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Investigating Inflammasome Activation in Response to Legionella
Pneumophila and its Application to Other Bacterial Pathogens

Abstract
The mucosal surfaces of metazoan organisms provide niches for colonization by commensal microbes.
However, these barrier surfaces also encounter pathogens. Therefore, sentinel immune cells must be capable
of distinguishing between pathogenic and non-pathogenic organisms to tailor appropriate immune responses.
Virulent microorganisms often uniquely possess mechanisms for accessing the host cell cytosol. Therefore, to
detect pathogens, innate immune cells encode cytosolic receptors, which recognize conserved, pathogen-
associated molecular patterns. Many mammalian cytosolic receptors activate the inflammasome, a multi-
protein complex that activates the host enzyme caspase-1. Caspase-1 mediates IL-1 family cytokine release
and a pro-inflammatory form of cell death, which are important for host defense. The canonical
inflammasome activates caspase-1, but recent studies have shown that a related enzyme, caspase-11,
contributes to inflammasome activation. However, it remains unclear if caspase-11 mediates inflammasome
responses against bacteria that use virulence-associated secretion systems to deliver bacterial products into the
host cytosol. Additionally, humans encode two orthologs of caspase-11, caspase-4 and caspase-5, and it is
unclear if either enzyme contributes to inflammasome activation in primary macrophages. Furthermore, the
bacterial ligands that trigger inflammasome activation in human cells are poorly defined. Legionella
pneumophila, which causes pneumonia, uses a specialized secretion system to access the host cytosol to
establish a replicative niche in both murine and human cells. Therefore, we investigated the host and bacterial
requirements for inflammasome activation in response to L. pneumophila, and we interrogated if these
requirements are conserved for the response against other Gram-negative bacterial pathogens. Our studies
demonstrate that caspase-11 contributes to IL-1 release and cell death in response to bacterial pathogens in
murine macrophages, and we find that inflammasome activation requires the presence of virulence-associated
secretion systems. Using neutralizing antibodies, we show that IL-1α and IL-1β have distinct roles in
pulmonary defense against L. pneumophila in vivo. Through siRNA knockdown studies, we demonstrate that
human caspase-4 has a conserved role in inflammasome activation in response to multiple Gram-negative
bacterial pathogens. Finally, using bacterial mutants, we show that flagellin is a trigger for inflammasome
activation in human macrophages. Overall, our studies help define the mechanism by which host cells initiate
defense against bacterial pathogens.
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ABSTRACT 

INVESTIGATING INFLAMMASOME ACTIVATION IN RESPONSE TO LEGIONELLA 

PNEUMOPHILA AND ITS APPLICATION TO OTHER BACTERIAL PATHOGENS 

Cierra N. Casson 

Sunny Shin 

The mucosal surfaces of metazoan organisms provide niches for colonization by 
commensal microbes. However, these barrier surfaces also encounter pathogens. 
Therefore, sentinel immune cells must be capable of distinguishing between pathogenic 
and non-pathogenic organisms to tailor appropriate immune responses. Virulent 
microorganisms often uniquely possess mechanisms for accessing the host cell cytosol. 
Therefore, to detect pathogens, innate immune cells encode cytosolic receptors, which 
recognize conserved, pathogen-associated molecular patterns. Many mammalian 
cytosolic receptors activate the inflammasome, a multi-protein complex that activates the 
host enzyme caspase-1. Caspase-1 mediates IL-1 family cytokine release and a pro-
inflammatory form of cell death, which are important for host defense. The canonical 
inflammasome activates caspase-1, but recent studies have shown that a related 
enzyme, caspase-11, contributes to inflammasome activation. However, it remains 
unclear if caspase-11 mediates inflammasome responses against bacteria that use 
virulence-associated secretion systems to deliver bacterial products into the host 
cytosol. Additionally, humans encode two orthologs of caspase-11, caspase-4 and 
caspase-5, and it is unclear if either enzyme contributes to inflammasome activation in 
primary macrophages. Furthermore, the bacterial ligands that trigger inflammasome 
activation in human cells are poorly defined. Legionella pneumophila, which causes 
pneumonia, uses a specialized secretion system to access the host cytosol to establish 
a replicative niche in both murine and human cells. Therefore, we investigated the host 
and bacterial requirements for inflammasome activation in response to L. pneumophila, 
and we interrogated if these requirements are conserved for the response against other 
Gram-negative bacterial pathogens. Our studies demonstrate that caspase-11 
contributes to IL-1 release and cell death in response to bacterial pathogens in murine 
macrophages, and we find that inflammasome activation requires the presence of 
virulence-associated secretion systems. Using neutralizing antibodies, we show that IL-
1α and IL-1β have distinct roles in pulmonary defense against L. pneumophila in vivo. 
Through siRNA knockdown studies, we demonstrate that human caspase-4 has a 
conserved role in inflammasome activation in response to multiple Gram-negative 
bacterial pathogens. Finally, using bacterial mutants, we show that flagellin is a trigger 
for inflammasome activation in human macrophages. Overall, our studies help define the 
mechanism by which host cells initiate defense against bacterial pathogens. 
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CHAPTER 1 
 

 INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sections of this chapter have been adapted from a published peer-reviewed mini-review 
titled “Inflammasome-mediated cell death in response to bacterial pathogens that access 
the host cell cytosol: lessons from Legionella pneumophila” by Cierra N. Casson and 
Sunny Shin. Frontiers in Cellular and Infection Microbiology, 2013. 
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The mucosal surfaces of metazoan organisms, such as the intestinal epithelium and 

upper respiratory tract, provide diverse niches for microbial colonization. However, in 

addition to commensal microbes, these barrier surfaces have the potential to encounter 

pathogenic organisms as well. When cells of the innate immune system encounter a 

microorganism, they must have the capacity to accurately determine if the 

microorganism is pathogenic or not to mount an appropriate immune response while 

minimizing damage to the host (Janeway and Medzhitov, 2002). If the immune response 

is unnecessarily over-exuberant, immune cells can cause damage to host tissue or 

induce autoimmunity (Dube et al., 2001; Kurashima et al., 2013; Meng et al., 2009). 

Conversely, if the immune response is not effective and the organism is virulent, the 

pathogen can replicate and cause damage to or even kill the host (Flynn et al., 1995; 

Franchi et al., 2012; Reddick and Alto, 2014). Therefore, the ability of the innate immune 

system to distinguish pathogenic organisms from non-pathogenic or commensal 

organisms is key for the maintenance of homeostatic barrier function and survival of the 

host (Belkaid and Artis, 2013; Belkaid and Hand, 2014). 

 

A. Extracellular sensing of microorganisms 

To detect pathogens, cells of the innate immune system encode pattern recognition 

receptors (PRRs), which detect conserved microbial products. These conserved 

microbial products are known as pathogen-associated molecular patterns (PAMPs), and 

they include components of the bacterial cell wall, such as lipopolysaccharide (LPS) and 

peptidoglycan, bacterial flagellin, and viral and bacterial nucleic acids (Janeway and 

Medzhitov, 2002). Germline-encoded PRRs are critical initiators of host defense against 

invading microorganisms (Medzhitov, 2007).  
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The C-type lectin receptors (CLRs) are a subset of PRRs that bind to carbohydrates and 

lipids in the extracellular space (Dambuza and Brown, 2015). The CLR dectin-1 

responds to β-glucans from fungi (Brown and Gordon, 2001), while dectin-2 senses α-

manins during fungal infection (Saijo et al., 2010). CLRs signal through Syk kinase to 

generate cytokines important for anti-fungal defense (Robinson et al., 2009; Rogers et 

al., 2005). Recently, however, it has been appreciated that CLRs can detect PAMPs 

from bacterial species as well, including mycobacterial components (Dambuza and 

Brown, 2015; Yonekawa et al., 2014). 

 

The Toll-like receptors (TLRs) are a subset of PRRs that are surface and endosomally-

associated trans-membrane proteins that detect PAMPs found in the extracellular space 

(Janeway and Medzhitov, 2002) through leucine-rich repeat (LRR) domains (Bell et al., 

2003). TLR1,2,4,5, and 6 are found on the cell surface, while TLR3,7,8, and 9 are 

expressed in intracellular vesicles (Kawai and Akira, 2010). TLR2 detects bacterial 

lipoproteins (Aliprantis et al., 1999; Brightbill et al., 1999). TLR2 works in concert with 

TLR1 or TLR6 to form heterodimers to detect peptidoglycan and other lipopeptide 

components of Gram-positive bacterial cells walls and zymosan, a yeast cell wall 

component (Ozinsky et al., 2000; Takeuchi et al., 2001; 2002; Underhill et al., 1999). 

TLR4 detects LPS from Gram-negative bacteria (Medzhitov et al., 1997; Poltorak et al., 

1998), and TLR5 detects bacterial flagellin (Hayashi et al., 2001). Some TLRs form 

complexes with accessory proteins to detect their ligands. For example, TLR4 requires 

CD14 (Haziot et al., 1996) and MD-2 (Shimazu et al., 1999) to efficiently detect LPS. 

Interestingly, the detection of PAMPs through any given TLR does not necessarily 
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distinguish between bacterial and viral organisms, as TLR4 recognizes a respiratory 

syncytial virus protein in addition to LPS (Kurt-Jones et al., 2000). 

 

The endosomal TLRs (TLR3,7,8, and 9) respond to viral and bacterial nucleic acids. 

TLR3 detects double-stranded RNA, including the synthetic analog polyinosinic-

polycytidylic acid (poly(I:C)) (Alexopoulou et al., 2001). TLR7 and TLR8 were originally 

shown to respond to small antiviral compounds, such as imidazoquinolines (Hemmi et 

al., 2002; Jurk et al., 2002), but they also sense single-stranded RNA (Diebold et al., 

2004; Heil et al., 2004). TLR7 is particularly important for sensing single-stranded RNA 

during viral infection (Lund et al., 2004). TLR9 recognizes unmethylated bacterial 2’-

deoxyribo cytidine-phosphate-guanosine (CpG) dinucleotides (Hemmi et al., 2000) and 

also detects CpG motifs during infection with DNA viruses, such as Herpes simplex 

virus-2 (Lund et al., 2003).  

 

TLRs signal through the recruitment of Toll-interleukin-1 (IL-1) receptor (TIR) domain 

containing proteins to generate cytokine responses. TLRs 1,2,5,6,7, and 8 signal 

through the adaptor myeloid differentiation primary-response protein 88 (MyD88), while 

TLR3 signals through TIR-domain-containing adaptor protein inducing interferon-β (IFN-

β) (TRIF)/TIR-domain-containing molecule 1 (TICAM1) (Hoebe et al., 2003; Medzhitov et 

al., 1998; Yamamoto et al., 2003). TLR4 can signal through both MyD88 and TRIF 

(Hoebe et al., 2003; Yamamoto et al., 2003), and there is recent evidence that TLR2 can 

signal through TRIF in response to certain lipopeptides (Nilsen et al., 2015). MyD88 

signaling generally leads to pro-inflammatory cytokine production, while TRIF signaling 

leads to type I IFN production, and both pathways modulate signaling through the 
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transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) to produce inflammatory mediators that provide defense against microbial organisms 

(Kawai and Akira, 2010). Therefore, TLRs are critical initiators of many immune 

responses. However, detection through TLRs alone is often not sufficient to distinguish 

between pathogenic and non-pathogenic organisms, as non-pathogens encode many of 

the same PAMPS as pathogens. For example, both commensal and pathogenic bacteria 

may express LPS if they are Gram-negative organisms, and both may express flagellin if 

they are motile organisms. Therefore, innate immune cells must possess additional 

PRRs to help distinguish between pathogenic and non-pathogenic microbes. 

 

B. Intracellular sensing of pathogens 

As TLRs cannot always distinguish between pathogens and non-pathogens, innate 

immune cells encode an additional set of PRRs to more specifically detect pathogenic 

microbes. Though PAMPs associated with commensal organisms may be sensed via 

surface or endosomal TLRs in the extracellular space, many pathogenic organisms 

uniquely have mechanisms for accessing the host cytosol, a cellular compartment where 

microorganisms are typically not found. Thus, to detect pathogenic activities, many cells 

encode cytosolic PRRs, such as retinoic acid-inducible gene I (RIG-I)-like receptors 

(RLRs) (Yoneyama et al., 2015) and nucleotide-binding domain, leucine rich repeat 

containing proteins (NLRs) (Harton et al., 2002), many of which respond to PAMPs that 

are present within the host cell cytosol. 

 

RLRs detect cytosolic RNA, particularly during viral infection. The founding member of 

the RLR family, RIG-I, senses double-stranded RNA to initiate type I IFN production 
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(Yoneyama et al., 2004). Melanoma differentiation associated gene 5 (MDA5) is another 

cytosolic RLR that induces type I IFN through IRF-3 (Yoneyama et al., 2005). Though 

both RIG-I and MDA-5 detect double-stranded RNA, they are not completely functionally 

redundant, as they are each required for type I IFN production in response to distinct 

viruses (Kato et al., 2006). Both RIG-I and MDA5 signal through the adaptor protein 

interferon-β promoter stimulator 1 (IPS-1)/mitochondrial antiviral signaling 

(MAVS)/caspase recruitment domain (CARD) adaptor inducing IFN-β (CARDIF) to 

initiate antiviral defense (Kawai et al., 2005; Meylan et al., 2005; Seth et al., 2005). 

 

In addition to sensing RNA, mammalian cells have mechanisms for sensing cytosolic 

DNA independently of TLRs and inducing type I IFN as well (Stetson and Medzhitov, 

2006; Stetson et al., 2008). For example, stimulator of interferon genes (STING) 

responds to non-CpG containing DNA during viral infection to trigger anti-viral defense 

(Ishikawa and Barber, 2008; Ishikawa et al., 2009). Interferon-inducible protein 16 

(IFI16) (Unterholzner et al., 2010) and interferon-inducible tripartite-motif 56 (TRIM56) 

(Tsuchida et al., 2010) both interact with STING to mediate the response against 

cytosolic DNA. Recently, the cytosolic double-stranded DNA sensor cyclic guanosine 

monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) was identified 

(Ablasser et al., 2013; Sun et al., 2013). cGAS generates the cyclic di-nucleotide second 

messenger cGAMP, which in turn binds to and activates STING to generate type I IFN 

(Wu et al., 2013). 

 

Nucleic acids are not the only cytosolic PAMPs detected by mammalian PRRs. The 

nucleotide-binding oligomerization domain (NOD) proteins NOD1 (Bertin et al., 1999; 
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Inohara et al., 1999) and NOD2 (Ogura et al., 2001) are the founding members of the 

NLR family, and they respond to intracellular peptidoglycan (Chamaillard et al., 2003; 

Girardin et al., 2003a; 2003b; Inohara et al., 2003). Both NOD1 and 2 signal through the 

adaptor molecule receptor-interacting protein kinase 2 (RIP2)/CARD-containing IL-1β 

converting enzyme (ICE) associated kinase (CARDIAK) (Chin et al., 2002; Kobayashi et 

al., 2002). Signaling through NOD1 and 2 induces expression of pro-inflammatory 

cytokines, anti-microbial peptides, and chemokines important for inflammatory cell 

recruitment in vivo (Kobayashi et al., 2005; Masumoto et al., 2006).  

 

Other members of the NLR family signal independently of RIP2 and activate multi-meric 

complexes known as inflammasomes. These NLRs respond to ‘patterns of 

pathogenesis’ and activities that are often associated with virulent organisms (Lamkanfi 

and Dixit, 2009; Vance et al., 2009), such as membrane disruption, delivery of bacterial 

molecules into the host cytosol via specialized secretion systems, or the use of pore-

forming toxins (Davis et al., 2011; Franchi et al., 2012; Fritz et al., 2006; Vance et al., 

2009). Inflammasome activation via NLRs initiates a cascade of events to produce key 

pro-inflammatory cytokines and activate a pro-inflammatory form of cell death that can 

eliminate the replicative niche for many pathogens (Rathinam et al., 2012a). 

 

C. Caspase-1-dependent inflammasomes 

The canonical inflammasome is a multi-protein complex that assembles in the cytosol to 

activate the host enzyme caspase-1, also known as ICE (Martinon et al., 2002). 

Caspase-1 is a cysteine protease with a catalytic cysteine at residue 285, and its active 

tetramer form is produced from two heterodimers of a 10kDa (p10) and 20kDa (p20) 
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subunit generated by auto-processing of the 45 kDa (p45) pro-enzyme (Cerretti et al., 

1992; Thornberry et al., 1992; Walker et al., 1994; Wilson et al., 1994). Caspase-1 

regulates secretion of IL-1 family cytokines and a pro-inflammatory form of cell death 

termed pyroptosis (Cookson and Brennan, 2001; Kuida et al., 1995; Li et al., 1995; 

Rathinam et al., 2012a). Caspase-1 processes IL-1β and IL-18 into their mature forms 

and aids in their secretion (Ghayur et al., 1997; Gu et al., 1997; Howard et al., 1991; 

Thornberry et al., 1992), and caspase-1-dependent cleavage of cytokines occurs within 

the cytosol of host cells (Singer et al., 1995). Caspase-1 does not cleave IL-1α, though it 

can aid in IL-1α secretion as well (Howard et al., 1991; Keller et al., 2008). IL-1 family 

cytokines act in vivo to enhance immune responses against invading microorganisms 

(Bohn et al., 1998; Dinarello, 2009; Labow et al., 1997). Additionally, caspase-1-

mediated pyroptosis enhances clearance of bacterial pathogens in vivo (Miao et al., 

2010a).  

 

Each NLR responds to a distinct stimulus (or range of stimuli) when activating the 

inflammasome (Figure 1-1). Few NLRs have been shown to bind directly to their 

implicated activators, and some are triggered by a wide variety of stimuli. For example, 

NLR family, pyrin domain-containing 3 (NLRP3) responds to stimuli ranging from 

bacterial RNA (Kanneganti et al., 2006) to extracellular adenosine triphosphate (ATP) 

(Mariathasan et al., 2006) and uric acid crystals (Martinon et al., 2006). NLRP1 activates 

the inflammasome in response to both anthrax lethal toxin (Boyden and Dietrich, 2006) 

and infection by the intracellular parasite Toxoplasma gondii (Cavailles et al., 2014; 

Cirelli et al., 2014; Ewald et al., 2014; Gorfu et al., 2014). In murine cells, ICE-protease 

activating factor (IPAF)/NLR family, CARD domain containing 4 (NLRC4) mediates 
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inflammasome activation in response to three distinct stimuli—flagellin, the conserved 

inner rod component of the bacterial type III secretion system (T3SS) (PrgJ), and the 

T3SS needle protein (Franchi et al., 2006; Lightfield et al., 2011; Miao et al., 2006; 

2010b; Yang et al., 2013). Biochemical studies have shown that the NLRs neuronal 

apoptosis inhibitory protein 5 (NAIP5) and NAIP6 co-immunoprecipitate with flagellin, 

while NAIP2 interacts specifically with PrgJ (Kofoed and Vance, 2011; Zhao et al., 

2011). Additionally, NAIP1 specifically interacts with the needle protein of the T3SS 

(Yang et al., 2013) (Figure 1-2). NLRC4 appears to be an important adaptor for the NAIP 

receptors, acting as a scaffolding or signaling molecule downstream of NAIP1,2,5, and 6 

to mediate inflammasome activation in response to all three stimuli.  

 

The pyrin and hematopoietic expression, interferon-inducible nature and nuclear 

localization (HIN) domain-containing protein (PYHIN) protein absent in melanoma 2 

(AIM2), though not an NLR, recognizes cytosolic double-stranded DNA to activate a 

caspase-1-dependent inflammasome (Hornung et al., 2009; Roberts et al., 2009). Unlike 

NLRP3, AIM2 has been crystalized with its ligand, showing a direct interaction between 

double-stranded DNA and the AIM2 sensor (Jin et al., 2012). The adaptor protein 

apoptosis-associated speck-like protein containing a carboxy-terminal caspase 

recruitment domain (ASC) often bridges the interaction between the NLRs or AIM2 and 

caspase-1, allowing for oligomerization and auto-processing of caspase-1 for activation 

(Mariathasan et al., 2004; Srinivasula et al., 2002). Caspase-1 auto-processing is 

required for cytokine cleavage and secretion, though cell death can occur independently 

of caspase-1 proteolysis (Broz et al., 2010).  
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D. IL-1 family cytokines 

The IL-1 family of cytokines consists of seven agonistic cytokines (IL-1α, IL-1β, IL-18, IL-

33, IL-36α, IL-36β, and IL-36γ) and one anti-inflammatory member (IL-37) (Garlanda et 

al., 2013). The first identified members of the IL-1 family were IL-1α and IL-1β. IL-1α and 

IL-1β are pro-inflammatory cytokines that were fist called “lymphocyte-activating factors” 

in the 1970’s because of their potent ability to activate T-cells (Gery and Waksman, 

1972; Gery et al., 1972). In addition to lymphocyte activation, IL-1α and IL-1β are 

important for many other immune processes, such as fever and inflammation, and were 

also called “leukocyte pyrogens” in the 1980’s because of their ability to mediate fever 

(Rosenwasser and Dinarello, 1981). However, it was acknowledged that “lymphocyte-

activating factor” and “leukocyte pyrogen” were the same molecules, and they were re-

classified as IL-1 (Dinarello et al., 1983). It also became apparent that IL-1 was actually 

two distinct molecules, IL-1α and IL-1β (March et al., 1985). 

 

IL-1 family cytokines are uniquely regulated in that they do not require canonical 

endoplasmic reticulum (ER)/Golgi trafficking for secretion, unlike other pro-inflammatory 

cytokines, such as tumor necrosis factor (TNF) and IL-6 (Monteleone et al., 2015). Both 

IL-1α and IL-1β lack signal sequences for canonical ER/Golgi trafficking and exit host 

cells via a poorly-characterized mechanism (Auron et al., 1984; Monteleone et al., 2015). 

IL-1β protein localizes mostly to the cytosol of LPS-stimulated monocytes (Singer et al., 

1988), and IL-1β is not immediately released after stimulation. A ‘two-step’ model for 

secretion of IL-1β was first proposed when the observation was made that low doses of 

LPS induced intracellular production of IL-1β but did not result in extracellular release of 

IL-1β activity (Chin and Kostura, 1993; Newton, 1986). Therefore, release of IL-1α and 
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IL-1β is tightly regulated, with caspase-1 activation via the inflammasome as ‘signal 2’ 

for secretion of these potent inflammatory mediators (Keller et al., 2008). Caspase-1 

cleaves the pro-form of IL-1β for maturation (Howard et al., 1991). IL-1α is not 

processed by caspase-1 but can be cleaved by calcium-dependent proteases known as 

calpains (Carruth et al., 1991; Howard et al., 1991). However, unlike IL-1β, full-length IL-

1α is biologically active (Mosley et al., 1987), and the release of the full-length form is 

also tightly regulated (Howard et al., 1991; Keller et al., 2008). Though the mechanism 

leading to IL-1β secretion during inflammasome activation has been well-studied, the 

cellular factors that contribute to IL-1α release are less clear. 

 

IL-1α and IL-1β both bind to and signal through the same receptor, the IL-1 receptor (IL-

1R), in vivo (Dower et al., 1986). However, IL-1α has a higher affinity for the IL-1R than 

IL-1β on certain cell types, such as T-cells (Dower et al., 1986). Though IL-1α and IL-1β 

both bind the same receptor in vivo, there is evidence that suggests that they may have 

different intracellular regulations. For example, in human monocytes, IL-1α has a longer 

half-life, and its secretion is delayed compared to that of IL-1β (Hazuda et al., 1988). 

Unlike IL-1β, the pro-form of IL-1α contains a nuclear localization signal (NLS) and can 

translocate into the nucleus to promote production of other pro-inflammatory cytokines 

(Cheng et al., 2008; Wessendorf et al., 1993). Additionally, IL-1α and IL-1β have newly 

appreciated non-redundant roles in vivo as well, as recent data suggest that IL-1α is 

required for protection during disease and for mounting an inflammatory response 

against endogenous danger signals. For example, in a mouse model of Mycobacterium 

tuberculosis infection, wild-type mice do not lose weight or die from inhalation of the 

bacterium, but IL-1α-deficient mice succumb to infection, suggesting that IL-1β cannot 
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always compensate for the loss of IL-1α during disease (Mayer-Barber et al., 2011). 

Likewise, in a model of monosodium urate (MSU)-induced peritonitis, IL-1α is required 

for neutrophil recruitment to the peritoneal cavity (Gross et al., 2012; Martinon et al., 

2006). 

 

After the identification and characterization of IL-1α and IL-1β, several other members of 

the IL-1 cytokine family were identified. IL-18 was first named IFN-γ-inducing factor 

(IGIF) because of its ability to induce IFNγ from T-cells (Okamura et al., 1995). IL-18 is 

also processed by caspase-1 for maturation and activation during inflammasome 

activation and is important for T-helper type 1 (TH1)-associated immunity (Ghayur et al., 

1997; Gu et al., 1997; Kohno et al., 1997). IL-33 is an alarmin released from dying cells, 

and it induces T-helper type 2 (TH2)-associated cytokines (Schmitz et al., 2005). Unlike 

IL-1β and IL-18, IL-33 is inactivated by caspase-1 cleavage because it is processed into 

a form that does not signal through its receptor, ST2 (Cayrol and Girard, 2009). IL-36α, 

IL-36β, and IL-36γ can amplify pro-inflammatory cytokine production by dendritic cells 

(Vigne et al., 2011), but they are not known to be cleaved by caspase-1 (Garlanda et al., 

2013). IL-37 is processed by caspase-1 but dampens IFNγ production by blocking the 

ability of IL-18 to signal (Bufler et al., 2002; Kumar et al., 2002). 

 

E. Cell death as an innate immune effector mechanism 

In addition to release of IL-1 family cytokines, inflammasome activation leads to a pro-

inflammatory form of cell death termed pyroptosis (Cookson and Brennan, 2001). Cell 

death is an important innate immune effector mechanism to aid in clearance of 

intracellular pathogens, as it can eliminate a pathogen’s replicative niche. Additionally, 
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pro-inflammatory cell death can be critical for alerting neighboring cells to the presence 

of invading pathogens (Bergsbaken et al., 2009; Kono and Rock, 2008). Pyroptosis is 

critical both for clearance of bacterial pathogens and for release of important pro-

inflammatory cytokines (Fink and Cookson, 2005; Miao et al., 2010a). Therefore, it has 

been difficult to separate the role of cell death from the release of inflammatory 

mediators in vivo. However, cell death itself can contribute to pathogen clearance 

independently of cytokine production during some bacterial infections. For example, 

caspase-1-deficient mice are more susceptible to infection with the Gram-negative 

bacterial pathogens Salmonella enterica serovar Typhimurium (S. Typhimurium), 

Legionella pneumophila, and Burkholderia thailandensis, and the defect is independent 

of the cytokines IL-1β and IL-18, implying that a cytokine-independent effector 

mechanism of caspase-1 controls bacterial infection (Miao et al., 2010a). However, it is 

still possible that an additional uncharacterized alarmin released during caspase-1 

activation controls bacterial infection in vivo, as caspase-1 is known to regulate the 

unconventional secretion of many proteins outside of the IL-1 family cytokine members 

(Keller et al., 2008). Therefore, the biological role of host cell death independent of 

cytokine or alarmin release is still unclear. 

