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Tensile Mechanics of the Knee Meniscus in the Context of Cracks: Failure
and Fracture Mechanisms, Strain Concentrations, and the Effect of
Specimen Shape

Abstract
Knee meniscus tears (cracks) are a major cause of knee dysfunction and osteoarthritis, but little is known
about how they grow or what effects they have on meniscus mechanics. The objective of this work was to
investigate the mechanics and failure of crack-free and cracked meniscus in uniaxial tension, with specific
attention to failure mechanisms (fracture and bulk rupture) and local strain concentrations. A finite element
model was used to find a test configuration likely to cause fracture and crack propagation. Center cracks with a
45° crack–fiber angle were selected for producing large fiber stresses, and 90° edge cracks were selected for
producing large inter-fiber shear stresses. The circumferential and radial tensile mechanics of the meniscus
were quantified using ex vivo tensile testing. A fiber recruitment model was fitted to the test data, and a
method was developed to quantify the inflection (yield) point and modulus based on the shape of the
stress–strain curve. Comparison of tensile test specimen shapes showed that an expanded tab specimen shape
produces more rapid and complete fiber recruitment, lesser yield strain, and greater peak stress (strength)
than rectangle specimens, and, likely, dogbone specimens.

Mechanical effects of meniscus cracks were quantified by comparing cracked and crack-free specimens in
circumferential and radial tension. The cracks did not cause a decrease in peak stress, indicating fracture did
not occur. However, significantly greater longitudinal strain and shear strain was found near the crack tip for
circumferential tension specimens. In radial tension specimens, all strain field components were greater near
the crack tip. Failure tended to proceed along fascicle boundaries. Circumferential specimens failed by
widespread interdigitating fiber pull-out, which also caused crack deflection. Radial specimens failed by
necking and fiber rotation. These data demonstrate the remarkable fracture toughness of the meniscus, but
increased near-tip strain may cause sub-failure damage and dysfunction. These results provide functional
targets for interventions to repair or regenerate the meniscus.
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ABSTRACT

TENSILE MECHANICS OF THE KNEE MENISCUS IN THE CONTEXT OF CRACKS:

FAILURE AND FRACTURE MECHANISMS, STRAIN CONCENTRATIONS, AND THE

EFFECT OF SPECIMEN SHAPE

John M. Peloquin

Dawn M. Elliott

Knee meniscus tears (cracks) are a major cause of knee dysfunction and osteoarthritis, but

little is known about how they grow or what effects they have on meniscus mechanics. The

objective of this work was to investigate the mechanics and failure of crack-free and cracked

meniscus in uniaxial tension, with specific attention to failure mechanisms (fracture and bulk

rupture) and local strain concentrations. A finite element model was used to find a test configu-

ration likely to cause fracture and crack propagation. Center cracks with a 45° crack–fiber angle

were selected for producing large fiber stresses, and 90° edge cracks were selected for producing

large inter-fiber shear stresses. The circumferential and radial tensile mechanics of the meniscus

were quantified using ex vivo tensile testing. A fiber recruitment model was fitted to the test

data, and a method was developed to quantify the inflection (yield) point and modulus based on

the shape of the stress–strain curve. Comparison of tensile test specimen shapes showed that

an expanded tab specimen shape produces more rapid and complete fiber recruitment, lesser
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yield strain, and greater peak stress (strength) than rectangle specimens, and, likely, dogbone

specimens.

Mechanical effects of meniscus cracks were quantified by comparing cracked and crack-free

specimens in circumferential and radial tension. The cracks did not cause a decrease in peak

stress, indicating fracture did not occur. However, significantly greater longitudinal strain and

shear strain was found near the crack tip for circumferential tension specimens. In radial tension

specimens, all strain field components were greater near the crack tip. Failure tended to proceed

along fascicle boundaries. Circumferential specimens failed by widespread interdigitating fiber

pull-out, which also caused crack deflection. Radial specimens failed by necking and fiber rota-

tion. These data demonstrate the remarkable fracture toughness of the meniscus, but increased

near-tip strain may cause sub-failure damage and dysfunction. These results provide functional

targets for interventions to repair or regenerate the meniscus.
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CHAPTER 1: INTRODUCTION

Tears in the knee meniscus cause symptoms such as joint locking, pain, and instability. Perhaps

more importantly, by altering knee mechanics, meniscus tears lead to degenerative changes in

the knee’s articular cartilage and hence osteoarthritis. Preventing tears or treating them (via re-

pair or regeneration) before they can cause osteoarthritis is therefore beneficial. However, many

tears in the meniscus heal poorly, especially tears in the inner, avascular region. Symptomatic

tears that are judged to have a poor prognosis for healing, or do not heal after attempted repair,

must be treated by meniscectomy (partial or complete removal of the meniscus). Meniscec-

tomy greatly changes articular cartilage loading and so also causes osteoarthritis; it is preferably

avoided. Asymptomatic tears may therefore be better left untreated if it can be determined that

they will not propagate.

Despite the functional impairment and disease caused by meniscus tears and the conse-

quences of treating tears by meniscectomy, very little is known about meniscus tear mechanics.

There is scant ability to quantitatively predict the impact of a tear on the meniscus’ function or

whether a tear will propagate, and hence scant ability to determine if a tear requires treatment.

Quantification of meniscus tears’ mechanical effects and the conditions necessary for tear prop-

agation would be a significant asset to clinical decision-making and development of reparative

or regenerative treatments.

A key question related to meniscus tear propagation is whether meniscus fails by fracture
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or bulk rupture. The two processes have different effects and require different approaches to

predict failure. The dichotomy is not exclusive; the meniscus may fail by fracture in some

conditions and bulk rupture in others. Failure by fracture occurs when a crack or crack-like

defect causes a stress concentration. (Subsequent discussion of meniscus tears from a fracture

perspective will refer to them as cracks.) For a crack, the stress concentration is at the crack’s

tip. The stress concentration causes local failure, causing the crack to propagate. This moves

the stress concentration to fresh material, which fails in turn. The crack propagates across the

entire tissue in this manner. Failure by fracture is in contrast to failure by bulk rupture, in which

the entire tissue cross-section yields and fails together and there is no decrease in strength due

to migration of a zone of local failure. Due to the stress concentration, fracture occurs at lesser

nominal stress than bulk rupture. Predicting meniscus crack growth therefore requires that these

mechanisms be distinguished and quantified.

Although cracks grow in the meniscus in vivo, crack growth does not necessarily occur by

fracture. Fracture always involves a growing crack, but the reverse is not true. Bulk failure can

create both failure with a crack-like appearance and failure that is diffuse and not crack-like.

The meniscus definitely develops in vivo failures that have a crack-like appearance, but whether

these failures are created by fracture or bulk rupture is unknown.

In addition to fracture and crack-like bulk failure, failure without apparent crack growth

constitute a third category for investigation. This category is particularly interesting because

a crack that is asymptomatic, does not impair the meniscus’ mechanical function, and will not

grow is benign and, from a clincial perspective, is as functional as an intact meniscus. Leaving
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the native meniscus in place when possible is best for long term joint health, and a benign crack

permits this. Correctly deciding whether a cracked meniscus can be safely left in place requires

identification of the applicable mechanisms of failure, namely fracture and/or bulk rupture, and

quantification of the relevant failure criteria.

It is currently unknown whether a cracked meniscus fails by fracture or bulk rupture, or

whether the crack will grow for a given loading condition. Tensile loading of pre-cracked speci-

mens is the standard ex vivo test protocol for investigating crack behavior in fibrous soft tissues.

Tests using this approach in fibrous tissues other than the meniscus predominantly produced

bulk failure without crack growth, even with an initial crack created prior to testing. Fracture

and crack propagation cannot be quantified mechanically without a test protocol that produces

these kinds of failure. No tensile fracture tests have yet been done for meniscus. The present

work is designed to address this knowledge gap.

The overall objective of this work was to investigate meniscus mechanics and failure in the

context of meniscus cracks, with specific attention to failure mechanisms (fracture and bulk

rupture) and strain concentrations. To support this goal, key nonlinear mechanical properties

of the meniscus were quantified in uniaxial tension for both crack-free and cracked specimens

and several experimental issues regarding stress–strain curve quantification, rupture location,

and specimen shape were examined. Since the meniscus bears both circumferential and radial

tension in vivo, and the predominantly circumferential alignment of its collagen fiber bundles

(fascicles) causes significant mechanical anisotropy, tensile properties were quantified in both

the circumferential and radial directions. To quantify sub-failure meniscus mechanics, a fiber
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recruitment model was developed and fit to circumferential tensile test data and methods were

developed to quantify the yield point (stress–strain curve inflection point). To ensure physio-

logically representative loading of collagen fibers in the tensile tests, expanded tab, dogbone,

and rectangle specimen shapes were compared to identify the shape that best produced secure

gripping and loading of the collagen fibers. In order to select crack configurations likely to be

relevant to crack propagation and fracture, finite element analysis (FEA) was used to compare

candidate test cases. The cases producing the greatest crack-associated stress were selected for

physical ex vivo testing. The goal of identifying failure mechanisms in cracked meniscus speci-

mens, determining whether cracks cause strain concentrations, and determining whether cracks

grow in the selected test configurations was achieved by comparing the behavior of cracked

specimens to crack-free controls using the selected crack configurations and specimen shapes.

The objective of identifying a test condition that was likely to produce fracture in fibrocar-

tilaginous tissue such as the meniscus is addressed by the work in Chapter 3. The approach was

to use FEA to simulate crack-associated stress concentrations in several test configurations that

could be used for subsequent fracture studies. Biaxial and uniaxial tests were examined with

varied crack position (edge vs. center) and crack orientation (0° to 90° relative to the prevailing

collagen fiber direction; 15° increments), mimicking an assortment of in vivo tear types associ-

ated with acute injury. Due to the anisotropic collagen arrangement and mechanical properties

of the meniscus, it was hypothesized that varying the crack angle would produce large changes

in the crack-associated stress concentration. The predicted stress fields were post-processed

to obtain the stress components in the fiber direction, perpendicular to the fiber direction, and

4



in inter-fiber shear. For each stress component, the test configurations were ranked according

to the severity of the crack tip stress and the configuration producing the greatest stress was

considered to have the greatest potential for fracture.

The objective of quantifying the nonlinear mechanical properties of the meniscus in uniaxial

tension and addressing experimental issues regarding stress–strain curve quantification, rupture

location, and specimen shape is addressed by the work in Chapter 4. Since the meniscus bears

multiaxial loads in vivo—axial compression combined with in-plane circumferential and ra-

dial tension—and is anisotropic, tensile tests were done in both the circumferential and radial

directions. The pre-yield stress–strain curve in circumferential tension was quantified using a

structural model based on the concept of sequential fiber recruitment. The fiber recruitment

model was intended to support structural interpretation of meniscus stress–strain nonlinearity.

The stress–strain curve was also parameterized using non-model parameters, including (for the

first time in meniscus) the inflection point (yield point). An algorithm was developed to quan-

tify the inflection point based on how the yield point is reported for other fibrous soft tissues.

This procedure for quantifying the inflection point also provided a modulus measurement that

does not depend on identification of a linear region in the nonlinear stress–strain curve. This

stress–strain quantification is an important step forward for study of the meniscus and the meth-

ods are transferable to other fibrous soft tissues.

The comparison of specimen shapes was prompted by the observation of grip slip, grip

line rupture, and unloaded regions in preliminary testing. To find a test configuration that se-

curely grips themeniscus’ fibers andminimizes grip-induced stress concentrations, stress–strain
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statistics and failure patterns were compared between rectangular, dogbone, and expanded tab

shapes. The expanded tab specimen is a very infrequently used asymmetric shape with large

tabs for gripping. The tabs follow the arc of the meniscus’ fibers, allowing more fibers to en-

ter the gripped area. It was hypothesized that the expanded tab would increase the number of

loaded fibers and hence increase measured stiffness and strength.

The overall objective of investigating failuremechanisms and strain concentrations in cracked

meniscus specimens is addressed by work presented in Chapter 5, which applies the results from

Chapters 3 and 4. As in Chapter 4, both circumferential and radial specimens were tested, as

both axes are subject to tensile loading in vivo. Tensile properties are particularly important for

study of cracks because one of the major ways a crack can grow is under tension perpendicular

to the crack, which causes crack opening and hence crack growth. The circumferential align-

ment of collagen fascicles in the meniscus means that cracks growing circumferentially (under

radial tension) propagate between fascicles, whereas cracks growing radially (under circum-

ferential tension) propagate across fascicles. Different loading directions and crack directions

were therefore expected to produce different behavior. The peak stress of the cracked specimens

was compared to uncracked controls. If the hypothesis that cracked specimens fail by fracture

was true, they would fail at lesser stress. Test configurations were selected based on the FEA

predictions made in Chapter 3 regarding which test configurations were most likely to produce

fracture. The cracked specimen configurations employed represented in vivo tears of the ra-

dial, oblique, and circumferential or bucket-handle types, which are considered to generally be

caused by acute (traumatic) injury rather than progressive degeneration. Specimen shapes were
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selected based on the results from Chapter 4. Expanded tab specimens were used for circum-

ferential tensile tests, and rectangle specimens were used for radial tensile tests. Full-specimen

strain fields were obtained via digital image correlation and used to establish the presence or

absence of crack-tip associated strain concentrations. Strain concentrations such as these, if

present, could cause damage and functional impairment even if the crack doesn’t propagate.

The meniscus mechanics quantified in this study are useful for several purposes. Quantify-

ing meniscus crack mechanics—whether cracks grow by fracture or bulk rupture, whether they

promote potentially injurious sub-failure strain and stress concentrations, and the loads neces-

sary to produce these outcomes—is a necessary step towards being able to determine whether an

in vivo crack requires treatment or whether it is benign. The mechanical model and stress–strain

parameters measured in this study for both crack-free and cracked meniscus are useful as func-

tional targets for meniscus replacements or repair procedures. These parameters, and the pro-

cedures developed to measure them, may also be used in future research to compare disease

states and develop diagnostic markers. Mechanical studies such as the present work are a key

step towards improved, evidence-based treatment of meniscus cracks.
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CHAPTER 2: BACKGROUND

2.1 Meniscus structure

The medial and lateral menisci are lunar-shaped chunks of fibrocartilage positioned on either

side of the knee between the femoral condyles and the tibial plateau (Figure 2.1). The lateral

meniscus has more of a C-shape and is broader than the medial meniscus. The meniscus cross-

section is wedge-shaped. The superior side is steeply sloped so as to cup the femoral head; the

inferior side is flatter to match the tibial plateau geometry. The medial meniscus is attached

to the tibial plateau at each of its ends; it is also attached to the medial collateral ligament and

the joint capsule along its outer rim. The lateral meniscus is attached to the tibial plateau at

each of its ends. (The posterior and anterior attachments are sometimes called the roots.) The

menisci are otherwise free to move about inside the knee. The lateral meniscus’s lesser number

of attachments makes it more mobile than the medial meniscus.

The meniscus is predominantly made of collagen I (Lento and Akuthota 2000). The total

amount of proteoglycan in meniscus is < 1% wet weight (Kelly et al. 1990). The outer menis-

cus is mostly collagen I, with small amounts of decorin, biglycan, collagen III, collagen V, and

collagen VI (Cheung 1987; Roughley andWhite 1992). The outer meniscus is vascularized; the

inner meniscus is not (Arnoczky andWarren 1982). The inner meniscus contains large amounts

of both collagen I and II and has more aggregating proteoglycans than the outer meniscus (Che-
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ung 1987). Nerve fibers are present in the outer meniscus, but not in the inner meniscus (Fox

et al. 2015; Makris et al. 2011). Meniscus composition (in terms of sulfated glycosaminogly-

can, water, and hydroxyproline content) is the same for lateral and medial humanmenisci (Kelly

et al. 1990). Composition is also constant across the posterior/center/anterior regions.

Figure 2.1: Bovine medial and lateral menisci viewed from the anterior–superior direction.
The medial meniscus is on the left; the lateral meniscus is on the right. Black arrows mark the
anterior and posterior horns of the meniscus, where it attaches to the bone. The gray arrow
marks where the medial meniscus is attached to the medial collateral ligament. The medial
meniscus is also attached to the joint capsule along its rim. The joint capsule has been mostly
removed in this photo, although some remnants are visible along the rim of themedial meniscus.
In humans, the posterior lateral meniscus attachment attaches to the tibia rather that the femur.

The meniscus is made of a large number of collagen fascicles that collectively follow a path

arcing along the meniscus from one tibial attachment to the other (Bullough et al. 1970). Each
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fascicle is 50 μm to 500 μm in diameter (Andrews et al. 2013; Petersen and Tillmann 1998;

Sweigart and Athanasiou 2005; Kelly et al. 1990). The fascicles are in turn made of 5 μm to

10 μm diameter fibril bundles (Rattner et al. 2011). Cells associate with fibril bundles of this

size, and cell processes extend between cells on the same fibril bundle and to cells on adjacent

fibril bundles (Hellio Le Graverand et al. 2001). The fibrils that make up the fibril bundles are

100 nm to 150 nm in diameter (Sweigart and Athanasiou 2005; Petersen and Tillmann 1998).

Nomenclature has not been standardized; fascicles are sometimes called fiber bundles. The

meaning of “fiber” is generally context-dependent, and fibril is sometimes used as a synonym

for fiber. In the present work, the hierarchy of 100 μm to 500 μm diameter fascicle → 5 μm to

10 μm fibril bundle → 100 nm to 150 nm fibril will be used, with fiber adopting its nonspecific

meaning as referring to a threadlike structure.

The fiber architecture of the meniscus varies with depth. The surface of the meniscus is

covered with a network of thin fibrils with diameter ~35 nm (Petersen and Tillmann 1998).

These fibrils are oriented randomly. The layer is about 10 μm thick. Beneath the surface fibril

network there is a layer of 20 μm to 50 μm wide fibril ribbons. This layer is 150 μm to 200 μm

thick, and is 20 μm to 30 μm thicker near the outer rim than the inner rim. In the outer regions,

the fibril ribbons are mostly radial, whereas in the inner regions there are two crisscrossing fiber

populations slightly off-axis from the circumferential direction. In the mid-radial region, most

of the fibril ribbons follow the circumferentially oriented crisscrossing pattern. Near the tibial

insertions the architecture is different—most of these fibril ribbons are radial, even near the inner

edge. The central layer, which comprises the bulk of the meniscus, contains the circumferential
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fascicles described in the previous paragraph.

Woven throughout the circumferential fascicles are radial tie fiber sheets that arborize through

the fascicles in a branching, netlike pattern (Andrews et al. 2014). Tie fibers also run vertically,

connecting the superficial zone fibers with the radially oriented tie fibers. Some tie fiber sheets

envelop blood vessels and their associated glycosaminoglycan-rich matrix. The radial tie fiber

sheets are 0.1 mm to 0.5 mm thick and, like the circumferential fascicles, comprised of 5 to 10

μm fibril bundles. Unlike the circumferential fascicles, tie fibers contain elastin fibrils inter-

spersed throughout their interior (Rattner et al. 2011).

2.2 Mechanical function of meniscus

Healthymeniscus distributes load from the femoral head across the tibial plateau, absorbs shock,

lubricates its contact surface with the articular cartilage, and is a secondary knee stabilizer. The

relatively low compressive stiffness and low permeability of meniscus makes it a more efficient

shock absorber than articular cartilage (Kelly et al. 1990). Shock absorption in knees without

menisci is 20% less than in knees with menisci (Voloshin and Wosk 1983). The meniscus

supports 50% of the knee load in extension (Ahmed and Burke 1983). This fraction increases

to 90% at 90° of flexion.

Meniscus tears have mechanical consequences in terms of both primary symptoms and cre-

ating mechanical dysfunction that is thought to in turn cause osteoarthritis. More than half of

patients with meniscal tears have mechanical symptoms and recurrent effusions (Corea et al.

1994). Meniscus tears or damage-induced laxity may reduce hoop stress and impair fluid pres-
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surization, thereby increasing the friction coefficient between the meniscus and the articular

cartilage (Baro et al. 2012). Increased friction leads to further tissue degradation and promotes

osteoarthritis. Radial tears transecting 90% of the meniscus increase contact pressure on the

articular cartilage (Bedi et al. 2010). However, radial tears transecting ≤ 60% of the meniscus

do not change the location or magnitude of peak knee contact pressure in ex vivo tests with

simulated gait. However, partial meniscectomy had a more severe effect, so it may be beneficial

to preserve a partially torn meniscus. In FEA of the knee, Mononen et al. (2013) found sub-

stantial stress concentrations at the tips of tears that transected 2/3 of the meniscus width, but

no corresponding increase in articular cartilage stresses. The material model was a mixture of

viscoelastic cartilage fibers and neo-Hookean poroelastic matrix. A 2 cm peripheral tear of the

posteromedial meniscus horn qualitatively increased peak local contact stress on the articular

cartilage (Baratz et al. 1986). In an ex vivo study using a thin pressure sensor, horizontal tears

caused a small increase in peak tibial cartilage contact pressure and a small decrease in contact

area (Arno et al. 2015). Feucht et al. (2015), in the context of anterior cruciate ligament (ACL)

injury combined with meniscus tears, describe incomplete longitudinal tears or complete sta-

ble longitudinal tears as having minor consequences. They consider root tears, complete radial

tears, and bucket handle tears to have major biomechanical consequences and require repair.

Meniscus tears are not necessarily loaded with large opening forces. A sharp longitudinal

crack in human meniscus does not produce measurable distraction pressures on an intra-crack

pressure transducer when the knee is compressed and moved (Richards et al. 2008). In static

ex vivo testing, a suture across a vertical longitudinal tear 25 mm long in the lateral meniscus
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remains unloaded in compression, and is loaded only 0.5 N to 4.1 N under combined compres-

sion, flexion, and rotation (Stärke et al. 2009). The authors of both studies suggest that shear

stress may be more relevant than tear opening stress to meniscus tear propagation.

Symptomatic tears are often treated with meniscectomy, in which part or all of the menis-

cus is removed. Repair (such as with sutures), allograft transplants, or synthetic implants are

the other options (Rodkey et al. 1999; Vrancken et al. 2013; Rongen et al. 2015; Elsner et al.

2010; Bulgheroni et al. 2015; Waterman et al. 2016; Shelbourne and Dersam 2004; Toman

et al. 2009). Meniscus allograft transplant does not prevent damage to articular cartilage or

osteoarthritis, but does reduce the extent of damage compared to meniscectomy (Rongen et al.

2015). Meniscectomy leads to worse clinical outcomes than meniscus repair, but meniscus re-

pair has a greater reoperation rate (Paxton et al. 2011). The posterior horn is difficult to repair

and so is more often treated with meniscectomy (McDermott and Amis 2006). The outer (pe-

ripheral) meniscus, which is vascularized, can heal without intervention, but the inner, avascular

meniscus typically fails to heal (Arnoczky and Warren 1983).

Meniscectomy has severe consequences for knee mechanics. In one study, partial meniscec-

tomy was found to reduce contact area (the load-bearing area on the articular cartilage) by ~10%

and increase peak local contact stress (again, on the articular cartilage) by ~60% (Baratz et al.

1986). In another study, loss of 16–34% of the meniscus (basically, the entire inner meniscus)

was found to increase contact stress by ~350% (Seedhom and Hargreaves 1979). Partial menis-

cectomy for radial tears was predicted by FEA to increase contact pressure (~50%), maximum

principal strain (~20%) and stress (~40%), and pore pressure (~40%) in the articular cartilage
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(Mononen et al. 2013). Another simulation of meniscectomized knees using FEA (using a linear

elastic model) shows a doubling of compressive stress on the tibial cartilage with a 25% menis-

cectomy, tripling with 50% meniscectomy, and increasing by a factor of 6 with 75% meniscec-

tomy (Atmaca et al. 2013). Total meniscectomy decreases contact area by about 75%, increases

energy dissipation in cyclic loading of the joint (at 0° flexion), increases axial joint stiffness

by 2-fold, and increases cartilage contact stress by 2 to 3-fold (Kurosawa et al. 1980; Baratz

et al. 1986; Lee et al. 2006). Kettelkamp and Jacobs (1972) and Fukubayashi and Kurosawa

(1980) also report greatly increased articular cartilage contact stress after removal of the me-

dial meniscus. In a sheep model, meniscectomy was found to change the distribution of strains

in the articular cartilage, creating a distribution with larger low-strain and high-strain regions,

and smaller medium-strain regions, compared with strain patterns in a normal knee (Song et al.

2014). Removing the medial meniscus, combined with ACL section, allows greater increases

in anterior displacement under ex vivo anterior-posterior loading (Levy et al. 1982). Resection

of ≥ 50% of the medial meniscus leads to AP laxity, but resection of 22% of the meniscus does

not (Arno et al. 2013). Medial meniscectomy increases ACL graft forces by 33–50% (Papa-

georgiou et al. 2001). Overall, meniscectomy concentrates loads on the articular cartilage and

destabilizes the knee, increasing stress and promoting damage.

Considering the severe over-stress and over-strain produced by meniscectomy, it is not sur-

prising that it increases the risk of osteoarthritis (Petty and Lubowitz 2011; Magnussen et al.

2009; Shelbourne and Gray 2000). Lateral meniscectomy is associated with greater osteoarthri-

tis risk than medial meniscectomy (Magnussen et al. 2009; Øiestad et al. 2009). Meniscectomy
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in a rabbit model leads to changes in the magnitude and distribution of subchondral bone min-

eral density (Anetzberger et al. 2014). Fibrillation of the tibial cartilage started at 8 weeks

post meniscectomy and progressed to complete erosion (with exposed bone) at 24 weeks post

meniscectomy.

Physiologic loads are not precisely known for the meniscus, but the joint-scale motion and

loading has been fairly well studied. Knee joint forces reach loads of 2–4 body weights during

walking, and up to 8 body weights during running (Lento and Akuthota 2000). Force peaks

last on the order of 0.1 s for walking, ascending and descending a ramp, and ascending and de-

scending stairs (Morrison 1969). Limb loading rates during stair climbing are about 3.5 BW/s

(Oliveira Silva et al. 2015). Knee joint contact forces have been predicted by static optimiza-

tion for standing, walking, and running (Miller et al. 2015). The load peaks when walking

and running were 0.2 s in duration (ascending and descending) Flexion/extension moments,

varus/valgus moments, and internal/external rotation moments have been measured for run-

ning, sidestepping, and crossover cutting (Besier et al. 2001). Sidestepping and crossover cut-

ting generate much greater varus/valgus and internal/external rotation moments than normal

running (Besier et al. 2001).

Physiologic loading is sufficiently complicated that interpreting its effect on the meniscus

requires some sort of simulation, usually FEA. Linear elastic FEA of meniscus suggests physi-

ologic strains of about 0.04 (Aspden 1985). Chia and Hull (2008) used FEAwith a compressive

strain rate of 0.32 s-1 to represent walking. Mononen et al. (2015) have applied boundary con-

ditions measured from gait studies to meniscus FEA with a fiber-reinforced poroviscoelastic
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model. Validation revealed some issues, but the combination of this up-to-date model with gait

data is an important step forward in meniscus FEA.

2.3 Mechanical testing of the meniscus

Tensile properties of the meniscus are reviewed and tabulated in Section 4.4.5, so only stud-

ies involving other loading modalities or variation of mechanical properties with other factors

(such as meniscal region) are described here. The tensile modulus of the meniscus does not

vary appreciably with circumferential position. Although Fithian et al. (1990) found that the

anterior meniscus had greater modulus, Tissakht and Ahmed (1995) and Lechner et al. (2000)

found no effect for circumferential position. These studies were of human medial meniscus.

Lechner et al. (2000) had good statistical power, so there is good evidence for a lack of circum-

ferential variation. The modulus of human medial meniscus in circumferential tension has also

been reported to be insensitive to radial position (Lechner et al. 2000). However, Kelly et al.

(1990), also testing in circumferential tension, found that the inner third of bovine meniscus

is less stiff than the outer meniscus. Depth-dependent changes in modulus have also been re-

ported. Whipple et al. (1985) found that the surface layer had equal stiffness in both radial and

circumferential directions in uniaxial tension, but the deep slices were much stiffer in the cir-

cumferential direction than in the radial. The transition from surface in-plane isotropy to central

anisotropy makes sense given that the surface layer is made of fibers with an isotropic in-plane

dispersion, whereas the deep zone is made predominantly of circumferential fascicles.

Abraham et al. (2011) tested meniscal attachments in transverse uniaxial tension, compar-
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ing the performance of several constitutive models: Neo-Hookean, Mooney-Rivlin, and Ogden.

TheMooney-Rivlin model produced the best fit, although the Ogdenmodel was similar. The au-

thors also tested meniscal attachments in longitudinal tension, adding a fiber stress term similar

to Quapp andWeiss (1998). Meniscus root (attachment region) strength has also been measured

by Ellman et al. (2014), who showed that posterior medial, posterior lateral, and anterior me-

dial roots were stronger in the native state than when sectioned as if for surgical reattachment.

This decrease in strength after surgical sectioning was attributed to removal of the peripheral

material surrounding the most dense part of the meniscus root.

Specimen thickness has been reported to cause variations in the tensile modulus of hu-

man meniscus specimens cut in the circumferential-axial plane and tested in the circumferential

direction (Lechner et al. 2000). The modulus ranged from 120 ± 50 MPa for 0.5 mm thick

specimens to 50 ± 70 MPa for 3 mm thick specimens.

