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Abstract
The vertebrate skeleton forms via two distinct modes of ossification, membranous and endochondral.
Osteoblasts are also heterogeneous in embryonic origin; bone formed by either mode can be derived from
neural crest cells or mesoderm. In contrast, all bone develops via a common genetic pathway regulated by the
transcription factor Runx2. Runx2 is required for bone formation, and haploinsufficiency in humans causes
the skeletal syndrome cleidocranial dysplasia, demonstrating the importance of gene dosage. Despite the
central role of Runx2 in directing bone formation, little is understood about how its expression is regulated in
development. We took an unbiased approach to identify direct regulatory inputs into Runx2 transcription by
identifying cis-regulatory elements associated with the human gene. We assayed conserved non-coding
elements in a 1 Mb interval surrounding the gene for their ability to direct osteoblast expression in transgenic
zebrafish. We identified three enhancers spaced out across the interval. Within each we identified conserved
transcription factor binding sites required for their activity, and further showed distinct and specific regulation
of each. The enhancer in the last intron of RUNX2 itself is positively regulated by the FGF signaling pathway,
an enhancer in the last intron of the adjacent gene, SUPT3H, is regulated by canonical Wnt signaling, and a
distant downstream enhancer requires a conserved Dlx binding site for its activity. While all of these pathways
and factors have been previously implicated in bone formation, our results provide the first direct links to the
common genetic pathway regulating osteogenesis, transcription of Runx2. These findings further illustrate the
integration of multiple regulatory inputs at the level of transcription of a key developmental gene, and
highlight the role of Runx2 as the gatekeeper for changes in skeletal morphology achieved through alterations
in gene expression.
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ABSTRACT 

 

MULTIPLE CONSERVED ENHANCERS OF THE OSTEOBLAST MASTER 

TRANSCRIPTION FACTOR, RUNX2, INTEGRATE DIVERSE SIGNALING 

PATHWAYS TO DIRECT EXPRESSION TO DEVELOPING BONE 

Christopher William Weber 

Shannon Fisher 

The vertebrate skeleton forms via two distinct modes of ossification, 

membranous and endochondral. Osteoblasts are also heterogeneous in 

embryonic origin; bone formed by either mode can be derived from neural crest 

cells or mesoderm. In contrast, all bone develops via a common genetic pathway 

regulated by the transcription factor Runx2. Runx2 is required for bone 

formation, and haploinsufficiency in humans causes the skeletal syndrome 

cleidocranial dysplasia, demonstrating the importance of gene dosage. Despite 

the central role of Runx2 in directing bone formation, little is understood about 

how its expression is regulated in development. We took an unbiased approach to 

identify direct regulatory inputs into Runx2 transcription by identifying cis–

regulatory elements associated with the human gene. We assayed conserved 

non-coding elements in a 1 Mb interval surrounding the gene for their ability to 

direct osteoblast expression in transgenic zebrafish. We identified three 

enhancers spaced out across the interval. Within each we identified conserved 

transcription factor binding sites required for their activity, and further showed 
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distinct and specific regulation of each. The enhancer in the last intron of 

RUNX2 itself is positively regulated by the FGF signaling pathway, an enhancer 

in the last intron of the adjacent gene, SUPT3H, is regulated by canonical Wnt 

signaling, and a distant downstream enhancer requires a conserved Dlx binding 

site for its activity. While all of these pathways and factors have been previously 

implicated in bone formation, our results provide the first direct links to the 

common genetic pathway regulating osteogenesis, transcription of Runx2. These 

findings further illustrate the integration of multiple regulatory inputs at the 

level of transcription of a key developmental gene, and highlight the role of 

Runx2 as the gatekeeper for changes in skeletal morphology achieved through 

alterations in gene expression. 
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CHAPTER 1 

Characteristics of the vertebrate skeleton 

The presence of a mineralized endoskeleton is one of the common features 

of the vertebrate lineage 1 . In addition to its historically understood roles in 

support and as the sites of muscle attachment, the skeleton has more recently 

been understood to be the site of hematopoiesis 2 , endocrine regulation of glucose 

metabolism 3 , a reservoir for inorganic minerals 4   and critical in male 

reproductive function 5 .    

The vertebrate skeleton is chiefly composed of two tissue types: bone and 

cartilage.a  Cartilage is the more evolutionarily primary of the two 6 .  While not 

possessing a ‘true’ skeleton, the chordate amphioxus expresses orthologs of 

cartilage marker genes in the nascent notochord 7 . Cartilage is composed of 

chondrocytes suspended in a rigid matrix rich in collagen fibrillar proteins and 

acidic polysaccharides 8 . The most abundant of these proteins are type II 

collagen and aggrecan, whose negative charge accounts for the osmotic swelling 

of the tissue 9 , resulting in the familiar rigid plasticity of the material. This 

property confers a biomechanical role in the fully realized skeleton, allowing 

articular surfaces of joints to tolerate compressive forces. 

Conversely, bone is vascularized, has a higher metabolic activity and 

differs in its extracellular matrix (ECM) composition both in the content of 

secreted proteins, but also in the presence of inorganic calcium 10 . Unlike the 

                                                           
a Two other tissue types found exclusively in teeth are dentin and enamel, though 

they will not be discussed further in this document.  
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cartilage ECM, 90% of the total dry protein weight is type I collagen.  Collagen I 

forms an extensively crosslinked fiber, around which calcium crystals in the form 

of spindles of hydroxyapatite are deposited, resulting in the characteristic 

rigidity of bone tissue 11 . Other well-characterized components include alkaline 

phosphatase, osteopontin, and osteocalcin 12 . 

Osteoblasts are the cells responsible for the deposition of this defining 

matrix. Correspondingly, they have a highly basophilic cytoplasm and extensive 

endoplasmic reticulum and Golgi apparatus 13  to produce substantial amounts of 

secreted protein. Following matrix deposition, osteoblasts either become lining 

cells or remain embedded in bone, the latter defined as osteocytes 14 . These cells 

account for 95% of mature bone tissue.  Another bone cell type, osteoclasts, 

arises from the monocytic/macrophage lineage postnatally 15 . These cells have a 

resorbative role in bone homeostasis and therefore regulate bone mass density.  

Embryonic origins of the vertebrate skeleton 

Skeletogenesis describes the process by which mesenchymal stem cells 

(MSCs) differentiate into osteoblasts and chondrocytes in a defined program. 

MSCs are loose, multipotent cells with the capacity to differentiate into non-

skeletal cell types such as adipocytes or myocytes 16 .  Whether commitment to 

the skeletal lineage involves the existence of a bipotential skeletal precursor cell 

type, capable of adopting a bone or cartilage fate, is at issue in the literature 17  .  

Skeletal elements in the embryo forms via two distinct processes. 

Intramembrous ossification describes direct condensation of migrated MSCs and 
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subsequent transformation to bone 18 .  This process is employed in the creation 

of the flat bones of the skull as well as fracture repair. Elsewhere, particularly in 

the long bones, endochondral ossification results in the calcification and invasion 

of a cartilaginous scaffold by osteoprogenitor cells 19 . A complementary 

heterogeneity is observed in the embroynic origin of MSCs, where neural crest, 

lateral plate, and somitic mesoderm all contribute to the developing skeleton 16 .   

Genetic origins of the vertebrate skeleton – Runx2 

However, this diversity contrasts with the uniform genetic origin of 

skeletal tissues. Commitment to the osteoblast lineage requires the expression of 

the early marker gene and runt domain containing transcription factor Runx2 20 .  

The runt domain is a site of protein-protein interaction, as well as binding to the 

core sequence 5’- PyGPyGGTPy-3’ 21 .  Runx2 -/- mice fail to generate any 

osteoblasts 22 , and chondrocyte maturation and terminal differentiation are 

disturbed 23 . Additionally, haploinsufficency at the locus causes the skeletal 

disorder cleidocranial dysplasia, marked by delayed closure of the fontanelles of 

the skull, hypoplasticity of the clavical, and other features 24 (OMIM# 119600). 

RUNX2 binds to and upregulates other osteoblast marker genes 25 , which are 

also upregulated following forced expression of Runx2 in non-skeletal tissues, 

including fibroblasts, C3H10T1/2 cells, primary myoblasts, and marrow stromal 

cells  25-27 .  For these reasons, Runx2 has been recognized as occupying an 

indispensable bottleneck position in the osteoblast fate switch and is often 

referred to the master regulator of osteoblast development 28 . 
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 The dosage of Runx2 must be finely tuned in order to properly execute 

differentiation. Overexpression of Runx2 in osteoblasts arrests bone development 

in a mouse model, resulting in an osteopenic phenotype 29 . Forced expression in 

chondrocytes produces precociously mature cells that produce osteoid tissue and 

bone marrow not present in orthologous structures in wild type animals 30 . 

Despite Runx2’s unquestioned indispensability early in fate commitment, the 

notion that Runx2 might not have a role in mature osteoblasts has been 

proposed, as expression of a dominant negative form of the protein exclusively in 

mature osteoblasts does not affect transcription of the osteoblast marker 

osteocalcin, a gene that can be activated by forced expression of Runx2 in non 

osteoblastic cells 25, 31 . 

Genetic origins of the vertebrate skeleton – sp7/osx 

  An answer to potential regulators of later osteoblast differentiation came 

with the identification of Sp7/Osx as a cDNA species specifically expressed in 

C2C12 cells undergoing osteoblastogenesis. Sp7 codes for a zinc finger-

containing transcription factor from the Kruppel-like factor family 32 .  As with 

Runx2, inactivation of  in mouse models yielded a skeleton devoid of osteoblasts; 

however  mineralization did occur in bones formed by endochondral ossification, 

though the features of those tissues were more akin to a mineralized form of 

cartilage. Interestingly, Runx2 expression levels were unaffected, indicating that 

Sp7 is not upstream of Runx2. Further work located Sp7 as a direct target of  
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Runx2 b. Sp7 is recruited to its own promoter in murine UMR106-01 

osteosarcoma cells to the exclusion of other members of the sp transcription 

factor family in a manner that correlates with the expression of sp7 33 . 

 Sp7 is thought to function exclusively in later osteoblast differentiation 

and distinct from the activities of Runx2 in cartilage. Among Sp7’s target genes 34 

are the bone marker genes Col1a1 35 , Bsp 36  and Ocn. The regulation of Col1a1 

by Sp7 is corroborated clinically by a report of a proband presenting with 

osteogenesis imperfecta and a frameshift mutation within the SP7 coding region 

37 . Finally, in contrast to Runx2, Sp7 function appears to be critical for postnatal 

growth and maintenance of bone 38 .  

Molecular signaling and the vertebrate skeleton – The BMP pathway 

 Bone morphogenetic proteins (BMPs) were initially identified on the basis 

of their ability to induce de novo bone and cartilage formation in vivo 39, 40 . Most 

BMPs are members of the transforming growth factor- superfamily of proteins 

with important roles in both proper patterning and differentiation of the 

skeletonc.  Canonically, signaling starts upon BMP ligand binding to heteromeric 

cell surface receptors composed of BMPR-I and BMPR-II receptors. This 

activated complex phosphorylates cytoplasmic SMAD proteins via a serine-

threonine kinase domain.  SMADs 1,5 and 8 bind to a co-SMAD upon 

phosphorylation and enter the nucleus to directly affect gene transcription via 

                                                           
b Allen, unpublished observation 
c Notably, BMP-1 is a metalloproteinase. 
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chromatin binding. As will be discussed in future sections, the Smad proteins 

offer a context for crosstalk with other signaling pathways. 

 Understanding the role of BMP signaling in skeletogenesis is complicated 

by the presence of multiple components with distinct, yet overlapping, activities, 

as well the necessity of BMP signaling in early embryo patterning formation. 

BMP-2, --4,-6,and -7 are ligands with demonstrable osteogenic potential in vitro, 

yet genetic studies using conditional knockout alleles reveal more subtle and 

complementary roles. Both Bmp2 and Bmp4 activities are dispensable for the 

formation of the long bones, of the limbs, though deletion of the former results in 

an increase of fractures postnatally 41, 42 .  Similarly, loss of Bmpr2 43  and Bmp7 

have no demonstrable effect on bone formation or fracture repair in the limbs 44 .  

However, a double knockout of Bmp2 and Bmp4 results in a severe impairment 

of osteogenesis, indicating a redundancy in these roles 45 .  

 Runx2 upregulation has been observed in in vitro systems following BMP 

stimulation 46, 47 , and consequently, Runx2 is thought to be the principle mediator 

of downstream BMP actions 48 . However, there are also thought to be BMP 

signals capable of driving osteoblastogenesis independently of Runx2. Although 

BMP-2 administration is not capable of driving full differentiation of osteoblasts 

and chondroblasts in Runx2-deficient mouse calvarial cell lines, upregulation of 

alkaine phosphatase, osteocalcin and sp7 is detectable  22, 49, 50 . BMP-2 treatment 

upregulates sp7 expression in C2C12 cells independently of Runx2 51 .  Also, 

preosteoblastic cell lines require autocrine BMP signaling for proper 
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differentiation, although they already express Runx2 52, 53 . Finally, activated 

SMAD proteins interact physically and functionally with RUNX2, suggesting a 

synergistic relationship to complement the Runx2 dependent and independent 

BMP signaliing axes. SMAD1 and RUNX2  transcription factors complex to drive 

gene expression on target gene promoters 54 . An osteoblast specific deletion of 

Smad1 causes an osteopenic phenotype 55 , and combined deletion of Smad1/5/8 

results in severe chondrodysplasia 56 .  

 Pretreatment with the ribosome inhibitor cyclohexamide prior to BMP-2 

treatment blocks the induction of Runx2 57  and sp7 58 , indicating the need for the 

synthesis of an intermediate protein to complete the signaling axis. Among the 

direct targets of BMP signaling with known roles in skeletogenesis are 

homeodomain proteins. In particular, microarray experiments examining the 

transcriptional response to BMP-2 treatment in cultured C2C12 osteoprogenitor 

cells have identified members of the meshless(Msx), distalless(Dlx), and 

aristaless(Alx) transcription factor families as being immediately and transiently 

induced, prior to the commitment to osteogenesis evidenced by expression of 

Runx2 59-61 . Mutations associated with the Msx1 and Msx2 loci demonstrate 

consequences in skeletal patterning and differentiation. Msx1-/- mice exhibit 

craniofacial and tooth development abnormalities including a cleft palate 

phenotype 62 , while Msx2-/- mice possess delayed calvarial bone growth, defects 

in endochondrial ossification and chondrogenesis, as well as reduced expression 

of osteocalcin and Runx2  63 . Simultaneous deletion of both Msx2 and Msx1 
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results in the complete absence of craniofacial bone 63, 64  A reversal of this dosage 

effect is evidenced in a human MSX2 gain of function mutant with enhanced 

DNA binding, eliciting a premature fusion of the calvarial sutures and 

craniosynostosis 65 . Significantly, microduplications upstream of MSX2 

containing many conserved non-coding elements phenocopy CCD, suggesting a 

potentially rigid regulatory apparatus between BMP signaling and Runx2 in vivo 

66  . 

In tetrapods, members of the Dlx gene family are grouped in binary 

clusters, facing each other via their 3’ ends as a result of presumptive gene 

duplication events 67 . Dlx1 and Dlx4 have important roles in tooth development 68  

and hematopoiesis 69 , respectively, but they have not been identified as 

expressed in osteoblasts.  Although Dlx3 inactivation results in embryonic 

lethality, it is expressed in osteoblastic lineage cells during endochondral 

ossification, and at its highest level in mature osteocalcin and Runx2 expressing 

osteoblasts 70, 71 . A 4bp frameshift deletion in the human DLX3 gene causes an 

autosomal dominant disease, tricho-dento-osseous syndrome (OMIM#600525), 

which is characterized by altered dermal bone formation in the skull as well as 

increased bone density 72 .  Consistent with this observation, interaction between 

DLX3 and RUNX2 reduces the capacity of RUNX2 to direct transcription at the 

osteocalcin promoter in a cell culture context 73 .  

Current opinion in the literature designates Dlx5 as a critical regulator of 

BMP mediated osteogenesis 74 . Simultaneous knockout of the Dlx5/6 cluster 
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results in gross skeletal abnormalities, including absence of the calvaria, 

maxilliary and mandibular bones, as well as a generalized ossification delay in 

the axial skeleton 75 . These anomalies are also seen in Dlx5 -/- mice; curiously, no 

data on a Dlx6 -/- phenotype has been published. Dlx5 induction by BMPs has 

been observed in both the contexts of cell culture(MC3T3-E1 cells) 76  and in vivo 

development(chick skull development) 77 , where Dlx5 expression is visible in 

proliferating suture mesenchyme not yet committed to an osteoblastic fate, 

suggesting a role in fate designation prior to Runx2 induction. Dlx5 induces 

Runx2 in immature calvaria mesenchyme culture 78 , and Dlx5 and Runx2 have 

been shown to be recruited together at the stimulated promoters of induced 

osteoblast marker genes Alp 79  and Ocn  73 , so Dlx5 appears to possess a duality 

of roles during osteoblast differentiation, both as a direct regulator of Runx2 

transcription, as well as a cooperative transcription factor at Runx2 target genes.  

