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Uppers and Downers: Understanding Sleep Regulation Using Small
Molecules in Drosophila

Abstract
Sleep is an important physiological state, but its function and regulation remain elusive. In Drosophila
melanogaster, a useful model organism for studying sleep, forward genetic screens have identified important
sleep-modulating genes and pathways; however, the results of such screens may be limited by developmental
abnormalities or lethality associated with mutation of certain genes. To circumvent these limitations, we
screened 1280 small molecules for effects on sleep in adult Drosophila. We used genetic and molecular
approaches to elucidate the mechanisms by which two of these drugs altered sleep behavior.

We found that administration of reserpine, a small molecule inhibitor of the vesicular monoamine transporter
(VMAT) that repackages monoamines into presynaptic vesicles, resulted in an increase in sleep. We found
that VMAT-null mutants, like reserpine-fed flies, have an increased sleep phenotype, as well as an increased
arousal threshold and resistance to the effects of reserpine. However, although the VMAT mutants are
consistently resistant to reserpine, other aspects of their sleep phenotype are dependent on genetic
background. Thus, they may not have been detected in a classical forward genetic screen, further attesting to
the utility of a small molecule screen. Mutations affecting single monoamine pathways did not affect reserpine
sensitivity, suggesting that effects of VMAT/reserpine on sleep are mediated by multiple monoamines.

We also studied the mode of action of caffeine, a common wake-promoting compound. Caffeine is thought to
promote wake by inhibiting adenosine receptors, however previous work demonstrated that the wake-
promoting effects of caffeine are independent of the adenosine receptor in the fly. We show that dopamine is
required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to
increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of
dopaminergic neurons, which are essential for the caffeine response and which show increased activity
following caffeine administration.

Overall, we find that small molecule screens can be used effectively to identify regulators of adult behavior.
The results of our screen and follow-up experiments demonstrate that presynaptic modulation of monoamine
signaling may be a major source of sleep regulation.
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ABSTRACT 
 

UPPERS AND DOWNERS: UNDERSTANDING SLEEP 

REGULATION USING SMALL MOLECULES IN DROSOPHILA 

Aleksandra Nall 

Amita Sehgal, Ph.D. 

 

Sleep is an important physiological state, but its function and regulation remain elusive. In 

Drosophila melanogaster, a useful model organism for studying sleep, forward genetic screens 

have identified important sleep-modulating genes and pathways; however, the results of such 

screens may be limited by developmental abnormalities or lethality associated with mutation of 

certain genes. To circumvent these limitations, we screened 1280 small molecules for effects on 

sleep in adult Drosophila.  We used genetic and molecular approaches to elucidate the 

mechanisms by which two of these drugs altered sleep behavior.   

We found that administration of reserpine, a small molecule inhibitor of the vesicular 

monoamine transporter (VMAT) that repackages monoamines into presynaptic vesicles, resulted 

in an increase in sleep. We found that VMAT-null mutants, like reserpine-fed flies, have an 

increased sleep phenotype, as well as an increased arousal threshold and resistance to the 

effects of reserpine. However, although the VMAT mutants are consistently resistant to reserpine, 

other aspects of their sleep phenotype are dependent on genetic background. Thus, they may not 

have been detected in a classical forward genetic screen, further attesting to the utility of a small 

molecule screen.  Mutations affecting single monoamine pathways did not affect reserpine 

sensitivity, suggesting that effects of VMAT/reserpine on sleep are mediated by multiple 

monoamines.   

We also studied the mode of action of caffeine, a common wake-promoting compound.  

Caffeine is thought to promote wake by inhibiting adenosine receptors, however previous work 
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demonstrated that the wake-promoting effects of caffeine are independent of the adenosine 

receptor in the fly.  We show that dopamine is required for the wake-promoting effect of caffeine 

in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling.  We identify 

a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, which are 

essential for the caffeine response and which show increased activity following caffeine 

administration.   

 Overall, we find that small molecule screens can be used effectively to identify regulators 

of adult behavior.  The results of our screen and follow-up experiments demonstrate that 

presynaptic modulation of monoamine signaling may be a major source of sleep regulation. 

 

 

 

 

 

 

 

 

 

 

 

  



v 

 

TABLE OF CONTENTS 

 

ABSTRACT ...............................................................................................................................III 

LIST OF FIGURES ................................................................................................................... VI 

INTRODUCTION ......................................................................................................................1 

CHAPTER 1 – SMALL-MOLECULE SCREEN IN ADULT DROSOPHILA IDENTIFIES 

VMAT AS A REGULATOR OF SLEEP ................................................................................ 14 

ABSTRACT ........................................................................................................................................... 14 

INTRODUCTION ................................................................................................................................... 15 

MATERIALS AND METHODS ................................................................................................................ 16 

RESULTS .............................................................................................................................................. 18 

DISCUSSION ........................................................................................................................................ 26 

CHAPTER 2 – CAFFEINE PROMOTES WAKEFULNESS VIA DOPAMINE 

SIGNALING IN DROSOPHILA ............................................................................................. 31 

ABSTRACT ........................................................................................................................................... 31 

INTRODUCTION ................................................................................................................................... 31 

MATERIALS AND METHODS ................................................................................................................ 33 

RESULTS .............................................................................................................................................. 35 

DISCUSSION ........................................................................................................................................ 43 

CONCLUSIONS AND FUTURE DIRECTIONS .................................................................. 49 

REFERENCES.......................................................................................................................... 58 

 

  



vi 

 

LIST OF FIGURES 
 

INTRODUCTION 

     FIGURE 1 Dopaminergic sleep circuits 5 

     FIGURE 2 Serotonergic, octopaminergic, and histaminergic sleep circuits 10 

CHAPTER 1 – Small -molecule screen in adult Drosophila identifies VMAT as a 

regulator of sleep  

     FIGURE 1.1 Schematic of the small molecule screen 19 

     FIGURE 1.2 Small molecule screen identifies sleep-modulating compounds 20 

     FIGURE 1.3 Genetic ablation of VMAT Alters Sleep Behavior 21 

     FIGURE 1.4 Effects of reserpine on sleep map to the VMAT Gene 23 

     FIGURE 1.5 The sleep phenotype of VMAT mutants is background 

dependent 

24 

     FIGURE 1.6 Effects of reserpine on mutants of different monoaminergic 

systems 

25 

CHAPTER 2 – Caffeine  

     FIGURE 2.1 Caffeine Reduces Sleep in Drosophila 35 

     FIGURE 2.2 The response to caffeine requires dopamine synthesis in 

Drosophila 

36 

     FIGURE 2.3 Caffeine affects dopaminergic signaling upstream of DTH 38 

     FIGURE 2.4 The response to caffeine requires synaptic packaging of 

dopamine 

39 

     FIGURE 2.5 The response to caffeine requires proper neuronal dopamine 

turnover 

40 

     FIGURE 2.6 Mapping dopaminergic neurons required for the caffeine 

response 

41 

     FIGURE 2.7 Caffeine causes increased activity of PAM cluster neurons 42 

 

 

 

 

 

  



1 

 

 

INTRODUCTION 
Published:  Nall A, Sehgal A. (2014) Monoamines and sleep in Drosophila. Behav Neurosci, 
128(3):264-72. 
 

Sleep is an important physiological state that has been observed in most well-studied 

animals. Many such animals have been used as models to study the genetic and molecular 

mechanisms underlying sleep regulation in an attempt to understand how and why we sleep. 

From all of these studies, it has become clear that sleep is controlled by the circadian clock and 

by a homeostatic mechanism (Borbély, 1982). The circadian clock communicates time-of-day 

information inferred from light and temperature cues to ensure that sleep occurs during the right 

times of day. The sleep homeostat keeps track of the duration of sleep and wake to ensure that 

daily sleep need is met.  

Much of our understanding of circadian clock mechanisms has come from the fruit fly, 

Drosophila melanogaster. Clock genes and mechanisms discovered in Drosophila were found to 

be conserved in humans, underscoring how much we can learn about ourselves from these tiny 

insects (Cirelli, 2009; Crocker & Sehgal, 2010; Sehgal & Mignot, 2011). A Drosophila model for 

the homeostatic regulation of sleep has been established to exploit the genetic tractability and 

ease of high-throughput behavioral testing that these animals provide (Hendricks et al., 2000; 

Shaw et al., 2000). Drosophila sleep shares many similarities with human sleep, including diurnal 

distribution of sleep/wake activity, a homeostatic reaction to sleep deprivation, and an increased 

arousal threshold (i.e., reduced responsiveness to sensory stimulation) during sleep. It follows, 

then, that these behavioral states are likely regulated similarly, and the fly will be an invaluable 

tool in understanding our own drive to sleep. 

Like other behaviors, including learning, courtship, aggression, and social behaviors, 

sleep is modulated by experience and environment in addition to being driven by intrinsic 

mechanisms. Signals in the brain integrate the various inputs to generate a coordinated output 

that governs successful behavior. These signals take the form of hormones, neuropeptides, 
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neurotransmitters, and neuromodulators, which can respond to external and physiological cues. 

Given that sleep involves widespread changes in brain activity, it is easy to see how modulators 

of neural activity are important in its regulation. For example, one of the canonical characteristics 

of sleep is an increased arousal threshold, which refers to lack of a response to a stimulus that 

elicits a response in an awake animal. One way that circuit-wide changes in neuronal excitability 

can be achieved is by neuromodulation, in which biogenic amines and other neuromodulators 

diffuse through the brain and affect general brain activity. My thesis work has demonstrated that 

two drugs that alter sleep behavior do so by modulating the signaling of one class of 

neuromodulators, monoamines.  Therefore, this introduction focuses on what we currently know 

about the regulation of sleep and circadian rhythms by monoamine signaling, with a focus on 

knowledge gained from the Drosophila model.   

Sleep and Monoamines 

Neuromodulators involved in fine-tuning neuronal excitability, as well as direct synaptic 

transmission, are the monoamines. This class of neuromodulators includes dopamine, serotonin, 

norepinephrine and its invertebrate analog octopamine, histamine, and the trace amine tyramine. 

The most abundant monoamines in the Drosophila nervous system are dopamine, octopamine, 

and serotonin. These monoamines have conserved biosynthetic pathways (Livingstone & 

Tempel, 1983) and conserved effects on many behaviors. Recently, all of these monoamines 

have also been found to regulate sleep behavior at the circadian and homeostatic level. 

Dopamine, octopamine, and serotonin function in disparate and overlapping anatomical brain 

regions to integrate environmental information (e.g., light, social cues, and food abundance) to 

ensure appropriate timing and quantity of sleep. In addition, histamine acts in Drosophila to inhibit 

sleep, much as it is known to do in mammals. 

Dopamine 

One of the earliest sleep mutants identified in the Drosophila model implicated dopamine 

signaling in sleep regulation. This mutant, called fumin, sleeps far less than wild-type flies despite 

having normal waking activity and circadian rhythms (Kume et al., 2005). fumin flies contain a 
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defective copy of the dopamine transporter (DAT), which results in an augmentation of dopamine 

signaling presumably from retention of dopamine in the synaptic cleft. A forward genetic screen 

for short-sleeping mutants identified a different mutant allele of DAT, which causes a similar 

phenotype to fumin (Wu et al., 2008).  This finding supports shared mechanisms of sleep/wake 

regulation across species, as previous studies found that DAT mutant mice experience shorter, 

more fragmented sleep and increased time awake (Wisor et al., 2001). DAT is also the molecular 

target of arousal-promoting drugs such as methamphetamine and cocaine (Eshleman et al., 

1994; Kilty et al., 1991).  Agonists of dopamine receptors also promote wake (Monti and Monti, 

2007).  An increase in extracellular dopamine is associated with natural waking states in mice, 

and a single population of dopaminergic neurons in the mouse ventral periaqueductal gray matter 

shows increased activity during periods of wakefulness (Feenstra et al., 2000; Léna et al., 2005; 

Lu et al., 2006).   

Additional studies have corroborated the wake-promoting effect of dopamine signaling in 

Drosophila. Drugs that increase dopamine signaling (e.g., methamphetamine and cocaine) 

decrease sleep, and drugs that decrease dopamine signaling (e.g., the tyrosine hydroxylase [TH] 

inhibitor 3IY) increase sleep (Andretic et al., 2005). Mutating TH in the central nervous system, 

which prevents dopamine synthesis altogether, also causes a dramatic increase in sleep 

(Riemensperger et al., 2011). These flies have an increased arousal threshold, which means that 

they are less able to wake up in response to stimuli. This points to a role for dopamine in 

promoting an awake and attentive brain state, which could be due to the general 

neuromodulatory action of dopamine in increasing neuronal excitability in wake-promoting brain 

regions. Reducing synaptic transmission from dopaminergic neurons reduces activity in the fly 

brain in response to visual stimulation (Andretic et al., 2005), which supports a role for dopamine 

in maintaining arousal and attention.  

In addition to fumin, other low-sleeping mutants identified in Drosophila have been linked 

to dopamine signaling. Mutations in the BTB-domain-containing protein insomniac (Inc) and its 

associated E3-ubiquitin ligase Cullin-3 (Cul3) were recently both shown to decrease sleep 



 

(Stavropoulos & Young, 2011). 

reverse genetic screen performed by Pfeiffenberger and Allada (2012)

either sleep- or wake-dependent expression or 

study showed that normal amounts of 

reducing dopamine levels with TH inhibitors 3

Supporting the hypothesis of

increased dopamine signaling

these mutants, they are resistant 

to the additional wake-promoting 

effects of increased dopamine 

synthesis produced by L-DOPA 

feeding. However, the link to 

dopaminergic signaling seems to 

be non-cell-autonomous 

because Inc and Cul3 are  

required in  

cholinergic cells, not 

dopaminergic cells, for 

normal sleep behavior (see Figure 

1; Pfeiffenberger & Allada, 2012). 

This finding underscores the 

importance  

of taking a circuit-wide view of 

sleep regulation because many different neurons and signaling systems are likely contributing to 

this complex behavior.  

Effects of dopamine o

of the Drosophila brain (see Figure 1). On 

4 

(Stavropoulos & Young, 2011). Inc and Cul3 were also identified as wake-promoting genes in a

genetic screen performed by Pfeiffenberger and Allada (2012), which targeted genes with 

dependent expression or with essential roles in neuronal function

amounts of sleep could be induced in Cul-3 and Inc mutants

reducing dopamine levels with TH inhibitors 3-iodotyrosine and alpha-methyl-p-

Supporting the hypothesis of 

signaling in 

are resistant 

promoting 

effects of increased dopamine 

DOPA 

feeding. However, the link to 

dopaminergic signaling seems to 

 

cholinergic cells, not  

dopaminergic cells, for 

sleep behavior (see Figure 

1; Pfeiffenberger & Allada, 2012). 

This finding underscores the 

wide view of 

sleep regulation because many different neurons and signaling systems are likely contributing to 

Effects of dopamine on sleep and circadian behavior are mediated in different structures 

brain (see Figure 1). On  a molecular level, dopamine acts through specific 

Figure 1  – Dopaminergic sleep circuits
Multiple dopaminergic cell groups projecting to different 
anatomical structures have been implicated in the 
regulation of sleep. Individual PPL1 (red) and PPM3 (blue) 
neurons projecting to the FB control baseline sleep and 
isoflurane sensitivity. Dopamine receptors in the MB are 
required for decreased sleep after caffeine feeding as well 
as the interaction of sleep with learning and memory. 
Dopamine receptors in the lLNvs are sufficient to confer 
normal sleep amount and may be involved in the circadian 
modulation of dopamine receptor sensitivity and the 
inhibition of dopaminergic arousal cues by light (yellow). 
The PPL2 dopaminergic cluster (magenta) projects to the 
lLNvs. 
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receptors, which are coupled to different intracellular signaling cascades. In Drosophila, there are 

two type I excitatory dopamine receptors (dDopR and dDopR2), which are coupled to Gs and 

activate adenylate cyclase, and one inhibitory dopamine receptor (dD2R), which couples to Gi 

and inhibits adenylate cyclase (Gotzes et al., 1994; Han et al., 1996; Hearn et al., 2002). Despite 

their categorization as type I and type II, these receptors may not always conform to their 

predicted excitatory or inhibitory activity. Knockdown of dD2R causes decreased locomotor 

activity (Draper et al., 2007), and feeding with a dD2R-specific agonist increases locomotor 

activity (Lee et al., 2013). That a receptor categorized as inhibitory promotes dopamine-

dependent locomotor activity is surprising; however, it is possible that dD2R acts as an excitatory 

receptor in this context or that it disinhibits excitatory neurons controlling locomotion. 

