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The C1 Domain in Cancer Signaling Molecules: Regulation by Lipids and
Protein-Protein Interactions

Abstract
Cysteine-rich (C1) domains, present in PKC isozymes, Chimaerins, RasGRPs, PKDs, Munc13s, DGKs, and
MRCKs, can bind the diacylglycerol (DAG) second messenger. In the present thesis research, I demonstrated
that p23/Tmp21 acts as a C1-domain docking protein that mediates perinuclear translocation of
beta2-chimaerin. Glu227 and Leu248 in the beta2-chimaerin C1-domain are crucial for binding p23/Tmp21
and perinuclear targeting. Isolated C1-domains from individual PKC isozymes or RasGRP1 differentially
interact with p23/Tmp21. PKCepsilon interacts with p23/Tmp21 specifically via its C1b domain, however
this association is lost in response to phorbol esters. These results demonstrate that p23/Tmp21 acts as an
anchor that distinctively modulates compartmentalization of C1-domain-containing proteins, and it plays an
essential role in beta2-chimaerin re-localization to the perinuclear region in response to phorbol esters. It has
been established that apoptosis induced by phorbol esters in LNCaP cells is primarily mediated by the novel
PKCdelta. I demonstrated that depletion of p23/Tmp21 significantly potentiates phorbol 12-myristate
13-acetate (PMA)-induced apoptosis in LNCaP cells. Remarkably, the effect was mediated by PKCdelta as
revealed by the fact that PKCdelta RNAi depletion or PKC inhibitor GF 109203X can rescue the potentiating
effect of p23/Tmp21 depletion. Immunoprecipitation and confocal microscopy analysis demonstrated that
PKCdelta and p23/Tmp21 formed a complex in LNCaP cells. Disruption of PKCdelta-p23/Tmp21
association by depletion of p23/Tmp21 accelerates PMA-induced PKCdelta plasma membrane translocation
and the activation of its downstream effector ROCK and JNK. Moreover, I demonstrated that depletion of
p23/Tmp21 potentiates doxorubicin-mediated apoptosis of LNCaP cells. This work provided the first
evidence that p23/Tmp21 negatively regulates PKCdelta-mediated apoptosis in LNCaP cells in response to
PMA and doxorubicin. In addition, I demonstrated that the PKC inhibitor GF 109203X significantly
radiosensitizes PC3 androgen-independent prostate cancer cells. Depletion of PKCepsilon but not PKCalpha
and PKCdelta by shRNA, significantly radiosensitizes PC3 cells. Confocal images demonstrated that gamma-
irradiation-induced PKCepsilon membrane translocation was impaired by the EGFR inhibitor AG1478, the
PLCgamma1 inhibitor U73122, or the ROS scavenger N-acetyl-cysteine (NAC). The results revealed a
potential role for DAG and C1-domain containing protein in the control of ionizing irradiation induced cell
death/survival and also suggested that inhibition of PKCepsilon may be a useful therapeutic approach to
radiosensitize prostate cancer cells. Taken together, in this work I present several novel findings that highlight
the relevance of C1-domain containing proteins in cancer.
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ABSTRACT 

 
THE C1 DOMAIN IN CANCER SIGNALING MOLECULES: REGULATION 

BY LIPIDS AND PROTEIN-PROTEIN INTERACTIONS 
 

HONGBIN WANG 

 

Marcelo G. Kazanietz. Ph.D. 

 

     Cysteine-rich (C1) domains, present in PKC isozymes, Chimaerins (a family of 

small RacGTPase activating proteins), RasGRPs (a family of guanine nucleotide 

exchange factor for Ras/Rap1), PKDs (the serine/threonine kinase protein kinase D), 

Munc13s (the mammalian unc13), DGKs (the DAG kinases β and γ), and MRCKs 

(the serine/threonine kinase myotonic dystrophy kinase-related Cdc42-binding 

kinase), can bind the diacylglycerol (DAG) second messenger. In the present thesis 

research, I demonstrated that p23/Tmp21 acts as a C1 domain docking protein that 

mediates perinuclear translocation of β2-chimaerin. Glu227 and Leu248 in the β2-

chimaerin C1 domain are crucial for binding p23/Tmp21 and perinuclear targeting. 

Isolated C1 domains from individual PKC isozymes or RasGRP1 differentially 

interact with p23/Tmp21. PKCε interacts with p23/Tmp21 specifically via its C1b 

domain, however this association is lost in response to phorbol esters. These results 

demonstrate that p23/Tmp21 acts as an anchor that distinctively modulates 

compartmentalization of C1 domain-containing proteins, and it plays an essential role 

in β2-chimaerin re-localization to the perinuclear region in response to phorbol 

esters. It has been established that apoptosis induced by phorbol esters in LNCaP 

cells is primarily mediated by the novel PKCδ. I demonstrated that depletion of 
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p23/Tmp21 significantly potentiates phorbol 12-myristate 13-acetate (PMA)-induced 

apoptosis in LNCaP cells. Remarkably, the effect was mediated by PKCδ as revealed 

by the fact that PKCδ RNAi depletion or PKC inhibitor GF 109203X can rescue the 

potentiating effect of p23/Tmp21 depletion. Immunoprecipitation and confocal 

microscopy analysis demonstrated that PKCδ and p23/Tmp21 formed a complex in 

LNCaP cells. Disruption of PKCδ-p23/Tmp21 association by depletion of 

p23/Tmp21 accelerates PMA-induced PKCδ plasma membrane translocation and the 

activation of its downstream effector ROCK and JNK. Moreover, I demonstrated that 

depletion of p23/Tmp21 potentiates doxorubicin-mediated apoptosis of LNCaP cells. 

This work provided the first evidence that p23/Tmp21 negatively regulates PKCδ-

mediated apoptosis in LNCaP cells in response to PMA and doxorubicin. In addition, 

I demonstrated that the PKC inhibitor GF 109203X significantly radiosensitizes PC3 

androgen-independent prostate cancer cells. Depletion of PKCε but not PKCα and 

PKCδ by shRNA, significantly radiosensitizes PC3 cells. Confocal images 

demonstrated that γ-irradiation-induced PKCε  membrane translocation was impaired 

by the EGFR inhibitor AG1478, the PLCγ1 inhibitor U73122, or the ROS scavenger 

N-acetyl-cysteine (NAC). The results revealed a potential role for DAG and C1 

domain-containing protein in the control of ionizing irradiation induced cell 

death/survival and also suggested that inhibition of PKCε may be a useful therapeutic 

approach to radiosensitize prostate cancer cells.  

     Taken together, in this work I present several novel findings that highlight the 

relevance of C1 domain-containing proteins in cancer.  
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The lipid second messenger diacylglycerol (DAG) and phorbol esters 

    1,2-diacyl-sn-glycerol (DAG) is a biologically active lipid second messenger that is 

generated in response to various extracellular stimuli, including growth factors, 

hormones, neurotransmitters, and a variety of other agonists. There are several 

sources from which DAG can derive in cells, including: 1) phosphatidylinositol (4, 5) 

bisphosphate (PtdIns (4, 5) P2) hydrolysis through the action of a phosphoinositide-

specific phospholipase C (PI-PLC); 2) phosphatidylcholine (PC) hydrolysis by 

phospholipase D (PLD), yielding phosphatidic acid (PA), which in turn is converted 

to DAG by a specific PA phosphohydrolase; 3) PC hydrolysis by PC-PLC, or 

phosphatidylcholine-ceramide cholinephosphotransferase, which produces DAG 

(Figure 1.1). Among these routes, hydrolysis of phosphatidylinositol-4, 5-

biphosphate (PIP2) by specific PI-PLC enzymes into DAG and inositol-3,4,5-

triphosphate (IP3) has been extensively studied and considered as the major pathway 

for the generation of DAG. Stimulation of G-protein coupled receptors (GPCRs) or 

receptor tyrosine kinases (RTKs) activates phospholipase C (PLC) β and PLCγ 

isozymes, respectively. While DAG remains in the plasma membrane and serves as a 

ligand for classical and novel protein kinase C (PKC) isozymes as well as “non-

kinase” DAG receptors (64, 151), the soluble IP3 activates Ca2+ channels to release 

Ca2+ from the endoplasmic reticulum, which also can activate classical PKC together 

with DAG. 

         Phorbol esters, natural compounds originally isolated from the plant croton 

tiglium, mimic the effects of DAG on PKC (32).  Phorbol esters have generated a lot 
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of interest due to their tumor promoting properties in animal models of carcinogenesis 

(162) and have been widely used as pharmacological tools to study DAG signaling 

 

 

 

 

Figure 1. 1   Main pathways that lead to the production of DAG. OH is hydroxyl; R, 
R’ are fatty acids; P is a phospho group; X is choline, ethanolamine, inositol or 
serine; SM, sphingomyelin; SMS, sphingomyelin synthase; LPP, lipid phosphate 
phosphatase; DGK, diacylglycerol kinase; PAP, phosphatidic acid phosphatase; PLC, 
phospholipase C; PC-PLC, phosphatidicholine specific phospholipase C; PLD, 
phospholipase D. 
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pathway due to their high potency and stability (19, 84). The basic structure of 

phorbols consists of four carbon rings, labeled A, B, C, and D. Substitutions in 

positions 12 and 13 in ring C form a DAG-like structure. The most commonly used 

phorbol ester is Phorbol 12-Myristate 13-Acetate (PMA), also called TPA 

(Tetradecanoyl Phorbol Acetate) (Figure 1.2). 

 

PKC isozymes:  the first identified DAG/phorbol ester receptors 

  PKCs are a family of related serine/threonine kinases that regulate cellular 

proliferation, differentiation, cell cycle, apoptosis, senescence, metastasis, malignant 

transformation, and cancer progression (84). The enzymatic activity of PKC was first 

identified in rat brain by Nishizuka and co-workers as a cytoplasmic serine- and 

threonine-specific protein kinase (82, 171, 173). It was initially thought that this 

protein kinase was proteolytically activated from a proenzyme. However, later on it 

was found that the enzyme is reversibly activated in vitro by unsaturated DAG in the 

presence of acidic phospholipids such as phosphatidylserine (172). This finding 

provided the first evidence of a link between receptor-induced phosphatidylinositol 

hydrolysis and activation of a protein kinase (91, 136). All PKC isoforms have a 

highly conserved carboxyl terminal kinase domain and a more divergent amino-

terminal regulatory domain linked by a hinge region. PKC in its inactive form is auto-

inhibited by a pseudosubstrate sequence present in the regulatory domain that 

occupies the substrate-binding pocket in the otherwise functional kinase domain 
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(144). PKC is activated when DAG and/or allosteric effectors bind to its regulatory 

domain at the plasma membrane. This binding disrupts the docking of the regulatory 

 

Figure 1.2 Structures of phorbol 12-myristate 13-acetate (PMA) and diacylglycerol (DAG). 
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domain, which displaces the bound pseudosubstrate region from the active site, 

allowing for PKC kinase activation (132, 138). Based on their regulatory and 

biochemical properties, PKC isozymes have been classified into 3 subgroups: the 

“classical” or “conventional” PKCs (cPKCs) which comprise PKCα, βI, βII, and γ; the 

“novel” PKCs (nPKCs), a group that includes PKCδ, PKCε, PKCη, and PKCθ; and 

the “atypical” PKCs (aPKCs) which comprise PKCζ and PKCι/λ. Both cPKCs and 

nPKCs are sensitive to DAG/phorbol esters, and only cPKCs are activated by 

calcium. Atypical PKCs do not respond to either DAG/phorbol ester or calcium 

(Figure 1.3). 

 

PKCδ : a growth inhibitory and pro-apoptotic kinase 

     Phorbol esters cause growth inhibition or cell death in many cell types. PKCδ 

seems to be responsible for many growth inhibitory effects, particularly through up-

regulation of p21cip1 (60). In many cell types, PKCδ has also been identified as a key 

PKC isozyme involved in apoptosis triggered by a variety of stimuli, including 

chemotherapy agents, H2O2, virus infection, phorbol esters, UV radiation, Fas-ligand, 

and ionizing radiation (3, 15, 54, 58, 59, 93, 97, 149, 152, 158, 200, 204). Studies 

from our laboratory and others demonstrated that in LNCaP prostate cancer cells the 

phorbol esters activate PKCδ to trigger an apoptotic response (58). Subsequent 

studies revealed that the JNK cascade acts as a mediator of phorbol ester-induced 

LNCaP cell apoptosis. Additional analysis found that apoptosis is triggered by the 

autocrine secretion of death factors, including TNFα and TRAIL, with subsequent 
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Figure 1.3 The family of PKC isozymes. 
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activation of the extrinsic apoptotic cascade. A recent study by Xiao et al. in our 

laboratory revealed that the Rho-ROCK-p21cip1 pathway is also implicated in phorbol 

ester-induced prostate cancer cell apoptosis (193).    

     Numerous studies have demonstrated that PKCδ is activated by caspase-3 

dependent proteolytic cleavage in response to stimuli. Caspase-3 can release a 40-

KDa constitutively active PKCδ catalytic fragment that subsequently phosphorylates 

downstream substrates involved in the apoptotic process (54, 61).  Phosphorylation of 

tyrosine residues in PKCδ is also a critical step for its activation during apoptosis in 

some models. For examples, tyrosines 64 and 187 become phosphorylated upon 

exposure of etoposide, whereas residues of tyrosines 311, 332 and 512 become 

phosphorylated in response to H2O2 in CHO cells (93).  

    Previous reports also suggested that PKCδ-triggered apoptosis depend on the 

cellular context and stimulation, since PKCδ redistributes to different subcellular 

compartments in response to apoptotic stimuli. Nuclear translocation of PKCδ can 

mediate DNA-damage-induced apoptosis (49), in which PKCδ can act as an inhibitor 

of activity of the catalytic subunit of DNA-PKs. DNA-PKs dissociate from DNA 

after becoming phosphorylated by PKCδ, which subsequently interrupts the DNA 

double strand break repair by nonhomologous end joining (14). In addition, in many 

cell lines, PKCδ translocates to mitochondria upon treatment with phorbol esters or 

by oxidative stress (20, 104, 113, 114). It is well established that translocation and 

activation of PKCδ decrease mitochondrial membrane potential, resulting in the 

release of cytochrome c, which is known to form a complex with Apaf-1 that 

subsequently activates caspases and induces apoptosis (137). 
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    The involvement of PKCδ in apoptotic signaling is not universal. PKCδ activates 

the ERK cascade and promotes proliferation in MCF-7 cells (88), enhances cell 

survival and chemotherapeutic resistance in non-small lung cancer cells (40), and 

increases breast tumor cell anchorage-independent growth (89), arguing that PKCδ 

behaves differently in different cellular contexts.  

 

PKCε: oncogenic and pro-survival effects 

    PKCε is believed to function as an anti-apoptotic protein and is the only PKC 

isozyme shown to exhibit full oncogenic potential (8, 9, 24, 50, 62, 119, 124, 140, 

161). When overexpressed in LNCaP androgen-dependent cancer cells, PKCε confers 

androgen independence, accelerates G1/S transition, and enhances tumorigenic 

potential in nude mice (191, 192). PKCε  stimulates mitogenicity via the ERK 

pathway. In addition, PKCε disrupts the reactivation of the tumor suppressor 

retinoblastoma (pRb), derepresses transcriptional elongation of the c-myc oncogene, 

and propagates survival signals in the absence of functional PTEN (190-192). PKCε 

is highly expressed in many epithelial cancers (70). For example, PKCε is barely 

detected by immunohistochemistry (IHC) in benign prostatic epithelium but is 

overexpressed in > 95% of prostate tumors (44). A more recent analysis found that 

high-grade human prostate tumors express very high PKCε levels (5). PKCε 

expression is markedly up-regulated in prostate tumors from TRAMP (transgenic 

adenocarcinoma mouse prostate) mice and correlates with high phospho-Akt levels 

(5). A positive correlation has been also found between PKCε and Stat3 expression in 

prostate cancer cells (5). Notably, de-regulation of the PKCε gene (PRKCE) has been 
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reported in other cancer types, such as in lung, breast and thyroid cancer (6, 92, 142). 

More recently, studies in breast cancer cells have linked PKCε to Akt to protect cells 

against ionizing radiation induced cell death (108). Studies from our laboratory found 

that PKCε could activate survival signaling both through Akt-dependent and Akt-

independent mechanisms in prostate cancer cells (Meshki, J et al., submitted for 

publication).  

    It was reported that PKCε prevents both DNA damage- and receptor-mediated 

apoptosis. Anti-cancer drug resistance caused by overexpression of PKCε has been 

demonstrated in many cancer types, such as ovarian, prostate, and non-small cell lung 

cancer as well as in embryo fibroblast cells (8, 11, 50, 56). Studies also reported that 

PKCε  plays a protective role in TNFα- and TRAIL-mediated cancer cell death, 

including in breast, glioma, and melanoma cells (9, 62, 157, 161). Several studies 

have established that in different cells, PKCε can directly interact with Akt (108, 146, 

179, 192). Akt is a downstream effector of phosphoinositol 3-kinase (PI3K) and plays 

an essential role in cell survival and tumorigenesis through phosphorylation of a 

number of downstream substrates (188). There is considerable evidence 

demonstrating that PKCε is required for Akt phosphorylation in response to different 

stimuli, such as insulin, hydrogen peroxide, heat shock, and ischemia-reperfusion 

injury (107, 118, 146, 192, 203). PKCε also enhances Akt protein stability. A number 

of studies also indicate that PKCε pro-survival function might be linked to Bcl-2 

family proteins (10). Very recently, Basu and her colleagues demonstrated that 

overexpression of PKCε in MCF-7 cells elevates Bcl-2 mRNA levels and reciprocally 

decreases Bid expression (161), resulting in MCF-7 cell resistance to TRAIL. In line 
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with this report, a PKCε inhibitory peptide could effectively inhibit Bcl-2 

phosphorylation and enhance H2O2-induced apoptosis in rat cardiomyocytes (115). 

Overexpression of PKCε renders LNCaP prostate cancer cells resistant to apoptosis, 

and PKCε-deficiency sensitizes these cells to PMA-induced apoptosis by preventing 

Bax activation and translocation to mitochondria (121). However, a few reports 

suggested that PKCε negatively regulates Akt functions (7, 71, 105, 107). Taken 

together, the pro-survival function of PKCε appears to be dependent on the cellular 

context and stimuli (105, 107, 186). 

 

Ionizing irradiation and PKC isozymes 
 
    Although it has been conceived that upon ionizing radiation DNA damage/repair 

and cell cycle checkpoint pathways are the key mechanisms that regulate cell 

death/survival, accumulating evidence suggests that membrane-related signaling 

cascades also play critical roles in controlling cell death/survival. It has been reported 

that irradiation leads to PKC activation, suggesting that PKC might be a determinant 

factor in radiosensitivity (73, 76, 77, 90, 129, 164). An early report by Nakajima et al. 

revealed that γ-irradiation induces DAG production and activates PKC in cultured rat 

hepatocytes. Using radical scavengers and a phospholipase C inhibitor, they conclude 

that DAG generation and PKC activation are mediated through membrane lipid 

peroxidation and PLC activation (129, 130). Interestingly, irradiation induced the 

activation of EGFR and ERK signaling, which confers the cytoprotective effects (2). 

Ionizing radiation can mimic the effect of EGF and activate EGFR. Sturla et al. 

established that phosphorylation of Tyr992 in EGFR in response to ionizing 
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irradiation is higher than that seen with EGF, suggesting that Tyr992 is an important 

effector upon radiation-induced activation of EGFR (168). Phosphorylation of Tyr992 

residue in EGFR promotes its coupling to PLCγ, leading to DAG generation and 

[Ca2+] release which are implicated in PKC activation.  

 

Novel DAG/phorbol ester receptors 

     The prevalent view that PKC isozymes are the only DAG/phorbol ester receptors 

has been challenged after the discovery of additional DAG/phorbol ester receptors, 

suggesting a high degree of complexity in the signaling pathways activated by 

DAG/phorbol esters. At least six additional families of DAG/phorbol esters receptors 

have been discovered to-date (Figure 1.4), including chimaerins (a family of small 

RacGTPase activating proteins), RasGRPs (a family of guanine nucleotide exchange 

factor for Ras/Rap1), the serine/threonine kinase myotonic dystrophy kinase-related 

Cdc42-binding kinase (MRCK) family, the serine/threonine kinase protein kinase D 

(PKD) family, the DAG kinases (DGK) β and γ, and the mammalian unc13 (Munc13) 

proteins (involved in neurotransmitter secretion) (21, 86). Like classical and novel 

PKC isozymes, all of these DAG/phorbol ester receptors possess a cysteine-rich 

domain (C1 domain) that binds phorbol ester/DAG with high affinity. Moreover, the 

novel DAG/phorbol ester receptors are also subject to subcellular redistribution upon 

binding of phorbol esters or DAG, which facilitates their association with their 

corresponding effectors. 

