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Fighting HIV Infection by Defining Mechanisms to Remodel Semen-
Derived Amyloid Fibrils

Abstract
Human immunodeficiency virus (HIV) is a major public health threat worldwide, with 80% of infections
acquired through sexual transmission. Semen is the principal vector for the transmission of HIV and several
endogenous peptides in semen, including fragments of prostatic acid phosphatase (PAP248-286 and
PAP85-120) and semenogelins (SEM1 and SEM2), assemble into amyloid fibrils that promote HIV infection.
Semen-derived amyloid fibrils enhance infectivity by capturing HIV virions and facilitating their attachment
and fusion to target cells. Deciphering methods to dissolve seminal amyloid fibrils would provide a novel
preventative strategy for reducing HIV infection via sexual transmission.

Three previously described anti-amyloid agents were used to disassemble and/or counteract seminal amyloid
fibrils: 1) Hsp104, an amyloid-remodeling factor from yeast, 2) CLR01, a lysine-specific molecular tweezer,
and 3) EGCG, a small molecule polyphenol from green tea. Each strategy was found to antagonize seminal
amyloid activity through diverse mechanisms. For instance, Hsp104 and a potentiated Hsp104 variant,
Hsp104A503V, remodeled seminal amyloid fibrils into non-fibrillar aggregates and catalytically inactive
Hsp104 scaffolds clustered fibrils into larger assemblies. Additionally, Hsp104 was modified to interact with
the chambered protease ClpP, to enable coupled remodeling and degradation of seminal amyloid. CLR01
remodeled pre-formed amyloid fibrils through disruption of critical lysine residues, neutralized the cationic
fibril surface charge, and exhibited a direct anti-viral effect via disruption of the viral membrane. Finally,
epigallocatechin gallate (EGCG) is the first small molecule that can eradicate all four classes of seminal
amyloid. Thus, all three strategies were highly effective at antagonizing seminal amyloid fibrils and could have
therapeutic utility. Altogether, these findings provide insight into developing microbicidal agents that can
abolish the infection-enhancing capabilities of seminal amyloid and counter HIV transmission.
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ABSTRACT 
 

FIGHTING HIV INFECTION BY DEFINING MECHANISMS TO REMODEL  

SEMEN-DERIVED AMYLOID FIBRILS 

Laura M. Castellano 

Dr. James Shorter 

 

Human immunodeficiency virus (HIV) is a major public health threat worldwide, with 80% of 

infections acquired through sexual transmission. Semen is the principal vector for the 

transmission of HIV and several endogenous peptides in semen, including fragments of prostatic 

acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2), 

assemble into amyloid fibrils that promote HIV infection. Semen-derived amyloid fibrils enhance 

infectivity by capturing HIV virions and facilitating their attachment and fusion to target cells. 

Deciphering methods to dissolve seminal amyloid fibrils would provide a novel preventative 

strategy for reducing HIV infection via sexual transmission. 

 

Three previously described anti-amyloid agents were used to disassemble and/or counteract 

seminal amyloid fibrils: 1) Hsp104, an amyloid-remodeling factor from yeast, 2) CLR01, a lysine-

specific molecular tweezer, and 3) EGCG, a small molecule polyphenol from green tea. Each 

strategy was found to antagonize seminal amyloid activity through diverse mechanisms. For 

instance, Hsp104 and a potentiated Hsp104 variant, Hsp104A503V, remodeled seminal amyloid 

fibrils into non-fibrillar aggregates and catalytically inactive Hsp104 scaffolds clustered fibrils into 

larger assemblies. Additionally, Hsp104 was modified to interact with the chambered protease 

ClpP, to enable coupled remodeling and degradation of seminal amyloid. CLR01 remodeled pre-

formed amyloid fibrils through disruption of critical lysine residues, neutralized the cationic fibril 

surface charge, and exhibited a direct anti-viral effect via disruption of the viral membrane. 

Finally, epigallocatechin gallate (EGCG) is the first small molecule that can eradicate all four 
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classes of seminal amyloid. Thus, all three strategies were highly effective at antagonizing 

seminal amyloid fibrils and could have therapeutic utility. Altogether, these findings provide insight 

into developing microbicidal agents that can abolish the infection-enhancing capabilities of 

seminal amyloid and counter HIV transmission. 
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 
	  

 Discovery of natural agents involved in HIV transmission 1.1

Human immunodeficiency virus (HIV) causes acquired immune deficiency syndrome (AIDS), a 

condition characterized by progressive failure of the immune system [1-4]. Over three decades 

after its initial identification, HIV endures as a global epidemic and aggressive public health 

threat: ~39 million people have died of AIDS-related illnesses since the start of the epidemic, and 

~35 million adults and children are living with HIV worldwide [5]. This problem is most acute in the 

developing world: ~68% of all adults and 90% of all children with HIV are in sub-Saharan Africa, 

and ~76% of all AIDS deaths occur in this locale [6]. The vast majority of these infections are 

acquired by heterosexual transmission [7-9]. Several factors dictate the efficiency of HIV 

transmission via the sexual route including the viral load, type of sexual practice, and 

susceptibility of the host [8, 9].  

 

Despite the growth and prevalence of the AIDS pandemic, HIV is an unexpectedly weak 

pathogen with low infectivity [10, 11]. In fact, it is estimated that less than 0.1% of viral particles 

are infectious in vitro, since infectivity is limited by low viral attachment rates to host cells [12-14]. 

In vivo, HIV transmission is also inefficient, occurring as infrequently as 1 in every 200 to 2000 

acts of sexual intercourse [8, 15]. However, high viral titers that occur during acute infection can 

enhance this rate ~10-fold [9], and further enhancements accrue with sexual practices connected 

with bleeding and lesions of the mucosal barrier as well as the presence of other sexually 

transmitted diseases [15]. Semen is the principal vehicle for the sexual transmission of HIV, and 

in vitro semen can enhance the infection of physiologically relevant cell types, including primary 

macrophages and CD4+ T cells [16-20]. Thus, it was hypothesized that natural cofactors in 

seminal fluid could play a key role in HIV transmission by enhancing the efficiency of viral 

infectivity [17]. 
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To isolate natural agents involved in the sexual transmission of HIV, Münch and colleagues 

created a library comprising all peptides and small proteins derived from human seminal fluid and 

screened this library for enhancers and inhibitors of HIV infection [17, 19]. One fraction 

significantly enhanced HIV infection, and further analysis by mass spectrometry and sequencing 

revealed that the active fraction contained several peptides, each of which was a proteolytic 

fragment of prostatic acid phosphatase (PAP) [17], a protein highly abundant (1-2 mg/mL) in 

seminal fluid [21]. While these peptides differed in length, each mapped to the same region of 

PAP. The predominant peptide in the enhancing fraction corresponded to residues 248-286 of 

PAP and was isolated at a concentration of ~35 µg/mL (7.7µM) (Figure 1.1a) [17]. 

 

Unexpectedly, Münch et al discovered that freshly dissolved solutions of chemically synthesized 

PAP248-286 were unable to augment HIV infection [17]. However, once the solutions became 

turbid after short-term storage or agitation, activity was restored, and in fact, the insoluble 

precipitate contained the active form [17]. Further biophysical analysis revealed that PAP248-286 

fragments formed amyloid fibrils as indicated by increases in Thioflavin-T fluorescence, Congo 

red binding, and β-sheet content (Figure 1.1a) [17]. These amyloid fibrils were termed SEVI 

(Semen-derived Enhancer of Viral Infection) and were found to augment HIV infection by ~105 

fold under conditions of limiting virus, whereas soluble PAP248-286 had no effect [17]. The 

presence of SEVI reduced the number of virions required for productive infection from between 

1,000-100,000 to between 1-3 [17]. Indeed, the stimulatory effect of SEVI fibrils is greatest at low 

virus concentration, similar to the conditions observed in mucosal transmission of HIV, where 

relatively few virions traverse the mucosal barrier [17, 20]. Further, semen and SEVI were shown 

to increase the risk of vaginal virus transmission in an SIV/rhesus macaque model after exposure 

to low viral doses [22]. This remarkable effect is independent of viral coreceptor tropism [17], and 

the potency of individual human semen samples to boost infection correlates with levels of SEVI 

[16]. Moreover, SEVI also boosts the efficiency of retroviral transduction for viruses with diverse 
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envelope proteins [23] and strongly enhances human cytomegalovirus infection in cell culture by 

greater than 10-fold [24].  

	  

 How does SEVI augment HIV infection? 1.2

The misfolding of proteins into a generic amyloid structure is a recurring facet of diverse 

neurodegenerative diseases [25-28]. Yet, in isolation many proteins can form amyloid fibrils, 

suggesting that amyloidogenesis is an integral part of polypeptide chemistry [28-30]. Indeed, 

amyloid fibrils have been exploited during evolution for various adaptive modalities including 

prion-based transmission of advantageous phenotypes, long-term memory formation, 

melanosome biogenesis, drug resistance and biofilm formation [31-39].  

 

SEVI, like other generic amyloids, adopts a classic ‘cross-β’ amyloid structure [17] in which β-

sheets run orthogonal to the fibril axis [40-42]. However, PAP248-286 is unusual in that it 

contains a wealth of positively charged basic residues (8 of its 39 residues are either lysine or 

arginine; theoretical pI=10.21). Thus, SEVI fibrils likely serve as a cationic bridge that 

simultaneously precipitates the virus onto the cell surface and decreases the electrostatic 

repulsion between the negatively charged surfaces of the virus and host cell (Figure 1.1c) [20, 

43]. SEVI binds directly to both HIV virions and target cells [20], and this facilitates virion fusion 

much in the same way that synthetic cationic polymers promote retrovirus-mediated gene transfer 

[44, 45]. Importantly, a mutant PAP248-286, in which all basic residues were replaced with 

alanine, was still capable of assembling into amyloid fibrils, but the activity of these fibrils to 

augment HIV infection was greatly reduced compared to SEVI [20].  

 

NMR spectroscopy revealed that PAP248-286 is highly disordered when bound to membrane-

mimicking micelles [46, 47], whereas the majority of amyloidogenic peptides adopt an alpha-

helical conformation upon micelle binding. It is predicted that some disordered regions present in 

monomeric PAP248-286 will be retained in mature SEVI amyloid fibrils [46-48]. Indeed, 
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disordered segments that emanate from the surface of SEVI fibrils may increase fibril ‘capture 

radius’ and could explain the enhanced ability of SEVI to promote HIV infection [46, 47, 49]. 

Furthermore, SEVI fibrils are non-toxic to CACO-2 epithelial cells, implying that SEVI is unlikely to 

augment HIV transmission by comprising the integrity of the mucosal epithelial layer that acts as 

a barrier to HIV [50]. 

 

Additional amyloid fibrils have also been shown to boost the infectivity of HIV, and thus it is clear 

that the amyloid structure plays a key role in this process. For instance, α-synuclein fibrils, which 

are involved in the pathogenesis of Parkinson’s disease, promote HIV infectivity in Tzm-Bl cells 

albeit with reduced efficiency as compared to SEVI [51]. Additionally, peptides derived from the 

HIV gp120 co-receptor binding domain [52] and from the membrane-proximal external region of 

the HIV gp41 transmembrane protein [53] both form amyloid fibrils that potently enhance HIV 

infectivity. In fact, a synthetic 12-amino acid peptide derived from the gp120 glycoprotein, termed 

EF-C, instantaneously self-assembles into amyloid fibrils that boost virus infection four times 

more potently than naturally occurring SEVI fibrils and is now marketed as a retroviral 

transduction reagent [54, 55]. Finally, Aβ40 and Aβ42 amyloid fibrils, which are involved in the 

pathogenesis of Alzheimer’s disease [28], stimulate HIV infection of microglia by ~5-20-fold and 

could contribute to HIV infection in the central nervous system of patients with HIV-associated 

dementia [56].  
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Figure 1.1 Seminal amyloid fibrils are derived from proteolytic fragments of abundant 
semen proteins and form amyloid fibrils that enhance HIV infection. (a) Full-length prostatic 
acid phosphatase (PAP) undergoes proteolysis to form peptide fragments PAP85-120 and 
PAP248-286, which readily aggregate and assemble into amyloid fibrils in semen. Amyloid fibrils 
formed from PAP248-286 are termed SEVI (Semen-derived Enhancer of Viral Infection). (b) Full-
length semenogelin1 and semenogelin2 (SEM1 and SEM2) are proteolytically cleaved by 
prostate specific antigen (PSA) to yield several peptide fragments, which readily aggregate and 
assemble into amyloid fibrils in semen. (c) Left: In the absence of seminal amyloid, HIV infectivity 
is limited by electrostatic repulsion between the negatively charged surfaces of the viral and 
target cell membranes. Right: Cationic seminal amyloid fibrils shield this electrostatic repulsion 
and facilitate HIV infectivity by bringing virions in closer proximity to the cell surface. 
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 PAP85 and SEM amyloid fibrils 1.3

After identifying SEVI, Münch and colleagues continued analysis of their semen-derived peptide 

library [57]. In particular, they noted an additional fraction that promoted HIV infection. 

Remarkably, this fraction was identified to be an N-proximal fragment of PAP that comprised 

residues 85-120 (PAP85-120), and this peptide was isolated at a concentration of ~39 µg/mL 

(8.7µM) (Figure 1.1a) [57]. The discovery of a second peptide fragment that corresponded to the 

same precursor protein was unanticipated, especially since the library contained several 

thousand species. Like SEVI, PAP85-120 exists as amyloid fibrils in seminal fluid, and these 

fibrils promote HIV infection but are slightly less efficient [57]. Also like PAP248-286, PAP85-120 

is highly cationic (8 of its 36 residues are either lysine or arginine; theoretical pI=9.99) implying 

that PAP85-120 and SEVI act through a similar mechanism to boost HIV transmission. Notably, 

SEVI and PAP85-120 fibrils cooperate to exert additive HIV enhancing effects in cell culture [57]. 

 

The discovery of two positively charged fibrillar structures that augment virion fusion and infection 

led to the hypothesis that other positively charged factors might exist in semen that could also 

enhance HIV transmission. To test this hypothesis, pooled seminal fluid was depleted of 

positively charged factors and this resulted in a complete loss of its ability to augment HIV 

infection [58]. When the identity of these depleted cationic factors was subsequently determined, 

SEVI was surprisingly not detected. Rather, proteolytic fragments from two homologous 

semenogelin proteins, SEM1 and SEM2, were identified (Figure 1.1b) [58]. Semenogelins (SEMs) 

are proteins originating from the seminal vesicles that together with fibronectin comprise the 

major components of the semen coagulum [59, 60]. SEM proteins are rapidly cleaved after 

ejaculation by the chymotrypsin-like serine protease, prostate specific antigen (PSA), at highly 

specific sites [61, 62]. This cleavage event is associated with liquefaction of the semen coagulum, 

which is important for the release of motile spermatozoa and thus male fertility [59, 60]. The 

SEM1 and SEM2 peptides detected from this experiment corresponded to PSA-generated 

proteolytic fragments, and remarkably, these peptide fragments all formed amyloid fibrils capable 
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of promoting HIV infection to varying extents (Figure 1.1b) [58]. Like SEVI and PAP85-120, the 

SEM peptides are rich in lysine and arginine residues and carry a net positive charge at neutral 

pH (pIs of SEM peptides studied range from 8.16 to 10.12).  

 

Interestingly, semen samples from patients with ejaculatory duct obstruction (EDO) were also 

analyzed. EDO patients are naturally deficient in SEMs, since duct obstruction prevents contents 

of the seminal vesicles from reaching the ejaculate. As expected, these semen samples lacked 

viral infection-enhancing activity [58]. Unexpectedly, however, levels of full-length PAP were 

elevated in EDO samples, while levels of the SEVI precursor peptide PAP248-286 were 

diminished [58]. Because semen from EDO patients lacks secretions from the seminal vesicles, 

these data suggest that the proteolytic activity responsible for generating the SEVI peptide from 

full-length PAP is diminished in semen from EDO patients. The identity of the protease that 

releases PAP248-286 from its full-length precursor is undetermined, but these data indicate that 

the protease may reside in the seminal vesicles. The identification of this protease will be 

valuable, since a protease inhibitor could be a useful tool to prevent the release of PAP248-286 

and PAP85-120 peptides from their full-length precursor. Such a strategy could also be employed 

to inhibit PSA, thus blocking the cleavage of amyloidogenic SEM peptides from full-length SEM1 

and SEM2. 

 

The identification of numerous amyloidogenic peptides in seminal fluid is somewhat surprising. 

The presence of multiple peptides assembled into amyloid fibrils in semen suggests that they are 

potentially functional rather than disease-associated. Does the make-up of seminal fluid favor the 

formation of amyloid fibrils? Studies of SEVI, PAP85-120, and SEM amyloid fibrils have indicated 

that high peptide concentrations and extensive, non-physiological levels of agitation are required 

to induce amyloid formation in vitro. However, when the SEVI precursor peptide PAP248-286 was 

assembled into amyloid fibrils in the presence of seminal plasma, fibrillization was significantly 

enhanced and accelerated [63]. Seminal plasma drastically reduced the lag time for SEVI 
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fibrillization and eradicated the requirement for agitation. This finding indicates that the diversity of 

molecules in seminal plasma, especially anionic buffer components, have a drastic impact on 

fibrillization and can potentially explain the strong presence of amyloid fibrils in seminal fluid. 

Furthermore, semen contains high concentrations of Zn2+ cations (low mM concentrations), which 

can inactivate seminal proteases and protect amyloid fibrils from proteolytic degradation [63]. In 

fact, a positive correlation exists between HIV-infection enhancement and zinc concentration in 

semen, indicating that Zn2+ cations likely stabilize semen-derived amyloid fibrils, thus increasing 

their capacity to augment infection [64]. 

 

Despite the wealth of evidence illustrating the role of semen-derived amyloid fibrils in HIV 

transmission, the actual presence and proviral activity of these fibrils has been questioned. One 

study reported that the infection enhancing activity of SEVI fibrils formed in vitro was neutralized 

in the presence of 1% seminal plasma [65]. This effect was attributed to the natural degradation 

of the PAP248-286 peptide by seminal proteases [65], thus calling into question whether such 

fibrils could actually form naturally in seminal fluid. However, amyloid fibrils have been readily 

identified in fresh human seminal fluid using fluorescent amyloid-binding dyes, fibril-specific 

antibodies, and both confocal and transmission electron microscopy [66-68]. Semen does 

progressively lose its HIV-enhancing activity during prolonged periods of liquefaction, and this 

decline in activity correlates with levels of SEM peptide fragments, which are subjected to 

proteolysis by seminal serine proteases over time [69]. Nevertheless, seminal fluid retains its 

proviral activity for over 8h post-emission [69]. Simian immunodeficiency virus can infect cells in 

the vaginal mucosa within 30 to 60min of inoculation [70], and so seminal fluid likely maintains its 

virus-enhancing activity long enough to boost viral transmission in an in vivo setting.  

 

 A physiological role for semen-derived amyloid fibrils? 1.4

While the role of these naturally occurring semen-derived amyloidogenic peptides in HIV infection 

has been well defined, one crucial question is still unanswered: what is the adaptive role of these 
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amyloid species? It has been postulated that these amyloid fibrils may play a physiological role in 

promoting fertilization, especially since numerous commonalities exist between virion-target cell 

fusion and sperm-egg fusion [71]. Thus, semen-derived amyloid fibrils may facilitate the 

attachment and fusion of sperm with an oocyte much in the same way that SEVI and other 

semen-derived amyloid fibrils promote HIV virion binding and fusion with target cells. The most 

obvious commonality between the two processes is that they occur in the same anatomical 

context, and semen is utilized as a vehicle to transport both sperm and HIV. Another striking 

parallel between the two processes is that the HIV viral envelope and sperm share the same 

basic plasma membrane structure consisting of a phospholipid bilayer embedded with vital 

glycoproteins and lipids [71]. Furthermore, both processes proceed by an identical series of steps 

involving cell binding, fusion, and penetration. First, sperm and HIV must attach and bind to their 

target cells, and both carbohydrates and electrochemical interactions are crucially involved in this 

step [71]. Just as polyanions have been shown to block SEVI-mediated enhancement of HIV 

infection by inhibiting HIV cell entry [20, 72], several polyanions have also been shown to obstruct 

sperm-oocyte interactions [73, 74], further illustrating the similarities between these processes. 

Following cell attachment, membrane fusion must occur in both fertilization and HIV infection. The 

fusion of sperm and oocyte membranes, as well as HIV and target cell membranes, is an 

energetically unfavorable process that requires cooperative protein-protein interactions [73, 75, 

76]. Finally, overlapping signal transduction pathways are essential for both sperm capacitation (a 

process through which sperm acquire fertilization capacity) and the post-entry stages of HIV 

replication and maturation [71, 77, 78]. 

 

Because of the apparent parallels between mammalian fertilization and HIV infection, it is 

certainly plausible that SEVI and other amyloids may play a role in the fertilization process. 

Further evidence stems from the fact that spermatozoa can be stained with the amyloid-binding 

dye Congo Red, indicating that amyloid fibrils may be bound to these motile sperm cells [79]. 

Additionally, immunostaining for SEM1 and SEM2 has revealed that SEM fragments bind to the 
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posterior head, midpiece, and tail of ejaculated spermatozoa [59, 80, 81]. However, it is unclear 

whether or not this result involves SEM amyloid fibrils or non-amyloid SEM fragments. If semen-

derived amyloid fibrils are indeed bound to spermatozoa, this will further suggest a mechanism by 

which amyloid fibrils are involved in fertilization. 

 

Further studies investigating the physiologic function of seminal amyloid have demonstrated that 

SEVI has indirect antimicrobial activity that is dependent on its cationic, fibrillar nature. Indeed, 

SEVI bound to both Gram-positive and Gram-negative bacteria in a charge-dependent manner, 

promoted bacterial aggregation, and facilitated phagocytosis of bacteria by primary human 

monocyte-derived macrophages [82]. In addition, mice exposed to N. gonorrhoeae in the 

presence of SEVI had reduced bacterial load [82]. Furthermore, peptides derived proteolytically 

from SEM1 and SEM2 have intrinsic bactericidal activity as a mechanism for protecting 

spermatozoa in the female reproductive tract [83, 84], however, whether this activity is attributed 

to the amyloid forms of these peptides is unclear. 

 

 Current strategies to counteract amyloid-mediated enhancement of HIV infection 1.5

The highly unanticipated role of seminal amyloid in viral infection has opened a new window of 

opportunity. If we can inhibit the formation of seminal amyloid fibrils, block their infection 

promoting properties, or even rapidly dissolve these fibrils, then we can drastically reduce HIV 

infection via the sexual route. Thus far, several agents have been identified that fall into each of 

these classes of anti-seminal amyloid compounds. While this section focuses on agents that 

counteract SEVI’s effects, it should be noted a truly effective agent should antagonize the 

stimulatory effects of all semen-derived amyloid fibrils. 

 

Ultimately, agents that effectively block the ability of semen-derived amyloid to promote HIV 

infection might be developed into a microbicide, thus offering a preventative means to combat 

HIV transmission. A microbicide is an agent that reduces the infectivity of a pathogen. In this 
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case, an anti-amyloid topical formulation might be developed for application either vaginally or 

rectally to prevent the very earliest stage of sexual HIV transmission [85, 86]. Alternatively, 

methods to reduce initial amyloid formation in the seminal fluid of the male might also be 

explored. Ideally, the microbicide would be effective, safe, user-friendly and affordable to promote 

use in the developing world. The development of topical microbicides has proven challenging, 

and the vast majority of microbicidal compounds explored to date target the virus itself. However, 

mutations can rapidly arise that alter viral proteins and confer resistance to antiretroviral drugs 

[87]. Combinations of antiretroviral drugs tend to exhibit improved efficacy by functioning through 

multiple mechanisms of action [88]. By targeting host-encoded amyloid fibrils instead of the viral 

machinery, this issue of drug-resistant HIV variants could be circumvented, making amyloid fibrils 

a valuable and novel target for future microbicide development.  

