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Engineered DNA-Mediated Antibody Gene Transfer for Prophylaxis
Against Infectious Diseases

Abstract
Monoclonal antibodies (mAbs) have become important therapeutic and prophylactic agents for a number of
indications, including infectious diseases. However, due to many issues, particularly the high cost of antibody
production, mAb therapies are limited to the world’s richest populations. Furthermore, lengthy product
development programs mean only a small number of mAb products can be produced at any one time.
Engineering novel, low-cost, and simple methods of developing and delivering mAbs would be highly
advantageous, potentially expanding the utility of antibody approaches into a wider array of applications.
Here, we describe an approach to deliver human IgG neutralizing mAbs in vivo using DNA plasmid-mediated
antibody gene transfer. This approach, which we term DNA mAb (DMAb) delivery, generates biologically
relevant levels of mAbs after a single intramuscular injection of antibody-encoding DNA followed by in vivo
electroporation (EP). First, we developed antibody-encoding DNA plasmids that could reproducibly deliver
human mAbs to mouse serum. We show that these plasmid-encoded antibodies have similar binding capacity
and functionality to in vitro-produced purified antibodies. Then, we use a mouse model to show that
intramuscular delivery of pDVSF-3 LALA, which encodes a human anti-Dengue virus (DENV) IgG1
neutralizing antibody modified with a mutation that abrogates Fcγ receptor binding, produces anti-DENV
antisera capable of binding to and neutralizing DENV1-3. Importantly, mice receiving pDVSF-3 LALA, but
not the unmodified pDVSF-3 WT, were protected from both virus-only disease and antibody-enhanced lethal
disease. To build upon these initial findings, we evaluated targeted genetic approaches and alternative delivery
regimens in order to increase DMAb expression in vivo. Using DMAbs encoding human IgG1 antibodies
against Borrelia burgdorferi (the causative agent of Lyme disease) as a model, we show that specific amino
acid modifications to the framework regions of antibody variable domains confer increased in vitro and in
vivo DMAb expression levels compared to the original DMAb sequences. Of note, these modifications were
found to have no detrimental effect on the antibody’s borreliacidal activity. Lastly, we observed that pre-
treatment of the DMAb injection site with hyaluronidase resulted in a 2.4 to 6.4-fold increase in human IgG
concentration levels in vivo compared to mice receiving EP-mediated DMAb delivery only. Taken together,
these data establish DNA plasmid-based antibody gene transfer as a safe, effective means of delivering tailored,
protective monoclonal antibodies to hosts.
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ABSTRACT 
 

ENGINEERED DNA-MEDIATED ANTIBODY GENE TRANSFER FOR PROPHYLAXIS AGAINST 

INFECTIOUS DISEASES  

Seleeke F. Flingai 

David B. Weiner 

 

Monoclonal antibodies (mAbs) have become important therapeutic and prophylactic 

agents for a number of indications, including infectious diseases. However, due to many 

issues, particularly the high cost of antibody production, mAb therapies are limited to the 

world’s richest populations. Furthermore, lengthy product development programs mean 

only a small number of mAb products can be produced at any one time. Engineering 

novel, low-cost, and simple methods of developing and delivering mAbs would be highly 

advantageous, potentially expanding the utility of antibody approaches into a wider array 

of applications. Here, we describe an approach to deliver human IgG neutralizing mAbs 

in vivo using DNA plasmid-mediated antibody gene transfer. This approach, which we 

term DNA mAb (DMAb) delivery, generates biologically relevant levels of mAbs after a 

single intramuscular injection of antibody-encoding DNA followed by in vivo 

electroporation (EP). First, we developed antibody-encoding DNA plasmids that could 

reproducibly deliver human mAbs to mouse serum. We show that these plasmid-

encoded antibodies have similar binding capacity and functionality to in vitro-produced 

purified antibodies. Then, we use a mouse model to show that intramuscular delivery of 

pDVSF-3 LALA, which encodes a human anti-Dengue virus (DENV) IgG1 neutralizing 

antibody modified with a mutation that abrogates Fcγ receptor binding, produces anti-

DENV antisera capable of binding to and neutralizing DENV1-3. Importantly, mice 
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receiving pDVSF-3 LALA, but not the unmodified pDVSF-3 WT, were protected from 

both virus-only disease and antibody-enhanced lethal disease. To build upon these initial 

findings, we evaluated targeted genetic approaches and alternative delivery regimens in 

order to increase DMAb expression in vivo. Using DMAbs encoding human IgG1 

antibodies against Borrelia burgdorferi (the causative agent of Lyme disease) as a 

model, we show that specific amino acid modifications to the framework regions of 

antibody variable domains confer increased in vitro and in vivo DMAb expression levels 

compared to the original DMAb sequences. Of note, these modifications were found to 

have no detrimental effect on the antibody’s borreliacidal activity. Lastly, we observed 

that pre-treatment of the DMAb injection site with hyaluronidase resulted in a 2.4 to 6.4-

fold increase in human IgG concentration levels in vivo compared to mice receiving EP-

mediated DMAb delivery only. Taken together, these data establish DNA plasmid-based 

antibody gene transfer as a safe, effective means of delivering tailored, protective 

monoclonal antibodies to hosts.  
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CHAPTER 1 – Introduction 

 

Humoral immunity and the basis for vaccination  

 The humoral immune system is one of the first lines of defense against invading 

pathogens; the generation of antibodies by B lymphocytes plays a vital role in preventing 

infection and protecting the host against disease. Typically, antibody responses are 

generated either by exposure to an encountered pathogen or through the process of 

vaccination. Indeed, antibody responses are responsible for the efficacy of almost all of 

the vaccines currently in use (S. A. Plotkin, 2009).  Vaccination has had an 

immeasurably positive impact on human health, resulting in the complete elimination of 

smallpox (Breman & Arita, 1980) and the drastically reduced incidence of measles, 

mumps, rubella, poliomyelitis, tetanus, rotavirus, and more (Moxon & Siegrist, 2011). 

Modern vaccines, typically comprised of live-attenuated microorganisms, killed viral 

particles, or recombinant viral proteins, elicit the production of specific antibodies that 

bind superficial microbial structures on the target pathogen. Unfortunately, 

immunological pressure or imprecise genome replication can cause certain pathogens to 

accumulate mutations that limit the effectiveness of antibodies originally generated 

against the pathogen. Typically, antibody responses generated by traditional vaccines 

only target the specific antigens found in the inoculum, and are poorly able to control 

similar pathogens that carry either subtle or gross changes to the antigen. As such, 

many pathogens that have adapted complex immune evasion mechanisms – such as 

human immunodeficiency virus, influenza, dengue, and malaria – have proven to be 

difficult targets for traditional vaccination (Karlsson Hedestam et al., 2008; Man John 

Law, Landi, Magee, Lorne Tyrrell, & Houghton, 2013). 
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Passive immunity and the rise of monoclonal antibody therapy 

 While the roots of vaccination can be traced back to the 18th century Chinese 

practice of variolation against smallpox (Stanley A. Plotkin, Orenstein, & Offit, 2013), it 

wasn’t until the late 19th century that the development of antibody passive transfer 

therapy began to take shape. In 1890, Emil von Behring and Shibasaburo Kitasato 

demonstrated that naïve animals could acquire immunity against tetanus or diphtheria 

after being injected with serum obtained from animals immunized with the respective 

toxins (von Behring & Kitasato, 1991). This early success paved the way for what 

became known as serum therapy, in which sera from immune animals or patients are 

passively administered to a recipient host in order to confer immunity to a pathogen. 

Serum therapy was generally effective and widely used, yet the practice was beset with 

a number of issues, such as lot-to-lot variability, dosing uncertainty, and allergic 

reactions (Casadevall, 1999). While there have been improvements in the passive 

transfer of polyclonal antibodies over the preceding decades, especially in regards to the 

purification of antibodies from serum before passive administration, the advent of 

antibiotics in the 1940s ultimately reduced the usage of serum therapy (Casadevall & 

Scharff, 1994). However, there are still 11 FDA-approved polyclonal antibody 

preparations used in the clinic, primarily for immune compromised individuals and post-

exposure prophylaxis (Robbins, Schneerson, & Szu, 1996). 

 Cesar Milstein and Georges Köhler’s pioneering development of hybridoma 

technology in 1975 greatly expanded the possibilities of specific antibody transfer 

(Kohler & Milstein, 1975). This new methodology, in which splenocytes from an 

immunized mouse are fused with a mouse myeloma cell line, allowed for continuous 

production of monoclonal antibodies (mAbs) against the immunogen. A little over a 

decade later, the FDA approved the first mAb therapy, murine-derived muromonab-CD3, 
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ushering in a new age of antibody-based therapeutics (Todd & Brogden, 1989). 

However, the murine antibodies produced by hybridomas limited their clinical 

effectiveness, as anti-mouse antibody immune responses in patients led to the rapid 

clearance of drug from the body, causing issues with drug readministration (Wilde & 

Goa, 1996). Fortunately, advances in recombinant DNA technology and antibody 

discovery techniques have led to the development of chimeric, humanized, and fully 

human mAbs that are less immunogenic than their murine counterparts (Lonberg, 2005; 

Traggiai et al., 2004; Vaughan, Osbourn, & Tempest, 1998).  As a result, there are now 

over 20 FDA-approved mAb drugs on the market, with hundreds in the development 

pipeline (Keizer, Huitema, Schellens, & Beijnen, 2010).  

 While the successes of mAb therapy have been admirable, there are a number of 

issues in current production and delivery methods that limit the modality’s clinical 

potential and the populations that these drugs can reach. On the production side, clinical 

antibody development is prohibitively expensive: investment costs for a commercial 

antibody production facility can range anywhere from $40 million to $650 million 

depending on the size of the facility, among other factors (Farid, 2007). Furthermore, the 

half-life of therapeutic mAbs in vivo is typically between a few days and 3-4 weeks 

(Keizer et al., 2010), necessitating frequent administrations of drug to maintain effective 

antibody concentrations in patients. This partially explains the exorbitant prices for mAb 

therapies, which can cost cancer patients $35,000 annually for effective antibody 

treatment (Farid, 2007). Additionally, traditional antibody delivery mechanisms are time 

intensive for recipients and are often performed via intravenous infusions that require 

trained medical personnel to administer properly (Keizer et al., 2010). For these reasons 

and more, mAb therapies are generally restricted to a subset of patients who may 

benefit from such treatments.   
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Antibody gene transfer for infectious diseases 

An alternative to traditional passive transfer techniques is the use of vector-

mediated antibody gene transfer for the delivery of well-characterized mAbs. This 

approach effectively directs tissues targeted by the vector to act as antibody-producing 

depots such that transfected tissues in the host ectopically express the genes of a 

desired mAb in vivo, resulting in the secretion of mAbs into the circulation. This 

approach has been assessed with an array of viral- and non-viral vectors (Appendix, 

Table A1), each with unique characteristics worth exploring.  

 

Adenoviral-mediated antibody gene transfer 

Adenovirus (Ad) vectors have a long history as gene delivery vehicles and have 

been among the most commonly used viral vectors in gene therapy (Wilson, 1996). In 

regards to their use in antibody gene transfer, Ad vectors are generally known for their 

rapid, yet transient, expression profiles. In one study, a group C serotype 5 Ad (Ad5) 

was used to deliver a murine mAb against the protective antigen (PA) component of 

Bacillus anthracis, the bacteria responsible for anthrax. Mice given the Ad vector showed 

serum anti-PA antibodies as early as one day after administration, eventually peaking at 

7 days post-injection. Furthermore, mice were protected as quickly as 1 day after Ad 

administration, with protection lasting 8 weeks before completely disappearing by six 

months (De, Hackett, Crystal, & Boyer, 2008). In another study, mice were given an Ad5 

vector expressing a murine version of the anti-respiratory syncytial virus (RSV) mAb 

palivizumab, followed one week later by intranasal RSV challenge. Not only did mice 

receiving the Ad vector show anti-RSV serum titers within 3 days, but they also had 5.4-

fold lower RSV titers in the lungs compared to control animals after RSV challenge 

(Skaricic et al., 2008). Soon after, Ad5 served as the vector of choice to deliver an anti-
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Yersinia pestis mAb to mice, of which 80% were protected when challenged 4 days post-

Ad administration (Sofer-Podesta et al., 2009). Ad5 vectors were also used to deliver a 

camelid single-domain antibody (sdAb) against the influenza hemagglutinin (HA) protein, 

protecting mice when given between 24 hours and 14 days before lethal influenza 

challenge (Tutykhina et al., 2013). More recently, another antibody against Bacillus 

anthracis – this time a bispecific camelid mAb – was delivered by Ad5-mediated 

antibody gene transfer and protected 100% of mice up to 11 days post-Ad administration 

(De et al., 2008; Moayeri et al., 2016). Taken together, Ad-mediated antibody gene 

transfer is rapid, but short-lived, means of delivering mAbs in vivo.  