2.4 Fracture testing of fibrous soft tissue

Cracks and other structural defects in materials can create stress concentrations, causing local

failure and growth of the defect at loads that would be safe were the defect not present. This

mode of failure is called fracture. The region ofmaterial in which the stress concentration causes

local failure, and hence crack growth, is called the process zone (Taylor 2007). The process zone

may be surrounded by a larger region called the plastic zone in which plastic deformation or

damage occurs. Plasticity and damage dissipate energy, so a larger plastic zone tends to inhibit

crack growth. A specimenwith no crack fails when the stress exceeds thematerial strength. This
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is called bulk rupture. When a crack is present, the specimen may fail either by bulk rupture or

fracture, depending on its strength, resistance to fracture, and the applied load.

The driving force for fracture can be measured in terms of stress concentration magnitude

or in terms of energy release per unit of crack extension. In an isotropic linear elastic ma-

terial, stress near the tip of a sharp crack is proportional to 1/
√
distance from the tip. The

constant of proportionality includes the stress intensity factor K , which varies in proportion

to
√
crack length. A longer crack thus produces a more severe stress concentration. Differ-

ent modes of crack propagation are quantified with different stress intensity factors. The most

commonly examined mode is tensile crack opening (mode I; KI). In-plane shear is mode II

(with KII) and out-of-plane shear is mode III (with KIII). The fracture toughness is the criti-

cal stress intensity above which crack growth occurs. Some (short) cracks may never produce

a large enough K to cause fracture before the material strength is exceeded and bulk rupture

occurs.

Since fibrous soft tissue is mechanically nonlinear and anisotropic, energy-based approaches

to quantifying fracture are often easier to implement than stress-based approaches. A strain

energy release rate for a unit crack extension can be calculated or measured for a particular

crack and loading. If the strain energy release rate exceeds the crack resistance of the material,

the crack will grow.

Measurement of the strain energy release rate can be done by measuring the strain energy of

repeated loading cycles. For two cycles with crack growth in between, the difference in strain

energy between the cycles divided by the newly created crack area gives the strain energy release

18



rate (Taylor et al. 2012). Viscoelasticity and other energy dissipation mechanisms intrinsic to

tissue complicate this measurement, but it is still possible (Oyen-Tiesma and Cook 2001; Koop

and Lewis 2003). Viscoelastic energy dissipation throughout the entire tissue is distinct from

the dissipative mechanisms operating local to the crack in the plastic zone. Measurement of the

strain energy release rate from a single loading cycle is in principle possible, but must explicitly

account for additional sources of energy storage, such as deformation of the tissue strips used

for gripping (Rivlin and Thomas 1953).

Fracture tests of the meniscus, or tests of cracked meniscus specimens, have not been pre-

viously performed. In practice, whether fibrous soft tissue will fail is usually predicted using

its strength (Kim 2000; Qasim et al. 2012; Qasim et al. 2014). Dropped masses have been used

to create ACL rupture and meniscus tear in rabbits, both ex vivo and in vivo, but this requires a

1100 N impact load with a velocity at impact of ~3.8 m/s (Isaac et al. 2010; Isaac et al. 2008).

The study was intended to produce an injury model (at which it succeeded), not measure me-

chanics. Roeddecker et al. (1994) performed trouser tear tests of meniscus scar 6 weeks after

longitudinal crack introduction in a rabbit model and measured the tearing energy. The tearing

energy was slightly lower near the tear tip compared to a contralateral control, suggesting accu-

mulation of damage or insufficient healing. Interestingly, the energy required to create a full 11

mm tear was greater in the torn-and-healed group than the control. The trouser tear technique

was also used by Sonoda et al. (2000) to measure the effect of hyaluronan treatment. The tearing

energy measurements are not necessarily measures of fracture (any tear has an associated tear-

ing energy regardless of the mechanism of failure), but with additional theoretical development
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this approach could be used to predict the occurrence of fracture or its lack.

Cartilage is somewhat similar to the meniscus in structure and function, and its crack growth

and fracture properties have also been studied. Overload of meniscus explants (0.5 unconfined

compression strain applied at 1 s-1) results in no structural damage (although some cell death

occurs near the surface) (Kisiday et al. 2010). When the procedure is applied to cartilage, how-

ever, 10 μm surface fissures were produced in 55% of specimens. Furthermore, compression

testing of cartilage specimens with 1 mm long cracks was found to reduce the compressive

strength to half that of uncracked specimens (Flachsmann et al. 2006). These data suggest that

articular cartilage—at least, superficial zone articular cartilage—is more vulnerable to fracture

than meniscus (fibrocartilage).

The limited available fracture data for other fibrocartilage tissues besides the mensicus also

support the idea that articular cartilage is more brittle than fibrocartilage. The minimum process

zone size in superficial articular cartilage is estimated to be in the 4 μm to 50 μm range (Taylor

et al. 2012; Chin-Purcell and Lewis 1996), although it should be noted that a second study’s

data indicates a process zone size > 0.1 mm (Stok and Oloyede 2007; Taylor et al. 2012).

(The process zone is the region near a crack tip that fails due to the crack-associated stress

concentration and so propagates the crack in fracture.) Small process zones imply that little

energy is required to propagate the crack; in other words, the material is more brittle. The

temporomandibular joint disc, which is similar to the meniscus in both structure and function,

is estimated to have a process zone size > 1.8 mm (Taylor et al. 2012; Koombua et al. 2006),

suggesting a much greater toughness than the articular cartilage. On the other hand, the articular
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cartilage data is inconsistent and the temporomandibular joint disc data only provides a lower

limit, so firm conclusions are not possible.

2.5 Epidemiology of meniscus tears

Many types of tears occur in the meniscus. Major tear types are shown in Figure 2.2. Tear

position is classified by dividing the meniscus into 3 circumferential segments (anterior, mid-

dle, posterior) and 4 radial segments (meniscosynovial junction, outer third, middle third, inner

third) (Cooper et al. 1990). Different tear phenotypes (combinations of tear type, tear position,

and which meniscus is torn) are associated with different etiologies. Broadly speaking, menis-

cus tear etiology falls into two groups: (1) acute tears, which are associated with a specific

overload event/injury and are common in younger people and (2) degenerative tears, which are

not associated with a specific injury.

Meniscus injury and meniscus-related surgeries are very common. Arthroscopic treatment

of meniscus injuries comprised 10–20% of all surgeries in the U.S. in 1990 (Greis et al. 2002).

Meniscus tears are associated with three causes in roughly equal proportion: (non-professional)

sports-related injury, injuries unrelated to sports, and no identifiable cause (Drosos and Pozo

2004). A third of non-sporting injuries are sustained rising from or descending to a squatting

position. In young people, meniscal injury is accompanied by a snapping or popping sensation

(Wagemakers et al. 2008). Horizontal cleavage, flap, and complex tears are considered degen-

erative because they are more common in older patients (age > 40 years) who cannot recall

a specific injury event (Drosos and Pozo 2004). Simple longitudinal tears and bucket handle
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tears (which may have the “handle” torn into two pieces) are considered acute/traumatic. Lon-

gitudinal tears and bucket-handle tears typically occur in people aged 20–30 year in the middle

and posterior sections of the meniscus (Lento and Akuthota 2000; Oberlander and Pryde 1994;

Hardin et al. 1992). Shear stress has been hypothesized to be important in the formation of

vertical and horizontal tears (Smillie 1978). The prevalence of meniscal tears increases with

age, from ~25% per knee at age 50–59 years to ~45% at age 70–90 years (Englund et al. 2008).

Drosos and Pozo (2004) have proposed that degenerative changes prior to 20 years of age di-

minish the elasticity of the meniscus and increase its susceptibility to injury.

The medial meniscus is more vulnerable to injury than the lateral meniscus because it is

attached to the medial collateral ligament and so has less mobility (Lento and Akuthota 2000).

Medial meniscus tears are 2–5 times as common as lateral meniscus tears (Campbell et al.

2001; Englund et al. 2008; Burk et al. 1988). The prevalence of lateral meniscus tears increases

for sport-related meniscus tears, but is still less than the prevalence of medial meniscus tears

(Drosos and Pozo 2004). In the sagittal plane, the medial tibial plateau is concave up (McDer-

mott 2006). This could promote crushing and tearing of the medial meniscus.

Meniscus tears are considered to be a cause of osteoarthritis (Cohen et al. 2007; Englund

et al. 2008). In individuals with risk factors for osteoarthritis (age 45–55 years), 64% hadmenis-

cus lesions and 79% had cartilage lesions (Laberge et al. 2012). Meniscus tears (as identified in

1.5T MRI) are much more common in people with radiographic evidence of osteoarthritis (an

osteophyte or worse) than in those without (60% vs. 25%) (Englund et al. 2008). In patients

with advanced knee osteoarthritis, the most common type of meniscal abnormality was a hy-
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pertrophied displaced tear (Jung et al. 2010). Meniscus injury is a risk factor for developing

osteoarthritis after ACL injury (Øiestad et al. 2009). At least part of the correlation between

meniscus tears and osteoarthritis is probably mediated by tears being treated by meniscectomy,

with meniscectomy being the proximal cause of ensuing osteoarthritis.

Meniscus tears can also adversely affect knee structures other than the articular cartilage,

such as the ACL (Arnold et al. 1979). Conversely, injuries to the ACL make meniscus injury

more likely (Bellabarba et al. 1997). In ACL-deficient knees, the medial meniscus load in-

creases by 50–200%, depending on knee flexion (Allen et al. 2000; Papageorgiou et al. 2001).

More than one third of meniscus tears are associated with an ACL injury (Poehling et al. 1990),

and about one third of knees with ACL injury also have meniscus tears, mostly of the medial

meniscus (Warren and Marshall 1978). Patients with ACL tears due to a jumping injury are

more likely to have meniscus tears than patients with a non-jumping injury (Paul et al. 2003).

Optimal management of meniscus tears is uncertain. Surgeons tend to consistently agree on

the treatment of meniscus tears (Dunn et al. 2004). However, it is still difficult to definitively

say whether any given tear can be left untreated (Duchman et al. 2015). There is concern about

tear-induced joint instability or post-surgical rehabilitation causing tear extension (Lento and

Akuthota 2000). At least some incomplete tears appear to be stable and best left untreated.

Longitudinal partial-thickness tears, stable (< 5 mm long) full-thickness peripheral tears, and

short (< 5 mm long) radial tears may not require surgical repair (Lento and Akuthota 2000).

Calling a tear stable means that the tear doesn’t affect the local rigidity of the meniscus upon

(arthroscopic) manipulation. Definitions do vary; Duchman et al. (2015) define a stable tear
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as one that cannot be moved into the intercondylar notch, and say there is little consistency

in definitions between studies. Treatment for incomplete longitudinal tears and complete sta-

ble longitudinal tears is considered to not be required (Feucht et al. 2015; Pujol and Beaufils

2009; Fitzgibbons and Shelbourne 1995) . Root tears, complete radial tears, and bucket handle

tears, however, are mechanically relevant and should be repaired as soon as feasible (Feucht

et al. 2015; LaPrade et al. 2014; Forkel et al. 2014; Ode et al. 2012; Schillhammer et al. 2012;

Kluczynski et al. 2013). A rule of thumb is that any medial meniscus vertical lesion ≥ 10 mm

long that is associated with ACL tear requires repair (Seil et al. 2009). These judgment calls are

not especially accurate. Considering specifically tears discovered during ACL repair, 4–22%

of untreated lateral meniscus tears undergo subsequent reoperation in a 6-year followup, as do

10–66% of untreated medial tears (Duchman et al. 2015; Pujol and Beaufils 2009). Lateral

meniscus tears tend to scar and heal better than medial meniscus tears if left in situ (Seil et al.

2009). Medial meniscus tears tend to produce secondary tears if left in situ. Overall, the behav-

ior of tears is not predictable at this time, and judgment calls are made based on accumulated

experience rather than mechanical or biological rationale.

2.6 Mechanical models for meniscus

Modeling of the meniscus began with linear elastic models, and these are still used in some

studies (Mononen et al. 2013; Aspden 1985; Peña et al. 2005; Mononen et al. 2013). The

meniscus has anisotropic properties due to its anisotropic fiber organization. Anisotropy is

often dealt with by using a transversely isotopic model or an orthotropic model. However,
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Figure 2.2: Typical meniscus tear morphologies (O’Keefe et al. 2013). Complex and horizontal
tears are thought of as degenerative and longitudinal, bucket handle, radial, and oblique tears
are thought of as resulting from acute injury. Complex tears are more broad than illustrated,
similar to an amalgamation of several other tears. Bucket-handle tears and longitudinal tears
may also be called circumferential tears. Nomenclature varies slightly between publications.
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the meniscus is nonlinear. Its stress–strain curve has a low-stiffness toe region, followed by a

strain-stiffening regime, an inflection point (which is matched with the yield point in Chapter 4),

a strain-softening region, and ultimately the peak point. The nonlinear mechanics of the menis-

cus have been modeled using an exponential or a piecewise quadratic and linear formulation

(Stabile et al. 2010; Mow et al. 2005; Upton et al. 2006; Párraga Quiroga et al. 2014; Tissakht

and Ahmed 1995). Tissakht and Ahmed (1995) used a piecewise polynomial fit with a quadratic

equation for the toe region and a linear equation for the linear region. Wren and Carter (1998)

used a composite model containing both a fiber and matrix phase, with each phase failing at

a specified strain. The model included uncrimping and fiber reorientation. The predictions of

this model were compared to data from Proctor et al. (1989) and showed a qualitatively good

match. This model by Wren and Carter (1998) is particularly interesting because it predicts

a jagged descending profile for the post-peak stress–strain curve, which qualitatively matches

experiments (for example, refer to Figure 4.5). Biphasic models have also been used to repre-

sent the mechanical effects of intra-meniscal fluid flow and hydrostatic pressurization (Párraga

Quiroga et al. 2014; Spilker et al. 1992). Spilker et al. (1992) represented the solid phase as a

linear elastic material. Párraga Quiroga et al. (2014) used a combination of a nonlinear isotropic

matrix term and two exponential fiber terms (one directional, one quasi-isotropic) for the solid

phase. The collagen fibers are sometimes modeled as a viscoelastic material, for instance using

the standard linear solid model (Párraga Quiroga et al. 2014). A recent model byMononen et al.

(2015) combines a viscoelastic fibril network term with a neo-Hookean porohyperelastic ma-

trix. However, the fibril network term was an isotropic homogenization over 13 fibril directions
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(Wilson et al. 2004). Not all of these models have been fit to data or validated, and much work

remains to be done. Only the model by (Wren and Carter 1998) represents damage or failure.
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CHAPTER 3: A COMPARISON OF STRESS IN CRACKED FIBROUS
TISSUE SPECIMENS WITH VARIED CRACK LOCATION, LOADING,

AND ORIENTATION USING FINITE ELEMENT ANALYSIS

3.1 Introduction

Cracks in fibrocartilage are a common pathology with potentially severe consequences. Menis-

cus cracks cause pain, compromise knee motion and, most importantly, promote osteoarthritis

(Englund et al. 2012; Bedi et al. 2010; Mononen et al. 2013; Maffulli et al. 2010; Berthiaume

et al. 2005; Lento and Akuthota 2000; Lohmander et al. 2007). Overload of the knee meniscus,

such as in sport-related injuries, can create cracks (Isaac et al. 2010; Drosos and Pozo 2004;

Fox et al. 2015; Snoeker et al. 2013). In the intervertebral disc annulus fibrosus, cracks (i.e.,

tears) occur as the disc degenerates, causing pain or mechanical disruption (Osti et al. 1992;

Vernon-Roberts et al. 2007; Haughton et al. 2000; Lee et al. 2004; Peng et al. 2005; Vide-

man and Nurminen 2004). Furthermore, cracks in avascular fibrocartilage have poor healing

potential (Arnoczky and Warren 1983).

Cracks can grow quickly, so the future risk posed by a given crack is not necessarily obvi-

ous. A crack creates a stress concentration at its tip that facilitates local failure and thus crack

extension (fracture) (Anderson 2005). Even a small, asymptomatic crack may consequently be

cause for concern. However, the mechanisms and mechanical loading conditions required for

crack extension in fibrocartilage (and other fibrous soft tissues) are still largely unknown.
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It has proven very difficult to produce crack extension in ex vivo mechanical testing. Only

a few publications report fracture toughness for fibrous soft tissue (Purslow 1985; Stok and

Oloyede 2007; Chin-Purcell and Lewis 1996; Oyen-Tiesma and Cook 2001; Koombua et al.

2006; Beatty et al. 2008; Wu et al. 2006b). Taylor’s review of these studies indicated that most

did not actually produce fracture (Taylor et al. 2012). Von Forell et al. noted a lack of crack

extension in their fracture tests of Achilles tendon and anterior longitudinal spine ligament (Von

Forell et al. 2014). Although fracture is not necessarily a relevant failure mode for all fibrous

tissues (Taylor et al. 2012), cracks in fibrocartilage clearly do grow in vivo.

The absence of crack extension in most experiments may be caused by loading conditions

that do not sufficiently represent in vivo conditions. The fracture tests cited above were all done

using edge-cracked specimens in uniaxial tension, with the crack perpendicular to the edge of

the specimen. In contrast, in vivo cracks (1) are often situated in the middle of the tissue, (2)

are loaded multiaxially, and (3) come in a variety of orientations (Shieh et al. 2013; Swenson

and Harner 1995; Osti et al. 1992; Kawamura et al. 2003; McNally and Adams 1992; Yoder

et al. 2014).

The objective of this study was to identify candidate test configurations that are likely to

produce crack extension. This information will be used to plan future experiments. Finite

element analysis (FEA) was used to compare specimens with varying (1) crack location (center

vs. edge), (2) loading (uniaxial vs. biaxial), and (3) crack-fiber angle. The likelihood of fracture

was compared using the magnitude of the crack-induced stress concentration. Greater stress

was interpreted as greater fracture risk. Since fibrous tissue has multiple failure mechanisms,
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including fiber rupture, matrix rupture, and fiber sliding, fracture risk was evaluated separately

for fiber-parallel, fiber-perpendicular, and fiber shear stress.

We hypothesized that at least one of the test configurations would have a greater stress con-

centration (a greater risk of fracture) than uniaxially loaded edge crack specimens. Our results

partially supported this hypothesis. Center crack specimens with oblique crack-fiber angles pro-

duced greater fiber-parallel stress, and thus a greater likelihood of fiber rupture, than edge crack

specimens. Edge crack specimens instead produced greater fiber-perpendicular stress (matrix

rupture) and fiber shear stress (fiber sliding).

3.2 Materials and methods

3.2.1 Specimen geometry and loading

The finite element specimen geometry was a 1 mm thick plate, which was meant to represent

typical tensile test specimens. Through-thickness slit cracks were created either in the center

or edge of the plate. The center crack meshes were 20 mm × 20 mm × 1 mm, with a 2 mm

long crack, and the edge crack meshes were 10 mm× 20 mm× 1 mm, with a 1 mm long crack

(Figure 3.1). All cracks thus had a characteristic crack length of 1 mm (Janssen et al. 2002).

Uniaxial or biaxial tensile stretch was applied by displacing the edge nodes. Biaxial stretch

was chosen because it is a standard test procedure for multiaxially loaded tissue (Sacks and Sun

2003; Bass et al. 2004; O’Connell et al. 2012). Thus, three combinations of crack location and

loadingwere examined: center crack biaxial (CCB), center crack uniaxial (CCU), and uniaxially
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loaded single edge notch (SENT) (Figure 3.1).

In all cases, the stretch ratio in the fiber direction was set to 1.14. The CCB case was

stretched equibiaxially in the x–y plane. The uniaxially loaded cases were stretched parallel to

the fiber axis, and the fiber-perpendicular axis was free to contract. This stretch ratio was chosen

to fully load the simulated fibers, such that the resulting stress (∼70 MPa) would be the same

order of magnitude as fibrous tissue strength (LaCroix et al. 2013; Green et al. 1993; Skaggs

et al. 1994b; Holzapfel et al. 2005; Ebara et al. 1996; Tissakht and Ahmed 1995).

3.2.2 Crack-fiber angle

For each configuration, the crack angle was varied relative to the fibers from 0° (parallel to the

fiber axis) to 90° (perpendicular to the fiber axis). This variation was done in 15° increments.

There is one exception: the SENT specimen has no 0° SENT case, as in that case the crack line

and specimen edge would coincide.

Figure 3.1: Test configurations. Three configurations were compared: center crack biaxial
(CCB), center crack uniaxial (CCU), and single edge notch (SENT). Each is illustrated here for
a crack perpendicular to the fibers. The crack angle was varied in each case.
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3.2.3 Mesh construction

Meshes were created using 8-node trilinear brick elements. A primary goal of the meshing

procedure was to ensure that differences in outcome between cases were not caused by dif-

ferences in mesh geometry. Consequently, we explicitly defined the size and position of each

element relative to the crack such that where large deformation gradients existed (i.e., near the

crack tip) elements were sized and positioned the same for every load case. The mesh contained

five layers of elements in the out-of-plane direction. Since the strain gradients were expected

to be greatest at the crack tip, the element size was log-biased, with the smallest elements at

the crack tip (Figure 3.1). The crack tip element size was parameterized, and all other element

sizes were relative to this minimum element size. All elements touching the crack face were set

to the minimum element size. In some of the center crack cases, regions containing large stress

gradients extended further from the crack than in the SENT cases; consequently, for the center

crack cases all elements within 1 mm of the crack were set to the minimum element size.

The effect of element size on the computed stress field was investigated by varying the

minimum element size (the size of the elements near the crack tip). Three sizes were examined:

50 μm, 100 μm, and 200 μm. For all analysis other than the convergence study, the 50 μm mesh

was used.

3.2.4 Constitutive model and material properties

Fibrous tissue mechanics were represented by a mixture model with matrix and fiber terms.

The matrix was represented by the (isotropic) Holmes-Mow strain energy function (Holmes
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and Mow 1990; Jacobs et al. 2014; Jacobs et al. 2013)

Ψm(I1, I2, J) =
1

2

λ+ 2µ

2β

{
e

β
λ+2µ

(
(2µ−λ)(I1−3)+λ(I2−3)−(λ+2µ) ln J2

)
− 1

}
. (3.1)

The fibers were represented by the exponential-power strain energy function

Ψf =
ξ

c1c2
(exp [c1(In − 1)c2 ]− 1) . (3.2)

The total strain energy is the sum ofΨm andΨf . Theλ andµ parameters are calculated from

E and ν using λ = E
(1+ν)(1−2ν)

and µ = E
2(1+ν)

. The material parameters were E = 75.8 kPa,

ν = 0.2205, β = 0.9438, c1 = 65, c2 = 2, and ξ = 296 kPa. These parameters were previously

obtained and validated for annulus fibrosus in the context of organ-scale intervertebral disc FEA

(Jacobs et al. 2013; Jacobs et al. 2014). They are qualitatively similar to meniscus fibrocartilage,

which is sufficient for the aims of this study.

3.2.5 Stress components

Due to the composite structure of fibrous soft tissue, crack extension can occur by multiple

mechanisms: fiber rupture (fiber-parallel stress), matrix rupture (fiber-perpendicular stress),

and fiber sliding (fiber shear stress). Therefore, Cauchy stress (σ) tensors were expressed in

a fiber-aligned coordinate system, defined as follows: axis 1 is parallel to the fibers, axis 2 is

perpendicular to the fibers (in the specimen plane), and axis 3 is normal to the specimen plane.

Fiber rupture risk was assessed using fiber-parallel stress (σ11), matrix rupture risk was assessed

using fiber-perpendicular stress (σ22), and fiber shear risk was assessed using fiber shear stress

33



(σ12). Fracture risk was ranked separately for each failure mechanism.

3.2.6 Fracture risk analysis

Fracture risk was compared between cases (CCB, CCU, and SENT, each with varied crack-fiber

angles) using the peak stress, which indicates the severity of the stress concentration (Sano et al.

2006). Greater stress was considered to indicate greater risk of fracture. The peak stress was

calculated using two methods: (1) fitting a stress profile to obtain the crack tip stress and (2)

calculating the stress at each element centroid and taking the maximum.

The stress profile fit was used because an FEA solution does not directly specify crack tip

stress. To obtain the stress profile, stress was sampled at evenly spaced points on a line (in the

reference configuration) extending from the crack tip, in the mid-z plane, in the same direction

as the crack (Figure 3.2a). Interpolationwithin an element was done using a sub-element formed

by its Gauss points. To obtain the stress at the crack tip, the near-tip part of this stress profile

was fit with an exponential function (Figure 3.2b). This stress profile method was used for the

fiber-parallel stress component.

For the fiber-perpendicular stress and fiber shear stress profiles, the stress profiles tended to

be near-constant (e.g. Figure S1) or oscillatory (e.g. Figure S2). The fiber-perpendicular and

fiber shear stress concentrations did not follow a conventional crack tip centered pattern (see

results section 3.3.1), so in these cases the profile line did not sample the most relevant regions.

The maximum element-wise stress was used as a workaround for these cases.
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Figure 3.2: Quantification of crack tip stress. (a) Stress was sampled along a line (in the
reference configuration) extending from the crack tip to the edge of the mesh. (b) To find the
stress at the crack tip, the stress profile was fit with an exponential function and extrapolated to
0 mm distance. This example shows the fit for the 45° CCB case with 50 μm elements.

3.3 Results

3.3.1 Stress fields

Each stress component (fiber-parallel stress, fiber-perpendicular stress, and fiber shear stress)

had a different spatial distribution. Fiber-parallel stress concentrations in all three test config-

urations were centered on the crack tip (Figure 3.3). The fiber-parallel stress concentrations

extended far in the fiber direction, but hardly at all perpendicular to the fibers. Acutely oriented

center cracks (Figure 3.3a,b) createdmore intense fiber-parallel stress bands than the other cases.

Center cracks 90° to the fibers (Figure 3.3d,e) produced stress fields similar to SENT cracks of

any orientation (Figure 3.3c,f).

Fiber-perpendicular stress concentrations were also centered on the crack tip (Figure 3.4).

Acutely oriented center cracks produced fiber-perpendicular stress concentrations that extended

for a short distance perpendicular to the crack, gradually curving to follow the fibers (Figure

3.4a,b). Regions of great tensile or compressive stress were also evident along the crack faces.
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Figure 3.3: Fiber-parallel stress fields. (a) 45° CCB, (b) 45° CCU, (c) 45° SENT, (d) 90° CCB,
(e) 90° CCU, and (e) 90° SENT. Each panel shows a 3.2 mm tall subregion of the specimen.

In contrast, the fiber-perpendicular stress concentrations produced by 90° center cracks, or any

of the SENT cracks, were very local to the crack tip (Figure 3.4c–f).

Fiber shear stress concentrations for acutely angled center cracks were distributed in fiber-

aligned bands above and below the crack faces (Figure 3.5a,b). The crack tip stress did not

always dominate the fiber shear stress field; stresses similar in magnitude to the crack tip stress

occurred ∼1 mm away from the crack tip (asterisks in Figure 3.5a,b). However, 90° center

cracks produced more conventional fiber shear stress concentrations that were tightly centered

on the crack tip and elongated along the fiber axis (Figure 3.5d,e). The fiber shear stress in the
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Figure 3.4: Fiber-perpendicular stress fields. (a) 45° CCB, (b) 45° CCU, (c) 45° SENT, (d)
90° CCB, (e) 90° CCU, and (e) 90° SENT. Each panel shows a 3.2 mm tall subregion of the
specimen.

Figure 3.5: Fiber shear stress fields. (a) 45° CCB, (b) 45° CCU, (c) 45° SENT, (d) 90° CCB, (e)
90° CCU, and (e) 90° SENT. In panels a and b, asterisks mark locations with stress magnitudes
similar to the crack tip stress, yet distant from the crack tip. Each panel shows a 3.2 mm tall
subregion of the specimen.
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90° center crack case, like the other stress components, was similar to the SENT cases (Figure

3.5c–f).

3.3.2 Relative stress concentration severity

The fiber stress at the crack tip, as quantified by stress profile fitting (section 3.2.6), was greatest

for center-crack cases with oblique cracks (Figure 3.6). The CCB and CCU configurations were

essentially identical. In contrast, the crack tip fiber stress for obliquely oriented SENT cracks

were much less severe. Cracks oriented 90° to the fibers exhibited the same crack tip fiber

stress for all three configurations. Cracks oriented 0° to the fibers did not increase the fiber

stress relative to the crack-free condition.

Figure 3.6: Fiber-parallel stress calculated by the stress profile fitting method. Center-cracked
specimens with acutely angled cracks have greater fiber stress compared to edge-cracked spec-
imens. 0° = crack parallel to fiber axis; 90° = crack perpendicular to fiber axis.

Since the matrix stress and fiber shear stress at the crack tip could not be obtained by fitting

stress profiles (see section 3.2.6), they were instead quantified by the maximum element-wise

stress (Figure 3.7). Fiber-perpendicular stress was equal between 90° CCB, CCU, and SENT
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cases, but was greatly lessened for the center crack cases with crack-fiber angles < 90° (Figure

3.7b). Fiber-perpendicular stress for SENT specimens remained essentially constant regardless

of crack-fiber angle. Similarly, fiber shear stress was equal for 90° CCB, CCU, and SENT cases,

and decreased greatly for center crack cases with crack-fiber angles < 90° (Figure 3.7c). How-

ever, fiber shear stress for SENT specimens increased slightly as crack-fiber angle decreased.

As a consistency check, the maximum element-wise stress was also computed for the fiber-

parallel stress. Trends in fiber-parallel stress measured by the maximum stress method are es-

sentially the same as measured by the stress profile fits (compare Figure 3.7a to Figure 3.6).