 

The most common class of anti-SEVI agents identified to date, shield the charged surface of the 

fibrils to block their infection boosting properties. Anionic polymers, which interfere with the 

binding of SEVI to HIV virions by shielding the intrinsic positive charges of SEVI, diminish SEVI-

mediated enhancement of infection [20]. These polyanions, including heparin and various other 

glycosaminoglycans, have been investigated as HIV microbicides for decades, as they are also 

thought to exert direct anti-HIV activity by inhibiting the binding of the viral envelope glycoprotein, 

gp120, to its major cell surface receptor CD4 [89-91]. Unfortunately, such anionic polymers have 

proven unsuccessful in past clinical trials due to their poor bioavailability and induction of 

inflammatory responses in the genital tract, which instead augment HIV transmission by recruiting 

HIV-susceptible target cells to the genital mucosa [92, 93]. Additionally, polyanionic candidate 

microbicides were found to have considerably reduced HIV inhibitory activity in the presence of 

seminal plasma [94] and even efficiently promote SEVI fibrillization to enhance HIV infection [95]. 

Thus, more favorable options, which act through related mechanisms, are needed.  
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Aminoquinoline surfen, a small molecule heparan sulfate proteoglycan (HSPG) antagonist, exerts 

anti-SEVI effects through a slightly different mechanism [43]. It was initially hypothesized that 

SEVI bound to target cells through interactions with cell surface HSPGs [43]. Surfen antagonizes 

this interaction, and additional studies indicated that surfen also antagonized the interaction 

between SEVI and HIV virions [43]. Further, surfen possesses anti-inflammatory properties as an 

anaphylatoxin C5a receptor antagonist [96, 97], making it a promising microbicide candidate. 

 

BTA-EG6 (a hexa(ethylene glycol) derivative of benzothiazole aniline) is a small molecule capable 

of abrogating SEVI’s effects by binding to its ‘cross-β’ structure [18]. BTA-EG6 is an amyloid-

binding small molecule akin to the amyloid-diagnostic dye, Thioflavin-T, that intercalates between 

β-strands, and by doing so, inhibits the interactions of SEVI with both target cells and HIV virions 

and thus prevents SEVI-mediated enhancement of HIV infection [18]. Importantly, oligovalent 

derivatives of BTA exhibited an improved capability to attenuate SEVI-enhanced infection of HIV 

as compared to the corresponding monomer [98]. It is likely that these amyloid-binding agents 

form a bio-resistive coating on SEVI to hinder interactions with virions and target cells [18, 98].  

 

Another approach to target SEVI’s deleterious effects is through inhibition of amyloid fibril 

formation. Structure-based design of peptides comprised of non-natural amino acids has yielded 

a highly specific peptide inhibitor of PAP248-286 fibrillization [48]. This approach focused on the 

characteristic steric-zipper motif, common to amyloid-forming proteins, in which β-sheets pack 

together through interdigitation of their peptide side chains to form a highly self-complementary 

interface [41, 99]. The G260 to N265 hexapeptide segment of PAP248-286, GGVLVN, is one of 

seven hexapeptides in PAP248-286 that is predicted by Zipper DB [100] to have high amyloid 

propensity (Figure 1.2a) [48]. The steric-zipper structure of GGVLVN was solved and used as a 

template to computationally design a peptide-based inhibitor termed WW61 that would cap the 

growing ends of fibrils to inhibit amyloid assembly [48]. WW61 is a hexapeptide, Trp-His-Lys-

chAla-Trp-hydroxyTic, which contains an Ala derivative, β-cyclohexyl-l-alanine (chAla) and a 
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Tyr/Pro derivative, 7-hydroxy-(S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (hydroxyTic), 

both of which are designed to increase contact area with the growing ends of SEVI fibrils. 

Remarkably, WW61 prevented full-length PAP248-286 from assembling into functional SEVI 

fibrils capable of promoting HIV infection [48]. While this breakthrough represents the first 

compelling example of a structure-based design of an amyloid inhibitor, there is no evidence that 

the WW61 peptide is active in blocking semen-mediated enhancement of HIV infection [48]. 

Indeed, WW61 is unlikely to inhibit the amyloidogenesis of PAP85-120, SEM1 and SEM2. 

 

While this is a novel strategy to prevent SEVI assembly, SEVI fibrils are already formed and 

abundant in seminal fluid. Thus, inhibiting their initial formation would seem impractical in the 

male and futile in the female. Similarly, SEVI fibrils will persist in strategies that aim to coat the 

amyloid surface and prevent interactions with the virus or the cell surface or both. Thus, fibrils 

might still gain opportunities to promote viral infection. We suggest that a more desirable strategy 

would be to isolate agents that rapidly deconstruct SEVI fibrils and thereby eradicate structures 

that promote HIV infection. However, great difficulty lies in the unusual stability of the amyloid 

form, which resists proteases, protein denaturants, temperatures up to 98°C, and 2% SDS [41, 

101, 102]. Indeed, because of their exceptional stability, amyloid fibrils are difficult to degrade and 

are widely perceived to be intractable [103]. 

 

Despite their exceptional stability, a few, very select agents can reverse amyloid formation. 

EGCG (epigallocatechin-3-gallate), a potent antioxidant found in green tea, has shown 

widespread antifibrillogenic effects [104-107]. EGCG can inhibit formation of SEVI amyloid fibrils, 

and more importantly, it slowly remodels preformed SEVI fibrils over 1-2 days at non-toxic 

concentrations [108]. By targeting and remodeling these fibrils, EGCG strongly antagonizes the 

activity of SEVI. In contrast to the initially proposed mechanism of action [105], EGCG was found 

to interact with the side chains of monomeric PAP248-286 (particularly lysine residues), leading 

to the formation of a covalently bound complex (Schiff base links with a lysine residues) [109]. 



	   	   	   	   	  
	  

14	  

Notably, EGCG is extremely stable in acidic solutions, a condition resembling the vaginal 

environment [110]. These data, taken together, suggest that EGCG may be a favorable option for 

use as a topical microbicide component, however the ability of EGCG to antagonize PAP85-120 

and SEM amyloid fibrils remains to be elucidated. 

 

 Amyloid strains 1.6

A phenomenon that further adds to the complexity of searching for anti-SEVI and anti-amyloid 

agents is that amyloid fibrils can exist as polymorphs and form diverse conformational strains.  

Conformational variation among amyloid fibrils of a given protein can give rise to fibrils with 

distinct properties [111-113]. The biochemical basis for amyloid polymorphism likely stems, at 

least in part, from the diversity of steric-zipper amyloid spines that a single protein can adopt 

[114]. For example, PAP248-286 is predicted to contain seven different hexapeptide segments 

that are capable of forming steric zippers (Figure 1.2a). Thus, each of these segments could drive 

the assembly of amyloid structures that are distinct at the atomic level, resulting in a segmental 

polymorphism (Figure 1.3) [114]. Moreover, six hexapeptides within PAP85-120 are predicted by 

Zipper DB [115] to be amyloidogenic, and the SEM1(45-107) and SEM2(45-107) peptides also  

contain multiple predicted regions of high fibrillization propensity (Figure 1.2b-d), implying that 

different amyloid strains may exist for these peptides as well. 
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Figure 1.2 Semen-derived peptides have several regions of high amyloidogenic 
propensity. (a-d) Zipper DB [100] prediction of fibril-forming segments of PAP248-286 (a), 
PAP85-120 (b), SEM1(45-107) (c), and SEM2(45-107) (d). The propensity profile graph predicts 
hexapeptide segments (beginning at the indicated residue) that are highly likely to assemble into 
amyloid fibrils. Orange-red segments with energy values below the indicated threshold of -
23kcal/mol (gray line) are expected to form steric-zipper spines of fibrils. Each semen-derived 
peptide contains 6-8 hexapeptide segments of high amyloidogenic propensity. 
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It is unclear whether each of the predicted hexapeptides present within PAP248-286 does indeed 

form a steric zipper. However, it is probable that SEVI fibrils can exist as multiple strains within 

seminal fluid. The presence of several SEVI strains could complicate the development of anti-

SEVI inhibitors. For instance, WW61, the non-natural peptide inhibitor of SEVI assembly, was 

rationally designed to bind to the 260GGVLVN265 steric-zipper interface [48]. WW61 effectively 

inhibited PAP248-286 fibril formation, indicating that the 260GGVLVN265 motif plays a key role in 

driving SEVI formation under the specific assembly conditions employed [48]. However, this 

inhibitor might be ineffective against alternative segmental polymorphs (Figure 1.3), which could 

assemble under different assembly conditions. Indeed, different assembly conditions can shift the 

relative populations of amyloid strains and generate distinct strain ensembles [113, 114, 116, 

117]. At present, the nature of the SEVI strain ensemble in seminal fluid is uncertain, and is likely 

to vary from individual to individual. 

 

 

Figure 1.3 Amyloid fibrils can form diverse conformational strains. An amyloid forming 
protein with two segments (green and orange) capable of forming steric zippers can exist as 
segmental polymorphs, in which each segment can form the amyloid core. 

	  

This concern also extends to EGCG, which is a strain-selective inhibitor of Sup35 fibrillization 

[116]. Such strain-selectivity could impact the ability of EGCG to exert antifibrillogenic effects 

against SEVI. In a study examining the efficacy of EGCG at reducing SEVI-mediated 

enhancement of HIV infection in a cohort of 47 individual semen samples, EGCG was only 

efficacious in 41 out of 47 samples, and substantial heterogeneity was observed within the results 

[118]. This heterogeneity might indicate that EGCG is a strain-selective antagonist of SEVI as 

segmental polymorphs 

steric zipper forming segments 



	   	   	   	   	  
	  

17	  

well. Perhaps the most effective way to combat strain phenomena is to utilize combinations of 

inhibitors designed to target the entire spectrum of polymorphic strains [116, 117, 119-121]. 

 

 Established amyloid-remodeling factors 1.7

 Hsp104 1.7.1

Despite the exceptionally stable structure of amyloids, a few, very select agents can reverse 

amyloid formation. Moreover, only one agent, Hsp104, is known to catalytically take apart the 

amyloid form. No other candidate has emerged that can eliminate amyloid fibrils with such 

unprecedented alacrity. Hsp104 is a AAA+ protein (ATPases Associated with various cellular 

Activities) from yeast that protects cells against stresses including heat shock, by renaturing and 

reactivating damaged proteins (Figure 1.4a) [122]. Hsp104 is also involved in induced 

thermotolerance, as yeast cells given a mild heat pre-treatment (37°C) were subsequently able to 

survive extreme heat shock (50°C), while Δhsp104 mutant cells exhibited 1000-fold reduced 

survival rate [123, 124]. Unlike classical molecular chaperones, Hsp104 is less able to protect 

chemically or thermally denatured substrates from aggregation and instead mediates the 

resolubilization of these amorphous aggregates in concert with its obligate co-chaperones Hsp40 

and Hsp70 [122, 125, 126]. In contrast, Hsp104 deconstruction of ordered amyloid fibrils does not 

always necessitate Hsp40 and Hsp70 [127-130] 

Hsp104 is a three-tiered, hexameric, ring-shaped ATPase consisting of two stacked nucleotide 

binding domains (NBD1 and NBD2) separated by a coiled-coil middle domain and capped at 

either end by N- and C-terminal domains [131, 132]. ATP binding by Hsp104 is essential for 

substrate interaction; substrate cannot be released until the bound ATP is hydrolyzed, thus 

ensuring that all the energy generated by ATP hydrolysis is translated into mechanical work, i.e. 

substrate remodeling [133, 134]. It is hypothesized that ATP hydrolysis generates a ‘power 
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stroke’ to result in conformational changes within the protein that allow threading of substrate 

through the axial channel to promote refolding [135-137]. 

 

    	  

Figure 1.4 Hsp104 and HAP-ClpP disaggregate and degrade aggregated substrates. (a) 
Hsp104 couples ATP binding and hydrolysis to remodel protein aggregates and amyloid fibrils. 
(b) HAP, an Hsp104 variant, physically interacts with the bacterial peptidase ClpP. Substrate is 
translocated through the central pore of HAP and into ClpP for degradation. 

  

Because amyloids share a common ‘cross-β’ structure, it is likely that agents capable of 

antagonizing amyloid fibers of one protein will prove useful against other amyloid fibers as well. 

Moreover, Sup35, a natural substrate of Hsp104, has a highly basic, lysine-rich stretch, and 

several lines of evidence suggest that lysine-rich regions provide an important component of 

substrate recognition by Hsp104 [138, 139]. The primary sequences of seminal amyloidogenic 

peptides are also alkaline and lysine-rich, further supporting the notion that seminal amyloids will 

be easily recognized substrates for Hsp104. However, the product of Hsp104 remodeling will 

likely be soluble peptide that may be free to reform amyloid fibrils. To combat this issue, Hsp104 

disaggregation activity can be coupled to degradation to remove remodeled products [140, 141].  
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To achieve this functionality, an Hsp104 variant, termed HAP, has been engineered (G739, S740, 

K741 of Hsp104 to IGF) that physically interacts with the chambered bacterial protease ClpP 

[142], a highly conserved cylindrical serine protease [143]. In this proteolytic system, individual 

monomers are extracted from the amyloid substrate by HAP and translocated into the ClpP 

chamber where they are degraded into small peptides of ~7-8 residues (Figure 1.4b) [144]. These 

small peptides may be too short to reform stable amyloid structures and could also be degraded 

by extracellular proteases. 

 

While Hsp104 is conserved across plants, bacteria, and fungi, there is surprisingly no homologue 

present in metazoans [130]. However, the introduction of Hsp104 into metazoan systems to 

reverse protein aggregation is not unprecedented, and in fact, Hsp104 is tolerated extremely well 

[128, 145-147]. Importantly, Hsp104 cooperates with the mammalian Hsp70 chaperone system to 

promote protein disaggregation [125, 148, 149]. In mammalian cell models of Huntington’s 

disease, Hsp104 reduced both polyglutamine aggregate formation and toxicity [150] and these 

results were replicated in mouse models [146]. The introduction of Hsp104 into a rat model of 

Parkinson’s disease reduced formation of α-synuclein inclusions and prevented α-synuclein 

induced neurodegeneration [128]. Thus, we hypothesize that both Hsp104 and the HAP-ClpP 

proteolytic system will remodel and/or degrade seminal amyloid fibrils, thus eliminating their 

ability to enhance HIV infectivity. 

 

 CLR01 1.7.2

Lysine and arginine residues play a key role in many biological processes, and therefore artificial 

receptors for these residues could be interesting candidates for pharmaceuticals or molecular 

probes. Klärner et al sought to design a synthetic, water-soluble receptor that was selective for 

lysine residues in polypeptides and developed a compound called CLR01, which has a rigid 

torus-shaped nonpolar cavity featuring two anionic phosphate groups at the bridgehead (Figure 

1.5a) [151]. CLR01 achieves lysine specificity by inclusion of the butylene moiety of the lysine 
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side chain within the nonpolar cavity and electrostatic interaction of the lysine ammonium group 

with one of the anionic phosphates, and this binding occurs with micromolar affinity [151].  

 

Amyloid self-assembly is a complex process mediated by a combination of hydrophobic and 

electrostatic interactions, and lysine residues have been shown to play a vital role in the 

assembly and toxicity of many amyloidogenic peptides [152]. Thus, Sinha et al hypothesized that 

compounds that interfere with lysine residues with moderate affinity would have sufficient power 

to disrupt the relatively weak interactions involved in amyloid nucleation, oligomerization, and 

elongation while having little to no effect on disruption of structurally stable proteins or normal 

protein function [152]. In fact, the lysine specific “molecular tweezer” CLR01 was found to inhibit 

the aggregation of several amyloidogenic peptides including Aβ, tau, islet amyloid polypeptide, 

calcitonin, transthyretin, and α-synuclein and it also dose-dependently inhibited their toxicity [152-

154]. In addition, CLR01 gradually disaggregated mature Aβ and α-synuclein fibrils into 

nonfibrillar aggregates over a period of days to months [152, 154]. 

 

The “molecular tweezer” CLR01 has also shown neuroprotective effects in animal models of 

neurodegenerative diseases. For instance, in a mouse model of Alzheimer’s disease, CLR01 

reduced Aβ and tau aggregate loads and ameliorated microgliosis with no apparent signs of 

toxicity [155]. In a zebrafish model of α-synuclein toxicity, CLR01 treatment dose-dependently 

reduced toxicity and improved survival [154]. Finally, CLR01 reduced transthyretin burden in the 

gastrointestinal tract and peripheral nervous system in a mouse model of familial amyloidotic 

polyneuropathy [156].  

 

While CLR01 has shown efficacy in numerous cell and animal models of amyloidoses without any 

signs of toxicity, obvious concerns have been raised about a mode of action targeting exposed 

lysine residues in virtually any protein. Attar et al compared the concentration of CLR01 needed 

to interfere with aberrant protein aggregation to the controlled physiologic self-assembly of tubulin 
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polymerization. They found that a substantially higher CLR01 concentration (~50 fold) was 

required to disrupt tubulin polymerization, supporting the specificity of CLR01 for inhibition of 

aberrant protein aggregation [157]. In addition, when CLR01 was tested for enzyme inhibition of 

alcohol dehydrogenase in vitro, a 865-fold excess of CLR01 was needed for inhibition [158], 

further supporting the process-specific mechanism of CLR01.  

 

Because seminal amyloid fibrils are rich in lysine and arginine residues, we hypothesized that 

CLR01 would disrupt their initial formation and remodel preformed fibrils, thus inhibiting seminal 

amyloid-mediated enhancement of HIV infection.  

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

Figure 1.5 Chemical structures of anti-amyloidogenic small molecules. (a) The lysine-
specific “molecular tweezer”, CLR01. (b) The major green tea polyphenol epigallocatechin-3-
gallate (EGCG). 

	  

 EGCG 1.7.3

As previously discussed, EGCG (epigallocatechin-3-gallate), the most abundant and powerful 

polyphenol found in green tea, is the most well studied anti-amyloidogenic compound (Figure 

1.5b). In addition to this property, EGCG is associated with numerous health benefits including 

cardioprotective, neuroprotective, anti-carcinogenic, anti-inflammatory, and weight loss effects 

[159]. In terms of its anti-aggregation effects, EGCG can modulate assembly and even 

a  b
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disassemble amyloid forms of several disease associated amyloidogenic polypeptides including 

islet amyloid polypeptide (type II diabetes) [160], α-synuclein (Parkinson’s disease) [161], Aβ 

(Alzheimer’s disease) [161], TTR (transthyretin amyloidoses) [162], and the yeast prion protein 

Sup35 [116].  Furthermore, in cell culture models of Aβ-, α-synuclein-, and huntingtin-induced 

neurotoxicity, EGCG treatment was neuroprotective and reduced cytotoxicity [161, 163, 164] 

 

The mechanisms of action for EGCG-mediated inhibition of amyloid assembly and amyloid 

remodeling have been studied using various biochemical and biophysical techniques. To inhibit 

amyloid fibrillization, EGCG is proposed to bind to exposed backbone sites in the unfolded 

regions of monomeric proteins and divert aggregation pathways to instead favor the formation of 

off-pathway aggregates [105]. An additional study investigated the mechanisms by which EGCG 

remodels mature amyloid fibrils. It was found that EGCG-mediated remodeling of Aβ, islet 

amyloid polypeptide, and Sup35 was dependent on auto-oxidation of EGCG into a mixture of 

monomeric and polymeric EGCG-based quinones [165]. EGCG is proposed to engage 

hydrophobic binding sites within amyloid fibrils, and oxidized EGCG products react with free 

amino groups of lysine side chains within fibrils to covalently modify the amyloidogenic proteins 

through Schiff base formation [165]. 

 

As discussed earlier, EGCG inhibits the formation of SEVI amyloid fibrils and remodels preformed 

SEVI fibrils [108]. However, the ability of EGCG to remodel additional semen-derived amyloid 

fibrils, namely PAP85-120, SEM1, and SEM2 remained to be further elucidated. 

	  

 Research aims 1.8

Seminal amyloid fibrils represent a novel microbicide target, as the idea of targeting host protein 

conformers is fundamentally different from traditional microbicidal approaches that target HIV 

itself. This strategy might be less susceptible to HIV escape variants, which can rapidly evolve 

and evade therapies that directly target components of the viral machinery [166-168]. Thus, 
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deciphering a method to dissolve semen-derived fibrils would offer a preventative strategy to 

combat HIV infection via sexual transmission. However, the relative contributions of SEVI, 

PAP85-120 and SEM amyloid fibrils, as well as amyloid strain phenomena, in semen-mediated 

enhancement of HIV infection have yet to be determined. Therefore, we reasoned that the utility 

of general amyloid-remodeling factors would be greater than agents with specialized activity 

against individual amyloid conformers. 

 

The goals of this thesis were to investigate the efficacy of three established anti-amyloid agents 

to counteract amyloid-mediated enhancement of HIV infection. First, I set out to study the utility of 

Hsp104, a protein-remodeling machine from Saccharomyces cerevisiae. Here, we show that 

Hsp104 remodels SEVI and PAP85-120 fibrils, the engineered HAP-ClpP proteolytic system 

optimizes amyloid clearance, and enzymatically inactive Hsp104 scaffolds cluster fibrils into 

larger conglomerates. Importantly, each effect resulted in a reduction in amyloid-mediated HIV 

infectivity enhancement. Secondly, we analyzed the lysine-specific “molecular tweezer” CLR01, 

which was previously shown to interfere with the aggregation of numerous amyloidogenic 

proteins. We found that CLR01 interferes with the amyloidogenesis of seminal amyloid, partially 

dissolves pre-formed SEVI and PAP85-120 fibrils, and directly inhibits infection of multiple 

enveloped viruses, including HIV. Through a combination of these anti-amyloid and anti-viral 

effects, CLR01 antagonizes the infection-enhancing properties of both seminal amyloid and 

human semen. Finally, epigallocatechin gallate (EGCG), the principal polyphenol in green tea, 

has broad-spectrum anti-amyloidogenic properties. Here, we describe EGCG as the first agent to 

eradicate all four classes of seminal amyloid (SEVI, PAP85-120, SEM1, and SEM2). This, in 

combination with its well-studied anti-viral properties, makes EGCG a promising microbicide 

candidate. 
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CHAPTER 2: REPURPOSING HSP104 TO ANTAGONIZE SEMINAL AMYLOID AND 
COUNTER HIV INFECTION 

 

 Introduction 2.1

Human immunodeficiency virus (HIV) is a global epidemic that has claimed the lives of nearly 30 

million people since its discovery [6]. The HIV pandemic is most severe in the developing world. 

In Sub-Saharan Africa, ~5% of the adult population is infected with the virus [169]. Nearly 80% of 

HIV infections are acquired through heterosexual transmission [7, 170, 171], and endogenous 

peptides in semen play a critical role in the spread of this retrovirus [51, 172, 173]. 

 

Naturally occurring fragments of proteins abundant in semen form amyloid fibrils [68], and the 

unique composition of semen drives the fibrillization process [174]. Specifically, proteolytic 

fragments of prostatic acid phosphatase (PAP248-286 (SEVI) and PAP85-120), semenogelin 1 

(SEM1), and semenogelin 2 (SEM2) form fibrils that enhance HIV infectivity by several orders of 

magnitude under conditions of limiting viral inoculum, whereas the soluble, non-amyloid peptides 

have no effect [51, 172, 173]. Semen-derived fibrils are highly basic and contain a large 

proportion of lysine and arginine residues. These charged fibrils promote HIV infection by 

neutralizing the inherent electrostatic repulsion between the negatively charged surfaces of HIV 

virions and target cells, and through direct binding to virions, fibrils simultaneously promote viral 

binding to the cell surface [175]. Amyloid fibrils are implicated in the pathogenesis of numerous 

neurodegenerative and systemic diseases [28, 176, 177], and they are notoriously difficult to 

clear due to their self-templating character and extraordinary stability, which lies at the extremes 

of protein-based structures [178]. Nonetheless, deciphering a method to eliminate semen-derived 

fibrils could massively reduce viral transmission [179]. This approach could be advantageous as it 

targets host-encoded viral-enhancing factors rather than the viral machinery itself. However, 

because of the plethora of different polypeptides that form fibrils in semen and promote viral 
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infection, we explored remodeling factors with activity against amyloids formed by diverse 

proteins, rather than agents with specialized activity against any single peptide [48, 179]. 

