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Using Molecular Constraints and Unnatural Amino Acids to Manipulate
and Interrogate Protein Structure, Dynamics, and Self-Assembly

Abstract
Protein molecules can undergo a wide variety of conformational transitions occurring over a series of time and
distance scales, ranging from large-scale structural reorganizations required for folding to more localized and
subtle motions required for function. Furthermore, the dynamics and mechanisms of such motions and
transitions delicately depend on many factors and, as a result, it is not always easy, or even possible, to use
existing experimental techniques to arrive at a molecular level understanding of the conformational event of
interest. Therefore, this thesis aims to develop and utilize non-natural chemical modification strategies,
namely molecular cross-linkers and unnatural amino acids as site-specific spectroscopic probes, in
combination with various spectroscopic methods to examine, in great detail, certain aspects of protein folding
and functional dynamics, and to manipulate protein self-assemblies. Specifically, we first demonstrate how
strategically placed molecular constraints can be used to manipulate features of the protein folding free energy
landscape, thus, allowing direct measurement of key components via temperature-jump kinetic studies, such
as folding from a transition-state structure or the effect of internal friction on the folding mechanism.
Secondly, we utilize a photolabile non-natural amino acid, Lys(nvoc), to probe the mechanism of protein
misfolding in a β-hairpin model and identify an aggregation gatekeeper that tunes the aggregation propensity.
We further develop a method where the induced-charge produced by photocleavage of Lys(nvoc) can be used
to target and destabilize hydrophobic regions of amyloid fibril assemblies, resulting in complete disassembly,
Finally, we highlight new useful properties of a site-specific spectroscopic probe, 5-cyanotryptophan
(TrpCN), by demonstrating (1) how the frequency and linewidth of the infrared nitrile stretching vibration is
sensitive to multiple hydrogen bonding interactions and solvent polarity, (2) that the fluorescence emission,
quantum yield, and lifetime is extremely sensitive to hydration, and serves as a convenient fluorescence probe
of protein solvation status, and (3) that the unique characteristics of TrpCN can be used to target the
structure, local environment, and mechanism of the tryptophan gate in the M2 membrane proton channel of
the influenza A virus.
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ABSTRACT 

 

USING MOLECULAR CONTSTRAINTS AND UNNATURAL AMINO ACIDS TO 

MANIPULATE AND INTERROGATE PROTEIN STRUCTURE, DYNAMICS,  

AND SELF-ASSEMBLY 

Beatrice N. Markiewicz 

Feng Gai 

 

Protein molecules can undergo a wide variety of conformational transitions occurring 

over a series of time and distance scales, ranging from large-scale structural 

reorganizations required for folding to more localized and subtle motions required for 

function. Furthermore, the dynamics and mechanisms of such motions and transitions 

delicately depend on many factors and, as a result, it is not always easy, or even possible, 

to use existing experimental techniques to arrive at a molecular level understanding of the 

conformational event of interest. Therefore, this thesis aims to develop and utilize non-

natural chemical modification strategies, namely molecular cross-linkers and unnatural 

amino acids as site-specific spectroscopic probes, in combination with various 

spectroscopic methods to examine, in great detail, certain aspects of protein folding and 

functional dynamics, and to manipulate protein self-assemblies. Specifically, we first 

demonstrate how strategically placed molecular constraints can be used to manipulate 

features of the protein folding free energy landscape, thus, allowing direct measurement 

of key components via temperature-jump kinetic studies, such as folding from a 

transition-state structure or the effect of internal friction on the folding mechanism. 
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Secondly, we utilize a photolabile non-natural amino acid, Lys(nvoc), to probe the 

mechanism of protein misfolding in a β-hairpin model and identify an aggregation 

gatekeeper that tunes the aggregation propensity. We further develop a method where the 

induced-charge produced by photocleavage of Lys(nvoc) can be used to target and 

destabilize hydrophobic regions of amyloid fibril assemblies, resulting in complete 

disassembly, Finally, we highlight new useful properties of a site-specific spectroscopic 

probe, 5-cyanotryptophan (TrpCN), by demonstrating (1) how the frequency and linewidth 

of the infrared nitrile stretching vibration is sensitive to multiple hydrogen bonding 

interactions and solvent polarity, (2) that the fluorescence emission, quantum yield, and 

lifetime is extremely sensitive to hydration, and serves as a convenient fluorescence 

probe of protein solvation status, and (3) that the unique characteristics of TrpCN can be 

used to target the structure, local environment, and mechanism of the tryptophan gate in 

the M2 membrane proton channel of the influenza A virus.  
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1   Introduction  
 
 
1.1   Protein Folding 

Proteins, simple linear polymers composed of unique amino acid sequences, 

spontaneously fold into compact three-dimensional structures that comprise the 

machinery necessary to execute biological functions in living organisms. A milestone 

discovery by Anfinsen,1 which demonstrated for the first time that a protein can 

reversibly interchange between a denatured/inactive and folded/active state as a function 

of solution conditions, led to the onset of in-vitro-based protein folding studies. From 

this, Anfinsen proposed the physical underpinnings that have shaped the field, most 

notably, the “thermodynamic hypothesis”, which suggests that under physiological 

conditions a protein adopts a native state that minimizes its Gibbs free energy. This led to 

the belief that the molecular driving forces (i.e., intra-chain or solvent interactions) are 

solely influenced by the amino acid sequence.2 Since then, in a multidisciplinary 

endeavor bridging biologists, chemists, and physicists, one of the most sought after 

questions in structural biology focuses on unraveling the molecular mechanisms of 

protein folding and self-assembly. 

Deciphering mechanistic details, which include a description of folding pathways, 

the order in which native structural elements are formed, and the kinetics of those 

processes, is key to developing predictive protein folding measures.3 As Levinthal first 

alluded to in 1969,4 folding must occur through a bias search to reach a native state on a 

biologically relevant timescale. Two folding models were later proposed to explain this. 

The first suggests that folding progresses through a single pathway with well-defined 
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intermediates.5 The second hypothesis argues folding pathways are heterogeneous and 

dictated by a thermodynamic- and kinetic-controlled conformational search on a multi-

dimensional funneled free energy landscape.6,7 Regardless, both views accept the general 

idea that the nature of a folding reaction is governed by its potential energy surface, 

which in turn, is dependent on sequence. However, the vast number of degrees of 

freedom of a polypeptide chain makes it impossible to experimentally assess the 

energetics of each and every conformational state. Thus, a bottom-up approach, using 

small single-domain protein scaffolds, has been employed to study folding dynamics in a 

more simplistic manner. In such cases, the folding/unfolding kinetics can be interpreted 

in the context of a one-dimensional reaction coordinate containing two wells, describing 

the native and denatured state separated by a free energy barrier.8 Consequently, the 

transition state (TS) structure associated with barrier-crossing became relevant to 

understanding the folding mechanism and landscape.   

The Φ-value analysis method, pioneered by Alan Fersht,9 has been influential in 

providing residue-level folding details, particularly by identifying approximate structures 

of the TS ensemble via measuring the kinetic and thermodynamic response arising from a 

point mutation.10 Subsequently, one of the governing principles that arose is that proteins 

fold by adopting native substructures in the TS (i.e., nucleation-condensation).11 With the 

development of nanosecond laser-induced optical-triggering techniques,12 detection of 

these early kinetic events, such α-helix and β-sheet secondary structure formation, loop 

formation, and polypeptide chain collapse, was made possible.13,14 For example, 

investigations of helix-coil transitions of Ala-based α-helix peptides showed that 
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complete folding (i.e., nucleation followed by propagation) occurs within ~1 μs.15 This 

rapid timescale suggested that formation of secondary structures greatly precedes 

formation of tertiary contacts. On the other hand, kinetics of folding of designed β-

hairpins used to study β-sheet folding, are on the order of several μs.16 This slower rate 

arises because folding must overcome a larger energetic barrier due to longer-range inter-

strand interactions compared to single helices. More interestingly, downhill and/or 

barrierless folding processes have also been observed,17 where the timescale of folding is 

instead limited by diffusion on a rough free energy landscape, arising from weak kinetic 

traps from intra-protein or protein-solvent interactions. In this folding scenario, the 

absence of a significant energetic bottleneck allows all intermediates to be kinetically 

accessible.18  Therefore, a recent effort has been directed toward reengineering proteins 

for the sake of manipulating the underlying landscape and removing high energy barriers 

to folding.19 In addition, modern single-molecule fluorescence techniques have been used 

to identify regions of a free energy coordinate that manifest internal friction, and have 

quantitatively shown how it affects the folding behavior of a two-state protein.20,21  

Furthermore, the study of ultra-fast folding proteins is still highly pursued, as current 

computer power allows molecular dynamics (MD) simulations to access timescales that 

can now be directly compared with experiment.22  

Despite advances in detecting protein folding processes, we are still limited to 

coarse-grained structural representations, as the spectroscopic signals frequently arise 

from multiple structural elements in the polypeptide chain. Appropriately, improving 

spatial resolution and/or confining a protein to a well-defined initial conformation are 
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essential to gaining structural details. In this regard, this thesis aims to enhance site-

specificity in a protein (1) to investigate the local electrostatic and hydration environment 

and (2) to interrogate features of the folding free energy landscape, particularly TS 

structures and local internal friction.   

 

1.2   Protein Misfolding and Aggregation 

Under partially or fully unfolded conditions, protein monomers can encounter non-native 

interactions, which triggers intermolecular self-assembly, in a polymer-like fashion, to a 

kinetically trapped state.23,24 This misfolding pathway leads to formation of highly-

ordered fibril structures comprised of repeating β-sheets, called amyloids, abolishing the 

native protein function. Thus, accumulation of amyloid fibrils in vivo are associated with 

several fatal diseases, such as cystic fibrosis, Alzheimer’s, Parkinson’s, and Type II 

diabetes.25 High resolution structural studies have shown that the fibril structure is 

stabilized by intermolecular hydrogen bonds of the backbone and hydrophobic 

interactions, and this generic structure is maintained regardless of sequence.23 Studies 

have shown that self-assembly to such a fibril/aggregate structure is initiated from a 

nucleation event, much like in native folding. Gazit26 hypothesized that π-π stacking of 

hydrophobic residues can thermodynamically drive this self-assembly and can also direct 

the orientation of propagation. As such, several mutational studies of amyloid-related 

peptide fragments lost aggregation propensity upon removal of crucial hydrophobic 

sidechains.27-29 During the course of self-assembly, partially unfolded intermediates 

convert to oligomeric species, later forming protofibrils, which then coalesce to form a 
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mature fibril structure.30 As a result, a large amount of work from the past decade has 

utilized fluorescence and imaging tools to investigate the kinetics of this process,31 in an 

effort to identify and isolate intermediates that could be targeted for inhibition. Also, 

several triggering methods using switch peptides or light-activated molecules have been 

used to monitor amyloid self-assembly from a monomeric state.31 This thesis aims to 

demonstrate a reverse approach that can be used to disassemble amyloid fibrils via site-

specific light-active amino acids by targeting the π-interactions of the peptides in 

question.   

 

1.3   Thesis Overview 

The objective of the work presented in this dissertation is to develop new experimental 

approaches to investigate protein structure, folding dynamics, and self-assembly. Typical 

ensemble measurements used to study proteins are hampered by a lack of spatial 

resolution. As a result, the general strategy presented here uses site-directed chemical 

modifications of peptides, in several different forms, coupled with time-resolved and 

steady-state spectroscopies to tease out dynamic and structural details with enhanced site-

specificity. Specifically, the extrinsic non-natural modifications employed to the protein 

structures involve one of the following: (1) molecular cross-linking, (2) a photolabile 

non-natural amino acid, and (3) a nitrile-derivatized non-natural amino acid spectroscopic 

probe. Each method offers unique characteristics that can be used to experimentally 

assess the properties of protein structures.   
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 To begin, Chapter 2 provides a summary of the theoretical basis used to explain 

the thermodynamics and kinetics of protein folding and unfolding, as well as the theory 

used to assess the details of the protein folding free energy landscape. This leads into 

Chapter 3, which presents the details and background of the experimental methods 

utilized throughout this thesis, including the motivation behind the non-natural chemical 

modifications used in these studies. 

 In Chapter 4, we demonstrate how a site-specific sidechain cross-linker could be 

utilized to constrain and populate a thermodynamically accessible state that mimics the 

TS structure, and therefore allows for direct measurement of folding from a TS-like 

configuration. We test the feasibility of this method on a well-studied β-hairpin and use a 

disulfide sidechain cross-linker to restrain the first backbone-backbone hydrogen bond, in 

conjunction with laser-induced temperature-jump IR spectroscopy. The measured 

conformational relaxation kinetics of this variant shows a fast phase relaxing an order of 

magnitude faster (~500 ns) than the wild-type, indicating that the barrier to folding is 

abolished. 

In Chapter 5, we use an m-xylene helix cross-linker to site-specifically assess the 

effect of internal friction in the most crowded region of a model protein. This leads to a 

significant decrease in the folding and unfolding rate while demonstrating no effect on 

protein stability. These results indicate that the m-xylene linker acts as a local crowder, 

thus inducing a frictional drag on the free energy landscape. We estimate that interactions 

arising from the linker increase the roughness of the landscape by 0.4–1.0 kBT.  
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In Chapter 6, we investigate the aggregation behaviors of two β-hairpins, Trpzip1 

and Trpzip2. Here we utilize a photolabile lysine analogue, Lys(nvoc), and a change in 

solution conditions, to show that the aggregation mechanism proceeds through native 

edge-to-edge interactions, and that the Lys8 position serves as an aggregation gatekeeper. 

Furthermore, we also demonstrate that Lys(nvoc) could be used to site-specifically tune 

the rate of peptide aggregation.  

In Chapter 7, we employ a charge triggering process, where generation of one or 

several charged sidechains, using a photolabile non-natural amino acid and light, in an 

otherwise hydrophobic environment is sufficient to cause protein/peptide aggregates, 

amyloid fibrils, or other types of matrices, like peptide hydrogels, to disassemble.  To test 

this method, we utilize a photolabile lysine analog, Lys(nvoc), which is hydrophobic but 

yields a charged lysine upon photocleavage of the nvoc moiety, to photo-trigger the 

dissociation of model amyloid peptides (hIAPP22-27 and Aβ16-22). Furthermore, we show 

that it is possible to spatiotemporally control the morphology of a self-assembling peptide 

hydrogel (FKFEFKE) by substitution of a nonpolar residue (phenylalanine) with 

Lys(nvoc), and that the placement of Lys(nvoc) can affect the morphology and 

viscoelastic properties of the gel.  

In Chapter 8, we expand the utility of 5-cyanotryptophan (TrpCN) as a site-specific 

IR probe, and assess the factors that contribute to the IR stretching frequency of the 

nitrile (C≡N). The frequency and lineshape are highly sensitive to local environment, 

especially hydration status. By correlating the C≡N stretching frequency to well-known 

Kamlet-Taft parameters of different solvents (i.e., polarizability (π*), hydrogen accepting 
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ability (β), hydrogen bond donating ability (α)), we find that there is a linear correlation 

when plotted against σ (π*+ β – α). This result indicates that direct hydrogen bonding 

interactions with C≡N and N-H, as well as the non-specific interactions arising from the 

polarity of the solvent; all contribute to the final C≡N frequency.  

In Chapter 9, we expand the utility of TrpCN as a site-specific fluorescence probe 

and characterize the photophysical properties. We find that TrpCN has an enhanced 

sensitivity to hydration, which is reflected in its quantum yield, emission maximum, and 

fluorescence lifetime measurements. Specifically, when TrpCN transitions from a hydrated 

to hydrophobic environment, its quantum yield and fluorescence lifetime increases by an 

order of magnitude. We show that this stark contrast in TrpCN signal can be exceptionally 

useful as a probe of hydration, and demonstrate its applicability to study binary solvent 

mixtures, membrane-peptide binding, and hydration sites of a folded protein.   

In Chapter 10, we combine the principals that were learned from Chapter 8 and 9, 

and use TrpCN, combined with steady-state and time-resolved IR and fluorescence 

measurements, to site-specifically probe the structure and hydration dynamics of the 

tryptophan (Trp) gate in the transmembrane domain of the M2 proton channel. Our 

findings suggest that the water density around the Trp gate does show appreciable 

changes between the open and closed forms. We speculate that the lack of sufficient 

water molecules near Trp needed to establish a continuous water wire poses an additional 

energetic bottleneck for proton conduction.  

Finally, Chapter 11 will offer a summary of the present findings as well as future 

directions.  



9 
 

2   Theory 
 
 
2.1   Thermodynamics of Protein Folding 

As Christian Afinsen proposed almost 50 years ago, the “thermodynamic hypothesis” of 

protein folding generally asserts that the native conformation of a protein is the one with 

the lowest Gibbs free energy.1 To further explain how a protein converges to this state 

efficiently, Wolynes and coworkers6,7 proposed that the protein folding free energy 

landscape is funnel-like, with a bias toward a single basin and/or conformation.5 Since 

then, this notion, representing a protein’s conformational space versus free energy, has 

served as a quantitative model to describe, via statistical thermodynamics, the 

microscopic degrees of freedom, or in other words, the density of states (i.e., 

conformational entropy), at each free energy level.2 These theories have been elaborated 

upon in several reviews.32,33 However, to keep with the relevance of the work discussed 

in this thesis, obtaining quantitative thermodynamic parameters of a two-state folding 

protein will be discussed in the context of a thermal unfolding reaction.34,35 The proteins 

studied herein, follow a two-state model, where the protein assumes one of two 

ensembles, folded (F) and unfolded (U),  

                (2.1.1) 

where ku represents the unfolding reaction rate constant and kf is the folding reaction rate 

constant. Specifically, the free energy of the protein folding reaction (ΔGrº(T)) at 

temperature T is described by 

)()()( TSTTHTG rrr °∆−°∆=°∆ .                  (2.1.2) 

F U
ku

kf
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Here, ΔHrº(T) and ΔSrº(T) represent the change in enthalpy and entropy of the reaction, 

respectively. More importantly, ΔGrº(T) is the difference of the free energy between the 

denatured state (GUº) and the native state (GFº) as follows, 

°−°=°∆ FUr GGTG )( .      (2.1.3) 

The temperature dependence of ΔHrº(T) and ΔSrº(T), can be described by the following 

two equations, 

)()()( mpmrr TTCTHTH −∆+°∆=°∆    (2.1.4) 

)ln()()(
m

pmrr
T

T
CTSTS ∆+°∆=°∆ .    (2.1.5) 

where Tm is a reference temperature, usually the melting temperature (i.e., the point 

where system is 50% folded and 50% unfolded). The change in heat capacity (ΔCp) is 

assumed to stay relatively constant over the limited temperature range.35 Taking Eq. 2.1.4 

and Eq. 2.1.5 and substituting into Eq. 2.1.2, the resulting expression for ΔGrº(T) can be 

described by the following:  

)]ln([)()(
m

prmprr
T

T
CSTTTCHTG ∆+°∆−−∆+°∆=°∆ .  (2.1.6) 

 
Furthermore, the transition temperature is defined as Tm = ΔHrº(Tm)/ ΔSrº(Tm). 

Commonly, Tm is used to assess the overall thermodynamic stability of the folded 

structure relative to its thermally denatured state. As a result, a mutational analysis of a 

protein sequence combined with thermal denaturation experiments can be used to dissect 

how a particular sidechain interaction contributes to stabilizing the final folded 

structure.34   
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2.2   Kinetics of Protein Folding 

Continuing in the context of a simple two state folding model, as shown in Eq. 2.1.1, the 

classical kinetics methodology of a unimolecular reaction fluctuating between two states, 

F and U, can be used to summarize the kinetic behaviors of the protein models studied 

herein.36 The differential rate expressions for this reaction describing the change in 

concentration of folded [F] and unfolded [U] protein molecules are,37,38 

)]([)]([
)]([)]([

tFktUk
dt

tUd

dt

tFd
uf −=−= .    (2.2.1) 

When this system is at equilibrium conditions, 0
)]([)]([ =−=

dt

tUd

dt

tFd
, as the 

concentrations of [F] and [U] do not change. As a result, we find that [U]=[U]eq and 

[F]=[F]eq, where the subscript eq represents equilibrium conditions. Also, since 

kf[U]=ku[F], the equilibrium constant, K, can be described by37 

f

u

k

k

F

U
K ==

][

][
.    (2.2.2) 

Nonetheless, when a protein ensemble is perturbed to a non-equilibrium condition at a 

time t, via relaxation methods such as a temperature perturbation, [F] and [U] can be re-

written to reflect an evolution to a new equilibrium state (denoted by the subscript 2,eq)39  

    )]([][)]([ ,2 tFFtF eq ∆+=                (2.2.3) 

)]([][)]([ ,2 tUUtU eq ∆+= .                   

By substituting Eq. 2.2.3 into Eq. 2.2.1, the initial rate expression describing the time-

dependent change in [F] becomes,39 
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))]([]([))]([]([
)]([

,2,2 tFFktUUk
dt

tFd
equeqf ∆+−∆+=∆

.  (2.2.4) 

Keeping in mind that –Δ[U]=Δ[F] and kf[U]2,eq=ku[F]2,eq, Eq. 2.2.4 can be simplified to39 

 )]([)(
)]([

tFkk
dt

tFd
uf ∆+−=∆

.   (2.2.5) 

Integration of Eq. 2.2.5 yields, 

tkk ufeFtF
)(

0][)]([
+−∆=∆      (2.2.6) 

where we assume that Δ[F] at t = 0 is equal to Δ[F]0 = [F]1,eq – [F]2,eq (i.e., 1,eq represents 

the initial equilibrium state).39 Here, the observed experimental relaxation rate, kr, is the 

sum of the forward and reverse rate constants, and is also equal to the inverse of the 

relaxation time, τ, 

τ
1=+= ufr kkk .    (2.2.7) 

Thus, these relationships demonstrate that a perturbation from equilibrium results in an 

exponential relaxation rate equal to the folding and unfolding reaction rates. When we 

quantify the equilibrium constant K, of the protein folding reaction, we can use the 

observed kr and Eq. 2.2.7 and Eq. 2.2.2 to specifically determine kf and ku. 

              

2.3   Details of the Folding Free Energy Landscape 

The mechanism by which a protein folds is embedded in the features of its multi-

dimensional free energy landscape.33 However, a protein chain has innumerable degrees 

of freedom, making it extremely difficult to experimentally resolve the details of its 

complex energy surface. For a simple two-state folder, the problem can be reduced to 
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one-dimension (i.e., unfolded and folded potential wells separated by a barrier). The 

protein folding reaction dynamics can be correlated with details of the one-dimensional 

reaction coordinate using Kramer’s theory, which establishes a relationship between the 

folding rate constant k and the folding free energy barrier height (ΔG‡),19,40 

)/(

2
RTGBR ek

m∆−=
πγ
ωω

    (2.3.1) 

where the pre-exponential factor terms define the shape and roughness of the underlying 

free energy landscape. Here, ωR and ωB represent frequencies describing the curvatures of 

the reactant and transition-state potential wells, γ is a frictional coefficient, R is the gas 

constant, and T is temperature. Specifically, the γ parameter, arises from “friction” on the 

free energy surface that originates from the dissipation of energy into internal degrees of 

freedom of the protein (i.e., random sidechain collisions, steric hindrances) or coupling to 

the solvent bath. To assess these effects experimentally, one approach assumes that γ is 

directly related with solvent viscosity ηs and protein internal friction α, resulting in a 

modified Kramer’s equation, k ∝ 1/(ηs + α).41 Numerous examples have shown that if the 

folding rate does not follow a linear correlation with solvent viscosity, as is predicted for 

a barrier-crossing process, then the observed divergence is attributed to friction arising 

from α alone.41-44  

In a second approach based on theory developed by Sagnella et al.,45 one can also 

measure roughness U‡ on a two-state free energy landscape in response to a friction-

inducing perturbation. For example, they showed previously that U‡ can be defined by45 

int

ln
γ
γ

kTU =m     (2.3.2) 
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where γint is the intrinsic friction from the solvent and γ is the internal friction within the 

protein. If we define kWT as the rate constant of a native wild-type protein, and kP as the 

rate constant of the same protein subjected to a friction-inducing perturbation (i.e., cross-

linker, site-directed mutation, crowding agent), we can express the relationship between 

the rate constants and internal friction using Kramer’s equation,46 

)/(

int

WT
RTGe

A
k

m∆−=
γ

 and )/(

int

P
RTGe

A
k

m∆−

+
=

γγ
    (2.3.3) 

where
π
ωω

2
BRA = . Assuming that the deviations of its folding/unfolding rate are due 

entirely to increased internal friction and there is no change in barrier height or A with 

respect to the wild-type, Eq. 2.3.3 further simplifies to 

intP

WT 1
γ
γ=−

k

k
 ,    (2.3.4) 

which then finally allows calculation of U‡.  
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3   Methods 
 
 
3.1   Circular Dichroism Spectroscopy 

Far-UV circular dichroism (CD) is not only a well-established technique used to 

qualitatively assess secondary structures of proteins, but also is a vital tool used to assess 

the thermodynamics of protein folding.47,48 Briefly, CD is the differential absorption of 

left-handed and right-handed circularly polarized light of an optically active medium. 

This consequential difference in absorption coefficients causes the electric-field vector to 

adopt an elliptical polarization. As a result, the detected signal of a CD instrument is 

reported in degrees of ellipticity, which is the angle equal to the tangent of the minor and 

major axis of the ellipse.49  

The amide functional group of protein backbone structures serves as the dominant 

chromophore, and undergoes three electronic transitions, (1) a n→π* transition at 220 

nm, (2) a π→π* at 190 nm, and (3) π→π* at 170 nm. The unique three-dimensional 

configurations adopted by protein secondary structures (i.e., β-sheet, α-helices, and 

disordered chains) yield distinguishing CD spectral signatures, which are influenced by 

factors such as hydrogen bonding and exciton coupling between degenerate states.49 For 

example, the common CD signature of α-helices contains a negative band at 222 nm 

arising from the n→π* transition. A second negative band at 208 nm and positive band at 

192 nm originates from exciton coupling of the π→π* transition. Furthermore, β-sheets 

generate a negative band at 216 nm (n→π* transition) and positive band at 195 nm 

(π→π* transition). Finally, disordered structures are distinctive, as their signature only 

shows a single negative feature at 200 nm.  
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 Also important, aromatic sidechains of proteins have sensitive and detectable 

electronic transitions, such as Trp and Tyr. In the far-UV range (below 260 nm), these 

transitions usually manifest as exciton couplets, and can serve as indications for tertiary 

interactions between neighboring strands.50 In the case of the Trpzip β-hairpin peptides,51 

which are stabilized by two pairs of edge-to-face Trps, a strong couplet is observed at 227 

nm and 215 nm when the peptide is folded.  

 Moreover, as mentioned above, CD spectroscopy is a convenient method to 

measure the thermodynamics of protein folding via thermal denaturation. This is 

accomplished by measuring the ellipticity at a single wavelength as a function of 

temperature to monitor unfolding. To quantitatively assess the thermal stabilities of the 

resulting curve and obtain thermodynamic parameters, we perform a fit to the following 

two-state model:46,47 

)(1

)()()(
)(

eq

FeqU

TK

TTKT
T

+
+

=
θθ

θ    (3.1.1) 

)R/)(exp()(eq TTGTK ∆−=            (3.1.2) 

)]ln([)()(
m

pmmpm
T

T
CSTTTCHTG ∆+∆−−∆+∆=∆          (3.1.3) 

where θ(T) is the temperature-dependent mean residue ellipticity, Keq(T) is the 

equilibrium constant for unfolding, Tm = ∆Hm/∆Sm is the thermal melting temperature, 

∆Hm and ∆Sm are the enthalpy and entropy changes at Tm, and ∆Cp is the heat capacity 

change. In addition, the folded and unfolded CD baselines, θF(T) and θU(T), respectively, 

are assumed to be linear functions of temperature, as follows: 

dTcT +=)(Uθ           (3.1.4) 
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bTaT +=)(Fθ            (3.1.5) 

where a, b, c, and d are treated as constants. For cases where one needs to determine the 

thermal properties of multiple mutants of single sequence, the subsequent thermal melts 

are globally fit to the two-state model above, while keeping the folded/unfolded baselines 

constant.52  

 

3.2   Fluorescence Spectroscopy 

Fluorescence spectroscopy, measurement of photon emission from an excited singlet 

state, is one of the most applied and versatile techniques used to investigate protein 

structure, folding, and dynamics because polypeptide chains contain intrinsic 

fluorophores, namely the naturally occurring aromatic amino acids (Trp, Tyr, and 

Phe).53,54 Of these, Trp is regarded as the most useful for numerous reasons: (1) the molar 

absorptivity of the 1La and 1Lb electronic transitions (~280 nm) is large; (2) it has a high 

quantum yield (QY) in aqueous solution (~0.14); (3) it has a large excited-state dipole 

moment (~6 D) making its wavelength of emission and fluorescence lifetime 

exceptionally sensitive to solvent; and (4) Trp is a rare amino acid that is often located in 

biologically relevant sites that are vital for self-assembly and function. Additionally, the 

sensitivity of Trp to collisional quenching, from either H2O or ions,53 can be used to 

evaluate solvent accessibility of a particular Trp site. However, larger proteins frequently 

contain more than one intrinsic fluorophore making interpretation of the spectra quite 

complicated. Therefore, Trp- and Tyr-based analogues that contain distinctive 
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photophysical characteristics, such as QY, emission maximum, and fluorescence 

lifetimes, have been implemented as site-specific fluorescence probes. 

Specifically, one popular approach to change the photophysical behavior of an 

amino acid analogue involves the addition of an atom or functional group to an aromatic 

ring. Examples of Trp-derived fluorescent probes include 7-azatryptophan,55 5-

hydroxytrypotphan, 4- and 5-fluorotryptophan,53 and 5- and 6-cyanotryprotphan.56,57 

Similarly, a widely used Tyr-based non-natural amino acid probe is p-

cyanophenylalanine, which demonstrates QY dependence on hydrogen bonding strength 

to the cyano group.58 Other more structurally diverse small-molecule chromophores have 

been designed with aromatic moieties such as dansyl amides and coumarins.53 

Particularly, this thesis will emphasize the applicability of 5-cyanotryptophan as a 

fluorescence probe, as its fluorescence lifetime and quantum yield show a stark contrast 

in signal upon hydration.   

One common method employed to measure the fluorescence lifetime of molecules 

is Time-Correlated Single Photon Counting (TCSPC). In simple terms, it measures the 

time difference between initial excitation with a picosecond laser pulse and detection of a 

single emitted photon, over a series of cycles.53,59 Specifically, the photon counting rate is 

limited by the acquisition time of the detection electronics, and as a result, capturing a 

fluorescence decay process within the typical timescale (picoseconds to nanoseconds), is 

difficult via multiple photon detection after a single excitation pulse.53 Therefore, the 

detection rate is fine-tuned so that only one photon is counted for every ~20-100 

excitation pulses, and the accumulated data over numerous cycles are plotted as a 
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histogram illustrating the photon count versus the time difference (Δt) between excitation 

and photon detection. The subsequent distribution of Δt reproduces the exponential decay 

of the fluorescence lifetime. Finally, the fluorescence lifetime parameters are calculated 

by deconvolution with the instrument response function and fit to a single- or multi-

exponential function.59   

Other advanced fluorescence spectroscopic techniques, which are not applicable 

to this thesis, but are reviewed in detail elsewhere, involve single-molecule FRET 

detection to study protein folding and the details of its free energy landscape,60,61 rapid 

temperature-jump fluorescence detection for detection of ultrafast protein folding 

events,62  and fluorescence correlation spectroscopy for translational diffusion of a 

protein within a known confocal volume.54  

 

3.3   Infrared Spectroscopy 
 
Over the last 60 years, infrared (IR) spectroscopy, particularly in the mid-IR spectral 

range  (i.e., 4000 – 200 cm-1), has evolved into a time-efficient and powerful analytical 

tool to decipher and quantify global protein structures.63  One of the distinct advantages 

of this method is that measurements can be made in biologically relevant media, such as 

in the presence of membrane mimetics, which is otherwise difficult with other structural 

techniques. However, due to the size and chemical complexity of proteins, there are an 

extremely large number of oscillators within a given structure, and the overlapping 

transitions combined with vibrational couplings between inherent modes, limits us to a 

crude secondary structure representation. Regardless, the abundance of information that 
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can be gained from this is invaluable, particularly in cases where IR difference 

spectroscopy is applied to monitor a protein reaction.64 

  Specifically, the molecular vibrations that contain the most structurally sensitive 

information is embedded within the amide I absorption band of the protein backbone.64  

This IR transition, which absorbs at a frequency between 1600-1700 cm-1, originates 

primarily from the C=O stretching vibration and is also weakly coupled to the out-of-

phase CN stretching, CCN deformation, and in-phase NH bending.65 More importantly, 

the frequency and lineshape of the amide I mode is sensitively dependent on protein 

secondary structure, giving rise to the following absorption bands; (1) α-helices – narrow 

band at ~1650-1640 cm-1, (2) parallel β-sheets – narrow band 1620 cm-1, (3) anti-parallel 

β-sheets – split amide I mode with a high intensity band at 1630 cm-1  and a weaker band 

at 1685 cm-1, and (4) disordered structures – broad, featureless band centered at 1650 cm-

1.66 In particular, transition dipole coupling (TDC),67 hydrogen bonding,68 and 

inhomogeneous band broadening,66 all contribute to the sensitivity of the amide I 

absorption. First, TDC occurs when the vibrational modes of neighboring oscillators 

interact, and the nature of the coupling is determined by distance and orientation of the 

dipoles relative to each other.66 This mechanism manifests in two ways, exciton transfer 

and exciton splitting. The former involves an excitation energy migration to adjacent 

oscillators, resulting in a delocalization of the excited state over a distance.69 The latter 

represents the prominent mechanism of anti-parallel β-sheets, where coupling of in-phase 

(inter-strand) and out-of-phase (intra-strand) modes produces exciton splitting of the 
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amide I band,70 and can be as substantial as ~70 cm-1 in well-ordered assemblies. This 

characteristic band shape can be used a structural marker for protein aggregation.71 

Secondly, when an oscillator, such as C=O, is engaged in a hydrogen bond, either 

with a neighboring N-H of the protein backbone or solvent molecule, the redistribution of 

electron density weakens the frequency of the stretching vibration resulting in a red-shift 

on the order of ~20 cm-1.68 As a consequence, the hydrogen bonding pattern within a 

secondary structure (i.e., i � i+4 hydrogen bonds of an α-helix or intermolecular 

hydrogen bonds of β-sheets) also contributes to the overall amide I frequency and 

lineshape.64 In addition, solvent-mediated hydrogen bonding plays a critical role in 

determining the amide I frequency, as the absorption of solvated α-helices can be red-

shifted by ~20 cm-1.72 Band broadening due to conformational heterogeneity also occurs 

in parallel,73 thus alluding to the third defining parameter of the amide I mode. 

Specifically, inhomogeneous broadening in IR spectroscopy describes a process 

where absorption of a single vibrational mode yields a large frequency distribution due to 

a heterogeneous microenvironment.74 This is most useful in determining the degree of 

order within the protein sample. For example, a flexible and disordered polypeptide chain 

will produce a broad amide I band due to a non-uniform interaction with the solvent. On 

the other hand, highly-ordered β-sheets result in a narrow and sharp amide I lineshape 

resulting from a uniform structure and environment.66  The same principals can be 

applied more rigorously to monitor site-specific vibrational transitions of proteins arising 

from either particular sidechains, such as the C=O stretching of Glu, Asp, Asp, and Gln,75 

or from extrinsically modified non-natural amino acid probes, which will be discussed in 
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detail in a later section. In this context, changes in lineshape due to inhomogeneous 

broadening can distinguish whether a particular site (1) is sequestered in a hydrophobic 

versus a solvent-exposed environment, (2) contains a bound ligand, and/or (3) is engaged 

in a protein-protein interactions.66 

Finally, as mentioned earlier, generating an IR difference spectrum as a function 

of some perturbation is a convenient means to observe conformational changes in 

proteins. Most relevant to protein folding studies and the topics of this thesis, measuring 

the temperature dependence of the amide I transition provides a method to identify the 

frequencies regimes that reveal the largest changes in signal due to unfolding, which is 

relevant in determining probing frequencies for temperature dependent time-resolved IR 

studies of the amide I mode.  

 

3.4   Attenuated Total Reflectance Infrared Spectroscopy 

The investigation of protein conformation and orientation in a lipid environment has 

posed difficulties for structural biologists. A facile technique to study the structure of 

membrane bound and/or inserted peptides is polarized Attenuated Total Reflectance 

Fourier transform infrared (ATR-FTIR) spectroscopy. A schematic representation as well 

as a complete derivation of the theory has been outlined in extensive detail in several 

reviews.76-78 Briefly, an incident IR beam is cast through an internal reflection element 

(IRE) of high refractive index where reflections with the surface generate an evanescent 

wave at the sample-IRE interface. As the intensity of the evanescent wave drops off 

exponentially with distance, the light-sample interaction reaches a finite penetration 
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depth on the order of several hundred nanometers, allowing for surface sensitive 

detection.76 Deposition of a protein-membrane bilayer on an IRE provides a uniformly 

oriented sample with respect to the normal of the surface. Coupled with polarized IR 

light, the changes in absorption due to electric field orientation allow one to calculate the 

direction of a specific transition dipole moment.77 For example, a dipole moment oriented 

parallel to the incident polarized light will yield a maximum IR response. As a result, the 

orientational information is embedded within the dichroic ratio (R), which is the ratio 

between the integrated area of parallel (A||) versus perpendicular (A⊥) absorption bands: 

⊥

=
A

A
R

||
    (3.4.1). 

This can be used to calculate an experimental order parameter (SExp), where ɛx, ɛy, and ɛz 

are the electric field amplitudes of the evanescent wave, and can vary depending on 

whether a thick film or thin film approximation is employed.77  
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=       (3.4.2). 

More importantly, a well-developed formalism, which in actuality can be applied to any 

system that is axially symmetric, is utilized to calculate the orientation of a 

transmembrane α-helix (SHelix Angle) with respect to the membrane normal, using the 

dichroic ratio determined from the amide I absorption,79   

MembraneDipole

Exp

AngleHelix 
SS

S
S =          (3.4.3). 

