Densitometry	was	used	to	quantify	

intensity	of	protein	bands.	

	

Gene	Ontology	Enrichment	Analysis:		DAVID	Bioinformatics	Resources	6.7	was	used	for	

enrichment	analysis.		The	5,290	proteins	quantified	in	WT	were	used	as	background.		The	311	

significantly	changed	proteins	were	separated	into	the	159	that	decreased	and	the	152	that	

increased.		Each	was	separately	used	as	a	list	and	the	enrichment	of	Biological	Processes	was	

examined.		Those	with	p-values	<	0.05	were	considered	significant,	and	fold-changes	were	

determined	using	the	DAVID	software.		

	

Cellular	Compartment	Localization	Analysis:		The	159	and	152	proteins	that	significantly	

decreased	and	increased,	respectively,	were	separately	entered	into	UniProtKB/Swiss-Prot	to	
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obtain	the	subcellular	localizations.		Percentages	of	proteins	mapped	to	each	cellular	

compartment	were	calculated	by	dividing	the	number	of	proteins	mapped	to	a	given	cellular	

compartment	by	the	total	number	of	annotated	proteins	entered.	

	

Human	Immunoblot	Analysis:		Human	brain	samples	were	extracted	using	high	salt	buffer	

containing	1%	Triton-X100	(150	mM	NaCl,	50	mM	Tris,	pH	7.6).		Brain	samples	from	Dementia	

with	Lewy	Bodies	and	non-disease	brain	were	obtained45.		Protease	inhibitors	were	added	to	

buffer	prior	to	use.		To	collect	triton-soluble	fractions,	samples	were	homogenized,	sonicated	

and	sedimented	at	15,000	rpm	for	30	min.	500	μl	of	buffer	was	added	to	each	sample.		Protein	

concentrations	were	determined	by	BCA	assay	(Thermo	Fisher).		Samples	were	separated	in	a	

12%	Bis-Tris	Pre-Cast	gel	(ThermoFisher)	and	transferred	to	a	PVDF	membrane	and	blocked	

using	7.5%	BSA	in	TBS.	For	each	analysis	40	μg	of	sample	was	added	per	lane.		Primary	antibody	

(Table	SX)	was	used	overnight.	Antigen-antibody	complexes	were	detected	using	LiCor	after	

incubation	with	appropriate	secondary	antibodies.		Densitometry	was	used	to	quantify	intensity	

of	protein	bands.		

	

Proteasome	Activity	Assay:		Human	brain	samples	were	extracted	using	high	salt	buffer	

containing	1%	Triton-X100	(150	mM	NaCl,	50	mM	Tris,	pH	7.6).		Protease	inhibitors	were	

excluded	from	buffer.		To	collect	triton-soluble	fractions,	samples	were	homogenized,	sonicated	

and	sedimented	at	15,000	rpm	for	30	min.	500	μl	of	buffer	was	added	to	each	sample.		Protein	

concentrations	were	determined	by	BCA	assay	(Thermo	Fisher).	Proteasome	Activity	

Fluorometric	Assay	Kit	(BioVision	K245)	was	used	to	assay	proteasome	activity.		Assays	were	

performed	in	a	96-well	plate	at	37°C	according	to	the	manufacturer’s	protocol.	5	μg	of	lysates	
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were	added	per	experimental	condition.		Each	condition	was	done	with	or	without	proteasome	

inhibitor.		At	the	final	time	point	(60	min),	the	fluorescence	with	inhibitor	was	subtracted	from	

the	fluorescence	without	inhibitor	per	condition.		Three	biological	replicates	were	quantified	for	

each	experimental	condition.		

	

In	Vitro	Degradation	Assay:		Recombinant	human	WT	α-synuclein	was	purified	as	previously	

described46.	Purified	human	WT	α-synuclein	was	aggregated	at	5	mg/ml	for	7	days	at	1,400	rpm	

at	37°C.		The	fibrils	generated	from	the	aggregation	of	α-synuclein	were	used	as	substrate	for	

the	in	vitro	degradation	assays.		Myelin	Basic	Protein	(Sigma	M1891)	was	used	at	25	μM	and	α-

synuclein	was	used	at	1	mg/ml.		Human	Immunoproteasome	20S	(Enzo	BML-PW8720)	and	

Human	Constitutive	Proteasome	20S	(Enzo	BML-PW9645)	were	used	at	a	ratio	of	0.11:1	

proteasome:α-synuclein.	Human	Proteasome	Activator	11S	complex	(BML-PW9420)	was	added	

at	a	final	concentration	of	500	nM.		Reactions	were	incubated	at	37°C	agitating	at	600	rpm,	and	

samples	were	removed	at	indicated	time	points.		Samples	were	separated	in	a	12%	Bis-Tris	Pre-

Cast	gel	(ThermoFisher)	and	stained	with	colloidal	blue.	Densitometry	was	used	to	quantify	

protein	degradation	of	monomer	bands	of	α-synuclein.	Initial	time	point	was	considered	100%	

for	each	experimental	condition.		Three	biological	replicates	were	quantified	for	each	

experimental	condition.		

	

In	Vitro	Aggregation	Assay:		Reactions	from	the	in	vitro	degradation	assay	were	stopped	by	

freezing	samples	and	storing	at	-20°C.		These	samples	were	thawed,	and	used	as	templates	by	

adding	5%	of	these	samples	to	soluble	recombinant	human	WT	α-synuclein.		At	indicated	time	

points,	sample	was	removed	and	centrifuged	at	15,000	rpm	for	30	minutes	at	-4°C.	Supernatant	
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was	removed	and	equal	volume	PBS	was	added	to	pellet	and	re-suspended.	Samples	were	

loaded	onto	a	12%	Bis-Tris	Pre-Cast	gel	(ThermoFisher)	and	stained	with	colloidal	blue.		

Densitometry	was	used	to	quantify	monomer	bands	of	α-synuclein.		Protein	in	the	supernatant	

at	initial	time	point	was	considered	100%	soluble.	Three	biological	replicates	were	analyzed	for	

each	experimental	condition.		

	

Table	3.1:	List	of	Antibodies	

Protein	 Catalog	
Number	

Working	
Dilution	

NSE	 ab53025	 1:1000	
α-Synuclein	 D37A6	 1:1000	

Lmp7	 ab3329	 1:1000	
β5	 PA1-977	 1:1000	

PKC-β2	 Ab33206	 1:1000	
DAT	 MAB369	 1:1000	
Addc	 Ab3905	 1:1000	
Akt	 9272	 1:1000	

Tyrosine	
Hydroxylase	 657012	 1:1000	

	

3.4	Results	
	

Mouse	Model	of	Endogenous	α-Synuclein	Aggregation	

To	identify	proteomic	perturbations	induced	by	the	aggregation	of	endogenous	α-synuclein,	a	

modified	version	of	a	recently	developed	and	independently	verified	mouse	model30	was	

employed	whereby	α-synuclein	pre-formed	fibrils	(PFFs)	were	unilaterally	injected	into	three	

locations	(cortex,	dorsal	and	ventral	striatum)	of	non	transgenic	mice.		The	injection	of	PFFs	into	

the	WT	mouse	brain	induces	progressive	aggregation	of	endogenous	mouse	α-synuclein	that	is	
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associated	with	loss	of	dopamine	producing	neurons	in	the	injected	side.		To	confirm	conversion	

of	endogenous	α-synuclein	occurred,	the	substantia	nigra	was	stained	with	an	antibody	that	

recognizes	phosphorylated	α-synuclein	at	Ser-129	(Figure	3.1A),	a	marker	of	α-synuclein	

inclusions	in	human	synucleinopathies47,48.		In	WT	mice	90	days	post	injection,	dense	Lewy	body-

like	inclusions	immunoreactive	for	phosphorylated	Ser-129	were	abundant	in	the	injected	side	

but	not	detectable	in	the	contralateral,	non-injected	side.		Additionally,	biochemical	extraction	

of	brain	lysates	showed	increased	levels	of	insoluble	α-synuclein	in	the	injected	side	of	the	WT	

mice	compared	with	the	non-injected	side,	corroborating	the	phosphorylated	Ser-129	staining	

and	reaffirming	that	α-synuclein	aggregation	occurred	in	the	injected	side	of	WT	mice	

(Supplementary	Figure	3.1).	

Progressive	aggregation	of	α-synuclein	and	dopaminergic	degeneration	has	been	documented	in	

WT	but	not	in	Snca	-/-	mice	that	are	injected	in	the	same	manner	with	PFFs30.		To	confirm	this	in	

triple-injected	mice,	staining	was	also	performed	in	Snca	-/-	mice.		As	expected,	no	staining	for	

phosphorylated	Ser-129	α-synuclein	in	the	injected	or	non-injected	sides	was	observed	in	the	

substantia	nigra	of	Snca	-/-	mice	(Figure	3.1A).		Thus,	Snca	-/-	mice	are	an	important	control	that	

enables	us	to	separate	the	effect	of	changes	in	the	mouse	brain	proteome	due	to	PFF	injection	

from	those	due	to	α-synuclein	aggregation	and	neuron	loss.		

Tyrosine	hydroxylase	(TH)	staining	in	both	the	injected	and	non-injected	sides	of	WT	mice	was	

performed	in	order	to	quantify	the	loss	of	dopaminergic	neurons	(Figure	3.1B).		Quantification	

of	TH+	neurons	in	the	substantia	nigra	of	WT	mice	revealed	a	19%	loss	in	the	injected	versus	

non-injected	side	that	approached	statistical	significance	(p-value	=	0.0507).		Quantification	in	

Snca	-/-	mice,	on	the	other	hand,	revealed	no	significant	TH+	neuron	loss	in	the	injected	side.		

Collectively	these	data	indicate	that	α-synuclein	aggregation	is	predominantly	occurring	in	the	
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injected	side	of	WT	mice,	leading	to	TH+	neuron	loss,	consistent	with	previous	findings	using	this	

model30.		

	

Midbrain	Proteome	Depth,	Quantification	and	Quality	

To	quantify	the	changes	in	the	relative	abundance	of	proteins	in	both	the	WT	and	Snca	-/-	mice,	

we	employed	a	quantitative	proteomic	workflow	depicted	in	Figure	3.1C.		The	method	

incorporated	the	use	of	13C-Stable	Isotope	Labeling	in	Mammals	(SILAM)34,35	as	an	internal	

standard	for	the	quantitative	analysis	of	the	relative	abundance	of	proteins.		Four	biological	

replicates	for	the	injected	and	non-injected	sides	for	the	WT	mouse	and	three	biological	

replicates	for	each	side	of	the	Snca	-/-	mice	were	analyzed.		Combined	analysis	of	the	replicates	

in	WT	mice	applying	a	false	discovery	rate	of	1%	resulted	in	the	identification	of	7,021	proteins	

in	the	injected	side,	6,949	proteins	in	the	non-injected	side,	with	6,706	proteins	identified	in	

both	sides	(Figure	3.1C,	Supplementary	Table	1).		Analysis	in	the	Snca	-/-	mice	resulted	in	the	

identification	of	4,739	proteins	in	the	injected	side,	4,913	proteins	in	the	non-injected	side,	with	

4,446	proteins	identified	in	both	sides	(Figure	3.1C;	Supplementary	Table	2).			