 

With this design principle in mind, we turned to Hsp104, an amyloid-remodeling factor and protein 

disaggregase from yeast, which belongs to the AAA+ family of proteins (ATPases associated with 

various cellular activities) [103, 180]. In addition to resolving and renaturing amorphous protein 

aggregates generated following thermal or chemical stress [122, 125], Hsp104 also catalytically 

deconstructs amyloid fibrils formed by a variety of polypeptides [127, 128, 181-184]. Hsp104 is a 

generalist and has been optimized during evolution to remodel diverse prion conformers and 

remodel a large proportion of the yeast proteome in response to environmental stress [147, 185]. 

Despite being highly conserved in eubacteria and eukaryotes, Hsp104 homologues are 

surprisingly absent in metazoa [103]. However, Hsp104 has previously been utilized in metazoan 

systems to counteract disease-associated protein aggregates and amyloid fibrils [103, 128, 146, 

150, 183, 186-188]. 

 

Here, we exploit the broad spectrum, amyloid-remodeling activity of Hsp104 to antagonize 

semen-derived amyloid fibrils as a means to reduce HIV transmission. We devise three strategies 

to antagonize seminal amyloid based on Hsp104. First, we describe that Hsp104 and a 

potentiated Hsp104 variant, Hsp104A503V [183], efficaciously remodel SEVI and PAP85-120 fibrils 

into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not 

remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1 fibrils into larger assemblies. 

Third, we modify Hsp104 to interact with the chambered protease ClpP [142], which enables the 

coupled remodeling and degradation of SEVI and PAP85-120 fibrils. Each strategy diminishes the 

ability of seminal amyloid to promote HIV infection and could have therapeutic utility. Altogether, 

our findings provide insight into developing agents that can abolish the infection-enhancing 

capabilities of seminal amyloid and complement microbicidal approaches. 
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 Results 2.2

 Hsp104 remodels SEVI amyloid fibrils 2.2.1

To begin, we tested Hsp104 for its ability to remodel SEVI amyloid fibrils. We assessed fibril 

disassembly using the amyloid-binding dye Thioflavin-T (ThT) and by transmission electron 

microscopy (TEM). Incubation of SEVI fibrils with a substoichiometric concentration of Hsp104 

(PAP248-286:Hsp104 of 6.67:1) reduced ThT fluorescence intensity to ~37% of the initial value 

after 2h, and a further decrease to ~27% was observed after 6h of treatment (Figure 2.1a). The 

only other agent known to remodel SEVI fibrils is the green tea polyphenol, epigallocatechin-3-

gallate, which slowly eradicates SEVI fibrils over the course of 24-48h [108]. Thus, Hsp104 

remodels SEVI fibrils more rapidly than any other factor identified to date. The ThT fluorescence 

intensity plateaued after 6h, indicating that under these conditions amyloid fibrils cannot reform 

rapidly after Hsp104-mediated remodeling. TEM revealed that the products of Hsp104 remodeling 

were structures resembling amorphous protein aggregates (Figure 2.1b). After 2h, SEVI fibrils 

were completely converted into these non-amyloid aggregates by Hsp104, and no further 

alteration in morphology was observed after a longer 24h treatment. Dose-response analysis of 

Hsp104 disassembly of SEVI fibrils indicates a half maximal effective concentration (EC50) value 

of ~0.72µM, suggesting that Hsp104 is an efficacious SEVI-remodeling factor (Figure 2.1c). 

 

We obtained a similar result when SEVI fibrils were incubated with Hsp104 plus Hsp70 and 

Hsp40. Hsp70 and Hsp40 are usually required for the disaggregation of amorphous protein 

aggregates by Hsp104 [125], whereas amyloid remodeling by Hsp104 does not always 

necessitate Hsp70 and Hsp40 [182]. However, in some instances Hsp104 mediated disassembly 

of amyloid can be enhanced by Hsp70 and Hsp40 [128, 182, 189, 190]. Hsp70 and Hsp40 alone 

had no effect on SEVI fibrils (Figure 2.1d). By contrast, the ThT fluorescence intensity of SEVI 

fibrils incubated with Hsp104, Hsp70, and Hsp40 decreased to ~36% of the initial value after 2h, 

and a larger reduction to ~16% was observed after 24h (Figure 2.1d). Thus, there is a slight 
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enhancement in disaggregation in the presence of Hsp70 and Hsp40, particularly after extended 

incubation times. 

 

Next, we explored the effects of inactive Hsp104 variants on SEVI fibril integrity. Hsp104DWB is an 

ATPase deficient Hsp104 variant that contains E285Q and E687Q substitutions at Walker B sites 

that are critical for ATP hydrolysis [133]. Hsp104DWB can bind but not hydrolyze ATP, which 

renders the protein inactive in amyloid remodeling and disaggregation [182]. Hsp104DWB is also a 

“trap” mutant, which binds to substrates without releasing them [133]. SEVI fibrils incubated with 

Hsp104DWB for 24h exhibited no change in ThT fluorescence (Figure 2.1a). Hsp104DWB had no 

effect on fibril integrity (Figure 2.1e). Thus, Hsp104 actively remodels SEVI amyloid fibrils through 

cycles of ATP binding and hydrolysis and not merely through passive binding events. 

 

Next, we tested the efficacy of ClpB, the E. coli homologue of Hsp104, which can renature and 

remodel amorphous protein aggregates but has limited ability to disassemble amyloid fibrils due 

to differences in inter-subunit collaboration [181, 182, 191]. ClpB did not reduce ThT fluorescence 

intensity when incubated with SEVI fibrils (Figure 2.1a). TEM confirmed that intact SEVI amyloid 

fibrils were still present after incubation with ClpB (Figure 2.1e). Thus, ClpB is unable to remodel 

SEVI fibrils. 

 

To determine whether Hsp104 dissolved SEVI fibrils, we passaged reactions through a 10-kDa 

filter. The resulting filtrate and retentate were analyzed by SDS-PAGE. Because the PAP248-286 

peptide is ~4.5kDa, only PAP248-286 monomers and dimers pass through the filter while any 

larger aggregates and fibrillar species are retained. Hsp104-remodeled SEVI products were 

predominately retained by the filter, suggesting that Hsp104 does not dissolve SEVI fibrils into 

PAP248-286 monomers (Figure 2.1f). Rather, as suggested by TEM (Figure 2.1b), the products 

are likely larger non-fibrillar aggregates. Thus, Hsp104 does not dissolve SEVI fibrils unlike 

several other amyloids [182]. Hsp104 has reduced ability to dissolve specific Sup35 prions 
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strains, but instead converts them to a mixture of soluble protein and non-templating aggregated 

forms [184, 189]. Hsp104 transforms SEVI fibrils into another aggregated form, which likely lacks 

cross-β structure as indicated by reduced ThT fluorescence (Figure 2.1a), but can these 

aggregated species template the assembly of SEVI fibrils? 

 

To assess whether Hsp104 eliminated the self-templating activity of SEVI fibrils we tested the 

ability of Hsp104-remodeled SEVI products to seed fibrillization of PAP248-286. Assembly of 

PAP248-286 into SEVI fibrils can be accelerated by the addition of a small amount of pre-formed 

SEVI fibril seed, which eliminates the lag phase for nucleation [192]. In the presence of 0.1% 

untreated SEVI fibril seed, the lag phase for assembly was abolished, and monomeric PAP248-

286 polymerized into fibrils, with ThT fluorescence intensity plateauing around 24h (Figure 2.1g). 

At this time, unseeded reactions remained in lag phase (Figure 2.1g). Importantly, SEVI fibrils 

pre-treated with Hsp104 for 6h were no longer capable of seeding PAP248-286 fibrillization 

(Figure 2.1g). Thus, Hsp104 converts SEVI fibrils into altered non-amyloid conformers that lack 

seeding activity. 
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Figure 2.1 Hsp104 rapidly remodels SEVI fibrils to non-templating forms. (a) Preformed 
SEVI fibrils (20µM monomer) were incubated with buffer (untreated), Hsp104 (3µM), Hsp104DWB 
(3µM) or ClpB (3µM; DnaK (3µM), DnaJ (0.6µM), and GrpE (0.3µM)) for 0-24h. Fibril integrity was 
assessed via ThT fluorescence. Values represent means ± SEM (n=3-4). (b) TEM of SEVI fibrils 
incubated with buffer (untreated) or Hsp104 (3µM) for either 2h or 24h. The scale bar is indicated. 
(c) Dose-response analysis of SEVI fibrils (20µM monomer) treated with various concentrations 
of Hsp104 for 6h. Fibril integrity was assessed via ThT fluorescence and the EC50 was calculated. 
Values represent means ± SEM (n=3). (d) Preformed SEVI fibrils (20µM monomer) were 
incubated with buffer (untreated) or the indicated combinations of Hsp104 (3µM), Hsp70 (1µM) 
and Hsp40 (1µM). Fibril integrity was assessed via ThT fluorescence. Values represent means ± 
SEM (n=4). (e) TEM of SEVI fibrils incubated with buffer (untreated), Hsp104DWB, or ClpB (3µM) 
for 3h. The scale bar is indicated. (f) Preformed SEVI fibrils (20µM monomer) were incubated 
with buffer (untreated) or Hsp104 (3µM) for 0-6h. The resulting products were passed over a 10-
kDa molecular weight cut off filter. Filtrate and retentate fractions were then processed for SDS-
PAGE and silver stain. (g) SEVI fibrils (20µM monomer) were incubated with buffer (untreated) or 
Hsp104 (3µM) for 6h, and the resulting products were used to seed soluble PAP248-286 (1mM, 
0.1% fibril seed) fibrillization. Buffer conditions lacking fibril seed were included. Fibril assembly 
was monitored by ThT fluorescence. Values represent means ± SEM (n=4). 
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  A potentiated Hsp104 variant remodels SEVI at nanomolar concentrations 2.2.2

Next, we assessed whether a potentiated Hsp104 variant had improved ability to disassemble 

SEVI fibrils. A missense mutation in the coiled-coil middle domain region of Hsp104, Hsp104A503V, 

yields a potentiated variant with elevated basal ATPase activity, an accelerated substrate 

translocation rate, and enhanced disaggregase activity [183]. Hsp104A503V also suppresses TDP-

43 and α-synuclein proteotoxicity by dissolution of protein aggregates and restoration of proper 

protein localization [183]. 

 

When tested against SEVI fibrils in vitro, Hsp104A503V caused a reduction in ThT fluorescence that 

was of similar magnitude to that observed with Hsp104 (Figure 2.1a, 2.2a). After 2h of incubation 

with Hsp104A503V, ThT fluorescence intensity decreased to ~49% of the initial value, with a further 

decrease to ~35% after 24h (Figure 2.2a). TEM revealed that non-fibrillar aggregates 

accumulated after Hsp104A503V treatment, comparable to those observed after incubation with 

Hsp104 (Figure 2.2b). Indeed, Hsp104A503V did not dissolve SEVI fibrils as a 10-kDa filter retained 

remodeled products (Figure 2.2c). Remarkably, dose-response studies of Hsp104A503V-catalyzed 

remodeling of SEVI fibrils established an EC50 of only ~36nM (Figure 2.2d), which is ~20-fold 

lower than the EC50 determined for Hsp104 (Figure 2.1c). This nanomolar EC50 for SEVI 

remodeling by Hsp104A503V is unprecedented and could have therapeutic potential. 

 

 Hyperactive ClpB variants are unable to eliminate SEVI fibrils 2.2.3

Next, we assessed whether ClpB activity might also be enhanced against SEVI fibrils by specific 

mutations in the middle domain that enhance ClpB activity against disordered protein aggregates 

[193]. Thus, we assessed the activity of three hyperactive ClpB variants: ClpBR356C, ClpBK476C, 

and ClpBY503D [193]. Remarkably, none of the hyperactive ClpB variants reduced ThT 

fluorescence of SEVI fibrils in the presence or absence of the Hsp70 chaperone system: DnaK, 

DnaJ, and GrpE (Figure 2e). In fact, in the absence of DnaK, DnaJ, and GrpE, ClpB and the 

hyperactive variants increased ThT fluorescence of SEVI fibrils (Figure 2.2e), which might 
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indicate a ClpB activity that exposes further ThT binding sites on SEVI fibrils. DnaK, DnaJ, and 

GrpE had no effect on SEVI fibrils alone and prevented the increase in ThT fluorescence caused 

by ClpB or ClpBY503D, but not ClpBR356C or ClpBK476C (Figure 2.2e). Thus, ClpB is unable to 

eliminate amyloid structure even when its activity is enhanced by hyperactivating mutations in the 

middle domain. This finding likely reflects profound differences in how Hsp104 and ClpB subunits 

process substrates for disaggregation [182]. 

 

	  	  	  	  	  	  	  	  	  

Figure 2.2 Hsp104A503V rapidly remodels SEVI fibrils, whereas hyperactive ClpB variants 
are inactive. (a) Preformed SEVI fibrils (20µM monomer) were incubated with buffer (untreated) 
or Hsp104A503V (3µM) for 0-24h and fibril integrity was assessed by ThT fluorescence. Values 
represent means ± SEM (n=4). (b) TEM of SEVI fibrils incubated with buffer (untreated) or 
Hsp104A503V (3µM) for 3h. The scale bar is indicated. (c) SEVI fibrils (20µM monomer) were 
incubated with Hsp104A503V (3µM) for 0-6h, and the resulting products were passed over a 10kDa 
molecular weight cut off filter. Filtrate and retentate fractions were then processed for SDS-PAGE 
and silver stain. (d) Dose-response analysis of Hsp104A503V disassembly of SEVI fibrils (20µM 
monomer) after 6h of treatment. The EC50 is based on ThT fluorescence. Values represent 
means ± SEM (n=6). (e) Preformed SEVI fibrils (20µM monomer) were incubated with buffer 
(untreated) or the indicated ClpB variant (3µM) in the absence (black bars) or presence (grey 
bars) of DnaK (3µM), DnaJ (0.6µM), and GrpE (0.3µM) for 6h and fibril integrity was assessed by 
ThT fluorescence. Values represent means ± SEM (n=3-4). (Work of Stephen Bart, Shorter lab) 
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 Hsp104 and Hsp104A503V remodel PAP85-120 fibrils 2.2.4

The relative contribution of each seminal amyloid to the observed enhancement of HIV infection 

by human semen is uncertain, and thus, it is important to search for amyloid-remodeling factors 

that can deconstruct a range of substrates [179]. Thus, we examined whether Hsp104 and 

Hsp104A503V could remodel additional amyloid fibrils endogenous to seminal fluid, including those 

formed by another PAP fragment, PAP85-120 [172, 179]. Hsp104 remodeled PAP85-120 fibrils, 

whereas ClpB and Hsp104DWB were inactive (Figure 2.3a). After 2h, Hsp104 reduced ThT 

fluorescence to ~63% of the initial value, and a further decrease to ~39% was observed after 6h, 

indicating rapid fibril remodeling (Figure 2.3a). TEM revealed that Hsp104 remodels PAP85-120 

fibrils into non-fibrillar aggregates (Figure 2.3b). Similar results were obtained with Hsp104A503V. 

Under these conditions, the ThT fluorescence intensity decreased more slowly than with Hsp104, 

and a reduction to only 67% was observed after 2h (Figure 2.3c). However, after 24h of 

incubation with Hsp104A503V, the ThT fluorescence intensity decreased markedly to ~28% of the 

initial value (Figure 2.3c). TEM analysis also revealed non-amyloid aggregates after treatment 

with Hsp104A503V (Figure 2.3d). Thus, Hsp104 and Hsp104A503V can rapidly remodel SEVI and 

PAP85-120 fibrils. 
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Figure 2.3 Hsp104 and Hsp104A503V rapidly remodel PAP85- fibrils. (a) Preformed PAP85-120 
fibrils (20µM monomer) were incubated with buffer (untreated), Hsp104, Hsp104DWB, or ClpB 
(3µM) for 0-24h. Fibril integrity was assessed via ThT fluorescence. Values represent means ± 
SEM (n=3-7). (b) TEM of PAP85-120 fibrils incubated with buffer (untreated) or Hsp104 (3µM) for 
6h. The scale bar is indicated. (c) Preformed PAP85-120 fibrils (20µM monomer) were incubated 
with buffer (untreated) or Hsp104A503V (3µM) for 0-24h. Fibril integrity was assessed via ThT 
fluorescence. Values represent means ± SEM (n=4). (d) TEM of PAP85-120 fibrils incubated with 
buffer (untreated) or Hsp104A503V (3µM) for 6h. The scale bar is indicated. 

 

 Hsp104 and Hsp104A503V do not remodel SEM1(45-107) fibrils 2.2.5

Numerous peptide fragments of SEM1 and SEM2 can assemble into amyloid and enhance HIV 

infection [173]. We focused on the SEM1(45-107) fragment as a representative sample. ThT 

fluorescence intensity remained unchanged when SEM1(45-107) fibrils were treated with Hsp104 

or Hsp104A503V for 24h (Figure 2.4a, 2.4c). This result was verified by TEM, which showed 

abundant, dense clumps of SEM1(45-107) fibrils in samples incubated with Hsp104 or 

Hsp104A503V (Figure 2.4b, 2.4d). Thus, SEM1(45-107) fibrils are refractory to remodeling by 
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Hsp104 and Hsp104A503V, indicating that some feature of SEM1(45-107) fibrils antagonizes 

Hsp104 activity. 

 

              	  

Figure 2.4 Hsp104 and Hsp104A503V do not remodel SEM1(45-107) fibrils. (a) Preformed 
SEM1(45-107) fibrils (20µM monomer) were incubated with buffer (untreated), Hsp104, 
Hsp104DWB or ClpB (3µM) for 0-24h. Fibril integrity was assessed via ThT fluorescence. Values 
represent means ± SEM (n=3). (b) TEM of SEM1(45-107) fibrils incubated with buffer (untreated) 
or Hsp104 (3µM) for 6h. The scale bar is indicated. (c) Preformed SEM1(45-107) fibrils (20µM 
monomer) were incubated with buffer (untreated) or Hsp104A503V (3µM) for 0-24h. Fibril integrity 
was assessed via ThT fluorescence. Values represent means ± SEM (n=3). (d) TEM of 
SEM1(45-107) fibrils incubated with buffer (untreated) or Hsp104A503V (3µM) for 6h. The scale bar 
is indicated. 

	  

 Hsp104 promotes clustering of seminal amyloid into larger aggregates 2.2.6

We noticed that even though Hsp104DWB and ClpB failed to eliminate cross-β structure of seminal 

amyloid as indicated by ThT fluorescence (Figure 2.1a, 2.3a, 2.4a), solutions became turbid, 

indicating a clustering of fibrils into higher order conglomerates. Sequestration of seminal amyloid 

into larger aggregated structures could be a valuable strategy, as it would shield the network of 
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positive charge presented by fibrils and reduce their ability to stimulate HIV infection. Indeed, 

molecular chaperones stimulate the clustering of toxic misfolded oligomers into larger species in 

the absence of any structural reorganization or disassembly of oligomers [194]. The larger 

aggregated species mask the reactive surfaces of oligomers and decrease their diffusional 

mobility, thereby neutralizing oligomer toxicity [194]. Importantly, this mechanism is extremely 

effective, as significant effects are observed at highly substoichiometric chaperone levels [194]. 

Moreover, several chaperones do not require ATP or ATPase activity to cluster oligomers [194]. 

By analogy, we wondered whether Hsp104-based scaffolds might cluster seminal amyloid into 

larger aggregates in an ATP-independent manner and neutralize their ability to promote HIV 

infection. 

 

To assess formation of larger aggregates we employed turbidity (absorbance at 395nm). GFP 

was included as a protein control and did not affect the turbidity of any of the seminal amyloid 

fibrils analyzed (Figure 2.5a-c). By contrast, the turbidity of SEVI, PAP85-120, and SEM1(45-107) 

fibrils increased rapidly upon incubation with Hsp104, Hsp104DWB, or ClpB (Figure 2.5a-f). Thus, 

Hsp104 remodels the amyloid structure of SEVI and PAP85-120 fibrils (Figure 2.1a, 2.3a) and 

simultaneously transforms these conformers into large amorphous aggregates (Figure 2.1b, 2.3b, 

2.5a, 2.5b). By contrast, Hsp104 does not remodel SEM1(45-107) fibrils but clusters them into 

large aggregates (Figure 2.4a, 2.5c). Hsp104DWB and ClpB fail to remodel the amyloid structure of 

SEVI, PAP85-120, and SEM1(45-107) fibrils (Figure 2.1a, 2.3a, 2.4a), but cluster them into larger 

species (Figure 2.5a-f). In all instances, a marginally larger increase in turbidity was observed 

when seminal amyloid fibrils were incubated with Hsp104DWB as compared to Hsp104 (Figure 

2.5a-c). Thus, the seminal amyloid clustering activity does not require ATP hydrolysis and 

resembles the clustering of toxic oligomers into larger aggregates by various molecular 

chaperones [194]. 
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Figure 2.5 Hsp104 and ClpB promote the clustering of seminal amyloid fibrils into larger 
aggregates. (a-c) SEVI (a), PAP85-120 (b), and SEM1(45-107) (c) fibrils (20µM monomer) were 
incubated with buffer (untreated), Hsp104, Hsp104DWB, ClpP, or GFP (1.8µM monomer) and 
absorbance at 395nm was measured continuously for 3h. One representative trial is shown. (d-f) 
SEVI (d), PAP85-120 (e), and SEM1(45-107) (f) fibrils (20µM monomer) were incubated with 
buffer (untreated) or ClpB (1.8µM monomer) and absorbance at 395nm was measured 
continuously for 3h. One representative trial is shown. 

 

To confirm this clustering effect, dynamic light scattering (DLS) was used to investigate the size 

distribution profile of seminal amyloid in the absence and presence of Hsp104, Hsp104DWB, or 

GFP. DLS of Hsp104 alone revealed species with a diffusion coefficient of ~2.7x10-7cm2/s and 

hydrodynamic radius (Rh) of ~7-10nm (Figure 2.6a), indicative of a hexamer and consistent with 

previous studies [133, 195]. The soluble PAP248-286 peptide had an Rh of ~1-2nm (Figure 2.6b), 

which might indicate dimeric or trimeric forms or an extended, unstructured monomer [46]. By 

contrast, untreated SEVI fibrils contained an assortment of species with different Rh values 

(Figure 2.6c). The major species had Rh’s of ~1,000-3,000nm (Figure 2.6c). The DLS profile 

shifted drastically upon addition of Hsp104 or Hsp104DWB, revealing a broad size distribution of 

larger particles ranging in Rh of ~100-10,000nm (Figure 2.6d, 2.6e). In contrast, when SEVI fibrils 
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were incubated with GFP, the size distribution profile closely resembled the buffer (untreated) 

control (Figure 2.6f). Similarly, in the presence of Hsp104 and Hsp104DWB, the size distribution 

profile of SEM1(45-107) fibrils shifted toward larger species (Figure 2.6g-j). Indeed, aggregated 

species were now observed with Rh greater than 5,000nm (Figure 2.6h, 2.6i), which are not 

observed in the buffer (untreated) control (Figure 2.6g). Contrastingly, the particle sizes of 

SEM1(45-107) fibrils treated with GFP were more similar to the buffer (untreated) control (Figure 

2.6j). These data suggest that Hsp104 and Hsp104DWB cluster PAP248-286 and SEM1(45-107) 

into larger aggregated species. 
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Figure 2.6 Hsp104 stimulates the assembly of SEVI and SEM1(45-107) fibrils into larger 
particles. (a,b) Dynamic light scattering was used to determine the hydrodynamic radius (Rh) of 
Hsp104 (0.3µM hexamer) (a) and soluble PAP248-286 (20µM) (b). (c-f) Dynamic light scattering 
was used to determine the size distribution by mass of SEVI fibrils (20µM monomer) treated with 
buffer (c), Hsp104 (d), Hsp104DWB (e), or GFP (f) (1.8µM monomer) for ~5min at 25°C. (g-j) 
Dynamic light scattering was used to determine the size distribution by mass of SEM1(45-107) 
fibrils (20µM monomer) treated with buffer (g), Hsp104 (h), Hsp104DWB (i), or GFP (j) (1.8µM 
monomer) for ~5min at 25°C.  

