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Abstract
Upon immune cell activation with antigen, growth factors, or other stimuli, the cytoskeleton undergoes
extensive reorganization to elicit a cellular response. The cytoskeleton, consisting of microtubules and actin, is
a highly organized network regulated by various signal transduction pathways. Specifically, Rho GTPases
(RhoA, Rac1 and Cdc42) regulate the cytoskeleton, albeit through different pathways. p21-activated kinases
(Pak) are serine/threonine kinases directly bound and activated by Rac1 and Cdc42. There are 6 Pak isoforms
separated into 2 groups (groups I&II) in this family of kinases, and only recently have isoform specificities
been identified by the use of genetically-engineered mouse models deleted for individual isoforms. In this
dissertation we sought to identify if differences exist between Pak1 and Pak2 in immune function, in particular
how they differ in regulation of the cytoskeleton reorganization required for immune cell function. Using
primary bone marrow derived mast cells, an immune cell type responsible for anaphylaxis and allergic
responses, we identified that Pak1 and Pak2 function in opposing manners with regard to antigen-induced
degranulation. We identified key mechanisms involved in Pak2's negative regulation of mast cell
degranulation. These findings identify potential therapeutic side effects with the use of recently developed
pan-Pak inhibitors in the clinic. Pak2 deletion was additionally investigated in an in vivo mouse model. We
discovered that Pak2 is critical for homeostasis and survival in an adult animal. We identified
macrothrombocytopenia, cause by an increase in circulating platelet half-life and clearance, as well as other
defects in Pak2-deleted adult mice. Therefore, we evaluated the maturation process of the platelet-producing
megakaryocyte and found that Pak2-null megakaryocytes have altered microtubules, proplatelet extensions
and polyploidization. Various signaling pathways that regulate these functions were also suppressed with Pak2
deletion. Together, our findings identify Pak2 as the predominant isoform in hematopoietic compartment and
immune cells, and suggest further analysis of critical immune cell side effects, which could occur in the patient
with the use of pan-Pak inhibitors in the treatment of various cancers.
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ABSTRACT 
 

p21-ACTIVATED KINASE 2: SIGNAL TRANSDUCTION IN MAST CELLS, 
MEGAKARYOCYTES AND IN VIVO HOMEOSTASIS 

 
Rachel E. Kosoff 

 
Jonathan Chernoff 

 
Jeffrey Field 

 

Upon immune cell activation with antigen, growth factors, or other stimuli, the 

cytoskeleton undergoes extensive reorganization to elicit a cellular response. The 

cytoskeleton, consisting of microtubules and actin, is a highly organized network 

regulated by various signal transduction pathways. Specifically, Rho GTPases (RhoA, 

Rac1 and Cdc42) regulate the cytoskeleton, albeit through different pathways.  p21-

activated kinases (Pak) are serine/threonine kinases directly bound and activated by Rac1 

and Cdc42.  There are 6 Pak isoforms separated into 2 groups (groups I&II) in this family 

of kinases, and only recently have isoform specificities been identified by the use of 

genetically-engineered mouse models deleted for individual isoforms.  In this dissertation 

we sought to identify if differences exist between Pak1 and Pak2 in immune function, in 

particular how they differ in regulation of the cytoskeleton reorganization required for 

immune cell function. Using primary bone marrow derived mast cells, an immune cell 

type responsible for anaphylaxis and allergic responses, we identified that Pak1 and Pak2 

function in opposing manners with regard to antigen-induced degranulation.  We 

identified key mechanisms involved in Pak2’s negative regulation of mast cell 

degranulation. These findings identify potential therapeutic side effects with the use of 

recently developed pan-Pak inhibitors in the clinic. Pak2 deletion was additionally 
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investigated in an in vivo mouse model. We discovered that Pak2 is critical for 

homeostasis and survival in an adult animal. We identified macrothrombocytopenia, 

cause by an increase in circulating platelet half-life and clearance, as well as other defects 

in Pak2-deleted adult mice.  Therefore, we evaluated the maturation process of the 

platelet-producing megakaryocyte and found that Pak2-null megakaryocytes have altered 

microtubules, proplatelet extensions and polyploidization.  Various signaling pathways 

that regulate these functions were also suppressed with Pak2 deletion. Together, our 

findings identify Pak2 as the predominant isoform in hematopoietic compartment and 

immune cells, and suggest further analysis of critical immune cell side effects, which 

could occur in the patient with the use of pan-Pak inhibitors in the treatment of various 

cancers.  
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Chapter 1: Introduction  

1.1 p21-activated kinases 1 and 2 

Protein kinases function by phosphorylating effector proteins at specific sites 

containing serine, threonine and/or tyrosine amino acid residues.  This post-translational 

modification functions to control subcellular protein localization, tag proteins for 

degradation or stabilization, assemble multi-protein complexes, and regulate biochemical 

activities (e.g. activation or repression of an enzyme and transcription factor). Through 

these processes, kinases regulate a wide array of fundamental cellular activities, including 

proliferation, migration, differentiation and survival. These processes are frequently 

dysregulated in cancer.  Kinases are among the most common drivers of tumorigenesis, 

making them suitable targets for cancer therapies.  In addition to oncology, kinases are 

targets of therapeutics in inflammation, diabetes, and neurodegenerative diseases. 

Knowledge of a kinase’s physiological cellular function in disease and normal states is 

important when choosing a kinase as a therapeutic target.  

Challenges facing researchers in this field include knowledge of temporal and 

spatial requirements for kinase function, the in vivo conditions required for kinase 

functionality and how that differs among cell types. Additionally critical is the 

identification of downstream effectors to drive the myriad of physiological changes 

induced by kinases.  

In this dissertation, I focus on the role of two isoforms of p21-activated kinase 

(Pak), Pak1 and Pak2, in mast cell function, megakaryocyte biology and describe 

differences observed in a genetically-deficient animal model. Pak proteins are 

serine/threonine kinases that are activated by small 21-kD GTPases, Rac1 and Cdc42.  
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This family of kinases has a diverse set of cellular activities, including proliferation, 

survival and apoptosis and cytoskeleton-related functions such as focal adhesions, 

contractility, directional motility and polarity.1  Pak1 and Pak4 are drivers of many 

common cancer types, and therefore therapeutics to inhibit kinase function are under 

development.  

Until the widespread use of silencing techniques with isoform-specific siRNAs, 

most assays to identify Pak substrates utilized kinase-dead, mutant, or loss-of-function 

Pak proteins.  These techniques may not be appropriate to identify isoform-specific 

functions since kinase-dead mutants act in a dominant-negative fashion by associating 

nonproductively with Pak substrates.  Pak1 and Pak2 share virtually identical in vitro 

substrate specificity, as assessed by peptide arrays to identify consensus phosphorylation 

motifs.2 The amino acid sequence surrounding the phosphoacceptor amino acid is one 

critical determinant of kinase specificity. The consensus substrate amino acid motif for 

Group I Paks is RRRRRSWYFG, where the serine (S) is the kinase target site. Group I 

Paks prefer large hydrophobic residues after the phosphoacceptor serine (+1- to +3-

positions).  Interestingly, Group II Paks consensus sequence is RRRRRSWASP, similar 

to Group I with the series of arginines (R) prior to serine, but differ after the 

phosphorylated serine. Group II Paks prefer alanine at +2 and another serine at +3 

position, as opposed to the hydrophobic residues preferred by Group I. Identification of 

these phosphorylation motifs is important for identification of novel substrates. 

Additionally, factors that influence substrate phosphorylation include surface 

accessibility of the target site, other interaction sites between the kinase and substrate, 
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proper kinase docking sites on the substrate, and kinase and substrate localization and 

expression within  the cell.  

Since substrate sequence motifs for Pak1 and Pak2 are identical, it is likely the 

use of dominant-negative mutants in cell-based assays make isoform substrate specificity 

difficult to identify. Furthermore, protein overexpression vectors can override 

endogenous isoform specificity.3,4 The optimal tool to study isoform specificity is the use 

of primary cells from genetically engineered mouse models. In this dissertation, I provide 

novel evidence of isoform specificity of Pak1 and Pak2 in hematopoietic-derived primary 

cell culture of mast cells and megakaryocytes.   

Pak1, Pak2 and Pak3 make up Group I Pak kinases. These proteins are highly 

homologous (Appendix 1), but differ in their transcriptional regulation and tissue 

distribution.5 Pak1 is expressed mainly in cardiac tissue, brain and spleen, whereas Pak2 

is ubiquitously expressed and Pak3 is expressed in brain tissue.6 Pak1- and Pak3-

deficient mice are viable adults; however a double-knockout of Pak1/3 demonstrates a 

strong neurological phenotype, providing evidence that these isoforms are functionally 

redundant in some tissue types.7 Soon after birth these DKO mice succumb to major 

brain volume loss, despite normal brain organization, implicating a role for Pak1/3 in 

coordinating neuronal complexity and neuronal synapses.  These DKO Pak1/3 mice also 

display learning and memory defects, along with hyperactivity behavior, possibly due to 

shortened dendrite/axon length and limited branching. Pak2 deletion in vivo results in 

embryonic lethality by day 9.5, due to improper formation and disruption to the 

vasculature. (Radu, M and Chernoff, J manuscript in preparation, 2014) 
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In this dissertation, I elucidate the function of Pak2, relative to the highly 

homologous isoform Pak1, in order to identify differences among bone marrow derived 

cells, mast cells and megakaryocytes (Chapter 2 and 3, respectively). Finally, in chapter 

4, I will describe the phenotype observed upon in vivo deletion of Pak2 in an adult mouse 

model.  

1.2 Pak1 

Pak1 kinase is located on chromosome 11q13.5, and is amplified or 

overexpressed in a variety of tumor types, leading to anchorage-independent growth and 

tumor progression.1 Pak1-deficient mice are viable and fertile with a normal lifespan, 

lacking any obvert phenotype.6 Recent reports have identified a subtle cardiac phenotype 

under pressure overload conditions, and we found a mast cell phenotype downstream of 

neurofibromin and Ras activation.8-10  

Pak1 protein is highly expressed in all regions of the heart, whereas Pak2 and 

Pak3 are expressed at low levels.11 Pak1 regulates SERCA2, the sarcoplasmic reticulum 

(SR) Ca2+-ATPase type 2, through transcriptional regulation.12 Impaired SERCA2 

expression is associated with heart failure caused by ventricular arrhythmias. A 

cardiomyocyte-specific Cre-recombinase to drive Pak1f/f deletion, causes cardiac 

hypertrophy during either acute or chronic β-adrenergic stress. In culture, Pak1-null 

cardiomyocytes demonstrated aberrant Ca2+-homeostasis. 

Another observed phenotype in adult Pak1-deficient mice is decreased mast cell 

degranulation in response to allergen stimulation. Mast cell studies evaluating signal 

transduction downstream of the c-Kit receptor and FcεRI receptor demonstrate that Pak1 

functions as a positive regulator.  Pak1-null mice administered stem cell factor (SCF) to 
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stimulate the c-kit receptor recruited fewer mast cells to the dermis. Additionally, Pak1-

null mice evaluated for systemic and cutaneous anaphylaxis with allergen mounted a 

suppressed mast cell response.9,10,13 Consistent with in vivo results, in vitro culture of 

Pak1-null mast cells derived from bone marrow had decreased antigen induced-

degranulation and decreased SCF-mediated migration.  Reduced degranulation in Pak1-

deficient mast cells was attributed to impaired extracellular calcium mobilization and 

persistent cortical F-actin polymerization, leading to reduced antigen-induced 

degranulation. Pak1 was further demonstrated as a positive regulator of mast cell 

secretion by its phosphorylation and activation of the phosphatase PP2A. Activated PP2A 

dephosphorylates the ERM protein complex (Ezrin/Radixin/Moesin), leading to an 

uncoupling of the actin network from the cytoskeleton, a key event in mast cell 

degranulation.13 The persistence of cortical F-actin in Pak1-/- mast cells partially explains 

the reduced antigen-induced calcium influx. Actin depolymerization is required for 

sensing of calcium depletion in the ER, and localization of the ER to the plasma 

membrane.14,15 Considering what is known about Pak1 in mast cells, we were curious 

what role, if any, Pak2 played in mast cell degranulation. These data would help delineate 

if pan-Pak inhibition with Group I specific inhibitors could be a viable therapeutic for 

anaphylaxis and other mast cell hyperactivity disorders. 

1.3 Pak2 

Unlike Pak1, studies involving Pak2 function in vivo have been challenging due 

to embryonic lethality at day 9.5 caused by severe cardiovascular abnormalities.16   Pak2 

is ubiquitiously expressed, unlike the tissue specific expression of Pak1. Our lab 

generated a Pak2-floxed animal, in which Pak2 is conditionally deleted by crossing these 
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mice with an inducible cre-recombinase, such as the hematopoietic-specific Mx1-cre, in 

order to study changes to the bone marrow upon Pak2 deletion in an adult. Chapter 3 and 

Chapter 4 of this dissertation address observations in this animal model.   

Although in vitro Pak1 and Pak2 share many properties and sequence identity, 

deeper examination of these isoforms is beginning to reveal differences in their function. 

The research in this dissertation delves into isoform differences in primary bone marrow-

derived mast cells and megakaryocytes, as well as describes changes in adult animals. 

Unlike Pak1, Pak2 has no clear role in tumorigenesis, but instead is critical for embryonic 

development, vascular integrity and barrier function.1,17 Pak1 and Pak2 share 93% 

sequence identity in their kinase domain and 97% sequence identity in their regulatory 

domain.  Despite these similarities, recent findings suggest that they may function 

through different signaling cascades.18,19  

A primary function of Pak kinases is regulation of cell migration and invasion, 

properties essential to cancer metastasis. The first study to comprehensively look at both 

Pak1 and Pak2 isoform differences measured differences in invasion of breast cancer 

cells and found their signaling pathways differed widely.18 Silencing of Pak1 resulted in 

reduction of lamellipodia formation, necessary for migration and invasion of cancer cells.  

Pak1 regulates lamellipodia formation by inhibition of actin-severing function of cofilin.  

Silencing of Pak2 had no effect on lamellipodia formation.  The authors continued on to 

discover an opposing role for Pak1 and Pak2 in phosphorylating myosin light chain 2 

(MLC2), a protein downstream of RhoA known to mediate myosin II assembly and 

actomyosin contractility, both required for focal adhesion formation.  Downregulation of 

Pak1 resulted in reduced MLC2 phosphorylation and reduced focal adhesions, whereas 
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inhibition of Pak2 resulted in elevated MLC2 phosphorylation and increased focal 

adhesions.  

An independent study found that silencing Pak2 in hepatocellular carincoma 

(HCC) cell lines caused increased focal adhesion formation, and decreased migration in 

response to TGF-beta activation.20 Clinical HCC samples had elevated phosphorylated 

(activated) Pak2, which correlated with increased tumor progression, metastasis and 

reoccurrence. Elevated Pak2 activity decreased focal adhesions and increased migratory 

properties. The precise mechanism by which Paks regulate focal adhesion formation in a 

precise temporal-spatial fashion during cell motility, however, is poorly understood. 

In the above-mentioned study by Coniglio et al., they additionally found that 

Pak2, but not Pak1 regulates RhoA GTPase activity, by an unidentified mechanism.18 

These data begin to describe signaling cascade differences between Pak1 and Pak2. This 

dissertation will evaluate if these signaling differences are found in primary bone-marrow 

derived immune cells from genetically-deleted animals. Since the work published by 

Coniglio et al., other groups have identified substrate differences between Pak1 and Pak2, 

including a study by Chu et al. evaluating Pak’s function in intestinal smooth muscle 

contractility.21 Under physiological conditions, Pak1, but not Pak2 phosphorylated and 

inactivated the phosphatase MYPT1, promoting MLC2 phosphorylation to control 

smooth muscle contractility. However, under pathological conditions, Pak1 levels were 

elevated, but no longer able to phosphorylate and inactivate MYPT1, resulting in 

inhibiting MLC2, reduced contractility and exacerbated disease.  

These studies together demonstrate that Pak1 and Pak2 signal through different 

mechanisms to effect MLC2 phosphorylation and subsequent action on cellular 
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contractility. These pathways are described in figure 1.3.  This thesis will investigate 

some of these differences in primary immune cell function, rather than adherent cell 

lines.  

Since the construction of a Pak2-floxed animal, several groups, in collaboration 

with the Chernoff laboratory, have studied the effect of this kinase on immune and 

hematopoietic function.  Dorrance et al. was the first to study Pak2 inhibition in 

hematopoietic stem cell engraftment.22 They found that Pak2, but not Pak1 or Pak3, was 

required for proper stem cell proliferation and homing to the bone marrow niche, through 

the ERK signaling cascade.  Phee et al. found that Pak2, but not Pak1, was required for 

T-cell development and maturation, as well as actin remodeling required for T-cell 

receptor activation.23 As more researchers investigate primary cells from Pak2-floxed 

animals, we will continue to find unique features of the Pak2 isoform.  These findings are 

critical to understanding the effects of inhibition of each Group I Pak isoform, as current 

small molecular inhibitors inhibit the entire group without discretion to isoform 

specificity.  

1.4 Mechanisms of Activation of Pak 1-3 (Group I) 

Activation of Group I Paks is primarily achieved through binding of small 

GTPases, Rac1 and Cdc42, which relieves trans autoinhibition and induce conformation 

changes to activate the catalytic domain. There are alternative mechanisms of activation 

including the binding of sphingolipids, phosphoinositides, SH3-domain containing 

proteins NCK, GRB2, and transphosphorylation by other kinases (i.e. PDK-1, PKA, 

CK2, Akt).24-31 These can function to activate Paks in the absence of active small 

GTPases. Additionally, Pak1 can be activated by exposure to EspG, a virulence effector 
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protein from enterohaemorrhagic E coli O157:H7. EspG was shown to bind to an 

alternative region of the regulatory domain, releasing the homodimers, resulting in 

monomeric activation of Pak.32,33   

The N-terminus of Group I Pak proteins contain an autoregulatory fragment, 

consisting of Rac1/Cdc42 binding domain (PBD), dimerization fragment (DI), inhibitor 

switch domain (IS), and the kinase inhibitory fragment (KI). These fragments all interact 

to stabilize Pak in the inactive confirmation. Following binding of Rac1 and Cdc42, Pak 

undergoes conformational changes resulting in activation of the catalytic domain, 

uncoupling of the homodimers, (auto)phosphorylation of Pak (Thr-423), and stabilization 

of the monomeric active conformation (Figure 1.1). 

 

 

 

Figure 1.1 :  Schematic representation of 
Pak1-3 activation upon Rac1 and Cdc42 
binding.  Binding of Rac1/Cdc42, along 
with other mechanisms described in the 
text, relieves  Pak autoinhibition.  Pak is 
fully functional upon (auto) 
phosphorylation at multiple sites, which 
stabilizes the catalytic domain, resulting in 
an active monomer.   
Figure adapted from Radu et al. 1 
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1.5 Downstream Effectors of Pak 

Catalytically active Pak activates or inactivates numerous signaling pathways 

critical for proper cellular function. These include proliferation, apoptosis, survival, as 

well as cytoskeletal-intense pathways to drive migration, adhesion, and contractility. Of 

all the signaling pathways identified, the most well established cascade to regulate 

proliferation and survival involves direct phosphorylation of Mek-1 and Raf-1 by Pak1 to 

drive the ERK/MAPK signaling pathway.34,35 Additionally, Pak drives substrate 

phosphorylation of both actin- and microtubule-associated proteins to regulate actin and 

microtubule dynamics. Pak regulates actin polymerization by directly phosphorylating 

LIMK, which inhibits the actin-severing protein, cofilin, leading to actin stabilization.36-39 

Additional mechanisms of actin regulation include phosphorylation of myosin light chain 

(MLC), dynein light chain 1 (DLC1), and filamin A.36,40  

Regulation of microtubule (MT) dynamics is also a prominent feature of Pak 

kinases.   There are multiple mechanisms by which Paks affect MT dynamics.  These 

include phosphorylation and inactivation of the microtubule destabilizing protein, 

Op18/stathmin, to promote MT polymerization41 and phosphorylation of Aurora kinase at 

key threonine and serine sites required for mitosis and bipolar spindle assembly.42 Aurora 

A regulates MT assembly through numerous signaling cascades leading to polarized MTs 

for mitosis, cell motility and other cellular functions. Aurora kinases regulate MT by 

phosphorylating and inhibiting Op18/stathmin, leading to inhibition of microtubule 

depolymerization and by downregulating MCAK (mitotic centromere-associated 
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kinesin), a microtubule associated protein which functions to promote MT 

disassembly.43,44 

This dissertation will identify downstream signaling cascades regulated by Pak2 

to elicit cellular responses from mast cells and megakaryocytes. Specifically, I evaluated 

FcεRI-mediated signaling in mast cells, and TPO-driven signaling cascades in 

megakaryocytes required for maturation and polyploidization. Our findings indicate that 

Pak2 functions in these two disparate cell types through different pathways to elicit a 

response.  It is likely that Pak2 is active in most immune cells, based on our research and 

the research of our collaborators.  

1.6 Pak activation in inflammation 

An inflammatory response in most immune cells requires remodeling of the 

cytoskeleton to respond to stimuli; therefore, it is of no surprise that Pak isoforms are 

required for immune cell function and inflammation.  A number of reviews have 

addressed this in recent years.45,46 In this section I will address mechanisms by which 

Paks regulate inflammation, several key signaling pathways involved, and how Paks 

regulate T-cells and mast cells.   

A number of inflammatory extracellular stimuli activate Paks, these include 

chemokines such as CXCL1, interleukins such as IL-1β and T cell receptor ligation.47-49 

For these stimuli to elicit an immune response, signaling cascades leading to the MAPK 

pathway, along with JAK pathway are often elicited.50 The use of MAPK inhibitors are 

emerging as an attractive strategy against chronic inflammation as they are capable of 

reducing both the synthesis of pro-inflammatory cytokines and their signaling cascades.50 

Considering that key functions of PAKs are to regulate the MAP kinases ERK, JNK, 



	   12	  

and/or p38 pathways in response to inflammatory stimuli, Pak inhibition is being 

considered for regulation of inflammatory disorders.51  

Pak kinases are key nodes in inflammatory signaling, by regulating reactive 

oxygen species, chemokine signaling, NADPH oxidase activity and the cytoskeleton.  

Pak kinase regulation of the actin cytoskeleton plays a key role in inflammatory signaling 

among most immune cell types.  Maintaining control of Pak kinases are critical for 

immune regulation.  Therefore, therapeutic intervention of Paks is most likely a critical 

component of controlling inflammation, through Paks control and regulation of multiple 

signaling pathways.   

A well-known inflammatory signaling regulator, NF-κB, has been linked to Pak 

in several studies.52-55 In both canonical (TNFα -activated) and non-canonical (LPS-

activated) NF-κB signaling, Pak1 is activated and signals to stimulate nuclear 

translocation of the p65 subunit of NF-κB, but does not activate IKKα or IKKβ.54 In 

canonical NF-κB signaling, Pak activates c-jun kinase (JNK) and in non-canonical 

signaling, Pak phosphorylates NF-κB -interacting kinase (NIK).  Non-canonical H. 

pylori-induced LPS activation of NF-κB signaling demonstrates the connection between 

Pak kinases and activation of innate immunity.52 Activation of this pathway, through Pak, 

results in release of proinflammatory cytokines, such as IL-1β, TNFα and IL-6 from 

macrophages.52 Pak1 also drives M1 macrophage polarization and activation in response 

to endotoxin shock with LPS.56 LPS is a potent inducer of Pak1 in macrophages. 

Inhibition of Pak1 in LPS-stimulated macrophages leads to impaired NF-κB activation 

and TNFα transcription, as well as blunting of M1 macrophage polarization to protect 

cells from endotoxin shock.54,56 Interestingly, deletion of Pak1 solely in myeloid-derived 
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macrophages (Pak1Lyz2cre), as well as pharmacologic inhibition of group I Paks protected 

mice from LPS-induced sepsis. This suggests that therapeutically targeting Pak in the 

inflammatory pathway has clinical potential.   

1.7 Pak function in T-cell receptor activation 

T lymphocytes develop in the thymus and undergo selection to generate mature T 

cells that express functional and self-tolerant T cell receptors (TCR). The most immature 

double negative thymocytes mature into double positive CD4/CD8 T cell. Following 

TCR alpha-chain rearrangement, the double positive cell undergoes positive selection to 

recognize self peptide-major histocompatibility complex (pMHC) proteins.  Some double 

positive thymocytes undergo positive selection to mature into single positive CD4+ and 

CD8+ cells. 

T cell activation, following engagement of the TCR, involves the coordinated 

activities of a diverse set of intracellular signaling pathways, including mobilization of 

calcium, and activation of Ras and Rho family GTPases, which result in the triggering of 

the MAPK pathway. Activated T cells express a variety of surface activation markers and 

produce cytokines, such as IL-2, to elicit a particular immune response.   