Although dD2R regulates locomotor activity, the sleep-relevant dopamine receptor seems 

to be dDopR. Null mutation of this receptor causes increased sleep, with longer sleep bouts, in 

addition to hypoactivity (Lebestky et al., 2009). It is interesting to note that dDopR mutants are 

also resistant to the effects of the wake-promoting drug caffeine (Andretic et al., 2008). The 

caffeine response phenotype of these mutants can be rescued by restoring dDopR to the 

mushroom bodies (MBs), a region of the fly brain involved in learning and memory (see Figure 1; 

Andretic et al., 2008; Kahsai & Zars, 2011). Previous studies have also demonstrated a role for 

the MBs in sleep regulation; ablating the MBs in their entirety causes a sleep decrease, as does 

silencing a subset of MB neurons (Pitman, 2006). However, promoting activation of a different, 

non-overlapping group of neurons in the MB also causes a sleep decrease, indicating that the 

MBs likely contain both sleep-promoting and wake-promoting cell groups (Joiner et al., 2006). 

Determining the sleep-relevant function of dDopR in these distinct MB cell groups will help to 

elucidate the processing of dopaminergic inputs to this region. 

Although the MBs are involved in sleep regulation and express dopamine receptors that 

may modulate the response to caffeine, dopaminergic circuits establishing baseline sleep 

behavior have mapped elsewhere. The high sleep phenotype of dDopR mutants cannot be 

reversed by restoring receptor expression to MBs (Lebestky et al., 2009). Two recent studies 
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identified specific dopaminergic neurons, the activation of which is sufficient to induce 

wakefulness (Liu et al., 2012; Ueno et al., 2012). Despite disagreement on the exact anatomical 

location of the implicated cell bodies, both studies demonstrated the sufficiency of a single pair of 

dopaminergic neurons to promote arousal via projections to the dorsal fan-shaped body (FB; see 

Figure 1). 

The FB is a sleep-promoting region that causes increased sleep when activated (Donlea 

et al., 2011). Because dopaminergic neurons promote wake, it follows that they likely suppress 

the activity of the FB. Indeed, the FB is responsive to sleep-suppressing dopamine signals in a 

dDopR-dependent manner (Liu et al., 2012; Ueno et al., 2012). It is surprising that the 

suppression of sleep-promoting signals from the FB is dependent on a type I dopamine receptor, 

which is typically thought of as excitatory. It has been suggested that dDopR has an inhibitory 

action in these cells in this context. However, it is also possible that the FB, like the MB, contains 

sleep- and wake-promoting neurons, and the relevant dopaminergic projections synapse onto 

wake-promoting cells. It is interesting to note that this dopaminergic sleep circuit is targeted by 

the common volatile anesthetic isoflurane, which induces a sleep-like state. Flies with increased 

dopamine signaling are resistant to isoflurane whereas flies with reduced dopamine signaling are 

hypersensitive, and the ability of dopamine to suppress the activity of isoflurane activity maps to 

the FB (see Figure 1; Kottler et al., 2013). It makes sense that effective and safe anesthetics 

should target the brain’s natural sleep circuits to create a sleep-like unconscious state. 

The high sleep phenotype of dDopR mutants is rescued by expression of dDopR in the 

FB and peptidergic neurons, as demonstrated by Liu et al. (2012) and Ueno et al. (2012), but it 

can apparently also be rescued by restoring dDopR expression in circadian clock neurons 

(Lebestky et al., 2009). Pigment dispersing factor (PDF) is a neuropeptide expressed in the small 

and large ventral lateral neurons (sLNvs and lLNvs, respectively), which are regarded as the 

central clock; although of these, it is only the sLNvs that are critical for self-sustained circadian 

behavior. The lLNvs are wake-promoting cells; they express dDopR and therefore may be subject 

to dopaminergic modulation (Kula-Eversole et al., 2010). Indeed, GRASP analysis (green 
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fluorescent protein [GFP] reconstitution across synaptic partners) has shown that projections from 

the protocerebral posterior lateral 2 (PPL2) cluster of dopaminergic neurons contact clock cell 

dendrites, and these connections are likely functional because lLNvs increase intracellular 

calcium in response to direct dopamine application (see Figure 1; Shang et al., 2011; Wegener et 

al., 2004). How the dDopR mutant phenotype can be rescued by expression in either the FB 

neurons or clock cells is not clear yet; it is possible that these neurons converge on shared 

downstream targets, and therefore correction of the circuit upstream can occur at one or the other 

location. 

Clock cell involvement in sleep and arousal circuits is important to integrate 

environmental cues and cellular and molecular context to coordinate sleep and wake behavior at 

appropriate times and in appropriate situations. The lLNvs promote wake in the light phase 

(Parisky et al., 2008; Shang et al., 2008; Sheeba et al., 2008) whereas dopamine only promotes 

wake during dark conditions (i.e., at night in cycling light/dark conditions; Kumar et al., 2012). 

Light is able to suppress dopamine’s wake-promoting effects by upregulating inhibitory dopamine 

receptors (dD2R) in the lLNvs (see Figure 1; Shang et al., 2011). dD2Rs are also regulated in a 

circadian manner in the peripheral control of locomotion. In the peripheral nervous system and 

neuromuscular junction, the sensitivity of these receptors cycles across the circadian day. The 

cycling of receptor sensitivity is controlled by light-sensitive body clocks, which are entrained to 

light cues by the photosensitive clock protein cryptochrome (CRY; Andretic & Hirsh, 2000). dD2R 

agonist-induced hyperactivity is highest in the dark phase and low in the light phase, which is 

consistent with the other studies showing that dopaminergic signaling is repressed by light. This 

study is also consistent with previous findings that the dD2R paradoxically promotes hyperactivity 

despite belonging to the canonically inhibitory class of type II dopamine receptors (Lee et al., 

2013). 

In the absence of the circadian clock gene Clock (Clk), dopamine signaling is increased, 

which results in increased arousal at night, thereby producing nocturnal behavior. The nocturnal 

behavior of Clk mutants can be suppressed by silencing dopaminergic inputs to the lLNvs or by 
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pharmacologically antagonizing dopamine receptors (Kumar et al., 2012). Nighttime activity in 

these mutants also depends on increased expression of the circadian photoreceptor CRY in the 

central clock cells in the brain, suggesting links between dopamine signaling and CRY. Daytime 

light inhibits wake-promoting dopaminergic signaling, but dopamine is essential for the behavioral 

response to dim light. Mutants lacking dopamine in the nervous system are defective in circadian 

entrainment and phase shifts triggered by low-intensity light cues (Hirsh et al., 2010). 

Dopaminergic modulation of clock cells, and possibly CRY levels, offers some insight into how it 

plays a role in entrainment, but more work must be done to understand the specificity of low-light 

sensitivity. In addition, understanding the role of the dopaminergic arousal cues during the 

nighttime hours and determining sleep-relevant clock outputs will help us understand the plastic 

and interconnected circuits that allow for normal cycles of sleep/wake behavior in wild-type flies. 

This multiplicity of wake-promoting signals to the clock that can trigger suppression of other 

signals is an excellent example of how sleep circuits can receive and prioritize multiple contextual 

inputs to result in the most advantageous behavior in a particular situation. 

In summary, dopaminergic cell groups project to different anatomical regions of the 

Drosophila brain to modulate arousal in response to various cues. Having several parallel 

neuromodulatory circuits that each communicates different aspects of environmental and 

physiological context to sleep centers in the brain provides flexibility in adapting behavior to a 

changing environment. The ability to prioritize conflicting environmental cues by strengthening 

one circuit and suppressing others may be an evolutionary advantage to having multiple sites of 

neuromodulatory input.  

 

Octopamine 

Octopamine in invertebrates is an analog of adrenergic neurotransmitters in vertebrates. 

It acts similarly to epinephrine and norepinephrine and controls some of the same behaviors, 

including memory formation and aggression (Roeder, 2005; Sara, 2009; Yanowitch & Coccaro, 

2011). Norepinephrine has been shown to regulate mammalian sleep (Aston-Jones & Bloom, 
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1981), and we now know that octopamine regulates sleep in Drosophila. Decreasing octopamine 

levels by mutating biosynthetic enzymes causes an increase in total sleep amount as well as 

changes in other indicators of increased sleep drive such as increased arousal threshold and 

decreased latency to sleep (Crocker & Sehgal, 2008). These phenotypes can be rescued by 

pharmacologic administration of octopamine. Electrically exciting or silencing octopaminergic 

neurons causes decreased or increased sleep, respectively. Ectopically expressing a sodium 

channel to excite only the anterior superior medial (ASM) cluster of octopaminergic neurons 

decreases sleep, identifying these as the sleep-relevant octopaminergic cells (Crocker et al., 

2010). The adrenergic antagonist mianserin blocks the wake-promoting effect of octopamine, 

underscoring that these systems are homologous (Crocker & Sehgal, 2008). 

The sleep-promoting effect of octopamine requires protein kinase A (PKA) signaling 

(Crocker & Sehgal, 2008). It is interesting to note that PKA is a signaling molecule already known 

to play a role in sleep regulation, especially in the MBs (Joiner et al., 2006). In mapping the sleep-

relevant neuronal targets of octopamine signaling, Crocker et al. (2010) discovered that inhibiting 

PKA in the pars intercerebralis (PI)—not in the MBs—was able to block the wake-promoting 

effects of octopamine (see Figure 2). The PI is thought to be the Drosophila equivalent of the 

hypothalamus based on similarities of development and function, as well as expression of similar 

neuropeptides (de Velasco et al., 2007). It consists of a collection of neurosecretory cells in the 

far dorsomedial area of the brain with pronounced ventral projections. These cells express 

multiple octopamine receptors, one of which, octopamine receptor in the mushroom body 

(OAMB), is required for octopaminergic control of sleep.  

The PI cells downstream of octopamine in the sleep circuit are marked by Dilp2-Gal4, 

which is expressed in insulin-producing cells. Despite insulin production being the major function 

of these cells, this does not seem to be the mechanism by which octopamine modulates sleep. 

Increasing or decreasing insulin signaling does not itself alter sleep behavior. On the other hand, 

increasing octopamine signaling does increase triglycerides—a measure of metabolism and 

energy storage—and this connection is mediated by insulin signaling. Although the control by 



 

octopamine of sleep and metabolism seems to be unrelated, it is true that metabolic state can 

affect sleep behavior. For example, in periods of starvation, flies with low octopamine signaling 

will overcome their sleep drive 

to forage, and flies with high 

octopamine signaling will not 

increase foraging activity 

despite being more generally 

active. This is likely because 

flies with low octopamine have 

low energy stores and cannot 

withstand lack of food supply 

whereas  

those with high 

octopamine have nutrient 

reserves and therefore have 

less need to forage (Erion et al., 

2012).  

Thus, in either 

scenario, metabolic needs 

dominate over sleep need. The 

mechanism by which 

octopamine modulates baseline 

sleep behavior through the PI is still unknown, but the interplay and prioritization of arousal and 

metabolic signals through this brain region is another example of how numerous inputs can allow 

for behavioral plasticity on the basis of context.

Octopamine not only modulates sleep through the PI, but it may also communicate wake

promoting signals to the lLNvs, as does dopamine (see Figure 2). The lLNvs express octopamine 
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Figure 2 – Serotonergic, histaminergic, and
octopaminergic sleep circuits   
Serotonergic cells (blue) project to many brain regions, 
including the MB, where they promote sleep through the d5
HT1A receptor. They project to the PI, where they promote 
sleep and feeding. They also project to the ellipsoid body, 
where they may participate in some elements of circadian
dependent behavior through the d5-HT2 receptor. The 5HT
1B receptor inhibits sensitivity to light-induced phase shifts 
and may act through the LNvs to mediate this aspect of 
circadian entrainment. Octopaminergic neurons (m
specifically the ASM cluster, promote wake via their 
projections to the PI. They also signal to the lLNvs, which 
respond to octopamine specifically during the night phase of 
the circadian day. In addition, histaminergic neurons (red) 
seem to promote wakefulness via HisCl1 receptors in the 
PDF  clock neurons. 
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receptors and respond to octopamine application by increasing cyclic adenosine monophosphate 

(cAMP). The sensitivity of clock cells to octopamine is dependent on time of day: In light/dark 

conditions, lLNvs respond to octopamine in the dark phase, and in constant dark conditions 

octopamine sensitivity is high only during the subjective night. In addition, when the clock gene 

period (per) is mutated, octopamine sensitivity of the clock neurons decreases significantly 

(Shang et al., 2011). Therefore, the wake-promoting effects of octopamine are dependent on 

circadian and metabolic cues and may depend on other endogenous or environmental conditions. 

Octopaminergic cells also project to other brain loci previously reported to be involved in sleep 

regulation, such as the FB and the MBs; however, it is currently unknown whether these inputs 

can modulate sleep in different contexts (Busch et al., 2009). 

Serotonin 

Similar to dopamine and octopamine, serotonin is involved in modulating many 

behaviors, including learning, mating, and aggression, and it has been implicated in sleep and 

circadian behaviors (Becnel et al., 2011; Dierick & Greenspan, 2007; Sitaraman et al., 2008). In 

2006, Yuan and colleagues tested for sleep phenotype in mutants of three different serotonin 

receptors and discovered that receptor d5-HT1A promotes sleep. Flies expressing a mutated 

form of the receptor showed reduced and fragmented sleep. In addition, these flies were unable 

to get wild-type levels of rebound sleep after a period of sleep deprivation. Pharmacological and 

genetic augmentation of serotonin production increases sleep, confirming that serotonin is sleep-

promoting (Yuan, Joiner, & Sehgal, 2006).  

Serotonergic neurons project to multiple brain regions that have been previously 

identified as part of sleep-regulatory circuitry, including the PI and the MB (Lee et al., 2011; Luo 

et al., 2012; Pech et al., 2013). In the d5-HT1A mutant flies, wild-type sleep levels can be 

restored by expressing d5-HT1A only in the MB, indicating that this is the structure that receives 

sleep-relevant serotonergic inputs (see Figure 2; Yuan et al., 2006). On the other hand, serotonin 

signaling to the PI seems to modulate feeding and metabolism (Luo et al., 2012).  



12 

 

In addition to regulating baseline sleep levels and homeostatic response to sleep 

deprivation, serotonin is also involved in modulating circadian control of sleep and activity. The 

serotonin receptor d5-HT2, which is expressed in the protocerebrum and ellipsoid body, may 

modulate circadian behavior. Flies fed a d5-HT2 agonist display increased activity in the early 

daytime and lose the anticipatory behavior that precedes light/dark transitions (Nichols, 2007). 

This anticipatory behavior is a typical sign of circadian clock entrainment, and loss of anticipation 

can indicate reduced rhythmicity or impaired entrainment. Increasing serotonin signaling in flies, 

either by feeding serotonin or serotonin reuptake inhibitors, decreases their sensitivity to light-

induced phase shifts, which is another indicator of weakened circadian entrainment. This effect 

on phase shift sensitivity seems to act through the d5-HT1B receptor because overexpressing or 

knocking down this receptor decreases or increases circadian sensitivity to light pulses, 

respectively. d5-HT1B is expressed in clock cells in the brain, where it likely acts to modulate 

circadian entrainment (see Figure 2; Yuan et al., 2005). However, it is also expressed in the MBs 

and PI, where it could potentially modulate the sleep circuit on the basis of light and circadian 

cues. 