 

Next, we tested whether Hsp104 hexamers or ATP were required for the observed clustering 

activity. Thus, we explored two monomeric Hsp104 fragments: Hsp1041-548, comprising the N-

terminal domain (NTD), nucleotide-binding domain 1 (NBD1), and middle domain (MD) of 
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Hsp104; and Hsp104773-908 comprising the small domain of NBD2 and the C-terminal domain of 

Hsp104, which can engage basic substrates such as poly-lysine [138, 196]. Remarkably, 

incubation of SEVI, PAP85-120, and SEM1(45-107) fibrils with Hsp1041-548 but not Hsp104773-908 

resulted in a substantial increase in turbidity (Figure 2.7a-c). Importantly, neither Hsp1041-548 nor 

Hsp104773-908 remodeled SEVI or PAP85 fibrils as indicated by ThT fluorescence (data not 

shown). Thus, neither Hsp104 hexamerization nor ATP hydrolysis is necessary for clustering 

activity. The clustering of seminal amyloid into larger conglomerates likely decreases availability 

of virion binding sites on fibrils via occlusion. 

	  

Figure 2.7 Monomeric Hsp1041-548 promotes the clustering of seminal amyloid fibrils (a-c) 
SEVI (a), PAP85-120 (b), and SEM1(45-107) (c) fibrils (20µM monomer) were incubated with 
buffer (untreated), Hsp1041-548, or Hsp104773-908 (1.8µM monomer) and absorbance at 395nm was 
measured continuously for 3h. One representative trial is shown. 

	  

 HAP plus ClpP degrade SEVI fibrils and PAP85-120 fibrils 2.2.7

A potential problem with the seminal amyloid-remodeling activity of Hsp104 (Figure 2.1-2.3) is 

that peptides might eventually reform amyloid and promote HIV infection. Likewise, the clustering 

of seminal amyloid into larger aggregates by various Hsp104 scaffolds (Figure 2.5, 2.6) might 

also be reversed and enable fibrils to promote HIV infection. To irrevocably remove seminal 

amyloid, we coupled Hsp104 remodeling activity to proteolysis. Thus, we employed HAP, an 

Hsp104 variant carrying three missense mutations (G739I:S740G:K741F) in a critical helix-loop-

helix motif that enables association with ClpP, a chambered peptidase from E. coli akin to the 

proteasome [142]. HAP maintains disaggregase activity and substrate recognition but threads 
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remodeled products through its central pore and into the proteolytic chamber of ClpP for 

degradation [142]. 

 

Like Hsp104 (Figure 2.1a), HAP or HAP plus ClpP effectively remodeled SEVI fibrils, whereas 

ClpP alone was ineffective (Figure 2.8a). After 24h, HAP or HAP plus ClpP reduced ThT 

fluorescence to ~22% (Figure 2.8a). Importantly, this large decrease in ThT fluorescence intensity 

occurred when SEVI fibrils were subjected to substoichiometric concentrations of HAP or HAP 

plus ClpP. In fact, the EC50 for SEVI fibril remodeling by HAP was ~0.36µM (Figure 2.8b), and a 

slighter higher EC50 of ~1.28 µM was determined for HAP plus ClpP (Figure 2.8c), indicating that 

the presence of ClpP reduces HAP efficacy [141]. 

 

TEM revealed that HAP or HAP plus ClpP converted SEVI fibrils to amorphous aggregates, 

similar to those observed with Hsp104, whereas ClpP alone was ineffective (Figure 2.8d). The 

extreme stability of the amyloid cross-β fold allows amyloid to resist disruption from proteases 

and other protein denaturants [147]. Thus, as expected, ClpP alone was unable to degrade SEVI 

fibrils (Figure 2.8e), although curiously it was able to rapidly degrade soluble PAP248-286 in the 

presence or absence of HAP (Figure 2.8e). Usually, ClpP alone cannot degrade folded proteins 

without a cognate AAA+ ATPase partner [143, 197]. Indeed, only small peptides typically shorter 

than 6 residues are able to enter the ClpP chamber for degradation [198]. Thus, soluble PAP248-

286 is likely to be unfolded and must effectively access the proteolytic chamber of ClpP. 

Importantly, HAP plus ClpP degraded SEVI fibrils over the course of 24h (Figure 2.8e). 

Accordingly, HAP plus ClpP eliminated the ability of SEVI fibrils to seed the fibrillization of soluble 

PAP248-286, confirming a deconstruction of amyloid structure (Figure 2.8f). To the best of our 

knowledge, this is the first example of a proteolytic system that can effectively remodel and 

degrade amyloid. 
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We next examined whether SEM1(45-107) fibrils and PAP85-120 fibrils could be degraded using 

HAP plus ClpP. HAP plus ClpP rapidly degraded the soluble SEM1(45-107) and PAP85-120 

peptides, whereas ClpP alone was ineffective (Figure 2.8g, 2.8h). HAP plus ClpP were unable to 

degrade SEM1(45-107) fibrils (Figure 2.8g), which is consistent with the inability of Hsp104 to 

remodel SEM1(45-107) fibrils (Figure 2.4a). By contrast, HAP plus ClpP degraded PAP85-120 

fibrils, whereas ClpP alone was ineffective (Figure 2.8h). Thus, HAP plus ClpP degrade 

preformed SEVI and PAP85-120 fibrils. 

	  	  	  

	  

Figure 2.8 HAP plus ClpP degrade SEVI fibrils and PAP85-120 fibrils. (a) SEVI fibrils (20µM 
monomer) were incubated with buffer (untreated), HAP (3µM), ClpP (4.5µM), or HAP (3µM) plus 
ClpP (4.5µM) for 0-24h. Fibril integrity was assessed via ThT fluorescence. Values represent 
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means ± SEM (n=3-4). (b, c) Dose-response analysis for HAP (b) and HAP plus ClpP (c) 
remodeling of SEVI fibrils (20µM monomer) after 6h. The EC50 is based on ThT fluorescence. 
Values represent means ± SEM (n=3-7). (d) TEM of SEVI fibrils (20µM monomer) incubated with 
buffer (untreated), HAP (3µM), ClpP (4.5µM), or HAP (3µM) plus ClpP (4.5µM) for 24h. The scale 
bar is indicated. (e) SEVI fibrils or soluble PAP248-286 (20µM monomer) were treated with HAP 
(3µM), ClpP (4.5µM), or HAP (3µM) plus ClpP (4.5µM) for 0-24h at 37°C. Reactions were then 
processed for SDS-PAGE and silver stain. (f) SEVI fibrils (20µM monomer) were incubated with 
HAP (3µM) and ClpP (4.5µM) for 6h, and the resulting products were used to seed soluble 
PAP248-286 (1mM, 0.1% fibril seed) fibrillization. Buffer conditions lacking fibril seed were 
included. Fibril assembly was monitored by ThT fluorescence. Values represent means ± SEM 
(n=4). (g, h) PAP85-120 fibrils or soluble PAP85-120 (g) or SEM1(45-107 fibrils) or SEM1(45-
107) (20µM monomer) (h) were treated with HAP (3µM), ClpP (4.5µM), or HAP (3µM) plus ClpP 
(4.5µM) for 0-24h at 37°C. Reactions were then processed for SDS-PAGE and silver stain. 

	  

 Fibril remodeling, clustering, and degradation reduce stimulation of HIV infection 2.2.8

Finally, we assessed whether these Hsp104-based treatments affected the ability of the various 

seminal amyloids to promote HIV infection in cell culture. We employed TZM-bl cells containing a 

luciferase reporter construct under control of the HIV-1 long terminal repeat to assess the extent 

of infectivity. First, we determined that Hsp104, Hsp104A503V, Hsp104DWB, ClpB, Hsp1041-548, 

Hsp104773-908, HAP, ClpP, and GFP had no effect on HIV infection of TZM-bl cells in the absence 

of seminal amyloid (Figure 2.9a). Moreover, none of the Hsp104 conditions affected cell viability 

assessed via MTT reduction (not shown). Thus, any effects of Hsp104-based treatments were 

due to an effect on the fibrils rather than any direct effect on HIV or on cell viability. 

 

Hsp104 and variants were unable to remodel or degrade SEM1(45-107) fibrils (Figure 2.4a, 2.4c, 

2.8g), but Hsp104, Hsp104DWB, and ClpB could cluster them into larger conglomerates, whereas 

GFP was ineffective (Figure 2.5c, 2.5f). Remarkably, this clustering activity was sufficient to 

reduce the ability of SEM1(45-107) fibrils to promote HIV infection, whereas GFP and ClpP were 

ineffective (Figure 2.9b). Hsp104DWB converted SEM1(45-107) fibrils into the largest structures 

(Figure 2.5c, 2.6i) and accordingly caused the largest reduction in HIV infection (Figure 2.9b). 

The partitioning of SEM1(45-107) amyloid into larger aggregates likely decreases the availability 

of virion binding sites and thereby restricts the enhancement of infection (Figure 2.10b). Thus, 

seminal amyloid fibrils must be disseminated to counter electrostatic repulsion and promote HIV 
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infection. Clustering seminal amyloid into large conglomerates reduces their ability to enhance 

HIV infection. 

 

Hsp104-based treatments that remodeled, clustered, or degraded SEVI fibrils or PAP85-120 

fibrils reduced their ability to promote HIV infection (Figure 2.9c-e, 2.10). Thus, Hsp104773-908, 

ClpP, and GFP, which could neither remodel, cluster, nor degrade SEVI fibrils or PAP85-120 

fibrils had no effect on their ability to enhance HIV infection (Figure 2.9c, 2.9d). By contrast, 

Hsp104, Hsp104A503V, or HAP remodeled SEVI fibrils (Figure 2.1a, 2.2a, 2.8a) and PAP85-120 

fibrils (Figure 2.3a) and reduced their ability to enhance HIV infection (Figure 2.9c-e). Likewise, 

Hsp104DWB, ClpB, and Hsp1041-548, which clustered SEVI fibrils or PAP85-120 fibrils, also 

reduced enhancement of HIV infection (Figure 2.9c-e). Finally, HAP plus ClpP degraded SEVI 

and PAP85-120 fibrils (Figure 2.8e, 2.8h) and yielded a strong reduction of enhancement of HIV 

infection (Figure 2.9c, 2.9d). Thus, fibril remodeling, clustering, and degradation can all reduce 

the enhancement of HIV infection by seminal amyloid (Figure 2.10). 
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Figure 2.9 Hsp104 reduces the ability of seminal amyloid to enhance HIV infection. (a) 
Effect of Hsp104 variants and ClpP on viral infectivity (left panel: BL2 virions, right panel: 89.6 
virions) in the absence of any enhancing seminal amyloid. Values represent means ± SEM (n=3-
6). (b) Preformed SEM1(45-107) fibrils (20µM monomer) were pretreated with buffer, Hsp104, 
Hsp104A503V, Hsp104DWB, ClpB, ClpP, or GFP and HIV infectivity was assessed in TZM-bl cells by 
measuring luciferase activity (in RLUs). The background luminescence from buffer control 
samples was subtracted and values were normalized to untreated fibril samples. Different viral 
strains were used for samples on either side of the solid line. Values represent means ± SEM 
(n=3-6). (c) Preformed PAP85-120 fibrils (20µM) were pretreated with buffer, Hsp104, 
Hsp104A503V, Hsp104DWB, ClpB, ClpP, HAP plus ClpP, or GFP and HIV infectivity was assessed 
in TZM-bl cells and expressed as normalized infectivity to untreated fibril samples. Different viral 
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strains were used for samples on either side of the solid line. Values represent means ± SEM 
(n=3-4). (d) SEVI fibrils (20µM) were pretreated with buffer, Hsp104, Hsp104A503V, Hsp104DWB, 
ClpB, Hsp1041-548, Hsp104773-908, HAP, ClpP, HAP plus ClpP, or GFP and HIV infectivity was 
assessed in TZM-bl cells and expressed as normalized infectivity to untreated fibril samples. 
Different viral strains were used for samples on either side of the solid line. Values represent 
means ± SEM (n=3-7). For all experiments in (a-d), the protein concentrations used were as 
follows: Hsp104 (3µM), Hsp104A503V (3µM), HAP (3µM), HAP-ClpP (3µM and 4.5µM, 
respectively), Hsp104DWB (3µM), Hsp1041-548 (18µM monomer), Hsp104773-908 (18µM monomer), 
ClpB (3µM), ClpP (18µM monomer), and GFP (18µM monomer). (e) SEVI fibrils were treated as 
in (d) except Hsp104 variant concentration was 0.3µM. HIV infectivity was assessed in TZM-bl 
cells and expressed as normalized infectivity to untreated fibril samples. Values represent means 
± SEM (n=3-7). 

	  

 Discussion  2.3

In this study, we repurpose an amyloid-remodeling factor from yeast, Hsp104, to antagonize 

seminal amyloid and reduce amyloid-mediated enhancement of HIV infection. Hsp104, as well as 

a potentiated Hsp104 variant, Hsp104A503V [183], were highly effective at rapidly remodeling SEVI 

and PAP85-120 fibrils into non-fibrillar structures. This remodeling activity required ATP 

hydrolysis, as Hsp104DWB was ineffective. The E. coli Hsp104 homolog, ClpB, was unable to 

remodel SEVI or PAP85-120 fibrils, even when it was activated by mutations in the middle 

domain that enhance activity [193]. The inability of ClpB variants to remodel amyloid likely reflects 

profound differences in how Hsp104 and ClpB subunits process substrates for disaggregation 

[182]. In stark contrast, Hsp104A503V remodeled SEVI fibrils (20µM monomer) at extremely low 

concentrations, with a calculated EC50 value in the nanomolar range. An EC50 this low relative to 

the quantity of fibrils has not been observed for Hsp104 with any amyloid, including its natural 

amyloid substrate: Sup35 prions [189]. Importantly, treatment of SEVI and PAP85-120 fibrils with 

Hsp104 or Hsp104A503V greatly reduced their ability to enhance HIV infection. 

 

The heightened susceptibility of SEVI and PAP85-120 fibrils to remodeling by Hsp104 and 

Hsp104A503V might reflect the high lysine content of PAP248-286 (15.4%) and PAP85-120 (8.6%) 

[179]. Indeed, lysine-rich regions provide an important recognition feature for Hsp104, and poly-

lysine stimulates ATP hydrolysis by Hsp104 [135, 138]. However, SEM1(45-107) contains a 

similar proportion of lysine residues (9.5%) and SEM1(45-107) fibrils were not remodeled by 



	   	   	   	   	  
	  

46	  

Hsp104 or Hsp104A503V. Thus, some other feature of SEM1(45-107) fibrils likely prevents 

remodeling by Hsp104. One possibility is that SEM1(45-107) also contains a high proportion of 

residues that disfavor Hsp104 binding, including serine, glycine, and histidine [135], which are all 

less abundant in PAP248-286 and PAP85-120 [179]. Thus, Hsp104 may fail to gain sufficient 

traction to remodel SEM1(45-107) fibrils. Alternatively, SEM1(45-107) fibrils might access a 

specific amyloid strain, which is intractable for other reasons such as binding site inaccessibility 

or enhanced stability.  

 

Remodeling amyloid structure by Hsp104 was not necessary, however, for specific Hsp104 

variants to reduce the ability of seminal amyloid to enhance HIV infection. Thus, even though 

Hsp104 did not remodel SEM1(45-107) fibrils, it reduced their ability to enhance HIV infection. 

Indeed, Hsp104 clustered SEM1(45-107) fibrils into large, higher order aggregates. This activity 

did not require ATP hydrolysis as Hsp104DWB also promoted fibril clustering. Indeed, several 

Hsp104 variants unable to remodel amyloid structure, including ClpB, and even the monomeric 

Hsp104 fragment, Hsp1041-548 encompassing the NTD, NBD1, and the MD [180], could cluster 

seminal amyloid fibrils (SEVI, PA85-120, and SEM1(45-107)) into larger conglomerates with 

reduced ability to promote HIV infection. Importantly, this effect was specific as not any protein 

could cluster seminal amyloid into higher order aggregates. Thus, the control protein GFP and 

another Hsp104 fragment, Hsp104773-908 were unable to promote seminal amyloid clustering and 

consequently had no effect on the enhancement of HIV infection. We postulate three 

mechanisms to explain how the clustering of seminal amyloid into larger conglomerates reduces 

the enhancement of infection: first, the formation of larger fibril clusters could decrease the 

availability of virion binding sites on fibrils; second, these higher order assemblies may act as a 

physical barrier obstructing virion access to the target cell surface; and third, virions may bind to 

fibrils and become trapped inside large fibril conglomerates such that they can no longer navigate 

to the target cell surface. These findings indicate that seminal amyloid fibrils must be 

disseminated to counter electrostatic repulsion and promote HIV infection. If fibrils become too 
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clustered then their ability to promote HIV infection declines. Future studies will decipher the 

specific region within Hsp104 that is sufficient to cause seminal amyloid clustering, which could 

ultimately lead to the design of peptide-based inhibitors or small molecules that impede seminal 

amyloid functionality. 

 

	  	  	  	   	  

Figure 2.10 Hsp104-based treatments that remodel, degrade, or cluster seminal amyloid 
reduce their ability to stimulate HIV infection. (a) Hsp104-based treatments remodel (Hsp104 
and Hsp104A503V) and degrade (HAP plus ClpP) SEVI and PAP85-120 fibrils such that their ability 
to boost infection is greatly reduced. (b) Hsp104-based treatments non-catalytically promote the 
assembly of seminal amyloid into higher order conglomerates, which not only results in fewer 
available sites within fibrils for virion binding, but also acts as a physical barrier for cell entry. 

 

The clustering activity we observed is reminiscent of the ability of various molecular chaperones 

to stimulate the clustering of toxic misfolded oligomers into larger species in the absence of 

structural reorganization of the oligomers themselves [194]. The larger aggregated species mask 

the reactive surfaces of oligomers and consequently neutralize oligomer toxicity [194]. This 

activity does not require chaperone ATPase activity or even ATP and can be driven by 

substoichiometric quantities of chaperone [194]. Hsp104 is known to stimulate the prionogenesis 

of various yeast prion proteins, including Sup35 and Ure2, when acting at substoichiometric 

concentrations [129, 181, 184]. However, the clustering of preformed amyloid fibrils into large 

conglomerates is not an activity we have observed previously with other substrates. Nonetheless, 

this activity, which does not require Hsp104 ATPase activity or even hexameric structure, could 
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play an important role in vivo in the partitioning and concentration of aggregated proteins into 

higher order compartments, such as Q bodies (also called stress foci), JUNQ (JUxta Nuclear 

Quality control compartment) and IPOD (Insoluble Protein Deposit compartment) [199-202]. 

 

Therapeutically, Hsp104 and its analogs that we are studying could be used as a genital tract 

applied microbicide. A potential problem with remodeling seminal amyloid or clustering amyloid 

into higher order structures is that remodeled peptides might reform amyloid and clustered fibrils 

might disperse and be able to enhance HIV infection once again. To avoid this risk and 

irreversibly clear seminal amyloid, we developed a strategy that couples seminal amyloid 

remodeling to degradation. Thus, we engineered Hsp104 to interact with ClpP, a chambered 

protease from E. coli [142]. The modified Hsp104 variant, termed HAP, passes remodeled 

substrates into the ClpP chamber for degradation [142]. Although ineffective against SEM1(45-

107) fibrils, HAP plus ClpP effectively remodeled and degraded SEVI fibrils and PAP85-120 

fibrils. This ability to remodel and degrade exceptionally stable amyloid has not been previously 

reconstituted using pure components and could also prove useful in the removal of pathologic or 

disease-associated amyloid fibrils. Coupled fibril disaggregation and degradation could be 

especially advantageous in instances where reactivation of the protein sequestered in fibrils is not 

beneficial, as with amyloid-beta deposits in Alzheimer’s disease [203]. 

 

There is a great need for microbicidal agents that interfere with HIV infectivity without inducing 

tissue inflammation [179]. Our studies suggest that seminal amyloid is likely a tractable target. 

We have demonstrated that various strategies based on Hsp104 interfere with the infectivity 

enhancing function of seminal amyloid. The most irreversible of these entails coupled remodeling 

and degradation of seminal amyloid. The ability to irrevocably clear seminal amyloid and block 

sexual transmission of HIV would provide a powerful and much needed weapon against the 

global HIV/AIDS pandemic. Our approach of targeting host protein conformers (seminal amyloid) 

is fundamentally different from traditional microbicidal approaches that target the virus. 
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Consequently, we anticipate that this strategy will synergize with direct anti-viral strategies, such 

that microbicides containing anti-viral agents and anti-amyloid agents could display enhanced 

efficacy. 
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CHAPTER 3: A MOLECULAR TWEEZER ANTAGONIZES SEMINAL AMYLOIDS 
AND HIV INFECTION 

 

 Introduction 3.1

The majority of new HIV-1 infections are transmitted via sexual intercourse, and semen is the 

main vector for viral spread. Far from being a passive vehicle, semen massively enhances HIV 

infectivity [51, 204]. This HIV-enhancing activity can be attributed to seminal amyloid fibrils [51, 

68, 173, 204] which form by self-assembly of proteolytic fragments of prostatic acid phosphatase 

(PAP248-286 and PAP85-120) and the homologous proteins semenogelin 1 (SEM1) and 

semenogelin 2 (SEM2) [51, 172, 173]. Seminal amyloid fibrils are highly cationic, and the 

positively charged fibrils capture HIV virions, increase viral attachment rates to target cells and 

augment fusion [68, 172, 175]. By doing so, fibrils promote HIV infection in vitro by several orders 

of magnitude, whereas the corresponding monomeric peptides have no effect [51, 172, 173]. 

Importantly, the stimulatory effect of seminal amyloid is greatest at low virus concentrations [51], 

and semen and SEVI fibrils may facilitate vaginal virus transmission after exposure to low viral 

doses [22]. HIV transmission rates are relatively low, occurring as infrequently as 1 in 200 to as 

low as 1 in 10,000 coital acts [170]. Thus, counteraction of infectivity promoting amyloids in 

semen should reduce or even prevent HIV transmission via the sexual route. 

 

The lysine-specific molecular tweezer, CLR01 (Figure 3.1a), inhibits amyloid fibrillization by 

engaging specific lysine residues within a variety of disease-associated amyloidogenic proteins 

including amyloid-β protein (Aβ), tau, islet amyloid polypeptide, and α-synuclein [152, 154, 205]. 