Pak1 and Pak2 are activated upon TCR engagement, which leads to T-cell 

proliferation and differentiation.48,57,58 The T-cell immunological synapse is the site 

where the T-cell engages with antigen on the antigen-presenting cell (APC). Many 

kinases and adapter molecules are quickly recruited to the synapse to initiate a signaling 

cascade.  One of these kinases is Pak1, which becomes catalytically activated upon TCR 

engagement.48,49 TCR engagement creates a signaling complex involving phosphorylated 

membrane protein LAT, adapter protein SLP-76, Rac1-GTPase activator Vav, and 
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adapter protein Nck which recruits actin remodeling proteins.  However, there is evidence 

that activation of Pak is independent of this complex.  Pak1 is activated in LAT-deficient 

T cells, providing evidence of alternative activation pathway.49 Downstream of TCR 

activation, Pak1 was reported to be activated, and dependent on the tyrosine kinases 

ZAP70, and Syk, but not the cytoplasmic adaptor SLP-76.48,49 Pak is recruited to the site 

of TCR stimulation by formation of a trimolecular complex (Pak-PIX-GIT) consisting of 

PIX (GEF for Rac1 and Pak binding partner) and GIT (ADP-ribosylation factor GTPase-

activating protein (Arf-GAP)) to drive a cellular response to TCR engagement.59  

The functions of Pak2 in T-cell signaling are now being investigated, with the 

creation of an inducible Pak2-floxed mouse model recently developed by the Chernoff 

lab.  Prior to development of this mouse model, studies were only done with dominant-

negative or kinase-dead forms of Pak2.  A screen for novel effectors downstream of TCR 

activation found Pak2 activated upon TCR stimulation.58 Expression of a kinase-inactive 

form of Pak2 decreased upregulation of CD69 and impaired NFAT activation in Jurkat T-

cells. In primary T cells transfected with a dominant-negative form of Pak2, cells were 

impaired in anti-CD3/CD28-induced production of IL-2.  Additionally, inhibition of Pak2 

impaired TCR-induced CD40 ligand expression. These two functions are key to the 

activation of the T cell receptor, and were the first to demonstrate that Pak2 is a positive 

regulator of T cell activation.58 

In addition to Pak2’s involvement in TCR activation, Phee et al., in collaboration 

with the Chernoff lab, recently discovered that Pak2 was essential to thymocyte 

development and maturation.23 Utilizing a mouse model with T-cell specific deletion for 

Pak2 at two different developmental stages (Lck-Cre and CD4-Cre), the authors 



	   15	  

discovered that Pak2 deletion, driven by different Cre-recombinases, resulted in severe T-

cell lymphopenia, however for different reasons.  Pak2F/F;Lck-Cre resulted in severe T-

cell lymphopenia, accompanied by T cells which failed to undergo pre-TCR β-selection 

and positive selection in order to mature into double positive and single positive, CD4 

and/or CD8 cells. Pak2F/F;CD4-Cre mice contained a full T-cell repertoire, however 

CD4+ cells from these mice were arrested in a semi-mature stage, unable to increase 

expression of CD62L and integrin β7. CD4+ T cells from the Pak2F/F;CD4-Cre also failed 

to proliferate upon CD3 stimulation, and instead apoptosed upon stimulation.23  

In the absence of Pak2, TCR-stimulated T cells failed to activate ERK1/2 and 

PLCγ1 (phospholipase gamma-1), and failed to remodel the actin cytoskeleton and 

spread.23  These data suggest that without Pak2, T-cells fail to remodel the cytoskeleton, 

which is essential to transduce signals upon TCR-stimulation. Inefficient activation of 

ERK1/2 and PLCγ1 can also lead to impaired positive selection, by disrupting the avidity 

and affinity of the TCR/MHC interaction.60 

Adaptive and innate immune cells respond to stimuli through a variety of receptor 

types, and these receptors signal through broadly similar downstream pathways to elicit 

immune function.  T cells respond through the TCR and mast cells through the Fc-epsilon 

receptor (FcεRI). Mast cell receptor stimulation depends on bound antibody (IgE) to elicit 

a response. Mast cells are responsible for the immediate hypersensitivity response when 

the cognate antigen is presented to bound IgE molecules. Antigen receptors on both T-

cells and mast cells signal through a similar mechanism, in which an initial tyrosine 

kinase phosphorylation cascade forms (heavily phosphorylated transmembrane adapter 

LAT) to phosphorylate and activate PLCγ1 (phospholipase gamma-1). T cells and mast 
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cells share common adapter proteins, LAT, Gads, and SLP-76 to form a heterotrimeric 

complex in order to phosphorylate PLCγ1. Considering the common features of mast 

cells and T-cell receptor signaling and the extensive work done on the role of Paks in T-

cells, this dissertation embarks on discovering the distinct roles for Pak1 and Pak2 in 

mast cells (Chapter 2).  

 

Figure 1.2 Mast cell FcεRI signaling cascade  
Antigen bound IgE crosslinks the FcεRI to initiate a signaling cascade in mast cells to 
drive secretion of pre-formed granules and de novo synthesized cytokines.  The cascade 
is described in the text below.  

 

1.8 Mast cells  

Mast cells are long-lived, tissue-resident innate immune cells, derived from 

hematopoietic precursors, which complete their differentiation in almost all vascularized 

tissues. Predominantly, mast cells reside in tissues most exposed to the environment, such 

as lung, skin, and intestines. These cells initiate inflammation upon antigen stimulation 
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by secreting proinflammatory mediators, such as histamine and hydrolytic enzymes. They 

also signal to other innate immune cells, and help shape adaptive immunity through 

MHC-I, CD28/80, complement receptors, and FcγII/III receptors.  Mast cells respond to 

antigen via their FcεRI receptor bound to antigen specific IgE. As diagrammed in Figure 

1.2, upon recognition of cognate antigen, FcεRI aggregate and crosslink, eliciting a 

signaling cascade downstream of the ITAM (immunoreceptor tyrosine-based activation 

motif).61 Multiple tyrosine phosphorylation events on ITAM recruit in key signaling 

molecules to assemble the LAT adapter-signaling complex.  This is followed by 

activation of PLCγ1, cleavage of membrane bound PIP2 and production of two secondary 

messengers, IP3 (inositol triphosphate) and DAG (diacyl glycerol).  IP3 binds its receptor 

on the endoplasmic reticulum (ER), releasing internal calcium stores. Upon depletion of 

internal calcium stores, STIM1 on the ER senses this depletion and translocates to the 

cell periphery, associates with the Ca2+ release–activated Ca2+ (CRAC) channel and 

opens up the calcium channel to allow influx of extracellular calcium.14 It was recently 

discovered that Pak1-/- mast cells were deficient in their ability to mobilize extracellular 

calcium in response to antigen stimulation, possibly due to the persistence of cortical F-

actin, preventing movement of the ER to the plasma membrane.10 Pak1-/- mast cells are 

also defective in mast cell antigen-induced degranulation, in vitro and in vivo.  

Cytoskeleton remodeling is required for both phases of calcium mobilization 

(internal release, and influx of extracellular calcium).60 Calcium influx drives secretion of 

biologically active products implicated in allergic reactions.  The inflammatory response 

includes secretion of vasoactive amines (histamine and serotonin), proteases, 

proteoglycans, cytokines and prostaglandins. It is important to note, that mast cells can be 



	   18	  

activated by not only IgE and allergen, but also by physical agents, pathogen products, 

danger signals, chemokines, cytokines and products of complement activation.62 These 

alternative mechanisms of activation function in innate and adaptive immune responses 

against bacteria and pathogens63, autoimmunity64, tolerance induction65, angiogenesis, 

and malignant diseases66.  Considering the extensive immunological role of mast cells, it 

is imperative to identify complete signal transduction pathways upon mast cell 

stimulation.  The impact of Pak kinases on mast cell signaling cascades has the potential 

to control myriad of diseases.   

1.9 Cytoskeleton remodeling to elicit mast cell degranulation 

Regulated exocytosis induced by antigen stimulation requires restructuring of the 

cortical acto-myosin barrier to allow vesicles to fuse with the plasma membrane and 

release inflammatory mediators.67 This barrier prevents granule release in the absence of 

external stimuli. Remodeling of the acto-myosin cortex is a prerequisite for regulated 

exocytosis.  Disruption of the barrier with the inhibitor, Jasplakinolide, inhibited 

secretion.68  Another regulator of the acto-myosin complex is myosin light chain (MLC). 

Increased p-MLC levels inside the cell enhanced acto-myosin contractile tension and 

ultimately induced formation of actin stress fibers. The MLCK inhibitors KT5926 and 

ML-7 impair mast cell degranulation.69,70 MLC2 regulation by Pak was found to have a 

significant role in MLC phosphorylation, primarily through indirect regulation. These 

data are summarized below in Figure 1.3. Considering the prominent role of RhoA 

GTPase in mast cell secretion, we hypothesize in Chapter 2 that Pak2 negatively 

regulates MLC2 phosphorylation via RhoA regulation in mast cells to control secretion.  
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Microtubule formation and actin depolymerization are required for mast cell 

degranulation, as shown by the use of cytoskeleton specific pharmacologic inhibitors. 

Inhibition of microtubule polymerization with nocadazole impaired degranulation, and 

stabilization of microtubules with taxol also impaired degranulation.75 Actin cytoskeleton 

dynamics also function to regulate mast cell degranulation.  Disassembly of F-actin rings 

with Latrunculin B promoted mast cell degranulation, where as stabilization of F-actin 

with Jasplakinolide decreased mast cell degranulation.75 Cortical F-actin disassembly 

may function in mast cell degranulation by permitting granules greater access to the 

plasma membrane. Additionally, cortical F-actin may act as a barrier between the granule 

reserves and the release-ready granule pool.  F-actin disassembly disrupts the actin 

barrier. In addition to cytoskeletal regulation of mast cell granule release, the entire 

process of degranulation requires adhesion and spreading onto a substratum, assembly of 

Figure 1.3 Pak1 and Pak2 are 
negative regulators of MLC2 
phosphorylation through multiple 
mechanisms. Pak inhibits MLC2 
phosphorylation by inhibition of an 
activating kinase (MLCK)71-73, 
inhibition of RhoA18 and activation of 
the inhibitory phosphatase 
MYPT121,74. This schematic describes 
the multiple mechanisms by which 
Pak kinases are known to negatively 
regulate MLC2 phosphorylation. 
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F-actin, formation of focal adhesions, and actin- and myosin-containing plaques and 

filaments on the basal surface.67  

In summary, cytoskeletal remodeling (disassembly and assembly) is critical for 

proper mast cell exocytosis. Cortical actin disassembly is required for movement of 

granules to the plasma membrane (hence a negative regulator, by impeding 

translocation), and simultaneously F-actin assembly at the plasma membrane is required 

for proper granule-plasma membrane fusion and release.76  

These data provide insight into the cytoskeletal regulation, which must occur for 

proper mast cell degranulation.  It is well documented that Pak1 and Pak2 signal to 

regulate the actin and microtubule network, however, isoform differences using primary 

cell culture from genetic knockout animals, instead of RNAi and dominant-negative 

mutants, have not been identified.  This dissertation will evaluate isoform redundancies 

and/or differences and identify how they pertain to physiological responses to stimuli in 

mast cells. 

1.10 Small GTPases and mast cell antigen signaling 

Small RhoGTPases specifically Rac, RhoA and Cdc42, regulate various vesicle 

trafficking and exocytosis events, including calcium mobilization and cytoskeletal (actin) 

remodeling, both integral to FcεRI-mediated mast cell degranulation.77-80 In addition to 

mast cell signaling, Rho GTPases act as central regulators of several vital immune cells 

functions, including migration, ROS production, cytokine production, and exocytosis.  

Previous work found that expression of constitutively active Rac1 and Cdc42 stimulated 

granule exocytosis.77,78 These GTPases are predominant activators of Pak kinase.  
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Given that degranulation involves complex cytoskeletal rearrangements, and that 

Paks regulate filamentous actin (F-actin) dynamics, we investigated a role for Pak2 in 

allergen-stimulated mast cell degranulation. Previous work established that Pak1 is a 

positive regulator of mast cell degranulation, driven through association with PP2A 

phosphatase and dephosphorylation of ERM (Ezrin/ Radixin/Moesin) to depolymerize F-

actin.  This signaling cascade also regulates the influx of extracellular calcium.9,10,13 Mice 

reconstituted with Pak1-/- mast cells demonstrated decreased allergen-induced vascular 

permeability and decreased in vivo degranulation in a systemic anaphylaxis experiment.13 

The signaling cascade downstream of Pak1 facilitates F-actin rearrangement, which 

precedes antigen-mediated degranulation.  Considering what is known about the function 

of Pak1 in mast cell secretion, we sought to determine the role of another Pak isoform, 

Pak2.   

RhoA and mast cells 

RhoA activity drives mast cell degranulation, as documented by various 

researchers nearly 20 years ago.75,81-83 Constitutively-active (CA) forms of RhoA 

promote degranulation in mast cell lines, and dominant-negative (DN) RhoA mutants 

impair secretion. The mechanism by which RhoA functions to regulate secretion is 

multifaceted.  For one, RhoA controls microtubule formation independent of calcium 

signaling, allowing vesicle translocation and membrane fusion. DN-RhoA inhibited 

FcεRI-induced microtubule formation, resulting in reduced degranulation without 

affecting F-actin polymerization.  However, the mechanism by which RhoA signals to 

control microtubule dynamics is not well investigated.  In Chapter 2 of this dissertation I 
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will describe findings detailing the mechanism by which RhoA signals to regulate mast 

cell degranulation.   

 

 

Figure 1.4.  Megakaryocyte maturation and endomitosis to produce functioning platelets 

in circulation. Modified from Severin et al. 2010.84 

1.11 Megakaryocytes 

The megakaryocyte is the least abundant cell type in the bone marrow, yet is 

challenged with the task to replace platelets in circulation, which are removed at a rate of 

1/10 per day.  Few other cells encounter this intense biosynthetic requirement. This 

process requires enormous reserves of membranes, organelles, cytoskeleton and protein 

synthesis. For this reason, megakaryocytes become hundreds of times larger than the 

average cell. Megakaryocytes undergo significant increase in their DNA content to 

provide enough material to synthesize platelets, whereas a typical 2N diploid cell is 

inadequate to have enough gene expression for the synthesis of thousands of platelets per 
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megakaryocyte. Considering the function of cytoskeletal proteins in megakaryocytes85, 

we sought to investigate Pak2 as a therapeutic target in megakaryocyte disorders. We 

evaluated the impact of Pak2-deletion in megakaryocyte maturation, endomitosis and 

platelet biosynthesis using an in vitro and in vivo model system of Pak2-deletion.  

Megakaryopoiesis is a complex process whereby committed bone marrow 

megakaryocyte progenitors undergo terminal differentiation, with thrombopoietin (TPO) 

and SDF-1α, to form nuclear polyploid megakaryocytes identified by expression of cell 

surface markers (CD41 and CD61) (Figure 1.4).86,87 Mature megakaryocytes undergo 

differentiation by a process termed endomitosis.  Endomitosis refers to the process of 

chromosomal duplication that proceeds without nuclear envelope rupture. As with 

mitosis, endomitosis begins with duplication of the centrosomes, enters prophase with 

development of mitotic spindles, chromatin condensation, and rupture of the nuclear 

membrane, metaphase alignment of the chromosomes, and finally separation of sister 

chromatids during anaphase.  In a polyploid megakaryocyte, the spindle is distinct from a 

mitotic spindle, as it is multipolar, with the number of poles corresponding to ploidy 

level. It was recently discovered, through time-lapse microscopy, that endomitosis 

corresponds to a failure of late cytokinesis.88,89  

Endomitosis is tightly regulated, such that various mutations can lead to diseases 

of megakaryocyte development (i.e. acute megakaryocytic leukemia (AMKL)).  AMKL 

consists of bone marrow megakaryoblasts in a hyperproliferative immature state, failing 

to undergo endomitosis. This disruption in normal megakaryocyte development is deadly, 

due to myelofibrosis and blast crisis (expansion of immature cells). Therapeutics to drive 

megakaryocyte differentiation and polyploidization are vital to increasing survival rates 
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from this disease.90 Recent work using an extensive screen to identify proteins involved 

in megakaryocyte differentiation, found that Aurora A and B kinases were negative 

regulators of leukemic cell expansion, such that inhibition of these kinases led to 

megakaryocyte differentiation, a possible mechanism for leukemic therapy.90 The work in 

this dissertation looks at the multi-functional role that Pak2 has in megakaryocyte 

development through the endomitotic stage, and its potential as a target for AMKL. 

After cells complete endomitosis, the mature megakaryocyte enter a terminal 

differentiation phase, where the cell membrane undergoes extensive remodeling of the 

cytoskeleton to form cytoskeleton-rich proplatelet extensions that transverse the sinusoid 

vessel to release platelets into circulation.85 This process is extremely regulated, and any 

perturbation to the system can result in thrombocytopenia, bleeding disorders and various 

types of leukemia.  Understanding the pathways involved in this process is critical to 

identifying therapeutics for types of platelet disorders and megakaryocytic leukemia.   

1.12 Cytoskeleton regulation of polyploidization and proplatelet formation  

Actin and polyploidization 

Megakaryocyte polyploidization is a cytoskeleton intensive cellular process. 

Identification of this was first done by incubation with cytoskeleton inhibitors. Incubation 

of cell lines and primary megakaryocytes with an inhibitor of actin polymerization 

(Cytochalasin B) caused elevated polyploidization without stimulation of expression of 

CD41 and CD61, mature megakaryocyte markers.91-93 Therefore, actin polymerization is 

a negative regulator of megakaryocyte polyploidization. Cytochalasin B inhibits actin 

polymerization by blocking elongation of polymerizing actin filaments.  This blockade 

induces polyploidization in mammalian cultured cells, Xenopus eggs and yeast.93 At the 
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end of mitosis during normal cell division, cytoplasmic separation requires the integrity 

of cytoskeleton-associated proteins for the formation of the tubulin spindle and actin 

contractile ring.  Inhibition of actin polymerization with cytochalasin B therefore inhibits 

normal separation of cytoplasm and induces polyploidization.  

Microtubules and polyploidization 

Microtubules are also involved in the process of polyploidization. This was first 

identified by the use of pharmacologic inhibitors of MT polymerization. Enhanced 

microtubule depolymerization in cells treated with colchicine, nocodazole and vincristine 

had increased levels of polyploidization.92,94,95 Megakaryocyte cell lines (DAMI and 

HEL) treated with colchicine, a tubulin spindle inhibitor, increased their endomitotic 

index and were larger in diameter than untreated cells. Ploidy measurements increased 

from the predominantly diploid (2N) state to the 32N state with the addition of 

colchicine.   Colchicine treatment also affected actin polymerization by decreasing the 

monomeric G-actin and polymerized F-actin content significantly, and thereby increased 

polyploidization by preventing the actin constriction ring during telophase.94 Nocodazole 

treatment on megakaryocytes led to progressive accumulation in pseudo-metaphase, 

without spontaneous escape from this blockade.  Nocodazole treatment on a human 

megakaryocytic leukemia cell line (UT-7) also induced polyploidization by 

depolymerizing microtubules.96   

These data indicate that actin and microtubule dynamics are critical to 

megakaryocyte polyploidization and are potential therapeutic targets for various types of 

megakaryocytic leukemias to drive differentiation and polyploidization.  This dissertation 

will evaluate the role of the cytoskeletal regulatory protein, Pak2 on megakaryocyte 
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polyploidization, as a potential therapeutic target for acute megakaryoblastic leukemia, as 

well as hyperproliferative diseases involving megakaryocytes, such as essential 

thrombocytosis (ET) and primary myelofibrosis. 

1.13 Small GTPases in megakaryocyte development 

RhoA and megakaryocyte polyploidization 

Nearly 20 years ago, the role of small GTPase proteins in polyploidization was 

identified in human megakaryocytic cell line, CMK by Takada et al.91 By using C3 

exoenzyme (Clostridium botulinum) a RhoA inactivating enzyme, they discovered that 

cells expressed higher levels of CD41 and CD61, markers of mature megakaryocytes. 

Further work identified RhoA specifically, and not Rac1 or Cdc42, as the predominant 

RhoGTPase required for megakaryocyte polyploidization, a process required for 

maturation and platelet production.  

RhoA functions during normal mitosis to drive cytokinesis.97 RhoA is 

concentrated at the midzone during anaphase and at the cleavage furrow during telophase 

of diploid cells. RhoA inhibition prevents cytokinesis since localization of RhoA at the 

midzone is required for furrow ingression and spindle elongation during cytokinesis.89 As 

megakaryocytes become multipolar during endomitosis, RhoA-GTP levels decrease 

along with decreased F-actin accumulation. RhoA functions in polyploidy 

megakaryocytes to regulate actin polymerization and myosin activation at the midzone 

through different effectors. As cells undergo endomitosis (>8N) F-actin accumulation 

decreases at the cleavage furrow, and RhoA activity is inhibited so that cells do not 

undergo cytokinesis after DNA replication.  
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RhoA and F-actin accumulate at the cleavage furrow to drive cytokinesis.  RhoA 

signaling is required to establish the actomyosin ring at the cleavage furrow, generating 

the contraction forces needed for completion of cytokinesis.  The mechanism by which 

RhoA is inhibited for megakaryocytes to undergo endomitosis was unknown until recent 

work by Gao et al.97 They discovered, through various models using RNAi, that RhoA is 

active during the early development at the 2N stage, but is suppressed at 8N by inhibition 

of the RhoA specific guanine-nucleotide exchange factors (GEFs), GEF-H1 and ECT2 

during later stages of development.97 RhoA suppression through dominant-negative 

RhoA models in megakaryocyte cell lines, as well as genetic models of megakaryocyte-

specific inhibition of RhoA, demonstrated increased ploidy levels with RhoA 

inhibition.97-99 Together, these data demonstrate that therapeutics to inhibit the RhoA 

pathway in megakaryocytic leukemias could be a viable differentiation therapy to 

promote polyploidization and escape blast crisis.  

RhoA also regulates proplatelet formation, necessary for platelet formation.100,101  

Bortezomib, a proteasome inhibitor used in the treatment of multiple myeloma, caused 

cyclic thrombocytopenia in patients and mouse models.100 In vitro studies evaluating the 

mechanism by which Bortezomib induced thrombocytopenia found an accumulation of 

active RhoA in megakaryocytes.  This caused impaired proplatelet formation, which 

could be rescued by inhibition of the downstream effector, ROCK. Several other studies, 

using genetic deletion of RhoA in in vitro culture and in vivo mouse models demonstrated 

that RhoA is a negative regulator of proplatelet formation.89,98,101 Dominant-negative 

(DN) mutants of RhoA displayed increased proplatelet formation, and constitutively-

active (CA) forms of RhoA had decreased proplatelet formation.  Additionally, CA-
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RhoA had increased stress fiber formation, whereas DN-RhoA had decreased stress fiber 

formation. The mechanism by which RhoA negatively regulates proplatelet formation is 

by regulating myosin contractility through phosphorylation of myosin light chain 2 

(MLC).  In the presence of active RhoA, MLC2 is phosphorylated, driving myosin 

contractility and stress fiber formation, leading to decreased proplatelet extensions in 

megakaryocytes.101  

Rac1 and Cdc42 in megakaryocytes 

Research on other RhoGTPases (Rac1 and Cdc42) in megakaryocytes recently 

elucidated a distinct function in megakaryocyte development.  Pleines et al. demonstrated 

for the first time that a megakaryocyte and platelet specific deletion of both Rac1/Cdc42 

results in severe macrothrombocytopenia due to aberrant tubulin organization in 

megakaryocytes and platelets and virtual abrogation of proplatelet formation rather than 

from a failure of megakaryopoiesis.102 Remaining platelets from these mice have 

abnormal ultrastructure, ~50% of remaining platelets are overloaded with granules and 

~30% are virtually devoid of granules, indicating disrupted granule formation and/or 

trafficking.  Due to defective platelets in double-knockout Rac1/Cdc42 mice, they were 

cleared more rapidly from circulation than wild-type mice.   

In our studies, we investigated if Rac1 and Cdc42 signal through Pak to regulate 

proplatelet formation and platelet release into circulation. We also evaluated if Pak 

deletion effects megakaryocyte maturation and development in an alternative pathway to 

Rac1 and Cdc42.  Rac1/Cdc42 are the principle activators of p21-activated kinases 

(Group I).  Therefore, it is interesting to follow up on the phenotype observed in the 

Rac1/Cdc42 double deletion mouse models, to confirm or reject that signaling 
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downstream of Rac1 and Cdc42 is through Pak1 or Pak2 leading to this megakaryocyte 

phenotype. Additionally, if the Pak2 megakaryocyte phenotype differs from Rac1/Cdc42 

deletion in megakaryocytes, it would suggest that an alternative pathway activates Pak2 

in megakaryocytes. Since these GTPases regulate many other signaling pathways, it is 

important to delineate if Pak has a function downstream in megakaryocytes. 

Purpose 

The function of Pak2 in immune cells is a novel field of study, with limited data.  Here I 

discussed what is known about how the cytoskeleton regulates mast cells degranulation 

and megakaryocyte polyploidization and proplatetet formation, and what is known about 

the role of p21-activated kinases in these diverse processes.  I endeavored to understand 

the role of Pak2 on mast cells and megakaryocytes signaling pathways leading to antigen- 

induced mast cell degranulation and megakaryocyte maturation into polyploid cells and 

platelet production. First, I used primary mast cells from Pak2-floxed animals to study 

FcεRI signaling in vitro, and to identify differences with Pak1 in mast cells.  Secondly, 

using in vivo and in vitro techniques, I studied the effects of Pak2 in megakaryocyte 

proliferation, polyploidization and proplatelet formation during megakaryopoiesis.  

Thirdly, I worked to identify key changes in the Pak2-deficient adult mouse that would 

lead to rapid lethality.  Collectively these studies highlight a novel role for Pak2 in mast 

cells and megakaryocytes, as well as in adult homeostasis.   
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Chapter 2:  
Pak2 restrains mast cell FcεRI-signaling through modulation of Rho GEF activity

Introduction 
Mast cells are immune cells that reside in nearly all vascularized tissues, 

particularly in tissues in close contact with the outside environment.  Mast cells are one 

of the first immune cells to interact with foreign allergens and it is therefore critical that 

these cells respond immediately to antigen by secreting biologically active mediators to 

promote or downregulate inflammation.1 Secretion or degranulation is regulated by 

antigenic challenge to the high affinity IgE receptor (FcεRI). Upon antigen challenge, a 

signaling cascade of phosphatases and kinases is activated that coordinates dynamic 

changes in the cytoskeleton to promote immediate release of preformed granules via 

vesicle translocation and fusion to the plasma membrane.1,2 Despite significant 

knowledge of mast cell biology and allergen response, the downstream effectors that link 

the complete signaling cascade from FcεRI to degranulation remain poorly understood. 

p21-activated kinases (Paks) are serine/threonine protein kinases that are activated 

by small GTPases, Rac1 and Cdc42.  Paks regulate a variety of important cellular 

processes, including control of the cytoskeleton and proliferation.3,4 Paks comprise a 

family of six enzymes that are categorized into two subgroups: Group A (Pak1-3) and 

Group B (Pak4-6).  Group A Paks, in particular Pak1, have been much studied due to 

their role in processes that affect neoplastic growth.5-8 Given that degranulation requires 

complete cytoskeleton rearrangement, we examined the roles of Group A Pak isoforms 1 

and 2 in mast cell secretion. 
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Currently, there is limited research on the biological differences among the Pak 

Group A isoforms.  Pak1 and Pak2 are broadly expressed and share many substrates in 

common, including c-Raf and Mek1.3  However, despite extensive structural similarities, 

particularly in the protein kinase domain, hints are beginning to emerge that these two 

isoforms have distinct functions.  Gene knock-outs in mice reveal that loss of Pak1 is 

well-tolerated, with notable defects only in subsets of immune cells, such as mast cells 

and macrophages, whereas loss of Pak2 results in early embryonic lethality.9-12 In a 

breast carcinoma cell line (T47D), Pak1 and Pak2 regulate invasion by distinct signaling 

mechanisms: Pak1 via regulation of cofilin phosphorylation, and Pak2 via regulation of 

RhoA GTPase activity.13  Similar results were reported by Bright et al., who showed that, 

in DU145 prostate carcinoma cells, Pak1 promotes the loss of cell-cell E-cadherin 

junctions resulting in enhanced migration, whereas Pak2 does not affect migration but 

instead regulates lamellipodia extensions.8  

We previously reported that Pak1 loss in mouse bone-marrow derived mast cells 

(BMMCs) was associated with reduced MAPK phosphorylation (Erk1/2 and p38), 

resulting in impaired stem cell factor-mediated migration in vitro and in vivo.11  Pak1 was 

found to positively regulate IgE-mediated degranulation via regulation of extracellular 

calcium influx through modulation of F-actin rearrangement.10 Recent data indicate that 

Pak1 regulates mast cell cytoskeleton rearrangement and degranulation through a kinase-

dependent interaction with the phosphatase PP2A, which regulates Ezrin/Radixin/Moesin 

(ERM) proteins that uncouple the plasma membrane from actin prior to degranulation.14 
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These studies suggested that Group A Paks play a positive role in mast cell secretion and 

would be beneficial targets in asthma related diseases. 