Molecular signaling and the vertebrate skeleton – The Wnt pathway 

Wnts are secreted, lipid-modified glycoproteins that activate cell surface 

receptor-mediated signal transduction pathways to regulate a variety of cellular 

activities, including cell fate determination, proliferation, migration, polarity, 

and gene expression 80 . In canonical, β-catenin-dependent WNT signaling, a Wnt 

ligand binds to binds to a Frizzled receptor and their co-receptors low-density 

lipoprotein receptor-related protein 5 (LRP5) or LRP6 to stabilize cytosolic β-

catenin via inhibition of a ubiquitinating complex. β-catenin then enters the 

nucleus and stimulates the transcription of WNT target genes by interacting 
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with lymphoid enhancer-binding factor 1 (LEF1), T cell factor 1 (TCF1), TCF3 or 

TCF4.  Non-canonical Wnt pathways not utilizing β-catenin include the 

noncanonical planar cell polarity, which also does not employ LRP5 or LRP6, 

and noncanonical Wnt/calcium pathway, which requires modulation of 

intracellular calcium ion levels. These pathways are further separated by their 

choice of ligand; canonical Wnt signaling uses WNT1, WNT3a, WNT8 or 

WNT10b, while noncanonical signaling relies on WNT4, WNT5a or WNT11.  

Recognition of the Wnt pathway’s involvement in bone biology began with 

a punctuation of discovery: in a single year, mutations causing severe alterations 

in bone density were identified in four groups of patients with bone mass 

disorders, pointing to the canonical branch of WNT signaling.  Two of these 

mutations were detected in the LRP5 coreceptor necessary for Wnt signal 

propagation. Loss of function mutations in LRP5 cause the autosomal recessive 

disorder osteoporosis-pseudoglioma syndrome (OMIM# 259770)  81 . Affected 

individuals have very low bone mass and are prone to developing fractures and 

deformation, though they lack any identifiable defects in collagen synthesis, 

anabolic and catabolic hormones, calcium homeostasis, endochondral growth, or 

bone turnover.  A knockout mouse model confirmed the genotype-phenotype 

relationship, and provided insight into the bone mass deficit. Lrp5-/- mice have 

low bone mass compared to their wild type littermates, though this feature was 

only detectable postnatally 82 . Intriguingly, no aberrations in Runx2 expression 

were detected in these mice.  
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The importance of the Wnt pathway in mediation of postnatal bone mass 

was further highlighted by the identification of gain of function mutations in 

LRP5 (G171V), causing an autosomal dominant high bone mass phenotype 83, 84 . 

Molecular investigations recognized the mutation as detrimental for the affinity 

of the protein for the extracellular Wnt signaling antagonists DKK1 85, 86  and 

SOST 86, 87 . Sost itself is a locus for mutations affecting bone mass. Premature 

termination mutations in Sost 88 cause sclerosteosis (OMIM #605740) whereas a 

52 kb homozygous deletion downstream of the SOST gene is associated with van 

Buchem disease 89 both of whom are characterized by bone overgrowth. 

Genetic analysis in the decade following these initial discoveries detailed 

the importance of many additional canonical Wnt components (β-catenin, Gsk-

3ß, Axin2, and Dkk1; reviewed in 90 ) in both osteoblast differentiation and 

postnatal bone mass density maintenance. Conditional deletion of -catenin 

forces a chondrocytic fate on skeletal precursor cells 91, 92 , a fate suppressed in 

these progenitors in response to ectopic activation of Wnt signaling 91, 93, 94 .  

However, finer dissection of this process reveals the stage of differentiation as a 

strong determinant of the response of a differentiating osteoblast to Wnt 

signaling. β-catenin stabilization in MSCs promotes proliferation at the expense 

of osteoblastic differentiation, while committed osteoblasts respond to the same 

stimulus by accelerating both growth and differentiation, at the expense of 

failure of terminal differentiation into mature osteoblasts.  One possibility 

responsible for this state dependent response is the complex relationship 
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between Wnt signaling and the master regulatory transcription factors Runx2 

and sp7. While the Runx2 P1 promoter possesses a Wnt responsive element that 

recruits β-catenin and TCF/LEF transcription factors 95 , cells lacking β-catenin, 

are, like Lrp5-/- mice, still capable of expressing Runx2 in cells surrounding 

developing bone tissue. This suggests that other inputs in the Runx2 regulatory 

apparatus are sufficient to induce the primary osteoblast differentiation genetic 

program in the absence of Wnt.  

Consistent with their effects on mature bone, the regulatory relationship 

between sp7 and the Wnt pathway appears to be reciprocal. While canonical Wnt 

signaling promotes both osteoblast differentiation and proliferation, sp7 

promotes differentiation of maturing osteoblasts, while inhibiting their 

proliferative potential. It appears that this is accomplished at least partially by 

an sp7-mediated inhibition of Wnt activity.  Sp7 appears to control the 

expression of the extracellular Wnt antagonist Dkk1 by direct binding to its 

promoter, and its expression is indeed abolished in sp7-null embryonic calvarial 

cells. Sp7 also inhibits -catenin mediated transcription by direct interaction 

with the transcription factor TCF1. Therefore, it has been speculated that 

repeated downregulation of Wnt signaling is essential for balancing proliferative 

and cell fate priorities during osteoblastogenesis 96 . 

Molecular signaling and the vertebrate skeleton – The FGF pathway 

Fibroblast growth factors (FGFs) are a family (22 members in both mouse 

and human) 97  of secreted growth factors with roles in diverse biological 
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processes that exert signaling activity by binding to tyrosine kinase fibroblast 

growth factor receptors (FGFRs), inducing intracellular pathways such as p38 

MAPK, PLC, ERK1/2 or PI3K/AKT. Current thinking places the FGF signaling 

axis as a positive regulator of proliferation of progenitor cell populations and 

growth plate maturation during bone development 98 . In cell culture, FGF 

signaling increases proliferation of immature osteoblasts while simultaneously 

blocking differentiation 99, 100 . 

The identities of and roles of specific Fgf ligands at discrete stages of 

skeletal development are poorly understood.  Fgf9 is expressed in early 

mesenchyme condensations prior to ossification, while Fgf2, Fgf5, Fgf6, and Fgf7 

are expressed in the mesenchyme surrounding the ossification. All Fgfs have 

been identified in the coronal suture of E17.5 embryos, save for Fgf3 and Fgf4. 

While in vitro evidence has shown the capacity for Fgf ligands to stimulate 

osteoblast differentiation and or marker genes 101 , animal models have failed to 

provide striking evidence of the necessity of a given ligand for a skeletal process, 

though it is clear that excessive ligand disrupts proper development.  The 

construction of an Fgf2 knockout mouse provided an early illustration of this 

concept.  Fgf2-/- mice are normal in apperance, but have lower bone mass density, 

concomitant with decrease thymidine incorporation in calvarial osteoblasts, 

suggesting an early proliferation defect behind the adult phenotype 102 . 

Consistent with these observations, overexpression of Fgf2 in mice results in 

premature mineralization, achondroplasisa and shortening of the long bone 103  
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Similar observations were made in experments using Fgf9 knockout and 

transgenic mice 104, 105 .   

As is not the case for the FGF ligands, there exists much human genetic 

evidence regarding the necessity of the FGFR genes in skeletal development.  Of 

the four FGFRs, FGFRs1-3 are expressed in calvaria mesenchyme. Gain of 

function missense mutations in FGFR1, FGFR2, and FGFR3 cause a spectrum of 

fourteen disorders, most of whom share a craniosynotosis or chondrodysplasia 

feature 106 . Despite the diversity in phenotypes resulting from those mutations, 

then, it makes sense to try to understand the common biology in these in these 

conditions. Craniosynotosis and chondrodysplasia differ fundamentally in the 

physiological process disrupted in their pathology. Craniosynostosis is a failure 

of the flat bones of the craniofactial skeleton to delay differentiation in 

progenitor cell populations, resulting in premature fusion of the sutures.  

However, chondrodysplasia is a defect in endochrondral ossification, often 

resulting in shortening of the long bones of the limbs and the axial skeleton in 

general. So despite affecting two distinct pathways to mature bone, upregulation 

of FGF signaling in developing skeletal tissue results in a common cell biology 

defect: premature differentiation of progenitor cells.  

Genetic origins of the vertebrate skeleton – Signaling crosstalk 

While understanding the functions of individual signaling pathways in 

bone development is a necessary effort towards a complete theory of 

skeletogenesis, these deconstructions, in isolation, lead to an impoverished view 
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of a highly integrated process. Therefore, it is necessary to consider how these 

pathways interact, either to enhance or police each other’s activities. Therefore, I 

will discuss known connections of each of the systems discussed above.  

Signaling crosstalk in the vertebrate skeleton - BMP and Wnt pathways 

 Studies investigating interactions between Wnt and BMP in osteoblast 

differentiation have identified both synergistic and epistatic relationships 

between components of these pathways. At a fundamental level, BMP-2 driven 

osteogenesis is dependent on the presence of -catenin  107 . Many examples exist 

of synergistic activation of osteoblast marker genes by costimulation with BMP 

and Wnt ligands at early stages of osteoblastogenesis 107-109 . Several possible 

explanations involving intracellular mediators of these signals have been 

proposed. In Xenopus embryos and cos-7 cells, Wnt signaling extends the 

duration of a ‘pulse’ of BMP signaling by regulating SMAD1 activity via GSK-3 

dependent phosphorylation 110 . Other researchers have described a mechanism 

involving the physical interaction of SMAD4 with TCF4 and the general co-

activator protein p300 111 . 

However, at later stages in bone biology, they may have distinctly 

antagonistic roles. Where continued Wnt signaling is crucial for maintaining 

sufficent levels of bone mass density, BMP signaling at this stage actually acts in 

an catabolic manner. Deletion of Noggin, which codes for an extracellular 

inhibitor of BMP ligands, led to decreased bone mineral density (BMD) and bone 

formation in mice 112 . The extracellular Wnt inhibitors Dkk1 and Sost are 
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downstream of BMP signaling 113 , and through their upregulation, Wnt signaling 

is attenuated. Genetic evidence for this interaction was observed in an 

osteoblast-specific Bmpr1a knockout mouse, which had a high bone mass 

phenotype concomitant with upregulated Wnt signaling 113 . BMP inhibition of 

Wnt occurs in uncommitted bone marrow cells via sequestration of the GSK-3 

inhibitor/Wnt activator DSH by SMAD1 114 .  

 Another level of BMP and Wnt integration to discuss is the combined cis 

regulation of both component and target genes. Chip-seq data from erythoid cells 

indicate that many active enhancers in these cells recruit both SMAD1 and 

TCF7L2 115 . The promoters of Dlx5 and Msx2, which are routinely and 

essentially upregulated in response to BMP signaling, respond synergistically to 

BMP and Wnt activation. Unsurprisingly, SMAD1, TCF4 and -catenin are 

recruited to these promoters following dual stimulation of these pathways 108 .  

Signaling crosstalk in the vertebrate skeleton - BMP and FGF pathways 

 Unlike the complicated relationship between BMP and Wnt signaling, the 

association between BMP and FGF signaling has been described as largely 

cooperative. Similarly to its relationship with Wnt, many examples exist where 

BMP signaling is in part dependent on the presence of active FGF signaling to 

achieve full osteogenic effect. Mice null for Fgf2 have decreased Bmp2 expression 

116 , while FGF-2 and FGF-9 increase expression of Bmp2 in calvarial osteoblasts. 

Additionally, these ligands inhibit the expression of noggin, an extracellular 

BMP inhibitor normally upregulated in response to BMP signaling 117 .  FGF 



 

18 
 

mediated suppression of noggin is also observed in vivo in the coronal dura 

mater during suture development. Noggin maintains the patency of flat bone 

sutures in the skull, so it is possible that some of the craniosynostosis phenotype 

arising from gain of function FGFR mutations is due, in part, to coordinately 

misregulated BMP signaling 116, 118 . FGF also upregulates BMP signaling beyond 

the context of increasing ligand-receptor association; Fgf2-/- osteoblasts have 

impaired colocalization of phosphorylated SMADs and RUNX2 in response to 

BMP-2 signaling, though the reason for this deficit is unclear 116, 119 .  Finally, 

FGF-2 and BMP-2 have a synergistic effect on fracture healing: FGF-2 has a 

critical function at early stage while BMP-2 promotes mineralization at later 

stage 120 . 

Signaling crosstalk in the vertebrate skeleton – Wnt and FGF pathways 

 Wnt and FGF signaling have opposing effects during osteoblast 

differentiation 121 . The convergence of Wnt and FGF signaling in skeletogenesis 

occurs primarily by the suppression of Wnt signaling by FGF signaling. Multiple 

mechanisms have been described underlying this process. At a fundamental 

level, the expression of components of the canonical Wnt pathway requires FGF 

signaling. mRNA expression of Wnt10b, Lrp6, and -catenin are significantly 

downregulated in bone marrow stromal cells from Fgf2-/- mice 122 . Exogenous 

application of Fgf2 ligand to these cells rescues both the osteogenesis defects 

while increasing -catenin stabilization and nuclear localization. Comparative 

microarray analysis of osteoblasts derived from patients with gain of function 
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FGFR2 mutations identified the transcription factor SOX2 as dramatically (15 to 

121 fold) upregulated compared to wildtype cells 99 . Coimmunoprecipitation 

experiments demonstrated that SOX2 associates with -catenin in osteoblasts 

and can repress activity of a reporter plasmid drive by TCF/LEF binding sites.  

 Wnt and FGF signaling interactions have also been studied genetically in 

the context of skull suture formation. Tellingly, deletion of the gene encoding the 

Wnt negative regulator, Axin2, resulted in a phenotype similar to that observed 

in craniosynostosis in FGFR gain of function mutations 123 . Upregulation of Wnt 

signaling in Axin2-deficient mice was confirmed by increased nuclear 

accumulation of -catenin. In concert, the proportion of FGFR positive cells at 

the suture was significantly reduced 124 . Further altering the FGF/WNT balance 

by generating Axin2-/-, Fgfr1+/- mice produce sutures with ectopic cartilage 

formation 125 . Cells at the front of these sutures had upregulated BMP signalling, 

as evidenced by increased SMAD phosphorylation. A complex mechanism in 

suture mesenchyme has been proposed, where Wnt signaling expands the 

population of skeletal precusors, while stimulating BMP signaling to counteract 

FGF signaling. In the presence of relatively high levels of FGF signaling, BMP 

signaling promoters osteoblastogenesis in the microenvironment, while reduced 

FGF signaling results in the effect of BMP to signaling to promote a chondrocytic 

fate.  

 

Zebrafish as a model to study vertebrate skeletogenesis 
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 Zebrafish enjoy a burgeoning status as a more tractable alternative to the 

standard skeletal biology models of mouse and chick126. Development of both the 

craniofacial127 and axial128 skeletons has been well characterized. Zebrafish 

produce the same skeletal cell types as higher vertebrates, albeit in simpler 

patterns129. Additionally, gene expression events in skeletal elements are 

orthologous to those observed in higher vertebrates130. Specifically for the 

purposes of this work, both zebrafish runx2 orthologs, runx2a and runx2b are 

expressed in nascent skeletal elements131. Moreover, the appearance of the 

zebrafish skeleton is rapid; the first bony structure, the cleithrumd, is visible 

within 72 HPF132, though expression of bone marker genes in the anlagen begins 

at approximately 36 HPF133.  Potential bone specific deficiencies of the system, 

such as the lack of osteocytes or hematopoietic activity in the bone marrow, are 

not hindrances for exploring early development134.  

 

Study aims 

Despite the identification of skeletogenesis specific roles of the signaling 

pathways discussed above and otherse, a coherent narrative of the genetics and 

cell biology underlying this process still eludes the field. Because of its singular 

                                                           
d Most of the imaging in this document will focus on two bones as proxies for the 
expression in the rest of the skeleton. The cleithrum is a bone of mesodermal origin, and 
is roughly analogous to the shoulder girdle in mammals. Conversely, the opercle is 
derived from neural crest, and adopts a fan shaped morphology to lend structural 
support to the gill flap.  
e These include Notch, Indian Hedgehog, calcineurin, retinoic acid, p38 MAPK, among 
others.  
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role in both marking and initiating early stages of osteoblastogenesis, 

understanding the regulation of Runx2 itself is a potentially fruitful approach to 

understanding the biology of this process. Therefore, the rest of this document 

will be committed to describing the cis regulatory architecture responsible for 

regulating both the presence of the RUNX2 transcription factor itself in putative 

skeletal cells, but also the modulation of gene dosage that is so critical for proper 

execution of this process. Chapter 2 describes the results of a conservation based 

screen for conserved non-coding elements associated with the human RUNX2 

locus capable of directing expression to bone. Chapter 3 relates a series of 

functional studies on individual elements, identifying upstream regulators with 

previously confirmed roles in skeletogenesis. Finally, Chapter 4 integrates the 

results from Chapters 2 & 3 for a summary, discussion of the implications of the 

work, and suggestions for future avenues of experimental inquiry informed by 

this effort.  
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CHAPTER 2 

 

A SCREEN FOR RUNX2 ASSOCIATED 

ENHANCERS IDENTIFIES THREE CONSERVED 

NON-CODING ELEMENTS CAPABLE OF 

DIRECTING EXPRESSION TO OSTEOBLASTS IN 

VIVO. 