Furthermore, CLR01 can even slowly disassemble preformed Aβ and α-synuclein fibrils over the 

course of several days [152, 154]. CLR01 binds lysine residues with a Kd of ~20 µM and also 

arginine residues albeit with ~10-fold lower affinity [151, 206]. Its unprecedented high specificity 

for basic amino acids relies on a unique binding mode in which the tweezer draws the cationic 

side chains into its torus-shaped cavity and locks the ammonium or guanidinium cation with its 
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anionic phosphate group in a tight ion pair (Figure 3.1b). No other amino acids fulfill the 

requirements for this threading mechanism. Moreover, on protein surfaces only readily accessible 

lysine or arginine residues are complexed, as evidenced by crystal structures and NMR 

experiments [207].  

	  

Figure 3.1 Molecular structures of CLR01 and CLR03. (a) Chemical structures of CLR01 and 
CLR03. (b) Stick representation showing CLR01 engaging lysine, while CLR03 is unable to 
interact with lysine. 

 

Since amyloidogenic seminal peptides are particularly rich in lysine and arginine residues (Figure 

3.2a-c, Lys and Arg residues are highlighted in red) [172, 175, 179], we hypothesized that CLR01 

might interfere with their HIV-enhancing activity. Here, we establish that CLR01 inhibits 

amyloidogenesis of PAP and SEM peptides, neutralizes the cationic surface charge of seminal 

amyloid, and rapidly remodels preformed PAP248-286 fibrils (termed SEVI for Semen-derived 

Enhancer of Virus Infection) and PAP85-120 fibrils. Strikingly, CLR01 also exhibits a direct 

antiviral effect by selectively disrupting the membrane of enveloped viruses. Thus, the lysine 

tweezer CLR01 represents an unprecedented candidate for further development as a microbicide 

as it not only inactivates HIV and other viruses but also antagonizes host-encoded seminal 

amyloids that enhance viral infection. 
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 Results 3.2

 CLR01 inhibits spontaneous assembly of seminal amyloid fibrils  3.2.1

Lysine residues in PAP248-286, PAP85-120, SEM1, and SEM2 are often found within or 

immediately adjacent to hexapeptides predicted to form self-complementary β-strands (Figure 

3.2a-c, underlined residues), termed steric zippers, which often comprise the spine of amyloid 

fibrils [100, 179, 208]. In fact, residues Lys271, Arg272, Lys280, and Lys281 within PAP248-286 

are predicted to form part of the cross-β SEVI fibril core as defined by hydrogen-deuterium 

exchange and protease protection experiments [209]. The wealth of basic residues in PAP248-

286, PAP85-120, and SEM1(45-107) (Figure 3.2a-c) led us to hypothesize that the lysine-specific 

tweezer, CLR01, but not its truncated derivative CLR03, which lacks hydrophobic sidewalls and 

consequently cannot bind lysine residues (Figure 3.1) [152], might bind to these residues and 

interfere with fibril assembly. To test this hypothesis, CLR01 was assessed for its ability to inhibit 

the spontaneous amyloidogenesis (i.e. assembly in the absence of preformed fibril seeds) of 

PAP248-286. The truncated derivative CLR03 was used as a negative control in all assays. 

PAP248-286 was incubated in the presence or absence of equimolar concentrations of CLR01 or 

CLR03. Fibril assembly was assessed using the fluorescence of the diagnostic dye Thioflavin-T 

(ThT), which increases upon amyloid binding and by transmission electron microscopy (TEM). In 

the absence of tweezer molecules, PAP248-286 fibrillization proceeded slowly, with a lag phase 

of at least 24h, and gradually reached a fluorescence intensity maximum after 3 days. As 

expected, CLR03 had no effect on fibril assembly, and the ThT signal increased similarly to 

untreated PAP248-286. In the presence of CLR01 however, ThT fluorescence intensity remained 

unchanged for ~48h and only increased marginally after 3 days, indicating that the formation of 

cross-β structures was inhibited (Figure 3.2a). At an assembly concentration of 1mM peptide, a 

half maximal inhibitory concentration (IC50) of 2.6µM CLR01 was determined (Figure 3.2d), 

indicating that CLR01 is a potent inhibitor of PAP248-286 assembly at substoichiometric 

concentrations. The morphology of fibrillization products was further assessed by TEM. PAP248-

286 formed abundant fibrils in the absence of molecular tweezers, and consistent with ThT data, 
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fibrillization was unhindered upon incubation with CLR03. TEM confirmed the absence of amyloid 

fibrils in CLR01 treated samples and instead revealed small species (Figure 3.2a). Thus, CLR01 

potently inhibits spontaneous PAP248-286 fibrillization.  

 

Next, the effects of CLR01 on PAP85-120 fibrillization were assessed. For PAP85-120, the ThT 

fluorescence signal began increasing immediately with no apparent lag phase and reached a 

plateau by ~24h. As expected, the fibrillization kinetics were unchanged in the presence of 

CLR03. Notably, fibril assembly in the presence of CLR01 appeared to be completely inhibited, 

as the ThT signal failed to increase (Figure 3.2b). Indeed, at an assembly concentration of 1mM 

PAP85-120, an IC50 of 970µM CLR01 was determined based on ThT fluorescence (Figure 3.2e). 

This high concentration of CLR01 needed to inhibit PAP85-120 fibrillization is likely due to the 

lower number of lysine/arginine residues in the PAP85-120 sequence located in hexapeptide 

segments that are predicted to have high amyloid propensity (Figure 3.2b) [179]. The effect of 

CLR01 on PAP85-120 assembly was less apparent by TEM (Figure 3.2b). However, the 

assemblies formed in the presence of CLR01 appeared more flexible and curvilinear, and differed 

from the rigid, straight fibrils formed in the presence of CLR03 or buffer (Figure 3.2b). Since the 

structures that formed in the presence of CLR01 were not ThT-reactive (Figure 3.2b) they most 

likely represent non-amyloid aggregates. Thus, CLR01 appears to impede the transition of 

PAP85-120 to mature amyloid fibrils 

 

Finally, the ability of CLR01 to obstruct SEM1(45-107) fibrillization was evaluated. In the absence 

of CLR01, following a lag phase of at least 24h, ThT fluorescence intensity increased and began 

to plateau after ~40h. As predicted, the kinetics of SEM1 assembly were unchanged in the 

presence of CLR03. Remarkably, at an equimolar concentration of CLR01:SEM1, only a minimal 

increase in ThT fluorescence was observed, indicating that CLR01 inhibits the formation of SEM1 

amyloid fibrils (Figure 3.2c). At an assembly concentration of 500µM SEM1, an IC50 of 18.8µM 

CLR01 was calculated (Figure 3.2f). Large clusters of fibrils were detected in samples incubated 
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with CLR03 or buffer by TEM, while only amorphous aggregates and sparse short fibrils were 

found in samples incubated with CLR01 (Figure 3.2c). Importantly, CLR01 is the first example of 

an agent that interferes with the fibrillization of three semen-derived amyloidogenic peptides 

involved in HIV transmission. 

	  

Figure 3.2 CLR01 inhibits the formation of seminal amyloid fibrils. (a-c) The primary 
sequences of PAP248-286 (a), PAP85-120 (b) and SEM1(45-107) (c) are provided. Lysine and 
arginine residues are in red and hexapeptides predicted to form steric zippers [100, 179] are 
underlined. CLR01 inhibits fibril formation by PAP248-286 (1mM) (a), PAP85-120 (1mM) (b) and 
SEM1(45-107) (500µM) (c). Peptides were incubated with equimolar CLR01, CLR03, or buffer 
and agitated at 1400rpm at 37°C. Aliquots were removed at various time points and fibrillization 
was assessed using the amyloid-binding dye, Thioflavin-T (ThT). Values represent means ± SEM 
(n = 3 for PAP248-286; n = 4 for PAP85-120; n = 9 for SEM1(45-107)). Transmission electron 
microscopy (TEM) images of PAP248-286 (a), PAP85-120 (b), and SEM1(45-107) (c) agitated in 
the presence of CLR01, CLR03, or buffer. PAP248-286 and SEM1(45-107) samples were 
visualized after 72h of agitation, PAP85-120 after 2 h. Scale bar: 500nm. (d-f) Dose-response 
curves for CLR01 inhibition of PAP248-286 (1mM) fibrillization after 72h of agitation (d), PAP85-
120 (1mM) fibrillization after 24h of agitation (e), and SEM1(45-107) (500µM) fibrillization after 72 
h of agitation (f). The IC50 values are indicated. Values represent means ± SEM (n = 3-5 for 
PAP248-286; n=4 for PAP85-120; n=7 for SEM1(45-107)).  
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 CLR01 inhibits assembly of PAP248-286 seeded by preformed SEVI fibrils 3.2.2

Next, we assessed whether CLR01 could also inhibit the assembly of PAP248-286 that was 

seeded by preformed SEVI fibrils. The addition of a small amount of preformed fibril seed to 

reconstituted PAP248-286 solutions induces polymerization and eliminates the lag phase for 

assembly [192]. In the presence of 2% fibril seed, the lag phase was indeed eliminated and 

PAP248-286 solutions assembled rapidly into fibrils, with ThT fluorescence intensity plateauing at 

~24h. Remarkably, in addition to obstructing unseeded PAP248-286 assembly, CLR01 also 

completely inhibited seeded fibrillization as the ThT signal remained at baseline (Figure 3.3a). 

TEM images looked similar to unseeded experiments, with no fibrils present in CLR01 treated 

samples (Figure 3.3b). Dose-response analysis established an IC50 of 12.3µM for CLR01 

inhibition of seeded PAP248-286 assembly at a peptide concentration of 1mM (Figure 3.3c). This 

substoichiometric effect is unprecedented and indicates a direct effect of CLR01 on fibril ends 

such that they can no longer recruit and convert monomeric peptide. Importantly, because CLR01 

impedes both unseeded and seeded PAP248-286 assembly, it is likely acting at multiple stages 

of the fibrillization process including the initial nucleation and fibril elongation steps. These 

observations also indicate that lysine, arginine, or both residues play an important role in the 

nucleation and elongation of PAP248–286 fibrils. 

 

To further confirm that CLR01 inhibits the nucleation process that is essential for amyloid 

assembly, we tested whether the products of CLR01 inhibition of PAP248-286 fibrillization could 

act as effective seeds for fresh assembly experiments. To do so, soluble PAP248-286 solutions 

were incubated with CLR01, CLR03, or buffer for 4 days. After this time, the reaction products 

were used as seeds for soluble PAP248-286 fibrillization. Buffer- and CLR03-treated products 

were able to seed fibrillization by eliminating the lag phase, while CLR01-treated products were 

significantly less efficient seeds (Figure 3.3d), indicating that CLR01 inhibits the formation of 

nuclei that are essential for amyloid fibrillization. 
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Figure 3.3 CLR01 inhibits both the nucleation and elongation steps of amyloid assembly. 
(a) Inhibition of seeded PAP248-286 fibrillization by CLR01. PAP248-286 (1mM) was incubated 
with CLR01 (1mM), CLR03 (1mM), or buffer. Preformed SEVI fibrils (2% seed) were added to 
each sample and agitated at 1400 rpm at 37°C. Fibrillization was assessed using ThT 
fluorescence. Values represent means ± SEM (n = 6). (b) Electron microscopy visualization of 
CLR01 inhibition of seeded PAP248-286 fibrillization after 48h of agitation. Scale bar: 500nm. (c) 
Dose-response curve for CLR01 inhibition of seeded PAP248-286 (1mM; 2% seed) fibrillization 
after 48h of agitation. The IC50 value is indicated. Values represent means ± SEM (n = 4). (d) 
CLR01 inhibits the formation of nuclei needed for fibril assembly. Soluble PAP248-286 solutions 
(1mM) were incubated with CLR01 (50µM), CLR03 (50µM), or buffer and agitated at 1400rpm at 
37°C for 4 days. After 4 days, these inhibition products (5% volume) were used to seed soluble 
PAP248-286 (1mM) assembly. An unseeded control was included. Values represent means ± 
SEM (n = 4). 

	  

 CLR01 inhibition depends on lysine and arginine residues in PAP248-286 3.2.3

To investigate the role of lysine and arginine interactions with CLR01 in the inhibition of fibril 

assembly, we examined PAP248-286(Ala), an analogue in which all eight lysine and arginine 

residues are replaced by alanine [175]. PAP248-286(Ala) readily forms amyloid fibrils in the 

presence of CLR03 and buffer, and ThT fluorescence intensity also increases in the presence of 

CLR01, yet to a lesser extent (Figure 3.4a). To further analyze the effect of CLR01 on PAP248-

286(Ala) assembly, we employed a sedimentation (or centrifugation) assay. This assay revealed 

that equal amounts of PAP248-286(Ala) entered the pellet fraction when the peptide was 

incubated with buffer or CLR01, indicating that the formation of PAP248-286(Ala) amyloid fibrils is 
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unaffected by CLR01 treatment (Figure 3.4b). Thus, it is likely that in the presence of CLR01, 

PAP248-286(Ala) assembles into a fibril strain that is less ThT-reactive. These findings confirm 

that CLR01-lysine contacts, CLR01-arginine contacts, or both are essential for inhibition, and 

CLR01 cannot block the amyloidogenesis of polypeptides devoid of lysine and arginine residues.  

 

         	  

Figure 3.4 CLR01 cannot block the amyloidogensis of polypeptides devoid of lysine and 
arginine residues. (a) PAP248-286(Ala) (100µM) was incubated with CLR01 (100µM), CLR03 
(100µM) or buffer and agitated at 1400rpm and 37°C. Fibril assembly was assessed using ThT. 
Values represent means ± SEM (n=9). (b) PAP248-286(Ala) (100µM) was incubated with CLR01 
(100µM) or buffer and agitated at 1400rpm and 37°C. At each timepoint, samples were 
centrifuged and the amount of PAP248-286(Ala) in the pellet was assessed by SDS-PAGE. 
Values represent means ± SEM (n=3). 

    

 CLR01 remodels preformed SEVI and PAP85-120 fibrils 3.2.4

Semen-derived fibrils are already formed and abundant in liquefied fresh ejaculates [68]. Thus, 

compounds that not only inhibit fibril formation but also disassemble preformed fibrils are 

advantageous for microbicide development [179]. To test whether CLR01 could remodel seminal 

amyloid, a ten-fold excess of CLR01 or CLR03 was incubated with preformed SEVI fibrils and 

ThT fluorescence intensity was monitored. After 2h, CLR01 treatment of SEVI fibrils resulted in a 

reduction in ThT fluorescence intensity to 45%, indicating rapid disassembly of amyloid fibrils, 

while CLR03 had no effect on fibril integrity (Figure 3.5a). No additional disaggregation was 

observed after 2h. Fibril disassembly was confirmed by TEM, which showed few intact fibrils and 
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predominately smaller nonfibrillar species (Figure 3.5a). Similar results were obtained by 

fluorescence microscopy of samples stained with Proteostat, a red fluorescent aggregate sensing 

dye (Figure 3.5a-c) [68]. A dose-response curve for CLR01 disassembly of SEVI fibrils (20µM) 

reveals a half maximal effective concentration (EC50) value of 0.12µM (Figure 3.5d), indicating 

that CLR01 acts efficiently at very low levels. These effects of CLR01 were remarkably rapid in 

comparison to the slow disassembly of Aβ or α-synuclein fibrils by CLR01, which required several 

weeks [152]. Thus, CLR01 can rapidly disassemble SEVI fibrils on a time scale that would be 

useful for prevention of HIV infection. Furthermore, SEVI fibrils remodeled by CLR01 were less 

effective seeds for polymerization of monomeric PAP248-286 than those treated with CLR03 or 

buffer, verifying that CLR01 actively remodels fibrils into alternative, non-templating conformers 

(Figure 3.5h). 

 

We next performed circular dichroism experiments to examine the effect of CLR01 on the amyloid 

cross-β structure. Untreated SEVI fibrils or SEVI fibrils treated with CLR03 exhibited a 

pronounced minimum indicative of a characteristic β-sheet rich structure (Figure 3.5f,g). 

However, SEVI fibrils incubated with CLR01 showed a loss in the β-sheet minimum (Figure 

3.5f,g), confirming that CLR01 alters the cross-β architecture of SEVI fibrils. 

 

Next, CLR01 was tested for its ability to remodel preformed PAP85-120 fibrils. After 2h of 

incubation with CLR01, ThT fluorescence intensity decreased to 48% of its initial value, while 

remaining unchanged in the presence of CLR03 (Figure 3.5b). No additional drop in ThT signal 

was observed after 2h. TEM examination revealed few short fibrils as well as small oligomeric 

species (Figure 3.5b). Dose-response analysis indicated an EC50 value for remodeling of 1.54µM 

CLR01 (for 20µM PAP85-120 fibrils) (Figure 3.5e). This higher EC50 needed to remodel PAP85-

120 fibrils is likely due to the lower abundance of lysine residues in the PAP85-120 sequence 

compared to PAP248-286. Importantly, CLR01 is the first agent capable of dissolving multiple 

semen-derived amyloid fibrils. 
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In contrast, CLR01 was unable to disassemble preformed SEM1(45-107) fibrils.  There was no 

change in the ThT fluorescence signal after 6h of incubation of fibrils with CLR01 (Figure 3.5c). 

TEM visualization showed large, dense clusters of fibrils in samples treated with CLR01, CLR03, 

and buffer, verifying that CLR01 was incapable of dissolving SEM1 fibrils (Figure 3.5c). 
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Figure 3.5 CLR01 partially disassembles preformed SEVI and PAP85-120 fibrils. (a-c) 
Preformed SEVI (a), PAP85-120 fibrils (b), and SEM1(45-107) (c) fibrils (20µM) were treated with 
a 10-fold excess of CLR01 or CLR03 or buffer for 0-6h. Fibril integrity was assessed using ThT. 
Values represent means ± SEM (n = 3). TEM (middle panel) and confocal microscopy (bottom 
panel) of SEVI (a), PAP85-120 fibrils (b), and SEM1(45-107) fibrils (c) obtained after 2h treatment 
with CLR01, CLR03, or buffer. Scale bar for TEM images: 500nm. For confocal microcopy, 
samples were stained with Proteostat dye (Experiments performed by members of the Munch 
lab). Scale bar: 20µm. (d,e) Dose-response curve for CLR01 disaggregation of SEVI (d) or 
PAP85-120 (e) fibrils (20µM) after 2h of treatment. The EC50 value is indicated. Values represent 
means ± SEM (n = 7 for SEVI; n = 5-9 for PAP85-120). (f) CD spectrum of SEVI fibrils (50µM) 
incubated with CLR01 or CLR03 (50µM), or buffer. A representative spectrum is shown. (g) The 
mean residue ellipticity (MRE) at 218 nm was averaged from 3 independent experiments. Values 
represent means ± SEM (n=3). (h) Seeding with CLR01-remodeled SEVI products. SEVI fibrils 
(20µM) were treated with CLR01 or CLR03 (200µM), or buffer for 3h and reaction products were 
used to seed PAP248-286 fibrillization (0.1% fibril seed, 1mM peptide). Buffer conditions with no 
fibril seed present were also included. Fibrillization was monitored by ThT fluorescence. Values 
represent means ± SEM (n = 8). 

 

 CLR01-driven disaggregation depends on lysine and arginine residues in PAP248-3.2.5

286 and PAP85-120 

To elucidate the role of lysine- and arginine-tweezer interactions in CLR01-mediated 

disaggregation of SEVI and PAP85-120 fibrils, experiments were performed with PAP248-

286(Ala) and PAP85-120(Ala) peptides. These mutant peptides have all lysine and arginine 

residues present in the original peptides exchanged for alanine. PAP248-286(Ala) and PAP85-

120(Ala) were assembled into fibrils that were subsequently incubated with CLR01, CLR03 or 

buffer. ThT fluorescence intensity remained unchanged for all samples after 6h of incubation, 

indicating that CLR01 is unable to disrupt PAP248-286(Ala) or PAP85-120(Ala) fibrils (Figure 

3.6a,d). Furthermore, CD experiments confirmed that the beta-sheet structure of SEVI(Ala) was 

unaffected by treatment with CLR01 (Figure 3.6b,c). Thus, CLR01-lysine contacts, CLR01-

arginine contacts, or both are critical for the disassembly process. 

 

To further confirm the importance of CLR01-lysine and CLR01-arginine contacts in seminal 

amyloid disaggregation, competitive binding experiments were conducted using poly-lysine. 

Increasing concentrations of poly-lysine (MW 4,000-15,000 corresponding to poly-lysine chain 

lengths of 27-102 residues) were added to solutions containing seminal amyloid fibrils and 
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CLR01, and the extent of disassembly was assessed by ThT. We observed that as poly-lysine 

concentration increased, the degree of disaggregation of both SEVI and PAP85-120 fibrils by 

CLR01 was lessened (Figure 3.6e,f). This finding suggests that poly-lysine can compete with 

seminal amyloid fibrils for CLR01 binding, and thus, CLR01 binding to lysine residues within fibrils 

is crucial for disassembly.  

	  

Figure 3.6 CLR01-mediated disaggregation of seminal amyloid depends on contacts with 
lysine and arginine residues. (a) Preformed SEVI(Ala) fibrils (20µM) were treated with CLR01 
or CLR03 (200µM) or buffer for 0-6 h. Fibril integrity was assessed using ThT fluorescence. 
Values represent means ± SEM (n = 3). (b) CD spectrum of SEVI(Ala) fibrils (50µM) incubated 
with CLR01 or CLR03 (50µM) or buffer. One representative example is shown. (c) The mean 
residue ellipticity (MRE) at 218 nm was averaged from 3 independent experiments. Values 
represent means ± SEM (n=3). (d) Preformed PAP85-120(Ala) fibrils (20µM) were treated with 
CLR01 or CLR03 (200µM) or buffer for 0-6 h. Fibril integrity was assessed using ThT 
fluorescence. Values represent means ± SEM (n = 3). (e,f) SEVI (e) or PAP85-120 (f) fibrils 
(20µM) were incubated with CLR01 (100µM) and increasing concentrations of poly-lysine (polyK). 
Fibril integrity was assessed after 2h using ThT fluorescence. Values represent means ± SEM (n 
= 4-5).  

	  

R
el

at
iv

e 
Th

T 
Fl

uo
re

sc
en

ce

Time (h)
0 2 4 6

0.00

0.25

0.50

0.75

1.00

1.25

CLR01
CLR03
Buffer

a

190 200 210 220 230 240 250 260
-10000

-5000

0

5000

Wavelength (nm)

Buffer

CLR01
CLR03

b c

M
ea

n 
R

es
id

ue
 E

llip
tic

ity
(d

eg
re

e 
cm

2 d
om

-1
)

M
R

E 
at

 2
18

nm
(d

eg
re

e 
cm

2 d
om

-1
)

0

-2000

-4000

-6000

Buff
er

CLR
01

CLR
03

CLR01
CLR03
Buffer

Time (h)
0 2 4 6R

el
at

iv
e 

Th
T 

Fl
uo

re
sc

en
ce

0.00

0.25

0.50

0.75

1.00

1.25

d

SEVI(Ala)

PAP85-120(Ala)

0

25

50

75

100

125

0

25

50

75

100

125

10
0 µ

M C
LR

01
 + 

1 m
M po

lyK

10
0 µ

M C
LR

01

1 m
M po

lyK

SEVI fi
bri

ls 
on

ly

10
0 µ

M C
LR

01
 + 

10
0 µ

M po
lyK

10
0 µ

M C
LR

01
 + 

20
 µM

 po
lyK

R
el

at
iv

e 
Th

T 
Fl

uo
re

sc
en

ce

10
0 µ

M C
LR

01
 + 

1 m
M po

lyK

10
0 µ

M C
LR

01

1 m
M po

lyK

PAP85
-12

0 f
ibr

ils 
on

ly

10
0 µ

M C
LR

01
 + 

10
0 µ

M po
lyK

10
0 µ

M C
LR

01
 + 

20
 µM

 po
lyK

R
el

at
iv

e 
Th

T 
Fl

uo
re

sc
en

ce

e f



	   	   	   	   	  
	  

62	  

 CLR01 abrogates the interaction of seminal amyloids with viral particles and 3.2.6

diminishes their infection enhancing property 

Since the infectivity-enhancing activity of seminal amyloid fibrils is due to their positive surface 

charge [172, 175], we sought to determine whether CLR01 affects this property. To prevent fibril 

disassembly from occurring in these experiments, fibrils were mixed with CLR01, CLR03, or 

buffer, and samples were immediately centrifuged to remove unbound CLR01 and CLR03 

molecules. Subsequently, the surface charge of resuspended fibrils was determined by zeta 

potential measurements. We found that CLR01, but not CLR03, neutralized the positive surface 

charge of SEVI, PAP85-120 and SEM1 fibrils within minutes (Figure 3.7a). Next, confocal 

microscopy was used to assess whether this neutralization could abrogate fibril binding to YFP-

tagged virions. As previously shown [55, 172, 173], buffer-treated fibrils efficiently sequestered 

virions, while in contrast, fibrils pretreated with CLR01, but not CLR03, were unable to form fibril-

virion complexes (Figure 3.7b).  