For	a	subset	of	the	proteins	identified	we	also	detected	the	cognate	isotopically	labeled	peptide,	

allowing	the	determination	of	the	heavy/light	(H/L)	ratio.		The	H/L	ratio	of	5,623	proteins	in	the	

injected	side	(Supplementary	Table	3)	and	5,588	proteins	in	the	non-injected	side	of	WT	mice	

were	obtained	(Supplementary	Table	4).		In	Snca	-/-	mice,	the	H/L	ratio	for	3,519	proteins	in	the	

injected	side	(Supplementary	Table	5)	and	3,625	proteins	in	the	non-injected	side	was	

determined	(Supplementary	Table	6).		We	employed	a	ratiometric	method	(dividing	the	H/L	

ratio	of	the	non-injected	side	by	the	H/L	ratio	in	the	injected	side)	to	quantify	changes	in	the	

relative	abundance	of	proteins	in	the	injected	side	compared	with	the	non-injected	side.		
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Completion	of	this	analysis	resulted	in	the	quantification	of	the	relative	abundance	of	5,290	

proteins	in	WT	(Supplementary	Table	7)	and	3,335	proteins	in	Snca	-/-	(Figure	3.1C;	

Supplementary	Table	8).			

Construction	of	a	global	mouse	brain	proteome	was	completed	and	used	as	a	reference	to	

determine	whether	the	proteins	quantified	are	reflective	of	the	proteins	expressed	in	the	mouse	

brain	(Supplementary	Table	9).		For	the	reference	proteome	we	combined	proteins	identified	by	

mass	spectrometry	in	the	unperturbed	mouse	brain	from	several	existing	studies	that	we	then	

curated	through	UniProt	with	the	6,949	proteins	identified	in	our	study	in	the	WT	non-injected	

side.		This	reference	proteome	is	comprised	of	11,055	proteins,	of	which	76	were	proteins	

contributed	by	our	study.		

To	evaluate	the	quality	of	the	quantified	proteome	(5,290	proteins	in	WT	and	3,335	proteins	in	

Snca	-/-),	we	compared	these	proteins	with	this	reference	mouse	brain	proteome.		The	

distribution	of	the	quantified	proteins	based	on	their	molecular	weight	was	representative	of	

the	whole	mouse	brain	proteome	covering	the	entire	range	of	>10	kDa	to	>400	kDa	(Figure	

3.1D).		Gene	set	enrichment	using	biological	process	and	KEGG	Pathways	revealed	a	compatible	

distribution	of	the	quantified	proteome	among	major	biological	processes	with	the	whole	brain	

proteome	(Figure	3.1E).		Moreover,	Gene	Ontology	enrichment	analysis	using	cellular	

components	showed	that	the	cellular	location	of	the	quantified	proteins	was	representative	of	

the	whole	mouse	brain	proteome	(Figure	3.1F).		Collectively,	these	analyses	suggest	that	the	

proteins	quantified	here	are	representative	of	the	proteins	in	the	mouse	brain.			

	

Statistical	Analysis	of	Proteomic	Changes	
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The	frequency	distribution	of	quantified	proteins	in	WT	and	Snca	-/-	each	showed	a	unimodal	

distribution	centered	at	Log2=0	(Figures	3.2A	and	B).		To	identify	the	proteins	that	exhibited	a	

significant	change	in	relative	abundance	due	to	α-synuclein	aggregation,	the	following	statistical	

analyses	were	performed.		For	the	3,331	proteins	quantified	in	both	WT	and	Snca	-/-,	the	ratio	

of	ratios	were	z-scaled	and	a	Welch’s	T-Test	was	applied	to	compute	p-values.	(Figure	3.2C).		

Using	a	p-value	of	less	than	0.05,	201	proteins	were	significantly	changed.		For	the	1,959	

proteins	that	were	quantified	in	WT	only,	a	paired	Student’s	T-Test	was	used	to	compare	the	

injected	to	the	non-injected	side,	and	any	p-values	less	than	0.05	were	accepted	as	significant,	

totaling	an	additional	110	proteins.	Combined,	this	resulted	in	311	proteins	(152	that	increase	

and	159	that	decrease	in	the	injected	side)	that	the	relative	abundance	changed	significantly	

due	to	α-synuclein	aggregation	(Supplementary	Table	10).	A	summary	of	the	breakdown	of	

these	311	proteins	is	depicted	in	Supplementary	Figure	3.2.		

Heatmaps	generated	for	the	significant	proteins	quantified	in	both	WT	and	Snca	-/-	show	that	

proteins	with	increased	or	decreased	relative	abundance	in	the	injected	side	cluster	together	in	

WT	versus	Snca	-/-	across	all	biological	replicates	(Figure	3.2D).		The	scale	and	intensity	of	color,	

blue	to	white	to	red,	is	representative	of	the	direction	and	degree	of	differential	expression.		

Furthermore,	this	clustering	persists	in	the	injected	versus	non-injected	side	for	those	proteins	

quantified	only	in	WT	(Figure	3.2E).		These	data	demonstrate	the	consistency	in	the	relative	

abundance	changes	of	the	311	proteins	across	all	biological	replicates.			

	

Validation	of	the	Proteomic	Changes	

The	documented	19%	loss	of	TH+	neurons	in	the	injected	side	of	WT	mice	(Figure	3.1B)	provides	

a	benchmark	whereby	proteins	selectively	expressed	in	dopaminergic	neurons	can	be	leveraged	
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to	validate	the	quantified	changes	in	the	proteome.		Indeed	four	of	the	159	proteins	that	

significantly	declined	in	the	injected	side	were	TH,	aromatic-L-amino-acid	decarboxylase	(Addc),	

synaptic	vesicular	amine	transporter-2	(VMAT2),	and	dopamine	transporter	(DAT)	(Figure	3.3A	

and	B).		These	four	proteins	are	selectively	expressed	in	dopaminergic	neurons	and	participate	

in	the	biosynthesis,	vesicular	transport	and	recycling	of	dopamine.		The	levels	of	Slc10a4,	a	

protein	that	is	specifically	expressed	in	catecholaminergic	neurons	though	its	function	is	not	well	

understood,	also	declined	in	the	injected	side49,50.		Notably,	the	relative	abundance	of	proteins	

such	as	monoamine	oxidase	A	(MAO-A)	and	catechol-O-methyl	transferase	(COMT),	that	are	

expressed	in	glial	cells	as	well	as	dopaminergic	neurons,	varied	from	6.0-6.2%	and	did	not	

change	significantly	(Figure	3.3B).		These	findings	demonstrate	the	sensitivity	and	precision	of	

our	method	used	to	quantify	relative	changes	in	protein	abundance.	

The	changes	in	the	levels	of	TH,	DAT,	and	Addc	quantified	by	SILAM-MS-based	methodology	

were	further	validated	by	semi-quantitative	western	blot	analysis.		The	western	blot	analysis	

was	entirely	consistent	with	the	MS-based	quantification	showing	a	decline	of	33-51%	in	the	

levels	of	TH,	DAT,	and	Addc	in	the	injected	versus	the	non-injected	side	(Figure	3.3C).		

Importantly,	and	consistent	with	the	need	of	endogenous	α-synuclein	aggregation	for	the	loss	of	

dopaminergic	neurons,	the	levels	of	TH,	DAT,	and	Addc	do	not	decline	in	the	injected	side	of	

Snca	-/-	mice	quantified	by	either	the	MS-based	or	western	blot	methods	(Figure	3.3B	and	C).		

Additional	confirmation	and	validation	of	the	MS-based	quantification	was	obtained	by	probing	

for	proteins	such	as	α-synuclein,	NSE,	PKC-β2	and	Akt,	which	showed	no	change	in	the	levels	

between	injected	and	non-injected	side	(Figure	3.3D;	Supplementary	Figure	3.3).		Overall,	these	

findings	provide	confidence	that	the	quantitative	methodology	delivered	robust	and	precise	

changes	in	the	proteome	in	this	model	of	endogenous	α-synuclein	aggregation.		
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Enrichment	Analysis	of	α-Synuclein	Responsive	Proteins	

Enrichment	analyses	were	performed	to	examine	the	effects	of	α-synuclein	aggregation	and	

dopaminergic	degeneration	on	biological	processes	within	the	midbrain	and	striatal	proteomes.		

The	analysis	used	the	5,290	proteins	quantified	in	WT	mice	as	background	and	was	separately	

performed	for	the	159	and	152	proteins	whose	relative	abundance	decreased	or	increased,	

respectively.		Subcellular	localizations	of	the	significantly	changed	proteins	were	analyzed	using	

UniProtKB/Swiss-Prot	to	retrieve	the	Gene	Ontology-annotated	cellular	compartments.		

Cytoplasmic	proteins	accounted	for	the	greatest	percent,	with	52%	and	65%	of	the	significant	

proteins	that	increased	or	decreased,	respectively	(Figure	3.4A).		The	cell	membrane	accounted	

for	44%	of	each	dataset,	and	the	nucleus	for	29%	and	27%	(note	that	each	protein	can	have	

more	than	one	localization).		The	mitochondria,	endoplasmic	reticulum,	Golgi	apparatus,	and	

extracellular	space	accounted	for	6%-10%	of	the	datasets.		This	analysis	indicates	that	the	

proteomic	disturbances	are	impacting	all	major	cellular	compartments,	although	endogenous	α-

synuclein	aggregates	are	predominantly	cytoplasmic.		

Consistent	with	dopaminergic	neuron	loss,	catecholamine	metabolism	was	a	functional	category	

enriched	by	15	fold	among	the	proteins	whose	relative	abundance	decreased	(Figure	3.4B).		

Furthermore,	ion	transmembrane	transport,	microtubule	organization,	and	vesicle-mediated	

transport	were	all	significantly	enriched	by	2-7	fold.		The	enrichment	of	these	biological	

processes	suggests	that	cellular	communication,	membrane	conductance,	and	cytoskeletal	

dynamics	may	all	be	disrupted.		Importantly,	these	functions	have	all	been	previously	linked	to	

α-synuclein	aggregation51–56,	reinforcing	the	robustness	of	the	quantitative	approach	used	in	our	

analysis	of	proteome	wide	changes.			
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Of	the	proteins	that	increased	in	the	injected	side,	glycoprotein	metabolism,	mRNA	transport	

and	the	immune	response	were	significantly	enriched	by	4-6	fold.		Interestingly,	the	four	

proteins	that	displayed	the	greatest	increase	in	relative	abundance	among	the	311	significant	

proteins	are	functionally	linked	to	immune	responses.		