 

F. The non-canonical inflammasome 

Experiments examining inflammasome activation were first performed with macrophages 

from mice that lack caspase-1, and it was concluded that caspase-1 is solely responsible 

for inflammasome activation (Kuida et al., 1995; Li et al., 1995). However, the strain of 

mice used to generate the original caspase-1 knockout has a polymorphism in caspase-

11 that eliminates caspase-11 protein expression. Thus, the original mice actually lack 
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both caspase-1 and caspase-11 (Kayagaki et al., 2011). Though it was reported that 

caspase-11 mediates septic shock in vivo, the cell-intrinsic role of caspase-11 in 

response to bacterial pathogens remained unclear (Wang et al., 1996; 1998). Recently, 

however, a non-canonical caspase-11-dependent inflammasome has been described 

that contributes to IL-1α, IL-1β, and IL-18 secretion and cell death in response to many 

Gram-negative bacteria. Caspase-11 is activated with delayed kinetics, taking 16-24 

hours in vitro, in response to bacteria that do not typically access the host cell cytosol, 

such as non-pathogenic Escherichia coli (Kayagaki et al., 2011). For many Gram-

negative bacteria, non-canonical inflammasome activation requires TRIF and type I IFN 

signaling downstream of TLR4 to upregulate caspase-11 (Broz et al., 2012; Gurung et 

al., 2012; Rathinam et al., 2012b). Additionally, caspase-11 is robustly activated by 

Gram-negative bacteria that escape the vacuole and replicate in the host cell cytosol, 

such as B. thailandensis (Aachoui et al., 2013). However, it is unclear if pathogens that 

naturally reside withinin vacuoles but use virulence-associated secretion systems to 

deliver bacterial products into the host cell cytosol activate caspase-11. These Gram-

negative bacterial pathogens, such as S. Typhimurium and L. pneumophila, have been 

used to study caspase-1 activation, and they robustly activate the inflammasome in a 

manner requiring the T3SS (Chen et al., 1996; Hersh et al., 1999) or type IV secretion 

system (T4SS) (Sadosky et al., 1993; Zamboni et al., 2006). 

 

G. Legionella pneumophila as a model organism to study inflammasome 

activation 

L. pneumophila is a Gram-negative bacterium that causes the severe pneumonia 

Legionnaires’ disease (Fraser et al., 1977; McDade et al., 1977). L. pneumophila was 
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first identified as the causative agent of pneumonia in 1977 (McDade et al., 1977) 

following a massive outbreak of disease that occurred at the American Legion 

convention in Philadelphia, Pennsylvania in the summer of 1976 (Fraser et al., 1977). 

After isolation of L. pneumophila as the etiological agent, it was retrospectively deduced, 

using preserved serum samples and serum-reactive tests, that L. pneumophila was the 

causative organism behind previous outbreaks of pneumonia with unidentified 

pathological agents, such as Pontiac Fever (McDade et al., 1977), ranging back to as 

early as 1947 (McDade et al., 1979; Thacker et al., 1978). Original epidemiologic 

evidence suggested that it was not person-to-person contact or foodborne illness that 

caused Legionnaires’ disease (Fraser et al., 1977), and it was eventually determined 

that aerosolization of the bacterium likely occurred in the air conditioning system of the 

hotel where the American Legion convention occurred (Fraser and McDade, 1979). The 

natural host for L. pneumophila is free-living, fresh water and soil-dwelling amoebae 

(Rowbotham, 1980), and these infected amoebae can reside within industrial sources of 

fresh water, such as air-conditioning systems. It is now well-established that modern 

technologies that can aerosolize contaminated water droplets, such as heat, ventilation, 

and air conditioning systems and cooling towers, are often associated with outbreaks of 

respiratory disease caused by L. pneumophila (Fields, 1996). Once aerosolized, L. 

pneumophila can be inhaled into the mammalian lung to cause disease by first infecting 

alveolar macrophages (Nash et al., 1984).  

 

L. pneumophila resides and replicates within a vacuole inside of human monocytic cells, 

and the bacterium recruits host ribosomes to the Legionella-containing vacuole (LCV) 

(Horwitz and Silverstein, 1980). L. pneumophila uses its dot/icm-encoded T4SS to 
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translocate effector proteins into the host cytosol to establish an ER-derived vacuole that 

supports bacterial replication (Berger and Isberg, 1993; Isaac and Isberg, 2014; Marra et 

al., 1992; Sadosky et al., 1993). It was first observed in the 1980’s that live bacteria were 

needed to establish the LCV and recruit host-derived organelles (Horwitz, 1983). Within 

minutes of being phagocytosed by a host cell, L. pneumophila uses its T4SS to inhibit 

phago-lysosomal fusion (Berger et al., 1994). Bacterial mutants that lack the protein 

DotA, one components of the T4SS, fail to evade endocytic trafficking and localize to a 

lysosomal-associated membrane protein 1 (LAMP-1)-positive host compartment within 5 

minutes of uptake (Roy et al., 1998). The locus encoding the T4SS was first 

characterized by identifying genes that, when mutated, resulted in a defect in 

intracellular multiplication (icm) (Marra et al., 1992) or a defect in organelle trafficking 

(dot) (Berger and Isberg, 1993). Evolutionarily, the T4SS is related to bacterial 

conjugative systems used to transfer DNA (Segal et al., 2005), and the T4SS is capable 

of conjugative transfer (Segal et al., 1998; Vogel et al., 1998). 

 

The T4SS is a multi-subunit structure that is thought to form a channel from the inner 

membrane of Gram-negative bacterial species, through the outer membrane of the 

bacterium, and ending with a pore into the host cell membrane (Christie et al., 2014). 

Therefore, the T4SS physically translocates effector proteins and bacterial products from 

the bacterial cytosol, across the phagosomal membrane (Luo and Isberg, 2004), and 

directly into the host cell cytosol. There are two major classifications of the T4SS, the 

type IVA and type IVB secretion systems (Juhas et al., 2008). The most well-

characterized T4SS is the type IVA VirB/virD4 secretion system from Agrobacterium 

tumefaciens, an oncogenic pathogen of plant cells. The L. pneumophila T4SS, a type 
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IVB secretion system, is encoded by 25 genes located across two different genetic loci 

that assemble to form the translocation apparatus (Segal et al., 2005). The T4SS is 

capable of creating a pore of ~3 nM in diameter in the host cell membrane (Kirby et al., 

1998), though unlike the needle-like structure for the T3SS, which is ~20 Å in diameter, 

(Galán et al., 2014; Kubori et al., 1998), the T4SS pore has never been crystalized.  

 

Currently, approximately 300 effector proteins have been identified that are translocated 

by the T4SS, and many effectors modulate host cell processes to establish a replicative 

niche for the bacterium (Isaac and Isberg, 2014; Nagai et al., 2002). Many of the 

effectors are functionally redundant in mammalian cells, as deletion of regions of the L. 

pneumophila genome containing ~100 effectors does not affect the ability of the 

bacterium to replicate within murine macrophages (O'Connor et al., 2011). It remains 

unclear precisely how the bacterial effector proteins interact with the T4SS to be 

secreted, though the C-terminal region of the effectors are critical for translocation to 

occur (Nagai et al., 2005). 

 

L. pneumophila uses its T4SS to establish its replicative niche in both amoebae and 

mammalian macrophages (Rowbotham, 1980). However, the natural host for L. 

pneumophila is amoebae in aquatic reservoirs (Fliermans et al., 1981), and it is a recent, 

opportunistic human pathogen (Phin et al., 2014). Therefore, while the bacterium has 

evolved to evade amoebic host defenses, it is not thought to have evolved to evade 

mammalian-specific immune responses. Thus, as a consequence of accessing the host 

cytosol in mammalian cells, L. pneumophila triggers multiple pathways that elicit cell-

intrinsic immune responses and induce cell death (Shin and Roy, 2008). These robust 
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immune responses make the bacterium valuable for studying host defense against 

intracellular pathogens, including studying inflammasome activation. 

 

H. Legionella pneumophila and caspase-1-dependent inflammasome activation 

It is well-understood that L. pneumophila triggers inflammasome activation and 

pyroptosis as a consequence of flagellin expression and T4SS activity (Figure 1-3). In 

murine macrophages, detection of flagellin by baculoviral inhibitor of apoptosis (IAP) 

repeat–containing 1e (BIRC1e)/NAIP5 mediates pyroptosis and contributes to restriction 

of L. pneumophila replication both in vitro and in vivo (Derré and Isberg, 2004; Growney 

and Dietrich, 2000; Kofoed and Vance, 2011; Wright et al., 2003; Zamboni et al., 2006; 

Zhao et al., 2011). Flagellin-deficient L. pneumophila (ΔflaA Lp) evade NAIP5-mediated 

restriction and replicate in NAIP5-sufficient macrophages from C57BL/6J (B6) mice, in 

part because they do not induce as much caspase-1-dependent cell death as wild-type 

(WT) Lp (Molofsky et al., 2006; Ren et al., 2006). NLRC4 also acts upstream of 

caspase-1 to induce flagellin-mediated restriction of replication, pore formation in the 

host membrane, and IL-1β release (Silveira and Zamboni, 2010; Zamboni et al., 2006). 

NLRC4 co-immunoprecipitates with NAIP5, consistent with the model that NLRC4 is an 

adaptor for NAIP5 (Kofoed and Vance, 2011; Zamboni et al., 2006; Zhao et al., 2011) 

(Figure 1-1). The NAIP5/NLRC4-dependent cell death induced in B6 macrophages 

requires cytosolic access, as T4SS-deficient mutants of L. pneumophila (ΔdotA Lp) do 

not activate the inflammasome. These data suggest that flagellin is translocated through 

the T4SS into the host cytosol during infection, though translocation of flagellin has not 

been shown experimentally.  
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A/J mice express a hypomorphic allele of NAIP5 (Diez et al., 2000), and A/J 

macrophages still activate caspase-1 in response to WT Lp under certain infection 

conditions (Lamkanfi et al., 2007). However, using Naip5-/- macrophages, it was shown 

that NAIP5 is required for caspase-1 activation in response to WT Lp (Lightfield et al., 

2008). Interestingly, NAIP6 also interacts with L. pneumophila flagellin (Kofoed and 

Vance, 2011; Zhao et al., 2011). However, NAIP6 is insufficient for the restriction of L. 

pneumophila, as Naip5-/- macrophages and mice are permissive for infection (Lightfield 

et al., 2008), which may be due to lower expression levels of NAIP6 relative to NAIP5 in 

primary macrophages (Wright et al., 2003). NAIP5 and NLRC4 also contribute to the 

control of L. pneumophila replication by enhancing fusion of the Legionella-containing 

vacuole (LCV) with lysosomes during infections performed at a low multiplicity of 

infection (MOI) (Amer et al., 2006; Fortier et al., 2007). In addition, flagellin-dependent 

NLRC4 signaling leads to caspase-7-mediated restriction of L. pneumophila via 

enhanced lysosomal degradation of the bacterium (Akhter et al., 2009). NLRC4-

mediated restriction in vivo is also partially caspase-1-independent through an unknown 

mechanism (Pereira et al., 2011). However, caspase-1 activation downstream of NLRC4 

clearly induces pyroptosis and leads to IL-18 secretion both in vitro and in vivo, 

contributing to IFN-γ production and the subsequent resolution of pulmonary infection 

(Archer et al., 2009; Brieland et al., 2000; Case et al., 2009; Spörri et al., 2006). Thus, 

the NAIP5/NLRC4 inflammasome may control L. pneumophila replication through 

multiple mechanisms. 

 

Not surprisingly, infection conditions, including MOI, can affect the detection of caspase-

1 activation in response to L. pneumophila, as higher MOIs likely enhance the number of 
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macrophages that harbor bacteria. At higher MOIs, infection of B6 macrophages induces 

both NLRC4-dependent and NLRC4-independent inflammasome activation. NLRC4-

independent caspase-1 activation and IL-1β and IL-18 secretion require ASC, although 

the identity of the L. pneumophila-derived signal sensed via ASC and the NLR upstream 

of ASC remain unknown (Case et al., 2009). Caspase-1 cleavage in the absence of ASC 

can be detected in either the supernatant or the cytosol, depending on the MOI 

(Abdelaziz et al., 2011a; Case et al., 2009). ASC also drives formation of a punctate 

structure containing caspase-1 and NLRC4 in L. pneumophila-infected macrophages 

(Case and Roy, 2011). At early timepoints, pore formation is not observed in the 

absence of NLRC4, though cell death still occurs in the absence of ASC. Recruitment of 

NLRC4 into the ASC complex appears to dampen NLRC4 activity because pyroptosis 

occurs at a higher rate in the absence of ASC (Case and Roy, 2011). However, further 

studies are needed to elucidate the temporal and spatial coordination of the ASC- and 

NLRC4-dependent inflammasomes and how they are triggered by L. pneumophila. 

 

I. Inflammasome activation and autophagy 

In murine macrophages, autophagy is induced shortly after phagocytosis of L. 

pneumophila, as components of the autophagy pathway co-localize with the LCV (Amer 

and Swanson, 2005). LCVs in A/J macrophages show delayed autophagosome 

maturation compared to LCVs in B6 macrophages, potentially contributing to increased 

replication of the bacterium. When expression of the autophagy component autophagy 

protein 5 (ATG5) is silenced, L. pneumophila replication in A/J macrophages increases. 

Additionally, replication of L. pneumophila decreases slightly when autophagy is induced 

exogenously, suggesting that autophagy contributes to restriction of L. pneumophila 
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replication (Matsuda et al., 2009). Under low MOI infection conditions where there is 

minimal induction of pyroptosis, it was revealed that the induction of autophagy dampens 

pyroptosis in response to L. pneumophila, and turnover of autophagosomes requires 

NAIP5, NLRC4, and caspase-1 (Byrne et al., 2013). Collectively, these data suggest that 

NAIP5 inflammasome activation contributes to the restriction of L. pneumophila 

replication by inducing autophagy and/or pyroptosis, depending on the MOI and amount 

of flagellin present. How competing host and bacterial factors influence the outcome of 

inflammasome activation and autophagy during infection remains unclear and may be 

clarified by studies examining the temporal regulation of inflammasome activation and 

autophagy at a single-cell level. 

 

J. Legionella pneumophila and non-canonical inflammasome activation 

Caspase-11 responds to L. pneumophila that escape from the vacuole and aberrantly 

enter the cytosol (Aachoui et al., 2013), a process that is not thought to occur 

physiologically during infection with WT Lp (Figure 1-3). The T4SS-translocated effector 

SdhA is critical for bacterial growth in primary murine macrophages (Laguna et al., 2006; 

Liu et al., 2008). Macrophages infected with ΔsdhA Lp undergo cell death because SdhA 

is required to maintain LCV membrane integrity (Creasey and Isberg, 2012). Therefore, 

ΔsdhA Lp aberrantly enter the host cytosol where they become degraded, induce type I 

IFN, and activate caspase-1 via AIM2 (Creasey and Isberg, 2012; Ge et al., 2012; 

Monroe et al., 2009). In addition, ΔsdhA Lp induce rapid caspase-11-dependent cell 

death independently of bacterial flagellin (Aachoui et al., 2013). It appears that AIM2 

responds to cytosolic L. pneumophila by producing IL-1β, whereas caspase-11 mediates 

cell death. However, L. pneumophila does not normally enter the cytosol, so the 
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upstream mediators of caspase-11 activation may be different for ΔsdhAΔflaA bacteria 

that enter the cytosol and ΔflaA bacteria that remain within the vacuole. Therefore, it 

remains unclear if caspase-11 is activated by L. pneumophila that remain within their 

natural vacuole during infection. 

 

Though ΔflaA Lp avoid NAIP5/NLRC4-mediated pyroptosis and can replicate in B6 

macrophages, ΔflaA Lp trigger an additional form of cell death (Case et al., 2009), and it 

is unclear if this cell death is mediated by caspase-11. However, caspase-11 has been 

shown to have a cell-intrinsic role in restricting growth of WT L. pneumophila. Caspase-

11 contributes to NAIP5/NLRC4-mediated inflammasome activation and restricts WT Lp 

by enhancing phago-lysosomal fusion (Akhter et al., 2012). In its non-lytic role, caspase-

11 modulates actin polymerization and phosphorylation of cofilin to promote lysosomal 

trafficking of pathogenic, but not non-pathogenic, bacteria. Additionally, caspase-11 

contributes to control of WT Lp replication in vivo (Akhter et al., 2012). However, it is not 

known if a separate, non-canonical caspase-11-dependent inflammasome is activated 

by ΔflaA Lp independently of NAIP5/NLRC4. Non-canonical inflammasome activation is 

a recently described phenomenon, so there are many questions that remain 

unanswered. As L. pneumophila rapidly and robustly activates caspase-1 while residing 

within the LCV, it is likely that caspase-11 is activated during infection as well.  

 

K. Inflammasome activation in human cells 

Unlike macrophages from most inbred mouse strains, human cells are permissive for L. 

pneumophila replication. The mechanisms underlying inflammasome-mediated control of 

L. pneumophila replication in human cells are unclear. Humans express only one 
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homolog of the numerous murine NAIP paralogs (Scharf et al., 1996) (Figure 1-2). The 

homolog, human NAIP (hNAIP), restricts growth of WT Lp (Vinzing et al., 2008). 

Additionally, the human NLRC4 homolog, human IPAF (hIPAF), also restricts L. 

pneumophila replication. Overexpression of full-length hNAIP in HEK293T cells 

increases cell death in response to L. pneumophila (Boniotto et al., 2012), and 

overexpression of hNAIP in the murine macrophage RAW264.7 cell line mediates 

flagellin-induced pyroptosis and IL-1β secretion (Katagiri et al., 2012), suggesting that it 

may function similarly to NAIP5. However, unlike NAIP5, hNAIP does not co-

immunoprecipitate with flagellin and instead interacts with the T3SS needle protein 

(Yang et al., 2013; Zhao et al., 2011) (Figure 1-2). Thus, it is unclear whether hNAIP 

senses flagellin or another L. pneumophila-derived ligand, how hNAIP restricts L. 

pneumophila replication, and if hNAIP contributes to cell death or IL-1β secretion in 

primary human cells. 

 

The implication that the IPAF/NAIP/caspase-1-dependent inflammasome contributes to 

restriction of L. pneumophila is pervasive, though caspase-1 activation in response to L. 

pneumophila has not been explicitly shown in primary cells from humans, a naturally 

susceptible host. Immortalized human alveolar epithelial cells activate caspase-1 in 

response to L. pneumophila, though primary human monocytes and monocyte-derived 

macrophages (MDMs) do not produce detectable levels of processed or active caspase-

1 (Abdelaziz et al., 2011b; Furugen et al., 2008; Santic et al., 2007). Additionally, the 

expression of ASC is moderately down-regulated in infected monocytes, potentially 

contributing to evasion of inflammasome activation in human cells by L. pneumophila 

(Abdelaziz et al., 2011b). Future studies in primary MDMs and human alveolar 



	
  

24	
  

macrophages are needed to clarify the role of the inflammasome in restricting L. 

pneumophila replication in human cells (Figure 1-4). 

 

Another striking difference between mice and humans is that humans do not actually 

encode caspase-11 (Figure 1-5). Instead, humans encode two putative functional 

orthologs—caspase-4 and caspase-5 (Kamada et al., 1997; Kamens et al., 1995; 

Munday et al., 1995). In immortalized epithelial cells, caspase-4 mediates IL-18 release 

in response to infection with S. Typhimurium (Knodler et al., 2014). Additionally, 

overexpression of either caspase-4 or caspase-5 in THP-1 cells, an immortalized human 

monocytic cell line, restricts growth of WT L. pneumophila (Akhter et al., 2012). 

However, it is unclear if caspase-4 or caspase-5 is a functional homolog of caspase-11 

in primary human macrophages, and a role for caspase-4 or caspase-5 in activating the 

inflammasome in response to L. pneumophila has not been interrogated. 

 

L. Dissertation Aims 

As L. pneumophila robustly activates innate immune responses in macrophages, it is a 

valuable tool for understanding how host cells are capable of mounting an immune 

response against intracellular pathogens. Additionally, L. pneumophila causes a severe 

form of pneumonia in humans, so understanding how the bacterium interacts with innate 

immune cells could provide novel insights into potential therapeutic targets during 

disease. Though caspase-1 is activated during L. pneumophila infection, murine 

macrophages still undergo cell death in a poorly characterized, caspase-1-independent 

manner, and the mechanism by which IL-1α is released during infection is unclear. 

Additionally, it is unclear how the inflammasome is activated in response to L. 
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pneumophila in primary human macrophages, as there are many important genetic 

differences between mice and humans. Therefore, the aims of the work presented in this 

dissertation were as follows: 

 

1) To interrogate a role for caspase-11 in inflammasome activation in response to L. 

pneumophila and to determine if similar responses are mounted against other bacterial 

pathogens that use virulence-associated secretion systems. 

 

Previous studies suggest that caspase-11 is activated in response to pathogens that 

escape the vacuole and replicate within the macrophage cytosol. However, many 

intracellular pathogens remain within vacuoles during infection of host cells, and it is 

unclear if caspase-11 is activated to mount an immune response against these vacuolar 

pathogens. In CHAPTER 3, we use caspase-1-deficient and caspase-11-deficient 

macrophages to determine the roles of caspase-1 and caspase-11 individually during 

infection with L. pneumophila. We find that caspase-11 controls IL-1α release and cell 

death and contributes to caspase-1-dependent IL-1β secretion. Caspase-11 activation 

requires the presence of the bacterial T4SS. Unlike during infection with other Gram-

negative bacterial pathogens, we find that caspase-11 activation against L. pneumophila 

does not require IFNAR or TRIF. Finally, we show that caspase-11 is also activated in 

response to another Gram-negative bacterial pathogen, Yersinia pseudotuberculosis, 

and activation of caspase-11 requires the presence of the evolutionarily distinct T3SS. 

Therefore, caspase-11 robustly responds to the activities of virulence-associated 

secretion systems and controls IL-1α release during infection. 
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2) To investigate if IL-1α and IL-1β have non-redundant roles in vivo during a pulmonary 

model of L. pneumophila infection. 

 

Previous studies suggest that though IL-1α and IL-1β bind the same receptor in vivo, 

they can play non-redundant roles in bacterial clearance and neutrophil recruitment. As 

IL-1α and IL-1β release are controlled by different intracellular mechanisms, it is possible 

that they play distinct roles during infection. In CHAPTER 3, we use neutralizing 

antibodies to deplete IL-1α and IL-1β during pulmonary L. pneumophila infection. We 

find that loss of IL-1α decreases neutrophil recruitment to the airway space during 

infection, whereas loss of IL-1β alone does not affect neutrophil recruitment. However, 

loss of both cytokines in combination has a dramatic effect on neutrophil recruitment and 

control of bacterial burdens. Therefore, IL-1α and IL-1β appear to have both distinct and 

overlapping roles in controlling pulmonary L. pneumophila infection. 

 

3) To determine host factors that contribute to inflammasome activation in human 

macrophages in response to L. pneumophila and to determine if similar responses are 

mounted against other bacterial pathogens that use virulence-associated secretion 

systems. 

 

There are many striking genetic differences between mice and humans. For 

inflammasome activation, humans do not encode caspase-11 but encode two putative 

orthologs—caspase-4 and caspase-5. It is unclear if caspase-4 or caspase-5 is a 

functional homolog of caspase-11 during infection of human macrophages. In CHAPTER 

4, we use siRNA to target caspase-4 in primary human macrophages and examine 
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inflammasome activation. We find that L. pneumophila robustly triggers inflammasome 

activation in human macrophages in a manner that requires the T4SS, and this 

inflammasome activation is dependent on caspase-4. However, in contrast to murine 

cells, we find that caspase-4 controls IL-1α release and cell death but has no effect on 

IL-1β secretion. Finally, we find that caspase-4 controls IL-1α release for Y. 

pseudotuberculosis and S. Typhimurium, two distantly related Gram-negative bacterial 

pathogens that use a T3SS to access the host cell cytosol during infection. Therefore, 

caspase-4 has a conserved role in human macrophages in inflammasome activation 

against Gram-negative bacterial pathogens. 

 

Another difference between mice and humans is that humans only encode one single 

NAIP protein, while mice encode many NAIP paralogs. Human NAIP is not thought to 

detect flagellin. Therefore, intracellular flagellin is not thought to be recognized by human 

cells during bacterial infection. However, in CHAPTER 5, we use bacterial mutants 

lacking flagellin to investigate a role for flagellin in activating the inflammasome in 

primary human macrophages. For both L. pneumophila and S. Typhimurium, we find 

that both IL-1α and IL-1β release are dependent on the presence of bacterial flagellin, 

suggesting that flagellin is actually sensed by human cells to activate the inflammasome 

during infection. 
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Figure 1-1. Canonical caspase-1-dependent inflammasomes are activated by 
distinct NLRs. Canonical inflammasomes activate caspase-1 to induce release of IL-1 
family cytokines and a pro-inflammatory form of cell death known as pyroptosis. Each 
NLR upstream of caspase-1 responds to distinct stimuli to activate the inflammasome. 
NLRP1 senses anthrax lethal toxin and also responds to Toxoplasma gondii infection. 
NLRP3 responds to a wide variety of stimuli, including extracellular ATP, uric acid 
crystals, and reactive oxygen species (ROS). NLRP3 is thought to respond to general 
endogenous ‘cell stress’ signals. NLRC4 is an important adaptor for NAIP5-mediated 
recognition of cytosolic flagellin. AIM2, and PYHIN protein, detects cytosolic double-
stranded DNA. The adaptor protein ASC bridges the interaction between the NLR or 
PYHIN protein and caspase-1 and allows for oligomerization and caspase-1 auto-
processing for activation. 
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Figure 1-2. Murine NAIP paralogs recognize distinct stimuli and humans only 
encode a single NAIP protein. In B6 mice, murine NAIP5 and NAIP6 detect bacterial 
flagellin. NAIP2 detects the inner rod component of the T3SS, and NAIP1 responds 
specifically to the needle protein of the T3SS. In contrast to mice, humans encode a 
single NAIP protein. Human NAIP does not bind to flagellin and specifically responds to 
the needle protein of the T3SS. 
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Figure 1-3. The inflammasome-mediated response to L. pneumophila in murine 
macrophages. L. pneumophila that do not express a functional T4SS (ΔdotA Lp) traffic 
to the lysosome, but wild-type L. pneumophila (WT Lp) use the T4SS to translocate 
effectors into the host cytosol to establish a replicative niche, the Legionella-containing 
vacuole (LCV), and block fusion with lysosomes. WT Lp triggers canonical caspase-1-
dependent inflammasome activation through detection of translocated flagellin by 
NAIP5/NLRC4. ASC contributes to IL-1β secretion in response to WT Lp. Caspase-11 
responds to bacteria that aberrantly enter the cytosol (ΔsdhA Lp) due to loss of LCV 
membrane integrity. Translocated flagellin triggers trafficking of WT Lp to the 
autophagosome, and induction of autophagy negatively regulates pyroptosis if there are 
low levels of flagellin in the host cell cytosol. Dashed lines represent vesicular trafficking 
patterns. Solid lines represent pathways for activation of the host response. Arrows at 
the end of lines represent induction, while flat bars at the end of lines represent 
inhibition. 
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Figure 1-4. The inflammasome-mediated response to L. pneumophila in human 
cells. L. pneumophila that do not express a functional T4SS (ΔdotA Lp) traffic to the 
lysosome, but wild-type L. pneumophila (WT Lp) use the T4SS to translocate effectors 
into the host cytosol to establish a replicative niche, the Legionella-containing vacuole 
(LCV), and block fusion with lysosomes. The presence of flagellin triggers signaling 
through hNAIP/hIPAF that blocks replication of WT Lp, though it is unclear if caspase-1 
is involved in restriction. T4SS activity down-regulates the expression of ASC. 
Overexpression of caspase-4 or caspase-5 blocks replication of WT Lp. Dashed lines 
represent vesicular trafficking patterns. Solid lines represent pathways for activation of 
the host response. Arrows at the end of lines represent induction, while flat bars at the 
end of lines represent inhibition. 
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Figure 1-5. Humans do not encode caspase-11. Unlike mice, humans do not encode 
caspase-11. Instead, as the result of a duplication event, humans encode two putative 
functional orthologs—caspase-4 and caspase-5. 
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CHAPTER 2 
 

 MATERIALS AND METHODS 
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Ethics statement 

These studies were carried out in strict accordance as defined in the federal regulations 

set forth in the Animal Welfare Act (AWA), the recommendations in the Guide for the 

Care and Use of Laboratory Animals of the National Institutes of Health, and the 

guidelines of the University of Pennsylvania Institutional Animal Use and Care 

Committee. The protocols were approved by the Institutional Animal Care and Use 

Committee at the University of Pennsylvania (protocols #803465 and #803459). 