However, a major caveat to the use of Ad-based vector systems is the 

widespread pre-existing anti-Ad immunity in the human population, particularly against 

the widely used human Ad5 serotype; pre-existing human Ad immunity can significantly 

reduce the clinical efficacy of Ad-mediated gene transfer (Fausther-Bovendo & Kobinger, 

2014). Therefore, it is generally felt that alternative vector systems will be necessary for 

clinically effective vector-based antibody gene transfer.  

 

Adeno-associated virus-mediated antibody gene transfer 

Much of the pioneering work in the antibody gene transfer field began with a 

seminar study from Anne Lewis and colleagues, in which a recombinant adeno-

associated virus serotype 2 (rAAV2) vector was used to deliver the human anti-HIV 

broadly neutralizing antibody (bnAb) b12 to Rag1 immunodeficient mice via 

intramuscular injection (Lewis, Chen, Montefiori, Johnson, & Clark, 2002). Using a dual-

promoter system to deliver the heavy and light chain transgenes with a single vector, 

mice produced serum-detectable levels of human IgG over the course of the 6-month 

study that were capable of neutralizing T cell line-adapted (TCLA) and primary HIV-1 



6 

isolates. These studies were later extended to delivering anti-simian immunodeficiency 

virus (SIV) antibody-like immunoadhesins to rhesus macaques using self-

complementary AAV1 (scAAV1) vectors, resulting in long-lasting neutralizing activity and 

protection against intravenous SIV challenge (Johnson et al., 2009). A similar approach, 

known as Vectored Immunoprophylaxis (VIP), has been successfully employed in 

mouse models of HIV (both intravenous and mucosal challenges) (Balazs et al., 2012) 

influenza (Balazs, Bloom, Hong, Rao, & Baltimore, 2013), malaria (Deal et al., 2014), 

and hepatitis C (de Jong et al., 2014). Recent work also suggests that VIP is efficacious 

in nonhuman primates, as AAV-mediated delivery of a simianized version of the human 

anti-HIV bnAb VRC07, in combination with the immunosuppressive drug cyclosporine, 

led to substantial expression of simian VRC07 antibody in rhesus macaques for nearly 4 

months and protection against simian-human immunodeficiency virus (SHIV) infection 

5.5 weeks after AAV injection (Saunders et al., 2015). Another study employed 

intranasal delivery of a rAAV9 vector encoding an anti-influenza HA bNAb FI6 and 

showed protection against lethal influenza in mice and ferrets (Limberis, Adam, et al., 

2013), showing the range of delivery methods available for effective AAV-mediated 

antibody gene transfer.  

In addition to prophylactic applications of AAV-mediated antibody gene transfer, 

questions of antibody expression kinetics and therapeutic efficacy have also been 

explored. A number of studies have compared the kinetics of AAV-mediated antibody 

gene transfer to that of Ad-mediated antibody gene transfer, and the results generally 

suggest that AAV delivery has slower but longer lasting expression kinetics compared to 

the rapid but transient nature of Ad-mediated antibody gene transfer (De, Hackett, 

Crystal, & Boyer, 2008(Skaricic et al., 2008). Regarding the therapeutic potential of this 

antibody delivery platform, one interesting study looked at a murine model of HIV 
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treatment and showed that treatment of humanized mice with antiretroviral therapy 

(ART) drugs, followed by AAV-mediated expression of an anti-HIV bnAb, resulted in 

durable viremic control after ART was stopped (Horwitz et al., 2013). Taken together, 

these results suggest that AAV-mediated antibody gene transfer is capable of slower but 

durable expression of high concentrations of mAbs in a variety of animal models. 

As with Ad vectors, anti-vector immunity against AAV presents many challenges 

for its use as a gene delivery vehicle in humans. AAV infection is common in humans, 

resulting in high seroprevalence of IgG antibodies to multiple AAV serotypes. 

Additionally, most sera positive for anti-AAV antibodies were found to have some 

neutralization properties (Boutin et al., 2010), which have been found to inhibit vector 

transduction in animals and humans at titers as low as 1:5 (Jiang et al., 2006; Manno et 

al., 2006; Scallan et al., 2006). Clinical trials have shown that prior exposure to the AAV 

capsid through natural infection may generate a pool of AAV-specific memory T cells 

that are reactivated upon AAV vector-mediated gene transfer (Manno et al., 2006; 

Mingozzi et al., 2007) and that these T cell responses are dose-dependent (Mingozzi et 

al., 2009). One study showed that AAV2 capsid-specific human T cells proliferated upon 

exposure to other AAV serotypes, suggesting that simply altering AAV serotype usage 

for gene transfer may not evade the anti-vector immune response (Mingozzi et al., 

2007). However, a recent clinical study demonstrated that intramuscular delivery of an 

AAV1 vector expressing M-type α-1 antitrypsin was capable of long-term transgene 

expression despite the presence of a CD8+ T cell response, perhaps due to the 

concomitant activation of a small natural T regulatory cell population to the AAV capsid 

(Mueller et al., 2013). These data collectively suggest that immunity against the AAV 

vector is a major concern clinically, with manifestations of anti-vector immunity being 
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dependent on multiple factors, including pre-existing immunity, vector dose, and delivery 

route.  

 

DNA plasmid-mediated antibody gene transfer 

While the majority of antibody gene transfer studies have employed viral 

vectored methods, notable drawbacks such as anti-vector immunity (either pre-existing 

or newly developed as a result of viral vector administration) make DNA plasmid-

mediated antibody gene transfer an attractive alternative (Appendix, Figure A1). 

Numerous preclinical and clinical studies have shown that DNA plasmid delivery does 

not elicit anti-vector immunity (Klinman et al., 2000), a benefit that has often been used 

to administer multiple doses of DNA vaccines without generating an immune response to 

the DNA plasmid vector (Klinman et al., 2000; MacGregor, Boyer, Ciccarelli, Ginsberg, & 

Weiner, 2000). Additionally, continued advancements in DNA plasmid delivery 

technology have greatly improved the prospects of DNA plasmid-mediated gene delivery 

in both animal and clinical settings. For example, plasmid delivery via in vivo 

electroporation (EP) improves plasmid delivery by a factor of 10-1,000 fold over naked 

DNA delivery alone (Sardesai & Weiner, 2011). The advantages of DNA plasmid-

mediated gene transfer are further buttressed by the platform’s ease of use and large-

scale production, relatively low costs, and strong safety profile. Despite these 

advantages, DNA plasmid-mediated antibody gene transfer is a relatively underexplored 

field.  

Tjelle and colleagues were the first to use EP-delivered DNA plasmids for 

antibody gene transfer (Tjelle et al., 2004). In this study, mice were injected 

intramuscularly with DNA plasmids encoding chimeric (mouse-human) IgG3 antibodies. 

When naked DNA plasmids were injected without EP, antibody levels were similar to 
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baseline levels in control mice; however, DNA plasmid injection followed by EP led to 

serum-detectable levels of human IgG ranging from 50-200 ng/mL. Mice injected with 

fully murine antibody-encoding plasmids followed by EP showed greater mAb serum 

levels that were detectable for at least 7 months post-injection. When sheep were 

injected with murine antibody-encoding plasmids, six of seven animals showed serum-

detectable murine antibody levels ranging between 30-50 ng/mL for up to 4 weeks post-

injection.  

This initial proof-of-concept study showed that DNA plasmids could indeed be 

used to deliver antibody-encoding genes intramuscularly, but it was not until 2011 that 

Yamazaki et al. published the first report showing in vivo protective functionality of DNA 

plasmid-mediated antibody gene transfer against an infectious disease in mice. Animals 

intramuscularly injected with DNA encoding an anti-influenza HA murine mAb followed 

by EP were protected against a lethal influenza dose when challenged nearly three 

weeks after DNA plasmid-mediated antibody gene transfer (Yamazaki et al., 2011). 

Furthermore, these murine mAbs were detectable at least 70 days post-injection, 

showing the long-term expression potential of DNA plasmid vectors.  

Given the dearth of studies using DNA plasmid-mediated antibody gene transfer, 

we began to explore ways to optimize this delivery method. In our initial studies, mice 

were given highly optimized DNA plasmids expressing Fab fragments of the human anti-

HIV-1 bnAb VRC01 (Muthumani et al., 2013). When delivered with EP, a single 

administration of the optimized plasmid constructs resulted in the generation of Fab 

molecules in mouse sera possessing gp120-binding and HIV-1 neutralizing activity 

against diverse HIV-1 isolates for at least 7 days. Importantly, this delivery method 

resulted in serum-detectable production of human Fab within 48 hours, suggesting that 
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DNA plasmids possess the rapidity of Ad vector-mediated antibody gene transfer without 

the anti-vector immunity.  

 

Goals of this thesis project 

Monoclonal antibody therapy carries great promise, and the advent of new 

antibody discovery techniques has greatly increased the array of potent neutralizing 

antibodies that target a vast number of infectious diseases. Yet the existing mechanisms 

for mAb delivery preclude the use of these drugs in many patient populations, either due 

to high costs or insufficient health care infrastructure. Furthermore, viral vector-mediated 

antibody gene transfer carries issues of vector immunogenicity, which can limit patient 

populations or prohibit readministration of additional vectored antibodies. A major goal of 

my thesis project was to investigate the use of highly optimized synthetic DNA plasmids 

as a possible delivery vehicle for antibody gene transfer in vivo. For our initial studies, 

we developed DNA mAb-encoding plasmids (DMAbs) to express neutralizing human IgG 

mAbs against dengue virus. We then incorporated targeted genetic modifications to the 

antibody Fc region of the anti-DENV DMAb to assess the effect of Fcγ receptor binding 

on DMAb functionality in vitro and in a mouse model of severe dengue disease.  Finally, 

we explored methods to increase antibody production levels in vivo through targeted 

antibody framework modifications of DMAb-encoded IgGs and alternative DNA delivery 

regimens. Ultimately, the primary goal of this thesis project was to determine the 

feasibility of DNA-plasmid mediated antibody gene transfer in vivo as an alternative to 

traditional and viral vector-based antibody delivery methods. 
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CHAPTER 2 – Materials and Methods 

 

Cell lines.  Vero cells were kindly provided by Professor Robert Doms (Children’s 

Hospital of Philadelphia, Department of Pathology and Laboratory Medicine) and 

cultured in Medium 199 (Invitrogen) supplemented with 5% FBS and antibiotics 

(Invitrogen; 100 units/mL penicillin and 100 µg/mL streptomycin). K562 cells were 

purchased from ATCC and grown in Iscove’s Modified Dulbecco’s Medium (Invitrogen) 

supplemented with 10% FBS and antibiotics (Invitrogen; 100 units/mL penicillin and 100 

µg/mL streptomycin). HEK293T cells were purchased from ATCC and grown in 

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) with 10% FBS and antibiotics 

(Invitrogen; 100 units/mL penicillin and 100 µg/mL streptomycin).  

 

Dengue viruses. Dengue virus types 1 (TH-S-man; ATCC VR-1586), 2 (New Guinea C; 

ATCC VR-1584), 3 (Philippines/H87/1956; BEI Resources NR-80), and 4 (H241; BEI 

Resources NR-86) were amplified in Vero cells cultured at 37oC in Medium 199 

supplemented with 2% FBS and antibiotics (Invitrogen; 100 units/mL penicillin and 100 

µg/mL streptomycin).  

 

Antibody plasmid construction. The DNA plasmids pDVSF-3 and pDVSF-3-LALA 

encode fully human IgG1 mAbs whose variable regions were derived from the anti-

DENV1-3 human mAb DV87.1 [Genbank accession numbers:  DV87.1 VH KC294015, 

DV87.1 VL KC294016]. The DNA plasmids p319-44wt and p319-44mod1 encode fully 

human IgG1 mAbs whose variable regions were derived from the anti-hisOspA antibody 

319-44. Each transgene consisted of the heavy and light chain genes separated by a 

furin cleavage site coupled with a P2A self-processing sequence. The transgenes were 
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codon and RNA optimized for expression in humans, synthesized by GenScript and 

cloned into modified pVax1 mammalian expression vectors (Invitrogen) under the control 

of the human cytomegalovirus immediate-early promoter.  

 

In vitro transfection. For transfection of DMAb plasmids, 293T cells were plated at 2.5 

x 105 cells/well in flat-bottom 6-well plates. The next day, a transfection mixture, 

consisting of 5 µg of DMAb plasmid incubated with 20 µL of Turbofectin 8.0 transfection 

reagent (OriGene) and 100 µL of DMEM, was then added to the 293T cells. After 2 days 

at 37oC, supernatant was harvested from the cells and the human IgG concentration was 

measured by performing an anti-human IgG ELISA.  

 

Western blots. For protein analysis, human antibodies were purified from supernatants 

of transfected cells with a Protein A antibody purification kit (Montage Antibody 

Purification Kit with PROSEP-A media, Millipore). Purified antibodies were separated in 

precast Bis-Tris gels (Invitrogen) under either reducing or nonreducing conditions. 

Proteins were transferred to Immobilon-FL PVDF transfer membranes (Millipore). 

Membranes were blocked for 1 hour in Odyssey Blocking Buffer (Li-Cor Biosciences), 

incubated with a goat anti-human IgG 680RD antibody (Li-Cor Biosciences), and 

washed. Protein bands were visualized on the Li-Cor Odyssey CLx.  

