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Shape-Control and Doping of Lanthanides and Transition Metal Oxide
Nanocrystals With Tailored Properties and Their Shape-Directed Self-
Assembly

Abstract
Lanthanide and transition metal oxides are widely used in various applications such phosphors, lasers,
magnets, and catalysts, and have formed an important platform for biomedical research and clinical medicine.
The synthesis of highly uniform nanomaterials with controlled size, shape, and compositions is paramount to
precisely understanding their physical properties and to arrange them into highly ordered arrays to design
functional metamaterials. Herein, I describe novel chemistry to synthesize highly uniform lanthanide and
transition metal oxide nanocrystals. The size, shape, and compositions of lanthanide-based nanocrystals are
systematically controlled with the addition of alkali metal salts. The reaction mechanism is investigated to
understand the nanocrystal growth and characterized by X-ray measurements and microscopic analysis. The
magnetic resonance relaxometry and the optical properties including phosphorescece, upconversion, and X-
ray excited optical luminescence are investigated, which make these nanocrystals a promising platform for
multimodal imaging in biomedical applications. The shape-controlled synthesis of isotopically labeled rare
earth fluoride nanocrystals is also demonstrated, which is designed for in vitro and ex vivo radioisotopic
detection, as well as non-invasive nuclear, optical radioluminescence, and magnetic resonance imaging. Using
anisotropic nanocrystal building blocks, shape-directed liquid crystalline self-assembly is presented to
understand how complex anisotropic superstructures can be designed with single and binary components in a
predictable manner. Finally, transition metal oxides such as tungsten, oxide, titanium oxide, and vanadium
oxide are synthesized using non-injection heating up method. In addition, I demonstrate that vanadium oxide
nanocrystal can be utilized as the precursors to fabricate thermochromic VO2, which is an important building
block for energy research, optics, and electronic devices.
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ABSTRACT 
 

SHAPE-CONTROL AND DOPING OF LANTHANIDES AND TRANSITION METAL OXIDE 

NANOCRYSTALS WITH TAILORED PROPERTIES AND THEIR SHAPE-DIRECTED SELF—

ASSEMBLY 

 

Taejong Paik 

Dr. Christopher B. Murray 

 

Lanthanide and transition metal oxides are widely used in various applications such 

phosphors, lasers, magnets, and catalysts, and have formed an important platform for biomedical 

research and clinical medicine. The synthesis of highly uniform nanomaterials with controlled size, 

shape, and compositions is paramount to precisely understanding their physical properties and to 

arrange them into highly ordered arrays to design functional metamaterials. Herein, I describe 

novel chemistry to synthesize highly uniform lanthanide and transition metal oxide nanocrystals. 

The size, shape, and compositions of lanthanide-based nanocrystals are systematically controlled 

with the addition of alkali metal salts. The reaction mechanism is investigated to understand the 

nanocrystal growth and characterized by X-ray measurements and microscopic analysis. The 

magnetic resonance relaxometry and the optical properties including phosphorescece, 

upconversion, and X-ray excited optical luminescence are investigated, which make these 

nanocrystals a promising platform for multimodal imaging in biomedical applications. The shape-

controlled synthesis of isotopically labeled rare earth fluoride nanocrystals is also demonstrated, 

which is designed for in vitro and ex vivo radioisotopic detection, as well as non-invasive nuclear, 

optical radioluminescence, and magnetic resonance imaging. Using anisotropic nanocrystal 

building blocks, shape-directed liquid crystalline self-assembly is presented to understand how 

complex anisotropic superstructures can be designed with single and binary components in a 

predictable manner. Finally, transition metal oxides such as tungsten, oxide, titanium oxide, and 
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vanadium oxide are synthesized using non-injection heating up method. In addition, I 

demonstrate that vanadium oxide nanocrystal can be utilized as the precursors to fabricate 

thermochromic VO2, which is an important building block for energy research, optics, and 

electronic devices. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Solution Phase Synthesis of Colloidal Nanocrystals.  

 

Since the development of colloidal synthetic chemistry,1,2 nanocrystals that 

have length scales between 1nm and 100nm have played an increasingly 

important role in many fields of emerging science and technology.3 The 

properties of nanocrystals are tunable by changing their chemical composition 

and structural parameters. For example, semiconducting quantum dots, such as 

CdS, CdSe, CdTe and PbSe, have tunable absorption and emission properties 

based on their sizes due to the quantum confinement effect.4 Electrical, optical, 

and magnetic properties are strongly size and shape dependant and by the 

choice of compositions among noble metals, transition metal oxides, metal 

chalcogenides, and lanthanides.5 

Solution-based synthesis allows for the design of nearly monodisperse 

colloidal nanocrystals with precise control of their size and shape. Although 

various methods have been developed to synthesize colloidal nanocrystals, for 

example using sol-gel reactions6, hydrothermal methods7, and reverse micelle 

methods8, the pioneering work to prepare nearly monodisperse nanocrystals (the 

standard deviation of size distribution is less than 5%) was done by Murray et. 

al,1 for the synthesis of CdSe nanocrystals with precise size control. Later, this 

chemistry was named as the hot-injection method, where the supersaturated 
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metal precursor solution is injected into a high boiling point solvent at an elevated 

temperature. The rapid injection induces a burst nucleation in the reaction 

mixture forming homogeneous nanocrystalline nuclei. The reaction temperature 

decreases due to the injection of relatively cold reagents, and the formation of 

discrete nuclei results in the decreased monomer concentration in the reaction 

mixtures. These two effects lower the growth rate of nanocrystals after the 

precursor injection. Therefore, the nucleation and growth steps during the 

reaction are efficiently separated to prevent additional nucleation, which enables 

controlled growth from the uniform nuclei. The size distribution of nanocrystals 

can become more uniform by using subsequent size focusing growth and 

Ostwald ripening. The hot injection method is widely employed to synthesize II-IV, 

III-IV, IV-VI semiconducting quantum dots. 
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Figure 1.1. (A) General scheme for the growth of nanocrystals by the hot-

injection method. (B) Illustration of the apparatus used in synthesizing 

monodisperse nanocrystals.(Adapted from reference 2)  

  

 

Effective separation of the nucleation and growth processes to synthesize 

uniform nanocrystals also can be achieved by a non-injection method, as 

reported by Hyeon. et. al.9,10 For the synthesis of iron oxide nanocrystals, metal 

complex precursors such as iron oleate are added to the reaction mixture before 

the mixture is heated. Nucleation and growth are controlled by the kinetics of 

precursor decomposition. At a certain temperature, sudden decomposition of the 

precursors into reactive monomers induces the burst nucleation, followed by 

sequential growth from the nuclei. The non-injection method is typically employed 

in the synthesis of metal oxides and widely used to synthesize metal 

chalcogenide and rare earth based nanocrystals.11,12  
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In order to understand the effect of the nanocrystal shape, it is important to 

develop a technique to precisely engineer the morphology of nanomaterials. 

Shape control of nanocrystals can be achieved using various methods, such as 

seed-mediated growth,13 control of reaction kinetics,14,15 selective passivation by 

surfactants,16,17 oriented attachment,18 and sequential cation exchange 

processes19,20. By using these strategies, the morphology of nanocrystals has 

expanded to include nanorods21, nanowires22, nanoplates23, nanocubes24, 

multipods25, and other faceted nanocrystals.5,26 The development of colloidal 

synthetic methods to synthesize highly uniform nanomaterials with controllable 

sizes and shapes has opened a new era of understanding the unique physical 

properties of nanomaterials and hence has enabled a variety of applications of 

nanocrystals in science and technology.  

 

1.2. Size and Shape Dependent Physical Properties of Nanocrystals 

 

The size and shape of inorganic nanocrystals strongly influence the physical 

properties of nanomaterials. For instance, semiconducting quantum dots exhibit 

dramatic and distinct changes of their properties based on their size and shape. 

When a semiconducting material is formed into a nanocrystal which is smaller 

than the bulk exciton Bohr radius, the wavefunction of the electrons that are 

responsible for quantum effects greatly is impacted by the size and shape of the 

dot. Therefore, in this nanoscale regime, the electrical and optical properties of 
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semiconducting quantum dots depend strongly on their size and shape. In the 

case of CdSe nanocrystals, the onset of the absorption and emission shifts from 

a deep red (1.7eV) to green (2.4eV) as the cluster size decreases from 200 Å to 

20 Å.1,4 The shape is also an important parameter to tune the optical and 

electronic properties. One dimensional CdSe semiconducting nanorods exhibit 

optical anisotropy that causes polarized emission along the long axis.27 In a two 

dimensional CdSe nanoplate, the electron and hole pairs are strongly confined in 

one dimension, which results in a high fluorescence quantum yield, a very narrow 

full width half-maximum(less than 40 meV), and an ultrafast fluorescence life 

time.28  

Magnetic nanocrystals are widely explored for their magnetic resonance 

imaging (MRI) capabilities as a medical diagnostic tool. Cheon et al. 

demonstrated the nanoscale size-dependent magnetism and magnetic 

resonance properties of tightly size-controlled iron oxide nanocrystals,29 which 

influenced the application of monodisperse iron oxide nanocrystals as in-vivo 

magnetic resonance signal enhancers.30 Since the magnitude of magnetic spins 

in nanocrystals increases as the sizes of the nanocrystals increase, a larger 

mass magnetization value facilitates the spin-spin relaxation process of protons 

in the water molecules surrounding the nanocrystals. Therefore, transverse MR 

signal intensity increases with an increase in the sizes of the nanocrystals.  
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1.3. Lanthanide-Based Nanomaterials 

 

A rare earth material is one of a set of the 15 lanthanides, scandium, and 

yttrium. A lanthanide element has a partially-filled f electron inner shell that is 

responsible for its characteristic optical and magnetic properties. The f orbitals 

are well shielded by the outer 5p and 6s orbitals, causing characteristic narrow-

line atomic absorption and emission. The optical transition between f orbitals is a 

parity forbidden transition that results in very low molar extinction coefficients, 

typically < 3 M-1s-1.31 In addition, atomic transitions of lanthanides show longer 

excited state lifetimes, typically in the  microsecond to millisecond range.32  

When two or more lanthanide elements are doped in a nanomaterial host, an 

efficient energy transfer can occur between the atomic levels of the doped 

lanthanide ions. The absorption and emission properties of the material can be 

controlled by using one or more different types of lanthanide dopants placed at a 

distance close enough that energy transfer can occur. With proper lanthanide  

selection,  lanthanide ions show many interesting non-linear optical processes, 

such as two-photon upconversion and downconversion.32,33 Upconversion refers 

to the process in which two or more low energy photons are absorbed and 

combined to produce one higher energy photon. Conversely, downconvesion is 

the process in which a high energy photon is absorbed and split into two lower 

energy photons. When energy transfer occurs between two dopants, one dopant 

is considered a sensitizer (donor) and absorbs light, and the other is called an 
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activator (acceptor) and contributes to the luminescence of the material. Due to 

these unique properties, coupled with the magnetic properties of rare earth 

elements, lanthanide-based nanomaterials are widely used in various 

applications such phosphors, lasers, magnets, and catalysts, and  have formed 

an important platform for biomedical research. 

The host material also plays an important role in engineering the 

luminescence properties of the optically active dopants. The host separates the 

dopants to prevent concentration quenching between optically active ions as well 

as the quenching of populated atomic levels by the outer molecules. This host 

material requires similar lattice parameters to the lanthanide dopants for efficient 

doping. Low phonon energies of the hosts are desirable to prevent non-radiative 

deactivation between f orbitals. In general, the non-radiative transition of 

lanthanide ions occurs via multi-phonon relaxation.34,35 This process happens by 

simultaneous creation of several phonons which bridge the energy gap between f 

orbitals. The multi-phonon relaxation rate constant (k) across an energy gap is 

described as, 

 

where C and  are positive constants of the material characteristics, ΔE is the 

energy gap between f-f states, and ħmax is the highest energy vibrational mode 

of the host lattice.36 This suggests that the multi-phonon relaxation rate 
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decreases when a host with lower phonon energy is used. The highest energy 

longitudinal optical phonon mode is typically the stretching mode of anions 

whose frequency varies with the anion compositions.35 Therefore, fluoride-type 

materials  are ideal candidates due to their low lattice phonon energies, typically 

less than 500 cm-1, and high chemical stabilities.37  

Among the various types of hosts, NaYF4 and NaGdF4 are known as the 

most efficient materials for light emission, including upconversion, and are widely 

studied.38 These materials form two different polymorphs, which are the 

kinetically stable cubic (-phase and the thermodynamically stable hexagonal 

(-phase. The hexagonal phase exhibits intense luminescence, including two-

photon upconversion, that is about an order of magnitude more intense than 

luminescence produced by the cubic phase.38 The crystal structures affect the 

emission intensity due to the different local crystal field around the optically active 

dopants tailored by the different symmetry of the hosts. Electronic transitions 

between f orbitals are forbidden due to quantum mechanical selection rules. 

Hosts with low crystal symmetry increase the possibility to mix a small amount of 

opposite-parity wavefunction into the 4f-states, resulting in some enhancement of 

the radiative relaxation from populated f-orbitals.37,39 The high luminescence 

efficiency of the hexagonal phase may be attributed to the lower symmetry of 

optically active dopants. In addition, the lattice phonon frequency of hexagonal 

phase materials is much smaller than that of cubic phase materials, which 

prevents non-radiative deactivation.37  
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In order to understand the physical properties of lanthanide-doped 

nanomaterials, it is important to develop synthetic methods to precisely tune size, 

shape, composition, and crystal structure on a nanometer scales. There are 

several methods to synthesize lanthanide-based nanomaterials, for example, 

hydrothermal methods, sol-gel reactions, combustion syntheses, and co-

precipitation methods.39 Among them, one of the most commonly used methods 

is high temperature thermal decomposition with metal precursors that produce 

highly uniform lanthanide-based nanomaterials with controllable sizes and 

shapes. This method was developed by Yan et. al., to synthesize triangular LaF3 

nanoplates.40 They introduced trifluoroacetate salts as single source metal 

precursors and heated them up to the 280oC in the presence of oleic acid and 

octadecene to induce the nucleation and growth of nanocrystals. Lanthanum 

trifluoroacetate salts thermally decompose as suggested in Scheme 1.1.,41 

forming highly uniform triangular LaF3 nanoplates. The non-injection, heating-up 

approach using the trifluoroacetate salts has been applied to synthesize many 

different types of fluoride-based lanthanide nanocrystals such as NaYF4
42,43, 

NaGdF4
44, LiYF4

45, and YF3
46. Since the luminescence properties highly depend 

on their composition and crystal structure, it is important to develop chemistry 

that enables the production of phase-pure inorganic nanomaterials. Therefore, 

the investigation of growth mechanisms to understand the evolution of the size, 

shape, and crystal structure that occurs during the reaction is essential.  
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Scheme 1.1. Thermal decomposition reaction of rare earth trifluoroacetate salts. 

 

Figure 1.2. TEM images of lanthanide based nanocrystals. a) triangular and b) 

spherical LaF3 nanoplates, c) EuF3 nanodisks, d) cubic()-phase NaGdF4 

nanospheres, e) hexagonal()-phase NaGdF4 nanospheres and f) nanorods. 
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Upconversion luminescence, which is a non-linear process achieved by 

customizing the composition of nanocrystals, provides a unique optical modality 

for a variety of applications including bioimaging, sensing, and therapy.47 The 

upconversion process consists of the sequential absorption of low energy 

photons followed by the emission of a higher energy photon as anti-Stokes 

emission. The upconverter is composed of two or more lanthanide dopants that 

act as sensitizers and activators and the host material. Erbium(Er3+), 

thulium(Tm3+), and holmium(Ho3+) have been used as activators that emit light 

under low energy excitation, and ytterbium (Yb3+) is the most commonly used 

element as the sensitizer for the upconversion process. Yb3+ has a relatively 

large absorption cross-section and the energy gap between the 2F7/2 ground state 

and 2F5/2 excited state of ytterbium matches well with the transition energy 

between the atomic levels of Er3+ or Tm3+.39 Therefore, the resonance energy 

transfer from the sensitizer to the activators can be facilitated, resulting in the 

enhancement of the upconversion efficiency. The absorption wavelength of 

ytterbium is around 980nm, which is located at the transparent near-IR window in 

biological tissues. Therefore, upconversion luminescence offers higher 

penetration depth in the biological system, enabling efficient in-vivo imaging 

capability. In addition, large anti-Stoke shifts minimize the autofluorescence from 

the background, which helps to increase the signal-to-noise ratio. With a careful 

choice of host materials, upconverting nanocrystals exhibit remarkable 

photostability without photo-bleaching and blinking.48 
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1.4. Lanthanide-Based Nanocrystals for Biomedical Application. 

Lanthanide-based inorganic nanomaterials are a promising platform for 

biomedical research, such as medical diagnostics and clinical therapy. Among 

the lanthanides, gadolinium is particularly interesting due to its unique 

paramagnetic properties and its potential applications in MRI contrast agents.49 

MRI is a routine diagnostic tool in modern clinical medicine. It is a non-invasive 

and real time imaging method that provides excellent spatial resolution and 

anatomical information with unlimited tissue penetration. The MRI signal is 

generated by the transverse relaxation of the net magnetization of protons in 

water molecules. Gd3+-based agents shorten the relaxation time of nearby water 

protons to create the contrast in MR signals.49 Although many different types of 

Gd3+ complexes and clusters have been explored to increase sensitivity and 

spatial resolution, they still have a couple of drawbacks.50 Small molecule Gd3+ 

complexes show a very short body circulation time due to the rapid excretion 

through urine, which poses as a problem in long term tracking. A low local 

concentration of Gd ions causes relatively low contrast due to its small relaxivity. 

Gd3+ complexes suffer from the risk of dissociation of the complexes into free 

ligands and Gd ions, which could cause an acute toxic effect from the free 

gadolinium, such as nephrogenic system fibrosis. In addition, the 

functionalization of the Gd3+ small molecule agent with the specific targeting 

agents is not trivial, which limits the utilization of this type of contrast agents for 

site-selective imaging.  
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Gd-based nanocrystals have the potential to overcome the many 

disadvantages of Gd-complexes.51 The nanocrystal is composed of a large 

number of Gd ions that increase the local concentration of Gd at the region of 

interest. Due to the large surface-to-volume ratio of the nanocrystals, it is 

relatively easy to functionalize the contrast agents with targeting molecules for 

site selective imaging. The circulation time and clearance can be controlled by 

changing the size and shape of the nanocrystals. In addition, doping Gd-based 

nanocrystals with optically active lanthanide elements or radio-lanthanides can 

be conducted to easily customize their multimodal imaging capacity. Thanks to 

the progress of synthesis strategies for highly uniform nanocrystals, many 

different types of Gd-based nanocrystals, such as NaGdF4, GdF3, GdPO4, and 

Gd2O3, have been explored for MRI applications and studied to understand the 

effect of nanocrystal morphology on MR relaxivity.52 For example, van Veggel et. 

al reported size dependent MR contrast enhancement of hexagonal phase 

NaGdF4.
44 They synthesized nanocrystals with various sizes from 2.5 nm to 8.0 

nm and investigated T1 longitudinal relaxivity at 1.5 Tesla. They observed that 

ionic relaxivity increases as the size of the nanocrystals decreases, which may 

be attributed to the enhancement of the surface-to-volume ratio. However, they 

also argued that the surface ions on a larger nanocrystal affect the relaxivity 

more strongly than the ions on a smaller one due to the increase of the tumbling 

time (R) in larger nanocrystals which can counteract the effect of the surface-to-

volume ratio. These results reveal that both the size and the shape dramatically 
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influence the MR relaxivity for MRI imaging. However, systematic studies to 

understand how size, shape, and composition of highly monodisperse Gd-type 

nanocrystals influences the MR relexivities have not been sufficiently performed.  

The properties of nanocrystals may be further manipulated through 

controlled aggregation or self-assembly of individual nanocrystals in vivo.53-55 

Weissleder and coworkers developed magnetic nanosensors from DNA-

hybridized magnetic nanocrystals.56 Controlled hybridization by adding specific 

molecules that can induce the self-assembly of magnetic nanocrystals works as 

magnetic relaxation switching in MRI, resulting in an increase of spin-spin 

relaxation time of protons in the surroundings due to the enhancement of the 

magnetic properties of assembled clusters. This enables the detection of specific 

and selective molecular interactions that can induce the aggregation of DNA-

functionalized magnetic nanoparticles. These results reveal that understanding 

the processes of the self-assembly, which are governed by nanocrystal size, 

shape, composition, and surface functionality, is important for establishing the 

design rules to engineer the properties of superstructures. 

 

1.5. Nanocrystal Shape-Effect on Nano-Bio Interactions. 

While early studies focused on understanding of how the physical properties 

of nanocrystals are modified by particle size and shape, evidence suggests that 

the size and shape of nanocrystals can strongly influence physiological 

interactions in biological systems, such as effects on cellular binding, 
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internalization, and toxicity.57-59 The effect of nanocrystal size on enhanced 

permeability and retention (EPR) and in-vivo blood circulation time is well 

documented in the literature.57,58,60 More recently, the nanocrystal shape was 

also shown to influence cellular internalization and nanoparticle-cell 

interactions.61-66 For example, DeSimone and co-workers reported that rod-like 

high-aspect-ratio hydrogels (several hundred nanometers in size) were 

internalized faster than more symmetric cylindrical particles even though both 

particles are almost the same in volume. Further studies revealed that, even 

among the anisotropic shapes, disk-shaped hydrogel nanoparticles more 

preferentially accumulate within tumor vasculature than rod-shaped nanoparticles 

and thus increase the sensitivity of tumor detection.67 This result indicates the 

importance of nanocrystal shape on biological interactions and suggests that the 

transport mechanism and kinetics of nanocrystal-based tracers or delivery 

carriers in biomedical applications can be engineered by the size and shape 

control of nanomaterials 

In addition, in order to utilize nanocrystal-based tracers for bio-applications, 

environmental and health aspects such as toxicity should be clearly understood. 

The size and shape dependent toxicity of nanocrystals has been widely studied. 

For example, Zink et. al reported that increasing the aspect ratio of 

nanomaterials, such as in cerium oxide nanowires, results in increased 

cytotoxicity acting as fiber-like substances that can damages lysosomes.68 Thus, 

including tracking/imaging elements into nanocrystals with different size, shape, 

and functionality can also allow for the unambiguous exploration of 



16 
 

environmental and health effects of engineered nanomaterials.69,70 For the 

precise studies of the size and shape effects of nanocrystals on transport 

mechanisms and cell interactions, size monodispersity and shape uniformity are 

essential because it allows for the accurate analysis of biodistributions without 

the confounding effect of size and shape-dependent clearance. Therefore, it is 

prerequisite to develop methods to tune the morphology of highly uniform 

nanocrystals that can be directly applied for this type of study.   

 

1.6. Nanocrystal Superlattices with Anisotropic Nanocrystals 

The self-assembly of small building blocks such as molecules, and 

nanocrystals enables the integration of small building blocks into macroscopic 

superstructures through a bottom-up approach.71,72 In nature, this process 

frequently occurs to construct large-scale biological structures exhibiting  

collective functions beyond the individual building blocks. For example, lipids, 

which are a group of naturally existing amphiphilic small molecules, are self-

assembled into lipid bilayer membranes by spontaneous and non-covalent 

interactions. Membranes are essential structural building blocks for living 

creatures and further assemble to form superstructures such as vesicles, 

micelles, and liposomes. Much larger and more complex superstructures are also 

constructed by these self-assembly approaches. For instance, the tobacco 

mosaic virus is a helical virus particle which is composed of 2130 identical sub-

units.73 In the physiological conditions, the protein sub-units form as disk-shaped 
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small clusters. In the presence of RNA, small subunits are self-assembled via 

non-covalent interactions to construct rod-like superstructures 300 nm in length 

and 18 nm in diameter. Inorganic materials also self-assemble into arrays to form 

ordered superlattices in nature. A natural opal is composed of silica particles 

which are self-assembled into close-packed arrays. Although individual 

nanoparticles are colorless, their assembled structure exhibits internal colors due 

to diffraction caused by grating created by the stacked planes of self-assembled 

nanoparticles. 

Artificially synthesized colloidal nanocrystals are promising building blocks 

for the formation of novel functional metamaterials via self-assembly. Due to the 

recent development of colloidal chemistry, the size, shape, chemical 

compositions, and surface chemistry of nanomaterials are able to be 

systematically tuned, which enables the physical properties of highly uniform 

nanocrystals to be precisely controlled.5 In addition, the properties of 

superlattices can be tailored by the careful selection of the type of building blocks 

among the nanocrystals exhibiting plasmonic, magnetic, semiconducting, and 

dielectric properties. Figure 1.3 shows TEM images of single component 

superlattices composed of different types of nanocrystals, such as metal (Figure 

a, Au nanocrysals), dielectric nanocrystals (Figure b, CaF2), and semiconductors 

(Figure c and d, Indium-doped CdO). The interactions between nanocrystals in 

the superlattices gives rise to novel collective properties of artificial solids from a 

set of building blocks, which is distinct from the properties of individual 
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nanoparticles. Control over single and binary nanocrystal superlattice structures 

is exerted through a variety of factors contributing to an emerging set of design 

rules which incorporate the type of nanocrystal,74,75 particle size and relative size 

ratio,75,76 and self-assembly conditions.77,78  
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Figure 1.3 TEM images of single component superlattices of a) Au (metal), b) 

CaF2 (dielectric), c) octahedral and d) spherical indium-doped CdO 

(semiconductors). e) and f) Long range [001] projection of an MgZn2-type binary 

nanocrystal superlattices of 7.5 nm indium-doped Cd nanocrystals and 5.0 nm 

PbSe nanocrystals. The inset shows small-angle electron diffraction pattern of 

the binary superlattices. 
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Among the vast collection of nanocrystal building blocks, anisotropic 

nanocrystals offer a new design criterion for tuning assemblies, allowing for the 

formation of liquid crystalline phases with differing orientational and positional 

order.79,80 These non-spherical building blocks provide more extended phase 

diagrams and packing arrangements, which is predicted by theoretical 

simulation,81-87 and has been demonstrated experimentally through the use of 

anisotropic building blocks, in which complex shapes are organized into ordered 

superlattices.88-96 Nanorods are well-known anisotropic building blocks which 

form oriented liquid crystalline superlattices, previously fabricated by drying-

mediated self-assembly,97 electric-field-assisted assembly,98 depletion 

attraction,99 and the Langmuir-Blodgett technique.100 Liquid crystalline 

assemblies of nanoplates have also been demonstrated.40,85,101-106 Cao et  al. 

demonstrated highly ordered assemblies of gadolinium oxide (Gd2O3) square 

nanoplates.101  

Liquid crystalline superlattices offer interesting properties due to non-

spherical building blocks as well as the anisotropic structure of superlattices. 

Talapin et al. reported that the self-organization of CdSe and CdSe/CdS 

nanorods into nematic, smectic, and crystalline solids.107 Liquid crystalline 

superlattices of CdSe nanorods are grown via controlled destabilization of CdSe 

nanorods in solution by slow diffusion of a non-solvent. It is observed that 

anisotropic superlattices display strong optical anisotropy of the nanorods and 

characteristic birefringence due to the specific texture of the nanorod assembly. 
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The macroscopic orientation of the semiconducting nanorods in self-assembled 

structures have also influenced their electrical properties. Sirringhaus et al. 

reported that self-assembled ZnO nanorods, which are preferentially oriented 

along in-plane directions on the substrates, shows significant improvement of 

field effect transistors device performance, indicating higher charge transport 

than devices in which ZnO nanorods are isotropically aggregated.108 This reveals 

that the orientation and orders of the anisotropic building blocks in self-

assembled superlattices does strongly influence the collective behaviors of 

artificial solids. Therefore, it is important to develop methods to systematically 

control the macroscopic orientation and positional orders of anisotropic building 

blocks in self-assembly in order to engineer the properties of superlattices. 