Within this calculation, it is common for the order parameter of the lipid molecular axis 

(SMembrane) to be equal to 1.79 Furthermore, in the case of an α-helix in particular, the 
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orientation of a transition dipole moment (SDipole), namely the amide I mode is described 

by,  

2

3cos2

Dipole

1−= θ
S            (3.4.4) 

where θ is the angle between the dipole and the molecular axis of the helix. Without site-

specific isotopic labeling of a backbone unit,80 or other supporting structural data, the 

angle of an amide I vibration is impossible to obtain. Typically, a commonly accepted 

value for the amide I mode is θ = 39-40º.81 Note, Eq. 3.4.4 can also be implemented to 

calculate the angle of a transition dipole moment arising from an IR vibration of a site-

specific probe, such as a nitrile-derivatized non-natural amino acid.82 Finally, the helix 

tilt angle (β) with respect to the membrane axis, can be determined by the following 

equation:  

2

2cos3 2

AngleHelix 

−= β
S       (3.4.5). 

Taken together, ATR-FTIR allows the study of protein structures that require a 

membrane environment to fold, and provides an avenue to create a biological relevant, 

ordered lipid bilayer and quantitatively decipher orientational parameters. .  

 

3.5   Laser-Induced Temperature-Jump Infrared Spectroscopy 

The fundamental criterion for monitoring a chemical reaction via laser-induced 

temperature-jump (T-Jump) spectroscopy is that a temperature dependence must be 

detectable within the initial equilibrium population.12 Luckily, proteins certainly meet this 

requirement, as their free energy changes with temperature. Thus, a rapid temperature 
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perturbation can function as a convenient trigger to shift the equilibrium of the protein 

ensemble. The resulting relaxation kinetics to a new equilibrium position are governed by 

both folding and unfolding channels, and in particular, is true for a two-state folding 

scenario.13 

 The T-jump IR spectroscopy technique implemented in the studies of this thesis, 

contains a pump-probe design,62,83,84 where first, a rapid T-jump of the solution, taking 

place within picoseconds,  is generated by a high-power laser pulse (10 mJ) that excites 

the OD stretch overtone (absorbing at 1.9 μm) of the D2O solvent. To achieve the desired 

excitation wavelength, a gas pressurized Raman cell is used to produce a Stokes-shift 

from an Nd:YAG fundamental pulse (i.e., 1064 nm � 1900 nm). To probe the 

temperature-induced transient conformational changes of the proteins, we use a 

continuous-wave mid-IR laser tuned to the amide I region (1600-1700 cm-1). Here, the 

magnitude of the T-jump is dictated by the following factors: the absorption coefficient, 

solution density, heat capacity, and the density of energy generated by the 1.9 μm pulse 

along the propagation axis. Consequently, the weak extinction coefficient of the OD 

stretch overtone and a narrow pathlength (50 μm) of the sample cell allows us to maintain 

constant and even heating. Furthermore, the beam size used  for the T-jump pulse is ~1 

mm, and in order to achieve uniform detection of the protein ensemble at a given 

temperature, the probe pulse diameter is limited to a significantly smaller diameter.12 

Also, the rate of thermal diffusion of the heated volume, ranging from 0.2 – 100 ms,  

determines the detection time window;12 as a result, the observable kinetics should occur  

faster than this limit. Furthermore, D2O solvent alone has minor temperature dependence 
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in the amide I region. To evaluate the final temperature of the excited area, the optical 

density detected from the D2O buffer and known initial temperature are referenced 

against a temperature-dependent calibration curve of D2O measured at the same 

frequency and pathlength. Typically, the T-jumps are on the order of 5-10 ºC. 

Subsequently, the buffer signal is subtracted from the sample signal to obtain the final 

relaxation trace at a particular temperature. Overall, one of the main advantages of T-

jump IR spectroscopy is that it easily yields protein folding relaxation kinetics using a 

reversible trigger and intrinsic vibrational chromophores.13 More recently however, 

monitoring the change in the kinetic response after invoking destabilizing point 

mutations,85 or other conformational modifications like cross-linking,86 within the studied 

protein, has allowed scientists to elucidate fundamental mechanistic events in a more site-

specific manner.   

 

3.6   Molecular Constraints to Direct Folding  
 
The majority of naturally occurring proteins lack a structural element or motif that can be 

used as a molecular constraint to direct a self-assembly process of interest towards a 

specific direction, making it difficult to precisely control the outcome. Thus, a great deal 

of effort has been made in recent years to develop new strategies to extrinsically modify 

protein structures, aiming to manipulate and/or control protein/peptide self-assemblies.   

In particular, the strategy of using a chemical cross-linker to confine the molecule of 

interest to a specific conformation has gained popularity. This method is not only useful 

in controlling the structural framework of proteins, but also in helping understand the 

molecular mechanism of the self-assembly process. 
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 Various sidechain-to-sidechain cross-linking strategies have been put forth to 

reduce the conformational entropy of the unfolded state, thus forcing short peptides to 

fold into α-helices or β-sheets. Such examples include disulfide bond formation,87,88 ring-

closing metathesis,89,90 lactam bridge formation,91,92 hydrocarbon bridges,93,94 and 

hydrazone95 and oxime linkages.96 In particular, due to the ease of incorporation and 

natural abundance of cysteines in biological systems, cysteine alkylation97 has become a 

popular method for incorporating cross-linkers that stabilize α-helical conformations.98,99 

Besides these sidechain-to-sidechain covalent constraints, attempts have also been made 

to cross-link two backbone atoms together.100,101  

The strategy of chemical cross-linking is not only useful for increasing the 

stability of folded conformations, but also is an effective tool to study the mechanisms of 

protein folding and, in particular, the structure of the folding transition state ensemble.102-

106 For example, Sosnick and coworkers have exploited the metal binding property of 

histidine and have used divalent metal ions (e.g., Zn2+ and Co2+) to create an 

unconventional linker in protein systems of interest via engineered bihistidine sites.107 

They showed that it is possible to use this cross-linking approach, in combination with 

thermodynamic and kinetic measurements, to determine whether a specific native 

structural element is formed in the transition state ensemble. Similarly, covalent cross-

linkers, such as dichloroacetone structures and disulfide bridges, have also been utilized 

to elucidate the nature of the folding transition state ensemble.102,103,105,106  
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Original Publication 

This section has been adapted from Science China Chemistry, Beatrice N. Markiewicz, Robert M. 

Culik, and Feng Gai, (2014) 57, 1615-1624. DOI: 10.1007/s11426-014-5225-5, with permission 

from Springer. 

 

3.7   Phototriggers to Initiate Protein Conformational Changes 

Due to the ease and convenience of manipulating light, phototriggering is becoming a 

widely used method to initiate protein conformational changes. In comparison to other 

initiation methods, phototriggering offers several advantages, since light-triggered 

reactions, such as isomerization and cleavage, (1) can take place on ultrafast timescales, 

(2) can lead to significant changes in backbone geometry, and (3) can provide precise 

conformational control between equilibrium and non-equilibrium states. However, an 

effective trigger must meet several criteria: (1) it should be selectively initiated by light 

that has a wavelength higher than 310 nm, as lower-wavelength light could excite protein 

backbone and sidechain electronic transitions; (2) it should occur on a timescale that is 

faster than that of the kinetic event of interest; (3) it should have a sufficiently high 

quantum yield; (4) it should produce relatively inert byproducts; and (5) it should be 

easily incorporated into the protein system of interest. 

Examples of irreversible phototriggers include tetrazines,108 hydrazines, and 

dimethoxybenzoins linkers.109 Additionally, photolabile molecules (i.e., photocages) 

constitute another type of irreversible phototrigger,110-112 and have also been used to 

trigger protein conformational events.113 The main idea is to use light to remove a moiety 

that disrupts native structure formation from the protein of interest, thus initiating folding. 

The advantage of using photocages, in comparison to photoresponsive cross-linkers, is 
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that they can be localized to a single amino acid sidechain, thus offering greater site-

specificity. Examples of photocages that have been used to study protein folding include 

4,5-dimethoxy-2-nitrobenzene114 and 4-(bromomethyl)-6,7-dimethoxycoumarin.115  

Reversible phototriggers, such as azobenzene and its derivatives116-121 have 

become the most popular choice. Similar to stilbene,122-124 azobenzene undergoes 

ultrafast isomerization at the excited electronic state,125,126 which can effectively change 

the distance between the two ends of the azobenzene linker and modulate protein 

structure. In protein conformational studies, di-iodoacetamide azobenzene, which can be 

inserted into proteins via cysteine alkylation,127,128 is a widely used reversible 

phototrigger.  

Because of their apparent importance, a wide variety of studies have been 

conducted to understand the mechanisms of amyloid and fibril formation and a recently 

pursued direction is to use light and phototriggers to manipulate and control the self-

assembly process. For example, azobenzene has been introduced into various 

aggregation-prone systems to serve as a photoswitch between different aggregation or 

molecular states. One example demonstrated reversible switching between aggregated 

and non-aggregated states of azobenzene-linked amyloid peptides.129 In another 

application, an azobenzene-containing Aβ(1-42) peptide was used to investigate whether 

turn nucleation is the rate-limiting step in fibril self-assembly.130 Similar to applications 

in protein folding studies, light-induced decaging also finds novel use in studying the 

assembly of amyloid structures. For instance, a coumarin-derived photocage was applied 
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to trigger an intramolecular acyl migration, thus initiating aggregation of Aβ(1-42) upon 

illumination.131  

In addition, others have applied such photoswitching strategies to control the 

integrity of peptide hydrogels since their molecular packing and architectures are similar 

to those of amyloid fibrils.132 Since light is an external stimulus that offers precise spatial 

and temporal control, biologically compatible light-responsive hydrogels are expected to 

find great use in applications where such controls are required. In one application, a 

photoswitch, either an azobenzene133-135 or a spiropyran,136 which links hydrogel-forming 

dipeptides together, was used to control π-π stacking between sidechains and thus the 

morphology of the hydrogel with light. In another application, photodegradable hydrogels 

were designed by linking a biaryl-substituted tetrazole to a small peptide, which 

undergoes a rapid intramolecular photoclick reaction that leads to disruption of the 

hydrogel matrix. Moreover, Schneider and coworkers137 have shown that the light-

activated release of a nitrobenzyl-cage from a cysteine residue can trigger the self-

assembly of the MAX1 amphiphilic β-hairpin peptide, which spontaneously self-

assembles into hydrogels in its folded conformation. 
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3.8   Site-Specific Infrared Reporters of Proteins 
 
Achieving a highly dynamic and spatially resolved picture of biological processes (i.e., 

protein folding, ligand binding, sidechain structural transitions) in real time has proved to 

be a tremendously difficult task for scientists. While we have been able to achieve 

invaluable atomic resolution structures of proteins via X-ray and solid-state NMR 

techniques,138,139 these measurements are relatively stationary snapshots and cannot be 

easily applied to membrane bound proteins. To sufficiently capture fast protein motions, 

a high temporal resolution is required. Time-resolved infrared (IR) spectroscopic 

techniques have proven to be extremely advantageous in this regard, due to the fast 

timescale of molecular vibrations (femtosecond to picoseconds).140 However, in a protein 

and/or even a small peptide, the sum of all intrinsic vibrations, emerging from the amide 

backbone and sidechains, can generate overlapping signals that are spatially unresolved.66 

As a result, over the last two decades a library of site-specific IR probes of proteins have 

evolved to enhance structural resolution within IR measurements, and have been 

comprehensively reviewed elsewhere.80,141-143  

Briefly, a suitable IR marker for protein studies must contain the following 

prerequisites: (1) it can be easily integrated into biologically relevant sites of a protein, 

(2) the frequency of the IR vibrational mode is in a spectrally transparent region, (3) it is 

responsive to changes in local environment (e.g., local electric field, hydration, polarity), 

(4) it has a large cross-section and extinction coefficient, and most importantly, (5) the 

extrinsic modification must be non-perturbing to the protein structure and function. Two 

common approaches are to extrinsically modify the protein at the backbone or sidechain 
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level.142 In one case, increasing the reduced mass of an IR mode results in a vibrational 

frequency red-shift, resulting in an isolated and structurally-specific IR band. An 

effective and well-known example in the literature utilizes isotope-edited atoms in the 

protein backbone (i.e., 12C=16O modified to 13C=18O),80,144 as well as deuterium-modified 

sidechains (i.e., C-H modified to C-D)145 to accomplish this task. Additionally, non-

natural amino acid spectroscopic IR probes, which contain an IR active extrinsic 

functional group on the sidechain, have also been used extensively in studies of protein 

structure and dynamics.141 Because these chemically customized sidechains are more 

biosynthetically compatible (both in vitro and in vivo),146-148 they can be more widely 

applicable in biophysical investigations. Examples include azide-,149 ester carbonyl-,150 

metal carbonyl-,151 and cyano-modified152 sidechains. In particular, nitrile-derivatized 

amino acid IR probes have proven to be extremely useful to address biological 

questions,142 and a variety of analogs have been developed thus far, such as p-

cyanophenylalanine,153 thiocyanate,154 and 5-cyanotryptophan.155 

The nitrile (C≡N) functional group offers several advantages as a site-specific IR 

marker. First, its vibrational stretching frequency is in a spectrally unconjested region 

(2100 – 2400 cm-1), it has a high extinction coefficient when bonded to an aromatic 

sidechain (~250 cm-1), and most of all, its frequency and lineshape have shown a 

dependence on local electric field156 as well as hydration status.155 For example, 

thiocyanate in conjunction with vibrational Stark spectroscopy has been used to assess 

the local electrostatics of enzyme active sites157 and protein-protein interactions.158 

Finally, nitrile-containing aromatic sidechains also possess characteristic fluorescence 
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properties,58,155,159 rendering them as dual site-specific IR and fluorescence probes. This 

point will be expanded on in the context of 5-cyanotryptophan later in this thesis.  
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4   How Quickly Can a β-Hairpin Fold from Its Transition State? 
 
Reprinted with permission from Journal of Physical Chemistry B,  Beatrice N. Markiewicz, 
Lijiang Yang, Robert M. Culik, Yi Qin Gao, and Feng Gai, (2014) 118, 3317-3325. DOI: 
10.1021/jp500774q, http://pubs.acs.org/doi/abs/10.1021/jp500774q,160 Copyright (2014) 
American Chemical Society. 
 

4.1   Introduction 

Protein folding occurs spontaneously, as the process lowers the free energy of the system 

upon formation of the folded state. During folding, however, the entropic loss can 

transiently outweigh the enthalpic gain, thus resulting in one or more free energy 

bottlenecks or transition states along a given folding pathway.2,19,32 Because, for a given 

protein, identifying the structure of the folding transition state(s) is key to elucidating its 

folding mechanism, these high energy states have been the subject of many previous 

studies.161 Due to the transient nature of these states, however, it is extremely difficult, if 

not impossible, to directly observe and study them experimentally. As such, only indirect 

methods9,162-164 have been used to yield structural information about folding transition 

states. For example, one such method, Φ-value analysis, uses site-specific sidechain 

mutations in conjunction with stability and kinetics measurements to infer if a certain 

sidechain becomes native-like at the transition state.10,11,165 While these methods have 

proven invaluable in the study and understanding of how proteins fold, they cannot be 

used to isolate the folding transition state of interest for further structural and dynamic 

investigations. Thus, it would be very useful to devise a method that can convert a 

folding transition state to a thermodynamically stable and accessible state. Herein, we 

propose, based on the transition state analog (TSA) methodology commonly used in 
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mechanistic studies of enzymatic reactions,166,167 that it is possible, at least for small 

protein systems, to use cross-linking strategies to accomplish this goal.  

In enzymatic studies, the TSA represents a stable, nonreactive enzyme-substrate 

complex that mimics the transition state of the reaction of interest.168,169 Since the TSA is 

thermodynamically accessible and also captures the key binding interactions of the 

transition state complex,170 it thus allows for a detailed structural characterization of the 

transition state, which is otherwise difficult to achieve.171 For protein folding, another 

advantage of being able to engineer TSAs is that, besides what is mentioned above, it 

would enable us to measure folding dynamics that are otherwise inaccessible, i.e., the 

conformational dynamics at the downhill side of the folding free energy barrier. For small 

and two-state folding proteins, the folding transition state often consists of a relatively 

small number of key sidechain-sidechain and backbone-backbone hydrogen bond 

interactions. Thus, a viable strategy that could be used to create a folding TSA is to cross-

link some of these key interactions via covalent bonds. To test the feasibility of this idea, 

herein we apply it to one of the simplest folding systems, the β-hairpin. 

Since the folded structure of β-hairpins consists of a series of backbone-backbone 

hydrogen bonds, some of which are formed in the transition state,85,172-178 an ideal 

approach to create a folding TSA would be to covalently cross-link one or multiple of 

these hydrogen bonds. Converting a backbone-backbone hydrogen bond to a chemical 

bond without introducing significant structural perturbations, however, is challenging. 

Thus, instead we seek to use a sidechain disulfide cross-linker to help, albeit in an 

indirect manner, restrain a particular native backbone-backbone hydrogen bond that is 
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predicted to form in the transition state. A disulfide bond may introduce strain to these 

hydrogen bonded sites, however, experiments on a small model system have shown that 

the favorable enthalpic contribution of the cross-linker could compensate for this 

potential geometric distortion.179 While the strategy of cross-linking has been widely used 

to increase protein stability,99,104,179-182 trigger protein unfolding,108,183 and to interrogate, 

in the context of Φ-value analysis,102,103,105,106,184 folding mechanisms, to the best of our 

knowledge it has not been used to create a thermodynamically stable conformation that 

structurally resembles the folding transition state. As many studies have shown, the major 

folding pathway of Trpzip β-hairpins185-197 involves a transition state wherein the turn 

structure is at least partially formed. Thus, we propose, using Trpzip4 as a testbed, to 

create a β-hairpin folding TSA by forcing the formation of a backbone-backbone 

hydrogen bond critical to the stability of the β-turn between Asp6 and Thr11 (Table 4.1). 

As indicated (Figure 4.1), such a conformational constraint, if effective, is expected to 

divide the unfolded state ensemble into two structurally distinguishable subpopulations: 

one with a native or native-like turn (UA), whereas the other is completely unstructured 

(UB). If UA behaves like a folding TSA, we expect that its folding rate will be 

significantly increased with respect to the wild-type. On the other hand, the folding 

kinetics of UB are expected to be similar to those of the wild-type because both pathways 

(i.e., UB→F and UB→UA→F) involve the formation of the turn, the rate limiting step in 

Trpzip4 folding.190 Indeed, consistent with this picture, our results show that the 

conformational relaxation kinetics of this cross-linked Trpzip4 variant, induced by a rapid 

temperature-jump (T-jump) and measured via time-resolved infrared (IR) 
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spectroscopy,198 are biphasic, with one phase having a relaxation rate that is almost 

identical to that of the wild-type and another relaxing an order of magnitude faster. 

Further evidence supporting our hypothesis (Figure 4.1) is that T-jump measurements on 

another cross-linked Trpzip variant, whose two ends are connected via a disulfide (Table 

4.1), only show single-exponential relaxation kinetics, as are observed for the wild-type, 

but with a slower relaxation rate, due mainly to a decrease in the unfolding rate.  

 

4.2   Experimental Section 
 
All peptides were synthesized using standard 9-fluorenylmethoxy-carbonyl (FMOC) 

methods on a PS3 peptide synthesizer (Protein Technologies, Woburn, MA) and purified 

by reverse-phase high-performance liquid chromatography (HPLC). Amino acids were 

purchased from Advanced ChemTech (Louisville, KY). MALDI-TOF mass spectrometry 

was used to characterize the identity of the synthesized peptides. Disulfide formation was 

accomplished, using a published protocol,199 via dimethyl sulfoxide (DMSO). 

Specifically, an appropriate amount of pure peptide solid was dissolved in a 20% DMSO 

solution in H2O, and the resulting mixture was stirred for 4 hours at room temperature, 

allowing the oxidation reaction to complete. Subsequently, a second round of HPLC was 

carried out to purify the disulfide cross-linked peptide, and the identity was further 

verified by MALDI-TOF mass spectrometry. All peptide samples were prepared by 

directly dissolving the lyophilized peptide solid in D2O and the final pH of the peptide 

samples was approximately 3. For the uncross-linked peptide samples, a reducing agent, 

tris(2-carboxyethyl)-phosphine hydrochloride (TCEP), was also added at a concentration 

of approximately 10 times that of the peptide, to ensure that disulfide bonds were 



38 
 

completely removed. The peptide concentration was determined optically using the 

absorbance at 280 nm and ε280 = 22,125 cm-1 M-1 and, for all peptide samples, residual 

trifluoroacetic acid (TFA) from peptide cleavage has been removed via DCl exchange.  

 
Static and Time-Resolved Spectroscopic Measurements  

The instruments and conditions used to collect the spectroscopic data, including static 

circular dichroism (CD) and infrared (IR) and time-resolved IR measurements, are 

identical to those used previously.200 For the IR measurements, the peptide concentration 

was approximately 2 mM, prepared in D2O (pH 3). The probing frequency in the T-jump 

experiment was 1626 cm-1, and the T-jump amplitude was in the range of 8-12 °C. 

 
Molecular Dynamics Simulations Using Integrated Tempering Enhanced Sampling 

Molecular dynamics (MD) simulations were performed for wild-type and cross-linked 

Trpzip4 using the AMBER 11 package. The peptides were modeled with the AMBER 

FF96201 all-atom force field and the solvent was modeled with the GBOBC/SA implicit 

solvent model.202 The salt concentration is set to 0.2 M, and the default surface tension is 

5 × 10-3 kcal/mol/Å2. The SHAKE203 algorithm with a relative geometric tolerance of 10-

5 is used to constrain all chemical bonds. Nonbonded cutoffs were not used in the 

simulations. For both wild-type and cross-linked Trpzip4, ten independent trajectories 

were carried out for 200 nanoseconds (2 μs in total). In each trajectory, the fully extended 

structure of the polypeptide was first subjected to 2500 steps of minimization, and then 

the temperature of the system was established by velocity rearrangement from a 

Maxwell-Boltzmann distribution at 300 K. Afterwards, the system was maintained at 300 



39 
 

K using the weak-coupling algorithm with a coupling constant of 0.5 ps-1. The integrated 

tempering enhanced sampling (ITS)204-206 method was used in the production run of each 

trajectory. In the present study, 100 temperatures, evenly distributed in the range of 270-

470 K, were used in the ITS method to ensure the efficient sampling of the desired 

energy.  

 

4.3   Results and Discussion 
 
We chose the Trpzip4 β-hairpin (Table 4.1) as our model system because of its small size 

and the large body of information on its folding mechanism.16,188,190,207-211 The major 

folding pathway, as suggested by previous studies,188,190 begins with turn formation, 

which is a thermodynamically unfavorable event and hence results in a folding free 

energy barrier, followed by the sequential creation of backbone-backbone hydrogen 

bonds further away from the turn in a 'zipping out' manner. Thus, based on this picture 

and also the NMR structure212 which indicates that the first interstrand hydrogen bond is 

formed between the amides of Asp6 and Thr11, we propose to use a disulfide to reduce 

the number of possible configurations available near these residues with the expectation 

that this restriction is sufficient to produce an unfolded species that has a native-like turn 

and, therefore, behaves like a folding TSA. To accomplish this, we first mutated Asp6 

and Thr11 to cysteine, and then the resulting mutant was placed under oxidizing 

conditions to promote disulfide bond formation. In addition, we have studied another 

cross-linked variant of Trpzip4 with a disulfide formed at the peptide ends that serves as 

a control. For convenience, the sequences and abbreviations of all the peptides studied 

are summarized in Table 4.1. 
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Effect of Cross-Linking on the Thermal Stability of Trpzip4 

As shown (Figure 4.2), the far-UV CD spectra of both cross-linked and uncross-linked 

peptides are in line with that of the wild-type,190 exhibiting a positive band at 228 nm.51 

Since this CD feature signifies the π-π* exciton-coupling of the paired Trp residues in the 

folded state,50,213,214 these results suggest that the mutations and disulfide constraints used 

in this study do not significantly perturb the native fold of Trpzip4. In addition, the 

chemical shifts obtained from the 1D 1H-NMR spectrum of TZ4-T-CL agree with 

previously published data,212 and are well dispersed, which indicates a well folded 

secondary structure (Figure 4.3). As expected, CD thermal unfolding measurements 

indicate, for a given sequence, that cross-linking increases the thermal stability of the β-

hairpin, in comparison to that of the uncross-linked peptide (Figure 4.4 and Table 4.2). 

Nevertheless, what is more interesting is that the Tm (~67 °C) of TZ4-T-CL is almost 

identical to that (~70 °C) of the wild-type,188 indicating that the added disulfide constraint 

at this site does not significantly perturb β-hairpin stability, presumably because the 

enthalpic stabilization gained from the cross-linking is mostly offset by the 

conformational entropic loss in the unfolded state.215 On the other hand, as observed in 

similar studies,181,216 cross-linking the two ends of the Trpzip4 peptide results in a 

hyperstable β-hairpin with a Tm > 100 °C. This result is not surprising considering that 

the unfolding process, which, according to the zipping out folding mechanism, should 

'unzip' the backbone-backbone hydrogen bonds of the hairpin starting from the strands' 

termini.   
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Effect of Mutation and Cross-Linking on the Relaxation Kinetics of Trpzip4 

The conformational relaxation kinetics of these Trpzip4 variants were measured by a 

laser-induced T-jump IR technique, as was used in the study of the Trpzip4 wild-type 

peptide. As shown (Figure 4.5), unlike what was observed for the wild-type, the 

conformational relaxation of TZ4-T-CL, probed at 1626 cm-1, proceeds with two distinct 

and well-separated kinetic phases, indicating that the disulfide cross-linking indeed, as 

proposed, changes the folding mechanism of Trpzip4, as the wild-type, in response to a 

T-jump, only shows single-exponential decays. Interestingly, as shown (Figure 4.6), the 

relaxation rate of the slow phase (τ2) is almost identical to that of the wild-type in the 

temperature range between 40-45 °C,188 whereas the relaxation rate of the fast phase (τ1) 

is an order of magnitude faster. To confirm that the difference in the relaxation kinetics of 

TZ4-T-CL and the wild-type originates from the disulfide cross-linker, we also measured 

the relaxation kinetics of the uncross-linked variant of this peptide (TZ4-T-UL). As 

shown (Figure 4.7), the T-jump induced relaxation kinetics of TZ4-T-UL can be well 

described by a single-exponential function with a rate constant that is slower than that of 

the wild-type. Further analysis of the relaxation rates, based on a two-state model,46 

indicates that this slowing down predominantly arises from a decrease in the folding rate 

(Figure 4.7). For example, at 40 oC the folding and unfolding rate constants of TZ4-T-UL 

are determined to be (13.3 µs)-1 and (66.0 µs)-1, respectively, compared to (6.6 µs)-1 and 

(48.4 µs)-1 of the wild-type. This result is in agreement with the notion that the turn is at 

least partially, if not completely, formed in the transition state as these cysteine 

mutations, as shown above (Figure 4.4), destabilize the native fold. Additionally, the 
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relaxation rate of the slow phase in TZ4-T-CL is at least 2 times faster than that of TZ4-

T-UL, thus ruling out the possibility that the double-exponential kinetics observed in 

TZ4-T-CL could be due to a mixture of oxidized and reduced disulfides. 

 To further confirm that the double-exponential relaxation behavior observed is 

unique to TZ4-T-CL, we have also studied a second disulfide Trpzip4 variant, TZ4-E-

CL, where the cross-linker is introduced at the termini of the β-hairpin and, hence, is not 

directly involved with interstrand hydrogen bonding or key sidechain interactions. As 

shown (Figure 4.8), similar to those observed for the wild-type and TZ4-T-UL, the T-

jump induced conformational relaxation kinetics, measured only at high temperatures 

because of the peptide’s high stability (Table 4.2), are single-exponential. Thus, these 

results provide further evidence supporting the notion that the disulfide cross-linker in 

TZ4-T-CL is unique in that it alters the folding mechanism of Trpzip4.  

 
Evidence Suggesting the Population of a Folding TSA in the Unfolded State 

The fact that the conformational relaxation of TZ4-T-CL occurs in a distinctively 

different manner than that of Trpzip4 wild-type suggests that the cross-linker acts to 

introduce either an additional folding pathway by forming two distinct unfolded 

conformational states, as indicated in Figure 4.1, or an on-pathway folding intermediate 

(i.e., I in a sequential folding mechanism U→I→F). Distinguishing between these two 

possibilities is not easy, as both could give rise to double-exponential relaxation kinetics 

with two drastically different rate constants. However, MD simulations provide evidence 

indicating the presence of two unfolded populations. As a result, we propose that the 

folding mechanism follows the cartoon shown in Figure 4.1, where there are two 
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pathways to the folded state, one with a barrier (i.e., from UB) similar to the wild-type 

and one (i.e., from UA) with a much smaller barrier or no barrier at all. 

The above results support the notion that the disulfide cross-linker in TZ4-T-CL 

modifies the mechanism of Trpzip4 folding by creating a partially folded, 

thermodynamically accessible state, UA, which folds on an ultrafast timescale (~500 ns at 

40 oC). In addition, a simple calculation, using the relaxation rate constants of UA and UB, 

suggests that the difference in their folding free energy barrier heights (i.e., ΔΔG‡) is 

about 2.4 kBT. Considering that UB has roughly the same relaxation rates as the wild-type 

and that small proteins typically have a free energy barrier in the range of 2−4 

kBT,18,19,217-219 these results suggest that the folding of UA (Figure 4.1) proceeds without 

encountering any significant free energy barriers. In other words, we believe that UA 

behaves like a TSA and its folding rate, approximately (500 ns)-1, reports on the 

dynamics of a fundamental event in β-hairpin folding, namely, the process taking the 

system from the transition state to the folded state.  

To provide further evidence supporting the proposed folding mechanism, we 

carried out free energy calculations on TZ4-T-CL. Specifically, we generated the folding 

free energy landscape of TZ4-T-CL using MD simulations at 313 K as a function of turn 

residues, which include Asp7-Lys10, and the residues outside the turn region that are also 

involved in interstrand hydrogen bonding (referred to as β-strand residues). As shown 

(Figure 4.9), the simulations clearly indicate that two major unfolded populations are 

present, with one having a folded turn structure (Figure 4.10) and likely corresponding to 

the proposed UA state. In addition, there is no apparent barrier between this unfolded state 
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and the folded state, indicative of a downhill folding pathway. The second unfolded 

population observed in the simulations corresponds to a fully unfolded structure (Figure 

4.10) with none of the turn and β-strand residues being native-like and, thus, is consistent 

with the proposed UB state. Unlike the partially unfolded state, folding from this fully 

unfolded state involves a free energy barrier of ~3.0 kBT, which agrees well with the 

value of ~2.4 kBT calculated from experiments. Similarly, simulations indicate that 

converting the fully unfolded state to the partially unfolded state also involves a free 

barrier that amounts to ~3.0 kBT. For comparison, we also computed the folding free 

energy landscape of Trpzip4 wild-type. As shown (Figure 4.11), the folding free energy 

barrier is ~5.0 kBT, which is in close range to the barrier height observed for UB in TZ4-

T-CL. However, if folding were assumed to begin from an unfolded state similar to UA, 

the free energy barrier is significantly higher, showing that the disulfide cross-linker can 

indeed play a key role in modulating the folding free energy landscape.  

In addition, a recent study by Dyer and coworkers220 showed that a designed mini-

β-hairpin, CLN025, a variant of Chignolin, with a preformed turn in the unfolded state, 

has a folding rate of (~100 ns)-1 at 40 °C. They attribute this ultrafast rate to an early 

hydrophobic collapsed structure that results in a free energy landscape with a minimal 

folding barrier. As a consequence, the folding rate is limited only by local rearrangements 

required to accommodate native hydrogen bond formation. Since Hamm and coworkers 

have shown that the rate of hydrogen bond formation occurs on a picosecond 

timescale,221 then the difference in the folding rates of CLN025 and TZ4-T-CL (from UA) 

most likely reflects the difference in the times required to bring the two chains to their 
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native geometries in these two cases. In other words, the rate of β-hairpin structural 

evolution, from the transition state, should be limited by the chain diffusion rate or the 

rate of loop closure and, as a result, the longer folding time of TZ4-T-CL (from UA) is 

due to its longer chain length. To provide further support of this notion, we analyzed how 

the folding rate depends on chain length, using the number of native hydrogen bonds as a 

proxy. Assuming that the turn is preformed for both CLN025 and TZ4-T-CL (from state 

UA), folding then involves propagation of two or four hydrogen bonds, respectively. As 

shown (Figure 4.12), the folding time shows a power law dependence on the number of 

native hydrogen bonds to be propagated and, perhaps more interestingly, the value of the 

exponent (2.3) is almost identical to that (2.4) determined by Makarov and coworkers222 

for end-to-end loop closure time with respect to length for unstructured polymer chains. 

Not only does this finding provide further evidence indicating that the folding of TZ4-T-

CL, when it starts from state UA, encounters a small, if any, free energy barrier, but it also 

suggests that the time it takes to form native contacts in a peptide chain in a downhill 

folding scenario can be estimated by the rate of loop closure. Finally, another line of 

evidence supporting the aforementioned power law relationship is that the rate of adding 

an extra β-strand onto a folded three-stranded β-sheet protein, which involves formation 

of four interstrand hydrogen bonds in a barrierless manner, was also found to be 

approximately (500 ns)-1 at 40 oC.223 
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4.4   Conclusions 
 
The transition state is the hallmark of protein folding dynamics. However, due to its 

transient nature, taking a snapshot of the folding transition state with sufficient structural 

resolution is inaccessible by current experimental techniques. Thus, it would be helpful to 

devise a method that could create stable structural analogues of the transition state. Here, 

we propose that it is possible to utilize a sidechain cross-linker to restrict a particular 

backbone-backbone hydrogen bond site, thus allowing for the creation of a 

thermodynamically stable state analogous to the transition state. In a proof-of-principle 

study, we apply this idea to a small β-hairpin model, Trpzip4, the transition state of 

which has been shown to involve turn formation. By strategically introducing a disulfide 

constraint in the turn region that, we believe, would facilitate native turn formation even 

in the unfolded state, we find that the conformational relaxation kinetics of the disulfide-

bond-containing Trpzip4 has two phases, indeed indicative of the presence of an 

additional state. Further evidence supporting the notion that this cross-linked Trpzip4 has 

an unfolded state that mimics the folding transition state of the wild-type is that the 

folding rate of this state, about (500 ns)-1 at 40 oC, is approximately an order of 

magnitude faster than the wild-type. In addition, a simple analysis of the folding rate 

obtained from these results reveals that cross-linking the turn induces a free energy 

barrier decrease of ~2.4 kBT. Furthermore, MD simulations performed on the cross-linked 

Trpzip4 variant also corroborate the notion that two distinct unfolded populations are 

present, one with a preformed turn that folds via a barrierless pathway, and a second fully 

unfolded state that encounters a folding free energy barrier similar to that of the wild-
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type. More interestingly, we find that the time required to propagate a number of native 

hydrogen bond contacts after the major folding barrier follows a similar length 

dependence as observed in loop closure kinetics.   
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Peptide            Sequence 

Trpzip4 GEWTWDDATKTWTWTE 

TZ4-T-CL GEWTWCDATKCWTWTE 

TZ4-T-UL GEWTWCDATKCWTWTE 

TZ4-E-CL CEWTWDDATKTWTWTC 

TZ4-E-UL CEWTWDDATKTWTWTC 

 

Table 4.1   Name and sequence of the β-hairpin peptides used in the current study. 

Underlines indicate disulfide cross-linking. 
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Peptide 
Tm 

(oC) 

∆Hm 

(kcal mol-1) 

∆Sm 

(cal K-1 mol-1) 

∆Cp 

(cal K-1 mol-1) 

Trpzip4 70.4  20.2  58.8  374  

TZ4-T-CL 67.2 ± 5.2 16.7 ± 1.3 49.1 ± 3.8 337 ± 26 

TZ4-T-UC 62.0 ± 3.0 20.2 ± 1.0 60.4 ± 2.9 451 ± 22 

TZ4-E-CL >100 - - - 

TZ4-E-UL 57.6 ± 2.1 16.5 ± 0.6 50.0 ± 1.8 303 ± 11 

 

Table 4.2   Thermodynamic unfolding parameters of β-hairpin peptides obtained from 

CD measurements. Trpzip4 parameters were taken from previously reported data.188 
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Figure 4.1   Cartoon representation of the proposed folding mechanism wherein two 

distinguishable unfolded states, UA and UB, are populated, due to the disulfide cross-

linker in the turn region.   