Finally,	a	global	pathway	analysis	of	the	311	significantly	changed	proteins	was	performed	using	

the	Reactome	pathway	database	(Figure	3.4C).		This	analysis	highlighted	and	confirmed	the	

enrichment	of	several	distinct	pathways	within	vesicle	mediated	transport,	programmed	cell	

death,	gene	expression,	neuronal	expression	and	the	immune	system.	Given	that	the	immune	

response	was	identified	in	both	the	biological	enrichment	analysis	and	this	pathway	analysis,	we	

further	investigated	its	role	in	α-synuclein	aggregation.			

	

α-Synuclein	Aggregation	Upregulates	the	Immunoproteasome	

The	novel	finding	that	Lmp7	is	the	protein	with	the	highest	relative	abundance	increase	was	

probed	further	because	Lmp7	is	one	of	the	three	subunits	that	comprise	the	catalytic	core	of	the	

immunoproteasome57.		The	immunoproteasome	is	an	altered	form	of	the	constitutive	

proteasome	that	is	upregulated	in	response	to	interferon-gamma	(IFNγ)	and	exhibits	different	

peptide	cleavage	activity58–61	than	the	constitutive	proteasome.		It	has	been	proposed	as	an	

adaptive	response	for	the	maintenance	of	proteostasis	upon	protein	aggregation	and	has	been	

implicated	in	other	neurodegenerative	diseases,	including	Huntington’s	disease62	and	AD63,64,	

but	not	in	α-synuclein	aggregation	disorders.		

The	increase	in	relative	abundance	of	Lmp7	quantified	by	the	proteomic	analysis	was	validated	

by	western	blot	analysis	(Figure	3.5A).		We	then	examined	whether	a	similar	increase	of	the	

immunoproteasome	occurs	in	human	disease	characterized	by	aggregation	of	α-synuclein.		The	
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levels	of	Lmp7	in	the	brains	of	dementia	with	Lewy	Bodies	(DLB),	which	contain	aggregated	α-

synuclein,	and	control	non-disease	subjects	were	evaluated	by	semi-quantitative	western	blot	

analysis.		The	analysis	documents	a	2-fold	increase	in	the	levels	of	Lmp7	in	DLB	as	compared	to	

controls	(Figure	3.5B).		To	further	evaluate	if	the	increase	in	protein	levels	correlates	with	

activity,	chymotrypsin-like	activity,	which	is	selectively	elevated	in	the	immunoproteasome,	was	

quantified	(Figure	3.5C).		Indeed,	an	80%	increase	in	the	chymotrypsin-like	activity	was	

measured	in	the	DLB	brain	homogenates	as	compared	with	controls.		These	data	demonstrate	

that	the	activation	of	the	immunoproteasome	quantified	in	response	to	α-synuclein	aggregation	

in	the	WT	mouse	also	occurs	in	human	disease	driven	by	α-synuclein	aggregation.		

	

The	Immunoproteasome	Degrades	α-Synuclein	Fibrils	

Since	the	immunoproteasome	and	constitutive	proteasome	have	different	proteolytic	activities,	

the	possibility	that	the	immunoproteasome	and	the	constitutive	proteasome	differ	in	their	

ability	to	degrade	α-synuclein	fibrils	was	evaluated.		First,	myelin	basic	protein	(MBP),	a	protein	

previously	shown	to	be	degraded	more	efficiently	by	the	immunoproteasome	than	the	

constitutive	proteasome61,	was	incubated	with	purified	immunoproteasome	or	constitutive	

proteasome.		After	22	hours,	96%	of	MBP	was	degraded	by	the	immunoproteasome	compared	

with	69%	by	the	constitutive	proteasome	(Supplementary	Figure	3.4).		These	data	document	the	

previously	known	differential	activity	of	the	immunoproteasome	compared	with	the	constitutive	

proteasome	and	enable	us	to	compare	the	catalytic	efficiency	against	α-synuclein	fibrils.		

α-Synuclein	fibrils	were	generated	by	a	standard	protocol	that	included	continuous	agitation	of	

soluble	α-synuclein	at	37°C	at	1,400	rpm	for	7	days.		These	aggregates	exhibited	an	increase	in	

Thioflavin-T	fluorescence	(Supplementary	Figure	3.5A),	turbidity	(Supplementary	Figure	3.5B)	
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and	sedimentation	analysis	revealed	a	shift	from	the	supernatant	to	the	pellet	(Supplementary	

Figure	3.5C).		Finally,	circular	dichroism	revealed	typical	β-sheet	secondary	structure	

(Supplementary	Figure	3.5D).		These	amyloid-like	fibrils	were	used	as	a	substrate	for	the	

constitutive	proteasome,	and	the	immunoproteasome.	(Figure	3.5D).		After	7	days	of	incubation,	

100%	of	α-synuclein	fibrils	were	degraded	by	the	immunoproteasome	compared	with	57%	by	

the	constitutive	proteasome.		Thus,	the	immunoproteasome	degrades	α-synuclein	fibrils	more	

rapidly	compared	with	the	constitutive	proteasome	in	a	cell-free	system.	

Next	the	products	of	these	degradation	reactions	were	tested	for	their	ability	to	accelerate	the	

aggregation	of	recombinant	human	α-synuclein.		Intact	preformed	α-synuclein	fibrils,	the	

constitutive	proteasome	products	or	the	immunoproteasome	products	were	added	to	soluble	

monomeric	α-synuclein	and	an	aggregation	reaction	was	performed.		Typically,	addition	of	5%	

PFFs	in	a	solution	of	monomeric	α-synuclein	accelerates	the	aggregation	as	compared	with	no	

PFFs	as	shown	in	Figure	3.5E.	Similar	with	α-synuclein	fibrils,	addition	of	products	generated	by	

the	constitutive	proteasome	accelerated	the	aggregation	of	monomeric	α-synuclein.		In	

contrast,	the	products	from	the	degradation	of	α-synuclein	fibrils	by	the	immunoproteasome	

did	not	accelerate	the	aggregation	of	monomeric	α-synuclein.		After	2	days	of	incubation,	90%	

of	the	monomeric	α-synuclein	had	aggregated	in	the	presence	of	products	derived	from	the	

constitutive	proteasome	as	compared	to	66%	from	the	immunoproteasome	(Figure	3.5E).		These	

data	indicate	the	immunoproteasome	degrades	α-synuclein	fibrils	to	generate	products	that	will	

not	template	and	accelerate	the	aggregation	of	soluble	α-synuclein.		

3.5	Discussion	
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The	proteostasis	network	consists	of	integrated	cellular	machinery	that	coordinates	activities	

against	the	harmful	effects	of	aging,	environmental	stresses,	and	infections1.		Dynamic	

regulation	of	proteostasis	pathways	in	response	to	disease-associated	protein	aggregation	is	

crucial	to	maintaining	cellular	homeostasis7,65–67.		This	regulation	is	achieved	through	altering	

protein	expression,	turnover,	localization,	and	post-translational	modifications.		Despite	

recognition	of	the	importance	of	proteostasis	networks,	it	remains	unknown	how	the	proteome	

responds	to	protein	aggregation	in	neurodegenerative	diseases.		Here,	we	utilize	α-synuclein,	a	

protein	that	aggregates	in	a	spectrum	of	neurodegenerative	diseases13–15,	to	quantitatively	study	

proteostatic	regulation	of	the	proteome	in	response	to	endogenous	protein	aggregation.	

The	present	study	quantified	the	changes	in	relative	abundance	of	proteins	in	response	to	

endogenous	aggregation	of	α-synuclein	in	the	mouse	brain	using	a	quantitative	proteomics	

approach.		A	mouse	model	of	endogenous	α-synuclein	aggregation	caused	by	the	intrastriatal	

injection	of	pre-formed	fibrils	(PFFs)	of	α-synuclein	was	used30.		In	this	model,	at	90	days	post	

injection	α-synuclein	pathology	and	dopaminergic	degeneration	is	restricted	to	one	side	of	the	

mouse	brain,	allowing	us	to	use	the	non-injected	side	as	an	internal	control.		Furthermore,	α-

synuclein-null	mice	(Snca	-/-)	fail	to	develop	any	pathology,	providing	a	control	for	proteome	

responses	to	the	injection	of	PFFs	alone.		Our	quantitative	proteomic	approach	was	both	

comprehensive	and	selective.		We	compared	the	5,290	and	3,335	proteins	we	quantified	in	WT	

and	Snca	-/-,	respectively,	to	a	mouse	brain	reference	proteome	that	we	constructed	by	curating	

previous	mass	spectrometry-based	studies.		This	analysis	revealed	that	the	proteins	quantified	

here	do	not	substantially	differ	from	previously	identified	proteins,	demonstrating	that	there	is	

no	significant	bias	in	our	quantified	proteome.		Critically,	proteins	participating	in	dopamine	

synthesis	and	transport	were	among	the	311	proteins	whose	relative	abundance	significantly	
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changed.		Given	the	documented	degeneration	of	dopaminergic	neurons	in	this	model,	this	

provides	confidence	for	our	approach.	If	mice	analyzed	180	days	post	injection	were	analyzed,	

we	would	expect	to	document	a	similar	set	of	proteins	whose	relative	abundance	significantly	

changed,	along	with	greater	dopaminergic	neuron	loss.		

The	data	revealed	that	Lmp7,	one	of	the	three	cardinal	subunits	of	the	immunoproteasome,	

exhibited	the	greatest	increase	in	relative	abundance	in	response	to	α-synuclein	aggregation.		