Histamine 

Histamine is a monoamine neurotransmitter with a well-established role in Drosophila 

photoreception and temperature sensing (Hong et al., 2006; Witte et al., 2002). However, until 

very recently, it was only known to regulate sleep and wake in mammalian systems (Parmentier 

et al., 2002). A wake-promoting role for histamine has now been demonstrated in Drosophila by 

knocking down histamine biosynthetic pathways and demonstrating an increase in sleep (Oh et 

al., 2013). In addition, mutation of a single histamine receptor, HisCl1, causes a similar increase 

in sleep. It is interesting to note that this histaminergic sleep regulation maps to the clock neurons 

because expression of HisCl1 in PDF+ cells is necessary and sufficient for normal sleep behavior 

(see Figure 2; Oh et al., 2013). An earlier anatomical study identified histaminergic projections 

from extraocular eyelet photoreceptors to the ventral lateral neurons, which could be the wake-

promoting histaminergic circuit (Hamasaka & Nässel, 2006). Thus, histaminergic 
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neuromodulation may provide a novel mechanism for communicating light cues from the visual 

system to the central clock for regulation of behavior. The ability of the circadian clock to drive 

robust rhythmic locomotor behavior, even in the absence of light cues, would seem to preclude 

the necessity for this type of neuromodulatory input. However, it is possible that the wake-

promoting cues from the lLNvs (as opposed to the circadian cues from the sLNvs) are more 

plastic and responsive to slight modulation. More research must be done to establish the role for 

histamine in controlling sleep/wake behavior and the type of environmental information it may be 

conveying. 

Each of the major monoamine neurotransmitters discussed regulates broad and 

overlapping lists of complex behaviors, including sleep.  Sleep regulation has been attributed to 

many different signaling pathways, brain structures, and circuits, but we still lack a cohesive 

understanding of how this essential behavior is established.  We undertook a small molecule 

screen to determine whether modulating behavior specifically in adulthood would uncover new 

information that has been missed in genetic screens.  Further work investigating two drugs from 

this screen found that both affect sleep/wake balance by presynaptically modulating monoamine 

signaling.  This body of work underscores the power of pharmacological screens and utilizes a 

sleep-promoting and a wake-promoting drug to uncover novel presynaptic controls of sleep 

behavior.   
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CHAPTER 1 – Small-molecule screen in adult Drosophila 
identifies VMAT as a regulator of sleep  
Published:  Nall A and Sehgal A. (2013) Small-molecule screen in adult Drosophila identifies 
VMAT as a regulator of sleep. J Neurosci, 33(19):8534-40. 

ABSTRACT 
 

Sleep is an important physiological state, but its function and regulation remain elusive. In 

Drosophila melanogaster, a useful model organism for studying sleep, forward genetic screens 

have identified important sleep-modulating genes and pathways; however, the results of such 

screens may be limited by developmental abnormalities or lethality associated with mutation of 

certain genes. To circumvent these limitations, we used a small-molecule screen to identify sleep-

modulating genes and pathways. We administered 1280 pharmacologically active small 

molecules to adult flies and monitored their sleep. We found that administration of reserpine, a 

small molecule inhibitor of the vesicular monoamine transporter (VMAT) that repackages 

monoamines into presynaptic vesicles, resulted in an increase in sleep. Supporting the idea that 

VMAT is the sleep-relevant target of reserpine, we found that VMAT-null mutants have an 

increased sleep phenotype, as well as an increased arousal threshold and resistance to the 

effects of reserpine. However, although the VMAT mutants are consistently resistant to reserpine, 

other aspects of their sleep phenotype are dependent on genetic background.  

These findings indicate that small-molecule screens can be used effectively to identify 

sleep-modulating genes whose phenotypes may be suppressed in traditional genetic screens. 

Mutations affecting single monoamine pathways did not affect reserpine sensitivity, suggesting 

that effects of VMAT/reserpine on sleep are mediated by multiple monoamines. Overall, we 

identify VMAT as an important regulator of sleep in Drosophila and demonstrate that small-

molecule screens provide an effective approach to identify genes and pathways that impact adult 

Drosophila behavior. 
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INTRODUCTION 

 

Sleep is an important physiological state, as evidenced by the fact that we spend a third 

of our lives in this state. Additionally, sleep deprivation causes cognitive and health deficits, 

indicating that it plays an essential role in physiological homeostasis. Sleep is not just required in 

humans; all well-studied animals exhibit sleeplike states. Among these animals are common 

model organisms, including mice, zebrafish, flies, and nematode worms (Allada and Siegel, 2008; 

Mackiewicz et al., 2008; Raizen et al., 2008; Bushey and Cirelli, 2011). These models and others 

are being used to investigate outstanding questions regarding the purpose of sleep and its 

regulation.  

The rest state in the fly shares many commonalities with human sleep behavior (Shaw et 

al., 2000, Hendricks et al., 2000). For example, sleeping flies stop moving and assume a 

stereotyped posture. They also exhibit an increased arousal threshold, meaning that they require 

a stronger stimulus to reinitiate activity. Importantly, flies display a homeostatic need for sleep, 

such that they compensate for periods of sleep deprivation with subsequent rebound. Drosophila 

melanogaster follow a diurnal pattern, resting mostly during the night and taking a mid-afternoon 

“siesta.”  

The simplicity of behavioral assays using Drosophila, combined with the ease of genetic 

screens, has led many researchers to turn to this model to elucidate the genetic and molecular 

mechanisms underlying sleep regulation. Genetic screens have uncovered a few low-sleeping 

mutants, but these studies have not yet led to a cohesive account of sleep regulation. Given that 

sleep appears to be an essential process (Rechtschaffen et al., 1983; Shaw et al., 2009), it is 

likely that many sleep-regulating genes are also essential. In other words, loss of these genes 

may cause lethality or gross developmental problems, precluding their detection in traditional 

genetic screens. To complement previous genetic screens and to find novel sleep-regulatory 

molecules and pathways, we conducted a small-molecule screen for sleep phenotypes in adult 

Drosophila. Here, we report the findings from this screen, which indicate a strong effect of 



16 

 

monoaminergic neurotransmission in regulating sleep quantity. Using both pharmacological and 

genetic approaches, we investigated the role of one of our hits in regulating sleep behavior. 

 

MATERIALS AND METHODS 
 

Flies  

Wild-type iso31 flies (Ryder et al., 2004) were used for drug screen and subsequent experiments. 

VMATp1 mutants were a kind gift of the Krantz laboratory (University of California–Los Angeles, 

Los Angeles). TrHco1440 (BSC10531), HdcMB07212 (BSC25260) mutants were ordered from the 

Bloomington Stock Center (Bloomington, Indiana), and Gad1f00602 was ordered from the Exelixis 

collection at Harvard Medical School. The temperature-sensitive tyrosine hydroxylase mutant plets 

(Pendleton et al., 2002) was a kind gift from Dr. Ralph Hillman (New York University, New York). 

The octopamine synthesis mutant TbHnm18 was previously published (Crocker and Sehgal, 2008). 

 

Drug feeding  

We used the LOPAC 1280 drug library (Sigma-Aldrich), which is made up of bioactive molecules 

with known molecular targets, of which approximately half are involved in neurotransmission. 

Four- to 6-day-old adult isogenic (iso31) flies were given access to drugs at 20 µM, mixed into 

their 2% agar and 5% sucrose food, ad libitum for 1 week. Flies were kept in incubators at 25°C 

on a 12 h light/dark schedule. During this time, locomotor activity of flies was monitored using the 

Drosophila Activity Monitoring System (Trikinetics). Sleep behavior was calculated and averaged 

for four male flies and four female flies per drug treatment. Sleep graphs and calculations of sleep 

quantity for all experiments were generated using PySolo (Gilestro and Cirelli, 2009). For drugs 

that produced qualitative changes in sleep profile or quantitative changes in total minutes of sleep 

per day, four male and four female flies were tested again at 50 µM  drug. Drugs that showed a 

reproducible, dose-dependent effect on sleep quantity were considered screen hits. For reserpine 

(Sigma-Aldrich), the stock solution was made at 10 mM in DMSO. This stock solution was diluted 
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in 2% agar/5% sucrose food to final concentrations of 20 and 50 µM for the original screen and 

10 µM for all subsequent experiments. A total of 0.2% DMSO vehicle controls were used as a 

comparison for 20 µM drug feeding during the screen, and 0.1% DMSO vehicle controls were 

used as a comparison for 10 µM reserpine feeding in subsequent experiments. For the plets 

mutants, flies were kept at a restrictive temperature of 29°C for 24 h before placing on DMSO and 

reserpine and were kept at this temperature for the duration of behavioral monitoring.  

 

Arousal threshold  

Arousal threshold assay was conducted as previously published (Wu et al., 2008). Mechanical 

stimuli were applied manually by tapping a dowel on the behavior tubes containing the flies. 

Weak (one light tap), medium (one strong tap), and strong (six strong taps) stimuli were applied 

to behavior tubes at ZT16, ZT18, and ZT20, respectively. The percentage of spontaneously 

sleeping flies awoken was calculated for each genotype and stimulus. 

 

Sleep deprivation  

Flies were deprived during the final 6 h of the night (ZT18-ZT24) using a vortex to shake flies for 

2 s of every 20 s, at random intervals (Huber et al., 2004). Amount of sleep lost was calculated by 

subtracting minutes of sleep during deprivation from the minutes of sleep during the same interval 

on the previous night. Sleep regained the following morning was calculated by subtracting the 

minutes of sleep during the first 3, 6, or 12 h the morning before deprivation from the same 

interval after deprivation. 

 

PCR 

The wild-type vesicular monoamine transporter (VMAT) allele was genotyped using VMATp1-F 

(5’-ATC GGG GGA TGC TTG ATA TT-3’) and VMATp1-R (5’-ATC CGA ATC GGG AAC AGA T-

3’) primers, and the mutant VMATp1 allele was genotyped using the Plac1 (5’- CAC CCA AGG 

CTC TGC TCC CAC AA-3’) primer and VMATp1-R primers. PCR was conducted with GoTaq 
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Flexi (Promega), with the following cycling conditions: 95°C for 2 min, then 30 cycles of 95°C for 

30 s, 52°C for 1 min, 72°C for 1 min, and final ext ension at 72°C for 5 min. 

 

Sleep latency 

Latency to sleep was calculated by counting the number of minutes between lights off and the 

first stretch of 5 consecutive minutes with zero beam crosses, as recorded by the Drosophila 

Activity Monitoring System. 

 

RESULTS 
 

A small-molecule screen identifies sleep-modulating  compounds 

We screened 1280 small molecules for their effect on sleep:wake rhythms in the adult fly 

(Fig. 1.1). Observation of daily locomotor behavior allowed for quantitative comparisons of total 

sleep time, daytime and nighttime sleep, and qualitative assessment of sleep patterns, rhythm 

strength, and anticipation of light/dark transitions. Each drug was assayed in a limited number of 

flies to enhance throughput; therefore, only drugs with strong effects on sleep were identified as 

having an effect above individual variation. Additionally, all compounds were fed to flies at a 

relatively low dose that caused minimal lethality. Many of these drugs showed an effect in only 

one sex and were discarded from further testing. Even with these constraints, we were able to 

identify 38 compounds that affected sleep at the initial concentration. Only those drugs found to 

have a dose-dependent effect on sleep in both sexes when tested at a higher concentration were 

considered hits. With these stringent criteria, we initially found six compounds that qualified: five 

that decreased sleep and one that increased sleep. One of the sleep-reducing compounds, the 

cholinergic agonist carbachol, did not continue to have an effect in subsequent studies (data not 

shown). The four remaining sleep-reducing drugs caused a significant reproducible decrease in 

nighttime sleep at a 20 µM concentration and a further reduction in sleep levels at 50 µM. These 

sleep-promoting drugs are pergolide methanesulfonate (Fig. 1.2a), R(-)-2,10,11-
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trihydroxyaporphine hydrobromide (Fig. 1.2b), paliperidone (Fig. 1.2c), and 1,3-dipropyl-7-

methylxanthine (Fig. 1.2d). The screen revealed a single sleep-promoting drug, reserpine (Fig. 

1.2e). Reserpine caused a significant increase in sleep during both the day and night, especially 

at light/dark transitions when flies are most active (p=0.000161 by one-way ANOVA with Tukey 

post hoc comparison for both the 20 µM and 50 µM reserpine-fed flies compared with DMSO 

controls). In female flies, sleep increased by 400 min at 20 µM reserpine and by 470 min at 50 

µM reserpine (Fig. 1.3a). Male flies showed a similar behavioral response to drug treatment. 

 

Figure 1.1 – Schematic of the small molecule screen  
4 male and 4 female flies were screened for each of 1,280 known bioactive drugs.  At 4-6 days 
post eclosion, adult flies were put in tubes with food containing 20µM of drug.  These tubes 
were placed in monitors, and locomotor activity was measured for 5 days using the Drosophila 
Activity Monitoring (DAM) System.  Using pySolo, sleep profiles were generated for males and 
females for each drug and compared to flies fed 0.01% DMSO (control).  If a drug altered 
sleep in both males and females, it was re-tested at 50µM.  If the drug had a dose-dependent 
effect, it was considered a positive hit. 



 

we compared the sleep phenotype of reserpine

VMATp1 (Simon et al., 2009). The 

increased sleep quantity as flies fed 50 

with iso31 as shown by one

Importantly, inhibition of VMAT by drug treatment or genetic mutation does not render flies 

hypoactive, as measured by activity index (activity per waking 

the effect is specific for sleep.

We next asked whether inhibition o

increased sleep quantity. To assess sleep depth, we measured arousal threshold, in other words, 

20 

 

Genetic ablation of VMAT alters 

sleep behavior 

Reserpine is an inhibitor of 

the VMAT. To determine whether the 

effects of reserpine on sleep were 

mediated by its inhibition of VMAT, 

we compared the sleep phenotype of reserpine-treated flies with that of a VMAT

(Simon et al., 2009). The VMATp1 homozygous mutant has the same significantly 

increased sleep quantity as flies fed 50 µM reserpine (p=0.000144 forVMATp1/VMAT

with iso31 as shown by one-way ANOVA with Tukey post hoc comparison) (Fig. 

rtantly, inhibition of VMAT by drug treatment or genetic mutation does not render flies 

hypoactive, as measured by activity index (activity per waking minute) (Fig. 1.3b

the effect is specific for sleep. 

We next asked whether inhibition of VMAT causes increased sleep depth in addition to 

increased sleep quantity. To assess sleep depth, we measured arousal threshold, in other words, 

Figure 1.2 - Small molecule 
screen identifies sleep
modulating compounds
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2,10,11-trihydroxyaporphine 
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and reserpine (e).  Sleep is plotted 
as minutes of sleep per sliding 30 
minute window across a 24 
period (12 hours light (white bar) 
and 12 hours dark (black bar) with 
averaged data from 4 female flies 
over 5 days of recording.
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the ability of the animal to wake up with sensory stimulation. We delivered weak, medium, and 

strong stimuli to flies at different times of the night and counted the number aroused in different fly 

lines. We found that a smaller percentage of the drug

mutants awaken in response to these mechanical stimuli, compared with unt

(Fig. 1.3c). The contribution of genotype to arousability at all stimulus intensities was significant 

(p<0.0001 by two-way ANOVA). 

Figure 1.3 – Genetic ablation of VMAT Alters Sleep Behavior
(a) Total minutes of sleep per 24
(vehicle control), 20µM reserpine, and 50
and VMATp1/VMATp1 fed sucrose/agar food.  n=8 for each genotype/treatment; ***  indicates 
p<0.001. (b) Activity index (infrared beam crosses per waking minute) for these reserpine
treated and VMATp1 mutant flies shows these flies are not hypoactive.  (c)  The percent of 
sleeping flies that were aroused from sleep by a weak (white bars), medium (gray bars), or 
strong (black bars) stimulus at ZT16, ZT18, or ZT20, respectively. Data are averaged from 
three separate experiments; ****  indicates p<0.0001 for the effect of treatment/genotype on 
arousability. (d) Flies were deprived of sleep during the second half of the night
Minutes of sleep lost during this period (white bar) are plotted as a negative number, and 
rebound sleep was measured during the first 3 (light gray bar), 6 (gray bar), and 12 hours 
(black bar) the following morning.  ** indicates p<0.01 and
amount of sleep lost compared to iso31 controls, n=16 for each genotype/treatment.
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We also measured the effect of VMAT inhibition on the homeostatic rebound that follows 

a period of sleep deprivation. We deprived flies of sleep during the second half of the night and 

assayed rebound sleep the following morning. Drug-treated and homozygous mutant flies were 

less effectively deprived than wild type and heterozygous flies (p=0.00322 and p=0.000185 for 

iso31 vs. VMATp1/ VMATp1 and reserpine-treated flies, respectively, by one-way ANOVA with 

Tukey’s post hoc), further supporting the idea that sleep depth is increased by inhibition of VMAT. 