 

Primary human samples 

All studies on human peripheral blood mononuclear cells (PBMCs) were performed in 

compliance with the requirements of the US Department of Health and Human Services 

and the principles expressed in the Declaration of Helsinki. Samples obtained from the 

University of Pennsylvania Human Immunology Core are considered to be a secondary 

use of de-identified human specimens and are exempt via Title 55 Part 46, Subpart A of 

46.101 (b) of the Code of Federal Regulations. 

 

Bacterial strains  

All experiments using L. pneumophila were performed with Legionella pneumophila 

serogroup 1 strains. Macrophages were infected with Lp02 (thyA), a thymidine 

auxotroph derived from strain Lp01 (Marra et al., 1992) or the ΔdotA (T4SS-) (Berger et 

al., 1994) and ΔflaA (FlaA-) (Ren et al., 2006) isogenic mutant strains. For in vivo 

studies, mice were infected with the Lp02 ΔflaA or the JR32 (Sadosky et al., 1993) ΔflaA 

isogenic mutant strain where indicated. For in vitro and in vivo studies, 48 hours prior to 

infection, L. pneumophila strains were grown in a stationary patch on charcoal yeast 
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extract (CYE) agar plates at 37°C. Escherichia coli BL21 strains were cultured in LB 

broth for 16 hours at 37˚C prior to infection. All experiments using S. Typhimurium were 

performed with Salmonella enterica serovar Typhimurium SL1344 strains. The strain 

SL1344 and the ΔsipB (T3SS-) and ΔfliCfljB (FliCFljB-) isogenic mutant strains were 

used. S. Typhimurium strains were grown overnight in LB broth with aeration at 37°C. 

Three hours prior to infection, S. Typhimurium strains were diluted into fresh LB with 

300mM NaCl and then grown for 3 hours standing at 37°C to induce SPI-1 expression. 

All experiments using Y. pseudotuberculosis were performed with Yersinia 

pseudotuberculosis IP2666 strains. The strain IP2666 ΔyopHOJMEK (Δ6 Yp) (Lilo et al., 

2008) and the ΔyopB (T3SS-) isogenic mutant (Palmer et al., 1998) strain were used. Y. 

pseudotuberculosis strains were grown overnight in 2xYT broth with aeration at 26°C. 

Three hours prior to infection, Y. pseudotuberculosis strains were diluted into fresh 2xYT 

with 20mM sodium oxalate and 20mM MgCl2 and then grown for 1 hour with aeration at 

26°C followed by 2 hours with aeration at 37°C. 

 

Mice 

C57BL/6J (B6) mice were purchased from Jackson Laboratories. Casp1-/-Casp11-/- 

(Kuida et al., 1995), Casp1-/- (unpublished data, T.S. and R.A.F.), Casp11-/- (Wang et al., 

1998), Asc-/- (Sutterwala et al., 2006), Nlrc4-/- (Lara-Tejero et al., 2006), Asc-/-Nlrc4-/- 

(Case et al., 2009), Ifnar-/- (Müller et al., 1994), Trif-/- (Yamamoto et al., 2003), Il1r1-/- 

(Glaccum et al., 1997), and Nlrp3-/- (Martinon et al., 2006) mice are all on the B6 

background. Asc-/-, Nlrc4-/-, and Nlrp3-/- mice were originally generated by Millenium 

Pharmaceuticals and were a kind gift of Richard Flavell. Animals were maintained in 
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accordance with the guidelines of the University of Pennsylvania Institutional Animal Use 

and Care Committee. 

 

In vivo infection studies 

8-12 week-old mice were anesthetized by intraperitoneal injection of a 

ketamine/xylazine/PBS solution at a dose of 100mg/kg ketamine and 10mg/kg xylazine. 

Mice were infected intranasally with 40µl of a bacterial suspension containing 1x106 CFU 

L. pneumophila or PBS vehicle control. For antibody neutralization experiments, mice 

were injected intraperitoneally with 100µg anti-IL-1α antibody (clone ALF-161), 100µg 

anti-IL-1β antibody (clone B122), 100µg of each anti-IL-1α and anti-IL-1β antibody, or 

100µg Armenian hamster IgG1 isotype control antibody (eBioscience) 16 hours prior to 

intranasal infection. At the indicated timepoints after infection, mice were sacrificed, and 

the bronchoalveolar lavage fluid (BALF) and lungs were harvested. To determine 

bacterial load, the lungs were mechanically homogenized in sterile distilled H2O and a 

portion of the lysate was spread onto CYE plates. Animal experiments were performed 

in accordance with approved University of Pennsylvania Institutional Animal Care and 

Use Committee protocols and procedures. 

 

Murine macrophage experiments 

Bone marrow was collected from the femurs and tibiae of mice by manually disrupting 

the bones with a mortar and pestle in RPMI and filtering the cells through a 70µM 

strainer. Bone marrow cells were differentiated into macrophages by culturing the cells in 

RPMI containing 30% L929 cell supernatant, 20% FBS, 100 IU/mL penicillin, and 

100µg/mL streptomycin at 37˚C in a humidified incubator. The macrophages were 
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replated one day prior to infection in RPMI containing 15% L929 cell supernatant and 

10% FBS. For experiments involving LPS-primed macrophages, macrophages in 48-well 

plates (2.0x105 cells/well) were pretreated with 0.5µg/mL LPS for 2.5 hours and either 

mock-infected with PBS, infected with L. pneumophila at an MOI=10 for 4 hours, or 

treated with 2.5mM ATP (Sigma-Aldrich) for 1 or 4 hours where indicated. For 

experiments performed in the absence of LPS priming, macrophages in 48-well plates 

(2.0x105 cells/well) were either mock-infected with PBS, infected with L. pneumophila at 

an MOI=10 for 16 or 20 hours, or infected with E. coli at an MOI=25 for 1 hour followed 

by gentamycin treatment (100µg/mL) for 15 hours. To assess the involvement of 

caspase-1 catalytic activity, macrophages were treated with 20µM or 40µM of the 

caspase-1 inhibitor YVAD-cmk (Bachem) or an equivalent volume of dimethyl sulfoxide 

(DMSO) (vehicle control) 0.5 hours prior to infection. For L. pneumophila and E. coli 

infections, bacteria were centrifuged down onto the macrophages at 1200 RPM for ten 

minutes prior to incubation. For Y. pseudotuberculosis infection, bacteria were washed 

three times with pre-warmed DMEM, added to the cells at an MOI=20, and centrifuged 

down onto the macrophages at 1000 rpm for 5 min. Cells were incubated at 37°C for 1 

hour post-infection followed by addition of 100 µg/mL gentamicin. Supernatants were 

harvested 4 hours post infection for ELISA and LDH analysis. 

 

Human macrophage experiments 

THP-1 cells (ATCC TIB-202) were maintained in RPMI supplemented with 10% heat-

inactivated FBS, 0.05mM β-mercaptoethanol, 100 IU/mL penicillin, and 100µg/mL 

streptomycin at 37°C in a humidified incubator. One day prior to infection, THP-1 cells 

were replated in media without antibiotics at a concentration of 2.0x105 cells/well of a 48 



	
  

38	
  

well plate and incubated overnight with 200nM phorbol 12-myristate 13-acetate (PMA) to 

induce differentiation into macrophages. The media was replaced with warm media 

without antibiotics on the day of infection.  

 

Primary human peripheral blood mononuclear cells (PBMCs) from de-identified healthy 

human donors were obtained from the University of Pennsylvania Human Immunology 

Core. PBMCs were pelleted at 200xg for 12 minutes and washed two times with PBS 

containing 0.5% BSA and 2mM EDTA. Monocytes were negatively selected using the 

Pan Monocyte Isolation Kit, Human (Miltenyi), which enriches for both CD14 and CD16 

expressing human monocytes. After selection, monocytes were cultured in RPMI 

supplemented with 10% heat-inactivated FBS, 2mM L-glutamine, 100 IU/mL penicillin, 

100µg/mL streptomycin, and 50ng/mL recombinant human M-CSF (Gemini Bio 

Products). Cells were cultured for 4 days in 10mL of media in 10cm dishes at 0.5x106 

cells/mL and then fresh media with 50ng/mL M-CSF was added and cells were cultured 

for an additional 2 days to complete differentiation into macrophages. One day prior to 

infection, monocyte-derived macrophages (MDMs) were gently detached and replated in 

media without antibiotics and with 25ng/mL M-CSF at a concentration of 1.25x105 

cells/well of a 48 well plate. 

 

In experiments where macrophages were primed with LPS, cells were pre-treated with 

0.5µg/mL LPS (Sigma-Aldrich) for 3 hours prior to infection. In experiments where 

macrophages were treated with YVAD, cells were pre-treated with 40µM Ac-YVAD-cmk 

(Bachem) or DMSO vehicle control for 0.5 hours prior to infection, and inhibitors were 

left on the cells for the remainder of the experiments. For infection with L. pneumophila, 
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bacteria were resuspended in PBS and added to the cells at an MOI=10 by spinning the 

bacteria onto the plate at 1200rpm for 10 minutes. Cells were infected for 4 hours when 

primed with LPS and 20 hours when unprimed. For infection with either S. Typhimurium 

or Y. pseudotuberculosis, bacteria were pelleted at 8000rpm for 3 minutes after 

induction and washed with PBS. Bacteria were then resuspended in PBS and added to 

the cells at an MOI=20 by spinning the bacteria onto the plate at 1200rpm for 10 

minutes. Cells were infected for 1 hour before gentamycin was added to the media at 

100µg/mL and then infection continued for an additional 3 hours. For all experiments, 

mock-infected cells were treated with PBS. 

 

In experiments where macrophages were treated with LPS or IFNβ, cells were either left 

untreated (unstim.) or treated with 0.05 or 0.5µg/mL of E. coli LPS (055:B5 from Sigma) 

or 100 or 1000 U (Units) of IFNβ (recombinant human IFNβ purified in mammalian cells 

from R&D Systems) for the indicated amounts of time. In experiments where nigericin 

was used, cells were primed with LPS for 5 hours and then 10µM nigericin was added 

for an additional 2 hours. 

 

THP-1 cells deficient for ASC (ASC-def) (Invivogen) and control empty vector containing 

THP-1 cells (Null) were maintained in RPMI supplemented with 15% heat-inactivated 

FBS, 100 IU/mL penicillin, 100µg/mL streptomycin, 100µg/mL Normocin (Invivogen), and 

200µg/mL Hygromycin (for selection maintenance) at 37°C in a humidified incubator. 

One day prior to infection, ASC-def and Null THP-1 cells were replated in media without 

antibiotics at a concentration of 2.0x105 cells/well of a 48 well plate and incubated 

overnight with 200nM phorbol 12-myristate 13-acetate (PMA) to induce differentiation 



	
  

40	
  

into macrophages. The media was replaced with warm media without antibiotics on the 

day of infection. 

 

siRNA knockdown experiments 

All Silencer Select siRNA oligos were purchased from Ambion via Life Technologies. For 

caspase-1, the siRNAs used were siRNA ID s2407, s2408, and s2409. For caspase-4, 

the siRNAs used were siRNA ID s2413, s2414, and s2415. The two available Silencer 

Select negative control siRNAs were purchased (Silencer Select Negative Control No.1 

siRNA and Silencer Select Negative Control No.2 siRNA). Two days prior to infection, 

either THP-1 cells or primary human MDMs were replated in media without antibiotics in 

48-well plates as described above. One day prior to infection, 10-30nM total pooled 

siRNA was transfected into the macrophages using Hiperfect (Qiagen), following the 

manufacturer’s protocol for “Transfection of Differentiated Macrophage Cell Lines, 

Including THP-1.” After 24 hours, the media was replaced with fresh warm media without 

antibiotics, and infections were performed as described above. 

 

Transfection of intracellular LPS 

Primary human MDMs replated at a concentration of 1.25x105 cells/well of a 48 well 

plate were primed with 0.4µg/mL Pam3CSK4 (Invivogen) for 4 hours. The media was 

then replaced with fresh replating media, and cells were either treated with LPS alone (2 

or 5µg/mL), mock transfected with Fugene HD (Promega) alone, or treated with a 

mixture of 0.75µL Fugene HD (0.25% v/v) plus LPS (2 or 5µg/mL) per well in 300µL 

media per well. Plates were then centrifuged at 2000rpm for 2 minutes before culturing 

at 37°C for 20 hours. 
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Cytotoxicity assays 

Cells were infected or treated as described above, and harvested supernatants were 

assayed for loss of cellular membrane integrity via lactate dehydrogenase (LDH) activity. 

LDH release was quantified using the LDH Cytotoxicity Detection Kit (Clontech), 

following the manufacturer’s protocol. 

 

Immunoblot analysis 

Cells were lysed directly in 1X SDS-PAGE sample buffer, and low volume (100 or 

120µL/well of a 48 well plate) supernatants were mixed 1:1 with 2X SDS-PAGE sample 

buffer containing Complete Mini EDTA-free Protease Inhibitor Cocktail (Roche). 

Samples were boiled for 5 minutes, and proteins were separated by SDS-PAGE on a 

12% gel and transferred to Immobilon P PVDF membranes (Millipore). Primary 

antibodies against mouse caspase-1 p10 (Santa Cruz Biotechnology), mouse caspase-

11 (Sigma, clone 17D9), mouse IL-1β (R&D systems), human IL-1β (clone 3A6, Cell 

Signaling Technology), mature human IL-1β (clone 8516, R&D Systems), human 

caspase-1 p10 (polyclonal, Santa Cruz), cleaved human caspase-5 (polyclonal, Cell 

Signaling Technology), full-length human caspase-5 (clone EP876Y, GeneTex), human 

caspase-4 (polyclonal, Cell Signaling Technology), human ASC (polyclonal, Enzo Life 

Sciences), and β-actin (Sigma) were used. Anti-rabbit IgG (Cell Signaling Technology), 

anti-mouse IgG (Cell Signaling Technology), and anti-rat IgG (Santa Cruz Biotechnology 

or Jackson Immuno) HRP-conjugated secondary antibodies were used. For detection, 

SuperSignal West Dura or SuperSignal West Femto (Pierce Thermo Scientific) was 

used as the HRP substrate. 
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ELISA 

Harvested supernatants from infected murine macrophages or the BALF from infected 

mice were assayed using capture and detection antibodies specific for IL-18 (MBL), IL-

1α, IL-1β, IL-12p40 (BD Biosciences), and TNF (Biolegend). For human macrophages, 

cells were infected as described above, and the levels of cytokines were quantified in the 

harvested supernatants using paired antibody kits for human IL-1α (R&D Systems), IL-

1β (BD Biosciences), and TNF (Biolegend). 

 

qRT-PCR analysis 

Cells were lysed directly in 350µL buffer RLT Plus with β-mecaptoethanol as per 

instructions in the RNeasy Plus Kit (Qiagen). Suspensions were vortexed and 

subsequently disrupted in a QIAshredder spin column (Qiagen) following the 

manufacturer’s protocol. RNA was isolated following the manufacturer’s protocol in the 

RNeasy Plus handbook (Qiagen). RNA was reverse transcribed into cDNA with 

Superscript II (Invitrogen) following the manufacturer’s protocol. Quantitative PCR was 

performed with the CFX96 Real-time system from Bio-Rad using the SooFast EvaGreen 

Supermix with Low ROX kit (Bio-rad). The following primers were used (from 

PrimerBank): CASP4 forward- CAAGAGAAGCAACGTATGGCA, CASP4 reverse- 

AGGCAGATGGTCAAACTCTGTA, CASP5 forward- TTCAACACCACATAACGTGTCC, 

CASP5 reverse- GTCAAGGTTGCTCGTTCTATGG, HPRT1 forward- 

CCTGGCGTCGTGATTAGTGAT, and HPRT1 reverse- 

AGACGTTCAGTCCTGTCCATAA. For analysis, caspase-4 or caspase-5 mRNA levels 

were normalized to HPRT mRNA levels for each sample, and samples were normalized 

to untreated cells using the 2−ΔΔCT (cycle threshold) method to calculate fold induction. 
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Flow cytometry 

To determine neutrophil recruitment to the airway, BALF cells were stained with 

Live/Dead Fixable Dead Cell Stain (Invitrogen), and antibodies specific for CD45, Gr-1 

(eBioscience), and Ly6G (Biolegend). Data were collected with an LSRII flow cytometer 

(BD Biosciences), and post-collection data was analyzed using FlowJo (Treestar). Cells 

were pre-gated on singlets and live cells. Neutrophils were identified as being CD45+, 

Gr-1+, and Ly6G+. 

 

Statistical analysis 

Graphpad Prism software was used for the graphing of data and all statistical analysis. 

For murine data, statistical significance was determined by the unpaired two-tailed 

Student’s t test, one-way ANOVA with Tukey post-test, or two-way ANOVA with 

Bonferroni post-test. For human data, statistical significance was determined using the 

unpaired two-way Student’s t-test for experiments in human cell lines and the paired 

two-way t-test for experiments comparing different treatments of primary human cells. 

For human data, all data are graphed so that each data point represents the mean of 

triplicate infected wells from independent experiments, and all statistical analyses were 

performed comparing the means of each experiment. Each individual experiment was 

performed a minimum of three separate times for human cell lines and at least 4 times 

using cells from different donors for primary human macrophages. Differences were 

considered statistically significant if the P value was <0.05. 
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CHAPTER 3 
 

 CASPASE-11 ACTIVATION IN RESPONSE TO BACTERIAL SECRETION SYSTEMS 
THAT ACCESS THE HOST CYTOSOL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
This chapter appeared as a published peer-reviewed article titled “Caspase-11 activation 
in response to bacterial secretion systems that access the host cytosol” by Cierra N. 
Casson, Alan M. Copenhaver, Erin E. Zwack, Hieu T. Nguyen, Till Strowig, Bahar 
Javdan, William P. Bradley, Thomas C. Fung, Richard A. Flavell, Igor E. Brodsky, and 
Sunny Shin. PLoS Pathogens, 2013. 
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A. Abstract 

Inflammasome activation is important for antimicrobial defense because it induces cell 

death and regulates the secretion of IL-1 family cytokines, which play a critical role in 

inflammatory responses. The inflammasome activates caspase-1 to process and secrete 

IL-1β. However, the mechanisms governing IL-1α release are less clear. Recently, a 

non-canonical inflammasome was described that activates caspase-11 and mediates 

pyroptosis and release of IL-1α and IL-1β. Caspase-11 activation in response to Gram-

negative bacteria requires TLR4 and TRIF-dependent IFN production. Whether 

additional bacterial signals trigger caspase-11 activation is unknown. Many bacterial 

pathogens use specialized secretion systems to translocate effector proteins into the 

cytosol of host cells. These secretion systems can also deliver flagellin into the cytosol, 

which triggers caspase-1 activation and pyroptosis. However, even in the absence of 

flagellin, these secretion systems induce inflammasome activation and the release of IL-

1α and IL-1β, but the inflammasome pathways that mediate this response are unclear. 

We observe rapid IL-1α and IL-1β release and cell death in response to the T4SS or 

T3SS of Legionella pneumophila and Yersinia pseudotuberculosis. Unlike IL-1β, IL-1α 

secretion does not require caspase-1. Instead, caspase-11 activation is required for both 

IL-1α secretion and cell death in response to the activity of these secretion systems. 

Interestingly, whereas caspase-11 promotes IL-1β release in response to the T4SS 

through the NLRP3/ASC inflammasome, caspase-11-dependent release of IL-1α is 

independent of both the NAIP5/NLRC4 and NLRP3/ASC inflammasomes as well as 

TRIF and type I IFN signaling. Furthermore, we find both overlapping and non-redundant 

roles for IL-1α and IL-1β in mediating neutrophil recruitment and bacterial clearance in 

response to pulmonary infection by L. pneumophila. Our findings demonstrate that 
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virulent, but not avirulent, bacteria trigger a rapid caspase-11-dependent innate immune 

response important for host defense. 

 

B. Author summary 

The inflammasome, a multiprotein complex, is critical for host defense against bacterial 

infection. The inflammasome activates the host protease caspase-1 to process and 

secrete IL-1β. Another caspase, caspase-11, can cause cell death and IL-1α release. 

The bacterial signals that trigger caspase-11 activation are poorly understood. A 

common feature of many bacterial pathogens is the ability to inject virulence factors and 

other bacterial molecules into the host cell cytosol by means of a variety of virulence-

associated secretion systems. These secretion systems can introduce bacterial flagellin 

into the host cytosol, which leads to caspase-1 activation and cell death. However, many 

bacteria lack or down-regulate flagellin yet still activate the inflammasome. Here, we 

show that the T4SS of Legionella pneumophila and the T3SS of Yersinia 

pseudotuberculosis rapidly trigger caspase-11 activation in a flagellin-independent 

manner. Caspase-11 activation mediates two separate inflammasome pathways: one 

leading to IL-1β processing and secretion, and one leading to cell death and IL-1α 

release. Furthermore, we find these caspase-11-regulated cytokines are critical for 

neutrophil recruitment to the site of infection and clearance of non-flagellated Legionella 

in vivo.  Overall, our findings show that virulent bacteria activate a rapid caspase-11-

dependent immune response that plays a critical role in host defense. 
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C. Introduction 

Antibacterial defense is initiated by germline-encoded PRRs, which detect conserved 

PAMPs (Janeway, 1989; Janeway and Medzhitov, 2002; Medzhitov, 2007). Plasma 

membrane-bound PRRs, such as the TLRs, detect PAMPs present in the extracellular 

space and endosomal compartments, whereas cytosolic PRRs, such as the NLRs, 

survey the host cytosol for the presence of invasive pathogens (Fritz et al., 2006; Harton 

et al., 2002; Inohara et al., 2005; Janeway and Medzhitov, 2002; Ting et al., 2006). 

Invasive microorganisms or other cellular stresses induce assembly of cytosolic protein 

complexes known as inflammasomes, which play a critical role in host defense (Davis et 

al., 2011; Martinon et al., 2002; Miao et al., 2010a; Rathinam et al., 2012a). 

Inflammasomes respond to a wide variety of activators, including bacterial pore-forming 

toxins and bacterial PAMPS, such as flagellin or RNA (Boyden and Dietrich, 2006; 

Franchi et al., 2006; Kanneganti et al., 2006; Mariathasan et al., 2006; Miao et al., 2006; 

Molofsky et al., 2006; Ren et al., 2006). Particular NLRs respond to their cognate stimuli 

and recruit the adapter protein ASC and pro-caspase-1 through homotypic protein-

protein interactions between pyrin and CARD domains, leading to auto-processing and 

activation of caspase-1 (Dostert et al., 2008; Hornung et al., 2009; Kofoed and Vance, 

2011; Srinivasula et al., 2002; Sutterwala et al., 2006). Caspase-1 is responsible for 

processing and secreting IL-1 family cytokines and mediates a pro-inflammatory cell 

death termed pyroptosis (Cookson and Brennan, 2001; Fink and Cookson, 2005; 

Martinon et al., 2002; Rathinam et al., 2012a). 

 

Caspase-11 participates in the activation of a non-canonical inflammasome that induces 

cell death and the secretion of IL-1α and IL-1β in response to Gram-negative pathogens, 
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such as Escherichia coli and Vibrio cholerae, and to particular toxins, such as the 

cholera toxin B subunit (Broz et al., 2012; Gurung et al., 2012; Kayagaki et al., 2011; 

Rathinam et al., 2012b). This non-canonical, caspase-11-dependent response to Gram-

negative bacteria is independent of virulence-associated secretion systems that deliver 

bacterial molecules into the host cytosol and requires LPS-induced TLR4 signaling 

through the adaptor TRIF and TRIF-dependent type I IFN production. Type I IFN 

signaling through the type I IFN receptor (IFNAR) is required for caspase-11 

upregulation and activation, but how type I IFN mediates activation of caspase-11 is not 

well-defined (Broz et al., 2012; Gurung et al., 2012; Rathinam et al., 2012b). Caspase-11 

contributes to NLRP3-dependent activation of caspase-1 and subsequent caspase-1-

dependent IL-1β secretion and cell death. Caspase-11 also facilitates an NLRP3- and 

caspase-1-independent pathway that results in cell death and release of IL-1α (Broz et 

al., 2012; Gurung et al., 2012; Kayagaki et al., 2011; Rathinam et al., 2012b). This 

caspase-11-dependent, caspase-1-independent pathway is responsible for LPS-induced 

septic shock in vivo (Kayagaki et al., 2011; Wang et al., 1998). Although caspase-11 is 

activated in response to signals from Gram-negative pathogens and certain pore-forming 

toxins, whether caspase-11 contributes to inflammasome activation in response to 

virulence-associated secretion systems that deliver bacterial ligands into host cytosol is 

unknown.  

 

Bacterial pathogens use evolutionarily conserved secretion systems, such as the T3SS 

or T4SS, to translocate effector proteins into the cytosol of host cells (Cornelis, 2006; 

Juhas et al., 2008). In addition to bona fide virulence factors, these secretion systems 

also translocate bacterial molecules such as flagellin or structural components of the 
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secretion machinery itself, which results in inflammasome activation (Brodsky and 

Monack, 2009; Miao et al., 2006; 2010b; Molofsky et al., 2006; Ren et al., 2006; Sun et 

al., 2007). Legionella pneumophila, an opportunistic pathogen that causes a severe 

pneumonia known as Legionnaires’ disease (Fraser et al., 1977; McDade et al., 1977), 

uses its dot/icm-encoded T4SS as a virulence factor to translocate bacterial effector 

proteins into the host cell cytosol and establish a replicative vacuole (Berger and Isberg, 

1993; Ensminger and Isberg, 2009; Hubber and Roy, 2010; Marra et al., 1992; Nagai et 

al., 2002; Roy et al., 1998; Segal et al., 1998; Vogel et al., 1998). L. pneumophila 

induces T4SS-dependent inflammasome activation through two genetically distinct 

pathways (Case et al., 2009). T4SS-mediated translocation of flagellin into the cytosol 

triggers caspase-1 activation and pyroptosis through the NLR NAIP5 in conjunction with 

another NLR, NLRC4 (Amer et al., 2006; Case et al., 2009; Lightfield et al., 2008; 

Molofsky et al., 2006; Ren et al., 2006; Zamboni et al., 2006). Caspase-1 activation is 

also triggered independently of the NLRC4/flagellin pathway through the adaptor protein 

ASC, but the bacterial factor that is recognized and the upstream proteins that regulate 

this pathway remain unknown (Case and Roy, 2011; Case et al., 2009). However, 

although ASC is necessary for robust secretion of IL-1β in response to L. pneumophila 

as well as a number of pathogens, such as Salmonella or Yersinia species, ASC is 

dispensable for induction of pyroptosis that is rapidly triggered in response to these 

infections. We therefore considered the possibility that in addition to its role in delayed 

inflammasome activation in response to Gram-negative bacteria, caspase-11 might 

participate in rapid cell death and release of IL-1α in response to the presence of 

bacterial pathogens that access the host cell cytosol by means of type IV and type III 

secretion systems.  
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Here, we demonstrate that IL-1α and IL-1β are rapidly released in response to bacterial 

T4SS activity independently of bacterial flagellin. In this system, we find that IL-1β 

secretion requires caspase-1, but caspase-1 is dispensable for cell death and IL-1α 

release in response to a functional L. pneumophila T4SS. Instead, caspase-11 is 

required for both IL-1α release and cell death in response to L. pneumophila T4SS 

activity. Consistent with recent findings, caspase-11 contributes to optimal NLRP3-

mediated caspase-1 activation and IL-1β secretion in response to L. pneumophila. 

