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Insights into Neuroblastoma Initiation and Disease Progression Through
integrative Genomics and Epigenomics

Abstract
In this dissertation, we use integrative genomics to shed new insights into the molecular lesions and
mechanisms that drive neuroblastoma. In Part 1, we use imputation and epigenetic profiling in order to
identify the causal germline SNP that drives differential susceptibility to neuroblastoma at the LMO1
oncogene locus. In Part 2, we use whole genome sequencing and Bayesian statistical modeling to understand
the clonal evolution that occurs between diagnosis and relapse.

Part 1: Neuroblastoma is a pediatric malignancy that typically arises in early childhood, and is derived from
the developing sympathetic nervous system. A previous genome-wide association study identified common
polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and
oncogenic addiction to LMO1 in the tumor cells. Here we investigate the causal DNA variant at this locus. We
show that SNP rs2168101 G>T is the most highly associated variant and resides in a super-enhancer defined
by extensive acetylation of histone H3 lysine 27 within the first intron of LMO1. The ancestral G allele that is
associated with tumor formation resides in a conserved GATA transcription factor binding motif. We show
that the newly evolved protective TATA allele ablates GATA3 binding and enhancer activity, and is associated
with decreased total and allele-specific LMO1 expression in neuroblastoma primary tumors. These findings
indicate that a recently evolved polymorphism within a super-enhancer element in the first intron of LMO1
influences neuroblastoma susceptibility through differential GATA transcription factor binding and direct
modulation of LMO1 expression in cis.

Part 2: The majority of high-risk neuroblastomas initially respond to chemotherapy, but over half of patients
will experience therapy-resistant relapses which are nearly always fatal. The molecular defects driving relapse
and drug resistance are unknown. We performed whole genome sequencing of 23 paired diagnostic and
relapsed neuroblastomas, and corresponding normal lymphocyte DNAs, to define genetic alterations
associated with relapse. Unbiased pathway analysis of the somatic mutations detected in the relapse tissues
identified a strong enrichment in genes associated with RAS-MAPK signaling (18 of 23 patients). These RAS-
MAPK mutations were clonally enriched at relapse and exist within clonal or major subclonal tumor
populations. Similar MAPK pathway mutations were detected in 11 of 18 human neuroblastoma-derived cell
lines, and these lesions are predicted to be sensitive to small molecule inhibition of MEK in vitro and in vivo.
In this study of 23 neuroblastoma cases, MAPK pathway mutations were highly enriched in the relapsed
genomes, providing a potential biomarker for new therapeutic approaches to chemotherapy refractory
disease.

Collectively, these studies provide important insights into the genetic and epigenetic factors driving
neuroblastoma, and suggest new opportunities for pathway-targeted therapies.
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ABSTRACT

INSIGHTS INTO NEUROBLASTOMA INITIATION AND DISEASE

PROGRESSION THROUGH INTEGRATIVE GENOMICS AND EPIGENOMICS

Derek A. Oldridge

John M. Maris

Sharon J. Diskin

In this dissertation, we use integrative genomics to shed new insights into the

molecular lesions and mechanisms that drive neuroblastoma. In Part 1, we use imputa-

tion and epigenetic profiling in order to identify the causal germline SNP that drives

di↵erential susceptibility to neuroblastoma at the LMO1 oncogene locus. In Part 2,

we use whole genome sequencing and Bayesian statistical modeling to understand the

clonal evolution that occurs between diagnosis and relapse.

Part 1: Neuroblastoma is a pediatric malignancy that typically arises in early

childhood, and is derived from the developing sympathetic nervous system. A previous

genome-wide association study identified common polymorphisms at the LMO1 gene

locus that are highly associated with neuroblastoma susceptibility and oncogenic

addiction to LMO1 in the tumor cells. Here we investigate the causal DNA variant at

this locus. We show that SNP rs2168101 G!T is the most highly associated variant

and resides in a super-enhancer defined by extensive acetylation of histone H3 lysine 27

within the first intron of LMO1. The ancestral G allele that is associated with tumor

formation resides in a conserved GATA transcription factor binding motif. We show

that the newly evolved protective TATA allele ablates GATA3 binding and enhancer

activity, and is associated with decreased total and allele-specific LMO1 expression

in neuroblastoma primary tumors. These findings indicate that a recently evolved

polymorphism within a super-enhancer element in the first intron of LMO1 influences
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neuroblastoma susceptibility through di↵erential GATA transcription factor binding

and direct modulation of LMO1 expression in cis.

Part 2: The majority of high-risk neuroblastomas initially respond to chemotherapy,

but over half of patients will experience therapy-resistant relapses which are nearly

always fatal. The molecular defects driving relapse and drug resistance are unknown.

We performed whole genome sequencing of 23 paired diagnostic and relapsed neurob-

lastomas, and corresponding normal lymphocyte DNAs, to define genetic alterations

associated with relapse. Unbiased pathway analysis of the somatic mutations detected

in the relapse tissues identified a strong enrichment in genes associated with RAS-

MAPK signaling (18 of 23 patients). These RAS-MAPK mutations were clonally

enriched at relapse and exist within clonal or major subclonal tumor populations.

Similar MAPK pathway mutations were detected in 11 of 18 human neuroblastoma-

derived cell lines, and these lesions are predicted to be sensitive to small molecule

inhibition of MEK in vitro and in vivo. In this study of 23 neuroblastoma cases, MAPK

pathway mutations were highly enriched in the relapsed genomes, providing a potential

biomarker for new therapeutic approaches to chemotherapy refractory disease.

Collectively, these studies provide important insights into the genetic and epigenetic

factors driving neuroblastoma, and suggest new opportunities for pathway-targeted

therapies.
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Chapter 1

An introduction to neuroblastoma

genomics.

1.1 Neuroblastoma at a glance and the promise of

targeted therapies

Neuroblastoma is a neural-crest-derived cancer of the developing sympathetic

nervous system that most commonly arises from the adrenal gland of children under 5

years of age, but can present anywhere along the sympathetic chain[1, 2]. It accounts

for 10% of all pediatric cancer and is responsible for close to 15% of all pediatric cancer

deaths[1, 2]. Although familial neuroblastoma with an autosomal dominant inheritance

pattern occurs in approximately 1-2% of all cases, the majority of neuroblastomas

are sporadic[1, 2]. Moreover, neuroblastoma is recognized as a highly heterogeneous

malignancy that includes multiple clinically and molecularly distinct subclasses[3–

5]. Representing one extreme is stage 4S neuroblastoma, which presents as widely

disseminated disease, but is characterized by the possibility of spontaneous regression

and survival probability of 92%[2, 6]. On another extreme is high-risk neuroblastoma,

which is characterized by MYCN gene amplification, more advanced stage, and/or

older age of onset[7]. The prognosis for high-risk neuroblastoma remains poor with a 5
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year survival probability of approximately 40%, and relapsed high-risk neuroblastoma

is nearly always fatal, with a 5 year overall survival rate of less than 5%[1, 2]. These

poor outcomes persist in spite of aggressive treatment typically consisting of surgery,

radiotherapy, and/or cytotoxic chemotherapy, as well as the recent addition of anti-

GD2 immunotherapy[8]. Moreover, even when e�cacious, such treatments can leave

patients with long-term physical or cognitive impairment[9].

The past two decades have seen the emergence of a generation of cancer thera-

peutics that directly target the underlying molecular drivers of specific malignancies,

holding great promise to increase treatment e�cacy while simultaneously decreas-

ing treatment-related toxicity[10]. The development of trastuzumab for treatment of

HER2-amplified breast cancer[11] and imatinib for BCR-ABL-translocated chronic

myelogenous leukemia[12] are among the earliest, prototypical examples of how iden-

tification of molecular lesions has been exploited for therapeutic benefit in specific

cancers. This paradigm, successfully applied in other cancers, provides the rationale

and impetus for characterizing the genome of neuroblastoma: first, to understand the

fundamental molecular basis of this disease, and ultimately to translate this understand-

ing into better treatments. As immune checkpoint blockade and other immune-based

therapies have recently emerged as new and powerful treatment modalities[13, 14],

genomic profiling may take on additional importance in neo-antigen prediction and in

identifying patients who may benefit from the combination of targeted small molecule

therapies and new immunotherapies[15].
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1.2 Neuroblastoma genetics in the pre-genomics

era

The first insights into the somatic genome of neuroblastoma came from karyotyping

studies, which revealed recurrent broad segmental chromosomal rearrangements—

including 1p deletion, 11q deletion, and 17q gain—that have long been appreciated for

their prognostic relevance[16–20]. The identification of the first bone fide neuroblastoma

oncogene came in the discovery a c-MYC homologue (named N-Myc or MYCN, for

‘N’euroblastoma) that manifested as double minute chromosomes or homogeneously

staining regions of chromosomes—reflecting > 100-fold amplications of the MYCN

oncogene—in a subset of neuroblastoma tumors[21]. It is now appreciated that high

copy MYCN-amplifications occur in approximately 20% of all neuroblastomas and are

associated with significantly worse prognosis[22]. Indeed, MYCN -amplificiation is one

of the primary criteria for determining what constitutes “high-risk” neuroblastoma

clinically[7].

The earliest e↵orts to characterize somatic point mutations in neuroblastoma,

informed as they were by common mutation types that had been observed in other

cancers, were met with relatively little success. For example, while p53 tumor suppressor

mutations are estimated to occur in approximately half of all cancers[23], it was

discovered early on that p53 mutations are very rare in most neuroblastomas[24, 25].

Similar targeted sequencing studies revealed that RAS oncogene mutations, common

in several other cancer types[26, 27], were also quite rare in neuroblastoma[28, 29].

However, such candidate gene sequencing approaches did meet early luck in the

discovery of PHOX2B as a familial neuroblastoma gene[30, 31], which was motivated

by earlier discovery of PHOX2B mutation as a major cause of another disease of the

neural crest: Congenital Central Hypoventilation Syndrome, also known as “Ondine’s

3



Curse”[32]. In aggregate, the genes identified by these early studies had identified key

oncogenic driver mutations for only a small fraction of neuroblastomas, leaving open

the possibility that neuroblastoma drivers might be hidden in some as yet uncharted

region of the genome and that their discovery would need to await the arrival of

technologies that enabled just such an unbiased, genome-wide search.

1.3 Neuroblastoma genetics in the genomics era

The completion of the Human Genome Project[33, 34], and with it the emergence

of microarray and next generation sequencing (NGS) technologies[35] opened new

avenues for understanding neuroblastoma genetics at a genomic scale. An important

breakthrough came in 2008, when an unbiased linkage analysis uncovered germline

mutations in the kinase domain of Anaplastic Lymphoma Kinase (ALK ) as the major

cause of familial neuroblastoma[36]. Concurrently, genome-wide copy number profiling

had identified high copy somatic ALK amplifications in a subset of neuroblastoma

tumors, and subsequent resequencing demonstrated that point mutations in ALK

occur in approximately 10% of all neuroblastomas[36–39]. In a stroke of serendipity,

hyper-active ALK-signaling mediated by EML4-ALK translocations had already been

identified as a common and druggable lesion in Non-Small Cell Lung Cancer, with

an ALK-inhibitor already in active development[40, 41]. Ultimately, these converging

lines of evidence uncovered ALK as an important driver in a substantial fraction

of neuroblastomas, and the translation of this discovery into targeted therapies for

ALK-mutant neuroblastoma remains an exciting and active area of study[42, 43].

As the cost of whole exome sequencing (WES) and whole genome sequencing (WGS)

have continued to decline, an unbiased picture of the landscape of the neuroblastoma

protein coding genome has emerged over the past few years[44–47]. In 2012, our Dutch
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colleagues published a study of 87 neuroblastoma tumors of all stages, which aside from

alterations in MYCN and ALK, identified recurrent structural alterations in ODZ3

(5.7%), PTPRD (5.7%) and CSMD1 (3.4%)—postulated as regulators neuronal growth

cone stabilization—as well as recurrent structural alterations or point mutations in

ATRX (5.7%), TIAM1 (3.4%), and other regulators of the Rac/Rho pathway[44].

Our laboratory leads the neuroblastoma component of the Therapeutically Applicable

Research to Generate E↵ective Treatments (TARGET) pediatric cancer genomics

project, and in 2013 published a whole exome sequencing study of 222 tumors also

showing a relative dearth of somatic coding mutations, with the most frequently

mutated genes in neuroblastoma being ALK (9%), PTPN11 (2.9%), ATRX (2.5%,

and an additional 7.1% had focal deletions), and NRAS (0.83%)[46]. Unfortunately,

the relative lack of recurrent somatic mutations found in these studies raises important

doubts as to whether precision-based medicine targeted to mutations detected in

diagnostic tumors can be readily generalized to the majority of neuroblastomas.

While the idea that common germline variation might contribute to sporadic

neuroblastoma was initially met with skepticism, an ongoing genome wide association

study (GWAS) has definitively established that common variation contributes to

both neuroblastoma tumor initiation and maintenance, implicating many additional

genes in neuroblastoma tumoriogenesis. These include variants in or near the genes of

BARD1 [48], CASC15 [49], LMO1 [50], LIN28B [51], HACE1 [51], TP53 [52], associated

with high-risk neuroblastoma; variants in or near DUSP12, DDX4, and HSD17B12 [53],

associated with low-risk neuroblastoma; and copy number variation resulting in deletion

of the NBPF23 gene[54]. Although many of these genes have been previously implicated

in other cancers and quite plausibly function as neuroblastoma oncogenes or tumor

suppressors, much work remains to be done to better understand the mechanism

for how genetic variation a↵ects neuroblastoma and to understand how these genes
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function in neuroblastoma pathogenesis more broadly.

1.4 Summary of challenges in the field of neurob-

lastoma genomics, circa 2012

The previous sections summarize what was understood in the field of neuroblastoma

genomics prior to the start of my Ph.D. training. On the one hand, an exciting period

of discovery had just implicated neuroblastoma-associated common germline variation

near genes previously unknown to a↵ect disease-initation, but the causal mechanisms

remained to be elucidated. On the other hand, the paucity of recurrent somatic coding

mutations in neuroblastoma provided no clear strategy for the development of rational

therapeutics, with the notable exception of ALK -mutated cases. Moreover, essentially

nothing was known about how neuroblastomas tumors evolve over the course of therapy,

nor what molecular lesions underlie the tumors of patients who ultimately relapse and

who remain in dire need of e↵ective treatment strategies. In the following chapters, I

will summarize how my dissertation work has begun to shed light on exactly these

issues.
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Chapter 2

Non-coding mechanisms of

functional dysregulation in

neuroblastoma

2.1 Introduction to regulatory genetics and epige-

netics

Gene expression programs responsible for cellular di↵erentiation and function are

highly dependent on the packaging of chromatin, a macromolecular complex of DNA

and DNA-binding histone proteins[55]. The partitioning of chromatin into functional

domains is largely determined by chemical, “epigenetic” alterations to DNA and

histones that do not a↵ect the underlying nucleic acid sequence, and by DNA-binding

protein complexes that mediate folding of the genome by pulling together distal regions

of DNA polymers into close proximity in three-dimensional space[56]. This folding, in

turn, establishes which genomic regions will be tightly packaged—transcriptionally

inert “heterochromatin”—versus those regions which will be open and accessible to

the transcriptional machinery—transcriptionally active “euchromatin”. This essential

partitioning of a genome into transcriptionally active and inactive domains is thought
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to play fundamental roles in normal cellular development, di↵erentiation, as well as

disease[57], and provides an explanation for how cells with largely the same genetic

code can be molecularly, morphologically, and functionally distinct[56]. Whereas the

Human Genome Project can be understood as providing the first one-dimensional

structure of the human genome, genome science is increasingly focused on solving the

three-dimensional structure of nuclear DNA and finding its functional and pathological

correlates[57–59].

The paucity of recurrent coding mutations in neuroblastoma suggests that non-

coding lesions, including DNA mutations and epigenetic changes, may act as drivers

in a substantial subset of neuroblastoma tumors. Indeed, reports of highly recurrent

TERT promoter mutations driving oncogenic telomerase overexpression in melanoma

through the de novo generation of an ETS transcription factor binding site illustrate

the importance of non-coding mechanisms of cellular dysregulation in cancer[60,

61]. Additionally, the release of Encyclopedia Of DNA Elements (ENCODE)[62]

and Roadmap Epigenomics[63] data—encompassing coding and non-coding RNA,

transcription factor binding, and chromatin profiling in a wide variety of normal and

diseased tissues—provides an unprecedented opportunity to investigate how germline

variation and somatic mutations within newly identified non-coding regulatory regions

may impact cancer.

In meta-analyses of all genotype-phenotype associations discovered to date through

GWAS, is has been estimated that almost 90% of all disease- or phenotype-associated

variants may fall within non-coding regions of the genome[64, 65], raising the important

question of how genetic variation is able to a↵ect phenotypes without changing protein

coding sequences. It is now appreciated that many of these non-coding variants

fall within regulatory regions known as enhancers—regulatory regions that bind to

transcription factors and help promote transcription by looping to distal promoters—
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and that these regulatory variants modulate enhancer activity (and hence target-

gene expression) by disrupting or generating de novo transcription factor binding

sites[65]. Although initially identified in other diseases, this paradigm is emerging as

an important determinant of gene pathway dysregulation in cancer[66]. For example,

a causal germline polymorphism impacting predisposition to breast, prostate, and

colon cancer was discovered to a↵ect MYC expression through modulation of TCF

transcription factor binding within an enhancer region upstream of the MYC proto-

oncogene[67, 68]. In some adult cancers where mature GWAS e↵orts have identified

many cancer-association loci, the focus is now turning to functionally validating many

regions in parallel[69, 70].

Uncovering causal variants from GWAS is di�cult for many reasons. One challenge

is posed by the high degree of linkage disequilibrium in the human genome, resulting in

strong correlation and statistical indistinguishability between neighboring variants[71].

Additionally, high-resolution chromatin maps are largely incomplete for most tissues,

whereas mapping needs to be performed in the disease-relevant tissue or cell line due

to the highly tissue-specific nature of chromatin structure. However, of all the neurob-

lastoma susceptibility loci that were been identified to as of 2012, the LMO1 oncogene

was an especially attractive candidate for searching for regulatory variant candidates.

First, in the initial 2011 study implicating the LMO1 locus in neuroblastoma, it was

observed that risk alleles were associated with higher gene expression[50], consistent

with a regulatory phenotype. Second, only neuroblastoma cell lines possessing the risk

allele showed sensitivity to LMO1 knockdown[50], indicating that LMO1 expression

played an allele-dependent role in tumor maintenance in addition to initiation, thereby

suggesting that neuroblastoma cell lines could be useful models in uncovering causal

variants. Finally, the publication of ENCODE data at the end of 2012[62], which

included DNase I hypersensitivity sequencing marking active enhancer regions along
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with binding profiles of an array of other transcription factors in neuroblastoma cell

lines, provided the perfect opportunity to see if the regulatory architecture of the

LMO1 locus could help identify candidate functional variants. The following section

describes what we found, and is largely copied with minor edits from our recent

publication in Nature, whose full citation is provided here: [72]. Although this study

represents the collaborative e↵orts of many people, my principal contributions included

the conceptualization and execution of the integration of ENCODE-related data that

identified rs2168101 as a causal variant candidate, performing nearly all bioinformatic

analyses excluding genome-wide imputation and super-enhancer analysis, helping

guide the experimental validation e↵orts which included performing reporter assays

and ChIP-PCR experiments myself, as well as writing the majority of the paper and

making nearly all of the figures.

2.2 Oldridge, Wood, et al. Genetic predisposition

to neuroblastoma mediated by a LMO1 super-

enhancer polymorphism.

Genome-wide association study (GWAS) e↵orts frequently identify highly statis-

tically significant genetic associations within non-coding regulatory regions of the

genome, but the underlying causal DNA sequence variations have only been identified

in a few instances. A neuroblastoma GWAS has identified several disease susceptibility

loci[48–54], with the signal within the LIM domain only 1 (LMO1 ) locus at 11p15[50],

a transcriptional co-regulator containing two zinc finger LIM domains that nucleate

and regulate transcription factor complexes, being most robust. The main members

of the LMO gene family, LMO1-4, are all implicated in cancer including LMO1 and
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LMO2 translocations in T-cell leukemia[73], and we previously provided the first

evidence that LMO1 was a bona fide neuroblastoma oncogene[50]. Here, we sought

to identify the causal polymorphism(s) driving the LMO1 genetic association with

neuroblastoma susceptibility as a basis for understanding neuroblastoma initiation

and addiction mechanisms.

We first performed fine mapping of associated germline SNPs and indels at the

LMO1 gene locus by imputation to the 1000 Genomes Project for our European-

American neuroblastoma GWAS[51]. This identified 27 SNPs with minor allele fre-

quency (MAF) > 0.01 and an association P < 1⇥ 10�5 (Figure 2.1 and Table 2.1).

We further prioritized associated variants by evolutionary conservation, and by their

regulatory potential inferred through neuroblastoma-specific DNase I hypersensitiv-

ity mapping and chromatin immunoprecipitation sequencing (ChIP-seq) from the

ENCODE Consortium (Figure 2.2). These data showed that the most significantly

associated SNP at the LMO1 locus (rs2168101, odds ratio = 0.67, P = 4.14⇥ 10�16)

resides within a highly conserved and active enhancer region inferred by DNase I

sensitivity and p300 binding in the SKNSH neuroblastoma cell line (Figure 2.2).

Notably, we found no rare or common non-synonymous coding variants in LMO1 in

a combined cohort of 482 unique neuroblastoma cases with germline whole-genome

(n = 136), whole-exome (n = 222) and/or targeted DNA sequencing (n = 183) (see

Table 2.2).

Because rs2168101 genotypes were imputed in our analyses (Figure 2.3), we next

directly genotyped this SNP in 146 out of 2,101 European-American cases, and

measured an 86% imputation accuracy. We additionally directly genotyped rs2168101

in two independent cohorts from the UK and Italy, with both showing robust replication

(Table 2.3). We did not observe replication in an independent African-American cohort.

