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Statistical Methods for Human Microbiome Data Analysis

Abstract
The human microbiome is the totality of the microbes, their genetic elements and the interactions they have
with surrounding environments throughout the human body. Studies have implicated the human microbiome
in health and disease. Two central themes of human microbiome studies are to identify potential factors
influencing the microbiome composition, and to define the relationship between microbiome features and
biological or clinical outcomes. With the development of next generation sequencing technologies, the human
microbiome composition can be interrogated using high-throughput DNA sequencing. One strategy
sequences the bacterial 16S ribosomal RNA gene for species identification. These 16S sequences are usually
clustered into Operational Taxonomic Units (OTUs). Analysis of such OTU data raises several important
statistical challenges, including taking into account the phylogenetic relationship among OTUs and modeling
high-dimensional overdispersed count data. This dissertation presents three statistical methods developed
specifically for 16S data analysis centering around the two themes. To test the association between overall
microbiome composition and a covariate/an outcome, a testing procedure based on a generalized UniFrac
distance was developed. The generalized UniFrac distance corrects the unduly weighting of classic UniFrac
distances on either highly abundant or rare lineages, and was shown to be more powerful than the classic
UniFracs. Under the framework of canonical correlation analysis (CCA), a structure-constrained sparse CCA
was proposed to select the OTUs and their correlated covariates. A phylogenetic structure-constrained
penalty function was imposed to induce certain smoothness on the linear coefficients according to the OTU
phylogenetic relationship. Structure-constrained sparse CCA performed much better than sparse CCA in
selecting relevant OTUs. Finally, a sparse Dirichlet-multinomial regression (SDMR) model was developed to
link the microbiome composition to environmental covariates and to select the most important covariates and
their affected OTUs. SDMR accounts for the overdispersion of OTU counts and uses a sparse group L1
penalty function to facilitate selection of covariates and OTUs simultaneously. These methods were illustrated
using simulations as well as a real human gut microbiome data set from a study of dietary effects on gut
microbiome composition.
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ABSTRACT

STATISTICAL METHODS FOR HUMAN MICROBIOME DATA ANALYSIS

Jun Chen

Hongzhe Li, PhD

The human microbiome is the totality of the microbes, their genetic elements and the in-

teractions they have with surrounding environments throughout the human body. Studies

have implicated the human microbiome in health and disease. Two central themes of human

microbiome studies are to identify potential factors influencing the microbiome composi-

tion, and to define the relationship between microbiome features and biological or clinical

outcomes. With the development of next generation sequencing technologies, the human

microbiome composition can be interrogated using high-throughput DNA sequencing. One

strategy sequences the bacterial 16S ribosomal RNA gene for species identification. These

16S sequences are usually clustered into Operational Taxonomic Units (OTUs). Analysis of

such OTU data raises several important statistical challenges, including taking into account

the phylogenetic relationship among OTUs and modeling high-dimensional overdispersed

count data. This dissertation presents three statistical methods developed specifically for

16S data analysis centering around the two themes. To test the association between over-

all microbiome composition and a covariate/an outcome, a testing procedure based on a

generalized UniFrac distance was developed. The generalized UniFrac distance corrects the

unduly weighting of classic UniFrac distances on either highly abundant or rare lineages, and

was shown to be more powerful than the classic UniFracs. Under the framework of canon-

ical correlation analysis (CCA), a structure-constrained sparse CCA was proposed to select

the OTUs and their correlated covariates. A phylogenetic structure-constrained penalty

function was imposed to induce certain smoothness on the linear coefficients according to

the OTU phylogenetic relationship. Structure-constrained sparse CCA performed much

better than sparse CCA in selecting relevant OTUs. Finally, a sparse Dirichlet-multinomial
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regression (SDMR) model was developed to link the microbiome composition to environ-

mental covariates and to select the most important covariates and their affected OTUs.

SDMR accounts for the overdispersion of OTU counts and uses a sparse group l1 penalty

function to facilitate selection of covariates and OTUs simultaneously. These methods were

illustrated using simulations as well as a real human gut microbiome data set from a study

of dietary effects on gut microbiome composition.
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CHAPTER 1 : Introduction

1.1. Human microbiome in health and disease

We are not living alone. The human body is home to 10 trillion (1014) microbial cells,

exceeding at least 10-fold the number of human cells (Whitman et al., 1998). The totality of

the microbes (microbiota), their genomes (metagenome) and the environment in which they

interact constitutes the human microbiome (Cho and Blaser, 2012). The human microbiome

contains taxa from across the tree of life including bacteria, viruses, micro-eukaryotes, and

archaea, that interact with one another and with the host, greatly impacting the human

health and physiology (Clemente et al., 2012). The human microbiome encodes 100 times

more genes than the human genome, providing traits that humans did not need to evolve

on their own (Qin et al., 2010). The emerging concept of human “supra-organism” views

humans as a composite of microbial and human cells with human genetic landscape as an

aggregate of the genes in the human genome and the microbiome, and the human metabolic

features as a blend of human and microbial traits (Turnbaugh et al., 2007). In contrast

to the human genome, the human microbiome is highly variable. It displays substantial

intra-individual variation at different body sites (gut, skin, lung, vagina, oral cavity etc.),

inter-individual variation at the same body sites and intra-individual variation at different

times (Costello et al., 2009).

The human microbiome plays an important role in promoting human health. For exam-

ple, the human gut microbiome can harvest otherwise inaccessible nutrients, synthesize

certain vitamins, promote the proper development of the immune system and protect us

from pathogens (Turnbaugh et al., 2007). Increasingly more human microbiome studies

have implicated the human microbiome in the pathogenesis of many human diseases such

as obesity, diabetes, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS),

vaginosis and even cancers (Cho and Blaser, 2012; Plottel and Blaser, 2011; Pflughoeft

and Versalovic, 2011; Littman and Honda, 2012; Holmes et al., 2011; Kinross et al., 2011).
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Higher Firmicutes to Bacteroidetes ratios and reduced species diversity have been observed

in obese humans (Ley et al., 2005, 2006). Two recent studies found that the abundance

of phylum Fusobacteria increased significantly in the colon of colorectal cancer patients

(Castellarin et al., 2012; Kostic et al., 2012). These findings have profound implications. If

the microbiome effect is causal, new therapeutic strategies can be designed to treat diseases

by modulating the microbiome composition (Virgin and Todd, 2011; Collison et al., 2012).

Even if the microbiome alteration is a result of disease process, the affected taxa in the

microbiome can still serve as biomarkers for disease prevention and early diagnosis (Segata

et al., 2011; Knights et al., 2011).

Many factors can influence the human microbiome composition (Turnbaugh et al., 2007).

These factors include the host genotype (Spor et al., 2011), host physiological status such

as aging (Biagi et al., 2010), host pathophysiological status (Turnbaugh et al., 2009), host

lifestyle such as dietary habit (De Filippo et al., 2010; Wu et al., 2011a) and host environ-

ment (Dominguez-Bello et al., 2010). The genotypic effect on the microbiome may explain

the missing link between genetics and disease. A disease-susceptibility genotype may af-

fect the disease outcome through the alteration of the microbiome composition (Virgin and

Todd, 2011; Spor et al., 2011).

Fueled by technological advancement, large-scale endeavors such as the Human Microbiome

Project (HMP) (Peterson et al., 2009) by the US National Institutes of Health and the

European Metagenomics of the Human Intestinal Tract (MetaHIT) (Ehrlich, 2011) have

been undertaken to characterize the compositional range of the “healthy” microbiome, to

define the relationship between microbiome features and biological or clinical outcomes, and

to identify potential factors influencing the microbiome composition. To achieve these goals,

powerful statistical methods need to be developed to make full use of the data structure

and to guard against false discoveries in this ultra high-dimensional setting.

2



1.2. Metagenomic approaches for human microbiome studies

Prior to the era of high-throughput DNA sequencing, researchers study the microbiome by

cultivating the microbes from collected environmental samples, which is very laborious and

time-consuming, and yet the majority of the microbes can not be cultivated, blinding us

to see the global picture of the real microbial world. With the development of next gen-

eration sequencing such as Roche/454 pyrosequencing and Illumina Solexa sequencing, the

human microbiome can now be studied by direct DNA sequencing. The DNA sequencing

based approach to study the microbiome is called metagenomics. There are basically two

metagenomic approaches to sequence the microbiome (Kuczynski et al., 2011). The first

approach is 16S ribosomal RNA (rRNA) gene targeted amplicon sequencing, where part of

the 16S rRNA gene of the bacterial genome (1.5kb) is sequenced (Andersson et al., 2008).

This approach is used exclusively for determining the taxonomic composition and species

diversity of the bacterial community. One advantage of the 16S rRNA gene is its taxonomic

coverage: 16S rRNA gene is present in all bacteria. Furthermore, 16S rRNA gene contains

both conserved region that can be used to design PCR primers to amplify regions of inter-

est, and variable regions (V1-V9) that can be used for fine level taxonomic classification.

Another advantage is the availability of several large databases of 16S rRNA gene refer-

ence sequences and taxonomies, such as Ribosomal Database Project (RDP), Greengenes

and SILVA (Cole et al., 2009; DeSantis et al., 2006; Pruesse et al., 2007). As with any

PCR-based approach, there are problems of PCR bias and chimeric reads associated with

PCR amplification. However, by choosing appropriate primer set according to the studied

microbial community, the problem of PCR bias can be alleviated (Kuczynski et al., 2011).

By using efficient computational algorithms, the chimeric reads can be readily detected

(Haas, 2011). Due to its simplicity, relatively low cost and availability of mature analysis

pipelines, 16S rDNA sequencing is routinely employed to profile the taxonomic content of

the community.

The second approach to sequence the microbiome is shotgun metagenomic sequencing (sim-

3



ply referred to as metagenomic sequencing), which involves randomly sequencing all the

genomic DNA in the samples (Tringe et al., 2005; Gill et al., 2006; von Mering et al., 2007;

Dinsdale et al., 2008; Turnbaugh et al., 2009; Qin et al., 2010; Arumugam et al., 2011; Iver-

son et al., 2012) . This approach can reveal the gene content of the microbiome as well as

the taxonomic content. It has been reported that the taxonomic content of the microbiome

varies tremendously across individuals but the gene content remains similar, indicating the

importance of studying the gene content (Turnbaugh et al., 2009). The shotgun approach

is potentially unbiased and can be used to study other communities such as the viral com-

munity (Minot et al., 2011). The bottleneck of this approach is the development of efficient

computational tools (read mapping, binning and assembly) to process the massive amount

of short reads produced (Wooley and Ye, 2010). The ambiguity of the reads poses a great

challenge since each read can come from any region of any microbial genome of unknown

genome size and abundance with some regions being more divergent than others. Many

databases and software packages are being developed to analyzing the shotgun metage-

nomic data (Huson et al., 2007; Meyer et al., 2008; Markowitz et al., 2008; Seshadri et al.,

2007; Goll et al., 2010; Angiuoli et al., 2011) .

The statistical methods presented in this dissertation are developed specifically for 16S

rDNA sequence data, though they can also be adapted for analyzing shotgun metagenomic

data. The processing of 16S data can be taxonomy-dependent, where 16S sequences are

compared to existing 16S databases (Matsen et al., 2010), or taxonomy-independent, where

16S sequences are clustered based on their divergence. The taxonomy-independent approach

is more prevalent and many tools such as QIIME (Caporaso et al., 2010b), mothur (Schloss

et al., 2009) and VAMPS use this approach to process 16S sequences. Fig. 1 shows the

pipeline of 16S data generation and processing (QIIME pipeline). DNA is first extracted

from the environmental samples. Some variable region of the 16S rRNA gene such as V1-

V2 region is PCR amplified using barcoded primer set. Barcoding enables high-throughput

multiplex sequencing (Hamady et al., 2008). The barcoded PCR amplicons are pooled and

subject to Roche/454 pyrosequencing using the GS FLX platform. The average read length

4



of Roche/454 Genome Sequencer FLX Titanium system can be up to 500bp or more. The

Roche/454 platform produces sequence reads in SFF format (Standard Flowgram Format).

This *.sff file contains the original flowgrams (light signal strength) and quality scores for

each read in addition to other information. The platform also converts *.sff file into a

sequence (*.fna) file and quality (*.qual) file.

After obtaining the raw reads, samples are assigned to the multiplex reads based on bar-

codes, and low-quality and ambiguous reads are removed. The filtered sequences are clus-

tered into sequence clusters called Operational Taxonomic Units (OTUs) based on sequence

similarity. OTUs are intended to represent some degree of taxonomic relatedness. For ex-

ample, when sequences are clustered at 97% sequence similarity, each resulting cluster is

typically thought of as representing a biological species. OTU picking is a critical step of 16S

data processing and has a large effect on downstream analysis based on OTU data. The QI-

IME pipeline uses uclust algorithm (Edgar, 2010) to form OTUs as default. Currently there

are a number of competing algorithms for OTU picking (Sun et al., 2012). Determining

the optimal way of picking OTUs is an active research area. Each OTU has an associated

representative sequence. RDP classifier (Wang et al., 2007) can be used to assign a bacterial

lineage to the representative sequence. The RDP classifier is a naive Bayes classifier, which

provides taxonomic assignments from domain to genus, with confidence estimates for each

assignment. The OTU representative sequences are further aligned using template guided

alignment method (e.g. PyNAST) or de novo alignment method (e.g. MUSCLE). For large

data sets, PyNAST is preferred for its computational efficiency (Caporaso et al., 2010a).

Chimeric reads are removed based on the aligned sequences(Haas, 2011). A phylogenetic

tree is then built on the aligned sequences using a tree-building algorithm (e.g. FastTree,

Price et al. 2009) possibly after lanemasking the hypervariable regions. Optionally, a de-

noising procedure based on the flowgram data (*.sff) can be performed prior to the pipeline

to reduce sequencing errors due to homopolymers(Quince et al., 2009). The final output

of the pipeline is an OTU table recording the counts for each OTU in each sample and

a phylogenetic tree of the OTUs. The species-level OTUs can be aggregated into higher

5



taxonomic levels based on their assigned taxonomic lineages.

1.3. Motivation: The Penn gut microbiome project

As part of the Human Microbiome Demonstration Projects (UH2/UH3), the principal in-

vestigators here at Penn study the relationship between diet, genetic factors, and the gut

microbiome in Crohn’s disease. This is a collaborative project involving the PIs from Micro-

biology department (Rick Bushman) and Gastroenterology division(Gary Wu and James

Lewis). We propose to investigate the hypothesis that consistent changes in the human

gut microbiome are associated with Crohn’s disease, a form of inflammatory bowel dis-

ease, and that altered microbiota contributes to pathogenesis. Analysis of this problem

is greatly complicated by the fact that multiple factors influence the composition of the

gut microbiome, including diet, host genotype, and disease state. Sequencing data alone

cannot yield a useful picture of the role of the microbiome in disease if samples are con-

founded with uncontrolled variables. To untangle the major confounding variables, we first

conduct a Cross-sectional Study of Diet and Stool Microbiome Composition (COMBO), to

evaluate the association between dietary intake and the composition of the gut microbiome

in healthy subjects in the outpatient setting. About 100 human subjects were enrolled in

this study. The long-term dietary intake was determined by food frequency questionnaire

(FFQ). Based on the FFQ, the intake values of 214 nutrients were calculated by nutrition-

ists. Demographic data such as body mass index (BMI), age and sex were also available.

For these subjects, stool samples were collected and the V1-V2 region of the 16S rRNA gene

was sequenced by Roche/454 GS FLX Titanium system. Pyrosequencing produced about

one million reads with an average read length of about 350bp.

The statistical methods developed in this dissertation are mainly motivated by analysis of

the data from the COMBO project. Specifically, we develop new statistical methods to

address the following problems:

• Given an outcome/a covariate such as BMI and nutrient intake, we want to test the as-
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sociation between the covariate and the overall microbiome composition characterized

by the OTU abundances and their phylogenetic constraint.

• If there are a large number of covariates as in the COMBO data set, where we have

214 nutrients, we want to select the most important covariates/nutrients.

• Finally, we want to perform more detailed analysis and select not only the covariates

but also their associated OTUs.

The statistical methods to address these questions should take into account the character-

istics of the OTU data discussed in the next section.

1.4. Characteristics of OTU/taxa data and statistical challenges

Fig. 2A shows the OTU count table for the 98 COMBO samples. From the count table, we

can see five major characteristics of the OTU data.

First, the OTU count data are high-dimensional. The number of OTUs usually exceeds the

number of samples. For example, at the species level (97% similarity), the COMBO data

have 17,303 OTUs. Even consolidating the species-level OTUs into genera, we still have

127 genera. Variable selection becomes important for analysis of high-dimensional data.

Second, the OTUs are related by a phylogenetic tree (Fig. 2AB). The phylogenetic tree

provides an important prior knowledge on the evolutionary relationship among OTUs. It

can be useful in at least three ways:

The tree is informative to define a biologically meaningful distance measure. Consider a

scenario, where we have two microbial communities with each having a unique set of OTUs.

If the two sets of OTUs are closely related and interleaved on the tree, the two microbial

communities share much of their evolutionary history and intuitively their distance should

be small. On the other extreme, if these two sets of OTUs are located on different clades

of the tree, each community has their own unique evolutionary history and their distance

should be much larger than the first situation. Without the phylogenetic tree, we can not
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distinguish between these two situations.

The tree can guide OTU selection. Closely related OTUs are genetically more similar and

they are expected to have similar biological functions and respond to the environmental

perturbation in a similar way. They have a natural tendency to be selected together. This

is an important prior knowledge that we should exploit in OTU selection.

The tree also provides a hierarchical grouping of the OTUs. Environmental factor tends to

affect one/several OTU lineages (OTUs that share a common ancestor) of different depths.

Typically, microbiome data analysis is often performed at different taxonomic levels (genus,

family, order, class, phylum). However, the taxonomic classification is usually arbitrary.

Using the grouping structure implied by the OTU tree is more natural.

Third, the OTU counts are overdispersed, meaning that the variance of the counts is much

larger than what would be predicted by assuming a common multinomial model. Fig. 4B

shows that the counts generated by the multinomial model lacks variation compared to

the real counts (Fig. 4A). Models allowing for overdispersion should be used to model the

counts.

Fourth, the distribution of OTU abundance is very skewed (Fig. 2C). The majority of

the OTUs have very low abundance with a large fraction being singletons (OTUs with

only one sequence). The OTU count data are usually dominated by a small number of

highly abundant OTUs. However, it is hard to say the low-abundance OTUs are not

important. Statistical methods that place too much weight on the abundant lineages may

miss important findings if the biologically important change occurs in less abundant lineages.

Finally, the distribution of the OTU occurrence probability is also skewed (Fig. 2D). Only

a few OTUs are shared across samples, and the rest are seen in only a small percentage of

the samples. This results in excessive 0’s in the OTU data. Excessive 0’s may be a result

of count overdispersion or due to other mechanisms. Adequately modeling excessive 0’s is

important for OTU data.
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The original OTU data are high-dimensional count data on the phylogenetic tree. Since the

sequencing depth varies from sample to sample, the count data are usually normalized into

proportions. As a way of further summarization, the data can be represented as pairwise

distances between the samples, which can be thought as projecting the original data into

lower dimensional space. In principle, we can develop statistical methods on any level of

data summarization (counts, proportions and distances). However, from counts to distances,

a large amount of information is lost, and the statistical power will be reduced accordingly.

