
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2015

New Models qnd Algorithms for Bandits and
Markets
Kareem Amin
University of Pennsylvania, akareemamin@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1004
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Amin, Kareem, "New Models qnd Algorithms for Bandits and Markets" (2015). Publicly Accessible Penn Dissertations. 1004.
http://repository.upenn.edu/edissertations/1004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76395606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1004?utm_source=repository.upenn.edu%2Fedissertations%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1004
mailto:libraryrepository@pobox.upenn.edu

New Models qnd Algorithms for Bandits and Markets

Abstract
Inspired by advertising markets, we consider large-scale sequential decision making problems in which a
learner must deploy an algorithm to behave optimally under uncertainty. Although many of these problems
can be modeled as contextual bandit problems, we argue that the tools and techniques for analyzing bandit
problems with large numbers of actions and contexts can be greatly expanded. While convexity and metric-
similarity assumptions on the process generating rewards have yielded some algorithms in existing literature,
certain types of assumptions that have been fruitful in offline supervised learning settings have yet to even be
considered. Notably missing, for example, is any kind of graphical model approach to assuming structured
rewards, despite the success such assumptions have

achieved in inducing scalable learning and inference with high-dimensional distributions. Similarly, we
observe that there are countless tools for understanding the relationship between a choice of model class in
supervised learning, and the generalization error of the best fit from that class, such as the celebrated VC-
theory. However, an analogous notion of dimensionality, which relates a generic structural assumption on
rewards to regret rates in an online optimization problem, is not fully developed. The primary goal of this
dissertation, therefore, will be to fill out the space of models, algorithms, and assumptions used in sequential
decision making problems. Toward this end, we will develop a theory for bandit problems with structured
rewards that permit a graphical model representation. We will give an efficient algorithm for regret-
minimization in such a setting, and along the way will develop a deeper connection between online
supervised learning and regret-minimization. This dissertation will also introduce a complexity measure for
generic structural assumptions on reward functions, which we call the Haystack Dimension. We will prove
that the Haystack Dimension characterizes the optimal rates achievable up to log factors. Finally, we will
describe more application-oriented techniques for solving problems in advertising markets, which again
demonstrate how methods from traditional disciplines, such as statistical survival analysis, can be leveraged to
design novel algorithms for optimization in markets.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Michael Kearns

Keywords
Advertising, Algorithms, Bandits, Machine Learning, Markets, Regret-Minimization

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1004

http://repository.upenn.edu/edissertations/1004?utm_source=repository.upenn.edu%2Fedissertations%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1004

http://repository.upenn.edu/edissertations/1004?utm_source=repository.upenn.edu%2Fedissertations%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages

NEW MODELS AND ALGORITHMS FOR BANDITS AND MARKETS

Kareem Amin

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2015

Supervisor of Dissertation

Michael Kearns, Professor, Computer and Information Sciences

Graduate Group Chairperson

Lyle Ungar, Professor, Computer and Information Sciences

Dissertation Committee

Sanjeev Khanna, Professor, Computer and Information Sciences (Chair)

Alexander Rakhlin, Assistant Professor, Department of Statistics

Aaron Roth, Assistant Professor, Computer and Information Science

Jacob Abernethy, Assistant Professor, University of Michigan (External)

NEW MODELS AND ALGORITHMS FOR BANDITS AND MARKETS

c© COPYRIGHT

2015

Kareem Amin

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

Dedicated to Mom & Dad

iii

ACKNOWLEDGEMENT

A dissertation is a reflection on many years of academic work. However, in completing

mine, I cannot help but also reflect on the end of a significant portion of my personal life.

While the words of this document will concern algorithms and proofs, the document itself

represents a certain place and time in my life, as well as the people and relationships that

inhabited that space. I owe those people acknowledgment not just for the ways in which

they aided the completion of this thesis, but for the ways in which they made my early

adulthood the exciting, challenging, efflorescent, and ultimately rewarding time that it was.

One night, while having dinner with a friend from a different department, he mentioned

that he had attended a talk given by Michael Kearns. He mused that it was interesting to

see the influence of an advisor on his student, that it was like “watching you up there.” I

laughed, rolled my eyes, and emptied my wine glass. However, his point stuck with me. I

might even admit that hearing it made me proud.

A good advisor shapes not just one’s taste in research, but all the skills necessary to develop

a career. These skills, in turn, become part of one’s character. Michael taught me to strive

for a certain ideal: to communicate clearly and effectively, to see the bigger picture, to

identify compelling questions, to take pride in my endeavors, and to reflect that pride in my

work. While striving for any ideal will always be a work in progress, identifying the target

is the hardest part. These lessons have not just influenced the researcher that I am today,

but also the person that I am today. And for that I thank you Michael.

Among my collaborators, I must thank Umar Syed in particular. I had the amazing fortune

of working with Umar when I was an uncertain fledgling researcher. His humility, self-

lessness, patience, and good-nature, (not to mention intelligence) represents another ideal,

both personally and professionally, which I can only hope to match someday. Without his

encouragement, I am not sure if I would be sitting here, completing my thesis.

iv

I thank Jacob Abernethy not just for his academic collaborations, but also for his friendship.

Jake’s kindness, generosity, and openness has meant a lot to me, especially since leaving

Penn. It is no easy task to move hundreds of miles from home and not to feel the impact

socially. Yet somehow, in no small part because of Jake, this has happened. I am lucky to

have him watching out for me.

I am naturally indebted to all my other wonderful collaborators. In no particular order, I

thank Afshin Rostamizadeh, Moez Draief, Satyen Kale, Gerry Tesauro, Peter Key, Hoda

Heidari, Aaron Roth, Lili Dworkin, Rachel Cummings, Shahin Jabbari, and Gagan Goel,

for their ideas, time, and hard work. I also thank Sanjeev Khanna, and Shasha Rakhlin for

sitting on my committee.

I thank the friends who supported me on this journey. Alex, I am so incredibly lucky to

have you as a best friend. Most relationships are conditional, subject to the whims of time

and circumstance. It gives me a profound psychological strength to know that I can never

be truly alone. Should everything else crumble around me, I know that I will always have

our friendship. Thank you for being the brother I never had.

My girls, Aimee, Emily, and Jessie, thank you for obvious reasons. Shirking work to go on

some road trip, hanging out in Austin, tea with old ladies, weekends at the mansion, bean-

bag toss, weird co-op parties, jumping in frozen Brooklyn water, nature hikes, marathons,

setting up tent on the side of the road, all probably did not help me get my degree any

quicker. But you kept me sane through the years, and helped me through some darker

times as well.

Dogan, Anna, and Annie, (Ana too) thank you for giving a me a family when I least expected

it. I don’t think I was ever happier than when we were all together. Julia, I could always

count on you to be there to climb a thing, or to discover sordid affairs. Eli, I will miss our

philosophical discussions, and your solid aesthetic taste. I am still terrible at basketball.

Thank you Craig for keeping me sane that one summer, and for being down to hangout

v

whenever we cross paths. Natalia and Selman, ΣKN 4life. I will take this opportunity to

have it officially published that Tina is better than Lyla. Thank you to Lori and Eran for

building a community, and creating a place where I could forget my worries at least for a

little while. Thank you Viky for all the work you selflessly did, and Dinesh and Ana for

carrying on the torch. Thank you to the Happy Hour in One Hour gang – Lili, Shahin,

Ryan (Daniela too), Justin, Steven, Rachel, and Hoda – we had some great times together.

Jenny Gillenwater, Alex Kulesza, and David Weiss, you stand out as some of my favorite

people (formerly) in the department. Thank you to Chris and Ari (and all the other guys,

esp., Jackie), for letting some punk kid work with you for so long. I thank Olga, Jon, and

Tyler for being my original collaborators, and, of course, Dan Huttenlocher for the lake

parties.

I thank Marie, who with a single tear in the Alaskan wilderness, changed something inside

me for the better. I thank John, Terri and Jack for letting me into their home, and always

making me feel warm and welcome. Tom, Phyllis, Devin, Sara and Jennyfer, you will always

be a second family to me. Thank you to Sabry for letting me win at chess, and Terri for

letting me win at Scrabble. I’m also grateful to the Grafs, for providing me with a home

overseas. Jasmin, in particular, thank you for always being such a careful and gracious

host. I hope I can one day return the favor. Walter, Olie, Philip, Alessandra, Nadja, and

little Collien, thank you for filling those trips with so much life.

Finally, my family, I could not have done this without you. It is interesting that the deepest

gratitude is somehow the hardest to express with words. I suppose that may be because no

words will suffice. Dinah, Mom, and Dad, thank you for always being there for me.

I love you.

vi

ABSTRACT

NEW MODELS AND ALGORITHMS FOR BANDITS AND MARKETS

Kareem Amin

Michael Kearns

Inspired by advertising markets, we consider large-scale sequential decision making prob-

lems in which a learner must deploy an algorithm to behave optimally under uncertainty.

Although many of these problems can be modeled as contextual bandit problems, we argue

that the tools and techniques for analyzing bandit problems with large numbers of actions

and contexts can be greatly expanded. While convexity and metric-similarity assumptions

on the process generating rewards have yielded some algorithms in existing literature, cer-

tain types of assumptions that have been fruitful in offline supervised learning settings have

yet to even be considered. Notably missing, for example, is any kind of graphical model ap-

proach to assuming structured rewards, despite the success such assumptions have achieved

in inducing scalable learning and inference with high-dimensional distributions. Similarly,

we observe that there are countless tools for understanding the relationship between a choice

of model class in supervised learning, and the generalization error of the best fit from that

class, such as the celebrated VC-theory. However, an analogous notion of dimensionality,

which relates a generic structural assumption on rewards to regret rates in an online opti-

mization problem, is not fully developed. The primary goal of this dissertation, therefore,

will be to fill out the space of models, algorithms, and assumptions used in sequential deci-

sion making problems. Toward this end, we will develop a theory for bandit problems with

structured rewards that permit a graphical model representation. We will give an efficient

algorithm for regret-minimization in such a setting, and along the way will develop a deeper

connection between online supervised learning and regret-minimization. This dissertation

will also introduce a complexity measure for generic structural assumptions on reward func-

tions, which we call the Haystack Dimension. We will prove that the Haystack Dimension

vii

characterizes the optimal rates achievable up to log factors. Finally, we will describe more

application-oriented techniques for solving problems in advertising markets, which again

demonstrate how methods from traditional disciplines, such as statistical survival analysis,

can be leveraged to design novel algorithms for optimization in markets.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . vii

LIST OF TABLES . xii

LIST OF ILLUSTRATIONS . xiii

CHAPTER 1 : Introduction . 1

1.1 Chapter 2: Graphical Bandits and the Ad-Selection Problem 6

1.2 Chapter 3: Large Scale Bandits and KWIK Learning 10

1.3 Chapter 4: Large Scale Bandits : Lower Bounds on Regret 12

1.4 Chapter 5: Posted Price Auctions Against Strategic Buyers 14

1.5 Chapter 6: Advertiser Budget Optimization in Keyword Auctions 17

CHAPTER 2 : Graphical Bandits and the Ad-Selection Problem 21

2.1 Related Work . 22

2.2 Preliminaries . 23

2.3 Algorithm Overview . 27

2.4 Best Action Subroutine . 28

2.5 Payoff Estimator Subroutine . 32

2.6 Graphical Bandit Algorithm . 35

2.7 Rank and Graph Structure . 37

2.8 Extension to General Graphs . 39

CHAPTER 3 : Large Scale Bandits and KWIK Learning 47

ix

3.1 Large-Scale Multi-Armed Bandits (MAB) 48

3.2 Assumptions: KWIK Learnability and Fixed-State Optimization 50

3.3 A Reduction of MAB to KWIK . 52

3.4 A Model for Gradually Arriving Actions . 59

3.5 Experiments . 64

3.6 Detailed Proofs . 66

CHAPTER 4 : Large Scale Bandits : Lower Bounds on Regret 70

4.1 Related Work . 71

4.2 Functional Bandits (MAB) and Maximizing From Queries (MAX) 72

4.3 The Haystack Dimension . 73

4.4 Examples of the Haystack Dimension . 75

4.5 MAX Query Complexity Upper Bound . 79

4.6 MAX Query Complexity Lower Bound . 80

4.7 Relationship to VC Dimension and Extended Teaching Dimension 84

4.8 Functional MAB Regret Upper Bound . 86

4.9 Functional MAB Regret Lower Bound . 89

4.10 Infinite Function Classes . 90

4.11 Computational Complexity . 94

CHAPTER 5 : Posted Price Auctions Against Strategic Buyers 95

5.1 Related work . 98

5.2 Preliminaries and Model . 101

5.3 Fixed Value Setting . 102

5.4 Upper Bound on Regret of Phased . 104

5.5 Lower Bound . 106

5.6 Detailed Proofs . 110

CHAPTER 6 : Advertiser Budget Optimization in Keyword Auctions 126

6.1 Preliminaries . 127

x

6.2 Related Work . 129

6.3 MDP Formulation . 130

6.4 The Value Function . 132

6.5 Censored Data . 132

6.6 Greedy Product-Limit Algorithm . 134

6.7 Competing Algorithms . 135

6.8 Experimental Results . 140

BIBLIOGRAPHY . 146

xi

LIST OF TABLES

TABLE 1 : Competitive Ratios Against OPT (Distributional) 144

TABLE 2 : Competitive Ratios Against OPT (Data Sequences) 146

xii

LIST OF ILLUSTRATIONS

FIGURE 1 : Simulation Results for Arriving Actions 65

FIGURE 2 : Haystack Dimension : Summary of Results 70

FIGURE 3 : Haystack Greedy Algorithm Illustration 79

FIGURE 4 : Greedy Product Limit Performance Gap 139

FIGURE 5 : Search Volume in Dataset . 141

FIGURE 6 : Example Empirical Distributions 143

FIGURE 7 : Example Convergence Rates . 145

FIGURE 8 : Greedy Product-Limit vs LuekerLearn 147

FIGURE 9 : Greedy Product-Limit Performance 148

FIGURE 10 : Performance All Algorithms . 149

xiii

CHAPTER 1 : Introduction

Internet advertising is a multibillion dollar industry, and often provides the most significant

source of revenue to companies providing other services on the Internet. Advertisers (seeking

to buy impressions), and advertising networks (seeking to sell impressions) often face the

task of solving large-scale strategic optimization problems with little human intervention.

Advertisers, for example, might participate in a sequence of repeated auctions in which they

bid for impressions, or opportunities to display their ad. By participating in these auctions,

an advertiser learns something about the market, or the preferences of other competing

parties. At the same time, the advertiser’s primary goal is to win impressions that are

valuable to it. How should the advertiser bid?

On the other side of the transaction, the advertising network must manage a large database

of advertisements, matching them to a continuously arriving inventory of impressions. After

this matching, the advertising network witnesses a reward, most often in the form of mon-

etary revenue. How can the advertising network learn to efficiently allocate its inventory

and set prices for various impressions?

Inspired by such applications, this dissertation will describe new theoretical models and

techniques that address the goals of agents in these settings. The environments we consider

will always feature a decision-making agent whose goal is to optimize some objective reward

across time. Many of the results we describe will relate directly to the problem of online

learning from limited feedback (often times called “bandit” information). While such set-

tings have had a long history of study, we will argue that many techniques that have been

greatly successful in more traditional offline or batch (usually supervised) learning settings,

have yet to even be considered in the case of such sequential decision making problems.

The primary goal of this dissertation, therefore, will be to fill out the space of models, algo-

rithms, and assumptions used in online learning settings. We will be particularly interested

1

in developing the online analogs of techniques which have been fruitful in offline settings.

Consider for example the ad-selection problem – deciding which ads to show to which users –

faced by an advertising network. As users arrive, the advertising network must sequentially

and irrevocably pick advertisements to display. Moreover, upon making a selection, the

advertising network observes only the reward associated with its selection, and does not

observe counterfactual information such as what reward would have been realized had a

different ad been selected. Immediately, one recognizes this as a good fit for study as a

mutli-armed bandit problem.

Realistically, however, the learner in this case is faced with a large set of possible actions

(a database of millions of ads), and a rich set of high-dimensional features that may be

predictive of the user’s behavior (describing, for example, the webpage being viewed by the

user). Thus, in tackling this problem, our desiderata must include scalability in both the

number of actions and the size of the aforementioned feature space (often called the context

space).

Much of the focus of machine learning is the development of various techniques to address

the so-called “cure of dimensionality.” Thus, we need not look far for inspiration from

offline methods. Indeed, as in much of machine learning, making a convexity assumption —

that rewards are convex functions of the selected actions (or well-approximated by such a

function) — yields efficient algorithms that are some version of gradient descent (Flaxman

et al., 2005; Dani et al., 2007; Abernethy et al., 2008). A separate line of literature assumes

that actions are embedded in some metric space, with nearby actions generating similar

rewards through a Lipschitz payoff function (Agrawal, 1995; Kleinberg, 2004; Kleinberg

et al., 2008; Lu et al., 2010; Slivkins, 2014). This is conceptually akin to the implicit

assumptions that make nearest-neighbor approaches appealing supervised methods. In each

of these cases, one can view the development of online methods as mirroring the types of

assumptions that have been leveraged for decades to derive supervised learning algorithms.

2

Convexity and metric similarity assumptions are by far the most common tools that al-

low tractable solutions to large-scale bandit problems, and as previously discussed, are

satisfying in that they mirror standard offline assumptions. However, we now note that

conspicuously missing from the bandit literature is any kind of graphical model assumption

on the structure of payoffs.

Probabilistic graphical models are powerful tools allowing conditional independence assump-

tions about a distribution over d variables to be succinctly described, thereby reducing the

number of parameters required to fully specify such a distribution. Similarly, we might seek

a succinct specification of structural assumptions on how payoffs in a multi-armed bandit

problem are generated. Despite the success probabilistic graphical models have enjoyed

in inducing scalable inference and estimation with high-dimensional distributions, such an

assumption has notably not been transferred to the bandit literature.

Developing such a theory will be the focus of Chapters 2 and 3. In Chapter 2 we consider a

setting where the multi-armed bandit algorithm knows the coarse underlying graphical or

dependency structure of the payoff model, but not the actual parameters. Once again, this is

analogous to knowing the conditional independence assumptions specified by a probabilistic

graphical model, but not the parameters which ultimately specify distribution.

Along the way, we will see that the methods described in Chapter 2 in fact generalize, pro-

viding a deeper connection between supervised learning and bandit algorithms. In Chapter

3 we study this generalization, establishing a link between a specific supervised learning

model, KWIK learning (Li et al., 2011; Strehl and Littman, 2007; Walsh et al., 2009; Sayedi

et al., 2010; Li and Littman, 2010), and stochastic bandit problems in general. Specifically,

we will find that parametric assumptions that yield KWIK learning algorithms with 1/ε

and 1/ε2 rates imply efficient bandit algorithms with
√
T and T 2/3 regret rates, respectively,

when the same parametric assumptions hold in the bandit setting. Thus one route toward

the discovery of efficient bandit algorithms is to solve the corresponding supervised learning

problem. These results, furthermore, encourage the discovery of KWIK algorithms, as they

3

immediately yield new bandit algorithms, beyond being interesting in their own right.

In the preceding discussion we see a certain pattern unfolding. One starts with a set of

assumptions regarding the payoff model. In previous work, payoffs might be Lipschitz or

convex. In our case, we assume payoffs decompose according to a known graphical model

representation, or belong to a parametric class of functions which admits a solution via a

particular kind of supervised learning algorithm. From these assumptions, we can derive

tractable algorithms. A natural question to ask is therefore: more generally, what types of

assumptions suffice?

In supervised learning problems, one often begins by assuming a class of models, then

asking how well such models are able to generalize from data. Statistical learning theory

provides analytical techniques to address this very question, including the celebrated VC

theory (Vapnik and Chervonenkis, 1971). For classification, the VC-dimension of a par-

ticular class of models allows one to relate the test error for using that class to a purely

combinatorial property of the class – the largest set of points that can be shattered using a

member classifier.

Continuing with the theme of this dissertation, we seek the corresponding analytical tool for

sequential decision making problems. Namely, we would like a notion of complexity which

relates the regret rate that an optimal algorithm can achieve against a class of reward

models to combinatorial properties of the model class. The resulting notion, which we

call the Haystack Dimension (Chapter 4), depends on identifying a finite subset of reward

functions which are both difficult to identify and to maximize. Moreover, we show that

the rates specified by the Haystack Dimension are tight, therefore making the Haystack

Dimension the correct notion of complexity for stochastic bandit problems. More generally,

the Haystack Dimension can be applied to any setting where a decision maker must balance

gaining new information about the environment with attempts to succeed at its task.

In studying the bandit problem generally, the methods we describe are not specific to ad-

4

selection, and can be applied to other settings such as clinical trials, or financial trading.

In the remaining chapters we switch our focus to results which are oriented to our initial

motivating application. Nevertheless, the goal will be the same: we seek to expand the type

of models used in decision making problems by drawing inspiration from classical methods.

For example, in Chapter 6, we study the problem faced by a strategic bidder in a repeated

second price auction with budget constraints. Such a model is inspired by keyword auctions,

where advertisers specify a budget to spend over a particular time period. We note that

the advertiser receives censored observations of the highest competing bid. If the adver-

tiser fails to win the impression, it receives some information, namely that the competing

bid was at least as large as the submitted bid, but does not observe the competing bid

directly. Such censored observations are a central feature of statistical survival analysis.

When estimating the mortality of a given population, for example, surviving members of

the population provide censored observations: an individual’s time of death is at least as

large as their current age. Utilizing statistical estimation techniques for survival analysis,

namely the Kaplan-Meier estimator for censored data, we derive an algorithm with state-

of-the-art empirical performance on real large-scale keyword auction data. We note that

censored observations are a key feature of other markets (Ganchev et al., 2010), and thus

importing such estimation techniques to sequential decision making problems is a rich area

for continuing research.

In each of the results we have described, whether we are introducing a class of assumptions

in the form of graphical models, or introducing an analytic characterization of complexity

akin the the VC-dimension, we illustrate the value of enriching the space of techniques

applied to sequential decision making problems. We now proceed to describe each of these

contributions in greater detail.

5

1.1. Chapter 2: Graphical Bandits and the Ad-Selection Problem

Returning to our motivating application, consider the optimization problem faced by a

typical advertising network. At a high level, the advertising network receives a stream of

impressions, and in an online manner, must take some action for each new impression. After

selecting an action, it receives a reward. This reward could be monetary, but could also cor-

respond to optimizing click-through, pageviews, session-length, or some other performance

metric. One can think of actions as corresponding to a selection of advertisement. However,

in the case where an auction mechanism ultimately decides which specific ad is shown, the

choice of action might correspond to what types of advertisers participate in the auction.

As previously discussed, one natural way to model the problem faced by such a decision-

maker is by casting it as a multi-armed bandit problem with stochastic rewards. By as-

suming stochastic rewards, we implicitly take a macroscopic viewpoint on the market, and

assume that our choice of algorithm will not affect advertiser behavior. That is, we do not

attempt to model buyers as strategic agents who may react to our choice of strategy, as will

later consider in Chapter 5.

Multi-Armed bandits have a long history of study (Robbins, 1985; Lai and Robbins, 1985;

Auer et al., 2002, 2003; Audibert et al., 2010; Bubeck and Cesa-Bianchi, 2012) and are

sequential decision-making problems that capture the tension in learning between explo-

ration (gaining new information about the environment) and exploitation (leveraging that

information to behave optimally). We are more specifically interested in contextual bandit

problems (Langford and Zhang, 2007), which incorporates state information, called con-

text, during each round of decision-making. On each round, the learner is presented with

context, and after receiving this information takes some action. The learner then receives

feedback, some measure of loss or reward, characterizing the quality of its choice. The ban-

dit setting is characterized by the fact that the learner only observes feedback associated

with its choice, and does not observe what would have occurred had a different action been

selected. As opposed to reinforcement learning models, the contexts (which are analogous

6

to states in reinforcement learning) are thought to arrive exogenously of the algorithm’s

decision-making.

Online advertising has long been a motivating application for the study of contextual ban-

dits (Langford and Zhang, 2007; Pandey et al., 2007; Li et al., 2010; Lu et al., 2010).

Contexts correspond to features describing the impression, while actions correspond to a

selection of advertisement. Nevertheless, there is a significant hurdle to applying standard

bandit algorithms to this setting: the shear number of actions and contexts available to

the learner. An advertising network is faced with a database of millions of creatives that

it might elect to show. The space of contexts is similarly large, consisting, for example,

of all possible natural language queries in sponsored search advertising, or of all possible

feature values describing a webpage in display advertising. This explosion in the number of

contexts and actions make many standard algorithms computationally infeasible to imple-

ment, and furthermore lead to practically vacuous performance guarantees. In particular,

the cumulative regret of any algorithm for the standard K-armed bandit problem is lower

bounded by Ω(
√
KT) (Auer et al., 2003).

However, this limitation can be circumvented if the payoffs are presumed to be structured,

allowing some notion of similarity or generalization across actions. One of the most com-

mon assumptions is that actions are embedded in some metric space, with nearby actions

generating similar rewards through a Lipschitz payoff function. This type of setting has

been studied by Agrawal (1995); Kleinberg (2004); Kleinberg et al. (2008); Lu et al. (2010);

Slivkins (2014), among others. Another very common assumption is that rewards are con-

vex functions of the action selected (or are well-approximated by such a function) (Flaxman

et al., 2005; Dani et al., 2007; Abernethy et al., 2008). As a special case, linear functions are

expressive enough to actions that correspond to combinatorial elements such as matchings

or paths in a graph Cesa-Bianchi and Lugosi (2012).

We develop a theory for a different type of structural assumption distinct from those made in

the previously mentioned works. Our approach introduces a class of graphical models that

7

permit both the space of actions and contexts to be large, yet succinctly specify the payoffs

for any pair of context and action. By analogy to probabilistic graphical models (Koller and

Friedman, 2009), where missing edges represent independence assumptions on the unknown

distribution, missing edges in our model limit the degree to which features corresponding

to actions (or contexts) can affect payoff.

Consider a simplified example from sponsored search, where we consider keywords re-

lated to purchasing airline tickets, and would like the maximize the probability that a

user accepts an advertised offer. Each search query specifies the value of two context

variables: the origin city xorigin, and the destination city xdest. Offers are described

by three variables: an origin city aorigin, a destination city adest, and a rental car deal

adeal. We might assume that the expected payoff is given by an arbitrary function F (·) on

these five variables. However, a more natural assumption for this domain might be that

F (·) = f1(xorigin, yorigin) + f2(xdest, ydest) + f3(xdest, adest, adeal). In other words, f1 and f2

account for how well the queried cities match the advertised cities. Meanwhile, f3 captures

that how enticing the rental deal is, which might be a function of where the user wants to

go (xdest), and the offer’s destination (adest), but would not depend on the origin cities.

We show how these domain specific assumptions can be represented by a type of graphical

model, which we call the interaction graph. While the aim of a probabilistic graphical model

is to encode independence assumptions on some distribution, we seek to encode separability

assumptions in the payoff function F . Notice that in the above example, the functions {fi}

are allowed to be arbitrary, and are not known to the learner. Only the decomposition of F

into {fi} is known. This is analogous to assuming the structure of a probabilistic graphical

model, but not the specific conditional probability tables, or distribution parameters. We

also comment that since the {fi} are arbitrary, the payoff function F need not be convex

or smooth, which as previously discussed, are the prevailing assumptions that make large

scale bandits tractable.

Graphical representations have been successfully applied in the standard K-armed bandit

8

problem in the works of Mannor and Shamir (2011); Alon et al. (2013). However, what is

called the observability graph in these works represents informational assumptions, rather

than assumptions about structured payoffs. Specifically, nodes in an observability graph

represent arms, and playing an arm a also directly reveals the payoffs of every arm connected

to a. The observability graph thus interpolates between a bandit setting (characterized by

the empty graph) and a full-information setting (characterized by the complete graph). We

note that this differs from our setting which is distinctly a bandit setting; the payoffs of

unplayed arms are never explicitly revealed. In our setting, any information gleaned about

unplayed arms is done so implicitly, by reasoning about the interaction graph.

Our main result is an algorithm that attains O(T 2/3) regret against the best policy mapping

contexts to actions. The running time of the algorithm is exponential in the tree-width of

the interaction graph. Thus, if F induces an interaction graph with tree-width bounded by

a constant, the algorithm runs in polynomial time. At a high level, the algorithm maintains

an estimate Fest of the payoff function. For a fixed context, computing the best action (using

the estimate Fest) is related to existing dynamic programming algorithms for finding the

maximum a posteriori (MAP) assignment in a probabilistic graphical model. It will turn

out to be crucial for the algorithm to track point-wise which inputs to Fest provide reliable

estimates. For this, we will utilize a particular type of learner to implement Fest: a KWIK

linear regressor. KWIK stands for “Knows What It Knows,” and is a model of supervised

learning wherein the learner is required to be self-aware on which inputs it can make an

accurate prediction. This connection between large-scale bandits and KWIK learning can

in fact be made stronger, and is the subject of the next chapter.

The results contained in this chapter first appeared in Amin et al. (2012b) with collaboration

from Michael Kearns and Umar Syed.

9

1.2. Chapter 3: Large Scale Bandits and KWIK Learning

Continuing our study of large-scale bandit problems, we establish a deeper connection be-

tween the bandit setting and KWIK learning, which proved essential for solving the graph-

ical bandit problem. The KWIK “Knows What it Knows” framework was introduced

by Li et al. (2011) (Strehl and Littman, 2007; Walsh et al., 2009; Sayedi et al., 2010; Li

and Littman, 2010), and was designed to address efficient exploration in model-free rein-

forcement learning (see Li and Littman (2010) in particular). Li, Littman, Walsh, and

Strehl (2011) suggest machine learning problems other than reinforcement learning, includ-

ing bandit problems, could benefit from the perspective introduced by KWIK learning. In

this chapter, we confirm this conjecture. We show that the technique used to solve graphi-

cal bandit problems can be extended to a general reduction for bandit problems to KWIK

learning. Moreover, we show that supervised learning settings weaker than KWIK do not

suffice for a general reduction. In this sense, the reduction to KWIK learning is tight.

The reduction of Li and Littman (2010), holds for model-free reinforcement learning in

MDPs, which generalizes many types of stochastic bandit problems. The standard K-armed

bandit, for example, can be viewed as a simple MDP with K states. Thus, it’s important

to distinguish between their setting and ours. They reduce value-function approximation

in large-state, finite-action, MDPs to KWIK learning, while our result concerns large-state,

large-action, stochastic bandit problems. The most obvious distinction is that our result

allows for large, or even infinite, actions. More importantly, however, is that the reinforce-

ment learning setting assumes the learner has agency over its next state. Since its next state

is in part a function of its choice of action, the reinforcement learning agent is faced with

the additional challenge of planning. The contextual bandit learner, on the other hand,

is excused from planning as it views its states as having been selected exogenously of its

actions (as is often the case in advertising, where impressions arrive independently of what

ads are delivered). However, it is faced with its own difficulty that it must be robust to

non-Markovian, worst-case, state sequences.

10

The KWIK framework is a supervised learning model that forces that learner to track

the inputs on which it can make accurate predictions. In the KWIK learning protocol,

the learning problem is specified by some F : Z → Y, where Z is some input space and

Y ⊂ R, as well as accuracy parameters ε, δ > 0. The unknown f is assumed to belong to

some parametric function class FΘ = {Fθ : Z → R | θ ∈ Θ}. The learner encounters a

series of observations (possibly adaptively selected by an adversary) z(1), z(2), For each

observation, the learner either predicts an output ŷ(t) or abstains by selecting ŷ(t) = ⊥.

When not abstaining, the prediction is required to be accurate, with |Fθ∗(z(t)) − ŷ(t)| < ε.

Otherwise, the learner has completely failed, where the probability of a failed run can be at

most δ. Only when abstaining from making a prediction does the learner receive feedback,

in the form of noisy estimates of Fθ∗(z
(t)). We say FΘ is KWIK learnable if there exists

an algorithm for the above protocol that (1) runs in polynomial time, (2) abstains from

prediction on at most poly(ε−1, δ−1) rounds.

A stochastic bandit problem is also instantiated by some function F : X ×A → R mapping

a state x, and choice of action a to an expected reward R. As discussed in the previous

chapter, without structural assumptions on F , efficient no-regret is impossible. Thus, we

take F to belong to some parametric class FΘ = {Fθ : X ×A → R | θ ∈ Θ}. In this chapter

we established that the large-scale parametric bandit problem can be efficiently reduced to

KWIK learning FΘ, (where Z = X ×A).

The KWIK protocol can be understood as combining elements of PAC-learning Valiant

(1984) and the Mistake Bound (MB) model Littlestone (1988) (see Li et al. (2011)). Similar

to an MB algorithm, a KWIK algorithm makes a bounded number of mistakes, but must

announce on which rounds those mistakes could occur. Although a PAC algorithm need

only consider iid inputs, it can be thought as abstaining from labels during training, so that

it can make accurate predictions thereafter. Any KWIK algorithm can be converted to an

MB algorithm for the same function class, simply by making arbitrary predictions instead

of abstaining. Similarly, MB algorithms can be used to provide PAC algorithms (Blum,

11

1994).

KWIK learnability is therefore a rather strong condition. One natural question is whether

other, weaker, notions of supervised learning suffice for a general reduction. Our second

main result in this chapter, addresses this question. We give a matching intractability result

showing that the demand for KWIK learnability is necessary, in that it cannot be replaced

with standard online no-regret supervised learning, or weaker models such as PAC learning,

while still implying a solution to the MAB problem. We show a general reduction based on

a weaker model would admit the inversion of cryptographic trapdoor functions. Thus our

reduction is thus tight with respect to the necessity of the KWIK learning assumption.

The results contained in this chapter first appeared in Abernethy et al. (2013) with collab-

oration from Jacob Abernethy, Moez Draief, and Michael Kearns.

1.3. Chapter 4: Large Scale Bandits : Lower Bounds on Regret

We next introduce a notion of complexity for large-scale parametric bandits, our object of

study in the previous two chapters. As previously mentioned, there is a great deal of prior

work on large-scale bandits that admit some structural assumptions. For example, in the

case where the learner is presented with an L-Lipschitz function, Kleinberg et al. (2008) give

an algorithm that attains sublinear regret. The rate at which their algorithm attains no-

regret, however, depends on a measure of complexity they call the zooming dimension. More

benign functions admit a smaller zooming dimension, and better rates. In this Chapter we

explore whether a notion of complexity can be derived for arbitrary classes F . Given an

instance of a parametric MAB problem, F , can we characterize the optimal regret rates for

that problem?

We consider the stochastic multi-armed bandit for a general parametric class F . For these

results, we limit our analysis to the non-contextual version of the problem, where payoffs

depend only on the choice of action; for some unknown F ⊆ {Fθ : A → R}, and the

learner observes noisy estimates of F (a(t)) for each choice of action a(1), ..., a(t). Our main

12

contribution is defining a measure of complexity of F that we call the haystack dimension

of F (denoted HD(F)). Intuitively, the haystack dimension captures the extent to which

maximizing a function via queries requires a search for a small number of items (needles)

amongst a much larger number of otherwise undifferentiated possibilities (a haystack). We

give upper and lower bounds on regret involving this quantity, that are nearly tight (within

log factors of each other). Compared to prior work, our results provide a complete analysis

for significantly more general function classes.

Our characterization holds for any finite-cardinality F (though the number of actions may

still be infinite), but we also describe a generalization to the case of infinite F via covering

techniques (where the tightness of the bounds depends on checking a certain technical con-

dition). Our lower bound is also information theoretic, ignoring computational complexity.

In this sense, the haystack dimension can be seen as playing a role in the study of functional

MAB problems analogous to that played by quantities such as VC dimension (Vapnik and

Chervonenkis, 1971) and teaching dimension (Goldman and Kearns, 1995) in other learning

models, which also characterize sample or informational complexity, but not computational

complexity.

An interesting aspect of our methods is the connection drawn between MAB problems and

the problem of exact learning of functions from queries. We observe that functional MAB

problems implicitly embed the problem of finding a maximum of an unknown function

in F from only input-output queries (generalizations of membership queries), which may

or may not be much easier than exact learning. Hegedüs (1995) characterized the query

complexity of exact learning in terms of the extended teaching dimension of the function

class. For some restricted function classes the haystack dimension and extended teaching

dimension coincide, and in these cases our analysis approximately recovers the bounds

due to Hegedüs (1995), but with a significant advantage: our lower bound holds for all

randomized algorithms, while the earlier bound only applied to deterministic algorithms.

A variant of exact learning of functions has been considered under the name of generalized

13

binary search. Nowak (2009) introduces a notion of dimensionality that is in some ways

similar to ours, but once again only addresses the difficultly of exact learning, and does

not address the maximization problem and its relationship to MAB. To our knowledge, the

only other work to introduce a measure of complexity for MAB problems parameterized

by some general function class is Russo and Van Roy (2013). However, their measure of

complexity is used only to give an upper bound for a Thompson sampling algorithm. The

eluder dimension does not appear to lead to a lower bound, and thus does not necessarily

characterize the complexity of any algorithm for the MAB problem on F .