Notably, the protective T allele is common in Europeans (CEU HapMap: 28%) and
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Figure 2.1: Imputation GWAS identifies additional neuroblastoma-
associatied variants at the LMO1 locus. Manhattan plot for neuroblastoma
GWAS (cases = 2,101; controls = 4,202). The neuroblastoma-associated region falls
within a 40-kilobase (kb) haplotype block (grey box) in Europeans, encompassing
the LMO1 3’-terminus. rs2168101 is the most associated variant and is moderately
correlated (maximum r

2 = 0.52) with other variants. The sentinel SNP reported
previously, rs110419, is also highlighted (#).

East Asians (CHB+JPT HapMap: 32%), but is rare or absent in Africans, indicating

recent expansion of the rs2168101 protective allele in non-African human populations

(Figure 2.4). Meta-analysis demonstrated a combined association P = 7.47⇥ 10�29

across 8,553 controls and 3,254 cases (Table 2.3).

As causal SNPs driving GWAS associations may disrupt transcription factor binding
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Table 2.1: Germline variants from 1000 Genomes Project associated with
neuroblastoma susceptibility (P < 10�5) in European-American cohort
from imputation-based analysis.

Variant ID Chrom Position Alleles Alt Allele Freq Alt Allele Freq P -Value Odds Ratio
(rsID) (hg19) (hg19) (Ref/Alt)† (Cases)† (Controls)† (Additive)‡ (Additive)‡
rs191871553 11 8222464 C/T 0.035 (n=2101) 0.054 (n=4202) 7.49⇥ 10�06 0.64 (0.53-0.78)
rs11041809 11 8231605 A/G 0.498 (n=2101) 0.440 (n=4202) 1.13⇥ 10�07 0.80 (0.74-0.87)
rs11041811 11 8231665 C/T 0.492 (n=2101) 0.434 (n=4202) 1.28⇥ 10�07 0.80 (0.74-0.87)
rs11041812 11 8231684 C/T 0.492 (n=2101) 0.433 (n=4202) 1.22⇥ 10�07 0.80 (0.74-0.87)
rs11041813 11 8235207 T/C 0.478 (n=2101) 0.420 (n=4202) 1.67⇥ 10�07 0.81 (0.75-0.87)
rs10839999 11 8236083 G/A 0.480 (n=2101) 0.423 (n=4202) 5.06⇥ 10�07 0.81 (0.75-0.88)
rs10769885 11 8236262 C/A 0.513 (n=2101) 0.453 (n=4202) 3.77⇥ 10�08 0.80 (0.74-0.87)
rs4758049 11 8238428 A/C 0.511 (n=2101) 0.452 (n=4202) 7.48⇥ 10�08 0.81 (0.74-0.87)
rs4758050 11 8238545 G/C 0.511 (n=2101) 0.452 (n=4202) 7.34⇥ 10�08 0.81 (0.74-0.87)
rs4758051 11 8238639 G/A 0.510 (n=2101) 0.452 (n=4202) 1.22⇥ 10�07 0.81 (0.75-0.87)
rs10840000 11 8240113 G/C 0.509 (n=2101) 0.450 (n=4202) 6.22⇥ 10�08 0.80 (0.74-0.87)
rs7933766 11 8240464 G/A 0.511 (n=2101) 0.453 (n=4202) 2.09⇥ 10�07 0.81 (0.75-0.88)
rs11041816 11 8243798 A/G 0.397 (n=2101) 0.456 (n=4202) 8.99⇥ 10�10 0.77 (0.71-0.84)
rs4315061 11 8247020 T/C 0.425 (n=2101) 0.490 (n=4202) 1.25⇥ 10�09 0.78 (0.72-0.84)
rs72474792 11 8247885 TATAAAA/T 0.524 (n=2101) 0.456 (n=4202) 2.04⇥ 10�10 0.77 (0.71-0.84)
rs12797723 11 8247984 C/T 0.443 (n=2101) 0.514 (n=4202) 2.05⇥ 10�10 0.77 (0.71-0.84)
rs2290451 11 8248440 C/G 0.295 (n=2101) 0.255 (n=4202) 8.20⇥ 10�06 1.23 (1.12-1.34)
rs7952320 11 8250143 G/C 0.408 (n=2101) 0.480 (n=4202) 3.03⇥ 10�11 1.31 (1.21-1.42)
rs4758317 11 8250811 C/A 0.514 (n=2101) 0.447 (n=4202) 5.76⇥ 10�10 0.78 (0.72-0.84)
rs11041820 11 8251438 G/A 0.294 (n=2101) 0.253 (n=4202) 6.77⇥ 10�06 1.23 (1.12-1.34)
rs3750952 11 8251921 G/C 0.408 (n=2101) 0.481 (n=4202) 1.89⇥ 10�11 0.76 (0.70-0.83)
rs110419 11 8252853 A/G 0.441 (n=2101) 0.511 (n=4202) 3.16⇥ 10�10 0.78 (0.72-0.84)
rs110420 11 8253049 T/C 0.441 (n=2101) 0.511 (n=4202) 3.36⇥ 10�10 0.78 (0.72-0.84)
rs204928 11 8254433 A/G 0.444 (n=2101) 0.512 (n=4202) 9.85⇥ 10�10 0.78 (0.72-0.85)
rs204926 11 8255106 G/A 0.440 (n=2101) 0.510 (n=4202) 1.97⇥ 10�11 0.76 (0.70-0.82)
rs2168101 11 8255408 C/A 0.242 (n=2101) 0.313 (n=4202) 4.14⇥ 10�16 0.67 (0.61-0.74)
rs7948497 11 8255855 C/G 0.479 (n=2101) 0.419 (n=4202) 4.05⇥ 10�10 1.30 (1.20-1.41)

†Forward strand hg19, imputed genotypes from IMPUTE2, frequencies as reported by SNPTEST.
‡SNPTEST, frequentist score test with additive model, adjusted for gender and top 20 MDS components.

at distal enhancers, we sought to identify candidate SNPs disrupting known JASPAR

motifs[74], which revealed that lead candidate SNP rs2168101 resides in a highly

conserved GATA-binding motif (5’-A[G/T]ATAA-3’, mammalian phastCons score =

100%) (Figure 2.2). Examination of a co-crystallographic structure of GATA3 bound

to its cognate binding motif[75] revealed that that arginine 276 (N-terminal zinc finger)

and arginine 330 (C-terminal zinc finger) both make major groove hydrogen-bonding

contacts with the guanines of separate GATA motifs; either is likely to be sterically

hindered by the methyl group of a substituting thymine, providing structural insight

into the preferential binding of GATA3 to the 5’-GATA-3’ DNA sequence rather
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Figure 2.2: Integrative ENCODE analysis reveals that rs2168101 is an
LMO1 enhancer SNP. Neuroblastoma-associated variants (P < 1 ⇥ 10�5) are
plotted with ENCODE tracks for neuroblastoma the cell line SKNSH. Two SNPs,
rs2168101 and rs7948497, were annotated “enhancer SNPs” based on overlapping
DNase peaks binding p300. The rs2168101 G!T SNP disrupts an evolutionarily
conserved GATA transcription factor (TF) motif (5’-A[G/T]ATAA-3’). SKNSH has a
rs2168101 = G/G genotype that preserves GATA binding, supported by ENCODE
GATA3 ChIP-seq.

than 5’-TATA-3’ (see Figure 2.5). ENCODE transcription factor ChIP-seq confirmed

GATA2 and GATA3 binding at the rs2168101 GATA motif in the neuroblastoma cell

lines SKNSH and SHSY5Y, which are G/G homozygous, thereby preserving the GATA

motif (Figure 2.2). No other associated variant showed this unique combination of
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Table 2.2: Patient clinical characteristics in referenced sequencing datasets.

Clinical Category Whole Genome Seq Whole Exome Seq LMO1 -Targeted Seq Transcriptome Seq
(Blood/Tumor, n = 136)† (Blood/Tumor, n = 222)† (Blood, n = 183) (Tumor, n = 127)

Age
< 18 mos 0 (0%) 32 (24%) 82 (45%) 8 (6%)
� 18 mos 219 (100%) 103 (76%) 101 (55%) 119 (94%)
Not Available 3 1 0 0

INSS Stage‡
Stage 1 0 (0%) 0 (0%) 39 (21%) 0 (0%)
Stage 2A 0 (0%) 0 (0%) 13 (7%) 0 (0%)
Stage 2B 0 (0%) 1 (1%) 18 (10%) 0 (0%)
Stage 3 0 (0%) 6 (4%) 27 (15%) 6 (5%)
Stage 4 219 (100%) 105 (78%) 78 (43%) 121 (95%)
Stage 4S 0 (0%) 23 (17%) 8 (4%) 0 (0%)
Not Available 3 1 0 0

MYCN
Not Amplified 143 (67%) 102 (76%) 151 (83%) 95 (75%)
Amplified 71 (33%) 32 (24%) 30 (17%) 31 (25%)
Not Available 8 2 2 1

Histology
Favorable 4 (2%) 29 (23%) 95 (54%) 9 (8%)
Unfavorable 187 (98%) 96 (77%) 82 (46%) 107 (92%)
Not Available 31 11 6 11

DNA Index
Hyperdiploid 117 (54%) 81 (61%) 121 (67%) 67 (53%)
Diploid 98 (46%) 52 (39%) 59 (33%) 59 (47%)
Not Available 7 3 3 1

Risk
Low 0 (0%) 15 (11%) 64 (35%) 0 (0%)
Intermediate 0 (0%) 14 (10%) 49 (27%) 6 (5%)
High 219 (100%) 106 (79%) 69 (38%) 121 (95%)
Not Available 3 1 1 0

†There is an overlap of 59 neuroblastoma patients with both whole exome and whole genome sequencing. Patients
with targeted sequencing are all unique and do not overlap with whole exome or whole genome cases, yielding 482
unique patients with exonic DNA sequencing of LMO1.
‡International Neuroblastoma Staging System (INSS).

Table 2.3: Replication and meta-analysis of rs2168101 association.

SNP Ref/Alt Cohort MAF Cases MAF Controls Add P -value Add Odds Ratio Het Odds Ratio Hom Odds Ratio
(T vs. G) (GT vs. GG) (TT vs. GG)

rs2168101 G/T Eu-Am† 0.242 (n=2101) 0.313 (n=4202) 4.14⇥ 10�16 0.67 (0.61-0.74) 0.69 (0.62-0.77) 0.52 (0.42-0.64)
Italian 0.164 (n=420) 0.250 (n=751) 2.07⇥ 10�06 0.61 (0.50-0.75) 0.57 (0.44-0.74) 0.40 (0.21-0.75)
U.K. 0.190 (n=369) 0.311 (n=1109) 5.86⇥ 10�10 0.56 (0.47-0.68) 0.51 (0.39-0.66) 0.31 (0.18-0.53)

Af-Am† 0.0865 (n=364) 0.0891 (n=2491) 0.20 0.79 (0.56-1.13) 0.96 (0.71-1.30) 1.07 (0.38-3.04)
Combined 7.47⇥ 10�29 0.65 (0.60-0.70) 0.67 (0.61-0.73) 0.49 (0.41-0.59)

MAF = minor allele frequency; Add = additive model; Het = heterozygous; Hom = homozygous; Eu-Am = European-
America; Af-Am = African American
†Imputed genotypes and correction for population stratification.
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Figure 2.3: The imputed SNP, rs2168101, is associated with neuroblas-
toma, and the risk ‘G’ allele is enriched in neuroblastoma cases. Ternary
density plots of genotype probability vectors [P(G/G), P(G/T), P(T/T)] output from
IMPUTE2 for rs2168101 in the European-American cohort. Vertices represent ‘perfect;
confidence calls in which P(genotype) = 1; dotted lines represent decision boundaries
for genotype calling based on most probable genotype. All plots were normalized by the
total number of individuals studied and subjected to 2D Gaussian kernel smoothing.
Left, 2,101 cases (red); centre, 4,202 controls (blue); right, di↵erence between cases
and controls highlights enrichment of G/G genotype (homozygous risk) in cases and of
G/T and T/T genotypes in controls. Validation e↵orts using PCR-based genotyping
in 146 out of 2,101 European-American cases confirmed an 86% concordance with
imputation based on most probable genotypes.

evolutionary conservation, active enhancer localization, and disruption of a transcription

factor binding motif, including the sentinel SNP rs110419 (P = 1.17⇥ 10�13) from

our original report[50].

To test for the possibility of multiple statistical signals or enhancers not marked by

conservation or p300 at the LMO1 locus, we repeated association testing conditional

on imputed rs2168101 genotypes and observed no significant variants after multiple test

correction (most significant variant: rs34544683, nominal P = 9.0⇥ 10�4, Bonferroni

P = 1; Figure 2.6a). To test whether the rs2168101 signal can be equally captured by

other variants, we also performed reciprocal association tests for rs2168101 conditioned

on all 27 other SNPs within 1.5 megabases (Mb) of LMO1 passing thresholds MAF

> 0.01 and nominal P < 1⇥ 10�5. Notably, rs2168101 remained significant across all
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Figure 2.4: The protective ‘T’ allele of rs2168101 is rare or absent in
African populations. Shown are allele frequencies for populations that were profiled
as part of the 1000 Genomes Project. Comparative genomic analysis of other vertebrate
species indicates that the risk G allele is ancestral, and the low frequency in African
populations implies that the protective T allele is recently evolved in human his-
tory. http://browser.1000genomes.org/Homo_sapiens/Variation/Population?
db=core;r=11:8254908-8255908;v=rs2168101;vdb=variation;vf=1736493

conditional tests (worst-case nominal P = 2.6⇥ 10�7, Bonferroni P = 0.002; Figure

2.6b). These results are consistent with a single underlying signal at the LMO1 locus,

and re-a�rm that rs2168101 is the single best causal SNP candidate, because its

association with neuroblastoma cannot be accounted for by other variants.
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We next sought to determine whether rs2168101 genotypes were associated with

LMO1 expression by messenger RNA sequencing (mRNA-seq) of 127 primary high-risk

neuroblastoma tumors. Genotyping rs2168101 yielded 102 G/G, 25 G/T and no T/T

tumors (MAF = 9.8%). We observed significantly higher LMO1 expression in G/G

versus G/T genotype tumors (t-test P = 0.028; Figure 2.7a). Notably, the absence

of protective homozygous T/T genotypes in this high-risk neuroblastoma cohort is

consistent with our previous observation that the risk alleles predispose to the high-risk

phenotypic subset[50] (for clinical covariate associations, see Table 2.4). Accordingly,

the rs2168101 G/G genotype is highly associated with decreased neuroblastoma patient

event-free (P = 0.0004) and overall (P = 0.0004) survival compared to G/T and T/T

genotypes together in our European-American cohort (Figure 2.8). Two cell lines with

homozygous T/T or T/- genotypes expressed LMO1 at comparatively lower levels

than cell lines containing the G allele (Figure 2.9a).

GATA transcription factors mediate chromatin looping and facilitate long-range

enhancer-promoter interactions to regulate target gene expression[78]. We therefore

sought to confirm allelic imbalance of LMO1 transcripts (a hallmark of gene regulation

in cis), which could result from di↵erential GATA-binding caused by rs2168101. First,

because the rs2168101 intronic SNP is not detectable by mRNA-seq, we identified

the LMO1 exonic synonymous SNP, rs3750952, which can measure allelic expression

in the heterozygous state. We identified 45 tumors with the necessary rs3750952

= C/G genotype, and then directly genotyped rs2168101 (G/G = 33, G/T = 12,

T/T = 0) in this panel. By mRNA-seq, there was greater allelic imbalance in 12

tumors that were heterozygous for rs2168101 (G/T) than in 33 homozygous tumors

(rs2168101 = G/G; t-test P < 0.0001; Figure 2.7b). We next used targeted sequencing

of nuclear-enriched nascent RNAs in four neuroblastoma cell lines (G/G = 1, G/T =

2, T/T = 1) to provide direct ascertainment of allele-specific expression at rs2168101.
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Table 2.4: Association of rs2168101 with clinical/biological co-variates.

rs2168101 genotypes* Association Result
Clinical/Biological
Co-variate GG GT TT P-Value† Odds Ratio†
Stage‡4 530 (62%) 280 (33%) 49 (6%) 0.01198 0.81 (0.69-0.95)
Not Stage 4 611 (56%) 400 (37%) 74 (7%)

MYCN Amplified 183 (55%) 115 (34%) 36 (11%) 0.00297 1.39 (1.12-1.73)
MYCN Non-Amplified 881 (59%) 525 (35%) 83 (6%)

High-Risk 523 (63%) 263 (32%) 47 (6%) 0.00174 0.76 (0.65-0.90)
Not High-Risk 594 (56%) 398 (37%) 73 (7%)

Unfavorable Histology 454 (61%) 237 (32%) 48 (6%) 0.14479 0.88 (0.73-1.05)
Favorable Histology 527 (57%) 336 (36%) 62 (7%)

DNA Index Hyperdiploid 685 (59%) 412 (35%) 71 (6%) 0.32009 0.91 (0.76-1.09)
DNA Index Diploid 324 (57%) 198 (35%) 43 (8%)

Age � 18 mos 621 (61%) 346 (34%) 55 (5%) 0.01448 0.82 (0.69-0.96)
Age < 18 mos 529 (57%) 338 (36%) 68 (7%)
*Reverse strand hg19, imputed genotypes from IMPUTE2, genotype frequencies as reported by SNPTEST.
†SNPTEST, frequentist score test with additive model, adjusted for gender and top 20 MDS components.
‡International Neuroblastoma Staging System (INSS).

In both heterozygous lines, we observed allelic imbalance that significantly favoured

the risk G allele over the protective T allele (Figure 2.7c). Collectively, these results

indicate that the intact GATA motif at rs2168101 results in significantly higher LMO1

expression levels than the TATA coded by the alternative allele. Allelic imbalance of

LMO1 was not driven by somatic DNA alterations (for example, loss of heterozygosity)

that could a↵ect allelic dosage (Figure 2.9b).

Examination of neuroblastoma transcriptome data for 127 primary tumors showed

that GATA2 and GATA3 are overexpressed compared to other members of the

GATA transcription factor family (Figure 2.10a), and that GATA3 is the most highly

expressed. Additionally, protein immunoblotting showed that GATA3 is uniformly

highly expressed in neuroblastoma cell lines, while LMO1 is highly expressed in the G/G
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(SKNSH and SHSY5Y), G/- (KELLY) and G/T (IMR32) cell lines, but only barely

detectable in the BE2C cell line that lacks a G allele at the rs2168101 locus (Figure

2.10b). We therefore performed ChIP-seq using a GATA3 antibody in neuroblastoma

cell lines, and observed robust GATA3 binding at rs2168101 in lines containing the

G allele (SHSY5Y, KELLY, BE2 and NGP) but not in a line containing only a T

allele (BE2C; Figure 2.11a). We then specifically considered GATA3 ChIP-seq reads

overlapping rs2168101, and we observed strong preferential binding to the G allele

in the G/T heterozygous cell lines BE2 (0.97 G-allele fraction from 38 reads, 95%

confidence interval: 0.86-1.00, Binomial test P = 2.8⇥ 10�10) and NGP (1.00 G-allele

fraction from 6 reads, 95% confidence interval: 0.54-1.00, Binomial test P = 0.03;

Figure 2.11b).

Acetylation of histone H3 at lysine 27 (H3K27ac) is a hallmark of active enhancers[79],

and ChIP-seq analysis of SHSY5Y (G/G; not MYCN amplified), KELLY (G/-; MYCN

amplified), BE2 (G/T; MYCN amplified) and NGP (G/T; MYCN amplified) neurob-

lastoma cells showed extensive H3K27 acetylation in the first intron of LMO1 across

rs2168101, which was not observed in BE2C (T/-; MYCN amplified; Figure 2.12a).

This region is classified as a super-enhancer in G-allele-containing lines SHSY5Y,

KELLY and BE2 based on enhancer clustering and especially high H3K27ac signal,

a pattern also observed for other known oncogenes and tumor suppressor genes in

this disease[80] (Figure 2.12b and Figure 2.13a). No super-enhancer was observed in

BE2C, Jurkat T-ALL cells that also express LMO1[81], or in other non-neuroblastoma

tissues from ENCODE (Figure 2.12b and Figures 2.13b,c). These results are consistent

with recent evidence that disease-associated SNPs frequently a↵ect enhancers that are

specific to disease-relevant cell lines and tumour histology, and control developmental

stage and tissue-specific gene expression[80, 82–86].

We next performed luciferase reporter assays to measure the e↵ect of rs2168101
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alleles on enhancer activity. HEK293T cells transfected with constructs containing the

risk G allele demonstrated 30-300-fold higher normalized luminescence compared to the

T allele (t-test P = 0.002, Figure 2.14a), whereas luciferase activity of the T allele was

not significantly di↵erent from empty vector, indicating that the intact GATA motif

is required for robust enhancer activity. Finally, knockdown of GATA3 in SHSY5Y

and KELLY cells resulted in both decreased LMO1 protein levels and suppression of

cell growth that was rescued by LMO1 overexpression (Figure 2.14b), indicating the

central role of GATA3 in regulating LMO1 expression levels in neuroblastoma.

2.3 Summary and future directions

2.3.1 Clinical significance and avenues for translational re-

search

Taken together, these data demonstrate the underlying molecular mechanism for

a highly robust genetic association to neuroblastoma, mediated by a single common

causal SNP rs2168101 that disrupts a GATA transcription factor binding site within

a tissue-specific super-enhancer element. The risk allele is associated with a greater

prevalence of high risk disease, and is associated with a worse prognosis independent

of MYCN -amplification. Additionally, the rarity or absence of the protective allele

in African populations and its relative depletion in African-Americans may partially

explain the more aggressive clinical course in African-American children[87]. Moreover,

this work further confirms the utility of association studies to define clinically relevant

oncogenic pathways.

Transcriptional factors and co-regulators, such as LMO1, have not traditionally been

considered “druggable” targets, because they are not enzymatic proteins and therefore
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lack a catalytic domain to which small molecule inhibitors can be designed. Thus, it

will be important to see if ongoing e↵orts to map the downstream targets of LMO1—for

example, by profiling and integrating whole transcriptome changes that accompany

induced LMO1 up- or down-regulation with LMO1 ChIP-seq to identify genes which

are directly bound by LMO1-nucleated transcription factor complexes—may uncover

druggable e↵ectors of LMO1 signaling and suggest new therapeutic strategies. These

LMO1 binding studies are already underway, as part of a newly R01-funded e↵ort

to investigate the broader regulatory landscape of LMO1 in neuroblastoma, both

upstream and downstream.

