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Essays in Problems in Sequential Decisions and Large-Scale Randomized

Algorithms

Abstract
In the first part of this dissertation, we consider two problems in sequential decision making.

The first problem we consider is sequential selection of a monotone subsequence from a random permutation.
We find a two term asymptotic expansion for the optimal expected value of a sequentially selected monotone
subsequence from a random permutation of length $n$. The second problem we consider deals with the
multiplicative relaxation or constriction of the classical problem of the number of records in a sequence of $n$
independent and identically distributed observations. In the relaxed case, we find a central limit theorem
(CLT) with a different normalization than Renyi's classical CLT, and in the constricted case we find
convergence in distribution to an unbounded random variable.

In the second part of this dissertation, we put forward two large-scale randomized algorithms.

We propose a two-step sensing scheme for the low-rank matrix recovery problem which requires far less
storage space and has much lower computational complexity than other state-of-art methods based on nuclear
norm minimization. We introduce a fast iterative reweighted least squares algorithm, \textit{Guluru}, based
on subsampled randomized Hadamard transform, to solve a wide class of generalized linear models.
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ABSTRACT

ESSAYS IN PROBLEMS IN SEQUENTIAL DECISIONS AND LARGE-SCALE
RANDOMIZED ALGORITHMS

Peichao Peng

J. Michael Steele

Dean Foster

In the first part of this dissertation, we consider two problems in sequential decision making.
The first problem we consider is sequential selection of a monotone subsequence from a
random permutation. We find a two term asymptotic expansion for the optimal expected
value of a sequentially selected monotone subsequence from a random permutation of length
n. The second problem we consider deals with the multiplicative relaxation or constriction of
the classical problem of the number of records in a sequence of n independent and identically
distributed observations. In the relaxed case, we find a central limit theorem (CLT) with
a different normalization than Renyi’s classical CLT, and in the constricted case we find

convergence in distribution to an unbounded random variable.

In the second part of this dissertation, we put forward two large-scale randomized algo-
rithms. We propose a two-step sensing scheme for the low-rank matrix recovery prob-
lem which requires far less storage space and has much lower computational complexity
than other state-of-art methods based on nuclear norm minimization. We introduce a
fast iterative reweighted least squares algorithm, Guluru, based on subsampled randomized

Hadamard transform, to solve a wide class of generalized linear models.
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CHAPTER 1 : Introduction

In the first part of this dissertation we study two problems in sequential decision making,
where the decision maker faces uncertain outcomes and has to make decisions throughout
a discrete time horizon. We are most interested in the asymptotic performance of certain

strategies carried out by the decision maker.

In Chapter 2, we consider the sequential monotone subsequence selection problem, where the
decision maker faces the values 7[1], 7[2], ... from a random permutation 7 : [1: n] — [1: n]
one by one and, when shown the value 7[i] at time ¢, must decide (once and for all) either
to accept or reject 7[i] as element of the selected increasing subsequence. One can easily
relate this to a similar problem, where we consider sequential selection from a sequence of n
independently uniformly distributed random variables X7, Xs, ..., X,, instead of a random

permutation. It was established by Samuels and Steele (1981) that

s(n) ~ §(n) ~ vV2n (1.1)

where s(n) and $(n) denote the expected value of optimal selection from a random per-
mutation and n independent and identically distributed samples respectively. Nevertheless,
there is a flurry of literature on characterizing §(n) while few have focused on analyzing
s(n). To the best of our knowledge, there is no finer analysis of s(n) than (1.1). Given the
similarities that lie between these two problems, one might hope there is a definite relation-
ship between s(n) and §(n), but this is far from intuitive. Our contributions are two-fold: in
the first place we proved that s(n) > §(n), which implies that the decision maker is better
off in the permutation problem; secondly, we managed to quantify the extent to which it is

better. Specifically, s(n) is larger by at least (1/6)logn + O(1).

When the decision maker adopts the greedy strategy, the selected values correspond to

the record values. The number of records in a sequence of n independent and identically



distributed samples is well studied by Rényi (1962). In Chapter 3 we generalize classical
records to relative records and consider the multiplicative relaxations and constrictions of
the number of records, which have not been studied previously and lead to novel phenomena.
First, the number of relative records is no longer independent of the distribution function.
Moreover, the asymptotic behaviour is unlike the behavior that one finds for the classical
record process. In the relaxed case, we find a central limit theorem (CLT) with a different
normalization than Renyi’s classical CLT, and in the constricted case we find convergence

in distribution to an unbounded random variable.

The big data era has posed tremendous challenge to traditional non-scalable and compu-
tationally inefficient algorithms. Random projection and randomized subsampling are two
powerful tools that have found their applications in a variety of problems. Based on these
two ideas, in the second part of this dissertation we put forward two randomized algorithms
addressing the low rank matrix recovery problem and large-scale estimation of generalized

linear model respectively.

Exploration of low-rank structure is of great significance and interest in a wide range of ap-
plications. In Chapter 4, we propose a randomized two-step sensing scheme for the low-rank
matrix recovery problem, which requires far less storage space and has much lower com-
putational complexity compared with other state-of-art methods based on nuclear norm
minimization. Besides exact recovery in the ideal low-rank and noiseless case, the proposed
procedure is applicable to cases where the underlying matrix has full rank with decaying
singular values and where the measurements suffer from noise. Expectation and concen-
tration error bounds for both the spectral norm and the Frobenious norm are established.

Finally, numerical experiments are given to support the theory.

In Chapter 5, we propose a fast iterative reweighted least squares algorithm, Guluru, based
on subsampled randomized Hadamard transform, to solve a wide class of generalized lin-
ear models under the large n, large p and n > p setting, where, as usual, n denotes the

number of observations and p is the number of features. In each iteration, the proposed



algorithm reduces the computational complexity from O(np?) to O(np). We provide theo-
retical guarantees that the log-likelihood achieved by Guluru upon convergence is at most
O(p?/nr?) away from the maximum log-likelihood, where r is the subsampling ratio. We
also prove that the final estimator of Guluru is only O(p/nr) away from the maximum
likelihood estimator. Extensive empirical studies demonstrate the competitive performance

of the proposed algorithm in both computational speed and prediction accuracy.



CHAPTER 2 : Sequential Selection of a Monotone Subsequence

From a Random Permutation

2.1. Sequential Subsequence Problems

In the classical monotone subsequence problem, one chooses a random permutation 7 : [1 :

n| — [1 : n], and one considers the length of its longest increasing subsequence,

Ln:max{k:ﬂ[iﬂ <7T[i2] <"-<7T[’ik] where 1 < 4 <i2---<ik§n}.

On the other hand, in the sequential monotone subsequence problem one views the values
m[1], w[2], ... as though they were presented over time to a decision maker who, when
shown the value 7[i] at time ¢, must decide (once and for all) either to accept or reject 7[i]

as element of the selected increasing subsequence.

The decision to accept or reject 7[i] at time ¢ is based on just the knowledge of the time
horizon n and the observed values 7[1], 7[2], ..., 7[é]. Thus, in slightly more formal language,

the sequential selection problems amounts to the consideration of random variables of the

form

LT = max{k : m[n] < 7w[me] <--- <w[rg] wherel1 <73 <mp--- <71 <n}, (2.1)
where the indices 7;, i = 1,2, ... are stopping times with respect to the increasing sequence
of o-fields Fj, = of{w[l],7[2],...,7[k]}, 1 < k < n. We call a sequence of such stopping

times a feasible selection strategy, and, if we use 7 as a shorthand for such a strategy, then

the quantity of central interest here can be written as

s(n) = Sup E[L7], (2.2)



where one takes the supremum over all feasible selection strategies.

It was conjectured in Baer and Brock (1968) that
s(n) ~vV2n asn— oo, (2.3)

and a proof of this relation was first given in Samuels and Steele (1981). A much simpler
proof of (2.3) was later given by Gnedin (2000) who made use of a recursion that had been
used for numerical computations by Baer and Brock (1968). The main purpose of this note
is to show how by a more sustained investigation of that recursion one can obtain a two
term expansion.

Theorem 1 (Sequential Selection from a Random Permutation). For n — oo one has the

asymptotic relation

s(n) = \/%—i-%logn—i—O(l). (2.4)

Given what is known for some closely related problems, the explicit second order term
(logn)/6 gives us an unanticipated bonus. For comparison, suppose we consider sequential
selection from a sequence of n independently uniformly distributed random variables X7,
Xo, ..., X,,. In this problem a feasible selection strategy 7 is again expressed by an increasing
sequence of stopping times 7;, j = 1,2, ..., but now the stopping times are adapted to the

increasing o-fields .%j = o0{X1, Xs,...,X;}. The analog of (2.1) is then
LT =max{k: Xp, < X,, < --- < X; wherel <7 <7 <7 <n}, (2.5)
and the analog of (2.2) is given by

3(n) = supE[LT].



Bruss and Robertson (1991) found that for s(n) one has a uniform upper bound

s(n) <v2n foralln>1, (2.6)

so, by comparison with (2.4), we see there is a sense in which sequential selection of a
monotone subsequence from a permutation is easier than sequential selection from an inde-
pendent sequence. In part, this is intuitive; each successive observation from a permutation
gives useful information about the subsequent values that can be observed. By (2.4) one
quantifies how much this information helps, and, so far, we have only an analytical under-
standing of the source of (1/6)logn. A genuinely probabilistic understanding of this term

remains elusive.

Since (2.6) holds for all n and since (2.4) is only asymptotic, it also seems natural to ask if
there is a relation between $(n) and s(n) that is valid for all n. There is such a relation if
one gives up the logarithmic gap.

Theorem 2 (Selection for Random Permutations vs Random Sequences). One has for all
n=12,... that

s(n) < s(n).

Here we should also note that much more is known about s(n) than just (2.6); in particular,
there are several further connections between s(n) and 5(n). These are taken up in a later

section, but first it will be useful to give the proofs of Theorems 1 and 2.

The larger context for the problems studied here is the theory of Markov decision processes
(or MDPs) which is closely tied to the theory of optimal stopping and the theory of on-line
algorithms (cf. Puterman (1994), Shiryaev (2008), and Flat and Woeginger (1998)). The
traditional heart of the theory of MDPs is the optimality equation (or Bellman equation)
which presents itself here as the identity (2.7). One of our main motivations has been the
expectation that (2.7) gives one an appropriate path for examining how one can extract

delicate asymptotic information from max-type non-linear recursions of the kind that oc-



cur in the theory of MDPs. In this respect, it seems hopeful that tools that parallel the
comparison principles of Section 2.3 and the approximate solutions of Section 2.4 may be

broadly applicable, although the details will necessarily vary from problem to problem.

The proof of Theorem 1 takes most of our effort, and it is given over the next few sec-
tions. Section 2.2 develops the basic recurrence relations, and Section 2.3 develops stability
relations for these recursions. In Section 2.4 we then do the calculations that support a
candidate for the asymptotic approximation of s(n), and we complete the proof of Theorem
1. Our arguments conclude in Section 2.5 with the brief — and almost computation free —
proof of Theorem 2. Finally, in Section 2.6 we discuss further relations between s(n), s(n),

and some other closely related quantities that motivate consideration of two open problems.
2.2. Recurrence Relations

One can get a recurrence relation for s(n) by first step analysis. Specifically, we take a
random permutation 7 : [1 : n+1] — [1 : n+1], and we consider its initial value w[1] = k. If
we reject 7[1] as an element of our subsequence, we are faced with the problem of sequential
selection from the reduced random permutation 7’ on an n-element set. Alternatively, if we
choose 7[1] = k as an element of our subsequence, we are then faced with the problem of
sequential selection for a reduced random permutation 7 of the set {k+1,k+2,...,n+1}
that has n+ 1 — k elements. By taking the better of these two possibilities, we get from the

uniform distribution of 7[1] that

1 n+1
s(n+1)= i kz_lmax{s(n),l—i—s(n—i—l—k:)}. (2.7)
From the definition (2.2) of s(n) one has s(1) = 1, so subsequent values can then be

computed by (2.7). For illustration and for later discussion, we note that one has the

approximate values:



n 1 2 3 4 ) 6 7 8 9 10

s(n) 1 1.5 2 2375 2725 3.046 3.333 3.601 3.857 4.098
Von | 1.414 2 2449 2828 3.162 3.464 3.742 4 4.243  4.472.

Here we observe that for the 10 values in the table one has s(n) < v/2n, and, in fact, this
relation persists for all 1 < n < 174. Nevertheless, for n = 175 one has v/2n < s(n), just as

(2.4) requires for all sufficiently large values of n.

We also know from (2.2) that the map n +— s(n) is strictly monotone increasing, and, as a

consequence, the recursion (2.7) can be written a bit more simply as

s(n+1)=

max {(n—k‘—l—l)s(n)—l— > {s(z’)—i—l}} (2.8)

n+ 1 1<k<
+ =R i=n—k+1

_ max {(nk+1)s(n)+/€+ z": s(z)}

 n411<k<
T 1 1gksn i=n—k+1

In essence, this recursion goes back to Baer and Brock (1968, p. 408), and it is the basis of

most of our analysis.
2.3. Comparison Principles

Given amap ¢ : N — R and 1 < k < n, it will be convenient to set
H(n,k,g) =k+(n—k+gn)+ > g(i), (2.9)

i=n—k+1

so the optimality recursion (2.8) can be written more succinctly as

s(n+1) = max H(n,k,s). (2.10)

n+ 1 1<k<n

The next two lemmas make rigorous the idea that if ¢ is almost a solution of (2.10) for all

n, then g(n) is close to s(n) for all n.



Lemma 2.1 (Upper Comparison). If 6 : N — RT, 1 < g(1) + (1), and

< > .
o 1r§n];fx§XnH(n,k,g) <gn+1)+d(n+1) foralln>1, (2.11)
then one has
s(n) < g(n) + 25(1) for alln > 1. (2.12)
i=1

Proof. We set A(i) = 6(1)+d(2)+---+ (i), and we argue by induction. Specifically, using

(2.12) for 1 < i < n we have

n

H(n,k,s) =k+ (n—k+1)s(n)+ > s(i)
i=n—k+1

<k+(n—k+1)(gm) +Am)+ > {g()+A®0)}
i=n—k+1

so by monotonicity of A(-) we have

1
H(n,k,s) <
n+1 n+1

H(n,k,g) + A(n).

Now, when we take the maximum over k € [1 : n], the recursion (2.8) and the induction

condition (2.11), give us

<
s(n+1) < i lréll?%(nH(n, k,g) + A(n)

<gln+1)+d(n+1)+AMn)=gn+1)+An+1),

so induction establishes (2.12) for all n > 1. O]

Naturally, there is a lower bound comparison principle that parallels Lemma 2.1. The
statement has several moving parts, so we frame it as a separate lemma even though its

proof can be safely omitted.