The results contained in this chapter first appeared in Amin et al. (2011) with collaboration

from Michael Kearns and Umar Syed.

1.4. Chapter 5: Posted Price Auctions Against Strategic Buyers

Until now we have discussed settings where the reward of the decision-maker is a stochastic

function of it’s choice of action and the context in which that action is taken. In a liquid

market, this is usually a very reasonable assumption. For example, if there are many

advertisers interested in a single impression, no single advertiser’s behavior has a large

effect on the market, and we can take a macroscopic viewpoint where strategic behavior on

the part of advertisers in essentially ignored.

In this chapter we consider an important setting in which we can no longer take this view-

point. Namely, if there are relatively few advertisers (the buyers) competing for a particular

type of impression, the advertising network (the seller) must take the buyers’ strategic con-

siderations into account. In other words, the reward sequences received by the seller are

now tightly coupled with the underlying mechanism that is pricing impressions, as well as

the seller’s choice of algorithm.

The prevailing method for allocating advertising to impressions is the second-price auction.

Once the seller has determined which advertisers will participate in an auction, there are

several parameters which determine the details of the auction, and which might have large

14

effects on revenue. One of the most basic choices in a second price auction is the selection of

reserve price (or floor price), a minimum asking price for the impression. If no advertiser’s

bid clears the reserve price, the impression remains unsold. Otherwise, the winner of the

auction pays the maximum of the second-highest bid and the reserve price.

Intuitively, the selection of reserve price becomes increasingly important as fewer advertisers

compete for an impression. In the extreme case where an impression attracts only a single

advertiser, for example, the ad networks revenue hinges entirely on it’s choice of reserve

price. This extreme case, in fact, happens rather frequently. One of the great advantages of

online advertising, compared to advertising in traditional media, is the presence of rich real-

time information about the impression. This information is a boon to advertisers, allowing

them to bid on only those impressions that they value. However, such precise targeting

has the unfortunate side-effect that some impressions attract very few advertisers. Second

price auctions with a single bidder and reserve are equivalent to posted price auctions (the

reserve price is announced and the advertiser either accepts or rejects the offer by over- or

under-bidding the reserve). We therefore analyze the problem of maximizing an auctioneer’s

revenue in a repeated posted price auction.

Posted price auctions have a long history of study, including more recent literature motivated

by internet auctions (Bar-Yossef et al., 2002; Blum et al., 2003; Kleinberg and Leighton,

2003). Unlike in these previous works, which assume a monopolistic seller is faced with

a sequence of different buyers, we suppose that the same seller is repeatedly interacting

with the same buyer across multiple rounds. Since the buyer’s action on any particular

round might influence the prices offered on later rounds, the buyer might be incentivized

to conceal its true value in the hope for better prices in the future. Furthermore, and

perhaps unsurprisingly, there is empirical evidence suggesting that buyers do indeed behave

strategically when bidding in advertising auctions (Edelman and Ostrovsky, 2007).

Repeated posted price actions against the same strategic buyer have been considered in

the economics literature under the heading of behavior-based price discrimination (BBPD)

15

by Hart and Tirole (1988); Schmidt (1993); Acquisti and Varian (2005); Fudenberg and

Villas-Boas (2006), and more recently by Devanur et al. (2014). Our setting differs from

BBPD in two key ways.

First, all these works imagine that the buyer’s type is drawn from some fixed publicly

available distribution. Assuming that the seller knows this distribution, but not the realized

buyer type, the appropriate solution concept in these works is identifying strategy profiles

that constitute perfect Bayesian equilibria. This assumption, that there is some known

distribution generating buyer types, has been common in the economics literature ever

since Myerson (1981). However, this introduces a philosophical question of how the seller

arrived at this distribution to begin with. Since the buyer is incentivized to hide its true

value to avoid a discriminating seller, it’s unclear why the seller would have ever had the

opportunity to learn a good estimate — indeed, the correct estimate — of this distribution.

In this sense, the BBPD approach takes for granted that some non-trivial learning has

occurred at the start of the game. We treat the learning problem directly by supposing

that the buyer’s value for the item on each round is drawn from some fixed distribution

that is unknown to the seller at the start of the game. Our goal is to attain the Myerson

optimal revenue (in the limit of the number of auctions) against a buyer who plays a best

response.

Secondly, we assume that the seller publicly commits to a pricing strategy to which the

buyer plays a best-response. This is in contrast to the solution concepts in the BBPD,

which depend highly on the seller’s lack of commitment to future prices (Fudenberg and

Villas-Boas, 2006). The motivation for our model comes from internet advertising where a

common complaint levied by buyers against dynamic floor pricing is the lack of transparency.

We seek a strategy which can be publicly announced, and to which the seller will truthfully

adhere, but that generates a large amount of revenue for the seller.

To understand the difference between these two settings, it’s illustrative to consider two

simple strategies. Consider a seller who wishes to set the Myerson optimal price on every

16

round, and a buyer who wishes to behave truthfully (accepting prices iff they are above his

value). In our setting, this seller strategy is simply infeasible: the distribution is unknown to

the seller. In the BBPD literature, these two strategies do not constitute a perfect Bayesian

equilibrium. Should the seller reject the first offer, the buyer will no longer wish to play

his strategy in the resulting sub-game, but would prefer to set a lower price. This latter

issue does not arise in our setting, as the seller moves first and commits to a strategy for

the entire game.

We note that in many important real-world markets and particularly in online advertising

that sellers are far more willing to wait for revenue than buyers are willing to wait for

goods. For example, advertisers are often interested in showing ads to users who have

recently viewed their products online (this practice is called retargeting), and the value

of these user impressions decays rapidly over time. Or consider an advertising campaign

that is tied to a product launch. A user impression that is purchased long after the launch

(such as the release of a movie) is almost worthless. Our results are qualitatively similar to

those in BBPD (Fudenberg and Villas-Boas, 2006), and depend on this relationship between

buyer and seller discount factors.

If the seller is more patient than the buyer (i.e. is less severely discounted), we give an

algorithm that attains the Myerson optimal revenue in the limit. However, assuming that

the discount factors are the same, we show that achieving this goal is impossible. In

particular, the seller is best off playing an oblivious strategy that never attempts to learn

from past observations.

The results contained in this chapter first appeared in Amin et al. (2013) with collaboration

from Afshin Rostamizadeh and Umar Syed.

1.5. Chapter 6: Advertiser Budget Optimization in Keyword Auctions

Sponsored search advertising is one of the most common types of online advertising. A

search engine, whose users input textual strings indicating the content that they desire

17

to see, responds with so-called organic results (which are not influenced by advertising

interests), as well as paid sponsored advertising relevant to the user’s query. Advertisers

interested in a particular keyword are automatically entered into a second-price auction

whenever a user searches for that keyword.

In this chapter, we take the perspective of an advertiser, seeking to maximize the value

received from running a keyword auction campaign. Typically, the advertiser will specify a

budget that it is willing to spend over a period of time: a single day, week, month, etc. The

advertiser therefore wishes to bid in a manner that maximizes the value of clicks attained

for the specified budget during such a period. When the period ends, the advertisers budget

is reset for the next period.

This budget optimization problem is closely related to the online knapsack optimization.

Consider the case of single-slot auctions, where only the highest bidder on each round

displays its advertisement. If one takes the perspective of a particular advertiser, then the

largest competing bid represents the rest of the market, and amount that the advertiser

would have to pay in order to win the impression. As observed by Borgs et al. (2007), and

later by Zhou et al. (2008), this is easily modeled as an instance of online knapsack: the

advertiser is presented with a sequence (vt, pt) representing the value and the market price

(the largest bid among competing advertisers) of each impression. During a period, the

bidder must decide which impressions to acquire for its budget, and these decisions must be

made in an online fashion (on round t, decisions made before round t cannot be altered).

The online knapsack problem is known to be a hard problem. In particular, for any con-

stant C > 1, there is no algorithm that attains a competitive ratio of C against the offline

omniscient algorithm (which knows the sequence in advance and computes the offline opti-

mal) (Marchetti-Spaccamela and Vercellis, 1995). Nevertheless, Zhou et al. (2008) give an

algorithm which attains a non-trivial competitive ratio as long as the value-to-price ratio of

items are upper and lower bounded. They show a competitive ratio of ln(U/L) + 1, where

L <= vt/pt <= U , with a matching lower bound for any algorithm.

18

The assumption of arbitrary sequences in these works, however, is quite strong. While

advertisers may bid strategically, the nature of the interaction between advertisers is not

zero-sum, and therefore an individual advertiser should not expect to be presented with a

“worst-case” sequence of competing bids. In fact, in a crowded market, the prices pt might

even begin to look stochastic from a macroeconomic perspective.

We will make precisely this assumption, that the competing bid pt is drawn from a fixed but

unknown probability distribution. We view this as analogous to classical models in finance,

where despite strategic behavior of traders at the individual level, models of macroscopic

price evolution that are stochastic (such as Brownian motion models) have been quite

effective in developing both models and algorithms. Indeed, our resulting algorithm is

similar in spirit to an algorithm of Ganchev et al. (2010). for executing trades in dark

pools, a type of limited-information security exchange.

The stochastic relaxation of the online knapsack problem has been previously considered,

by (Marchetti-Spaccamela and Vercellis, 1995), and later by Lueker (1995). Lueker (1995)

presents an efficient algorithm, the value of its solution differing1 from the offline optimal

by Θ(lnT) on a sequence of T items. Lueker’s algorithm, however, assumes that the distri-

bution generating the knapsack items is known exactly (there is no learning component to

the problem).

This algorithm is applied by Zhou and Naroditskiy (2008) to the problem of keyword bid-

ding by estimating statistics sufficient to run Lueker’s algorithm from observed data. This

approach, however, highlights a shortcoming in treating the problem of bidding in keyword

auctions as a straightforward online knapsack problem. In a keyword auction, the compet-

ing bid pt is not revealed to the advertiser at the beginning of the round (it is, after all, a

function of the private bids of all the advertiser’s competitors). Thus, the sequence (vt, pt)

1In contrast to previous work, this is an asymptotic statement about regret, rather than competitive
ratio. Lueker’s model assumes that the knapsack’s capacity grows with the number of items. Under such
an assumption, the value of the optimal solution is Θ(T), and Θ(log T) regret implies competitive ratios
tending to 1.

19

is not so simply observed, at least not directly. An advertiser instead receives censored

observations of pt. In particular, by bidding bt, an advertiser who fails to win an impression

only gains some information, that bt < pt.

The algorithms described in this work take advantage of the literature on censored learning,

as well as the assumption of stochastic competing prices, to give state-of-the-art empirical

performance on real keyword auction data acquired from Microsoft adCenter. Our perfor-

mance on real data demonstrates the value of treating market prices stochastically. These

algorithms, GreedyProductLimit, and LuekerLearn (which uses Lueker’s stochastic knap-

sack algorithm as a subroutine), were later shown by Tran-Thanh et al. (2014) to be Hannan

consistent, with a regret rate of O(
√
T).

The results contained in this chapter first appeared in Amin et al. (2012a) with collaboration

from Michael Kearns, Peter Key and Anton Schwaighofer.

20

CHAPTER 2 : Graphical Bandits and the Ad-Selection Problem

In this chapter, we introduce a rich class of graphical models for multi-armed bandit (MAB)

problems that permit both the state or context space and the action space to be very large,

yet succinctly specify the payoffs for any context-action pair. In our models there may be

many context state variables, whose values are chosen exogenously by Nature, as well as

many action variables, whose values must be chosen by a MAB algorithm. Only when all

context and action variables are assigned values is an overall payoff observed. Thus each

setting of the context variables yields a distinct but related bandit problem in which the

number of actions scales exponentially.

As discussed in the introduction, settings where the number of contexts and actions are both

large are becoming common in applied settings such as sponsored search, where the number

of possible user queries is effectively unbounded, and on many frequent queries the number of

possible ads to show may also be large. Similarly, in many problems in quantitative trading,

the number of ways one might break a trade up over multiple exchanges (the action space)

is large, but might also depend on many conditioning variables such as market volatility

(the context space). Recent lines of research have considered large parameterized context

spaces and large parameterized action spaces separately (see Related Work below); here we

are interested in models and algorithms for their simultaneous presence.

We consider a setting in which an MAB algorithm knows the coarse underlying graphical

or dependency structure of the model, but not the actual parameters. Our main result is

a no-regret algorithm for solving graphical MAB problems that is computationally efficient

for a wide class of natural graphical structures. By no-regret we mean that the total regret

of our algorithm is bounded by the number of parameters of the model, and thus is generally

greatly sublinear in the number of contexts and actions. Interestingly, the running time of

our algorithm depends only on properties of the substructure of the graphical model induced

by the action variables — the dependencies between context variables, or between context

21

and action variables, may be arbitrarily complex. If the treewidth of the action subgraph

is constant, our algorithm runs in polynomial time.

The algorithm itself combines distributed dynamic programming — where the main chal-

lenge we face compared to standard such computations is the lack of any payoff until the

entire model is instantiated (no local observations) — with the fact that our models admit

linearization via a certain natural vector space of coefficients, which permits the application

of recent “Knows What It Knows” (KWIK) algorithms for noisy linear regression. At a high

level, for each context chosen by Nature, either our algorithm succeeds in choosing a reward-

maximizing action (an exploitation step), or it effectively discovers another basis vector in

a low-dimensional linear system determined by the graphical model (an exploration step).

The regret of the algorithm depends on the rank of this underlying vector space, which is

always bounded by the number of parameters but may be smaller. It is a feature of our

algorithm that no distributional assumptions are needed on the sequence of contexts chosen,

which may be arbitrary. However, in these case that a distribution is present, the effective

rank and thus our regret may be smaller still.

2.1. Related Work

Many authors have studied bandit problems where the number of states or contexts (each

of which indexes a separate but perhaps related bandit problem) is allowed to be large Auer

et al. (2003); Langford and Zhang (2007); Beygelzimer et al. (2011), while the number of

actions, or the size of the function class to which the payoff function belongs, are assumed

to be small (i.e. the sample and computational complexity of these algorithms are allowed

to depend linearly on either of these quantities). In contrast, our results will consider

both payoff function classes that are infinite, as well as context and action spaces that are

assumed to be very large and thus call for sublinear complexity.

As we will demonstrate in Section 2.5, the setting we consider can be thought of as a linearly

parameterized bandit problem. Such models associate each action x with a feature vector

22

φ(x), and the payoff for taking that action is given by φ(x) · w, where w is an unknown

weight vector. The computational complexity of most existing algorithms is nevertheless

linear in the number of actions Abe et al. (2003); Auer (2002); Li et al. (2010). Furthermore,

rather than being specified explicitly, the linear space in which our parameterizations lie

are given by the underlying graphical or locality structure of the model.

As discussed in the introduction (c.f. Section 1.1), there are structural assumptions which

admit efficient algorithms when both action and context spaces are infinite. These include

convexity assumptions (Flaxman et al., 2005; Dani et al., 2007; Abernethy et al., 2008),

and metric similarity assumptions (Agrawal, 1995; Kleinberg, 2004; Kleinberg et al., 2008;

Lu et al., 2010; Slivkins, 2014). We view this work as introducing a key set of assumptions

missing from the literature: that dependencies between actions admit a certain graphical

representation.

While the results of these settings and ours are not directly comparable, as each permits

different rich classes of functions, we review the regret bounds that are ultimately attained.

The regret bounds given by both Slivkins (2014) and Lu et al. (2010) are O(T (1+d)/(2+d))

where d is some dimensionality constant dependent on the action and context spaces. In

contrast, we provide regret bounds that are Õ(T 2/3), and leave as an interesting open ques-

tion whether such a rate can be improved. Convexity assumptions yield better O(
√
T)

bounds (Abernethy et al., 2008). However, we note that the algorithm which attains the

optimal rate is slightly involved, requiring a self-concordant barrier function for the com-

parator class of convex functions. In contrast, our algorithm is quite natural relying on

dynamic programming and noisy linear regression.

2.2. Preliminaries

We begin by assuming that both actions and contexts are represented by vectors of discrete

variables, and that there is an unknown function which maps assignments to these variables

to a payoff. The graphical assumption of our model will come when we assume how these

23

variables interact.

Let F :
∏
i∈V Xi → [0, 1] be the unknown expected payoff function, where each Xi is the

set of possible values for variable i ∈ V , with |Xi| ≥ 2. The set of variables is partitioned

into a subset A ⊆ V of action variables and a subset C ⊆ V (disjoint from A) of context

variables, with V = A ∪ C. Let m = maxi |Xi| and n = |V |.

For any subset of variables S ⊆ V , let xS ∈
∏
i∈S Xi denote a joint assignment of values to

variables S. For shorthand, we write XS =
∏
i∈S Xi to denote the set of all possible joint

assignments to variables S. When S = V , we typically drop the subscript and write x and

X instead of xV and XV , and call x a complete joint assignment. We also abbreviate x{i}

as xi, when referring the assignment of a single variable. If S = A we call xS a joint action,

and if S = C we call xS a joint context.

2.2.1. Learning Protocol

Learning in our model proceeds as a series of trials. On each trial, Nature determines the

current state or context, and our algorithm must choose values for the action variables in

order to complete the joint assignment. Only then is a reward obtained, which depends on

both the context and action.

In each round t = 1, . . . , T :

1. Nature chooses an arbitrary joint context assignment xtC , which is observed by the

learning algorithm.

2. The learning algorithm chooses a joint action assignment xtA.

3. The learning algorithm receives an independent random payoff f t ∈ [0, 1] with expec-

tation F (xtA,x
t
C).

24

The regret after T rounds is

R(T) , E

[
T∑
t=1

max
xA

F (xA,x
t
C)− F (xtA,x

t
C)

]

where the expectation is with respect to randomness in the payoffs and the algorithm.

Note that in the learning protocol above, Nature chooses the context assignments as an

arbitrary sequence; our main results hold for this rather strong setting. However, in Section

2.6.1, we also consider the special case in which each joint context xtC is drawn from a fixed

distribution D (which is also the assumption of much of the previous research on contextual

bandits), where better bounds may be obtained.

2.2.2. Assumption on Payoff Function

The main assumption that we leverage for our results is that, while F is unknown, we know

that certain sets of variables may interact with each other to affect the payoff, while other

sets may not. This is made precise in Assumption 2.1 below.

Assumption 2.1 (Payoff Decomposition). We are given a collection of variable subsets

P ⊆ 2V such that the unknown payoff function F has the form

F (x) =
∑
P∈P

fP (xP)

where each unknown function fP : XP → R is called a potential function.

We emphasize that the potential functions are unknown and arbitrary. What is known is

that F admits such a decomposition; more precisely, P is known.

Note that Assumption 2.1 is without loss of generality, since we can always take P = {V }

and fV = F . However, we are primarily interested in settings where F decomposes into

much simpler potential functions. If |P | ≤ k for all P ∈ P then we say the potential

functions are k-ary.

25

Also note that Assumption 2.1 is very similar to the kinds of assumptions often made

for tractable approximate inference (such as in a Markov random field), where a complex

multivariate distribution is assumed to factorize into a product of several potential functions,

each of which depend on only a subset of the variables. We next elaborate on the graph-

theoretic aspects of our model.

2.2.3. Interaction Graphs

In what follows, we will use structural properties of the expected payoff function F to bound

the regret and running time of our graphical bandit algorithm. In particular, our results

will depend on properties of the interaction graph G of the expected payoff function F .

Let G = (V,E) be a graph on variables V with edges E defined as follows: For any pair

of variables i, i′ ∈ V we have edge {i, i′} ∈ E if and only if there exists P ∈ P such that

i, i′ ∈ P , where P was defined in Assumption 2.1. In other words, we join i and i′ by an

edge if and only if there is some potential function fP that depends jointly on the variables

i and i′. The action subgraph GA = (A,EA) is the subgraph of G containing only the action

variables A ⊆ V and the edges between them EA ⊆ E.

Note that the relationship between the interaction graph G and an expected payoff function

F is essentially analogous to the relationship between a graphical model and a distribution

whose independence structure it represents. The absence of an edge between two vari-

ables in a graphical model indicates that the variables are probabilistically independent

in the distribution, while the absence of an edge between two variables in an interaction

graph indicates that the two variables are separable in the expected payoff function. A

sparse graphical model leads to computationally tractable inference algorithms, and we will

shortly see that a sparse interaction graphs (more precisely, sparse action subgraphs) lead

to computationally tractable no-regret algorithms for a graphical bandit problem.

26

2.3. Algorithm Overview

We present the details of our graphical bandit algorithm over the next three sections, and

give a high-level overview in this section. Our approach will be to divide the graphical

bandit problem into two subproblems — one essentially dealing with exploitation, and the

other with exploration — and then compose the solutions to those subproblems into a

no-regret algorithm.

In Section 2.4, we describe the BestAct algorithm, which, for any given joint context xC ,

computes an ε-optimal joint action xεA. The BestAct algorithm assumes access to an ε-good

approximation F ε(·,xC) of the expected payoff F (·,xC), and when computing xεA for given

joint context xC the BestAct algorithm makes many calls to the oracle F ε(·,xC). Note that

BestAct cannot simply issue these queries to Nature instead, since it has no way of fixing

the joint context xC over several rounds. The running time of BestAct is polynomially

bounded if the treewidth of the action subgraph GA is constant. BestAct is related to

existing dynamic programming algorithms for finding the maximum a posteriori (MAP)

assignment in a graphical model, but unlike that setting must overcome the additional

challenge of receiving only global payoffs and no direct local observations or information.

In Section 2.5, we describe the PayEst algorithm, which approximately implements the

oracle required by BestAct. With high probability, whenever PayEst receives a complete

joint assignment (xA,xC), either it outputs the value of F ε(xA,xC), or it outputs a special

symbol ⊥. PayEst is an instance of a “Knows What It Knows” (KWIK) algorithm Li et al.

(2011), and the number of times PayEst outputs ⊥ is polynomially-bounded if the potential

functions are all k-ary for a constant k. The bound is a consequence of the fact that F can

be written as a linear function, and each ⊥ output increments the dimension of a certain

linear subspace. Again, note that PayEst cannot be as simple as repeatedly playing the

complete joint assignment (xA,xC) and averaging the observed payoffs, since our algorithm

can only specify the joint action xA in each round, and has no way of fixing the joint context

xC .

27

In Section 2.6, we put BestAct and PayEst together to form GraphicalBandit, an algo-

rithm for graphical bandit problems, which in each round t runs BestAct for the current

context xtC , and uses PayEst to approximately implement the oracle required by BestAct.

The main difficulty in integrating the two algorithms is that sometimes PayEst outputs ⊥

instead of the value of the oracle F ε(·,xtC). However, whenever this happens, BestAct will

provide feedback that causes PayEst to make measurable exploration progress, improving

its ability to provide accurate payoff estimates in subsequent rounds.

2.4. Best Action Subroutine

We will now describe BestAct, an algorithm that efficiently computes, for a given joint

context xC , an ε-optimal joint action xεA satisfying F (xεA,xC) ≥ maxxA F (xA,xC)− ε. The

BestAct algorithm uses dynamic programming applied to the action subgraph GA, and is

similar to standard dynamic programming algorithms, such as the Viterbi algorithm, for

computing the MAP assignment in a graphical model. Our setting is more challenging,

however. For one, we do not have access to the individual potential functions fP , but only

to the expected payoff function F (assuming no noise). Furthermore, we do not control the

context argument to F .

To illustrate these difficulties, suppose that the action subgraph GA is a tree, and that

we wish to run a standard dynamic programming algorithm which, fixing an assignment

for a variable’s parent, attempts to find the best assignment for the subtree rooted at that

variable, under a joint context xC . That algorithm would require several queries to F (·,xC).

However, once the first observation is received, the next context is not guaranteed to be the

same, and the algorithm suffers regret for that round.

Furthermore, as we have previously remarked, any observation F (xA,xC), does not give us

the values of the individual potentials fP (xP). Thus, to compare two joint assignments to a

subtree in the algorithm sketched, we must be careful to fix the assignment to all variables

outside the subtree in question. This becomes even more delicate when GA is not a tree.

28

In order to overcome these problems, we will assume oracle access to a function F ε(·,xC)

for the given joint context xC that satisfies |F ε(xA,xC)−F (xA,xC)| ≤ ε for all joint actions

xA. In Section 2.5 we describe the PayEst algorithm, which approximately implements this

oracle.

For ease of exposition, we only give a detailed algorithm and analysis for the case when

GA is acyclic, although we have a related algorithm that can be applied when GA is an

arbitrary graph. We state our results for arbitrary graphs at the end of this section, and

defer their details to Section 2.8.

Suppose that the action subgraph GA is a tree. (Note that this implies that each potential

function fP depends jointly on at most two variables). Let r be an arbitrarily chosen root

for GA. For any a ∈ A, let T (a) denote the vertices of the subtree rooted at a. Let ch(a)

denote the set of vertices which are children of a, and for a 6= r, let pa(a) denote the parent

of a. Also for a 6= r, let R(a) = A \ (T (a) ∪ {pa(a)}) be remaining vertices that are neither

pa(a) nor belong to T (a).

If S1, . . . , Sk ∈ 2V are mutually disjoint subsets of variables such that S = S1 ∪ · · · ∪Sk, we

write a joint assignment xS as xS = (xS1 , . . . ,xSk).

For a 6= r, we would like to compute the best joint assignment to the variables of T (a), hav-

ing fixed an assignment for pa(a). We will denote this best joint assignment by [a,xpa(a)]
∗.

For any leaf a and assignment xpa(a),

[a,xpa(a)]
∗ = arg max

xa
F (xa,xpa(a),x

′
R(a),xC)

where x′R(a) is a fixed, but arbitrary joint assignment to the vertices in R(a). For a fixed

choice of xpa(a), [a,xpa(a)]
∗ is the same regardless of how x′R(a) is chosen since, by assumption,

we can write F (xa,xpa(a),x
′
R(a),xC) = f{pa(a),a}(xpa(a),xa,xC)+

∑
e∈EA\{(p(a),a)} fe(xp,xC),

where second term is a constant with respect to xa. If we had access to F (·,xC), [a,xpa(a)]
∗

can be efficiently computed.

29

In general, for a 6= r not necessarily a leaf node, and ch(a) = {a1, ..., ad}, we can write:

x∗a,xpa(a) = arg max
xa

F (xa, [a1,xa]∗, ..., [ad,xa]∗,xpa(a),x
′
R(a),xC)

and

[a,xpa(a)]
∗ = (x∗a,xpa(a) , [a1,x

∗
a,xpa(a)

]∗, ..., [ad,x
∗
a,xpa(a)

]∗)

This motivates an algorithm, wherein the values [a,xpa(a)]
∗ are computed for each a and

all choices xpa(a). This can be done efficiently by taking a in postfix order (children before

parents).

However, we only have access to the approximate oracle F ε(·,xC). Therefore, we will instead

consider:

x∗,εa,xpa(a) = arg max
xa

F ε(xa, [a1,xa]ε, ..., [ad,xa]ε,xpa(a),x
′
R(a),xC)

and

[a,xpa(a)]
ε = (x∗,εa,xpa(a) , [a1,x

∗,ε
a,xpa(a)

]ε, ..., [ad,x
∗,ε
a,xpa(a)

]ε)

where each x′R(a) is selected arbitrarily. We now argue that the [a,xpa(a)]
ε values, com-

puted using the function F ε(·,xC), are good values with respect to the true payoff function

F (·,xC).

Theorem 2.1. For any action variable a ∈ A, and assignments xpa(a), x′R(a),

F (xpa(a), [a,xpa(a)]
∗,x′R(a),xC)

≤ F (xpa(a), [a,xpa(a)]
ε,x′R(a),xC) + 2|T (a)|ε

Proof. Fix a choice of x′R(a) and xpa(a). Let a be a leaf. We have that:

F ([a,xpa(a)]
∗,xpa(a),x

′
R(a),xC)− ε

≤ F ε([a,xpa(a)]
∗,xpa(a),x

′
R(a),xC)

≤ F ε([a,xpa(a)]
ε,xpa(a),x

′
R(a),xC)

≤ F ([a,xpa(a)]
ε,xpa(a),x

′
R(a),xC) + ε

30

Rearranging establishes the inequality. Now suppose that the claim is true for each a′ ∈

ch(a) = {a1, ..., ad} for some variable a and assignment xp(a).

F ([a,xpa(a)]
∗,xpa(a),x

′
R(a),xC) = F (x∗a,pa(a), [a1, x

∗
a,pa(a)]

∗, ..., [ad, x
∗
a,pa(a)]

∗,xpa(a),x
′
R(a),xC)

≤ F (x∗a,pa(a), [a1, x
∗
a,pa(a)]

ε, ..., [ad, x
∗
a,pa(a)]

ε,xpa(a),x
′
R(a),xC) + 2

d∑
i=1

|T (ai)|ε

where the inequality is by invoking the induction hypothesis for each [ai, x
∗
a,pa(a)]

∗. Sim-

ilar reasoning as the base case gives us that this last expression is less than or equal to

F (x∗,εa,pa(a), [a1, x
∗,ε
a,pa(a)]

ε, ..., [ad, x
∗,ε
a,pa(a)]

ε,xpa(a),x
′
R(a),xC) + 2|T (a)|ε, completing the proof.

Imagining a “super-root” r′ such that r′ = pa(r) and f{r′,r} ≡ 0, selecting a = r, and

selecting xr′ arbitrarily in Theorem 2.1, gives us an algorithm which will compute an 2|A|ε-

optimal joint action, given access to F ε. We shall refer to this algorithm as BestAct.

Theorem 2.2. Suppose the action subgraph GA is a tree. Given access to oracle F ε(·,xC),

the BestAct algorithm computes a 2|A|ε-optimal joint action for joint context xC in O(m2|EA|)

time.

Proof. Fix an arbitrary variable a. Given [ai,xpa(ai)]
ε for each ai ∈ ch(a), [a,xpa(a)]

ε can be

computed in O(m) time by definition. Thus, computing [r,xr′]
ε can be done in O(m2|A|)

time.

Notice that any acyclic forest GA can be handled by running the tree algorithm on each

connected component. Suppose now that the action subgraph GA is arbitrary, but admits

a tree decomposition T = (A, E) where S ∈ A is a subset of A. Let w = maxS∈A |S|, the

treewidth of GA.

Theorem 2.3. Let T = (A, E) be a tree decomposition of action subgraph GA with treewidth

w. Given access to oracle F ε(·,xC), the BestAct algorithm can be generalized to compute

31

a 2|A|ε-optimal joint action for joint context xC in O(m2w|E|) time.

Proof. The approach used when GA is a tree can be generalized to run on the tree decom-

position of an arbitrary action subgraph. Details are given in Section 2.8.

Note that in order for the generalized version of BestAct to be computationally efficient,

natural but nontrivial restrictions on the action subgraph GA are required (namely, small

treewidth). It can be shown that some restrictions are inevitable. For example, the energy

F of a 3-D Ising model from statistical physics can be phrased as the sum of binary potential

functions. However, even if the behavior of each potential function fP is known (i.e. there

is no implicit learning problem), and there are no contexts, it is still NP-hard to select the

action (i.e. spins on the variables of the Ising graph) maximizing the energy function F

Barahona (1982).

2.5. Payoff Estimator Subroutine

In this section we present the PayEst algorithm, which approximately implements the ε-

good oracle F ε(xA,xC) required by the BestAct algorithm described in Section 2.4. Before

presenting PayEst, we give in Section 2.5.1 a precise definition of the problem that it is

designed to solve. In Section 2.5.2 we give a simple solution for the special case where the

observed payoffs are deterministic, which suffices to convey the main ideas of our approach.

The solution to the general problem is given in Section 2.5.3, which will be an instance of

a “Knows What It Knows” (KWIK) algorithm Li et al. (2011).

2.5.1. Problem Statement

Let us review the details of how the BestAct algorithm uses its oracle. On several time steps1

s = 1, . . . , S BestAct specifies a complete joint assignment xs = (xsA,x
s
C) and requests the

value F ε(xs) from the oracle. Ideally, we would like PayEst to unerringly supply these

values to BestAct. However, since the true payoff function F is unknown, this will be

1These time steps are not the rounds of the bandit problem; BestAct may call the oracle several times
per round of the bandit problem.

32

impossible in general. Instead, PayEst will be designed for the following learning protocol:

On each time step s the algorithm must either output the value f̂s = F ε(xs) or output a

special symbol ⊥ and be allowed to observe an independent random variable fs with mean

F (xs). As we shall see in Section 2.6 when we integrate the two algorithms, BestAct and

PayEst can be integrated in a way that respects this protocol and also bounds the number

of times that PayEst outputs ⊥.

2.5.2. Deterministic Payoffs Setting

Let us first consider the special case where each payoff fs is in fact deterministic; that is,

PayEst always observes F (xs) directly. We give a simple algorithm for PayEst that is based

on the idea that Assumption 2.1 allows us to express the payoff function F in a compact

linearized form. We now proceed to describe this linearization, and then give the algorithm.

For convenience, let N =
∑

P∈P
∏
i∈P |Xi|, and define the payoff vector f ∈ RN as follows:

Divide the N components of f into |P| blocks, where each block corresponds to a potential

function fP . Within the block for potential function fP , let there be one component `

corresponding to each of the
∏
i∈P |Xi| possible joint assignments xP , and set the `th

component of f equal to fP (xP).

For any complete joint assignment x, let v(x) ∈ {0, 1}N be a binary coefficient vector

defined as follows: If ` is the component of f corresponding to potential function fP and

joint assignment x′P then the `th component of v(x) equals 1 if and only if xP = x′P .

For an illustration of a payoff vector and coefficient vector, consider an expected payoff

function F that depends on three variables and decomposes into two potential functions.

Let F (x1, x2, x3) = f{1,2}(x1, x2) + f{2,3}(x2, x3), and suppose that the first potential adds

its inputs, while the second potential multiplies them, i.e., f{1,2}(x1, x2) = x1 + x2 and

f{2,3}(x2, x3) = x2x3. If each variable xi takes its values from the set {a, b}, then the payoff

vector for the function F can be written f =
(
a+ a, a+ b, b+ a, b+ b, aa, ab, ba, bb

)
and the

coefficient vector corresponding to, say, the complete joint assignment x = (x1, x2, x3) =

33

(a, b, a) is v(x) =
(
0, 1, 0, 0, 0, 0, 1, 0

)
. Most importantly, note that in general, the definitions

of f and v(x), together with Assumption 2.1, imply that the expected payoff function has

the linear form F (x) = f · v(x).

Now a very natural PayEst algorithm presents itself: On each time step s, if there exists

a linear combination α1, . . . , αs−1 such that v(xs) =
∑s−1

s′=1 αs′v(xs
′
) — in other words, if

v(xs) is in the linear span of previous coefficient vectors — then output the estimate f̂s =∑s−1
s′=1 αs′f

s′ , and otherwise output ⊥. Clearly, because the expected payoff function F (x)

is a linear function of the coefficient vector v(x) and the observed payoffs are deterministic,

we have f̂s = F (xs) for all s. Also, since each coefficient vector is in RN , and there is

no set of linearly independent vectors in RN containing more than N vectors, the number

of observation time steps is at most N . Importantly, we can upper bound N in terms of

properties of the interaction graph G. Recall that m = maxi |Xi| and n = |V |, and suppose

that each potential function P ∈ P is k-ary. We have N =
∑

P∈P
∏
i∈P |Xi| ≤ |P|mk ≤(

n
k

)
mk ≤ (mn)k. Thus, if we regard k as a constant, the number of observation time steps

is upper bounded by a polynomial.

In fact, we can further exploit the structure of the interaction graph G to give a more

refined upper bound than N . Let M =
∏
i∈V |Xi|, and define the coefficient matrix M ∈

{0, 1}N×M as follows: For each of the M possible complete joint assignments x, the matrix

M contains one column that equals the coefficient vector v(x). Since there is no set of

linearly independent columns of M containing more than rank(M) vectors, the number of

observation time steps is at most rank(M), which is at most N , but potentially much less

than N . In Section 2.7, we give another result bounding rank(M) in terms of properties of

the interaction graph G.

2.5.3. Probabilistic Payoffs Setting

We now return to the general setting, so that each fs is no longer deterministic, but an

independent random variable with expected value F (xs). Thanks to the linearized repre-

34

sentation of the expected payoff function F described in the previous section, we can use

a KWIK linear regression algorithm Strehl and Littman (2007) to implement PayEst. On

each time step s = 1, . . . , S such an algorithm observes a feature vector φφφs and does exactly

one of the following: (1) outputs prediction ŷs, or (2) outputs ⊥ and observes independent

random variable ys ∈ [0, 1] with expected value w · φφφs, where the weights w are unknown.

In our case, ŷs and ys are the predicted and observed payoffs f̂ s and fs, the feature vector

φφφs is the coefficient vector v(xs), and the unknown weight vector w is the payoff vector f .