 

 

 

 

 



 

23 
 

CHAPTER 2  

Introduction 

 The gene encoding the transcription factor RUNX2 was identified as the 

underlying cause of the human skeletal syndrome cleidocranial dysplasia (CCD) 

24, 126 , resulting from haploinsufficiency. RUNX2 regulates expression of 

downstream genes important for osteoblast function, and its forced expression 

can upregulate those target genes 25 . Mutation of the mouse gene demonstrated 

the requirement for Runx2 in bone formation throughout the skeleton, and its 

continued expression is also required for normal bone homeostasis 22, 127 .  

 The years since its identification have yielded a detailed understanding of the 

pathway downstream of Runx2 leading to differentiated osteoblasts, with 

identification of many genes whose transcription is directly regulated by Runx2. 

Comparatively, almost nothing is known about the transcriptional regulation of 

Runx2 itself. This is a critical question, since initiation of Runx2 expression in 

development determines when and where bones will form, and its ongoing 

expression is important for proper maintenance of bone throughout life. 

Numerous signaling pathways have been implicated in its induction, but none 

has been shown to directly regulate Runx2 transcription in vivo 128 .  

 Direct regulation of a gene is accomplished by the binding of diffusible trans 

regulatory factors, either directly or to other trans factors, to cis-regulatory 

elements (CREs) 129 . CREs are regions of genomic DNA with some role in 

activating, maintaining, or repressing transcription of an mRNA product. 
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Elements containing or immediately adjacent to the one of the transcriptional 

start sites of a gene are generally classified as promoters. They mark the site of 

recruitment of RNA polymerase and melting of the DNA strand and 

consequently possess an innate directionality.  Conversely, enhancers can 

positively regulate gene transcription without regard to DNA strand orientation, 

and may be located at either a great distance from the transcriptional start site 

or, potentially on other chromosomes altogether 130, 131 , though this is not known 

to be a common phenomenon in vertebrate genomes. Additionally, exons of 

neighboring genes can also function as enhancers 132, 133 . Other forms of cis 

regulatory elements include locus control regions and silencers, capable of 

preventing gene activation and insulators, which form boundaries to prevent the 

spread of a repressive heterochromeric chromatin environment through the 

association of the CTCF protein.  

 Runx2 is somewhat noteworthy in that it possesses two distinct 

promoters. The proximal P2 promoter regulates the type I isoform, while the 

distal P1 promoter (Runx2 P1) regulates the type II isoform. The two proteins 

share the same functional domains and are similarly capable of transactivating 

target genes 134 . The P2 promoter is active at a basal level in a broad number of 

cells and tissues, including the thymus, cartilage, periosteum, and suture tissue 

of the calvarium 135-137  whereas the P1 promoter is active in hypertrophic 

chondrocytes and mature osteoblasts 25, 138 . Although in vivo, transcription from 

both promoters are necessary for fine-tuning Runx2 expression 139 , they are 
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incapable of directing proper expression of a reporter transgene by themselves 140, 

141 , indicating the existence and necessity of a more elaborate cis regulatory 

architecture. Also, while most characterized CCD mutations affect the RUNX2 

coding sequence, some cases have been associated with translocations of distal 

regions 142, 143  or have no identified coding sequence 66  mutations, suggesting the 

presence of critical regulatory sequences whose mutation or disruption severely 

impairs gene expression. 

 Therefore, I hypothesized that there must exist additional enhancer elements 

necessary to direct Runx2 expression 144 . Methodologies for identifying functional 

CREs are an area of ongoing inquiry in the literature, each possessing relative 

strengths and inherent limitations.  In a developmental context, the current 

‘gold standard’ experiment for confirming regulatory potential of a DNA region is 

the deletion of that element in the germline or a relevant integrated BAC in vivo 

and confirmation of a phenotypic of transgene expression change. The chief 

advantage of the approach is the opportunity to observe an element in its native 

regulatory environment in a variety of tissue types. Unfortunately, isolating 

individual elements using germline modifications in mice is costly and time 

consuming. Additionally, functional redundancy between elements may mask or 

buffer the consequences of element loss.  

 Other methods rely on the flood of bioinformatic data that has been made 

available as the result of numerous genome sequencing projects as well as 

massively parallel sequencing technologies 145 . Current estimates place 
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approximately 5% of the human genome under negative purifying selection 146, 147 , 

where evolutionary forces conserve sequence against the caprice of mutation. 

However, only 1.5% of the genome appears to have exonic coding potential. The 

difference between these proportions—popularly referred to as the ‘dark matter’ 

of the genome—is due to the relative difficulty of annotating aspects of genes 

without protein coding potential. Conservation based methods assume conserved 

non-coding elements possess functional importance whose ablation or alteration 

would have fitness consequences. While conservation is a generally reliable and 

accepted criterion for identifying candidate CREs associated with a given gene, 

there has not yet been an agreement in the field regarding the algorithm or 

parameters that are best suited for identifying CREs amongst diverse biological 

contexts 129 . Notably, deletion of many ‘ultraconserved’ elements in mice resulted 

in no observable phenotype 148 . Additionally, while conservation might be a good 

approach to discern sites of input for relatively ancient signaling connections, it 

is less useful at identifying newly arisen CREs, which are likely to be of the 

greatest interest from a evolutionary perspective. 

 Marrying chromatin immunoprecipitation with genome wide interrogation 

techniques such as microarrays and next generation sequencing permits the 

mapping of locations of both known transcription factors as well as histone 

modifications associated with regulatory activity to the genome in a variety of 

cell types and environmental situations.  In particular, enrichment of 

methylation of 4th lysine of the N-terminus of the histone H3 has been repeatedly 
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shown to be a powerful technique for locating promoters (H3K4me3) and 

enhancers (H3K4me1/2) in the absence of detectable sequence conservation 149, 150 

. However, these approaches are generally poorly suited for study of enhancers 

involved in development, because of cell number requirements of precious 

embryonic materials as well as their necessarily static nature. 

 With these experimental approaches and limitations in mind, I decided rely 

on moderate conservation amongst vertebrates to identify CREs associated with 

the human RUNX2 locus. A list of candidate CREs was generated by 

interrogating the locus using PhastCons 151 , an algorithm which relies on 

multiple vertebrate genomes to both identify conserved elements, as well as a 

quantitative measure of the evidence of that conservation, permitting a ranking 

and prioritization of element testing. Because location is a poor predictor of 

regulatory function, and enhancers can exist at great distances from their 

associated genes, I examined sequences in an interval of >1 Mb containing 

human RUNX2.   

 Finally, the qualities of the systems used to actually confirm regulatory 

activity merits discussion. Especially in developmental contexts, in vivo systems 

are preferable to cell based assays because of the ability to simultaneously 

observe the full range of likely dynamic regulatory activity in all tissues. 

Traditionally, mice have been used for this purpose, but for the reasons 

discussed above, these are a difficult choice for studying embryonic expression, 

as it requires sacrificing a transgenic animal at each time point of interest. 
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Additionally, because many transgenes show position dependent effects resulting 

in ectopic activation in cells that do not actually reflect biological reality, it is 

necessary to examine a number of embryos to ensure that uniform and robust 

pattern of expression can be elucidated. In contrast, zebrafish produce hundreds 

of optically accessible embryos in single clutch. Finally, a highly efficient 

transgenesis methodology based on the Tol2 transposase permits the 

construction of potentially hundreds of mosaic transgenic fish in a single 

morning 152 .  

Specifically to skeletal biology, zebrafish are increasingly being employed as an 

alternative to the standard models of mouse and chick 153 . In addition to the 

reasons of tractability listed above, they produce the same skeletal cell types as 

higher vertebrates, albeit in simpler patterns. The appearance of the zebrafish 

skeleton is rapid; the first bone, the cleithrumf, is visible within 72 HPF 154 , 

though expression of bone marker genes in the anlagen begins at approximately 

36 HPF 155 .  Potential bone specific deficiencies of the system, such as the lack of 

osteocytes or hematopoietic activity in the bone marrow, are not hindrances for 

exploring early development 156 .  

In this chapter, I describe a screen for RUNX2-associated CREs in the human 

genome. Candidates were selected on the basis of moderate conservation 

                                                           
f Most of the imaging in this document will focus on two bones as proxies for the 
expression in the rest of the skeleton. The cleithrum is a bone of mesodermal origin, and 
is roughly analogous to the shoulder girdle in mammals. Conversely, the opercle is 
derived from neural crest, and adopts a fan shaped morphology to lend structural 
support to the gill flap.  
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amongst vertebrates and tested for in vivo activity in a zebrafish system. 

Commonalities and differences in expression domains are also noted.  

Materials and Methods 

 Ethics statement. All animal work was conducted according to national and 

international guidelines, and with the knowledge and approval of the 

Institutional Animal Care and Use Committee of the University of Pennsylvania. 

 Identification of conserved non-coding elements associated with RUNX2. To 

identify sequences for in vivo analysis, the candidate locus (hg18; chr6: 

44904448-45974166) was interrogated for conserved non-coding elements, as 

defined by the PhastCons Vertebrate Conserved Elements track during January, 

2010 151 . Elements overlapping known RefSeq exons were excluded from further 

analysis. The top 50 scoring elements (LOD >454) were amplified by PCR (Table 

1) from human genomic DNA with LA Taq polymerase (Takara), and cloned into 

the Tol2 transposon containing vector pattP-Tol2-EGFP as previously described 

152 . 

 Transgenesis and expression analyses. Fish were cared for following standard 

protocols. Each construct for analysis was injected as previously described in at 

least two separate experiments, and mosaic expression of eGFP analyzed in a 

minimum of 150 embryos 157 . Embryos were screened from 1- 5 DPF using a 

Zeiss V12 Stereomicroscope, and imaged with AxioVision 4.5 software. For those 

constructs regulating a consistent expression pattern, embryos were raised to 

adulthood and their progeny examined for expression after germline 
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transmission. All constructs were examined in at least three independent 

transgenic lines for consistent expression. The +210RUNX2:mCherry construct 

was made in a version of the same vector with mCherry coding sequence instead 

of eGFP. sp7:mCherry fish were made by injection of a modified BAC containing 

medaka sp7 regulatory sequences, a kind gift from Christoph Winkler 158 . 

 Confocal imaging. Embryos were anesthetized in Tricaine and mounted in 

MatTek glass bottom culture dishes in 1% low melt SeaPlaque agarose. Images 

were acquired on an Olympus IX 81 microscope equipped with a Yokogawa CSU 

10 scan head combined with a Hamamatsu EMCCD camera (model C9100-13, 

Bridgewater, NJ). Hardware was controlled by Slidebook version 5.0 (Intelligent 

Imaging Innovations). Diode lasers for excitation (488 nm for eGFP and 561 nm 

for mCherry) were housed in a Spectral Applied Research launch (Richmond 

Hill, Ontario). Confocal image stacks were processed with ImageJ 

(http://rsbweb.nih.gov/ij).  

 In situ hybridizations. Whole mount in situ hybridizations were performed as 

described 159 , with the following modifications: 0.05% CHAPS detergent was 

added to the pre-hybridization and hybridization solutions to prevent embryo 

clumping, and the concentration of NBT was reduced 10-fold in the staining 

solution to permit overnight development with low background. Stained embryos 

were dehydrated by successive methanol washes, cleared in methyl salicylate, 

and mounted in Permount medium (Fisher; SP15-100) between bridged 

coverslips. Microscopy was performed on an Olympus BX51 with Nomarski 

http://rsbweb.nih.gov/ij
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optics. Images were acquired using Spot Basic version 4.6 (Diagnostic 

Instruments). Further adjustments to white balance and contrast were 

performed with Adobe Photoshop.  

Quantitative PCR. RNA was extracted from whole zebrafish embryos as 

previously described 160 . cDNA was synthesized using the cDNA high capacity 

transcription kit (Invitrogen). qPCR was performed in 20 µl reactions using ABI 

Sybr Green Master mix, and 250M primer concentration. Samples were 

amplified using an ABI StepOnePlus real time PCR system. 

Identification of cis regulatory elements associated with the zebrafish 

orthologs runx2a and runx2b. The program WPH finder was downloaded from 

http://rana.lbl.gov/downloads/wph.tar.gz. The three characterized human 

enhancers (-460RUNX2, +210RUNX2 and +542RUNX2) were used as substrates 

to build word profiles based on the occurrence of 8-mers. These were individually 

used scan the loci containing the zebrafish Runx2 orthologs runx2a (chr17: 

5385672-5740215;Zv8) and runx2b (chr20: 44206838-44359224;Zv8) using 250 

base pair windows offset by 100 base pairs. Repetitive sequences were removed 

with RepeatMasker prior to scanning. An arbitrary cut off of Z>5 determined 

which candidate elements to progress to functional testing.  

Results 

A screen for RUNX2 associated enhancers identifies three conserved non-coding 

elements capable of directing expression to osteoblasts in vivo. 

http://rana.lbl.gov/downloads/wph.tar.gz
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As potential cis–regulatory elements for RUNX2, we selected the 50 most 

conserved non–coding sequences within the ~1Mb interval bounded by the 3' 

UTR of the overlapping gene SUPT3H and the 3' UTR of the downstream gene 

CLIC5  in the human genome(Figure 1). We grouped proximate sequences into 

larger amplicons, resulting in 36 constructs (Table 1). Each sequence was tested 

for in vivo enhancer activity, through its ability to direct tissue–specific eGFP 

expression in zebrafish. We initially screened by examining approximately 150 

mosaic injected embryos for fluorescence from 1-6 days post fertilization (DPF); 

constructs positive in the initial screen were passed through the germline for 

detailed characterization. 

 In total, I identified three enhancers capable of directing reporter gene 

expression to osteoblasts: a distant upstream enhancer located in the last intron 

of SUPT3 (-460RUNX2)g, a downstream enhancer in the intergenic space 

between RUNX2 and CLIC5 (+542RUNX2), and one in the last intron of RUNX2 

itself (+210RUNX2).  

Comparison of transgene activity by confocal microscopy and in situ 

hybridization reveals distinct, yet redundant expression patterns. 

 While all three enhancers direct expression to osteoblasts, they do not have 

identical activities. Prior to formation of the first bones, +210RUNX2 is 

transiently active in the branchial arches, as evidenced by GFP expression in 

                                                           
g The nomenclature used here and subsequently in this document to identify specific 

enhancer elements is the distance from the transcriptional start site of a gene in 

kilobases, relative to the directionality of the open reading frame. 
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live embryos at 2DPF(Figure 2.2j).  An earlier and less enduring expression in 

the branchial arches is directed by +542RUNX2 between 24-48 HPF  (data not 

shown). +542RUNX2:eGFP expression is first detectable in the cleithrum 

anlagen between 28-32 HPF, while this activity is relatively delayed in embryos 

carrying the other two transgenes (Figure 2.3a,d). Referring to the confocal data 

at 3DPF shows that, again, while all three transgenes drive expression in 

cleithrum in osteoblasts, the expression is much more pronounced in the 

+542RUNX2:eGFP (Figure 2.2f) and -460RUNX2:eGFP lines (Figure 2.2o). 

Furthermore, +542RUNX2 mediated expression in the cleithrum at this stage is 

uniform along the dorsal ventral gradient, while in -460RUNX2, expression is 

relatively punctuated at the dorsal and ventral extremes of the bone. 

 All three enhancers are active in cells of the opercle (Figure 2.4), a neural–

crest derived bone 161  that forms by membranous ossification lateral to the 

branchial arches. However, +210RUNX2 directs expression to the 

osteoprogenitors surrounding the edges of the bone (Figure 2.4j,m,p), while the 

activity of the other two enhancers is confined to cells within the bone itself. 

Similarly to the expression differences observed in the cleithrum, +542RUNX2 

directs expression uniformly throughout the bone (Figure 2.4s,v,y), while 

+460RUNX2 expression is enhanced in the strut and fan structures of the 

opercle (Figure 2.4 a,d,g) 

+154runx2a, the zebrafish ortholog of +210RUNX2, is conserved at the levels of 

sequence and function. 
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  While identifying conserved enhancers between distantly related species is 

not always a straightforward effort, alignment of vertebrate genomes using 

MultiZ 162  in the UCSC genome browser revealed apparent linear alignment 

delement, +154runx2a, directs expression the branchial arches at 3DPF (Figure 

2.5 a) as well as to bony elements such as the opercle and branchiostegal rays at 

5DPF (Figure 2.5 b,e).  

Only +542RUNX2 directs expression to the developing vertebrae. 

 Later in zebrafish development (10-21 DPF), the vertebrae form from 

migrating sclerotome cells that surround the spinal cord 163 . Though at 5DPF, all 

three enhancers direct expression to all visible skeletal structures, the ability to 

direct expression to the vertebral arches at 14DPF is limited to +542RUNX2 

(Figure 2.6c). Some expression by -460RUNX2:eGFP is visible in the centra of 

the vertebrae. (Figure 2.6a). +210RUNX2 failed to direct expression to any 

aspect of the vertebral column (Figure2.6b). 

Chromatin features of identified enhancers. 

