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The Role of Gut Microbiota Urease in the Host With Liver Disease

Abstract
Significant metabolic interactions exist between the gut microbiota and the mammalian host, one prime
example of which is nitrogen metabolism. In the colon, bacterial urease hydrolyzes host-derived urea into
carbon dioxide and ammonia. Colonic ammonia can subsequently be absorbed by the host or utilized by the
gut microbiota for additional nitrogen metabolism. In patients with liver disease such as cirrhosis and
congenital urea cycle disorders, hepatic abnormalities prevent the normal processing of ammonia, leading to
hyperammonemia and hepatic encephalopathy (HE). Although circulating ammonia levels are correlated
with damage to the central nervous system, the pathogenesis of HE is complex and not fully elucidated,
hindering progress in treatment. Current treatment options including antibiotics, lactulose, and a low protein
diet (LPD) are complicated by issues such as side effects, concerns of safety and efficacy in long-term use, and
poor adherence. Our goal is to develop a safe, durable, and efficacious treatment for HE through the
inoculation of a urease-free bacterial consortium. We show that we are able to engineer the gut microbiota to
reduce fecal urease activity and ammonia levels in mice. Depletion of the endogenous gut microbiota

followed by transplantation with Altered Schaedler Flora (ASF), a defined consortium of eight murine gut
commensal bacteria with minimal urease gene content, established a persistent new community that exhibited
long-term reduction in fecal urease activity and fecal ammonia production. ASF transplantation was
associated with a decrease in morbidity and mortality in the thioacetamide (TAA) murine model of hepatic
injury and fibrosis. Although the ASF consortium demonstrated reduced resilience in response to dietary
stress, ASF transplantation led to further reductions in fecal ammonia on a LPD without exacerbating host
metabolic dysfunction. These findings point to the potential use of a human urease-free bacterial consortium
to alter clinical management and outcome in HE. Furthermore, they provide proof of concept that microbiota
transplantation with a defined microbial consortium can lead to durable metabolic changes with therapeutic
utility.
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ABSTRACT 

THE ROLE OF GUT MICROBIOTA UREASE IN THE HOST WITH LIVER DISEASE 

Ting-Chin David Shen 

Gary D. Wu 

Significant metabolic interactions exist between the gut microbiota and the 

mammalian host, one prime example of which is nitrogen metabolism. In the colon, 

bacterial urease hydrolyzes host-derived urea into carbon dioxide and ammonia. Colonic 

ammonia can subsequently be absorbed by the host or utilized by the gut microbiota for 

additional nitrogen metabolism. In patients with liver disease such as cirrhosis and 

congenital urea cycle disorders, hepatic abnormalities prevent the normal processing of 

ammonia, leading to hyperammonemia and hepatic encephalopathy (HE). Although 

circulating ammonia levels are correlated with damage to the central nervous system, 

the pathogenesis of HE is complex and not fully elucidated, hindering progress in 

treatment. Current treatment options including antibiotics, lactulose, and a low protein 

diet (LPD) are complicated by issues such as side effects, concerns of safety and 

efficacy in long-term use, and poor adherence. Our goal is to develop a safe, durable, 

and efficacious treatment for HE through the inoculation of a urease-free bacterial 

consortium. We show that we are able to engineer the gut microbiota to reduce fecal 

urease activity and ammonia levels in mice. Depletion of the endogenous gut microbiota 

followed by transplantation with Altered Schaedler Flora (ASF), a defined consortium of 

eight murine gut commensal bacteria with minimal urease gene content, established a 

persistent new community that exhibited long-term reduction in fecal urease activity and 

fecal ammonia production. ASF transplantation was associated with a decrease in 

morbidity and mortality in the thioacetamide (TAA) murine model of hepatic injury and 

fibrosis. Although the ASF consortium demonstrated reduced resilience in response to 
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dietary stress, ASF transplantation led to further reductions in fecal ammonia on a LPD 

without exacerbating host metabolic dysfunction. These findings point to the potential 

use of a human urease-free bacterial consortium to alter clinical management and 

outcome in HE. Furthermore, they provide proof of concept that microbiota 

transplantation with a defined microbial consortium can lead to durable metabolic 

changes with therapeutic utility.  
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CHAPTER 1. Introduction	  

 

1.1 The gut microbiota and its metabolic interactions with the mammalian host 

The human gastrointestinal tract is home to approximately 100 trillion 

microorganisms, which exceed the total number of human cells by ten-fold1. The 

biomass reaches up to 1012 cells per gram in the distal colon, making it one of the most 

densely populated microbial habitats on earth2. This microbial community is known as 

the gut microbiota, and it comprises ~500-1000 bacterial species along with fungi, 

viruses, and archaea3. The microbes and their genomes, collectively known as the gut 

microbiome, significantly impact various host physiologic processes, including nutrition 

and metabolism4, 5, immune regulation6, inflammation and cancer7, 8, and even 

neurodevelopment and behavior9. They perform these functions through mutualistic 

interactions with the host, mediated primarily by the exchange of metabolites derived 

from microbial and/or host metabolism. Specific metabolites may be produced by 

specific microbes, the presence of which may thus be essential. But different microbes 

may have evolved similar functions through divergent pathways, leading to functional 

overlap or even a competitive relationship with one another for limited environment and 

resources. Over the past few decades, the scientific community has seen a dramatic 

increase in our knowledge of the composition and function of the gut microbiome. This 

was made possible largely through technological advancements in culture-independent 

methods for isolating and identifying microbes (e.g. 16S rRNA gene sequencing) as well 

laboratory and computational methods to characterize their functions (e.g. gnotobiotic 

mice and gene network association studies). Nevertheless, the future challenges of this 

field lie in our ability to identify specific microbes and/or their functions associated with 

particular diseases and to develop methods to modulate their unwanted effects. One 
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approach would be to replace these “pathogenic” microbes with “beneficial” microbes 

targeted toward specific biological processes without impairing other physiological 

functions. This dissertation represents the work of a series of experiments designed to 

test the feasibility and efficacy of such an approach. We replaced the endogenous gut 

microbiota in mice with a defined bacterial consortium that lacks the bacterial enzyme 

urease, which hydrolyzes host-derived urea to carbon dioxide and ammonia in the colon 

(see Section 1.2). We hypothesized that such a bacterial consortium would decrease 

colonic ammonia production and alter host nitrogen metabolism, with the durability of its 

effects dependent upon the resilience of the bacterial consortium to environmental 

perturbations such as dietary changes. 

 A large body of scientific literature supports the important role that the gut 

microbiota plays in host metabolism. As one example, the gut microbiota is thought to 

contribute the rising epidemic of metabolic diseases such as diabetes and obesity in the 

developed world10. Pioneering work involving obese individuals and genetically obese 

mice (ob/ob) found that the obese phenotype is associated with changes in the relative 

abundance of two dominant bacterial phyla, Bacteroidetes and Firmicutes, whereby 

Bacteroidetes were found to be decreased and Firmicutes increased11, 12. Using 

metagenomic and biochemical analyses, the investigators demonstrated that the 

microbiome associated with the obese phenotype had an increased capacity to harvest 

energy from the diet. Furthermore, by colonizing germ-free mice with the gut microbiota 

of an ob/ob mouse and showing that it led to a greater increase in total body fat than 

with the gut microbiota of its lean littermate, they demonstrated that these effects were 

transmissible. Similar findings were reproduced by transplanting the gut microbiota of 

human twins discordant for obesity into germ-free mice13. Conversely, by transplanting 

the gut microbiota of Malawian twins discordant for kwashiorkor into germ-free mice, a 
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form of severe acute malnutrition, the same group of investigators demonstrated that the 

combination of a  Malawian diet and the kwashiorkor microbiome produced marked 

weight loss in mice accompanied by perturbations in amino acid, carbohydrate, and 

intermediary metabolism14. These finding strongly implicate the role that the gut 

microbiota plays in host nutrition and metabolism by affecting energy extraction.  

Three important classes of biological molecules illustrate the dynamic and 

complex metabolic interactions between the mammalian host and its gut microbiota: bile 

acids, short chain fatty acids (SCFAs), and choline. The primary bile acids, cholic acid 

and chenodeoxycholic acid, are synthesized in the liver from cholesterol. Primary bile 

acids are generally conjugated to glycine and taurine in the liver, stored in the 

gallbladder, and then secreted into the small intestine in order to facilitate the digestion 

and absorption of dietary fats and fat-soluble vitamins. Upon reaching the terminal ileum, 

approximately 90-95% of the bile acids are reabsorbed across the intestinal epithelium 

and recycled to the liver, completing the enterohepatic cycle 5-15 times daily5. However, 

the remainder 5-10% of conjugated primary bile acids are either deconjugated by the 

small intestinal bacteria to produce secondary bile acids such as deoxycholic acid (from 

cholic acid) and lithocholic acid (from chenodeoxycholic acid) or lost in the feces4. 

Bacteria that deconjugate primary bile acids to form secondary bile acids are generally 

anaerobic bacteria of the genera Bacteroides, Eubacterium, and Clostridium5. Both 

primary bile acids and secondary bile acids can act as signaling molecules by binding to 

cellular receptors such as the farnesoid X receptor (FXR, activated by primary bile acids) 

and G-protein-coupled-receptor (GPCR) TGR5 (activated by secondary bile acids) with 

various downstream effects. FXR and TGR5 both affect glucose metabolism, but FXR 

impairs glucose homeostasis, while TGR5 improves glucose homeostasis4. Circulation 

of primary and secondary bile acids throughout the body with activation of FXR and 
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TGR5 in peripheral organs can also affect overall host metabolism. For example, TGR5 

activation in brown adipose tissue and muscle can increase energy expenditure and 

ameliorate diet-induced obesity. The gut microbiota may thus modulate obesity and type 

2 diabetes through its effects on lipid and glucose metabolism by altering the 

composition of the bile acid pool and FXR and TGR5 signaling. 

 As opposed to bile acids that are primarily produced by the liver, SCFAs such as 

acetate, butyrate, and propionate are products of complex carbohydrate fermentation by 

colonic bacteria. Certain bacterial species, including B. thetaiotaomicron and 

Bacteroides ovatus, contain more glycosidases and lyases than humans and thereby are 

able to metabolize nearly all the glycans in dietary fiber4. SCFAs perform a variety of 

functions. Butyrate serves as an important energy substrate for the colonic epithelium, 

where it can also affect proliferation, differentiation, and modulation of gene expression 

by inhibiting histone deacetylase4. Acetate and propionate can reach various organs 

through the bloodstream and serve as substrates for lipogenesis and gluconeogenesis 

as well as regulate different gene expressions by binding to GPCRs GPR41 and 

GPR435. The end-organ effects of SCFAs through GPCRs depend on the cell type. For 

example, SCFAs can modulate secretion of the hormone glucagon-like peptide-1 (GLP-

1) through effects on enteroendocrine L-cells in the distal small intestine and colon, 

thereby improving insulin secretion5. On the other hand, SCFAs suppress inflammation 

in neutrophils through GPR43 signaling. As acids, SCFAs can further lower pH in the 

colonic luminal environment and affect microbiota composition and gut motility.  

Unlike bile acids and SCFAs, choline is predominantly obtained from the diet in 

foods such as red meat and eggs, although it can also be synthesized by the host4. 

Choline is an essential component of the cell membrane, and it is primarily metabolized 

in the liver, where it functions in lipid metabolism and the synthesis of very-low-density 
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lipoprotein. The gut microbiota can metabolize dietary choline to produce trimethylamine 

(TMA), which is further metabolized in the liver by the flavine monooxygenase system to 

produce trimethylamine-N-oxide (TMAO), shown to be associated with the development 

of atherosclerosis and cardiovascular diseases5. Both SCFAs and choline are discussed 

further in Section 1.5. 

 

1.2 Mammalian nitrogen metabolism and the significance of bacterial urease 

As a key component of amino acids and nucleic acids, nitrogen is essential to 

life. The body obtains most of its nitrogen through dietary protein intake, which are 

hydrolyzed into peptides and amino acids by proteases and peptidases in the 

gastrointestinal tract15. Most of the amino acids and peptides are absorbed into the body 

via specialized transporters in the intestinal epithelium, but significant amounts of 

undigested dietary as well as endogenous proteins (e.g. gastric and pancreatic 

secretions, sloughed intestinal epithelial cells) enter the colon16, where they serve as 

nitrogenous substrates for the colonic microbiota17. The absorbed amino acids can 

function as building blocks for enzymes that catalyze critical cellular and molecular 

processes in the body or undergo alternative metabolic pathways to act as precursors 

for purines, pyrimidines, neurotransmitters, hormones, and other nitrogen-containing 

compounds15. The catabolism of nitrogenous compounds, in particular amino acids, 

results in the formation of ammonia, which can be toxic to the central nervous system if 

elevated above normal (see Section 1.3).  As a result, ammonia is generally combined 

with glutamate to form glutamine via glutamine synthetase for transport in the blood18. 

Circulating glutamine is subsequently deaminated by glutaminase to regenerate 

glutamate and free ammonia in the liver and the kidneys.   
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To dispose of excess nitrogen in the form of ammonia, the body utilizes a series 

of enzymatically-mediated reactions known as the urea cycle to convert ammonia into 

urea, CO(NH2)2, a non-toxic waste product. One nitrogen of the urea molecule is derived 

from ammonia, and the other nitrogen is derived from aspartate; the carbon and oxygen 

are derived from CO2. The urea cycle consists of five reactions involving five enzymes, 

two of which are mitochondrial and three are cytosolic19. The urea cycle begins with 1) 

the formation of carbamoyl phosphate by carbamoyl phosphate synthetase I, which 

requires N-acetylglutamate as an allosteric activator. The synthesis of N-acetylglutamate 

from acetyl coenzyme A and glutamate by N-acetylglutamate synthase is thus often 

considered the sixth reaction of the urea cycle. 2) The carbamoyl portion of carbamoyl 

phosphate is combined with ornithine via ornithine transcarbamoylase to form citrulline. 

3) Citrulline is then transported from the mitochondrion into the cytosol and combined 

with aspartate to form argininosuccinate via argininosuccinate synthetase. 4) 

Argininosuccinate is cleaved by argininosuccinate lyase to produce fumarate and 

arginine. Finally, 5) arginase cleaves arginine to regenerate ornithine and form urea. 

Since arginase occurs almost exclusively in the liver, only the liver can synthesize urea 

by cleaving arginine, but other tissues such as the kidneys can synthesize arginine via 

the above reactions. Hepatic urea is primarily transported via the bloodstream to the 

kidneys for urinary excretion, but approximately 15-30% of hepatic urea enters the colon, 

where it is hydrolyzed back into ammonia and carbon dioxide by the bacterial enzyme 

urease20. Colonic ammonia is then 1) reabsorbed by the host for additional hepatic 

nitrogen metabolism, 2) utilized by the gut microbiota to synthesize amino acids and 

other nitrogenous compounds, or 3) excreted in the feces. Bacterial urease is thus 

critical for colonic urea nitrogen utilization and recycling by the healthy host and the gut 

microbiota. However, colonic ammonia production via bacterial urease activity can 
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exacerbate conditions of hyperammonemia, such as hepatic encephalopathy (HE) in 

cirrhosis and urea cycle disorders (see Section 1.3).  

Urea and urease both represent important landmark molecules in the history of 

scientific investigation. Urea was the first organic molecule synthesized, and urease from 

jack bean was the first enzyme crystallized as well as the first enzyme shown to contain 

nickel21. A variety of bacteria, fungi, plants, and invertebrates produce urease, but no 

mammalian urease gene has been identified22, 23. Therefore, the hydrolysis of colonic 

urea via urease activity is exclusively a function of the gut microbiome. By hydrolyzing 

urea to carbon dioxide and ammonia, bacterial urease provides bacteria with their 

preferred nitrogen substrate to synthesize amino acids, amines, indoles, and other 

nitrogenous metabolites22, 24. At the same time, bacterial urease can function as a 

virulence factor and contribute to the development of pathogenic conditions such as HE, 

nephrolithiasis, pyelonephritis, and peptic ulceration22. As one example, Helicobacter 

pylori generates ammonia via urease to neutralize gastric acid, allowing it to colonize 

and proliferate in the stomach and leading to the formation of peptic ulcer disease22.  