There are several existing algorithms for KWIK linear regression. For example, Cesa-

Bianchi et al. (2009) describe an algorithm for which the number of observation time steps

is upper bounded by O
(
d
ε2

log(Sεδ)
)
, where d is the dimension of the subspace containing

the feature vectors. In our case, we have d = rank(M), where M is the coefficient matrix.

For concreteness, we will henceforth use this algorithm for PayEst.

2.6. Graphical Bandit Algorithm

In this section, we compose the algorithms from the previous two sections to form the

GraphicalBandit algorithm, which is described in detail in Algorithm 1. In each round t,

GraphicalBandit runs BestAct on the current joint context xtC , and whenever BestAct

asks the oracle for the value of F ε(xA,x
t
C) for some joint action xA, this request is passed

on to PayEst as the coefficient vector v(xA,x
t
C). If PayEst never returns ⊥ for a given

run of BestAct, then by the analysis in Sections 2.4 and 2.5, BestAct will return an ε-

optimal joint action xεA for joint context xtC , which is then played in round t. However, if

PayEst returns ⊥ in response to some complete joint assignment (xA,x
t
C), then BestAct is

terminated immediately, the joint action xA is played in round t, and the observed payoff f t

is returned to PayEst. Since PayEst is a KWIK linear regression algorithm, this feedback

is required in order to bound the number of times that PayEst outputs ⊥.

Theorem 2.4. Let d = rank(M) be the rank of the coefficient matrix, and let T = (A, E)

be the tree decomposition of the action subgraph GA with treewidth w. The regret R(T) of

GraphicalBandit after T rounds is at most R(T) ≤ O
(
dw
ε2

log(Tm|E|/εδ) + 2|A|εT + δT
)

35

Algorithm 1 GraphicalBandit

1: Given: Subroutine PayEst, subroutine BestAct, parameters ε, δ.
2: Initialize PayEst with parameters ε, δ.
3: for each time step t = 1, . . . , T do
4: Run BestAct on observed joint context xtC .
5: while BestAct is running do
6: if BestAct asks for value of F ε(xA,x

t
C) then

7: Input coeff. vector v(xA,x
t
C) to PayEst.

8: if PayEst returns ⊥ then
9: Play joint action xA, observe payoff f t.

10: Return f t to PayEst.
11: Terminate BestAct early.
12: else if PayEst returns f̂ then
13: Return f̂ to BestAct.
14: end if
15: end if
16: end while
17: if BestAct was not terminated early then
18: Play joint action xεA returned by BestAct.
19: end if
20: end for

and the computational complexity of each round is O(m2w|E|).

Proof. The per round computational complexity follows from Theorem 2.3.

Since PayEst is the KWIK linear regression algorithm from Cesa-Bianchi et al. (2009), we

have that with probability 1− δ, every prediction f̂ has error at most ε, and ⊥ is returned

at most K ≤ O
(
d
ε2

log(Sεδ)
)

times, where S is the number of times BestAct calls PayEst.

Since BestAct call PayEst at most O(m2w|E|) times per round, we have S ≤ O(Tm2w|E|).

In the probability δ event that PayEst fails to meet its guarantee, we may suffer maximum

regret on all T rounds. Otherwise, we are guaranteed that BestAct completes successfully

on all but K rounds, and on the remaining rounds, by Theorem 2.3, a 2|A|ε-optimal joint

action is selected.

Thus, R(T) ≤ K + 2|A|εT + δT ≤ O
(
wd
ε2

log(Tm|E|/εδ) + 2|A|εT + δT
)

If we tune ε and δ appropriately in terms of the number of rounds T , we obtain the following

36

no-regret bound.

Corollary 2.1. If GraphicalBandit is run with parameters ε = δ = 1
T 1/3 then R(T) ≤

O
(
dw|A|T 2/3 log(Tm|E|)

)
.

2.6.1. Distributional Assumptions

So far we have considered a setting in which contexts are chosen arbitrarily, and our regret

bound in Theorem 2.4 depends on d = rank(M). This is because, in the worst-case,

each coefficient vector v(xA,xC) observed by PayEst will be linearly independent of all

previously observed coefficient vectors. However, note that if the joint contexts are drawn

from a distribution, then such a worst-case sequence may no longer be likely. Let D be an

unknown context distribution on the joint contexts xC .

Fix a set X′C ⊆ XC , and let M(¬X′C) be the coefficient matrix restricted to joint contexts in

XC \X′C . In other words, the columns of M(¬X′C) are exactly {v(xC ,xA) | xA ∈ XA,xC ∈

XC \X′C}. We can provide an alternate regret bound for the same algorithm by conceding

full regret on rounds in which a context is chosen from X′C , and considering the algorithm’s

performance only on the remaining rounds. This gives us

R(T) ≤ TPxC∼D(xC ∈ X′C) +O
(

rank(M(¬X′C))w|A|T 2/3 log(Tm|E|)
)

Thus if D places a large amount of its mass on joint contexts that generate a coefficient

matrix with low rank, the bound above may be significantly better than our general bound.

Note we can optimize this bound for rare contexts under the distribution D by minimizing

this quantity over sets of joint contexts X′C .

2.7. Rank and Graph Structure

Let MF be the coefficient matrix corresponding to a payoff function F , and GF = (V,E)

be its interaction graph. In this section, we observe that we can use structural properties

of GF to prove statements about rank(MF), and therefore the regret of our algorithm.

37

Consider a payoff function F that is the sum of binary potential functions (i.e., k-ary with

k = 2). In Section 2.5 we argued that rank(M) = O(|V |2). In this section we will argue

that rank(M) = Ω(|V |).

Theorem 2.5. For any F with binary potentials, rank(MF) = Ω(|V |).

Proof. Suppose that the largest matching in GF contains at least |V |/4 edges. Since each

potential function is binary, each edge in GF represents a potential function in the decom-

position of F , and so there is a subset S ⊆ P of size at least |V |/4 such that all potentials

P ∈ S are pairwise disjoint, and every P ⊆ V . Let Y = ∪P∈SP be the set of nodes that

participate in this matching.

For each such P = {a, a′} ∈ S, fix an arbitrary “default” assignment x0
P for the nodes {a, a′}.

Let P− , Y \P , and furthermore, let x0
P− be the assignment in which all variables in P− are

set to their default assignments. For each P = {a, a′} ∈ S, also let X̂P = (Xa×Xa′) \ {x0
P }

be all possible assignments of P that are not the default assignment. Finally, let x′V \Y be

an arbitrary joint assignment for the remaining variables.

For each P ∈ S, and each each x̂P ∈ X̂P , consider the complete joint assignments of the

form complete(x̂P) = (x̂P ,x
0
P− ,x

′
V \Y). It’s not hard to see that the coefficient vectors

corresponding these assignments are all linearly independent, since v(complete(x̂P)) is the

only such coefficient vector that places a 1 in the component corresponding to the poten-

tial fP and joint assignment x̂P . Thus, MF contains at least |V |/4 linearly independent

columns, one for each of these complete assignments.

If the largest matching of GF does not contain at least |V |/4 edges, then it contains at

most |V |/2 nodes. Thus B , V \Y contains at least |A|/2 nodes. There cannot be an edge

between two nodes in B, otherwise there would have been a larger matching. Thus for any

a ∈ B, and P ∈ P with a ∈ P , we have P ∩ B = {a}. Since GF is an interaction graph,

there must be at least one such P for each a, call it Pa. As in the previous case, we can

construct a linearly independent set of at least |V |/2 coefficient vectors by fixing all vertices

38

to “default” values, considering each possible assignment of each variable a ∈ B, and finally

considering the component of the coefficient vector corresponding to Pa and the particular

assignment of a.

Example 2.1. There exists a class of functions F such that MF has close to full rank for

every F ∈ F . In other words, rank(MF) = Ω(N), where MF ∈ {0, 1}N×M and M > N .

Proof. Let Fn consist of functions F which are the sum of unary potentials, so F =∑n
i=1 fi(xi). Let X = X1 × ... × Xn where each Xi = {0, 1}. M = 2n, while N = 2n.

Let xi be the joint assignment with xii = 1 and xji = 0 for all j 6= i. It’s clear that {v(xij)}j

are linearly independent, establishing the claim.

Example 2.2. Any function F that does not decompose (i.e. with P = {V }), has MF

equal to the identity matrix of size |X|, and thus has rank(MF) =
∏
i∈V |Xi|.

2.8. Extension to General Graphs

We prove a ‘noise-free’ version of Theorem 3.

Theorem 2.6. Let T = (A, E) be a tree decomposition of action subgraph GA with treewidth

w. Given access to oracle F (·,xC), the BestAct algorithm can be generalized to compute

an optimal joint action for joint context xC in O(m2w|E|) time.

As we explained in the case of trees, if we replace the oracle F with an ε-good oracle F ε, we

compute a 2|A|ε-optimal joint action. This is because the ε noise ‘accumulates’, as shown

in the proof of Theorem 1. However, carrying the ε noise through the proof given below

is extremely cumbersome, and obscures the main ideas, so we only give a noise-free proof.

To understand how the proof below can be extended to handle an ε-good oracle F ε, see

Theorem 1.

The generalization of BestAct that computes the optimal joint action in Theorem 3 is

described in Algorithm 2 below. Before discussing the details of the algorithm, we present

several key definitions and lemmas.

39

By the definition of tree decomposition, each node S ∈ A is a subset of action variables A,

and E is a collection of edges over A that form a tree. We also know that T must satisfy

the following properties:

1. Node covering: For every action variable a ∈ A there exists a decomposition node

S ∈ A such that a ∈ S.

2. Edge covering: For every edge {a, a′} ∈ E there exists a decomposition node S ∈ A

such that a, a′ ∈ S.

3. Running intersection: If there exists an action variable a ∈ A and decomposition

nodes S′, S′′ ∈ A such that a ∈ S′ and a ∈ S′′ then for every S ∈ A along the path

between S′ and S′′ in tree T we have a ∈ S.

Root the tree T at an arbitrary decomposition node, and for any decomposition node S ∈ A

define T (S) to be the subtree of T rooted at S. Also, define in(S) ,
⋃
S′∈T (S) S

′ \ S to be

all the action variables contained in the decomposition nodes of subtree T (S), except for

those contained in S. Finally, define out(S) ,
⋃
S′ /∈T (S) S

′ \ S to be all the action variables

contained in decomposition nodes not in subtree T (S), except for those contained in S.

Importantly, we chose the preceding definitions so that we can partition the set of action

variables A in a convenient way, described in the next lemma.

Lemma 2.1. For any decomposition node S ∈ A we have2

A = S t in(S) t out(S)

Proof. The node covering property of tree decompositions implies that A = S ∪ in(S) ∪

out(S). By definition, S is disjoint from in(S) and out(S), so it remains to show that in(S)

and out(S) are disjoint. Suppose for contradiction that there exists an action variable a ∈ A

such that a ∈ in(S) and a ∈ out(S). Then there must exist S′ ∈ T (S) and S′′ /∈ T (S) such

2Here and in the rest of this section, t denotes disjoint union. In other words, X = Y tZ is an assertion
that X = Y ∪ Z and Y ∩ Z = ∅.

40

that a ∈ S′ and a ∈ S′′. Clearly, S is on the path in tree T from S′ to S′′, and therefore

by the running intersection property of tree decompositions a ∈ S. But then by definition

a /∈ out(S) and a /∈ in(S), a contradiction.

Recall that V = AtC. Therefore, by Assumption 1 and Lemma 2.1, for any decomposition

node S ∈ A we can write the payoff function F as

F (x) = F (xS ,xin(S),xout(S),xC) =
∑
P∈P

fP (xS∩P ,xin(S)∩P ,xout(S)∩P ,xC∩P).

The last expression can be simplified. The next lemma proves that, for any decomposition

node S, there are two distinct categories of potential functions: those that depend on xin(S),

and those that depend on xout(S).

Lemma 2.2. For any decomposition node S ∈ A there exist collections of variables subsets

Pin, Pout ∈ 2V such that P = Pin t Pout, where P is the collection of variable subsets from

Assumption 2.1, and

F (x) =
∑
P∈Pin

fP (xS∩P ,xin(S)∩P ,xC∩P) +
∑

P∈Pout

fP (xS∩P ,xout(S)∩P ,xC∩P).

Proof. It suffices to show that there is no subset of variables P ∈ P such that P ∩ in(S) 6= ∅

and P ∩out(S) 6= ∅. Suppose for contradiction that such a subset P ∈ P exists. This implies

that there exists action variables a, a′ ∈ A such that a ∈ in(S), a′ ∈ out(S) and a, a′ ∈ P .

Since a, a′ ∈ P , by our construction of graph G = (A,E) we must have {a, a′} ∈ E. By

the edge covering property of tree decompositions, there exists a tree decomposition node

S′ ∈ T such that a, a′ ∈ S′. Clearly S′ ∈ T (S) or S′ /∈ T (S). The former case implies that

either a′ ∈ S or a′ ∈ in(S), and since a′ ∈ out(S), this contradicts the disjointness property

given in Lemma 2.1. The latter case implies that either a ∈ S or a ∈ out(S), and since

a ∈ in(S), this also contradicts the disjointness property given in Lemma 2.1.

We are now ready to present BestAct, an efficient algorithm for computing the best joint

41

action x∗A = arg maxxA F (xA,xC) for a given joint context xC . Here is an informal descrip-

tion of BestAct: The algorithm processes the nodes of tree decomposition T one at a time,

starting at the leaves and ending at the root. For each decomposition node S ∈ A and joint

action xS , the algorithm computes best(S,xS), which is the best assignment of values to

action variables in(S) when action variables S have values xS and context variables C have

values xC . Importantly, by Lemma 2.2, best(S,xS) does not depend on the assignment of

values to action variables out(S). The value of best(S,xS) is computed inductively: letting

S1, . . . , Sk be the children of S, the algorithm computes best(S,xS) using previously com-

puted values best(S1,x
′
S1

), . . . ,best(Sk,x
′
Sk

). After the algorithm reaches the root R of the

tree decomposition, it computes the best joint action x∗A using the values best(R,xR).

When reading BestAct, and also the remainder of this section, it will be helpful to keep in

mind that S = (S ∩ S′) t (S \ S′) for any sets S, S′.

Algorithm 2 BestAct for arbitrary action subgraphs

1: Given: Joint context xC , oracle access to F (·,xC), tree decomposition T = (A, E) of
action subgraph GA.

2: for each node S ∈ A in postfix order (i.e., children before parents) do
3: if S is a leaf then
4: best(S,xS)← () for each joint action xS ; continue.
5: end if
6: for each joint action xS do
7: Let S1, . . . , Sk be the children of S.
8: for each child Si of S do

9: x∗Si\S ← arg maxx′
Si\S

F
(
xSi∩S , x′Si\S , best

(
Si,xSi∩S ,x

′
Si\S

)
, x′out(Si)

, xC

)
10: where joint action x′out(Si)

can be chosen arbitrarily.
11: end for
12: best(S,xS)←

(
x∗S1\S , best

(
S1,xS1∩S ,x

∗
S1\S

)
, . . . , x∗Sk\S , best

(
Sk,xSk∩S ,x

∗
Sk\S

))
13: end for
14: end for
15: Let R ∈ A be root of decomposition T .
16: x∗R ← arg maxx′R

F (x′R, best(R,x′R),xC). return x∗A ← (x∗R,best(R,x∗R)).

Before proceeding to the proof of Theorem 3, we prove a few more helpful lemmas. The

next lemma gives a useful partition of in(S).

42

Lemma 2.3. For any decomposition node S ∈ A with children S1, . . . , Sk ∈ A

in(S) = (S1 \ S) t in(S1) t · · · t (Sk \ S) t in(Sk)

Proof. For shorthand let Z =
⋃k
i=1(Si \ S) ∪ in(Si). First we prove in(S) ⊆ Z, then

in(S) ⊇ Z, and finally that all pairs of sets of disjoint.

To show that in(S) ⊆ Z, consider an action variable a ∈ in(S). By definition there exists

S′ ∈ T (S) such that a ∈ S′ and a /∈ S. Therefore S′ ∈ T (Si) for some i = 1, . . . , k. If

S′ = Si then clearly a ∈ (Si \ S). Otherwise if a /∈ Si then a ∈ in(Si). Thus in(S) ⊆ Z.

To show that in(S) ⊇ Z, consider an action variable a ∈ Z. By definition there exists

i ∈ {1, . . . , k} such that a ∈ (Si \ S) or a ∈ in(Si). The former case directly implies

a ∈ in(S). The latter case implies that there exists S′ ∈ T (Si) such that a ∈ S′. Now

suppose for contradiction that a ∈ S. Since Si is on the path from S and S′ we have a ∈ Si.

But this contradicts the fact that a ∈ in(Si). Therefore a /∈ S, which implies a ∈ in(S).

Now we prove that all pairs of sets are disjoint. There are three types of pairs of sets: (Si\S)

and in(Sj); (Si \ S) and (Sj \ S); in(Si) and in(Sj). We consider only the first case, since

the proofs for the other two cases are similar. Suppose, for contradiction, that there exists

an action variable a ∈ A such that a ∈ (Si \ S) and a ∈ in(Sj) for some i, j ∈ {1, . . . , k}.

Therefore a ∈ Si and there exists S′ ∈ T (Sj) such that a ∈ S′. Since S is on the path

between Si and S′, by the running intersection property we have a ∈ S, a contradiction.

The next lemma proves the key property of the values best(S,xS) that are computed in

BestAct.

Lemma 2.4. If BestAct is run on joint context xC then after the outermost loop of the

algorithm terminates we have for all decomposition nodes S ∈ A and all joint actions xS

best(S,xS) ∈ arg max
x′
in(S)

F (xS ,x
′
in(S),x

′
out(S),xC)

43

for any joint action x′out(S).

Proof. The proof is by induction on the structure of the tree decomposition T .

For the base case, S is a leaf of T . The lemma clearly holds in this case, since by definition

in(S) = ∅ and by line 4 of BestAct we have best(S,xS) = () for all joint actions xS .

Now suppose S is not a leaf of T . Fix joint action xS . Let S1, . . . , Sk be the children of S,

and suppose for induction that the lemma holds for each child Si. We wish to show

best(S,xS) ∈ arg max
x′
in(S)

F (xS ,x
′
in(S),x

′
out(S),xC) (2.1)

for any joint action x′out(S). By line 12 of BestAct we have

best(S,xS) =
(
x∗S1\S , best

(
S1,xS1∩S ,x

∗
S1\S

)
, . . . , x∗Sk\S , best

(
Sk,xSk∩S ,x

∗
Sk\S

))
(2.2)

where x∗Si\S for i = 1, . . . , k is defined in line 9 of BestAct as

x∗Si\S ∈ arg max
x′
Si\S

F
(
xSi∩S , x′Si\S , best

(
Si,xSi∩S ,x

′
Si\S

)
, x′out(Si)

, xC

)
(2.3)

for some arbitrary joint action x′out(Si)
. By Lemma 2.3 we have

in(S) = (S1 \ S) t in(S1) t · · · t (Sk \ S) t in(Sk). (2.4)

Eq. (2.2) and Eq. (2.4) together imply that to show Eq. (2.1) it suffices to show

(
x∗S1\S , best

(
S1,xS1∩S ,x

∗
S1\S

)
, . . . , x∗Sk\S , best

(
Sk,xSk∩S ,x

∗
Sk\S

))
∈ arg max

x′
S1\S

,...,x′
Sk\S

x′
in(S1)

,...,x′
in(Sk)

F (xS ,x
′
S1\S ,x

′
in(S1), . . . ,x

′
Sk\S ,x

′
in(Sk),x

′
out(S),xC) (2.5)

44

for any joint action x′out(S). Note that

out(Si) = A \
(

in(Si) t Si
)

= A \
(

in(Si) t (Si ∩ S) t (Si \ S)
)

for i = 1, . . . , k, which follows from Lemma 2.1 and the fact that Si = (Si ∩ S) t (Si \ S).

Thus to show Eq. (2.5) it suffices to show for i = 1, . . . , k

(
x∗Si\S , best

(
Si,xSi∩S ,x

∗
Si\S

))
∈ arg max

x′
Si\S

x′
in(Si)

F
(
xSi∩S ,x

′
Si\S ,x

′
in(Si)

,x′out(Si)
,xC

)
(2.6)

for any joint action x′out(Si)
. The inductive hypothesis implies that for i = 1, . . . , k and all

joint actions x′Si\S

best
(
Si,xSi∩S ,x

′
Si\S

)
∈ arg max

x′
in(Si)

F
(
xSi∩S ,x

′
Si\S ,x

′
in(Si)

,x′out(Si)
,xC

)
for any joint action x′out(Si)

. Thus to show Eq. (2.6) it suffices to show for i = 1, . . . , k

x∗Si\S ∈ arg max
x′
Si\S

F
(
xSi∩S ,x

′
Si\S ,best

(
Si,xSi∩S ,x

′
Si\S

)
,x′out(Si)

,xC
)

(2.7)

for any joint action x′out(Si)
. By the definition of x∗Si\S in Eq. (2.3) we have that Eq. (2.7)

holds for at least one joint action x′out(Si)
. Together with Lemma 2.2 this implies that

Eq. (2.7) holds for any joint action x′out(Si)
.

We are now ready to prove Theorem 3.

Proof of Theorem 3. We first claim that the joint action x∗A returned by BestAct satisfies

x∗A = arg max
xA

F (xA,xC)

Let R be the root of the tree decomposition T . By definition out(R) = ∅, and thus by

45

Lemma 2.1 we have A = R t in(R). Therefore

max
xA

F (xA,xC) = max
xR,xin(R)

F (xR,xin(R),xC) = max
xR

F (xR,best(R,xR),xC)

where the second equality follows from Lemma 2.4. By inspecting lines 15-17 of BestAct,

the claim is proved.

Next, we claim that the running time of BestAct is O(m2w|E|). By inspection, we see that

the order of BestAct’s running time is determined by the time it spends in its innermost

nested loop. Each iteration of the innermost loop corresponds to a different triple (S,xS , Si),

where S and Si are decomposition nodes connected by an edge in tree T , and xS is a joint

action. There are |E| edges, and for any decomposition node S the number of joint actions

xS is at most mw. Thus the innermost loop executes at most mw|E| times. The body of

the innermost loop consists solely of a maximization over all joint actions xSi\S ; there are

at most mw such joint actions, yielding a total running time of m2w|E|.

46

CHAPTER 3 : Large Scale Bandits and KWIK Learning

Continuing our examination of multi-armed bandit problems in which both the state and

action spaces are very large, we study a more general model of similarity structure in the

payoff function. In the previous chapter we were able to solve the graphical bandit problem

by evoking a KWIK learning algorithm on a linearized form of the payoff function. We now

observe that the connection between KWIK learning and the MAB problem in fact runs

deeper.

Our main contribution is a new algorithm and reduction showing a strong connection be-

tween large-scale MAB problems and the Knows What It Knows or KWIK model of su-

pervised learning Li et al. (2011); Li and Littman (2010); Sayedi et al. (2010); Strehl and

Littman (2007); Walsh et al. (2009). KWIK learning is an online model of learning a class

of functions that is strictly more demanding than standard no-regret online learning, in

that the learning algorithm must either make an accurate prediction on each trial or output

“don’t know”. The performance of a KWIK algorithm is measured by the number of such

don’t-know trials.

Our first results essentially show that the large-scale MAB problem given by a parametric

class of payoff functions can be efficiently reduced to the supervised KWIK learning of the

same class. Armed with existing algorithms for KWIK learning, such as for noisy linear

regression Strehl and Littman (2007); Walsh et al. (2009), we thus obtain new algorithms

for large-scale MAB problems. We also give a matching intractability result showing that

the demand for KWIK learnability is necessary, in that it cannot be replaced with standard

online no-regret supervised learning, or weaker models such as PAC learning, while still

implying solution to the MAB problem. In this sense our reduction is tight with respect to

its assumption of KWIK learning.

We then consider an alternative model in which the action space remains large, but in

which only a subset is available to the algorithm at any time, and this subset is growing

47

with time. This even better models settings such as sponsored search, where the space of

possible ads is very large, but at any moment the search engine can only display those ads

that have actually been placed by advertisers. We again show that such MAB problems

can be reduced to KWIK learning, provided the arrival rate of new actions is sublinear in

the number of trials. We also give information-theoretic impossibility results showing that

this reduction is tight, in that weakening its assumptions no longer implies solution to the

MAB problem. We conclude with a brief experimental illustration of this arriving-action

model.

The KWIK framework was designed to address model-free reinforcement learning in large-

state finite-action MDPs (see Li and Littman (2010) in particular). Li, Littman, Walsh,

and Strehl (2011) suggest that other machine learning problems, including bandit problems,

could benefit from the perspective introduced by KWIK learning. We confirm this conjec-

ture, and in more detail, demonstrate that 1/ε and 1/ε2 bounds for KWIK algorithms auto-

matically imply regret rates of
√
T and T 2/3 for MAB problems. These results demonstrate

the importance of studying the KWIK model, not just because it is an interesting model

in its own right, but for the purpose of understanding sequential decision-making problems

more generally. Finally, we comment that our results also fall into the line of research

showing reductions and relationships between bandit-style learning problems and tradi-

tional supervised learning models Langford and Zhang (2007); Beygelzimer et al. (2011);

Beygelzimer and Langford (2009).

3.1. Large-Scale Multi-Armed Bandits (MAB)

The Setting. We consider a sequential decision problem in which a learner, on each

round t, is presented with a state xt, chosen by Nature from a large state space X . The

learner responds by choosing an action at from a large action space A. We assume that

the learner’s (noisy) payoff is fθ(x
t,at) + ηt, where ηt is i.i.d. with E[ηt] = 0. The function

fθ is unknown to the learner, but is chosen from a (parameterized) family of functions

FΘ = {fθ : X × A → R+ | θ ∈ Θ} that is known to the learner. We assume that every

48

fθ ∈ FΘ returns values bounded in [0, 1]. In general we make no assumptions on the

sequence of states xt, stochastic or otherwise. An instance of such a MAB problem is fully

specified by (X ,A,FΘ).

We will informally use the term “large-scale MAB problem” to indicate that both |X | and

|A| are large or infinite, and that we seek algorithms whose resource requirements are greatly

sublinear or independent of both. This is in contrast to works in which either only |X | was

assumed to be large Langford and Zhang (2007); Beygelzimer et al. (2011) (which we shall

term “large-state”; it is also commonly called contextual bandits in the literature), or only

|A| is large Kleinberg et al. (2008) (which we shall term “large-action”). We now define our

notion of regret, which permits arbitrary sequences of states.

Definition 3.1. An algorithm for the large-scale MAB problem (X ,A,FΘ) is said to have

no regret if, for any fθ ∈ FΘ and any sequence x1,x2, . . .xT ∈ X , the algorithm’s action

sequence a1,a2, . . .aT ∈ A satisfies RA(T)/T → 0 as T → ∞, where we define R(T) ,

E
[∑T

t=1 maxat∗∈A fθ(x
t,at∗)− fθ(xt,at)

]
.

We shall be particularly interested in algorithms for which we can in fact provide fast rates

of convergence to no regret.

Example: Pairwise Interaction Models. We introduce a running example we shall use

to illustrate our assumptions and results; other examples are discussed later. Let states x

and actions a both be (bounded norm) d-dimensional vectors of reals. Let θ be a (bounded)

d2-dimensional parameter vector, and let fθ(x,a) =
∑

1≤i,j≤d θi,jxiaj ; we then define FΘ to

be the class of all such models fθ. In such models, the payoffs are determined by pairwise

interactions between the variables, and both the sign and magnitude of the contribution

of xiaj is determined by the parameter θi,j . For example, imagine an application in which

each state x represents demographic and behavioral features of an individual web user, and

each action a encodes properties of an advertisement that could be presented to the user.

A zipcode feature in x indicating the user lives in an affluent neighborhood and a language

feature in a indicating that the ad is for a premium housecleaning service might have a large

49

positive coefficient, while the same zipcode feature might have a large negative coefficient

with a feature in a indicating that the service is not yet offered in the user’s city.

3.2. Assumptions: KWIK Learnability and Fixed-State Optimization

We next articulate the two assumptions we shall require on the class FΘ in order to obtain

resource-efficient no-regret MAB algorithms. The first is KWIK learnabilty of FΘ, a strong

notion of supervised learning, introduced by Li et al. in 2008 Li et al. (2008, 2011). The

second is the ability to find an approximately optimal action for a fixed state. Either one of

these conditions in isolation is clearly insufficient for solving the large-scale MAB problem:

KWIK learning of FΘ has no notion of choosing actions, but instead assumes input-output

pairs 〈x,a〉, fθ(x,a) are simply given; whereas the ability to optimize actions for fixed

states is of no obvious value in our changing-state MAB model. We will show, however,

that together these two assumptions can exactly compensate for each other’s deficiencies

and be combined to solve the large-scale MAB problem.

3.2.1. KWIK Learning

In the KWIK learning protocol Li et al. (2008), we assume we have an input space Z and

an output space Y ⊂ R. The learning problem is specified by a function f : Z → Y, drawn

from a specified function class F . The set Z can generally be arbitrary but, looking ahead,

our reduction from a large-scale MAB problem (X ,A,FΘ) to a KWIK problem will set the

function class as F = FΘ and the input space as Z = X × A, the joint state and action

spaces.

The learner is presented with a sequence of observations z1, z2, . . . ∈ Z and, immediately

after observing zt, is asked to make a prediction of the value f(zt), but is allowed to predict

the value ⊥ meaning “don’t know”. Specifically:

1: Nature selects f ∈ F

2: for t = 1, 2, 3, . . . do

3: Nature selects zt ∈ Z and presents to learner

50

4: Learner predicts yt ∈ Y ∪ {⊥}

5: if yt =⊥ then

6: Learner observes value f(zt) + ηt,

7: where ηt is a bounded 0-mean noise term

8: else if yt 6=⊥ and |yt − f(zt)| > ε then

9: FAIL and exit

10: end if

11: // Continue if yt is ε-accurate

12: end for

Thus in KWIK model the learner may confess ignorance on any trial. Upon a report of

“don’t know”, where yt =⊥, the learner is given feedback, receiving a noisy estimate of

f(zt). However, if the learner chooses to make a prediction of f(zt), no feedback is received

1, and this prediction must be ε-accurate, or else the learner fails entirely. In the KWIK

model the aim is to make only a bounded number of ⊥ predictions, and thus make ε-accurate

predictions on almost every trial.

Definition 3.2. Let the error parameter be ε > 0 and the failure parameter be δ > 0.

Then F is said to be KWIK-learnable with don’t-know bound B = B(ε, δ) if there exists

an algorithm such that for any sequence z1, z2, z3, . . . ∈ Z, the sequence of predictions

y1, y2, . . . ∈ Y ∪ {⊥} satisfies
∑∞

t=1 1[yt = ⊥] ≤ B, and the probability of FAIL is at most

δ. Any class F is said to be efficiently KWIK-learnable if there exists an algorithm that

satisfies the above condition and on every round runs in time poly(ε−1, δ−1).

Example Revisited: Pairwise Interactions. We show that KWIK learnability holds

here. Recalling that fθ(x,a) =
∑

1≤i,j≤d θi,jxiaj , we can linearize the model by viewing the

KWIK inputs as having d2 components zi,j = xiaj , with coefficients θi,j , and the KWIK

learnability of FΘ simply reduces to KWIK noisy linear regression, which has an efficient

algorithm Li et al. (2011); Strehl and Littman (2007); Walsh et al. (2009).

1This aspect of KWIK learning is crucial for our reduction.

51

3.2.2. Fixed-State Optimization

We next describe the aforementioned fixed-state optimization problem for FΘ. Assume

we have a fixed function fθ ∈ FΘ, a fixed state x ∈ X , and some ε > 0. Then an algo-

rithm shall be referred to as a fixed-state optimization algorithm for FΘ if the algorithm

makes a series of (action) queries a1,a2, . . . ∈ A, and in response to ai receives approx-

imate feedback yi satisfying |yi − fθ(x,a
i)| ≤ ε; and then outputs a final action â ∈ A

satisfying arg maxa∈A{fθ(x,a)} − fθ(x, â) ≤ ε. In other words, for any fixed state x, given

access only to (approximate) input-output queries to fθ(x, ·), the algorithm quickly finds

an (approximately) optimal action under fθ and x. It is not hard to show that if we define

FΘ(X , ·) = {fθ(x, ·) : θ ∈ Θ,x ∈ X} — which defines a class of large-action MAB problems

induced by the class FΘ of large-scale MAB problems, each one corresponding to a fixed

state — then the assumption of fixed-state optimization for FΘ is in fact equivalent to hav-

ing a no-regret algorithm for FΘ(X , ·). In this sense, the reduction we will provide shortly

can be viewed as showing that KWIK learnability bridges the gap between the large-scale

problem FΘ and its induced large-action problem FΘ(X , ·).

Example Revisited: Pairwise Interactions. We show that fixed-state optimization

holds here. For any fixed state x we wish to approximately maximize the output of

fθ(x,a) =
∑

i,j θi,jxiaj from approximate queries. Since x is fixed, we can view the co-

efficient on aj as τj =
∑

i θi,jxi. While there is no hope of distinguishing θ and x, there

is no need to: querying on the jth standard basis vector returns (an approximation to)

the value of τj . After doing so for each dimension j, we can output whichever basis vector

yielded the highest payoff.

3.3. A Reduction of MAB to KWIK

We now give a reduction and algorithm showing that the assumptions of both KWIK-

learnability and fixed-state optimization of FΘ suffice to obtain an efficient no-regret algo-

rithm for the MAB problem for FΘ. The high-level idea of the algorithm is as follows. Upon

52

receiving the state xt, we attempt to simulate the assumed fixed-state optimization algo-

rithm FixedStateOpt on fθ(x
t, ·). Unfortunately, we do not have the required oracle access

to fθ(x
t, ·), due to the fact that the state changes with each action that we take. Therefore,

we will instead make use of the assumed KWIK learning algorithm as a surrogate. So long as

KWIK never outputs ⊥, the optimization subroutine terminates with an approximate opti-

mizer for fθ(x
t, ·). If KWIK returns ⊥ sometime during the simulation of FixedStateOpt, we

halt that optimization but increase the don’t-know count of KWIK, which can only happen

finitely often. The precise algorithm follows.

Algorithm 3 KWIKBandit: MAB Reduction to KWIK + FixedStateOpt

1: Initialize KWIK to learn unknown fθ ∈ FΘ.
2: for t = 1, 2, . . . do

3: xt
receive←−−−− MAB

4: i
set←−− 0

5: feedbackflag
set←−− FALSE

6: Init FixedStateOptt to optimize fθ(x
t, ·)

7: while i
set←−− i+ 1 do

8: ati
query←−−− FixedStateOptt

9: if FixedStateOptt terminates then

10: at
set←−− ati

11: break while
12: end if
13: zt = (xt,ati)

input−−−→ KWIK

14: ŷti
output←−−−− KWIK

15: if ŷti =⊥ then

16: at
set←−− ati

17: feedbackflag
set←−− TRUE

18: break while
19: else
20: ŷti

feedback−−−−−→ FixedStateOptt

21: end if
22: end while
23: at

action−−−−→ MAB
24: fθ(x

t,at) + ηt = yt
observe←−−−− MAB

25: if feedbackflag = TRUE then

26: yt
feedback−−−−−→ KWIK

27: end if
28: end for

Theorem 3.1. Assume we have a family of functions FΘ, a KWIK-learning algorithm

53

KWIK for FΘ, and a fixed-state optimization algorithm FixedStateOpt. Then the average

regret of Algorithm 3, RA(T)/T , will be arbitrarily small for appropriately-chosen ε and δ,

and large enough T . Moreover, the running time is polynomial in the running time of KWIK

and FixedStateOpt.

Proof. We first bound the cost of Algorithm 3. Let us consider the result of one round of

the outermost loop, i.e. for some fixed t. First, consider the event that KWIK does not FAIL

on any trial, so we are guaranteed that ŷti is an ε-accurate estimate of fθ(x
t,ati). In this

case the while loop can be broken in one of two ways:

• KWIK returns ⊥ on the pair (xt,ati). In this case, because we have assumed a bounded

range for fθ, we can say that maxat∗
fθ(x

t,at∗)− fθ(xt,at) ≤ 1.

• FixedStateOpt terminates and returns at. But this at is ε-optimal per our definition,

hence we have that maxat∗
fθ(x

t,at∗)− fθ(xt,at) ≤ ε.

Therefore, on a trial t, we can bound

max
at∗

fθ(x
t,at∗)− fθ(xt,at) ≤ 1[KWIK outputs ⊥ on round t] + ε.