Figure 3.7: Maximum element-wise stress for (a) fiber-parallel stress, (b) fiber-perpendicular
stress, and (c) fiber shear stress components. For fiber stress, Figure 3.6 uses a more robust
metric. The 15° CCB and CCU cases are excluded from panels b and c because these cases
nearly inverted some elements near the crack tip (shown in Figure S3), producing spurious
values for fiber-perpendicular stress and fiber shear stress. The 0° CCU case has approximately
zero fiber-perpendicular stress and fiber shear stress, so it is not shown in panels b or c. 0° =
crack parallel to fiber axis; 90° = crack perpendicular to fiber axis.

3.3.3 Element size sensitivity

The crack tip fiber stress obtained from the stress profile fits was sensitive to the mesh size (Fig-

ure 3.8). Stress approximately doubled for each halving of the element size, with no apparent

convergence to a limit.
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Figure 3.8: Effect of mesh element size on crack tip fiber stress. Each panel plots data from
specimens with the indicated crack-fiber angle. For all acutely oriented cracks, smaller elements
caused increases in stress. Specimens with a crack-fiber angle of 90° are much less sensitive to
mesh size. Since specimens with cracks 0° to the fibers have no fiber stress concentration, they
are insensitive to mesh size. 0° = crack parallel to fiber axis; 90° = crack perpendicular to fiber
axis.

3.4 Discussion

3.4.1 Implications for physical crack extension testing

This study’s primary purpose was to identify load configurations that are likely to cause crack

extension and are thus good candidates for physical fracture testing. This was successful. Fiber

rupture is most likely in center crack specimens with oblique crack-fiber angles, regardless of

uniaxial or biaxial loading (Figure 3.6). Matrix rupture (perpendicular to the fibers) and fiber

shear, however, are most likely in edge crack specimens or 90° center crack specimens (Figure

3.7b,c). Based on these results, the commonly used SENT configuration is a reasonable choice

for tests of matrix rupture and fiber shear. Experiments instead meant to produce fiber rupture

should include center-crack specimens with oblique crack-fiber angles.

When choosing a test configuration, the crack extension path must also be considered. Al-

though the simulated SENT specimens did produce a relatively severe fiber-perpendicular stress

and fiber shear stress concentrations, these stress components promote failure along the inter-
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fiber boundary. For any crack not parallel to the fibers, extension (in the original direction of

the crack) requires fiber rupture, which is promoted by fiber-parallel stress. Since the SENT

configuration produces relatively weak fiber-parallel stress concentrations, it makes sense that

crack extension has not been observed in experiments using this configuration. The strong fiber-

perpendicular and fiber shear stress concentrations in the SENT configuration instead increase

the likelihood of crack deflection or the creation of secondary cracks between fibers. Secondary

cracks of this type, extending perpendicular to the main crack, are visible in Purslow et al.’s Fig-

ure 5 (Purslow 1985). In future work, it may be useful to systematically report secondary crack

formation.

Crack extension bymatrix rupture can be specifically studied using specimens with the load-

ing axis perpendicular to both the fiber axis and the crack axis. This test configuration was not

included in the present work because it leaves the fibers unloaded, but it has been previously

applied to spine ligament, tissue engineered cartilage, deep zone articular cartilage, and tem-

poromandibular joint disc (Von Forell et al. 2014; Koombua et al. 2006; Oyen-Tiesma and Cook

2001). Cracks did not extend in spine ligament (Von Forell et al. 2014), did extend in tissue

engineered cartilage (Oyen-Tiesma and Cook 2001), and also extended in a subset of articu-

lar cartilage specimens (Chin-Purcell and Lewis 1996; Taylor et al. 2012). It was ambiguous

whether the temporomandibular joint disc failed by fracture (Koombua et al. 2006; Taylor et al.

2012). This test configuration thus has a fair chance of producing crack extension, depending

on the tissue.

Lastly, similar fiber stress between the CCB and CCU specimens (Figures 3.3a,b,d,e and
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3.6) indicates that CCU specimensmay be useful as a proxy for CCB specimens. Fiber-perpendicular

stress and fiber shear stress are also similar, but less so (Figures 3.7b,c, 3.4a,b,d,e, and 3.5a,b,d,e).

Uniaxial fracture testing for fibrous soft tissue is much easier than biaxial fracture testing, so

the ability to substitute one for the other would be convenient.

3.4.2 Crack blunting and plastic deformation

The cracks changed shape dramatically during the simulation due to the high degree of material

anisotropy and the large deformation. Cracks in the 0° and 90° center crack cases and all the

edge crack cases opened extremely widely. Large elastic crack opening such as this blunts the

crack and reduces the crack tip opening stress (Hui et al. 2003). In comparison, the oblique

(15–75°) center crack cases twisted into a tilde-like shape that maintained the sharpness of the

crack tip and better concentrated the crack tip opening stress (Figure 3.3).

In a real material, plastic deformation will further contribute to crack blunting. Wide open-

ing and blunting of edge cracks, with no crack extension, has been previously observed in phys-

ical testing of tissue and scaffolds (Stok and Oloyede 2003; Koh et al. 2013; Von Forell et al.

2014). Plastic inter-fibril sliding occurs in tendon (Szczesny and Elliott 2014b). SENT tests of

ligament with fibers 45° to the loading axis showed blunting that was slanted along the fiber axis,

consistent with fiber shear (Von Forell et al. 2014). The severity and kind of plastic blunting in

the cases examined herein are not yet known.
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3.4.3 Calculation of crack tip stresses and mesh sensitivity

We calculated crack tip stress by a fitting procedure (Figure 3.2) in an attempt to improve upon

the use of maximum element-wise stresses. In elements with extreme stress gradients, such as

those near the crack tip, small changes in sampling location cause large changes in the sampled

stress value. Computation of maximum element-wise stresses uses the element centroids as

sampling locations; thus, the sampling position is determined solely by themesh geometry. This

can be an unwanted source of variability. Additionally, the maximum is not a robust statistic;

it only takes a single misbehaving element to distort the result. The crack tip stress obtained

by fitting the stress profile corrects these disadvantages by using a specific sampling point and

incorporating data from multiple elements. However, it is limited in that the stress profile must

be sufficiently regular to suggest a fit. Thus, the stress profile method cannot supersede the

maximum stress measure in all cases.

Note that the stress profile method is still sensitive to the element size in the mesh (Figure

3.8). This is because the underlying FEA solution is an approximation using a piecewise discon-

tinuous linear strain field. Making the elements smaller improves the approximation; however,

the true crack tip stress for a sharp crack (in an elastic material) is singular. Refinement of the

solution therefore cannot cause the crack tip stress to converge to a finite value.

Comparison of the crack tip stress in the present study is really a comparison of the strength

of the stress concentration, and the values only have meaning in terms of their relative rank.

Extreme caution should be used when comparing stress values between studies, as the meshes

are unlikely to have been prepared in the same way. Development of a metric for stress concen-
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tration severity that is mesh-independent, and so can be compared between independent studies

or used for prediction of in vivo failure, is a high priority for future work in biomechanics.

3.4.4 Limitations

This study has several limitations that should be considered when interpreting the results. The

use of elastic models in this study means that damage and plastic deformation are not repre-

sented. Plasticity and damage may greatly affect the stress field in real specimens, most likely

by reducing the stress concentration magnitude and spreading it over a larger region. Nonethe-

less, specimens with greater elastic stress concentrations should surpass the threshold for dam-

age and plastic deformation before those with lesser elastic stress concentrations, so the elastic

stress based ranking, albeit imperfect, is still useful.

Second, stress profiles could not be fit to the fiber-perpendicular and fiber shear stress fields,

requiring that the fracture risk associated with these components be assessed using maximum

element-wise stress. This measure is less robust than the crack tip stress fit used for the fiber-

parallel stress. This lesser robustness is of greater concern when combined with severely de-

formed elements. Consequently, accurate maximum values for fiber-perpendicular stress and

fiber shear stress could not be obtained for the 15° CCB and CCU cases (Figure 3.7b,c). De-

spite this, the crack tip stress obtained by stress profile fitting and the maximum element-wise

stress had consistent trends for the fiber-parallel stress component (Figures 3.6 and 3.7a). This

consistency increases our confidence in the use of maximum element-wise stress to compare

the fiber-perpendicular and fiber shear stress concentrations.
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Due to these limitations, we considered only the relative risk of failure modes between

test configurations. Furthermore, since small differences are more likely to be artifactual or

irrelevant, we interpreted only large (≥ 0.5 orders of magnitude) differences as meaningful.

3.5 Conclusion

The goal of this work was to identify good test configurations for producing crack extension in

fracture tests of fibrocartilage. Center-cracked specimens with the crack 30° to 60° relative to

the fibers were predicted to stress the fibers much more than commonly-used SENT specimens,

and are therefore most likely to produce crack extension by fiber rupture. However, SENT

specimens produce equal or greater fiber-perpendicular and fiber shear stress compared to center

crack specimens. Consequently, SENT specimens are a good choice for investigating failure by

matrix rupture and fiber sliding, although care must be taken to choose a test setup in which

these kinds of failure can produce crack extension. These results will guide our choice of test

configurations for future fracture testing of fibrous tissue.
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CHAPTER 4: QUANTIFICATION OF MENISCUS TENSILE
MECHANICS AND SELECTION OF SPECIMEN SHAPE

4.1 Introduction

The meniscus performs the critical function of distributing knee loads over articular cartilage

and protecting it from overload. Meniscus damage impairs this function and may necessi-

tate meniscectomy to resolve pain or mechanical symptoms, greatly increasing the risk of os-

teoarthritis. Due to the consequences of a mechanically compromised meniscus, there is great

interest in developing methods to repair or replace damaged meniscus (Stapleton et al. 2008;

Rodkey et al. 1999; Nerurkar et al. 2011; Fisher et al. 2015; Mauck and Burdick 2015). These

efforts depend on accurate quantification of normal meniscus mechanics, damage, and failure.

Mechanical property measurements must be reliable and functionally relevant, and procedural

factors which affect the outcome of mechanical tests must be identified and controlled. These

challenges merit careful attention; they have not been entirely solved for fibrous soft tissue

in general or meniscus specifically. The specific objectives of this study are to quantify the

meniscus’ nonlinear mechanics, in the process resolving several issues pertaining to their quan-

tification, and to determine the benefits and disadvantages of several popular specimen shapes

for tensile testing.

The meniscus, like all fibrous soft tissues, has a nonlinear stress–strain curve in tension. It is

46



also anisotropic, necessitating testing in multiple loading directions. The meniscus is compliant

at low strain (the toe region of the stress–strain curve), stiffens as strain increases (this region is

often called the linear region), undergoes a loss of stiffness (strain softening), and finally rup-

tures. The strain stiffening is attributed to the incremental recruitment of collagen fibers (Mow

et al. 2005). The nonlinearity of the stress–strain curve, which affects the toe region in particu-

lar, is usually left unparameterized, making it difficult to carry out tasks such as predicting the

meniscus’ in situ mechanical response. Some studies have modeled the nonlinear mechanics of

the meniscus using an exponential or a piecewise quadratic and linear formulation (Stabile et al.

2010; Mow et al. 2005; Upton et al. 2006; Párraga Quiroga et al. 2014; Tissakht and Ahmed

1995). These phenomenological models, although they make mechanical predictions possible,

are difficult to interpret in terms of meniscus structure or pathology. In this study, we quantify

the stress–strain curve up to the strain softening regime using a structural model based on the

concept of sequential fiber recruitment (Szczesny et al. 2012).

Meniscus mechanics are also quantified using non-model parameters. Historically, these

have only included elastic modulus (slope of the stress–strain curve), peak strain (ultimate ten-

sile strain), and peak stress (ultimate tensile strength) (Sweigart and Athanasiou 2005; Tissakht

and Ahmed 1995; Kelly et al. 1990; Bullough et al. 1970; Lechner et al. 2000; Bursac et al.

2009; Stapleton et al. 2008; Tanaka et al. 2014; Proctor et al. 1989; Whipple et al. 1985; Sta-

bile et al. 2010; Skaggs et al. 1994a). These metrics are useful and, compared to model-based

approaches, are simple to measure. However, the elastic modulus is difficult to define due to

the nonlinear stress–strain response of the meniscus. It is usually calculated using a linear re-
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gression fit of the quasi-linear region where strain stiffening appears fully develoepd (Proctor

et al. 1989; Viidik 1972; Anderson et al. 1993; Lechner et al. 2000; Tissakht and Ahmed 1995;

Freutel et al. 2015; Bursac et al. 2009; Tanaka et al. 2014; Stabile et al. 2010), but there is no

part of the stress–strain curve that is truly linear. The assignment of a linear region is thus rather

arbitrary and so varies from study to study. The criteria used for assignment are often left un-

specified, and human judgment on a case-by-case basis appears to tacitly be the most common

procedure. Studies which reproducibly define the yield point do so using a strain or stress range

relative to the peak value. While this solution is practical, it makes the linear region covariate

with the peak point rather than specific to the stress–strain curve’s shape. The chosen rangemust

be tweaked from study to study to ensure it corresponds to a region with quasi-linear behavior.

The meaning of an elastic modulus obtained by fitting the linear region thus also varies. A

related problem is identification of the transition from strain-stiffening to strain-softening; i.e.,

the yield point. This transition is a potentially important transition in function. The yield point

has not yet been reported for meniscus. In this study we implement a procedure for measuring

the meniscus’ elastic modulus and yield point based on the stress–strain curve’s shape, which

should prove more robust than existing methods.

In an ideal tensile test, the specimen ruptures in the middle of the gauge region, away from

the grips. This is called midsubstance rupture. It is desirable because the grips create local

stresses by applying clamping force and restricting specimen deformation (Jacobs et al. 2013;

Sun et al. 2005; Polzer et al. 2013). Rupture at or near the grip line thus occurs under different

conditions than midsubstance rupture and measures a potentially different failure process. The
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local grip stresses are complex and difficult to quantify, so tissue tests resulting in rupture of

the gripped region are usually discarded (Lechner et al. 2000; Sweigart and Athanasiou 2005;

Proctor et al. 1989). However, few studies report the rupture location; those that do so only

report that midsubstance ruptures were used, and do not specify the rules bywhichmidsubstance

ruptures were identified. As a practical matter, classification of a rupture in a tissue specimen

as a midsubstance or gripped region rupture is seldom clear. Tissue specimens are usually

small, and ruptures can involve a large part of the specimen length. Many ruptures involve

both the midsubstance and gripped regions (Anderson et al. 1993; Lechner et al. 2000). To

help resolve uncertainty regarding how rupture locations should be identified, in this study we

classified rupture locations in detail with illustrated definitions so that these classifications can

be reproduced in future work. To help determine which rupture types should be considered

valid test outcomes, we also compared mechanical test outcomes between rupture types.

Dogbone (DB)-shaped (also known as dumbbell-shaped) specimens are used to compen-

sate for local grip-induced stresses by reducing the cross-sectional area in the specimen mid-

substance, thus increasing its stress and the likelihood of midsubstance rupture. If the rupture is

sufficiently far from the grip line that the local grip stresses have diffused into a uniform stress

field, the midsubstance rupture is expected to be independent of grip effects (i.e., Saint-Venant’s

principle). Thus, dogbones in principle provide results unconfounded by grip effects and have

been incorporated into test standards for many industrial materials (e.g., metal, plastic, leather)

(ASTM D638-14 2014; ASTM D2209-00 2015; ASTM E8/E8M-15a 2015). They accordingly

are the de facto standard for tensile tests of meniscus and other fibrous soft tissues (Skaggs et al.
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1994a; Bowser et al. 2011; Lechner et al. 2000; Whipple et al. 1985; Proctor et al. 1989; Freutel

et al. 2015). Rectangular specimens are also used, though, and may be preferable when speci-

mens are only a few mm long (Villegas et al. 2007; Bursac et al. 2009; Sweigart and Athanasiou

2005; LeRoux and Setton 2002). However, for fibrous soft tissues, it is not clear whether the

dogbone shape actually prevents grip effects from influencing test outcomes. Abatement of lo-

cal grip stresses from the grips to the midsubstance region is unlikely in the (by necessity) short

length of most tissue specimens (Reese et al. 2013; Skaggs et al. 1994b; Sun et al. 2005). To

resolve the question of which specimen shape is preferable for meniscus testing, we compared

dogbone specimens with rectangular specimens. Strain fields were measured to elucidate the

role of grip-associated local stresses and other local stress sources.

The meniscus, due to the arc of its circumferential fibers, poses an additional complication:

the inner side and outer corners of standard fiber-aligned circumferential dogbone (DB) spec-

imens and rectangle (R) specimens have fibers that insert into only one grip. Therefore, we

also compared these specimen shapes to a non-standard expanded tab (ET) shape (Tanaka et al.

2014). The ET shape has elongated grip-region tabs that follow the arc of the meniscus fibers

and are meant to ensure that all fibers which cross the grip line have sufficient length inside

the grips to be securely clamped. Quantitatively, the ET specimens are hypothesized to have

a greater proportion of fibers loaded by the tensile test and thus greater apparent stiffness and

strength.

In summary, the objective of this study was to comprehensively quantify the nonlinear me-

chanical properties of the meniscus in uniaxial tension and resolve several experimental issues
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regarding quantification procedure, rupture location, and specimen shape. Since the meniscus

bears multiaxial loads, tensile tests were done in both the circumferential and radial directions.

The mechanical properties reported in this study, as well as the advances made regarding (i)

structure-based modeling of the nonlinear toe-region, (ii) yield and modulus quantification, (iii)

rupture location classification, (iv) local strain field heterogeneity, and (v) choice of specimen

shape are each a significant step forward for meniscus research and, importantly, are applicable

to fibrous soft tissues in general.

4.2 Methods

4.2.1 Specimen preparation and tensile test protocol

Meniscus specimens were prepared for uniaxial tensile testing in both the circumferential and

radial directions (Figure 4.1). Bovine menisci were purchased from Animal Technologies, Inc.

(TX) and stored at −20 °C. Both medial and lateral menisci were used. The source animals

were all greater than 3 years old. Specimens were cut from the center (mid-circumferential,

mid-radial, and mid-axial region) of the meniscus. While whole, the meniscus was measured

and the placement of the specimen boundary planned. Both sides of the meniscus were then

planed using a cryomicrotome to obtain the desired specimen thickness. The specimen’s curved

edges were cut with a biopsy punch and the straight edges were cut with a 130 mm histology

trimming knife or, for tight work, a #15 scalpel. The target dimensions were adapted on a

specimen-specific basis to accomodate anatomic variation between animals such that the same
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Figure 4.1: Meniscus specimen shapes used in this study and their dissection locations. The
specimen and meniscus outlines are printed at 1:2 scale. The specimen outlines match the
median dimensions used in this study. The gray shaded regions of the specimen were clamped
by the grips. The dashed lines schematically illustrate the curved path of the meniscus’ fibers.

anatomic region was sampled in all cases. For example, in an especially narrow meniscus, the

width of a circumferential specimen or the length of a radial specimen was reduced to avoid the

inner or outer regions. In a meniscus with a short anterior-posterior distance, and hence sharp

fiber arcing, circumferential specimens were cut with reduced length to preserve grip-to-grip

fiber continuity. Specimen cross-sectional area (i.e., thickness and width) was measured with a

scanning laser displacement sensor (factory-specified z accuracy < 16 μm and x and y accuracy

< 11 μm) (Szczesny et al. 2012; Favata 2006).

Circumferential tests used expanded tab (ET), rectangle (R), and dogbone (DB) shaped

specimens (Figure 4.1). The ET shape was meant to improve grip-to-grip fiber continuity in
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circumferential specimens by elongating the gripped tabs on the inner side of the meniscus,

accommodating the arc of the circumferential fibers into the grips. Circumferential specimen

dimensions were as follows. Specimen thickness was 1.3 ± 0.4 mm. ET specimens were 37

± 2 mm long and 7.1 ± 2.5 mm wide in the midsubstance, with 1.5 mm radius fillets. The

uniform-width midsection was 12.2± 1.8 mm long and the grip-to-grip length was 17.1± 2.4

mm. R specimens were 28 ± 4 mm long, 7.7 ± 1.4 mm wide, and the grip-to-grip length was

14.8 ± 3.6 mm. DB specimens were 28 ± 4 mm long and 8.8 ± 1.5 mm wide, with a 4.3 ±

1 mm wide midsubstance and 2 mm radius semicircular cutouts. Their grip-to-grip length was

15.4 ± 3.2 mm.

Radial tests used R and DB specimens (Figure 4.1). Radial specimen dimensions were as

follows. Specimen thickness was 1.7± 0.2 mm. R specimens were 12.4± 2.6 mm long, 5.5±

1.0 mm wide, and had 7.8 ± 1.6 mm grip-to-grip length. DB specimens were 11.9 ± 1.6 mm

long and 6.8± 0.8 mm wide, with a 3.8± 1.1 mm wide midsubstance. They had a grip-to-grip

length of 8.3 ± 0.8 mm.

Prepared specimensweremounted in aluminum grips with 0.031 in tall 60° serrated teeth. A

double layer of 400 grit cloth sandpaper was used to protect the specimen from the grips’ teeth.

The grips were tightened via bolts (2 per grip) to a standardized torque (8 in-lb; 4-40 thread)

(Swank et al. 2014; Schechtman and Bader 1997). The grips were kept aligned by a rigid guide

while the specimen was mounted and the grips tightened. The grips were then left to sit for ten

minutes and tightened again to the target torque. The torque dropped to about 2 in-lb during this

10 min time. The surface of each specimen was speckle coated with Verhoeff’s stain before it
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was mounted on the mechanical tester to facilitate digital image correlation for strain analysis.

The grips were then removed from the rigid guide and attached to an Instron 5943 tensile tester.

Up to this point, the specimen was kept under gauze moistened with phosphate-buffered saline

(PBS) except while being manipulated.

The specimenwas loadedwith a 20 kPa preload; the specimen length at this loadwas consid-

ered the undeformed length. Ten cycles of preconditioning to 4% strain were applied, followed

by a displacement-controlled ramp to rupture. The displacement rate was 0.5 mm/s (quasistatic)

for all tests. Video was recorded for each test at ~15 fps with a field of view of 1280 × 960 px

and a scale of ~30 px/mm. The total testing time from removal of the damp gauze, through

preconditioning and rupture was approximately 5 minutes. Circumferentially loaded ET spec-

imens were tested in either air (5 in the final dataset) or PBS (14 in the final dataset). Other

shapes were tested in air alone, except for 1 circumferentially loaded R specimen tested in PBS.

Both test environments produced nearly identical stress–strain responses with no significant dif-

ference with respect to any measured parameters (Figure 4.2 and Table 4.1). Furthermore, the

magnitude of the (non-significant) differences between tests in air and PBS were small relative

to the differences observed between specimen shapes (compare Table 4.1 to Figure 4.7 or Table

4.3). Since there was no effect of test environment on the mechanical response, at least for this

< 5 minute test duration, results from tests in air and PBS were pooled.
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Figure 4.2: Mean and standard deviation of yield and peak points for circumferential ET spec-
imens by test environment. The stress–strain response of specimens tested in air and PBS did
not differ with respect to these points or any other measured parameter (see Table 4.1 for other
parameters).

Table 4.1: Mechanical parameters compared between circumferential ET specimens tested in
air and PBS. There was no significant difference with respect to any parameter and the 95%
confidence intervals for potential differences are small.

Air (Mean ± SD) PBS (Mean ± SD) Difference (95% CI)
λ̄c 1.033 ± 0.010 1.04 ± 0.01 −0.017 to 0.008
λSD
c 0.016 ± 0.004 0.020 ± 0.004 −0.008 to 0.001

kf (MPa) 264 ± 35 238 ± 48 −19 to 71
Yield Strain 0.09 ± 0.02 0.09 ± 0.01 −0.02 to 0.02
Yield Stress (MPa) 15 ± 3 12 ± 2 −0.43 to 5.66
Modulus (MPa) 271 ± 41 231 ± 43 −9.36 to 91.20
Peak Strain 0.28 ± 0.08 0.28 ± 0.09 −0.10 to 0.10
Peak Stress (MPa) 40 ± 8 34 ± 7 −4.58 to 15.22

4.2.2 Specimen characteristics and specimen exclusion

Sixty-seven bovine menisci were used for this study. From these menisci, 95 specimens were

cut and tested. Specimens ruptured in a variety of ways, so ruptures were classified according

to the following definitions (illustrated in Figure 4.3):

Midsubstance rupture The line of rupture did not cross or touch either grip line.

Mixed rupture The line of rupture touched or crossed a grip line, but did not qualify as any

the following rupture types. A mixed rupture can be thought of as a mix of midsubstance
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Figure 4.3: Classification scheme for types of specimen rupture. Circumferential specimens (A)
ruptured in two more ways than radial specimens (B). Gripped region failures and longitudinal
splits were considered invalid and excluded from mechanical analysis.

rupture and grip-related related rupture.

Grip line rupture The line of rupture was entirely within ~1 mm of the grip line, but did not

enter the gripped region.

Gripped region rupture Rupture occurred inside the grips, and the rupture did not qualify as

a longitudinal split.

Longitudinal split The line of rupture bisected the specimen lengthwise.

Counts of tests ending in each rupture type are given in Table 4.2 for each specimen shape and

loading direction. Images of individual specimens are listed in Appendix A. Gripped region

ruptures were excluded from further analysis because the stress field within the grips is un-

known. Similarly, tests ending in longitudinal splits were excluded because the stress across the

57



rupture surface is unknown. Counts of tests ending with valid and excluded rupture types are

given in Table 4.2.

After these exclusions, the sample set still included some duplicate specimens of the same

shape cut from the same meniscus. (These duplicates were originally prepared with the aim of

doing paired tests, but fair paired comparisons were not possible due to the variety of rupture

outcomes.) To avoid considering within-meniscus covariance in the analysis, these duplicates

were excluded first by dropping grip line ruptures, then at random, until each remaining spec-

imen in each shape category came from a unique meniscus (Table 4.2). The final specimen

counts used in each group for analysis, after all exclusion criteria were applied, are given in the

last row of Table 4.2. The circumferential DB specimen count is low because, as the experiment

proceeded, many issues with this shape became apparent (see Section 4.4.8). We consequently

phased out the use of DB specimens.

4.2.3 Data analysis

Strain was measured using grip-to-grip displacement (grip strain) and reported in the form of

the stretch ratio (λ = l/l0, where l is the current length and l0 is the undeformed length) or

Lagrange strain (Exx = 1/2[λ2 − 1]). Stress was calculated using the initial cross-sectional

area of the narrowest region of the specimen. The stress–strain curve was quantified by fitting

it to a fiber recruitment model developed to represent the toe region (see Section 4.2.4) and by

measuring yield strain, yield stress, tangent modulus at yield, strain at peak stress (peak strain),

and peak stress (Figure 4.4, top half). The yield point was defined as the first inflection point
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in the stress strain curve (Goh et al. 2012), which was identified by fitting a cubic smoothing

spline (using the smooth.spline function in R 3.2 (Team 2015) with spar = 1.0) to the pre-

peak stress–strain curve and taking its first derivative to obtain a smooth tangent modulus curve

(Figure 4.4, bottom half). This procedure equates yield with the inflection point.

Strain fields were measured from video records of each test by digital image correlation

using Vic-2D 2009 (Correlated Solutions). The parameters used in the digital image correlation

are documented in Appendix B. An image taken between the preconditioning and ramp to failure

steps was used as the zero-strain reference point. The correlation window was 0.7 mm × 0.7

mm. All strain fields were plotted in the reference space.

Figure 4.4: A representative stress–strain curve for circumferential ET specimens with the
fiber recruitment range (the 0.025 and 0.975 quantiles of λc), mean fiber recruitment stretch
(λ̄c), yield point, and peak point marked. The lower plot shows the point-wise tangent modulus
curve (the first derivative of the stress–strain curve), the first local maximum of which was
identified as the yield point. Both plots share the same x-axis.
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4.2.4 Fiber recruitment model

The nonlinear stress–strain response of circumferentially loaded specimens was quantified using

a fiber recruitment model (Szczesny et al. 2012; Sacks 2003; Lanir 1983). The model repre-

sents the tissue as an assembly of linear stiffness fibers aligned with the loading axis. Since

radial specimens have fibers primarily perpendicular to the loading direction, the model was

not applied to these tests. Sequential recruitment of fibers is represented by making the stretch

at which each fiber starts to bear load, λc, a randomly distributed variable. Here, λc is called

the fiber recruitment stretch. In other work, it is usually called the uncrimping stretch, but in

this work we interpret λc as representing fiber reorientation into the loading direction as well as

fiber uncrimping. Although the fibers are linear, the randomly distributed recruitment causes a

nonlinear response.

Fibers are assumed to have linear stiffness kf and bear no load in compression, such that

the stress in the fibers is

σf =


kfεf εf ≥ 0

0 εf < 0

(4.1)

where εf is the fiber strain. The fiber stiffness kf is assumed to be the same across all fibers.

The fiber strain is related to the fiber recruitment stretch λc and the tissue stretch λ by

εf =
1

2

(
λ2

λ2
c

− 1

)
. (4.2)

The variation in fiber recruitment stretch (i.e., fiber initial state) is given by the probability
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density function

G(λc) = (λc − 1)α−1 e
−(λc−1)/β

βαΓ(α)
(4.3)

which is a gamma distribution with shape parameter α, location parameter = 1, and scale pa-

rameter β (Γ is the gamma function). The mean recruitment stretch (λ̄c) and the square root of

the variance of the recruitment stretch (λSD
c ) were calculated to make the physical meaning of

the model clearer. They are related to the distribution parameters by

λ̄c = αβ + 1 (4.4)

and

λSD
c =

√
αβ2. (4.5)

The overall tissue stress σ is given by integration over the fiber population.