Mutant and drug-treated flies experienced slightly less rebound sleep as well, although this 

difference did not reach significance because of large inter-individual variance (Fig. 1.3d). The 

apparent reduction in sleep rebound by these flies is likely the result of the relatively ineffective 

deprivation and already elevated baseline sleep levels. 

 

Effects of reserpine on sleep map to the VMAT gene 

In VMATp1 flies, the VMAT gene is disrupted by insertion of a PLacW transposon in the 

fifth exon of the VMAT gene (Bellen et al., 2011). To confirm the presence of this transposon, we 

genotyped VMATp1 flies by PCR. The wild-type VMAT allele, detected using primers specific for 

the VMAT genomic sequence, was amplified from iso31 flies and from flies heterozygous for the 

mutation, but not from homozygous mutants. Heterozygous and homozygous mutants were 

positive for the mutant VMAT allele, which was detected using one VMAT primer and one 

transposon-specific primer (Fig. 1.4a,b). 

If effects of reserpine on sleep are mediated through inhibition of VMAT, then VMAT 

mutants should be resistant to reserpine. Indeed, theVMATp1 mutant does not show a further 

sleep increase after reserpine administration (Fig. 1.4c). Additionally, reserpine resistance of 

theVMATp1 mutant was not complemented by the deficiency Df(2R)BSC306, which spans the 

VMAT locus (Fig. 1.4c). The fact that the VMATp1/Df(2R)BSC306 flies had a phenotype 

comparable to homozygous mutants indicates the mutation is likely null.  Together, these data 

indicate that VMAT mutants are resistant to reserpine, and the effect maps to the VMAT locus. 
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sleep phenotype of VMAT mutants is  background dependent 

determine whether the sleep phenotype of theVMATp1 mutation is independent of 

background, we outcrossed the mutation for five generations into an iso31 background. 

transposon was confirmed by PCR (Fig. 1.4b). Surprisingly, outcr

p1(5x) flies) slept for approximately the same number of minutes per 

day as the iso31 control flies (846 min/d for iso31 females vs. 881 min/d for VMAT

). Despite the largely normal baseline sleep behavior, however, the 

) flies consistently exhibited decreased sleep latency, which means that they fell 

than wild-type or heterozygous flies after lights out (p=0.035 by

test with Welch’s correction for unequal variances; Fig. 1.5c). Additionally, these mutant flies 

retained an increased arousal

threshold after outcrossing (Fig. 

1.5d), similar to the original 

Figure 1.4 – Effects of 
reserpine on sleep map to the 
VMAT Gene  
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gray boxes representing exons, 
showing locations of PCR 
primers used to genotype the 
wild type VMAT (top) 
element-containing mutant 
VMATp1 (bottom) alleles. (b) 
PCR amplifies the wild type 
VMAT allele (top) in iso31 and 
VMATp1/iso31 heterozygous 
flies and the VMATp1 mutant 
allele (bottom) in heterozygous 
and homozygous VMATp1 
mutant flies.  (c) Total min
of sleep per 24
wild type, heterozygous mutant, 
homozygous mutant, and 
mutant/deficiency trans
heterozygotes fed 0.1% DMSO 
(white bars) or 10
(black bars). *** indicates 
p<0.001, n=16 for each 
genotype/treatment.
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VMAT allele (top) in iso31 and 
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mutant/deficiency trans-
heterozygotes fed 0.1% DMSO 
(white bars) or 10µM reserpine 
(black bars). *** indicates 
p<0.001, n=16 for each 
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mutant strain (p=0.0100 by two

original mutant, the VMATp1

way ANOVA) but showed a rebound the following morning proportional

deprivation (Fig. 1.5e). 

Figure 1.5 - The sleep phenotype of VMAT mutants is background d ependent
(a) Sleep profile for iso31 (black line), VMATp1(5x)/iso31, and  VMATp1(5x)/VMATp1(5x) 
outcrossed mutant flies.  Sleep is plotted as minutes of sleep per sliding 30 minute window 
across a 24 hour period (12 hours light (white bar) and 12 hours dark (black bar) with 
averaged data from 16 female flies over 5 days of recording. (b) Total sleep per 24 hour period 
quantified for these flies fed 0.1% DMSO (white bars) or 10
indicates p<0.001. (c) Scatter plot of latency to sleep, or minutes between lights off and the 
first sleep bout.  Horizontal line corresponds to group mean.  * indicates p<0.05.  (d) The 
percent of sleeping flies that were aroused from sleep by a weak 
bars), or strong (black bars) stimulus at ZT16, ZT18, or ZT20, respectively. Data are averaged 
from three independent experiments; *  indicates p<0.05 for the effect of genotype on 
arousability. (e) Flies were deprived of sleep d
Minutes of sleep lost during this period (white bar) are plotted as negative numbers, and 
rebound sleep was measured during the first 3 (light gray bar), 6 (gray bar), and 12 hours 
(black bar) the following morning.  *** indicates p<0.001 for the amount of sleep lost compared 
to iso31 controls, n=16 for each genotype.
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p1(5x)mutants were less efficiently sleep-deprived (p=

ANOVA) but showed a rebound the following morning proportional to sleep lost during 

The sleep phenotype of VMAT mutants is background d ependent
(a) Sleep profile for iso31 (black line), VMATp1(5x)/iso31, and  VMATp1(5x)/VMATp1(5x) 
outcrossed mutant flies.  Sleep is plotted as minutes of sleep per sliding 30 minute window 

our period (12 hours light (white bar) and 12 hours dark (black bar) with 
averaged data from 16 female flies over 5 days of recording. (b) Total sleep per 24 hour period 
quantified for these flies fed 0.1% DMSO (white bars) or 10µM reserpine (black bars). 
indicates p<0.001. (c) Scatter plot of latency to sleep, or minutes between lights off and the 
first sleep bout.  Horizontal line corresponds to group mean.  * indicates p<0.05.  (d) The 
percent of sleeping flies that were aroused from sleep by a weak (white bars), medium (gray 
bars), or strong (black bars) stimulus at ZT16, ZT18, or ZT20, respectively. Data are averaged 
from three independent experiments; *  indicates p<0.05 for the effect of genotype on 
arousability. (e) Flies were deprived of sleep during the second half of the night (ZT18
Minutes of sleep lost during this period (white bar) are plotted as negative numbers, and 
rebound sleep was measured during the first 3 (light gray bar), 6 (gray bar), and 12 hours 

morning.  *** indicates p<0.001 for the amount of sleep lost compared 
to iso31 controls, n=16 for each genotype. 

to arousability). Like the 

=0.0003 by one-

to sleep lost during 

 

The sleep phenotype of VMAT mutants is background d ependent  
(a) Sleep profile for iso31 (black line), VMATp1(5x)/iso31, and  VMATp1(5x)/VMATp1(5x) 
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sleep-promoting effects of reserpine. VMAT inhibition likely increases sleep by interfering with the 

signaling from more than one neurotransmitter system simultaneously.
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p1(5x) mutants were still resistant to the sleep-promoting effects of 

). Because these mutants have normal baseline sleep, the lack of a response 

cannot be the result of a ceiling effect. These data establish that VMAT is required 

for effects of reserpine on sleep. 

Effects of reserpine on mutants of different  monoaminergic systems 

VMAT is a transporter protein that packages all monoaminergic neurotransmitters into 

les. To determine which of the monoamines is responsible for the sleep 

by reserpine, we fed reserpine to mutants deficient for the various 

monoamines. Mutants deficient in the synthesis of dopamine (plets), serotonin (TrH

), histamine (HdcMB07212), and the amino acid-derived neurotransmitter 

) all responded to reserpine (Fig. 1.6). Because dopamine synthesis is required 

development, the only viable mutant (plets) is temperature-sensitive, and so the drug 

treatment and sleep behavior for this mutant were measured at the restrictive temperature of 

Reserpine increased sleep significantly for all of the neurotransmitter mutants (comparing 

controls with 10 µM reserpine-treated flies of the following genotypes, 

0.00355 plets at 29°C, p=0.000144 for TrHco1440, p=0.000137 for 

HdcMB07212, and p=0.000151 for Gad1f00602 by two-way 

Bonferroni multiple comparisons), indicating that no single neurotransmitter system is required for 

promoting effects of reserpine. VMAT inhibition likely increases sleep by interfering with the 

signaling from more than one neurotransmitter system simultaneously. 

Figure 1.6 - Effects of reserpine on 
mutants  
of different monoaminergic systems
Total sleep per 24 hour period plotted for 
mutants defective in the synthesis of the 
neurotransmitters dopamine (plets at 29oC), 
serotonin (TrHco1440), octopamine 
(TbHnm18), histamine (HdcMB07212), and 
GABA (Gad1f00602), fed 0.1% DMSO (white 
bars) or 10µM reserpine (black bars). ** 
indicates p<0.01 and *** indicates p<0.001.
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DISCUSSION 
 

Genetic screens for sleep phenotypes have led to the isolation of a few mutants, 

including Shaker (Cirelli et al., 2005), sleepless (Koh et al., 2008), insomniac (Stavropoulos and 

Young, 2011), and cyclinA1 (Rogulja and Young, 2012). Other mutations that cause reduced 

sleep were identified by chance, including fumin (Kume et al., 2005) and several mutations in the 

calcineurin signaling pathway (Nakai et al., 2011), or through assays of candidate genes (Yuan et 

al., 2006; Crocker and Sehgal, 2008, 2010; Sehgal and Mignot, 2011). Although these studies 

give valuable insight into molecular underpinnings of sleep behavior, they do not paint a complete 

picture of the molecular machinery of sleep regulation.  

We note that traditional genetic screens may be limited in their ability to uncover 

molecules that regulate behavior because of factors, such as redundancy, lethality, 

developmental compensation, and developmental defects, which may mask or conflate adult 

phenotypes. The study of sleep is particularly susceptible to these limitations, as long-term sleep 

deprivation leads to death (Rechtschaffen et al., 1983; Shaw et al., 2009). In addition, sleep-

regulating genes tend to also be required for other functions. One way to bypass the limitations 

intrinsic to traditional genetic screens is to use adult-specific manipulations. We asked whether 

we could use a small-molecule screen to discover new sleep-modulating proteins.  

Small-molecule screens in whole animals are rare, especially when measuring a 

behavioral output. A small-molecule screen for aberrant sleep behavior in zebrafish assayed 

larvae, through automated methods, for effects of almost 4000 drugs (Rihel et al., 2010). 

Conducting a drug screen in Drosophila, although more labor-intensive, was important to find new 

sleep-modulating molecular targets in a well-established sleep model. Additionally, an enormous 

genetic toolkit is available in Drosophila for confirming and elaborating on drug screen findings.  

In the screen reported here, we searched for drugs that dose-dependently and 

reproducibly affected sleep behavior in both male and female adult flies. Two of the compounds 

that met these strict criteria are dopamine receptor agonists. Other drugs that increase dopamine 
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signaling, such as methamphetamine and cocaine, are known to increase arousal in humans and 

model organisms, including Drosophila. Inhibition of dopamine biosynthesis biochemically 

(Andretic et al., 2005) and genetically (Riemensperger et al., 2011) has the opposite effect, 

increasing sleep amount in the fly. Also, the dopamine type 1 receptor, dDopR, promotes arousal 

at appropriate times in the circadian sleep/wake cycle (Lebestky et al., 2009). The identification of 

small molecules targeting dopaminergic signaling validates the power of the drug screen to 

identify sleep-regulatory pathways.  

Another sleep-inhibiting molecule identified in the screen was methylxanthine, which is a 

caffeine analog. Caffeine is well known as a robust wake-promoting stimulant. Although the target 

of its action in Drosophila is still unclear, its effects on behavior are similar to those in 

mammals/humans (Wu et al., 2008). As in the case of the molecules that affect dopaminergic 

signaling, the identification of a caffeine analog speaks to the efficacy of the small-molecule 

screen reported here. This screen also identified an atypical antipsychotic, paliperidone, as a 

sleep-inhibiting molecule. The target of this antipsychotic is not known, but its effect on sleep 

supports reports of links between sleep and affective disorders (Wulff et al., 2010).  

Surprisingly, only one drug from the screen was found to increase sleep: reserpine. 

Although reserpine, which is typically used to treat hypertension and is also indicated as an 

antipsychotic, was shown many years ago to have a tranquilizing effect, it has not been 

mechanistically linked to sleep (Monroe et al., 1955; Steiner et al., 1963). We now have the 

genetic tools to understand the nature of this effect in a controlled and systematic manner and its 

implications for the normal regulation of sleep and wake. Reserpine inhibits the function of the 

VMAT, a transmembrane protein that transports monoaminergic neurotransmitters into 

presynaptic vesicles to prepare them for release. Vertebrates have two VMAT genes, VMAT1 and 

VMAT2, whereas flies have only one.  

One common caveat in pharmacological studies is the possibility of off-target effects. We 

show that a VMATp1 null mutant (Simon et al., 2009) has increased sleep. More importantly, this 

mutant is resistant to the effects of reserpine, indicating that the long-sleeping phenotype is not 
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the result of off-target effects. An apparent increase in sleep can sometimes result from sickness 

or physical impairment. However, despite sleeping significantly more, the reserpine-fed and 

VMATp1 mutant flies do not have a decreased activity index. In addition, outcrossed VMAT 

mutants, which have normal levels of baseline sleep, are unresponsive to reserpine. Together, 

these data show that reserpine specifically increases sleep by inhibiting VMAT. 

Alterations in sleep duration are often accompanied by changes in sleep depth, as 

measured by arousal threshold. Previous studies have shown that short-sleeping mutants tend to 

have decreased arousal thresholds during normal sleep (Koh et al., 2008). Interestingly, the long-

sleeping VMATp1 mutant has an increased arousal threshold, suggesting that they sleep more 

deeply (Andretic and Shaw, 2005). In general, loss of VMAT appears to increase sleep drive or 

decrease the ability to maintain wakefulness, as demonstrated also by the increased latency to 

sleep in flies carrying a five-generation outcrossed VMATp1 allele. These outcrossed flies no 

longer have increased daily sleep, but they also display an increased arousal threshold. On the 

other hand, VMATp1 flies have a normal rebound after deprivation, supporting the idea that the 

response to sleep deprivation is less tightly correlated with other measures of sleep. 

 The less severe phenotype of the outcrossed allele is consistent with other studies that 

have noted the importance of genetic background in animal behaviors, including sleep 

(Zimmerman et al., 2012). In an iso31 background, inhibition of VMAT throughout development 

with the VMATp1 mutation does not alter daily sleep, but sleep is increased sleep when VMAT is 

inhibited acutely in adults. Thus, developmental compensation mechanisms may account for the 

discrepancy between the sleep phenotype of the drug-fed and mutant flies in the iso31 genetic 

background. The original mutant background likely confers less developmental compensation, as 

these flies have the same long-sleeping phenotype as the drug-fed flies.  

VMAT plays a presynaptic role in signaling by many different neurotransmitters, including 

the monoamine neurotransmitters dopamine, serotonin, histamine, and octopamine. Additionally, 

recent evidence suggests that VMAT transports the amino acid neurotransmitter GABA (Tritsch, 

2012). Many of these neurotransmitters, including dopamine (Andretic et al., 2005; Kume et al., 
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2005), octopamine (Crocker and Sehgal, 2008), serotonin (Yuan et al., 2006), and GABA (Agosto 

et al., 2008), have been independently implicated in regulating sleep behavior. We found that 

mutants deficient for each of these neurotransmitters displayed increased sleep after reserpine 

feeding, suggesting that no single neurotransmitter system accounts for the impact of VMAT 

inhibition on sleep. Similarly, Chen et al. (2013) found that circadian rhythms are perturbed in 

VMATp1 mutants, and rescue of this phenotype requires VMAT in multiple neuronal populations. 