 

Since fibril-virion complexes are already present before ejaculation or form rapidly post emission 

[68], we next investigated whether CLR01 could displace virions from preformed fibril-virion 

complexes. Remarkably, CLR01 but not CLR03 substantially reduced the number of virions 

covering the surface of SEVI, PAP85-120, and SEM1(45-107) fibrils, however, the fluorescent 

virions did not appear as displaced individual particles in these images (Figure 3.7c). Thus, to 

exclude the possibility that CLR01 quenches the fluorescence of YFP-tagged virions, we 

analyzed virions treated with CLR01 or controls by confocal microscopy. We found that treatment 

of virions with CLR01 did not affect virion fluorescence or the number of fluorescent particles (not 

shown). However, this analysis also revealed that CLR01 prevented virion binding to the surface 

of the chamber slides, suggesting that CLR01 might also directly interact with viral particles 

thereby altering their biophysical properties (not shown). Our results demonstrate that the lysine–

specific tweezer, CLR01, not only prevents the interaction of fibrils with virions but also displaces 

viral particles from preformed fibril-virion complexes. 
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The combined effects of CLR01 on fibril architecture and the formation of fibril-virion complexes 

led us to investigate whether the tweezer might diminish the infection-enhancing property of 

seminal amyloids. We first confirmed that the tweezer did not cause cytotoxic effects at 

concentrations of up to 500µM in TZM-bl cells (Figure 3.7d), a HIV reporter cell line commonly 

used to study virus infection [51, 68]. Next, preformed fibrils were treated for 5min with CLR01, 

CLR03, or buffer. After addition of a low dose of CCR5-tropic HIV, the resulting mixture was 

added to TZM-bl cells and infection was measured via β-galactosidase activity three days later. 

As previously reported [51, 172, 173], the three semen-derived amyloids augmented HIV infection 

in a dose-dependent manner with maximal enhancements between 33- to 64-fold (Figure 3.7e). 

Remarkably, pretreatment of SEVI, PAP85-120 and SEM1(49-107) amyloid with CLR01 

eliminated the infection-enhancing property of the fibrils, while CLR03 had no effect (Figure 3.7e). 

Thus, CLR01 abrogates the infection enhancing activity of seminal amyloids. 
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Figure 3.7 CLR01 neutralizes the positive surface charge of seminal amyloids and 
abrogates their ability to bind virions and enhance HIV infection. (a) Surface charge of 
seminal amyloids determined by zeta potential measurements. Fibrils were mixed with buffer, 
CLR01, or CLR03, and centrifuged for 10min at 20,000g. The pellets were resuspended in KCl 
and zeta potential was measured. Values represent means ± SD (n = 3). (Work from 
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collaborators in the Münch lab) (b) CLR01 inhibits binding of virus to semen-derived fibrils. Fibrils 
(200µg/ml) were pretreated with PBS, CLR01, or CLR03 in 20-fold excess for 5min and stained 
with Proteostat dye. MLV Gag-YFP particles were added 1:2 and allowed to incubate with 
pretreated fibrils for 5min. Samples were analyzed using confocal microscopy. Scale bar: 5µm. 
(Work from collaborators in the Münch lab.) (c) CLR01 displaces virions from fibrils (Work from 
collaborators in the Münch lab). MLV Gag-YFP particles (green) were incubated with Proteostat-
stained seminal amyloids (red) for 5min. PBS, CLR01, or CLR03 were added at 20-fold excess, 
and after an additional 5min of incubation, samples were analyzed by confocal microscopy. Scale 
bar: 5µm. (d) CLR01 is not cytotoxic. TZM-bl cells were incubated for 3 days with the indicated 
concentrations of CLR01 or CLR03. Metabolic activity was measured in an MTT assay. Values 
shown are means ± SD (n = 3). (Work from collaborators in the Münch lab.) (e) CLR01 
antagonizes the HIV-1 enhancing activity of seminal amyloids. SEVI, PAP85-120, and SEM1(49-
107) fibrils were mixed with a 20-fold excess of CLR01 or CLR03. CCR5-tropic HIV-1 was added 
and samples were used to inoculate TZM-bl cells. Infection rates were determined 3 days post 
infection. Values represent mean β-galactosidase activities derived from triplicate infections ± SD 
(RLU/s: relative light units per second). Numbers above symbols indicate the n-fold enhancement 
of infection. (Work from collaborators in the Münch lab.) 

 

 CLR01 exhibits direct anti-HIV activity 3.2.7

In addition to engaging amyloid fibrils, our microscopy results (Figure 3.7b,c) led us to believe 

that CLR01 may be interacting directly with viral particles to alter their biophysical properties. To 

study the consequences of the latter interaction in more detail, two T-cell line-adapted CXCR4- 

and CCR5-tropic HIV-1 variants and two CCR5-tropic transmitted/founder viruses were 

pretreated with CLR01 or controls and then examined for infectivity. Remarkably, CLR01 but not 

CLR03 abrogated viral infectivity in a dose-dependent manner with IC50 values ranging from 13.7 

to 20.1µM (Figure 3.8a). This reduction in infectivity was only observed when virions were 

exposed to CLR01 and not when target cells were pretreated with the tweezer (Figure 3.8b). 

Thus, in addition to its anti-amyloid properties, CLR01 also has direct anti-HIV activity that 

appears to be independent of the viral coreceptor tropism or strain.  

 

To define the underlying mechanism of this antiviral activity, we tested whether CLR01 disrupts 

the integrity of the viral membrane, leading to the release of the inner viral p24 capsid protein. 

HIV virions were exposed to buffer, CLR01 or CLR03 and then separated by centrifugation into a 

soluble fraction (containing free p24) and a sedimentable fraction (containing intact viral 

particles). ELISA measurements demonstrated that the amount of p24 was increased in the 
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soluble fraction of CLR01-treated samples as compared to samples treated with CLR03 or buffer 

(Figure 3.8c). Time course experiments revealed that a 5min incubation of virus with 10µM 

CLR01 resulted in a 62% decrease in HIV infectivity, while a 10min incubation achieved almost a 

100% reduction (Figure 3.8d). Atomic force microscopy (AFM) of mouse leukemia virus particles 

(MLV) confirmed that treatment with CLR01 destroyed virion architecture (Figure 3.8e). This 

effect was independent of the presence of viral glycoproteins, since CLR01 also destroyed HIV-1 

particles lacking gp120/41 (∆env) (Figure 3.8e), suggesting that CLR01 disrupts the integrity of 

the viral membrane.  
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Figure 3.8 CLR01 has direct anti-HIV-1 activity and destroys retroviral particles. (a) CLR01 
blocks HIV-1 infection by targeting virions. Two lab-adapted HIV-1 strains (92TH014 and NL4-3) 
and two transmitted/founder viruses (THRO and CH058) were incubated with CLR01 or CLR03 
for 10min and then used to infect TZM-bl cells. Infection rates were determined 3 days post 
infection. Values represent mean β-galactosidase activities derived from triplicate infections ± SD 
(RLU/s: relative light units per second). (Work from collaborators in the Münch lab.)  (b) The 
antiviral activity of CLR01 is not directed against mammalian cells. TZM-bl cells were exposed to 
CLR01 or CLR03 for 1h. Thereafter, medium was removed and cells were infected with the 
indicated viruses. Infection rates were determined 3 days post infection. Values represent mean 
β-galactosidase activities derived from triplicate infections ± SD (RLU/s: relative light units per 
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second). (Work from collaborators in the Münch lab.) (c) CLR01 releases p24 capsid antigen from 
HIV particles. HIV-1 was incubated with PBS, 100µM CLR03, or 100µM CLR01 and centrifuged 
at 20,000g and 4°C for 1h. The p24 content of the supernatant was determined via p24 ELISA. 
Values represent means ± SD. (Work from collaborators in the Münch lab.) (d) HIV-1 was 
incubated at 37°C with or without 10µM CLR01. Aliquots were taken after different time points 
and analyzed regarding their infectivity using TZM-bl reporter cells. Values were derived from 
triplicate infection (n = 3) and give relative infection rates compared to the buffer control (100%). 
(Work from collaborators in the Münch lab.) (e) CLR01 destroys retroviral particles. Images 
obtained by atomic force microscopy (AFM) show single MLV and glycoprotein-deficient HIV 
particles before and after treatment with 100µM CLR01. Scale bar: 100 nm. (Work from 
collaborators in the Münch lab.) 

	  

 CLR01 exhibits broad antiviral activity against enveloped viruses 3.2.8

Because of the surprising capability of CLR01 to destroy viral membranes, we sought to explore 

whether it could act as a general inhibitor of enveloped viruses. To test this idea, human 

cytomegalovirus (HCMV), herpes simplex virus type 2 (HSV-2), and hepatitis C virus (HCV) were 

treated with CLR01 or CLR03 and then assessed for their ability to infect target cells. 

Remarkably, CLR01, but not CLR03, reduced infection rates of all three analyzed enveloped 

viruses (Figure 3.9a-c). By contrast, CLR01 did not inhibit infection by the non-enveloped human 

adenovirus type 5 (HAdV5) (Figure 3.9d). Thus, the tweezer is a broad-spectrum inhibitor of 

enveloped viruses, including viruses that can be sexually transmitted such as HIV-1, HSV-2 and 

HCV. 

	  

Figure 3.9 CLR01 is a broad-spectrum inhibitor of enveloped viruses. (a) Human 
cytomegalovirus was incubated with PBS, 100µM CLR03, or 100µM CLR01. Afterwards, HFF 
cells were infected and immediate early (IE) antigen positive cells were counted 1 d post infection 
as a measure for infectivity. Values are means ± SD (n = 3). (Work from collaborators in the 
Münch lab.) (b) Herpes simplex virus type 2 comprising a GFP reporter gene was treated with 
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PBS, 100µM CLR03 or 100µM CLR01 and added to Vero cells. GFP-positive cells were counted 
using flow cytometry 2d post infection. Values represent means ± SD (n = 3). (Work from 
collaborators in the Münch lab.) (c) A luciferase encoding hepatitis C virus was treated with 
150µM CLR01 or 150µM CLR03 and used for infection of Huh-7.5 reporter cells. Infection was 
measured 3d post infection. Values represent means ± SEM (n = 3). (Work from collaborators in 
the Münch lab.) (d) A GFP-reporter adenovirus type 5 was added to A549 cells after treatment 
with 158µM CLR01 or 158µM CLR03. GFP positive cells were counted using flow cytometry 1d 
post infection. Values represent means ± SD (n = 3). (Work from collaborators in the Münch lab.) 

	  

 CLR01 disrupts membranes enriched in lipid-raft domains 3.2.9

The result that CLR01 destroys retroviral particles with IC50 values between 10-20µM by 

compromising virion integrity was unexpected, especially because the tweezer does not affect 

cell viability at these concentrations [152, 155]. Despite the fact that viral envelopes are typically 

derived from portions of the host cell membrane, there are surprisingly dissimilarities in 

membrane composition between HIV and plasma membranes. For instance, viral membranes 

differ from cellular membranes in that they are 2-3-fold enriched in specific lipids such as 

sphingomyelin and cholesterol, which can form microdomains termed lipid rafts [210-213]. In 

addition, phosphatidylcholine and phosphatidylethanolamine, which are the major phospholipids 

comprising mammalian membranes, are depleted in viral membranes by a factor of 2.7 and 2.1, 

respectively [211]. Because of these disparities, it has been suggested that HIV particles display 

a more rigid membrane structure, and HIV budding occurs from specialized membrane 

subdomains [214], which is also proposed for influenza virus [215]. Hence, we hypothesized that 

CLR01 might more severely disrupt membranes with lipid-raft domains.  

 

To test this hypothesis, preliminary studies were conducted using overly simplified model 

membranes whose composition was representative of viral or cell membranes. First, dye loaded 

giant unilamellar vesicles (GUV) were generated that consisted of either 1,2-dioleoyl-sn-glycero-

3-phosphocholine (DOPC) to recapitulate a bilayer devoid of lipid rafts, or a mixture of DOPC, 

sphingomyelin and cholesterol (DOPC/SM/Chol) to more closely resemble a lipid raft-rich viral 

membrane. Strikingly, CLR01 permeabilized the model viral membrane within 5-10min while 

having no effect on the DOPC membrane, even after 60min of incubation (work from 
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collaborators in the Winter lab). These results were confirmed by AFM at higher spatial resolution. 

CLR01 treatment of a DOPC membrane that was deposited on mica surface did not affect bilayer 

stability, and the tweezer was homogenously distributed on the scan area. By contrast, the 

DOPC/SM/Chol raft mixture appeared as coexisting liquid-disordered (ld) and liquid-ordered (lo) 

domains, and CLR01 addition induced changes in phase coexistence and decreased height 

differences between both phases (work from collaborators in the Winter lab). After 60min, distinct 

ld and lo domains were no longer visible, and CLR01 was homogenously distributed in the 

remaining fluid phase. Thus, these initial studies highlight the dissimilarities in CLR01’s effects on 

model membranes and suggest that CLR01 selectively disrupts heterogeneous lipid-raft enriched 

membranes. While this work is preliminary, we aim to further explore these effects and elucidate 

a mechanism to better understand CLR01’s membrane permeabilizing activity in the future. 

 

 CLR01 antagonizes the infection enhancing property of human semen 3.2.10

CLR01 binds exposed lysine and arginine residues in amyloid fibrils. These interactions might be 

hindered in the presence of bulk protein or conditions resembling those in seminal fluid. To 

address this issue, lyophilized PAP248-286 was dissolved in an artificial semen simulant (AS) 

[174, 216] containing 50mg/ml bovine serum albumin and agitated until fibril formation was 

complete. These PAP248-286(AS) fibrils were then diluted in AS and incubated with CLR01. A 

reduction in ThT fluorescence intensity to 43% of the initial value was detected (Figure 3.10a). 

This finding confirms that CLR01 maintains its disaggregating activity in a complex solution 

resembling seminal fluid, suggesting that CLR01 effectively targets SEVI fibrils in a complex 

mixture with competing lysine residues. 

 

Next, we tested whether the molecular tweezer inhibited semen-mediated infection enhancement. 

Seminal plasma, which was obtained from pooled semen of ten donors, was treated with CLR01 

or CLR03. Thereafter, a CCR5-tropic lab-adapted virus or a transmitted/founder virus were 

incubated with 10% of these solutions followed by infection of TZM-bl cells. As previously 
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observed [51, 108, 175, 204], seminal plasma markedly enhanced infection of both viruses by 10- 

or 8-fold, respectively (Figure 3.10b). CLR01 decreased viral infectivity in a concentration 

dependent manner, while CLR03 had no impact on semen-mediated infection enhancement. 

Remarkably, at a CLR01 concentration of 31µM, the enhancing effect of semen was completely 

abolished. Thus, CLR01 prevents HIV infection in the presence of semen. 

 

Finally, we sought to determine whether the predominant mode of action of CLR01 was via its 

anti-amyloid activity or its direct anti-viral effect. To test this, seminal amyloid fibrils were 

incubated with a concentration of CLR01 that was sufficient to partially disassemble the fibrils. 

These solutions were subsequently diluted to reduce the concentration of CLR01 such that 

CLR01 could no longer exert a direct anti-viral effect against HIV (Figure 3.10c, left panel). This 

set-up allows us to solely examine the infectivity-promoting property of fibrils that were subject to 

CLR01 treatment, and we found that CLR01-treated fibrils retained their ability to boost HIV 

infectivity (Figure 3.10c, right panel). However, it should be stated that there are several caveats 

to this experiment. For instance, it is unclear what happens to fibrils in response to the dilution 

step. It is plausible that CLR01 may dissociate from fibrils and that fibrils could reform once 

CLR01 is unbound. Nonetheless, based on these results, we conclude that the primary 

mechanism for CLR01 activity is through its direct effect on the virus and any anti-amyloid activity 

plays a secondary role.  
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Figure 3.10 CLR01 diminishes the infection enhancing property of semen. (a) SEVI fibrils 
were formed in an artificial semen simulant (AS) [216]. SEVI(AS) fibrils were then diluted to 20µM 
in AS and treated with 20µM CLR01 or CLR03, or with buffer for 2h. Fibril integrity was assessed 
using ThT fluorescence. Values represent means ± SEM (n = 4).  (b) CLR01 abrogates semen-
mediated enhancement of HIV infection. Seminal plasma (10%) or medium containing CLR01 or 
CLR03 was mixed with R5-tropic HIV-1 or transmitter/founder HIV-1 CH058. After 10min, TZM-bl 
cells were infected and infectivity was measured 3 days post infection. Shown are the n-fold 
increased infection rates obtained for semen-treated virus relative to those of medium-treated 
virus. Values represent means ± SD (n = 4). (Work from collaborators in the Münch lab.) (c) 
SEVI, PAP85-120, or SEM1(45-107) fibrils (20µM) were treated with 100µM CLR01 or CLR03, or 
buffer for 3h. Samples were subsequently diluted by a factor of 5, and infectivity was assessed in 
TZM-bl cells and expressed as normalized infectivity to buffer-treated fibril samples. Values 
represent means ± SEM (n = 3). HIV-1 CH058 virions (100 infectious units) were used. 

 

 Discussion 3.3

Despite the development of numerous different classes of microbicides, none have proven safe 

and effective at HIV prevention. The failure of microbicide candidates in previous clinical trials has 

been attributed to lack of adherence, adverse effects and a greatly diminished antiviral efficacy in 

the presence of semen. This bodily fluid is not only the main vector for HIV transmission but also 
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contains amyloid fibrils that markedly increase viral infectivity [179]. Thus, future endeavors 

should aim to focus on combination products that simultaneously target HIV and the host factors 

that are exploited by the virus to facilitate its transmission [179]. Here, we report that CLR01, a 

lysine-specific molecular tweezer, not only counteracts the infection-enhancing activity of seminal 

amyloids and semen, but also directly destroys HIV virions (Figure 3.11). The minimal in vivo 

toxicity and the combined anti-viral and anti-amyloid activities make this compound a highly 

promising microbicide candidate. 

 

        	  

Figure 3.11 Schematic overview of the anti-amyloid and anti-viral effects of CLR01. 
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It was surprising that the tweezer not only affected the formation and function of seminal amyloids 

but also displayed a broad and direct antiviral activity against HIV and other enveloped viruses 

(Figure 3.11). Since the CLR03 control, which has a similar negative charge as CLR01 [152], was 

entirely ineffective at blocking viral infection, a purely polyanion-like mechanism that prevents the 

interaction of virions and cells by increasing charge repulsion [217, 218] could be excluded. 

Instead, our results demonstrate that CLR01 selectively disrupts membranes containing elevated 

levels of sphingomyelin and cholesterol. Envelopes of HIV-1, herpes viruses and HCV differ from 

the cellular plasma membrane as they are more highly enriched in these and other lipids [211, 

212, 219, 220]. We investigated whether the tweezer might recognize the charged lipid head 

groups but found via NMR shift experiments that this was not the case. However, experiments on 

various phase boundaries strongly indicated that the tweezer could migrate into lipid bilayers due 

to its amphiphilic character. A pronounced destabilizing effect may be triggered if this happens at 

the edge of lipid rafts that are enriched in virion membranes. Importantly, HSV-2, HCMV and HCV 

can also be transmitted via sexual intercourse [221-223]. Thus, a CLR01-based microbicide 

would not only protect from HIV-1 acquisition but also from other major human pathogens. 

 

CLR01 binding to lysine residues could potentially disrupt normal protein function leading to 

toxicity or side effects. However, CLR01 showed no signs of cytotoxicity in this study and has 

previously been safely employed in multiple cell and animal models [152, 154, 155, 157]. For 

instance, zebrafish treated with CLR01 showed suppressed α-synuclein aggregation in neurons 

with no signs of toxicity [154]. In a mouse model of Alzheimer’s disease, transgenic mice given 

CLR01 showed a decrease in brain amyloid-β aggregates with no apparent toxicity or adverse 

effects [155].  

 

Unlike previous microbicide candidates that block HIV infection by a single mechanism, a CLR01-

based formulation would interfere with various essential steps in sexual HIV transmission (Fig. 

3.11). On a minute time frame, the tweezer destroys infectious HIV particles that are present in 
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semen, prevents the formation of amyloid/virus complexes by neutralization of the fibril surface 

charge, and also displaces pre-bound virions from fibrils. On a longer time frame (hours), CLR01 

not only prevents the formation of infection-enhancing seminal amyloids upon ejaculation but also 

remodels fibrils that are already abundant in semen after ejaculation or formed during semen 

liquefaction. Given the timeframe of these effects, we suggest that the primary mechanism of 

CLR01 action is via its direct effect on the virus, and that the anti-amyloid effects, although 

potent, play a secondary role. Regardless, these combined anti-viral and anti-amyloid activities 

and the encouraging safety data make CLR01 a highly promising broad-spectrum microbicide 

against HIV-1 and other sexually transmitted viruses. 
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CHAPTER 4:  EPIGALLOCATECHIN-3-GALLATE RAPIDLY ERADICATES PAP85-
120, SEM1(45-107), AND SEM2(49-107) SEMINAL AMYLOID FIBRILS 

 

	  

 Introduction 4.1

Human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome 

(AIDS), remains one of the most pressing global health challenges. The global HIV/AIDS 

prevalence rate is 0.8% and the majority of infections are transmitted heterosexually [169]. 

Semen harbors amyloid fibrils that potently enhance HIV infectivity in vitro [17, 57, 58]. 

Specifically, proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120), 

semenogelin 1 (SEM1), and semenogelin 2 (SEM2) form fibrils that boost infectivity by 

electrostatically facilitating viral attachment to target cells [17, 57, 58, 68]. This enhancement of 

infection can be as large as several orders of magnitude and is independent of viral genotype and 

coreceptor tropism as well as the virus producer and target cell type [224]. Remarkably, the 

stimulatory effect of SEVI fibrils is greatest at low virus concentration, similar to the conditions 

observed in mucosal transmission of HIV, where relatively few virions traverse the mucosal 

barrier and initiate infection [20]. Devising a method to rapidly dissolve seminal amyloid fibrils 

would provide a novel and urgently needed preventative, microbicidal strategy for reducing HIV 

infection via sexual transmission [179]. 

 

We sought small molecules that might disrupt seminal amyloid, as seminal fluid contains various 

proteases that could threaten the integrity of protein-based agents [225]. However, small 

molecules that disrupt the highly stable, self-templating amyloid form remain rare [226]. One 

notable exception is epigallocatechin-3-gallate (EGCG), the major catechin from green tea, which 

exerts a wide range of antioxidant, anti-cancer, anti-aging, and anti-viral effects, while also 

exhibiting cardioprotective and neuroprotective properties [227-230]. Interestingly, EGCG can 

potently inhibit the amyloidogenesis of various polypeptides and can also disassemble a wide 

range of preformed amyloid fibrils [116, 160-162, 231, 232]. Moreover, EGCG has been shown 
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to: inhibit formation of PAP248-286 fibrils termed SEVI (Semen derived Enhancer of Viral 

Infection) via interaction with charged side chains [109]; dose-dependently deconstruct preformed 

SEVI fibrils [108]; and reduce both SEVI- and semen-mediated enhancement of HIV infection [67, 

108]. Importantly, EGCG (0.4mM) was found to have an inhibitory effect on 41 out of 47 individual 

semen samples with a median inhibition of infection of ~70.6% [67]. 

