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ABSTRACT 

Title: Mechanisms of Hdac2 function in the regulation of adult cardiac hypertrophy 

and embryonic myocyte proliferation 

Wenting Zhu 

Jonathan A. Epstein 

HDACs can modify the structure and function of chromatin to regulate gene 

expression and can also modify many non-histone proteins that regulate cell function 

and signaling. HDACs have attracted increasing interest because they are involved in 

a variety of physiologic and pathophysiologic processes including stem cell 

maintenance, differentiation, cancer, inflammation and cardiac diseases. In the 

absence of Hdac2, mice display myocyte hyper-proliferation during embryonic 

development and resistance to cardiac hypertrophy in adulthood. This doctoral 

dissertation examines the function of two Hdac2 downstream targets, Inpp5f and 

Gata4, in regulating adult cardiac hypertrophy and embryonic myocyte proliferation, 

respectively. My results suggest that Inpp5f is an important endogenous modulator of 

the cardiac response to stress. I also performed studies to show that, in the absence of 

Hdac2 in the embryonic heart, hyper-acetylated Gata4 is responsible for myocyte 

hyper-proliferation. These findings provide a framework for understanding the role of 

Hdac2 in embryonic heart development and adult cardiac diseases. 
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Chapter 1 Introduction 

In this dissertation, I explore the mechanisms of histone deacetylase 2 (Hdac2) 

in regulating adult cardiac hypertrophy and embryonic cardiomyocyte proliferation. 

Previous work suggests that Hdac2 promotes hypertrophy associated with increased 

phosphoinositide 3-kinase (PI3K)/Akt signaling and Hdac2 negatively regulates the 

expression of a novel phosphoinositide 5-phosphatase, inositol polyphosphate-5-

phosphatase 5 F (Inpp5f) (Trivedi et al., 2007). The activity of this protein is specific 

for PtdIns(4,5)P2 and PtdIns(3,4,5)P3 (Minagawa et al., 2001). In chapter 2, I 

describe experiments to study the role of Inpp5f in regulating hypertrophy. These 

studies led to the discovery that Inpp5f is an important endogenous modulator of 

cardiac responses to stresses and it regulates the hypertrophy process through 

regulating the PI3K/Akt pathway. Another interesting phenotype of Hdac2 knockout 

mice is hyper-proliferation of myocytes during embryonic development. In chapter 3, 

I investigated the role of Hdac2 in regulating GATA-binding factor 4 (Gata4), a 

crucial regulator of cardiomyocytes proliferation (Rojas et al., 2008; Zeisberg et al., 

2005). This introductory chapter will summarize our current knowledge of PI3K/Akt 

signaling during cardiac hypertrophy, Gata4 function during heart development and 

other areas of interest related to my thesis project.   
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1.1 Cardiac hypertrophy 

Cardiovascular disease remains the number one cause of mortality in the 

Western world, with heart failure representing the fastest growing subclass over the 

past decade (Heineke and Molkentin, 2006; Hobbs, 2004; Kannel, 2000; Levy et al., 

2002). For example, there are approximately 5 million Americans currently diagnosed 

with heart failure, which is characterized by a 5-year survival rate of approximately 

50%, resulting in a total economic impact as high as 100 billion dollars per year 

(Heineke and Molkentin, 2006). 

Cardiac hypertrophy is an early milestone during the clinical course of heart 

failure and an important risk factor for subsequent cardiac morbidity and mortality 