 As discussed in the introduction, enhancer associated chromatin marks are 

an often-employed method to identify loci with regulatory activity in a cell or 

tissue type being studied.  There exists an unpublished, publicly available ChIP-

Seq data set from a normal human osteoblast cell line as part of the ENCODE 

projecth. Enrichment for regulatory element associated marks (H3K4me1, 

                                                           
h According the documentation accompanying the data set, the cell line is normal 

human osteoblasts (NHOst) from Lonza (#CC-2538). The ChIP-Seq data was 

produced by a collaboration of Bradley Bernstein and Greg Crawford. 
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H3K4me2, H3K27Ac) was examined as well as recruitment of the enhancer 

associated coactivator p300 (Figure 2.7). +542RUNX2 and +210RUNX2 were 

significantly enriched for p300, as well as H3K4me1 and H3K4me2, and were 

identified as peaks in the data set as determined by a hidden Markov model 

algorithm. Curiously, no enrichment for any of the studied histone modifications 

or proteins was observed in -460RUNX2. 

The three RUNX2-associated enhancers contain enough information content to 

efficiently identify other skeletal specific enhancers in a non-conservation based 

approach. 

  With the limitations of conservation based approaches to discovering 

CREs in mind, I wanted to explore whether other methodologies might be 

efficient at identifying enhancers associated with the zebrafish RUNX2 

orthologs, runx2a and runx2b, for which there are few alignable genomes 

available to detect conservation. One such strategy involves utilizing the 

information content of known enhancers as a basis for predicted new ones from 

untested sequence data. WPH Finder is such an algorithm that has been 

successfully used to recognize enhancer elements not identifiable by linear 

conservation between Drosophila species 164 . It trains itself by counting the 

occurrence of specific eight letter DNA ‘words’ (which likely correspond to 

transcription factor binding sites, or other features conferring regulatory activity 

upon an element), forming a profile of these word, and then testing windows of 

candidate sequences for overrepresentation relative to it. 
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 Using this methodology, the loci of the zebrafish Runx2 orthologs, runx2a and 

runx2b were scored for word profile similarity to the each of the three known 

human enhancers (Tables 2.2. 2.3). Eighteen candidates were tested from the 

runx2a locus, and ten were examined from that of runx2b. In contrast to the 

relatively low rate of skeletal enhancer activity identified in conserved 

candidates from the human locus (3/38 = 7.8%), 38.9% (7/18) of amplicons tested 

from the runx2ai locus and 50% (4/10) of those from runx2b showed some pattern 

of skeletal expression (Figure 2.8a,b). Notably, almost all of the positive elements 

(11/12) fall within the coding region of either one of the Runx2 orthologs, or 

supt3h, whose syntenic relationship with Runx2 is ancient. Representative views 

of expression patterns of these elements show expression in both subsets of 

osteoblasts as well as cartilaginous structures (Figure2.8c-h).  

 

 

 

 

 

                                                           
i These numbers exclude +154runx2a, which had already been shown to regulate a 
skeletal expression pattern.  
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Figure 2.1. – Broad distribution of osteoblast specific enhancers at the 

RUNX2 locus. The RUNX2 locus (chr6: 44,904,448-45,971,166, hg18) as 

represented in the UCSC Genome Browser is shown, with the conserved non–

coding elements tested for enhancer assay indicated at top. Elements testing 

positive for osteoblast expression in vivo are shown in green, while those with no 

activity in skeletal tissues are indicated in red. Tracks displaying all conserved 

elements as defined by PhastCons amongst vertebrates and mammals are 

displayed at the bottom of the figure to visualize relative conservation across the 

genomic region. 
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Figure 2.2 -- Expression patterns of three human RUNX2 associated 

enhancers. Lateral views of doubly transgenic zebrafish embryos for sp7:mCh 

and -460 RUNX2:eGFP (A-I), +210RUNX2:eGFP (J-R), and +542RUNX2 (Q-AA)  

were imaged at 2DPF and 3DPF. In 2DPF embryos, coexpression of sp7:mCh 

and -460RUNX2:eGFP (A) and +542RUNX2 :eGFP (S) in the developing 

cleithrum, but not in +210RUNX2 (J). Conversely, branchial arch expression in 

+210RUNX2:eGFP is apparent at 2DPF. All three RUNX2 transgenes express in 

the opercle anlage at 3DPF with sp7:mCh (D,M,V). Ventral views imaged at 

5DPF demonstrate concomitant RUNX2 transgene expression in later 

ossifications (G,P,Y).ba, branchial arches; bs, brachiostegal ray; cl, cleithrum; de, 

dentary mx, maxilla; op, opercle; Scale bar = 50 mm 
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Figure 2.3 -- Differential expression initiation times in the cleithrum 

anlagen.  Embryos from each transgenic line were fixed at 4 hour intervals and 

analyzed by in situ hybridization with an eGFP probe to determine onset of 

expressing in the cleithrum.  Dorsal views of representative embryos of 

+542RUNX2:eGFP (a,d), +210RUNX2:eGFP (b,e) , and +542RUNX2:eGFP (c,f). 
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Figure 2.4 – Distinct expression domains in the developing opercle. 

Lateral views of the opercle in doubly transgenic zebrafish embryos for sp7:mCh 

and (a-i), -460 RUNX2:eGFP (j-r) +210RUNX2:eGFP, and (q-aa)  +542RUNX2 

were imaged at 3DPF, 4DPF and 5DPF; Scale bar = 10 mm 
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Figure 2.5 – +154runx2a, a conserved ortholog of +210RUNX2, directs 

expression to the branchial arches and osteoblasts. Lateral (a-d) and 

ventral (e-g) of doubly transgenic zebrafish for +154runx2a:eGFP and 

+210RUNX2:mCh at 3DPF(a) and 5DPF (b-g). ba, branchial arches; bsr2, 

brachiostegal ray 2 bsr3, brachiostegal ray 3; op, opercle; 
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Figure 2.6 -- +542RUNX2 directs expression to the developing vertebral 

arches. Lateral views of the developing vertebrate column of doubly transgenic 

zebrafish for the indicated RUNX2:eGFP transgene and sp7:mCh at 14 DPF. -

460RUNX2:eGFP expression (a) is directed to the anterior edge of the 

presumptive vertebrate. +210RUNX2:eGFP (b) does not express in any portion of 

the anatomy and +542RUNX2:eGFP (c) directs expression to the vertebral 

arches. (d-f) demonstrate sp7:mCh mediated expression; (g-i) shows a merge of 

these two pattern, 
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Figure 2.7 – Analysis of chromatin environment at three RUNX2 

associated enhancers in a normal human osteoblast cell line.  The human 

skeletal enhancers -460RUNX2 (a), +210RUNX2 (b), +542RUNX2 (c) are shown 

as represented in the UCSC genome browser along with tracks indicating both 

the enrichment of and presence of peak of the following histone 

modification/proteins in normal human osteoblast cell lines as defined by ChIP-

Seq. 
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Figure 2.8 – Screen for skeletal enhancers associated with the zebrafish 

Runx2 orthologs, runx2a and runx2b. The runx2a(a; chr17: 5385672-

5740215;Zv8) and runx2b(b; chr20: 44206838-44359224;Zv8) loci(chr6: 

44,904,448-45,971,166, hg18) as represented in the UCSC Genome Browser is 

shown, with the elements tested for enhancer assay indicated at top. Elements 

testing positive for skeletal expression in vivo are shown in green, while those 

with no activity in skeletal tissues are indicated in red. Tracks displaying all 

conserved elements as defined by 6 way MultiZ alignment displayed at the 

bottom of the figure to visualize relative conservation across the genomic region. 

Representative images of transgenic fish carrying these elements illustrate the 

diversity of skeletal expression observed. -52runx2a:eGFP (c) expresses in a 

subset of ossifying structures at 5DPF; +54runx2b:eGFP (d) expression is 

exclusive to osteoblasts; +28runx2b:eGFP (e) expression is found in the 

cartilaginous elements of the neurocranium; -32runx2a:eGFP (f) expressed in the 

branchial arches as well as the dentary and maxilla forming the mouth; and 

+38runx2b:eGFP (h) expresses in the pharyngeal skeleton and dermal bones. ba, 

branchial arches; bh, basihyal; bs, brachiostegal ray; cb5, ceratobranchial 5; ch, 

ceratohyal; chb, ceratohyal bone; cl, cleithrum; de, dentary; e, ethmoid; mk, 

Meckel’s cartilage; mx, maxilla; op, opercle; pq, palatoquadrate 
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Table 2.1. Sequences at RUNX2 locus tested for enhancer activity. Each 

element is named for the distance in kilobases from the transcription start site of 

RUNX2; the location of each conserved region is given as coordinates in hg19, 

chr6. Where multiple conserved sequences were grouped into one amplicon, the 

LOD scores for each are listed separately. The primer sequences are those used 

to amplify the elements from genomic DNA for testing. The three elements in 

bold are those with activity in osteoblasts.  
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Name 

Coordinates(Zv8

) F primer R primer 

Produc

t size 

(bp) 

Simil

arity 

+321runx2

a 

chr17:5,278,105-

5,278,353 ACAGATGGCGGTGAAGCAGT GCACGTCCGAATGTCAACAA 1061 -460 

+261runx2

a 

chr17:5,338,455-

5,338,703 TGTGAAGCTGCTTTGACACAATC CGGTGTCCTGTTGCTCAGTG 870 +542 

+258runx2

a 

chr17:5,341,255-

5,341,503 CGAGCGTCCATTCACAAACA AGGAAACACTGAAGGACAAAATGC 852 -460 

+229runx2

a 

chr17:5,371,055-

5,371,303 CCCAACGTCGGCTTACGATA TTGCAGTGAGATTGCGTTGG 892 +542 

+206runx2

a 

chr17:5,392,750-

5,393,159 

AGCACCACCACCAACTGGAT 

GGAGCAGCTGAAGAGGCTTG 938 

-

460,+

210 

+179runx2

a 

chr17:5,420,855-

5,421,103 CTAGCGCCATTGCTGGTTTC ATCAGATTCCATGCGGTTCG 991 -460 

+70runx2a 

chr17:5,529,955-

5,530,203 AGCAGTTACGCTTTTGATGGAG ACATATTTGGCGCTCGCAGT 1017 -460 

+20runx2a 

chr17:5,579,405-

5,579,653 TCTGCTGGCCCATAAGAAAAA TCTTGGAGCAACTGGCAAGC 882 -460 

+14runx2a 

chr17:5,585,655-

5,585,903 TTCAATGGACTTTGATTCAGCTT 

CAAGCAGTGACTGACAAATGAAAT

G 852 +542 

+1runx2a 

chr17:5,599,105-

5,599,353 CGGCAGTGATGACAAAACCA TCACCACGACCTGCAGAAGA 895 -460 

-1runx2a 

chr17:5,600,005-

5,600,253 TCCTAAAGCGGGAGCACAAA TGACCCCGAAACAGGAGAGA 865 -460 

-2runx2a 

chr17:5,600,505-

5,600,753 TGTCAGTGGTCCTGCGTTGT TGACTGAAGGCAGTCGACCA 884 +542 

-32runx2a 

chr17:5,632,105-

5,632,353 GGCAACCACAAATTGAAAACC CCGCAACCATACGGGACTAA 1455 +542 

-52runx2a 

chr17:5,651,555-

5,651,803 CTCCCTTCATGGTGGCTTCA CCTCAAACCAGGGCACTAAGAC 949 -460 

-

140runx2a 

chr17:5,740,055-

5,740,303 AGCGATAGAGCCGAGACGTG ACTGAAGCTGCGTCCCAAAA 2456 +542 
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Table 2.2. Sequences at the runx2a locus tested for enhancer activity. 

Each element is named for the distance in kilobases from the transcription start 

site of runx2a. The primer sequences are those used to amplify the elements 

from genomic DNA for testing. The seven elements in bold are those with 

skeletal activity. Similarity indicates the human RUNX2 associated enhancer to 

which WPHFinder identified word profile similarity. 

 

 

 

 

 

 

 

 

-

141runx2a 

chr17:5,741,305-

5,741,553 

CGAACAGACAGATGAATAAAAAGACA

A GCAACCCATCTCTGGGAAAC 1262 +542 

-150runx2a 

chr17:5,750,755-

5,751,003 TGGGCTGGAGACCAAGAAAA TGCATTGCACATAGGGGACA 1192 +210 

-153runx2a 

chr17:5,753,255-

5,753,503 TCCCGAAGATCTGGCAAATG GGCCTGGATGCATCATTTTT 863 +460 
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Table 2.3. Sequences at the runx2b locus tested for enhancer activity. 

Each element is named for the distance in kilobases from the transcription start 

site of runx2b. The primer sequences are those used to amplify the elements 

from genomic DNA for testing. The five elements in bold are those with skeletal 

activity.  

 

Name Coordinates(Zv8) F primer R primer Product size (bp) 

-45runx2b 

chr20:44,131,047-

44,131,967 TGCGCTCTTTCCAGCAATTT TGGGCACGCTATGATGTGAC 921 

-36runx2b 

chr20:44,121,758-

44,122,750 GTGAAGGCTCCGCTCACCT GGCAAAGACATACCAGGCAAA 993 

+11runx2b 

chr20:44,075,029-

44,075,935 GCGGGGCATGTCAGATTCTA CGACAGAGAGGTGAGCGTGA 907 

+28runx2b 

chr20:44,058,608-

44,059,525 CCAAAACAATGAACGGCAGA CGGCAGCCAGAAGAGAGAAC 918 

+38runx2b 

chr20:44,121,758 -

44,122,750 ACCATCCGACAAGCTGATCC TGGAAATCAATGGGGCAAAA 909 

+52runx2b 

chr20:44,034,157-

44,035,096 TTGAAGCGGGGTTCATTTTG GCCCGAACATGAAGGTAACTC 940 

+54runx2b 

chr20:44,032,209-

44,033,092 TGTGCTCACCTTTAAGTGGTTCA GGGAGAGAGCCCTGAGCATA 884 

+61runx2b 

chr20:44,025,533-

44,026,461 TGGTTCTTAGATGGCAATGAGC CCGTCTCGATTCCTTCAATCC 930 

+66runx2b 

chr20:44,019,065-

44,020,088 GGGAAACATCCATACATAAAAAGTGTT GAAACACACACTCAATCACACTCA 1000 

+84runx2b 

chr20:44,002,595-

44,003,488 TGCTTTAATTTATCATCCTTTTGCAG CCTAACGTGGCGAAAAGGCTA 895 
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CHAPTER 3 

Introduction 

 Having identified three RUNX2 associated enhancers from the human 

genome capable of directing expression to osteoblasts in Chapter 2, I attempted 

to characterize upstream regulators for each CRE. Fortunately, the transgenic 

fish lines I created to describe expression patterns also serve as a useful platform 

to study the underlying biology of their reporter constructs.  

Materials and Methods 

 Site directed mutagenesis. Predicted, conserved transcription factor binding 

sites in +210RUNX2 were identified via linear alignment to its zebrafish 

ortholog, +154runx2a, using Clustal W 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Binding sites were individually 

mutated via PCR. Briefly, each site was converted into a unique restriction site 

via two parallel PCR reactions with primer pairs that introduced the restriction 

site and attB sequence flanking each ampliconj.  A subsequent digestion and 

ligation step produced a mutagenized enhancer competent for Gateway 

recombination. For -460RUNX2mutTCF and +542RUNX2mutDLX, the mutated 

enhancer sequences were synthesized (GeneWiz), and cloned directly into pattP-

Tol2-egfp as described in Chapter 2. 

 Drug treatments. To screen for responsiveness to candidate signaling 

pathways, embryos transgenic for each enhancer construct were treated from 48 

                                                           
j Mutagenized +210RUNX2 constructs were constructed by Gina Mahatma. 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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to 72 HPF with inhibitors of FGF signaling (SU5402; 10M) BMP signaling 

(dorsomorphin; 30M), retinoic acid (DEAB; 50M), notch (DAPT; 20M), 

hedgehog (cyclopamine; 50M) and calcineurin (FK506; 3M) signaling and 

screened for changes in GFP expression. Additionally, +210RUNX2:egfp embryos 

were treated from 28-32 HPF, or +210RUNX2:mCh embryos from 100-104 HPF, 

with SU5402 at 10 µM, and -460RUNX2:mCh transgenic embryos were treated 

from 52-56 HPF with GSK3 inhibitor XV at 5µM, before being harvested for in 

situ hybridization or Q-PCR analysis. For all treatments, drugs were dissolved in 

DMSO to make stock solutions, which were diluted into embryo medium; 

additional DMSO was added to equalize concentration for all treatments. 

 Heat shock treatments. Embryos doubly transgenic for -460RUNX2:mCh and 

hsp70:dkk1 165  were immersed in pre–warmed embryo medium at 37C for 30 

minutes at 52 HPF. Following heat shock, embryos were transferred to fresh 

embryo medium at 28.5°C and incubated for 3.5 hours before harvesting for 

analysis. For +542RUNX2:egfp, embryos doubly transgenic with either 

hsp70:bmp2b 166  or hsp70:chd 167  were similarly heat shocked at 48 HPF, and 

harvested at 56 HPF. 

 DNA sequence alignments. Orthologs of human sequences were identified by 

BLAT. Sequences were downloaded from the UCSC genome browser, curated 

into FASTA files and aligned using Clustal X (http://www.clustal.org) 

 Confocal imaging, in situ hybridizations, zebrafish transgenesis and 

quantitative RT-PCR all performed as described in Chapter 2. 
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Results – Characterization of +210RUNX2 

 Identification of conserved predicted transcription factor binding sites in 

+210RUNX2 

 The search for sequence features potentially critical for the ability of an 

enhancer to direct skeletal expression was facilitated greatly in the example of 

+210RUNX2. Unlike -460RUNX2 and +542RUNX2, +210RUNX2 is deeply 

conserved, with orthologous sequences alignable from mammals to teleosts (Fig. 