 

1.7. Thesis Overview 

    The goal of this thesis is to develop novel chemistry for synthesizing highly 

uniform nanocrystals with controllable size, shape, and chemical compositions, 

investigate the reaction mechanism to understand nanocrystal growth, 

characterize the structure and properties of synthesized nanocrystals, and 

develop designable methods to order self-assembled anisotropic building blocks 

into structured arrays to create complex nanocrystal solids  

In Chapter 2, I demonstrate the shape controlled synthesis of lanthanide 

based nanomaterials with the addition of alkali metal salts. We observed that 
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nanocrystal shapes are dramatically influenced by the type of salts used for the 

reaction.  I characterize their optical and magnetic properties to investigate the 

potential biomedical applications of these materials. In Chapter 3, I synthesize 

the radiolabelled nanomaterials with controlled size and shape using the 

synthesis method developed in Chapter 2. In Chapter 4, I will explain the shape-

directed self-assembly of anisotropic nanocrystals and demonstrated that 

complex anisotropic superstructures are fabricated with single and binary 

components by a careful design of anisotropic building blocks. In Chapter 5, I 

extend the concept of the heating up method to synthesize transition metal 

oxides nanomaterials via non-hydrolytic reaction between metal halides and 

primary alcohols. In Chapter 6, I investigate that vanadium oxide (VOx) colloidal 

nanocrystals can be utilized as the precursors to synthesize thermochromic VO2, 

which is an important building block for energy research, optics, and electronic 

devices.   
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CHAPTER 2. SHAPE-CONTROLLED SYNTHESIS OF 

GADOLINIUM-BASED NANOCRYSTALS  

 

2.1. Introduction 

Establishing methods to synthesize nanocrystals with well-defined size and 

shape is crucial, as the size, shape, surface, and crystal structure all strongly 

influence the properties of nanocrystals.2,109,110 Synthesis of nanocrystals with 

tailored morphology allows for correlation of the optical, magnetic, and electronic 

properties with the nanocrystal size and shape. This insight guides the design of 

nanocrystals optimized for various applications.29,111,112 Shape control of 

nanocrystals is achieved using various methods, including seed-mediated 

growth,13 control of reaction kinetics,14,15 selective passivation by surfactants,16,17 

oriented attachment,18 and sequential cation exchange processes19,20. Using 

these strategies, the morphology of nanocrystals has expanded to include 

nanorods21, nanowires22, nanoplates23, nanocubes24, multipods25, and other 

faceted nanocrystals.5,26  

In biomedical research and clinical medicine, nanocrystals play an 

increasingly important role as imaging agents and tracers.113,114 Nanocrystal-

based imaging probes can offer enhanced sensitivity and spatial resolution 

through incorporation of two or more imaging modalities into a single 

nanocrystal.12,65,115,116 The properties of nanocrystals may be further manipulated 
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through controlled aggregation or self-assembly of individual nanocrystals in 

vivo.53-55 Furthermore, the high surface area of nanocrystals facilitates their 

surface modification with targeting reagents providing enhanced detection 

sensitivity and selective targeting of therapeutic agents.117,118 While early studies 

focused on understanding how the physical properties of nanocrystals are 

modified by particle size and shape, evidence suggests that the size and shape 

of nanocrystals can also directly influence the interaction of nanocrystals with 

biological systems. The effect of nanocrystal size on enhanced permeability and 

retention (EPR) and in-vivo blood circulation time is well documented in the 

literature.57,58,60 More recently, the nanocrystal shape was also shown to 

influence cellular internalization and nanoparticle-cell interaction. For example, 

disc-shaped nanocrystals preferentially accumulate within tumor vasculature and 

increase the sensitivity of tumor detection,67 which indicates the importance of 

nanocrystal shape on biological interactions. Monodispersity is essential in this 

investigation because it allows for accurate analysis of biodistributions without 

the confounding effect of size-dependent clearance. Therefore, it is prerequisite 

to develop methods to tune the morphology of highly uniform nanocrystals that 

can be directly applied as imaging agents.  

Lanthanide-based nanocrystals are promising candidates for nano-medicine 

applications.39,119-123 A rich morphological diversity of lanthanide-based 

nanocrystals exists that may be tailored by precisely controlling reaction 

conditions.124-128 Lanthanide ions have free f-electrons which are responsible for 
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their unique magnetic and optical properties and allow for the design of 

customized nanocrystals by simply incorporating multiple lanthanide ions into the 

nanocrystals. The optical transition between f orbitals is a parity forbidden 

transition, resulting in long excited state lifetimes (> 1 μs). This facilitates energy 

transfer between atomic levels in lanthanide dopants, which can result in non-

linear optical properties such as near-IR to visible two-photon upconversion.38,129-

131 In addition, lanthanide-based nanocrystals act as scintillating materials due to 

their high atomic number, providing an additional optical modality under high-

energy radiation such as X-ray.132-134 The paramagnetic behavior of several 

lanthanide elements, including gadolinium (Gd), enables the use of lanthanide-

based materials as magnetic resonance imaging (MRI) contrast agents.  

In this section, we introduce the synthetic method to control the shape of 

highly uniform lanthanide-based nanocrystals. With an addition of alkali metal 

salts, the size and morphologies of nanocrystals can be tightly controlled by the 

careful control of reaction parameters. The structures are precisely characterized 

with electron microscopy and X-ray based measurement techniques coupled with 

X-ray simulations. Then, we measure their optical and magnetic properties. The 

expression of these properties suggests that these shape-controlled 

nanomaterials can be utilized as promising platforms for the various biomedical 

applications. In chapter 2.2, we discuss the shape-controlled synthesis of 

gadolinium fluoride-type nanocrystals. In chapter 2.3, we extend the type of host 
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to oxide-based nanocrystals and demonstrate that a wide range of structural 

diversity can be designed by this salt-mediated synthesis.  

 

2.2. Shape-Controlled Synthesis and Characterization of Gadolinium 

Fluoride-type Nanocrystals  

Scheme 2.1 is the synthetic method for NaGdF4 nanocrystals doped with 

lanthanides. Gadolinium trifluoroacetate is used as the metal precursor, which is 

prepared by dissolving gadolinium oxide in a trifluoroacetic acid and water 

mixture (50:50 vol%) under refluxing conditions. Then, the precursors, sodium 

fluoride, oleic acid, and 1-octadecene, are added into a 125ml three neck flask 

and degassed at 125oC for 1hr. The mixture is then heated to 290oC and kept at 

this temperature for 5 hours. The product is precipitated by adding excess 

ethanol and collected by centrifugation.  

 

 

Scheme 2.1. Synthesis of hexagonal()-phase NaGdF4 
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Figure 2.1. TEM images of hexagonal phase NaGdF4 nanoparticles synthesized 

by varying the molar ratio of NaF to Gd3+ a) 1.3 : 1, b) 2.5 : 1, and c) 5 : 1. 
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The morphology of the nanocrystals is tuned by changing the ratio of NaF to 

Gd3+ in the reaction. Figure 2.1 shows the TEM images of -NaGdF4 

nanocrystals synthesized with different NaF to Gd3+ molar ratios. At low NaF to 

Gd3+ ratios, large hexagonal plates of -NaGdF4 are obtained with edge-to-edge 

distances of 64nm and an average thickness of 44 nm (Figure 2.1a). With 

increasing NaF to Gd3+ ratios, the morphology of -NaGdF4 changes to nanorods 

with a length of 32nm and a width of 5nm. At even higher ratios, monodisperse 

spheres are synthesized as the final product with 10 - 13nm in average size. The 

size, shape, and monodispersity of nanocrystals are maintained even after the 

addition of different types of dopants, up to 20% molar ratio. However, the NaF to 

Gd3+ ratio to synthesize uniform spherical nanocrystals increases with dopant 

concentration, especially for the heavy lanthanide elements.(Figure 2.2) When 

the NaF to Gd3+ ratio is further increased, the average size of the particles 

decreases but the overall product becomes less monodisperse.  
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Figure 2.2. TEM images of spherical -NaGdF4 nanocrystals synthesized with 

different dopant concentrations and optimum NaF to Gd3+ ratio to obtain the 

spherical morphology  

 

 

NaGdF4 particles have two stable crystal structures at room temperature, 

cubic phase( and hexagonal phase(. It is known that the cubic phase is 

kinetically stable and the hexagonal phase is thermodynamically stable structure. 

During the reaction, we observe the phase transformation, which occurs from the 

kinetically stable cubic phase to thermodynamically stable hexagonal phase. In 

order to monitor the growth mechanism, aliquots are taken during the reaction 

and analyzed by TEM and powder X-ray diffraction (PXRD). Figure 2.3 shows 

the TEM images of the nanocrystals and PXRD results corresponding to TEM 
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images. After a 1hr reaction time at 290oC, spherical nanocrystals smaller than 

5nm in diameter are observed. The XRD data shows that the crystal structure at 

this stage is the kinetically stable -phase. After continued growth at the same 

temperature for additional hours, the cubic-to-hexagonal phase transformation 

occurs, as indicated in corresponding XRD patterns, and the morphology of the 

nanocrystals changes from small -phase nanospheres to -phase nanorods 

with bimodal distribution, which is corroborated by PXRD patterns (Figure 2.3b, 

e).  With extended reaction times, a decrease in the fraction of small particles in 

the TEM images is observed and the relative amount of -phase nanospheres is 

also reduced, as monitored in PXRD measurements. After 5 hours, only 

nanorods are observed in the TEM image and the XRD pattern indicates that the 

nanorods are purely -phase. This result suggests that the kinetically stable -

NaGdF4 nanocrystals are formed in the early stages of the reaction and 

transformed into thermodynamically stable -phase NaGdF4 with sufficient 

thermal energy. This is further supported by the fact that a higher reaction 

temperature accelerates  to  phase transformation. At 300o C, nanorods are 

grown through the same phase transformation pathway, but pure -phase 

nanorods are obtained within 2 hours. 
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Figure 2.3. Reaction time dependent shape and phase transformation. TEM 

images of nanocrystals synthesized at 290oC for a) 1 hour, b) 2 hours, c) 3 hours, 

and d) 5 hours. e) PXRD patterns of NaGdF4 nanocrystals at different reaction 

times. 

 

Figure 2.4 shows the TEM images of NaGdF4 nanocrystals synthesized with 

different NaF to Gd3+ ratios. At low NaF to Gd3+ ratios, -NaGdF4 hexagonal 

nanoplates approximately 35 nm in size are obtained after reacting for 5 hours. 

The  to  phase transformation is still observed during the nanocrystal growth. 

-phase nanocrystals are no longer present after 5 hours. By increasing the 

amount of NaF, it is observed that the  to  phase transformation is completed 

at a much earlier stage, typically after a 4 hour reaction time, to form pure -
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phase nanorods. By increasing the ratio of NaF to Gd3+ even further, the  to 

phase transformation is completed within 2 hours forming -phase spherical 

nanocrystals with an average diameter of 10 nm. This trend indicates that the 

increased presence of NaF affects not only the final morphology of nanocrystals, 

but also the kinetics of the phase transformation. Under these reaction conditions, 

nanocrystals do not form without the addition of NaF even at elevated reaction 

temperatures, up to 320oC, revealing that NaF is involved in the initiation of the 

precursor decomposition required to generate reactive nuclei. When the relative 

amount of NaF decreases, the initiation rate could be reduced, resulting in a 

decrease of the number of nuclei formed in the reaction mixture. This indicates 

that the relatively large population of precursors which could be grown on the 

nuclei remains in the reaction mixture. Therefore, during the rest of the reaction, 

larger sizes of nanocrystals could be formed from relatively large amounts of 

precursors and a small number of nuclei. On the other hand, with the large 

amount of NaF added, more nuclei could be formed due to the fast initiation of 

the precursors yielding smaller amounts of precursors available for the growth. 

Therefore, a larger number of smaller sized nanocrystals are synthesized as final 

products. A similar mechanistic study is reported in the literature, wherein higher 

reaction temperatures result in faster thermal decomposition, yielding more initial 

nuclei and thus a larger number of smaller sized crystallites.135  
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Figure 2.4. TEM images of -NaGdF4 nanocrystals synthesized with varying NaF 

to Gd3+ ratios and their time dependent shape transformation. 

 

 

Upconverting -phase NaGdF4 are synthesized by doping with erbium (Er3+) 

and ytterbium (Yb3+) co-dopants. Two-photon upconverting nanophosphors 

convert two low energy photons into one visible photon. Near-IR photons show 

superb penetration into biological media, suggesting the possibility of utilizing 

these nanocrystals as efficient energy converters and optical imaging probes for 

in-vivo applications. In order to enhance the upconversion luminescence 

efficiency, upconverting nanophosphors are overcoated with additional layers of 

host materials, preventing the fluorescence quenching by defects on the surface 
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of nanocrystals or by solvent molecules. After synthesizing Er3+ and Yb3+ co-

doped -phase NaGdF4, these core nanocrystals can be over-coated simply by 

adding Gd precursors into the crude reaction mixture of core nanocrystals, 

followed by additional heating at 290oC for 2 hours. Figure 2.5a and 2.5b show 

the TEM images of Er3+, Yb3+ co-doped -phase NaGdF4 before and after 

overcoating. It is observed that the spherical morphology of nanocrystals is 

maintained after shell formation. To confirm the size and size distribution of 

nanocrystals, small angle X-ray scattering (SAXS) experiments are conducted. In 

SAXS, scattering arises from the electron density difference between the 

nanoscale object and the surrounding medium. The intensity of the scattering 

radiation is expressed as, I(q) = |f(q)|2·S(q) where f(q) is the form factor which 

depends on the size and shape of the particle and S(q) is the structure factor 

which gives the correlation between particles.136 Formulation of f(q) using the 

standard spherical model with the distribution function accounting for the size 

dispersion and equating S(q) =1 for a dilute assumption scattering profile can be 

fitted to obtain the average size and distribution of the tested nanocrystals.137,138 

The X-ray fittings indicate that the core nanocrystals are roughly 13.4 ± 1.2 nm in 

diameter and the core-shell nanocrystals are 16.9 ± 1.4 nm, in good agreement 

with statistical analysis from TEM images.(Figure 2.5c and d) Core-shell 

upconverting nanocrystals show stable colloidal dispersion in nonpolar solution 

without any noticeable aggregation and display green phosphorescence under 

980 nm excitation (Figure 2.5e).  
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Figure 2.5. TEM images of a) -NaGdF4: 2%Er3+ 20%Yb3+ core and b) -

NaGdF4 :2%Er3+ 20%Yb3+/-NaGdF4  core-shell structure. c) SAXS patterns and 

d) average size and size distribution of core and core-shell nanocrystals. e) 

Photograph of upconversion luminescence of -NaGdF4:2%Er3+ 20%Yb3+/-

NaGdF4 core-shell nanocrystals under 980nm excitation. 
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With an addition of lithium fluoride (LiF) instead of NaF, gadolinium trifluoride 

(GdF3) nanocrystals are obtained as a final product with 2-D plate morphology. 

The size and shape are readily tuned through the modification of reaction 

parameters, such as the ratio of LiF to Gd3+, reaction time, and reaction 

temperature. We observed that the size of nanoplates increases by increasing 

the amount of LiF in the reaction mixture, extending the reaction time, and 

increasing the reaction temperature. Figure 2.6 shows TEM images of GdF3 

nanoplates synthesized with different reaction conditions. The length and width of 

the nanoparticles vary over a wide range, typically from 10 to 50nm while 

maintaining the high uniformity, but their thickness only varies between 1.5 nm to 

3nm.  
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Figure 2.6. TEM images of GdF3 nanoparticles synthesized by changing reaction 

conditions. The insets represent high magnification images. 

 

 

In colloidal systems, larger crystals with smaller surface-to-volume ratios 

are more energetically favorable than smaller crystals, resulting in the growth of 

larger particles at the expense of smaller ones. This phenomenon is referred to 
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as Ostwald ripening.139 This is attributed to the fact that smaller particles possess 

higher interfacial energies because atoms on the surface are energetically less 

stable than atoms that are already well-ordered and packed inside the crystals. A 

similar phenomenon is observed during the growth and shape transformation of 

GdF3 nanoplates. In order to investigate the shape evolution, aliquots are taken 

during the reaction and analyzed by TEM and PXRD. Figure 2.7 a-d represents 

TEM images of nanoplates taken at increasing time intervals at a 290oC reaction 

temperature. It is observed that ellipsoidal nanoplates are firstly formed after an 

hour with tip-to-tip distances of 10 nm (Figure 2.7a). After aging at the same 

temperature, the dissolution of small nanoplates is observed with the growth of 

large nanoplates, yielding a bimodal size distribution of nanoplates (Figure 2.7b). 

With extending the reaction time, the large nanoplates further grow to form a 

rhombic morphology with consecutive consumption of small nanoplates.(Figure 

2.7c) After a 4 hour reaction, small ellipsoidal nanoplates are completely 

replaced after ripening by nearly monodisperse rhombic nanoplates.  
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Figure 2.7. Size and morphology evolution of GdF3 nanoplates during the 

reaction. TEM images at a) 1 hour, b) 2 hours, c) 3 hours, d) 4 hours reaction 

times. e) PXRD patterns of GdF3 nanoplates corresponding to the reaction times. 

 

Figure 2.7e displays PXRD patterns of GdF3 nanoplates corresponding to the 

samples shown in TEM images. The crystal structure of GdF3 nanoplates 

matches the orthorhombic phase (JCPDS#00-049-1804).140 Figure 2.8 is a high-

resolution transmission electron microscopy (HRTEM) image of GdF3 rhombic 

nanoplates. Fast-Fourier transform (FFT) of HRTEM image of this structure 

shows the diffraction spots that are indexed as the {101}, {301}, {002} and {200} 

families of planes and the (101) plane lies in the edges of the nanoplates. This 
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indicates that our nanoplates are confined by the (020) plane and that growth 

occurs along the [101] direction. This description is further supported by the fact 

that the angles between the edges of nanoplates measured from the TEM image 

are 67.5o and 112.5o, which are consistent with the angles between the (101) 

planes calculated from the orthorhombic crystal structures. In addition, it is 

observed that peak intensities of (101), (301), and (002) reflections increase and 

the peak broadenings become narrower while broad peaks for the other planes 

maintain their intensities and broadenings. This also supports the fact that the 

nanoplates are growing along the [101] direction during the shape transformation. 

 

 

Figure 2.8. HRTEM image and FFT pattern of rhombic GdF3 nanoplate. 

 

While the width and length of the plates are easily measured by TEM, the 

thickness of the nanoplates is more difficult to measure due to the tilt in the 
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sample orientation when lying edge-on. To confirm the size and shape of the 

rhombic nanoplates, PXRD and SAXS are simulated based on atomistic models 

of nanoplates generated from the statistical analysis of TEM images. SAXS is 

highly sensitive to the size distribution of the particles and wide angle PXRD is 

sensitive to interatomic spacings and crystal structures. The GdF3 nanoplate 

models are constructed using the orthorhombic unit cell. Atomic coordinates and 

scattering factors are entered into the Debye formula to generate the simulated 

patterns.1 A size-series of nanocrystals were simulated and entered into a 

Gaussian dispersion equation, thus introducing a size distribution into simulated 

patterns. Due to the tendency of the nanoplates to align face-to-face, nanoplates 

on drop-cast films are found to have a preferred orientation. This results in 

inaccurate ratios of diffraction intensities in the experimental data. To circumvent 

this issue, we collect PXRD patterns of concentrated nanocrystal solutions filled 

in a glass capillary using transmission geometry, enabling the diffraction patterns 

to be obtained for randomly oriented nanoplates. Figure 2.9 shows the SAXS and 

PXRD patterns and the simulation results. The input parameters for the 

simulation are varied to fit the experimental pattern yielding a length of 35nm, a 

width of 25nm, a thickness of 2.4nm, and a dispersion in the length and width 

(defined as the standard deviation divided by the mean size) of 8%. The average 

length and dispersion, determined by measuring the length of 150 nanocrystals 

in TEM images, are 34.9nm and 4%, respectively, which is in accordance to the 

values obtained from X-ray simulation.  
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Figure 2.9. a) TEM image of rhombic nanoplates used for powder X-ray 

simulation. b) the atomistic model generated for simulation c) SAXS and d) 

PXRD pattern of rhombic nanoplates (the experimental data (black line) is plotted 

together with simulation pattern (red dot) for SAXS and PXRD). 
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Due to the high monodispersity and tunability in size and shape, the GdF3 

nanoplate could be a promising model system to understand the size and shape 

effects on magnetic properties. Gadolinium-based nanocrystals are widely used 

for imaging contrast agents for T1 weighted MRI which provide positive contrast 

effects by generating a bright image in the presence of Gd3+ ions, which offers 

higher sensitivity by differentiating from the dark background.51 In addition, the  

paramagnetism of lanthanide ions allows these nanomaterials to be utilized as a 

promising T2 contrasting agents in high field MRI imaging.141 In order to 

investigate the size dependence of nanoplates on MR relaxivity, we synthesized 

ellipsoidal and rhombic nanoplates and performed the ligand exchange with 

water-soluble polyacrylic acid to increase the compatibility in aqueous system. 

Relaxivity of the samples shown in Figure 10a and 10b are collected under a 

9.4T magnet. Relaxivity measurement values of the sample in Figure 10a is r1 = 

1.22mM-1sec-1, r2 = 25.5 mM-1sec-1 and the result of the sample in figure 10b is r1 

= 1.29 mM-1sec-1, r2 = 80 mM-1sec-1, respectively. The results may indicate that 

the r1 value is less sensitive to the size of the nanoplates, but the r2 value is 

highly affected by the variation of the size. The surface ion of the nanocrystals is 

known as the major contributor to the longitudinal relaxation of water protons.44 In 

the case of spherical nanocrystals, the relaxation rate increases with decreasing 

sizes of nanocrystals due to an increase in the surface-to-volume ratio. However, 

no significant change in r1 relaxivities is observed by changing the size of the 

nanoplates, which may be attributed to the similar  surface-to-volume ratio after 

changing the size of the nanoplates. On the other hand, increasing the size of the 
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nanoplates contributes increases their magnetic moment. Therefore, the larger 

nanoplates show the higher transverse relaxivity, r2, due to more effective 

dephasing of the transverse magnetization by larger local magnetic fields. In 

addition, a high r2 relaxivity and a high r2/r1 ratio indicate the possibility of using 

GdF3 nanoplates as T2 contrast agents for high field MRI imaging.  
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Figure 2.10. TEM images of a) ellipsoidal and b) rhombic GdF3 nanoplates used 

for proton relaxometry measurement. c) DLS measurements of PAA-coated 

GdF3 nanoplates.  The size of nanoplates after PAA modification is 14.8nm for 

ellipsoidal nanoplates(Figure 2.10a) and 38.4nm for rhombic nanoplates (Figure 

2.10b). 
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2.3. Shape-Controlled synthesis of Gadolinium Oxide Nanoplates for 

Multimodal (MRI, NIR, and X-Ray Excited Fluorescence) Imaging 

In this section, we report the shape-controlled synthesis of gadolinium oxide 

(Gd2O3) tripodal and triangular nanoplates. Gd2O3 is well known as an MRI 

contrast imaging agent due its unique high spin paramagnetism.44,142 Through 

simple addition of lithium hydroxide (LiOH), which is used as a shape-directing 

agent, highly uniform Gd2O3 nanoplates are synthesized with morphology tunable 

from a tripodal to a triangular shape. The complex morphology of the tripodal 

nanoplate, which resembles the 14.2 × 8.5 × 3.8 nm shape of an IgG antibody,143 

could provide an additional degree of freedom to tailor shape-dependent 

properties and physiological interactions in biological system. In addition, we 

study near-IR to visible upconversion luminescence by co-doping erbium(Er3+) 

and ytterbium(Yb3+) into the host and X-ray excited optical luminescence (XEOL) 

with europium(Eu3+) or terbium(Tb3+) dopants. Coupled with magnetic properties, 

tripodal and triangular Gd2O3 nanoplates can offer unique opportunities for 

multimodal imaging probes. 

Gadolinium oxide nanoplates are synthesized through thermal decomposition 

of gadolinium acetate precursors in the presence of lithium hydroxide. Lithium 

hydroxide is initially added to a non-polar solvent mixture of oleic acid and 1-

octadecene and, upon heating to 110oC, lithium hydroxide reacts with oleic acid, 

likely forming lithium oleate, and becomes soluble in non-polar media. After 
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adding gadolinium acetate precursors, the reaction solution is heated to around 

300oC to 320oC, resulting in the formation of Gd2O3 nanoplates. A high N2 flow 

rate during the heating was found to be critical to synthesize uniform Gd2O3 

nanoplates with the desired morphology. We propose that upon heating, acetic 

acid formed from the acetate salts or decomposed components and water which 

volatilize in the reaction mixture can adversely affect the growing of nanocrystals.  
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Figure 2.11. TEM images of Gd2O3 synthesized in presence of LiOH. a) tripodal 

nanoplates and b) triangular nanoplates. c,d) self-assembled Gd2O3 nanodisks 

synthesized in presence of NaOH  

 

Shape control of Gd2O3 nanoplates is achieved by controlling the reaction 

time and temperature. Figure 2.11 displays transmission electron microscope 
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(TEM) images of Gd2O3 nanoplates synthesized at different temperatures. Gd2O3 

nanoplates with tripodal plate morphology are formed after 1 hour at 300oC 

(Figure 2.11a). At a reaction temperature of 320oC, with the same reaction time, 

triangular shaped nanoplates are obtained as the final product (Figure 2.11b). 

Tripodal nanoplates show remarkable uniformity with narrow distributions even in 

the arm length and width (Figure 2.12). In addition, pure tripods are obtained 

exclusively without any other shape impurities, such as rods, bipods, or spheres. 

Lithium ions play an important role in the formation of tripod morphology. When 

sodium ions are used instead of lithium salts, disk-shape ultra-thin nanoplates 

are formed exclusively without any tripod or multipod morphologies (Figure 2.11c, 

d). 
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Figure 2.12. Low-magnification TEM image of Gd2O3 tripodal nanoplates 

 

The crystal structure of Gd2O3 is characterized by powder X-ray diffraction 

(PXRD) and electron microscopy. Figure 2.13a displays the PXRD data of 

tripodal and triangular Gd2O3 nanoplates. The crystal structure of plate shaped 

Gd2O3 nanoplates most closely resembles the cubic-phase bixbyite structure 

(JCPDS No.43-1014). Similarities of peak broadening and intensity between the 

diffraction patterns of two different shapes indicate that the crystallographic 

structure of the tripodal and triangular nanoplates is maintained during the 

morphological transformation. Both nanoplates show a sharp (440) reflection in 

PXRD patterns and broad peaks for the other planes, suggesting that the (440) 
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plane lies in the plane of the nanoplates. Figure 2.13b-e displays high-resolution 

transmission electron microscopy (HRTEM) images of tripodal and triangular 

Gd2O3 nanoplates. Fast-Fourier transform (FFT) of HRTEM images of these 

structures show single-crystalline patterns with six-fold symmetry. For a cubic 

crystal structure, this symmetry would only be shown from the [111] zone axis, 

indicating that our nanoplates are confined by the (111) plane and that growth 

occurs along the [110] direction. This description is consistent with the tripod 

morphology where three arms of a nanoplate forming 3-fold symmetry 

correspond to the three equivalent {110} vectors in the [111] plane. In a previous 

report on Gd2O3 by Cao et al.101 and an extended study of rare earth oxide 

nanoplates,125 it is reported that Gd2O3 nanoplates form a structure where the top 

and bottom planes of Gd2O3 nanoplates are enclosed by (001) planes with the c-

axis as the direction of thickness. By applying similar concepts to our 

experimental data, it is expected that the addition of lithium may stabilize the 

(111) plane of Gd2O3 relative to the (100) plane resulting in the formation of 

nanoplate morphology truncated by (111) plane.  
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Figure 2.13. a) Powder X-ray patterns of tripodal and triangular Gd2O3 

nanoplates. High resolution transmission electron microscopy (HRTEM) images 

of b, d) tripodal and c, e) triangular nanoplate. Insets are fast-Fourier transforms 

of HRTEM images. 
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Reflections of Gd2O3 nanoplates in PXRD patterns show deviations from the 

bulk peak positions. Measurement patterns show that the expansion of inter-

planar distance along the (222) and (400) planes is more distorted than in the 

(440) reflection peak. Size-dependent lattice expansion of metal oxide structures 

at the nanoscale is often observed with decreasing crystalline domain size 

smaller than 10 nm.144 Our nanoplates are confined by the (222) plane, which 

means that a large portion of atoms in the (222) plane is located on the surface. 

Different atomic coordination of the surface atoms may induce a change in 

atomic bond length, which modifies the inter-planar distance. In addition, due to 

the small size of the lithium ion, we anticipate that lithium may be doped into the 

Gd2O3 lattice inducing lattice expansion, as similar results with sodium doping in 

rare earth oxysulfide nanocrystals have been reported.127  

A series of reactions conducted at a fixed reaction time but systematically 

varied reaction temperatures provide insight on the growth mechanism for 

tripodal and triangular nanoplates. At 280oC and a 30 min reaction time, a 

mixture of nanorods and small round shape disks are observed, with a small 

portion of tripodal nanoplates (Figure 2.14a). After 1 hour at 280oC, a large 

portion of disks and rods are transformed into the tripod shape (Figure 2.14b). 

Careful inspection of nanoplates in the reaction at 280oC reveals the formation of 

rod shaped nanoplates with arrow-headed tips, which suggests that coalescence 

between small crystals may contribute to the growth in this early reaction. This is 

further supported by the observation of branched nanoplates in which additional 
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branches grow from the center of the arms.(Figure 2.15). Tripod nanoplates of 

high uniformity are the exclusive product when the reaction temperature is 

increased to 290oC and 300oC after a one hour reaction time (Figure 2.14c, d). 