For proportion data, the variability associated with multinomial sampling is lost. Pairwise

distances only capture certain features of the data.

In summary, the statistical challenges of OTU data analysis include incorporation of the

OTU phylogenetic tree information, treatment of rare OTUs, modeling high-dimensional

counts with overdispersion and excessive 0’s, modeling high-dimensional composition/proportion

data, and defining distance measures that capture a variety of microbiome differences.

1.5. Organization of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents a distance based

method for testing the association between overall microbiome composition and environ-

mental/biological covariates. A generalized UniFrac distance (GUniFrac), which extends

the classic UniFrac distances (Lozupone and Knight, 2005; Lozupone et al., 2007), is de-

fined between two microbiomes. The power of GUniFrac based test is compared to other

UniFrac variants using simulations as well as the COMBO data set and an oropharyngeal

microbiome data set(Charlson et al., 2010).

When there are a large number of covariates, variable selection becomes important. Chap-

ter 3 and Chapter 4 provide two methods for selecting the most important covariates under

different frameworks. Chapter 3 proposes a method for structure-constrained sparse canon-

ical correlation analysis (ssCCA), taking into account the phylogenetic relationship among

OTUs. This method does not assume a specific probability model and can be regarded
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as an exploratory analysis method. It takes OTU proportion data and outputs the most

correlated OTUs and covariates. An efficient coordinate descent algorithm is implemented

to obtain the ssCCA solution. The performance of ssCCA is compared to sparse CCA using

simulations and the COMBO data set.

ssCCA takes the OTU proportion data, which does not consider the variation associated

with multinomial sampling, and the result does not show detailed individual OTU-covariate

associations. To deal with these limitations, a sparse Dirichlet-multinomial regression

(SDMR) method, which links the OTU counts to covariates under a regression setting,

is proposed. SDMR takes the OTU count data and outputs all identified associations. The

OTU counts are modeled using Dirichlet-multinomial distribution to account for overdis-

persion, and a sparse group l1 penalty function is imposed to achieve desired sparsity. A

block-coordinate descent algorithm is implemented to obtain the maximum penalized like-

lihood estimate. The selection performance of SDMR is also evaluated using simulations

and the COMBO data set in comparison to other possible models.

Chapter 5 concludes the dissertation with future research directions. Chapter 2-4 are self-

contained and can be read independently.
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Extract DNA  and 
PCR amplify  with 
barcoded primer

Pool amplicons
Pyrosequence

amplicons using 454’s 
GS FLX instrument

Quality control, assign 
sequences to samples 
using barcode and denoise

 align to reference alignment (e.g., using 
PYNAST), infer phylogeny (FastTree)

Species level OTUs can be 
summarized into higher
taxonomic levels (e.g. genus)

Cluster sequences into OTUs (97% level),Assign a taxonomic 
lineage to each OTU 
by RDP classifier

Figure 1: Pipeline for 16S sequence data generation and processing.
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Figure 2: Characteristics of OTU data illustrated using the COMBO data. (A)
The heatmap shows the OTU counts for the 98 COMBO samples. Rows represent samples
and columns correspond to OTUs. These OTUs are related by a phylogenetic tree colored
by phyla. The gray scale indicates the level of abundance on a log scale with white meaning
zero counts (see legend). (B) The phylogenetic tree of OTUs. (C) The histogram shows the
OTU abundance distribution. The OTU abundance (x-axis) is on the log scale. (D) The
histogram shows the distribution of the OTU occurrence probability.
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CHAPTER 2 : Associating Microbiome Composition with Environmental

Covariates using Generalized UniFrac Distance

In this chapter, we propose a new distance for characterizing the difference between two

microbial communities(microbiomes). Distance based statistical tests have been applied to

test the association of microbiome composition with environmental/biological covariates.

The unweighted and weighted UniFrac distances are the most widely used distance mea-

sures. However, these two measures assign too much weight either to rare lineages or to

highly abundant lineages, which can lead to loss of power when the important composition

change occurs in moderately abundant lineages. We develop generalized UniFrac distance

that extends weighted and unweighted UniFrac distances for detecting a much wider range

of biologically relevant changes. We evaluate the use of generalized UniFrac distance in

associating microbiome composition with environmental covariates using extensive Monte

Carlo simulations. Our results show that tests using the unweighted and weighted UniFrac

distances are less powerful in detecting abundance change in moderately abundant lineages.

In contrast, the generalized UniFrac distance is most powerful in detecting such changes, yet

it retains nearly all its power for detecting rare or highly abundant lineages. The generalized

UniFrac distance also has an overall better power than the joint use of unweighted/weighted

UniFracs distances. Application to two real microbiome data sets have demonstrated gains

in power in testing the associations between human microbiomes and dietary intake and

smoking. An R package has been developed for generalized UniFrac distance and is available

at http://cran.r-project.org/web/packages/GUniFrac.

2.1. Introduction

Understanding the compositional differences of microbial communities is essential in micro-

bial ecology. With the development of next generation sequencing technologies, microbiome

composition can now be determined by direct DNA sequencing without the need for labo-

rious cultivation. There has been great interest in human microbiome studies in different
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body sites, ranging from skin (Grice et al., 2009) to gut (Qin et al., 2010; Arumugam et al.,

2011; Muegge et al., 2011; Wu et al., 2011a) and respiratory tract (Charlson et al., 2010,

2011; Sze et al., 2012). Important insights have been gained from analysis of large-scale

human microbiome data, including the discovery of enterotypes (Arumugam et al., 2011)

and discovery of the link between diet and these enterotypes (Wu et al., 2011a).

Two recurring themes in human microbiome studies are to identify potential environmental

factors that are associated with microbiome composition, and to define the relationship

between microbiome features and biological or clinical outcomes. The goal is to provide a

better understanding of the factors that shape our microbiome and, potentially, contribute

to the development of new therapeutic strategies to modulate the microbiome composi-

tion (Spor et al., 2011; Virgin and Todd, 2011) and affect the human health. Testing the

association of microbiome composition with potential environmental factors using OTU

abundances directly is difficult due to high dimensionality, non-normality and phylogenetic

structure of the OTU data. Instead, distance based non-parametric test, in which a dis-

tance measure is defined between any two microbiome samples, is usually used to achieve

this goal (Fukuyama et al., 2012; Evans and Matsen, 2012; Kuczynski et al., 2010a; Wu

et al., 2011a, 2010; Charlson et al., 2010). The power of the distance based test depends

on a proper choice of a distance measure. Numerous distance measures have been proposed

to compare microbial communities (Kuczynski et al., 2010b; Swenson, 2011). Phylogenetic

distance measures, which account for the evolutionary relationship among species, provide

far more power because they exploit the degree of divergence between different sequences.

Among these, the UniFrac distances are the most popular ones (Lozupone and Knight,

2005; Lozupone et al., 2007). There are two versions of UniFrac distances: an unweighted

UniFrac distance that considers only species presence and absence information and counts

the fraction of branch length unique to either community, and a weighted UniFrac distance

that uses species abundance information and weights the branch length with abundance

difference. Unweighted UniFrac distance is most efficient in detecting abundance change

in rare lineages. When the abundance of a rare lineage falls below a certain threshold,
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the sequencing machine may not be able to pick it up and it will appear absent in the

final data set. On the other hand, weighted UniFrac distance is most sensitive to detect

change in abundant lineages since it uses absolute abundance difference in its definition.

However, Unweighted/weighted UniFrac distances may not be very powerful in detecting

change in moderately abundant lineages. Recently, a variance adjusted weighted UniFrac

distance (VAW-UniFrac), which moderates the branch proportion difference by its variance,

was developed to account for the fact that weighted UniFrac distance does not consider the

variation of the weights under random sampling (Chang et al., 2011). VAW-UniFrac was

shown to increase the power over weighted UniFrac distance for detecting the difference

between two microbial communities.

In this chapter, we introduce generalized UniFrac distance that unifies weighted UniFrac

and unweighted UniFrac distances. The new generalized UniFrac distance covers a series

of distances ranging from weighted to unweighted UniFrac by adjusting the weight on the

branches. The generalized UniFrac distance is designed to provide a robust and powerful

tool for detecting a wider range of biologically relevant changes in microbiome composition.

We conduct extensive Monte Carlo simulation studies under various conditions to evaluate

their power in detecting environmental influence on microbiome composition using PER-

MANOVA (McArdle, 2001), a distance based non-parametric test. Although each distance

in the series can perform the best in certain scenarios, none has optimal performance under

all conditions considered. However, analyses based on the generalized UniFrac distance are

shown to be more robust and has overall the best performances across a range of possible

scenarios. We demonstrate the power gain of using this distance in detecting the microbiome

differences by analysis of two real human gut microbiome data sets related to linking human

gut microbiome composition to long-term diet (Wu et al., 2011a) and testing oropharyngeal

microbiome difference between smokers and non-smokers (Charlson et al., 2010).
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2.2. Generalized UniFrac distance between two microbial communities

Consider two microbiome communities A and B and suppose that we have a rooted phylo-

genetic tree with n branches. Let bi be the length of the branch i and pAi , p
B
i are the taxa

proportions descending from the branch i for community A and B, respectively. The unique

fraction metric, or UniFrac, measures the phylogenetic distance between sets of taxa in a

phylogenetic tree as the fraction of the branch length of the tree that leads to descendants

from either one environment or the other, but not both. The original definition refers to

unweighted UniFrac (Lozupone and Knight, 2005), which is mathematically defined as

dU =
n∑
i=1

bi
∣∣I(pAi > 0)− I(pBi > 0)

∣∣∑n
i=1 bi

,

where I(.) is the indicator function and only presence/absence of species of branch i, I(pAi >

0) and I(pBi > 0), are used in the definition. The distance definition dU completely ignores

the taxa abundance information. In contrast, the (normalized) weighted UniFrac distance

(Lozupone et al., 2007) weights the branch length with abundance difference and is defined

as

dW =

n∑
i=1

bi
∣∣pAi − pBi ∣∣

n∑
i=1

bi(p
A
i + pBi )

.

Note that dW can not be reduced to dU even if we convert abundance data into pres-

ence/absence data. Also note that dW uses the absolute proportion difference
∣∣pAi − pBi ∣∣ in

its formulation. The consequence of using the absolute difference is that the value of dW is

determined mainly by branches with large proportions and is less sensitive to the abundance

changes on the branches with small proportions. To attenuate the weight on branches with

large proportions, we may instead use the relative difference
∣∣pAi − pBi ∣∣ /(pAi + pBi )(∈ [0, 1])
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in the formulation. We denote this distance measure as

d(0) =

n∑
i=1

bi

∣∣∣∣pAi − pBipAi + pBi

∣∣∣∣
n∑
i=1

bi

,

where
∑n

i=1 bi in the denominator is the normalizing factor so that d(0) ∈ [0, 1]. Now if we

dichotomize the abundance data using the indication function I(.), d(0) is reduced to dU .

So d(0) can be seen as the “weighted version” of dU . Using the relative differences, we place

equal emphasis on every branch and the distance is not dominated by the branches with

large proportions, since the relative difference does not depend on the magnitude of pAi , p
B
i .

However, the low-abundance branches may be more noisy and the relative difference may

amplify such noises. To strike a balance between relative difference and absolute difference,

we weight the branch length both by the relative difference and its importance indicated

by the branch proportion. We propose the following generalized UniFrac distance

d(α) =

n∑
i=1

bi(p
A
i + pBi )α

∣∣∣∣pAi − pBipAi + pBi

∣∣∣∣
n∑
i=1

bi(p
A
i + pBi )α

,

where α ∈ [0, 1] controls the contribution from high-abundance branches, and
∑n

i=1 bi(p
A
i +

pBi )α is the normalizing factor so that d(α) ∈ [0, 1]. Branches with zero proportions for

both communities will not be included in the calculation. As α changes from 0 to 1, more

emphasis is placed on high-abundance branches. When α = 1, d(α) is reduced to dW . When

α = 0, we get d(0) defined above.

Therefore, by varying α from 1 to 0 , we achieve a series of distances ranging from dW to

d(0). Note d(0) is obtained by dichotomizing the abundance in d(0), but is different from d(0).
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We are particularly interested in d(0.5), the distance in the middle of the distance series

d(0.5) =

n∑
i=1

bi

√
pAi + pBi

∣∣∣∣pAi − pBipAi + pBi

∣∣∣∣
n∑
i=1

bi

√
pAi + pBi

.

We also compare dW , d(0.5), d(0) and dU to VAW-UniFrac distance dV AW , which is defined

as:

dV AW =

n∑
i=1

bi

∣∣pAi − pBi ∣∣
m(m−mi)

n∑
i=1

bi
pAi + pBi

m(m−mi)

,

where mi is the total number of sequences from both communities on the ith branch, and

m is total number of sequences.

2.3. Statistical test based on UniFrac distances

We study the power of generalized UniFrac distance using the distance-based non-parametric

test for association of microbiome composition with environmental covariates. Suppose we

have a set of m environmental covariates. We assume that we have collected microbiome

data and the m-dimensional covariates data X on n samples. We apply the PERMANOVA

procedure (McArdle, 2001) (Permutational Multivariate Analysis of Variance Using Dis-

tance Matrices, “adonis” function from R package “vegan”), which partitions the distance

matrix among sources of variation, fits linear models to distance matrices and uses a per-

mutation test with pseudo-F ratios to obtain the p-values. The pseudo-F statistic is defined

as:

F =
tr(HGH)/(m− 1)

tr[(I−H)G(I−H)]/(n−m)
,

where tr(.) is the trace function of a matrix, H = X(XTX)−1XT is the hat (projection)

matrix of the design matrix X, G is Gower’s centered matrix and n,m is the number

of samples and the number of predictors respectively. Let dij be the distance between
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community i and j, and denote A = (aij) = (−1
2d

2
ij). The Gower’s matrix is defined as

G = (I− 11′

n
)A(I− 11′

n
),

where 1 is a vector of 1’s.

Since dU and dW reflect the abundance change in either rare lineages or abundant lineages,

combining dU and dW may potentially increase the overall power. Instead of applying

Bonferroni correction to the p values from separate PERMANOVA tests using dU or dW to

control the family-wise type I error rate, a more powerful approach is to take the maximum

of pseudo-F statistics for dU and dW as a new test statistic. The significance of the pseudo-F

statistics is assessed based on permutations.

2.4. Simulation studies

2.4.1. Simulation strategies

We use two simulation strategies to evaluate the power of the generalized UniFrac distance

under various conditions. The first strategy is a modification of the simulation method

proposed by Schloss (2008), where we draw points (16S rDNA sequences) from a 2D circle

with known densities (Fig. 3A). This strategy facilitates simulations of different community

characteristics such as species evenness and richness. The Euclidean distance between points

is analogous of the genetic distance between the sequences. The diameter of the circle

represents the maximum genetic divergence between any pair of sequences within a sample.

The area of the circle is proportional to the richness and the density distribution of the

circle is proportional to the evenness. By varying the centroid positions (o) and their radius

(r), it is possible to vary the fraction of shared membership and species richness within each

sample (Fig. 3B,D). By varying the point distribution on the circle (density proportional

to rα, where α controls the degree of evenness and α = 0.5 for uniformly distribution),

it is possible to change the species evenness (Fig. 3C). We also simulate scenarios where

lineages of different abundance levels change by a k fold (Fig. 3E-G). These are achieved
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by simulating the community with point mass concentrated at the circle center (r1.0) and

varying the point density in different regions of the 2D circle corresponding to abundant

lineages (0−0.2r from the center, Fig. 3E), moderately abundant lineages (0.4r−0.8r from

the center, Fig. 3F), and rare lineages (0.8r−1.0r from the center, Fig. 3G). We further

bin the sampled points into small hexagons as “OTU”s before calculating the UniFrac

distances (“hexbin” function from the R package “hexbin” ). The phylogenetic tree of

these “OTU”s is built using NJ algorithm (Neighbor Joining, “nj” function in R) and

rooted by midpoint rooting method. UniFrac distances are then calculated based on the

NJ tree and “OTU” abundances. Each replication consists of drawing 400 points from each

community, a bin size of 0.015 units to form “OTUs” (∼ 300 OTUs per sample), and the

maximum distance between any two points is 0.3 units (r = 0.15), corresponding to typical

phylum level divergence of 30% for 16S rRNA gene. These conditions allow us to simulate

the sampling intensity and biodiversity found within a typical 16S rRNA gene targeted

sequencing experiment (Schloss, 2008).

The second set of simulations utilizes a real oropharyngeal microbiome data set consisting of

60 samples and 856 OTUs from Charlson et al. (2010) (Fig. 3H). A common way of modeling

multivariate count data is to use the multinomial model. However, the multinomial model

assumes fixed underlying proportions for each sample, which does not hold for real micro-

biome data due to high degree of heterogeneity among the samples. The real OTU count

distribution (Fig. 4A) exhibits more variance than expected from a multinomial model

(Fig. 4B). To realistically simulate the data, it is important to model extra-variation or

overdispersion of the OTU counts. This can be achieved by using the Dirichlet-multinomial

(DM) model (Mosimann, 1962), which assumes the underlying proportions of the multi-

nomial model come from a Dirichlet distribution. The density function of a DM random
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variable N is given as

P (N = n) =

(
n

n

) k∏
j=1

nj∏
r=1

{πj(1− θ) + (r − 1)θ}

n∏
r=1

{1− θ + (r − 1)θ}
,

where n =
∑

j nj is total count, k is the OTU number, and proportion mean π = (π1, π2, · · · , πk)

and dispersion θ are parameters. When θ = 0, it is reduced to multinomial model. We esti-

mate the DM parameters π, θ using maximum likelihood method (“dirmult” function from

R package “dirmult”). We then generate OTU counts using the DM model with the esti-

mated parameters and 1, 000 counts per sample. Fig. 4C shows an OTU heatmap generated

by the DM model, in which the overdispersion is similar to that of the real data. To study

the power of UniFrac variants for identifying potential environmental factors, we let the

abundance of a certain OTU cluster change in response to environment. We use UPGMA

tree of OTUs (“hclust” function in R) based on the OTU distance matrix calculated under

the K80 nucleotide substitution model (Felsenstein, 2003), and partition the 856 OTUs into

20 clusters using Partitioning Around Medoids (PAM) (“pam” function from R package

“cluster”) based on patristic distances (the length of the shortest path linking two OTUs

on the tree). These OTU clusters are highlighted in different colors in Fig. 3H.

We call the first strategy 2D circle based simulation and the second tree based simulation.

For power calculation, we use 2, 000 replications.

2.4.2. Comparison of the power of different UniFrac variants using 2D circle based simu-

lations

We use PERMANOVA to test for environmental effects and compare the power of dW , d(0.5), d(0),

dU and dV AW . Specifically, we simulate two environmental conditions (e.g. smoking vs

non-smoking) under which we draw 10 samples each. We then vary the degree of community

difference under these two conditions and produce the power curve over a grid of 10 for each
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UniFrac distance. We investigate six scenarios, where the environmental factor affects the

community membership, species evenness, species richness, most abundant lineages, mod-

erately abundant lineages, and rare lineages respectively (Fig. 3B-G). For each scenario,

we vary one community characteristic (Table 1).