 

The C1 domain: a DAG/phorbol ester binding motif 
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Figure 1.4 Novel DAG/phorbol esters receptors. 
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      C1 domains are 50-51 amino acid long cysteine-rich motifs originally identified 

in PKC as the binding sites for DAG and the phorbol esters. These domains contain 

the characteristic motif:  HX12CX2CX13/14CX2CX4HX2CX7C, where H is His, C is 

Cys, and X is any other amino acid. X-ray crystallography analysis revealed that C1 

domains are compact globular structures coordinated through binding of two Zn2+ 

ions to conserved Cys and His residues (Figure 1.5). While this motif is duplicated in 

tandem (C1a and C1b domains) in cPKCs and nPKCs, a single copy is present in 

aPKCs. Structural and ligand-binding analyses demonstrated that C1 domains in 

cPKCs and nPKCs have the ability to bind phorbol esters and DAG. As mentioned 

above, recent studies revealed that DAG/phorbol ester-responsive C1 domains are 

also present in PKDs, MRCKs, DAG-kinases, Rac-GAPs, RasGRPs, and Munc-13s.  

     A distinctive aspect of most C1 domain-containing proteins is their ability to 

redistribute to membranes in response to phorbol esters or to stimulation of receptors 

that couple to DAG generation. A continuous hydrophobic surface generated by the 

phorbol ester or DAG facilitates the insertion of the C1 domain into lipid bilayers 

(Figure 1.5), which in the case of cPKCs and nPKCs is followed by a conformational 

rearrangement that leads to kinase activation.      

    The C1 domain of chimaerins shows a ~40% identity to those in PKCs. 

[3H]PBDu binding assays revealed that β2-chimaerin binds the ligand with high 

affinity in the presence of PS vesicles. The dissociation constant (Kd) value for β2-

chimaerin is approximately 1 nM (25), which is in the same range as those for cPKCs 

and nPKCs (85). However, structure-activity relationship studies demonstrated 

remarkable differences between PKCα and β2-chimaerin for the ligand 
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Figure 1. 5 Structures of cysteine-rich domains (C1 domains) from PKCδ and β2-
chimaerin. Adapted from: Ron and Kazanietz, FASEB J. (1999) 13: 1658-1676. 
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thymeleatoxin. Thymeleatoxin showed significant preference for PKCα relative to 

β2-chimaerin (about 60-fold). Other phorbol esters, such as 12-deoxyphorbol 13-

phenylacetate, 12-deoxyphorbol 13-acetate, and mezerein also showed moderate 

preference for PKCα compared to β2-chimaerin. The diacylglycerol 1-oleoyl-2-

acetyl-glecerol (OAG) and the indole alkaloid (-)-indolactam V showed similar 

affinities for both PKCα and β2-chimaerin (26). 

 

DAG/phorbol ester receptors: protein-protein interactions 

    Accumulating evidence suggests that PKC isozymes differ in their tissue 

distribution, substrate specificity, cofactor requirements, and subcellular localization 

(46). Specificity of PKC function is thought to be achieved by their association with 

specific interacting proteins. PKC isozymes have been reported to localize to various 

subcellular compartments (68, 126), including plasma membrane (69, 134), Golgi 

apparatus (98-100), mitochondria (113), nuclear membrane (128), and the nucleus 

(202). Many anchoring proteins have been identified for PKC isozymes, and they are 

termed receptor for activated C-kinases (RACKs) or receptor for inactivated C-

kinases (53), depending if they bind to active or inactive PKCs, respectively (45, 53).  

     Several PKC-interacting proteins that associate with the C1 domains in PKC 

isozymes have been identified, which modulate either activity or cellular localization.  

An early study reported that the C1 and pseudosubstrate domains in PKCε bind to the 

tyrosine kinase Btk PH domain. Upon PMA treatment, the PKC-Btk interaction was 

inhibited (196). Recently, Chen et al. demonstrated that localization of PKCβII to 

centrosomes, organelles that play a central role in microtubule organization, spindle 
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formation and cytokinesis, is regulated by association with the scaffolding protein 

pericentrin via the PKCβII C1a domain. Disruption of this interaction releases 

PKCβII from the centrosomes, causing inhibition of spindle formation and cell 

division (34). The cell matrix protein fascin was also shown to interact with the 

PKCα C1b domain. The interaction is dependent on PKCα activity, and inhibition of 

the interaction leads to cell migration on fibronectin and fascin protrusions, arguing 

that the PKCα-fascin complex is key for regulating cell motility (4). The PKCγ C1b 

domain binds 14-3-3τ (135). This interaction is important in the regulation of Gap 

junction activity by PKCγ. An interaction between the PKD1 C1 domain and 14-3-3τ 

in T cells negatively regulates PKD1 functions (78). Early experiments using PKCε 

truncated mutants revealed that C1 domains in PKCε played a role in perinuclear 

targeting. PKCε was reported to associate with Golgi membranes via its C1 domains 

and to modulate Golgi functions (98, 99). Mochly-Rosen’s group demonstrated that 

β’-COP is a PKCε-selective RACK (45). β’-COP is COP I (coat protein I) coatomer 

complex protein that is essential for Golgi budding and vesicular trafficking. Studies 

have linked PKC to the control of constitutive membrane trafficking and Golgi 

function (23, 30, 48, 87, 160, 194). Recently, Sunesson et al. reported that PKCε C1b 

binds to peripherin leading to apoptosis in neuroblastoma cells (169). Moreover, 

PKCε also was found to bind specifically to filamentous actin in a phorbol ester-

dependent manner, suggesting that the interaction is dependent on the C1 domain. 

Taken together, all of these studies highlight the relevance of C1 domains in protein-

protein interactions in addition to their well-established phorbol ester/DAG-binding 

properties. 



 18

Chimaerins: high affinity DAG/phorbol ester receptors 

    In 1990 Lim and his coworkers identified a novel phorbol ester receptor highly 

expressed in brain. n-chimaerin (later renamed α1-chimaerin) resembles a “chimaera” 

between the regulatory region of PKC isozymes and BCR, the breakpoint cluster 

region protein involved in the translocation of Philadelphia chromosome in chronic 

myelogenous leukemia (1, 75).  The chimaerin family of phorbol ester receptors 

comprises four isozymes (α1 (n)-, α2-, β1 and β2-chimaerins). In addition to a single 

C1 domain, chimaerins possess a C-terminal domain with Rac-GAP (GTPase-

activating protein) activity that specifically accelerates GTP hydrolysis into GDP 

from Rac, a small GTPase that is involved in actin cytoskeleton organization, cell 

cycle progression, malignant transformation, adhesion, migration and metastasis (79) 

(Figure 1.6). Rac guanine nucleotide exchange factors such as Tiam 1 play a role in 

cell invasion and cell-cell adhesion, arguing for a key role for Rac in the metastatic 

cascade (123, 141, 189). Indeed, accumulating evidence revealed that Rac is involved 

in the progression of many tumors, such as glioma, lung, prostate and breast cancer 

(133). α2- and β2-chimaerin have an extra N-terminal SH2 domain. α1 and α2-

chimaerin are alternative splicing products of the α-chimaerin gene (CHN1), while β1 

and β2-chimaerin are splicing products of the β-chimaerin gene (CHN2). α2- and β2-

chimaerin are highly conserved, sharing 82% identity with higher degree of similarity 

among individual domains. α1- and α2-chimaerins are highly expressed in brain,  
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 Figure 1.6 Switches between Rac-GDP and Rac-GTP. 
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whereas α2-chimaerin expresses mainly in the brain cortex (74). β1-chimaerin is 

expressed in the testis (103). β2-chimaerin is ubiquitously expressed (102).  

    In vitro binding assays using [3H]PDBu as a radioligand revealed that β2-

chimaerin is a high affinity phorbol ester receptor in the presence of the acidic 

phospholipid PS (25). DAG lactones, synthetic DAG mimetics in which the glycerol 

head of DAG has been constrained into a lactone ring to offer rigidity and stability, 

alos have high affinity for β2-chimaerin.  

     Subcellular fractionation assays in COS cells demonstrated that PMA causes β2-

chimaerin translocation from the cytosol to a particulate fraction in a dose-dependent 

and time-dependent manner (27).  Deletion or mutation of critical amino acids in the 

C1 domain, such as Cys246, abolishes β2-chimaerin translocation, auguing that the 

C1 domain in β2-chimaerin is essential for PMA-induced translocation (27). Using 

GFP-fused β2-chimaerin expressed in COS or HeLa cells, our laboratory showed 

redistribution to the plasma membrane followed by a significant perinuclear 

accumulation in response to phorbol esters, while no translocation of GFP-β2-

chimaerin (C246A) was observed (Figure 1.7). Interestingly, unlike α2- and β2-

chimaerins, α1- and β1-chimaerins were found predominantly in the particulate 

fraction even in the absence of PMA, suggesting that the SH2 domain in α2- and β2-

chimaerins plays a role in intracellular targeting (29). Furthermore, microscopy 

images demonstrated that GFP-α1- and GFP-β1-chimaerins were found 

predominantly in the perinuclear region of cells (27).  

    To assess the regulation of β2-chimaerin in a physiological context, in previous 

work that I carried out in the Kazanietz lab, I used epidermal growth factor receptor  



 21

 

 

 

 

 

Figure 1.7. Time-lapse images of GFP-β2-chimaerin (wt) or GFP-β2-chimaerin (C246A) 
localization after PMA (3 μM) treatment. 
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(EGFR) activation as a paradigm for chimaerin activation since it couples to PLCγ to 

generate DAG. EGFR activation also leads to Rac activation (182, 184). In that study 

we found that EGF promotes a transient translocation of β2-chimaerin to the plasma 

membrane. The PLCγ inhibitor U73122 as well as RNAi depletion of PLCγ impair 

the translocation of β2-chimaerin to plasma membrane, implying that β2-chimaerin is 

a downstream effector of EGFR. Moreover, we found that the C1 domain in β2-

chimaerin is required for translocation since a C1 domain mutant (C246A-β2-

chimaerin) does not translocate to plasma membrane in response to EGF.  

     On the other hand, we also demonstrated that β2-chimaerin associates with Rac-

GTP in response to EGF or PMA. First, using GST pull-down assays, we 

demonstrated that GST-tagged constitutively active V12Rac1 strongly associates with 

β2-chimaerin, whereas the dominant-negative N17Rac1 does not. Second, confocal 

imaging studies revealed that β2-chimaerin co-localizes with V12Rac1 in the plasma 

membrane. Lastly, I developed a fluorescence resonance energy transfer (FRET) 

approach that was instrumental to demonstrate a significant interaction between CFP-

Rac1 and YFP-β2-chimaerin on the cell periphery upon EGFR stimulation. The 

interaction occurs as early as 1 min after EGF stimulation and is transient, returning 

to baseline after ~5 minutes (184).  

    In collaboration with Dr. Jim Hurley at the NIH, our laboratory determined the 3-D 

structure of β2-chimaerin (29). The crystal structure revealed that extensive 

intramolecular contacts in β2-chimaerin keep the protein in a “closed” conformation. 

The C1 domain of β2-chimaerin is buried at the heart of the structure and interacts 

with the N-terminus, the SH2 domain, the SH2-C1 domain linker and the Rac-GAP 



 23

domain. In addition to occluding the DAG/phorbol ester binding site, the N-terminus, 

the SH2 domain, the SH2-C1 domain linker and the Rac-GAP domain form 

hydrophobic interactions with a ring of hydrophobic side chains located around the 

C1 domain (29). These side chains are thought to be very important for the insertion 

of the C1 domain into the membrane. This may explain why β2-chimaerin requires 

high concentration of phorbol ester to translocate to the plasma membrane as well as 

to interact with Rac. Mutations of residues thought to be important to keep 

intramolecular interactions showed enhanced PMA-induced translocation and 

stronger Rac-GAP activity. Based on all the experimental data and 3-D structure 

(Figure 1.8), our laboratory proposed a model for translocation and activation of β2-

chimaerin. Inactivated β2-chimaerin exists in a “closed “ conformation in which 

extensive intramolecular interactions serve to occlude the DAG/phorbol ester-binding 

site of the C1 domain and the Rac-GAP domain. Upon PMA treatment or DAG 

generation by growth factor receptor stimulation, β2-chimaerin undergoes a 

conformational rearrangement and acquires an “open” conformation. Large 

hydrophobic patches in “open” β2-chimaerin contribute to aligning the protein at the 

membrane (29, 184) 

 

Chimaerins as Rac-GAPs: 

     In vitro assays demonstrated that β2-chimaerin has GAP activity towards the small 

G-protein Rac1, but not Cdc42 or RhoA, indicating that β2-chimaerin is a Rac 

specific GAP (28). Ectopic expression of β2-chimaerin in cells significantly reduced 

active Rac-GTP levels under both normal growth conditions or upon stimulation by 
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    A.                         

              
       B.   

       C.                            

                 
Figure 1.8 Crystal structure of β2-chimaerin.  A. Structures of SH2 (red), C1 (blue) 
and Rac-GAP (green) domains. B. Inactive “closed” conformation of β2-chimaerin   
C. Active “open” conformation of β2-chimaerin. Adapted from: Canagarajah et al. 
Cell (2004) 119: 407-418. 
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 EGF or PMA, and the effect was dependent upon a functional C-terminal GAP 

domain. On the other hand, Cdc42-GTP or RhoA-GTP levels were not affected by 

overexpression of β2-chimaerin, suggesting that it acts as a specific Rac-GAP in 

cells. In line with those findings, several studies demonstrated that β2-chimaerin is an 

important regulator of Rac signaling in cells and possibly implicated in cancer 

progression. β2-chimaerin was found to be down-regulated in high-grade 

astrocytomas (anaplastic astrocytomas and glioblastomas) when compared with 

normal brain and low-grade astrocytomas (199). A subsequent study from our 

laboratory demonstrated that β2-chimaerin mRNA levels are significantly down-

regulated in human breast cancer cell lines and breast tumors (195). Overexpression 

of β2-chimaerin in MCF-7 breast carcinoma cells leads to inhibition of cell 

proliferation accompanied by decreased Rac-GTP, cyclin D1 and phosphorylated 

retinoblastoma protein (pRb) levels, whereas expression of V12Rac1 restored the 

proliferation of these cells (195). β2-chimaerin also inhibits EGF-mediated effects, 

including actin cytoskeleton reorganization and cell migration. The inhibitory effects 

of β2-chimaerin on cell migration could be restored by overexpression of V12Rac1 

(184). In Jurkat T-cells, expression of β2-chimaerin also impairs PMA-induced actin 

polymerization, CXCL12-induced Rac activation, cell spreading and adhesion to 

VCAM-1 (159). I previously demonstrated that EGF-induced activation of Rac is 

potentiated and prolonged when β2-chimaerin is knocked-down using RNAi, 

suggesting that β2-chimaerin acts as a mechanism for limiting the intensity and 

duration of Rac signaling (184). Similar results were reported later in NIH3T3 cells 
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upon PDGF stimulation, suggesting a role for β2-chimaerin in limiting the strength of 

Rac-GTP activation in response to growth factors (197).  

    Several in vivo models have been used to elucidate the physiological role of 

chimaerins. In our laboratory we have cloned the zebrafish chimaerin gene, which 

encodes a protein highly homologous to α2- and β2-chimaerin, with 86% and 74% 

amino acid identity, respectively. The zebrafish chimaerin behaves similarly to the 

human chimaerins, as it translocates to the plasma membrane in response to PMA and 

possesses Rac-GAP activity. Depletion of chimaerin by injection of antisense 

morpholino RNAs into zebrafish embryos at one cell stage leads to significant 

developmental defects. Chimaerin-deficient zebrafish embryo displayed 

hyperactivation of Rac and faster migration through epiboly, which results in 

enlarged tailbuds. Interestingly, these defects can be rescued by microinjection of 

chimaerin mRNA into the yolk syncytial layer. These results suggested that chimaerin 

is critical for regulating Rac-mediated migration during zebrafish development (101). 

Studies in Drosophila also revealed an important role for chimaerin in the modulation 

of Rac signaling during development. RhoGAP5a, a single ortholog for chimaerins in 

Drosophila that shares 37% identity with human β2-chimaerin, is expressed in the 

interommatidial precursor cells of the developing fly eye. Depletion of RhoGAP5A in 

these cells increases numbers of cells and leads to aberrant cell-cell contacts. 

RhoGAP5A was also linked to EGFR signaling in the fly eye since knockdown of 

RhoGAP5A enhances ERK activation, implying that RhoGAP5A interacts with Rac 

to regulate EGFR-ERK signaling (22).  
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     Experiments using α2-chimaerin knockout mice established an important role for 

α2-chimaerin in axon guidance and growth cone collapse. Mice lacking α-chimaerin 

exhibit a hopping phenotype that is similar to that of EphA4 receptor-deficient mice. 

EphA4 repulsive signaling induces growth cone collapse that keeps corticospinal tract 

(CST) axons from crossing the midline. Axons from mice lacking α-chimaerin are 

unresponsive to these repulsive cues, which results in aberrant midline crossing of 

spinal cord projections and altered motor circuit formation. These results 

demonstrated that α-chimaerin GAP activity for inactivation of Rac is required for 

EphA4-induced growth cone collapse.  Interestingly, Nck1-lacking mice also develop 

a similar phenotype to that of EphA4 and α2-chimaerin knockout mice, suggesting 

that Nck1 may be a critical component in the EphA4 receptor-chimaerin signaling 

pathway (12, 55, 83, 155, 185). One of the most remarkable recent findings has been 

that human CHN1 mutations that hyperactivate α2-chimaerin are the cause of 

Duane's retraction syndrome (DRS), which is a complex congenital eye movement 

disorder caused by aberrant innervation of the extraocular muscles by axons of 

brainstem motor neurons (125). Patients with DRS have substitution mutations in α2-

chimaerin that lead to hyperactive proteins with enhanced GAP activity as well as 

enhanced membrane translocation (125). Remarkably, many of these mutations in 

α2-chimaerin are equivalent to those leading to an  “open“ conformation predicted in 

our structural studies of β2-chimaerin. Indeed, we found that mutation of Ile126 

residue, which is frequently mutated in DRS, confers enhanced GAP activity and 

translocation in cells (43). 
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Identification of p23/Tmp21 as a chimaerin-interacting protein 

  In early studies carried out in the Kazanietz lab, I identified a chimaerin-binding 

protein using a yeast two-hybrid approach. This screen established that p23/Tmp21, a 

type I transmembrane protein involved in vesicle transport and protein trafficking, 

interacts with both α- and β-chimaerins. Using a series of truncation mutants, I 

further established that the C1 domain in chimaerins is required for the interaction. 

Confocal microscopy analysis demonstrated that chimaerins co-localize with 

p23/Tmp21 in the perinuclear region. Mutations or deletion of the C1 domain 

abolished the chimaerin perinuclear localization. This suggested that p23/Tmp21 

might act as an anchoring protein for chimaerins. Interestingly, p23/Tmp21 inhibits 

β2-chimaerin Rac-GAP activity in cells when co-expressed with β2-chimaerin, 

suggesting that p23/Tmp21 may limit β2-chimaerin Rac-GAP activity by 

sequestering it in the perinuclear region (181).  More recently, our laboratory found 

that β2-chimaerin function is regulated by another DAG/phorbol ester-regulated 

protein, PKCδ. Ser169 in β2-chimaerin becomes phosphorylated by PKCδ upon 

treatment with PMA or EGF. This post-translational modification prevents β2-

chimaerin membrane relocalization in response to stimuli and represents a means of 

limiting the strength of β2-chimaerin Rac-GAP activity, suggesting dual roles of 

DAG signaling pathway in regulating β2-chimaerin functions. By summarizing all 

the studies from our laboratory, we propose the following updated model for 

regulation and activation of β2-chimaerin  (Figure 1.9). 
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Figure 1.9 Model of activation and regulation of β2-chimaerin upon growth factor 
stimulation. 
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Scope and significance of my thesis research 

     The overall objective of my dissertation research is to investigate the regulation 

and function of C1 domain-containing proteins in different paradigms. My focus will 

be primarily on β2-chimaerin and nPKCs.  

      In the case of β2-chimaerin, I have previously identified that it can interact with 

p23/Tmp21, an ER/Golgi cargo protein widely implicated in trafficking from the 

intermediate compartment to the Golgi (16, 18, 163). In the present studies, I 

elucidate how β2-chimaerin interacts with p23/Tmp21.  A deletional analysis in α- 

and β-chimaerins revealed that the C1 domain is the p23/Tmp21-interacting motif 

(181). Our biochemical and imaging studies strongly support the formation of a 

chimaerin-p23/Tmp21 complex in cells (181), suggesting that p23/Tmp21 actually 

serves as a perinuclear anchoring protein for chimaerin Rac-GAPs.  It is still unclear 

which amino acid(s) in the β2-chimaerin C1 domain is (are) crucial for the 

interaction. It also remains to be determined if p23/Tmp21 associates with other 

proteins possessing C1 domains to drive their perinuclear translocation. This is 

relevant because proteins with C1 domains, such as PKCε, have been shown to 

localize at the Golgi. I will focus on the ability of C1 domains to dictate intracellular 

localization via protein-protein interactions, which expands our view that these 

domains act primarily as lipid-binding motifs and also highlights the complexities of 

DAG signaling. These studies represent the core of Chapter 2.   