Lemma 2.2 (Lower Comparison). If § : N — Rt g(1) —6(1) <1, and

gn+1)—0(n+1) <

o 1211%}{71[{(”’ k,g) for allm >0,

then one has
n

g(n) — Zé(z) <s(n) foralln>1.

i=1

2.4. An Approximation Solution

We now argue that the function f: N — R defined by

f(n) =v2n + élogn7

gives one an approximate solution of the recurrence equation (2.8) for n +— s(n).

Proposition 2.3. There is a constant 0 < B < 0o such that for alln > 1, one has

“n+1 |1<k<n

B2 < 1 { max H(n, k, f)} — f(n+1) < Bn™%2

FIRST STEP: LOCALIZATION OF THE MAXIMUM

To deal with the maximum in (2.14), we first estimate

k*(n) = locmaxy H(n,k, f).

From the definition (2.9) of H(n, k, f) we find

H(nak+1af)_H(n7kvf):1_f(n)+f(n_k)a

(2.13)

(2.14)

and, from the definition (2.13) of f, we see this difference is monotone decreasing function

10



of k; accordingly, we also have the representation
E*(n) =14+ max{k:0<1— f(n)+ f(n—k)}. (2.15)
Now, for each n = 1,2, ... we then consider the function D,, : [0,n] — R defined by setting

Dp(z)=1—f(n)+ fn—x)=1-{V2n - /2(n — )} — é{logn—log(n —x)}.

This function is strictly decreasing with D,,(0) = 1 and D, (n) = —o0, so there is a unique

solution of the equation D, (xz) = 0. For = € [0,n) we also have the easy bound

X

2n
Dy(z)=1- ;/Q(R_x) \}ﬁdu— élog(n/(n—w)) <1- T

This gives us D, (v/2n) < 0, so by monotonicity we have x,, < v/2n.

To refine this bound to an asymptotic estimate, we start with he equation D, (z,) = 0 and

we apply Taylor expansions to get

1= Va0 {1 (1 )2} élog(l — zn/n)
= \/%{;i:l + 02 /n?)} + Ola/n).

By simplification, we then get
V2n =z, + O(22 /n) + O(z,/n'/?) = z, + O(1), (2.16)

where in the last step we used our first bound z,, < v/2n.

Finally, by (2.16) and the characterization (2.15), we immediately find the estimate that

we need for k*(n).

11



Lemma 2.4. There is a constant A > 0 such that for all n > 1, we have

Von — A< k*(n) < vV2n + A. (2.17)

Remark 2.5. The relations (2.16) and (2.17) can be sharpened. Specifically, if we use a
two-term Taylor series with integral remainders, then one can show v2n—2 < z,,. Since we
already know that x,, < v/2n, we then see from the characterization (2.15) and integrality of
k*(n) that we can take A = 2 in Lemma 2.4. This refinement does not lead to a meaningful

improvement in Theorem 1, so we omit the details of the expansions with remainders.
COMPLETION OF PROOF OF PROPOSITION 2.3

To prove Proposition 2.3, we first note that the definition (2.9) of H(n, k, f) one has for all
1 <k <n that

1 1 k—1
e H k) = f0) + {k—‘ (f(n)—f(n—i))} (2.13)

The task is to estimate the right-hand side of (2.18) when k = k*(n) and k*(n) is given by
(2.15).

For the moment, we assume that one has k < D+/n where D > 0 is constant. With this
assumption, we find that after making Taylor expansions we get from explicit summations

that

= = = logn  log(n —1)
Z(f(n) (n—1) Z(\ﬁ v2 n—z>+z< 5 )

=1 =1

Bl £ o 3)

where the implied constant of the remainder term depends only on D.
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We now define r(n) by the relation k*(n) = v2n + r(n), and we note by (2.17) that

|r(n)| < A. Direct algebraic expansions then give us the elementary estimates

(k*(n) — Dk*(n) 1 _
12n =g ol )
and
(k*(n) = DE*(n)(2k*(n) —1) 1 o1/
24n+/2n 6 + ol 1 2)7

where in each case the implied constant depends only on A.

Estimation of the first summand of (2.19) is slightly more delicate than this since we need

to account for the dependence of this term on r(n); specifically we have

(k*(n) = DEk*(n)  (V2n+7(n) —1) (V2n+r(n))

2v/2n 2v/2n
=/n/2+7r(n) - % +0(n~Y?).

Now, for a pleasing surprise, we note from the last estimate and from the definition of £*(n)
and r(n) that we have cancelation of r(n) when we then compute the critical sum; thus,

one has simply

k*(n)—1

Fm) = Y (Fn) ~ fn— i) = /a2 + 5+ O(n™12) (2.20)

i=1
Finally, from the formula (2.13) for f(-), we have the Taylor expansion
fin+1) = f(n) = =+ —+0(n~*?), (2.21)

so, when we return to the identity (2.18), we see that the estimates (2.20) and (2.21) give
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us the estimate

1 { max H(n, k, f)} — 1)

n+1 |1<k<n

1 1
=— <\/n/2 +gt 0(n1/2)> + f(n) = f(n+1) = O(n3/?).
Here the implied constant is absolute, and the proof of Proposition 2.3 is complete.
COMPLETION OF PROOF OF THEOREM 1

Lemmas 2.1 and 2.2 combine with Proposition 2.3 to tell us that by summing the sequence

n=3/2, n=1,2,... and by writing ((z2)=14+27*+3"%4--- one has
|s(n) — f(n)| <{(3/2)B < (2.62)B for alln > 1.

This is slightly more than one needs to complete the proof of Theorem 1.
2.5. Proof of Theorem 2

The sequential monotone selection problem is a finite horizon Markov decision problem with
bounded rewards and finite action space, and for such problems it is known one cannot
improve upon an optimal deterministic strategy by the use of strategies that incorporate
randomization, Bertsekas and Shreve (1978, Corollary 8.5.1)cf.. The proof of Theorem 2
exploits this observation by constructing a randomized algorithm for the sequential selection

of a monotone subsequence from a random permutation.

We first recall that if e;, i = 1,2, ...,n+1 are independent exponentially distributed random

variables with mean 1 and if one sets

egtex+---+e
e +ext o tentt’

then the vector (Y1, Ya,...,Y,) has the same distribution as the vector of order statistics
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(X)), X(2)s+--» X)) of an ii.d. sample of size n from the uniform distribution (see e.g.
Feller (1971), p. 77). Next we let A denote an optimal algorithm for sequential selection
of an increasing subsequence from an independent sample X1, Xo, ..., X}, from the uniform
distribution, and we let 7(.A) denote the associated sequence of stopping times. If EZ(A)
denotes the length of the subsequence that is chosen from from X, Xs,..., X, when one
follows the strategy 7(A) determined by A, then by optimality of A for selection from
X1, Xo,..., X, we have
3(n) = supE[LT] = E[LTY)].
T

We use the algorithm A to construct a new randomized algorithm A’ for sequential selection
of an increasing sequence from a random permutation 7 : [n] — [n]. First, the decision

maker generates independent exponential random variables e;, + = 1,2,...,n + 1 as above.

This is done off-line, and this step can be viewed as an internal randomization.

Now, for i = 1,2,...,n, when we are presented with 7[i] at time i, we compute X; = Y-
Finally, if at time ¢ the value X; would be accepted by the algorithm A, then the algorithm
A’ accepts 7[i]. Otherwise the newly observed value 7[i] is rejected. By our construction

we have

E[LZA)] = E[LTM] = §(n). (2.22)

Moreover, A’ is a randomized algorithm for construction an increasing subsequence of a
random permutation m. By definition, s(n) is the expected length of a monotone subse-
quence selected from a random permutation by an optimal deterministic algorithm, and by
our earlier observation, the randomized algorithm A’ cannot do better. Thus, from (2.22)

one has s(n) < s(n), and the proof of Theorem 1 is complete.
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2.6. Further Developments and Considerations

The uniform upper bound (2.6) was obtained by Bruss and Robertson (1991) as a conse-

quence of a bound on the expected value of the random variable

N(s) = max{yA\ > X< s}

i€A

where the observations {X; : i € [1 : n]} have a common continuous distribution with sup-
port in [0,00). This bound was extended in Steele (2016) to accommodate non-identically
distributed random variables, and, as a consequence, one finds some new bounds for the

sequential knapsack problems.

On the other hand, this extension does not help one to refine or generalize (2.6), since, as
Coffman et al. (1987) first observed, the sequential knapsack problem and the sequential
increasing subsequence problem are equivalent only when the observations are uniformly
and identically distributed. Certainly, one may consider the possibility of analogs of (2.6)
for non-identically distributed random variables, but, as even deterministic examples show,

the formulation of such analogs is problematical.

Here we should also note that Gnedin (1999) gave a much different proof of (2.6), and,
moreover, he generalized the bound in a way that accommodates random samples with
random sizes. More recently, Arlotto et al. (2015a) obtained yet another proof (2.6) as
a corollary to bounds on the quickest selection problem, which is an informal dual to the

traditional selection problem.

Since the bound (2.6) is now well understood from several points of view, it is reasonable
to ask about the possibility of some corresponding uniform bound on s(n). The numerical

values that we noted after the recursion (2.6) and the relation

s(n) = v2n + élognJrO(l) (2.23)
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from Theorem 1 both tell us that one cannot expect a uniform bound for s(n) that is as
simple as that for s(n) given by (2.6). Nevertheless, numerical evidence suggests that the
O(1) term in (2.23) is always negative. The tools used here cannot confirm this conjecture,

but the multiple perspectives available for (2.6) give one hope.

A closely related issue arises for s(n) when one considers lower bounds. Here the first steps
were taken by Bruss and Delbaen (2001) who considered i.i.d. samples of size N, where N,
is an independent random variable with the Poisson distribution with mean v. If now we
write 5(v) for the expected value of the length of the subsequence selected by an optimal
algorithm in the Bruss-Delbaen framework, then they proved that there is a constant ¢ > 0
such that

V2v — clogr < 5(v);

moreover, Bruss and Delbaen (2004) subsequently proved that for the optimal feasible

strategy T« = (71,72, ...) the random variable
E}'VV =max{k: X, <X, <--- <X, wherel<n <m--- <7 <N},

also satisfies a central limit theorem. Arlotto et al. (2015b) considered the de-Poissonization
of these results, and it was found that one has the corresponding CLT for Zg where the

sample size n is deterministic. In particular, one has the bounds
V2n — clogn < 5(n) < V2n.

Now, by analogy with (2.23), one strongly expects that there is a constant ¢ > 0 such that
5(n) = vV2n — clogn + O(1). (2.24)

Still, a proof this conjecture is reasonably remote, since, for the moment, there is not even

a compelling candidate for the value of c.
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For a second point of comparison, one can recall the non-sequential selection problem where

one studies

l(n) =Emax{k: X;; <X, <...< X, 1 <i; <ipg<---<ip <n}].

Through a long sequence of investigations culminating with Baik et al. (1999), it is now

known that one has

((n) = 2v/n — an'/% + o(n'/9), (2.25)

where the constant o« = 1.77108... is determined numerically in terms of solutions of a
Painlevé equation of type II. Romik (2014) gives an elegant account of the extensive tech-
nology behind (2.25), and there are interesting analogies between ¢(n) and s(n). Neverthe-
less, a proof of the conjecture (2.24) seems much more likely to come from direct methods

like those used here to prove (2.23).

Finally, one should note that the asymptotic formulas for n +— ¢(n), n — s(n), and n — s(n)
all suggest that these maps are concave, but so far only n — §(n) has been proved to be

concave (cf. Arlotto et al. (2015b, p. 3604)).
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CHAPTER 3 : Relative Records: Relaxed or Constrained

3.1. Relaxed or Constrained Sequential Selection Processes

Let X;,i=1,2,... be a sequence of independent random variables with a common continu-
ous distribution F' with support in [0,00), and let p denote a non-negative constant. Next,

we set 71 = 1, and we define a sequence of stopping times by taking

7, =min{j : X; > pX, |} for k> 1. (3.1)

The random variables of main interest here are then given by

R, (p) = max{k : 7, < n}. (3.2)

When p = 1 the times 73, k = 1, 2, ... are precisely the times at which new record values are
observed, and R, (1) is the total number of records that are observed in the time interval

[1:n]={1,2,...,n}.

The random variable R, (1) has been well understood for a long time. In particular, Rényi
(1962) found among other things that E[R,,(1)] ~ logn and Var[R,(1)] ~ log n; moreover,

he found that one has
R, (1) —logn
Viogn

where, as usual, the symbol = denotes convergence in distribution and N (0, 1) denotes the

= N(0,1), (3.3)

standard Gaussian distribution.

The cases p € (0,1) and p € (1,00) have not been considered previously, and they lead
to some novel phenomena. First, the distribution of R,(p) is no longer independent of F'.
Moreover, one finds that the asymptotic behavior is unlike the behavior that one finds for

the classical record process {R,(1) : n > 1}.
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The most interesting case is when p € (0,1) where, in comparison to the classical record
process, one has relazed the condition that is imposed on the condition for sequential selec-
tions. In this case one again has a central limit theorem, but it differs substantially from
Renyi’s. In particular, for p € (0,1) the mean and variance grow linearly and the summands

are not independent.

For the sake of brevity, we say a distribution function is in the selection class Sy, if there is
an L € (0,00) such that F(0) =0, F(L) = 1, and F is continuous and strictly monotone
on (0,L). For example, the uniform distribution on [0, 1] is in &1, and for any L > 0 the
truncated exponential distribution F(z) = (1—e~%)/(1—e %) is in Sy. For these examples,
one has a density, but, in general, a distribution in Sy, need not have a density.

Theorem 3 (Mean, Variance, and CLT when 0 < p < 1). If X;,i = 1,2,... are independent

and if F € Sp, then there are constants ji,(F) > 0 and o,(F) > 0 such that
E[Ra(0)] ~ nptp(F) and  VarRu(p)] ~ no?(F). (3.9

and one has a central limit theorem

Rn(p) — npp(F)
op(F)Vn

= N(0,1). (3.5)

After we develop some useful connections with the theory of Markov chains in Sections 3.2
and 3.3, the proof of Theorem 3 is given in Section 3.4. The main issues are the proofs of the
relations (3.4) and the proof of o2(F) > 0. Once these facts are in hand, the convergence
(3.5) then follows from general theory; for example, one can obtain (3.5) directly from
Arlotto and Steele (2016) Theorem 1, Corollary 2. Alternatively, with a page or two of
extra work, one can obtain (3.5) by first generalizing other known central limit theorems
for additive functionals of Markov processes. In either case, the proof that O’%(F ) >0isa

make-or-break step.
For a general F' € Sr, the task of determining the constants p,(F) and o,(F) seems
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intractable. Nevertheless, in the case of most interest when F' is the uniform distribution
U on [0, 1], there is at least an explicit series formula for the mean.
Theorem 4 (Moments for Uniform Distribution). If p € (0,1) and if the random variables

Xi, i =1,2,... have the uniform distribution U on [0, 1], then we have
po(, N e (N (N (Y (2N (P
o 3\" " 2) "2\ 3) 5\ )\ )\

The proof of Theorem 4 is then given in Section 3.5 where we also develop an equation

pp(U) = 1—

of the pantograph type for the stationary distribution of the driving Markov chain. We
do not solve this equation, but we use it to derive the Mellin transform for the stationary

distribution. This we use in turn to get the required explicit formula (3.6) for p,(U).