The	immunoproteasome	is	a	derivative	of	the	constitutive	proteasome	that	is	upregulated	

primarily	by	IFNγ	and	in	response	to	pro-inflammatory	stimuli57,68.		The	immunoproteasome	is	

formed	via	the	replacement	of	the	three	catalytic	subunits	of	the	constitutive	proteasome,	β1,	β2	

and	β5,	with	the	three	catalytic	subunits	of	the	immunoproteasome,	namely	Lmp2,	MECL-1	and	

Lmp7,	respectively57.		The	primary	function	of	the	immunoproteasome	is	the	generation	of	

peptides	that	are	presented	by	MHC	class	I	molecules	on	the	cell	surface	for	recognition	by	

CD8+	T	cells69.		Mice	deficient	in	all	three	catalytic	subunits	of	the	immunoproteasome	had	

substantially	reduced	presentation	of	the	majority	of	MHC	class	I	epitopes	during	viral	infection	

as	compared	with	WT	mice70.		The	reduced	presentation	and	differences	in	the	repertoire	of	

MHC	class	I	antigens	contributed	to	the	rejection	of	wild	type	splenocytes	by	the	triple	knockout	

mice,	which	were	otherwise	healthy,	viable	and	fertile70.		The	vast	differences	in	the	peptides	

detected	by	mass	spectroscopy	in	the	presence	versus	the	absence	of	the	immunoproteasome	

are	consistent	with	previous	reports	indicating	altered	enzyme	kinetics	and	cleavage	site	

preferences	for	the	immunoproteasome71.		The	immunoproteasome	usually	cleaves	proteins	

after	nonpolar	residues,	resulting	in	the	generation	of	peptides	with	hydrophobic	C-terminal	

residues	that	preferentially	interact	with	and	are	transported	to	plasma	membranes	by	MHC	

class	I	molecules72–74.		Additionally,	there	is	elevated	chymotrypsin-like	activity	relative	to	the	
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constitutive	proteasome71.			

Although	the	importance	of	the	immunoproteasome	for	the	host-mediated	antiviral	immune	

response	is	clearly	documented,	additional	proposed	functions	of	the	proteasome	are	currently	

debated.		Critical	for	neurodegenerative	disorders	is	the	debate	regarding	the	function	of	the	

immunoproteasome	in	the	degradation	of	ubiquitinated	proteins,	which	result	from	oxidative	

protein	modifications75–77.		The	association	between	oxidized	proteins	and	increased	

immunoproteasome	has	been	reported78	and	oxidative	stress	has	been	considered	in	the	

pathological	cascade	of	neurodegenerative	diseases	including	PD	and	related	α-synuclein	

aggregation	disorders79,80.		However,	a	link	between	upregulation	of	the	immunoproteasome	in	

response	to	endogenous	α-synuclein	aggregation,	potentially	mediated	by	oxidative	stress,	has	

not	been	made.		In	this	study,	we	report	elevated	levels	and	activity	of	the	immunoproteasome	

in	the	DLB	brain	compared	with	healthy	brain	(Figures	3.5B	and	C).		Moreover,	mass	

spectrometry-based	analysis	documents	a	similar	increase	in	Lmp7	in	mouse	brain	undergoing	

endogenous	α-synuclein	aggregation.		Data	in	Figure	3.5D	demonstrates	that	the	

immunoproteasome	has	an	enhanced	ability	to	degrade	α-synuclein	fibrils	compared	with	the	

constitutive	proteasome.		Furthermore,	we	found	that	the	products	derived	for	the	degradation	

by	the	immunoproteasome	are	unable	to	accelerate	the	aggregation	of	soluble	α-synuclein	

(Figure	3.5E).			

Immunoproteasome	levels	and	activity	were	also	found	to	be	elevated	in	postmortem	brains	of	

patients	with	Huntington’s	and	Alzheimer’s	disease62–64.		In	Huntington’s	disease	Lmp2-positive	

staining	was	predominantly	within	neurons	and	overlapped	with	approximately	5%	of	cortical	

huntingtin	protein	aggregates62.		In	the	Alzheimer’s	disease	increased	labeling	for	

immunoproteasome	was	associated	with	reactive	glia	that	surrounded	amyloid-β	plaques64.		
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Collectively	these	studies	suggest	that	coordinated	and	reversible	activation	of	

immunoproteasome	may	influence	the	progression	of	neurodegenerative	disorders	and	aging	

consistent	with	the	observation	that	primates	and	mice	with	longer	lifespans	have	elevated	

levels	of	the	immunoproteasome81.		

Of	interest	is	the	recent	report	documenting	expression	of	MHC	I	in	dopaminergic	neurons	in	

control	(non-disease)	and	PD	post	mortem	tissues82.		Moreover,	the	same	report	showed	that	

the	expression	of	MHC	I	in	murine	dopaminergic	neurons	was	induced	by	IFNγ	and	by	oxidative	

stress.		These	data	in	part	corroborate	our	findings	indicating	induction	of	the	

immunoproteasome	in	the	substantia	nigra	and	striatum.	This	report	proposes	a	mechanism	

linking	neuroinflammation,	MHC	I	expression	and	dopaminergic	degeneration.		Aggregated	α-

synuclein	activates	microglia	leading	to	the	release	of	IFNγ	that	induces	neuronal	expression	of	

MHC	I.	Additionally,	cytosolic	dopamine	causes	oxidative	stress	that	contributes	to	MHC	I	

expression.		This	MHC	I	is	then	loaded	with	antigens	and	presented	on	the	cell	surface	for	

detection	by	cytotoxic	T	cells	(CTLs),	resulting	in	the	selective	destruction	of	dopaminergic	

neurons.		What	is	missing	from	this	model	is	how	the	IFNγ	or	oxidative	stress	causes	antigen	

loading	onto	MHC	I	molecules	for	CTL	detection.		Our	data	here	provide	this	link.		Upon	

stimulation	by	IFNγ	from	microglial	and/or	oxidative	stress	from	cytosolic	dopamine	levels,	

dopaminergic	neurons	express	the	immunoproteasome.		The	immunoproteasome	is	then	able	

to	degrade	α-synuclein	more	efficiently	than	the	constitutive	proteasome,	leading	to	the	

generation	of	distinct	peptides	that	may	preferentially	be	loaded	onto	MHC	I.		Thus,	the	

degradation	of	α-synuclein	by	the	immunoproteasome	may	accelerate	cell	death	by	CTLs	and	

thus	exacerbate	dopaminergic	degeneration.	
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Overall,	we	establish	a	role	for	the	immunoproteasome	in	disease	driven	by	α-synuclein	

aggregation.		Ultimately,	modulation	of	the	immunoproteasome	may	have	therapeutic	potential	

in	mitigating	α-synuclein-mediated	neurotoxicity.		
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Figure	3.1.	Quantitative	Proteomic	Workflow	and	Characterization	of	WT	and	Snca	-/-	
Injected	Mice.		
(A)	Staining	the	substantia	nigra	of	the	injected	and	non-injected	sides	of	WT	and	Snca	-/-	
mice	for	phosphorylated	α-synuclein	at	Ser-129,	a	marker	for	pathology.		
(B)	Staining	for	tyrosine	hydroxylase	in	the	injected	and	non-injected	hemispheres	of	WT	
mice	(n=4;	p-value	=	0.0507)	and	Snca	-/-	mice	(n=1).			

A

D

B

C

FE



	
	

86	

(C)	Overview	of	proteomic	workflow.	The	midbrain	and	striatum	of	each	side	of	the	mouse	
brain	were	dissected	and	combined.	The	injected	and	non-injected	sides	were	kept	separate	
and	processed	throughout	the	workflow	independently.		
(D-F)	A	mouse	brain	reference	proteome	was	constructed	by	combining	proteins	identified	
by	mass	spectrometry	in	the	mouse	brain	in	the	literature	with	proteins	we	identified	in	the	
WT	non-injected	side.	This	was	compared	with	the	proteins	we	quantified	in	both	WT	and	
Snca	-/-	to	secure	that	there	are	no	significant	biases	based	on	protein	MW	(D),	biological	
functions	(E)	or	cellular	compartments	(F).		
	 	



	
	

87	

	
Figure	3.2.	Analysis	of	Quantified	Proteins	and	Identification	of	α-Synuclein	
Responsive	Proteins.	
(A)	Frequency	distribution	plot	of	proteins	quantified	in	WT	mice.		
(B)	Frequency	distribution	plot	of	proteins	quantified	in	Snca	-/-	mice.		
(C)	Schematic	depicting	methodology	to	identify	the	significantly	changed	proteins.	Of	the	
3,331	proteins	quantified	in	both	WT	and	Snca	-/-,	201	significantly	changed.	Of	the	1,959	
proteins	quantified	in	WT	only,	101	significantly	changed.	Collectively,	this	analysis	reveals	
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that	the	relative	abundance	of	311	proteins	significantly	changed,	due	to	endogenous	α-
synuclein	aggregation.		
(D)	Heatmap	depicting	clustering	of	significantly	changed	proteins	comparing	WT	to	Snca	-
/-.	
(E)	Heatmap	depicting	clustering	of	significantly	changed	proteins	comparing	injected	to	
non-injected	sides	in	WT.		
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Figure	3.3.	Validation	of	Changes	in	Dopamine	Neuron	Specific	Proteins.	
(A)	Depictions	of	a	dopaminergic	neuron	synapse	and	specific	proteins	expressed	in	pre-
synaptic	dopaminergic	neurons.		
(B)	Selective	loss	of	these	neurons	results	in	a	significant	decrease	in	the	levels	of	TH,	DAT,	
Addc	and	VMAT2	documented	by	the	mass-spectrometry-based	proteomic	quantification.	
(C)	Western	blot	confirmation	of	proteins	found	to	significantly	decrease	in	WT	but	not	
Snca	-/-	mice.		
(D)	Western	blot	confirmation	of	proteins	found	to	not	significantly	change,	including	NSE,	
PKC-β	2	and	Akt.	
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Figure	3.4.		Enrichment	Analysis	of	α-Synuclein	Responsive	Proteins.	
(A)	Percent	of	α-synuclein	responsive	proteins	that	either	increased	or	decreased	in	the	
injected	side	that	are	localized	to	each	subcellular	localization.		
(B)	Biological	processes	that	are	significantly	enriched	among	the	α-synuclein	responsive	
proteins	that	increased	or	decreased	in	the	injected	side.	The	5,290	proteins	quantified	in	
WT	were	used	as	background	to	determine	enrichment.		
(C)	Overview	of	pathways	enriched	for	α-synuclein	responsive	proteins.	Yellow	lines	
represent	pathways	enriched	for	these	proteins.		
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Figure	3.5.	The	Immunoproteasome	is	Implicated	in	Human	Disease	Driven	by	α-
Synuclein	Aggregation.		
(A)	Western	blot	in	WT	and	Snca	-/-	mouse	brain	for	Lmp7	reveals	that	Lmp7	is	increased	
in	the	injected	side	by	226%	compared	to	the	non-injected	side,	consistent	with	the	236%	
increase	found	by	the	proteomic	analysis.	Lmp7	was	not	detected	in	Snca	-/-	mice	by	either	
Western	blot	or	proteomics.		
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(B)	Western	blot	analysis	in	human	DLB	brain	versus	healthy	brain	reveals	that	Lmp7	is	
increased	by	297%	in	disease	compared	with	healthy.		
(C)	Chymotrypsin-like	activity,	a	proxy	for	immunoproteasome	activity,	is	increased	by	
189%	in	disease	brain	compared	with	healthy	brain.	n=3.	
(D)	Degradation	efficiencies	of	α-synuclein	fibrils	by	the	constitutive	proteasome	and	the	
immunoproteasome	were	compared.	After	7	days,	100%	degradation	was	achieved	by	the	
immunoproteasome	compared	with	only	55%	by	the	constitutive	proteasome.	n=3.	
(E)	Efficiency	of	accelerating	aggregation	of	the	products	from	the	degradation	assay	of	the	
immunoproteasome	and	constitutive	proteasome	were	compared	with	5%	fibrillar	PFFs	
and	no	PFFs.	n=3.	Two-way	ANOVA	analysis	with	a	Bonferroni	post-test	(***	p-value	<	
0.001).		
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Supplementary	Figure	3.1.	Greater	Insoluble	α-Synuclein	in	the	Injected	Side	than	the	
Non-Injected	Side.	
Sequential	biochemical	extraction	was	performed	on	the	combination	of	the	midbrain	and	
striatum	from	the	injected	and	non-injected	sides	of	the	WT	mouse.	Samples	were	analyzed	
by	Western	blot	to	confirm	that	there	is	a	greater	amount	of	α-synuclein	in	the	SDS-Soluble	
fraction	in	the	injected	side	than	the	non-injected	side.	
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Supplementary	Figure	3.2.	Breakdown	of	311	α-Synuclein	Responsive	Proteins.		
All	5,290	proteins	quantified	in	WT	were	analyzed	to	identify	significantly	changed	
proteins.		
	