     It is well established that PMA and related analogs induce apoptosis in androgen-

dependent prostate cancer cells, an effect primarily mediated by PKCδ.  Βased upon 

the finding that p23/Tmp21 could interact with PKC isozymes, chimaerins as well as 
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RasGRP, I investigated whether PKCδ could directly associate with p23/Tmp21 in 

LNCaP prostate cancer cells, and assessed the functional consequences of these 

findings. In Chapter 3, I demonstrate that p23/Tmp21 directly associates with PKCδ 

in LNCaP prostate cancer cells and present data showing that p23/Tmp21 acts as an 

anchoring protein that negatively regulates the apoptotic effects of PMA. Our 

findings reveal a novel function for p23/Tmp21 in DAG signaling, which is 

independent of its previous well-established role acting as a vesicle trafficking 

protein. 

      Many studies have reported that membrane-related signaling cascades might play 

important roles in controlling radiation-induced cell death. In Chapter 4 of my 

dissertation I present studies on the roles of PKC isozymes in the resistance to γ-

irradiation in PC3 prostate cancer cells. Most prostate cancer cells express three 

DAG/phorbol ester-responsive protein kinase C (PKC) isozymes: PKCα, PKCδ and 

PKCε. The role of individual PKC isozymes in prostate cancer radiosensitivity 

remains elusive. My results reveal that PKCε, but not PKCα and PKCδ, confers 

radioresistance to androgen-independent prostate cancer cells. Moreover, C1 domain 

mediated translocation of PKCε by γ-irradiation represents the key event in this 

paradigm. 

     In summary, my thesis will present novel findings on the regulation and function 

of C1 domain-containing proteins: β2-chimaerin, PKCδ, and PKCε. 
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CHAPTER 2 
 

p23/Tmp21 differentially targets the Rac-GAP β2-chimaerin and 

protein kinase C via their C1 domains 
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ABSTRACT 

       

The C1 domains in PKC isozymes and other signaling molecules are responsible 

for binding the lipid second messenger DAG and phorbol esters, and mediate 

translocation to membranes. Previous studies revealed that the C1 domain in α- and 

β-chimaerins, DAG-regulated Rac-GAPs, interacts with the ER/Golgi protein 

p23/Tmp21. Here we found that p23/Tmp21 acts as a C1 domain-docking protein that 

mediates perinuclear translocation of β2-chimaerin. Glu227 and Leu248 in the β2-

chimaerin C1 domain are crucial for binding p23/Tmp21 and perinuclear targeting. 

Interestingly, isolated C1 domains from individual PKC isozymes differentially 

interact with p23/Tmp21. In the case of PKCε, it interacts with p23/Tmp21 

specifically via its C1b domain, however this association is lost in response to 

phorbol esters. These results demonstrate that p23/Tmp21 acts as an anchor that 

distinctively modulates compartmentalization of C1 domain-containing proteins, and 

it plays an essential role in β2-chimaerin relocalization. Our study also highlights the 

relevance of C1 domains in protein-protein interactions in addition to their well-

established lipid-binding properties. 
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INTRODUCTION 

 

C1 domains are 50-51 amino acid long cysteine-rich motifs originally identified 

in PKC as the binding sites for the lipid second messenger DAG and the phorbol ester 

tumor promoters. These domains contain the characteristic motif 

HX12CX2CX13/14CX2CX4HX2CX7C, where H is His, C is Cys, and X is any other 

amino acid. X-ray crystallography analysis revealed that C1 domains are compact 

globular structures coordinated through binding of two Zn2+ ions to conserved Cys 

and His residues. While this motif is duplicated in tandem (C1a and C1b domains) in 

classical PKCs (cPKCα, βI, βII and γ) and novel PKCs (nPKCδ, ε, η and θ), a single 

copy is present in phorbol ester/DAG unresponsive atypical PKC isozymes (aPKCζ, 

ι/λ)(122, 134). C1 domains capable of binding phorbol esters and DAG are also 

present in other protein kinases such as protein kinase D isozymes (PKDs) and 

Myotonic Dystrophy Kinase-related Cdc42-binding Kinase (MRCK), lipid kinases 

(DAG-kinases), GTPase activating proteins (α- and β-chimaerin Rac-GAPs), guanine 

nucleotide exchange factors (RasGRP GEFs), and scaffolding proteins (Munc-13s)(1, 

13, 25, 39, 52, 75, 117, 156, 178). 

     A distinctive feature of most phorbol ester receptors with C1 domains is their 

ability to redistribute to membranes in response to stimulation of receptors that couple 

to DAG generation or phorbol esters. A continuous hydrophobic surface generated by 

the phorbol ester or DAG facilitates the insertion of the C1 domain into lipid bilayers, 

which in the case of cPKCs and nPKCs is followed by a conformational 

rearrangement that leads to kinase activation (46, 151, 201). It is noteworthy that 

upon activation PKCs relocalize not only to plasma membrane but also to other 
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intracellular compartments including the nuclear membrane (128), perinuclear 

structures (80), and mitochondria (114). A high degree of isozyme selectivity for 

translocation to different intracellular compartments appears to exist (126). For 

example, early studies established that PKCε localizes to the Golgi complex in NIH 

3T3 cells via the C1 domain (98, 100). Moreover, a recent study in neuroblastoma 

SK-N-BE(2)C cells revealed that mutation of specific residues in the PKCε C1b 

domain impairs its perinuclear localization without affecting its translocation to the 

plasma membrane in response to the C1 domain ligand PMA (153). 

 We have previously established that α2- and β2-chimaerins translocate both to 

the plasma membrane and the perinuclear region in response to PMA or DAG 

analogs via the C1 domain (27). Deletion of the C1 domain or mutations of key 

amino acids implicated in phorbol ester binding impairs both the peripheral and 

perinuclear translocation of chimaerins, thus arguing that the C1 domain is essential 

for chimaerin intracellular targeting (25-27, 184). Other “non-kinase” phorbol 

ester/DAG receptors such as RasGRP1/3 and Munc-13 also translocate to the plasma 

membrane and Golgi in response to PMA via their C1 domains (28, 165). The 

molecular basis for the translocation of proteins with C1 domains is only partially 

understood. Speculation has been that protein-protein interactions are key factors for 

determining their selective intracellular relocalization, and studies have indeed 

identified numerous PKC interactors that dictate compartmentalization through 

binding to unique motifs present in individual isozymes, such as the receptors for 

activated C-kinases (RACKs) (45). Interactions may require a conformational 

rearrangement that exposes the protein binding domain (127). Although these 
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mechanisms have been extensively studied for PKC isozymes, the involvement of 

protein partners in targeting chimaerin Rac-GAPs has not been established yet. 

     In a previous yeast two-hybrid screening I identified the Golgi/ER protein 

p23/Tmp21 (p24δ) as a chimaerin-interacting protein (181). p23/Tmp21, a type I 

transmembrane protein, belongs to the p24 protein family that has been widely 

implicated in trafficking from the intermediate compartment to the Golgi (16, 18, 

163). A deletional analysis in α- and β-chimaerins revealed the C1 domain as the 

p23/Tmp21-interacting motif (181). Biochemical and imaging studies strongly 

support the formation of a chimaerin-p23/Tmp21 complex in cells (181). We 

hypothesize that p23/Tmp21 might serve as a perinuclear anchoring protein for 

chimaerin Rac-GAPs. Moreover, p23/Tmp21 might also associate with other proteins 

containing C1 domains to drive their perinuclear translocation. This is relevant 

because proteins with C1 domains, such as PKCε, have been shown to localize at the 

Golgi. 

In this Chapter I present data demonstrating that p23/Tmp21 is required for the 

perinuclear translocation of β2-chimaerin. This Rac-GAP indeed fails to redistribute 

to the perinuclear compartment in p23/Tmp21-deficient cells. I also identified key 

residues in the β2-chimaerin C1 domain that specifically mediate its association with 

p23/Tmp21 and translocation to the perinuclear compartment. Interestingly, 

p23/Tmp21 also interacts with other C1 domains in isolation, including C1 domains 

from PKC isozymes. Our results support the notion that C1 domains act not only as 

lipid binding motifs but can also mediate protein-protein interactions that determine 

selective intracellular compartmentalization. 



 37

RESULTS 

The C1 domain of β2-chimaerin and C1b domain of PKCε interact with 

p23/Tmp21 

In previous studies I identified p23/Tmp21, a type I transmembrane protein highly 

enriched in the ER and Golgi, as an α- and β-chimaerin-interacting protein. A 

deletional analysis established that interaction with p23/Tmp21 occurs through a 

region that encompasses the chimaerin C1 domain (181). Since PKCε was shown to 

localize at the perinuclear region via its C1 domain region (153), we speculated that 

C1a and/or C1b domains in PKCε may interact with p23/Tmp21. To address this 

issue we first examined whether the C1 region of PKCε, which include both C1a and 

C1b domains (C1εa-b), interacts with p23/Tmp21 in a yeast two-hybrid system. A 

pLexA construct encoding C1εa-b was generated (Figure 2.1A) and co-transformed 

with pB42AD-p23/Tmp21 (HA-tagged, aa 108-208, a fragment that interacts with 

chimaerins) into EGY48 yeast containing p8OP-LacZ vector (181). The triple vectors 

co-transformants were selected by plating the yeast into SD/-Ura/-His/-Trp dropout 

plates. pLexA-fused proteins were expressed in both galactose/raffinose (+Gal/Raf) 

plates and glucose plates (-Gal/Raf), while HA-tagged pB42AD-p23/Tmp21 (aa 108-

208) was only expressed in galactose/raffinose induction plates (data not shown). 

Figure 2.1B shows that both the β2-chimaerin C1 domain (C1β2-ch) and C1εa-b 

strongly interact with p23/Tmp21, as revealed by the induction of the LacZ reporter 

(blue color). These interactions were also detected using a liquid β-galactosidase 

assay (Figure 2.1C).  
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Studies have determined that C1εb but not C1εa is essential for Golgi localization 

in neuroblastoma SK-N-BE(2)C cells (153), suggesting a differential involvement of 

each domain in perinuclear targeting. We therefore generated pLexA-fused C1εa and 

C1εb constructs (Figure 2.1A), co-transformed each of them with pB42AD-

p23/Tmp21 into the EGY48 (p8OP-LacZ) yeast, and expressed both proteins in 

+Gal/Raf plates. Interestingly, a strong association was observed with C1εb, while 

C1εa failed to interact with p23/Tmp21 (Figure 2.1B and 2.1C). To further establish 

whether C1 domain specificity exists, we generated pLexA constructs encoding C1 

domains of aPKCζ (C1ζ), PKCα (C1α), PKCδ (C1δ), and RasGRP1. While C1ζ 

failed to interact with p23/Tmp21 in the yeast two-hybrid assay (Figure 2.1B), 

association was detected for C1α and C1δ, and the C1 domain of the Ras/Rap1 

exchange factor RasGRP1 weakly interacted with p23/Tmp21 (Figure 2.2A, 2.2B, 

and 2.2C). 

Next, we determined the intracellular localization of C1β2-ch, C1εa, and C1εb 

domains in mammalian cells. C1 domains were expressed as GFP-fusion proteins in 

HeLa cells, and localization examined by confocal microscopy (Figure 2.1D). 

Remarkably, individual C1 domains exhibited distinct intracellular localization. 

While GFP-C1εa distributed throughout the cell and had no obvious perinuclear 

localization, as previously reported in SK-N-BE(2)C cells (153), GFP-C1εb and GFP-

C1β2-ch showed a characteristic perinuclear localization. GFP-C1ζ displayed a 

strong nuclear localization when expressed in HeLa cells but no obvious perinuclear 

staining. Thus, C1 domains, when expressed in isolation, have unique localization 

properties. 
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Next, we examined whether different C1 domains co-localize with p23/Tmp21. 

HeLa cells were co-transfected with pcDNA3-V5-p23/Tmp21 together with plasmids 

encoding different C1 domains fused to GFP, and co-localization determined by 

confocal microscopy. As shown in Figure 2.3, both GFP-C1εb and GFP-C1β2-ch co-

localized with p23/Tmp21, as judged by the yellow color observed in the overlapped 

images. Quantification using ImageJ and analysis using a Pearson’s correlation 

coefficient (Rr) confirmed these results. In contrast, neither GFP-C1εa nor GFP-C1ζ 

showed any obvious co-localization with p23/Tmp21. GFP alone also failed to co-

localize with p23/Tmp21 in HeLa cells. We also found that full-length PKCα, 

PKCδ and RasGRP1 have some degree of co-localization with P23/Tmp21 (Figure 

2.2D). These results are in agreement with those observed in the yeast two-hybrid 

analysis, and reveal unique patterns of intracellular localization and protein 

interactions for discrete C1 domains.  
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Figure 2.1 Differential interaction of C1 domains with p23/Tmp21. A. Schematic representation of 
C1εa-b,  C1εa, C1εb, C1ζ, or C1β2-ch domain fused to pLexA. B. EGY48 yeast (containing 8op-LacZ 
vector) was co-transformed with pLexA encoding C1εa-b,  C1εa, C1εb, C1ζ, or C1β2-ch domain, and 
pB42AD-HA-tagged p23/Tmp21 (aa 108-208). Assay of β-galactosidase activity on induction (upper 
panel) or no-induction (lower panel) plates was carried out 72 h after transformation. Gal/Raf, 
galactosidase/raffinose. C. Assay of β-galactosidase activity in liquid cultures using ONPG as a 
substrate. Results were expressed as mean ± S.D. (n=3). D. GFP-PKCεC1b domain localizes in the 
perinuclear region. HeLa cells were transfected with pEGFP-C1εa, C1εb, C1ζ, or C1β2-ch. Forty-eight 
h later, cells were fixed and localization examined by confocal microscopy. Bar, 10 μm. All 
experiments have been performed at least three times with similar results. 
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Figure 2.2 Binding of C1 domains to p23/Tmp21. EGY48 yeast (containing 8op-LacZ vector) was co-
transformed with pLexA-fused C1 domains from PKCα (C1αa-b), PKCε (C1εa-b), PKCδ (C1δa-b), 
PKCζ (C1ζ), RasGRP1 (C1RasGRP1), or β2-chimaerin (C1β2-ch), and pB42AD-HA-tagged 
p23/Tmp21 (aa 108-208). A. Alignment of PKCα, PKCδ, PKCε C1b, RasGRP1, and β2-chimaerin C1 
domains. Positions 15 and 36 in C1 domains are indicated with arrows. B. Schematic representation of 
C1 domains fused to pLexA. C. Assay of β-galactosidase activity on induction (upper panel) or no-
induction (lower panel) plates, carried out 72 h after transformation. Gal/Raf, galactosidase/raffinose. 
Two additional experiments gave similar results. D. HeLa cells were co-transfected with plasmids 
encoding GFP-PKCα, GFP-PKCδ, GFP-PKCε, GFP-RasGRP1 or GFP-β2-chimaerin, and pcDNA3.1-
V5-p23/Tmp21. Forty-eight h later, cells were fixed and co-localization examined by confocal 
microscopy. Bar, 10 μm. All experiments have been performed at least three times with similar results. 

 



 42

 

Figure 2.3 Co-localization of GFP-fused PKCε C1b and β2-chimaerin C1 domains 
with p23/Tmp21. HeLa cells were co-transfected with pEGFP-fused C1εa, C1εb, C1ζ, 
or C1β2-ch (or empty vector) and V5-tagged full-length pcDNA3-p23/Tmp21. Forty-
eight h later, cells were fixed and stained with an anti-V5 antibody, and localization 
examined by confocal microscopy. Co-localization images and Pearson’s correlation 
coefficient (Rr) were generated by Image J. Similar results were observed at least in 3 
independent experiments. Bar, 10 μm. 
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Co-localization of full-length PKCε and p23/Tmp21 

Experiments carried out with isolated C1 domains established proof-of-principle 

for differential targeting, but may or may not reflect what occurs with intact proteins 

in cells. Therefore, we next decided to investigate the association of full-length β2-

chimaerin and PKCε with p23/Tmp21 in mammalian cells. COS-1 cells were 

transfected with pEBG control vector (which encodes GST alone) (181) or pEBG-

p23/Tmp21. After 24 h, cells were infected with adenoviruses for either full-

length PKCε or full-length β2-chimaerin, and 24 h later subject to GST pull-down 

using glutathione Sepharose 4B beads. As shown in Figure 2.4A (left panel), and in 

agreement with our previous study (27, 181), β2-chimaerin was detected in complex 

with GST-p23/Tmp21 but not with GST. β2-chimaerin was shown to translocate to 

the perinuclear compartment in response to C1 domain ligands such as PMA. This 

effect was lost when key residues in the C1 domain are mutated but was not affected 

by the pan-PKC inhibitor GF 109203X, suggesting that the PMA effect was not 

mediated by PKCs (27, 181). Figure 2.4A (left panel) also shows that the association 

of β2-chimaerin with GST-p23/Tmp21 was markedly enhanced by PMA. A 

densitometric analysis revealed that PMA caused a ~7-fold increase in the association 

of β2-chimaerin with p23/Tmp21 (Figure 2.4A, right panel). The association between 

β2-chimaerin and p23/Tmp21 can also be enhanced in cells growing in serum and in 

response to EGF treatment, although in this last case to a lower extent than that 

observed with PMA (Figure 2.5). Interestingly, PKCε can be readily detected in GST-

p23/Tmp21 precipitates, whereas it cannot be pulled down by GST alone, an 

indication that PKCε and p23/Tmp21 exist as a complex. However, in contrast to β2-
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chimaerin, PKCε dissociated from p23/Tmp21 when cells were treated with PMA 

(Figure 2.4B). 

The distinct association pattern of PKCε and β2-chimaerin with p23/Tmp21 

prompted us to examine whether they differentially re-localize in response to phorbol 

ester treatment. HeLa cells expressing GFP-PKCε or GFP-β2-chimaerin (full-length) 

were treated with either PMA or vehicle, and localization examined by confocal 

microscopy. Like β2-chimaerin, PKCε displayed some degree of co-localization with 

p23/Tmp21 in the perinuclear region of vehicle-treated cells (Rr=0.25). However, a 

remarkably distinct pattern of translocation for each protein was observed in response 

to PMA: while β2-chimaerin redistributed primarily to the perinuclear compartment 

and co-localized with p23/Tmp21 in response to PMA (Rr increases from 0.16 to 

0.42) (plasma membrane localization can be also detected)(27, 181), PKCε fully 

translocated to the cell periphery. Coincidentally, no perinuclear PKCε or co-

localization with p23/Tmp21 could be observed in PMA-treated cells (Rr= -0.04) 

(Figure 2.4C). These results argue for a differential interaction of PKCε and β2-

chimaerin with p23/Tmp21 in response to stimuli. Moreover, they also suggest that 

domain(s) in PKCε other than the C1b domain must have prominent targeting roles. 
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Figure 2.4 Differential interaction of PKCε and β2-chimaerin with p23/Tmp21. A 
and B. COS-1 cells were transfected with either pEBG (empty vector) or pEBG-
p23/Tmp21. Twenty-four h later, cells were infected with either HA-β2-chimaerin 
adenovirus (MOI=10 pfu/cell) (A) or PKCε adenovirus (MOI=3 pfu/cell) (B). After 
twenty-four h, cells were treated with PMA (1 μM) or vehicle for 30 min in the 
presence of the PKC inhibitor GF109203X (5 μM) and lysed. GST or GST-
p23/Tmp21 proteins were precipitated with glutathione Sepharose 4B beads and 
associated HA-β2-chimaerin detected by Western blot using an anti-HA antibody. 
Left panel, representative experiments. Right panel, densitometric analysis of three 
individual experiments, expressed as fold-change relative to GST-p23/Tmp21 in the 
absence (A) or presence (B) of PMA. C. HeLa cells were co-transfected with either 
pEGFP-PKCε or pEGFP-β2-chimaerin and pcDNA3.1/V5-p23/Tmp21 (full length). 
Forty-eight h later, cells were treated with PMA (1 μM) or vehicle for 30 min, fixed, 
and stained with an anti-V5 antibody, and localization examined by confocal 
microscopy. Upper panels, green fluorescence from GFP-PKCε or GFP-β2-
chimaerin; middle panels, red fluorescence from pcDNA3.1/V5-p23/Tmp21; lower 
panels, overlapped images. Co-localization images and Pearson’s correlation 
coefficient (Rr) were generated by Image J. Similar results were obtained in 3 
additional experiments. Bar, 10 μm. 
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Figure 2.5 FBS and EGF enhance the association of β2-chimaerin with p23/Tmp21. 
COS-1 cells were co-transfected with pEBG-p23/Tmp21 and GFP-β2-chimaerin, and 
48 h later either serum-starved for 18 h and stimulated with EGF (100 ng/ml) or left 
in 10% FBS. GST-p23/Tmp21 was precipitated with glutathione Sepharose 4B beads 
and associated GFP-β2-chimaerin detected by Western blot using an anti-GFP 
antibody. A representative example is shown together with a densitometric analysis of 
3 independent experiments. *P<0.05 between control (0 min.) vs. treatments. 
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p23/Tmp21 depletion impairs perinuclear translocation of β2-chimaerin 

     To determine the requirement of p23/Tmp21 for β2-chimaerin translocation, we 

established p23/Tmp21-depleted HeLa cell lines using lentiviral shRNAs. Three 

different lentiviruses were used, and stable cell lines were generated after selection 

with puromycin. Figure 2.6A shows that a significant depletion (> 80%) was 

observed with shRNA p23/Tmp21 lentiviruses #2 and #3, while shRNA lentivirus #1 

was less effective. GFP-β2-chimaerin was expressed in the different stable cell lines, 

and its localization in response to PMA was monitored using real-time microscopy. 