When the reaction temperature is increased to 310oC, the aspect ratio of each 

arm decreases, forming a more triangular shape (Figure 2.14e). Triangular plates 

are exclusively observed after a 1 hr reaction at 320°C (Figure 2.14f).  
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Figure 2.14. Temperature dependent shape transformation. TEM images of 

nanoplates synthesized at a) 280oC for 30min, b) 280oC, c) 290oC, d) 300oC, e) 

310oC, f) 320oC for 1 hr. 
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Figure 2.15. a), b) Branched Gd2O3 nanoplates 

 

To investigate the shape evolution of nanoplates, aliquots were taken during 

a single reaction and analyzed by TEM. Figure 2.16a-e represents TEM images 

of nanoplates taken at increasing time intervals for a 300 oC reaction 

temperature. Tripodal nanoplates are first formed after one hour with a tip-to-tip 

distance of 34 nm and a 2 nm thickness (Figure 2.16a, 2.13d). After aging at the 

same temperature, ripening occurs, which induces a shape transformation in 

which the arm length decreases and the arm width increases. After 4 hours, the 

morphology is completely transformed to a triangular shape with a 26 nm edge 

length and a 2 nm thickness (Figure 2.16b, 2.13e). The edge length of the 

triangular plates is always smaller than the arm-to-arm length of the tripodal 

plates, suggesting that this structural transformation is induced by atomic 

rearrangement of surface atoms to reduce the surface energy in the nanoplates, 

as illustrated in Figure 2.16f. All of the data indicate that branched nanoplates 

form at an early stage in the reaction and the thermodynamically stable triangular 
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shape results when sufficient energy is supplied to the reaction by increasing the 

reaction temperature or extending the reaction time. It is notable that the size and 

shape uniformity is maintained throughout the whole shape transformation.  
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Figure 2.16. Reaction time dependent shape transformation. TEM images of 

nanoplates synthesized at a) 300oC for a) 30 min, b) 1 hour, c) 2 hours, and d) 3 

hours  e) 4 hours. f) Schematic of the nanoplate shape transformation. 
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Through proper selection of optically active dopants, tripodal Gd2O3 

nanoplates with minimal change in particle morphology can fluoresce under 

excitation by a variety of external energy sources, offering an optical imaging 

modality. Upconverting Gd2O3 tripodal nanoplates are synthesized through an 

addition of erbium (Er3+) and ytterbium (Yb3+) co-dopants. This tripodal 

upconverter shows near-IR to visible upconversion luminescence. Figure 2.17a 

shows upconversion luminescence spectra of 2% Er3+, 20% Yb3+ co-doped 

Gd2O3 nanoplates under 980nm irradiation. Characteristic green and red 

emission peaks are observed under near-IR excitation, located at 522 nm, 542 

nm, and 656 nm, corresponding to 2H11/2→
4I15/2, 

4S3/2→
4I15/2, and 4F9→

4I15/2 

transitions of Er3+ respectively. Upon introduction of europium (Eu3+) or terbium 

(Tb3+) dopants, Gd2O3 tripodal nanoplates can also exhibit an X-ray excited 

optical luminescence (XEOL) signature. To characterize the emission properties 

under high-energy excitation, emission spectra were collected with an X-ray 

diffractometer using an optical fiber coupled to CCD camera from a sample under 

Cu K X-ray excitation ( =1.5416Å). Figure 2.17b displays emission spectra of 

Tb3+ and Eu3+-doped Gd2O3 nanoplates under X-ray excitation. Depending on 

the dopant type, green and red emission peaks corresponding f-f transitions of 

Tb3+ and Eu3+, respectively, are observed, confirming that Tb3+ or Eu3+-doped 

Gd2O3 tripodal nanoplates can convert X-ray energy into visible light. Near-IR 

and X-ray photons show superb penetration into biological media, suggesting the 
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possibility of utilizing these nanocrystals as efficient energy converters for in-vivo 

applications. 

 

  

Figure 2.17. a) Upconversion luminescence spectra of Er3+, Yb3+ co-doped 

Gd2O3 nanoplates under 980nm excitation. b) X-ray excited optical luminescence 

spectra of Eu3+ and Tb3+ doped Gd2O3 nanoplates excited by Cu K X-ray 

irradiation. 
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To demonstrate the capability of Gd2O3 nanoplates to provide MR contrast in 

aqueous media, we performed a ligand exchange reaction because the as-

synthesized hydrophobic nanoplates are stabilized by long alkyl chain surfactants. 

Water-soluble PEI-coated Gd2O3 nanoplates are prepared using a two-step 

ligand exchange process in which the tetrafluoroborate anion (BF4
-) acts as an 

intermediate capping group. Figure 2.18 presents Fourier transform infrared (FT-

IR) spectra of untreated, BF4
- treated, and PEI treated Gd2O3 nanoplates. After 

the first ligand exchange process with NOBF4, the C-H stretching vibrations at 

2800-3000cm-1 are completely removed, indicating that the original surfactants 

are efficiently exchanged with BF4
- ligand. The weak binding affinity of BF4

- 

ligands to the nanocrystal surface allows for efficient secondary surface 

modification using the PEI ligand. The occurrence of C-H vibrations after the 

second ligand exchange process with PEI indicates that the surface of 

nanoplates are over-coated by PEI ligands due to the C-H moiety in PEI 

molecules. PEI-capped Gd2O3 are highly transparent and show long-term 

colloidal stability without any noticeable precipitation in water.  
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Figure 2.18. FT-IR spectra of Gd2O3 tripodal nanoplates before and after ligand 

exchange with BF4
- and PEI.  

 

The ionic relaxivity plots of PEI-capped Gd2O3 tripodal nanoplates at 9.4 T 

and 14.1 T magnet are shown in Figure 2.19. The calculated longitudinal 

relaxivity (r1) decreases from 1.41 mM-1s-1 to 0.89 mM-1s-1 and the transverse 

relaxivity (r2) increases from 140 mM-1s-1 to 193 mM-1s-1 with an increase in 

magnetic field strength (Table 2.1), which is consistent with a previous report.145 

Reduced spectral density at higher magnetic field strengths results in less 

efficient dipole-dipole relaxation and a corresponding decrease in r1. The 

transverse relaxivity, r2, increases as the magnetic field strength goes from 9.4 T 

to 14.1 T due to more effective dephasing of the transverse magnetization as a 
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result of larger local magnetic fields, which are proportional to the magnetic 

moment of the paramagnetic nanoparticles. As a result, the r2/r1 value increases 

from 99.3 at 9.4 T to 217 at 14.1 T, which makes Gd2O3 tripodal nanoplates 

promising candidates for increasing the detection sensitivity of various 

pathologies in  T2- and T2*-weighted images collected at higher magnetic fields 

now available for preclinical and clinical MRI.  

 

 

Figure 2.19. Longitudinal (top) and transverse (bottom) relaxivity curves of 

tripodal nanoplates 
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 r1 (mM-1s-1) r2 (mM-1s-1) r2/r1 

9.4T 1.41 140 99.3 

14.1T 0.89 193 217 

 

Table 2.1. Relaxivites r1 and r2 of Gd2O3 tripodal nanoplate at 9.4 T and 14.1 T 

magnetic field.  

 

2.4. Conclusion 

In this section, we demonstrate the shape-controlled synthesis of fluoride and 

oxide-based Gd nanocrystals with high size and shape uniformity. Through the 

addition of alkali metal salts, typically NaF, LiF, LiOH, and NaOH, the 

morphology can span from nanospheres to nanorods, hexagons, and nanoplates 

including ellipsoidal, rhombic, tripodal, and triangular shapes based on the host 

materials. We observe that the sizes and shapes of these nanocrystals are 

precisely controlled by reaction parameters such as the reaction temperature, 

reaction time, and the amount of salts added into the reaction and that the shape 

transformation is governed by coarsening or Ostwald ripening. By controlled 

doping, synthesized nanocrystals could exhibit two-photon upconversion 

luminescence when doped with Er3+ and Yb3+. When doped with Eu3+ or Tb3+, 

characteristic visible emission is observed under X-ray excitation, allowing this 

material to also function as a nano-scintillator which converts high-energy 

radiation into visible light. We also investigate the MR relaxometry of of Gd-
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based nanocrystals with varying the magnetic field. Taken together Gd based 

inorganic nanocrystals are a promising platform for multimodal imaging and 

therapeutic applications. Further, this could be a platform to understand shape 

dependent transport phenomena, and longitudinal tracking and assessment of 

environmental health impacts of these novel materials. 

 

2.5. Experimental Section 

Materials. All chemicals are used as purchased without any further purification. 

Gadolinium(III) oxide (99.99%), erbium (III) oxide (99.9%), terbium(III) oxide 

(99.9%), europium(III) oxide (99.9%), ytterbium(III) oxide (99.99%), oleic acid 

(technical grade, 90%), oleylamine (technical grade, 70%), 1-octadecene 

(technical grade, 90%), lithium hydroxide monohydrate (99.95%) are purchased 

from Sigma Aldrich. Lanthanide acetate precursors are prepared by refluxing 

lanthanide oxide in acetic acid/water mixture (50 vol%). 

Synthesis of GdF3 nanoplates. 2 mmol of gadolinium trifluoroacetate and 6 

mmol of lithium fluoride are added to a 125ml three-neck flask containing 30ml of 

oleic acid and 30ml of 1-octadecene. This solution is degassed at 125oC for 1hr. 

Then, the solution is heated to 290oC under N2 environment at a rate of 10oC/min 

and maintained at this temperature for an hour (ellipsoidal plate) or for 4 hours 

(rhombic plate). Lithium ions are not incorporated into the nanoplates, but the 

amount of lithium fluoride added is adjusted to control the morphology and size of 

nanoplates. Purification is conducted by adding excess ethanol and 
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centrifugation. GdF3 nanoplates are redissolved in hexane, chloroform, or 

toluene. Residual lithium fluoride, which is insoluble in non-polar solvents, is 

simply removed by centrifugation.  

Synthesis of -NaGdF4 nanoparticle. The synthetic procedure is the same as 

the method used for GdF3 nanoplates, except that sodium fluoride are used 

instead of lithium fluoride. The reaction is taken at 290oC for 5 hours.  

Synthesis of Gd2O3 nanoplates Six mmol of lithium hydroxide is added into a 

mixture of 12 mL of oleic acid, 18 mL of oleylamine, and 30 mL of 1-octadecene 

solvent and is heated to 110 oC. After evacuation at 110oC for one hour to 

remove water, 3 mmol of gadolinium acetate is added and the solution is 

evacuated for an extra hour at the same temperature. Then, the reaction solution 

is heated to between 300oC and 320oC for 1 hour under high N2 pressure, 

resulting in the formation of the nanoplates. The reaction solution is cooled to 

room temperature through addition of toluene. Purification is conducted through 

addition of excess methanol and centrifuging at 3000 rpm for 2 minutes. 

Preparation of water-soluble nanocrystals Water-soluble Gd2O3 nanoplates 

are prepared through sequential ligand exchange process using BF4
- as an 

intermediate ligand. First, ligand exchange with NOBF4 is performed, as 

described previously.146 The resulting nanocrystals are soluble in polar solvent 

such as dimethyl formamide (DMF) or dimethyl sulfoxide (DMSO). Secondary 

ligand exchange process is conducted with polyethyleneimine as a water-soluble 

ligand. Other water-soluble polymers such as polyvinylpyrrolidone (PVP) and 
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polyacrylic acid (PAA) can be used instead. 2 mL of nanocrystal solution in 

DMSO (0.1 mg nanocrystals/mL) is slowly added over 5 minutes into 2 mL of 

polyethyleneimine solution in DMSO (0.5 mg/mL concentration) and is stirred for 

an hour. 1 mL of toluene is added to induce flocculation and the particles are 

collected by centrifugation at 3000 rpm for 1 minute. Diluted HCl solution is 

added into the nanocrystal solution to increase the colloidal stability.  

Structure characterization. TEM images and electron diffraction patterns are 

collected using JEM-1400 microscope equipped with a SC1000 ORIUS CCD 

camera operating at 120 kV. Powder X-ray diffraction is measured using a 

Rigaku Smartlab high-resolution diffractometer with Cu Kα radiation (=1.5416Å). 

X-ray excited optical luminescence is recorded using a fiber-optically coupled 

CCD (Ocean Optics USB-2000) using Cu K radiation (8.04KeV) generated from 

a 2.2 kW sealed tube generator. Upconversion luminescence is collected with 

Jovin Yvon Fluorolog-3 spectrofluorometer using a 980 nm diode laser (1.06 W 

power and a 0.05W/mm2 power density) as an excitation source.  

X-ray diffraction simulation. Atomistic models of GdF3 nanocrystals are first 

constructed using Materials Studio 4.4.140  The X-ray diffraction intensity,  I (q), is 

calculated using Debye equations1; 

 

where I0 is the incident intensity, q=4sin is the scattering parameter for X-

rays of wavelength diffracted through the angle , rmn is the distance between 
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atoms m and n, with atomic form factors Fm and Fn, respectively. Atomic form 

factors are calculated from tabulated Cromer-Mann coefficients. The Debye 

equation is discretized by binning identical distances to give the following 

equation to reduce calculation time147 :  

 

where rmn) is the multiplicity of each unique distance (rmn) in the structure. 

Magnetic resonance measurements. Samples at different gadolinium 

concentrations were prepared in phosphate buffered saline containing 10% 

deuterium oxide. An inversion recovery pulse sequence modified to account for 

radiation damping148 and a Carr-Purcell-Meiboon-Gill pulse sequence were used 

to determine the T1 and T2 relaxation times at 9.4 T and 14.1 T using a mono-

exponential fit of the signal intensities. The r1 and r2 relaxivites were calculated 

from a linear fit of the relaxation rate constant as a function of gadolinium 

concentration.149  
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CHAPTER 3. SHAPE-CONTOLLED SYNTHESIS OF 

YTTRIUM-90 RADIOLABELED RARE EARTH FLUORIDE 

NANOCRYSTALS 

 

3.1.   Introduction 

Nanocarrier platforms designed as imaging agents serve an important role 

in biomedical research for the study of biological processes and transport 

mechanisms.150-152 They are also important in clinical medicine for early and 

accurate disease detection.117,153-155 A variety of imaging modalities such as 

optical, magnetic, and nuclear have been utilized in different applications 

according to sensitivity and contrast, depth of signal penetration, as well as 

spatial and temporal resolution.156 Among them, imaging with radiolabeled 

probes has attracted much attention due to high sensitivity and non-invasive 

detection of sub-picomolar concentrations of radionuclides.157 Radiolabeled 

probes offer information on pharmacokinetics, probe distribution and localization, 

in vitro and in vivo transport mechanisms, and medical diagnosis supported by 

quantitative information calculated from radioactivity levels. Nanocrystal-based 

inorganic materials offer a great opportunity for designing multimodal imaging 

probes implementing complementary detection capabilities into a single 

material.158 Properties of highly uniform nanocrystals are easily tailored by 
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customizing elemental composition among noble metals,159 magnetic materials,30 

semiconductors,113 phosphors,160 and radioactive dopants, such as 64Cu,161 

59Fe,162 56Co,163 153Sm,164 198Au,165 125I,127 and 18F.166  

Among the different radioisotopes, 90Y is particularly interesting as a 

nanocrystal dopant due to its unique properties. 90Y is a pure -emitter that yields 

one very high energy -particle (Emax = 2.27 MeV, Emean = 939 keV) with each 

decay.167 At high doses, 90Y-labeled materials are most often utilized as 

therapeutic agents with high energy emissions that travel a limited distance in 

vivo, which limits off-target effects (the maximum range in soft tissue is about 11 

mm).168 The half-life of 90Y is 2.67 days, and is sufficient for tracing biological 

processes over several days while still having sufficiently rapid decay to prevent 

protracted toxicity. Even as a pure -emitter, the low yield Bremsstrahlung 

photons and annihilation photon pairs from 90Y decay are detectable by nuclear 

imaging using SPECT and PET, respectively, albeit with low sensitivity.169,170 

However, another interesting property of 90Y is its optical imaging capability; 90Y 

is one of the most efficient radionuclides for stimulating Cerenkov 

luminescence.171 In this section, we report the shape-controlled synthesis and 

characterization of rare earth fluoride nanocrystals doped with 90Y designed for in 

vitro and ex vivo radioisotopic detection, as well as non-invasive nuclear, optical 

radioluminescence and magnetic resonance imaging (MRI).  
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3.2. Shape-Controlled Synthesis of Isotopic Yttrium-90 Labeled Rare 

Earth Fluoride Nanocrystals. 

Anisotropic rare earth fluoride nanocrystals are synthesized via high 

temperature thermal decomposition of rare earth chloride precursors in the 

presence of lithium fluoride (LiF) and various dopants depending on the intended 

application. 90YCl3, when added as a radio-lanthanide dopant, incorporates inside 

the nanocrystal host preventing radioisotope leakage from nanocrystals during in 

vitro and in vivo applications. In our studies, gadolinium chloride (GdCl3) and 

yttrium chloride (YCl3) are used as host material precursors in the nucleation and 

growth reaction. These precursors are fluorinated using an excess amount of LiF 

resulting in fluoride-based nanocrystals (GdF3 and LiYF4, respectively).  

Nanocrystal synthesis begins by heating LiF and GdCl3 or YCl3 precursors to 

125 °C under high vacuum in oleic acid/1-octadecene solvent system (50:50 

vol %) to remove excess water. The doping solution is prepared by mixing 

radioactive 90YCl3 with non-radioactive YCl3, to ensure that the total quantity of 

isotopic yttrium (i.e. 90Y + Y) added in the dopant solution is 0.2% of total 

GdCl3/YCl3 host precursor. This solution is next added to the reaction mixture. 

The reaction is heated for another 30 min at 125°C under vacuum in order to 

remove water introduced with HCl in the doping solution. Nanocrystal formation 

(GdF3:
90Y/Y or LiYF4:

90Y) is initiated when the reaction is heated between 290°C 

and 320°C. Higher temperature reaction conditions permit the rapid nucleation 

and growth of nanocrystals. This helps reduce reaction times and allows for the 
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synthesis of monodisperse nanocrystals while minimizing the loss of radioactivity 

due to physical decay.  

Radioactive thin layer chromatography (RadioTLC) confirms that 90Y is 

successfully incorporated into the nanocrystal in near-quantitative yield, with no 

“free” or non-associated 90Y-labeled species identified in the crude reaction 

mixture. We can easily control the specific activity of the 90Y-doped nanocrystals 

(i.e., radioactivity (μCi)/nanocrystal mass (mg)) by varying the initial amount of 

90YCl3 added into the reaction system. Note that the amount of 90Y added (1 – 4 

mCi) translates to 0.003 – 0.01% of total host material added. Thus, following full 

radioactive decay of 90Y, the nanocrystal structure should remain intact since the 

majority of the nonradioactive Y-dopant is still present. 

Nanocrystal size and shape are readily controlled by the modification of 

reaction time and temperature. Nanocrystal morphology is also tunable by 

changing the type of host material. With GdCl3 precursors, ellipsoidal GdF3:
90Y/Y 

nanoplates are formed at 290°C after a 20 min reaction (Figure 3.1a). Energy-

dispersive X-ray spectroscopy (EDS) measurement reveals that nanocrystals are 

mainly composed of Gd and F elements.(Figure 3. 1d) Wide angle selected-area 

electron diffraction (SAED) patterns show the crystalline diffraction features of 

orthorhombic GdF3.(JCPDS 49-1804) At an increased reaction temperature 

(Figure 3.1b) or increased reaction time (Figure 3.1c), rhombic GdF3:
90Y/Y 

nanoplates are obtained as final products. This trend is consistent with results 

previously reported without the addition of radioisotopes, even though GdCl3 is 

used as a precursor in this study instead of standard gadolinium trifluoroacetate 
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salts.172 Using YCl3 precursors instead of GdCl3 and heating at 320°C for 20 min 

results in the major LiYF4:
90Y product having nanowire morphology, with a small 

quantity of YF3 rhombic nanoplates (Figure 3.1e, f). Nanowires reach several 

microns in length, but the width of an individual nanowire is approximately 4 nm 

on average. Increasing the reaction time to 40 min at the same temperature 

results in bullet-shaped LiYF4:
 90Y nanocrystals approximately 250 nm long and 

90 nm wide on average (Figure 3.1g, h). 
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Figure 3.1. Characterization of Y-doped nanocrystals following full decay of 90Y. 

(a-c) TEM images of GdF3:Y nanoplates formed under different reaction 

conditions: (a) ellipsoidal nanoplates (290°C, 20 min), and rhombic nanoplates 

obtained at (b) 300°C for 20 min, or (c) 290°C for 4 h. (d) EDS spectrum of 

GdF3:Y nanoplates. (e-h) When YCl3 is used as the precursor, LiYF4 nanowires 

are obtained at 320°C after 30 min (e, f), or bullet-shaped LiYF4  nanocrystals are 

synthesized at 320°C for 40 min, as confirmed by (g) TEM and (h) SEM, 

respectively. 

 

As synthesized, radiolabeled nanocrystals are only soluble in nonpolar 

solvents such as hexanes, toluene, and chloroform due to the long alkyl-chain 

ligands on the surface. For biological compatibility, water soluble 90Y-doped 

nanocrystals are prepared via a two-step ligand exchange process using 
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tetrafluoroborate anions (BF4
-) as an intermediate ligand and water-soluble 

polymers as the final stabilizer.146,173 Nitrosonium tetrafluoroborate (NOBF4) is 

used to prepare BF4
--capped GdF3:

90Y/Y nanocrystals. Nitrosonium cations are 

known as strong oxidants and vigorously react with the nanocrystal surface 

stripping the original oleate ligands from the nanocrystal surface. We observed 

no loss of radioactivity from sample preparations following exposure to the highly 

chemically reactive environment of the NOBF4 treatment, suggesting that 90Y is 

strongly bound to the nanocrystal. Water-soluble polymers, polyethyleneimine 

(PEI), polyacrylic acid (PAA), and polyvinylpyrollidone (PVP), are used for 

secondary ligand exchange. Secondary ligand exchange with acidic and basic 

polymers did not result in any radioactivity lost, again suggesting stable 90Y-

doping within the nanocrystal host.  

Oleate-capped and PVP-capped GdF3:
90Y/Y nanoplates are analyzed by 

radioTLC to confirm the identity and purity of radioactive species within the 

nanocrystal preparations. Figure 3. 2 shows that for surface coated GdF3:
90Y/Y 

nanoplates, intense radioactive signals are detected only at the TLC origin, 

whereas the presence of free 90Y would have been detected at the TLC solvent 

front. This confirms that the 90Y-doped GdF3 nanoplates can be purified and 

samples in high radiochemical purity (>99%) are used for subsequent studies. 

Taken together, these studies demonstrate that this rare earth fluoride-based 

nanocrystal platform allows robust surface modification without loss of 
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radioactive dopants, and suggests the flexibility of this platform in various 

biomedical research and clinical therapy applications.  

 

 

Figure 3.2. RadioTLC autoradiography images of (a) 90YCl3 compared to (b) 

oleate-capped, and (c) PVP-modified GdF3:
90Y/Y, where free (i.e. non-bound) 90Y 

is detected at the solvent front and 90Y bound to nanocrystal formulations 

remains at the TLC origin. 

 

Radioisotopic labeling of ligands and probes allows for quantitative tracing of 

these agents and enables the study of cellular interactions with high sensitivity. 

Owing to the robustness of ligand exchange and radiolabel stability toward 
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surface modification, we are able to examine charge-dependent cellular binding 

of 90Y-doped anisotropic GdF3 nanoplates, surface modified with differentially 

charged polymeric ligands (PEI and PAA). The size and size distribution of 

ligand-exchanged nanoplates is determined by dynamic light scattering (DLS) 

measurements. Although DLS defines the size of materials based on the 

assumption that the object has spherical morphology, DLS measurements 

provide a good indication of relative size and the dispersion state of anisotropic 

nanocrystals.68 DLS data shows that PEI- and PAA-modified GdF3:
90Y/Y 

nanoplates used for in vitro studies are estimated as 32.4 nm and 33.9 nm in size, 

respectively, forming a stable dispersion in aqueous media without any 

aggregation (Figure 3.3a). Zeta potential measurements of PEI- and PAA-

modified nanocrystals show positive and negative net charge in deionized water 

solution, respectively, due to the amine (basic) and carboxylic acid (acidic) 

groups on the polymeric ligands (Figure 3.3b). To assess the interaction of the 

differentially charged nanoplates with biological membranes, a confluent 

monolayer of human umbilical vein endothelial cells (HUVECs) is used to model 

the systemic vasculature. 90Y-doped nanoplates are formulated in serum-

containing medium and the amount of nanocrystals binding to cells is measured 

over time by gamma counting. Non-bound nanocrystals are washed away and 

cell-bound radioactivity is normalized to the total radioactivity added (binding 

efficiency), as shown in Figure 3.3c. The amount of nanocrystals bound to cells is 

higher with positively charged PEI-modified nanocrystals than negatively charged 

PAA-coated ones. This result is likely due to the electrostatic attraction of 
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positively-charged PEI-modified particles to the negatively charged cell 

membrane, which is consistent with previously reported results.174,175 However, 

the cellular binding and internalization of negatively-charged particles is strongly 

inhibited by serum opsonization.176 With the assay having been conducted in 

serum-containing medium, the small difference in PAA- and PEI-coated 

nanoplate binding is perhaps due to particle-protein interactions in the medium 

prior to cellular interactions. 
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Figure 3.3. a) DLS and b) zeta-potential measurements of PEI-and PAA-

modified 90Y-doped GdF3 nanoplates. c) In-vitro tracing of time-dependent 

binding of GdF3:
90Y/Y nanoplates to HUVEC cells, with each time point run in 

quadruplicate. Black squares and red circles indicate binding efficiency of PEI 

and PAA-modified GdF3  nanoplates, respectively. 
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Next, we investigated the potential of GdF3:
90Y/Y nanocrystals as optical 

imaging agents. The charged particle emitted from a radionuclide induces local 

polarization along its path through medium emitting continuous optical spectra 

from near ultraviolet to visible and near-infrared, known as Cerenkov radiation.177 

A variety of radionuclides, including +, - and  emitters, have been 

demonstrated as in vivo real-time optical imaging agents.171 Even though the 

amount of light emitted from the radionuclides is lower than that of 

bioluminescence and fluorescence, lack of excitation reduces autoflurorescence 

from background fluorophores resulting in a significant increase in the  signal-to-

background ratios.178 In addition, it has also been demonstrated that optical 

luminescence from radionuclides can excite other fluorophores such as quantum 

dots.179,180 Careful design of nanocrystal-based probes can alter the 

luminescence spectrum in a manner more compatible for biological imaging and 

preclinical research. Aqueous dilutions of 90Y-doped nanocrystals with 

radioactivity ranging from 0.55 Ci to 17.5 Ci per well are placed in a black-

walled 96 well plate and 90Y radioluminescence is investigated using an IVIS 

Lumina II optical imaging system. Since the average energy of -particles 

emitted from 90Y (E = 0.939 MeV) is higher than the threshold kinetic energy to 

produce Cerenkov radiation (E = 0.26 MeV in tissue), radioluminescence is 

detected from GdF3:
90Y/Y nanoplates.  Figure 3.4 depicts the linear relationship 

between total radiance and radioactivity. This relationship suggests that our 90Y-

doped nanocrystals are applicable for quantitative optical imaging studies as 
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reported for other radiolabeled nanocrystal probes, such as 198Au-doped Au 

nanocages.165  

  

Figure 3.4. a) Optical images of aqueous suspensions of GdF3:
90Y/Y nanoplates 

with varying amounts of radioactivity per well (0.55 to 17.5 μCi). b) Dose-

dependent quantification of radioluminescence of GdF3:
90Y/Y nanoplates 

dispersed in water. 
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Although nuclear and optical imaging techniques provide high sensitivity and 

quantification, these methods suffer from poor in vivo resolution. Magnetic 

resonance imaging (MRI) provides anatomical and functional information with 

high resolution of probe distribution.181 This complementary imaging technique 

could be co-registered with nuclear and optical imaging to provide more reliable 

and comprehensive information of biological systems, albeit with lower sensitivity 

than nuclear and optical techniques. Due to the paramagnetic properties of Gd 

ions, GdF3:
90Y/Y can also be utilized as an MRI contrast agent. MR relaxivity 

measurements of PEI-coated GdF3:
90Y/Y nanoplates were performed using 9.4 T 

and 14.1 T magnets. Ionic relaxivity plots of PEI-capped nanoplates are shown in 

Figure 3.5. The calculated longitudinal relaxivities (r1) are 0.99 mM-1s-1 at 9.4 T 

and 1.0 mM-1s-1 at 14.1 T. The transverse relaxivities (r2) are 20.3 mM-1s-1 at 9.4 

T and 71.8 mM-1s-1 at 14.1 T, respectively. Calculated r2/r1 ratios are enhanced 

from 20.5 to 71.8 with an increase of field strength. For the next generation of 

MRI, higher magnetic fields (> 7 T) are desirable to  improve the  signal to noise 

ratio a and enhance spatial resolution, shorten scan times, and reduce 

concentrations of contrast dosage.182,183 High r2 relaxivity and an enhanced r2/r1 

ratio in increasing field strength make GdF3 nanoplates promising T2 contrast 

agents for high field MRI, currently utilized for preclinical and biomedical research. 
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Figure 3.5. MR relaxivity measurements of PEI-modified 90Y-doped GdF3 

nanoplates. a) Longitudinal (r1 = 0.99 mM-1s-1 at 9.4 T and 1.0 mM-1s-1 at 14.1 T) 

and b) transverse relaxivity (r2 = 20.3 mM-1s-1 at 9.4 T and 71.8 mM-1s-1 at 14.1 T) 

curves of PEI-modified GdF3:
90Y/Y nanoplates. 
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3.3. Conclusion 

In this section, we demonstrate the size and shape controlled synthesis of 

90Y-doped lanthanide fluoride nanocrystals. In addition, radiolabeling with 90Y and 

the versatility of surface modification allows rapid and quantitative analysis of 

physiological interactions between engineered nanocrystals and biological 

systems. Through Cerenkov emissions, radioluminescence of 90Y-doped rare 

earth lanthanide fluoride nanocrystals can be investigated without an external 

excitation source. When combined with a paramagnetic gadolinium host, this 

nanocrystal can also be utilized as an MR contrast agent. Taken together 90Y-

labeled inorganic nanocrystals are a promising platform for multimodal imaging 

and therapeutic applications. Further, we have a platform that allows longitudinal 

tracking and assessment of environmental health impacts of these novel 

materials.  