 

ELISAs.  

 Human IgG quantification ELISA. For quantification of total human IgG, ELISA 

plates were coated with 1 µg/well of goat anti-human IgG-Fc fragment antibody (Bethyl) 

overnight at 4oC. Plates were blocked with 10% FBS in PBS for 1 hour at room 

temperature.  After washing, samples were diluted in 1% FBS in PBS-T, added to the 
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plate, and incubated for 1 hour at room temperature. Plates were washed, and HRP-

conjugated goat anti-human kappa light chain (Bethyl) was added for 1 hour at room 

temperature. Sample was detected with SIGMAFAST OPD (Sigma-Aldrich). A standard 

curve was generated using purified human IgG/Kappa (Bethyl). 

 DENV E protein binding ELISA. For determination of DENV E protein binding, 

ELISA plates were coated with 1 µg/mL of recombinant E protein from DENV1-4 

(Fitzgerald Industries International) overnight at 4oC. Plates were blocked with 10% FBS 

in PBS for 1 hour at room temperature.  After washing, samples were diluted in 1% FBS 

in PBS-T, added to the plate, and incubated for 1 hour at room temperature. Plates were 

washed, and HRP-conjugated goat anti-human IgG-Fc fragment antibody (Bethyl) was 

added for 1 hour at room temperature. Sample was detected with SIGMAFAST OPD 

(Sigma-Aldrich). 

 B. burgdorferi hisOspA binding ELISA. For determination of antibody binding 

to his-tagged OspA protein (hisOspA), ELISA plates were coated with 1 µg/mL of 

recombinant hisOspA protein from B. burgdorferi (courtesy of MassBiologics) overnight 

at 4oC. Plates were blocked with 10% FBS in PBS for 1 hour at room temperature.  After 

washing, samples were diluted in 1% FBS in PBS-T, added to the plate, and incubated 

for 1 hour at room temperature. Plates were washed, and HRP-conjugated goat anti-

human IgG-Fc fragment antibody (Bethyl) was added for 1 hour at room temperature. 

Samples were detected with SIGMAFAST OPD (Sigma-Aldrich). 

 

Flow Cytometry.  

DENV titration assay. FACS infectious units (IU)/mL were quantified by a flow 

cytometry-based viral titration assay. Briefly, Vero cell monolayers were infected with 

serial dilutions of DENV for 24 hours, after which infected cells positive for intracellular 
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expression of the dengue E protein were enumerated by intracellular staining with the 

monoclonal antibody 4G2. 

Intracellular staining of DENV-infected cells. Vero cells were infected with 

DENV1 TH-Sman (ATCC VR-1586), DENV2 New Guinea C (ATCC VR-1584), DENV3 

H87 (BEI Resources) or DENV4 H241 (BEI Resources) at an MOI of 0.01. After 5 days, 

cells were harvested, then were fixed, permeabilized, and washed with Cytofix/Cytoperm 

and Cytoperm/Cytowash (BD Biosciences). Cells were incubated with sample containing 

human anti-DENV antibodies diluted in Cytoperm/Cytowash for 1 hour on ice, washed, 

and then stained with goat anti-human IgG Fc FITC (Abcam) for 1 hour on ice. After 

washing, cells were analyzed on a LSRII (BD Biosciences). 

 DENV neutralization assay. Vero cells were seeded in 100 µL of Medium 199 

supplemented with 5% FBS and 1% PenStrep (Invitrogen) and plated at 5 x 103 

cells/well in flat-bottom 96-well plates. The next day, different dilutions of mAb-containing 

sample were incubated with 200 pfu/well of DENV for 1 hour at 37oC. The neutralization 

mixture was then added to Vero cells. After 3 days, cells were harvested, then were 

fixed, permeabilized, and washed with Cytofix/Cytoperm and Cytoperm/Cytowash (BD 

Biosciences). Cells were stained with 4G2 diluted in Cytoperm/Cytowash for 1 hour on 

ice, washed, and then stained with goat anti-mouse IgG Fc FITC (Abcam) for 1 hour on 

ice. After washing, cells were analyzed on a LSRII (BD Biosciences).  

DENV antibody enhancement assay. To assess antibody-dependent 

enhancement, K562 cells were seeded in Iscove’s Modified Dulbecco’s Medium (IMDM) 

supplemented with 10% FBS at 5 x 103 cells/well in flat-bottom 96-well plates and 

incubated with neutralization mixture formulated as above. After 3 days, cells were fixed, 

permeabilized, and washed as above. Cells were stained with 4G2, washed, and then 
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stained with goat anti-mouse IgG Fc FITC before a final series of washes. Cells were 

then analyzed on a LSRII as above. 

 

Animals. Wild type 129/Sv and C3H/HeNCrl mice were purchased from Charles River 

Laboratories. 129/Sv mice lacking both the IFN-α/β and γ receptors (AG129) were bred 

and housed at the La Jolla Institute for Allergy and Immunology (LIAI) Animal Facility. 

B6.Cg-Foxn1nu/J and C57BL/6 mice were purchased from The Jackson Laboratory. All 

animal housing and experimentation were approved by and conducted in accordance 

with the guidelines set by the NIH and the Perelman School of Medicine at the University 

of Pennsylvania or La Jolla Institute for Allergy and Immunology Institutional Animal 

Care and Use Committees.  

 

DMAb injection strategies.  

DENV DMAb studies. Mice were administered a single 50 µL intramuscular (IM) 

injection of plasmid into the quadriceps followed by in vivo electroporation (EP) using a 

CELLECTRA adaptive constant current electroporation device (Inovio Pharmaceuticals 

Inc.) as previously described (Flingai et al., 2015). Serum samples were collected pre-

injection and at various times after plasmid administration to determine human IgG 

antibody concentration, binding ability, and neutralization capacity.  

Lyme DMAb studies.  Mice were administered 30 µL intramuscular (IM) 

injections of DMAb plasmid into either the quadriceps muscle or the tibialis anterior (TA) 

muscle followed by in vivo electroporation unless stated otherwise. Serum samples were 

collected pre-injection and at various times after plasmid administration to determine 

human IgG antibody concentration and binding ability.  
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Hyaluronidase pre-treatment. For hyaluronidase pre-treatment of mouse muscle, 

bovine hyaluronidase (Sigma-Aldrich) at a concentration of 0.4 U/µL in deionized water 

(dH2O) was injected in a volume of 30 µL into either the TA or quadriceps muscle of 

anesthetized mice 30 minutes prior to DMAb injection and in vivo electroporation.  A 

CELLECTRA adaptive constant current electroporation device (Inovio Pharmaceuticals 

Inc.) was used, as previously described(Flingai et al., 2015). 

 

DENV challenge. All DENV challenge experiments were performed five days after DNA 

administration in AG129 mice. For DENV2 virus-only challenge experiments, 5 to 6 

week-old AG129 mice were infected intravenously (via the tail vein) with 1x109 genome 

equivalents (GE) of DENV2 strain S221 diluted in a total volume of 200 µL PBS with 

10% FCS. For DENV2 enhanced disease challenge experiments, AG129 mice were 

administered 5 µg of the non-neutralizing anti-DENV mAb 2H2 intraperitoneally 30 

minutes prior to infection with an intravenous 1x109 GE dose of DENV2 strain S221. 

 

Statistical analyses. All graphs were prepared using GraphPad Prism 6 (GraphPad 

Software). Survival data were expressed using Kaplan-Meier survival curves. A two-way 

ANOVA test was used to determine differences between multiple groups.
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CHAPTER 3 – Protection against dengue disease by DNA plasmid-mediated antibody 

gene transfer 

 

*The majority of the results described in this chapter have been published in: Flingai S, 

Plummer EM, Patel A, Shresta S, Mendoza JM, Broderick KE, Sardesai NY, Muthumani 

K, Weiner DB. (2015). Protection against dengue disease by synthetic nucleic acid 

antibody prophylaxis/immunotherapy. Sci Rep 5: 12616.  

INTRODUCTION 

 Dengue virus (DENV) is the most important mosquito-borne viral infection in 

humans. In recent years, the number of cases and outbreaks has dramatically increased 

worldwide. While vaccines are being developed, none are currently available that 

provide balanced protection against all DENV serotypes. Advances in human antibody 

isolation have uncovered DENV neutralizing antibodies (nAbs) that are capable of 

preventing infection from multiple serotypes. Yet delivering monoclonal antibodies using 

conventional methods is impractical due to high costs. Engineering novel methods of 

delivering monoclonal antibodies could tip the scale in the fight against DENV. Here we 

demonstrate that simple intramuscular delivery by electroporation of synthetic DNA 

plasmids engineered to express modified human nAbs against multiple DENV serotypes 

confers protection against DENV disease and prevents antibody-dependent 

enhancement (ADE) of disease in mice. This synthetic nucleic acid antibody 

prophylaxis/immunotherapy approach may have important applications in the fight 

against infectious disease.     

 Nearly 400 million dengue infections occur each year (Bhatt et al., 2013), and 

cases of dengue fever (DF) and the potentially fatal dengue hemorrhagic fever/dengue 

shock syndrome (DHF/DSS) have grown in recent decades. The geographical reach of 
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dengue has expanded to include over 100 countries, resulting in a significant health and 

economic burden worldwide (Bhatt et al., 2013; Gubler, 2012). While primary DENV 

infection is thought to elicit persistent and effective immunity against reinfection with the 

same serotype, only short-term protection is elicited against other DENV serotypes 

(Rothman, 2004). Disease severity is associated with subsequent heterotypic infection, 

during which non- or sub-neutralizing levels of cross-reactive antibodies from prior 

infection form immune complexes with DENV that lead to increased infection of Fcγ 

receptor (FcγR)-bearing monocytes and macrophages (Halstead, 1979; Peiris, Gordon, 

Unkeless, & Porterfield, 1981; Peiris & Porterfield, 1979). This phenomenon, known as 

antibody-dependent enhancement (ADE), gives rise to one of the greatest challenges in 

developing a dengue vaccine: eliciting balanced, neutralizing immunity across multiple 

serotypes while minimizing the risk of ADE. A recent live-attenuated, quadrivalent 

vaccine candidate from Sanofi has shown promising protective efficacy against DENV1, 

3, and 4, but underwhelming protection against DENV2 (Capeding et al., 2014; 

Sabchareon et al., 2012; Villar et al., 2014), a serotype frequently associated with severe 

disease from secondary infections (Leitmeyer et al., 1999). Furthermore, whether 

vaccine-induced humoral responses can overcome the threat of ADE in vaccinees over 

time remains to be seen. 

 Passive immunization studies have shown that neutralizing monoclonal or 

polyclonal antibodies can provide cross-serotype protection against DENV infection in 

mice (Beltramello et al., 2010; Kaufman, Summers, Dubois, & Eckels, 1987; Kyle, 

Balsitis, Zhang, Beatty, & Harris, 2008; Lai et al., 2007; Shrestha et al., 2010; Sukupolvi-

Petty et al., 2010) and non-human primates (NHPs) (Lai et al., 2007). Yet monoclonal 

antibody delivery in humans is incredibly expensive, creating cost-prohibitive barriers for 

most regions of the world where such therapy would be needed. Developing new 
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methods for delivering cross-reactive, neutralizing monoclonal antibodies into the 

circulation may provide rapid, complete protection against DENV-associated disease.  

 One such approach involves vector-mediated gene transfer of monoclonal 

antibodies. Several studies have demonstrated the effectiveness of this delivery strategy 

in protecting NHPs against SIV (Johnson et al., 2009), humanized mice against HIV 

(Balazs et al., 2012; Balazs et al., 2014), and mice and ferrets against influenza (Balazs 

et al., 2013; Limberis, Adam, et al., 2013; Limberis, Racine, et al., 2013).  While these 

studies have employed intramuscular or intranasal administration of adeno-associated 

virus (AAV) vectors to produce protective antibodies, our interest in DNA plasmids has 

led us to explore whether such vectors can be used to deliver neutralizing monoclonal 

antibodies into the circulation. DNA plasmids represent an interesting vector model for 

gene transfer: they have an excellent safety profile, and unlike viral vectors, have no 

vector-associated serology, allowing for repeat delivery (Klinman et al., 2000; Kutzler & 

Weiner, 2008; MacGregor et al., 2000). As a proof of concept, we previously constructed 

optimized DNA plasmids capable of expressing Fab fragments of the HIV-1 broadly 

neutralizing antibody VRC01 in mice after intramuscular injection and in vivo 

electroporation (EP), resulting in mouse sera that neutralized multiple strains of HIV-1 

(Muthumani et al., 2013). To date, however, no vector system has been used to deliver 

neutralizing, protective anti-DENV IgG antibodies into any animal model.  

 Here, we describe an approach to delivering cross-reactive neutralizing 

antibodies against DENV into the circulation using DNA plasmid-mediated antibody gene 

transfer. This synthetic DNA-encoded antibody approach (DMAb) produces biologically 

relevant levels of mAbs after a single intramuscular injection of antibody-encoding DNA. 