Suppose x1 and x2 are the mean values of the community characteristic for condition 1

and 2. We simulate 10 communities for each condition with community characteristic

value xij ∼ Uniform(xj − s, xj + s) for i = 1 · · · 10 and j = 1, 2, where s controls the

variation within each condition. Each community is sampled once. Initially, we let x1 = x2

(no difference) and then increase the difference between x1 and x2 to simulate stronger

environmental effects. PERMANOVA is then performed on the distance matrices and the

power curve is created over a grid of 10 using type I error α = 0.05. Fig. 5 shows the

power curves for different UniFrac distances under the six scenarios considered. When the

environmental factor has no effect (x1 = x2), PERMANOVA controls the type I error at

the nominal level of 0.05 for all five UniFrac distances. As the environmental effects become

stronger, all the distances have better power. When the environmental factor affects the

community membership or richness (Panel 1, 3), all the distances give a similar power and

their power curves are nearly identical. For the evenness change scenario (Panel 2), the

power of dW and d(0.5) is very close and is more powerful than d(0) and dU . dW is the most

powerful for detecting change in most abundant lineages (Panel 4) but is much less powerful

for change in rare lineages (Panel 6). dU shows an opposite trend: it is the most powerful

for detecting change in rare lineages (Panel 6) but has almost no power for change in most

abundant lineages (Panel 4). In contrast, d(0.5) is the most powerful for detecting change

in moderately abundant lineages (Panel 5). They are also the most robust among the

distances investigated: its power is close to the best UniFrac distance under all scenarios.

The performance of d(0) lies between d(0.5) and dU , and is also very robust. Finally, the

performance of dV AW is almost identical to d(0.5) under this simulation setting.

In the above simulations, we use a bin size of 0.015 to form “OTU”s (∼ 300 OTUs per
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sample). To study the effect of bin size, we compare the power curves of UniFrac distances

using a smaller bin size of 0.01 (∼ 700 OTUs per sample) or a larger bin size of 0.03 (∼ 80

OTUs per sample). The bin size does not change the general conclusion (Appendix Fig.

A1). To study the effect of tree construction methods, we also construct the phylogenetic

tree using UPGMA. The general conclusions still hold (Appendix Fig. A2).

2.4.3. Comparison of the power of different UniFrac variants using tree based simulations

We also compare the power of different UniFrac distances for detecting environmental effects

using tree based simulations that mimic the oropharyngeal microbiome data (see Section

2.5.2 for details). The phylogenetic tree of the 856 OTUs is partitioned into 20 clusters (Fig.

3H). The mean OTU proportions and the dispersion parameter are estimated from the real

data by fitting a Dirichlet-multinomial (DM) model. We assume that the environmental

factor causes an increase of the abundance of a particular OTU cluster. Specifically, suppose

that the proportion of the ith OTU cluster under condition 1 is pi. For condition 2, the

proportion of ith OTU cluster is increased by k fold where k varies from 1 (no difference) to

1/
√
pi (strong effect) on a grid of 10. The proportion vector is re-normalized to sum to 1.

Next, 10 samples are simulated for each condition with their OTU counts generated by the

DM model with the corresponding proportion vector and the common dispersion parameter.

As expected, the five UniFrac distances differ in their power for detecting environmental

effects for the 20 OTU clusters tested. Except for d(0), all the UniFrac distances have

their best-performance scenarios. dW , d(0.5), dU and dV AW achieve the highest power in

7, 6, 3 and 1 cases respectively. For the remaining 3 cases, dW and d(0.5) are equally the

most powerful (Appendix Fig. A3). The results are consistent with the 2D-circle based

simulation: dW is most powerful for detecting the environmental effects on most abundant

lineages, d(0.5) for moderately abundant lineages and dU for rare lineages. In contrast,

performance of the test with d(0) and dV AW is generally between dU and d(0.5). The power

of dW and dU has a reciprocal relationship and neither of them is as robust as d(0.5). Fig.

6A shows the power curves of four representative cases. As the proportion of the affected
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cluster decreases from 19.7% to 0.9%, dW becomes less powerful and the power of dU has

the opposite trend.

In the simulations presented above, the power is calculated assuming we know the cluster

effected. Since the cluster affected can be abundant or rare, we randomly choose an affected

OTU cluster in each replication and calculate the power over 2, 000 replications. We also

report the power for the test combining dW and dU by taking the maximum of their pseudo-

F statistics. We denote this method as dMAX . Fig. 6B (left plot) demonstrates that dU and

dV AW have the lowest overall power than the other distances, and d(0.5) and dMAX have the

best power indicating combining dU and dW can increase power. In contrast, d(0)and dW

are in between and as the environmental effect becomes stronger, d(0) becomes as powerful

as d(0.5) and dMAX . Lastly we assume that the environmental factor affects a random set

of 40 OTUs from the phylogenetic tree instead of a random OTU cluster. At this extreme,

where phylogenetic relationship is no longer important, d(0.5) has even higher power than

the other distances, followed by d(0), dMAX , dW , dU and dV AW (see Fig. 6B, right plot).

Overall, d(0.5) has a better power than any other UniFrac distances including the one that

combines dW and dU .

2.5. Application to real data analysis

2.5.1. Results from analysis of a data set linking long-term diet to gut microbiome compo-

sition

Diet strongly affects the human health, partly by modulating gut microbiome composition.

Wu et al. (2011a) studied the long term diet effect on the human gut microbiome, where

the diet information was converted into a vector of micro-nutrient intakes. A cross-sectional

analysis of 98 healthy volunteers were enrolled in this study. Diet information was collected

using food frequency questionnaire (FFQ). The questionnaires were converted to intake

amounts of 214 micro-nutrients. Nutrient intake was further normalized using the residual

method to standardize for caloric intake. Stool samples were collected and V1-V2 region
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of the 16S rRNA gene was sequenced by 454/Roche GS FLX Titanium system. The 16S

pyrosequences were denoised (Quince et al., 2009) prior to taxonomic assignment yielding

an average of 9, 265 ± 3, 864(SD) reads per sample. The denoised sequences were then

analyzed by the QIIME pipeline (Caporaso et al., 2010b) with the default parameter setting.

The OTU table contains 3068 OTUs after discarding the singleton OTUs. We use the

phylogenetic tree generated by QIIME (FastTree algorithm, Price et al. 2009) to construct

the UniFrac distances. One objective of the study is to identify nutrients that have a

significant impact on the gut microbiome composition. We use PERMANOVA to test

for association of microbiome composition with nutrient intake based on different UniFrac

distance matrices. We compare d(0.5) with dU , dW , their combination dMAX and dV AW . We

plot the number of selected nutrients against different p-value cutoffs to create a ROC-like

curve (Fig. 7). Clearly the curve for d(0.5) is above all the other four curves. Wilcoxon

signed-rank tests show that d(0.5) results in smaller p-values than other distances (p <

0.05), indicating thatd(0.5) is most powerful in selecting the relevant microbiome-associated

nutrients. Using dW or dU only could miss important associations. Power of dV AW is the

second best. Interestingly, dMAX , the joint use of dW and dU , does not increase the power

over dW , indicating most associations can be recovered by dW alone.

2.5.2. Results from analysis of an oropharyngeal microbiome data set smokers and non-

smokers

Cigarette smokers have an increased risk of multiple diseases, including upper respiratory

tract infections. Previous studies had linked smoking to specific respiratory tract bacteria

but the consequences of smoking for global airway microbial community composition had

not been fully clarified. Charlson et al. investigated the smoking effect on the oropharyngeal

and nasopharyngeal bacterial communities using 454 pyrosequencing of 16S sequence tags

Charlson et al. (2010). Specifically, a total of 291 swab samples from the right and left na-

sopharynx and oropharynx of 29 smoking and 33 nonsmoking healthy asymptomatic adults

were collected. V1-V2 region of the bacterial 16S rRNA gene was PCR-amplified using
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individually barcoded primer set and subject to multiplexed pryosequencing by 454/Roche

GS FLX Titanium system. The pyrosequences were denoised (Quince et al., 2009) prior to

taxonomic assignment and yielded an average of 1, 335 ± 603(SD) reads per airway sam-

ple. The denoised sequences were then analyzed using the QIIME pipeline (Caporaso et al.,

2010b) with default parameter setting. We use the left oropharyngeal samples in this study.

After removing two samples with read number less than 500 and discarding singleton OTUs,

we finally have an OTU table of 60 samples (28 smokers vs 32 nonsmokers) and 856 OTUs.

The phylogenetic tree produced by QIIME was used to construct the distances.

We test the smoking effect on the oropharyngeal microbial community composition by

applying PERMANOVA (10, 000 permutations). All the five UniFrac distances achieve sta-

tistical significance at α = 0.05 level, indicating smoking alters the community composition.

However, test using d(0.5) produces the smallest p-value of 0.006, followed by 0.008 from

d(0). The p-values based on dW , dU and dV AW are 0.012, 0.019 and 0.043 respectively. We

also perform a principle coordinate analysis on the distance matrices, and plot the samples

on the first two principle coordinates (Fig. 8). d(0.5) separates the samples better than

the other three distance measures. This indicates that smoking might affect not only the

predominant lineages but also these less abundant lineages in the oropharyngeal microbial

community. We then performed Wilcox rank-sum test or Fisher’s exact test to select the

differential OTUs. At α = 0.05 level, we identify 32 OTUs (Appendix Table A1). These

OTUs belong to genera Prevotella (8), Lachnospiraceae (5), Veillonella (3), Streptococcus

(2), Fusobacterium (2), Treponema (2), Neisseria (1), Haemophilus (1), Megasphaera (1),

Dialister (1), Moryella (1), Erysipelotrichaceae (1) and four genera from Actinobacteria.

Most of the selected OTUs are moderately abundant or rare, so we expect d(0.5) and d(0)

to have better power.

Finally, we study the effect of tree constructing methods on generalized UniFrac distance.

Besides using the tree from QIIME, we also construct the phylogenetic tree by NJ, UP-

GMA, parsimony and maximum likelihood methods. NJ and UPGMA are based on the

26



distance matrix generated by the R function “dist.dna” from the “ape” package (pair-

wise.deletion=T) under the K80 nucleotide substitution model Felsenstein (2003). The

parsimony and maximum likelihood methods are implemented using the DNAPARS and

DNAML program with default parameter setting in PHYLIP 3.69. All the unrooted trees

are rooted using midpoint rooting method. We observe that different tree constructing

methods produce similar results (Appendix Fig. A4).

2.6. Discussion

Microbiome data are multivariate count data in its original form and are statistically

challenging to analyze due to their high dimensionality, phylogenetic constraints among

species/OTUs, overdispersion and excessive zeros. To circumvent the difficulty, the data

are often summarized in the form of distance matrix. Testing association of microbiome

composition with environmental covariates is performed using the distance matrix. We

have demonstrated in simulations that the weighted and unweighted UniFrac impose large

weight either to abundant lineages or to rare lineages, they can be underpowered in detect-

ing change in moderately abundant lineages. Since microbiome composition change could

occur in any lineages, our generalized UniFrac distance, which unifies the weighted and

unweighted UniFrac in a common framework enable us to detect a much wider range of

biologically relevant changes. Our simulation studies have clearly demonstrated that the

generalized UniFrac distance d(0.5) is more robust than dW or dU , and its performances are

in general comparable to the best UniFrac distances among the scenarios we considered.

In addition, the generalized UniFrac distance is very robust to tree constructing meth-

ods. We suggest the use of d(0.5) for testing association of microbiome composition with

environmental covariates to avoid missing important findings.

Both weighted and unweighted UniFrac distances are sensitive to sampling depth (Lozupone

et al., 2010). Inflated distances at lower sampling depth are caused by sampling variation

especially for these rare lineages. The generalized UniFrac distance is also sensitive to

sampling depth (Fig. 9). However, as the sampling effort increases, the distance stabilizes.
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For the gut microbiome data set, we found a sequencing depth of ∼ 1000 reads is sufficient to

stabilize the generalized UniFrac distance. To overcome potential adverse effects of uneven

sampling, rarefaction is usually employed to subsample the samples to the same depth.

When the sampling depth varies greatly across the samples, rarefaction will throw away

a significant portion of the 16S reads and increase the sampling variation artificially. We

found that rarefaction is not necessary, at least, in the context of testing the association of

the microbiome composition with covariates (Fig. 10).

The VAW-UniFrac (Chang et al., 2011) also up-weights the differences on less abundant

lineages by adjusting the variance of the weights. If we assume the number of reads from

the two communities are the same and divide the weights in d(0.5) by
√

(2− pAi − pBi ), then

d(0.5) becomes VAW-UniFrac. Usually the majority of the branches have low proportions,

so
√

(2− pAi − pBi ) for majority of the branches are similar (∼
√

2). This accounts for the

similarity of d(0.5) and dV AW in the 2D circle based simulations. When the phylogenetic tree

is constructed based on the OTUs of multiple samples (>2), the lowest common ancestor

(LCA) of any two communities is not necessarily the same as the root of the whole tree.

This is frequently seen in real data, where some samples occupy only a subtree. These

common branches between the LCA and the root are not included in the calculation of

VAW-UniFrac distance due to division by 0 for these branches. Ignoring these common

branches will inflate the distance. In contrast, d(0.5) does not have this limitation. This

accounts for the superiority of d(0.5) over dV AW in tree-based simulation as well as in real

data analysis.

The power of UniFrac variants can also be compared in the context of testing whether two

microbial communities differ significantly as in (Schloss, 2008; Chang et al., 2011). Instead

of comparing power for detecting the difference between two communities, we focus our

evaluations on the performance of UniFrac distances for associating microbiome composi-

tion to environmental covariates by collecting multiple independent samples. The rational

is that as the sequence depth increases, two sample comparison will have increased power
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to detect differences due to sources that we are not interested in (random noises), such as

the individual-to-individual variability, day-to-day variability, sampling location variability

or even technical variability (e.g. sample preparation). Multiple samples from a population

coupled with multivariate statistical methods such as the distance based PERMANOVA,

provide powerful design and analysis methods to overcome these potential random noises

(Lozupone et al., 2010). As more and more large-scale microbiome data sets are being

collected, we expect that our generalized UniFrac distance can help to identify important

covariates that are associated with the microbiomes that could be missed using the com-

monly used UniFrac distances. In addition to identifying environmental covariates that

may be determinants of microbiome composition, our approach would be equally suited

to identifying microbiome features associated with biological or clinical outcomes, which is

needed to begin to understand the impact of the microbiome on health.
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Table 1: Parameter values used in power study for 2D circle-based simulation
Parameter Condition 1 (x1) Condition 2 (x2) Value of s

Centroid position (o) 0 ∼ 0.016 0 ∼ −0.016 0.03
Evenness (α) 1 ∼ 0.7 1 ∼ 1.3 0.3

Radius (r) 0.15 ∼ 0.132 0.15 ∼ 0.168 0.03
Scenario 4 Fold change (k) 1 (Fixed) 1 ∼ 2.5 1
Scenario 5 Fold change (k) 1 (Fixed) 1 ∼ 2.8 1
Scenario 6 Fold change (k) 1 (Fixed) 1 ∼ 6 2

The values of x1, x2 are evenly spaced on a grid of 10. For Scenario 6, we decreased the
abundances.
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Figure 3: Two simulation strategies to evaluate the generalized UniFrac distance.
A-G, 2D circle based simulation of microbial communities with different characteristics. (A)
The microbial community is represented by a 2D circle. Points are drawn from the circle
to simulate the 16S based sampling process. These points are further binned into small
hexagons as OTUs. UPGMA or NJ method is used to build the OTU phylogenetic tree.
Six scenarios are investigated, where the difference occurs in: community membership (B),
evenness (C), richness (D), most abundant lineages (E), moderately abundant lineages (F)
and rare lineages (G). The affected lineages are indicated by a red circle or ring. H, tree
based simulation of microbial communities based on the phylogenetic tree and Dirichlet-
multinomial model. A real OTU phylogenetic tree from an oropharyngeal microbial com-
munity data set is used. These OTUs are roughly divided into 20 clusters (lineages) by
performing PAM method using the OTU patristic distance matrix. Each cluster is sub-
jected to abundance change in response to the environment. Counts are generated from a
Dirichlet-multinomial model.
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Figure 4: Comparison of multinomial model and Dirichlet-multinomial model
for simulating OTU counts for an oropharyngeal microbial community. (A)
The heatmap shows the OTU abundance distribution from a real oropharyngeal microbial
community of 60 samples. Rows represent samples while columns correspond to OTUs.
These OTUs are related by a phylogenetic tree colored by phyla. The gray scale indicates
the level of abundance on a log scale with white meaning zero counts (see legend). (B) The
OTU counts are generated by assuming a multinomial model, where the parameters are
estimated from (A). (C) The OTU counts are generated by assuming a Dirichlet multinomial
(DM) model, where the parameters are estimated from (A). The DM models overdispersion
better than the multinomial model.
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Figure 5: Power comparison of different UniFrac variants for detecting environ-
mental effects using 2D circle based simulation.PERMANOVA is used for testing
hypotheses. The specific community difference caused by different environmental condi-
tions is indicated in the panel title. The power curves are created by varying the degree
of environmental effect. The initial point of the power curve is the power when there is no
environmental effect.
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Figure 8: Comparison of different UniFrac variants for clustering samples from
smokers and nonsmokers. Principle coordinate analysis is performed on the distance
matrices of dW , d(0.5), dU and dV AW . The samples are plotted on the first two principle
coordinates. The PERMANOVA p values are also indicated in the figure. The ellipse center
indicates groups means, its main axis corresponds to the first two principle components
from principle component analysis (PCA), and the height and width are variances on that
direction.
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Figure 9: Sensitivity of generalized UniFrac distance to sampling depth by rar-
efaction of data from a study of diet effect on the gut microbiome. This study
produced ∼ 1 million reads from the V12 region of 16S rRNA using pyrosequencing. The
samples with less than 2408 sequences were first excluded (leaving 98 samples). For five
replications, sequences from 98 samples were subsampled to different depth (between 50 to
2000). Pairwise distances were calculated for the four UniFrac variants (dW , d(0.5), d(U) and
dV AW ). To assess the the effects of community divergence on the sensitivity to sampling,
the most similar and most different pairs of samples were identified from un-subsampled
samples (2408 sequences) as those in the upper and lower quartile of UniFrac values calcu-
lated separately for all UniFrac variants. The points represent the average UniFrac value
at each sampling depth for all pairs (’All’) and the pairs that were in the upper and lower
quartiles. Each point represents one replicate.
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Figure 10: Effect of rarefaction on the power of testing the association of mi-
crobiome composition with covariates. The tree based simulation approach is used to
investigate the effect of rarefaction on the power of PERMANOVA test. Two conditions are
simulated with 10 samples under each condition. We let the environmental factor increases
the abundance of OTU Cluster 11 of the tree for illustration purpose. Negative binomial
(NB) model is used to generate the sampling depth for each sample. The parameters of
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samples. We found that rarefaction decreases the power for all the UniFrac variants tested.
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CHAPTER 3 : Structure-Constrained Sparse Canonical Correlation Analysis for

Microbiome Data

In this chapter, we develop a method for structure-constrained sparse canonical corre-

lation analysis (ssCCA) in high dimensional setting, motivated by studying the associa-

tion between nutrient intakes and the human gut microbiome composition. Compared to

sparse canonical correlation analysis, ssCCA takes into account the phylogenetic relation-

ship among the bacteria when selecting the most correlated bacterial taxa and covariates.