	
	
	
	
	
	
	

Supplementary	Figure	3.3.	Relative	Abundance	of	α-Synuclein	Does	Not	Change	in																													
WT.	
Western	blot	confirmation	of	the	relative	abundance	of	α-synuclein	in	the	injected	and	non-
injected	sides	from	WT	mice.		
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Supplementary	Figure	3.4.	Myelin	Basic	Protein	is	More	Rapidly	Degraded	by	the	
Immunoproteasome	than	the	Constitutive	Proteasome.	
(A)	Myelin	Basic	Protein	was	incubated	with	the	constitutive	proteasome	or	the	
immunoproteasome.	At	indicated	time	points	aliquots	were	removed	and	analyzed	by	SDS-
PAGE.			
(B)	Densitometry	of	monomeric	band	of	MBP	reveals	that	incubation	with	the	
immunoproteasome	results	in	96%	degradation	compared	to	70%	with	the	constitutive	
proteasome.	n=3.	
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Supplementary	Figure	3.5.	Amyloid	Characteristics	of	α-Synuclein	Fibrils	Used	for	
Pure	Proteasome	Assay.		
(A)	Human	recombinant	WT	α-synuclein	was	incubated	at	37°C,	agitating	at	1,400	rpm	at	5	
mg/ml.	At	Day	0	and	Day	7	sample	was	removed	for	Thioflavin-T	analysis,	an	assay	for	the	
presence	of	β-sheet	rich	amyloid	fibrils,	revealing	a	>20-fold	increase	in	fluorescence.	
(B)	At	Day	0	and	Day	7	a	sample	was	removed	for	turbidity	analysis,	an	assay	for	the	
presence	of	insoluble	species,	revealing	a	>30-fold	increase	in	turbidity.	
(C)	At	Day	0	and	Day	7	a	sample	was	removed	for	sedimentation	analysis,	revealing	a	shift	
of	protein	from	the	soluble	supernatant	to	the	insoluble	pellet.		
(D)	At	Day	7,	circular	dichroism	analysis	was	done.	The	monomer	displayed	random	coil,	
and	both	the	fibrils	and	PFFs	revealed	β-sheet	structure.	
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CHAPTER 4 
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4.1	Abstract	
	

α-Synuclein	deposited	into	Lewy	Bodies	in	Parkinson’s	disease	and	related	synucleinopathies	

have	elevated	levels	of	Ser-129	phosphorylation	compared	with	soluble	protein.	This	change	

may	be	reflective	of	a	global	perturbation	in	cellular	signaling	induced	by	α-synuclein	

aggregation	that	contributes	to	neurodegeneration	and	disease	pathogenesis.	Here,	we	used	

mass	spectrometry	to	quantify	the	relative	abundance	changes	of	phosphorylation	sites	due	to	

endogenous	α-synuclein	aggregation	in	a	mouse	model	of	progressive	α-synuclein	aggregation.	

This	resulted	in	the	quantification	of	2,763	and	2,112	phosphosites	in	wildtype	(WT)	and	α-

synuclein-null	mice	(Snca	-/-),	respectively.	126	and	65	phosphosites	were	significantly	altered	in	

WT	and	Snca	-/-	mice,	respectively.	The	amino	acid	distribution	of	the	phosphosites	did	not	

significantly	deviate	between	the	significant	phosphosites	and	the	total	quantified	phosphosites.	

Endosome	transport,	membrane	organization	and	vesicle-mediated	transport	were	enriched	

among	the	significantly	altered	phosphoproteins	in	WT,	suggesting	that	various	cellular	signaling	

processes	respond	to	α-synuclein	aggregation.	Further	interrogation	of	the	phosphorylation	

signaling	changes	that	drives	these	processes	would	shed	light	on	α-synuclein	aggregation-

mediated	neurotoxicity.		

	

4.2	Introduction	
	

α-Synuclein	is	a	140	amino	acid	protein	that	has	roles	in	synaptic	plasticity	and	neurotransmitter	

release1.	Progressive	accumulation	of	α-synuclein	aggregates	underlies	several	

neurodegenerative	diseases,	including	Parkinson’s	disease	(PD),	collectively	referred	to	as	

synucleinopathies.	PD	is	the	second	most	common	neurodegenerative	disease	in	the	United	
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States	and	is	characterized	by	dopaminergic	degeneration	and	α-synuclein-positive	intracellular	

inclusions	known	as	Lewy	Bodies	(LBs)2–4.	Multiplications5–7	and	point	mutations8–12	in	the	gene	

encoding	α-synuclein,	SNCA,	cause	PD.	Additionally,	purified	wildtype	and	PD-linked	mutant	

forms	of	α-synuclein	rapidly	fibrillize	in	vitro13–16.	Collectively,	these	data	implicate	α-synuclein	

aggregation	as	a	contributing	factor	in	PD	and	related	diseases.		

Phosphorylation	of	α-synuclein	deposited	into	LBs	is	increased	at	Ser-129	compared	with	soluble	

α-synuclein17,18.	LBs	derived	from	other	synucleinopathies,	including	multiple	system	atrophy	

and	dementia	with	Lewy	Bodies,	also	contain	abundant	α-synuclein	phosphorylated	at	Ser-

12917,18.	The	biochemical	consequences	of	this	phosphorylation	on	aggregation,	membrane	

binding,	and	neurotoxicity	are	unclear19.	Studies	expressing	Ser-129A	to	prevent	

phosphorylation	or	Ser-129D	to	mimic	phosphorylation	in	rodent	models	and	drosophila	have	

yielded	conflicting	results	as	to	whether	phosphorylation	is	neurotoxic	or	neuroprotective20–24.	

Using	cell	free	systems,	most	studies	have	found	that	phosphorylation	of	Ser-129	inhibits	

fibrillization25,26,	though	some	have	found	that	it	accelerates	aggregation18.		

This	finding	that	α-synuclein	phosphorylation	is	altered	upon	aggregation	inspired	our	work.	We	

postulated	that	α-synuclein	aggregation	induces	global	perturbations	in	cellular	signaling	that	

may	contribute	to	neurodegeneration.	To	study	these	changes,	we	focused	on	phosphorylation	

because	of	the	documented	increase	in	Ser-129	phosphorylation	of	α-synuclein	upon	

aggregation,	and	the	importance	of	phosphorylation	in	regulating	a	multitude	of	critical	cellular	

activities.	Using	a	recently	developed	mouse	model	of	progressive	aggregation	of	endogenous	

α-synuclein27,	we	employed	a	quantitative	phosphoproteomic	approach	to	measure	the	relative	

abundance	changes	of	phosphosites	due	to	α-synuclein	aggregation.		
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4.3	Experimental	Procedures	
	

Mouse	Models	Used	in	this	Study:	All	handling	of	mice	were	performed	according	to	the	NIH	

Guide	for	the	Care	and	Use	of	Experimental	Animals	and	approved	by	the	University	of	

Pennsylvania	Institutional	Animal	Care	and	Use	Committee	(IACUC).		Wildtype	(WT)	C57BL6/C3H	

mice	were	obtained	from	the	Jackson	Laboratories	(Bar	Harbor,	ME).	Snca	-/-	mice28	were	

maintained	on	a	C57BL6	background.	13C-Stable	Isotope	Labeling	in	Mammals	(SILAM)	mouse	

brain	tissue	was	purchased	from	Cambridge	Isotope	Laboratories,	Inc	(Female,	L-Lysine	13C6,	

97%).				

	

Stereotaxic	Injection	of	PFFs:	Stereotaxic	injection	of	pre-formed	fibrils	(PFFs)	was	performed	as	

previously	described	(see	Chapter	3).		Briefly,	human	WT	α-synuclein	fibrils	were	diluted	in	

sterile	PBS	and	sonicated	to	produce	PFFs.	These	PFFs	were	injected	into	the	ventral	striatum,	

dorsal	striatum	and	overlaying	cortex	of	WT	and	Snca	-/-	mice.	Mice	were	sacrificed	90	days	post	

injection	by	overdose	with	ketamine/xylazine.	

	

Sample	Preparation	for	LC-MS/MS:	Briefly,	the	midbrain	and	striatum	of	the	injected	and	non-

injected	sides	were	dissected	and	kept	separate	throughout	the	workflow.	Two	midbrain	and	

striatum	regions	of	the	injected	side	were	combined	to	generate	one	biological	sample	for	the	

phosphoproteomic	analysis.	The	same	approach	was	employed	for	the	non-injected	side.	Three	

biological	samples	for	WT	and	Snca	-/-	for	each	injected	and	non-injected	side	were	analyzed	

through	the	phosphoproteomic	workflow.	Sample	preparation	was	done	as	previously	described	

in	Carr	et	al.29,	and	in	Chapter	3.	After	peptide	separation	by	high-pH	reverse	phase	

chromatography,	95%	of	peptides	were	combined	in	a	concatenated	pattern	into	12	fractions	
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for	phosphoproteomic	analysis.	Lyophilized	phosphopeptides	fractions	were	resuspended	in	

50%	acetonitrile/0.1%	trifluoroacetic	acid		(TFA)	and	then	diluted	1:1	with	100%	

acetonitrile/0.1%	TFA.	These	samples	were	then	enriched	for	phosphorylation	by	incubation	

with	10	µl	with	immobilized	metal	affinity	chromatography	(IMAC)	for	30	min.	Enriched	IMAC	

beads	were	the	loaded	onto	C18	silica-packed	stage	tips,	washed	twice	with	50	µl	of	80%	

acetonitrile/0.1%	TFA	and	100	µl	of	1%	formic	acid.	Phosphopeptides	were	then	eluted	from	

IMAC	beads	with	3	washes	of	70	µl	500	mM	dibasic	sodium	phosphate,	pH	7.0,	(Sigma,	S9763)	

and	2	washes	of	100	µl	of	1%	formic	acid.	Elution	from	stage	tips	was	then	performed	with	60µl	

of	50%	acetonitrile/0.1%	formic	acid.	Washes	were	performed	on	a	tabletop	centrifuge	at	a	

maximum	speed	of	3,500	g.		