 
  

 

k1

k2

k3

S

S

S

S

k-1

k-2

k-3

Fast

Slow

UA

UB

F



51 
 

 

Figure 4.2   CD spectra of the cross-linked and uncross-linked Trpzip4 variants, as 

indicated. 
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Figure 4.3   1H-NMR spectrum of TZ4-T-CL in the amide proton region, collected at 

room temperature on a Bruker AVIII (cryo500) (Bruker, Billerica, MA) NMR 

spectrometer. The NMR sample was prepared by dissolving lyophilized peptide in 

H2O/D2O (90%/10%) to a final concentration of 1 mM (pH ~3).  
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Figure 4.4   Normalized CD thermal unfolding curves of the cross-linked and uncross-

linked Trpzip4 variants, as indicated. The solid lines are global fits of these data to a two-

state model (Chapter 3 Eq. 3.1.1 – 3.1.5) and the resultant thermodynamics parameters 

are listed in Table 4.2. 
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Figure 4.5   Relaxation kinetics of TZ4-T-CL in response to a T-jump from 28.9 to 39.7 

°C. The smooth line represents the best fit of this curve to the following double 

exponential function: ΔOD(t)=A+B1·exp(-t/τ1)+B2·exp(-t/τ2), with B1 = 1.75×10-4, τ1 = 

0.50 ± 0.05 μs and B2 = 1.56×10-4, τ2 = 4.7 ± 0.6 μs.  
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Figure 4.6   Temperature dependence of the fast and slow relaxation rate constants of 

TZ4-T-CL, as indicated. The green circles represent the relaxation rate constants of the 

wild-type Trpzip4 near 40 oC, which are reproduced from ref.188. 
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Figure 4.7   Temperature dependence of the relaxation (green), folding (red) and 

unfolding (blue) rate constants of TZ4-T-UL. The black smooth line represents the 

relaxation rate constant of the wild-type Trpzip4, reproduced from ref.188. Shown in the 

inset is a representative relaxation curve (green) of TZ4-T-UL in response to a T-jump 

from 33.2 to 41.2 °C, and the smooth line represents the best fit of this curve to a single-

exponential function with a relaxation time constant of 13.6 ± 1.4 μs.  
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Figure 4.8   Relaxation kinetics of TZ4-E-CL in response to a T-jump from 69.7 to 82.0 

°C. The smooth line represents the best fit of this curve to a single-exponential function 

with a time constant of 1.3 ± 0.5 μs.  
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Figure 4.9   Simulated free energy landscape of TZ4-T-CL presented as function of β-

strand residues versus the number of turn residues at 313K. The interval between the 

contour lines is 1 kBT. 
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(A)  (B)  

 

Figure 4.10   (A) A representative structure of the UA-like unfolded state and (B) the UB-

like unfolded state obtained from MD simulations.  

  



60 
 

 

Figure 4.11   Simulated free energy landscape of Trpzip4 wild-type presented as a 

function β-strand residues versus the number of turn residues at 313K. The interval 

between the contour lines is 1 kBT. 
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Figure 4.12   Dependence of the folding time (τ) on the number of native hydrogen 

bonds ( Hn ). The smooth line represents the best fit of these points to the following 

equation: αττ H0n= , with τ0 = 20 ns and α = 2.3.  
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5   Assessment of Local Friction in Protein Folding Dynamics Using a 
Helix Cross-Linker 

 
Reprinted with permission from Journal of Physical Chemistry B, Beatrice N. Markiewicz,‡ 
Hyunil Jo, ‡ Robert M. Culik, William F. DeGrado, and Feng Gai, (2013) 117, 14688-14696. 
DOI: 10.1021/jp409334h.46 Copyright (2013) American Chemical Society. (‡ Denotes equal 
authorship) 
 

5.1   Introduction 
 
Since the native state of proteins is stabilized by many weak forces and consists of well-

packed and ordered structural elements, the process of folding is expected to contain a 

certain degree of energetic and/or steric/topological frustrations.5,24,32,224-228 For energy 

landscapes that give rise to a single free-energy bottleneck (i.e., two-state folding), such 

frustrations, which could arise from various local motions and interactions, typically 

manifest themselves as an internal frictional force or drag acting on the conformational 

motion along the folding coordinate.229-231 Theory and simulations have provided us with 

useful insights regarding how internal friction affects protein conformational 

dynamics.232-243 While the frictional force exerted by the solvent can be experimentally 

evaluated by altering the bulk viscosity,232,244-249 quantifying the effect of various sources 

of internal friction on protein folding is nevertheless more challenging. For example, 

when two chains (e.g., two α-helices) become sufficiently close during folding, one 

expects that the further motion of one chain will be affected by the other, due to various 

local attractive and/or repulsive interactions between them, as well as the steric effect. 

This type of internal friction, which is prevalent in protein folding and may also play an 

important role in controlling the dynamics of conformational transitions occurring in or 

near the native potential well, has not, to the best of our knowledge, been studied 



63 
 

systematically. This is due, at least in part, to the fact that for any naturally occurring 

proteins it is almost impossible to isolate and independently assess the contribution of a 

specific structural element to the overall internal frictional effect. Herein, we show that 

the local frictional effect arising from a nearby chain in proteins could be estimated by 

using an external structural linker. 

The most commonly used experimental method to determine or infer the effect of 

internal friction on protein folding and conformational dynamics is to measure how the 

rate of the dynamic event of interest varies with solvent viscosity.42-44,250 If the rate does 

not show a linear dependence on the reciprocal of viscosity, as expected for a barrier-

crossing process in solution, then the discrepancy is attributed to an additional friction 

term arising from the protein itself. For example, Eaton and co-workers42 have utilized 

this strategy to show that the conformational reconfiguration rate of myoglobin, in 

response to photodissociation of the CO ligand, is subject to internal friction. Similarly, 

by assessing polymer chain dynamics in solvents containing denaturant or different 

viscosities via either FRET or fluorescence quenching 

measurements,20,21,43,251,252 Buscaglia et al.251 have shown that even loop formation in 

simple polypeptides is affected by internal friction, and Schuler and co-workers20 have 

shown that it is possible to determine the relative amount of internal friction at different 

points along the folding coordinate of two α-spectrin domains (i.e., R16 and R17). 

Specifically, they found that the effect of internal friction is highly localized in the early 

transition state, suggesting that there are particular interactions stemming from local 

frustrations that contribute to the rate-limiting step of folding.20 In addition, by measuring 
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and analyzing the viscoelastic response of a single protein molecule, several groups have 

demonstrated that force spectroscopy can also be used to characterize the internal friction 

associated with the unfolding of several proteins.253-256 While these previous studies 

provided significant insights into the effect of internal friction on the folding dynamics of 

the protein systems studied, they were unable to disentangle the relative contributions of 

various sources of friction, such as those stemming from a single chain element. Herein, 

we attempt to use a structural cross-linker to help estimate how local friction, resulting 

simply from local crowding or the excluded volume effect, affects the dynamics of 

protein folding. Specifically, we employ the miniprotein trp-cage257,258 and a helix cross-

linker to demonstrate the feasibility of this method. 

The use of a cross-linker to constrain the structural integrity of a specific fold 

and/or to investigate the protein folding mechanism is not new. For instance, 

disulfide103,215 and dichloroacetone105 cross-linkers have been used, in conjunction with 

Φ-value analysis, to characterize the folding transition state ensemble of proteins of 

interest. In addition, photoresponsive cross-linkers, such as those based on an 

azobenzene259 or a tetrazine108 moiety, have been used to initiate a targeted folding or 

unfolding process.108,183,259-261 In this regard, the study of Hamm and co-

workers183,260,261 on helix–coil transition kinetics is particularly relevant to the present 

work, as it demonstrates that an azobenzene cross-linker could increase the internal 

friction along the α-helix folding coordinate, due to interactions between bulky 

sidechains and the linker. Recently, Jo et al.99 have shown that m-xylene is one of the 

most efficient helix staples for short peptides. Because of the structural rigidity of m-
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xylene, which will minimize its entropic effect on the folding dynamics of interest, herein 

we chose to use it as a chain surrogate. 

The miniprotein trp-cage was chosen for the following reasons: (1) the study of 

Qiu and Hagen41 indicates that, despite its small size, the folding kinetics of this 

miniprotein are subject to the influence of internal friction, (2) trp-cage contains only one 

α-helix, spanning residues 1 to 9, which simplifies the choice of location for cross-linker 

incorporation, and (3) more importantly, a number of experimental200,262,263 and 

computational264-284 studies have shown that this α-helix is formed in the folding 

transition state, thus making trp-cage an ideal candidate to interrogate the effect of local 

friction through the incorporation of an appropriate helix cross-linker. Our hypothesis is 

that when the cross-linker is placed near the hydrophobic core region of the trp-cage its 

frictional effect will become large enough to be observed in kinetic experiments. In 

particular, if the cross-linker is further designed to point away from the interior of the 

protein, we expect that its interaction with the nonhelical part of the trp-cage will be 

minimized, and as a result, the incorporation of the cross-linker will not induce a 

significant change in trp-cage stability but will lead to a significant decrease in the 

folding/unfolding rate, due to an increased frictional force. 

 

5.2   Experimental Section 
 

Peptide Synthesis and Cross-Linking 

All peptides were prepared by standard 9-fluorenylmethoxy-carbonyl (FMOC) solid-

phase peptide synthesis methods and purified by reverse-phase high-performance liquid 
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chromatography (HPLC). The detail of the cross-linking method has been described 

elsewhere.99 Briefly, a solution of the targeted trp-cage cysteine mutant (10 mg, 4.8 

μmol) in 50 mM ammonium bicarbonate buffer (20 mL, pH 8) was mixed with a freshly 

prepared 0.1 M solution of m-dibromoxylene in DMF (100 μL) and stirred for 2 h at 

room temperature. The reaction was then quenched by addition of 1 M HCl (1 mL), 

followed by lyophilization. The cross-linked peptide product was further purified and 

characterized. Specifically, peptides were purified on a preparative PROTO 300 C4 

column (250x20 mm, 10 µm) using a 5-min isocratic condition of 4.5% (vol/vol) 

acetonitrile/water in 0.1% TFA followed by a 20-min linear gradient of 4.5% (vol/vol) 

acetonitrile/water to 90% (vol/vol) acetonitrile/water in 0.1% TFA with a flow rate of 15 

ml/min. ESI-MS (with QTRAP 3200) was used to confirm the peptide molar mass. 

Residual trifluoroacetic acid (TFA) from the synthesis was removed via three rounds of 

lyophilization against a 0.1 M DCl solution. 

 
Peptide Cyanylation 

Lyophilized peptide was first dissolved in 2 mM tris(2-carboxyethyl)phosphine (TCEP), 

4 M guanidine hydrochloride, and 100 mM phosphate buffer (pH 7) with a final peptide 

concentration of 200 μM. This peptide solution was then mixed with a 45 mM 2-nitro-5-

thiocyanatobenzoic acid (NTCB) solution prepared in 100 mM phosphate buffer (pH 7) 

with a final NTCB (Sigma Aldrich) to peptide concentration ratio of 6:1. The mixture 

was incubated at room temperature for 30 min, allowing for cysteine cyanylation. The 

targeted peptide product was purified by HPLC and verified by mass spectrometry. 

 



67 
 

Static and Time-Resolved Spectroscopic Measurements 

Circular dichroism (CD) measurements were carried out on an Aviv 62A DS 

spectropolarimeter (Aviv Associates, NJ) with a 1 mm cuvette. The peptide concentration 

was approximately 40–60 μM in 20 mM phosphate buffer solution (pH 7). Infrared 

spectra at a resolution of 1 cm–1 were collected on a Magna-IR 860 spectrometer 

(Nicolet, WI) using a home-built CaF2 sample cell with an optical path length of 52 

μm.285 For both static and time-resolved IR measurements, all peptide solutions had a 

concentration of approximately 4 mM, prepared in 20 mM phosphate D2O buffer (pH 7). 

Time-resolved experiments were carried out on a home-built laser-induced temperature 

jump (T-jump) apparatus83,285 using a quantum cascade laser (Daylight Solutions, CA) as 

the IR probe. For the T-jump kinetics reported, the probing frequency was either 1668 or 

1620 cm–1, and the T-jump amplitude was in the range of 10–15 °C. 

 
Molecular Dynamics (MD) Simulation 

MD simulations were carried out using the Nanoscale Molecular Dynamics (NAMD) 

program (version 2.7)286 and the CHARM36 or CHARM22 force field. The peptide of 

interest was immersed in 1692 TIP3P water molecules in a 40 Å cubic box.287 For 

simulation of the cross-linked trp-cage variants, the force field parameters of the xylene 

cross-linker were generated from those of phenylalanine and cysteine. For each 

simulation, the temperature was gradually increased from 0 to 368 K with an increment 

of 20 K every 500 time steps. The temperature was then held constant once it reached its 

final value, 368 K. After energy minimization of the entire system, a production run of 10 

ns was performed. Full electrostatics were calculated every second step using the 
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particle-mesh Ewald (PME) method. A 2 fs time step was used to integrate the equations 

of motion, and the structural coordinates were saved every 1 ps for further analysis. 

During the simulation, the pressure was maintained at 1 atm using the Nosé–Hoover 

Langevin piston method, and the temperature was controlled by Langevin dynamics. In 

addition, periodic boundary conditions were used to reduce edge effects, and a cutoff of 

12 Å was used for nonbonded interactions. 

 

5.3   Results and Discussion 
 
We chose the 10b variant (sequence: DAYAQWLKDGGPSSGRPPPS) of the trp-cage 

miniprotein258 as our model system because its folding kinetics and mechanism have been 

studied previously.200,288 To introduce the m-xylene cross-linker via cysteine 

alkylation,99 we first synthesized two 10b cysteine variants, the first containing double 

cysteine mutations at positions 4 and 8 and the second having double cysteine mutations 

at positions 1 and 5. Incorporation of the m-xylene moiety into these peptides yielded two 

cross-linked 10b variants (hereafter referred to as 4–8-CL-Trp-cage and 1–5-CL-Trp-

cage, respectively). The reason that we chose these positions is because, as shown 

(Figure 5.1), the m-xylene cross-linker in both cases is expected to point away from the 

interior of the protein and, thus, should not directly interact with the hydrophobic core 

and the key Asp9–Arg16 salt bridge in the folded state. MD simulations indeed confirm 

this point (Figure 5.2). However, since the N-terminal Asp1 residue, which has been 

shown to be critical to the α-helix stability in trp-cage,258 is altered in 1–5-CL-Trp-cage, 

we expect that its stability will decrease. In contrast, we expect that the stability of 4–8-

CL-Trp-cage will be similar to that of the wild type. Furthermore, because the m-xylene 
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moiety in 4–8-CL-Trp-cage encloses two residues (i.e., Trp6 and Leu7) that are part of 

the hydrophobic core, we expect that in this case the cross-linker will lead to an 

additional frictional force along the folding coordinate, thus slowing down both the 

folding and unfolding rates. On the other hand, for 1–5-CL-Trp-cage, because the cross-

linker is moved away from the most congested region of the protein, we expect that the 

frictional effect induced by the cross-linker will be significantly reduced. 

 
Effect of the m-Xylene Cross-Linker on Folding Thermodynamics 

The folding thermodynamics of 4–8-CL-Trp-cage and 1–5-CL-Trp-cage, as well as their 

uncross-linked counterparts (hereafter referred to as 4–8-UC-Trp-cage and 1–5-UC-Trp-

cage), were examined by CD spectroscopy. For 1–5-UC-Trp-cage, we directly used the 

mutated sequence for experiments, whereas for 4–8-UC-Trp-cage, to prevent any 

potential interaction between the free cysteines and Asp9, we further modified the 

peptide by cyanylating the cysteines as has been described previously.289 As shown 

(Figure 5.3), the far-UV CD spectra of 4–8-CL-Trp-cage and 1–5-CL-Trp-cage are 

consistent with that of the wild type,200,258,290 indicating that these peptides are folded at 

low temperatures. Further CD thermal unfolding measurements monitored at 222 nm 

confirm the role of the cross-linker, which effectively increases the thermal stability of 

the trp-cage structure in comparison to the uncross-linked variants (Figure 5.4). To better 

quantify the thermal stabilities of these trp-cage peptides, we globally fit their CD 

unfolding curves to the two-state model outlined in Chapter 3 Eq. 3.1.1 – 3.1.5. However, 

in these experiments, b, c, and d were treated as global fitting parameters and ai was 

peptide dependent and treated as a local fitting parameter.  
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As shown (Figure 5.4), this model fits the data satisfactorily. In addition, the 

resultant thermodynamic quantities for unfolding meet our expectations (Table 5.1). For 

example, in both cases the Tm of the cross-linked peptide is much higher than that of the 

uncross-linked variant, validating the role of m-xylene as a stabilizing α-helix cross-

linker.99 To verify that the cross-linker does not alter the trp-cage fold, we have 

performed MD simulations on both cross-linked 10b variants for a length of 10 ns and at 

an elevated temperature of 368 K. These simulation conditions were chosen to allow for 

the observation of any significant structural changes in the folded state, arising from the 

cross-linker. As indicated (Figure 5.2), the overall structures of these cross-linked trp-

cage variants are comparable to that of the wild type. 

More importantly, the Tm (∼54 °C) of 4–8-CL-Trp-cage is almost identical to that 

(∼55 °C) of the wild type,200,258 which is not only consistent with our hypothesis but also 

indicates that 4–8-CL-Trp-cage is an ideal candidate to characterize the effect of local 

internal friction on the conformational relaxation dynamics due to the added cross-linker. 

Specifically, this result suggests that the thermodynamic role of the cross-linker is merely 

to compensate the loss of stability due to the cysteine mutations and that any static 

interactions between the linker and nonhelical residues of the protein, if any, are minimal. 

Thus, changes in the conformational kinetics, especially unfolding kinetics, between the 

wild type and 4–8-CL-Trp-cage, can be attributed to changes in local friction. In addition, 

the finding that the 1–5-CL-Trp-cage exhibits a lower Tm (27.8 °C) compared to 4–8-CL-

Trp-cage is consistent with the fact that the N-terminus α-helical cap, Asp1, is critical to 

the thermal stability of the trp-cage fold258 and also demonstrates that a helix cross-linker 
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beginning at the N-terminus of a peptide is less effective in stabilizing its α-helical 

structure. In support of this notion, our MD simulations also show that the α-helix in 1–5-

CL-Trp-cage becomes more extended in comparison to that of the wild type (Figure 5.5). 

 
Effect of the Cross-Linker on the Folding and Unfolding Kinetics 

To determine the effect of the m-xylene cross-linker on the folding and unfolding rates of 

trp-cage, we measured the conformational relaxation kinetics of all four peptides (i.e., 

two cross-linked and two uncross-linked variants) using a T-jump IR technique.83 Our 

previous T-jump study200 on the 10b trp-cage indicated that the 310-helix is populated 

only at relatively low temperatures (i.e., below Tm), and its T-jump induced relaxation is 

detectable at a probing frequency of 1668 cm–1. As shown (Figure 5.6), the T-jump 

induced relaxation kinetics of 4–8-CL-Trp-cage, probed at 1668 cm–1, also indicate that 

the unfolding of the 310-helix occurs independently from the rest of the molecule. Thus, 

this result further confirms that the incorporation of the m-xylene cross-linker in 4–8-CL-

Trp-cage does not change the folding mechanism of the trp-cage fold, and therefore it 

serves as a good mimic of a nearby chain that could lead to local crowding or friction, 

due to its close proximity to the most congested region of the protein. Because the 310-

helix unfolds independently,200,271,291-293 below we only discuss the effect of the cross-

linker on the global folding/unfolding kinetics of the cage structure. 

As shown (Figure 5.7), the T-jump induced relaxation kinetics of 4–8-CL-Trp-

cage, probed at both 1668 and 1620 cm–1 (Figure 5.8) and at a final temperature of higher 

than 30 °C, can be fit well by a single-exponential function. However, as shown 

(Figure 5.9), the conformational relaxation rates obtained in the temperature range of 
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interest are distinctively slower than that of the wild type (i.e., 10b). In fact, both the 

folding and unfolding rates of 4–8-CL-Trp-cage become slower than those of 10b 

(Figure 5.9). More specifically, for example, at 35 °C the folding rate of 4–8-CL-Trp-

cage is decreased by a factor of 3.8, whereas its unfolding rate slows down by a factor of 

2.5 (Table 5.1). Since the stability of the 4–8-CL-Trp-cage is almost identical to that of 

10b, we believe that these rate changes reflect at least partially, if not entirely, an increase 

in the frictional force along the folding coordinate.294 This argument is based on the fact 

that a simple adjustment of the transition state position in the current case cannot account 

for the different degrees of decrease in the folding and unfolding rates. To further verify 

this assessment, we have also measured the T-jump induced relaxation kinetics of 1–5-

CL-Trp-cage wherein the cross-linker is placed at the N-terminus of the peptide. In this 

case, as discussed above, we expect that the linker-induced frictional effect will become 

less pronounced or even diminished as the cross-linker is surrounding a less obstructed 

region of the protein. In other words, if our hypothesis is correct, we expect that 1–5-CL-

Trp-cage will exhibit a slower folding rate, due to its lower stability, but a comparable 

unfolding rate, in comparison to 10b. As shown (Figures 5.10 and 5.11), the T-jump 

induced relaxation process of 1–5-CL-Trp-cage also follows first-order kinetics and is 

slower than that of the wild type. A further analysis indicates, for example at 35 °C, that 

its folding rate is decreased by a factor of 5.3, whereas its unfolding rate is, within our 

experimental uncertainties, identical to that of 10b (Table 5.1). Thus, these results 

provide further compelling evidence in support of the above claim that the cross-linker in 

4–8-CL-Trp-cage induces an additional frictional force along the folding–unfolding 
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coordinate, due to its close proximity to several sidechains that undergo relatively large-

amplitude motions upon folding or unfolding. 

It is well-known that mutations can change the unfolding rate. Therefore, to 

ensure that the slower unfolding rate of 4–8-CL-Trp-cage does not simply stem from the 

cysteine mutations, we also measured the conformational relaxation kinetics of the two 

uncross-linked trp-cage variants (i.e., 1–5-UC-Trp-cage and 4–8-UC-Trp-cage). In 

addition, the results of these measurements will help further substantiate our previous 

study, which depicts a trp-cage folding mechanism wherein the α-helix is either partially 

or completely formed in the transition state.200 As shown (Figures 5.12 and 5.13), both 

peptides exhibit a slower conformational relaxation rate than the wild type. However, as 

indicated (Table 5.1), this decrease in the relaxation rate originates almost exclusively 

from a decrease in the folding rate for these peptides. Thus, taken together, these results 

not only corroborate our early conclusion200 that helix formation is the rate limiting step 

in trp-cage folding but also confirm that the slower unfolding rate of 4–8-CL-Trp-cage 

arises explicitly from the cross-linker. Furthermore, it is interesting to note that the 

unfolding rate of 4–8-UC-Trp-cage at 35 °C shows a measurable increase from that of 

10b. Because 1–5-UC-Trp-cage does not show any appreciable change in its unfolding 

rate in comparison to that of 10b, this increase most likely arises from the mutation at 

position 8. This notion is consistent with our previous study,295 which showed that the 

native interactions involving the C-terminal region of the helix are developed at the 

downhill side of the free energy barrier. 
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Quantifying the magnitude of internal friction and its effect on protein folding and 

conformational dynamics has been the subject of a number of theoretical and 

computational studies,24,32,45,224,296-299 and in particular, several studies have attempted to 

make a direct connection between internal friction and the roughness of the underlying 

energy landscape. For example, Zwanzig showed that the conformational diffusion 

coefficient of a protein on a barrierless one-dimensional free energy surface is a direct 

measure of the roughness of this surface.296 Upon expanding this theoretical model, 

Thirumalai, Straub, and co-workers45 further demonstrated that for a barrier-crossing 

process the roughness (U†) could be assessed via the following relationship: 

int

B
† lnk

γ
γ

TU =            (5.1) 

where γint represents the friction exerted by the solvent, whereas γ is the internal friction. 

Below we apply this equation to provide an estimate of how much the helix cross-linker 

in 4–8-CL-Trp-cage increases the roughness of the trp-cage folding energy landscape, 

assuming that the deviations of its folding and unfolding rates from those of 10b are due 

entirely to increased internal friction and that the value of γint can be approximated by that 

of 10b. Using the rate equation of transition state theory and these assumptions, we can 

easily show, 

intU(CL)

U(WT) 1
γ
γ

=−
k

k
       (5.2) 

where kU(WT) and kU(CL) represent the unfolding rates of 10b and 4–8-CL-Trp-cage, 

respectively. Using Equations 5.1 and 5.2 and the rates at 35 °C for 10b and 4–8-CL-Trp-

cage (Table 5.1), we estimate the values of U† to be ∼0.4kBT and ∼1.0kBT for unfolding 
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and folding, respectively. The order of magnitude of these values is reasonable given that 

the energetic roughness of a much larger protein, the α-spectrin domain R17, was 

estimated to be ∼2.0kBT.247 

The above analysis suggests that the friction along the free energy surface is 

asymmetric, which is expected if we take into account the sequence of events in the trp-

cage folding mechanism. Given that the unfolded side of the free energy barrier involves 

sidechain interactions in close proximity leading to helix formation, we would expect 

more local interactions with the cross-linker, resulting in a larger degree of internal 

friction. Indeed, Hamm and co-workers have shown that a photoswitchable cross-linker 

on a monomeric α-helix slows down its folding,183,260,261 due to the increased friction 

between the cross-linker and sidechains from a combination of steric and non-native 

interaction effects. In addition, several simulations279,300 have suggested the presence of 

compact molten globule intermediates in the unfolded ensemble, which can act as a 

kinetic trap and may be stabilized by non-native hydrophobic interactions. Thus, it is also 

possible that the cross-linker increases the friction of folding by decreasing the rate out of 

such kinetic traps. Conversely, the folded side of the potential has a greater influence 

from intrinsic steric effects as the polypeptide chain becomes more compact upon folding 

and is presumably less affected by the added frictional force of the cross-linker. 

In summary, we employed an external linker to help assess the extent to which a 

local structural element increases the friction along the folding coordinate of trp-cage. 

While the current study only yielded a global view regarding this effect, future studies 

employing linkers of different lengths and structures may help provide a more detailed 



76 
 

picture regarding the source of interactions that affect the folding–unfolding kinetics. In 

addition, we believe that the current method is also a useful addition to the toolbox for 

mechanistic study of protein folding and conformational dynamics. For example, it is 

possible to use a specific cross-linker to manipulate the folding free energy barrier and to 

selectively increase/decrease the flux of a particular folding pathway. 

 

5.4   Conclusions 
 
Because of chain connectivity and also the compactness of the native state, protein 

folding is subject to a frictional force due to, for example, local steric effects. However, 

assessing the frictional force arising from an individual structural element is difficult, if 

not impossible, as conventional kinetics studies do not provide independent information 

regarding the individual contributions to the overall effect of internal friction. To 

circumvent this difficulty, herein we use a cross-linker to selectively increase the local 

mass density, and thus the local friction, of a particular region of the protein of interest 

and to make the internal friction thus induced detectable via kinetic measurements. We 

apply this strategy to a well-studied miniprotein, trp-cage, and find that a helix cross-

linker (m-xylene) appended between residues 4 and 8 on its α-helix can induce a 

significant decrease in both the folding and unfolding rates, which is consistent with the 

notion that the cross-linker will result in an increase in local crowding or internal friction. 

Using a simple theoretical model, we further show that the cross-linker used, which could 

be thought of as an individual chain segment in proteins, could increase the roughness of 

the folding energy surface by as much as 0.4–1.0kBT. 
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 10b 4-8-CL-Trp-cage  4-8-UC-Trp-cage 1-5-CL-Trp-cage 1-5-UC-Trp-cage 

ΔHm (kJ mol-1) 58.0 44.5 ± 4.2 19.6 ± 5.9 38.9 ± 4.3 25.4 ± 5.1 

ΔSm (J K-1 mol-1) 177 133 ± 12.5 72 ± 21 129 ± 14 89 ± 18 

ΔCp (J K-1 mol-1) 176 176 176 176 176 

Tm (oC) 55.0 54.1 ± 4.9 -0.9 ± 3.0 27.8 ± 3.1 12.0 ± 2.9 

τf (μs) 1.3  5.0 ± 0.6 6.9 ± 1.4 6.9 ± 1.2 13.8 ± 0.6 

τu (μs) 5.1  12.9 ± 1.5 2.5 ± 0.6 4.8 ± 0.6 5.8 ± 0.3 

 
Table 5.1   Summary of the unfolding thermodynamic parameters obtained from global 

fitting of the CD thermal melting data of the four peptides. Also listed are the folding and 

unfolding times of these peptides determined at 35 oC. The thermodynamic and kinetic 

parameters of 10b were obtained from ref.200.  
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Figure 5.1   Cartoon representation of the 4-8-CL-Trp-cage. 
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(A)

 

 

(B) 

 
 

Figure 5.2   (A) MD snapshots of the wild-type 10b trp-cage (left), 4-8-CL-Trp-cage 

(center), and 1-5-CL-Trp-cage (right), taken at 9.5 ns in the simulation.  (B) Backbone 

RMSD values of these peptides as a function of simulation time.   
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Figure 5.3   Far-UV CD spectra of the two cross-linked trp-cage peptides, as indicated. 

These data were collected at 1 oC. 
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Figure 5.4   CD T-melts of the cross-linked and uncross-linked trp-cage variants, as 

indicated. The solid lines are global fits of these data to a two-state model discussed in 

text. 
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Figure 5.5   Comparison of the MD structures of 1-5-CL-Trp-cage (blue) and wild type 

10b trp-cage (red), aligned with respect to the peptide backbone. These snapshots were 

taken at 9.5 ns. The α-helix length (i.e., the distance between the α-carbons of residues 1 

and 9) was determined to be 14.31 Å for 1-5-CL-Trp-cage, which is significantly 

extended compared to that of 10b trp-cage (11.98 Å). On the other hand, the α-helix in 4-

8-CL-Trp-cage has a length of 12.61 Å, which is more similar to that of the wild-type. 
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Figure 5.6   Relaxation kinetics of 4-8-CL-Trp-cage in response to a T-jump from 3.8 to 

12.8 oC, probed at 1668 cm-1. The smooth line represents the best fit of this curve to a 

double exponential function with a negative phase (τ = 1.8 μs) and a positive phase (τ = 

8.3 μs).  
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Figure 5.7   Relaxation kinetics of 4-8-CL-Trp-cage in response to a T-jump from 29.3 to 

42.1 °C, probed at 1668 cm-1. The smooth line represents the best fit of this curve to a 

single exponential function with a relaxation time constant of 2.7 µs. Shown in the inset 

are the relaxation kinetics of the same peptide obtained with a probing frequency of 1620 

cm-1 in response to a T-jump of 29.1 to 43.4 °C. Fitting this relaxation curve to a single 

exponential function yielded a relaxation time constant of 2.9 µs. 
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(A)      (B) 

 
 

Figure 5.8   Difference FTIR spectra of (a) 1-5-CL-Trp-cage and (b) 4-8-CL-Trp-cage, 

generated by subtracting the FTIR spectrum at 3.4 °C from those measured at higher 

temperatures (the highest temperature was 80.2 °C). These FTIR spectra were used to 

determine the probing frequencies for the T-jump experiments.  
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Figure 5.9   Temperature dependence of the relaxation rate constant (triangle), folding 

rate constant (circle) and unfolding rate constant (square) of 4-8-CL-Trp-cage. The green 

smooth line represents the relaxation rate constant of the wild type 10b trp-cage.200 
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Figure 5.10   Relaxation kinetics of 1-5-CL-Trp-cage in response to a T-jump from 20.5 

to 36.4 °C, probed at 1668 cm-1. The smooth line represents the best fit of this curve to a 

single exponential function with a relaxation time constant of 2.8 µs.  
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Figure 5.11   Temperature dependence of the relaxation rate constant (triangle), folding 

rate constant (circle) and unfolding rate constant (square) of 1-5-CL-Trp-cage. The green 

line represents the relaxation rate constant of the wild type 10b trp-cage.200 
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Figure 5.12   Temperature dependence of the relaxation rate constant (triangle), folding 

rate constant (circle) and unfolding rate constant (square) of 1-5-UC-Trp-cage. The green 

line represents the relaxation rate constant of the wild type 10b trp-cage.200 
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Figure 5.13   Temperature dependence of the relaxation rate constant (triangle), folding 

rate constant (circle) and unfolding rate constant (square) of 4-8-UC-Trp-cage. The green 

line represents the relaxation rate constant of the wild type 10b trp-cage.200 
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6   Aggregation Gatekeeper and Controlled Assembly of Trpzip β-
Hairpins  

 
Reprinted with permission from Biochemistry, Beatrice N. Markiewicz, Rolando Oyola, Deguo 
Du, and Feng Gai, (2014) 53, 1146-1154. DOI: 10.1021/bi401568a, 
http://pubs.acs.org/doi/abs/10.1021/bi401568a.301  Copyright (2014) American Chemical Society. 
 

6.1   Introduction 
 
Protein and peptide aggregation and amyloid formation are commonly associated with 

various pathological disorders302-304 and, thus, have been the subject of many studies. In 

addition, aggregation poses a major obstacle in de novo protein design and also in 

mechanistic studies of protein folding where relatively high protein or peptide 

concentrations are required. While it is easily recognized that many factors can come into 

play in determining the aggregation propensity of a given protein or peptide system, in 

practice the most commonly used strategy in protein design is to incorporate a certain 

number of charged residues to prevent or alleviate aggregation.305-311 For example, 

Marqusee and Baldwin have shown that the solubility of alanine-based α-helical peptides 

in aqueous solution can be significantly increased by dispersing either lysine or glutamate 

residues in the peptide sequence of interest.312,313 For β-sheet systems, however, the 

situation can be much more complicated, as the edge strands are often poised for further 

intermolecular strand–strand association,308,314-319 and as a result, only a small difference 

in the peptide sequence could lead to a significant difference in aggregation 

propensity.27,320-322 One distinctive example, which is also the focus of this study, is that 

two designed, closely related β-hairpins, Trpzip1 and Trpzip2,212 show very different 

aggregation behaviors. Previous studies188,212,323-325 indicated that Trpzip2 remains 

completely monomeric in the concentration range of 5–12 mM at acidic pH, whereas 



93 
 

Trpzip1 has previously shown measurable aggregation at concentrations of >500 

μM.217,326 For this reason, Trpzip2 has been extensively used as a model to study the 

mechanism of β-hairpin folding,52,188,189,193,194,213,323,325,327-330 whereas the stronger 

aggregation propensity of Trpzip1 has made it a less attractive system. As shown 

(Table 6.1), these two β-hairpins differ only in the order of the two amino acids in the 

turn region (i.e., NG vs GN). Considering the fact that both peptides adopt a stable β-

hairpin conformation in solution at room temperature and their sequences are almost 

identical, this difference is surprising. 

 As shown (Figure 6.1), a comparison of the averaged nuclear magnetic resonance 

(NMR) structures212 of Trpzip1 and Trpzip2 indicates that the major structural variation 

between these two β-hairpins is in the relative orientation of the Lys8 sidechain. 

Specifically, in Trpzip1, the sidechain of Lys8 is oriented orthogonal to the β-hairpin axis 

so that it points straight outward, and away from the Trp hydrophobic cluster, whereas in 

Trpzip2, the same sidechain points in an upright parallel direction with respect to the β-

hairpin axis. It is well-known that a solvent-exposed Lys sidechain is relatively flexible 

and can fluctuate among several rotamer conformations. Therefore, to obtain a more 

quantitative assessment of the difference in the Lys8 orientations of these two peptides, 

we measured the dihedral angles of Lys8 in an ensemble of 20 NMR structures obtained 

from the Protein Data Bank (PDB)212 using built-in functions in Visual Molecular 

Dynamics (VMD).331 The results indicate that the greatest angle disparity arises from the 

difference in χ2, which describes the angle between the Cα–Cβ and Cγ–Cδ planes. For 

Trpzip1, the Lys8 sidechain always adopts a trans configuration along χ2 (171 ± 11°). 



94 
 

However, for Trpzip2, χ2 fluctuates between a trans and gauche(+) configuration. When 

the averaged structure of all frames of Trpzip2 was evaluated, χ2 of Lys8 is ∼70 ± 10°, 

indicative of a gauche(+) rotamer along the Cβ–Cγ bond.332,333 Thus, we hypothesize that 

the difference in the aggregation propensities of Trpzip1 and Trpzip2 can be explained by 

this variation in χ2. In other words, Lys8 in Trpzip2 is an effective aggregation 

gatekeeper,306-308 which prevents edge-to-edge β-hairpin association through unfavorable 

electrostatic interactions between neighboring Lys8 contacts. To this end, we further 

point out that our hypothesis is based on the assumption that the β-hairpin unit in the 

peptide aggregates possesses a native or native-like turn structure, which, in conjunction 

with the confinement effect induced by peptide association, would place Lys8 in a 

specific configuration that could disfavor aggregation. 

To test this hypothesis, we examined the aggregation kinetics of both peptides 

under different concentration and pH conditions. In addition, for Trpzip2, we also used a 

chemical approach to eliminate the positive charge of Lys8 by replacing it with Lys(4,5-

dimethoxy-2-nitrobenzyloxycarbonyl).334,335 The latter is a lysine analogue [hereafter 

termed Lys(nvoc)] with a photolabile hydrophobic moiety and has been used to control 

the disassembly of peptide aggregates and hydrogels via illumination.336,337 Should Lys8 

indeed serve as an aggregation gatekeeper of Trpzip2, we expect that this Trpzip2 mutant 

(hereafter termed Trpzip2-K) will exhibit a significantly stronger aggregation propensity. 

 

6.2   Experimental Section 
 

Materials and Sample Preparation 
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D2O (D, 99.96%) and deuterium chloride (D, 99.5%) were purchased from Cambridge 

Isotope Laboratories (Andover, MA). Fmoc-Lys(4,5-dimethoxy-2-

nitrobenzyloxycarbonyl)-OH [Fmoc-Lys(nvoc)-OH] was purchased from Anaspec, Inc. 

(Fremont, CA), and used without further purification. FMOC-protected amino acids were 

purchased from Advanced Chem Tech (Louisville, KY). All peptides were synthesized 

on a PS3 peptide synthesizer (Protein Technologies, Woburn, MA) and purified by 

reverse-phase high-performance liquid chromatography (HPLC). The identity of each 

peptide was further verified by matrix-assisted laser desorption ionization (MALDI) mass 

spectrometry. Residual trifluoroacetic acid (TFA) from peptide synthesis was removed by 

multiple rounds of lyophilization against a 0.1 M DCl solution. All peptide samples were 

prepared by directly dissolving the lyophilized peptide solid in D2O, and the pH of the 

peptide samples was approximately 3, unless explicitly indicated separately. The peptide 

concentration was determined optically using the absorbance at 280 nm, with an ε280 of 

22760 cm–1 M–1. 