Our ssCCA formulation utilizes a phylogenetic structure-constrained penalty function to im-

pose certain smoothness on the linear coefficients according to the phylogenetic relationship

among the taxa. An efficient coordinate descent algorithm is developed for optimization.

A human gut microbiome data set is used to illustrate the method. Both simulations and

real data application show that ssCCA performs better than the standard sparse CCA in

identifying meaningful variables when there are structures in the data.

3.1. Introduction

Bacterial taxa are not independent of each other and are related evolutionarily by a phylo-

genetic tree. Taxa that are phylogenetically close usually behave similarly or have similar

biological functions. Such phylogenetic tree information has been effectively utilized in the

commonly used UniFrac distance between two microbiome samples (Lozupone and Knight,

2005). In an attempt to visualize the human gut microbiomes from different samples, Pur-

dom (2011) proposed a phylogenetic tree-based principle component analysis (PCA) on the

16S data set. This phylogenetic PCA was shown to separate the environmental samples in

a biologically more sensible way than the standard PCA.

In this chapter, we consider another commonly used dimension-reduction method, canonical

correlation analysis (CCA), that can be used to relate the bacteria taxa with environmental

covariates when the number of covariates is large. Our motivating example is a data set

generated from a human gut microbiome study at the University of Pennsylvania, where
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we aim to associate nutrient intakes to the bacterial composition in the human gut. Here

we have both the nutrient intake data and the bacterial abundance data measured on the

same individual (see Chapter 1 and Section 3.6 for details). We are interested in selecting

the bacterial taxa and nutrients that are mostly correlated. CCA aims to identify the linear

combinations of two sets of variables that are maximally correlated with each other and

provides an important tool to summarize the overall dependency structures between two

sets of variables. It has been applied to linking two sets of high dimensional genomic data

measured on the same set of samples.

The standard CCA however does not perform variable selection and hence usually lacks

biological interpretability especially when the dimension of variables is high. When the

number of variables exceeds the number of observations, CCA can not be applied directly

due to the singularity of the covariance matrix. To overcome these two major limitations,

various types of sparse CCA (sCCA) have been proposed and developed and applied to

genomic data analysis (Waaijenborg et al., 2008; Witten et al., 2009). In sCCA, a sparsity

penalty function such as the l1 penalty is often imposed on the linear coefficients in order

to explain the correlation between two data sets using the least number of variables. The

sparsity constraint in sCCA not only makes the computation feasible but also increases the

biological interpretability of the selected variables.

Available approaches to sCCA do not, however, exploit the prior structure information

among the variables. In many applications, there exists some structure among the set of

variables in the CCA analysis. These structures can be some simple group structure such

as gene sets or graphical structure such as gene networks in genomic studies. By including

this prior structure information of the data, one can gain better biological insights from the

analysis. This has been clearly demonstrated in sparse regression analysis (Li and Li, 2008,

2010).

We consider particularly to utilize the phylogenetic structure of data from human micro-

biome studies in CCA analysis. The phylogenetic information of the bacterial taxa could
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guide us to select relevant taxa in the context of CCA by inducing a tendency to select

closely related taxa together, since these taxa are very likely to be associated with the

covariates in a similar fashion. In order to effectively utilize the phylogenetic information,

we propose to develop a structure-constrained sparse CCA (ssCCA), where we impose an

additional structure-constrained penalty function based on the phylogenetic tree structure.

The ssCCA extends the sparse CCA formulation of Witten et al. (2009) by imposing a

smoothness penalty for the loading coefficients of the taxa based on their closeness on the

phylogenetic tree. We also develop an efficient coordinate descent algorithm to implement

the ssCCA. Our simulations that mimic real microbiome data demonstrate that ssCCA

can result in much better performance in selecting the bacteria that are associated with

other environmental variables. Our analysis of the microbiome and nutrient data has iden-

tified that fat-related nutrients are closely related to human gut microbiome composition,

a conclusion that agrees with a previous analysis of the data set (Wu et al., 2011a).

The rest of the chapter is organized as follows. The idea of using phylogenetic tree-structure

is presented in Section 3.2. A brief review of CCA and the formulation of ssCCA are given in

Section 3.3. Details of the coordinate descent algorithm is presented in Section 3.4. Results

from simulation studies to evaluate our method are given in Section 3.5. An application to

a real human microbiome study to associate nutrient intakes with bacterial abundances is

presented in Section 3.6. Finally, a brief discussion of the method and results is given in

Section 3.7.

3.2. Construction of the phylogenetic tree and Laplacian matrix

The method proposed in this chapter is mainly applied to OTU-based 16S data. This

means that each of the N 16S sequences belongs to one of p OTUs/taxa. Each OTU is

characterized by a representative DNA sequence and can be assigned a taxonomic lineage

by comparing to known bacterial 16S rRNA database (see Chapter 1 for details). Most

species level OTUs are in extremely low abundances with a large proportion of OTUs being

simply singletons possibly due to sequencing error. We can further aggregate the OTUs
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from the same genus to form genus level OTUs and perform analysis on genus level, which

is more robust to sequencing error and can reduce the number of variables significantly. A

distance between any two OTUs can be computed using the OTU representative sequences

based on some evolution model such as Jukes-Cantor, Kimura and Felsenstein model and a

phylogenetic tree for the OTUs can be built based on these distances (Felsenstein, 2003).

Let x = (x1, x2, · · · , xp)T represent the vector of the relative abundances of pOTUs obtained

from the 16S sequencing, where each OTU is a leaf node of a phylogenetic tree of all the

OTUs. We first construct an adjacency matrix using a pairwise distance matrix between any

two OTUs. With the given phylogenetic tree, we can use the patristic distance, which is the

sum of the branch lengths linking the two OTUs, or we can use the genetic distance between

sequences without explicitly constructing the tree. The distance is usually normalized to

the scale of [0,1], with 0 for identity and 1 for complete difference. Denote djk the distance

between OTU j and OTU k. We then form a p× p adjacency matrix A with the diagonal

elements of 1 and the jkth element between OTU j and k defined as

ajk = 1/d2
jk for j 6= k. (3.1)

By taking the square of djk, large edge weight is given to closely related OTUs. At the same

time, the edge weights for distantly related OTUs are made small. Other ways to construct

the adjacency are possible. The simplest way is to define a simple thresholding function

ajk =

 1 if djk ≤ r

0 if djk > r.

Or we can also define a continuous measure. Several possible measures are given by

ajk = (1− dmjk)n

ajk = exp(−dmjk)

ajk = 1/dmjk,
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where the power m,n > 0, the value of m,n determines how much weight to put on the

edges between close OTUs and we can simply use m = n = 1. Finally, the discrete and

continuous measures can be combined. The flexibility of constructing a adjacency matrix

provides us a powerful means to incorporate prior information into the analysis.

Note that phylogenetic tree is a special case of general undirected graphs and the adjacency

matrix is related to the Laplacian matrix associated with the graph. For a given adjacency

matrix A, define D = diag(d1, d2, . . . , dp), where dj =
∑p

k=1 ajk. The associated Laplacian

matrix is defined as L = D − A (Chung, 1997). The Laplacian matrix L is associated

with a labeled weighted graph G = (V, E , w) with vertex set V = 1, . . . , p and edge set

E = {(j, k) : (j, k) ∈ V × V }. Here ajk is the weight of edge (j, k) and dj is the degree of

vertex j. For a given vector u, it is easy to show that

uTLu =
∑

1≤j<k≤p
ajk(uj − uk)2, (3.2)

which measures the smoothness of the vector u with respect to the labeled weighted graph

G. Based on this interpretation, Li and Li (2008, 2010) proposed a smoothness penalty

of the form uTLu in high dimensional regression setting. The structure constraint has a

local smoothing effect by encouraging the variables that are linked on the prior graphical

structure to have similar coefficients. In the next section, we extend sCCA to include

this smoothness penalty to further encourage some smoothness of the coefficients in linear

projections.

3.3. Structure-constrained sparse canonical correlation analysis

We consider CCA between random vectors x = (x1,x2, · · · ,xp)T and y = (y1,y2, · · · ,yq)T ,

where vector x contains the abundances of the p OTUs on a given phylogenetic tree and

y is the q-dimensional vector of the environmental covariates. Let A be the adjacency

matrix defined in previous section based on the phylogenetic tree structure and L be the

corresponding Laplacian matrix.
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3.3.1. Problem setup and standard CCA

Given two column vectors of random variables x = (x1,x2, · · · ,xp)T and y = (y1,y2, · · · ,yq)T ,

CCA aims to find two projection directions u1 ∈ IRp and v1 ∈ IRq so that

(u1,v1) = arg maxu,v Corr(uTx,vTy)

= arg maxu,v
uTΣxyv√

(uTΣxxu)(vTΣyyv)
,

where Σxx,Σyy and Σxy are covariance and cross-covariance matrices. This maximization

is equivalent to

max
u,v

uTΣxyv (3.3)

subject to uTΣxxu = 1, vTΣyyv = 1. (3.4)

Here u1,v1 are called the first pair of canonical vectors while the new variables η1 =

u1
Tx, ξ1 = v1

Ty are called the first pair of canonical variables or latent variables and

ρ1 = Corr(η1, ξ1) is referred as the first canonical correlation.

Higher order canonical variables and canonical correlations can be obtained in a stepwise

fashion. Let k = min(p, q). For s = 2, · · · , k, we can successively find canonical vectors

(u2,v2), · · · , (uk,vk) by

(us,vs) = arg maxu,v Corr(uTx,vTy)

subject to uTΣxxu = vTΣyyv = 1,uTΣxxut = vTΣyyvt = 0, for 1 ≤ t < s.

The solution of the above maximization problem can be obtained by performing singular

value decomposition (SVD) on the matrix K:

K = Σ
−1/2
xx ΣxyΣ

−1/2
yy

=
∑k

i=1 diu
∗
iv
∗
i ,
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then us = Σ
−1/2
xx u∗s and vs = Σ

−1/2
yy v∗s for s = 1, · · · , k.

Suppose that we have collected i.i.d n samples of x and y, denoted by X and Y. Assume

both are column-standardized to have mean 0 and unit l2 norm. When data are available,

one estimates u and v by replacing Σxy,Σxx and Σyy by the observed sample covariance

and variance matrices XTY, XTX and YTY. As in most applications, we focus on the first

canonical vector pair, which captures most of the correlation between the two data sets.

3.3.2. Formulation of ssCCA

When the dimensions p and q are high, regularization is required in order to obtain a unique

solution to the optimization problem (3.3). Given the tuning parameters c1 > 0, c2 > 0, c3 >

0, we propose the following ssCCA criterion that extends the sCCA of Witten et al. (2009):

max
u,v

uTXTYv

subject to uTXTXu ≤ 1,vTYTYv ≤ 1,

pen(u) ≤ c1, pen(v) ≤ c2,u
TLu ≤ c3. (3.5)

where pen(u) and pen(v) are sparsity penalty functions such as the l1 penalty function that

is defined as pen(u) =
∑p

i=1 |ui|. Different from the sCCA formulation, we impose another

structure constraint on the coefficient vector u through the quadratic Laplacian quantity

defined in (3.2), uTLu ≤ c3. This constraint encourages smoothness of the estimated co-

efficients of the OTUs that are closely related on the phylogenetic tree. Smaller value of

the tuning parameter c3 results in smoother estimate of the coefficient vector u over the

phylogenetic tree.

It has been shown that in other high-dimensional problems, treating the covariance matrix

as diagonal can yield good results (Tibshirani et al., 2003; Dudoit et al., 2001; Witten

et al., 2009). For this reason, rather than using (3.5) as our ssCCA criterion, following the

same strategy adopted by many of the existing sCCA algorithms (Waaijenborg et al., 2008;
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Parkhomenko et al., 2009; Witten et al., 2009), we substitute in the identity matrix I for

XTX and YTY, which gives the ssCCA formulation that we use in this chapter:

max
u,v

uTXTYv

subject to ‖u‖22 ≤ 1, ‖v‖22 ≤ 1, pen(u) ≤ c1, pen(v) ≤ c2,u
TLu ≤ c3. (3.6)

3.4. Coordinate descent algorithm for ssCCA

3.4.1. Algorithm to obtain the first ssCCA factor

Using l1 penalty, the ssCCA criterion (3.6) can be written as:

max
u,v

uTXTYv

subject to ‖u‖22 ≤ 1, ‖v‖22 ≤ 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2,u
TLu ≤ c3,

where ‖u‖1 and ‖v‖1 are the l1norm of the vectors u and v. To facilitate computation, we

write constraints on u in Lagrangian form and the ssCCA criterion becomes:

min
u,v

{
−uTXTYv +

1

2
‖u‖22 + λ1 ‖u‖1 +

λ2

2
uTLu

}
subject to ‖v‖22 ≤ 1, ‖v‖1 ≤ c2, (3.7)

where λ1 ≥ 0, λ2 ≥ 0 and c2 > 0 are tuning parameters. If the coefficient 1/2 in the criterion

(3.7) is changed to k/2 for some constant k > 0, then the solution of the new criterion

with tuning parameter (λ1, λ2, c2) will correspond to the solution of original problem with

tuning parameter (λ1, λ2/k, c2) up to a scaling of u. Also note that when λ2 = 0, ssCCA

is reduced to sCCA. Since the Laplacian penalty function λ2
2 uTLu is convex in u, so the

criterion (3.7) remains biconvex in u and v, so we can still use an iterative method to solve

this optimization problem:

Algorithm to Obtain the First ssCCA Factor
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1 Initialize v as the first right singular vector with an unity l2 norm from the singular

value decomposition of XTY.

2 Iterate until convergence:

– (a) u ← arg minu

{
−uTXTYv + 1

2 ‖u‖
2
2 + λ1 ‖u‖1 + λ2

2 uTLu
}

, which can be

solved by a graph-constrained regression problem Li and Li (2010) :

u← arg min
u

{
1

2

wwXTYv − u
ww2

2
+ λ1 ‖u‖1 +

λ2

2
uTLu

}
.

– (b) v← arg minv−uTXTYv subject to ‖v‖22 ≤ 1, ‖v‖1 ≤ c2, which is given by

v← S((uTXTY)T , δ)wwS((uTXTY)T , δ)
ww

2

,

where S(., .) the soft-thresholding function, i.e.,

S(a, b) =

 sgn(a)(|a| − b) if |a| > b

0 Otherwise,

and δ = 0 if this results in ‖v‖1 ≤ c2; otherwise, δ is chosen so that ‖v‖1 = c2.

The choice of δ can be determined using a binary search (Witten et al., 2009).

Let L = UΓUT and S = UΓ1/2, then Step 2(a) can be converted into a simple Lasso

problem as in Li and Li (2008) :

u← arg min
u

{
1

2
‖A∗u− b∗‖22 + λ1 ‖u‖1

}
,

where A∗2p×p =

 Ip×p
√
λ2S

T

, b∗2p =

 XTYv

0p

, Ip×p is p × p identity matrix and 0p

is a p-dimensional vector of 0’s. Note that no intercept is included in this Lasso problem

and coordinate descent algorithm can be implemented to obtain the solution at given λ1
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(Friedman et al., 2007).

Though the objective function is biconvex, i.e., is convex in either u or v, it is not convex in

(uT ,vT )T , so the coordinate descent algorithm does not necessarily converge to the global

optimum; however, by using the first right singular vector of the covariance matrix as the

initial starting point, it does converge to a stationary point (Tseng and Yun, 2009) and

interpretable solutions.

3.4.2. Choosing tuning parameters

The tuning parameters λ =(λ1, λ2, c2) control the model complexity and have to be tuned.

We use a M -fold two-stage cross-validation (2CV) method to choose λ. First, we divide

all the samples into M disjoint subgroups, also known as folds, and denote the index of

samples in the mth fold by Im for m = 1, · · · ,M . The M -fold cross-validated function is

defined as

CV (λ) =
1

M

M∑
m=1

Corr(XT
mû−m(λ),YT

mv̂−m(λ)) (3.8)

where Corr(., .) is the correlation function and û−m(λ), v̂−m(λ) is the estimate of u,v

based on the samples (∪Mm=1Im)\Im with λ as the tuning parameter. It is well known

that cross validation can perform poorly on model selection problems involving l1 penalties

(Meinshausen and Bühlmann, 2006) due to shrinkage in the values of the non-zero elements

of the projection coefficients. To reduce the shrinkage problem, 2CV re-estimates the non-

zero coefficients without penalization by performing the singular value decomposition on the

training data set excluding the variables with zero coefficients in the penalized procedure.

Specifically, for a given tuning parameter λ, we re-calculate the loading coefficients using the

variables that are selected by ssCCA and use these coefficients in the CV score (3.8). This

avoids the bias of the estimates due to penalization. We then choose λ∗ = argmaxλCV (λ)

as the best tuning parameters. From our simulations, we observe that the 2CV procedure

almost always performs better than standard CV without re-estimating the parameters.
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We report all our results based on the 2CV procedure. This two-stage approach was also

used for tuning parameter selection in other settings when l1 penalization is used (James

et al., 2010).

3.5. Simulation studies

We present Monte Carlo simulations to evaluate ssCCA in identifying the relevant variables

that explain the correlation between two multivariate vectors. The solution of sCCA is

obtained by setting λ2 = 0 in ssCCA. The simulations are carried out to mimic an associa-

tion study between nutrient intakes and genus level OTU abundances that is presented in

Section 3.6. Since the phylogenetic tree implies distances between the OTUs, we simulate

the distance matrix directly. Specifically, since OTUs are often clustered on the phyloge-

netic tree, we generate random OTU clusters of size from 1 to 15. If two OTUs are from

the same cluster (e.g. from the same taxonomic rank family), then their distance is drawn

from a uniform distribution on (0.1, 0.2); if two OTUs are from different clusters, then their

distance is drawn from a uniform distribution on (0.2, 1). We then construct the adjacency

matrix A using the method (3.1) based on the distances.

3.5.1. Simulation based on a latent variable model

We use a latent variable model to generate the data matrices X and Y where the dependency

between these two sets of variables are induced by a latent random variable ζ and the

variances in x,y can be explained in part by ζ. We assume x = ζwx+εx and y = ζwy+εy,

where ζ ∼ N(0, σ2
ζ ), εx, εy are random noise vectors that follow εx, εy ∼ N(0, σ2

ε I), and

wx ∈ IRp,wy ∈ IRq are column vectors of pre-set weights. The σε/σζ ratio controls the

overall association strength between x and y, with small value indicating strong association.

The coefficients wx and wy control the relative contributions of individual variables to the

overall association. We assume that only the first px elements of wx and the first qy

elements of wy are nonzero. Table 2 shows the parameters used in simulation. If we let∑px
i=1 |wx,i| =

∑py
i=1 |wy,i| = 1, then the highest correlation between linear combinations of
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x and y is given by Parkhomenko et al. (2009):

ρmax =
σ2
ζ√

(σ2
ζ + pxσ2

ε )(σ
2
ζ + pyσ2

ε )
. (3.9)

We fix σ2
ε = 1 and vary σ2

ζ to control the strength of the canonical correlation. When

σζ = 5, ρmax ≈ 0.7.