σ =
kf
2

∫ λ

1

G(λc)

(
λ2

λ2
c

− 1

)
dλc (4.6)

This fiber recruitment model was fit to the pre-yield stress–strain curve (the model is purely

elastic) using the Levenberg-Marquardt algorithm implemented in SciPy (Jones et al. 2001).

The variables λ̄c, λSD
c , and kf were used to report the model fit and compare specimen shapes.
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4.2.5 Statistics and inference

Comparisons between the specimen shapes were done separately for circumferential and radial

tests using using the fiber recruitment model variables (for circumferential specimens only) and

the five stress–strain curve summary statistics (for both radial and circumferential specimens).

Circumferential tests of ET, R, and DB specimens were compared by ANOVA, followed by

Tukey’s HSD post-hoc tests if indicated. Fiber recruitment model parameters were compared

between ET and R specimens using Mann-Whitney-Wilcoxon tests. Radial tests of R and DB

specimens were compared by two-sided Welch t-tests. The significance threshold was set at p

= 0.05 for all comparisons. Boxplots show median (bar), first/third quartile (box), and min/max

(whiskers) values. Unless otherwise noted, summary statistics are mean ± s.d.

4.3 Results

4.3.1 Stress–strain curves, yield, and rupture

Stress–strain curves are plotted by failure type and specimen shape in Figure 4.5. The stress–strain

curves display the nonlinear response typical of fibrous soft tissues. Subjective visual interpre-

tation would place the yield point at about 3/4 of the peak stress, which is the point at which

the loss of stiffness has caused visual deflection of the curve. However, the objectively mea-

sured yield point (the inflection point of the stress–strain curve) is placed at about 1/3 of the

peak stress, within the subjectively linear region. This placement is precisely at the point of

transition from strain-stiffening to strain-softening (e.g., Figure 4.4). This definition of yield
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Figure 4.5: Stress–strain curves for circumferential and radial specimens by rupture type and
specimen shape. The yield and peak stress points are marked.

has structural significance in that the tangent modulus at yield was nearly identical to the fiber

modulus kf from the fiber recruitment model (Figure 4.6). Yield therefore represents the point

at which the model predicts complete fiber recruitment.

Most circumferentially loaded specimens ruptured with an abrupt, near-total release of

stress, which was preceded by strain softening (Figure 4.5A). Qualitatively, there were no differ-

ences in the stress–strain curves between midsubstance, mixed, and grip line ruptures. In terms

of rupture morphology, circumferentially loaded ET specimens failed mostly bymixed andmid-

substance rupture (2/3 of all tests run), with the remainder split between grip line ruptures and

gripped region ruptures (Table 4.2). In contrast, no circumferentially loaded R specimens failed

by midsubstance rupture. About half failed by mixed rupture, 20% by grip line rupture, and 30%
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Figure 4.6: Fiber modulus (kf ) was strongly correlated with tangent modulus at yield (r [95%
CI] = 0.77–0.94 by Pearson correlation). The solid blue line and shaded region is the best-fit
line and its 95% confidence interval. The dotted black line illustrates a 1:1 relationship (slope
= 1, intercept = 0).

by gripped region failure or longitudinal splitting. DB specimens showed a distribution of rup-

ture types similar to the R specimens. Note that these ratios of rupture type by specimen shape

are calculated from the total number of tests (i.e., with no exclusions). The mechanical analyses

use the subset of specimens with valid ruptures and cut from different menisci (Section 4.2.2).

Radially loaded specimens, in contrast to circumferentially loaded specimens, ruptured with

a gradual post-peak decrease in stress (Figure 4.5B). Radial specimens, as expected from their

fiber orientation, were much less stiff and strong than the circumferential specimens (compare

Figure 4.5A to 4.5B). Similar to circumferential specimens, the stress–strain curves of radial

specimens did not differ by rupture type. Midsubstance, mixed, and grip line ruptures were all

common.

4.3.2 Effect of specimen shape on mechanical properties

The fiber recruitment model produced excellent fits for all of the ET specimens (RMS error =

0.03 ± 0.02 MPa). Fits of ET specimen data were also physically plausible, with fiber recruit-
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ment starting in the toe region and ending before the yield point (Figure 4.4]). The rectangle

specimens also had good model fits in a purely numeric sense (RMS error = 0.05± 0.02 MPa),

but five (out of twelve) had fiber recruitment ranges extending below zero strain and above the

yield point. The DB specimens all exhibited similarly wide fiber recruitment ranges or, in two

(out of five) cases, did not even have a unique solution. Due to the low fit quality for DB spec-

imens, they were dropped from the model-based analysis. Both the mean recruitment stretch

(λ̄c) and the square root of the variance of the recruitment stretch (λSD
c ) were significantly less

in ET specimens than in R specimens (Figure 4.7). The model’s fiber modulus (kf ) was not

significantly different between the two shapes. The more rapid fiber recruitment and superior

model fits evidenced by the ET specimens supports our hypothesis that the ET shape is more

effective at ensuring fiber loading.

The yield and peak points from circumferential tests were also significantly affected by spec-

imen shape. ET specimens had 0.04 lesser yield stretch, 50 MPa greater tangent modulus, and

9 MPa greater peak stress than R specimens, as well as narrower distributions for the yield

stretch and yield stress (Figure 4.7). Yield points for ET specimens consequently form a tight

cluster on the stress–strain plots, visibly separate from the yield points for the other shapes (Fig-

ure 4.5A). The peak points were broadly distributed for all specimen shapes. The stress–strain

curve metrics for circumferential DB specimens were not significantly different from the ET or

R specimens, but were qualitatively similar to the R specimens and dissimilar to the ET speci-

mens. Radially loaded specimens had no significant differences in yield or peak points between

specimen shapes (Figure 4.8). Nor did the radial stress–strain curves display any qualitative
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differences between specimen shapes (Figure 4.5B). Differences between specimen shapes are

summarized in Table 4.3.

Table 4.3: Fiber recruitment model and stress–strain results by loading direction and specimen
shape.

Circumferential Radial

ET R DB R DB

λ̄c 1.04 ± 0.01* 1.07 ± 0.03*

λSD
c 0.019 ± 0.004* 0.04 ± 0.02*

kf (MPa) 245 ± 45 215 ± 65
Modulus (MPa) 241 ± 45* 189 ± 48* 215 ± 86 21 ± 13 19 ± 10
Yield Strain 0.09 ± 0.01* 0.13 ± 0.05* 0.12 ± 0.03 0.17 ± 0.05 0.18 ± 0.07
Yield Stress (MPa) 13 ± 2 12 ± 5 14 ± 8 1.79 ± 0.83 2.0 ± 1.0
Peak Strain 0.28 ± 0.09 0.26 ± 0.08 0.21 ± 0.03 0.47 ± 0.13 0.38 ± 0.07
Peak Stress (MPa) 36 ± 8* 27 ± 10* 26 ± 12 4.9 ± 2.7 3.6 ± 1.6
* This value is significantly different between tests of circumferential ET and R specimens.

4.3.3 Strain fields

Circumferential tests resulted in inhomogeneous strain fields for each strain component. Lon-

gitudinal strain (Exx) fields, shown at the yield point in Figure 4.9, had spot-like regions (about

0.5 mm in diameter) of greater than average strain. In many cases (but not a majority), longitu-

dinal strain was unevenly distributed over the scale of the whole specimen; e.g., one end of the

specimen might have greater strain than the other (Figure 4.9A).

Shear strain (Exy) fields for circumferentially loaded specimens were also inhomogeneous,

with longitudinal bands (about 0.5 mm wide) of alternating positive and negative shear strain

that resembled the pattern of fascicles on the specimen surface (Figure 4.10A and C). These

shear bands sometimes extended from one grip to the other, but usually ended partway across
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the specimen.

Transverse strain (Eyy) fields from circumferentially loaded specimens had pockets of con-

centrated strain similar to the Exx strain concentrations, but more elongated (Figure 4.10B).

These pockets were sometimes so elongated that they resembled the bands in theExy field. The

transverse strain fields always included regions of tensile strain; these tensile strain concentra-

tions were usually of similar magnitude to the compressive strain and could cover up to half the

specimen area.

Qualitatively, there were no differences between ET and R strain fields under circumferen-

tial loading, but the margins of the DB specimens’ flared ends had lesser longitudinal strain

compared to the central region (Figure 4.9). This lack of stress and strain redistribution was

confirmed by specifically labeling the part of the specimen with potential grip-to-grip fiber

continuity (dotted outline in Figure 4.9C) and comparing strain in this region (the “loaded re-

gion”) to that in the margins of the flared ends (the “shielded regions”). In all cases, median

strain in the shielded regions was less than in the loaded region, with divergence occurring early

in the test (< 5% grip strain). A representative case is shown in Figure 4.11. At the point of

peak stress, longitudinal strain in the shielded region was about half of that in the loaded region.

The Exy and Eyy fields did not show a strain shielding effect; rather, the boundary between the

shielded and loaded regions tended to develop large Exy and Eyy strains.

Radially loaded specimens, whether R or DB, had smoother Exx fields than the circumfer-

entially loaded specimens, but often had large, irregularly shaped strain concentrations (Fig-

ure 4.12). TheExy fields were organized into large regions of somewhat homogeneous positive
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and negative shear. They did not exhibit the banding evident in circumferentially loaded spec-

imens. The Eyy fields were almost entirely compressive, with small strain concentrations like

those seen in the Exx fields of circumferentially stretched specimens. The radially loaded DB

specimens did not exhibit the strain shielding effect that was present in the circumferentially

loaded DB specimens (compare Figure 4.9C to Figure 4.12A).

4.4 Discussion

4.4.1 Overview

This study met its objective of providing a more complete quantification of the meniscus’ uni-

axial tensile mechanics than was previously available. The pre-yield stress–strain response was

quantified using a fiber recruitment model, which performed very well, justifying attribution

of the meniscus’ nonlinearity in circumferential tension to sequential fiber recruitment. The

yield point was measured for the first time, and the modulus was quantified using a new pro-

cedure that is objective and reproducible. Circumferential specimens showed striking bands of

shear strain and transverse tension that appeared to follow fascicle boundaries, supporting the

notion that rupture occurs along these boundaries. These strain field inhomogeneities traverse

the midsubstance and near-grip regions, indicating that the complex loads on the gripped ends

of the specimen do not redistribute into homogeneous midsubstance loading. Nor does a nar-

row central region ensure midsubstance rupture, as evidenced by the ubiquitous involvement

of the near-grip region in ruptures of DB and ET specimens. Our hypothesis that expanded
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tab (ET) specimens would more effectively grip and load fibers than specimens with narrower

tabs was confirmed. ET specimens showed enhanced stiffness and strength in circumferential

stretch, as well as earlier and more rapid fiber recruitment. They are therefore recommended

for circumferential tension tests of meniscus.

4.4.2 Fiber recruitment model and stress–strain nonlinearity

A fiber recruitment model was used to parameterize the meniscus’ nonlinear stress–strain curve

for fiber-aligned (circumferential) tension up to the yield point. The nonlinearity of the stress–strain

curve is represented by sequential recruitment of linear fibers. A fiber is recruited when it starts

to bear load due to uncrimping, rotation into the loading direction, or some other reason. The

model showed excellent fits for ET and R specimens, with residuals two orders of magnitude

less than the fitted data. DB specimens could not be fit; this and other issues associated with DB

specimens are discussed in Section 4.4.8. The good fits for ET and R specimens indicate that

the meniscus’ circumferential tensile response is consistent with an assembly of linear fibers.

The fiber recruitment model was also consistent with key functional aspects of the menis-

cus’ stress–strain curve. In the circumferential ET specimens, which most effectively load the

meniscus fibers, the yield point consistently coincidedwith the point at which almost all the fiber

were recruited. The tangent modulus at yield was, on average, the same as the fiber modulus

kf (Figure 4.6), further supporting the interpretation that yield occurs at the point of maximum

fiber recruitment. The data also show that both the pre-yield stress–strain curve and its deriva-

tive are nonlinear (Figure 4.4); the model reflects both nonlinearities. The fiber recruitment
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model thus has a strong structural interpretation that is consistent with non-model metrics for

the stress–strain curve, and it is a good option for modeling the uniaxial tensile mechanics of

meniscus.

4.4.3 Yield point

The yield point was defined in this study as the first inflection point of the stress–strain curve.

There is no standard or rigorous definition of yield for fibrous soft tissues. Colloquially, it

refers to the onset of strain–softening (i.e., the inflection point) or the onset of plastic strain. In

quantification of standard engineeringmaterials, the yield point refers to both the inflection point

and the onset of obvious plastic deformation, but this association has not yet been demonstrated

for fibrous soft tissue. Here, the yield point is a phenomenological quantification of the onset

of strain-softening.

Quantitatively, yield in tissue has previously been defined as the point of first divergence

from the linear region (Viinikainen et al. 2007; Palmer et al. 2009; Smith et al. 2008), the point

at which the slope subjectively decreases (Espejo-Baena et al. 2006; Veres et al. 2013), or the

intersection of a line parallel to the linear region but offset by a certain strain or displacement

(Jones et al. 2014; Danso et al. 2014; Barber et al. 2011). Defining the yield point relative to

the linear region poses the problem of how to identify the linear region of a curve which is

nonlinear from beginning to end. Defining the yield point instead as the first inflection point

of the stress–strain curve is objective, reproducible, and consistent with the commonly held

meaning of yield. The use of a smoothing spline interpolant makes the method robust to noise
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and variations in sampling rate. Calculation of derivatives by finite differences is also an option,

but is less robust to these effects. The yield point obtained by the inflection point method occurs

at lesser strain and stress than would probably be determined by eye (for example, a subjectively

estimated yield point in Figure 4.4 would probably be 3/4 up the curve). The definition used

here marks a clear transition from strain-stiffening to strain-softening (Figure 4.4).

Themechanisms that cause loss of stiffness (strain-softening) subsequent to the stress–strain

inflection point are not yet clear. The inflection point may indicate the onset of damage and/or

plasticity, perhaps by the onset of inter-fibrillar sliding (Szczesny and Elliott 2014b). In liga-

ment, the onset of structural damage occurs at about 5% strain, prior to any observed strain-

softening or plasticity (Provenzano et al. 2002b). On the other hand, tendon fascicles show

elongation without increase in stress at about 4% strain, with detailed analysis indicating in-

volvement of plastic inter-fibril shear (Szczesny and Elliott 2014b; Szczesny and Elliott 2014a).

These thresholds are somewhat lower than the yield strain observed here for meniscus, but ten-

don fibers are quite well aligned with the tensile axis from the start of the test. Meniscus fibers

have more orientational dispersion and may require more tissue strain before they are recruited

and stretched to this putative damage threshold. More study is necessary to test the hypothesis

that the stress–strain inflection point for fibrous soft tissue represents the onset of damage or

plasticity.
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4.4.4 Radial specimens and tie fibers

A few radial specimens had much greater peak stress and a more abrupt reduction in stress

post-peak than the others (Figure 4.5). These sharp stress peaks may indicate the presence of

radial tie fibers. The meniscus contains radially oriented tie fibers that increase its radial tensile

strength and stiffness (Andrews et al. 2014; Skaggs et al. 1994a). Since these fibers are randomly

distributed withmm-scale separation and are not necessarily parallel to the specimen plane, only

a few specimens in this study would be expected to contain tie fibers. This is consistent with

the low number of radial tests with sharply peaked stress–strain curves. The peak stress values

from these sharply peaked curves are in the range previously observed in tests of radial meniscus

specimens containing radial tie fibers (Skaggs et al. 1994a).

4.4.5 Comparison with prior work

Mechanical properties of meniscus from the literature are given in Table 4.4 for circumferen-

tial specimens and Table 4.5 for radial specimens. For the sake of comparison, we listed only

properties from the center part of the meniscus (the location we tested). Few studies report a

complete set of mechanical properties; only modulus is consistently reported. There is great

variation in reported values. Since there is great diversity between studies regarding species,

medial/lateral side, specimen thickness, method for quantifyingmodulus, method for measuring

strain, and specimen shape, a large degree of variation is to be expected. Mechanical properties

may vary with the side of the knee (medial/lateral) and anterior/posterior position, although

reports conflict between studies (Kelly et al. 1990; Bursac et al. 2009; Tissakht and Ahmed
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1995; Proctor et al. 1989). Of these studies, Tissakht et al. (Tissakht and Ahmed 1995) had the

greatest statistical power and found no statistical anterior/posterior or medial/lateral effect for

circumferential specimens. We verified (by 2-way ANOVA with specimen shape & medial/lat-

eral side as factors) that there was no confounding medial/lateral effect in our present work.

Modulus has been reported to be greater for thinner specimens, but the authors attributed this

to specimen selection effects (Lechner et al. 2000). Bursac et al. (Bursac et al. 2009) use twice

the thickness of Tissakht et al. (Tissakht and Ahmed 1995), but obtained similar modulus val-

ues for human meniscus. We verified (by linear regression) that the limited range of thickness

variation in our present work did not impact our measurements.

Some of the variation in modulus is caused by variation in modulus definitions. For exam-

ple, our modulus definition produces values 16 ± 16 MPa greater than Lechner et al.’s (Lechner

et al. 2000) for circumferential tests, and 2 ± 4 MPa greater for radial tests. Note that the dis-

tributions of these differences are skewed positive because some stress–strain curves are not

even quasilinear in Lechner et al.’s chosen stress range. One of the advantages of measuring the

tangent modulus at yield is that it handles highly nonlinear curves well.

Peak stress from circumferentially tested specimens from large quadrupeds was greater for

sheep ET specimens (Tanaka et al. 2014) than sheep DB specimens (Anderson et al. 1993) (Ta-

ble 4.4). This is consistent with the specimen shape effects observed in our present work. Peak

strain values have large ranges of variation, but are generally consistent within both circum-

ferential (Table 4.4) and radial studies (Table 4.5), with a few outliers. The lesser peak strain

reported by Anderson et al. (Anderson et al. 1993) for circumferential tests and Skaggs et al.
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(Skaggs et al. 1994a) for radial tests may be due to calculation of strain using gauge lines rather

than grip-to-grip displacement. Variation in peak strain may also be caused by the difficulty of

standardizing the zero strain point, as strain is sensitive to the choice of preload. Strain can also

be applied inadvertently during specimen mounting. Stress values are more consistent.

Human specimens show lesser modulus and peak stress than non-human animals in cir-

cumferential testing, regardless of specimen shape (Table 4.4). Age-related deterioration in the

human meniscus specimens could reasonably be suspected as an explanation for this effect, but

Tissakht et al. (Tissakht and Ahmed 1995) used specimens aged 29–45 years and reported near-

identical values to Tanaka et al. (Tanaka et al. 2014), who used specimens aged 67–84 years.

Despite this, the lesser modulus and peak stress in human specimens could still be caused by

age-related deterioration if it occurs prior to the fourth decade of life. This would not be un-

precedented; aspects of intervertebral disc degeneration are well underway by the fourth decade

(Vernon-Roberts et al. 2007; Haefeli et al. 2006). Alternatively, humans may simply possess

less stiff meniscus tissue.

4.4.6 Rupture location

A midsubstance rupture is considered desirable because it implies that the test result is unaf-

fected by local grip-associated stresses. In this study, most specimens did not fail by midsub-

stance rupture (Table 4.2), but the stress–strain curves of midsubstance ruptures were not clearly

different from the mixed or grip line ruptures (Figure 4.5). Even the gripped region failures and

longitudinal splits, which were excluded from formal analysis, did not have qualitatively differ-
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ent stress–strain curves, despite the ruptures extending inside the gripped region. Previously,

comparison between at-grip and midsubstance ruptures in tendon has also shown no difference

(Ng et al. 2005). It is not clear why at-grip and midsubstance ruptures do not appear mechan-

ically different. In the present study, grip-associated strain inhomogeneities do extend to the

midsubstance (discussed further in Section 4.4.7), so all ruptures may have been affected by the

grips to some degree.

4.4.7 Strain field inhomogeneity, grip effects, and damage

The observed strain fields were extremely heterogeneous. Circumferential specimens developed

intense shear bands that followed a pattern similar to the fascicles (Figure 4.10). We interpret

these shear strain bands as caused by sliding between adjacent fascicles. Meniscus failure in

uniaxial tension tends to occur by shear along a fascicle boundary (Kelly et al. 1990), consistent

with the interdigitating fiber pull-out observed here (Figure 4.3A). Circumferential-radial shear

has also been hypothesized to be important in the development of vertical meniscus tears (Kelly

et al. 1990; Smillie 1978). Future work is required to definitively relate patterns of strain field

inhomogeneity to meniscus structure and damage mechanisms.

Some of these strain field inhomogeneities—in particular, bands of longitudinal strain (Fig-

ure 4.9B) and, more commonly, shear strain and transverse strain (Figure 4.10)—spanned the

near-grip and midsubstance regions in tests of circumferential specimens. This is direct evi-

dence that complex local stresses in the gripped region probably do not dissipate into an even

stress field in the midsubstance; i.e., Saint-Venant’s principle does not apply. In anisotropic,
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inhomogeneous materials such as the meniscus, the spatial extent of local stress effects, such

as grip effects, is much greater than for isotropic, homogeneous materials (Reese et al. 2013;

Skaggs et al. 1994b; Horgan and Simmonds 1994; Stronge and Kashtalyan 1997). Due to the

limited size of the meniscus, it is probably not possible to cut a specimen long enough for the

midsubstance to be free of grip effects. Local stress effects almost certainly apply in situ as

well. The capability to treat the meniscus as a highly anisotropic, inhomogeneous material

with complicated boundary conditions will be important to make useful predictions for in vivo

mechanics.

One specific effect produced by the grips was to prevent transverse deformation at either end

of the specimen. The ends of the specimen thus cannot contract along with the midsubstance;

this creates local stresses at the grip line (Jacobs et al. 2013; Sun et al. 2005). Consequently,

many circumferential specimens exhibited small ruptures, separate from the main rupture site,

at one of the corners formed by the specimen and the grip face. For example, the patches of

tensile strain visible in the transverse strain fields (Figures 4.10b and 4.12c) are probably caused

by the grips preventing transverse contraction. Transverse tension produced by this effect could

damage inter-fascicle interfaces required for longitudinal load transfer.

4.4.8 Choice of specimen shape

We hypothesized that expanded tab (ET) specimens would be more effective at gripping and

loading fibers than specimens with narrower tabs. This hypothesis was confirmed. In circum-

ferential tension, ET specimens showed fiber recruitment at lesser stretch (λ̄c) and over a smaller
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stretch interval (λSD
c ), lesser yield stretch, greater tangent modulus at yield, and greater peak

stress than R specimens (Figure 4.7). Since the fiber recruitment model fit both the ET and R

specimens well, fiber recruitment can be considered the dominant mechanical mechanism for

both shapes. Lesser λ̄c and λSD
c indicate that the ET specimens recruited fibers more rapidly.

Since yield occurred at about the point of maximum fiber recruitment, more rapid fiber recruit-

ment explains the lesser yield stretch. The combination of greater modulus and peak stress

in the ET specimens, but similar peak strain, indicates that ET specimens recruited a greater

number of fibers per unit area, thus increasing the apparent modulus, but that individual fibers

ruptured at about the same tissue strain regardless of specimen shape. Strain has been previously

hypothesized to be the key failure metric for fibrous soft tissue (Wren et al. 2003), with peak

stress determined by the combination of modulus and peak strain (LaCroix et al. 2013; Skaggs

et al. 1994b). The ET specimens are capable of recruiting more fibers because the expanded

tabs allow curved fibers on the inner side of the specimen to extend deep into the grips and

thus be securely gripped; the other specimen shapes sever these fibers or grip them insecurely.

Severed fibers or insecurely gripped fibers are experimental artifacts, so the superior fiber re-

cruitment and associated changes in stress–strain curve parameters exhibited by ET specimens

better represent the intact meniscus.

It is likely that the same differences in modulus, yield strain, and peak stress between ET

and R specimens also exist between ET and DB specimens, and were just not detected due to the

sample’s statistical power. For circumferential specimens, this study was powered to detect dif-

ferences of 1.1 standard deviation (s.d.) for the ET-R comparison (β = 0.8), and this was about
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the magnitude of the detected differences. The ET-DB comparison was powered to detect dif-

ferences of only 1.5 s.d, and the R-DB comparison was powered to detect differences of 1.6 s.d.

However, the close similarity between the distributions of variables for R and DB specimens

(Figure 4.7) suggests that any undetected difference is small. This is true for the radial tests as

well (Figure 4.8). The radial R-DB comparison was powered to detect differences of 1.5 s.d. It

is reasonable to conclude that the R and DB specimens have similar yield point, modulus, and

peak point, and the ET specimens differ from both by the same amount.

The purpose of the DB shape is to increase stress in the narrow part and thus ensure failure

at that location; it did not achieve this (Table 4.2). Dogbones are known to be ineffective at

ensuring midsubstance failure in tests of synthetic fiber-reinforced composites; rectangles are

preferred (ASTM D3479/D3479M 2015; De Baere et al. 2011; Arumugam et al. 2010). The

inability of the DB shape to ensure midsubstance failure in circumferential tests was probably

in part because the grip line was unevenly loaded, with strain-shielded regions (Figure 4.9C).

Skaggs et al. hypothesized the existence of this strain-shielding effect as the cause of at-grip

failures in dogbone-shaped specimens of annulus fibrosus (Skaggs et al. 1994b). The location

of failure may also be controlled by inhomogeneous tissue strength, which could be exacer-

bated by severing of internal structures while cutting the specimen. Still, the juxtaposition of

strain-shielded and loaded regions creates severe shear and transverse strain. The addition of

these deformations is probably why the fiber recruitment model could not fit the DB specimen

stress–strain response. Although no other specimen shape ensured midsubstance failure either,

the strain-shielded regions in the DB specimens are disadvantageous.
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The DB specimen shape has an additional disadvantage regarding the calculation of cross-

sectional area: the width of a DB specimen varies. Since ruptures may occur anywhere along

the specimen length (Figure 4.3), it is not obvious which cross-sectional area to use for stress

calculations. We used the central minimum width, which in circumferential specimens is the

width of the loaded region (Figure 4.9) and so is reasonably accurate for this case. However,

using the minimum width for radially stretched DB specimens may have caused some overes-

timation of stress. The other specimen shapes have equal cross-sectional area throughout the

inter-grip length and so do not pose this ambiguity.

Changing the dogbone specimen shape and the way it is mounted can mitigate its disadvan-

tages. A dogbone specimen with a long, parallel-sided gauge region may function similarly to

a rectangle if the flared ends are wholly within the grips, as in (Freutel et al. 2015). The par-

allel sides eliminate cross-sectional area variation, and placing the flared ends inside the grips

prevents them from causing strain-shielded regions.

In general, circumferential testing of meniscus is best done using ET specimens because

they sever fewer fibers and more securely grip fibers, producing enhanced fiber recruitment and

increased apparent strength that better represents the intact meniscus. The principle value of

the ET specimen shape lies in accommodating the meniscus’ fiber curvature. Unlike a dogbone

specimen, its wide tabs are almost entirely inside the grips, and the gauge region consequently

is similar to that of a rectangle specimen (Figure 4.1). In materials without curved fibers, rect-

angles would probably produce identical results. The ET specimen shape does consume more

tissue area than a plain rectangle, making it difficult to cut multiple specimens from the same
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meniscus or test small subregions. However, it readily accommodates different inner/outer and

distal/proximal locations. Anterior/posterior variation is more limited; only the mid-anterior,

center, and mid-posterior regions are amenable. For testing of the extreme anterior or posterior

locations, we suggest gripping the bony insertion as in (Villegas et al. 2007) and using an ex-

panded tab on the opposite end. In radial testing of meniscus, fiber curvature is not relevant, so

rectangles are the best choice.

4.4.9 Choice of strain measurement

Grip strain was used for the stress–strain curves rather than optical strain. There are several prior

examples of this (Párraga Quiroga et al. 2014; Szczesny et al. 2012). Although optical strain is

in principle preferable to grip strain because it measures actual tissue deformation, the extreme

heterogeneity of the strain fields (Figures 4.9, 4.10, and 4.12) makes it difficult to convert the

strain fields to a single summary strain value. The range of optical strain values broadens greatly

as the test progresses (Figure 4.13). Strain concentrations and shear discontinuities in particular

are major difficulties; should the entire strain field be used, or just the part that coincides with

the site of rupture? If the site of rupture is used, its extent is not obvious. Strain concentrations

can also locally change the appearance of the specimen surface sufficiently to cause the digital

image correlation to fail in that region. In this study, since we discarded all tests with observed

grip slip, the grip strain is a fair summary of the overall tissue strain (Figure 4.13), and has the

advantages of clarity and reproducibility. However, the optical strain fields are a rich source of

information and methods should be developed to unlock their potential.
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4.5 Conclusion

This study represented the sub-yield uniaxial tensile response of the meniscus with a fiber re-

cruitment model, providing a quantitative link between the meniscus’ fiber structure and its

nonlinear stress–strain response. The elastic modulus was quantified using a new procedure

that measures a consistent functional region of the stress–strain curve and is simple enough to

be used routinely in soft tissue testing. This method is more robust to variation in mechanical

behavior than a linear fit of a chosen stress or strain range. Through this procedure, we quanti-

fied the meniscus’ (previously unreported) yield point. We also quantified peak stress and strain.