 
Acylation of Lys12 

 

Lyophilized peptide was first dissolved in 100 mM phosphate buffer (pH 7.4) to a final 

peptide concentration of 250 μM. This peptide solution was then mixed with a 30 mM N-

acryloxysuccinimide (Sigma-Aldrich) solution prepared in 100 mM phosphate buffer (pH 

7.4) containing 10% dimethyl sulfoxide with a final N-acryloxysuccinimide:peptide 

concentration ratio of 8:1. The reaction mixture was stirred for 9 h at 4 °C. The resulting 

peptide product was purified by HPLC and verified by MALDI mass spectrometry. 
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Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) Measurements  

CD data were collected on an Aviv 62A DS spectrometer (Aviv Associates) using a 1 

mm sample cuvette. FTIR spectra were collected on a Magna-IR 860 spectrometer 

(Nicolet) at 2 cm–1resolution using a temperature-regulated, 52 μm CaF2 sample cell.285 

 

Photocleavage Experiments  

Irradiation of samples was conducted by placing the sample in the optical path of a 

FluoroLog fluorometer (HORIBA Jobin Yvon), at room temperature. The excitation 

wavelength was set to 355 nm with a slit width of 0.75 cm. The excitation intensity is 

approximately 8.8 mW cm–1, estimated on the basis of the measured power of the 

excitation light and the beam diameter. The nvoc moiety has an extinction 

coefficient336 (ε350) of 5485 M–1 cm–1 and a photochemical yield (Φ365) of 0.023.111,338,339 

 

Atomic Force Microscopy (AFM) Measurements 

AFM experiments were performed in air at room temperature, using a multimode atomic 

force microscope (model 5500, Agilent, Santa Clara, CA), equipped with a 90 μm closed 

loop piezoscanner. Five μL of a sample solution was applied to a freshly cleaved mica 

surface and allowed to sit for ∼10 s, rinsed with 100 μL of Millipore water, and 

subsequently dried with a slow stream of N2 gas. Tapping-mode imaging was conducted 

with a silicon cantilever, where the tip radius was <10 μm and the force constant was 40 

N/m (Ted Pella, Redding, CA). Height and deflection images were obtained with a scan 

rate of 1.6 Hz and a tapping frequency of 285 kHz. Multiple images were obtained for 

each sample at different locations on the mica substrate to confirm the presence of fibrils. 
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6.3   Results and Discussion 

 
Aggregation Kinetics of Trpzip1 and Trpzip2 

The aggregation kinetics of Trpzip1 and Trpzip2 were examined using FTIR and CD 

spectroscopy. In particular, the amide I′ band (amide I band in D2O) of the peptide was 

used as an IR probe of the aggregation process, as this band has proven to be sensitive to 

intermolecular β-sheet association. For example, the development of a narrow amide I′ 

band at approximately 1615 cm–1 is indicative of peptide aggregation to form parallel β-

sheets,340 whereas the appearance of a pair of narrow bands, i.e., a strong one at ∼1618 

cm–1 and a weak one at ∼1685 cm–1, signifies the formation of antiparallel β-sheets.70,71 

As shown (Figure 6.2), the amide I′ bands of Trpzip1 obtained at different 

concentrations indicate that its aggregation rate is concentration-dependent, as expected. 

For example, at ∼2 mM and 25 °C, the peptide sample becomes almost completely 

aggregated after 24 h, as judged by the full development of the 1616 cm–1 band, whereas 

at ∼350 μM, aggregate formation becomes detectable after just 1 day. In comparison, 

even at a much higher concentration (i.e., ∼10 mM), Trpzip2 does not show any signs of 

aggregation under the same conditions (Figure 6.2, inset). As shown (Figure 6.3), further 

time-dependent measurements indicate that the aggregation kinetics of Trpzip1 at a 

concentration of 1.2 mM, determined by the growth of the 1616 cm–1 band, follow a 

biexponential function; the magnitude of the signal increases quickly within the first 10 h 

and then slowly reaches a plateau over ∼150 h. Repeating this measurement at a higher 

peptide concentration, which results in a faster overall aggregation rate, reproduces this 

biphasic kinetic pattern (Figure 6.4). Similar biphasic growth kinetics have been observed 
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in other peptide aggregation studies,341-343 which were attributed to a separation in the 

time scales of the fibril nucleation and elongation processes. 

 

Aggregation Mechanism and Gatekeeper 

In principle, the initial aggregation step can occur through interactions between two 

folded β-hairpins or two unfolded peptides. However, a simple calculation, based on the 

thermal stabilities of Trpzip1 and Trpzip2,212 indicates that at 25 °C the unfolded 

concentrations of Trpzip1 (at a total concentration of 350 μM) and Trpzip2 (at a total 

concentration of 10 mM) are 89 and 900 μM, respectively. Thus, these results strongly 

suggest that the aggregation of these β-hairpins is not initiated by association of two 

unfolded peptides; instead, it is triggered by dimerization of two folded β-hairpins. This 

notion is consistent with that put forward by Richardson and Richardson,306 who showed 

that naturally occurring β-sheets can cause aggregation via edge-to-edge β-sheet 

interactions and that an effective strategy used by nature to defend against this is to place 

a charged sidechain (or gatekeeper residue) on the hydrophobic face of an edge β-strand 

to mask the aggregation-prone regions with a solvent favorable interaction. In the current 

case, we hypothesize that Lys8 in both peptides acts as an aggregation gatekeeper 

residue; however, it is more effective to prevent Trpzip2 from aggregating. Because Lys8 

in Trpzip1 and Trpzip2 appears on the opposite face of the hydrophobic core (i.e., the 

four Trp residues), we note that the aggregation gatekeeper role of this charged residue is 

somewhat different from that discussed by Richardson and Richardson, but the overall 

idea remains the same: a charge is used to disfavor the process of intermolecular 

association. As proposed in Figure 6.1, in the early stages of the aggregation process, 
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should two Trpzip2 β-hairpins stack to form a dimer in a parallel fashion, the positively 

charged Lys8 sidechains can lead to a more unfavorable intermolecular electrostatic 

interaction, because of their upward-pointing rotamer geometry and thus greater 

proximity. As a result, the aggregation propensity of Trpzip2 is weaker than that of 

Trpzip1. To test this hypothesis, we employed two strategies to eliminate the charge of 

Lys8 and then investigated how this change affects the aggregation propensities of these 

β-hairpins. In the first case, we used pH to neutralize the charge, whereas in the second 

case, we replaced Lys8 with a neutral Lys derivative, Lys(nvoc). The added advantage of 

using Lys(nvoc) is that the nvoc group can be removed via light, converting the mutant 

back to its parent sequence. In other words, we expect that the Lys(nvoc) modification in 

Trpzip2 not only will enhance the aggregation propensity of the peptide considerably but 

also can render the aggregates thus formed photodissociable, a feature that may find 

important applications in bioengineering. 

As shown (Figure 6.3, inset), at a concentration of 0.7 mM and pH 13, the 

aggregation process of Trpzip1, as judged by the intensity of the 1616 cm–1 band, is 

complete within the first 10 h of dissolution, which is faster than the aggregation rate of 

Trpzip1 at acidic pH. Similarly, the aggregation of Trpzip2 can also be induced by 

increasing the pH to 13 (Figure 6.5). Taken together, these results provide strong 

evidence supporting the gatekeeper role of Lys8 mentioned above. However, unlike that 

of Trpzip1, the aggregation process of Trpzip2 does not seem to be complete even after 

incubation for 6 days, indicating that there are other factors that also play a role in 

determining the aggregation kinetics. 
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It is well-documented that the β-hairpin structure in peptide fibrils tends to have 

extended and flat β-strands as opposed to the twisted conformations characteristically 

observed in native monomeric β-sheet proteins.344-349 Thus, for the initially formed 

peptide dimer or oligomers consisting of native or native-like β-hairpins to further 

propagate to produce well-ordered and stacked parallel β-sheets, many native sidechain–

sidechain interactions need to be broken to facilitate new intermolecular interactions, 

such as hydrogen bonding among neighboring monomers. In other words, the native β-

hairpin must partially unfold to relax into a flat β-sheet unit, a structure required for the 

growth of the aggregate nucleus into long fibrils. Indeed, as shown (Figure 6.6), the CD 

spectrum of the aggregated Trpzip1 lacks the distinctive positive band at 227 nm 

observed for the folded Trpzip1,50,214 indicating that the native edge-to-face Trp–Trp 

packing is disrupted upon the formation of aggregates.350 This observation is consistent 

with an aggregation mechanism that requires flattening of the native β-hairpin structure 

upon incorporation of the peptide into a tightly packed and well-organized fibrillar 

matrix. While this study does not allow us to describe further structural details, it is 

reasonable to assume that the Trp residues play an important role in aggregate formation, 

presumably via non-native hydrophobic stacking. This requirement of native structural 

change or relaxation would argue that the higher the β-hairpin stability, the more difficult 

it becomes for the aggregate nucleus to propagate to form mature aggregates or fibrils. 

Thus, we attribute the slow aggregation growth rate of Trpzip2 at pH 13 to its high 

stability (Tm = 72 °C). 
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Because there is another Lys residue (i.e., Lys12) in the peptide sequence, the 

results obtained at pH 13 may not entirely reflect the effect of Lys8. Therefore, in the 

second study, we examined the aggregation kinetics of a Trpzip2 mutant wherein Lys8 is 

replaced with a photolabile lysine analogue, Lys(nvoc).335-337 As shown (Figure 6.7), the 

amide I′ band of this mutant (Trpzip2-K) indicates that it aggregates quickly at very low 

peptide concentrations. Interestingly, the aggregates thus formed adopt an antiparallel β-

sheet structure, as judged by the pair of bands centered at 1616 and 1685 cm–1. Because 

both Trpzip1 and Trpzip2 form parallel β-sheet aggregates, these results not only support 

the notion that Lys8 is an effective aggregation gatekeeper in Trpzip2 but also indicate 

that this non-natural lysine residue, which is strongly hydrophobic,351 can alter the 

aggregation pathway. In addition, the CD spectrum of the aggregated Trpzip2-K sample 

shows clearly the presence of a positive band at 228 nm (Figure 6.8), indicating that the 

native Trp–Trp packing is preserved to a certain extent in the aggregates. This is an 

interesting finding considering that the aggregates formed by the wild-type peptide do not 

support native Trp–Trp interactions and hence corroborates the aforementioned notion 

that Lys(nvoc), because of its higher hydrophobicity, can play a key role in determining 

the aggregation rate and pathway. This result further substantiates our initial hypothesis. 

Previously, the vertically pointing Lys8 sidechains served as an aggregation deterrent 

because of the repulsive electrostatic interaction, but in the mutant case, having 

Lys(nvoc) in this orientation provides another or possibly stronger avenue for 

aggregation-prone hydrophobes to associate. Moreover, as shown (Figure 6.9), upon 

removal of the nvoc group using light,336,337 which converts Lys(nvoc) to Lys, the 
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aggregates formed by Trpzip2-K spontaneously disassemble to yield Trpzip2 monomers. 

Thus, this result provides additional evidence supporting the aggregation gatekeeper role 

of Lys8 in Trpzip2. 

To further verify the notion that it is Lys8, not Ly12, that plays a key role in 

mediating the aggregation process, we conducted another photocleavage experiment on 

an aggregate sample formed by a Tripzip2-K derivative wherein the charged Lys12 

sidechain was converted to a neutral species. Specifically, the amine group of Lys12 in 

Trpzip2-K was allowed to react with a common acylation agent, N-hydroxysuccinimide 

(NHS) ester, to form an amide bond (Scheme 6.1),352,353 and the resulting peptide is 

termed Trpzip2-KK. Similar to Trpzip2-K, this peptide readily aggregates at low 

concentrations, as expected. As shown (Figure 6.10), however, when the native sidechain 

of Lys8 is recovered via photocleavage of the nvoc group, the aggregates formed by 

Trpzip2-KK disassemble. Because the resulting peptide contains only one charged Lys 

sidechain at position 8, this result thus substantiates our hypothesis that Lys12 does not 

play a significant role in preventing Trpzip hairpins from aggregating. 

 

Scheme 6.1   Reaction scheme of acylation of the primary amine of Lys12 in Trpzip2-K. 

The resulting peptide is referred to as Trpzip2-KK. 

+

pH 7.4, 4 °C, 9 hours
100 mM Phosphate Buffer

N-acryloxysuccinimide

N-hydroxysuccinimide
Byproduct

Lys12 in Trpzip2-K Trpzip2-KK
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Finally, to rule out the possibility that the weaker aggregation propensity of 

Trpzip2 is a direct outcome of its higher thermal stability, we tested a second variant in 

which Trp4 was mutated to Ala (hereafter termed Trpzip2-W4A). As expected (Figure 

6.16), this mutation significantly decreases the thermal stability of the β-hairpin (Tm of 

∼23 °C). However, as indicated (Figure 6.11), Trpzip2-W4A (10 mM) does not show any 

detectable aggregation even after incubation for 5 days. Thus, this result further 

corroborates the proposed notion that the difference in the aggregation propensities of 

Trpzip1 and Trpzip2 stems from the difference in the Lys8 orientations and is not due to 

their difference in stability. Furthermore, this result suggests that any interactions 

between Lys8 and Trp4 are not critical in preventing the β-hairpin from aggregating. 

It is well-known that a stronger turn-promoting sequence can increase the stability 

of β-hairpins. However, the effect of turn sequence on the aggregation propensity of β-

hairpins has not been systematically examined. On the basis of results obtained from this 

study, we can begin to think of several possible scenarios. If aggregation proceeds from 

an unfolded conformation, and the native turn structure is not preserved in the aggregates, 

the effect of a specific turn sequence on aggregation would be directly correlated with its 

effect on the β-hairpin stability. On the other hand, if aggregation is initiated by 

association of folded or partially folded β-hairpins, then the effect of a specific turn 

sequence on aggregation becomes more subtle. Depending on how it directs the 

distribution of key charged residues, a turn sequence could prevent or retard β-hairpin 

aggregation by creating unfavorable intermolecular electrostatic interactions or facilitate 

aggregate formation by weakening any repulsive interactions. To this end, the 
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aggregation gatekeeper notion used in this study should not be simply interpreted as an 

independent action of one amino acid; rather, it should be discussed in the context of the 

underlying aggregation mechanism and aggregate structures. 

 
Aggregate Stability and Morphology 

Because both the strength of hydrophobic interactions and the unfolded population 

increase with an increase in temperature, many proteins and peptides show a stronger 

tendency to aggregate at higher temperatures.354-357 Interestingly, temperature has the 

opposite effect on Trpzip1 aggregation. As shown (Figure 6.12), Trpzip1 aggregates 

readily dissociate at higher temperatures. On the other hand, the aggregates formed by 

Trpzip2-K do not show any detectable heat-induced dissociation (Figure 6.13). These 

results suggest that the aggregates formed by Trpzip1 are less stable and less rigid than 

those formed by Trpzip2-K, which is corroborated by AFM measurements. As shown 

(Figure 6.14), the AFM image of a Trpzip2-K aggregate sample shows a well-defined 

fibrillar network, with a homogeneous distribution of fibrils approximately 3.8 nm wide, 

consistent with previously engineered β-hairpin aggregates.358 In comparison, the AFM 

image of a Trpzip1 aggregate sample reveals a more heterogeneous morphology, with the 

presence of variously sized fibrils and amorphous aggregates (Figure 6.15). Thus, taken 

together, the FTIR and AFM results indicate that the nvoc moiety in Lys(nvoc) not only 

significantly increases the aggregation rate of the peptide by eliminating the native 

aggregation gatekeeper in Trpzip2 but also guides the β-hairpins in the fibrils to stack in 

an antiparallel fashion. In other words, these results suggest that intermolecular 

Lys(nvoc) interactions can provide a strong driving force for peptide association and thus 
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a new avenue for fibril formation. We believe this is an important finding as it suggests 

that it is possible to use Lys(nvoc) to control the fibrillization rate, as well as the fibrillar 

architecture, of the peptide of interest. In addition, another advantage of using Lys(nvoc) 

is that it makes the fibrils photoresponsive, a feature that could be exceedingly useful in 

certain bioengineering applications.112,137,359,360 

 

6.4   Conclusions 
 
Protein and peptide aggregation can have dire biological consequences. For example, it 

may lead to degenerative diseases in vivo and dysfunction of protein and peptide 

therapeutics in vitro. Therefore, many studies have been conducted in the past, with the 

aim of understanding the important factors that control protein and peptide aggregation 

and devising strategies to prevent it from happening. Herein, we study the aggregation 

properties of two closely related β-hairpins, Trpzip1 and Trpzip2, seeking to gain further 

insight into the mechanism of this phenomenon. Despite the minor difference in their turn 

sequences (i.e., NG vs. GN), these two peptides exhibit totally different aggregation 

propensities; at acidic pH, Trpzip1 readily aggregates at micromolar concentrations, 

while under the same conditions, Trpzip2 does not show detectable aggregation even at 

concentrations of tens of millimolar. On the basis of the difference in their NMR 

structures and the fact that both peptides form aggregates rich in parallel β-sheets, we 

propose that (1) aggregation is initiated by association of two folded β-hairpins via edge-

to-edge interactions and (2) Lys8 acts as an aggregation gatekeeper in both cases and its 

higher efficiency in preventing Trpzip2 from aggregating arises from the vertically 
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pointing sidechain rotamer preference. To test this hypothesis, we utilized two strategies, 

one by increasing the pH and the other by mutating Lys8 to a non-natural amino acid, 

Lys(nvoc), to examine how elimination of the positive charge on Lys8 affects the 

aggregation kinetics. We found that at pH 13 both Trpzip1 and Trpzip2 aggregate faster, 

which is consistent with the notion that Lys8 behaves as an aggregation gatekeeper. 

Further evidence in support of this hypothesis is that the Lys(nvoc) Trpzip2 mutant 

aggregates quickly, even at submillimolar concentrations, to form antiparallel amyloid-

like fibrils that can be disassembled via photocleavage of the nvoc group. Moreover, our 

findings are consistent with an aggregation mechanism in which folded β-hairpins first 

associate to form a nucleus and the subsequent growth of this nucleus requires partial 

unfolding of the native structure. Finally, our results indicate that Lys(nvoc), because of 

its high hydrophobicity, can alter the aggregation mechanism and, hence, can be used to 

control, in conjunction with light, the morphology and structure of peptide fibrils. 
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Peptide Sequence  Tm (oC) 

Trpzip1 SWTWEGNKWTWK 49.8 ± 0.3a 

Trpzip2 SWTWENGKWTWK 71.9 ± 0.1a 

Trpzip2-K SWTWENG(K*)WTWK 56.8 ± 0.5b 

Trpzip2-W4A SWTAENGKWTWK 23.7 ± 2.1b 

Trpzip2-KK SWTWENG(K*)WTW(K‡) - 

 

Table 6.1   Sequence and thermal melting temperatures (Tm) of the peptides studied.  

a. From Cochran et al.212 

b. Figure 6.16 

K* represents Lysine-dimethoxy-2-nitrobenzyloxycarbonyl 

K‡ represents the acylated Lysine (Scheme 6.1) 
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Figure 6.1   NMR structures of Trpzip1 (PDB: 1LE0) and Trpzip2 (PDB: 1LE1), as 

indicated, and the proposed dimerization scheme, showing the difference in the 

orientations of the Lys8 sidechains.  
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Figure 6.2   Amide I′ spectra of Trpzip1 at different concentrations, as indicated. Shown 

in the inset is the amide I′ band of Trpzip2 at 10 mM. These data were collected after the 

peptide samples had been incubated for 24 hours at 25 oC.  

  

0.00

0.02

0.04

0.06

0.08

0.10

1575 1625 1675 1725

Wavenumber (cm-1)

O
D

[Trpzip1] (µµµµM)

1960
1252
851
695
497
354
199

0.0

0.1

0.2

0.3

1575 1625 1675 1725

Wavenumber (cm-1)

O
D

[Trpzip2] = 10 mM

0.00

0.02

0.04

0.06

0.08

0.10

1575 1625 1675 1725

Wavenumber (cm-1)

O
D

[Trpzip1] (µµµµM)

1960
1252
851
695
497
354
199

0.00

0.02

0.04

0.06

0.08

0.10

1575 1625 1675 1725

Wavenumber (cm-1)

O
D

[Trpzip1] (µµµµM)

1960
1252
851
695
497
354
199

0.0

0.1

0.2

0.3

1575 1625 1675 1725

Wavenumber (cm-1)

O
D

[Trpzip2] = 10 mM

0.0

0.1

0.2

0.3

1575 1625 1675 1725

Wavenumber (cm-1)

O
D

[Trpzip2] = 10 mM



110 
 

 

Figure 6.3   Intensity of the 1616 cm-1 band of Trpzip1 (1.2 mM, pH 3) as a function of 

incubation time, showing the aggregation kinetics of this peptide at acidic pH. For 

comparison, the aggregation data of Trpzip1 (0.7 mM) obtained at pH 13 are shown in 

the inset. The corresponding FTIR spectra are presented in Figure 6.17. 
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Figure 6.4   Absorbance of Trpzip1 (2 mM, pH 3) at 1616 cm-1 versus incubation time, 

showing its aggregation kinetics. 

  

0.02

0.04

0.06

0.08

0 50 100 150 200

O
D

Time (hour)



112 
 

 

Figure 6.5   Amide I′ spectra of Trpzip2 (~6 mM) at pH 13 measured after the peptide 

sample had been incubated for 1 day and 6 days, as indicated.  
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Figure 6.6   CD spectra of Trpzip1 monomer and aggregates, as indicated.  
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Figure 6.7   Representative amide I′ spectra of Trpzip2-K (0.5 mM, pH 3) obtained after 

different sample incubation times, as indicated. Shown in the inset is the intensity of the 

1616 cm-1 band as a function of incubation time. The band intensities were obtained from 

the FTIR spectra shown in Figure 6.18. 
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Figure 6.8   CD spectra of monomeric and aggregated Trpzip2-K samples (40 µM, pH 

3), as indicated. The aggregated sample was prepared by diluting a more concentrated 

peptide sample (0.5 mM) that had been incubated for 14 days to allow aggregate 

formation.  
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Figure 6.9   FTIR spectrum of an aggregated Trpzip2-K sample (3.7 mM in D2O) in the 

amide I′ region (red). Upon irradiation of this sample with 355 nm light for 

approximately 12 hours, the spectrum (grey) shows significant changes from its initial 

shape, indicating that light excitation can induce disassembly of the aggregates. 
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Figure 6.10   Amide I′ bands of an aggregated Trpzip2-KK sample (2.2 mM, D2O) 

obtained under different conditions, as indicated. These spectra show that photocleavage 

of the nvoc group on Lys8 results in aggregate disassembly. The band located near 1700 

cm-1 arises from the C=O stretching vibration of the Lys12 sidechain acrylamide.  
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Figure 6.11   Amide I′ bands of Trpzip2-W4A (10 mM, pH 3) obtained at two incubation 

times, as indicated. 
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Figure 6.12   Amide I′ band of Trpzip1 (2.4 mM, pH 3) as a function of temperature. 
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Figure 6.13   Amide I′ band of Trpzip2-K (4 mM, pH 3) as a function of temperature.  
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Figure 6.14   Representative AFM image of the peptide fibrils formed by Trpzip2-K after 

an incubation period of 14 days. 
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Figure 6.15   Representative AFM image of the peptide fibrils and aggregates formed by 

Trpzip1 after an incubation period of 14 days. 
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Figure 6.16   CD T-melt data of Trpzip2-K (blue) and Trpzip2-W4A (green) monitored 

at 227 nm. The solid line (red) is the best fit of these data to a two state model. 
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(B) 
 

 

 

 

 

 
 

Figure 6.17   FTIR spectra of Trpzip1 in the amide I′ region obtained at different 

incubation times, as indicated, and solution conditions: (A) 1.2 mM peptide and pH 3 and 

(B) the 0.7 mM peptide and pH 13.  
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Figure 6.18   FTIR spectra of Trpzip2-K (0.5 mM, pH 3) in the amide I′ region obtained 

at different incubation times, as indicated.  
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7   Photo-Initiated Disassembly of Fibrils: Applications to Amyloids and 
Peptide Hydrogels 

 
Portions of this chapter have been adapted with permission from Chemical Physics Letters, 
Thomas J. Measey,‡ Beatrice N. Markiewicz,‡, and Feng Gai, (2013) 580, 135-140. DOI: 
10.1016/j.cplett.2013.06.055.337 Copyright (2013) Elsevier. (‡ Denotes equal authorship) 
 

7.1   Introduction 

The phenomenon of protein self-assembly, under either native or nonnative conditions, 

has gained a great deal of attention given its connection to several pathological 

conditions, such as Alzheimer’s, Parkinson’s, and Type II Diabetes.25,361 The onset of 

these conditions is correlated with the accumulation of insoluble deposits (or amyloids) 

that adopt a characteristic fibrillar, cross-β-sheet morphology.25,132 At the same time, the 

design of protein/peptide self-assemblies into such structures is also actively pursued to 

generate biological architectures and scaffolds, i.e., peptide hydrogels, that are posited to 

yield many new applications, ranging from regenerative medicine to the delivery of 

therapeutics.362 Earlier studies support the notion that within these structures, 

hydrophobic sidechain interactions play a key role in mediating self-assembly and 

stabilization of β-sheet arrangements, emphasizing the importance between polypeptide 

sequence and fibril forming propensity.26,132,316,345,363,364 Therefore, a major motivation in 

amyloid research is to develop suitable inhibitors using small molecules365-368 and peptide 

fragments derived from parent sequences28,369,370 to interfere with these stabilizing non-

covalent interactions. Similarly, the exploration of peptide hydrogels relies on the rational 

design of sequences that promote favorable hydrophobic contacts to facilitate fibril 

assembly.362 However, currently there is a lack of experimental techniques that are 
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capable of disassembling mature protein/peptide aggregates or fibrils, making the 

reversal of protein aggregation processes difficult. The key hypothesis of this study is 

founded on the idea that by introducing a moiety, which can produce a light-activated 

charge, into the fibril core, we can significantly weaken the hydrophobic interactions 

crucial to the assembly of aggregates, fibrils, or hydrogel matrices, and may be able to 

disrupt these higher order structures. To test this hypothesis, we used a well characterized 

photolabile non-natural amino acid, Lysine-4,5-dimethoxy-2-nitrobenzyloxycarbonyl 

(Lys(nvoc)), and several disease related and hydrogel forming peptide systems. We 

believe this method provides a novel means to manipulate the conformations of otherwise 

irreversible structures, potentially rendering it useful for a broad range of biological 

applications ranging from therapeutic research to the de novo design of bionanomaterials.   

The use of light-activated triggers to precisely tune biological processes has been 

broadly applied, for example in regulating gene expression, neuronal activity, protein 

activation, and peptide folding/unfolding.112,371,372 Specifically, “caged” (or light 

controllable) compounds, usually involving an aromatic moiety, have been site-

specifically introduced into amino acid sidechains, mRNA phosphate backbones, and 

hormones in efforts to activate biological activity upon light exposure.112,373-375 For 

protein systems, photocages and photo-linkers have been used to disrupt coiled-coil 

conformations in short peptides,376 and to trigger aggregation of Amyloid-β (Aβ)131 and 

other β-sheet forming peptides.129,137   

Herein, we use a lysine analog, Lys(nvoc), which has been shown to produce a 

native lysine sidechain upon light activation in a biologically safe spectral region (Figure 
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7.1).335 Prior studies on larger proteins have suggested that a charged lysine buried within 

an otherwise hydrophobic core stimulates an energetic process involving both local 

unfolding and increased hydration, which supports the expected outcome with smaller 

peptides via our proposed method.377,378 The Lys(nvoc) cage however, provides light 

controlled versatility between a hydrophobic (prior to photocleavage) and a hydrophilic 

(after photocleavage) sidechain. Due to the key role that lysine plays in many biological 

interactions and processes, Lys(nvoc) has been used to regulate protein 

functionality,335,379 and has been successfully integrated into cellular environments.380-382 

Taken together, these examples demonstrate the applicability of Lys(nvoc) in the 

experiments presented here while also revealing the potential viability of incorporating 

Lys(nvoc) into living cells, furthering its biological value. 

  We employ two well studied model amyloid systems, i.e., those associated with 

Alzheimer’s disease (Aβ peptide) and Type II Diabetes (hIAPP peptide), to test the 

feasibility of the proposed method. In particular, we use a bottom-up approach, working 

with truncated versions of these peptides identified to be amyloidogenic regions critical 

to the self-assembly of fibrils.28 Both Aβ and hIAPP contain small amyloidogenic 

fragments, or in other words, segments that form fibrils similar in morphology to the full 

length peptides, namely, Aβ16-22 and hIAPP22-27. Moreover, these peptide fragments 

contain a phenylalanine (Phe) residue shown to affect the integrity of higher order 

structures and kinetics of self-assembly, highlighting the importance of hydrophobic 

sidechain interactions in amyloid formation.27,29,383-385 A previous study in the Gai lab 

confirmed that this Phe19 to Lys(nvoc) mutation in Aβ16-22 is conservative in that it 
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preserves the intrinsic aggregation propensity, but it also showed that the fibrils formed 

by this mutant can be disassembled by light.336  Based on this notion, we demonstrate that 

introducing Lys(nvoc) in the place of Phe residues in hIAPP22-27 also conserves the 

aggregation propensity of this peptide due to the aromatic nature of the photocage, while 

photocleavage produces a charge at these positions to disassemble fibrils. Later, we show 

that the same disassembly effect can be accomplished in the full length Aβ1−42 peptide. In 

addition, to expand its biological applicability, we were able to disassemble fibrils 

formed by the co-aggregation of the photocaged mutant with the native structures of the 

wild-type peptide. 

Moreover, we test the proposed method on peptide hydrogels, which are 

structurally and characteristically similar to amyloids, and form fibril networks that are 

extremely hydrated, emphasizing their potential use in biological applications.362 

Pioneering work by Zhang and coworkers led to the discovery of several ionic-

complementary peptides, comprised of alternating polar and nonpolar residues, which 

arrange into layers of hydrophobic and hydrophilic surfaces, thus undergoing optimal 

electrostatic interactions to facilitate self-assembly into highly ordered fibrillar 

networks.362,386 As a result, we test our method on a model hydrogel system (sequence: 

FKFEFKFE, Figure 7.2),387 to investigate whether incorporation of Lys(nvoc) into key 

hydrophobic positions (i.e., Phe to Lys(nvoc) mutations) can trigger the disassembly of 

the hydrogel architecture in a spatiotemporal manner.  
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7.2   Experimental Section 
 

Materials  

D2O (D, 99.96 %) and deuterium chloride (D, 99.5 %) were purchased from Cambridge 

Isotope Laboratories (Andover, MA). Fmoc–Lys(4,5–dimethoxy–2–nitro–

benzyloxycarbonyl)–OH (Fmoc–Lys(Nvoc)–OH) was purchased from Anaspec, Inc. 

(Fremont, CA), and used without further purification.  Fmoc-protected amino acids were 

purchased from Advanced Chem Tech (Louiseville, KY).  Rink amide resin (Subs. = 

0.28) was purchased from Novabiochem (San Diego, CA).  All peptides were synthesized 

using standard fluorenylmethoxycarbonyl (FMOC) chemistry protocol on a PS3 peptide 

synthesizer (Protein Technologies, Tuscon, AZ), and purified by reverse-phase HPLC 

(1100 Series; Agilent Technologies, Santa Clara, CA).  The identity of the peptides were 

verified using MALDI-TOF mass spectrometry (Voyager-DE RP, Applied Biosystems, 

Foster City, CA). 

 
Sample Preparation   

Peptides were first dissolved in a 50/50 mixture of 0.1 M deuterium chloride (DCl) in 

D2O/acetonitrile, and the resulting solution was lyophilized overnight, allowing the 

removal of residual trifluoroacetic acid (TFA), which absorbs in the amide I' region of the 

peptide IR spectra.  The amyloid peptide samples (Aβ and hIAPP) were prepared by 

directly dissolving the lyophilized peptide in 20 mM phosphate buffer D2O solution (pH 

7.0). The samples were incubated for at least 24 hours at room temperature or until 

complete fibrillization was achieved. The hydrogel peptide samples used in the 

subsequent experiments were prepared by directly dissolving the lyophilized peptide in a 
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D2O solution with the targeted NaCl concentration (100 mM) and sonicated (20 – 60 

minutes) to obtain a homogeneous solution.  Samples were left to rest overnight to ensure 

complete hydrogelation.  The pH of all samples was between 2 and 3 before gelation.  

Similarly, the peptide concentration of all samples was measured prior to inducing 

aggregation/gelation and prior to the addition of NaCl in the gels. Specifically, the 

concentration of the caged-modified peptides were determined with the absorbance of the 

nvoc moiety at 350 nm, using an extinction coefficient of 5485 M-1 cm-1 for a single 

mutation and 10,970 M-1 cm-1 for a double mutation.336 The concentration of the wild-

type hydrogel peptide (sequence: FKFEFKFE) was determined via the absorbance of 

phenylalanine residues at 257.5 nm.388  Furthermore, the concentration of the wild-type 

hIAPP22-27 peptide was determined using the backbone absorption at 214 nm and an 

extinction coefficient of 10,094 M-1 cm-1.389 

 
FTIR Measurements  

FTIR spectra were collected at 25 °C on a Nicolet Magna-IR 860 spectrometer at a 

resolution of 1 cm-1.  The sample was injected into an assembled CaF2 cell that was 

divided into two compartments (one for the reference, and one for the sample), using a 

homemade Teflon spacer. This enabled the collection of the sample and reference spectra 

under identical conditions.  An automated translational stage was used to cycle the 

sample and reference sides into and out of the IR beam, to correct for the slow instrument 

drift.  For each cycle, 8 single-beam spectra were collected on each side, and the final 

spectra correspond to the average of 32 such cycles.  The pathlength of the assembled cell 
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was 52  µm determined via the interference fringes of the empty cell.  The spectra were 

baseline-corrected using instrumental software (OMNIC 6.1a). 

 
AFM Measurements  

The majority of the AFM experiments were performed in air at room temperature, using a 

multimode atomic force microscope (Nanoscope IIIa; Digital Instruments, Santa Barbara, 

CA), equipped with an E-type piezoscanner. The AFM images obtained for two hydrogel 

peptides (i.e., KFE17 and KFE4) were performed in the TappingMode (Air) setting using 

a Bruker Dimension Icon AFM (Santa Barbara, CA).  5 µL of sample solution was 

applied to a freshly-cleaved mica surface for ~5 seconds, rinsed with 300 µL millipore 

water, and subsequently dried with a slow stream of N2 gas.  Tapping-mode imaging was 

carried out with a silicon probe (TESP) from Veeco (Camarillo, CA).  Height and 

deflection images were obtained with a scan rate of ~1 Hz, integral gain of 0.4, and a 

proportional gain of 0.6.  Multiple images were obtained for each sample at different 

locations on the mica substrate, to confirm either the presence or absence of fibrils. 

 
Photocleavage Measurements 

Irradiation of samples was carried out by placing the sample in the optical path of a 

FluoroLog fluorometer (HORIBA Jobin Yvon), at room temperature.  The excitation 

wavelength was set to 350 nm with a band width of 30 nm (i.e., the excitation slit width 

was set to 0.75 cm).  The intensity of the excitation light at the sample was estimated to 

be about 8.8 mW cm-2.  To allow for a direct comparison of FTIR spectra and AFM 

images of the irradiated sample, both the filled FTIR cell and an aliquot of the stock 
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solution (for AFM) were placed together in the optical path of the 350 nm light, and 

irradiated for a given amount of time. 

 
Rheological Measurements   

Rheological measurements were performed on a TA Instruments RFS II rheometer at 25 

°C using an 8 mm parallel plate and a gap size of 250 µm.  Approximately 24 µL of the 

aged hydrogel sample (10 mM peptide in 100 mM NaCl D2O solution) was placed on the 

stage.  Three frequency sweeps were performed and averaged for each sample after 

equilibration on the stage. 

 

7.3   Results and Discussion 
 
 
7.3.1   Disassembly of Amyloid Fibrils 

To initially test the feasibility and robustness of this method, we employed the Lys(nvoc) 

modifications within short amyloidogenic fragments derived from the full length Aβ and 

hIAPP peptides. A previous study carried out by our lab has shown that fibrils formed by 

an Aβ16-22 (sequence: 16KLVFFAE22) mutant, which contains Lys(nvoc) at the native 

Phe19 position (referred to hereafter as Aβ-F19C), can be sufficiently disassembled via 

photocleavage at 350 nm. This mutation was initially designed based on evidence 

demonstrating that Phe19 in both Aβ16-22 and the full length Aβ peptide is critical to fibril 

formation.29  To verify whether this method can be universally applied to other model 

systems, we chose the hIAPP22-27 fragment (sequence: 22NFGAIL27), which is the 

shortest hIAPP peptide fragment that exhibits similar aggregation propensity and toxicity 

as the full length hIAPP chain.383 Because the self-assembly of hIAPP22-27 heavily 
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depends on Phe23,27 we mutated this position to Lys(nvoc) (hereafter referred to as hI-

F23C). As shown in Figure 7.3a, the FTIR spectra of hI-F23C demonstrates that after an 

incubation period of ~24 hours, this peptide forms antiparallel β-sheet aggregates as 

indicated by the high intensity band at ~1620 cm-1 and weak band at ~1680 cm-1.70 More 

importantly, the corresponding AFM image in Figure 7.3b reveals that hI-F32C self-

assembles into aggregates that form relatively small homogeneously sized fibrils. After a 

2.5 hour irradiation period at 350 nm to remove the nvoc moiety, a decrease in intensity 

of the ~1620 cm-1 and ~1680 cm-1 transition and concurrent increase in the disordered 

band intensity at 1650 cm-1, signifies the disappearance of β-sheet secondary structure. 

Likewise, the disassembly of the fibrils was confirmed by the corresponding AFM image 

(Figure 7.3b).  

 Based on the two model peptides tested thus far, Aβ-F19C previously336 and hI-

F23C herein, we have shown that their Phe positions serve as an aggregation “hot spot”, 

or in other words, a point of intermolecular contact along the self-assembly process. It 

would be ideal to be able to incorporate the photocaged mutants into these positions in 

the native structures to render the disassembly of fibrils formed by the wild-type 

sequences. To test this capability which could potentially expand its biological 

usefulness, we attempted to co-aggregate both hI-F23C and Aβ-F19C with their wild-

type counterparts (i.e., hIAPP22-27 and Aβ16-22) so that the Lys(nvoc) moiety can sequester 

within the highly hydrophobic region and promote charge-induced disassembly. Two 

different approaches were used. The first involves co-aggregation of the monomers of the 

photocaged mutant and the wild-type sequence, which was accomplished by initially 
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dissolving a mixture of the two peptides and subsequently allowing aggregation between 

the two structures. For example, as shown in Figure 7.4, when monomers of hI-F23C 

were mixed and incubated with monomers of wild-type hIAPP22-27 in a 1:1 ratio, the 

initial FTIR spectral signature implies that it self-assembles into well formed β-sheets. 