As this approach allows for genetic tailoring of the exact features of the desired antibody, 

we further studied the role of Fc region modifications on protection.   We demonstrate 
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that intramuscular delivery of a DNA plasmid encoding an anti-DENV human IgG1 nAb, 

with an Fc region mutation that abrogates FcγR binding, protects mice from both virus-

only infection and antibody-enhanced lethal infection.  

 

RESULTS 

DMAb optimization and in vitro characterization.  The expression of human 

IgG antibodies from DNA-based vectors has briefly been explored in the past (Tjelle et 

al., 2004) and resulted in low levels of serum-detectable antibodies in vivo. However, 

subsequent genetic optimizations to DNA plasmids and accompanying delivery systems, 

particularly EP, have resulted in increased expression of desired proteins (Sardesai & 

Weiner, 2011). With this in mind, we systematically optimized DMAb DNA through the 

creation of two- and single-plasmid antibody-encoding DNA cassettes, with the aim of 

increasing human IgG production from DMAb in vivo (Figure 1). The two-plasmid DMAb 

system consisted of two plasmids encoding either the heavy chain or light chain gene 

sequence of a human IgG mAb, each plasmid driven by the CMV promoter. Meanwhile, 

the single plasmid DMAb system is comprised of the heavy and light chain gene 

sequences of a human IgG mAb separated by a furin cleavage site and a P2A self-

processing peptide (Figure 2), cloned into an expression plasmid driven by the CMV 

promoter. For our initial human IgG characterization studies, we assessed two-plasmid 

DMAb delivery in vivo, building upon the foundation laid by our previously published anti-

HIV-1 VRC01 human Fab two-plasmid delivery work (Muthumani et al., 2013). Dosage 

studies of two-plasmid DMAb delivery in C57BL/6 mice showed a dose-dependent 

increase in human IgG concentration in the serum; detectable human IgG levels were 

observed as quickly as two days post-injection in mice receiving 100µg of total DNA 
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(Figure 3). In order to compare two- and single-plasmid DMAb constructs, we moved to 

an in vitro expression system for a more high-throughput comparison of plasmid 

designs. We transfected the two- or single-plasmid DMAb plasmids into human 

embryonic kidney (HEK) 293T cells, and secreted antibody levels in the supernatant 

were quantified after 48 hours by ELISA. We observed a slight increase in human IgG 

production from the single-plasmid condition (Figure 4), which led us to use the single 

plasmid DMAb design for all subsequent experiments.  

We designed and constructed two highly optimized single plasmid DMAbs 

against DENV: pDVSF-3 WT, which encodes for the human IgG1 mAb DV87.1, a well-

characterized mAb capable of neutralizing DENV1-3 (Beltramello et al., 2010); and 

pDVSF-3 LALA, which encodes for an Fc region-modified version of DV87.1 with 

abrogated FcγR binding by way of two leucine-to-alanine (LALA) mutations in the CH2 

region (Hessell et al., 2007) that have been shown to eliminate antibody-dependent 

enhancement14. Each transgene was genetically optimized, synthesized, and subcloned 

into a modified pVax1 mammalian expression vector.  In order to further optimize the 

single plasmid DMAb constructs, we compared different human signal sequences fused 

to the IgG heavy and light chain genes, assessing human IgG expression levels in vitro. 

The use of human IgG or IgE heavy and light chain signal sequences led to comparable 

pDVSF-3 WT expression in vitro, while the human growth hormone (HGH) signal 

sequence showed reduced human IgG expression (Figure 5). Due to these results, the 

human IgG signal sequences were used for all subsequent DMAbs. 

In order to assess whether the LALA mutation had any effect on DMAb 

production, we compared human IgG expression levels between pDVSF-3 WT and 

pDVSF-3 LALA in vitro. Both pDVSF-3 WT and pDVSF-3 LALA resulted in 600 ng/mL of 

human IgG, confirming that the LALA mutation has no effect on antibody expression 
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levels in vitro (Figure 6).  To confirm proper antibody assembly, DVSF-3 WT and DVSF-

3 LALA antibodies were collected from supernatants of transfected HEK293T cells and 

separated by SDS-PAGE gel for Western blot analysis (Figure 7). The heavy and light 

chain proteins were at their expected molecular weights, suggesting proper protein 

cleavage and antibody assembly. 

 To assess the biological activity of the antibodies, we first performed a binding 

ELISA assay that measures whether the antibody-containing supernatant can bind to 

recombinant DENV1-3 E proteins. The supernatants of HEK293T cells that secreted 

either DVSF-3 WT or DVSF-3 LALA antibodies were able to recognize DENV1-3 E 

proteins, while DENV4 went unrecognized, as expected (Figure 8). Additionally, DVSF-3 

WT- and DVSF-3 LALA-containing supernatants were able to stain Vero cells infected 

with DENV1-3, whereas Vero cells infected with DENV4 were not stained by the 

supernatants (Figure 9). To assess the capacity of the LALA mutation to eliminate Fcγ 

receptor binding, we performed a binding ELISA that measured DVSF-3 WT and DVSF-

3 LALA Fc binding to immobilized FcγR1a, a receptor found on macrophages and 

monocytes that has been known to mediate ADE (Kontny, Kurane, & Ennis, 1988). 

DVSF-3 WT antibody secreted from HEK 293T cells were bound by the FcγR1a 

receptor, whereas the DVSF-3 LALA antibody not bound by the receptor (Figure 10). To 

evaluate whether this Fcγ receptor binding difference between the WT and LALA DMAbs 

is manifested in differences in ADE capabilities, we used an ADE in vitro assay in which 

DVSF-3 WT or LALA DMAbs, after incubation with dengue virions, were then incubated 

with human monocytic K562 cells, which contain Fcγ receptors but are only susceptible 

to DENV infection in the presence of enhancing antibodies. Importantly, K562 cells 

exposed to DVSF-3 WT and virus showed substantial DENV infection, whereas cells 
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exposed to DVSF-3 LALA and virus had no such infection in vitro, suggesting that 

DVSF-3 WT is capable of enhancing DENV infection (Figure 11). 

 DMAb results in long-term expression of neutralizing DENV antibodies in 

mouse serum. In order to investigate antibody production kinetics in vivo, we assessed 

the duration of DNA plasmid-encoded human IgG expression in nude mice, which would 

model antibody expression in an immune-accommodating host. For our initial long-term 

in vivo kinetics studies, B6.Cg-Foxn1nu/J mice were injected intramuscularly with 100 µg 

of a DNA plasmid encoding another human IgG1 anti-DENV antibody, DVSF-1 WT 

(derived from DV82.11, a human IgG1 mAb that targets the DII fusion loop of the E 

protein and has been well characterized for its ability to neutralize DENV1-4 (Beltramello 

et al., 2010)), followed immediately by EP. Human IgG concentrations in the serum were 

detectable within 5 days of injection, with peak levels of ~1000ng/mL at two weeks post-

injection (Figure 12). Duration of human IgG expression lasted at least 19 weeks, 

showcasing the sustained expression levels attainable with DNA plasmids. Given that 

the mouse DENV challenge model uses mice from the 129/Sv background, we sought to 

determine whether the antibody-encoding DNA plasmid constructs could produce 

serum-detectable levels of DVSF-3 WT or LALA in this background strain. Upon 

comparing DVSF-3 LALA expression levels in various immune competent and 

immunodeficient mouse strains, we found that 129/Sv DMAb expression of DVSF-3 

LALA was comparable to expression in B6.Cg-Foxn1nu/J immunodeficient mice at Day 

7 post-injection (Figure 13). Interestingly, there was variability across different immune 

competent and immunodeficient mouse strains, suggesting that DMAb expression levels 

are not simply a function of the DMAb plasmid itself, nor a function of immune 

competence vs. immunodeficiency. As we observed in vitro, serum from 129/Sv mice 

receiving either pDVSF-3 WT or pDVSF-3 LALA showed comparable human IgG levels 
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(Figure 14) and stained Vero cells infected with DENV1-3 (Figure 15). Additionally, 

whereas naïve sera were unable to neutralize virus in a neutralization assay, both WT 

and LALA-containing serum were capable of neutralizing DENV1-3 (Figure 16). 

 Dengue DMAb delivery of DVSF-3 LALA protects against enhanced dengue 

disease in mice. To assess whether mice expressing DNA plasmid-encoded anti-DENV 

neutralizing mAbs would be protected from DENV challenge, we employed the AG129 

mouse model, which lacks type I and type II interferon (IFN) receptors and, upon DENV 

infection, recapitulates many aspects of human disease (Shresta, Sharar, Prigozhin, 

Beatty, & Harris, 2006; Zellweger, Prestwood, & Shresta, 2010). Importantly, these mice 

have been shown to exhibit ADE, with low doses of serotype-specific as well as cross-

reactive antibodies both enhancing infection (Zellweger et al., 2010). For these studies, 

mice were infected with the mouse-adapted DENV2 strain S221, which, in the presence 

of sub-neutralizing amounts of the anti-DENV mAb 2H2, causes antibody-enhanced 

severe disease and acute lethality (4-6 days post-infection) in AG129 mice at sublethal 

doses (Zellweger et al., 2010).  

 For challenge studies, AG129 mice were given a single intramuscular injection of 

pDVSF-3 WT or pDVSF-3 LALA followed immediately by EP. Negative controls received 

a single intramuscular injection of pVax1 empty vector followed by EP. Five days later, 

the mice were challenged with a sub-lethal dose (1x109 GE) of DENV2 S221 in the 

presence (ADE) or absence (virus-only infection) of exogenous anti-DENV mAb 2H2. 

Mice in the pDVSF-3 WT, pDVSF-3 LALA, and pVax1 cohorts had mean human IgG 

concentrations of 750 ng/mL, 1139 ng/mL, and undetectable levels, respectively, one 

day before challenge (Figure 17; p ≤ 0.0930 for comparison between pDVSF-3 WT and 

pDVSF-3 LALA). Under virus-only infection conditions, we expect pDVSF-3 WT-treated 

mice to experience ADE and acute lethality, as immune complexes formed by DVSF-3 
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WT antibodies with DENV should lead to increased infection (Beltramello et al., 2010). 

Our in vitro antibody enhancement assay results (Figures 10 and 11), which showed that 

DVSF-3 WT enhances DENV infection of monocytic cells, suggests that DVSF-3 WT 

has the potential to cause ADE in vivo. Conversely, we expect pVax1- and pDVSF-3 

LALA-treated mice to survive, being unable to enhance disease. Indeed, five of six 

pDVSF-3 LALA-treated mice and all five pVax1 mice showed no lethal disease 

enhancement; all pDVSF-3 WT-treated mice succumbed to disease by day 5 (Figure 18; 

p ≤ 0.0084 for comparison between pDVSF-3 LALA and pDVSF-3 WT), demonstrating 

the non-enhancing functionality of pDVSF-3 LALA against virus-only infection. Under 

ADE conditions, we expect both pDVSF-3 WT- and pVax1-treated mice to experience 

acute lethality due to enhanced infection, whereas pDVSF-3 LALA-treated mice should 

be protected from severe disease. All five mice receiving pDVSF-3 LALA survived under 

ADE conditions, while those receiving either pDVSF-3 WT or pVax1 empty vector 

succumbed to acute, antibody-enhanced disease within 4-5 days (Figure 19; p ≤ 0.0072 

for comparison between pDVSF-3 LALA and pDVSF-3 WT). Taken together, these data 

show that injection of pDVSF-3 LALA does not cause lethal enhancement after virus-

only infection and protects against severe disease in ADE conditions, supporting the 

concept of muscle correctly processing and expressing functional antibodies from this 

platform.  

 DMAb delivery of multiple antibodies increases human IgG concentration 

and breadth of viral coverage in mice. Given that DENV serotypes have been shown 

to escape neutralization (Sukupolvi-Petty et al., 2010), it is likely that an antibody cocktail 

targeting multiple epitopes on the DENV virion would produce an ideal prophylactic 

strategy. DNA plasmids have been shown in numerous experiments to be delivered in 

multi-plasmid formulations (Moore, Kong, Chakrabarti, & Nabel, 2002; Villarreal et al., 
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2014), suggesting that delivery of multiple antibody-encoding plasmids is feasible. To 

test this concept, we injected 129/Sv mice with multiple anti-DENV DMAbs in a multi-site 

injection regimen (Figure 20). Mice received a 100 µg intramuscular injection of pDVSF-

1 LALA, pDVSF-2 LALA (derived from DV22.3, a human IgG1 mAb that targets DI/DII of 

the E protein and has been well characterized for its ability to neutralize DENV4 

(Beltramello et al., 2010)), pDVSF-3 LALA, or some combination thereof. To prevent 

antibody heavy and light chain recombination events, each DMAb was injected in a 

different leg muscle – either the quadriceps or the TA muscle of the left or right leg. 

Whereas mice injected with pDVSF-3 LALA were only capable of seroconverting against 

DENV1-3, mice injected with both pDVSF-2 LALA and pDVSF-3 LALA at different sites 

were able to seroconvert to all four serotypes, and mice injected with all three antibodies 

had even greater binding against all four serotypes (Figures 21 and 22). These data 

suggest that delivery of DMAbs can ultimately increase breadth of protection against 

infectious diseases. 