In this study, we generated a conditional Pak2 knockout animal to investigate the 

function of other group A Paks in allergen-mediated secretion. Surprisingly, we found 

that Pak1 and Pak2 play distinct and, in some cases, opposing roles in mast cell secretion.  

In contrast to Pak1, we found that Pak2 is a negative regulator of secretion via 

phosphorylation and inactivation of GEF-H1, leading to RhoA GTPase inhibition.  These 

studies establish vital, but distinct roles for Pak1 and Pak2 in mast cell secretion. 

EXPERIMENTAL PROCEDURES 

Mice 
Syngeneic Pak2fl/fl mice on mixed background (sv129/C57Bl/6) were used for 

experimentation.  Additionally, a colony of polyI:C (polyinosinic:polycytidylic acid) 

inducible cre-recombinase mice, Mx1-cre+;Pak2fl/fl,  along with Mx1-cre- controls were 

generated for in vivo studies. Mice were administrated 400ug of polyI:C dissolved in 

PBS, every other day for 5 days (3 intraperitoneal injections total). Animal care and 

experimental procedures were conducted on a protocol approved by the Fox Chase 

Cancer Center Institutional Animal Care and Use Committee.   

Genotyping by PCR  
Tail DNA was digested with DirectPCR lysis buffer (Viagen, Los Angeles, CA) 

for tails with proteinase K and used for polymerase chain reaction (PCR) designed to 

amplify DNA fragments from the WT and targeted Pak1 and Pak2 alleles. For Pak1 

genotyping, a common forward primer (5-GCC CTT CAC AGG AGC TTA ATG A-3) 
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was used with a Pak1-specific reverse primer (5-GAA AGG ACT GAA TCT AAT AGC 

A-3) to amplify a 240-bp product from the WT allele; and with a neo-specific reverse 

primer (5-CAT TTG TCACGT CCT GCACGA-3) to amplify a 360-bp product from the 

targeted allele.  For Pak2fl/fl genotyping, forward primer: 5-

ATCTTCCCAGGCTCCTGACA-3 and reverse primer: 5-

TGAAGCTGCATCAATCTATTCTG-3. WT mice demonstrate a 306-bp band and 

floxed mice a 391-bp band. For Mx1-cre genotyping, standard generic cre genotyping 

was done, according to Jackson Laboratory protocols. 

In vitro Cre activation  

A retroviral vector for Cre recombinase (MSCV-CRE-ERT2) under tamoxifen 

control, was used to excise Pak2 (Addgene plasmid 22776).15  Cre-ERT2 contains Cre-

recombinase fused to the ligand-binding domain of a mutated estrogen receptor, which 

recognizes tamoxifen or its derivative 4-hydroxytamoxifen (4-HT). This construct 

permits tamoxifen-dependent Cre activity. Recombinant virus was produced by retroviral 

packaging into 293-FT cells, co-transfected using lipofectamine 2000 with vectors 

pVPack gag-pol and pVPack eco (Stratagene, La Jolla, CA).  Viral supernatant was 

collected 48 and 72 hours post transfection.  Transduction of bone marrow was 

performed within one week of extraction, and performed by spin-infection with 4 µg/ml 

polybrene.  At least two rounds of transduction were performed prior to addition of 

puromycin for drug selection. 250nM 4-hydroxytamoxifen (4-HT) was added to mature 

mast cells 4 days prior to experimentation.  Western blot analysis confirms deletion of 

Pak2 by 4 days.   
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Western Blotting  
Whole-cell protein extracts, after antigen stimulation, were prepared by addition 

of lysis buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 2 mM EDTA pH 8.0, 1% Triton X-

100, 1 mM PMSF, 1 mM NaF, 1 mM Na3VO4, 10% glycerol, and complete protease 

inhibitor (Sigma, St. Louis MO), clarified by centrifugation and denatured with 1X SDS 

sample buffer. Samples were separated by SDS–polyacrylamide gel electrophoresis 

(PAGE) on a 4% to 20% gradient gel (BioRad, Carlsbad, CA) and transferred to PVDF 

membrane. Blots were probed with anti-Pak1, anti-Pak2, anti–phospho-phospholipase 

Cγ1, anti–total phospholipase Cɣ1, anti-phospho-myosin light chain 2, anti-total myosin 

light chain 2, anti-phospho-stathmin, anti-phospho-p38, anti-p38, anti-phospho-ERK1/2, 

anti-ERK1/2 and anti-GEF-H1 (all 1:1000, Cell Signaling, Danvers, MA). Anti-phospho-

GEF-H1 (S885) was a gift from Celine Dermardirossian.  All blots were then visualized 

with HRP-conjugated goat anti–rabbit or anti-mouse IgG antibody (1:10000; Jackson 

Immunoresearch, West Grove, PA). Films were developed using the enhanced 

chemiluminescence (ECL) (EMD Millipore, Billerica, MA).  Phosphorylated proteins 

were quantified by subjecting autoradiographs to densitometry (NIH Image software; 

National Institutes of Health, Bethesda, MD) and calculated relative to total protein. 

Bands were normalized to background and the ratio of background-corrected raw 

intensities of protein of interest / total protein was calculated. 

Cell Culture and activation  
BMMCs were cultured in RPMI (Invitrogen, Carlsbad, CA) supplemented with 

10% fetal calf serum (HyClone Laboratories, Logan, UT), 1% glutamine (Lonza 

Walkersville, Walkersville, MD), 1.5% 1 M N-2-hydroxyethylpiperazine-N-2-
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ethanesulfonic acid (LonzaWalkersville), 2% penicillin/streptomycin (Lonza 

Walkersville), and 5 ng/mL recombinant murine interleukin-3 (IL-3) and 10 ng/mL SCF 

(PeproTech, Rocky Hill, NJ). All cellular and biochemical assays used BMMCs that had 

been in culture between 4 and 10 weeks. All experiments were conducted using at least 3 

independent lines from each genotype. BMMCs sensitized in media with 0.5 µg/mL anti-

DNP IgE monoclonal antibody (clone SPE-7; Sigma-Aldrich, St Louis, MO) overnight, 

and stimulated with 10 ng/mL and 30 ng/mL dinitrophenyl conjugated to human serum 

albumin (DNP-HSA, 30-40 mol DNP/mol HSA; Sigma-Aldrich, St. Louis, MO) for 

degranulation assays, and 100 ng/mL in phosphorylation and pulldown assays. 

Detection of c-kit/FcεRI receptors 

C-Kit and FcεRI expression were analyzed by fluorescence cytometry as 

described.16  Cells were blocked with unconjugated anti-FcγRII/III (BD Pharmingen, San 

Diego, CA) and stained with anti-DNP monoclonal antibody IgE clone SPE-7 (Sigma-

Aldrich, St. Louis, MO), anti–mouse CD 117 (c-kit) PE-conjugated antibody, and FITC-

conjugated anti–mouse IgE (both BD Pharmingen) secondary antibody. Cells were 

washed and resuspended in 0.5% FBS/PBS buffer. Cells were analyzed on a 

fluorescence-activated cell sorting (FACS) Calibur (Becton Dickinson, San Jose, CA).  

Degranulation assays 

BMMC degranulation was determined by β-hexosaminidase release as previously 

described17 with minor modification.  IgE-primed (see “Cell culture and activation”) 

BMMCs were suspended at 5x106 cells/mL in Hepes-BSA buffer (10 mM HEPES buffer, 

130 mM NaCl, 5 mM KCl, 1.4 mM CaCl2, 1 mM MgCl2, 5.6 mM glucose, 0.05% BSA, 
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pH 7.4) then stimulated with 10 or 30 ng/mL DNP-HSA (Sigma-Aldrich) for 45 minutes 

at 37°C.  For receptor-independent stimulation, unsensitized cells were incubated in 

Hepes-BSA buffer and stimulated with 1 µM ionomycin for 45 minutes.  The cell pellets 

were solubilized in Hepes-BSA buffer, 0.5% Triton X-100.  β-hexosaminidase release 

was measured in both the supernatants and the cell pellets by incubating with 4-

nitrophenyl N-acetyl-beta-D-glucosaminide (Sigma-Aldrich) in sodium citrate (pH 4.5) 

for 1.5 hours at 37°C. Sodium carbonate/sodium bicarbonate buffer (0.1 M, pH 10) was 

used to stop the reaction and absorbance was read at 405 nm. Degranulation was 

expressed as a percentage of β-hexosaminidase released = supernatant activity/total 

(supernatant plus pellet) activity x 100.  Samples were assayed in triplicate.  

ELISA 

BMMCs cytokine secretion was determined using ELISA for TNFα and IL-6 

(Ebioscience, San Diego, CA).  Cells were sensitized overnight in cytokine free media 

with 0.5 µg/mL anti-DNP IgE.  Cells were washed and stimulated with 30 ng/mL DNP-

HSA for 6 hours.  Supernatants were collected and cytokine release was measured.  

Cytokine release was normalized to phorbol 12-myristate 13-acetate (PMA) and 

ionomycin treatment.  

GTPase pulldown assay   
Recombinant glutathione S transferase (GST) conjugated PAK CRIB domain was 

expressed from pGEX-CRIB and Rhotekin RBD-GST beads were acquired from 

Millipore. Cells were sensitized overnight in anti-DNP IgE (Sigma) without cytokines 

and stimulated with 100ng/mL DNP-HSA for 10 minutes at 37ºC.  Lysates were 
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incubated with CRIB-GST or RBD-GST beads for 45 minutes rotating at 4ºC, washed 

and run out on a 4-20% SDS-PAGE gel (BioRad, Carlsbad, CA).  Immunoblots of lysates 

incubated with beads and input were probed for anti-RhoA (Santa Cruz Biotechnology, 

Santa Cruz, CA), anti-Rac1 (Transduction Laboratory, BD Biosciences, San Jose, CA) or 

anti-Cdc42 (Cell Signaling, Danvers, MA).  GTP-bound lane intensity was normalized to 

input lane intensity and calculated relative to unstimulated levels in wildtype cells using 

ImageJ (NIH). 

BMMC Adhesion Assay  

Bone marrow derived mast cells (BMMCs) were starved of cytokines and 

sensitized overnight with anti-DNP-IgE (0.5 µg/ml).  Cells were washed in HEPES-BSA 

buffer and placed in wells of a 96-well black microtiter plate (5 x104 cells/well).  Wells 

were precoated with 0.2% gelatin for 1 hour, washed, and serum was added for 1 hour at 

room temperature.  This procedure resulted in a fibronectin coating of the wells.  After 30 

minutes of rest, cells were stimulated with DNP-HSA (1 ng/ml or 10 ng/ml) for 45 

minutes.  10 minutes prior to the end of the assay, the membrane permeable viability dye 

Calcein-AM (2 µg/mL) (Ebioscience) was loaded onto the cells.  Perkin Elmer Envision 

plate reader (Waltham, Massachusetts) was used to measure fluorescence at 530 nm.  

First, wells were read to obtain a total fluorescence, after which they were washed and 

bound cells were measured.  Background fluorescence was subtracted and percent 

adherence calculated by taking adherent cell fluorescence as a percent of total well 

calcein-AM fluorescence.   At least 3 individual mice were used per group, and assays 

run in triplicate. 
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Calcium mobilization  
IgE-primed BMMCs were resuspended at 106 cells/mL in HEPES-BSA buffer 

containing Indo-1-AM (Ebioscience) and probenecid at 37°C for 1 hour. Cells were 

washed and resuspended at 106 cells/mL in HEPES-BSA buffer. Samples were warmed 

to 37°C and baseline fluorescence was measured for 1 minute.  30 ng/ml DNP-HSA was 

added to the cells, and the change in fluorescence (420 nm Ca2+-bound, 510 nm Ca2+-free) 

was monitored using the JSAN flow cytometer for 6 minutes.  Positive controls were 

measured by stimulation with 1 µM thapsigargin. Data were graphed using Flowjo 

software (TreeStar, Ashland, Oregon) and also used to analyze peak calcium flux 

normalized to baseline levels. 

In vitro kinase assay  
HEK293 were transfected with pCDNA3-GEF-H1-GFP (gift from Celine 

DerMardirossian) using lipofectamine 2000.  Protein was purified using anti-GFP 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA), and conjugated to Protein A/G 

sepharose beads (GE).  Protein was treated with lambda phosphatase (NEB) prior to use 

in the kinase assay.  Immunoprecipitated GEF-H1 was incubated with recombinant Pak2 

(ProQinase, Freiburg, Germany) and ATP in kinase buffer (40 mM HEPES pH 7.5, 10 

mM MgCl2, 20 µM ATP) for 30 minutes at 30ºC.  The reaction was fractionated on a 4-

20% SDS-PAGE gel (BioRad, Carlsbad, CA) and transferred to PVDF membrane.  

Membranes were probed for phospho-Ser 885 GEF-H1 (a gift from Celine 

DerMardirossian) and total GEF-H1 (Cell Signaling, Danvers, MA).  

Passive systemic anaphylaxis 

Mx1-cre+;Pak2f/f mice along with littermate controls were injected 3 times with 
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400ug of poly I:C every other day.  11 days after the first injection, mice were 

retroorbitally injected with 50ug of DNP-specific mouse IgE (SPE-7 clone, Sigma). 16 

hours later, mice were injected with 10 ug of DNP-human serum albumin (DNP-HSA). 

90 seconds after injection, mice were bled retro-orbitally, serum was isolated and frozen 

at -80C.  ELISA for serum histamine levels was performed at a 1:250 dilution and 

concentration was calculated from a standard curve (Beckman Coulter).   

RESULTS 
Genetic disruption of murine Pak2  

Previously, our laboratory with colleagues reported that Pak1 was a positive 

regulator of antigen-mediated degranulation in BMMCs via regulation of extracellular 

calcium mobilization.10 A closely related isoform, Pak2, is expressed at much higher 

levels than Pak1 (Figure 2.1A) in mast cells; thus we assessed the function of this kinase 

in antigen-mediated degranulation. Since the deletion of the Pak2 gene is associated with 

embryonic lethality at approximately E9.59, we made a conditional knockout of this gene 

(Figure 4.1A). A targeting vector was designed to flank exon 2 of Pak2 with loxP sites.  

To confirm that the Pak2 floxed alleles indeed resulted in deletion of Pak2, bone 

marrow from Pak2flox/flox mice was infected with a tamoxifen-regulated Cre retrovirus 

(MSCV-Cre-ERT2-puromycin). After maturation to mast cells and selection with 

puromycin, the cells were treated with 250 nM 4-hydroxytamoxifen (4-HT) for 4 days to 

excise Pak2.  Protein extracts from these cells were immunoblotted and probed with anti-

Pak2 antibodies (Figure 2.1B).  As expected, 4-HT-treated Cre-ERT2 infected cells 

showed near total loss of Pak2 protein. For comparison, immunoblots from Pak1-/- 

BMMCs are also shown.  
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FIGURE 2.1.  Effect of Pak1 and Pak2 on mast cell maturation and antigen-
mediated secretion.  A, WT MC-9 mouse mast cell line lysates were subjected to 
immunoblotting and probed with either anti-Pak1 or anti-Pak2 antibodies.  Membranes 
were exposed together on the same film for the same amount of time for semi-
quantitative analysis. 10 second and 1 minute exposures are shown, with actin for a 
loading control. B, BMMC lysates from Pak1 knockout mice and Pak2fl/fl infected with 
MSCV-Cre-ERT2 and treated with 250 nM 4-HT.  Actin loading control. C, Loss of 
Pak1 or Pak2 does not affect expression of mast cell maturation markers. Data shown are 
representative of 6 independent lines from each genotype.  D, β-hexosaminidase release 
was measured in IgE-primed Pak1 and Pak2 knockout BMMCs stimulated with 10 or 30  
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Figure 2.1 (Continued) ng/ml DNP-HSA for 45 minutes. FcεRI-independent 
degranulation is shown with ionomycin treatment.  In all conditions, the extent of 
degranulation is represented as percent of total β-hexosaminidase activity in cells. p-
value<0.05, Wilcoxon signed-rank test.  E, ELISA was performed for tumor necrosis 
factor-alpha (TNF-α) and interleukin-6 (IL-6) secreted by Pak1-/- and Pak2-/- BMMCs 
in response to 30 ng/ml DNP-HSA. F, BMMCs cultured from Pak1-/-Pak2f/f mice, and 
infected with MSCV-Cre-ERT2.  Cre induced with 250nM 4-OHT, and amount of 
degranulation measured by B-hexosaminidase release.   All data mean±SD, at least n=3, 
p-value<0.05, Wilcoxon signed-rank test. 
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Mast cell maturation from Pak1 and Pak2-deficient mice   

Bone marrow was cultured for 5 weeks with interleukin-3 (IL-3) and stem cell 

factor (SCF) to derive mature mast cells.  The development and maturation of these cells 

were measured using flow cytometry analysis of the cell surface receptors FcεRI and c-

kit (CD117).  Flow cytometry plots demonstrated over 90% FcεRI+ c-kit+ mature mast 

cells after 5 weeks of culture (Figure 2.1C), irrespective of the presence or absence of 

Pak1 or Pak2 protein.  Thus, neither Pak1 nor Pak2 is essential for full maturation of 

bone marrow into mast cells in vitro.   

Pak2 is a negative regulator of mast cell secretion  

To examine the physiological responses of Pak2-deficient mast cells in vitro, we 

measured antigen-mediated degranulation and cytokine secretion.  IgE sensitization leads 

to FcεRI aggregation and calcium flux, triggering degranulation.  Previously, Pak1 was 

identified to regulate antigen-mediated degranulation in vitro.10  To determine if Pak2 

shares these properties, deletion was done by Cre-mediated gene excision in mature mast 

cells and sensitized with 0.5µg/ml anti-DNP IgE overnight.  Aggregation of FcεRI with 

antigen DNP-HSA for 45 minutes in Pak2-null cells led to increased degranulation.  The 

level of degranulation was measured by the amount of β-hexosaminidase release (an 

enzyme present in mast cell preformed granules). Surprisingly, Pak2-deleted mast cells 

showed a significant increase in degranulation (p-value<0.05, Wilcoxon signed-rank test) 

compared with cells from the same mouse without Cre activation (infected with MSCV-

Cre-ERT2, however not given 4-HT) (Figure 2.1D).  Total enzyme content measured in 

the cell pellet were similar between Pak2fl/fl and Pak2-/- cells, indicating Pak2 deletion 

had no effect on amount of β-hexosaminidase present, only on the release of granules. 
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FIGURE 2.2.  Effect of Pak1 and Pak2 on signaling and PLCγ1.  A, Representative 
immunoblots for activated phospholipase C-gamma 1 (PLCγ1) in Pak1 and Pak2 
knockout BMMCs.  IgE-primed WT and knockout BMMCs were stimulated with DNP-
HSA (100 ng/mL) for 3 minutes and lysates were subjected to immunoblotting with anti-
phospho-PLCγ1 pY783 (middle panel) or anti-total PLCγ1 (bottom panel).  Experiments 
were done on 3 different mouse BMMCs.  Pak1 and Pak2 status is shown for each blot 
(top panel).  B, IgE-primed WT, Pak1 knockout and Pak2 knock-out BMMCs were 
loaded with Ca2+-sensitive dye (Indo-1-AM) and suspended in Ca2+-containing medium.  
After baseline collection on JSAN flow cytometer, FcεRI was activated by addition of 30 
ng/ml DNP-HSA.  Second stimulation peak is from thapsigargin treatment.  
Representative experiments of WT (black) vs Pak1 knockout (gray) (left panel) and WT 
(black) vs Pak2 knockout (gray) (right panel) BMMCs is shown.  C, Mean (± SD) 
stimulation (peak of ratio minus baseline as percent of WT) of at least 3 independent 
experiments for Pak1 knockout and Pak2 knockout BMMCs. Pak1 knockout p-
value<0.05, Wilcoxon signed-rank test.  Pak2 is not statistically different from WT.  
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This finding is in stark contrast to Pak1-deleted mast cells, which had reduced 

degranulation (p-value<0.05, Wilcoxon signed-rank test), as reported previously.10 

(Figure 2.1D) To rule out non-specific effects of Cre activation, Cre was activated in WT 

BMMCs and measured for degranulation.  In these cells, no enhanced degranulation was 

observed. 

We also tested the response to ionomycin, a calcium ionophore used to activate 

store-operated calcium channels and initiate degranulation independent of antigen, and 

demonstrated no differences between genotypes. (Figure 2.1D).  Thus, our data show that 

Pak1 and Pak2 play opposing roles in IgE-mediated degranulation in mast cells: Pak1 

positively regulates and Pak2 negatively regulates degranulation.  

Activated mast cells also synthesize and secrete cytokines in response to antigen.  

We measured the release of IL-6 and TNF-α in FcεRI-activated mast cells by ELISA and 

found that Pak1-/- BMMCs were defective in secretion of IL-6 (p-value<0.05, Wilcoxon 

signed-rank test) and TNF-α (p-value<0.05, Wilcoxon signed-rank test), consistent with 

the defect in degranulation (Figure 2.1E).  Alternatively, Pak2-/- BMMCs demonstrated 

significantly enhanced cytokine secretion for IL-6 (p-value<0.05, Wilcoxon signed-rank 

test) and TNF-α (p-value<0.05, Wilcoxon signed-rank test) (Figure 2.1E). These results 

show that, as with degranulation, Pak1 and Pak2 play opposing roles in IgE-mediated 

secretion of cytokines from mast cells. 

To determine if Pak1 and Pak2 equally effect mast cell degranulation, we 

developed a double knockout mouse model (DKO), Pak1-/-;Pak2f/f.  Bone marrow from 

these animals was transfected with MSCV-Cre-ERT2 to conditionally drive deletion of 
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Pak2 in an in vitro culture of mast cells.  This control allowed us to compare bone 

marrow from the same animals.  We discovered that deletion of both Pak1 and Pak2 

results in increased mast cell degranulation, as opposed to a rescue of this phenotype 

(Figure 2.1F).  These data provide the first evidence that Pak2 is the predominant isoform 

in mast cells, and contributes the most to regulate degranulation.   

FcεRI-dependent calcium mobilization is dependent on Pak1 but not Pak2 

 The profound differences in regulation of degranulation between Pak1 and Pak2 

in mast cells led us to examine differences along the signaling pathway leading to IgE-

mediated degranulation.  Antigen-induced PLCγ1 (phospholipase-Cγ1) activation leads 

to IP3-dependent release of calcium from the endoplasmic reticulum (ER), resulting in 

influx of extracellular calcium.  Since neither loss of Pak1 or Pak2 was associated with 

alterations in phosphorylation of PLCγ1 at Tyr783 (Figure 2.2A), leading us to examine 

downstream events such as calcium influx. FcεRI signaling upon antigen stimulation 

results in calcium release from ER internal stores (first stage of Ca2+ mobilization) and 

subsequent prolonged influx of extracellular calcium (second stage of Ca2+ mobilization) 

through store-operated calcium release-activated calcium (CRAC) channels in the plasma 

membrane.  Cells from all genotypes were sensitized with anti-DNP IgE, and loaded with 

calcium binding dye Indo-AM, and influx of extracellular calcium was measured by flow 

cytometry analysis by measuring Ca2+-bound versus unbound Indo-AM after stimulation 

with antigen.  Compared with their appropriate controls, Pak1-deleted BMMCs were 

significantly impaired for second stage calcium influx (Figure 2.2B,C; p-value<0.05, 

Wilcoxon signed-rank test), but had normal first stage release from the ER with antigen 

stimulation.10 Pak2-deleted BMMCs, however, were not defective in calcium influx from 
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antigen stimulation (Figure 2.2B,C). These differences identify a key distinction in mast 

cell regulation between Pak1 and Pak2 in FcεRI stimulated mast cells. These results 

collectively indicate that Pak1 and Pak2 play distinct roles in regulating calcium influx in 

FcεRI-stimulated BMMCs.   

 

 

Pak1 and Pak2 play distinct roles in IgE-mediated adhesion  

FcεRI receptor activation in mast cells not only leads to changes in secretion of 

inflammatory mediators, but also leads to increased adhesion.18 Mast cell activation of 

FcεRI receptor stimulates an increase in cell adhesion and this adherence is required to 

facilitate localized synthesis of cytokines.19,20  Given the role of Paks in cell migration, 

adhesion and cytoskeleton regulation, we sought to discover a role for Paks in mast cell 

adhesion.  Based on our data demonstrating altered secretion between the two genotypes, 

FIGURE 2.3.  Effect of Pak1 and Pak2 on adhesion. A, Percent IgE-mediated 
adhesion of Pak1 knockout BMMCs on fibronectin-coated plates with 1 ng/ml and 10 
ng/ml DNP-HSA (p-value<0.05, Student t test).  B, Percent IgE-mediated adhesion of 
Pak2 knockout BMMCs (p-value <0.05, Student t test).  Data are shown as an 
average and standard deviation of at least 3 independent experiments run in triplicate.  
Data calculated as percent adhesion relative to total cells in each well.   
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we hypothesized that Pak1 and Pak2 would differ in their effects on cell adhesion in 

response to antigen.  Our findings demonstrated a significant reduction in antigen- 

mediated adhesion in Pak1-/- BMMCs (Figure 2.3A, p-value<0.05, Student t test) and a 

significant increase in adhesion in Pak2-/- BMMCs (Figure 2.3B, p-value<0.05 Student t 

test).  We conclude from these data that differences observed between Pak1 and Pak2 in 

antigen-mediated secretion stem primarily from their opposing roles in adhesion.  

Pak2 regulates BMMC secretion by regulating RhoA GTPase activity  

RhoA GTPase activation is required for mast cell adhesion and secretion in 

response to IgE stimulation.21-23 Since Pak1 and Pak2 are thought to regulate RhoA by 

opposing mechanisms,13 we proceeded to investigate activation differences of RhoA in 

Pak2-deficient mast cells as a potential cause of enhanced secretion and adhesion.  Using 

pull-down assays with the RhoA binding domain, Rhotekin, we found that deletion of 

Pak2 significantly increased the level of active GTP-bound RhoA in antigen-stimulated 

cells (p-value<0.05 Student t test) (Figure 2.4A).   