Bacterial ureases are cytosolic enzymes with the exception of H. pylori urease, 

which has both cytosolic and extracellular activity25. Most bacterial ureases are 

composed of three subunits (encoded by ureA, ureB, and ureC), but the urease of 

Helicobacter spp. is composed of two subunits (encoded by ureA and ureB) and has 

been shown to form a dodecameric complex of repeating subunits. Nevertheless, the 

homology of amino acid sequences in urease is highly conserved across bacterial 

species25. The urease gene cluster contains 7-9 genes that consist of both structural and 

accessory genes. Only one regulatory gene, ureR, has been identified and is found only 

in those gene clusters inducible by urea (see below)25. Regulation of urease expression 

mainly occurs by three mechanisms. Some bacteria express urease constitutively (e.g. 
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Morganella morganii), some bacteria express urease in the presence of urea (e.g. 

Proteus mirabilis), and still other bacteria express urease under nitrogen limiting 

conditions (e.g. Klebsiella), which is controlled by a two-component nitrogen regulatory 

system (see below)22, 25.  Additionally, the urease of Streptococcus salivarus is reported 

to be regulated by pH. Urease exhibits simple Michaelis-Menten-type kinetic behavior25. 

No evidence for substrate inhibition or allosteric behavior has been detected, but there 

are a number of urease inhibitors that act by competitive inhibition, including hydroxamic 

acids, phosphoramidates, and thiols. Urease inhibitors have been used to prevent and/or 

treat conditions such as urinary stones and peptic ulcer disease, but their therapeutic 

role is largely limited by their significant side effects26.  

As mentioned above, certain bacteria express urease under nitrogen limiting 

conditions. This is activated by the nac gene product, Nac, which belongs to the LysR 

family of regulatory proteins27. Nac itself does not respond to nitrogen availability but is 

regulated by NtrBC, a two-component regulatory system that senses and responds to 

nitrogen deprivation28. NtrB is a sensor histidine kinase, and NtrC is a response DNA-

binding transcription factor. In the setting of nitrogen limitation (perceived by bacteria as 

low intracellular glutamine and ammonia), NtrB phosphorylates NtrC, which 

subsequently activates transcription of genes that encode proteins to generate 

alternative nitrogen sources. These include scavenging and transport systems of 

nitrogenous molecules (e.g. ammonia, amino acids), glutamine synthetase, and 

catabolic enzymes of nitrogenous compounds29. Furthermore, NtrC activates 

transcription of relA to produce RelA, which synthesizes guanosine tetraphosphate 

(ppGpp), mediator of the stringent response30. The stringent response is another 

bacterial stress response system and affects a number of bacterial physiological 

processes in the setting of environmental stress. In the setting of nitrogen deprivation, 
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the stringent response promotes amino acid biosynthesis but inhibits translation and 

nucleotide metabolism. Thus, Ntr and stringent response systems work synergistically to 

increase nitrogen availability but inhibit cellular processes that promote bacterial 

proliferation when environmental nitrogen is scarce. 

 

1.3 The gut microbiota and bacterial urease in hepatic encephalopathy 

 As mentioned previously, colonic ammonia production via urea hydrolysis by 

bacterial urease exacerbates conditions of hyperammonemia such as hepatic 

encephalopathy (HE) in liver disease and congenital urea cycle disorders. HE manifests 

as a spectrum of neurological and psychiatric dysfunctions that range from mild memory 

impairment to confusion, coma, and brain edema, potentially leading to death. The 

pathogenesis of HE is complex and remains to be fully elucidated, but ammonia has 

long been implicated to play an important role. More recently, inflammation and oxidative 

and/or nitrosative stress are also reported to contribute to the development of HE31. 

Furthermore, there is evidence to suggest that alterations in the gut microbiota and their 

metabolites such as amino acid derivatives (e.g. indoles, oxindoles, false 

neurotransmitters precursors) and endotoxins may be involved in HE32. 

Ammonia is the best characterized neurotoxin in the pathogenesis of HE. Plasma 

ammonia concentrations are elevated in approximately 90 percent of the patients with 

HE, although levels do not always correlate with HE severity33, 34. In addition to host 

catabolism of proteins and amino acids, the gut represents the primary source of 

ammonia production in the body. This is due to both bacterial metabolism of nitrogenous 

compounds (e.g. dietary and endogenous proteins and urea) in the small intestine and 

colon as well as enterocyte metabolism of glutamine (see Section 1.2). Ammonia 

produced in the gut enters the systemic circulation via the portal vein, which drains 
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directly into the liver. A normal liver converts almost all of the ammonia into urea and/or 

glutamine, but hyperammonemia can occur in liver disease and urea cycle disorders due 

to decreased hepatic metabolism and/or portosystemic shunts32. Ammonia is generally 

transported in the blood in the form of glutamine, which provides a nontoxic form of 

storage and transport18. The formation of glutamine from glutamate and ammonia via 

glutamine synthetase occurs primarily in the muscle and liver, which may be impaired in 

the setting of chronic liver disease given muscle wasting and hepatic dysfunction, further 

elevating circulating ammonia levels in the blood. Ammonia passes through the blood-

brain-barrier (BBB) to enter the central nervous system (CNS), where it leads to brain 

edema and intracellular swelling due to the formation of glutamine within astrocytes, the 

only cell type within the CNS that contains glutamine synthetase35. Indeed, one study 

showed that inhibition of glutamine synthetase ameliorated brain swelling in rats infused 

with ammonia36. 

Since hyperammonemia leads to increased formation of glutamine in the brain, it 

indirectly increases cerebral uptake of large neutral amino acids (LNAAs) by enhancing 

the activity of the L-amino transporter at the BBB that exchanges glutamine in the brain 

for LNAAs in the blood. LNAAs include both the aromatic amino acids (AAAs) and the 

branched chain amino acids (BCAAs). In the setting of liver disease, there is increased 

AAAs (i.e. phenylalanine, tryptophan, and tyrosine) relative to BCAAs (i.e. valine, 

leucine, and isoleucine) due to increased muscle consumption of BCAAs to form 

glutamate and decreased hepatic metabolism of AAAs18. Since both BCAAs and AAAs 

utilize the L-amino transporter to enter the CNS, decreased BCAA concentrations leads 

to increased transport of AAAs into the brain. AAAs not only serve as precursors to 

catecholamines and serotonin that function as neurotransmitters, they can also form 

false neurotransmitters such as octopamine, phenylethanolamine, and synephrine37. 
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Normally AAAs are decarboxylated to form amines, which subsequently undergo 

additional metabolism in the liver to form aldehydes. When hepatic function becomes 

impaired, precursor AAAs and their amines are shunted away from aldehyde formation 

and may enter the central nervous system to become locally β-hydroxylated into false 

neurotransmitters and replace normal neurotransmitters38. Fischer et al. proposed that 

the ratio of BCAA to AAA (valine + leucine + isoleucine) / (phenylalanine + tyrosine) 

would be predictive of HE39. Indeed, numerous reports have verified that a decrease in 

this ratio is associated with hepatic dysfunction40, 41. Based on this rationale, BCAAs 

have been used to treat HE. In a meta-analysis that included 16 trials with 827 

participants with HE, although treatment with BCAAs did not affect mortality, it 

significantly improved HE symptoms42. Based on preliminary data in our lab, we have 

also observed that altering the composition of the murine gut microbiota using a urease-

deficient bacterial consortium can affect host plasma amino acid homeostasis and 

increase the BCAA/AAA ratio (see Future Directions). This suggests that in addition to 

its effects on colonic ammonia production via bacterial urease activity, the gut microbiota 

may modulate nitrogen flux leading to alterations in host and microbial amino acid 

metabolism via urease-dependent mechanisms. 

 The gut microbiota has indeed been implicated to play a role in the pathogenesis 

of HE. Perhaps the best evidence to support its pathogenic role comes from the efficacy 

of HE treatments aimed to modulate the gut microbiota and/or its metabolites. In addition 

to the use of BCAAs as described above, lactulose, polyethylene glycol (PEG), 

antibiotics, and probiotic have been used to treat HE. Lactulose is a nonabsorbable 

disaccharide that serves as a standard therapy for HE. It is fermented by bacteria into 

short chain fatty acids, thereby acidifying the colonic environment and sequestering 

colonic ammonia as ammonium ion, which is more easily excreted into the feces. There 
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is also evidence to suggest that lactulose may function as a prebiotic to increase the 

growth of beneficial bacteria such as Lactobacilli, curtailing the growth of harmful 

urease-producing bacterial species43. Nevertheless, lactulose use is poorly tolerated due 

to the induction of significant diarrhea, leading to poor adherence. A recent study 

compared the efficacy of lactulose and PEG in the treatment of HE. PEG is a purgative 

commonly used for constipation and/or preparation for colonoscopy. In the acute 

hospitalized setting, cirrhotic patients randomly assigned to receive PEG showed more 

improvement in HE after 24 hours than those who received lactulose based on a 

standardized scoring algorithm44. This suggests that rapid catharsis of colonic ammonia 

and/or other bacterial metabolites by PEG alone can be effective in the treatment of HE. 

Nevertheless, the chronic use of PEG as a maintenance therapy for HE has not been 

validated. 

Rifaximin is a synthetic nonabsorbable antibiotic that has demonstrated 

comparable efficacy to lactulose in the treatment of HE. The mechanism by which 

rifaximin ameliorates HE is not well understood, as studies have found no significant 

change in the composition or abundance of the gut microbiota after treatment with 

rifaximin, except for modest decrease in Veillonellaceae and increase in 

Eubacteriaceae45. Nevertheless, rifaximin is associated with improved cognitive function 

and endotoxemia in HE accompanied by alteration of gut bacterial associations with 

metabolites, suggesting that its beneficial effects may be attributable to changes in 

bacterial metabolic function. Alternatively, rifaximin may act through the alteration of the 

small intestinal microbiota, the composition of which would not be well characterized in 

studies focused on the examination of feces. Although rifaximin has demonstrated 

adequate safety profile, the risk of bacterial resistance in long-term use remains a 

concern. Other antibiotics used to treat HE such as aminoglycosides, metronidazole, 
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and vancomycin are similarly limited by significant toxicity and/or concern for bacterial 

resistance. Probiotics are used to treat HE based on the notion that they may modulate 

the gut microbiota by decreasing pathogenic bacteria and/or urease activity. In mice, a 

lactobacillus probiotic reduced ammonia levels and mortality after liver injury with 

thioacetamide46. Several probiotics tested in humans with cirrhosis have reported 

modest evidence of efficacy47, 48. While promising, studies of probiotic therapies have 

suffered from methodological limitations, poor documentation of long-term effects, and 

small effects on outcome. These findings motivate efforts to engineer resilient bacterial 

communities that effectively and durably alters the gut microbiota to treat HE. 

 

1.4 Fecal microbiota transplantation and use of defined bacterial consortia 

With the rising incidence of Clostridium difficile infection (CDI) over the past few 

decades, clinicians and researchers have sought new ways to treat this disease entity 

that is frequently recurrent and refractory to standard antibiotic therapy. Fecal microbiota 

transplantation (FMT) has proven to be highly effective in treating recurrent and/or 

refractory CDI, with a cure rate over 90%49. This provides proof of principle that the 

dysbiotic microbiota can be modified to treat disease. The use of donor fecal material to 

treat disease is not a novel concept. Rather, it has been practiced for centuries. The 

Chinese most likely began the earliest known use of fecal material to treat disease. 

According to Chinese literary records, during the 4th century, a well-known traditional 

Chinese medicine doctor named Ge Hong reported the use of human fecal suspension 

given orally to treat food poisoning or severe diarrhea with positive results50. In 17th 

century Europe, a German physician named Christian Paullini published a book called 

Heilsame Dreck-Apotheke (Salutary Filth-Pharmacy) on the medical uses of human and 

animal feces51. In the modern era, Eiseman et al. reported the successful treatment of 
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pseudomembranous colitis using fecal enemas in 195852. The idea of transferring 

gastrointestinal contents (i.e. transfaunation) has also been used for centuries in 

veterinary medicine for indications such as treating chronic diarrhea in horses and 

increasing resistance of newborn chicks to Salmonella infection49. 

As opposed to the untargeted use of transferring entire microbial communities in 

feces from donors to recipients, another approach is to create synthetic mixtures of 

defined bacterial strains cultured in the laboratory to achieve targeted physiological 

effects. In 1989, Tvede and Rask-Madsen reported the successful treatment of recurrent 

CDI using a defined mixture of ten bacterial strains isolated from healthy human feces53, 

representing the first known use of a defined bacterial mixture to treat disease. The 

mixture contained facultative aerobic and anaerobic bacteria, including three strains of 

Clostridia species, three strains of Bacteroides species, two strains of E. coli, 

Streptococcus faecalis, and Peptostreptococcus productus. These strains were chosen 

to replace bacteria found to be diminished and/or absent in CDI (e.g Bacteroides spp.) 

and installing bacteria that inhibited C. difficile in vitro (e.g. R. productus, C. 

bifermentans, and one E. coli strain). In 2013, Petrof et al. isolated 33 strains of 

nonpathogenic bacteria from the stool of a healthy donor and named the bacterial 

mixture “RePOOPulate,” which was used to successfully treat recurrent CDI in two 

patients for at least six months54. Although RePOOPulate bacterial strains were rare at 

baseline in the recipients prior to treatment, analysis of their stool samples at six-month 

follow-up after treatment showed that RePOOPulate constituted more than 25% of the 

gut microbiota. These findings demonstrate the efficacy, resiliency, and sustainability of 

defined bacterial mixtures in achieving targeted physiological effects to treat disease. 

 The success of FMT and synthetic defined bacterial mixtures in the treatment of 

CDI provides credence to the notion that other disease entities associated with dysbiosis 
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may be treated with similar approaches. These include but are not limited to 

inflammatory bowel disease55, metabolic syndrome4, 5, and even autism9. As discussed 

in Section 1.1, researchers haven shown that the obese and lean phenotype can be 

conferred to germ-free mice by transferring fecal microbiota from obese and lean human 

donors, respectively13, 14. However, it is unclear which bacterial strains and/or 

combination of bacteria were responsible for the observed phenotype. Identifying 

specific microbes and understanding their metabolic properties may be the next crucial 

steps toward achieving the desired physiological effects, especially in the creation and 

development of defined bacterial mixtures. In the case of CDI, different microbes may 

utilize different mechanisms to curtail the growth of C. difficile, among which are 

competitive niche exclusion, production of small molecules and/or antimicrobial peptides, 

modulation of bile acid metabolism, and immune regulation49. The specific members in a 

bacterial consortium and their metabolic properties required to suppress the growth of C. 

difficile, however, remain unknown. In the case of HE, a bacterial consortium that lacks 

urease activity would limit colonic urea hydrolysis and ammonia production, potentially 

ameliorating the clinical sequelae of hyperammonemia. 

 Defined mixtures of microbes have also been used in the creation and 

development of gnotobiotic mice56. One such example is Altered Schaedler Flora (ASF). 