3.1). The site of conserved sequences themselves was similarly preserved; all are 

located in the final intron of either Runx2 or a putatively orthologous gene in 

more poorly annotated genomes.  There are several conserved predicted 

transcription factor binding sites, including two adjacent inverted binding sites 

for Ets-related factors (containing a characteristic 5’-GGA(A/T)-3’ core), a binding 

site for proteins containing a POU DNA binding domain, and one for RUNX2 

itself.  

Functional testing of conserved predicted transcription factor binding sites in 

+210RUNX2 

 In order to test what, if any, function these deeply conserved sequences had 

with regard to the function of the enhancer, these potentially critical residues 

were individually and specifically ablated in new transgenic constructs (Figure 

3.1) Single insert transgenic lines were constructed as in Chapter 2, and these 

were crossed onto fish carrying the wild type +210RUNX2 sequence driving the 

expression of mCherry (+210RUNX2:mCh). Although only representative 
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microscopic photography is demonstrated below, at least three lines of each 

transgene have been constructed to confirm the changes in enhancer activity.  

The +210RUNX2 RUNX2 binding site mediates bone expression. 

 Removal of the RUNX2 binding site produced an enhancer that failed to 

direct expression to bone at any time during the first five days post fertilization. 

(Figure 3.2 a-c). However, this altered enhancer was still capable of directing 

early expression to the branchial arches (Figure 3.2d-f). 

The +210RUNX2 Ets binding sites mediate branchial arch expression. 

  Without the conserved Ets binding sites, +210RUNX2 is still competent to 

direct expression to bony tissues, though this does appear to be less robust 

compared to the activity of the wild type enhancer (Figure 3.3 a-c). Possible 

position integration effects on the autonomy of the transgene currently confound 

confirming this quantitatively. More strikingly, however, this altered enhancer 

failed to direct expression to the branchial arches at 3DPF (Figure 3.3 d-f).  

The +210RUNX2 POU binding site has no confirmable effect on transgene 

activity. 

 Eliminating the POU binding site in +210RUNX2 did not compromise its 

ability to direct expression to the domains of either the branchial arches or 

osteoblasts (Figure 3.4a,d).  eGFP expression driven by +210RUNX2mutPOU did 

appear to be more intense than that typically driven by the wildtype enhancer, 

suggesting that the conserved sequence might actually have a role in 

attenuating expression.  
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+210RUNX2 directed expression is a direct target of FGF signaling.  

 Because of the presence and functionality of two inverted Ets binding sites in 

+210RUNX2, I sought to understand what signaling pathways might be 

mediating gene regulation through those conserved sites. Ets transcription 

factors are often found to be downstream of the FGF signaling pathway 168-170 , 

which, in turn, has a well-appreciated role in skeletogenesis and Runx2 

regulationk. The small molecule inhibitor SU-5402 is a potent and selective 

vascular endothelial growth factor receptor (VEGFR) and fibroblast growth 

factor receptor (FGFR) inhibitor 171 . An initial treatment of 10uM from 24-48 

HPF reduced +210RUNX2:eGFP mediated fluorescence in the branchial arches 

(Fig3.5a,b) To confirm this downregulation was a direct result of modulating 

FGF signaling, I treated +210RUNX2:eGFP transgenic embryos with the Fgf 

inhibitor SU5402 from 28-32 HPF. In situ hybridization showed specific 

reduction of egfp expression in the branchial arches (Fig. 3.5c-f), and Q-PCR 

confirmed a quantitative reduction in transcript levels (Fig. 3.5g). While the ETS 

binding sites are not absolutely required for the later activity of +210RUNX2 in 

differentiated osteoblasts, activity of the enhancer was quantitatively decreased 

by pharmacological inhibition of FGF signaling from 100-104 HPF (Fig. 3.5h), 

demonstrating continued regulation of enhancer activity by the FGF pathway 

during osteoblast differentiation. 

Results – Characterization of +542RUNX2 

                                                           
k Reviewed in Chapter 1 



 

61 
 

 The -460RUNX2 and +542RUNX2 enhancers are less deeply conserved, 

complicating prediction of transcription factor binding sites. To provide evidence 

for specific regulatory inputs, I pharmacologically altered activity of candidate 

signaling pathways in transgenic embryos. Changes in BMP, FGF, retinoic acid, 

notch, hedgehog, calcineurin, and canonical Wnt signaling had no effect on 

+542RUNX2 activity (data not shown).   

A conserved subelement of +542RUNX2 is sufficient to direct osteoblast 

expression. 

 To better localize the essential components of +542RUNX2, I created 

transgenic lines containing the most conserved cores of the element (Figure 3.6a; 

Table3.1) driving eGFP expression. The more conserved of the two (MC1; 

Phastcons LOD = 773) directed expression to osteoblasts in a similar manner to 

the entire element (Figure 3.6b,c). However, bone expression was notably less 

robust than that driven by +542RUNX2. +542RUNX2MC2:eGFP (Phastcons = 

334) expresses in the basihyal and ceratohyal cartilages (Figure 3.6d,e), 

components of the pharyngeal skeleton, but this does not comprise part of the 

expression pattern normally dictated by the intact wild type element. 

A conserved DLX binding site is necessary for +542RUNX2 activity. 

Alignment of the +542RUNX2 enhancer with the orthologous sequence from 

chicken revealed several conserved predicted binding sites (Figure 3.7a). 

Initially, I hypothesized that SATB2 might be directly regulating +542RUNX2 

because of the generalized delay in bone formation observed in Satb2-/- mice 172 .  
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However, ablation of this sequence failed to curtail osteoblast expression 

directed by the enhancer (Figure 3.7b,c). Subsequently, I mutated the core of the 

Dlx binding site and observed no eGFP expression in 500 embryos injected with 

the resulting construct, compared to the readily observable mosaic expression 

regulated by the wild–type sequence (Figure 3.7d,e). Transgenic embryos from 

+542RUNX2mutDLX:eGFP founders showed no eGFP expression, despite 

evidence of germline transmission of the transgene (Figure 3.7h) confirming 

requirement of the Dlx binding site for enhancer activity. 

Results – Characterization of -460RUNX2 

A drug screen identifies GSK-3ß as an inhibitor of -460RUNX2 mediated 

expression. 

Treatment -460RUNX2:egfp fish with a small molecule inhibitor of GSK3 from 

48-72 HPF resulted in a broad upregulation of eGFP expression (Figure 3.8a,b). 

To confirm that this effect is a direct effect of modulating the Wnt pathway, a 

narrower window of treatment from 52-56 HPF (which is relevant to the 

initiation of -460RUNX2 mediated expression in the cleithrum; Figure 2.3) 

demonstrated a similar pattern of upregulation (Figure 3.8c,d). GSK3 is an 

inhibitory component of the canonical Wnt signaling pathway, but can also 

function in other signaling pathways. To confirm Wnt regulation of -460RUNX2, 

we generated embryos doubly transgenic for -460RUNX2:mCh and the Wnt 

inhibitory protein Dkk-1 under control of the hsp70 promoter (hs:Dkk1GFP) 165 . 

A brief heat shock substantially reduced expression of mCherry (Figure 3.8e,f).  
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-460RUNX2 requires two conserved TCF/LEF binding sites to direct 

expression. 

 Canonically, the endpoint of Wnt mediated signaling is the recruitment of 

members of the TCF/LEF family of transcription factors to cognate DNA binding 

sites 173 . There are two predicted TCF/Lef1 binding sites in the -460RUNX2 

sequence, conserved among mammals (Figure 3.9a,b), so I created a transgene in 

which these sites had been mutated (-460RUNX2mutTCF:eGFP). We observed 

no eGFP expression in >500 injected embryos (Figure 3.9d). -

460RUNX2mutTCFLEF:eGFP founders showed no eGFP expression, despite 

evidence of germline transmission of the transgene (Figure 3.9e,f) confirming 

requirement of the TCF/LEF binding sites for enhancer activity.  
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Figure 3.1 -- Deep linear conservation between +210RUNX2 

and other vertebrate orthologs.  Alignment to orthologous sequences from 

other vertebrates reveals conservation of predicted transcription factor binding 

sites, including RUNX2 itself, a binding site for transcription factor containing a 

POU domain and a pair of inverted sites for the Ets family of transcription 

factors. 
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Figure 3.2 – The Runx2 binding site mediates +210RUNX2 directed bone 

expression. (a-c) Lateral views of a doubly transgenic 

+210RUNX2mutRUNX2:eGFP; +210RUNX2:mCh zebrafish show no expression 

in any bony tissue at 5DPF driven by  +210RUNX2mutRUNX2, while this 

activity is intact in +210RUNX2:mCh. (d-f) Ventral views of a doubly transgenic 

+210RUNX2mutRUNX2:eGFP; +210RUNX2:mCh zebrafish show both 

transgenes expressing in the branchial arches at 3 DPF. ba, branchial arches; 

cb5, ceratobranchial 5; cl, cleithrum; op, opercle 
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Figure 3.3 – The ETS binding sites mediates branchial arch expression. 

(a-c) Lateral views of a doubly transgenic +210RUNX2mutETS:eGFP; 

+210RUNX2:mCh zebrafish show attenuated expression in bony tissue at 5DPF 

driven by  +210RUNX2mutETS, while this activity is intact in 

+210RUNX2:mCh. (d-f) Dorsal views of a doubly transgenic 

+210RUNX2mutETS:eGFP; +210RUNX2:mCh zebrafish show failure of 

+210RUNX2mutETS, to express in branchial arches at 3DPF, while this activity 

is intact in +210RUNX2:mCh. ba, branchial arches; cb5, ceratobranchial 5; cl, 

cleithrum; op, opercle 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 
 

Figure 3.4 – The POU binding site is not essential for +210RUNX2 

activity during embryogenesis. (a-c) Lateral views of a doubly transgenic 

+210RUNX2mutPOU:eGFP; +210RUNX2:mCh zebrafish demonstrate 

coexpression in bony tissue at 5DPF by both transgenes. (d-f) Dorsal views of a 

doubly transgenic +210RUNX2mutPOU:eGFP; +210RUNX2:mCh zebrafish 

show coexpression in branchial arches at 3DPF by both transgenes. ba, branchial 

arches; cb5, ceratobranchial 5; cl, cleithrum; op, opercle 
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Figure 3.5 – +210RUNX2 is regulated by the FGF signaling pathway. a,b) 

Treatment of +210RUNX2:egfp transgenics with the FGF inhibitor SU5042 from 

24-48 HPF resulted in loss of transgene expression in the branchial arches. c-f) 

As show shown by in situ hybridization for egfp,  a narrow window of treatment 

from 28-32 HPF this loss of expression is specific and direct. g,h) Q-PCR 

confirmed a quantitative decrease in reporter gene expression following 

treatment for the same interval, and similarly following a later treatment from 

100-104 HPF. Views in a and b are lateral, and in c-f, dorsal, with anterior to the 

left. 
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Figure 3.6 – Subcloning of +542RUNX2 localizes osteoblast activity to a 

433 bp fragment. a) Genome browser view of the original +542RUNX2 element 

with tracks indicating the location of the amplicons for subcloning (black) and 

Phastcon elements upon which those amplicons were designed (brown). b,d) 

Lateral views of 5DPF transgenic embryos carrying +542RUNX2MC1:eGFP (b) 

or (d) +542RUNX2MC2:eGFP. c,e) Ventral views of 5DPF transgenic embryos 

carrying +542RUNX2MC1:eGFP (c) or (e) +542RUNX2MC2:eGFP. ba, branchial 

arches; bh, basihyal; bs, brachiostegal ray; ch, ceratohyal; cl, cleithrum; de, 

dentary; op, opercle; 
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Figure 3.7 – Identification and functional testing of conserved 

transcription factor binding sites in +542RUNX2A) Alignment of 

+542RUNX2 and +312RUNX2(gg) along with transcription factor binding sites 

identified in both by Transfac (blue), Genomatix (orange), or Uniprobe (red) b,c) 

Representative views of eGFP expression pattern in 

+542RUNX2mutSATB2:eGFP at 5DPF. d) Alignment of a predicted SATB2 

binding site to other vertebrate orthologs. Sequence of mutagenized construct is 

shown below. e) Following injection of +542RUNX2:egfp, mosaic expression in 

bones, including the cleithrum of two different embryos (arrows) is readily 

apparent. f) In contrast, >500 embryos injected with +542RUNX2mutDlx:eGFP 

showed no mosaic expression. g) Alignment of a predicted Dlx binding site to 

other vertebrate orthologs. Sequence of mutagenized construct is shown below. 

h) Presence of +542RUNX2mutDLX:eGFP in non-expressing progeny of injected 

founder was confirmed by PCR and sequencing of transgene. cb5; 

ceratobranchial 5; cl, cleithrum; de, dentary; mx, maxilla; op, opercle. 
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Figure 3.8 – -460RUNX2 mediated expression is responsive to Wnt 

mediated signaling. Compared to control (a), activity of -460RUNX2 is 

increased by treatment from 48-72 HPF with GSK3b inhibitor XV. (b) A 

narrower window of treatment (52-56HPF) shows rapid upregulation (d) relative 

to control (c). -460RUNX2 mediated expression (e) is abolished by ectopic 

expression of the Wnt inhibitor dkk1 by heat shock (f). cl, cleithrum; op, opercle 
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Figure 3.9 – -460RUNX2 regulatory competency requires two conserved 

TCF/LEF binding sites. a,b) Alignment of vertebrate genomes to conserved 

TCF/LEF binding sites (a) at chr6:44,835,639-44,835,645(hg19), and b) 

chr6:44,836,005-44,836,012(hg19) in -460RUNX2. Residues that have been 

changed in the mutagenized transgene are indicated below the alignment. c) 

Following injection of -460RUNX2:eGFP, mosaic expression in bone is readily 

apparent at 5 DPF, seen in the cleithra of multiple injected embryos (arrows). d) 

In contrast, following injection of -460RUNX2mutTCFLEF:eGFP, no expression 

was seen in >500 embryos. PCR and sequencing of progeny from injected fish 

confirmed the presence of the transgene with ablated TCF/LEF binding sites (f), 

compared to sequencing of the transgenics with wildtype sequence (e). 
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Name F primer R primer Coordinates (hg18) 

Size 

(bp) 

+542RUNX2 

MC 1 AGACAACACGGGCTCATCGT CCCCAAGGGTCTCTGGATTT 

chr6:45,945,982-

45,946,414 433 

+542RUNX2 

MC 2 CTGGGATGGCCAGAGAGAGG TGGCTTCGATATGCCTCTAGTGTA 

chr6:45,946,358-

45,946,610 253 

 

 

Table 3.1. Sequences of +542RUNX2 tested for enhancer activity. Both 

elements are wholly located within +542RUNX2. The primer sequences are those 

used to amplify the elements from genomic DNA for testing. 
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CHAPTER 4 

Summary of human RUNX2 associated enhancers 

 Runx2 is the common denominator in osteoblast development throughout the 

skeleton, and its levels of expression are critical. As a crucial step in 

understanding the regulation of the gene, and subsequently the skeleton itself, I 

have identified distant osteoblast specific enhancers associated with RUNX2 and 

characterized signaling pathways acting on them. Despite their common feature 

of directing osteoblast expression, they are strikingly diverse. They are widely 

spaced across the locus (Figure 2.1), have no obvious sequence similarity to each 

other, and are conserved across species to varying degrees. While they all direct 

expression to osteoblasts, they do so with differing spatiotemporal dynamics.  

The cleithrum is the first bone to ossify in the zebrafish skeleton and does so 

intramembraneously. Using it as a proxy for the relative timing of expression 

onset yields a sequence of +542RUNX2  +210RUNX2  -460RUNX2 (Figure 

2.3). Whether this is consistent across all bony structures is unclear; it appears 

that the ability to drive expression to the vertebral arches is exclusively a 

property of +542RUNX2 (Figure 2.6).  

 In addition to expression at the resolution of individual bones, 

subpopulations of osteoblasts express the three transgenes differentially. As is 

evidenced by study of opercle development in these transgenic lines (Figure 2.4) 

these enhancers direct expression to different cells within that structure. 

+542RUNX2:eGFP expression is uniform throughout the opercle and cleithrum 
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(Figure 2.3). Combining these observations with its unique expression in the 

vertebral arches and early expression in the cleithrum, it is intriguing to 

speculate that +542RUNX2-mediated expression is the most ‘fundamental’ of the 

three characterized enhancers and tied primarily to osteoblast identity itself.  

The expression pattern directed by +210RUNX2 with respect to the developing 

opercle is similar to that of the fli1:eGFP transgenic line, which labels all neural-

crest derived mesenchyme 161 and may indicate cells that have recently become 

RUNX2+. Finally, -460RUNX2 expression is relatively strongest in the strut and 

the leading edge in the fan structure of the bone. These cells are also sp7:mCh 

positive, indicating their likely active deposition of bone ECM components. The 

opercle fan structure expands via a banding pattern 161 , so -460RUNX2 positive 

cells may be those that have committed to remaining in a specific iteration of 

that process.  