Together, these metrics are useful as functional targets for meniscus replacements or repair pro-

cedures, to compare disease states, or as diagnostic markers. Strain fields revealed significant

heterogeneity in the strain response, which grew as the test progressed. Most interestingly,

bands of shear strain and transverse strain occured in the same pattern as the fascicles, suggest-

ing inter-fascicle shear as an important deformation and damage mechanism. Local stresses

(e.g., grip effects) and non-midsubstance ruptures appear endemic to fibrous soft tissue testing,

and dogbone specimens do not resolve these issues. Due to fiber curvature in the meniscus, it is

recommended to use expanded tab specimens for circumferential tension tests. The tabs ensure

that as many fibers as possible are securely gripped, producing more rapid and complete fiber

recruitment, lesser yield strain, and greater peak stress. Rectangular specimens are suitable for

radial tension tests. Although this study makes significant strides in measurement of the menis-

cus’ mechanics, more work needs to be done to develop procedures for fibrous soft tissue testing

and to quantify processes of damage and failure.
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Figure 4.7: Fiber recruitment model and stress–strain results for circumferentially stretched ex-
panded tab (ET), rectangle (R), and dogbone (DB) specimens. Significant differences between
specimen shapes are marked with a bar and asterisk. The ET specimens showed differences
indicating more complete and rapid fiber recruitment.
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Figure 4.8: Stress–strain results for radially stretched rectangle (R) and dogbone (DB) speci-
mens. There were no significant differences between specimen shapes.

Figure 4.9: Representative longitudinal strain (Exx) fields at yield for circumferentially loaded
specimens. In subfigure C, the dashed outline over the dogbone’s strain field indicates the
“loaded region”, which has potential grip-to-grip fiber continuity. The flared margins outside
this outline are the “shielded region”, which has no grip-to-grip continuous fibers and exhibits
less longitudinal strain than the loaded region. Color scales are truncated at the 0.05 and 0.95
quantiles. The scale bars are 5 mm long.
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Figure 4.10: Representative (A) shear strain (Exy) and (B) transverse strain (Eyy) field at yield
for circumferential specimens with (C) the corresponding camera image of the specimen. An
ET specimen is shown. The bands in the Exy field qualitatively match the fascicle boundaries
visible in the camera image. The color scales are truncated at the 0.05 and 0.95 quantiles. The
scale bars are 5 mm long.

Figure 4.11: Representative plot of longitudinal strain (Exx) in a DB specimen measured opti-
cally (y-axis) and by grip displacement (x-axis). The median optical strain in the central region
(the “loaded region”), which has grip-to-grip fiber continuity, is much greater than in the flared
ends of the specimen (the “shielded region”), which contain severed fibers. See Figure 4.9C for
a diagram of these regions. The line of 1:1 correspondence between optical and grip strain is
marked by a solid black line. Optical strain is approximately linearly correlated with grip strain
up to and a little past the yield point.

Figure 4.12: Representative longitudinal (Exx), shear (Exy), and transverse (Eyy) strain fields
for radially stretched DB specimens at yield. The strain fields for radially stretched R specimens
are similar. The scale bars are 5 mm long.
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Figure 4.13: Optical longitudinal strain 0.05/0.95 inter-quantile range (red shaded region) com-
pared with grip strain (solid black line). The optical strain range broadens in proportion to the
applied grip strain. This is a representative example; in other cases, the optical strain range may
broaden nonlinearly. The plot shows data up to the peak point.
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CHAPTER 5: UNIAXIAL TENSILE TESTING OF CRACKED
MENISCUS AND ITS FAILURE MECHANISMS

5.1 Introduction

Meniscus cracks (tears) are harmful because they cause joint pain and mechanical deficiency

and increase the risk of osteoarthritis (Englund et al. 2012; Øiestad et al. 2009; Cohen et al.

2007; Englund et al. 2008). The most straightforward treatment for a crack—partial or total

meniscectomy—greatly increases the risk of osteoarthritis (Magnussen et al. 2009; Shelbourne

and Gray 2000; Feucht et al. 2015; Anetzberger et al. 2014; Petty and Lubowitz 2011), and

repair, especially of the inner avascular region, is not always feasible (Arnoczky and Warren

1983; Englund et al. 2012). To make decisions regarding whether and how to treat a crack,

it is important to be able to answers questions like: Will a crack grow for a given level of

physical activity? Will a repair stop a crack from growing? Answering these questions requires

quantitative knowledge of how themeniscus fails. This study addresses one possible mechanism

for meniscus failure via crack growth: fracture.

Fracture is a failure mechanism associated with stress-concentrating defects such as cracks,

which includes meniscus tears. A crack, in principle, creates a stress concentration at its tip.

Because the stress at the crack tip is greater than elsewhere in the material, the material near the

tip fails first. The crack grows and the stress concentration migrates to fresh material that fails

88



in turn. The crack thus cascades through the material at loads that would have been safe were

the crack and its stress concentration not present. Fracture thus decreases the effective strength

of a material and must be accounted for when predicting failure.

Since cracks in the meniscus grow, fracture is expected to be a relevant failure mechanism.

Accordingly, the energy of crack propagation (fracture toughness) through meniscus scar tissue

has been measured using peel tests (Sonoda et al. 2000; Roeddecker et al. 1994). However,

if the zone of failure at the crack tip is large enough that the entire uncracked cross-section

fails together (facilitated, e.g., by plasticity), fracture does not occur and there is no decrease in

effective strength. This mechanism of failure is common in ductile materials and so is called

ductile rupture. In this study, it will be subsequently referred to as bulk rupture out of uncer-

tainty regarding whether ductility is the predominant mechanism in fibrous soft tissue. Accurate

prediction of failure requires that fracture and bulk rupture be distinguished, but the conditions

under which each occur in the meniscus are not yet known. Nor is much known about how

meniscus cracks grow or what effects they have on meniscus mechanics.

In fact, few fracture studies have been performed for any type of fibrous soft tissue, and

progress in this area has been slow. Reproducing physiologic crack propagation in controlled

laboratory tests has proven difficult, and fracture studies of fibrous soft tissues have produced

ambiguous results (Taylor et al. 2012). A fracture toughness value can be measured from any

propagating crack, but it is only valid for predicting fracture if the specimen from which it is

measured actually failed by fracture. A fracture toughness value measured from a non-fracture

failure has no predictive capability. Crack propagation is necessary but not sufficient for failure
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by fracture; a non-fracture failure can look like a growing crack. If a crack (crack-like defect)

does not cause a decrease in the material’s effective strength, fracture is not responsible for its

failure and the material’s ultimate strength is the appropriate failure predictor. Even though

cracks grow in the meniscus in vivo, the expectation that fracture is responsible for that growth

is not necessarily true, or may only be true for specific conditions.

Since it is usually equivocal whether a straightforward tensile test of cracked fibrous soft

tissue resulted in fracture, the occurance of fracture for a particular tissue and test configuration

must be confirmed prior to quantifying fracture-related properties such as fracture toughness.

The priority for investigatingmeniscus fracture is to identify a test configuration in which failure

demonstrably occurs by fracture.

This strategy of verifying failure by fracture has been employed in tests of porcine Achilles

tendon, showing that edge cracks in tendon loaded parallel, perpendicular, or 45° to the fiber

direction do not decrease the tendon’s strength (Von Forell et al. 2014). Studies of partial tran-

section of tendon, although not designed as fracture studies, also suggest that cracks in tendon

do not cause fracture (Kondratko et al. 2012; Kondratko-Mittnacht et al. 2015; Mazzocca et al.

2008; Hariharan et al. 1997; McCarthy et al. 1995; Tan et al. 2003). However, several factors

mean that the meniscus is more likely to suffer from fracture. Cracks are not a major pathology

in tendon, but they are the primary pathology in meniscus. The meniscus’ structure and prop-

erties are also more conducive to failure by fracture. Tendons such as the Achilles are highly

aligned, with few or no transverse fibers (Kahn et al. 2013). The weakness of the interfascicular

matrix in tendon limits load transfer between fascicles, which likely prevents crack propaga-

90



tion and fracture. In contrast, the meniscus has a branched network of fibers interpenetrated by

numerous circumferential collagen fascicles. Consequently, meniscus is relatively stiffer in its

radial direction direction than tendon is in its transverse direction. Porcine Achilles tendon has

a transverse stiffness of about 0.1 MPa and a longitudinal stiffness of about 80 MPa (Von Forell

et al. 2014). The meniscus, in contrast, has a radial stiffness is between 5 MPa and 40 MPa and

a circumferential modulus between 70 MPa and 240 MPa (Peloquin et al. 2016; Proctor et al.

1989; Skaggs et al. 1994a). Fracture has also been observed in superficial zone articular car-

tilage and possibly in temporomandibular joint disc (Chin-Purcell and Lewis 1996; Koombua

et al. 2006), both of which are similar to meniscus fibrocartilage. The meniscus (1) exhibits

extensive pathology involving cracks, (2) its structure should inhibit fracture to a lesser degree

than tendon, and (3) fracture has been identified in tissue similar in structure and composite to

meniscus, so fracture is a likely failure mechanism in the meniscus.

Even if a crack does not cause failure by fracture, it may still create a stress concentration

near the crack tip and so promote local sub-failure damage. Roeddecker et al. (1994) observed

a decrease in tearing energy near the tip of a naturally occurring meniscus crack compared

to a uncracked contralateral control. Crack-induced sub-failure damage could adversely affect

meniscus function by injuring cells or promoting long-term failure mechanisms such as creep

or fatigue.

Since cracks are the central aspect of meniscus pathology and the role of fracture in menis-

cus crack propagation is unknown, this study was designed to achieve the following objectives:

(1) test the hypothesis that cracks in meniscus cause failure by fracture, (2) test the hypothe-
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sis that meniscus cracks increase strain near their tips, and (3) determine if crack propagation

occurs in meniscus in uniaxial tension. To accomplish the first objective, this study compares

strength between cracked and crack-free specimens (Von Forell et al. 2014). An innovation in

the present work is the use of center crack specimens with the cracks oriented obliquely to the

fiber direction. Prior FEA has predicted that, compared to edge cracks, this configuration en-

hances fiber-aligned stress near the crack tip (Chapter 3; Peloquin and Elliott 2016). This test

configuration should increase the chances of fracture occurring across fibers. The remaining two

objectives address important aspects of crack behavior irrespective of whether fracture occurs.

Crack-associated local strain concentrations are a sign of crack-associated stress concentrations

and, if present, promote damage or inelastic deformation. Finally, determining if cracks grow

under the chosen uniaxial tensile conditions will help establish protocols for investigation of

meniscus tears in non-fracture contexts (e.g., repair).

5.2 Methods

5.2.1 Specimen preparation

Table 5.1: Specimen counts for cracked and control specimens in each test group.

Group Control/Cracked n
circumferential 45° center crack control 11
circumferential 45° center crack cracked 12
circumferential 90° edge crack control 11
circumferential 90° edge crack cracked 13
radial 90° edge crack control 26
radial 90° edge crack cracked 16
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Tensile test specimenswere prepared from adult (age> 30months) bovinemeniscus. Menisci

were purchased from Animal Technologies, Inc. (Tyler, TX) and stored frozen (−20 °C) un-

til specimen preparation. To prepare a specimen, a histology trimming knife was used to cut

the meniscus to a size ~5 mm larger than the intended specimen size. The specimen was then

planed to a target thickness of 1.0 mm to 1.5 mm thickness using a Leica SM2400 sledge mi-

crotome equipped with a freezing stage so that its proximal and distal surfaces were flat and

normal to the anatomic proximal–distal axis. During planing, thickness was estimated using

plastic shims, aiming for 1.0 to 1.5 mm thickness. The specimen was then trimmed to its final

in-plane dimensions using a razor blade, #15 scalpel, and (to create fillets) a 3 mm diameter

biopsy punch. Specimen outlines relative to the intact meniscus are shown in Figure 5.1a.

Specimens with cracks were prepared in three test configurations: (1) circumferential ten-

sion with a 90° edge crack, (2) circumferential tension with a 45° center crack, and (3) radial

tension with a 90° edge crack (Figure 5.1b). Each cracked test configuration had a correspond-

ing crack-free control. Final specimen counts are given in Table 5.1. Circumferential specimens

were cut into dogbone shapes and the radial specimens were cut into rectangles in accordance

with prior work (Peloquin et al. 2016). Edge cracks were cut with fresh #11 scalpel blades.

Center cracks were cut with razor blade fragments that were broken to the target crack length

of 3 mm. The actual cutting of the crack was done immediately before gripping the specimen

(see below). Specimen dimensions are reported in Table 5.2. The reported width is from the

midsubstance and is not reduced by the crack length. The circumferential specimens, except

for the controls for the 90° edge crack case, were cut according to the pattern labeled “normal”
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in Figure 5.1a. Since the meniscus’ inner and outer regions have different composition, control

specimens for the circumferential 90° edge crack case were cut so that their width was the same

as the cracked specimens’ intact width. Tests of cracked specimens and their crack-free controls

thus loaded the same anatomic region.

The cross-sectional area of each prepared specimen was measured by scanning across its

width with a laser displacement sensor (Szczesny et al. 2012; Favata 2006). The specimen

was speckle coated with Verhoeff’s stain using an airbrush to facilitate digital image correlation

following the test. During the aforementioned preparation, specimens were kept covered under

PBS-dampened gauze as much as possible to minimize dehydration.

5.2.2 Tensile test protocol

Screw-down clamps were used to grip the specimens for tensile testing. The same grips and

tightening procedure were used as in (Peloquin et al. 2016). Specimens assigned to cracked

groups had their cracks cut at this point. Two layers of 400 grit cloth sandpaper were used

to protect the specimens from the grips’ teeth while still maintaining clamping friction. The

grips were tightened to 8 in-lb torque, left alone for 10 minutes for the specimen to relax, and

retightened to the same torque. The gripped specimens were then transferred to the tensile tester.

The tensile test protocol consisted of applying a 20 kPa preload, which was used to establish

the undeformed specimen length. Ten cycles of preconditioning to 4% grip-to-grip strain were

then applied, followed by a ramp to failure. The applied displacement rate was 0.5 mm/s (qua-

sistatic). Video was recorded during the test at 15 fps with frame dimensions of 1280 pixels by
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960 pixels. The image scale was about 40 pixels/mm for circumferential specimens and about

60 pixels/mm for radial specimens.

Tested specimens were classified as terminating in midsubstance rupture, mixed rupture,

grip line rupture, gripped region failure, or no rupture according to published definitions (Pelo-

quin et al. 2016; Chapter 4). As in this previous study, tests terminating in longitudinal split,

gripped region failure, or no rupture were excluded from all analysis as stress cannot be reliably

calculated for these failures. The final counts used for analysis are given by analysis group in

Table 5.1, as previously mentioned. The full counts of each test terminus are presented in Ta-

ble 5.3 to provide accurate marginal distributions for failure location by crack type. Images of

ruptures for individual specimens are listed in Appendix C.

Table 5.3: Specimen counts by rupture type

Group Rupture Type Included Control Cracked Sum
Circumferential 45° center crack Midsubstance rupture Yes 3 3 6

Mixed rupture Yes 6 7 13
Grip line rupture Yes 2 2 4
Gripped region failure No 1 4 5
Longitudinal split No 0 0 0
No rupture No 4 3 7
Sum 16 19 35

Circumferential 90° edge crack Midsubstance rupture Yes 3 3 6
Mixed rupture Yes 5 10 15
Grip line rupture Yes 3 0 3
Gripped region failure No 4 5 9
Longitudinal split No 0 2 2
No rupture No 1 1 2
Sum 16 21 37

Radial 90° edge crack Midsubstance rupture Yes 8 11 19
Mixed rupture Yes 3 3 6
Grip line rupture Yes 15 2 17
Gripped region failure No 0 1 1
Longitudinal split No 0 0 0
No rupture No 1 3 4
Sum 27 20 47
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5.2.3 Stress and strain data processing

The stress–strain curves resulting from the tensile tests were summarized using the yield point

(yield strain and yield stress), tangent modulus at the yield point, and the peak point (peak

strain and peak stress). Strain was calculated using the current grip-to-grip length l and the

initial grip-to-grip length l0 and reported as stretch ratio (λ = l/l0) or Lagrange strain (Exx =

1/2[λ2 − 1]). Yield was identified as the inflection point in the stress–strain curve following

the methodology in (Peloquin et al. 2016). For cracked specimens, the cross-sectional area in

the stress calculations was reduced by a factor equal to the proportional width severed by the

crack. The calculated stress is thus the average stress in the narrow part of the specimen left

untransected by the crack.

Optical Lagrange strain fields were computed across the specimen surface from the video

recordings using digital image correlation. The software used was Vic-2D 2009 (Correlated

Solutions, Columbia, SC). Settings were the same as in Chapter 4. The correlation window

(subset size) was 0.7 mm × 0.7 mm. Exhaustive search, low pass filtering, and incremental

correlation were enabled. Strain post-processing used a 15 px exponential decay filter. Trial

runs during the study development showed that the subset size setting had the strongest effect

on the appearance of the resulting strain field. The particular choice of 0.7 mm × 0.7 mm

is a compromise between minimizing spurious correlations (which favors a large correlation

window) and retaining spatial fidelity to identify strain concentrations and inter-fascicle sliding

(which favors a small correlation window). The chosen Vic-2D settings are discussed in detail

in Appendix B, including a sensitivity analysis for subset size and filter size.
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In cracked specimens, the region of interest for strain analysis was drawn so that no corre-

lation window spanned the crack. Otherwise, large spurious strains would result as the crack

opened. Longitudinal strain (Exx), shear strain (Exy), and transverse strain (Eyy) were measured

individually. In cracked specimens, the optical strain field was partitioned into near-tip and

away-from-tip regions (Figure 5.2) to check for strain concentrations near the crack tip. Since

center crack specimens have two each of near-tip and away-from tip regions, the pairs were

combined into one region for analysis.

Average optical strain vs. time plots were constructed by choosing a set of evenly spaced

~100 interpolation points along the grip strain axis. For each interpolation point and for each

specimen, the image frame with grip strain most closely approximating the interpolation point

was selected. The median optical strain in each region (near-tip and away-from-tip) was calcu-

lated for each of these frames, then the median and quantiles were calculated across all speci-

mens.

5.2.4 Statistics and inference

The hypothesis that cracks weaken the meniscus was tested by comparing stress–strain statistics

between cracked and crack-free specimens for each of the three test cases (circumferential load-

ing and 90° edge cracks, circumferential loading and 45° center cracks, and radial loading and

90° edge cracks). Comparisons were made using unpaired two-sided Welch t-tests. The type I

error rate for this (and all other) statistical tests was set at 0.05. In this set of comparisons, peak

stress had principal importance—lesser peak stress in cracked specimens would mean that the
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crack weakened the meniscus tissue.

The hypothesis that cracks generate strain concentrations near their tips was tested by com-

paring optical strain in the near-tip region (Figure 5.2) to that in the away-from-tip region. Com-

parisons were made using optical strain from the image frame at 70% of the peak stress. This

stress level was chosen for comparison because by that point in the stress–strain curve all sub-

rupture strain concentrations were fully developed, but rupture was mostly absent. Rupture

interferes with digital image correlation because it changes the appearance of the specimen sur-

face. The difference between the median away-from-tip region strain and the median near-tip

region strain was computed for each specimen and the existence of a nonzero difference was

tested using a one-sided Welch t-test.

The hypothesis that cracks propagate in meniscus tissue was tested by qualitative evaluation.

The occurrence of clean crack propagation would have warranted measuring changes in crack

length over time, but, as will be evident in Section 5.3.2, qualitative inspection was best suited

to record the tissue’s actual behavior.

5.3 Results

5.3.1 Effects of cracks on stress–strain curves and strain fields

Comparison of stress–strain parameters between cracked specimens and their corresponding

controls showed few differences, and no cracked case showed a decrease in peak stress. For both

circumferential 90° edge cracks and circumferential 45° center cracks there was no difference
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in yield stretch, yield stress, tangent modulus, peak stretch, or peak stress between cracked

specimens and their controls (Figure 5.3). The circumferential stress–strain curves are shown

in Figure 5.5. For radial 90° edge crack specimens, yield stretch, peak stretch, and peak stress

were not different between cracked specimens and their controls (Figure 5.4). However, radial

90° edge crack specimens showed greater yield stress (p = 0.02) and tangent modulus (p = 0.04)

than their controls. The increased yield stress and tangent modulus can also be seen in the radial

stress–strain curves (Figure 5.6).

Although the presence of a crack only affected the grip-to-grip stress–strain curve param-

eters for the radial 90° edge crack group, every group showed a strain concentration near the

crack tip. Circumferentially loaded specimens, both 45° center crack and circumferential 90°

edge crack, had statistically greater longitudinal strain and shear strain near the tip than away

from it (Figure 5.7). Transverse strain was not statistically different between the near-tip and

away-from-tip regions. Radial 90° edge crack specimens had statistically greater longitudinal

and shear strain near the crack tip, and statistically larger transverse compressive strain (Fig-

ure 5.7). Statistics are provided in Table 5.4. Although these comparisons were made at 70%

of peak stress to satisfy statistical requirements, the near-tip strain concentrations appeared to

begin around the yield point and to grow in severity up to the peak point (Figure 5.8).

Strain fields in circumferential tension had a mottled pattern for the Exx component and

strong longitudinal banding in the Exy and Eyy components (Figure 5.9). The Exy and Eyy bands

follow the fascicle arcs and are continuous for about half the specimen length. The circumfer-

ential 45° center crack specimens and the circumferential 90° edge crack specimens exhibited
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different strain patterns near the crack. In the circumferential 90° edge crack specimens, the

regions to the side of the crack were strain-shielded. The edge of the strain-shielded region

appeared to follow the arc of the neighboring fascicles. The near-tip Exy and Eyy strain con-

centrations in the circumferential 90° edge crack specimens tended to be qualitatively greater

in magnitude than the Exy and Eyy concentrations elsewhere in the specimen; this was less evi-

dent in the circumferential 45° center crack specimens. The circumferential strain fields, except

for the crack-related perturbations, were similar to the uncracked controls and the uncracked

specimens used in (Chapter 4; Peloquin et al. 2016).

The radial 90° edge crack specimens exhibited a smoother Exx field than the circumferential

specimens. There were a handful of blob-shaped regions with elevated Exx (Figure 5.9). The

crack tip Exx and Exy concentrations were clearly evident in most radial 90° edge crack speci-

mens, but other regions could exhibit strain with similar magnitude. The crack tip compressive

Eyy concentrations were usually not very obvious; regions with similar or greater magnitudes

of transverse compression existed elsewhere. Like the circumferential specimens, the radial

specimens’ strain fields were similar to those in Chapter 4 (Peloquin et al. 2016) except for the

perturbations caused by the crack.

5.3.2 Qualitative rupture patterns and crack behavior

Rupture in the circumferential 90° edge crack specimens proceeded predominantly by inter-

fascicle sliding, creating broad, irregular tears with many bridging fibers (for example, see Fig-

ure 5.10). In 12 of the 13 specimens, the region near the crack tip was the first to display visible
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rupture. Eight of these near-tip ruptures initially grew by inter-fascicle shear perpendicular to

the original crack direction. The other four near-tip ruptures initially grew in the original crack

direction. However, the ruptures broadened as they grew, with fully developed ruptures form-

ing a ragged tear with ~2 mm of frayed tissue on either side. Large, easily visible ruptures

almost always occurred post-peak. Furthermore, inter-fascicle sliding occurred throughout the

specimen, with individual shear bands spanning the whole specimen length. The rupture zone

often shifted location longitudinally via a band of inter-fascicle shear. Secondary ruptures also

occurred separate from the initial rupture, either merging with the initial rupture or remaining

separate and incomplete.

A common site of secondary rupture (6 cases observed) was where the anatomic outer edge

of the specimen (opposite the crack side) crossed the grip line; this is in contrast to the intersec-

tion of the inner edge with the grip line, where secondary ruptures did not occur. The manner in

which ruptures developed was qualitatively similar between crack and control specimens. Over-

all, although the crack tip was the preferential location for initial rupture, the formation of shear

bands, the large extent of the rupture region, and the formation of secondary rupture sites in the

circumferential 90° edge crack specimens means that even if the crack initially propagated, it

rapidly transformed into a failure that was not at all crack-like.

Ruptures in the circumferential 45° edge crack specimens had the same broad, irregular

morphology as in the other circumferentially stretched specimens, but the association of initial

rupture with the crack tips was less obvious. Small ruptures still occurred at the crack tips in

the early stages of rupture, but in parallel with early rupture formation at the grip line (6 out
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of 12 cases) or at the specimen edge (6 out of 12 cases). The primary rupture usually (8 out

of 12 cases) grew to cross the crack (Figure 5.12). (The other four cases include 3 grip line

ruptures and 1 rupture independent of both the crack and the grip line.) Shear rupture between

fascicles, qualitatively, did not affect rupture progression as strongly as in the circumferential

90° edge crack specimens. It was still ubiquitous, however, and in two cases shear bands of

sufficient strength developed at the crack tips to cause a z-patterned rupture (Figure 5.13). With

rupture usually originating away from the crack, there is little evidence for crack growth in the

circumferential 45° center crack specimens.

Radial specimens, unlike circumferential specimens, did show some examples of crack

growth via incremental, local rupture at the crack tip (Figure 5.14). Out of 16 cases, 9 showed

crack growth. Ruptures sometimes developed separate from the crack, so only 4 cases exhib-

ited crack growth across the entire specimen with no other rupture sites. The 7 (out of 16) cases

without crack growth failed by necking and simultaneous rupture across the entire uncracked

width, i.e., bulk rupture. In 3 of the non-crack growth cases, bulk rupture occurred adjacent to

the crack (Figure 5.15). The remainer of the non-crack growth cases failed at the grip line (3

cases) or halfway between the crack and the grip (1 case). Radial crack-free controls failed by

bulk rupture. Ruptures in radial specimens, whether by crack growth or bulk rupture, weremuch

cleaner than in circumferential specimens. Though some small fibers still bridged the rupture,

only tissue within ~0.5 mm of the rupture appeared affected by it (Figures 5.14 and 5.15). The

radial test configuration thus appears more amenable to crack growth than the circumferential

configuration, but crack growth in the radial specimens is still a minority failure mode.

104



5.3.3 Rupture location

Rupture location varied considerably from one specimen to another, with numerous examples of

both pure midsubstance ruptures and ruptures that in some way involved the grip line. Complete

counts of each type of rupture are given in Table 5.3, including rupture types that warranted ex-

clusion from mechanical analysis. Circumferential specimens most commonly failed by mixed

rupture (involving both the midsubstance and the grip line). Radial specimens most commonly

failed by midsubstance rupture, followed closely by grip line rupture. In no group did the ma-

jority of specimens fail by a single type of rupture.

Considering only the specimens that actually ruptured and were included in the mechanical

analysis, circumferential 90° edge crack specimens were more likely than their corresponding

controls to fail by mixed rupture, and less likely to fail by grip line rupture or midsubstance

rupture (p = 0.03, chi-squared test). Circumferential 45° center crack specimens showed no

difference in rupture type compared to their controls. Radial 90° edge crack specimens that

ruptured were more likely than their controls to fail by midsubstance rupture and less likely to

fail by grip line rupture (p = 0.01, chi-squared test).

5.4 Discussion

5.4.1 No fracture observed

This study detected no difference in strength (peak stress) between cracked and crack-freemenis-

cus specimens loaded in either circumferential or radial uniaxial tension, implying that the
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cracked specimens did not fail by fracture. Considering potential undetected effects, the avail-

able data rule out, at the 95% confidence level, a reduction in strength for any circumferential

specimen group > 50% and a reduction in strength for the radial 90° edge crack group > 40%.

If an undetected effect of this size existed, it would decrease the mean strength of cracked spec-

imens to about the level of the 1st quartile strength of crack-free specimens (see Figures 5.3 and

5.4). An undetected effect of this size would not be an especially useful predictor for the strength

of any individual meniscus. The data in this study thus are sufficient to conclude that cracked

meniscus specimens rupture at stresses functionally similar to their crack-free counterparts.

The conclusion that circumferential specimens did not fail by fracture is also strongly sup-

ported by the video recordings of each test, which show broad ruptures with extensive interdig-

itating fiber sliding (Figure 5.10). Crack growth, a necessary component of fracture, was not

observed in circumferential specimens. Nor did the presence of the crack change the stress at

failure. This evidence indicates that the circumferential specimens did not fail by fracture.

Radial specimens were more equivocal, with roughly half showing progressive failure by

crack growth (Figure 5.14). Crack growth is consistent with fracture, but it alone is not sufficient

to conclude that failure was by fracture. Cracked radial specimens had similar peak stress to

their controls and so did not demonstrably fail by fracture. Fracture may have been partially

involved in radial specimen failure, but not enough to change the nominal stress at failure. A

valid, predictive measurement of fracture toughness cannot be made from this data.
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5.4.2 Fracture test configurations

To contextualize the finding that the failure of the cracked specimens did not occur by fracture,

it is necessary to consider the ability of the test setup to elicit crack propagation. This can be

done to some degree by analogy to standard engineering materials, with the caveat that the

meniscus’ anisotropy, nonlinearity, heterogeneity, fluid flow, and viscoelasticity make these

comparisons imprecise. If the meniscus tissue in the 90° edge crack test configuration, which

is a single edge notch (SENT) configuration, was substituted with aluminum, titanium, or most

steels, the particular specimen shape and size used here would have produced fracture at loads

50% to 15% less than the ultimate tensile strength. These estimates were made with the formula

KI = σ
√
πaf(a/W ) with f(a/W ) = 1.6, where KI is the stress intensity, σ is the remote

stress, and a is the crack length (Tada et al. 2000). SENT tests are not a particularly demanding

test of fracture toughness.