The original Schaedler Flora was created by Russell W. Schaedler in the 1970s to 

colonize germfree mice with bacteria isolated from conventional mice to restore cecal 

morphology and enhance murine health. The chosen bacterial strains were primarily 

aerobic bacteria or less oxygen sensitive anaerobes that were easy to culture, consisting 

of the following: Escherichia coli var. mutabilis, Streptococcus faecalis, Lactobacillus 

acidophilus, Lactobacillus salivarius, group N Streptococcus, Bacteroides distasonis, a 

Clostridium sp., and an EOS fusiform bacterium57. In 1978, the National Cancer Institute 
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revised and standardized the Schaedler Flora (renamed “Altered Schaedler Flora”) by 

keeping four of the original bacterial strains (the two lactobacilli, B. distasonis, and the 

EOS fusiform bacterium) while replacing the other four bacterial strains with a spiral-

shaped bacterium and three new fusiform EOS bacteria57, 58. ASF has now been used 

for decades by commercial mouse vendors to colonize rodent colonies and enhance the 

health of immunodeficient mouse strains. We found that ASF is low urease activity, 

making it useful as a prototype consortium for studies of metabolic engineering 

described to treat HE  (see Chapter 2).  

The use of FMT and synthetic microbial mixtures for the treatment of diseases 

entail preparation of the gut environment for proper inoculation and colonization of the 

transplanted bacterial species. In the case of CDI, there is generally antecedent use of 

antibiotics that have already disrupted the endogenous microbiota, leading to dysbiosis, 

proliferation of C. difficile, and subsequent replacement and suppression of C. difficile by 

the transplanted microbiota. This is not necessarily the case for other disease 

conditions. One reason that current generation of probiotics may not effectively or 

sustainably replace the endogenous microbiota is because of the large endogenous 

biomass already present in the gut environment,  occupying niches and preventing the 

effective colonization by new bacterial taxa. Thereby, developing a systematic and 

reproducible method to dramatically reduce the endogenous gut microbial load will be 

crucial for the successful inoculation and engraftment of defined bacterial consortia in 

the treatment of disease (see Chapter 2).  

 

1.5 The impact of diet on the composition and function of the gut microbiota 

 To develop stable and resilient microbial communities that can exert durable and 

targeted physiological effects, we must first understand how they respond to 
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environmental stressors. Antibiotics and diet, in particular, have been shown to exert 

strong effects on the composition and function of the gut microbiota. By depleting certain 

endogenous bacterial populations, antibiotics can lead to dysbiosis. This predisposes to 

the proliferation of pathogenic bacterial strains such as C. difficile as discussed 

previously. Dietary changes, on the other hand, exert influences over the gut microbiota 

by altering nutrient and substrate availabilities. By increasing substrates preferred by 

one microbial species over another, diet not only alters the composition of the gut 

microbiota, but also microbial metabolic functions as well as host physiological 

responses. One example is the concept of enterotypes. Several studies have shown that 

the ratio between two main genera in the human gut microbiota, Bacteroides and 

Prevotella, is strongly dependent on diet. The relative abundance of Prevotella was 

found to be high in populations that consumed a plant-based diet high in carbohydrates 

and simple sugars, such as rural African village in Malawi and Venezuela59, 60. On the 

other hand, the relative abundance of Bacteroides was found to be high in populations 

that consumed more animal proteins and fats, such as the United States61, 62. 

Bacteroides and Prevotella may exhibit co-exclusion based on their taxonomic and 

functional similarities55, 63. Although other studies have challenged the concept of 

enterotypes to suggest that it represents more of a gradient rather than distinct clusters 

of taxonomic representations across populations, it nevertheless emphasizes the 

importance of diet in shaping the gut microbiota55, 64. In Chapter 3, we will examine how 

systemic nitrogen limitation in the setting of a low protein diet (LPD) can affect the 

composition and function of a defined bacterial consortium with minimal urease activity. 

This is relevant because bacterial urease is critical in host-gut microbiota nitrogen flux, 

but also because a LPD is used clinically to treat conditions of hyperammonemia. 
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Therefore, investigation of the stability and resilience of a urease-deficient bacterial 

consortium in the setting of a LPD has significant clinical implications. 

 Exactly how significant and rapid are the effects that diet exerts on the gut 

microbiota? In a controlled-feeding experiment, ten human subjects were randomized to 

receive either a high-fat, low-fiber diet or a low-fat, high-fiber diet for ten days62. 16S 

tagged sequencing analysis of fecal samples revealed significant inter-individual 

differences that accounted for most of the variances in gut microbial composition. Over 

the course of experiment, however, the study did not find a significant reduction in inter-

individual differences within the same diet group. This suggests that short-term dietary 

changes do not overcome inter-individual differences in gut microbial composition. 

Nevertheless, the study found that changes in gut microbiota from baseline were 

detectable within 24 hours of initiating controlled feeding, indicating rapid effects from 

the dietary interventions. Alterations in the composition of the human gut microbiota due 

to dietary perturbations may be modest compared to those observed in rodents. In a 

human study comparing the microbial composition between omnivores and vegans, the 

differences were found to be a relatively modest65. On the other hand, in a recent murine 

study, the investigators used either a low-fat, high-plant-polysaccharide diet or a high-fat, 

high-sugar diet to examine the effects of dietary perturbations on the gut microbiota of 

five inbred mouse strains, mice deficient for genes relevant to host-microbial 

interactions, and >200 outbred mice66. The high-fat, high-sugar diet rapidly and 

reproducibly altered the gut microbiota despite differences in host genotype, taking an 

average of 3.5 days for each diet-responsive bacterial groups to reach a new steady 

state.  
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Specific dietary nutrients may affect the relative abundances of specific microbes 

based on their metabolic properties and preferences. For example, the main 

saccharolytic genera in the human gut microbiota include Bacteroides, Bifidobacterium, 

Clostridium, Eubacterium, Lactobacillus, and Ruminococcus67. The most abundant 

amino acid fermenting bacteria in the human small intestine include the genera 

Clostridium, Bacillus-Lactobacillus-Streptococcus groups, and Proteobacteria, whereas 

bacteria belonging to the genera Clostridium and Peptostreptococcus appear to be the 

most prevalent species involved in amino acid fermentation in the large intestine68. In a 

murine study, investigators generated gnotobiotic mice by inoculating ten sequenced 

human bacterial strains into germfree mice then assessed the changes in species 

abundance in response to systematic variations in four defined dietary ingredients 

representing four macronutrients (i.e. casein=protein, corn oil=fat, corn 

starch=polysaccharide, and sucrose=simple sugar)69. Based on the responses, they 

developed a statistical model that was able to predict over 60% of the variation in 

species abundance caused by dietary changes and identify the dietary factor that best 

explained the changes seen for each community member. For example, the abundances 

of E. coli and C. symbiosum correlated with changes in the diet variables sucrose and 

starch, respectively. They also found that total community biomass and the abundance 

of each community member were best explained by changes in the diet variable casein, 

potentially because a component of casein, likely amino acids and/or nitrogen, 

influences the growth of the microbial community. 

 Dietary nutrients not only affect the composition of the gut microbiota, but also its 

function and, in turn, microbial metabolites and the host metabolome. One prime 

example is the fermentation of complex carbohydrates in the diet by the gut microbiota 

to produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate as 
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discussed in Section 1.1. Another example is bacterial metabolism of dietary lipid 

phosphatidylcholine that is associated with the development of atherosclerosis and 

increased risk for cardiovascular disease, also discussed in Section 1.170, 71. 

Furthermore, in a human study that examined gut microbiota composition and 

metabolomics analyses between omnivores and vegans in an urban US population, 

several important differences were found65. First, diet has a strong impact on the plasma 

metabolome of omnivores and vegans, but the effect on the composition of the gut 

microbiota was quite modest. Plasma metabolomes between omnivores and vegans 

differed significantly, but the microbiota composition was not strongly associated with the 

plasma metabolome. Second, the production of microbial metabolites from dietary 

substrates is constrained by the composition of the gut microbiota. Unlike prior studies of 

populations living in agrarian societies where increased SCFA levels have been 

attributed to both increased consumption of indigestive carbohydrates and increased 

polysaccharide-fermenting microbiota59, this study did not detect significant differences 

in fecal SCFA levels between omnivores and vegans despite increased ingestion of 

fermentable substrates in the latter. Although numerous studies have examined the 

impact of dietary interventions involving alterations in carbohydrate and fat contents, the 

effect of altering protein content is relatively under-investigated especially in light of its 

importance in host and gut microbiota nitrogen metabolism. In Chapter 3, we will 

discuss the impact of a low protein diet on the gut microbiota and host in terms of 

nitrogen flux given relevance to the treatment of hyperammonemic inborn errors of 

metabolism such as urea cycle disorders. 
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CHAPTER 2. Engineering the Gut Microbiota to Treat Hyperammonemia 
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2.1 ABSTRACT 

 Engineering the gut microbiota for therapeutic modulation of host metabolism is 

an emerging goal of microbiome research. In the intestine, bacterial urease converts 

host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-

associated neurotoxicity and encephalopathy in patients with liver disease. Here we 

report engineering the gut microbiota in mice for therapeutic reduction of urease activity. 

Depletion of the pre-existing gut microbiota followed by inoculation with Altered 

Schaedler’s Flora (ASF), a defined consortium of 8 bacteria with minimal urease gene 

content, established a persistent new community that exhibited long-term reduction in 

fecal urease activity and ammonia production. ASF transplantation was associated with 

decreased morbidity and mortality in a murine model of hepatic injury. These results 

provide proof-of-concept that inoculation of a prepared host with a defined gut microbiota 

can lead to durable metabolic changes with therapeutic utility. 

 

2.2 INTRODUCTION 

 Dysbiosis, an abnormal and pathogenic state of the human microbiome, has 

been implicated in inflammatory bowel diseases, atherosclerosis, obesity, diabetes, 

colon cancer, and other diseases 1, 2. Fecal microbiota transplantation (FMT) is highly 

effective in the treatment of refractory Clostridium difficile infection (CDI), providing 

proof-of-principle that a human disease can be treated by engineering the gut microbiota 

3, and further studies indicate that a healthy microbiota can prevent disease acquisition 4.    

 Bacteria residing in the human gut produce urease, the activity of which is 

beneficial in healthy hosts but pathogenic in hosts with liver disease. Urea produced by 

the liver as a waste product is both excreted in urine and transported into the colon, 

where it is hydrolyzed by bacterial urease into carbon dioxide and ammonia. Ammonia is 
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then 1) utilized by the microbiota for protein synthesis, 2) reabsorbed by the host where 

it is incorporated into the nitrogen pool by hepatic metabolism, or 3) excreted in the 

feces. Mammalian genomes do not encode urease genes, so ammonia production 

results from bacterial urease activity acting on host-produced urea 5, 6. Ammonia is also 

largely responsible for the alkaline pH of the colonic luminal environment, acting to buffer 

the short chain fatty acids also produced by the microbiota. Systemic ammonia levels 

are elevated in patients with liver injury, chronic liver disease, or urea cycle defects, 

where hepatic abnormalities prevent the normal processing of ammonia delivered to the 

liver from the intestinal tract. Circulating ammonia is correlated with damage to the 

central nervous system in patients with chronic liver disease or inborn errors of 

metabolism, resulting in hepatic encephalopathy (HE) 7, 8. 

Current treatments for hepatic encephalopathy and hyperammonemia are 

inadequate 8. Antibiotics traditionally used to treat hepatic encephalopathy, including 

aminoglycosides and metronidazole, are limited by side effects and concerns for safety 

including ototoxicity, nephrotoxicity, and peripheral neuropathy 9, 10. Although rifaximin, a 

minimally absorbed antibiotic, has shown efficacy in the treatment and prevention of 

hepatic encephalopathy 11, 12, potential development of antimicrobial resistance with 

long-term use remains a concern. Lactulose is used to acidify feces and sequester 

ammonia as ammonium, but lactulose is poorly tolerated, resulting in poor adherence 13. 

In a mouse-model of thioacetamide-induced liver injury, a lactobacillus probiotic has 

been reported to reduce ammonia levels and mortality 14, but these benefits have not 

been extended to human studies 15, 16. While promising, studies of probiotic therapies in 

humans described to date have suffered from methodological limitations, did not 

document long term effects, and showed consistently small effects on outcome, 

motivating efforts to engineer more resilient and effective bacterial communities.  
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Here we show that a synthetic microbial community lacking urease activity can 

be installed in the gut to reduce the production of ammonia long-term and thereby 

mitigate HE in a mouse model. For proof of concept studies, we used Altered 

Schaedler’s Flora (ASF), which consists of eight murine gut commensal bacterial strains 

that were assembled in the 1970s and standardized by the National Cancer Institute in 

1978 17. The strains were originally selected based on their persistence from generation 

to generation in germ-free mice and their ability to restore the cecal morphology 

comparable to that of conventional mice. The ASF community is innocuous, known to 

have a beneficial effect of inducing immune tolerance 18, and is used by commercial 

mouse vendors to enhance the health of immunodeficient mouse strains.  We found that 

ASF is low in urease activity, making it useful for studies of metabolic engineering 

described here. Mixed results have been reported regarding the transfer of conventional 

microbiota between rodents, with some studies reporting successful transfer with 

repetitive inoculation 19 but others that the use of antibiotics prevented transfer 20. We 

developed methods for purging the gut microbiota from normally colonized mice, then 

transplanted in ASF by gavage. Transplantation of ASF was monitored longitudinally 

using deep sequencing of DNA from fecal pellets, revealing highly efficient colonization 

in properly prepared hosts. Over four weeks of monitoring, ASF was partially displaced 

by selective colonization with environmental Firmicutes, reaching a new steady state, but 

fecal ammonia levels remained low. The engineered gut community was tested in 

thioacetamide (TAA) models of acute and chronic liver injury (Fig. 2-1A) where we show 

that it reduced fecal ammonia levels, mortality, and neurobehavioral deficits. These 

results show that transplantation of a minimal defined microbial community can alter 

metabolism in a pre-determined fashion by establishing a new gut microbiome, resulting 

in therapeutic benefits in disease models. 
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Figure 2-1. Transferring ASF into a previously colonized murine host. (A) Diagram 
of the experimental method.  (B) Shotgun metagenomic analysis of stool from ASF-
colonized animals used for gavage in this study. Proportions of the different ASF 
lineages and other organisms are shown by the color code to the right. (C) Time course 
of 16S rRNA gene copy number during oral antibiotic treatment (14 days, vancomycin 
and neomycin) and upon discontinuing antibiotics on day 15 (n=3 per group). Asterisks 
on left indicate p<0.0001 on Days 0-2 compared to average of Days 5-15 in ABX group. 
Asterisks on right indicate p<0.05 between ABX and control group. Paired-sample t-test 
and two-tailed Student’s t-test.  
 
 

2.3 MATERIALS AND METHODS  

Animals:  Feces from CB17 SCID mice colonized with ASF (Taconic, Tarrytown NY) 

were the source of ASF in transplantation experiments. Mice in this study were 

maintained in standard SPF barrier facility and were fed irradiated AIN-76 (Research 

Diets, 21% protein by kilocalories) chow. The non-irradiated diet experiment used 
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Laboratory Rodent Diet 5001 containing 29% protein by kilocalories. For microbiota 

transfer experiments, 0.1 g of feces was diluted 10-fold in PBS. Where indicated, germ-

free mouse recipients were purchased from Taconic as were conventionally-housed 

Swiss Webster mice in the first experiment. All other experiments used either male or 

female 8-week-old C57BL6 mice (Jackson Labs). Pre-treated conventional mice were 

prepared for inoculation by the oral delivery of antibiotics in drinking water (1.125 g of 

aspartame, 0.15 g of vancomycin, and 0.3 g of neomycin in 300 ml of sterile water) for 

72 hours. During the final 12 hours water supply was exchanged with a 10% PEG 

solution (Merck, Whitehouse NJ) and the mice were fasted. Mice were then inoculated 

with feces by oral gavage daily for 5-7 days. Fecal pellets were collected during the 

indicated time points for bacterial taxonomic and biochemical analyses. 