 Finally, these three CREs do not fit the definition of redundant ‘shadow’ 

enhancers 174 that reinforce a response to a single inductive event and ensure 

transcriptional robustness to environmental variability. Rather, they appear to 

integrate inputs from different signaling pathways to induce or maintain Runx2 

expression (Figure 4.1). This observation parallels and complements the 

diversity of signaling inputs capable of accelerating Runx2 expression and 

osteogenic differentiation in the literature. 
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Summary of human RUNX2 associated enhancer activity -- +210RUNX2 directs 

expression to osteoblasts separably through FGF signaling and Runx2 

autoregulation. 

 That +210RUNX2 shares orthology both in sequence and function with an 

element similarly placed in the last intron of the zebrafish Runx2 ortholog 

runx2a (+154runx2a;Figure 2.5) suggests its role in regulating Runx2 activity is 

ancient, and consequential. It also possesses a modularity competent to respond 

to FGF signaling to direct expression to the branchial arches (essentially) or 

osteoblasts (qualitatively), while also possessing a conserved binding site for 

RUNX2 required to direct bone expression. The involvement for FGF signaling 

during osteoblast differentiation generally has been discussed in Chapter 1, so it 

is not surprising that +210RUNX2 directs expression to the calvarial sutures 

that are so sensitive to that signaling axisl.  

 +210RUNX2 also presumably functions as a site for positive autoregulation 

of Runx2 activity. In diverse biological systems, the existence of a positive 

feedback loop is an essential step in the creation of switches with an all-or-none 

‘digital’ output characteristic 175 .  And where better to place a switch incapable of 

nuance than at a gatekeeper gene whose expression above threshold is sufficient 

to completely alter cell fate? Whether the +210Runx2 response to RUNX2 is a 

required step in the commitment of MSCs or chondrocytes to an osteoblastic fate 

is unclear. There may be other unannotated positive and negative feedback loops 

                                                           
l Kague, E. Unpublished observation 
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involving recruitment of RUNX2 to target CREs, to alter cell fate kinetics.  

Analysis of the rat and mouse Runx2 P1 promoters indicated that RUNX2 

binding to the 5’ UTR coding region of Runx2 was capable of suppressing 

transcription in vitro 176 . However, a reasonable hypothesis is that +210RUNX2 

functions to ‘lock in’ a cell to an osteoblastic fate commitment, due to its inability 

to direct bone-specific expression without a conserved binding site. 

Summary of human RUNX2 associated enhancers -- +542RUNX2 directs 

expression to early osteoblasts. 

 Dissection of the activity of +542RUNX2 was focused on the two most 

biologically likely conserved direct upstream regulators. SATB2 is a nuclear 

matrix attachment protein that also functions as a transcription factor. Satb2-/- 

mice have generalized osteoblast differentiation delays as well as craniofacial 

patterning defects. Deletion of the predicted SATB2 binding site from 

+542RUNX2 did not affect the ability of the enhancer to direct expression to 

osteoblasts. Although, SATB2 binds the promoters of and upregulates bone 

marker genes, it is also hypothesized to act as a negative regulator of Hoxa2 

expression during osteoblast differentiation. Whether it might be executing a 

similar role with regards to regulation of +542Runx2 is unclear with respect to 

current experimental evidence.     

 Members of the Dlx family are dynamically expressed during osteoblast 

maturation, suggesting roles in different aspects of this process 177 . During skull 

formation in chick, Dlx5 is expressed in osteoblast progenitors, specifically in 
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response to BMP but not FGF signaling, and its expression activates Runx2 and 

osteogenic differentiation in uncommitted embryonic calvarial mesenchyme 78 . 

Zebrafish dlx5a is expressed in the cleithrum at least as early as the long pec 

stage (~42 HPF) 178 , consistent both with early expression of runx2b and early 

activity of +542RUNX2. Coexpression of bmp2a 178 and bmp2b early in the 

cleithrum is also consistent with a BMP->DLX->RUNX2 signaling axis in these 

cells. However, +542RUNX2 did not demonstrate response to perturbation by 

induction of bmp2b or chd via heat shock (data not shown), confounding the 

impulse to arrive at such a conclusion. While the ablated binding site was 

identified by multiple algorithms as one similar to others capable of recruiting 

DLX proteins, transcription factor binding site profiles are famously degenerate, 

and so it is reasonable that other homeodomain containing proteins could be 

signaling through +542RUNX2. 

Summary of human RUNX2 associated enhancers -460RUNX2 potentially links 

Wnt signaling, Runx2 regulation and variation in common skeletal phenotypes 

and diseases. 

 Although experimental and clinical data indicate that gross aberrations in 

Runx2 expression cause skeletal disorders, smaller individual variations in 

Runx2 dosage might be responsible for differences in variation of non-pathologic 

skeletal phenotypes or susceptibility to disease. A cluster of SNPs associated 

with skeletal conditions (bone mass density (BMD) and osteoarthritis (OA), and 

height in three different populations) by genome wide association studies cluster 
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around the Wnt responsive enhancer -460RUNX2 (Figure 4.3; Table4.1) No other 

SNPs associated with skeletal phenotypes are located in the remainder of the 

RUNX2 locus. Wnt signaling has been well implicated in affecting BMD, 

although the precise mechanism of that effect is not clear in the literature. Some 

evidence suggests the effect of Wnt signaling on bone mass is indirect, mediated 

by serotonin secretion by neuroendocrine cells of the gut 179 , although this has 

been disputed 180 . The presented data strongly support a direct role for Wnt 

signaling in osteoblasts, acting via transcriptional regulation of Runx2.  

 The location of -460RUNX2 suggests that variations in the enhancer itself 

alter the risk of low BMD and OA and influence height through changes in 

RUNX2 expression. Interestingly, in addition to its positive association with 

BMD, the canonical Wnt pathway has been implicated in increased 

osteoarthritis risk 181, 182 , as has increased RUNX2 expression 183, 184  Therefore, 

sequence variants in the population may affect either the basal activity of  -

460RUNX2 or its responsiveness to Wnt signaling, accounting for the genetic 

associations with both of these skeletal phenotypes. An intriguing possibility is 

that two alleles at a single location could lead either to increased enhancer 

activity and increased arthritis risk, or decreased enhancer activity and 

increased risk of osteoporosis. 

Runx2 expression modulation as a source of evolutionary skeletal diversity.  

 Runx2 protein activity is positively correlated to facial length in carnivores, 

especially domesticated dogs 185 . This relationship is not generally true among 
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placental mammals, suggesting that other changes, such as in gene expression 

levels, are more likely to correlate with intra– or inter-specific variation 186 . The 

sensitivity of normal skeletal development to precise levels of Runx2 has led to 

the suggestion that alterations in Runx2 activity provide a mechanism for 

skeletal evolution, acting as a ‘tuning knob’ to either accelerate or delay 

osteoblast differentiation during development 186 . Following assembly of the 

Neanderthal genome sequence, the RUNX2 locus was identified as one of the 

regions with the strongest evidence of positive selection in the evolution of 

modern humans 187 . Specifically, the 3' end of RUNX2, encompassing 

+210RUNX2, shows a deficit of derived alleles in modern humans (Figure 4.3a). 

No fixed differences in the RUNX2 coding sequence are present between 

Neanderthal and modern humans, suggesting that the positive selection has 

acted on changes in regulatory sequences. Comparing the human +210RUNX2 

sequence to other primates identifies three derived, human specific SNPs that 

could potentially link this element to the evolution of the human skeleton 

(Figure 4.3b).  Interestingly, many of the differences between the skeletons of 

Neanderthal and modern humans—clavicular morphology, frontal bossing of the 

skull—are similar to the differences observed in cleidocranial dysplasia, which is 

caused by a Runx2 gene dosage defect 127, 188, 189 .    
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Future directions 

Future investigation of the functional consequences of specific sequence 

alterations in the RUNX2 enhancers will shed light on the role of its regulation 

in development, evolution, and disease. An obvious question resulting from the 

screen in Chapter 2 is the thoroughness of it. While it is likely impossible to ever 

know the cis regulatory architecture of single gene in a complex eukaryotic 

genome has been exhaustively annotated, some potential experiments in other 

model systems present themselves to address this question. However, this will 

require divesting ourselves of the zebrafish model. While it has been shown to be 

an effective system for evaluating the regulatory potential of discrete elements in 

the human genome, the existence of two runx2 genes as well as the current size 

limitations of BAC-mediated transgenesis make the fish a poor choice to study 

the intact human Runx2 locus. To try to get a broader locus-wide view of Runx2 

enhancer dynamics during development, we must turn turn to a system with a 

more similar Runx2 structure, namely the mouse. 

 Although not discussed in this document, it is not difficult to obtain a 

population of cells uniformly positive for the Runx2 transgene from early 

embryos. This process necessitates enzymatic digestion followed by flow-

cytometry sorting to derive an enriched population of transgene expressing 

osteoblasts at a relatively discrete stage of development. Sorting based on 

multiple colors/transgenes can further refine this staging. Creating one or more 

mouse transgenic lines using either the +542RUNX2 or -460RUNX2 elements 
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would, assuming expression patterns are similar in the mouse, permit 

exploration for bone specific enhancers in early osteoblasts. This could be done 

by looking for enrichment for histone modifications associated with regulatory 

sequences, or for regions directly associated with RUNX2 itself. Circular 

chromosome conformation capture (4C) allows to us to ask questions specifically 

about the dynamics of the Runx2 locus itself. Using one or both Runx2 promoters 

as ‘bait’, comparing the physical interaction of distal elements with the Runx2 

TSS would presumably yield a list of currently unknown cis regulators, as well 

as informing how they and the currently known Runx2 enhancers function 

dynamically through osteoblast development189.    

 Additionally, as the number of and knowledge regarding individual RUNX2 

cis regulators grows, the genetic tools they offer might be applicable to studying 

bone biology in other contexts than embryonic differentiation. +210RUNX2 

transgenic fish have already been used in a to study bone regeneration post-

amputation 190  as well as suture development in the skull vaultm. Certainly, how 

bones heal post-fracture is a robust area of research 191 , and the ability to 

visualize Runx2 expression during in vivo assays would presumably augment 

them. Finally, the transgenic lines could be incorporate in a high throughput 

screen against a pharmaceutical library 192 , enhancing drug discovery for Runx2 

expression mediators that may aid in therapies for common skeletal disorders 

such as OA and osteoporosis.  

                                                           
m E. Kague, unpublished 
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Conclusion 

 Taken together, the data presented in this document provide evidence for 

direct regulation of Runx2 transcription by biologically important signaling 

pathways and transcription factors through three independent enhancers. This 

complex regulatory landscape has allowed the fine–tuning of expression of this 

critical developmental gene through alterations in enhancer activities. 

Furthermore, I hypothesize that these alterations have been selected for in 

evolution, and help account for differences in skeletal morphology among species. 

This data also supports the model that variations in a distal enhancer of RUNX2 

account for genetic associations in the region with height, BMD, and increased 

OA risk.  
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Figure 4.1 -- Model for integration of multiple signaling inputs at the 

Runx2 locus. Three identified enhancers at the Runx2 locus are regulated by 

different upstream factors, and each is capable of interacting independently with 

the transcriptional start site (dotted lines) to activate gene transcription. Once 

transcription is activated via one or more external signals, it is stabilized by 

Runx2 auto-regulation through the intronic enhancer. Downstream, expression 

of Runx2 in mesenchymal precursor cells of diverse embryologic origins leads to 

activation of genes necessary for development of osteoblasts. 
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Figure 4.2 – SNPs associated with skeletal phenotypes and disorders 

cluster near the Wnt responsive enhancer -460RUNX2. A genome browser 

view of the human RUNX2 locus interrogated for regulatory activity shows the 

location of all SNPs associated with a human phenotype by genome wide 

association studies. SNPs associated with skeletal phenotypes are listed in Table 

4.1; rs1932040 is associated with attention deficit hyperactivity disorder. 
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Figure 4.3 – Recent positive selection in the human lineage near 

+210RUNX2. (a) Genome browser view of the human RUNX2 locus. Signals of 

positive selection based on scoring of individual SNPs. A negative score indicates 

more derived alleles in modern humans relative to Neanderthals and is evidence 

of positive selection. SNP scan data obtained from  187 .  (b) Three derived SNPs 

(indicated by red rectangles) in +210RUNX2 are candidate alleles for a recent 

selective sweep in the human lineage. All three are derived with respect to the 

ancestral primate state and have not been observed to be polymorphic in human 

populations. 
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SNP Phenotype MAF Dist from -460RUNX2 (kb) 

rs556621 Atherosclerotic Stroke 0.3 -241 

rs11755164  Bone mass density 0.4 -196 

rs10948172 Osteoarthritis 0.29 58 

rs9472414 Adult Height (European)  0.22 111 

rs10948197 Adult Height (Korean) 0.34 132 

rs9395066 Adult Height (DECODE) 0.48 260 

 

 

 

Table 4.1 – SNPs associated with human skeletal phenotypes in the human 

RUNX2 locus.  Minor allele frequency is given in the studied population. Distance 

from the Wnt responsive enhancer -460RUNX2 is given in kilobases. A negative 

distance indicates distance 5’ to the element, while a positive one denotes 3’ 

separation. 

 

 

 

 

 

 

 



 

102 
 

References 

1. Lefebvre, V. & Bhattaram, P. Vertebrate Skeletogenesis. Curr. Top. Dev. Biol. 

90C, 291-317 (2010). 

2. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control 

of the niche size. Nature 425, 836 <last_page> 841 (2003). 

3. Ferron, M. et al. Insulin Signaling in Osteoblasts Integrates Bone Remodeling 

and Energy Metabolism. Cell 142, 296-308 (2010). 

4. Copp, D. H. & Shim, S. S. The homeostatic function of bone as a mineral 

reservoir. Oral Surgery, Oral Medicine, Oral Pathology 16, 738-744 (1963). 

5. Oury, F. et al. Endocrine Regulation of Male Fertility by the Skeleton. Cell 

(2011). 

6. Zhang, G., Eames, B. F. & Cohn, M. J. in Current Topics in Developmental 

Biology 15-42 (Academic Press. 

7. - Meulemans, D. & - Bronner-Fraser, M. - Insights from Amphioxus into the 

Evolution of Vertebrate Cartilage. - PLoS ONE, - e787. 

8. Person, P. & Mathews, M. B. Endoskeletal Cartilage in a Marine polychaete, 

Eudistylia polymorpha. Biol. Bull. 132, 244-252 (1967). 

9. Wilson, R., Belluoccio, D. & Bateman, J. F. Proteomic analysis of cartilage 

proteins. Methods 45, 22-31 (2008). 

10. Long, F. Building strong bones: molecular regulation of the osteoblast 

lineage. Nat. Rev. Mol. Cell Biol. 13, 27-38 (2011). 



 

103 
 

11. Lammi, M. J., Häyrinen, J. & Mahonen, A. Proteomic analysis of cartilage- 

and bone-associated samples. Electrophoresis 27, 2687-2701 (2006). 

12. Weinreb, M., Shinar, D. & Rodan, G. A. Different pattern of alkaline 

phosphatase, osteopontin, and osteocalcin expression in developing rat bone 

visualized by in situ hybridization. Journal of Bone and Mineral Research 5, 831-

842 (1990). 

13. Doty, S. B. in Enzyme histochemistry of bone and cartilage cells 37 (Fischer, 

Stuttgart, 1976). 

14. Noble, B. S. The osteocyte lineage. Arch. Biochem. Biophys. 473, 106-111 

(2008). 

15. Teitelbaum, S. L. Bone Resorption by Osteoclasts. Science 289, 1504-1508 

(2000). 

16. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and 

disease. Nat. Rev. Immunol. 8, 726-736 (2008). 

17. Hall, B. K. in Bones and cartilage: developmental and evolutionary skeletal 

biology 760 (San Diego, Calif. ; Elsevier Academic Press, c2005. 

18. Franz-Odendaal, T. A. Induction and patterning of intramembranous bone. 

Front. Biosci. 16, 2734-2746 (2011). 

19. Long, F. & Ornitz, D. M. Development of the Endochondral Skeleton. Cold 

Spring Harbor Perspectives in Biology 5 (2013). 



 

104 
 

20. Kania, M. A., Bonner, A. S., Duffy, J. B. & Gergen, J. P. The Drosophila 

segmentation gene runt encodes a novel nuclear regulatory protein that is also 

expressed in the developing nervous system. Genes Dev. 4, 1701-1713 (1990). 

21. Kitayner, M., Rozenberg, H., Rabinovich, D. & Shakked, Z. Structures of the 

DNA-binding site of Runt-domain transcription regulators. Acta Crystallogr. D 

Biol. Crystallogr. 61, 236-246 (2005). 

22. Komori, T. et al. Targeted Disruption of Cbfa1 Results in a Complete Lack of 

Bone Formation owing to Maturational Arrest of Osteoblasts. Cell 89, 755 

<last_page> 764 (1997). 

23. Inada, M. et al. Maturational disturbance of chondrocytes in Cbfa1-deficient 

mice. Developmental Dynamics 214, 279-290 (1999). 

24. Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause 

cleidocranial dysplasia. Cell 89, 773-779 (1997). 

25. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a 

transcriptional activator of osteoblast differentiation. Cell 89, 747-754 (1997). 

26. Gersbach, C. A., Le Doux, J. M., Guldberg, R. E. & García, A. J. Inducible 

regulation of Runx2-stimulated osteogenesis. Gene Ther. (2006). 