Early reports that BET bromodomain inhibition can be therapeutically exploited

in neuroblastoma in addition to other c-MYC- or MYCN-driven cancers provides

another possible avenue for translational research. Indeed, the dependence of neuroblas-

toma cells on super-enhancer-mediated LMO1 expression provides another potential

mechanism for the sensitivity of these tumors to inhibitors of the transcriptional

machinery such as CDK7 and BET bromodomain proteins[82, 84]. Moving forward, it

will be interesting to investigate to what extent chromatin modulators may impinge

on the GATA3-LMO1 enhancer and signaling axis, and may therefore provide another

therapeutic avenue.

2.3.2 In vivo models for tumor initiation

The use of in vivo models to validate the e↵ect of causal variants on cancer initiation

has been limited by many technical challenges, including genetic, epigenetic, and

physiological di↵erences between human and possible model organisms; the relatively

short duration of models compared to human tumorigenesis; di�culty in modeling

complex interactions between multiple pathogenic variants; and the relatively low
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penetrance/e↵ect size of GWAS variants[88]. In this context, we have been fortunate

to maintain a very productive collaboration with the laboratory of Thomas Look at

Dana-Farber, where we have developed transgenic zebrafish models of neuroblastoma to

investigate the role of known or candidate neuroblastoma oncogenes in the developing

nervous system[89].

Such a zebrafish model was already successfully designed to investigate how mu-

tated ALK and hyperactive MYCN cooperate to promote tumorigenesis[90], and in

another model, constitutive co-overexpression of LMO1 and MYCN in the developing

zebrafish decreased tumor latency and increased tumor penetrance relative to MYCN

overexpression alone (Zhu et al., submitted). The observation of metastasis in the

LMO1/MYCN co-overexpressing zebrafish (Zhu et al., submitted) but not in MYCN

overexpressing zebrafish controls raises the tantalizing possibility that LMO1 may

play important roles in promoting metastasis in human neuroblastoma as well, which

remains to be confirmed or ruled out by future studies. In addition, our collaborators

are actively working on zebrafish models of LMO1 enhancer knockout, as well as

introduction of the GATA-ablating T allele of rs2168101, and we are hopeful that

these can be used to further validate the results of the present study.

2.3.3 The role of GATA transcription factors in neuroblas-

toma

GATA3 has attracted interest in neuroblastoma in recent years, both as a direct

positive regulator of Cyclin D1(CCND1)[91] and for inhibiting di↵erentiation and

promoting stemness[92, 93]. The identification here of GATA3 as a positive regulator

of LMO1 signaling elucidates another facet into how both of these genes function as

oncogenes in neuroblastoma. Although our rescue experiments suggest that LMO1
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may be the primary downstream regulator of GATA3-driven cell proliferation in

neuroblastoma with an active LMO1 enhancer, further studies will be necessary to

clarify whether proposed GATA3-mediated e↵ects on cellular di↵erentiation operate

in concert or separately from LMO1 and/or if GATA3 may operate di↵erently in

the absence of a functioning LMO1 enhancer. In this regard, a crucial starting point

will be to perform co-IP to determine if LMO1 and GATA transcription factors

directly interact as part of the same protein complexes—as has been observed in the

context of blood stem/progenitor cells for the better-studied LMO2[94]—and to parse

out their combinatorial relationship in neuroblastoma by comparison of LMO1 and

GATA2/GATA3 binding profiles.

Recently, a gapped k-mer SVM method has been developed to build robust models

of how underlying DNA sequences can predict chromatin features[95, 96]. Important

applications of this method include prediction of which transcription factors (inferred

by their motifs) are active in a specific cell type, and whether such transcription

factors tend to function predominantly as transcriptional activators or transcriptional

repressors. We have now successfully applied this method to our neuroblastoma

H3K27ac ChIP-seq data, which predicted that GATA transcription factors are one of

the strongest transcriptional activators in neuroblastoma (see Figures 2.15 and 2.16).

This preliminary analysis underscores the potential importance of GATA transcription

factors in maintaining neuroblastoma transcriptional programs, likely at a global

genome-wide scale beyond what we have observed at the LMO1 locus, warranting

further study.
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2.3.4 The non-coding genome of neuroblastoma

The data and approach that were used here to identify the causal variant at the

LMO1 locus has helped lay the groundwork for the discovery of other functional

germline variants and somatic driver mutations that a↵ect non-coding regulatory

regions of the genome in neuroblastoma. One method we have begun to explore

for this purpose is deltaSVM[97], an extension of the gapped k-mer SVM method

mentioned above that uses SVM weights to compute a score to predict whether an

input mutation is likely to be activating (positive score), inactivating (negative score),

or neutral (near zero score) when trained on either H3K27ac ChIP-seq or DNase-seq

or ATAC-seq data. As a validation of this method, we used H3K27ac ChIP-seq data

generated from 8 neuroblastoma cell lines to compute deltaSVM scores for the 27 top

associated variants at the LMO1 locus, which predicted the rs2168101 protective T

allele to be strongly inactivating (Table 2.1 and Figure 2.17).

While the gapped k-mer SVM method (and deltaSVM, by extension) has good

sensitivity and specificity, it su↵ers from low positive predictive value due to the

overwhelming predominance of functionally inert DNA in the human genome[95]. One

way in which this problem can be addressed is to restrict the deltaSVM analysis

only to non-coding regions with a high likelihood of being functionally active, such as

open chromatin regions. To this end, we are pursuing ATAC-seq experiments—a new

transposase-based methodology which combines the advantages of DNase-seq (assessing

chromatin accessibiliy) and MNase-seq (assessing nucleosome positioning)[98]—to map

the chromatin architecture of neuroblastoma with higher resolution than is possible

with current H3K27ac ChIP-seq data.

We are also working to integrate other functional data as additional supportive

evidence of functional non-coding genetic variants or mutations, including expression
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data from TARGET. One general approach is to look for expression outliers that are

associated with specific genetic changes, which can indicate a potential regulatory

phenotype. While the low recurrence of non-coding mutations (similar to coding

mutations) in neuroblastoma presents a di�cult challenge, we have already identified a

few possible leads, including a TARGET patient with a mutation in the proximal pro-

moter of MALAT1 that is also a MALAT1 expression outlier (Figure 2.18); MALAT1

stands for “metastasis associated lung adenocarcinoma transcript 1” and is a long

non-coding RNA that has already been extensively associated with cancer[99, 100].

A few additional patients also appear to be expression outliers by RNA-seq but are

unfortunately missing paired WGS data (Figure 2.18), and they will therefore require

targeted sequencing to discern whether their outlier status may also be associated with

promoter mutations. We are also working to integrate allelic imbalance to specifically

look for cis-regulatory signatures from RNA-seq data, though in practice this is not

always possible for any given patient or gene because it depends on the presence of

expressed heterozygous SNPs.
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Figure 2.5: Co-crystal structure of GATA3 bound to its cognate 5’-
AGATAA-3’ DNA binding motif. GATA3 is drawn as a ribbon, illustrating
the N-terminal zinc finger (blue) and C-terminal zinc finger (red) binding to two
separate DNA molecules, which may reflect how GATA3 is able to facilitate long-
range chromatin looping[75]. The red box highlights where the C-terminal zinc finger
arginine 330 residue makes contact with the 5’-AGATAA-3’ motif guanine, forming
two hydrogen bonding contacts. An analogous contact occurs with arginine 276 of
the N-terminal zinc finger. Interestingly, GATA3 R276P mutations are a cause of
hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome[76], reinforcing
the importance of this contact for maintaining proper GATA3 function. Image rendered
in PyMOL from Protein Data Bank[77] structure: 4HC9.

27



0

2

4

6

8

10

<
lo

g 1
0�
Sï

va
lu

e)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

O O

O

O O O O

O

OO OOOO O

O

OO
O O

OOOO OO O
OO

O

O
O

O

O

O

O

O
OO

O

OOO

O

O

OOO

O

O

O

O

O

O

O

OOOO

OO

OOOOOOOOO

O

O

O
O
OO
O

O

O
O
OO

OO

OO
O
O
OOOO
O

O

O
OO
OOOOOO

O

O
OOOO

O

OO
O
OOOO
O
OO
OOO
OOOOOOOOOOOOOO
O
O
OOOOOOO
O
O

O
O
O
O
O
O
OO
OO
O
OO
O
OOOO
O

O

OOOOOOOOOOOO
O

OOOOOOOOO
O

OO
O

O

O

OOOOOOOOOOOOOOO

O

OOOO

O

OOOOOOOOO
OOOO

O
OOOOOOOOOOO

O

OOOOOO
O
OO

OO
O
O
OO
OO
OO
OO
OO
OOOOOOOOOOOO
O
OOO

O
OO

O
O
O

O

O
O
O
OO

O

O

O

OO

O

OOOO
O
OO
O
O

OOO
O
O

O

OOOOO
O
OOO

O

OO
O O

OOOOOO
O
OOO

O

OO
O
OOOOOOO
O
O

OO
O
OOOO

O
O
O

O

OO
O
OO
OO
O
OOOOO

O

OOO

O

OO
OOOOO
OO
O
O
O
OO
O
OOOOO
OO
OOO
OOOOOOOOOOOOOOO
O
OO
OOOOOOOOOO
OOOOOOO
O
O

O
O
O

O

OOO

OO
O
OOOOOOOOOOOOOO

O

OOOOOOOOOOOOOOOOOOOO

O

OOOO

O

OOO

O

O

OOOOOOOO
O
OOOOOOO

O

OO

O

OOOOOO

OO

OOO

O

OOOO

O

O

O

OOOO

O

OOOO
O
OOO

O

OOO
O
OOOOOOOOOOO

O

OOOOOO
OOO
OO
OOO
OO

OOO
OOO
OO

O

O

O

O
O

O

O

O

OOOOOO

O

OOOOOOOOOO

OO

OOOOOOO
O
OOO

O
O
OO
O
OOO

O

OO

O

OOOOO

O

OOOOOOOO

O

OOOOOOO

O

OOOO

O

OOO

OO
O
OOOO
O
OOOOOOOOOOO
O

OOO

O

OO

O

OO

O

OOOOOOOOOOOOOOOOOOOOOO

O
O
O
OOOO
OO
OOOOO
O
OOOOOOOOOO

O

OO
O
O
O
OOOOO
OO
O
O
O
OOOOOOOOOOOOOOOO
O
OO

O
OOOOOOOOOOOOOOOOOO

O

OOOOO

O

OOO

O

OOOOOOO

O

OOOOO

O

OO

O

OO
O
OOO

OOO

OOOOO

O

OOOOOOOOOOOOOOOOOOO

OO

OOOOOOOOOO

O

OOOOOOOOOOOOOOO

O

OO
O
O
O
OOO

O

O
O

O

O

O

O
OOOO
OOO

O
OOOO
OOO

O

OOOOO

O

OO
O
O
O
O
O

O

O

O
O
OOO

OOO
OOO
O

O

O

OOOO

O

O

O

O
O
O

OO

O

OO

OO

OOOOOOOO

O
O
O
O
OOOOOO

O

OOOO
O
O

OO

OOOOOOO
O

O

O
O
O
OO
OO

O

O

O

O

OO
O
O
OOO

O

O
O
O

O
OO
O
O

O
OO
O

OOO

O
O

O

OOO

OOO

OOOOOOOOOOOOOOOO
OO
OOOOOOOOOO
O
OOOO

O

OOO

O
O

O

O

OOOO

O

OO

O

OO

OO

OO

OO
O
OOOOO

OOOOOO
OOOOOOOOOOOOO

O

OO
OO
O
OO

O

OO

O

OOOOO

O

OOOOOOOOOOO

O

O
O
OOOOOO
O
OOOOOO
OOO

O

OOOOOO
O

O
O
O
OO
O
OO

OOOOOOOO
O
OO
O

O
O
O
OOO
O

O
OOOO
OO
O
O
OOOOO
O
OOO

O

OOO
OOO
O
O
O
OOOO
O
O

O

OOOO

O

O
O

O
OO

O
OO

OOO

O
O

O
OO
O
OO
O
OOO

O
O
O

OOOO
O
OOOO
O

OO

OOOO

OOO
O
O
OOOO

O

OOOO

O

O

OOOOOO
O
OOO

O

O
O

O
O

O
O

O
O

O

O

O

O
O
O
OOOOOO
OOOOOOO
O

OOOO
O

O

O

OO

O
O
O
O
OO

O
O
OOO

O

OOOOOOO
O

O

O
OOOO
O

rs2168101

0.2

0.4

0.6

0.8

r2

EIF3F TUB

RIC3

LMO1 STK33

8.1 8.2 8.3 8.4
Position on chr11 (Mb)

0

2

4

6

8

10

<
lo

g 1
0�
Sï

va
lu

e)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

O O

O
O O O O

O

OO

O

OOO
O

O

OO
O

OO

OOO OO O

O
O

O

O
O

O

O

O

O

O
OO

O

OOO

O

O

OOO

O

O

O

O

O

O

O

OO

O

O

OO

OOO
O
OOOOO

O

O

O
O

OO

O

O

O

O
O
O

OO

OO

O

O

OOOO

O

O

O

OO

O
O
OOOO

O

O

OOO
O

O

O
O

O

OOOO

O
OO
OOO

OOOO
O
O
O
O
O
OOO
OOO
O
OOOOO
OO

O

O

O

O

O

O

O

O

O

O
OO

O

O
OO
OO
OO
O

O

OOOOOOOOOO
OO

O

OOOOO
OOO
O

O

OO

O

O

O

OOO
OOOOOOOOOO
OO

O

OOOO

O

OO
O
OOO
O
OO

O

OOO

O

OOOOOO

O
OOO
O

O

OOOOOO
O

OO

OO
OO
O
O

OO
O
OO
OOOO

OOO
O
OO
O
O
O
O

OOOOO

O
OO
O
O
O

O

O

O
OOO

O

O
O
OO
O

O
O
OO
O
O
OO

O

O
O

O

O

O

OO
OO
O

OO
OO

O

OO
O O

O
OOO

O

O
O
OOO

O

OO

O
O
O

O
O
OOO
O
O
OO

OO
O
OO
OO
O

O

OO
O
O
OOOO
O
OOO
O

O

OOO

O

O
OOO
OOO

O
OOOOOO
O
O
OOOO
OOOO
OO
O
OOO

O
OOOOOO
OOO
O
OO

O
OO
OOOOO
OOOO
O

O
O
O
O
OOO
OO

O

OOO
O
OOOOOOOO

O

OO

OO

OOO

O

O
O

OOOOOOOOOOOOOOOOOO

O

OOOO

O

OOO

O

O

OO
OOOOOOO
OOOO
OO
O

O

OO

O

OOO
OOO

OO

OOO

O

OOOO

O

O

O

OOOO

O

O

O

OO

OO
O

O

O
O

OO
O
OOOO

OOOOOOO

O
OOOOOOO

O

O
OO

O
OO

O
O

OO

O

O

OO

O

OOO

OO
O

O

O

O

OO

O
O

O

OO
OO

OO
OO

OOO

O

O

O

OO

OOOO

O
O
O

O
O

O

O

O
OO

O
OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
OO

OO

OOOO

O

OOOOO

O

OOOO
OOOO

O

O
OO
O

O
O
O

O
O
O
OO

O

O
O
O

OOO

OOOO
OO

OOOOOOOOOO

O

OOO
OO
O

O

OO

O

OOOOOOOOO
O
OOOOOO
OOOOOO

O
OO
O
OOO
O
O

OO
O
OO
O
OOOO
OOO
O
O

OO

OOOOOOOOOO
OO
O
O
O
O
O
O

O

OOO
O
OO
OOO
O
OO
O
OO

O
O

O

OOO
OOOOOOOO
OOOOO

O

OOOOO

O

O
O
O

O

OOOOOOO

OOOO

O
O

O

O
O

O

OO
OOOO

OOO

OO
O

O
O
O
O
OO
OOO
O
OO

O

OO

O
O
O

OOO
OOO
OO
OOOOOO
OO
OOO
O
OOOO
O
O
O
O
O

O
OO
O
O
O
O

O

O
OOO

O

OO

O

O

O

OOOOO
O
OO

O
O
OOO

OOO

O

OO

OO
O

O

OO
O

O
O

OO

O

O

OOOO

O

O

O

OOOO

O

O

O

O

O
O

O

O

O

O

O
O
O

OO

O

O
O

OO

OOOOOOOO

OOOO
O
OOOOO
O

OOOO
O
O
OO

OOOOOOO
O

O

O
O
OOOOO
O

O

O
O
OOO

O

O
O
O

O

O

O
O

OOOOO
O

OO
O
OOO

O
O
O

OOO
OOO
OOOOO
OOOOOOOOO
OOOOOOOOOOOOOO
O
OOO
O
O
OOO

OO

O

O

OOOO

O

O
O

O

OO

OO

OO

OO
O
OOOOO

OOOOOOOOOO
OOOOOO
OOO

O

O
OOO
O

OO

O

OO

O

OOOOO

O

OOO
O
O
OOOOO
O

O

O
OOOOOOOOOO
OOO
O
OOO

O

OOOO
OO
O

OO

O
OO
O

O
O
OO
O
OOOOO

O
O
OO

O

O

O
OOO
O

O

OOOO
OO

O
O
OOO
OO
O

OO
O

O

OOO

OOO

O

O

O
OO
O
O
O
O

O

O
OOO

O

O
O

O
OO

O

OO

OOO

OO

O
OO
O
OO
O
OOO

O

O
O

OOOO

O
OOOO
O

OO

OO
O
O

OOO
O

O

OOOO

O

OO

OO

O
O

O
OOOOO
O
O

OO
O

OO

OO

O
O

OO

O

O

O

O
O
O
OO

O

O
OO

O

OOOO

O

O

O

O
O
OO

O

O

O

OO

O
O
O
O
OO

O
OOO

OO
rs34544683

0.2

0.4

0.6

0.8

r2

EIF3F TUB

RIC3

LMO1 STK33

8.1 8.2 8.3 8.4
Position on chr11 (Mb)

a

b

Figure 2.6: Conditional analysis reveals a single neuroblastoma association
signal at the LMO1 locus. a, Imputation-based neuroblastoma association study
conditional on rs2168101. No variants remain significant after conditioning on rs2168101
(most significant variant: rs34544683, nominal P = 9.0⇥ 10�4, Bonferroni P = 1). b,
Reciprocal analysis conditioned on each of 27 SNPs with a nominal P < 1⇥ 10�5. For
rs2168101, the maximum (least significant) P -value across all non-rs2168101 conditional
tests is shown, illustrating the extent to which the rs2168101 signal can be accounted
for by other variants (a similar statistic is plotted for other variants). Notably, rs2168101
remained significant (worst-case nominal P = 2.6⇥10�7, Bonferroni P = 0.002) across
all tests. These results are consistent with a single underlying signal at the LMO1
locus, and re-a�rm that rs2168101 is the single best causal SNP candidate because
its association with neuroblastoma cannot be accounted for by other single variants.
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Figure 2.7: Allele-specific expression analysis confirms cis-regulatory sig-
nature at the LMO1 locus. a, mRNA-seq across 127 primary tumours genotyped
for rs2168101 (G/G = 102, G/T = 25, T = 0) revealed a significant decrease in LMO1
gene expression between G/T and G/G tumours (t-test P = 0.028). RPKM, reads
per kilobase per million reads. b, Using the synonymous exonic SNP, rs3750952, to
measure allelic expression by mRNA-seq revealed significantly more allelic imbalance
in 12 heterozygous neuroblastoma tumours (rs2168101 = G/T) than in 33 homozy-
gous tumours (rs2168101 = G/G) (t-test P = 5.3 ⇥ 10�5). c, Allelic expression for
rs2168101 from targeted nascent RNA-seq in four neuroblastoma cell lines. The two
heterozygous cell lines (rs2168101 = G/T) exhibited significantly reduced T-allele
expression compared to the G allele (t-test P = 1.6⇥10�4 and 1.5⇥10�2 for NGP and
NLF, respectively; error bars denote 95% confidence intervals across n = 3 duplicate
experiments).