Taking the average over t = 1, . . . , T we have

1

T

T∑
t=1

max
at∗

fθ(x
t,at∗)− fθ(xt,at) ≤

B(ε, δ)

T
+ ε (3.1)

where B(ε, δ) is the don’t-know bound of KWIK. Inequality (3.1) holds on the event that

KWIK does not FAIL. By definition, the probability that it does FAIL is at most δ, and in

that case all we can say is that (1/T)
∑T

t=1 maxat∗
fθ(x

t,at∗)− fθ(xt,at) ≤ 1 Therefore, we

have that:

R(T)

T
≤ B(ε, δ)

T
+ ε+ δ (3.2)

54

We must now show that the quantity on the right hand side of (3.2) vanishes with correctly

chosen ε and δ. But this is achieved trivially: for any small γ > 0 if we select δ = ε < γ/3

and for T > 3B(ε,δ)
γ we have that B(ε,δ)

T + ε+ δ < γ as desired.

Algorithm 3 is not exactly a no-regret MAB algorithm, since it requires parameter choices

to obtain small regret. But this is easily remedied.

Corollary 3.1. Under the assumptions of Theorem 3.1, there exists a no-regret algorithm

for the MAB problem on FΘ.

Proof sketch. This follows as a direct consequence of Theorem 3.1 and a standard use of

the “doubling trick” for selecting the input parameters in an online fashion. The simple

construction runs a sequence of versions of Algorithm 3 with decaying choices of ε, δ.

The interesting case occurs when FΘ is efficiently quick-learnable with a polynomial don’t-

know bound. In that case, we can obtain fast rates of convergence to no-regret. For all

known KWIK algorithms B(ε, δ) is polynomial in ε−1 and poly-logarithmic in δ−1. The

following corollary is left as a straightforward exercise, following from equation (3.2).

Corollary 3.2. If the don’t-know bound of KWIK is B(ε, δ) = O(ε−d logk δ−1) for some

d > 0, k ≥ 0 then we have

R(T)/T = O

((
1

T

) 1
d+1

logk T

)
.

Example Revisited: Pairwise Interaction Models. As we have previously argued, the

assumptions of KWIK learning and fixed-state optimization are met for the class of pairwise

interaction models, so Theorem 3.1 can be applied directly, yielding a no-regret algorithm.

More generally, a no-regret result can be obtained for any FΘ that can be similarly “lin-

earized”; this includes the graphical models studied in Chapter 2 (where the main result

can be viewed as a special case of Theorem 3.1). Other applications of Theorem 3.1 include

FΘ that obey a Lipschitz condition, where we can apply covering techniques to obtain the

55

KWIK subroutine (details omitted), and various function classes in the boolean setting Li

et al. (2011).

3.3.1. No Weaker General Reduction

While Theorem 3.1 provides general conditions under which large-scale MAB problems

can be solved efficiently, the assumption of KWIK learnability of FΘ is still a strong one,

with noisy linear regression being the richest problem for which there is a known KWIK

algorithm. For this reason, it would be nice to replace the KWIK learning assumption

with a weaker learning assumption 2. However, in the following theorem, we prove (under

standard cryptographic assumptions) that there is in fact no general reduction of the MAB

problem for FΘ to a weaker model of supervised learning. More precisely, we show that the

“next strongest” standard model of supervised learning after KWIK, which is no-regret on

arbitrary sequences of trials, does not imply no-regret MAB. This immediately implies that

even weaker learning models (such as PAC learnability) also cannot suffice for no-regret

MAB.

Theorem 3.2. There exists a class of models FΘ such that

• FΘ is fixed-state optimizable.

• There is an efficient algorithm A such that on an arbitrary sequence of T trials zt, A

makes a prediction ŷt of yt = fθ(z
t) and receives yt as feedback; and the total regret

err(T) ,
∑T

t=1 |yt − ŷt| is sublinear in T . Thus we have only no-regret supervised

learning instead of the stronger KWIK learning.

• Under standard cryptographic assumptions, there is no polynomial-time algorithm for

the no-regret MAB problem for FΘ, even if the state sequence is generated randomly

from the uniform distribution.

We sketch the proof of Theorem 3.2 in the remainder of the section. Let Zn = {0, ..., n− 1}
2Note that we should not expect to replace or weaken the assumption of fixed-state optimization, since

we have already noted that this is already implied by a no-regret algorithm for the MAB problem.

56

with d = log |Zn|. The idea is that for each fθ ∈ FΘ, the parameters θ specify the public-

private key pair in a family of trapdoor functions hθ : Zn → Zn — thus informally, hθ

is computationally easy to compute, but computationally intractable to invert, unless one

knows the private key, in which case it becomes easy. We then define the MAB functions fθ

as follows: for any state x ∈ Zn, fθ(x,a) = 1 if x = hθ(a) and fθ(x,a) = 0 otherwise. Thus

for any fixed state x, finding the optimal action requires inverting the trapdoor function

without knowledge of the private key, which is assumed intractable. In order to ensure fixed-

state optimizability, we also introduce a “special” input a∗ such that the value of fθ(x,a
∗)

“gives away” the optimal action h−1
θ (x) but with low payoff, but a MAB algorithm cannot

exploit this since executing a∗ in the environment changes the state.

Let h−1
θ (·) denote the inverse of hθ. That is, h−1(x) is the optimizing action for state x. If

a∗ is selected, the output of fθ(x,a
∗) is equal to 0.5/(1 + h−1

θ (x)). 3 Note that querying a∗

in state x reveals the identity of h−1
θ (x) ∈ Zn, but has vanishing payoff. Suppose also that

the public key, θpub, is revealed as side information on any input to hθ.
4

The following lemma establishes that the previous construction admits trivial algorithms for

both the fixed-state optimization problem and the no-regret supervised learning problem.

Lemma 3.1. Let FΘ be the function class just described. For any fθ ∈ FΘ and any fixed

x ∈ X , f(x, ·) can be optimized from a constant number of queries. Furthermore, there exists

an efficient algorithm for the supervised no-regret problem on FΘ with err(T) = O(log T),

and requiring poly(d) computation per step.

Proof. For any θ, the fixed-state optimization problem on fθ(x, ·) is solved by simply query-

ing the special action a∗, which uniquely identifies the optimal action. The supervised

no-regret problem is similarly trivial. After the first observation (x1,a1), θpub is revealed.

Thereafter, the algorithm has learned the output of every pair (x,a), where both x and a

3For simplicity think of each hθ as being a bijection (Hθ is a family of one-way permutations).In general
hθ need not be a bijection if we let h−1

θ (x) be an arbitrary inversion if many exist, and let fθ(x,a
∗) = 0 if

there is no a ∈ Zn satisfying hθ(a) = x.
4Once again, this keeps the construction simple. For complete rigor, the identity of θpub can be encoded

in O(d) bits and output after the lowest-order bit used by the described construction.

57

belong to Zn. (It simply checks if hθ(a) = x). The only inputs on which it might make

a mistake take the form (x,a∗). However, repeating the output for previously observed

inputs, and outputting 0 for new inputs of the form (x,a∗) suffices to solve the supervised

no-regret problem with err(T) = O(log T). The algorithm cannot suffer error greater than∑T
t=1 0.5/t in this way.

Finally, we can demonstrate that an efficient no-regret algorithm for the large-scale bandit

problem on FΘ gives us an algorithm for inverting hθ.

Lemma 3.2. Under standard cryptographic assumptions, there is no polynomial q and

efficient algorithm BANDIT for the large-scale bandit problem on FΘ that guarantees

T∑
t=1

max
at∗

fθ(xt,a
t
∗)− fθ(xt,at) < .5T

with probability greater than 1/2 when T ≤ q(d).

Proof. Suppose that there were such a q, and algorithm BANDIT. This would imply that hθ

can be inverted for arbitrary θ, while only knowing the public key θpub.

Consider the following procedure that simulates BANDIT for q(d) steps. On each round t,

the state provided to BANDIT will be generated by selecting an action at from Zn uniformly

at random, and then providing BANDIT with the state hθ(a
t). At which point, BANDIT will

output an action and demand a reward. If the action selected by bandit is the special action

a∗, then its reward is simply 0.5/(1 + at). If the action selected by bandit is at its reward

is 1. Otherwise, it’s reward is 0.

With probability 1/2, BANDIT must return at on state hθ(a
t) for at least one round t ≤ T .

Before being able to invert hθ(a
t), the procedure described reveals at most q(d) plaintext-

ciphertext pairs (as, hθ(a
s)), s < t to BANDIT (and no additional information), contradicting

the assumption that hθ belongs to a family of cryptographic trapdoor functions.

58

This completes the proof of Theorem 3.2.

3.4. A Model for Gradually Arriving Actions

In the model examined so far, we have been assuming that the action space A is large —

exponentially large or perhaps infinite — but also that the entire action space is available on

every trial. In many natural settings, however, this property may be violated. For instance,

in sponsored search, while the space of all possible ads is indeed very large, at any given

moment the search engine can choose to display only those ads that have actually been

created by extant advertisers. Furthermore these advertisers arrive gradually over time,

creating a growing action space. In this setting, the algorithm of Theorem 3.1 cannot be

applied, as it assumes the ability to optimize over all of A at each step. In this section we

introduce a new model and algorithm to capture such scenarios.

Setting. As before, the learner is presented with a sequence of arriving states x1,x2,x3, . . . ∈

X . The set of available actions, however, shall not be fixed in advance but instead will grow

with time. Let F be the set of all possible actions where, formally, we shall imagine that

each f ∈ F is a function f : X → [0, 1]; f(x) represents the payoff of action f on x ∈ X
5. Initially the action pool is F0 ⊂ F , and on each round t a (possibly empty) set of new

actions St ⊂ F arrives and is added to the pool, hence the available action pool on round

t is F t := F t−1 ∪ St. We emphasize that when we say a new set of actions “arrives”, we

do not mean that the learner is given the actual identity of the corresponding functions,

which it must learn to approximate, but rather that the learner is given (noisy) black-box

input-output access to them. Let N(t) = |F t| denote the size of the action pool at time

t. Our results will depend crucially on this growth rate N(t), in particular on it being

sublinear 6. One interpretation of this requirement, and our theorem that exploits it, is as a

5Note that now each action is represented by its own payoff function, in contrast to the earlier model in
which actions were inputs a into the fθ(x,a). The models coincide if we choose F = {fθ(·,a) : a ∈ A, θ ∈ Θ}.

6Sublinearity of N(t) seems a mild and natural assumption in many settings; certainly in sponsored search
we expect user queries to vastly outnumber new advertisers. Another example is crowdsourcing systems,
where the arriving actions are workers that can be assigned tasks, and f(x) is the quality of work that worker
f does on task x. If the workers are also the contributors of tasks (as in services like stackoverflow.com),
and each worker contributes tasks at some constant rate, it is easily verified that N(t) =

√
t.

59

form of Occam’s Razor: since new functions arriving means more parameters for the MAB

algorithm to learn, it turns out to be necessary and sufficient that they arrive at a strictly

slower rate than the data (trials).

We now precisely state the arriving action learning protocol:

1: Learner given an initial action pool F0 ⊂ F

2: for t = 1, 2, 3, . . . do

3: Learner receives new actions St ⊂ F and updates pool F t ← F t−1 ∪ St

4: Nature selects state xt ∈ Z and presents to learner

5: Learner selects some f t ∈ F t, and receives payoff f t(xt)+ηt; ηt is i.i.d. with E[ηt] = 0

6: end for

We now define our notion of regret for the arriving action protocol.

Definition 3.3. Let A be an algorithm for making a sequence of decisions f1, f2, . . . ac-

cording to the arriving action protocol. Then we say that A has no regret if on any se-

quence of pairs (S1,x1), (S2,x2), . . . , (St,xT), RA(T)/T → 0 as T →∞, where we re-define

RA(T) , E
[∑T

t=1 maxf t∗∈Ft f
t
∗(x

t)−
∑T

t=1 f
t(xt)

]
.

Reduction to KWIK Learning. Similar to Section 3.3, we now show how to use the

KWIK learnability assumption on F to construct a no-regret algorithm in the arriving

action model. The key idea, described in the reduction below, is to endow each action f in

the current action pool with its own KWIKf subroutine. On every round, after observing the

task xt, we shall query KWIKf for a prediction of f(xt) for each f ∈ W t. If any subroutine

KWIKf returns ⊥, we immediately stop and play action f t ← f . This can be thought of as

an exploration step of the algorithm. If every KWIKf returns a value, we simply choose the

arg max as our selected action.

Theorem 3.3. Let A denote Algorithm 4. For any ε > 0 and any choice of {xt, St},

RA(T) ≤ N(T)B(ε, δ) + 2Tε+ δN(T)T

60

Algorithm 4 No-Regret Learning in the Arriving Action Model

1: for t = 1, 2, 3, . . . do
2: Learner receives new actions St

3: Learner observes task xt

4: for f ∈ St do
5: Initialize a subroutine KWIKf for learning f
6: end for
7: for f ∈ F t do
8: Query KWIKf for prediction ŷtf
9: if ŷtf =⊥ then

10: Take action f t = f
11: Observe yt ← f t(xt)
12: Input yt into KWIKf , and break
13: end if
14: end for
15: // If no KWIK subroutine

16: // returns ⊥, simply choose best!

17: Take action f t = arg maxf∈Ft ŷ
t
f

18: end for

where B(ε, δ) is a bound on the number of ⊥ returned by the KWIK-Subroutine used in A.

Proof. The probability that at least one of the N(T) KWIK algorithms will FAIL is at most

δN(T). In that case, we suffer the maximum possible T regret, accounting for the δN(T)T

term. Otherwise, on each round t we query every f ∈ F t for a prediction, and either one

of two things can occur: (a) KWIKf reports ⊥ in which case we can suffer regret at most

1; or (b) each KWIKf returns a real prediction ŷtf 6=⊥ that is ε-accurate, in which case we

are guaranteed that the regret of f t is no more than 2ε. More precisely, we can bound the

regret on round t as

max
f t∗∈Ft

f t∗(x
t)− f t(xt) ≤ 1[KWIKf outputs ŷtf =⊥ for some f] + 2ε.

Of course, the total number of times that any KWIKf subroutine returns ⊥ is no more

than B(ε, δ), hence the total number of ⊥’s after T rounds is no more than N(T)B(ε, δ).

Summing (3.4) over t = 1, . . . , T gives the desired bound and we are done.

61

As a consequence of the previous theorem, we achieve a simple corollary:

Corollary 3.3. Assume that B(ε, δ) = O(ε−d logk δ−1) for some d > 0, and k ≥ 0. Then

RA(T)

T
= O

((
N(T)

T

)1/(d+1)

logk T

)

which tends to 0 as long as N(T) is “slightly” sublinear in T ; T = o(T/ logk(d+1)(T)).

Proof. Without loss of generality we can assume B(ε, δ) ≤ c
ε
−d log δ−1 for all ε, δ and some

constant c > 0. Applying Theorem 3.3 gives:

RA(T)

T
≤ N(T)

T

c

εd
+ 2ε+ δN(T)

Choosing δ = 1/T and ε =
(
N(T)
T

)1/(d+1)
allows us to conclude that

RA(T)/T ≤ (c+ 2)

(
N(T)

T

)1/(d+1)

logk T

and hence we are done.

Impossibility Results. The following two theorems show that our assumptions of the

KWIK learnability of F and sublinearity of N(t) are both necessary, in the sense that

relaxing either is not sufficient to imply a no-regret algorithm for the arriving action MAB

problem. Unlike the corresponding impossibility result of Theorem 3.2, the ones below do

not rely on any complexity-theoretic assumptions, but are information-theoretic.

Theorem 3.4. (Relaxing sublinearity of N(t) insufficient to imply no-regret on MAB)

There exists a class F that is KWIK-learnable with a don’t-know bound of 1 such that if

N(t) = t, for any learning algorithm A and any T , there is a sequence of trials in the

arriving action model such that RA(T)/T > c for some constant c > 0.

The full proof of Theorem 3.4 is provided in Section 3.6.1. The idea is to construct a class of

T different functions in which the observation of a single labeled example exactly identifies

62

the function, thus rendering the class trivially KWIK-learnable; but under a linear arrival

rate of such functions, a MAB algorithm can never “catch up” and suffers a constant regret

rate.

Theorem 3.5. (Relaxing KWIK to supervised no-regret insufficient to imply no-regret on

MAB) There exists a class F that is supervised no-regret learnable such that if N(t) =
√
t,

for any learning algorithm A and any T , there is a sequence of trials in the arriving action

model such that RA(T)/T > c for some constant c > 0.

Proof. (Sketch) First we describe the class F . For any n-bit string x, let fx be a function

such that fx(x) is some large value, and for any x′ 6= x, fx(x′) = 0. It’s easy to see that F

is not KWIK learnable with a polynomial number of don’t-knows — we can keep feeding

an algorithm different inputs x′ 6= x, and as soon as the algorithm makes a prediction, we

can reselect the target function to force a mistake (this is essentially the same argument

proving that monomials are not KWIK learnable). F is no-regret learnable, however: we

just keep predicting 0. As soon as we make a mistake, we learn x, and we’ll never err again,

so our regret is at most O(1/T).

Now in the arriving action model, suppose we initially start with r distinct functions/actions

fi = fxi ∈ F , i = 1, . . . , r. We will choose N(T) =
√
T , which is sublinear, and r =

√
T ,

and we can make T as large as we want. So we have a no-regret-learnable F and a sublinear

arrival rate; now we argue that the arriving action MAB problem is hard.

Pick a random permutation of the fi, and let i be the indices in that order for convenience.

We start the task sequence with all x1’s. The MAB learner faces the problem of figuring

out which of the unknown fis has x1 as its high-payoff input. Since the permutation was

random, the expected number of assignments of x1 to different fi before this is learned is

r/2. At that point, all the learner has learned is the identify of f1 — the fact that it learned

that other fi(x1) = 0 is subsumed by learning f1(x1) is large, since the fi are all distinct.

We then continue the sequence with x2’s until the MAB learner identifies f2, which now takes

63

(r − 1)/2 assignments in expectation. Continuing in this vein, the number of assignments

made before learning (say) half of the fi is
∑r/2

j=1(r−j)/2 ≈ Ω(r2) ≈ Ω(T). On this sequence

of Ω(T) tasks, the MAB learner will have gotten non-zero payoff on only r =
√
T . The

offline optimal, on the other hand, always knows the identity of the fi and gets large payoff

on every single task. So any learner’s cumulative regret to offline grows linearly with T .

3.5. Experiments

We now give a brief experimental illustration of our models and results. For the sake of

brevity we examine only our algorithm in the arriving action model just discussed. We

consider a setting in which both states x and the actions or functions f are described by

unit-norm, 10-dimensional real vectors, and the value taking f in state x is simply the

inner product f · x. For this class of functions we thus implemented the KWIK linear

regression algorithm Walsh et al. (2009), which is given a fixed accuracy target or threshold

of ε = 0.1, and which is simulated with Gaussian noise added to payoffs with σ = 0.1. New

actions/functions arrived stochastically, with the probability of a new f being added on

trial t being 0.1/
√
t; thus in expectation we have sublinear N(t) = O(

√
t). Both the x and

the f are selected uniformly at random. On top of the KWIK subroutine, we implemented

Algorithm 4.

In Figure 1 we show snapshots of simulations of this algorithm at three different timescales

— after 1000, 5000, and 25,000 trials respectively. The snapshots are indeed from three

independent simulations in order to illustrate the variety of behaviors induced by the ex-

ogenous stochastic arrivals of new actions/functions, but also to show typical performance

for each timescale.

In each subplot, we plot three quantities. The blue curve show the average reward per step

so far for the omniscient offline optimal that is given each weight f as it arrives, and thus

always chooses the optimal available action on every trial. This curve is the best possible

performance, and is the target of the learning algorithm. The red curve shows the average

64

Figure 1: Simulations of Algorithm 4 at three timescales; see text for details.

reward per step so far for Algorithm 4. The black curve shows the fraction of exploitation

steps for the algorithm so far (the last line of Algorithm 4, where we are guaranteed to

choose an approximately optimal action). The vertical lines indicate trials in which a new

action/function was added.

First considering T = 1000 (left panel, in which a total of 6 actions are added), we see that

very early (as soon as the second action arrives, and thus there is a choice over which the

offline omniscient can optimize) the algorithm badly underperforms, and is never exploiting

— new actions are arriving at rate at which the learning algorithm cannot keep up. At

around 200 trials, the algorithm has learned all available actions well enough to start to

exploit, and there is an attendant rise in performance; however, each time a new action

arrives, both exploitation and performance drop temporarily as new learning must ensue.

At the T = 5000 timescale (middle panel, 14 actions added), exploitation rates are con-

sistently higher (approaching 0.6 or 60% of the trials), and performance is beginning to

converge to the optimal. New action arrivals still cause temporary dips, but overall upward

65

progress is setting in.

At T = 25, 000 (right panel, 27 actions added), the algorithm is exploiting over 80% of the

time, and performance has converged to optimal up to the ε = 0.1 accuracy set for the

KWIK subroutine. If ε tends to 0 as T increases, as in the formal analysis, we eventually

converge to 0 regret.

3.6. Detailed Proofs

3.6.1. Proof of Theorem 3.4

We now show that relaxing sublinearity of N(t) is insufficient to imply no-regret on MAB.

Restatement of Theorem 3.4:

There exists a class F that is KWIK-learnable with a don’t-know bound of 1 such that if

N(t) = t, for any learning algorithm A and any T , there is a sequence of trials in the

arriving action model such that RA(T)/T > c for some constant c > 0.

Proof. Let A = N and e : N→ R+ be a fixed encoding function satisfying e(n) ≤ γ for any

n, and let d be a corresponding decoding function satisfying (d ◦ e)(n) = n.

Consider F = {fn | n ∈ N}, where fn(n) = 1 and fn(n′) = e(n) for all other n′. The class N

is KWIK-learnable with at most a single ⊥ in the noise-free case. Observing fn(n′) for an

unknown fn and arbitrary n′ ∈ N immediately reveals the identity of fn. Either fn(n′) = 1,

in which case n = n′, or else n = d(fn(n′)).

Let A and F be as just described. There exists an absolute constant c > 0 such that for

any T ≥ 4, there exists a sequence {nt, St} satisfying N(T) = T , and RA(T)/T > c for any

A.

Let σ be a random permutation of {1, ..., T}, and S1 be the ordered set {fσ(1), fσ(2), ..., fσ(T)}.

In other words, the actions f1, ..., fT are shuffled, and immediately presented to the algo-

rithm on the first round. St = ∅ for t > 1. Let nt be drawn uniformly at random from

66

{1, ..., T} on each round t.

Immediately, we have that E
[∑T

t=1 maxf∈Ft f(nt)
]

= T since F t = {1, ..., T} for all t.

Now consider the actions {f̂t} selected by an arbitrary algorithm A. Define F̂ (τ) = {f̂t ∈

F | t < τ}, the actions that have been selected by A before time τ . Let U(τ) = {n ∈ N |

fn ∈ F̂ (τ)} be the states n, such the corresponding best action fn has been used in the

past, before round τ . Also let F̄(τ) = {1, ..., T} \ F̂(τ).

Let Rτ be the reward earned by the algorithm at time τ . If nτ ∈ U(τ), then the algorithm

has played action fnτ in the past, and knows its identity. Therefore, it may achieve Rτ = 1.

Since nτ is drawn uniformly at random from {1, ..., T}, P (nτ ∈ U(τ) | U(τ)) = |U(τ)|
T .

Otherwise, in order to achieve Rτ = 1, any algorithm must select f̂τ from amongst F̄ (τ).

But since the actions are presented as a random permutation, and no action in F̄ (τ) has

been selected on a previous round, any such assignment satisfies P (f̂τ = fnτ | nτ 6∈ U(τ)) =

1
T−|U(τ)| .

Therefore for any algorithm we have:

P (Rτ = 1 | U(τ))

≤ P (nτ ∈ U(τ) | U(τ)) + P (nτ 6∈ U(τ), f̂τ = fnτ | U(τ))

≤ |U(τ)|
T

+

(
1− |U(τ)|

T

)(
1

T − |U(τ)|

)

Note that the RHS of the last expression is a convex combination of 1 and
(

1
T−|U(τ)|

)
≤ 1,

and is therefore increasing as |U(τ)|
T increases. Since |U(τ)| < τ with probability 1, we have:

P (Rτ = 1) ≤ τ

T
+
(

1− τ

T

)(1

T − τ

)
(3.3)

67

Let Z(T) =
∑T

τ=1 I(Rτ = 1), count the number of rounds on which Rτ = 1. This gives us:

E[Z(T)] =

T∑
τ=1

P (Rτ = 1)

≤ T

2
+

T/2∑
τ=1

P (Rτ = 1)

≤ T

2
+
T

2

[
T

2T
+

(
1− T

2T

)(
1

T − T/2

)]

Where the last inequality follows from the fact that equation 3.3 is increasing in τ .

Thus E[Z(T)] ≤ 3T
4 + 1

2 . On rounds where Rτ 6= 1, Rτ is at most γ, giving:

RA(T)/T ≥ 1−
[

3

4
+

1

2T
+
γ

4

]
Taking T ≥ 4, gives us:

RA(T)/T ≥ 1
8 −

γ
4 . Since γ is arbitrary we have the desired result.

3.6.2. Proof of Theorem 3.5

We now show that relaxing KWIK to supervised no-regret is insufficient to imply no-regret

on MAB.

Restatement of Theorem 3.5:

There exists a class F that is supervised no-regret learnable such that if N(t) =
√
t, for any

learning algorithm A and any T , there is a sequence of trials in the arriving action model

such that RA(T)/T > c for some constant c > 0.

Proof. First we describe the class F . For any n-bit string x, let fx be a function such

that fx(x) is some large value, and for any x′ 6= x, fx(x′) = 0. It’s easy to see that F is

68

not KWIK learnable with a polynomial number of don’t-knows — we can keep feeding an

algorithm different inputs x′ 6= x, and as soon as the algorithm makes a prediction, we can

reselect the target function to force a mistake (this is essentially the same argument proving

that monomials are not KWIK learnable). F is no-regret learnable, however: we just keep

predicting 0. As soon as we make a mistake, we learn x, and we’ll never err again, so our

regret is at most O(1/T).

Now in the arriving action model, suppose we initially start with r distinct functions/actions

fi = fxi ∈ F , i = 1, . . . , r. We will choose N(T) =
√
T , which is sublinear, and r =

√
T ,

and we can make T as large as we want. So we have a no-regret-learnable F and a sublinear

arrival rate; now we argue that the arriving action MAB problem is hard.

Pick a random permutation of the fi, and let i be the indices in that order for convenience.

We start the task sequence with all x1’s. The MAB learner faces the problem of figuring

out which of the unknown fis has x1 as its high-payoff input. Since the permutation was

random, the expected number of assignments of x1 to different fi before this is learned is

r/2. At that point, all the learner has learned is the identify of f1 — the fact that it learned

that other fi(x1) = 0 is subsumed by learning f1(x1) is large, since the fi are all distinct.

We then continue the sequence with x2’s until the MAB learner identifies f2, which now takes

(r − 1)/2 assignments in expectation. Continuing in this vein, the number of assignments

made before learning (say) half of the fi is
∑r/2

j=1(r−j)/2 ≈ Ω(r2) ≈ Ω(T). On this sequence

of Ω(T) tasks, the MAB learner will have gotten non-zero payoff on only r =
√
T . The

offline optimal, on the other hand, always knows the identity of the fi and gets large payoff

on every single task. So any learner’s cumulative regret to offline grows linearly with T .

69

CHAPTER 4 : Large Scale Bandits : Lower Bounds on Regret

In this chapter we consider the MAB problem for a general function class F (in contrast to

previous chapters where F admitted a graphical decomposition, or was KWIK-learnable),

and focus on the number of rounds required to achieve low regret. However, we will fix

our attention on the non-contextual version of the problem. We give a characterization in

terms of a new measure of the complexity of the function class F that we call the haystack

dimension, which intuitively captures the extent to which maximizing a function via queries

requires a search for a small number of items (needles) amongst a much larger number of

otherwise undifferentiated possibilities (a haystack). We then give upper and lower bounds

involving the haystack dimension of F that are within a log |F| factor. Note that for the

hardest MAB problems — where the haystack dimension can be as large as |F| — this

logarithmic factor is relatively benign. Our main results are graphically summarized in

Figure 2.

Figure 2: A graphical summary of the main results of this chapter. This figure illustrates that any
MAB algorithm for a function class F must suffer linear regret for a number of rounds on the order
of the haystack dimension (denoted HD(F)), while the MAB algorithm presented in this chapter,
called Greedy MAB, begins to suffer sublinear regret after roughly HD(F) log |F| rounds.

An interesting aspect of our methods is the connection drawn between MAB problems and

the problem of exact learning of functions from queries. We observe that functional MAB

problems implicitly embed the problem of finding a maximum of an unknown function in

F from only input-output queries (generalizations of membership queries), which may or

70

may not be much easier than exact learning. Our analysis shows that any functional MAB

algorithm must implicitly be willing to trade off between two distinct types of queries:

max queries (which attempt to directly guess the maximum of f∗) and information queries

(which attempt to make progress by reducing the version space, as is traditional in many

query learning models). We show that either one of these query types (and essentially no

others) can result in progress towards finding the maximum. The haystack dimension can

then be viewed as a measure of the extent to which progress can be made at any step via

either one of these query types.

Our characterization holds for any finite-cardinality F (though even the number of actions

may still be infinite), but we also describe a generalization to the case of infinite F via cov-

ering techniques (which in general does not provide as tight bounds as its finite-cardinality

specialization). We also stress that our results only apply to query complexity and regret;

we make no claims about computational efficiency (necessarily, due to the generality of our

setting). In this sense, the haystack dimension can be seen as playing a role in the study

of functional MAB problems analogous to that played by quantities such as VC dimen-

sion and teaching dimension in other learning models, which also characterize sample or

informational complexity, but not computational complexity.

4.1. Related Work

Many authors (at least since Thompson (1933)) have studied finite MAB problems where

the action payoffs are assumed to be correlated; see Mersereau et al. (2009, p. 4) for an

excellent survey. As previously discussed, more recent work has focused on infinite MAB

problems where the action payoffs are related via an unknown function belonging to a known

function class, such as the set of all Lipschitz continuous functions (Kleinberg et al., 2008;

Bubeck et al., 2008; Slivkins, 2014). Compared to previous work, our results provide a

complete analysis for significantly more general function classes.

Obviously, maximizing an unknown function via queries is no harder than exactly learning

71

the function. Hegedüs (1995) characterized the query complexity of exact learning in terms

of the extended teaching dimension of the function class. For some restricted function classes

the haystack dimension and extended teaching dimension coincide1, and in these cases our

analysis approximately recovers the bounds due to Hegedüs (1995), but with a significant

advantage: our lower bound holds for all randomized algorithms, while the earlier bound

only applied to deterministic algorithms.

A variant of exact learning (but not maximization) of functions has been considered under

the name of generalized binary search. Nowak (2009) provided an analysis that only applies

under a certain technical condition. In the language of this work, the condition implies that

the haystack dimension is a constant independent of the structure of the function class. In

contrast, our analysis applies to any F and considers the maximization problem and its

relationship to MAB directly.

4.2. Functional Bandits (MAB) and Maximizing From Queries (MAX)

A functional MAB problem is defined by a set of actions X and a set of possible payoff

functions F . A target payoff function f∗ ∈ F is selected. In each round t = 1, 2, . . .,

an algorithm selects an action xt, and receives an independent payoff from a distribution

whose support is contained in a bounded interval, and has mean f∗(xt). The goal of the

algorithm is to receive nearly as much cumulative payoff as an algorithm that selects the

best action every round. More precisely, the worst-case expected regret of algorithm A in

round T is RA(T) , supf∗∈F E
[
T · supx∈X f

∗(x)−
∑T

t=1 f
∗(xt)

]
, where the expectation is

with respect to the random payoffs and any internal randomization of the algorithm. We

say that algorithm A is no-regret if limT→∞RA(T)/T = 0.

For any functional MAB problem, we can define a corresponding and (as we shall see) closely

related functional maximizing from queries (or MAX) problem: In each round t = 1, 2, . . .

an algorithm A selects a query xt ∈ X , and then observes yt = f∗(xt). Letting Xf be the

1Essentially just those classes for which maximizing an unknown function is as difficult as exactly learning
it; see Example 4.2.

72

set of maxima of the function f (assumed to be non-empty), the goal of the algorithm is

to eventually select a x ∈ Xf∗ . Let TA,f
∗

= min{t : xt ∈ Xf∗} be the first round such

that xt is a maximum of f∗. We are interested in bounding the worst-case expected query

complexity QA , supf∗∈F E[TA,f
∗
], where the expectation is with respect to any internal

randomization of the algorithm.

It is important to note that, in a functional MAB problem, in each round t the algorithm

only observes a sample from a distribution with mean f∗(xt), while in a functional MAX

problem, the algorithm observes f∗(xt) directly. In Sections 4.3–4.6, we characterize the

query complexity of the MAX problem for F , and then apply these results in Sections

4.8–4.9 to characterize the optimal regret for the corresponding MAB problem for F . Con-

sequently, the analysis in Sections 4.3–4.6 will not deal with stochasticity, which is addressed

afterwards. Also, we refer to elements of X as actions in the MAB context, but as queries

in the MAX context — this difference exists only to agree with historical usage.

4.3. The Haystack Dimension

In this section we give the definition of the haystack dimension for function classes F of

finite cardinality ; generalization to the infinite case is given later.

The formal definition of the haystack definition requires some notation and machinery, but

the intuition behind it is rather simple, so we first describe it informally. In words, the

haystack dimension identifies the “worst” subset of F , in the sense that on that subset, no

matter what query is made and no matter what response is received, only a small fraction

θ of the functions in the subset are eliminated due to inconsistency with the query, or

are maximized by the query. It turns out mathematically that the right definition of the

haystack dimension is the inverse quantity 1/θ for this worst subset. We now proceed with

the formal definition.

In the context of a MAX problem, a query x ∈ X can be thought of as providing information

about the identity of f∗. In particular, f∗ cannot be any of the functions in F inconsistent

73

with with the value f∗(x) observed at x. So one strategy for finding an element of Xf∗ is

to first issue a sequence of information queries, that uniquely identify f∗, and then select

any x ∈ Xf∗ .2

However, sometimes identifying the true function f∗ exactly requires many more queries

than necessary for maximization. For example, if many functions f ∈ F are maximized by

one particular query, it may be useful to play such a max query, even if it is not particularly

useful for learning f∗.

In the extreme case, there might exist an x∗ ∈ X such that x∗ ∈ Xf for all f ∈ F . In

this case, an element of Xf∗ can be selected in one query, without ever needing to identify

f∗. On the other hand, there are also F for which exact learning is the fastest route to

maximization. 3

Any general algorithm for maximization from queries thus needs to be implicitly able to

consider queries that would eliminate many candidate functions, as well as queries that

might be an actual maximum.

Before continuing, we define some convenient notation that we will use throughout the rest of

the chapter. For any set F ⊆ F , define the inconsistent set F (〈x, y〉) , {f ∈ F : f(x) 6= y}

to be the functions in F that are inconsistent with the query-value pair 〈x, y〉. Also, for any

set F ⊆ F , define the maximum set F (x) , {f ∈ F : x ∈ Xf} to be the functions in F for

which x is a maximum.

Intuitively, the haystack dimension HD(F) of a function class F will characterize a subset

of F on which no query is effective in the two senses previously discussed. For a subset

F ⊆ F , let:

ρ(F, x) = inf
y

|F (x) ∪ F (〈x, y〉)|
|F |

and ρ(F) = sup
x∈X

ρ(F, x).

ρ(F, x) is the fraction of functions in F , which are guaranteed to be maximized, or deemed

2In the case of boolean functions or concepts, identifying f∗ exactly is the problem of learning from
membership queries (Angluin, 1988).

3See Example 4.2.

74

inconsistent, by the query x, for the worst-case possibility for y. If ρ(F) is small, no query

is guaranteed to be effective as either a max or information query on the subset F . Now

let Fθ = arg infF⊆F ρ(F) and θ = ρ(Fθ).

Definition 4.1. Let Fθ and θ be defined as above. Then the haystack dimension HD(F) of

F is defined as 1
θ .

Note that the haystack dimension can be as small as 1 (all functions share a common

maximum-output input) and as large as |F| (every query eliminates at most one function

in the senses discussed, the canonical “needle in a haystack”).

While we will not describe the construction in detail, we note that the Haystack Dimension

can be generalized to any sequential problem where the goal of the learner is to query

an input x satisfying some property (in the above, the property is x ∈ Xf). Our main

theorems for the MAX setting (4.1 and 4.2) generalize immediately when considering some

other property. Furthermore, we need not restrict our observation model to input-output

queries (where the learner observes only f∗(x)). In particular, F (〈x, y〉) can be defined as

inconsistency with respect to whatever information the learner receives about f∗.

4.4. Examples of the Haystack Dimension

In this section, we provide a few function classes which help illustrate how the haystack

dimension characterizes the difficulty of maximizing an unknown f∗ ∈ F . Many of these

examples will be useful for subsequent constructions in the chapter.