While there is little hope of finding a correspondingly explicit representation for ag (F) even
for F'= U, we do find in Section 3.4 that there is a useful series representation (3.26) for

o2(F).

When p > 1, one no longer has a central limit theorem. Instead one has almost sure
convergence to an unbounded random variable with a well-behaved moment generating
function.

Theorem 5 (Distributional Limit when p > 1). If F € S; and if F(z) = O(x) in the
neighbourhood of 0, then for each p > 1 there exists an unbounded random variable N, with

moment generating function

Elexp(sN,)] < oo for |s| < logp, (3.7)

such that with probability one Ry(p) /* N, as n — oo.

The case p > 1 of the sequential selection process can be viewed as a “degenerate case”
where one no longer has a central limit theory. This is less interesting than the cases p =1

or p € (0,1) where one has central limit theorems of differing kinds. Still, for completeness,

21



we give a brief — but complete — analysis of this case in Section 3.7.

Section 3.8 then gives refinements of several kinds of Renyi’s classic formula for the expected
number of records. For example, consider the number RY (1) of records that are larger than

x. When F is the uniform distribution on [0, 1], we find
BIRS(1)] = H, - Y& (3.5)
k=1

This formula recaptures Renyi’s classic harmonic sum when we set x = 0, yet its proof shares
nothing in common with classic argument of Rényi (1962). Moreover, the methods that lead
one to (3.8) yield further generalizations for the quantities E[RY(p)] and lim,{E[R?(p)] —

E[R}(p)]} that are defined more fully in Section 3.8.

In Section 3.9 we make more explicit the senses in which the values chosen by the selection
process (3.1) can be viewed as relaxed or constrained records. We also show how in the
relaxed case p € (0,1), the selected values can differ greatly from any notion of approximate
record, even though our selection process and various approximate record processes may

both contain the record process as limiting cases.
3.2. Representation as a Markov Additive Functional

For k = 1,2,... we take Y; to be the last value that has been accepted by the selection

process during the time interval [1 : k|; that is, we set
Yr = X, where j = max{m : 7, <k}.

The values Yz, k = 1,2, ... determine a Markov chain where if one is in state x then one stays
in state = with probability F'(px) and with probability 1 — F'(px) one moves to a point y in
the set [px, 1]\ {«} that is chosen according to the probability measure dF(y)/(1 — F(pz)).

In other words, if we also set Yy = 0 then the process {Y} : k € [0 : 00)}, has the transition
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kernel
L

K,r(x,A) = F(pr) 1(x € A) —l—/ I(y € A)dF(y). (3.9)

px

Now, in terms of the Markov chain {Y; : 0 = 1,2,...} we have the representation

n

Ru(p) =D 1[Yi # Vi1, (3.10)

k=1

since we accept a new value precisely at the times when the state of the chain {Y;,} changes.
Most of Theorem 3 follows from this representation after we establish a few analytic prop-
erties of the Markov chain {Y},}.

Remark 3.1. Here one should note that by definition R, (p) is a function of the independent
random variables {X1, Xo,...X,}, and we simply write E[R,(p)] and Var[R,(p)] when
R, (p) is viewed in this way. On the other hand, by the representation (3.10), we can also
view R,(p) as a function of {Y1,Y>,...,Y,} and the distribution of this sequence depends
on the initial distribution of the Markov chain. When we take the second point of view it is
natural (and necessary) to write E,[R,,(p)] and Var,[R,(p)] whenever Y; has the distribution
w. By construction, we always have Var[R,,(p)] = Varo[R,(p)] and E[R,(p)] = Eo[Rn(p)]-

3.3. The Dobrushin Coefficient and Its Consequences

There are several ways one can investigate the Markov chain defined by (3.9), but here it
is especially efficient to first estimate the Dobrushin coefficient.

Definition 3.2 (Dobrushin Coefficient). If K is a Markov transition function on a Borel
state space X and if B(X) denotes the collection of Borel subsets of X', then the Dobrushin

coefficient 6(K) of the kernel K is defined by
6(K) = sup |K (21, A) — K (22, A)|.

z1,22€X, AEB(X)

Lemma 3.3 (Dobrushin Coefficient for K, r). If F' € S and if K, is the transition
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kernel given by (3.9), then one has
0K,y r) < F(pL) < 1. (3.11)

Proof. If we assume x; < x2, then for any Borel set A C [0, L] we have from (3.9) that

ef
A d= Kp,F(-fUl’A) — Kp7F(.%'2, A)

1 1

Mye@dmw—meﬂmaem—/ 1(y € A)dF(y)

pT2

=F(px1)1(z1 € A

) Um e A+
pT2

= F(pz1) L(x; € A) — F(px2) L(x2 EA)—l—/ I(y € A)dF(y).

pT1

After majorizing the positive terms, we see from monotonicity of F' that
A < F(pay) + {F(pws) — Flpa1)} = F(pns) < F(pL).
On the other hand, if we keep just the one negative terms, then we have
A > —F(pzz) =2 —F(pL),
and these two bounds on A complete the proof of (3.11). O

Nagaev (2015) proved that for any Markov chain with kernel K and Dobrushin coefficient
d(K) < 1, there is a probability measure v on the state space X’ that is stationary under
K, and, most notably, if K™ denotes the n step transition kernel, then one has the total

variation bound

K™ (2, A) — v(A)| < 2[6(K)]" forallz € X and A € B(X). (3.12)

Now, we let {Z, : n = 0,1,2,...} be the Markov chain associated with the kernel K,

and we write E; and E, for the corresponding expectation operators where accordingly as
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Zy =x € X or Zy ~ v. By the total variation bound (3.12) and approximation by step
functions, one can then check that for any bounded measurable g : D = X* — R, one has

for any fixed 0 < i < j < k and n — oo that
Eul9(Zn: Zntis Zntjs Znii)] — Eu[9(Zo, Ziy Zj, Zx)] = O(||9l[[6(K)]™), (3.13)

where here we set ||g||oc = sup,ep |9(v)].

The implied constant in (3.13) is absolute; in fact, it can be taken to be 4. Naturally, we
also have analogous relations for functions of fewer than four variables or more than four

variables. Here we only need (3.13) and its analog for functions of two variables.
3.4. When p < 1: Proof of Theorem 3

We now restrict attention to the Markov chain with transition kernel K, r(-,-) given by
(3.9). By the bound (3.11) we have § = §(K, r) < 1, so the stationary distribution exists.
We consider two initial distributions: in the first case we take Yy = 0; and in the second
case we assume that Yy has the stationary distribution v. By the two variable analog of

(3.13) for g(Yn, Ynt1) = 1(Y,, # Yoy1) we have
Eo[1(Yi1 # Vi) = E[1(Yy # Y1)] 4+ O(6%). (3.14)
From (3.14) and the representation (3.10), we see by geometric summation that

Eo[Rn(p)] = Y Eo L([Yio1 # Yi)] = nE,[1(Yp # Y1) + O(1) (3.15)

k=1
= n/ / 1[s # t] K, r(s,dt) dv(s) + O(1),
xJx

where the double integral is just E, [1(Yp # Y1)] written in longhand. This gives us the first

assertion (3.4) of Theorem 3 in a form that is a bit more explicit; in particular, (3.15) tells
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us that in (3.4) we have

:/ / 1[s # t|K, r(s,dt) dv(s). (3.16)
XJXx

To find the asymptotic variance of R, (p), we introduce two sequences of random variables:

Ur = 1[Yi—1 # V3] — Eo(1[Yy—1 # Vi) and Vi = 1[Ypy # Y] — By (1[Yy1 # Yi]).

Both Uy and Vj, are functions of the Markov process {Y; : £ = 0,1,...}, so in particular,
both {U,,} and {V,,} depend on the initial value Y. For clarity one should note that Uy has
mean zero when Yy = 0 and Vj, has mean zero when Yj follows the stationary distribution

V.

The random variables Uy and Vj, differ by a constant that depends on k, and by (3.14) the

constant is not larger than O(6%). Thus, by the representation (3.10), we have
k=1

Now, when we expand the second sum in (3.17) and write

n n—1n—t
Eo [(ka)ﬂ = Z olVA +23 S Eo[ViVigy] & A, + B, (3.18)
k=1 k= i=1 j=1

To estimate the first sum A,, of (3.18), we apply (3.13) just as we did in the derivation of
(3.14), and this time we find

Eo[Vi?] = E,[Vif] + O(6%) = E, [V{’] + O(6").
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Summation then gives us

A, =nE,[VE +0(1). (3.19)

To deal with the double sum B,,, we first need a lemma to help us estimate the summands
of B,.

Lemma 3.4. For any initial distribution p one has
Eu[ViViss) = O(&7)  for alli,j > 0. (3.20)

Proof. To exploit the Markov property for the chain {Y,, : n =0,1,...}, we first condition

on Y;_1 and Y; and note that
Eu[ViVigj] = BulViEu[Vigj [ Yier, Yil] = Bu[ViEu[Vig; [ Yill = Eu[ViEy, [V5]]. - (3.21)
If we use (3.13) as before, then we see that for all x € X we have
E;[Vn] =E,[V,] + 0(8"),

and the implied constant does not depend on . When we insert this in (3.21) and recall

that the definition of V,, gives us E,[V;,] = 0, the proof of the lemma is complete. O

Lemma 3.4 helps us deal with cross terms with large j, but we also need a relation that

deals with arbitrary j. Here, we again use (3.13) to get for all j > 0 that
Eo[ViVii] = B [ViVigy] + O(5") = E,[ViVig] + O(&"). (3.22)

Now, to calculate By, we first apply Lemma 3.4 to the cross terms Eq[V;Vi1;] where i < j
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and then apply (3.22) to the rest to obtain

-1 J [(n—1)/2] n-1

B,=2> Y 0()+2 {Ey[vlvw] + 0(5%’)}. (3.23)
j=1i=1 j=1  i=j+1
We have the sums
J n—1 ‘ [(n=1)/2] n—1 n—1 ‘
ZZO (67) =>_0(j67) = 0(1), Z Y08 =) 0(js") = 0(1)
j=1i=l J=1 =1 =5+l J=2
and we have the sum
[(n=1)/2] n-1 L(n—1)/2]
Yoo D EMWMVigl= Y (n—j-DE[ViViy),
=1 i=j+1 j=1
0 (3.23) becomes
l(n—1)/2]
B,=2 Y (n—j—-1DE,WViyl+0(1). (3.24)
j=1

In summary, (3.18), (3.19) and (3.24) give us the key relation

[(n—1)/2] i+1
(1- 15 Bvivil+oam, @2

n

and by Lemma 3.4 the summands are absolutely convergent, so we can take the limit in

(3.25) to get

def

lim ~ Var[Ra(p)] = E,[VZ] +2 3 B [ViVi ] 2 02(P). (3.26)

n—oo N .
Jj=1

This completes the proof of the asymptotic relations for the mean and variance of R, (p).
When these relations are coupled with the bound (3.11) on the Dobrushin coefficient, the
central limit theorem part of Theorem 3 is almost automatic. Specifically, after one shows

that the constant UZ(F) defined by (3.26) is strictly positive, then, without any further
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work, we get (3.5) from Arlotto and Steele (2016), Theorem 1 Corollary 2.

Now, to work toward a lower bound for o%(F), we let F. be the o-field generated by the

P
evenly indexed terms Yy, Yo, Yy ..., and to facilitate calculations that are conditional on the
“even o-field” F. we write
n—1
Ron(p) =Y W, where Wj = 1(Yaj41 # Ya;) + 1(Yaj42 # Yoj41).
§=0

We already know by (3.26) that Var[R,(p)] = Varg[R,(p)] ~ nag(F ), and we have also

shown that Varg[Ry(p)] ~ Var,[Rn(p)]. Thus, to show o3(F) > 0, it suffices to show that
there is a constant a > 0 such that Var,[Ra,(p)] > na for all n > 1. We begin by studying

the conditional variances of the individual summands of Ray(p).

For specificity, we should also note that for each j the distribution of W; given F. does
not depend on the initial distribution; accordingly we simply write Var[WW;|F.] for the
corresponding conditional variance. On the other hand, the distribution of the random
variable Var[W;| F.| depends on the distribution of Yy, so, for its expectation when Yy ~ v,
we need to write E, [Var[W;| F.]].

Lemma 3.5. For all p € (0,1) and F € §1,, there exists a constant ap(p) > 0 for which
one has

E, [Var[W;| Fe]| = E, [Var[W;|Ya;, Yaj12]] > ar(p) for all j > 0.

Proof. When we condition on F. = o{Yp, Y,...}, the distribution of W} requires the con-
sideration of two cases. First, if we have Y3; = Y342, then with probability one we have

Ys; = Yo;41 = Y249 and hence W; = 0. Second, given F, with Ya; # Y5;9, then we have

0, with probability 0,
Wj;=4 1, with probability F(pYa;), (3.27)

2,  with probability 1 — F(pYa;).

From the representation (3.27) and the strict monotonicity of F' € Sr, we see there is a
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constant Cr(p) > 0 such that for all j >0
Var[W; | Yo;, Yaj40] 2 Cp(p) 1[Yz; # Yaji2, pL < Yaj, Yaji0 < L. (3.28)
If we set Z = 1Y # Yaj42, pL < Ya;,Yo40 < L] and
A={Ys; € [pL, L]}, B = {Yaj11 € [pL, L], Yaj 41 # Ya;},C = {Y2j42 € [pL, L]}.
Then Z > 1(ANBNC) and
E,[Z] > P,(AnBNC)=P,(A)P,(B|A)P,(C|A,B).