Figure 2.6B revealed that GFP-β2-chimaerin efficiently translocated to the 

perinuclear region (marked with an arrow at 30 min time point) in control cells, as 

expected. Likewise, perinuclear translocation was readily detected in cells infected 

with p23/Tmp21 shRNA lentivirus #1, in which depletion was minimal. In contrast, 

perinuclear translocation of GFP-β2-chimaerin was essentially lost in those cell lines 

in which p23/Tmp21 has been markedly depleted. GFP-β2-chimaerin co-localized 

with the Cis-Golgi marker GS-28 in the resting state, and PMA treatment enhanced 

co-localization (Figure 2.7). Translocation of PKCε to the cell periphery by PMA was 

not affected by shRNA p23/Tmp21 depletion (data not shown). These results suggest 

that p23/Tmp21 is indispensable for the translocation of β2-chimaerin to the 

perinuclear region. 
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Figure 2.6 p23/Tmp21 RNAi depletion impairs perinuclear β2-chimaerin translocation. A. 
Expression of p23/Tmp21 in HeLa cells stably expressing different p23/Tmp21 shRNAs 
(shRNA#1, shRNA#2 and shRNA#3) or control cells. B. Cells were transfected with pEGFP-
β2-chimaerin and 48 h later treated with PMA (3 μM) in the presence of GF109203X (5 μM) 
Time-lapse images of β2-chimaerin translocation in living cells were captured at different 
times after PMA treatment. Perinuclear and periphery translocation were marked with arrows. 
Similar results were observed in 3 individual experiments. Bar, 10 μm. 
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Figure 2.7 Co-localization of β2-chimaerin with a Golgi marker. HeLa (CTL), HeLa 
(shRNA#2) or HeLa (shRNA#3) cells were transfected with pEGFP-β2-chimaerin 
and 48 h later treated with vehicle or PMA (3 μM) in the presence of GF109203X (5 
μM). After 30 min., cells were fixed, stained with anti-GS28 cis-Golgi marker and 
examined by confocal microscopy. Co-localization images and Pearson’s correlation 
coefficient (Rr) were generated by Image J. Similar results were observed in 3 
separate experiments. Bar, 10 μm. 
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Glu227 and Leu248 in the β2-chimaerin C1 domain are critical for translocation 

to the perinuclear compartment 

      In a recent study, Schultz et al. showed that mutation of Asp257 and Met278 in 

the PKCε C1b domain (amino acids 15 and 36 in the motif, respectively) abolished 

the perinuclear localization of PKCε or its PKCε C1b domain in neuroblastoma cells 

(153). We observed that when we mutated both Asp257 and Met278 to Gly in PKCε, 

the resulting mutant localized to the plasma membrane even in the absence of PMA 

stimulation and does not co-localize with p23/Tmp21 (Figure 2.8). Alignment of 

C1εb with C1 domains from both α- and β-chimaerins revealed that an acidic amino 

acid in position 15 and a lipophilic amino acid in position 36 of the motif were 

conserved (Figure 2.9A). We speculated that Glu227 and Leu248 in β2-chimaerin 

might be implicated in perinuclear translocation. Mutants in those positions in β2-

chimaerin (E227G, L248A, and the double mutant E227G/L248A) were generated, 

expressed in HeLa cells as GFP-fused proteins, and their localization in real-time in 

response to PMA analyzed by microscopy. Single mutants E227G- and L248A-β2-

chimaerin showed slightly higher translocation to the plasma membrane compared to 

wild-type β2-chimaerin. However, perinuclear translocation after PMA treatment can 

still be observed. Conversely, no perinuclear translocation could be observed for the 

double mutant E227G/L248A-β2-chimaerin, while plasma membrane fluorescence 

was readily detected (Figure 2.9B; videos presented in Supplementary Information of 

MBoC paper, Figure 2.14). Therefore, residues in the β2-chimaerin C1 domain 

homologous to those in C1εb play a significant role in targeting β2-chimaerin to the 

perinuclear compartment. 
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The double mutant E227G/L248A-β2-chimaerin fails to interact with 

p23/Tmp21 

     We speculated that the lack of perinuclear translocation of the double mutant 

E227G/L248A-β2-chimaerin by PMA was due to its inability to bind p23/Tmp21. We 

tested this hypothesis using a yeast two-hybrid assay. pLexA-fused constructs for 

E227G-, L248A-, and E227G/L248A-β2-chimaerin C1 domain mutants were 

generated (E227G-C1β2-ch, L248A-C1β2-ch, and E227G/L248A-C1β2-ch 

respectively). The pLexA plasmids were co-transformed with pB42AD-p23/Tmp21 

into EGY48 (p8OP-LacZ) yeast. As shown in Figure 2.10A, single mutants E227G-

C1β2-ch and L248A-C1β2-ch retained their ability to bind p23/Tmp21, as revealed 

by the induction of the LacZ reporter gene (blue). In contrast, the double mutant 

E227G/L248-C1β2-ch was unable to interact with p23/Tmp21. A mutant with a Cys 

essential for C1 domain folding mutated to Ala (C246A-C1β2-ch) also failed to 

interact with p23/Tmp21, consistent with the lack of translocation of C246A-β2-

chimaerin in PMA-treated cells (27, 181). 

     In the next experiments, we determined the association of GFP-β2-chimaerin 

mutants with p23/Tmp21 in COS-1 cells using a co-precipitation approach. Cells 

were co-transfected with pEBG (empty vector) or pEBG-p23/Tmp21, together with 

GFP-β2-chimaerin (wt), GFP-β2-chimaerin (E227G/L248A) or GFP-β2- 
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Figure 2.8 PKCε (Asp257/Met278) does not co-localize with p23/Tmp21. HeLa cells 
were co-transfected with either pEGFP-PKCε (wt)  or pEGFP-
PKCε (Asp257/Met278)  and pcDNA3.1/V5-p23/Tmp21 (full-length). Forty-eight h 
later, cells were treated with PMA (1 μM) or vehicle for 30 min, fixed, and visualized 
by confocal microscopy. Upper panels, green fluorescence from GFP-PKCε or GFP-
PKCε (Asp257/Met278); middle panels, red fluorescence from pcDNA3.1/V5-
p23/Tmp21; lower panels, overlapped images. Bar, 10 μm. Similar results were 
obtained in 3 independent experiments. Peripheral localization is marked with arrows. 
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Figure 2.9 Glu227 and Leu248 in the β2-chimaerin C1 domain are required for perinuclear 
translocation. A. Alignment of PKCε C1b and α- and β-chimaerin C1 domains. Positions 15 and 36 
are indicated with an arrow. B. HeLa cells were transfected with pEGFP-β2-chimaerin (wt), pEGFP-
β2-chimaerin (E227G), pEGFP-β2-chimaerin (L248A), or pEGFP-β2-chimaerin (E227G/L248A). 
Forty-eight h later, cells were treated with PMA (3 μM) in the presence of GF109203X (5 μM). Time-
lapse images of  translocation of GFP-β2-chimaerin or its mutants in living cells were captured by 
fluorescence microscopy at different times after PMA treatment. Perinuclear and periphery 
translocation were marked with arrows. Similar results were observed in 5 independent experiments. 
Bar, 10 μm. 
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chimaerin (C246A). After 36 h, cells were subject to a pull-down assay using 

glutathione Sepharose 4B beads. As shown in Figure 2.10B (left panel), while β2-

chimaerin (wt) was readily detected in complex with GST-p23/Tmp21, no co-

precipitation was observed for β2-chimaerin (E227G/L248A) or β2-chimaerin 

(C246A). A quantitative analysis of multiple experiments is presented in Figure 

2.10B (right panel). 

Furthermore, imaging studies using confocal microscopy showed that while 

perinuclear translocation and co-localization with p23/Tmp21 in response to PMA 

could still be observed for full-length GFP-β2-chimaerin in which Glu227 and 

Leu248 have been mutated individually, the double mutant GFP-E227G/L248A-β2-

chimaerin was unable to redistribute to the perinuclear compartment or to co-localize 

with p23/Tmp21 in cells (Figure 2.11). As also shown in Figure 2.9B, significant 

plasma membrane translocation could be detected with the double mutant. In 

agreement with previous studies (27, 181), the PMA-unresponsive mutant C246A-β2-

chimaerin was unable to translocate in response to the phorbol ester. 
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Figure 2.10 Glu227 and Leu248 residues in the β2-chimaerin C1 domain are required for 
the interaction with p23/Tmp21. A. EGY48 yeast (containing 8op-LacZ vector) was co-
transformed with pLexA-β2-chim-C1 (E227G), pLexA-β2-chim-C1 (L248A), pLexA-β2-
chim-C1 (E227G/L248A), or pLexA-β2-chim-C1 (C246A), and pB42AD-HA-tagged 
p23/Tmp21 (aa 108-208). Assay of β-galactosidase activity on induction (upper panel) or no-
induction (lower panel) plates was carried out 72 h after transformation. Gal/Raf, 
galactosidase/raffinose. B. COS-1 cells were co-transfected with either pEBG (empty vector) 
or pEBG-p23/Tmp21 and GFP vector, GFP-β2-chimaerin (wt), GFP-β2-chimaerin 
(E227G/L248A) or GFP-β2-chimaerin (C246A). After twenty-four h, cells were lysed. GST 
or GST-p23/Tmp21 proteins were precipitated with glutathione Sepharose 4B beads and 
associated GFP-fused proteins detected by Western blot using an anti-GFP antibody. Left 
panel, representative experiments. Right panel, densitometric analysis of three individual 
experiments, expressed as fold-change relative to GST-p23/Tmp21 bound β2-chimaerin (wt).  
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Figure 2.11 Co-localization studies of β2-chimaerin mutants and p23/Tmp21. HeLa 
cells were co-transfected with pEGFP-β2-chim (wt), pEGFP-β2-chim (C246A), 
pEGFP-β2-chim (E227G), pEGFP-β2-chim (L248A), or pEGFP-β2-chim 
(E227G/L248A) and V5-tagged pcDNA-p23/Tmp21. Forty-eight h later, cells were 
treated with PMA (3 μM) or vehicle for 30 min in the presence of GF 109203X (5 
μM). Cells were then washed and visualized by confocal microscopy. Left panel, 
green fluorescence from GFP-β2-chimaerin (wild-type or mutants); middle panels, 
red fluorescence from pcDNA3.1/V5-p23/Tmp21; right panels, overlapped images. 
Far right panels, co-localization images generated by Image J. Similar results were 
obtained in 3 different experiments. Bar, 10 μm. 
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Identification of the chimaerin binding domain in p23/Tmp21 

     In the next set of experiments we mapped the domain in p23/Tmp21 that interacts 

with the C1 domain in chimaerins using a yeast two-hybrid approach. p23/Tmp21 

comprises a luminal domain and a short cytoplasmatic tail linked by a transmembrane 

domain. Deletions for each domain were generated, and the corresponding deleted 

mutants subcloned into pB42AD-HA as shown in Figure 2.12A (upper panel). 

EGY48 (p8OP-LacZ) yeast was co-transformed with either mutant together with 

pLexA-α-chimaerin (aa 1-147) (it has similar interacting properties as the β-

isoforms) and proteins expressed in Gal/Raf plates (Figure 2.12A, middle panel). A 

strong interaction could be detected even when the cytosolic tail (Δ208-219) was 

deleted. On the other hand, deletion of amino acids 185-208, which correspond to the 

transmembrane domain, impaired the association. Expression of the transmembrane 

domain alone was sufficient to observe interaction (Figure 2.12A, lower pannel). A 

β-galactosidase liquid assay also revealed that the transmembrane domain alone 

interacts with chimaerin (data not shown). These results were confirmed using a co-

precipitation approach. Deletion mutants were generated and subcloned into pEBG 

vector  (Figure 2.12B, upper panel). GST or GST-fused p23/Tmp21 mutants were 

mixed with COS-1 cell lysates expressing HA-β2-chimaerin (Figure 2.12B, middle 

panel). While association of GST-p23/Tmp21 (aa 1-219; aa108-219; aa 1-208) with 

HA-β2-chimaerin was readily detected, GST-p23/Tmp21 (aa 1-185), which has the 

transmembrane domain deleted, failed to associate with β2-chimaerin (Figure 2.12B, 

lower panel). These results suggest that p23/Tmp21 transmembrane domain is 

implicated in the interaction.
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Disruption of the β2-chimaerin-p23/Tmp21 complex leads to enhanced β2-

chimaerin Rac-GAP activity  

     We have previously shown that the expression levels of p23/Tmp21 may influence 

the ability of β2-chimaerin to regulate Rac-GTP (active) levels (181). Conceivably, 

when complexed with p23/Tmp21, β2-chimaerin cannot access the plasma membrane 

to inactivate Rac. It is still elusive whether disruption of the β2-chimaerin-

p23/Tmp21 complex affects β2-chimaerin Rac-GAP activity. We predicted that 

dissociation of this complex should result in enhanced availability of β2-chimaerin 

for Rac inactivation. To address this issue, we compared the Rac-GAP activity of β2-

chimaerin (wild-type) and E227G/L248A-β2-chimaerin in COS-1 cells using a PBD 

pull-down assay. As shown in Figure 2.13, the double mutant is more active as a Rac-

GAP than wild-type-β2-chimaerin is when expressed at comparable levels. PMA 

significantly enhanced Rac-GAP activity of wild-type β2-chimaerin. These results 

suggest that binding of β2-chimaerin to p23/Tmp21 limits the availability of this Rac-

GAP for inhibiting Rac activity. 
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Figure 2.12 Identification of the β2-chimaerin C1 domain interacting region in 
p23/Tmp21. EGY48 yeast (containing 8op-LacZ vector) was co-transformed with 
pLexA-fused α1-chimaerin (aa 1-147) (181) and pB42AD-HA-tagged p23/Tmp21 
truncated mutants. A. Upper panel, schematic representation of p23/Tmp21 
constructs used in the yeast two-hybrid assay. Middle panel, chimaerin expression in 
yeast lysates, as determined by Western blot using an anti-pLexA antibody; and 
expression of p23/Tmp21 truncated proteins in yeast lysates using an anti-HA 
antibody. Lower panel, assay of β-galactosidase activity on induction or no-induction 
plates, carried out 72 h after transformation. Gal/Raf, galactosidase/raffinose. B. 
COS-1 cells were transfected with either pEBG (empty vector) or pEBG-p23/Tmp21, 
and infected with a HA-β2-chimaerin adenovirus (MOI=10 pfu/cell). Thirty-six h 
later, GST or GST-p23/Tmp21 proteins were precipitated with glutathione Sepharose 
4B beads and associated HA-β2-chimaerin detected by Western blot using an anti-
HA antibody. Upper panel, schematic representation of GST-p23/Tmp21 constructs 
used in the co-precipitation assays. Middle panel, expression of GST-p23/Tmp21 or 
its mutants and HA-β2-chimaerin in cell lysates. Lower panel, associated HA-β2-
chimaerin and GST-p23/Tmp21 or its mutants in pull-down assay were detected by 
Western blot using anti-HA and anti-GST antibody respectively. Similar results were 
observed in two additional experiments. 
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Figure 2.13 Disruption of β2-chimaerin-p23/Tmp21 interaction leads to enhanced 
β2-chimaerin Rac-GAP activity. A. COS-1 cells were transfected with pEGFP, 
pEGFP-β2-chimaerin (wt), or pEGFP-β2-chimaerin (E227G/L248A). Forty-eight h 
later, Rac-GTP levels were assayed using a GST-PBD pull-down assay. B. 
Densitometric analysis of Rac-GTP levels relative to control (GFP alone). Data are 
expressed as mean ± S.E. of 5 independent experiments. *p<0.05 between GFP vs. 
GFP-β2-chim (wt); **p<0.01 between GFP-β2-chim (wt) vs. GFP-β2-chim 
(E227D/L248A). #p<0.01 between GFP-β2-chim (wt) (-PMA) vs. GFP-β2-chim(wt) 
(+PMA). C. Western blot show GFP, GFP-β2-chim (wt) and GFP-β2-chim 
(E227D/L248A) protein expression. 
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Videos can be viewed at: http://www.molbiolcell.org/cgi/content/full/E09-08-

0735/DC1 

Figure 2.14 Videos for translocation experiments in Figure 2.9. Time-lapse images 
of  translocation of GFP-β2-chimaerin or its mutants in living cells were captured by 
fluorescence microscopy at different time points after PMA treatment. AVI files 
(movies) were made using Northern Eclipse software (version 6.0). 
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DISCUSSION 

     

In this Chapter we showed that p23/Tmp21 is an anchoring protein for the Rac-

GAP β2-chimaerin and is required for its translocation to the perinuclear 

compartment. The interaction is mediated through the β2-chimaerin C1 domain. 

Interestingly, we found that C1 domains from other proteins, such as the second C1 

domain of PKCε (C1εb), have the ability to interact with p23/Tmp21. However, a 

comparative analysis between β2-chimaerin and PKCε suggests that p23/Tmp21 

plays differential roles in targeting C1 domain-containing proteins, as only the former 

interacts with p23/Tmp21 in response to phorbol ester activation. We also identified 

key amino acids in the β2-chimaerin C1 domain required for the interaction that when 

mutated prevent the formation of the complex. 

 

C1 domains as targeting modules 

It is well established that C1 domains play a fundamental role in targeting PKC 

isozymes and other molecules from the cytosol to membranes both in response to 

phorbol esters or DAG generated upon receptor activation (42). For classical and 

novel PKCs, this membrane targeting is essential for allosteric activation. C1 domains 

in other phorbol ester/DAG receptors also play key roles in translocation, as it has 

been extensively demonstrated for PKDs, RasGRPs, and chimaerin Rac-GAPs. X-

Ray crystallography studies of the C1b domain of PKCδ established that it is 

constituted of two β sheets and a small α helix at the end of the C-terminus. The β 

sheets form a pocket where phorbol esters and DAG bind (201). Modeling analysis 

revealed that all C1 domains including those in chimaerins, have remarkable 
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structural resemblance (26). The C1 domain in α- and β-chimaerins binds phorbol 

esters and DAG analogs with affinities similar to PKC C1 domains and utilizes 

similar mechanisms for insertion into lipid bilayers (26). It is remarkable, however, 

that individual C1 domains from phorbol ester/DAG receptors have quite distinct 

properties for ligand recognition and localize to entirely different compartments when 

expressed in cells. Various examples of differential ligand affinities have been 

reported for C1a and C1b domains in PKC isozymes. For example, a study showed 

that while in PKCδ the C1a domain preferentially binds DAG, the C1b domain has 

higher affinity for phorbol esters (166). Site-directed mutagenesis of individual C1 

domains in PKCs has also established distinct roles in translocation, and it was 

suggested that this disparity relates to a differential exposure of C1a and C1b domains 

(148). The non-equivalency of C1 domains in PKCs is also exemplified by their 

differential ability to localize to the Golgi complex: while isolated C1a domains 

generally localize throughout the cell rather than specifically in the perinuclear 

region, C1b domains of cPKCs and nPKCs show co-localization with a Golgi marker 

(153), as we have also demonstrated for full-length β2-chimaerin and its isolated C1 

domain (27), and brefeldin can disrupt their localization (111). In PKDs, a family of 

PKC-related kinases, C1a and C1b domains also have differential biochemical and 

targeting properties (36, 109). Altogether, this suggests that mechanisms alternative 

or in addition to ligand binding may account for the selective intracellular 

compartmentalization. 

Growing evidence suggests that C1 domains in PKCs and PKDs act as protein-

interaction modules that regulate their cellular localization and/or activation. For 
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example, the C1b domain of PKCα interacts with the cell matrix protein fascin, and 

disruption of this interaction affects cell motility (4). 14-3-3τ binding sites have been 

identified within the C1b domain of PKCγ (135). The association between the PKD1 

C1 domain and 14-3-3τ in T cells negatively regulates PKD1 (78). The recent 

identification of a 20 amino acid module in PKCε that directs localization to cell-cell 

contacts via protein-protein interaction is another remarkable example (51). The 

PKCε C1b binds to peripherin to induce its aggregation, leading to apoptosis in 

neuroblastoma cells (169). Localization of PKCβII to centrosomes is mediated by the 

scaffolding protein pericentrin and involves the PKCβII C1a domain, and dissociation 

of this complex impairs spindle formation and cell division (34). Newton and co-

workers identified a novel E3 ubiquitin ligase that interacts with the C1a domain of 

PKCβII (33).  

The identification of p23/Tmp21 as a β2-chimaerin interactor allowed us to 

postulate an anchoring role for this Golgi protein. In this study we showed that RNAi 

depletion of p23/Tmp21 prevents the translocation of β2-chimaerin to the perinuclear 

region, an indication that binding to p23/Tmp21 is a requisite for relocalization. 