29



0.5

0.6

0.7

0.8

0.9

1.0

0.0 2.5 5.0 7.5 10.0

FolloZï8p, Years

P
ro

b
a
b
il
it
y
 o

f 
E

v
HQ
Wï
)U
HH
�6
Xr

v
iv

a
l

rs2168101
GG

GT or TT

0 2 4 6 8 10

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
XP

EH
U�R
I�P

a
ti
e
n
ts

 a
t 
R

is
k
 (

E
v
HQ
W�)
UH
H�
6X

rv
iv

a
l)

FolloZï8p, Years

0.5

0.6

0.7

0.8

0.9

1.0

0.0 2.5 5.0 7.5 10.0

P
ro

b
a
b
il
it
y
 o

f 
O

v
e
rD
OO�
6X

rv
iv

a
l

FolloZï8p, Years

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
XP

EH
U�R
I�P

a
ti
e
n
ts

 a
t 
R

is
k
 (

O
v
e
rD
OO�
6X

rv
iv

a
l)

0 2 4 6 8 10

FolloZï8p, Years

rs2168101
GG

GT or TT

rs2168101
GG

GT or TT

rs2168101
GG

GT or TT

a b

P = 0.0004 P = 0.0004

Figure 2.8: The protective T allele of rs2168101 is associated with increased
event-free and overall survival in the European-American discovery cohort.
Because genotypes for rs2168101 are imputed within the European-American discovery
cohort, the most likely genotype for each neuroblastoma case was called based on the
maximum of P(G/G), P(G/T) and P(T/T) from IMPUTE2. P -values reflect Cox
proportional hazards regressions adjusted for MYCN amplification status and the first
20 MDS components to adjust for population stratification. a, Kaplan-Meier plot for
event-free survival. Neuroblastoma cases with rs2168101 = G/G versus rs2168101 =
G/T or T/T showed significantly worse event-free survival (P = 0.0004). b, Kaplan-
Meier plot for overall survival. Neuroblastoma cases with rs2168101 = G/G versus
rs2168101 = G/T or T/T showed significantly worse overall survival (P = 0.0004).
Censored data points are shown as black crosses. Number of at risk patients at every
time point for both event-free survival and overall survival are plotted below each
respective Kaplan-Meier plot.
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Figure 2.9: rs2168101 genotype is associated with total and allele-specific
LMO1 expression in neuroblastoma cell lines and primary tumours, and
allele-specific expression di↵erences are not driven by somatic DNA copy
number alterations. a, Neuroblastoma cell line LMO1 mRNA expression as quan-
tified by A↵ymetrix U95Av2 oligonucleotide arrays was significantly higher in cell
lines harbouring homozygous risk alleles (G/G) compared to heterozygous alleles
(G/T) (P = 0.047, Mann-Whitney two-tailed). b, Allele-specific expression measured
by RNA-seq from primary neuroblastoma tumours. Since rs2168101 is an intronic
SNP that is spliced out in mRNA, the synonymous exonic SNP rs3750952 was used as
a surrogate for measuring allele-specific expression in 39 primary tumours which are
heterozygous for rs3750952 (C/G genotype). The DNA allelic fraction for rs3750952
determined by whole exome sequencing is plotted on the x-axis, whereas the RNA
allele fraction for rs3750952 determined by mRNA-seq is plotted on the y-axis. The
solid line indicates where DNA and RNA allele fractions are equal and dotted lines
indicate the boundary where DNA and RNA allele fractions are within 10% of each
other. Tumors that are heterozygous for rs2168101 (G/T genotype, red dots) exhibit
greater RNA allelic imbalance (P = 5.3⇥ 10�5) than homozygous controls (rs2168101
= G/G genotype, black dots). By contrast, DNA allelic imbalance is no di↵erent
between G/T versus G/G tumours (P = 0.79), indicating that a cis-acting regulatory
mechanism, rather than somatic DNA alterations, drives LMO1 allelic expression
di↵erences.
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Figure 2.10: Expression of LMO1 and GATA-family transcription factors
in neuroblastoma primary tumours and cell lines. a, RPKM expression mea-
surements from mRNA-seq are summarized via boxplots for 127 primary neuroblastoma
tumours for paralogues GATA1 through GATA6. Both GATA2 (median RPKM: 56)
and GATA3 (median RPKM: 110) are more highly expressed by 1-4 orders of magni-
tude on average compared to other members of the GATA family in neuroblastoma.
b, Neuroblastoma cell lines were lysed for protein and resolved by SDS-PAGE. Jurkat
T-ALL cells are shown as a positive control for LMO1 and GATA3 expression. Data
are representative of at least three independent blots. The rs2168101 genotype is
shown below individual cell lines.

32



ba
20 kb

20.0

7.5

LMO1

rs2168101

SHSY5Y

(G/G)

KELLY

(G/-)

BE2C

(T/-)

NGP

(G/T)

7.5

7.5

7.5

BE2

(G/T)

G
AT

A3
 C

hI
P-

Se
q 

(rp
m

/b
p)

0
5

10
15

20

G allele fraction
T allele fraction

    97% G***
(37G:1T)

 100% G*
(6G:0T)

SHSY5Y

(G/G)

KELLY

(G/-)

BE2

(G/T)

BE2C

(T/-)

NGP

(G/T)

rs
21

68
10

1 
Al

le
le

-S
pe

ci
fic

G
AT

A3
 C

hI
P-

Se
q 

(rp
m

/b
p)

 

Figure 2.11: The rs2168101 protective T-allele negatively associates with
GATA3-binding. a, Normalized GATA3 ChIP-seq signal at rs2168101 in five neu-
roblastoma cell lines (rs2168101 genotypes: SHSY5Y = G/G, KELLY = G/-, BE2 =
G/T, NGP = G/T, BE2C = T/-). rpm, reads per million. b, Allele-specific binding of
GATA3 at rs2168101. GATA3 binding highly favored the risk G allele in heterozygous
lines (BE2: 0.97 G-allele fraction from 38 reads, 95% confidence interval: 0.86-1.00,
Binomial P = 2.8⇥ 10�10; NGP: 1.00 G-allele fraction from 6 reads, 95% confidence
interval: 0.54-1.00, Binomial P = 0.03).
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Figure 2.12: The rs2168101 protective T-allele negatively associates with
the LMO1 super-enhancer in neuroblastoma cells. a, Normalized ChIP-seq
signal for H3K27ac at rs2168101. b, Ranked H3K27ac signal across all enhancers
in MYCN-amplified KELLY and BE2C lines. Super-enhancers associate with key
neuroblastoma genes, highlighted on the curve. There is an LMO1 -associated super-
enhancer in G-allele-containing lines SHSY5Y, KELLY and BE2, but not in BE2C,
which lacks the G allele.
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Figure 2.13: The LMO1 super-enhancer is observed in neuroblastoma cell
lines containing the G allele of rs2168101 and is highly tissue-specific. a,
H3K27ac signal across all enhancers in SHSY5Y (MYCN not amplified; rs2168101
= G/G), BE2 (MYCN -amplified; rs2168101 = G/T) and NGP (MYCN -amplified;
rs2168101 = G/T) is shown. Enhancers are ranked by their signal of H3K27ac minus
input signal and are geometrically divided into two populations. Super-enhancers
are those at the high end of the population and are associated with key genes in
neuroblastoma, highlighted on the curve. LMO1-associated super-enhancers were
identified in BE2, KELLY and SHSY5Y cells, which all contain the G allele of rs2168101,
but not in BE2C cells in which the G allele is absent. b, H3K27ac ChIP-seq in the
Jurkat cell line. c, All ENCODE non-neuroblastoma cell lines with H3K27ac ChIP-seq
profiling. All non-neuroblastoma cell lines considered showed little to no evidence for
an active enhancer element within the first intron of the LMO1 gene locus, consistent
with a tissue and disease-specific enhancer overlying the neuroblastoma causal SNP
rs2168101.
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Figure 2.14: a, Luciferase reporter assay for LMO1 enhancer region. The risk G allele
preserved enhancer activity (t-test P = 0.002 across n = 4 independent clones, each
with n = 5 technical replicates), whereas the protective T allele was indistinguishable
from empty vector. b, Left, protein blots for GATA3, LMO1 and tubulin in SHSY5Y
cells treated with control (siControl) short interfering RNAs (siRNAs), or with siRNAs
targeting GATA3 (siGATA3-1 and siGATA3-2), at 72 h post-treatment. Right, cell
counts for cell lines SHSY5Y, KELLY, KELLY stably overexpressing control vector
(EV) and KELLY with forced LMO1 overexpression (LMO1-1 and LMO1-2) treated
with siRNAs at 72 h post-transfection. Rescue of suppressed cell growth after GATA3
depletion by forced LMO1 expression was observed at 72 h. Error bars denote ± s.e.m.
*P < 0.05, **P < 0.001 by t-test. n = 3 independent transfections, n = 9 technical
replicates.
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Figure 2.15: GATA transcription factor binding motifs are the sequences
most highly associated with active chromatin regions in Kelly neuroblas-
toma cell line. These data reflect training gapped k-mer SVM on H3K27ac ChIP-seq
data from the Kelly neuroblastoma cell line. Following SVM training, the top 1000
10-mer sequences with the strongest positive weights were input into MEME for
unbiased motif discovery. Among the top three motifs, the first and third both match
well to GATA transcription factors (5’-AGATAA-3’). The second motif is consistent
with ETS transcription factors (5’-GGAA-3’).
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Figure 2.16: GATA transcription factor binding motifs are universally acti-
vating in neuroblastoma cell lines. These data reflect training gapped k-mer SVM
on H3K27ac or H3K4me1 ChIP-seq data from neuroblastoma cell lines as indicated.
Histograms reflect gapped k-mer SVM weights for all 10-mer sequences containing
a 5’-AGATAA-3’ motif or its reverse complement, 5’-TTATCT-3’. In all cell lines
tested, the AGATAA motifs are biased toward higher weights, indicating that they are
strongly associated with H3K4me1 and H3K27ac bound regions and suggesting that
GATA transcription factors are likely to function as strong transcriptional activators
at a genome-wide scale in neuroblastoma.
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Figure 2.17: DeltaSVM trained on H3K27ac ChIP-seq data predicts
that the protective T allele of rs2168101 is transcriptionally inactivating.
DeltaSVM scores are shown by boxplot based on gapped k-mer SVMs trained on
H3K27ac ChIP-seq profiles across 8 neuroblastoma cell lines for 27 candidate causal
variants at the LMO1 locus (Table 2.1). All 27 candidate causal variants are ranked
by their median deltaSVM score across cell lines. The rs2168101 G!T SNP, predicted
to be inactivating (strong negative score), is highlighted in red.
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Figure 2.18: MALAT1 expression outlier associated with proximal pro-
moter mutation. Scatterplot reflects RPKM expression values as inferred by RNA-
sequencing of TARGET primary tumors for MALAT1 (y axis) versus MYCN (x axis).
Several expression outliers are observed, and the highest MALAT1 expressing TAR-
GET tumor (patient PASPER) contains an insertion in its proximal promoter region
that disrupts a TALE homeobox motif, which could potentially lead to overexpression
of MALAT1 by a removal of a repressive transcriptional regulator. Other expression
outliers are identified, but unfortunately do not have paired WGS data (gray dots) in
order to confirm whether or not they also contain mutations in the MALAT1 proximal
promoter.
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Chapter 3

Clonal evolution in relapsed

neuroblastomas.

3.1 Challenges for studying the relapsed neurob-

lastoma genome

Patients with high-risk neuroblastoma have a survival rate of less than 50%[1, 101],

despite extensive treatment involving chemotherapy, surgery, radiation therapy and

immunotherapy. In a majority of patients, an initial response to therapy is observed;

however, up to 60% of these patients subsequently relapse with therapy-resistant

tumors with very poor prognosis[7, 102, 103]. Recently, sequencing of the ALK locus

in neuroblastomas at the time of relapse identified 14 activating mutations in 54 cases

(26%)[104], suggesting that the frequency of ALK aberrations is higher in relapsed

neuroblastoma genomes. However, nearly all next generation sequencing studies of

neuroblastoma genetics to date have focused exclusively on primary tumors[44–47], due

to the scarcity of relapsed neuroblastoma tissue both in the USA and worldwide. This

reflects historical clinical thinking that biopsies are not indicated for relapsed neurob-

lastoma, given the prevalence of non-invasive diagnostic radiographic techniques[105],

as well as the limited potential for a biopsy to change the clinical course given that
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relapsed neuroblastoma is nearly always fatal[1]. Thus, the neuroblastoma research

field has been faced with a long-standing dilemma: the development of new treatments

for relapsed disease has been hindered by the absence of biopsy material, but a biopsy

has not been ethically indicated unless it would possibly benefit the patient and a↵ect

treatment.

Despite the aforementioned rarity of relapse biopsies, our laboratory in collaboration

with the TARGET project and the Children’s Oncology Group (COG) were able to pull

together matched normal blood, primary tumor, and relapsed tumor tissue “trios” from

nine neuroblastoma patients. This enabled us to perform whole genome sequencing in

order to define the germline and somatic lesions that define relapsed disease, and I

took the lead on the data analysis for this project as part of my dissertation work.

While presenting our results at the 2014 Advances in Neuroblastoma Research (ANR)

Research Congress, we connected with colleagues in the Netherlands and France who

had performed similar WGS analysis in six and eight trios, respectively. Our meeting

ultimately led to a very productive collaboration between our three groups[106], which

will be described in greater detail in the following sections.

3.2 Estimating the clonality/sub-clonality of muta-

tions detected by next generation sequencing

In addition to performing more traditional mutation and copy number analyses in

this dataset, I took the lead in a formal clonality analysis of somatic coding mutations

across primary and relapse tumors. This provided an important opportunity to observe

how neuroblastomas evolve molecularly over the course of therapy and to identify

candidate mutations that may provide a selective advantage and ultimately lead to

treatment resistance. The statistical methodologies that form the basis of this analysis
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have only been developed in the past few years[107–109] and more details about these

methodologies can be found in Appendix A. This section will focus on a illustrative

and practical example of how these approaches have aided our understanding of clonal

structure and evolution in neuroblastoma.

A useful metric for quantifying the relative clonality vs subclonality of mutations is

the cancer cell fraction (CCF), which describes the fraction of the cancer cell population

within a sample that harbor of a mutation. Thus, a clonal mutation is one with a CCF

100% (or estimated to be very close to 100%, practically) and a subclonal mutation is

one with a CCF strictly less than 100%. Generally, this CCF quantity will be larger

than the sample fraction of the mutant population, because a non-zero fraction of

normal contaminating cells (containing only wild-type alleles by definition) will dilute

the apparent prevalence of the mutation when counting mutant versus wild-type alleles

from sequencing data. This problem of normal contamination, in addition to overall

tumor ploidy, are the primary reasons why it is di�cult to estimate mutation CCF

from NGS data.

In practice, our laboratory has used Sequenza[109] in order to estimate tumor

purity and ploidy from NGS data as a necessary first step, followed by statistical

modeling laid out in Carter et al. and Landau et al. to estimate somatic point mutation

CCF[107, 108]. The results of running Sequenza on the primary and relapse tumors

of neuroblastoma patient “PASGAP” are shown in Figure 3.1. Although the B-allele

frequency and relative coverage signals in the primary tumor data of PASGAP are

diluted by somewhat lower sample purity (estimated purity of 43% in primary, 75%

in relapse), the overall contamination-corrected profiles are largely concordant and

confirm the expected clonal relationship between primary and relapse tumors.

A closer look at the PASGAP primary and relapse tumors reveals complex copy

number alterations on chromosome 17 (see Figure 3.2). What is particularly interesting
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Figure 3.1: Sequenza results for the primary and corresponding relapse
tumors from patient “PASGAP”. Illustrated are genomic profiles of B-allele
frequency of germline heterozygous SNPs (top) and relative sequencing coverage ratio
(bottom) for primary and relapse tumors. Dotted lines illustrate Sequenza absolute
copy number calls, which take into account normal contamination and overall tumor
ploidy. These results illustrate that after taking into account the relatively lower
purity of the primary tumor, copy number profiles are largely consistent between
primary and relapse tumors, confirming their clonal relationship. Relapse-specific copy
number alterations include gain of 6p, loss of 20p, and complex rearrangements across
chromosome 17.

is that there is a region of relapse-specific hemizygous deletion (which is likely clonal,

see Figure 3.2) and loss of heterozygosity that entirely covers the NF1 tumor suppressor,

which also contains a relapse-specific splice site mutation. While these data suggest

that a sub-population of the PASGAP relapse tumor harbors bi-allelic loss of NF1

function, it is unclear whether or not this NF1 mutation is clonal, given that only

10 out of 15 reads in the relapse tumor show the mutation. However, after adjusting

for tumor purity and ploidy, the CCF estimate with maximum posterior probability

was indeed 100% (see Figure 3.3), indicating that this mutation is very likely clonal.
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Thus, through this methodology we were able to say with some statistical confidence

that patient PASGAP underwent clonal, bi-allelic inactivation of the NF1 tumor

suppressor.
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Figure 3.2: Sequenza results for the primary and corresponding relapse
tumors from patient “PASGAP” at chromosome 17. These data are similar
to Figure 3.1, but focus on chromosome 17 in order to better illustrate the complex
rearrangements in this region. Importantly, the sub-region containing the NF1 tumor
suppressor (vertical black line) underwent a relapse-specific hemizygous deletion leading
to loss of heterozygosity. We can infer that the NF1 deletion is clonal or nearly clonal
because the deleted region falls onto a dotted line (see Appendix A for rationale).

Finally, by integrating DNA WGS and RNA-seq data across primary and relapse

tumors of patient PASGAP, we were able to further validate the functional significance
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Figure 3.3: Bayesian model of cancer cell fraction of NF1 splice site mu-
tation in patient “PASGAP”. Shown is the posterior distribution of CCF for the
relapse-specific splice site mutation in PASGAP, after applying the Bayesian method-
ology of Carter et al. and Landau et al.[107, 108]. The posterior mode of 100% CCF
suggests that this mutation is quite likely clonal or nearly clonal. A 95% credibility
interval in this case is (65.5, 100%). See Appendix A for methodological details.

of these relapse-specific lesions in the NF1 gene. In particular, we observed that the

splice site mutation in PASGAP resulted in 100% expression of the mutant allele along

with increased intron retention only in the relapse tumor, likely causing premature
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truncation of the NF1 protein (see Figure 3.4). Thus, mutation of an NF1 splice donor

site and hemizygous deletion of the wild-type allele likely conspire to yield clonal

bi-allelic inactivation of the NF1 tumor suppressor. This example illustrates one way

in which RAS-MAPK pathway activation can be achieved in relapsed neuroblastomas.

Premature
 Stop Codon

Figure 3.4: DNA and RNA sequencing profiles at the splice donor site that
is mutated in the relapse tumor of patient PASGAP. Only wild-type alleles are
observed in the PASGAP primary tumor, thereby maintaining in an intact splice donor
site and normal splicing of NF1. However, in the PASGAP relapse tumor, mutation of
a splice donor site results in intron retention, evidenced by increased intronic pileup
whose specificity is demonstrated by 100% RNA expression of the mutant allele. The
presence of an immediate in-frame stop codon within this intron likely results in a
premature truncation of the NF1 tumor suppressor and corresponding loss of function.

The following section is largely copied with minor edits from our recent publication

in Nature Genetics, whose full citation is provided here: [106]. Although this study

represents the collaborative e↵orts of many people, my principal contributions included

performing all aspects of whole genome sequencing data analysis of the American

TARGET samples up until the time that we ultimately merged our e↵orts with

our Dutch and French colleagues. During our collaboration, I continued to provide

input and direct contributions to the analysis and presentation of our combined next

generation sequencing data, led all aspects of the clonality analysis described in detail

here, as well as contributing to many of the figures and in writing and editing the
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final manuscript.

3.3 Eleveld, Oldridge, Bernard et al. 2015. Re-

lapsed neuroblastomas show frequent RAS-

MAPK pathway mutations.

We sequenced the genomes of 23 triplet samples constituting primary and relapse

neuroblastomas and lymphocytes. Tumors were of all stages and had variable outcome,

with the only eligibility criterion being the availability of high-quality DNA from

the triplet samples. There was a roughly equal distribution of cases among low-,

intermediate-, and high-risk groups[7]. The median time from diagnosis to relapse

was 11.3 months (range of 1-90 months). Twenty-one of the 23 subjects in this study

received chemotherapy before relapse, and 8 also received radiation therapy, according to

internationally accepted treatment protocols (Table 3.1). Thus, all patients underwent

similar chemotherapy regimens, with high-risk patients additionally receiving radiation

therapy and high-dose chemotherapy with stem cell rescue. No patient on this study

received targeted inhibitors to any oncogenic pathway between the time of diagnosis

and relapse. The majority of low-risk cases received chemotherapy because of the site

and/or size of the primary tumor.

We analyzed the sequence data for somatic mutations resulting in amino acid

changes or located in splice-site regions within 3 bp of an exon, as well as for focal

structural aberrations of regions containing five genes or fewer. There was a median of

14 more mutations in the relapsed samples than in the samples at diagnosis (Figures

3.5 and 3.6). On average, 28% of the mutations detected in the primary tumor were also

detected at relapse, showing that the primary and relapsed tumors were of common
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Table 3.1: Clinical characteristics of the relapse patient cohort.

Time in Months Treatment, Dx ! Rel
Patient ID Risk Group Stage MYCN Sex Dx Rel Last Status Rad Chem Surg Dx Location Rel Location

FR NB1178 High 4 Non-amplified M 30 21 24 Dead Y Y Y Retroperitoneum Liver
FR NB1269 High 4 Amplified M 14 9 11 Dead N Y Y Retroperitoneum Retroperitoneum
FR NB1382 High 4 Amplified M 4 50 64 Dead N Y Y Abdomen Abdomen
NL N774 High 4 Non-amplified F 83 6 10 Dead Y Y Y Adrenal gland Abdomen
US PATNKP High 4 Non-amplified M 113 20 40 Alive Y Y Y Retroperitoneum Pelvis
US PASGAP High 4 Non-amplified M 44 42 51 Dead Y Y Y Adrenal gland Soft tissue, skull
NL N790 High 3 Amplified F 42 63 110 Dead Y Y Y Adrenal gland Liver
US PASHFA High 3 Amplified F 13 7 11 Dead N Y Y† Adrenal gland Abdomen
FR NB804 Intermediate 4 Non-amplified F 2 26 56 Alive N Y Y Subcutaneous nodule Orbita
NL N607 Intermediate 4 Non-amplified F 3 7 84 Alive Y Y N Liver Orbita
US PARHAM Intermediate 4 Non-amplified F 11 1 81 Dead N Y N Pelvis Pelvis
US PATYIL Intermediate 4 Non-amplified F 11 8 16 Dead N Y Y Abdomen Pararenal
NL N571 Intermediate 3 Non-amplified M 49 12 16 Dead N Y Y Adrenal gland Abdomen
US PASNPG Intermediate 3 Non-amplified F 10 10 63 Alive N Y Y Retroperitoneum Paraspinal
US PARBAJ Intermediate 3 Non-amplified M 1 10 88 Alive N Y Y Retroperitoneum Abdomen
US PAUDDK Intermediate 3 Non-amplified M 12 11 38 Alive N Y Y† Pelvis Pelvis
FR NB1224 Low 2 Non-amplified M 15 8 18 Alive N Y N Mediastinum Mediastinum
FR NB0175 Low 2 Non-amplified M 98 90 103 Dead N N Y Retroperitoneum Retroperitoneum
FR NB308 Low 2 Non-amplified F 2 21 91 Alive N Y N Abdomen Abdomen
NL N041 Low 2 Non-amplified F 109 72 92 Dead Y Y Y Abdomen Abdomen
US PAPVEB Low 2 Non-amplified M 57 9 40 Dead N N N Adrenal gland Bone marrow
NL N789 Low 1 Non-amplified F 124 78 168 Alive Y Y Y Adrenal gland Lymph node
FR NB399 Low 4s Non-amplified M 0 7 134 Dead N Y N Subcutaneous nodule Liver

Dx = diagnosis; Rel = relapse; Rad = radiation; Chem = chemotherapy; Surg = surgery
†Biopsy only

descent. To gain more insight into the clonal architecture, we estimated the cancer

cell fraction (CCF) of all somatic mutations using a customized reimplementation

of a previously described Bayesian approach[107], which infers CCF from mutant

allele fractions determined by sequencing and accounts for normal contamination and

locus-specific copy number. This analysis yielded a median CCF of 61% for mutations

detected in the primary tumor but lost in the relapse tumor, in comparison to a median

CCF of 90% for primary tumor mutations shared with the relapse tumor (Figure

3.7a), a pattern that is consistent with subclonal outgrowth of the relapsed tumor.