In mammals as well, Coulter et al. (1971) demonstrated that the effect of reserpine on sleep 

cannot be attributed to reductions in serotonin or norepinephrine. Our findings contribute to a 

picture of sleep regulation driven by a robust network of neurotransmission that requires VMAT in 

multiple neuronal populations.  

Altered VMAT function has previously been studied in the context of many 

neuropsychiatric and neurological diseases, including depression, bipolar disorder, 

schizophrenia, and Parkinson’s disease (Wimalasena, 2011). These diseases are accompanied 

by an increased prevalence of sleep perturbations, although these have not yet been linked to 

VMAT. Understanding the role of VMAT in sleep may elucidate the pathophysiology of sleep 

perturbations in the disorders noted here, as well as the natural regulation of sleep in healthy flies 

and humans.  

The potential for screens in Drosophila to identify drugs for human use is high. Although 

numerous side effects make reserpine suboptimal as a treatment, more specific inhibitors of 

VMAT2 may be tolerated better by patients and improve their use as a sleep aid. The screen 

reported here identified a single sleep-promoting drug, but expanded screens could identify many 

more potential pharmacotherapies. We used a drug library with known biological targets, which 

may have biased the findings toward well-studied pathways. Additionally, a low concentration of 

drug was used to reduce lethality, meaning that only drugs with the strongest impacts on sleep 

were found. Now that the utility of these screens has been proven, larger screens can be used to 

identify other novel modulators of behavior.  
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In conclusion, we used a small-molecule screen to discover regulators of sleep 

phenotype. Using a genetic approach to confirm one of these drugs, we found that VMAT is 

required to establish normal sleep duration and arousal state, presumably by regulating 

transmission of several neurotransmitters. The role of genetic background in the expressivity of 

the VMAT phenotype highlights the strong effect of developmental compensation on behaviors, 

such as sleep, and the importance of targeting pathways acutely in adults to look at adult 

behavior. Small-molecule screens in live animals provide a powerful tool for dissecting molecular 

mechanisms of adult behavior. 
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CHAPTER 2 – Caffeine promotes wakefulness via dopam ine 
signaling in Drosophila 

 

ABSTRACT 
 

Caffeine is the most widely-consumed psychoactive drug in the world, but our 

understanding of how caffeine affects our brains is relatively incomplete.  Most studies focus on 

effects of caffeine on adenosine receptors, but there is evidence for other, more complex 

mechanisms.  In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of 

sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known 

adenosine receptor.  Here, we show that dopamine is required for the wake-promoting effect of 

caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling.  

We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic 

neurons, which are essential for the caffeine response and which show increased activity 

following caffeine administration.  While previous studies have demonstrated adenosine-mediated 

effects of caffeine on post-synaptic dopamine receptors, to our knowledge, this is the first set of 

studies implicating the synthesis of dopamine in the arousal-promoting effects of caffeine.    

INTRODUCTION 
 

Caffeine is the most widely consumed psychoactive drug in the world.  Its popularity is 

likely due to its ability to fight drowsiness and promote arousal.  In addition, caffeine can reverse 

the effects of sleep deprivation on alertness and cognition, as shown in both rats and humans 

(Penetar et al., 1993; Alhaider et al., 2010).  Despite the ubiquity of caffeine in our food and 

drinks, our understanding of how caffeine affects our brains and bodies is relatively incomplete.   

The most extensively-studied behavioral effect of caffeine is acute locomotor stimulation, 

which has been attributed to antagonism of adenosine receptors.  There are four subtypes of 

adenosine receptor, and caffeine antagonizes both A2A and A1 receptors in vivo (Fredholm et al., 

2001).  Which of these two receptor subtypes is responsible for the motor-stimulating effect, 
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however, is a point of contention (Snyder et al., 1981; Spealman et al., 1988).  The effect of 

caffeine on sleep has been relatively less well-studied.  A2A receptors have been implicated in 

the acute wake-promoting effect of caffeine (Huang et al., 2005; Lazarus et al., 2011), but 

adenosine receptors do not have an essential role in driving baseline sleep behavior.  A1 and 

A2A mutant mice, which should mimic receptor antagonism, have no baseline sleep defects 

(Stenberg et al., 2003; Huang et al., 2005).  A brain-specific deletion of the A1 receptor causes 

reduced slow wave brain activity following sleep deprivation, but these mice do not exhibit a 

change in the time spent in sleep or wake states (Bjorness et al., 2009).  In addition to adenosine 

receptors, caffeine has many other biological targets, including GABAA receptors, ryanodine 

receptors, glycine receptors, and phosphodiesterases (reviewed in Mustard, 2014).  Investigating 

the impact on sleep behavior of these other targets may further our knowledge of the effects of 

caffeine.   

We turn to a powerful genetic model, the fruit fly Drosophila melanogaster, to further 

understand how caffeine promotes wakefulness.  While Drosophila has proven to be a fruitful 

model for uncovering sleep regulatory mechanisms, the action of caffeine in this model is not yet 

understood.  Flies have one known adenosine receptor, dAdoR.  This receptor only shows 30% 

sequence similarity to the human adenosine receptors at the amino terminal, but the important 

ligand-binding residues are conserved (Dolezelova et al., 2007).  Surprisingly, the dAdoR null 

mutant responds to caffeine identically to wild type flies, suggesting that caffeine promotes sleep 

in Drosophila via adenosine receptor-independent mechanisms (Wu et al., 2009). Because the 

behavioral effects of caffeine are similar between flies and humans, understanding the mode of 

action in the fly may elucidate novel actions of caffeine in mammals as well.   

Here, we show that the wake-promoting effect of caffeine in Drosophila requires the 

synthesis of dopamine, a potent wake-promoting neurotransmitter.  The modulation of 

dopaminergic signaling by caffeine likely occurs presynaptically.  In addition, we identify a cluster 

of dopaminergic neurons which are essential for the caffeine response.  We hypothesize that 

caffeine promotes wake by increasing activity of these neurons.   
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MATERIALS AND METHODS   
 

Fly Lines 

All flies were raised in vials containing molasses food.  Wild type iso31 flies (Ryder et al., 

2004) were used as controls for all experiments.  DTHg and DTHgFS± flies were shared with us by 

the Hirsh lab (UVA, Charlottesville, VA).  VMATp1 mutants were a kind gift of the Krantz lab 

(UCLA, Los Angeles, CA).  Ebony1 (BSC1658) Datlo (BSC3193) and TH-Gal4 (BSC8848) were 

ordered from the Bloomington Stock Center (Bloomington, IL).  The restricted dopaminergic 

drivers TH-C1-Gal4, TH-D1-Gal4, TH-D4-Gal4, TH-F1-Gal4, TH-F2-Gal4, TH-G1-Gal4 were all 

generously shared with us by the Wu lab (Johns Hopkins University, Baltimore, MD), and the 

other dopaminergic drivers InSite0104-Ga4 and InSite0273-Gal4 were shared by the Clandinin 

lab (Stanford University, Stanford, CA).  UAS-Shibirets flies were a gift of the David Anderson lab 

(CalTech, Pasadena, CA).  UAS-CaLexA flies were a gift of Dr. Jing Wang’s lab (UCSD, La Jolla, 

CA).   

 

Behavioral Assays  

To assay sleep behavior, we used the Drosophila Activity Monitoring System (DAMS, 

TriKinetcs). 5- to 10-day-old flies were individually monitored in 5 mm glass tubes containing food 

composed of 5%sucrose and 2%agar (sucrose/agar food).  Activity was monitored for five 

consecutive days in incubators kept on a 12 hour light/dark schedule at 25oC.  Sleep behavior 

was analyzed using PySolo software, and sleep bouts were defined at 5 or more minutes of 

inactivity (Gilestro and Cirelli, 2009).  For all experiments, 10-16 flies were used per treatment 

group, sex, and genotype.   

For circadian experiments, flies were entrained in DAMS monitors for two days in 12 hour 

light-dark cycles and then moved to constant darkness for five days.  Circadian rhythms of activity 

were determined using ClockLab software (Pfeiffenberger et al., 2010).   
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For Shibirets temperature shift experiments, fly crosses were set and raised at 18oC to 

avoid prematurely silencing the neurons.  Flies were then loaded into DAMS monitors in 

incubators set 12 hours light-dark cycles with a temperature of 21oC, which is permissive for the 

Shibirets mutation.  The next day, the temperature increased to 30oC, the restrictive temperature, 

at lights-on.  Sleep was assayed during three days at 30oC and averaged across all days.   

 

Drug Feeding  

Caffeine (Sigma-Aldrich) was mixed into melted sucrose/agar food at a concentration of 

0.5 mg/mL for all experiments except for the dose-response experiment where 0.2, 0.5, and 1 

mg/ml were used.  L-DOPA (Tocris) was mixed into melted sucrose/agar food at a concentration 

of 3mg/ml. 

 

Confocal Microscopy 

5- to 10-day-old CaLexA flies were moved from vials containing molasses food to vials 

containing either sucrose/agar food or sucrose/agar food with 0.5 mg/ml caffeine.  After 24 hours, 

flies were anesthetized on ice, and brains were dissected in 1x phosphate-buffered saline (PBS) 

containing 0.1% Triton X-100 (PBS-T).  Ten brains were dissected per genotype, and all brains 

were fixed for 1 hour in 4% paraformaldehyde (PFA; Electron Microscopy Sciences). Brains were 

washed in PBS-T and blocked for one hour in PBS-T containing 5% normal donkey serum (NDS; 

Jackson ImmunoRes).  Brains were incubated at 4oC overnight in primary antibody in PBS-T with 

5% NDS.  CaLexA signal was labeled with 1:1000 dilution of rabbit α-GFP (Life Technologies) 

and neuropil was stained with a 1:1000 dilution of mouse α-nc82 (Developmental Studies 

Hybridoma Bank).  Brains were washed three times with PBS-T and stained for 2 hours with 

secondary antibodies in PBS-T with 5% NDS.  1:1000 dilutions were used for α-rabbit AlexaFluor 

488 (Invitrogen) and α-mouse AlexaFluor 633 (Invitrogen).  Brains were washed three times in 

PBS-T and mounted on slides using VectaShield (Vector Laboratories, Inc.).  Slides were imaged 

on a Leica SP5 confocal microscope with 20x objective and 0.5 µm step size. GFP intensities 



 

were quantified post-hoc on a cell

(Abramoff et al., 2004). 

RESULTS 
 

The behavioral response to caffeine requires dopami ne synthesis in 

 Similarly to mammals, 

Drosophila experience reduced sleep 

following caffeine feeding.  This 

reduction of sleep can be seen in both 

male and female flies across a 24

light/dark cycle, but the effect is most 

robust and reproducible in the dark 

(nighttime) phase (Figure 2.

type (iso31; Ryder et al., 2004) flies 

exhibit a dose-dependent decrease 

in nighttime sleep when fed 

increasing concentrations of 

(Figure 2.2a, d).  The 0.5 mg/mL 

caffeine concentration produced the largest, most reproducible loss of sleep with no to

so this concentration was used for the rest of the experiments reported here.  

Evidence from both mammals and 

the effect of caffeine on arousal (reviewed in Chen et al., 2010).  However, th

implicate dopamine receptors, which in mammals are known to interact with adenosine receptors, 

and do not assay for a requirement of dopamine (reviewed in Xie et al., 2007).  We tested the 

requirement of dopamine in the caffeine respon

hydroxylase (DTH), the rate

pale (ple) gene, is required in peripheral tissue during development, resulting in larval lethality of 
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hoc on a cell-by-cell basis from individual Z-planes using ImageJ software 

The behavioral response to caffeine requires dopami ne synthesis in Drosophila

Similarly to mammals, 

experience reduced sleep 
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reduction of sleep can be seen in both 

male and female flies across a 24-hour 

light/dark cycle, but the effect is most 

robust and reproducible in the dark 
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dependent decrease 

in nighttime sleep when fed 

increasing concentrations of caffeine 

The 0.5 mg/mL 

caffeine concentration produced the largest, most reproducible loss of sleep with no to

so this concentration was used for the rest of the experiments reported here.   

Evidence from both mammals and Drosophila suggests a role for dopamine signaling in 

the effect of caffeine on arousal (reviewed in Chen et al., 2010).  However, those previous studies 

implicate dopamine receptors, which in mammals are known to interact with adenosine receptors, 

and do not assay for a requirement of dopamine (reviewed in Xie et al., 2007).  We tested the 

requirement of dopamine in the caffeine response using a transgenic fly line deficient for tyrosine 

hydroxylase (DTH), the rate-limiting enzyme in dopamine biosynthesis.  DTH, encoded by the 

) gene, is required in peripheral tissue during development, resulting in larval lethality of 

 
Figure 2.1 - Caffeine Reduces Sleep in Drosophila
Sleep profiles for male (a) and female (b) flies 
assayed on drug-free food (black line) or food 
containing 0.5 mg/ml caffeine (blue line).  Graphs 
depict minutes of sleep per 30 minute sliding window 
across a 24-hour period composed of 12 hours of 
light (white bar) and 12 hours of dark (
Error bars show standard deviation. 

planes using ImageJ software 
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female (b) flies 

free food (black line) or food 
containing 0.5 mg/ml caffeine (blue line).  Graphs 
depict minutes of sleep per 30 minute sliding window 

hour period composed of 12 hours of 
light (white bar) and 12 hours of dark (black bar). 



 

the ple null mutant (Jurgens et al., 1984; Neckameyer et al., 1993).  A nervous system

DTH mutant (DTHgFS±) was created by transgenically expressing a periphery

Figure 2.2 - The response to caffeine requires 
dopamine synthesis in Drosophila
Sleep profiles for female (a) iso31, (b) DTHg, and (c) 
DTHgFS± flies on drug-free food (black line) or food 
containing 0.5 mg/ml caffeine 
depict minutes of sleep per 30 minute sliding window 
across a 24-hour period composed of 12 hours of light 
(white bar) and 12 hours of dark (black bar).  (d) 
Average number of minutes of sleep per night is plotted 
for the three genotypes fed either drug
food containing 0.2, 0.5, or 1 mg/ml caffeine.  (e) 
Circadian period of free-running rest
plotted for the same three genotypes fed drug
or food containing 0.5 mg/ml caffeine. Error bars show 
standard deviation. 
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null mutant (Jurgens et al., 1984; Neckameyer et al., 1993).  A nervous system

) was created by transgenically expressing a periphery-specific isoform of 

DTH in a ple null 

mutantbackground (Riemensperger 

et al., 2011). This 

transgene rescues the viability 

defect of the ple mutants, but they 

still lack DTH in the nervous 

system.  Control flies contain a wild 

type copy of the DTH coding 

sequence in a ple

background (DTHg

expression in both 

system and peripheral 

tissue.   