Deletion of the C1 domain in β2-chimaerin prevents β2-chimaerin interaction with 

p23/Tmp21 (181), and this is also supported by the failure of the C1 domain mutant 

C246A-β2-chimaerin to associate with p23/Tmp21 observed in the present study. We 

also investigated the role of two highly conserved amino acids in the C1b domains of 

PKCs. Previous studies by Schultz et al. showed that Asp257 and Met278 in PKCε 

(positions 15 and 36 in the C1 domain consensus) or the equivalent residues in PKCθ 

(Glu246 and Met267) are required for Golgi targeting (153). Like PKC C1b domains, 
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the C1 domain in β2-chimaerin possesses an acidic residue in position 15 (Glu227) 

and a hydrophobic residue in position 36 (Leu248). We found that mutation of both 

residues abolishes perinuclear translocation of β2-chimaerin. It is unclear why single 

mutants were not as effective, but Shultz et al. also described similar results for single 

mutants in PKCθ (153). It is interesting that, unlike β2-chimaerin, PKCε loses its 

perinuclear localization in response to PMA and mobilize to a peripheral 

compartment. Most likely the forces that drive membrane translocation are 

sufficiently strong to overcome the PKCε-p23/Tmp21 interaction. The C1a domain in 

PKCε may suffice to drive plasma membrane localization, as the tandem C1a-C1b 

domain mobilizes to the plasma membrane in response to PMA (data not shown). In 

addition to its perinuclear relocalization, β2-chimaerin translocates to the plasma 

membrane in response to stimuli (184). It remains to be determined whether signals 

could lead to the dissociation of the complex and release β2-chimaerin to make it 

available for membrane translocation or whether different intracellular pools that 

respond differentially to stimuli exist. The ability of chimaerins to interact with other 

proteins independently of the C1 domain (Colon-Gonzalez, H.W., and M.G.K., 

manuscript in preparation) clearly suggests complex regulatory mechanisms 

controlling relocalization and activation of this family of Rac-GAPs. 

A key finding was the identification of amino acids 15 and 36 in the C1 domain 

consensus as essential for the interaction with p23/Tmp21. Mutation of both residues 

in β2-chimaerin impairs the interaction with p23/Tmp21 in a yeast two-hybrid assay. 

Likewise, mutation of amino acids Asp257 and Met258 in PKCε leads to dissociation 

of this kinase from the perinuclear compartment (see Figure 2.8). The differential 
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interaction of PKCε C1a and C1b domains with p23/Tmp21 may also reflect the 

differences in amino acids present in those positions (Ser and Cys in C1a). While at 

the present time there is no structural information on the C1 domain-p23/Tmp21 

interaction, 3D studies clearly showed that amino acids in position 15 and 36 are in 

close proximity and possibly not inserted into the membrane bilayer (153, 201), thus 

making them available for interactions with other partners.  

 

p23/Tmp21 as an anchoring protein for β2-chimaerin 

p23/Tmp21 is a type I protein belonging to the p24 family that has a receptor-like 

luminal domain and a short cytoplasmatic tail. Members of the p24 family have been 

widely implicated as coat protein (COP) vesicle cargo receptors, and they participate 

in COP vesicle budding and the organization of the Golgi apparatus. The cytoplasmic 

tail of p23/Tmp21 carries motifs that bind to COPI, and this association is crucial for 

the retention and retrieval of cargo proteins in the early secretory pathway (65). Our 

deletional analysis revealed that this C-terminal tail is not involved in binding to 

chimaerins. Despite multiple studies implicating p24 proteins in vesicle trafficking, 

insights into the actual function of p23/Tmp21 remain elusive. Recent studies have 

established that p23/Tmp21 is a component of the presenilin complex that modulates 

γ-secretase activity (35). p23/Tmp21 can also localize in post-Golgi compartments 

and even traffic to the plasma membrane (17). In addition, emerging evidence 

suggests that p23/Tmp21 is implicated in the regulation of small GTPase function. 

Studies identified a mechanism of recruitment of the small GTPase ARF1 (ADP-

ribosylation factor 1) to the Golgi via p23/Tmp21 (65, 112). More recently, studies 
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found that ARF1-dependent assembly of actin in the Golgi apparatus may involve 

Cdc42/Rac and is dependent on p23/Tmp21 (57). While early studies showed that 

Rac1 is present in the perinuclear region, primarily in an inactive GDP-bound state 

(95), functional studies on perinuclear Rac are scarce. Moreover, it is unclear what 

the relative contribution of this perinuclear-associated Rac is to the pool of active 

plasma membrane Rac generated in response to stimuli.  It may be possible that 

recruitment of chimaerin Rac-GAPs via p23/Tmp21 contributes to the maintenance of 

the perinuclear Rac inactive pool. There is a precedent for the interaction of 

endogenous Rac and a Rac-GAP protein, OCRL1, at the trans-Golgi network, 

however the mechanisms involved in targeting these proteins to the perinuclear 

region are yet to be established.  

 

Conclusion of Chapter 2 

     We identified p23/Tmp21 as an anchoring protein for β2-chimaerin via its C1 

domain. Depletion of p23/Tmp21 from cells leads to reduced perinuclear 

translocation of β2-chimaerin, suggesting that when complexed with p23/Tmp21 its 

availability to mobilize to the plasma membrane and inactivate Rac is limited. Our 

studies also provide evidence for a marked selectivity of C1 domains for binding to 

p23/Tmp21, as some C1 domains from PKC isozymes and potentially other phorbol 

ester/DAG receptors have the ability to bind p23/Tmp21. In the case of PKCε it 

seems that p23/Tmp21 anchors this kinase via the C1b domain and that the PKCε-

Tmp21 complex dissociates in response to stimuli. Whether this is also true for other 

PKC isozymes or phorbol ester/DAG receptors such as PKD and RasGRP isozymes 
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remains to be determined. In summary, the ability of C1 domains to dictate 

intracellular localization via protein-protein interactions expands our view that these 

domains act solely as lipid-binding motifs and highlight the complexity of DAG 

signaling. 
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MATERIALS AND METHODS 

       

Materials- PMA and GF109203X were purchased from LC Laboratories (Woburn, 

MA). Cell culture reagents were obtained from Invitrogen (Carlsbad, CA). Reagents 

for the expression and purification of recombinant glutathione S-transferase (GST)-

fusion proteins and glutathione Sepharose 4B beads were purchased from GE 

Healthcare (Piscataway, NJ). COS-1 and HeLa cells were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA). Yeast strain EGY48, and 

yeast culture reagents and media were obtained from Clontech Laboratories, Inc. 

(Mountain View, CA). ONPG (O-nitrophenyl-β-D-galactopyranoside) and 

MISSION® Lentiviral Transduction shRNAs particles were obtained from Sigma (St. 

Louis, MO). The following primary antibodies were used: anti-pLexA (Santa Cruz, 

CA), anti-β-actin (Sigma), anti-V5 (Invitrogen), anti-p23/Tmp21 (ProSci 

Incorporated, Poway, CA), anti-GST, anti-HA and anti-GFP (Covance, Emeryville, 

CA), anti-Rac1 (Millipore, Billerica, MA), anti-PKCε (Cell Signaling, Danvers, MA), 

and anti-GS28 (BD Biosciences, San Jose, CA). 

 

Plasmid construction- Generation of pB42AD-p23/Tmp21 (amino acid (aa) 108-219), 

pEBG-p23/Tmp21 (aa 1-219) and pEBG-p23/Tmp21 (aa 108-219) are described 

elsewhere (181). Truncated p23/Tmp21 mutants were generated by PCR and 

subcloned into EcoRI-XhoI sites in pB42AD-HA vector or BamHI /SpeI sites in 

pEBG vector. C1 regions from PKCε, PKCζ and β2-chimaerin were isolated by PCR 

and fragments subcloned into EcoRI-BamHI sites in pLexA to generate pLexA-C1εa-
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b (aa 134-309), pLexA-C1ζ (aa 95-197), and pLexA-C1β2-ch (aa 179-281), 

respectively. C1 domain fragments were also subcloned into EcoRI-BamHI sites in 

pEGFP-C1 to generate pEGFP-C1εa-b, pEGFP-C1ζ, and pEGFP-C1β2-ch. 

Individual C1a and C1b domains from PKCε (comprising aa 168-222 and aa 241-

294, respectively) were subcloned into EcoRI-BamHI sites in pEGFP-C1 and pLexA 

to generate pEGFP-C1εa, pEGFP-C1εb, pLexA-C1εa, and pLexA-C1εb. The primers 

used for PCR cloning are listed in Table 2-1. All constructs were confirmed by 

sequencing. 

 

Site-directed mutagenesis- For PCR-based mutagenesis we employed the 

QuikChange® XL Site-Directed Mutagenesis Kit (Strategene, La Jolla, CA), using 

GFP-β2-chimaerin, GFP-C1β2-ch, or pLexA-C1β2-ch as templates. For the mutant 

E227G-β2-chimaerin we used the following primers (mutated nucleotides are 

underlined): forward, 5’-

CGAGGCCCACACTGGTGTGGATATTGTGCCAATTTCATG; reverse, 5’-

CATGAAATTGGCACAATATCCACACCAGTGTGGGCCTCG. For the mutant 

L248A-β2-chimaerin we used: forward, 5’–

GTCCGGTGCTCAGACTGTGGAGCTAACGTACACAAACAG; reverse, 5’- 

CTGTTTGTGTACGTTAGCTCCACAGTCTGAGCACCGGAC. For PKCε 

(E257G) we used: forward, 5’-

GGTCCCCACGTTCTGTGGCCACTGTGGGTCCCTGC; reverse, 5’-

GCAGGGACCCACAGTGGCCACAGAACGTGGGGACC. For PKCε (M278G) we 

used: forward, 5’-
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GCAGTGTAAAGTCTGCAAAGGGAATGTTCACCGTCGATGTG; reverse, 5’-

CACATCGACGGTGAACATTCCCTTTGCAGACTTTACACTGC. 

 

Cell culture, transfections, and adenoviral infections- HeLa and COS-1 cells were 

cultured in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% 

fetal bovine serum (Cyclone), 100 units/ml penicillin, and 100 µg/ml streptomycin in 

a humidified 5% CO2 atmosphere at 37 °C. Cells in 6-well plates at ~50% confluence 

were transfected with different mammalian expression vectors (1 µg) using 

Lipofectamine 2000 (Invitrogen) following the manufacturer's protocol. Adenoviral 

infections were carried out essentially as previously described (101). 

 

Generation of p23/Tmp21-depleted cell lines using shRNA lentiviruses- HeLa cells 

were infected with 3 different MISSION® Lentiviral Transduction particles encoding 

p23/Tmp21 shRNAs. p23/Tmp21 shRNA target sequences were as follows:  #1, 

CCGGGAGATTCACAAGGACCTGCTACTCGAGTAGCAGGTCCTTGTGAATC

TCTTTTT; #2, 

CCGGCCAACTCGTGATCCTAGACATCTCGAGATGTCTAGGATCACGAGTT

GGTTTTT. #3, 

CCGGCGCTTCTTCAAGGCCAAGAAACTCGAGTTTCTTGGCCTTGAAGAAG

CGTTTTT; Stable cell lines (pools) were generated by selection with puromycin (1 

μg/ml). 
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Yeast two-hybrid assay- pLexA expression vectors, which contain a His marker, were 

co-transformed into the yeast strain EGY48 together with pB42AD-HA-tagged 

expression vectors, which have a Trp marker, and the p8OP-LacZ reporter vector 

(Ura marker). Transformants were plated on yeast dropout medium lacking Trp, Ura, 

and His, thereby selecting for the plasmids encoding proteins capable of two-hybrid 

interaction as evidenced by transactivation of the LacZ reporter gene (181). 

For β-galactosidase liquid assays, yeast was cultured in galactose/raffinose/-His/-

Ura/-Trp liquid SD selection medium until the cells were in mid-log phase (OD600 = 

0.5-0.8). Cells were pelleted at 14,000 x g for 30 sec, and resuspended in 300 μl of a 

buffer (pH 7.0) containing 60 mM Na2HPO4, 40 mM NaH2PO4.H2O, 10 mM KCl, 1 

mM MgSO4, and 0.27% (v/v) β-mercaptoethanol. One hundred μl of the cell 

suspension were then frozen and thawed 3 times in liquid nitrogen and a 37oC water 

bath, respectively, and additional 700 μl of resuspension buffer were added. ONPG 

was then added (final concentration: 670 μg/ml), and the reaction initiated by addition 

of Na2CO3 (final concentration: 300 μg/ml). β-galactosidase activity was determined 

as previously determined (181). One unit of β-galactosidase activity is defined as the 

amount that hydrolyzes 1 μmol of ONPG to o-nitrophenol and D-galactose per min 

and per cell. 

 

Immunostaining and confocal microscopy- Plasmids encoding for full-length PKCε 

or β2-chimaerin together with p23/Tmp21 in V5 epitope-tagged pcDNA3.1 were co-

transfected into HeLa cells using Lipofectamine 2000. After 24 h, cells were treated 

with PMA for 30 min, washed twice with PBS, and fixed with 4% paraformaldehyde 
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for 20 min at room temperature. After washing once with PBS containing 0.5% SDS 

and 5% β-mercaptoethanol (37°C, 30 min), and twice with PBS alone, cells were 

incubated with an anti-V5 monoclonal antibody (1:500). A donkey anti-mouse 

antibody conjugated with Cy3 was used as secondary antibody (1:1,000). Slides were 

mounted using Fluoromount-G (SouthernBiotech, Birmingham, AL) and viewed with 

a Carl Zeiss LSM 710 laser scanning microscope. The confocal images were 

processed with LSM Image Browser. All the images shown are individual middle 

sections of projected Z-series mounting. For quantification, images (RGB) from Red 

and Green channels were converted into 8-bits images in ImageJ and the Pearson’s 

correlation coefficient (Rr) calculated using this software. 

 

Time-lapse microscopy- HeLa cells were seeded into glass-bottomed culture dishes 

(MatTek, Ashland, MA) for 20 h. pEGFP-PKCε  or pEGFP-β2-chimaerin plasmids 

(wild-type or mutants) were transfected using Lipofectamine 2000 according to the 

manufacturer’s protocols. Cells were cultured for 20 h in Phenol red-free RPMI-1640 

medium containing 10% FBS and 5 mM HEPES. Cells were monitored under a 

fluorescence microscope (Nikon Eclipse TE2000U) at a 488 nm excitation 

wavelength with a 515 nm-long pass barrier filter at 25oC. 

 

Co-precipitation using glutathione Sepharose 4B beads- COS-1 cells at ~50% 

confluency were co-transfected with pEBG-p23/Tmp21 (full-length) or empty vector 

(pEBG). After 24 h, cells were washed twice with cold PBS, and then lysed for 

10 min at 4°C in 400 µl of a lysis buffer containing 50 mM Tris-HCl, pH 
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7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS, and protease 

inhibitor cocktail (Sigma). Ten µl of glutathione Sepharose 4B beads were added to 

the lysate and incubated for 1 h at 4°C. The beads were extensively washed in lysis 

buffer and boiled. Samples were resolved in a 12% SDS-polyacrylamide gel and 

transferred to a polyvinylidene difluoride membrane (Millipore Co., Bedford, MA) 

for Western blot analysis.  

 

In vitro protein-protein binding assay- Cell lysates were prepared from COS-1 cells 

expressing pEBG, pEBG-p23/Tmp21 (aa 1-219), pEBG-p23/Tmp21 (aa 1-208), 

pEBG-p23/Tmp21 (aa 108-219) or pEBG-p23/Tmp21 (aa 1-185). A fixed amount of 

GST or GST-fused p23/Tmp21 (wild-type or truncated mutants) were incubated with 

lysates of COS-1 cells expressing HA-β2-chimaerin at 4oC for 2h, and then incubated 

with glutathione Sepharose 4B beads for 1 h. After extensive washing, the beads were 

boiled in loading buffer and subjected to Western blot with an anti-HA antibody. 

 

Determination of Rac-GTP levels- Experiments were carried out as previously 

described (181). Briefly, cells were lysed in a buffer containing 8 µg of GST-PBD 

(p21-binding domain), 20 mM Tris-HCl, pH 7.5, 1 mM dithiothreitol, 5 mM MgCl2, 

150 mM NaCl, 0.5% Nonidet P-40, 5 mM β-glycerophosphate, and protease 

inhibitors cocktail (Sigma). Lysates were centrifuged at 14,000 × g (4°C, 10 min) and 

then incubated with glutathione Sepharose 4B beads (4°C, 1 h). After extensive 

washing, the beads were boiled in loading buffer and subject to Western blot analysis 

using an anti-Rac1 antibody. 
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Western blot- Non-specific binding in membranes was blocked by incubation with 5% 

nonfat milk or 5% bovine serum albumin for 2 h. Membranes were then incubated 

with primary antibodies for 2 h at room temperature, followed by incubation with 

peroxidase-conjugated goat anti-mouse or anti-rabbit IgG (1:3,000 or 1:10,000) for 1 

h at room temperature. Immunoreactivity was visualized with a FUJIFILM LAS3000 

image reader using an enhanced chemoluminescence detection kit (Amersham). 
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Table 2.1 Primers used to generate constructs 
 

Constructs                                                        Primers 
pB42AD-Tmp21 (aa 108-208): 
  Forward:               ccggaattctgttttgagagcaagggaacaggg                       
  Reverse:               ccgctcgagcaggtagaagacctgccag                            
pB42ADTmp21 (aa108-185):  
  Forward:               ccggaattctgttttgagagcaagggaacaggg                       
  Reverse:               ccgctcgagccgagtgtttgttgactcgttgg 
pB42ADTmp21 (aa183-211):  
  
Forward:ggaattcgtcctatacttcagcatcttttcaatgttctgtctcattggactagctacctg
gcaggtcttctacctgctcgagcgg 
Reverse:ccttaagcaggatatgaagtcgtagaaaagttacaagacagagtaacctgatcgatggac
cgtccagaagatggacgagctcgcc   
pEBG-p23/Tmp21 (aa 1-219) 
    Forward:               ccgctcgaggatccatgtctggtttgtctggccc  
  Reverse:               gactagtctactcaatcaatttcttggcc 
pEBG-p23/Tmp21 (aa 108-219) 
    Forward:               gaagatctctcgaggatccatgtgttttgagagcaaggg  
  Reverse:               gactagtctactcaatcaatttcttggcc 
pEBG-p23/Tmp21 (aa 1-208) 
   Forward:              ccgctcgaggatccatgtctggtttgtctggccc  
   Reverse:              gactagtctagcgtcgcaggtagaagacc 
pEBG-p23/Tmp21 (aa 1-185) 
      Forward:              ccgctcgaggatccatgtctggtttgtctggccc  
   Reverse:              gactagtctaccgagtgtttgttgactcg 
PKCαC1a-b   
   Forward                             ccggaattcatggctgacgttttcccgggcaacga   
   Reverse                    cgcggatccctaaacctcagcctttaggtaaatcc   
PKCε C1a-b   
  Forward               ccggaattctcgtcgggtgaagcccctaaagacaatg  
  Reverse               cgcggatccctaggtaacgcccaggtcggccagtactttg  
PKCδ C1a-b  
  Forward         ccggaattcgaggacgtggattgcaaacagtctatg 
  Reverse            cgcggatccctatctctgggtgacttggttcaaggcct 
PKCζ  C1  
 Forward        ccggaattcgttttcccgagcacccctgagcagcctg 
  Reverse               cgcggatccctaagactctgccccagggctaagcaaatc 

RasGRP1 C1 

  Forward         ccggaattcttctgtgtgatggacaaagatagg  
  Reverse       cgcggatcccacagagctgatgttttctgtgg 
β2-chimaerin C1  

  Forward            ccggaattcaaaacaaacgtcacacatgaagaacacacagc                 
  Reverse                        cgcggatccctatgttgtgaggtcacaacagtacact 

PKCε C1a 
  Forward                        gaattcaacggccacaagttcatg 
  Reverse         ggatcccccagcacactttgtgatta 
PKCε C1b 
 Forward                       gaattcatgccccacaagttcggtat 
  Reverse             ggatcccactccacagttgggag 
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CHAPTER 3 

 
p23/Tmp21, an ER/Golgi cargo protein, regulates phorbol ester-

induced apoptosis in LNCaP prostate cancer cells via direct 

association with PKCδ 
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ABSTRACT 

    It has been established that androgen-dependent prostate cancer cells undergo 

apoptosis in response to phorbol esters treatment, and that this effect was primarily 

mediated by nPKCδ. In the present chapter we demonstrate that depletion of 

p23/Tmp21 significantly potentiates PMA-induced apoptosis in LNCaP cells. The 

effect was rescued by PKCδ RNAi depletion or the pan-PKC inhibitor GF 109203X, 

suggesting that the enhancing apoptotic effect of p23/Tmp21 depletion was mediated 

by PKCδ. Yeast two-hybrid assay revealed that the PKCδ C1a-b domain interacts 

with p23/Tmp21. In addition, co-localization analysis by confocal microscopy 

demonstrated that GFP-PKCδ C1b domain co-localizes with p23/Tmp21 in the 

perinuclear region. More importantly, the authenticity of the interaction between 

PKCδ and p23/Tmp21 was confirmed by showing that endogenous PKCδ co-

immunoprecipitated and co-localized with endogenous p23/Tmp21 in LNCaP cells. 