However, caspase-11-dependent IL-1α release and cell death in L. pneumophila-

infected cells are independent of the NAIP5/NLRC4 and NLRP3/ASC inflammasomes. In 

contrast to the role of TRIF and IFNAR in the response against other Gram-negative 

bacteria, caspase-11 activation and cytokine release in response to the T4SS of L. 

pneumophila are independent of both TRIF and IFNAR signaling. We further 

demonstrate that T3SS activity of the unrelated pathogen Yersinia pseudotuberculosis 

induces a similarly rapid caspase-11-dependent response that also leads to cell death 

and release of IL-1α and IL-1β. Finally, we find that both IL-1α and IL-1β are critical in 

vivo for neutrophil recruitment and bacterial clearance. Overall, our data show that 

caspase-11 is poised to respond robustly to a conserved feature of pathogenic bacteria, 

bacterial access to the host cytosol through specialized secretion systems. This 

establishes caspase-11 as a critical regulator of immune system-mediated discrimination 

of pathogenic and nonpathogenic bacteria. 
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D. Results 

LPS priming induces rapid IL-1α and IL-1β secretion in response to L. 

pneumophila T4SS activity 

L. pneumophila infection induces IL-1α and IL-1β secretion that requires T4SS activity 

(Case et al., 2009; Shin et al., 2008). IL-1β secretion is regulated by a flagellin-

dependent NAIP5/NLRC4 inflammasome and a poorly defined ASC inflammasome that 

both activate caspase-1 (Case and Roy, 2011; Case et al., 2009). The mechanisms 

underlying IL-1α secretion are less clear, but IL-1α secretion is still robustly induced by 

flagellin-deficient L. pneumophila, which do not activate the NAIP5/NLRC4 

inflammasome (Shin et al., 2008). Recent studies have described a non-canonical 

inflammasome triggered in response to Gram-negative bacteria. This non-canonical 

inflammasome requires LPS for the upregulation and activation of caspase-11 and 

subsequent IL-1α and IL-1β release (Broz et al., 2012; Gurung et al., 2012; Kayagaki et 

al., 2011; Rathinam et al., 2012b). Whether caspase-11 is also activated in response to 

bacteria that use specialized secretion systems to translocate bacterial molecules into 

the host cytosol is unknown. We thus hypothesized that LPS priming would upregulate 

caspase-11, pro-IL-1α, and pro-IL-1β and allow for more robust and rapid IL-1α and IL-

1β secretion in response to T4SS activity. To test this hypothesis, we first compared IL-

1α and IL-1β release in unprimed and LPS-primed bone marrow-derived macrophages 

(BMDMs). As shown previously (Shin et al., 2008; Zamboni et al., 2006), unprimed 

BMDMs secrete robust levels of IL-1α and IL-1β by 20 hours post-infection with wild-type 

L. pneumophila (WT Lp) (Figure 3-1A). Slightly attenuated levels of secreted IL-1α and 

IL-1β are observed with flagellin-deficient L. pneumophila (ΔflaA Lp), which do not 

activate the NAIP5/NLRC4 inflammasome (Broz et al., 2012; Gurung et al., 2012; 
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Kayagaki et al., 2011; Molofsky et al., 2006; Rathinam et al., 2012b; Ren et al., 2006). 

Secretion of both cytokines is significantly diminished during infection with L. 

pneumophila lacking DotA, an essential component of the T4SS (ΔdotA Lp), and is 

significantly diminished in caspase-1/caspase-11-deficient (Casp1-/-Casp11-/-) 

macrophages as well (Figure 3-1A). The diminished IL-1 secretion induced by ΔdotA Lp 

is not due to a lack of pro-IL-1 production, as ΔdotA Lp and WT Lp induce robust levels 

of pro-IL-1β (Figure 3-2A). At 4 hours post-infection, unprimed macrophages do not 

secrete IL-1 (Figure 3-1B). However, LPS-primed cells rapidly secrete IL-1α and IL-1β, 

and this secretion is abrogated in Casp1-/-Casp11-/- macrophages (Figure 3-1B). 

Secretion of IL-18, another IL-1 family cytokine, also requires T4SS activity and is 

eliminated in Casp1-/-Casp11-/- cells (Figure 3-2B). Comparable levels of the caspase-

1/caspase-11-independent cytokines IL-12 and TNF-α are secreted in the absence and 

presence of LPS priming (Figure 3-2C and 3-2D). These data suggest that LPS priming 

upregulates a factor required for rapid IL-1α and IL-1β release in response to L. 

pneumophila T4SS activity. 

 

Caspase-1 catalytic activity is required for IL-1β but not IL-1α secretion 

Secretion of IL-1β in response to both canonical and non-canonical inflammasome 

activation requires caspase-1 (Broz et al., 2012; Kayagaki et al., 2011; Thornberry et al., 

1992). In contrast, IL-1α release downstream of the non-canonical inflammasome 

depends on caspase-11, and does not require caspase-1 (Kayagaki et al., 2011). To test 

if the catalytic activity of caspase-1 is required for IL-1α secretion in response to L. 

pneumophila, we inhibited caspase-1 catalytic activity with the pharmacological inhibitor 

YVAD-cmk (YVAD). Consistent with previous studies (Broz et al., 2010), IL-1β secretion 
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in response to L. pneumophila is substantially inhibited by YVAD. However, YVAD has 

no effect on IL-1α secretion, indicating that IL-1α release in response to L. pneumophila 

does not require caspase-1 catalytic activity (Figure 3-1C), as has been shown for other 

inflammasome activators (Gross et al., 2012). Given that IL-1α secretion occurs more 

rapidly upon LPS priming, is abrogated in Casp1-/-Casp11-/- macrophages, and does not 

require caspase-1 catalytic activity, we considered the possibility that caspase-11 might 

participate in inflammasome activation during L. pneumophila infection. 

 

Caspase-11 contributes to inflammasome activation in response to flagellin-

deficient L. pneumophila 

To test the genetic requirement for caspase-11 in the inflammasome response to L. 

pneumophila, we infected BMDMs from either caspase-1-deficient (Casp1-/-) or caspase-

11-deficient (Casp11-/-) mice. In the absence of flagellin, caspase-11 is required for IL-1α 

secretion, whereas it is not essential for IL-1β secretion but contributes to maximal 

secretion (Figure 3-3A). These data suggest that caspase-11 is activated in response to 

L. pneumophila infection independently of flagellin. Indeed, there is robust processing 

and secretion of caspase-11 in response to WT and ΔflaA Lp (Figure 3-4). In 

accordance with previous findings (Broz et al., 2010; Kayagaki et al., 2011), caspase-1 

is absolutely required for IL-1β secretion. In contrast, we observe robust IL-1α release 

even in the absence of caspase-1. Both IL-1α and IL-1β release in response to ΔflaA Lp 

are caspase-11-dependent in both primed and unprimed macrophages (Figure 3-3, 3-

5A, and 3-5B), making L. pneumophila distinct from other Gram-negative bacteria that 

require priming to induce robust caspase-11 upregulation and activation (Rathinam et 

al., 2012b). Thus, while caspase-11 contributes to maximal caspase-1-dependent IL-1β 
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secretion, it is both necessary and sufficient for IL-1α release in response to flagellin-

deficient L. pneumophila.  

 

Cell death in B6 BMDMs is partially flagellin-dependent but is flagellin-independent in 

Casp1-/- BMDMs (Figure 3-3B). Importantly, cell death in response to flagellin-deficient L. 

pneumophila requires caspase-11, thus correlating caspase-11-dependent cell death 

with IL-1α release from host cells. In contrast, and consistent with previous findings 

(Kayagaki et al., 2011), LPS+ATP induces canonical caspase-1-dependent pyroptosis 

and secretion of IL-1α and IL-1β that is independent of caspase-11. Because caspase-1 

must be processed to mediate IL-1β secretion (Broz et al., 2010), we examined whether 

caspase-1 processing is decreased in the absence of caspase-11, which could account 

for the decreased IL-1β secretion in response to ΔflaA Lp. Caspase-1 processing is 

slightly attenuated but not abrogated in response to ΔflaA Lp in Casp11-/- macrophages, 

consistent with the slight decrease in IL-1β secretion (Figure 3-3C and 3-5C). Thus, 

flagellin-deficient L. pneumophila trigger a canonical caspase-1-dependent 

inflammasome as well as a non-canonical caspase-11-dependent inflammasome. 

 

Caspase-11 activation is independent of ASC and NLRC4  

The ASC and NAIP5/NLRC4 inflammasomes are required for caspase-1 activation and 

IL-1β secretion in response to L. pneumophila (Case et al., 2009). To determine if these 

inflammasomes are also required for caspase-11 activation and IL-1α release, we 

infected ASC/NLRC4-deficient (Asc-/-Nlrc4-/-) BMDMs with L. pneumophila. Asc-/-Nlrc4-/- 

BMDMs do not secrete IL-1β in response to either WT Lp, ΔflaA Lp, or LPS+ATP. 

However, Asc-/-Nlrc4-/- BMDMs still release IL-1α in response to ΔflaA Lp in primed and 
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unprimed macrophages (Figure 3-6A and 3-7). Thus, unlike IL-1β, IL-1α is released 

independently of flagellin, ASC, and NLRC4. Accordingly, despite an absence of 

processed caspase-1 p10, robust levels of processed caspase-11 p26 are detected in 

the supernatants of Asc-/-Nlrc4-/- cells infected with either WT or ΔflaA Lp but not in 

response to LPS+ATP (Figure 3-6B).  

 

We next sought to determine whether IL-1α is also released independently of ASC and 

NLRC4 during in vivo infection. Because flagellin-deficient L. pneumophila do not 

activate the NLRC4 inflammasome (Case et al., 2009; Molofsky et al., 2006; Ren et al., 

2006), infecting Asc-/- mice with ΔflaA Lp eliminates both the ASC and NLRC4 

inflammasome pathways. Importantly, the level of IL-1β in the bronchoalveolar lavage 

fluid (BALF) 24 hours post-infection is significantly attenuated in Asc-/- mice infected with 

ΔflaA Lp (Figure 3-6C). In contrast, the level of IL-1α in the BALF is unaffected even in 

the absence of both the ASC and NLRC4 inflammasomes. Both IL-1α and IL-1β release 

are significantly diminished in caspase-1/caspase-11-deficient mice (Figure 3-8). 

Collectively, our data indicate that L. pneumophila triggers caspase-11 activation and IL-

1α release independently of the ASC and NLRC4 inflammasomes during both in vitro 

and in vivo infection. 

 

Caspase-11 mediates both NLRP3-dependent and NLRP3-independent 

inflammasome responses 

L. pneumophila induces caspase-1 activation and IL-1β and IL-18 secretion through two 

genetically distinct pathways, one involving ASC and one involving NLRC4 (Figure 3-9A, 

3-10A, and 3-10B) (Case et al., 2009). The upstream host and bacterial components of 
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the ASC-dependent response to L. pneumophila are still unknown, but are independent 

of the flagellin/NAIP5/NLRC4 pathway (Figure 3-9A and 3-10B) (Case et al., 2009). 

Because caspase-11 contributes to maximal IL-1β secretion in response to ΔflaA Lp, we 

further investigated the ASC-dependent mechanism of inflammasome activation. 

NLRP3, an NLR involved in inflammasome-dependent responses to a wide variety of 

pathogens, requires ASC to mediate caspase-1 processing during both canonical and 

non-canonical inflammasome activation (Kanneganti et al., 2006; Kayagaki et al., 2011; 

Mariathasan et al., 2004; 2006; Martinon et al., 2002). We therefore investigated the role 

of NLRP3 in the response to ΔflaA Lp. Notably, IL-1β and IL-18 secretion are abrogated 

during infection of NLRP3-deficient (Nlrp3-/-) BMDMs with ΔflaA Lp in both primed and 

unprimed macrophages (Figure 3-9B and 3-11A, B, and C). Consistently, we do not 

detect processed caspase-1 p10 in the supernatants of Nlrp3-/- macrophages infected 

with ΔflaA Lp (Figure 3-9C). Thus, NLRP3 functions together with ASC, caspase-1, and 

caspase-11 to control IL-1β secretion in response to flagellin-deficient L. pneumophila. 

However, IL-1α release and cell death following infection with flagellin-deficient L. 

pneumophila are independent of NLRP3 (Figure 3-9B and 3-11A), indicating that 

caspase-11 also mediates an NLRP3-independent response towards flagellin-deficient 

L. pneumophila. Accordingly, NLRP3-dependent IL-1β secretion in response to flagellin-

deficient L. pneumophila was inhibited by extracellular potassium, whereas NLRP3-

independent caspase-11-dependent IL-1α secretion and cell death were not affected 

(Figure 3-11D and 3-11E). 
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Non-canonical inflammasome responses to L. pneumophila occur independently 

of TRIF and IFNAR 

Recent data demonstrate that caspase-11 activation in response to a wide variety of 

Gram-negative bacteria requires TLR4 signaling through its adaptor TRIF and 

subsequent type I IFN production (Broz et al., 2012; Gurung et al., 2012; Rathinam et 

al., 2012b). To determine if L. pneumophila engages a similar TRIF and IFNAR-

dependent pathway for caspase-11 activation, we infected TRIF-deficient (Trif-/-) and 

IFNAR-deficient (Ifnar-/-) BMDMs. Unlike the response to E. coli, L. pneumophila 

infection of unprimed macrophages triggered robust cell death and secretion of IL-1α 

and IL-1β that was independent of IFNAR and TRIF (Figure 3-12A and 3-12B). 

Consistently, priming with the TLR1/2 agonist Pam3CSK4, which results in TRIF- and 

IFNAR-dependent cytokine secretion and cell death in response to E. coli (Rathinam et 

al., 2012b), still induced cell death and cytokine secretion in TRIF- and IFNAR-deficient 

cells in response to L. pneumophila (Figure 3-13A and 3-13B). These data suggest that 

during L. pneumophila infection, caspase-11 is upregulated and activated independently 

of TRIF and IFNAR signaling. Indeed, caspase-11 is still robustly processed and 

secreted independently of IFNAR and TRIF (Figure 3-12C and 3-14). Notably, 

substantially upregulated levels of pro-caspase-11 are not observed in the lysates of 

cells infected with WT or ΔflaA Lp because both the pro and cleaved forms of caspase-

11 are rapidly secreted into the cell supernatant upon infection (Figures 3-12C and 3-

14). Accordingly, lysates from IFNAR- and TRIF-deficient macrophages infected with L. 

pneumophila express comparable levels of pro-caspase-11 to wild-type macrophages, 

whereas TRIF and IFNAR do contribute to upregulation of pro-caspase-11 in response 

to E. coli (Figure 3-15A, B, and C). When the macrophages are primed with LPS prior to 
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infection, there is a moderate contribution of TRIF and IFNAR signaling to 

inflammasome activation, consistent with the observation that LPS stimulates the TLR4-

TRIF-IFNAR axis involved in caspase-11 upregulation (Figure 3-13C and 3-13D). 

Because the caspase-11-dependent response to L. pneumophila is TRIF-independent, 

we investigated whether the TLR signaling adaptor MyD88 contributes to caspase-11 

upregulation. When immortalized macrophages deficient for both MyD88 and Trif 

(iMyd88-/-Trif-/-) were infected, caspase-11 upregulation was diminished in response to 

both WT and ΔflaA Lp (Figure 3-16A and 3-16B), and we were unable to detect 

caspase-11 activation. Thus, although TRIF is not required for caspase-11 activation, a 

TLR-dependent signal is likely required as the loss of both MyD88 and TRIF eliminates 

caspase-11 upregulation and activation.  

 

Caspase-11 mediates inflammasome activation in response to Yersinia 

pseudotuberculosis type III secretion system activity 

Because caspase-11 activation in response to L. pneumophila expressing a functional 

T4SS is so rapid and robust, we sought to test whether this robust caspase-11-

dependent inflammasome activation might be a general response to the activity of 

specialized secretion systems that allow for bacterial access to the host cytosol. The 

Yersinia pseudotuberculosis T3SS induces inflammasome activation independently of 

bacterial flagellin and the known secreted effector proteins, and this inflammasome 

activation is important for bacterial clearance (Brodsky et al., 2010). As wild-type 

Yersinia induces cell death that is independent of both caspase-1 and -11 and requires 

the secreted effector YopJ (Brodsky et al., 2010; Lilo et al., 2008), we instead infected 

Casp1-/-Casp11-/-, Casp1-/-, and Casp11-/- BMDMs with a strain of Y. pseudotuberculosis 
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that expresses a T3SS but lacks the six known secreted effectors (Δ6 Yp). Similarly to L. 

pneumophila infection, both IL-1α and IL-1β release in response to Δ6 Yp are caspase-

11-dependent (Figure 3-17A). Again, caspase-1 is absolutely required for IL-1β 

secretion, whereas IL-1α is released independently of caspase-1. Secretion of IL-12, an 

inflammasome-independent cytokine, is unaffected (Figure 3-18). Cell death in response 

to Δ6 Yp is both caspase-1 and caspase-11-dependent, with a more dramatic reduction 

in death in Casp11-/- BMDMs (Figure 3-17B). Furthermore, Y. pseudotuberculosis-

induced release of both IL-1α and IL-1β requires the presence of a functional T3SS, as 

Y. pseudotuberculosis unable to form a functional T3SS pore in the host cell plasma 

membrane (ΔyopB Yp) do not induce secretion of either cytokine. These data indicate a 

general role for caspase-11 in the induction of rapid cell death and robust release of IL-

1α and IL-1β in response to bacterial secretion systems that are capable of accessing 

the host cell cytosol, but may be independent of the activities of specific bacterial 

effector proteins.    

 

IL-1α and IL-1β control bacterial burden and neutrophil recruitment in vivo 

As caspase-11 contributes to flagellin-independent IL-1α and IL-1β release from infected 

macrophages in vitro and IL-1α and IL-1β secretion is flagellin-independent in vivo, we 

wanted to determine the contribution of IL-1α and IL-1β to host defense against L. 

pneumophila in vivo. IL-1α and IL-1β both bind the IL-1R, which signals through the 

MyD88 adaptor protein (Adachi et al., 1998; Burns et al., 1998; Dower et al., 1986). As 

MyD88 is critical for control of L. pneumophila replication during in vivo infection but 

deletion of an individual MyD88-dependent TLR or a combination of TLRs does not 

recapitulate MyD88 deficiency, it is likely that other MyD88-dependent receptors, 
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including the IL-1R, may play a role (Archer and Roy, 2006; Archer et al., 2009; Hawn et 

al., 2007; 2006; Spörri et al., 2006). IL-1R signaling contributes to chemokine production 

by non-hematopoietic cells during infection with wild-type, flagellin-expressing L. 

pneumophila (LeibundGut-Landmann et al., 2011). However, the role of IL-1R signaling 

during infection with flagellin-deficient L. pneumophila, which do not activate the 

NAIP5/NLRC4 inflammasome, has not been investigated. We therefore infected B6 and 

IL-1R-deficient (Il1r1-/-) mice intranasally with ΔflaA Lp and measured bacterial burden in 

the lung over the course of seven days. Though both B6 and Il1r1-/- mice received similar 

initial bacterial burdens, Il1r1-/- mice show a defect in bacterial clearance as early as 24 

hours post-infection (Figure 3-19A). Bacterial burden remains elevated in the absence of 

IL-1R signaling, with the Il1r1-/- mice still exhibiting a log-increase in bacterial load at 120 

hours post-infection. As IL-1R signaling is important for neutrophil recruitment (Miller et 

al., 2006), we examined whether Il1r1-/- mice have a defect in neutrophil recruitment to 

the pulmonary airway during L. pneumophila infection. Indeed, Il1r1-/- mice exhibit a 

significant decrease in neutrophil recruitment to the airway 24 hours post-infection, 

possibly contributing to their inability to efficiently clear the pathogen (Figure 3-19B and 

3-19C).  

 

The IL-1R signals in response to both IL-1α and IL-1β; however, these cytokines can 

play non-redundant roles in anti-bacterial defense (Mayer-Barber et al., 2011). To 

determine the relative contributions of IL-1α and IL-1β to neutrophil recruitment and 

bacterial clearance during L. pneumophila infection, we utilized neutralizing antibodies to 

selectively block either IL-1α or IL-1β prior to infection. Specific cytokine neutralization in 

the BALF could be observed 24 hours post-infection (Figure 3-20). Critically, IL-1α 
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neutralization alone significantly diminishes the percentage of neutrophils recruited to 

the BALF at 24 hours post-infection and results in a half-log increase in bacterial CFUs, 

in marked contrast to isotype control antibody or neutralization of IL-1β, which on its own 

did not have a significant effect (Figure 3-19D, E, and F). However, neutralization of both 

IL-1α and IL-1β fully recapitulates the magnitude of neutrophil reduction and defect in 

bacterial clearance observed in the Il1r1-/- mice. Collectively, these data indicate that 

although there are some overlapping roles for these cytokines during L. pneumophila 

infection, IL-1α plays a distinct role from IL-1β in driving neutrophil recruitment to the 

airway and mediating bacterial clearance.  

 

E. Discussion 

Inflammasomes respond robustly to conserved features of pathogenic microbes, such as 

pore-forming toxins or specialized secretion systems that access the host cytosol. 

Inflammasomes therefore play a central role in enabling the immune system to 

discriminate between virulent and avirulent bacteria (Vance et al., 2009). Recent reports 

show a role for caspase-11 in regulating the activation of a non-canonical inflammasome 

that promotes cell death as well as IL-1α and IL-1β secretion. This non-canonical 

inflammasome responds to both pathogenic and non-pathogenic Gram-negative bacteria 

independently of specialized secretion systems that translocate bacterial molecules into 

the host cytosol (Broz et al., 2012; Gurung et al., 2012; Kayagaki et al., 2011; Rathinam 

et al., 2012b). This pathway involves the TRIF- and IFNAR-dependent upregulation and 

activation of caspase-11 and occurs with relatively delayed kinetics in comparison to the 

response to pathogenic bacteria. Intriguingly, we find that the activity of the L. 

pneumophila Dot/Icm T4SS leads to rapid and robust caspase-11 activation 
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independently of the TRIF-IFNAR axis, and this activation triggers rapid cell death and 

release of both IL-1α and IL-1β (Figure 3-21). We extend these results to show that the 

evolutionarily distinct T3SS of another pathogen, Y. pseudotuberculosis, also rapidly 

triggers caspase-11-dependent responses. Collectively, our findings demonstrate that 

caspase-11 is critical for inflammasome activation in response to the secretion systems 

of virulent bacteria that enable bacterial molecules to access the host cell cytosol and 

demonstrate that IL-1α and IL-1β together play a crucial protective role during acute 

infection in vivo.  

 

We demonstrate that in response to the activity of bacterial secretion systems that 

enable cytosolic access, caspase-11 contributes to NLRP3-mediated inflammasome 

activation and caspase-1-dependent IL-1β secretion and to a second ASC and NLRC4-

independent pathway that does not require caspase-1 and leads to cell death as well as 

robust IL-1α release. These L. pneumophila-induced pathways are similar to recent 

findings with a number of Gram-negative bacterial pathogens, including C. rodentium, E. 

coli, and S. Typhimurium (Broz et al., 2012; Gurung et al., 2012; Kayagaki et al., 2011; 

Rathinam et al., 2012b). However, we observe rapid and robust T4SS-dependent 

activation of these two caspase-11-mediated pathways by L. pneumophila, whereas the 

response to Gram-negative bacteria lacking specialized secretion systems occurs less 

robustly and with much slower kinetics. Intriguingly, we observe a similarly rapid 

caspase-11-dependent induction of cell death and IL-1 release in response to the 

structurally and evolutionarily unrelated T3SS of Y. pseudotuberculosis. Importantly, this 

pathway is independent of host sensing of flagellin, as it is triggered by flagellin-deficient 

L. pneumophila, and Y. pseudotuberculosis downregulates flagellin expression when the 
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T3SS is expressed (Minnich and Rohde, 2007). Thus, our data suggest that the 

caspase-11 inflammasome is poised to respond robustly and rapidly to the activity of 

bacterial secretion systems that are capable of delivering microbial products into the 

host cell cytosol and may enable the host to respond to pathogens that evade flagellin-

dependent responses. This could have significance for understanding the role of 

caspase-11 activation at mucosal sites colonized by large numbers of commensal 

bacteria. At mucosal barriers, it would be expected that the non-canonical 

inflammasome pathway would not be robustly activated by commensal bacteria but 

could respond rapidly to the presence of bacterial secretion systems that enable 

pathogen access to the host cytosol. 

 

Our findings are consistent with recent observations that the L. pneumophila Dot/Icm 

T4SS triggers the caspase-11-dependent non-canonical inflammasome (Case et al., 

2013), as well as the finding that bacteria that enter the cytosol either due to failure to 

maintain integrity of their replicative vacuoles or natural entry into the cytoplasm also 

trigger rapid caspase-11 activation (Aachoui et al., 2013). Thus, the pathway that leads 

to caspase-11 activation appears to be particularly sensitive to pathogens that ‘violate 

the sanctity of the cytosol’ (Lamkanfi and Dixit, 2009), either through the activity of 

specialized secretion systems that translocate bacterial molecules into the cytosol or 

through their direct entry into the host cell cytosol. Whether other pathogens that 

replicate within the cytosol, such as Listeria or Shigella, or cytosolic viruses possess 

mechanisms to evade this pathway remains to be determined. 
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L. pneumophila T4SS-mediated activation of caspase-11 differs from the other pathways 

of non-canonical inflammasome activation in several ways. First, L. pneumophila-

mediated activation of caspase-11 does not require TRIF or IFNAR signaling. We 

observe a moderate dependence on TRIF and IFNAR signaling when macrophages are 

primed with LPS prior to infection, consistent with LPS-dependent upregulation of 

caspase-11 expression through the TLR4-TRIF-IFNAR axis (Broz et al., 2012; Gurung et 

al., 2012; Rathinam et al., 2012b). However, in the absence of LPS priming, TRIF and 

IFNAR signaling are dispensable for L. pneumophila-dependent caspase-11 activation. 

In this context, it is likely that MyD88 compensates for the absence of TRIF, as cells 

deficient for both MyD88 and TRIF failed to activate caspase-11 in response to L. 

pneumophila. Thus, although the TLR4-TRIF-IFNAR axis is required for caspase-11 

activation in response to Gram-negative bacteria, a MyD88-dependent signal is sufficient 

for caspase-11 activation in response to pathogens that utilize virulence-associated 

secretion systems to translocate bacterial molecules into the host cytosol. It is possible 

that different signals are capable of activating caspase-11 through distinct pathways, but 

these pathways occur with distinct kinetics because they may indicate distinct levels of 

pathogenicity. Thus, while caspase-11 is robustly upregulated by LPS priming, this 

upregulation alone is insufficient for rapid activation in response to bacteria that lack 

specialized secretion systems, as ΔdotA or ΔyopB bacteria do not induce rapid cell 

death, even in primed cells. Collectively, these data indicate a two-signal model for rapid 

caspase-11 activation during infection with virulent bacteria, where bacterial PAMPs 

induce caspase-11 upregulation, but rapid caspase-11 activation requires a second, 

secretion system-dependent signal (Figure 3-21).  
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The specific secretion system-dependent signals responsible for caspase-11 activation 

are currently unknown. While rapid activation of caspase-11 requires the presence of a 

functional type III or type IV secretion system or cytosolic access of the bacteria, 

whether the signal is an as-yet-undefined translocated bacterial molecule or a cellular 

response to the pore forming activity of these systems remains to be determined. The 

delayed NLRP3- and caspase-11-dependent response to Gram-negative bacteria 

suggests that in addition to LPS-induced upregulation of inflammasome components, 

bacterial mRNA provides an additional signal for activating the NLRP3 inflammasome 

(Kanneganti et al., 2006; Sander et al., 2011), although the role of caspase-11 in this 

response has not been formally demonstrated. Activity of the type III or IV secretion 

systems may bypass the need for bacterial mRNA. Alternatively, these secretion 

systems may translocate bacterial RNA (Auerbuch et al., 2009; Monroe et al., 2009; 

Vance et al., 2009), and the rapid caspase-11-dependent response they induce could be 

due to more rapid delivery of bacterial mRNA into the host cell cytosol. 