The first construction considered is the “needle in a haystack”. Fix a finite X . For each

x ∈ X , let fx be the function defined to have fx(x) = 1 and fx(x′) = 0 for all x′ 6= x. Now

let HX = {fx | x ∈ X}.

Example 4.1. HD(HX) = |HX |

Proof. For any x ∈ X , fx is the only function in HX that attains its max at x. Furthermore,

all other functions output a 0 on input x. Therefore, letting F = HX , F (x) = {fx} and

75

F (〈x, 0〉) = {fx} for any x ∈ X . This implies that ρ(HX) = |HX |−1. Since ρ(F) cannot

be smaller than this quantity for any F ⊆ F , the haystack dimension of HX indeed equals

|HX |.

When f∗ ∈ HX , maximizing and learning f∗ coincide, and both amount to guessing the

x for which f∗(x) = 1. We now describe a function class G in which any algorithm is

essentially forced to learn the true function f∗.

The input space X will consist of two components — X1 and X2, with X being the union

of these disjoint domains. The high-level idea is to “marry” a small shattered set (in the

sense of VC dimension) to a much larger haystack construction. Subdomain X1 consists of

n points {a0, ..., an−1}. We construct G as follows. On X1, all possible binary labelings of

the n points appear in G, giving a total of 2n functions. Let us think of each function in

G as being equated with the integer given by its binary labeling of the points in X1. So

a function f is equated with the integer z(f) =
∑n−1

i=0 2if(a0). Now let the much larger

set X2 = {0, . . . , 2n − 1}, and for any x ∈ X2 define f(x) = 2 if x = z(f) and f(x) = 0

otherwise.

Thus, the behavior of a function on X1 entirely defines the function on X2 as well, and the

labeling on X1 gives us the index of the function’s maximum, which is always equal to 2

and occurs at exactly one point in X2 (determined by the index).

Note that there is an algorithm that finds the max of f∗ in O(n) queries simply by querying

every input in X1 and learning the identity of f∗ exactly. Intuitively, no algorithm can do

much better. To see why, suppose f∗ were drawn uniformly at random from G. Note that

an action r ∈ X2 has an exponentially small probability of being the function’s max and,

in the event that f∗(r) = 0, only serves to inform the algorithm that f∗ is not the single

f ∈ G with z(f) = r. Also, observe that if the “zooming” algorithm of Kleinberg et al.

(2008) is applied to G, it will take exponential time in the worst-case to find a maximum of

f∗, essentially because it makes no attempt to exploit the special structure of G.

76

Example 4.2. HD(G) = Θ(n) = Θ(log |G|)

Proof. We first show that there is an F ⊆ G with ρ(F) = 1
n . For each x ∈ X1, let fx

be the function which outputs f(x) = 1, and f(x′) = 0 for all x′ ∈ X1, x 6= x′. Let

F = {fx ∈ G | x ∈ X1} = {f | z(f) ∈ {20, 21, ..., 2n−1}}. |F | = n.

Consider any query x ∈ X1. F (x) = ∅, since no functions achieve their maximum on a

query in X1. Furthermore, F (〈x, 0〉) = {fx}, since fx is the only function in F which

doesn’t output a 0 on query x. Thus ρ(F, x) = 1
n for any x ∈ X1. For a query r ∈ X2,

ρ(F, r) ≤ 1
n , since at most one function in F (and G) achieves its maximum at r, and all

other functions output a zero at r. Thus, ρ(F) = 1
n .

We now argue that for an arbitrary F ⊆ G, ρ(F) ≥ 1
2n . Let r1(x) = |f ∈ F : f(x) = 1|/|F |,

be the fraction of functions that exhibit a 1 at action x ∈ X1. Let r0(x) = 1 − r1(x).

Suppose there is an action x ∈ X1 such that r1(x) > 1
2n and r0(x) > 1

2n . Then, at least

1
2n of the functions in F would be inconsistent with any observed output. That is, both

|F (〈x,0〉)|
|F | > 1

2n and |F (〈x,1〉)|
|F | > 1

2n .

Otherwise, for every x in X1, either r1(x) ≤ 1
2n or r0(x) ≤ 1

2n (i.e. one outcome is quite

rare). This implies that at least 1/2 of the functions in F exhibit the same behavior on all

x in X1. However, unless F is a singleton set, this cannot occur since each f ∈ G exhibits

unique behavior on X1.

The preceding example illustrates a function class for which any algorithm querying for

the max must ultimately learn the true function f∗. However, the opposite extreme is also

possible. Consider a function class Gmax. Let there be a distinguished x∗ ∈ X such that

every f ∈ Gmax attains its maximum at x∗. It may be arbitrarily difficult to learn the

behavior of f∗ on the remainder of X . However, finding the maximum can be done trivially

in a single query.

Example 4.3. HD(Gmax) = 1

77

Proof. For every F ⊆ Gmax F (x∗) = F , and the proof is immediate.

Finally, there are function classes which require a hybrid between learning and maximiza-

tion. We construct such a class, G+. Let X be the disjoint union of three sets X1 ∪X2 ∪X3.

We let |X1| = n, |X2| = m and create a function in G+ for each binary labeling of X1 and

X2, as in the construction of G. We let z1(f) be the integer corresponding to the labeling f

gives X1 and z2(f) be the integer corresponding to the labeling f gives X2.

Now let X3 = M0 ∪M1 ∪ ... ∪M2n−1 where each |Mi| = c. Again, like in the construction

of G, for each f ∈ G+, there will be a single r ∈ X3 such that f(r) = 2 and f(r) = 0

otherwise. However, this time, the maximizing element of f will be found in Mz1(f). And

the particular element of Mz1(f) will be given by z2(f) mod c.

If we think of c < n < m, then there is an n + c algorithm for finding the max of F . The

algorithm learns the set Mi which contains the max of f∗ by querying each element of X1.

It then tries each of the c elements in Mi. Note that the true identity of f∗ is never learned,

and the “interesting” learning problem is discovering the set Mi containing the maximizing

action (i.e., learning the behavior on X1).

Example 4.4. If c < n < m, HD(G+) = Θ(n) = Θ(log |G+|)

Proof. We sketch the proof which proceeds almost identically to that of Example 4.2. There

is an F with that ρ(F) = 1
n . F is identical to that used in Example 4.2 on X1. The behavior

on X2 is identical across all functions, and the behavior on X3 is determined by these choices.

To see that ρ(F) ≥ 1
2n , we use the same reasoning as Example 4.2. However, if for every x

in X1, either r1(x) ≤ 1
2n or r0(x) ≤ 1

2n , rather than implying a contradiction, this implies

that there is actually a query x∗ ∈ X3 such that x∗ maximizes at least a 1
2c fraction of the

functions in F .

78

Figure 3: (a) The shaded region represents the subset of functions which attain a maximum at
some input x. (b) Querying x also induces a partition of the function space, in which each piece
of the partition contains functions that output the same value on x. The least informative query
response is thus the largest piece of this partition. (c) Upon querying x, the greedy algorithm
eliminates from its attention space a set at least the size of the striped region. This region is the
union of the maximizing set and the complement of the largest partition piece.

4.5. MAX Query Complexity Upper Bound

Before arguing that the haystack dimension gives lower bounds on the query complexity of

any algorithm on F , we observe that it motivates a simple, natural, greedy algorithm. In

each round t, the greedy algorithm G selects xt = arg supx∈X ρ(Ft, x) where the attention

space Ft is defined inductively as follows: F1 = F and Ft+1 = Ft \ (Ft(xt) ∪ Ft(〈xt, yt〉)).

(Note that for fixed Ft, ρ(Ft, x) takes values in {1/|Ft|, 2/|Ft|, ..., 1}, so the supremum is

achieved by an x ∈ X .)

Essentially, the greedy algorithm always selects the query that results in the largest guar-

anteed reduction of the attention space 4; see Figure 3. It is important to note that the

attention space differs from the version space of traditional learning in that it excludes func-

tions that may still be consistent with the observed data, but for which the algorithm has

already played a query which would have maximized such functions. Indeed, in the extreme

case the algorithm may choose to query x such that all functions remaining have the same

output on x — in which case the query conveys no “information” in the traditional learning

sense, but nevertheless functions attaining their maximum at x will be discarded.

Theorem 4.1. Let G be the greedy algorithm for the MAX problem for F . Then QG ≤

HD(F) log |F|.
4Note that we assume the specified computations can in fact be implemented in finite computation time.

79

Proof. We know that the attention space Ft is nonempty for all rounds t ≤ QG (otherwise

the greedy algorithm would have selected a maximum of f∗ before round QG). And at least

a θ fraction of the attention space is removed in each round t, because θ = ρ(Fθ) ≤ ρ(Ft) =

ρ(Ft, xt) ≤ |Ft(xt)∪Ft(〈xt,yt〉)||Ft| by the definition of θ, Fθ, and xt. Thus we have (1−θ)QG |F| ≥

1. Taking the logarithm of both sides of this inequality, applying log(1−x) ≤ −x for x < 1,

rearranging, and noting that HD(F) , 1
θ by definition implies the theorem.

4.6. MAX Query Complexity Lower Bound

In this section we prove that that haystack dimension in fact provides a lower bound on the

query complexity of any algorithm finding a maximum of f∗ ∈ F :

Theorem 4.2. Let A be any algorithm for the MAX problem for F . Then QA = Ω (HD(F)).

The proof of Theorem 4.2 is somewhat involved and developed in a series of lemmas, so we

shall first sketch the broad intuition. The lower bound will draw the target f∗ uniformly at

random from Fθ, where Fθ is as in the definition of haystack dimension, and is the subset of

functions on which the greedy algorithm guarantees the least amount of progress (in terms

of reducing its attention space, as defined above). By definition no other algorithm A can

make more progress than θ on its first query starting from Fθ (since this is the maximum

possible, and obtained by greedy). After the first step, the greedy algorithm and algorithm

A may have different attention spaces, and thus on subsequent steps A may make greater

progress than greedy; but A cannot make “too much” progress on (say) its second step, since

otherwise its query there would have made more than θ progress on Fθ. This insight leads

to a formal recurrence inequality governing the progress rate of A, whose solution, when

combined with a Bayesian argument, leads to a lower bound that is Ω(1
θ) , Ω(HD(F)). We

now proceed with the formal development.

Suppose we have an algorithm A that, given access to query-value pairs from f∗, generates

a sequence of queries {xt} (possibly depending on its random bits). Let yt = f∗(xt). Let

H1 , Fθ and

80

y−t (x) , arg infy |Ht(x) ∪Ht(〈x, y〉)| St(x) , Ht(x) ∪Ht(
〈
x, y−t (x)

〉
)

Ht+1 , Ht \ St(xt) x∗t , arg supx∈X |St(x)| δt ,
|St(x∗t)|
|Ht|

These definitions are closely related to those for the greedy algorithm and the haystack

dimension. y−t (x) is the “least helpful” possible output value on query x, Ht is the attention

space of algorithm A when starting from Fθ if only least helpful outputs are returned, St(x)

is the set of functions in Ht that either attain a maxima at x or fall outside the largest

partition induced by x, and δt is the progress (fractional reduction of the attention space)

made by the greedy algorithm.

Our first lemmas, which codify the aforementioned Bayesian argument, show that when f∗

is drawn uniformly from Fθ, the probability a deterministic algorithm (a restriction removed

shortly) finds a maximum in fewer than T steps is bounded by the sum of the δt.

Lemma 4.1. Fix a sequence {xt}. Let Bt = {f ∈ Fθ : xs 6∈ Xf ∧ y−s (xs) = f(xs)∀s < t}.

Then Ht = Bt for all t.

Proof. When t = 1, B1 = {f ∈ Fθ} and the claim is immediate. Otherwise, assume that

Ht = Bt for some t ≥ 1. We have:

Bt+1 = Bt ∩ {f ∈ Fθ : xt 6∈ Xf ∧ y−t (xt) = f(xt)}

= Bt \ {f ∈ Bt : xt ∈ Xf ∨ y−t (xt) 6= f(xt)} = Ht \ St(xt) = Ht+1

Lemma 4.2. Prf∗∼UFθ

[
TA,f

∗
< T

]
≤
∑T

t=1 δt for any deterministic algorithm A and

constant T .

Proof. Since A is deterministic, the sequence {xt} is determined by the choice of f∗ ∈ F .

By Lemma 4.1 we have Ht = {f ∈ Fθ : xs /∈ Xf ∧ y−s (xs) = f(xs) ∀s < t} for all t.

Moreover, since y−s (xs) = f∗(xs) for all s < t and f∗ ∈ F and algorithm A is deterministic,

the sequence {xs}s≤t is identical for any choice of f∗ ∈ Ht. Let UF denote the uniform

81

distribution over F . We have:

Pr
f∗∼UFθ

[
TA,f

∗
< T

]
= Pr
f∗∼UFθ

[
∃t < T : xt ∈ Xf∗

]
≤ Pr
f∗∼UFθ

[
∃t < T : xt ∈ Xf∗

∨ y−t (xt) 6= f∗(xt)
]

≤
T∑
t=1

Pr
f∗∼UFθ

[
xt ∈ Xf∗

∨ y−t (xt) 6= f∗(xt) | xs /∈ Xf∗
∧ y−s (xs) = f∗(xs)∀s < t

]
=

T∑
t=1

Pr
f∗∼UHt

[
xt ∈ Xf∗

∨ y−t (xt) 6= f∗(xt)
]
≤

T∑
t=1

|St(xt)|
|Ht|

≤
T∑
t=1

δt

We thus see that one approach to lower bounding TA,f
∗

is to bound the growth rate of the

sequence {δt}. Intuitively, we should expect that (1−δt)δt+1 ≤ δt. To see why, recall that δt

is the most progress that can be guaranteed by a single query if the function is drawn from

the space Ht. This is the query that would be selected by the greedy algorithm if it were

run on Ht. Suppose that it were instead that case that (1− δt)δt+1 > δt. By playing x∗t+1

on Ht at least (1 − δt)δt+1 fraction of the functions in Ht would either attain a maximum

point at x∗t+1 or be eliminated as inconsistent with the observed value f∗(x∗t+1). Thus the

query x∗t , which only guaranteed that a δt fraction of the functions in Ht have this property,

was suboptimal, a contradiction . More formally:

Lemma 4.3. (1− δt)δt+1 ≤ δt for all t.

Proof.

(1− δt)δt+1 =

(
1− |St(x

∗
t)|

|Ht|

) |St+1(x∗t+1)|
|Ht+1|

=

(
|Ht| − |St(x∗t)|

|Ht|

) |St+1(x∗t+1)|
|Ht| − |St(xt)|

≤
|St+1(x∗t+1)|
|Ht|

≤
|St(x∗t+1)|
|Ht|

≤ |St(x
∗
t)|

|Ht|
= δt

Here the first inequality follows from the the definition of x∗t as a maximizer of |St(x)|

(and thus (|Ht| − |St(x∗t)|)/(|Ht| − |St(xt)|) ≤ 1). The second inequality follows because

|St+1(x)| ≤ |St(x)| for all x ∈ X , and the final inequality follows once again from the fact

that x∗t maximizes |St(x)|.

82

We next establish that, roughly speaking, δt must remain O(δ1) for Ω(1/δ1) steps. More

precisely:

Lemma 4.4. If t < 1
δ1

then δt ≤ δ1
1−tδ1 .

Proof. The base case t = 1 clearly holds. Now suppose for induction that δt ≤ δ1
1−tδ1 . We

have

δt+1 ≤
δt

1− δt
≤ δ1

1− tδ1

(
1

1− δt

)
=

δ1

1− tδ1 − δt + tδ1δt

=
δ1

1− (t+ 1)δ1 + δ1 − δt + tδ1δt
≤ δ1

1− (t+ 1)cδ1

The first inequality holds by Lemma 4.3, and the second inequality holds by the induction

hypothesis. For the final inequality, note that δt ≤ δ1
1−tδ1 implies that δ1− δt + tδ1δt ≥ 0, as

long as t < 1
δ1

.

We are now ready to prove the lower bound of Theorem 4.2.

Proof. (Theorem 4.2) The behavior of algorithm A is partly determined by its internal

randomization, which we denote as a random string ω drawn from a distribution P. Let us

write A(ω) for the deterministic algorithm corresponding to the string ω.

Fix any positive constant c < 1/2 (implying c
1−c < 1). For any fixed ω

Pr
f∗∼UFθ

[
TA(ω),f∗ <

c

θ

]
≤

c/θ∑
t=1

δt ≤
c/θ∑
t=1

δ1

1− c
=

c/θ∑
t=1

θ

1− c
=

c

1− c
(4.1)

where we used, in order: Lemma 4.2; Lemma 4.4 and the fact that c < 1; θ = δ1 (by

definition); arithmetic. Now we have

Ef∗∼UFθ

[
TA(ω),f∗

]
≥

(
1− Pr

f∗∼UFθ

[
TA(ω),f∗ <

c

θ

]) c

θ
≥
(

1− c

1− c

)
c

θ
(4.2)

83

where the second inequality follows from (4.1). Finally, we have

Ef∗∼UFθ

[
TA,f

∗
]
, Eω∼P,f∗∼UFθ

[
TA(ω),f∗

]
= Eω∼P

[
Ef∗∼UFθ

[
TA(ω),f∗ |ω

]]
≥ Eω∼P

[(
1− c

1− c

)
c

θ

]
=

(
1− c

1− c

)
c

θ

where the inequality follows from (4.2). The choice of c implies
(

1− c
1−c

)
c > 0, which

together with the definition HD(F) , 1
θ implies the theorem, with c = 2 −

√
3 giving the

best bound.

4.7. Relationship to VC Dimension and Extended Teaching Dimension

As we have demonstrated, the haystack dimension provides a lower bound on the query

complexity of any algorithm for the MAX problem on a function class F . This is a role

analogous to the VC dimension in the PAC learning model. However, as we will demon-

strate, the two are incomparable in general. We will also illustrate the haystack dimension’s

relationship to the extended teaching dimension (Hegedüs, 1995). The extended teaching

dimension characterizes the number of queries required to learn f∗ ∈ F when F consists of

binary functions. Clearly learning f∗ is sufficient for maximization and, as we will see, the

haystack dimension can be much smaller than extended teaching dimension, but cannot be

too much larger. Note that the VC and extended teaching dimensions are defined only for

binary functions, whereas the haystack dimension and our results encompass a much more

general setting.

For F consisting of binary functions, we will denote the VC dimension as V CD(F), where

the hypothesis class is assumed to equal to concept class. Similarly, we will denote the

extended teaching dimension by XTD(F), redefined below.

Definition 4.2 (Hegedüs (1995)). Let h : X → {0, 1}. We say that S ⊆ X is a specifying

set for h if there is at most one f ∈ F consistent with h on all x ∈ S. Let XTD(F , h) be

equal to the size of the smallest specifying set for h. XTD(F) = suphXTD(F , h).

84

Example 4.5. (a) For any d, there exists a function class and set of inputs (F ,X) such that

V CD(F) = d but HD(F) = 1. (b) For any d, there exists a (F ,X) such that V CD(F) = 2

but HD(F) = d.

Proof. To prove (a), let (Fd,Xd) be any function class, and set of inputs, such that V CD(Fd) =

d. Let X = Xd ∪ {x∗}. Construct (F ,X) by including a function f in F for each f ′ ∈ Fd,

that is identical to f ′ on all inputs in Xd. Also let f(x∗) = 1. For any F ⊆ F , x∗ maximizes

all functions in F . Therefore, HD(F) = 1. However, no function in F gives x∗ the label 0,

and so the size of the largest shattered set does not change, and V CD(F) = d.

To prove (b), consider F to be the “needle in the haystack” of Example 4.1, where |F| = d.

We have that HD(F) = d. To compute the VC dimension, note that no function in F

labels more than one input with a 1, and so no set of three inputs can be shattered by F .

(It’s also obvious that any {x1, x2} ⊆ X can be shattered).

Example 4.6. (a) For any d, there exists a function class and set of inputs (F ,X) such

that XTD(F) = d but HD(F) = 1. (b) For any F consisting of binary functions,

HD(F) = O(XTD(F) log |F|).

Proof. To prove (a), let (Fd,Xd) be a function class, and set of inputs, such thatXTD(Fd) =

d. Construct (F ,X) exactly as in the proof of Example 4.5(a). For any h : X → {0, 1}

with h(x∗) = 1, let h′ : X → {0, 1} be a function identical to h on Xd. It’s clear that

XTD(F , h) = XTD(Fd, h′). For any h : X → {0, 1} with h(x∗) = 0, XTD(F , h) = 1, since

{x∗} is a specifying set for h. Thus, XTD(F) = XTD(Fd) = d.

For (b), Hegedüs (1995) gives an algorithm which learns f∗ ∈ F using O(XTD(F) log |F|)

membership queries. Since learning f∗ is sufficient for maximization, Theorem 4.2 implies

(b).

85

4.8. Functional MAB Regret Upper Bound

In this and the next section, we return to the functional MAB problem, showing a close

relationship to the functional MAX problem, and giving upper and lower bounds on regret

that are order the haystack dimension HD(F). We will describe a no-regret algorithm for

functional MAB problems where F is known, finite, but otherwise arbitrary. Our approach

is to use the greedy functional MAX algorithm of Section 4.5 to find an action/query that

maximizes f∗, and then select that action indefinitely. There is a technical complication

we must overcome when implementing this approach: Each action returns a sample from a

distribution, rather than a single value. We solve this by repeatedly selecting an action x to

get an accurate estimate of f∗(x), and also by restarting the algorithm after progressively

longer phases (a standard “trick” in MAB algorithms).

Before giving a more detailed description of our algorithm and its analysis, we need some

additional definitions. Let εmin , minf,f ′∈F infx:f(x)6=f ′(x) |f(x) − f ′(x)| be the smallest

difference between any two functions in F on those points where they do differ; εmin > 0

allows us to determine f∗(x) by selecting x enough times. Also, for any set F ⊆ F , let us

define the ε-inconsistent set to be F (〈x, y〉 , ε) , {f ∈ F : |f(x)− y| > ε}.

The greedy bandit algorithm GB proceeds in phases i = 1, 2, . . ., where each phase lasts

Ti = 22i rounds. Each phase consists of two interleaved ‘threads’ of execution. That is,

each thread specifies a sequence of actions, and actions are alternatingly selected from

each thread. The ‘explore’ thread runs a fresh instance of the greedy query algorithm G

from Section 4.5, which selects actions xi1, x
i
2, . . . until it empties the attention space. We

make one minor modification to the greedy algorithm G; the attention space F it maintained

by G during the explore thread of phase i is updated according to the rule F it+1 = F it \(
F it (x

i
t) ∪ F it

(〈
xit, ȳ

i
t

〉
, εmin

2

))
, where ȳit is an estimate of f∗(xit) obtained by selecting action

xit several times and averaging the observations. As we shall see in the proof of Theorem

4.3, despite this change, we will still be able to bound the number of actions selected by

this modified version of G in terms of the haystack dimension HD(F). The ‘exploit’ thread

86

of phase i always selects the action xit∗ associated with the largest average observation ȳit∗

in this phase. Phase i terminates as soon as the total number of action selected by both

threads reaches Ti. Pseudocode is given in Algorithm 5 below.

Theorem 4.3. Let GB be the greedy bandit algorithm for the MAB problem for F (see

Algorithm 5). Then

RGB(T) = O

(
HD(F)

ε2min

log |F| (log T + log(HD(F)) + log log |F|) + log log T

)

Proof. Let Ri be the realized regret during phase i. We will first bound E[Ri] for any phase

i, and then use a ‘squaring trick’ to tightly bound E[
∑

iRi] , R(T).

For each phase i, let good(i) be the event that |ȳit−f∗(xit)| ≤ εmin
2 for all t ≤ HD(F) log |F|.

In the explore thread, each action xit is selected O
(

1
ε2min

(log Ti + log(HD(F)) + log log |F|)
)

times, which is enough to ensure (by the Chernoff and union bounds) that the event good(i)

occurs with probability 1−O(1
Ti

) (see Algorithm 5). Thus we have

E[Ri] = E[Ri| good(i)] Pr[good(i)] + E[Ri|¬ good(i)] Pr[¬ good(i)]

≤ E[Ri| good(i)] +O(1) (4.3)

because Ri ≤ Ti and Pr[¬ good(i)] ≤ O(1
Ti

). It remains to bound E[Ri| good(i)].

By the definition of εmin, if the event good(i) occurs then the attention space F it main-

tained in the explore thread is updated exactly the same way as in the greedy query

algorithm G from Section 4.5. Therefore, the explore thread eventually selects an ac-

tion in Xf∗ , and thus, by the definition of εmin, the exploit thread selects an action

in Xf∗ every round after the explore thread ends. Since the explore thread ends after

O
(

τi
ε2min

(log Ti + log(HD(F)) + log log |F|)
)

rounds, and τi ≤ HD(F) log |F| by Theorem

4.1, we have

E[Ri| good(i)] ≤ O
(

HD(F)

ε2min

log |F| (log Ti + log(HD(F)) + log log |F|)
)

(4.4)

87

Finally, we apply a ‘squaring trick’.5 Let K be the number of phases. Since Ti = 22i , we

have K ≤ O(log log T) and

K∑
i=1

log Ti ≤
O(log log T)∑

i=1

2i = O(log T) (4.5)

Combining (4.3), (4.4), and (4.5), and recalling that R(T) , E[
∑

iRi], proves the theorem.

Algorithm 5 Greedy Bandit Algorithm (GB)
1: for i = 1, 2, . . . do

2: for Ti = 22i rounds do
3: Interleave the following two threads:
4:
5:
6: Explore Thread:
7: Let F i1 = F and τi = 1.
8: while F iτi is non-empty do
9: Let xiτi = arg supx∈X infy |F iτi(x) ∪ F iτi(〈x, y〉 ,

εmin
2

)|
10: Select query xiτi for O

(
1

ε2min

(
log Ti + log 1

θ
+ log log |F|

))
rounds, and let ȳiτi be the average

observation.
11: Let F iτi+1 = F iτi \ (F iτi(x

i
τi) ∪ F

i
τi(

〈
xiτi , ȳ

i
τi

〉
, εmin))

12: Let τi = τi + 1.
13: end while
14:
15:
16: Exploit Thread:
17: Let f it = arg minf∈F |f(xit)− ȳit| for all t ≤ τi.
18: Let ŷit = f it (x

i
t) for all t ≤ τi.

19: Select query xit∗ each round, where t∗ = arg sup1≤t≤τ ŷ
i
t.

20: end for
21: end for

Remark: Note that the greedy bandit algorithm GB assumes that the value of the haystack

dimension HD(F) is known. It is possible to modify the algorithm in case this information

is not available: In Algorithm 5, each action xit selected in the explore thread of phase

i is selected O
(

1
ε2min

(log Ti + log(HD(F)) + log log |F|)
)

times. If HD(F) is unknown, we

simply change this to O
(

1
ε2min

(log Ti + log |F|+ log log |F|)
)

times. Since HD(F) ≤ |F|

trivially holds, the analysis in the proof of Theorem 4.3 is essentially unaffected by this

modification, and it adds only a O((log |F|)2) term to the regret upper bound in Theorem

5If we were to instead apply the more common ’doubling trick’, such that Ti = 2i, the upper bound in
Eq. (4.5) would be O((log T)2).

88

4.3.

4.9. Functional MAB Regret Lower Bound

In this section, we prove that the greedy bandit algorithm in Section 4.8 is near-optimal,

at least with respect to the haystack dimension (our primary interest) and terms log |F| or

smaller. With respect to the dependence on the haystack dimension, we can say something

quite strong: Every MAB algorithm for every function class must suffer regret that is linear

in the haystack dimension of the class. Let ∆ = inff∈F inf{x′∈X :f(x′)<supx f(x)} supx f(x) −

f(x), be the difference between the best action and second-best action in X .

Theorem 4.4. For any function class F and MAB algorithm A for F :

RA(T) = Ω (∆ min{T,HD(F)})

The proof of Theorem 4.4 follows directly from Theorem 4.2, which implies that no MAB

algorithm for function class F can select the best action in fewer than HD(F) steps. The

next theorem proves that the terms log |F| and 1
εmin

cannot be removed from the upper

bound in Theorem 4.3.

Theorem 4.5. (a) There exists a function class F such that HD(F) = Θ(1) and for any

MAB algorithm A for F , RA(T) = Ω (log |F|). (b) There exists a function class F such

that HD(F) = Θ(1) and for any MAB algorithm A for F , RA(T) = Ω
(

min
{

1
εmin

, |F|
})

.

Proof. To prove (a), we will outline the construction of F and omit the details of the proof,

which are straightforward. The input space X will have two components — X1 and X2,

with X being the union of these disjoint domains. Subdomain X1 consists of 2n points, and

X2 of n points, while the function class F contains n deterministic functions. Each point in

x ∈ X1 corresponds to a distinct subset Fx ⊆ F , and for each x ∈ X1 let f(x) = 1
3 for half

the functions in Fx and f(x) = 2
3 for the other half, and also let f(x) = 1

3 for all f ∈ F \Fx.

Note that X1 contains excellent information queries, because for any subset F ⊆ F there

89

is a point in X1 that eliminates at least half the functions in F when that point is issued

as a query, and thus HD(F) = 2. Finally, map each function f ∈ F to a distinct point

xf ∈ X2, and let f(xf) = 1 and f(x) = 0 for all x ∈ X2 \ {xf}. So each f ∈ F has a unique

maximum, contained in X2. Suppose f∗ is chosen uniformly at random from F . It is clear

that QA = Ω(log |F|). To see why, note that a query x ∈ X2 has only probability 1
|F| of

being the function’s max, and only serves to inform the algorithm that f∗ 6= f whenever

x = xf and f∗(x) = 0. Thus any algorithm is forced to learn f∗ by playing actions in X1,

requiring that at least log2 |F| actions are played.

To prove (b), we simply modify the construction of F to add stochasticity, as follows. For

an x ∈ X1, if we had previously that f(x) = 1
3 , we now let f(x) = ε. If we had previously

that f(x) = 2
3 , we now let f(x) = 2ε. Each function’s behavior of X2 is unchanged. Note

that εmin = ε. When playing an x ∈ X , rather than observe the output of the function, the

algorithm now observes the outcome a Bernoulli random variable with mean f∗(x). It can

then be shown that any algorithm that wishes to make use of the information in X1 must

sample the actions there Ω(1/ε) times or else be forced to play actions in X2.

4.10. Infinite Function Classes

In the remainder of the chapter, we return to studying the MAX problem. We give ex-

tensions of our basic results on query complexity, and also give examples that illustrate

some aspects of our analysis. In this section, we describe how to extend our methods from

Sections 4.5 and 4.6, which were restricted to finite function classes, to infinite function

classes that have a finite covering oracle.

Definition 4.3. We say C is a finite covering oracle for F if for any ε > 0 the finite set

C(ε) ⊆ F has the following property: For any f ∈ F there exists an f ′ ∈ C(ε) such that

supx∈X |f(x)− f ′(x)| ≤ ε.

Fix a possibly infinite function class F with finite covering oracle C. We consider the ε-MAX

problem for F , a relaxed version of the MAX problem. In analogy to the MAX problem,

90

for any algorithm A let TA,f
∗,ε , min{t : supx f

∗(x)− f∗(xt) ≤ ε} be the first round t such

that the query xt selected by A is an ε-maximum of f∗ ∈ F . We are interested in bounding

the worst-case ε-query complexity of A, defined QA,ε , supf∗∈F E[TA,f
∗,ε].

Below we give upper and lower bounds for the ε-MAX problem in terms of the lower

and upper ε-haystack dimensions, which are each a different generalization of the haystack

dimension. Before introducing these quantities, we need some definitions. For any set

F ⊆ F let F (x, ε) , {f ∈ F : supx′ f(x′) − f(x) ≤ ε} be the functions in F for which x

is an ε-maximum and, as in Section 4.8, let F (〈x, y〉 , ε) , {f ∈ F : |f(x) − y| > ε} be the

functions in F that are more than ε-inconsistent with the labeled example 〈x, y〉. Also, let

θ−(ε) , inf
F⊆C(ε)

sup
x∈X

inf
y

|F (x, ε) ∪ F (〈x, y〉 , 0)|
|F |

and θ+(ε) , inf
F⊆C(ε)

sup
x∈X

inf
y

|F (x, 0) ∪ F (〈x, y〉 , ε)|
|F |

Note that the only difference between θ−(ε) and θ+(ε) is the placement of ε and 0. Also

note that if F is finite and C(ε) = F then θ−(0) = θ+(0) = θ, where θ was defined in Section

4.3. Now define the lower ε-haystack dimension HD−(ε) , 1
θ−(ε)

and the upper ε-haystack

dimension HD+(ε) , 1
θ+(ε)

.

A simple approach to solving the ε-MAX problem is just to run a slightly modified version of

the greedy algorithm from Section 4.5 using C(ε) as the initial attention space, and removing

inconsistent functions only if they are inconsistent by more than ε. In other words, in

each round t, the ε-greedy algorithm Gε selects xt = arg supx∈X infy |Ft(x, 0) ∪ Ft(〈x, y〉 , ε)|

where the attention space Ft is defined inductively as follows: F1 = C(ε) and Ft+1 =

Ft \ (Ft(xt, 0) ∪ Ft(〈xt, yt〉 , ε)).

Theorem 4.6. Let Gε be the ε-greedy algorithm for the ε-MAX problem. Then QGε,2ε ≤

HD+(ε) log |C(ε)| for all ε > 0.

Proof. The proof is nearly identical to the proof of Theorem 4.1. The algorithmGε initializes

the attention space to C(ε), and after every query at least a θ+(ε) fraction of the attention

space is eliminated. By the time the attention space is empty, the Gε algorithm has selected

a maximum of some function f̂ ∈ C(ε) that ε-covers the true function f∗, which implies

91

that a 2ε-maximum of f∗ has been selected.

Furthermore, we can also straightforwardly lower bound the query complexity of any algo-

rithm for the ε-MAX problem.

Theorem 4.7. Let A be any algorithm for the ε-MAX problem. Then QA,ε = Ω
(
HD−(ε)

)
for all ε > 0.

Proof. The proof of Theorem 4.2 can be repeated, with essentially no changes, to prove this

theorem as well. The key is to observe that, when proving Theorem 4.2, we made no use

of the fact that Xf∗ contained the maxima of the true function f∗. We could have defined

Xf∗ to be any subset of X , including the ε-maxima of f∗.

Notice that the upper and lower bounds in Theorems 4.6 and 4.7 are not directly comparable,

since we have not related the quantities HD−(ε) and HD+(ε). If it happens that HD+(ε)

HD−(ε)
≤ K

for some constant K, then clearly the upper and lower bounds above are within constant and

logarithmic factors of each other, just as we had for finite function classes. Indeed, a simple

infinite function class for which this occurs is the class of all bounded norm hyperplanes.

Let X = {x ∈ Rn | ‖x‖∞ ≤ 1} and Fhyper = {〈w, ·〉 | w ∈ Rn, ‖w‖∞ ≤ 1}, and let the

finite covering oracle C be the appropriate discretization of Fhyper, i.e., C(ε) = {w ∈ Rn |

∀i wi ∈ {0, εn ,
2ε
n , . . . , 1}}. Clearly |C(ε)| = Θ((nε)n), but nonetheless the ratio of the lower

and upper ε-haystack dimension is not large.

Theorem 4.8. For function class Fhyper we have HD+(ε)

HD−(ε)
≤ n for all ε > 0.

Proof. By examining the definitions of HD+(ε) and HD−(ε), we see that it suffices to show

that supx∈X
|F (x,0)|
|F | ≥ 1

n for any finite F ⊆ F . Let ki = |{〈w, ·〉 ∈ F | wj ≥ wi, ∀j}| be

the number of functions in F which have their maximal component at i. Clearly there

must exist a ki ≥ |F |
n . Let ei be the vector with a one in its ith component and zeros

everywhere else. Since ei ∈ X and ei maximizes ki functions in F , there exists an x ∈ X

with |F (x,0)|
|F | ≥

1
n .

92

Unfortunately, the bound in Theorem 4.8 cannot be generalized to all function classes with

finite covering oracles. In the next theorem, we give an example of an infinite function class

F with a finite covering oracle C for which HD+(ε)

HD−(ε)
= Ω(|C(ε)|), which is essentially the

worst possible ratio.

Theorem 4.9. There exists a function class F with a finite covering oracle C such that

HD−(ε) = 1 and HD+(ε) = Ω (|C(ε)|) for all ε > 0.

Proof. Let X = [0, 1] and fix any sequence {xn} ⊂ X , all elements distinct. For visualiza-

tion, it may be helpful to suppose that {xn} is strictly increasing, but this is not necessary.

Let {εi} be the sequence defined by εi = 1
2i

for all i ∈ N.

For each n ∈ N let there be a function fn ∈ F whose values are zero everywhere except

x1, . . . , xn. The nonzero values of fn are defined as follows: Let fn(xn) = 1
n and fn(xm) =

εi − 1
22n

for all m < n, where i = dlog2 ne. Let C(ε) = {f1, . . . , fNε}, where Nε is the

smallest integer such that 1/Nε < ε. We have that C is finite covering oracle because each

C(ε) is finite and because supx∈X fn(x) ≤ ε for all n ≥ Nε.