We measured the effect of 

chronic caffeine exposure on iso31, 

DTHg, and DTHg

concomitantly exposing these flies to 

caffeine-containing food and 

monitoring their sleep behavior for five 

days.  The sleep-reducing effect of 

caffeine was most robust and 

reproducible during the dark phase, 

so nighttime sleep was quantified for

all experiments.  Female iso31 flies 

The response to caffeine requires 
dopamine synthesis in Drosophila  
Sleep profiles for female (a) iso31, (b) DTHg, and (c) 

free food (black line) or food 
containing 0.5 mg/ml caffeine (blue line).  Graphs 
depict minutes of sleep per 30 minute sliding window 

hour period composed of 12 hours of light 
(white bar) and 12 hours of dark (black bar).  (d) 
Average number of minutes of sleep per night is plotted 

es fed either drug-free food or 
food containing 0.2, 0.5, or 1 mg/ml caffeine.  (e) 

running rest-activity rhythms is 
plotted for the same three genotypes fed drug-free food 
or food containing 0.5 mg/ml caffeine. Error bars show 
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transgene rescues the viability 
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expression in both the nervous  
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We measured the effect of 
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DTHgFS± flies by 

concomitantly exposing these flies to 

containing food and 

monitoring their sleep behavior for five 

reducing effect of 

caffeine was most robust and 

reproducible during the dark phase, 

so nighttime sleep was quantified for 

all experiments.  Female iso31 flies 
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experienced about 160 minutes less sleep during the night when assayed on food containing 0.5 

mg/mL caffeine compared to drug-free food (p<0.0001 by 2-way ANOVA with Bonferroni multiple 

comparisons) (Figure 2.2a, d).  DTHg control flies also showed a decrease in nighttime sleep 

when exposed to caffeine, sleeping 86 minutes less than flies fed drug-free food (p=0.0008 by 2-

way ANOVA with Bonferroni multiple comparisons) (Figure 2.2b, d).  DTHgFS± flies, on the other 

hand, were resistant to the wake-promoting effect of caffeine, sleeping about 650 minutes per 

night irrespective of drug treatment (Figure 2.2c, d).  While these figures depict data for female 

flies,  

similar results were observed for males as well (data not shown).   

In addition to promoting wake, caffeine lengthens circadian period in both mammals and 

insects (Wu et al., 2009; Oike et al., 2011).  We monitored rest-activity rhythms of flies in constant 

conditions, and found that 0.5 mg/ml caffeine lengthened the circadian period of these rhythms 

from 23.8 to 25 hours (p < 0.0001; 2-way ANOVA with Bonferroni multiple comparisons).  The 

effect of caffeine on DTHg control flies was more modest, lengthening period from 23.5 to 24.1 

hours (p = 0.001).  The effect of caffeine on circadian period seemed to also require dopamine, 

because the DTHgFS± flies did not display lengthened period when monitored on caffeine-

containing food (p = 0.99).   

 

Caffeine affects dopaminergic signaling upstream of  DTH 

We next sought to determine if we could rescue the caffeine response by restoring 

dopamine to DTHgFS± mutants.  DTH catalyzes the conversion of tyrosine to L-DOPA, which is 

then converted to dopamine by Dopa decarboxylase (Ddc) (Budnik and White, 1987; Livingstone 

and Tempel, 1983). Despite lacking neural DTH, DTHgFS± flies can produce dopamine if supplied 

with exogenous L-DOPA.  Feeding L-DOPA to iso31, DTHg, and DTHgFS± flies caused a sleep 

decrease, consistent with an augmentation of dopamine signaling in all of these genotypes 

(Figure 2.3d).  Both iso31 and DTHg flies experienced an even more drastic sleep loss when fed 

both L-DOPA and caffeine together, as compared to L-DOPA alone.  



 

Iso31flies slept 483 minutes per 

minutes per night when fed food containing both L

ANOVA with Bonferroni multiple comparisons) (Figure 

night when fed L-DOPA, and 54 minutes per night when fed L

(Figure 2.3b, d).  Importantly, L

DTHgFS± flies; they slept 297 minutes per night when fed L

night when fed L-DOPA and caffeine together, a difference which is not significant (p=0.99) 
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Iso31flies slept 483 minutes per night when fed L-DOPA-containing food, and 362 

minutes per night when fed food containing both L-DOPA and caffeine (p=0.0009 by 2

ANOVA with Bonferroni multiple comparisons) (Figure 2.3a, b).  DTHg flies slept 218 m

DOPA, and 54 minutes per night when fed L-DOPA and caffeine (p<0.0001) 

3b, d).  Importantly, L-DOPA feeding did not rescue the caffeine responsiveness 

flies; they slept 297 minutes per night when fed L-DOPA alone, and 306 minutes per 

DOPA and caffeine together, a difference which is not significant (p=0.99) 

(Figure 2.3c, d).  Because rescue 

of dopamine synthesis 

downstream of DTH did no

caffeine response, caffeine likely 

modulates dopaminergic signaling 

upstream of DTH.

Figure 2.3 - Caffeine affects 
dopaminergic signaling 
upstream of DTH
Sleep profiles for female (a) 
iso31, (b) DTHg, and (c) 
DTHgFS± flies on food 
containing 3mg/ml L
(black line) or food containing 3 
mg/ml L-DOPA and 0.5 mg/ml 
caffeine (blue line).  Graphs 
depict minutes of sleep per 30 
minute sliding window across a 
24-hour period composed of 12 
hours of light (white bar) and 12 
hours of dark (black bar)
Average number of minutes of 
nighttime sleep is plotted for 
flies fed drug-
bars), food containing 0.5 
mg/ml caffeine (small check 
bars), food containing 3 mg/ml 
L-DOPA (large check bars), or 
food containing 3 mg/ml L
DOPA and 0.5 mg
(black bars).  Error bars show 
standard deviation.
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of dopamine synthesis 
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iso31, (b) DTHg, and (c) 
DTHgFS± flies on food 

3mg/ml L-DOPA 
(black line) or food containing 3 

DOPA and 0.5 mg/ml 
caffeine (blue line).  Graphs 
depict minutes of sleep per 30 
minute sliding window across a 

hour period composed of 12 
hours of light (white bar) and 12 
hours of dark (black bar).  (d) 
Average number of minutes of 
nighttime sleep is plotted for 

-free food (white 
bars), food containing 0.5 
mg/ml caffeine (small check 
bars), food containing 3 mg/ml 

DOPA (large check bars), or 
food containing 3 mg/ml L-
DOPA and 0.5 mg/ml caffeine 
(black bars).  Error bars show 
standard deviation. 



 

The response to caffeine is sensitive to neuronal d opamine levels

Dopaminergic signaling can be disrupted not only by blocking biosynthesis, but also by 

blocking synaptic release and dopamine inactivation.  Synaptic release of dopamine relies on the 

transport of dopamine into synaptic vesicles by the vesicular monoamine 

dopamine synthase, inactivates dopa

(Dat) inactivates dopamine in the nervous system and gut 

 
Figure 2.4 - The response to caffeine 
requires synaptic packaging of dopamine 
Sleep profiles for female (a) iso31 and (b) 
DVMATp1 flies assayed on drug
(black line) or food containing 0.5 mg/ml 
caffeine (blue line).  Graphs depict minutes of 
sleep per 30 minute sliding window across a 24
hour period composed of 12 hours of light (white 
bar) and 12 hours of dark (black bar). (c) 
Average number of minutes of nighttime sleep 
for flies fed drug-free food (white bars) or food 
containing 0.5 mg/ml caffeine (bla
bars show standard deviation.
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The response to caffeine is sensitive to neuronal d opamine levels  

Dopaminergic signaling can be disrupted not only by blocking biosynthesis, but also by 

blocking synaptic release and dopamine inactivation.  Synaptic release of dopamine relies on the 

transport of dopamine into synaptic vesicles by the vesicular monoamine transporter (DVMAT).  

Disrupting this transport with a null mutation 

in the DVMAT  gene blocks dopamine 

signaling, and we found that this mutation 

also blocked the wake-promoting effect of 

caffeine.  DVMAT null mutants (

outcrossed into an iso31 ge

background (Nall and Sehgal, 2012) slept 

505 minutes per night when fed drug

food and 520 minutes per 

food containing 0.5 mg/mL caffeine, a 

difference which is not significant (p=0.86) 

(Figure 2.4).   

Dopamine signaling is also 

regulated by the rate of dopamine 

inactivation, which occurs when dopamine 

molecules are conjugated to different 

functional groups that mark them for 

degradation.  Dopamine is inactivated and 

degraded in glia and neurons by different 

pathways.  The enzyme Ebony, a 

nactivates dopamine in glia and the enzyme Dopamine-N-

(Dat) inactivates dopamine in the nervous system and gut   

The response to caffeine 
requires synaptic packaging of dopamine  
Sleep profiles for female (a) iso31 and (b) 
DVMATp1 flies assayed on drug-free food 
(black line) or food containing 0.5 mg/ml 
caffeine (blue line).  Graphs depict minutes of 

minute sliding window across a 24-
hour period composed of 12 hours of light (white 
bar) and 12 hours of dark (black bar). (c) 
Average number of minutes of nighttime sleep 

free food (white bars) or food 
containing 0.5 mg/ml caffeine (black bars). Error 
bars show standard deviation. 

Dopaminergic signaling can be disrupted not only by blocking biosynthesis, but also by 

blocking synaptic release and dopamine inactivation.  Synaptic release of dopamine relies on the 

transporter (DVMAT).  

Disrupting this transport with a null mutation 

gene blocks dopamine 

signaling, and we found that this mutation 

promoting effect of 

caffeine.  DVMAT null mutants (DVMATp1) 

outcrossed into an iso31 genetic 

background (Nall and Sehgal, 2012) slept 

505 minutes per night when fed drug-free 

food and 520 minutes per night when fed 

food containing 0.5 mg/mL caffeine, a 

which is not significant (p=0.86) 

Dopamine signaling is also 

regulated by the rate of dopamine 

occurs when dopamine 

molecules are conjugated to different 

functional groups that mark them for 

degradation.  Dopamine is inactivated and 

degraded in glia and neurons by different 

pathways.  The enzyme Ebony, a β-alanyl 

-acetyltransferase 



 

(Brodbeck et al., 1998; Richardt et al., 2002). Ebony mutants (e

with caffeine-fed flies sleeping 122 fewer

2-way ANOVA with Bonferroni multiple comparisons) (Figure 

other hand, were resistant to the effect of caffeine, sleeping about 450 minutes per night 

regardless of food caffeine content (p=0.13) (Figure 

predicted to have higher levels of 

presynaptic dopamine, we su

maintenance of appropriate dopamine 

levels in neurons  

is essential for the arousal response to 

caffeine.  Datlo mutants may be unable to 

respond to caffeine due to saturated 

exocytotic machinery or developmental 

compensatory mechanisms. The 

importance of maintaining proper 

dopamine levels has a precedent in 

Drosophila neurobiology, as flies with 

either elevated or reduced dopamine 

levels show impaired memory retention 

(Zhang et al., 2008).  

 

Mapping dopaminergic neurons 

required for the response to caffeine

There are many clusters of 

dopaminergic neurons in the fly bra

characterized by location of cell bodies 

and the anatomical targets of axonal 
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(Brodbeck et al., 1998; Richardt et al., 2002). Ebony mutants (e1) maintained caffeine response, 

fed flies sleeping 122 fewer minutes per night than flies fed drug-free food (p=0.006, 

way ANOVA with Bonferroni multiple comparisons) (Figure 2.5b, d). Dat mutants (Dat

other hand, were resistant to the effect of caffeine, sleeping about 450 minutes per night 

regardless of food caffeine content (p=0.13) (Figure 2.5c, d).  Given that these mutants are 

predicted to have higher levels of 

presynaptic dopamine, we surmise that 

maintenance of appropriate dopamine 

is essential for the arousal response to 

mutants may be unable to 

respond to caffeine due to saturated 

machinery or developmental 

compensatory mechanisms. The 

importance of maintaining proper 

dopamine levels has a precedent in 

neurobiology, as flies with 

either elevated or reduced dopamine 

levels show impaired memory retention 

apping dopaminergic neurons 

required for the response to caffeine  

There are many clusters of 

dopaminergic neurons in the fly brain, 

characterized by location of cell bodies 

and the anatomical targets of axonal 

 
 
Figure 2.5 - The response to caffeine requires 
proper neuronal dopamine turnover
Sleep profiles for female (a) iso31 and (b) ebony1 
and (c) Datlo flies assayed on drug-
line) or food containing 0.5 mg/ml caffeine (blue 
line).  Graphs depict minutes of sleep per 30 minute 
sliding window across a 24-hour period composed of 
12 hours of light (white bar) and 12 hours of dark 
(black bar). (d) Average number of minutes of 
nighttime sleep for flies fed drug-free food (white 
bars) or food containing 0.5 mg/ml caffeine (black 
bars). Error bars show standard deviation.
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5b, d). Dat mutants (Datlo), on the 

other hand, were resistant to the effect of caffeine, sleeping about 450 minutes per night 

5c, d).  Given that these mutants are 
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Sleep profiles for female (a) iso31 and (b) ebony1 

-free food (black 
e) or food containing 0.5 mg/ml caffeine (blue 

line).  Graphs depict minutes of sleep per 30 minute 
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projections (Mao and Davis, 2009). We silenced subsets of dopaminergic neurons using 

restricted Gal4 drivers to express the temperature

the restrictive temperature, 30

signaling (Kitamoto et al., 2001).  We used six restricted dopaminergic Gal4 lines created by the 

Figure 2.6 - Mapping dopaminergic 
neurons required for the caffeine 
response  
Average number of minutes of nighttime 
sleep for (a) male and (b) female flies 
containing various restricted dopaminergic 
Gal4 constructs driving expression of 
temperature-sensitive Shibire (UAS
Control flies contain the UAS
in the absence of a Gal4 driver.  Nighttime 
sleep is averaged across three nights at the 
30oC restrictive temperature on drug
food (white bars) or food containing 0.5 mg/ml 
caffeine (black bars).  Error bars show 
standard deviation. 

41 

projections (Mao and Davis, 2009). We silenced subsets of dopaminergic neurons using 

restricted Gal4 drivers to express the temperature-sensitive dynamin mutant Shibire

the restrictive temperature, 30oC, the targeted neurons have stalled axonal transport and synaptic 

signaling (Kitamoto et al., 2001).  We used six restricted dopaminergic Gal4 lines created by the 

Wu lab and two others from the InSite 

collection (Liu et al., 2012, Gohl et al., 

2011).  Six of the Gal4 lines still 

permitted a caffeine-induced loss of nighttime 

sleep at 30oC when driving Shi

TH-F2-Gal4>Shits, had a significant 

induced sleep reduction only in males; 

however, the there was a strong trend towards 

sleep loss in females (p=0.0639 by ANOVA 

with Bonferroni multiple comparisons).  One 

Gal4 line, InSite0273, prevented a caffeine

induced sleep decrease when drivi

30oC in both males and females (Figure 

b). Therefore, this driver defines a group of 

dopaminergic neurons which, when silenced, 

block the wake-promoting effect of caffeine.

 

Caffeine causes increased activity of PAM 

cluster neurons 

The InSite0273 driver line expresses 

Gal4 primarily in the Paired Anterior Medial 

(PAM) cluster, which is a group of dopaminergic 

neurons that projects mostly to the mushroom 
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neurons required for the caffeine 

Average number of minutes of nighttime 
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expression of 
sensitive Shibire (UAS-Shits).  

Control flies contain the UAS-Shits transgene 
in the absence of a Gal4 driver.  Nighttime 
sleep is averaged across three nights at the 
30oC restrictive temperature on drug-free 

food containing 0.5 mg/ml 
caffeine (black bars).  Error bars show 
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induced sleep decrease when driving Shits at 

C in both males and females (Figure 2.6 a, 

this driver defines a group of 

dopaminergic neurons which, when silenced, 

promoting effect of caffeine.  
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Gal4 primarily in the Paired Anterior Medial 

(PAM) cluster, which is a group of dopaminergic 

neurons that projects mostly to the mushroom 



 

bodies. We monitored the effect of caffeine on the PAM neurons using the CaLexA t

neural activity-induced elevation of intracellular calcium 

protein (GFP) reporter expression (Masuyama et al., 2012).  Representative images showed a 

noticeable increase in GFP 
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bodies. We monitored the effect of caffeine on the PAM neurons using the CaLexA t

induced elevation of intracellular calcium  results in long-term green fluorescent 

protein (GFP) reporter expression (Masuyama et al., 2012).  Representative images showed a 

noticeable increase in GFP fluorescence in InSite0273-Gal4 labeled cells following 24 hours of 

caffeine feeding (Figure 

This increase in GFP signal was 

significant, both in terms of the 

number of cells with 

expression, as well as the 

average GFP intensity for all of 

the visible cells in each brain 

(Figure 2.7c, d).  This suggests 

that caffeine ingestion causes 

Figure 2.7 - Caffeine causes 
increased activity of PAM 
cluster neurons
Immunostaining of the CaLexA 
signal (GFP, green) and neuropil 
(nc82, magenta) in brains of flies 
expressing the CaLexA construct 
under the control of the 0273
Gal4 (a-d) and TH
drivers.  Flies were fed either 
(a,e) drug-free food or (b
containing 0.5 mg/ml caffeine for 
24 hours prior to dissection and 
staining.  The GFP intensity was 
quantified on a cell
in each brain, with 
n=20 brains per treatment group.  
(c,g) The average cell intensity 
for each brain is plotted for drug
free and caffeine
(d,h) The number of visible GFP
positive cells in each brain is 
plotted for drug
fed groups.  Large horizontal line 
reflects the average, and error 
bars show standard deviation.

bodies. We monitored the effect of caffeine on the PAM neurons using the CaLexA tool, in which 

term green fluorescent 

protein (GFP) reporter expression (Masuyama et al., 2012).  Representative images showed a 

Gal4 labeled cells following 24 hours of 

caffeine feeding (Figure 2.7a, b).  