 

3.4.     Experimental Section 

Materials. All chemicals are used as purchased without any further purification. 

Gadolinium(III) chloride hexahydrate (99.999%), yttrium(III) chloride hexahydrate 

(99.99%), lithium fluoride (99.99%), oleic acid (technical grade, 90%), and 1-

octadecene (technical grade, 90%) are purchased from Sigma Aldrich. 90YCl3 

solution (0.05M HCl, ~500 Ci/mg) is purchased from Perkin Elmer.  
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Synthesis of 90Y/Y-doped rare earth fluoride nanocrystals. 90Y/Y-doped 

nanoplates (GdF3:
90Y/Y or LiYF4:

90Y) are synthesized according to the procedure 

previously reported with slight modification.172 Briefly, LiF (7.7 mmol) and GdCl3 

(0.7 mmol) or LiF (6.1 mmol) and YCl3 (0.66 mmol) are added to a 125 mL three-

neck flask containing oleic acid and 1-octadecene mixture (50/50 vol%, 20 mL for 

GdCl3 and 10 mL for YCl3). This solution is degassed at 125°C for 1 h. Then, a 

solution of 90YCl3 (1-4 mCi, 22-89 nmol 90Y in 0.05 M HCl) mixed with YCl3 

(0.2625mL, 1.4 mol in 0.05 M HCl) is added into the reaction mixture and 

degassed for an extra 30 min. Next, the solution is heated to 290°C – 320°C 

under Ar environment at a rate of 10°C /min and maintained at this temperature 

for 20 min to an hour. Purification is conducted by precipitating nanocrystals in 

excess ethanol and centrifugation at 4000 RPM for 2 min. 90Y-doped 

nanocrystals are re-dissolved in hexane. Residual lithium fluoride, which is 

insoluble in nonpolar solvents, is removed by centrifugation at 3000 RPM for 2 

min. Radiochemical purity was assessed via digital autoradiography (FLA-7000, 

GE) of silica (SiO2) TLC plates run in 0.1M ammonium acetate/ 50 mm EDTA. 

Radiolabeled nanocrystals remain at the origin while unbound 90Y travels to the 

solvent front. 

Preparation of water-soluble GdF3:
90Y/Y nanoplates Water-soluble 

GdF3:
90Y/Y nanoplates are prepared through a sequential ligand exchange 

process using BF4
- as an intermediate ligand. First, ligand exchange with NOBF4 

is performed, as described previously.146,173 The resulting nanocrystals are 
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dissolved in dimethyl formamide (DMF). Secondary ligand exchange is 

conducted with polyethyleneimine (PEI), polyvinylpyrollidone (PVP), and 

polyacrylic acid (PAA) as water-soluble ligands. 2 mL of nanocrystal solution in 

DMF is slowly added to 2 ml of polymer solution over 5 minutes and stirred for 30 

min. Polymer concentrations are 0.3 mg/ml PEI in dimethylsulfoxide, 0.3 mg/ml 

PAA in DMF, and 0.25 mg/ml PVP in DMF. Purification was conducted by adding 

non-solvent in the nanocrystal solution, specifically toluene for PEI, acetonitrile 

and toluene mixture (9:1) for PAA, and hexanes for PVP, to induce flocculation. 

The particles are collected by centrifugation at 3000 RPM for 1 min. Non-solvent 

is added until the solution becomes slightly opaque. Too much non-solvent 

results in the precipitation of polymers and is difficult to remove them from the 

pure particles. Diluted HCl solution for PEI-capped and diluted NaOH for PAA-

capped nanocrystals is added into the nanocrystal solution to increase colloidal 

stability. Confirmation of radiolabel stability performed as described above.  

Characterization. TEM images and electron diffraction patterns are recorded 

using a JEM-1400 microscope equipped with a SC1000 ORIUS CCD camera 

operating at 120 kV. Scanning electron microscopy (SEM) is performed on a 

JEOL 7500F HRSEM. Dynamic light scattering (DLS) measurement is performed 

on a Zetasizer NanoS (Malvern). Zeta-potential data is collected on a Beckman 

Coulter Delsa Nano-C system. 90Y radio-luminescence was investigated using an 

IVIS Lumina II optical imaging system. Aqueous dilutions of PAA-modified 
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GdF3:
90Y/Y nanocrystals with radioactivity ranging from 0.55 Ci to 17.5 Ci were 

placed in a black-walled 96 well plate and used for optical imaging. 

Magnetic resonance measurements. MR measurements are performed by the 

method previously reported.184,185 Briefly, PEI-GdF3:
90Y/Y nanoplates with 

varying gadolinium concentration are prepared in a phosphate buffered saline 

and 10% deuterium oxide mixture. T1 and T2 relaxivities are collected in a Bruker 

AVIII 400 (9.4T) and Bruker DRX 600 (14.1T). An inversion recovery pulse 

sequence modified to account for radiation damping and a Carr-Purcell-Meiboon-

Gill pulse sequence are used to determine the T1 and T2 relaxation times at 9.4 T 

and 14.1 T using a mono-exponential fit of the signal intensities. The r1 and r2 

relaxivities are calculated from a linear fit of the relaxation rate constant as a 

function of gadolinium concentration.  

Cellular binding tests. Cellular binding tests of GdF3:
90Y/Y nanoplates are 

performed with PEI or PAA-coated nanoplates prepared in assay buffer (cell 

media with 10% FBS diluted 1:1 with PBS). HUVEC cells are grown to 

confluence in a 1% gelatin coated 96-well plate. Triplicate samples of 90Y-doped 

nanoplates are incubated with cells at 37°C for up to 1 h. Cells are washed three 

times with 3% BSA/PBS and the radioactivity bound to cells was determined by a 

gamma counter (Wizard2 2470, Perkin Elmer) in an open window using a 

standard for calibration. 
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CHAPTER 4. SHAPE DIRECTED SELF-ASSEMBLY OF 

ANISOTROPIC NANOCRYSTALS 

 

4.1. Introduction 

Assembled nanocrystal superlattices composed of one or more types of 

nanocrystals have been shown to have novel collective properties.2,186-188 Single 

or multicomponent nanocrystal self-assembly enables the integration of 

nanocrystal building blocks with unique properties into periodic arrays through a 

bottom-up approach.71,72 Control over nanocrystal superlattice structure is 

exerted through a variety of factors contributing to an emerging set of design 

rules which incorporate the type of nanocrystal,74,75 the particle size and relative 

size ratio,75,76 and the self-assembly conditions.77,78 The interactions between 

nanocrystals in assembled structures may be precisely controlled by the 

symmetry and stoichiometry of the superlattices, resulting in structure-dependent 

collective properties.189-193 This allows for the design of novel functional 

metamaterials by tailoring superlattice structures and the choice of nanocrystal 

building blocks.  

Isotropic, spherical nanocrystals have been extensively studied as building 

blocks for single and multicomponent self-assembly. However, a more extended 

phase diagram is predicted by theoretical simulation,81-87 and has been 

demonstrated experimentally through the use of anisotropic building blocks, in 
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which complex shapes are organized into ordered superlattices.88-96 These 

superstructures are particularly interesting, because they resemble a variety of 

biological structures which are created by the directed self-assembly of small 

molecules or a hierarchical co-assembly of ordered structures. For example, the 

unidirectional self-assembly of anisotropic nanocrystals is reminiscent of the 

formation of fibrils, which are a major structural building block of biomaterials 

such as skin, tendon, bone, and other connective tissues.194,195 Self-assembled 

superlattices can mimic complex biomaterials, acting as models to understand 

the process by which biomaterials self-organize and the structure-property 

relationships.196  

Anisotropic nanocrystals offer a new design criterion for tuning assemblies, 

allowing the formation of liquid crystalline phases with differing orientational and 

positional order.79,80 For example, nanorods and nanoplates are well-known 

anisotropic building blocks which form oriented liquid crystalline superlattices with 

differing orientational and positional order.23,40,99,101,102,197,198 Anisotropic 

superstructures are previously fabricated by drying-mediated self-assembly,97 

electric-field-assisted assembly,98 depletion attraction,99 the Langmuir-Blodgett 

technique,100 and destabilization by slow diffusion of a nonsolvent.107 Recently, 

Manna et al. demonstrated that more complex anisotropic shapes such as 

CdSe/CdS octapods can also self-assemble into the hierarchically ordered three 

dimensional  superlattices.199,200 In addition, anisotropic nanocrystals often show 

unique shape-dependent physical and chemical properties, providing an 
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additional degree of freedom through which the collective properties of 

superlattices may be tailored.80,201,202 There are a few examples of 

multicomponent self-assembly of anisotropic colloidal nanocrystals, such as the 

binary assembly of nanoplates with spherical nanocrystals71,172 and Au 

nanowires or Au nanorods with Au nanospheres.201,203,204 However, systematic 

control of the superlattice structures containing single or two anisotropic 

nanocrystals over a large area has remained a challenge. 

In this chapter, we show the directed liquid crystalline self-assembly of 

anisotropic nanoplates by liquid interfacial assembly.205 Liquid interfacial 

assembly is a simple, robust, and reproducible method to fabricate single or 

multicomponent nanocrystal superlattices.206 In section 4.1, we show that 

anisotropic GdF3 nanoplates self-assemble to form uniform liquid crystalline 

superlattices with long range orientational and positional order and demonstrate 

that macroscopic orientation of liquid crystalline superlattices is controlled by 

changing the sub-phase during the process. In section 4.2, liquid crystalline 

superlattices are characterized by novel X-ray based characterization techniques, 

such as out-of-plane and in-plane small-angle X-ray scattering with a laboratory 

X-ray diffractometer. In section 4.3, we represent that 1-dimensional nanofibril 

superlattices and 3-dimensional hierarchical superstructures can be formed with 

highly uniform tripodal Gd2O3 nanoplates. In section 4.4, we extend the concept 

of liquid crystalline self-assembly to the multicomponent system demonstting the 
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binary superlattices which are self-assembled from two different anisotropic 

nanocrystal building blocks.  

 

4.2. Liquid Crystalline Self-Assembly of GdF3 Nanoplates  

GdF3 nanoplates are chosen as the nanocrystal building blocks for the liquid 

crystalline self-assembly because the nanoplates are monodisperse and tunable 

in size and shape. Ellipsoidal and rhombic GdF3 nanoplates are synthesized via 

high temperature colloidal synthesis, as described at chapter 2. Transmission 

electron microscopy 140 images indicate that ellipsoidal nanoplates are 16 nm 

along the long axis and 10 nm along the short axis (Figure 4.1a) and rhombic 

nanoplates are 35 nm along the long axis and 25 nm along short axis (Figure 

4.1b). 
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Figure 4.1. TEM images of a) ellipsoidal, b) rhombic nanoplates assembled into 

c, d) columnar and e, f) lamellar liquid crystalline superlattices through a liquid 

interfacial assembly technique. The upper inset is high magnification TEM image 

and the lower inset is small-angle electron diffraction pattern. 
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Liquid crystalline superlattices are formed using a liquid interfacial assembly 

and transfer technique in which a drop of nanocrystal suspension in a volatile 

solvent is slowly dried on glycol-type polar sub-phases on the Teflon well 

covering with glass slide and transferred to a substrate. Both ellipsoidal and 

rhombic nanoplates are observed to stack preferentially face-to-face, forming 1-D 

ordered assemblies (Figure 4.1a, 4.1b). Upon liquid interfacial assembly, edge-

to-edge interactions also affect ordering simultaneously, building 3-D close-

packed superlattices. Two different liquid crystalline structures are observed in 

films assembled on the surface of diethylene glycol. In some regions of the 

superlattice film, nanoplates assemble into columnar liquid crystalline structures, 

wherein the plates lie flat on the sub-phase and stack to form columns oriented 

out-of-plane (Figure 4.1c for ellipsoidal plate, figure 4.1d for rhombic plates). In 

other regions, ordered lamellar structures are observed, in which the nanoplates 

assemble by standing edge-on, forming a lamellar liquid crystalline structure 

parallel to the liquid interface (Figure 4.1e for ellipsoidal plate, figure 4.1f for 

rhombic plates). 

The columnar assembly of ellipsoidal nanoplates shows short-range 

positional order with quasi-long range orientational order (see figure 4.1c). A 

hexagonal small-angle electron diffraction pattern indicates that the phase of the 

columnar assembly of ellipsoidal nanoplates is hexatic.207 Locally, long axes of 

plates are oriented in the same direction, forming a centered rectangular 

columnar phase (see Figure 4.1c inset). Each column reflects the shape of an 
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isolated nanoplate, which indicates that the nanoplates within each column 

perfectly overlap to maximize the face-to-face interaction. The electron diffraction 

patterns of columnar assemblies of rhombic nanoplates show 2-fold symmetry 

representing rectangular columnar liquid crystalline phase (see Figure 4.1d inset). 

Electron diffraction patterns for lamellar superlattices of both ellipsoidal and 

rhombic nanoplates also have 2-fold symmetry (see Figure 4.1e, 4.1f inset). This 

is due to the periodicity of the nanoplates stacking face-to-face and the layering 

of each stack orthogonal to the stacking direction, indicating a smectic liquid 

crystalline phase. Only two sets of diffraction spots are observed even in 

multilayer superlattices, meaning that all nanoplates are oriented identically in the 

plane of the substrate.  

Liquid crystalline structures with long range orientational and positional order 

are observed over large areas (Figure 4.2). Figure 4.3 displays TEM images of 

columnar superlattices of rhombic nanoplates at increasing magnifications. The 

low magnification image in Figure 4.3a shows that the domain size ranges 

between 1µm2 and 10µm2. The flat edges of rhombic plates enable the 

nanoplates to be crystallographically oriented as reflected in the wide-angle 

single crystalline electron diffraction pattern (inset Figure 4.3d). Diffraction spots 

were indexed as the {101}, {301}, {002} and {200} families of planes, which is 

consistent with the Fast Fourier transform (FFT) of the high-resolution TEM 

(HRTEM) image of an isolated nanoplate (Figure 4.4). In addition, rhombic 

nanoplates are observed to pack efficiently by perfect space filling analogous to 
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tiling of building blocks, leaving minimal space except for the ligand bound to the 

surface.  
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Figure 4.2. Large area TEM image of a) columnar liquid crystalline assembly of 

ellipsoidal GdF3 nanoplates and b) Large area TEM image of lamellar liquid 

crystalline assembly of rhombic GdF3 nanoplates.  
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Figure 4.3. Series of TEM images of columnar liquid crystalline phase domains 

of rhombic GdF3 nanoplates from low magnification to high magnification. Lower 

inset is a wide angle electron diffraction pattern. 

 



98 
 

 

Figure 4.4. a) HRTEM image and FFT pattern of rhombic GdF3 nanoplate. b) 

TEM image of columnar superlattice and SAED pattern. 

 

The lamellar liquid crystalline structures of rhombic nanoplates also exhibit 

long-range order and characteristic single crystalline electron diffraction patterns 
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(Figure 4.5 and 4.6a). Due to the fact that these films form multilayered 

structures, scanning electron microscopy 142 images are preferential to visualize 

the surface structure of the nanoplates assembled edge-on (Figure 4.6b). We 

observe that the nanoplates are not oriented perpendicular to the substrate, but 

are tilted with respect to the substrate. TEM tilt analysis shows that the 

nanoplates in the lamellar structure also preserve translational order along the 

nanoplate stacks (Figure 4.6c, d). In addition to single component superlattices, 

binary superlattices in which plates are co-assembled with spherical nanocrystals 

may be formed in the lamellar liquid crystalline structure (Figure 4.6e, f).  TEM 

images show that the long axis of each nanoplates aligns parallel to the substrate 

(Figure 4.6e) and that the spherical 9nm hexagonal phase sodium gadolinium 

tetrafluoride (-NaGdF4) nanocrystals locate in the void between the plate stacks 

(Figure 4.6f). This result demonstrates that the long-range order lamellar 

structure of rhombic nanoplates may be used as a dielectric template directing 

nanocrystals into periodic one-dimensional arrays. 
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Figure 4.5. TEM image of lamellar superlattice of rhombic GdF3 nanoplates. The 

inset shows the wide angle selected area diffraction pattern. 
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Figure 4.6. a) Schematic and b) SEM image of lamellar liquid crystalline 

structure of rhombic nanoplates. TEM images of laterally assembled GdF3 

nanoplates collected by tilting TEM holder from c) 0o to d) 53o. TEM images of e) 

lamellar liquid crystalline structure and f) binary superlattices with -NaGdF4 

spherical nanoparticles. e inset) TEM image of -NaGdF4 spherical nanocrystals. 
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Sub-phases selected for liquid interfacial assembly play an important role in 

controlling macroscopic orientation of superlattices. To confirm a sub-phase 

effect, assemblies are produced with samples that have been extensively purified 

to remove any additional surfactant, avoiding the effects of depletion attraction or 

change in the surface wetting properties. Four different glycol-type sub-phases 

having different dielectric constant are tested to reveal the sub-phase effect. We 

observed that the less polar sub-phases predominantly form columnar 

superlattices, while more polar sub-phases tend to form lamellar superlattice 

structures. 

The sub-phase effect suggests the assembly in this study is occurring at the 

liquid-liquid interface rather than the liquid-air interface as has been reported for 

other systems.208-211 The sub-phase effect may suggest that the sub-phase 

affects the orientation of liquid crystalline superlattices due to the change of 

dielectric constants, because the sub-phases used for assemblies have similar 

values of surface tensions but vary in dielectric constant. In TEM image of 

columnar assembly, we observed that the superlattice is assembled from the first 

monolayer and extended to multilayers (Figure 4.7). Facets of nanoplates are 

covered by oleic acid, which makes the facets hydrophobic. Therefore, 

nanoplates on the first layer, which directly contact the sub-phase, could tend to 

stand edge-on relative to the polar sub-phase. On less polar sub-phases such as 

tri- and tetraethylene glycol, the nanoplates lie flat with their faces directly in 

contact with the sub-phase. This is similar to previously reported trends of 
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nanorod alignment in formation of liquid crystalline superlattices.97,212 After 

formation of the first layer on the sub-phase, strong face-to-face interaction 

between nanoplates can induce self-ordering to overlap facets and build 3-D 

liquid crystalline superlattices by matching orientation of plates,213 as displayed in 

Figure 4.7.  

 

 

Figure 4.7. TEM image of columnar liquid crystalline assembly of rhombic GdF3 

nanoplates. Superlattice structure is extended from monolayer to multilayers. 

 

To further understand the influence of sub-phase on superlattice formation, 

we perform the nanoplates assemblies without covering the solution container to 
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facilitate faster drying of hexane. It is known that assemblies occur on liquid-air 

interface rather than on liquid-liquid interface under fast drying condition.208,209 

Therefore, assemblies would not be affected by the sub-phase. We observe that 

domain orientations in assembled films are independent on variation of sub-

phases and that the nanoplates lay flat to the substrate. This result supports that 

the liquid crystalline structure formed by liquid interfacial assembly can be 

directed by sub-phases when assemblies occurs on the sub-phases. 

Phosphorescent assemblies can be fabricated by using europium (Eu3+) 

doped GdF3 nanoplates. A lanthanide element has a partially filled f electron 

inner shell that is responsible for its characteristic optical properties. Europium 

dopant is known as highly efficient red emitter.33 We observed that the emission 

spectra of europium doped GdF3 nanoplates are perturbed depending on the 

structure of the liquid crystalline superlattice films (See Table 4.1). Figure 4 

shows the excitation and emission spectrum of 1% Eu3+ doped GdF3 nanoplates 

suspended in hexanes, drop-casted onto films, and assembled into the two liquid 

crystalline superlattices. Characteristic Eu3+ red emission which is corresponding 

to 5D0 → 7FJ line emissions (J=0, 1, 2, 3, 4) are observed in all samples. 

Emission spectra obtained from solution and drop-casted films are nearly 

identical. However, the relative intensities of the peaks contributing to the 5D0 → 

7F1 transition, which is a known as magnetic dipole transition, are varied 

depending on the structure of the assembly. The reason for structure dependent 

emission remains unclear. However, the effect of assembly on the optical 
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properties of the film indicates the importance of controlling the formation and 

precisely characterizing the structure of superlattices, allowing structure-property 

relationships to be understood and the properties of superlattices to be controlled. 
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Figure 4.8. a) Excitation and b) emission spectra of 1% Eu3+ doped rhombic 

GdF3 nanoplate in solution, in drop cast film, and liquid crystalline superlattice 

films measured at room temperature. Excitation wavelength is set as 394nm and 

emission spectra are collected at 90° with a 30o angle between light source and 

the sample plane (emission spectra are found to be independent of this angle). 

Excitation spectrum is recorded by monitoring the emission at 592nm.  
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 I554nm/I586nm I586nm/I586nm I592nm/I586nm I614nm/I586nm 

Solution 0.14 1 1.49 0.94 

Drop-casted 
Film 0.18 1 1.58 0.80 

Columnar 
assembly 0.15 1 0.96 0.63 

Lamellar 
assembly 0.22 1 2.34 0.47 

 

Table 4.1. Intensity ratio between emission peaks of 1% Eu3+ doped GdF3 

nanoplates in defined structures. Intensity ratio is normalized by the emission 

intensity at 586nm. 

 

 

4.3. Characterization of Liquid Crystalline Self-Assembly of GdF3 

Nanoplates by In-plane and Out-of-plane SAXS 

In this section, we introduce novel technique to characterize liquid crystalline 

superlattices with X-ray based measurements with a laboratory X-ray 

diffractometer, and analyze the sub-phase effects which directs the macroscopic 

orientation of liquid crystalline self-assemblies. 3-D liquid crystalline superlattices 

are investigated using reflection small-angle X-ray scattering (RSAXS) and in-
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plane small-angle X-ray scattering (in-plane SAXS) measurements on a 

laboratory X-ray diffractometer equipped with a graded multilayer mirror. The 

parabolically curved graded multilayer mirror converts the divergent X-ray beam 

generated from a point source into a parallel beam. This allows a laboratory 

diffractometers to be used in reflectometry, grazing-incidence, and high-

resolution diffractometry with significant improvements in the X-ray intensity.214 In 

the RSAXS measurement, X-ray beam scatters off the nanocrystal film on 

substrate as illustrated in Figure 4.9a and scattered beam is collected in theta/2-

theta (θ/2θ) geometry. An off-set scan (θ+δθ/2θ) is performed to avoid strong 

specular reflection.215 Bragg diffraction patterns obtained from RSAXS 

measurements indicate out-of-plane ordering. On the other hand, in-plane SAXS 

measurements utilize a grazing incident geometry (i) and scattered beam is 

collected by a scanning detector in a plane parallel to the film surface, as 

described in Figure 4.9b. In-plane SAXS provides scattering information about in-

plane ordering. Therefore, the two scattering measurements are complimentary 

and provide precise structural information to confirm the orientation of the liquid 

crystalline assemblies. 
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Figure 4.9. Schematics of a small-angle X-ray scattering experiment. a) RSAXS, 

b) In-plane SAXS, and c) RSAXS patterns showing fringe patterns corresponding 

to columnar assembly, d) In-plane SAXS result indicating to lamellar assembly. 
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Figure 4.9c and d show RSAXS and in-plane SAXS results for assemblies of 

rhombic nanoplates made by liquid interfacial assembly using diethylene glycol 

as the sub-phase. Periodicity in the RSAXS and in-plane SAXS patterns indicate 

that columnar and lamellar phases coexist in the assembled structure. In RSAXS 

measurements, up to 9th order of Bragg diffractions are observed with equal 

spacing that is the result of scattering from the face-to-face ordering of the 

nanoplates (Figure 4.10a). High order diffractions indicate that long-range 

translational order exists within the nanoplate stacks. Peak broadening in SAXS 

patterns reflects the average domain size of the assembled structure, and an 

average grain size is calculated using the Scherrer equation.102,216 SAXS 

patterns of assembled films are much narrower than those of drop-cast films and 

are limited by instrumental broadening (Figure 4.9a and b), indicating that more 

extensive long range order is obtained from liquid interfacial assembly. The 

average domain size of out-of-plane ordering in columnar assemblies is 

approximately 0.1 m, which corresponds to the assembly of 20 nanoplates. 
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Figure 4.10. a) High order RSAXS patterns of columnar liquid crystalline 

superlattice on SiO2/Si wafer. b) RSAXS and c) in-plane SAXS patterns of drop-

casted films on SiO2/Si wafer. 
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The scattering angles of the peaks in the SAXS pattern are used to determine 

the average inter-particle spacing, where the center-to-center distance between 

nearest neighbors in the nanoplate stacks is given by d=2/q. In RSAXS, the 

position of first diffraction peak is 0.127(A-1) which corresponds to a 4.9nm of 

center-to-center distance. Average inter-particle spacing is obtained by 

subtracting the nanoplate thickness from center-to-center distance. The 

thickness of rhombic nanoplate as calculated by X-ray simulation is 2.4nm, 

therefore, the average inter-particle spacing in columnar assembled nanoplates 

is 2.5nm. Recently, Shevchenko et al. reported GISAXS results for 7nm PbS 

spherical nanocrystal superlattices.217 The inter-particle spacing of the closed-

packed structure was found to be 1.4 nm, which is shorter than those of our 

columnar assembly. It might be expected that edge of nanoplates in each 

columnar stack are intercalated into the void between nanoplates in next stacks 

and increase inter-particle spacing. On the other hand, the position of first 

diffraction peak from in-plane SAXS is 0.115(A-1) and the lattice spacing in 

lamellar ordering is 5.5 nm. As described earlier, nanoplates in lamellar 

assemblies do not lie perpendicular to the substrate, but are tilted at an angle of 

around 50° as measured by TEM tilting analysis (Figure 4.6c, d). Longer lattice 

spacing between nanoplates in the lamellar structure may be attributed to the tilt 

of the nanoplates. 
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Figure 4.11. a) Reflection SAXS and b) in-plane SAXS measurements of 

rhombic GdF3 nanoplate superlattices assembled by liquid interfacial assembly 

over different sub-phases. Red arrows indicate diffraction peaks corresponding to 

2-D layers ordering of lamellar superlattices. 

 

RSAXS and in-plane SAXS measurements confirm the trend observed with 

macroscopic orientation of superlattice (Figure 4.11) Periodic Bragg peaks in 

RSAXS are observed on films made over tetraethylene glycol and triethylene 
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glycol sub-phases. However, in-plane SAXS did not show any characteristic 

diffraction peaks. This suggests that tetraethylene glycol and triethylene glycol 

sub-phases selectively induce the formation of columnar liquid crystalline 

superlattices as was corroborated by our TEM studies. For ethylene glycol, which 

has higher dielectric constant than tri or tetra ethylene glycol, in-plane SAXS 

result shows Bragg peaks, while the intensities of Bragg reflections in RSAXS 

are weaker relative to those of films assembled over less polar sub-phases. 