Furthermore, we estimated a median CCF of 83% for all relapse tumor mutations in

comparison to a median CCF of 75% for all primary tumor mutations, indicating clonal

enrichment of a subset of mutations at relapse (Figure 3.7b). Comparison of genes

a↵ected by smaller structural events and chromosomal copy number alterations in

primary and paired relapse tumors showed similar results, with a subset of aberrations

shared but many detected only in the primary or relapse tumor (Figure 3.8).
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PASGAP Primary Tumor PASGAP Relapse Tumor

Bi-allelic NF1 inactivation
(relapse-specific)

Figure 3.5: Circos plots showing structural alterations and somatic muta-
tions in the primary and corresponding relapse tumors from PASGAP. The
inner ring represents copy number alterations (red, gain; green, loss) identified on
the basis of coverage of the tumor and lymphocyte genomes. The lines traversing the
ring indicate inter- and intrachromosomal rearrangements identified by discordant
mate pairs from paired-end reads. Aberrations are colored according to their presence
(gray, only detected in the primary tumor; black, detected in the primary and relapse
tumors; blue, only detected in the relapse tumor; red, events predicted to activate
RAS-MAPK signaling). PASGAP exhibits bi-allelic inactivation of NF1 that is only
observed at relapse.

Enrichment of mutations that activate RAS-MAPK signaling

Unbiased pathway analysis[110] using whole-genome sequencing data from the

relapse samples on a per-patient basis identified a strong enrichment (P = 6.1⇥ 10�7)

for mutations in genes associated with RAS-mitogen-activated protein kinase (MAPK)

signaling. We next filtered the identified mutated genes against the Cancer Gene

Census[111] and subsequently focused on hotspot regions by selecting mutations

annotated in the Catalogue of Somatic Mutations in Cancer (COSMIC) to identify

events that are well annotated to activate this pathway. Fifteen of 23 relapse samples
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Figure 3.6: Count of nonsynonymous mutations identified by whole-
genome sequencing in 23 primary tumors and their corresponding relapse
tumors. Mutations identified in both primary and relapse tumors are shown in gray,
whereas mutations unique to the primary or relapse tumor are shown in beige and
blue, respectively. On average, more mutations were observed at relapse, indicating
clonal evolution.

contained somatic mutations that met these criteria. In addition, three relapse samples

showed structural alterations involving these RAS-MAPK pathway genes; thus, we

detected aberrations in this pathway in 18 of 23 relapse samples (78%), and all

alterations were consistent with pathway activation (Table 3.2). Eleven mutations

activating RAS-MAPK signaling that were present in primary tumors were all preserved

in the corresponding relapse tumors. Seven mutations were not detectable in the

primary tumor at the sequencing depth achieved, and we therefore employed ultra-

deep sequencing to determine whether these mutations were present in fractions under

the whole-genome sequencing detection limit. The ALK mutation in N607 was found

in the primary tumor, whereas the other mutations were undetectable. We assayed

structural aberrations using PCR-based methods. Only the ALK rearrangement in

N790 was shown to be present at low frequency in the primary tumor.

ALK aberrations occurred in ten relapse tumors and were also detected by whole-

genome sequencing in seven of the corresponding primary tumors. All detected single-
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Figure 3.7: Relapse tumors undergo clonal evolution over the course of
treatment. The posterior probability distribution of cancer cell fraction (CCF) was
estimated for all somatic coding SNVs by the method of Carter et al.[107] assuming a
somatic multiplicity of one. The expected value of CCF for each SNV, E[CCF], was
then computed under its respective posterior distribution, and the empirical density
of E[CCF] was computed across all somatic coding SNVs and patients and visualized
in the above plots. (a) Comparison of primary tumor mutations that are inherited by
their corresponding relapse tumor versus those that are lost. (b) Comparison of all
primary tumor mutations versus all relapse mutations. The enrichment of high-CCF
mutations at relapse and the loss of low-CCF mutations detected in the primary tumor
are consistent with subclone outgrowth and clonal enrichment of a subset of mutations
at relapse.

nucleotide variants (SNVs) have been proven to constitutively activate this receptor

tyrosine kinase known to activate RAS-MAPK signaling[112]. Furthermore, one relapse

sample showed a de novo amplification giving rise to a PPM1G-ALK fusion gene,

which activated the RAS-MAPK pathway when expressed in neuroblastoma cell lines.

Two tumors showed relapse-specific inactivation of the NF1 tumor-suppressor

gene, through homozygous deletion in one case and heterozygous deletion combined

with a splice-site mutation in the other. NF1 inactivation has been reported in

neuroblastoma and confers activation of RAS-MAPK signaling and resistance to

retinoic acid[113]. One pair of primary and relapse tumors showed a heterozygous

mutation in PTPN11. Mutations in PTPN11 activate RAS-MAPK signaling, and the
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Figure 3.8: Relative coverage plots displaying the structural alterations in
primary and relapse tumors. Coverage was calculated for 1-Mb bins along the
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reflects the magnitude of the gain or loss (blue, loss; red, gain) in the associated
chromosomal location. Focal RAS-MAPK-pathway-activating structural alterations
are labeled with arrows. P = primary; R = relapse

identified mutation encoding a p.Ala72Thr substitution has been reported in leukemia

and neuroblastoma[114].

One relapse tumor showed a tandem duplication in the BRAF gene that was not

detected in the primary tumor. This rearrangement leads to expression of a BRAF

transcript that encodes an elongated protein with two kinase domains. Expression

of this BRAF gene with a tandem duplication in a neuroblastoma cell line induced

activation of the RAS-MAPK pathway. Taken together, the somatic mutations detected

in this case series shown to activate the RAS-MAPK pathway were mutually exclusive,

with no case having two somatic events known to hyperactivate this growth-promoting
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Table 3.2: RAS-MAPK pathway mutations in relapsed neuroblastomas.

Genomic aberrations in RAS-MAPK pathway in relapse tumors
Patient ID Gene Genomic event Event type COSMIC ID In primary†
FR NB1178
FR NB1269 ALK Somatic mutation (L1196M) Activating 99137 Yes
FR NB1382 ALK Somatic mutation (Y1278S) Activating 28058 No
NL N774 PTPN11 Somatic mutation (A72T) Activating 13014 Yes
US PATNKP FGFR1 Somatic mutation (N546K) Activating 19176 Yes
US PASGAP NF1 Somatic Mutation (Splice Donor) + Hemizygous Deletion Inactivating No
NL N790 ALK Amplification and fusion Activating No
US PASHFA
FR NB804
NL N607 ALK Somatic mutation (F1174L) Activating 28055 No
US PARHAM ALK Somatic mutation (R1275Q) Activating 28056 Yes
US PATYIL NRAS Somatic mutation (Q61K) Activating 580 Yes
NL N571 NF1 Homozygous deletion Inactivating No
US PASNPG ALK Somatic mutation (F1174I) Activating 28491 Yes
US PARBAJ HRAS Somatic mutation (Q61K) Activating 496 No
US PAUDDK
FR NB1224 ALK Somatic mutation (R1275Q) Activating 28056 Yes
FR NB0175 ALK Somatic mutation (Y1278S) Activating 28058 Yes
FR NB308 ALK Somatic mutation (F1174L) Activating 28061 Yes
NL N041 BRAF Tandem duplication catalytic domain Activating No
US PAPVEB KRAS Somatic mutation (G12D) Activating 521 Yes
NL N789
FR NB399 ALK Somatic mutation (R1275Q) Activating 28056 Yes

†Detected in primary tumor by whole genome sequencing analysis

pathway.

We hypothesized that mutations activating RAS-MAPK signaling exhibit relapse-

specific enrichment due to treatment. We therefore performed a clonality analysis,

comparing CCF estimates for RAS-MAPK mutations in paired primary (CCF
p

) and

relapse (CCF
r

) tumors (Figure 3.9). RAS-MAPK mutations were almost universally

present within major subclonal populations at relapse, as indicated by CCF
r

> 0.5

with probability > 90% under the posterior distribution for 14 of 15 relapse tumors.

In 7 of 15 tumor pairs, there was strong evidence of relapse-specific enrichment of

RAS-MAPK mutations—including mutations in ALK (4 pairs), HRAS (1 pair), KRAS

(1 pair) and NF1 (1 pair)—based on a criterion of CCF
r

> CCF
p

with probability

> 90% for each pair. By contrast, the probability that CCF
r

> CCF
p

fell within

20-80% bounds for the remaining eight pairs, indicating that RAS-MAPK mutations

that were already present in the primary tumor were retained at relapse. Collectively,
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these results support RAS-MAPK mutations as somatic drivers that undergo positive

selection over the course of neuroblastoma treatment.
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Figure 3.9: RAS-MAPK pathway mutations reside within major relapsed
neuroblastoma subclones. Each of the 15 panels represents a primary-relapse pair
with a corresponding RAS-MAPK pathway mutation. Posterior distributions of CCF
were computed by the method of Carter and colleagues[107] and are represented by
violin plots, with black dots positioned at the distribution medians. Four primary-
relapse pairs (NB1382, PASGAP, N607 and PARBAJ) possess relapse-specific RAS-
MAPK pathway mutations that are undetectable in the corresponding primary tumors
by whole-genome sequencing. Three additional pairs (NB1224, NB308 and PAPVEB)
also show evidence of relapse-specific enrichment of RAS-MAPK mutations based
on the criterion that the probability of CCF

r

> CCF
p

was > 90% for each pair.
CCF estimates for ALK mutations in NB308 reflect p.Phe1174Leu (c.352C!A)
and p.Phe1174Leu (c.352C!G) substitutions in the primary and relapse samples,
respectively, as previously described[104].

Chromosomal aberrations

Three relapse samples showed homozygous deletions in the CDKN2A locus, encod-

ing the tumor-suppressor proteins p14ARF and p16, whereas both alleles of CDKN2A

were present in the corresponding primary tumors. CDKN2A deletions were previously

reported as frequent events in neuroblastoma relapse[115]. We detected other relapse-

specific segmental chromosome defects, including loss of 6q (five cases) and loss of 17p

(three cases). Furthermore, we detected relapse-specific aberrations that are frequently

detected in primary neuroblastoma and are associated with poor prognosis, including

loss of chromosomes 1p (one case) and 11q (three cases) (Figure 3.8)[18, 20].
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RAS-MAPK pathway mutations and sensitivity to MEK inhibition

To determine whether neuroblastoma cell lines contain RAS-MAPK mutations, we

analyzed whole-genome sequencing data from a series of human-derived neuroblastoma

cell lines for mutations in ALK, NRAS, HRAS, KRAS, BRAF, PTPN11 and NF1.

Eleven of the 18 cell lines showed such mutations.

We tested our cell line panel for sensitivity to the MEK inhibitors trametinib,

cobimetinib and binimetinib, to determine the relationship between mutation status

and drug sensitivity. The data showed clustering of the cell lines into four groups with

increasing sensitivity to MEK inhibition: (i) lines without RAS-MAPK mutations;

(ii) lines with ALK mutations; (iii) lines with NF1 mutations; and (iv) lines with

RAS gene or BRAF mutations. In the cell lines with mutated RAS genes or BRAF,

MEK inhibitor treatment caused almost complete cell cycle arrest at low nanomolar

concentrations, whereas in the NF1 - and ALK -mutated lines the e↵ect on cell cycle

inhibition was less robust (data not shown). When the sensitivity of the cell lines was

expressed as the concentration at which cell growth was inhibited by 50% (GI50), there

were significant di↵erences between cell lines with and without RAS-MAPK mutations

(Figure 3.10). GI50 values for the three di↵erent compounds were highly correlated

in the cell line panel, suggesting an on-target e↵ect (r2 = 0.49-0.79; P < 0.01). A

relationship between mutation status and sensitivity to MEK inhibition was also

observed in an independent published data set[116].

To validate that ALK and RAS gene mutations directly activate the RAS-MAPK

pathway in neuroblastoma cells, we induced the expression of an ALK Phe1174Leu

and an NRAS Gln61Lys mutant in two cell lines that did not harbor RAS-MAPK

mutations. Expression of either mutated protein caused activation of the pathway. We

have shown previously that knockdown of NF1 causes hyperactivated RAS-MAPK

signaling in neuroblastoma cell lines[113].
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Figure 3.10: Sensitivity of neuroblastoma in vitro cell line models to MEK
inhibition therapy. (a-c) GI50 values for a panel of neuroblastoma cell lines treated
with binimetinib (a), trametinib (b) and cobimetinib (c). Cell lines are grouped
according to mutation status. Red bars represent the mean GI50 value for each group.
P -values were derived from Kruskal-Wallis tests. Student’s t-tests were performed
to determine di↵erences between non-mutated and mutated groups: *P < 0.05,
**P < 0.01, ***P < 0.001.

We next treated various human neuroblastoma-derived cell line xenograft models,

representing the four groups described above, with the MEK inhibitor binimetinib.

SK-N-AS xenografts, which harbor an NRAS mutation encoding p.Gln61Lys, showed

inhibition of tumor growth and increased survival when treated with binimetinib, in a

dose-dependent fashion (Figure 3.11). NBL-S xenografts have an inactivating mutation

in one allele of NF1 and an almost complete absence of NF1 protein expression; these

xenografts also showed inhibition of growth with treatment. Conversely, treatment

of Kelly and IMR-5 xenografts had no e↵ect on tumor growth. IMR-5 cells do not

have RAS-MAPK pathway mutations detectable by whole-exome sequencing (data

not shown), whereas Kelly cells harbor an ALK mutation encoding a p.Phe1174Leu

substitution.

We then determined whether inhibition of cell growth corresponds with inhibition

of the RAS-MAPK pathway in the cell lines that were used for the mouse xenograft
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Figure 3.11: Sensitivity of neuroblastoma cell line-derived xenograft mod-
els to MEK inhibition therapy. Human neuroblastoma-derived SK-N-AS, NBL-S,
Kelly and IMR-5 xenografts were treated with binimetinib (3 mg/kg or 30 mg/kg)
or vehicle by oral gavage twice daily. Each cohort consisted of ten mice, and tumor
volumes (cm3) and percent survival are shown. Error bars denote ± s.e.m.; significance
is denoted: *P < 0.05.

experiments. We treated the cell lines with increasing concentrations of binimetinib in

vitro for 24 h and screened for ERK phosphorylation. The three lines with RAS-MAPK

mutations showed phosphorylation of ERK under untreated conditions, rea�rming

that these mutations indeed lead to activation of the RAS-MAPK pathway. Upon

exposure to binimetinib, SK-N-AS and NBL-S cells showed a dose-dependent decrease

in the levels of phosphorylated ERK, whereas Kelly cells showed no significant change.

These data suggest that the minimal e↵ect of MEK inhibition in vitro and the absence

of an e↵ect in vivo for the Kelly cell line may be due, at least in part, to continued

ERK phosphorylation. To confirm that the response we observed in vivo was also

due to target inhibition, we analyzed ERK phosphorylation in the xenografts that

responded to treatment and demonstrated a dose-dependent decrease in the levels of

phosphorylated ERK.
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3.4 Summary and future directions

3.4.1 Clinical significance and the need for relapse biopsies

In this study, we characterized the genomes of 23 relapsed neuroblastomas and

compared each to the genome of the corresponding primary tumor. We show that the

relapsed tumors generally contain more mutations and structural aberrations and that

clonal selection takes place between the primary tumor and the relapse tumor. We

found that 18 of 23 relapse tumors harbored mutations predicted to hyperactivate

the RAS-MAPK signaling pathway and that cell lines containing similar mutations

show sensitivity to inhibition of MEK, a downstream node in the canonical growth-

promoting pathway. These results provide a strong rationale for recommending biopsy

and genomic characterization of relapsed neuroblastoma tumors and for prioritizing the

clinical testing of MEK inhibition strategies in the treatment of relapsed neuroblastoma.

Because of the sensitivity and specificity of modern imaging modalities, the diagnosis

of neuroblastoma relapse rarely requires a tumor biopsy. In addition, until recently,

there has been no realistic potential for therapeutic benefit based on biopsy results,

and therefore very few relapse neuroblastoma samples are available for study. Here

we collected high-quality material from 23 primary-relapse tumor pairs across the

spectrum of neuroblastoma phenotypes, including those assigned to high-, intermediate-

and low-risk groups[7]. The only inclusion criterion for this study was the availability

of matched samples, but some cases may have been biopsied owing to an unusual

clinical course. Indeed, there were a fairly high number of intermediate- and low-risk

tumors that normally do not show frequent relapse[7]. However, the frequency of

RAS-MAPK mutations did not di↵er among the groups, so it is unlikely that the

over-representation analysis is influenced by this bias.

The high frequency of RAS-MAPK pathway mutations at diagnosis in this cohort
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was unexpected, as such high frequencies were not reported in whole-genome sequencing

series of primary tumors[44–47]. It is possible that the presence of these lesions in

a diagnostic sample is a biomarker of a more aggressive clinical course and a higher

likelihood of relapse. These findings need to be validated in a prospective patient

cohort.

We detected several recurrent structural aberrations at the time of relapse. Partial

loss of chromosome 6q was observed in five relapse samples, and homozygous deletion

of CDKN2A was found in three relapse samples. Both events are infrequent in primary

neuroblastoma and present interesting targets for further research. Furthermore,

neuroblastoma-associated aberrations such as loss of 1p and 11q were observed in the

relapse tumor and not in the primary tumor, indicating that these events might not be

tumor initiating but rather are crucial steps in neuroblastoma tumor evolution[117].

Events a↵ecting RAS-MAPK signaling were detected in 18 of 23 relapse samples.

In four cases, we identified structural variants, highlighting the benefit of whole-genome

sequencing for detection of the full spectrum of genetic alterations. In 7 of these 18

cases, the mutations were observed only in the relapse tumor, which indicates that

analysis of primary tumor samples is not su�cient to guide the choice of treatment

for neuroblastoma relapses. These findings are in line with the de novo occurrence of

ALK mutations reported previously[104].

The observation that several RAS-MAPK mutations were present in the relapse

tumor but not in the corresponding primary tumor favors a model where subclones

with secondary driver mutations expand over time, possibly under the selective pressure

of chemotherapy, as was recently described for chronic lymphocytic leukemia[108].

Whether these mutations occurred between diagnosis and relapse, were present at

levels below detection limits or were undetectable owing to spatial heterogeneity in

the primary tumor remains to be determined.
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It has been firmly established that mutations in the RAS-MAPK pathway can

occur as resistance mechanisms against treatment with targeted kinase inhibitors[118];

however, no targeted inhibitors were used in the treatment of our patient cohort.

Mutations in the RAS-MAPK pathway may also be associated with resistance to

conventional cytotoxic therapies in neuroblastoma, but more research is needed to

establish the molecular basis of this phenotype.

The ALK gene was mutated in ten relapse samples, and it is known that the

most frequent ALK mutations in neuroblastoma activate the RAS-MAPK signaling

pathway[39]. The results of our xenograft therapeutic studies indicate that single-agent

treatment with a MEK inhibitor might not be e↵ective in ALK -mutated tumors.

However, the finding that ALK-mutated cell lines consistently showed some sensitivity

to MEK inhibition in vitro suggests that activated RAS-MAPK signaling does have a

role in ALK -mutated neuroblastoma and warrants further investigation on the use of

MEK inhibitors in combination therapies. ALK inhibitors have proven to be e↵ective

in the treatment of ALK -mutated tumors[43], but some mutations are associated

with resistance to currently available ALK inhibitors[112]. Therefore, combined MEK

and ALK inhibition might improve response in tumors containing such mutations.

Combination of these inhibitors with ones targeted against other pathways that are

activated in ALK -mutated neuroblastoma, such as phosphoinositide 3-kinase (PI3K)

and mTOR[119, 120] signaling, might also improve therapeutic e�cacy.

We also detect mutations in NF1, BRAF, PTPN11, FGFR1 and the three RAS

genes, and all lesions in the RAS-MAPK pathway were mutually exclusive. Cell lines

with RAS-MAPK mutations show moderate to high sensitivity to MEK inhibitors,

and treatment with the inhibitor binimetinib of SK-N-AS xenografts, which contain an

NRAS mutation, as well as NBL-S cells, which have loss of NF1, results in significant

therapeutic e�cacy. These findings suggest that MEK inhibition might be of clinical
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benefit in the treatment of neuroblastoma relapses containing RAS-MAPK mutations.

3.4.2 NEPENTHE: a phase 1b/2 clinical trial for relapsed

neuroblastoma

Our observation of RAS-MAPK pathway-activating mutations in relapsed neurob-

lastomas has provided part of the rationale for NEPENTHE, a soon to open pediatric

cancer phase 1b/2 clinical trial that will match genomic aberrations in relapsed tumors

to combinations of targeted therapeutics that were identified through synergy screens.

Subjects will be enrolled into the following treatment groups depending on their

mutation profiles:

Group 1 : Subjects with activating mutations in ALK will receive Ceritinib (ALK-

inhibitor) + LEE011 (CDK4/6-inhibitor). Ceritinib is a second generation ALK

inhibitor that is more potent than crizotinib, has elicited clinical responses in crizotinib-

resistant non-small cell lung cancer[121], and has shown e�cacy in pre-clinical neu-

roblastoma models for crizotinib-resistant ALK mutations including F1174L. Dual

CDK4/6 inhibition has been shown to induce cell-cycle arrest and senescence in neu-

roblastoma cell lines and cell line derived xenografts[122], and unpublished pre-clinical

data indicate that combined ALK- and CDK4/6-inhibition is synergistic.