Upon irradiation of the sample at time intervals of 1, 3, and 12 hours, the previously 

formed aggregate structures have been abolished via Lys(nvoc) cleavage. This evidence 

suggests that within this model system, the Lys(nvoc) sidechain of the hI-F23C mutant is 

amenable to integration with hydrophobic regions of the native structures, and also, that 

the conversion to a charged Lys via photocleavage serves as an avenue for destabilization 

of the high order structures.      

 Furthermore, the second experimental approach to demonstrate this idea was 

designed based on the notion that amyloid fibril conformations continue to be structurally 

dynamic even after equilibrium is reached. Previously, Carulla and coworkers performed 

hydrogen exchange measurements of fibrils that suggested there is a ‘molecular 

recycling’ mechanism, where monomers within solution occasionally replace monomers 

in fibrils.390 More recently, a 2D-IR study on hIAPP1-37 revealed that there are significant 

structural changes that occur even after the fibrils appear to be in equilibrium.391 

Computational studies have also shown that monomers in solution can undergo a ‘dock 

and lock’ mechanism to integrate into the underlying structure of preformed fibrils.392-394 

Based on these proposed mechanisms, we tested whether monomers of the photocaged 

variants can also potentially exchange with monomers in mature fibrils formed by the 

wild-type. Wild-type Aβ16-22 was incubated for 2 weeks to grow mature fibril structures. 
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Afterwards, monomeric Aβ-F19C was added to the solution at an equal molar ratio. The 

solution was left to equilibrate for approximately 1 month and FTIR spectra were taken 

before and after irradiation with 350 nm light. As shown in Figure 7.5, the spectrum 

before irradiation shows signatures (at ~1620 cm-1 and 1690 cm-1) typically observed in 

antiparallel β-sheet aggregates. After 2 hours and 12 hours of light irradiation, there is a 

visible decrease in both the bands at 1620 cm-1 and 1690 cm-1, and an increase at 1650 

cm-1, which suggests a decrease in β-sheet structure with a concomitant increase in 

disordered conformations. Evidence confirming that Aβ-F19C incorporates into the 

mature fibrils lies in the change of the FTIR weak β-sheet band. Previously, it has been 

shown that the high frequency band is shifted to ~1705 cm-1 in the FTIR spectrum of Aβ-

F19C aggregates/fibrils.336 The high frequency band in the co-aggregated sample remains 

at 1690 cm-1 with no increase in intensity at ~1705 cm-1, suggesting that Aβ-F19C adapts 

to the anti-parallel β-sheet structures of the Aβ16-22 wild-type. Taken together, these 

results suggest that in both co-aggregation scenarios presented herein, the monomers of 

the Lys(nvoc) peptide variants are capable of interacting with the native fibril structures,  

and are efficient to induce light-activated disassembly.  

 Founded on the ideas presented above, experiments were conducted on the 

biologically relevant full length Aβ1-42 peptide (sequence: DAEFRHDSGY-

EVHHQKLVFF-AEDVGSNKGA-IIGLMVGGVV-IA). As was shown previously, the 

Phe19 position in the short model peptide played a key role in the 

aggregation/disaggregation process. Therefore, a single Lys(nvoc) mutation was 

incorporated at the Phe19 position in Aβ1-42 (hereafter referred to as Aβ42-F19C). A 
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sample of Aβ42-F19C was incubated for 2 weeks and shows characteristic parallel β-sheet 

structure confirmed by a high intensity band at 1620 cm-1 (Figure 7.6). After a 30 minute 

irradiation period, there is a complete disappearance of the β-sheet structure. This 

reiterates again that not only is Phe19 especially important for maintaining the highly 

ordered fibril structure, but the light-induced transition to a charged sidechain can 

destabilize fibrils formed by even the longer sequences.  

 Overall, the studies presented here provide a proof of principal concept that 

outlines the fundamental chemical interactions required to reverse/disassemble highly 

ordered protein structures from within the core of the fibril. First, we broadly show that 

when Lys(nvoc) replaces a hydrophobic residue critical to the aggregation of a sequence, 

it maintains its intrinsic self-assembly pathway, while photocleavage of the nvoc moiety 

results in disaggregation. This has been effective both within small amyloid sequences as 

well as the large full length Aβ1-42 peptide. More interestingly, the Lys(nvoc) containing 

peptides can be incorporated and/or co-aggregated with the native sequences to also 

facilitate disassembly. Note, we do not expect this method to evolve into a therapeutic 

route, however, the goal of these investigations is to provoke new studies that can 

implement analogous chemical interactions within these structures using in vivo 

approaches.  

7.3.2   Photo-induced Disassembly of Peptide Hydrogels 

Much effort has been devoted to the generation of ‘smart’ hydrogels, in which their 

structures are responsive to an external stimulus, such as a change in pH,395 

temperature,396 salt concentration,397 or light.136,137,398 Controlling such structures via light 
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offers the advantage of spatial and temporal tunability. To construct a photoresponsive 

peptide hydrogel, a phototrigger needs to be incorporated into the peptide of interest.  In 

addition, this phototrigger must meet the following requirements to be effective: (1) it 

does not alter the peptide’s ability to form hydrogels, (2) upon absorbing a photon it 

induces disassembly of the β-sheet structures underlying the hydrogel’s fibrillar 

networks, and (3) it should be biocompatible.  Based on our work on the light triggered 

disassembly of peptide fibrils336 and the study of Lauffenburger and coworkers399 on 

peptide hydrogels, herein we employed Lys(Nvoc) as the phototrigger and the KFE 

peptide as a model system (Figure 7.2 and Table 7.1).  Lauffenburger and 

coworkers399,400 have shown that at peptide concentrations between 1-10 mM and salt 

concentrations >5 mM, the KFE peptide readily self-assembles into a macroscopic 

hydrogel with a β-sheet-rich fibril network.  More importantly, the amphiphilic nature of 

the KFE peptide (refer to Figure 7.2) promotes formation of β-sheets with two layers, 

namely a hydrophilic layer where negatively and positively charged sidechains of 

adjacent peptides pack together via ionic interactions, and a hydrophobic layer that is 

stabilized by non-covalent interactions between adjacent non-polar sidechains.  This 

pattern of alternating hydrophobic and electrostatic interactions provides an avenue for us 

to use light and Lys(Nvoc), which results in a charged lysine upon excitation with a near-

UV photon, to modulate these stabilizing forces and, hence, disrupt the structural 

integrity of the target peptide hydrogel.  As listed in Table 7.1, three variants were 

synthesized that contained Phe to Lys(nvoc) mutations.  The chosen sequences were 

designed to test (1) whether incorporation of two Lys(nvoc) mutations into the 
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hydrophobic layer would allow self-assembly of similar β-sheet hydrogel architectures as 

the wild-type, (2) if photocleavage of the aromatic nvoc moiety results in a fast-acting 

degradation process, (3) the effect of the Lys(nvoc) positions (i.e., the termini versus the 

central residues) on the viscoelastic and/or structural properties, and (4) the effect of 

sequence length on the hydrogel structure.   

 Similar to the wild-type KFE peptide, we found that in the presence of ~100 mM 

NaCl and at peptide concentrations ranging from 5-10 mM, the KFE35 and KFE17 

peptide, both containing two Lys(nvoc) mutations but in different positions, forms a self-

supporting macroscopic hydrogel within a few hours, as shown in Figure 7.7. As these 

hydrogel matrices were subjected to irradiation at 350 nm, a transition to a non-viscous 

solution was observed (Figure 7.7), confirming the fact that peptides KFE35 and KFE17 

can undergo a light-activated structural transformation. As for the shorter fragment 

KFE4, we did not observe significant changes in the solution viscosity to start.  

 Furthermore, we employed FTIR spectroscopic measurements to assess the 

secondary structure of the hydrogels, and monitor the light-induced structural transitions. 

In agreement with previous literature,364 the amide I’ band of the KFE peptide hydrogel is 

characteristic of a predominant population of antiparallel β-sheet structures, as evidenced 

by two sharp bands centered at 1620 and 1685 cm-1 (Figure 7.8a). Similarly, the initial 

FTIR spectra (Figure 7.8b) of the KFE35 hydrogel before irradiation also displays sharp 

bands in the same region, with a slight enhancement in the high frequency IR transition. 

While a mechanistic interpretation is difficult without further investigation, we believe 

the augmentation arises from exciton couplings involving the carbonyl group of 



140 
 

Lys(nvoc) and the peptide amide groups.  Likewise, the KFE17 hydrogel structure also 

adopts an antiparallel β-sheet alignment similar to the wild-type (Figure 7.8c). On the 

contrary, KFE4 yielded IR spectra (Figure 7.8d) that were vastly different from the other 

three structures. The appearance of the band at 1625 cm-1 indicates that there is in fact β-

sheet content present, however, the emergence of several high frequency transitions most 

likely reveals that there is a heterogeneous distribution of conformations. More 

importantly, as indicated in the red FTIR traces (Figure 7.8), irradiation of the hydrogel 

samples result in the complete disassembly of the underlying β-sheet structures within 

30-90 minutes, as evidenced by the formation of a broad amide I’ band centered at ~1650 

cm-1. As a control, the wild-type KFE peptide (i.e., the peptide without the photolabile 

modification) was irradiated for an equal amount of time, and no structural change was 

observed. Overall, these results show that the Lys(nvoc) modified peptides are capable of 

organizing into β-sheets that can be controllably degraded via light.  

 To verify the presence of fibrils and explore the morphology of the self-assembled 

hydrogels, we performed AFM measurements on all three photoactive peptides.  A 

combined AFM and molecular dynamics study published by Marini et al.400 on the 

structural characterization of KFE determined that the initial architectures are comprised 

of β-sheet helical ribbons which then transition into fibers. According to the AFM images 

in Figure 7.9, the KFE35 and KFE17 peptide hydrogels also organize into a relatively 

homogenous fibrillar network, as seen previously for KFE.400  Moreover, a closer 

observation of the images revealed several helical ribbons buried underneath the mature 

fibrils. This was more obvious in the KFE17 image, but it can also be observed for 
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KFE35 even though the image window is much larger. Specifically, since the β-sheet 

helical ribbons were characterized as intermediates leading to fibril formation in the 

original study of KFE,400 this suggests that even with two Lys(nvoc) mutations the 

peptides are able to adopt a similar morphology and maintain a similar self-assembly 

pathway as the wild-type. Unfortunately, the same cannot be said for the KFE4 peptide. 

The AFM images in Figure 7.9c indicate that there is a mixture of conformations 

composed of spherical aggregates and fibers, which is consistent with its FTIR spectra 

showing several high frequency β-sheet bands. Furthermore, even the fibrils thus formed 

show a dramatically different profile, mainly in that it contains a pitch that is not evident 

in the other longer peptides. As expected, the inability of KFE4 to transform into a 

viscous gel-like solution stems from the absence of a well-ordered and homogenous β-

sheet network.  Our motivation to design this shorter sequence was an attempt at a 

minimalist forming gel that has the added advantage of photodegradability. 

Unfortunately, shortening the sequence in this case diminishes the number of 

intermolecular residue contacts, thus resulting in non-uniform structures.  

In addition to specific structural requirements, a hydrogel material must possess 

distinctive mechanical and viscoelastic properties. For oscillatory shear rheometric 

measurements of hydrogels, the frequency dependence of the storage modulus (G’) and 

the loss modulus (G”) can be used to report on the gel stiffness. Specifically, gels that are 

rigid and self-supporting yield G’ values that are at least 10-fold greater than G”,364,401 

and this is a crucial prerequisite for biomedical applications. The frequency sweeps 

shown in Figure 7.10 do in fact illustrate this trend, where G’ is significantly higher than 
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G”. The rheological measurements of wild-type KFE are consistent with previously 

reported values,364 and more importantly, KFE35 and KFE17 display similar viscoelastic 

properties as wild-type KFE. Using the magnitude of G’ to judge the strength of the gels, 

the order of strongest to weakest is KFE17 > KFE35 > KFE > KFE4. This data suggests 

that positioning of the Lys(nvoc) mutations (i.e., KFE17 versus KFE35) can result in 

different structural frameworks and therefore varying viscoelastic properties. One reason 

Lys(nvoc) containing gels have a greater rigidity may be due to the enhanced surface area 

of hydrophobic interactions induced by the large aromatic moiety. This would in turn 

create a more stable intermolecular network. If this notion is true, this is most effective 

when two Lys(nvoc) residues are positioned near the termini of the peptide. While there 

are slight differences in gel stability among the eight residue peptides (i.e., KFE, KFE35, 

KFE17), overall the results support the fact that  incorporation of Lys(Nvoc) into the 

amino acid sequence of the KFE peptide does not significantly alter the propensity of the 

peptide to self-assemble and subsequently transition to a gel state. The major outlier in 

this case is the KFE4 hydrogel solution which shows little or no gel rigidity, and again, 

this is consistent with the FTIR spectra and AFM images presented above.  

Taken together, the results presented above demonstrate the validity of using light 

to modulate the structural integrity of a model peptide hydrogel.  Our working hypothesis 

is that generation of a charge, via a photochemical reaction, in a strategically important 

site in the peptide sequence is sufficient to destabilize the peptide hydrogel’s underlying 

nanofibrillar scaffold. Specifically, we chose a well studied and biocompatible nonnatural 

amino acid, Lys(Nvoc), as the phototrigger, which, upon photocleavage, is converted to a 
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charged lysine.  Using secondary structure analysis, microscopic imaging, and rheometric 

analysis, we confirm that the incorporation of Lys(nvoc) into the KFE sequence does not 

alter the hydrogel-forming propensity of the peptide and also the mechanical properties of 

the hydrogel thus formed; however, it provides a convenient mechanism of using light to 

trigger the degradation of peptide hydrogels.  More important, the current phototriggering 

method offers easy control over the spatial and temporal selectivity, an attribute that is 

invaluable to many applications, as in controlled drug and/or protein release systems, 

injectable scaffolds for tissue engineering and regenerative medicine, and 3D cell 

culture.402   

 

7.4   Conclusions 

Taken together, the compilation of studies presented herein demonstrates a new method 

that allows the disassembly of various highly ordered structural scaffolds arising from the 

self-assembly of peptides. The photolabile non-natural amino acid, Lys(nvoc), used in 

this work, allows tunability of the chemical environment via light in the form of a 

transition from a hydrophobic to charged hydrophilic sidechain. Thus, incorporation of 

Lys(nvoc) into aggregation-prone peptides allows generation of a charge via light 

activation in regions that are otherwise hydrophobic and essential for stabilizing 

fibril/aggregate environments, finally resulting in their disaggregation. Here, we 

demonstrated this method on two types of systems, amyloid fibrils and peptide hydrogels. 

First, we show that when Phe23 in the wild-type hIAPP22-27 sequence is replaced with 

Lys(nvoc) (i.e., hI-F23C), the resulting mutant is not only capable of forming fibrils, but 
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the fibrils thus formed can be disassembled via illumination. The same result was 

observed when Phe19 was replaced with Lys(nvoc) in the full length Aβ1-42 sequence. In 

addition, to disaggregate fibril structures formed by the native peptide, we demonstrated 

that after co-aggregation of hI-F23C and the wild-type hIAPP22-27 monomers, the 

peptides form an amalgamate fibril that can be disassembled upon photocleavage of 

Lys(nvoc). Taking this one step further, we determined that monomers of Aβ-F19C can 

be added to mature wild-type Aβ16-22 fibrils and can also be disassembled to some degree. 

The second model system we investigated was a well-studied peptide hydrogel sequence 

(i.e., KFE) composed of alternating hydrophobic and charged residues and as a result, 

self-assembles into individual non-covalent and ionic interacting β-sheet layers. We 

illustrate two examples where two Phe residues in the hydrophobic layer were site-

specifically modified to Lys(nvoc), (1) Phe1 and Phe7 and (2) Phe3 and Phe5. The 

resulting designed peptides favorably formed stiff hydrogel scaffolds composed of a 

dense network of β-sheet fibrils and with viscoelastic properties comparable to its wild-

type. More interestingly, our results confirm that the current Lys(nvoc) photocleavage 

method indeed proves a convenient means to control hydrogel degradation in a site-

specific manner.  Overall, while here we have mainly focused on the applications toward 

amyloid related peptides and biomaterial applications, the findings presented above can 

be applicable to other biological and/or medical applications where a high degree of 

spatial and temporal control over the structural framework is necessary.  

 

 



145 
 

Acknowledgements  

We gratefully acknowledge financial support from the National Institutes of Health (GM-

065978), the NIH Ruth Kirschstein National Research Service Award Predoctoral 

Fellowship (F31AG046010), and the National Science Foundation-supported Nano/Bio 

Interface Center (NBIC) at the University of Pennsylvania. We also thank Anne van 

Oosten, Prof. Paul Janmey, and the Laboratory for Research on the Structure of Matter 

(LRSM) at the University of Pennsylvania for assistance with rheological measurements, 

and Dr. Timothy Wade and the Drexel University Department of Chemistry for 

assistance with the AFM measurements.  

 

  



146 
 

Abbreviation Sequence 

KFE FKFEFKFE 

KFE35 FKXEXKFE 

KFE17 XKFEFKXE 

KFE4 FKXE 

 

Table 7.1   Summary of peptide hydrogel sequences. X denotes the Lys(nvoc)  non-

natural amino acid mutation.  
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Figure 7.1   Photochemical reaction scheme of Lys-(dimethoxy-2-nitrobenzylcarbonyl) 

(Lys(nvoc)). Irradiation with UV light results in restoration of a native lysine amino acid 

and also photocleavage by-products.  
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Figure 7.2   Chemical structure of the model peptide hydrogel (KFE, Table 7.1) used in 

the present studies (sequence: FKFEFKFE).  
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Figure 7.3   (A) FTIR spectra of hI-F23C (2 mM, pH 7) before and after irradiation with 

UV light at 350 nm, as indicated. (B) AFM images of the hI-F23C fibrils before and after 

irradiation. The image spans a dimension of 10 x 10 μm.  
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Figure 7.4   FTIR spectra of hI-F23C co-aggregated with wild-type hIAPP22-27 in a 1:1 

ratio (2 mM, pH 7) before and after periods of UV irradiation at 350 nm, as indicated.  
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Figure 7.5   FTIR spectra of Aβ-F19C and Aβ16-22 in a 1:1 ratio (4 mM, pH 7) with and 

without light irradiation, as indicated. Aβ-F19C monomers were added to an Aβ16-22 

solution that was previously allowed to form aggregates for two weeks. The initial 

spectrum was taken after 1 month for equilibration of this mixture. 
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Figure 7.6   FTIR spectra of Aβ42-F19C (2 mM, pH 7) before and after an irradiation 

with UV light, as indicated.  Aβ42-F19C was incubated for 2 weeks prior to the collection 

of FTIR spectra.  
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Figure 7.7   Picture of a 10 mM sample of (A) KFE35 and (B) KFE17. (Right) The 

samples formed a self-supporting gel, showing that the solution is viscous and does not 

flow. (Left) After ~30 mins of irradiation with UV light at 350 nm, the gel degrades and 

the sample transitions into a non-viscous solution.  

 



154 
 

 
 
Figure 7.8   (A) FTIR spectra of the KFE hydrogel in the amide I’ region before and after 

irradiation with 350 nm light for 90 min, showing that light is ineffective in this case to 

change the peptide and hence the hydrogel structure. FTIR spectra of the (B) KFE35 (C) 

KFE17 and (D) KFE4 hydrogel in the amide I’ region before and after irradiation with 

350 nm light for 90 min, showing that the underlying peptide secondary structure 

undergoes a β-sheet to disordered conformational transition. 
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Figure 7.9   AFM images of (A) KFE35 (B) KFE15 and (C) KFE4.  
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Figure 7.10   Rheological measurements of (A) KFE, (B) KFE35, (C) KFE17, and (D) 

KFE4 hydrogels. Frequency sweeps were conducted from an angular frequency of 1 to 60 

rad/s. The elastic moduli (G’) and viscous moduli (G”) were measured for each sample.  
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8   C≡N Stretching Vibration of 5-Cyanotryptophan as an Infrared 
Probe of Protein Local Environment: What Determines Its 
Frequency? 

 
Reproduced by permission of the PCCP Owner Societies. Physical Chemistry Chemical Physics, 
Wenkai Zhang,‡ Beatrice N. Markiewicz,‡ Rosalie S. Doerksen, Amos B. Smith III, and Feng 
Gai, (2016) 18, 7027-7034. DOI: 10.1039/C5CP04413H.403 Copyright (2016) PCCP Owner 
Societies. (‡ Denotes equal authorship) 
 

8.1   Introduction 
 
Vibrational spectroscopy is a powerful tool for assessing the structure and conformational 

dynamics of proteins. While many intrinsic vibrational modes, such as the amide I mode 

of the protein backbone, have been used for this purpose, they often lack the ability to 

reveal site-specific information due to spectral overlapping and/or vibrational coupling. 

To overcome this limitation, the past decade has seen an increased effort towards the 

development of unnatural amino acid-based infrared (IR) probes that can be used to site-

specifically interrogate various structural and environmental properties of proteins, such 

as the local electrostatic field, hydrogen-bonding (H-bonding) interactions, and degree of 

hydration.141,142,156,404,405 One of those unnatural amino acids is 5-cyanotryptophan 

(TrpCN). Waegele et al.294 found that the C≡N stretching vibrational mode of TrpCN, 

especially its bandwidth, is highly dependent on the percentage of water in water and 

tetrahydrofuran (THF) mixtures and, thus, suggested that this unnatural amino acid could 

be used as an IR probe of the local hydration status of proteins. By performing a 

combined QM/MM study on 5-cyanoindole, they further showed that, besides the H-

bonding interactions between water and the C≡N group, the interactions between water 

and the aromatic indole ring, especially the H-bonding interactions between water and the 
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indole amine (N-H) group, also influenced the C≡N stretching frequency.406 More 

specifically, they found that the H-bonding interactions occurring at the C≡N and N-H 

groups had different effects on the C≡N stretching frequency, with one (C≡N) shifting 

the frequency toward higher wavenumbers and the other (N-H) toward lower 

wavenumbers. This finding is particularly interesting as it suggests that the indole N-H 

group of TrpCN could be used to sense local H-bonding dynamics through measurement 

of the C≡N stretching vibration, especially under conditions where the nitrile group is not 

directly involved in hydrogen bond (HB) formation. To further verify this notion, herein 

we carried out static and ultrafast IR studies on 3-methyl-5-cyanoindole (3M5CI), which 

is the sidechain of TrpCN (Figure 8.1), in different solvents.  

Tryptophan (Trp) plays an important role in defining the folding, structure and 

function of many proteins; it is frequently found at or near sites that are responsible for 

protein-protein interaction,407 ligand binding,408,409 protein-DNA interaction,410,411 and 

enzyme catalysis.412,413 For example, the M2 proton channel of the influenza A virus uses 

a Trp tetrad to gate and control proton conduction across the viral membrane in an 

asymmetric manner after endocytosis, which enables uncoating and release of the viral 

RNA into the host cell for viral replication.414 In addition, it is well recognized that Trp 

plays a key role in anchoring membrane proteins and peptides in lipid bilayers as it is 

preferentially located at the water-membrane interface.415 For these reasons, Trp, which 

fluoresces upon excitation with ultraviolet light, has become one of the most frequently 

utilized fluorophores in the study of the structure-dynamics-function relationship of 

proteins via fluorescence spectroscopy. On the other hand, the study of the role of Trp in 
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protein structure and dynamics using IR spectroscopy is scarce. This is because none of 

the intrinsic IR active vibrational modes of Trp is particularly ideal for being used as a 

site-specific IR probe of proteins, due to spectral congestion, low extinction coefficients, 

or insensitivity to local environment.75,416 Since IR spectroscopy is capable of offering a 

higher temporal and sometimes structural resolution than fluorescence spectroscopy, it 

would be quite useful to confer distinct IR utility to Trp by adding a relatively non-

perturbing exogenous moiety to the indole ring that displays a strong, localized, and 

environmentally sensitive absorption band located in a non-congested region of the IR 

spectrum of proteins. While the C≡N stretching vibration of TrpCN seems to meet these 

requirements, further experimental study is required to delineate the factors that 

determine its frequency and to lay a quantitative foundation to use this vibrational mode 

to investigate various biophysical problems, such as the changes in local hydration 

environment and H-bonding dynamics. Our results showed that the frequency of the C≡N 

stretching mode of 3M5CI is not simply dictated by the immediate environment of the 

nitrile group, but instead, it depends on the microscopic surroundings of the entire 

molecule. In other words, specific and/or non-specific interactions with the C≡N group, 

the aromatic ring, and the pyrrole N-H group combined determine the position and width 

of this vibrational band. In addition, we found that when the nitrile group is buried in an 

aprotic environment, the C≡N stretching frequency exhibits a simple and linear 

dependence on the polarizability and H-bonding ability of the solvent. We believe that 

this finding is particularly encouraging and useful in applying TrpCN to probe local HB 

dynamics in cases where the benzene ring is situated in a dehydrated environment. 
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Further time-resolved measurements indicated that an ultrafast process at the 

vibrationally excited state produces a long-lived ground state bleach signal (τ ≈ 12.3 ps), 

making it possible to use TrpCN to probe dynamic events occurring on the timescale of 

tens of ps.  

 

8.2   Experimental Section 
 

Materials and Sample Preparation 

The details of the 3M5CI synthesis are given in the next section. N-methyl-5-cyanoindole 

(NM5CI) was purchased from Thermo Fischer Scientific (Loughborough, UK) and used 

as received. The following solvents (spectroscopic grade) were purchased from Acros 

Organics: methanol (MeOH), 2-propanol, dichloromethane (DCM), dimethyl sulfoxide 

(DMSO), dimethylformamide (DMF), pyridine, acetophenone, cyclopentanone, 

tetrahydrofuran (THF), 1,4-dioxane, toluene, tetrachloromethane, and 2,2,2-

trifluoroethanol (TFE); and hexafluorobenzene was purchased from Oakwood Products. 

We checked the water content in two representative solvents, DMSO and THF, using the 

OH stretching band at ~3500 cm-1. As indicated (Figure 8.2), in both cases the amount of 

water is negligible. Samples were freshly prepared before use by directly dissolving 

either 3M5CI or NM5CI in the desired solvent and the final concentration of the solute 

was approximately 33 mM for static and 100 mM for time-resolved measurements.  

 
Synthesis of 3-Methyl-5-Cyanoindole (3M5CI)  

3M5CI was prepared from 3-methyl-5-bromoindole using Scheme 8.1. Specifically, a 

conical heavy-walled microwave tube was charged with 3-methyl-5-bromoindole (500 
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mg, 2.39 mmol, 1 equiv), CuCN (320 mg, 3.59 mmol, 1.5 equiv), and anhydrous N-

methyl-2-pyrrolidone (NMP) (5 mL). Vigorous shaking of the microwave tube was 

employed to completely dissolve the reactants. The solution turned green during 

dissolution. The microwave tube was crimped and sealed and then inserted into a 

microwave (Biotage Initiator). The contents were heated to 250 oC for 1.5 hours at high 

absorption level. The reaction solution was allowed to cool, then diluted with Et2O (30 

mL) and then partitioned with water (15 mL) and brine (3 × 15 mL); the organic layer 

was dried over Na2SO4. The oil was loaded onto a silica-gel column and purified by flash 

chromatography using hexanes/ethyl acetate gradient to yield 246 mg (66%) of a white, 

amorphous solid. HRMS (ES) found m/z 157.0767 [(M+H)+; calcd. for C10H9N2: 

157.0766]; 1H NMR (500 MHz, Chloroform-d) δ 8.27 (s, 1H), 7.93 (dt, J = 1.6, 0.8 Hz, 

1H), 7.41 (d, J = 1.4 Hz, 1H), 7.40 (d, J = 0.9 Hz, 1H), 7.09 (dd, J = 2.3, 1.1 Hz, 1H), 

2.34 (d, J = 1.2 Hz, 3H). IR (KBr, cm-1) 2218.7 (s). 

 

Scheme 8.1   Reaction scheme of 3-methyl-5-bromoindole with CuCN and NMP to form 

3M5CI. 

 
Static and Time-Resolved IR Measurements 

All static IR measurements were carried out on a Thermo Nicolet 6700 FTIR 

spectrometer at a resolution of 1 cm-1. A solvent background has been subtracted for each 

spectrum shown. 2D IR spectra were obtained on a heterodyne-detected photon-echo 

setup with a boxcar geometry that has been described in detail elsewhere.417 IR pump-
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probe data were obtained using a transient absorption spectrometer derived from the 2D 

IR setup. Briefly, the local oscillator and one of the three pump beams were blocked; one 

of the remaining two beams was used as the pump, and the other was attenuated and 

directed to the monochromator to act as the probe. The polarization of the probe was set 

at the magic angle with respect to that of the pump. For both the static and time-resolved 

measurements, the sample solution was placed between two 2 mm CaF2 windows 

separated by either a 25 μm (for time-resolved experiment) or 50 μm (for static 

measurement) spacer. 

 
Analysis of Decay Kinetics of the Excited State of the C≡N Stretching Vibration  

According to the kinetic scheme in the main text (Scheme 8.2), the (C≡N)v=1 state (A), 

initially prepared by the IR excitation pulse, has two decay channels as discussed below: 

one to (C≡N)v=0 (C), and the other to (Dark State)v=1 (B) which then converts to (C≡N)v=0. 

This kinetic model, as indicated below,  
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Solving these differential equations leads to the following population kinetics:  
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The ground state bleach recovery signal is given by 0]A[]C[ − , i.e., 
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which indicates that the percentage of the slow component is  
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Adding the stimulated emission contribution to Equation 8.2 gives rise to the decay 

kinetics of the negative-going pump-probe signal, S(t): 
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It is east to show, based on Equation 8.4, that the ratio of the two exponential components 

in the negative-going pump-probe decay kinetics is k11/(2k10 – 2k20 + k11). 

 

8.3   Results and Discussion 

 
C≡N Vibrational Bands of 3M5CI in Different Solvents 

It is well known that protic solvents, such as water and simple alcohols, can form HBs 

with the C≡N group of aryl and alkyl nitriles.418 For 3M5CI, such solvents are expected 

to also interact with the indole N-H group via H-bonding interactions. Thus, it is 

impossible to distinguish the effects of these two types of H-bonding interactions based 
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on measurements of the C≡N stretching vibrational band of 3M5CI in such protic 

solvents alone. Therefore, we have chosen mostly solvents that can only form HBs with a 

solute through their H-bonding accepting groups, based on the Kamlet-Taft solvent 

parameters (Table 8.1).419,420 As expected (Figure 8.3), the C≡N band of 3M5CI shows a 

clear dependence on solvent. Furthermore, the band shape in each case can be described 

satisfactorily by a Voigt profile (Figure 8.4) and the corresponding spectral parameters 

are listed in Table 8.1. A cursory inspection of the results suggests, as predicted by the 

computational study of Waegele et al.,406 that H-bonding interactions between solvent 

and the indole N-H group can have a measurable influence on the stretching frequency of 

the C≡N group located on the other side of the aromatic ring. This can be seen by 

comparing the spectra obtained in TFE, DMSO and MeOH. In TFE, which is a strong HB 

donor according to its Kamlet-Taft parameters (β = 0, α = 1.51), the C≡N stretching band 

is centered at 2230.7 cm-1, whereas in DMSO, which is a strong HB acceptor (β = 0.76, α 

= 0), the C≡N stretching band is shifted to 2216.1 cm-1. On the other hand, in MeOH (β = 

0.62, α = 0.93), which is capable of forming HBs with both the C≡N and N-H groups, the 

C≡N stretching band is located between those obtained in TFE and DMSO and centered 

at 2223.6 cm-1.  

 It is noticeable that the C≡N bands of 3M5CI obtained in protic solvents, 

especially in TFE, are much broader than those obtained in aprotic solvents (Table 8.1), 

indicating that in protic solvents the inhomogeneity sensed by the C≡N stretching 

vibration becomes larger. Previously, Cho and coworkers421 have shown that the C≡N 

stretching frequency of acetonitrile is dependent on the HB configuration, leading to 
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inhomogeneous broadening of the band. As shown (Figure 8.5), the bandwidth of the 

C≡N stretching vibration of acetonitrile in TFE is approximately 14 cm-1, which is 

broader than that (~8 cm-1) in THF.422 This is consistent with the study of Cho and 

coworkers.421 In comparison, however, the bandwidth of this vibration in 3M5CI shows a 

more significant increase upon changing the solvent from THF to TFE (i.e., 8 to 24 cm-1). 

Taken together, these results indicate that in the case of 3M5CI, besides an 

inhomogeneous distribution of HB configurations at the C≡N site, other solvent 

interactions, likely H-bonding interactions with the indole ring also contribute 

significantly toward the broadening of the bandwidth. This is consistent with a recent 

study of McLain and coworkers,423 which showed that in a methanol-water mixture, 

instead of being solvated by the methyl groups of methanol, the indole ring is in fact 

forming HBs with the –OH groups of water and methanol. Further evidence supporting 

this picture is, as shown (Figure 8.6), that for 3M5CI the dependence of the C≡N 

bandwidth on the overall solvent property, as judged by τ = π∗ + β + α, are different for 

protic and aprotic solvents. It is worth noting that the bandwidth of the C≡N stretching 

vibration of 3M5CI in hexafluorobenzene was found to be concentration dependent 

(Figure 8.7), which indicates that 3M5CI may oligomerize in this case and, as a result, 

the measured frequency may not be entirely representative of the monomeric form. 

Therefore, we excluded this solvent in the following analysis.   

 This difference could be exploited to probe preferential interactions between the 

indole ring and a specific solvent component. To illustrate this point, we measured the 

C≡N stretching band of 3M5CI in a binary solvent composed of DMSO and TFE. We 
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chose this mixture because it is well known that at a relatively high molar fraction DMSO 

will replace the protic solvent molecules, such as water, that are initially solvating the 

indole ring.120 As shown (Figure 8.8), the results obtained at different volume ratios of 

TFE and DMSO are indeed consistent with this picture. It is clear that at a 50:50 ratio the 

C≡N stretching band is already similar to that obtained in pure DMSO, which indicates, 

as expected, exclusion of TFE molecules from the indole ring.  

 
Quantifying the C≡N Stretching Frequency of 3M5CI in Aprotic Solvents 

 

While the simple comparison discussed above revealed a picture that is consistent with 

the notion that HB formations at both the nitrile and N-H sites affect the C≡N stretching 

frequency, a more quantitative assessment of the FTIR data is needed in order to extract 

the exact contribution of the H-bonding interactions at the N-H site. To do so, we first 

considered solvents that can only form HBs with the N-H group but not the nitrile 

moiety. In other words, these solvents all have a Kamlet-Taft α parameter of zero (Table 

8.1). A previous study by Moog and coworkers424 indicated that the C≡N stretching 

frequency of benzonitrile shows a linear dependence on the Kamlet-Taft π∗ parameter of 

solvents with α = 0. Since the π∗ parameter is a relative scale measuring the solvent’s 

polarizability, this result indicates that the C≡N stretching frequency of benzonitrile, 

which lacks any HB donating groups, is determined only by the local electrostatic field 

exerted by the surrounding solvent molecules when the C≡N group is not involved in any 

direct H-bonding interactions.424 As indicated (Figure 8.9a), however, the C≡N stretching 

frequency of 3M5CI does not show a strong linear correlation with the π* parameter as 

observed for benzonitrile. Similarly, a strong linear correlation is not observed when 
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other solvent parameters (i.e., β and ε) are used alone (Figure 8.9b and 8.9c). Thus, these 

simple analyses indicate that in this case other factors are also at play. Since the most 

pronounced difference between benzonitrile and 3M5CI, in the context of the current 

study, is that the latter can interact with the solvent through its N-H group, one needs to 

consider the effect arising not only from the solvent’s polarizability (π*) but also its HB 

accepting ability (β). Indeed, we found that the C≡N stretching frequency of 3M5CI 

obtained in solvents with α = 0 exhibits a strong linear dependence on γ = π* + β (Figure 

8.10). This finding provides a strong corroboration for the aforementioned notion that HB 

formations involving the indole N-H group of TrpCN can be sensed by the C≡N stretching 

vibration. In addition, and perhaps more importantly, this linear relationship makes it 

possible to use the C≡N stretching frequency to characterize changes in the H-bonding 

interactions between the N-H group of a TrpCN residue and a neighboring solvent 

molecule or sidechain in proteins, especially under conditions where the 5-cyano position 

is immersed in an aprotic environment. 

 To further validate the conclusions reached above, we measured the C≡N 

stretching modes of N-methyl-5-cyanoindole (NM5CI, Figure 8.1) in DMSO since 

NM5CI is incapable of forming HBs with DMSO due to the added methyl group. As 

shown (Figure 8.11), the C≡N band of NM5CI in DMSO is centered at 2217.1 cm-1, 

which is blue-shifted from that of 3M5CI. In addition, its bandwidth (8.4 cm-1) is 

narrower than that (10.6 cm-1) of 3M5CI. This blue-shift and band narrowing is once 

again consistent with the idea that H-bonding interactions with the indole N-H group is 

an important determinant of the C≡N stretching frequency. 
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 Finally, we attempted to derive a simple relationship, using the Kamlet-Taft 

parameters alone, to describe the C≡N stretching frequencies obtained in all solvents. As 

discussed above, direct H-bonding interactions with the nitrile group shifts its stretching 

frequency to higher wavenumbers. Thus, considering the fact that the α parameter is a 

measure of the HB donating ability of the solvent and the results presented in Figure 8.10 

are for solvents with α = 0, we hypothesized that the simplest surrogate variable that can 

reasonably capture the overall effect of a solvent on the C≡N stretching frequency of 

3M5CI is σ = π* + β − α. As shown (Figure 8.12), this parameter (σ), to our surprise, 

proves to be an excellent scale to quantify the C≡N stretching frequencies measured in all 

solvents, including water. The significant linear correlation exhibited between ω0 and σ 

provides a simple and quantitative way to interpret the C≡N stretching frequency of 

3M5CI or TrpCN. Despite this success, however, it is worth noting that this linear 

relationship is obtained based on empirical solvent parameters. Hence, it is impossible to 

use it to directly yield a microscopic interpretation of the environment of a specific TrpCN 

residue in proteins. Nonetheless, this relationship validates the notion that, besides the 

direct interaction with the nitrile group, interactions with other parts of the indole ring 

can also be sensed by the C≡N stretching vibration, making TrpCN a more versatile IR 

probe in this regard.  