 

DNA isolation, quantitative PCR, sequencing, and analysis: DNA was isolated from 

stool as described 21, 22.  Bacterial 16S rRNA gene sequences were PCR amplified using 

primers binding to the V1V2 region 21, 22 using bar coded primers 23, 24.  Shotgun 

metagenomic data was collected using the TruSeq library preparation method and an 

Illumina HiSeq instrument. Sequence reads were quality controlled and analyzed using 

the QIIME pipeline with default parameters 25. Sequence data sets will be deposited at 

the NCBI upon acceptance of this paper for publication. 

 

Urease activity and ammonia assays: Fecal ammonia levels were determined using 

an Ammonia Assay Kit (ab83360, Abcam, Cambridge, MA). Fecal pellets were 

suspended in the assay buffer provided at a concentration of 1 mg/10 uL and centrifuged 

at 13,000 x g for 10 minutes at room temperature to remove insoluble material. 

Ammonia concentration was then determined according to the kit protocol. 
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 Fecal urease activity was measured by suspending fecal pellets in 0.5 mM 

HEPES buffer. After sonication and centrifugation the supernatant was incubated for 30 

minutes at 37°C with 1µCi 14C-labeled urea (19.9 mCi/mmol, ARC-0150, American 

Radiolabeled Chemicals, St. Louis, MO) in a sealed container. The air was purged into a 

trap containing 2.5 mL of 0.2 M benzethonium hydroxide in methanol (82156, Sigma, 

Milwaukee, WI) and 14CO2 activity was quantified by liquid scintillation counting. A 

standard curve was generated using purified E. coli urease (150 IU/mg, 22060744-1, 

BioWorld, Dublin, OH). 

The urease breath test was performed after a 4-hour fast by placing mice in a 

sealed glass chamber. A total of 4 cc of air was withdrawn from the chamber using a 

gas-tight syringe after 10 minutes and injected into 12 ml (gas-helium) Labco Exetainer 

glass vials (438B, Labco Limited, Lampeter, UK) to establish a baseline CO2 level. The 

mouse was then injected by tail vein with [13C]urea (150 µg/g body weight) (CLM-311-0, 

Cambridge Isotope Labs, Inc., Andover, MA). Blood was collected 15 minutes post-

injection to assess total urea and isotopic enrichment in [13C]urea. Enrichment in 

expired air was measured at 30, 60, 120, 180, and 240 min following injection of labeled 

urea. The 13CO2/12CO2 ratio was measured in gas samples with a Finnigan Delta Plus 

isotope ratio-mass spectrometer (Thermo Fisher Scientific, Waltham, MA). A commercial 

CO2 source (Airgas, Radnor, PA) was used as the standard. The measurement of 

isotopic abundance in [13C]urea in plasma involves the elimination of CO2 from the 

sample and the subsequent conversion of urea to CO2 with commercially available 

urease 26. 

 



	   33 

Induction of acute liver injury and hepatic fibrosis: Mice were given a single dose of 

TAA at 600 mg/kg by IP injection in the high-dose TAA acute liver injury model. In the 

low-dose TAA acute liver injury model, mice were given a single dose of TAA at 300 

mg/kg by IP injection, with subsequent performance of the Y-maze neurobehavior test at 

48 hours after TAA injection (see Neurobehavior test below). In the chronic liver fibrosis 

model, all mice were given TAA by IP injection three times weekly, with initial dose 100 

mg/kg that was decreased to 50 mg/kg during 1st week given mortality, then dose 

escalation to 100 mg/kg during the 2nd week, 200 mg/kg during the 3rd week, 300 mg/kg 

during the 4th week, and 400 mg/kg during the 5th to 7th week of TAA administration.  

 

Neurobehavior test: The Y-maze test was conducted to assess the rodent’s memory 

and spatial learning 27. It consists of three identical and equally-spaced arms, and the 

natural tendency of the mouse is to investigate a new arm of the maze rather than 

returning to the one previously visited. A mouse with cognitive deficit would exhibit less 

“spontaneous alternation,” defined as entering all three arms in three sequential arm 

entries. Control mice typically exhibit >60% spontaneous alternation. In this experiment, 

mice were allowed to habituate to the testing room in which there are no overt visual 

cues for 30 minutes prior to testing. The maze was cleaned with 70% ethanol before 

using and between trials to eliminate odor cues. A trial started when a mouse is released 

into one arm of the maze (same arm for each mouse). As the mouse navigated the 

maze, each arm entry was noted. At the end of the timed trial (8 minutes), total arm 

entries are summed and spontaneous alternations are determined by the following 

formula: % Spontaneous Alternation= [(Number of alternations) / (Total arm entries−2)] 

×100. Trials were video recorded as well as graded during the procedure. Image 
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analysis software was used to measure the total distance traveled during the trial for 

each mouse. 

 

Statistics: Results are expressed as means ± standard error of the mean (SEM). 

Statistical significance among three or more groups was assessed by analysis of 

variance (ANOVA).  Two-tailed Student’s t-test and paired-sample t-test were used for 

direct comparison between two groups and within group, respectively. Tukey’s test was 

used to adjust for multiple comparisons. Kaplan-Meier survival curves were compared 

using the Log-Rank Test. P < 0.05 was considered as statistically significant. 

 

Study approval: All animal studies were performed with the approval of University of 

Pennsylvania’s Institutional Animal Care and Use Committee. 

 

2.4 RESULTS 

Transplantation of ASF into previously colonized mice. 

 The original ASF was composed of eight bacterial strains. Over time, ASF has 

been maintained in laboratory mice by fecal-oral transmission associated with cohousing 

in gnotobiotic isolators. Thus the composition of the ASF donor material used here was 

first characterized by DNA isolation and shotgun metagenomic sequencing (16.9 Gb). 

Alignment to draft genome sequences of ASF strains 28 documented the presence of 

seven of the eight original strains in our samples (Fig. 2-1B). Parabacteroides (ASF519) 

was the predominant lineage present in pellets. Additional ASF strains consisted of 

roughly even proportions of Clostridia (ASF356, ASF492, ASF500, ASF502) and 

Mucispirillum schaedleri (ASF457), accompanied by low levels of Lactobacillus 

(ASF361).  No high-quality read pairs mapped concordantly to strain ASF360.  In 
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addition to ASF strains, 11% of reads mapped to the mouse genome, and a small 

fraction of alignments mapped to probable artifacts including cloning vectors, metazoans 

and additional bacteria. We conclude that the bacteria in our donor material were mostly 

or entirely ASF strains.  

To assess the persistence of ASF in mice housed under non-sterile conditions, 

sequential fecal pellets were collected from ten ASF-colonized mice that were 

transferred to conventional SPF housing, DNA was purified from pellets, and the 

abundance and types of bacteria present assessed by QPCR and deep sequencing of 

16S rRNA V1V2 gene segments (Supplementary Fig. 2-1). Copy numbers of 16S 

sequences per gram of stool showed roughly similar abundance for ASF and 

conventionally colonized mice. Six of the eight ASF strains were resolved at the depth of 

sequencing performed. ASF519 (Parabacteroides) accounted for ~75% of sequence 

reads at the time of transfer of the mice. After approximately 2 months under nonsterile 

conditions, ASF519 remained the dominant taxon, and non-ASF taxa accounted for 

almost half of the sequence reads. Evidently ASF lineages persisted but did not entirely 

exclude other bacteria.  

 We reasoned that reduction of the endogenous microbiota would promote 

transfer of ASF, so we investigated the response of conventional microbiota to the oral 

delivery of two nonabsorbable antibiotics (ABX), neomycin and vancomycin. The 16S 

rRNA gene copy number was reduced by ~4 logs within 72 hours of oral antibiotic 

initiation (p<0.0001 for days 0, 1, and 2 compared to the mean of days 5-15), then 

returned to baseline 5 days after discontinuing antibiotics (Fig. 2-1C; p=0.36 for 

comparison of ABX versus control at day 21), paralleling previous studies 29, 30.  

Fecal slurries obtained from ASF-colonized mice (Taconic, Germantown, NY) 

were then gavaged into conventionally housed recipients for seven days following a 72-
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hour pre-treatment with oral antibiotics and a 12-hour intestinal purge using polyethylene 

glycol (PEG; pretreatment with antibiotics and PEG termed “Prepared” henceforth). PEG 

was used in our gut cleansing protocol because the use of a purgative will likely be 

necessary to reduce bacterial load in the human intestinal tract due to high biomass. For 

comparison, ASF transplants were carried out on conventional mice without 

pretreatment and on germ-free mice. Mice that were treated with antibiotics and PEG, 

and subsequently transplanted, showed normal numbers of bacteria by 16S QPCR copy 

number within 10 days (data not shown).   

Longitudinal fecal samples were analyzed by deep sequencing of 16S rRNA 

gene tags, then the proportions of bacterial lineages detected plotted as heat maps, 

where each row shows a bacterial lineage and each column a fecal specimen (Fig. 2-2). 

Conventional mice that were not pretreated showed no increase in ASF lineages despite 

ASF gavage (Fig. 2-2, “Conventional + ASF gavage”). A few preexisting lineages were 

present that were indistinguishable from ASF using the V1V2 16S sequence window, but 

these did not increase in abundance after ASF gavage. A second group of mice 

(discussed above) were colonized with ASF from birth and then moved to the non-sterile 

facility. These mice had high levels of ASF519 and detectable levels of four other ASF 

strains (Fig. 2-2, “ASF-colonized”).   

These groups were then compared to (1) germ-free mice gavaged with ASF and 

(2) conventional mice pretreated with antibiotics and PEG and gavaged with ASF (Fig. 

2-2, “Germ-free + ASF gavage” and “Prepared host + ASF gavage”).  Prior to ASF 

gavage, both the germ-free animals and antibiotic-treated animals showed high levels of 

Lactococcus, a lineage found in high levels in mouse chow 29, indicating that 

endogenous gut bacteria were mostly or entirely absent. Gavage of these animals with 
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ASF resulted in establishment of ASF lineages that persisted for the duration of the 

sampling period. Communities were again dominated by ASF519. 

 

Figure 2-2. Heat map showing the relative abundance of bacterial lineages over 
time in ASF-colonized mice and controls. Rows indicate bacterial lineages as 
annotated on the left. Relative abundance is indicated by the color code at the bottom of 
the figure. Columns summarize sequencing results from individual fecal specimens. 
Elapsed time in days is shown along the bottom. Groups studied are indicated at the top 
of the heat map. These include (starting from the left): Conventional mice that were 
gavaged with ASF stool without preparation (“Conventional + ASF gavage”); mice that 
were ASF-colonized from birth, then transferred to a nonsterile SPF facility (“ASF-
colonized”); mice that were germ-free, then gavaged with ASF (“germ free + ASF 
gavage”); and conventional mice that were prepared by antibiotic and PEG treatment, 
then gavaged with ASF (Prepared host + ASF gavage”). 
 
 
 
Longitudinal evolution of the transplanted ASF community. 

 Persistence of the transplanted ASF community was quantified using segmental 

regression, plotting time against the proportion of ASF in each sample (Fig. 2-3A). 

Prepared ASF-transplanted mice or germ-free ASF-transplanted mice transferred to 

nonsterile conditions were compared and found to behave similarly. Initially ASF 
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comprised the majority of the community. After transfer, the proportion of ASF slowly 

declined, becoming ~45% of the gut community after 34 days (Davies’ test for change in 

slope p<0.001; 95% CI for break point was 27-41 days by segmented linear regression). 

After 34 days, the proportion of ASF strains did not decrease for the duration of the 

experiment (120 days; p=0.86). Comparisons of community membership using 

unweighted UniFrac analysis of the 16S rRNA gene sequencing data showed non-ASF 

lineages had colonized by day 14, and members persisted for the duration of the study 

(Fig. 2-3B), although the final abundance of non-ASF lineages was not achieved until 

about day 30 (Fig. 2-3A). Diversity of this new stable state measured by the Shannon 

index approached that of the starting community (Fig. 2-3C). ASF519 (Parabacteroides) 

was the main taxon persisting in both germ-free + ASF gavage and Prepared + ASF 

gavage hosts after six weeks, comprising approximately 40% and 50% in each (Fig. 2-2). 

As in humans, bacteria belonging to the Bacteroides genus were dominant taxa in 

conventionally housed mice 31, 32.   

The new lineages appearing after transplantation were specific (Fig. 2-4). 

Members of the Bacteroidetes phylum did not recolonize after ASF transplantation, 

suggesting that ASF519, a member of the closely related Parabacteroides genus, may 

have occupied niches available to this group. Several Firmicutes lineages did colonize 

over time, including lineages annotating as Oscillibacter, Clostridium, and “Other” 

Firmicutes (mostly Order Clostridiales). Thus the community achieved a new steady 

state containing both ASF and environmentally-acquired lineages. 
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Figure 2-3. Development of a stable gut microbial community nucleated by 
inoculation with ASF. (A) Segmented regression analysis of communities in mice that 
were either germ-free or Prepared conventional mice subjected to ASF gavage. The y-
axis shows the proportion of ASF lineages inferred from 16S rRNA gene tag 
pyrosequencing data. The x-axis shows the number of days post transfer. Segmented 
regression analysis showed two phases, indicating a slow decline in the ASF proportion 
up to about day 30, followed by establishment of a new steady state with ~40% ASF 
lineages. (B) PCoA ordination over time. Changes in community membership over time 
were analyzed using unweighted Unifrac	   33. The grey arrow indicates the progression of 
time. (C) Shannon diversity of the gut microbiota over time in the four hosts described in 
Fig. 2-2. 
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Figure 2-4. Comparison of non-ASF sequence reads from either (A) Bacteroidetes 
or (B) Firmicutes, illustrating selective repopulation with environmental Firmicutes. 
Groups are color-coded and represent change over time. 
 
 

ASF has minimal urease gene content and activity. 

 An analysis of the complete ASF genomes showed minimal presence of urease 

genes.  No urease genes were identified in the predominant Parabacteroides ASF519. 
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Two ASF members contained urease genes, ASF492 and ASF361, but both were minor 

members of the community after transplant (Fig. 2-2).  

 We then characterized urease activity. Urease activity was readily detectable in 

pellets from conventionally housed mice but was undetectable in pellets from mice 

colonized with ASF (Fig. 2-5A).  Similar results were obtained with pellets from mice 

treated with oral antibiotics that reduced bacterial load 10,000-fold (Fig. 2-5A). 

Intravenous delivery of 13C-urea to quantify urease activity in vivo through the production 

of 13CO2 in a breath test revealed minimal hydrolysis in ASF-colonized mice (Fig. 2-5B).  

Transplantation of ASF into prepared hosts led to a reduction in fecal urease 

activity lasting for at least 80 days (Fig. 2-5C). The novel community assembled after 30 

days had low urease activity, even though new lineages became established in addition 

to ASF (Fig. 2-2). Analysis of representative genomic sequences from these newly 

established genera showed that Oscillibacter, Dorea, Enterococcus, and Roseburia do 

not encode urease genes. Clostridium and the group annotating as “other” Firmicutes 

(mostly Clostridiales), are mixed, with some representatives encoding urease genes 

while others do not. It is unknown whether the newly proliferating organisms lacked 

urease genes, or whether they encoded urease genes but expressed them at low levels. 