Each term on the right hand side is at least 1 — F/(pL) because any upcoming observation

that falls within [pL, L] will be accepted. This gives us
E,[Z] > (1 - F(pL))’,

so by (3.28) one can take ap(p) = Cr(p)(1 — F(pL))® > 0 to complete the proof of the

lemma. O

This is last of the tools we need to get a non-trivial lower bound for ag (F). By the law of
total variance and by Lemma 3.5, we have

Var[Ran(p)] = E[Var[Ran(p)| Fe]] + Var[E[Ran (p)]] Fell

> E[Var[Rgn(p)| Fell = E [ Y Var[W| Fel] = nor(p) (3.29)
j=1

where the last equality is due to the independence between W; and W; given F. when i # j.

Finally, given Lemma 3.5 and our earlier observations, the proof of Theorem 3 is complete.
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3.5. Proof of Theorem 4

Before we take up the proof of Theorem 4 in earnest, it will be useful to know that when
F' is the uniform distribution we can work with the density of the stationary distribution
of K, . To get the required absolute continuity we begin with a general inequality.

Proposition 3.6. If F' € §;, and if v is the stationary measure for the transition kernel

K, r given by (3.9), then for all Borel A C X one has

1 L
) < o /0 1(y € A)F(dy). (3.30)

Proof. Stationarity of v and the definition of K, i give us

V(A):/XKP7F($,A)V(d$)
L
— [ 1 e AF@awtdn) + [ [ 1 e )10 <y < Dl Fldy
X 0 X

L
< WAYF(oL) + / 1(y € A)F(dy),
0
from which we get (3.30). O

From (3.30) we see that v is always absolutely continuous with respect to F'. Consequently,
if £ is absolutely continuous with respect to Lebesgue measure dz, then both v and F' have

densities with respect to dx.

Now we take F' to be the uniform distribution on [0,1], and we simply write K,, M, and
m,, for the corresponding transition kernel, stationary distribution function and density

function. The definition of K, and equation of stationarity now tell us

1 1
mp(y) = /0 () K (2, ) d = pym,(y) + /0 mp(@) 1(pe < y) dr,
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or, in other words,

mp(y) — pymo(y) = My(y/p) for all y € [0,1] (3.31)

Perhaps the quickest way to extract what we need from this key identity is to first introduce

the Mellin transform of m(-):

1
mmgéfmmm

From (3.31) and the fact that M,(x) = 1 for > 1 we then find

s+1

1 P 1—
p
(s, p) — pd(s + 1, p) :/ 2 M, (x/p) dx :/ P My(o/p)do+ L (3.32)
0 0
A change of variables and integration by parts give us
p ! 1- 1
J T e R
0 0 s+1
50 (3.32) becomes
1 _p8+1¢ S+1ap
o(s,p) — pd(s +1,p) = ( )7 (3.33)
s+1
which we can rewrite as a recursion,
1 ps+1
= — 1, p). 3.34
o0 = s+ (0= 2y ) ol + 1) (3.3)
Proposition 3.7 (Mellin Transform of the Stationary Density). We have
= 1
= h = d 3.35
o(s,p) kz_oak(s) where ap(s) T+, " (3.35)
1 ps+i
= — — k> 1.
mgs+m4HQ HJ for k >

=1
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Proof. We just need to check that (3.35) satisfies the recursion (3.34). In fact we have

k 1+i

ps—i-l 1 ps+1 ps-l—
_ 1) = _ _
<p s+1>a’“(s+) e st ) e o

so summing from k£ = 0 to oo gives us

ps+1 0
(= 27 ) sts+ 100 = zakﬂ 0

Since ag(s) = 1/(1 + s), we have proved

p8+1 1
- 1
(p S+1> ¢(s+1,p) Zak O vt

giving us the required recursion (3.34). O

For the first moment of m,(-) we therefore find

! 1 1 2 1 2 3
/O $mp($)dx:¢(17p):2+3<pp2>+4<[)p2> (P%)Jr"',

and this is just what we need to complete the calculation of p,(U). Specifically, if we
specialize the general formula (3.16) for pu,(F') to the uniform distribution function U, we

get some substantial simplification. Specifically, we have

1 1
o (U) = E,[1(Yp # Y1)] = /0 /O K, (2,y) 1z # y)m,(z) dzdy
1 1
= /0 /0 L(pz < y)mp(x)dzdy =1 — po(1, p),

and, together with the expansion for ¢(1, p), this completes the proof of the first assertion
(3.6) of Theorem 4.

We will see in the next section that (3.31) is from a class of equations with a rich theory.
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Nevertheless, there are situations where one can make use of (3.31) without knowing its

solution and without appealing to wider theory.
3.6. The Stationary Measure and the Pantograph Equation

The first-order non-autonomous pantograph equation for X € (0, 00) is the functional differ-
ential equation

H'(t)=a(t)H(t) + b(t)H(A\t) t>0. (3.36)

The connection to the problems considered here is that for 0 < p < 1 the equation (3.31) for
the distribution function M, of the stationary measure of the transition kernel K,y (-,-) =

K,(-,-) can be written as

1

Thus, on the interval [0,1], the distribution function M, satisfies the pantograph equation
(3.36) with a(t) =0, b(t) =1/(1 — pt),and A =1/p > 1.

The pantograph equation occurs in many contexts, perhaps the earliest of which was a
number of theoretic investigations of Mahler (1940) that exploited the equation H'(t) =
bH (At), H(0) = 1 and its solution

H(t) = l' NG-D/2pi4i (3.38)
=07

which is an elegant — and useful — generalization of the exponential function.

The two-term pantograph equation (3.36) has mostly commonly occurred in the autonomous
case where a(t) and b(t) are constant, and the equation got its name from Fox et al. (1971)
where the autonomous equation was used to model the collection of current by the panto-
graph (or flat pan connection head) of a tram. The subsequent investigation of Kato and
McLeod (1971) showed the full richness of the equation, and, ever since, the pantograph

equation has been regularly studied and applied, see e.g. Iserles (1993), Derfel and Iser-
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les (1997), Guglielmi and Zennaro (2003), Saadatmandi and Dehghan (2009), Yusufoglu

(2010), and Hsiao (2015), all of which contain many references.

In the non-autonomous case, essentially all work on (3.36) has been asymptotic or numerical.
Moreover, all of the recent work focuses on the case when A € (0,1), and there is a sound
scientific reason for this. Specifically, for (3.36) to be useful in an engineering or scientific
context, it seems natural to assume that it is a causal equation; that is, the current rate of

change H'(t) is required to be determined by information that is available at time t.

A noteworthy feature of the stationarity equation (3.37) is that it is not a causal equation;
one has A = 1/p > 1. The other interesting feature of (3.37) is that it was essentially solved
in Section 3.5, at least in the sense that Proposition 3.7 gives explicit series expansion of

its Mellin transform.

Mellin transforms have rarely been used in the theory of the pantograph equation; we know
of only one other case. Specifically, van Brunt and Wake (2011) used Mellin transforms
to study a second order non-autonomous pantograph equation. Intriguingly, their equation
was also acausal, and it also had a probabilistic origin. Specifically, it arose as the Fokker-
Plank equation in a diffusion model for a population of cells, and the acausal parameter

came from a splitting constant for cell division.

For the moment, we do not make further use the pantograph equation. Nevertheless, given
the richness of the theory of the pantograph equation, the connection may prove fruitful
over time. The benefits may even flow both ways. For example, calculations like those of
Section 3.5 provide explicit Mellin transforms for the solutions of some other pantograph
equations in addition to (3.37). Such explicit solutions seem worth pursuing, even though

it would be a distraction for us to do so here.
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3.7. When p > 1: The Proof of Theorem 5

We now consider an infinite sequence Xi, Xs,... of independent random variables with
distribution F' € §7. We then fix p > 1, and we again use the recursive definition (3.1) to

specify the set of selection times {7 : k = 1,2,...}. If we then set
N, =min{k : X;, € (L/p,L]} and M, = min{r, : X, € (L/p, L]}

then the number of selections one makes from {X;, Xo,..., X, } is simply given by R, (p) =
Roin(n, Mp)(p), since after we have made a selection larger than L/p no further selections

are possible. Also, for each w € {w: M,(w) < oo}, we have

Rn(p) = Rmin(n,Mp) (/0) e RMP(ﬂ) = Np as n — o0,

so the main task is to prove the moment generating function bound (3.7).

Since each value accepted by the selection process with p > 1 must be at least a factor of

p greater than the preceding selection we have the bounds
N, <max{k: p*"'X; <L} <1+1logL/logp—log X1/ logp,
so for the moment generating function we find

L
Elexp(sN,)] < exp(s)Ls/long[st/ logp] = exp(s)Ls/log”/ g8/ logrg
0

We know the integral is finite when F'(x) = O(x) near 0 and |s| < log p, and this gives us
(3.7).

To show N, is unbounded, we first fix an integer M > 1, and we consider the disjoint
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subintervals {I1, I2,...,Ip} of [0, L] that are defined by setting

k—1 k—1
—1)L - (p—1)L .
Iy = lag, b] = (p]\/[_)l p’,(pM_)lg pl, 1<k<M.
P i=1 p 1=0

The main feature here is that one has ag41/by = p > 1 for all 1 < k < M. If we have
X; el fori=1,2,... M, then all of the observations X7, Xo, ..., X are selected, so we

always have the inequality
M
H (Xy € I) < 1(N, > M).

Finally, by the independence of the variables X, 1 < k < M and the strict monotonicity
of F', we see that the expectation of the product is strictly positive. This gives us P(N, >
M) > 0 for all M > 1. Since M was arbitrary, we see that N, is unbounded, and the proof

of the theorem is complete.
3.8. Complements to Classical Record Theory

Here we consider the calculation of the expected number of selections where we assume that
there was a selection made at “time zero” that had value x € [0,1]. Formally, we modify
the definition (3.2) by first setting 7 = min{j : X; > px}. Next, for k > 2 we define 7, as

before by setting 7, = min{j : X; > pX,,_,}, and finally we set
R} (p) = max{k : 7, < n}. (3.39)

In this notation, Renyi’s classical formula for the expected number of records is

1 qe
E[RS(1)] = %d—fﬂn, (3.40)
k=1
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and the main goal of this section is to generalize this result in two ways. The immediate

goal is to show that

no_k
T
B[R (1)) = Hy — >0 0 (3.41)
k=1
and then in Theorem 6 we will get a closely related formula for E[RZ (p)].
We begin by using first step analysis to get a useful recursion for the quantities

gnp(@) € ERL(p)] and  gu(z) € gui(2).

Specifically, if we consider the first observation y = Xj, then X; is not accepted if y < pz,
and this happens with probability pz. On the other hand if y = X; € [px, 1] we do accept

X1, and accordingly we find the basic recurrence relation

1

gn—i-l,p(x) = ngn,p(x) + / [1 =+ gn,p(y)] dy. (3‘42)
pr

For general p € (0, 1), this equation offers considerable resistance; in essence, it is a linearized
non-autonomous pantograph equation in integrated form. Nevertheless, one can use (3.42)

to extract some interesting information, including refinements of some classical facts.

For example, if we take p = 1 in (3.42), then we can make some quick progress. Specifically,

if we write gy (z) for g 1(x) then differentiation and a nice cancellation give us

Ini1(x) = g, (7) — 1. (3.43)
We have g1(z) =1 —z, so gj(z) = —1 and repeated applications of (3.43) give us

gh(x) = —x —1, gh(x) = —2* — 2 — 1, and gj(z) = —2° — 2® — 2z — 1.
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In general, one has

/ n—1 n—2 1—2"
gn () = —x x —1=- T (3.44)
so integration over [0, z] gives us
x? x"
gn(x) = gn(0) — T T T o (3.45)

Now if we use the basic recursion (3.42) with = 0 and p = 1 we have from (3.45) that

1 1 1 1
. 1 w(y) dy = gn l—— =5
Int1(0) +/Og(y)y (0 +1- 7555 n-(n+1)
1
= g,(0 .
g()+n+1

By telescoping we then recover Renyi’s formula ¢,,(0) = H,,, but from (3.45) we now also

find our refinement of Renyi’s formula (and its approximation):
E[R%(1)] = H, Z ; 1ogn—Z—+7+—+0(1/n2), (3.46)

where v = 0.577 - - - is Euler’s constant.

For any 0 < p < 1, one can derive a representation of E[R?(p)] that is only a little less
explicit than (3.41). The correcting term is again a truncated power series, but in this case
principal term gy, ,(0) is no longer a well-known quantity.

Theorem 6. For all0 < p <1 and 0 <z <1 we have

gn,p( = 0gn p Z a; T, (347)

where a1 = p, az = p(p — p*/2), and a; = (p — p*/i)a;_1 for all i > 2.

Proof. To argue by induction, we first recall that g ,(z) = px for all 0 < 2 < 1, and this
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gives us by direct evaluation that (3.47) holds for n = 1. Next, from the basic recursion

(3.42) we have

1 1
gn—&-l,p(o) /0 1+ gn p( )ldy and gn+1,p(x) = p:L‘gmp(:U) +/ [1+ gn,p(y)]dya

px
so taking the difference gives us
pT
9k+1,p(0) - 9k+1,p($) = pT +/ [gn,p(?/) - gn,p(m)]dy. (3.48)
0
By the induction hypothesis we can expand the last integrand as
gn,p( — gn p Z az -r - y (3.49)

so from (3.48) and the defining relation a;11 = (p — p**1/(i + 1))a; we have

r N 1+1
/Op Zal$ —y' dy_z i<p_z+1> Zazﬂx (3.50)

Finally, from (3.48) and (3.50) we then get

n+1
gnt1,0(0) = Gny1,p(x Zaz ’

which completes the induction step. ]

Since 0 < a; < p', the identity (3.47) has an immediate corollary that underscores an
informative difference between the case when p € (0,1) and the case p = 1. Specifically, for
p =1 we see from (3.41) that the influence of = is unbounded, while the next corollary tells
us that for 0 < p < 1 the influence of the initial value x has only a bounded influence.

Corollary 3.8 (Insensitivity of the Initial Constraint). For all p € (0,1), n > 0, and all

0<z<y<1, one has

0< gnap(x) - gn,p(y) < ip (3.51)
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The bounds (3.51) suggest that we should take limits, and from the geometric convergence

in (3.49), we can define a continuous anti-symmetric function B : [0,1]?> — R by setting
i i . def
> aily' —a') = Tim {gn (x) = gnp(v)} = B(x,y). (3.52)

A useful feature of this function is that it leads to an alternative characterization of p,(U),

and it gives second proof of its series representation (3.6).

To derive the characterization, we subtract g, ,(z) from both sides of the basic recursion

(3.42), and we simplify to get the identity

1

Gns1,p(@) = gnpl(@) = (1 p) + / (900 (8) — Gnp(@)} dy.
px

Now, if we set x = 0 in the defining relation (3.52) and apply antisymmetry of B(-,-), then

we see that as n — oo one has

1 1
Gi1.0(0) — gup(0) = 14 /O B, (y,0) dy + o(1) = 1 - /0 B,(0,) dy + ol1).