 

Here, we investigated the effect of EGCG on other seminal amyloid conformers formed by 

PAP85-120, SEM1(45-107), and SEM2(49-107). Because numerous proteolytic peptide 

fragments of SEM1 and SEM2 can assemble into amyloid fibrils that promote HIV infection, we 

focused on the SEM1(45-107) and SEM2(49-107) fragments as representative samples. We 

found that EGCG eradicates PAP85-120, SEM1(45-107), and SEM2(49-107) fibrils, and this 

deconstruction of amyloid occurs on a drastically more rapid time scale than has been observed 

with SEVI fibrils. Our findings establish EGCG as the first small molecule shown to eliminate all 

four classes of seminal amyloid. 

 

 Results 4.2

 EGCG slowly disassembles SEVI fibrils 4.2.1

The small molecule epigallocatechin-gallate (EGCG), a potent antioxidant found in green tea, has 

previously been shown to dose-dependently disassemble SEVI fibrils over 24-48 h [108]. We 

confirmed this gradual disassembly, as a drastic decrease in ThT fluorescence intensity was not 

observed until SEVI fibrils were treated with a ten-fold excess of EGCG for 24 h (Figure 4.1a). 

TEM verified that fibrils were still the predominant species present after a 2h treatment with 

EGCG (Figure 4.1b). Furthermore, we found that SEVI fibrils pre-treated with EGCG for 6h could 

still effectively ‘seed’ the fibrillization of monomeric PAP248-286 (Figure 4.1c). Thus, EGCG is 

unable to eliminate self-templating activity or remodel SEVI into a non-amyloid form on this 

timescale (Figure 4.1c). After a longer 24h treatment, however, a striking change in morphology 
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was observed by TEM, where significantly smaller structures were observed in place of fibrils 

(Figure 4.1b). Thus, we confirm previous observations that EGCG remodels SEVI fibrils [108]. 

 

              	  

Figure 4.1 EGCG slowly remodels SEVI fibrils into non-amyloid structures. (a) Preformed 
SEVI fibrils (20µM) were incubated with buffer (untreated) or EGCG (200µM) for 0-24 h. Fibril 
integrity was assessed by ThT fluorescence. Values represent means ± s.e.m. (n=4). (b) 
Transmission electron micrographs of SEVI fibrils incubated with buffer (untreated) or EGCG for 
2h or 24h. (c) SEVI fibrils (20µM) were incubated with buffer (untreated) or EGCG (200µM) for 
6h, and the resulting products were used to seed soluble PAP248-286 (1mM, 0.1% fibril seed) 
fibrillization. Buffer conditions lacking fibril seed were included. Fibril assembly was monitored by 
ThT fluorescence. Values represent means ± s.e.m. (n=4). 

 

 EGCG rapidly eliminates PAP85-120 fibrils 4.2.2

Next, we explored the effect of EGCG on other amyloid fibrils present in semen. Since a multitude 
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antagonize amyloid-mediated HIV infectivity enhancement [179]. Hence, we investigated whether 

EGCG could disrupt PAP85-120, SEM1(45-107), and SEM2(49-107) fibrils. 

Using a ten-fold excess of EGCG, we found that the ThT fluorescence intensity of PAP85-120 

fibrils decreased to ~55% of the initial value immediately after the addition of EGCG (Figure 

4.2a). Several studies have shown that EGCG does not interfere with ThT fluorescence by some 

non-specific mechanism [116, 160, 161, 232]. Thus, we attribute this rapid decay of ThT 

fluorescence to rapid fibril remodeling, which has also been observed with EGCG and amylin 

fibrils [160, 232]. A further reduction of ThT fluorescence to ~27% was seen after 2h of treatment 

with EGCG, and after 6h, the ThT fluorescence intensity dropped by ~95%. The disassembly of 

PAP85-120 by EGCG occurred significantly more rapidly than that observed with SEVI fibrils, 

which were largely intact after 6h (Figure 4.1a). Analysis of PAP85-120 fibrils treated with EGCG 

for 6h by TEM showed predominately small, non-fibrillar species, as well as a few short fibrils 

(Figure 4.2b). Thus, EGCG rapidly eliminates PAP85-120 fibrils. 

 

       	  

Figure 4.2  EGCG rapidly disassembles PAP85-120 amyloid fibrils. (a) PAP85-120 fibrils 
(20µM) were incubated with buffer (untreated) or EGCG (200µM) for 0-6h. Fibril integrity was 
assessed by measuring ThT fluorescence intensity. Values represent means ± s.e.m. (n=3). 
(Work of Rebecca Hammond, Shorter lab.) (b) Transmission electron micrographs of PAP85-120 
fibrils incubated with buffer (untreated) or EGCG for 6 . (Work of Rebecca Hammond, Shorter 
lab.) 
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 EGCG rapidly eliminates SEM1(45-107) and SEM2(49-107) fibrils 4.2.3

Next, we tested whether EGCG could also remodel SEM1(45-107) and SEM2(49-107) fibrils. The 

ThT fluorescence intensity decayed drastically to ~25% of the initial value for SEM1(45-107) and 

~30% for SEM2(49-107) immediately following the addition of a ten-fold excess of EGCG (Figure 

4.3a,b). Only a minor additional decline in ThT intensity to ~18% of the initial value was observed 

for SEM1(45-107) fibrils after 24h of incubation with EGCG (Figure 4.3a). After 6h, EGCG 

reduced ThT fluorescence of SEM2(49-107) fibrils to ~20% of the initial value (Figure 4.3b). This 

rapid disintegration of SEM1(45-107) and SEM2(49-107) fibrils by EGCG was unexpected and 

strongly suggests that EGCG disrupts critical contacts that are required for SEM1(45-107) and 

SEM2(49-107) fibril stability. Examination by TEM revealed that EGCG-remodeled SEM1(45-107)  

and SEM2(49-107) products were also very small non-fibrillar structures, illustrating the efficiency 

and completeness of the disaggregation (Figure 4.3c,d). Thus, EGCG rapidly eliminates 

SEM1(45-107) and SEM2(49-107) fibrils. 
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Figure 4.3 EGCG rapidly eliminates SEM1(45-107) and SEM2(49-107) fibrils. (a) SEM1(45-
107) fibrils (20µM) were incubated with buffer (untreated) or EGCG (200µM) for 0-24h. Fibril 
integrity was assessed by measuring ThT fluorescence intensity. Values represent means ± 
s.e.m. (n=3). (Work of Rebecca Hammond, Shorter lab.)  (b) SEM2(49-107) fibrils (20µM) were 
incubated with buffer (untreated) or EGCG (200µM) for 0-6h. Fibril integrity was assessed by 
measuring ThT fluorescence intensity. Values represent means ± s.e.m. (n=3). (Work of Rebecca 
Hammond, Shorter lab.)  (c, d) Transmission electron micrographs of SEM1(45-107) fibrils (c) or 
SEM2(49-107) fibrils (d) incubated with buffer (untreated) or EGCG for 2h. (Work of Rebecca 
Hammond, Shorter lab.) 
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EGCG is the first agent that has been found to disrupt the amyloid architecture of all four classes 
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previous work reported that EGCG counteracts the viral infection enhancing activity of SEVI 

[108], we next sought to determine whether the products of PAP85-120, SEM1(45-107) and 

SEM2(49-107) fibril remodeling by EGCG also had a reduced capacity to boost HIV infectivity. 

However, our analysis was confounded, since EGCG on its own exhibited a marked anti-viral 
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effect against three different HIV strains that were tested (Figure 4.4). At a concentration of only 

0.25µM EGCG, viral infectivity was reduced to ~61%, ~35%, and ~11% of the control condition 

against the HIV-1 viral strains BL2, BaL, and 89.6, respectively (Figure 4.4). When the EGCG 

concentration was increased to 1.25µM or higher, the infectivity of all three strains was essentially 

abolished. None of the EGCG concentrations tested were toxic to cells (data not shown). The 

anti-HIV effect of EGCG has been previously described and is proposed to occur through a 

variety of diverse mechanisms [233]. This direct anti-viral property in combination with the ability 

of EGCG to remodel SEVI, PAP85-120, SEM1(45-107) and SEM2(49-107) seminal amyloids 

highlight the potential for the use of EGCG in a preventative HIV microbicide with dual 

mechanisms of action. 

 

                          	  

Figure 4.4 EGCG inhibits HIV infectivity in cell culture. TZM-bl cells were infected with three 
HIV-1 strains (BL2, BaL, and 89.6) in the presence of the indicated concentrations of EGCG, 
which represent the final concentrations in cell culture. Infectivity was monitored by measuring 
luciferase activity in the cell cultures (in RLUs). Background activities derived from uninfected 
cells were subtracted. Values represent means ± s.e.m. (n=3). 

 

 

 Discussion 4.3

Here, we show that in addition to disaggregating SEVI fibrils [108], EGCG can dismantle PAP85-

120, SEM1(45-107), and SEM2(49-107) fibrils rapidly and completely. EGCG is the first reported 
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agent that can remodel all four classes of seminal amyloid identified to date. PAP85-120, 

SEM1(45-107), and SEM2(49-107) fibrils were remodeled by EGCG more rapidly than SEVI 

fibrils, indicating that the cross-β contacts that maintain PAP85-120, SEM1(45-107), and 

SEM2(49-107) fibrils are more susceptible to disruption by EGCG. Because we also observed 

complete inhibition of three HIV strains by micromolar concentrations of EGCG in our 

experimental paradigm, we were unable to investigate the infectivity-enhancing potential of the 

disassembled products. 

 

Preliminary experiments have been conducted to further characterize EGCG-remodeled 

products. These studies have suggested that it is unlikely that EGCG is solubilizing seminal 

amyloid into peptide monomers, but is instead inducing a conformational conversion of seminal 

amyloid into highly SDS-resistant structures. Similar results have been observed previously, and 

in fact, EGCG was found to remodel α-synuclein fibrils, Aβ42 fibrils, and Aβ42 oligomers causing 

a considerable increase in the amount of SDS-stable structures [161]. Additional experiments 

examining the nature of EGCG-remodeled seminal amyloid products are ongoing. 

 

EGCG has also been shown to inhibit the infection-enhancing properties of both SEVI and semen 

[67, 108]. In a minority of individual semen samples, however, this enhancement was resistant to 

EGCG treatment, and reasons for this variability remain to be further elucidated. In this regard, it 

is interesting to note that EGCG can exhibit differential ability to remodel distinct yeast Sup35 

prion strains [116, 119, 234]. By analogy, it is plausible that seminal peptides might also be 

capable of assembling into EGCG-resistant amyloid polymorphs in a minority of individuals. It 

therefore becomes important to elucidate small molecule combinations that disrupt all seminal 

amyloid strains [116, 119, 234]. 

 

Finally, EGCG exhibits pronounced antiretroviral effects in the absence of seminal amyloid and 

affects a multitude of steps in the HIV replication cycle. Specifically, EGCG inhibits cell entry by 
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obstructing the attachment of viral gp120 to CD4 T cells [235, 236], and viral replication through 

inhibition of Tat-induced LTR transactivation [237]. EGCG has also been proposed to function as 

an allosteric reverse transcriptase inhibitor [238] and an integrase inhibitor [239]. Interestingly, 

EGCG also exerts anti-viral effects on both herpes simplex virus (HSV) [240] and Hepatitis C 

virus (HCV) [241]. In each of these cases, EGCG is believed to interact with either HSV or HCV 

glycoproteins, thus inhibiting cell entry by the virus. The combined anti-amyloid and anti-viral 

effects of EGCG make it a promising candidate for use in a vaginal microbicide with diverse 

modes of action.   
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 
	  

 Conclusions 5.1

In this thesis, we have deciphered several strategies to counteract amyloid-mediated 

enhancement of HIV infection. In Chapter 1, we explored the use of a protein disaggregase from 

yeast, Hsp104, to antagonize seminal amyloid. We characterized three predominant modes of 

action of Hsp104 that inhibited seminal amyloid activity: 1) Hsp104 remodeled SEVI and PAP85-

120 fibrils into non-amyloid aggregates, 2) Hsp104 and enzymatically inactive Hsp104 scaffolds 

induced the clustering of seminal amyloid into larger species, and 3) Hsp104 was modified to 

interact with a bacterial peptidase resulting in degradation of seminal amyloid substrates. In 

Chapter 2, we establish that a small molecule lysine-specific “molecular tweezer,” CLR01, 

partially remodeled seminal amyloid and abrogated the ability of seminal amyloid and semen to 

boost HIV infection. Surprisingly, CLR01 also directly inhibited infection by HIV and other 

enveloped viruses by selectively disrupting the integrity of enveloped virions, although the exact 

mechanism behind this effect remains to be further elucidated. Finally, in Chapter 3, we 

demonstrated that the compound epigallocatechin gallate (EGCG) is the first small molecule to 

eradicate all four classes of seminal amyloid, and we confirmed that EGCG also has direct anti-

HIV activity.  

 

Our results that CLR01 and EGCG both displayed direct anti-viral activity against HIV made it 

difficult to ascertain the effects of remodeled seminal amyloid fibrils on HIV infection 

enhancement. However, there are certainly advantages to small molecules that possess both 

anti-amyloid and anti-viral activities, as they can directly antagonize virions and also counteract 

the host-derived factors that play a role in viral transmission. Such dual-functioning compounds 

could present as promising microbicide components to prevent HIV transmission. Nevertheless, 

our work with Hsp104 has conclusively demonstrated that strategies aimed at targeting and 
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inhibiting seminal amyloid are practicable and valuable approaches for reducing HIV 

transmission.   

 

Despite the development of numerous different classes of microbicides, none have proven 

effective at HIV prevention in clinical trials. The failure of these compounds raised questions 

about what factors could impact microbicide efficacy and highlighted our incomplete 

understanding of the complexities that occur during sexual transmission. One important factor 

that has contributed to microbicide inefficiency is reduction of antiviral activity in the presence of 

semen [242]. Preclinical models do not typically accurately replicate what occurs during 

heterosexual transmission, where semen and female genital tract secretions could potentially 

modulate microbicide efficacy. In fact, seminal proteins were found to interfere with the antiviral 

activity of PRO 2000 and cellulose sulfate by competitively inhibiting binding of microbicide 

compounds to the viral envelope [243-245]. In addition, other polyanion microbicide candidates 

including carrageenan, cellulose acetate phthalate, poly(naphthalene sulfonate), and polystyrene 

sulfonate, were all found to have considerably reduced HIV inhibitory activity in the presence of 

seminal plasma [94]. These instances emphasize the significance of testing potential 

microbicides under conditions reflective of sexual transmission. Importantly, EGCG abrogates 

semen-mediated enhancement of virus infection [246], and we have shown that CLR01 also 

markedly reduces the infectivity promoting property of semen and targets amyloid fibrils in a 

solution resembling seminal fluid. These experiments highlight the utility and potential efficacy of 

these agents as candidate microbicides. In the future, it will also be crucial to conduct similar 

studies with Hsp104 to examine whether Hsp104 can counteract seminal amyloid in the presence 

of semen. 

 

 Future Directions 5.2

In Chapter 2, we find that seminal amyloid fibrils must be disseminated to retain their HIV 

infection promoting capability, and Hsp104 can reduce amyloid mediated infection enhancement 
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by clustering fibrils into larger assemblies. A key future experiment would be to pinpoint short, 

specific regions within the Hsp104 sequence that mediate clumping of seminal amyloid fibrils. 

Using this novel approach, we can design peptide-based inhibitors to block seminal amyloid 

functionality. With these principles in mind, we could also conduct a small molecule screen to 

identify compounds that function similarly to induce the formation of larger seminal amyloid 

aggregates. A small molecule that can counteract seminal amyloid in this way may be a more 

feasible option for a microbicide candidate than a large biologic like Hsp104 or even a small 

peptide, since semen contains an abundance of seminal proteases that could interfere with their 

stability. 

 

In this thesis, we have identified several methods to remodel, disassemble, and even degrade 

seminal amyloid fibrils. In the future, it will be interesting to combine sequential strategies to 

further enhance amyloid clearance. For example, we could remodel seminal amyloid using the 

small molecules CLR01 or EGCG, and then subsequently subject the remodeled products to the 

HAP-ClpP proteolytic system. By incorporating an initial step to partially disassemble the amyloid 

substrate, we could potentially enhance amyloid degradation and clearance with HAP-ClpP, and 

therefore preclude amyloid from reforming. This strategy could also be developed for intractable 

amyloids involved in other human diseases as well. 

 

An important next step in reinforcing the potential utility of Hsp104, CLR01, and EGCG as topical 

microbicides will be to assess the inflammatory potential of these agents and ensure that they do 

not induce pro-inflammatory responses or disruption of the vaginal epithelium, as these adverse 

reactions could actually increase HIV infection. It is also crucial to think about the use of these 

agents in terms of how they fit into a natural biological setting. For example, if these 

compounds/proteins are to be used as a component of a vaginal microbicide, we must consider 

their efficacy in the setting of the vaginal extracellular matrix. Fibronectin has been identified as a 

natural and consistent interaction partner of seminal amyloid fibrils, and it even synergistically 
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increases the infectivity enhancing property of seminal amyloid [247]. Thus, it will important to 

decipher how effective Hsp104, CLR01, and EGCG are at targeting seminal amyloid fibrils that 

are bound to natural interaction partners. 

 

Another key future goal in the continuation of this research project is to pre-clinically test Hsp104, 

CLR01, and EGCG for microbicide safety and efficacy. However, one of the major limitations in 

microbicide development is the lack of an animal model that recapitulates the principal features of 

HIV infection in humans. Humanized mouse and nonhuman primate models could be used to test 

the efficacy of our anti-amyloid (and anti-viral) agents as potential microbicides. However, there 

are still many limitations to such experiments, and because seminal amyloid has not been 

identified in other species, these models would not accurately replicate the physiological context 

of human sexual virus transmission. 
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CHAPTER 6: MATERIALS AND METHODS 
 

 Small molecules and seminal plasma 6.1

EGCG was obtained from Sigma-Aldrich and stock solutions of 10mM were freshly prepared daily 

in assay buffer (25mM HEPES, 150mM KOAc, 10mM Mg(OAc)2, pH 7.4). CLR01 and CLR03 

were generated as described previously [151], and 10mM stock solutions were prepared in Gibco 

Ultrapure water and frozen at -20°C. Poly-L-lysine hydrobromide (molecular weight 4,000-15,000 

by viscosity) was purchased from Sigma-Aldrich and stock solutions of 10mM were prepared in 

assay buffer and frozen at -20°C. Seminal plasma represents the cell-free fraction of pooled 

human semen centrifuged at 20,000g for 30min at 4°C. The artificial semen simulant was 

prepared as described previously [216]. 

 

 Peptides and amyloid formation 6.2

Lyophilized peptides were reconstituted and assembled into fibrils as described [17, 57, 58]. 

Synthetic peptides PAP248-286 (SEVI), PAP248-286(Ala), PAP85-120, and SEM1(45-107) or 

(49-107) were purchased from Keck Biotechnology Resource Laboratory (Yale University, New 

Haven, CT) or Celtek peptides. Synthetic PAP85-120(Ala) was obtained from Bachem. 

PAP248-286: Briefly, lyophilized PAP248-286 (1-2mg) was dissolved in 100µL of PBS and 

passaged through a 0.2µm filter. The concentration of a 1:10 diluted sample was determined by 

measuring absorbance at 280nm on a Nanodrop spectrophotometer using an extinction 

coefficient of 2980M-1cm-1. The concentration was then adjusted with PBS to result in a 100µL 

aliquot of a 1mM peptide solution, which was then agitated at 37°C and 1400rpm (Eppendorf 

Thermomixer) for ~72h. All subsequent SEVI fibrils were assembled by adding 1% preformed 

fibril seed to soluble PAP248-286 solutions and agitating at 37°C and 1400rpm overnight.  

PAP85-120: Lyophilized PAP85-120 (1-2mg) was first dissolved in 100µL of 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP) to remove preformed aggregates. HFIP was removed by drying in a 

speed vacuum for 30min. The resulting film was dissolved in Gibco UltraPure water and 
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passaged through a 0.2µm filter. The concentration of a 1:10 diluted sample was determined by 

measuring absorbance at 280nm on a Nanodrop spectrophotometer using an extinction 

coefficient of 4470M-1cm-1. The concentration was then adjusted with Gibco UltraPure water to 

result in a 100µL aliquot of a 1 mM peptide solution, which was then agitated at 37°C and 

1400rpm for 24-48h.  

SEM1 and SEM2 peptides: Lyophilized SEM1(45-107) or SEM2(49-107) (~1mg) were dissolved 

in either 100µL of PBS or 0.123M sodium phosphate buffer and passaged through a 0.2µm filter. 

The concentration of a 1:10 diluted sample was determined by measuring absorbance at 280nm 

on a Nanodrop spectrophotometer using an extinction coefficient of either 5960M-1cm-1 (SEM1) or 

8480M-1cm-1 (SEM2). The concentration was then adjusted to result in a 100µL aliquot of a 

0.5mM peptide solution, which was then agitated at 37°C and 1400rpm for 7 days.  

PAP248-286(Ala): Lyophilized PAP248-286(Ala) (1.5mg) was dissolved in 500µL of PBS. The 

solution was heated at 99°C for 5min to improve solubility and was subsequently passaged 

through at 0.2µm filter to remove insoluble material. The concentration was determined by 

measuring absorbance at 280nm on a Nanodrop spectrophotometer using an extinction 

coefficient of 2980M-1cm-1. The concentration was then adjusted with PBS to result in a 100µL 

aliquot of a 100µM peptide solution, which was then agitated at 37°C and 1400rpm for 24h.  

PAP85-120(Ala): Lyophilized PAP85-120(Ala) (1mg) was dissolved in 100µL of Gibco UltraPure 

water and passaged through a 0.2µm filter to remove insoluble material. The concentration was 

determined by measuring absorbance at 280nm on a Nanodrop spectrophotometer using an 

extinction coefficient of 4470M-1cm-1. The concentration was then adjusted with Gibco UltraPure 

water to result in a 100µL aliquot of a 100µM peptide solution, which was then agitated at 37°C 

and 1400rpm for 24h. 

 

 Protein expression and purification 6.3

Untagged Hsp104 variants: Hsp104 variants were generated using QuikChange Lightning Site-

Directed Mutagenesis (Agilent). Untagged Hsp104 variants in a pNOTAG vector (WT, HAP, 
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DWB, and A503V) were overexpressed in BL21(DE3)-RIL E. coli cells and induced with 1mM 

IPTG overnight at 15°C. Untagged Hsp104 variants were purified using Affi-Gel Blue (Bio-Rad) 

followed by Resource Q anion-exchange chromatography as described [183]. Briefly, cells were 

harvested via centrifugation (4000rpm, 20min, 4°C) and resuspended in lysis buffer (50mM Tris 

pH 8, 10mM MgCl2, 2.5% glycerol, 2mM β-mercaptoethanol, 5µM pepstatin A, complete protease 

inhibitor cocktail (1 EDTA-free tablet per 50mL (Roche)). Cells were lysed by sonication, and cell 

debris was removed via centrifugation (16,000rpm, 20min, 4°C). A 50% slurry of Affi Blue (Bio-

Rad) equilibrated in lysis buffer was added to the supernatant and samples were rotated for 4h at 

4°C. The beads were washed 3 times with wash buffer (50mM Tris pH 8, 10mM MgCl2, 2.5% 

glycerol, 2mM β-mercaptoethanol, 100mM KCl) and collected after each wash by centrifugation 

(2000rpm, 2min, 4°C). The protein was eluted from the Affi-Blue resin by incubating with elution 

buffer (50mM Tris pH 8, 10mM MgCl2, 2.5% glycerol, 2mM β-mercaptoethanol, 1M KCl) for 30 

minutes. Following elution, the protein was buffer exchanged into Buffer Q (20mM Tris pH 8, 

0.5mM EDTA, 5mM MgCl2, 50mM NaCl) using centrifugal filter units (Amicon). The protein was 

further purified via Resource Q anion exchange chromatography using a gradient of buffer Q+ 

(20mM Tris pH 8, 0.5mM EDTA, 5mM MgCl2, 1M NaCl). Hsp104 typically elutes around 31-34% 

Buffer Q+. Hsp104-containing fractions were collected, buffer exchanged into Hsp104 storage 

buffer (40mM HEPES pH 7.4, 150mM KCl, 20mM MgCl2, 10% glycerol, 1mM DTT), snap frozen, 

and stored at -80°C. 