3.5.2. Evaluation of the selection performance

We evaluate the performance of our methods in terms of selecting the relevant variables

that lead to correlation between random vectors x and y by considering models with various

combinations of the parameters. For each simulated data set, we use five-fold 2CV to select

the tuning parameter values and then compute true positive rate (TPR), false positive rate

(FPR) and Matthew’s correlation coefficient (MCC) to measure the selection performance

for both x and y. These three measures are defined as

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
,

MCC =
TP × TN − FP × FN

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where TP, FP, TN, FN are true positives, false positives, true negatives and false negatives,

respectively. For each model, we generate the observed data set X and Y 100 times and

summarize TPR, FPR and MCC as averages over 100 runs. Results from 10-fold 2CV are

very similar and are omitted here.

We also compare the performance of different methods using the ROC curve (FPR against

TPR ) for identifying the relevant taxa OTUs by varying the tuning parameters. Specifi-

cally, the three tuning parameters are searched over a 10× 10× 10 grid for a total of 1000

tuning parameter combinations. For each combination, we obtain FPR and TPR, which

represents one point in the ROC plot. The ROC curve is then obtained by joining these

points for each run. We then average the ROC curves over 100 runs to produce an average
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ROC curve.

3.5.3. Comparison of ssCCA and sCCA under one latent variable model

We consider models with various combinations of the parameters (labeled A1 to D2),

including the number of relevant OTU clusters, the signal strength as measured by σ2
ζ and

the dimensions p and q and present the results in Table 3 and Figure 11. We observe that

the advantage of ssCCA over sCCA is more obvious under weak association (Model A1).

As the signal becomes stronger, the performance of sCCA becomes closer to ssCCA (Model

A2). This agrees with our intuition: the advantage of ssCCA lies in borrowing information

from closely related OTUs and when the association is weak, pooling information across

closely related OTUs can really help the OTU selection. Another interesting observation is

that better selection of OTUs can lead to better selection of nutrients, which is best shown

in the weak association case by obtaining a higher MCC. We also observe that that as

the dimension increases, both ssCCA and sCCA become less efficient in selecting relevant

OTUs and nutrients (Models B1 and B2). However, ssCCA performs consistently better

than sCCA in all dimensions considered. Finally, as the cluster size decreases, we do not

see a significant deterioration of the selection performance of ssCCA (Models C1 and C2).

ssCCA still performs better than sCCA. As long as the cluster contains more than one

OTU, using structure information always improves variable selection.

Since the smoothness penalty encourages that the variables that are close on the phyloge-

netic tree to have similar linear projection coefficients, we evaluate the sensitivity of ssCCA

when this assumption does not hold. We investigate the performance of ssCCA when data

and prior contradict each other. We consider the model where the first 10 elements of wx

have different coefficients but with the same signs and take values that are equally spaced

on [0.08, 0.12] (model D1). The performance of ssCCA is still much better than sCCA.

The Model D2 considers the scenario when the first 5 and the second 5 elements of wx

are 0.1s and −0.1s respectively, where the coefficients are different and have different signs.

This scenario violates our model assumption that closely linked OTUs have similar coeffi-
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cients, the structure-constrained penalty now has an adverse effect. This is clearly seen in

the ROC plot (Figure 11 D2). However, when the 2CV procedure is applied to select the

tuning parameters and the corresponding OTUs and nutrients, the performance of ssCCA

and sCCA is very similar (Table 3). This is because that if the prior structure information

is not useful, 2CV procedure tends to select λ2 = 0, which reduces ssCCA to sCCA. There-

fore, the selection performance of ssCCA should be at least as good as sCCA, but ssCCA

performs better when the prior knowledge is correct.

3.5.4. Comparison of ssCCA and sCCA under complex models

We compare the performance of ssCCA and sCCA under several complex models and also

present the results in Table 3 and Figure 11. Under Model E, we consider the scenario

when the noises are correlated with correlation 0.4|i−j| for εi and εj for both x and y. The

performances of ssCCA and sCCA are both slightly worse when compared to Model A2

when the noises are independent. ssCCA still outperforms sCCA.

We then consider Model F where we simulate count data with zeros. Specifically, we first

generate the data matrix X as previously. We then convert it into a proportion matrix

P and generate the counts based on P. For the jth column Xj , we first map the column

values into the range of [0, pmaxj ] by a linear transformation pij =
xij−mini(xij)

maxi(xij)−mini(xij)p
max
j ,

where pmaxj is sampled from [0.01, 0.1], so the maximum OTU abundance can vary by 10

folds. Rows of P are further scaled to sum up to 1. Given the OTU proportions for each

sample, we generate the counts using a Dirichlet-multinomial model with a total count of

1000 and an overdispersion of 0.01. Since we introduce extra variation by simulating counts,

we increase the first 10 components of wx to 0.4 to achieve moderate association (ρ1 ≈ 0.7).

Under this parameter setting, the data matrix contains about 20% 0’s. To apply ssCCA

and sCCA, we convert the simulated count matrix into a proportion matrix. Table 3 F and

Figure 11 F again show ssCCA outperforms sCCA in selecting the relevant variables.

Finally, we consider two models where two orthogonal directions induce the correlation
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between two sets of random vectors. We assume x = ζ1w
1
x + ζ2w

2
x + εx and y = ζ1w

1
y +

ζ2w
2
y + εy, where under Model G, the two directions are given by

w1
x = (0.1, · · · , 0.1︸ ︷︷ ︸

5

, 0.1, · · · , 0.1︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
90

)T ,

and

w2
x = 0.5(0.1, · · · , 0.1︸ ︷︷ ︸

5

,−0.1, · · · ,−0.1︸ ︷︷ ︸
5

0, · · · , 0︸ ︷︷ ︸
90

)T .

We assume that w1
y,w

2
y are the same as w1

x,w
2
x, and the OTUs from the same cluster

have the same coefficients on on the first direction. Under Model H, we consider model

misspecification where the two directions are given by

w1
x = (0.1, 0.1,−0.1,−0.1, 0.1︸ ︷︷ ︸

5

, 0.1, 0.1,−0.1,−0.1,−0.1︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
90

)T

and

w2
x = 0.5(0.1, · · · , 0.1︸ ︷︷ ︸

5

, 0.1, · · · , 0.1︸ ︷︷ ︸
5

0, · · · , 0︸ ︷︷ ︸
90

)T ,

and w1
y,w

2
y are the same as w1

x,w
2
x. OTUs from the same cluster have coefficients of

different signs on the first direction. ssCCA has higher true positive and lower false positive

rates and higher area under the ROC curve (see Table 3 G and Figure 11 G). Under the

model misspecification (Model H), the performances of ssCCA and sCCA are comparable.

3.6. Application to real data analysis

We apply ssCCA to a microbiome study on association between the nutrient intake and

bacterial abundances in the human gut conducted at the University of Pennsylvania. One

goal of the study is to investigate the relationship between diet and microbiome composition

and to identify a short list of potential nutrients and their associated bacteria in human gut.

For this study, both gut microbiome 16S data and the nutrient intake data are available

for 99 healthy subjects. Fecal samples were obtained from these 99 subjects and bacterial
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DNA was extracted using standard protocol. After multiplexed 454 pyrosequencing, about

900, 000 high quality, partial (∼370bp) 16S rRNA gene sequences were generated. These

sequences were analyzed using the Qiime pipeline* (Caporaso et al., 2010b), where the

sequences were clustered at 97% sequence identity into OTUs and assigned a taxonomic

identity using the RDP classifier (Wang et al., 2007). We consolidated these species level

OTUs into 119 genera (genus level OTUs) and used the representative sequence from the

most abundant species level OTU as the genus level representative sequence for distance cal-

culation and for construction of the phylogenetic tree. In our analysis, we further excluded

the uncommon genera that occurred in less than 1/4 of the samples so we only considered

p = 40 relatively common genera (See Figure 12). These 99 subjects also completed a care-

fully designed Food Frequency Questionnaire (FFQ). Based on the FFQ, the daily intake

for q = 214 nutrients were calculated for each subject by nutritionists. Because the nutrient

intake is clearly dependent on the overall energy consumption, we regressed the nutrient

intake on the total energy consumption and took residuals as the normalized nutrient in-

take. Our final data set can be summarized as the OTU abundance matrix X99×40 and the

nutrient intake matrix Y99×214. Since the sampling depths are very different for different

samples, we normalize the counts into proportions and standardize the columns to have

mean 0 and variance 1.

The goal of our analysis is to investigate the overall association between gut bacteria abun-

dances and nutrient intakes. We used the method presented in equation (3.1) to construct

the adjacency matrix A and the distances between any two OTUs were calculated using

the “K80” model (R “ape” package, “dist.dna” function). Five-fold 2CV was performed

to search the optimal tuning parameters on a grid of 20 × 20 × 20 and the range of the

tuning parameters were set to explore all possible models: from the most dense to the most

sparse model. We applied ssCCA to the data set and identified 24 nutrients and 14 genera

whose linear combinations gave a cross-validated correlation of 0.42 between gut bacterial

*Denoising and rarefaction were not performed for this analysis, hence one more sample and different
number of genera compared to the other two chapters.
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abundances and nutrients. Figure 12 shows the heatmap of pair-wise correlations between

these selected nutrients and OTUs, where the estimated loading coefficients are given in

the parentheses. The signs of the estimated loading coefficients correspond very well to the

pair-wise correlations. The nutrients related to fats are clustered together while the other

nutrients show an opposite direction of association.

The selected microbiome-associated nutrients are biologically interpretable. More than

half of the selected nutrients are related to fat. It has been experimentally shown that

fats can change the gut microbiome composition independent of obesity in mouse study

(Hildebrandt et al., 2009). There are also 4 selected nutrients related to Choline and it was

found by a recent human microbiome study that the composition of the gastrointestinal

microbiome changed with the choline levels of diets (Spencer et al., 2011). The selected

nutrients are also consistent with the candidate nutrients we identified using a distance-

based testing procedure (Wu et al., 2011a). This procedure utilized the overall UniFrac

distances (Lozupone and Knight, 2005) between microbiomes of any two subjects computed

using both the OTU abundances and the phylogenetic relationship among them. 20 out

of 24 nutrients selected by ssCCA were in the nutrients selected by the distance-based

individual testing method at the false discovery rate of 25%.

The pattern of selected OTUs is also interesting. The selected OTUs are marked with red

circles in the phylogenetic tree of Figure 12. We see that the closely related OTUs tend to

be selected together, for example, the genus Parabacteroides and Marinilabilia, Butyrivibrio

and Coprococcus and Anaerostipes and Lachnospiraceae Incertae Sedis are all close relatives

on the tree. ssCCA tends to select closely related OTUs together by making the coefficients

of neighbors similar through imposing phylogenetic tree-constrained smoothness penalty.

This feature of ssCCA can also be viewed as borrowing information from nearby OTUs,

that is, if several neighbors all exhibit similar weak association, ssCCA amplifies the signal

strength and selects them together. On the other hand, if some OTU exhibits low-level

association but all its neighbors show the opposite evidence, ssCCA will not select that
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OTU.

As a comparison, sCCA that does not account for the phylogenetic relationship among the

OTUs only selects one OTU, the Firmucute Lachnospira, which was also selected by ssCCA,

but a total of 122 nutrients. The interpretation of the result is not as clear as that from

ssCCA. The resulting combinations gave a cross-validated correlation of 0.39, smaller than

that obtained from ssCCA.

3.7. Discussion

In this chapter, we have extended the sparse CCA to incorporate the graphical structure

among the variables in canonical correlation analysis. When the number of variables exceeds

the number of samples, using prior structure information to guide variable selection is

very important. The prior knowledge could lead to a solution that is biologically more

interpretable. The sparse sCCA utilizes the phylogenetic information to select the bacterial

OTUs that are associated with covariates. The power of the ssCCA method has been

demonstrated in the simulation studies and its performance is unanimously better than

sCCA in all the simulated scenarios when there are structures in the data. Even when

the prior information is not completely accurate, our method still performs comparably to

sCCA due to selection of the tuning parameter by cross-validation.

Our method could also be applied to analysis of other types of genomic data. Due to devel-

opment of high throughput sequencing methods, it has become common for researchers to

obtain two or more genomic measurements on the same samples such as the gene expression

data and genotyping data. For example, in eQTL study, we want to associate genotype vec-

tor to gene expression vector. sCCA has been applied to this problem and produced some

encouraging results. However, genes are also related by gene networks, which in turn intro-

duces some structures to both gene expression and genotype data. We can apply ssCCA

to such data by incorporating the prior network information. We expect to gain certain

insights in identifying the genetic variants that are associated with genetic pathways.
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One limitation of the ssCCA formulation is that it assumes a linear relationship among

the variables, which may not always hold for OTU compositional/abundance data. Our

analysis of the gut microbiome data did not indicate too much deviation from the linearity

between OTU abundances and nutrient intakes. One interesting future research is to develop

structure-constrained nonlinear measures of association and sparse nonlinear CCA. One

promising idea is to incorporate the phylogenetic tree information of the OTU abundances

into kernel CCA (Dauxois and Nkiet, 1997).
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Table 2: Parameters used in simulation studies. For parameters with multiple entries,
the first value is used as the baseline simulations. When one parameter is varied, the baseline
parameters are used for other parameters.

Parameters Value

Sample size (n) 100
OTU No. (p) 100, 200, 400
Relevant OTU No. (px) 10
Weights for relevant OTUs (wx) 0.1,0.1,. . . ,0.1
Nutrient No. (q) 100, 200, 400
Relevant nutrient No. (qy) 10
Weights for relevant nutrients (wy) Equally spaced on [0.08, 0.12]
Relevant OTU cluster No. (Size) 1(10), 2 (5,5), 3(3,3,4)
Latent variable SD (σζ) 5, 4
Random error SD (σε) 1
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Table 3: Simulation results to evaluate ssCCA under models of different asso-
ciation signals, dimension sizes, cluster sizes, model misspecification and com-
plexity. Five-fold 2CV is used to select the tuning parameters. As a comparison, results
from sCCA are also presented. Each column represents a measure of selection performance
for OTU (x) or nutrient (y). TPR: true positive rate, FPR: false positive rate, MCC:
Matthew’s correlation coefficient. The results are averaged over 100 replications with SD
indicated in the parenthesis.

Selection of x variables Selection of y variables
Method TPR-x FPR-x MCC-x TPR-y FPR-y MCC-y

A1 - 1 cluster, σζ = 4, p, q = 100
ssCCA 0.91(0.20) 0.07(0.10) 0.76(0.22) 0.78(0.22) 0.12(0.12) 0.58(0.18)
sCCA 0.70(0.31) 0.09(0.12) 0.56(0.22) 0.75(0.24) 0.12(0.12) 0.54(0.21)
A2 - 1 cluster, σζ = 5, p, q = 100
ssCCA 0.96(0.10) 0.03(0.08) 0.89(0.16) 0.87(0.17) 0.05(0.09) 0.78(0.16)
sCCA 0.89(0.17) 0.05(0.08) 0.79(0.17) 0.87(0.16) 0.05(0.09) 0.77(0.17)
B1 - 1 cluster, σζ = 5, p, q=200
ssCCA 0.98(0.08) 0.05(0.11) 0.87(0.19) 0.87(0.16) 0.07(0.11) 0.75(0.18)
sCCA 0.89(0.17) 0.09(0.15) 0.74(0.22) 0.87(0.16) 0.08(0.11) 0.72(0.20)
B2 - 1 cluster, σζ = 5, p, q=400
ssCCA 0.89(0.30) 0.06(0.11) 0.74(0.33) 0.81(0.28) 0.12(0.13) 0.60(0.30)
sCCA 0.77(0.32) 0.09(0.23) 0.66(0.32) 0.78(0.31) 0.11(0.12) 0.57(0.32)
C1 - 2 clusters, σζ = 5, p, q = 100
ssCCA 0.93(0.14) 0.03(0.07) 0.88(0.15) 0.83(0.16) 0.05(0.09) 0.76(0.16)
sCCA 0.87(0.16) 0.05(0.08) 0.78(0.16) 0.85(0.16) 0.06(0.10) 0.76(0.17)
C2 - 3 clusters, σζ = 5, p, q = 100
ssCCA 0.94(0.11) 0.03(0.07) 0.88(0.15) 0.88(0.15) 0.07(0.11) 0.75(0.18)
sCCA 0.89(0.16) 0.05(0.10) 0.80(0.18) 0.88(0.16) 0.07(0.10) 0.76(0.18)
D1 - 1 cluster, σζ = 5, p, q = 100, variable coefficients of the same signs
ssCCA 0.95(0.11) 0.02(0.05) 0.90(0.13) 0.86(0.19) 0.06(0.10) 0.76(0.17)
sCCA 0.87(0.15) 0.04(0.08) 0.79(0.15) 0.88(0.16) 0.07(0.10) 0.75(0.18)
D2 - 1 cluster, σζ = 5, p, q = 100, variable coefficient of opposite signs
ssCCA 0.89(0.14) 0.05(0.09) 0.81(0.17) 0.89(0.15) 0.08(0.11) 0.75(0.20)
sCCA 0.90(0.15) 0.04(0.09) 0.82(0.17) 0.90(0.14) 0.07(0.11) 0.76(0.19)
E - correlated noise, 1 cluster, σζ = 5, p, q = 100
ssCCA 0.92(0.18) 0.04(0.07) 0.84(0.19) 0.78(0.21) 0.05(0.08) 0.72(0.17)
sCCA 0.85(0.20) 0.05(0.10) 0.77(0.18) 0.82(0.21) 0.06(0.10) 0.73(0.18)
F - count data, 1 cluster, σζ = 5, p, q = 100
ssCCA 0.92(0.16) 0.04(0.11) 0.84(0.17) 0.72(0.26) 0.06(0.14) 0.71(0.20)
sCCA 0.72(0.22) 0.09(0.15) 0.62(0.18) 0.80(0.24) 0.08(0.16) 0.75(0.23)
G - two directions, 1 cluster, σζ = 5, p, q = 100
ssCCA 0.95(0.13) 0.03(0.08) 0.87(0.17) 0.85(0.17) 0.05(0.09) 0.76(0.16)
sCCA 0.85(0.19) 0.07(0.10) 0.73(0.17) 0.82(0.19) 0.06(0.09) 0.72(0.16)
H - two directions, 2 clusters, model misspecification, σζ = 5, p, q = 100
ssCCA 0.83(0.20) 0.05(0.09) 0.74(0.19) 0.88(0.19) 0.11(0.13) 0.67(0.20)
sCCA 0.87(0.18) 0.06(0.10) 0.76(0.18) 0.89(0.17) 0.10(0.13) 0.69(0.20)
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Figure 11: ROC curves for OTU selection using ssCCA and sCCA for Models
A1 - H. The corresponding model parameters are given in Table 3.
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Figure 12: Associating gut microbiome composition with dietary nutrient intakes
using ssCCA. Top: heatmap that shows the correlations between the selected genera and
nutrients. The number in parenthesis of each variable is the estimated loading coefficient.
Red and blue colors indicate positive and negative correlations respectively. Bottom: Phylo-
genetic tree of the 40 genera used in the analysis. The genera selected by ssCCA are marked
with red circles. The bars on the right side indicate the average relative abundances of these
genera on log 10 scale.
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CHAPTER 4 : Variable Selection for Sparse Dirichlet-Multinomial Regression with

Applications to Microbiome Data Analysis

In this chapter, we present a model-based regression method to link the microbiome com-

position with environmental covariates. We propose to model the OTU counts using a

Dirichlet-multinomial (DM) regression model in order to account for overdispersion of ob-

served counts. The DM regression model can be used for testing the association between

microbiome composition and covariates using the likelihood ratio test. However, when the

number of the covariates is large, multiple testing can lead to loss of power. To deal with

the high dimensionality of the problem, we develop a penalized likelihood approach to es-

timate the regression coefficients and to select the variables by imposing a sparse group `1

penalty to encourage both group-level and within-group sparsity. Such a variable selection

procedure can lead to selection of the relevant covariates and their associated OTUs. An

efficient block-coordinate descent algorithm is developed to solve the optimization prob-

lem. We present extensive simulations to demonstrate that the sparse DM regression can

result in better identification of the microbiome-associated covariates than models that ig-

nore overdispersion or only consider the proportions. We demonstrate the power of our

method in an analysis of a data set evaluating the effects of nutrient intake on human gut

microbiome composition.