Alternatives such as compact tension or single edge notched bend tests can generate stress

intensity values ~4 times greater than SENT. Chin-Purcell and Lewis (1996) tested compact

tension specimens of patellar cartilage, using the subchondral bone for gripping and as part of

the crack; this test configurationmay have produced fracture and a validmeasurement of fracture

toughness (Taylor et al. 2012). However, the temporomandibular joint disc has also been tested

in compact tension, and did not produce a crack-induced decrease in strength (Koombua et

al. 2006; Taylor et al. 2012). It may be possible to use compact tension or single edge notched

bend tests for soft tissue like the meniscus, or otherwise devise a test configuration that produces

greater stress intensity than SENT, but this must be left to future studies.
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The 45° center crack configuration was used in the present study as an ostensibly more

severe inducer of meniscus fracture, as it was previously predicted by FEA of fiber-reinforced

soft tissue to produce ~10× greater near–tip fiber-aligned stresses (Peloquin and Elliott 2016)

(Chapter 3). However, the 45° center crack configuration did not cause crack extension or

a reduction in specimen strength. The extent to which the FEA prediction from (Chapter 3)

was valid is uncertain. The meniscus’ fracture toughness may be so great that a 10-fold stress

increase relative to the stress concentration in SENT specimens is still insufficient to cause

fracture. Inter-fascicle sliding was a major component of failure and the FEA model does not

represent this. Additionally, the crackmost likely interacts with fascicles as discrete units, rather

than a continuum as employed in the model. Further work is necessary to add the characteristic

features of meniscus failure to the model.

5.4.3 Crack-induced changes in radial specimen yield stress and tangent
modulus

The stress–strain curve statistics for radial specimens produced the unexpected result that, com-

pared to crack-free controls, the cracked specimens had greater yield stress and tangent modulus.

Inspection of the stress–strain curves confirmed that the cracked radial specimens had steeper

stress–strain curves, at least up to the peak (Figure 5.6). The reason is not clear. The cracked

radial specimens were more likely than their crack-free controls to fail in the midsubstance, but

the cracked specimens’ midsubstance ruptures also had greater yield stress (not significant; p

> 0.05), so there is some other effect at work besides a change in failure location. The test

endpoint (type of rupture) does not explain this effect.
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5.4.4 Morphology of ruptures and functional failure

Nearly all large ruptures in circumferential specimens developed post-peak. Fibers that bridged

the rupture continued to connect the two halves of the specimen even when all load-bearing

capacity had been lost post-peak. For example, the circumferential specimen rupture illustrated

in Figure 5.10 is bearing ~0 MPa stress and 100% strain at the time the image was taken; its

strain at peak load was 42%. This is a typical outcome. Small fiber connections were frequently

maintained past 100% strain. A ruptured specimen that still has fibers bridging the rupture

resembles a degenerative tear (for example, Figure 2D in McDermott 2006).

The stress–strain curves for both circumferential (Figure 5.5) and radial (Figure 5.6) spec-

imens show residual load bearing for about as much strain past the peak point as there was

before the peak point. However, the maintenance of tissue strength once the peak point has

been exceeded is precarious; any fixed-load boundary condition would result in complete fail-

ure. However, a prescribed-displacement boundary condition would preserve the meniscus’

remaining structural integrity. As the meniscus shares the role of knee stabilization with the

various knee ligaments and the joint capsule (Pedersen 2006; Peltier et al. 2015; Greis et al.

2002), a post-peak, a partially ruptured meniscus in vivo may not be stretched to the point

where dissociates into two pieces. Even if the tissue appears to be still in one piece (in, e.g.,

MRI), near-complete mechanical failure may exist.
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5.4.5 Significance of increased strain near the crack tip

Longitudinal and shear strain in all test groups was greater near the crack tip than away from

it. Radial cracked specimens additionally had greater transverse strain near the crack tip. The

increase in longitudinal strain in the circumferential specimens (i.e., fiber-aligned strain) was

between 0.01 and 0.06 (95% CI), which could cause adverse events near the crack tip even under

normal physiologic deformation. In a study of rat medial collateral ligament, longitudinal strain

> 0.05 causes permanent deformation, which was interpreted as structural damage (Provenzano

et al. 2002b). Other work reports a permanent deformation threshold of 0.06 strain in porcine

flexor tendon (Duenwald-Kuehl et al. 2012). Sverdlik and Lanir (2002) consider the damage

threshold of tendon to be 0.08 strain. FEA of intact meniscus under physiologic loads has pre-

dicted strains between 0.01 and 0.04 (albeit with limited constitutive models and geometry)

(Aspden 1985; Spilker et al. 1992). Compression of porcine menisci with 2 × body weight

results in radial and circumferential stretches of ~1% and compressive stretch of -12%, as mea-

sured by MR image correlation (Freutel et al. 2014). The excess strain near the crack tip is

thus very likely to exceed the strain at which permanent deformation occurs. The notion that

increased near-tip strain causes early near-tip damage is supported, in the present study, by the

prevalence of initial rupture at the crack tip. Although the increase in near-tip strain was not suf-

ficiently severe to decrease yield stress or peak stress in a single loading cycle, repeated loading

cycles may cause cumulative damage with consequent compromised meniscus function.

In addition to structural damage, increased strain near the crack tip may cause local cell

death. In ligament, cell death is linearly proportional to applied strain (Provenzano et al. 2002b).
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Although healthy tissue presumably has some capacity for self-renewal, greater near-tip strain

increases the risk of exceeding this capacity. Necrotic cells also release proteases, increasing

the risk of structural degradation. Similar to mechanical damage, cell damage may accumulate

over time via repeated loading and cause dysfunction.

The meniscus’ fibrous structure guides local rupture along fascicle boundaries, deflecting

crack growth so that the near-tip strain concentration does not extend across thewidth of a tensile

test specimen. However, although crack deflection can prevent transverse rupture, it can also

increase the size of the strain concentration associated with the crack tip by spreading it along

the length of the neighboring fascicles. Greater strain may promote damage, so a larger strain

concentration region may not be desirable. In circumferential tests, shear strain concentrations

extended from the crack tip all the way to the grips, and were probably caused by inter-fascicle

shear. These inter-fascicle strain concentrations could cause problems in vivo by promoting the

growth of circumferential, bucket handle, vertical, and horizontal tears (Aspden 1985; Fithian

et al. 1990; Kelly et al. 1990; Smillie 1978).

5.4.6 Permanent deformation

Although detecting the onset and severity of permanent deformation and damage was not a

study objective, non-recoverable inter-fascicle sliding (shear strain) is clearly visible in the test

videos. Fascicles accrue relative slip of several mm and this slip does not recover upon rupture.

The onset of damage and permanent deformation deserves further investigation. The yield point

is a good candidate for the onset of damage or plasticity. However, the permanent deformation
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threshold in tendon is about 0.05 strain (Provenzano et al. 2002b; Duenwald-Kuehl et al. 2012),

which is half of the meniscus’ yield strain. Measurements of post-rupture strain recovery from

the present study’s data are uncertain due to the difficulty of digital image correlation past the

rupture point, but the onset of damage and permanent deformation deserves future study.

5.4.7 Comparison of meniscus failure to that of other tissues

This interdigitating rupture pattern in circumferential meniscus specimens is reminiscent of

the “mop-head” or frayed failure pattern typical of tendon (Schechtman and Bader 1997; Von

Forell et al. 2014; Von Forell and Bowden 2014), but the extent of interdigitating fiber pull-

out is smaller in the meniscus. Accordingly, the crack blunting observed in the present study’s

meniscus specimens was less severe, and crack-associated increases in near-tip strain (all test

groups) and crack propagation (albeit only in the radial 90° edge crack group) was observed. The

meniscus cracks also exhibited much less blunting than did cracks in bovine articular cartilage,

in which the entire uncracked width undergoes rupture by necking (Stok and Oloyede 2007).

Cultured cartilage hydrogels, in contrast, displayed sharp crack propagation (Oyen-Tiesma and

Cook 2001), although post-publication analysis shows that the crack may not have reduced the

hydrogel’s strength (Taylor et al. 2012). The two fibrous tissues in which fracture was observed

with some certainty, stratum corneum (Wu et al. 2006b) and bone-attached superficial zone

cartilage (Chin-Purcell and Lewis 1996), unfortunately do not have published images of their

rupture morphology. Rupture of edge-cracked cooked muscle somewhat resembles the rupture

of edge-cracked meniscus, although the muscle did not exhibit much fascicle sliding (Purslow
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1985). Meniscus is somewhere between tendon and articular cartilage in structure and prop-

erties, so the general lack of fracture in tendon and the inconsistent observation of fracture in

fracture studies of articular cartilage implies that fracture in the meniscus is either irrelevant

(like tendon) or limited to particular circumstances (like articular cartilage).

Biomimetic materials may be a better subject than native fibrous material for future crack-

related studies, as the consistency and adjustability of manufactured materials should allow

more flexible and efficient study designs. Fracture—both sharp crack propagation and decreased

strength—has been observed in tensile tests of edge-cracked gelatin scaffolds, but neither in PCL

electrospun scaffolds nor in nonwoven fabric (Koh et al. 2013). Scanning electron microscopy

of the cracks in gelatin showed a sharp μm-scale crack extending from themacroscopic crack tip.

The gelatin fibers are only ~0.1 μm in diameter and randomly aligned, which allows for sharp

crack growth. The nonwoven fabric, with fibers a thousandfold larger, exhibits crack blunting

and inter-fiber shear like the meniscus. A biomimetic material based on nonwoven fabric may

be useful as a surrogate material for failure studies in meniscus and other fibrous soft tissues,

such as annulus fibrosus, that have crack-related pathologies.

5.4.8 Differences between loading axes

The fascicle structure of the meniscus appears to have a strong influence on how cracks in the

meniscus do and do not propagate. Circumferential specimens appeared to preferentially rup-

ture along fascicle boundaries, typically by inter-fascicle shear. In circumferential tension this

results in deflection of the crack to proceed parallel to the fascicles (as opposed to its original di-
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rection perpendicular to the fibers). Consequently, insufficient fascicle stress develops to cause

fascicle rupture. Instead, ruptures propagate across the specimen by inter-fascicle shear, causing

fascicles to slide past each other in an interdigitating pattern over a large area. Specimens tested

in radial tension instead have their fascicles oriented perpendicular to the tensile axis. The in-

terfaces between fascicles provide a propagation path for a 90° edge crack that guides the crack

to extend in its original direction—this is likely why crack extension was actually observed in

radial specimens.

The meniscus contains sparsely distributed radial tie fibers (Andrews et al. 2014; Rattner

et al. 2011). These tie fibers, when present, increase the stiffness and strength of radial spec-

imens (Skaggs et al. 1994a). The extent to which radial tie fibers were present in the present

study’s specimens is unclear. Skaggs and Mow (1990) observed about even proportions of

specimens with full grip-to-grip tie fibers, partial tie fibers, and no tie fibers in their study of

radial-axial specimens, but specimens cut in the radial-circumferential plane (as used in the

present study) are less likely to contain tie fibers. Qualitative examination of radial specimens

in the present study revealed no examples of radial tie fibers spanning the site of rupture. The

radial stress–strain curves (Figure 5.6) appear to be clustered into a high stiffness and low stiff-

ness group, but this pattern is subjective. The effect of radial tie fibers on crack behavior, if any,

is unknown and may be addressed in future work.
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5.4.9 Potential for fracture in vivo

Although none of the test configurations used in this study—circumferential 90° edge crack

(SENT), circumferential 45° center crack, and radial 90° edge crack (Figure 5.1)—produced

fracture, this is not conclusive evidence that fracture does not occur under in vivo conditions.

There are many differences between the ex vivo test and in vivo conditions that could inhibit

fracture in the ex vivo test and promote it in vivo.

In vivo, the meniscus is thought, largely based on FEA models, to be subjected to biaxial

tension in the circumferential-radial plane combined with axial compression and shear (Kawa-

mura et al. 2003; Fithian et al. 1990; Mononen et al. 2013). FEA simulations have predicted

heterogeneous internal strain and stress, with both negative and positive magnitudes for the

same component depending on the region (Aspden 1985; Spilker et al. 1992; Párraga Quiroga

et al. 2014; Atmaca et al. 2013). Although the FEA models may not have perfect fidelity, they

suffice to demonstrate that the meniscus has a complex internal deformation field under normal

activity. The existence of heterogeneous internal strains has also been verified by MR image

correlation (Freutel et al. 2014). Tests with boundary conditions and internal deformationsmore

representative of in vivo conditions may produce fracture.

Based on the observed failure morphology in the present study, inter-fascicle sliding ap-

peared to be the primary deformation mechanism limiting crack propagation in circumferential

specimens. Inter-fascicle sliding both deflected the crack towards the grips and caused a large

process zone (or possibly plastic zone) to develop. A process zone of similar size to the un-

cracked width can inhibit fracture and cause a shift to a different failure mechanism (Taylor et

115



al. 2012), such as bulk rupture. Inter-fascicle sliding may have been promoted by the creation of

fascicle free ends at the specimen surface while microtoming. Deflection of the crack towards

the grips also caused the grip line stress concentration to have a major role in the specimen’s

rupture. Also, inter-fascicle sliding allowed individual fascicles to slip out of the gripped re-

gion. In vivo, the effect of inter-fascicle sliding may be more limited because (1) there are fewer

free fascicle ends, (3) the whole meniscus allows more space for a process zone to exist away

from the meniscus boundaries, and (3) the meniscus’ bony insertions presumably cause less of

a stress concentration than metal tensile grips. In tests of radial specimens, necking at the crack

location, facilitated by fiber reorientation, appeared to be the principal inhibitor of fracture. In

vivo, necking via reorientation of circumferential fibers would be limited because these fibers

would be under tension. Eliminating or limiting inter-fascicle sliding and fiber reorientation

would increase the crack tip stress concentration and keep the process zone local to the crack

tip, promoting fracture.

Loading rate and crack length are also worth investigating as factors that may promote frac-

ture. Meniscus tears often occur in the context of sports, implying involvement of high rate

loading (Drosos and Pozo 2004; Feucht et al. 2015), and ex vivo impact testing has produced

meniscus tears (Isaac et al. 2010; Isaac et al. 2008). Tests of longer cracks would also be ben-

eficial, although this is somewhat limited by the possible specimen dimensions. Tears in vivo

that are of concern are often have length in the 5 mm to 25 mm range (Stärke et al. 2009; Roed-

decker et al. 1994; Lento and Akuthota 2000; Seil et al. 2009). Large tears begin as small tears,

though, so examining the entire range would be ideal.
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5.5 Conclusion

In this study, circumferential and radial cracked meniscus specimens were loaded to failure in

uniaxial tension to determine whether they fail by fracture. This determination was made by

comparing the peak stress of cracked specimens to crack-free controls. Cracks did not signif-

icantly change the peak stress. Fracture therefore did not occur or had a non-significant impact

on meniscus strength. Any potential undetected fracture effect was similar to the magnitude

of inter-individual variation. Therefore, the presence of a crack says nothing useful about the

meniscus’s effective strength, only that the cross-sectional area (and thus the maximum safe

load) is reduced. Inter-fascicle sliding produced ubiquitous crack deflection and large rupture

zones in circumferentially stretched specimens, with no sign of crack growth except for local

rupture extending ~ 0.5 mm from the crack tip early in the failure process. In radial tension,

about 50% of specimens failed with crack growth. Despite the lack of fracture and, generally,

crack growth, cracks did cause increased local strain near their tips. Cracked circumferential

and radial specimens had increased longitudinal (fiber-aligned) and shear strain near the crack

tip. Cracked radial specimens in addition had greater transverse compressive strain near the

crack tip. Increased near-tip strain may cause local damage, such as collagen denaturation or

cell death, and, in vivo, meniscus dysfunction. Increased crack tip strain may also facilitate

crack growth under cyclic loading. These findings are a step towards accurately predicting the

(non-)propagation of meniscus tears in vivo, which will aid to clinical treatment planning. The

methods employed can also be applied to materials used for meniscus repair or regeneration to

test whether they have fracture resistance comparable to native meniscus.
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Figure 5.1: Specimen schematics. (a) Anatomic origin of specimens with respect to the whole
meniscus. This example shows a lateral meniscus. The narrow circumferential specimens are
cut so that they have the same width and come from the same region as the uncracked width in
a normal specimen with a 90° edge crack. (b) Specimen shapes for each of this study’s analysis
groups (circumferential 90° edge crack, circumferential 45° center crack, and radial 90° center
crack) and their corresponding crack-free controls. The narrow specimens are used as controls
for the 90° edge crack specimens so that they have similar cross-sectional area and come from
the same region.

Figure 5.2: Near-tip and away-from-tip regions defined for identifying possible near-tip strain
concentrations. Both regions extended 0.5 mm to the left and right of the crack. The near-tip
region extended 0.5 mm from the crack tip. All other tissue in the 1 mm wide band extending
from the crack tip was assigned to the away-from-tip region.
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Figure 5.3: Comparison of stress–strain curve parameters between circumferentially stretched
cracked specimens and their corresponding controls. The boxplots follow Tukey’s style.
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Figure 5.4: Comparison of stress–strain curve parameters between radially stretched cracked
specimens and their corresponding controls. The boxplots follow Tukey’s style. * indicates p
< 0.05, no crack vs. 90° edge.
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Figure 5.5: Stress–strain curves for circumferential 90° edge crack and 45° center crack speci-
mens and their controls.

Figure 5.6: Stress–strain curves for radial 90° edge crack specimens and their controls.
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Figure 5.7: Optical strain compared pairwise between near-tip and away-from tip regions. *
indicates p < 0.05, paired near-tip vs. away-from-tip.
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Figure 5.8: Optical strain near and away from the crack tip. Solid or dashed line = median;
shaded band = 0.16 and 0.84 quantiles; blue = away from tip; red = near tip. The yield strain
and peak strain for the tests shown in each plot are marked with vertical dashed lines. The
plotted values were computed from the pooled median strain values for each region for each
test.
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Figure 5.9: Representative strain fields for cracked specimens in each analysis group loaded to
70% of peak stress.
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Figure 5.10: Representative example of circumferential specimen rupture (bracketed by ar-
rows). Ruptures were consistently broad, spanning ~5 mm of specimen length and were bridged
by fascicles and smaller fibers.

Figure 5.11: Example of near-crack-tip rupture (bracketed by arrows) and crack tip opening in
a circumferential 90° edge crack specimen.
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Figure 5.12: Representative example of rupture (arrows) in a circumferential 45° center crack
specimen.

Figure 5.13: An unusual z-shaped rupture (arrows) in a circumferential 45° center crack spec-
imen.
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Figure 5.14: Example of crack growth (bracketed by arrows) in a radial 90° edge crack speci-
men.

Figure 5.15: Example of rupture (bracketed by arrows) in a radial 90° edge crack specimen by
necking and simultaneous rupture across the entire uncracked width. This failure mode is in
contrast to crack growth.
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS

6.1 Summary

The overall objective of this work was to investigate meniscus mechanics and failure in the

context of meniscus cracks, with specific attention to failure mechanisms and local strain con-

centrations. Despite the predominant role cracks have in meniscus pathology, and their role

in the etiology of osteoarthritis, very little is known about the mechanics of cracked meniscus.

This lack of information means that clinical decisions must be made on the basis of accumulated

experience and rules of thumb, without recourse to quantitative predictions of crack propagation

and mechanical deficiency. This study was undertaken to begin filling this gap in knowledge

regarding the behavior of meniscus cracks. To support this goal, key nonlinear mechanical

properties of the meniscus were quantified in uniaxial tension for both crack-free and cracked

specimens and several experimental issues regarding stress–strain curve quantification, rupture

location, and specimen shape were examined. FEA was used to assist experimental design by

identifying test cases with the greatest risk of fracture or crack growth; these test cases were

selected for physical ex vivo testing. Since the meniscus bears both circumferential and radial

tension in vivo, and tension causes crack opening and, potentially, propagation, tensile proper-

ties were quantified in both the circumferential and radial directions for cracked and crack-free

specimens. The cracked specimen configurations employed represented in vivo tears of the ra-
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dial, oblique, and circumferential or bucket-handle types, which are considered to generally be

caused by acute (traumatic) injury rather than progressive degeneration. This study provides

new measurements of sub-failure meniscus mechanics, including a fiber recruitment model and

yield point (inflection point) measurements, recommends an elongated tab specimen shape for

more accurate quantification of fiber-alignedmeniscus tensilemechanics, and demonstrates that,

even though fracture was not observed, cracks cause increased strain near the crack tip prior to

failure.

The goal of Chapter 3 was to identify test configurations for cracked meniscus specimens

that would produce large stress concentrations and thus inures the likelihood that subsequent

tensile testing would observe failure by fracture or, at least, crack extension. This was accom-

plished using finite element analysis with a previously validated hyperelastic continuum model

originally established in work on intervertebral disc annulus fibrosus. The model had a matrix

term and an oriented exponential fiber term. Center-cracked specimens with cracks angled 45°

relative to the prevailing fiber direction were predicted to produce the greatest fiber stress con-

centration at the crack tip, much greater than in commonly used edge crack specimens. The 45°

center crack specimen configuration was therefore considered a possible solution to the lack of

crack propagation and fracture observed in previous fracture tests of fibrous soft tissue. How-

ever, 90° edge crack specimens were predicted to produce equal or greater fiber-perpendicular

and fiber shear stress compared to center crack specimens. Consequently, 90° edge crack spec-

imens were considered to be a good choice for investigating failure by matrix rupture and fiber

sliding.
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The goal of the work in Chapter 4 was to quantify the nonlinear mechanical properties of

the meniscus in uniaxial tension and resolve several experimental issues regarding stress–strain

curve quantification, rupture location, and specimen shape. Since the meniscus must support

both circumferential and radial tension in vivo, tensile tests were done in both the circumferential

and radial directions. A structural model based on fiber recruitment was introduced and success-

fully fit to experimental data. This model provides a quantitative link between the meniscus’

fiber structure and its toe region stress–strain response. The yield point was quantified for the

first time inmeniscus using amethod that defines its position in terms of the stress–strain curve’s

shape, rather than subjective measurement or an arbitrary threshold crossing. This method de-

fines the yield point as the inflection point of the stress–strain curve. As an additional benefit,

measurement of the yield point in this manner allows the modulus to be defined as the tangent

modulus at yield. Previously, the modulus was defined using a linear fit to an arbitrary stress

or strain range. The yield strain was found to closely match the strain at which fiber recruit-

ment in the aforementioned fiber recruitment model reached ~100%. Together, the model and

these stress–strain metrics are useful as functional targets for meniscus replacements or repair

procedures, to compare disease states, or as diagnostic markers.

In an effort to control failure location and ensure midsubstance failure, dogbone-shaped

specimens were compared with rectangular specimens. For circumferential tension tests, an

expanded tab shape was introduced that has wide, asymmetric flarings in the gripped region to

better accomodate the arc of the meniscus’ fascicles. Failure location—midsubstance, mixed

between midsubstance and grip line, and at the grip line—was classified and found to be highly
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variable, but did not significantly affect the stress–strain or model parameters. Although the

various specimen shapes were not effective at ensuring midsubstance rupture, the expanded

tab specimens were found to securely grip the meniscus’ fibers much more effectively than

either of the other two shapes. The expanded tab specimens had more rapid and complete fiber

recruitment, lesser yield strain, and greater peak stress. Among the specimen shapes tested,

expanded tab specimens are best for circumferential tensile testing and rectangular specimens

are best for radial testing.

Strain fields measured by digital image correlation revealed significant heterogeneity in the

strain response, which grew as the test progressed. Bands of shear strain, apparently developing

along fascicle boundaries, were the predominant feature, suggesting inter-fascicle shear as an

important deformation and damage mechanism. The shear bands extended from the midsub-

stance into the gripped region.

Chapter 5 describes the results of uniaxial tensile tests of cracked circumferential and ra-

dial meniscus specimens, with the goal of determining whether failure occurred by fracture or

bulk rupture. Based on the results from Chapter 3, circumferential 45° center crack specimens,

circumferential 90° edge crack specimens, and radial 90° edge crack specimens were used in

an effort to maximize the chances of obtaining strong stress concentrations, crack propagation,

and fracture. Based on the results from Chapter 4, the circumferential specimens were cut to

an expanded tab shape and radial specimens were cut to a rectangle shape. Whether fracture

occurred was determined by comparing the peak stress of cracked specimens to crack-free con-

trols. It was found that cracks did not significantly change the peak stress, and failure did not
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occur by fracture. A crack—at least in a uniaxial tensile test—reduces the cross-sectional area

and thus reduces the maximum load the specimen can support, but does not significantly change

the expected strength of the uncracked material.

Despite the lack of fracture, cracks created strain concentrations at their tips. Longitudinal

(fiber-aligned) strain and shear strain (inter-fascicle shear) were significantly greater near the

crack tip in circumferential specimens. In radial specimens, longitudinal (fiber-perpendicular)

strain, shear strain, and transverse compression were significantly greater near the crack tip.

These strain concentrations are likely to cause structural damage and cell death near the crack

tip at lesser strains than would otherwise be expected. This local damage may cause crack

growth under repeated loading. With the monotonic ramp loading used in the present work,

circumferential cracks only propagated for a very short (< 1mm) distance before being deflected

along fascicle boundaries or spreading out into broad regions of interdigitating fascicle pull-out.

About 1/2 of radial specimens displayed qualitative crack growth, but the unchanged peak stress

indicated that fracture still did not occur or at most had a minor effect.

6.2 Path forward for studying crack propagation in meniscus

Tear propagation is the central aspect of meniscus pathology and requires further study. How

best to proceed, however, is a difficult question. The role of fracture in meniscus failure re-

mains uncertain. Although the present work did not demonstrate fracture, it is not ruled out as

an in vivo failure mechanism. A test with a different loading rate, multiaxial loading, hydration

(preload), crack geometry, heterogeneous loading, fascicle anchoring (native bony insertion vs.
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screw-down clamps), specimen geometry, and other factors could produce fracture. Unlike the

meniscus, other materials such as metals show a clear dichotomy between fracture and ductile

rupture, with the applicable failure mechanism clearly apparent based on the failure morphol-

ogy. Fracture is failure by crack propagation; ductile rupture is failure by necking and shear.

Interpretation of meniscus tears is more difficult. Meniscus cracks (tears), in vivo, clearly initi-

ate, grow, and stop growing. This process looks like fracture, but qualitative crack propagation

is not proof of fracture. The actual underlying mechanisms controlling tear initation, growth,

and arrest remain to be identified. Several competing (but not necessarily exclusive) hypotheses

for how meniscus tears form and grow can be formulated:

1. Acute (traumatic; single loading cycle) meniscus tear growth can occur by fracture. It did

not occur in the present study because the test conditions did not produce a sufficiently

severe stress concentration relative to the tissue toughness or produced a too large pro-

cess or plastic zone relative to the specimen dimensions. Other sets of conditions exist

that would produce a greater stress concentration and cause fracture; furthermore, such

conditions occur in vivo.

2. Acute meniscus tear growth can be caused by fracture, but requires pre-existing alter-

ations in the meniscus’ properties caused by accumulated damage, disease, or aging.

3. Acute meniscus tears occur by a non fracture process involving heterogeneous load-

ing, but this heterogeneity is not caused by the tear itself and so the tear does not self-

propagate. For example, loading the inner meniscus in circumferential tension and the

outer meniscus in circumferential compression would only cause failure in the inner
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meniscus. The result when examined after the fact would be a radial tear. Under this

hypothesis, abnormal knee motion may be required to create acute meniscus tears.

4. Meniscus tears initiate and grow due to heterogeneous material strength. The resulting

partial ruptures look like tear propagation because the tear starts growing in weaker re-

gions and grows into stronger regions. Fracture is not involved.

5. Meniscus tears grow over time as material near the tear progressively accumulates dam-

age under repeated loading. Proteolytic degradation may assist in this process.

The snapping or popping sensation that often accompanies acute meniscus injury in young

people (Lento and Akuthota 2000; Wagemakers et al. 2008) suggests sudden tear initiation and

growth, favoring hypotheses 1, 2, 3, or 4. This kind of failure, from an engineering perspective,

is associated with a risk of fracture, weakly favoring hypotheses 1 or 2. Tear growth in healthy

rabbit mensicus can be produced by impact loading of the whole knee joint, favoring hypotheses

1, 3, or 4 (Isaac et al. 2010), but this requires the application of severe loading conditions: 13 J

of energy via a dropped mass, generating 1100 N of force at impact, with the joint flexed at 90°.

This impact both creates meniscus tears and ruptures the ACL. The present work’s observation

of tear propagation in only ~50% of radial specimens (Section 5.3.2), but no statistically signif-

icant loss of strength, is weak (inconclusive) evidence against hypothesis 1. Hypothesis 4 was

suggested in a slightly different form by Kelly et al. (1990), who proposed that whether a tear

propagates or not depends on the tissue architecture near its tip.