We now sum over n € [0 : N]. By telescoping, division by N + 1, and taking limits we get

a new formula for the mean 1,(U) given by Theorem 4:

1
o) =1 [ B,(0.)dy. (3.53)

Finally, if we substitute the series expansion (3.52) for B,(0,y) into (3.53), we see that
term-by-term integration that (3.53) gives us a second derivation of the original formula
(3.6) for p,(U). In a sense, this integration also explains the presence of the harmonic

factors 1/2, 1/3, 1/4, ... in (3.6).

41



3.9. More Records: Relaxed or Constrained

For any p € (0,00) and any F' € §7, we can consider the set of selected values A(p) =
{X+,X+s,...}; these are formally defined by the stopping time recursion (3.1). The set

A(1) is exactly the set of record values, and more generally we have the relations

€(0,1) = A(1) C A(p) and pe (1,00) = Alp) C A(1), (3.54)

which give us a more explicit sense in which p € (0,1) relazes the record condition and

p € (1,00) further constrains the record condition.

The first relation of (3.54) is obvious since whenever X}, is record, then we have X > X, >
pX;, for all 7; < k. It is rather less obvious that for p > 1 one has the complementary
relation A(p) C A(1). To prove this by induction, we first note that X, = X; € A(p),
and by definition X is a record. Now we suppose by induction that the first n elements

{X5, X0, ..., X, } of A(p) are also all records.

There are two cases to consider. First, if 7,11 < co and X, = z, then we have 7,41 =
min{k : Xy > px}. This tells us that 7,11 is the first entrance time of the process Xi, Xo, . ..
into the interval [pz, L]. Since all such first entrance times are also record times, we see
that X, ., is a record, and induction gives us A(p) C A(1). In the second case we have
Tnt+1 = 00, and A(p) = { X+, X5y, ..., X7, }. We already have from our induction hypothesis
that {X,,, Xr,,..., X5, } C A(1), so again we get A(p) C A(1).

Despite the first relation of (3.54), it is generally inappropriate to think of the values
A(p) = {X5, : j = 1,2,...} are anything like “approximate records” when 0 < p < 1. To

make this distinction explicit, fix 0 < € < 1 and consider the events
A = { Xy, is selected and X, < emax{X; : i < k}}, (3.55)
where the random variables X;, i = 1,2... are independent and uniformly distributed on
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[0,1].

When Aj occurs, the selected value Xj is only a small fraction of the current maximum,
so it is not an approximate record (or a near-record) in any reasonable sense. Nevertheless,
with probability one, infinitely many of the events Ay, As, ... will occur, so infinitely often

the selected values are quite unlike records.

To see this, we first note that for any ¢ > 0 both of the sets [0,¢/2] and [1/2,1] have
positive probability under the stationary measure v for the associated Markov chain {Y,, :
n =1,2,...} of Section 3.2. Thus, they are also both recurrent sets for the chain. Now, if
at time k the chain enters [0, ¢/2] after having entered [1/2,1] at some time previous to k,
then the event Ay also occurs. The positive recurrence of the respective sets then tells us

that infinitely many of the events {A; : k =1,2,...} will occur with probability one.

This construction shows that there is a disconnection between the theory of the selection
process with 0 < p < 1 and the theory of the near records such as studied in Balakrishnan
et al. (2005), Gouet et al. (2007) or Gouet et al. (2012), but this construction does not tell
the whole story. In Section 3.8 we saw several instances where the technology of selection
processes could inform us about the classical record process. Still, it is reasonable to expect
that one has at least some analogous carry forward to the theory of near-records, but here

we cannot pursue that point except to acknowledge the possibility.
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CHAPTER 4 : Low Rank Matrix Recovery via Sensing the Range Space

4.1. The Low Rank Matrix Recovery Problem

Low-rank structure has been studied extensively in a wide range of applications including
image compression (Andrews and Patterson III, 1976), subspace segmentation (Liu et al.,
2013), face recognition (Basri and Jacobs, 2003; Candes et al., 2011), Netflix problems
(Candes and Recht, 2009) and quantum state tomography (Gross et al., 2010; Liu, 2011).
In this chapter, we focus on the low-rank matrix recovery problem, which refers to finding
an unknown matrix X of dimension m x n with rank r < min{m,n} based on [ linear
measurements (Ay, X),---,(A;, X). Here {A1,---,A;} is called the set of measurement
matrices and the inner product is defined as (X,Y) =, , X;;Vj; = Tr(X"Y). When the
matrix is constrained to be diagonal, the problem is reduced to sparse vector recovery and
usually termed as Compressed Sensing or Compressed Sampling (Donoho, 2006; Candes
et al., 2006; Candes et al., 2006). Intuitively, a rank-r matrix of dimension m x n has
(m + n — r)r degrees of freedom, which implies that I = O((m + n)r) is the minimal
number of measurements needed for exact recovery. The optimal rate and exact recovery
were achieved with overwhelming probability by using Gaussian enlsemble or whatever
matrix that satisfies the Restricted Isometry Property (RIP) as the measurement matrix

and solving a convex optimization problem (Recht et al., 2010; Candes and Plan, 2011) as

follows
min || M]l,
(4.1)
subject to  A(M) =y,
where || - ||« denotes the nuclear norm, the sum of all the singular values,

AM) = (Tr(A{ M), -+, Tr(A] M)) and y = (Tr(A{ X),--- , Tr(4] X)). In practice, X is
usually only approximately low-rank. Under this situation, the goal becomes finding the
rank-r matrix which best approximates X using O((m + n)r) measurements. Furthermore,

it is realistic to consider noisy measurements y = (Tr(A{ X)+ 21, , Tr(4] X)+ z) with z
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being the noise vector (Candes and Plan, 2011). The problem can be solved by the so-called

matrix Dantzig Selector,

min  [|M]],
(4.2)
subject to A(M) -y € Z,

where Z is a region determined by the noise structure.

However, the Gaussian ensemble design suffers from the storage problem. Specifically, it
requires O(mnl) bytes of space to store the measurement matrices (A, ---, 4;). As pointed
out by Cai and Zhang (2013), accurate reconstruction of 10,000 x 10,000 matrix of rank 10
requires 45 TB storage. To address this problem, they put forward the Rank One Projection
approach which replaced the Gaussian random matrices A; with rank one matrices Bi’y;r ,
where [3;,; are independent Gaussian random vectors. This reduces the required storage to
O((m + n)l), which is significantly smaller. It is worth mentioning that RIP does not hold
for rank one matrices 3;,'. Furthermore, a semi-definite programming (SDP) is required
as the final recovery step for both choices of measurement matrices, which is not scalable.
Standard SDP solver for nuclear norm minimization is only efficient for matrices of size
up to dozens by dozens. It becomes intractable for larger matrices. So far, several fast
algorithms have been put forward (Lee and Bresler, 2010; Fornasier et al., 2011; Goldfarb
and Ma, 2011; Mohan and Fazel, 2012). However, Fornasier et al. (2011); Mohan and Fazel
(2012); Goldfarb and Ma (2011) are only applicable to noiseless measurements. Besides,
all the algorithms rely on RIP of the measurement matrices. Therefore, O(mnl) bytes of

storage is inevitable.

Our contributions are two fold. First, instead of following the mainstream research based
on choosing measurement matrices with RIP followed by solving the nuclear norm mini-
mization problem, we put forward a two-step sensing scheme that uses minimal number
of measurements O((m + n)r) and far less storage O(nr), and has lower computational
complexity O(mnr). Our method involves only QR decomposition and matrix multiplica-

tion. Second, besides exact recovery for the ideal low-rank and noiseless case, the proposed
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sensing scheme is applicable when the underlying matrix is only approximately low-rank
or when the measurements suffer from Gaussian noise. We provide theoretical guarantees
under various settings. Error bounds for both spectral norm and Frobenius norm are estab-
lished, while for most of the literature only Frobenius norm is discussed (Lee and Bresler,

2010; Candes and Plan, 2011; Cai and Zhang, 2013).

The rest of this chapter is organized as follows. In Section 4.2, we introduce the proposed
sensing scheme and compare it with Gaussian ensemble design and Rank One Projection.
In Section 4.3, we provide error bounds for our sensing scheme. We present simulation and

real data analysis results in Section 4.4. All the details of proofs are put in Section 4.5.

Notations: Throughout this chapter, we use || - ||+, || - ||2, || - || 7 for nuclear norm, spectral
norm and Frobenius norm respectively. Let vec(X) be the long vector obtained by stacking
the columns of matrix X. Without loss of generality, we assume m > n and as usual, let
the singular value decomposition of X € R™*" be UXV ", where U € R™*", 3 € R™ ™ and

V € R™*". Also let X, = UX, VT denote the best rank-r approximation of X.
4.2. Sensing Scheme

Let X = UXV " be the singular value decomposition (SVD) of X and suppose rank(X) = r.
The proposed sensing scheme is based on the observation that UU ' X = X. Actually, if the
columns of @ constitute an orthonormal basis of the range space of X, then QQ "X = X.
Let Q = (Q1,---,Q,). Notice that (QTX)U = QZTXej = Tr(QiTXej) = Tr(ejQiTX) =
<Qie;-r,X ). Therefore, if we can sense the range space of X, we can recover X using
measurements {QiejT, 1 <i¢<r1l<j<n} Itturns out that the range space can be
approximated by sensing X2, where €2 is a random matrix. This idea is widely used in
the literature of randomized SVD algorithms for huge matrices (Sarlos, 2006; Woolfe et al.,
2008; Halko et al., 2011), where random projection is first used to identify the subspace
that contains most information of the low rank matrix. Fazel et al. (2008) put forward

two schemes based on sensing the row and column space, which has the same idea as ours.
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However, their idea is carried out in a different way and the error bounds in the paper are

rough. Also, there is no theoretical analysis is given for the noisy case.
4.2.1. Algorithm

In practice, the rank of X is usually unknown. Let the target rank be r, that is to say,
we aim to find the matrix with rank-r that best approximates X using minimal number of
measurements O((m+n)r). To be specific, we are trying to find X, = UX, V' ". The details

of the proposed algorithm is described in Algorithm 1.

Algorithm 1 Computationally Efficient Low Rank Matrix Recovery

Target Rank: r

Sampling Parameter: k£ = r + p, p is the oversampling parameter

Preparation: Generate standard Gaussian matrix €2 with size n x k

Step 1 Sense the range space using measurements A; = {e;2;,1 <i<m,1 < j <k}:
S1=XQ

5: Intermediate Processing Step: QR decomposition: @) < S1 = QR

6: Step 2 Sense QX using measurements A, = {QiejT, 1<i<r1<j<n}:5=Q"X
7. Recovery X = QS5

The oversampling parameter p is beneficial and necessary. As we will see in the Theorems
below, the failure probabilities decrease exponentially with p. In practice, setting p = 5 or
10 is adequate. The total number of measurements for the proposed scheme is (m + n)k.
If we maintain p = O(r), the number of measurements used is O((m + n)r), which is rate

optimal.

To match the terms in model (4.1), we have:
e Measurements: A = A; U Ao,
e Observation: y = (y1,y2), where y; = A1 (X) = vec(S1) and y2 = As(X) = vec(Ss),
e Recovery Step: X = QS2, where @ is obtained from the QR decomposition of 5.

Different from previous recovery models where the measurement matrices are independent,

the proposed sensing scheme adopts a two-step measurement procedure and As is completely
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Number of Measurements Storage Recovery Complexity

Proposed Scheme O((m + n)r) O(nr) O(mnr)
Gaussian ensemble O((m+n)r) O(mn(m +n)r) SDP
Rank One Projection O((m+n)r) O((m + n)*r) SDP

Table 1: Comparison Between Three Sensing Schemes

determined by A;(X) through a QR decomposition. Notice that S is of dimension n X k.
Since k = O(r) < min{m,n}, the QR decomposition only has complexity O(nr?), which
is efficient. The recovery step just involves matrix multiplication. It has computational
complexity O(mnr) and is much faster than nuclear norm minimization and existing fast
algorithms. Also notice that we do not need to store the measurement matrices .4; and
Ay directly because A; is determined by 2 and A is determined by A;(X). Therefore, we
only need to store 2 and the storage complexity is simply O(nr), significantly smaller than

any other schemes.
4.3. Theoretical Guarantee of Recovery
4.8.1. Noiseless Case

Theorem 7. If rank(X) < k, with probability 1, our algorithm recovers X exactly.

Proof. If rank(X) < k, then with probability 1, rank(X) = r, which implies the column
space of AQ is exactly the range space of X. Let X = UXVT be the singular value

decomposition. Then there exists orthonormal matrix P such that Q = UP. Therefore,

X=QQ"X=UuPPTUTUSVT = X. O

For the case when X is not exactly low rank. The approximation error ||X — X|| =
[|X — QQTX|| is well studied in the literature of randomized SVD algorithms. We cite

the error bounds from Halko et al. (2011).
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Theorem 8 (Theorem 10.5 and 10.7 of Halko et al. (2011)). Let k = r +p, p is the degree

of oversampling. If p > 2, then

1=
D=

A r 2
E||X - X||p < <1+_1> > o

p

If p>4, for all u,t > 1,

N|=

S e\/r+
I1X — X||p < (1—|—t\/12r/p> Yoo rut™

j>r+1 p+l

with probability at least 1 — 5t™P — 2e~ /2,
Theorem 9 (Theorem 10.6 and 10.8 of Halko et al. (2011)). Let k = r + p, p is the degree

of oversampling. If p > 2, then

% [T e\/r+

If p > 4, for all u,t > 1,

N|=

NI

N 12r e\/ T+ e\/r+
I1X — X||z < <1+t,/p+utp) gppy Ht Y TL > o

p+1 p+1

with probability at least 1 — 5t7P — e~ u/2,

1
For Frobenius norm, the oracle risk is <Z J>rt1 012.) * which is obtained by the best rank r
approximation X,. Therefore, if we choose the oversampling parameter p = O(r), the risk

of the proposed procedure is within constant factor of the oracle risk. For spectral norm, it
1

suffers an extra term (Z J>rt1 UJZ) ? . which becomes negligible if the singular values have

a quick decay.
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4.3.2. Gaussian Noise Case

In this section, we assume the measurements suffer from Gaussian noise, that is to say
S1=XQ+ FE1 =QR,

Sy = Q"X + Ey,

where F; and Fj are independent Gaussian random matrices with variance 2. With noisy

measurement results S; and Ss, we recover the unknown matrix X by
X =Q%=QQ'X +QE;.