4.1. Introduction

Recent studies have linked the microbiome with human diseases including obesity and in-

flammatory bowel disease (Virgin and Todd, 2011). It is therefore important to understand

how genetic or environmental factors shape the human microbiome in order to gain insight

into etiology of many microbiome-related diseases and to develop therapeutical measures

to modulate the microbiome composition. Benson et al. (2010) demonstrated that genetic

variants are associated with the mouse gut microbiome. Wu et al. (2011a) showed that

dietary nutrients are associated with the human gut microbiome. Both studies have consid-
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ered a large number of genetic loci or nutrients and aimed to identify the genetic variants

or nutrients that are associated with the gut microbiome. When there are a large number

of possible covariates affecting the microbiome composition, variable selection becomes nec-

essary. Variable selection can not only increase biological interpretability but also provide

researchers with a short list of top candidates for biological validation. The methods we

develop in this chapter are particularly motivated by an ongoing study at the University

of Pennsylvania to link the nutrient intake to the human gut microbiome. In this study,

gut microbiome data were collected on 98 normal volunteers. In addition, food frequency

questionnaire (FFQ) were filled out by these individuals. The questionnaires were scored

and the quantitative measurements of 214 micronutrients were obtained. Details of the

study and the data set can be found in Chapter 1 and Section 4.6. Our goal is to identify

the nutrients that are associated with the gut microbiome and also their associated OTUs.

Most of the microbiome studies used distance-based methods to link the microbiome and

environmental covariates, where a distance metric such as the generalized UniFrac distance

we presented in Chapter 2 was defined between two microbiome samples and statistical

analysis was then performed using the distances. However, the choice of distance metric

is sometimes subjective and different distances vary in their power of identifying relevant

environmental factors. Another limitation of distance-based methods is its inefficiency for

detecting subtle changes since distances summarize the overall relationship. In addition,

such distance-based approaches do not provide information on how covariates affect the

microbiome compositions and which OTUs are affected. Therefore, it is desirable to model

the composition directly instead of summarizing the data as distances.

In this chapter, we consider the sparse Dirichlet-multinomial (DM) regression (Mosimann,

1962) to link high-dimensional covariates to OTU counts from microbiome data. The DM

regression model is chosen in order to model the overdispersed OTU counts. The observed

OTU count variance is much larger than that predicted by a multinomial model that assumes

fixed underlying OTU proportions, an assumption that is hardly met for real microbiome
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data. Uncontrollable sources of variation such as individual-to-individual variability, day-

to-day variability, sampling location variability or even technical variability such as sample

preparation lead to enormous variability in the underlying proportions. In contrast, the DM

model assumes that the underlying OTU proportions come from a Dirichlet distribution.

We use a log linear link function to associate the mean OTU proportions with covariates.

In this DM modeling framework, the effects of the covariates on OTU proportions can be

tested using the likelihood ratio test.

When the number of the covariates is large, we propose a sparse group `1 penalized likeli-

hood approach for variable selection and parameter estimation. The sparse group `1 penalty

function (Friedman et al., 2010) consists of a group `1 penalty and an overall `1 penalty,

which induce both group-level sparsity and within-group sparsity. This is particularly rele-

vant in our setting. For the nutrient-microbiome association example, we have p nutrients

and q OTUs, so the fully parameterized model has (p + 1) × q coefficients including the

intercepts, since each nutrient-OTU association is characterized by one coefficient. The

q coefficients for each nutrient constitute a group. If we assume many nutrients have no

or ignorable effect on the microbiome composition, the groups of coefficients associated

with these irrelevant nutrients should be zero altogether, which is a group-level sparsity

that is achieved by imposing a group `1 penalty. However, the group `1 penalty does not

perform within-group selection, meaning that if one group is selected, all the coefficients

in that group are non-zeros. In the case of nutrient-microbiome association, we are also

interested in knowing which OTUs are associated with a selected nutrient. By imposing an

overall `1 penalty, within-group selection becomes possible. Therefore, we impose a sparse

group `1 penalty not only to select these important nutrients but also to recover relevant

nutrient-OTU associations.

Section 4.2 reviews the Dirichlet-multinomial model for count data. Section 4.3 introduces

the Dirichlet-multinomial regression framework for incorporating covariate effects and pro-

poses a likelihood ratio statistic for testing the covariate effect. Section 4.4 proposes a
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sparse group `1 penalized likelihood procedure for variable selection for the DM models

followed by a detailed description of a block-coordinate descent algorithm in Section 4.4.1.

Section 4.5 shows simulation results and Section 4.6 demonstrates the proposed method on

a real human gut microbiome data set to associate the nutrient intake with the human gut

microbiome composition.

4.2. Dirichlet-multinomial model for microbiome composition data

Suppose we have q OTUs/taxa and their counts Y = (Y1, Y2, ..., Yq) are random variables.

Denote y = (y1, y2, ..., yq) as the observed counts. The simplest model for count data is the

multinomial model and its probability function is given as:

fM (y1, y2, · · · , yq;φ) =

(
y+

y

) q∏
j=1

φ
yj
j ,

where y+ =
∑q

j=1 yj and φ = (φ1, φ2, · · · , φq) are underlying species proportions with∑q
j=1 φj = 1. Here the total OTU count y+ is determined by the sequencing depth and is

treated as an ancillary statistic since its distribution does not depend on the parameters in

the model. The mean and variance of the multinomial component Yj (j = 1 · · · q) are:

E(Yj) = y+φj , Var(Yj) = y+φj(1− φj). (4.1)

For microbiome composition data, the actual variation is usually larger than what would

be predicted by the multinomial model, which assumes fixed underlying proportions. This

increased variation is due to the heterogeneity of the microbiome samples and the underlying

proportions vary among samples. To account for the extra-variation or overdispersion, we

assume the underlying proportions (φ1, φ2, · · · , φq) are themselves positive random variables

(Φ1,Φ2, · · · ,Φq) subject to the constraint
∑q

j=1 Φj = 1. One commonly used distribution
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is the Dirichlet distribution (Mosimann, 1962) with the probability function given by

fD(φ1, φ2, · · · , φq;γ) =
Γ(γ+)∏q
j=1 Γ(γj)

q∏
j=1

φ
γj−1
j ,

where γ = (γ1, γ2, ..., γq) are positive parameters, γ+ =
∑q

j=1 γj and Γ(·) is the Gamma

function. The mean and variance of the Dirichlet component Φj (j = 1 · · · q) are:

E(Φj) =
γj
γ+
, Var(Φj) =

γj(γ+ − γj)
(1 + γ+)γ2

+

.

The mean is proportional to γj and the variance is controlled by γ+, which can be regarded

as a “precision parameter”. As γ+ becomes larger, the proportions are more concentrated

around the means.

The Dirichlet-multinomial (DM) distribution (Mosimann, 1962) results from a compound

multinomial distribution with weights from the Dirichlet distribution (Parameterization I):

fDM (y1, y2, · · · , yq;γ) =

∫
fM (y1, y2, · · · , yq;φ)fD(φ;γ)dφ

=

(
y+

y

)
Γ(y+ + 1)Γ(γ+)

Γ(y+ + γ+)

q∏
j=1

Γ(yj + γj)

Γ(γj)Γ(yj + 1)
. (4.2)

The mean and variance of the DM distribution for each component Yj (j = 1, · · · , q) is

given by

E(Yj) = y+ E(Φj), Var(Yj) = y+ E(Φj){1− E(Φj)}
(
y+ + γ+

1 + γ+

)
. (4.3)

Comparing (4.3) with (4.1), we see that the variation of the DM component is increased by

a factor of (y+ + γ+)/(1 + γ+), where γ+ controls the degree of overdispersion with a larger

value indicating less overdispersion. Using an alternative parameterization, the probability

66



function can be written as (Parameterization II):

f∗DM (y1, y2, ..., yq;φ, θ) =

(
y+

y

)∏q
j=1

∏yj
k=1{φj(1− θ) + (k − 1)θ}∏y+

k=1{1− θ + (k − 1)θ}
, (4.4)

where φj = γj/γ+ is the mean and θ = 1/(1+γ+) is the dispersion parameter. When θ = 0,

it is easy to verify (4.4) is reduced to the multinomial distribution.

4.3. Dirichlet-multinomial regression for incorporating the covariate effects

When there is no covariate effect, the DM model can be used to produce more accurate

estimates of OTU proportions of a given microbiome sample than the simple multinomial

model, due to its ability to model the overdispersion. Beyond proportion estimation, mi-

crobial ecologists are more interested in associating the microbiome composition with some

environmental covariates. Suppose we have n microbiome samples and q species. Let

Y = (yij)n×q be the observed count matrix for the n samples. Let X = (xij)n×p be the

design matrix of p covariates for n samples. We assume the parameters γj (j = 1, · · · , q)

in the DM model (Parameterization I) depends on the covariate via the following log-linear

model

γj(x
i) = exp(αj +

p∑
k=1

βjkxik), (4.5)

where xi is the ith row vector of X and βjk is the coefficient for jth OTU with respect to

kth covariate, whose sign and magnitude measures the effect of kth covariate on the jth

OTU. From (4.3), we see that E(Yij) ∝ exp(αj)
∏p
k=1 exp(βjkxik), where exp(αj) can be

interpreted as the baseline abundance level for species j and the coefficient βjk indicates the

magnitude of the kth covariate effect on species j. Though the log linear link is assumed

mainly for ease of computation, it is biologically consistent, in that microorganisms usually

exhibit exponential growth in favorable environment.

For notational simplicity, we denote βj0 as αj and augment X with an n-vector of 1’s as its

67



first column. We number the columns from 0 to p. The link function becomes

γj(x
i) = exp(

p∑
k=0

βjkxik). (4.6)

Let β be the q × (p + 1) regression coefficient matrix, βj = (βj0, · · · , βjp)T be the vector

of coefficients for the jth OTU (j = 1, · · · , q) and βk = (β1k, · · · , βqk)T be the vector of

coefficients for the kth covariate (k = 0, · · · , p). We also use β to denote the q(p+ 1) vector

that contains all the coefficients. Substituting (4.5) into DM probability function (4.2) and

ignoring the part that does not involve the parameters, the log likelihood function given

the covariates is given by

l(β; Y,X) =
n∑
i=1

Γ̃

 q∑
j=1

γj(x
i;βj)

− Γ̃

 q∑
j=1

yij +

q∑
j=1

γj(x
i;βj)


+

q∑
j=1

{
Γ̃
(
yij + γj(x

i;βj)
)
− Γ̃

(
γj(x

i;βj)
)} . (4.7)

where Γ̃(.) is the log gamma function.

Based on the likelihood function (4.7), one can test the effect of a given covariate or the joint

effects of all the covariates on the microbiome composition using the standard likelihood

ratio test (LRT). To solve the maximization problem, we implemented the Newton-Raphson

algorithm, since the gradient and Hessian matrix of the log likelihood can be calculated

analytically. Alternatively, we can use general-purpose optimization algorithm such as nlm

in R, which computes the gradient and Hessian numerically. By selecting an appropriate

starting point (e.g. α = β = 0), for moderate-size problems in the dimensions p and q, the

algorithm converges to a stationary point sufficiently fast.

With a large number of covariates in the DM regression model, direct maximization of the

likelihood function becomes infeasible or unstable. When each covariate is tested separately

using the LRT, adjustment for multiple testing is required. In addition, when the number
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of OTUs q is large, the null distribution of the LRT has large degrees of freedom and

therefore reduced power. It is also desirable to select the individual OTUs associated with

the covariate. Although one can test the null hypothesis H0 : βjk = 0 for each (j, k) pair by

the LRT, adjustment of multiple comparisons can lead to a loss of power. In next section,

we present a sparse group `1 penalized estimation for variable selection and parameter

estimation for sparse DM regression models.

4.4. Variable selection for sparse Dirichlet-multinomial regression

To perform variable selection, we estimate the regression coefficient vector β in model (4.6)

by minimizing the following sparse group `1 penalized negative log-likelihood function,

pl(β; Y,X, λ1, λ2) = −l(β; Y,X) + λ1

p∑
k=1

‖βk‖2 + λ2

p∑
k=1

‖βk‖1 , (4.8)

where l(β; Y,X) is the log-likelihood function defined as in (4.7), λ1 and λ2 are the tuning

parameters and ‖βk‖1 =
∑q

j=1 |βik| is the `1 norm and ‖βk‖2 =
√∑q

j=1 β
2
ik is the group `1

norm of the coefficient vector βk, respectively. We do not penalize the intercept vector β0.

The first part of the sparse group `1 penalty is the group `1 penalty that induces group-level

sparsity, which facilitates selection of the covariates that are associated with OTU counts.

The second `1 penalty on all the coefficients facilitates the within-group selection, which

is important for interpretability of the resulting model. A similar penalty involving both

group `1 and `1 terms is discussed in (Peng et al., 2009) and (Friedman et al., 2010) for

regularized multivariate linear regression. When λ2 = 0, criterion (4.8) reduces to the group

lasso.
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4.4.1. A block-coordinate gradient descent algorithm for sparse group `1 penalized DM re-

gression

The sparse group `1 estimates of β can be obtained by minimizing the penalized negative

log-likelihood function (4.8):

β̂λ1,λ2
= arg minβ

{
−l(β; Y,X) + λ1

p∑
k=1

‖βk‖2 + λ2

p∑
k=1

‖βk‖1

}
.

Using the general block coordinate gradient descent algorithm of Tseng and Yun (2009),

we develop in the following an efficient algorithm to solve this optimization problem. Meier

et al. (2008) present a block coordinate gradient descent algorithm for group lasso for

logistic regression that includes only the group `1 penalty (i.e., λ2 = 0). In contrast, our

optimization problem (4.8) has two non-differentiable parts, both at the individual βjk and

at the group βk levels.

The key idea of the algorithm is to combine a quadratic approximation of the log-likelihood

function with an additional line search. First we expand (4.7) at current estimate β̂
(t)

to a

second-order Taylor series. The Hessian matrix is then replaced by a suitable matrix H(t).

We define

l
(t)
Q (d) = l(β̂

(t)
) + dT∇l(β̂(t)

) +
1

2
dTH(t)d, (4.9)

where d ∈ IRq(p+1). Also denote ∇l(β̂(t)
)k and dk the gradient and increment with respect

to β̂
(t)

k for the kth group, and ∇l(β̂(t)
)sk and dsk with respect to β̂

(t)
sk . We then minimize

the following function pl
(t)
Q (d) with respect to the kth penalized parameter group:

pl
(t)
Q (d) = −l(t)Q (d) + λ1

p∑
k=1

wwwβ̂(t)

k + dk

www
2

+ λ2

p∑
k=1

wwwβ̂(t)

k + dk

www
1

(4.10)

≈ pl(β̂
(t)

+ d; Y,X, λ1, λ2).

We restrict ourselves to vectors d with dj = 0 for j 6= k and the corresponding q × q
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submatrix H
(t)
kk for kth group is a diagonal matrix of the form H

(t)
kk = h

(t)
k Iq for some scalar

h
(t)
k ∈ IR.

The solution to the general optimization problem of the form (4.10) is given by Theorem

1 and its Corollary in the Appendix. Let S = {s | |∇l(β̂(t)
)sk − h

(t)
k β̂

(t)
sk | < λ2} and S̄ be

the set {1, · · · , q}\S. Denote dSk the subvector of dk with indices in S and dS̄k in S̄. The

minimizer of (4.10) can be decomposed into two parts: The first part d
(t)
Sk can be obtained

by

d
(t)
Sk = −β̂(t)

Sk.

The second part d
(t)

S̄k
can be computed by minimizing:

f (t)(dk) = −
{

dTk u
(t)
k +

1

2
dTkH

(t)
kkdk

}
+ λ1

wwwβ̂(t)

k + dk

www
2

(4.11)

with respect to dS̄k (set components other than dS̄k to be 0), where

u
(t)
k =

[
∇l(β̂(t)

)k − λ2sgn
{
∇l(β̂(t)

)k − h
(t)
k β̂

(t)

k

}]

and sgn(·) is the sign function.

Minimization of (4.11) with respective to dS̄k can be performed in a similar fashion as in

Meier et al. (2008) for the group `1 penalty. Specifically, if
wwwu

(t)

S̄k
− h(t)

k β
(t)

S̄k

www
2
< λ1, the

minimizer of equation (4.11) for dS̄k is

d
(t)

S̄k
= −β̂(t)

S̄k.

Otherwise

d
(t)

S̄k
= − 1

h
(t)
k

u
(t)

S̄k
− λ1

u
(t)

S̄k
− h(t)

k β̂
(t)

S̄kwwwu
(t)

S̄k
− h(t)

k β̂
(t)

S̄k

www
2

 .
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For the unpenalized intercept, the solution can be directly computed:

d
(t)
0 = − 1

h
(t)
0

∇l(β̂(t)
)0.

If d(t) 6= 0, an inexact line search using the Armijo rule will be performed. Let α(t) be the

largest value in {α0δ
l}l≥0 such that

pl(β̂
(t)

+ α(t)d(t))− pl(β̂(t)
) ≤ α(t)σ∆(t),

where 0 < δ < 1, 0 < σ < 1, α0 > 0, and ∆(t) is the improvement in the objective function

pl(β) using a linear approximation, i.e.,

∆(t) = −d(t)T∇l(β̂(t)
) + λ1

{
p∑

k=1

wwwβ̂(t)

k +d
(t)
k

www
2
−

p∑
k=1

wwwβ̂(t)

k

www
2

}

+λ2

{
p∑

k=1

wwwβ̂(t)

k +d
(t)
k

www
1
−

p∑
k=1

wwwβ̂(t)

k

www
1

}
.

Finally, we update the current estimate by

β̂
(t+1)

= β̂
(t)

+ α(t)d(t).

For H
(t)
kk , we use the same choice as in Meier et al. (2008), that is,

h
(t)
k = −max

[
diag{−∇2l(β̂

(t)
)kk}, c∗

]
,

where c∗ > 0 is a lower bound to ensure convergence. In this chapter, we use the standard

choices for the parameters: α0 = 1, δ = 0.5, σ = 0.1 and c∗ = 0.001 (Tseng and Yun, 2009)

in the block coordinate descent algorithm to ensure the convergence of the algorithm.