	

LC-MS/MS	and	MS	Database	Searching	and	Data	Processing:	LC-MS/MS	and	MS	Database	

Searching	using	MaxQuant	(1.5.1.2)	was	performed	as	described	in	Chapter	3.		

	

Statistical	Analysis:	SILAC	ratios	were	calculated	as	described	in	Chapter	3.	Briefly,	The	

Heavy/Light	(H/L)	ratio	in	the	non-injected	side	was	divided	by	the	H/L	ratio	in	the	injected	side	

to	compute	the	injected/non-injected	ratio	of	ratios.		A	phosphosite	was	considered	quantified	

in	WT	if	this	ratio	of	ratios	was	computed	in	in	all	3	biological	replicates;	it	was	considered	

quantified	in	Snca	-/-	if	this	ratio	of	ratios	was	computed	in	all	3	biological	replicates.	This	

resulted	in	the	quantification	of	2,763	phosphosites	(from	1,445	phosphoproteins)	in	WT	and	

2,112	phosphosites	(from	1,110	phosphoproteins)	in	Snca	-/-.	A	paired	Student’s	T-Test	was	

then	used	to	calculate	the	significance	of	the	differential	expression	for	the	phosphosites	

quantified	in	WT	and	Snca	-/-.	p-Values	<	0.05	were	considered	significant.	This	yielded	136	
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phosphosites	(from	124	phosphoproteins)	in	WT	and	75	phosphosites	(from	69	

phosphoproteins)	in	Snca	-/-	that	were	significant.	Next,	we	eliminated	phosphoproteins	that	

overlapped	between	WT	and	Snca	-/-,	since	we	could	not	attribute	the	significant	change	to	α-

synuclein	aggregation	versus	the	PFF	injection.	There	were	9	phosphoproteins	that	overlapped	

in	WT	and	Snca	-/-.	Eliminating	these	resulted	in	a	final	significant	list	of	126	phosphosites	(from	

115	phosphoproteins)	in	WT	and	65	phosphosites	(from	60	phosphoproteins)	in	Snca	-/-.	

	

Heatmap	Generation:	Heatmaps	were	created	using	pHeatmap	in	Rstudio.	Clustering	distances	

were	calculated	by	row	and	column	with	either	Euclidean	or	Manhattan	metrics,	n-	dimensional	

real	vector	space	with	fixed	Cartesian	coordinate	system,	and	clustered	by	either	ward.D2	or	

average	linkage	methodology,	UPGMA.		

	

Gene	Ontology	Enrichment	Analysis:	DAVID	Bioinformatics	Resources	6.7	was	used	for	

enrichment	analysis.	For	WT,	the	1,445	quantified	phosphoproteins	in	WT	were	used	as	

background.	The	115	significantly	changed	phosphoproteins	were	used	as	a	list	and	the	

enrichment	of	Biological	Processes	was	examined.		Similarly	for	Snca	-/-,	the	1,110	quantified	

phosphoproteins	were	used	as	background	and	the	60	significant	phosphoproteins	were	used	as	

a	list.	Those	biological	processes	with	p-values	<	0.05	were	considered	significant,	and	fold-

changes	were	determined	using	the	DAVID	software.	

4.4	Results	
	

Quantitative	Phosphoproteomics	in	PFF	Mouse	Model	
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With	the	goal	of	quantifying	changes	in	phosphorylation	signaling	in	the	brain	due	to	α-synuclein	

aggregation,	we	decided	to	use	a	modified	version	of	a	recently	developed	mouse	model27.	In	

this	model,	α-synuclein	pre-formed	fibrils	(PFFs)	are	intrastriatally	injected	into	the	right	

hemisphere	of	a	wildtype	(WT)	mouse	brain.	This	induces	a	cascade	of	progressive	α-synuclein	

aggregation	in	synaptically	connected	regions,	concomitant	with	dopaminergic	degeneration	in	

the	injected	side	only,	and	motor	symptoms.	Importantly,	injection	of	PFFs	into	α-synuclein	null	

mice	(Snca	-/-)	does	not	result	in	this	phenotype.	This	model	has	been	replicated	in	mouse30,31	

and	rats32,	and	recapitulates	the	cardinal	features	of	Parkinson’s	disease.	We	modified	this	

model	to	accelerate	pathology	by	injecting	triple	the	load	of	PFFs.	90	days	post	injection	(dpi),	

we	documented	a	19%	loss	of	tyrosine	hydroxylase	positive	neurons	and	increased	α-synuclein	

aggregation	in	the	injected	side	of	WT	mice	(see	Chapter	3).		

To	measure	the	relative	abundance	changes	of	phosphorylation	due	to	α-synuclein	aggregation,	

we	employed	a	recently	described	quantitative	mass	spectrometry	(MS)	based	methodology29.	

This	method	utilized	13C-Stable	Isotope	Labeling	in	Mammals	(SILAM)33,34	as	an	internal	standard	

to	quantify	phosphosite	changes.	First,	we	extracted	the	midbrain	and	striatum	from	the	

injected	and	non-injected	sides	of	the	mouse	that	was	sacrificed	90	dpi.	The	tissue	from	the	

injected	and	non-injected	sides	was	kept	separate	for	the	entire	workflow	(Figure	4.1).	We	

combined	tissue	from	two	mice	for	each	biological	replicate	in	order	to	have	enough	sample	for	

the	phosphoproteomic	analysis.	The	injected	and	non-injected	sample	from	the	PFF	injected	

mouse	was	then	independently	mixed	with	the	SILAM	tissues	in	a	1:1	ratio,	followed	by	

homogenization,	enzymatic	peptide	digestion,	and	separation	by	high-pH	reverse	phase	liquid	

chromatography	(RPLC).	These	peptides	were	then	enriched	for	phosphopeptides	with	

immobilized	metal	affinity	chromatography	(IMAC)	followed	by	LC-MS/MS.	
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To	quantify	phosphosites,	a	ratio	of	ratios	approach	was	taken	whereby	the	SILAM/Non-Injected	

ratio	was	divided	by	the	SILAM/Injected	ratio	to	generate	the	Injected/Non-Injected	ratio.	This	

allows	us	to	compare	the	relative	abundance	change	of	a	given	phosphosite	in	the	injected	side	

compared	with	the	non-injected	side.	We	performed	three	biological	replicates	for	WT	and	

three	for	Snca	-/-.	We	used	Snca	-/-	to	account	for	phosphosite	changes	induced	by	the	injection	

of	PFFs.	Our	analysis	resulted	in	the	quantification	of	2,763	phosphosites	(from	1,445	

phosphoproteins)	in	WT	(Supplementary	Table	11)	and	2,112	phosphosites	(from	1,110	

phosphoproteins)	in	Snca	-/-	(Figure	4.2A,	Supplementary	Table	12).	The	distribution	of	the	log2	

transformed	ratio	of	ratios	for	WT	Snca	-/-	shows	a	unimodal	distribution	centered	on	log2=0	

(Figures	4.2B	and	C).	

	

Identification	of	Significantly	Altered	Phosphosites	

	

To	identify	phosphosites	whose	relative	abundance	signififcantlty	changed,	several	filtering	

steps	were	applied.	First,	a	paired	Student’s	T-Test	was	applied	to	each	quantified	phosphosite	

in	WT	and	Snca	-/-.	p-Values	<	0.05	were	considered	significant,	resulting	in	136	(from	124	

phosphoproteins)	and	75	phosphosites	(from	69	phosphoproteins)	in	WT	and	Snca	-/-,	

respectively.	Then,	phosphosites	found	in	both	WT	and	Snca	-/-	were	excluded	since	the	change	

could	be	attributed	to	the	injection	of	PFFs	and	not	α-synuclein	aggregation.	After	elimination	of	

the	9	phosphoproteins	found	in	both	groups,	the	final	significant	list	consisted	of	126	

phosphosites	(from	115	phosphoproteins)	and	65	phosphosites	(from	60	phosphoproteins)	in	

WT	and	Snca	-/-,	respectively	(breakdown	depicted	in	Supplementary	Figure	4.1;	Supplementary	

Table	13).	Volcano	plots	depicting	the	significant	phosphosites	in	WT	and	Snca	-/-	depict	the	
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average	differential	expression	versus	significance	(Figures	4.3A	and	B).	Heatmaps	generated	

show	that	phosphosites	that	either	significantly	increase	or	decrease	cluster	together	across	

biological	replicates,	demonstrating	the	consistency	in	the	relative	abundance	changes	across	

replicates	(Figures	4.3C	and	D).		

	

Exploration	of	Biological	Processes	and	Pathways	that	are	Altered	in	Response	to	α-Synuclein	

Aggregation	

	

Next,	we	interrogated	the	significantly	altered	phosphosites	in	order	to	elucidate	changes	in	

signaling	events	in	response	to	α-synuclein	aggregation.	First,	the	distribution	of	phosphorylated	

amino	acids	in	the	significantly	altered	phosphosites	was	compared	with	the	total	quantified	

phosphosites	(Figure	4.4A).	Serine	phosphorylation	comprised	85%	-	93%	of	the	total	

phosphorylation,	followed	by	threonine	with	8%	-	14%	and	tyrosine	with	0%	-	2%.	Overall,	no	

significant	deviations	were	detected,	suggesting	that	significant	changes	did	not	preferentially	

occur	on	a	particular	amino	acid.	Next,	the	enrichment	of	biological	processes	among	the	

significant	phosphoproteins	in	WT	and	Snca	-/-	were	determined	(Figure	4.4B).	Among	WT	

phosphoproteins,	endosome	transport,	mitosis,	membrane	organization	and	neurological	

systems	were	significantly	enriched	2	–	7	fold.	This	is	consistent	with	disruptions	in	cellular	

signaling	and	the	cell	cycle.	Among	the	significant	Snca	-/-	phosphoproteins,	only	protein	kinase-

related	processes	were	enriched,	suggesting	that	kinases	respond	to	the	injection	of	PFFs.	