Degenerative tears, in contrast, can seldom be traced to specific loading events (Lento and

Akuthota 2000; Drosos and Pozo 2004), suggesting tear growth over time (hypothesis 5). This
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hypothesis can be true or false independently of the others. It is conceivable that a degenerative

tear could have originated as an asymptomatic acute tear, but degenerative tears tend to have

different morphology (horizontal cleavage, flap, or complex) than acute tears (Drosos and Pozo

2004). Development of symptoms also implies some degree of tear propagation or remodeling

since the tear’s origination. Tear propagation by multiple loading cycles over a long time period

is most likely a separate process from acute tear formation. Chapter 5 shows that a crack, under

single-cycle monotonic loading, causes a strain concentration near its tip. If this local increase

in strain causes damage, repeated cycles may cause progressive accumulation of damage near

the crack tip, potentially causing local failure and growth of the crack. A pre-existing crack or

other stress concentrating defect under repeated loading may therefore cause development of a

degenerative tear.

Testing these hypotheses is not straightforward, as an assertion that fracture occurs in at

least one loading condition (as in hypotheses 1 and 2) cannot be directly disproved without

exploring all possible variant loading configurations. Such a plan is thorougly impractical;

relevant factors include: loading rate, multiaxiality, hydration, crack length, orientation, and

position, heterogeneous boundary conditions, contact loading, grip type, specimen geometry,

and others. A more practical approach is to pick a test configuration estimated to be likely to

produce fracture based on meniscus tear epidemiology, the limited number of fibrous soft tissue

fracture studies, and by analogy with other materials. The expected utility of this approach

varies with one’s subjective estimate of the likelihood that fracture will occur. Discussion later

in this Chapter will present compact tension specimens and rapid, physiologically representative
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loading of whole meniscus that is still attached to the knee as good candidates. Regardless of

the approach chosen, any test must be designed to distinguish between failure by fracture and

failure without fracture; for example, by measuring crack-induced weakness or lack thereof, as

was done in Chapter 5. This task is discussed in Section 6.5.

An alternative approach, and the one employed in the present work, is model-based exper-

imental design. In the present work, FEA using existing mechanical models was used to rank

readily available test designs to identify the one with the greatest chance of producing fracture

(Chapter 3). The best case, circumferential uniaxial tension with a 45° center crack, was evalu-

ated in Chapter 5 alongside established standards. Although none of the trialed configurations

produced fracture in the end, the resulting data can be used to train more accurate mechani-

cal models that incorporate effects such as structural heterogeneity and damage. The improved

model can then be used to design the next round of fracture tests. Requirements for themodel are

discussed further in Section 6.5. Importantly, as the model converges with reality over repeated

iterations, it becomes a useful research product in its own right.

6.3 Role of meniscus fascicle structure and anisotropy

The meniscus’ fascicle structure is an important factor in its mechanics. The meniscus is known

to be much stiffer and stronger in circumferential tension (parallel to the prevailing fascicle

orientation) than in radial tension. The fascicle structure also appeared in the present work to

be responsible for significant strain field heterogeneity and may have been responsible for the

lack of observed fracture in uniaxial tension (related to hypothesis 1 in Section 6.2).
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Strain fields in circumferential tensile tests (Chapters 4 and 5) showed bands of elevated

shear strain and transverse strain that appeared to follow fascicle boundaries. The failure pattern

in circumferential tension—broad ruptures with extensive interdigitating fiber sliding—sug-

gests that failure of the inter-fascicle matrix was the critical step in determining when the entire

specimen failed. The circumferential specimens used in this study were prepared so that failure

by fracture required crack growth across the specimen and thus required fascicle rupture. These

test cases were chosen based on the results of Chapter 3, which suggested the 45° center crack

as a test case for achieving novel crack propagation and fracture in fibrous soft tissue. However,

failure of the inter-fascicle matrix by inter-fascicle sliding caused crack deflection towards the

grip line, diverting the crack from its original path. Widespread inter-fascicle sliding across

much of the specimen width served to dissipate any crack-induced stress concentrations, limit-

ing fascicle tension. The crack diversion and stress dissipation caused by inter-fascicle sliding

may have prevented fracture from occurring.

Inter-fascicle matrix sliding also appeared to limit stress transfer from loaded fascicles to

unloaded fascicles. For example, in Chapter 4 fascicles severed by the dogbone cutouts were

observed to be strain shielded and hence largely unloaded; stress did not apparently redistribute

across fascicle boundaries between grip-to-grip continuous fascicles in the narrow central region

and the severed fascicles in the flared ends. Similarly, in the cracked specimens (Chapter 5) it

is likely that the fascicles severed by the crack remained largely unloaded and the specimen

behaved like it was made only of the region containing intact fascicles, reducing the effect of

the crack. Since near-tip strain concentrations were observed (Section 5.3.1), crack-induced
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stress concentration were still present, but it is likely that they were severely reduced compared

to a homogeneous meniscus-like material without fascicle interfaces.

Factors which limit inter-fascicle sliding may in turn limit crack diversion, produce a more

confined and more intense stress concentration, and increase inter-fascicle stress transfer. These

changes would increase fascicle tension and make crack growth and/or fracture more likely. If

the inter-fascicle matrix is viscoelastic, greater strain rate (more closely mimicking injurious

overload in vivo) may achieve this. if inter-fascicle stress transfer is frictional, a reduction in

fluid content such as by compression and hence tighter fascicle packing might also reduce inter-

fascicle sliding. The properties of the inter-fascicle connections may also change with age or

disease, potentially affecting crack propagation and fracture risk.

Although mechanical models for the meniscus such as those in Chapter 3 typically include

anisotropy, the fascicles are represented as a homogeneous continuum rather than as discrete

structural units with interfaces that slip, accrue damage, and fail. Consequently, current models

do not reproduce the heterogeneous strain patterns observed in this work and cannot be used to

predict how inter-fascicle sliding may limit fracture in favor of bulk rupture. Models have been

developed to explain tissue mechanics by stress transfer between fibers inter-fiber shear and slip

(Skaggs et al. 1994b; Szczesny and Elliott 2014b; Szczesny and Elliott 2014a; Ahmadzadeh

et al. 2015; Gao et al. 2008), but this concept has not yet been translated to cm-scale simu-

lations with individual fascicles explicitly represented. Implementing and validating a model

for meniscus that incorporates inter-fascicle shear and slip would be an important step forward,

enabling further simulations to more accurately predict crack-induced stress concentrations and
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identify test cases that may produce crack growth.

For radial specimens, specimens that exhibited crack propagation did so by growth of the

crack along inter-fascicle boundaries. Other radial specimens failed by necking and bulk rup-

ture. These specimens exhibited large amounts of fiber reorientation into the loading axis, which

may have been responsible for changes in the apparent yield strength and tangent modulus. For

radial specimens, the role of the inter-fascicle matrix as the first structure to fail provides a

crack propagation path straight across the specimen. Strain fields in radial specimen did not

exhibit patterns associated with the fascicle boundaries. Accurate representation of local fiber

rotation and the single inter-fascicle interface coincident with the crack is most likely sufficient

to represent radial specimen failure.

It is important to note that this study focused on crack growth by opening stress (mode

I fracture). Crack growth can also occur by in-plane shear (mode II) and out-of-plane shear

(mode III) failure. For an anisotropic material such as meniscus, the propagation modes are

expected to have different mechanical behavior depending on their orientation relative to the

material axes (i.e., parallel or perpendicular to the prevailing fascicle direction). As discussed

above, inter-fascicle slip interferes with mode I crack growth in circumferential tension, caus-

ing diversion of cracks towards the grip line. However, alternative test configurations could

be designed to prioritize quantification of crack growth by inter-fascicle slip (circumferential,

mode II) or inter-fascicle peeling (circumferential, mode III). The apparent fracture toughness

of meniscus scar tissue has been measured using peel tests (Sonoda et al. 2000; Roeddecker et

al. 1994), but there is not yet verification that the measured values can predict fracture in other

139



test cases. There is some indication that longitudinal tears in the intact meniscus are loaded pre-

dominantly by shear rather than opening stress (Richards et al. 2008; Stärke et al. 2009). These

prior findings, combined with the ubiquity of inter-fascicle slip observed in the present work,

justify investigation of the potential involvement of mode II and mode III fracture in meniscus

failure.

6.4 Boundary conditions and grips

In Chapters 4 and 5, the grips appeared to create non-physiologic boundary conditions, with

grip line failures and more fascicle slip than expected. In circumferential specimens, the cor-

ner where the outer (radial axis) side of the meniscus intersected the grip line was a common

site of secondary failure. This corner combined a grip-induced stress concentration with an

oblique local fascicle angle, creating tensile stress across the inter-fascicle boundaries. Clamps

or sandpaper tabs are known to produce stress concentrations in the corners in biaxial testing,

and sutures or hooks are preferred (Jacobs et al. 2011; Sun et al. 2005; Waldman et al. 2002;

Polzer et al. 2013; Bursa and Zemanek 2008). The goal of switching to sutures or hooks would

be to eliminate (or, at least, reduce) the influence of the grip stress concentrations on the test

outcome. However, influence of the grips on the test results may be impossible to eliminate. If

the tissue is considered a material with discrete fiber and matrix phases, an aspect ratio of 40:1

may be necessary for boundary effects to subside (Reese et al. 2013). A specimen with that

aspect ratio is only possible when testing individual fascicles or fibrils. This is worth trying,

but meniscus fascicles are difficult to isolate.
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Another potential grip-related confounding factor is the ability of the grips to securely grip

fibers. The observation of fiber sliding up to the grip line implies that the grips did not in fact

prevent relative fascicle movement within the gripped region. Freeze grips are a potential solu-

tion. A comparison of serrated jaws, sandpaper, frozen ends, and dehydrated ends for gripping

chicken deep digital flexor tendons revealed no differences between grips, but in all cases the

majority of specimens failed at the grips (Ng et al. 2005). In tests of tendon grafts using suture,

compression clamps, wire mesh, cement, and freeze grips, the freeze grips produced failure

forces 4 times greater than the general compression clamp (Hangody et al. 2016). Failure tests

of quadriceps tendon using freeze grips produce failure loads 12 times greater than using sutures

(Liggins et al. 1992). In tests of muscle, freeze grips provide a doubling of measured strength

relative to compression clamps or sutures (Schöttle et al. 2009). These results indicate that

freeze grips most likely provided superior fiber anchoring compared to the other grips, more

like the native insertion. In tendon testing, using freeze clamps on the origin end and clamping

the bone on the insertion end, or using freeze grips on both ends, is a common and effective

way to eliminate slip (Wren and Carter 1998; Riemersa and Schamhardt 1982; Bosch et al.

2010; Thorpe et al. 2012; Pring et al. 1985; Thermann et al. 2001; Miles et al. 1992; Powell

et al. 1989; Jansen and Savelberg 1994; Sharkey et al. 1995; Villegas et al. 2007; Hauch et al.

2010; Abraham et al. 2011; Bowser et al. 2011; Swank et al. 2014). Plastination of tendon ends

is also sometimes used (Hammer et al. 2012; Reese et al. 2013), and probably offers similar

secure gripping of fibers. Based on these results, freeze grips seem efficacious and should be

tried. Inhibition of fascicle sliding, which might be achieved by secure fiber anchoring better
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mimicking native meniscus insertions, should limit crack deflection and make the process zone

smaller, promoting fracture.

6.5 Discriminating between fracture and bulk rupture

Valid measurements of fracture toughness from mechanical tests requires both qualitative crack

propagation and for fracture to be the active failure mechanism. In the context of fibrous soft

tissue, the two methods to demonstrate that fracture occurs are to (1) measure a crack-induced

reduction in effective strength (Von Forell et al. 2014) or (2) measure fracture toughness and

verify that it accurately predicts failure for a variety of crack lengths (Taylor et al. 2012). The

latter approach relies on demonstrating the expected σf ∝ 1/
√
a relationship between failure

stress σf and crack half-length a in fracture. It is possible to produce crack propagation by the

dropped mass method of Isaac et al. (2010), but some degree of control or at least measurement

of the impact is necessary to obtain sufficient data to determine if fracture was the responsible

mechanism. A high speed camera combined with a pressure plate to record the impact force vs.

time profile may suffice to determine the crack propagation threshold, especially if combined

with an FEA model. An electromechanical tensile tester could be substituted for dropped mass

to attain a greater degree of control. Since this is a rare example of ex vivo mechanical testing

of the meniscus that resulted in crack, a test employing similar rapid, multiaxial loading to the

meniscus while it is still attached to the knee joint would be a good starting point for future

fracture studies.

Using the resulting data from a test of the still-attached whole meniscus or a similar test
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requires a well-developed constitutive model incorporating all relevant effects. This may in-

clude fluid flow (biphasic), solid viscoelasticity, plasticity, damage, and crack propagation. The

model must also incorporate the geometry of the specimen, possibly including its structural

heterogeneity. This requires a considerable amount of development work and so would be a

long term plan. A good approach for simulating crack propagation in fibrous soft tissue within

existing FEA frameworks is cohesive zone modeling (Grantab and Shenoy 2012; Grantab and

Shenoy 2011; Hui et al. 2003; Yang et al. 2006). This approach has been applied to cracks in

bone (Yang et al. 2006) and artery (Wang et al. 2014; Gasser and Holzapfel 2007).

Using failure stress as a way to distinguish between fracture and failure without fracture may

not be ideal because of its intrinsically large variance, requiring large sample sizes. Some of

this variance may be caused by cutting the specimen to a standard planar shape, but biological

materials in general tend to have large variance. However, failure stress is at least easy to mea-

sure. Alternative measures that can be compared between model predictions and observed data

include strain fields, whether a crack propagated, and energy release for a unit crack extension.

These measures aren’t necessarily better from a variance standpoint. Strain fields have tremen-

dous spatial variation in both magnitude and pattern within and between specimens. Classifying

a crack as propagating or not is somewhat subjective in borderline cases (e.g., the radial speci-

mens in Chapter 5). Furthermore, mechanical models for fibrous soft tissue failure have not yet

demonstrated the capability to precisely predict failure morphology (position and extent). Frac-

ture in models that can be used in the near future probably will not look exactly like fracture in

the actual tissue, as current models need approximations such as homogenization or represent a
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large failure zone with a strip of cohesive zone elements. Assuming a test configuration is found

that produces unambiguous crack propagation (in which the crack has a well defined length), us-

ing the energy of crack propagation as a discriminant between fracture and non-fracture failure

may be a good option.

The energy of crack propagation may also be useful for discriminating between fracture and

bulk rupture if it is used in conjunction with a model. The energy of crack propagation has been

previously measured in studies of various fibrous soft tissues (Taylor et al. 2012; Purslow 1985;

Purslow 1983a; Purslow 1983b; Chin-Purcell and Lewis 1996; Stok and Oloyede 2007; Oyen-

Tiesma and Cook 2001; Koombua et al. 2006; Wu et al. 2006b). Some of these studies used

FEA to compute energy of crack propagation via the J integral method (Koombua et al. 2006;

Wu et al. 2006b). The fracture toughness can also be computed from FEA directly by using

finite differences to calculate the change in strain energy with respect to crack length (Anderson

2005). Chin-Purcell and Lewis (1996) and Wu et al. (2006b) and Wu et al. (2006a), who most

likely did observe fracture (Taylor et al. 2012), report variance in crack propagation energy of ~

20% (compared to ~ 200% for studies with ambiguous fracture). To distinguish between fracture

(for which the energy of crack propagation determines failure) and bulk rupture (for which the

material strength determines failure), it is only necessary to find a test case in which the fracture

and bulk rupture parameters predict different outcomes.

The radial 90° edge crack specimens from Chapter 5 qualify to an extent as a fracture candi-

date because some of them failed with crack propagation, but this specimen group was not found

to fail by fracture based on measured peak stress. However, the existence of failure resembling
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crack propagation is promising. As discussed in Section 6.6, increasing the width of the radial

specimen and the crack length may induce fracture, especially if the specimen was also loaded

biaxially to keep the fibers in tension and thereby limit necking.

6.6 Adjustment of test geometry to promote crack propagation
and fracture

Specimen size is a potential reason why fracture was not obtained in the present study (Chap-

ter 5). Circumferentially oriented specimens were generally 7mm to 10mmwide and the cracks

were ~3 mm. An edge cracked circumferential specimen thus only has about 4 mm to 7 mm

of uncracked material between the crack tip and the opposite edge of the specimen. A center

cracked circumferential specimen only has 3 mm to 4 mm of uncracked material between the

crack tip and the edge of the specimen. Edge cracked radial specimens were 5 mm to 6 mm

wide, with a crack length of about 2 mm. This also leaves only 3 mm to 4 mm of uncracked

material between the crack tip and the opposite edge of the specimen.

If the process zone is longer than ~1 mm, fracture can barely develop before the process

zone encompasses the entire remaining cross-sectional width of the specimen, at which point the

failure process will shift to bulk rupture. The meniscus is highly extensible and has remarkable

post-peak load bearing capacity (Figures 4.5, 5.5 and 5.6). About double the peak strain must

be applied to obtain complete loss of stress-carrying capacity. To obtain failure by fracture, the

near-tip tissue must stretch at least twice as much as the tissue on the far side of the specimen;

otherwise the entire cross-section will be post-peak and failing simultaneously. The observed
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near-tip longitudinal strain (Exx) enhancement is only 25% to 50% relative to the the away-from-

tip strain (Table 5.4), so the far side of the specimen will most likely reach peak strain before

the near-tip region completely fails. As a result, the region of failure encompasses the entire

specimen width, and no fracture occurs.

One solution to the process zone being larger than the specimen is wide is to use a bigger

specimen. It is uncertain how large a specimenwould be necessary. The data presented in Figure

5.7 only show that a difference between the near-tip and away-from tip region exists, not whether

the difference is a step transition or a gradient. If the near-tip strain enhancement is confined to

the near tip region and there is a step transition in strain from the near-tip region to the away-

from-tip region, this step is probably determined by local structure (fascicle boundaries), and

making the specimen wider is unlikely to change matters. Since the displacement applied by the

grips is uniform across the specimen width, a structurally mediated step transition would mean

that tissue away from the influence of the crack would have the same average strain regardless

of how wide the specimen is. The strain field data in Chapter 5 might be sufficient to determine

the strain distribution during tearing if a modified analysis is used. Since at the post-peak time

points the specimen is tearing apart, and this disrupts the digital image correlation, the size of

the process zone cannot be directly observed. However, the tear could be labeled manually in

the post-peak frames and a virtual strain gauge placed across it, with each end of the virtual

strain gauge in intact tissue. This modified procedure may still not suffice for circumferential

specimens in which the region of failure spans most of the specimen length and touches the grip

line. A more robust approach would be to develop a computational model that can predict the
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size of the process zone; such a model must incorporate damage and most likely would need

to also incorporate inter-fascicle sliding (due to both its importance as a failure mechanism and

the similar length scale between fascicles and the crack tip).

Increasing the specimen width would have an indirect benefit in that the crack could be

made longer. A longer crack should increase the near-tip stress concentration according to the

1/
√
crack length scaling, in turn increasing the near-tip strain. A longer crack could cause com-

plete near-tip failure before the far edge of the specimen reaches peak stress. This suggests a

worthwhile experiment: test whether the near-tip vs. away-from-tip strain enhancement corre-

lates with crack length.

Testing the effect of crack length would also be useful clinically. Currently, full-thickness

peripheral tears shorter than 5 mm and radial tears shorter than 5 mm are considered to not al-

ways require surgical repair (Lento and Akuthota 2000). A rule of thumb for medial meniscus

vertical tears accompanying ACL tears is that tears greater than or equal to 10 mm in length re-

quire repair (Seil et al. 2009). Rules for optimal management of meniscus tears remain uncertain

(Vermesan et al. 2014), and supporting them with mechanical data would be useful.

Unfortunately, the specimen size is limited by the size of the native meniscus. The circum-

ferential specimens are about as large as they can be while having a rectangular midsubstance.

The radial specimens could be made wider, but would cease to have a grip-to-grip distance

greater than the specimen width. Specimens with non-standard shapes such as a crescent could

bemade larger, and a crescent stretched using the posterior and anterior attachments might serve

as a compact tension test. As discussed in Section 5.4.2, compact tension tests are desirable be-
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cause they should produce a greater stress concentration than single edge notch tension tests.

Non-rectangular shapes would make the stress–strain curve parameters nonstandard, and data

would have to be parameterized via mechanical models to be translated to different contexts.

However, the low length:width ratio possible for meniscus specimens, the curvature of circum-

ferential fascicles, the frequent occurrence of ruptures that interact with the grip line, and the

ubiquity of inter-fascicle shear bands extending into the gripped regions makes it dubious that

measured stress–strain curve parameters are generalizable even for standard specimen shapes.

The use of mechanical models is thus beneficial regardless, so in the long term (as models

mature) there is little reason to avoid non-rectangular specimen shapes.

6.7 Identifying mechanical and structural mechanisms of fail-
ure

The underlying microstructural failures and rearrangements involved in meniscus failure are of

fundamental interest and, given the observed propensity for meniscus failure to proceed along

fascicle boundaries (Sections 4.4.7 and 5.4.8), likely a key determinant of crack behavior. Iden-

tifying structural damage and failure mechanisms in the meniscus will provide qualitative an-

swers for: (1) why meniscus tears adopt a particular morphology, (2) whether a tear might grow

or not grow, (3) whether fracture is likely to apply or not, (4) whether a tear is repairable, (5) how

tissue engineered scaffolds might be created with fracture toughness similar to the meniscus,

and (6) whether the side effects of tears (such as the strain concentrations identified in Chapter

5) might cause changes in cell phenotype. Enumerating failure mechanisms will also provide
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crucial guidance developing quantitative tools to predict failure. Failure mechanisms can be

looked at from both mechanical and structural viewpoints. The mechanical perspective deals

with tissue-scale stress and strain, with failure considered in terms of deleterious changes in me-

chanical function, such as an increase in friction coefficient or decreased load bearing capacity.

The structural perspective deals with the sub-structural failures and rearrangements responsible

for changes in meniscus shape or properties. Both perspectives are important and, ideally, are

unified by quantification of structure–function relationships.

The mechanical perspective mainly classifies failure mechanisms by their effects. Several

mechanisms contribute to meniscus mechanics: elasticity, poroelasticity (fluid flow), osmotic

pressure, viscoelasticity, plasticity, and damage. Damage is used here to mean a permanent

reduction in a functional property such as stiffness or strength, whereas plasticity is meant to

indicate a change in the shape of a solid, with no loss of load-bearing capacity, that does not

recover upon unloading. In the context of failure, damage is the most relevant mechanism, but

other mechanisms may cause changes (such as strain-softening) that appear similar to dam-

age. It is important to note that, from a clinical perspective, a meniscus may be considered to

have functionally failed when its properties change sufficiently to cause pain, limited joint mo-

tion, cartilage overload, or other failures to fulfill normal functional requirements. Determining

whether functional failure has occurred requires detailed quantification of the meniscus’ me-

chanics and how they change with injurious overload, moreso than simply determining when

the meniscus will break. Although properties relevant to elasticity, poroelasticity, osmotic pres-

sure, and viscoelasticity have been quantified for the meniscus to at least some extent, the effects

149



of damage and plasticity are still unknown.

From the structural perspective, the present work indicates the existence of at least three

tissue-scale failure mechanisms: inter-fascicle sliding, inter-fascicle rupture, and fascicle rup-

ture. Inter-fascicle sliding may enable crack propagation parallel to the fascicles by in-plane

shear (mode II crack growth). Inter-fascicle rupture may also enable crack propagation par-

allel to the fascicles, but instead requires tension perpendicular to the fascicles (mode I crack

growth). Inter-fascicle sliding and inter-fascicle rupture are likely mechanisms for the forma-

tion and growth of horizontal, longitudinal, bucket-handle, and oblique tears (Figure 2.2), which

all involve tear growth along fascicle boundaries. Fascicle rupture by fascicle-parallel tension

appears necessary only for radial tears. Complex (degenerative) tears may involve all three

mechanisms.

In this study, inter-fascicle sliding was observed directly in the test videos, and slip of single

fascicles often occurred as a prelude to general failure. The inter-fascicle sliding appeared non-

recoverable in that it remained visible in the test videos following complete failure, but it is not

known whether it would recover if left at zero load. Sliding that recovers is not damage but

rather viscoelastic deformation. Sliding that does not recover might be damage or plasticity.

Inter-fascicle sliding can be measured using stain lines to track relative fascicle displacement.

This method is often used on the microscale with photobleached lines (Szczesny and Elliott

2014b; Motavalli et al. 2013; Cheng and Screen 2007), but ink lines on cm-scale specimens

can be used the same way. Strain fields measured by digital image correlation, as in the present

study, can be used only if the correlation window can be made smaller than a single fascicle
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diameter (100 μm to 500 μm), which would require a higher resolution camera. An alternative

is to reduce the field of view (increasing pixel/mm scale) so as to not encompass the whole

specimen, but an incomplete video record hampers observation of rupture location and crack

growth. Whether the sliding is recoverable can be determined by monitoring inter-fascicle slip

throughout a test consisting of loading, unloading, and a recovery period (Thorpe et al. 2015b).

Measuring the extent of inter-fascicle sliding may be useful in estimating the size of the process

zone and/or plastic zone and establishing minimum criteria for specimen size in tissue fracture

tests.

Inter-fascicle sliding likely interacts with the other two failure mechanisms. Fascicle sliding

may occur due to fascicle rupture causing sudden unloading of the ruptured fascicle, causing

it to recoil. This would constitute permanent damage to the fascicle but not necessarily the

inter-fascicle connections. Fascicle sliding could also occur due to shear stress on the inter-

fascicle connections causing their failure, which would constitute inter-fascicle matrix rupture.

Inter-fascicle connections can also fail by tension, and this was observed in the present work.

Video records of inter-fascicle rupture reveals fine fibers crossing between the fascicles (Figure

5.13). The fascicles are comprised of tightly packed 5 μm diameter bundles of collagen fibrils

(Rattner et al. 2011), so it is possible that the fine fibers observed in the test video are simply fibril

bundles that cross between fascicles. This could be verified directly by serial ultramicrotomy

and electron microscopy (Szczesny et al. 2015). The dense packing of intact meniscus means

it may be beneficial to partially rupture the specimen or treat it with a weak acid (Rattner et al.

2011) to open up the structure and make it easier to visualize. It is not currently known exactly

151



how stress is transmitted between adjacent fascicles; investigating the structure of inter-fascicle

connections will assist in answering this question.

Fascicle rupture is important because fascicles are ultimately responsible for bearing the

bulk of the tensile load applied to the meniscus. Given that radial and oblique tears exist,

some tears must propagate across fascicles; this would presumably involve fascicle rupture.

The present study prioritized modes of crack propagation that proceed by fascicle rupture. The

use of the circumferential 45° center crack specimens, based on the results of Chapter 3, was

intended to cause in increased fiber stress and hence increase the likelihood of fracture by fas-

cicle rupture. The prediction of increased fiber stress in the 45° center crack specimens may

have been accurate; the experimental tests only demonstrate that whatever the fiber stress con-

centration, it was insufficient to cause fracture. Fascicle rupture can be observed by quantifying

uncrimping of fibers at overload (as broken fascicles recoil and re-crimp) and by direct obser-

vation of ruptures (Winkler et al. 2013; Winkler et al. 2011; Jester et al. 2010; Sereysky et al.

2010; Rezakhaniha et al. 2012). Experiments that minimize inter-fascicle sliding (Section 6.4)

would be best for studying fascicle rupture.

Structural damage can also be measured in terms of collagen denaturation and cell death

(Provenzano et al. 2002b; Provenzano et al. 2002a). Enzymatic collagen I and collagen II degra-

dation can be measured using fluorescence microscopy using a Col 2 3/4Cshort antibody (Thorpe

et al. 2015a; Billinghurst et al. 1997). Collagen denaturation can be measured with fluorescence

microscopy using collagen hybridizing peptide (Zitnay et al. 2016). Collagen fibril damage in

the form of repeating kinks can be observed via SEM and enhanced with partial trypsin diges-
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tion (Veres et al. 2014; Veres et al. 2013). Partial trypsin digestion can also be used as part of

biochemical assay to measure the overall amount of denatured collagen (Veres et al. 2014).

It would be informative to measure structural damage in the vicinity of the crack tip and

compare it to the rest of the specimen. The crack creates a different local stress state near its

tip than away from it, which could change the mechanism of rupture. Visualizing structural

damage in a torn human meniscus (obtained, e.g., from meniscectomy) and contrasting the

results with the mechanisms observed in ex vivo tests would greatly assist efforts to achieve

crack propagation in ex vivo testing and help ensure that the ex vivo tests produce relevant

failure processes. Direct observation of structural damage could be used to measure the size of

the process zone, which would aid calculation of specimen size requirements (Section 6.6).

6.8 Improvements to protocol efficiency

As discussed in Section 6.2, the path forward for meniscus failure research, and fracture re-

search involves many unknown factors. Identifying the influence of many factors requires a

correspondingly large number of specimens, particularly when factors interact with one an-

other. For example, axial compression combined with circumferential tension may produce a

different type of failure than when either is applied individually. Testing of factor levels in

combination geometrically increases the number of specimens required. Meniscus failure is

also intrinsically variable—5 distinct rupture types were observed (Section 4.2.2). Failure may

occur at the crack or away from it and by crack propagation or not. To achieve specific pre-

dictions regarding failure types, a sufficient number of specimens need to be tested to obtain a
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representative sample of each type of failure. This would enable subgroup analysis to identify

the underlying causes for why different specimens rupture in different ways, and whether this

variety has any functional consequence. Specimen count, and thus specimen preparation and

test time, is a major obstacle for future progress in meniscus failure research.