27. Zheng, H., Guo, Z., Ma, Q., Jia, H. & Dang, G. Cbfa1/osf2 transduced bone 

marrow stromal cells facilitate bone formation in vitro and in vivo. Calcif. Tissue 

Int. 74, 194-203 (2004). 



 

105 
 

28. Stein, G. S. et al. Runx2 control of organization, assembly and activity of the 

regulatory machinery for skeletal gene expression. Oncogene 23, 4315-4329 

(2004). 

29. Liu, W. et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast 

maturation and causes osteopenia with multiple fractures. J. Cell Biol. 155, 157-

166 (2001). 

30. Ueta, C. et al. Skeletal Malformations Caused by Overexpression of Cbfa1 or 

Its Dominant Negative Form in Chondrocytes. The Journal of Cell Biology 153, 

87-100 (2001). 

31. Maruyama, Z. et al. Runx2 determines bone maturity and turnover rate in 

postnatal bone development and is involved in bone loss in estrogen deficiency. 

Dev. Dyn. 236, 1876-1890 (2007). 

32. Nakashima, K. et al. The Novel Zinc Finger-Containing Transcription Factor 

Osterix Is Required for Osteoblast Differentiation and Bone Formation. Cell 108, 

17-29 (2002). 

33. Barbuto, R. & Mitchell, J. Regulation of the osterix (Osx, Sp7) promoter by 

osterix and its inhibition by parathyroid hormone. Journal of Molecular 

Endocrinology 51, 99-108 (2013). 

34. Zhang, C. et al. Inhibition of Wnt signaling by the osteoblast-specific 

transcription factor Osterix. Proceedings of the National Academy of Sciences 

105, 6936 <last_page> 6941 (2008). 



 

106 
 

35. Ortuño, M. J., Susperregui, A. R. G., Artigas, N., Rosa, J. L. & Ventura, F. 

Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone 

enhancer and proximal promoter regions. Bone 52, 548 <last_page> 556 (2013). 

36. Okamura, H., Yoshida, K., Yang, D. & Haneji, T. Protein phosphatase 2A C? 

regulates osteoblast differentiation and the expressions of bone sialoprotein and 

osteocalcin via osterix transcription factor. J. Cell. Physiol. 228, 1031-1037 

(2013). 

37. Lapunzina, P. et al. Identification of a Frameshift Mutation in Osterix in a 

Patient with Recessive Osteogenesis Imperfecta. The American Journal of 

Human Genetics 87, 110-114 (2010). 

38. Zhou, X. et al. Multiple functions of Osterix are required for bone growth and 

homeostasis in postnatal mice. Proceedings of the National Academy of Sciences 

107, 12919-12924 (2010). 

39. Wozney, J. M. et al. Novel regulators of bone formation: molecular clones and 

activities. Science 242, 1528-1534 (1988). 

40. Urist, M. R. Bone: formation by autoinduction. Science 150, 893-899 (1965). 

41. Tsuji, K. et al. BMP4 is dispensable for skeletogenesis and fracture-healing 

in the limb. J. Bone Joint Surg. Am. 90 Suppl 1, 14-18 (2008). 

42. Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is 

required for the initiation of fracture healing. Nat. Genet. 38, 1424-1429 (2006). 

43. Gamer, L. W. et al. BMPR-II is dispensable for formation of the limb 

skeleton. Genesis 49, 719-724 (2011). 



 

107 
 

44. Tsuji, K. et al. Conditional deletion of BMP7 from the limb skeleton does not 

affect bone formation or fracture repair. J. Orthop. Res. 28, 384-389 (2010). 

45. Bandyopadhyay, A. et al. Genetic analysis of the roles of BMP2, BMP4, and 

BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2, e216 (2006). 

46. Lee, K. S. et al. Runx2 is a common target of transforming growth factor 

beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and 

Smad5 induces osteoblast-specific gene expression in the pluripotent 

mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20, 8783-8792 (2000). 

47. Lee, M. H. et al. Transient upregulation of CBFA1 in response to bone 

morphogenetic protein-2 and transforming growth factor beta1 in C2C12 

myogenic cells coincides with suppression of the myogenic phenotype but is not 

sufficient for osteoblast differentiation. J. Cell. Biochem. 73, 114-125 (1999). 

48. Gersbach, C. A., Byers, B. A., Pavlath, G. K. & Garcia, A. J. Runx2/Cbfa1 

stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing 

osteoblastic phenotype. Exp. Cell Res. 300, 406-417 (2004). 

49. Liu, T. et al. BMP-2 promotes differentiation of osteoblasts and chondroblasts 

in Runx2-deficient cell lines. J. Cell. Physiol. 211, 728-735 (2007). 

50. Kobayashi, H., Gao, Y., Ueta, C., Yamaguchi, A. & Komori, T. Multilineage 

differentiation of Cbfa1-deficient calvarial cells in vitro. Biochem. Biophys. Res. 

Commun. 273, 630-636 (2000). 



 

108 
 

51. Lee, M., Kwon, T., Park, H., Wozney, J. M. & Ryoo, H. BMP-2-induced 

Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem. 

Biophys. Res. Commun. 309, 689 <last_page> 694 (2003). 

52. Abe, E. et al. Essential requirement of BMPs-2/4 for both osteoblast and 

osteoclast formation in murine bone marrow cultures from adult mice: 

antagonism by noggin. J. Bone Miner. Res. 15, 663-673 (2000). 

53. Xiao, G. et al. Bone morphogenetic proteins, extracellular matrix, and 

mitogen-activated protein kinase signaling pathways are required for osteoblast-

specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. 

Res. 17, 101-110 (2002). 

54. Jonason, J. H., Xiao, G., Zhang, M., Xing, L. & Chen, D. Post-translational 

Regulation of Runx2 in Bone and Cartilage. J. Dent. Res. 88, 693-703 (2009). 

55. Wang, M. et al. Smad1 plays an essential role in bone development and 

postnatal bone formation. Osteoarthritis and Cartilage 19, 751-762 (2011). 

56. Retting, K. N., Song, B., Yoon, B. S. & Lyons, K. M. BMP canonical Smad 

signaling through Smad1 and Smad5 is required for endochondral bone 

formation. Development 136, 1093-1104 (2009). 

57. Lee, M. et al. BMP-2-induced Runx2 Expression Is Mediated by Dlx5, and 

TGF-ß1 Opposes the BMP-2-induced Osteoblast Differentiation by Suppression 

of Dlx5 Expression. Journal of Biological Chemistry 278, 34387-34394 (2003). 



 

109 
 

58. Lee, M., Kwon, T., Park, H., Wozney, J. M. & Ryoo, H. BMP-2-induced 

Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem. 

Biophys. Res. Commun. 309, 689-694 (2003). 

59. de Jong, D. S. et al. Identification of Novel Regulators Associated With Early-

Phase Osteoblast Differentiation. Journal of Bone and Mineral Research 19, 947-

958 (2004). 

60. Balint, E. et al. Phenotype discovery by gene expression profiling: Mapping of 

biological processes linked to BMP-2-mediated osteoblast differentiation. J. Cell. 

Biochem. 89, 401-426 (2003). 

61. Harris, S. E., Guo, D., Harris, M. A., Krishnaswamy, A. & Lichtler, A. 

Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene 

expression microarray analysis: role of Dlx2 and Dlx5 transcription factors. 

Front. Biosci. 8, s1249-65 (2003). 

62. Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and 

abnormalities of craniofacial and tooth development. Nat. Genet. 6, 348-356 

(1994). 

63. Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone 

growth and ectodermal organ formation. Nat. Genet. 24, 391-395 (2000). 

64. Han, J. et al. Concerted action of Msx1 and Msx2 in regulating cranial neural 

crest cell differentiation during frontal bone development. Mech. Dev. 124, 729-

745 (2007). 



 

110 
 

65. Jabs, E. W. et al. A mutation in the homeodomain of the human MSX2 gene 

in a family affected with autosomal dominant craniosynostosis. Cell 75, 443-450 

(1993). 

66. Ott, C. E. et al. Microduplications upstream of MSX2 are associated with a 

phenocopy of cleidocranial dysplasia. J. Med. Genet. 49, 437-441 (2012). 

67. Panganiban, G. & Rubenstein, J. L. R. Developmental functions of the Distal-

less/Dlx homeobox genes. Development 129, 4371-4386 (2002). 

68. Thomas, B. L. et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine 

dentition. Development 124, 4811-4818 (1997). 

69. Chase, M. B. et al. BP1, a Homeodomain-Containing Isoform of DLX4, 

Represses the ß-Globin Gene. Molecular and Cellular Biology 22, 2505-2514 

(2002). 

70. Ghoul-Mazgar, S. et al. Expression pattern of Dlx3 during cell differentiation 

in mineralized tissues. Bone 37, 799-809 (2005). 

71. Morasso, M. I., Grinberg, A., Robinson, G., Sargent, T. D. & Mahon, K. A. 

Placental failure in mice lacking the homeobox gene Dlx3. Proceedings of the 

National Academy of Sciences 96, 162-167 (1999). 

72. Haldeman, R. J. et al. Increased bone density associated with DLX3 mutation 

in the tricho-dento-osseous syndrome. Bone 35, 988-997 (2004). 

73. Hassan, M. Q. et al. Dlx3 Transcriptional Regulation of Osteoblast 

Differentiation: Temporal Recruitment of Msx2, Dlx3, and Dlx5 Homeodomain 



 

111 
 

Proteins to Chromatin of the Osteocalcin Gene. Molecular and Cellular Biology 

24, 9248-9261 (2004). 

74. Samee, N. et al. Dlx5, a Positive Regulator of Osteoblastogenesis, is Essential 

for Osteoblast-Osteoclast Coupling. The American Journal of Pathology 173, 773-

780 (2008). 

75. Robledo, R. F., Rajan, L., Li, X. & Lufkin, T. The Dlx5 and Dlx6 homeobox 

genes are essential for craniofacial, axial, and appendicular skeletal 

development. Genes & Development 16, 1089-1101 (2002). 

76. Miyama, K. et al. A BMP-Inducible Gene, Dlx5, Regulates Osteoblast 

Differentiation and Mesoderm Induction. Dev. Biol. 208, 123-133 (1999). 

77. Holleville, N., Quilhac, A., Bontoux, M. & Monsoro-Burq, A. é. BMP signals 

regulate Dlx5 during early avian skull development. Dev. Biol. 257, 177-189 

(2003). 

78. Holleville, N., Matéos, S., Bontoux, M., Bollerot, K. & Monsoro-Burq, A. Dlx5 

drives Runx2 expression and osteogenic differentiation in developing cranial 

suture mesenchyme. Dev. Biol. 304, 860-874 (2007). 

79. Kim, Y., Lee, M., Wozney, J. M., Cho, J. & Ryoo, H. Bone Morphogenetic 

Protein-2-induced Alkaline Phosphatase Expression Is Stimulated by Dlx5 and 

Repressed by Msx2. Journal of Biological Chemistry 279, 50773-50780 (2004). 

80. Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development 

and cancer. Nature Reviews Cancer 8, 387 <last_page> 398 (2008). 



 

112 
 

81. Gong, Y. et al. LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual 

and Eye Development. Cell 107, 513-523 (2001). 

82. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, 

osteopenia, and persistent embryonic eye vascularization in mice deficient in 

Lrp5, a Wnt coreceptor. The Journal of Cell Biology 157, 303-314 (2002). 

83. Boyden, L. M. et al. High Bone Density Due to a Mutation in LDL-Receptor–

Related Protein 5. N. Engl. J. Med. 346, 1513-1521 (2002). 

84. Little, R. D. et al. A Mutation in the LDL Receptor–Related Protein 5 Gene 

Results in the Autosomal Dominant High–Bone-Mass Trait. The American 

Journal of Human Genetics 70, 11-19 (2002). 

85. Ai, M., Holmen, S. L., Van Hul, W., Williams, B. O. & Warman, M. L. 

Reduced affinity to and inhibition by DKK1 form a common mechanism by which 

high bone mass-associated missense mutations in LRP5 affect canonical Wnt 

signaling. Mol. Cell. Biol. 25, 4946-4955 (2005). 

86. Balemans, W. et al. The binding between sclerostin and LRP5 is altered by 

DKK1 and by high-bone mass LRP5 mutations. Calcif. Tissue Int. 82, 445-453 

(2008). 

87. Ellies, D. L. et al. Bone density ligand, Sclerostin, directly interacts with 

LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res. 21, 

1738-1749 (2006). 



 

113 
 

88. Balemans, W. et al. Increased bone density in sclerosteosis is due to the 

deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537-543 

(2001). 

89. Balemans, W. et al. Identification of a 52 kb deletion downstream of the 

SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91-97 

(2002). 

90. Regard, J. B., Zhong, Z., Williams, B. O. & Yang, Y. Wnt Signaling in Bone 

Development and Disease: Making Stronger Bone with Wnts. Cold Spring 

Harbor Perspectives in Biology 4 (2012). 

91. Day, T. F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-Catenin Signaling in 

Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation 

during Vertebrate Skeletogenesis. Developmental Cell 8, 739-750 (2005). 

92. Hill, T. P., Später, D., Taketo, M. M., Birchmeier, W. & Hartmann, C. 

Canonical Wnt/β-Catenin Signaling Prevents Osteoblasts from Differentiating 

into Chondrocytes. Developmental Cell 8, 727-738 (2005). 

93. Rudnicki, J. A. & Brown, A. M. C. Inhibition of Chondrogenesis byWntGene 

Expressionin Vivoandin Vitro. Dev. Biol. 185, 104-118 (1997). 

94. Reinhold, M. I., Kapadia, R. M., Liao, Z. & Naski, M. C. The Wnt-inducible 

Transcription Factor Twist1 Inhibits Chondrogenesis. Journal of Biological 

Chemistry 281, 1381-1388 (2006). 



 

114 
 

95. Dong, Y., Soung, D. Y., Schwarz, E. M., O'Keefe, R. J. & Drissi, H. Wnt 

induction of chondrocyte hypertrophy through the Runx2 transcription factor. J. 

Cell. Physiol. 208, 77-86 (2006). 

96. Marcellini, S., Henriquez, J. P. & Bertin, A. Control of osteogenesis by the 

canonical Wnt and BMP pathways in vivo. Bioessays 34, 953-962 (2012). 

97. Ornitz, D. M. & Itoh, N. Fibroblast growth factors. Genome Biol. 2, 

REVIEWS3005 (2001). 

98. Ornitz, D. M. FGF signaling in the developing endochondral skeleton. 

Cytokine Growth Factor Rev. 16, 205-213 (2005). 

99. Mansukhani, A., Ambrosetti, D., Holmes, G., Cornivelli, L. & Basilico, C. 

Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling 

and osteoblast differentiation. The Journal of Cell Biology 168, 1065-1076 

(2005). 

100. Debiais, F., Hott, M., Graulet, A. M. & Marie, P. J. The Effects of Fibroblast 

Growth Factor-2 on Human Neonatal Calvaria Osteoblastic Cells Are 

Differentiation Stage Specific. Journal of Bone and Mineral Research 13, 645-

654 (1998). 

101. Woei Ng, K. et al. Osteogenic differentiation of murine embryonic stem cells 

is mediated by fibroblast growth factor receptors. Stem Cells Dev. 16, 305-318 

(2007). 



 

115 
 

102. Montero, A. et al. Disruption of the fibroblast growth factor-2 gene results in 

decreased bone mass and bone formation. J. Clin. Invest. 105, 1085 <last_page> 

1093 (2000). 

103. Coffin, J. D. et al. Abnormal bone growth and selective translational 

regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Molecular 

Biology of the Cell 6, 1861-1873 (1995). 

104. Hung, I. H., Yu, K., Lavine, K. J. & Ornitz, D. M. FGF9 regulates early 

hypertrophic chondrocyte differentiation and skeletal vascularization in the 

developing stylopod. Dev. Biol. 307, 300-313 (2007). 

105. Garofalo, S. et al. Skeletal Dysplasia and Defective Chondrocyte 

Differentiation by Targeted Overexpression of Fibroblast Growth Factor 9 in 

Transgenic Mice. Journal of Bone and Mineral Research 14, 1909-1915 (1999). 

106. Wilkie, A. O. M. Bad bones, absent smell, selfish testes: The pleiotropic 

consequences of human FGF receptor mutations. Cytokine Growth Factor Rev. 

16, 187-203 (2005). 

107. Mbalaviele, G. et al. ?-Catenin and BMP-2 synergize to promote osteoblast 

differentiation and new bone formation. J. Cell. Biochem. 94, 403-418 (2005). 

108. Rodríguez-Carballo, E. et al. Conserved regulatory motifs in osteogenic gene 

promoters integrate cooperative effects of canonical Wnt and BMP pathways. 

Journal of Bone and Mineral Research 26, 718-729 (2011). 



 

116 
 

109. Fukuda, T. et al. Canonical Wnts and BMPs cooperatively induce 

osteoblastic differentiation through a GSK3beta-dependent and beta-catenin-

independent mechanism. Differentiation 80, 46-52 (2010). 

110. Fuentealba, L. C. et al. Integrating Patterning Signals: Wnt/GSK3 

Regulates the Duration of the BMP/Smad1 Signal. Cell 131, 980-993 (2007). 

111. Hirota, M. et al. Smad2 functions as a co-activator of canonical Wnt/beta-

catenin signaling pathway independent of Smad4 through histone 

acetyltransferase activity of p300. Cell. Signal. 20, 1632-1641 (2008). 