 

Time-Resolved IR Measurements 

While the bandwidth of a linear IR spectrum is informative about the degree of 

inhomogeneous broadening, the underlying dynamics can only be assessed by nonlinear 

spectroscopic techniques, such as 2D IR spectroscopy.425 To further test the feasibility of 
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using TrpCN to probe such dynamics, we carried out 2D IR measurements on the C≡N 

stretching mode of 3M5CI in a 50:50 DMSO:TFE mixture. The reason that we chose this 

particular system as the testbed is based on the following considerations: (1) our results 

indicated, as discussed above (Figure 8.8), that under this condition the solute 

experiences a DMSO-like environment, indicating preferential accumulation of DMSO 

molecules near the indole ring; (2) a previous simulation study by Bagchi and 

coworkers120 on Trp solvated by DMSO-water mixtures indicated that when the fraction 

of DMSO is larger than 15%, preferential interactions between the indole ring and 

DMSO occur wherein the solvent molecules form a distinct network or cluster 

surrounding the solute enhanced by favorable solvent-solute hydrophobic interactions; 

(3) we hypothesized that such a scenario also happens in DMSO-TFE mixtures, which 

can be tested by measuring the spectral diffusion dynamics425 of the C≡N stretching 

vibrations via 2D IR spectroscopy as cluster formation has been shown to result in a 

prolonged spectral diffusion time.426,427 As shown (Figure 8.13), 2D IR spectra of the 

C≡N band of 3M5CI obtained at 4 different waiting times (T) clearly indicate spectral 

diffusion dynamics, as manifested by changes in the contour of the 2D peak 

corresponding to the 0-1 transition. However, even at the longest waiting time of the 

experiment, 20 ps, this 2D peak still shows an appreciable tilt towards the diagonal 

direction, signifying the slowness of the spectral diffusion process. Since the spectral 

diffusion dynamics of the C≡N stretching vibration in simple, pure liquids typically occur 

on a few ps timescale,426,428 this 2D IR result is therefore consistent with our hypothesis 
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that DMSO can form clusters surrounding the indole ring, making its microscopic 

environment fluctuate at a slower time scale.  

Interestingly, the 2D IR spectra also revealed the presence of a second 1-2 

transition. Since this spectral signature is not detectable at T = 0, it most likely 

corresponds to a dark state (i.e., the corresponding 0-1 transition is forbidden). A similar 

phenomenon was also observed for the C≡N stretching vibration of cyanophenol in 

methanol by Cho and coworkers,429 which was attributed to a combination band arising 

from the combination of two vibrational modes of the parent molecule. To better 

characterize the impact of this dark state, we conducted IR pump-probe measurements 

under the magic angle polarization condition on 3M5CI in DMSO. As shown (Figure 

8.14), the time-resolved spectra clearly reveal the existence of three distinguishable 

spectral features: one negative band centered at ~2216 cm-1, which corresponds to 

contributions from the ground state bleach (GSB) and stimulated emission (SE) signals, 

and two positive bands, centered at ~2190 and ~2205 cm-1, respectively. Because the 

2190 cm-1 band is more intense at earlier delay times and the 2205 cm-1 band grows in 

with time, the simplest model capable of explaining the decay kinetics of these features is 

a competing relaxation process from the excited state, (C≡N)v=1, to the ground state, 

(C≡N)v=0, (through two channels: one goes through the v = 1 state of the dark state and 

the other takes the initially prepared excited state population directly to the ground state, 

as indicated in the following kinetics scheme:  
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Scheme 8.2   Proposed kinetic model describing a competing relaxation process from the 

first excited state, (C≡N)v=1, to the ground state, (C≡N)v=0, wherein a dark state provides 

an additional decay channel.   

 
where kij is the rate constant of the corresponding kinetic step. To determine the key rate 

constants, we analyzed the transient absorption kinetics at two representative probing 

frequencies, ωA = 2190 cm-1 and ωB = 2223 cm-1. Because the transient signal at ωA 

contains contribution mostly from the excited state absorption from the v = 1 state of the 

C≡N stretching vibration, the relaxation kinetics at this frequency should reveal k1 = k10 + 

k11. As shown (Figure 8.15), the signal at ωA can be satisfactorily described by a single-

exponential function with a time constant of 1.3 ± 0.1 ps, indicating that k1 = (1.3 ± 0.1 

ps)-1. On the other hand, the transient signal at ωB contains contributions from both 

channels and, thus, should decay in a double-exponential manner. Indeed, as shown 

(Figure 8.15), the transient kinetics at this frequency can be fit to a double-exponential 

function with τ1 = 1.2 ± 0.1 ps and τ2 = 12.3 ± 1.6 ps. Based on the rate equations of the 

above kinetic scheme (see Experimental Section above), it is easy to show that τ1 = (k1)-1 

and τ2 = (k20)-1 = 12.3 ± 1.6 ps. It is clear that the τ1 value is consistent with the k1 value 
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determined above from the ωA data. To further determine k11, we took advantage of the 

fact the ratio (R) between the population going through the two channels is k11/(2k10 – 

2k20 + k11). It is straightforward to show (methods section above) that R = A2/A1 = 0.18, 

where A1 and A2 are the amplitudes of the τ1 and τ2 components obtained from the 

double-exponential fit of the ωB kinetics. Using this ratio and the above determined value 

of k1, we calculated k10 and k11 to be (1.8 ps)-1 and (4.7 ps)-1, respectively. A previous 

study has shown that the vibrational lifetime of the C≡N stretching vibration of 

benzonitrile in DMSO is about 4 ps,430 which is longer than that (1.8 ps) of 3M5CI. 

However, due to the second decay channel, a significant population (~31%) is transferred 

to another excited state, leaving a significant portion of the GSB signal of 3M5CI long 

lived. This prolonged GSB recovery time (12.3 ps) could be useful in the study of protein 

dynamic events occurring on the timescale of tens of ps. However, we note that the solute 

concentration used in the current 2D IR experiments is much higher than that of any 

typical protein solutions and, hence, the feasibility of this statement requires further test. 

In addition, future work is needed in order to provide a more comprehensive 

understanding of the factors that determine the onset and percentage of the 

aforementioned dark state, especially in aqueous solutions or under biological conditions.   

 
Applying TrpCN to measure local H-bonding dynamics in proteins 

In many regards, the indole ring of Trp makes it a unique amino acid: it has a large 

hydrophobic surface area, a permanent dipole moment, a large aromaticity, and a HB 

donating group (i.e., the pyrrole N-H). As such, it can interact with the surroundings via 

different forces. For example, it can form π-hydrogen bonds431-433 with backbone and/or 
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sidechain H-bond donating groups and also hydrophobic clusters with other aromatic 

amino acids. In addition, it tends to immerse itself in an environment where different 

interactions can occur; for instance, the benzene ring buries in a dehydrated and 

hydrophobic environment whereas the pyrrole N-H undergoes HB formation. One such 

example is the aforementioned M2 proton channel, wherein the N-H ends of the key 

Trp41 residues, according to a recent high-resolution crystal structure,434,435 point toward 

the aqueous pore, leaving the benzene rings facing the hydrocarbons of the lipid. Another 

example is the gramicidin A proton channel,436,437 where H-bonding interactions 

involving the N-H groups of several Trp residues are believed to be crucial for stabilizing 

the functional channel conformation. A third example is transmembrane peptides and 

proteins, where Trp residues are often located at the water-membrane interface with their 

N-H groups H-bonded to either water or a lipid headgroup.438,439 The results obtained in 

the current study, we believe, provide a foundation to use TrpCN to study such H-bonding 

interactions using various linear and nonlinear IR spectroscopic methods. Finally, our 

findings suggest that the C≡N stretching vibration of TrpCN could be also used to study 

cation-π interactions involving Trp, which are prevalent in many biological systems. 

 

8.4   Conclusions 

Trp residues are frequently found at locations that are crucial for structure, interaction 

and functions of proteins. However, assessment of the microscopic environment of a 

specific Trp sidechain in proteins using linear and/or nonlinear IR spectroscopy has been 

hampered by the fact that none of its intrinsic IR active vibrational modes are ideally 
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suited for this purpose. While a Trp analog, TrpCN, has been suggested to be useful in this 

regard because the bandwidth of its C≡N stretching vibration is sensitive to hydration, an 

experimental delineation of the factors that affect this vibration is lacking. Herein, we 

studied the C≡N stretching vibration of 3M5CI, which is the sidechain of TrpCN, in a 

series of solvents, aiming to provide a better understanding and characterization of these 

factors. Our results revealed that the C≡N stretching frequency of 3M5CI depends not 

only on solvent interactions with the nitrile group, but also on interactions with the indole 

ring, making TrpCN a versatile IR probe of proteins. Specifically, we found that a single 

solvent parameter, σ = π* + β − α, where π*, β, and α are the Kamlet-Taft parameters 

characterizing the polarizability, HB accepting ability, and HB donating ability of the 

solvent, respectively, is sufficient to describe the C≡N stretching frequencies obtained in 

all solvents via a simple linear function. This relationship thus confirms the possibility of 

using the C≡N stretching vibration of TrpCN to sense the dynamics of H-bonding 

interactions with the pyrrole N-H group, especially under conditions, as often seen in 

membrane proteins, where the N-H group is involved in HB formation but the benzene 

ring is buried in a dehydrated or hydrophobic environment. Linear and 2D IR 

measurements on 3M5CI in a binary solvent consisting of DMSO and TFE provide 

further evidence that its C≡N stretching vibration is a sensitive probe of the microscopic 

environment of the molecule. The results, which are consistent with the literature, show 

preferential accumulation of DMSO molecules around the indole ring when its mole 

fraction reaches about 0.5. In addition, the 2D IR data indicated the presence of a second 

excited state species, leading to a long-lived ground state bleach signal. Kinetic 
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measurements using IR pump-probe spectroscopy allowed us to further determine the 

formation time constant (~5.0 ps) of this additional excited state as well as the decay time 

constant (~12.3 ps) of the long-lived ground state bleach signal. 
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Solvent ω0, cm-1 FWHM, cm-1 π* β α ε 

Water 2224.0a 18.0a 1.09 0.47b 1.51 80.1 

MeOH 2223.6 14.2 0.60 0.62 0.93 33.0 

2-propanol 2223.6 14.7 0.48 0.95 0.76 20.2 

DCM 2221.7 10.1 0.82b 0.10b 0.13b 8.9 

DMSO 2216.1 10.6 1.00 0.76 0.00 47.2 

DMF 2217.2 9.7 0.88 0.69 0.00 38.2 

Pyridine 2217.9 10.3 0.87 0.64 0.00 13.3 

Acetophenone 2218.5 10.6 0.90 0.49 0.00 17.4 

Cyclopentanone 2218.7 8.9 0.76 0.52 0.00 13.6 

THF 2219.8 8.0 0.58 0.55 0.00 7.5 

1,4-dioxane 2221.1 8.7 0.55 0.37 0.00 2.2 

Toluene 2222.4 8.7 0.54 0.11 0.00 2.4 

Tetrachloromethane 2224.5 11.5 0.28 0.00 0.00 2.2 

Hexafluorobenzene 2226.9 10.7 0.33b 0.02b 0.00b 2.0 

TFE 2230.7 24.1 0.73 0.00 1.51 27.7 

 

Table 8.1   The center frequency (ω0) and full-width at half maximum (FWHM) of the 

C≡N stretching band of 3M5CI in different solvents. Also listed for each solvent are its 

Kamlet-Taft parameters, π* (polarizibility), β (hydrogen bond acceptor), α (hydrogen 

bond donor), as well as its dielectric constant (ε).440 Unless otherwise indicated, all 

Kamlet-Taft parameters are from ref.419.  

 

a IR data in water were from ref.155 and measured for 5-cyanoindole in a 95/5 (v/v)   
  water/MeOH mixture.  
 
b Taken from ref.420 
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Figure 8.1   Structures of (A) 3-methyl-5-cyanoindole (3M5CI) and (B) 1-methyl-1H-

indole-5-carbonitrile (NM5CI).  
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Figure 8.2   FTIR spectra of DMSO (Top) and THF (Bottom) with and without addition 

of 1% water, as indicated, in the OH stretching band region of water. These spectra 

indicate that the water content in the original solvents is negligible.  
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Figure 8.3   C≡N stretching bands of 3M5CI in different solvents, as indicated.  

  

0.0

0.4

0.8

1.2

2200 2210 2220 2230 2240 2250

N
o

rm
a

li
ze

d
 A

b
so

rb
a

n
ce

Wavenumber (cm-1)

TFE 2-propanol

Toluene DCM

THF Tetrachloromethane

Hexafluorobenzene MeOH

1,4-dioxane Cyclopentanone

Acetophenone DMF

Pyridine DMSO



180 
 

 

Figure 8.4   C≡N stretching bands of 3M5CI and NM5CI in different solvents, as 

indicated. The solid line in each case is the fit of the data to a Voigt profile and the 

resulting peak frequency and FWHM are given in Table 8.1.   
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Figure 8.5   FTIR spectrum of acetonitrile in 2,2,2-trifluoroethanol, where the solid line 

is a fit of the spectrum to a function composed of two Voigt profiles. The peak frequency 

and FWHM of the C≡N stretching band are 2267.7 cm-1 and 14.3 cm-1, respectively. The 

second, lower intensity band located at 2301.9 cm-1 arises from a Fermi resonance.  
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Figure 8.6   Plot of FWHM versus τ = π* + β + α. 
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Figure 8.7   C≡N stretching bands of 3M5CI in hexafluorobenzene at 35 mM and 10 

mM, as indicated.  
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Figure 8.8   C≡N stretching bands of 3M5CI in TFE and DMSO mixtures with different 

volume ratios, as indicated.  

  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2200 2215 2230 2245 2260

N
o

rm
a

li
ze

d
 A

b
so

rb
a

n
ce

Wavenumber (cm-1)

90:10

80:20

70:30

60:40

50:50

TFE:DMSO (V:V)



185 
 

 

Figure 8.9   Center frequency (ω0) of the C≡N stretching band of 3M5CI versus π* (A), β 

(B), and ε (C). Only frequencies obtained in solvents with α = 0 were used. 
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Figure 8.10   Center frequency (ω0) of the C≡N stretching band of 3M5CI versus the 

solvent γ parameter, where γ = π∗ + β. The solid line represents the linear regression of 

this data, yielding a slope of -5.6 ± 0.2 cm-1 and an intercept of 2226.1 ± 0.2 cm-1.  
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Figure 8.11   Comparison of the C≡N stretching bands of NM5CI and 3M5CI, as 

indicated, in DMSO.  
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Figure 8.12   Center frequency (ω0) of the C≡N stretching band of 3M5CI versus the 

solvent σ parameter, where σ = π∗ + β − α. The solid line represents the best fit of this 

data to a line with a slope of -5.6 ± 0.2 cm-1 and an intercept of 2226.2 ± 0.2 cm-1. 
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Figure 8.13   2D IR spectra of 3M5CI in a 50:50 TFE:DMSO mixture, at various waiting 

times (T), as indicated.  
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Figure 8.14   Time-resolved absorption spectra of 3M5CI in DMSO.  
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Figure 8.15   Transient absorption kinetics obtained at 2190 cm-1 (red circle) and 2223 

cm-1 (blue cross). The transient data at 2190 cm-1 can be fit to a single exponential 

function (red line) with a time constant of 1.3 ± 0.1 ps. On the other hand, the kinetics at 

2223 cm-1 can be best described by a double-exponential function (blue line) with the 

following time constants (amplitude): 1.2 ± 0.1 ps (3.8 ± 0.1 mOD) and 12.3 ± 1.6 ps (0.7 

± 0.1 mOD).  
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9   Utility of 5-Cyanotryptophan Fluorescence as a Sensitive Probe of 
Protein Hydration 

 
Reprinted with permission from Journal of Physical Chemistry B, Beatrice N. Markiewicz,‡ 
Debopreeti Mukherjee,‡ Thomas Troxler, and Feng Gai, (2016) 120, 936-944. DOI: 
10.1021/acs.jpcb.5b12233.56 Copyright (2016) American Chemical Society. (‡ Denotes equal 
authorship) 
 

9.1   Introduction 
 
Among the naturally occurring fluorescent amino acids, tryptophan (Trp) is the most 

widely used fluorescent probe of protein structure, function, and dynamics.53,54 This is 

because 1) its fluorescence properties, such as the emission wavelength, Stokes shift and 

lifetime, depend on local environment,54,441,442 2) its fluorescence can be quenched by 

various amino acid sidechains443-445 as well as other molecules or ions,446-450 and 3) it has 

a relatively high fluorescence quantum yield (QY) (i.e., ~0.14 in water)451 and large 

molar extinction coefficient for transitions to the 1La and 1Lb excited states, which 

combined, allows for measurements using dilute protein solutions. While Trp is an 

exceedingly useful and convenient fluorescence reporter of proteins, it affords, like any 

other spectroscopic probes, certain limitations and/or disadvantages. For example, in 

practice it is often difficult to quantitatively assess and interpret Trp fluorescence results, 

as many different mechanisms can contribute to the excited-state decay process of the 

indole fluorophore in a protein environment.452-455 Therefore, much effort has been made 

to expand and/or improve the utility of Trp fluorescence by exploring the feasibility of 

using various Trp-based non-natural amino acids, such as 7-azatryptophan,456 5-

hydroxytryptophan,457 4- or 5-fluorotryptophan,458,459 6- or 7-cyanotryptophan,57 and β-

(1-Azulenyl)-L-alanine,460 that possess different photophysical properties from Trp (e.g., 
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quantum yield, emission wavelength, and fluorescence decay kinetics). Herein, we 

continue this effort by showing that the fluorescence emission of a nitrile-derivatized Trp 

analog, 5-cyanotryptophan (TrpCN), can be used as a sensitive probe of the local 

hydration status of proteins.  

From a practical point of view, for many biological applications a good 

fluorescence probe should exhibit a significant change in its fluorescence spectrum (i.e., 

intensity, wavelength, or both) when exposed to different environments. This requirement 

is especially important for examining processes, such as protein folding and interactions, 

whereby the local surrounding of the fluorophore undergoes a drastic change, for 

instance, from a hydrated to a dehydrated environment. While Trp fluorescence has been 

extensively used in these types of applications, the total fluorescence intensity change is 

rarely more than two-fold. This is due in part to the fact, as shown (Figure 9.1), that the 

fluorescence QY of indole is not sensitively dependent on hydration. Of course, one can 

find special cases where the change is more drastic due to involvement of other 

quenching mechanisms, such as those arising from specific sidechains.444 In comparison, 

the fluorescence QY of 5-cyanoindole (5CI), the sidechain of TrpCN, exhibits a much 

stronger sensitivity to interactions with H2O as shown below. This is supported by the 

fact that upon changing the solvent from water to 1,4-dioxane, a solvent commonly used 

to mimic the hydrophobic interior of proteins, the total fluorescence intensity of 5CI is 

increased by a factor of approximately 23, whereas that of indole only increases by a 

factor of ~1.3 (Figure 9.1). Furthermore, a previous study by Jennings et al.461 

demonstrated that the maximum of the fluorescence spectrum of 5CI is shifted from ~315 
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nm in isopentane to ~391 nm in H2O. Thus, taken together, the large Stokes shift and a 

more significant QY change of 5CI in response to hydration suggests that TrpCN could be 

a more sensitive protein hydration probe than Trp.  

To verify this notion, we carried out steady-state and time-resolved fluorescence 

measurements on 5CI, TrpCN, and a model tripeptide Gly-TrpCN-Gly (hereafter referred to 

as GWCNG) in different solvents. We found, as expected, that exposure to water results in 

significant quenching of the TrpCN fluorescence, due to a substantial increase in its 

excited-state nonradiative decay rate. On the other hand, the fluorescence QY and 

lifetime of TrpCN, either in the free amino acid form or in a peptide environment, were 

found to increase, on average, by more than an order of magnitude in aprotic solvents 

compared to those in H2O. Combined, we believe that these results support the idea that 

TrpCN can be used as a sensitive fluorescence probe of the local hydration status of 

proteins. Further evidence confirming this utility of TrpCN comes from several 

applications wherein we demonstrated that this nonnatural amino acid can be used to 1) 

detect the preferential accumulation of dimethyl sulfoxide (DMSO) molecules around 

aromatic sidechains in a disordered peptide, 2) probe the binding of an antimicrobial 

peptide to lipid membranes, and 3) differentiate the microenvironments of two TrpCN 

residues in a folded protein.  

 

9.2   Experimental Section 

 
Materials and Sample Preparation 
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5-cyanoindole (5CI) at 99% purity was purchased from Acros Organics (Morris Plains, 

New Jersey), Fmoc-5-cyano-L-tryptophan with a purity of >99% was purchased from 

RSP amino acids (Shirley, MA), and all other amino acids were purchased from 

Advanced ChemTech (Louisville, KY). The following solvents (spectroscopic grade) 

were purchased from Acros Organics: methanol (MeOH), ethanol (EtOH), dimethyl 

sulfoxide (DMSO), acetonitrile (ACN), 1,4-dioxane, tetrahydrofuran (THF, without the 

BHT preservative), and 2,2,2-trifluoroethanol (TFE). D2O was purchased from 

Cambridge Isotope Laboratories, Inc. (Tewksbury, MA). Dodecylphosphocholine (DPC) 

was purchased from Avanti Polar Lipids Inc. (Alabaster, Alabama). All materials and 

solvents were used as received. Deprotection of the Fmoc-5-cyanotryptophan to produce 

the free TrpCN amino acid (TrpCN-NH2) and synthesis of all peptides (Gly-TrpCN-Gly-

NH2, TZ2WCN-NH2, TC2WCN-NH2, and MPXWCN-NH2) were achieved by using 

standard 9-fluorenylmethoxy-carbonyl (Fmoc) solid-state methods on a CEM (Matthews, 

NC) Liberty Blue automated microwave peptide synthesizer. Peptide purification was 

done by reverse-phase HPLC (Agilent Technologies 1260 Infinity) with a C18 

preparative column (Vydac). The TrpCN amino acid and all peptides were constructed on 

Rink amide resin and thus contained an amidated C-terminus. The mass of every peptide 

was verified by either liquid-chromatography mass spectrometry (LC-MS) or matrix-

assisted laser desorption/ionization mass spectrometry (MALDI-MS) where appropriate. 

Samples were freshly prepared before use by directly dissolving the desired compound in 

the desired solvent, and the final concentration of the solute was approximately 45 μM 

for static and time-resolved measurements. The UV-Vis spectra (in the region of 250 – 
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300 nm) of a 5-cyanoindole solution and an indole solution in methanol of equal 

concentration (determined by weight) are almost identical. Thus, for each sample we used 

its absorbance and the molar extinction coefficients of Trp at 280 nm (ε = 5500 M-1 cm-1) 

to estimate the solute concentration. Membrane-bound MPXWCN peptide was prepared 

by solubilizing MPXWCN with DPC in TFE at a 1:70 peptide to lipid ratio. The organic 

solvent was removed via a nitrogen stream and the left-over film was lyophilized for at 

least 4 hours to ensure complete solvent removal. Subsequently, the resultant dry film 

was redissolved in H2O. The final concentration of the peptide was ~40 μM.   

 
Static and Time-Resolved Fluorescence Measurements 

Static fluorescence measurements were obtained with a Jobin Yvon Horiba Fluorolog 

3.10 spectrofluorometer at room temperature in a 1 cm quartz cuvette with a 1.0 nm 

resolution and an integration time of 1.0 nm/s. For all the static measurements, an 

excitation wavelength of 280 nm was used. Time-resolved fluorescence measurements 

were collected on a time-correlated single photon counting (TCSPC) system with a 0.4 

cm quartz cuvette at 25 °C. The details of the TCSPC system have been described 

elsewhere.462 Briefly, a home-built femtosecond Ti:Sapphire oscillator operating at 800 

nm and 85 MHz repetition rate was used to generate a 270 nm excitation pulse train in a 

home-built collinear third harmonic generator. Repetition rate was reduced to 21 MHz by 

using an electro-optical pulse picking system (Conoptics Inc.). Emission was collected at 

magic angle polarization condition and in a 90 degree geometry relative to excitation, 

selected by a short-wavelength bandpass filter (Semrock FF01-357/44) around 360 nm 

and a long-pass filter (Semrock FF01-300/LP) with a 300 nm cutoff to better suppress 
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scattered excitation light, and detected with a MCP-PMT detector (Hamamatsu R2809U) 

and a TCSPC PC-board (Becker and Hickl SPC-730). Fluorescence decays were 

deconvoluted with the instrument response function (IRF) and fit either to a single-or 

multi-exponential function in order to minimize χ2 below an acceptable value (i.e., 1.2) 

using FLUOFIT (Picoquant GmbH). N-acetyl-L-tryptophanamide (NATA) was used as a 

standard and control, yielding a single exponential decay of 3.0 ns (see Table 9.1) in 

accordance with the literature.452 The optical density of the samples at the excitation 

wavelength was equal to or below 0.2 for both static and time-resolved measurements. 

Furthermore, the quantum yield of a given sample (QYS) was determined using the 

quantum yield of NATA (QYR) in H2O at pH 7.0 as a reference and the following 

equation, 
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where I and A represent the integrated area of the fluorescence spectrum and the optical 

density of the sample at 280 nm, respectively, and n is the refractive index of the solvent 

used. The subscripts S and R represent sample and reference, respectively. In addition, 

the value of QYR was taken as 0.14,2 and 1.333 was used for nR.  

 

9.3   Results and Discussion 
 
To assess the feasibility of using TrpCN fluorescence as a reporter of protein local 

hydration status, we first systematically examined the steady-state fluorescence properties 

and fluorescence decay kinetics of 5CI, TrpCN, and GWCNG in a series of solvents with 

different polarities and hydrogen bonding abilities (Table 9.1). Then, the utility of this 
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fluorescence probe was tested in three different applications, including detection of a 

specific solute-solvent interaction, peptide-membrane association, and the hydration 

status of two TrpCN residues located in different environments within a folded mini-

protein. 

 
Steady-State Fluorescence Measurements 

As shown (Figure 9.2), both the intensity and maximum wavelength (λmax) of the 

fluorescence spectrum of 5CI exhibit a strong dependence on solvent. Qualitatively, the 

λmax of 5CI increases with increasing solvent polarity (Table 9.1), which is in good 

agreement with the trend previously observed by Jennings et al.461 Furthermore, the λmax 

of 5CI is red-shifted compared to the fluorescence spectrum of indole, the fluorophore of 

Trp, obtained in the same solvent. For example, in H2O the fluorescence spectrum of 

indole is peaked at ~352 nm, whereas that of 5CI has an emission maximum at ~387 nm. 

The greater Stokes shift of 5CI can be attributed to the larger change in its dipole moment 

upon photoexcitation.463 In addition, and perhaps more importantly, in solvents that can 

form strong hydrogen bonds (H-bonds), such as H2O and trifluoroethanol (TFE), the 

fluorescence QY of 5CI exhibits a significant decrease (Figure 9.2 and Table 9.1). For 

example, in 1,4-dioxane the fluorescence QY of 5CI is determined to be ~0.13, which is 

decreased to ~0.005 in H2O. In comparison, while indole is a brighter fluorophore, its 

fluorescence QY has less of a dependence on these solvents (i.e., 0.45 in 1,4-dioxane 

versus 0.28 in H2O).464 Thus, these results indicate that, when used to probe a 

hydration/dehydration event, 5CI would be able to produce a fluorescence signal with a 

higher contrast than that of indole.  
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As shown (Figure 9.2), the fluorescence spectra of the free amino acid TrpCN are 

similar to those of 5CI obtained in the same solvents, although the λmax value in each case 

is further red-shifted (Table 9.1). This is consistent with the trend already observed for 

indole and Trp.55 What is more important, however, is that the strong fluorescence 

quenching effect of H2O toward the 5CI fluorophore is maintained (Table 9.1). This 

result, which is consistent with a previous study,155 indicates that TrpCN fluorescence 

could be used to sense the local hydration status of proteins. Results obtained with 

GWCNG (Figure 9.2 and Table 9.1), also corroborate this notion. For example, the 

fluorescence QY of TrpCN in GWCNG is increased by more than an order of magnitude 

upon changing the solvent from H2O to MeOH. Since MeOH is also capable of forming 

hydrogen bonds, this finding thus manifests the specific and high sensitivity of TrpCN 

fluorescence towards H2O. 

 
Time-Resolved Measurements   

To further understand the photophysics of TrpCN, we set out to measure the fluorescence 

decay kinetics of 5CI, TrpCN, and GWCNG in those aforementioned solvents. As indicated 

(Figure 9.3 and Table 9.1), the fluorescence decay kinetics of 5CI in all solvents could be 

fit reasonably well to a single-exponential function (i.e., χ2 < 1.2), with the exception of 

those obtained in H2O and TFE, which required at least a double-exponential function to 

yield a satisfactory fitting (i.e., χ2 < 1.2). Consistent with the steady-state measurements, 

the (intensity weighted) fluorescence lifetimes (0.1 – 0.3 ns) of 5CI in H2O and TFE are 

significantly shorter (by at least an order of magnitude) than those in other solvents, 

which are in the range of 3.0 – 7.1 ns. This finding is, to some extent, surprising, as for 
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indole the fluorescence lifetime in TFE (0.45 ns) is drastically shorter than in H2O (4.5 

ns).465 Barkley and coworkers465,466 have shown that both TFE and H2O can quench the 

fluorescence of indole via an excited-state proton-transfer process. While we cannot 

completely rule out the possibility that a solvent-induced proton-transfer event is 

responsible for the observed fast excited-state decay kinetics of 5CI in H2O and TFE, the 

fact that, unlike indole,465 the fluorescence QY and decay kinetics of 5CI do not show 

any measurable difference between H2O and D2O (Figure 9.4 and Table 9.1) strongly 

argues against this scenario. Since both H2O and TFE can form H-bonds with the nitrile 

group of 5CI,403 it is possible that their strong quenching effect arises solely from such H-

bonding interactions. However, this possibility can also be ruled out as in both MeOH 

and EtOH, which are able to form such H-bonds, the fluorescence lifetime of 5CI 

becomes much longer (Table 9.1). Similarly, the H-bonding interactions between the 

pyrrole N-H group of 5CI and a solvent molecule, such as H2O, MeOH, EtOH, and 

DMSO, are also unlikely to serve as a major nonradiative decay channel as the 

fluorescence lifetimes of 5CI in those solvents differ significantly (Table 9.1). It is known 

that both H2O and TFE can interact with the indole moiety via another type of H-bonding 

interactions, i.e. those formed between the –OH group of the solvent and the π-electron 

cloud of the aromatic ring.423,467,468 In fact, this type of interactions has been suggested to 

play an important role in the excited-state decay kinetics of indole in TFE.469 Thus, we 

tentatively attribute the sub-nanosecond fluorescence decay kinetics of 5CI in H2O and 

TFE to such H-bond formations, which increase the nonradiative decay rate of the 

fluorophore. If this assessment is indeed valid, the much slower fluorescence decay 
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lifetime of 5CI obtained in other protic solvents (i.e., MeOH and EtOH) indicates that the 

indole ring is solvated mainly by the methyl groups rather than the –OH group, which is 

consistent with previous studies.470,471 In addition, it is noticed that, unlike those obtained 

in other solvents, the fluorescence decay kinetics of 5CI in H2O and TFE cannot be 

satisfactorily described by a single-exponential function (Figure 9.3). There are two 

possible interpretations. First, 5CI has a relatively low solubility in both H2O and TFE; 

hence the non-single-exponential decay kinetics may reflect the heterogeneity of the 

solute. The second, and perhaps a more probable interpretation is that this deviation 

manifests the heterogeneity in the solvent-solute interactions, especially those –OH···π-

electron H-bonding interactions. 

Finally, unlike that of indole,55 the fluorescence lifetime of 5CI in DMSO is 

significantly lengthened (i.e., to 7.1 ns) in comparison to those in other solvents, 

suggesting that TrpCN fluorescence could be used to probe preferential interactions120 

between DMSO and Trp sidechains in a protein environment (see below).   

As indicated in Figure 9.3, the fluorescence decay kinetics of TrpCN, in either the 

free amino acid form or the GWCNG peptide, support the notion that it can be used as a 

protein hydration probe. While the average fluorescence lifetime of TrpCN obtained in 

H2O is slightly increased compared to that of 5CI, its excited-state decay kinetics are still 

dominated by a fast component (i.e., 0.4-0.5 ns), which is significantly separated from 

those obtained in other solvents, except TFE (Table 9.1).  

Unlike 5CI, TrpCN exhibits non-single-exponential fluorescence decay kinetics in 

all the solvents studied. Since Trp shows the same behavior and its double- or multi-
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exponential fluorescence decay kinetics have been attributed to different sidechain 

rotamers,455 we believe that the fluorescence decay kinetics of TrpCN can also be 

explained by such a rotamer model. Many previous studies have shown that the average 

fluorescence decay rate of Trp is faster than that of indole under the same solvent 

conditions, indicating that an additional, nonradiative decay pathway exists due to the 

presence of a backbone. The current consensus is that this new decay process arises from 

electron transfer from the indole sidechain to the carbonyl group of adjacent peptide 

bonds.454 As shown (Table 9.1), unlike the trend observed for indole and Trp,55 the 

average fluorescence lifetime of TrpCN is longer than that of 5CI in the same solvent. 

More specifically, in most solvents (except H2O and TFE) the fluorescence decay 

kinetics of TrpCN and GWCNG consist of two components, with one that is relatively 

independent of solvent and decays within 2-3 ns, whereas the other, which is slower (τF > 

5.5 ns) and dominant in most cases, shows a clear dependence on solvent environment. 

Taken together, these results suggest that the electron-transfer mechanism invoked to 

explain the fluorescence decay kinetics of Trp is not applicable to TrpCN. Instead, we 

believe that the fast component arises from a more specific interaction facilitated by 

differences in geometry between the backbone and a particular sidechain rotamer. While 

elucidation of the nature of this interaction requires further studies, we hypothesize that it 

corresponds to a H-bonding-like interaction between the aromatic ring and a backbone 

amide N-H group. This hypothesis is consistent with the aforementioned assumption that 

H2O quenches the fluorescence of 5CI via H-bonding interactions with the π−electron 

cloud of the ring. In addition, this model is self-consistent, as for rotamers that cannot 
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engage in such additional interactions due to distance constraints, their fluorescence 

lifetimes would be longer and depend mostly on the solvent, as observed.  

 
Probing Preferential Interactions with DMSO 

To further demonstrate the utility of TrpCN fluorescence as a local solvation reporter, we 

first applied it to probe the preferential interaction between DMSO and Trp residues 

within a peptide. The binary mixture of water and DMSO has been extensively studied 

and used in various applications owing to its non-ideal nature and hence unusual 

properties.472 For example, it has been used as a cryoprotectant, an enzyme activator, and 

a denaturant.473,474 In particular, several studies475-477 have indicated that in a binary 

mixture of water and DMSO preferential solvation of hydrophobic residues, such as Phe 

and Trp, by DMSO can occur. All of these behaviors can be attributed to the amphiphilic 

nature of DMSO which allows this solvent to engage in both H-bonding (e.g., with water) 

and hydrophobic interactions (via methyl groups).478 As demonstrated above, the 

fluorescence QY of TrpCN in DMSO is approximately 24 times greater than its QY in 

H2O, making it ideally suited to probe any preferential accumulation of DMSO molecules 

around its indole ring. Specifically, we measured the fluorescence spectra of a peptide 

that contains two TrpCN residues (sequence: S-TrpCN-TAENGKAT-TrpCN-K), in a series 

of DMSO-H2O mixtures. This peptide (hereafter referred to as 2WCNP) is largely 

unstructured in aqueous solution according to its CD spectrum (Figure 9.5), thus allowing 

the TrpCN sidechains to be solvent accessible. 

As shown (Figures 9.6 and Figure 9.7), the intensity of the TrpCN fluorescence 

spectrum of 2WCNP depends strongly on the mole fraction of DMSO (χDMSO) in the 
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binary mixture, especially in the range of 0.0-0.4. A more quantitative analysis indicates 

that the relative fluorescence quantum yield of TrpCN in 2WCNP, as measured by the 

integrated area (I) of the fluorescence spectrum, exhibits a transition (Figure 9.6) that is 

similar to that observed in substrate binding kinetics of enzymes. Indeed, this transition 

(i.e., I vs. χDMSO) can be satisfactorily described by a modified Hill equation shown 

below,  
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where Imin, Imax, k, a, b, and n (the Hill coefficient) are constants. The linear term, 

( )ba +DMSOχ , is introduced to account for the slight downward trend of the signal after 

saturation. As shown in Figure 9.6, the best fit yields a k value of 0.18, indicating that the 

fluorescence signal reaches a maximum at a χDMSO value of 0.36. Interestingly, a previous 

dielectric relaxation study478 indicated that the maximum H-bonding interactions 

occurring between H2O and DMSO take place at χDMSO = 0.33, leading to formation of 

H2O-DMSO-H2O complexes. Thus, the above result suggests that the fluorescence of 

TrpCN is able to ‘sense’ this intrinsic property of the binary mixture. In addition, and 

perhaps more interestingly, the Hill coefficient obtained from the fitting is n = 3.2, 

suggesting that the DMSO binding interaction with the indole ring is highly cooperative. 