This increase in GFP signal was 

significant, both in terms of the 

number of cells with visible GFP 

, as well as the 

average GFP intensity for all of 

the visible cells in each brain 

c, d).  This suggests 

that caffeine ingestion causes 

Caffeine causes 
increased activity of PAM 
cluster neurons  
Immunostaining of the CaLexA 
signal (GFP, green) and neuropil 
(nc82, magenta) in brains of flies 
expressing the CaLexA construct 
under the control of the 0273-

d) and TH-Gal4 (e-h) 
.  Flies were fed either 

free food or (b,f) food 
ontaining 0.5 mg/ml caffeine for 

24 hours prior to dissection and 
staining.  The GFP intensity was 
quantified on a cell-by-cell basis 
in each brain, with  
n=20 brains per treatment group.  

) The average cell intensity 
for each brain is plotted for drug-
free and caffeine-fed groups.  

) The number of visible GFP-
positive cells in each brain is 
plotted for drug-free and caffeine-
fed groups.  Large horizontal line 
reflects the average, and error 
bars show standard deviation. 
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increased neuronal activity in the PAM cluster neurons.  

As a control, we quantified the activity-induced calcium signal in a different set of 

dopaminergic neurons, the PPM3 cluster.  These neurons form a wake-promoting circuit 

projecting to the dFB (Ueno et al., 2012).  After 24 hours of caffeine exposure, these flies showed 

no increase in GFP signal than flies given drug-free food.  This indicates that the effect of caffeine 

on neuronal activity is somewhat specific to the PAM cluster and not all dopaminergic or wake-

promoting neurons. 

DISCUSSION  
 

Many features of human sleep are observed in Drosophila, and the fruit fly has been an 

invaluable tool in identifying sleep regulatory mechanisms. As in humans, caffeine treatment in 

Drosophila increases wakefulness, lowers arousal threshold, and fragments sleep (Andretic et al., 

2008; Wu et al., 2009; Roehrs and Roth, 2008).  While the arousal-promoting effects of caffeine 

are beneficial to humans during the day, they can be disruptive to successful sleep at night.  

Thus, it is important to identify all the mechanisms through which caffeine affects brain function. 

Most effects of caffeine, including promoting arousal, have been studied in the context of 

adenosine receptor antagonism.  Caffeine can bind mammalian adenosine receptors, 

antagonizing A1 and A2a subtypes with equal affinity in vitro and in vivo (Fredholm and 

Lindström, 1999; Fredholm et al., 2001). Caffeine also shows a psychomotor profile consistent 

with non-specific adenosine receptor antagonism (Karcz-Kubicha et al., 2003).  Studies in mice 

have implicated adenosine signaling in caffeine-induced arousal, demonstrating that global or 

nucleus accumbens-restricted knockdown of A2A receptors blocks the response to caffeine 

(Huang et al., 2005; Lazarus et al., 2011).  These studies, however, only measured the acute 

response to caffeine, measuring wakefulness during a 3-hour window following a single injection 

of caffeine in a naïve mouse.  This paradigm does not mimic a coffee-sipping human consuming 

caffeine, nor does it account for sleep effects on a longer time scale. 



44 

 

The physiological and behavioral effects of caffeine seem to be dependent on 

concentration, mode of administration, and chronic versus acute exposure (Reviewed in Ferré, 

2008).    For example, animals show no locomotor response to chronic caffeine administration, 

since they rapidly develop tolerance; however, chronic caffeine exposure reduces sleep 

persistently (Finn and Holtzman, 1986; Roehrs and Roth, 2008).  Indeed, chronic caffeine 

administration has very different effects and pharmacology to acute administration (Jacobson et 

al., 1996).   The divergent effects seen with different administration paradigms support the notion 

that caffeine likely has a complex mode of action.  While adenosine receptor antagonism may be 

involved in acute behavioral changes following caffeine injection, other mechanisms may be at 

play in the prolonged effects of caffeine on sleep and arousal.  Previously, the wake-promoting 

effect of chronic caffeine feeding was shown to be independent of the one known adenosine 

receptor in Drosophila (Wu et al., 2009).  This finding makes Drosophila a unique model for 

studying adenosine-independent mechanisms of caffeine response.    

Here, we demonstrate a requirement of the neurotransmitter dopamine for the effect of 

caffeine on sleep in Drosophila.   We used an ad libitum feeding of caffeine-containing food while 

monitoring sleep constantly for five days.  We observed a strong reduction of sleep during every 

night of caffeine exposure and this effect was dose-dependent.  Mutants that do not produce 

dopamine, however, were resistant to the wake-promoting effect of caffeine.  In addition to 

promoting wake, caffeine lengthens the period of circadian rhythms in the bread mold Neurospora 

crassa, flies, and mice (Feldman et al., 1975; Wu et al., 2009; Oike et al., 2011).  We 

demonstrate that the dopamine-deficient DTHgFS± flies are also resistant to caffeine-induced 

period lengthening.  While the effect of caffeine on the DTHg control flies is much more modest 

than for iso31 flies, both genotypes do show statistically significant lengthening of circadian 

period.  The difference in magnitude of caffeine response between these two genotypes may 

have to do with differences in expression level or pattern between the endogenous DTH locus in 

wild type iso31 flies and the DTH transgene expressed by DTHg flies.   
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Previous studies have suggested that dopaminergic signals modulate some clock-

controlled behaviors.   One cluster of clock neurons, the large ventral-lateral neurons (lLNvs), are 

wake-promoting cells that express the dopamine receptor, dDopR, and receive dopaminergic 

inputs that may promote wake in the absence of light (Shang et al., 2011).  The Birman lab found 

that dopamine-deficient DTHgFS± flies are defective in circadian entrainment and phase shifting in 

response to dim light cues, however the mechanism and relevant cells for this behavior were not 

identified (Hirsh et al., 2010).  No previous report has demonstrated an effect of dopamine on the 

pace of the circadian clock (Shang et al., 2011).  The finding that both the wake-promoting and 

period-lengthening effects occur through the same dopaminergic mechanism is surprising and 

novel.   

Dopamine is known to be a potent wake-promoting neurotransmitter, so we hypothesized 

that caffeine promotes wakefulness by enhancing dopaminergic signaling.  This was supported 

by some studies in Drosophila although these did not examine a role for dopamine synthesis and 

release (Andretic et al., 2005; Ganguly-Fitzgerald et al., 2006; Kume et al., 2005). Our data 

suggest that caffeine acts presynaptically, upstream of L-DOPA.  This was indicated by the 

experiment showing that L-DOPA could not restore caffeine responsiveness to DTHgFS± flies even 

though it did reduce sleep in these mutants, indicating that they contain both the neural circuitry 

and receptors by which dopamine can promote wakefulness. Lack of a response to caffeine is not 

due to a floor effect, as the DTHg flies show a strong reduction in sleep with L-DOPA and an 

even more marked decrease with the addition of caffeine.  

Caffeine has been linked to dopaminergic signaling in mammals; however, this link has 

always invoked adenosine receptors, which dimerize with and inhibit dopamine receptors (Salmi 

et al., 2005).  Interestingly, though, two laboratories found that dopamine levels rise in the brains 

of mice after acute caffeine administration (Solinas et al., 2002, Okada et al., 1996).  In addition, 

increased extracellular dopamine causes caffeine hypersensitivity, as shown in both dopamine 

transporter (DAT) mutant mice and DAT (fumin) mutant flies (Wisor et al., 2001; Andretic et al., 

2008).  A recent study shows that humans carrying a polymorphism associated with lower 
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expression of the dopamine transporter are also hypersensitive to caffeine (Holst 2014).  In fact, 

almost all known psychostimulants promote arousal by enhancing dopaminergic signaling via 

different mechanisms (Nishino et al., 1998).  This collection of observations does not suggest a 

mechanism, but does imply that the dopaminergic mechanisms at play in Drosophila may be 

relevant to humans.   

We confirmed that we could block the effect of caffeine on sleep by perturbing other 

steps in dopamine signaling as well.  Mutants for the vesicular monoamine transporter (DVMAT) 

are also resistant to caffeine.  These flies cannot package monoamine neurotransmitters, 

including dopamine, into presynaptic vesicles, and have depleted tissue dopamine by HPLC 

(Simon et al., 2009).  Proper dopamine balance also depends on dopamine turnover.  The 

turnover process is initiated by a few different enzymes, each of which conjugates dopamine 

molecules to functional groups that tag them for degradation.  In glia, the enzyme ebony 

conjugates dopamine to a beta-alanyl group (Hodgetts and Konopka, 1973; Richardt et al., 2003).  

Dopamine is also conjugated to N-acetyl group by Dopamine N-Acetyltransferase (Dat) 

throughout the nervous system and gut (Brodbeck et al., 1998).  Dopamine balance is important 

for sleep and circadian behavior, supported by the finding that ebony mutants (e1) have disrupted 

circadian rhythms of locomotor activity and Dat mutants (Datlo) have an elevated homeostatic 

rebound following sleep deprivation (Newby and Jackson, 1991; Suh and Jackson, 2007; 

Maranda and Hodgetts, 1977).  Interestingly, e1 mutants respond to caffeine, while Datlo mutants 

do not.  This suggests that maintenance of dopamine levels in neurons, not in glia, is essential for 

the ability of caffeine to promote arousal.     

The Drosophila brain contains many clusters of dopaminergic neurons, which are 

characterized by expression of DTH.  These clusters are defined by locations of the cell bodies, 

as well as the main anatomical targets of their projections (Mao and Davis, 2009).  By acutely 

silencing subsets of neurons, we identified one group whose signaling is required for caffeine-

induced sleep loss.    This group of neurons is defined by the InSite0273-Gal4 driver line, which 

expresses primarily in the PAM cluster of neurons (Burke et al., 2012).  This cluster of neurons 
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primarily projects to the medial portion of the mushroom body beta lobe (Claridge-Chang et al., 

2009). This is consistent with the finding that the DopR dopamine receptor is required in the 

mushroom bodies for the caffeine response, suggesting a circuit through which caffeine increases 

dopamine signaling (Andretic et al., 2008).  Interestingly, previously-defined groups of wake-

promoting neurons were dispensable in the caffeine response.  Th-D4-Gal4, Th-D1-Gal4, and 

TH-G1-Gal4, which promote wake when driving the heat-sensitive cation channel TrpA1, did not 

block the wake-promoting effect of caffeine when silenced (Liu et al., 2012).  Therefore, the wake-

promoting circuit responsible for the caffeine response seems to be distinct from previously-

identified circuits.   

We confirmed that the PAM cluster neurons are indeed modulated by caffeine by 

demonstrating that caffeine feeding causes increased neuronal signaling in InSite0273-labeled 

cells.  For these experiments, we used the CaLexA tool, which translates calcium increases from 

sustained neural activity into GFP reporter expression (Masuyama et al., 2012).   24 hours of 

caffeine exposure leads to increased calcium-dependent GFP expression in the PAM neurons, 

both in terms of average fluorescence intensity per cell and the number of visibly labeled cells per 

brain.   The InSite0273-Gal4 line expresses in about 130 neurons; however, only between 4 and 

22 showed visible activity-dependent GFP expression at baseline, which increases to between 11 

and 42 when the flies were fed caffeine.  This indicates that only a subset of PAM neurons is 

highly active at baseline and is activated by caffeine.  Interestingly, silencing cells labeled by the 

InSite0104-Gal4 line, which expresses in about 40 of the PAM neurons, is not sufficient to block 

the caffeine response (Burke et al., 2012).  Additional studies will be required to characterize the 

nature of caffeine’s effect on PAM neurons; it is possible that all PAM cells increase activity 

slightly following caffeine feeding, pushing a few additional cells above the detection threshold, or 

that a distinct group of cells which are not active at baseline respond to caffeine and become 

GFP-positive.   

How caffeine actually increases dopaminergic signaling is still unclear, and will be an 

interesting topic of further study.  The ability of caffeine to promote arousal has been found to 
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require PKA signaling in the brain, but the relevant neurons have not been identified.  It is 

possible that caffeine activates PKA in dopaminergic neurons by inhibiting phosphodiesterases 

(PDEs) (Fredholm et al., 1999; Ribeiro and Sebastiao, 2010). Another possible mechanism by 

which caffeine could increase neuronal activity is by activating ryanodine receptors, which are the 

major mediators of activity-induced calcium release in the cell (McPherson et al.,1991).  Caffeine 

may also be acting on other cell surface receptors, or perhaps on an as-yet-unidentified 

adenosine receptor in the fly.  Another interesting question for further experiments is why the 

PAM cluster neurons are specifically sensitive to caffeine.  These neurons may express higher 

levels of the sleep-relevant caffeine target molecules, or may simply be the only sleep-modulating 

neurons among a broad class of caffeine-sensitive cells.  To our knowledge, this is the first set of 

studies implicating adenosine-receptor-independent modulation of dopaminergic signaling in the 

arousal-promoting effects of caffeine.   
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CONCLUSIONS AND FUTURE DIRECTIONS 
 

 

Many different neurotransmitters, neuropeptides, and neuromodulators have been 

implicated in the control of sleep and wake behavior. Here, we have studied on class of 

neuromodulators called monoamines, each of which is required for normal sleep behavior (Cirelli, 

2009; Nall and Sehgal, 2014).  The sleep-relevant pathways for each monoamine 

neurotransmitter involve signaling to several different brain regions— the MB, the FB, the PI, and 

the ventral lateral neurons. Each of these brain regions receives input from several different 

neuromodulators and in turn sends outputs that contribute to sleep, circadian rhythms, and other 

behaviors. For example, information about metabolic state, sleep drive, and mating cues must all 

be evaluated to dictate whether the fly should be eating, sleeping, or courting.   

One mechanistic commonality among all of the monoamines is their packaging into 

synaptic vesicles. All of the monoamines rely on the vesicular monoamine transporter (dVMAT), 

of which there is only one in Drosophila (Greer et al., 2005). Knocking out dVMAT prevents the 

vesicular packaging of dopamine, octopamine, and serotonin, thereby promoting their breakdown 

and depleting them from the nervous system. dVMAT-null mutants are defective in exocytotic 

aminergic signaling from neurons. They display defects in many different behaviors, which is not 

surprising considering the long list of behaviors previously found to be modulated by monoamines 

(Simon et al., 2009).   

To determine which neurotransmitters are sufficient to drive different behaviors, Chen et 

al. (2013) went about restoring dVMAT function to subsets of neurons in an otherwise mutant 

background. Using this approach, the authors found that signaling from octopaminergic neurons 

alone rescues female fertility, viability, and larval locomotion, whereas either the octopaminergic 

neurons or the dopaminergic neurons can restore male fertility. dVMAT only has to be restored to 

a single monoamine system, regardless of which one, to restore wild-type startle-induced 

hyperactivity. Circadian rhythmicity, which is disrupted in the dVMAT mutant, can be restored by 
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expressing dVMAT using any two drivers, be they dopaminergic and octopaminergic, 

dopaminergic and serotonergic, or octopaminergic and serotonergic (Chen et al., 2013). This 

finding is of particular interest because it illustrates how multiple different neuromodulatory 

systems can compensate for the lack of others to establish the very robust phenotype of 

behavioral rhythmicity. Loss of rhythmicity is almost never advantageous; therefore, changes in 

levels of individual neuromodulators in response to environmental cues should not be able to 

easily alter circadian control of locomotion. 