 

DISCUSSION 

The rising global health burden of dengue has created an enhanced urgency to 

develop a safe, inexpensive, and effective DENV vaccine that prevents both initial 

infection and ADE-induced severe disease. Here, a single intramuscular injection of a 

DNA plasmid encoding a modified human anti-DENV1-3 neutralizing antibody was 

capable of protecting mice against antibody-enhanced DENV disease without enhancing 

virus-only infection. The ability of DNA plasmids to encode protective Fc region-modified 

LALA antibodies is significant due to the inability of our immune system to produce ADE-

preventing antibody variants upon DENV vaccination or natural infection. Since current 

vaccine candidates generate traditional antibodies, the potential of vaccines to 
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inadvertently promote ADE, especially as vaccine protection wanes, is a serious 

concern. Delivering Fc region-modified LALA antibodies by DMAb that protect against 

both dengue fever and ADE-induced severe disease could be a unique alternative or 

addition to traditional vaccine approaches.  

 The protection conferred by neutralizing anti-DENV mAbs expressed by DMAb is 

very rapid, with complete survival in mice challenged less than a week after pDVSF-3 

LALA administration – significantly more rapidly than vaccine-driven protection, which 

can take weeks to months to reach peak efficacy levels. The rapid induction of immunity 

may be advantageous to travelers, as well as the elderly or other populations who 

respond poorly to vaccines.  Travelers to endemic regions frequently receive a number 

of intramuscular vaccinations prior to travel; as such, we could envision this approach 

being included alongside normal travel immunization regimens.  

 We demonstrated that plasmid-encoded DVSF-3 LALA serum levels of 1 µg/mL 

were protective against lethal enhanced dengue disease in mice. Previous work from 

Beltramello and colleagues showed that i.p. delivery of 1 to 5 µg of purified DV87.1 

antibody 24 hours prior to DENV challenge was able to protect mice from lethal 

disease14; the protective levels observed in their study support our results here. 

Importantly, we demonstrated the delivery of multiple DENV DMAb plasmids in mice, 

which increased human IgG levels as well as the amount of serotypes targeted. This 

novel strategy could be used to increase the breadth of protective coverage against not 

just DENV, but also other infectious diseases. Furthermore, as monoclonal antibodies 

have proven to be efficacious against specific cancers or autoimmune disorders, 

employing DMAb to deliver monoclonal antibodies could be beneficial in such 

therapeutic antibody treatments and allow many such therapies to reach underserved 
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populations. In summary, DMAb provides a rapid, novel delivery system for biologically 

relevant functional full-length monoclonal antibodies in vivo. 
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Figure 1. Schematic of two-plasmid and single-plasmid antibody-encoding DNA 
cassettes for human IgG expression.  
The two-plasmid system (left) consists of two plasmids encoding the heavy or light chain 
gene sequence of a human IgG monoclonal antibody, while the single-plasmid system 
(right) expresses the heavy and light chain genes from a single open reading frame by 
separating the two genes with a furin cleavage site and P2A self-processing peptide. 
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Figure 2. Protein cleavage mechanisms used for single-plasmid DMAb design.  
The 2A peptide sequence provides the initial location for protein cleavage, occurring co-
translationally via a “ribosomal skip” mechanism. The preceding furin cleavage site 
provides not only a backup cleavage event further down the secretion pathway (in the 
trans-golgi network), but also allows for the complete removal of the residual 2A peptide 
from the upstream protein product. 
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Figure 3. Development and optimization of two-plasmid DMAb.  
(A) Schematic illustration of initial two-plasmid DMAb delivery system; human IgG 
antibody heavy and light chain sequences were expressed on separate plasmids co-
delivered either in vitro or in vivo in a single formulation. (B) Dosage study for two-
plasmid DMAb delivery of human IgG in C57B/6 mice measured by ELISA; DNA 
amounts indicate total DNA injected intramuscularly followed by EP (100 µg = 50 µg IgG 
heavy chain DNA + 50 µg IgG light chain DNA; n = 3 mice per group).  
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Figure 4. Comparison of two-plasmid and single-plasmid DMAb constructs in 
vitro.  
(A) Schematic illustration of single plasmid DMAb delivery system; antibody heavy and 
light chain sequences are separated by a combination of furin and 2A cleavage sites. (B) 
Comparison of human IgG levels in vitro by ELISA from two-plasmid DMAb or single 
plasmid DMAb (samples run in duplicate; data representative of two independent 
experiments). N.D., not detectable. 
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Figure 5. Comparison of human leader sequences on DMAb expression in vitro.  
The human IgG1 (hIgG), human IgE (hIgE), and human growth hormone (HGH) leader 
sequences were inserted into single plasmid DMAb constructs, and their effect on 
human IgG expression was assessed by human IgG quantification ELISA (samples run 
in duplicate; data representative of three independent experiments). N.D., not 
detectable. 
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Figure 6. LALA mutation has no detrimental effect on human IgG expression 
levels in vitro.  
ELISA quantification analysis of human IgG in supernatants of pDVSF-3 WT- or LALA-
transfected 293T cells. The data displayed are the mean of triplicate values +/- standard 
error of the mean (SEM) and are representative of three independent experiments.  
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Figure 7. Single-plasmid DMAb construct produces human IgG heavy and light 
chains.  
Western blot analysis of pDVSF-3 WT-transfected 293T supernatants containing DVSF-
3 WT. Antibodies were purified by Protein A spin columns and separated by SDS-PAGE 
under reducing (left) and non-reducing (right) conditions.  
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Figure 8. Supernatants from pDVSF-3 WT and LALA transfectants show 
comparable E protein binding.  
ELISA binding analysis of human IgG in supernatants of pDVSF-3 WT- or LALA-
transfected 293T cells against purified recombinant DENV E proteins (samples run in 
duplicate; data representative of two independent experiments).  
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Figure 9. Supernatants from pDVSF-3 WT and LALA transfectants bind to DENV1-
3 E protein in virally-infected Vero cells.  
Vero cells were either uninfected (Mock) or infected by DENV1, 2, 3, or 4, then fixed, 
permeabilized, and stained with supernatants of pDVSF-3 WT- or LALA-transfected 
293T cells. The data displayed are representative of two independent experiments.  

 

 

 



38 

 
 

Figure 10. LALA mutation eliminates antibody binding to FcγRIa.  
ELISA binding analysis of supernatants of pDVSF-3 WT- or LALA-transfected 293T cells 
against immobilized FcγR1a, a receptor found on macrophages and monocytes that has 
been known to mediate ADE. The data displayed are representative of two independent 
experiments.  
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Figure 11. Supernatants from pDVSF-3 LALA do not enhance DENV infection in 
vitro.  
Antibody-dependent enhancement was assessed by incubating DENV1, 2, 3, or 4 with 
serial dilutions of supernatants of pDVSF-3 WT- or LALA-transfected 293T cells before 
addition to K562 cells. The percentage of infected cells is shown (samples run in 
duplicate; data representative of two independent experiments).  
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Figure 12. Human IgG concentration in immunodeficient mouse serum after single 
DMAb injection.  
Total serum-detectable levels of human IgG were measured by ELISA after a single 
intramuscular injection of 100 µg DNA plasmid encoding the anti-DENV human IgG 
antibody DVSF-1 into B6.Cg-Foxn1nu/J immunodeficient mice. Human IgG levels 
between weeks 0-4 (left) and at week 19 (right; error bars display the mean of values 
from five animals +/- SEM). Each line (left) or dot (right) represents an individual mouse 
(n = 5 mice).  
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Figure 13. DVSF-3 LALA DMAb expression differs across various immune 
competent and immunodeficient mouse models.  
Total serum-detectable levels of human IgG were measured by ELISA after a single 
intramuscular injection of 100 µg DNA plasmid encoding DVSF-3 LALA into immune 
competent (C57B/6J, Balb/c, 129/Sv) and immunodeficient (B6.Cg-Foxn1nu/J, 
B6.129S7-Rag1tm1Mom/J) mice (n = 5 mice per group, data displayed are the mean +/- 
SEM of each group’s animals and are representative of two independent experiments).  
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Figure 14. DVSF-3 WT and LALA DMAbs show comparable human IgG 
concentration levels in mouse serum after intramuscular injection.  
Total human IgG in serum was measured by ELISA after intramuscular injection of 
pDVSF-3 WT or pDVSF-3 LALA plasmids in 129/Sv mice (n = 4-5 mice per group, data 
displayed are the mean +/- SEM of each group’s animals and are representative of two 
independent experiments).  
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Figure 15. Mice receiving pDVSF-3 WT or pDVSF-3 LALA seroconvert within one 
week post-DMAb injection.  
Vero cells were either uninfected (Mock) or infected by DENV1, 2, 3, or 4, then fixed, 
permeabilized, and stained with 129/Sv mouse serum taken at days 0 or 7 post-DNA 
injection of pDVSF-3 WT or pDVSF-3 LALA (n = 5 mice per group, data representative 
of two independent experiments).  
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Figure 16. Mice receiving pDVSF-3 WT or pDVSF-3 LALA show comparable serum 
DENV neutralization capacity upon seroconversion.  
Neutralization was assessed by incubating DENV1, 2, 3, or 4 with serial dilutions of 
129/Sv mouse serum taken at day 7 post-DNA injection of either pDVSF-3 WT or 
pDVSF-3 LALA (n = 5 mice per group) before addition to Vero cells. The percentage of 
infected cells is shown; error bars are the mean +/- SEM of each group’s animals).  
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Figure 17. Pre-challenge levels of anti-DENV human IgG levels in AG129 mice after 
DMAb delivery.  
Total human IgG in serum was measured by ELISA 4 days after DNA intramuscular 
injection (one day before DENV2 challenge) and EP of pDVSF-3 WT, pDVSF-3 LALA, or 
pVax empty vector plasmids in AG129 mice (n = 10-11 mice per group: p ≤ 0.0005 for 
comparison between pDVSF-3 WT and pVax; p ≤ 0.0001 for comparison between 
pDVSF-3 LALA and pVax). N.D., not detectable. 
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Figure 18. Mice receiving pDVSF-3 LALA show protection against DENV2 virus-
only challenge.  
AG129 mice received an intramuscular injection of either pDVSF-3 WT, pDVSF-3 LALA, 
or pVax empty vector five days prior to challenge with a sublethal dose of DENV2 S221 
(n = 5-6 mice per group; p ≤ 0.0084 for comparison between pDVSF-3 LALA and 
pDVSF-3 WT). A Kaplan-Meier survival curve is shown.  
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Figure 19. Mice receiving pDVSF-3 LALA are fully protected from antibody-
dependent enhancement DENV2 challenge.  
AG129 mice received an intramuscular injection of pDVSF-3 WT, pDVSF-3 LALA, or 
pVax empty vector five days prior to administration of an enhancing dose of the non-
neutralizing anti-DENV mAb 2H2. Thirty minutes later, mice were challenged with a 
sublethal dose of DENV2 S221 (n = 5-6 mice per group; p ≤ 0.0072 for comparison 
between pDVSF-3 LALA and pDVSF-3 WT). A Kaplan-Meier survival curve is shown.  
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Figure 20. Delivery of multiple DMAbs.  
129/Sv mice received a 100 µg intramuscular injection of pDVSF-1 LALA, pDVSF-2 
LALA, pDVSF-3 LALA, or some combination thereof in either the quadriceps or tibialis 
anterior muscles. To prevent potential antibody recombinations between various heavy 
and light chains, each muscle site was injected with one DMAb. 
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Figure 21. Multi-site DMAb injections of different anti-DENV DMAbs results in 
elevated human IgG concentrations in mouse serum.  
Total human IgG of DVSF-1 LALA, DVSF-2 LALA, DVSF-3 LALA, DVSF-2 LALA and 
pDVSF-3 LALA, or DVSF-1 LALA, DVSF-2 LALA, and DVSF-3 LALA in serum was 
measured by ELISA 7 days after DNA intramuscular injection and EP of 100 µg of 
respective plasmids in 129/Sv mice (n = 4 mice per group; error bars represent standard 
error of the mean).  

 

 

 

 

 

 

 



50 

 

Figure 22. Mice receiving multiple anti-DENV DMAbs seroconvert and display 
increased breadth of DENV binding.  
Bar graph representing the breadth of 129/Sv mouse serum staining of Vero cells 
infected with DENV1, 2, 3, or 4 after injection of single (pDVSF-1 LALA, pDVSF-2 LALA, 
or pDVSF-3 LALA) or multiple (pDVSF-2 LALA + pDVSF-3 LALA, or pDVSF-1 LALA + 
pDVSF-2 LALA + pDVSF-3 LALA) plasmids (n = 4 mice per group; data representative 
of all mice from each respective group).  