Remark: In each iteration of the algorithm detailed above, when estimating the kth column
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of the q × p coefficient matrix β with all other columns fixed, the algorithm first identifies

the coefficients with zero estimates, denoted by set S in the algorithm. For the coefficients

in set S, d
(t)
Sk = −β̂(t)

Sk, and therefore when αt = 1, β̂
(t+1)

Sk = β̂
(t)

Sk + αtd
(t)
Sk = 0 and the

coefficients in S are shrank to zero. Based on its definition, the set S depends on the

turning parameter λ2 and a larger value of λ2 leads to fewer non-zero coefficients. The

algorithm then performs a group shrinkage of the non-zero estimates of the coefficients in

the complementary set S̄. These non-zeros coefficients can further be shrunk to zero as

a group if the condition ||u(t)

S̄k
− h

(t)
k β(t)||2 < λ1 is met, in which case d

(t)

S̄k
= −β̂(t)

S̄k and

therefore β̂
(t+1)

S̄k = β̂
S̄k

(t) + d
(t)

S̄k
= 0. Clearly, this group shrinkage depends on the tuning

parameter λ1. This explains that with careful choice of the tuning parameters λ1 and λ2,

some column group coefficients are set to zero and the within-group sparsity is achieved by

the plain `1 penalty.

4.4.2. Tuning parameter selection

There are two tuning parameters λ1 and λ2 in the penalized likelihood estimation that

need to be tuned with data by v-fold cross validation or a BIC criterion. To facilitate

computation, we reparameterize λ1 and λ2 as λ1 = cλ
√
q and λ2 = (1− c)λ. The multiplier

√
q in the group penalty is used so that the group `1 penalty and overall `1 penalty are

on a similar scale. Here we use λ to control the overall sparsity level and use c ∈ [0, 1]

to control the proportion of group `1 in the composite sparse group penalty. When c = 0,

the penalty is reduced to lasso; when c = 1, it is reduced to group lasso. We consider the

tuning parameter c from the set {0, 0.05, 0.1, 0.2, 0.4}. For each c, to search for the best

tuning parameter value, we run the algorithm from λmax so that it produces the sparsest

model with the intercepts β0 only. The value λmax can be roughly determined by using the

starting value β(0) with components β
(0)
j = 0 (j 6= 0) and β

(0)
0 the MLE of (4.7) without

covariates, and choosing the smallest value of λ so that the iteration converges in the first

iteration, that is, β(0) is a stationary point. We then decrease λ value and use the estimate

of β from the last λ as a warm start. The grid of λ can be chosen to be equally spaced on
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a log scale, e.g., λj = 0.96jλmax (j = 1, · · · ,m), where m is set so that λmin = 0.2λmax or

alternatively we could terminate the loop until the model receives more than the maximum

number of nonzero coefficients allowed.

4.5. Simulation studies

4.5.1. Simulation strategies

We simulate n microbiome samples, p nutrients and q OTUs to mimic the real data set

that we analyze in Section 4.6. The nutrient intake vector is simulated using a multivariate

normal distribution with mean 0 and a covariance matrix Σi,j = ρ|i−j|. We simulate pr

relevant nutrients with each nutrient being associated with qr OTUs. For each nutrient, the

association coefficients βij for the qr OTUs are equally spaced over the interval [0.6f, 0.9f ]

with alternative signs, where f controls the association strength. We consider two growth

models to relate the OTU abundances to the covariates. In the exponential growth model,

the proportion of the jth OTU of ith sample is determined as:

φij =
exp

(
βj0 +

∑p
k=1 βjkxik

)∑q
j=1 exp

(
βj0 +

∑p
k=1 βjkxik

) . (4.12)

The intercepts β0, which determines the base abundances of the OTUs, are taken from a

uniform distribution over (−2.3, 2.3) so that the base OTU abundances can differ up to 100

folds. The exponential growth model is a common model for bacteria growth in response

to environmental stimuli. We also consider a linear growth model, in which the proportion

of the jth OTU of ith sample is determined as:

φij =
βj0 +

∑p
k=1 βjkxik∑q

j=1(βj0 +
∑p

k=1 βjkxik)
.

The intercepts β0 are now drawn from a uniform distribution over (0.02, 2) so that the base

OTU abundances can also differ up to 100 folds. To deal with possible negative
∑p

k=0 βjkxik,

we add a small constant to make it positive.
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We then generate the count data using DM model of parametrization II (4.4) with a common

dispersion θ. The number of individuals (sequence reads) for ith sample mi is generated

from a uniform distribution over (m, 2m). Note that the data are not generated exactly

according to our model assumptions, which are based on parametrization I (4.2) and link

(4.6). This can further demonstrate the robustness of our proposed model.

4.5.2. Evaluating the LRT for detecting environmental effect on microbiome composition

We compare our LRT with the pseudo-F statistic based permutation test for association

between one covariate and the microbiome. The count data are normalized to proportions

before performing the permutation test. The parameter values used in this simulation are:

n= 100, p= pr = 1, q = 40, m= 500, θ = 0.025. We vary the number of relevant OTUs

(qr) and the association strength (f), and compare the powers under both exponential and

linear growth models. The power is calculated based on 1, 000 replications at type I error

0.05. The results are shown in Table 4. Both methods control the type I error around 0.05

(f = 0). In the exponential growth model, LRT is almost always more powerful than the

permutation test, especially in situations where there are few relevant species and relatively

strong covariate effect (qr=2; f=0.6, 0.8). The LRT performs much better for models with

more relevant OTUs and relatively weak covariate effect (qr =8, 16; f =0.2). In summary,

LRT has overall better power than the permutation test under almost all the models we

considered, even when the model assumption is violated.

4.5.3. Evaluation of the penalized likelihood approach for selecting covariates affecting the

microbiome composition

To evaluate the variable selection performance of the proposed sparse penalized likelihood

approach with group `1 penalty, we first simulate the count data using the exponential

growth model with n = 100, p = 100, pr = 4, q = 40, qr = 4, m = 1000, θ = 0.025, and

ρ= 0.4, totaling 4, 000 variables. We compare the results to the corresponding penalized

estimation of the DM model using only `1 penalty function and two other sparse group `1
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estimation based on multinomial or Dirichlet regression. In sparse multinomial regression,

we use the multinomial model for count data and the link function is given by (4.12). We

set β10 = 0 to make the coefficients identifiable. In sparse Dirichlet regression, instead of

modeling the counts directly, we model the proportions using Dirichlet distribution and the

link function is the same as that of the DM regression. Since the count data contain zeros,

we add 0.5 to the cells with 0 counts. We also include results from LRT based univariate

testing procedure for group selection controlling the false discovery rate (FDR) at 0.05.

We measure the selection performance using

recall =
TP

TP + FN
, precision =

TP

TP + FP
, F1 = 2 · precision · recall

precision + recall
,

where TP , FN and FP are true positives, false negatives and false positives respectively,

and F1 is an overall measure, which weights the precision and recall equally. The averages

of these measures are reported based on 100 replications.

To select the best tuning parameter values, we simulate an independent test data set of n/2

samples. We then run the penalized procedure over the training data set and re-estimate

the selected coefficients using an unpenalized procedure (“nlm” function in R). The log-

likelihood of the test data set is calculated based on the re-estimated coefficients and the

tuning parameter is selected to maximize the log likelihood over the test data set. We choose

the tuning parameter c from the set {0, 0.05, 0.1, 0.2, 0.4}. Figure 13 shows that a small c is

sufficient to identify the groups efficiently, while further increase of c only improves the group

selection marginally. On the other hand, within-group selection exhibits a unimode pattern

indicating slight grouping could lead to better identification of within-group elements. In

the following simulations, we tune both c and λ to achieve the maximum likelihood values

in the test data sets.

Table 5 shows the simulation results. The sparse group `1 penalized DM regression has a

much higher precision rate in group selection than the corresponding `1 penalized procedure,
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while both achieve similar recall rates, demonstrating the gain from including the group `1

penalty in the regularization. Interestingly, the sparse group penalized DM regression also

performs better in within-group selection as shown by a higher recall rate and F1, indicating

better group selection could also facilitate better overall variable selection. Compared to

models based on the sparse Dirichlet regression and multinomial regression, DM model

performs better in variable selection especially for within-group selection, suggesting the

DM model is more appropriate than multinomial or Dirichlet models when the counts

exhibit overdispersion. The Dirichlet model performs slightly better than the multinomial

model. At 5% FDR, the LRT based univariate testing procedure selects far more variables

than these penalized procedures, yielding a higher recall rate but a much worse precision

rate.

4.5.4. Effects of overdispersion and model misspecification

We further investigate the effect of overdispersion and simulate the count data with different

degrees of overdispersion and present the results in Figure 14. We observe that larger

overdispersion makes the selection more difficult for all three models, as shown by smaller F1

values. When the data have small overdispersion (θ=0.005), the selection performances of

the three models are similar. On the other hand, when the data have a large overdispersion

(θ = 0.1), the DM based procedure performs much better than the other two in terms of

both group selection and within-group selection. Therefore, modeling overdispersion can

lead to gain in power of identifying relevant variables if the data are overdispersed and

remains as powerful when the data do not exhibit overdispersion.

To assess the sensitivity to model misspecification, we simulate the counts using the linear

growth model instead and compare the results with the exponential growth model (see

Figure 14). Interestingly, both the Dirichlet and DM model are very robust to model mis-

specification and their selection performances do not decrease significantly. On the other

hand, the multinomial model suffers a large performance loss with the F1 measure for group

selection decreasing from 0.79 to 0.56. We also study the effect of the total counts for each
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sample (data not shown). Even increasing the total count by 10 folds, the DM model

is still better than the proportion based Dirichlet model. Therefore, even we have much

deeper sequencing of the microbiome that results in larger counts for each sample, using

the DM model can still lead to improved performance over the model that considers only

the proportions.

4.5.5. Effects of the number of the covariates and the relevant OTUs

We next study the effect of the number of relevant OTUs in each group on the performance

of different models and present the results in Figure 15. When each relevant group contains

only one relevant OTU, the grouping is not very helpful, so the sparse group regularized

DM model and `1 regularized DM model do not differ much in selecting the relevant groups.

When the relevant group contains 8 relevant OTUs, variable grouping becomes much more

important and the sparse group regularized DM model performs much better than the `1

penalized DM. The group penalized multinomial and Dirichlet regression models, on the

other hand, select groups as well as the DM regression model, since the grouping effect is

much stronger.

Figure 15 also shows the results when we increase the dimension of covariates to 400 (16, 000

variables in total). Increase of the dimension does not deteriorate the variable selection

performance, demonstrating the efficiency of our method in handling high-dimensional data.

4.6. Application to real data analysis

Diet strongly affects the human health, partly by modulating gut microbial community

composition. Wu et al. (2011a) studied the habitual diet effect on the human gut mi-

crobiome, where a cross-sectional 98 healthy volunteers were enrolled in the study. Diet

information was collected using food frequency questionnaire (FFQ) and converted to nu-

trient intake values of 214 micronutrients. Nutrient intake was further normalized using

the residual method to adjust for caloric intake and was standardized to have mean 0 and

standard deviation 1. Since some nutrient measurements were almost identical and we used
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only one representative for these highly correlated nutrients (correlation ρ > 0.9), result-

ing in 118 representative nutrients. Stool samples were collected and DNA samples were

analyzed by the 454/Roche pyrosequencing of 16S rDNA gene segments of the V1-V2 re-

gion. The pyrosequences were denoised prior to taxonomic assignment yielding an average

of 9, 265± 3, 864(SD) reads per sample. The denoised sequences were then analyzed by the

QIIME pipeline (Caporaso et al., 2010b) with the default parameter settings. The OTU

table contained 3068 OTUs (excluding the singletons) and these OTUs can be further com-

bined into 127 genera (genus-level OTUs). We studied 30 relatively common genera that

appeared in at least 25 subjects. Finally, we had the count matrix Y98×30 and covariate

matrix X98×118. Our goal is to identify the micronutrients that are associated with the gut

microbiomes and the specific genera that the selected nutrients affect.

We applied the sparse group `1 penalized DM regression to this data set. We used the

BIC to select the tuning parameters. The final DM model selected 11 nutrients and 13

associated genera. We refit the DM regression model using the selected variables and

obtained the maximum likelihood estimates of the coefficients. We compared the fitted

counts (total count × fitted proportion) against the observed counts in Figure 16 (top

panel). The model fits the data quite well with r2 = 0.79. Table 6 shows the MLEs of

the regression coefficients for the selected nutrients and genera. Except for Methionine

(second column), the coefficients are not too small. Since the nutrient measurements are

standardized, the exponentiation of a given coefficient can be interpreted as the amount of

change in proportion for a genus when a given nutrient changes by one unit while other

nutrients remain constant. The marginal p-value based on the LRT for each of the selected

nutrients is also shown in this table. Except for Vitamin E and Eriodictyol, these selected

nutrients all show a significant marginal association with the gut microbiome.

To further assess the relevance of the nutrients selected, we used the bootstrap to analyze the

stability of the selected nutrients (Bach, 2008). Specifically, we took 100 bootstrap samples

and for each sample we ran our algorithm to select the nutrients. Since some nutrients are

79



highly correlated, we expect that highly correlated nutrients (if the correlation is greater

than 0.75) can be selected in different bootstrap samples, we define the bootstrap selection

probability of a given nutrient as the number of times that this nutrient or its correlated

nutrients were selected. Table 6 shows the bootstrap probabilities of the nutrients that

were selected by the sparse DM regression, indicating quite stable selection of most of the

selected microbiome-associated nutrients. Vitamin E had the least stable selection over the

100 bootstrap samples.

The identified nutrient-genus associations are visualized in a bipartite graph shown in Fig-

ure 17, where the genera and nutrients are depicted with circles and hexagons, respectively.

These results further confirmed the findings of Wu et al. (2011a), where they found the

human gut microbiome can be clustered into two enterotypes characterized by Prevotella

and Bacteroides respectively, and the Prevotella enterotype is associated with high carbohy-

drate diet while the Bacteroides enterotype is associated with high protein/fat/choline diet.

Figure 17 shows that two carbohydrates, Maltose and Sucrose, are positively associated

with Prevotella and negatively associated with Bacteroides while animal proteins are posi-

tively associated with Bacteroides, Parabacteroides and Alistipes, the three genera mostly

enriched in the Bacteroides enterotype. Choline is positively associated with Bacteroides

and negatively associated with Prevotella. Polyunsaturated fat is strongly associated with

Alistipes, Odoribacter, Barnesiella and Parasutterella, indicating the large effect of fat on

the human microbiome.

The DM model also identified several other associations that are worth further investiga-

tion. For example, we found that Naringenin (flavanone) was positively associated with

Faecalibacterium, an anti-inflammatory commensal bacterium identified by gut microbiota

analysis of Crohn’s disease patients (Sokol et al., 2008). If the association is validated, diet

with high Naringenin (e.g. Orange, Grapefruit) can be beneficial for patients with Crohn’s

disease.

As a comparison, we also run the sparse group `1 penalized multinomial or Dirichlet regres-
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sion models and the identified nutrient-genus associations showed significant overlap with

those from the DM regression model. However, the interpretability of the DM regression

model was the best. To further demonstrate the advantage of the DM model, we simulated

OTU counts for each individual based on the fitted models and the observed total OTU

counts. The bottom plot of Figure 16 shows that the simulated counts produced by the

fitted sparse DM model resemble the observed counts better than those from the sparse

multinomial model, where the simulated counts are apparently over-smoothed. This in-

dicates the importance of considering the overdispersion in modeling the gut microbiome

data. We also performed LRT based univariate testing procedure. At FDR=0.05, the LRT

identified 13 nutrients, 8 of which are also identified or highly correlated with the nutrients

identified by the sparse group `1 penalized DM model.

4.7. Discussion

We have proposed a sparse group `1 penalized estimation for the DM regression in order to

select covariates associated with the microbiome composition. The sparse group `1 penalty

encourages both group-level and within-group sparsity, with which we can select the relevant

OTUs associated with the selected covariates. We have performed extensive simulations to

evaluate our proposed penalized estimation procedure for both group and within-group

selections. We demonstrated the procedure with a real data set on associating nutrient

intakes with gut microbiome composition and confirmed the major findings in Wu et al.

(2011a).

In our penalized likelihood estimation of the DM model, we use a combination of group `1

and individual `1 penalties, which result in a convex and separable (in groups of parame-

ters) penalty function. This property facilitates the application of the general coordinate

gradient descent method of Tseng and Yun (2009) to implement an efficient optimization

algorithm. In each iteration, we have a closed form solution for a block update. For a

given set of the sparsity tuning parameters, our algorithm is fully automatic and does not

require the specification of an algorithmic tuning parameter to ensure convergence. For
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example, it took about 3 minutes on a standard laptop (Core i5, 2G memory) to finish

the analysis of the real data set using an R implementation of the algorithm (available on

http://statgene.med.upenn.edu/). Beside the sparse l1 group penalty, other group penalty

functions such as the sup-norm penalty in Zhang et al. (2008) and the composite absolute

penalties in Zhao et al. (2009) can be also be used in the setup of the Dirichlet multino-

mial regression. However, efficient implementation of the optimization problems with these

penalty functions is challenging.

In microbiome data analysis literature, one commonly used approach is to normalize the

counts into proportions and perform statistical analysis using the proportions. However, by

converting into the proportions, the variation associated with multinomial sampling process

is lost. In 16S rRNA sequencing, the sequencing depths (total counts) for samples can

vary up to 10-fold. Obviously, the accuracy of the proportion estimates under sequencing

depth of 500 reads is very different from that of 10, 000 reads. As shown in our simulations,

modeling counts directly can result in gain of power in selecting relevant variables even when

the number of sequence reads is very large. Another problem associated with proportions is

the existence of numerous zeros in the OTU count data. Many proportion based approaches

require taking logarithms of the proportions, which is problematic for the zero proportions.

To circumvent this problem, either a pseudo count (e.g. 0.5) is added to these zero counts

before converting into proportions or an arbitrary small proportion is substituted for these

zero proportions. The effects of creating pseudo counts have not been evaluated thoroughly

when the data contain excessive zeros.

Besides overdispersion, the OTU count data can also exhibit zero-inflation (Barry and

Welsh, 2002) where the count data contain more zeros than expected from the DM model.

How to model the microbiome count data that allows overdispersion, zero-inflation and

possibly the phylogenetic correlations among the OTUs is an important future research

topic. Multilevel zero-inflated DM regression model for overdispersed count data with

extra zeros (Moghimbeigi et al., 2008; Lee et al., 2006) can potentially provide a solution
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to this problem. Another problem associated with the DM model is its inflexibility in

modeling the covariance structure among the OTU counts. The multinomial model for

counts compounded by a logistic normal model (Aitchison, 1982) for proportions provides

a possible solution. This needs to be investigated further.
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Table 4: Comparison of the power of pseudo-F statistic based permutation test
(Perm) and the DM model based likelihood ratio test (LRT) in detecting the
covariate effect. The power is calculated based on 1,000 replications.