RhoA, through its effector ROCK, phosphorylates and inactivates myosin 

phosphatase, leading to phosphorylation and activation of myosin light chain 2 

(MLC2).24  The active form of MLC2 was significantly elevated in Pak2-/- cells (p-

value<0.05, Student t test) (Figure 2.4B).  This finding is consistent with previous studies 

in breast cancer cells that showed elevated MLC2 phosphorylation when Pak2 was 

silenced with siRNA.13   

 

 



	  

	   55	  

FIGURE 2.4.  Effect of Pak2 on Rho GTPase activity. A, IgE-primed Pak2fl/fl and 
Pak2-/- BMMCs were stimulated with 100 ng/mL DNP-HSA for 10 minutes, lysates 
cleared and incubated with Rhotekin RBD-GST beads (Millipore). RhoA-GTP was 
detected by anti-RhoA antibody and 10% of input demonstrates equal loading.  One 
representative Western blot of three experiments is shown, and densitometry of the fold 
induction relative to unstimulated cells (all normalized to input) of 3 independent 
experiments is shown (p-value<0.05, Student t test).  B, Activation status of MLC2, a 
downstream RhoA effector, at pThr18/Ser19 in lysates from 10 minute DNP-HSA 
stimulation. Blot is representative of 3 separate experiments, and densitometry shows 
average fold (±st dev) change over stimulated wildtype cells normalized to total MLC2 
for 3 separate experiments (p-value<0.05, Student t test).  C, C3-exoenzyme, a RhoA 
inhibitor, was treated on Pak2fl/fl and Pak2-/- BMMCs for 6 hours without serum. A 
degranulation assay was performed with 30 ng/ml DNP-HSA. Graph is average of 3 
independent experiments run in triplicate with standard deviation (p-value<0.05, Pak2-/- 

vs Pak2-/- +C3, Student t test). D, Rac1 and Cdc42 activity (GTP-bound isoforms) of 
Pak2fl/fl and Pak2-/- BMMCs after DNP-HSA stimulation for 10 minutes (representative 
blot of 3 independent BMMCs).  Total Rac1 and Cdc42 protein for each sample before 
performing pull-down is detected with monoclonal anti-Rac1 and polyclonal anti-Cdc42. 
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If activated RhoA is responsible for the enhanced degranulation seen in Pak2-/- 

BMMCs, then pharmacologic inhibition of RhoA should block these effects.  Inhibition 

of RhoA GTPase was achieved with Clostridium botulinum C3 exoenzyme, which 

selectively catalyzes the ADP-ribosylation and subsequent inactivation of RhoA, RhoB, 

and RhoC.25 Treatment of Pak2-/- BMMCs with C3 blocked the enhanced secretory 

phenotype in Pak2-null cells (p-value<0.05, Student t test) (Figure 2.4C). The phenotype 

observed in Pak2-/- BMMCs was RhoA specific, and not due to elevated Rac1 or Cdc42, 

as deletion of Pak2 did not affect Rac1-GTP or Cdc42-GTP levels as assessed by pull-

down assay (Figure 2.4D,E).  Therefore, we conclude that Pak2 is a specific negative 

regulator of RhoA-GTPase activity in BMMCs.  

Pak2 negatively regulates p38MAPK through RhoA inhibition 

RhoA activates p38MAPK, and this MAP kinase is known to regulate degranulation 

in mast cells.26 Pak1 was previously found to regulate p38MAPK in stem cell factor-c-kit 

receptor signaling.11  Based on this evidence, we asked if Pak2 loss affected p38 

activation by IgE engagement. We observed that loss of Pak2 resulted in a pronounced 

activation of p38MAPK in response to antigen, with ~1.5-fold induction over WT cells at 2 

and 5 minutes post stimulation (Figure 2.5A, p-value<0.05, Student t test). Addition of 

the p38 inhibitor, SB203580, reduced the enhanced degranulation phenotype observed in 

Pak2-/- BMMCs (Figure 2.5B, p-value<0.05, Student t test).  These results, along with the 

observed effects on RhoA shown in Figure 2.4A, suggest that Pak2 affects degranulation 

via a RhoA/p38 specific pathway, as Pak2 loss had no effect on Erk1/2 activity (Figure  
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FIGURE 2.5.  Effect of Pak2 on MAPK and p38 activity. A, IgE-primed Pak2fl/fl and 

Pak2-/- BMMCs were stimulated with 100 ng/mL DNP-HSA for 2 and 5 minutes, 
immunoblotted for anti-phospho-p38 (Thr180/182), anti-total p38, and anti-tubulin.  
Representative blot shown, along with the average of 3 independent experiments and 
standard deviations for relative fold induction over wildtype cells for phospho-p38/total 
p38. (p-value <0.05, Student t test) B, Degranulation of IgE-primed Pak2fl/fl and Pak2-/- 

BMMCs stimulated with 30 ng/ml DNP-HSA antigen and incubated with p38 inhibitor 
SB203580 (10 µM) 30 minutes prior to assay.  Average fold change of 3 independent 
experiments and standard deviations (p-value<0.05, Student t test).  C, ERK1/2 was 
probed on immunoblots from Pak2fl/fl and Pak2-/- stimulated for 10 minutes with 100 
ng/mL DNP-HSA antigen.  Representative blot shown, run for 3 independent 
experiments. 
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FIGURE 2.6.  Pak2 phosphorylates GEF-H1 and Stathmin in antigen-stimulated 
mast cells. A, IgE-primed Pak2fl/fl and Pak2-/- BMMCs were stimulated with 100 ng/mL 
DNP-HSA for 10 minutes and immunoblotted for phospho-GEF-H1 (Ser885), total GEF-
H1, phospho-stathmin (Ser16), and actin (loading control).  Representative blots shown.  
B, (left panel) Graph depicts the average of 3 independent experiments and standard 
deviations for percent change in phospho-GEF-H1 (S885), normalized to total GEF-H1, 
relative to WT (p <0.05). (right panel) Graph depicts the average of 3 independent 
experiments and standard deviations for percent change in phospho-stathmin (S16) 
normalized to actin, relative to WT cells (p <0.05).  C, Representative blot of IgE-primed 
Pak1-/- BMMCs stimulated with 100ng/mL DNP-HSA for 10 minutes and 
immunoblotted for phospho-GEFH1 (S885), phospho-Stathmin (S16) and actin (loading 
control). D, Graph depicts fold induction of phospho-GEFH1 and phospho-Stathmin 
normalized to actin, average of 3 independent experiments and standard deviations. E, In 
vitro kinase assay with recombinant Pak2 and GEF-H1-GFP, lysates run on parallel 
membranes were probed for phospho-GEF-H1 (S885) and total GEF-H1. 
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2.5C).  These data differ with that reported for Pak1, where in BMMCs, Pak1 functions 

to activate p38 and Erk1/2.11 

Pak2 regulates RhoA activation via phosphorylation and inactivation GEF-H1  

How does Pak2 suppress RhoA activation? To answer this question, we looked 

towards phosphorylation status of a known regulator of RhoA GTPase activity, GEF-H1. 

GEFs (guanine nucleotide exchange factors) convert RhoA-GDP to RhoA-GTP. The 

RhoA-specific GEF-H1 can only activate RhoA in the non-phosphorylated state.  When 

phosphorylated at serine 885, GEF-H1 localizes to microtubules and is inactivated, 

leading to inactive RhoA.27,28 Pak1 was previously found to regulate GEF-H1 through 

phosphorylation at Ser-885, which induces 14-3-3 binding to GEF-H1 and relocation to 

the microtubules.29 As shown in Figure 2.6A, when Pak2 is deleted in BMMCs, 

phosphorylation of GEF-H1 is nearly abolished (p-value<0.05, Student t test). Pak1 

deletion, in contrast, did not affect GEF-H1 phosphorylation (Figure 2.6C). As impaired 

phosphorylation at Ser-885 is associated with constitutively active GEF-H1 and 

subsequent enhanced RhoA activity30, it is likely that the observed impairment of GEF-

H1 phosphorylation in Pak2-deleted cells is driving enhanced secretion.  Interestingly, 

another Pak substrate associated with microtubules, stathmin/Op18, showed decreased 

phosphorylation at Ser-16 in Pak2-/- cells (Figure 2.6B, p-value<0.05 Student t test).  

Stathmin/Op18 remains in the active state upon dephosphorylation, suggesting that Pak2 

deletion drives microtubule depolymerization via activated stathmin.   Pak1-null cells fail 

to show a defect in either GEF-H1 or stathmin phosphorylation, indicating in mast cells 

that these are specific downstream targets of Pak2.  Finally, a kinase assay to assess the 

ability of Pak2 to directly phosphorylate GEF-H1 at serine 885 demonstrated that GEF-
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H1 can be phosphorylated by Pak2 in vitro (Figure 2.6E). Together these data 

demonstrate that Pak2 regulates RhoA-GTPase via regulation of microtubule-associated 

proteins and this regulation mediates mast cell FcεRI responses independent of Pak1’s 

effects. 

Passive systemic anaphylaxis 
To determine if the effects observed in Pak2-deleted mast cells in vitro are 

consistent with effects in vivo, we performed a passive systemic anaphylaxis experiment 

to measure the capacity of mast cells to degranulate.  In order to delete Pak2, we used an 

Mx1-cre recombinase expressing mouse model.  Mx1-cre is activated by administration 

of double-stranded RNA (polyI:C). This allows for both temporal and spatial control of 

Pak2 deletion.  Mx1-cre predominantly is expressed in hematopoietic tissue and spleen. 

After bone marrow recombination (day 10 post-injection of polyI:C), we administered 

IgE specific antibodies through retroorbital injection.  After 16 hours, we injected antigen 

to induced systemic anaphylaxis.  After 90 seconds, we extracted blood and isolated 

serum to measure for the level of histamine release.  Our results indicate that Pak2-null 

mice have 50% decreased mast cell degranulation compared to wild-type polyI:C treated 

mice (Figure 2.7). These data are in contrast to the in vitro degranulation studies, which 

found Pak2-deficient mast cells in culture maintained a higher level of antigen-induced 

degranulation.  There are a variety of theories and future experiments to explain these 

differences between in vitro and in vivo degranulation, which will be discussed below.   
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Figure 2.7 Passive systemic anaphylaxis in Mx1-cre+Pak2f/f mice demonstrate 
decreased antigen-induced degranulation. 24 hrs post-administration of IgE-DNP, 
mice were dosed with antigen (DNP-HSA, 10ug).  90 seconds after administration of 
antigen, blood was extracted, serum isolated and measured for histamine by ELISA.  
Amount of histamine calculated by a standard curve, and data displayed as percent of 
control.  n=7 mice/genotype. 
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DISCUSSION 

In this report, we describe the distinct functional roles of Pak1 and Pak2 in 

allergen-induced bone marrow-derived mast cell degranulation.  Previous work found 

that Pak1 in mast cells modulates allergen- and stem cell factor- induced F-actin 

rearrangement, extracellular calcium flux and degranulation.10,11 Here we show that 

disruption of the Pak2 gene in BMMCs increases the allergen-induced degranulation 

response without effecting calcium flux, directly opposing Pak1 function. Pak1 functions 

to regulate mast cell secretion by promoting assembly of a PP2A phosphatase complex.14 

This phosphatase complex dephosphorylates Ezrin/Radixin/Moesin (ERM), resulting in 

uncoupling of the actin cytoskeleton from the plasma membrane and subsequent 

degranulation. Granule translocation to the plasma membrane is independent of calcium, 

however, fusion to the plasma membrane and release of granule content depends on the 

presence of calcium.31  This partially explains why Pak1-null mast cells had deficient 

secretion, since they demonstrated a 40% reduction in antigen-induced calcium flux 

(Figure 2.2), however Pak2 has no effect on calcium flux. Therefore, our data seek to 

identify the alternative mechanism by which Pak2 functions to negatively regulate mast 

cell secretion.   

Pak1 and Pak2 share over 93% sequence homology within their catalytic 

domains.4 Pak2 however is the predominant isoform in BMMCs (Figure 2.1A), 

suggesting that small molecule Pak inhibitors would most likely demonstrate a Pak2 

phenotype in mast cells, possibly resulting in severe anaphylaxis.32-34 These findings also 

point to our limited understanding of the differences between Pak1 and Pak2 in terms of 

regulation and substrate specificity.  
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A strong phenotypic difference between Pak1- and Pak2-null mast cells is the 

difference in extracellular calcium flux. Pak1, but not Pak2, regulates calcium flux to 

influence the amount of degranulation a mast cell can undergo.  Recent work on platelets 

and thrombin-induced calcium flux revealed that Pak inhibition with IPA-3 (small 

molecule inhibitor of Group I Pak2), impaired calcium flux.35  These data suggest that 

inhibition of multiple Pak kinases may result in impaired calcium flux and downstream 

signaling effects. 

Pak2 deletion in primary mast cells resulted in elevated RhoA-GTPase activity 

(Figure 2.4A).  RhoA activity drives mast cell degranulation, as documented by various 

researchers nearly 20 years ago.21-23,31 Constitutively-active (CA) forms of RhoA 

promoted degranulation in mast cell lines, and dominant-negative (DN) RhoA mutants 

impair secretion.  The mechanism by which RhoA functions to regulate secretion is 

multifaceted.  For one, RhoA controls microtubule formation independent of calcium 

signaling, allowing vesicle translocation and membrane fusion. DN-RhoA inhibited the 

FcεRI-induced microtubule formation resulting in reduced degranulation without 

affecting F-actin polymerization. 

RhoA activation enhances MLC2 phosphorylation, known to regulate mast cell 

secretion by regulating the acto-myosin cortex (Figure 2.4B).36,37 Additionally, Pak2-null 

mast cells displayed elevated adhesion to a fibronectin substrate in response to IgE-

mediated stimulation (Figure 2.3). Upon antigen stimulation, mast cells decrease in 

height by 50%, and spread out on the substrate, increasing their surface area. Without 

proper adhesion, mast cells fail to fully degranulate. Interestingly, we found that Pak1-

null mast cells failed to adhere well upon antigen stimulation, suggesting another reason 
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for isoform differences in degranulation. Previously, Pak1 and Pak2 inhibition with 

siRNA demonstrated that they play distinct roles in focal adhesions, mediated in part 

through their different regulation of MLC2 phosphorylation.13  Pak1 loss resulted in 

decreased MLC2 phosphorylation and failure to form focal adhesions, whereas Pak2 loss 

resulted in elevated MLC activity leading to significantly larger focal adhesions.13  These 

data support our findings, that reduced adhesion in Pak1-null cells leads to impaired 

exocytosis, where as increased adhesion in Pak2-null cells increases degranulation. These 

data suggest strongly that Pak1 and Pak2 function through different signaling pathways to 

regulate mast cell degranulation in response to antigen stimulation. 

Since, MLC2 is activated upon calcium-ionophore induced mast cell secretion, we 

sought to determine if Pak2-null mast cells had changes in MLC2 phosphorylation status 

upon antigen stimulation.38  As shown in Figure 2.4B, Pak2-null BMMCs had elevated 

MLC2 phosphorylation, possibly secondary to activation of the RhoA signaling pathway.  

MLC positively regulates mast cell degranulation via its control of the acto-myosin 

network and contractile forces. MLC inhibition with MLCK inhibitors KT5926 and ML-

7 impaired mast cell degranulation.36,37  

To test if Pak2 regulates MLC2 phosphorylation through RhoA signaling to 

control degranulation, we used the RhoA inhibitor, C3-exoenzyme on antigen-stimulated 

mast cells.  We discovered that RhoA inhibition impaired the elevated degranulation 

observed in Pak2-null mast cells (Figure 2.4C). These data clearly demonstrate that Pak2 

signals through RhoA to regulate degranulation.   
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MLC2 regulation by Pak1 and Pak2 remains controversial. MLC2 regulates the 

interaction between myosin and actin to drive ATP hydrolysis when phosphorylated at 

threonine 18 and serine 19, and this provides the driving force for cytoskeletal 

organization and contractility, cell motility, and migration. The phosphorylation state of 

MLC2 is regulated directly and indirectly by various factors, including MLC kinase 

(MLCK), MYPT1 phosphatase, RHO kinase (ROCK), and various Pak isoforms.39-43 

Recently, Chu et al. discovered that regulation of MLC2 phosphorylation by Pak1 (and 

not Pak2) depends on the stressed conditions to the cell, which lead to intestine smooth 

muscle contractility. In non-stressed conditions, Pak1 is a positive regulator of MLC2 by 

phosphorylating (inactivating) the phosphatase MYPT1, leading to elevated MLC2 

phosphorylation and normal cellular contractility.  In the disease/stressed state of 

intestinal smooth muscle, the relationship switches and Pak1 becomes a negative 

regulator of MLC2 by activating MYPT1 activity, resulting in decreased MLC2 

phosphorylation, and decreased contractility.  The complex interaction of Pak1 and Pak2 

on MLC2 phosphorylation is diagrammed in Figure 1.3. 

In addition to the Pak2-RhoA-MLC2 signaling axis, we also discovered that 

p38MAPK was elevated in antigen-stimulated Pak2-null mast cells (Figure 2.5A).  These 

data are in direct contrast to Pak1-null mast cells, which were impaired for p38 

phosphorylation upon stimulation with stem cell factor (SCF) to activate the c-kit 

receptor.11 However, studies using dominant-negative mutant forms of Pak2 found an 

inverse relationship with p38 phosphorylation, suggesting Pak2 is a negative regulator of 

p38, and Pak1 is a positive regulator.44  Mast cell activation of p38 in response to 
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antigen-stimulation is required for degranulation, as well as chemotaxis.26,45 When p38 is 

phosphorylated for extended periods of time, there is an induction of degranulation.26 

Based on previous results of Pak1 and p38, as well as the known role of p38 in mast cells, 

we evaluated p38 phosphorylation status in antigen-stimulated mast cells.11,46 Our results 

revealed elevated p38 activation in Pak2-null mast cells, opposing known roles of Pak1 

and p38. Elevated p38 activation is one mechanism by which Pak2-null mast cells 

display increased degranulation, independent of RhoA activation (Figure 2.5A). We 

found that drug inhibition of p38 in Pak2-null mast cells rescued the enhanced 

degranulation phenotype to wildtype levels (Figure 2.5B).  Together these data 

demonstrate that Pak2 is a negative regulator of degranulation by controlling the RhoA 

and p38 signaling pathways in antigen-stimulated mast cells. 

Regulation of RhoA activity by Pak2 could be mediated by GAPs, GEFs, and/or 

GDIs.  Since the RhoA-specific GEF, GEF-H127, was previously identified as a substrate 

of Pak1 and Pak4, we evaluated the role of Pak2 on GEF-H1 phosphorylation.29,33,47 

Phosphorylation of GEF-H1 was greatly inhibited in Pak2-deficient BMMCs (Figure 

2.6A-B).  Phosphorylation of GEF-H1 at Ser-885 is known to promote its localization to 

microtubules by binding 14-3-3, leading to inhibition of its exchange activity.27-29  These 

results suggest that, in the absence of Pak2, GEF-H1 remains underphosphorylated and in 

an active state, thereby activating RhoA. Activated RhoA promotes enhanced 

degranulation in Pak2-deficient cells, as shown by the finding that enhanced 

degranulation was abolished by addition of the RhoA inhibitor, C3 exoenzyme (Figure 

2.4C).  An in vitro kinase assay demonstrated that Pak2 directly phosphorylates GEF-H1 
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at serine 885 (Figure 2.6E). Together these data suggest that Pak2 regulates GEF-H1, 

through phosphorylation, to negatively regulate mast cell degranulation.  

A previously identified target of Pak1, Op18/Stathmin, destabilizes microtubules 

when in the unphosphorylated state by sequestering alpha and beta tubulin dimers.48 

Stathmin/Op18 also functions as a relay in various signal transduction pathways for 

extracellular signals and to regulate the microtubule (MT) network.49  Stathmin/Op18 

requires proximity to assembling MTs to become locally phosphorylated.50  Many 

kinases and phosphatases, including ERK, are associated with microtubules, and 

therefore function only with intact MTs.  Some kinases are activated in response to a 

change in the cellular MT network. In this context, it is interesting to note that Pak1 is a 

known negative regulator of stathmin via phosphorylation at Serine 16, a site critical for 

stathmin’s microtubule-depolymerizing activity.51 We found that this site was 

underphosphorylated in Pak2-deficient cells, but not in Pak1-deficient BMMCs, 

suggesting that stathmin is constitutively active in Pak2-deficient mast cells, destabilizing 

MTs and driving degranulation.  

These results suggest two possible hypotheses to explain Pak2 function as a 

negative regulator of mast cell secretion.  First, Pak2 could regulate RhoA activity in 

mast cells directly by phosphorylation of GEF-H1 at Serine 885, resulting in inhibition of 

this GEF with subsequent reduction in RhoA activity (Figure 2.6E). In addition, Pak2 

might affect GEF-H1 indirectly through phosphorylation of stathmin, resulting in 

inhibition of stathmin, stabilization of MTs and retention of inactive GEF-H1 at these 

stabilized MTs (Figure 2.8). In Pak2-/- cells, underphosphorylated stathmin drives MT 

disassembly, generating active GEF-H1, leading to elevated RhoA activity and driving 
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secretion.  These two hypotheses are not mutually exclusive.  Recent work by Pathak et 

al. established that GEF-H1 orchestrates the interplay between the cytoskeleton, vesicle 

trafficking and fusion to the plasma membrane critical for mast cell degranulation. They 

found that GEF-H1 binds to exocyst component Sec5 and this interaction activates RhoA, 

which promotes vesicle assembly, translocation, membrane fusion and secretion.52,53 

Microtubules serve as tracks for vesicle delivery to the plasma membrane, for 

fusion and release of contents.  Since GEF-H1 is activated upon MT depolymerization, 

and has now been identified to influence exocyst formation, RhoA activation and 

translocation, one could postulate that GEF-H1 is in a position to promote vesicle-plasma 

membrane fusion.52,53 These data provide yet another mechanism by which RhoA 

regulates mast cell degranulation, independent of F-actin polymerization.22  Loss of GEF-

H1 activity resulted in impaired endocytic recycling and exocytosis, resulting in the 

accumulation of vesicles in the cytoplasm. Constitutively active GEF-H1 resulted in 

increased binding of exocyst proteins, important for translocation of vesicles at the 

plasma membrane.52,53 These data demonstrate that GEF-H1-RhoA-exocyst signaling 

axis could regulate secretion, by regulating exocyst assembly and maintenance through 

cytoskeletal modulation and fusion to the plasma membrane.  Presumably, Pak2 

regulation of GEF-H1 mediates these interactions during mast cell granule secretion.  
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FIGURE 2.8.  Model of divergent Pak1 and Pak2 signaling in mast cells.  Model 
demonstrating how Pak1 and Pak2 regulate IgE-mediated secretion in mast cells. In this 
scenario, Pak1 and Pak2 play opposing roles.  Pak1, which is present at lower levels than 
Pak2 in mast cells, act through association with PP2A to promote ERM phosphorylation 
and augment secretion.  Pak2 acts primarily through phosphorylation of GEF-H1 and 
stathmin to limit RhoA activity, leading to diminished downstream activation of p38 and 
MLC2.  Limiting the activity of these effectors results in diminished secretion.  
Differential spatial or temporal regulation of Pak1 vs. Pak2 might determine the output 
(i.e., secretion or no secretion) under particular conditions. 
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What accounts for the opposing signaling effects of Pak1 and Pak2 in mast cells?  

These two kinases have very similar N-terminal p21-binding domains and C-terminal 

protein kinase domains, and have many binding partners and substrates in common. 

However, the primary intracellular localization of these two enzymes may differ.54,55 For 

example, Pak1, unlike Pak2, is localized to cytosolic vesicular structures in unstimulated 

cells, and translocates to the nucleus following growth factor stimulation.56,57  This 

unique feature may impart unique functions to Pak1.  With respect to GEF-H1 

phosphorylation, Pak1 (and Pak4) has been reported to catalyze Ser-885 phosphorylation, 

but, perhaps due to its low abundance compared to Pak2 in mast cells, plays little role in 

regulating GEF-H1 in this cell type (Figure 2.6C,D).  In contrast, despite its relative low 

abundance in mast cells, Pak1, but not Pak2, is required for normal Erk1/2 activation (Fig. 

2.5C and 11).  

Additionally, recent work demonstrated that the specific genetic background of 

the mouse model can alter the intensity of the degranulation response.58 C57BL/6 

(background of the Pak1KO mice) has decreased responsiveness to antigen-stimulated 

degranulation compared to Sv129 (Pak2f/f were in a mixed background C57BL/6 and 

Sv129, no backcrossing done prior to experimentation). Sv129 background mice have 

increased FceRI expression and increased serum IgE levels, partially explaining the 

increased degranulation observed in vitro. However, this phenotypic difference was only 

observed in degranulation studies and not observed in cytokine secretion analyses. 

Therefore, the differences observed in cytokine secretion between Pak1 and Pak2 

knockout mast cells show an unambiguous role of Pak1 as a positive regulator and Pak2 

as a negative regulator of mast cell antigen-induced secretion (Figure 2.1E).  These data 
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inform future mast cell studies to take extra caution in matching controls based on genetic 

background of the mouse model in question.  

In vitro studies presented here demonstrate that Pak2 is a negative regulator of 

mast-cell degranulation.  To study degranulation in tissue resident mast cells, in vivo 

passive systemic anaphylaxis was performed.  The results indicate a discrepancy between 

in vitro and in vivo antigen-mediated degranulation in Pak2-null mast cells.  In vitro 

studies with bone marrow derived mast cells grown in culture for 5 weeks demonstrated 

increased degranulation (Figure 2.1D), where as in vivo studies with Mx1-cre induced 

Pak2-deletion demonstrated decreased antigen-induced anaphylaxis (Figure 2.9). There 

are myriad of explanations to describe these differences. One primary reason for the 

difference is that Mx1-cre promoter does not efficiently activate in mast cells upon 

polyI:C administration. Considering mast cells terminally differentiate in tissues and 

survive from months to years, activation of Cre may have been suboptimal in targeting 

tissue resident mast cells. There are several citations indicating that polyI:C (dsRNA) can 

activate toll-like receptor 3 (TLR3) on mast cells, and elicit activation of IRF3 (interferon 

regulatory factor 3), driving IFN-β activation of macrophages, CXCL8 secretion to 

recruit NK cells and co-stimulatory CD28/CD80 to recruit CD8+ T cells.59,60  These 

activated mast cells can further recruit CD8+ T cells to lymph nodes and co-localize at 

sites of inflamed tissue. This activation elicited release of inflammatory cytokines and 

chemokines, but did not induce degranulation.  24 hours post-polyI:C exposure, mast 

cells had elevated surface expression of MHC class II, CD80/CD28 costimulatory 

molecules to shape adaptive immunity, complement receptor and FcγII/III.59-61 

Administation of polyI:C two weeks prior to antigen exposure resulted in increased IL-13 
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release and increased airway hyperresponsiveness.61 Human mast cells treated with 

polyI:C demonstrated 50% reduction in adhesion to fibronectin and vitronectin, as well as 

reduced adhesion-dependent degranulation.62 Clearly, activation of Mx1cre by 

administration polyI:C has many off-target effects on mast cells, rendering this model 

insufficient to study IgE-mediated systemic anaphylaxis. Future work using adoptive 

transfer of in vitro matured mast cells, or mast cell specific-Cre recombinase would be a 

viable option. 

In addition to the off-target effects of polyI:C, there are other reasons for the 

differences between in vitro and in vivo mast cell degranulation. Our in vivo model 

collected serum 90 seconds post-antigen stimulation.  It is possible that longer exposure 

to antigen, (i.e. 30 minutes) or increased antigen concentration may have resulted in 

elevated degranulation in Pak2-/- mice.  However, there are reasons to believe that 

Mx1cre+Pak2f/f mice are deficient in degranulation for reasons beyond the effect on mast 

cells.   Mx1cre+Pak2f/f mice suffer from various systemic problems, which result in death 

between day 14 and 20 post-polyI:C administration, described in detail in Chapter 4. 