 

 

 

 

 

 

 

 

 

 

 

 



51 

CHAPTER 4 – Optimization of DMAb delivery though targeted antibody framework 
modifications and hyaluronidase pre-treatment 

 

 

INTRODUCTION 

 Lyme disease, a tick-borne zoonotic illness caused by the spirochete Borrelia 

burgdorferi sensu lato (henceforth referred to as B. burgdorferi), is a major public health 

concern across the Northern Hemisphere. The disease is the most common reportable 

vector-borne illness in the United States, with nearly 30,000 confirmed cases in 2013 

(Adams et al., 2013), and recent evidence suggests that the number of cases in Canada 

and Europe is on the rise (Fulop & Poggensee, 2008; Koffi et al., 2012). Furthermore, 

the geographic reach of B. burgdorferi is expanding, as spirochetes have been identified 

more recently in Asia and Australia (Mayne, 2011; Stanek & Reiter, 2011). 

 B. burgdorferi is transmitted to humans, domestic animals, and wildlife hosts by 

Ixodes ticks in the larval and nymphal stages (Anderson, 1988; Kurtenbach et al., 2006; 

LoGiudice, Ostfeld, Schmidt, & Keesing, 2003).  Throughout the three-stage life cycle of 

the tick — larva, nymph, and adult — B. burgdorferi undergoes differential expression of 

various outer surface lipoproteins (Osps), each with varying levels of homology across 

B. burgdorferi isolates. OspA, expressed by spirochetes in the tick midgut, is highly 

conserved in North American strains of the spirochete (Probert, Crawford, Cadiz, & 

LeFebvre, 1997), and it is quite immunogenic, eliciting immune responses in numerous 

Lyme disease animal models (de Silva, Telford, Brunet, Barthold, & Fikrig, 1996; Fikrig, 

Barthold, Kantor, & Flavell, 1990, 1992; Probert et al., 1997). Indeed, an OspA vaccine 

had an efficacy of 79% in phase III human clinical trials, leading to an FDA-approved 

Lyme disease vaccine available from 1998 until 2002 (Abbott, 2006). Currently, there is 

no available Lyme disease vaccine for humans (Embers & Narasimhan, 2013).  
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 It has been well established that antibodies are critical mediators in protection 

against Lyme disease (Fikrig, Barthold, Chen, Chang, & Flavell, 1997; McKisic & 

Barthold, 2000). Passive immunization with serum from acutely infected mice (Barthold, 

Feng, Bockenstedt, Fikrig, & Feen, 1997) or chronically infected humans (Fikrig et al., 

1994) has been shown to provide protection in mice against tick-mediated Lyme 

challenge. Interestingly, OspA antibodies elicited by immunization with an OspA vaccine 

prevent B. burgdorferi infection by binding to and killing OspA-expressing spirochetes 

directly in the tick midgut, preventing migration of the bacteria to the salivary glands 

before transmission to the host can occur (de Silva et al., 1996; Fikrig, Telford, et al., 

1992; Nowling & Philipp, 1999).  

DNA monoclonal antibody (DMAb) delivery provides an alternative to vaccination 

or passive antibody therapy for generating rapid, antibody-based immunity against 

infectious diseases. DMAbs are highly optimized DNA plasmids capable of delivering 

genes encoding well-characterized monoclonal antibodies (mAbs) to hosts.  We have 

previously described DMAb delivery in the context of HIV, generating Fab fragments of 

the human broadly neutralizing antibody VRC01 in mice after intramuscular injection of 

DMAb plasmids and in vivo electroporation (EP) (Muthumani et al., 2013). More recently, 

DMAb delivery in mice generated long-lived full-length human IgG neutralizing 

antibodies against Dengue virus that completely protected mice from virus-only and 

lethal antibody-dependent enhancement Dengue challenge (Flingai et al., 2015).  

However, higher DMAb expression levels may be necessary for prophylactic or 

therapeutic benefits for a number of indications. As such, we investigated optimizations 

that may increase DMAb-mediated antibody concentrations in vivo. Previous studies 

have shown that improving antibody stability through targeted framework mutations and 

grafts can increase in vitro antibody production levels without perturbing antibody 
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functionality (Ewert, Honegger, & Pluckthun, 2003, 2004; Honegger, Malebranche, 

Rothlisberger, & Pluckthun, 2009; Jung & Pluckthun, 1997; Knappik et al., 2000).  Use of 

these optimizations in vector-mediated antibody gene transfer systems has been limited, 

with one study showing that minor mutations to the light chain of an influenza antibody 

delivered with AAV could improve expression levels in vivo (Balazs et al., 2013). 

Additionally, several studies have shown that the use of the enzyme hyaluronidase 

before DNA plasmid injection significantly increased gene delivery to skeletal muscle 

cells (Long et al., 2005; McMahon, Signori, Wells, Fazio, & Wells, 2001; Mennuni et al., 

2002; Molnar et al., 2004).  We sought to explore the use of these approaches, as well 

as altering DMAb dosing, in an effort to increase DMAb expression levels in vivo.  

Here, we assess the ability of targeted framework modifications, hyaluronidase 

pre-treatment of mouse muscle, and increased DMAb dosing to increase the in vivo 

production of human anti-Lyme IgG antibodies. We show that these optimizations, when 

used together, can increase DMAb expression levels in vivo between 2.4 to 6.4-fold 

without diminishing antibody functionality and that these improvements are long lasting 

in immunodeficient mice.   

 

RESULTS 

Characterization of anti-Lyme DMAbs. In collaboration with the non-profit 

organization MassBiologics, we obtained the gene sequences of four anti-Lyme human 

IgG antibodies with varying breadths of Borrelia neutralization capabilities, OspA 

affinities, and protective efficacies in mice (Table 1). We developed DMAb vectors 

expressing 319-44, 221-7, 212-55, and 857-2 by inserting the heavy and light chains of 

the human IgGs into our previously described DMAb expression construct (Flingai et al., 

2015). We transfected human embryonic kidney (HEK) 293T cells with the four DMAb 
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vectors or an empty pVax vector vehicle, collected the supernatant 48 hours later, and 

compared human IgG expression levels in vitro. The plasmid p319-44 showed the 

highest secreted human IgG production levels of all four anti-Lyme DMAbs, with the 

most potent IgG, 221-7, expressing the lowest concentration of human IgG after 

transfection (Figure 23). Importantly, supernatant from all four DMAb transfections 

displayed binding to immobilized his-tagged OspA (hisOspA) protein.  

 In order to determine anti-Lyme DMAb expression levels in a relevant mouse 

model, C3H/HeNCrl mice were injected in the quadriceps muscle with 100 µg of p319-

44, p221-7, p212-55, p857-2, or empty pVax vector vehicle.  Within 48 hours, mice given 

p319-44 seroconverted to hisOspA, and by 1 week post-injection, 319-44 and 857-3 IgG 

levels reached 400-500 ng/mL. Serum concentrations of 212-55 and 221-7 were 

drastically lower at day 7, only reaching 50-150 ng/mL in mice (Figure 24). Nonetheless, 

all mice receiving anti-Lyme DMAbs seroconverted by day 7, illustrating the rapid 

expression kinetics of DMAb delivery in vivo.  

Framework optimization of 319-44 DMAb. Given the modest expression levels 

of some anti-Lyme DMAbs, we investigated methods to increase DMAb expression in 

vivo. We focused on optimizing p319-44, as this DMAb expressed a fairly potent mAb 

that showed promising expression levels in mice. To improve p319-44 DMAb 

expression, we further optimized both the light chain and heavy chain variable region 

sequences with a targeted approach that focused on increasing antibody stability 

through significant framework region modifications (Figure 25), a process that has been 

shown to improve antibody production in both in vitro (Ewert et al., 2003, 2004; 

Honegger et al., 2009; Jung & Pluckthun, 1997; Knappik et al., 2000) and in vivo (Balazs 

et al., 2013) settings. First, we identified a high-expressing DMAb to act as an acceptor 

framework for grafting. This acceptor DMAb, which has been shown to express >5 
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µg/mL of human IgG in immunodeficient mice after a single dose of 100 µg DNA (data 

not shown), is comprised of heavy and light chains from the highly stable germline 

families hVH3 and hVκ1, respectively. To create the optimized 319-44, we grafted the 

three CDRs and an additional 22 crucial heavy and light chain framework residues of 

319-44 onto the high-expressing DMAb genes. 

After confirming that these modifications did not alter the capacity of 319-44mod1 

DMAb production of human IgG antibodies in vitro (Figure 26), we assessed whether the 

optimizations would increase the production levels of 319-44 by comparing human IgG 

concentration levels in 293T cell supernatants following transfection of cells with the wild 

type (319-44wt) or optimized (319-44mod1) DMAb constructs (Figure 27). 319-44wt and 

319-44mod1 showed comparable binding to purified hisOspA protein, yet 319-44mod1 

production levels were over two-fold higher than the wild-type DMAb. To ensure that the 

optimizations of 319-44mod1 did not abrogate borreliacidal capacity, we compared the 

two DMAbs in an in vitro borreliacidal assay against B. burgdorferi. 319-44mod1 showed 

a 11-fold increase in potency (measured as EC50) compared to 319-44wt (Figure 28). 

Thus, we were able to increase DMAb expression levels and maintain wild-type 

functional activity through systematic engineering of framework optimizations.  

Systemic expression of 319-44 DMAbs in mice. We have demonstrated 

recently that a single intramuscular administration of a DMAb encoding an anti-dengue 

virus neutralizing mAb resulted in serum levels of slightly over 1 µg/mL of mAb in mice 

(Flingai et al., 2015). Here, we sought to determine whether increasing DMAb dosing 

and distributing this dosage across multiple muscles could lead to greater human IgG 

expression levels in vivo. To assess 319-44 DMAb expression levels in mice, we 

injected various doses of either 319-44wt or 319-44mod1 DMAbs into the tibialis anterior 

(TA) or quadriceps muscles of C3H/HeNCrl mice, followed by EP. Administration of 100 
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µg, 200 µg, or 300 µg of 319-44wt DMAb resulted in a dose-dependent increase in 

antibody concentrations in serum, as mice receiving the highest dose of 319-44wt 

showed an average serum concentration levels of 1.2 µg/mL one week post-

administration (Figure 29). The same dose of 319-44mod1 showed an even greater 

serum antibody concentration of 1.4 µg/mL one week post-administration, illustrating the 

positive effect of the amino acid optimizations on antibody concentration in vivo, albeit to 

a less drastic effect than seen in vitro. Using an anti-hisOspA binding ELISA, we 

demonstrated that the optimized antibodies, when expressed from muscle cells in vivo, 

show a slight dip in antigen binding compared to 319-44wt, but ultimately retain antigen 

binding to recombinant hisOspA protein (Figure 29).  

Pre-treatment with hyaluronidase significantly increases 319-44 DMAb 

expression in vivo. Previous studies have demonstrated the positive effect of 

hyaluronidase on gene transfer in skeletal muscle (Long et al., 2005; McMahon et al., 

2001; Mennuni et al., 2002; Molnar et al., 2004). To investigate whether DMAb 

production would be improved by pre-treatment of muscle cells with hyaluronidase, we 

injected C3H mice in the TA muscle, the quadriceps muscle, or both, with 0.4 U/µL of 

bovine hyaluronidase in a 30 µL volume 30 minutes prior to EP-mediated DMAb 

delivery. At 7 days post-injection, we measured human IgG concentration levels in 

mouse sera by anti-human IgG ELISA. Mice receiving 319-44wt DMAb without EP 

showed undetectable human IgG serum levels, regardless of whether the muscles were 

pre-treated with hyaluronidase (data not shown). However, mice that received EP-

mediated DMAb delivery with hyaluronidase pre-treatment saw human IgG 

concentration levels increase by between 2.4 to 6.4-fold above animals that received 

EP-mediated DMAb delivery only (Figure 30). After a 300 µg dose of EP-mediated 

DMAb delivery with hyaluronidase pre-treatment in mice, the average human IgG serum 
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concentration of 319-44wt IgG peaked at 5.7 µg/mL, while 319-44mod1 IgG peaked at 

an average of 6.7 µg/mL.  

 To assess the effect of hyaluronidase pre-treatment on long-term DMAb 

expression kinetics, immunodeficient Foxn1nu/J mice received 300 µg of 319-44mod1 

DMAb delivered with EP with or without hyaluronidase pre-treatment. Not only did 

hyaluronidase pre-treatment lead to increased 319-44mod1 expression levels by day 7 

post-injection, but the increase in serum human IgG concentration was sustained over 

the course of 4 weeks, peaking at 5 µg/mL 14 days after DMAb administration (Figure 

31).  

 

DISCUSSION 

 There are many advantages to the use of DNA plasmid as a tool for antibody 

gene transfer. The simplicity of use, the lack of anti-vector immunity, the excellent safety 

profile, and the relatively inexpensive production costs compared to viral vectors make 

DNA plasmid-mediated antibody gene transfer an attractive alternative to viral vector 

approaches. However, one disadvantage is the relatively low mAb expression levels 

from DMAb delivery compared to AAV- or Ad-mediated antibody gene transfer. In this 

study, we explored three strategies to improve DMAb delivery in vivo: 1) antibody 

framework modifications to increase mAb stability; 2) DMAb dosing; and 3) pre-

treatment of muscle cells with the enzyme hyaluronidase. While many of these 

strategies have been employed in other DNA delivery or mAb production contexts, there 

are still many questions to be answered regarding their use in DNA plasmid-mediated 

antibody gene transfer.  