 

His-tagged proteins: His-tagged proteins (ClpP, ClpB, GFP, Hsp1041-548, and Hsp104773-908) 

were purified using Ni Sepharose 6 Fast Flow (GE Life Sciences) following standard procedures. 

See Table 1 for overexpression, induction, and storage conditions for each his-tagged protein. 

The reported concentrations of Hsp104 or ClpB refer to the hexamer and ClpP to the 14-mer 

unless otherwise indicated. Hsp70, Hsp40, DnaK, DnaJ, and GrpE were from Enzo Life Sciences. 
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Table 1: Expression, induction, and storage conditions for purification of his-tagged 
proteins 

His-tagged 
protein 

Cells used for 
expression Induction conditions Storage buffer 

ClpP BL21(DE3) 1mM IPTG for 3.5h at 37°C 
20mM Tris pH 7.5, 100mM 

KCl, 0.1mM EDTA, 10% 
glycerol, 5mM DTT 

ClpB M15 1mM IPTG overnight at 15°C 
40mM HEPES pH 7.4, 

150mM KCl, 20mM MgCl2, 
10% glycerol, 1mM DTT 

GFP BL21-RIL 1mM IPTG for 4h at 30°C 

20mM Tris pH 7.5, 100mM 
KCl, 0.1mM EDTA, 10% 

glycerol, 20mM MgCl2, 5mM 
DTT 

Hsp1041-548 or 
Hsp104773-908 BL21-RIL 1mM IPTG overnight at 15°C 

40mM HEPES pH 7.4, 
150mM KCl, 20mM MgCl2, 
10% glycerol, 1mM DTT 

 

 Inhibition of amyloid fibrillization with CLR01 6.4

Each reconstituted peptide was incubated with equimolar CLR01 or CLR03 in a volume of 100µL 

and agitated at 37°C at 1400rpm. At various time points, 1µL aliquots were removed and added 

to 200µL of 25µM ThT in PBS. Changes in fluorescence (excitation: 440 nm, emission: 482 nm, 

gain: 100) were measured using a Tecan Safire2 microplate reader. To determine IC50 values for 

dose-response relationships, the data was analyzed using GraphPad Prism software. A nonlinear 

regression analysis (log(inhibitor) vs. response (three parameters)) was used and fitted with the 

least squares (ordinary) fit.  

 

 Sedimentation analysis 6.5

To assess the extent of fibril assembly of disassembly using sedimentation analysis, fibril 

samples (20µM fibrils, 100µL volume) were centrifuged for 10min at 13,200rpm. The supernatant 

was carefully removed and transferred to a new tube, and the pellet was redissolved in an equal 

volume (100µL) of buffer. Then, 50µL of 3X sample buffer (6% SDS, 187.5mM Tris, 30% glycerol, 

10% β-mercaptoethanol, 0.05% bromophenol blue, pH 6.8) was added to the supernatant and 

pellet fractions. Samples were analyzed by SDS-PAGE using 10-20% Tris-Tricine peptide gels 
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and XT Tricine running buffer (Bio-Rad) and visualized by coomassie staining. A gradient of 

soluble peptide controls were also run on the gels. Densitometry (using Image J software) was 

used to quantify the percent of protein in the pellet fractions by comparing to a standard curve 

created from the soluble peptide controls.   

 

 Fibril disaggregation assays 6.6

Hsp104 or the indicated variant (3µM), CLR01 or CLR03 (200µM), or EGCG (200µM) were 

diluted into assay buffer (25mM HEPES-KOH, 150mM KOAc, 10mM Mg(OAc)2, 1mM DTT, pH 

7.4) in the presence of ATP (5mM) and an ATP regeneration system (0.1mM ATP, 0.02mg/ml 

creatine kinase, 10mM creatine phosphate) at a final volume of 75µL. SEVI, PAP85-120 or 

SEM1(45-107) fibrils (20µM based on peptide monomer concentrations) were added last and 

samples were incubated at 37°C for the duration of the experiments. Buffer control samples were 

included which contained all components except that buffer was substituted for fibrils. At various 

timepoints, 5µL aliquots were removed and added to a 96-well plate containing 55µL of 25µM 

ThT diluted in assay buffer. Changes in fluorescence intensity (excitation: 440nm, 5nm 

bandwidth; emission: 482nm, 10nm bandwidth; gain 160) were measured using a Tecan Safire2 

microplate reader. For data analysis, buffer control measurements were subtracted and ThT 

values were normalized to measurements at the 0h timepoint. To determine EC50 values for 

dose-response relationships, the data was analyzed using GraphPad Prism software. A nonlinear 

regression analysis (log(inhibitor) vs. response (three parameters)) was used and fitted with the 

least squares (ordinary) fit. 

 

 Fibril degradation assays 6.7

For degradation experiments, fibrils (20µM based on peptide monomer concentrations) were 

incubated with HAP (3µM) and ClpP (4.5µM) and diluted into assay buffer in the presence of ATP 

(5mM) and an ATP regeneration system (described above) at a final volume of 100µL. Samples 
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were incubated at 37°C for the duration of the experiments. At given time points, 10µL aliquots 

were removed and added to 3X sample buffer. Samples were analyzed by SDS-PAGE using 10-

20% Tris-Tricine peptide gels and XT Tricine running buffer (Bio-Rad). Gels were visualized by 

silver staining (Invitrogen). 

 

 Transmission electron microscopy 6.8

Aliquots (10µL) were removed from the assembly and disassembly reactions, spotted on Formvar 

carbon-coated grids for 10min (EM Sciences), stained with 2% uranyl acetate for 5min, and 

washed with water for 30sec. Samples were visualized using a Jeol-1010 transmission electron 

microscope. 

 

 Filter trap assays 6.9

Reaction aliquots (50µL) were removed at various time points and centrifuged in pre-rinsed 

Microcon centrifugal filter devices (Amicon) for 25min at 14000rcf. The retentate was redissolved 

in 50µL of LRB and 25µL of 3X sample buffer, and 25µL of 3X sample buffer was also added to 

the filtrate. Filtrate and retentate contents were analyzed by SDS-PAGE using 10-20% Tris-

Tricine peptide gels and XT Tricine running buffer (Bio-Rad). Gels were visualized by silver 

staining (Invitrogen). 

 

 Turbidity assays 6.10

Hsp104 variants (at the indicated concentrations) were diluted into assay buffer in the presence 

of ATP (5mM) and an ATP regeneration system (described above) at a total volume of 75µL in 

eppendorf tubes. Fibrils (20µM based on peptide monomer concentrations) were added last and 

samples were transferred to 96-well plates. Turbidity was measured as absorbance at 395nm at 

room temperature on a Tecan Safire2 microplate reader. 
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 Dynamic light scattering 6.11

SEVI fibrils (20µM based on peptide monomer concentrations) were incubated for ~5min with the 

indicated proteins (1.8µM monomeric concentration) and diluted into assay buffer in the presence 

of ATP (5mM). Samples were immediately transferred into disposable cuvettes (Eppendorf) and 

light scattering at 658nm was measured using a DynaPro NanoStar Dynamic Light Scattering 

instrument (Wyatt Technology). Dynamic light scattering (DLS) measurements of hydrodynamic 

radius (Rh) were made at room temperature. Samples were measured using an acquisition time 

of 10 seconds for 10 consecutive measurements. Particle translational diffusion coefficients were 

calculated from decay curves of autocorrelation of light scattering data and converted to 

hydrodynamic radius (Rh) with the Stokes-Einstein equation. Histograms of mass versus Rh were 

calculated using a Regularization algorithm with Dynamics V7 software. 

 

 Zeta potential (Work from collaborators in the Münch lab) 6.12

PAP248-286, PAP85-120 and SEM1(49-107) fibrils were treated with a ten-fold excess of CLR01 

or CLR03. After centrifugation at 14,000rpm for 10min, the pellets were resuspended in 1mM KCl. 

Zeta potential was measured using the Zeta Nanosizer (Malvern Instruments, UK). 

 

 Confocal microscopy (Work from collaborators in the Münch lab) 6.13

Fibrils (200µg/ml in PBS) were stained with Proteostat Amyloid Plaque Detection Kit (Enzo Life 

Sciences, Plymouth Meeting, PA). Fibrils were then treated with 20-fold excess CLR01 or CLR03 

and mixed 1:2 with MLV-gag-YFP virions. Samples were transferred to µ-slides VI0.4 (Ibidi, 

Munich, Germany) and imaged with a Zeiss LSM confocal microscope. 

 

 Circular dichroism spectroscopy 6.14

To remove any PAP248-286 monomers or oligomers that did not assemble completely into 

amyloid fibrils, SEVI fibrils were first pelleted at 13,200rpm for 10min. The supernatant was 
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removed and the resulting pellet was resuspended in an equal volume (same volume as 

supernantant removed) of PBS. The concentration of the supernatant was determined by 

measuring absorbance at 280nm on a Nanodrop spectrophotometer. The supernatant 

concentration was then subtracted from the original fibril sample concentration to establish the 

new concentration of the pelleted fibrils.  

 

Fibrils (50µM) were incubated with buffer, CLR01, or CLR03 (500µM) in a final volume of 200µL 

in PBS. Samples were incubated at 2h at 37°C. CD spectra were then collected on an AVIV 

Model 410 Circular Dichroism Spectrometer using a 15sec averaging time. Mean residue 

ellipticity (MRE) was calculated using the equation MRE = θ/(10lcN) where θ is the measured 

ellipticity in millidegrees, l is the pathlength in cm, c is the molar protein concentration, and N is 

the number of residues. 

 

 Cell culture and HIV infectivity experiments using Hsp104 6.15

TZM-bl cells were maintained in DMEM medium supplemented with 10% fetal bovine serum and 

1% L-glutamine. The day before infection, 104 TZM-bl cells/well were seeded in a volume of 

200µL in a 96-well collagen-coated microplate. Prior to infection, seminal amyloid fibrils were 

incubated with Hsp104 (or variants) in a sterile reaction tube for 3h at 37°C at a volume of 50µL. 

After 3h, each 50µL sample was diluted with 50µL of DMEM. Next, 82.5µL of the resulting mixture 

was diluted with 82.5µL of HIV-1, and samples were allowed to pre-incubate with the virus for 

10min at room temperature. After the pre-incubation was complete, the media was removed from 

the 96-well plate, and the virus/protein mixtures were immediately added in triplicate (50µL per 

well) to TZM-bl cells and further incubated for 3h at 37°C and 5% CO2. The virus/protein mixtures 

were then removed and replaced with 200µL of complete media. Luciferase activity was 

assessed 3 days post-infection using a Luciferase Assay System (Promega), and luminescence 

was measured on a MLX Microtiter Plate Luminometer (Dynex Technologies). The background 

luminescence from buffer control samples was subtracted and values were normalized to 
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untreated fibril samples. HIV-1 strains used included BL2 (R5-tropic primary isolate; 130 

infectious units; 0.90ng p24) and 89.6 (dual tropic; 1000 infectious units, 0.92ng p24). Statistical 

analyses were performed in GraphPad Prism using a one-way ANOVA and the Dunnett post-test, 

comparing all conditions to the untreated fibril control. 

 

 Effect of tweezer on amyloid and semen-mediated enhancement of HIV infection 6.16

(Work from collaborators in the Münch lab) 

The reporter cell line TZM-bl was obtained through the NIH ARRRP and cultured in DMEM 

medium supplemented with 120µg/ml penicillin, 120µg/ml streptomycin, 350µg/ml glutamine and 

10% inactivated fetal calf serum (FCS). This cell line is stably transfected with an LTR-lacZ 

cassette and expresses CD4, CXCR4 and CCR5. Upon infection with HIV-1, the viral protein Tat 

is expressed which transactivates the long terminal repeat (LTR) resulting in the generation of β-

galactosidase molecules. 

 

Virus stocks of X4-tropic HIV-1 NL4-3, R5-tropic HIV-1 NL4-3 92TH014 derivative, and of the 

transmitter/founder viruses THRO.c and CH058.c (kindly provided by B. Hahn) were generated 

by transient transfection of 293T cells as described [51]. After transfection and overnight 

incubation, the transfection mixture was replaced with 2ml DMEM medium supplemented with 

120µg/ml penicillin, 120µg/ml streptomycin, 350µg/ml glutamine, and 2% inactivated FCS. After 

40h, the culture supernatant was collected and centrifuged for 3min at 330g to remove cell debris. 

Virus stocks were analyzed by p24 antigen ELISA and stored at -80 °C.  

 

To assess the effect of CLR01 and CLR03 on amyloid-mediated enhancement of HIV-1 infection, 

104 TZM-bl cells in 180µl medium were seeded in 96-well flat-bottom plates the day before 

infection. 200µg/ml fibrils (44µM SEVI, 45µM PAP85-120 fibrils, 30µM SEM1(49-107) fibrils) were 

treated with a 20-fold molar excess of CLR01 or CLR03 for 10min at room temperature, serially 

diluted 5-fold and then added to an R5-tropic HIV-1 NL4-3 92TH014 (0.5ng/ml p24 antigen). After 
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5min, 20µl of these mixtures were added to TZM-bl cells and infection rates were determined 3 

days post infection by detecting β-galactosidase activity in cellular lysates using the Tropix Gal-

Screen kit (Applied Biosystems) and the Orion microplate luminometer (Berthold). All values 

represent reporter gene activities (relative light units per second; RLU/s) derived from triplicate 

infections minus background activities derived from uninfected cells.  

 

To assess the effect of CLR01 and CLR03 on semen-mediated enhancement of HIV-1 infection, 

104 TZM-bl cells were seeded in 280µl medium in 96-well flat-bottom plates the day before 

infection. Seminal plasma (20%) was treated with different concentrations of CLR01 or CLR03 

(highest 925µM) for 10min at RT and then mixed with R5-tropic HIV-1 NL4-3 and CH058 

(0.5ng/ml p24 antigen). After 5min, 20µl of these mixtures were added to 280µl TZM-bl cells. To 

minimize cytotoxic effects mediated by seminal plasma, the inoculums were replaced 2h later 

with fresh medium. Infection rates were determined as described above.  

 

 Antiviral activity of CLR01 on HIV-1, HCMV, HSV-2, HCV and adenovirus infection 6.17

(Work from collaborators in the Münch lab) 

HIV-1: In the virus treatment assay, R5- and X4-tropic HIV-1 NL4-3, and HIV-1 

transmitter/founder viruses CH058 and THRO were titrated with CLR01 or CLR03 (0-150µM). 

After incubation for 10min at 37°C, 20µl of these mixtures were added to 104 TZM-bl cells seeded 

one day prior in 180µl medium. For the cell-treatment assay, DMEM instead of virus was titrated 

with CLR01 or CLR03, incubated, and added to TZM-bl cells analogous to the virus treatment 

protocol. After a 2h incubation at 37°C, old medium was replaced by fresh medium and cells were 

infected with the different HIV-1 strains. β-galactosidase activity was measured 3 days post 

infection. IC50 values were calculated with PRISM software. 

Human cytomegalovirus (HCMV): Human foreskin fibroblasts (HFFs) were maintained in 

minimal essential medium (MEM, Invitrogen, Germany) supplemented with 10% fetal calf serum 

(Invitrogen), 2mM L-glutamine (Biochrom AG, Germany), 100U of penicillin and 100µg of 
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streptomycin (Gibco/BRL) per ml, and 1 x non-essential amino acids (Biochrom AG). Production 

of HCMV stock virus was a derivative of strain TB40-BAC4 [248], and all HCMV infection 

experiments were performed on HFF under serum-free conditions. To evaluate the inhibitory 

effect of compounds on virus entry, HCMV virus, corresponding to a multiplicity of infection of 

approximately 1 plaque forming units, was pre-incubated with PBS, 100µM CLR03, or 100µM 

CLR01 for 30, 60, or 120min, respectively, at 37°C in serum-free MEM. The virus/compound 

mixtures were then incubated for 16h with HFFs (1.7 × 104/well) in a 96-well plate that was 

seeded one day prior to infection and washed twice with PBS before adding the mixtures. To 

determine infection rates, virus/compound mixtures were first removed by washing twice with 

PBS followed by fixation with ice-cold methanol for 10min. HCMV infected cells were visualized 

by indirect immunofluorescence staining for HCMV immediate-early (IE) antigen employing 

Mab13 (Argene) and cell nuclei staining by using 4′,6-diamidin-2-phenylindol (DAPI, Roche). 

HCMV infection rates for each compound were determined from images taken with the 10×-

objective lens and the fluorescence microscope Axio-Observer.Z1 (Zeiss) by counting numbers of 

IE-positive cells. Maximum inhibition of HCMV infection by CLR01 was found already after 30min 

of incubation. The mean infection rate and standard deviation included the results from the 

different incubation times.  

Herpes simplex virus type 2 (HSV-2): HSV-2 comprising a GFP reporter gene was treated with 

PBS, 100µM CLR03, or 100µM CLR01 and added to Vero cells. GFP-positive cells were counted 

using flow cytometry two days post infection. 

Hepatitis C virus (HCV): HCV in-vitro transcripts were generated and transfected using 

electroporation as described recently [249]. Harvested virus was then precipitated using PEG800 

as described previously [250] and resuspended in 10mM HEPES, 150mM NaCl. Huh-7.5 cells 

stably expressing firefly luciferase were seeded at a density of 2 × 104 cells per well of a 96-well 

plate 24 h prior to inoculation. CLR01 and CLR03 were diluted in 10mM HEPES, 150mM NaCl 

and incubated with Renilla luciferase reporter virus particles (JcR-2a) [251, 252] for 5min at 37°C. 

Cells were inoculated with JcR2-2a HCV in the presence of CLR01 or CLR03 for 72h at 37°C, 
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washed with PBS, and lysed with 50 µl passive lysis buffer (Promega, Mannheim, Germany). To 

measure cytotoxicity, lysates were assayed for firefly luciferase activity using luciferin (200µM 

luciferin, 25mM glycylglycine, pH 8) in a plate luminometer (Lumat LB9507). For infectivity 

readout, lysates were assayed for Renilla luminescence using 1µM coelenterazin (P.J.K., 

Kleinblittersdorf, Germany) in the same luminometer.  

Human adenovirus type 5 (HAdV5): The E1-deleted replication-deficient human adenovirus 

type 5-based vector containing a HCMV promoter-controlled EGFP expression cassette was 

produced on N52.E6 cells [253], purified by one discontinuous and one continuous CsCl density 

gradient and subsequent size-exclusion chromatography (disposable PD-10, Amersham). The 

physical particle titer was determined by particle lysis and OD260 and confirmed by slot-blotting 

[254]. To assess effects of CLR01 and CLR03 on the ability of the vector to transduce cells, the 

vector was titrated with 0-100µM CLR01 or CLR03 and incubated 10min at 37°C in 50mM 

HEPES, 150mM NaCl, pH 7.4. One day prior to infection, 105 A549 cells per well were seeded in 

a 24-well format. Cells were infected with 200MOI of the pretreated virus. EGFP expression was 

analyzed using a Beckman-Coulter Gallios flow cytometer 1 day post transduction. 

 

 p24 release assay (Work from collaborators in the Münch lab) 6.18

HIV-1 NL4-3 92TH014 was incubated for 10min at 37°C with PBS, 100µM CLR03 or 100µM 

CLR01 and centrifuged at 20,000g and 4°C for 1h. The p24 content of the supernatant and pellet 

was determined using an in house p24-antigen ELISA. 

 

 Atomic force microscopy of virions (Work from members of the Münch lab) 6.19

Virus solutions (20µL) were deposited on Aminopropyl-modified glass cover slips (AP-Glass) and 

incubated for 1h at RT. After removing excess liquid, the deposited virus particles were treated 

with 40µL of 100µM CLR01 or CLR03 and incubated for 10min at RT. The samples were rinsed 
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with PBS and imaged in PBS on a Nanowizard 3 AFM (JPK) in Quantitative Imaging mode using 

silicon nitride cantilevers with a spring constant of 0.03N/m (Bruker).  

 

 Analysis of cellular toxicity 6.20

CLR01 and CLR03:  (Work from collaborators in the Münch lab) The effect of CLR01 and CLR03 

on the metabolic activity of TZM-bl cells was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. After 3 days of incubation, 20µl of 5mg/ml MTT (Sigma 

#M2003) solution was added to the cells. After 4h the cell-free supernatant was discarded and 

formazan crystals were dissolved in 100µl DMSO:Ethanol (1:2). Absorption was detected at 

490nm and corrected by the background absorption at 650nm. 

Hsp104: Cell viability of TZM-bl cells treated with Hsp104 or variants was also measured using 

the MTT reduction assay. TZM-bl cells (104 cells/well) were treated as described in the HIV 

infectivity assays, except with DMEM replacing virus at each step. Protein/DMEM mixtures were 

removed after 3h and replaced with 200µL of complete media. Plates were incubated overnight at 

37°C. The next day, an MTT stock (50mg of MTT dissolved in 10mL of PBS) was mixed in a 1:1 

ratio with DMEM to result in the MTT reagent. Media was removed from all wells on the 96-well 

plate and replaced with 125µL of fresh media. MTT reagent (25µL) was added to each well and 

incubated at 37°C for 3-4h. Formazan crystals were dissolved in 150µL of 0.1N HCl in 

isopropanol with 10% Triton X-100. MTT reduction was assessed the by detection of absorbance 

at 570nm (630nm reference wavelength) on a MRX Revelation Microplate Reader (Dynex 

Technologies). 

 

 Dosing the anti-viral effect of EGCG 6.21

TZM-bl cells were maintained in DMEM medium supplemented with 10% fetal bovine serine and 

1% L-glutamine. The day before infection, 104 TZM-bl cells/well were seeded in a volume of 

200µL in a 96-well collagen-coated microplate. To dose the inhibition of HIV infectivity by EGCG, 
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EGCG was freshly dissolved in assay buffer and dilutions of various concentrations were 

prepared. These EGCG solutions (50µL) were first added to 50µL of DMEM. Next, 82.5µL of the 

resulting mixture was alloed to preincubate with 82.5µL of HIV at room temperature for 10min. 

When the preincubation was complete, media was removed from the 96-well plate, and the 

EGCG/virus mixtures were immediately added in triplicate (50µL per well) to TZM-bl cells. After 

3h at 37°C, mixtures were removed and replaced with 200µL of complete media. Luciferase 

activity was determined at 3 days post infection using a MLX Microtiter Plate Luminometer. HIV-1 

aliquots were obtained from the Center for AIDS Research at the University of Pennsylvania. HIV 

strains used included BL2 (R5-tropic; 130 infectious units; 0.90 ng p24), BaL (R5-tropic; 75 

infectious units; 0.42 ng p24), and 89.6 (dual-tropic; 1000 infectious units, 0.92 ng p24). 
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