 

Furthermore, the host factors required for activation of the NLRP3-independent caspase-

11-dependent inflammasome also remain to be identified. As this pathway is 

independent of flagellin sensing, NLRP3, ASC, and NLRC4, an unknown upstream 

sensor and/or adaptor may be involved in caspase-11 activation in response to a 

translocated bacterial substrate or an endogenous signal induced by infection. This 

sensor may also be upregulated by type I IFN signaling itself (Broz et al., 2012; Gurung 

et al., 2012; Rathinam et al., 2012b).  
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Our data show that IL-1α release during L. pneumophila infection is controlled by two 

independent pathways, one involving the flagellin-dependent NAIP5/NLRC4 and 

caspase-1-dependent inflammasome and a second pathway involving the NLRP3-

independent caspase-11-dependent inflammasome (Figure 3-21). Though we 

demonstrate that IL-1α release has an important biological consequence in vivo for 

neutrophil recruitment and bacterial clearance, it is unclear if IL-1α release is regulated 

by unconventional secretion, as is the case for IL-1β (Keller et al., 2008). As both 

pathways that control IL-1α release also lead to cell death, our data are consistent with a 

model in which IL-1α is an endogenous alarmin that is released during cell death 

(Bianchi, 2007). 

 

Interestingly, caspase-11 also contributes to control of flagellin-expressing L. 

pneumophila by serving as a component of an NLRC4-dependent inflammasome that 

promotes trafficking of the L. pneumophila-containing vacuole to lysosomes (Akhter et 

al., 2012). Thus, caspase-11 may function in multiple ways to control L. pneumophila 

infection. Importantly, we find that IL-1α, IL-1β, and IL-1R signaling play an important 

role in the control of L. pneumophila infection through efficient neutrophil recruitment to 

the airway. IL-1α and IL-1β play both distinct and overlapping roles in mediating 

neutrophil recruitment and controlling bacterial replication, as depletion of IL-1α alone 

showed a more pronounced defect in neutrophil recruitment and bacterial clearance than 

depletion of IL-1β alone, but loss of both cytokines resulted in a further reduction of 

neutrophil recruitment and an increased defect in bacterial clearance. Further analysis is 

required to define the relative contributions of the various caspase-11-mediated effector 

functions to the control of L. pneumophila replication in vivo. 
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In conclusion, these studies demonstrate that T3SS and T4SS activities trigger rapid and 

robust activation of caspase-11. This activation contributes to maximal NLRP3-

dependent IL-1β secretion as well as to NLRP3-independent IL-1α release and host cell 

death. The downstream effector functions of these pathways are important for host 

defense against L. pneumophila in vivo, as IL-1α and IL-1β promote neutrophil 

recruitment to L. pneumophila-infected lungs and control pulmonary bacterial replication. 

Our results highlight the contribution of caspase-11 to rapid inflammasome activation 

and discrimination between pathogenic and nonpathogenic bacteria.  
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Figure 3-1: LPS priming induces rapid IL-1α and IL-1β secretion in response to L. 
pneumophila T4SS activity. (A) Unprimed B6 or Casp1-/-Casp11-/- BMDMs were 
infected with WT L. pneumophila (WT Lp), Δdot Lp, ΔflaA Lp, or PBS (mock infection) for 
20 hours. (B) B6 or Casp1-/-Casp11-/- BMDMs were either unprimed or primed with 
0.5µg/mL LPS for 2.5 hours and infected with WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS for 4 
hours. (C) B6 BMDMs were pretreated with either 20µM or 40µM of the caspase-1 
inhibitor YVAD-cmk or DMSO vehicle control for 0.5 hours and infected with WT Lp, 
ΔdotA Lp, ΔflaA Lp, or PBS for 20 hours. Levels of IL-1α and IL-1β in the supernatants 
were measured by ELISA. Graphs show the mean ± SEM of triplicate wells. Data are 
representative of three or four independent experiments. *** is p<0.001 by 2-way 
ANOVA with Bonferroni post-test. NS is not significant.  
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Figure 3-2. Caspase-1/caspase-11-deficient cells do not have a gross defect in 
cytokine secretion. (A) Unprimed B6 or Casp1-/-Casp11-/- BMDMs were infected with 
WT L. pneumophila (Lp), ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) for 20 hours. 
Levels of full-length IL-1β (pro-IL-1β) and β-actin (loading control) in the cell lysates were 
determined by immunoblot analysis. (B) B6 or Casp1-/-Casp11-/- BMDMs were primed 
with 0.5µg/mL LPS for 2.5 hours and infected with WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS 
for 4 hours. The level of IL-18 in the supernatants was measured by ELISA. (C) 
Unprimed B6 or Casp1-/-Casp11-/- BMDMs were infected with WT Lp, ΔdotA Lp, ΔflaA 
Lp, or PBS for 20 hours. Levels of IL-12 p40 and TNF-α in the supernatants were 
measured by ELISA. (D) B6 or Casp1-/-Casp11-/- BMDMs were primed with 0.5µg/mL 
LPS for 2.5 hours and infected with WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS for 4 hours. 
Levels of IL-12 p40 and TNF-α in the supernatants were measured by ELISA. Graphs 
show the mean ± SEM of triplicate wells. Data are representative of two (B) or three (A, 
C, and D) independent experiments. 
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Figure 3-3. Caspase-11 controls the release of IL-1α and IL-1β and pyroptosis in 
response to flagellin-deficient L. pneumophila. B6, Casp1-/-Casp11-/-, Casp1-/-, or 
Casp11-/- BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with WT L. 
pneumophila (WT Lp), ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) or treated with 
2.5mm ATP for 1 (C) or 4 (A,B) hours. (A) Levels of IL-1α and IL-1β in the supernatants 
were measured by ELISA. Graphs show the mean ± SEM of triplicate wells. (B) Cell 
death (% cytotoxicity) was measured by LDH release into the supernatants relative to 
Triton X-100-lysed cells. Graphs show the mean ± SEM of triplicate wells. (C) Levels of 
processed caspase-1 (casp-1 p10) in the supernatants and full-length caspase-1 (pro-
casp-1) and β-actin in the cell lysates were determined by immunoblot analysis. Data are 
representative of three independent experiments. *** is p<0.001 by two-way ANOVA 
with Bonferroni post-test, ** is p<0.01 by two-way ANOVA with Bonferroni post-test, and 
* is p<0.05 by unpaired t-test. NS is not significant. 
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Figure 3-4. Caspase-11 is rapidly upregulated and secreted in response to L. 
pneumophila. B6 or Casp1-/-Casp11-/- BMDMs were primed with 0.5µg/mL LPS for 2.5 
hours and infected with WT L. pneumophila (Lp), ΔdotA Lp, ΔflaA Lp, or PBS (mock 
infection) for 4 hours. Levels of full-length caspase-11 (pro-casp-11) and active caspase-
11 (casp11 p26) in the supernatants, and pro-casp-11 and β-actin (loading control) in the 
cell lysates were determined by immunoblot analysis.   
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Figure 3-5. Caspase-11 is activated in response to L. pneumophila independently 
of macrophage priming. (A) Unprimed B6 and Casp1-/- BMDMs or (B) B6, Casp1-/-

Casp11-/-, and Casp11-/- BMDMs were infected with WT L. pneumophila (Lp), ΔdotA Lp, 
ΔflaA Lp, or PBS (mock infection) for 20 hours. Levels of IL-1α and IL-1β in the 
supernatants were measured by ELISA. Graphs show the mean ± SEM of triplicate 
wells. (C) B6, Casp1-/-, or Casp11-/- BMDMs were primed with 0.5µg/mL LPS for 2.5 
hours and infected with WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS for 4 hours or treated with 
LPS+2.5mm ATP for 1 hour. Levels of mature IL-1β in the supernatant were determined 
by immunoblot analysis. Data are representative of two independent experiments. 
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Figure 3-6. Caspase-11 activation is independent of ASC and NLRC4. (A) Unprimed 
B6, Casp1-/-Casp11-/-, or Asc-/-Nlrc4-/- BMDMs were infected with WT L. pneumophila 
(WT Lp), ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) for 20 hours, and levels of IL-1α 
and IL-1β in the supernatants were measured by ELISA. Graphs show the mean ± SEM 
of triplicate wells. (B) Unprimed B6, Casp1-/-Casp11-/-, or Asc-/-Nlrc4-/- BMDMs were 
infected with WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) for 20 hours or treated 
with LPS+ATP for 1 hour. Levels of processed caspase-1 (casp-1 p10) and caspase-11 
(casp-11 p26) in the supernatants, and pro-caspase-1, pro-caspase-11, and β-actin 
(loading control) in the cell lysates were determined by immunoblot analysis. (C) 8-12 
week old B6 and Asc-/- mice were infected intranasally with either 1x106 ΔflaA Lp or 
PBS. Bronchoalveolar lavage fluid (BALF) was collected 24 hours post-infection, and 
levels of IL-1α and IL-1β were measured by ELISA. Graphs show the mean ± SEM of 9 
mice per group. Dashed line represents the limit of detection. Data are representative of 
three independent experiments (A,B) or are displayed as the pooled results of two 
independent experiments (C). *** is p<0.001 by two-way ANOVA with Bonferroni post-
test. ** is p<0.01 by unpaired t-test. NS is not significant.  
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Figure 3-7. IL-1α release is ASC/NLRC4-independent. B6, Casp1-/-Casp11-/-, or Asc-/-

Nlrc4-/- BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with WT L. 
pneumophila (Lp), ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) or treated with 2.5mm 
ATP for 4 hours. Levels of IL-1α and IL-1β in the supernatants were measured by 
ELISA. Graphs show the mean ± SEM of triplicate wells. Data are representative of 
three independent experiments. 
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Figure 3-8. Both IL-1α and IL-1β secretion are caspase-1/caspase-11-dependent in 
vivo. 8-12 week old B6 or Casp1-/-Casp11-/- mice were infected intranasally with 1x106 
ΔflaA Lp. BALF was collected 24 hours post-infection, and levels of IL-1α and IL-1β were 
measured by ELISA. Graphs show the mean ± SEM of three mice per group. Dashed 
line represents the limit of detection. * is p<0.05 by unpaired t-test. 
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Figure 3-9. Caspase-11 mediates both NLRP3-dependent and NLRP3-independent 
immune responses. (A) B6, Casp1-/-Casp11-/-, Asc-/-, Nlrc4-/-, or Asc-/-Nlrc4-/- BMDMs 
were primed with 0.5µg/mL LPS for 2.5 hours and infected with WT L. pneumophila (WT 
Lp), ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) or treated with 2.5mm ATP for 4 hours. 
Levels of IL-1α and IL-1β in the supernatants were measured by ELISA and cell death 
(% cytotoxicity) was measured by LDH release into the supernatants relative to Triton X-
100-lysed cells. Graphs show the mean ± SEM of triplicate wells. (B and C) B6 or Nlrp3-/- 
BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with WT Lp, ΔdotA 
Lp, ΔflaA Lp, or PBS (mock infected) or treated with 2.5mm ATP for 1 hour (C) or 4 
hours (B). (B) Levels of IL-1α and IL-1β in the supernatants were measured by ELISA 
and cell death (% cytotoxicity) was measured by LDH release into the supernatants 
relative to Triton X-100-lysed cells. Graphs show the mean ± SEM of triplicate wells. (C) 
Levels of processed caspase-1 (casp-1 p10) in the supernatants and pro-caspase-1 in 
the cell lysates were determined by immunoblot analysis. Data are representative of two 
(A,C) or three (B) independent experiments. *** is p<0.001 by one-way ANOVA with 
Tukey post-test. NS is not significant. 
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Figure 3-10. Mature IL-1β secretion is not always concordant with cell death. B6, 
Casp1-/-Casp11-/-, Asc-/-, Nlrc4-/-, or Asc-/-Nlrc4-/- BMDMs were primed with 0.5µg/mL LPS 
for 2.5 hours and infected with WT L. pneumophila (Lp), ΔdotA Lp, ΔflaA Lp or PBS 
(mock infection) for 4 hours or treated with 2.5mm ATP for 1 hour. (A) Levels of mature 
IL-1β in the supernatants, and full-length IL-1β (pro-IL-1β) and β-actin (loading control) in 
the cell lysates were determined by immunoblot analysis. Data are representative of two 
independent experiments. (B) The level of IL-18 in the supernatants was measured by 
ELISA. Graphs show the mean ± SEM of triplicate wells. 
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Figure 3-11. Flagellin-independent, NLRP3-dependent IL-1β secretion occurs 
independently of macrophage priming. (A) Unprimed B6 or Nlrp3-/- BMDMs were 
infected with WT L. pneumophila (Lp), ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) for 
16 hours. Levels of IL-1α and IL-1β in the supernatants were measured by ELISA. (B) 
B6 or Nlrp3-/- BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with 
WT Lp, ΔdotA Lp, ΔflaA Lp or PBS (mock infection) or treated with 2.5mM ATP for 4 
hours. The level of IL-18 in the supernatants was measured by ELISA. (C) B6 or Nlrp3-/- 
BMDMs were infected with WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS (mock infection) for 16 
hours. The level of IL-18 in the supernatants was measured by ELISA. (D and E) B6 
BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with WT Lp, ΔdotA 
Lp, ΔflaA Lp or PBS (mock infection) or treated with 2.5mM ATP for 4 hours. Where 
indicated, media alone, 50mM KCl, or 50mM NaCl were added prior to infection. (D) 
Levels of IL-1α and IL-1β in the supernatants were measured by ELISA. (E) Cell death 
was measured by LDH release. Graphs show the mean ± SEM of triplicate wells. Data 
are representative of two independent experiments (A-C). 
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Figure 3-12. Non-canonical inflammasome responses to L. pneumophila occur 
independently of TRIF and IFNAR. (A) Unprimed B6, Ifnar-/-, or Trif-/- BMDMs were 
infected with WT L. pneumophila (WT Lp), ΔdotA Lp, ΔflaA Lp, E. coli, or PBS (mock 
infection) for 16 hours. Levels of IL-1α and IL-1β in the supernatants were measured by 
ELISA. (B) Unprimed B6, Ifnar-/-, or Trif-/- BMDMs were infected with WT Lp, ΔdotA Lp, 
ΔflaA Lp, or PBS (mock infection) for 16 hours. Cell death (% cytotoxicity) was 
measured by LDH release into the supernatants relative to Triton X-100-lysed cells. 
Graphs show the mean ± SEM of triplicate wells. (C) B6, Ifnar-/-, or Trif-/- BMDMs were 
primed with 0.4µg/mL Pam3CSK4 for 4 hours and infected with WT Lp, ΔdotA Lp, ΔflaA 
Lp, or PBS for 16 hours. Levels of full-length caspase-11 (pro-casp-11) and processed 
caspase-11 (casp11 p26) in the supernatants and pro-casp-11 and β-actin (loading 
control) in the cell lysates were determined by immunoblot analysis. Data are 
representative of two independent experiments. 
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Figure 3-13. TRIF/IFNAR-independent IL-1 release occurs with Pam3CSK4-primed 
macrophages. (A) B6, Ifnar-/-, or Trif-/- BMDMs were primed with 0.4µg/mL Pam3CSK4 
for 4 hours and infected with WT L. pneumophila (Lp), ΔdotA Lp, ΔflaA Lp, E. coli, or 
PBS (mock infection) for 16 hours. The levels of IL-1α and IL-1β in the supernatants 
were measured by ELISA. (B) B6, Ifnar-/-, or Trif-/- BMDMs were primed with 0.4µg/mL 
Pam3CSK4 for 4 hours and infected with WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS for 16 
hours. Cell death (% cytotoxicity) was measured by LDH release. (C) B6, Ifnar-/-, or Trif-/- 
BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with WT Lp, ΔdotA 
Lp, ΔflaA Lp, or PBS for 4 hours. Cell death was measured by LDH release. (D) B6, 
Ifnar-/-, or Trif-/- BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with 
WT Lp, ΔdotA Lp, ΔflaA Lp, or PBS for 4 hours. Levels of IL-1α and IL-1β in the 
supernatants were measured by ELISA. Graphs show the mean ± SEM of triplicate 
wells. Data are representative of two independent experiments. 
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Figure 3-14. Caspase-11 is upregulated and secreted in an IFNAR- and TRIF-
independent manner. Unprimed B6, Ifnar-/-, or Trif-/- BMDMs were infected with WT Lp, 
ΔdotA Lp, ΔflaA Lp, or PBS for 16 hours. Levels of full-length caspase-11 (pro-casp-11) 
and active caspase-11 (casp11 p26) in the supernatants, and pro-casp-11 and β-actin 
(loading control) in the cell lysates were determined by immunoblot analysis. 
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Figure 3-15. Detection of caspase-11 protein upregulation in cell lysates is 
moderate in response to L. pneumophila. (A) Unprimed B6, Ifnar-/-, or Trif-/- BMDMs 
were infected with WT Lp, ΔdotA Lp, ΔflaA Lp, E. coli, or PBS (mock infection) for 16 
hours. (B) B6, Ifnar-/-, or Trif-/- BMDMs were primed with 0.4µg/mL Pam3CSK4 for 4 
hours and infected with WT Lp, ΔdotA Lp, ΔflaA Lp, E. coli, or PBS for 16 hours. (C) B6, 
Ifnar-/-, or Trif-/- BMDMs were primed with 0.5µg/mL LPS for 2.5 hours and infected with 
WT Lp, ΔdotA Lp, ΔflaA Lp, E. coli, or PBS for 4 hours. Levels of full-length caspase-11 
(pro-casp-11) and β-actin (loading control) in the cell lysates were determined by 
immunoblot analysis. 
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Figure 3-16. Caspase-11 is not upregulated in the absence of both MyD88 and 
TRIF. (A) Immortalized B6 (iB6) or MyD88/Trif-deficient (iMyd88-/-Trif-/-) BMDMs were 
primed with 0.4µg/mL Pam3CSK4 for 4 hours and infected with WT Lp, ΔdotA Lp, ΔflaA 
Lp, E. coli, or PBS (mock infection) for 16 hours. (B) iB6 or iMyd88-/-Trif-/- macrophages 
were primed with 0.5µg/mL LPS for 4 hours and infected with WT Lp, ΔdotA Lp, ΔflaA 
Lp, or PBS (mock infection) for 4 hours. Levels of full-length caspase-11 (pro-casp-11) 
and β-actin (loading control) were determined by immunoblot analysis. 
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Figure 3-17. Caspase-11 mediates inflammasome activation in response to a 
functional Yersinia type III secretion system. BMDMs from B6, Casp1-/-Casp11-/-, 
Casp1-/-, or Casp11-/- mice were primed with 0.05µg/mL LPS for 4 hours and infected 
with type III secretion system-deficient Y. pseudotuberculosis (ΔyopB Yp), effectorless 
Y. pseudotuberculosis ΔHOJMEK (Δ6 Yp), or PBS (mock infection) or treated with 
2.5mm ATP for 4 hours. (A) Levels of IL-1α and IL-1β in the supernatants were 
measured by ELISA. (B) Cell death (% cytotoxicity) was measured by lactate 
dehydrogenase (LDH) release relative to Triton X-100-lysed cells. Graphs show the 
mean ± SEM of triplicate wells. Data are representative of two independent experiments. 
*** is p<0.001 and ** is p<0.01 by two-way ANOVA with Bonferroni post-test. NS is not 
significant. This experiment was performed by Erin E. Zwack in Igor Brodsky’s 
laboratory. 
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Figure 3-18. Caspase-11-deficient cells secrete comparable amounts of IL-12 in 
response to Y. pseudotuberculosis. B6, Casp1-/-Casp11-/-, Casp1-/-, or Casp11-/- mice 
were primed with 0.05µg/mL LPS for 2.5 hours and infected with type III secretion 
system-deficient Y. pseudotuberculosis (ΔyopB Yp), effectorlessY. pseudotuberculosis 
ΔHOJMEK (Δ6 Yp), or PBS (mock infection) or treated with 2.5mm ATP for 4 hours. The 
level of IL-12 p40 in the supernatants was measured by ELISA. Graphs show the mean 
± SEM of triplicate wells. Data are representative of two independent experiments. This 
experiment was performed by Erin E. Zwack in Igor Brodsky’s laboratory. 
 
 
 
 



	
  

86	
  

 
 
Figure 3-19. IL-1α and IL-1β control bacterial burden and neutrophil recruitment in 
vivo. (A) 8-12 week old B6 or Il1r1-/- mice were infected with 1x106 ΔflaA L. pneumophila 
intranasally (IN). Lungs were plated to quantify CFU per gram. Graph shows the mean ± 
SEM of three or four infected mice per group. Dashed line represents the limit of 
detection. (B and C) B6 or Il1r1-/- mice were infected with 1x106 ΔflaA Lp IN. 24 hours 
post-infection, bronchoalveolar lavage fluid (BALF) was collected and the percentage of 
neutrophils in the BALF was quantified by flow cytometry. Percentages are reported as 
the frequency of live cells in the BALF. (B) Representative flow cytometry plots showing 
the percentage of Gr-1+Ly6G+ neutrophils. (C) Graph showing the percentage of 
neutrophils. Each point represents an individual mouse and lines indicate the mean of 4 
mice per group. (D, E, and F) B6 mice were injected intraperitoneally (IP) with either 
PBS, 100µg isotype control antibody (iso), 100µg anti-IL-1α antibody, 100µg anti-IL-1β 
antibody, or 100 µg each of anti-IL-1α and anti-IL-1β (anti-IL-1α/β) 16 hours before 
infection. The mice were then intranasally infected with either 1x106 ΔflaA Lp or mock 
infected with PBS. (D and E) 24 hours post-infection, BALF was collected and flow 
cytometry was performed to quantify the percentage of neutrophils. (D) Representative 
flow cytometry plots showing the percentage of Gr-1+Ly6G+ neutrophils. (E) Graph 
showing the percentage of neutrophils. Each point represents an individual mouse, lines 
indicate the mean of 8 mice per group, and error bars represent SEM. Shown are the 
pooled results of two independent experiments. (F) 72 hours post-infection, the lungs 
were plated to quantify CFU per gram. Each point represents an individual mouse. Line 
indicates the mean of 4 infected mice per group with error bars representing SEM. *** is 
p<0.001 by one-way ANOVA with Tukey post-test or unpaired t-test (C). **is p<0.01 and 
*is p<0.05 by unpaired t-test. NS is not significant. 
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Figure 3-20. Intraperitoneally injected antibodies neutralize cytokine in the BALF. 
8-12 week old B6 mice were injected intraperitoneally (IP) with either PBS, 100µg anti-
IL-1α antibody, 100µg anti-IL-1β antibody, or 100µg each of anti-IL-1α and anti-IL-1β 
(anti-IL-1α/β) 16 hours before infection. The mice were then infected with either 1x106 
ΔflaA Lp or mock infected with PBS intranasally (IN). 24 hours post-infection, 
bronchoalveolar lavage fluid (BALF) was collected and the levels of IL-1α and IL-1β 
were measured by ELISA. Labels indicate what was received intraperitoneally (IP) and 
what was received intranasally (IN). Graphs show the mean ± SEM of 8 mice per group 
and represent the pooled results of two independent experiments. 
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Figure 3-21. Caspase-11 controls multiple pathways of inflammasome activation in 
response to bacterial secretion systems that access the host cytosol. Three 
distinct inflammasome pathways are induced upon interaction of virulent bacteria with 
host cells. Translocation of flagellin into the host cytosol by specialized secretion 
systems triggers a NAIP5/NLRC4/caspase-1 inflammasome that leads to cell death, IL-
1α, and IL-1β release. Virulent bacteria induce two separate pathways of caspase-11-
dependent inflammasome activation through a two-signal model. First, TLR stimulation 
by PAMPs (signal one) leads to upregulation of pro-IL-1α, pro-IL-1β, NLRP3, and pro-
caspase-11. Next, cytosolic detection of virulence activity, namely type III or type IV 
secretion (signal two), leads to caspase-11 processing and activation. Active caspase-11 
contributes to NLRP3-mediated inflammasome activation and caspase-1-dependent IL-
1β secretion. Caspase-11 also mediates caspase-1-independent cell death and IL-1α 
release through a pathway that is independent of the NLRP3/ASC and NAIP5/NLRC4 
inflammasomes and involves an unknown host sensor. 
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CHAPTER 4 
 

HUMAN CASPASE-4 MEDIATES NON-CANONICAL INFLAMMASOME ACTIVATION 
AGAINST GRAM-NEGATIVE BACTERIAL PATHOGENS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter appeared as a published peer-reviewed article titled “Human caspase-4 
mediates non-canonical inflammasome activation against Gram-negative bacterial 
pathogens” by Cierra N. Casson, Janet Yu, Valeria M. Reyes, Frances O. Taschuk, 
Anjana Yadav, Alan M. Copenhaver, Hieu T. Nguyen, Ronald G. Collman, and Sunny 
Shin. Proceedings of the National Academy of Sciences of the United States of America, 
2015. 
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A. Abstract 

Inflammasomes are critical for host defense against bacterial pathogens. In murine 

macrophages infected by Gram-negative bacteria, the canonical inflammasome 

activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. 

Additionally, a non-canonical inflammasome controlled by caspase-11 induces cell death 

and IL-1 release. However, humans do not encode caspase-11. Instead, humans 

encode two putative orthologs—caspase-4 and caspase-5. Whether either ortholog 

functions similarly to caspase-11 is poorly defined. Therefore, we sought to define the 

inflammatory caspases in primary human macrophages that regulate inflammasome 

responses to Gram-negative bacteria. We find that human macrophages activate 

inflammasomes specifically in response to diverse Gram-negative bacterial pathogens 

that introduce bacterial products into the host cytosol using specialized secretion 

systems. In primary human macrophages, IL-1β secretion requires the caspase-1 

inflammasome, while IL-1α release and cell death are caspase-1-independent. Instead, 

caspase-4 mediates IL-1α release and cell death. Our findings implicate human 

caspase-4 as a critical regulator of non-canonical inflammasome activation that initiates 

defense against bacterial pathogens in primary human macrophages. 

 

B. Significance statement 

The innate immune system provides a first line of defense against invading pathogens. 

The inflammasome is an innate immune complex that activates inflammatory caspases 

upon infection, causing cell death and IL-1 cytokine release, which initiate defense 

against Gram-negative bacterial pathogens but also mediate septic shock. Many 

inflammasome studies have been performed using cells from mice, but mice and 
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humans differ in their complement of inflammatory caspases. Instead of caspase-11, 

humans encode the putative orthologs caspase-4 and caspase-5. Here, we show that 

caspase-4 plays a conserved role in inflammasome activation in response to virulent 

Gram-negative pathogens in primary human macrophages. Our findings provide 

important insight into how inflammasomes are regulated in human cells. 

 

C. Introduction 

PRRs of the innate immune system are critical for promoting defense against bacterial 

pathogens (Janeway and Medzhitov, 2002). Cytosolic PRRs are key for discriminating 

between pathogenic and non-pathogenic bacteria, as many pathogens access the host 

cytosol, a compartment where microbial products are typically not found (Harton et al., 

2002). Cytosolic PRRs respond to patterns of pathogenesis that are often associated 

with virulent bacteria, such as the use of pore-forming toxins or injection of effector 

molecules through specialized secretion systems (Vance et al., 2009). A subset of 

cytosolic PRRs induce the formation of multi-protein complexes known as 

inflammasomes (Martinon et al., 2002). In mice, the canonical inflammasome activates 

caspase-1, an inflammatory caspase that mediates cell death and IL-1 family cytokine 

secretion (Kuida et al., 1995; Li et al., 1995). Additionally, the non-canonical 

inflammasome activates caspase-11 in response to many Gram-negative bacteria 

(Aachoui et al., 2013; Broz et al., 2012; Case et al., 2013; Casson et al., 2013; Gurung 

et al., 2012; Kayagaki et al., 2011; Lamkanfi and Dixit, 2014; Rathinam et al., 2012b). 