Following the common interpretation of the value of the Hill coefficient,479 the above n 

value suggests that one TrpCN sidechain can have a maximum of three DMSO binding 

sites. Hence, from this simple example it becomes evident that TrpCN is not only a useful 
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fluorescence probe of proteins or peptides, but it can also be used to reveal important 

physical properties of binary solvent systems that contain water.  

 
Probing Peptide-Membrane Interaction 

In the second application, we demonstrated that TrpCN fluorescence can be used to probe 

peptide-membrane interactions. To do so, we measured the static and time-resolved 

fluorescence properties of a TrpCN mutant of an antimicrobial peptide, mastoparan X, in 

the presence and absence of a model membrane. Like the parent,480 this mutant 

(sequence: IN-TrpCN-KGIAAMAKKLL), hereafter referred to as MPXWCN, is relatively 

unstructured in aqueous solution, and folds into an α-helical conformation upon binding 

to DPC micelles (Figure 9.8). As shown (Figure 9.9a and Table 9.1), in the absence of 

DPC micelles the TrpCN fluorescence spectrum of MPXWCN is peaked at 391 nm and has 

a low intensity, which is consistent with an unfolded peptide wherein the TrpCN sidechain 

is mostly exposed to H2O. In the presence of DPC micelles, however, the TrpCN 

fluorescence spectrum of MPXWCN not only is blue-shifted (to 372 nm) but also becomes 

much more intense, which is characteristic of a TrpCN buried in a hydrophobic 

environment and, hence, consistent with binding of the peptide to the DPC membranes. 

Further fluorescence lifetime measurements also corroborate this picture. As shown 

(Figure 9.9b and Table 9.1), the TrpCN fluorescence decay of MPXWCN in H2O consists 

of three components, with a sub-nanosecond (i.e., 0.7 ns) component being dominant 

(~82%). It is clear that this fast decay component corresponds to an ensemble of 

MPXWCN conformations wherein the TrpCN residue is well hydrated, whereas those 

slower and minor decay components must arise from conformations wherein the TrpCN 
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sidechain is less exposed to solvent due, for example, to sidechain-sidechain and/or 

sidechain-backbone interactions. As expected, in the presence of DPC micelles, the TrpCN 

fluorescence decay of MPXWCN, now dominated by a 7.2 ns component, is similar to 

those measured for the GWCNG peptide in aprotic solvents (Table 9.1). Taken together, 

the above results confirm that both the fluorescence intensity and lifetime of a TrpCN 

residue can be used to probe various biological binding interactions, as long as its 

hydration status undergoes a change in response to the binding event in question.  

 
Probing Local Hydration Environment  

In the third application, we demonstrated that the high sensitivity of the fluorescence 

lifetime of TrpCN to H2O makes it especially useful to differentiate between hydrated and 

dehydrated environments in a protein. Specifically, we carried out fluorescence lifetime 

measurements on a double TrpCN mutant of a miniprotein, Trp2-cage.481 As suggested by 

its name, this miniprotein, which was computationally designed based on the miniprotein 

Trp-cage,258 contains two Trp residues, with one (at position 12) being solvent exposed 

and the other (at position 6) being buried in a hydrophobic cage.258 Upon replacing these 

two Trp residues with TrpCN, we expected that the fluorescence decay kinetics of the 

resultant double mutant (sequence: NLYIQ-6TrpCN-LKDGG-12TrpCN-SSGRPPPS), 

hereafter referred to as TC2WCN, will reflect this difference. As shown (Figure 9.10 and 

Table 9.1), the fluorescence decay kinetics of TC2WCN in H2O consist of three 

exponential components with time constants of 0.4, 1.8, 11.0 ns, respectively. The first 

and very fast component is similar to the major fluorescence decay component of 

GWCNG in H2O, indicating contribution from, and hence detection of, the solvent-
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exposed TrpCN residue, whereas the slowest component is closer to that of GWCNG in 

DMSO, representative of the buried and solvent inaccessible TrpCN residue in the protein. 

Because both the solvent-exposed and buried TrpCN residues can contribute to the 1.8 ns 

component in the fluorescence decay kinetics of TC2WCN, it is not straightforward to use 

the relative amplitudes of those three exponentials to directly determine the relative 

populations of these two differently solvated sidechains. However, if we only consider 

the other two exponentials (i.e., the 0.4 and 11.0 ns components), which exclusively 

report the solvent-exposed and buried TrpCN species, and also assume that the radiative 

rate constant does not change, we can estimate the relative population of the solvent-

exposed TrpCN sidechain to be ~58%. As shown (Figure 9.11), the CD spectrum of 

TC2WCN indicates that it is folded. If its stability is assumed to be comparable to that of 

the wild-type, which has ~10% unfolded population at room temperature,481 the solvent-

exposed TrpCN should amount to 55%. Thus, the estimate obtained above using the 

percentages of the 0.4 and 11.0 ns components is reasonable. Taken together, these 

results, especially the existence of two kinetic components that differ by almost 28 times 

in their time constants, clearly demonstrate that the fluorescence decay kinetics of TrpCN 

are sensitive to the presence of H2O and can be used to differentiate between differently 

hydrated environments in a protein.  

 

9.4   Conclusions 
 
Any spectroscopic study of protein folding, conformational transition and interactions 

requires a specific probe whose spectroscopic signature would undergo a change in 

response to a variation in its environment. In practice, an ideal spectroscopic probe is one 
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that can produce a large difference or contrast between signals measured before and after 

the event of interest. Herein, we demonstrated that the nonnatural amino acid, 5-

cyanotryptophan, could be used as a sensitive fluorescence probe of proteins. This is 

because a series of static and time-resolved fluorescence measurements revealed that the 

fluorescence quantum yield and decay kinetics of 5-cyanotryptophan are sensitively 

dependent on its hydration status. For example, when fully hydrated its fluorescence 

quantum yield is approximately 0.01, whereas in a dehydrated environment its quantum 

yield is increased by at least an order of magnitude. Validation of the potential utility of 

this nonnatural amino acid as a sensitive local protein hydration reporter was 

demonstrated in three applications, wherein we used it to probe to probe complex 

formation in a binary mixture, peptide-membrane interactions, and the hydration 

environments of two tryptophan residues in a miniprotein. Given that 5-cyanotryptophan 

has also been shown to be a useful site-specific infrared (IR) probe of proteins,142 we 

believe that the present work will further expand its utility as a novel spectroscopic probe 

to study the structure-dynamics-function relationship of proteins. 
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 Solvent λmax (nm) # exp % τF (ns) τave (ns) QY χχχχ2 
5CI H2O 387 2 91 

9 
0.1 
0.3 

0.3 0.005 1.19 

 D2O 385 2 88 
11 

0.1 
0.3 

0.4 0.002 0.99 

 TFE 373 2 97 
3 

<0.1 
0.3 

0.1 0.007 1.05 

 MeOH 366 1 100 2.9 2.9 0.06 1.04 
 EtOH 366 1 100 4.3 4.3 0.09 1.14 
 ACN 358 1 100 4.4 4.4 0.10 1.17 
 1,4-dioxane 347 1 100 4.2 4.2 0.13 1.04 
 THF 345 1 100 4.4 4.4 0.11 1.15 
 DMSO 367 1 100 7.1 7.1 0.15 1.18 

TrpCN H2O 391 2 91 
9 

0.4 
1.6 

1.4 0.01 0.97 

 TFE 386 3 53 
44 

<0.1 
0.7 

1.1 0.02 1.10 

    3 2.8    
 MeOH 384 2 10 

90 
1.8 
5.6 

5.4 0.09 1.09 

 EtOH 386 2 18 
82 

2.3 
6.8 

6.5 0.17 1.20 

 ACN 381 2 67 
33 

3.1 
7.5 

5.5 0.13 1.07 

 1,4-dioxane 361 2 25 
75 

3.4 
6.0 

5.6 0.11 1.11 

 THF 368 2 18 
82 

2.5 
5.9 

5.6 0.12 1.07 

 DMSO 391 2 21 
79 

2.1 
16.5 

16.1 0.24 1.06 

GWCNG H2O 394 2 96 
4 

0.5 
2.1 

0.8 0.01 0.93 

 MeOH 383 2 24 
76 

0.8 
6.0 

5.7 0.13 1.16 

 THF 371 2 17 
83 

3.0 
5.6 

5.3 0.14 1.04 

 DMSO 386 2 26 
74 

2.0 
14.5 

13.9 0.24 1.13 

MPXWCN H2O 391 3 82 
17 
1 

0.7 
2.0 
6.1 

1.6 0.02 0.94 

MPXWCN DPC 372 3 24 
76 

2.4 
7.2 

6.7 0.18 1.08 

TC2WCN H2O 387 3 40 
31 
29 

0.4 
1.8 

11.0 

9.2 0.06 1.18 

NATA* H2O/pH 7 358 1 100 3.0 3.0 0.14 1.03 

 

Table 9.1   Summary of results obtained from all static and time-resolved fluorescence 

measurements. QY was determined using the value of NATA as standard. τave 

corresponds to the intensity weighted average fluorescence lifetime. *Values adopted 

from ref.53. 
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Figure 9.1   Normalized fluorescence spectra of indole and 5CI obtained in 1,4-dioxane 

(solid lines) and H2O (dashed lines), as indicated. 
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Figure 9.2   Fluorescence spectra of 5CI, TrpCN, and GWCNG in different solvents, 

normalized against the fluorescence spectrum of NATA obtained in H2O. In each case, 

the normalization factor was calculated based on the integrated areas of the 

corresponding fluorescence spectra.  
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Figure 9.3   Fluorescence decay kinetics of 5CI, TrpCN, and GWCNG in three 

representative solvents, as indicated. In each case, the smooth line corresponds to a fit of 

the kinetics to either a single- or double-exponential function and the resulting fitting 

parameters are listed in Table 9.1. Shown in the top panel are the residuals of the fits of 

the unnormalized data. 
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Figure 9.4   Fluorescence decay kinetics of 5CI in D2O. The smooth line is a fit to a 

triple-exponential function. The residuals of the fits are shown in the top panel and the 

resulting fitting parameters are listed in Table 9.1.   
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Figure 9.5   CD spectrum of 2WCNP in H2O at 1.0 °C.  
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Figure 9.6   Integrated area of the TrpCN fluorescence spectrum of 2WCNP versus the 

mole fraction of DMSO (χDMSO) in the H2O-DMSO binary solvent. These data have been 

normalized such that the value obtained in pure DMSO is 1.0. The smooth line is the best 

fit of the data to a modified Hill equation (i.e., Equation 9.2) with the following 

parameters: Imin = 0.11 ± 0.02, Imax = 1.10 ± 0.01, k = 0.18 ± 0.01, n = 3.20 ± 0.29, a = -

0.30 ± .01, and b = 1.20 ± 0.01.  
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Figure 9.7   Fluorescence spectra of 2WCNP in DMSO-H2O mixtures with different 

molar fractions of DMSO (χDMSO). 

  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

300 350 400 450 500 550

N
or

m
al

iz
ed

  I
n

te
n

si
ty

Wavelength (nm)

χDMSO



217 
 

 

 
Figure 9.8   CD spectra of MPXWCN in H2O and in DPC micelles at 25.0 °C, as 

indicated. 
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Figure 9.9   (A) Normalized fluorescence spectra of MPXWCN obtained in H2O and DPC 

micelles, as indicated. The lipid to peptide ratio was 1:70 with a final peptide 

concentration of 40 μM. (B) Normalized TrpCN fluorescence decay kinetics of MPXWCN 

in H2O and DPC micelles, as indicated. In each case, the smooth line is the best fit of the 

data to a triple-exponential function and the resulting fitting parameters are listed in 

Table 9.1. Shown in the top panel are the residuals of the fits of the unnormalized data. 
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Figure 9.10   Normalized TrpCN fluorescence decay kinetics of TC2WCN in H2O. The 

smooth line is the best fit of the data to a triple-exponential function and the resulting 

fitting parameters are listed in Table 9.1. Shown in the top panel are the residuals of the 

fit of the unnormalized data. 
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Figure 9.11   Far UV CD spectrum of TC2WCN in H2O at 1.0 °C. The strong CD couplet 

at 247 and 236 nm, arising from the exciton coupling between the two TrpCN sidechains, 

indicates that the peptide is folded. It is worth noting that the TrpCN–TrpCN exciton CD 

band is different from that of Trp–Trp and hence, can be used as a stand-alone structure 

reporter. We are currently exploring this potential application and will report the findings 

in a future publication.  
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10   Infrared and Fluorescence Measurements Provide Insight into the  
Low Proton Conductance of Influenza A M2 Protein 

 
The text within this chapter is unpublished material by Beatrice N. Markiewicz, Wenkai Zhang, 

Thomas Lemmin, Hyunil Jo, William F. DeGrado, and Feng Gai. (2016). Currently Manuscript is 

in Preparation for Submission.  

 
10.1   Introduction 

The M2 protein of the influenza A virus forms an α-helical homotetrameric channel in 

the viral envelope, allowing selective proton conduction across the viral membrane upon 

endosomal acidification on virus entry.482,483 Because it is vital to the viral life-cycle, the 

M2 proton channel has been the subject of extensive studies and also targeted for 

development of anti-influenza drugs.484-488 It is well recognized that, lining the channel 

pore, His37 and Trp41 (shown in Figure 10.1), are the two most important residues that 

are responsible for channel opening and unidirectional or asymmetric proton conduction 

from the exterior into the interior of the virus.489 In particular, the role of His37 is to 

select protons for conduction via its imidazole ring and to trigger the opening of the 

channel at low pH through protonation of approximately three His37 residues, whereas 

the Trp41 tetrad functions as a gate to allow asymmetric proton conductance only when 

the pH is low on the outside of the virus.490-492 In addition, recent studies434,484,493,494 

indicate that Asp44 plays an essential role in stabilizing the Trp41 gate in the closed state 

via hydrogen bonding through a structured water network and perhaps more importantly, 

this stabilization helps the channel achieve its asymmetric proton conduction property.   

Over the past decade, several models have been proposed to explain the 

mechanism of proton transport through the M2 channel. An early model suggests that in 
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the open state the channel hosts a water wire with which protons conduct via the 

Grotthuss mechanism.495-497 A second model, the “shuttle mechanism”, proposes that 

His37 is directly involved in proton conduction by cycling through a protonation-

deprotonation process.498-502 Similarly, a third model, involving the formation of a His37 

dimer via hydrogen bonding in the closed state, suggests that protonation of the third 

His37 disrupts this dimer and promotes a His37-Trp41 cation-π interaction, which 

occasionally is disrupted by conformational motions of the helix backbone and/or Trp41 

causing exposure of His37 to C-terminal water and hence proton release.489 Finally, a 

transporter model,434,503 which involves two distinct conformational ensembles with only 

one capable of proton conduction, proposes that acidification of the virus interior is 

achieved by oscillating between these two conformations, triggered by protonation and 

deprotonation of His37.   

One particular property of the M2 channel that makes it unique is that it has a low 

proton conductance rate. Both whole-cell patch clamp and liposome experiments have 

put the proton conducting rate in the range of 101 – 104 protons per second,504-506 which is 

one to three orders of magnitude slower than expected for transmission of a proton 

through a pore of similar dimension at the same pH.507 In particular, existing evidence 

indicates that, when scaled for changes in the permeant ion concentration, the proton 

conduction rate is in fact attenuated as the pH approaches 5.0.507 This observation 

suggests that additional kinetic barriers arise for proton conduction at low pH due to 

structural fluctuations and/or protonation/deprotonation of His37 necessary for 

conduction.504,508 For example, the recent electrophysiological study of DiFrancesco et 
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al.,509 suggested a recycling step, where after proton release the channel resets its 

conformation by closing the Trp41 gate and opening the Val27 gate to prepare for proton 

intake from the exterior. On the other hand, others have proposed that a rate-limiting step 

arises from the necessity of tautomerization or ring reorientation of the imidazoliums in 

the low pH, conducting state.498,502 This type of pre-equilibration is consistent with 

electrophysiological data showing that His37 equilibrates with protons from the outside 

of the virus prior to a rate-determining step, which allows protons to diffuse away from 

the His37 on the cytoplasmic side of the channel.504 Indeed, Hong and coworkers510 have 

determined that the His37-water proton exchange rate (~105 s-1) is significantly higher 

than the time-averaged unitary proton flux of M2, indicating that not every proton that is 

exchanged with His37 exits the channel. Williams et al.435 proposed that such futile 

exchanges are caused by the His37-Trp41 cation-π interaction, which periodically forms 

and breaks at low pH. Yet, another possibility is that the channel resides in a 

predominantly closed state even at low pH and a conducting state is only transiently 

populated to allow proton release. In a theoretical treatment of M2 proton conductance 

Zhou found that in order to use a proton transfer model that takes into account the 

primary and secondary gating of Trp41 and Val27 as well as backbone dynamics to 

quantitatively describe the proton conductance data of M2, the C-terminal open 

conformation (i.e., the conformation that allows transfer of protons from His37 to the 

interior of the virus) needs to be a minor population (<10%).511 To provide further insight 

into the proton conducting mechanism of M2, herein we approach the problem from the 

perspective of channel water.  



224 
 

It is well known that water plays a pivotal role in maintaining a viable pathway 

for proton conduction in biological systems.512 While water is an integral part of the M2 

channel, as revealed by a high-resolution crystal structure of the transmembrane (TM) 

domain of the M2 proton channel,434 only a few previous studies353,434,513-518 have focused 

on elucidating the structure and dynamics of the channel water. The current 

understanding is that the region above His37 is a water-filled pore; thus protons can 

diffuse up to His37 through this water pore via a Grotthuss mechanism. However, the 

structure and dynamics of the water in this region have been shown to depend on pH (and 

the binding of pore-blocking drugs): at high pH (>7), the channel water is more 

structured and less mobile in comparison to bulk water, whereas at low pH (e.g., 5.0), the 

water density near Gly34 is increased353 and the water cluster exhibits bulk-like 

dynamics.519 While these previous studies provide invaluable insight into the hydration 

environment of the region immediately above the key His37 tetrad, less is known about 

the structure and dynamics of the water clusters below the His37 gate, especially those 

surrounding the Trp41 tetrad. Recently, Voth and coworkers517 have calculated the 

potential mean force of proton conduction across the transmembrane (TM) domain of M2 

and identified two energy barriers, with one (~10 kcal/mol) associated with the proton 

passing through the His37-Trp41 section of the channel. Based on these results, they 

concluded that deprotonation of the His37 tetrad is the rate-determining step; however, 

the intrinsic proton release rate is modulated by the structure and dynamics of water 

below the His37 gate and/or conformational fluctuations of the channel. In addition to the 

role of water, previous resonance Raman520 and electrophysiological measurements point 
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to a tight coupling between His37 and Trp41 at low pH for the most common variants of 

M2 that contain Asp at position 44.494 However, other spectroscopic and crystallographic 

studies suggest that the His37/Trp41 interaction might be largely broken at low pH.435,521 

Thus, considering these previous studies, it would be quite useful to design an experiment 

that would allow one to directly assess the dynamics of water surrounding the Trp41 

tetrad as well as the His37/Trp41 interactions under different conditions.  

In order to use infrared (IR) spectroscopy to interrogate the water environment 

and local electrostatics directly surrounding His37 and Trp41, a site-specific IR probe is 

required. For this reason, we employed a nitrile-derivatized Trp, 5-cyanotryptophan 

(TrpCN) in the current study. Previously studies have shown that the frequency and 

linewidth of the C≡N stretching vibration of TrpCN is highly sensitive to local solvation 

environment, due to the fact that even solvent interactions that do not directly involve the 

nitrile moiety, such as H-bonding with the indole amine (N-H) group, can be propagated 

through the aromatic ring to affect the C≡N stretching frequency.155,403,522 In addition, the 

well defined direction of the C≡N stretching vibrational transition dipole moment can be 

exploited to determine the structural transition of Trp41 in response to channel closing or 

opening, akin to the strategy of Hong and coworkers435 that used 5-19F-Trp and NMR 

spectroscopy to probe the pH-dependent rotameric states of Trp41. An added advantage 

of using TrpCN is that its fluorescence emission, quantum yield and lifetime, exhibit a 

strong dependence on hydration, and hence can be used as a complementary method to 

assess the solvation status of the Trp41 region of the channel.56 Specifically, we 

employed the TM domain of M2 (sequence: 22SSDPLVVAASIIGILH37LILW41ILDRL46) 
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as our model system and incorporated the IR probe via Trp41/TrpCN mutation. We chose 

this M2 construct (hereafter referred to as M2TM) because it has been shown that: 1) it 

fully recapitulates the tetrameric assembly of the full length M2, 2) there is little, if any, 

difference in its rate of conduction or amantadine inhibition versus the full-length protein 

when both are expressed in cellular membranes523; 3) the conductance measured for this 

peptide, when reconstituted in an appropriate lipid composition, is in close agreement 

with the magnitude of flux expected from whole-cell channel recordings523; 4) it is easily 

synthesized in high yield and purity and has been used in many structural 

studies.434,494,521,524-527 Despite this convenience, it is worth noting that this truncated 

version of M2 does not capture other biological functions of the full length protein, such 

as facilitating budding of the virus in an ESCRT-independent manner and interaction 

with the M1 protein. Therefore, the current study does not shed light on these aspects of 

M2’s function. Furthermore, a recent ssNMR study528 on the M2(21-97) sequence 

containing the cytoplasmic domain suggests that the pKa of the His37 residues are 

slightly increased.  

Our results indicate that the water is well-structured around the His37 and Trp41 

residues at both high and low pH states and does not show evidence of a significant 

increase in local hydration upon channel acidification. Furthermore, we find that the 

Trp41 sidechain undergoes a cation-π interaction with His37 and adopts the t90 rotamer 

that rotates approximately 30° along the χ2 dihedral angle at low pH. Taken together, 

these results suggest that there is a hydration bottleneck within the M2TM channel, 
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particularly in the vicinity of Trp41, which may cause a significant barrier for the proton 

to diffuse across this region of the channel.  

 

10.2   Experimental Section 

 
Materials and Peptide Synthesis   

The peptide (M2TM-WCN) used in this work corresponds to the transmembrane domain 

of the M2 proton channel with a single mutation at the 41 position, i.e., Trp41/TrpCN, 

which has the following sequence: 22SSDPLVVAASIIGILHLIL-TrpCN-ILDRL46. All 

peptides were synthesized using standard 9-fluorenylmethoxy-carbonyl (Fmoc) methods 

on a PS3 peptide synthesizer (Protein Technologies, Woburn, MA) and cleaved from 

resin with trifluoroacetic acid (TFA). Fmoc-5-cyanotryptophan was purchased from RSP 

amino acids (Shirley, MA), and all other amino acids were purchased from Advanced 

ChemTech (Louisville, KY). 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), cholesterol, and 

dodecylphosphocholine (DPC) were purchased from Avanti Polar Lipids Inc. (Alabaster, 

Alabama). The crude peptides were purified by reverse-phase HPLC (Agilent 

Technologies 1260 Infinity) with a C18 preparative column (Vydac). For purification of 

the M2TM peptides, a linear gradient of buffer A (Millipore water) and buffer B (6:3:1 2-

propanol:acetonitrile:water), both containing 0.1% TFA, was used, starting from 30% 

buffer B. For purification of the tripeptide Gly-TrpCN-Gly, buffer B was replaced with 

acetonitrile and 0.1% TFA. The mass of every peptide was verified by either liquid-
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chromatography mass spectrometry (LC-MS) or matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS) where appropriate.  

 

LUV Preparation 

Large unilamellar vesicles (LUVs) with a 100 nm diameter containing the M2TM-WCN 

peptide were prepared by first cosolubilizing the peptide with a ternary lipid mixture 

consisting of POPC, POPG, and cholesterol at 4:1:2 ratios in a mixture of chloroform and 

ethanol using the desired peptide to lipid ratio. The organic solvent was removed using a 

stream of nitrogen gas and the resulting film was lyophilized for at least 2 hours to 

remove any remaining solvent. The film was rehydrated with 1 mL of either a pH 7.4 

buffer (50 mM phosphate and 100 mM NaCl) or a pH 5.0 buffer (50 mM cacodylate and 

100 mM NaCl) and the resultant solution was then subjected to 8 freeze-thaw cycles, 

which include slow vortexing, freezing, and thawing. Further extrusion of this lipid-

peptide solution using an extruder (Avanti Polar Lipids Inc.) equipped with a 100 nm 

membrane yielded the desired LUV sample. All LUV solutions were stored at 4 °C and 

used within 5 days of preparation.  

 

Proton Flux Assay  

A detailed description of the liposome flux assay can be found elsewhere.523 Briefly, the 

LUVs used in the proton flux measurements were prepared using a similar procedure 

described above. Specifically, a peptide-lipid film composed of 25 nmol peptide (M2TM 

or M2TM-WCN) and 25 μmol lipid (the same as above) was rehydrated with 995 μL of 

pH 7.4 potassium phosphate buffer (15 mM KxPO4 and 50 mM K2SO4). Immediately 

upon rehydration, 5 μL of a pH indicator dye, pyranine (100 mM), was added to the 
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mixture followed by freeze-thaw cycles and extrusion. The pyranine dye on the outside of 

the liposomes was removed by allowing this LUV solution to pass through a PD-10 

column (GE Healthcare Life Sciences). To initiate the proton flux assay, 20 μL of the 

newly prepared LUV solution was added to 2.5 mL of another buffer, that contains pH 

7.4 sodium phosphate buffer (15 mM NaxPO4, 50 mM Na2SO4), 37.5 μL of p-xylene-bis-

pyridinium bromide (DPX) (1 M), which is a quencher of pyranine fluorescence, and 4 

μL of valinomycin (18 μM). The fluorescence kinetic traces were collected on a Cary 

Eclipse Fluorescence Spectrophotometer under constant stirring, using a time window of 

100 s and a time step of 0.25 s. The deprotonated pyranine fluorescence was excited at 

460 nm and monitored at 515 nm, using a spectral width of 5 nm. At the end of each trial, 

the pyranine fluorescence intensity at 515 nm was collected again (integrated for 20 s) by 

exciting its pH-independent absorption isosbestic point at 417 nm. Dividing the 

fluorescence kinetics obtained with 460 nm excitation by this fluorescence signal helps 

remove any effects arising from differences in the sample concentrations and excitation 

intensities. Five trials were conducted and then averaged, yielding the reported kinetics.   

 The normalized fluorescence signal was further converted to intraliposomal 

proton concentration, [H+], using a calibration curve (Figure 10.2) determined by 

measuring the fluorescence of free pyranine dye in a series of potassium phosphate 

buffers with known pH values. Furthermore, the size and concentration of the LUVs, 

which were needed to determine the total intraliposomal volume, were measured using a 

fluorescence correlation spectroscopic setup described in detail elsewhere.529 

Additionally, since the M2TM construct can be randomly oriented, either the N-terminus 
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pointing toward the interior (NinCout) or exterior (NoutCin) of the liposome, we assumed 

there was a 1:1 ratio of the two conformations where only the NoutCin is conducting, and 

as a result, divided the totally number of tetramers by a factor of 2.   

 
Circular Dichroism, Fluorescence, and FTIR Measurements 

Circular dichroism (CD) spectra were measured on an Aviv 62A DS spectropolarimeter 

(Aviv Associates, NJ) with a 1 mm cuvette. Fluorescence spectra were collected on a 

Jobin Yvon Horiba Fluorolog 3.10 spectrofluorometer using a 1 cm quartz cuvette. FTIR 

spectra were collected on a Thermo Nicolet 6700 FTIR spectrometer at a resolution of 1 

cm-1 using a home-built CaF2 sample cell with an optical pathlength of 25 µm. For all the 

FTIR spectra shown, a background arising from solvent absorption has been subtracted. 

All the static spectroscopic measurements were conducted at room temperature.  

 
Attenuated Total Reflectance (ATR)-FTIR Spectroscopy 

Polarized ATR-FTIR spectra were recorded on a Nicolet 6700 FT-IR spectrometer 

(Thermo Fisher Scientific Inc., Madison, WI) with a Harrick’s Horizon multiple-

reflection attachment equipped with a Ge crystal (50 mm × 10 mm × 2 mm SPT45). The 

instrument was purged with nitrogen gas during data acquisition. Each spectrum 

corresponds to an average of 128 scans with a resolution of 2 cm-1. A solution of M2TM-

WCN peptide in TFE was first mixed with a stock solution of POPC/POPG/cholesterol 

(4:1:2) in chloroform and ethanol in a 1:25 peptide to lipid ratio. A multilayer lipid film 

was prepared by introducing 100 μL of the mixture onto the surface of the Ge crystal, 

which was previously plasma cleaned, and left to dry. After a dry film was obtained, 100 

μL of either a pH 7.4 buffer (10 mM phosphate buffer and 10 mM NaCl) or a pH 5.0 
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buffer (10 mM cacodylate buffer and 10 mM NaCl) was uniformly added to the surface 

and allowed to dry under nitrogen. Then, the crystal was placed back in a hydration 

chamber and incubated for at least 24 hours before measurement.  

The C≡N orientation and helix tilt angles, all with respect to the membrane 

normal, were calculated from the dichroic ratio (R) of the respective C≡N and amide I 

bands following the published theoretical protocols.77,82 In the current study, R was 

calculated using the integrated areas of the bands measured with parallel and 

perpendicular polarizations.  

 
Trp41 Rotamer Analysis 

The Trp41 rotamer analysis using the C≡N orientation angle of TrpCN as a constraint was 

similar to that used by Hong and coworkers.435 First, four backbone structures, two for 

each pH condition (i.e., low and high), were chosen from the available M2TM structures 

in the Protein Data Bank (PDB) based on the similarity of their helix tilt angles to the 

experimentally determined values. Specifically, 3LBW and 2KQT were chosen for the 

high pH condition, and 2KAD and 3C9J were chosen for the low pH condition. Second, 

for each backbone structure, the Trp41 dihedral angles (χ1 and χ2) were systematically 

varied in a 5° increment using the VMD program,331 and for each (χ1 and χ2) combination 

the hypothetical C≡N orientation angle was determined with respect to the Z-axis of the 

channel. Third, for each case the RMSD value between the experimentally determined 

and the simulated C≡N angles was calculated. Finally, plotting the dependence of the 

RMSD values on χ1 and χ2 yielded the 2D contour plot presented in the text. Out of the 

possible 7 rotamers that a Trp sidechain can sample, we rejected those that have a low 
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RMSD value but encounter steric clashes with either the helix backbone or His37 

residues.  

 
2D IR Measurements 

The samples used in the 2D IR measurements were prepared by first solubilizing the 

M2TM-WCN peptide and DPC in trifluoroethanol (TFE) at a 1:35 peptide to lipid ratio. A 

stream of nitrogen gas was used to remove the organic solvent and the resultant film was 

lyophilized for at least 4 hours to eliminate the residual solvent. Then, this peptide-

detergent film was re-dissolved in either a pH 7.4 buffer (50 mM phosphate and 100 mM 

NaCl) or a pH 5.0 buffer (50 mM cacodylate and 100 mM NaCl). The final concentration 

of the peptide was approximately 15 mM. The primary reason to use DPC micelles, 

instead of the lipid membrane used in the static spectroscopic measurements, in the 2D 

IR experiments was that they significantly decrease the noise arising from the scattered 

light. DPC micelles have been used in many previous 2D IR studies of similar 

nature.518,519 As shown (Figure 10.3), the C≡N stretching band of M2TM-WCN in DPC 

micelles was almost identical to that obtained in membranes composed of 

POPC/POPG/cholesterol (4:1:2), suggesting that the use of DPC micelles in the current 

case has not significantly changed the assembly and function of the M2TM-WCN peptide.  

The details of the 2D IR setup have been described elsewhere.417 In short, a train 

of 800 nm, 65 fs, and 300 µJ pulses were generated by a Libra Ti:sapphire regenerative 

amplifier (Coherent, Santa Clara, CA) laser system at 1 kHz, which were used to pump a 

home-built optical parametric amplifier with different frequency generation capability to 

generate mid-IR pulses with frequency centered at 2220 cm−1. Then, these mid-IR pulses 
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were split into three groups and focused on to the sample in a boxcar geometry. The 

photon echo signal was then collected and overlapped with a local oscillator pulse for 

heterodyne detection. A grating in the spectrometer was used to disperse the heterodyned 

signal onto a 64 element mercury−cadmium−telluride (MCT) array detector (Infrared 

Associates, Stuart, FL). The data were collected at different waiting times (T) and the 

resulting 2D IR spectra were obtained from three Fourier transforms of the raw data. In 

addition, a tapered cosine window function was applied to all 2D IR time domain data 

before applying the Fourier transform. 

 
Time-Resolved Fluorescence Measurements 

Time-resolved fluorescence measurements were collected on a time-correlated single 

photon counting (TCSPC) system with a 0.4 cm quartz cuvette at 25 °C. The details of 

the TCSPC system have been described elsewhere.56,462 Briefly, a home-built 

femtosecond Ti:Sapphire oscillator was used to generate a 270 nm excitation pulse. 

Emission was collected at magic angle polarization condition, selected by a short-

wavelength bandpass filter (Semrock FF01-357/44) around 360 nm and a long-pass filter 

(Semrock FF01-300/LP) with a 300 nm cutoff to better suppress scattered excitation 

light, and detected with a MCP-PMT detector (Hamamatsu R2809U) and a TCSPC PC-

board (Becker and Hickl SPC-730). Fluorescence decays were deconvoluted with the 

instrument response function (IRF) and fit to a multi-exponential function to minimize χ2 

below an acceptable value (i.e., 1.2) using FLUOFIT (Picoquant GmbH). 
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10.3   Results and Discussion 

As indicated above, the site-specific spectroscopic probe, TrpCN, was introduced into 

M2TM via Trp41/TrpCN mutation (this mutant is hereafter referred to as M2TM-WCN). 

As shown below, this mutation does not impede the folding and proton conduction 

activity of M2TM in any significant manner, but does allow us to monitor the local 

electrostatic and hydration environment of Trp41 through the C≡N stretching vibration 

via linear and nonlinear IR techniques.  

CD and Proton Conductance Measurements of M2TM-WCN  

As shown (Figure 10.4), the far-UV CD spectra of M2TM-WCN in vesicles consisting of 

a ternary mixture of POPC, POPG, and cholesterol at both pH 5.0 and 7.4 (also referred 

to in the following text as the low pH and high pH state, respectively) show characteristic 

features (i.e., minima at 208 and 222 nm) of α-helical secondary structures and are 

similar to those of the wild-type.530 Interestingly, unlike that of M2TM, the CD spectrum 

of M2TM-WCN in a membrane environment contains an additional weak band located at 

245 nm. The fact that this band disappears when M2TM-WCN is solubilized in a mixture 

of water and isopropanol (Figure 10.5), wherein the peptide is expected to remain 

monomeric, suggests that it arises from a M2TM assembly that promotes electronic 

exciton coupling between nearby TrpCN residues. In addition, the intensity of this CD 

band depends on pH (Figure 10.4), indicating that the relative orientation and separation 

distance between these TrpCN sidechains are dependent on pH, as seen for the Trp 

residues in the M2TM proton channel. Thus, taken together, these CD results suggest that 
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the chosen Trp41/TrpCN mutation does not disrupt the tetrameric assembly of M2TM in 

lipid membranes.  

 To ensure that the TrpCN mutation does not impede the proton conduction 

function of the tetramer, we further performed proton flux measurements on M2TM and 

M2TM-WCN channels reconstituted in large unilamellar vesicles (LUVs) following a 

protocol previously published by Ma et al.523 Briefly, a M2TM or M2TM-WCN vesicle 

solution was first prepared in potassium phosphate buffer (pH 7.4), and then was diluted 

by a sodium phosphate buffer solution (pH 7.4) that also contained a potassium ion 

selective carrier, valinomycin.505 This mixing caused an electrochemical gradient 

between the interior and exterior of the liposome, which, when a proton-selective channel 

is embedded in the lipid bilayer, enabled transfer of potassium ions from the inside to the 

outside of the liposome through valinomycin and, in the meantime, a proton flow in the 

opposite direction. This proton flux was detected and quantified by the fluorescence time-

profile of a pH-sensitive dye, pyranine, which was preloaded inside the vesicles (see 

details in Supporting Information). As indicated (Figure 10.6), the cumulative proton flux 

per M2TM tetramer at this pH was determined to be 5.7 ± 0.4 H+/s, which is almost 

identical to that reported previously,523 and 4.2 ± 0.6 H+/s for M2TM-WCN. Thus, these 

results provide direct evidence that the proton conduction activity of the M2TM channel 

tolerates the Trp41 to TrpCN mutation. In addition, the proton conduction rates obtained 

here are within an order of magnitude of previously reported values for the M2 

channel.485,506,523,531  
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Structural Transition of Trp41  

Hong and coworkers have investigated the structure and structural transition of the Trp41 

gate in M2TM at acidic pH using ssNMR.435,491 By replacing Trp41 with 5-19F-Trp in 

M2TM, they were able to use 19F spin diffusion NMR measurements to characterize the 

distance between His37 and Trp41 as well as the conformational dynamics of the indole 

sidechain. Their results indicated that the Trp41 sidechain adopts a t90 rotamer at both 

high and low pH; however, the two dihedral angles of Trp41, χ1 and χ2, are increased by 

~20o upon channel activation. Furthermore, they found that at low pH, Trp41 undergoes 

Gaussian fluctuations in both χ1 and χ2, suggesting that the cation-π interaction between 

His37 and Trp41 is sporadic, and may serve as the trigger to release a proton into the C-

terminal region of the channel.  

To provide further validation of these previous findings, herein we employed 

polarized attenuated total reflectance IR (ATR-IR) spectroscopy to assess the orientation 

of the Trp41 sidechain. This assessment is based on the notion that the C≡N stretching 

vibration is a local vibrational mode and its transition dipole moment is along the 

molecular axis of the C≡N moiety, which lies in the same plane of the indole ring. 