Laterally ordered nanoplates are tilted with respect to the surface. Therefore, out-

of-plane order of tilted nanoplate stacks could contribute to produce Bragg 

diffraction patterns in RSAXS measurement. Multi-layers of the 2-D lamellar 

structure also produce Bragg peaks in the region smaller than the first scattering 

peak of face-to-face ordering (Figure 4.11, red arrows). The RSAXS pattern of 

assembled films over ethylene glycol clearly shows the Bragg reflections due to 

layer by layer ordering. Results from both RSAXS and in-plane SAXS reveal that 

lamellar structure is predominant in films assembled over ethylene glycol sub-

phase. Therefore, the less polar sub-phases predominantly form columnar 

superlattices, while more polar sub-phases tend to form lamellar superlattice 

structures. 

 

4.4. Shape-Directed Hierarchical Self-Assembly of Gd2O3 Nanoplates 

In this section, we present that highly uniform Gd2O3 nanoplates are self-

assembled into nanofibril-like liquid crystalline superlattices with long range 
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orientational and positional order. In addition, shape-directed hierarchical self-

assemblies are investigated by tailoring the aspect ratio of the arms of the Gd2O3 

nanoplates.  Due to the uniformity of the Gd2O3 nanoplates, self-assembly occurs 

to form 1-D nanofibril-like structures with long-range order (Figure 4.12). All of 

the tripodal nanoplates that assemble into 1-D superlattices sit with two arms 

toward the substrate and one arm directed away from the substrate. The arms of 

the tripods align in perfect registry, which maximizes the interaction between 

nanoplates and forms a 1-dimensional superlattice with an eclipsed conformation 

(Figure 4.12a). This structure is clearly visible in the scanning electron 

microscopy 142 images (Figure 4.12b). 
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Figure 4.12. Microscopic images of shape-directed self-assembly of Gd2O3 

nanoplates a) TEM and b) SEM of one-dimensional self-assembly of tripodal 

nanoplates with eclipsed conformation. Scale bar is 100 nm. 

 

1-D nanofibril structures can be further aligned (bundled) together to form an 

extended ordered superstructure,(Figure 4.13a-c) which is commonly observed 

in the process of biomaterial formation. The size and shape uniformity of 

nanoplates allows us to demonstrate shape-directed, self-assembly by tailoring 

the aspect ratio of arms of Gd2O3 nanoplates. In the case of tripodal nanoplates, 

nanofibril superlattices are organized into hierarchical superstructures. Each 1-

dimensional string (or nanofibril) is formed from the alignment of the constituent 

nanoplates and these strings are bundled alternately into a superstructure by 

forming one string with two arms laying on the substrate and the inverted string 

with one arm contacting the substrate (Figure 4.13c, inset). For the shape 

intermediate between the tripodal and triangular nanoplate with decreasing the 
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aspect ratio of arms, two 1-dimensional nanofibril structures tend to self-

assemble through tip to tip contact of two arms (Figure 4.13d). Pure triangular 

nanoplates are ordered into columnar (Figure 4.13e) and lamellar (Figure 4.13f) 

liquid crystalline superlattices by tiling of the building blocks. Assembled 

superlattices of tripodal nanoplates contain free space between the two inverted 

nano-fibril structures, forming an open framework that is analogous to 

mesoporous structures. On the other hand, triangular nanoplates tend to be 

packed more efficiently, leaving minimal space except for the surface ligands.  
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Figure 4.13. Microscopic images of a) Hierarchical self-assembled structure 

composed of three nanofibril structures, b) Two-dimensional self-assembly and c) 

high magnification TEM of two-dimensional self-assembly of tripodal nanoplate. 

Inset is a schematic model of the ordered structure. d) Liquid crystalline self-

assembly of tripodal nanoplates of smaller aspect ratio. Inset is a schematic 

model of the ordered structure. Self-assemblies of triangular nanoplates into e) 

columnar, and f) lamellar liquid crystalline superlattices. 
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4.5. Shape-Directed Binary Assembly of Anisotropic Nanoplates: a 

Nanocrystal Puzzle with Shape-Complementary Building Blocks 

 

Here, we present the binary self-assembly of highly uniform gadolinium 

trifluoride (GdF3) rhombic nanoplates and gadolinium oxide (Gd2O) tripodal 

nanoplates. These two anisotropic nanoplate building blocks were pre-designed 

to be complementary, such that they may be assembled into the predictable 

binary structures via a shape-specific directional interaction, similar to the tiling of 

puzzles. We observe grain sizes for these binary superlattices which extend over 

micrometer scales, while preserving long-range orientational and positional order. 

Figure 4.14a and 4.14b shows transmission electron microscopy 140 images 

of GdF3 and Gd2O3 nanoplate building blocks, respectively, synthesized by the 

previously reported methods.172,173 GdF3 forms rhombic nanoplates with an 

orthorhombic structure (JCPDS no. 49-1804). The nanoplates are enclosed by 

(010) plane with the b-axis as the direction of thickness and the side edges are 

assigned as the four (101) planes, as confirmed by the powder X-ray diffraction 

and the X-ray simulation conducted using the Debye formula.172 The angle 

between the two (101) planes are calculated as 67.5o and 112.5o from the 

orthorhombic unit cell and lattice constants, which matches with the angles 

measured from the electron microscopy images.(Figure 4.14a) TEM images 

indicate that rhombic nanoplates are 24 nm along the base edge, 20 nm along 
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the height of rhombic plate, and 34 nm along the long axis.(Figure 4.15a) The 

other building block, a tripodal Gd2O3 nanoplate, shows three-fold symmetry, with 

23 nm in arm length, 7 nm in the width of each arm, and a thickness of 2 nm on 

average.(Figure 4.14b, 4.15b)  The tip to tip length is about 35 nm with 120o 

angle between arms. The dimensions of the tripodal nanoplates are optimumized 

for complementary assembly with rhombic nanoplates.   
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Figure 4.14. TEM images of nanoplate building blocks. a) Gd2O3 tripodal 

nanoplates, b) GdF3 rhombic nanoplates, and c) a binary self-assembly of 

tripodal and rhomic nanoplates formed via complementary-shape interaction. d) 

Schematics of rhombic, tripodal nanoplates and binary assembly. 
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Figure 4.15. Schematics of a) GdF3 rhombic nanoplate and b) Gd2O3 tripodal 

nanoplates. 

 

Self-assembled structures are formed by liquid interfacial assembly 

technique using diethylene glycol as a sub-phase.189 Figure 4.14c displays a 

TEM image of a binary superlattice in which rhombic nanoplates are co-

assembled with tripodal nanoplates. Both nanoplates self-assemble into one-

dimensional arrays by face to face stacking. The flat surface of the nanoplates 

enables maximizing the surface-surface interactions resulting in the preferential, 

unidirectional aggregation of nanoplates.218 Unlike single component lamellar, 

liquid crystalline superlattices self-assembled with GdF3 nanoplates, it is 

observed that another string of particles locates between the 1-D arrays of 

rhombic nanoplates in the binary superlattice.(Figure 4.14c) The width of this 

string of particles is about 7 nm on average, which is equivalent to the width of 

the arms of the self-assembled Gd2O3 tripodal nanoplates. The alternating 
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sequence of two different types of strings in the self-assembled structure extends 

in two-dimensions to form binary lamellar structures with hierarchical complexity. 

In some regions of the superlattice films, lamellar arrays of GdF3 single 

component assemblies co-exist with binary superlattices.(Figure 4.16a) Center to 

center distances between rhombic nanoplates are about 25 nm in single 

component assembly and about 37 nm in binary superlattice, on average. An 

increase of inter-lamellar spacing in binary superlattices further confirms the 

periodic inclusion of one arm of the tripodal nanoplates between lamellar arrays 

of rhombic nanoplates.  

Careful analysis of a fractured binary superlattice membrane allows for 

visualization of both nanoplate components and their self-assembled 

configuration.(Figure 4.16b)  Tripodal and rhombic nanoplates in the fractured 

region lie flat on the substrate, enabling the possible configuration of two 

components to be imaged. Indeed, it is clearly observed that the clusters 

(groupings of nanocrystals) are co-assemblies of two tripodal nanoplates and 

one rhombic nanoplate via shape complementarity. (Figure 4.16b circles) In 

addition, the analysis of 1-D rhombic nanoplate arrays at the crack edge reveal 

that rhombic nanoplates in the assembled 1-D strings stand with one edge 

perpendicular to the substrate. The width of the 1-D arrays of GdF3 assembly in 

the binary superlattices is about 20 nm, which is close to the edge to edge 

distance of the rhombic plates. This further indicates that the rhombic nanoplates 

stand upright between tripodal nanoplates, as depicted in figure 4.14d. Within 
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individual 1-D strings of rhombic and tripodal nanoplates, each of the building 

blocks is self-assembled exclusively into single component arrays through 

shape-segregated face to face interactions, without the observation of tripod-

rhombus binding. This preferential alignment may suggest that the facet-specific 

interactions between identical types of nanoplates may play an important role in 

promoting the formation of self-assembled binary assemblies. 
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Figure 4.16. TEM images of a) a binary superlattice domain bordering a single 

component superlattice domain of rhombic nanoplates and b) a fractured binary 

superlattice consisting of co-assembled tripodal and rhombic nanoplates. 
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In order to further characterize the structure of the binary assemblies of 

nanoplates, we performed a TEM tilt-series analysis on single and binary 

superlattices using a dual-axis tomography TEM holder. Due to the fact that the 

nanoplates in assembled structures are tilted with respect to the substrate,172 the 

thicknesses and edges of the stacked nanoplates in single and binary 

superlattices can be visualized by tilting the assembled films. Figure 3 displays 

TEM images taken at normal projection(Figure 4.17a-c) and tilted 55o in 

plane.(Figure 4.17d-f) The TEM tilting experiments reveal orientational and 

positional order in the binary assemblies of tripodal and rhombic nanoplates, 

close to the level observed in single component assemblies.  

In the single component assemblies, all nanoplates are oriented into the 

same crystallographic direction due to the perfect shape registry between 

nanoplates, which is corroborated by single crystalline wide-angle selected area 

electron diffraction (SAED) patterns.(Figure 4.17, inset)  In the binary 

superlattices, the diffraction peaks are more diffused than those of single 

component assemblies, which we attributed to the fact that the position and 

orientation of nanoplates are likely more relaxed in the complex binary structure 

than in single component superlattices. However, single crystal electron 

diffraction patterns of each component are still preserved in the wide-angle 

SAED pattern of binary superlattices, indicating that each nanoplate building 

block is crystallographically aligned into the same direction, even in the binary 

superlattices. Although it is hard to precisely define the zone axis due to the 
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anisotropic shape of nanocrystals and the complex architecture of superlattices, 

the electron diffraction patterns still provide additional structural information 

regarding the self-assembled membrane. In the SAED patterns of tilted binary 

superlattice presented in Figure 4.18f, diffraction spots were indexed as {020}, 

{131}, and {111} families of planes of GdF3 nanoplates and {222} and {220} 

families of planes of Gd2O3 nanoplates. These indexes, d-spacing, and angles 

between planes are in reasonable agreement with the simulated single crystalline 

electron diffraction pattern generated from each single crystal which are oriented 

along the same crystallographic direction of nanoplates in the binary structure. 

This indicates that the crystallographic orientations of each unit cells are 

registered as the self-assembled conformation as depicted in Figure 4.14d.  
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Figure 4.17. TEM images of the a) GdF3, b) Gd2O3 single components, c) binary 

superlattices, and d, e, f) 55o tilted images respectively. Insets are wide-angle 

selected area electron diffraction patterns. 

 

Binary superlattice structures with long range orientational and positional 

order are observed over large areas. Figure 4.18 shows low-magnification TEM 

and SEM images of the binary superlattices. The lengths of the assembled 

structures can reach the micrometer scale with preservation of the binary 

ordering, as shown in high magnification SEM image.(an inset of Figure 4.18) 

This indicates the potential of utilizing the shape-complementary interaction 
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between building blocks to fabricate large area self-assembled nanocrystal 

membranes. 
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Figure 4.18. a) Low magnification TEM images and b) SEM image of binary 

superlattice co-assembled with tripodal and rhombic nanoplates. Inset is the high 

magnification SEM image.  



131 
 

4.6. Liquid Crystalline Binary Self-Assembly of Colloidal Nanorods 

and Nanoplates. 

 

In this section, we present co-assembly of colloidal nanorods and 

nanoplates into binary liquid crystalline superlattices. Liquid crystalline self-

assembly of anisotropic nanoplates is a promising template to control the 

orientation of other nanocrystal building blocks due to their long range 

orientational and positional order and potential to control the orientation. This 

work demonstrates that the liquid crystalline superlattice of nanoplates can be 

used to direct the position and orientation of colloidal one-dimensional nanorods 

with long range order when they are co-assembled via liquid interfacial assembly.  

Colloidal lanthanum trifluoride (LaF3) nanoplates are used as transparent 

dielectric nanocrystal building blocks for the self-assembly. LaF3 nanoplates are 

synthesized by the same method to synthesize GdF3 nanoplates. Figure 4.19a is 

TEM image of LaF3 nanoplates. The diameter of nanoplates is about 23 nm with 

2 nm of thickness. Nearly monodisperse nanoplates lay parallel to the substrates 

and self-assembled into 2-dimensional hexagonal array. Colloidal CdSe/CdS dot-

in-rods is synthesized by seeded growth method reported previously.219 The size 

of CdSe seeds is about 3nm with pseudo-spherical morphology. Upon shell 

formation, CdS preferentially along the c-axis of the hexagonal wurtzite CdS 

crystal, yielding a nanorod morphology. Figure 4.19b is a TEM image of the 
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CdSe/CdS nanorods. The length of nanorods is about 13nm with 3.5nm of 

diameter. 

 

 

Figure 4.19. TEM and images of anisotropic nanocrystal building blocks used for 

self-assembly a) LaF3 nanoplates and b) CdSe/CdS core-shell nanorods and c) 

binary superlattice self-assembled by liquid interfacial assembly. 

 

Self-assembly of LaF3 nanoplates and CdSe/CdS nanorods is performed 

by liquid interfacial assembly using glycol-type polar sub-phases. Figure 4.19c is 

a TEM image of a binary superlattice of the LaF3 nanoplates. and the CdSe/CdS 

nanorods co-assembled on a diethylene glycol surface. The nanoplates are 

stacked along out-of-plane direction to form columns and two vertically aligned 

nanorods are located between stacked columns with long axis of the nanorods 

pointing upward. In most cases, two nanorods are included in four-fold symmetric 

vacancy positions of the nanoplate columns. Due to the inclusion, their 2-
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dimensional symmetry of self-assembled LaF3 nanoplates, which is hexagonal 

array in single component assemblies (Figure 4.19a), is elongated to tetragonal 

symmetry in the binary superlattice.(Figure 4.19c) Figure 4.21a displays the low 

magnification TEM image. It Most of nanorods are vertically aligned in the 

columnar liquid crystalline superlattice, although some form a close-packed 

nanoplates assembly 

 

 

Figure 4.20. TEM images of binary superlattices of CdSe/CdS nanorods and 

LaF3 nanoplates into a), b), c) columnar binary liquid crystalline structures d), e), f) 

lamellar binary liquid crystalline structures. 
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When ethylene glycol is used as a sub-phase for self-assembly, nanoplates 

stand edge-on on the substrates and stack to form one-dimensional strings by 

face-to-face interactions. These strings are simultaneously self-assembled into 

extended two-dimensional arrays to form smectic liquid crystalline 

structures.(Figure 4.20d-f) Colloidal nanorods are co-assembled into the liquid 

crystalline binary lattices with the nanorod long axes lying parallel to the 

substrates. The trench formed between the arrays of columnar nanoplate strings 

provides a free space to secure the nanorods and direct the orientation and 

position of the nanorods. The tip to tip distances between the nanorods in the 

trench are about 3nm,(Figure 4.20f) which indicates that the nanorods are highly 

close-packed into the one-dimensional arrays leaving a minimal space except for 

the surface ligands. In addition, long range positional and orientational order of 

smectic liquid crystalline structures allows the orientation of nanorods to be well 

controlled over 1 m2 areas.(Figure 4.20c) Since the size of LaF3 nanoplates is 

nearly monodisperse, the distance between one-dimensionally aligned nanorods 

with neighboring nanorods are also uniformly controlled in the binary lattices. 

 

4.7. Conclusion 

In summary, we have demonstrated the formation of liquid crystalline 

superlattices consisting of one or two set of anisotropic building blocks. Columnar 

and lamellar liquid crystalline superlattices of GdF3 nanoplates are achieved by 

liquid interfacial assembly with long range orientational and positional order. The 
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choice of sub-phase is found to be an important factor in directing the orientation 

of the superlattices, where more polar sub-phase favors lamellar liquid crystalline 

structure, and less-polar sub-phase favors columnar liquid crystalline assemblies 

of GdF3 nanoplates. The structure was characterized by RSAXS and in-plane 

SAXS using a laboratory X-ray diffractometer. Characteristic fringe scattering 

patterns in RSAXS and in-plane SAXS confirms this sub-phases effect. Highly 

uniform tripodal Gd2O3 nanoplates self-assembled into 1-D nanofibril-like 

superlattices. In addition, the nanofibril structures can be further assembled into 

hierarchical liquid crystalline superstructures and shape-directed self-assemblies 

are investigated by tailoring the aspect ratio of the arms of the Gd2O3 nanoplates. 

At last, we present the formation of binary superlattices consisting of two 

anisotropic building blocks. We synthesized building blocks with complementary 

shape to guide the position of nanoplate building blocks, inducing the shape-

directed self-assembly over micrometer scales. Many synthetic methods are 

available to tune the size and shape of anisotropic nanocrystals with a variety of 

compositions.27,159,220 Shape directed self-assembly of anisotropic building blocks 

may provide a unique design rule to direct the formation of liquid crystalline 

single and binary nsuperlattices with high complexity in a predictable way.  

 

4.8.  Experimental Session 

 Materials. All chemicals are used as purchased without any further purification. 

Gadolinium(III) oxide (99.99%), lithium fluoride (99.99%), lithium hydroxide 
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monohydrate (99.95%), oleic acid (technical grade, 90%), oleylamine (technical 

grade, 70%), 1-octadecene (technical grade, 90%), are purchased from Sigma 

Aldrich. Gadolinium acetate and gadolinium trifluoroacetate precursors are 

prepared by refluxing gadolinium oxide in acetic acid/water and trifluoroacetic 

acid/water mixture (50 vol%), respectively. 

Synthesis of GdF3 Nanoplates. GdF3 nanoplates were synthesized according 

to the procedure previously reported.172 Briefly, gadolinium trifluoroacetate(2 

mmol) and  lithium fluoride(6 mmol) were added to a 125 mL three-neck flask 

containing 30 mL of oleic acid and 30 mL of 1-octadecene. This solution was 

degassed at 125oC for 1 h. Then, the solution was heated to 290oC under N2 

environment at a rate of 10oC/min and maintained at this temperature for 4 hours. 

Purification was conducted by adding excess ethanol and centrifugation at 

4000rpm for 2 min. GdF3 nanoplates were redissolved in hexane. Residual 

lithium fluoride, which is insoluble in nonpolar solvents, was simply removed by 

centrifugation at 3000 rpm for 2 min. 

Synthesis of Gd2O3 nanoplates Gd2O3 nanoplates were synthesized according 

to the procedure previously reported.173 Lithium hydroxide (6 mmol) is added into 

a mixture of 12 mL of oleic acid, 18 mL of oleylamine, and 30 mL of 1-

octadecene solvent and is heated to 110 oC. After evacuation at 110oC for one 

hour to remove water, gadolinium acetate (3 mmol) is added and the solution is 

evacuated for an extra hour at the same temperature. Then, the reaction solution 

is heated to 300oC and maintain at this temperature for an hour under high N2 

blowing. Then, the reaction solution is cooled to room temperature through 
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addition of toluene. Purification is conducted through addition of excess methanol 

and centrifuging at 3000 rpm for 2 minutes. 

Liquid crystalline assembly of binary superlattices. Liquid interfacial 

assembly is conducted according to the procedure previously reported.189 Teflon 

well is filled with diethylene glycol sub-phases. Then, 30�L of the nanoplates 

solution (overall nanocrystal concentration is about 20mg/ml) is added on top of 

the surface of sub-phase. The Teflon well is covered with a glass slide to allow 

the slow drying of hexane. Once the nanoplate membrane is formed, films are 

transferred to carbon coated TEM grids for microscopic analysis 

Structure characterization. TEM images and electron diffraction patterns are 

recorded using JEM-1400 microscope equipped with a SC1000 ORIUS CCD 

camera operating at 120 kV. Scanning electron microscopy 142 was performed on 

a JEOL 7500F HRSEM. The simulated diffraction patterns were obtained by 

generating the atomistic unit cell in CrystalMaker (CrystalMaker Software Ltd.), 

rotating the unit cell to be oriented corresponding to the crystallographic axis of 

each nanoplate in binary superlattice, and obtaining single crystalline electron 

diffraction patterns with Single Crystal software(CrystalMaker Software Ltd.).  

Small-angle X-ray characterization RSAXS, in-plane SAXS, and powder X-ray 

diffraction are measured using a Rigaku Smartlab high resolution diffractometer 

equipped with a 2.2 kW sealed tube generator. The X-ray beam (Cu Kα radiation, 

=1.54056Å) is collimated as a parallel beam by parabolically curved multilayer 

mirrors placed in front of the sample. The beam dimension is 0.05 mm x 5 mm 
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(height x width) for both measurements. The offset angle is obtained by 

performing a series of omega scan while the detector is fixed in place. Three 

omega scans are performed by varying the 2-theta position (0.8o, 1.2o, 1.5o) and 

the offset angle is determined from the collected profiles automatically by the 

software, which is about 0.1o. For in-plane SAXS measurement, incident angle 

(i) of the X-ray beam is chosen as 0.3o.  
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5. SHAPE-CONTROLLED SYNTHESIS OF TRANSITION 

METAL OXIDE NANOCRYSTALS  

 

5.1. Introduction 

Transition metal oxides are one of the most heavily studied and mass-

produced materials in the world for many emerging applications such as 

catalysis,221,222 cosmetics,223 solar cells,224 electronic devices,225 batteries,226 and 

so on. Significant improvement of materials properties can be achieved through 

the engineering of materials at the nanoscale. For example, large surface area 

and high surface to volume ratio allow nanocrystals to be highly active catalytic 

materials. In addition, the surfactant-assisted high temperature synthesis enables 

nanocrystals to exhibit excellent colloidal stability in solution, which offers the 

potential for low-cost, robust fabrication by highly reproducible solution-based 

processes. 

The control of nanocrystal morphology is crucial since the size, shape, and 

composition significantly influence the properties of the transition metal oxide 

nanocrystals. The shape dependence of photocatalytic hydrogen evolution has 

been reported using highly monodisperse and shape controlled TiO2 

nanocrystals, revealing that {101} facets of anatase are more active than the 

{001} facets in the photoreforming of methanol by platinized TiO2 under light 

illumination.227 In addition, shape dependent optical response is also well-
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documented, for instance, shape effects on the plasmonic response of  

transparent conducting oxide nanocrystals has been demonstrated by the 

systematic study of shape-controlled indium doped cadmium oxide 

nanocrystals.228 In order to engineer the properties of nanomaterials by tailoring 

the size and shape, it is crucial to develop the colloidal synthetic methods to 

synthesize highly uniform transition metal oxide nanocrystals with controllable 

sizes and shapes. In this chapter, we introduce a generalized non-hydrolytic 

synthesis to control the shape of highly uniform transition metal oxide 

nanocrystals with metal halide precursors and 1-octadecanol, demonstrating that 

a wide range of compositions can be designed by this method.    

 

5.1. Generalized Synthesis of Transition Metal Oxide Nanocrystals. 

Scheme 5.1 is the generalized synthetic method for early transition metal 

oxide nanocrystals. Transition metal chloride, for example, TiCl4, WCl6, or VOCl3 

is used as a precursor for the reaction. In the presence of oleylamine and 1-

octadecanol, the mixture is heated between 250oC to 320oC and kept at this 

temperature for a given time. The product is precipitated by adding excess 

methanol and collected by centrifugation. 

 

Scheme 5.1. Synthesis of metal oxide nanocrystals via non-hydrolytic reaction. 
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Colloidal tungsten oxide (WOx) nanocrystals are synthesized using WCl6 

precursors. No reaction occurs in the absence of 1-octadecanol, which indicates 

that the formation of tungsten oxide occurs through the non-hydrolytic reaction 

between the metal halide and a primary alcohol.229 Although the reaction occurs 

in the absence of oleylamine, it is observed that the use of oleylamine as reaction 

solvent allows the formation of nanocrystals with well-defined shape and size 

uniformity. In addition, oleylamine also acts as a surfactant enhancing the 

colloidal stability of nanocrystals in non-polar media. Figure 5.1a-c show TEM 

and SEM images of WOx nanowires. The width of individual nanowires is less 

than 5 nm in average and reaches about 250nm in length. Longer nanowires, 

about 800nm in length, are obtained with when trioctylamine is used instead of 

oleylamine.(Figure 5.1e) Figure 5.1d represents the XRD pattern of WOx 

nanowires. The diffraction peaks are matched to monoclinic WO3 phase (JCPDS 

no. 5-0392). Relatively sharp peaks at (010) and (020) diffractions indicate that 

nanowires are growing along (010) direction, which is corroborated by HRTEM 

image.(Figure 5.1b inset) As-synthesized nanowires are dark blue in color due to 

the broad absorption from red to near-IR range (Figure 5.1f), which might be 

attributed to  oxygen vacancies generated during the reaction, or the presence of 

W5+ from the reduction of W6+ in a reductive reaction condition from the presence 

of amine and alcohol.   
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Figure 5.1. a) Low magnification, b) high magnification TEM images, and c) SEM 

image of WOx nanowires synthesized with oleylamine and 1-octadecanol 

surfactants. d) TEM image of WOx nanowire synthesized with trioctylamine and 

1-octadecanol. e) PXRD pattern and f) optical absorption of WOx nanowires. 

Inset is an optical image of nanowires dispersed in hexane. 
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Titanium dioxide (TiO2) nanowires are synthesized with an addition of TiCl4 

instead of WCl3 under the same reaction conditions. Figure 5.2 displays a TEM 

image of TiO2 nanowires. The width of nanowires is about 10nm and the length is 

about 50nm to 100nm. The SAED pattern reveals that as-synthesized nanowires 

are brookite phase.     

 

 

Figure 5.2. TEM image of TiO2 nanowires synthesized in presence of 1-

octadecanol and oleylamine. The inset is SAED pattern.  

 

With VOCl3 precursors, vanadium oxide nanocrystals are obtained as a final 

product. At 250oC and 30min reaction time in the presence of oleylamine and 1-

octadecanol, pseudo-spherical nanocrystals are formed with the average size of 

4.3  1.0 nm (Figure 5.2a,b). When the reaction temperature is increased to 
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270oC, disk-shape ultra-thin nanoplates are formed exclusively as displayed in 

Figure 5.2c and d. Disk-shaped nanoplates self-assemble into one-dimensional 

arrays by face-to-face stacking, resulting in the unidirectional aggregation of 

nanoplates. Figure 5.2c displays the nanofibril-like structures organized by the 

self-assembly of nanoplates. At high magnification, the edge of nanoplates is 

observed confirming the plate morphology of the nanocrystals.(Figure 5.2d) 

Since the size of the nanoplates is highly uniform, the width of the nanofibril 

structures is also almost identical.  
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Figure 5.3. TEM images of VOx nanocrystals synthesized at a), b) 250oC and c), 

d) 270oC for 30min reaction condition with oleylamine and 1-octadecanol e) TEM 

image and f) PXRD pattern of V2O3 nanocrystals synthesized at 300oC.  
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At 300oC for 30 min reaction with VOCl3, oleylamine, and 1-octadecanol, 

pseudo-spherical nanocrystals are obtained as a final product with the size of 

about 25nm and a rough surface morphology. The PXRD pattern shows that the 

crystal structure is the rhombohedral V2O3. Although the oxidation state of 

starting precursors is vanadium 5+
 in vanadium oxychloride (VOCl3), the 

presence of primary alcohol and amine in the reaction mixture induce the 

reduction of oxidation state of vanadium from 5+ to 3+. When oleic acid is used 

instead of oleylamine, at 300oC for 30min reaction time, ellipsoidal nanoplates 

are synthesized as a final product with tip-to-tip distance of about 100nm.(Figure 

5.4) Figure 5.4 inset shows the optical image of colloidal VOx nanoplates 

dispersed in hexane.  
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Figure 5.4. TEM images of VOx nanoplates synthesized in presence of oleic acid, 

1-octadecanol, and 1-octadecene. The reaction is performed at 300oC for 30min.  