Some changes that would affect the ability to respond to antigen is blood flow, reduced 

blood flow rate would reduce the rate at which antigen is presented to tissue resident mast 

cells. Also, vascular integrity is required for proper antigen presentation, mast cells must 

be properly positioned at lymphatic blood vessels and endothelium for antigen 

presentation.63 Pak2-/- mice demonstrate vascular defects associated with lymphedema 

and pleural effusions, both indicators of improper vasculature.  The Pak2-null mice have 
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decreased blood flow rate, determined by a tail bleed assay where Pak2-null mice 

demonstrated significantly slower blood flow from the tail cut.   

An alternative hypothesis to explain differences observed between in vitro and in 

vivo degranulation include altered affinity of IgE to FcεRI in the different settings.  If in 

vivo, the Pak2-/- mice fail to either distribute IgE to peripheral tissue resident mast cells, 

or the mast cells themselves are deficient in FcεRI, these could hinder anaphylaxis. There 

is also the possibility that in vivo Pak2-/- mast cells are not fully developed, have reduced 

numbers in circulation and tissues or have a weaker affinity for IgE. Additionally, Pak2-/- 

mast cells in vivo may not extravasate from endothelial cells into surrounding tissues as 

well as wildtype mice, and therefore do not mature fully. These are just a few examples 

to describe the discrepancy between in vivo and in vitro degranulation results.  

However, to overcome the effects of systemic changes in Pak2-/- mice on mast 

cell degranulation and obtain data from in vivo degranulation, an alternative approach to 

study Pak2-null mast cells in vivo, would be to adoptively transfer Pak2-null mast cells in 

Wsh/Wsh mice, which lack functioning mast cells (ckit-null mice).  This adoptive 

transplantation model would also clarify if the tissue resident mast cells were still 

wildtype, considering their longevity in tissues. However, the development of mouse 

strains wild-type for Kit, but selectively deficient for mast cells, and on defined genetic 

backgrounds would be advantageous to truly understanding the effects of gene deletion 

on mast cells. By constitutively expressing Cre recombinase under the control of mast 

cell specific genes, such as A-Mcpt-5-cre, mast cell-specific conditional gene 

modification can be been achieved in mature tissue resident mast cells, to varying degrees 

of efficiency and specificity, and avoids pathogenic effects of deregulated Pak2 signaling 
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in the hematopoietic progenitor cells.64-67 Recent developments in this field have 

designed a tamoxifen-cre inducible mouse model that drives deletion of C-kit, a receptor 

on mast cells.68  Recombination with tamoxifen administration took 2 weeks, and was 

sustained for at least 8 weeks in peritoneal and dermal mast cells.  Hematopoietic c-kit+ 

cells were not affected by this deletion.  There was low turnover and regeneration of mast 

cells from unaffected precursors.  This genetic tool provides researchers the opportunity 

to study gene function in mature tissue resident mast cells without effecting other 

immune cells and bone marrow.   

This study provides novel findings into signaling differences between Pak1 and 

Pak2 in mast cell FceRI signaling.  Future in vivo experiments using mast cell-specific 

models to delete Pak2 solely in mast cells and in vitro experiments using chimeric 

versions of Pak1/2 hybrids may prove useful in mapping structural features within these 

kinases that impart signaling specificity.
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Chapter 3: Pak2 restrains endomitosis during megakaryopoiesis 
INTRODUCTION 

 Megakaryocytes are both the largest (50-100µm) and most rare cell type (~0.03-

0.06%) in the bone marrow.1,2  To produce sufficient numbers of platelets, these cells 

become polyploid and undergo massive nuclear proliferation, together with an 

enlargement of the megakaryocyte cytoplasm, which becomes filled with platelet-specific 

granules.  Megakaryocytes undergo a complex maturation process by which their 

cytoplasmic contents are packaged into multiple elongated proplatelet processes.3  As 

proplatelets extend through the sinusoid vessels, physiological shear force aids in 

dissociating proplatelets into circulating platelets.4,5 MK maturation is triggered primarily 

through cellular signaling events initiated by the cytokine thrombopoietin (TPO).6 TPO 

binds to the c-Mpl receptor on megakaryocytes to activate the Janus kinase (JAK)-2 

signaling pathway and stimulation of PI3K/Akt and MAPK pathways.7-9 

The p21-activated kinases (Paks) are serine/threonine kinases involved in a 

variety of key signaling pathways that effect cell shape, contractility, motility and 

survival.10  Paks consist of six isoforms distributed into two groups, Group I (Pak 1-3) 

and Group 2 (Pak 4-6).  Activation of Pak is primarily achieved through binding of the 

Rho GTPases, Rac1 and Cdc42, which relieve Pak autoinhibition and induce 

conformation changes that activate the catalytic domain.  Once activated, Paks 

phosphorylate dozens of signaling proteins, including those that regulate the ERK 

pathway (Mek-1 and c-Raf), assembly of the mitotic spindle (Aurora A), and 

microfilament assembly (LIMK, GEF-H1).11-14  
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Paks regulate several hematopoietic biological processes, including hematopoietic 

stem cell engraftment and homing to the bone marrow, assembly of the actin cytoskeleton, 

and chemotaxis.15 Paks promote hematopoiesis by regulating Raf-1 and Mek-1 activation 

to drive Erk1/2 activation, resulting in proper hematopoietic function.16 Paks similarly 

have roles in platelet activation through the orchestration of platelet signaling and 

cytoskeletal dynamics.17-22 Paks link Rac1, downstream of receptor GPVI activation, to 

activation of the MAP kinase pathway, granule secretion, and platelet 

aggregation.17,18,23,24 Recently, mice with megakaryocyte-specific double knockout 

deletions of the Pak activating proteins, Rac1/Cdc42, were shown to develop 

macrothrombocytopenia, with abnormal megakaryocyte morphologies, a failure to form 

proplatelets and shortened platelet half-life.25,26 Although Pak activation is compromised 

in megakaryocyte and platelet systems lacking Cdc42 and Rac1, a specific role for Paks 

in megakaryocyte development and function has yet to be defined.23-25  

In this work, we sought to determine the contribution of group I Paks in the 

process of megakaryocyte maturation and polyploidization.  We found that bone marrow 

specific deletion of Pak2 is associated with macrothrombocytopenia, decreased platelet 

half-life, increased megakaryocyte ploidy, and altered microfilament and microtubule 

structures.  These effects are accompanied by defective activation of the Pak substrates, 

LIMK and Aurora.  Together, these findings suggest a unique function for Pak2 in 

megakaryocyte development, a function that may need to be considered as small 

molecule inhibitors of Paks are developed as clinical agents.27-31 
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Material and Methods 
Generation of mice with Pak2-/- bone marrow 

Pak2-deficient mice were generated by crossing mice containing the Pak2 gene 

flanked by loxP sites (Pak2fl/fl), with mice carrying the Mx1cre transgene.15,32,33 (Figure 

4.1). In 8- to 12-week old Mx1-cre+Pak2fl/fl mice (mixed background sv129/C57Bl/6), 

gene deletion was induced by 3 intraperitoneal injections of 400ug polyinosinic-

polycytidylic acid (pIpC) in a 2-day interval.  Littermates received the same treatment.  

Fourteen days after the first injection, mice were used in experiments. Additionally, a 

colony of CAGG-Cre-ERT2+Pak2fl/fl mice were generated in order to delete Pak2 in in 

vitro culture of bone marrow-derived megakaryocytes.  To induce deletion, 500 nM 4-

hydroxytamoxifen was administered to bone marrow cultures for 5 days.  For Pak 

inhibitor treatments, administration of Frax1036 (Genentech) was done by daily oral 

gavage (30 mg/kg) diluted in 20% (2-Hydroxypropyl)-β-cyclodextrin (Sigma) for three 

weeks.  Age-matched control animals were treated with vehicle alone.  All animal studies 

were performed according to protocols approved by Fox Chase Cancer Center 

institutional animal care and use committee.  

Antibodies and Reagents 
All reagents were purchased from Sigma-Aldrich unless otherwise stated.  

Polyclonal antibodies against phospho-LIMK (T508), phospho-Cofilin (S3), and 

phospho-Aurora A/B/C (T288/T232/T198) and total proteins (LIMK, Cofilin) were 

purchased from Cell Signaling Technology.  A mouse monocloncal antibody against 

Aurora A was purchased from BD Biosciences.  Recombinant mouse thrombopoietin 

(rmTPO) was purchased from Shenandoah Biotechnology (Warwick, PA).  IL-3 was 

purchased from PeproTech (Rocky Hill, NJ).  Antibodies for flow cytometry were from 
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Ebioscience  (antibody name (clone)) murine hematopoietic lineage eFluor 450 cocktail, 

c-Kit-APC (2B8), sca-1-PE-Cy7 (D7), CD150-FITC (BioLegend-TC15-12F12.2), CD41-

APC-Cy7 and CD41-eFluor 450 (MWReg30), CD105-PE (MJ7/18), FcγII/III-PerCP-

eFluor 710(clone 93).  Antibodies for immunofluorescence (CD41 and β1-tubulin) were 

purchased from Abcam.   

Analysis of platelet clearance and production 
To determine platelet clearance in both Pak2-/- and wild-type mice, an in vivo 

biotinylation approach was used.34 Briefly, 8- to 12-week-old Pak2-/- and wild-type mice, 

10 days after pIpC injection were injected via tail vein with 35 µg/g body weight sulfo-

NHS-biotin (Pierce Chemical).  Retro-orbital bleeds were used to collect blood daily into 

3.8% sodium citrate.  After collection, the blood was diluted 20× in PBS and incubated 

with streptavidin-PE (BD Biosciences) to label biotinylated platelets for 30 minutes at 

4°C.  Thiazole orange (10 µg/mL) was then added to measure reticulated platelets, and 

the samples were incubated for 15 minutes at room temperature (RT).  After fixation in 

1% formalin, the samples were analyzed via flow cytometry with appropriate color 

compensation. 

Bone marrow collection and MegaCult-C assays 

Bone marrow cell suspension was isolated from the tibias and femurs of pIpC 

treated mice.   Bones were flushed with DMEM/2% FBS followed by filtration through a 

100-µm nylon strainer.  RBC lysis was done prior to antibody staining, bone marrow 

culture and colony formation assays. For MegaCult-C assays, a total of 105 unsorted bone 

marrow cells were used, according to the manufacturer’s protocols (Stem-Cell 

Technologies); 50 ng/ml murine thrombopoietin (TPO) (Shenandoah Biotechnology, 
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Warwick, PA), 10 ng/ml murine IL-3 (Peprotech, Rocky Hill, NJ) were used in these 

assays.  The cultures were incubated for 6 to 8 days.  Colonies were fixed and stained for 

acetylcholinesterase according to the manufacturer’s protocol (StemCell Technologies). 

Duplicate assays were performed for each mouse.   

Measurement of hematological parameters 
Mice were euthanized with CO2 and blood was extracted via the hepato-portal 

vein with a syringe containing ACD (acid-citrate dextrose) (10% final).  Whole blood 

was added into tubes containing EDTA.  The complete blood count was performed using 

a VetScan HM5 (Abaxis) within 1-2 hours of collection at room temperature. 

In vitro culture of bone marrow-derived megakaryocytes 

Primary megakaryocytes derived from bone marrow of Mx1-cre+Pak2fl/fl mice 10 

days after the last pIpC injection were cultured in DMEM, 10% FBS, 

penicillin/streptomycin, and 100 ng/ml TPO for 5 days.  Megakaryocytes cultured from 

Cag-Cre-ERT2;Pak2f/f bone marrow were treated with 500nM 4-hydroxytamoxifen 

during the 5 day culture with TPO to delete Pak2. Cultures were then fractionated on a 

1.5% / 3% discontinuous bovine serum albumin (BSA) gradient, and cultured for an 

additional day. 

Proplatelet formation 
Proplatelet-displaying megakaryocytes were defined as cells exhibiting one or 

more cytoplasmic processes with areas of constriction. After 5 days in culture, fetal liver 

derived megakaryocytes were separated on a BSA gradient, followed by 24 hours of 

growth.  Proplatelet extensions were quantified by calculating the percentage of 

megakaryocytes with such processes on inverted microscope at a magnification of   20X.35  
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Megakaryocyte ploidy analysis 
For ploidy measurements, cells were analyzed as described previously.36  DNA 

content in CD41+ megakaryocytes was determined by labeling RBC-lysed bone marrow 

with anti-CD41 4°C for 30 minutes, followed by fixation with 0.5% formalin for 15 

minutes at room temperature.  Cells were then permeabilized with 70% ice-cold methanol 

for 1 hour on ice.  After washing cells, they were then incubated with 10ug RNase A at 

37°C for 30 minutes, followed by incubation with 1 µg/µl propidium iodide for 15 

minutes at room temperature.  Cells were analyzed for ploidy on an LSR-II with proper 

fluorochrome compensation. 

Analysis of megakaryocyte progenitor cells 

To analyze megakaryocyte stem cells, freshly isolated bone marrow was stained 

with mouse hematopoietic eFluor-450 lineage cocktail, anti-c-Kit-APC, anti-sca-1-PE-

Cy7, anti-CD150-FITC, anti-CD41-APC-Cy7, anti-CD105-PE, anti-FcγII/III-PerCP-

eFluor 710. PreMegE cells were gated as lin-sca1-ckit+CD41-FcγII/III-CD105-CD150+ 

and megakaryocyte progenitors were gated as lin-sca1-ckit+CD150+CD41+.37 Mature 

megakaryocytes were analyzed by anti-CD41-APC-Cy7 and calculated as percent of total 

bone marrow.  Flow cytometric data collection was performed on an LSRII flow 

cytometer (BD Biosciences) and analyzed with FlowJo software (TreeStar, Ashland, OR).   

Western Blotting 
In vitro cultured megakaryocytes on day 5 post-BSA gradient were lysed, 

clarified by centrifugation and denatured. Samples were separated by SDS–

polyacrylamide gel electrophoresis (PAGE) on a 4% to 20% gradient gel (BioRad, 

Carlsbad, CA) and transferred to PVDF membrane.  Membranes were blocked and 
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probed with primary antibodies overnight.  Secondary HRP-conjugated antibodies were 

incubated for one hour.  ECL (Millipore) was used to resolve bands and imaged on 

ProteinSimple imager. Phosphorylated protein band density was quantified with Fiji 

(NIH Image software; National Institutes of Health, Bethesda, MD) and calculated 

relative to total protein.  

Confocal microscopy 
In vitro cultured bone marrow-derived megakaryocytes were adhered to 

fibrinogen coated slides (200 ng/ml) for 5 hours with TPO.  Cells were fixed with 2% 

PFA and centrifuged onto coated slides for 5 minutes at 1000 x g.  Cells were 

permeabilized with 0.5% triton X-100 for 5 minutes prior to blocking for 1 hour and 

antibody incubation overnight at 4°C.  Slides were counterstained with DAPI and 

phalloidin, and mounted in ProLong gold prior to visualization.  Confocal microscopy 

was done on an inverted Leica SP8 3 channel confocal system at 100X magnification. 

Image analysis was performed with Fiji (ImageJ) software (NIH).  

Histology 

Five µm sections of paraffin-embedded sternum and spleen were stained with 

Hematoxylin and Eosin and analyzed for megakaryocytes using an Olympus BX53 

microscope with the 40X objective.   

Statistical analysis 
The data presented in this report are the results of at least 3 independent 

experiments with separate mice used per replicate.  Statistical analysis was performed 

using a 2-tailed Student t test, and a P value <0.05 was considered statistically 

significant. 
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RESULTS 

Inducible deletion of Pak2 from bone marrow results in macrothrombocytopenia  
To study the function of the Pak2 gene in various hematopoietic-derived cells, 

mice carrying conditional Pak2fl/fl alleles were crossed with mice harboring the 

interferon-inducible Mx1-Cre transgene to produce MxTg;Pak2f/f  (Pak2-/-) and 

MxTg;Pak2+/+ controls (wild-type).32, 38(M. Radu and J. Chernoff, manuscript in 

preparation).  Deletion of the floxed exon 2, which encodes the start site of Pak2, was 

achieved by IP administration of plpC.  Pak2 protein levels in the bone marrow, platelets 

and megakaryocytes were below the level of detection of Western blotting with anti-Pak2 

antibodies at 14 days post-plpC (Figure 3.1A).  Deletion in megakaryocytes of Pak2-/- 

mice was confirmed by culturing bone marrow extracted at 14 days post-pIpC.  

Complete blood count analysis of Pak2-/- and wild-type mice displayed moderate 

thrombocytopenia (wild-type, 997 ×103/µl [±98 ×103] n=29; Pak2-/-, 498 ×103/µl [±25 

×103] n=52; Table 3.1).  There was also a statistically significant increase in platelet size 

as determined by mean platelet volume (MPV; wild-type, 6.56±0.05 fL vs. Pak2-/- 

7.1±0.07 fL, p<0.001).  Additional changes in blood counts included increased 

neutrophils and monocytes and decreased lymphocytes (Table 3.1).  Deletion of the 

related gene, Pak1, did not affect peripheral blood indices, including no changes in 

platelet counts or megakaryopoeisis.39 (J. Kostyak unpublished data) 

Pak2 plays a role in megakaryocyte maturation 

Mice with megakaryocyte-specific deletions of the Pak activating proteins, 

Rac1/Cdc42, are macrothrombocytopenic, with megakaryocytes that fail to form 

proplatelets, but mature properly with normal polyploidization.25,26  As Paks are 
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downstream effectors of these GTPases, we sought to determine if Pak activation is 

required for megakaryocyte development and function, as well as to maintain platelet 

counts.23-25 As Pak1-/- mice do not have a notable platelet or megakaryocyte phenotype39, 

we examined the effects of genetic deletion of Pak2 in vivo on megakaryocyte 

differentiation. We evaluated the bone marrow for changes in megakaryocyte number and 

morphology.  Bone marrow from Pak2-/- mice had increased number of mature 

megakaryocytes (CD41+) with increased size (Figure 3.1B-D).  Flow cytometry analysis 

demonstrated an increased proportion of cells expressing the megakaryocyte-specific 

antigen, CD41+ (Figure 3.1D).  

We next sought to determine if Pak kinase activity changed during stem cell 

maturation into fully differentiated megakaryocytes.  We isolated CD34+ stem cells by 

flow cytometry from the bone marrow and cultured the sorted cells with TPO for 5 days.  

Sample lysates were collected and analyzed for activated phosphorylated Pak1/2/3, total 

Pak2 and CD41 protein expression (Figure 3.1E).  Our results demonstrated Pak1/2/3 

activation increased during the maturation process, until eventually decreasing at the fully 

mature state (D5).  Pak2 was substantially autophosphorylated in CD34+ stem cells (D0), 

but this level, like that of Pak1/3, also increased during maturation (Figure 3.1E, lower 

phospho-Pak band).  

To determine the localization of Pak2 in mature megakaryocytes, proplatelets and 

platelets, we performed confocal microscopy.  Our results indicated that Pak2 is 

expressed throughout these three stages of megakaryocyte maturation (Figure 3.1F).  

Together, these data demonstrate that Pak2 has a role in megakaryocyte development, 



 90	  

from the stem cell state to the mature megakaryocyte, and functions as a negative 

regulator of megakaryopoiesis.  

Table 3.1. Complete blood count profile for Pak2-deficient mice 
 

 

 

 

 

 

 

  

 
 

 

 

 

§ P < 0.05 
Complete blood counts from primary Mx1-creTgpak2f/f mice and corresponding controls 
were performed 13 to 16 DPI with polyI:C as described in methods.  Hematologic 
measurements were performed on a Hemavet 850 Hematology Analyzer.  The data are 
means ±SEM. 
WBC indicates white blood cells; RBC, red blood cells; Hb, hemoglobin; HCT, 
hematocrit; MCV, mean corpusal volume; MPV, mean platelet volume. 

 
 

Parameters Mx1CreTgPak2+/+ Mx1creTgPak2f/f 

WBC, x109/L 8.97 ±0.44 7.6 ±0.4 

Neutrophils, % 12.66±0.93 29.23±1.63§ 

Lymphocytes, % 79.22±1.72 62±2.5§ 

Monocytes, % 2.28±0.23 3.18±.28 

RBC, x1012/L 9.87±0.27 9.67 ±0.25 

Hb, g/L 14.43 ±0.42 14.57 ±0.29 

HCT, % 44.9 ±1.3 45.73 ±0.85 

MCV (fL) 44.37 ±1.12 46.09 ±0.39 

Platelets, x109/L 997±98 498 ±25 § 

MPV (fL) 6.56±0.05 7.1±0.07 § 
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Figure 3.1. Pak2 deletion stimulates megakaryopoiesis in vivo 

A, Western blot to detect Pak2 levels in bone marrow (top), megakaryocytes (middle) and 
platelet (bottom) lysates at 14 days post-pIpC (DPI). Actin serves as a loading control for 
relative protein levels. B, Representative bone marrow histology from wild-type and 
Mx1-cre+;Pak2fl/fl mice (n=5 mice/genotype), both treated with plpC and analyzed 14 DPI.  
White arrows indicate megakaryocytes. Scale bar = 20 µm (40x original magnification). 
C, Measurement of megakaryocyte (MK) diameter in the bone marrow was performed by 
H&E sections.(n=5 mice/genotype). D, Percent of bone marrow (BM) expressing CD41 
measured by flow cytometry 14 DPI 14.  (E) Replicate samples of CD34+ bone marrow 
stem cells sorted by flow cytometry and cultured with 100 ng/ml TPO for 5 days.  
Representative WB of phospho-Pak1/2/3 (Serine141) and Pak2 expression over a 5 day 
time course. Actin loading control. CD41 expression marks mature megakaryocytes. 
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Figure 3.1. (Continued). F, Confocal microscopy of a megakaryocyte (top), proplatelet 
(middle) and platelet (bottom) stained for β1-tubulin, Pak2 and nuclei (Hoechst). Scale 
bar = 10µm. Image contributed by Joseph Aslan, Oregen Health and Sciences University. 
All values are mean ± SEM for at least 5 mice/genotype.   * p-value <0.05 
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Pak2-deficiency results in increased platelet clearance rate and thrombopoiesis 

The combination of increased bone marrow megakaryocyte size, number, along 

with a decrease in peripheral platelet count, suggested that Pak2-/- mice produce abnormal 

platelets with decreased survival in the circulation.  To test whether platelet clearance 

was altered, we measured platelet life span, as well as the production of reticulated 

platelets.34 The amount of platelets remaining in circulation was calculated as a 

percentage of labeled platelets from 24 hours post-NHS biotin injection.  Pak2-/- platelet 

life span was significantly reduced relative to wild-type mice (Figure 3.2A).  These data 

are comparable to the shortened platelet life span in the Rac1/Cdc42-/- mice.25 To assess 

if platelet production was altered by hematopoietic deletion of Pak2, we labeled blood 

samples ex vivo with thiazole orange.40 As shown in Figure 3.2B, there was nearly double 

the amount of reticulated platelets in Pak2-/- mice compared to controls (wild-type, 5.8 ± 

0.4% vs. Pak2-/-, 11.5 ± 0.6%; mean ± SEM) at 10 days post-pIpC injection.  Young 

reticulated platelets are larger than older non-reticulated platelets41,42; therefore we 

evaluated mean platelet volume (MPV) and found it to be significantly increased in Pak2-

/- mice (Figure 3.2C).  The mouse spleen acts as a site for platelet clearance and 

production following bone marrow damage.  Therefore, we evaluated the spleen for 

extramedullary megakaryopoiesis and discovered that Pak2-/- null mice had significantly 

increased production of mature megakaryocytes throughout the spleen, along with 

significantly decreased spleen size (Figure 3.2D-F).  Together, these data demonstrate 

that Pak2-/- mice are macrothrombocytopenic due to decreased platelet life span.  
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Figure 3.2. Clearance rate and production of platelets is increased in Pak2-null mice  
(A) Quantification of in vivo biotinylated platelets 24, 48, 72, and 96 hours after NHS-
biotin injection.  Data expressed as percentage of baseline (24 hours post-injection). 
(n=4-8 mice/genotype per time point; mean±SEM). (B) Quantification of the percentage 
of new, reticulated platelets, as a percentage of total platelets in wild-type and Pak2-/- 
mice (n>5; mean±SEM).  (C) Mean platelet volume (MPV) of wild-type and Pak2-/- 
platelets.  (D) Representative images of hematoxylin and eosin stained spleen sections 
from wild-type and Pak2-/- mice D14 post-pIpC injection.  Arrows indicate splenic 
megakaryocytes, scale bar = 50 µm (40x original magnification).  (E) Quantification of 
megakaryocytes in spleen sections counted in 10 low power fields (lpf).  (F) Ratio of 
spleen weight to body weight (BW) on day 14 post-plpC injections.  All data from at 
least 3 mice/genotype; mean ± SEM. * p-value <0.05. 
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Megakaryocyte progenitor populations increased in Pak2-deficient mice 

Extensive flow cytometry studies have identified surface markers that constitute 

bone marrow megakaryocyte progenitors.  Since we observed significantly more mature 

megakaryocytes in Pak2-/- bone marrow compared with their wild-type littermate controls 

(Figure 3.1D), we investigated whether this increase was associated with an increase in 

megakaryocyte progenitors. The bipotential megakaryocyte/erythroid progenitor, 

PreMegE, is the main progenitor cell type that produces mature megakaryocytes and has 

the highest capacity to form megakaryocyte colonies in vitro.37 This population is defined 

as Lin-c-Kit+Sca1-CD41-FcγRII/III-CD150+CD105-. We found that Pak2-/- bone marrow 

had significantly more bipotential PreMegE cells than wild-type bone marrow (Figure 

3.3A).  We next examined committed megakaryocyte progenitors (MkP) by surface 

expression of CD41 after gating for Lin-c-Kit+Sca1-CD150+. These progenitor cells 

represent an intermediate stage between the bipotential precursor and the fully 

differentiated megakaryocytes.   This committed population was significantly increased 

in the Pak2-/- bone marrow (Figure 3.3B).  Both the PreMegE and MkP populations were 

elevated in Pak2-/- bone marrow, suggesting that there is enhanced production of bone 

marrow megakaryocyte progenitors in the Pak2-/- mice. 

Given the increase in megakaryocyte stem cell progenitors, we next tested 

whether these progenitors were capable of producing mature megakaryocyte colonies.  

To address this question, we cultured unsorted bone marrow from wild-type and 

Mx1cre+Pak2fl/fl animals, 14 days post-pIpC injection, and seeded an equal number of 

cells in a megakaryocyte specific colony-formation assay (CFU-MK).  Analysis of the 
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colonies with acetylcholinesterase staining after 8 days of growth with TPO and IL-3 

demonstrated an increased number of colonies in Pak2-/- bone marrow, relative to wild-

type (Figure 3.3C).  These results suggest that the number and proliferative potential of 

MK progenitors are increased in Pak2-deficient mice.  