Thus the net effect of ASF colonization, together with establishment of additional 

lineages, was achievement of a new steady state with low urease activity. The new 

community persisted long term – ASF-transplanted mice showed low fecal ammonia 

levels for over one year in a SPF housing facility (data not shown).  
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Figure 2-5. Transfer of ASF leads to reduction in urease activity and fecal 
ammonia levels. (A) Urease activity in the feces of a conventionally-housed mouse 
versus a mouse treated with antibiotics and a mouse colonized with ASF. (B) In vivo 
urease activity in conventionally-housed (n=5) and ASF-colonized mice (n=5) quantified 
by the release of 13CO2 after IV injection of 13C-urea. (C) Fecal urease activity in 
Prepared mice post-ASF transplantation at the indicated time points on irradiated diet 
(n=3). (D) Fecal ammonia levels pre- and post-transplant of ASF into Prepared mice fed 
a non-irradiated diet (n=5). *p<0.01, **p<0.001. Tukey’s test for multiple comparisons. 
 

The resilience of this new community state to dietary stress was evaluated by 

placing mice transplanted with ASF on a low protein diet similar to those used in patients 

with hyperammonemic inborn errors of metabolism 34. Fecal ammonia levels remained 

much lower than was achieved by a low protein diet alone, an effect that was durable for 

several months (T.D.S. and G.D.W., unpublished observations). Another dietary stress, 

consumption of a non-irradiated diet, led to the displacement of ASF by other bacteria 

within weeks after FMT, with the predominant taxon Parabacteroides ASF519 being 

partially replaced by other taxa within the Bacteroidetes phylum (Supplementary Fig. 2-
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2). Nevertheless, the reduction in fecal ammonia levels compared to baseline remained 

significant for several months even on a non-irradiated diet (Fig. 2-5D). Reductions in 

fecal ammonia levels have been correlated with reductions in blood ammonia 14, 35, 36, 

indicating that changes in colonic ammonia production and/or absorption can be 

associated with blood levels. The reduction in fecal ammonia may alter levels of false 

neurotransmitter precursors produced by the gut microbiota and/or by the host since 

ammonia is a substrate for both, leading to reduced formation of biogenic amines that 

are hypothesized to play a role in hepatic encephalopathy 37-39. Thus we propose that 

fecal ammonia is a useful biomarker for response of the host to the treatment of 

hyperammonemia.  

 

ASF transplantation reduced mortality and cognitive impairment in murine models 

of acute and chronic liver injury. 

 A major cause of morbidity and mortality associated with acute liver injury is the 

development of HE. Since hyperammonemia is associated with the development of HE 

in patients with impaired hepatic function 8, we asked if the transplantation of ASF might 

mitigate the effects of acute hepatic injury induced by thioacetamide (TAA) 40 treatment. 

Prepared ASF-transplanted (Prepared + ASF) mice showed both a reduction in fecal 

ammonia levels (Supplementary Fig. 2-3A) and reduced mortality in response to high-

dose TAA compared to mice with conventional microbiota (Fig. 2-6A). This finding was 

also seen in the setting of chronic liver injury in mice transplanted three weeks prior to 

the chronic delivery of TAA at low-escalating doses for 7 weeks (Fig. 2-6B). Compared 

to control mice, Prepared + ASF mice demonstrated markedly reduced mortality that 

was maintained over the 7-week period during which hepatic fibrosis developed in both 
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groups41, 42 (data not shown), consistent with a sustained reduction in fecal ammonia for 

months after ASF transplantation.  

 

Figure 2-6. ASF transplantation into Prepared mice reduces mortality after 
thioacetamide-induced hepatic injury and fibrosis. (A) Kaplan-Meier survival curves 
of high-dose TAA-induced acute hepatic injury in conventional vs. Prepared mice 
transplanted with ASF (n=15 per group). (B) Kaplan-Meier survival curves of low 
escalating doses of three times weekly chronic TAA administration initiated three weeks 
after ASF transplantation (n=15 per group). Survival curves were analyzed by the 
Kaplan-Meier method using the log-rank test.  
 



	   45 

 In mice, the TAA model has also been associated with neurobehavioral 

abnormalities resembling HE in humans 43. Using a lower dose of TAA to reduce 

mortality, we analyzed memory and spatial learning in a Y-maze test comparing 

Prepared + ASF mice to mice transplanted with normal microbiota (Prepared + Normal 

Microbiota) as a control 44. The survival rates were similar between the two groups at 80-

90% at the lower TAA dose (Supplementary Fig. 2-3B). Fecal ammonia levels were 

reduced in mice transplanted with ASF compared to normal microbiota (Supplementary 

Fig. 2-3C). Prepared + Normal Microbiota mice showed a decrease in cognitive function 

after TAA treatment, quantified as spontaneous alternations in a Y-maze test, whereas 

Prepared + ASF mice treated with TAA were not different from untreated controls (Fig. 

2-7A). Mice transplanted with ASF and normal microbiota did not differ in locomotor 

activity after TAA treatment (as quantified by total distance traveled and number of arm 

entries in the Y-maze) to account for the difference in spontaneous alternations, 

although both groups exhibited significantly less locomotor activity compared to 

untreated controls (Figs. 2-7B and 2-7C). To exclude the possibility that ASF 

transplantation directly reduced liver injury, we measured plasma alanine 

aminotransferase (ALT) and quantified histologic evidence of hepatocyte necrosis 

(Supplementary Figs. 2-4A and 2-4B). Both revealed that liver damage induced by 

TAA was not reduced by either ASF transplantation or antibiotic treatment. Thus 

improved survival and behavioral performance were associated with reduced ammonia 

levels and not improved locomotor activity or liver injury.  
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Figure 2-7. ASF transplantation into Prepared mice restores cognitive but not 
locomotor deficits after thioacetamide-induced hepatic injury. (A) Spontaneous 
alternations after TAA treatment quantified by Y-maze testing in Prepared mice that 
received transplantation with either Normal Microbiota (n=10) or ASF (n=11), compared 
to untreated control mice (n=5) (*p<0.05; ANOVA p=0.04). (B) Total distance traveled 
and (C) number of arm entries in the Y-maze in Prepared + ASF and Prepared + Normal 
Microbiota mice after TAA treatment compared to untreated control mice (***p<0.001; 
ANOVA p<0.001). 
 
 
 
2.5 DISCUSSION 

The success of FMT in the treatment of C. difficile infection (CDI) establishes that 

transplanting a resilient microbial community can alter a dysbiotic microbiota and thereby 

treat disease. Feces, however, contains not only bacteria but also a multitude of archaea, 

fungi, and viruses, so there is concern for safety 45, motivating development of defined 
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microbial consortia for human inoculation that have well-characterized biological 

properties and respond to the gut environment in predictable ways. Here we show that a 

defined minimal consortium of bacteria, ASF 17, 18, can durably reprogram the 

composition and metabolic function of the gut microbiota when inoculated into a properly 

prepared host. By taking advantage of the minimal urease activity in ASF, we provide 

evidence that reprogramming the gut microbiota can lead to lower fecal ammonia levels 

and mitigate the morbidity and mortality associated with liver damage.  

 The endogenous gut microbiota needed to be depleted by treatment with oral 

antibiotics and PEG for efficient transfer of the ASF community into conventionally 

housed mice. After the gut purge, transfer was as effective as into germ-free recipients. 

Tracking by sequencing suggested an orderly succession of lineages. After ASF 

transplantation, the predominant ASF519 strain appeared at the earliest times after 

gavage. Mucispirillum schaedleri (ASF457), and Ruminococcaceae (ASF500) also 

appeared early on. The last to appear was the Clostridium sp. (ASF356) at day 14 in 

some mice, one week after gavaging was complete, perhaps indicating the need for the 

development of a specific niche that permitted the establishment of more fastidious taxa. 

Most mice contained a Lactobacillus strain indistinguishable from ASF361 prior to 

transplantation, so this lineage could not be tracked with the methods used. The 

observed succession may be similar to the succession of bacterial taxa in human infants 

as consumption of oxygen by initial gut colonizers allows the expansion of bacterial 

clades that are obligate anaerobes 46, 47.  

 By monitoring the composition of the transplanted ASF community over four 

months by 16S rRNA gene sequencing, we were able to assess its persistence in the 

non-sterile SPF environment. The ASF community did not fully exclude other taxa. The 

community appeared to achieve a new steady state whereby both types of transplanted 
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hosts came to resemble the mice colonized with ASF from birth housed long-term in a 

SPF environment. In each of these three groups, Parabacteroides (ASF519) remained 

the dominant taxon. Bacteria of the Bacteroides genus commonly dominate the human 

and murine gut microbiota 31, 48-51, but new Bacteroides did not accumulate over time in 

ASF-colonized mice, suggesting that Parabacteroides may have excluded Bacteroides, 

reminiscent of the “trade-off” between Bacteroides and Prevotella in human gut 22, 31, 52, 53. 

The mechanism by which Parabacteroides excludes Bacteroides is unknown but, due to 

their taxonomic and functional similarities, may involve competition for limiting resources 

54 such as has been shown for glycans and the competition between Bacteroides 

species in the colonic crypt 55. Over time, the Parabacteroides and environmental 

Firmicutes established a new steady state approximating the composition of the 

conventional microbiota in humans and mice 48, 49, 56 possibly involving a syntrophic 

relationship between these lineages 57.   

  There was a sustained reduction in fecal urease enzymatic activity and ammonia 

production upon transfer of ASF into Prepared mice. There was no return of urease 

activity several months after transfer despite a substantial increase of non-ASF taxa. 

Possible lack of urease genes in many of the Clostridium taxa that accumulated after 

transplantation may explain the persistently reduced urease activity, although we cannot 

exclude other mechanisms since the regulation of urease enzymatic activity is known to 

be complex 6.  

 Production of ammonia by the gut microbiota has been implicated in host 

nitrogen balance 58-60, so there is a theoretical risk that a urease-free community might 

have an adverse effect on protein balance and growth of the host. However, we have 

tracked mice for over 1 year post-ASF transplantation and have not observed any 

adverse effects on body weight or mortality. ASF is acknowledged to be an innocuous 
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bacterial consortium in mice with beneficial effects on immune tolerance 18. Nevertheless, 

additional safety studies will need to be performed using a humanized version of ASF in 

rodent models before human studies can be contemplated. 

 In summary, given that HE is a major contributor to morbidity and mortality in 

liver disease 61, transplantation of next-generation engineered communities based on 

ASF, coupled with improved preparation of the host as described here, represents a 

promising approach to more effective therapy. 
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2.8 SUPPLEMENTARY INFORMATION 

 

Supplementary Figure 2-1. Distinctiveness and long-term resiliency of the Altered 
Schaedler’s Flora (ASF) in a host housed in a conventional specific pathogen free 
(SPF) environment. (A) 16S rRNA gene copy number of conventional (n=5) vs. ASF 
(n=10) fecal microbiota (p=0.015). (B) PCoA ordination of conventional (n=5) vs. ASF 
(n=10) communities based on 16S rRNA gene sequence tags. (C) Relative abundance 
of individual ASF community members in mice (n=10) housed in a SPF environment 
over 2 months. Two-tailed Student’s t-test. 
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Supplementary Figure 2-2. Effect of a non-irradiated normal chow diet on ASF 
resilience after transplantation. Heat map showing the relative abundance of bacterial 
lineages over time in ASF-transplanted mice (n=5). Rows indicate bacterial lineages as 
annotated on the left.  Relative abundance is indicated by the color code at the top of the 
figure, columns summarize sequencing results from individual fecal specimens, and 
elapsed time in days is shown along the bottom. 
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Supplementary Figure 2-3. Fecal ammonia levels, mortality rates and histology 
associated with TAA-induced hepatic injury studies. (A) Post-ASF transplant fecal 
ammonia levels in the high-dose TAA study shown in Figure 6A. (B) Kaplan-Meier 
survival curves and (C) fecal ammonia levels in the low-dose TAA study associated with 
results shown in Figure 7. (D) Photomicrographs of H&E stained hepatic sections from 
mice treated with high-dose TAA as indicated (200X) with quantification of hepatocellular 
necrosis (Supplementary Figure 4B). *p<0.01, ***p<0.001. Two-tailed Student’s t-test 
and paired-sample t-test. 
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Supplementary Figure 2-4. Differential liver injury do not explain differences with 
or without ASF transplantation. (A) Plasma alanine aminotransferase (ALT) levels in 
control, antibiotic-treated, or ASF-transplanted mice after TAA treatment compared to 
untreated control mice (n=3 in untreated control group, n=7 in control + TAA group, n=4 
in ABX +TAA group, n=8 in ASF + TAA group). (B) Liver damage quantified 
histologically by a pathologist reported as percent hepatic cellular necrosis (n=5 each in 
untreated control group and ABX + TAA group, n=10 each in control + TAA group and 
ASF + TAA group; 10 random 200x HPF per liver, no statistically significant difference 
among the three TAA-treated groups by ANOVA; blinded analysis). 
 
 
 



	   58	  

CHAPTER 3. Dietary Regulation of the Gut Microbiota Engineered by a 

Minimal Defined Bacterial Consortium 

 

The contents of this chapter have been submitted as: 

Shen TC, Chehoud C, Ni J, Hsu E, Chen YY, Bailey A, Laughlin A, Bittinger K, 
Bushman FD, Wu GD. Dietary regulation of the gut microbiota engineered by a 
minimal defined bacterial consortium. PLOS ONE 2016 (under review). 
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3.1 ABSTRACT 

 We have recently reported that Altered Schaedler Flora (ASF) can be used to 

durably engineer the gut microbiota to reduce ammonia production as an effective 

modality to reduce morbidity and mortality in the setting of liver injury. Here we 

investigated the effects of a low protein diet on ASF colonization and its ability to 

engineer the microbiota. Initially, ASF inoculation was similar between mice fed a normal 

protein diet or low protein diet, but the outgrowth of gut microbiota differed over the 

ensuing month. Notable was the inability of the dominant Parabacteroides ASF taxon to 

exclude other taxa belonging to the Bacteroidetes phylum in the setting of a low protein 

diet. Instead, a poorly classified yet highly represented Bacteroidetes family, S24-7, 

returned within 4 weeks of inoculation in mice fed a low protein diet, demonstrating a 

reduction in ASF resilience in response to dietary stress. Nevertheless, fecal ammonia 

levels remained significantly lower than those observed in mice on the same low protein 

diet that received a transplant of normal feces. No deleterious effects were observed in 

host physiology due to ASF inoculation into mice on a low protein diet. In total, these 

results demonstrate that low protein diet can have a pronounced effect on engineering 

the gut microbiota but modulation of ammonia is preserved.  

 

3.2 INTRODUCTION 

The gut microbiota responds to multiple environmental stressors such as diet 1-4, 

antibiotic use 5, inflammation of the intestinal tract 6, and infection of the host with enteric 

pathogens 7. By studying the gut microbiota in pediatric patients with Crohn’s disease, 

we have recently shown that the effects of these factors may be independent even if 

present simultaneously 8. Amongst these, the impact of diet has received considerable 

attention as a potential modifiable factor that shapes the composition and/or function of 
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the gut microbiota to prevent and/or treat disease 9. The high-level efficacy of fecal 

microbiota transplantation (FMT) in the treatment of Clostridium difficile infections (CDI) 

is proof of concept that inoculating a host with a consortium of microbes has a 

meaningful effect on the composition of the gut microbiota 10. The use of feces could be 

considered an untargeted approach with potential risks 11, but growing evidence 

suggests that the use of defined microbial consortia could be developed to treat disease 

12, 13. We have recently shown that the gut microbiota can be durably reconfigured to 

reduce fecal urease activity and ammonia production through oral inoculation of Altered 

Schaedler Flora (ASF), a defined microbial consortium that contains minimal urease 

gene content 13. ASF comprises 8 murine gut commensal bacterial strains assembled in 

the 1970s and standardized by the National Cancer Institute in 1978 14. It is now 

commonly used to create gnotobiotic mice and/or to enhance the health of 

immunodeficient mouse strains.  