In a small molecule screen for sleep-altering compounds, an inhibitor of dVMAT was 

discovered as a strong sleep-inducing drug. The dVMAT mutant was found to also have 

significantly increased sleep and was resistant to the effects of reserpine. Flies mutant for 

biosynthetic enzymes for each monoamine were fed reserpine, but each displayed the increased 

sleep caused by the drug. Therefore, no single monoamine system could be identified as the 

sleep regulator causing the entire dVMAT mutant sleep phenotype (Nall & Sehgal, 2013). It is 

likely that the different monoamine systems work in parallel, with each communicating information 

about physiological and environmental situations into a single or multiple sleep circuits, resulting 

in finely tuned, contextually appropriate behavior.  

In addition to multiple monoaminergic systems creating a robust and layered regulatory 

network for behavior, other mechanisms of plasticity can compensate for loss of dVMAT. One 

study proposed the importance of developmental compensation by observing that reserpine fed 

acutely in adulthood causes hypoactivity whereas dVMAT mutants that have chronically 

eliminated exocytotic aminergic signaling display hyperactivity (Simon et al., 2009). The ability of 

flies to compensate for reduced monoamine signaling is dependent on genetic background. 

dVMAT mutants with a CantonS background show the same elevated sleep phenotype as flies 

acutely fed reserpine, but dVMAT mutants in an iso31 genetic background develop relatively 

normal sleep behavior in adulthood, even without dopamine, serotonin, octopamine, or other 

monoamines (Nall & Sehgal, 2013). The mechanisms by which this compensation occurs are still 

unknown, but they are among the important questions in the circuit-wide and systems-wide study 
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of behavior. Studying compensatory mechanisms will tell us more about how the many tightly 

integrated signaling pathways interact to confer robustness of behavior.  

Thus far, research has largely focused on how individual neuromodulators regulate 

individual behaviors. However, we are beginning to understand that the signaling molecules are 

part of a complex network of interconnected circuits that communicate with each other. To 

determine how these circuits interact, we will need to simultaneously study multiple signaling 

molecules using combinations of genetic and molecular manipulations. A recent study by Burke 

et al. (2012) determined epistasis on a cellular level to demonstrate that octopaminergic control of 

short-term appetitive memory actually signals through dopaminergic neurons, which in turn 

project to the MB. This approach to elucidating interactions between circuits will prove useful in 

determining networks underlying other complex behaviors and perhaps shared networks that link 

multiple behaviors. In the case of the VMAT mutant, mapping neurons where VMAT is necessary 

and sufficient to drive normal patterns of sleep and wake will be informative.  Our work has shown 

that in this mutant, baseline sleep, homeostatic rebound, and sleep latency seem to be separable 

aspects of sleep behavior which can each be studied to gain a deeper insight into regulatory 

circuits which may act separately, convergently, or epistatically.   

Various studies have attempted to map the sleep and wake circuits in Drosophila, and 

these studies have implicated multiple different brain structures and neuronal populations.  In 

addition to multiple neurotransmitters contributing to sleep/wake regulation, different brain 

structures have also been found to be involved.  The pars intercerebralis (PI) relays 

octopaminergic wake-promoting signals and the fan-shaped body (FB) seems to be a sleep-

promoting brain region that is inhibited by dopaminergic signals (Crocker et al., 2010; Ueno et al., 

2012; Liu et al., 2012). In our studies, we mapped a group of dopaminergic neurons which are 

required for the wake-promoting effect of caffeine.  These neurons, the PAM cluster neurons, are 

distinct from the PPL1 and PPM3 dopaminergic neurons that have been identified as wake-

promoting in the past.  While the PPL1 and PPM3 project to the fan-shaped body to promote 
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wake, the PAM cluster projects primarily to the mushroom body (MB) (Ueno et al., 2012; Liu et 

al., 2012; Burke et al., 2012).  

The mushroom body has previously been identified as a brain region that promotes 

sleep, as ablation of this structure leads to increased arousal (Pitman et al., 2006; Joiner et al., 

2006). However, increasing PKA signaling or neuronal excitability using some mushroom body 

Gal4 drivers increases sleep while promoting activation of a different, non-overlapping group of 

neurons in the MB causes a sleep decrease, indicating that the MBs likely contain both sleep-

promoting and wake-promoting cell groups (Joiner et al., 2006).  

The MB expresses dopamine receptors to allow it to respond to signals from neurons 

such as the PAM cluster.  We hypothesize that the PAM neurons convey wake-promoting signals 

to the MB, and these signals are amplified by caffeine. The dopamine type 1 receptor, dDopR, 

which is required in the MB for the caffeine response, is the likely recipient of these wake-

promoting signals.  The MB is a brain region that was previously implicated in learning and 

memory.  The roles of the MB in sleep and learning may be mechanistically linked. Sleep 

deprivation impedes learning in fruit flies, similarly to more complex animals, and this decrement 

is exacerbated by drugs that decrease dopamine signaling and by mutation of dDopR (Seugnet et 

al., 2008). On the other hand, increasing dDopR signaling, either by feeding agonists or by 

overexpressing the receptor in the MBs, was able to rescue learning and memory after sleep 

deprivation as effectively as recovery sleep (Seugnet et al., 2008). Caffeine can also reduce 

cognitive impairment following sleep deprivation, further underscoring that this dopaminergic 

innervation of the MB is targeted by caffeine (Alhaider et al., 2010).  

 In addition to sleep affecting learning and memory, learning also affects sleep. Flies 

appear to modulate the amount of sleep they get depending on prior waking experience; flies 

exposed to a socially enriched environment sleep more than those that are individually housed. 

Context-dependent sleep change is disrupted by either augmenting or impeding dopaminergic 

signaling (Ganguly-Fitzgerald et al., 2006). Further research is required to understand the true 

nature of the connection between sleep and learning and the extent to which sleep circuits and 
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learning circuits overlap. Determining the specific MB neurons that express dopamine receptors 

and mapping their inputs will be useful in dissecting the various behavioral roles for the MB. New 

tools are available to assist in this undertaking, including restricted Gal4 lines that express in 

subsets of MB neurons.  These Gal4 lines can be used to monitor and alter the behavior of these 

cells by driving expression of biosensors or modulators of neuronal activity (Pech et al., 2013).   

In addition to the PI, FB, and MB, an increasing body of evidence is also implicating the 

circadian clock neurons in regulation of sleep and wake behavior.  Originally, it was thought that 

the circadian and homeostatic control of sleep occurred via separate mechanisms and that 

circadian clock neurons only conveyed time-of-day information to downstream circuits (Borbély, 

1982).  It is now clear that clock neurons can receive modulatory inputs themselves that may 

modulate sleep and wake behavior in response to cues besides the normal zeitgebers of light and 

temperature.  One group of central clock neurons, the large ventral lateral neurons (-lLNvs), are 

light-sensitive wake-promoting cells that express receptors for many different internal 

neuromodulatory molecules (Shang et al., 2011). Histaminergic control of sleep maps to the clock 

neurons; expression of HisCl1 in these cells is necessary and sufficient for normal sleep behavior 

(Oh et al., 2013). An earlier anatomical study identified histaminergic projections from extraocular 

eyelet photoreceptors to the ventral lateral neurons, which could be the wake-promoting 

histaminergic circuit (Hamasaka & Nässel, 2006). The serotonin receptor d5-HT1B is expressed 

in clock cells in the brain, where it likely acts to modulate circadian entrainment (Yuan et al., 

2005). However, it is also expressed in the MBs and PI, where it could potentially modulate the 

sleep circuit on the basis of light and circadian cues.  The lLNvs also respond to octopamine by 

increasing cAMP levels in the dark, and sensitivity of these cells to octopamine is under clock 

control (Shang et al., 2011). 

The responsiveness of the lLNvs to many different inputs makes them an attractive 

candidate for future studies on the consolidation of internal and external cues into a single 

behavioral program.  Indeed, some previous studies have established a precedent for clock cell 

involvement in integration of environmental cues and cellular and molecular context to coordinate 
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sleep and wake behavior at appropriate times and in appropriate situations. For example, the 

lLNvs promote wake in a dopamine-independent manner in the light phase, but respond to 

dopamine in the night (Parisky et al., 2008; Shang et al., 2008; Sheeba et al., 2008). Light 

suppresses dopamine’s wake-promoting effects by upregulating inhibitory dopamine receptors 

(dD2R) in the lLNvs (Shang et al., 2011). Another study showed that clock cells are involved in 

prioritizing sleep and foraging behavior, indicating that the clock genes clock and cycle are 

required for the suppression of sleep behavior in starvation conditions (Keene et al., 2010).  In 

our studies, we found that caffeine can not only suppress sleep, but can lengthen the circadian 

period, and that these effects are both dependent on dopamine.  It is possible that, while the 

effect on sleep maps to neurons projecting to the MB, that the period-lengthening effect may act 

through dopaminergic neurons projecting to the clock cells.  This mechanism may be relevant to 

mammalian systems as well, since activation of dopamine type 1 receptors has been shown to 

alter clock gene expression, indicating functional interactions of dopamine signaling with clock 

cells (Imbesi et al., 2009). Future experiments will need to map the dopaminergic neurons 

responsible for the circadian caffeine effect and query whether dopamine receptors in clock cells 

are required. 

Receptors that receive monoaminergic inputs are usually G-protein coupled receptors 

(GPCRs; Marraziti et al., 2009).  These traverse the membrane and couple ligand binding to 

intracellular signaling by activating different G-proteins.  Most of these receptors either activate or 

inhibit adenylate cyclase, which produces cyclic adenosine monophosphate (cAMP; Uzzan and 

Dudai, 1982; Nall and Sehgal, 2014).  Among other signaling cascades, cAMP activates protein 

kinase A (PKA), which in turn activates the transcription factor cAMP response element-binding 

protein (CREB; Lonze and Ginty, 2002). This signaling pathway is essential for regulating sleep 

and wake behavior, with CREB mutant mice showing an increase in time spent in non-rapid eye 

movement (NREM) sleep and a decrease in time spent awake (Graves et al., 2003). Consist with 

a wake-promoting role for CREB, acute inhibition of CREB signaling in Drosophila causes 

increased homeostatic rebound following sleep deprivation (Hendricks et al., 2001).  Conversely, 
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expressing a constitutively-active form of PKA in all neurons results in a marked reduction of 

nighttime sleep (Joiner et al., 2006).  More focused studies have shown that PKA signaling in the 

MB underlies the control of sleep and wake by that brain structure (Joiner et al., 2006).  PKA 

signaling in the PI is responsible for the control of sleep by octopamine (Crocker and Sehgal, 

2008). In addition, blocking PKA signaling acutely in all neurons using a pan-neuronal inducible 

Gal4 (elav-Geneswitch) increases the number of minutes of sleep per day (Wu et al., 2009).  

Interestingly, blocking PKA acutely using a mushroom-body-specific inducible Gal4 (MB-

Geneswitch) did not cause a change in sleep behavior (Wu et al., 2009).   

PKA signaling is required for the ability of caffeine to promote wakefulness in Drosophila.  

This PKA requirement does not map to the mushroom bodies, however, since blocking PKA 

signaling using MB-Geneswitch does not prevent the wake-promoting effect of caffeine (Wu et al., 

2009).  Interestingly, the dopamine receptor dDopR is required in the mushroom body for the 

response to caffeine, and this receptor is coupled to adenylate cyclase (Sugamori et al., 1995). It 

is possible that the regions of the mushroom body receiving the dDopR1-mediated wake-

promoting caffeine signal are not targeted by MB-Geneswitch or that dDopR1 couples to a 

different second messenger cascade in the MB as has been observed in the other Drosophila 

type 1 dopamine receptor dDopR2 and in mammals (Reale et al., 1997; Beaulieu et al., 2011). 

The requirement of PKA signaling in non-MB neurons suggests that perhaps this signaling 

molecule is required in a different step of the caffeine-sensitive circuit.  We find that calcium 

release is increased in the MB-projecting PAM neurons following caffeine feeding, but further 

experiments will be required to demonstrate whether cAMP/PKA signaling is also upregulated in 

these cells.  In addition, it will be interesting to observe whether inhibiting PKA signaling in this set 

of cells can block the caffeine response.   

Caffeine increases PKA activation and CREB phosphorylation in the brains of mice, 

suggesting shared mechanisms with Drosophila (Zeitlin et al., 2011). Increases in PKA activation 

may be attributable to inhibition of cAMP-degrading phosphodiesterases or perhaps to direct 

interactions with adenylate cyclase-interacting receptors.  Another similarity between work done 
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in Drosophila and mammalian systems is the observation of impacts on dopaminergic signaling, 

such as increases in extracellular dopamine, following caffeine administration (Solinas et al., 

2002, Okada et al., 1996).  Even caffeine-induced dopamine release has been attributed in 

mammals to antagonism of adenosine receptors – in this case, presynaptic adenosine receptors 

which inhibit dopamine autoreceptors.  However, it is also possible that the presynaptic action of 

caffeine in mammals is adenosine-receptor-independent and shares the same mechanisms we 

observe in Drosophila.   Indeed, adenosine-receptor-independent effects of caffeine have been 

described; identical aversive and appetitive responses to caffeine are observed in both wild type 

mice and mice lacking both A1 and A2A adenosine receptors (Sturgess et al., 2010).   

Activation of ryanodine receptors may be another physiologically-relevant caffeine action, 

as ryanodine receptor type 3 mutants have attenuated dopamine release following caffeine 

administration (Wan et al., 1999).  Ryanodine receptor activation may underlie the increases in 

calcium signaling that we observed in the PAM cluster neurons in Drosophila.  Mobilization of 

calcium stores by ryanodine receptors triggers dopamine release in mammals, and ryanodine 

receptor activation can lead to circadian clock phase shifts (Ding et al., 1998; Patel et al., 2009).  

It is possible that these effects occur in Drosophila as well, and may explain the link between 

neuronal activity, dopaminergic signaling, sleep, and circadian period.  Further studies will be 

required to determine the sleep-relevant caffeine targets in both mammals and Drosophila, 

whether it be PDE inhibition, ryanodine receptor activation, direct dopamine receptor interactions, 

or some other mechanism.  Discovering the pathways by which caffeine can promote wake will 

also inform us about wake-promoting signaling pathways and neuronal circuits that may yet be 

unidentified. 

In the combined experiments of this document, we have demonstrated an importance of 

multiple interacting neurotransmitter systems in establishing various aspects of baseline sleep 

behavior and of presynaptic modulation of these systems by pharmacological agents that change 

sleep/wake patterns.  Acute blockade of synaptic transport of monoamines causes increased 

sleep; however, chronic lack of dVMAT can be bypassed by other mechanisms, demonstrating 
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how plastic the neuronal controls of this essential behavior can be.  We also demonstrated that 

caffeine can promote wake by upregulating dopaminergic signaling presynaptically, which has not 

yet been demonstrated.  In addition, we showed that the relevant caffeine-sensitive neurons 

belong to a cluster that had previously not been shown to be involved in the regulation of sleep 

and wake.  Both of these bodies of work highlight the power of acute pharmacological 

approaches to discovering the regulation of behavior in adulthood.  They also both underscore 

the myriad parallel and interacting pathways that regulate sleep.  It is still not clear how the 

various sleep pathways interact, and what is the relative contribution of the various monoamine 

neurotransmitters – dopamine, serotonin, octopamine, and histamine – as well as the multiple 

sleep-regulatory brain structures – the PI, FB, MB, and lLNvs.  Whether these circuits converge 

spatially and how they can turn a complex body of contextual information into a unified behavioral 

program are still open questions. Studying how these different circuits are prioritized in different 

environmental contexts or in response to different stimuli will be an essential next step in 

determining the purpose of this apparent redundancy.  This work will contribute enormously to our 

understanding of how we maintain the behavioral plasticity necessary for survival in an ever-

changing, unpredictable world. 
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