We only need the following properties of this construction, which can be verified: (1) For

all n ∈ N the elements of {fm(xn) : m ≥ n} are all distinct; (2) Each fn has a maximum at

xn and nowhere else; (3) For all n ∈ N, if i = dlog2 ne then fn(xn) ≥ εi and fm(xn) < εi for

all m 6= n.

For the remainder of the proof fix ε > 0 and the smallest i ∈ N such that εi ≤ ε. We will

show that θ−(ε) = 1 and θ+(ε) ≤ 4
Nεi

, which suffices to prove the theorem.

First, we claim that θ−(ε) = 1. Let F+ = arg infF⊆C(ε) supx∈X infy
|F (x,ε)∪F (〈x,y〉,0)|

|F | . Let

n be the smallest integer such that fn ∈ F+. Then each fm ∈ F+ has a distinct value at

xn, by property 1. So infy |F+(〈xn, y〉 , 0)| = |F+|. Next, we claim that θ+(ε) ≤ 4
Nεi

. Let

Fi = {fn ∈ F : i = dlog2 ne}, and note that Fi ⊆ C(ε) and |Fi| =
Nεi
2 . For any x ∈ X we

have |Fi(x, 0)| ≤ 1, by property 2, and infy |Fi(〈x, y〉 , ε)| ≤ 1, by property 3.

93

4.11. Computational Complexity

Our results have so far ignored computational complexity. In general a function class F ,

for which finding the optimal query is computationally intractable, might nevertheless have

small haystack dimension, admitting algorithms with low query complexity. Consider the

following simple example. Let X = X1 ∪ X2 ∪ X3 where X1,X2,X3 are disjoint, |X1| =

|X2| = n and X3 = 2n. Each function in F will attain its maximum on some action in

X3. The location of that maximum, as in Example 4.2, will be encoded by X1 and X2.

However, we will now encode the location cryptographically, with a function’s behavior on

X1 representing a public key, and a function’s behavior on X2 representing the encrypted

location of its maximum.

More precisely, let z be an n-bit number. For a pair of n
2 -bit primes p and q, let Npq = pq.

Also let e(z,Npq) = z2 mod Npq be z encrypted with public key Npq.

Now let fz,p,q be the function that gives the ith bit of Npq as output to the ith input of

X1 and the ith bit of e(z,Npq) as output to the ith input of X2. On the zth input of X3,

fz,p,q outputs a 2. On all other inputs of X3, fz,p,q outputs 0. Let F be the function class

consisting of all functions fz,p,q for every pair of n
2 -bit primes p, q and n-bit integer z.

There exists an algorithm with query complexity O(n) for any f∗ ∈ F . That algorithm

queries each action in X1 ∪ X2, retrieving the public key Npq and the cypher e(z,Npq).

Information-theoretically, the maximum of f∗ can be found in a single additional query.

The algorithm may simply test every n-bit z′, checking if e(z,Npq) = e(z′, Npq). However,

computing z is as hard as factorization (Kearns and Vazirani, 1994).

94

CHAPTER 5 : Posted Price Auctions Against Strategic Buyers

Our models so far have not required any strategic reasoning; we have not considered the

possibility that the market would react to our choice of algorithm. In many settings, this is

quite reasonable. When making decisions in a crowded market, although individual agents

act strategically, the macroscopic market is unaffected by an individual firm’s decisions,

and adequately modeled as a stochastic function. In this chapter, we consider the opposite

extreme, motivated by an application from real-time bidding on ad exchanges.

Online display advertising inventory — e.g., space for banner ads on web pages — is often

sold via automated transactions on real-time ad exchanges. When a user visits a web page

whose advertising inventory is managed by an ad exchange, a description of the web page,

the user, and other relevant properties of the impression, along with a reserve price for

the impression, is transmitted to bidding servers operating on behalf of advertisers. These

servers process the data about the impression and respond to the exchange with a bid.

The highest bidder wins the right to display an advertisement on the web page to the user,

provided that the bid is above the reserve price. The amount charged the winner, if there

is one, is settled according to a second-price auction. The winner is charged the maximum

of the second-highest bid and the reserve price.

Ad exchanges have been a boon for advertisers, since rich and real-time data about impres-

sions allow them to target their bids to only those impressions that they value. However,

this precise targeting has an unfortunate side effect for web page publishers. A nontrivial

fraction of ad exchange auctions involve only a single bidder. Without competitive pres-

sure from other bidders, the task of maximizing the publisher’s revenue falls entirely to the

reserve price setting mechanism. Second-price auctions with a single bidder are equivalent

to posted-price auctions. The seller offers a price for a good, and a buyer decides whether

to accept or reject the price (i.e., whether to bid above or below the reserve price).

In this chapter we consider online learning algorithms for setting prices in posted-price

95

auctions where the seller repeatedly interacts with the same buyer over a number of rounds,

a common occurrence in ad exchanges where the same buyer might be interested in buying

thousands of user impressions daily. In each round t, the seller offers a good to a buyer

for price pt. The buyer’s value vt for the good is drawn independently from a fixed value

distribution. Both vt and the value distribution are known to the buyer, but neither is

observed by the seller. If the buyer accepts price pt, the seller receives revenue pt, and the

buyer receives surplus vt − pt. Since the same buyer participates in the auction in each

round, the seller has the opportunity to learn about the buyer’s value distribution and set

prices accordingly. Notice that in worst-case repeated auctions there is no such opportunity

to learn, while standard Bayesian auctions assume knowledge of a value distribution, but

avoid addressing how or why the auctioneer was ever able to estimate this distribution.

Taken as an online learning problem, we can view this as a bandit problem since the revenue

for any price not offered is not observed (e.g., even if a buyer rejects a price, she may well

have accepted a lower price). The seller’s goal is to maximize his expected revenue over all

T rounds. One straightforward way for the seller to set prices would therefore be to use a

no-regret bandit algorithm, which minimizes the difference between seller’s revenue and the

revenue that would have been earned by offering the best fixed price p∗ in hindsight for all

T rounds; for a no-regret algorithm (such as UCB Auer et al. (2002) or EXP3 Auer et al.

(2003)), this difference is o(T). However, we argue that traditional no-regret algorithms are

inadequate for this problem. Consider the motivations of a buyer interacting with an ad

exchange where the prices are set by a no-regret algorithm, and suppose for simplicity that

the buyer has a fixed value vt = v for all t. The goal of the buyer is to acquire the most

valuable advertising inventory for the least total cost, i.e., to maximize her total surplus∑
t v− pt, where the sum is over rounds where the buyer accepts the seller’s price. A naive

buyer might simply accept the seller’s price pt if and only if vt ≥ pt; a buyer who behaves

this way is called truthful. Against a truthful buyer any no-regret algorithm will eventually

learn to offer prices pt ≈ v on nearly all rounds. But a more savvy buyer will notice

that if she rejects prices in earlier rounds, then she will tend to see lower prices in later

96

rounds. Indeed, suppose the buyer only accepts prices below some small amount ε. Then

any no-regret algorithm will learn that offering prices above ε results in zero revenue, and

will eventually offer prices below that threshold on nearly all rounds. In fact, the smaller

the learner’s regret, the faster this convergence occurs. If v � ε then the deceptive buyer

strategy results in a large gain in total surplus for the buyer, and a large loss in total revenue

for the seller, relative to the truthful buyer. While the no-regret guarantee certainly holds

— in hindsight, the best price is indeed ε — it seems fairly useless.

We propose a definition of strategic regret that accounts for the buyer’s incentives, and give

algorithms that are no-regret with respect to this definition. In our setting, the seller chooses

a learning algorithm for selecting prices and announces this algorithm to the buyer. We

assume that the buyer will examine this algorithm and adopt whatever strategy maximizes

her expected surplus over all T rounds. We define the seller’s strategic regret to be the

difference between his expected revenue and the expected revenue he would have earned if,

rather than using his chosen algorithm to set prices, he had instead offered the best fixed

price p∗ on all rounds and the buyer had been truthful. As we have seen, this revenue can

be much higher than the revenue of the best fixed price in hindsight (in the example above,

p∗ = v). Unless noted otherwise, throughout the remainder of the chapter the term “regret”

will refer to strategic regret.

We make one further assumption about buyer behavior, which is based on the observation

that in many important real-world markets — and particularly in online advertising —

sellers are far more willing to wait for revenue than buyers are willing to wait for goods.

For example, advertisers are often interested in showing ads to users who have recently

viewed their products online (this practice is called ‘retargeting’), and the value of these

user impressions decays rapidly over time. Or consider an advertising campaign that is tied

to a product launch. A user impression that is purchased long after the launch (such as

the release of a movie) is almost worthless. To model this phenomenon we multiply the

buyer’s surplus in each round by a discount factor : If the buyer accepts the seller’s price pt

97

in round t, she receives surplus γt(vt−pt), where {γt} is a nonincreasing sequence contained

in the interval (0, 1]. We call Tγ =
∑T

t=1 γt the buyer’s ‘horizon’, since it is analogous to

the seller’s horizon T . The buyer’s horizon plays a central role in our analysis.

Summary of results: In Sections 5.3 and 5.4 we assume that discount rates decrease

geometrically: γt = γt−1 for some γ ∈ (0, 1]. In Section 5.3 we consider the special case that

the buyer has a fixed value vt = v for all rounds t, and give an algorithm with regret at most

O(Tγ
√
T). In Section 5.4 we allow the vt to be drawn from any distribution that satisfies a

certain smoothness assumption, and give an algorithm with regret at most Õ(Tα + T
1/α
γ)

where α ∈ (0, 1) is a user-selected parameter. Note that for either algorithm to be no-regret

(i.e., for regret to be o(T)), we need that Tγ = o(T). In Section 5.5 we prove that this

requirement is necessary for no-regret: any seller algorithm has regret at least Ω(Tγ). The

lower bound is proved via a reduction to a non-repeated, or ‘single-shot’, auction. That

our regret bounds should depend so crucially on Tγ is foreshadowed by the example above,

in which a deceptive buyer foregoes surplus in early rounds to obtain even more surplus is

later rounds. A buyer with a short horizon Tγ will be unable to execute this strategy, as

she will not be capable of bearing the short-term costs required to manipulate the seller.

We note that since the first publication of this work (Amin et al., 2013), there have

been (Amin et al., 2014; Mohri and Munoz, 2014) developing more principled algorithms

with better rates, including extensions to the contextual setting. Here we demonstrate

simply that the goal of no strategic regret is simply possible.

5.1. Related work

Kleinberg and Leighton study a posted price repeated auction with goods sold sequentially

to T bidders who either all have the same fixed private value, private values drawn from a

fixed distribution, or private values that are chosen by an oblivious adversary (an adversary

that acts independently of observed seller behavior) Kleinberg and Leighton (2003) (see also

Bar-Yossef et al. (2002); Blum et al. (2003)). Cesa-Bianchi et al. study a related problem of

98

setting the reserve price in a second price auction with multiple (but not repeated) bidders

at each round Cesa-Bianchi et al. (2013). Note that none of these previous works allow for

the possibility of a strategic buyer, i.e. one that acts non-truthfully in order to maximize its

surplus. This is because a new buyer is considered at each time step and if the seller behavior

depends only on previous buyers, then the setting immediately becomes strategyproof.

Contrary to what is studied in these previous theoretical settings, electronic exchanges in

practice see the same buyer appearing in multiple auctions and, thus, the buyer has incentive

to act strategically. In fact, Edelman and Ostrovsky (2007) finds empirical evidence of

buyers’ strategic behavior in sponsored search auctions, which in turn negatively affects

the seller’s revenue. In the economics literature, ‘intertemporal price discrimination’ refers

to the practice of using a buyer’s past purchasing behavior to set future prices. Previous

work Acquisti and Varian (2005); Fudenberg and Villas-Boas (2006) has shown, as we do

in Section 5.5, that a seller cannot benefit from conditioning prices on past behavior if the

buyer is not myopic and can respond strategically. However, in contrast to our work, these

results assume that the seller knows the buyer’s value distribution.

Repeated posted price actions against the same strategic buyer have been considered in

the economics literature under the heading of behavior-based price discrimination (BBPD)

by Hart and Tirole (1988); Schmidt (1993); Acquisti and Varian (2005); Fudenberg and

Villas-Boas (2006), and more recently by Devanur et al. (2014). These works differ from

ours in two key ways. First, all these works imagine that the buyer’s type is drawn from

some fixed publicly available distribution. Therefore learning D is not at issue. In contrast,

we argue that access to an accurate prior is particularly problematic in these settings. After

all, the seller cannot expect to reliably estimate D from data when the buyer is explicitly

incentivized to hide its type (as illustrated in the discussion at the start of the chapter).

This tension between learning and buyer truthfulness is in many ways central to our study.

Secondly, given a fixed prior, the most common solution concept in the BBPD literature

is a perfect Bayes-Nash equilibrium, in which both the seller and buyer strategies are best

99

responses to each other. However, in the context of Internet advertising, a seller must

first deploy an algorithm which automates the pricing strategy, and buyers subsequently

react to the observed behavior of the pricing algorithm. Any modifications the seller wishes

to make to the pricing algorithm will typically require changes to the end-user licensing

agreement, which the seller will not want to do too frequently. Therefore, in this paper, we

make a commitment assumption on the seller: the seller acts first, announcing its pricing

strategy, after which the buyer plays a best response strategy. Such Stackleberg models

of commitment Fudenberg and Tirole (1991) have sparked a great deal of recent interest

due to their success in security games (see Conitzer and Sandholm (2006) and Korzhyk

et al. (2011) for an overview), including practical deployment Pita et al. (2008); Jain et al.

(2010).

Two settings that are distinct from what we consider in this dissertation, but where mech-

anism design and learning are combined, are the multi-armed bandit mechanism design

problem Babaioff et al. (2009, 2010); Devanur and Kakade (2009) and the incentive com-

patible regression/classification problem Dekel et al. (2010); Meir et al. (2009). The former

problem is motivated by sponsored search auctions, where the challenge is to elicit truthful

values from multiple bidding advertisers while also efficiently estimating the click-through

rate of the set of ads that are to be allocated. The latter problem involves learning a dis-

criminative classifier or regression function in the batch setting with training examples that

are labeled by selfish agents. The goal is then to minimize error with respect to the truthful

labels.

Finally, Arora et al. proposed a notion of regret for online learning algorithms, called

policy regret, that accounts for the possibility that the adversary may adapt to the learning

algorithm’s behavior Arora et al. (2012). This resembles the ability, in our setting, of a

strategic buyer to adapt to the seller algorithm’s behavior. However, even this stronger

definition of regret is inadequate for our setting. This is because policy regret is equivalent

to standard regret when the adversary is oblivious, and as we explained in the previous

100

section, there is an oblivious buyer strategy such that the seller’s standard regret is small,

but his regret with respect to the best fixed price against a truthful buyer is large.

5.2. Preliminaries and Model

We consider a posted-price model for a single buyer repeatedly purchasing items from a

single seller. Associated with the buyer is a fixed distribution D over the interval [0, 1],

which is known only to the buyer. On each round t, the buyer receives a value vt ∈ V ⊆

[0, 1] from the distribution D. The seller, without observing this value, then posts a price

pt ∈ P ⊆ [0, 1]. Finally, the buyer selects an allocation decision at ∈ {0, 1}. On each

round t, the buyer receives an instantaneous surplus of at(vt − pt), and the seller receives

an instantaneous revenue of atpt.

We will be primarily interested in designing the seller’s learning algorithm, which we will

denote A. Let v1:t denote the sequence of values observed on the first t rounds, (v1, ..., vt),

defining p1:t and a1:t analogously. A is an algorithm that selects each price pt as a (possibly

randomized) function of (p1:t−1, a1:t−1). As is common in mechanism design, we assume

that the seller announces his choice of algorithm A in advance. The buyer then selects

her allocation strategy in response. The buyer’s allocation strategy B generates allocation

decisions at as a (possibly randomized) function of (D, v1:t, p1:t, a1:t−1).

Notice that a choice of A, B and D fixes a distribution over the sequences a1:T and p1:T .

This in turn defines the seller’s total expected revenue:

SellerRevenue(A,B,D, T) = E
[∑T

t=1 atpt
∣∣ A,B,D] .

In the most general setting, we will consider a buyer whose surplus may be discounted

through time. In fact, our lower bounds will demonstrate that a sufficiently decaying

discount rate is necessary for a no-regret learning algorithm. We will imagine therefore

that there exists a nonincreasing sequence {γt ∈ (0, 1]} for the buyer. For a choice of T , we

will define the effective “time-horizon” for the buyer as Tγ =
∑T

t=1 γt. The buyer’s expected

101

total discounted surplus is given by:

BuyerSurplus(A,B,D, T) = E
[∑T

t=1 γtat(vt − pt)
∣∣ A,B,D] .

We assume that the seller is faced with a strategic buyer who adapts to the choice of

A. Thus, let B∗(A,D) be a surplus-maximizing buyer for seller algorithm A and value

distribution is D. In other words, for all strategies B we have

BuyerSurplus(A,B∗(A,D),D, T) ≥ BuyerSurplus(A,B,D, T).

We are now prepared to define the seller’s regret. Let p∗ = arg maxp∈P pPrD[v ≥ p], the

revenue-maximizing choice of price for a seller that knows the distribution D, and simply

posts a price of p∗ on every round. Against such a pricing strategy, it is in the buyer’s best

interest to be truthful, accepting if and only if vt ≥ p∗, and the seller would receive a revenue

of Tp∗ Prv∼D[v ≥ p∗]. Informally, a no-regret algorithm is able to learn D from previous

interactions with the buyer, and converge to selecting a price close to p∗. We therefore

define regret as:

Regret(A,D, T) = Tp∗ Prv∼D[v ≥ p∗]− SellerRevenue(A,B∗(A,D),D, T).

Finally, we will be interested in algorithms that attain o(T) regret (meaning the averaged

regret goes to zero as T →∞) for the worst-case D. In other words, we say A is no-regret

if supD Regret(A,D, T) = o(T). Note that this definition of worst-case regret only assumes

that Nature’s behavior (i.e., the value distribution) is worst-case; the buyer’s behavior is

always presumed to be surplus maximizing.

5.3. Fixed Value Setting

In this section we consider the case of a single unknown fixed buyer value, that is V = {v}

for some v ∈ (0, 1]. We show that in this setting a very simple pricing algorithm with

monotonically decreasing price offerings is able to achieve O(Tγ
√
T) when the buyer discount

102

is γt = γt−1. The full proofs for this section appear in Section 5.6.1.

Monotone algorithm: Choose parameter β ∈ (0, 1), and initialize a0 = 1 and

p0 = 1. In each round t ≥ 1 let pt = β1−at−1pt−1.

In the Monotone algorithm, the seller starts at the maximum price of 1, and decreases

the price by a factor of β whenever the buyer rejects the price, and otherwise leaves it

unchanged. Since Monotone is deterministic and the buyer’s value v is fixed, the surplus-

maximizing buyer algorithm B∗(Monotone, v) is characterized by a deterministic allocation

sequence a∗1:T ∈ {0, 1}T .1

The following lemma partially characterizes the optimal buyer allocation sequence.

Lemma 5.1. The sequence a∗1, . . . , a
∗
T is monotonically nondecreasing.

In other words, once a buyer decides to start accepting the offered price at a certain time

step, she will keep accepting from that point on. The main idea behind the proof is to show

that if there does exist some time step t′ where a∗t′ = 1 and a∗t′+1 = 0, then swapping the

values so that a∗t′ = 0 and a∗t′+1 = 1 (as well potentially swapping another pair of values)

will result in a sequence with strictly better surplus, thereby contradicting the optimality

of a∗1:T . The full proof is shown in Section 5.6.1.

Now, to finish characterizing the optimal allocation sequence, we provide the following

lemma, which describes time steps where the buyer has with certainty begun to accept the

offered price.

Lemma 5.2. Let cβ,γ = 1 + (1 − β)Tγ and dβ,γ =
log

(
cβ,γ
v

)
log(1/β) , then for any t > dβ,γ we

have a∗t+1 = 1.

A detailed proof is presented in Section 5.6.1. These lemmas imply the following regret

bound.

Theorem 5.1. Regret(Monotone, v, T) ≤ vT
(

1− β
cβ,γ

)
+ vβ

(
dβ,γ
cβ,γ

+ 1
cβ,γ

)
.

1 If there are multiple optimal sequences, the buyer can then choose to randomize over the set of sequences.
In such a case, the worst case distribution (for the seller) is the one that always selects the revenue minimizing
optimal sequence. In that case, let a∗1:T denote the revenue-minimizing buyer-optimal sequence.

103

Proof. By Lemmas 5.1 and 5.2 we receive no revenue until at most round ddβ,γe + 1, and

from that round onwards we receive at least revenue βddβ,γe per round. Thus

Regret(Monotone, v, T) = vT −
T∑

t=ddβ,γe+1

βddβ,γe ≤ vT − (T − dβ,γ − 1)βdβ,γ+1

Noting that βdβ,γ = v
cβ,γ

and rearranging proves the theorem.

Tuning the learning parameter simplifies the bound further and provides a O(Tγ
√
T) regret

bound. Note that this tuning parameter does not assume knowledge of the buyer’s discount

parameter γ.

Corollary 5.1. If β =
√
T

1+
√
T

then Regret(Monotone, v, T) ≤
√
T
(
4vTγ + 2v log

(
1
v

))
+ v .

The computation used to derive this corollary are found in Section 5.6.1. This corollary

shows that it is indeed possible to achieve no-regret against a strategic buyer with a unknown

fixed value as long as Tγ = o(
√
T). That is, the effective buyer horizon must be more than

a constant factor smaller than the square-root of the game’s finite horizon.

5.4. Upper Bound on Regret of Phased

We next give a seller algorithm that attains no-regret when the set of prices P is finite, the

buyer’s discount is γt = γt−1, and the buyer’s value vt for each round is drawn from a fixed

distribution D that satisfies a certain continuity assumption, detailed below.

Phased algorithm: Choose parameter α ∈ (0, 1). Define Ti ≡ 2i and Si ≡

min
(
Ti
|P| , T

α
i

)
. For each phase i = 1, 2, 3, . . . of length Ti rounds:

Offer each price p ∈ P for Si rounds, in some fixed order; these are the explore

rounds. Let Ap,i = Number of explore rounds in phase i where price p was offered

and the buyer accepted. For the remaining Ti − |P|Si rounds of phase i, offer

price p̃i = arg maxp∈P p
Ap,i
Si

in each round; these are the exploit rounds.

104

The Phased algorithm proceeds across a number of phases. Each phase consists of explore

rounds followed by exploit rounds. During explore rounds, the algorithm selects each price

in some fixed order. During exploit rounds, the algorithm repeatedly selects the price that

realized the greatest revenue during the immediately preceding explore rounds.

First notice that a strategic buyer has no incentive to lie during exploit rounds (i.e. it

will accept any price pt < vt and reject any price pt > vt), since its decisions there do not

affect any of its future prices. Thus, the exploit rounds are the time at which the seller can

exploit what it has learned from the buyer during exploration. Alternatively, if the buyer

has successfully manipulated the seller into offering a low price, we can view the buyer as

“exploiting” the seller.

During explore rounds, on the other hand, the strategic buyer can benefit by telling lies

which will cause it to witness better prices during the corresponding exploit rounds. How-

ever, the value of these lies to the buyer will depend on the fraction of the phase consisting

of explore rounds. Taken to the extreme, if the entire phase consists of explore rounds, the

buyer is not interested in lying. In general, the more explore rounds, the more revenue has

to be sacrificed by a buyer that is lying during the explore rounds. For the myopic buyer,

the loss of enough immediate revenue at some point ceases to justify her potential gains in

the future exploit rounds.

Thus, while traditional algorithms like UCB balance exploration and exploitation to ensure

confidence in the observed payoffs of sampled arms, our Phased algorithm explores for two

purposes: to ensure accurate estimates, and to dampen the buyer’s incentive to mislead the

seller. The seller’s balancing act is to explore for long enough to learn the buyer’s value

distribution, but leave enough exploit rounds to benefit from the knowledge.

Continuity of the value distribution The preceding argument required that the dis-

tribution D does not exhibit a certain pathology. There cannot be two prices p, p′ that are

very close but pPrv∼D[v ≥ p] and p′ Prv∼D[v ≥ p′] are very different. Otherwise, the buyer

105

is largely indifferent to being offered prices p or p′, but distinguishing between the two prices

is essential for the seller during exploit rounds. Thus, we assume that the value distribution

D is K-Lipschitz, which eliminates this problem: Defining F (p) ≡ Prv∼D[v ≥ p], we assume

there exists K > 0 such that |F (p)−F (p′)| ≤ K|p−p′| for all p, p′ ∈ [0, 1]. This assumption

is quite mild, as our Phased algorithm does not need to know K, and the dependence of

the regret rate on K will be logarithmic.

Theorem 5.2. Assume F (p) ≡ Prv∼D[v ≥ p] is K-Lipschitz. Let ∆ = minp∈P\{p∗} p
∗F (p∗)−

pF (p), where p∗ = arg maxp∈P pF (p). For any parameter α ∈ (0, 1) of the Phased algorithm

there exist constants c1, c2, c3, c4 such that

Regret(Phased,D, T) ≤ c1|P|Tα + c2
|P|2

∆2/α
(log T)1/α

+ c3
|P|2

∆1/α
T 1/α
γ (log T + log(K/∆))1/α + c4|P|

= Õ(Tα + T 1/α
γ).

The complete proof of Theorem 5.2 is rather technical, and is provided in Appendix 5.6.2.

To gain further intuition about the upper bounds proved in this section and the previous

section, it helps to parametrize the buyer’s horizon Tγ as a function of T , e.g. Tγ = T c for

0 ≤ c ≤ 1. Writing it in this fashion, we see that the Monotone algorithm has regret at most

O(T c+
1
2), and the Phased algorithm has regret at most Õ(T

√
c) if we choose α =

√
c. The

lower bound proved in the next section states that, in the worst case, any seller algorithm

will incur a regret of at least Ω(T c).

5.5. Lower Bound

In this section we state the main lower bound, which establishes a connection between the

regret of any seller algorithm and the buyer’s discounting. Specifically, we prove that the

regret of any seller algorithm is Ω(Tγ). Note that when T = Tγ — i.e., the buyer does not

discount her future surplus — our lower bound proves that no-regret seller algorithms do

106

not exist, and thus it is impossible for the seller to take advantage of learned information.

For example, consider the seller algorithm that uniformly selects prices pt from [0, 1]. The

optimal buyer algorithm is truthful, accepting if pt < vt, as the seller algorithm is non-

adaptive, and the buyer does not gain any advantage by being more strategic. In such a

scenario the seller would quickly learn a good estimate of the value distribution D. What

is surprising is that a seller cannot use this information if the buyer does not discount her

future surplus. If the seller attempts to leverage information learned through interactions

with the buyer, the buyer can react accordingly to negate this advantage.

The lower bound further relates regret in the repeated setting to regret in a particular

single-shot game between the buyer and the seller. This demonstrates that, against a non-

discounted buyer, the seller is no better off in the repeated setting than he would be by

repeatedly implementing such a single-shot mechanism (ignoring previous interactions with

the buyer). In the following section we describe the simple single-shot game.

5.5.1. Single-Shot Auction

We call the following game the single-shot auction. A seller selects a family of distributions

S indexed by b ∈ [0, 1], where each Sb is a distribution on [0, 1] × {0, 1}. The family S is

revealed to a buyer with unknown value v ∈ [0, 1], who then must select a bid b ∈ [0, 1],

and then (p, a) ∼ Sb is drawn from the corresponding distribution.

As usual, the buyer gets a surplus of a(v − p), while the seller enjoys a revenue of ap. We

restrict the set of seller strategies to distributions that are incentive compatible and rational.

S is incentive compatible if for all b, v ∈ [0, 1], E(p,a)∼Sb [a(v− p)] ≤ E(p,a)∼Sv [a(v− p)]. It is

rational if for all v, E(p,a)∼Sv [a(v − p)] ≥ 0 (i.e. any buyer maximizing expected surplus is

actually incentivised to play the game). Incentive compatible and rational strategies exist:

drawing p from a fixed distribution (i.e. all Sb are the same), and letting a = 1{b ≥ p}

suffices.2

2This subclass of auctions is even ex post rational.

107

We define the regret in the single-shot setting of any incentive-compatible and rational

strategy S with respect to value v as

SSRegret(S, v) = v − E(p,a)∼Sv [ap].

The following loose lower bound on SSRegret(S, v) is straightforward, and establishes that

a seller’s revenue cannot be a constant fraction of the buyer’s value for all v. The full proof

is provided in the appendix (Section 5.6.3).

Lemma 5.3. For any incentive compatible and rational strategy S there exists v ∈ [0, 1]

such that SSRegret(S, v) ≥ 1
12 .

5.5.2. Repeated Auction

Returning to the repeated setting, our main lower bound will make use of the following

technical lemma, the full proof of which is provided in the appendix (Section 5.6.3). In-

formally, the Lemma states that the surplus enjoyed by an optimal buyer algorithm would

only increase if this surplus were viewed without discounting.

Lemma 5.4. Let the buyer’s discount sequence {γt} be positive and nonincreasing. For any

seller algorithm A, value distribution D, and surplus-maximizing buyer algorithm B∗(A,D),

E
[∑T

t=1 γtat(vt − pt)
]
≤ E

[∑T
t=1 at(vt − pt)

]
Notice if at(vt − pt) ≥ 0 for all t, then the Lemma 5.4 is trivial. This would occur if the

buyer only ever accepts prices less than its value (at = 1 only if pt ≤ vt). However, Lemma

5.4 is interesting in that it holds for any seller algorithm A. It’s easy to imagine a seller

algorithm that incentivizes the buyer to sometimes accept a price pt > vt with the promise

that this will generate better prices in the future (e.g. setting pt′ = 1 and offering pt = 0

for all t > t′ only if at′ = 1 and otherwise setting pt = 1 for all t > t′).

Lemmas 5.3 and 5.4 let us prove our main lower bound.

Theorem 5.3. Fix a positive, nonincreasing, discount sequence {γt}. Let A be any seller

108

algorithm for the repeated setting. There exists a buyer value distribution D such that

Regret(A,D, T) ≥ 1
12Tγ. In particular, if Tγ = Ω(T), no-regret is impossible.

Proof. Let {ab,t, pb,t} be the sequence of prices and allocations generated by playing B∗(A, b)

against A. For each b ∈ [0, 1] and (p, a) ∈ [0, 1) × {0, 1}, let µb(p, a) = 1
Tγ

∑T
t=1 γt1{ab,t =

a}1{pb,t = p}. Notice that µb(p, a) > 0 for countably many (p, a) and let Ωb = {(p, a) ∈

[0, 1]× {0, 1} : µb(p, a) > 0}. We think of µb as being a distribution. It’s in fact a random

measure since the {ab,t, pb,t} are themselves random. One could imagine generating µb by

playing B∗(A, b) against A and observing the sequence {ab,t, pb,t}. Every time we observe

a price pb,t = p and allocation ab,t = a, we assign 1
Tγ
γt additional mass to (p, a) in µb. This

is impossible in practice, but the random measure µb has a well-defined distribution.

Now consider the following strategy S for the single-shot setting. Sb is induced by drawing

a µb, then drawing (p, a) ∼ µb. Note that for any b ∈ [0, 1] and any measurable function f

E(p,a)∼Sb [f(a, p)] = Eµb∼Sb
[
E(p,a)∼µb [f(a, b) | µb]

]
= 1

Tγ
E
[∑T

t=1 γtf(ab,t, pb,t)
]
.

Thus the strategy S is incentive compatible, since for any b, v ∈ [0, 1]

E(p,a)∼Sb [a(v − p)] =
1

Tγ
E

[
T∑
t=1

γtab,t(v − pb,t)

]
=

1

Tγ
BuyerSurplus(A,B∗(A, b), v, T)

≤ 1

Tγ
BuyerSurplus(A,B∗(A, v), v, T) =

1

Tγ
E

[
T∑
t=1

γtav,t(v − pv,t)

]
= E(p,a)∼Sv [a(v − p)]

where the inequality follows from the fact that B∗(A, v) is a surplus-maximizing algorithm

for a buyer whose value is v. The strategy S is also rational, since for any v ∈ [0, 1]

E(p,a)∼Sv [a(v − p)] =
1

Tγ
E

[
T∑
t=1

γtav,t(v − pv,t)

]
=

1

Tγ
BuyerSurplus(A,B∗(A, v), v, T) ≥ 0

where the inequality follows from the fact that a surplus-maximizing buyer algorithm cannot

earn negative surplus, as a buyer can always reject every price and earn zero surplus.

109

Let rt = 1−γt and Tr =
∑T

t=1 rt. Note that rt ≥ 0. We have the following for any v ∈ [0, 1]:

TγSSRegret(S, v) = Tγ
(
v − E(p,a)∼Sv [ap]

)
= Tγ

(
v − 1

Tγ
E

[
T∑
t=1

γtav,tpv,t

])

= Tγv − E

[
T∑
t=1

γtav,tpv,t

]
= (T − Tr)v − E

[
T∑
t=1

(1− rt)av,tpv,t

]

= Tv − E

[
T∑
t=1

av,tpv,t

]
+ E

[
T∑
t=1

rtav,tpv,t

]
− Trv

= Regret(A, v, T)+E

[
T∑
t=1

rtav,tpv,t

]
−Trv = Regret(A, v, T)+E

[
T∑
t=1

rt(av,tpv,t − v)

]

A closer look at the quantity E
[∑T

t=1 rt(av,tpv,t − v)
]
, tells us that: E

[∑T
t=1 rt(av,tpv,t − v)

]
≤

E
[∑T

t=1 rtav,t(pv,t − v)
]

= −E
[∑T

t=1(1− γt)av,t(v − pv,t)
]
≤ 0, where the last inequality

follows from Lemma 5.4. Therefore TγSSRegret(S, v) ≤ Regret(A, v, T) and taking D to be

the point-mass on the value v ∈ [0, 1] which realizes Lemma 5.3 proves the statement of the

theorem.

5.6. Detailed Proofs

5.6.1. Upper Bound on the Regret of Monotone

Restatement of Lemma 5.1: The sequence a∗1, . . . , a
∗
T is monotonically nondecreasing.

Proof. For any sequence a ∈ {0, 1}T let last(a) be the last round t where at = 1 and at+1 =

0, or last(a) = 0 if there is no such round. Let a∗ = a∗1, . . . , a
∗
T , and assume for contradiction

that last(a∗) > 0. Further, assume without loss of generality that last(a∗) ≥ last(ã∗) for

every optimal sequence ã∗. Let ` = last(a∗).

Suppose that a∗t = 0 for all t ≥ ` + 1. If v − p` ≥ 0 then, since p`+1 = p`, letting a∗`+1 = 1

does not decrease the buyer’s total surplus and increases last(a∗), violating the assumption

that last(a∗) ≥ last(ã∗) for every optimal sequence ã∗. On the other hand, if v − p` < 0

then letting a∗` = 0 increases the buyer’s total surplus, contradicting the optimality of a∗.

110

Otherwise choose the smallest k ≥ 1 such that a∗`+k = 0, and a∗`+k+1 = 1. Note that

p`+k+1 = βkp` and p`+k = β`−1p`. Swapping the values of a∗` and a∗`+1 does not affect

the buyer’s surplus in rounds other than ` and ` + 1, and must not increase the buyer’s

total surplus, which implies γ`−1(v − p`) ≥ γ`(v − βp`). Likewise, swapping the values

of a∗`+k and a∗`+k+1 does not affect the buyer’s surplus in rounds other than ` + k and

`+k+1, and increases last(a∗), so it must decrease the buyer’s total surplus, which implies

γ`+k(v − p`+k+1) > γ`+k−1(v − p`+k).

Cancelling γ’s in each inequality, and substituting for p`+k and p`+k+1 gives the following

inequalities:

v − p` ≥ γv − γβp` and γv − γβkp` > v − βk−1p`

Adding the two inequalities and rearranging gives us:

βk−1p` + γp`(β − βk) > p`

Dividing through by p` gives us:

βk−1 + γ(β − βk) > 1 (5.1)

Let g(β) = βk−1 + β − βk. Since β − βk is non-negative and γ ≤ 1, g(β) is an upper bound

on the left hand side of equation 5.1. Giving:

βk−1 + γ(β − βk) ≤ g(β) (5.2)

However, dg
dβ = (k−1)βk−2 +1−kβk−1 = (1−βk−2)+k(βk−2−βk−1), which is non-negative

for any β < 1. To see why, note that both terms in the last expression are non-negative

when k > 1 and the entire expression is 0 when k = 1.

Therefore, g(·) is a non-decreasing function and for any β < 1, g(β) ≤ g(1) = 1. This fact

111

combined with Eq. (5.1) and Eq. (5.2) imply a contradiction.