Exponential growth Linear growth
Spe No. Method Covariate Effect (f) Covariate Effect (f)

(qr) 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

2
Perm 0.04 0.19 0.45 0.59 0.69 0.05 0.10 0.42 0.75 0.96
LRT 0.06 0.19 0.63 0.86 0.96 0.06 0.20 0.50 0.71 0.90

4
Perm 0.05 0.31 0.69 0.85 0.91 0.05 0.18 0.71 0.98 1.00
LRT 0.05 0.35 0.89 0.99 1.00 0.06 0.36 0.80 0.97 1.00

8
Perm 0.04 0.54 0.92 0.98 1.00 0.05 0.39 0.96 1.00 1.00
LRT 0.06 0.67 0.99 1.00 1.00 0.05 0.70 0.99 1.00 1.00

16
Perm 0.06 0.89 1.00 1.00 1.00 0.05 0.66 1.00 1.00 1.00
LRT 0.05 0.97 1.00 1.00 1.00 0.05 0.95 1.00 1.00 1.00
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Table 5: Comparison of sparse group `1 and `1 penalized procedures for variable
selection under Dirichlet-multinomial (DM), Dirichlet (D) and multinomial (M)
regression models. The selection performance, both group selection and within-group
selection, is evaluated using recall rate (R), precision rate (P) and F1 (F), all averaged over
100 runs (standard deviation in parenthesis). Selection based on univariate likelihood ratio
test (LRT) at FDR=0.05 is also indicated.

Sparse group `1 penalization `1 penalization

Within-group Group Within-group Group

Model R P F R P F R P F R P F

Exponential growth, p=100, qr=4, θ=0.025

DM
0.59 0.70 0.59 0.86 0.92 0.87 0.42 0.76 0.48 0.88 0.68 0.70

(0.23) (0.23) (0.18) (0.23) (0.16) (0.18) (0.21) (0.23) (0.18) (0.22) (0.29) (0.22)

D
0.48 0.73 0.52 0.83 0.89 0.82 0.36 0.82 0.45 0.82 0.77 0.72

(0.23) (0.23) (0.20) (0.26) (0.18) (0.21) (0.20) (0.21) (0.19) (0.26) (0.27) (0.23)

M
0.46 0.72 0.50 0.82 0.85 0.79 0.36 0.76 0.44 0.84 0.70 0.69

(0.23) (0.26) (0.21) (0.27) (0.24) (0.25) (0.19) (0.24) (0.18) (0.26) (0.28) (0.24)

LRT
- - - 0.96 0.54 0.66 - - - 0.96 0.54 0.66
- - - (0.11) (0.21) (0.16) - - - (0.11) (0.21) (0.16)
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Figure 13: Effects of the tuning parameter c on variable selection. The tuning
parameter c is varied from 0 to 0.4. Under each value of c, the best λ value, which maximizes
the likelihood of the test data set, is selected to generate the sparse model. Group (left)
and within-group (right) selection performance are then evaluated using measures of recall,
precision and F1 based on 100 replications. Simulation setting: n=100, p= 100, pr=4, q=
40, qr=4, m=500, θ=0.025, ρ=0.4.

87



Recall Precision F1

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

W
ithin−group

G
roup

0.005 0.025 0.1 0.005 0.025 0.1 0.005 0.025 0.1
Dispersion(theta)

M
ea

su
re

DM−L DM−SGL D−L D−SGL M−L M−SGL LRT

Recall Precision F1

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

W
ithin−group

G
roup

Exponential
growth

Linear
growth

Exponential
growth

Linear
growth

Exponential
growth

Linear
growth

M
ea

su
re

Figure 14: Effects of overdispersion (top panel) and model-misspecification (bot-
tom panel) on the performance of several models and methods. DM-SGL: sparse
group `1 penalized Dirichlet-multinomial model; DM-L: `1 penalized Dirichlet-multinomial
model; M-SGL: sparse group `1 penalized multinomial model; M-L: `1 penalized multino-
mial model; D-SGL: sparse group `1 penalized Dirichlet model; D-L: `1 penalized Dirichlet
model. For each bar, mean±standard error is presented based on 100 replications.
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Figure 15: Effects of the number of relevant OTUs (top panel) and the number
of covariates (bottom panel) on the performances of several models and meth-
ods. DM-SGL: sparse group `1 penalized Dirichlet-multinomial model; DM-L: `1 penalized
Dirichlet-multinomial model; M-SGL: sparse group `1 penalized multinomial model; M-L:
`1 penalized multinomial model; D-SGL: sparse group `1 penalized Dirichlet model; D-L:
`1 penalized Dirichlet model. For each bar, mean±standard error is presented based on 100
replications.
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Figure 16: Model fit using the variables selected by the sparse group l1 penalized
DM regression model. Top plot: square root of the fitted counts versus square root of the
observed counts based on the DM model with the selected nutrients; bottom plots: Observed
counts and simulated counts produced by the fitted sparse DM model and multinomial
model.
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Figure 17: Nutrient-genus association in the human gut identified by the sparse
group `1 penalized DM regression model. We use a bipartite graph to visualize
the selected nutrients and their associated genera based on sparse group `1 penalized DM
regression. Circle: genus; hexagon: nutrient; solid line: positive correlation; dashed line:
negative correlation. The thickness of the line represent the association strength.
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CHAPTER 5 : Future work

This dissertation presents three statistical methods developed specifically for 16S metage-

nomic data analysis in the context of associating the microbiome composition with environ-

mental covariates. These methods have taken into account some important aspects of the

16S data such as the high-dimensionality of the OTU counts (GUniFrac, ssCCA, SDMR),

the phylogenetic constraint among the OTUs (GUniFrac, ssCCA), the overdispersion of the

OTU counts (SDMR) and the skewness of the OTU abundance distribution (GUniFrac).

For future research, I have identified the following problems of interest. Some have imme-

diate solutions based on previously proposed methods from other fields while others need

more careful consideration.

Kernel methods for testing the significance of microbiome composition on a disease outcome.

One important goal of human microbiome studies is to test the significance of microbiome

composition on a biological/disease outcome after adjusting for other covariates (e.g gut

microbiome on inflammatory bowel disease adjusting for nutrient intakes and genotypes).

The kernel based semi-parametric regression methods, which was initially developed for

testing the significance of the gene pathway effect on an outcome (Liu et al., 2007, 2008)

and was later extended to genome-wide association studies (Wu et al., 2011b), can be

potentially applied to this problem. The kernel method can allow for flexible modeling of

nonlinear OTU effects and OTU interactions. Incorporation of the phylogenetic information

is possible by designing a phylogenetic tree based kernel. Adjustment of covariate effects is

very natural in this framework and the corresponding score test is computationally efficient.

Empirical Bayes method for OTU differential abundance analysis. Identification of OTUs

that show differential abundance between two conditions such as smoking vs nonsmoking is

a very important problem in microbiome studies. Currently, methods for identifying OTUs

with differential abundance under two conditions are very simple and fail to utilize the

unique property of the composition data (Rodriguez-Brito et al., 2006; White et al., 2009;
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Parks and Beiko, 2010; Wagner et al., 2011). They treat the OTUs as separate fixed effects,

which may have reduced efficiency when compared to empirical Bayes method. Empiri-

cal Bayes method (Efron et al., 2001) is the most successful method for gene differential

expression analysis due to its ability of pooling information across genes. It can also be

applied to differential abundance analysis by pooling information across OTUs. Under the

empirical Bayes framework, we can model the taxa counts using a beta-binomial model and

the prior distribution of the mean of the taxa proportion can be taken to be another beta

distribution. Inference can then be based on the posterior odds.

Compositing distance measures for microbiome data analysis.There are numerous distance

measures (>20) for comparing microbiomes (Kuczynski et al., 2010b; Swenson, 2011). They

can be quantitative or qualitative, phylogenetic or non-phylogenetic. Each distance is only

capable of revealing a certain aspect of the microbiome difference and no distance measure

is optimal across all conditions. On the other hand, many distances are highly correlated.

Selection of representative distances and compositing these distances in a distance-based

statistical framework is expected to increase statistical power.

Sparse clustering for microbiome data. Cluster analysis has been recently applied to micro-

biome data analysis. For example, three robust clusters (enterotypes) have been discovered

for the human gut microbiomes (Arumugam et al., 2011) using a distance-based clustering

method. Holmes et al. (2012) proposed a model-based clustering method using Dirichlet

multinomial mixtures. These methods use the abundances of all OTUs to produce the clus-

ters. However, many OTUs are not informative. Including them in the analysis increases

the noise level and leads to failure of establishing clear clusters. Sparse clustering (Pan

and Shen, 2007; Witten and Tibshirani, 2010), where clustering and feature selection are

integrated, may provide a useful alternative. This method will select OTUs responsible

for the clustering pattern, hence providing more mechanistic insights into the formation of

clusters.

Genotype, microbiome and disease relationship studies. Genome-wide association studies
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have identified certain disease susceptibility loci for Crohn’s disease (Barrett et al., 2008).

Meanwhile, the gut microbiome composition is also associated with the disease (Manichanh

et al., 2006). It is interesting to know the relationship between genotype (G), microbiome

(M) and disease (D). It could be causal (G → M → D), independent (G → D;M →

D), reactive (G → D → M) or interactive (G ×M → D). Building a likelihood model

to distinguish these possible relationships is crucial for understanding the etiology of the

microbiome-associated genetic diseases.

Statistical and computational analysis of shotgun metagenomic data. Shotgun metagenomic

approach has become increasingly popular for microbiome studies due to its ability to re-

veal both taxonomic and functional content of the microbiome (Tringe et al., 2005; Gill

et al., 2006; von Mering et al., 2007; Grice et al., 2009; Iverson et al., 2012). The shot-

gun metagenomic data are much more complex than 16S data. Each sequence is randomly

sampled from any location within a random microbial genome from an unknown mixture

of microbial genomes of different sizes, abundances and phylogenetic divergence. Statistical

modeling of the sampling process can produce more accurate characterization of the micro-

biomes. Many problems from shotgun metagenomics have not yet been satisfactorily solved.

De Novo assembly for metagenomes, analysis of taxonomic composition of metagenomes,

gene/pathway level analysis, studies of other communities (viruses/phages, microeukaryotes

etc) are all interesting and challenging problems.

The problems listed above only scratch the surface of the exciting field of microbiome data

analysis. Statistical and computational analysis of microbiome data is still in its infancy.

In the next a few years, it is expected that more computational and statistical tools will

emerge to make sense of the metagenomic data. Hopefully, this dissertation will motivate

more research in this field.
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APPENDIX

A.1. Theorem

Theorem 1. Let b,x ∈ IRn,λ1, λ2, c are non-negative constants and x0 is the minimizer of

the following function

f(x) =
1

2
xTx + bTx + c+ λ1 ‖x‖2 + λ2 ‖x‖1 , (A.1)

then x0
S = 0 and x0

S̄
= arg minxS̄

{
1
2xT

S̄
xS̄ + (bS̄ − λ2sgn(bS̄))T xS̄ + c+ λ1 ‖xS̄‖2

}
, where

S = {i ∈ {1, · · · , n}| |bi| < λ2} and S̄ = {1, · · · , n}\S and sgn(.) is the sign function.

Proof. We prove x0
S = 0 by contradiction. If x0

i 6= 0 (i ∈ S), then we can construct a new

x1 with x1
i = 0 and other components being the same as x0. Clearly, 1

2x1Tx1 + bTx1 + c+

λ2

wwx1
ww

1
< 1

2x0Tx0 + bTx0 + c+λ2

wwx0
ww

1
and λ1

wwx1
ww

2
< λ1

wwx0
ww

2
. The former is due

to the fact that 1
2(x0

i )
2 + bix

0
i + λ2|x0

i | > 0 for |bi| < λ2. Hence x0 is not the minimizer of

f(x), which is contradictory. Therefore, x0
S = 0.

To prove the second part, we note that x0
i must be either 0 or have an opposite sign of bi

for i ∈ {1, · · · , n}. So the minimization of f(x) is equivalent to minimizing

f∗(x) =
1

2
xTx + (b− λ2sgn(b))Tx + c+ λ1 ‖x‖2 ,

subject to sgn(xi) = −sgn(bi) or xi = 0.

Since x0
S = 0, we can restrict the minimization over only xS̄

f∗(xS̄) =
1

2
xTS̄xS̄ + (bS̄ − λ2sgn(bS̄))TxS̄ + c+ λ1 ‖xS̄‖2 ,

subject to sgn(xi) = −sgn(bi) or xi = 0 (i ∈ S̄). (A.2)

Since x0
S̄

is the minimizer of f∗(xS̄) without the constraint, the sign of x0
S̄

should be the
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opposite of the sign of (bS̄ − λ2sgn(bS̄)). Because |bi| ≥ λ2 for i ∈ S̄, the sign of (bS̄ −

λ2sgn(bS̄)) is the same as bS̄ . So the sign of x0
S̄

is the opposite of that of bS̄ . Therefore,

x0
S̄

satisfies the constraint.

Using simple variable substitution, we have the following Corollary.

Corollary 1. Let b,β,d ∈ IRn,λ1, λ2, c are non-negative constants and d0 is the minimizer

of the following function

f(d) =
1

2
dTd + bTd + c+ λ1 ‖β + d‖2 + λ2 ‖β + d‖1 , (A.3)

then d0
S = −βS and

d0
S̄ = arg min

dS̄

{
1

2
dTS̄dS̄ + (bS̄ − λ2sgn(bS̄ − βS̄))T dS̄ + c+ λ1 ‖dS̄ + βS̄‖2

}
,

where S = {i ∈ {1, · · · , n}| |bi−βi| < λ2}, S̄ = {1, · · · , n}\S and sgn(.) is the sign function.

A.2. Supplementary Tables and Figures
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Table A1: Differential OTUs between smokers and nonsmokers in the oropharyngeal mi-
crobiome.

OTU ID Lineage Proportion Test Raw P value Smoker
1490 Firmicutes;Veillonella 6.1E-02 Wilcoxon 5.7E-04 +
411 Firmicutes;Veillonella 2.2E-03 Fisher 1.2E-03 +
2434 Bacteroidetes;Prevotella 3.6E-02 Wilcoxon 1.4E-03 +
3538 Actinobacteria;Atopobium 1.0E-02 Wilcoxon 1.9E-03 +
1280 Firmicutes;Lachnospiraceae 5.9E-04 Fisher 2.4E-03 -
4363 Firmicutes;Lachnospiraceae 3.9E-04 Fisher 3.1E-03 +
2831 Bacteroidetes;Prevotella 2.2E-02 Wilcoxon 3.7E-03 +
2893 Bacteroidetes;Prevotella 2.1E-03 Wilcoxon 3.8E-03 +
2300 Bacteroidetes;Prevotella 6.1E-03 Wilcoxon 4.1E-03 -
4703 Firmicutes;Megasphaera 1.2E-02 Wilcoxon 4.5E-03 +
3227 Proteobacteria;Neisseria 5.0E-02 Wilcoxon 9.0E-03 -
4912 Firmicutes;Dialister 3.8E-04 Fisher 9.1E-03 +
4357 Spirochaetes;Treponema 1.7E-03 Wilcoxon 9.9E-03 -
3954 Fusobacteria;Fusobacterium 5.1E-02 Wilcoxon 1.1E-02 -
4440 Firmicutes;Streptococcus 1.3E-03 Fisher 1.2E-02 +
1766 Firmicutes;Lachnospiraceae I.S. 1.0E-04 Fisher 1.8E-02 +
913 Spirochaetes;Treponema 1.3E-04 Fisher 1.8E-02 +
5603 Actinobacteria;Eggerthella 8.0E-05 Fisher 1.8E-02 +
4813 Bacteroidetes;Prevotellaceae 7.3E-03 Wilcoxon 1.9E-02 -
4871 Proteobacteria;Haemophilus 2.0E-02 Wilcoxon 2.7E-02 -
2913 Firmicutes;Veillonella 9.0E-05 Fisher 2.9E-02 -
171 Bacteroidetes;Prevotella 6.3E-04 Fisher 3.5E-02 +
1633 Actinobacteria;Actinomyces 1.8E-03 Wilcoxon 3.7E-02 +
1365 Bacteroidetes;Prevotella 1.5E-03 Wilcoxon 4.1E-02 -
4847 Firmicutes;Erysipelotrichaceae I.S. 4.0E-05 Fisher 4.2E-02 +
1796 Firmicutes;Streptococcus 1.5E-04 Fisher 4.2E-02 +
5402 Bacteroidetes;Prevotella 1.0E-04 Fisher 4.2E-02 +
3529 Firmicutes;Lachnospiraceae 4.0E-05 Fisher 4.2E-02 +
4816 Fusobacteria;Fusobacterium 2.2E-04 Fisher 4.2E-02 +
4365 Actinobacteria;Atopobium 6.0E-05 Fisher 4.2E-02 +
2228 Firmicutes;Lachnospiraceae 7.4E-04 Fisher 4.3E-02 -
4036 Firmicutes;Moryella 1.3E-02 Wilcoxon 4.5E-02 +

When the frequency of OTU occurrence is less than 1/3, Fisher’s exact test is used; otherwise,
Wilcoxon rank sum test is used. “+” indicates increase in smokers relative to nonsmokers.
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Figure A1: Power comparison of different UniFrac variants for detecting environ-
mental effects using 2D circle based simulation and different bin sizes for OTU
formation. Ten samples from each of the two environmental conditions are generated using
2D circle based simulation. A bin size of 0.01 (A) or 0.03 (B) is used in OTU formation.
UniFrac distance matrices are constructed based on the simulated OTU abundances and
NJ tree. PERMANOVA is used for testing hypotheses. dW , d(0.5), d(0), dU and dV AW are
compared and indicated by different colors. The specific community difference caused by
different environmental conditions is indicated in the panel title. The power curves are
created by varying the degree of environmental effect. The initial point of the power curve
is the power when there is no environmental effect.
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Figure A2: Power comparison of different UniFrac variants for detecting environ-
mental effects using 2D circle based simulation and UPGMA tree. Ten samples
from each of the two environmental conditions are generated using 2D circle based sim-
ulation. A bin size of 0.015 is used in OTU formation. UniFrac distance matrices are
constructed based on the simulated OTU abundances and UPGMA tree. PERMANOVA is
used for testing hypotheses. Four representative UniFrac variants dW , d(0.5), d(0), dU and
dV AW are compared and indicated by different colors. The specific community difference
caused by different environmental conditions is indicated in the panel title. The power
curves are created by varying the degree of environmental effects. The initial point of the
power curve is the power when there is no environmental effect.
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Figure A3: Power comparison of different UniFrac variants for detecting envi-
ronmental effect using tree based simulation (all lineages). Ten samples from each
of the two environmental conditions are generated using tree based simulation. UniFrac
distance matrices are constructed based on the simulated OTU abundances and the phy-
logenetic tree. PERMANOVA is used for testing hypotheses. The figure shows all the 20
lineages that are affected by the environment. The lineage abundance is given in parentheses
in the panel title. 100
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Figure A4: Comparison of UniFrac variants for separating the oropharyngeal mi-
crobial communities of smokers from nonsmokers using various tree construc-
tion methods. Various UniFrac distance matrices are constructed based on the OTU
abundances and the phylogenetic tree constructed by NJ (A), UPGMA (B), Parsimony (C)
or Maximum likelihood method (D). Samples from smokers (28) and nonsmokers (32) are
indicated by “S” and “NS” respectively. Four representative UniFrac variants dW , d(0.5),
dV AW and dU are compared. Principle coordinate analysis is performed to embed the
samples into 2D plane using the first two principle coordinates.The ellipse center indicates
groups means, its main axis corresponds to the first two principle components from principle
component analysis, and the height and width are variances on that direction. The p values
from PERMANOVA for testing difference are also indicated as a measure of separation.
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