Therefore, the orientation angle of TrpCN in a well-oriented M2TM-WCN tetramer, such 

as when embedded in a surface-supported lipid bilayer, can be determined by measuring 

the dependence of the absorbance the C≡N stretching vibration on the polarization of the 

IR light.82 As shown (Figure 10.7), the dichroic ratio of the C≡N stretching vibration, 

defined as the ratio between the integrated areas of the absorption spectra obtained with 

parallel and perpendicular polarizations, is changed from 1.55 ± 0.24 at pH 7.4 to 1.95 ± 
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0.18 at pH 5.0. This indicates that TrpCN undergoes a distinct conformational change in 

response to a protonation state change of the channel. Based on these dichroic ratios, we 

further calculated the average angle of the C≡N axis with respect to the membrane 

normal77,81 or z-axis (θCN) to be 60.2 ± 4.7° for pH 7.4 and 53.1 ± 3.7° for pH 5 (Table 

10.1). Similarly, we used the amide I band of the peptide and polarized ATR-IR 

measurements to estimate the helix tilt angle of M2TM-WCN in supported lipid bilayers at 

different pH values. As shown (Figure 10.7a and 10.7b), in both cases the absorbance of 

the amide I band measured with polarization parallel to the membrane normal is 

significantly higher than that measured with IR light whose polarization is perpendicular 

to membrane normal, indicating, as expected, that the helix is oriented perpendicular to 

the membrane plane. Further calculations using the experimentally determined dichroic 

ratios indicate that the average helix tilt angle (β) increases from 24.2 ± 9.0° to 39.7 ± 

7.4° with respect to the z-axis upon changing the pH from 7.4 to 5.0 (Table 10.1). This 

pH-induced global structural change is consistent with several other previously published 

M2TM structures.521,532,533 In addition, the angle determined herein at high pH is in 

agreement with the ATR-IR study of Manor et al.,514 which reported a helix tilt angle of 

27° at pH 7.0 obtained via a protein model constructed from backbone carbonyl angles 

calculated from the dichroic ratios of backbone isotope labels. However, their data 

suggested that the conformational change upon lowering the pH manifests through a helix 

rotation from 161° to 290° from pH 7.0 to 4.0 instead of an increase in β.  

Because θCN depends on the torsion angles (i.e., χ1 and χ2) of the TrpCN sidechain 

and also on the helix tilt angles of individual helices, the rotameric state of Trp41 cannot 
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be determined in an absolute sense using the θCN alone. However, similar to the strategy 

used by Hong and coworkers,435 this information can be used as constraints to exclude 

rotameric states that do not meet the angle criteria obtained from experiment, especially 

when the backbone conformation is known. In the current case, we began by identifying 

PDB structures of M2TM that could be used as a structural template for the subsequent 

rotameric analysis of Trp41. Based on the similarity of their helix tilt angle with the β 

angle determined from experiment, two PDB structures434,486 obtained at neutral pH and 

pH 6.5, 2KQT and 3LBW, were chosen for the high pH case. Similarly, a pH 5.3 crystal 

structure (PDB: 3C9J)521 and a ssNMR structure (PDB: 2KAD)526 obtained at pH 7 were 

chosen for the low pH state, because the helix tilt angle in both is between 35-38° and 

their C-terminal pore is relatively more expanded compared to that of the structure 

models of the high pH state. For each PDB structure, we then allowed the Trp41 

sidechain to sample all the possible rotameric conformers by varying its χ1 and χ2 

dihedral in 5° increments and the value of θCN was calculated for each and every possible 

combination. As shown (Figure 10.8) and expected, there are a large number of 

combinations of χ1 and χ2 that can satisfy the experimentally determined C≡N angle 

constraints. However, out of all the possible rotameric states that tryptophan can adopt, 

the majority of them can be ruled out due to steric clashes either with the protein 

backbone or with the His37 sidechain. As indicated (Figure 10.8a), the two allowable 

rotamers are t90 and t-105. To further determine which of these two rotamers is the most 

probable, one needs additional information. As discussed in detail below, the C≡N 
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stretching frequency allowed us to further conclude that Trp41 adopts the t90 rotamer in 

both the high and low pH states.  

To further refine the possible χ1 and χ2 values in the t90 rotamer regime, we only 

considered combinations of χ1 and χ2 that satisfy the θCN angle within ± 7.0° of the 

reported value to account for the experimental error within the ATR measurement. As 

indicated (Figure 10.9), this analysis allowed us to determine the minimum RMSD values 

within this range and hence better resolved rotamer angles (Table 10.2). Interestingly, the 

(χ1, χ2) determined from the current analysis for the low pH state are comparable to those 

obtained from the corresponding PDB structures, while the (χ1, χ2) determined for the 

closed (or high pH) state deviate significantly from their PDB counterparts. The most 

notable difference is a ~30° decrease in χ2, from 79o to 51o, indicating that the IR results 

support a tighter packing of the Trp41 sidechains in the closed state (Figure 10.9). 

Similarly, our χ1 angle is similar to that reported by Williams et al.,435 although our χ2 

angle is significantly different from theirs. In particular, their χ2 angle suggests that the 

benzene ring is pointed downward and hence closer to the C-terminus, whereas our result 

suggests that the benzene ring is more buried within the pore. In addition, the dihedral 

angles determined from the IR measurements indicate that upon lowering the pH, χ2 

undergoes a significant increase (i.e., from 51° at pH 7 to 89° at pH 5). This increase 

shifts the benzene ring of Trp41, specifically atoms Cη2, Cζ3, and Cε3, away from the 

center and into the lipid region, only exposing the N-H side of the pyrrole to the inner 

pore. Accompanied by a larger helix tilt angle, the His37 imidazole rings come into 

closer contact with Trp41, potentially allowing an optimal proximity for a cation-π 
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interaction between adjacent helices as was observed in UV resonance Raman520 and 

ssNMR435 experiments. Therefore, these structural data on Trp41 provide further 

validation that the mutation strategy used, i.e., the Trp41 to TrpCN mutation does not 

disrupt the conformational transitions that are critical for the proton conducting function 

of the M2TM channel.  

 
Local Electrostatic and Hydration Environment of the Trp41 Gate   

It has been shown that the C≡N stretching vibrational band of TrpCN is a sensitive IR 

reporter of the hydration status of its indole sidechain.155 For example, in water its C≡N 

band is centered at 2224 cm-1 with a broad bandwidth of 18 cm-1, whereas in 

tetrahydrofuran (THF) the band is shifted to 2220 cm-1 and narrowed to 8 cm-1.155 As 

shown (Figure 10.10 and Table 10.3), the C≡N band of M2TM-WCN in a hydrated lipid 

bilayer composed of POPC, POPG, and cholesterol is centered at 2219.8 cm-1 at pH 7.4, 

which becomes slightly red-shifted (~1 cm-1) and narrower when the pH is decreased to 

5.0. In comparison, the C≡N stretching vibration of a fully hydrated tripeptide, Gly-

TrpCN-Gly, has a peak frequency of 2225.5 cm-1 and also a broader bandwidth. Taken 

together, these results suggest that the TrpCN sidechain in the M2TM-WCN channel is 

mostly dehydrated and situated in a THF-like environment even when the channel is in its 

low pH state. This is a significant finding as previous studies have shown that more 

mobile water will be accumulated in the Gly34 region under more acidic 

conditions.353,503,517,519,525 In addition, the observed frequency shift toward lower 

wavenumbers upon changing the pH from 7.4 to 5.0 is consistent with the notion that the 

His37 tetrad is transitioned from a +2 state to a +3 state. This is because the associated 
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increase in electric field at the nitrile site is predicted to decrease its stretching frequency, 

due to the vibrational Stark effect. Boxer and coworkers534 have shown that the C≡N 

stretching vibrational frequency of 5-cyanoindole decreases with increasing electric field 

with a Stark tuning rate of 0.86 cm-1/(MV cm-1). Thus, a simple calculation of the electric 

field change (∆E) experienced by the C≡N bond allowed us to estimate the frequency 

shift of the C≡N stretching vibration of TrpCN. Assuming that a single point charge is 

added to the center of the His37 tetrad and using the PDB structure 3C9J and the Trp41 

rotamer obtained above for distance and angle determination, ∆E was calculated to be 4.9 

MV cm-1 when vacuum permittivity was used, which gives rise to a frequency shift of -

4.2 cm-1. Comparing to the 1 cm-1 red-shift observed in the experiment, this value 

suggests that the effective dielectric constant in this region of the channel is on the order 

of 4. This finding thus supports the notion that the Trp41 tetrad is immersed in a THF-

like environment, which has a dielectric constant of 7.6. Moreover, as discussed above, 

this red-shift would argue against the idea that the Trp41 sidechain adopts the t-105 

rotamer, as this conformation would point the C5 position, where nitrile is located in 

TrpCN, directly toward the center of the channel, resulting in a blue-shift155,535 due to 

direct H-bonding between the C≡N group and the few water molecules in this region (see 

below). Finally, the fact that at pH 5.0 the C≡N stretching band becomes narrower is 

consistent with a stronger cation-π interaction between His37 and Trp41 in the low pH 

state, which forces Trp41 to sample a more homogenous environment.   

Within the M2TM channel, the Trp41 cluster forms the narrowest region of the 

channel and is sequestered in a hydrophobic environment with the exception of the 
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confined waters, especially in the closed state.536 Therefore, the characteristics of the 

C≡N stretching vibration obtained at pH 7.4, indicative of a more ordered and less 

hydrated environment for the TrpCN sidechain, is not surprising. At pH 5.0, which leads 

to the C-terminal region to expand, it is expected, as observed in simulations,496,503,517 that 

more water will come to the vicinity of Trp41, leading to an increase in the degree of 

hydration of the indole ring. However, the IR results suggest otherwise. One concern was 

that the M2TM-WCN channel may be still closed at pH 5.0 due to the TrpCN mutation. 

Thus, we also measured the FTIR spectrum of M2TM-WCN in the aforementioned lipid 

environment at pH 3.0, where all four His37 sidechains are protonated. The result (Figure 

10.11) shows that the C≡N stretching frequency is identical to that measured at pH 5.0 

and, therefore, we rule out this possibility. Another concern was that the C≡N stretching 

vibration may lack the necessary sensitivity to reveal this change.  

Accordingly, to provide further evidence to support the conclusions reached 

through IR experiments, we carried out both steady-state and time-resolved fluorescence 

measurements. Recently, we have shown that the fluorescence properties of TrpCN are 

highly sensitive to the degree of hydration.461 For example, when TrpCN transitions from a 

hydrophobic solvent (i.e., 1,4-dioxane) to H2O, the fluorescence is severely quenched and 

results in a decrease in quantum yield by an order of magnitude. Likewise, the emission 

maximum red-shifts from 361 nm to 391 nm. Additionally, the fluorescence lifetime 

decay kinetics of TrpCN in H2O are subnanosecond whereas in 1,4-dioxane the decay 

kinetics are ~6.0 ns. As shown (Figure 10.12), the TrpCN fluorescence spectra of M2TM-

WCN in vesicles composed of POPC, POPG, and cholesterol in a 4:2:1 ratio at both pH 
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7.4 and 5.0 closely resemble that of Gly-TrpCN-Gly obtained in THF,56 indicating that the 

Trp41 sidechain is situated in a relatively hydrophobic environment in both high and low 

pH states of the channel. Consistent with our results, a previous study on the wild-type 

M2TM in DHPC/POPC bicelles showed that the native Trp41 fluorescence spectrum is 

peaked at about 334 nm at both pH 8.0 and 4.5.537 Interestingly, a closer inspection 

indicates that the TrpCN fluorescence obtained at pH 5.0 is approximately 1.5 times more 

intensive than that obtained at pH 7.4 and also shows a small but measurable blue-shift 

(i.e., from 371 to 368 nm). These behaviors are different from those observed with native 

Trp fluorescence, which was shown to decrease its intensity when the pH was lowered.538 

Nevertheless, these changes in the fluorescence properties are consistent with the idea 

that the aforementioned cation-π interactions are strengthened at pH 5.0.539 Also, since a 

change in hydration would be more drastically reflected in the fluorescence intensity 

signal of TrpCN,56 these results corroborate the conclusions we have reached above based 

on the IR measurements. Moreover, our findings are in line with a previous UV 

resonance Raman study,520 which showed that the W17 Raman band of M2, which is a 

marker of the H-bonding status of the indole N-H, did not show any appreciable change 

upon lowering the pH from 7.4 to 5.4 and that the relative intensity of the W7 doublet, 

which measures the overall hydrophobicity of the indole ring environment, also remained 

unchanged.  

To further confirm this outcome, we performed fluorescence lifetime 

measurements on M2TM-WCN in vesicles at both pH 5.0 and 7.4. As shown in Figure 

10.13, the intensity weighted average lifetime (τave) for the two pH conditions are 6.9 ns 
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(pH 5.0) and 6.7 ns (pH 7.4), and do not indicate significant changes in kinetics due to 

varying hydration environments. As a control, we show that when the TrpCN in M2TM-

WCN is more exposed to solvent, as is the case when the peptide was fully solubilized in 

trifluoroethanol (TFE) without lipid, the average fluorescence lifetime is significantly 

faster, τave = 2.0 ns. From this, we emphasize that if distinct hydration changes were 

occurring locally near Trp41 in M2TM-WCN, the observed fluorescence photophysics 

would reflect a measurable change in lifetime due to differences in nonradiative decay 

pathways. The fact that the kinetics remains similar in both pH scenarios corroborates are 

results presented above.  

 
Hydration Dynamics of the Trp41 Gate 

The motions of water molecules surrounding a vibrator can induce fluctuations in its 

vibrational frequency, causing its frequency-frequency correlation function (FFCF) to 

decay on a timescale that characterizes the dynamics of these motions. Two-dimensional 

IR (2D IR) spectroscopy is capable of assessing such dynamic events and has been 

widely used to study water dynamics.143,540 Thus, to further validate the aforementioned 

findings obtained via static spectroscopic methods, we carried out 2D IR experiments on 

the C≡N stretching vibration of the tripeptide Gly-TrpCN-Gly in water and the M2TM-

WCN channel in a membrane environment. As shown (Figure 10.14), at the same waiting 

time (T) the 2D IR spectrum of the tripeptide is more circular than that of the M2TM-

WCN channel, indicating that the spectral evolution or diffusion rates of these systems are 

different. To quantify these spectral diffusion dynamics, we used the center line slope 

(CLS) method developed by Fayer and coworkers541 to determine their respective rate 
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constants. Specifically, the center line represents the maxima of the υ=0 → υ=1 peak of a 

series of cuts through the 2D IR spectrum. A plot of the inverse CLS as a function of 

waiting time (i.e., T) provides a measure of the underlying FFCF, and is described here 

by the following exponential function:  

CLS (T) = A·e-T/τ + B,    (10.1) 

where A, B, and τ are the amplitude, offset, and spectral diffusion decay time constant. As 

shown (Figure 10.15 and Table 10.3), the spectral diffusion dynamics of the C≡N 

vibrational mode in the tripeptide occurs on a timescale of 1.6 ± 0.3 ps, which is 

characteristic of the H-bonding dynamics of bulk water.426,428 Thus, this result is 

consistent with the expectation that the TrpCN sidechain in this case is fully hydrated. On 

the other hand, as indicated (Figure 10.15), the CLS of M2TM-WCN decays on a slower 

timescale and with a time constant of approximately 3.0 ± 0.8 ps for both pH 7.4 and 5.0. 

Taken together, these results indicate that the water in the immediate vicinity of Trp41 in 

the M2TM channel does not exhibit bulk-water-like dynamics. The slower dynamics 

suggest that the water molecules in this critical region of the channel form a more 

structured and hence more strongly hydrogen-bonded network. This is entirely consistent 

with the notion put forward by Acharya et al.6 and Schnell and Chou15 that a strongly 

hydrogen bonded bridging water cluster resides between Trp41 and Asp44 when the 

channel is closed (see below). However, our finding that this water cluster remains intact 

even in the low pH condition has strong implication on the rate of proton conduction.  

 
Implication on Proton Conductance 
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As an integral part of the M2 proton channel, water must be considered in order to 

achieve a quantitative understanding of the underlying proton conducting mechanism and 

kinetics. As indicated by a recent high-resolution crystal structure of M2TM,434 which 

represents an intermediate state (pH 6.5) between the open and closed states, three well-

ordered channel water clusters exist. As shown (Figure 10.1), the first cluster is situated 

above His37 and consists of six water molecules where four are hydrogen bonded (H-

bonded) to the His37 tetrad. The second cluster, consisting of two water molecules with 

each H-bonded to a His37, is located between His37 and Trp41. Perhaps more 

importantly, the third cluster, which consists of five well-ordered waters that form H-

bonds between the indole N-H of Trp41 and the carboxylate oxygen of Asp44, is located 

near the C-terminal region of the channel and serves to stabilize the Trp41 gate. It should, 

however, be appreciated that these clusters were observed in the structure determined at 

cryogenic temperatures. MD simulations indicate that a similar distribution is also present 

near room temperature, although the waters have more dynamic character on the nano- to 

microsecond time scale. Thus, the crystallographically observed water clusters reflect the 

approximate positions of more dynamic waters at various positions in the channel.434,542 

The water distribution pattern clearly indicates that in order for a proton to diffuse from 

the first cluster to the third, or vice versa, it has to overcome two barriers imposed by 

His37 and Trp41, respectively. Thus, this picture justifies, from the perspective of water, 

why when the channel is closed protons are unable to diffuse across the channel 

beginning from either direction.  
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How does this water distribution pattern change upon viral acidification to 

facilitate proton conduction? Several recent experimental and simulation 

studies353,489,503,517,519,525 showed that both the density and mobility of the first water 

cluster are significantly increased under acidic conditions, indicating that in the low pH 

state water can readily flow into this region of the channel, hence allowing protons to 

access His37 from the N-terminal end of the channel. On the other hand, our results 

indicate that the degree of hydration surrounding the Trp41 tetrad does not show any 

appreciable change upon decreasing the pH from 7.4 to 5.0, suggesting that the second 

and third water clusters present at high pH are preserved at low pH. In other words, our 

results argue against the idea that, even under acidic conditions where the channel has a 

wider C-terminal pore, more water will gain access to the Trp41 gate region to establish a 

continuous water wire below His37. This notion is consistent with other experimental 

findings: (1) it is consistent with the fact that the M2 channel conducts protons in an 

asymmetric manner, as the lack of a continuous water chain would prevent protons to 

gain easy access to His37 from the C-terminal side of the channel; (2) it is consistent with 

the study of Pinto and coworkers,490 which showed that replacing Trp41 with a smaller 

residue, such as Ala, Cys, or Phe, results in an increase in both the forward and backward 

proton flux. This can be rationalized by considering that a smaller sidechain in this region 

will allow more water to be accumulated and, as a result, either decreasing or eliminating 

the proton conduction barrier caused by Trp41 in the wild type; (3) it is consistent with 

the study of Chizhmakov et al. and Ma et al.,493,494 which demonstrated that in the 

absence of Asp44, the rate of proton conductance increases at high pH and also at pH 5.0, 



248 
 

and was attributed to the weakening of the H-bonding network of the water cluster below 

Trp41.494 This once again points to the fact that the water network surrounding Trp41 

plays an important role in controlling the forward and backward proton flows; and (4) it 

is consistent with the MD simulation of Voth and coworkers,517 which showed that there 

is a significant energy barrier arising from deprotonation of His37 and ion passage 

through Trp41, and also with the MD simulation of Acharya et al.,434 which showed that 

when the channel is transitioned from the +2 to +3 state the water cluster between His37 

and Trp41 only accumulates one additional water molecule. Finally, and perhaps more 

importantly, the current study provides new insight into the low proton conductance of 

the M2 proton channel; it suggests, besides the previously well-recognized barrier 

imposed by His37,502,508,510 that a discontinued water wire in the Trp41 region produces a 

second barrier for proton conduction. A phenomenological kinetic scheme summarizing 

these points is give below: 

, 

where in the first step the third His37 uptakes a proton from water cluster A ((H2O)A), 

leading to formation of the +3 state of the channel, which is followed by a 

tautomerization and/or ring reorientation step (i.e., conformational change from (His37
+)A 

to (His37
+)B) required to orient His37 in a position primed to release the proton to water 

cluster B ((H2O)B), in the third step. Previously, the proton exchange rate between water 
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and the imidazole of His37, assessed by a ssNMR study,510 is at least one to two orders of  

magnitude faster than the overall proton flux of M2 measured with whole-cell patch-

clamp and liposome assays504-506 and is synchronized with ring reorientations that 

produce a barrier of ~60 kJ/mol.502 In the last step, the rate of which is not diffusion-

limited (kBC < kD), the proton is transferred from water cluster B to C ((H2O)C). While the 

current study does not provide any direct information about the structural nature of this 

step, it likely suggests that an additional conformational change, either at the sidechain 

(e.g., Trp41) or the backbone level,435,489,502,509,517 or a transiently occupied proton 

diffusive state511 is required to successfully relay a proton from His37 to the water at the 

C-terminal end of the channel.  

 

10.4   Conclusions 
 
The tryptophan residue (Trp41) in the transmembrane domain of the M2 protein of 

influenza A virus serves as a gate to allow asymmetric proton conductance into virion 

interior under external acid conditions. Herein, we used an analog of tryptophan, 5-

cyanotrptophan (TrpCN), and linear and nonlinear infrared spectroscopic methods to 

interrogate the structure and hydration dynamics of Trp41 of a model M2 proton channel 

(M2TM) in a membrane environment. Specifically, we mutated the Trp41 residue in the 

transmembrane domain of the M2 protein (M2TM) with TrpCN and used the C≡N 

stretching vibration of the resulting peptide (M2TM-WCN) as a site-specific infrared 

probe. The proton conductivity of the M2TM-WCN channel was found to be comparable 

to the wild-type M2TM channel, indicating that this mutation does not impede, in any 
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significant manner, the native function. Consistent with many previous studies on 

M2TM, polarized ATR-FTIR measurements showed that both the backbone and TrpCN 

sidechain of the M2TM-WCN channel undergo conformational changes in response to a 

pH change from 7.4 to 5.0. Furthermore, a rotamer analysis based on the ATR-FTIR 

results suggested that while Trp41 adopts the t90 rotamer conformation, in agreement 

with a previous study, the calculated dihedral angles place the indole rings in a more 

compact arrangement when the channel is at high pH. In addition, it was found that upon 

channel opening, the Trp41 sidechain rotates by +30° along the χ2 axis, loosening the 

initially tightly bound Trp41 cluster. As expected, the C≡N stretching frequency and 

fluorescence measurements indicated that the Trp41 tetrad is sequestered in a THF-like 

environment at pH 7.4, and the spectral diffusion dynamics of this vibrational mode 

indicated that the surrounding water is not bulk-like. What is not expected, however, is 

that these characteristics are preserved at pH 5.0, or in the open state of the channel. 

Taken together, these findings suggest that (1) there are a small number of water 

molecules in the Trp41 region of the channel, as observed in a high-resolution crystal 

structure of M2TM; (2) the water molecules in this critical region of the channel are less 

mobile compared to bulk water; and (3) unlike the cavity above His37, where more water 

molecules will accumulate upon channel acidification, the water density surrounding 

Trp41 does not show any significant increase when the pH is decreased from 7.4 to 5.0. 

We believe that this invariability of water density between the high and low pH states in 

this gating region is closely linked to the low rate of proton conduction in the M2 

channel, as it suggests that a continuous water wire passing through this region has a low 



251 
 

probability to be established. In other words, besides the energetic barrier inflicted by the 

His37 reorientation and protonation-deprotonation steps, the inward proton flux 

encounters a second barrier imposed by the Trp41 tetrad. 
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Parameter pH 5.0 pH 7.4 

RCN 1.95 ± 0.18 1.55 ± 0.24 

SCN 0.04 ± 0.07 -0.13 ± 0.11 

RHelix 2.31 ± 0.26 2.94 ± 0.37 

SHelix 0.16 ± 0.07 0.30 ± 0.07 

β (°) 39.7 ± 7.4 24.2 ± 9.0 

θCN (°) 53.1 ± 3.7 60.2 ± 4.7 

 
 
Table 10.1   Dichroic ratio (R), order parameter (S), helix tilt angle (β), and C≡N 

orientation angle (θ) of M2TM-WCN obtained based on the ATR-FTIR measurements at 

pH 5.0 and 7.4. 
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pH PDB Structure  (χ1, χ2)PDB
 (χ1, χ2)CN 

Low 3C9J (-169°, 84°) (-177°, 72°) 

 2KAD (-176°, 85°) (-171°, 89°) 

High 3LBW (178°, 79°) (-158°, 51°) 

 2KQT (-175°, 78°) (-164°, 51°) 

 

Table 10.2   Dihedral angles of Trp41, (χ1, χ2)CN, determined from the rotamer analysis 

detailed in the text. Also listed are the dihedral angles of Trp41, (χ1, χ2)PDB, determined 

from the corresponding PDB structure. 
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Peptide ω0, cm-1 FWHM, cm-1 A τ, ps B 

M2TM-WCN pH 5.0 2218.8 ± 0.5 11.9 ± 1.0 0.48 ± 0.04  2.92 ± 0.52  0.11 ± 0.04 

M2TM-WCN pH 7.4 2219.8 ± 0.5 13.7 ± 1.0 0.60 ± 0.08  2.84 ± 0.82  0.15 ± 0.09 

Gly-TrpCN-Gly 2225.5 ± 0.5 14.9 ± 1.0 0.42 ± 0.05 1.63 ± 0.33 0.04 ± 0.05 

 

Table 10.3   Center frequency (ω0) and width (FWHM) of the C≡N stretching vibration 

determined from linear IR experiments and parameters obtained from an exponential fit 

of the CLS from 2D IR measurements. 
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Figure 10.1   X-ray crystallographic structure of the transmembrane domain of the M2 

proton channel (Protein Data Bank ID: 3LBW), showing the two key sidechains, His37 

(blue) and Trp41 (magenta), as well as three channel water clusters (red) labeled as A-C.  
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Figure 10.2   Pyranine fluorescence-pH calibration curve. The signal ratio is defined as 

the ratio between the fluorescence intensities obtained with excitation wavelengths of 460 

nm and 417 nm, respectively. The smooth line is a fit of the data to the following 

equation: S([H+]) = A/(1+[H+]/B), where A = 2.53 ± 0.02 and B = 4.79 ± 0.18 × 10-8 M. 
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Figure 10.3   Comparison of the C≡N stretching vibrational bands of M2TM-WCN in 

DPC micelles at pH 5.0 and 7.4. The smooth lines are fits to a Voigt profile. 
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Figure 10.4   CD spectra of M2TM-WCN variant in 100 nm vesicles composed of 

POPC:POPG:cholesterol (4:1:2) at pH 5.0 and 7.4, as indicated. The peptide 

concentration was 30 μM and the peptide to lipid ratio was 1:100.   
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Figure 10.5   CD spectra of M2TM-WCN in DPC micelles (1:35 peptide to lipid ratio) at 

pH 7.4 and in a solvent consisting of 2-propanol and H2O (40:60), as indicated. The final 

peptide concentration was approximately 70 μM.  
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Figure 10.6   Comparison of the proton flux of M2TM-WCN and wild type M2TM, 

determined from the proteoliposome assay described above. The cumulative proton flux 

per tetramer was determined to be 5.7 ± 0.4 H+/s for the wild-type M2TM and 4.2 ± 0.6 

H+/s for M2TM-WCN.  
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Figure 10.7   ATR-FTIR spectra of M2TM-WCN in a hydrated lipid bilayer composed of 

POPC:POPG:cholesterol (4:1:2) at pH 5.0 and 7.4, obtained with parallel (red) and 

perpendicular (blue) polarizations. For comparison, the spectrum measured at pH 7.4 was 

scaled by a factor of 1.2. (A) and (B): amide I mode of the peptide. (C) and (D): C≡N 

stretching vibrational band of TrpCN, where the solid line is the best fit of the 

corresponding spectrum to a Voigt profile and the resultant orientational parameters were 

given in Table 10.1. 
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Figure 10.8   2D contour plot of the RMSD between the measured and calculated C≡N 

angles (θCN) as a function of the torsion angles (χ1, χ2) of Trp41. Four backbone 

structures, 3LBW (A) and 2KQT (B) for high pH and 3C9J (C) and 2KAD (D) for low 

pH, were chosen because their helix tilt angles are comparable to those obtained from the 

ATR-FTIR measurements. The circles depicted in (A) represent all the possible rotameric 

states of Trp41. Pink circles are the rotameric states that were ruled out based on steric 

clashes. Yellow circles represent the two rotameric states that were allowed based on the 

measured θCN.  
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Figure 10.9   Contour plot of the RMSD between the measured θCN from the ATR-FTIR 

spectra (Table 10.1) and the calculated θCN in the t90 rotamer range, where only values 

within ± 7.0° of the experimental value were plotted, as a function of Trp41 (χ1, χ2) 

torsion angles for high pH (A) and low pH (B) cases. The minimum values are depicted 

in Table 10.2. The PDB structure represent a bottom-up view of the Trp residues; the star 

is the position of the 5-cyano group.  
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Figure 10.10   Comparison of the C≡N stretching vibrational bands of M2TM-WCN in a 

lipid bilayer at pH 5.0 and 7.4 with that of Gly-TrpCN-Gly in H2O. The M2TM-WCN 

spectra are identical to those used in Figure 10.7. For comparison, the spectra of M2TM-

WCN was scaled by a factor of 25.The smooth lines are fits to a Voigt profile and the 

resultant parameters are listed in Table 10.3.   
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Figure 10.11   Comparison of the C≡N stretching vibrational bands of M2TM-WCN in 

the aforementioned lipid bilayers at pH 5.0 and 3.0. These spectra were collected using 

the ATR-FTIR setup with parallel polarization. The smooth lines are fits to a Voigt 

profile.  
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Figure 10.12   TrpCN fluorescence spectra of M2TM-WCN in 100 nm vesicles composed 

of POPC:POPG:cholesterol (4:1:2) at pH 5.0 and 7.4, as indicated. The peptide 

concentration was 30 μM and the peptide to lipid ration was 1:100. 
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Figure 10.13   Fluorescence kinetics of M2TM-WCN in vesicles composed of POPC, 

POPG, and cholesterol at pH 5, pH 7, and in TFE solution without lipid, as indicated. The 

smooth line corresponds to a fit of the kinetics to a multi-exponential function and the 

intensity weight average lifetimes were determined (τave). For pH 5: A1 = 0.62, τ1 = 7.8 ns, 

A2 = 0.38, τ2 = 2.5 ns, and τave = 6.9 ns. For pH 7: A1 = 0.62, τ1 = 7.5 ns, A2 = 0.38, τ2 = 2.4 

ns, and τave = 6.7 ns. For TFE solution: A1 = 0.84, τ1 = 0.1 ns, A2 = 0.12, τ2 = 15 ns, A3 = 

0.03, τ3 = 4.0 ns and τave = 2.0 ns. 
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Figure 10.14   Representative 2D IR spectra of the C≡N vibrational mode of M2TM-

WCN (15 mM) in DPC micelles (1:35 ratio) at pH 5.0 (A) and pH 7.0 (B). Shown in (C) 

are the 2D IR spectra of Gly-TrpCN-Gly (80 mM) in H2O. In each case, the respective 

waiting time (T) is indicated.  
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Figure 10.15   Center line slope (CLS) vs. waiting time (T) plots obtained from the 2D 

IR spectra of M2TM-WCN in DPC micelles at pH 7.4 (red), pH 5.0 (green), and Gly-

TrpCN-Gly in H2O (blue). The smooth lines are fit of this data to the following equation: 

CLS(T) = A∙e-T/t + B, and the resulting parameters are listed in Table 10.3.  
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11   Summary and Future Directions 

Protein molecules undergo a diverse set of intra and intermolecular interactions and 

atomic motions to achieve their biologically relevant structures. Overall, this thesis 

addresses how one can experimentally dissect protein dynamics and structure from a 

mechanistic perspective by chemically fine-tuning aspects of the molecular structure to 

interrogate configuration-dependent and/or site-specific details. More importantly 

however, the methods presented here only provide an initial stepping stone, and further 

study implementing the proposed techniques may be helpful in answering other 

interesting biological questions.  

 In Chapter 4, we demonstrate how a disulfide covalent constraint placed 

deliberately along a key hydrogen bonding site of a β-hairpin, can be used to trap a 

kinetically measureable transition-state analog. Fortunately, a large library of helix and β-

sheet staples exists in the literature. Utilizing this principal to study the folding of 

intrinsically disordered proteins (IDPs) would be an interesting direction to pursue. 

Recent experimental evidence shows that IDP folding proceeds through a heterogeneous 

nucleation process so that binding can occur with multiple active sites.543 Cross-linking 

particular regions of IDPs may lead to a more homogenous mechanism allowing for more 

specific binding, and also may speed up the rate of folding.   

 In Chapter 5, we show how a helix cross-linker can site-specifically increase the 

local density near a protein chain, thus inducing a measurable internal friction effect. The 

added landscape roughness retards the folding rate by a factor of ~5. This technique is not 

only useful to understand the physical principles behind internal friction, but can be a 



271 
 

useful tool to control the rate and direction of a folding pathway. Incorporation of such 

constraints in larger proteins can be used to tune the folding of certain secondary 

structural elements and thus regulate the order of folding events.  

 Chapters 6 and 7 discuss the application of using a light-sensitive non-natural 

amino acid, Lys(nvoc), which is a hydrophobic but converts to a natural lysine upon 

photocleavage, to explore aggregation mechanisms and manipulate the self assembly of 

fibril protein structures. The switchable nature of the Lys(nvoc) moiety allows one to 

site-specifically alter the chemical environment from hydrophobic to hydrophilic via 

light. As such, we have shown that short amyloid-forming peptides containing this 

Lys(nvoc) modification selectively incorporate into the hydrophobic core of wild-type 

fibrils, where the light-activated charge is strong enough to cause repulsive interactions 

and disassembly. Evidence in the literature proposes that even the fibril state is dynamic 

and peptide monomers can intercalate into the ordered structure.390,544 Thus, it would be 

advantageous to test whether small amyloid motifs or low molecular weight gelators (i.e., 

dipeptides) containing Lys(nvoc), could spontaneously embed in the mature fibril after a 

long equilibration time. This could significantly increase the biological applicability of 

the method in question. Also important, this section also discussed the effectiveness of 

using Lys(nvoc) to control the morphology and degradation of peptide hydrogel matrices. 

Because these biomaterials are engineered for medical applications such as drug delivery, 

the next logical step would be to test the encapsulation activity of the designed 

photodegradable hydrogels. 
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 In Chapters 8 and 9, we present new infrared and fluorescence spectroscopic 

properties of a nitrile-modified non-natural amino acid probe, 5-cyanotryotophan (TrpCN). 

Through a solvent study, we show that the nitrile stretching frequency correlates well 

with Kamlet-Taft solvent parameters, describing the polarity and the degree of hydrogen 

bond accepting and donating ability.  In other words, the IR frequency is tuned by 

interactions on the entire sidechain moiety, thus, demonstrating its sensitivity. Also 

important, we show that the fluorescence intensity, emission maximum, and lifetime of 

TrpCN, is exceptionally responsive to hydration environment, even more so than the 

native sidechain. Thus, it is not only effective as an IR probe, but it is a suitable 

fluorescence probe of protein hydration. However, the nature of the quenching 

mechanism in aqueous environments of TrpCN is not fully understood based on our study 

herein. While we hypothesize that the hydrogen bonding interactions between water and 

the π-system of the indole ring can induce new non-radiative decay pathways leading to 

the fast lifetime, we cannot completely rule out other possibilities without probing the 

relaxation processes in detail. As a result, future work will first involve performing 

pump-probe transient absorption studies. From here, we hope to identify if there are other 

factors at play, such as a competing intersystem crossing pathway to an excited triplet 

state or an excitation-induced proton transfer mechanism of the N-H group. The pKa of 5-

cyanoindole is ~16 in the ground state. A recent study showed that upon excitation to the 

first singlet state, the pKa decreases to approximately 10.545 This acidification upon 

excitation may facilitate deprotonation followed by non-radiative decay of the anion in 

aqueous environments. Also important, a recent study showcased the fluorescence 
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properties of 6- and 7-cyanotryptophan,57 indicating that positioning of the nitrile 

functional group significantly dictates the electronic properties. As a result, future work 

will also aim to investigate how the position of the nitrile moiety affects not only its 

fluorescence properties, but also its vibrational spectroscopic properties. Preliminary 

work shows that both the extinction coefficient and frequency of the nitrile stretch is 

affected by ring position. Lastly, implementing an isotopically labeled TrpCN probe, i.e., 

containing 13C≡15N, may also yield more useful spectroscopic properties. Most notably, it 

will red-shift the nitrile stretching frequency by ~80 cm-1, allowing simultaneous 

observation of the amide I mode and the site-specific label of the studied protein.  

 Finally, in Chapter 10, we employ the TrpCN probe to study a functionally 

important tryptophan (Trp) residue in a membrane protein channel, namely the 

transmembrane domain of the M2 proton channel of the influenza A virus, and we 

interpret the mechanism of function based on the principles established in Chapter 8 and 

9. The Trp residue acts as a gate that controls proton conduction of the channel, and 

mutation with TrpCN allowed us to observe the local electrostatics, hydration status, and 

dynamics inside the pore at this site. We find surprisingly that the hydration environment 

stays relatively constant between the open and closed states, and that this may suggest 

that Trp acts as a bottleneck in the conduction mechanism. There are several future 

investigations that could further help dissect the proton transfer mechanism. Recently, we 

showed that a backbone isotope labeled histidine sidechain can spectroscopically report 

on changes in pH, tautomer structure, and hydration.546 Since histidine functions as the 

proton shuttle in this M2 proton channel, and is thought to limit the rate of the proton 
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conduction, it would be advantageous to look at the pH dependent changes from this site. 

Furthermore, aspartic acid is located three residues below Trp. By using an isotope 

labeled carbonyl in the sidechain of aspartic acid, we could further probe the hydration 

status or hydrogen bonding interactions near that site using IR spectroscopy. Finally, the 

ultimate future goal to understanding this biological system and utilize the full potential 

of the TrpCN probe, would be synthesize an amber codon suppressor tRNA, containing 

the necessary nitrile modification to be able to express the probe in the full length M2 

protein sequence.   
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