Since Pak2-/- mice demonstrated altered megakaryopoiesis, we next asked if loss 

of the Pak2 gene was associated with abnormal hematopoiesis.  Total BM hematopoietic 

stem cells [LSK (Lin-/C-kit+/Sca1+) (p-value<0.01) and LK (Lin-/C-kit+/Sca1-) (p-

value<0.001)] were evaluated and found to be significantly elevated in Pak2-/- bone 

marrow compared with wild-type (Figure 3.3D).  Additional evaluation of LSK stem 

cells, divided into HSC (CD150+CD105+) and multipluripotent stem cells (MPP) 

(CD150-CD105-) also demonstrated significantly increased populations in the bone 

marrow of Pak2-null mice (Figure 3.3D, p-value<0.005). Representative flow cytometry 

gating schemes are shown in Figure 3.3E.  Collectively, these findings identify Pak2 as a 

negative regulator of megakaryocyte maturation via regulation of the bipotential 

precursors (PreMegE) and megakaryocyte committed progenitor (MkP) cells in the bone 

marrow.  Additionally, Pak2-deletion results in expansion of the hematopoietic stem cell 

compartment.    
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Figure 3.3. Pak2-deficiency increases megakaryocyte precursors and hematopoietic 
stem cells (A) Percent of bone marrow cells from wild-type or Pak2-/- mice that are Pre-
megakaryocyte/erythroid cells (PreMegE) identified by CD150+ and CD105- after gating 
for Lin-C-kit+Sca1-. (* p<0.05) (B) Percent of bone marrow from wild-type or Pak2-/- 
mice that are from the committed megakaryocyte progenitor (MkP) population, defined 
by CD41+ and CD150+, after gating for Lin-C-kit+Sca1-  (* p<0.0001) (C) 
Methylcellulose colony formation assays of bone marrow cells from wild-type and    
Pak2-/- mice. Numbers of megakaryocyte colony forming units (CFU) were counted after 
staining with acetylcholinesterase. (*p<0.0002). (D) Hematopoietic stem cells in bone 
marrow of Pak2+/+ and Pak2-/- mice.  LSK (Lin-/C-kit+/Sca1+); LK (Lin-/C-kit+/Sca1-). 
LSK cells were then analyzed for CD150 and CD105 to distinguish long-term HSCs (LT-
HSC, LSK;CD150+CD105+) and multipluripotent cells (MPP, LSK;CD150-CD105-). 
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Figure 3.3 Continued (E)Representative flow cytometry plot (mean±SEM, n>13) for 
bone marrow hematopoietic stem cells, LSK, LK, LT-HSC and MPP. All bone marrow 
measured at day 14 post-pIpC.  Experiments included a minimum of n=10 mice/genotype, 
mean ± SEM, * p<0.05; **p<0.01. 
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Megakaryocyte endomitosis is negatively regulated by Pak2 

Normal megakaryocytes progress through development to an endomitotic phase, 

where cells are programmed to fail cytokinesis and accumulate DNA in a single 

polylobulated nucleus prior to proceeding to a final maturation state, consisting of 

proplatelet formation and platelet release.43,44 Accordingly, we examined the process of 

endomitosis (polyploidization) in megakaryocytes from Pak2-/- mice.  We found that 

Pak2 deletion in hematopoietic cells in vivo resulted in markedly increased 

polyploidization of megakaryocytes (% of CD41+ cells containing >8N DNA content) 

(Figure 3.4A).  To determine if increased polyploidization in vivo was due to cell-

intrinsic effects, we measured polyploidy in megakaryocytes deleted in vitro with 

tamoxifen-regulated CAG-Cre recombinase and found Pak2 regulated polyploidization in 

a cell-intrinsic manner (Figure 3.4B).  Pak2-/- megakaryocytes demonstrated significantly 

increased 8N, 16N and 32N populations (p-value <0.03). These in vitro data suggest that 

increased polyploidization observed in vivo is from cell-intrinsic signaling, independent 

of changes in peripheral platelet counts or in the bone marrow stroma. 

Small molecule inhibitors to specifically inhibit group I Paks (isoform 1-3), are 

currently being developed for treatment of tumors overexpressing Pak proteins or with 

gene amplification of Pak.10,29-31,45,46 These include, but are not restricted to, breast, 

pancreatic, Braf-wildtype melanoma, neurofibromatosis type 1 and 2, and colon 

cancers.10,47  We examined if mice treated with Frax1036, the most specific Pak1-3 

kinase inhibitor known to date, also displayed altered megakaryocyte polyploidization 

(H.Y. Chow and J. Chernoff, manuscript submitted August 2014).  Treatment of animals 
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with Frax1036 for 3 weeks increased polyploidization in megakaryocytes, as well as 

increased CD41+ megakaryocyte population (Figure 3.4C-D).  Frax1036 treatment 

effectively ablated Pak1-3 phosphorylation in the bone marrow (Figure 3.4C, inset).  

Bone marrow-derived megakaryocytes treated with Frax1036 in culture for 5 days also 

demonstrated increased polyploidization at 8N and 16N ploidy stages (p<0.008 and 

p<0.003, respectively) (Figure 3.4E).  Collectively, these findings indicate that genetic 

deletion of Pak2, as well as pharmacologic kinase inhibition, causes increased 

polyploidization in CD41+ bone marrow megakaryocytes in vivo and in vitro. Since Pak 

kinase inhibition resulted in increased polyploidy, this indicates that Pak is required in a 

kinase-dependent function, rather than an alternative function, such as a scaffold protein.  

Altered microtubule structure in Pak2-/- megakaryocytes 
Pak kinases are principally known for their regulation of actin and tubulin 

cytoskeleton networks.48  During megakaryocyte maturation into circulating platelets, 

these cells undergo massive cytoskeletal alterations critical for formation of proplatelet 

extensions, which transverse the sinusoid vessels to release platelets into 

circulation.44,49,50  As Pak2-/- megakaryocytes demonstrated increased ploidy, we 

analyzed if Pak2 had an effect on the megakaryocyte cytoskeleton.  Previous work 

demonstrates a role for cytoskeletal regulation in megakaryocyte polyploidization.51-56 

Mature megakaryocytes were analyzed for β1-tubulin expression, the tubulin isoform 

primarily expressed in megakaryocytes.  As shown in Figure 3.5A, β1-tubulin expression 

was altered in Pak2-/- megakaryocytes compared to wild-type megakaryocytes.  
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Figure 3.4. Pak2 is a negative regulator of megakaryocyte endomitosis  
(A) Megakaryocyte DNA content in wild-type and Pak2-/- mouse bone marrow, 14 days 
post-pIpC, was measured in CD41-positive bone marrow cells by flow cytometry.  Line 
indicates 8N+ cells (n >10; mean ± SEM, *p<0.05). (B) Megakaryocyte DNA content in 
wild-type and Pak2-/- in vitro-derived MKs. Bone marrow cultured for 5 days with TPO 
and 500nM 4-hydroxytamoxifen (OHT) to activate Cag-Cre-ERT2;Pak2fl/fl transgene 
(n>4, mean ± SEM, *p<0.05). (C) Megakaryocyte DNA content in vehicle and Pak1/2/3 
inhibitor Frax1036-treated mouse bone marrow.  Mice were dosed with Frax1036 via oral 
gavage daily for 21 days.  Frax1036 (Frax) ablates Pak1/2/3 Serine 141 phosphorylation 
(pPak) in the bone marrow relative to total Pak1/2/3 (Pak) (WB inset).  % >8N DNA 
content, mean ± SEM, p<0.05. (D) Percentage of bone marrow expressing CD41 after 
Frax1036 treatment. 4 mice/genotype, mean ± SEM, p<0.001  (E) Polyploidization in 
bone marrow derived megakaryocytes cultured with 1uM Frax1036 for 5 days, 
representative FACS plot of CD41+ cells stained with propidium iodide and ploidy data 
for n>5 mice/genotype.  8N and 16N populations significantly increased in Frax treated 
bone marrow (p <0.008 and p< 0.003, respectively). 
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Proplatelet extensions were also evaluated for β1-tubulin expression, and found to 

have decreased expression and altered structures in Pak2-/- megakaryocytes adherent to 

fibrinogen (Figure 3.5B). Staining for actin filaments indicated decreased actin 

polymerization in these cells (Figure 3.5C). To determine if group I Pak inhibitors would 

recapitulate the phenotype seen in the genetic model, we cultured fetal liver cells with 

TPO and Frax1036 for 5 days, using a drug dose that effectively suppressed Pak activity 

(Figure 3.5E).  Similar to Pak2-/- bone marrow-derived megakaryocytes, we observed 

altered β1-tubulin staining in Frax1036 treated fetal-liver derived megakaryocytes 

(Figure 3.5D).   

Confocal microscopy demonstrated significant alterations in β1-tubulin and actin 

expression and organization (Figure 3.5). Proplatelet formation is the final step in 

megakaryocyte maturation to platelets.  This is a cytoskeleton intense process, as cells 

undergo profound reorganization of the cytoskeleton to form long protrusions to extend 

into the sinusoid vessels. Microtubules provide the sliding power for the megakaryocyte 

membranes to extend into long protrusions and actin functions in elongation and shaft 

bifurcation of proplatelet extensions.49,57,58 Therefore, we evaluated the amount of 

proplatelet extensions with both genetic deletion of Pak2 in vitro and therapeutic 

inhibition of Group I Paks with Frax1036. After five days in culture with TPO, 

megakaryocytes were grown on fibrinogen-coated slides for five hours, and the number 

of megakaryocytes with proplatelets were counted as a ratio of total megakaryocytes 

present. We found the extent of proplatelet formation in both conditions was reduced 

significantly compared to wild-type controls (Figure 3.6A-C). Together these data 
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demonstrate that Pak2 functions to regulate polyploidization and proplatelet formation 

through regulation of the cytoskeleton. 

Altered signal transduction in Pak2-/- megakaryocytes 
To examine the potential mechanism underlying the effects of Pak2 deletion on 

polyploidization and proplatelet formation, megakaryocyte turnover in the bone marrow 

and spleen, and the effects of Pak2 deletion on the cytoskeleton, we next investigated the 

phosphorylation status of various downstream effectors of Pak2 in wild-type and Pak2-

deficient megakaryocytes (deleted in vitro using a tamoxifen inducible form of CAG-cre-

recombinase59).  Accordingly, we evaluated signaling networks that regulate actin and 

microtubule dynamics.  We found that LIMK phosphorylation was significantly reduced 

(>60% reduction) in Pak2-/- megakaryocytes, and associated with reduced 

phosphorylation of cofilin (>40% reduction) (Figure 3.7A-B).  Cofilin is active in the 

non-phosphorylated state to associate with F-actin and promote actin severing and 

turnover. These results suggest that Pak2-/- megakaryocytes undergo more rapid actin 

severing and depolymerization compared with wildtype megakaryocytes. These 

properties have previously been associated with enhanced polyploidization in 

megakaryocytes and decreased proplatelet formation.52-54,58,60   

In addition to elevated actin depolymerization in Pak2-null megakaryocytes 

promoting polyploidization and impaired proplatelet formation, enhanced microtubule 

depolymerization with colchicine, nocodazole and vincristine have all been shown to 

enhance megakaryocyte ploidy and impair proplatelet foramtion.51,54,56,58 Microtubule 

dynamics are regulated by a variety of proteins, including the Pak substrate Aurora A 

kinase.14,61  We evaluated Pak2-/- megakaryocytes for Aurora A, B, C phosphorylation 
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and found markedly decreased levels in  Pak2-/- cells compared to wild-type levels (>48% 

reduction) (Figure 3.7A-B).  Consistent with our results, pharmacologic and genetic 

inhibition of Aurora A and Aurora B were recently identified as negative regulators of 

polyploidization.62,63  

These data strongly suggest that Pak2 regulates multiple functions in the 

developing megakaryocyte by regulating both the actin and microtubule networks 

through its catalytic domain (Figure 3.8).   
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Figure 3.5. Altered cytoskeleton in Pak2-null megakaryocytes.  

(A) Analysis of β1-tubulin structure and (B) proplatelet structure by confocal microscopy 
of wild-type and Pak2-/- megakaryocytes. Bone marrow treated with 500nM 4-
hydroxytamoxifen to induce Cag-Cre-ERT2 expression and delete Pak2fl/fl.  
Representative β1-tubulin (green) and DAPI nuclear (blue) staining from 3 different 
mouse samples per genotype.  Scale bar = 20 µm.  (C) Representative TRITC-phalloidin 
staining for actin (red) and DAPI (blue) analyzed by fluorescence confocal microscopy of 
wild-type and Pak2-/- megakaryocytes. (D) Fetal liver derived megakaryocytes treated 
with Frax1036 for duration of culture (4 days) and stained for β1-tubulin (green) and 
DAPI (blue). (E) Western blot detection of Serine 141 phosphorylated Pak1/2/3 (pPak) of 
FL-MKs treated with Frax1036. Actin serves as a control for protein loading.  Scale bar = 
20µm for all images. 
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DISCUSSION 
Here we identify a role for the p21-activated kinase-2, Pak2, in megakaryocyte 

biogenesis, cytoskeletal remodeling, proplatelet formation and endomitosis. Using a 

conditional knockout mouse model, as well as small molecule inhibitors, we established 

Pak2 as a negative regulator of megakaryocyte development.  We demonstrate that Pak2-

/- mice develop macrothrombocytopenia, which manifests in vivo with decreased platelet 

lifespan, along with increased megakaryocyte stem cells and mature cells in bone marrow 

and spleen, and increased megakaryocyte ploidy. Using in vivo and in vitro genetic 

deletion models, we found that Pak2 negatively regulates megakaryocyte polyploidizaton 

and proplatelet formation in a cell-intrinsic manner and gives rise to platelets with 

decreased survival in the circulation, (Figures 3.2 and 3.4).  Evidence from signaling 

studies suggest that at least two signaling pathways that regulate cytoskeletal function in 

megakaryocytes are regulated by Pak2: Aurora A and B, which regulates microtubule 

dynamics, and LIMK/cofilin, which regulate actin dynamics (Figure 3.8).  Similar to 

Pak2, these proteins play a restraining role in megakaryocyte polyploidization.62,64-67   

Therefore, our model proposes that deletion of Pak2 results in inhibition of Aurora 

activation, leading to increased microtubule depolymerization and increased 

polyploidization, and activation of cofilin drives actin severing and impairs proplatelet 

formation (Figure 3.8).   

 Multiple signaling cascades are involved in the intricate process of 

polyploidization.  One such kinase cascade is regulated by Aurora A and B, found to 

negatively regulate megakaryocyte polyploidization, in part due to its regulation of  
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Figure 3.6. Proplatelet formation is impaired in Pak2-null megakaryocytes and with 
Frax1036 inhibitor. (A) Bone marrow-derived megakaryocytes deleted for Pak2 in vitro 
with tamoxifen, demonstrated decreased proplatelet formation (Day 6). Arrows indicate 
proplatelets. 20X magnification (B) Percentage of megakaryocytes with cytoplasmic 
proplatelet extensions, mean±SEM of n=5/per genotype. (C) Representative image of 
proplatelet-containing megakaryocytes in vehicle-treated fetal liver derived 
megakaryocytes (Day 5). Arrows indicate proplatelets, 20X.  
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microtubule dynamics.62,66 Pak kinases directly phosphorylate and activate Aurora A and 

regulate mitotic entry.14 Studies using genetic knockdown techniques, along with 

selective inhibitors of Aurora A and B, demonstrated that these kinases negatively 

regulate megakaryocyte polyploidization.62 Therefore, we evaluated the effect of Pak2 

deletion on Aurora phosphorylation. We found that Pak2-/- megakaryocytes had 

decreased Aurora phosphorylation, explaining one possible mechanism driving increased 

polyploidization.  One mechanism by which Aurora could negatively regulate 

polyploidization is by inhibition of microtubule destabilizing proteins (i.e. stathmin and 

MCAK), thereby preventing microtubule destruction.64-67  During mitosis, Aurora A is 

important for bipolar spindle formation, histone H3 phosphorylation and regulation of the 

microtubule- organizing center (MTOC).68  

Aurora A and Aurora B have distinct functions in mitosis, and have therefore 

been investigated for possible therapeutic targets to drive differentiation and 

polyploidization in acute megakaryoblastic leukemia (AMKL).62,63 Unlike many blood 

cancers, AMKL patients rarely have known mutations, making it challenging to identify 

targeted therapeutic intervention. Pharmacologic inhibition of Aurora A kinase with 

MLN8237 and Aurora B kinase with AZD1152-HQPA in acute megakaryoblastic 

leukemia (AMKL) cells both impaired proliferation, induced polyploidization and 

increased megakaryocyte differentiation. Additionally, inhibition of both Aurora A and B 

in human primary CD34+ stem cells resulted in increased megakaryocyte 

polyploidization.62   
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Figure 3.7. Altered phosphorylation of cytoskeleton regulatory proteins in Pak2-null 
megakaryocytes.  (A) Western blot analysis of phosphorylation levels of cytoskeletal 
regulatory proteins LIMK, Cofilin and Aurora A/B/C in in vitro-deleted bone marrow 
derived megakaryocytes (CAGG-Cre-ERT2+;Pak2f/f). Equal quantities of total cellular 
protein were loaded and phospho-protein content was detected with phospho-specific 
antibodies (pLIMK, pCofilin and pAurora) and total protein antibodies.  Actin served as a 
control for equal loading.  Blots are representative of at least four independent 
experiments. (B) Band densities quantified as a ratio of phospho:total protein and 
calculated as percent of control.  Densitometry was quantified with Fiji-Image J Software 
(National Institute of Health, USA). n=4 per genotype * p<0.01 
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Figure 3.8. Model depicting Pak2 regulation of megakaryocyte polyploidization and 
proplatelet formation (PPF) through control of actin and microtubule network. 

 
Our data demonstrate decreased Aurora phosphorylation at threonine-232 in 

Pak2-null megakaryocytes (Figure 3.7). This site was previously identified to be 

activated at late stages of mitosis and endomitosis at the metaphase/anaphase transition, 

and to phosphorylate histone H3 to ensure proper chromosomal segregation. 

Phosphorylation mutants of Aurora B, which fail to activate threonine-232, result in 

multi-nucleated cells.69 These data demonstrate that phosphorylation of Aurora B is 

essential for mitosis and cytokinesis due to its involvement in chromosome alignment 

during metaphase and separation during anaphase. Aurora B inhibition in cancer cell 

lines results in chromosomal mis-segregation, abnormal cytokinesis followed by 

endoreplication. Aurora B also controls RhoA at the cleavage furrow through 

phosphorylation of its substrate, MgcRacGAP, to activate RhoA. Another mechanism by 



 111	  

which Aurora B inhibition results in increased mean megakaryocyte ploidy is possibly 

through hypophosphorylated Rb allowing abnormal mitosis and endomitosis to occur.66 

Together these data demonstrate the critical role Aurora A and B play in negatively 

regulating megakaryocyte maturation.  Our data demonstrate that Aurora A and B in 

primary megakaryocytes is regulated by Pak2, implicating the utilization of Pak 

inhibitors to regulate Aurora. 

Another pathway by which Pak2 regulates megakaryocyte development is 

through LIMK and its substrate cofilin. Previous studies found that megakaryocyte 

specific cofilin gene knockout impaired proper proplatelet production.60 LIMK negatively 

regulates cofilin by phosphorylation at serine 3, thereby directly inhibiting actin severing, 

and leading to normal levels of actin polymerization.  In Pak2-null megakaryocytes, 

LIMK activity was decreased resulting in increased activation of cofilin mediated actin-

severing activity.  Enhanced actin depolymerization in megakaryocytes with various 

therapeutic compounds results in elevated polyploidization. Incubation of cell lines and 

primary megakaryocytes with an inhibitor of actin polymerization (Cytochalasin B) 

resulted in elevated polyploidization without stimulation of expression of CD41 and 

CD61 mature megakaryocyte markers.52-55 At the end of mitosis during normal cell 

division, cytoplasmic separation requires the integrity of cytoskeleton-associated proteins 

for the formation of the tubulin spindle and actin contractile ring.  Inhibition of actin with 

cytochalasin B therefore inhibits normal separation of cytoplasm and induced 

polyploidization.  

In addition to signaling directly to cofilin, it is important to note that LIMK can 

also directly phosphorylate Aurora A to stabilize the microtubule network.70-72 LIMK 
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inhibition was shown to cause microtubule hyper-stability through Aurora A inhibition, 

leading to chromosomal fragmentation and apoptosis in cancer cells. Thus, loss of LIMK 

activation in Pak2-/- megakaryocytes likely contributes to altered polyploidization, via its 

role as a signaling node between actin and microtubules, by affecting both Aurora and 

cofilin (Figure 3.8).  The impact of Pak2 inhibition on LIMK, and Aurora A/B 

phosphorylation demonstrates that Pak2 influences multiple signaling networks to control 

the actin and microtubule cytoskeleton. 

The cytoskeleton intense process of proplatelet formation requires Pak2 signaling, 

as demonstrated in Figures 3.5 and 3.6. Both microtubules and actin polymerization are 

required for extensions to form and bifurcate to produce functioning platelets.  Treatment 

of patients with Bortezomib resulted in thrombocytopenia, induced by a failure of 

megakaryocytes to produce proplatelet extensions.73 This failure was due to an 

accumulation of active RhoA in the cells, as incubation with a RhoA kinase (ROCK) 

inhibitor was able to rescue proplatelet formation. Additional studies evaluating the role 

of RhoA found a similar phenotype.57,74-76 Active RhoA, through its effectors ROCK and 

mDia regulate stress fiber formation and actomyosin contractility, as well as microtubule 

dynamics and focal adhesions. 

Given that group I Paks phosphorylate LIMK and are activated by Rac1 and 

Cdc42, it is curious that, contrary to expectation, Rac1/Cdc42-/- megakaryocytes display 

increased, rather than decreased, LIMK phosphorylation, as well as increased 

phosphorylation of the LIMK target cofilin.25  Additionally, the Rac1/Cdc42-/- 

megakaryocytes did not demonstrate changes to polyploidization like Pak2-/- 

megakaryocytes. In contrast to these reports, we found that Pak2-/- megakaryocytes had 
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markedly decreased phosphorylation of LIMK and cofilin, consistent with the well-

established role for group I Paks in phosphorylating and activating LIMK.12,70,77 At 

present, we do not fully understand the reasons for these seemingly discrepant signaling 

results, but will note that the double knockout of Rac1 and Cdc42 would be expected to 

have more complex and far-reaching phenotypic consequences than deletion of their 

effector Pak2 alone.  Additionally, Pak kinases are activated by a variety of kinases and 

other proteins, in addition to canonical Rac1 and Cdc42 GTPases.   

These data provide a mechanism to describe how Pak2 regulates megakaryocyte 

endomitosis and maturation by means of regulating signal transduction cascades involved 

in cytoskeletal network regulation.  Additionally, these data suggest that Pak2 inhibition 

represents a plausible target for treatment of AMKL (acute megakaryoblastic leukemia) 

by increasing polyploidization and increasing megakaryocyte maturation in the bone 

marrow by regulating a variety of signal transduction pathways, including those that 

affect actin filaments (LIMK/cofilin) and microtubules (Aurora activation).62,72 

Expansion of the hematopoietic stem cell compartment in Pak2-null mice is an 

intriguing finding (Figure 3.3D-E). Deletion using the inducible Mx1-cre resulted in 

increased HSC populations. These populations are defined as lineage-ckit+Scal- (LK) or 

lineage-ckit+Scal+ (LSK). Further analysis of the LSK population, defined by cell surface 

expression of CD150 (SLAM) and CD105 (Endoglin) found increased LT-HSC (long-

term-HSC) (CD150+CD105+) and MPP(CD150-CD105-) populations in Pak2-null mice.  

These 2 proteins (CD150 and CD105) are highly expressed in the primitive HSC 

compartment (LT-HSC), as opposed to the slightly more differentiated, multipluripotent 

stem cell (MPP), and are therefore valid markers for distinguishing these populations.37  
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Research into HSC homing, engraftment, and proliferation/quiescence have 

identified that megakaryocytes are both positive and negative regulators of this process.  

After transplantation into irradiated mice, HSCs localize preferentially in the bone 

marrow near megakaryocytes78 and inhibition of megakaryocytes impairs HSC 

engraftment.79 Megakaryocytes expand the osteoblastic niche after irradiation, suggesting 

that megakaryocytes indirectly regulated HSC proliferation. However, more research into 

this field recently discovered that megakaryocytes also play a direct role on HSC 

expansion through secretion of growth factors.80,81 Recent findings by two independent 

groups found that mature megakaryocytes maintain HSC quiescence by secretion of 

CXCL4 and TGF-β and induce HSC proliferation and recovery with FGF-1 secretion.80,81 

These novel findings demonstrate that terminally differentiated megakaryocytes directly 

regulate HSC activity, as well as provide another location for quiescent HSCs in the 

sinusoidal-megakaryocyte niche besides the typical arteriolar niche.  

Considering Pak2 deletion resulted in increased megakaryocytes in the bone 

marrow and spleen, feedback to promote expansion of HSCs is one possibility to explain 

our findings of increased HSC populations. A validation experiment inhibiting TPO 

production to reduce megakaryocyte load would confirm if HSC increases in Pak2-null 

mice are due to megakaryocytes positive feedback to HSCs or from a different 

mechanism. 

Discoveries into pathways that regulate HSC activity are necessary for the 

development of therapeutics to enhance HSC recovery after myeloablative therapy or 

stem cell transplantation.  Since Pak2 deletion in an in vivo mouse model resulted in 

enhanced megakaryocyte progenitors and HSCs, there is the potential that small molecule 
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inhibitors developed for Group I Pak kinase inhibition could possible be used in the 

setting of HSC recovery.   

Increased megakaryocyte mass in the bone marrow is indicative of some disorders, 

including pernicious anemia, immune thrombocytopenia, reactive thrombocytosis, 

essential thrombocythemia, and primary myelofibrosis. Interestingly, several of these 

disorders, primary myelofibrosis and essential thrombocythemia carry a risk of 

progression to acute myeloid leukemia. Myelodysplastic syndrome is also associated with 

increased megakaryopoiesis and HSC cycling.  A possible explanation is that the 

increased megakaryocyte load is regulated HSC cycling and contributing to these 

hematological malignancies.  A common side effect of chemotherapy is the loss of 

megakaryocytes, possibly leading to decreased HSC recovery.  Megakaryocyte-ablated 

mice showed decreased HSC recovery and regeneration after chemotherapy.80 These data 

suggest, that therapeutics to boost megakaryocyte recovery after myeloablative therapy 

may also promote HSC regeneration.  

Under conditions of stress rapid expansion of HSCs is required for survival. Zhao 

et al. recently discovered that the dominant secreted factor to drive HSC expansion under 

stress is FGF1.80  Interestingly, FGF1 is predominantly secreted from megakaryocytes in 

order to promote HSC expansion and survival.  In our mouse model of Mx1cre+Pak2f/f 

there is evidence of systemic stress, displayed by rapid platelet clearance and 

thrombocytopenia, resulting in increased megakaryocyte maturation in the bone marrow.  