Restatement of Lemma 5.2 Let cβ,γ = 1 + (1 − β)Tγ and dβ,γ =
log

(
cβ,γ
v

)
log(1/β) , then for

any t > dβ,γ we have a∗t+1 = 1.

Proof. Rearranging the inequality t > dβ,γ yields βt (1 + (1− β)Tγ) < v. Subtracting βt+1

from both sides, multiplying both sides by γt, and applying the inequality
∑T−t

t′=1 γ
t′−1 ≤∑T

t′=1 γ
t′−1 = Tγ gives us

γt

(
βt

(
1 + (1− β)

T−t−1∑
t′=1

γt
′−1

)
− βt+1

)
< γt(v − βt+1)

⇔ βt(1− β)

T∑
t′=t+1

γt
′−1 < γt(v − βt+1)

Now substitute βt(1− β) = (v − βt+1)− (v − βt) and gather terms. We have

T∑
t′=t+2

γt
′−1(v − βt+1) <

T∑
t′=t+1

γt
′−1(v − βt) . (5.3)

Note that
∑T

t′=t+1 γ
t′−1(v − βt) is the surplus of a monotonic buyer that starts accepting

(and thus continues to accept) the price offered at time t+ 1. The inequality above, which

holds for arbitrary t > dβ,γ , states that the surplus that is gained from starting to accept

at round t + 1 is greater than the surplus gained from starting to accept at round t + 2.

Thus, it must be the case a∗t+1 = 1.

Restatement of Corollary 5.1 If β =
√
T

1+
√
T

then

Regret(Monotone, v, T) ≤
√
T

(
4vTγ + 2v log

(
1

v

))
+ v .

Before showing the proof to Corollary 5.1, we prove the following technical lemma.

112

Lemma 5.5. x ≥ log(1 + x) if x ≥ 0 and x ≤ 2 log(1 + x) if 0 ≤ x ≤ 1.

Proof. By Taylor’s theorem ex =
∑∞

i=0
xi

i! . Therefore ex ≥ 1 + x if x ≥ 0, and so x ≥

log(1 + x) if x ≥ 0. Now let an =
∑n

i=1(−1)i+1 xi

i and observe that for any positive even

integer n

2an = 2x− x2 + 2

n∑
i=3

(−1)i+1x
i

i

= x+
(
x− x2

)
+ 2

n∑
i=3,5,7,...

xi
(

1

i
− x

i+ 1

)
≥ x

where the inequality follows because x−x2 ≥ 0 if 0 ≤ x ≤ 1 and 1
i −

x
i+1 ≥ 0 if x ≤ 1 and i ≥

1. Since limn→∞ an = log(1 + x) (by Taylor’s theorem) and limn→∞ an = limn→∞,n even an

(because all subsequences of a convergent sequence have the same limit), we have shown

2 log(1 + x) ≥ x for 0 ≤ x ≤ 1.

Now, the proof of Corollary 5.1.

Proof of Corollary 5.1. From the expression for β we have

cβ,γ = 1 +

(
1−

√
T

1 +
√
T

)
Tγ = 1 +

1(
1 +
√
T
)Tγ =

1 +
√
T + Tγ(

1 +
√
T
) (5.4)

which implies

1− β

cβ,γ
= 1−

√
T

1 +
√
T + Tγ

=
1 + Tγ

1 +
√
T + Tγ

.

We also have

dβ,γ =

log

((
1 +

Tγ

(1+
√
T)

)
1
v

)
log
(

1+
√
T√
T

) =

log

(
1 +

Tγ

(1+
√
T)

)
+ log

(
1
v

)
log
(

1 + 1√
T

) .

By Lemma 5.5 we know that x ≥ log(1 + x) if x ≥ 0 and x ≤ 2 log(1 + x) if 0 ≤ x ≤ 1.

113

Since T ≥ 1 we have
Tγ

(1+
√
T)
≥ 0 and 0 ≤ 1√

T
≤ 1 and therefore

dβ,γ ≤
2Tγ
√
T(

1 +
√
T
) + 2

√
T log

(
1

v

)
≤ 2Tγ + 2

√
T log

(
1

v

)
. (5.5)

From the expression for cβ,γ in Eq. (5.4) we have 1
cβ,γ
≤ 1. Therefore

dβ,γ
cβ,γ

≤ 2Tγ + 2
√
T log

(
1

v

)
.

Now plug the bounds on 1 − β
cβ,γ

,
dβ,γ
cβ,γ

and 1
cβ,γ

from above into the upper bound from

Theorem 5.1. Noting that β ≤ 1 gives us

Regret(Monotone, v, T) ≤ vT

(
1 + Tγ

1 +
√
T + Tγ

)
+ vβ

(
2Tγ + 2

√
T log

(
1

v

)
+ 1

)
≤
√
T

(
4vTγ + 2v log

(
1

v

))
+ v .

5.6.2. Upper Bound on Regret of Phased

Let λ be a fixed positive constant, whose exact value will be specified later. Define V +
p,i

to be the number of explore rounds in phase i where price p was offered and the buyer’s

value in the round was at least p + λ. Let r̂+
p,i = p

V +
p,i

Si
, and note that E[r̂+

p,i] = pF (p + λ).

Similarly, define V −p,i to be the number of explore rounds in phase i where price p was

offered and the buyer’s value in the round was at least p−λ. Let r̂−p,i = p
V −p,i
Si

, and note that

E[r̂−p,i] = pF (p− λ). Also, let Ap,i be the number of explore rounds in phase i where price

p was offered and was accepted by the buyer. Then, we let r̃p,i = p
Ap,i
Si

denote the observed

revenue of price p in explore rounds in phase i.

In the Phased algorithm, the price p̃i that maximizes r̃p,i is offered in every exploit round

of phase i. So our strategy for proving Theorem 5.2 will be to show that p∗ = arg maxp r̃p,i

with high probability for all sufficiently large i. There are essentially only two ways this can

fail to happen: Either the realized buyer values differ greatly from their expectations, or the

114

buyer is untruthful about her realized values. The first case is unlikely, and the latter case

is costly to the buyer, provided the number of explore rounds in the phase is sufficiently

large. We now quantify “sufficiently large”. Let i∗ be the smallest nonnegative integer such

that Si ≥ DT for all i ≥ i∗, where

DT = max

(
16

∆2
log T,

8

∆
C 1
T

)

and Cδ = log(1 + (1 − γ)Tγ/(δλ)) log(1/γ)−1. Note that i∗ is well-defined because Si is

increasing in i. The next lemma uses a standard concentration inequality to bound the

probability that certain random variables are close to their expectations.

Lemma 5.6. Fix price p ∈ P and phase i ≥ i∗. With probability 1− 2T−1

r̂−p,i ≤ pF (p− λ) +
∆

4
and r̂+

p∗,i ≥ p
∗F (p∗ + λ)− ∆

4
.

Proof. Note that r̂−p,i is an average of Si independent random variables, since the variables

pt are chosen deterministically during the explore phase and each vt is always drawn inde-

pendently. Also note that E[r̂−p,i] = pF (p− λ). Since i ≥ i∗ we have

Si ≥
16

∆2
log T =

1

(∆/4)2
log T.

Thus by Hoeffding’s inequality Pr
[
r̂−p,i ≤ pF (p− λ) + ∆

4

]
≥ 1 − T−1. Similarly r̂+

p∗,i is

an average of Si independent random variables and E[r̂+
p∗,i] = p∗F (p∗ + λ), and thus

Pr
[
r̂+
p∗,i ≥ p∗F (p∗ + λ)− ∆

4

]
≥ 1− T−1. The lemma follows from the union bound.

Let Lp,i be the set of explore rounds in phase i where the seller offered price p and the buyer

λ-lied, i.e., a round t where either the buyer accepted price p and her value vt ≤ p − λ, or

rejected price p and her value vt > p + λ. Let Lp,i = |Lp,i|. The next lemma shows that,

for any phase i where the event from the previous lemma occurs, if the observed revenue of

the optimal price p∗ is less than the observed revenue of another price then the buyer must

have told many λ-lies during phase i.

115

Lemma 5.7. Fix price p ∈ P and phase i. If r̃p∗,i < r̃p,i and the event from Lemma 5.6

occurs then Lp,i ≥
(

∆−4Kλ
4p

)
Si or Lp∗,i ≥

(
∆−4Kλ

4p∗

)
Si.

Proof. Assume for contradiction that Lp,i <
(

∆−4Kλ
4p

)
Si and Lp∗,i <

(
∆−4Kλ

4p∗

)
Si. For any

price p′ note that Ap′,i − V −p′,i ≤ Lp′,i and V +
p′,i −Ap′,i ≤ Lp′,i, since Ap′,i counts the number

of times the buyer accepted price p′ in phase i. Combining these bounds and applying the

definitions of r̃p,i, r̃p∗,i, r̂
−
p,i and r̂+

p∗,i proves

r̃p,i − r̂−p,i =
p

Si

(
Ap,i − V −p,i

)
<

p

Si

(∆− 4Kλ

4p

)
Si =

∆

4
−Kλ, (5.6)

r̂+
p∗,i − r̃p∗,i =

p∗

Si

(
V +
p∗,i −Ap∗,i

)
<
p∗

Si

(∆− 4Kλ

4p∗

)
Si =

∆

4
−Kλ. (5.7)

Now observe

r̃p,i < r̂−p,i +
∆

4
−Kλ Eq. (5.6)

≤ pF (p− λ) +
∆

2
−Kλ Lemma 5.6

≤ p(F (p) +Kλ) +
∆

2
−Kλ K-Lipschitz continuity

≤ pF (p) +
∆

2

≤ p∗F (p∗)− ∆

2
Definition of ∆

≤ p∗(F (p∗ + λ) +Kλ)− ∆

2
K-Lipschitz continuity

≤ p∗F (p∗ + λ)− ∆

2
+Kλ

≤ r̂+
p∗,i −

∆

4
+Kλ Lemma 5.6

< r̃p∗,i Eq. (5.7)

which contradicts r̃p∗,i < r̃p,i.

Next we show that the number of λ-lies told by a surplus-maximizing buyer in any phase

116

is bounded with high probability. This is the main technical lemma.

Lemma 5.8. Fix price p ∈ P, phase i, and suppose the buyer uses a surplus-maximizing

algorithm B∗(Phased,D). For all δ > 0 we have Pr [Lp,i ≥ Cδ] ≤ δ.

Proof. Let Bi be a buyer algorithm that acts according to B∗(Phased,D) during the first

i− 1 phases, and from phase i onwards acts truthfully in every round, i.e., at = 1{vt ≥ pt}

for all rounds t in phases i, i + 1, . . . , dlog2 T e. Assume Pr [Lp,i ≥ Cδ] > δ. We will show

that this implies

BuyerSurplus(Phased,B∗(Phased,D),D, T) < BuyerSurplus(Phased,Bi,D, T),

a contradiction.

Let p∗1, . . . , p
∗
T and a∗1, . . . , a

∗
T be the prices and accept decisions from all rounds when the

buyer algorithm is B∗(Phased,D), and let pi1, . . . , p
i
T and ai1, . . . , a

i
T be the price and accept

decisions from all rounds when the buyer algorithm is Bi. Recall that the values v1, . . . , vT

are drawn independently of seller or buyer behavior. Let t−i and t+i be the first and last

explore rounds in phase i, respectively. We have

BuyerSurplus(Phased,B∗(Phased,D),D, T)− BuyerSurplus(Phased,Bi,D, T)

= E

t−i −1∑
t=1

γt−1(a∗t (vt − p∗t)− ait(vt − pit))

+ E

 t+i∑
t=t−i

γt−1(a∗t (vt − p∗t)− ait(vt − pit))

+ E

 T∑
t=t+i +1

γt−1(a∗t (vt − p∗t)− ait(vt − pit))

 (5.8)

= E

 t+i∑
t=t−i

γt−1(a∗t (vt − p∗t)− ait(vt − pit))

+ E

 T∑
t=t+i +1

γt−1(a∗t (vt − p∗t)− ait(vt − pit))

(5.9)

= E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)

+ E

 T∑
t=t+i +1

γt−1(a∗t (vt − p∗t)− ait(vt − pit))

 (5.10)

117

≤ E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)

+ γt
+
i Tγ (5.11)

= Pr[Lp,i ≥ Cδ]E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)
∣∣ Lp,i ≥ Cδ

+ Pr[Lp,i < Cδ]E

 t+i∑
t=t−i

γt−1(a∗t − ait)(vt − pit)
∣∣ Lp,i < Cδ

+ γt
+
i Tγ

≤ Pr[Lp,i ≥ Cδ]E

 ∑
t∈Lp,i

γt−1(a∗t − ait)(vt − pit)
∣∣ Lp,i ≥ Cδ

+ γt
+
i Tγ (5.12)

≤ Pr[Lp,i ≥ Cδ]E

 ∑
t∈Lp,i

γt−1(−λ)
∣∣ Lp,i ≥ Cδ

+ γt
+
i Tγ (5.13)

≤ Pr[Lp,i ≥ Cδ]
t+i∑

t=t+i −Cδ+1

γt−1(−λ) + γt
+
i Tγ (5.14)

< δ

t+i∑
t=t+i −Cδ+1

γt−1(−λ) + γt
+
i Tγ (5.15)

= −δλγt
+
i −Cδ

(
1− γCδ
1− γ

)
+ γt

+
i Tγ =

γt
+
i

1− γ

(
−δλ(1− γCδ)

γCδ
+ (1− γ)Tγ

)
= 0 (5.16)

Eq. (5.8) follows from the definition of surplus and the linearity of expectation. Eq. (5.9)

holds because B∗(Phased,D) and Bi behave identically before phase i. Eq. (5.10) holds

because the prices offered during explore rounds are independent of the buyer’s algorithm,

and thus pit = p∗t for t ∈ {t−i , . . . , t
+
i }. The fact that ait = 1{vt ≥ pit} for t ≥ t−i implies

a∗t (vt−p∗t)−ait(vt−pit) ≤ 1 for t ≥ t−i , which yields Eq. (5.11), and also implies (a∗t −ait)(vt−

pit) ≤ 0 for t ≥ t−i , which yields Eq. (5.12) (recall that Lp,i ⊆ {t−i , . . . , t
+
i }). The definition

of λ-lies and the fact that pit = p∗t for t ∈ Lp,i implies Eq. (5.13). Eq. (5.14) holds because

γt−1 is decreasing in t. Eq. (5.15) follows from our assumption that Pr[Lp,i ≥ Cδ] > δ.

Eq. (5.16) follows from the definition of Cδ.

We are ready to prove an upper bound on the regret of the Phased algorithm.

118

Restatement of Theorem 5.2 Assume F (p) ≡ Prv∼D[v ≥ p] is K-Lipschitz. Let ∆ =

minp∈P\{p∗} p
∗F (p∗)− pF (p), where p∗ = arg maxp∈P pF (p). For any parameter α ∈ (0, 1)

of the Phased algorithm there exist constants c1, c2, c3, c4 such that

Regret(Phased,D, T) ≤ c1|P|Tα + c2
|P|2

∆2/α
(log T)1/α

+ c3
|P|2

∆1/α
T 1/α
γ (log T + log(K/∆))1/α + c4|P|

= Õ(Tα + T 1/α
γ).

Proof. Define n = dlog2 T e and let T explore
i and T exploit

i be the set of explore and exploit

rounds of phase i ∈ {1, . . . , n}. Since the phase n may only be partially completed at the

termination of the algorithm we allow T explore
n and T exploit

n to be partially or completely

empty. Note that for the Phased algorithm the behavior of a buyer during exploit rounds

does not affect the prices offered in future rounds. Since p̃i is the price offered in each exploit

round of phase i, a surplus-maximizing buyer will choose at = 1{vt ≥ p̃i} in any exploit

round t of phase i. So we can upper bound the regret of the Phased algorithm in terms of

the number of explore rounds and the probability that p̃i 6= p∗ during exploit rounds. We

have

Regret(Phased,D, T) = E

[
T∑
t=1

p∗F (p∗)− atpt

]

=
n∑
i=1

∑
t∈T explore

i

E [p∗F (p∗)− atpt] +
n∑
i=1

∑
t∈T exploit

i

E [p∗F (p∗)− atpt]

≤
n∑
i=1

|P|Si +
n∑
i=1

∑
p∈P\{p∗}

Pr [p̃i = p] (Ti − |P|Si)

≤
n∑
i=1

|P|Si +
∑

p∈P\{p∗}

i∗∑
i=1

Ti +
∑

p∈P\{p∗}

n∑
i=i∗+1

Pr [p̃i = p]Ti (5.17)

where expectations and probabilities are with respect to value distribution D, seller al-

119

gorithm Phased, and buyer algorithm B∗(Phased,D). We will now bound each term in

Eq. (5.17). Let λ = ∆
8K .

Recall that Ti = 2i and Si ≤ Tαi , which implies
∑n

i=1 Si ≤
∑n

i=1 2αi. Since n ≤ log2 T + 1

we have 2n ≤ 2T . Thus

n∑
i=1

Si ≤
n∑
i=1

2αi ≤ (2α)n+1 − 1

2α − 1
=

(2n+1)α − 1

2α − 1
≤ 4αTα − 1

2α − 1
≤ 4α

2α − 1
Tα. (5.18)

where the first inequality follows from the formula for a geometric series (this is just the

standard “doubling trick”).

By the definition of Si and i∗ we have Ti∗−1 < max(D
1/α
T , |P|DT) ≤ D

1/α
T + |P|DT , which

implies Ti∗+1 ≤ 4D
1/α
T + 4|P|DT . Also note that

∑
j≤i Tj ≤ Ti+1 for all i, again because

Ti = 2i. Thus

∑
p∈P\{p∗}

∑
i≤i∗

Ti ≤
∑

p∈P\{p∗}

4D
1/α
T + 4|P|DT ≤ 4|P|D1/α

T + 4|P|2DT ≤ 8|P|2D1/α
T (5.19)

Finally, for any p 6= p∗ and i > i∗ if p̃i = p then r̃p∗,i < r̃p,i, which by Lemma 5.7 implies

that either the event from Lemma 5.6 does not occur,

Lp,i ≥
∆− 4Kλ

4p
Si, or (5.20)

Lp∗,i ≥
∆− 4Kλ

4p∗
Si. (5.21)

Since λ = ∆
8K and p, p∗ ≤ 1, Eq. (5.20) and Eq. (5.21) respectively imply

Lp,i ≥
∆

8
Si, or (5.22)

Lp∗,i ≥
∆

8
Si. (5.23)

The event from Lemma 5.6 (call it event ¬A) occurs with probability at least 1 − 2T−1.

And since Si ≥ DT ≥ (8/∆)C 1
T

for all i ≥ i∗, we have that Eq. (5.22) and Eq. (5.23) imply

120

either Lp,i ≥ C 1
T

(call it event B1) or Lp∗,i ≥ C 1
T

(call it event B2), which by Lemma 5.8

each occur with probability at most T−1 assuming the event ¬A has occurred. Combining

these results, we have

Pr[p̃i = p] ≤ Pr[A ∨B1 ∨B2]

≤ Pr[A] +
∑
i=1,2

Pr[Bi|A] Pr[A] + Pr[Bi|¬A] Pr[¬A]

≤ 2T−1 + 2(2T−1 + T−1) = 8T−1 ,

and therefore ∑
p∈P\{p∗}

∑
i>i∗

Pr [p̃i = p]Ti ≤ 8|P| (5.24)

Combining Eqs. (5.18), (5.19) and (5.24) with Eq. (5.17) yields

Regret(Phased,D, T) ≤ 4α

2α − 1
|P|Tα + 8|P|2D1/α

T + 8|P|

Plugging in the definitions DT = max
(

16
∆2 log T, 8

∆C 1
T

)
and λ = ∆

8K , we have

Regret(Phased,D, T) ≤ 4α

2α − 1
|P|Tα + 8|P|2

(
16

∆2
log T

)1/α

+ 8|P|2
(

8

∆
log
(

1 +
8K(1− γ)TγT

∆

)
log
(1

γ

)−1
)1/α

+ 8|P|. (5.25)

Suppose γ and T satisfy γT ≥ 1/2. Then γt ≥ 1/2 for all t ≤ T , and furthermore Tγ =∑T
t=1 γ

t−1 ≥ T/2. Since Regret(Phased,D, T) ≤ T holds trivially, we have

Regret(Phased,D, T) ≤ T ≤ 2Tγ ≤ Tα + 2T 1/α
γ ,

satisfying the theorem. Therefore, we assume that γT ≤ 1/2. Since Tγ =
∑T

t=1 γ
t−1 = 1−γT

1−γ

121

we have

2Tγ = 2

(
1− γT

1− γ

)
≥ 1

1− γ
≥ 1

log(1/γ)

where the first inequality follows from 2(1−γT) ≥ 1 and the second inequality follows from

x ≥ log(1+x) for all x (just substitute x = γ−1 and rearrange). Thus we can upper bound

log
(

1
γ

)−1
in Eq. (5.25) by 2Tγ , and simplifying yields the statement of the theorem.

5.6.3. Lower Bound Proofs

Restatement of Lemma 5.3 For any incentive compatible and rational strategy S there

exists v ∈ [0, 1] such that SSRegret(S, v) ≥ 1
12 .

Proof. Fix a incentive compatible and rational strategy S. Let SellerRevenue(b) = E(p,a)∼Sb [ap]

be the seller’s expected revenue if the buyer bids b, and let BuyerSurplus(b, v) = E(p,a)∼Sb [a(v−

p)] be the buyer’s expected surplus if she bids b and her value is v. It suffices to show that

there exists v ∈ [0, 1] such that v − SellerRevenue(v) ≥ 1
12 .

Before proceeding, we establish some properties of S. Incentive compatibility of S ensures

that

BuyerSurplus(v, v) ≥ BuyerSurplus(b, v) (5.26)

for all b, v ∈ [0, 1], and rationality of S ensures that

BuyerSurplus(v, v) ≥ 0 (5.27)

for all v ∈ [0, 1]. Also

SellerRevenue(b) + BuyerSurplus(b, v) = E(p,a)∼Sb [a]v (5.28)

for all b, v ∈ [0, 1], which follows directly from definitions, and

SellerRevenue(v) ≤ E(p,a)∼Sv [a]v (5.29)

122

for all v ∈ [0, 1], which follows from rationality: By (5.28) we have BuyerSurplus(v, v) =

E(p,a)∼Sv [a]v−SellerRevenue(v), and thus if (5.29) were false we would have BuyerSurplus(v, v) <

0, which contradicts (5.27).

Now observe that for any b, v ∈ [0, 1]

v − SellerRevenue(v) ≥ E(p,a)∼Sv [a]v − SellerRevenue(v)

= BuyerSurplus(v, v) (5.30)

≥ BuyerSurplus(b, v) (5.31)

= E(p,a)∼Sb [a(v − p)]

= E(p,a)∼Sb [a]v − E(p,a)∼Sb [ap]

= E(p,a)∼Sb [a]v − SellerRevenue(b)

≥
(

SellerRevenue(b)

b

)
v − SellerRevenue(b) (5.32)

= (v − b)
(

SellerRevenue(b)

b

)

where (5.30) follows from (5.28), (5.31) follows from (5.26), and (5.32) follows from (5.29).

Now let b = 1
4 and v = 1

2 . If v− SellerRevenue(v) ≥ 1
6 we are done. Otherwise the first and

last lines from the above chain of inequalities and v − SellerRevenue(v) < 1
6 imply

SellerRevenue(b)

b
≤ v − SellerRevenue(v)

v − b
<

1

6

1

v − b
=

2

3

which can be rearranged into b− SellerRevenue(b) ≥ 1
3b ≥

1
12 .

Restatement of Lemma 5.4 Let the buyer’s discount sequence {γt} be positive and non-

increasing. For any seller algorithm A, value distribution D, and surplus-maximizing buyer

algorithm B∗(A,D), E
[∑T

t=1 γtat(vt − pt)
]
≤ E

[∑T
t=1 at(vt − pt)

]
Proof. It will be convenient to define the following (all expectations in these definitions are

123

with respect to A,D and B∗(A,D)):

rev(t1, t2) = E

[
t2∑
t=t1

atpt

]

sur(t1, t2) = E

[
t2∑
t=t1

γtat(vt − pt)

]

udsur(t1, t2) = E

[
t2∑
t=t1

at(vt − pt)

]

totval(t1, t2) = E

[
t2∑
t=t1

atvt

]

where “udsur” stands for “undiscounted surplus” and “totval” stands for “total value”.

Note that by definition

rev(t1, t2) + udsur(t1, t2) = totval(t1, t2). (5.33)

Also, since B∗(A,D) is a surplus-maximizing buyer strategy, sur(t, T) ≥ 0 for all rounds t,

because otherwise the buyer could increase her surplus by following B∗(A,D) until round

t− 1 and then selecting at′ = 0 for all rounds t′ ≥ t.

We will first prove that sur(t, T) ≤ γtudsur(t, T) for all rounds t. The proof will proceed by

induction. For the base case, we have sur(T, T) = γTudsur(T, T) by definition. Now assume

for the inductive hypothesis that sur(t+ 1, T) ≤ γt+1udsur(t+ 1, T). Since sur(t+ 1, T) ≥ 0

and γt+1 > 0, by the inductive hypothesis we have udsur(t+ 1, T) ≥ 0. Therefore

sur(t, T) = sur(t, t) + sur(t+ 1, T)

= γtudsur(t, t) + sur(t+ 1, T)

≤ γtudsur(t, t) + γt+1udsur(t+ 1, T) (5.34)

≤ γtudsur(t, t) + γtudsur(t+ 1, T) (5.35)

= γtudsur(t, T)

124

where Eq. (5.34) follows from the inductive hypothesis and Eq. (5.35) follows because

udsur(t+ 1, T) ≥ 0 and γt ≥ γt+1. Thus sur(t, T) ≤ γtudsur(t, T).

Since sur(1, T) ≤ γ1udsur(1, T) and γ1 ≤ 1, by Eq. (5.33) we have rev(1, T) + sur(1, T) ≤

totval(1, T), which proves the lemma.

125

CHAPTER 6 : Advertiser Budget Optimization in Keyword Auctions

We conclude with an experimental study of algorithms for optimized budget expenditure in

sponsored search. Given an advertiser’s budget, the goal of such algorithms is to maximize

the number of clicks obtained during each budgeting period. We consider a single-slot model

in which an algorithm’s competing bid — representing the rest of the “market” for clicks —

is drawn from a fixed and unknown probability distribution. While in reality, advertisers (or

their proxies) may often bid strategically and not stochastically, we view this assumption as

analogous to classical models in finance, where despite strategic behavior of traders at the

individual level, models of macroscopic price evolution that are stochastic (such as Brownian

motion models) have been quite effective in developing both models and algorithms. Our

empirical results will demonstrate that algorithms designed for these stochastic assumptions

also perform quite well on the non-stochastic sequence of bids actually occurring in real

search auctions.

The assumption of stochastic bids by the competing market leads to a Markov Decision

Process (MDP) formulation of the optimal policy, where the states of the MDP specify the

remaining time in the period and the remaining budget. However, the second-price nature

of sponsored search introduces the challenge of censored observations: only if we win the

click do we observe the actual competing price; otherwise, we only know our bid was too

low.

Our main contributions are the introduction of efficient algorithms that combine the MDP

formulation with the classical Kaplan-Meier Kaplan and Meier (1958) or product-limit

estimator for censored observations, and a large-scale empirical demonstration that these

algorithms are extremely effective in practice — even when our underlying distributional

assumptions are badly violated. Our source of data is auction-level observations on hundreds

of high-volume key-phrases from Microsoft adCenter. We show that our algorithms rapidly

learn to compete with the strongest possible benchmark — the performance of an offline-

126

optimal algorithm that knows the future competing bids, and always selects the cheapest

clicks in each period.

6.1. Preliminaries

The optimization problem we consider occurs over a series of periods. At the beginning

of each period, the budget optimization algorithm is allocated a fresh budget B. This

assumption is meant to reflect the manner in which advertisers actually specify their budgets

in real sponsored search markets. Broadly speaking, the algorithm’s goal is to maximize

the number of clicks purchased, in each period, using the budget B.

Each period consists of a number of auctions, or an opportunity to earn a click. We consider

the single-slot setting, wherein the search engine displays a single advertisement for each

auction 1. The algorithm places a bid in each auction. Before the bid is placed, a price is

fixed by the auction mechanism. If the algorithm’s bid exceeds this price, the algorithm

wins an impression. For simplicity, we begin by assuming that winning an impression

automatically guarantees that the algorithm also wins a click; we will describe later how to

relax this assumption.

Once the algorithm wins a click, it is charged the price from its budget. Otherwise, the

algorithm maintains its budget, and the next auction occurs. In actual sponsored search

markets, the price is determined by the bids of arbitrary agents competing for the click in

a modified second-price auction (see e.g. Varian (2007)).

The major assumption of this work is to instead model the prices as i.i.d. draws from an

unknown distribution; we will refer to this price as the market price, since it represents the

aggregate behavior of our algorithm’s competitors. As in other financial applications, it is

often analytically intractable to model the individual agents in a market strategically, so

we instead consider the market stochastically as a whole. We will demonstrate that our

algorithm outperforms other methods in practice on actual auction data from Microsoft

1We suspect our methods can be adapted to the multi-slot case, but leave it to future work.

127

adCenter, even when the i.i.d. assumption is badly violated.

We will consider some fixed, unknown, distribution P supported on Z+ with mass function

p(·). On each auction, the market price is an independent random variable distributed as

P. We think of the budget B and market prices as being expressed in terms of the smallest

unit of currency that can be bid by the algorithm. Modeling the problem in this manner

motivates a natural algorithm.

It is important to note that the market prices are not observed directly by the algorithm.

Rather, the algorithm is only privy to the consequences of its bid (whether a click or

impression is received), and changes to its budget.

Succinctly, we consider the following protocol:

1: for period u = 1, 2, ... do

2: Bu,T = B

3: for auctions remaining t = T, T − 1, ..., 1 do

4: Algorithm bids bu,t ≤ Bu,t.

5: Nature draws price xu,t ∼ P.

6: if bu,t ≥ xu,t then

7: cu,t ← 1

8: Bu,t−1 ← Bu,t − xu,t

9: else

10: cu,t ← 0

11: Bu,t−1 ← Bu,t

12: end if

13: Algorithm observes cu,t, Bu,t−1

14: end for

15: end for

When an algorithm places a large enough a bid, winning the click, it also observes the true

128

market price, since its budget it reduced by that amount. However, should the algorithm

fail to win the click, it only knows that the market bid was higher than the bid placed. Thus,

the algorithm receives what is known in the statistical literature as partially right-censored

observations of the market prices {xu,t}.

Informally, we always assume that an algorithm has available to it any information it would

have in a real sponsored search auction (although not always at the same granularity),

and no more. So it may be informed of whether it received a click or impression on an

auction-by-auction basis, but not information regarding prices if it did not win the click.

Finally, we assume there is only a single keyword which the advertiser is bidding on. Our

methods generalize to the setting where there are multiple keywords with multiple click-

through rates and valuations for a click. However, for simplicity, we do not consider these

extensions in this work.

6.1.1. Notation

Given a distribution P, supported on Z+, with mass function p, we let the tail function

Tp(b) =
∑∞

b′=b+1 p(b
′) denote the mass to the right of b.

We use [N] to mean the set {1, ..., N}, and [N]0 = [N] ∪ {0}.

6.2. Related Work

There is some prior work directly concerning the problem of optimizing an advertiser’s

budget Kitts and Leblanc (2004); Zhou et al. (2008), as well as work concerned with char-

acterizing the dynamics or equilibria of a market in which advertisers play from a family

of optimizing strategies Borgs et al. (2007); Cary et al. (2007). All these works attempt

to model the strategic behavior of agents participating in a sponsored search auction. We

will depart from this, modeling the auction market stochastically, as is more common in

finance.

The sponsored search budget optimization problem has also been formulated as an instance

129

of online knapsack Zhou et al. (2008). For the online knapsack problem, it is known that no

online algorithm can converge to the optimum in the worst case Marchetti-Spaccamela and

Vercellis (1995). The stochastic knapsack problem has also been studied, and there is an

algorithm with near-optimal average-case performance Lueker (1995). One of our proposed

algorithms is a censored learning version of such an algorithm. Our main proposed algorithm

is closely modeled on an algorithm from a financial optimization problem Ganchev et al.

(2010), which similarly integrates a censored estimation step with greedy optimization.

Finally, we apply classical techniques from reinforcement learning in a finite state MDP,

including Q-learning (c.f. Watkins and Dayan (1992)), as well as classical techniques from

the study of censored observations Kaplan and Meier (1958); Turnbull (1974).

6.3. MDP Formulation

An algorithm for the optimization problem introduced in the previous section can be de-

scribed as an agent in a Markov Decision Process (MDP). An MDP M can be written as

M = (S, {As}s∈S , µ, r) where S is a set of states, and As are the set of actions available

to the agent in each state s, and A = ∪s∈SAs. For a ∈ As, µ(a, s, s′) is the probability

of transitioning from state s to state s′ when taking action a in state s. r(a, s, s′) is the

expected reward received after taking action a in state s and transitioning to state s′. The

goal of the agent is to maximize the expected reward received while transitioning through

the MDP.

In our case, the state space is given by S = [B]0 × [T]0. With t auctions remaining in

period u, the algorithm is in state (Bu,t, t) ∈ S. Furthermore, the actions available to any

algorithm in such a state are the set of bids that are at most Bu,t. So for any (b, t) ∈ S we

let A(b,t) = [b]0.

When t ≥ 1, two types of transitions are possible. The agent can transition from (b, t) to

(b, t−1) or from (b, t) to (b′, t−1) where 0 ≤ b′ < b. In the former case, the agent must place

a bid lower than the market price. Therefore, we have that µ(a, (b, t), (b, t − 1)) = Tp(a).

130

Furthermore, the agent does not win a click in this case, and r(a, (b, t), (b, t−1)) = 0. In the

latter case, let δ = b−b′. The agent must bid at least δ, and the market price must be exactly

δ on auction t of the period in question. Therefore, we have that µ(a, (b, t), (b′, t−1)) = p(δ)

and r(a, (b, t), (b′, t− 1)) = 1 so long as a ≥ δ.

When t = 0, for any action, the agent simply transitions to (B, T) with probability 1, with

no reward. The agent’s budget is refreshed, and the next period begins.

All other choices for (a, s, s′) ∈ As × S × S represent invalid moves, and hence µ(a, s, s′) =

r(a, s, s′) = 0.

Finally, conditioned on an agent’s choice of action a and current state s, its next state s is in-

dependent of all previous actions and states, since the market prices {xu,t} are independent.

The Markov property is satisfied, and we indeed have an MDP.

We call this the Sponsored Search MDP (SS-MDP). If π is a fixed mapping from S to A

satisfying π(s) ∈ As, we say that π is a policy for the MDP.

Note that an agent in the SS-MDP, started in an arbitrary state (b, t), arrives at the state

(B, T) after exactly t+ 1 actions. Therefore, we can define the random variable Cπ(b, t) to

be the total reward (i.e. number of clicks) attained by policy π before returning to (B, T).

We say that π is an optimal policy for the SS-MDP if an agent started at (B, T), playing

µ(s) in each state s encountered, maximizes the expected number of clicks rewarded before

returning to (B, T). In other words:

Definition 6.1. A policy π∗ is an optimal policy for the SS-MDP if π∗ ∈ arg maxπ E[Cπ(B, T)].

The SS-MDP is determined by the choice of budget B, time T and distribution p. We will

want to make the optimal policy’s dependence on p explicit, and consequently we will write

it a π∗p.

131

6.4. The Value Function

MDPs lend themselves to dynamic programming. Indeed, we can characterize exactly the

optimal policy for the SS-MDP when the probability mass function p is known.

For a distribution p, let Vp(b, t), the value function for p, denote the expected number of

clicks received by an optimal policy started at state (b, t). That is, if π∗p is an optimal policy,

then Vp(b, t) = E[Cπ∗(b, t)].

First note that when T = 0, Vp(B, T) ≡ 0. Consider the policy π∗a,b,t that takes action a

in state (b, t), and plays optimally thereafter. Let Vp(a, b, t) = E[Cπ∗a,b,t(b, t)] be the clicks

received by such a policy from state (b, t). Observe that Vp(a, b, t) can be written in terms

of Vp(·, t− 1):

Vp(a, b, t) =

a∑
δ=1

p(δ)[1 + Vp(b− δ, t− 1)] + Tp(a)Vp(b, t− 1).

In other words, if the market price is δ ≤ a, which occurs with probability p(δ), the agent

will win a click at the price of δ and transition to state (b−δ, t−1). At this point it behaves

optimally, earning Vp(b− δ, t− 1) clicks in expectation. If the market price is greater than

a, which occurs with probability Tp(a), the agent will retain its budget, transitioning to the

state (b, t− 1), earning Vp(b, t− 1) clicks in expectation. Furthermore, we know that:

Vp(b, t) = arg max
a≤b

Vp(a, b, t).