Group 2 : Subjects with somaticMYCN amplification and/or RAS/MAPK pathway

lesions and/or cell cycle regulatory gene lesions will receive Trametinib (MEK-inhibitor)

+ LEE011 (CDK4/6-inhibitor), a combination which has shown synergy in pre-clinical

models.

Group 3 : Subjects that do not match groups 1 or 2 and whose tumors show wild-

type TP53 will receive single-agent HDM201 (MDM2-inhibitor). While the majority of

neuroblastomas have intact p53, increased activity of its principal negative regulator,
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MDM2, may lead to aberrant p53 signaling in neuroblastoma and present a therapeutic

opportunity[123, 124].

In summary, NEPENTHE represents the first trail of combination therapy that

is targeted to specific mutational profiles that we observed in our recently published

study of relapsed neuroblastoma genomes. Additionally, NEPENTHE will provide an

important opportunity to profile a large number of relapse tumor genomes prospectively,

addressing important sources of bias from our initial study that will yield a more

comprehensive view of the genomic landscape of relapsed neuroblastoma.

3.4.3 Schramm et al. 2015

Concurrent with our study, our German colleagues conducted a similar investigation

on an independent cohort of 16 paired primary and relapsed tumors by whole genome

sequencing, published back-to-back with our manuscript in Nature Genetics earlier this

year[125]. While 2 out of 16 tumors harbored RAS mutations—in HRAS and KRAS,

respectively—the overall prevalence of RAS-MAPK mutations was considerably less

than the 18 out of 23 we observed. Recurrent alterations at relapse included mutations

in the putative CHD5 neuroblastoma tumor suppressor (2 patients), chromosome 9p

losses (5 patients), DOCK8 (6 patients: 2 copy number loss + 4 mutation), inactivating

mutations in PTPN14 (2 patients) and a relapse-specific activity pattern for the

PTPN14 target YAP identified by di↵erential expression profiling[125].

Di↵erences between clinical populations are likely to account for some of the

observed di↵erences between our Eleveld et al. study versus the Schramm et al.

study Indeed, whereas 21 out of 23 patients received chemotherapy prior to relapse

in our combined American/Dutch/French cohort[106], it appears that this was the

case for only 6 out 16 patients in the German study[125]. Chemotherapy is very
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likely to exert significant selective pressure on neuroblastoma tumors (indeed, we

see evidence of this in Figures 3.7 and 3.9), thereby driving which mutations appear

at relapse. This is an intriguing hypothesis that warrants further study, and data

collected as part of the NEPENTHE trial may shed additional light on this. However,

recent reports that YAP can functionally replace KRAS as a bypass mechanism in

KRAS-addicted cancer[126, 127] opens the possibility that the RAS-MAPK and YAP

pathways identified in our respective studies may in fact be converging on a common

pathway.

3.4.4 The clonal landscape of neuroblastoma

The insight that sub-clonal mutations present in the primary neuroblastoma tumors

can undergo significant clonal enrichment at relapse has prompted us to revisit our

analysis of primary tumor sequencing data generated as part of the TARGET project,

including whole exome sequencing data for 222 primary tumor/blood normal pairs and

targeted gene panel sequencing data for an additional 500 pairs. In order to achieve

higher variant-calling specificity, the initial analysis used an e↵ective variant allele

fraction (VAF) cuto↵ of approximately 10% for variant calling, which can miss low

frequency variants. I have now been able to rerun an analysis of the TARGET data

simply lowering the VAF threshold to 5%, which identified additional mutations in

important neuroblastoma oncogenes such as ALK, KRAS, and NRAS (see Figure

3.12). In fact, our initial estimates of ALK mutation prevalence at 8-9% may need to

be revised upward to at least 10-11%, after accounting for low frequency variants.

We are now designing an ultra-deep targeted sequencing panel in order to better

define the limit of detection for low frequency mutations and to more accurately

estimate the prevalence of clonal and subclonal somatic driver mutations at diagnosis.
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Figure 3.12: Comparison of original TARGET analysis to reanalysis of
low frequency variants in 500 tumor/normal pairs. The TARGET validation
sequencing dataset was reanalyzed using VarScan2 with the option “–min-var-freq
0.05” to detect low variant allele fraction (VAF) mutations. As illustrated here, a large
number of driver mutations in important oncogenes such as ALK, KRAS, and NRAS
were missed by the prior analysis, but are detected upon reanalysis.

Similar to our relapse study, we will use statistical analysis to predict whether low

variant frequency is primarily the result of subclonality versus low sample purity.

These e↵orts will have important clinical significance in predicting the proportion of

patients who might benefit from targeted therapies, and may aid in the establishment

of guidelines for minimum depth of coverage for detecting driver mutations from

targeted sequencing.
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Chapter 4

Toward new treatments for

neuroblastoma

4.1 Targeting the GATA2/3-LMO1 signaling axis

Our discovery that rs2168101 modulates LMO1 gene expression in cis by disrupting

a GATA transcription factor binding site has uncovered a GATA2/3-LMO1 signaling

axis in neuroblastoma that can perhaps be exploited therapeutically. Although tran-

scription factors are often thought of as “undruggable” by traditional small molecule

inhibition, their central role in oncogenic signaling makes them attractive targets for

new therapeutic strategies, which include inhibition of transcription factor expression

(e.g. with siRNA or miRNA), inhibition of DNA binding (e.g. with oligodeoxynucleotide

decoys or pyrrole-imidazole polyamides), and epigenetic modulation of transcription

factor function (e.g. BET bromodomain inhibitors)[128]. One relevant and timely exam-

ple is SB010, a novel anti-GATA3 DNA enzyme therapeutic that has shown promising

results for the treatment of allergic asthma[129]. However, further study is warranted

in order to determine if SB010 may show therapeutic e�cacy in neuroblastoma and

to what extent GATA3 inhibition e�cacy may depend on rs2168101 genotype—i.e.

to what extent the oncogenic e↵ects of GATA3 are dependent on downstream LMO1

signaling.
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Inhibiting LMO1 directly or targeting its downstream e↵ectors may present another

and potentially more viable therapeutic opportunity. In this regard, our ongoing e↵orts

to map the downstream targets of LMO1 by LMO1 ChIP-seq are crucial, as these

may uncover additional e↵ectors of oncogenic signaling that are more amenable to

small molecule inhibition or other therapeutic modalities. Furthermore, in addition to

the broad strategies outlined above for targeting GATA3, it may be possible to a↵ect

LMO1 signaling through inhibition of protein-protein interactions (e.g. via peptide

aptamer or antibody fragments), a strategy which has shown e�cacy when targeted

against the better studied LMO1 paralog, LMO2, in preclinical models[130].

Given that GATA2/3 and LMO1 play important roles in normal cellular processes

in addition to promoting oncogenesis in neuroblastoma, it is unclear if on-target,

o↵-tumor toxicities may limit the therapeutic potential of systemic inhibition of LMO1

signaling. Antibody-directed therapy including drug conjugates and new immunother-

apy targeted to neuroblastoma cell surface molecules—including ALK, GD2, and

NCAM, among others—may provide a method to circumvent such toxicities, and

further studies are required to ascertain if and how the cell surface repertoire of

LMO1-driven neuroblastomas di↵ers in comparison to other forms of neuroblastoma.

On the other hand, the recent and rapid development of CRISPR-Cas9 gene editing

technologies[131–133] opens the possibility of targeted enhancer element editing both

in vitro and in vivo, which could be utilized to directly ablate the activity of the

tissue-specific LMO1 enhancer investigated here. However, as concerns rise over the

lack of specificity and o↵-target editing inherent to the CRISPR-Cas9 system[134],

the development of novel nuclease dead CRISPR-Cas9 proteins fused to chromatin

remodelers[135, 136] may provide another therapeutic opportunity to ablate LMO1

enhancer activity through targeted editing of the epigenome without the inherent risks

associated with DNA-editing.
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4.2 New therapies for relapsed neuroblastoma

Our identification of RAS pathway activation in a substantial fraction of neurob-

lastomas that relapsed on chemotherapy indicates that targeting the RAS pathway

may provide a route to rational therapy when more traditional treatments fail. Indeed,

the RAS pathway has long been viewed as an attractive target for new therapies due

the high prevalence of RAS-activating mutations in cancer more broadly: approxi-

mately one-third of solid tumors and one-fifth of myeloid malignancies[137]. Much of

the biochemistry of RAS-signaling has been worked out, and it is now understood

that RAS proteins are guanine binding proteins (G proteins) where dynamic cy-

cling between GTP- and GDP-bound states regulates cellular proliferation in normal

physiology; to summarize, the GTP-bound state induces conformational changes in

RAS that activate additional downstream growth signaling e↵ectors whereas GDP-

binding is suppressive[137]. And yet despite these biochemical insights and over three

decades of intense research, e↵ective rational therapies targeting the RAS pathway

have largely eluded the cancer community. Attempts to drug the GTP-binding site of

RAS have proven considerably less fruitful than inhibiting tyrosine kinases via their

ATP-binding domains, due to the comparatively high picomolar a�nity for GTP, the

high intracellular abundance of GTP, and the lack of apparent druggable allosteric

sites[137].

Due to the di�culty of inhibiting RAS directly, many alternative strategies are

being explored to treat RAS-mutated cancers, including targeting downstream RAS

e↵ectors, targeting RAS localization, targeting synthetic lethal partners of RAS,

and immune-based therapies, though none of these have yet yielded robust clinical

responses[137]. Indeed, our studies of single-agent MEK inhibition in RAS-pathway

activated neuroblastoma cell line models elicit cytostatic responses that delay but
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do not prevent eventual tumor outgrowth (Figure 3.10). Our laboratory is therefore

actively investigating combination therapies, and we have performed synergy screens

in order to identify drug combinations that exhibit superadditive anti-tumor e↵ects in

RAS pathway activated neuroblastoma. These e↵orts identified combined ALK and

CDK4/6 inhibition (ceritinib + ribociclib) as a potent combination for ALK-mutated

neuroblastomas, as well as combined MEK and CDK4/6 inhibition (trametinib +

ribociclib) as a potent combination for neuroblastomas that are MYCN -amplified

and/or harbor other non-ALK lesions in the RAS-MAPK pathway. Remarkably, CDK4

was recently identified as a synthetic lethal partner of KRAS in non-small cell lung

cancer[138] and was also identified as the principal driver of the molecular di↵erences

between the genetic and pharmacological perturbation of NRAS in melanoma[139],

suggesting an integral link between CDK4 signaling and RAS signaling more broadly.

In addition to our discovery of a high prevalence of RAS-MAPK activating mutations

in relapsed neuroblastomas, these results provide the rationale for using exactly these

combinations in patients with appropriately matched genomic lesions in the soon to

open NEPENTHE phase 1b/2 clinical trial.

Although these data give us cautious optimism that we can prolong survival

for relapsed neuroblastoma, the lack of permanent responses to combined MEK and

CDK4/6 inhibition in our preclinical studies suggests that new treatment strategies will

likely be required for curative therapy in patients with RAS-MAPK activation in the

absence of ALK mutations. In the relative short term, higher order drug combinations

can be investigated for their potential to induce even better clinical responses. Longer

term, the development of entirely new treatment approaches have the potential to

revolutionize the field of RAS-targeted therapy, including new allosteric inhibitors

that directly target mutated RAS (for example, a novel inhibitor that covalently

and allosterically modifies mutant KRAS G12C to preferentially bind inactivating
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GDP[140]) and the emergence of new immunotherapies (for example, an anti-GD2

therapy recently approved for high-risk neuroblastoma[8]). Indeed, targeting RAS

has recently experienced a resurgence in interest both in academia and industry,

culminating in the launch of NCI RAS Initiative in 2013, with the hope of uncovering

new and transformative therapies[141].

In the immediate term, basic questions still remain concerning how RAS pathway

activating mutations arise and evolve clonally in neuroblastoma, which are likely to

have therapeutic implications. The higher prevalence of RAS-MAPK mutations in

relapsed neuroblastoma observed in our study[106] in comparison to our German

colleagues[125] may originate from much higher rates of chemotherapy treatment

in our cohort or other biases in sample collection. It will therefore be important to

better ascertain the prevalence of RAS-MAPK activating mutations prospectively

through e↵orts such as our NEPENTHE trial, and sequencing could be more broadly

incorporated into our pre-clinical treatment models (e.g. cell line or patient derived

xenografts) to better understand the molecular correlates of drug resistance and how

they evolve over the course of treatment. Rapid progress has been made in developing

single cell DNA and RNA sequencing technologies in recent years[142], which could

be applied to achieve an even finer resolution view of the clonal evolution events that

underlie neuroblastoma relapse and treatment resistance. In light of our observation of

RAS-MAPK activating mutations at relapse that are undetectable even by ultra-deep

sequencing in matched primary tumor biopsies, it is an open question whether or not

adding ALK and/or MEK and/or CKD4/6 inhibition as frontline therapy could be

used to anticipate and/or prevent the outgrowth of RAS-MAPK activated subclones

when they are undetectable at diagnosis. All of these questions provide interesting

avenues for future studies.
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4.3 Final remarks

In conclusion, the field of neuroblastoma genomics has experienced rapid progress in

just the past 5-10 years, with key advances including the discovery of causal mutations

for familial neuroblastoma, discovery of common variation associated with sporadic

disease, mapping the somatic coding landscape of neuroblastoma primary tumors, and

the emergence of mutated ALK as a therapeutic target for rational therapy. However,

much work remains to be done to understand how germline and somatic lesions interact

to promote tumor initiation and maintenance, to elucidate the epigenetic landscape

of disease subtypes, to better define the temporal evolution of neuroblastoma during

tumor initiation and under di↵erent treatment modalities, and to ultimately develop

new therapeutic strategies for the majority of neuroblastomas which lack traditionally

“targetable” mutations and for relapsed disease.

The studies that constitute this dissertation begin to address some of these im-

portant questions and provide a blueprint for progress in the field. The identification

of a causal high-risk-associated germline variant in a LMO1 super-enhancer has laid

the groundwork for comprehensive epigenomic profiling e↵orts to understand the

regulatory landscape of neuroblastoma, generating data that is likely to reveal insights

into LMO1 function specifically, genome-scale regulatory architecture more broadly,

and provide insights into the function of non-coding mutations. The discovery of

clonal evolution of RAS-MAPK mutations in relapsed neuroblastoma is now directing

e↵orts to better define the subclonal makeup of neuroblastoma tumors as well as an

early phase clinical trial of MEK-inhibitors in relapsed neuroblastoma. In the coming

years, we are hopeful that these studies will be looked back upon as crucial steps

toward a comprehensive understanding of the molecular basis of neuroblastoma and

the development of better treatments for this aggressive childhood malignancy.
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Appendix A

Statistical methods for estimating

subclonality of point mutations

from NGS data

A.1 ABSOLUTE: Carter et al. 2012

Published in 2012, ABSOLUTE was a first-in-class algorithm developed to aid in

the estimation of clonal versus subclonal mutations detected by NGS experiments from

cancer samples [107]. Because tumor purity and ploidy are important confounders in

the inference of mutation clonality, the primary goal of ABSOLUTE is to jointly infer

the purity and ploidy from NGS data and to discern clonal versus subclonal events.

The theoretical framework of ABSOLUTE is summarized in what follows.

For simplicity, we consider a mixed population which includes a fraction ↵ of a

clonal cancer cell population and a fraction (1� ↵) of contaminating normal cells; in

the idealized case the normal cells will be diploid (copy number = 2) across the whole

genome. Let q(x) denote the absolute integer copy number at locus x in the cancer

cells. The average tumor “ploidy”, ⌧ , is therefore the absolute copy number averaged
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over the N segmented loci across the whole genome:

⌧ =
NX

x=1

w(x)q(x)

where the weight of each locus, w(x) scales proportionally to the size of the locus in

base pairs. The relative copy number, R, of locus x can be expressed as:

R(x) =
2(1� ↵) + q(x)↵

2(1� ↵) + ⌧↵

For a somatic point mutation (e.g. SNV, indel, or SV breakpoint) at locus x, we can

express the expected fraction of mutant alleles, F , as follows:

F (x) =
s(x)↵

2(1� ↵) + [q(x)� s(x)]↵ + s(x)↵
=

s(x)↵

2(1� ↵) + q(x)↵

where s(x) represents the absolute copy number of the mutation (aka “somatic multi-

plicity”), 2(1�↵) represents the relative weight of DNA originating from normal cells,

[q(x) � s(x)]↵ represents the relative weight of non-mutant DNA originating from

cancer cells, and s(x)↵ represents the relative weight of mutated DNA originating

from cancer cells. Note that 1  s(x)  q(x) generally, but that s(x) < q(x) will hold

assuming that the mutation only arose once in the evolutionary history of the cancer

and that LOH has not occurred. Practically speaking, the quantities R(x) (relative

copy number) and F (x) (mutant allele fraction) can be easily and directly estimated

by NGS, whereas q(x) and s(x) are the quantities of biological interest that are less

straightforward to estimate, with ↵ and ⌧ as nuisance parameters.

Within this framework, R(x) = 2(1�↵)
2(1�↵)+⌧↵

for clonally homozygously deleted sites—

i.e. q(x) = 0. For adjacent copy-number states – i.e. for each unit increase in q(x)

– it follows that R(x) will correspondingly increase by ↵

2(1�↵)+⌧↵

. Outliers from this
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pattern are inferred to be “subclonal” CNAs. At a fixed q(x), a similar pattern exists

for clonal SNVs – i.e. F (x) = s(x)↵
2(1�↵)+q(x)↵

for s(x) 2 {1, 2, ..., q(x)} – and outliers from

this pattern are inferred to be “subclonal” SNVs.

A.2 Extending ABSOLUTE: Landau et al. 2013

In Landau et al. 2013, this framework was extended to estimate the cancer cell

fraction (CCF) of SNVs (CCF is the fraction of tumor cells harboring a presumed

subclonal mutation) rather than simply call presence of such mutations as outliers [108].

Their method specifically applies to subclonal SNVs that may arise within a non-

CNA or clonal CNA region, resulting in unit somatic multiplicity (s(x) = 1) under

the parsimonious assumption that the SNV mutation only arose once within the

evolutionary history of a specified tumor (Figure A.1). As a function of the CCF, c,

the expected fraction of mutant alleles will therefore follow the equation:

F (c) =
↵c

2(1� ↵) + q(x)↵

Thus, for a particular SNV with a specified CCF equal to c, the likelihood of observing

a mutant alleles out of n total sequencing reads equals

P [A = a|C = c,N = n] = Binomial(a;n, p = F (c))

so that

P [C = c|A = a,N = n] / Binomial(a;n, p = F (c))
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Figure A.1: Two examples of sequential tumor evolution. (Top) In this example,
copy-number gain precedes somatic point mutation at a given locus x, resulting in
copy-number q(x) = 3 and somatic multiplicity s(x) = 1. (Bottom) In this example,
somatic point mutation is followed by sequential gain of the mutated allele at a given
locus x, resulting in copy-number q(x) = 3 and somatic multiplicity s(x) = 2.

will hold under a uniform prior on C

1. In practice, ↵ and q(x) are estimated by

ABSOLUTE or related algorithms (our laboratory prefers the Sequenza algorithm [109],

due to ease of use) whereas a and n are measured directly from NGS data. The

distribution of C is then computed using a single variable grid approach.

1
Equivalently, a uniform prior implies that F (C) follows a Beta(a+ 1, n� a+ 1) distribution that

is right-truncated at F (1) due to the 0  c  1 constraint. Therefore, the conjugate prior for F (C)

will be another Beta(a0, b0) distribution that is truncated at F (1), with a corresponding truncated

Beta(a+ a0 + 1, n+ b0 � a+ 1) posterior. Thus, a0 and b0 can be interpreted as “pseudocounts” for

mutant and wild-type reads, respectively. While we consider F (C) here primarily for mathematical

convenience, note that F is a simple scaling function with respect to C, so that the posterior and

conjugate-priors for C = F�1
(F (C)) are simply re-scaled versions of the distributions just described.
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Appendix B

Methods for Oldridge, Wood et al.

2015

Genotype imputation and association testing

A primary European-American cohort of 2,101 cases and 4,202 matched controls

were assayed with Illumina HumanHap550 v1, Illumina HumanHap550 v3, and Illu-

mina Human610 SNP arrays as previously described[51]. Genotypes were phased using

SHAPEIT v2.r790 and data from 1000 Genomes phase 1 version 3. Subsequently, impu-

tation was performed using IMPUTE2 v2.3.1 for all SNPs and indel variants annotated

in the 1000 Genomes phase 1 version 3. Testing for association with neuroblastoma

under an additive genetic e↵ect model was performed using the frequentist likelihood

score method implemented in SNPTEST v2.4.1. Genotypes for a previously described

African-American cohort of 365 cases 2491 controls[143] were imputed and tested for

neuroblastoma association using the same analytic pipeline. Statistical adjustment for

gender was performed in both cohorts. For population stratification adjustment, the

first 20 multidimensional scaling (MDS) components were included as covariates in

the European-American cohort, while a measure of African admixture as estimated

by the ADMIXTURE software program was used in the African-American cohort.

Manhattan plots of SNP position and statistical significance were generated using

LocusZoom software. Linkage plots were generated by Haploview software based on
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HapMap CEU individuals (version 3, release 2) using default settings. All research

subjects or their guardians provided informed consent for research, and all institutions

involved in this research had regulatory approval for human subjects research.

Prioritization of candidate causal variants

All SNPs and indels reported in the 1000 Genomes phase 1 version 3 data were

considered as candidate causal variants and were ranked based on a combination

of (1) neuroblastoma association in the primary European-American cohort, (2)

evolutionary conservation, (3) DNase I hypersensitivity, and (4) transcription factor

binding motif matching. Neuroblastoma association in European-Americans was

evaluated as described above. Conservation scores were computed as the average of

the phastCons46wayPlacental UCSC conservation track score for all bases from the

�10 position to the +10 position surrounding each candidate variant. A DNase I

hypersensitivity score was calculated by counting the number of sequencing tags from

the �100 position to the +100 position around each candidate variant in ENCODE

data for the neuroblastoma cell line, SK-N-SH. Position weight matrices representing

transcription factor binding motifs were obtained from the JASPAR database, and

candidate binding sites were identified by scanning the hg19 human reference genome

using the MATCH-TM algorithm with a matrix similarity score (mSS) threshold of

0.90.