Interestingly, disruption of PKCδ-p23/Tmp21 association by depletion of p23/Tmp21 

significantly accelerated PMA-induced PKCδ translocation to the plasma membrane 

and activated PKCδ downstream effectors. Furthermore, our experiments also 

demonstrated that depletion of p23/Tmp21 potentiates apoptosis induced by the DNA 

damage agent doxorubicin. In summary, our data provide evidence that PKCδ 

associates with p23/Tmp21, and suggest that p23/Tmp21 acts as an anchoring protein 

that retains PKCδ at the perinuclear region, thus limiting its availability for signaling. 
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INTRODUCTION 

    As described in Chapter 2, we identified p23/Tmp21 as a binding protein for 

chimaerin Rac-GAPs and showed that p23/Tmp21 negatively regulates the Rac-GAP 

activity of β2-chimaerin. Mutation or deletional analysis demonstrated that the 

interaction is mediated by the C1 domain in chimaerins (181). We also showed in 

Chapter 2 that p23/Tmp21 associates with the PKCε C1b domain. Interestingly, a 

yeast two-hybrid assay also revealed that p23/Tmp21 could interact with C1 domains 

from other phorbol ester/DAG receptors, including RasGRP1, PKCα, and 

PKCδ (183). The functional relevance of the C1 domain-p23/Tmp21 association has 

not been thoroughly elucidated in the context of PKC-mediated responses.   

      PKCδ is an important pro-apoptotic kinase in androgen-dependent prostate cancer 

cells (58, 66, 147, 174, 193, 198). Activation of  PKCδ  by PMA induces apoptosis in 

LNCaP  cells (58). The signaling events downstream of PKCδ include the activation 

of the small GTPase RhoA and its target ROCK (193), activation of JNK and p38 

MAPK (174), and dephosphorylation of Akt (174). It has been reported that PKCδ 

activity is also required for the apoptotic effect of DNA damage agents such as 

etoposide and doxorubicin in cancer cells (49, 143). A yeast two-hybrid assay 

demonstrated that p23/Tmp21 can interact with the PKCδ C1a-b domain. We propose 

that p23/Tmp21 may regulate PKCδ-mediated apoptosis through their interaction.  

     In the present chapter we investigate the functional relevance of the PKCδ-

p23/Tmp21 association in LNCaP prostate cancer cells. A remarkable finding is that 

the association between p23/Tmp21 and PKCδ modulates apoptosis in LNCaP 

prostate cancer cells induced by PMA and doxorubicin. p23/Tmp21 possibly anchors 
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PKCδ in the ER/Golgi compartment and in this manner limits the ability of PKCδ to 

translocate to the plasma membrane. Our study also revealed a novel function for 

p23/Tmp21 in regulating apoptotic cell death in addition to its well-established role in 

vesicle formation and cargo trafficking.  
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RESULTS 
 
 
p23/Tmp21 directly interacts with PKCδ in LNCaP prostate cancer cells 
 
     Our studies have demonstrated that p23/Tmp21 interacts with α-, β- chimaerin, 

and PKCε through their C1 domains (181, 183). We speculated that there is a direct 

interaction between p23/Tmp21 and PKCδ through the same region. We first 

addressed this issue by using a yeast two-hybrid approach. pLexA constructs 

encoding  C1δa-b, C1ζ or C1β2-chim were generated (Figure 3.1A, upper panel) and 

co-transformed with pB42AD-p23/Tmp21 (HA-tagged, aa 108-208, a fragment that 

interacts with C1 domain of chimaerins) into EGY48 yeast containing p8OP-LacZ 

vector (181, 183). The triple vector co-transformants were selected by plating the 

yeast into SD/-Ura/-His/-Trp dropout plates. pLexA-fused proteins were expressed in 

both galactose/raffinose (+Gal/Raf) plates and glucose plates (-Gal/Raf), while HA-

tagged pB42AD-p23/Tmp21 (aa 108-208) was only expressed in galactose/raffinose 

induction plates (Figure 3.1A, lower panel). Figure 3.1A (middle panel) shows that 

the C1δa-b and C1β2-chim (positive control) interacted with p23/Tmp21, as revealed 

by the induction of the LacZ reporter (blue color).  In agreement with our previous 

results, C1ζ (negative control) did not interact with p23/Tmp21. These interactions 

were also detected using a liquid β-galactosidase assay (data not shown).  

     To confirm the interaction between p23/Tmp21 and PKCδ at the cellular level, we 

first used a co-precipitation approach. COS-1 cells were transfected with pEBG 

vector (encoding GST protein) or pEBG-p23/Tmp21 (encoding GST-p23/Tmp21). 

Twenty-four h later, cells were infected with PKCδ adenovirus (3 MOI) and cultured 
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for 24 h. As shown in Figure 3.1B, no association was detected with GST alone, 

whereas significant PKCδ was detected in association with GST-p23/Tmp21. 

      In the next experiment we assessed the localization of various PKCδ-deleted 

mutants. HeLa cells were transfected with pEGFP-fused PKCδ (full-length), 

PKCδ C1a-b, PKCδ C1a, or PKCδ C1b. As shown in Figure 3.2B, PKCδ C1a and 

C1b domains differentially localize in cells. While PKCδ C1b domain mainly 

localized in the perinuclear region, the PKCδ C1a domain evenly distributes in the 

cells without any significant perinuclear localization. In that regard, these results 

resembled those observed for PKCε (see Chapter 2). To demonstrate co-localization 

of PKCδ and p23/Tmp21, HeLa cells were co-transfected with the different pEGFP-

PKCδ plasmids together with pcDNA3-V5-p23/Tmp21, a plasmid encoding V5-

tagged p23/Tmp21, and co-localization was determined by confocal microscopy. We 

observed that PKCδ full-length and the PKCδ C1b domain co-localized with 

p23/Tmp21 in the perinuclear region, as judged by the yellow color observed in the 

overlapped images (Figure 3.2C).  

    As PKCδ plays a critical role in PMA-induced apoptosis in LNCaP cells, we next  

decided to use this paradigm to examine any potential modulation by p23/Tmp21. We 

speculated that the association between PKCδ and p23/Tmp21 regulates PKCδ-

mediated apoptosis in LNCaP cells. First, we performed co-immunoprecipitation 

experiments to examine the association of endogenous PKCδ and p23/Tmp21 in 

LNCaP cells. In this experiment we used an anti-PKCδ antibody to pull-down 

endogenous PKCδ, and examined if p23/Tmp21 co-precipitates with PKCδ. As 

shown in Figure 3.3A, the interaction between PKCδ and p23/Tmp21 could be 
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readily detected in LNCaP cells. We then examined co-localization of PKCδ and 

p23/Tmp21 in LNCaP cells by confocal microscopy. LNCaP cells expressing GFP-

PKCδ were immunostained for endogenous p23/Tmp21. As shown in Figure 3.3 B, 

GFP-PKCδ co-localized with p23/Tmp21 in the perinuclear region as judged by the 

yellow color in the overlapped images. Furthermore, by using immunostaing analysis 

we found that endogenous PKCδ and p23/Tmp21 co-localized in LNCaP cells 

(Figure 3.3C). Collectively, these results confirmed that PKCδ interacts with 

p23/Tmp21 in LNCaP prostate cancer cells. 
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Figure 3. 1 A. Yeast two-hybrid assay reveals that the PKCδ C1a-b domain interacts 
with p23/Tmp21. Schematic representation of C1δa-b, C1ζ, or C1β2-ch domain fused 
to pLexA (upper panel). EGY48 yeast (containing 8op-LacZ vector) was co-
transformed with pLexA encoding C1δ a-b, C1ζ, or C1β2-ch domain, and pB42AD-
HA-tagged p23/Tmp21 (aa 108-208). Assay of β-galactosidase activity on induction 
(+GF) or no-induction (-GF) plates was carried out 72 h after transformation. GF, 
galactosidase/raffinose (middle panel). Expression of pLexA fused C1δa-b, C1ζ and 
C1β2-chim using an anti-pLexA antibody and expression of pB42AD-HA-
p23/Tmp21 (aa 108-208) using an anti-HA antibody (lower panel).  B. PKCδ forms a 
complex with p23/Tmp21 in COS-1 cells. COS-1 cells were transfected with either 
pEBG (empty vector) or pEBG-p23/Tmp21. Twenty-four h later, cells were infected 
with PKCδ adenovirus (MOI=3 pfu/cell). After twenty-four h, GST or GST-
p23/Tmp21 proteins were precipitated with glutathione Sepharose 4B beads and 
associated PKCδ detected by western blot using an anti-PKCδ antibody. Upper panel, 
representative experiment. Lower panel, densitometric analysis of three individual 
experiments, expressed as fold-change relative to GST. 
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Figure 3.2 The C1b domain of PKCδ mediates perinuclear targeting and co-localizes with 
p23/Tmp21. A. Schematic representation of C1δa-b ,  C1δa, C1δb, or full-length PKCδ fused 
to GFP. B. C1δb localizes in the perinuclear region. HeLa cells were transfected with 
pEGFP-fused PKCδ, C1δa-b, C1δa, or C1δb. Forty-eight h later, cells were treated with 
PMA (1 μM, 30 min) or vehicle, fixed, and localization examined by confocal microscopy. 
C. HeLa cells were co-transfected with pEGFP-PKCδ plasmids together with pcDNA3.1-V5-
p23/Tmp21. Forty-eight h later, cells were fixed and co-localization examined by confocal 
microscopy. Similar results were observed in three independent experiments. 
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Figure 3.3 PKCδ and p23/Tmp21 form a complex in LNCaP prostate cancer cells. A. 
LNCaP cells were lysed. Cell lysates were centrifuged at 14, 000× g for 10 min and 
the supernatant precleared with 15 μl of protein A agarose beads (invitrogen) for 1 h 
at 4°C. After a short centrifugation, the supernatant was used for immunoprecipitation 
with an anti-PKCδ antibody or control IgG (4°C, 2 h). Representative western blots 
of the supernatant and the immunoprecipitation are shown. B. pEGFP-PKCδ co-
localizes with p23/Tmp21 in LNCaP prostate cancer cells. GFP-PKCδ was 
transfected into LNCaP cells using the Amaxa Nucleofector following the 
instructions provided by the manufacturer. Forty-eight h later, cells were fixed and 
p23/Tmp21 was stained with and anti-p23/Tmp21 primary antibody followed by a 
Cy3-conjugated secondary antibody. Co-localization was examined by confocal 
microscopy. C. Co-localization of endogenous PKCδ and p23/Tmp21. All 
experiments have been performed three times with similar results. 
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p23/Tmp21 modulates apoptotic responses in LNCaP cells  

    To determine the role of p23/Tmp21 in PMA-induced apoptosis in LNCaP cells, 

we depleted p23/Tmp21 from LNCaP cells using a p23/Tmp21 specific RNAi duplex, 

and then treated cells with PMA to assess the apoptotic response. Remarkably, 

depletion of p23/Tmp21 significantly potentiated PMA-induced apoptosis of LNCaP 

cells (Figure 3.4A). To further confirm this effect, we used p23/Tmp21 knockdown 

stable cell lines (see Chapter 2). In agreement with results in transiently depleted 

cells, stable depletion of p23/Tmp21 also resulted in a higher PMA-induced apoptotic 

response relative to control cells (Figure 3.4B). Our results suggest that p23/Tmp21 

plays a negative role in regulating PMA-induced apoptosis. In addition, we found that 

depletion of p23/Tmp21 by RNAi also enhanced the apoptotic effect of the DNA 

damage doxorubicin in LNCaP cells (Figure 3.4C). Interestingly, several reports 

showed PKCδ mediates the death effect of DNA damaging agents in prostate cancer 

cells (15).  

 

p23/Tmp21 regulates PMA-induced apoptosis through PKCδ 

    Previous studies have demonstrated that PKCδ played a central role in PMA-

induced apoptosis of LNCaP cells. Inhibition or RNAi depletion of PKCδ  abolishes 

PMA-induced apoptosis in LNCaP cells (66). To determine if the potentiating effect 

of p23/Tmp21 depletion on PMA-induced apoptosis is mediated through PKCδ, we 

examined if PKCδ depletion could prevent this effect. As shown in Figure 3.5B, 

PKCδ/p23/Tmp21 double knockdown cells had significantly decreased apoptosis, 

suggesting that the potentiating effect of p23/Tmp21 depletion on PMA-mediated. 
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Figure 3.4 Depletion of p23/Tmp21 potentiates PMA- and doxorubicin-induced apoptosis in 
LNCaP prostate cancer cells.  A. LNCaP cells were transiently transfected with p23/Tmp21 
or control (CTL) RNAi duplexes. After 48 h, cells were treated with vehicle or PMA and the 
incidence of apoptosis determined 24 h later. B. LNCaP cells stably expressing different 
p23/Tmp21 shRNAs (shRNA#1, or shRNA#2) or control shRNA were treated with vehicle or 
PMA, and the incidence of apoptosis determined 24 h later. C. LNCaP cells were transiently 
transfected with p23/Tmp21, PKCδ or control (CTL) RNAi duplexes. After 48 h, cells were 
treated with vehicle or doxorubicin (1 μg/ml for 2 h) and the incidence of apoptosis 
determined 24 h later. D. Western blot for the expression of p23/Tmp21 in LNCaP cells 
transiently depleted of p23/Tmp21 (upper panel) and LNCaP stable cell lines expressing 
p23/Tmp21 shRNA (lower panel). 
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apoptosis in LNCaP cells is mediated through PKCδ. As a second approch, we 

analyzed the effect of GF 109203X, a pan-PKC inhibitor. As shown in Figure 3.5C, 

GF 109203X essentially abolished apoptosis in response to PMA treatment both in 

control and p23/Tmp21 knockdown cells. These results suggest that p23/Tmp21 

depletion potentiates PMA-induced apoptosis through enhanced PKCδ activation. 

 

Depletion of p23/Tmp21 facilitates PKCδ translocation to the plasma membrane  

     To establish if depletion of p23/Tmp21 affects PKCδ activation in LNCaP cells, 

we first examined PMA-induced translocation of GFP-PKCδ. LNCaP cells were 

treated with 30 nM PMA, a concentration at which translocation of PKCδ is not 

readily detected by microscopy in LNCaP cells. Interestingly, significant plasma 

membrane translocation of GFP-PKCδ could be observed at about 5-10 min in 

p23/Tmp21-depleted LNCaP cells under this experimental condition (Figure 3.6B). 

These results demonstrated that depletion of p23/Tmp21 facilitates PMA-induced 

PKCδ plasma membrane translocation and therefore its activation. 

     Our laboratory recently reported that ROCK and JNK are downstream effectors of 

PKCδ that mediate the apoptotic effect of PMA in LNCaP prostate cancer cells (193). 

PMA at 100 nM caused significant activation of JNK, as assessed with an anti-

phospho-JNK antibody. PMA treatment also activates Rho and ROCK, and it induces 

the phosphorylation of the ROCK effector MYPT-1 in Thr850. Notably, we found a 

significant potentiation of JNK and MYPT- phosphorylation in response to PMA in 

p23/Tmp21 knockown LNCaP cells compared to control cells.  Figure 3.7 shows a 

representative experiment using 30 nM PMA, a concentration that causes only a 
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partial response and allows better detection of a potentiation effect. Taken together, 

these results suggest that p23/Tmp21 depletion in LNCaP cells enhances PKCδ 

activation upon PMA stimulation. 
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Figure 3.5 Depletion of PKCδ or PKC inhibition with GF 109203X blocks PMA-induced 
apoptosis in LNCaP prostate cancer cells. A. Western blots for the expression of PKCδ and 
p23/Tmp21 in LNCaP cells. B. LNCaP cells were transiently transfected with either control, 
PKCδ, or PKCδ RNAi duplexes combined with a p23/Tmp21 RNAi duplex. Forty-eight h 
later, cells were treated with 30 nM PMA for 1 h and apoptosis was assessed 24 h following 
PMA treatment. C. Effect of the PKC inhibitor GF 109203 X (5 μM). GF 109203X (5 μM) 
was added 1 h before PMA treatment. LNCaP cells expressing p23/Tmp21 shRNA were 
treated with 30 nM PMA for 1 h and apoptosis was assessed 24 h later. 
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A.  

                                         
 
B. 
 

     
 

Figure 3.6 Depletion of p23/Tmp21 accelerates PMA-induced GFP-PKCδ plasma 
membrane translocation. A. Expression of p23/Tmp21 in LNCaP cells stably 
expressing different p23/Tmp21 shRNAs (shRNA#1 and shRNA#2) or control 
shRNA cells. B. pEGFP-PKCδ was transfected into different LNCaP cell lines using 
the Amaxa Nucleofector. Forty-eight h later, cells were treated with PMA (30 nM). 
Time-lapse images of GFP-PKCδ translocation in living cells were captured at 
different times after PMA treatment. Peripheral translocation is marked with arrows. 
Similar results were observed in two additional experiments. 
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Figure 3.7 Depletion of p23/Tmp21 significantly enhances ROCK and JNK activation 
by PMA. LNCaP cells with stable p23/Tmp21 depletion or control cells were treated 
with PMA (30 nM) or vehicle for 10 min. MYPT1-Thr850 and phospho-JNK were 
determined by Western blot. Two additional experiments gave the same results. 
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DISCUSSION 

     In this chapter we report that p23/Tmp21, an ER/Golgi protein, negatively 

regulates apoptosis of LNCaP prostate cancer cells in response to stimuli. p23/Tmp21 

associates with PKCδ, and RNAi depletion of p23/Tmp21 results in enhanced 

apoptotic death of LNCaP cells upon PMA or doxorubicin treatment. The interaction 

is mediated by the PKCδ C1a-b domain. Moreover, we demonstrated that upon PMA 

treatment, depletion of p23/Tmp21 enhances activation of PKCδ, as suggested by the 

enhanced PKCδ plasma membrane translocation and the activation of PKCδ 

downstream effctors ROCK and JNK. We conclude that p23/Tmp21 serves as a 

perinuclear anchoring protein for PKCδ that limits PKCδ activation.  

     Recently, the involvement of p24 family proteins in apoptotic cell death was 

reported. Brefeldin A, which causes ER stress by inhibiting protein transport into the 

Golgi, significantly induces ERS25 gene expression. ERS25 is a novel identified 

oxidative stress-responsive protein. Remarkably, shRNA-directed inhibition of 

ERS25 attenuates oxidative stress-induced ROS and abrogates apoptotic cell death in 

yeast upon H2O2 treatment (81). Thus, the p24 family proteins may contribute to 

apoptotic death induced by ER stress. However, it is still elusive what is the exact 

role of individual members of the p24 family in apoptotic cell death in response to 

different stimuli. 

Our previous studies in COS and HeLa cells, together with our yeast two-hybrid 

analysis, demonstrated that p23/Tmp21 interacts with C1 domains in α-, β-chimaerin, 

and PKCε (182). Our results support a model in which p23/Tmp21 serves as an 
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anchoring protein receptor for C1 domain-containing proteins, that sequesters them in 

the ER/Golgi region and prevents their translocation and activation. Likewise, our 

present results demonstrate that depletion of p23/Tmp21 enhances PKCδ plasma 

membrane translocation upon PMA treatment, suggesting a role for p23/Tmp21 as a 

negative regulator of PKCδ  translocation to the cell membrane or possibly other 

compartments.  

In many cell types, it has been demonstrated that PKCδ mediates apoptotic 

responses initiated by a variety of stimuli, including chemotherapy agents, H2O2, viral 

infection, phorbol esters, UV radiation, Fas-ligand, and ionizing radiation. In our 

laboratory, we have established that PKCδ plays a critical role in mediating apoptosis 

in androgen-sensitive prostate cancer cells. Using adenoviral overexpression of 

PKCδ, it was revealed that PKCδ significantly enhances PMA-induced apoptosis of 

LNCaP cells, whereas kinase-deficient PKCδ can substantially block PMA-induced 

apoptosis of LNCaP cells, arguing that PKCδ is critical in regulation of apoptosis of 

LNCaP cells (58). Recently, we identified a novel autocrine pro-apoptotic loop 

triggered by PKCδ activation in prostate cancer cells. Blocking antibodies against 

TNFα and TRAIL significantly inhibited apoptotic effects mediated by conditioned 

medium collected from PMA-treated cells, suggesting that the release of death 

receptor ligands by activation of PKCδ plays a important role in PMA-induced 

apoptosis of androgen-dependent prostate cancer cells (66). Blocking TNF receptor 1 

signaling significantly inhibited ER stress-induced cell death (105). ER stress signals 

induced by docetaxel are mediated by JNK activation downstream of PKCδ 

activation, as revealed by the fact that PKCδ RNAi significantly inhibit ER stress 
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signaling. Interestingly, our previous experiments demonstrated that PKCδ-mediated 

apoptosis in LNCaP prostate cancer cells is dependent on the JNK pathway (66, 193). 