112. Kamiya, N. The role of BMPs in bone anabolism and their potential targets 

SOST and DKK1. Curr. Mol. Pharmacol. 5, 153-163 (2012). 

113. Kamiya, N. et al. Wnt inhibitors Dkk1 and Sost are downstream targets of 

BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. Journal of 

Bone and Mineral Research 25, 200-210 (2010). 

114. Liu, Z., Tang, Y., Qiu, T., Cao, X. & Clemens, T. L. A Dishevelled-1/Smad1 

Interaction Couples WNT and Bone Morphogenetic Protein Signaling Pathways 

in Uncommitted Bone Marrow Stromal Cells. Journal of Biological Chemistry 

281, 17156-17163 (2006). 

115. Trompouki, E. et al. Lineage Regulators Direct BMP and Wnt Pathways to 

Cell-Specific Programs during Differentiation and Regeneration. Cell 147, 577-

589 (2011). 

116. Naganawa, T. et al. Reduced expression and function of bone morphogenetic 

protein-2 in bones of Fgf2 null mice. J. Cell. Biochem. 103, 1975-1988 (2008). 



 

117 
 

117. Fakhry, A. et al. Effects of FGF-2/-9 in calvarial bone cell cultures: 

differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 

and noggin, and enhancement of osteogenic potential. Bone 36, 254-266 (2005). 

118. Warren, S. M., Brunet, L. J., Harland, R. M., Economides, A. N. & 

Longaker, M. T. The BMP antagonist noggin regulates cranial suture fusion. 

Nature 422, 625-629 (2003). 

119. Agas, D., Sabbieti, M. G., Marchetti, L., Xiao, L. & Hurley, M. M. FGF-2 

enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in 

osteoblasts. J. Cell. Physiol., n/a-n/a (2013). 

120. Hughes-Fulford, M. & Li, C. F. The role of FGF-2 and BMP-2 in regulation 

of gene induction, cell proliferation and mineralization. J. Orthop. Surg. Res. 6, 

8-799X-6-8 (2011). 

121. Raucci, A., Bellosta, P., Grassi, R., Basilico, C. & Mansukhani, A. Osteoblast 

proliferation or differentiation is regulated by relative strengths of opposing 

signaling pathways. J. Cell. Physiol. 215, 442-451 (2008). 

122. Fei, Y., Xiao, L., Doetschman, T., Coffin, D. J. & Hurley, M. M. Fibroblast 

Growth Factor 2 Stimulation of Osteoblast Differentiation and Bone Formation 

Is Mediated by Modulation of the Wnt Signaling Pathway. Journal of Biological 

Chemistry 286, 40575-40583 (2011). 

123. Yu, H. I. et al. The role of Axin2 in calvarial morphogenesis and 

craniosynostosis. Development 132, 1995-2005 (2005). 



 

118 
 

124. Liu, B., Yu, H. I. & Hsu, W. Craniosynostosis caused by Axin2 deficiency is 

mediated through distinct functions of β-catenin in proliferation and 

differentiation. Dev. Biol. 301, 298-308 (2007). 

125. Maruyama, T., Mirando, A. J., Deng, C. & Hsu, W. The Balance of WNT and 

FGF Signaling Influences Mesenchymal Stem Cell Fate During Skeletal 

Development. Sci. Signal. 3, ra40 (2010). 

126. Spoorendonk, K. M., Hammond, C. L., Huitema, L. F. A., Vanoevelen, J. & 

Schulte-Merker, S. Zebrafish as a unique model system in bone research: the 

power of genetics and in vivo imaging. J. Appl. Ichthyol. 26, 219-224 (2010). 

127. Eames, B. F. et al. FishFace: interactive atlas of zebrafish craniofacial 

development at cellular resolution. BMC Developmental Biology 13, 23 (2013). 

128. Bird, N. C. & Mabee, P. M. Developmental morphology of the axial skeleton 

of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Developmental 

Dynamics 228, 337-357 (2003). 

129. Yelick, P. C. & Schilling, T. F. Molecular Dissection of Craniofacial 

Development Using Zebrafish. Critical Reviews in Oral Biology & Medicine 13, 

308-322 (2002). 

130. Li, N., Felber, K., Elks, P., Croucher, P. & Roehl, H. H. Tracking gene 

expression during zebrafish osteoblast differentiation. Developmental Dynamics 

238, 459-466 (2009). 

131. Flores, M. V. et al. Duplicate zebrafish runx2 orthologues are expressed in 

developing skeletal elements. Gene Expression Patterns 4, 573-581 (2004). 



 

119 
 

132. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. 

Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 

253-310 (1995). 

133. Li, N., Felber, K., Elks, P., Croucher, P. & Roehl, H. H. Tracking gene 

expression during zebrafish osteoblast differentiation. Developmental Dynamics 

238, 459-466 (2009). 

134. Witten, P. E. & Huysseune, A. A comparative view on mechanisms and 

functions of skeletal remodelling in teleost fish, with special emphasis on 

osteoclasts and their function. Biological Reviews 84, 315-346 (2009). 

135. Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-

specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat. Genet. 

16, 307 <last_page> 310 (1997). 

136. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, 

is essential for osteoblast differentiation and bone development. Cell 89, 765-771 

(1997). 

137. Long, F. Building strong bones: molecular regulation of the osteoblast 

lineage. Nat. Rev. Mol. Cell Biol. 13, 27-38 (2011). 

138. Hardison, R. C. & Taylor, J. Genomic approaches towards finding cis-

regulatory modules in animals. Nature Reviews Genetics 13, 469-483 (2012). 

139. Muller, H. P. & Schaffner, W. Transcriptional enhancers can act in trans. 

Trends Genet. 6, 300-304 (1990). 



 

120 
 

140. Bateman, J. R., Johnson, J. E. & Locke, M. N. Comparing enhancer action 

in cis and in trans. Genetics 191, 1143-1155 (2012). 

141. Birnbaum, R. Y. et al. Coding exons function as tissue-specific enhancers of 

nearby genes. Genome Res. 22, 1059-1068 (2012). 

142. Schubert, M., Ritter, D. I., Dong, Z., Guo, S. & Chuang, J. H. 

Transcriptional Enhancers in Protein-Coding Exons of Vertebrate 

Developmental Genes. PLoS ONE 7, e35202 (2012). 

143. Harada, H. et al. Cbfa1 Isoforms Exert Functional Differences in Osteoblast 

Differentiation. Journal of Biological Chemistry 274, 6972-6978 (1999). 

144. Ogawa, E. et al. PEBP2/PEA2 represents a family of transcription factors 

homologous to the products of the Drosophila runt gene and the human AML1 

gene. Proc. Natl. Acad. Sci. U. S. A. 90, 6859-6863 (1993). 

145. Banerjee, C. et al. Differential Regulation of the Two Principal Runx2/Cbfa1 

N-Terminal Isoforms in Response to Bone Morphogenetic Protein-2 during 

Development of the Osteoblast Phenotype. Endocrinology 142, 4026-4039 (2001). 

146. Park, M. H. et al. Differential expression patterns of Runx2 isoforms in 

cranial suture morphogenesis. J. Bone Miner. Res. 16, 885-892 (2001). 

147. Enomoto, H. et al. Cbfa1 Is a Positive Regulatory Factor in Chondrocyte 

Maturation. Journal of Biological Chemistry 275, 8695-8702 (2000). 

148. Liu, J. C. et al. Runx2 protein expression utilizes the Runx2 P1 promoter to 

establish osteoprogenitor cell number for normal bone formation. J. Biol. Chem. 

286, 30057-30070 (2011). 



 

121 
 

149. Xiao, Z. S., Liu, S., Hinson, T. K. & Quarles, L. D. Characterization of the 

upstream mouse Cbfa1/Runx2 promoter*. J. Cell. Biochem. 82, 647-659 (2001). 

150. Tamiya, H. et al. Analysis of the Runx2 promoter in osseous and non-

osseous cells and identification of HIF2A as a potent transcription activator. 

Gene 416, 53 <last_page> 60 (2008). 

151. Fernandez, B. A., Siegel-Bartelt, J., Herbrick, J. A., Teshima, I. & Scherer, 

S. W. Holoprosencephaly and cleidocranial dysplasia in a patient due to two 

position-effect mutations: case report and review of the literature. Clin. Genet. 

68, 349-359 (2005). 

152. Purandare, S. M. et al. De novo three-way chromosome translocation 

46,XY,t(4;6;21)(p16;p21.1;q21) in a male with cleidocranial dysplasia. Am. J. 

Med. Genet. A. 146A, 453-458 (2008). 

153. Dickmeis, T. & Muller, F. The identification and functional characterisation 

of conserved regulatory elements in developmental genes. Brief Funct. Genomic 

Proteomic 3, 332-350 (2005). 

154. Brown, C. T. Computational approaches to finding and analyzing cis-

regulatory elements. Methods Cell Biol. 87, 337-365 (2008). 

155. Mouse Genome Sequencing Consortium et al. Initial sequencing and 

comparative analysis of the mouse genome. Nature 420, 520-562 (2002). 

156. Miller, W., Makova, K. D., Nekrutenko, A. & Hardison, R. C. Comparative 

genomics. Annu. Rev. Genomics Hum. Genet. 5, 15-56 (2004). 



 

122 
 

157. Ahituv, N. et al. Deletion of ultraconserved elements yields viable mice. 

PLoS Biol. 5, e234 (2007). 

158. Barski, A. et al. High-resolution profiling of histone methylations in the 

human genome. Cell 129, 823-837 (2007). 

159. Roh, T. Y., Wei, G., Farrell, C. M. & Zhao, K. Genome-wide prediction of 

conserved and nonconserved enhancers by histone acetylation patterns. Genome 

Res. 17, 74-81 (2007). 

160. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, 

worm, and yeast genomes. Genome Res. 15, 1034-1050 (2005). 

161. Fisher, S. et al. Evaluating the biological relevance of putative enhancers 

using Tol2 transposon-mediated transgenesis in zebrafish. Nat. Protoc. 1, 1297-

1305 (2006). 

162. Kague, E., Weber, C. & Fisher, S. Mosaic zebrafish transgenesis for 

evaluating enhancer sequences. J. Vis. Exp. (41). pii: 1722. doi, 10.3791/1722 

(2010). 

163. Renn, J. & Winkler, C. Osterix-mCherry transgenic medaka for in vivo 

imaging of bone formation. Developmental Dynamics 238, 241-248 (2009). 

164. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount 

zebrafish embryos. Nat. Protoc. 3, 59-69 (2008). 

165. Lan, C. C., Tang, R., Un San Leong, I. & Love, D. R. Quantitative real-time 

RT-PCR (qRT-PCR) of zebrafish transcripts: optimization of RNA extraction, 



 

123 
 

quality control considerations, and data analysis. Cold Spring Harb Protoc. 

2009, pdb.prot5314 (2009). 

166. Kimmel, C. B. Modes of Developmental Outgrowth and Shaping of a 

Craniofacial Bone in Zebrafish. ONE Alerts (2010). 

167. Blanchette, M. et al. Aligning Multiple Genomic Sequences With the 

Threaded Blockset Aligner. Genome Research 14, 708-715 (2004). 

168. Willems, B. et al. Conditional ablation of osteoblasts in medaka. Dev. Biol. 

364, 128-137 (2012). 

169. Leung, G. & Eisen, M. B. Identifying cis-regulatory sequences by word 

profile similarity. PLoS One 4, e6901 (2009). 

170. Stoick-Cooper, C. L. et al. Distinct Wnt signaling pathways have opposing 

roles in appendage regeneration. Development 134, 479-489 (2007). 

171. Chocron, S., Verhoeven, M. C., Rentzsch, F., Hammerschmidt, M. & 

Bakkers, J. Zebrafish Bmp4 regulates left–right asymmetry at two distinct 

developmental time points. Dev. Biol. 305, 577-588 (2007). 

172. Hashiguchi, M. & Mullins, M. C. Anteroposterior and dorsoventral 

patterning are coordinated by an identical patterning clock. Development 140, 

1970-1980 (2013). 

173. Zhang, Z., Verheyden, J. M., Hassell, J. A. & Sun, X. FGF-Regulated Etv 

Genes Are Essential for Repressing Shh Expression in Mouse Limb Buds. 

Developmental Cell 16, 607 <last_page> 613 (2009). 



 

124 
 

174. Münchberg, S. R. & Steinbeisser, H. The Xenopus Ets transcription factor 

XER81 is a target of the FGF signaling pathway. Mech. Dev. 80, 53-65 (1999). 

175. Miya, T. & Nishida, H. An Ets transcription factor, HrEts, is target of FGF 

signaling and involved in induction of notochord, mesenchyme, and brain in 

ascidian embryos. Dev. Biol. 261, 25-38 (2003). 

176. Sun, L. et al. Design, Synthesis, and Evaluations of Substituted 3-[(3- or 4-

Carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as Inhibitors of VEGF, 

FGF, and PDGF Receptor Tyrosine Kinases. J. Med. Chem. 42, 5120 <last_page> 

5130 (1999). 

177. Dobreva, G. et al. SATB2 is a multifunctional determinant of craniofacial 

patterning and osteoblast differentiation. Cell 125, 971-986 (2006). 

178. Westendorf, J. J., Kahler, R. A. & Schroeder, T. M. Wnt signaling in 

osteoblasts and bone diseases. Gene 341, 19-39 (2004). 

179. Perry, M. W., Boettiger, A. N., Bothma, J. P. & Levine, M. Shadow 

Enhancers Foster Robustness of Drosophila Gastrulation. Current Biology 20, 

1562-1567 (2010). 

180. Brandman, O., Ferrell, J. E.,Jr, Li, R. & Meyer, T. Interlinked fast and slow 

positive feedback loops drive reliable cell decisions. Science 310, 496-498 (2005). 

181. Drissi, H. et al. Transcriptional autoregulation of the bone related 

CBFA1/RUNX2 gene. J. Cell. Physiol. 184, 341-350 (2000). 



 

125 
 

182. Verreijdt, L. et al. Expression of the dlx gene family during formation of the 

cranial bones in the zebrafish (Danio rerio): Differential involvement in the 

visceral skeleton and braincase. Developmental Dynamics 235, 1371-1389 (2006). 

183. Thisse, B. et al. Spatial and temporal expression of the zebrafish genome by 

large-scale in situ hybridization screening. Methods Cell Biol. 77, 505-519 (2004). 

184. Yadav, V. K. et al. Lrp5 Controls Bone Formation by Inhibiting Serotonin 

Synthesis in the Duodenum. Cell 135, 825-837 (2008). 

185. Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 17, 

684-691 (2011). 

186. Leijten, J. C. H. et al. Gremlin 1, Frizzled-related protein, and Dkk-1 are 

key regulators of human articular cartilage homeostasis. Arthritis & 

Rheumatism 64, 3302-3312 (2012). 

187. Pasold, J. et al. Reduced expression of Sfrp1 during chondrogenesis and in 

articular chondrocytes correlates with osteoarthritis in STR/ort mice. Exp. Cell 

Res. 319, 649-659 (2013). 

188. Kamekura, S. et al. Contribution of runt-related transcription factor 2 to the 

pathogenesis of osteoarthritis in mice after induction of knee joint instability. 

Arthritis & Rheumatism 54, 2462-2470 (2006). 

189. Orfanidou, T., Iliopoulos, D., Malizos, K. N. & Tsezou, A. Involvement of 

SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. J. Cell. 

Mol. Med. 13, 3186-3194 (2009). 



 

126 
 

190. Sears, K. E., Goswami, A., Flynn, J. J. & Niswander, L. A. The correlated 

evolution of Runx2 tandem repeats, transcriptional activity, and facial length in 

Carnivora. Evol. Dev. 9, 555 <last_page> 565 (2007). 

191. Pointer, M. A. et al. RUNX2 tandem repeats and the evolution of facial 

length in placental mammals. BMC Evol. Biol. 12, 103-2148-12-103 (2012). 

192. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 

710-722 (2010). 

193. Gunz, P. et al. A uniquely modern human pattern of endocranial 

development. Insights from a new cranial reconstruction of the Neandertal 

newborn from Mezmaiskaya. J. Hum. Evol. 62, 300-313 (2012). 

194. Voisin, J. The Omo I hominin clavicle: Archaic or modern? J. Hum. Evol. 55, 

438-443 (2008). 

195. Knopf, F. et al. Bone Regenerates via Dedifferentiation of Osteoblasts in the 

Zebrafish Fin. Developmental Cell 20, 713-724 (2011). 

196. Dimitriou, R., Tsiridis, E. & Giannoudis, P. V. Current concepts of 

molecular aspects of bone healing. Injury 36, 1392-1404 (2005). 

197. Baker, M. Screening: the age of fishes. Nature Methods 8, 47 <last_page> 51 

(2011). 

  

 

 


	University of Pennsylvania
	ScholarlyCommons
	1-1-2013

	Multiple Conserved Enhancers of the Osteoblast Master Transcription Factor, Runx2, Integrate Diverse Signaling Pathways to Direct Expression to Developing Bone
	Christopher Weber
	Recommended Citation

	Multiple Conserved Enhancers of the Osteoblast Master Transcription Factor, Runx2, Integrate Diverse Signaling Pathways to Direct Expression to Developing Bone
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	_