Neuroblastoma association replication and meta-analysis for rs2168101

We replicated the association of rs2168101 with neuroblastoma by direct genotyping

of rs2168101 in independent Italian (cases = 420, controls = 751) and UK cohorts

(cases = 369, controls = 1109). Meta-analysis across the European-American, African-

American, Italian and UK cohorts was performed using the inverse variance method

provided in the METAL software program. Beta values (log-odds) and standard errors

generated by SNPTEST, as described above, were used as input.
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Survival analysis

We compared both overall survival and event-free survival over a 10-year follow-

up period between G/G versus G/T and T/T rs2168101 genotypes in a case-case

comparison between neuroblastoma patients from the European-American cohort.

Because rs2168101 genotypes were imputed in this cohort, the most-probable genotype

predicted by IMPUTE2 was used for each patient. In the event of insu�cient follow-

up, all data was right censored. Cox proportional hazard modelling was performed

using 20 MDS components to account for population stratification, in addition to

MYCN amplification status, as covariates. All statistical analysis and generation of

Kaplan-Meier plots was performed in R using the CRAN repository package, “survival”.

Total and allele-specific expression analysis

Total and allele-specific RNA expression analysis was performed based on poly-A-

enriched RNA-sequencing data from 127 primary neuroblastoma tumours sequenced

through the TARGET project. RNA-seq reads were aligned to the hg19 human

reference genome using the STAR aligner (v2.4.0b). Aligned reads were assigned to

RefSeq genes using HTSeq (v0.6.1) and normalized to RPKM for total gene expression

measurements. DNA genotypes for rs2168101 were obtained either through matched

whole-genome sequencing (n = 69) or targeted genotyping assays (n = 58 additional

tumours). DNA genotypes for rs3750952 were obtained through either matched whole-

genome or whole-exome sequencing.

Allele-specific RNA expression analysis was performed from a subset of 45 primary

neuroblastoma tumours (out of 127) with the necessary synonymous exonic SNP

genotypes (rs3750952 = C/G) to enable measurement of allelic expression by mRNA-

seq. As a readout for allelic imbalance of rs3750952, we computed allelic fractions as

min(C, G)/(C + G), since phasing between rs3750952 and rs2168101 alleles in each

tumour was unknown. Statistical comparison between the two groups was performed
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by two-sided Welch’s t-test, comparing 12 tumours heterozygous for rs2168101 (G/T)

to the remaining 33 tumours that were homozygous for rs2168101 (G/G) as controls.

DNA genotyping for rs2168101 was performed by whole-genome sequencing or a

directed genotyping assay, whereas DNA genotyping for rs3750952 was determined

from TARGET whole-exome or whole-genome sequencing. Where possible, integrity of

sample matching was verified by measurement of genome-wide genotype concordance.

All genotypes are reported with respect to the minus strand of the human reference

genome, hg19.

To measure allele-specific expression directly at the intronic SNP we first purified

the nuclear RNA fraction using the Cytoplasmic and Nuclear RNA purification Kit

(Norgen Biotek, 21000) from four neuroblastoma cell lines (SNP rs2168101: SHSY5Y =

G/G; NLF = G/T; NGP = G/G; NB1643 = T/T). Ion AmpliSeq Designer v3.4.3 (Life

Technologies White Glove service) was used to design amplicons targeting the intronic

SNP rs2168101 and three additional exonic SNPs in linkage disequilibrium. Custom

AmpliSeq libraries were prepared in triplicate for each cell line, indexed, pooled and

sequenced using an Ion 318 Chip on a Personal Genome Machine (Life Technologies).

Reads were aligned to the hg19 reference genome and a synthetic genome showing the

alternate allele at SNP rs2168101 at hg19 chr11:8255408 to account for any alignment

bias. High-quality mapped reads containing the reference G allele or alternative T

allele were counted and tested for significant deviation from 50:50 expression using a

two-sided one-sample t-test (null hypothesis that allele fraction = 0.50) across three

experimental replicates. Primer pair sequences:

For rs1042359:

forward: 5’-GTGTGGGAGACAAAUTCTTCCUGA-3’,

reverse: 5’-GCCGGGCGUTACTGAACUT-3’;

For rs3750952:
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forward: 5’-CGCAAGAUCAAGGACCGCTAUC-3’,

reverse: 5’-GATGAGGTUGGCCTTGGTGUA-3’;

For rs2168101:

forward: 5’-CCUTTCCUGAAGGAGCGCAAA-3’,

reverse: 5’-CACTTTCCATUAAGGAGATAGCAUCCC-3’;

For rs204929:

forward: 5’-CAAUCTAGGTUAAGAGCCGGACAAG-3’,

reverse: 5’-GTGUCCAGCCGCAGCUA-3’.

Reporter assays

Primers were designed to clone a 553-bp genomic region (hg19, chr11:8255155-

8255707) surrounding the candidate SNP rs2168101 at the GATA transcription factor

binding site from neuroblastoma cell lines SKNSH (G/G) and matching site of BE2C

(T/-). The cloned region did not contain other statistically significant SNPs at the

LMO1 locus. The primers were designed to introduce sequences for restriction sites

5’-XhoI and 3’-BglII, which are present in the MCS of pGL4.26[luc2/minP/Hygro]

(Promega, E8441). XhoI/BglII restriction enzyme digested fragments were sequence

verified, gel purified, ligated into pGL4.26[luc2/minP/Hygro], transformed into One

Shot TOP 10 chemically competent cells (Life Technologies, C4040-10) and grown

on LB plates containing 50 µg ml-1 ampicillin overnight at 37 �C. Colonies positive

for the vector containing the insert were grown in 50 ml LB broth containing 50

µg ml-1 ampicillin and plasmids were purified using a Qiagen Plasmid Midi Prep

Kit (Qiagen, 12143). Transfection into HEK293 cells which were approximately 50%

confluent was accomplished using Fugene 6 Transfection reagent (Promega E2691) at

a 3 µl:1 µg fugene:DNA ratio. Cells underwent selection in 150 µg ml-1 Hygromycin B

(Mediatech, 30-240-CR) and individual colonies were picked and grown, and genotypes

of constructs were confirmed by fragment size and Sanger sequencing. Subsequently,
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HEK293 + 553 bp insert cells and HEK294 + vector only cells were grown in 96-well

optical plates. On day 2, the cells were transiently fugene transfected with the Renilla

expression control vector pGL4.74[hRLuc/TK] (Promega, E6921) at a 1:500 dilution

with respect to the luciferase vector. Luciferase assays were carried out 48 h after

Renilla transfection using Dual Luciferase Reporter Assay System (Promega, E1910)

with read-outs performed on a Dual Injector System for GloMax-Multi Detection

System (Promega, E7081). Luciferase expression was normalized to Renilla expression.

All reporter assays were performed in quintuplicate (five technical replicates each)

across the experimental conditions: (1) HEK293T, (2) HEK293T with empty vector,

(3)-(6) four independent clones of HEK293T with T-allele construct, and (7)-(10) four

independent clones of HEK293T with G allele construct. Results were averaged across

technical replicates, normalized to empty vector, and reporter activities for T allele

versus G allele clones (four biological replicates each) were analysed by two-sided

Welch’s t-test.

Construct risk allele (G):

GTAGGGGTTGGAGTTCAGCCTGTTTCCCCTCCAATGTTGTTCCCCCC

ACATCCTGAGACTTAGGGGTGACCCTGGGTTGAGTGGACTGGTTTATTC

TGCTGGGCCCAGCGCATGCATCTGAGTGTGTGCCCAGGCGTGCGTGTCG

GCGCAAACATCATCCATTGTGAAATATCAGTGTTTTCATGGGTGAGTAG

TAATTACTGGGTAATGCTTTAAAACCTTTCCTGAAGGAGCGCAAAGCCA

TTTTTTTCTAAAGTCAGGAGTACATTAAAAGGATTACCATGTAGATTTG

ATTTTTAGATAACACTAAAATGGATCCCAAATGGACTTCAGCAAAGGGA

TGCTATCTCCTTAATGGAAAGTGCATGGCCCGAGGCTCAGGTCCCAGAG

CCAGGCTGGGGAAGGAGGGAGGGAAGAGGTGTCTGCAGGGGGGCAGGC

TGGCAGATTGGGTGGGGGCTAGGTGGGAATGGGGAAGGCAGAGCAGGA

GGGAGGGCCTGGACCCTGTGGGGAGCTTATCCCTCCATCTGGGGAGCAG
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GAGACTACAGAGCCCCT

Construct protective allele (T):

GTAGGGGTTGGAGTTCAGCCTGTTTCCCCTCCAATGTTGTTCCCCCC

ACATCCTGAGACTTAGGGGTGACCCTGGGTTGAGTGGACTGGTTTATTC

TGCTGGGCCCAGCGCATGCATCTGAGTGTGTGCCCAGGCGTGCGTGTCG

GCGCAAACATCATCCATTGTGAAATATCAGTGTTTTCATGGGTGAGTAG

TAATTACTGGGTAATGCTTTAAAACCTTTCCTGAAGGAGCGCAAAGCCA

TTTTTTTCTAAAGTCAGGAGTACATTAAAAGGATTACCATGTAGATTTG

ATTTTTATATAACACTAAAATGGATCCCAAATGGACTTCAGCAAAGGGA

TGCTATCTCCTTAATGGAAAGTGCATGGCCCGAGGCTCAGGTCCCAGAG

CCAGGCTGGGGAAGGAGGGAGGGAAGAGGTGTCTGCAGGGGGGCAGGC

TGGCAGATTGGGTGGGGGGCTAGGTGGGAATGGGGAAGGCAGAGCAGG

AGGGAGGGCCTGGACCCTGTGGGGAGCTTATCCCTCCATCTGGGGAGCA

GGAGACTACAGAGCCCCT

Cell culture and protein lysates

Jurkat T-ALL and neuroblastoma cell lines were sourced from the American

Type Tissue Culture Collection, and kept in growth medium of RPMI+10% heat-

inactivated FCS with 1% penicillin-streptomycin, as previously described[81]. Cells

were lysed for protein, with subsequent protein quantified by spectrophotometry, as

previously described[144]. Protein was resolved on 8-14% Tris-Bis gels, transferred to

PVDF membranes, blocked and subjected to primary and secondary antibodies, as

previously described[144]. Primary antibodies were anti-GATA3 (Pierce Biotechnology,

1:1,000), anti-LMO1 (Bethyl Laboratories, 1:1,000) and ↵-tubulin (Cell Signaling

Technologies, 1:1,000). Blots were developed with secondary horseradish peroxidase

(HRP)-conjugated antibodies (Cell Signaling Technologies, 1:5,000) and Protein-plus

Dura ECL Reagent (Thermo-Fisher Scientific). All cell lines are genotyped semiannually
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to assure identity and also tested routinely for mycoplasma contamination.

Genome-wide occupancy analysis

ChIP coupled with massively parallel DNA sequencing (ChIP-seq) was performed

as previously described[145, 146]. The following antibodies were used for ChIP: anti-

H3K27ac (Abcam, ab4729) and anti GATA3 (Santa Cruz, sc-22206X). For each ChIP,

10 µg of antibody was added to 3 ml of sonicated nuclear extract. Illumina sequencing,

library construction and ChIP-seq analysis methods were previously described[146].

ChIP-seq processing

Reads were aligned to build hg19 of the human genome using bowtie with parame-

ters -k 2 -m 2 -e 70 -best and -l set to the read length[147]. For visualization in the

UCSC genome browser[148] in Figures 2.11a and 2.12a, WIG files were created from

aligned ChIP-seq read positions using MACS 1.4.2 with parameters -w -S -space = 50

-nomodel -shiftsize = 200 to artificially extend reads to be 200 bp and to calculate

their density in 50-bp bins[149]. Read counts in 50-bp bins were then normalized to

the millions of mapped reads, giving reads per million values.

ChIP-seq allele specificity analysis

To determine preferential ChIP-seq coverage of one allele, which implies preferential

binding of protein to one allele vs. another, we counted the reads at rs2168101 using

samtools mpileup[150]. By using the aligned reads described above, this gave us a

count of reads with a given base at this position. The fraction of reads with the

risk allele versus the protective allele is reported in Figure 2.11b. Statistical tests for

preferential allelic binding were performed by two-sided binomial test.

Enriched regions

Regions enriched in ChIP-Seq signal were identified twice using MACS with

corresponding control and parameters -keep-dup = all and -p 1e-9 or -keep-dup = 1 and

-p 1e-9. Super-enhancers in SHSY5Y and KELLY were identified using ROSE (https:
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//bitbucket.org/young_computation/rose[86, 151] with modifications based on ref.

[82]. In brief, peaks of H3K27ac were identified using MACS as described above and their

union was used as constituent enhancers. These peaks were stitched computationally

if they were within 12,500 bp of each other, although peaks fully contained within

± 2,000 bp from a RefSeq promoter were excluded from stitching. These stitched

enhancers were ranked by their H3K27ac signal (length ⇥ density) with input signal

in the corresponding region subtracted. Super-enhancers were separated from typical

enhancers by geometrically determining the point at which the line y = x is tangent

to the curve of stitched enhancer rank versus stitched enhancer signal. Those stitched

enhancers above this point are considered super-enhancers.

To account for the known focal amplification of the MYCN locus in KELLY,

BE2, BE2C and NGP neuroblastoma cells, which contain enhancers, we modified our

pipeline slightly. Because MACS is insensitive for the identification of peaks in focally

amplified DNA, we identified peaks of H3K27ac versus input using MACS2 callpeak

(https://pypi.python.org/pypi/MACS2) with parameters -broad -keep-dup = 1 -

p 1e-9 and -broad -keep-dup = all -p 1e-9. The union of these MACS2 calls was

used as constituent enhancers for ROSE with the remaining parameters as described

above. For Figure 2.12b, most of the curve represents the analysis performed using

MACS-identified constituents; the rank and signal of the MYCN-associated enhancer

comes from this MACS2-identified set of constituents to remain consistent with the

conclusions and methods as previously described[82]. The curve output from the

MACS-identified enhancers was vertically compressed and a point representing the

signal of the MYCN-associated super-enhancer from the MACS2-identified enhancers

was added in Illustrator. Super-enhancers were assigned to the single expressed

RefSeq transcript whose transcription start site was nearest the centre of the stitched

region. Expressed genes were in the top 2/3 of RefSeq transcripts ranked by their
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promoter (transcription start site ± 500 bp) H3K27ac signal determined by bamToGFF

(https://github.com/BradnerLab/pipeline) with parameters -e 200 -m 1 -r -d.

Clone cell generation

LMO1 cDNA was amplified from pcDNA3-LMO1 and subcloned into the XhoI

and NotI site of the lentiviral vector pOZ-FHN. Lentivirus expressing FH-LMO1 was

propagated in HEK293T cells by cotransfection with psPAX2 and pMD2.G plasmids

(adgene) using FUGENE 6 (Roche) by standard methodologies[152]. Viral supernatant

was recovered and KELLY cells were infected with lentivirus expressing FH-LMO1 or

empty vector alone, as previously described[81]. Cells were sorted for expression of

the IL2R, and positive expression was used to establish single cell clones. Expression

of FH-LMO1 was assessed by western blotting as above to confirm overexpression.

siRNA and growth assays

SHSY5Y, KELLY and KELLY clone cells were reverse transfected with 100 nM

concentrations of either non-targeted (control siRNA-1) or GATA3-targetted siRNA-1

or -2 (Ambion) for 6 h with lipofectamine 2000 (1:1,000) in Optimem I before being

replated into growth assays in normal RPMI growth media. Cells (2 ⇥ 105) were

replated in triplicate for counting at 24, 48 and 72 h post-transfection by manual

hemocytometry. Cells (5 ⇥ 105) were replated for protein lysates at the same time

points. All experiments were repeated in triplicate, with a technical replicate number

of 9 for all cell growth assays as described[153]. Statistical tests were performed by

two-sided Welch’s t-test.

Data access

GWAS and sequencing data used for this analysis are available in dbGaP under ac-

cession phs000124 and phs000467. The tumour genomics data are also available through

the Therapeutically Applicable Research to Generate E↵ective Treatments (TARGET)

data matrix portal (http://target.nci.nih.gov/dataMatrix/TARGET_DataMatrix.
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html). Data generated through the ENCODE project including DNase I hypersensitiv-

ity sequencing and ChIP-sequencing data were obtained from ftp://hgdownload.cse.

ucsc.edu/goldenPath/hg19/encodeDCC/. Aligned sequencing read (bam) files were

used as provided from the FTP site. The mammalian evolutionary conservation track

representing 46 mammalian species (phastCons46wayPlacental) was obtained from

the UCSC Table Browser http://genome.ucsc.edu/cgi-bin/hgTables?command=

start. JASPAR-annotated transcription factor binding site position frequency ma-

trices were obtained from http://jaspar.genereg.net/html/DOWNLOAD/JASPAR_

CORE/pfm/nonredundant/pfm_all.txt. New ChIP-seq data sets generated in this

study are available under super series GSE65664.
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Appendix C

Methods for Eleveld, Oldridge,

Bernard et al. 2015

Sample collection and patient selection.

The inclusion criteria for this study were histopathological confirmation of neurob-

lastoma at original diagnosis and the presence of biopsy material from a subsequent

relapse specimen. Patients were included in this study after obtaining informed consent

from parents or guardians, with oversight from the ethics committees ‘Comité de

Protection des Personnes Sud-Est IV’, reference L07-95/L12-171, and ‘Comité de Pro-

tection des Personnes Ile-de-France’, reference 0811728 in France, the review board at

the Children’s Hospital of Philadelphia and review boards at other Children’s Oncology

Group sites that submitted samples for patients on this study in the United States,

and the review board of the Academic Medical Center of the University of Amsterdam

in the Netherlands. Somatic ALK mutation status has been reported for samples

FR NB0175, FR NB308, FR NB399, FR NB1224, FR NB1269 and FR NB13821[104].

Whole genome sequencing, summary.

Whole-genome sequencing was performed by Complete Genomics to an average cov-

erage of 50x per sample (for Dutch and US patient material and cell line material)[154]

or using Illumina HiSeq 2500 instruments to an average coverage of 80x per sample (for

French patient material). Material for each patient (lymphocytes, primary tumor and
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relapse tumor) was in all cases sequenced using the same sequencing platform. Estima-

tion of normal tissue contamination and whole-genome segmentation was performed

on all primary-normal and relapse-normal pairs with Sequenza software v2.1.0 using

both binned coverage ratio data and SNV allelic ratios as input[109]. Coverage-based

copy number plots were generated as previously described[44], with the exception

that values were corrected for ploidy and purity as determined by Sequenza. The R2

bioinformatics platform and Circos[155] were used for analysis and visualization.

Whole genome sequencing, Complete Genomics.

Potential somatic variants were determined with the CallDi↵ algorithm with somatic

output as available in the CGAtools v1.3.0 package, maintained by Complete Genomics.

Every tumor was compared to its matched blood sample across the genome. The

somatic output files were then filtered to regions where coding sequences are defined

in the UCSC re✏at. Silent mutations were subsequently removed from the analysis. In

addition, we determined the presence of somatic splice-site variants in the three bases

surrounding exons as defined by UCSC re✏at data. Variants with a somatic score

> 0.05 (for NL 041, NL 571 and NL N607) or Somatic Quality high (the remainder of

the patients) were included in the analysis.

Comparisons of structural variants between tumor and lymphocyte genomes were

performed with the JunctionDi↵ and Junction2Event algorithms from CGAtools. These

somatic events were filtered to remove events matching the following criteria: events

annotated as artifacts, footprints smaller than 70 bases, less than 10 discordant mate

pairs, under-represented repeats and presence in a set of baseline genomes (as provided

on the website of Complete Genomics (B36baseline-junctions.tsv)). Of the remaining

entries, we kept the following events: (i) exon bites, where both ends of a junction

were within the same gene and in addition a↵ect an exonic sequence, (ii) breaks

by inversion, where both ends of a junction land within a gene, thereby damaging
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both genes but leaving the genes in between una↵ected, (iii) potential fusion genes,

which are strand matched, where both ends of a junction landed within a gene and

the resulting end product fit in terms of orientation of both genes, and (iv) regions

(deletions or (tandem) duplications) of up to 1 Mb, containing up to five genes.

Whole genome sequencing, Illumina.

Whole-genome sequencing was performed using an Illumina HiSeq 2500, with 90-bp

paired-end reads for six tumors and 100-bp paired-end reads for the remaining two tu-

mors. After alignment with hg19 using Burrows-Wheeler Aligner (BWA)[156], bam files

were cleaned according to Genome Analysis Toolkit (GATK) recommendations[157].

Variant calling was performed in parallel using three variant callers: GATK 2.2-16,

SAMtools 0.1.18 and MuTect 1.1.430 (refs. [150, 157, 158]). ANNOVAR v2012-10-23

(ref. [159]) with COSMIC v64 and dbSNP v137 was used for annotation. SNVs with a

quality under 30, a depth of coverage under 6 or with fewer than 2 reads supporting the

variant were filtered out, as were variants reported in more than 1% of the population

in the 1000 Genomes Project[160] or Exome Sequencing Project (Exome Variant

Server, National Heart, Lung, and Blood Institute (NHLBI) GO Exome Sequencing

Project (ESP)).

Variants were then filtered to those regions where coding sequences are defined or

to variants in the three bases surrounding exons. Silent mutations were subsequently

removed from the analysis. Tumor and corresponding constitutional genomes were

compared using the SAMtools mpileup algorithm[150], and non-somatic variants were

discarded from the analysis.