Along with increased megakaryocytes, we also observed increased HSCs. Future work to 

evaluate if expansion of Pak2-null megakaryocytes promotes HSC expansion in our 

mouse model will be of interest. Additional evaluation of TGF-β1 and FGF-1 secretion 
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from Pak2-null megakaryocytes under non-stress and stress conditions would also be 

interesting to study in order to identify if Pak2 functions in a megakaryocyte-specific 

manner to regulate HSC expansion via growth factor secretion.  Previous reports 

demonstrated that megakaryocytes drive HSC proliferation in an in vitro culture system.78 

To this end, co-culture of Pak2-null megakaryocytes with HSCs could be done to 

understand if there is a direct role of Pak2 in regulating secretion from megakaryocytes 

leading to HSC expansion. These are interesting data in light of the development of Pak 

inhibitors, implicating the use of these inhibitors in hematopoietic malignancies requiring 

expansion of HSCs.  

In summary, our results demonstrate that Pak2 regulates megakaryocyte 

polyploidization through control of signaling networks that regulate actin and 

microtubule cytoskeleton.  This multi-network influence of Pak2, through 

phosphorylation of LIMK and Aurora, demonstrates how Pak2 controls the dynamic 

cytoskeleton network in developing megakaryocytes and plays a potentially novel role in 

megakaryocyte biology. In addition to enhanced ploidy, Pak2 negatively regulates 

megakaryocyte expansion in the bone marrow.  Increased megakaryocyte mass in Pak2-

null mice may lead to observed HSC expansion, providing a possible therapeutic link 

between Pak2 inhibition and HSC expansion.  
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Chapter 4: Phenotype of Pak2 deletion in an inducible mouse model  
Introduction 

Pak2 is ubiquitously expressed in the adult animal, and plays a critical role in 

embryogenesis. Pak2-/- embryos do not progress past E8.5-9.5, whereas deletion of the 

highly homologous isoform, Pak1, does not cause lethality in the embryo nor in the 

adult.1 Pak2-/- embryo lethality is due to failure to properly establish blood vessel 

vasculature due to endothelial apoptosis. (unpublished, M. Radu and J. Chernoff) This 

chapter will investigate the phenotype observed in the Mx1-cre;Pak2-floxed mouse 

model. A previously demonstrated in Chapter 3, Pak2-/- adult mice rapidly clear platelets 

from circulation resulting in thrombocytopenia. 

Recent research into lymphatic blood vessel integrity elegantly describes a vital 

role for platelets in regulating lymphatic and endothelial blood vessel separation during 

both neonatal development and adult blood vessel homeostasis.2-4 We identified that 

Pak2-null adult mice suffer from thrombocytopenia and lymphedema. Ongoing research 

in the Chernoff laboratory has discovered that Pak2-null neonates die from failure of the 

vasculature to form by day E9.5 (M. Radu and J. Chernoff, manuscript in preparation).  

Recent work by several groups found that deletion of Clec-2, Slp-76, and Syk5-7, 

specifically in platelets, led to a failure of lymphatic and blood vessel separation. We 

hypothesize that Clec-2 receptor signaling activates Pak through Vav-GEF and 

Rac1/Cdc42 GTPases, known activators of Pak kinases, to regulate the vasculature in 

embryos and adults, platelet actin cytoskeleton and lymphatic integrity.8 Our study 

utilized two mouse models to study these questions, the inducible Mx1-cre model to 

temporally control induction of cre-recombinase in an adult, and PF4-cre, a platelet and 
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megakaryocyte specific cre recombinase, which constitutively deletes at the embryonic 

stage of development and in the adult.  

Methods 
Generation of mice with Pak2-/- bone marrow 

Pak2-deficient mice were generated by crossing mice containing the Pak2 gene 

flanked by loxP sites (Pak2fl/fl), with mice carrying the Mx1-cre transgene.9-11(M. Radu 

and J.Chernoff, manuscript in preparation) (Figure 4.1).  In 8- to 12-week old Mx1-

cre+Pak2fl/fl mice (mixed background sv129/C57Bl/6), gene deletion was induced by 3 

intraperitoneal injections of 400ug polyinosinic-polycytidylic acid (pIpC) in a 2-day 

interval.  Littermates received the same treatment.  Fourteen days after the first injection, 

mice were sacrificied and tissues were fixed in 10% neutral-buffered formalin. In the case 

of survival curve calculations, mice were monitored daily until they were non-responsive. 

Additionally, to evaluate the effects of Pak2 deletion specifically in platelets and 

megakaryocytes, we crossed the Pak2f/f animals with PF4-cre (platelet-factor 4) animals. 

All animal studies were performed according to protocols approved by Fox Chase 

Cancer Center institutional animal care and use committee. To determine if the observed 

thrombocytopenia was due to cell-intrinsic defects in Pak2-null megakaryocytes and 

platelets we crossed Pak2-floxed animals with a platelet and megakaryocyte-specific cre 

(PF4-cre). This specific cross will reveal if the increased platelet clearance rate observed 

in Mx1cre+Pak2fl/fl animals was intrinsic to megakaryocytes and platelets, or caused by a 

non-cell autonomous defect in Pak2-null mice. 
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Measurement of hematological parameters 

Mice were euthanized with CO2 and blood was extracted via the hepato-portal 

vein with a syringe containing ACD (acid-citrate dextrose) (10% final).  Whole blood 

was added into tubes containing EDTA.  The complete blood count was performed using 

a VetScan HM5 (Abaxis) within 1-2 hours of collection at room temperature.  

Granulocyte-Myeloid progenitors (GMP) measured by flow cytometry 

Red blood cell lysed bone marrow from Mx1-cre+;Pak2fl/fl animals was analyzed 

for granulocyte/myeloid progenitors with the following antibodies purchased from 

Ebioscience  (antibody name (clone)) murine hematopoietic lineage eFluor 450 cocktail, 

c-Kit-APC (2B8), sca-1-PE-Cy7 (D7), FcγII/III-PerCP-eFluor 710(clone 93), CD34-

FITC.   

Immunohistochemistry 

Formalin fixed, paraffin-embedded tissue was sectioned at 5 microns and adhered 

to glass slides.  Tissues were stained for anti-podoplanin (Abcam) according to standard 

IHC techniques.   

Megakaryocyte ploidy measurements 

For ploidy measurements, cells were analyzed as described previously.12 DNA 

content in CD41+ megakaryocytes was determined by labeling RBC-lysed bone marrow 

with anti-CD41 on ice for 30 minutes, followed by fixation with 0.5% formalin for 15 

minutes at room temperature.  Cells were then permeabilized with 70% ice-cold methanol 

for 1 hour on ice.  After washing, cells were then incubated with 10ug RNase A at 37°C 

for 30 minutes, followed by incubation with 1µg/µl propidium iodide for 15 minutes at 
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room temperature.  Cells were analyzed for ploidy on an LSR-II with proper 

fluorochrome compensation. 

Proplatelet formation 

Proplatelet-displaying megakaryocytes were defined as cells exhibiting one or 

more cytoplasmic processes with areas of constriction. After 5 days in culture, fetal liver 

derived megakaryocytes were separated on a BSA gradient, followed by 24 hours of 

growth.  Proplatelet extensions were quantified by calculating the percentage of 

megakaryocytes with such processes on inverted microscope at a magnification of   20X.13  

Results/Discussion 
Phenotype of Mx1-cre induced deletion of Pak2  

The model used to develop a Pak2-floxed animal under the control of Mx1-cre is 

described in Figure 4.1A.  Induction of Mx1-cre recombinase was done with pI:pC 

injection.  All of the Pak2-/- mice died within 20 days of the initial injection, whereas no 

wild-type mice injected with pI:pC died (Figure 4.1B).   

Mx1-cre+;Pak2f/f animals injected with pI:pC to activate Mx1-cre all demonstrated 

increased neutrophil counts in peripheral blood and subsequent increase in GMP 

(granulocyte-myeloid progenitors) in bone marrow, which are the precursors to 

neutrophils (Figure 4.2A-C). GMP progenitor cells are defined here as Lin-c-kit+Sca1-

FcγRII/IIIhiCD34hi.14 Neutrophil percentages of total white blood count increased from 

12.6±0.9% in wildtype mice to 29.2±1.6% in Pak2-/- mice (Figure 4.2B,C). Evaluation of 

GMP progenitor cells revealed about a 30% increase in Pak2-/- mice (Figure 4.2A). These 

data are consistent with bone marrow changes observed in a recent publication with our 

collaborators.15 Upon deletion of Pak2 in transplanted bone marrow, they observed 
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significantly increased peripheral blood granulocytes and increased bone marrow 

granulocyte progenitors (GMP).15 Curiously, deletion only in bone marrow did not cause 

lethality in the adult animals.   

Considering the bone marrow of Pak2-/- animals appeared hypocellular in 

histological sections, we evaluated the stem cell populations by flow cytometry and 

found increased early hematopoietic stem cell populations in the bone marrow (Figure 

3.3D-E). The process of hematopoiesis involves many cell-intrinsic and cell-extrinsic 

factors, to control transcription factor networks involved in blood cell lineage fate 

determination. Identification of how Pak2 controls hematopoiesis is beyond the scope of 

this dissertation, but it is helpful to inform future work to identify baseline changes in the 

bone marrow of Pak2-/- mice.  Work with our collaborators discovered that Pak2 

functions to regulate HSC engraftment and homing to the stem cell niche in the bone 

marrow, but research into bone marrow homeostasis has not been done.10 

Our data from day 14 post-pIpC injection demonstrated significantly increased 

levels of long-term hematopoietic stem cell population (LT-HSC), along with the multi-

pluripotent progenitor population (MPP) (p-value 0.002 and 0.005, respectively) (Figure 

3.3D-E). LT-HSC were defined as Lin-C-kit+Scal+CD150+CD105+ bone marrow cells, 

and MPP were defined as Lin-C-kit+Sca1+CD150-CD105- bone marrow cells (identified 

in Pronk et al.16). Together these data provide evidence that deletion of Pak2 in the bone 

marrow increases the stem cell population in various lineages though a yet undefined 

mechanism. Regulation of Pak2 in the hematopoietic stem cell compartment has never 

been demonstrated prior to our work presented here.   
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The effect of Pak2 on hematopoiesis is similar to changes observed in Cdc42-null 

mice and Rac1-null mice, both activators of Group I Paks. Rac1-/- mice are embryonic 

lethal at day 8.5, and inducible deletion in the adult results in rapid lethality.17 Another 

GTPase activator of Pak, Cdc42, also has a critical role in hematopoiesis.  Cdc42 deletion 

results in rapid lethality between day 12 and 26 in an Mx1-cre inducible Cdc42 floxed 

model.18 Prior to death, Cdc42-/- mice demonstrate increased hematopoietic stem cells 

(LK and LSK populations) and GMP (Granulocyte/myeloid progenitors), leading to 

altered myeloid and erythroid homeostasis. Similarly, Pak2-null mice have increased 

stem cell progenitors, GMP and megakaryocyte precursors (figures 3.3 and 4.2). 

However, Cdc42 bone marrow chimeras of Mx1cre+Cdc42f/f transplanted bone marrow 

into WT recipients also died around 22 days post-polyI:C. Recently published work with 

our collaborators (Yi Zeng, University of Arizona) found that Pak2-bone marrow 

chimeras (wildtype animals transplanted with Mx1-cre+;Pak2f/f bone marrow) do not die 

after Cre-induction with polyI:C. This indicates that lethality in Mx1-cre+;Pak2f/f animals 

is due to factors independent of changes to the bone marrow.  Additionally, polyI:C is not 

causing lethality in the chimeric model, providing further evidence that the phenotype is 

not due to polyI:C injections. 

Regardless of the chimeras, these data indicated that Pak2, similarly to Rac1 and 

Cdc42, regulates the bone marrow hematopoiesis.  Therefore, I evaluated bone marrow 

hematopoietic stem cells in Pak2-deleted mice, and found increased levels of all stem cell 

populations. Future work is needed to identify if Pak2-null mice have myeloproliferative 

disorder (MPD), identified by massive infiltration of myeloid cells of varying degree of 

maturation into liver, lung, spleen, bone marrow and peripheral blood. 
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In addition to increased neutrophil progenitors and mature cells, peripheral blood 

demonstrated decreased platelet counts (Table 3.1).  The cause of thrombocytopenia was 

described in Chapter 3, Figure 3.2 A-C. These data demonstrate that Pak2-/- mice have 

reduced platelet lifespan, and to compensate for the loss of platelets, they have increased 

production of newly synthesized, reticulated platelets. Additionally, spleen and bone 

marrow megakaryocytes are increased, possibly in response to increased TPO levels 

caused by the decrease in circulating platelets. (Figure 3.1B,D and Figure 3.2D) Future 

analysis of serum TPO levels will indicate if the increase in megakaryocytes is in 

response to elevated TPO.  

Along with decreased platelet counts, the Mx1-cre+;Pak2-/- mouse large intestines 

were edematous and hemorrhagic. (Figure 4.3A). In addition, the pulmonary cavity was 

filled with large (“lethal”) quantity of pleural effusion and congestion, suggesting that 

Pak2-null mice suffered from generalized vascular leakage. It is of interest to note that 

our previous studies demonstrating hyperactivated Pak2-null mast cells in Chapter 2, 

suggest that the presence of intestinal mucosal mast cells could have a pathogenic role by 

either increased presence of mast cell infiltrate or exaggerated release of inflammatory 

cytokines by hyperactive mast cells. Immune cell infiltrate was observed in histology 

H&E sections, (Figure 4.3A), but specific identification of mast cells was not pursued. 

Future genetic crosses with mast cell specific Cre-recombinase, such as A-Mcpt-5-cre, 

could elucidate the function of Pak2-deletion in mast cells on intestinal inflammation.   

The pleural effusion observed around day 14 post-pI:pC injection in 

Mx1cre+Pak2f/f was of a transudate quality, defined by 60% large mononuclear 

cells/macrophages, 30% small mononuclear cells/small lymphocytes with low nucleated 
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cellularity and low protein, which places this fluid in the transudate category. 

Transudative effusions typically occur as a result of increased vascular hydrostatic 

pressure and/or low plasma oncotic pressure (severe hypoalbuminemia), compression of 

the vasculature, cardiovascular disease, or pulmonary inflammation. The mechanism by 

which Pak2 regulates these processes has yet to be discovered.  Given the role of Pak2 in 

vasculogenesis, it is possible that these events are related to the direct effect of Pak2 on 

vascular integrity, both by regulating endothelial junctions and apoptosis. (Radu, M and 

Chernoff, J, manuscript in preparation).    

Disseminated intravascular coagulation in Pak2-/- mice 

Pak2-null mice are able to synthesize new platelets, however, overall platelet 

counts were decreased by 50% and spleen weight was minimally decreased (Figure 3.2F 

and Table 3.1). We hypothesize that platelet loss is not due to destruction in the spleen, 

which would normally be accompanied by splenomegaly, but instead is due to 

consumption into microclots, referred to medically as DIC, disseminated intravascular 

coagulation.19 DIC is a syndrome, not a disease, and is caused by sepsis, or trauma and 

results in morbidity and mortality in 25-50% of patients. DIC initiates when a stimulus 

disrupts vascular integrity, or cytokines and chemokines activate systemic coagulation 

and inflammation. Initial release of IL-6, followed by TNF-α and IL-1 are the prevailing 

inducers of DIC in sepsis.  Preliminary studies evaluating IL-6 and TNF- α levels in the 

serum of wild-type and Pak2-/- showed no elevation (data not shown). These data suggest, 

that vascular damage, independent of cytokine storm, could be driving DIC in Pak2-/- 

mice.  
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DIC manifests by rapid acceleration of the coagulation cascade, massive 

consumption of platelets and coagulation factors exceeding the body’s ability to replenish 

from the bone marrow and liver.19 Systemically extensive micro-vascular blood clots 

emerge due to dysregulation of the coagulation cascade.  Ultimately, the result of this 

widespread thrombosis is multiple organ failure. Risk of hemorrhage is elevated due to 

consumption of platelets and coagulation factors. Currently, the only approved therapy is 

activated protein C. Considering what is known about DIC, we evaluated the possibility 

of this disease state in Pak2-/- mice.  We found that these mice had severe lymphedema 

throughout the body, with enlarged lymphatic vessels in the intestine, along with 

inflammatory stroma (Figure 4.3A). To evaluate for lymphatic endothelial damage, we 

stained for podoplanin (PDPN), and found increased surface expression (Figure 4.3B). 

Podoplanin expression on lymphatics activates platelets and recruits them to the site of 

damage through the podoplanin-CLEC-2 signaling cascade.2,3,20   

To quantitatively test for DIC, measurements of decreased fibrinogen and/or 

increased D-Dimer are typically done. As the coagulation cascade proceeds, thrombin 

cleaves fibrinogen into fibrin, and cross-linked fibrin is referred to as D-Dimer.  Fibrin 

degradation products and D-dimer are two markers of fibrinolysis that indicate 

microthrombus formation in DIC. Further evaluation of other DIC markers are needed to 

confirm if DIC is occurring in the Pak2-/- mice.  

Vascular damage on endothelial cells can also activate the coagulation cascade by 

expressing tissue factor-FVIIa on the surface.  Typically, under physiologic conditions, 

tissue factor (TF) is tightly regulated and only expressed on the subendothelial surfaces. 

In DIC, TF exposed on the endothelial cell surface changes vascular permeability and 
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additionally can be expressed on macrophages and monocytes.  Upon damage, the protein 

is exposed to circulation, and drives the coagulation cascade.  TF is also released in 

response to cytokines (IL-1, TNF-α, and endotoxin).21 Administration of anti-TF 

antibody functions to fully abrogate activation of the coagulation cascade in vivo, as well 

as attenuate inflammation and endothelial cell injury by reducing serum plasma levels of 

IL-6 and VCAM-1, in mice with sickle cell disease.21 Future work with administration of 

anti-TF antibody into Mx1-cre+;Pak2f/f would be informative towards the understanding 

of the source of vascular damage.   

Neutrophils can also be a triggering agent to activate vascular damage-induced 

coagulation.  These innate immune cells adhere to damaged blood vessels, and initiate a 

coagulation cascade.  Since Pak2-/- mice had elevated circulating neutrophils, there is a 

possibility that this is an early event that contributes to the cause of death. In order to 

study the effect of neutrophils in vascular integrity in our mouse model, we could inject a 

neutrophil inhibitory antibody to disrupt the neutrophil-vasculature binding cycle and 

inhibit DIC. Such neutrophil blocking antibodies are anti-Ly6(G/C) and ICAM-1.  There 

is also the possibility that the observed reduced fibrinogen levels in serum resulted in 

hyperactivated neutrophils, implicating fibrinogen as a negative regulator of neutrophil 

function and the inflammatory response.22 

Platelets function to protect blood vessels from injury. This was demonstrated by 

the transfusion of normal resting platelets or degranulated platelets into a mouse model 

with highly vascularized tumor.  The authors discovered that in the absence of platelets, 

tumor vasculature was damaged, but this phenotype was rescued by the transfusion of 

resting platelets, but not with the transfer of already degranulated platelets.23  Platelet 
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granule secretion protects blood vessels by secreting soluble factors that inhibit excessive 

endothelial permeability and/or prevent vascular injury induced by inflammation. 

Platelets secrete VEGF, angiopoietin-1, TGF-β, platelet basic protein, serpins, serotonin 

and sphingosin-1-P to support vascular barrier function and/or have immunomodulatory 

properties.  This research indicates that platelets are required to maintain blood vessel 

integrity through secretion of growth factors.  

Based on these studies, future experiments with Mx1cre+;Pak2fl/fl mice can 

evaluate if polyI:C is promoting inflammation due to IFNalpha activation. This 

exacerbated immune response, along with thrombocytopenia, could possibly result in 

vascular damage observed in Pak2-/- mice. We hypothesized that transfusion of wildtype 

platelets every other day into Mx1cre+;Pak2fl/fl mice could rescue the vascular defects 

observed, such as pleural effusion and lymphedema.    

Pak2 does not regulate vascular integrity via alterations in platelet function in vivo 

Using a Cre recombinase system driven by platelet factor 4 (PF4), expressed 

solely in platelets and megakaryocytes, we were able to evaluate two questions: (1) Is 

embryonic lethality due to failure of Pak2-null platelets to regulate lymph-blood vessel 

separation downstream of CLEC-2 receptor and (2) Is the observed reduction in 

peripheral platelet count in Pak2-null adult mice due to a platelet specific effect or a 

systemic effect? 

Our results demonstrated that PF4cre+;Pak2fl/fl mice are viable adults with normal 

litter size.  Under non-stressed conditions, these mice do not demonstrate a decrease in 

peripheral platelet count. However, upon evaluation of their CD41+ megakaryocytes we 
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did observed slightly increased ploidy (Figure 4.4). Evaluation of proplatelet formation 

(PPF) in fetal liver-derived megakaryocytes demonstrated decreased formation of these 

cytoskeleton-rich extensions (Figure 4.5A).  These data demonstrate that Pak2 functions 

in megakaryocytes in a cell-instrinsic manner to regulate ploidy and proplatelet formation, 

but does not effect the production or clearance of platelets.    

Platelet clearance, Reticulated platelets and Mean platelet volume 

The observation that Mx1-cre+;Pak2-/- animals experience increased platelet 

clearance rate and increased reticulated (young) platelets could be induced by multiple 

mechanisms (Figure 3.2).  The observed dramatic increase in platelet clearance rate could 

be due to clearance-induced antiplatelet antibodies (CIAA).24 Platelets can be taken up 

and destroyed by bone marrow-derived macrophages. CIAA could explain why Pak2-

null mice demonstrate increased clearance along with increased production.  As new 

platelets are being produced to handle the loss of platelets, they are being destroyed by 

CIAA, and therefore not measured in the peripheral blood counts. The Pak2-null 

phenotype is typical of CIAA, as platelets are consumed new platelets are produced, 

however quickly cleared via CIAA.  

We also observed a significant increased in mean platelet volume (Figure 3.2). 

Increased mean platelet volume is typically indicative of young, reticulated platelets.25,26 

Increased platelet size (~1 fL difference) is correlated with increased risk for various 

acute vascular complications, including cardiovascular disease and peripheral arterial 

disease.27,28 Increased platelet volume is associated with increased platelet aggregation 

and increased expression of adhesion molecules. A study using rat models revealed that 

lung damage can also reduce circulating platelets, suggesting that the lungs play an active 
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role in the regulation of platelet counts.29 The reduced platelet numbers in Pak2-/- mice 

could be a result of lung damage, observed by extensive amounts of pleural effusion and 

lung congestion. Increased mean platelet volume in Pak2-/- mice could correlate with the 

vascular disruption in these mice, observed by lymphedema, pleural effusion, and 

hemorrhagic intestines. 

Future mouse rescue experiments to define cause of mortality 

To further investigate the cause of mortality in Mx1-cre+;Pak2f/f mice, we propose 

several rescue experiments.  These animals displayed signs of lymphedema and vascular 

damage (with lung pleural effusion), a proposed rescue experiment would be to infuse 

wildtype platelets, and evaluate if lymphatic damage is rescued. Additionally, to evaluate 

if circulating anti-platelet antibodies are destroying platelets (CIAA), we proposed to 

transfuse serum from Mx1-cre+;Pak2f/f into wildtype recipients and measure platelet 

count after 16-24 hours.   

If DIC and vascular damage is caused by an activated immune system, the rescue 

experiment would involve transplantation of wild-type bone marrow into the Mx1-

cre+Pak2f/f animals. In the presence of a wild-type immune system (derived from the new 

wildtype bone marrow), we propose that survival time would increase indefinitely if the 

source of DIC is an activated immune system secreting inflammatory cytokines, such as 

IL-6 and TNFα.   

In summary, identification of the initiating events leading to lethality in Pak2-/- 

mice is critical to understanding potential side effects from inhibiting Group I kinase 

function in various cancer types.  Specifically, vascular damage and changes to the bone 



 136	  

marrow could be exacerbated by inhibition of Group I Paks. Identification of the impact 

of Pak2 deletion on signaling networks using phosphoproteomic analyses would be the 

next step in identifying which signaling networks are most effected by deletion of Pak2. 

Use of additional hematopoietic cre-recombinase systems, such as Vav-cre, would also 

demonstrate if lethality were from the hematopoietic system or from another 

compartment.  

 

 
 
Figure 4.1. A. Model depicting the genetic structure for the inducible Pak2 floxed alleles.  
Upon Cre-induction with administration of polyI:C, exon 2 of Pak2 gene is excised, 
resulting in complete ablation of Pak2.  B. Survival curve in adult Pak2fl/fl mice after 
induction of cre-recombinase with polyI:C. Wildtype (wt) and Pak2fl/fl both treated with 
equal concentration of polyI:C.  n>30. 
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Figure 4.2 Increased stem and progenitor cell numbers in bone marrow of Pak2-/- 
mice.  (A) Increased granulocyte/myeloid progenitor cells in bone marrow from polyI:C-
treated Pak2-/- (gray bar) mice compared to WT(black bar) mice 14 DPI. (B) Increased 
neutrophil count in peripheral blood in Pak2-/- animals 14 DPI.   (C) Increased neutrophils 
as a percentage of total white blood count (WBC) in Pak2-/- mice compared to WT mice, 
14 DPI. DPI: Days post-injection of polyI:C. p-value <0.01 
 

 
 
 
Figure 4.3 Pak2-null mice develop lymphedema in intestinal tissue.  (A) H&E of 
mouse large intestine from wildtype (pIC injected) and Mx1cre+Pak2f/f (pIC injected). 
Intestines fixed at day 14 post-pIC.  Arrows indicate enlarge lymphatic vessels in Pak2-
knockout animals. (B) Podoplanin IHC, a glycoprotein expressed on the surface of 
damaged lymphatic vessels.  Arrow indicates enlarge lymphatic vessel in Pak2-null 
animals.  Overall increased staining in Pak2-null tissues, along with fibroblastic reticular 
cells, and inflammatory cells.   
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Figure 4.4 Increased ploidy observed with Pak2-deletion using a megakaryocyte and 
platelet specific cre-recombinase (PF4-cre). CD41+ cells selected and measured for 
ploidy with propidium iodide. Average of 8N+ population of CD41+ bone marrow cells. 
 