One speculation is that the ER stress signaling pathway possibly mediates PMA-

induced apoptosis of LNCaP cells, and that p23/Tmp21 might be involved in ER 

stress. Indeed, as mentioned above, one of p24 family member proteins, ERS25, 

contributes to apoptotic cell death in yeast upon ER stress stimulus (81). 

 In summary, here we provide the first evidence that PKCδ-mediated apoptosis in 

LNCaP cells can be negatively regulated by the ER/Golgi protein p23/Tmp21 through 

their direct association. In addition, enhanced translocation of PKCδ to the plasma 

membrane and activation of downstream effectors such as ROCK and JNK, were 

observed in p23/Tmp21-depleted cells. This suggests a role for p23/Tmp21 in 

anchoring PKCδ in the perinuclear compartment, which possibly impedes PKCδ 

activation and translocation to the plasma membrane.  
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MATERIAL AND METHODS 

Cell Culture- LNCaP human prostate cancer cells were cultured in RPMI 1640 

medium (ATCC) supplemented with 10% fetal bovine serum and penicillin (100 

units/ml)-streptomycin (100 μg/ml). HeLa and COS-1 cells were cultured in 

Dulbecco’s modified Eagles’s medium (Invitrogen) supplemented with 10% fetal 

bovine serum and penicillin (100 units/ml)-streptomycin (100 μg/ml). All cells were 

cultured at 37 °C in a humidified 5% CO2 atmosphere.  

 

Generation of p23/Tmp21- depleted cell lines using shRNA lentivirus - LNCaP cells 

were infected with 2 different MISSION® Lentiviral Transduction particles encoding 

p23/Tmp21 shRNAs following the manufacture’s instructions. p23/Tmp21 shRNA 

target sequences were as follows: 

#1,CCGGCCAACTCGTGATCCTAGACATCTCGAGATGTCTAGGATCACGAG

TTGGTTTTT. 

#2,CCGGCGCTTCTTCAAGGCCAAGAAACTCGAGTTTCTTGGCCTTGAAGA

AGCGTTTTT. Stable cell lines (pools) were generated by selection with puromycin 

(1 μg/ml). 

 

Yeast two-hybrid assays- Yeast two-hybrid assays were carried out essentially as 

described in Chapter 2. 

 

Western Blot analysis- Western blot was carried out essentially as described in 

Chapter 2.  The following primary antibodies were used: anti-PKCδ (Transduction 
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Laboratories, Lexington, KY); anti-actin (Sigma); anti-phospho-JNK and anti-JNK 

(Cell Signaling Technology, Beverly, MA); anti-p23/Tmp21 (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA); and anti-phospho-MYPT1 (myosin 

phosphatase target subunit 1)-Thr850 (Millipore, Billerica, MA). All antibodies were 

used at a 1:1000 dilution except for the anti-actin antibody, which was used at a 

1:20,000 dilution.  

 

Apoptosis assays- The incidence of apoptosis was determined as we previously 

described (58). Briefly, Cells were trypsinized, mounted on glass slides, fixed in 70% 

ethanol, and then stained for 20 min with 1 mg/ml 4′,6-diamidino-2-phenylindole 

(Sigma). Apoptosis was characterized by chromatin condensation and fragmentation 

when examined by fluorescence microscopy. The incidence of apoptosis in each 

preparation was analyzed by counting ~500 cells.  

 

RNA interference- 21-bp double-stranded RNAs were purchased from Dharmacon 

Research, Inc. (Dallas, TX) or Ambion (Austin, TX), and transfected into LNCaP 

cells using the Amaxa Nucleofector (Amaxa Biosystems, Gaithersburg, MD) 

following the instructions provided by the manufacturer. Experiments were 

performed 48 h after transfection. The following targeting sequences were used: 

CCATGAGTTTATCGCCACCTT (PKCδ1), CCATGTATCCTGAGTGGAA 

(PKCδ2), GCCAUAUUCUCUACUCCAAUU (p23/Tmp21) (35). As a control we 

used the Silencer® negative control 7 siRNAi (Ambion). 
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Immunostaining and confocal microscopy- Immunostaining and confocal microscopy 

were carried out essentially as described in Chapter 2. 

Time-lapse microscopy- LNCaP cells were transfected with pEGFP-PKCδ  using the 

Amaxa Nucleofector and seeded into glass-bottomed culture dishes (MatTek, 

Ashland, MA) for 48 h. Cells were cultured for 20 h in Phenol red-free RPMI-1640 

medium containing 10% FBS and 5 mM HEPES. Cells were monitored under a 

fluorescence microscope (Nikon Eclipse TE2000U) at a 488 nm excitation 

wavelength with a 515 nm-long pass barrier filter at 25°C.  

Co-immunoprecipitation- LNCaP cells were washed once with PBS, and then lysed 

for 10 min at 4°C in 800 μl of a lysis buffer containing 20 mM Tris-HCl, pH 7.5, 100 

mM NaCl, 0.5 mM EDTA, 0.5 mM EGTA, 0.5% TritonX 100, 1 mM beta-

glycerophosphate and a protease inhibitor cocktail (Sigma). Cell lysates were 

centrifuged at 14, 000 × g and the supernatant was precleared with 15 μl of protein A 

agarose beads (Invitrogen) for 1 h at 4°C. After a short centrifugation, the supernatant 

was used for immunoprecipitation with an anti-PKCδ antibody or control IgG (4 °C, 

2 h). Protein A beads (20 μl) were then added and the mixture was incubated at 4°C 

for 2 h. The beads were extensively washed in lysis buffer and boiled. Samples were 

resolved in a 12% SDS-polyacrylamide gel and transferred to a polyvinylidene 

difluoride membrane (Millipore Co., Bedford, MA) for Western blot analysis. 

 

 

 



 103

CHAPTER 4 

C1 domain-mediated translocation of PKCε: implications for 

prostate cancer radioresistance 
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ABSTRACT 
 

     The molecular mechanisms for radioresistance of cancer cells are not completely 

understood. Epidermal growth factor receptor (EGFR) activation by ionizing 

radiation has been documented as one of the major mechanisms of cytoprotection. As 

EGFR couples to PLCγ and DAG generation, we decided to investigate whether C1 

domain-containing proteins modulate radiosensitivity. The role of individual PKC 

isozymes in prostate cancer radiosensitivity still remains elusive. Here, we provide 

evidence that PKC isozymes play distinct roles in PC3 prostate cancer cell 

radiosensitivity. The PKC inhibitor GF 109203X radiosensitizes PC3 cells in a dose-

dependent manner. Using a lentiviral approach to silence PKCα, PKCδ or PKCε, we 

demonstrated that only PKCε confers radioresistance to PC3 cells. Interestingly, a 

clinically relevant dose of γ-irradiation (2 Gy) significantly enhanced PKCε  

translocation from the cytosol to a particulate fraction. Confocal microscopy studies 

demonstrated that upon γ-irradiation, the EGFR inhibitor AG1478 as well as 

PLC inhibitor U73122 significantly impair PKCε translocation to the plasma 

membrane. Furthermore, the reactive oxygen species (ROS) scavenger N-acetyl-

cysteine (NAC) also blocked PKCε translocation to the plasma membrane. Our study 

revealed a potential role for DAG and C1 domain-containing proteins in the control 

of ionizing irradiation-induced cell death/survival. 
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INTRODUCTION 

      Ionizing radiation is widely used to treat different types of solid tumors. However, 

radioresistance occurs in many cases and is likely to be the underlying mechanism of 

selection and repopulation in tumors. DNA damage/repair and cell cycle checkpoint 

pathways are key regulatory mechanisms that determine the fate of cancer cells after 

irradiation (72, 96, 110). In addition, many studies revealed that cell membrane-

related signaling events are also involved in survival/death responses. Studies by 

many laboratories demonstrated that ionizing radiation activates receptor tyrosine 

kinases (RTK), mitogen-activated protein kinases (MAPKs), and PKCs (41, 76, 77, 

90, 154, 167, 176, 177, 187). EGFR, a member of ErbB family of RTKs, could be 

activated by clinically relevant doses of ionizing radiation (1-5 Gy), confirming that 

ionizing radiation can mimic EGF effects and lead to the activation of cytoprotective 

signaling pathways, primarily the MAPK cascades (2, 168). Ionizing radiation also 

stimulates sphingomyelin-to-ceramide conversion via sphingomyelinases. Ceramide 

is a sphingolipid-derived second messenger capable of initiating apoptotic cascades in 

response to various stressful stimuli (38, 73, 116). Interestingly, DAG is also 

generated from cell membranes by ionizing radiation (129). Moreover, DAG analogs 

such as the phorbol esters can block ceramide-dependent apoptosis by various stimuli, 

including H2O2 (63), TNFα (47, 139), chemotherapy agents (67), and ionizing 

radiation (73, 120, 131, 175), arguing that DAG-dependent signaling pathways may 

play an anti-apoptotic role in some contexts. 

     Extensive studies have established the relative contribution of individual PKC 

isozymes to cancer initiation, cell cycle progression, transformation, apoptosis, and 
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senescence (70). However, the role of individual PKCs in radiation-induced cancer 

cell death remains unknown. As radiotherapy is widely used to treat prostate cancer, 

we chose PC3 androgen-independent prostate cancer cells as a model to explore the 

relevance of individual PKCs in radiation-induced cancer cell death. Most prostate 

cancer cells express three DAG/phorbol ester responsive PKCs: PKCα, PKCδ and 

PKCε (58). Based on the established roles of PKC isozymes in controlling cell fate in 

response to stimuli and their ability to regulate apoptotic and survival pathways, we 

hypothesize that PKC isozymes can modulate the sensitivity of cells to radiation. One 

attractive scenario is that PKCε, which is widely implicated in the control of survival 

signals to promote resistance to radiation-induced death. The results of our analysis 

revealed that PKC isozymes played differential roles in irradiation-mediated PC3 cell 

death. Depletion of PKCε significantly radiosensitizes PC3 cells, suggesting that 

PKCε confers cytoprotection to PC3 prostate cancer cells in response to γ-irradiation. 

Moreover, we established a key role for DAG, the C1 domain ligand, in plasma 

membrane translocation of PKCε by γ-irradiaiton. 
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RESULTS 

        γ-irradiation inhibits the growth of PC3 androgen-independent prostate 

cancer cells   

      In clinic, radiotherapy has been widely used to treat prostate cancer. PC3 

androgen-independent prostate cancer cells (5 x 104/well) were seeded (DMEM with 

10% FBS) in six-well plates. As shown in Figure 4.1A, the cell number was counted 

at 24, 48, 72, and 96 h after the culture. The number of PC3 cells increased about 60-

fold after 96 h. As shown in Figure 4.1C and Figure 4.1D, PC3 cell number was 

significantly reduced upon γ irradiation in a dose-dependent manner. Apoptosis 

analysis by DAPI staining revealed that γ-irradiation (8 Gy) causes only about 10% 

apoptosis (Figure 4.1B), suggesting that γ-irradiation-mediated inhibition of PC3 cell 

growth involves primarily other mechanisms. 

 

The PKC inhibitor GF 109203X (GF) radiosensitizes PC3 prostate cancer cells 

    To examine a potential involvment of PKC isozymes on γ-irradiation-mediated 

prostate cancer cell death in vitro, PC3 cells were pre-treated with the pan-PKC 

isozyme inhibitor GF for 30 min and then subject to a clonogenic survival assay. As 

shown in Figure 4.2A, the PKC inhibitor significantly radiosensitizes PC3 prostate 

cancer cells. γ-irradiation (8 Gy) alone causes about 8% apoptosis. GF enhanced γ-

irradiation-induced apoptosis to 13% and 20% at the concentration of 1 μM and 5 

μM, respectively. Our results suggest that inhibition of PKC isozymes by GF 

radiosensitizes PC3 androgen-independent prostate cancer cells. 
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Figure 4.1 γ-irradiation reduces PC3 prostate cancer cell number. PC3 prostate 
cancer cells (5x104/well) were seeded into six-well plates and irradiated by different 
dose of γ-irradiation. Cell number was determined at 24, 48, 72 and 96 h after 
irradiation. A. PC3 prostate cancer cell growth curve. Cell number was determined at 
24, 48, 72, and 96 h. B. Apoptosis was analyzed by DAPI staining 72 h after γ-
irradiation (2, 4, 6, and 8 Gy). The results are from 3 separate experiments (mean ± 
SE). C. PC3 cells were trypsinized and cell number was determined 72 h after 
different γ-irradiation doses. D. Representative images of PC3 cell density 72 h after 
γ-irradiation.  
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Figure 4.2 The PKC inhibitor 109203X (GF) radiosensitizes PC3 prostate cancer 
cell. A. PC3 cells were serum-starved for 72 h, treated with different concentrations 
of the PKC inhibitor GF for 30 min and subject to γ-irradiation. After irradiation, 
cells were seeded into 60 mm Petri dishes and colonies in each plate counted after 15 
days. The survival fraction was calculated as: colonies /[cells seeded x (plating 
efficiency)/100]. Each sample was done in triplicate. Two additional experiments 
showed similar results. B. Apoptosis was measured by DAPI staining 72 h after γ-
irradiation (8 Gy). The results are from 3 separate experiments (mean ± SE). 
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Establishment of PC3 prostate cancer cell lines stably depleted of PKCα, PKCε 

and PKCδ  

     In order to determine the role of individual DAG-responsive PKC isoforms in PC3 

cell radiosensitivity, we used shRNA lentiviruses to specifically knockdown PKCα, 

PKCδ, or PKCε , the main PKC isozymes expressed in prostate cancer cells. As a 

control, we used a non-target sequence shRNA lentivirus. Stable cell lines (pools) 

were selected using puromycin. As shown in Figure 4.3, PC3 prostate cancer cell 

lines with >50% depletion of PKCα, PKCδ, or PKCε could be successfully 

established using this approach. We picked two cell lines for each PKC that show 

isozyme-specific depletion (#2 and #3 for PKCα; #2 and #4 for PKCδ; #1 and #4 for 

PKCε). 

 

PKCε depletion significantly radiosensitizes PC3 prostate cancer cells 

     In the next series of experiments, we assessed the effect of specific PKC isozyme 

depletion on PC3 cell radiosensitivity. Clonogenic survival assays revealed that 

depletion of PKCδ has no sensitizing effect on γ-irradiation (Figure 4.4A). Likewise, 

PKCα depletion has no significant effects on clonogenic survival (Figure 4.4B). It 

has been reported that PKCε confers androgen independence, accelerates G1/S 

transition, and enhances tumorigenic potential in nude mice when overexpressed in 

LNCaP cells. PKCε also activates the mitogenic ERK pathway, and propagates 

survival signals in the absence of functional PTEN (190-192). Notably, human 

prostate tumors display very high levels of PKCε (5, 44, 94, 121). 
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Figure 4.3 Establishment of PC3 prostate cancer cell lines stably depleted of PKCα, 
PKCε  or PKCδ by using shRNA lentiviral expression system (MISSION® lentiviral 
particles, Sigma).  PKCα (#2, #3), PKCε (#1, #4) and PKCδ (#2, #4) PC3 cell lines 
were chosen for subsequent experiments. 
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Figure 4.4 PKCα or PKCδ depletion does not affect PC3 cell radiosensitivity. A. 
Survival curve for PKCα-depleted PC3 cell lines. B. Survival curve for PKCδ-
depleted PC3 cell lines. Western blots showing the depletion of either PKC isozyme 
are shown. Two additional experiments show similar results. 
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In addition, de-regulation of the PKCε gene has been reported in other cancer types, 

such as in lung, breast and thyroid cancer (6, 92, 115). Whether PKCε is implicated in 

prostate cancer cell survival in response to γ-irradiation is not known. We irradiated 

the PKCε-depleted cell lines and examined their survival. We found that depletion of 

PKCε significantly radiosensitizes PC3 prostate cancer cells, suggesting that PKCε 

plays a pro-survival role in response to γ-irradiation (Figure 4.5).  

 

γ-irradiation promotes PKCε translocation to the plasma membrane 

     Early studies by Nakajima et al. reported that ionizing radiation can generate DAG 

and translocate PKCs to plasma membrane in rat hepatocytes (129, 130).  We decided 

to investigate whether PKCε can be redistributed to membranes in response to γ-

irradiation in PC3 cells.  Using a subcellular fractionation approach we found that γ-

irradiation (2 Gy) could induce translocation of PKCε from cytosol to the particulate 

fraction (Figure 4.6A). As a second approach we expressed GFP-PKCε in PC3 cells 

and assessed its localization in response to γ-irradiation. Confocal images revealed 

that GFP-PKCε significantly translocates to the plasma membrane 5 min after γ-

irradiation (2, 4, 6 Gy) (Figure 4.6B). As PKCs become activated when translocated 

to the plasma membrane, these results strongly suggest that γ- irradiation activates 

PKCε.  
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Figure 4.5 PKCε depletion enhances radiosnsitivity of PC3 cells. Left panel, survival 
curve for PKCε-depleted cell lines. Right panel, Western blot showing depletion of 
PKCε in PC3 prostate cancer cells. 
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Figure 4.6 Translocation of PKCε after γ-irradiation. A. Subcellular fractionation of 
PKCε after γ-irradiation. After serum starvation for 72 h, PC3 cells were subjected to 
γ-irradiation. After 2 h, cell lysates were fractionated into cytosolic and particulate 
fractions by centrifugation. PKCε levels were determined by Western blot using a 
specific anti-PKCε antibody. Similar results were obtained in two experiments. B. 
PC3 prostate cancer cells were transfected with pEGFP-PKCε, serum-starved for 72 
h, and then irradiated with different doses of γ-irradiation. Cells were fixed in cold 
ethanol (-20oC) 5 min after irradiation and images were captured by fluorescence 
microscopy. Representative pictures are shown. Two additional experiments gave 
similar results. 
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Reactive oxygen species (ROS) mediate PKCε translocation by γ-irradiation  

     The active hydroxyl radical (OH-) is the primary species of ROS produced by 

ionizing radiation (150). It can produce other highly reactive species, such as 

superoxide (O2
.-) and hydrogen peroxide (H2O2). Hydrogen peroxide (H2O2) has 

been reported to stimulate DAG production in vascular endothelial cells (170). 

UV radiation also has been reported to generate DAG in human melanocytes and 

keratinocytes (31). We hypothesize that subcellular translocation of PKCε in PC3 

cells by γ-irradiation is mediated by ROS. To address this issue we used the ROS 

scavenger N-acetyl-L-cysteine (NAC). As shown in Figure 4.7, γ-irradiation alone 

induced PKCε translocation to the cell periphery (middle panel). In contrast, 

pretreatment of NAC (5 mM) abolished plasma membrane translocation of PKCε 

(low panel), arguing that ionizing radiation-induced ROS are implicated in PKCε 

plasma membrane relocalization. Interestingly, perinuclear localization of PKCε 

remained unaffected in the presence of NAC. 

 

The EGFR inhibitor AG1478 impairs peripheral PKCε translocation by γ-

irradiation 

     It has been reported that EGFR is activated by ionizing radiation in human 

cancer cells, and that it mediates cytoprotective responses and radioresistance. 

Amorino et al. reported that ionizing radiation (1-5 Gy) activates EGFR and ERK 

in human breast carcinoma cells. ERK and its downstream effector p90Rsk could 

phosphorylate downstream transcription factors involved in cell proliferation, 

such as CREB, Egr, Est, Stat3, C/EBP and Stat1 (2). 
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Figure 4.7 NAC prevents γ-irradiation-mediated PKCε  translocation. PC3 prostate 
cancer cells expressing GFP-PKCε were serum-starved for 72 h and then treated with N-
acetyl-L-cysteine (NAC, 5 mM) for 1 h. Cells were then subjected to γ-irradiation (4 Gy) 
for 5 min and then fixed in cold ethanol (-20oC). Images were captured by confocal 
microscopy. Two additional experiments showed similar results. 
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      It has been reported that γ-irradiation promotes EGFR phosphorylation at 

Tyr992 even at higher levels than those induced by EGF. Tyr992 in EGFR 

couples to PLCγ and DAG generation (167), arguing that irradiation-induced 

EGFR activation may activate PKCs via DAG binding to their C1 domains. We 

therefore tested the hypothesis that PKCε translocation to the plasma membrane 

by irradiation is mediated by the EGFR-PLCγ pathway. PC3 prostate cancer cells 

were transfected with pEGFP-PKCε, serum-starved for 72 h, treated with the 

EGFR inhibitor AG1478 (10 μM, 1 h), and then γ-irradiated (4 Gy, 5 min). Cells 

were fixed and the images were captured by confocal microscopy. As shown in 

Figure 4.8A, AG1478 impaired the peripheral translocation of PKCε. To 

determine a potential involvment of PLC in PKCε translocation, we used the PLC 

inhibitor U73122. Its inactive analogue U73433 was used as a negative control. 