Based on the present work, some opportunities for reducing specimen preparation and test

time can be identified. Each test, assuming an experienced worker, ideal conditions, and no

unexpected events, took about 3 hours (2 hours cutting, 30 minutes dimension measurement

and speckle coating, and 30 minutes tensile test setup and the test itself). Although this test

duration is not especially prohibitive compared to many protocols in use (Showalter et al. 2014;

Szczesny et al. 2012; Yoder et al. 2014), the expenditure of 2 hours during the cutting step (in

which a freezing stage sledge microtome is employed) is not intrinsically necessary and is a

good target for optimization. A system in which specimens are cut at room temperature in a

single pass would decrease test time by a little more than half.

The analysis protocol has another time-expensive part that is amenable to optimization:

computing the strain fields. This procedure requires repeated computational runs with manual

supervision to adjust point rejection thresholds to maximize the number of points tracked while

eliminating tracking errors that alter the strain field topology andmake it non-diffeomorphic (see

B.1). Furthermore, the seed point that is used to initialize tracking in each image is sometimes

lost when the specimen rearranges itself during failure. When this happens—almost always near

the end of the test—the seed point location must be adjusted and the tracking restarted from the

beginning. These adjustments require 1 to 2 hours of intermittent interaction with the software.
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However, both adjustments could be handled automatically. Checking whether a strain field

is diffeomorphic is, in principle, readily handled by software. Loss of tracking for the seed

point could be dealt with by automatically switching to the pixel with the greatest correlation

coefficient from the last tracked frame and continuing with the image correlation. Switching to

an academic image correlation program developed for tissue analysis that has published source

code, such as Boyle et al. (2014), and modifying it as necessary has the potential to completely

automate the process.

Identifying meniscus failure mechanisms requires extensive further investigation by me-

chanical testing, and research into meniscus failure in is its early stages. From this perspective,

it is highly cost-effective to invest in developing efficient procedures to enable more rapid re-

search iteration.

6.9 Conclusion

This work was designed to investigate meniscus failure mechanisms and strain concentrations

in the context of meniscus cracks (tears). The meniscus is sufficiently tough that cracks did not

propagate when loaded in (quasistatic) circumferential uniaxial tension with 45° center cracks or

90° edge cracks or in radial uniaxial tension with 90° edge cracks. Nor did the cracks reduce the

effective strength of the meniscus. This work therefore demonstrated that, at least in quasistatic

uniaxial tension, failure of the meniscus proceeds by bulk rupture rather than fracture. This

toughness (resistance to fracture) is a desirable trait in an organ that undergoes millions of

loading cycles over a person’s lifetime. Materials meant as meniscus implants or regenerative
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scaffolds may not be as resistant to fracture; this should be tested as part of establishing their

safety and efficacy. Despite the meniscus’ toughness, meniscus cracks do locally increase strain

near their tips. These strain concentrations have the potential to cause structural damage, cell

death, and other dysfunction, especially with repeated loading.

The morphology of meniscus failures gave scant indication of crack propagation in circum-

ferential tension. About 50% of edge cracked radial specimens failed in amanner consistent with

crack propagation, although as previously mentioned these failures did not proceed by fracture.

Inter-fascicle sliding was observed to be a major failure mechanism and to deflect cracks from

progressing across fascicles. Failure in circumferential specimens occurred via large rupture

zones with extensive interdigitating fiber pull-out, blunting the crack and presumably reducing

any crack-associated stress concentrations. Given the occurrence of crack growth in radial ten-

sion specimens and the predominance of inter-fascicle sliding, the boundary between fascicles

may be a preferred crack propagation path in vivo. The mechanisms by which in vivo cracks

propagate across fascicles remain unknown. This study is a major step towards reproducing in

ex vivo testing the meniscus crack growth and failure that occurs in vivo, but further study is

necessary to achieve this goal.

This work also quantified key nonlinear mechanical properties of the meniscus in both

cracked and crack-free test configurations. The meniscus stress–strain curve was parameter-

ized for the first time in terms of its inflection point (yield point) and the maximum tangent

modulus. A fiber recruitment model was developed and fit to circumferential tension data with

excellent fit quality. These metrics were used to compare tensile test specimen shapes, including
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the uncommonly used expanded tab shape, which in circumferential tension was demonstrated

to provide more rapid and complete fiber recruitment compared to dogbones or rectangles. The

expanded tab specimen shape accommodates the curvature of the meniscus’ fascicles, increas-

ing fascicle continuity in the gripped region.

Meniscus specimens were observed to fail with a wide variety of rupture morphologies, and

the strain fields revealed great spatial heterogeneity in the meniscus’ mechanical behavior. Ex-

tensive inter-fascicle sliding meant that no tensile test specimen shape was effective at ensuring

midsubstance rupture and hence independence from grip effects. Specimens often rupture at

least partly at the grip line regardless of specimen shape. Further development of test protocols

and grips is needed to determine the consequences of grip effects and how to ameliorate them.

Finite element analysis was used as a predictive aid to experimental design, enabling the

comparison of many cracked specimen configurations with different crack position (edge vs.

center), boundary conditions (uniaxial vs. equibiaxial stretch), and crack–fiber angle (0° to

90°). The relative likelihood that each configuration would produce fracture was determined

based on ranking the crack-associated stress magnitude. Specimens were ranked according to

each in-plane stress component individually. Center cracked specimens with angled cracks were

identified as producing large amounts of fiber stress, with similar stress fields for both uniax-

ial (fiber-aligned) and biaxial stretch. Edge cracked specimens and 90° center crack specimens

were identified as producing the greatest inter-fiber shear stress and inter-fiber matrix stress.

The test cases for the physical ex vivo tests described in the previous paragraphs were chosen

based on these FEA results so that the experiments included test cases optimized for both fiber
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rupture and inter-fiber sliding and matrix rupture. Further work is necessary to develop models

to more accurately predict crack-induced stress concentrations, crack propagation, and failure of

the meniscus. Model accuracy may be improved by incorporating the effects of discrete fascicle

structure (i.e., non-continuum fascicle sliding) and sub-failure damage. Improved models will

both aid in future joint modeling–experimental studies, and with continual improvement will

eventually become an important tool for evaluating clinical pathology. Given the complexity

introduced by in vivo geometry, multiaxial loading, and heterogeneity, models are a crucial com-

ponent in translating the results of controlled ex vivo tests to the physiologic environment. The

most clinically relevant questions are whether the meniscus will fail and, if failure is a multi-step

process, how long the meniscus will retain function as it deteriorates. Mechanical quantification

of meniscus failure will provide essential guidance for decisions regarding meniscus resection,

repair, and regeneration.
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APPENDIX A: ENDPOINTS FOR TESTS USED TO STUDY THE
EFFECT OF SPECIMEN SHAPE

Table A.1 lists the endpoint of each test reported in Chapter 4. The image from each test best

illustrating its endpoint is also shown. For endpoint definitions, see Section 4.2.2.

Table A.1: Test endpoints for specimens reported in Chapter 4.

Loading axis Shape Endpoint Endpoint image

circumferential ET midsubstance rupture

circumferential ET midsubstance rupture

circumferential ET midsubstance rupture

circumferential ET midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential ET midsubstance rupture

circumferential ET midsubstance rupture

circumferential ET mixed rupture

circumferential ET mixed rupture

circumferential ET mixed rupture

circumferential ET mixed rupture

Continued on next page

160



Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential ET mixed rupture

circumferential ET mixed rupture

circumferential ET mixed rupture

circumferential ET mixed rupture

circumferential ET mixed rupture

circumferential ET mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential ET grip line rupture

circumferential ET grip line rupture

circumferential ET grip line rupture

circumferential ET gripped region failure

circumferential ET gripped region failure

circumferential ET gripped region failure

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential ET gripped region failure

circumferential R mixed rupture

circumferential R mixed rupture

circumferential R mixed rupture

circumferential R mixed rupture

circumferential R mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential R mixed rupture

circumferential R mixed rupture

circumferential R mixed rupture

circumferential R mixed rupture

circumferential R mixed rupture

circumferential R mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential R grip line rupture

circumferential R grip line rupture

circumferential R grip line rupture

circumferential R grip line rupture

circumferential R grip line rupture

circumferential R grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential R gripped region failure

circumferential R gripped region failure

circumferential R gripped region failure

circumferential R gripped region failure

circumferential R gripped region failure

circumferential R longitudinal split

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential R longitudinal split

circumferential DB midsubstance rupture

circumferential DB mixed rupture

circumferential DB mixed rupture

circumferential DB mixed rupture

circumferential DB mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

circumferential DB grip line rupture

circumferential DB grip line rupture

circumferential DB gripped region failure

circumferential DB gripped region failure

circumferential DB gripped region failure

circumferential DB gripped region failure

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

radial R midsubstance rupture

radial R midsubstance rupture

radial R midsubstance rupture

radial R midsubstance rupture

radial R midsubstance rupture

radial R midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

radial R mixed rupture

radial R mixed rupture

radial R mixed rupture

radial R mixed rupture

radial R grip line rupture

radial R grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

radial R grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

radial R no rupture

radial DB midsubstance rupture

radial DB midsubstance rupture

radial DB midsubstance rupture

radial DB midsubstance rupture

radial DB midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

radial DB mixed rupture

radial DB mixed rupture

radial DB grip line rupture

radial DB grip line rupture

radial DB grip line rupture

radial DB grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Endpoint Endpoint image

radial DB no rupture
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APPENDIX B: CHOICE OF VIC-2D PARAMETERS

B.1 Introduction

Strain fields in this study were computed from video records of each test using digital image

correlation as implemented in the commercial software Vic-2D 2009 (Correlated Solutions,

Columbia, SC). Vic-2D has numerous settings that may affect the resulting strain field. In this

study, the following settings were used:

• Exhaustive search
• Low pass filtering
• Incremental correlation
• Optimized 8-tap interpolation
• Zero-normalized squared differences
• Gaussian weights
• Prediction margin = 0.101
• Confidence interval = 0.1 (adjusted for each specimen)
• Matchability = 0.1
• Subset size = 0.7 mm (converted to size in pixels on a per-specimen basis)
• Filter size = 15 px
• Exponential decay filter

The details of each parameter are specified in the Vic-2D manual, but the more important

ones are discussed here. Incremental correlation is a particularly important setting. With it set,

each image is correlated with the immediately preceding image, and the strain field for a par-

ticular image is calculated from the composition of every preceding correlation. Incremental

correlation is essential for fibrous soft tissue because large deformations make a direct correla-

tion between a deformed image and the reference image difficult; without it enabled, correlation

is usually lost partway through the test. Exhaustive search, which expands the search radius for
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spatial correlations, is also necessary to maintain the correlation throughout the test with large

deformations. Using zero-normalized squared differences as the similarity metric for the cor-

relation is recommended for meniscus because its reflectivity increases as collagen fibers are

strained. Normalization compensates for this change in brightness.

The prediction margin, confidence interval, and matchability are thresholds for rejection of

pixels with poor or possibly erroneous correlations. In the meniscus tests, the major correlation

error was misregistration of points to a different region of the specimen. This kind of misreg-

istration happens because large deformations or rupture greatly changes the appearance of the

specimen. A region in the reference image that greatly changes appearance in the deformed

image may be erroneously matched to a different region that coincidentally looks similar. An

example is shown in Figure B.1.

In preliminary analysis, systematic variation of the prediction margin (0.05, 0.1, and 0.2),

confidence interval (0.05, 0.1, 0.2), and matchability (0.025, 0.1, 0.4) showed no appreciable

changes in the strain field values, so these parameters were chosen to prevent misregistration

while preserving valid correlations. The predictionmargin andmatchability were set to 0.1. The

confidence interval, which rejects points if their displacement is too dissimilar to neighboring

points, was most effective at selectivity excluding misregistrations, so it was decreased on a per-

specimen basis as necessary to exclude misregistrations while preserving valid correlations. It

was never necessary to decrease the confidence interval parameter below 0.037, and usually a

value ≥ 0.064 sufficed.

Subset size and filter size were found in preliminary investigations to affect the strain fields,

so they were varied systematically in order to investigate this sensitivity and select appropriate

values. Because these effects may be important when measuring local strain, such as strain near

the crack tip, and observing fascicle-associated strains, the results of this sensitivity analysis

are reported in detail in the following sections. Increases in subset size and filter size smoothed

the strain field, with subset size having a much stronger effect. The final choices of subset size
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Figure B.1: An example of an erroneous image correlation. Points from the lower left are
misclassified as displacing to the lower center, resulting in a displacement field that folds over
itself, making it non-diffeomorphic.

and filter size were chosen to limit this smoothing effect, preserving large-scale patterns in the

strain field while eliminating small-scale, apparently random variation.

B.2 Subset size sensitivity analysis

B.2.1 Subset size analysis setup

Four specimenswere chosenwith which to evaluate the effect of subset size: two circumferential

and two radial (Figures B.2 and B.3). Since cracked specimens are likely to generate the most

complex strain fields, and therefore represent themost challenging case, cracked specimenswere

used. These four specimens were considered to be sufficiently representative for a sensitivity

analysis. The test protocol was the same as used in Chapter 5, except that the specimens were

rectangular. Subset size was varied from 9 px to 55 px. For analysis of subset size effects, the
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filter size was set to 15 px (the default value in Vic-2D). The other parameters were held fixed

at the values listed in Section B.1.

To reduce the time required for Vic-2D processing, the image sequence was reduced to the

reference image followed by one image every 1% strain, plus all the images within 0.01 strain

of the rupture image. Sudden large deformations may occur just prior to rupture; a shorter

interval between images in this part of the test makes it easier for the digital image correlation

algorithm to track these deformations. The rupture image was chosen visually without reference

to the strain curve. The visual criteria for rupture were (a) formation of a surface of discontinuity

or (b) a sudden deformation suggesting fascicle failure.

The effect of varying the Vic-2D parameters was primarily evaluated by qualitative exami-

nation of the Exx, Eyy, and Exy (Lagrange) strain fields for an image frame immediately prior

to specimen rupture. This is when the strain field is likely to be most complicated and the choice

of subset size will have the greatest effect. In the strain field plots, the strain values were trun-

cated at the 0.05 and 0.95 quantiles so that the local extrema would not overwhelm the color

scale. Furthermore, most extreme strain values appeared to be caused by evolving ruptures (dis-

continuities), and so do not really represent strain as much as the spreading of a gap formed by

rupture. In addition to plots of strain fields just prior to rupture, summary statistics (median and

0.05/0.95 quantiles) were calculated for strain fields from all images prior to the rupture image.

B.2.2 Effect of subset size on strain field appearance

Strain fields had a stippled pattern at small subset sizes that was eliminated as the subset size

increased (Figures B.4, B.5, B.6, B.7, B.8, and B.9). The length scale of the stippling qualita-

tively matched that of the speckle coat, so the stippling is probably an artifact that occurs when

the subset size is smaller or similar to the size of the speckle pattern spots. The random superpo-

sition of speckles with inter-fiber discontinuities causes aliasing; a larger subset includes more
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speckles, reducing the aliasing artifact. For the circumferential samples, a subset size of 35 or

45 (depending on the strain component) was sufficient to eliminate the stippling (Figures B.4,

B.5, and B.6). For the radial specimens, the stippling tended to be eliminated at subset sizes

greater than 15 px or 25 px (Figures B.7, B.8, and B.9). The stippling was probably less of an is-

sue in the radial specimens because of the lesser prominence of inter-fiber shear discontinuities,

causing speckles to move with greater local homogeneity.

In circumferential specimens, the most prominent strain field features were bands of high

strain, apparently between fascicles, in the shear and transverse strain fields. These shear and

transverse strain bands were blurred when large subset sizes were used (Figures B.5 and B.6).

Bands in the strain fields for circumferential specimen 1 merged with their surrounds at subset

sizes > 35 px (for Exy; Figure B.5, top) or > 25 px (for Eyy; Figure B.6, top). Similarly, a nar-

row shear band for circumferential specimen 2 to the upper left of the crack tip disappeared for

subset sizes > 25 px (Figure B.5, bottom). Transverse strain bands in circumferential specimen

2 were obscured by stippling and point loss for subset sizes ≤ 25 px, and blurred to reduced

prominence for subset sizes ≥ 45 px (Figure B.6, bottom). Unlike circumferential specimens,

radial specimens had no shear or transverse strain bands that would be adversely affected by

blurring with larger subset sizes.

From the perspective of measuring near-crack strain, a small subset size is better because all

analyzed pixels must be at least half the subset size away from the specimen boundary. Since the

region near the crack tip is of great interest, it is desirable to minimize the subset size as much

as possible. Still, the appearance of the strain fields near the crack tips tended to be qualitatively

similar regardless of subset size (Figures B.4, B.5, B.6, B.7, B.8, and B.9).
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B.2.3 Effect of subset size on point tracking

Small subset sizes tended to cause more points be discarded during the image correlation pro-

cess, particularly for specimens with lesser image quality. For example, droplets of water ac-

cumulated on the surface of circumferential specimen 2 as it contracted during the test (Figure

B.2, bottom). The droplets appeared bright white due to reflected light, and the appearance of

a droplet in a subset usually caused a sufficient change in local appearance to cause that subset

to be discarded. A subset size of 9 px caused such severe point loss in specimen 2 that it was

not useful for analysis. Larger subset sizes (especially 45 px and 55 px) allowed the retention

of most of the points. A subset size of 35 px was sufficient to retain all points near the crack tip.

(Note that most pixels were retained only up to the pre-rupture frame examined in this analysis;

later images in the sequence lost more points as the specimen ruptured.) The risk of point loss

at small subset sizes can offset the gain in analyzable area from being able to track points closer

to the specimen’s edges. Circumferential specimen 1 had more points near the crack tip with a

35 px subset size than with a 9 px subset size, even though the 9 px subset could track points

within 4.5 px of the crack and the 35 px subset could only track points within 17.5 px of the

crack. The improvement in point retention due to more robust tracking with increasing subset

size seems to saturate at about 35 px to 45 px.

B.2.4 Effect of subset size on aggregate strain field statistics

Aggregate statistics for the strain fields were calculated and compared across between subset

sizes (Figures B.10 and B.11). The median was generally insensitive to the subset size. Increas-

ing the subset size moved the 0.05 and 0.95 quantiles towards the median. This was true for all

frames collected from the start of the test to rupture, except when increases in the subset size

caused fewer subsets to be discarded. For example, increasing the subset size for radial speci-

men 1 caused many more subsets from the middle of the sample to be included. The amount of
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additional subsets was sufficient to skew the median (Figure B.11). In the case of radial speci-

men 2, increases in the subset size caused both sides of a rupture in the left of the specimen to

be included in the same subsets, causing extreme strain values to be included in the summary

statistics. This caused the 0.95 quantile to increase (Figure B.11), but the change in the number

of points in this case was insufficient to skew the median. Therefore, aggregating statistics tend

to benefit from larger subsets, as reducing the number of discarded points makes the statistic

more representative, but this benefit is limited for robust statistics such as the median.

B.2.5 Subset size and image scale

The image scale (camera zoom) varied from sample to sample as necessary to fit the entire

specimen in the field of view. Subset size affected the appearance of the stippling pattern and

the inter-fascicle strain bands in circumferential specimens, which are both features related to

physical characteristics. Stippling was considered to be related to the size of the speckle dots,

whereas strain bands were considered to be related to to fascicle interfaces. The specimen image

scales are given in Table B.1. Circumferential specimen 1 had a lesser image magnification, so

for specimen 1 a given subset size (in pixels) had a larger physical size. Accordingly, the strain

fields for circumferential specimen 1 look smoother than those for circumferential specimen 2.

It is therefore sensible to define the subset size in terms of the physical size of the specimen

rather than purely by image dimensions so as to maintain a constant relationship between the

subset size and the specimens’ physical structure.

Table B.1: Image scale

Specimen Scale (px/mm) 0.7 mm in px
Circumferential specimen 1 31.7 23
Circumferential specimen 2 44.3 31
Radial specimen 1 59.8 41
Radial specimen 1 53.1 37
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B.2.6 Choice of subset size

The choice of subset size is subject to trade-offs. The need to include pixels near the crack tip

and retain strain field bands favors smaller subsets. Larger subset sizes blur the strain field in all

cases, so small subsets are needed to observe local details in the strain field. Large subset sizes

can cause some features to be blurred into nonexistence. However, blurring can be beneficial in

that it eliminates artifacts, such as the stippling effect. Large subset sizes also allow more points

to be tracked, as larger subsets track larger features and so are more robust to local appearance

changes. The benefits of larger subsets in terms of smoothing the stippling effect and decreasing

point loss have a saturation threshold beyond which a larger subset offers little benefit; this

threshold is an optimum choice for the subset size, and was chosen as the preferred setting. To

ensure that the same physical features are captured, the subset size was scaled for each specimen

to a constant physical dimension. The optimal choice, balancing these factors, appears to be a

subset size of 35 px for an image with a scale of approximately 50 px/mm—in physical units, a

subset size of 0.7 mm. The resulting subset size in pixels is given for each specimen in Table B.1.

This choice means that strains cannot be measured within 0.35 mm of the crack. Fortunately,

the near-crack strain field does not vary much with subset size; at least, the qualitative apperance

of the strain field is similar. The choice of a 0.7 mm subset size is a good compromise between

the competing priorities, retaining most local detail while decreasing point tracking loss and

limiting artifacts, and consequently was used for the work presented in this dissertation.

B.3 Filter size sensitivity analysis

B.3.1 Filter size analysis setup

The effect of the Vic-2D filter size parameter was investigated in the same way as the subset

size investigation, using the same specimens (Section B.2.1). The filter size is the radius from
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which points in the displacement field are gathered to calculate strain at a given point. For this

part of the sensitivity analysis, the subset size was set to 0.7 mm, as recommended in Section

B.2.6. The filter size was varied across 5 px, 9 px, and 15 px (15 px is the default in Vic-2D).

The primary question was whether the default filter size obscured important features, so larger

filter sizes were not used. An exponential decay filter (the default) was used in all cases, as

the alternative (a box filter) was considered to make local strain depend too much on far away

points.

As in the subset size investigation, strain field plots were the primary analysis tool. The

strain fields were plotted for a single image per specimen just prior to rupture—the same images

as used in the subset size analysis. Since the plots of summary statistics vs. time did not change

much for the subset size analysis and the aggregate statistics were unlikely to be very sensitive to

filter size variation (since filtering only blurs the strain field), they were not used in the present

analysis.

B.3.2 Effect of filter size

Larger filter sizes result in slight blurring of the strain field in circumferential specimens, but no

features are obscured (Figures B.12 and B.13). The effect is much weaker than that found when

varying the subset size. The filter size is less than the subset size, so it makes sense that the filter

does not blur away any additional features. Overall, the blurring produced by the 15 px default

filter is beneficial. Strain variation on a smaller scale than the speckle pattern is not believable,

and a filter size of 15 px helps to eliminate this effect.

The radial samples had smoother strain fields than the circumferential specimens (Figures

B.14 and B.15). The smoother strain fields are probably due to less independent fiber motion.

At filter sizes of 5 px or 9 px, the radial strain fields had some blockiness, possibly arising

from noise amplification by the displacement derivative used to calculate strain. A filter size
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of 15 px eliminated this blockiness. This blockiness was likely obscured in the circumferential

specimens by the large degree of variation in their strain fields.

B.3.3 Choice of filter size

Filter size has a small effect on the result, much less than the subset size. The default filter

size of 15 px is beneficial in that it smooths small-scale, meaningless variation in the strain

field without obscuring potentially important strain features. Therefore, a 15 px strain field was

selected for the work presented in this dissertation.
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Figure B.2: The circumferential specimens used in the Vic-2D sensitivity analysis, shown im-
mediately prior to rupture. The black square illustrates the size of a 55 px subset. The top
specimen here is also the top specimen in the subsequent strain field figures. Top: Circumfer-
ential specimen 1. Bottom: Circumferential specimen 2.
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Figure B.3: The radial specimens used in the Vic-2D sensitivity analysis, shown immediately
prior to rupture. The black square illustrates the size of a 55 px subset. The top specimen here
is also the top specimen in the subsequent strain field figures. Top: Radial specimen 1. Bottom:
Radial specimen 2.
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Figure B.4: Effect of Vic-2D subset size on the longitudinal (Exx) strain field for circumferential
specimens. Top: Circumferential specimen 1. Bottom: Circumferential specimen 2. Circum-
ferential specimen 2 has no strain field for the 9 px subset size because too many points were
lost in the digital image correlation.
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Figure B.5: Effect of Vic-2D subset size on the shear (Exy) strain field for circumferential speci-
mens. Top: Circumferential specimen 1. Bottom: Circumferential specimen 2. Circumferential
specimen 2 has no strain field for the 9 px subset size because too many points were lost in the
digital image correlation.
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Figure B.6: Effect of Vic-2D subset size on the transverse (Eyy) strain field for circumferential
specimens. Top: Circumferential specimen 1. Bottom: Circumferential specimen 2. Circum-
ferential specimen 2 has no strain field for the 9 px subset size because too many points were
lost in the digital image correlation.
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Figure B.7: Effect of Vic-2D subset size on the longitudinal (Exx) strain field for radial speci-
mens. Top: Radial specimen 1. Bottom: Radial specimen 2.
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Figure B.8: Effect of Vic-2D subset size on the shear (Exy) strain field for radial specimens.
Top: Radial specimen 1. Bottom: Radial specimen 2.
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Figure B.9: Effect of Vic-2D subset size on the transverse (Eyy) strain field for radial specimens.
Top: Radial specimen 1. Bottom: Radial specimen 2.
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(a) Exx, circumferential specimen 1 (b) Exy , circumferential specimen 1 (c) Eyy , circumferential specimen 1

(d) Exx, circumferential specimen 2 (e) Exy , circumferential specimen 2 (f) Eyy , circumferential specimen 2

Figure B.10: Effect of subset size on median strain (solid line) and 0.05 and 0.95 quantiles
(dashed lines) for circumferential specimens.
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(a) Exx, radial specimen 1 (b) Exy , radial specimen 1 (c) Eyy , radial specimen 1

(d) Exx, radial specimen 2 (e) Exy , radial specimen 2 (f) Eyy , radial specimen 2

Figure B.11: Effect of subset size on median strain (solid line) and 0.05 and 0.95 quantiles
(dashed lines) for radial specimens.
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Figure B.12: Effect of filter size on the strain field for circumferential specimen 1.
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Figure B.13: Effect of filter size on the strain field for circumferential specimen 2.
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Figure B.14: Effect of filter size on the strain field for radial specimen 1.
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Figure B.15: Effect of filter size on the strain field for radial specimen 2.
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APPENDIX C: ENDPOINTS FOR TESTS USED TO STUDY THE
EFFECT OF CRACKS

Table C.1 lists the endpoint of each test reported in Chapter 5. The image from each test best

illustrating its endpoint is also shown. For endpoint definitions, see Section 4.2.2.

Table C.1: Test endpoints for specimens reported in Chapter 5.

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET control midsubstance rupture

circumferential ET control midsubstance rupture

circumferential ET control midsubstance rupture

circumferential ET control midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET control midsubstance rupture

circumferential ET control midsubstance rupture

circumferential ET control mixed rupture

circumferential ET control mixed rupture

circumferential ET control mixed rupture

circumferential ET control mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET control mixed rupture

circumferential ET control mixed rupture

circumferential ET control mixed rupture

circumferential ET control mixed rupture

circumferential ET control mixed rupture

circumferential ET control mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET control mixed rupture

circumferential ET control grip line rupture

circumferential ET control grip line rupture

circumferential ET control grip line rupture

circumferential ET control grip line rupture

circumferential ET control grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET control gripped region failure

circumferential ET control gripped region failure

circumferential ET control gripped region failure

circumferential ET control gripped region failure

circumferential ET control gripped region failure

circumferential ET control no rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET control no rupture

circumferential ET control no rupture

circumferential ET control no rupture

circumferential ET control no rupture

circumferential ET cracked midsubstance rupture

circumferential ET cracked midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET cracked midsubstance rupture

circumferential ET cracked midsubstance rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked mixed rupture

circumferential ET cracked grip line rupture

circumferential ET cracked grip line rupture

circumferential ET cracked gripped region failure

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET cracked gripped region failure

circumferential ET cracked gripped region failure

circumferential ET cracked gripped region failure

circumferential ET cracked gripped region failure

circumferential ET cracked gripped region failure

circumferential ET cracked gripped region failure

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET cracked gripped region failure

circumferential ET cracked gripped region failure

circumferential ET cracked longitudinal split

circumferential ET cracked longitudinal split

circumferential ET cracked no rupture

circumferential ET cracked no rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

circumferential ET cracked no rupture

circumferential ET cracked no rupture

radial R control midsubstance rupture

radial R control midsubstance rupture

radial R control midsubstance rupture

radial R control midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

radial R control midsubstance rupture

radial R control midsubstance rupture

radial R control midsubstance rupture

radial R control midsubstance rupture

radial R control mixed rupture

radial R control mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

radial R control mixed rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control grip line rupture

radial R control no rupture

radial R cracked midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

radial R cracked midsubstance rupture

radial R cracked mixed rupture

radial R cracked mixed rupture

Continued on next page
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Continued from previous page

Loading axis Shape Cracked Endpoint Endpoint image

radial R cracked mixed rupture

radial R cracked grip line rupture

radial R cracked grip line rupture

radial R cracked gripped region failure

radial R cracked no rupture

radial R cracked no rupture
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