 Antibody framework modifications led to substantial increases in human IgG 

production in vitro, with only moderate increases observed in vivo. This may be 



58 

explained by the fact that these stabilizing modifications have been extensively 

investigated in the context of in vitro antibody production and not in in vivo environments 

inside the host’s muscle cells. Perhaps this in vivo mAb production environment 

dampens the positive effects seen in vitro; it would be advantageous to determine which 

framework modifications are responsible for mAb stability in vivo, and how these 

stabilizing modifications affect DMAb-generated human IgG concentration levels in 

serum.  Further studies are needed in order to determine whether such modifications 

should be a major aspect of DMAb optimization strategies going forward. Importantly, if 

framework modifications are made, both antigen binding and functionality should be 

evaluated. In this particular study, the protective efficacy of 319-44wt and 319-44mod1 

should be compared in a tick-mediated B. burgdorferi challenge model in mice.  

 While DMAb dosing had a clearly positive effect on human IgG concentration 

levels in mouse serum, intramuscular hyaluronidase pre-treatment amplified the effect to 

a drastic degree. Indeed, mice receiving 300 µg of 319-44mod1 without hyaluronidase 

had human IgG concentration levels less than mice receiving 100 µg of 319-44wt with 

hyaluronidase. These results suggest that hyaluronidase could act as a dose-sparing 

agent, which has the additive effect of minimizing the number of DMAb injection sites. 

Alternatively, hyaluronidase pre-treatment boosted human IgG concentrations to nearly 

10 µg/mL in the mice also receiving the 300 µg dose of 319-44mod1, showing the 

combinatorial effect all three optimization strategies can have on DMAb expression in 

vivo. Optimal hyaluronidase pre-treatment time intervals and dosing should be explored 

in future studies. Taken together, this work shows a number of ways DMAb delivery can 

be enhanced for increase in vivo human IgG expression. 
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Table 1. Characterization of anti-Lyme purified antibodies used in study.  



60 

 

Figure 23. Comparison of various anti-B. burgdorferi DMAbs in vitro.  
ELISA human IgG quantification (A) and immobilized hisOspA protein binding (B) 
analysis of human IgG in supernatants of HEK 293T cells transfected with either p212-
55, p857-3, p319-44wt, p221-7, or pVax empty plasmids. The data displayed are the 
mean of duplicate values +/- standard error of the mean (SEM) and are representative of 
two independent experiments.   
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Figure 24. Expression of various anti-B. burgdorferi DMAbs in vivo.  
Total human IgG in serum (A) or binding to immobilized hisOspA protein (B) was 
measured by ELISA after intramuscular injection of p319-44wt, p857-3, p212-55, p221-
7, or pVax empty plasmids in C3H/HeNCrl mice (n = 5 mice per group, data displayed 
are the mean +/- SEM of each group’s animals and are representative of two 
independent experiments).  
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Figure 25. Design of 319-44mod1 through antibody framework optimization of 319-
44wt.  
Amino acid alignment of 319-44wt (319-44 wild type), 319-44mod1, and the human germ 
line sequences (Vκ1 for light chain, VH3 for heavy chain) on which 319-44mod1 
optimizations are based.  319-44mod1 amino acid residues identical to only 319-44wt 
sequences (green) or the human germ line sequence (red) are shown. Amino acids 
identical across all three sequences are indicated by periods. The complementarity-
determining regions (CDRs) of 319-44wt and 319-44mod1 are identical; the CDR3 
region of 319-44wt and 319-44mod 1 are shown in the human germ line CDR3 region 
above due to the uncertainty of the original human germ line CDR3 sequences. 
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Figure 26. Design and production of 319-44mod1 DMAb.  
(A) Plasmid design for single-plasmid 319-44mod1 DMAb. F, furin cleavage site; 2A, 
P2A peptide cleavage site; pA, polyadenylation sequence. (B) Western blot analysis of 
p319-44mod1 DMAb-transfected 293T supernatants containing 319-44mod1 human 
IgG. Antibodies were purified by Protein A spin columns and separated by SDS-PAGE 
under reducing (left) and non-reducing (right) conditions.  
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Figure 27. 319-44mod1 exhibits increased human IgG production compared to 
319-44wt in vitro.  
ELISA human IgG quantification (A) and immobilized hisOspA protein binding (B) 
analysis of human IgG in supernatants of HEK 293T cells transfected with either p319-
44wt or p319-44mod1 DMAbs. The data displayed are the mean of duplicate values +/- 
standard error of the mean (SEM) and are representative of two independent 
experiments.   
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Figure 28. Framework modifications of 319-44mod1 have no detrimental effect on 
antibody borreliacidal activity in vitro.  
Purified 319-44wt or 319-44mod1 antibodies were evaluated with a borreliacidal assay 
against B. burgdorferi bacteria (left; CDA-1 antibody = negative control); EC50 values of 
purified antibodies (right).  
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Figure 29. In vivo delivery of 319-44mod1 DMAb leads to slight increase in 319-44 
IgG with concomitant reduction in purified hisOspA binding capacity.  
Total serum-detectable levels of human IgG (A) and immobilized hisOspA protein 
binding (B) were measured by ELISA after various doses of 319-44wt or 319-44mod1 
DMAb were injected intramuscularly in C3H/HeNCrl mice. (n = 5 mice per group, dots 
represent individual animals within a group, while bars represent mean +/- SEM of the 
group).  
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Figure 30. DMAb delivery with hyaluronidase pre-treatment increases 319-44 IgG 
concentration in vivo.  
Total serum-detectable levels of human IgG (A) and immobilized hisOspA protein 
binding (B) were measured by ELISA after various doses of 319-44wt or 319-44mod1 
DMAb were injected intramuscularly with or without hyaluronidase pretreatment in 
C3H/HeNCrl mice. (n = 5 mice per group, dots represent individual animals within a 
group, while bars represent mean +/- SEM of the group).  
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Figure 31. Hyaluronidase pre-treatment before DMAb delivery leads to long-term 
increase in human IgG concentration in vivo.  
Total serum-detectable levels of human IgG (A) and immobilized hisOspA protein 
binding (B) were measured by ELISA after a 300 µg dose of 319-44mod1 DMAb was 
injected intramuscularly with or without hyaluronidase pretreatment in B6.Cg-Foxn1nu/J 
immunodeficient mice. (n = 5 mice per group, data displayed are the mean +/- SEM of 
each group’s animals). 
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CHAPTER 5 – Discussion and Future Directions 

 

The promise of vector-mediated antibody gene transfer has generally been 

countered by the field’s predominant use of viral vectors, which time and again have 

shown the pesky trait of being targeted by pre-existing anti-vector immunity, or of 

eliciting an anti-vector immune response upon administration. These responses have 

been known to limit the clinical efficacy of viral vector gene transfer in numerous studies 

(Jiang et al., 2006; Manno et al., 2006; Scallan et al., 2006), even if animal models 

generally downplay such effects. An alternative to viral vector-mediated antibody gene 

transfer is DNA plasmid-mediated antibody gene transfer. Unlike viral vectors, DNA 

plasmids do not elicit anti-vector immunity (Klinman et al., 2000), which allows for 

repeated administrations of plasmid vectors when desired (Klinman et al., 2000; 

MacGregor et al., 2000). Furthermore, the production of large stocks of DNA is relatively 

inexpensive when compared to the creation of clinical grade viral vectors for gene 

delivery. Despite these and many other advantages (ease of use, great safety record, 

etc.), DNA plasmids have rarely been used as a tool to deliver monoclonal antibody 

genes in vivo. Such a dearth of research on this topic has led our lab to investigate the 

feasibility of DNA plasmid-mediated antibody gene transfer. Using the gene sequences 

of well-characterized mAbs targeting two distinct pathogens – dengue virus (subject of 

Chapter 3) and the B. burgdorferi bacteria responsible for Lyme disease (subject of 

Chapter 4) – we outline in this thesis the development of and optimization strategies for 

an effective DNA plasmid-based mAb delivery system, which we call DMAb.  

This study is the first demonstration of a DNA plasmid being used to deliver full-

length human IgG antibody genes for in vivo production (Figure 3, Figure 12). After a 

single intramuscular injection of a DNA plasmid cocktail encoding the heavy and light 
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chains of a human IgG1 antibody on two separate plasmids, biologically active 

antibodies were produced and properly assembled within muscle cells and secreted into 

the circulation within 48 hours of DNA injection (Figure 3). Seeing a need to simplify 

DMAb delivery and maximize the chances of the heavy and light chain genes being 

transcribed within the same muscle cell, we then developed a single plasmid DMAb 

vector in which the heavy and light chain genes of a mAb are separated on a single 

open reading frame by two cleavage sites used extensively in nature: the 2A peptide and 

a furin cleavage site (Figure 2, Figure 4). These plasmid modifications showed no 

detrimental effect on human IgG expression levels in vitro, suggesting that a single 

plasmid system could be feasible for further study in vivo. Indeed, our single-plasmid 

anti-DENV DMAb, DVSF-3, when injected intramuscularly with EP into mice, showed 

that this simplified approach could produce biologically relevant levels of human IgG in 

mouse serum within 1 week of DMAb administration (Figure 13). Importantly, mice 

injected with the modified DMAb pDVSF-3 LALA were completely protected from a lethal 

ADE DENV2 challenge, even though the DMAb was administered only five days prior to 

challenge (Figure 19). These results highlight the rapid expression kinetics of DMAb-

driven ectopic human IgG expression in mice.  

Similar kinetics have been observed after Ad-mediated antibody gene transfer, 

yet there are two characteristics that differentiate these approaches. Firstly, Ad-mediated 

antibody gene transfer in mice produces antibody expression levels above 100 µg/mL in 

vivo, whereas DMAb delivery in this study leads to human IgG serum concentrations 

between 500 ng/mL and 10 µg/mL in mice. However, these numbers deserve proper 

context. Studies employing Ad-mediated antibody gene transfer typically use murine 

mAbs, which abrogates immune responses against the transgene product in mice. In our 

lab, we compared DMAb-mediated human IgG expression to DMAb-mediated murine 
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IgG expression in mice and observed that DMAb-mediated murine IgG expression is 

many fold greater than DMAb-mediated human IgG expression (data not shown), 

suggesting that the species of the antibody plays a fundamental role in even short-term 

expression kinetics in animal models. Secondly, Ad-mediated antibody gene transfer, as 

with other viral vector systems, elicits anti-vector immune responses, whereas DMAb 

delivery does not. These major differences frame DMAb delivery as a promising 

alternative to viral vector-based antibody gene transfer that would greatly benefit from 

exploring multi-DMAb delivery approaches and optimizations to improve antibody 

expression levels in vivo.  

 

Future directions: post-exposure prophylaxis or therapy 

Several infectious diseases, including hepatitis A and B, rabies, and tetanus, 

have established post-exposure prophylaxis (PEP) protocols that are effective at 

preventing the development of disease or limiting the transmissibility of an infectious 

agent after initial exposure (Bader & McKinsey, 2013).  Many of these treatments use 

intravenous immune globulin (IVIG) regimens alone or in combination with available 

vaccines. Our data suggest that DMAb delivery in mice leads to rapid production of 

human IgG, typically detectable in serum between 24 and 48 hours (Figure 3, Figure 

12). Future studies should alter when DMAb is administered in relation to pathogen 

challenge to assess whether DMAbs may prove beneficial as tools for PEP.  

Furthermore, recent work from our lab has demonstrated the protective “immediate and 

persistent” efficacy of DMAb and vaccine co-administration in the context of chikungunya 

infection (Muthumani et al., 2016), suggesting that DMAb/DNA vaccine formulations 

should also be studied for their ability to replicate IVIG/vaccine regimens for PEP.  
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Future directions: delivery of multiple DMAbs 

 In Chapter 3, we used an anti-Dengue virus antibody model to explore DMAb-

mediated human IgG production in vivo, concluding those studies with preliminary work 

on multi-DMAb delivery in a host (Figure 20, Figure 21, Figure 22). Our data suggest 

that the breadth of coverage against a pathogen can be increased through multi-site, 

multi-DMAb delivery, which would be a crucial need for any comprehensive antibody-

based prophylactic that aims to minimize antibody escape. More studies should be 

devoted to optimally delivering multiple DMAbs in a simpler fashion, keeping in mind the 

dangers of antibody heavy chain-light chain protein rearrangements that may occur if 

different antibodies are being expressed in the same cell.  

 One future goal of these studies is to develop new antibody structures that 

eliminate the possibility of heavy chain-light chain protein rearrangements; such an 

antibody structure would allow for multiple DMAbs to be delivered into a single site.  

Alternatively, developing bispecific DMAbs could increase the breadth of antibody 

targets without the need to deliver multiple DMAb plasmids. Regardless of the method 

employed, clinical success of any antibody gene transfer approach will have to consider 

how to minimize antibody escape, no matter how broadly neutralizing a single delivered 

antibody may be. Antibody cocktail studies in mice and nonhuman primates have 

worked to address issues of antibody escape to varying degrees of success, so it is in 

the antibody gene transfer field’s benefit to do the same.    
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Future directions: optimization strategies 

In Chapter 4, we used an anti-Lyme disease antibody model to explore a three-

tiered optimization strategy to improve DMAb expression levels in vivo: DMAb dosing, 

antibody framework modifications, and hyaluronidase pre-treatment.  