Therefore, if p and Vp(·, T−1) are known then we can compute Vp(a, b, t) in O(B) operations,

and so compute Vp(b, t) in O(B) operations. Recalling that Vp(b, 0) ≡ 0, we can compute

Vp(b, t) for all (b, t) ∈ [B]0 × [T]0 in O(B2T) operations.

6.5. Censored Data

In the previous sections, we described how to compute the optimal policy π∗p when p is

known. A natural algorithm for budget optimization is therefore to maintain an estimate p̂

132

of p, and bid greedily according to π∗p̂. Before describing such an algorithm, we will discuss

the problem of estimating p.

As introduced in Section 6.1, the observations received by a budget-optimization algorithm

are partially right-censored data. We begin with a general discussion of censoring.

Suppose that P is a distribution with mass function p and (z1, ..., zn) are i.i.d., P-distributed

random variables. Fix n integers k1, ..., kn, and define oi = min(zi, ki). We say that the

sample {oi} is partially right-censored data.

If oi < ki, we say that oi is a direct observation. In other words, oi = zi and we have observed

the true value of zi. Otherwise, oi = ki and we say that oi is a censored observation. We

know only that zi ≥ ki.

Given such partially right-censored data, the Product-Limit estimator Kaplan and Meier

(1958) is the non-parametric maximum-likelihood estimator for p.

Definition 6.2. Let P be a discrete distribution with mass function p, and let {zi} be

i.i.d. P-distributed random variables. Given integers K = (k1, ..., kn) and observations

O = (o1, ..., on) where oi = min(zi, ki), let PL(K,O) be the Product-Limit estimator for p.

Specifically, given integers K, and a set of observations O generated by a distribution P,

let D(s) = |{oi ∈ O | s = oi < ki}| be the number of direct observations of value s, and

N(s) = |{oi ∈ O | s ≤ oi, s < ki}|. Now let S(t) =
∏t−1
s=1 1− D(s)

N(s) . The CDF of PL(K,O) is

given by 1− S(t).

In our setting, we are receiving censored observation of the random variables {xu,t} where

the censoring set K is given by {bu,t + 1}, and ou,t = min{bu,t + 1, xu,t}. When a click is

received (i.e. xu,t < bu,t+ 1), we observe xu,t directly since xu,t = Bu,t−Bu,t−1, the amount

which the algorithm is charged for winning the click. Otherwise, the algorithm is charged

nothing, and we only know that xu,t ≥ bu,t + 1.

Finally, we will eventually consider the setting in which winning an impression does not

133

necessarily guarantee winning a click. In such a setting, we will have both left-censored and

right-censored observations of xu,t, what is known as doubly-censored data.

If the algorithm bids bu,t and does not win the impression, we know that xu,t ≥ bu,t + 1.

Similarly, if the algorithm wins both the impression and the click, it gets to observe xu,t

directly. However, should the algorithm win the impression but not the click, it is only

informed that it placed a large-enough bid (that it won the impression), or xu,t < bu,t + 1,

without observing xu,t directly. We give a more detailed discussion of this setting in Section

6.8. For doubly-censored data, there is algorithm giving the non-parametric MLE Turnbull

(1974).

6.6. Greedy Product-Limit Algorithm

The algorithm we propose maintains an estimate p̂ of p. With budget b remaining, and t

auctions remaining, the algorithm will greedily use its current estimate of p, and bid πp̂(b, t).

The pseudo-code for Greedy Product-Limit contains a detailed description.

Algorithm 6 Greedy Product-Limit

Input: Budget B
1: Initialize distribution p̂ uniform on [B]
2: Initialize K = []; Initialize O = []
3: for period u = 1, 2, ... do
4: Set Bu,T := B
5: for auctions remaining t=T,T-1,...,1 do
6: Bid π∗p̂(Bu,t, t)
7: Set ku,t ← π∗p̂(Bu,t, t) + 1
8: K ← [K, ku,t]
9: if Click won at price xu,t then

10: O ← [O, xu,t]
11: else
12: O ← [O, ku,t]
13: end if
14: Update p̂ to PL(K,O)
15: end for
16: end for

134

6.7. Competing Algorithms

In this section we will describe a few alternative strategies against which we compare Greedy

Product-Limit. The first relies on an observation that, given an arbitrary sequence of market

prices, there is a simple bidding strategy that has a constant competitive ratio to the offline

optimal.

6.7.1. Offline Optimality

So far we have focused our attention on the notion of optimality introduced in Section 6.3.

Namely, an algorithm is optimal if it achieves Vp(B, T) clicks, in expectation, in every period.

However, given an arbitrary (non-stochastic) vector of T market prices x = (x1, ..., xT), we

can define C∗(x, B) to be the maximum number of clicks that could be attained by any

sequence of bids, knowing x a priori. In other words, if b ∈ {0, 1}T , and ‖b‖0 = |{bi | bi =

1}|, then we define

Definition 6.3.

C∗(x, B) , max
b∈{0,1}T

‖b‖0 subject to x · b ≤ B.

We call a sequence of bids for x that attains C(x, B) clicks an optimal offline policy. Notice

that one attains the optimal offline policy by greedily selecting to win the clicks with the

cheapest prices, until the budget B is saturated.

6.7.2. Fixed Price

Competing against the notion of optimality introduced in Section 6.7.1 may seem onerous

in the online setting. Indeed, competing against an arbitrary sequence of prices is a special

case of the online knapsack problem, which is known to be hard. However, we will now

show that for any sequence of prices x, there always exists a simplistic bidding policy which

would have attained a constant factor of the bids of the optimal offline policy.

Let Fixed(b) be the policy that bids b on every auction that it has budget to do so, and

135

define C(x, b, B) to be the number of clicks attained by Fixed(b) against x with budget B.

Theorem 6.1. For any sequence of prices x, and budget B, there exists a bid b such that

C(x, b, B) ≥ 1
2C
∗(x, B).

Proof. Let b∗ be the value of the price for the most expensive click that the optimal offline

policy selects to win. Suppose that the optimal offline policy wins M +N clicks, where M

clicks were won with a price of exactly b∗ and the remaining N clicks were won with a price

of b∗ − 1 or less.

If N ≥ 1
2C
∗(x, B), then Fixed(b∗ − 1) would win all N clicks, giving the desired result.

Otherwise, we know that M ≥ 1
2C
∗(x, B). Consider the policy Fixed(b∗). In the worst

case, the policy will win only clicks with price b∗ before saturating its budget. However, we

know that Mb∗ ≤ B, and so C(x, b∗, B) ≥M ≥ 1
2C
∗(x, B), as desired.

6.7.3. Fixed-Price Search

This motivates a simple algorithm which attempts to find the best fixed-price, Fixed-Price

Search.

Algorithm 7 Fixed-Price Search

1: Select b1 arbitrarily.
2: for period u = 1, 2, ... do
3: Cu := 0
4: for auctions remaining t = T, T − 1, ..., 1 do
5: Bid bu
6: if Click won then
7: Cu ← Cu + 1
8: end if
9: end for

10: bu+1 ← UpdateBid({bu′ , Cu′}uu′=1)
11: end for

The algorithm plays a fixed-price strategy each period. At the end of the period it uses

136

a subroutine UpdateBid to select a new fixed-price according to how many clicks it has

received. There are many reasonable ways to specify the UpdateBid subroutine, including

using additive or multiplicative updates (e.g. treating each price as an expert and running

a bandit algorithm such as Exp3 Auer et al. (2003)). But general, the performance of any

such approach cannot overcome the fixed-price “gap” of Ex[C∗(x, B)−maxbC(x, b, B)].

6.7.4. Q-learning

Given the MDP formulation of the problem in Section 6.3, we may hope to solve the

problem using techniques from reinforcement learning. Q-learning with exploration is one

of the simplest algorithms for reinforcement learning, giving good results in a number of

applications.

In Q-learning, the agent begins with an estimate Q(a, b, t) of the function Vp(a, b, t), called

the Q-value, for each state (b, t) and action a ∈ [b]. In a state (b, t), the agent greedily

performs the best action a∗ for that state using the current Q-values receiving some re-

ward r̂ and arriving at a new state (b′, t − 1). The Q-values for state (b′, t − 1) and the

observed reward r̂ are then used to update Q(a∗, b, t). This is often combined with forced

exploration. Notice that Q-learning will necessarily ignore the special assumptions placed

on the underlying MDP. In particular, from our discussion in Section 6.3, we have that

π(a, (b1, t1), (b′1, t1 − 1)) = π(a, (b2, t2), (b′2, t2 − 1)) when b1 − b′1 = b2 − b′2.

6.7.5. Knapsack Approaches

As referenced in Section 6.2, the problem of budget optimization in sponsored search is

very related to the online knapsack problem. In the online knapsack problem, an optimizer

is presented with a sequence of items with values and weights. At each time step, the

optimizer makes an irrevocable decision to take the item (subtracting its weight from the

optimizer’s budget, and gaining its value). In the worst case, Marchetti-Spaccamela et

al. demonstrate that a constant-factor competitive ratio with the offline is not possible

Marchetti-Spaccamela and Vercellis (1995). Nevertheless, there are many results from the

137

online knapsack literature that are applicable to our setting.

While in the worst case the online knapsack problem is hard, Lueker gives an average-case

analysis for an algorithm for the Stochastic Knapsack Problem, which is related to our

setting Lueker (1995). In the Stochastic Knapsack Problem, items {(ri, xi)} are i.i.d. draws

from some fixed, known, distribution. ri is the profit or reward earned by taking the item,

and xi is the price of the item. In our setting, all clicks are considered indistinguishable for

a fixed keyword, and so ri = 1.

Note that the protocol differs from ours in a few ways. Firstly, there is no learning. The

underlying distribution is assumed to be known. Secondly, there is no censoring of data,

or any notion of an auction. The optimizer is presented with each item up-front, at which

point it must make a decision before moving on to the next. Thirdly, in the language of our

setting, there is only a single period.

Under these assumptions, the algorithm of Lueker gives a simple algorithm which differs

from the true optimum by an average of Θ(T), where T is the length of the period, assuming

that the budget available scales with T Lueker (1995).

Nevertheless, the same ideas behind Greedy Product-Limit give us a natural adaptation

of this algorithm to our setting. Suppose that the prices are presented up-front and that

P is known. With budget B remaining and time T remaining in a period, the algorithm

computes:

v(B/T) , max
v
{v |

v∑
a=1

a · p(a) ≤ B/T}

and takes the click iff its market price x satisfies x ≤ v(B/T). Thus, when the prices are

not presented up-front, it is equivalent to simply bidding v(B/T).

Note that bidding v(B/T) is natural; it is the bid that, in expectation, costs B/T , or

138

smooths the remaining budget over the time remaining. We can now combine this with

an estimation step, using the product-limit estimator, as we did for Greedy Product-Limit,

simply replacing line 7 with the assignment ku,t := v(B/T). We refer to this strategy as

LuekerLearn.

Notice, however, that once p̂ has converged to the true p, we should not expect this algorithm

to outperform Greedy Product-Limit, which would bid optimally. For a fixed choice of

distribution p, budget B, and number of auctions T , let Lp(B, T) be the expected number

of clicks earned by running the algorithm of Lueker, knowing p. Lp(B, T) ≤ Vp(B, T), by

definition of Vp(B, T). We will comment (as established by Lueker) that the gap Vp(B, T)−

Lp(B, T) is exacerbated by distributions with large variance relative to B and T , an issue

we will return to in Section 6.8; see also Figure 4.

2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

Round t

Lueker B=50, T=10

C
lic

k
s
(t

)/
t

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distribution p

Bid b

Lueker
V

p
(B,T)

Figure 4: A distribution for which Lp(B, T) is bounded away from Vp(B, T). The red curve
plots the performance (averaged over auctions) of the algorithm of Lueker’s algorithm when
the distribution p is known. The distribution is displayed on the right.

6.7.6. Budget Smoothing

There is also literature in which other budget-smoothing approaches are considered. Zhou

et al. consider the budget optimization problem in sponsored search as a online knapsack

139

problem directly Zhou et al. (2008). In our setting, their algorithm guarantees a ln(B) + 1

competitive ration with the offline optimum. Their algorithm smooths its budget over time,

and operates by bidding: 1/(1+exp(z(t)−1)) where z(t) is the fraction of budget remaining

at time t.

6.8. Experimental Results

In this section we will describe experimental results for the previously described algorithms.

We use bids placed through Microsoft’s adCenter in two sets of experiments. In the first,

we assume that our modeling assumptions from Section 6.1 are correct, and construct a dis-

tribution P from the empirical data for use in simulation. In the second set of experiments,

we run the methods on the historical data directly, taken as an individual sequence and

thus violating our stochastic assumptions. We will see that in both cases, our suggested al-

gorithm outperforms the other methods discussed. First, however, we discuss an important

generalization to the setting that we have considered so far.

6.8.1. Impressions and Clicks

Until now we have assumed that all ad impressions result in a click (i.e. winning an auc-

tion results in an automatic click). We will now relax this assumption. Instead, when an

advertiser wins an impression, we will suppose that whether a click occurs is an indepen-

dent Bernoulli random variable with mean r. We call r the click-through rate. If a click

does indeed occur, the advertiser is charged the market price. Otherwise, the advertiser is

informed that an impression has occurred, but maintains its budget.

All the methods described generalize to this setting in a straightforward manner. Never-

theless, it is worth being explicit about how Greedy Product-Limit must be modified. First

note that the MDP formulation for the problem differs in the definition of the transition

probability µ. In particular, we now have µ(a, (b, t), (b − δ, t − 1)) = rp(δ) (when δ ≤ a),

and µ(a, (b, t), (b, t − 1)) = (1 − r
∑a

δ=1 p(δ)). π∗p can still be computed using dynamic

programming, where:

140

Vp(a,B, T) = (1− r
∑a

δ=1 p(δ))Vp(B, T − 1) +
∑a

δ=1 rp(δ)[1 + Vp(B − δ, T − 1)]

and π∗p(B, T) = arg maxa≤B Vp(a,B, T)

Furthermore, as discussed in Section 6.5, rather than using the Product-Limit estimator,

this setting requires that the new algorithm treat doubly-censored data, for which techniques

exist Turnbull (1974).

6.8.2. Data

The data used for these experiments were generated by collecting the auction history from

advertisers placing bids through Microsoft’s adCenter over a six month period. For a given

keyword, we let the number of times that keyword generated an auction be its search volume,

Volk, and take keyword k to be the keyword with the k-th largest volume.

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

k

V
o

l k
 /

 V
o

l 1

Search Volume (log−log)

Figure 5: Log-log plot of Volk/Vol1 for each k

The distribution of search volume is clearly heavy-tailed (see Figure 5) and is well approx-

imated by a power law over several orders of magnitude.

We ran our experiments on the 100 keywords with largest search volume. As we will discuss

further in the next section, the bidding behavior is quite varied among the different keywords

141

in the data set.

In actual sponsored search-auctions, each bidder is given a quality-score for each keyword.

Bidders’ actual bids are multiplied by these quality scores to determine who wins the auc-

tion. For each keyword k, and auction t, let xk,t be the quality-score-adjusted bid for the

advertiser that historically won the top slot for that auction, and ck,t indicate whether a

click occurred.

We take the perspective of a new advertiser with unit quality score. xk,t is the amount that

such an advertiser would have needed to bid to have instead taken the top slot (and the

amount the advertiser would be charged should they also receive a click).

Finally, we make the single-slot assumption throughout, so even if multiple ads were indeed

shown historically, we assume that an algorithm wins an impression if and only if it wins

the top slot. In principle, Greedy Product-Limit can be modified to operate when multiple

ad slots are available. However, we avoid this complication in this work.

6.8.3. Distributional Simulations

The first set of simulations use the historical data {xk,t}, to construct an empirical distri-

bution pk on market prices for each keyword k. We also set a fixed click-through rate rk,

for each keyword using the background click-through rate for that keyword (the empirical

average of {ck,t}). While our main results in the next section eliminate the distribution pk

and use the sequence {xk,t} directly, we first simulate and investigate the case where our

modeling assumptions hold.

Figure 6 demonstrates that the types of distributions generated in this manner are quite

varied.

The budget Bk allocated to the advertiser for keyword k is selected so that, optimally, a

constant fraction of clicks are available. In other words, the simulations were run with

Bk(T) satisfying Vpk(Bk(T), T) = fT , where f = 10%. Each experiment was run for 10

142

0 1 2 3 4
0

0.005

0.01

0.015

0.02
coupons

b/B
k

p
(b

)

0 1 2 3 4
0

0.005

0.01

0.015

0.02
blackberry

b/B
k

p
(b

)

0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03
ipod

b/B
k

p
(b

)

0 1 2 3 4
0

0.005

0.01

0.015

0.02
hawaiian airlines

b/B
k

p
(b

)

Figure 6: Each plot represents the empirical distribution pk for a different keyword k. The
x-axis represents the bid as a fraction of the total budget Bk allocated to the advertiser for
keyword k.

periods containing T = 100 auctions each, and 20 experiments were run for each keyword.

A major observation is that Greedy Product-Limit converges to the optimum policy on the

time-scale of auctions, not periods. This is significant since certain methods considered are

doomed to converge on the time-scale of periods instead. For example, each state can be

visited at most once by Q-learning in a single period. Furthermore, for a particular time

t, the only state corresponding to that t visited is (Bu,t, t), (i.e. the state corresponding

to the budget held by the algorithm at that time). Similarly, the Fixed-Price algorithm

adjusts its bid at the end of every period. Table 1 shows that after just 2 periods, Greedy

Product-Limit (GPL) has come within five percent of optimal across all keywords. For

143

each algorithm, the results are the averages of 20 different simulations, and are statistically

significant. An unpaired 2-sample t-test between the results for GPL and those of any other

algorithm yields p-values that are less than 10−20.

Table 1: Average Competitive Ratio with Vpk(B, T), across all keywords and experiments,
after two periods.

Algorithm Name Competitive Ratio Std

Greedy Product-Limit 0.9573 0.1704
LuekerLearn 0.8448 0.1842
Fixed-Price Search 0.8352 0.1733
Q-learn 0.7484 0.1786
Budget Smoothing 0.1597 0.2418

6.8.4. Sequential Experiments

The main result of our work comes from experiments run on the real sequential data dk =

{xk,t, ck,t}t. Rather than taking {xk,t, ck,t}, and constructing the distribution pk and a

click-through rate, as in the previous section, we can use the sequence directly. Each of the

previous methods are well-defined if the prices and clicks are generated in this manner, as

opposed to being generated by the stochastic assumptions that motivated Greedy Product-

Limit. We break the sequence into 10 periods of length T = 100. In reality, the number of

auctions in a period might vary. However, this is minor, as an advertiser can attain good

estimates of period-length. We allocate to each algorithm the same budget Bk used in the

stochastic experiments.

Recall the notion of offline optimality defined in section 6.7.1. For each keyword k, we can

compute the exact auctions that one should win knowing the sequence {xk,t, ck,t} a priori.

We will demonstrate that Greedy Product-Limit is competitive with even this strong notion.

We first look at the nature and time-scale of the convergence of Greedy Product-Limit.

144

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

A
v
e
ra

g
e
 C

lic
k
s
 a

ft
e
r

t
A

u
c
ti
o
n
s

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Auctions t
0 50 100 150

0

0.2

0.4

0.6

0.8

1

Auctions t

Figure 7: Convergence rates for 6 different keywords. The x-axis denotes auctions t, and the

y-axis plots, in black, the number of clicks attained by the offline optimal after t auctions,

normalized by t. The blue plot shows the same for Greedy Product-Limit. Greedy Product-

Limit converges in the auction time-scale, not the period time-scale.

We will shortly see that LuekerLearn, the modification of Greedy Product-Limit attains

similar performance. Like Greedy Product-Limit, it converges in the time-scale of auctions.

However, recalling Figure 4, LuekerLearn will sometimes converge to something suboptimal,

especially on keywords where there is a lot of variance in the bids. Figure 8 demonstrates

this behavior on the sequential data. In fact, let Ak denote the cumulative number of clicks

145

attained by Greedy Product-Limit and Lk denote the cumulative number of clicks attained

by LuekerLearn after 10 periods for keyword k, defining Zk = Ak/Lk and Sk = std({xk,t}t).

The observations {Zk} are positively correlated with {Sk}, with a correlation coefficient of

0.2103 that is significant with a p-value of 0.0357.

Figure 9 demonstrates that, ignoring variance, Greedy Product-Limit has indeed converged

to optimal across all keywords after just a single period. Let Ok be the offline optimal

number of clicks that can be attained for keyword k after 10 periods (the entire data set).

Let Ak,p denote the cumulative number of clicks attained by an algorithm on keyword k

after p periods. For an algorithm that is optimal after a single period, we should expect

Ak,p/Ok to be roughly p/10 for each period p. Indeed, while there are certain keywords for

which this doesn’t happen, we see that this is true on average.

Figure 10 and Table 2 summarize the performance of the competing methods.

Table 2: Average Competitive Ratio with OK , across all keywords.
Algorithm Name Competitive Ratio Std

Greedy Product-Limit 0.9062 0.1166
LuekerLearn 0.8962 0.1152
Fixed-Price Search 0.6253 0.1395
Q-learn 0.5879 0.1558
Budget Smoothing 0.3105 0.3252

Notice that besides Greedy Product-Limit, the only other algorithm that competes with

the offline optimal is our modification to the stochastic knapsack algorithm, LuekerLearn.

As previously discussed, the convergence of Q-learn and Fixed-Price Search happens on

the time-scale or periods, not auctions. We suspect that with more data, both would

converge (as they do in the stochastic setting), albeit Fixed-Price Search would converge

only to the best fixed-price in hindsight. Finally, as demonstrated in Figure 8, when there is

large variation in bidder behavior, LuekerLearn might stay bounded away from the offline

optimal.

146

200 300 400 500 600 700 800 900 1000
0.26

0.28

0.3

0.32

Performance

0 200 400 600 800 1000
0

2

4

6

8

Keyword: "Time Warner Cable"

200 300 400 500 600 700 800 900 1000
0.09

0.1

0.11

0.12

A
v
g
 C

lic
k
s
 A

ft
e

r
t

R
o
u
n

d
s

0 200 400 600 800 1000
0

50

100

150

200

250

B
id

 i
n
 R

o
u
n
d
 r

Keyword: "Fashion Bug"

200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

Auction t
0 200 400 600 800 1000

0

50

100

150

200

Auction t

Keyword: "Spirit Airlines"

Figure 8: On the left the y-axis plots, in black, the number of clicks attained by the
offline policy after t auctions, normalized by t. The blue plot shows the same for Greedy
Product-Limit and the red for LuekerLearn. In all three, LuekerLearn is bounded away
from the offline optimal. The right side displays xk,t/x̄k where x̄k is the average over xk,t
for the corresponding keyword. Note the “bursty” nature of the market price, with auctions
occurring that set a market price hundreds of times greater than the average.

147

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period p

A
k
,p

/O
k

Greedy Product Limit

Figure 9: Each scatter point represents Ak,p/Ok for a different keyword k, at the end of
period p displayed on the x-axis. The line is the mean of Ak,p/Ok across all k for a fixed
period p.

148

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period p

C
o

m
p

e
ti
ti
v
e

 R
a

ti
o

 A
k
,p

/O
k

Performance Summary

Greedy Product−Limit

LuekerLearn

Fixed−Price Search

Q−learn

Budget Smoothing

Figure 10: Average of Ak,p/Ok across all k for each algorithm.

149

BIBLIOGRAPHY

N. Abe, A. W. Biermann, and P. M. Long. Reinforcement learning with immediate rewards
and linear hypotheses. Algorithmica, 37:263–293, 2003.

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm
for bandit linear optimization. In COLT, pages 263–274, 2008.

J. Abernethy, K. Amin, M. Draief, and M. Kearns. Large-scale bandit problems and
kwik learning. In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pages 588–596, 2013.

A. Acquisti and H. R. Varian. Conditioning prices on purchase history. Marketing Science,
24(3):367–381, 2005.

R. Agrawal. The continuum-armed bandit problem. SIAM journal on control and optimiza-
tion, 33(6):1926–1951, 1995.

N. Alon, N. Cesa-Bianchi, C. Gentile, and Y. Mansour. From bandits to experts: A tale of
domination and independence. In Advances in Neural Information Processing Systems,
pages 1610–1618, 2013.

K. Amin, M. Kearns, and U. Syed. Bandits, query learning, and the haystack dimension.
In COLT, pages 87–106, 2011.

K. Amin, M. Kearns, P. Key, and A. Schwaighofer. Budget optimization for sponsored
search: Censored learning in mdps. In Uncertainty in Artificial Intelligence: Proceedings
of the Twenty-Eighth Conference, 2012a.

K. Amin, M. Kearns, and U. Syed. Graphical models for bandit problems. In Uncertainty
in Artificial Intelligence: Proceedings of the Twenty-Seventh Conference, 2012b.

K. Amin, A. Rostamizadeh, and U. Syed. Learning prices for repeated auctions with strate-
gic buyers. In Advances in Neural Information Processing Systems, pages 1169–1177,
2013.

K. Amin, A. Rostamizadeh, and U. Syed. Repeated contextual auctions with strategic
buyers. In Advances in Neural Information Processing Systems, pages 622–630, 2014.

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

R. Arora, O. Dekel, and A. Tewari. Online bandit learning against an adaptive adversary:
from regret to policy regret. In ICML, 2012.

J.-Y. Audibert, S. Bubeck, et al. Best arm identification in multi-armed bandits. COLT
2010-Proceedings, 2010.

150

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Ma-
chine Learning Research, 3:397–422, 2002.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2003.

M. Babaioff, Y. Sharma, and A. Slivkins. Characterizing truthful multi-armed bandit mech-
anisms. In Proceedings of Conference on Electronic Commerce, pages 79–88. ACM, 2009.

M. Babaioff, R. D. Kleinberg, and A. Slivkins. Truthful mechanisms with implicit payment
computation. In Proceedings of the Conference on Electronic Commerce, pages 43–52.
ACM, 2010.

Z. Bar-Yossef, K. Hildrum, and F. Wu. Incentive-compatible online auctions for digital
goods. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 964–970. Society for Industrial and Applied Mathematics, 2002.

F. Barahona. On the computational complexity of Ising spin glass models. Journal of
Physics A: Mathematical, Nuclear and General, 15:3241–3253, 1982.

A. Beygelzimer and J. Langford. The offset tree for learning with partial labels. In KDD,
pages 129–138, 2009.

A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandit
algorithms with supervised learning guarantees. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

A. Blum, V. Kumar, A. Rudra, and F. Wu. Online learning in online auctions. In Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 202–204.
Society for Industrial and Applied Mathematics, 2003.

A. L. Blum. Separating distribution-free and mistake-bound learning models over the
boolean domain. SIAM Journal on Computing, 23(5):990–1000, 1994.

C. Borgs, J. Chayes, N. Immorlica, K. Jain, O. Etesami, and M. Mahdian. Dynamics of bid
optimization in online advertisement auctions. In Proceedings of the 16th international
conference on World Wide Web, pages 531–540. ACM, 2007.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. arXiv preprint arXiv:1204.5721, 2012.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. Online optimization in x-armed bandits.
In Advances in Neural Information Processing Systems 21, 2008.

151

M. Cary, A. Das, B. Edelman, I. Giotis, K. Heimerl, A. Karlin, C. Mathieu, and M. Schwarz.
Greedy bidding strategies for keyword auctions. In Proceedings of the 8th ACM Confer-
ence on Electronic Commerce, pages 262–271. ACM, 2007.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

N. Cesa-Bianchi, C. Gentile, and F. Orabona. Robust bounds for classification via selective
sampling. In Proceedings of the 28th International Conference on Machine Learning,
2009.

N. Cesa-Bianchi, C. Gentile, and Y. Mansour. Regret minimization for reserve prices in
second-price auctions. In Proceedings of the Symposium on Discrete Algorithms. SIAM,
2013.

V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In Proceedings
of the 7th ACM conference on Electronic commerce, pages 82–90. ACM, 2006.

V. Dani, S. M. Kakade, and T. P. Hayes. The price of bandit information for online
optimization. In Advances in Neural Information Processing Systems, pages 345–352,
2007.

O. Dekel, F. Fischer, and A. D. Procaccia. Incentive compatible regression learning. Journal
of Computer and System Sciences, 76(8):759–777, 2010.

N. R. Devanur and S. M. Kakade. The price of truthfulness for pay-per-click auctions. In
Proceedings of the Conference on Electronic commerce, pages 99–106. ACM, 2009.

N. R. Devanur, Y. Peres, and B. Sivan. Perfect bayesian equilibria in repeated sales. 2014.

B. Edelman and M. Ostrovsky. Strategic bidder behavior in sponsored search auctions.
Decision support systems, 43(1):192–198, 2007.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the
bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society for Industrial and
Applied Mathematics, 2005.

D. Fudenberg and J. Tirole. Game theory. MIT Press Books, 1, 1991.

D. Fudenberg and J. M. Villas-Boas. Behavior-based price discrimination and customer
recognition. Handbook on economics and information systems, 1:377–436, 2006.

K. Ganchev, Y. Nevmyvaka, M. Kearns, and J. W. Vaughan. Censored exploration and the
dark pool problem. Communications of the ACM, 53(5):99–107, 2010.

S. A. Goldman and M. J. Kearns. On the complexity of teaching. Journal of Computer and
System Sciences, 50(1):20–31, 1995.

152

O. D. Hart and J. Tirole. Contract renegotiation and coasian dynamics. The Review of
Economic Studies, 55(4):509–540, 1988.

T. Hegedüs. Generalized teaching dimensions and the query complexity of learning. In
Proceedings of the 8th Annual Conference on Computational Learning Theory, pages 108–
117. ACM, 1995.

M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi, M. Tambe, and F. Ordóñez. Software
assistants for randomized patrol planning for the lax airport police and the federal air
marshal service. Interfaces, 40(4):267–290, 2010.

E. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal
of the American Statistical Association, pages 457–481, 1958.

M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, 1994.

B. Kitts and B. Leblanc. Optimal bidding on keyword auctions. Electronic Markets, 14(3):
186–201, 2004.

R. Kleinberg and T. Leighton. The value of knowing a demand curve: Bounds on regret
for online posted-price auctions. In Foundations of Computer Science, 2003. Proceedings.
44th Annual IEEE Symposium on, pages 594–605. IEEE, 2003.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In Proceed-
ings of the 40th annual ACM symposium on Theory of computing, pages 681–690. ACM,
2008.

R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances
in Neural Information Processing Systems, pages 697–704, 2004.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe. Stackelberg vs. nash in
security games: An extended investigation of interchangeability, equivalence, and unique-
ness. J. Artif. Intell. Res.(JAIR), 41:297–327, 2011.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed bandits.
In Advances in Neural Information Processing Systems 20 (NIPS), 2007.

L. Li and M. L. Littman. Reducing reinforcement learning to kwik online regression. Annals
of Mathematics and Artificial Intelligence, 58(3-4):217–237, 2010.

153

L. Li, M. Littman, and T. Walsh. Knows what it knows: a framework for self-aware learning.
In Proceedings of the 25th International Conference on Machine Learning (ICML), pages
568–575, 2008.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personal-
ized news article recommendation. In Proceedings of the 19th International World Wide
Web Conference, pages 661–670. ACM, 2010.

L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl. Knows what it knows: a framework
for self-aware learning. Machine learning, 82(3):399–443, 2011.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2(4):285–318, 1988.

T. Lu, D. Pál, and M. Pál. Contextual multi-armed bandits. In International Conference
on Artificial Intelligence and Statistics, pages 485–492, 2010.

G. Lueker. Average-case analysis of off-line and on-line knapsack problems. In Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 179–188. Society
for Industrial and Applied Mathematics, 1995.

S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations. In
Advances in Neural Information Processing Systems, pages 684–692, 2011.

A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems. Mathe-
matical Programming, 68(1-3):73–104, 1995.

R. Meir, A. D. Procaccia, and J. S. Rosenschein. Strategyproof classification with shared
inputs. Proc. of 21st IJCAI, pages 220–225, 2009.

A. J. Mersereau, P. Rusmevichientong, and J. N. Tsitsiklis. A structured multiarmed bandit
problem and the greedy policy. IEEE Transactions on Automatic Control, 54(12):2787–
2802, 2009.

M. Mohri and A. Munoz. Optimal regret minimization in posted-price auctions with strate-
gic buyers. In Advances in Neural Information Processing Systems, pages 1871–1879,
2014.

R. B. Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73,
1981.

R. Nowak. Noisy generalized binary search. In Advances in Neural Information Processing
Systems 22, pages 1366–1374, 2009.

S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski. Bandits for taxonomies: A
model-based approach. In SDM, pages 216–227. SIAM, 2007.

154

J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway, M. Tambe, C. Western, P. Paruchuri,
and S. Kraus. Deployed armor protection: the application of a game theoretic model
for security at the los angeles international airport. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multiagent systems: industrial track,
pages 125–132. International Foundation for Autonomous Agents and Multiagent Sys-
tems, 2008.

H. Robbins. Some aspects of the sequential design of experiments. In Herbert Robbins
Selected Papers, pages 169–177. Springer, 1985.

D. Russo and B. Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In Advances in Neural Information Processing Systems, pages 2256–2264,
2013.

A. Sayedi, M. Zadimoghaddam, and A. Blum. Trading off mistakes and don’t-know predic-
tions. In Advances in Neural Information Processing Systems, pages 2092–2100, 2010.

K. M. Schmidt. Commitment through incomplete information in a simple repeated bar-
gaining game. Journal of Economic Theory, 60(1):114–139, 1993.

A. Slivkins. Contextual bandits with similarity information. The Journal of Machine
Learning Research, 15(1):2533–2568, 2014.

A. Strehl and M. L. Littman. Online linear regression and its application to model-based re-
inforcement learning. In Advances in Neural Information Processing Systems 20 (NIPS),
2007.

W. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3–4):285–294, 1933.

L. Tran-Thanh, L. C. Stavrogiannis, V. Naroditskiy, V. Robu, N. R. Jennings, and P. Key.
Efficient regret bounds for online bid optimisation in budget-limited sponsored search
auctions, 2014.

B. Turnbull. Nonparametric estimation of a survivorship function with doubly censored
data. Journal of the American Statistical Association, pages 169–173, 1974.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280,
1971.

H. Varian. Position auctions. International Journal of Industrial Organization, 25(6):1163–
1178, 2007.

155

T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman. Exploring compact reinforcement-learning
representations with linear regression. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pages 591–598. AUAI Press, 2009.

C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

Y. Zhou and V. Naroditskiy. Algorithm for stochastic multiple-choice knapsack problem
and application to keywords bidding. In Proceedings of the 17th international conference
on World Wide Web, pages 1175–1176. ACM, 2008.

Y. Zhou, D. Chakrabarty, and R. Lukose. Budget constrained bidding in keyword auctions
and online knapsack problems. In Internet and Network Economics, pages 566–576.
Springer, 2008.

156

	University of Pennsylvania
	ScholarlyCommons
	1-1-2015

	New Models qnd Algorithms for Bandits and Markets
	Kareem Amin
	Recommended Citation

	New Models qnd Algorithms for Bandits and Markets
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Chapter 2: Graphical Bandits and the Ad-Selection Problem
	Chapter 3: Large Scale Bandits and KWIK Learning
	Chapter 4: Large Scale Bandits : Lower Bounds on Regret
	Chapter 5: Posted Price Auctions Against Strategic Buyers
	Chapter 6: Advertiser Budget Optimization in Keyword Auctions

	Graphical Bandits and the Ad-Selection Problem
	Related Work
	Preliminaries
	Algorithm Overview
	Best Action Subroutine
	Payoff Estimator Subroutine
	Graphical Bandit Algorithm
	Rank and Graph Structure
	Extension to General Graphs

	Large Scale Bandits and KWIK Learning
	Large-Scale Multi-Armed Bandits (MAB)
	Assumptions: KWIK Learnability and Fixed-State Optimization
	A Reduction of MAB to KWIK
	A Model for Gradually Arriving Actions
	Experiments
	Detailed Proofs

	Large Scale Bandits : Lower Bounds on Regret
	Related Work
	Functional Bandits (MAB) and Maximizing From Queries (MAX)
	The Haystack Dimension
	Examples of the Haystack Dimension
	MAX Query Complexity Upper Bound
	MAX Query Complexity Lower Bound
	Relationship to VC Dimension and Extended Teaching Dimension
	Functional MAB Regret Upper Bound
	Functional MAB Regret Lower Bound
	Infinite Function Classes
	Computational Complexity

	Posted Price Auctions Against Strategic Buyers
	Related work
	Preliminaries and Model
	Fixed Value Setting
	Upper Bound on Regret of Phased
	Lower Bound
	Detailed Proofs

	Advertiser Budget Optimization in Keyword Auctions
	Preliminaries
	Related Work
	MDP Formulation
	The Value Function
	Censored Data
	Greedy Product-Limit Algorithm
	Competing Algorithms
	Experimental Results

	BIBLIOGRAPHY