As shown in Figure 4.8B, the PLCγ inhibitor impaired γ-irradiation-induced 

PKCε membrane translocation. Neither vehicle nor U73433 impaired the 

peripheral relocalization of GFP-PKCε. Altogether, these results suggest that 

PKCε plasma membrane translocation by γ-irradiation is mediated through the 

activation of the EGFR-PLCγ-DAG signaling pathway. Binding of DAG to the 

C1 domain in PKCε may represent the key event in the translocation of this 

kinase and its consequent activation. 
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Figure 4.8 PKCε translocation to the plasma membrane by γ-irradiaiton is 
mediated by EGFR and PLC. PC3 prostate cancer cells expressing GFP-
PKCε were serum-starved for 72 h and then treated with: A. AG1478, or B. 
U73122 or its inactive analogue U73433. Cells were then irradiated (4 Gy, 5 min), 
and fixed in cold ethanol (-20oC). Images were captured by confocal microscopy. 
Two additional experiments showed similar results. 
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DISCUSSION 
 
     Prostate cancer is the most commonly diagnosed male non-skin cancer 

malignancy and second only to lung cancer in human male cancer-related 

mortality. Although radiotherapy has been widely used in prostate cancer 

treatment, locally-advanced stages of prostate cancer (LAPC) will relapse after 

treatment. The underlying mechanisms for LAPC radioresistance are not fully 

understood. One of the clinical goals in radiotherapy is to achieve the eradication 

of cancer cells through the combination of radiotherapy and other radiosensitizing 

regimes. PKC isozymes are implicated in the regulation of cell proliferation, 

transformation, differentiation, apoptosis, and the metastatic cascade (70). Some 

studies demonstrated that PKC isozymes are involved in stress-mediated cell 

death. Oxidative stress such as H2O2 treatment increases intracellular ceramide 

and decreases DAG levels (63). PKCδ has been reported to be involved in 

apoptosis after irradiation of U937, MCF7, and NIH 3T3 cells (54, 59, 97, 200). 

More recently, PKCε was reported to sensitize skin to UV radiation (5). However, 

the relevance of individual PKC isozymes in prostate cancer cell radiosensitivity 

remains elusive. The purpose of this study was to assess the function of individual 

PKC isozymes in γ-irradiation-mediated prostate cancer cell death. We 

demonstrated that inhibition of PKC activity by GF109203X radiosensitizes PC3 

prostate cancer cells and significantly enhances γ-irradiation-mediated apoptosis. 

However, the fact that PKC isozymes exert different cellular functions required an 

analysis using specific inhibition or depletion of each PKC isozyme. As 

pharmacological inhibitors of PKC isozymes may not be very specific, we 
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decided to use shRNA lentiviruses to stably deplete PKCα, PKCδ  or  PKCε from 

PC3 cells. Clonogenic survival assays revealed that depletion of PKCε 

significantly radiosensitizes PC3 prostate cancer cells. In contrast, neither PKCα  

nor PKCδ depletion has any significant effect. These results revealed differential 

roles for discrete PKC isozymes in radiosensitivity of PC3 prostate cancer cells. 

Our analysis also supports the notion that membrane-activated signaling pathways 

play important roles in the regulation of radiation-mediated cell death/survival.  

     Irradiation could induce PKC activation, and several studies suggested 

potential roles for PKC in radiosensitization (73, 76, 77, 90, 129, 130, 164). γ-

irradiation induces DAG production and activates PKC in cultured rat hepatocytes 

(129, 130). Our present study demonstrates that PKCε translocates from the 

cytosol to the plasma membrane upon γ-irradiation. This effect is mediated by 

EGFR, as determined with EGFR inhibitor AG1478. Ionizing radiation causes a 

strong phosphorylation of Tyr992 in EGFR, a residue responsible for PLCγ 

docking. Therefore, it may be possible that DAG generated in response to γ-

irradiation via PLCγ binds to the C1 domain in PKCε, and that this represents the 

key event that causes PKCε activation, ultimately resulting in radioresistance. Not 

surprisingly, a PLC inhibitor impairs PKCε translocation by γ-irradiation.   

      There is extensive evidence that PKCε mediates survival responses. Studies in 

the myocardium demonstrated a cardio-protective and anti-apoptotic role for 

PKCε  in ischemic preconditioning (37, 68, 106, 146). Association of an active 

PKCε mutant with Src and Lck has been demonstrated to activate each of these 
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soluble tyrosine-kinases, and these interactions can be enhanced by ischemic 

preconditioning (145, 180). PKCε associates with Akt, Bax and Bcl-2 in prostate 

cancer cells to modulate cellular apoptosis (121, 192). When overexpressed in 

LNCaP androgen-dependent prostate cancer cells, PKCε confers androgen 

independence, accelerates G1/S transition, and enhances tumorigenic potential of 

these cells when inoculated into nude mice (190). More recently, Akt has been 

shown to be an effector of PKCε that is implicated in the protection from ionizing 

radiation- and TNFα-induced breast cancer cell death (108). In our laboratory we 

generated a prostate-specific PKCε transgenic mice that show prostatic 

hyperplasia and low-grade PINs (prostate intraepithelial neoplasia). These lesions 

present elevated levels of phospho-Akt, phospho-S6 and phospho-mTOR, 

suggesting enhanced survival signaling driven by PKCε (unpublished data). As 

PKCε is overexpressed in human prostate cancer, our results suggest that this 

kinase may represent an important mediator of prostate cancer progression. We 

speculate that PKCε-specific inhibitors may be useful not only for the 

therapeutics of prostate cancer but also for sensitizing prostate cancer cells to 

chemotherapy and radiotherapy. From a mechanistic standpoint, our results 

support the concept that DAG-induced activation of PKCε is an essential step in 

radioresistance. Translocation of PKCε to the plasma membrane via PLCγ-DAG 

is required for the pro-survival effect. On the other hand, PKCε located in the 

perinuclear region (possibly bound to p23/Tmp21) is dispensable for survival. 

Thus, C1 domain-mediated translocation of PKCε to the plasma membrane is a 

key event in radioresistance.
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                                           MATERIALS AND METHODS 

Materials, cell culture and transfections-Described in Chapter 2. 

 

Generation of PKCα, PKCδ and PKCε-depleted cell lines using shRNA 

lentiviruses- PC3 cells were infected with MISSION® lentiviral transduction 

particles encoding PKCα, PKCδ, or PKCε shRNAs. PKCα, PKCδ, or PKCε 

shRNA target sequences are shown in Table 4.1.  Stable cell lines (pools) were 

generated by selection with puromycin (1 μg/ml). 

 

Apoptosis assays- Determination of apoptosis was carried out essentially as 

described in Chapter 2. 

 

Irradiation protocol- PC3 cells were serum-starved for 72 h and then irradiated at 

different doses once using a Nordian GammaCell 40 irradiator.  

 

Clonogenic assay- PC3 cells were trypsinized under sterile condition and plated 

into 60 mm tissue culture Petri dishes in triplicates at 100 cells/well (0, 2 Gy); 400 

cells/well (4 Gy); 1,000 cells/well (6 Gy) and 2,000 cells/well (8 Gy). After 2 

weeks, cells were fixed and stained with methylene blue.  The number of colonies 

consisting of 50 or more cells was scored. 

 

Fluorescence microscopy- pEGFP-PKCε was transfected into PC3 cells using 

Lipofectamine 2000. After 24 h, cells were serum-starved for 72 h, subjected to γ-
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irradiation for 5 min and fixed with cold ethanol (-20 oC) for 10 min. Slides were 

mounted using Fluoromount-G (SouthernBiotech, Birmingham, AL) and viewed 

with a Carl Zeiss LSM 710 laser-scanning microscope. The confocal images were 

processed with LSM Image Browser. Images represent individual middle sections 

of projected Z-series mounting.  

 

Western blot- Experiments were carried out essentially as described in Chapter 2. 

 

Subcellular fractionation- PC3 cells were harvested 2 h after γ-irradiation into 

lysis buffer (50 mM Tris-HCl, pH 7.4, 5 mM EGTA, 5 μg/ml 4-(2-aminoethyl)-

benzenesulfonyl fluoride, 5 μg/ml leupeptin, 5 μg/ml aprotinin, and 1 μg/ml 

pepstatin A) and lysed by sonication. Separation of cytosolic (soluble) and 

particulate fractions was performed by ultracentrifugation as described previously 

(181). Equal amounts of protein (10 μg) for each fraction were subjected to SDS-

polyacrylamide gel electrophoresis, transferred to PVDF membranes, and 

immunostained with an anti-PKCε antibody. 
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Table 4.1 Sequences of MISSION® shRNA lentiviral transduction particles used 
to generate PKCα, PKCδ, or PKCε stably-depleted PC3 cell lines. 
______________________________________________________________________ 
 
PKCα shRNA: 
 
TRCN0000001690 (PKCα #1) 
CCGGCTTTGGAGTTTCGGAGCTGATCTCGAGATCAGCTCCGAAACTCCAAAGTTTTT  
 
TRCN0000001691 (PKCα #2) 
CCGGCGAGCTATTTCAGTCTATCATCTCGAGATGATAGACTGAAATAGCTCGTTTTT  

TRCN0000001692 (PKCα #3) 
CCGGCATGGAACTCAGGCAGAAATTCTCGAGAATTTCTGCCTGAGTTCCATGTTTTT  
 
TRCN0000001693 (PKCα #4) 
CCGGCCCGTCTTAACACCACCTGATCTCGAGATCAGGTGGTGTTAAGACGGGTTTTT  
 
TRCN0000001694 (PKCα #5) 
CCGGACGGCTTGTGTCTGATTCCATCTCGAGATGGAATCAGACACAAGCCGTTTTTT  
 
PKCε shRNA: 
 
TRCN0000000844 (PKCε #1) 
CCGGGCAGAACTCAAGGGCAAAGATCTCGAGATCTTTGCCCTTGAGTTCTGCTTTTT 
 
TRCN0000000845 (PKCε #2) 
CCGGCCCTTCAAACCACGCATTAAACTCGAGTTTAATGCGTGGTTTGAAGGGTTTTT 
 
TRCN0000000846 (PKCε #3) 
CCGGCCACAAGTTCGGTATCCACAACTCGAGTTGTGGATACCGAACTTGTGGTTTTT 
 
TRCN0000000848 (PKCε #4) 
CCGGGCCAGAAGGAAGAGTGTATGTCTCGAGACATACACTCTTCCTTCTGGCTTTTT 
 
PKCδ shRNA: 
 
TRCN0000010193 (PKCδ #1) 
CCGGGGCCGCTTTGAACTCTACCGTCTCGAGACGGTAGAGTTCAAAGCGGCCTTTTT 
 
TRCN0000010194 (PKCδ #2) 
CCGGCAAGGCTACAAATGCAGGCAACTCGAGTTGCCTGCATTTGTAGCCTTGTTTTT  

TRCN0000010202 (PKCδ #3) 
CCGGGCAAGACAACAGTGGGACCTACTCGAGTAGGTCCCACTGTTGTCTTGCTTTTT 
 
TRCN0000010203 (PKCδ #4) 
CCGGGCAGGGATTAAAGTGTGAAGACTCGAGTCTTCACACTTTAATCCCTGCTTTTT 
__________________________________________________________________
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CHAPTER 5 

 

Final Remarks 
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     The second messenger DAG signaling pathway has gained great attention as a 

crucial regulatory mechanism in the control of cell proliferation, differentiation, 

apoptosis, cancer initiation and progression. Cysteine-rich (C1) domains were 

first identified in PKC isozymes as the motifs that bind DAG and phorbol esters. 

Now it is recognized that C1 domains are also present in chimaerins, RasGRPs, 

MRCKs, PKDs, DGKs, and Munc-13s (21, 86). Upon binding DAG or phorbol 

esters, C1 domain-containing proteins translocate to the plasma membrane and 

other intracellular compartments, including the nuclear membrane, the perinuclear 

region, the nucleus, and mitochondria. Remarkably, redistribution of C1 domain-

containing proteins to distinctive compartments has a significant degree of 

isozyme-selectivity and ligand-dependence. In addition to their plasma membrane 

targeting, specificity of PKC isozymes function is also controlled by their 

association with interacting proteins. In this thesis research, I have studied the 

regulations and functions of proteins regulated via their C1 domains, including 

β2-chimaerin, PKCδ and PKCε,  in different paradigms in which protein-protein 

interactions and C1 domain targeting are involved. 

      In Chapter 2 of this thesis, I present evidence that p23/Tmp21 acts as a C1 

domain-docking protein that mediates perinuclear translocation of β2-chimaerin. 

Glu227 and Leu248 in the β2-chimaerin C1 domain are crucial for binding 

p23/Tmp21 and perinuclear targeting. β2-chimaerin (Glu227/Leu248) mutant is 

more active as a Rac-GAP than wild-type β2-chimaerin. Our previous finding that 

overexpression of p23/Tmp21 significantly inhibits β2-chimaerin Rac-GAP 

activity in COS cells (180), suggests that association of β2-chimaerin with 
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p23/Tmp21 limits activation. Recently, a unique phosphorylation site, Ser169, on 

the β2-chimaerin Rac-GAP was identified. Phosphorylation at this site by another 

DAG/phorbol esters receptor (PKCδ) negatively regulates β2-chimaerin plasma 

membrane translocation, association with V12Rac1, and Rac-GAP activity 

(Griner et al., submitted for publication). Thus, both Ser169 phosphorylation by 

PKCδ and association with p23/Tmp21 represent mechanisms that modulate Rac-

GAP activity of β2-chimaerin (Figure 1.9), suggesting a crosstalk between DAG 

receptors. Importantly we also found that PKCδ interacts with p23/Tmp21 in the 

perinuclear region (Chapters 2 and 3). Furthermore, unpublished data revealed 

that PMA-induced phosphorylation of β2-chimaerin is significantly decreased in 

HeLa cells in which p23/Tmp21 has been depleted using shRNA. Collectively, 

these results imply that p23/Tmp21 plays a role in regulating PKCδ-mediated β2-

chimaerin phosphorylation. One speculation is that p23/Tmp21 may act as a 

scaffold protein or a platform for PKCδ-mediated phosphorylation of β2-

chimaerin. Another possibility might be that phosphorylated β2-chimaerin 

preferentially associates with p23/Tmp21 in the perinuclear ER/Golgi region. 

Future experiments are needed to dissect the role of p23/Tmp21 in the 

phosphorylation of β2-chimaerin and determine if Ser169 phosphorylation of β2-

chimaerin affects its association with p23/Tmp21. It still remains unclear what is 

the physiological function of the p23/Tmp21-β2-chimaerin interaction in 

perinuclear/Golgi region upon stimulation by DAG/phorbol esters. We previously 

demonstrated that p23/Tmp21 overexpression counteracts the β2-chimaerin Rac-

GAP activity. Our present study revealed that disruption of p23/Tmp21-β2-
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chimaerin complex enhances chimaerin Rac-GAP activity. Therefore, we propose 

that p23/Tmp21 might act as an anchoring protein for β2-chimaerin. This may 

serve various purposes. One is a potential involvement of this Rac-GAP in 

maintaining a pool of inactive Rac in the perinucleus that can mobilize to the 

plasma membrane in response to different stimuli (see below). Another possible 

scenario could be that p23/Tmp21 participates in the intracellular trafficking and 

sorting. We do not have any experimental results to support this hypothesis, and 

therefore further studies are needed to dissect this possible process. Time-lapse 

images demonstrated that upon EGF or PMA treatment, β2-chimaerin translocates 

to plasma membrane within 5 min. and then relocalize to the perinuclear region. 

We thought this dual translocation of β2-chimaerin might be involved in two 

steps. In the first step, β2-chimaerin translocates to plasma membrane to interact 

with Rac-GTP and down-regulate Rac signals. Subsequently, β2-chimaerin, after 

an unknown modification (may be phosphorylation by PKCδ), might preferably 

bind to p23/Tmp21 and translocate from plasma membrane to perinuclear region. 

Rac is generally thought to cycle between a cytosolic inactive form and an active 

plasma membrane form. Because a pool of β2-chimaerin localizes to the plasma 

membrane upon activation, it is possible that this pool of β2-chimaerin 

deactivates Rac at that location. Recent studies have shown that a large pool of 

Rac is located in the perinuclear region and that this pool of Rac is in its GDP-

bound form (95). We speculate that β2-chimaerin might play a role in the 

maintenance of this perinuclear pool of Rac in an inactive state before this Rac-

GTPase moves to the plasma membrane. Another speculation is that β2-chimaerin 
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might be very important for maintaining Golgi structure or functions. Indeed, a 

previous study revealed that α1-chimaerin regulates Golgi stability during 

interphase (Alonso, M., et al. Eur J Cell Biol 76:93-101.). Further studies are 

needed to investigate the role of β2-chimaerin in Golgi functions.  

     Interestingly, isolated C1 domains from individual PKC isozymes or RasGRP1 

differentially interact with p23/Tmp21. In Chapter 3 of this thesis, we 

demonstrated using a yeast two-hybrid assay that the PKCδ C1a-b domain 

interacts with p23/Tmp21. Co-localization analysis by confocal microscopy 

demonstrated that the C1b domain in PKCδ is the motif that interacts with 

p23/Tmp21 in the perinuclear region. In addition, immunoprecipitation analysis 

and confocal images demonstrated that PKCδ and p23/Tmp21 form a complex in 

LNCaP cells. Future experiments are needed to address whether PKCδ C1b 

domain interacts with p23/Tmp21 in the same way as PKCε C1b and β2-

chimaerin C1 domains. Mutations in the corresponding amino acids in PKCδ 

should abolish its association with p23/Tmp21 and promote its activity.  

      Our laboratory and others have established that androgen-dependent prostate 

cancer cells undergo apoptosis upon phorbol ester treatment, and that the effect 

was primarily mediated by PKCδ. By using this paradigm, I now demonstrated 

that depletion of p23/Tmp21 significantly potentiates PMA-induced apoptosis in 

LNCaP cells, and notably the effect was rescued by PKCδ RNAi depletion or 

treatment with a PKC inhibitor, suggesting that the potentiating apoptotic effect of 

p23/Tmp21 depletion was mediated by PKCδ. Interestingly, disruption of PKCδ-

p23/Tmp21 association by depletion of p23/Tmp21 enhances PMA-induced 
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PKCδ plasma membrane translocation and activation of the PKCδ downstream 

effectors ROCK and JNK, indicating p23/Tmp21 acts as an anchoring protein that 

limits PKCδ activation and negatively regulates PMA-induced apoptosis in 

LNCaP cells. Furthermore, our experiments also demonstrated that depletion of 

p23/Tmp21 potentiates doxorubicin-mediated apoptosis, a PKCδ-dependent effect 

(143). Thus p23/Tmp21 is a negative modulator of PKCδ-mediated responses. 

Based on the results presented here, it would be also important to determine if 

p23/Tmp21 modulates response by RasGRP1 or PKCε. One speculation is that 

depletion or down-regulation of p23/Tmp21 might lead to more availability of 

RasGRP1 or PKCε. Since these two proteins play important roles in cell 

transformation, p23/Tmp21 may be also implicated in cancer progression. It 

would be interesting to analyze the p23/Tmp21 expression profile in different 

cancer cell lines and tumor samples to determine any potential relationship 

between p23/Tmp21 expression and tumor progression.  

     In Chapter 4 of this thesis, I demonstrated that PKC inhibition radiosensitizes 

PC3 prostate cancer cells. Using a lentiviral-based shRNA delivery approach, I 

demonstrated that depletion of PKCε but not PKCα or PKCδ radiosensitizes PC3 

cell. In addition, our experiments revealed that clinically relevant doses of γ-

irradiation significantly enhanced PKCε  translocation from the cytosol to the 

particulate fraction. Moreover, confocal images demonstrated that the EGFR 

inhibitor AG1478, PLC inhibitor U73122, as well as the reactive oxygen species 

(ROS) scavenger NAC significantly impair γ-irradiation-induced translocation of 

PKCε to the plasma membrane, suggesting that PKCε is a downstream effector of 
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the ROS-EGFR-PLCγ-DAG signaling pathway and may confer cytoprotective 

effects upon ionizing radiation. It would be important to determine how activated 

PKCε relays signals to downstream effectors that generate the cytoprotective 

effects. PKCε can activate MAPKs and lead to the expression of transcription 

factors, such as CREB, Egr, Est, Stat3, C/EBP and Stat1. PKCε may also activate 

Akt or Bcl-2 family members to generate pro-survival effects. In any case, a 

detailed analysis would be needed to investigate the mechanisms involved in 

PKCε-mediated radioresistant effects. It will be also worthwhile to examine the 

radiosensitizing effect of PKCε specific inhibitors. Conceivably, specific 

inhibition of PKCε may be a useful therapeutic approach to sensitize prostate 

cancer cells or other cancer cells to γ-irradiation. Not surprisingly, PKCε also 

modulates the sensitivity of cancer cells to chemotherapeutic agents (10). Our 

study highlights the relevance of membrane-related signal cascades other than 

irradiation-induced DNA damage/repair pathways in controlling ionizing 

irradiation-induced cell death.  

     In summary, our studies suggest that the C1 domain plays important roles in 

modulating the activation of signaling molecules via dual mechanism (Figure 

5.1). Both lipid binding and protein-protein interactions determine the localization 

of C1 domain-containing proteins, and these represent essential steps in the 

activation of these proteins. 
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Figure 5.1 Proposed model of regulation of the C1 domain-containing proteins. 
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