Examples of co-metabolism between the gut microbiota and its mammalian host 

requiring host-derived substances include bile acids, mucous, and urea. The latter is 

particularly important for nitrogen flux between the host and the gut microbiota 15, 16. As 

the primary source of nitrogen, dietary protein is essential to the synthesis of nucleic 

acids, amino acids, and other nitrogenous compounds. The catabolism of dietary protein 

by the host leads to hepatic formation of urea, a nitrogenous waste product that is 

excreted through the urine or delivered into the colon, where hydrolysis by bacterial 

urease results in the production of carbon dioxide and ammonia. Ammonia is a shared 

substrate for the synthesis of proteins, amino acids, and other small molecules by both 

the host and its microbiota. Although generally thought to be nutritionally beneficial to the 

host by enhancing nitrogen recycling, the production of ammonia by the gut microbiota 

can have deleterious effects in the setting of altered hepatic function, resulting in the 
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development of neurotoxicity 17-19. Under such conditions, a low protein diet (LPD) can 

be used to reduce systemic ammonia levels 20, 21.  

By inoculating mice with ASF after the endogenous microbiota has been reduced 

through the use of antibiotics and polyethylene glycol (PEG), the composition of the gut 

microbiota can be durably modified in composition as well as function. Functionally, 

there was a long-lasting reduction in fecal ammonia that was effective in reducing 

morbidity and mortality in the thioacetamide model of liver injury 13. Since (1) the 

absorption of fecal ammonia produced by the gut microbiota may be an important source 

of nitrogen for the host especially in the setting of dietary protein restriction 15, and (2) 

low protein diets are used clinically in patients with hyperammonemic inborn errors of 

metabolism 22, there are a number of questions about the impact of diet on the 

engineering of the gut microbiota to reduce ammonia production. What is the effect of a 

LPD on the ability of a defined bacterial consortium to colonize in the gut? Does a LPD 

have an effect on the composition of the engineered microbiota? Will the ammonia 

reduction by microbiota engineering be sustained and exhibit lower levels than those 

achievable by a LPD alone? And lastly, will a significant reduction in gut microbiota 

ammonia production be deleterious to the host on a LPD?  

Here, we address these questions by inoculating mice on a LPD with either feces 

from conventionally-reared mice (Normal Feces, or NF) or with ASF, monitoring the 

resultant composition of the gut microbiota over time by 16S tagged sequencing, 

assessing functionality by quantifying fecal ammonia levels, and investigating the impact 

on the host by metabolic profiling. Although a LPD has no effect on the ability of ASF to 

colonize the gut of the host upon inoculation, the resultant engineered state of the 

microbiota is altered primarily due to the re-emergence of S24-7, a specific bacterial 

taxonomic family within the Bacteroidetes phylum. Despite this alteration, fecal ammonia 
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levels remain diminished and without consequence to the metabolic physiology of the 

host on a LPD.  

 

3.3 MATERIALS AND METHODS 

Animals  

C57B6J female mice 8 to 12 weeks old (The Jackson Laboratory) were used in this 

study. Fecal pellets collected from five ASF-colonized CB17 SCID mice (Taconic) served 

as the source of the ASF inoculum whereas five conventionally-colonized C57B6J mice 

(The Jackson Laboratory) served as the source of the normal feces (NF) inoculum used 

in the FMT procedures as previously described 13. Fecal homogenates were prepared by 

diluting 0.1 g feces 10-fold in PBS. Mice were prepared for FMT by oral delivery of 

antibiotics in drinking water (1.125 g aspartame, 0.15 g vancomycin, and 0.3 g neomycin 

in 300 mL sterile water) for 72 hours. During the final 12 hours, the water supply was 

exchanged with a 10% PEG solution (Merck), and the mice were fasted. Mice were then 

inoculated daily with fecal homogenates by oral gavage for 7 days. All mice were housed 

five per cage in a conventional specific-pathogen free (SPF) facility (and transferred from 

one conventional facility to another conventional facility within the University of 

Pennsylvania 10 weeks after the start of experiment for NMR imaging) and fed irradiated 

AIN-76A (Research Diets D10001, 21% protein by kilocalories – NPD, see S1 Table). 

After one week, ten mice were switched to irradiated AIN-76A with lower protein content 

(Research Diets D08092201, 3% protein by kilocalories – LPD, see S1 Table). Fecal 

pellets were collected at baseline on NPD, 10 weeks after placement on LPD, 2 weeks 

after  FMT (15 weeks on LPD), 4 weeks after FMT (17 weeks on LPD), and 10 weeks 

after FMT (23 weeks on LPD) for bacterial taxonomic and biochemical analyses. Fecal 

pellets were collected in 1.5 mL microcentrifuge tubes (Sigma-Aldrich) and immediately 
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placed on dry ice then stored in -80°C freezer until time of analysis. Body composition 

was determined after ten weeks on respective diets using NMR imaging via the Mouse 

Phenotyping, Physiology and Metabolism Core at the University of Pennsylvania. All 

animal studies were performed with the approval of the Institutional Animal Care and 

Use Committee of the University of Pennsylvania (Protocol Number: 803408). 

 

16S V1-V2 Sequencing 

DNA was isolated from stool as previously described 2, 23. 100 ng of DNA was amplified 

with barcoded primers annealing to the V1-V2 region of the 16S rRNA gene (forward 

primer, 5′-AGAGTTTGATCCTGGCTCAG-3′; reverse primer, 5′-CTGCTGCCTYCCGTA-

3′; 24, 25 using AccuPrime Taq DNA Polymerase System with Buffer 2 (Life Technologies). 

PCR reactions were performed on a thermocycler using the following conditions: 

initiation at 95°C for 5 min followed by 20 cycles of 95°C × 30 s, 56°C × 30 s, and 72°C × 

1 min 30 s, then a final extension step at 72°C for 8 min. The amplicons from each DNA 

sample, which was amplified in quadruplicate, were pooled and purified with Agencourt 

AMPure XP beads (Beckman Coulter) following the manufacturer’s instructions. Purified 

DNA samples were then sequenced using the 454/Roche GS FLX Titanium chemistry 

(454 Life Sciences). 

 

16S rRNA Gene Sequence Analysis 

16S rRNA gene sequence data was processed with QIIME v 1.8.0 26 using default 

parameters. Sequences were clustered into operational taxonomic units (OTUs) at 97% 

similarity and then assigned Greengenes taxonomy 27 using the uclust consensus 

taxonomy classifier. Sequences were aligned using PyNAST 28 and a phylogenetic tree 

was constructed using FastTree 29. Weighted and unweighted UniFrac 30 distances were 
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calculated for each pair of samples for assessment of community similarity and 

generation of principal coordinate analysis (PCoA) plots.  Statistical analyses for 

bacterial abundance difference was performed using non-parametric Wilcoxon test, and 

p-values were corrected for multiple comparisons using the Benjamini and Hochberg 

procedure. 

 

Measurement of fecal ammonia 

Fecal ammonia concentrations were determined using an Ammonia Assay Kit (ab83360, 

Abcam, Cambridge, MA). Fecal pellets were suspended in the assay buffer provided at a 

concentration of 1 mg/10 uL, homogenized, and centrifuged at 13,000 x g for 10 minutes 

at room temperature to remove insoluble material. Ammonia concentration was then 

determined according to the kit protocol. 

 

Measurement of serum and fecal urea  

Urea concentrations were determined using the QuantiChrom™ Urea Assay Kit (DIUR-

500, Bioassay Systems, Hayward, CA). Serum samples were assayed directly. Fecal 

pellets were suspended in ddH2O at a concentration of 1 mg/10uL, homogenized, and 

centrifuged at 2,500 x g for 10 minutes at room temperature to remove insoluble material. 

Urea concentration was then determined according to the kit protocol. 

 

3.4 RESULTS 

LPD impacts host physiology and nitrogen metabolism but modestly alters the 

composition of the gut microbiota. 

We first set out to investigate the effects of a LPD on both the murine host and 

the gut microbiota. Fifteen adult female C57BL6J mice were placed on an open source 
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irradiated purified rodent diet containing normal amount of dietary protein at 21% by 

kilocalories (AIN-76A), henceforth referred to as normal protein diet (NPD, 

Supplementary Table 3-1) for one week upon arrival into the University of Pennsylvania 

SPF vivarium. Subsequently, ten of the 15 mice were switched to an irradiated low 

protein diet (LPD, Supplementary Table 3-1) formulated using AIN-76A as the base 

that contains 3% protein by kilocalories. The LPD was made isocaloric by proportionally 

increasing carbohydrate content while keeping fat content unchanged. The remaining 5 

mice continued to be fed the NPD. We monitored physiological changes in these mice 

using body weight and food intake measurements as well as body composition 

determination via nuclear magnetic resonance (NMR) imaging. We found that compared 

to NPD-fed mice, LPD-fed mice exhibited poor weight gain despite equivalent caloric 

consumption (Fig. 3-1A). LPD-fed mice also demonstrated increased fat mass and 

decreased lean mass (Fig. 3-1B and 3-1C). Corresponding to a reduction in serum urea 

concentration compared to NPD-fed mice (Fig. 3-1D), LPD-fed mice exhibited significant 

reductions in fecal urea and fecal ammonia levels after ten weeks on the LPD (Fig. 3-1E 

and 3-1F). These results are consistent with the fundamental role that dietary protein 

plays in host nitrogen balance. Reduction in dietary protein may have an effect on the 

gut microbiota by reducing the delivery of urea to the colonic environment leading to the 

reduction in fecal ammonia levels. 
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Figure 3-1. Changes in murine physiology and nitrogen metabolism on a LPD. 
Differences in (A) body weight (n=5 in NPD group, n=10 in LPD group), (B) % fat mass, 
(C) % lean mass, and (D) serum urea concentrations between NPD-fed and LPD-fed 
mice. (E) Fecal urea and (F) fecal ammonia levels at baseline on the NPD and after 
placement on the LPD. Values represent mean ± SEM. Statistical significance in body 
weight determined by two-way ANOVA with repeated measures; statistical significance 
in other parameters determined by paired and unpaired two-tailed Student’s t test. 
*p<0.05, **p<0.01, ***p<0.001.  
 

16S tagged sequencing (1045 to 5305 reads per sample, median = 3448 reads) 

revealed modest yet distinct differences in the composition of the fecal microbiota in 

mice after placement on the LPD. These difference can be visualized in principal 

coordinates analysis of weighted (Fig. 3-2A) and unweighted (Fig. 3-2B) UniFrac 

distance. The LPD led to a significant increase in the diversity of the gut microbial 

community as assessed by the Shannon diversity index (Fig. 3-2C and Supplementary 

Fig. 3-1). The LPD also led to significant increases in the relative abundance of 

Mollicutes and Coriobacteria and a decrease in the Firmicutes classes Erysipelotrichi 

and Clostridia (Fig. 3-2D and 3-2E).  
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Figure 3-2. Effect of a LPD on the composition of the gut microbiota. Principal 
coordinates analysis (PCoA) ordination of mice before and after placement on the LPD 
for 10 weeks. Changes in community membership were analyzed using (A) weighted 
and (B) unweighted Unifrac. (C) The interquartile range of Shannon diversity values is 
shown for mice on the NPD who were later put on the LPD (Wilcoxon rank sum test p-
value = 0.0001299). (D) Heatmap showing the relative abundance of bacterial lineages 
over time in mice who were on the NPD at baseline and then after ten weeks on the LPD. 
Rows indicate bacterial lineages annotated at the class taxonomic level on the left. The 
color key on the right of the figure indicates relative abundance. Columns summarize the 
sequencing results from individual fecal specimens. Each column represents a different 
mouse. The columns are grouped by diet. (E) Bacterial lineages that change on the LPD. 
Four bacterial classes significantly differed between the NPD and LPD (FDR-corrected 
Wilcoxon test p-value < 0.05). Relative abundance of each class in both diet groups is 
shown. Box and whiskers show the interquartile range; black circles mark the outlier 
samples. 
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permitting the colonization of ASF upon inoculation by oral gavage 13. However, the 

effect of a LPD on the colonization of ASF into the gut of a prepared host remains 

unknown. After preparation with antibiotics and PEG, we orally inoculated five of the 

LPD-fed mice with ASF (herein referred to as “ASF-transplanted”). As a control group, 

we transplanted the other five LPD-fed mice using feces from conventionally-reared 

donor mice (herein referred to “NF-transplanted,” for Normal Feces). Using 16S rRNA 

tagged sequencing, we tracked taxonomic alterations in the gut microbiota over time. 

We found that NF-transplanted mice exhibited minimal change in the composition of 

their gut microbiota (Supplementary Fig. 3-2). However, the gut microbiota of ASF-

transplanted mice underwent a shift in composition in a similar fashion to that previously 

observed in NPD-fed mice transplanted with ASF 13, as shown in Fig. 3-3A and 3-3B. In 

particular, the shifts along PC1 in both cohorts of mice represent changes due to the 

initial ASF inoculum (compare days 0 to 14 in both groups), whereas differences 

between the two cohorts of mice along PC2 may represent the effect of diet. These 

findings suggest that a LPD does not affect the initial colonization of ASF into the host 

microbiota.  
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Figure 3-3. Effect of a LPD on the initial colonization of ASF and subsequent 
resilience over time. Principal coordinates analysis (PCoA) ordination of mice after 
transplantation with ASF. Changes in community membership were analyzed using (A) 
weighted and (B) unweighted Unifrac. Dietary groups are color coded as indicated with 
the shades of colors indicating progression in time. Day 0 samples have gray circles 
around them (solid for NPD, dashed for LPD). The arrows were added to help visualize 
the progression of time after ASF transplantation. (C) The interquartile range of Shannon 
diversity values are shown for mice on the NPD and LPD inoculated with either ASF or 
Normal Feces (NF). Black circles mark the outlier samples.  
 
 
 
Diet affects the resilience of the gut microbiota engineered by inoculation with 

ASF. 

By tracking the composition of mice inoculated with ASF, we determined the 

effect of a LPD on the ability of ASF to engineer a different microbiota composition. In 

the setting of a NPD, we previously observed that ASF transplantation led to the 

development of a new steady state community after one month composed of both ASF 

and the return of selected taxa of the Firmicutes phylum, but no non-ASF Bacteroidetes 
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have prevented the return of other Bacteroidetes taxa by competitive niche exclusion. 

Tracking compositional changes in the gut microbiota over time, we found that in the 

setting of the LPD, the gut microbiota engineered by ASF inoculation developed into an 

alternative rich community with diversity similar to that on the NPD (Fig. 3-3C). However, 

ASF519 did not suppress the return of other Bacteroidetes. Instead, Bacteroidetes S24-

7, a poorly classified yet common bacterial taxon in the commensal murine gut 

microbiota 31, 32, returned after ASF transplantation and reached an equilibrium state with 

ASF519 (Fig. 3-4 and Supplementary Fig. 3-3). We plotted the progression of the 

transplanted ASF community over time. We found that ASF reached a new steady state 

in the setting of the LPD at around 4 weeks after transplantation, similar to what we 

previously observed in the setting of the NPD 13 (Fig. 3-3A and 3-3B). However, this 

steady state more closely resembled the endogenous microbiota, likely as a result of the 

return of S24-7 on the LPD (best observed in Fig. 3-3A along PC1 – compare the solid 

to dotted grey line). Overall, these findings suggest that ability of ASF lineages to 

compete is reduced in the presence of a LPD. 
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Figure 3-4. S24-7 returns after ASF transplantation into mice on a LPD but not on a 
NPD. (A) Relative abundance of bacterial taxa are shown. Each column represents a 
single sample of a pre-treated, ASF-inoculated mice on the LPD (LPD + ASF). 
Progression of inoculation is shown across multiple days post inoculation with ASF.  
Relative abundance of (B) Parabacteroides (including ASF 519) and (C) S24-7. Box and 
whiskers show the interquartile range; black circles mark the outlier samples. 
 