 

5.3. Conclusion 

In this section, we introduced a generalized method to synthesize transition 

metal oxide nanocrystals. In the presence of oleylamine and 1-octadecanol with 

metal halide precursors such as WCl6, TiCl4, and VOCl3, highly uniform 

nanocrystals, WOx, TiO2, and VOx respectively, are synthesized with different 

morphologies such as nanosphere, nanoplates, and nanowires. The presence of 

primary alcohol is important indicating that the reaction may occur through non-

hydrolytic reaction between the metal halide and a primary alcohol. We observe 

that the shapes of the nanocrystals are further tunable by changing the type of 

surfactants used for the reaction. Early transition metal oxides are widely used 
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for many emerging techniques. The shape-controlled metal oxide nanocrystals 

could be a promising platform to understand the shape-dependent physical 

properties of the metal oxide materials. 

 

5.4. Experimental Section 

Materials. All chemicals are used as purchased without any further purification. 

vanadium ocychloride (99%), oleic acid (technical grade, 90%), oleylamine 

(technical grade, 70%), 1-octadecene (technical grade, 90%) are purchased from 

Sigma Aldrich. Tungsten(VI) chloride (>99.9%), titanium(IV) chloride (>99.9%), 

are purchased from ACROS Organics. 1-octadecanol (97%) are purchased from 

Alfa Aesar.  

Synthesis of WOx nanowires. 1-octadecanol (9.72 g) and oleylamine (30 mL) 

are added to a 125 mL three-neck flask and degassed at 125 oC for 1 h. Then, 

0.752g of tungsten(VI) chloride is added into the reaction mixtures and heated to 

320 oC at a rate of 10 oC/min in N2 environment.  The temperature is maintained 

for 1 hour allowing for the nanocrystal growth. Purification is conducted by adding 

toluene and excess methanol followed by centrifugation at 6000 rpm for 2 min. 

Precipitated nanocrystals are redispersed in anhydrous hexane and stored under 

N2 environment to prevent oxidation of nanocrystals.   

Synthesis of TiO2 nanowires. The synthetic procedure is the same as the 

method used for WO3 nanowires, except that 4ml of TiCl4 are used instead of 

WCl6. The reaction is taken at 320oC for 1 hour.  
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Synthesis of VOx nanocrystals. The synthetic procedure is the same as the 

method used for WO3 nanowires, except that 4ml of VOCl3 are used instead of 

WCl6. The reaction is taken at different temperatures, at 250oC, 270oC and 

300oC for 30 mins.  

Synthesis of VOx ellipsoidal nanoplates. 4 mL of VOCl3 is added into a 

mixture of 1.4 mL of oleic acid, 9.72g of octadecanol, and 30 mL of 1-octadecene 

solvent and is heated to 110 oC. After evacuation at 110oC for one hour to 

remove water, the reaction solution is heated to 300oC for 1 hour under high N2 

pressure, resulting in the formation of the nanoplates. The reaction solution is 

cooled to room temperature through addition of toluene. Purification is conducted 

through addition of excess methanol and centrifuging at 3000 rpm for 2 minutes. 

Structure characterization. TEM images and electron diffraction patterns are 

collected using JEM-1400 microscope equipped with a SC1000 ORIUS CCD 

camera operating at 120 kV. Powder X-ray diffraction is measured using a 

Rigaku Smartlab high-resolution diffractometer with Cu Kα radiation (=1.5416Å).  
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CHAPTER 6. SOLUTION-PROCESSED PHASE-CHANGE 

VO2 METAMATERIALS FROM COLLOIDAL VANADIUM 

OXIDE (VOx) NANOCRYSTALS 

 

6.1. Introduction 

Metamaterials are artificial materials rationally designed from sub-

wavelength nanostructures to engineer novel optical properties and to control the 

interaction of electromagnetic radiation with matter.230-232 They have been 

explored for various applications, including negative index metamaterials,233-235 

perfect lenses,236,237 cloaking238,239 and sensing devices.240,241 In most cases, the 

optical responses of metamaterials are fixed by the structure and electronic 

properties of the constituent engineered building blocks. Increasingly there is a 

desire to realize dynamically tunable or switchable structures.111,242-244 Phase 

change materials have been extensively studied to provide tuning/switching 

capabilities in optical systems and metamaterials.245-248 The physical properties 

of phase change materials are switched in real-time during a structural phase 

transition (e.g. crystalline to amorphous,249 or between two distinct crystalline 

forms250), which allows optical responses such as a resonance wavelength to be 

dynamically modulated by external stimuli.  

Vanadium dioxide (VO2) is a promising phase change material to use as a 

building block in reconfigurable metamaterials. In bulk, VO2 exhibits at low 
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temperature (68oC) a reversible first-order metal-insulator phase transition,251 

from the semiconducting monoclinic (M1, space group P21/c) to metallic 

tetragonal (R, space group P42/mmm) structure, giving rise to a sharp change in 

optical and electrical properties. This phase transition can be triggered by many 

different types of stimuli such as heat,252 mechanical strain,253,254 and electric 

field255-257 and has been applied in many emerging technologies, such as smart 

windows,258,259 optical switches,260,261 memory devices,262,263 and Mott 

transistors.264,265 Through micro- and nanofabrication methods, various tunable 

metamaterials have been demonstrated by the integration of phase change 

VO2,
266-268 such as plasmonic modulators composed of gold or silver nano-

antennae on VO2 substrates269,270 and as index modulators in plasmonic 

waveguides.271 Phase-change VO2 films are fabricated by a variety of techniques 

including the sol-gel method,272,273 ion implantation,274 magnetron sputtering,275 

chemical vapor deposition (CVD),276 and pulsed laser deposition (PLD).277  The 

properties of VO2 are further tailored by chemical doping of the VO2 matrix to 

modify the phase transition temperature (Tc),
278 offering an additional degree of 

freedom to engineer the optical responses of metamaterials. However, to expand 

the application of VO2 in nanostructured devices, it is essential to develop simple, 

scalable, and reproducible techniques to incorporate phase change VO2 into 

complex architectures and thus to allow precise engineering of the optical 

properties of  large area surfaces.  
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In this chapter, we present a solution-based process to fabricate phase-

change VO2 thin films and nanostructures using colloidal vanadium oxide (VOx) 

NCs. Solution-based processes utilizing NC precursors offer the potential for low-

cost, robust fabrication of highly reproducible films by scalable deposition 

techniques such as spin-coating and dip-coating,279,280 and patterning techniques 

such as ink-jet printing281 or direct writing.282 VOx NCs are synthesized using 

solution-based colloidal synthesis. Stable suspensions of colloidal VOx NCs are 

readily deposited on substrates and transformed into phase-change monoclinic 

VO2 (M1, space group P21/c) through thermal annealing, resulting in high quality 

optical films over large areas. In addition, we investigate the effect of tungsten (W) 

doping on the phase transition behavior through systematic control of the dopant 

concentration during NC synthesis. Solution-based fabrication and controlled 

doping enables the integration of VO2 building blocks into thermally responsive 

("smart") optical materials and patterning into geometrically tailored, sub-

wavelength nanostructured reconfigurable materials by nanoimprinting 

techniques.  

 

6.2. Switchable Vanadium Dioxide (VO2) Metamaterials Fabricated 

from Tungsten Doped Vanadia-based Colloidal Nanocrystals 

Vanadium oxide (VOx) NCs are synthesized through the high temperature 

thermal decomposition of vanadium oxychloride (VOCl3) in the presence of the 
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solvent mixture 1-octadecanol and oleylamine. No reaction occurs in the absence 

of 1-octadecanol, which reveals that vanadium oxygen bonds form through the 

non-hydrolytic reaction between the metal halide and a primary alcohol.229 Figure 

6.1a display TEM images of synthesized VOx NCs. VOx NCs exhibit excellent 

colloidal stability in nonpolar solvents due to the oleylamine surfactants capping 

the NC surface (Figure 6.1b). Colloidal VOx NC dispersions were deposited by 

spin-coating for structural, optical and electrical characterization. Since many 

different phases of vanadium oxide exist as stable polymorphs at room 

temperature and with various oxidation states, it is non-trivial to identify the 

crystal structure of the synthesized VOx NCs.283,284 However, the diffraction 

peaks observed by powder X-ray diffraction (PXRD) measurements indicate the 

VOx NCs are crystalline (Figure 6.1c). This is also corroborated by selected-area 

electron diffraction (SAED) (Figure 6.1a, inset) and high-resolution transmission 

electron microscopy (Figure 6.2a, inset). The average NC size calculated from 

small angle X-ray scattering measurements is 4.3   1.0 nm (Figure 6.3).  
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Figure 6.1. a) TEM image of vanadium oxide (VOx) NCs. The inset shows 

selected area electron diffraction. b) Photograph of VOx NCs dispersed in hexane. 

c) PXRD and in-plane XRD patterns before and after thermal annealing of VOx 

NCs on SiO2/Si wafer. d) Monoclinic VO2 thin films obtained by rapid thermal 

annealing of VOx NCs spin-coated on fused quartz substrates with varying 

thickness. 
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Figure 6.2. High resolution transmission electron microscopy (HRTEM) images 

of a) undoped VOx nanocystals and b) 1.9% W doped VOx nanocrystals. Insets 

are fast-Fourier transforms of a single nanocrystal in HRTEM images. 
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Figure 6.3. Small angle X-ray scattering pattern of VOx nanocrystals. The 

average size of VOx nanocrystals calculated by fitting is 4.3  1.0 nm.  

 

Since the crystal structure of colloidal VOx NCs differs from the switchable, 

monoclinic phase VO2, thermal annealing is used to transform the films. Phase-

change monoclinic VO2 (M1, space group P21/c) thin films are obtained from 

spin-coated colloidal VOx NC films after rapid thermal annealing (RTA), typically 

at 500 oC for 5 minutes, 450oC for 30 min, and 400oC for an hour under a 
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reduced oxygen environment of 1 mmHg of air (Figure 6.1d). The presence of 

some oxygen is critical, not only to remove organic surfactants from the NC 

surface, but also to induce the structural transformation from VOx into monoclinic 

VO2. This suggests that the stoichiometry of as-synthesized NCs is a slightly 

oxygen-deficient VO2. The approach utilizing colloidal NCs provides a potential 

for large-area, low-cost, and scalable processes on various substrates such as 

fused quartz, Si wafers, mica, and c-cut sapphire. In addition, the thickness of 

VO2 thin films is readily and reproducibly controlled by changing the deposition 

conditions such as spin-coating rate or the concentration of NCs in the solution 

used for the deposition. 

PXRD patterns, in Figure 6.1c, show that monoclinic VO2 is obtained after 

RTA treatment of VOx thin films. All diffraction peaks match the monoclinic VO2 

structure (M1, space group P21/c) without any noticeable minority phases or 

indications of an amorphous background. Preferred orientation of the VO2 thin 

film is observed when deposited on SiO2/Si wafers. Polycrystalline VO2 thin films 

are characterized with conventional PXRD and in-plane X-ray diffraction (in-plane 

XRD) in order to probe the crystallographic orientation of VO2 grains. Crystal 

planes aligned perpendicular to the substrate are monitored by PXRD while in-

plane orientation is determined by in-plane XRD. From the two complementary 

measurements, preferred orientation is characterized by comparing the 

intensities of diffraction peaks from different crystal planes. The diffraction 

intensities of the (011) plane relative to the (200) plane in PXRD measurements 
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is much higher than in the in-plane XRD measurement, which suggests that VOx 

NCs are transformed into monoclinic VO2 with a preferred orientation of the VO2 

(011) zone axis aligned perpendicular to the substrate surface during thermal 

annealing. This preferential orientation is also observed in films deposited on 

fused quartz and c-cut sapphire (Figure 6.4, 6.5). The effect of the substrate on 

the epitaxial growth of VO2 thin films has previously been reported with 

contrasting findings. For example, polycrystalline VO2 thin films deposited on c-

Al2O3 by pulsed laser deposition285,286 and rf-sputtering287 show growth of the 

VO2 film normal to the substrate in the (002)/(020) direction. However, 

polycrystalline VO2 thin films on fused quartz, Si wafers, and c-sapphire, which 

are prepared by rapid thermal annealing of colloidal NCs, show similar diffraction 

patterns suggesting that the crystal orientation may not be strongly affected by 

the substrate. 
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Figure 6.4. Powder XRD and in-plane XRD patterns of VO2 thin-films on SiO2/Si 

wafer, c-cut sapphire, and fused quartz. Asterisks (*) indicate diffraction peaks 

from the c-Al2O3 substrate. 
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Figure 6.5. a) Powder XRD patterns of c-Al2O3 (red) and VO2 thin-film on c-Al2O3 

(black) and diffraction pattern of monoclinic VO2. The intensity of (011) diffraction 

is much higher than that of (002) and (020). Asterisks (*) indicate diffraction 

peaks from the c-Al2O3 substrate.  
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The optical properties of the VO2 thin films are investigated by variable 

temperature specular reflectance using a Fourier-transform infrared (FTIR) 

spectrometer. Reflectance spectra are collected in the specular reflection 

geometry with a 45o incident angle using a gold mirror as the reflectance 

standard. A thin graphite disk is placed between the sample and the aluminum 

heating stage in order to prevent back reflection while maintaining efficient heat 

transport from the heater to the sample. The temperature of the VO2 films is 

monitored through a thermocouple attached directly to the VO2 film surface. 

Figure 6.6 shows optical reflectance spectra of a VO2 thin film deposited on a 

fused quartz substrate as the sample temperature is increased. At room 

temperature, a fringe pattern is observed with the peak and valley located at 

1128 nm and 1732 nm respectively, which are caused by interference between 

light reflected from the top and bottom of thin films in the insulating phase.286 At 

temperatures higher than Tc, the oscillatory interference pattern disappears as 

the reflectance in the IR region increases sharply due to strong reflectance from 

the metallic VO2 phase.  
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Figure 6.6. Temperature-dependent optical reflectance of a VO2 thin film 
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Figure 6.7. a) Hysteresis of optical reflectance recorded at 1550 nm. Reflectance 

spectra are measured in a specular reflection geometry at 45o to the normal 

direction. b) The dielectric constant (   1  i2 ) of insulating and metallic VO2 

thin films, extracted from spectroscopic ellipsometry measurements.  

 

When the optical properties of the VO2 films are measured while the sample 

is cooling, a significantly lower transition temperature is observed upon switching 

from the metallic to the insulating phase, indicating a wide hysteresis in the 

phase change. The width of the hysteresis during the cooling and heating cycle is 

about 25-30 K in undoped VO2 films (Figure 6.7a, 6.8). The hysteresis width is 

known to decrease with increasing grain size as defects and strain at grain 

boundaries contribute to the energy barrier for the phase transition.288-290 Atomic 

force microscopy images reveal that the average grain size after 5 minutes of 

rapid thermal annealing is approximately 37 nm with a standard deviation of 8.7 
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nm (Figure 6.9). Although the growth in grain size is observed with longer 

annealing, RTA preserves the small grain size in the films annealed at even 

higher temperatures, for example 550 oC for 5 minutes. The nano-sized grains 

that are still preserved in the thin-films may cause the large hysteresis between 

heating and cooling cycles. The large hysteresis could be useful in the design of 

an optical memory, allowing for non-volatile storage of optical information during 

the phase transition.263 

 

 

Figure 6.8. a) Temperature-dependent resistivity plot and b) first derivatives of 

resistivity of undoped VO2 during heating and cooling cycle. 
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Figure 6.9. Atomic force microscopy images of undoped VO2 thin-films after 

rapid thermal annealing a), b) at 500 oC for 5 min, c) at 550 oC for 5 min, and d) 

at 500 oC for 30 min. The thickness of the thin-films is about 140 nm. e), f) Atomic 

force microscopy images of 1.9% W-doped VO2 thin films after rapid thermal 

annealing at 500 oC for 5 min. The thickness of 1.9% W-doped VO2 films is about 

210nm. All samples are deposited on fused quartz substrates. 
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The optical constants of both the insulating and metallic phases of VO2 are 

extracted using spectroscopic ellipsometry (Figure 6.7b). The complex 

permittivity of the samples is extracted by fitting the optical response of thin films 

with a Lorentz-Lorentz model, in the case of the insulating phase, and a Drude-

Lorentz model, in the case of the metallic phase. Below Tc, the real part of 

permittivity is positive over the entire spectral range measured from 400 nm to 

1650 nm, indicating the dielectric response of the insulating, monoclinic VO2 

phase. At temperatures higher than Tc, the real part of the permittivity becomes 

negative in the near-IR region beyond the cross-over energy of 0.86 eV, 

confirming optically the metallic response of tetragonal VO2(R). The negative 

permittivity of our metallic phase VO2 allows it to be incorporated as a switchable 

plasmonic building block in the near-IR and IR region. 

Controlled doping into the VO2 lattice is important not only to tailor Tc, but 

also because it modifies the optical and electrical properties of VO2.
291,292 NC 

doping is a technique commonly used to tune electrical,293,294 optical,228,295,296 

and magnetic properties.297,298 Colloidal synthetic methods allow for the 

homogeneous incorporation of dopants or defects into the lattices of a single NC. 

Since we use VOx NCs as precursors for the fabrication of VO2 thin films, it is 

possible to systematically control the type and concentration of transition metal 

dopants by simply changing the concentration of metal precursors during NC 

synthesis. Tungsten (W) doped VOx NCs are synthesized by the addition of 

tungsten hexachloride (WCl6) as the W source for the reaction; otherwise the 
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conditions are identical to those used for undoped VOx. Energy-dispersive X-ray 

spectroscopy (EDS) reveals that the ratio of W and V precursors is maintained 

after the formation of the NCs, and TEM images show that there is no discernible 

change in NC size and shape due to the addition of W into the matrix (Figure 

6.10). W-doped VO2 thin films after RTA treatment are of the same high surface 

uniformity with similar grain sizes as the undoped films (Figure 6.9, 6.11). The 

surface roughness as characterized by atomic force microscopy is about 2.7 nm 

for 1.9%W doped VO2, which is similar to the 1.7 nm found for undoped VO2 

(Figure 5.9). Since W dopants are already distributed in the NC precursors with 

controlled stoichiometry, the transformed polycrystalline thin films may maintain a 

statistically uniform distribution of W dopants. In addition, high heating rates in 

RTA could help minimize thermal diffusion of W dopants, which can prevent 

phase segregation or local inhomogeneity of the W distribution in the VO2 matrix.  
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Figure 6.10. TEM images of a) undoped and b) 3% W-doped VOx 

 

 

Figure 6.11. Photographs of undoped, 1%W doped, 2% W doped VO2 thin-films 

deposited on fused quartz. 
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Figure 6.12 displays the variable temperature reflectance of W-doped VO2 

thin films deposited on fused quartz substrates. A decrease in Tc is observed with 

an increase in W doping concentration in VO2. It has been reported that 

increasing the doping concentration causes broadening of the temperature range 

in which the phase transition occurs and reduces the degree of property change 

across the transition.299 However, we observe that a steep change in reflectance 

across the phase transition is maintained in W-doped VO2 thin films formed from 

the colloidal NCs, similar to that in undoped VO2. Figure 6.12b presents the first 

derivative of the optical reflectance (dR/dT) of W-doped thin films as a function of 

doping concentration. The full-width at half maximum (FWHM) of dR/dT is similar 

between the 0 to 1.9% (atomic %) doping concentrations that we explored. The 

same trend is also observed in the electrical measurements. The temperature-

dependent resistivity of W-doped VO2 thin films is investigated using the van der 

Pauw method. Figure 3c displays the electrical resistivity of W-doped VO2 over a 

range of temperatures from 5 oC to 100 oC. It is observed that an increase in 

doping concentration leads to a decrease in Tc while maintaining the FWHM of 

d/dT, matching the trend observed by optical reflectance.  
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Figure 6.12. a) Temperature-dependent reflectivity at 2500 nm from W-doped 

VO2 thin films with several different W-doping concentrations and b) the first 

derivatives of optical reflectivity spectra. c) Temperature dependent resistivity 

plots of W-doped VO2 thin films on fused quartz substrates with several different 

W-doping concentrations and d) the first derivatives of resistivity.  
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A series of colloidal NC solutions, in which the stoichiometry of V and W 

are systematically varied, can be readily processed as on-demand NC inks by 

solution-based processes. This allows for the simple, robust, and reproducible 

integration of doped VO2 into complex architectures for metamaterials. We 

employ this technique to build multilayered VO2 nanostructures by sequential 

deposition of VO2 with different doping concentrations. Layered films composed 

of metal and dielectric layers are technologically important as they allow the 

engineering of transmittance, reflectance, and absorption for applications in anti-

reflective coatings,300 2-D waveguides,301 and perfect light absorbers.302 A 

multilayered VO2 nanostructure composed of 1.9% W, 1.3% W and undoped 

layers, is fabricated by sequential spin-coating of colloidal NCs at 1500 rpm for 

30 sec followed by RTA at 500 oC for 5 min after the deposition of each layer. 

The Tc of each layer is 30 oC, 52 oC, and 80 oC, respectively. Since the metallic 

and dielectric properties of W-doped VO2 may be dynamically switched at Tc, this 

integrated layered structure incorporating different doping concentrations allows 

for layers that can be independently switched at different phase transition 

temperatures.  

Figure 6.13(a-d) displays variable temperature reflectance measurements 

of the multilayered structure. At room temperature, all of the layers are insulating. 

Upon increasing the temperature above Tc for the 1.9% W-doped VO2, a phase 

transition occurs in the bottom layer, resulting in the formation of metal-insulator-

insulator structure. A shift in the peak and valley positions in the reflectance 
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fringe patterns is observed corresponding to the structural transformation. The 

reflectance minimum at the valleys of oscillating patterns decreases from 9% to 3% 

and shifts to longer wavelength (from 2300 nm to 3000 nm), demonstrating the 

anti-reflective property in the near-IR. The optical response of the metal-

insulator-insulator structure is maintained until the temperature reaches the 

phase change temperature of the 1.3% W-doped VO2. Around 50 oC, the second 

metal-insulator transition occurs in the middle layer to form a metal-metal-

insulator structure, leading to a shift in the reflectance minimum to shorter 

wavelengths (from 3000 nm to 1700 nm). At the reflectance minimum, both 

reflectance and transmittance exhibit very low values (around 5%), indicating that 

a strong absorption resonance occurs in the metal-metal-insulating phase. This 

absorption resonance persists at incident angles from 5o to about 50o and 

reflection increases above 50o (Figure 6.14).  At temperatures higher than the 

phase change temperature of undoped-VO2, all of the layers become metallic 

VO2 and the films become reflective throughout the near-IR and IR regions. This 

suggests that we can engineer the optical responses of multilayered 

reconfigurable materials, exhibiting abrupt switching from that of a strong light 

absorber to that of a Drude-like reflector in the near-IR region.  
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Figure 6.13. a) Variable temperature reflectance spectra of a multilayered VO2 

thin film composed of 1.9% W, 1.3% W and undoped VO2 measured at a 20o 

incident angle and b) representative reflectance spectra during the phase 

transition. I and M stand for insulating and metallic phases of VO2 at each layer. c) 

Optical reflectance spectra monitored at 1550 nm and 3000 nm. d) 

Transmittance and reflectance spectra collected at 25 oC, 40 oC, 60 oC and 90 oC 

and schematics of the phase of the differentially-doped VO2 layers.  
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Figure 6.14. Reflectance spectra of VO2 multilayer structures composed of a 

metal-metal-insulator phase with various angles of incidence ranging from 5o to 

85o. The legend describes % reflectance. 

 

The reflectance at single wavelengths is monitored to better visualize the 

phase transition of the multilayered films. Figure 6.13 presents the reflectance 

collected at 1550 nm and 3000 nm upon increasing temperature. It is worth 



175 
 

noting that the phase change temperature and steepness of the reflectance 

change of each layer at Tc are maintained even after integration into the 

multilayered structure. In addition, the plateaus between the Tc of each layer are 

also observed, indicating that each transition is discrete occurring only at the 

phase change temperatures of individual layers. Thus, we have demonstrated 

that VO2 multilayered thin films, composed of different W doping concentrations, 

can exhibit multiple phase transition temperatures in a single structure, changing 

their optical properties at each phase transition.    

Fabrication of sub-wavelength plasmonic building blocks from Au colloidal 

NCs has recently been demonstrated by nanoimprinting to achieve large-area, 

complex metamaterials.303 Coupling this colloidal nanocrystal-based 

nanoimprinting technique with metallic VO2 allows for the preparation of 

switchable plasmonic VO2 nanostructures. Figure 6.15a shows the schematic of 

the process used to form nanostructured VO2. First, polymer resists are 

patterned by nanoimprint lithography using a nanostructured Si master designed 

in size and shape. Then, colloidal NCs are spin-coated on top of the patterned 

substrate, followed by lift-off of the polymer resist to deposit patterned VOx thin 

films. Phase-change VO2 nanostructures are then obtained after RTA of the 

patterned VOx NC films. Figure 6.15 shows SEM images of planar arrays of VO2 

(b, c) nanopillars and (d, e) nanowires. Nanostructured metallic VO2 is expected 

to show a size-dependent dipolar plasmonic resonance as reported in previous 

studies,304-306 although it is a strongly damped resonance due to optical losses.289 
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Figure 6.15f presents the normalized transmittance spectra of hexagonal arrays 

of metallic VO2 nanopillars upon varying the pillar diameter. With increasing 

diameter from 250 nm to 460 nm, the resonance peaks are red-shifted from 1520 

nm to 1750 nm. In order to understand the trend of the transmittance spectra of 

patterned VO2, we conducted finite-difference time-domain (FDTD) simulations 

using the dielectric function of metallic VO2 derived from spectroscopic 

ellipsometry. The resonance peaks of simulated spectra are also shifted to longer 

wavelength from 1600 nm to 2200 nm with increasing pillar diameter, consistent 

with the experimental results. The magnitude of the shift in the resonance 

frequency as a function of pillar size in the measured data is smaller than the 

values in simulated results. This is not suprising as the morphology of VO2 

nanopillars is known to dramatically affect plasmonic responses289 and that is not 

captured in the simulations. The VO2 nanostructures formed by the RTA of 4 nm 

diameter nanocrystals limit grain growth to about 40 nm and thus the granular 

features of the plasmonic VO2 nanostructures could be responsible for the 

discrepancy between experiment and simulation.  
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Figure 6.15. a) Schematic of subwavelength VO2 nanostructure fabrication using 

nanoimprint lithography. SEM images of VO2 nanostructure arrays of b, c) a 

hexagonal lattice of nanopillars and d, e) nanowires. f) Experimental and g) 

simulated transmittance of VO2 nanopillar arrays of varying diameters.  h) 

Transmittance of layered VO2 nanopillar arrays vertically stacked with 3% W and 

undoped VO2. Transmittance spectra are collected at 25o C and 100o C. 
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Coupling lateral patterning of subwavelength VO2 nanostructures by 

nanoimprint lithography with the vertical structuring of multi-layered thin films, we 

form three-dimensional VO2 nanopillar arrays where each pillar consists of a 

vertical stack of doped VO2 with different W doping concentrations. Figure 6.15d 

displays a schematic of nanopillar arrays composed of 3% W-doped and 

undoped VO2. A three-dimensional, hierarchical nanostructure is fabricated by 

sequential spin-coating of 3% W doped VOx and undoped VOx onto the polymer 

resist. In order to prevent intermixing of NCs between two layers, mild heating at 

typically 100 oC for 30 min is applied after the first layer is deposited. As above, 

polymer resists are lifted-off using acetone and films are thermally annealed to 

obtain patterned VO2. At room temperature, 3% W-doped VO2 is metallic, 

forming metal-insulator structures in each pillar. The dipolar plasmonic response 

of the nanopillar arrays is observed by the broad peak located at about 1900 nm. 

Upon increasing the temperature above the Tc of undoped VO2, the upper layer 

in the pillar changes to metallic and the resonance of the nanostructures blue-

shifts from approximately 1900 nm to 1750 nm. The shift of the resonance peaks 

to shorter wavelengths is consistent with the second phase transition at the 

upper layer effectively causing an increase in the height of the metallic 

nanopillars, resulting in a shift of the resonance peaks to shorter 

wavelengths.307,308  
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6.3. Conclusion 

In summary, we demonstrate solution-processed tunable VO2 

metamaterials using colloidal VOx NCs. Colloidal VOx NCs are synthesized using 

vanadium oxychloride precursors in the presence of 1-octadecanol and 

oleylamine solvent mixture. Thermochromic VO2 are obtained by rapid thermal 

annealing of VOx NCs. Stable dispersions of the colloidal NCs are readily 

processed by conventional deposition techniques, and nanostructured using 

nanoimprinting. Tungsten doping is readily controlled by changing the precursor 

concentration during the synthesis, allowing for a systematic change of the phase 

transition behaviors. Solution-based fabrication and controlled doping allow for 

integration of doped VO2 building blocks into complex architectures including 

switchable metal-dielectric multilayered structures composed of W-doped VO2 

with different dopant concentrations and patterned layered structures. The 

versatility and processiblity of solution-based fabrication provides a route to 

integrate switchable VO2 building blocks into a variety of nanostructured 

metamaterials to modulate the optical response in real-time. 