Structural variants, including deletions, inversions, tandem duplications and translo-

cations, were analyzed using DELLY v0.5.5 with standard parameters[161]. In tumors,

at least ten supporting reads were required to make a call, and five supporting reads

were required for sample NB0175 with a coverage of only 40x. To predict structural
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variants in constitutional samples for subsequent somatic filtering, only two supporting

reads were required. To identify somatic events, all the structural variants in each

normal sample were first flanked by 500 bp in both directions and any structural

variant called in a tumor sample that was in the combined flanking regions of the

respective normal sample was removed. Deletions with more than five genes a↵ected

or larger than 1 Mb in size and inversions or tandem duplications covering more

than four genes were removed. We focused on exonic and splicing events for deletions,

inversions and tandem duplications. For translocations, we kept all structural variants

that occurred in intronic, exonic, 5’ UTR, upstream or splicing regions.

Clonality analysis.

Estimation of the cancer cell frequency of somatic mutations was performed using

the Bayesian method of Carter et al. to infer posterior intervals without clustering for

comparison[107]. Namely, we assumed that the expected allele fraction of a mutation in

a sample of tumor purity “↵”, total somatic copy number q, and mutation multiplicity

s can be expressed as a function of the cancer cell fraction c: f(c) = ↵cs/(2(1�↵)+↵q).

Given a uniform prior on c, the posterior density of c is therefore proportional to

Binom(a|N, f(c)), where a is the variant read count and N is the total read count.

While ↵ and q are estimated by Sequenza, the mutation multiplicity s is generally not

known. However, under the parsimony assumption that a mutation occurs only once

within a tumor’s evolutionary history, we can bound s by 1  s  m  q, where m is

the major allelic copy number of the mutation locus, which is estimated by Sequenza.

We therefore modeled the posterior distribution under two assumptions: s = 1 (biased

toward higher clonality estimates) as well as s = m (biased toward lower clonality

estimates).

Estimation of CCF was also performed using PyClone v0.12.7 as an alternative

method for comparison[162]. For each primary or relapse tumor, PyClone was run on
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all somatic coding point mutations using the “parental copy number” method and

“pyclone beta binomial” density, with estimates of tumor purity and allelic copy number

from Sequenza provided as necessary inputs. The Markov Chain Monte Carlo (MCMC)

step of PyClone was run for 10,000 iterations with burn-in and thin parameters set to

1,000 and 10, respectively, resulting in 900 independent samples from the posterior

distribution of cancer cell fraction per mutation. Otherwise, default options for PyClone

were used.

Cancer mutation analysis.

To identify pathways or processes that were frequently a↵ected in neuroblastoma

relapse tumors we used the CancerMutationAnalysis R package[110]. Somatic mu-

tations detected only in the relapse and detected in the relapse and primary for all

tumors were used as input. This algorithm is not suitable for the analysis of structural

variants, so these were not included in this analysis. P -values were generated using the

permutation null method without heterogeneity and signify enrichment of mutated

genes associated with a certain Gene Ontoloty (GO) Biological Process category across

all relapse tumors.

Cell lines.

All cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% FBS, 20 mmol/L L-glutamine, 10 U/mL penicillin, and 10

µg/mL streptomycin and maintained at 37�C under 5% CO2. Cell line identities are

regularly confirmed by short tandem repeat profiling using the PowerPlex16 system

and GeneMapper software (Promega). Cell lines are regularly screened for the presence

of mycoplasma.

Cell viability assays in response to MEK inhibition.

For cell viability assays, 2.5-25⇥ 103 cells were seeded in 50 µl in 96-well plates

1 d before treatment with one of three MEK inhibitors. Binimetinib, trametinib or
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cobimetinib (Selleckchem) was added in a seven-point fivefold dilution series, and cell

viability was assayed by MTT assay (Sigma) after 72 h, as described previously[163].

All experiments were performed in triplicate, and values were compared to those for

solvent-treated controls. GI50 values were calculated by 100⇥ (T � T0)/(C � T0) for

every drug concentration, where T is the optical density for a certain drug concentration

at 72 h, T0 is the optical density at 0 h (before adding the drug) and C is the optical

density of solvent-treated controls at 72 h. Curves were fitted on the data points

using nonlinear regression in GraphPad 5 (log(inhibitor) versus response - variable

slope), and GI50 values were interpolated from these curves. If curves did not reach

50% growth inhibition, the GI50 value was set at 10 µM.

Whole exome sequencing of neuroblastoma cell lines

Whole exome sequencing of the neuroblastoma cell lines SK-N-AS, NBL-S, Kelly

and IMR-5 was performed using in-solution hybrid capture[164] followed by Illumina se-

quencing, as described previously[46]. Cell lines were obtained from the Neuroblastoma

Cell Line Repository at the Children’s Hospital of Philadelphia.

MEK inhibition in murine xenotransplants

The human neuroblastoma-derived cell lines SK-N-AS, NBL-S, Kelly and IMR-5

were xenotransplanted subcutaneously into female C.B-17 SCID mice at 5-7 weeks

of age. Once the engrafted tumors reached 200 mm3, mice were treated orally with

binimetinib (Novartis) at 3 mg/kg (n = 10) or 30 mg/kg (n = 10) or received vehicle

only (n = 10) by simple randomization. Mice were treated twice daily, and tumor size

was monitored three times weekly; all investigators other than the mouse technician

were blinded to group allocation and study outcomes until all mice completed a trial.

Tumor burden was determined according to the formula (⇡/6)d3, where d represents

the mean tumor diameter obtained by caliper measurement. Statistical analysis was

performed using a two-tailed t-test at each time point, with P -values < 0.05 indicating

91



significance between the vehicle-treated group and each of the treatment groups. All

studies were performed in accordance with the Children’s Hospital of Philadelphia

Institutional Animal Care and Use Committee, and mice were euthanized as soon as

tumor volume exceeded 3 cm3. The sample size of ten mice was predetermined on the

basis of statistical power calculations.
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[43] Y. P. Mossé, M. S. Lim, S. D. Voss, K. Wilner, K. Ru↵ner, J. Laliberte, D. Rolland,

F. M. Balis, J. M. Maris, B. J. Weigel, A. M. Ingle, C. Ahern, P. C. Adamson,

and S. M. Blaney, “Safety and activity of crizotinib for paediatric patients with

refractory solid tumours or anaplastic large-cell lymphoma: a children’s oncology

group phase 1 consortium study.,” The lancet oncology, vol. 14, no. 6, pp. 472–480,

2013.

[44] J. J. Molenaar, J. Koster, D. A. Zwijnenburg, P. van Sluis, L. J. Valentijn,

I. van der Ploeg, M. Hamdi, J. van Nes, B. A. Westerman, J. van Arkel, M. E.

Ebus, F. Haneveld, A. Lakeman, L. Schild, P. Molenaar, P. Stroeken, M. M.

van Noesel, I. Ora, E. E. Santo, H. N. Caron, E. M. Westerhout, and R. Ver-

steeg, “Sequencing of neuroblastoma identifies chromothripsis and defects in

neuritogenesis genes.,” Nature, vol. 483, no. 7391, pp. 589–593, 2012.

[45] N. V. K. Cheung, J. Zhang, C. Lu, M. Parker, A. Bahrami, S. K. Tickoo,

A. Heguy, A. S. Pappo, S. Federico, J. Dalton, I. Y. Cheung, L. Ding, R. Fulton,

J. Wang, X. Chen, J. Becksfort, J. Wu, C. A. Billups, D. Ellison, E. R. Mardis,

102



R. K. Wilson, J. R. Downing, M. A. Dyer, and S. J. C. R. H. U. P. C. G.

Project, “Association of age at diagnosis and genetic mutations in patients with

neuroblastoma.,” JAMA, vol. 307, no. 10, pp. 1062–1071, 2012.

[46] T. J. Pugh,O. Morozova, E. F. Attiyeh, S. Asgharzadeh, J. S. Wei, D. Auclair, S. L.

Carter, K. Cibulskis, M. Hanna, A. Kiezun, J. Kim, M. S. Lawrence, L. Lichen-

stein, M. Aaron, C. S. Pedamallu, A. H. Ramos, E. Shefler, A. Sivachenko,

C. Sougnez, C. Stewart, A. Ally, I. Birol, R. Chiu, R. D. Corbett, M. Hirst, S. D.

Jackman, B. Kamoh, A. H. Khodabakshi, M. Krzywinski, A. Lo, R. A. Moore,

K. L. Mungall, J. Qian, A. Tam, N. Thiessen, Y. Zhao, K. A. Cole, M. Diamond,

S. J. Diskin, Y. P. Mosse, A. C. Wood, L. Ji, R. Sposto, T. Badgett, W. B.

London, Y. Moyer, G. J. M, M. A. Smith, J. M. Guidry Auvil, D. S. Gerhard,

M. D. Hogarty, S. J. Jones, E. S. Lander, S. B. Gabriel, G. Getz, R. C. Seeger,

J. Khan, M. A. Marra, M. Meyerson, and J. M. Maris, “The genetic landscape

of high-risk neuroblastoma.,” Nature genetics, vol. 45, no. 3, pp. 279–284, 2013.

[47] M. Sausen, R. J. Leary, S. Jones, J. Wu, C. Reynolds, X. Liu, A. Blackford,

G. Parmigiani, L. A. Diaz, N. Papadopoulos, B. Vogelstein, K. W. Kinzler,

V. E. Velculescu, and M. D. Hogarty, “Integrated genomic analyses identify

ARID1A and ARID1B alterations in the childhood cancer neuroblastoma.,”

Nature genetics, vol. 45, no. 1, pp. 12–17, 2013.

[48] M. Capasso, M. Devoto, C. Hou, S. Asgharzadeh, J. T. Glessner, E. F. At-

tiyeh, Y. P. Mosse, C. Kim, S. J. Diskin, K. A. Cole, K. Bosse, M. Diamond,

M. Laudenslager, C. Winter, J. P. Bradfield, R. H. Scott, J. Jagannathan, M. Gar-

ris, M. Carmel, W. B. London, R. C. Seeger, S. F. Grant, H. Li, N. Rahman,

E. Rappaport, H. Hakonarson, and J. M. Maris, “Common variations in BARD1

103



influence susceptibility to high-risk neuroblastoma.,” Nature genetics, vol. 41,

no. 6, pp. 718–723, 2009.

[49] J. M. Maris, Y. P. Mosse, J. P. Bradfield, C. Hou, S. Monni, R. H. Scott, S. As-

gharzadeh, E. F. Attiyeh, S. J. Diskin, M. Laudenslager, C. Winter, K. A. Cole,

J. T. Glessner, C. Kim, E. C. Frackelton, T. Casalunovo, A. W. Eckert, M. Ca-

passo, E. F. Rappaport, M. Carmel, W. B. London, R. C. Seeger, N. Rahman,

M. Devoto, S. F. Grant, H. Li, and H. Hakonarson, “Chromosome 6p22 locus

associated with clinically aggressive neuroblastoma.,” The New England journal

of medicine, vol. 358, no. 24, pp. 2585–2593, 2008.

[50] K. Wang, S. J. Diskin, H. Zhang, E. F. Attiyeh, C. Winter, C. Hou, R. W.

Schnepp, M. Diamond, K. Bosse, P. A. Mayes, J. Glessner, C. Kim, E. Frackelton,

M. Garris, Q. Wang, W. Glaberson, R. Chiavacci, L. Nguyen, J. Jagannathan,

N. Saeki, H. Sasaki, S. F. Grant, A. Iolascon, Y. P. Mosse, K. A. Cole, H. Li,

M. Devoto, M. P. W, W. B. London, M. Capasso, N. Rahman, H. Hakonarson,

and J. M. Maris, “Integrative genomics identifies LMO1 as a neuroblastoma

oncogene.,” Nature, vol. 469, no. 7329, pp. 216–220, 2011.

[51] S. J. Diskin, M. Capasso, R. W. Schnepp, K. A. Cole, E. F. Attiyeh, C. Hou,

M. Diamond, E. L. Carpenter, C. Winter, H. Lee, J. Jagannathan, V. Latorre,

A. Iolascon, H. Hakonarson, M. Devoto, and J. M. Maris, “Common variation

at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma.,”

Nature genetics, vol. 44, no. 10, pp. 1126–1130, 2012.

[52] S. J. Diskin, M. Capasso, M. Diamond, D. A. Oldridge, K. Conkrite, K. R. Bosse,

M. R. Russell, A. Iolascon, H. Hakonarson, M. Devoto, and J. M. Maris, “Rare

104



variants in TP53 and susceptibility to neuroblastoma.,” Journal of the National

Cancer Institute, vol. 106, no. 4, p. dju047, 2014.

[53] L. B. e. B. Nguyen, S. J. Diskin, M. Capasso, K. Wang, M. A. Diamond,

J. Glessner, C. Kim, E. F. Attiyeh, Y. P. Mosse, K. Cole, A. Iolascon, M. Devoto,

H. Hakonarson, H. K. Li, and J. M. Maris, “Phenotype restricted genome-

wide association study using a gene-centric approach identifies three low-risk

neuroblastoma susceptibility loci.,” PLoS genetics, vol. 7, no. 3, p. e1002026,

2011.

[54] S. J. Diskin, C. Hou, J. T. Glessner, E. F. Attiyeh, M. Laudenslager, K. Bosse,
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confer di↵erential oncogenic activation and sensitivity to ALK inhibition therapy

in neuroblastoma.,” Cancer cell, vol. 26, no. 5, pp. 682–694, 2014.

[113] M. Hölzel, S. Huang, J. Koster, I. Ora, A. Lakeman, H. Caron, W. Nijkamp,

J. Xie, T. Callens, S. Asgharzadeh, R. C. Seeger, L. Messiaen, R. Versteeg, and

R. Bernards, “NF1 is a tumor suppressor in neuroblastoma that determines

retinoic acid response and disease outcome.,” Cell, vol. 142, no. 2, pp. 218–229,

2010.

[114] M. Tartaglia, S. Martinelli, L. Stella, G. Bocchinfuso, E. Flex, V. Cordeddu,

G. Zampino, I. v. Burgt, A. Palleschi, T. C. Petrucci, M. Sorcini, C. Schoch,

116



R. Foa, P. D. Emanuel, and B. D. Gelb, “Diversity and functional consequences of

germline and somatic PTPN11 mutations in human disease.,” American journal

of human genetics, vol. 78, no. 2, pp. 279–290, 2006.

[115] C. Jane, O. Kieran, K. M. Wood, C. C. Challen, A. G. Baker, J. R. Board,

L. Evans, M. Cole, N. V. K. Cheung, J. Boos, G. Köhler, I. Leuschner, A. D.
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and J. Vandesompele, “Small-molecule MDM2 antagonists as a new therapy

concept for neuroblastoma.,” Cancer research, vol. 66, no. 19, pp. 9646–9655,

2006.
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D. Santamaŕıa, and M. Barbacid, “A synthetic lethal interaction between K-

121



Ras oncogenes and cdk4 unveils a therapeutic strategy for non-small cell lung

carcinoma.,” Cancer cell, vol. 18, no. 1, pp. 63–73, 2010.

[139] L. N. Kwong, J. C. Costello, H. Liu, S. Jiang, T. L. Helms, A. E. Langsdorf,

D. Jakubosky, G. Genovese, F. L. Muller, J. H. Jeong, R. P. Bender, G. C.

Chu, K. T. Flaherty, J. A. Wargo, J. J. Collins, and L. Chin, “Oncogenic NRAS

signaling di↵erentially regulates survival and proliferation in melanoma.,” Nature

medicine, vol. 18, no. 10, pp. 1503–1510, 2012.

[140] J. M. Ostrem, U. Peters, M. L. Sos, J. A. Wells, and K. M. Shokat, “K-Ras(G12C)

inhibitors allosterically control GTP a�nity and e↵ector interactions.,” Nature,

vol. 503, no. 7477, pp. 548–551, 2013.

[141] H. Thompson, “US national cancer institute’s new ras project targets an old

foe.,” Nature medicine, vol. 19, no. 8, pp. 949–950, 2013.

[142] N. E. Navin, “The first five years of single-cell cancer genomics and beyond.,”

Genome research, vol. 25, no. 10, pp. 1499–1507, 2015.

[143] V. Latorre, S. J. Diskin, M. A. Diamond, H. Zhang, H. Hakonarson, J. M. Maris,

and M. Devoto, “Replication of neuroblastoma SNP association at the BARD1

locus in African-Americans.,” Cancer epidemiology, biomarkers & prevention :

a publication of the American Association for Cancer Research, cosponsored by

the American Society of Preventive Oncology, vol. 21, no. 4, pp. 658–663, 2012.

[144] M. R. Mansour, B. J. Abraham, L. Anders, A. Berezovskaya, A. Gutierrez,

A. D. Durbin, J. Etchin, L. Lawton, S. E. Sallan, L. B. Silverman, M. L. Loh,

S. P. Hunger, T. Sanda, R. A. Young, and A. Look, “Oncogene regulation.

an oncogenic super-enhancer formed through somatic mutation of a noncoding

122



intergenic element.,” Science (New York, N.Y.), vol. 346, no. 6215, pp. 1373–1377,

2014.

[145] T. I. Lee, S. E. Johnstone, and R. A. Young, “Chromatin immunoprecipitation

and microarray-based analysis of protein location.,” Nature protocols, vol. 1,

no. 2, pp. 729–748, 2006.

[146] A. Marson, S. S. Levine, M. F. Cole, G. M. Frampton, T. Brambrink, S. John-

stone, M. G. Guenther, W. K. Johnston, M. Wernig, J. Newman, J. Calabrese,

L. M. Dennis, T. L. Volkert, S. Gupta, J. Love, N. Hannett, P. A. Sharp, D. P.

Bartel, R. Jaenisch, and R. A. Young, “Connecting microRNA genes to the

core transcriptional regulatory circuitry of embryonic stem cells.,” Cell, vol. 134,

no. 3, pp. 521–533, 2008.

[147] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-

e�cient alignment of short DNA sequences to the human genome.,” Genome

biology, vol. 10, no. 3, p. R25, 2009.

[148] W. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler,

and D. Haussler, “The human genome browser at UCSC.,” Genome research,

vol. 12, no. 6, pp. 996–991006, 2002.

[149] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein,

C. Nusbaum, R. M. Myers, M. Brown, W. Li, and X. Liu, “Model-based analysis

of ChIP-Seq (MACS).,” Genome biology, vol. 9, no. 9, p. R137, 2008.

[150] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup, “The sequence Align-

ment/Map format and SAMtools.,” Bioinformatics (Oxford, England), vol. 25,

no. 16, pp. 2078–2079, 2009.

123



[151] J. Lovén, H. A. Hoke, C. Y. Lin, A. Lau, D. A. Orlando, C. R. Vakoc, J. E.

Bradner, T. I. Lee, and R. A. Young, “Selective inhibition of tumor oncogenes

by disruption of super-enhancers.,” Cell, vol. 153, no. 2, pp. 320–334, 2013.

[152] Y. Nakatani and V. Ogryzko, “Immunoa�nity purification of mammalian protein

complexes.,” Methods in enzymology, vol. 370, pp. 430–444, 2003.

[153] A. D. Durbin, G. R. Somers, M. Forrester, M. Pienkowska, G. E. Hannigan, and

D. Malkin, “JNK1 determines the oncogenic or tumor-suppressive activity of the

integrin-linked kinase in human rhabdomyosarcoma.,” The Journal of clinical

investigation, vol. 119, no. 6, pp. 1558–1570, 2009.

[154] R. Drmanac, A. B. Sparks, M. J. Callow, A. L. Halpern, N. L. Burns, B. G. Ker-

mani, P. Carnevali, I. Nazarenko, G. B. Nilsen, G. Yeung, F. Dahl, A. Fernandez,

B. Staker, K. P. Pant, J. Baccash, A. P. Borcherding, A. Brownley, R. Cedeno,

L. Chen, D. Cherniko↵, A. Cheung, R. Chirita, B. Curson, J. C. Ebert, C. R.

Hacker, R. Hartlage, B. Hauser, S. Huang, Y. Jiang, V. Karpinchyk, M. Koenig,

C. Kong, T. Landers, C. Le, J. Liu, M. C. E, M. Morenzoni, R. E. Morey,

K. Mutch, H. Perazich, K. Perry, B. A. Peters, J. Peterson, C. L. Pethiyagoda,

K. Pothuraju, C. Richter, A. M. Rosenbaum, S. Roy, J. Shafto, U. Sharanhovich,

K. W. Shannon, C. G. Sheppy, M. Sun, J. V. Thakuria, A. Tran, D. Vu, A. W.

Zaranek, X. Wu, S. Drmanac, A. R. Oliphant, W. C. Banyai, B. Martin, D. G.

Ballinger, G. M. Church, and C. A. Reid, “Human genome sequencing using

unchained base reads on self-assembling DNA nanoarrays.,” Science (New York,

N.Y.), vol. 327, no. 5961, pp. 78–81, 2010.

[155] M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S. J.

124



Jones, and M. A. Marra, “Circos: an information aesthetic for comparative

genomics.,” Genome research, vol. 19, no. 9, pp. 1639–1645, 2009.

[156] H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-

Wheeler transform.,” Bioinformatics (Oxford, England), vol. 25, no. 14, pp. 1754–

1760, 2009.

[157] M. Aaron, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,

K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and D. M. A, “The genome

analysis toolkit: a MapReduce framework for analyzing next-generation DNA

sequencing data.,” Genome research, vol. 20, no. 9, pp. 1297–1303, 2010.

[158] K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Ja↵e, C. Sougnez,

S. Gabriel, M. Meyerson, E. S. Lander, and G. Getz, “Sensitive detection of

somatic point mutations in impure and heterogeneous cancer samples.,” Nature

biotechnology, vol. 31, no. 3, pp. 213–219, 2013.

[159] K. Wang, M. Li, and H. Hakonarson, “ANNOVAR: functional annotation of

genetic variants from high-throughput sequencing data.,” Nucleic acids research,

vol. 38, no. 16, p. e164, 2010.

[160] . G. P. Consortium, G. R. Abecasis, A. Auton, L. D. Brooks, D. M. A, R. M.

Durbin, R. E. Handsaker, H. M. Kang, G. T. Marth, and M. G. A, “An integrated

map of genetic variation from 1,092 human genomes.,” Nature, vol. 491, no. 7422,

pp. 56–65, 2012.

[161] T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O. Korbel,
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