 

The ASF-engineered gut microbiota lowers fecal ammonia more effectively than 

LPD alone. 

We have previously shown that ASF transplantation durably reduces fecal 

ammonia by decreasing fecal urease activity 13. Since a LPD itself mainly reduces fecal 

ammonia by decreasing the delivery of urea to the colon (Fig. 3-1E and 3-1F), we 

sought to determine whether the ASF-engineered microbiota would be able to reduce 

fecal ammonia levels below those achieved by a LPD alone. We measured fecal urea 

and fecal ammonia in mice at baseline on the NPD, after ten weeks on the LPD, and 

compared ASF and NF transplantation on the LPD. As shown in Fig. 3-5A, after the 

initial reduction in fecal ammonia levels induced by the LPD, ASF transplantation 

reduced fecal ammonia further than did NF transplantation. The ability of the ASF-
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engineered microbiota to lower fecal ammonia levels below those achieved by the LPD 

alone is likely due to the reduction in fecal urease activity since there was no difference 

in fecal urea levels after NF and ASF transplantation (Fig. 3-5B). These results indicate 

that the functionality of the ASF-engineered gut microbiota is not significantly altered in 

the setting of a LPD despite alterations in its composition. 

 

 

Figure 3-5. ASF transplantation alters colonic urea nitrogen recycling without 
significantly affecting host physiology. (A) ASF transplantation reduces fecal 
ammonia below the level achieved by the LPD alone (n=4-5 per group, *p<0.05 
compared to baseline, **p<0.01 compared to 10 weeks on the LPD). (B) No difference in 
fecal urea level between ASF- and NF-transplanted mice (n=2-5 per group, *p<0.05 
compared to baseline, **p<0.01 compared to baseline). No difference in (C) body weight 
or (D) food intake between ASF- and NF-transplanted mice (n=5 per group). Values 
represent mean ± SEM. Significance determined by two-tailed Student’s t-test. 
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The low fecal urease and fecal ammonia-producing microbiota engineered by ASF 

inoculation does not exacerbate host metabolic dysfunction induced by LPD. 

Urea is a nitrogenous waste product, but it is thought to contribute to host 

nutrition via urea nitrogen recycling by intestinal bacterial urease in both ruminants and 

non-ruminants, leading to microbial and/or host synthesis of peptides, amino acids, and 

other small molecules 15. We asked whether this role of urea may become important for 

host physiology in the setting of a LPD, where systemic nitrogen is reduced. After 

transplanting the above cohort of mice with ASF or NF, we continued to monitor their 

body weight, food intake, and survival. Remarkably, despite the absence of colonic urea 

nitrogen recycling, ASF-transplanted mice did not differ significantly from NF-

transplanted mice (Fig. 3-5C, 3-5D, and Supplementary Fig. 3-4). Thus, in the setting 

of a LPD, ASF transplantation does not lead to significant detrimental changes to host 

physiology and metabolism. 

 

3.5 DISCUSSION 

 The success of FMT in the treatment of recurrent Clostridium difficile infections 

provides proof of concept that the gut microbiota can be a target for the treatment of 

disease in humans. The use of fecal transfer will likely be replaced by the use of defined 

microbial consortia with specific biological properties. As proof of concept, we have 

shown in murine models that a defined consortium of eight bacteria, known as Altered 

Schaedler Flora (ASF), can be used to engineer the gut microbiota with altered 

functionality, namely a reduction in fecal urease activity and ammonia production 13. 

Critical to the success of this strategy is the substantial reduction in the biomass of the 

baseline microbiota to provide a niche into which the bacterial inoculum can colonize. 



	   74	  

 An important consideration for engineering the gut microbiota is resilience to 

environmental stress. An optimally engineered microbiota would be a rich community 

that stays intact in the presence of environmental stress. Diet is an important 

environmental stressor on the gut microbiota that should be considered when 

engineering gut microbial communities. As one example, the low ammonia-producing 

microbiota engineered by ASF, which has functional durability for several months in mice 

fed an irradiated diet, shows reduced resilience when the mice are fed a non-irradiated 

diet 13. We chose to study the impact of dietary protein on the resilience of the ASF-

engineered microbiota for several reasons: 1) Dietary protein has been shown to 

influence the composition of the gut microbiota in gnotobiotic mice 33; 2) Protein 

consumption regulates the production of hepatic urea that may affect colonic urea 

delivery to the gut microbiota 15, 34; 3) Protein-restricted diets are an important 

therapeutic modality for patients with hyperammonemic inborn errors of metabolism 21, 35. 

Unlike the modulation of fat and fiber in mice, which have been shown to have a 

strong effect on the composition of the murine gut microbiota 1, 33, we show that severe 

restriction of dietary protein had a modest effect. Within the Firmicutes phylum the 

Clostridia and Erysipelotrichi classes decreased significantly on a LPD, consistent with 

the preference of taxa within Firmicutes, particularly Clostridia species, to metabolize 

amino acids and peptides 36, 37. Alternatively, since we show that a LPD reduces serum 

urea concentrations with reduced delivery to the colon resulting in lower fecal ammonia 

levels, an alteration in nitrogen flux via ammonia into the gut microbiota 38, 39 may also 

have an effect on the composition of the bacterial microbiota.  

Since we balanced protein with carbohydrate in the composition of the purified 

rodent diets, it is difficult to ascertain if the differences in the composition of the gut 

microbiota are due primarily to alterations in protein or in carbohydrate. We found that 
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two bacterial phyla present at low abundances increased significantly on a LPD. 

Specifically, the classes Mollicutes (Tenericutes phylum) and Coriobacteria 

(Actinobacteria phylum) increased on a LPD. Previous work has shown that Mollicutes 

proliferated on a typical Western diet characterized by high-fat/high-sugar content, likely 

because of their ability to import and process simple sugars 40. Thus, an increase in the 

abundance of Mollicutes that we observed on a LPD could be due to the increase in 

carbohydrate content rather than the reduction in protein content. Another study also 

showed that gut colonization by Actinobacteria and Tenericutes was strongly correlated 

with decreased hepatic levels of glycogen and glucose 41, further suggesting the 

interplay between the host and these two phyla may be closely related to carbohydrate 

metabolism. 

 Despite the effect of a LPD on the composition of the murine gut microbiota at 

baseline, this did not have an effect on the initial colonization of ASF at 2 weeks, 

demonstrating that the use of antibiotics and PEG effectively prepared the environment 

of the gut for inoculation by a minimal defined bacterial consortium. Subsequently, 

development of the resultant engineered microbiota, determined by emergence of 

various bacterial taxa in addition to ASF, was distinctly different in mice fed a NPD 

versus a LPD. On a NPD, we previously showed that the dominant taxon 

Parabacteroides (ASF519) was able to exclude the entire Bacteroidetes phylum yet 

permit the reappearance of specific taxa belonging to the Firmicutes phylum. The 

observation that bacterial lineages with similar phylogeny exhibit competitive niche 

exclusion has been demonstrated in the Bacteroides genus where successful 

competition for carbohydrate substrates plays an important role 42. By contrast, on a LPD, 

the resultant engineered microbiota appears to be more similar to baseline primarily due 
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to the reemergence of a single bacterial taxon belonging to the Bacteroidetes family, 

S24-7. 

 S24-7 has been previously recognized as a dominant taxonomic group in the 

murine microbiota. It was first characterized by Salzman et al., who referred to the taxon 

as “mouse intestinal bacteria” 31. The S24-7 taxon is phylogenetically distinct from other 

named genera in the order Bacteroidales. The taxon has been reported as altered in 

several recent mouse studies: it was increased in proportion following partial 

hepatectomy 43, associated with co-infection by Hymenolepis spp. 44, and decreased in 

proportion following antibiotic treatment for parenteral nutrition-associated liver injury 45. 

However, to our knowledge, no study has previously characterized competition between 

S24-7 and other Bacteroidetes species in mice. The S24-7 taxon is typically 

encountered at very low (<1%) abundance in fecal samples from human populations. 

However, one study of a previously uncontacted Amerindian population reported the 

taxon to be enriched in isolated Yanomami Amerindians relative to Guahibo Amerindian, 

Malawian, and U.S. subjects 46. The average abundance of the taxon in Yanomami 

Amerindians was reported to be nearly 5% of total bacteria, suggesting a potential role 

for S24-7 in the human gut. 

 Upon reduction of bacterial biomass through a combination of antibiotics and 

PEG, S24-7 is no longer detectable and shows no return over time after mice have been 

inoculated with ASF. Since both Paracteroides (ASF519) and S24-7 are closely related 

within the Bacteroidetes phylum, we speculate that S24-7 may be co-excluded from the 

luminal gut environment by ASF519 through competitive niche exclusion, a mechanism 

that has been hypothesized as the basis for the inversely-related proportions of 

Bacteroides and Prevotella in the human gut microbiota 2, 47, a predominant feature of 

“enterotypes” 48. From a mechanistic standpoint, the basis of competitive niche exclusion 
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may involve the competition of metabolic substrates as has been demonstrated for 

Bacteroides species in a reductionist model system 42. Since S24-7 reappears and co-

exists at approximately equal levels with ASF519 in LPD-fed mice, the alteration of 

substrate availability via diet may have altered the luminal environment of the gut that 

reduces the need for competition between these two taxa. For example, a LPD may 

have altered the balance of nitrogen flux into the gut microbiota via the uptake of 

ammonia. Indeed, despite the return of S24-7 and the similarities between the 

composition of a gut microbiota of a conventionally-housed mouse and the ASF-

engineered community established in LPD-fed mice, fecal ammonia levels remained 

much lower in ASF-transplanted mice that those transplanted with normal feces. This 

suggests that S24-7 may be urease negative. Further elucidation of such mechanism(s) 

will require genomic characterization of S24-7 along with an evaluation of its biological 

properties.   

 The quantification of fecal ammonia was used to determine the impact of 

microbiota composition on the function of the community. Despite the modest alterations 

in the gut microbiota induced by the consumption of a LPD, there was a significant 

reduction in fecal ammonia levels reflecting the reduced abundance of urea substrate 

available for hydrolysis by the gut microbiota. This observation emphasizes the notion 

that diet may have an indirect impact on the gut microbiota by alteration of the host 

similar to the outgrowth of a pathobiont due to the enhanced production of sulfated bile 

acids in mice fed milk fat 49. Importantly, engineering of the gut microbiota using ASF led 

to a reduction in fecal ammonia levels significantly greater than that observed on a LPD.  

 Since ammonia, produced by the gut microbiota via urease activity, is absorbed 

by the host where it can be used for amino acid synthesis, it has been hypothesized that 

this form of nitrogen recycling may be important for host health especially under 
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conditions of limited protein intake 15, 50. This might be a significant limitation of a strategy 

focused on reducing gut microbiota ammonia production for the treatment of 

hyperammonemia and hepatic encephalopathy 13. Although LPD-fed mice did not exhibit 

growth, as would be expected, ASF transplantation with subsequent robust reduction of 

fecal ammonia levels did not lead to any effects on food intake, growth, or mortality 

relative to LPD-fed mice transplanted with normal feces who had much higher levels of 

fecal ammonia. Since patients with hyperammonemic inborn errors of metabolism are 

placed on a LPD to prevent metabolic crises, our observations provide preliminary 

evidence that the engineering of gut microbiota to reduce fecal ammonia production may 

be well tolerated in this patient population. However, additional safety studies are 

needed. 

 In summary, we show that diet has a significant effect on the ability of a defined 

microbial consortium to engineer the composition of the gut microbiota. Specifically, LPD 

alters the co-exclusion of two dominant taxa within the Bacteroidetes phylum. Given the 

alterations in the syntropic host-microbiota interactions in nitrogen flux that occur in the 

levels of urea delivery from the host to the gut microbiota, the reduced production of 

ammonia via bacterial urease, and the uptake of ammonia by both the host and the gut 

microbiota, a LPD may be a particularly important environmental stressor that will impact 

upon the composition of an engineered microbiota. Nevertheless, the functionality of the 

engineered gut microbiota, as quantified by a reduction in fecal ammonia levels, 

remained intact. Together with the absence of detrimental effects on host physiology in 

the setting of a LPD, the reduction in fecal ammonia levels via engineering of the gut 

microbiota may be an effective therapeutic strategy for patients with hyperammonemic 

inborn errors of metabolism. 

 



	   79	  

3.6 ACKNOWLEDGEMENTS 

Metabolic phenotyping was performed by Mouse Phenotyping, Physiology and 

Metabolism Core at the University of Pennsylvania.  

 

3.7 REFERENCES 

1. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the 
composition of the murine gut microbiome independently of obesity. 
Gastroenterology 2009;137:1716-24 e1-2. 

 
2. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut 

microbial enterotypes. Science 2011;334:105-8. 
 
3. David L, Maurice C, Carmody R, et al. Diet rapidly and reproducibly alters the 

human gut microbiome. Nature 2014;505:559-63. 
 
4. Carmody RN, Gerber GK, Luevano JM, Jr., et al. Diet dominates host genotype 

in shaping the murine gut microbiota. Cell Host Microbe 2015;17:72-84. 
 
5. Dethlefsen L, Huse S, Sogin ML, et al. The pervasive effects of an antibiotic on 

the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 
2008;6:e280. 

 
6. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic 

characterization of microbial community imbalances in human inflammatory 
bowel diseases. Proc Natl Acad Sci U S A 2007;104:13780-5. 

 
7. Yurist-Doutsch S, Arrieta MC, Vogt SL, et al. Gastrointestinal microbiota-

mediated control of enteric pathogens. Annu Rev Genet 2014;48:361-82. 
 
8. Lewis JD, Chen EZ, Baldassano RN, et al. Inflammation, Antibiotics, and Diet as 

Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease. 
Cell Host Microbe 2015;18:489-500. 

 
9. Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, 

functions, and implications for health and disease. Gastroenterology 
2014;146:1564-72. 

 
10. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for 

recurrent Clostridium difficile. N Engl J Med 2013;368:407-15. 
 
11. Hecht GA, Blaser MJ, Gordon J, et al. What Is the Value of a Food and Drug 

Administration Investigational New Drug for Fecal Microbiota Transplantation in 
Clostridium difficile Infection? Clin Gastroenterol Hepatol 2013. 



	   80	  

12. Lawley TD, Clare S, Walker AW, et al. Targeted restoration of the intestinal 
microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium 
difficile disease in mice. PLoS Pathog 2012;8:e1002995. 

 
13. Shen TD, Albenberg L, Bittinger K, et al. Engineering the gut microbiota to treat 

hyperammonemia. J Clin Invest 2015;125:2841-2850. 
 
14. Dewhirst FE, Chien CC, Paster BJ, et al. Phylogeny of the defined murine 

microbiota: altered Schaedler flora. Appl Environ Microbiol 1999;65:3287-92. 
 
15. Stewart G, Smith C. Urea nitrogen salvage mechanisms and their relevance to 

ruminants, non-ruminants and man. Nutr Res Rev. 2005;18:49-62. 
 
16. Fuller MF RP. Nitrogen cycling in the gut. Annu Rev Nutr. 1998;18:385-411. 
 
17. Vilstrup H, Amodio P, Bajaj J, et al. Hepatic Encephalopathy in Chronic Liver 

Disease: 2014 Practice Guideline by the American Association for the Study of 
Liver Diseases and the European Association for the Study of the Liver. 
Hepatology 2014;60:715-35. 

 
18. Riordan SM, Williams R. Treatment of hepatic encephalopathy. N Engl J Med 

1997;337:473-9. 
 
19. Saudubray JM, Nassogne MC, de Lonlay P, et al. Clinical approach to inherited 

metabolic disorders in neonates: an overview. Semin Neonatol 2002;7:3-15. 
 