 

6.4. Experimental Section 

Materials. All chemicals are used as purchased without any further purification. 

Vanadium (V) oxychloride (99%), oleylamine (technical grade, 70%), are 
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purchased from Sigma Aldrich. 1-octadecanol (97%) are purchased from Alfa 

Aesar. Tungsten (VI) chloride (99.9+%) is purchased from Acros Organics. 

Synthesis of VOx Nanocrystals. 1-octadecanol (7.92 g) and oleylamine (30 mL) 

are added to a 125 mL three-neck flask and degassed at 125 oC for 1 h. Then, 

0.4 mL of vanadium oxychloride is added into the reaction mixtures and heated 

to 250 oC at a rate of 10 oC/min in ambient air environment.  The temperature is 

maintained for 20 min allowing for the nanocrystal growth. Purification is 

conducted by adding toluene and excess methanol followed by centrifugation at 

6000 rpm for 2 min. Precipitated nanocrystals are redispersed in anhydrous 

hexane and stored under N2 environment to prevent oxidation of nanocrystals.   

Rapid thermal annealing for structure transformation from VOx to 

monoclinic VO2. Colloidal VOx nanocrystals are deposited on the substrates by 

spin-coating, typically at 1500 rpm for 30 sec. Nanocrystal thin-films are 

annealed using rapid thermal annealing (ULVAC MILA-3000) by ramping to 500 

oC in 10 sec and annealing for 5min under 1mTorr of air environment.  

Nanoimprint lithography. Vanadium oxide (VO2) based plasmonic 

nanostructures are fabricated by nanoimprint lithography and lift-off using VOx 

colloidal nanocrystals.  Commercial float glass (Delta-technologies) is cleaned by 

ultra-sonication with acetone and isopropyl alcohol for 10 min and rinsed with 

deionized water. Nanoimprinting lithography is done using a Nanonex (NX-2600) 

nanoimprinting system.  A thermal nanoimprint resist (NXR-1000) film is made by 

spin-coating at 3000 rpm for 1 min, and baked at 150 °C for 5 min. A 

nanostructured Si based template is used as a master stamp. The thermal resist 
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coated glass substrate is covered by a master stamp, and then the stack of the 

stamp and substrate is heated and pressed up to 130 °C and 300 psi for 5 min in 

order to fill the cavity of the stack, and then, it is cooled for de-molding. After 

imprinting, an oxygen “descum” process is performed on the samples in a 

Technics dry etching tool for 35 sec with 80 sccm O2 and 150 W power, in order 

to remove residual polymer layers. To fabricate vanadium oxide (VO2) based 

plasmonic nanostructures, VOx nanocrystals are spin-coated on the imprinted 

pattern on the glass substrate. Then, the polymer resist is removed by lift-off in 

acetone for 30 sec to obtain the inverted VOx patterns. Nanostructured 

thermochromic VO2 is obtained after rapid thermal annealing at 500 oC for 5 min 

under 1mTorr air.  

Structural characterization. TEM images and electron diffraction patterns are 

collected using a JEM-1400 microscope equipped with a SC1000 ORIUS CCD 

camera operating at 120 kV. Scanning electron microscopy 142 and energy-

dispersive X-ray spectroscopy was performed on a JEOL 7500F HRSEM. 

Powder X-ray diffraction, in-plane X-ray diffraction, small angle X-ray scattering 

are collected using a Rigaku Smartlab high-resolution diffractometer with Cu Kα 

radiation (=1.5416Å). The scattering curve is fit using Rigaku NANO-Solver 

software (shown in red line) with a spherical model and particle size distribution 

corresponding to the Schultz distribution function. Atomic force microscopy 

images are obtained using a MFP-3D AFM (Asylum Research). Temperature-

dependent resistivity measurements are performed using a variable temperature 
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microprobe system K20 from MMR technologies coupled with a HP 4145B 

semiconductor parameter analyzer.  

Optical characterization. Variable temperature specular reflectance spectra are 

collected using a Fourier-transform infrared (FTIR) spectrometer with a Seagull 

variable angle reflection accessory (Harrick Scientific) equipped with the 

aluminum heating stage. Ellipsometry spectra of VO2 on quartz are collected 

using a M-2000 ellipsometer (J.A. Woollam Co.). For the ellipsometric 

measurement, the complex reflectance ratio is measured from 370 to 1680 nm at 

45°, 55°, 65°, and 75°. Dielectric functions of VO2 thin-films deposited on SiO2/Si 

wafers are extracted by fitting with Drude-Lorentz oscillators using the 

CompleteEASE software package (J.A. Woollam Co.). Full-wave electromagnetic 

field calculations are performed using the commercially available simulation 

software package FDTD Solutions from Lumerical, Inc. A unit cell of the 

investigated structure is simulated using periodic boundary conditions along the x 

and y axes, and perfectly matched layers along the direction of propagation of 

the electromagnetic waves (z axis). Plane waves are launched incident to the 

unit cell along the +z direction, and transmittance is monitored with a power 

monitor placed behind the structure. Electric and magnetic fields are detected 

within the frequency profile monitors. To model VO2 nanocrystals in the 

simulations, we use measured dispersion data. 

 

  



183 
 

7. REFERENCES 

  (1)  Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706‐
8715. 
  (2)  Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545‐
610. 
  (3)  Talapin, D. V.; Lee, J.‐S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 
110, 389‐458. 
  (4)  Alivisatos, A. P. Science 1996, 271, 933‐937. 
  (5)  Burda, C.; Chen, X.; Narayanan, R.; El‐Sayed, M. A. Chem. Rev. 2005, 105, 1025‐
1102. 
  (6)  Niederberger, M. Acc. Chem. Res. 2007, 40, 793‐800. 
  (7)  Yin, Y.; Alivisatos, A. P. Nature 2005, 437, 664‐670. 
  (8)  Taleb, A.; Petit, C.; Pileni, M. P. Chem. Mater. 1997, 9, 950‐959. 
  (9)  Park,  J.; An, K.; Hwang, Y.; Park,  J.‐G.; Noh, H.‐J.; Kim,  J.‐Y.; Park,  J.‐H.; Hwang, 
N.‐M.; Hyeon, T. Nat. Mater. 2004, 3, 891‐895. 
  (10)  Kwon, S. G.; Piao, Y.; Park,  J.; Angappane, S.;  Jo, Y.; Hwang, N.‐M.; Park,  J.‐G.; 
Hyeon, T. J. Am. Chem. Soc. 2007, 129, 12571‐12584. 
  (11)  Kwon, S. G.; Hyeon, T. Acc. Chem. Res. 2008, 41, 1696‐1709. 
  (12)  Haase, M.; Schäfer, H. Angew. Chem. Int. Ed. 2011, 50, 5808‐5829. 
  (13)  Nikoobakht, B.; El‐Sayed, M. A. Chem. Mater. 2003, 15, 1957‐1962. 
  (14)  Petroski, J. M.; Wang, Z. L.; Green, T. C.; El‐Sayed, M. A. The Journal of Physical 
Chemistry B 1998, 102, 3316‐3220. 
  (15)  Xiong, Y.; McLellan, J. M.; Chen, J.; Yin, Y.; Li, Z.‐Y.; Xia, Y. J. Am. Chem. Soc. 2005, 
127, 17118‐17127. 
  (16)  Huang, J.; Kovalenko, M. V.; Talapin, D. V. J. Am. Chem. Soc. 2010, 132, 15866. 
  (17)  Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065‐9070. 
  (18)  Cho, K.‐S.; Talapin, D. V.; Gaschler, W.; Murray, C. B.  J. Am. Chem. Soc. 2005, 
127, 7140‐7147. 
  (19)  Son, D. H.; Hughes, S. M.; Yin, Y.; Alivisatos, A. P. Science 2004, 306, 1009‐1012. 
  (20)  Deka, S.; Miszta, K.; Dorfs, D.; Genovese, A.; Bertoni, G.; Manna, L. Nano Lett. 
2010, 10, 3770‐3776. 
  (21)  Jana, N. R.; Gearheart, L.; Murphy, C. J. The Journal of Physical Chemistry B 2001, 
105, 4065‐4067. 
  (22)  Sun, Y.; Xia, Y. Adv. Mater. 2002, 14, 833‐837. 
  (23)  Michael  B.  Sigman  ,  J.;  Ghezelbash,  A.;  Hanrath,  T.;  Saunders,  A.  E.;  Lee,  F.; 
Korgel, B. A. J. Am. Chem. Soc. 2003, 125, 16050‐16057. 
  (24)  Lee, N.; Choi, Y.; Lee, Y.; Park, M.; Moon, W. K.; Choi, S. H.; Hyeon, T. Nano Lett. 
2012, 12, 3127‐3131. 
  (25)  Manna,  L.;  Scher,  E. C.; Alivisatos, A.  P.  J. Am. Chem.  Soc.  2000,  122,  12700‐
12706. 
  (26)  Tao, A. R.; Habas, S.; Yang, P. Small 2008, 4, 310‐325. 
  (27)  Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, 
A. P. Nature 2000, 404, 59‐61. 



184 
 

  (28)  Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. 
Nat. Mater. 2011, 10, 936‐941. 
  (29)  Jun, Y.‐w.; Huh, Y.‐M.; Cho, J.‐s.; Lee, J.‐H.; Song, H.‐T.; Kim, S.; Yoon, S.; Kim, K.‐
S.; Shin, J.‐S.; Suh, J.‐S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 5732‐5733. 
  (30)  Huh, Y.‐M.; Jun, Y.‐w.; Song, H.‐T.; Kim, S.; Choi, J.‐s.; Lee, J.‐H.; Yoon, S.; Kim, K.‐
S.; Shin, J.‐S.; Suh, J.‐S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 12387‐12391. 
  (31)  Bünzli, J.‐C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048‐1077. 
  (32)  Auzel, F. Chem. Rev. 2004, 104, 139‐174. 
  (33)  Wegh, R. T.; Donker, H.; Oskam, K. D.; Meijerink, A. Science 1999, 283, 663‐666. 
  (34)  Dijk, J. M. F. v.; Schuurmans, M. F. H. J. Chem. Phys. 1983, 78, 5317. 
  (35)  Richards, B. S. Sol. Energy Mater. Sol. Cells 2006, 90, 1189‐1207. 
  (36)  Güdel, H. U.; Pollnau, M. J. Alloys Compd. 2000, 303‐304, 307‐315. 
  (37)  Blasse,  G.;  Grabmaier,  B.  C.  Luminescent  Materials;  Springer‐Verlag:  Berlin, 
1994. 
  (38)  Heer, S.; Kömpe, K.; Güdel, H.‐U.; Haase, M. Adv. Mater. 2004, 16, 2102‐2105. 
  (39)  Wang, F.; Liu, X. Chem. Soc. Rev. 2009, 38, 976‐989. 
  (40)  Zhang, Y.‐W.; Sun, X.; Si, R.; You, L.‐P.; Yan, C.‐H.  J. Am. Chem. Soc. 2005, 127, 
3260‐3261. 
  (41)  Roberts, J. E. J. Am. Chem. Soc. 1961, 83, 1087‐1088. 
  (42)  Boyer, J.‐C.; Cuccia, L. A.; Capobianco, J. A. Nano Lett. 2007, 7, 847‐852. 
  (43)  Mai, H.‐X.; Zhang, Y.‐W.; Si, R.; Yan, Z.‐G.; Sun, L.‐d.; You, L.‐P.; Yan, C.‐H. J. Am. 
Chem. Soc. 2006, 128, 6429‐6436. 
  (44)  Johnson, N. J. J.; Oakden, W.; Stanisz, G. J.; Prosser, R. S.; Veggel, F. C. J. M. v. 
Chem. Mater. 2011, 23, 3714‐3722. 
  (45)  Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco,  J. A. Adv. 
Mater. 2009, 21, 4025‐4028. 
  (46)  Sun, X.; Zhang, Y.‐W.; Du, Y.‐P.; Yan, Z.‐G.; Si, R.; You, L.‐P.; Yan, C.‐H. Chem. Eur. 
J. 2006, 13, 2320‐2322. 
  (47)  Gai, S.; Li, C.; Yang, P.; Lin, J. Chem. Rev. 2014, 114, 2343‐2389. 
  (48)  Wu, S.; Han, G.; Milliron, D.  J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; 
Schuck, P. J. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 10917‐10926. 
  (49)  Caravan,  P.;  Ellison,  J.  J.; McMurry,  T.  J.;  Lauffer,  R.  B.  Chem.  Rev.  1999,  99, 
2293‐2352. 
  (50)  Caravan, P. Chem. Soc. Rev. 2006, 35, 512‐523. 
  (51)  Na, H. B.; Song, I. C.; Hyeon, T. Adv. Mater. 2009, 21, 2133‐2148. 
  (52)  Na, H. B.; Hyeon, T. J. Mater. Chem. 2009, 19, 6267‐6273. 
  (53)  Pöselt, E.; Kloust, H.; Tromsdorf, U.; Janschel, M.; Hahn, C.; Maßlo, C.; Weller, H. 
ACS Nano 2012, 6, 1619‐1624. 
  (54)  Yoon, T.‐J.;  Lee, H.; Shao, H.; Hilderbrand, S. A.; Weissleder, R. Angew. Chem. 
Int. Ed. 2011, 23, 4793‐4797. 
  (55)  Perez,  J. M.;  Josephson,  L.; O'Loughlin,  T.; Högemann, D.; Weissleder, R. Nat. 
Nanotechnol. 2002, 20, 816‐820. 
  (56)  Josephson, L.; Perez, J. M.; Weissleder, R. Angew. Chem. Int. Ed. 2001, 40, 3204‐
3206. 
  (57)  Matsumura, Y.; Maeda, H. Cancer Res. 1986, 46, 6387‐6392. 



185 
 

  (58)  Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nat. Nanotechnol. 2008, 3, 
145‐150. 
  (59)  Adriani, G.; Tullio, M. D. d.; Ferrari, M.; Hussain, F.; Pascazio, G.; Liu, X.; Decuzzi, 
P. Biomaterials 2012, 33, 5504‐5513. 
  (60)  Maeda, H.; Wua,  J.; Sawaa, T.; Matsumurab, Y.; Horic, K.  J. Controlled Release 
2000, 65, 271‐284. 
  (61)  Albanese, A.; Peter S. Tang; Chan, W. C. W. Annu. Rev. Biomed. Eng. 2012, 14, 1. 
  (62)  Muro, S.; Garnacho, C.; Champion, J. A.; Leferovich, J.; Gajewski, C.; Schuchman, 
E. H.; Mitragotri, S.; Muzykantov, V. R. Mol. Ther. 2008, 16, 1450‐1458. 
  (63)  Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, 
M. E.; DeSimone, J. M. Proc. Natl. Acad. Sci. USA 2008, 105, 11613‐11618. 
  (64)  Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Nano Lett. 2006, 6, 662‐668. 
  (65)  Qiua, Y.; Liua, Y.; Wanga, L.; Xua, L.; Baia, R.; Jib, Y.; Wub, X.; Zhaoa, Y.; Lic, Y.; 
Chen, C. Biomaterials 2010, 31, 7606‐7619. 
  (66)  Zhang, Y.; Tekobo, S.; Tu, Y.; Zhou, Q.; Jin, X.; Dergunov, S. A.; Pinkhassik, E.; Yan, 
B. ACS Appl. Mater. Interfaces 2012, 4, 4099–4105. 
  (67)  Adriani, G.; Tullio, M. D. d.; Ferrari, M.; Hussain, F.; Pascazio, G.; Liu, X.; Decuzzi, 
P. Biomaterials 2012, 33, 5504. 
  (68)  Ji, Z.; Wang, X.; Zhang, H.; Lin, S.; Meng, H.; Sun, B.; George, S.; Xia, T.; Nel, A. E.; 
Zink, J. I. ACS Nano 2012, 6, 5366‐5380. 
  (69)  Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4, 11. 
  (70)  Colvin, V. L. Nat. Biotechnol. 2003, 21, 1166‐1170. 
  (71)  Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Nature 
2005, 439, 55‐59. 
  (72)  Evers, W. H.; Friedrich, H.; Filion, L.; Dijkstra, M.; Vanmaekelbergh, D. Angew. 
Chem. Int. Ed. 2009, 48, 9655‐9657. 
  (73)  Philp, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 2003, 35, 1154‐1196. 
  (74)  Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Titov, A. V.; Král, P. Nano Lett. 
2007, 7, 1213‐1219. 
  (75)  Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O'Brien,  S.  J. Am. Chem.  Soc. 
2006, 128, 3620‐3637. 
  (76)  Chen, Z.; O'Brien, S. ACS Nano 2008, 2, 1219‐1229. 
  (77)  Bodnarchuk, M. I.; Kovalenko, M. V.; Heiss, W.; Talapin, D. V. J. Am. Chem. Soc. 
2010, 132, 11967‐11977. 
  (78)  Evers, W. H.; Nijs, B. D.; Filion, L.; Castillo, S.; Dijkstra, M.; Vanmaekelbergh, D. 
Nano Lett. 2010, 10, 4235‐4241. 
  (79)  Gabriel, J.‐C. P.; Davidson, P. Top. Curr. Chem. 2003, 226, 119‐172. 
  (80)  Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. 
E.; Li, T. J. Phys. Chem. B 2005, 109, 13857‐13870. 
  (81)  Damasceno, P. F.; Engel, M.; Glotzer, S. C. Science 2012, 337, 453‐457. 
  (82)  Glotzer, S. C.; Solomon, M. J. Nat. Mater. 2007, 6, 557‐562. 
  (83)  Agarwal, U.; Escobedo, F. A. Nat. Mater. 2011, 10, 230‐235. 
  (84)  John, B. S.; Juhlin, C.; Escobedo, F. A. J. Chem. Phys. 2008, 128, 044909. 
  (85)  Kooij, F. M. v. d.; Kassapidou, K.; Lekkerkerker, H. N. W. Nature 2000, 406, 868‐
871. 
  (86)  Santos, A.; Millan, J. A.; Glotzer, S. C. Nanoscale 2012, 4, 2640‐2650. 



186 
 

  (87)  Peroukidis,  S. D.;  Vanakaras, A. G.;  Photinos, D.  J.  J. Mater.  Chem.  2010,  20, 
10495‐10502. 
  (88)  Kleshchanok, D.; Petukhov, A. V.; Holmqvist, P.; Byelov, D. V.; Lekkerkerker, H. 
N. W. Langmuir 2010, 26, 13614‐13621. 
  (89)  Henzie,  J.;  Grünwald,  M.;  Widmer‐Cooper,  A.;  Geissler,  P.  L.;  Yang,  P.  Nat. 
Mater. 2012, 11, 131‐137. 
  (90)  Wang, L.; Xu, L.; Kuang, H.; Xu, C.; Kotov, N. A. Acc. Chem. Res. 2012, 45, 1916‐
1926. 
  (91)  Ye, X.; Collins, J. E.; Kang, Y.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B. 
Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 22430‐22435. 
  (92)  Sacanna, S.; Pine, D. J. Curr. Opin. Colloid Interface Sci. 2011, 16, 96‐105. 
  (93)  Sacanna, S.;  Irvine, W. T. M.; Chaikin, P. M.; Pine, D. J. Nature 2010, 464, 575‐
578. 
  (94)  Jones, M.  R.; Macfarlane,  R.  J.;  Lee,  B.;  Zhang,  J.;  Young,  K.  L.;  Senesi,  A.  J.; 
Mirkin, C. A. Nat. Mater. 2010, 9, 913‐917. 
  (95)  Grzelczak, M.; Vermant,  J.;  Furst,  E. M.;  Liz‐Marzán,  L. M. ACS Nano 2010,  4, 
3591‐3605. 
  (96)  Quan, Z.; Fang, J. Nano Today 2010, 5, 390‐411. 
  (97)  Baker,  J.  L.; Widmer‐Cooper, A.;  Toney, M.  F.; Geissler,  P.  L.; Alivisatos, A.  P. 
Nano Lett. 2010, 10, 195‐201. 
  (98)  Ryan, K. M.; Mastroianni, A.; Stancil, K. A.;  Liu, H.; Alivisatos, A. P. Nano  Lett. 
2006, 6, 1479‐1482. 
  (99)  Baranov,  D.;  Fiore,  A.;  Huis,  M.  v.;  Giannini,  C.;  Falqui,  A.;  Lafont,  U.; 
Zandbergen, H.; Zanella, M.; Cingolani, R.; Manna, L. Nano Lett. 2010, 10, 743‐749. 
  (100)  Kim, F.; Kwan, S.; Akana, J.; Yang, P. J. Am. Chem. Soc. 2001, 123, 4360–4361. 
  (101)  Cao, Y. C. J. Am. Chem. Soc. 2004, 126, 7456‐7457. 
  (102)  Saunders, A. E.; Ghezelbash, A.; Smilgies, D.‐M.; Michael B. Sigman, J.; Korgel, B. 
A. Nano Lett. 2006, 6, 2959‐2963. 
  (103)  Sun, X.; Zhang, Y.‐W.; Du, Y.‐P.; Yan, Z.‐G.; Si, R.; You, L.‐P.; Yan, C.‐H. Chem. Eur. 
J. 2006, 13, 2320. 
  (104)  Yu, T.; Joo, J.; Park, Y. I.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 1786‐1787. 
  (105)  Zhuang, Z.; Peng, Q.; Zhang, B.; Li, Y. J. Am. Chem. Soc. 2008, 130, 10482‐10483. 
  (106)  Huo, Z.; Tsung, C.‐K.; Huang, W.; Fardy, M.; Yan, R.; Zhang, X.;  Li, Y.; Yang, P. 
Nano Lett. 2009, 9, 1260‐1264. 
  (107)  Talapin,  D.  V.;  Shevchenko,  E.  V.;  Murray,  C.  B.;  Kornowski,  A.;  Förster,  S.; 
Weller, H. J. Am. Chem. Soc. 2004, 126, 12984‐12988. 
  (108)  Sun, B.; Sirringhaus, H. J. Am. Chem. Soc. 2006, 128, 16231‐16237. 
  (109)  Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. 
E.; Li, T. J. Phys. Chem. B 2005, 109, 13857‐13870. 
  (110)  Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2008, 48, 60‐103. 
  (111)  Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. 
G.; Na, H. B.; Park, J.‐G.; Ahn, T.‐Y.; Kim, Y.‐W.; Moon, W. K.; Choi, S. H.; Hyeon, T. J. Am. Chem. 
Soc. 2011, 133, 12624‐12631. 
  (112)  Tromsdorf, U. I.; Bruns, O. T.; Salmen, S. C.; Beisiegel, U.; Weller, H. Nano Lett. 
2009, 9, 4434‐4440. 



187 
 

  (113)  Michalet,  X.;  Pinaud,  F.  F.;  Bentolila,  L.  A.;  Tsay,  J.  M.;  Doose,  S.;  Li,  J.  J.; 
Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538‐544. 
  (114)  Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. Nat. Biotechnol. 2004, 
22, 969‐976. 
  (115)  Cheon, J.; Lee, J.‐H. Acc. Chem. Res. 2008, 41, 1630‐1640. 
  (116)  Choi, J.‐s.; Park, J. C.; Nah, H.; Woo, S.; Oh, J.; Kim, K. M.; Cheon, G. J.; Chang, Y.; 
Yoo, J.; Cheon, J. Angew. Chem. Int. Ed. 2008, 47, 6259‐6262. 
  (117)  Kim, J.; Piao, Y.; Hyeon, T. Chem. Soc. Rev. 2009, 38, 372‐390. 
  (118)  Yoo, D.; Lee, J.‐H.; Shin, T.‐H.; Cheon, J. Acc. Chem. Res. 2011, 44, 863‐874. 
  (119)  Zhoua,  J.;  Suna,  Y.; Dub,  X.;  Xionga,  L.; Hua, H.;  Li,  F.  Biomaterials  2010,  31, 
3287‐3295. 
  (120)  Wang, G.; Peng, Q.; Li, Y. Acc. Chem. Res. 2011, 44, 322‐332. 
  (121)  Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E.  J.; Prasad, P. N. Nano Lett. 
2008, 8, 3834‐3838. 
  (122)  Boyer, J.‐C.; Manseau, M.‐P.; Murray, J. I.; Veggel, F. C. J. M. v. Langmuir 2010, 
26, 1157‐1164. 
  (123)  Das,  G.  K.;  Johnson,  N.  J.  J.;  Cramen,  J.;  Blasiak,  B.;  Latta,  P.;  Tomanek,  B.; 
Veggel, F. C. J. M. v. J. Phys. Chem. Lett. 2012, 3, 524‐529. 
  (124)  Zhang, Q.; Yan, B. Inorg. Chem. 2010, 49, 6834‐6839. 
  (125)  Si, R.; Zhang, Y.‐W.; You, L.‐P.; Yan, C.‐H. Angew. Chem. Int. Ed. 2005, 44, 3256‐
3260. 
  (126)  Mai, H.‐X.; Zhang, Y.‐W.; Si, R.; Yan, Z.‐G.; Sun, L.‐d.; You, L.‐P.; Yan, C.‐H. J. Am. 
Chem. Soc. 2006, 128, 6426‐6436. 
  (127)  Shao, X.; Agarwal, A.; Rajian, J. R.; Kotov, N. A.; Wang, X. Nanotechnology 2011, 
22, 135102. 
  (128)  Wang, F.; Han, Y.; Lim, C. S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, 
M.; Liu, X. Nature 2010, 463, 1061‐1065. 
  (129)  Chatterjeea, D. K.; Rufaihaha, A. J.; Zhang, Y. Biomaterials 2008, 29, 937‐943. 
  (130)  Boyer, J.‐C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. J. Am. Chem. Soc. 2006, 
128, 7444‐7445. 
  (131)  Wang, F.; Liu, X. J. Am. Chem. Soc. 2008, 130, 5642‐5643. 
  (132)  Sun, C.; Pratx, G.; Carpenter, C. M.;  Liu, H.; Cheng, Z.; Gambhir, S. S.; Xing,  L. 
Adv. Mater. 2011, 23, H195‐H199. 
  (133)  Carpenter, C. M.; Sun, C.; Pratx, G.; Liu, H.; Cheng, Z.; Xing, L. Opt. Express 2012, 
20, 11598‐11604. 
  (134)  Liu, Y.; Chen, W.; Wang, S.;  Joly, A. G.; Westcott, S.; Woo, B. K.  J. Appl. Phys. 
2008, 2008, 063105. 
  (135)  Shevchenko,  E. V.;  Talapin, D. V.;  Schnablegger, H.;  Kornowski, A.;  Festin, O.; 
Svedlindh, P.; Haase, M.; Weller, H. J. Am. Chem. Soc. 2003, 125, 9090‐101. 
  (136)  Rieker,  T.; Hanprasopwattana,  A.; Datye,  A.; Hubbard,  P.  Langmuir  1999,  15, 
638‐641. 
  (137)  Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; 
Weller, H. Langmuir 2005, 21, 1931‐1936. 
  (138)  Kotlarchyk, M.; Chen, S. H. J. Chem. Phys. 1983, 79, 2461‐2469. 
  (139)  Johnson, N.  J.  J.; Korinek, A.; Dong, C.; Veggel, F. C.  J. M. v.  J. Am. Chem. Soc. 
2012, 134, 11068‐11071. 