 
 
Figure 4.5 Impaired proplatelet formation in PF4-cre;Pak2-/- megakaryocytes in 
vitro. (A) Representative image of wild-type (WT) and PF4-cre+;Pak2-/- in vitro cultured 
megakaryocytes. WT megakaryocytes display multiple long extensions, which are mostly 
absent from PF4-cre+;Pak2-/- megakaryocytes in culture.  
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Chapter 5: Conclusions and Future Direction 

Immune cells elicit a response to various external stimuli through many signaling 

cascades, however these networks, no matter what the cell type, require activation and 

remodeling of the cytoskeleton.  Defects in the actin and microtubule cytoskeleton result 

in severe immunodeficiency due to the pivotal role for actin in immune cell recruitment, 

migration, intracellular signaling and activation.1 The actin cytoskeleton forms the basis 

of the cell cortex, microtubules and intermediate filaments connect with actin to form a 

network, which organizes the internal cell structure.  A major requirement to respond to 

immunogenic stimuli is a rapid reorganization of cell shape, over the time scale of 

seconds.  Actin turnover occurs in a half-life of 15 seconds, myosin II turnover is less 

than 10 seconds, and proteins that crosslink actin filaments can turn over as fast as every 

second.  Maintaining this multifaceted functionality requires the regulated interaction of 

over 100 proteins.1  

The work presented here investigated the role of p21-activated kinases in two 

immune cells from distinct hematopoietic lineages, the Granulocyte/Myeloid-derived 

mast cell and the Meg/Erythroid progenitor-derived megakaryocyte.  In Chapter 2, we 

showed that Pak2 functions to negatively regulate mast cell FcεRI mediated secretion by 

stimulating RhoA-GTPase.  In Chapter 3, we discovered that Pak2 is involved in the 

maturation process of bone marrow megakaryocytes, proplatelet formation, and 

regulation of polyploidization, likely through effects on LIMK and Aurora 

phosphorylation. Finally, in chapter 4, we described the lethality phenotype observed in 

an inducible model of Pak2 deletion in an adult.  
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Our research investigating isoform differences in mast cell function showed that 

Pak2 is the predominant Pak isoform expressed in mast cells, and functions to impair 

secretion via negative regulation of the RhoA-MLC2 signaling cascade and p38MAPK, 

without effecting calcium flux (chapter 2). These findings are in contrast to our previous 

findings on Pak1, and show that Pak1 and Pak2 function in different manners during 

antigen-induced mast cell secretion. Pak1 deletion impaired mast cell secretion through 

regulation of F-actin and calcium flux, whereas Pak2-deletion enhanced secretion 

through negative regulation of RhoA activity. Since Pak1 and Pak2 share high sequence 

identity, in both their regulatory and catalytic domains (Appendix Figure 1), as well as 

the same substrate phosphorylation recognition sequences, it is of great interest to 

identify functional differences in primary cells. With such similarities, it is of interest to 

understand the source of biological differences.  Observed differences may stem from 

subcellular localization (i.e. nuclear localization vs. plasma membrane bound), binding to 

different multiple protein complexes to elicit differential effects, and/or gene and protein 

expression differences.  Identification of the exact source of these functional differences 

is an important goal of future studies. Future work with chimeric cells (knockout cells 

reconstituted with vectors expressing chimeras of Pak1 and Pak2) and bone marrow 

chimera studies, will elucidate the function of each isoform in cellular functions in vitro, 

as well as maintaining hematopoiesis in vivo.  

Our studies presented in Chapter 2 clearly demonstrate that Pak2, but not Pak1, 

regulates RhoA activity to promote mast cell IgE-mediated secretion. This regulation 

might be regulated through two plausible pathways.  One pathway is via direct 
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phosphorylation and inhibition of GEF-H1, the primary GTP exchange factor (GEF) and 

activator of RhoA.  Additionally, Pak2 may regulate GEF-H1 indirectly by regulating 

microtubule stability though stathmin.  Stathmin, a previously identified substrate for 

Pak12, is a microtubule destabilizing protein which, in the unphosphorylated state, 

sequesters soluble tubulin into an assembly-incompetent complex. Inhibition of stathmin 

results in polymerized microtubules during thrombin stimulation.  These intact 

microtubules retain GEF-H1 in the inactive state, thereby inhibiting RhoA activation.3 

Recent findings by Meiri et al.4 indicate that GEF-H1 activation and displacement from 

intact microtubules may not actually require microtubule depolymerization as previously 

thought. With a short stimulus of LPA or thrombin, GEF-H1 was activated and release in 

the presence of intact microtubules.   

These findings are of interest to our observations in Pak2-null mast cells. Pak2 

deletion in primary mast cells resulted in impaired phosphorylation of stathmin at S16, 

thereby increasing its microtubule destabilizing activity. Without fully polymerized 

microtubules, Pak2-null mast cells expressed activated GEF-H1, which is unable to bind 

and be inhibited by polymerized microtubules. Elevated GEF-H1 activity is a critical 

factor driving constitutively-active RhoA GTPase activity.5,6 Studies evaluating the effect 

of MT polymerization and RhoA activity found that drug-induced MT depolymerization 

resulted in robust RhoA activation due to activated GEF-H1.7 GEF-H1 overexpressed 

cells had increased stress fiber formation, focal adhesions and actomyosin contraction.7 

Given the time course of mast cell stimulation of 10 minutes, it is unclear if Pak2 

regulation of GEF-H1 was through direct phosphorylation and release from microtubules 

or indirectly through stathmin-induced microtubule depolymerization. Our findings 
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demonstrate that Pak2 negatively regulates microtubule associated proteins GEF-H1 and 

stathmin, thereby driving antigen-induced mast cell secretion through RhoA activation. 

Activated RhoA by Pak2 inhibition could have important therapeutic implications for 

solid tumors and hematological malignancies.  

Using primary bone marrow derived mast cells as a model, we provide the first 

demonstration that Pak2 is a negative regulator of RhoA through phosphorylation and 

inhibition of both GEF-H1 and stathmin.  This control leads to negative regulation of 

mast cell secretion.  Beyond mast cell biology, the Stathmin-GEFH1-RhoA signaling axis 

is a critical regulator of thrombin induced-vascular permeability and endothelial cell 

junctions.3,5 It will be interesting for future studies to determine if this signaling network 

is also influenced by Pak2 in the vasculature.   

Biochemically, future work to expand this field will need to identify if Pak2 

directly signals through GEF-H1 and stathmin to regulate secretion.  In order to do this, 

we can use shRNA to silence hyperactivated GEF-H1 and stathmin in Pak2-null mast 

cells to rescue IgE-mediated secretion to wild-type levels. Our data demonstrate that both 

proteins are involved in FcεRI crosslinking signal transduction, as both proteins are 

phosphorylated (inhibited) upon IgE-stimulation. This inhibition results in stabilization of 

microtubules and inhibition of RhoA hyperactivation.  Recent work with a proteomics 

screen found activation of Stathmin gene expression upon FcεRI crosslinking.8 

Additionally, GEF-H1 was found to regulate endocytic and exocytic vesicle 

trafficking.9,10 Future work using Pak1 and Pak2 chimeric vectors will help elucidate the 

origins of protein isoform differences, in particular why they have opposite functions, in 

mast cell secretion.  
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In Chapter 3 we sought to evaluate the function of Pak2 in another bone marrow 

derived immune cell, the megakaryocyte. The main function of a megakaryocyte is to 

synthesize platelets through a maturation process that involves endomitosis, or 

duplication of DNA without cytokinesis, before terminal differentiation into platelets.  

Using an inducible model of Pak2-deletion in vivo, we discovered that Pak2, but not 

Pak1, is the predominant isoform in megakaryocytes important for polyploidization and 

proplatelet formation. We discovered that Pak2 likely functions through LIMK to 

regulate actin and Aurora to regulate the microtubule network, both leading to negative 

regulation of polyploidization. By promoting polyploidization, with the inhibition of 

Pak2 kinase, this provides a novel mechanism for treatment of acute megakaryoblastic 

leukemia, described by an accumulation of immature, non-polyploid megakaryocytes.  

Aurora kinase overexpression was found in many hematological malignancies, including 

acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, acute 

megakaryocytic leukemia, multiple myeloma, aggressive non-Hodgkin lymphoma and 

Hodgkin’s lymphoma.11 Therefore, identification of upstream activators of Aurora, such 

as Paks and LIMK, provides additional therapeutic targets for hematological 

malignancies with elevated Aurora activity.  Future work to understand the role of Pak2 

in regulating polyploidization and megakaryocyte maturation, as it pertains to AMKL, is 

still needed.  However, preliminary work suggests Pak could be a valuable target for 

therapeutic intervention in some Aurora-driven hematological malignancies, since Pak2 

inhibition resulted in inhibited Aurora phosphorylation.   

Recent work evaluating neoplasms driven by gain-of-function mutations in KIT 

receptor tyrosine kinase found constitutively-active Pak downstream of KIT activation.  
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For the first time in hematological malignancies, Pak was found to drive tumor growth in 

a mouse model of KITD814V-mutation, and human leukemic cells with KITD816V.12 

Pak inhibition was investigated as a possible therapeutic target for these very aggressive 

tumors, which are resistant to imatinib (Gleevac) and show little therapeutic efficacy in 

response to dasatinib (Sprycel).  They discovered that Pak inhibition, with allosteric 

inhibitiors, was successful in inhibiting systemic mastocytosis, myeloproliferative 

neoplasms (MPN) and acute myeloid leukemia (AML) in mice.12 Mice bearing myeloid 

cells expressing both KITD814V developed severe MPNs, whereas this phenotype was 

rescued by expression of Pak kinase mutant, PakK299R. Inhibition of Pak kinase 

function resulted in increased survival and a significant delay in disease onset. Overall, 

the MPN disease phenotype was reversed with the inhibition of Pak1 kinase function 

with both genetic and pharmacologic inhibition.12 

In addition to the use of Pak inhibitors to reverse MPN progression, it is possible 

that Pak inhibition could be used to promote hematopoietic stem cell (HSC) expansion 

after chemotherapy or myeloablation therapy. These therapies often result in decreased 

HSC proliferation and recovery.  Recent discoveries into the drivers of HSC expansion 

found that megakaryocytes secrete growth factors (FGF-1, TGF-β1 and CXCL4) to 

maintain or expand the HSC niche during stress.13-16 Curiously, HSCs (Lin-CD48-CD41-

CD150+) are generally located close to megakaryocytes, with a considerable fraction 

(20%) directly adjacent to a megakaryocyte.15 This percentage is greater than any random 

distribution of HSCs and MKs in the bone marrow. HSC dependency on MKs is also 

evident during bone marrow engraftment studies, where it was found that HSCs 
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preferentially home to the MK-rich endosteal areas, and host MKs facilitate donor HSC 

engraftment after lethal irradiation.14,16 

Considering the close association between MKs and HSCs, this provides evidence 

that therapeutic intervention to expand megakaryocytes may function well to expand the 

HSC niche as well.  Our data demonstrate that Mx1cre+;Pak2f/f mice have expansion of 

their megakaryocyte progenitors and mature cells, as well as HSCs. Further evaluation 

will look into the direct role of Pak2 on megakaryocyte growth factor secretion and its 

potential role on expansion of the HSC niche. Since Pak2 is a negative regulator of mast 

cell cytokine secretion, we hypothesize that future analysis of growth factor secretion 

from megakaryocytes may also demonstrate enhanced secretion with impaired Pak2 

function.  

Future research to elucidate the function of Pak2 in microtubule integrity and 

barrier dysfunction 

Upon induction of Pak2-deletion using Mx1-cre recombinase, we observed that 

these animals have a disruption to their endothelial barrier function, identified by 

lymphedema, pleural effusion in the lungs, and intestinal bleeding, accompanied by rapid 

platelet clearance (described in Chapter 4).  Considering the disruption of normal 

regulation of GEF-H1 and Stathmin in mast cells identified in Chapter 2, it is interest to 

look at the function of these substrates on endothelial barrier function. Upon deletion of 

Pak2 in the adult animal, we observed lethality in 100% of the mice between 14 and 20 

days post-polyI:C administration (similar lethality is observed using tamoxifen-regulated 

CAG-Cre).  Based on the phenotype observed, our future hypotheses are to look at the 
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role of GEF-H1 and Stathmin suppression in a Pak2-null adult animal. We hypothesize 

that elevated GEF-H1 and Stathmin activity in Pak2-null animals is driving endothelial 

barrier dysfunction, resulting in acute lethality.   

The RhoA-specific GEF, GEF-H1, localizes to microtubules (MT) when 

inactivated (phosphorylated) and remains in the suppressed state, inhibiting RhoA 

activation.17 GEF-H1 becomes activated and dephosphorylated when released from MTs 

as they undergo disassembly (Figure 5.1). Activated GEF-H1 is a mechanotransducer, 

which connects depolymerized microtubules with RhoA activation and actin filament 

depolymerization, driving endothelial barrier dysfunction.18 In vivo experiments to 

elucidate the role of GEF-H1 in barrier function are not possible since GEF-H1-null 

animals are embryonic lethal. Instead, researchers using intravenous injection of siRNA 

against GEF-H1 were able to preserve lung endothelial barrier function and prevent 

vascular leakage upon damage with LPS stimulation.19 LPS induces MT disassembly and 

the release of active GEF-H1 from microtubules, leading to barrier dysfunction. 

Protection against MT disassembly by MT stabilizing compounds was also able to protect 

against compromised endothelial barriers in drug and disease induced states.20 These data 

suggest that future experiments with injection of MT stabilizing compounds in mouse 

models of Pak2-deletion could partially rescue the lethality in Pak2-null mice, if death is 

primarily due to vascular damage or elevated microtubule depolymerization. 

Another regulator of microtubule stability is Stathmin, the microtubule 

depolymerizing protein which functions by binding microtubule heterodimers preventing 

polymerization.21 Stathmin can also drive microtubule polymerization by increasing the 

switching frequency (catastrophe frequency) from growth to shortening at plus and minus 
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ends by binding directly to the microtubules.  Phosphorylation of stathmin on one or 

more of its four serine residues (S16, S25, S38, and S63) reduces its microtubule-

destabilizing activity, suggesting a cooperative nature of stathmin phosphorylation at 

different sites to control its effects on MT depolymerization.22 We demonstrated in 

Chapter 2 that stathmin phosphorylation was completely ablated in Pak2-null antigen-

stimulated mast cells. Prior to my work, Pak1 was identified as an effector of stathmin 

phosphorylation.2 Recently, depletion of endogenous Pak1 abolished both HGF-induced 

stathmin phosphorylation and the increase in the pool of acetylated tubulin, 

demonstrating enhanced stathmin depolymerizing activity in the absence of Pak1.5 

Murine knockdown of stathmin in vivo with siRNA demonstrated that lung endothelial 

barrier dysfunction induced with thrombin was protected against when stathmin was 

depleted which preserved lung endothelial barrier function, similar to the GEF-H1-

silenced mice.3 Thrombin treatment of human pulmonary ECs induces rapid stathmin 

dephosphorylation and activation. Constitutively-active stathmin (a phosphorylation-

deficient mutant) expressed in endothelial cells resulted in exacerbated thrombin-induced 

barrier dysfunction. Inhibition of stathmin activity caused MT stabilization and down-

regulation of exacerbated RhoA signaling. Together, these data suggest that stathmin 

hyperactivity in Pak2-null cells may drive endothelial barrier dysfunction, along with 

GEF-H1 hyperactivity resulting in lethality.   

Stathmin and GEF-H1 are mechanistically interconnected; stathmin-knockdown 

provides a protective effect to thrombin-induced endothelial cell permeability.3 This 

protective effect is abrogated by expression of constitutively-active GEF-H1.  

Additionally, activated mutants of stathmin exacerbated the effect of thrombin, and this 
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elevated effect was abolished by depletion of GEF-H1. These data strongly suggest that 

GEF-H1 is a major regulator of endothelial cell permeability downstream of stathmin. 

Thrombin stimulation activates stathmin to depolymerize microtubules, and results in 

subsequent decrease in microtubule-bound GEF-H1, yielding active GEF-H1 to promote 

RhoA signaling and phosphorylation of myosin light chain, ultimately leading to 

endothelial barrier dysfunction. This thrombin-induced decrease in MT-bound GEF-H1 

was abolished by depletion of stathmin.3 

Future directions to fully understand the observed lethality in Pak2-deficient mice 

might include various informative genetic crosses.  For example, one of our hypotheses 

implicates stathmin activation as a potential cause of the observed phenotype. We 

propose to cross Stathmin-deleted mice with the Mx1cre+Pak2fl/fl to identify if endothelial 

barrier dysfunction observed in the Pak2-null mice is mediated through stathmin over-

activation, leading to enhanced microtubule depolymerization and endothelial barrier 

dysfunction. Interestingly, analysis of Stathmin-deficient mice showed a reduction in 

thymocyte cellularity and peripheral T cell numbers.23,24 Similarly, T-cell specific 

deletion of Pak2 (Lck-cre and CD4-cre) also resulted in lymphocytopenia due to a failure 

to undergo proper maturation.25 These similarities provide evidence to support stathmin 

as both an in vivo and in vitro Pak2 substrate, as well as a possible driver of adult 

lethality. However, further work is needed to identify the initiating factor activating the 

pathway to lethality.  
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Future Directions: Bone marrow Chimeras 

We observed numerous changes to the bone marrow compartment in Pak2-deleted 

mice. To further understand these changes, future work using bone marrow 

transplantation studies with chimeric forms of Pak1 and Pak2 mutant bone marrow can 

address many questions. Similar research with Cdc42, an activator of Group I Paks, was 

found to cause rapid lethality in the adult due to suppressed erythroid differentiation 

using an Mx1cre+Cdc42fl/fl mouse model. The authors utilized a bone marrow chimera 

model (WT animal transplanted with Mx1cre+Cdc42f/f bone marrow) and discovered that 

lethality in the Cdc42-floxed animal was due to changes in the bone marrow, specifically 

failure to differentiate erythroid progenitors and expansion of myeloid progenitors. To 

address these questions in Pak2-floxed animals, bone marrow transplantation models 

Figure 5.1 A model depicting the mechanism 
by which Pak2 regulates GEF-H1 and Stathmin 
to negatively regulate RhoA signaling and MT 
stability.  This is a potential mechanism to 
explain the observed endothelial barrier 
dysfunction and lethality in Mx1cre+Pak2f/f 

mouse model.  This same mechanism also 
describes the elevated secretion observed in 
IgE-stimulated mast cells.  
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could be used, where Mx1cre+;Pak2f/f bone marrow will be transplanted into an irradiated 

wild-type host, and vice versa, wild-type bone marrow into a Mx1cre+;Pak2f/f host.  After 

engraftment (6 weeks), deletion would be induced with polyI:C, and the peripheral blood 

changes will be monitored weekly, along with survival. This type of experiment would 

help to identify the location of the cell type initiating lethality in the Mx1-cre+Pakf/f mice.  

Another key aspect for future research is our data suggesting that differences exist 

between two models of inducible Cre-recombinase, Mx1-cre (polyI:C inducible) and 

Cag-Cre-ERT2 (tamoxifen inducible). The two models have similar rates of lethality, 

(100% lethality observed, between day 14 and 25).  However, their phenotypes are 

strikingly distinct. These differences include lymphedema, pleural effusion and decreased 

platelet counts in Mx1cre+Pak2f/f mice, which is not observed in tamoxifen-induced Cre-

ERT2+Pak2f/f animals.  Both models do show signs of vascular damage. One key 

difference on activation of Cre-recombinase is that Mx1-cre is induced with polyI:C, 

which elicits an interferon-alpha (IFN-α) response and tamoxifen administration does not 

elicit immune activation.  Perhaps the simultaneous activation of IFN-α along with Pak2 

deletion results in an enhanced TLR3 response resulting in vascular injury.  

Experimentally one can address this by inducing Pak2 deletion with tamoxifen in the 

Cre-ERT2+;Pak2f/f animals along with simultaneous injections of polyI:C.  After 14-16 

days post-tamoxifen administration (DPI), measurements of peripheral blood changes, 

platelet counts, weight gain, lymphedema, and pleural effusion can be assessed.  Since it 

was shown that Cre-ERT2+;Pak2f/f do not have decreased platelet counts at 14 DPI (HY 

Chow, unpublished), it is of interest to observe if the addition of polyI:C to this model of 

Pak2 deletion exacerbates the phenotype to yield decreased platelet counts and 
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lymphedema.  A caveat to work with the Cag-Cre-ERT2 model to induce Pak2 deletion, 

is that bone marrow and megakaryocytes were not evaluated for the level of Pak2 

recombination and deletion. It is possible that this dose and time course of tamoxifen 

dosage was not sufficient to delete in this compartment.  

It is of interest to understand how the combination of immune activation with 

polyI:C, along with simultaneous deletion of Pak2 in the bone marrow, results in a gross 

pathology quite distinct from the tamoxifen-induced Pak2 mouse model.  Since Pak 

inhibitors will be administered to patients with varying degrees of immune reactivity, 

caution should be taken. These studies provide insight into a possible therapeutic side 

effect of Group I Pak inhibition with simultaneous immune activation. 

Conclusion 

Individual isoform differences among immune cells, epithelial cells, and many 

other cell types are just being discovered with the aide of isoform-specific knockout 

mouse models.  Years of prior work helped identify the multitude of Pak substrates 

phosphorylated in cell culture or in in vitro kinase assays, however, this work was often 

never verified in an in vivo setting.  Data presented here represents advances in the 

understanding of isoform differences, and identification of novel signaling pathways for 

Pak2 regulation of mast cell secretion (Chapter 2) and megakaryocytes 

maturation/polyploidization (Chapter 3). Distinct differences exist between Pak1 and 

Pak2 isoforms identified with the use of mouse models, as opposed to RNAi and 

dominant-negative mutants. This dissertation describes how Pak2 is the predominant 

isoform signaling in mast cells and megakaryocytes.  Our findings, combined with recent 
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collaborations utilizing the Pak2-knockout mouse model in various tissue types, have led 

to the discovery that Pak2 is critical for survival during embryogenesis and in adult 

homeostasis, for the development and survival of T-cells and HSC bone marrow 

engraftment.25,26  As the Pak2-floxed animal continues to be crossed with tissue specific 

Cre-recombinases, we will continue to make novel discoveries regarding the importance 

of this isoform in proper development and maturation, and potentially elucidate possible 

therapeutic implications for inhibition of Pak2 kinase function.   
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A 

 
 

B 
Pak1 MSNNGVDIQDKPPAPPMRNTSTMIGAGSKDTGTLNHGSKPLPPNPEEKKKKDRFYRSILP  60 
Pak2 MSDNG-ELEDKPPAPPVRMSSTIFSTGGKDPLSANHSLKPLPSVPEEKKPRNKII-SIFS  58 
 
Pak1 G-DKTNKKREKERPEISLPSDFEHTIHVGFDAVTGEFTGMPEQWARLLQTSNITKSEQKK  119 
Pak2 GTEKGSKKKEKERPEISPPSDFEHTIHVGFDAVTGEFTGMPEQWARLLQTSNITKLEQKK  118 
 
Pak1 NPQAVLDVLEFYNSKKTSNSKKYMSFTDKSAEDYNSSN-TLNVKTVSETPAVPPVSEDDE  178 
Pak2 NPQAVLDVLKFYDSNTVK--QKYLSFTPPEKDGFPSGTPALNTKG-SETSAV--VTEEDD  173 
 
Pak1 DDDDDATPPPVIAPRPEHTKSVYTRSVIEPLPVTPTRDVATSPISPTENNTTPPDALTRN  238 
Pak2 DDEDAA--PPVIAPRPDHTKSIYTRSVIDPIP---------APVG--DSNV---DSGAKS  217 
 
Pak1 TEKQKKKPKMSDEEILEKLRSIVSVGDPKKKYTPFEKIGQGASGTVYTAMDVATGQEVAI  298 
Pak2 SDKQKKKAKMTDEEIMEKLRTIVSIGDPKKKYTRYEKIGQGASGTVFTATDVALGQEVAI  277 
 
Pak1 KQMNLQQQPKKELIINEILVMRENKNPNIVNYLDSYLVGDELWVVMEYLAGGSLTDVVTE  358 
Pak2 KQINLQKQPKKELIINEILVMKELKNPNIVNFLDSYLVGDELFVVMEYLAGGSLTDVVTE  337 
 
Pak1 TCMDEGQIAAVCRECLQALEFLHSNQVIHRDIKSDNILLGMDGSVKLTDFGFCAQITPEQ  418 
Pak2 TCMDEAQIAAVCRECLQALEFLHANQVIHRDIKSDNVLLGMEGSVKLTDFGFCAQITPEQ  397 
 
Pak1 SKRSTMVGTPYWMAPEVVTRKAYGPKVDIWSLGIMAIEMIEGEPPYLNENPLRALYLIAT  478 
Pak2 SKRSTMVGTPYWMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPPYLNENPLRALYLIAT  457 
 
Pak1 NGTPELQNPEKLSAIFRDFLQCCLEMDVEKRGSAKELLQHQFLKIAKPLSSLTPLMHAAK  538 
Pak2 NGTPELQNPEKLSPIFRDFLNRCLEMDVEKRGSAKELLQHPFLKLAKPLSSLTPLILAAK  517 
 
Pak1 EATKNNH  545 
Pak2 EAMKSNR  524 
 
 
Appendix Figure 1: Sequence homology of murine Pak1 and Pak2. (A) Schematic of 
protein structure, including regulatory domain and kinase domain.  Percent sequence 
identity depicted below kinase domains. Adapted from Ci, Y et al. 2010. (B) Protein 
sequence for Pak1 and Pak2 (murine), yellow depicts sequence homology.  Regulatory 
domain shown with blue bar, auto-inhibitory domain shown with red bar, and catalytic 
domain shown with green bar. 	  

	  

CRIB	  Rac1/Cdc42	  binding	  domain	  
Auto-‐inhibitory	  domain	  
Catalytic	  domain	  	  
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Appendix 2: Table 1          
Mouse Models of Paks 

  Group Pak Isoform Knockout phenotype Ref. 

  Pak1-/- 
Reduce mast cell mediated anaphylaxis; macrophage 
defects, glucose homeostasis 1, 2,3 

  αMYH6-cre; Pak1fl/fl Cardiac hypertrophy 4 
  MMTV-ErbB2; Pak1-/- breast cancer tumor regression and prolonged survival 5 
  K5-tet-on;tet-K-rasG12D;Pak1-/- Decreased tumor initiation and progression of SCC 6 

I NF1+/-;Pak1-/- Reduction of mast cell dermal accumulation 7 
  Pak2-/- Lethal E8.5 8 
  MSCV-Cre-ERT2; Pak2fl/fl mast cells hyperresponsive to IgE stimulation (ex vivo) 9 
  MSCV-Cre; Pak2fl/fl Failure of bone marrow engraftment 10 
  Lck-cre;Pak2fl/fl severe T-cell lymphopenia, loss of regulatory T-cells 11 
  CD4-cre;Pak2fl/fl severe T-cell lymphopenia 11 

  Mx1-cre;Pak2fl/fl Lethal 3 weeks after deletion, thrombocytopenia 
Kosoff 
dissertation 

  Mx1-cre;Pak2fl/fl 
Chimeric bone marrow (wildtype recipient with Pak2-/- bone 
marrow); neutrophil and GMP expansion, survival.  12 

  Pak3-/- 
Learning and memory defects, abnormalities in synaptic 
plasticity 13 

  Pak1-/-;Pak3-/- Learning and memory defects, hyperactivity 14 
  Camk2a-PID; FMR1−/ − Rescues fragile X syndrome phenotype 15 

II Pak4-/- Lethal E10.5, heart and neural tube defects 16 
  Pak5-/- Viable healthy 17 
  Pak6-/- Viable healthy 18 
  Pak5−/ −;Pak6−/ − Impaired learning and locomotion 18 
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