20. Nguyen DL MT. Protein restriction in hepatic encephalopathy is appropriate for 

selected patients: a point of view. Hepatol Int. 2014;8:447-51. 
 
21. Singh R. Nutritional management of patients with urea cycle disorders. J Inherit 

Metab Dis 2007;30:880-7. 
 
22. Brusilow S, Maestri N. Urea cycle disorders: diagnosis, pathophysiology, and 

therapy. Adv Pediatr 1996;43:127-70. 
 
23. Wu GD, Lewis JD, Hoffmann C, et al. Sampling and pyrosequencing methods for 

characterizing bacterial communities in the human gut using 16S sequence tags. 
BMC Microbiol 2010;10:206. 

 
24. Hoffmann C, Minkah N, Leipzig J, et al. DNA bar coding and pyrosequencing to 

identify rare HIV drug resistance mutations. Nucleic Acids Res 2007;35:e91. 
 
25. Hamady M, Walker JJ, Harris JK, et al. Error-correcting barcoded primers for 

pyrosequencing hundreds of samples in multiplex. Nat Methods 2008;5:235-7. 
 
26. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-

throughput community sequencing data. Nat Methods 2010;7:335-6. 
 
27. McDonald D PM, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, 

Knight R, Hugenholtz P. An improved Greengenes taxonomy with explicit ranks 



	   81	  

for ecological and evolutionary analyses of bacteria and archaea. ISME J. 
2012;6:610-8. 

 
28. Caporaso JG BK, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: 

a flexible tool for aligning sequences to a template alignment. Bioinformatics. 
2010;26:266-7. 

 
29. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood 

trees for large alignments. PLoS One 2010;5:e9490. 
 
30. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing 

microbial communities. Appl Environ Microbiol 2005;71:8228-35. 
 
31. Salzman NH, de Jong H, Paterson Y, et al. Analysis of 16S libraries of mouse 

gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. 
Microbiology 2002;148:3651-60. 

 
32. Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is 

associated with a change in the gut microbiota. Gut 2012;61:543-53. 
 
33. Faith JJ, McNulty NP, Rey FE, et al. Predicting a human gut microbiota's 

response to diet in gnotobiotic mice. Science 2011;333:101-4. 
 
34. Hamberg O. Regulation of urea synthesis by diet protein and carbohydrate in 

normal man and in patients with cirrhosis. Relationship to glucagon and insulin. 
Dan Med Bull 1997;44:225-41. 

 
35. Adam S, Almeida MF, Assoun M, et al. Dietary management of urea cycle 

disorders: European practice. Mol Genet Metab. 2013;110:439-45. 
 
36. Neis E, Dejong C, Rensen S. The role of microbial amino acid metabolism in host 

metabolism. Nutrients. 2015;7:2930-46. 
 
37. Barker H. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem. 

1981:23-40. 
 
38. Metges C, El-Khoury A, Henneman L, et al. Availability of intestinal microbial 

lysine for whole body lysine homeostasis in human subjects. Am J Physiol. 
1999;277:E597-607. 

 
39. Metges C, Petzke K, El-Khoury A, et al. Incorporation of urea and ammonia 

nitrogen into ileal and fecal microbial proteins and plasma free amino acids in 
normal men and ileostomates. Am J Clin Nutr. 1999;70:1046-58. 

 
40. Turnbaugh P, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked 

but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 
2008;3:213-23. 

 
41. Claus S, Ellero S, Berger B, et al. Colonization-induced host-gut microbial 

metabolic interaction. MBio. 2011;2:e00271-10. 



	   82	  

42. Lee SM, Donaldson GP, Mikulski Z, et al. Bacterial colonization factors control 
specificity and stability of the gut microbiota. Nature 2013;501:426-9. 

 
43. Liu HX, Rocha CS, Dandekar S, et al. Functional analysis of the relationship 

between intestinal microbiota and the expression of hepatic genes and pathways 
during the course of liver regeneration. J Hepatol 2015. 

 
44. Kreisinger J, Bastien G, Hauffe HC, et al. Interactions between multiple helminths 

and the gut microbiota in wild rodents. Philos Trans R Soc Lond B Biol Sci 
2015;370. 

 
45. Harris JK, El Kasmi KC, Anderson AL, et al. Specific microbiome changes in a 

mouse model of parenteral nutrition associated liver injury and intestinal 
inflammation. PLoS One 2014;9:e110396. 

 
46. Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted 

Amerindians. Sci Adv 2015;1. 
 
47. Faust K, Sathirapongsasuti JF, Izard J, et al. Microbial co-occurrence 

relationships in the human microbiome. PLoS Comput Biol 2012;8:e1002606. 
 
48. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut 

microbiome. Nature 2011;473:174-80. 
 
49. Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid 

promotes pathobiont expansion and colitis in Il10-/- mice. Nature 2012;487:104-8. 
 
50. Picou D, Phillips M. Urea metabolism in malnourished and recovered children 

receiving a high or low protein diet. Am J Clin Nutr 1972;25:1261-6. 
 

 

 

 

 

 

 

 

 

 

 



	   83	  

3.8 SUPPLEMENTARY INFORMATION 

 

Supplementary Table 3-1. Components of normal protein and low protein diets.  

 

 

 
Supplementary Figure 3-1. Diversity in each mouse after a LPD. Shannon diversity 
is shown for all ten mice while on the NPD (blue) and after ten weeks on the LPD 
(salmon).  
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Supplementary Figure 3-2. Principal coordinates analysis ordination of mice on 
the LPD after transplantation with ASF or NF. Changes in community membership 
were analyzed using (A) weighted and (B) unweighted Unifrac.  
 

 

Supplementary Figure 3-3. Relative abundance of bacterial taxa after ASF 
transplantation. Each bar represents a single sample. Samples represent pre-treated 
ASF-inoculated mice on the NPD (NPD + ASF). Progression is shown across multiple 
days post-inoculation with ASF. 
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Supplementary Figure 3-4. Murine mortality on a LPD. Kaplan Meier curve showing 
no significant difference in survival between ASF- and NF-transplanted mice on the LPD 
(n=5 per group at start of experiment). 
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CHAPTER 4. Conclusions and Future Directions 

 

We can dramatically reduce the endogenous biomass of the murine gut through 

the use of antibiotics and polyethylene glycol and subsequently reconfigure the 

composition and function of the gut microbiota by transplanting a new defined bacterial 

consortium. In this dissertation, we reduced gut urea nitrogen recycling and colonic 

ammonia production via transplantation of ASF, a defined bacterial consortium with 

minimal urease gene content and activity. ASF transplantation was associated with 

decreased morbidity and mortality in a murine model of hepatic injury and fibrosis 

(Chapter 2). Given the impact of diet on the gut microbiota as well as the use of dietary 

protein restriction in the treatment of urea cycle disorders, we also investigated the 

effects of a low protein diet (LPD) on the structure and function of the transplanted ASF 

community. Although ASF demonstrated decreased resilience in response to dietary 

stress on a LPD and allowed the colonization and proliferation of the Bacteroidetes 

family S24-7, the ASF-engineered microbial community maintained low colonic ammonia 

production (Chapter 3). These findings point to the therapeutic potential of a humanized 

ASF for treating conditions of hyperammonemia, such as HE in cirrhosis and urea cycle 

disorders. Furthermore, this work provides proof of concept for the therapeutic 

modulation of host metabolic processes and informs future investigations into the 

management of disease processes through the transplantation of engineered gut 

microbiota with targeted physiologic properties. 

A number of important questions and challenges remain. Gut ammonia 

production and subsequent absorption by the host are strongly implicated in the 

pathogenesis of HE. Urea hydrolysis to carbon dioxide and ammonia via bacterial 

urease activity in the gut represents a simple metabolic pathway for therapeutic 
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intervention. As such, we were able to use a defined bacterial consortium without urease 

activity to alter mammalian host nitrogen metabolism and ameliorate the clinical 

sequelae of hyperammonemia. However, in disease states with multifactorial and/or 

obscure pathogeneses, such as inflammatory bowel disease and obesity, the 

identification of pathologic pathways involving the gut microbiota remains unclear. This 

lack of clarity makes it difficult to design defined bacterial consortia capable of 

modulating these processes. Hippocrates famously said that “all disease begins in the 

gut.” While he may not have been insinuating the role of the gut microbiota, the ongoing 

challenge is to elucidate the gut microbiota-dependent pathways linked to disease 

processes and modulate them to treat or even cure disease. Metabolomic studies may 

provide a viable approach. In one example, untargeted metabolomics studies were used 

to generate profiles of plasma small molecules predictive of cardiovascular disease. This 

led to the identification of the gut microbiota-dependent choline-TMA-TMAO pathway 

(see Section 1.5) that is associated with increased risk for cardiovascular disease1, 2. In 

order translate this finding into therapeutic utility, one would need to identify ways to 

modulate the pathway through either pharmacological interventions or engineering the 

gut microbiota. Indeed, one recent study showed that a choline analog, 3,3-dimethyl-1-

butanol, non-lethally inhibited TMA formation by targeting microbial TMA lyases and 

attenuated choline diet-enhanced atherosclerosis in mice3.  

To translate our own findings into human biology, we would need to identify and 

isolate bacterial taxa from the human gut microbiota that lack urease. Although ASF is 

innocuous in mice4, 5, it is part of the commensal murine gut microbiota and cannot be 

used for human inoculation. But the absence of urease gene/activity should not be the 

only criterion in the development of a humanized version of ASF. One important 

consideration is whether ASF contains certain metabolic properties that allow the 
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consortium members to coalesce as a functional microbial community – for example, the 

exchange of substrates and metabolites in the absence of urease-dependent ammonia 

production. At the same time, the factors that make ASF resilient as a microbial 

community and exclude the return of other Bacteroidetes in the setting of a normal 

protein diet (see Chapter 2) remain to be determined. We found that ASF exhibited 

decreased resilience in the setting of a LPD. As such, it is important to understand how 

dietary changes affect the stability and resiliency of a therapeutic humanized ASF. We 

have developed a pilot human Defined Consortium (hDC) composed of bacterial strains 

isolated from the feces of a healthy human subject (Table 4-1). This consortium is 

distinct from ASF because it is derived from the 

human microbiota and contains taxa distinct from 

genera found in ASF. Consortium members were 

selected based on the lack of urease gene and 

activity (determined through whole genome 

analysis and urease assay testing) and represent 

Bacteroidetes, Firmicutes, and Actinobacteria, the 

major phyla in human microbiota6, 7. Preliminary 

data revealed that hDC inoculation into prepared 

mice corroborates the finding obtained with ASF, 

leading to a sustained reduction in fecal ammonia 

(Fig. 4-1). Future investigations will need to 

address the above considerations and examine the efficacy, resiliency, and safety of 

hDC in a murine model of hyperammonemia and hepatic injury before we can consider 

the use of a humanized ASF a viable therapeutic option in HE treatment.  

Table 4-1. Composition of the 
human Defined Consortium 
(hDC). Phylum names are in left 
column, and genera represented 
are in right column. 
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From a basic scientific perspective, we 

also need to understand the overall 

significance of bacterial urease in nitrogen 

metabolism and protein homeostasis for the 

host-microbiota superorganism. Enteric 

bacteria utilize ammonia as the preferred 

source of nitrogen since ammonia provides 

the highest growth rate for bacteria of any 

nitrogen source8. Thus, the production of ammonia via urea hydrolysis by bacterial 

urease may be a critical component of bacterial nitrogen metabolism, including amino 

acid biosynthesis. Based on preliminary data, ASF colonization in mice led to significant 

reductions in plasma concentrations of essential amino acids (EAAs) and an increase in 

Fischer’s Ratio (valine + leucine + isoleucine) / (phenylalanine + tyrosine) relative to 

control mice (Table 4-2). These results suggest that ASF colonization may protect 

against morbidity and mortality associated with hepatic injury by altering plasma EAA 

levels and the subsequent production of false neurotransmitters via urease-dependent 

mechanisms (see Section 1.3). Evidence from the literature supports the notion that the 

gut microbiota contributes to protein homeostasis of the mammalian host through 

microbial de novo biosynthesis of EAAs. This has been demonstrated in rats9, pigs10, 

rabbits11, and humans12. The studies primarily involved the oral administration of an 

inorganic 15N-labeled nitrogen source (e.g. 15NH4Cl or 15N2-urea) to the host followed by 

the detection of 15N-labelled amino acids in host tissues, specifically lysine and 

threonine. Since lysine and threonine are the only EAAs that do not undergo 

transamination in mammalian tissues9, the presence of 15N-labeled lysine and threonine 

indicates synthesis by the gut microbiota and subsequent intestinal absorption by the 
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Figure 4-1. Fecal ammonia levels 
pre- and post-inoculation of hDC into 
prepared conventionally-colonized 
mice (n=10, *p<0.05)  
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host. The importance of coprophagia was demonstrated in rats, where it was shown that 

the utilization of microbial lysine occurred exclusively through coprophagia rather than 

direct absorption during initial passage through the GI tract13. In human studies, the 

administration of 15N-compounds to both normal subjects and otherwise healthy subjects 

with ileostomies showed that microbial threonine and lysine contributions range from 8 to 

17% and 5 to 21%, respectively12, 14. In rats, pigs, and humans, between 1 and 20% of 

circulating host plasma lysine, urinary lysine, and body protein lysine of the host are 

derived from intestinal microbial sources15. These results demonstrate the importance of 

microbial nitrogen flux to mammalian host physiology. 

 

  

I have designed a series of experiments to examine the impact of bacterial 

urease on amino acid metabolism of the gut microbiota and the host through 15N flux 

studies. The oral administration of 15NH4Cl or 15N2-urea to 1) control mice, 2) antibiotics-

treated mice, and 3) ASF-transplanted mice followed by quantification of labeled and 

unlabeled amino acids in the stool and plasma will help to address some fundamental 

questions. For example, how important is the presence of gut microbiota and/or urease 

to normal mammalian amino acid homeostasis? Is the reduction in plasma EAAs of 

Table 4-2. Plasma concentrations (nmol/mL) of essential amino acids in control and ASF 
FMT mice (n = 5 per group, *p<0.05 compared to control, **p<0.01 compared to control). 
Values in grey were used to calculate Fischer’s Ratio. 
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ASF-colonized mice secondary to decreased microbial synthesis or increased microbial 

uptake, namely competition for dietary amino acids with the host? Can urease-negative 

bacteria synthesize amino acids at the same capacity as urease-positive bacteria if 

given the proper substrate, i.e. ammonia? Preliminary analyses with oral administration 

of 15N2-urea showed significantly higher 15N enrichment in fecal lysine of control mice 

than ASF-transplanted and antibiotics-treated mice (Fig. 4-2). This finding is consistent 

with the notion that urea cannot be hydrolyzed and utilized for microbial AA biosynthesis 

in the absence of urease. I plan to 

comprehensively examine the stool and 

plasma amino acid profiles in control, ASF-

transplanted, and antibiotics-treated mice to 

elucidate the role of bacterial urease in host 

and gut microbiota amino acid metabolism. 

Future investigations will assess the 

importance of bacterial urease in the 

metabolic pathways of other nitrogen 

compounds including peptides, proteins, neurotransmitters, hormones, purines, and 

pyrimidines. This approach will involve both targeted and untargeted proteomics as well 

as metabolomics studies, utilizing various approaches including 15N tracer experiments 

and LC/GCMS technologies. Overall, this line of investigation will enable us to better 

understand the impact of bacterial urease on host and gut microbiota nitrogen 

metabolism, with translational implications for health and disease.  
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Figure 4-2. 15N enrichment in fecal 
lysine after 15N2-urea to control mice, 
ASF-transplanted mice, and ABX-
treated mice (n=5 per group; *p<0.05 
compared to control mice).  
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