Finally,	a	global	view	of	perturbed	pathways	in	WT	was	determined	(Figure	4.4C).	This	revealed	

that	vesicle-mediated	transport	and	the	immune	system	respond	in	WT,	suggesting	that	cellular	
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communication	and	defense	systems	are	altered	in	response	to	endogenous	α-synuclein	

aggregation	in	the	brain.		

	

4.5	Discussion	
	

The	precise	mechanisms	by	which	dysfunction	in	cellular	signaling	pathways	contributes	to	

neurodegeneration	in	PD	and	other	synucleinopathies	remains	incompletely	understood.	

Initially,	proteostasis	mechanisms	aimed	at	maintaining	proper	protein	homeostasis,	including	

the	ubiquitin/proteasome	system,	autophagy,	and	the	unfolded	protein	response,	are	likely	

perturbed	due	to	α-synuclein	aggregation.	Later,	cell-death	pathways,	including	p53,	JNK	

signaling,	cell-cycle	reactivation,	become	involved35.	Intervening	with	these	later	pathways	could	

provide	a	therapeutic	strategy	to	mitigate	the	neurotoxicity	associated	with	α-synuclein	

aggregation	in	human	disease	

Our	work	aimed	to	shed	light	on	changes	in	phosphorylation	signaling	induced	by	endogenous	

α-synuclein	aggregation	in	the	brain.	Given	the	documented	changes	in	phosphorylation	of	

proteins	implicated	in	PD,	α-synuclein18	and	the	14-3-3	proteins36,	we	reasoned	that	global	

phosphorylation	may	be	perturbed.	We	documented	that	126	phosphosites	were	significantly	

changed	due	to	α-synuclein	aggregation.	These	phosphoproteins	were	involved	in	various	

aspects	of	cellular	signaling,	including	endosome	transport,	vesicle-mediated	transport	and	

neurological	systems.	Further	investigation	of	these	pathways	may	reveal	phosphorylation-

mediated	signaling	events	that	contribution	to	dopaminergic	degeneration	in	PD.		
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Figure	4.1	Overview	of	Phosphoproteomic	Workflow	
The	midbrain	and	striatum	from	the	injected	side	of	two	mice	are	collected	and	combined.	The	
same	is	done	from	the	non-injected	side.	These	samples	are	then	independently	mixed	and	
homogenized	in	a	1:1	ratio	with	SILAM	brain	tissue.	The	mixture	is	then	digested	with	trypsin	
and	LysC,	followed	by	high-PH	RPLC.	95%	of	the	resulting	peptides	are	then	combined	into	12	
fractions	in	a	concatenated	pattern.	IMAC	enrichment	is	then	used	to	enrich	for	
phosphorylated	peptides.	Following	LC-MS/MS,	the	relative	abundance	changes	of	the	
phosphopeptides	are	determined	using	a	ratio	of	ratios	calculation.	Three	biological	
replicates	in	both	WT	and	Snca	-/-	injected	mice	were	completed.		
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Figure	4.2	Phosphosites	Quantified	in	WT	and	Snca	-/-	
(A)	A	phosphosite	is	considered	quantified	if	the	relative	abundance	change	has	been	
determined	in	all	three	replicates.	Using	this	criterion,	2,763	phosphosites	(from	1,445	
phosphoproteins)	and	2,112	phosphosites	(from	1,110	phosphoproteins)	were	quantified	in	WT	
and	Snca	-/-,	respectively.		
Density	plots	of	the	log2	transformed	ratio	of	ratios	of	(B)	WT	and	(C)	Snca	-/-.		
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Figure	4.3	Significantly	Changed	Phosphosites	
Volcano	plots	showing	average	differential	expression	verses	significance	for	(A)	WT	and	(D)	
Snca	-/-.	Red	dots	represent	those	phosphosites	that	have	a	p-value	of	<	0.05.	
Heatmaps	of	unidirected	clustering	of	the	phosphosites	that	significantly	changed	in	(C)	WT	and	
(D)	Snca	-/-	shows	that	the	relative	abundance	changes	are	clustering	by	columns	(injected	
versus	non-injected).			
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Figure	4.4	Properties,	Biological	Processes	and	Pathways	of	Significantly	Altered	
Phosphoproteins	
(A)	Amino	acid	distribution	of	phosphosites	quantified	in	WT,	Snca	-/-,	including	all	and	
significant	phosphosites.	
(B)	Enriched	biological	processes	of	the	significantly	altered	phosphoproteins	in	WT	and	Snca	-/-.	
In	each	set,	the	background	was	all	the	phosphoproteins	quantified	in	that	respective	genotype.		
(C)	Global	pathways	that	are	enriched	for	significantly	altered	phosphosites	in	WT.		
	

	

	

	

	

A

C

B



	
	

114	

	

	

	

Figure	4.1	Breakdown	of	Significantly	Changed	Phosphosites	
All	2,763	phosphosites	quantified	in	WT	were	used	to	identify	the	116	phosphosites	that	
significantly	changed.		
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CHAPTER 5 
 

Conclusions 
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5.1 Summary and Conclusions 
	

Neurodegenerative	diseases	present	a	significant	challenge	for	healthcare	systems,	patients	

afflicted	by	these	diseases,	and	scientists	attempting	to	understand	their	underlying	

mechanisms	and	develop	disease-modifying	therapies.	As	populations	continue	to	age,	the	

burden	of	these	diseases	is	expected	to	worsen.	The	number	of	people	afflicted	with	dementia	

is	expected	to	rise	from	over	46	million	people	today	to	over	130	million	people	by	20181.	The	

total	cost	associated	with	treatment	and	care	is	expected	to	rise	from	$818	billion	today	to	over	

$1	trillion	in	20181.	The	development	of	effective	disease-modifying	therapies	to	treat	these	

diseases,	especially	Alzheimer’s	disease	(AD)	and	Parkinson’s	disease	(PD),	is	urgently	needed.		

AD	is	the	most	common	neurodegenerative	disease	and	the	most	common	cause	of	dementia,	

accounting	for	60%-80%	of	cases2.	In	the	United	States,	it	is	the	sixth	leading	cause	of	death	and	

afflicts	approximately	5.4	million	people.	This	is	expected	to	rise	to	13.8	million	people	by	2050.	

Age	is	the	greatest	risk	factor,	with	one	in	nine	people	over	the	age	of	65	diagnosed.	Of	the	top	

10	causes	of	death	in	the	United	States,	only	AD	cannot	be	prevented	or	delayed3.	Early	

symptoms	include	difficulty	remembering	recent	conversations,	and	apathy	and	depression.	

Later	symptoms	include	confusion,	disorientation,	poor	judgment	and	eventually	impaired	

ability	to	walk,	speak	and	eat.		

PD	afflicts	7-10	million	people	worldwide,	including	approximately	1	million	people	in	the	United	

States4.	The	lifetime	risk	of	developing	PD	is	1.5%5.	Like	AD,	the	greatest	risk	factor	is	age,	with	

the	median	onset	age	of	60	and	4	percent	of	cases	being	diagnosed	before	the	age	of	504.	Men	

are	50%	more	likely	to	develop	PD	than	women6.	Early	symptoms	of	PD	include	subtle	motor	

deficiencies,	including	changes	in	writing,	impairments	in	dexterity,	and	dragging	one	foot	while	
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walking7.	As	the	disease	progresses,	symptoms	include	bradykinesia,	resting	tremor,	rigidity	and	

slurred	speech.		

Underlying	the	pathology	of	both	AD	and	PD,	as	well	as	other	neurodegenerative	diseases	

including	Amyotrophic	Lateral	Sclerosis	and	Huntington’s	disease	(HD),	is	protein	aggregation8–

10.	Though	many	of	the	proteins	that	misfold	in	these	diseases	have	been	identified,	the	

relationship	between	this	misfolding	and	neurodegeneration	is	unclear.	Filling	this	gap	would	

shed	light	on	biological	pathways	and	molecular	targets	that	could	be	modified	to	mitigate	cell	

death	and	thus	provide	a	therapeutics	relief.	In	this	study,	we	focused	on	the	aggregation	of	α-

synuclein,	a	140	amino	acid	protein	that	has	roles	in	synaptic	plasticity11.	Aggregation	of	α-

synuclein	is	implicated	in	several	diseases,	collectively	known	as	synucleinopathies.	Prominent	

among	these	are	PD	and	dementia	with	Lewy	Bodies	(DLB).		

In	these	studies	we	aimed	to	quantitatively	investigate	the	effect	of	endogenous	aggregation	of	

α-synuclein	on	the	proteostasis	network	of	the	brain.	The	proteostasis	network	refers	to	the	

diverse	and	integrated	cellular	machinery	and	pathways	that	function	to	maintain	proper	

protein	homeostasis,	including	protein	localization,	expression,	degradation,	folding	and	binding	

partners12.	We	focused	on	changes	in	both	protein	and	phosphorylation	levels	to	study	how	the	

proteostasis	network	is	perturbed	due	to	α-synuclein	aggregation	in	the	brain.		

To	accomplish	this,	we	utilized	a	recently	developed	mouse	model	of	endogenous	α-synuclein	

that	recapitulates	several	cardinal	features	of	PD.	Aggregation	is	induced	in	this	model	by	

intrastriatal	injection	of	pre-formed	fibrils	(PFFs)	of	α-synuclein	into	non-transgenic	(WT)	mice13.	

This	aggregation	of	endogenous	α-synuclein	is	progressive,	spreading	from	near	the	site	of	

injection	to	synaptically	connected	regions	over	a	180-day	period.	Concomitant	with	this	

progressive	aggregation	is	dopaminergic	degeneration	and	the	onset	of	a	motor	phenotype,	



	
	

118	

both	cardinal	features	of	PD.	Importantly,	aggregation	(in	the	midbrain	and	striatum)	and	

dopaminergic	degeneration	is	confined	to	the	injected	side	only,	allowing	us	to	use	the	non-

injected	side	as	an	internal	control.	Finally,	injection	of	PFFs	into	α-synuclein-null	mice	(Snca	-/-)	

fails	to	induce	this	pathology,	allowing	us	to	use	these	mice	to	control	for	the	effect	of	the	

injection	on	protein	and	phosphorylation	levels.	We	used	a	modified	version	of	this	model	

whereby	mice	were	triple-injected	instead	of	single-injected	in	order	to	accelerate	pathology.	

Before	analyzing	these	mice	further,	we	validated	that	the	expected	differences	between	the	

injected	and	non-injected	sides,	and	between	the	WT	and	Snca	-/-	mice,	were	maintained.	We	

found	that	α-synuclein	phosphorylated	at	Ser-129,	a	marker	for	pathology14,15,	was	confined	to	

the	injected	side	of	WT	mice.	Additionally,	we	quantified	a	19%	loss	in	dopaminergic	neurons	in	

the	injected	side	of	WT	mice	compared	with	the	non-injected	side,	versus	no	loss	in	the	Snca	-/-	

mice.	After	confirming	these	findings,	employed	a	quantitative	mass	spectrometry	(MS)-based	

approach	to	measure	the	relative	abundance	changes	in	protein	and	phosphorylation	levels	due	

to	α-synuclein	aggregation.	