DMAb dosing. Building on our previous work that suggested multiple injections of 

DMAb plasmids could increase the breadth of coverage against DENV and boost total 

human IgG expression levels in mouse serum (Figure 20, Figure 21, Figure 22), we 

established DMAb dosing as one tier for improving DMAb expression levels in vivo. The 

dosage studies outlined in Chapter 4 of this thesis show that there is a DMAb dose-

dependent escalation in human IgG levels in mouse serum that appears to be linear in 

nature (Figure 29). Further studies need to be conducted to determine how much DMAb 

plasmid can be administered per muscle site without diminishing returns.  

Antibody framework modifications. Framework modifications in the realm of 

antibody gene transfer is a relatively unexplored field, with the majority of studies 

focusing less on improving antibody stability and more on reducing immunogenicity of 

the transgene in large animal models. We sought to use well-established stabilizing 

framework modifications to improve DMAb expression levels in vivo, with the assumption 

that enhanced antibody stability in vitro could also enhance the longevity of antibodies in 

vivo. The framework modifications of 319-44mod1 led to greatly increased in vitro mAb 

production and a slight increase in in vivo mAb production, suggesting that these 

modifications may be a promising avenue of exploration to improve antibody 

concentrations in the circulation.  

However, there is still much to understand about these framework modifications 

and how they may affect antibody half-life and functionality in vivo. Future studies should 

focus on two key areas of inquiry: 1) determining which antibody framework families 



74 

(e.g. VH1 or Vκ3) are most stable in vivo, and whether this stability leads to higher 

antibody peak concentrations, a more durable increase in serum concentration levels, or 

both; and 2) assessing the antibody structure pre- and post-modifications to better 

understand how these modifications may affect antigen binding and functionality.  An 

interesting observation in Chapter 4 was that 319-44mod1 appears to have reduced 

antigen-binding capabilities to purified hisOspA protein compared to 319-44wt, but the 

borreliacidal activity was unperturbed. Therefore, both affinity and functionality must be 

investigated concomitantly in future studies.  

Hyaluronidase pre-treatment. Our data suggest that hyaluronidase pre-treatment 

of muscle cells can greatly enhance DMAb gene delivery and lead to increased human 

IgG serum concentrations in mice. However, future studies should evaluate various 

hyaluronidase pre-treatment regimens in order to optimize DMAb delivery. For example, 

the interval between hyaluronidase pre-treatment and DMAb administration with EP 

should be more fully explored. For studies in Chapter 4, a 30-minute interval was 

sufficient for the enzyme to be absorbed in the targeted muscle area, but whether that 

period of time is sufficient to maximize DMAb delivery is currently unknown. Balancing 

the length of this pre-treatment interval with the positive effects on DMAb expression is a 

key optimization step with relevance both in animal models and in the clinic, where one 

could imagine that too long of an interval may present practical logistical issues (e.g. 

extended doctor visits).  

Hyaluronidase dosing is another aspect that must be optimized.  Studies have 

shown that hyaluronidase pre-treatment does not increase muscle damage (Long et al., 

2005; McMahon et al., 2001), but these studies have only used a single hyaluronidase 

dose. Furthermore, hyaluronidase has been shown to amplify the inflammatory effects of 

in vivo EP (Chiarella, De Santis, Fazio, & Signori, 2013), suggesting that future DMAb 
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studies using hyaluronidase should be aware of how this inflammatory milieu may 

exacerbate anti-transgene immune responses in immune competent animal models. 

Optimizing hyaluronidase dosing may help balance the potentially detrimental 

inflammatory response of EP + hyaluronidase with the hyaluronidase-mediated boosting 

of DMAb-mediated human IgG expression levels. Therefore, hyaluronidase pre-

treatment requires optimizing on multiple levels, and future studies should compare 

various combinations of hyaluronidase dose and pre-treatment timing to improve DMAb 

delivery in vivo. 

 

Summary and concluding thoughts.  

In summary, we show that DNA plasmid-mediated antibody gene transfer is a 

feasible method for delivering biologically active human IgG antibodies in vivo. DMAb 

delivery of an anti-DENV neutralizing antibody was capable of completely protecting 

mice from a lethal ADE DENV challenge, and optimizations to DMAb delivery via 

antibody framework modifications, DMAb dosing, and hyaluronidase pre-treatment were 

able to significantly increase human IgG concentrations in mouse serum. The major 

focus of future studies should be on optimizing DMAb-mediated mAb cocktail delivery 

while increasing antibody concentration levels in serum.  

As researchers continue to refine the process of mAb discovery, it is expected 

that more potent antibodies will be found that can be delivered by antibody gene transfer 

approaches. These highly potent antibodies may offset the requirement for large serum 

concentration levels of human IgG for prophylaxis or treatment. As DMAb technology 

progresses alongside this improvement in mAb discovery, the clinical feasibility of DMAb 

delivery will only increase.  
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The public health impacts of DMAb technology use in humans could be 

immense. With less dependence on the cold chain compared to purified protein and viral 

stocks, DMAbs may have a substantial impact in locations where the electrical grid and 

health care infrastructure lack stability. This benefit could have major importance during 

infectious disease outbreaks, when rapid protection is desired but health care systems 

are overwhelmed. From an economic standpoint, the savings in manufacturing costs (no 

protein or viral purification) and health care infrastructure costs (no cold chain) suggest 

that DMAb technology may have a favorable cost-effectiveness profile compared to 

other mAb delivery and antibody gene transfer methods. Of course, these implications 

are only important if efficacy is achieved in non-human primates and clinical trials; the 

next steps of this technology, in addition to all that has been mentioned above, involve 

determining the feasibility of DMAbs in larger animals and using those studies to inform 

dosing and administration regimens in humans. 
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CHAPTER 6 – Appendix 

Table A1. Summary of antibody gene transfer studies targeting infectious 
diseases. 
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Table A1 (continued)   
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Figure A1. DNA plasmid-mediated antibody gene transfer 
Traditional passive transfer requires the large-scale, expensive production of purified 
mAbs and the intravenous infusion of those mAbs into hosts; thi 5s process generally 
results in short-term duration of mAbs in the circulation, necessitating repeated infusions 
for clinical benefit. DNA plasmid-mediated antibody gene transfer, or DMAb delivery, 
involves the intramuscular injection of optimized antibody genes delivered by in vivo 
electroporation (EP). Through this process, muscle cells become antibody-producing 
factories that continuously secrete mAbs into the circulation. 
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CHAPTER 7 – Publications 
 

The following papers have been published in support of this dissertation, starting with 

the most recently published work. 

Rapid and long-term immunity elicited by DNA encoded antibody prophylaxis and 

DNA vaccination against Chikungunya virus. 

Muthumani K, Block P, Flingai S, Muruganantham N, Chaaithanya IK, Tingey C, Wise 

M, Reuschel EL, Chung C, Muthumani A, Sarangan G, Srikanth P, Khan AS, Vijayachari 

P, Sardesai NY, Kim JJ, Ugen KE, Weiner DB. J Infect Dis doi:10.1093/infdis/jiw111 

(2016).  

Abstract 

Background. Vaccination and passive antibody therapies are critical for controlling 

infectious diseases. Passive antibody administration has limitations including the 

necessity for purification and the delivery of multiple injections required for efficacy. 

Vaccination is associated with a lag phase before generation of immunity. Novel 

approaches reported here utilize the benefits of both methods for the rapid generation of 

effective immunity. 

Methods. An antibody-based prophylaxis/therapy entailing the electroporation-mediated 

delivery of synthetic plasmids, encoding biologically active anti-Chikungunya virus 

envelope mAb (designated dMAb), was designed and evaluated for anti-viral efficacy as 

well as for the ability to overcome shortcomings inherent with conventional active 

vaccination by a novel passive immune-based strategy. 



81 

Results. One intramuscular injection of the CHIKV-dMAb produced antibodies in vivo 

more rapidly than active vaccination with a CHIKV-DNA vaccine. This dMAb neutralized 

diverse CHIKV clinical isolates and protected mice from viral challenge. Combinations of 

both afford rapid as well as long-lived protection. 

Conclusions. We report that a DNA based dMAb strategy induces rapid protection 

against an emerging viral infection, which can be combined with DNA vaccination 

providing a uniquely both short term and long-term protection against this emerging 

infectious disease. These studies have implications for pathogen treatment and control 

strategies. 

 

Protection against dengue disease by synthetic nucleic acid antibody 

prophylaxis/immunotherapy. 

Flingai S, Plummer EM, Patel A, Shresta S, Mendoza JM, Broderick KE, Sardesai NY, 

Muthumani K, Weiner DB. Sci Rep 5, 12616 (2015).  

Abstract 

Dengue virus (DENV) is the most important mosquito-borne viral infection in humans. In 

recent years, the number of cases and outbreaks has dramatically increased worldwide. 

While vaccines are being developed, none are currently available that provide balanced 

protection against all DENV serotypes. Advances in human antibody isolation have 

uncovered DENV neutralizing antibodies (nAbs) that are capable of preventing infection 

from multiple serotypes. Yet delivering monoclonal antibodies using conventional 

methods is impractical due to high costs. Engineering novel methods of delivering 

monoclonal antibodies could tip the scale in the fight against DENV. Here we 
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demonstrate that simple intramuscular delivery by electroporation of synthetic DNA 

plasmids engineered to express modified human nAbs against multiple DENV serotypes 

confers protection against DENV disease and prevents antibody-dependent 

enhancement (ADE) of disease in mice. This synthetic nucleic acid antibody 

prophylaxis/immunotherapy approach may have important applications in the fight 

against infectious disease.  

 

Synthetic DNA vaccines: improved vaccine potency by electroporation and co-

delivered genetic adjuvants. 

Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB. Front 

Immunol 4, 354 (2013). 

Abstract 

In recent years, DNA vaccines have undergone a number of technological 

advancements that have incited renewed interest and heightened promise in the field. 

Two such improvements are the use of genetically engineered cytokine adjuvants and 

plasmid delivery via in vivo electroporation (EP), the latter of which has been shown to 

increase antigen delivery by nearly 1000-fold compared to naked DNA plasmid delivery 

alone. Both strategies, either separately or in combination, have been shown to augment 

cellular and humoral immune responses in not only mice, but also in large animal 

models. These promising results, coupled with recent clinical trials that have shown 

enhanced immune responses in humans, highlight the bright prospects for DNA 

vaccines to address many human diseases.  
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Optimized and enhanced DNA plasmid vector based in vivo construction of a 

neutralizing anti-HIV-1 envelope glycoprotein Fab. 

Muthumani K, Flingai S, Wise M, Tingey C, Ugen KE, Weiner DB. Hum Vaccin 

Immunother 9, 2253-62 (2013). 

Abstract 

Monoclonal antibody preparations have demonstrated considerable clinical utility in the 

treatment of specific malignancies, as well as inflammatory and infectious diseases. 

Antibodies are conventionally delivered by passive administration, typically requiring 

costly large-scale laboratory development and production. Additional limitations include 

the necessity for repeat administrations, and the length of in vivo potency. Therefore, the 

development of methods to generate therapeutic antibodies and antibody like molecules 

in vivo, distinct from an active antigen-based immunization strategy, would have 

considerable clinical utility. In fact, adeno-associated viral (AAV) vector mediated 

delivery of immunoglobulin genes with subsequent generation of functional antibodies 

has recently been developed. As well, anon-viral vector mediated nucleic acid based 

delivery technology could permit the generation of therapeutic/prophylactic antibodies in 

vivo, obviating potential safety issues associated with viral vector based gene delivery. 

This delivery strategy has limitations as well, mainly due to very low in vivo production 

and expression of protein from the delivered gene. In the study reported here we have 

constructed an "enhanced and optimized" DNA plasmid technology to generate 

immunoglobulin heavy and light chains (i.e., Fab fragments) from an established 

neutralizing anti-HIV envelope glycoprotein monoclonal antibody (VRC01). This 

"enhanced" DNA (E-DNA) plasmid technology includes codon/RNA optimization, leader 
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sequence utilization, as well as targeted potentiation of delivery and expression of the 

Fab immunoglobulin genes through use of "adaptive" in vivo electroporation. The results 

demonstrate that delivery by this method of a single administration of the optimized Fab 

expressing constructs resulted in generation of Fab molecules in mouse sera 

possessing high antigen specific binding and HIV neutralization activity for at least 7 d 

after injection, against diverse HIV isolates. Importantly, this delivery strategy resulted in 

a rapid increase (i.e., in as little as 48 h) in Fab levels when compared with protein-

based immunization. The active generation of functional Fab molecules in vivo has 

important conceptual and practical advantages over conventional ex vivo generation, 

purification and passive delivery of biologically active antibodies. Further study of this 

technique for the rapid generation and delivery of immunoglobulin and immunoglobulin 

like molecules is highly relevant and timely.  
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