Compared with the noiseless case, now there are two extra sources of errors. One is involved
with sensing the range space in the sense that @) is computed from a noisy observation of
X€. The other comes from the additive part in the recovery step, @F>. We are going to
establish expectation and concentration error bounds for both the Frobenius norm and the
spectral norm of the residual matrix.

Remark 4.1. In this additive noise model, it is worth noting that increasing the signal
of the measurement matrices is equivalent to decreasing the noise variance. Recall that
A = {eiQ;,1 <i <m,1 < j < k}. If replacing measurement matrices eZ-QjT with Cez-QjT
where C is a positive constant, the observation becomes Ce, X, + 2z = C(e; XQ; + 2/C),
which is equivalent to using measurement matrices einT and additive noise 2’ with variance
02/C?. However, in practice, the noise of the measurements should be proportional to
the signal of the measurement matrices. Therefore, for the purpose of analysis, it is valid
and beneficial to fix both the signal and noise at a certain level. The error bounds below
are derived based on rescaling the measurement matrices such that the expectation of the

Frobenius norm is equal to mn.
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Theorem 10. Let k = r + p where p is the degree of oversampling. If p > 2, then

N r 9
EHX—XHFg\/Hp_l _Z o?+o|. (4.3)
j=r+l

If p > 4, for all u,t > 1,

N 12
X =Xl < <1+\/prt>

with probability at least 1 — 5t7P — 3ev/2,

5 e\/T+p [12r

jzr+l
Theorem 11. Let k = r + p where p is the degree of oversampling. If p > 2, then

% r e\/r+
E||X — X, < <1+,/p_1> ar+1+*/pp > o?+30 . (4.5)

j>r+1

If p >4, for all u,t > 1,

A 127 e\/r+ e\/T +
||X*X||2§ <1+ pt+])—|—1PUt> O'T+1+\p/pt Z o

with probability at least 1 — 5t7P — 3ev?/2,

The error bounds derived above are tight in the sense that only extra noise terms are added
to the original noiseless bounds which are within a constant factor of oracle risk. Also,
different from most previous literature only focusing on Frobenius norms, we establish error

bounds for spectral norms as well.
4.4. Experiments

So far, we have shown that the proposed procedure is much better in terms of required stor-
age space and computational complexity. From theoretical point of view, the error bounds
of the proposed procedure, Gaussian ensemble and Rank One Projection are comparable

with each other and nearly of the same order. In this section, we carry out numerical ex-
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periments to compare the error of recovery of the proposed scheme and Gaussian ensemble

design.
4.4.1. Simulation Results

Gaussian ensemble design with nuclear norm minimization can be solved by the following

semi-definite programming

min Tr(By) + Tr(Bz2),

B X (4.7)
subject to =0 and [|A*(y — A(X))]]2 < A,

X" By
where Bj, Bo, X are to be optimized and X is a constant depending on the noise level. We
use CVX package (Grant and Boyd, 2008, 2014) to solve all the involved SDP. Specifically,
we investigate four scenarios: 1. low-rank matrix and noiseless measurements; 2. low-rank
matrix and measurements with Gaussian noise; 3. full-rank matrix with decaying singular
values and noiseless measurements; 4. full-rank matrix with decaying singular values and

measurements with Gaussian noise. A summary of the results is presented in Figure 1.
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Figure 1: Comparison Between Proposed Scheme and Gaussian Ensemble

Figure 1 shows relative error || X — X||/||X||r for the proposed scheme (blue line) and
Gaussian ensemble design with nuclear norm minimization (red line). We use a 50 x 50
matrix with rank 4. For full rank case, we add small rank perturbations and for noisy

measurements, we add Gaussian noise such that the signal-to-noise ratio is equal to 2.

As we can see from the plots, the proposed sensing scheme nearly dominates the Gaussian

ensemble design with nuclear norm minimization. It is reasonable because the proposed
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scheme essentially mimics the performance of SVD. Empirical study has shown that methods
based on nuclear norm minimization have a phase transition curve, that is to say, recovery
typically fails when the number of measurements is smaller than a certain threshold and
succeeds otherwise (Donoho et al., 2013), which explains why the red curve drops more
slowly at first. For our proposed sensing scheme, the error decreases most at the beginning

because the scheme first captures the leading singular vector space.
4.4.2. Image Compression

Images are natural matrices and one approach for image compression is to use its low rank
approximation. Here, we test the proposed sensing scheme through image recovery. We
choose the famous image of Lena, which is a 512 x 512 grayscale image of full rank with

decaying singular values.

From the results in Figure 2, we can see that the image is nearly the same as the original

one when the sampling parameter is set at 120.
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4.5. Details of Proof

Notations: We use GT for the pseudoinverse of matrix G, || - || for Frobenius norm, || - ||z
for spectral norm. When we use || - ||, it means the statement is valid for both Frobenius
norm and Spectral norm. X =; Y means that random variables X and Y have the same

distribution and X <;Y means P(X >t) < P(Y >1t),Vt € R.
4.5.1. Technical Lemmas

We first present several lemmas. They are all from the extensive survey paper Halko et al.

(2011).
On Matrix Algebra
Lemma 4.2. Suppose M > 0, then
I—(I+M™ <M

A B
Lemma 4.3. Suppose M = >0, then ||M|l2 < ||All2 + ||C]|2-

BT C
On Orthogonal Projectors

Lemma 4.4. Suppose U is unitary, then U PyU = Py
Lemma 4.5. Suppose range(N) C range(M), then for each matriz X, one has ||PyX|| <
|1PvX || and [[(I — Par)X|| < [[( — Pn)X||.

On Gaussian Matrices

Lemma 4.6. For real matrices S, T, and a standard Gaussian random matriz G, one has

1
(EIISGT7)* = ISI|plIT]|F-
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Lemma 4.7. For real matrices S, T, and a standard Gaussian random matrix G, one has
E[ISGT|| < [IS[l2/1T[|F + IIS]|p[|T]2-

Lemma 4.8 (Frobenius Norm of Pseudoinverse). Let G be an m x n standard Gaussian
matrix with n —m > 2, then
m

EHGTH%:m-

Lemma 4.9 (Spectral Norm of Pseudoinverse). Let G be an m x n standard Gaussian

matrix withn —m > 1 and m > 2, then

E[lGT] < V"

n—m

Lemma 4.10 (Concentration Norm Bounds of Pseudoinverse). Let G be a k x (k + p)

standard Gaussian matrix where p > 4. For allt > 1, one has

12k
P {HGTHF =/ pt} <477

PG, > evk+p, < ¢
p+1

Lemma 4.11 (Concentration for Functions of a Gaussian Matrix). Suppose h(-) is a Lip-

schitz function on matrices, which means that for any X,Y
[h(X) = h(Y)| < L[| X = Y||p
holds, and G is a standard Gaussian matriz, then

2

P{nG)>Eh(G)+ Lt} <ez.
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4.5.2. Proof of Theorem 10 and Theorem 11

As mentioned in Remark 4.1, we scale the measurement matrices such that E || - ||% = mn.
Recall that A; = {e;Q;,1 < i <m,1 <j <k} and Ay = {Qie],1 < i <71 <5<

n}. Therefore, the rescale parameter should be \/m and \/mn respectively. Following the

_ o _ ol

arguments in Remark 4.1, this is equivalent to assuming op, = NG and op, = N

1X = X[ < 1lQQ"X — X|| +[|QE||

= [[(I = Pxate,) X + [|QE||.

Without loss of generality, we can assume m > n. Let X = USV T be the singular value

decomposition, where U is m x n, ¥ and V are n X n.

Step 1. U plays no enssential role in the argument and X can be reduced to X, where

n
. n [zvT
X = (4.8)
m-—n 0
Let U = (U,U") be an orthogonal matrix. Then
I(I = Pxave)X|| = IUT (I - Pxar,)UU T X|| (4.9)
=I(I = Pyrxoromp)U' X (4.10)

The first equality uses the fact that unitary transformation preserves both Frobenius and
Spectral norm. The second equality is due to Lemma 4.4. Step 1 follows by noticing that
UTX = X and ﬁTEl =d El.

Step 2. The error term ||(I — Pxq+g,)X|| can be divided into three parts.
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Divide the matrix into blocks

r nm—r
n
T 21 0
v .
XQ= n—r 0 )IN QnxE, (4.11)
Vo'
m—n\ 0 0
Let Q= V' Q and Qg = V,' Q. Then
k

r 10 + En
S1=XQ+E = n—r | 590+ Ep |- (4.12)

m-—-—n E13

Without loss of generality, we assume all elements in ¥; are strictly positive (or else the

error bounds will be smaller than the bound we will prove later).

: I Yol + Er 1 el
7 = 51(2191 + Ell) = where F' = (Ql + El Ell) 21 . (4.13)

F Eqs

Since range(Z) C range(S1), by Lemma 4.5 we have

(I = Pxate,)X|| < [|[(I — Pz)X]|. (4.14)
1 0
Let =] 0 ¥, |, for spectral norm
0 0

I(I = Pxap) XI5 < |I(I = P2)X[[3 = [|IXT(I - P2)X|l2 = |E7(I = P7)Sll2.  (4.15)
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Observe that

P,=2z(Z"2)'7" = ! (I+FTF)™ (1 FT>
F
(4.16)
I-(I+F"F)™'  —(I+F'F)7'FT
I—-Py=
—F(I+F'F)™" I-FUI+FTF)"'FT

By Lemma 4.2, [ — (I +FTF)~' < FTF. Also notice that I — F(I+FTF)~"'FT < I. Then

F'F B
I—Py; < , (4.17)
BT I

which implies
. - YIFTFY, ¥/BY
STU—-pPys< |t S (4.18)
YIBTY, %)%,

By Lemma 4.3,
1571 = Pz)Sll2 < ||FE1[3 + |23 (4.19)
Y08 + E1o
Recall that F = (Q1 + 27 )2, we have
Eq3
90 + E1g

1ST(I ~ P2)E|l2 < || (@1 + 37 Enn) I3 + (223 (4.20)

Eq3

Let E = (Elg, E13)T, then

IST(I = P2)2l2 < ||2292(Q1 + ST B3 + | E(Q + ST En) T3 + |23, (4.21)
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Let G be a 7 x k standard Gaussian matrix, then (Q + X7 En)f =4 (I + o5, 27O,
and [|(Q + 27 En)f|l2 <a [|GT(I + 05,272 < [|GT]]2. Thus

1571 = P2)El2 <a [[Z22G7|3 + |IEGT3 + [|Z2]15. (4.22)
Similarly, for Frobenius norm, we simply change (4.15) by
I(I = Pxa+p) X[ < [|(I = P2)X||h = Te(X (I - P2)X) =Te(R" (I - P2)T)  (4.23)
Y FTFY; %] BY%,

< Tr (4.24)
YgBTY, B %

=Te(2] FTFY) + Tr(2y $9) (4.25)
= [|FS1][% + 12| [- (4.26)

Then it follows that
11 = Pxore)X||F <a 220G |E + [|EGT|[F + ||l 7 (4.27)

Combine (4.22) and (4.27), we have

(I = Pxasn)XI[2 <q IZ29GT|1? + || BGT? + || 2] 2 (4.28)

Step 3. Error bound for Frobenius norm.

By Lemma 4.6 and Lemma 4.8

)
E|[220G|E = ISR EIGTE = —— 3 of
P= 2 iz

- r 4.2
BNIEG!? = || EIIG | = (m — 1), 2

E|QEx|l% = |IQIF [ allF = (r + p)no,.
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Then

[NIES

E|IX - X||p < E (150G + | BGH % + |19} + | QEI})
1 ~ 1
<E (/2226 + 1%:013)* +E (IEGHE + 1QB1})°

g\/(pilﬂ) 3 a§+\/(m—r) "% +(r+pno?,

j=>r+1 p—1
_r 2 _r
S\/(p_l—i-l) Z Jj—i-\/p_l—l—la
j>r+1
_ 1 r 2
= +p—1 Z oi +o
jzr+1

Step 4. Error bound for Spectral norm.

~ 1
E||(I — Pxair)X|l2 < E(||S29:G1|2 4 [|EGT|2 4 [|22]|2)2
< E||D:9:G |2 + E||[EGT|2 + ||S2]]2

<|[Z2ll2 EJ|GT||F + ||Z2||[F E[|GT]]2

+ 08, (I lm—rll2EIGY|7 + [ L[ F E|G[]2) + 0741

[ r 1e\/1r+
§0'7»+1 If]_—i_(z U?)QTP

j>r+1

[ r e\/T +
+0’E1< p_l—f‘\/m—’l"pp>+0‘7«+1

2
r e\/r +
N s o
p—1 £ P
j>r+1

+
wop, ([ g+ v EE)

ENQEz|l2 < |Ia]FlIQl2 + QI Fllnll2 < (VR + v+ p)os,
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Thus,

E[|X — X|l2 <E[|(I - Pxarp)X|l2 + E[|QE:||2

<o (105 )+ [ D) A
p j>r+1 p
Iz e\r—+
+(,/p_1+\/m—rpp> op, + (Vn+r+p)og,.