The canonical and non-canonical inflammasomes differentially regulate release of IL-1α 

and IL-1β (Kayagaki et al., 2011). Caspase-11 mediates LPS-induced septic shock in 
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mice (Kayagaki et al., 2011; Wang et al., 1998), and caspase-11 responds to 

cytoplasmic LPS independently of TLR4 (Hagar et al., 2013; Kayagaki et al., 2013). 

 

In addition to its pathologic role in septic shock, the non-canonical inflammasome is 

critical for host defense in mice (Aachoui et al., 2013; Akhter et al., 2012). However, in 

humans, it is unclear whether an analogous non-canonical inflammasome exists. While 

mice encode caspase-11, humans encode two putative functional orthologs—caspase-4 

and caspase-5 (Kamada et al., 1997; Kamens et al., 1995; Munday et al., 1995). All 

three inflammatory caspases bind directly to LPS in vitro (Shi et al., 2014). In murine 

macrophages, caspase-1 and -11 have both distinct and overlapping roles in the release 

of IL-1α and IL-1β and the induction of cell death (Kayagaki et al., 2011). However, the 

precise role of the human inflammatory caspases in the context of infection by bacterial 

pathogens remains unclear. 

 

To elucidate how human inflammasome activation is regulated, we investigated the 

contribution of inflammatory caspases to the response against Gram-negative bacterial 

pathogens in human macrophages. Here, we show that both canonical caspase-1-

dependent and non-canonical caspase-1-independent inflammasomes are activated in 

primary human macrophages and that caspase-4 mediates caspase-1-independent 

inflammasome responses against several bacterial pathogens, including Legionella 

pneumophila, Yersinia pseudotuberculosis, and Salmonella Typhimurium. Importantly, 

non-canonical inflammasome activation in human macrophages is specific for virulent 

strains of these bacteria that translocate bacterial products into the host cytosol via 

virulence-associated type III or type IV secretion systems. Thus, caspase-4 is critical for 
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non-canonical inflammasome responses against virulent Gram-negative bacteria in 

human macrophages. 

 

D. Results 

L. pneumophila induces both IL-1α and IL-1β release from human macrophages. 

In murine macrophages, a canonical inflammasome leads to caspase-1 activation and 

IL-1β secretion, while a non-canonical inflammasome results in caspase-11 activation, 

cell death, and IL-1α and IL-1β release (Kayagaki et al., 2011). In human macrophages, 

it is unclear whether both canonical (caspase-1-dependent) and non-canonical 

(caspase-1-independent) inflammasomes are activated during bacterial infection 

(Lamkanfi and Dixit, 2014). To determine if both canonical and non-canonical 

inflammasomes are activated, we first used Legionella pneumophila, a pathogen that 

triggers robust inflammasome activation in murine macrophages and causes a severe 

form of pneumonia, Legionnaires’ disease, in humans (McDade et al., 1977). To 

replicate within macrophages, L. pneumophila uses a T4SS to inject effector proteins 

into the host cell cytosol (Berger and Isberg, 1993; Isberg et al., 2009; Marra et al., 

1992). Because L. pneumophila activates both the canonical and non-canonical 

inflammasomes in murine macrophages (Case et al., 2013; Casson et al., 2013), we 

examined whether the bacterium induces IL-1α and IL-1β release from human 

macrophages as well. First, we differentiated and infected the THP-1 monocytic cell line. 

Upon infection, THP-1 cells underwent death and released IL-1α and IL-1β in a manner 

requiring the presence of the bacterial T4SS (Figure 4-1A). THP-1 cells infected with 

bacterial mutants lacking a functional T4SS (T4SS- Lp) did not activate the 
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inflammasome but still upregulated pro-IL-1β, suggesting that the cells are capable of 

sensing T4SS- Lp (Figure 4-1B). 

 

Inflammasome activation has been extensively analyzed in murine macrophages and in 

murine and human monocytic and epithelial cell lines. In human epithelial cell lines, non-

canonical inflammasome activation leads to IL-18 release and cell death during 

Salmonella Typhimurium infection (Knodler et al., 2014). Additionally, non-canonical 

inflammasome activation occurs in a number of transformed cell lines in response to 

intracellular LPS (Knodler et al., 2014; Shi et al., 2014). However, we have limited 

understanding of inflammasome biology in primary human innate immune cells, 

particularly with respect to pathways that regulate IL-1α and IL-1β release. We therefore 

infected primary human monocyte-derived macrophages (MDMs) from healthy human 

donors with L. pneumophila. Importantly, cell death and IL-1 release in primary human 

macrophages required the presence of the bacterial T4SS (Figure 4-1C). Although 

T4SS-deficient bacteria did not elicit IL-1β secretion, pro-IL-1β was upregulated in all 

infected donor cells (Figure 4-1D). Mature IL-1β was detected in the supernatants of 

cells infected with wild-type L. pneumophila (WT Lp) but not with T4SS- Lp (Figure 4-2). 

The absence of inflammasome activation in T4SS- Lp-infected cells was not due to a 

lack of priming, as MDMs that were first directly primed with LPS and then infected with 

T4SS- Lp also did not activate the inflammasome (Figure 4-1E and 4-1F). Thus, L. 

pneumophila triggers robust T4SS-dependent inflammasome responses in primary 

human macrophages. 
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Caspase-1-dependent and -independent inflammasome pathways are activated 

during infection of human macrophages. 

To determine whether both canonical (caspase-1-dependent) and non-canonical 

(caspase-1-independent) inflammasomes are triggered in human macrophages, we first 

examined the contribution of caspase-1 to inflammasome responses. We infected 

primary human MDMs and found that L. pneumophila infection induced caspase-1 

cleavage into a 10kDa (p10) subunit that was released into the supernatant (Figure 4-

3A). Caspase-1 was processed in response to WT Lp and not T4SS- Lp, suggesting that 

cytosolic sensing of T4SS activity controls caspase-1 cleavage into its active form. We 

next asked whether caspase-1 catalytic activity is required for inflammasome activation 

in human macrophages. We pre-treated primary human MDMs with Ac-YVAD-cmk 

(YVAD), a chemical inhibitor of caspase-1 activity, and examined inflammasome 

responses. In primary MDMs, caspase-1 activity played a major role in controlling IL-1β 

secretion in response to WT Lp (Figure 4-3B). Inhibition of caspase-1 catalytic activity 

had no significant effect on cell death or IL-1α release. This implies that as in murine 

cells, caspase-1-independent pathways contribute to IL-1α release in human cells, and 

these results were consistent with what was observed in THP-1 cells (Figure 4-3C). 

Importantly, the caspase-1-independent cytokine TNF was unaffected by inhibitor 

treatment. To further strengthen the link between caspase-1 and IL-1β secretion in 

human macrophages, we also knocked down caspase-1 in THP-1 cells (Figure 4-3D). 

Caspase-1 knockdown did not affect expression of caspase-4 or pro-IL-1β during 

infection with WT Lp but significantly reduced IL-1β secretion (Figure 4-3E). Thus, 

caspase-1 mediates IL-1β release but not IL-1α release, suggesting that another 
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inflammatory caspase may mediate IL-1α release during bacterial infection of human 

macrophages. 

 

Caspase-4 contributes to non-canonical inflammasome activation in L. 

pneumophila-infected primary human macrophages. 

As IL-1α release and cell death were independent of caspase-1, we considered the 

possibility that other inflammatory caspases mediate this response via non-canonical 

inflammasome activation. In murine macrophages, caspase-11 is robustly activated and 

cleaved in response to L. pneumophila (Casson et al., 2013), but whether caspase-4 or -

5 is activated during infection of primary human cells is not known. Notably, we observed 

that caspase-4 was processed into a 32kDa (p32) subunit in primary human MDMs 

infected with WT Lp but not T4SS- Lp, again implying that primary human macrophages 

respond to the activity of the virulence-associated T4SS (Figure 4-4A). In contrast, we 

did not observe caspase-5 processing in response to WT Lp (Figure 4-5).  

 

In murine macrophages, caspase-11 is upregulated in response to LPS, type I IFN, and 

IFNγ (Aachoui et al., 2013; Rathinam et al., 2012b). In immortalized epithelial cells, 

caspase-4 and -5 are both transcriptionally induced by IFNγ, and caspase-5 is 

upregulated by LPS in THP-1 cells (Lin et al., 2000; Ossina et al., 1997). However, the 

effect of type I IFN and LPS on caspase-4 and -5 expression in primary MDMs has not 

been examined. In MDMs, we observed that though both caspase-4 and -5 were 

transcriptionally induced by LPS and IFNβ (Figure 4-6A), only caspase-4 was 

translationally upregulated in response to both stimuli, while caspase-5 protein levels 
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increased in response to LPS but not IFNβ (Figure 4-6B). Thus, similar to murine 

caspase-11, caspase-4 is upregulated by both LPS and type I IFN. 

 

Because caspase-4 is processed specifically in response to WT Lp and is upregulated 

by both LPS and type I IFN, we interrogated whether caspase-4 has a role in 

inflammasome activation. We used siRNA to knockdown caspase-4 expression in 

primary human MDMs and observed robust silencing of caspase-4 and no effect on 

caspase-1 (Figure 4-4B). Caspase-4 played a significant role in mediating cell death in 

MDMs from four out of five donors, and knockdown of caspase-4 significantly reduced 

IL-1α release for every set of donor cells tested (Figure 4-4C). However, in contrast to 

the role of caspase-11 in murine cells (Kayagaki et al., 2011), knockdown of caspase-4 

did not significantly affect IL-1β secretion or maturation from primary MDMs (Figure 4-

4D). Release of TNF, an inflammasome-independent cytokine, was unaffected by 

silencing caspase-4. Similar results were obtained in LPS-primed primary MDMs 

infected with L. pneumophila (Figure 4-7A and 4-7B). Additionally, both IL-1β maturation 

and caspase-1 processing did not require caspase-4 during infection of THP-1 cells, 

though IL-1α release was still dependent on caspase-4 (Figure 4-4E and 4-7C). In 

contrast, when we infected THP-1 cells that are deficient for the inflammasome adaptor 

ASC (ASC-def), IL-1β release was greatly diminished (Figure 4-8A and 4-8B), thus 

placing ASC upstream of caspase-1 activation and IL-1β release. These data support a 

key role for caspase-4 in non-canonical inflammasome activation in primary human 

macrophages during L. pneumophila infection. Furthermore, these data imply that non-

canonical inflammasome activation in human macrophages in response to L. 
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pneumophila infection specifically regulates IL-1α release and cell death separately from 

IL-1β secretion.  

 

Caspase-4 mediates cell death and IL-1 release in primary human macrophages in 

response to intracellular LPS 

Intracellular LPS is a trigger for non-canonical, caspase-11-dependent inflammasome 

activation in murine macrophages (Hagar et al., 2013; Kayagaki et al., 2013). Both 

human caspase-4 and -5 directly bind LPS, and transfection of LPS induces caspase-4-

dependent cell death in human monocytic, keratinocyte, and epithelial cell lines and IL-

18 release from a human colonic epithelial cell line (Knodler et al., 2014; Shi et al., 

2014). However, it is unknown whether primary human macrophages respond to 

cytosolic LPS by activating the non-canonical inflammasome and if so, whether 

caspase-4 is responsible. Therefore, we first determined whether transfecting LPS into 

primary human MDMs induces inflammasome activation. We observed that transfection 

of LPS into primary human macrophages induced cell death, whereas extracellular LPS 

treatment did not (Figure 4-9A). Silencing of caspase-4 prior to LPS transfection resulted 

in a significant reduction in cell death for every donor (Figure 4-9B and 4-9C), and both 

IL-1α and IL-1β release were also significantly reduced (Figure 4-9C). In agreement with 

prior studies (Martinon et al., 2002), we also found that primary MDMs treated with 

extracellular LPS for 20 hours induced cleavage of caspase-5, but LPS transfection did 

not increase this processing (Figure 4-10A). These data indicate that caspase-4 is 

primarily responsible for non-canonical inflammasome responses to intracellular LPS in 

primary human macrophages, but unlike the response to bacterial infection, caspase-4 

appears to control both IL-1α and IL-1β release during LPS transfection (Figure 4-14). 
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Caspase-4 has a conserved role in non-canonical inflammasome activation 

against Gram-negative bacterial pathogens. 

In murine macrophages, caspase-11 controls non-canonical inflammasome responses 

to a wide variety of Gram-negative bacteria, and caspase-11 is activated in response to 

bacteria that introduce bacterial products into the host cytosol via virulence-associated 

secretion systems (Broz et al., 2012; Casson et al., 2013; Gurung et al., 2012; Rathinam 

et al., 2012b). We thus hypothesized that caspase-4 has a conserved role in 

inflammasome activation against other pathogens that use specialized secretion 

systems to deliver bacterial components into the host cytosol. Similarly to the L. 

pneumophila T4SS, other Gram-negative pathogens, including Salmonella enterica 

serovar Typhimurium and Yersinia pseudotuberculosis, use a T3SS to inject bacterial 

effectors that modify host signaling (Galán et al., 2014). Though the T3SS is 

evolutionarily quite distinct from the T4SS, both secretion systems perform analogous 

functions to introduce bacterial products into the host cytosol. Therefore, we infected 

primary human MDMs with S. Typhimurium and Y. pseudotuberculosis to test whether 

these bacteria also activate non-canonical inflammasome responses in human cells. S. 

Typhimurium triggered robust cell death and IL-1 release in a manner requiring the 

Salmonella pathogenicity island I (SPI-1) T3SS, as bacteria lacking SPI-1 (T3SS- St) 

induced little inflammasome activation (Figure 4-11A). Because Y. pseudotuberculosis 

encodes effectors that block inflammasome activation (Brodsky et al., 2010; LaRock and 

Cookson, 2012), we infected macrophages with a strain of Y. pseudotuberculosis lacking 

the six known secreted effectors (Δ6 Yp), as Δ6 Yp induces robust caspase-11-

dependent inflammasome activation in murine macrophages (Casson et al., 2013). For 

Y. pseudotuberculosis, robust inflammasome activation in human macrophages also 
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required the T3SS (Figure 4-11B). For both bacteria, the inflammasome-independent 

cytokine TNF was secreted independently of the presence of a T3SS.  

 

We next tested whether caspase-4 has a conserved role in inflammasome responses 

against Y. pseudotuberculosis and S. Typhimurium by using siRNA to knockdown 

caspase-4 in primary human MDMs (Figure 4-12A and 4-12B). Indeed, caspase-4 

silencing in MDMs significantly reduced IL-1α release (Figure 4-11D and 4-11E). Similar 

to infection with L. pneumophila, IL-1β secretion was caspase-4-independent during 

infection with Y. pseudotuberculosis, and IL-1β secretion and maturation and caspase-1 

processing were also caspase-4-independent during S. Typhimurium infection (Figure 4-

13). Additionally, infection of ASC-def THP-1 cells showed that ASC is required for IL-1β 

release during both Y. pseudotuberculosis and S. Typhimurium infection, again placing 

ASC upstream of caspase-1 (Figure 4-8C). Caspase-4 knockdown also significantly 

reduced cell death upon Y. pseudotuberculosis infection (Figure 4-12C), though cell 

death during S. Typhimurium infection was independent of caspase-4, implying that at 

least two distinct pathways that mediate cell death are activated in human cells during 

infection (Figure 4-12D). Furthermore, upon infection with wild-type S. Typhimurium (WT 

St), caspase-4 was processed into the p32 subunit and released into the supernatant 

(Figure 4-11C). Caspase-4 processing requires the presence of the T3SS, as infection 

with T3SS- St did not induce caspase-4 cleavage. Unlike caspase-4, caspase-5 was not 

processed during either Y. pseudotuberculosis or S. Typhimurium infection (Figure 4-

10B). Thus, supporting our findings with L. pneumophila, caspase-4 mediates non-

canonical, caspase-1-independent inflammasome activation during infection with Y. 

pseudotuberculosis and S. Typhimurium as well. Collectively, these data implicate 
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caspase-4 as a critical mediator of inflammasome activation against Gram-negative 

bacterial pathogens that translocate bacterial products into the cytosol of primary human 

macrophages. 

 

E. Discussion 

Our data demonstrate that caspase-4 regulates non-canonical inflammasome responses 

against Gram-negative bacterial pathogens in primary human macrophages. Recent 

findings also indicate a role for caspase-4 in non-hematopoietic cells, as caspase-4 

mediates secretion of IL-18, another IL-1 family cytokine, in epithelial cell lines infected 

with Salmonella Typhimurium (Knodler et al., 2014). Interestingly, Shigella flexneri 

encodes an effector protein that blocks caspase-4 activity (Kobayashi et al., 2013), and 

overexpression of caspase-4 in cell lines restricts growth of L. pneumophila (Akhter et 

al., 2012), supporting a critical role for caspase-4 in defense against bacterial 

pathogens. Further studies will be important for understanding how caspase-4 responds 

specifically to virulent bacteria. As human caspase-4 can bind LPS directly and 

enhances inflammasome activation in response to LPS when ectopically expressed in 

mouse macrophages (Kajiwara et al., 2014; Shi et al., 2014), caspase-4 may respond to 

LPS that is somehow released into the cytosol during infection with virulent bacteria. In 

murine cells, IFN-inducible GBPs enhance disruption of phagosomes carrying bacterial 

cargo and allow bacterial products to enter the host cell cytosol, thus promoting 

caspase-11 activation (Meunier et al., 2014; Pilla et al., 2014). It would be of interest to 

determine if GBPs enhance caspase-4 activation in human macrophages as well.  
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As L. pneumophila and S. Typhimurium reside within pathogen-containing vacuoles and 

Y. pseudotuberculosis has an extracellular lifestyle, it is still unclear if caspase-4 is also 

activated by Gram-negative bacterial pathogens that reside within the macrophage 

cytosol. Presumably, as virulent strains of these pathogens reside and replicate within 

the cytosol, their LPS could be sensed directly via caspase-4. However, many of these 

pathogens may have also evolved to evade caspase-4-mediated sensing by blocking 

caspase-4 activity, as demonstrated by S. flexneri (Kobayashi et al., 2013), or by 

encoding LPS that is not readily detectable, as is the case for Francisella novicida in 

murine macrophages (Hagar et al., 2013). 

 

We observed that although caspase-11 contributes to IL-1β release from murine 

macrophages in response to both cytosolic LPS and bacterial infection, caspase-4 

contributes to IL-1β release in response to cytosolic LPS but does not play a major role 

in controlling IL-1β release from human macrophages during bacterial infection. We 

found that human ASC is upstream of caspase-4-independent caspase-1 activation and 

IL-1β secretion in response to bacterial infection. We speculate that ASC works in 

conjunction with NLRP3 to activate caspase-1 during Gram-negative bacterial infection, 

as NLRP3 is recruited to ASC foci during infection of THP-1 cells with S. Typhimurium 

(Man et al., 2014), and both ASC and NLRP3 contribute to IL-1β secretion (Li et al., 

2008). It is possible that during bacterial infection, another cytosolic PAMP dominantly 

triggers a canonical NLRP3/ASC/caspase-1 inflammasome and IL-1β release 

independently of caspase-4. Alternatively, even though we do not detect caspase-5 

processing, it is possible that caspase-5 contributes to caspase-1 activation and IL-1β 

secretion independently of caspase-4 during bacterial infection (Figure 4-14). 
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Intriguingly, in addition to our finding that caspase-4 is activated during bacterial 

infection, caspase-4 is also activated in response to ER stress (Hitomi et al., 2004) and 

ultraviolet B (UVB)-irradiation (Sollberger et al., 2012). This implies that both exogenous 

and endogenous stressors may trigger caspase-4 activation and that a common 

mechanism may be involved. Both UVB-irradiation and ER stress result in elevated 

cytoplasmic calcium, which has been linked to inflammasome activation (Feldmeyer et 

al., 2007; Murakami et al., 2012; Sano and Reed, 2013). As L. pneumophila intercepts 

ER-derived vesicles to establish its replicative vacuole (Horwitz and Silverstein, 1980; 

Swanson and Isberg, 1995), it is possible that perturbations to ER and calcium 

homeostasis during bacterial infection provide common signals that induce caspase-4 

activation. 

 

Overall, our data implicate caspase-4 as a critical mediator of host defense against 

virulent Gram-negative bacteria in primary human macrophages and reveal unexpected 

differences in the regulation of non-canonical inflammasome pathways in murine and 

human cells. Caspase-4 plays an important role as an innate immune effector for 

discrimination between pathogenic and nonpathogenic bacteria in humans, and further 

studies will examine the basis for differences in how non-canonical inflammasomes 

function in different organisms. Like caspase-11 in mice, caspase-4 may play a dual role 

in humans to both protect the host and mediate septic shock during bacterial infection. 

Therefore, studying caspase-4 is critical for our understanding of how the human 

immune system coordinates an appropriate response during bacterial infection. 
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Figure 4-1. L. pneumophila induces both IL-1α and IL-1β release from human 
macrophages. (A-D) PMA-differentiated THP-1 cells (A and B) or primary human MDMs 
(C and D) were infected with wild-type L. pneumophila (WT Lp), T4SS-deficient L. 
pneumophila (T4SS- Lp), or mock infected with PBS for 20 hours. (E and F) Primary 
human MDMs were primed with LPS and infected with WT Lp, T4SS- Lp, or mock 
infected for 4 hours. Cell death (% cytotoxicity) was measured using LDH release assay 
and normalized to mock infected cells. IL-1α and IL-1β levels in the supernatants were 
measured by ELISA. Immunoblot analysis was performed on lysates for full-length IL-1β 
(pro-IL-1β), and blots were re-probed for β-actin as a loading control. Western blots (B, 
D, and F) are representative of at least 3 independent experiments. Shown are the 
pooled results of 4 independent experiments in THP-1 cells (A) or the pooled results of 6 
independent infections of cells from different healthy human donors (C and E). Each 
data point shows the mean of triplicate infected wells. For (A), * is p<0.05 and ** is 
p<0.01 by unpaired t-test. For (C and E), *** is p<0.001, ** is p<0.01, and * is p<0.05 by 
paired t-test. Dashed line is the limit of detection. 
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Figure 4-2. Primary human macrophages secrete mature IL-1β in response to WT 
L. pneumophila. Primary human MDMs were infected with wild-type L. pneumophila 
(WT Lp), T4SS-deficient L. pneumophila (T4SS- Lp), or mock infected with PBS for 20 
hours. Immunoblot analysis was performed on supernatants for cleaved IL-1β (mature 
IL-1β) and lysates for pro-IL-1β, and blots were re-probed for β-actin as a loading 
control. Western blots are representative of at least 2 independent experiments. 
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Figure 4-3. Caspase-1-dependent and -independent inflammasomes are activated 
during infection of human macrophages. (A) Primary human MDMs were infected 
with WT Lp, T4SS- Lp, or mock infected 20 hours. Immunoblot analysis was performed 
on supernatants for cleaved caspase-1 (casp-1 p10) and lysates for full-length caspase-
1 (pro-casp-1). Lysates were re-probed for β-actin. (B and C) Primary human MDMs (B) 
or PMA-differentiated THP-1 cells (C) were pre-treated with 40µM caspase-1 inhibitor 
(YVAD) or vehicle control (DMSO) and infected with WT Lp or mock infected for 20 
hours. (D and E) PMA-differentiated THP-1 cells were transfected with control siRNA or 
siRNA against caspase-1 and infected with WT Lp or mock infected for 20 hours. 
Immunoblot analysis was performed on lysates for pro-casp1, pro-casp4, and pro-IL-1β, 
and blots were re-probed for β-actin. Cell death was measured using LDH release assay 
and normalized to mock infected cells. IL-1α, IL-1β, and TNF levels in the supernatants 
were measured by ELISA. Western blots (A and D) are representative of 3 independent 
experiments. Shown are the pooled results of 4 independent infections of cells from 
different donors (B) or the pooled results of 4 (C) or 3 (E) independent experiments in 
THP-1 cells. Each data point shows the mean of triplicate infected wells. * is p<0.05 by 
paired t-test (B and E) or unpaired t-test (C). NS is not significant. Dashed line is the limit 
of detection. 
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Figure 4-4. Caspase-4 contributes to non-canonical inflammasome activation in L. 
pneumophila-infected primary human macrophages. (A) Primary human MDMs were 
infected with WT Lp, T4SS- Lp, or mock infected for 20 hours. Immunoblot analysis was 
performed on supernatants for cleaved caspase-4 (casp4 p32) and lysates for pro-
casp4. Lysates were re-probed for β-actin. (B-E) Primary human MDMs (B-D) or THP-1 
cells (E) were transfected with control siRNA or siRNA against caspase-4 and infected 
with WT Lp or mock infected for 20 hours. Immunoblot analysis was performed on 
supernatants for cleaved IL-1β (mature IL-1β) and cleaved caspase-1 (casp-1 p10) and 
lysates for pro-IL-1β, pro-casp1, and pro-casp4, and blots were re-probed for β-actin. 
Cell death was measured using LDH release assay and normalized to mock infected 
cells. IL-1α, IL-1β, and TNF levels in the supernatants were measured by ELISA. 
Western blots (A, B, D, and E) are representative of at least 3 independent experiments. 
Shown are the pooled results of 5 independent infections of cells from different donors 
(C). Each data point shows the mean of triplicate infected wells. ** is p<0.01 and * is 
p<0.05 by paired t-test. NS is not significant. Dashed line is the limit of detection. 
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Figure 4-5. Pro-caspase-5 is found in the lysates but is not processed in response 
to WT L. pneumophila. Primary human MDMs were infected with WT Lp or mock 
infected 20 hours. Immunoblot analysis was performed on supernatants for cleaved 
caspase-5 and lysates for full-length caspase-5 (pro-casp5). Western blots are 
representative of at least 3 independent experiments. 
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Figure 4-6. Caspase-4 is transcriptionally and translationally upregulated by LPS 
and IFNβ, whereas caspase-5 is transcriptionally upregulated by LPS and IFNβ but 
only translationally upregulated by LPS. (A and B) Primary human MDMs were either 
left untreated (unstim) or were treated with LPS or IFNβ at the indicated concentrations 
for either 4 or 20 hours. (A) Transcript levels were determined by qRT-PCR, and fold 
induction was calculated by normalizing to the HPRT housekeeping gene for each 
sample and then to the unstimulated sample for each time point. (B) Immunoblot 
analysis was performed on lysates for full-length caspase-4 (pro-casp4) and full-length 
caspase-5 (pro-casp5), and blots were re-probed for β-actin as a loading control. 
Western blots are representative of 3 independent experiments. Shown are the pooled 
results of 3 independent treatments of cells from different donors (A). Each data point 
shows the mean of duplicate treated wells. 
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Figure 4-7. Caspase-4 contributes to non-canonical inflammasome activation in 
LPS-primed L. pneumophila-infected primary human macrophages and THP-1 
cells. (A and B) Primary human MDMs were transfected with control siRNA or siRNA 
against caspase-4, primed with LPS, and infected with WT Lp or mock infected for 4 
hours. (A) Cell death was measured using LDH release assay and normalized to mock 
infected cells. IL-1α, IL-1β, and TNF levels in the supernatants were measured by 
ELISA. (B) Immunoblot analysis was performed on supernatants for cleaved IL-1β 
(mature IL-1β) and lysates for pro-IL-1β, pro-casp1, and pro-casp4, and blots were re-
probed for β-actin. Western blots are representative of 3 independent experiments. 
Shown are the pooled results of 4 independent infections of cells from different donors 
(A). Each data point shows the mean of triplicate infected wells. * is p<0.05 by paired t-
test. NS is not significant. Dashed line is the limit of detection. 
PMA-differentiated THP-1 cells were transfected with control siRNA or siRNA against 
caspase-4 and infected with WT Lp or mock infected for 20 hours. IL-1α and IL-1β levels 
in the supernatants were measured by ELISA. Shown are the pooled results of 4 
independent experiments in THP-1 cells. Each data point shows the mean of triplicate 
infected wells. Control siRNA from Exp#1 is from the same experiment as Fig 2E. * is 
p<0.05 by unpaired t-test. NS is not significant. Dashed line is the limit of detection. 
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Figure 4-8. ASC is required for IL-1β release in response to Gram-negative 
bacterial infection. (A and B) ASC-deficient (ASC-def) or empty vector control (Null) 
PMA-differentiated THP-1 cells were infected with WT Lp or mock infected for 20 hours. 
(A) Immunoblot analysis was performed on lysates for pro-IL-1β, pro-casp1, pro-casp4, 
and ASC, and blots were re-probed for β-actin. (B) IL-1β and TNF levels in the 
supernatants were measured by ELISA. (C) ASC-def or Null PMA-differentiated THP-1 
cells were primed with LPS and infected with wild-type S. Typhimurium (WT St), T3SS-
expressing effectorless Y. pseudotuberculosis (Δ6 Yp), treated with 10µM nigericin for 2 
hours as an ASC-dependent control, or mock infected for 4 hours. IL-1β and TNF levels 
in the supernatants were measured by ELISA. Western blots are representative of at 
least 2 independent experiments. Shown are the pooled results of 4 independent 
experiments in THP-1 cells (B and C). Each data point shows the mean of triplicate 
infected wells. ** is p<0.01 and *** is p<0.001 by unpaired t-test. NS is not significant. 
Dashed line is the limit of detection. 
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Figure 4-9. Caspase-4 mediates inflammasome activation in primary human 
macrophages in response to intracellular LPS. (A) Primary human MDMs were 
primed with Pam3CSK4 and either treated with extracellular LPS at the indicated 
concentrations, mock transfected with Fugene alone, or transfected with Fugene and 
LPS at the indicated concentrations for 20 hours. (B and C) Primary human MDMs were 
transfected with control siRNA or siRNA against caspase-4, primed with Pam3CSK4, 
and mock transfected with Fugene alone or transfected with Fugene and 2µg/mL LPS 
for 20 hours. Immunoblot analysis was performed on lysates for pro-casp1, pro-casp4, 
and pro-IL-1β, and blots were re-probed for β-actin. Cell death was measured using LDH 
release assay and normalized to LPS alone (A) or mock transfected cells (C). IL-1α, IL-
1β, and TNF levels in the supernatants were measured by ELISA. Western blots (B) are 
representative of at least 4 independent experiments. Shown are the pooled results of 5 
independent infections of cells from different donors (A and C). Each data point shows 
the mean of triplicate infected wells. * is p<0.05 by paired t-test. NS is not significant. 
Dashed line is the limit of detection. 
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Figure 4-10. Caspase-5 does not undergo enhanced cleavage in response to 
intracellular LPS, S. Typhimurium, or Y. pseudotuberculosis. (A) Primary human 
MDMs were primed with Pam3CSK4 and either treated with 2µg/mL extracellular LPS or 
transfected with Fugene and 2µg/mL LPS for 20 hours. (B) Primary human MDMs were 
primed with LPS and infected with WT St, Δ6 Yp, mock infected for 4 hours, or treated 
with LPS alone for 20 hours. Immunoblot analysis was performed on supernatants for 
cleaved caspase-5 (casp5 p10) and lysates for full-length caspase-5 (pro-casp5), and 
blots were re-probed for β-actin. Western blots are representative of at least 2 
independent experiments. 
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Figure 4-11. Caspase-4 has a conserved role in non-canonical inflammasome 
activation against Gram-negative bacterial pathogens. (A and C) Primary human 
MDMs were primed with LPS and infected with wild-type S. Typhimurium (WT St), 
T3SS-deficient S. Typhimurium (T3SS- St), or mock infected for 4 hours. Immunoblot 
analysis was performed on supernatants for casp4 p32 and lysates for pro-casp4. Blots 
were re-probed for β-actin. (B) Primary human MDMs were primed with LPS and 
infected with T3SS-expressing effectorless Y. pseudotuberculosis (Δ6 Yp), T3SS-
deficient Y. pseudotuberculosis (T3SS- Yp), or mock infected for 4 hours. (D and E) 
Primary human MDMs were transfected with control siRNA or siRNA against caspase-4, 
primed with LPS, and infected with Δ6 Yp (D), WT St (E), or mock infected for 4 hours. 
Cell death was measured using LDH release assay and normalized to mock infected 
cells. IL-1α, IL-1β, and TNF levels in the supernatants were measured by ELISA. 
Western blots (C) are representative of at least 3 independent experiments. Shown are 
the pooled results of 4 (A and E), 5 (D), or 6 (B) independent infections of cells from 
different donors. Each data point shows the mean of triplicate infected wells. * is p<0.05 
and ** is p<0.01 by paired t-test. NS is not significant. Dashed line is the limit of 
detection. 
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Figure 4-12. Caspase-4 contributes to cell death during infection with Y. 
pseudotuberculosis but not during infection with S. Typhimurium. Primary human 
MDMs were transfected with control siRNA or siRNA against caspase-4, primed with 
LPS, and infected with Δ6 Yp (A and C), WT St (B and D), or mock infected for 4 hours. 
(A and B) Immunoblot analysis was performed on lysates for pro-casp1, pro-casp4, and 
pro-IL-1β, and blots were re-probed for β-actin. (C and D) Cell death was measured 
using LDH release assay and normalized to mock infected cells. Western blots (A and B) 
are representative of at least 3 independent experiments. Shown are the pooled results 
of 6 (C) or 4 (D) independent infections of cells from different donors. Each data point 
shows the mean of triplicate infected wells. * is p<0.05 by paired t-test. NS is not 
significant. Dashed line is the limit of detection. 
 