188 
 

  (140)  Zalkin, A.; Templeton, D. H. J. Am. Chem. Soc. 1953, 75, 2453‐2458. 
  (141)  Das, G. K.; Zhang, Y.; D’Silva,  L.; Padmanabhan, P.; Heng, B. C.;  Loo|,  J.  S. C.; 
Selvan, S. T.; Bhakoo, K. K.; Tan, T. T. Y. Chem. Mater. 2011, 23, 2439‐2446. 
  (142)  Bridot, J.‐L.; Faure, A.‐C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; 
Josserand, V.; Coll, J.‐L.; Elst, L. V.; Muller, R.; Roux, S.; Perriat, P.; Tillement, O. J. Am. Chem. Soc. 
2007, 129, 5076‐5084. 
  (143)  Sarma, V. R.; Silverton, E. W.; Davies, D. R.; Terry, W. D. The Journal of Biological 
Chemistry 1971, 246, 3753‐3759. 
  (144)  Tsunekawa, S.; Ito, S.; Kawazoe, Y. Appl. Phys. Lett. 2004, 85, 3845. 
  (145)  Norek, M.; Kampert, E.; Zeitler, U.; Peters,  J. A.  J. Am. Chem.  Soc. 2008, 130, 
5335‐5340. 
  (146)  Dong, A.; Ye, X.; Chen,  J.; Kang, Y.; Gordon, T.; Kikkawa,  J. M.; Murray, C. B.  J. 
Am. Chem. Soc. 2011, 133, 998‐1006. 
  (147)  Hall, B. D.; Monot, R. Computers in Physics 1991, 5, 414. 
  (148)  Eykyn, T. R.; Payne, G. S.; Leach, M. O. Phys. Med. Biol. 2005, 50, N371‐N376. 
  (149)  Lauffer, R. B. Chem. Rev. 1987, 87, 901‐927. 
  (150)  Nel, A.  E.; Mädler,  L.;  Velegol, D.;  Xia,  T.; Hoek,  E. M.  V.;  Somasundaran,  P.; 
Klaessig, F.; Castranova, V.; Thompson, M. Nat. Mater. 2008, 8, 543‐557. 
  (151)  Chithrani, B. D.; Chan, W. C. W. Nano Lett. 2007, 7, 1542‐1550. 
  (152)  Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.‐S.; Watson, N.; Chen, S.; Irvine, D. J.; 
Stellacc, F. Nat. Mater. 2008, 7, 588‐595. 
  (153)  Yoon,  T.‐J.;  Lee, H.;  Shao, H.; Weisslede,  R.  Angew.  Chem.  Int.  Ed.  2011,  50, 
4663‐4666. 
  (154)  Gambhir, S. S. Nat. Rev. Cancer 2002, 2, 683‐693. 
  (155)  Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. Nat. Biotechnol. 2004, 
22, 969‐976. 
  (156)  Weissleder, R.; Pittet, M. J. Nature 2008, 452, 580‐589. 
  (157)  Liu, Y.; Welch, M. J. Bioconjugate Chem. 2012, 23, 671‐682. 
  (158)  Cho, E. C.; Glaus, C.; Chen,  J.; Welch, M.  J.; Xia, Y. Trends Mol. Med. 2010, 16, 
561‐573. 
  (159)  Burda, C.; Chen, X.; Narayanan, R.; El‐Sayed, M. A. Chem. Rev. 2005, 105, 1025‐
1102. 
  (160)  Mai, H.‐X.; Zhang, Y.‐W.; Si, R.; Yan, Z.‐G.; Sun, L.‐d.; You, L.‐P.; Yan, C.‐H. J. Am. 
Chem. Soc. 2006, 128, 6426‐6436. 
  (161)  Wong, R. M.; Gilbert, D. A.; Liu, K.; Louie, A. Y. ACS Nano 2012, 6, 3461‐3467. 
  (162)  Freund,  B.;  Tromsdorf, U.  I.;  Bruns, O.  T.; Heine, M.; Giemsa,  A.;  Bartelt,  A.; 
Salmen,  S.  C.;  Raabe,  N.;  Heeren,  J.;  Ittrich,  H.;  Reimer,  R.;  Hohenberg,  H.;  Schumacher,  U.; 
Weller, H.; Nielsen, P. ACS Nano 2012, 6, 7318‐7325. 
  (163)  Marmorato, P.; Simonelli, F.; Abbas, K.; Kozempel,  J.; Holzwarth, U.; Franchini, 
F.; Ponti, J.; Gibson, N.; Rossi, F. J. Nanopart. Res. 2011, 13, 6707‐6717. 
  (164)  Yang,  Y.;  Sun,  Y.;  Cao,  T.;  Peng,  J.;  Liu,  Y.; Wu,  Y.;  Feng, W.;  Zhang,  Y.;  Li,  F. 
Biomaterials 2013, 34, 774‐783. 
  (165)  Wang, Y.; Liu, Y.; Luehmann, H.; Xia, X.; Wan, D.; Cutler, C.; Xia, Y. Nano Lett. 
2013, 13, 581‐585. 
  (166)  Sun, Y.; Yu, M.; Liang, S.; Zhang, Y.; Li, C.; Mou, T.; Yang, W.; Zhang, X.; Li, B.; 
Huang, C.; Li, F. Biomaterials 2011, 32, 2999‐3007. 



189 
 

  (167)  Cremonesi, M.; Ferrari, M.; Paganelli, G.; Rossi, A.; Chinol, M.; Bartolomei, M.; 
Prisco, G.; Tosi, G. Eur. J. Nucl. Med. Mol. Imag. 2006, 33, 1321‐1327. 
  (168)  Giammarile,  F.;  Bodei,  L.;  Chiesa,  C.;  Flux,  G.;  Forrer,  F.;  Kraeber‐Bodere,  F.; 
Brans, B.; Lambert, B.; Konijnenberg, M.; Borson‐Chazot, F.; Tennvall, J.; Luster, M. Eur. J. Nucl. 
Med. Mol. Imag. 2011, 38, 1393‐1406. 
  (169)  Lhommel, R.; van Elmbt, L.; Goffette, P.; Van den Eynde, M.; Jamar, F.; Pauwels, 
S.; Walrand, S. Eur. J. Nucl. Med. Mol. Imag. 2010, 37, 1654‐62. 
  (170)  Elschot, M.; Vermolen, B. J.; Lam, M. G.; de Keizer, B.; van den Bosch, M. A.; de 
Jong, H. W. PloS ONE 2013, 8, e55742. 
  (171)  Liu, H.; Ren, G.; Miao, Z.; Zhang, X.; Tang, X.; Han, P.; Gambhir, S. S.; Cheng, Z. 
PloS ONE 2010, 5, e9470. 
  (172)  Paik, T.; Ko, D.‐K.; Gordon, T. R.; Doan‐Nguyen, V.; Murray, C. B. ACS Nano 2011, 
5, 8322‐8330. 
  (173)  Paik, T.; Gordon, T. R.; Prantner, A. M.; Yun, H.; Murray, C. B. ACS Nano 2013, 7, 
2850‐2859. 
  (174)  Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. 
D. Small 2009, 5, 701‐708. 
  (175)  Verma, A.; Stellacci, F. Small 2010, 6, 12‐21. 
  (176)  Serda, R. E.; Gu, J.; Bhavane, R. C.; Liu, X.; Chiappini, C.; Decuzzi, P.; Ferrari, M. 
Biomaterials 2009, 30, 2440‐2448. 
  (177)  Robertson, R.; Germanos, M. S.; Li, C.; Mitchell, G. S.; Cherry, S. R.; Silva, M. D. 
Phys. Med. Biol. 2009, 54, N355‐N365. 
  (178)  Thorek, D. L.; Robertson, R.; Bacchus, W. A.; Hahn, J.; Rothberg, J.; Beattie, B. J.; 
Grimm, J. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 163‐173. 
  (179)  Boschi, F.; Spinelli, A. E. RSC Advances 2012, 2, 11049‐11052. 
  (180)  Dothager, R. S.; Goiffon, R. J.; Jackson, E.; Harpstrite, S.; Piwnica‐Worms, D. PloS 
ONE 2010, 5, e13300. 
  (181)  Louie, A. Chem. Rev. 2010, 110, 3146‐3195. 
  (182)  Bottrill, M.; Kwok, L.; Long, N. J. Chem. Soc. Rev. 2006, 35, 557‐571. 
  (183)  Das,  G.  K.;  Johnson,  N.  J.  J.;  Cramen,  J.;  Blasiak,  B.;  Latta,  P.;  Tomanek,  B.; 
Veggel, F. C. J. M. v. J. Phys. Chem. Lett 2012, 3, 524‐529. 
  (184)  Lauffer, R. B. Chem. Rev. 1987, 87, 901‐927. 
  (185)  Eykyn, T. R.; Payne, G. S.; Leach, M. O. Phys. Med. Biol. 2005, 50, N371‐N376. 
  (186)  Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335‐1338. 
  (187)  Collier, C. P.; Vossmeyer, T.; Heath, J. R. Annu. Rev. Phys. Chem. 1998, 49, 371‐
404. 
  (188)  Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Nature 
Materials 2007, 6, 115‐121. 
  (189)  Dong, A.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Nature 2010, 466, 
474‐477. 
  (190)  Chen,  J.; Dong, A.; Cai,  J.; Ye, X.; Kang, Y.; Kikkawa,  J. M.; Murray, C. B. Nano 
Lett. 2010, 10, 5103‐5108. 
  (191)  Ye, X.; Chen, J.; Diroll, B. T.; Murray, C. B. Nano Lett. 2013, 13, 1291‐1297. 
  (192)  Shevchenko, E. V.; Ringler, M.; Schwemer, A.; Talapin, D. V.; Klar, T. A.; Rogach, 
A. L.; Feldmann, J.; Alivisatos, A. P. J. Am. Chem. Soc. 2008, 130, 3274‐3275. 



190 
 

  (193)  Kang, Y.; Ye, X.; Chen, J.; Qi, L.; Diaz, R. E.; Doan‐Nguyen, V.; Xing, G.; Kagan, C. 
R.; Li, J.; Gorte, R. J.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 1499‐1505. 
  (194)  Zhang, S. Nat. Biotechnol. 2003, 21, 1171‐ 1178. 
  (195)  Kadler, K. E.; Holmes, D. F.; Trotter, J. A.; Chapman, J. A. Biochem. J 1996, 316, 1‐
11. 
  (196)  Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684‐1688. 
  (197)  Ghezelbash, A.; Koo, B.; Korgel, B. A. Nano Lett. 2006, 6, 1832‐1836. 
  (198)  Si, R.; Zhang, Y.‐W.; Zhou, H.‐P.; Sun, L.‐D.; Yan, C.‐H. Chem. Mater. 2007, 19, 18‐
27. 
  (199)  Miszta, K.; Graaf, J. d.; Bertoni, G.; Dorfs, D.; Brescia, R.; Marras, S.; Ceseracciu, 
L.; Cingolani, R.; Roij, R. v.; Dijkstra, M.; Manna, L. Nat. Mater. 2011, 10, 872‐876. 
  (200)  Qi, W.; Graaf, J. d.; Qiao, F.; Marras, S.; Manna, L.; Dijkstra, M. Nano Lett. 2012, 
12, 5299‐5303. 
  (201)  Sánchez‐Iglesias,  A.;  Grzelczak, M.;  Pérez‐Juste,  J.;  Liz‐Marzán,  L. M.  Angew. 
Chem. Int. Ed. 2010, 49, 9985‐9989. 
  (202)  Wang, T.; Zhuang,  J.; Lynch,  J.; Chen, O.; Wang, Z.; Wang, X.; LaMontagne, D.; 
Wu, H.; Wang, Z.; Cao, Y. C. Science 2012, 338, 358‐363. 
  (203)  Nagaoka, Y.; Wang, T.; Lynch, J.; LaMontagne, D.; Cao, Y. C. Small 2012, 8, 843‐
846. 
  (204)  Ming, T.; Kou, X.; Chen, H.; Wang, T.; Tam, H.‐L.; Cheah, K.‐W.; Chen, J.‐Y.; Wang, 
J. Angew. Chem. Int. Ed. 2008, 47, 9685‐9690. 
  (205)  Dong, A.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Nature 2010, 466, 
474‐477. 
  (206)  Ye, X.; Collins, J. E.; Kang, Y.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B. 
Proceedings of the National Academy of Sciences 2010, 107, 22430‐22435. 
  (207)  Chaikin,  P.  M.;  Lubensky,  T.  C.  Principles  of  Condensed  Matter  Physics; 
Cambridge University Press: Cambridge, 1995. 
  (208)  Bigioni, T. P.; Lin, X.‐M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. 
Nature 2006, 5, 265‐270. 
  (209)  Narayanan, S.; Wang, J.; Lin, X.‐M. Phys. Rev. Lett. 2004, 93, 135503. 
  (210)  Friedrich, H.; Gommes, C. J.; Overgaag, K.; Meeldijk, J. D.; Evers, W. H.; Nijs, B. 
d.;  Boneschanscher,  M.  P.;  Jongh,  P.  E.  d.;  Verkleij,  A.  J.;  Jong,  K.  P.  d.;  Blaaderen,  A.  v.; 
Vanmaekelbergh, D. Nano Lett. 2009, 9, 2719‐2724. 
  (211)  Bodnarchuk, M.  I.; Kovalenko, M. V.; Pichler, S.; Fritz‐Popovski, G.; Hesser, G.; 
Heiss, W. ACS Nano 2010, 4, 423‐431. 
  (212)  Titov, A. V.; Kral, P. Nano Lett. 2008, 8, 3605‐3612. 
  (213)  Maeda, H.; Maeda, Y. Phys. Rev. Lett. 2003, 90, 018303. 
  (214)  Schuster, M.; Gobel, H. J. Phys. D: Appl. Phys. 1995, 28, A270‐A275. 
  (215)  Omote, K.; Ito, Y.; Kawamura, S. Appl. Phys. Lett. 2003, 82, 544‐546. 
  (216)  Smilgies, D.‐M. J. Appl. Crystallogr. 2009, 42, 1030‐1034. 
  (217)  Lee, B.; Podsiadlo, P.; Rupich, S.; Talapin, D. V.; Rajh, T.; Shevchenko, E. V. J. Am. 
Chem. Soc. 2009, 131, 16386‐16388. 
  (218)  Jones, M. R.; Macfarlane, R. J.; Prigodich, A. E.; Patel, P. C.; Mirkin, C. A. J. Am. 
Chem. Soc. 2011, 133, 18865‐18869. 



191 
 

  (219)  Carbone, L.; Nobile, C.; Giorgi, M. D.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, 
M.;  Snoeck, E.;  Fiore, A.;  Franchini,  I. R.; Nadasan, M.;  Silvestre, A.  F.; Chiodo,  L.; Kudera,  S.; 
Cingolani, R.; Krahne, R.; Manna, L. Nano Lett. 2007, 7, 2942‐2950. 
  (220)  Sun, Y.; Xia, Y. Science 2002, 298, 2176‐2179. 
  (221)  Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505‐516. 
  (222)  Chen, M. S.; Goodman, D. W. Science 2004, 306, 252‐255. 
  (223)  Yabe, S.; Satob, T. J. Solid State Chem. 2002, 171, 7‐11. 
  (224)  Grätzel, M. Prog. Photovolt. Res. Appl. 2000, 8, 171‐185. 
  (225)  Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; 
Cho, S.‐J.; Morkoç, H. J. Appl. Phys. 2005, 98, 041301. 
  (226)  Whittingham, M. S. Chem. Rev. 2004, 104, 4271‐4302. 
  (227)  Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; 
Murray, C. B. J. Am. Chem. Soc. 2012, 134, 6751‐6761. 
  (228)  Gordon,  T.  R.;  Paik,  T.;  Klein, D.  R.; Naik, G.  V.;  Caglayan, H.;  Boltasseva,  A.; 
Murray, C. B. Nano Lett. 2013, 13, 2857‐2863. 
  (229)  Niederberger, M. Acc. Chem. Res. 2007, 40, 793‐800. 
  (230)  Soukoulis, C. M.; Wegener, M. Nat. Photonics 2011, 5, 523‐530. 
  (231)  Zheludev, N. I.; Kivshar, Y. S. Nat. Mater. 2012, 11, 917‐924. 
  (232)  Boltasseva, A.; Atwater, H. A. Science 2011, 331, 290‐291. 
  (233)  Shelby, R. A.; Smith, D. R.; Schultz, S. Science 2001, 292, 77‐79. 
  (234)  Valentine,  J.;  Zhang,  S.;  Zentgraf,  T.;  Ulin‐Avila,  E.;  Genov,  D.  A.;  Bartal,  G.; 
Zhang, X. Nature 2008, 455, 376‐379. 
  (235)  Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Science 2004, 305, 788‐792. 
  (236)  Pendry, J. B. Phys. Rev. Lett. 2000, 85, 3966‐3969. 
  (237)  Fang, N.; Lee, H.; Sun, C.; Zhang, X. Science 2005, 308, 534‐537. 
  (238)  Schurig, D.; Mock,  J.  J.;  Justice, B.  J.; Cummer, S. A.; Pendry,  J. B.; Starr, A. F.; 
Smith, D. R. Science 2006, 314, 977‐980. 
  (239)  Alù, A.; Engheta, N. Phys. Rev. E 2005, 72, 016623. 
  (240)  Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Nano  Lett. 2010, 10, 
2342‐2348. 
  (241)  Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Duyne, R. P. V. Nat. 
Mater. 2008, 7, 442‐453. 
  (242)  Pryce,  I. M.; Aydin,  K.;  Kelaita,  Y. A.; Briggs, R. M.; Atwater, H. A. Nano  Lett. 
2010, 10, 4222‐4227. 
  (243)  Hess, O.; Pendry, J. B.; Maier, S. A.; Oulton, R. F.; Hamm, J. M.; Tsakmakidis, K. L. 
Nat. Mater. 2012, 11, 573‐584. 
  (244)  Boardman, A. D.; Grimalsky, V. V.; Kivshar, Y. S.; Koshevaya, S. V.; Lapine, M.; 
Litchinitser, N. M.; Malnev, V. N.; Noginov, M.; Rapoport, Y. G.; Shalaev, V. M. Laser & Photon. 
Rev. 2010, 5, 287‐307. 
  (245)  Hsiao, V. K. S.; Zheng, Y. B.; Juluri, B. K.; Huang, T. J. 20 2008, 18, 3528. 
  (246)  Krasavin, A. V.; Zheludev, N. I. Appl. Phys. Lett. 2004, 84, 1416‐1418. 
  (247)  Wang, Z.; Chumanov, G. Adv. Mater. 2003, 15, 1285‐1289. 
  (248)  Pernice, W. H. P.; Bhaskaran, H. Appl. Phys. Lett. 2012, 101, 171101. 
  (249)  Sámson, Z. L.; MacDonald, K. F.; Angelis, F. D.; Gholipour, B.; Knight, K.; Huang, 
C. C.; Fabrizio, E. D.; Hewak, D. W.; Zheludev, N. I. Appl. Phys. Lett. 2010, 96, 143105. 



192 
 

  (250)  Maaza, M.; Nemraoui, O.; Sella, C.; Beye, A. C.; Baruch‐Barak, B. Opt. Commun. 
2005, 254, 188‐195. 
  (251)  Goodenough, J. B. Annu. Rev. Mater. Sci. 1971, 1, 101‐138. 
  (252)  Morin, F. J. Phys. Rev. Lett. 1959, 3, 34‐36. 
  (253)  Tselev, A.; Luk’yanchuk, I. A.; Ivanov, I. N.; Budai, J. D.; Tischler, J. Z.; Strelcov, E.; 
Kolmakov, A.; Kalinin, S. V. Nano Lett. 2010, 10, 4409‐4416. 
  (254)  Cao,  J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim,  J. W. L.; 
Khanal, D. R.; Ogletree, D. F.; Grossman, J. C.; Wu, J. Nat. Nanotechnol. 2009, 4, 732‐737. 
  (255)  Ruzmetov, D.; Gopalakrishnan, G.; Ko, C.; Narayanamurti, V.; Ramanathan, S. J. 
Appl. Phys. 2010, 107, 114516. 
  (256)  Nakano, M.; Shibuya, K.; Okuyama, D.; Hatano, T.; Ono, S.; Kawasaki, M.; Iwasa, 
Y.; Tokura, Y. Nature 2012, 487, 459‐462. 
  (257)  Jeong,  J.; Aetukuri, N.; Graf,  T.;  Schladt,  T. D.;  Samant, M. G.; Parkin,  S.  S. P. 
Science 2013, 339, 1402‐1405. 
  (258)  Granqvist, C. G. Adv. Mater. 2003, 15, 1789‐1803. 
  (259)  Granqvist, C. G. Sol. Energy Mater. Sol. Cells 2007, 91, 1529‐1598. 
  (260)  Gea, L. A.; Boatner, L. A. Appl. Phys. Lett. 1996, 68, 3081‐3083. 
  (261)  Driscoll, T.; Kim, H.‐T.; Chae, B.‐G.; Kim, B.‐J.; Lee, Y.‐W.; Jokerst, N. M.; Palit, S.; 
Smith, D. R.; Ventra, M. D.; Basov, D. N. Science 2009, 325, 1518‐1521. 
  (262)  Lee, M.‐J.; Park, Y.; Suh, D.‐S.; Lee, E.‐H.; Seo, S.; Kim, D.‐C.; Jung, R.; Kang, B.‐S.; 
Ahn, S.‐E.; Lee, C. B.; Seo, D. H.; Cha, Y.‐K.; Yoo, I.‐K.; Kim, J.‐S.; Park, B. H. Adv. Mater. 2007, 19, 
3919‐3923. 
  (263)  Coy, H.; Cabrera, R.;  Sepúlveda, N.;  Fernández,  F.  E.  J. Appl. Phys. 2010, 108, 
113115. 
  (264)  Stefanovich, G.; Pergament, A.; Stefanovich, D. J. Phys.: Condens. Matter 2000, 
12, 8837‐8845. 
  (265)  Yang, Z.; Ko, C.; Ramanathan, S. Annu. Rev. Mater. Res. 2011, 41, 337‐367. 
  (266)  Liu, M.; Hwang, H. Y.; Tao, H.; Strikwerda, A. C.; Fan, K.; Keiser, G. R.; Sternbach, 
A. J.; West, K. G.; Kittiwatanakul, S.; Lu, J.; Wolf, S. A.; Omenetto, F. G.; Zhang, X.; Nelson, K. A.; 
Averitt, R. D. Nature 2012, 487, 345‐348. 
  (267)  Driscoll, T.; Palit, S.; Qazilbash, M. M.; Brehm, M.; Keilmann, F.; Chae, B.‐G.; Yun, 
S.‐J.; Kim, H.‐T.; Cho, S. Y.; Jokerst, N. M.; Smith, D. R.; Basov, D. N. Appl. Phys. Lett. 2008, 93, 
024101. 
  (268)  Kruger, B. A.; Joushaghani, A.; Poon, J. K. S. Opt. Express 2012, 20, 23598‐23609. 
  (269)  Kats, M. A.; Blanchard, R.; Genevet, P.; Yang, Z.; Qazilbash, M. M.; Basov, D. N.; 
Ramanathan, S.; Capasso, F. Opt. Lett. 2012, 38, 368‐370. 
  (270)  Dicken, M. J.; Aydin, K.; Pryce, I. M.; Sweatlock, L. A.; Boyd, E. M.; Walavalkar, S.; 
Ma, J.; Atwater, H. A. Opt. Express 2009, 17, 18330‐8339. 
  (271)  Sweatlock, L. A.; Diest, K. Opt. Express 2012, 20, 8700‐8709. 
  (272)  Béteille,  F.; Morineau,  R.;  Livage,  J.;  Nagano, M. Mater.  Res.  Bull.  1997,  32, 
1109‐1117. 
  (273)  Partlow, D. P.; Gurkovich, S. R.; Radford, K. C.; Denes, L.  J.  J. Appl. Phys. 1991, 
70, 443‐452. 
  (274)  Lopez, R.; Boatner,  L. A.; Haynes, T. E.;  Feldman,  L. C.; Haglund, R.  F.  J. Appl. 
Phys. 2002, 92, 4031‐4036. 



193 
 

  (275)  Ruzmetov,  D.;  Zawilski,  K.;  Narayanamurti,  V.;  Ramanathan,  S.  J.  Appl.  Phys. 
2007, 102, 113715. 
  (276)  Guiton, B. S.; Gu, Q.; Prieto, A. L.; Gudiksen, M. S.; Park, H.  J. Am. Chem. Soc. 
2005, 127, 498‐499. 
  (277)  Kim, D. H.; Kwok, H. S. Appl. Phys. Lett. 1994, 65, 3188‐3190. 
  (278)  Jorgenson, G. V.; Lee, J. C. Sol. Energy Mater. 1986, 14, 205‐214. 
  (279)  Sargent, E. H. Nat. Photonics 2009, 3, 325‐331. 
  (280)  Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462‐465. 
  (281)  Böberl, M.; Kovalenko, M. V.; Gamerith, S.; List, E. J. W.; Heiss, W. Adv. Mater. 
2007, 19, 3574‐3578. 
  (282)  Lewis, J. A. Curr. Opin. Solid State Mater. Sci. 2002, 6, 245‐250. 
  (283)  Katzke, H.; Tole´dano, P.; Depmeier, W. Phys. Rev. B 2004, 68, 024109. 
  (284)  Griffiths, C. H.; Eastwood, H. K. J. Appl. Phys. 1974, 45, 2201‐2206. 
  (285)  Okimura, K.; Sakai, J.; Ramanathan, S. J. Appl. Phys. 2010, 107, 063503. 
  (286)  Fu, D.; Liu, K.; Tao, T.; Lo, K.; Cheng, C.; Liu, B.; Zhang, R.; Bechtel, H. A.; Wu, J. J. 
Appl. Phys. 2013, 113, 043707. 
  (287)  Cui, Y.; Ramanathan, S. J. Vac. Sci. Technol., A 2011, 29, 041502. 
  (288)  Lopez, R.; Haynes, T. E.; Boatner, L. A.; Feldman, L. C.; R. F. Haglund, J. Phys. Rev. 
B 2002, 65, 224113. 
  (289)  Appavoo, K.; Lei, D. Y.; Sonnefraud, Y.; Wang, B.; Pantelides, S. T.; Maier, S. A.; R. 
F. Haglund, J. Nano Lett. 2012, 12, 780‐786. 
  (290)  Brassard, D.;  Fourmaux,  S.;  Jean‐Jacques, M.; Kieffer,  J. C.; Khakania, M. A. E. 
Appl. Phys. Lett. 2005, 87, 051910. 
  (291)  Strelcov,  E.;  Tselev,  A.;  Ivanov,  I.;  Budai,  J.  D.;  Zhang,  J.;  Tischler,  J.  Z.; 
Kravchenko, I.; Kalinin, S. V.; Kolmakov, A. Nano Lett. 2012, 12, 6198‐6205. 
  (292)  Wei,  J.;  Ji,  H.;  Guo, W.;  Nevidomskyy,  A.  H.;  Natelson,  D.  Nat.  Nanotechnol. 
2012, 7, 357‐362. 
  (293)  Mocatta, D.;  Cohen, G.;  Schattner,  J.; Millo, O.;  Rabani,  E.;  Banin, U.  Science 
2011, 332, 77‐81. 
  (294)  Ba,  J.;  Rohlfing,  D.  F.;  Feldhoff,  A.;  Brezesinski,  T.;  Djerdj,  I.;  Wark,  M.; 
Niederberger, M. Chem. Mater. 2006, 18, 2848‐2854. 
  (295)  Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. J. 
Am. Chem. Soc. 2000, 122, 2532‐2540. 
  (296)  Buonsanti, R.; Llordes, A.; Aloni, S.; Helms, B. A.; Milliron, D. J. Nano Lett. 2011, 
11, 4706‐4710. 
  (297)  Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. Nano Lett. 2001, 1, 3‐7. 
  (298)  Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R. J. Am. 
Chem. Soc. 2003, 125, 13205‐13218. 
  (299)  Nag, J.; Jr, R. F. H. J. Phys.: Condens. Matter 2008, 20, 264016. 
  (300)  Bouhafs, D.; Moussi, A.; Chikouche, A.; Ruiz,  J. M. Sol. Energy Mater. Sol. Cells 
1998, 52, 79‐93. 
  (301)  Dionne,  J.  A.;  Sweatlock,  L.  A.;  Atwater,  H.  A.;  Polman,  A.  Physical  Review  B 
2005, 72, 075405. 
  (302)  Kats, M. A.; Sharma, D.; Lin, J.; Genevet, P.; Blanchard, R.; Yang, Z.; Qazilbash, M. 
M.; Basov, D. N.; Ramanathan, S.; Capasso, F. Appl. Phys. Lett. 2012, 101, 221101. 



194 
 

  (303)  Fafarman, A. T.; Hong, S.‐H.; Caglayan, H.; Ye, X.; Diroll, B. T.; Paik, T.; Engheta, 
N.; Murray, C. B.; Kagan, C. R. Nano Lett. 2013, 13, 350‐357. 
  (304)  Bai,  H.;  Cortie,  M.  B.;  Maaroof,  A.  I.;  Dowd,  A.;  Kealley,  C.;  Smith,  G.  B. 
Nanotechnology 2009, 20, 085607. 
  (305)  Lopez, R.; Haynes, T. E.; Boatner, L. A.; Feldman, L. C.; R. F. Haglund, J. Opt. Lett. 
2002, 27, 1327‐1329. 
  (306)  Lopez, R.; Feldman, L. C.; R. F. Haglund, J. Phys. Rev. Lett. 2004, 93, 177403. 
  (307)  Zheng, Y. B.; Juluri, B. K.; Mao, X.; Walker, T. R.; Huang, T. J. J. Appl. Phys. 2008, 
103, 014308. 
  (308)  Barchiesi, D.;  Kessentini,  S.; Guillot, N.;  Chapelle, M.  L.  d.  l.; Grosges,  T. Opt. 
Express 2013, 21, 2245‐2262. 
 
 

 

 


	University of Pennsylvania
	ScholarlyCommons
	1-1-2014

	Shape-Control and Doping of Lanthanides and Transition Metal Oxide Nanocrystals With Tailored Properties and Their Shape-Directed Self-Assembly
	Taejong Paik
	Recommended Citation

	Shape-Control and Doping of Lanthanides and Transition Metal Oxide Nanocrystals With Tailored Properties and Their Shape-Directed Self-Assembly
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Microsoft Word - TJ_thesis_final.docx