N

E[|X — X|l2 <E[|(I - Pxatp)X|2 + E[|QE:||2

[N

r e\T + 2e+/r + 1
Sar—‘rl <1+ p_1)+ Z sz p+ p0'+ o

j=r+1

r e\/r+ 3e\/T +
<<1+ >Ur+1+pp Z 02| 42V TP,

p-1 j>r+1

Step 5. Concentration Bound for Frobenius Norm

For any t > 1, let

\/ 12
Et:{G: ||GT||2§ep:_—|_1pt and [|GT|[r < ,/p’”t}. (4.44)

By Lemma 4.10, P(FE;) <t~ @) 4+ 4477 < 5¢t7P. Let h(X) = ||X2XGT||p, then
[(X) = h(Y)] < [|Z2(X = V)G < [|Za] 2| X = V]| £||G||2. (4.45)

By Lemma 4.11, with L < ||Z2]|2]|GT||2 and E[R(Q2)|G] < ||S2||#||GT||F

N

u

P {HEz%GTHF > ||S2||£[|GT||F + [|D2]]2]|GT|2u \Et} <e 7, (4.46)
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which implies

12 v/ u?
P HEQQQGTHF > Z 0]2 —Tt+ar+1wut]Et <e 2. (4.47)
j>r+1 p p_%l

Similar arguments can be applied to [|EGT||r, with L < ||I,_,||2]|GT||2 = ||GT||2. Then

~ 12 A/ u?
P {HEG*HF > op, <Fn e i ‘”’jlput> \Et} <e F (4.48)
p p

w2

P{lIQE:Ir 2 om (VT +p)n+u)} <% (4.49)

5 12 N
PUX =Xl 2 (37 o3 = e+ 1) +opn =Pt

j>r41 ptl
+ o, ﬁ—m/ e”* ut) + o, (v + p)n + )}

u2
<3¢ T +5t7F (4.50)

. 1 12r e\/T +
P{IX = X|lp> () oh)2(y/— t+1)+ar+1prut+

1
j>r+1
r e\/r+ 1 W2 _
1 <3 5t7P  (4.51
U P )+0(+mu)}_ ez + (4.51)
N 1 12r e\/T + _u? _
P{IX ~X|lr 2> (( Y 022 +0)(/—t+1)+ 7110ut(01n+1 +20)} <3¢ T + 5P,
> p P+
(4.52)
Step 6. Concentration Bound for Spectral Norm
For any ¢t > 1, let
T 12r
Et:{G:HGTHQgeﬂt and ||GT||F < d } (4.53)
p p
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By Lemma 4.10, P(E;) < t~®PTD 4 4t7P < 5t7P. Let g(X) = ||S2X G|, then
[R(X) = h(Y)] < [|Z2(X = V)G < [|Za] 2| X = Y]|£||GT||2. (4.54)

By Lemma 4.11, with L < [|32|[2[|GT||2 and E[1(Q2)[G] < [[S2]l2]|G||p + |2/ [£[|GT|l2,

2

P{IIZ22G |2 > ||S:]l2l|GT| 7+ 1Z2|lp[|GY]2 + D2l 2|GTl2u [E} < e, (4.55)

which implies

12r 1er+p e\T+p _u?
P{||250,G1 |5 > —t (P A —ut |Fi} < 2. (4.56
{I[3222G ]2 > 07414 p +( Y o)) PO CS e |Ei} <e (4.56)

j>r+1

Similar arguments can be applied to ||[EG1||r, with L < ||I,_,||2||GT||2 = ||GT||2. Then

~ 12 u?
P{IEGH|2 > op, (\| —t + (Vi — revflptju evflput) B} <e T (4.57)
p p p

w2

P{lIQE2[2 = op,(Vn+ Vr+ptu)} <e 2. (4.58)

Put them together, we have

- 12 +
P{|X — X||2 > 01y /?TH—( DO L A

j=>r+1 p+1
e\/T + 12r e\/r+ e\/T +
UT+17put+aE1(1/—t+\/m—r L put)
p+1 P p+1 p+1

»

u

+op,(VR+Vrtp+u)+o} <5tP ez, (4.59)

By simplifying this we get

O 127’ 1€ r+ e/T F
P{IX - X[ ZUT+1(\/>1§+1)+( S YIRS Ry
b j>r4l p+1 p+1

»

u

<5tP+e T, (4.60)
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CHAPTER 5 : Large-scale Estimation of Generalized Linear Model

5.1. Background

Generalized linear model (McCullagh, 1984) is one of the most important statistical models
that are widely used for prediction and classification. It achieves its success in a great
many areas including machine learning (Chang et al., 2008), natural language processing
(Genkin et al., 2007), data mining (Komarek and Moore, 2005), computational biology (Wu
et al., 2009), epidemiology (Zou, 2004) and many others. Novel theory and applications
about generalized linear model are still being put forward (Cleophas and Zwinderman,
2014; Claassen, 2014), but relatively few of them are focusing on computational aspects.
The solution to the generalized linear models is typically sought by the maximum likelihood
estimator, which is further computed by iterative reweighted least squares (IRLS) (Green,
1984). IRLS is essentially the Newton-Raphson method, where the parameters are updated
by the solution of some weighted least squares in each step and the weights are updated by

the new parameters iteratively until convergence.

The surge of big data in the past years has posed great challenges to traditional algorithms.
There is recently a flurry of research on developing computationally efficient algorithms to
handle the challenges across all kinds of areas (Tsang et al., 2005; Xu et al., 2006; Rokhlin
and Tygert, 2008; Drineas et al., 2011; Zhang et al., 2012; Dhillon et al., 2013; Lu et al.,
2013; Lu and Foster, 2014), including well-studied problems such as least squares. There are
considerable amount of works contributed to speeding up the computation of least squares
(Rokhlin and Tygert, 2008; Drineas et al., 2011; Zhang et al., 2012; Lu et al., 2013; Dhillon
et al., 2013), most of which rely on the idea of random projection, subsampling or parallel
computing. Least squares is most commonly used as the solution to linear models. As
for generalized linear models, there have been sporadic works focusing on computational

aspects, but most of them are restricted to some limited class of models (Keerthi et al.,
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2005; Krishnapuram et al., 2005; Ifrim et al., 2008). To the best of our knowledge, no
algorithm has been put forward that is capable of estimating any kind of generalized linear

model efficiently.

We focus on the problem of how to efficiently estimate the parameters of generalized linear
models under the large n, large p and n > p setting, where, as usual, n denotes the
number of observations and p denotes the number of features. Typical applications could
include spam filter, email classification or ad click prediction where sample size could easily
accumulate to the millions or billions level while the number of features ranges from several

dozens to thousands.

The main contributions of this study are two-fold. Firstly, we propose the Guluru algorithm
which solves a wide class of generalized linear models in a unified framework and greatly
outperforms the usual IRLS in terms of speed. Specifically, in each iteration we reduce the
computational cost from O(np?) to O(np). Secondly, we provide theoretical justifications
that the final log-likelihood achieved by the Guluru algorithm is at most O(p?/nr?) away
from the maximum log-likelihood under certain conditions, where r is the ratio of subsam-
pling. We also prove that the final estimator of Guluru is only O(p/nr) away from the
maximum likelihood estimator, implying that our Guluru algorithm performs asymptoti-
cally as well as the IRLS algorithm. We evaluate our approach through extensive synthetic

data and real world data studies.

The chapter is organized as follows: Section 5.2 introduces the basic notations and concepts
of generalized linear models as well as IRLS, followed by the details of the Guluru algo-
rithm; Section 5.3 provides theoretical guarantees on the performance of Guluru; Section
5.4 presents the results of simulation as well as real case studies; Section 5.5 summarizes
the chapter with discussions on possible directions for future work. All the technical proofs

are given in Section 5.6.
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5.2. The Guluru Algorithm

5.2.1. Notations

We first introduce some notations for generalized linear models which will be used through-
out the rest of the chapter. X is the predictor matrix with size n X p. y is the response
vector with size n x 1. A typical generalized linear model which links X to y consists of

three parts:

e The response y; which obeys the canonical exponential distribution:

yibi — b(6;)

st = e { 153

+ely 00}

Here 6; is the canonical parameter and ¢ is the dispersion parameter.

e The linear predictor associated with each observation:
nZ:Xlﬁa 7;:172a"'7n

Here X; is the i-th observation and 3 is the parameter to be estimated.

e The link function g(-) which connects n; to yu;, defined as Ely,]:

g(ﬂz)znza i:1727"'7n'

The goal is to estimate 8 based on y and X. For notational convenience, we focus only on
canonical link and suppose there is no dispersion for the exponential family throughout the
rest of the chapter, so we have

0; =n = X,

and

a(¢;) = 1.
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As a special case, Logistic regression is a class of generalized linear model where f(y;6) is
binomial distribution with parameter 6 and g(p) = In(u/(1 — p)). Other familiar examples

include linear regression, softmax regression and Poisson regression.
5.2.2. Iterative Reweighted Least Squares

The generalized linear model is solved by finding maximizers of its log-likelihood function,

which is computed by the Newton-Raphson method.

Excluding the constant terms, the log-likelihood can be written as
n
L(X,y) =Y 4:iXiB — b(Xip).
i=1

The derivative is

oL T

— =X -

a5 (y — ),
and the second order Hessian matrix is

0L T

—=—-X'WX

0B2 ’

where 1 = Efy] and W = diag (0" (X{ 8),0"(X; B), -+ ,b"(X,] B)). The Newton-Raphson

iteration is usually written as
-1
grew = (XTWX) xXTw (XBOld Wl (y — ,u)) , (5.1)

and is the weighted least squares solution of X4 4+ W~ (y — i) regressed on X with

weight W. To find the maximizer, 5" are kept being updated until convergence.
5.2.83. Guluru Algorithm
We can first rewrite formula (5.1) in another form as
-1
grev =gl (XTWX) XT (y—p). (5.2)
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Define X = W/2X and § = W2 (y — p), then formula (5.2) is reduced to

grew — gold | (f(UZ)f1 X7y (5.3)

In formula (5.3) (X7 X)~'X "7 is the least squares solution of § regressed on X, which we

will denote as 3.

It is possible to apply fast algorithms for the least squares to get an approximation for B,
denoted as B+ A and A is the error as a result of the approximation. We first put forward a
two-step fast least squares algorithm to compute ﬁN based on subsampling, which is a slight
modification of the Uluru algorithm in (Dhillon et al., 2013) in the sense that we use whole
sample here instead of the remaining sample in their paper. The details are described in

Algorithm 2. We use n; = nr to denote the number of observations in the subsample.

Algorithm 2 Faster Least Squares

Input: Response variable y, design matrix X and subsampling ratio r.
Output: Approximation to the least squares (X' X)71X Ty.

Randomly subsample X and corresponding y, from X and y with proportion r.
Compute the subsample least squares 75 + (XJ Xs) 1 X ys.

Compute the correction v, < ns/n(X] X)X T (y — XBs).

Return ~g + .

When 7 is chosen to have order O(1/p), as suggested by (Dhillon et al., 2013), Algorithm
2 runs in O(np) FLOPS in contrast to O(np?) for the usual least squares. The theoretical

properties are provided in Section 5.3.

Formula (5.3) shows that for each iteration in IRLS a least squares solution is to be com-
puted. We put forward our second algorithm, Guluru, to efficiently compute the solution

of generalized linear models. The details are sketched below.

Algorithm 3 can be viewed as a variant of the approximate Newton-Raphson method. If we
regard the number of iterations required upon convergence as constants, Algorithm 3 runs

in O(np) FLOPS in contrast with the O(np?) for the usual IRLS.
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Algorithm 3 Guluru

1: Input: Response y, design matrix X, log-likelihood function L, subsampling ratio r
and predefined tolerance constant gg.
Output: Approximation to the maximum likelihood estimator A.
While L(8"%) — L(B°) > ¢
ﬁold — prew,
Update X and 7 based on "%,
Compute S using X, § and r by Algorithm 2.
Brew /BOZd +B'
Update L(37") and L(B°4).
Return (g™,

5.3. Convergence Analysis

In this section we provide theoretical guarantees for the algorithms put forward in section
5.2. To this aim we need to make some assumptions. First we assume that X; is i.i.d.

subgaussian and the second order moment matrix of X, denoted as X, satisfies

AMlp = X = Aolp, (5.4)

where I, is the identity matrix with size p x p and Ay > Ao are positive constants. We
also assume that W is bounded, i.e., there exist positive constants M; and Ms such that
M; > My and

ML, = W = MsI,. (5.5)

Sometimes the subgaussian assumption can be ideal. For fixed design, it is possible to get
similar bounds with same order but higher failure rate by similar techniques shown in the
last section. Preconditioning, which usually refers to the randomized Hadamard transform
(Tropp, 2011; Lu et al., 2013), is required for fixed design cases, which helps possibly to

uniformize data and eliminate high leverage points (Lu et al., 2013).

Assumption (5.5) is natural since we are just assuming that there exists bounded variance
for each p;. Take Logistic regression for instance, we have W;; = ¢; (1 — 3;) where g; is the

predicted value for i-th observation given the parameters. W;; is bounded below means that
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U; is prevented from getting too close to 0 or 1.
Please see section 5.6 for a detailed description and of these assumptions.

For Algorithm 2, we have the bound below.

Theorem 12. Suppose ns > p > log(2/0), we have
INEYev (5.6)

with probability at least 1 — 130. Here C1 is a constant depending only on A1, Ao, M,
My and the structure of the subgaussian distribution. So are Co and Cs in the next two

theorems.

The bound here proved for Algorithm 2 is a novel bound different from the ones proved
in Dhillon et al. (2013). Here we do not assume linear relationship between § and X
and we are comparing our estimator with the least squares estimator instead of the true
unknown parameters. When we assume the usual linear relationship between § and X,
B has become the maximum likelihood estimator. Theorem 12 implies that the estimator
proposed by Algorithm 2 is only O(p/nr) away from the maximum likelihood estimator,
which complements the fact that the estimator is O(y/p/n) away from the true unknown

parameters as proved in Dhillon et al. (2013).

The convergence of generalized linear model is usually diagnosed by the convergence of log-
likelihood. Denote the maximum likelihood estimator of the model by Sy/rr and denote
the final estimator of Guluru by 8*. For Algorithm 3 we have

Theorem 13. Suppose ng > p > log(2/6), the final log-likelihood achieved by Guluru are

at most
2
Cy L (5.7)

nr2

less than the maximum log-likelihood with probability at least 1 — .

Under the big data setting when n > p and r = O(1/p), (5.7) has essentially become
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O(p*/n). Here the log-likelihood is the sum for n observations. When it comes to comparing
the log-likelihood per sample, we divide (5.7) further by n, resulting in an O(p*/n?) bound

on average for each sample.

Now we are ready to state our final theorem which gives a bound on the distance between
Guluru estimator and the maximum likelihood estimator. We can conclude that

Theorem 14. Suppose ns > p > log(2/0), we have

% p
18" — Burel < Cs—
nr

with probability at least 1 — §.

Theorem 12 illustrates that for each iteration, Guluru is within an O(p/nr) distance to the
exact Newton-Raphson step. Theorem 14 guarantees that the final estimator is also within

the same order of distance to the maximum likelihood estimator.

All the proof of the theorems are presented in Section 5.6.

5.4. Experiments

In this section we assess the performance of the Guluru algorithm with several examples.
5.4.1. Measure of Performance

We use the number of theoretical FLOPS to compare the speed of different algorithms,
which is independent of the CPU settings. Given the number of theoretical FLOPS, we
use the gap between current log-likelihood and the maximum log-likelihood to judge the
performance of the algorithms. The maximum log-likelihood is computed using the glm

function in R.
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5.4.2. Simulation Studies

First we test Guluru on some synthetic datasets. For the synthetic data, the elements in
the design matrix X are i.i.d. drawn from standard normal distribution. The elements of

the coefficient 8 are generated according to
Bi ~ (=1)BE0D) 5 (0.1 + [N(0,1)]), i=1,2,--,p,

where B is the Bernoulli distribution and N is the normal distribution. The response vector

y is generated according to the Logistic model:

x.I
yi~ B (1, CPEB) Ny
l—i—exp(Xi B)

To accommodate to the large n, large p and n > p setting, we fix sample size to be
n = 1,000,000 and let p vary from 25 to 100 with increments of 25. The subsampling
ratio is fixed to at 0.02. We compare our algorithm with the usual IRLS, gradient descent
(GD) and stochastic gradient descent (SGD). For stochastic gradient descent, we get almost
identical results to the gradient descent for various settings of batch proportions. In order
to avoid confusion resulting from overlapping curves, we choose not to present the results

of stochastic gradient descent in the following plots.