  



	
  

117	
  

 
 
Figure 4-13. IL-1β maturation and caspase-1 cleavage are independent of caspase-
4 during S. Typhimurium infection. Primary human MDMs were transfected with 
control siRNA or siRNA against caspase-4, primed with LPS, and infected with WT St for 
4 hours. Immunoblot analysis was performed on supernatants for cleaved IL-1β (mature 
IL-1β) and cleaved caspase-1 (casp-1 p10) and lysates for pro-IL-1β, pro-casp1, and 
pro-casp4, and blots were re-probed for β-actin. Western blots are representative of at 
least 3 independent experiments. 
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Figure 4-14. Model for inflammasome activation in primary human macrophages in 
response to intracellular LPS and Gram-negative bacterial infection. In the context 
of transfection of LPS into primary human MDMs, caspase-4 is required for maximal cell 
death and IL-1α and IL-1β release. Presumably, intracellular LPS binds directly to 
caspase-4 to induce activation. We speculate that caspase-1 is activated downstream of 
caspase-4 to mediate IL-1β release in response to intracellular LPS. In contrast, during 
infection of primary human MDMs with Gram-negative bacterial pathogens, IL-1β 
secretion appears to be independent of caspase-4. We speculate that the presence of a 
type III or type IV secretion system somehow allows bacterial LPS to access the 
macrophage cytosol, where LPS binds to and activates caspase-4 to induce cell death 
and IL-1α release. As IL-1β secretion is independent of caspase-4 but requires caspase-
1 and ASC, we speculate that either LPS binds to caspase-5 to enhance caspase-1 
activation or another PAMP is sensed via a canonical NLRP3 inflammasome to induce 
caspase-1 activation and IL-1β secretion during infection. 
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CHAPTER 5 
 

SENSING OF FLAGELLIN INDUCES INFLAMMASOME ACTIVATION IN HUMAN 
MACROPHAGES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter contains unpublished data generated by Cierra N. Casson, Valeria M. 
Reyes, Frances O. Taschuk, and Sunny Shin.  
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A. Introduction 

PRRs are critical for initiating immune responses against invading microorganisms 

(Janeway and Medzhitov, 2002). Cytosolic PRRs, such as the NLRs, specifically detect 

microbial pathogens that have breached the host cell cytosol (Harton et al., 2002), a 

cellular compartment that is typically free of microorganisms. A subset of NLRs activate 

multi-protein complexes known as inflammasomes, which assemble in the host cytosol 

in response to a wide variety of pathogenic insults to activate the enzyme caspase-1 

(Rathinam et al., 2012a). Caspase-1 has multiple effector functions, including the 

induction of a pro-inflammatory form of cell death known as pyroptosis (Cookson and 

Brennan, 2001). Caspase-1 also mediates the release of IL-1 family cytokines, including 

IL-1α and IL-1β (Kuida et al., 1995; Li et al., 1995). 

 

In murine macrophages, the host enzyme caspase-11 also participates in inflammasome 

activation in response to infection by many Gram-negative bacterial pathogens (Broz et 

al., 2012; Case et al., 2013; Casson et al., 2013; Gurung et al., 2012; Kayagaki et al., 

2011; Rathinam et al., 2012b). Caspase-11 is required for IL-1α release and cell death 

and contributes to NLRP3- and caspase-1-dependent IL-1β and IL-18 release as well 

(Kayagaki et al., 2011). However, humans do not encode caspase-11 (Martinon and 

Tschopp, 2007). Instead, humans encode two putative functional orthologs—caspase-4 

and caspase-5 (Kamada et al., 1997; Kamens et al., 1995; Munday et al., 1995). Though 

caspase-5 was found to co-immunoprecipitate with caspase-1 when the inflammasome 

was first described in THP-1 cells (Martinon et al., 2002), recent studies have shown that 

human caspase-4 is a functional homolog of murine caspase-11 in that it mediates 

cytokine release and cell death during infection. For example, caspase-4 is required for 
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IL-18 release from epithelial cell lines during infection with S. Typhimurium (Knodler et 

al., 2014). Additionally, caspase-4 mediates IL-1α release from primary human 

macrophages in response to Gram-negative bacterial pathogens such as L. 

pneumophila, Y. pseudotuberculosis, and S. Typhimurium (Casson et al., 2015). 

Caspase-4 also mediates cell death in response to both transfection of intracellular LPS 

and Gram-negative bacterial infection in both immortalized cell lines and primary human 

macrophages (Casson et al., 2015; Knodler et al., 2014; Shi et al., 2014). 

 

Currently, intracellular LPS is the only known bacterial ligand that triggers the non-

canonical caspase-11-dependent inflammasome in murine cells and the non-canonical 

caspase-4-dependent inflammasome in human cells (Hagar et al., 2013; Kayagaki et al., 

2013; Shi et al., 2014). However, multiple bacterial ligands are known to activate the 

canonical caspase-1-dependent inflammasome in both human and murine cells. Many 

bacterial ligands are sensed by host macrophages via a subset of NLRs known as the 

NAIP proteins. Though mice encode multiple NAIP paralogs, humans encode only one 

NAIP protein (Dietrich, 2001; Endrizzi et al., 2000). Each NAIP protein responds to a 

distinct bacterial stimulus. For example, the conserved inner rod component of the 

bacterial T3SS triggers murine NAIP2, while the needle protein of the T3SS triggers 

NAIP1 in murine cells and NAIP in human cells (Kofoed and Vance, 2011; Yang et al., 

2013; Zhao et al., 2011). Additionally, in murine macrophages, intracellular bacterial 

flagellin is a robust trigger for the canonical NAIP5/NLRC4- and caspase-1-dependent 

inflammasome (Franchi et al., 2006; Molofsky et al., 2006; Ren et al., 2006; Zamboni et 

al., 2006). Flagellin associates with both NAIP5 and NAIP6 to induce inflammasome 
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activation, and NLRC4 appears to be an important adaptor downstream of the NAIP 

proteins (Kofoed and Vance, 2011; Zhao et al., 2011). 

 

Human cells are not thought to respond to intracellular flagellin because human NAIP 

does not co-immunoprecipitate with flagellin, and the presence of cytosolic flagellin does 

not trigger the formation of a multi-meric complex containing NAIP and NLRC4 (Zhao et 

al., 2011). However, the assays examining inflammasome assembly were performed 

using overexpression of various NLRs in a heterologous cell expression system (Kofoed 

and Vance, 2011; Zhao et al., 2011). Therefore, it is possible that endogenous human 

NAIP could recognize flagellin during physiological infection conditions in primary cells. 

Interestingly, there is evidence that human NAIP responds to bacterial flagellin during 

infection with L. pneumophila and restricts bacterial growth (Vinzing et al., 2008). 

However, a role for NAIP in controlling inflammasome activation and release of IL-1 

family cytokines in response to bacterial pathogens has not been examined. Additionally, 

it is unclear if flagellin can trigger inflammasome activation in human cells that is 

independent of sensing via NAIP. Therefore, we wanted to elucidate if flagellin is a 

trigger for IL-1 release during bacterial infection of human cells. 

 

To determine if flagellin triggers inflammasome activation in human macrophages during 

Gram-negative bacterial infection, we infected human macrophages with flagellin-

deficient strains of both S. Typhimurium and L. pneumophila and examined IL-1α and IL-

1β release. Intriguingly, we find that both IL-1α and IL-1β release are reduced in 

response to infection with flagellin-deficient pathogens, suggesting that flagellin is a 

trigger for both the canonical and non-canonical inflammasomes in human 
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macrophages. Therefore, our data suggest that cytosolic flagellin is sensed in human 

macrophages and that flagellin, like LPS, may be an important trigger for caspase-4 

activation during bacterial infection. 

 

B. Results 

IL-1 release from THP-1 cells in response to S. Typhimurium is dependent on the 

presence of bacterial flagellin. 

To determine if bacterial flagellin is sensed in human macrophages to induce 

inflammasome activation, we first infected the immortalized monocytic THP-1 cell line 

with S. Typhimurium. Infection with WT St induces robust IL-1 release, while infection 

with flagellin-deficient S. Typhimurium (FliCFljB- St) induces significantly less IL-1α and 

IL-1β release (Figure 5-1). IL-1α and IL-1β release in response to S. Typhimurium 

require the presence of the bacterial SPI-1 T3SS (Casson et al., 2015). Therefore, the 

T3SS is required for flagellin-dependent IL-1 secretion, and cytosolic flagellin introduced 

by the presence of the T3SS is likely the trigger for inflammasome activation during 

infection. Secretion of TNF, an inflammasome-independent cytokine, was unaffected by 

flagellin-deficiency (Figure 5-1). Additionally, the decrease in IL-1β secretion in response 

to FliCFljB- St was not due to a general defect in priming, as expression of pro-IL-1β was 

not decreased during infection with FliCFljB- St (Figure 5-2). 

 

IL-1 release from primary human macrophages in response to L. pneumophila is 

dependent on the presence of bacterial flagellin. 

It remains unclear if flagellin triggers release of IL-1α and IL-1β in primary human 

macrophages. Therefore, we infected primary human MDMs with L. pneumophila and 
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examined inflammasome activation. For every set of donor cells tested, we find that both 

IL-1α and IL-1β release are significantly dependent on the presence of bacterial flagellin, 

as infection with flagellin-deficient L. pneumophila (FlaA- Lp) induces less IL-1 release 

than infection with WT Lp (Figure 5-3). However, secretion of TNF, an inflammasome-

independent cytokine, was unaffected by the absence of flagellin during infection. Again, 

IL-1 release in response to L. pneumophila in primary MDMs requires the presence of 

the bacterial T4SS (Casson et al., 2015). Therefore, flagellin that gains access to the 

macrophage cytosol in the presence of the T4SS is likely the ligand that triggers IL-1 

release during infection. 

 

C. Discussion 

Our data demonstrate that sensing of bacterial flagellin contributes to IL-1 release from 

human macrophages during Gram-negative bacterial infection. Contrary to previous 

studies (Yang et al., 2013; Zhao et al., 2011), our data imply that human cells are 

capable of responding to cytosolic flagellin and that cytosolic flagellin likely triggers 

inflammasome activation. Intriguingly, our data show that the presence of bacterial 

flagellin enhances both IL-1α and IL-1β release from human macrophages. Previous 

studies have demonstrated that caspase-4 controls IL-1α release in response to both S. 

Typhimurium and L. pneumophila (Casson et al., 2015). In contrast to caspase-11 in 

murine macrophages (Kayagaki et al., 2011), caspase-4 does not contribute to IL-1β 

release from human macrophages in response to Gram-negative bacterial pathogens 

(Casson et al., 2015). Instead, caspase-1 mediates IL-1β release separately from 

caspase-4. Therefore, our data place flagellin upstream of both caspase-1 and caspase-
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4 as a trigger for both canonical and non-canonical inflammasome activation in human 

macrophages. 

 

Although we have uncovered a role for flagellin in inducing IL-1α and IL-1β release from 

human macrophages, it is still unclear which NLR responds to cytosolic flagellin during 

infection. Presumably, human NAIP is involved in detecting flagellin in human cells, as 

NAIP restricts L. pneumophila growth (Vinzing et al., 2008), and the mouse NAIP 

paralogs NAIP5 and NAIP6 detect flagellin in murine cells (Kofoed and Vance, 2011; 

Zhao et al., 2011). However, as human NAIP is thought to specifically detect the needle 

protein of the bacterial T3SS (Yang et al., 2013), it is still unclear if NAIP senses flagellin 

during infection of human macrophages. Future studies interrogating a role for NAIP in 

mediating IL-1 release during infection with S. Typhimurium and L. pneumophila 

infection will be valuable for understanding how flagellin is sensed in human cells. 

 

D. Acknowledgements 

This work was supported in part by National Institutes of Health grants 

K99/R00AI087963 (to SS), as well as grants from the American Lung Association (RG-

268528-N, to SS), the University of Pennsylvania University Research Foundation (to 

SS), the American Heart Association (13BGIA14780070, to SS), and the University of 

Pennsylvania Institute for Immunology Pilot Grant (to SS). This material is based on 

work supported by the National Science Foundation under Grant No. DGE-0822 (to 

CNC, graduate research fellowship). Valeria M. Reyes and Frances O. Taschuk 

performed infections in THP-1 cells and assisted in immunoblot analysis. Sunny Shin 

assisted in the design of experiments and interpretation of data. 



	
  

126	
  

 
 
 
 
Figure 5-1. IL-1α and IL-1β release from THP-1 cells in response to S. 
Typhimurium infection is dependent on the presence of bacterial flagellin. PMA-
differentiated THP-1 cells were primed with LPS and infected with wild-type S. 
Typhimurium (WT St), flagellin-deficient S. Typhimurium (FliCFljB- St), or mock infected 
with PBS for 4 hours. IL-1α and IL-1β levels in the supernatants were measured by 
ELISA. Shown are the pooled results of 3 independent experiments in THP-1 cells. Each 
data point shows the mean of triplicate infected wells. * is p<0.05 and ** is p<0.01 by 
unpaired t-test. Dashed line is the limit of detection. 
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Figure 5-2. THP-1 cells do not have a defect in upregulating pro-IL-1β in response 
to flagellin-deficient S. Typhimurium. PMA-differentiated THP-1 cells were primed 
with LPS and infected with wild-type S. Typhimurium (WT St), T3SS-deficient S. 
Typhimurium (T3SS- St), or flagellin-deficient S. Typhimurium (FliCFljB- St) for 4 hours. 
Immunoblot analysis was performed on lysates for full-length IL-1β (pro-IL-1β), and blots 
were re-probed for β-actin as a loading control. Western blots are representative of 2 
independent experiments. 
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Figure 5-3. IL-1α and IL-1β release from primary human macrophages in response 
to L. pneumophila infection is dependent on the presence of bacterial flagellin. 
Primary human MDMs were infected with wild-type L. pneumophila (WT Lp), flagellin-
deficient L. pneumophila (FlaA- Lp), or mock infected with PBS for 20 hours. IL-1α and 
IL-1β levels in the supernatants were measured by ELISA. Shown are the pooled results 
of 4 independent infections of cells from different healthy human donors. Each data point 
shows the mean of triplicate infected wells. * is p<0.05 and ** is p<0.01 by paired t-test. 
Dashed line is the limit of detection. 
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CHAPTER 6 
 

 DISCUSSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Sections of this chapter have been adapted from a published peer-reviewed mini-review 
titled “Inflammasome-mediated cell death in response to bacterial pathogens that access 
the host cell cytosol: lessons from Legionella pneumophila” by Cierra N. Casson and 
Sunny Shin. Frontiers in Cellular and Infection Microbiology, 2013. 
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In the work presented in this dissertation, we have defined a critical role for caspase-11 

in activating the inflammasome in murine macrophages in response to L. pneumophila 

and Y. pseudotuberculosis, two Gram-negative bacterial pathogens that use virulence-

associated secretion systems to access the host cell cytosol during infection. We have 

also established a distinct role for IL-1α in driving neutrophil recruitment to the airway 

space independently of IL-1β during pulmonary L. pneumophila infection. Additionally, 

we have identified a conserved role for caspase-4 in human cells in controlling IL-1α 

release in response to L. pneumophila, Y. pseudotuberculosis, and S. Typhimurium. 

Finally, we have identified bacterial flagellin as a potential activator of both the canonical 

and non-canonical inflammasome in human macrophages. 

 

A. Caspase-11 mediates inflammasome activation in murine macrophages in 

response to Gram-negative bacterial pathogens 

In our studies, we used caspase-1-deficient and caspase-11-deficient macrophages to 

define the precise roles of caspase-1 and caspase-11 during infection with L. 

pneumophila. Previous studies have demonstrated that caspase-11 induces rapid cell 

death in response to bacterial pathogens that escape from the phagosome and enter the 

macrophage cytosol, such as B. thailandensis (Aachoui et al., 2013). Caspase-11 is also 

activated by L. pneumophila and S. Typhimurium that aberrantly enter the cytosol due to 

loss of vacuolar membrane integrity (Aachoui et al., 2013). However, a role for caspase-

11 in generating an immune response against pathogens that remain outside of the 

cytoplasm but use secretion systems to introduce bacterial products into the host cell 

cytosol had not been investigated. 
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Through our work, we and others have determined that caspase-11 is robustly activated 

by L. pneumophila that remain within the pathogen-containing vacuole during infection, 

and this caspase-11 activation is independent of bacterial flagellin (Case et al., 2013; 

Casson et al., 2013). Though there is a moderate effect of a lack of caspase-11 on IL-1α 

release in response to WT Lp, there is a much more dramatic effect when the bacteria 

lack flagellin. We speculate that because the presence of cytosolic flagellin is a potent 

stimulus for canonical inflammasome activation, NAIP5/NLRC4-dependent caspase-1 

activation is dominant during infection with WT bacteria. However, we speculate that 

caspase-11 may have evolved to respond rapidly and specifically to pathogens that 

access the host cell cytosol but lack or down-regulate flagellin during infection in an 

attempt to evade host immune recognition (Minnich and Rohde, 2007), as flagellin is an 

important conserved target for innate immune recognition (Vijay-Kumar and Gewirtz, 

2009). In our studies, we find that after MyD88- and TRIF-dependent upregulation of 

caspase-11, host cells undergo rapid caspase-11-mediated cell death, occurring in less 

than 4 hours, in response to ΔflaA Lp. Non-canonical inflammasome activation in 

response to ΔflaA Lp requires T4SS-mediated cytosolic access, as ΔdotA Lp do not 

activate caspase-11. Like caspase-1-mediated pyroptosis, caspase-11-dependent cell 

death leads to release of important inflammatory mediators, such as IL-1α, IL-1β, and IL-

18. Caspase-11 is required for cell death and IL-1α release and additionally enhances 

NLRP3-dependent caspase-1 activation and IL-1β and IL-18 secretion (Figure 6-1). 

NLRC4-independent caspase-1 activation and IL-1β and IL-18 secretion require ASC 

and NLRP3, although the identity of the L. pneumophila-derived signal sensed via 

NLRP3 is still unknown (Case et al., 2009; 2013; Casson et al., 2013). 
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Additionally, we extended the finding that caspase-11 responds to Gram-negative 

bacterial pathogens that use virulence-associated secretion systems to Y. 

pseudotuberculosis, a pathogen that uses a T3SS to access the host cytosol during 

infection. It is intriguing that both the presence of the T4SS and T3SS are sensed by 

murine macrophages to activate caspase-11, as the T4SS and T3SS are evolutionarily 

quite distinct. The pathogenic T4SS most closely resembles secretion systems used for 

conjugative transfer (Christie et al., 2014), while the pathogenic T3SS is evolutionarily 

related to the flagellar apparatus (Galán et al., 2014). However, the presence of either 

secretion system leads to caspase-11 activation, implying that it is probably not a 

structural component of the secretion systems that is recognized, as the proteins that 

make up the T4SS and T3SS are evolutionarily unrelated (Cambronne and Roy, 2006). 

Additionally, it is not likely that a particular conserved bacterial effector activates 

caspase-11, as the Y. pseudotuberculosis strain that we used (Δ6 Yp) lacks the six 

known secreted Yersinia effectors. Instead, our data raise two potential models for how 

caspase-11 is activated in murine macrophages: either a common virulence activity of 

the T4SS and T3SS, such as pore formation, is sensed by host cells, or a conserved 

PAMP is translocated by both the T4SS and T3SS to activate caspase-11. 

 

B. Potential models for how caspase-11 is activated by virulence-associated 

secretion systems 

Following from evidence that only Gram-negative and not Gram-positive bacterial 

species activate caspase-11 (Rathinam et al., 2012b), recent studies have shown that 

cytosolic LPS activates caspase-11 independently of extracellular sensing by TLR4 

(Hagar et al., 2013; Kayagaki et al., 2013). Additionally, LPS isolated specifically from L. 
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pneumophila is capable of triggering caspase-11-dependent cell death in murine 

macrophages (Pilla et al., 2014). Therefore, the most likely current model for how 

caspase-11 is activated by bacteria that remain outside of the cytosol but use 

specialized secretion systems to deliver bacterial products into the host cell is that the 

presence of the T4SS or T3SS somehow allows LPS to gain access to the host cytosol. 

One possibility is that the T4SS physically translocates LPS from the bacterial cytoplasm 

into the host cytosol. Another possibility is that pores formed by the insertion of the T4SS 

into the phagosome membrane allow LPS that has somehow become dissociated from 

the bacterial cell wall or LPS from degraded bacteria to enter the cytosol. Yet a third 

possibility is that sensors in the host cytoplasm respond to the presence of the T4SS 

and induce host-mediate vacuolar disruption, which in turn delivers LPS into the 

macrophage cytosol. This last possibility is supported by evidence that a subset of IFN-

inducible guanylate-binding proteins (GBPs) enhance disruption of pathogen-containing 

vacuoles during Gram-negative bacterial infection, which in turn leads to caspase-11 

activation (Meunier et al., 2014). Interestingly, GBPs are also required for cell death in 

response to transfection of purified L. pneumophila LPS in IFNγ-primed macrophages, 

indicating that GPBs may play a role in activating caspase-11 independently of vacuolar 

disruption as well (Pilla et al., 2014). How GBPs are able to sense cytosolic LPS to 

enhance caspase-11 activation requires further investigation. 

 

Though LPS from L. pneumophila is clearly capable of activating caspase-11 when 

transfected directly into the host cytosol (Pilla et al., 2014), it still remains unclear 

whether L. pneumophila LPS activates caspase-11 during physiological infection 

conditions. The lipid A component of L. pneumophila LPS is distinct from other common 
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Gram-negative bacterial pathogens in that it contains branched-chain fatty acids with few 

free hydroxyl groups that are nearly twice the length of the acyl chains from other 

pathogens (Wong et al., 1979; Zähringer et al., 1995). L. pneumophila LPS is a poor 

stimulator of TLR4, likely because it does not interact with the adaptor CD14 

(Neumeister et al., 1998). Additionally, the effects of L. pneumophila LPS are not 

neutralized by incubation with Polymyxin B, an endotoxin-binding protein (Wong et al., 

1979). Other pathogens that have lipid A components with long acyl chains that are poor 

stimulators of TLR4, such as Helicobacter pylori, possess LPS that does not activate 

caspase-11 (Kayagaki et al., 2013). Therefore, it is possible that the small amount of L. 

pneumophila LPS that may access the cytosol during physiological infection conditions 

is not very stimulatory to caspase-11 and is thus not sufficient to induce inflammasome 

activation, whereas transfection of large amounts of LPS directly into the cytosol could 

surpass a threshold needed to activate caspase-11 (Pilla et al., 2014). Currently, though, 

the only bacterial factor that has been shown to initiate non-canonical inflammasome 

activation is cytosolic LPS (Hagar et al., 2013; Kayagaki et al., 2013). However, we 

speculate that the T4SS and T3SS could certainly allow for other bacterial PAMPs, such 

as RNA, to enter the host cytosol as well. For some Gram-negative bacteria, it is thought 

that bacterial RNA may access the host cytosol to activate NLRP3 and caspase-11 

(Kanneganti et al., 2006; Rathinam et al., 2012b). However, translocation of L. 

pneumophila RNA to initiate inflammasome activation has not been verified 

experimentally.  