Our	work	quantified	the	relative	abundance	changes	of	5,290	proteins	in	WT	and	3,335	proteins	

in	Snca	-/-	mice	and	2,983	phosphorylation	sites	in	WT	and	2,112	phosphorylation	sites	in	Snca	-

/-.	Comparing	the	quantified	proteins	in	our	work	to	proteins	identified	in	the	mouse	brain	in	

MS-based	studies	in	the	literature16–19	revealed	no	major	differences	in	terms	of	molecular	

weight,	biological	function	or	cellular	localizations.	This	adds	confidence	that	the	proteins	

quantified	in	our	study	do	not	significantly	differ	from	those	found	in	other	studies.	Additionally,	

there	were	significant	declines	in	the	relative	abundance	of	proteins	selectively	expressed	in	

dopaminergic	neurons	in	WT	but	not	Snca	-/-	mice,	including	tyrosine	hydroxylase	(TH),	

aromatic-L-amino-acid	decarboxylase	(Addc),	synaptic	vesicular	amine	transporter-2	(VMAT2),	
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and	dopamine	transporter	(DAT).	The	declines	in	TH,	Addc	and	VMAT2	were	validated	by	

Western	blot,	adding	further	confidence	in	our	model	and	approach.	Collectively,	these	analyses	

demonstrate	the	comprehensiveness	and	selectivity	of	our	approach,	and	add	confidence	in	our	

findings.		

Statistical	analysis	of	the	quantified	proteins	and	phosphosites	resulted	in	the	identification	of	

311	proteins	(152	that	increased	and	159	that	decreased	in	the	injected	side)	and	133	

phosphosites	(from	121	phosphoproteins)	whose	relative	abundance	significantly	changed.	Of	

the	proteins	that	significantly	changed,	we	found	that	RNA	transport	and	the	immune	response	

were	enriched	among	the	proteins	that	increased	in	the	injected	side,	and	that	vesicle-mediated	

transport,	ion	transmembrane	transport	and	microtubule	organization	was	enriched	in	the	

proteins	that	decreased.	Among	the	phosphoproteins	that	significantly	changed,	vesicle-

mediated	transport	and	membrane	organization	were	enriched.	For	the	phosphoproteins	we	did	

not	separate	the	phosphosites	that	increased	and	decreased	since	the	direction	of	the	change	in	

relative	abundance	is	not	necessarily	indicative	of	the	change	in	activity	(i.e.	and	increase	in	

phosphorylation	does	not	necessarily	mean	an	increase	in	activity).	These	enrichment	analyses	

from	the	proteomics	and	phosphoproteomics	suggest	that	cellular	signaling	is	perturbed	in	

response	to	α-synuclein	aggregation,	consistent	with	the	documented	dopaminergic	

degeneration	in	this	model	and	data	from	other	studies13,20–22.		

Of	the	311	proteins	and	135	phosphosites	that	significantly	changed,	we	decided	to	focus	on	

Lmp7	(also	known	as	proteasome	subunit	beta	8,	or	psmb8)	for	three	reasons.	First,	it	had	the	

greatest	increase	of	the	152	proteins	that	significantly	increased	(236%).	Second,	it	is	involved	in	

the	immune	response,	a	topic	that	has	garnered	increased	attention	as	a	potential	mediator	of	

α-synuclein	aggregation-mediated	toxicity	in	PD23.	And	finally,	it	is	a	catalytic	subunit	of	the	



	
	

120	

immunoproteasome,	which	has	been	implicated	in	protein	aggregation	diseases	including	AD	

and	HD24–26,	but	not	in	synucleinopathies.	We	first	validated	the	increase	detected	by	

proteomics	by	Western	blot.	Then,	using	human	DLB	samples,	we	found	that	Lmp7	levels	and	

activity	were	elevated	in	disease	compared	with	healthy	controls.	This	is,	to	our	knowledge,	the	

first	reported	association	between	the	immunoproteasome	and	synucleinopathies.		

Lmp7	is	one	of	the	three	cardinal	subunits	of	the	immunoproteasome.	Upon	stimulation	by	

proinflammatory	cytokines	or	oxidative	stress,	expression	of	the	catalytic	subunits	of	the	

immunoproteasome,	namely	Lmp2,	MECL-1	and	Lmp7,	is	elevated27,28.	These	proteins	then	

replace	the	catalytic	subunits	of	the	constitutive	proteasome,	namely	β1,	β2	and	β5,	respectively.	

The	immunoproteasome,	which	has	different	cleavage	site	preferences	and	catalytic	activity	

than	the	constitutive	proteasome,	generates	antigenic	peptides	that	are	recognized	by	MHC	

class	I	molecules29–32.	These	MHC	class	I	molecules	then	present	these	peptides	on	the	cell	

surface	for	detection	and	destruction	by	CD8+	T	cells33.	

Though	the	immunoproteasome	has	not	been	directly	linked	to	synucleinopathies,	a	recent	

study	found	a	link	between	MHC-I	and	dopaminergic	neurons34.	This	study	documented	the	

expression	of	MHC-I	in	the	substantia	nigra	of	both	control	and	PD	samples	leading	to	a	

proposed	model	that	links	MHC-I	and	dopaminergic	degeneration.	In	this	model,	IFNγ	induced	

by	the	aggregation	α-synuclein	and	the	oxidative	stress	caused	by	cytosolic	dopamine	results	in	

the	expression	of	MHC-I.	This	MHC-I	is	then	loaded	with	antigenic	peptides	and	exposed	on	the	

cell	surface	for	destruction	by	cytotoxic	T	cells	(CTLs).	Though	the	endogenous	source	of	these	

peptides	was	not	considered,	our	work	may	provide	the	link.		

The	oxidative	stress	and	IFNγ	results	in	the	increased	expression	of	the	immunoproteasome,	as	

we	document	in	our	studies.	The	immunoproteasome	then	interacts	with	and	degrades	α-
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synuclein	fibrils	more	efficiently	than	the	constitutive	proteasome.	This	is	consistent	with	the	

documented	preference	of	the	immunoproteasome	to	degrade	basic	proteins35.	Furthermore,	in	

our	studies	using	cell	free	systems,	we	demonstrate	that	degradation	of	α-synuclein	fibrils	

occurs	more	rapidly	by	the	immunoproteasome	than	the	constitutive	proteasome.	Furthermore,	

the	products	of	this	degradation	reaction	are	unable	to	accelerate	the	aggregation	of	soluble	α-

synuclein,	a	feature	of	bona	fide	protein	aggregates9.	The	resulting	α-synuclein	peptides	are	

then	loaded	onto	the	MHC-I	molecules	for	presentation	to	CTLs.	Thus,	dopaminergic	neuron	

degeneration	in	synucleinopathies	may	be	enhanced	by	accelerated	degradation	of	α-synuclein	

by	the	immunoproteasome,	leading	to	MHC-1	presentation	on	the	cell	surface,	and	recognition	

by	CTLs.		

Alternatively,	the	degradation	of	α-synuclein	fibrils	by	the	immunoproteasome	could	be	

neuroprotective.	Though	there	is	debate	as	to	whether	the	aggregation	of	α-synuclein	causes	

cell	death	via	a	toxic	gain-of-function	or	a	toxic	loss-of-function36,	the	finding	that	α-synuclein-

null	mice	are	viable	and	do	not	have	shortened	lifespan	supports	a	toxic	gain-of-function37,38.	

Not	surprisingly,	many	therapeutic	strategies	have	attempted	to	remove	α-synuclein	aggregates	

as	a	protective	mechanism39.	These	include	immunization	against	α-synuclein40,41,	small	

molecule	inhibition	of	aggregation42,43,	and	the	exogenous	introduction	of	protein	

disaggregases44.	This	last	approach	is	particularly	troublesome	given	the	difficulty	in	introducing	

these	proteins	intracellularly	and	the	cofactors	that	are	needed	for	these	large	protein	

complexes	to	function.	The	immunoproteasome	may	provide	a	novel,	endogenous	therapeutic	

target	that	can	be	modulated	to	mitigate	α-synuclein-mediated	neurodegeneration.	

Augmentation	of	the	immunoproteasome	could	accelerate	α-synuclein	degradation	and	thus	
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retard	neuron	death.	Additionally,	engineering	of	the	immunoproteasome	may	increase	the	

activity	and	selectivity	for	α-synuclein	aggregates.		

Determination	of	the	role	of	the	immunoproteasome	in	enhancing	or	mitigating	

synucleinopathies	is	critical	for	the	ultimate	goal	of	therapeutic	development.	A	key	tool	that	

could	be	used	to	test	this	is	the	immunoproteasome-null	mouse.	These	mice	lack	all	three	

catalytic	subunit	of	the	immunoproteasome	and	exhibit	the	expected	defects	in	presenting	

several	classes	of	MHC-I	epitopes45.	Injection	of	PFFs	into	these	mice	followed	by	monitoring	of	

motor	symptoms,	dopaminergic	degeneration,	and	α-synuclein	aggregation	would	clarify	the	

role	of	the	immunoproteasome.	We	expect	decreased	α-synuclein-positive	aggregates	in	the	

immunoproteasome-null	injected	mice.	While	enhanced	dopaminergic	degeneration	and	motor	

symptoms	would	suggest	a	neuroprotective	role	for	the	immunoproteasome,	decreased	

degeneration	and	motors	symptoms	would	be	evidence	for	a	neurotoxic	role.		

Ultimately,	our	work	contributes	three	major	new	findings.	First,	we	further	characterized	an	

important	mouse	model	of	α-synuclein	aggregation	that	will	assist	future	researchers	using	this	

model.	Second,	we	provide	a	rich	source	of	the	relative	abundance	changes	of	proteins	and	

phosphosites	in	the	brain	in	response	to	the	endogenous	aggregation	of	α-synuclein.	This	could	

provide	a	valuable	resource	for	investigators	studying	how	proteostasis	pathways	respond	to	α-

synuclein	aggregation	specifically,	or	protein	aggregation	broadly.	Finally,	we	document,	for	the	

first	time,	an	increase	in	the	levels	and	activity	of	the	immunoproteasome	in	a	human	

synucleinopathy,	and	explore	its	activity	against	α-synuclein	fibrils	compared	with	the	

constitutive	proteasome.	We	believe	the	immunoproteasome	is	a	putative	therapeutic	target	

for	treating	synucleinopathies	like	PD	and	DLB,	and	merits	further	attention.		
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