The simulation results are plotted in Figure 3. The top row shows the result for p = 25
and 50. The bottom row shows the result for p = 75 and p = 100. Red line is the result
for Guluru. Blue line is the result for IRLS and green line is the result for GD. The X-axis
denotes the log (base 10) of theoretical FLOPS divided by np and the Y-axis denotes the

gap between current log-likelihood and the maximum log-likelihood.

From Figure 3 we can see that overall Guluru is significantly faster than all the others
for all choices of p. Upon convergence, our algorithm requires much less FLOPS than the

others. The gaps in speed between Guluru and other algorithms widen as p goes larger. As
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Figure 3: Results for Simulation Studies

for accuracy, all the algorithms finally converge to the maximum log-likelihood!. Gradient
descent is strictly dominated by Guluru. It is also almost dominated by IRLS except for

the first few steps.

It is also worth mentioning that although Guluru relies on subsampling, it has almost the
same convergence rate as IRLS. After the same number of iterations, they have almost equal

log-likelihood, which shows that Guluru is a very good approximation to IRLS.

!There is a tiny gap between the final log-likelihood returned by Guluru and the maximum log-likelihood
in the simulations, which is expected. The gap is negligible compared to the amount of maximum log-
likelihood. Specifically, the ratio of the gap to the maximum log-likelihood is less than 1075.
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5.4.83. Real Case Studies

We also try to fit Logistic regression on two UCI datasets: banknote authentication dataset
(n = 1,372, p = 4) and SUSY dataset (n = 5,000,000, p = 18). The previous one is a
toy dataset and the latter one is larger. For real data, we compare the algorithms from
two aspects: one is the speed of convergence as in the simulation studies; the other is the
prediction accuracy. Since neither of these two datasets comes with separate training and
test data, we randomly divide each of datasets into training and test data with a ratio of 3

to 1.

For speed of convergence, we present a similar plot as in the simulation studies. The results
are presented in Figure 4. We can see that Guluru is slightly faster than the IRLS on the
toy dataset and significantly faster than IRLS on the bigger dataset. These two algorithms
still dominate the gradient descent in terms of speed. All the algorithms converge to the

maximum log-likelihood finally.
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Figure 4: Results for Real Data Studies

As for prediction accuracy, the results are summarized in Table 2.

From Table 2 we can see that there is no significant difference between the prediction

accuracy for each method. This is mainly because that all the algorithms are supposed to
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Guluru IRLS GD

bankiote 322/343 329/343 329/343
(93.88%) (95.91%) (95.91%)
qugy  998,957/1,250,000  982,503/1,250,000 982, 603/1,250,000

(76.71%) (78.61%) (78.61%)

Table 2: Prediction Accuracy

converge to the maximum likelihood and thus result in very similar estimates for 5. We
also note that the results produced by IRLS and GD are almost the same. This is expected
because they are both supposed to converge to the exact maximum log-likelihood while

Guluru is an approximation to the maximum likelihood.
5.5. Discussion

In this paper we proposed the Guluru algorithm for solving generalized linear models in
the large n, large p and n > p setting. In addition to being significantly faster than the
usual TRLS, Guluru leads to a final log-likelihood within an O(p?/nr?) neighborhood of
the maximum log-likelihood and an estimator within O(p/nr) distance to the maximum
likelihood estimator. Experiments on both simulated and real world datasets show that
Guluru indeed achieves high speed with almost no loss of optimality compared to other

optimization algorithms.

The techniques we use in the proof are quite general. The derivation of error bounds for
Algorithm 2 and derivation of optimality for final log-likelihood are independent of each
other. It is possible to use other fast least squares algorithm and adapt the framework of
our proof to give similar bounds for the final likelihood. We believe as long as the error | A||
arising from the approximation has order 0(\/1/777,), the final likelihood is going to converge

to the maximum likelihood.
Our proof is established on the subgaussian assumption. In practice this is sometimes not
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satisfied, but we believe that similar theory can be established for the fixed design cased
after the randomized Hadamard transform (Tropp, 2011), possibly with higher failure rate.
Also, there should be room for improvement of the gap between the maximum log-likelihood
and log-likelihood achieved by our algorithm. Finally, in Guluru the subsampling ratio is
kept as constant throughout the algorithm, it is of interest to develop an adaptive version

of the algorithm to achieve faster speed as well as higher accuracy.
5.6. Details of Proof

5.6.1. Assumptions

We adopt the same notations as in the main article. First we assume that X is i.i.d.

subgaussian and the second order moment matrix of X, denoted as X, satisfies

M, = X = o), (5.8)

where [}, is the identity matrix with size p x p and Ay > Ay are positive constants. Further-
more we assume that W is also bounded, i.e., there exists positive constants M; and Ms
such that M7 > M5 and

M I, = W = Ms1,. (5.9)

Finally we assume that X is still subgaussian after scaled by y — pu, i.e., diag(y — u)X is

subgaussian.

The assumption that X is i.i.d. subgaussian is a common assumption in most regression
literature. This may be ideal, but for fixed design case, after the randomized Hadamard

transform the theory is almost the same, as is shown in Dhillon et al. (2013).

Formula (5.9) is a natural assumption since in some sense we are just assuming that there
exists bounded variance for each u;. Take Logistic regression for instance, we have W;; =
Ui (1 — g;) where g; is the predicted value for i-th observation given the parameters. W;;

is bounded below means that g; is prevented from getting too close to 0 or 1. The last
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assumption is also obviously true for Logistic regression and softmax regression.
5.6.2. Proof of Theorem 1

As in the main paper, each iteration can be written as

Bnew — ﬁold +B

where

p=(X7%) X7y (5.10)

Algorithm 1 is proposed to compute /3 more efficiently with some error A and

In this section, we try to give a bound on ||Al]|.

Lemma 5.1. We have

with probability at least 1 — §.

Proof. From (5.25) in Vershynin (2010) we know that there exist constant C and Cy which

only depend on the structure of the subgaussian distribution such that

‘PQX‘EHSQVE+@¢%%?® (5.11)

with probability at least 1—49. Then the result follows from (5.11) and assumption (5.8). O

Lemma 5.2. Conditioned on current %%, we have

log (2
N T e
Ns Ns
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with probability at least 1 — 20.

Proof. Conditioned on £°¢, we know the rows of X are still i.i.d. Thus still from (5.25) in
Vershynin (2010) we know that there exist C% and C) which only depend on the structure

of the subgaussian distribution such that each of

. )
||XS A @+C£1 [1og (2/9)
Ng Ng N
and
_—_—
HX X . SC{),\/EJrCQ [log (2/9)
n n n

holds with probability at least 1 — 8. Here ¥ is the second moment matrix of X. The result

follows from the above two inequalities. ]

Lemma 5.3. We have

<A1+Cl\f+c\/m> HXTX

with probability at least 1 — 4.

- My (Ag—cl\/g—@ log(n%))

Proof. This is an immediate observation from Lemma (5.1) and (5.9). O

Lemma 5.4. Suppose A is non-singular and let A = A+ E, then

a4
- < |a7 el
4~
Proof. This comes directly from Theorem 2.5 in Stewart (1990). O

Lemma 5.5. Conditioned on current 8¢, we have

o [E + CoyfTE
M3 ()\2—01\/7 [log( 2/5)
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~ ~ \ —1 ~ ~
o <XSTXS) —n(XTX) <




with probability at least 1 —49.

Proof. From Lemma 5.2, Lemma 5.3 and Lemma 5.4 we have

~ ~ \ —1 ~ -\ —1
- (XsT X5> “n (XTX)

< o (272) 7 e (2727 | —X:LXH
Cy\[ 2 +Cy /120
M2<)\2—Cl\/> W)( Cl\/> \/W)
S cggw@

M ()\2 B Cl\/i [log( 2/5 >

with probability at least 1 — 44.

Remark 5.6. The bound in Lemma 5.5 simply reduces to

~ ~ —1 ~ ~\ —1
g (XST Xs> “n (XTX)

with probability at least 1 — 49 when ng > p > log(2/J).

Lemma 5.7. Conditioned on current %%, we have

B

with probability at least 1 — 85 when ng > p > log(2/4).

plog(2/0)

ns

—BH < Cs
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Proof. We have

o8] = (%) wm (2R) x|
|, X;Xs)‘lng n (1) Y

IN
S
=
© -
B

Ng n
N N1 XTY,
< [ (i) ") 2
Ur
X'y, X'y -1
" s n(XTX)
Ns n

From the last assumption we made and Corollary 5.17 in Vershynin (2010) we have

T T
||Xs Yo _p|X Y| c plog(2/4)
Ng n Ng
and
Xy Xy log(2/6
H - E < C'é M (5.12)
n n n
respectively with probability at least 1 — 4.
Thus have
Xy, X'y log(2/6
Ng n Ng

with probability at least 1 — 26. From Formula (5.12) we know || X, Y;/ns]|| is bounded by
a constant with probability at least 1 — 0. The result follows from formula (5.13), Lemma

5.3 and Lemma 5.5. OJ
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Theorem 15. Conditioned on current 3¢, we have
p
[A| < C7=—1/10g(2/0)
Ns
with probability at least 1 — 130 when ng > p > log(2/9).

Proof. The difference can be written as

Al = [ (27) X7 (- X8) + 5. 5|
)

TR (B 5) + .- By

m (XX RTX - I) (ﬁf - BS)
(

IN
3
w0
—
S
®
S
w
~——
L
|
3
—
P
_'

Then the theorem is true from Lemma 5.5, Remark 5.6 and Lemma 5.7. O

5.6.3. Proof of Theorem 2

Lemma 5.8. The Hessian of the log-likelihood is negative semi-definite and bounded both

from sides
[log (2/9) [log (2/6
—nMs ()\Q—Cl\/7 Og / > - XTWX>' —nM; ()\1—1—01\/74-0 Og( / )>
(5.14)
with probability at least 1 — 6.
Proof. This is an obvious result from Lemma 5.3 O

Suppose after several iterations we are now at 3°¢. The exact Newton-Raphson step drives
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Bold to frew where
grew = gt 4 = gt (2L (9] v (5o
while Guluru drives 8% to 8% + A and
grew s A= g oy A= - [ (p7)] T v (829) +

For notational convenience, denote

Mj = M, (Az—cl\f \/W>

then formula (5.14) can be rewritten as

and

My = — XWX = —nMj.

Lemma 5.9. Suppose overshooting does not happen in the Newton-Raphson step, then we

have
12
M

DE™) = L3 2 5

el

with probability at least 1 —§.

Proof. We consider function g(t) = L(3°? + t3) restricted on the line segment 0 < ¢ < 1.
No overshooting implies that g(t) is increasing within this domain. Thus it suffices to prove

that we can find tg such that

L(B" + tof) — L(8°) =

> 28 o

84



To this aim, we do a second order Taylor expansion and for any given ¢t and have

L(B™ +13) = L(8™) > tVL(8") '3~ ”M1t2\

gl
— VLT [VQL (ﬂOld) } VL(8o)

_ ”]‘gNQVL(ﬁOZd) [ V2L (Bold>2] V(B
> i v - i [

where for the inequalities we have used either upper or lower bound for V2L (Lemma 5.8)

and for the equality we have used the fact that

- -1

ﬁ _ |:V2L (Bold> :| VL(ﬁOld).
As this is true for any ¢, we choose to = M4?/M{? < 1 and have

L(B*" + tof) — L(8°') >

Id
2 i V20
Lemma 5.10. Under the same assumptions as Lemma 5.9, when

M (M +/MP+ M)
M

|z = Al

our approrimate Newton-Raphson step from Algorithm 1 will increase the likelihood with

probability at least 1 — .
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Proof. With probability at least 1 — § we have

L(ﬁnew*) *L(ﬁOld) — L(Bnew*) - L(/Bnew) +L(/8new) o L(/BOZd)
5 N 12
Z L(ﬁold'i‘ﬁ"‘A) —L(ﬁOld—f—B) + 27‘1\4]\24{3 HVL(ﬂOld)Hz

> VL(ﬁOld+B)TA—TII2M||A||2+ 2245/3 IVL(BOM)HQ
> —[[vL+ By 181 -GS + g [T 1es|]
S ] [N PN Mé? s [vre

For the last inequality we have used the fact that Newton-Raphson step is going to decrease
HVL(BOM)H, thus
[vzes] = vz + 5.

The right hand side is a quadratic function with respect to ||V L(3°4)||. It has two roots with
different signs and is greater than 0 when ||V L(8°)|| > nM{?(M{+/M[*> + MP)||A||/ M52,

which finishes the proof. O

Lemma 5.11. Suppose the true unknown mazimizer of the log-likelihood function L(fB) is

BumLE, then for any given B other than Bypp we have

L(Bumre) < L(B) +

AL

with probability at least 1 —§.

Proof. From our assumption we know that given 51 and B2, we have

/
nM,

IN

L(B) + VL (52>T (81 — f2) — 181 — Bel|?

< L(B2)+ IVL (B2)II”

L(B1)
2n M’

with probability at least 1 —§. Take 81 = Byrrp and B2 = 8 we have the desired inequality.
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From Lemma 5.10 we know each iteration in Algorithm 2 increases likelihood with probabil-
ity at least 1—4 as long as the norm of derivative is greater than nMj?(M]++/M{? + MP)||A|| /M.
Combining the result of Theorem 15 we have, conditioned on 3°¢, each iteration in Algo-

rithm 2 increases log-likelihood with probability at least 1 — 145 when
V(54 Csp
(87| = log(2/6) (5.15)
r

and ng > p > log(2/6).

Theorem 16. The final log-likelihood is at most

Cop?
nr?

less than the mazimized log-likelihood with probability at least 1 —& when ng > p > log(2/9).

Proof. This is obvious from Lemma 5.11 and formula (5.15). O

5.6.4. Proof of Theorem 8
The proof is straightforward. On the one hand we know from Theorem 16 that

Cop?

L(Bmre) — L(B*) < 2

and on the other hand we have the inequality

L(B*)~L(Burr) < VL(Byvrr) ' (B°—Bure)—nMy||8* — Burs|? = —nM} || 8* — Bure|’

each with probability at least 1 — §. Combining the above two inequalities we know with

probability at least 1 — 26.

Crop
8" = Burel| < .
nr
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