 

Alternatively, it is possible that caspase-11 is not activated by a PAMP at all but is 

activated by the host cell responding to pore formation induced by the T3SS or T4SS. As 
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NLRP3 is known to be activated by a wide variety of pathogen and host-derived stimuli, 

including changes in intracellular calcium levels (Brough et al., 2003; Murakami et al., 

2012), it is possible that caspase-11 responds to changes in ion concentrations or other 

cellular stress signals induced by the T3SS or T4SS, which may feed forward into the 

caspase-11-dependent NLRP3 activation that we observe during infection. Further 

studies are needed to clarify what triggers the host response to ΔflaA Lp and to elucidate 

the molecular pathways that lead to caspase-11-mediated cell death and cytokine 

secretion in murine macrophages. 

 

The model for how ΔsdhAflaA Lp activates caspase-11 is that L. pneumophila that 

aberrantly enter the macrophage cytosol expose their LPS directly to caspase-11. 

However, ΔsdhAflaA Lp are degraded and activate a type I IFN response when they 

enter the cytosol (Creasey and Isberg, 2012), and bacterial DNA is released, which 

activates AIM2 (Ge et al., 2012). Therefore, upon degradation, it is possible that other 

PAMPs, such as bacterial RNA and cell wall components, are released into the host cell 

cytosol and are capable of activating other cytosolic PRRs. Though caspase-11 is 

clearly required for cell death in response to ΔsdhAflaA Lp (Aachoui et al., 2013), it is not 

definitive that LPS is the bacterial component that is sensed upon entry of ΔsdhAflaA Lp 

into the macrophage cytosol. Therefore, we speculate that it is possible that another 

PAMP is detected in the cytosol to activate caspase-11 during infection with ΔsdhAflaA 

Lp. Whether LPS is the only trigger for caspase-11 or not, caspase-11 is clearly relevant 

for defense against many Gram-negative bacterial pathogens, especially those that lack 

or down-regulate flagellin during infection to avoid detection via caspase-1. 
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C. IL-1α and IL-1β have both distinct and overlapping roles during pulmonary 

Legionella pneumophila infection 

Through our studies, we uncovered distinct intracellular mechanisms that lead to the 

release of IL-1α and IL-1β. We find that IL-1β secretion absolutely requires caspase-1, 

while IL-1α release is independent of caspase-1 and requires caspase-11. Therefore, 

because they are differentially regulated in vitro, we wanted to elucidate if IL-1α and IL-

1β could have distinct roles in vivo during infection. Using antibodies that neutralize IL-

1α and IL-1β, we have shown that IL-1α can act independently of IL-1β during a mouse 

model of Legionnaire’s disease. As IL-1α and IL-1β bind the same receptor in vivo 

(Dower et al., 1986), it was largely assumed that they have redundant biological roles. 

However, previous studies have shown that IL-1α and IL-1β can play unique roles in 

vivo. For example, IL-1α and IL-1β are each required individually for survival during a 

mouse model of pulmonary infection with M. tuberculosis (Mayer-Barber et al., 2011), 

suggesting that they have non-redundant roles. Additionally, IL-1α can drive neutrophil 

recruitment into the peritoneal cavity upon introduction of MSU crystals in a mouse 

model of gout (Gross et al., 2012). However, it was unknown if IL-1R signaling is 

important for control of L. pneumophila replication in the lung and if IL-1α and IL-1β have 

non-redundant roles during a mouse model of Legionnaires’ disease. 

 

We have shown that IL-1R signaling in vivo is critical for host defense against pulmonary 

L. pneumophila, including neutrophil recruitment to the airway space and control of 

bacterial burden. Additionally, we find that neutralizing IL-1α alone has a dramatic effect 

on neutrophil recruitment, while neutralizing IL-1β alone has no effect. Therefore, IL-1β 

is not sufficient to drive maximal neutrophil recruitment during infection. However, we 
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find that neutralization of both IL-1α and IL-1β simultaneously has an even more striking 

effect on neutrophil recruitment than neutralization of IL-1α alone, implying that IL-1α 

and IL-1β share some overlapping roles during infection. Recent studies have shown 

that IL-1α is important for neutrophil recruitment during pulmonary infection with 

pathogenic Pseudomonas aeruginosa as well (Moussawi and Kazmierczak, 2014). 

Based on our in vitro data, we speculate that IL-1α release in response to ΔflaA Lp is 

caspase-11-dependent in vivo, though there are caspase-11-independent sources of IL-

1α in response to WT Lp in vivo (Barry et al., 2013). Presumably, caspase-11-deficient 

mice would also have a defect in neutrophil recruitment to the airway space, though cell 

recruitment in caspase-11-deficient mice has not been examined experimentally. 

 

As IL-1α and IL-1β both bind the IL-1R, it is unclear how they elicit different biological 

effects in vivo. Currently, we have two potential models for how IL-1α could modulate 

neutrophil recruitment independently of IL-1β. First, we speculate that IL-1α and IL-1β 

may engage the IL-1R in slightly different manners to elicit different downstream 

signaling cascades. For example, binding of IL-1α to the IL-1R may recruit different IL-1 

receptor-associated kinases (IRAKs) than IL-1β (Flannery and Bowie, 2010), and 

differential recruitment of IRAKs could lead to differences in the production of 

chemokines important for neutrophil recruitment, such as C-X-C-motif ligand 1 

(CXCL1)/keratinocyte-derived chemokine (KC) (Moser et al., 1990; Oquendo et al., 

1989). Second, we speculate that total abundance or availability of each cytokine to 

access the IL-1R may have an effect on signaling in vivo. In general, we see higher total 

amounts of IL-1α protein in the BALF during infection, and IL-1α has a higher affinity for 

the IL-1R on certain cell types (Dower et al., 1986). Therefore, IL-1α could have a 
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dominant role in recruiting neutrophils during L. pneumophila infection because there is 

more cytokine available to engage the IL-1R. 

 

In addition to its extracellular role in recruiting immune cells to the airway space during 

infection, IL-1α could potentially have a cell-intrinsic role in initiating immune responses 

that we did not uncover by using neutralizing antibodies. For example, it is known that 

pro-IL-1α translocates into the nucleus where it can interact with histone 

acetyltransferases and modulate the transcription of other pro-inflammatory cytokines 

(Buryskova et al., 2004; Cheng et al., 2008; Wessendorf et al., 1993). Experiments 

comparing infection of IL-1α-deficient mice to mice that have received IL-1α-neutralizing 

antibodies would elucidate any cell-intrinsic roles for IL-1α in response to L. 

pneumophila. However, in addition to its protective role, IL-1α can be pathological during 

bacterial infection as well. For example, IL-1α induces pathological intestinal 

inflammation during infection with the gastro-intestinal pathogen Yersinia enterocolitica 

(Dube et al., 2001). Therefore, studying the individual roles of IL-1α and IL-1β during 

disease could lead to the development of therapeutics that target individual cytokines 

rather than the IL-1R, which may ameliorate pathological symptoms while not completely 

compromising host defense. 

 

D. Caspase-4 has a conserved role in inflammasome activation against Legionella 

pneumophila, Yersinia pseudotuberculosis, and Salmonella Typhimurium 

In our studies, we used siRNA to knockdown caspase-4 to elucidate a role for caspase-4 

in inflammasome activation in primary human macrophages. Previous data had 

demonstrated that LPS can bind directly to caspase-4 and caspase-5 in immortalized 
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macrophage, keratinocyte, and epithelial cell lines to induce cell death (Shi et al., 2014). 

Additionally, caspase-4 mediates IL-18 release in response to infection with S. 

Typhimurium in immortalized human epithelial cells (Knodler et al., 2014). However, a 

role for caspase-4 in mediating inflammasome activation, including cytokine release, in 

primary human cells had not been investigated. 

 

In primary human MDMs, we find that L. pneumophila induces robust IL-1α and IL-1β 

release that is dependent on the presence of the T4SS. While IL-1β secretion requires 

caspase-1, IL-1α release is independent of caspase-1 catalytic activity. Thus, L. 

pneumophila activates both a canonical caspase-1-dependent and non-canonical 

caspase-1-independent inflammasome in human cells. We find that caspase-4 mediates 

cell death and IL-1α release in response to L. pneumophila in primary human MDMs. 

However, in contrast to murine caspase-11, human caspase-4 does not appear to play a 

significant role in mediating IL-1β secretion during infection, highlighting an important 

difference between non-canonical inflammasome activation in murine and human 

macrophages (Figure 6-2). Additionally, we find that caspase-4 plays a conserved role in 

non-canonical inflammasome activation via release of IL-1α in response to both Y. 

pseudotuberculosis and S. Typhimurium, Gram-negative bacterial pathogens that use an 

evolutionarily unrelated T3SS to access the host macrophage cytosol during infection. 

Interestingly, though caspase-4 contributes to cell death during infection with both L. 

pneumophila and Y. pseudotuberculosis, cell death is caspase-4-independent during 

infection with S. Typhimurium. 
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Though caspase-4 does not mediate IL-1β secretion during infection, caspase-4 

contributes to both IL-1α and IL-1β release in response to transfection of LPS directly 

into the cytosol of primary human macrophages. Therefore, when LPS is the only PAMP 

present in the cytosol, it likely binds directly to caspase-4 and induces inflammasome 

activation, including IL-1α and IL-1β release and cell death. However, our data imply that 

in the context of infection with Gram-negative bacterial pathogens, a caspase-4-

independent inflammasome pathway is triggered to induce IL-1β secretion. This 

caspase-4-independent inflammasome requires caspase-1 and ASC, and we speculate 

that NLRP3 is upstream of ASC for caspase-1 activation, as NLRP3 and ASC mediate 

IL-1β release in THP-1 cells in response to S. Typhimurium infection (Li et al., 2008) and 

NLRP3 is recruited to ASC foci during infection (Man et al., 2014). It is possible that a 

PAMP other than LPS, such as bacteria RNA (Kanneganti et al., 2006), is sensed via 

NLRP3 during infection of primary human macrophages. Conversely, it is possible that 

NLRP3 responds to cell stress induced by the presence of the T3SS or T4SS to activate 

caspase-1. Either way, our data suggest that caspase-1 activation is dominant over 

caspase-4 activation to control IL-1β secretion during Gram-negative bacterial infection 

of human macrophages. One explanation for how caspase-1 mediates IL-1β secretion 

during infection is that activation of caspase-1 somehow dampens the ability of caspase-

4 to induce IL-1β release in response to binding LPS. For example, it is possible that 

activation of caspase-1 in human macrophages during infection could sequester IL-1β 

away from caspase-4. An alternative explanation for how caspase-1 mediates IL-1β 

secretion during infection is that LPS does not physically bind to caspase-4 in the 

context of bacterial infection and instead engages an upstream NLR that specifically 

activates caspase-4 for IL-1α release and cell death. Though LPS is clearly capable of 



	
  

141	
  

binding directly to caspase-4 (Shi et al., 2014), it has not been shown experimentally that 

LPS physically interacts with caspase-4 during actual bacterial infection. Therefore, it is 

possible that LPS could trigger caspase-4 in two manners: direct binding, which induces 

both IL-1α and IL-1β, or indirect activation via an as-yet-unidentified upstream NLR, 

which specifically induces IL-1α release. 

 

E. Is LPS the only trigger for the non-canonical inflammasome? 

As is the case for murine caspase-11, intracellular LPS is the only bacterial ligand that 

has been identified to activate human caspase-4 (Shi et al., 2014). However, unlike 

caspase-11, caspase-4 is activated by more stimuli than just Gram-negative bacterial 

infection. For example, caspase-4 cleavage is induced in neuroblastoma and epithelial 

cell lines in response to tunicamycin- and thapsigargin-induced ER stress (Hitomi et al., 

2004). Tunicamycin induces ER stress by triggering the unfolded protein response 

(UPR) through blocking N-linked glycosylation that happens in the ER (Hong et al., 

2004; Kuo and Lampen, 1974), while thapsigargin induces ER stress by depleting ER 

calcium stores (Jackson et al., 1988; Sano and Reed, 2013). Additionally, caspase-4 is 

activated by UVB irradiation in keratinocytes to control IL-1β and IL-18 release, though 

caspase-4 is upstream of caspase-1 activation in response to UVB irradiation 

(Sollberger et al., 2012). Interestingly, these data imply that caspase-4 is activated by a 

seemingly broad array of stimuli, ranging from bacterial infection to ER stress to 

irradiation. However, there may be commonalities between these triggers that induce 

caspase-4 activation.  
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As there is no bacterial LPS present during ER stress or UVB irradiation, there are two 

potential models for how caspase-4 is activated in human cells. First, caspase-4 could 

be activated by different ligands under different conditions. For example, it is known that 

LPS binds directly to the CARD domain of caspase-4 to induce activation (Shi et al., 

2014). Therefore, it is possible that during bacterial infection, LPS binds to the CARD 

domain of caspase-4, but during ER stress and UVB irradiation, a host protein mimics 

the properties of LPS and also binds to the CARD domain of caspase-4 to induce 

activation. Alternatively, caspase-4 could be activated by different triggers under 

different conditions via activation of different upstream NLRs. For example, NLRP3 and 

ASC are known to be upstream of caspase-4-mediated inflammasome activation in 

keratinocytes (Feldmeyer et al., 2007; Sollberger et al., 2012). 

 

The second hypothesis for how caspase-4 is activated in human cells is that host cells 

respond to a common stress signal induced by Gram-negative bacterial infection, ER 

stress, and UVB irradiation to induce caspase-4 activation. When L. pneumophila 

establishes its replicative niche within host cells, the bacterium hijacks ER-derived 

vesicles to form the LCV (Horwitz and Silverstein, 1980; Swanson and Isberg, 1995). 

This modulation of vesicle trafficking could presumably trigger an ER-related stress 

response within host cells. Both ER stress and UVB irradiation induce elevated 

cytoplasmic calcium levels, which has been linked to inflammasome activation in 

multiple cell types (Feldmeyer et al., 2007; Murakami et al., 2012; Sano and Reed, 

2013). Therefore, perturbations of calcium homeostasis or ER function could potentially 

be a common mechanism downstream of all stimuli that lead to caspase-4 activation. In 

the context of Gram-negative bacterial infection, LPS could be a second signal required 
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for activation of caspase-4. However, we speculate that LPS might be the trigger for 

caspase-4 activation when bacterial pathogens reside and replicate within the cytosol, 

but endogenous stress signals, such as changes in calcium concentrations, might be the 

actual trigger for caspase-4 activation by pathogens that remain outside of the host cell 

cytosol but use specialized secretion systems to access the cytosol during infection. 

Additionally, our preliminary data provocatively suggest that flagellin may be a major 

trigger for both canonical and non-canonical inflammasome activation during infection 

with both L. pneumophila and S. Typhimurium. 

 

F. Flagellin as a trigger for inflammasome activation in human macrophages 

Through our preliminary studies, we have shown that bacteria that lack flagellin have a 

defect in triggering IL-1α and IL-1β release from human macrophages compared to wild-

type bacteria. We find that both IL-1α and IL-1β secretion are reduced during infection 

with flagellin-deficient L. pneumophila and S. Typhimurium. The decrease in IL-1 

secretion does not appear to be due to a general priming defect, as cells infected with 

flagellin-deficient bacteria have no defect in upregulating pro-IL-1β. However, the current 

paradigm is that human cells do not actually respond to cytosolic flagellin, as human 

NAIP does not associate with flagellin (Zhao et al., 2011). Instead, human NAIP is 

thought to associate specifically with the needle protein of the T3SS (Yang et al., 2013). 

However, the biochemical assays performed to assess the binding partners of human 

NAIP involved overexpression of inflammasome components in a heterologous system 

in 293T cells. Therefore, it is still possible that flagellin associates with endogenous 

NAIP during bacterial infection of macrophages. Additionally, there is evidence that 

human NAIP responds to flagellin during infection with L. pneumophila. Flagellin-
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deficient L. pneumophila grow better than WT Lp in THP-1 cells, suggesting that 

recognition of flagellin restricts bacterial growth, and growth of WT Lp is equivalent to 

that of ΔflaA Lp when NAIP is knocked down using siRNA (Vinzing et al., 2008). 

Therefore, there is previous evidence that flagellin is sensed by human macrophages 

during bacterial infection. 

 

As both IL-1α and IL-1β release are affected by flagellin deficiency, our data imply that 

both canonical and non-canonical inflammasome activation are triggered by flagellin. 

However, we find that IL-1α and IL-1β release are controlled by two separate 

inflammasome pathways during Gram-negative bacterial infection of human 

macrophages, with IL-1α requiring caspase-4 and IL-1β requiring caspase-1 for 

secretion. Therefore, our data potentially place flagellin as common inflammasome 

trigger upstream of both caspase-1 and caspase-4 (Figure 6-2). We speculate that 

flagellin could activate a single NLR, such as human NAIP, that then associates with 

both caspase-1 and caspase-4 to induce inflammasome activation. However, it is still 

unclear if NAIP is required for IL-1α and IL-1β release in human macrophages. If flagellin 

triggers non-canonical inflammasome activation via caspase-4, our data would introduce 

a paradigm shift in how we think about inflammasome activation during Gram-negative 

bacterial infection, as LPS is the only bacterial ligand currently thought to activate 

caspase-4 (Shi et al., 2014). 

 

G. Potential for pathogenic inhibition of the inflammasome 

Many viruses encode proteins that inhibit inflammasome activation. The first viral protein 

identified as a caspase-1 inhibitor is a serpin encoded by cowpox virus (Ray et al., 
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1992). Subsequently, it was found that vaccinia virus encodes a homologous protein that 

blocks IL-1β secretion from human cells (Kettle et al., 1997). Additionally, other 

members of the poxvirus family encode proteins that mimic the cellular pyrin domain-

only proteins (cPOPs) (Johnston et al., 2005), which block inflammasome activation by 

binding to ASC (Bedoya et al., 2007; Dorfleutner et al., 2007; Stehlik et al., 2003). 

 

Though many bacteria have mechanisms to avoid or dampen inflammasome activation, 

few bacteria encode proteins analogous to the viral serpins that target caspase-1 directly 

(Taxman et al., 2010). Some strains of Pseudomonas aeruginosa encode a 

phospholipase, ExoU, which blocks activation of caspase-1, though it remains unclear if 

inhibition by ExoU occurs through a direct interaction with caspase-1 or by targeting of 

an upstream mediator of inflammasome activation (Sutterwala et al., 2007). Additionally, 

Mycobacterium tuberculosis encodes a zinc metalloprotease that blocks inflammasome 

activation through a poorly defined mechanism (Master et al., 2008). Y. 

pseudotuberculosis encodes an effector protein, YopK, that block recognition of the 

T3SS (Brodsky et al., 2010). However, Y. pseudotuberculosis also encodes the effector 

YopM, which physically interacts with murine caspase-1 to block inflammasome 

activation (LaRock and Cookson, 2012). 

 

Currently, no bacterial effectors have been identified that counteract the activity of 

caspase-11. However, certain cytosolic Gram-negative bacterial pathogens may have 

evolved to modify their LPS so that it is not readily detected by caspase-11. For 

example, Francisella novicida, which replicates within the macrophage cytosol, evades 

caspase-11-mediated detection by encoding LPS with tetra-acylated lipid A that does not 
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stimulate caspase-11 (Hagar et al., 2013). Intriguingly, though no bacterial proteins have 

been identified that antagonize caspase-11, Shigella flexneri encodes an effector 

protein, OspC3, that blocks caspase-4 activity (Kobayashi et al., 2013). Whether other 

Gram-negative pathogens that live within the host cytosol, such as Burkholderia 

thailandensis, which robustly triggers caspase-11, have evolved to encode effectors to 

evade caspase-4-mediated detection in human cells remains an important area for 

further investigation. 

 

H. A role for caspase-5 in inflammasome activation in human macrophages? 

In our studies, we did not detect caspase-5 cleavage in response to infection with 

virulent L. pneumophila, Y. pseudotuberculosis, or S. Typhimurium. Though caspase-5 

cleavage is indicative of activation, caspases do not need to be processed to perform all 

of their effector functions. For example, though caspase-1 requires cleavage to induce 

IL-1β secretion, caspase-1 can still mediate pyroptotic cell death independently of auto-

processing (Broz et al., 2010). Therefore, it is possible that caspase-5 has a role in 

inflammasome activation against pathogens that use virulence-associated secretion 

systems that does not require caspase-5 cleavage. Notably, as caspase-4 is surprisingly 

not involved in IL-1β secretion during infection of human macrophages, we speculate 

that caspase-5 could have a role in enhancing caspase-1-dependent IL-1β release. It is 

possible that the two putative functional orthologs of murine caspase-11 have evolved to 

carry out distinct subsets of the functions of caspase-11. Specifically, caspase-4 may 

have evolved to direct IL-1α release, while caspase-5 may have evolved to direct IL-1β 

secretion. As both caspase-4 and caspase-5 bind directly to LPS, it is likely that LPS is a 

trigger for both caspase-4 and caspase-5 activation during Gram-negative bacterial 
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infection. Alternatively, both caspase-4 and caspase-5 could interact with NAIP to 

mediate the cytosolic sensing of bacterial flagellin. Elucidating a role for caspase-5 in 

inflammasome activation will be informative for understanding the biological roles of the 

two human homologs of murine caspase-11. 

 

I. Future directions 

There are many questions that remain to be answered to understand non-canonical 

inflammasome activation in both murine and human macrophages. In murine 

macrophages, it is unclear if LPS is the trigger for caspase-11 activation during infection 

with L. pneumophila and Y. pseudotuberculosis. Mutating the LPS synthesis genes in 

either bacterium would be challenging because defects in LPS synthesis could lead to 

membrane integrity issues in the bacteria. For examples, mutants of E. coli that are 

defective in acylation of lipid A fail to grow in rich media and lyse upon centrifugation 

(Vorachek-Warren et al., 2002). Therefore, LPS mutants may be more sensitive to lysis 

during infection of macrophages and could release additional PAMPs into the host 

cytosol. However, Y. pseudotuberculosis switches from making mostly penta-acylated 

LPS when grown at 21°C to making mostly tetra-acylated LPS when grown at 37°C 

(Rebeil et al., 2004). As the tetra-acylated LPS from the closely related Yersinia pestis 

does not trigger caspase-11 (Hagar et al., 2013), it is possible that forcing Y. 

pseudotuberculosis to express only tetra-acylated LPS would be a useful tool for 

determining if LPS is the only PAMP sensed via caspase-11 during actual bacterial 

infection. 
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In human macrophages, it is also unclear if LPS is the trigger for caspase-4 during 

infection. Additionally, it is unclear if caspase-5, the other putative functional ortholog of 

murine caspase-11, plays a role in inflammasome activation. As caspase-5 is difficult to 

target using siRNA, it is possible that clustered regularly interspaced short palindromic 

repeats (CRISPR) technology (Cong et al., 2013; Jinek et al., 2012; Wang et al., 2014) 

could be used to target caspase-5 in human macrophages to elucidate a role for 

caspase-5 in inflammasome activation during Gram-negative bacterial infection. Though 

siRNA knockdown of caspase-4 results in a significant decrease in IL-1α release, IL-1α 

release is not absolutely abrogated. Therefore, either the small amount of caspase-4 

protein left in the cell after knockdown is enough to induce some inflammasome 

activation, or another enzyme, such as caspase-5, is involved in inflammasome 

activation as well. Targeting caspase-5 would be valuable for interrogating if caspase-5 

enhances caspase-1-dependent IL-1β secretion from human macrophages, just as 

caspase-11 enhances caspase-1 activation in murine cells. 

 

As flagellin-deficient L. pneumophila and S. Typhimurium show decreased 

inflammasome activation, flagellin is potentially a trigger for both canonical and non-

canonical inflammasome activation in human macrophages. However, even though 

macrophages infected with flagellin-deficient bacteria do not show a defect in 

upregulation of pro-IL-1β, it is still possible that TLR5-mediated extracellular sensing of 

flagellin is involved in priming inflammasome activation in human macrophages. To test 

this possibility, we could use antibodies that bind and neutralize the ability of TLR5 to 

detect flagellin during infection with WT Lp and WT St to determine if TLR5-mediated 

sensing of flagellin is involved in regulating inflammasome activation. To assess if 
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intracellular flagellin is a trigger for inflammasome activation, we could use the 

established system of introducing purified flagellin into the cytosol by fusing flagellin to 

the N-terminal domain of anthrax lethal factor and delivering it into the cytosol by using 

protective antigen (Moltke et al., 2012). This system has been used to demonstrate that 

flagellin is a trigger for inflammasome activation in murine macrophages (Moltke et al., 

2012). Alternatively, we could express L. pneumophila or S. Typhimurium flagellin in 

Listeria monocytogenes, a Gram-positive bacterial pathogen that does not encode LPS 

and ruptures the vacuole to replicate within the macrophage cytosol. Expression of 

flagellin by L. monocytogenes enhances inflammasome activation in murine 

macrophages (Warren et al., 2011). 

 

J. Concluding remarks 

Overall, the studies performed in this dissertation have revealed that both murine 

caspase-11 and its homolog human caspase-4 are critical for mediating inflammasome 

activation against Gram-negative bacterial pathogens. Additionally, our experiments 

have uncovered important differences between the regulation of IL-1 family cytokine 

release in murine and human macrophages. Studying the inflammasome pathways 

triggered by the pathogen L. pneumophila has shaped our knowledge of how host cells 

are poised to respond to intracellular pathogens, and the pathways triggered by L. 

pneumophila are applicable to infection by other Gram-negative bacterial pathogens, 

including Y. pseudotuberculosis and S. Typhimurium. Whether the bacterium utilizes a 

T3SS or T4SS to access the host cytosol, additionally delivers flagellin into the 

cytoplasm, or physically enters the cytosol itself, the host has evolved multiple ways to 

restrict replication of the pathogen and trigger an appropriate immune response.  
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Figure 6-1. Model for non-canonical inflammasome activation by Gram-negative 
bacterial pathogens that use virulence-associated secretion systems in murine 
macrophages. Upon infection of murine macrophages, the use of the T3SS or T4SS to 
access the host cell cytosol to establish a replicative niche enhances vacuolar 
disruption, potentially in combination with murine GBPs, and bacterial LPS gains access 
to the cytosol. Once in the cytosol, LPS binds directly to caspase-11 to induce IL-1α 
release and cell death. Additionally, caspase-11 somehow enhances NLRP3- and 
caspase-1-dependent IL-1β secretion. 
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Figure 6-2. Model for non-canonical inflammasome activation by Gram-negative 
bacterial pathogens that use virulence-associated secretion systems in human 
macrophages. Upon infection of human macrophages, the use of the T3SS or T4SS to 
access the host cell cytosol to establish a replicative niche allows bacterial flagellin and 
LPS to gain access to the cytosol. Once in the cytosol, LPS binds directly to caspase-4 
to induce IL-1α release and cell death. Additionally, flagellin is sensed, presumably 
through human NAIP, and somehow enhances both NLRP3/caspase-1-dependent IL-1β 
secretion and caspase-4-dependent IL-1α release and cell death. It remains unclear if 
caspase-5 responds to cytosolic flagellin to contribute to caspase-1-dependent IL-1β 
secretion. 
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