(Hunter and Chien, 1999). During cardiac hypertrophy, individual myocytes grow in 

length and/or width as a means of increasing cardiac pump function and decreasing 

ventricular wall tension (Heineke and Molkentin, 2006). Although hypertrophy is 

initially beneficial, permitting enhanced cardiac output, it can ultimately become 

deleterious and result in cardiomyopathy, heart failure and sudden death (McKinsey 

and Olson, 1999). It can occur in response to normal physiological stimuli, as during 

pregnancy and exercise, or may be associated with disease-inducing stimuli leading to 

cardiac dilatation and congestive heart failure (Frey and Olson, 2003). The defining 

features of hypertrophy are an increase in cardiomyocyte size, enhanced protein 

synthesis, and a higher organization of the sarcomere. It is not accompanied by cell 

proliferation or cardiac cell renewal. The changes in cellular phenotype are preceded 
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and accompanied by the reinduction of the so-called fetal gene program, including 

natriuretic peptide precursor type A (Nppa) (encoding atrial natriuretic factor, ANF), 

Myh7(encoding β-myosin heavy chain), and Nppb (encoding BNP) (Frey and Olson, 

2003).  

Cardiac hypertrophy requires coupling of intracellular signal transduction 

systems with transcription factors that activate and maintain the hypertrophic program 

(McKinsey and Olson, 1999). Over the past years, signaling pathways involving 

growth factors, G proteins, mitogen-activated protein kinases and calcium-responsive 

phosphatases have emerged as critical regulators of cardiac hypertrophy (Dorn and 

Force, 2005; Gupta et al., 2007; McKinsey and Olson, 1999). The PI3K/Akt signaling 

network is of particular interest because many components in this pathway have been 

shown to modulate myocyte survival, hypertrophy, contractility, electrophysiology, 

metabolism, mechanotransduction and coronary angiogenesis (Oudit and Penninger, 

2009). The following sections will describe these in detail and discuss the 

experimental data supporting a role for the PI3K/Akt pathway in the hypertrophic 

process. 

Another particularly important phenomenon involved in gene expression is 

histone acetylation/deacetylation which is mediated by histone acetyl transferase 

(HAT) and HDAC (Ekwall, 2005). The balance between HAT and HDAC seems to 

play an especially important role in the control of gene expression, which, according 

to recent evidence, will also affect the hypertrophic process (Antos et al., 2003; Chang 
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et al., 2004; Kong et al., 2006; Kook et al., 2003; Montgomery et al., 2007; Trivedi et 

al., 2007; Zhang et al., 2002).  

Despite all the current knowledge of hypertrophy, the cellular mechanisms that 

regulate the hypertrophic response to agonists or to stretch remain poorly understood, 

and treatments to combat hypertrophy are also lacking. My study will be directly 

relevant for the development of new therapies for cardiac hypertrophy and heart 

failure that target intrinsic abnormalities in signaling pathways and transcriptional 

programs within the diseased cardiac myocyte. 

 

1.2 Overview of the PI3K/Akt signaling pathway 

The PI3K/Akt signaling network (outlined in Figure 1.1) is crucial to widely 

divergent physiological processes that include cell cycle progression, differentiation, 

transcription, translation, apoptosis and metabolism (Martelli et al., 2006). PI3K can 

be activated by several receptor tyrosine kinases (RTKs), such as the insulin growth 

factor-1 (IGF-1) receptor (Walsh, 2006), as well as G protein-coupled receptors 

(GPCRs), including α- (Schluter et al., 1998) and β2-adrenergic receptors (Chesley et 

al., 2000; Zhu et al., 2001). Upon ligand binding, PI3K is translocated to the 

membrane, where it converts the plasma-membrane lipid phosphatidylinositol-4,5-

bisphosphate (PtdIns(4,5)P2, PIP2) to phosphatidylinositol-3,4,5-trisphosphate 

(PtdIns(3,4,5)P3, PIP3). PIP3 then recruits both Akt/protein kinase B (PKB) and its 
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activator phosphoinositide-dependent protein kinase-1 (PDK1) to the membrane by 

binding to their pleckstrin homology (PH) domains, leading to phosphorylation and 

activation of Akt (Matsui et al., 2003). Activation of Akt then leads to activation of 

mammalian target of rapamycin (mTOR), a central regulator of protein synthesis. Akt 

also phosphorylates and inhibits a kinase, glycogen synthase kinase 3β (Gsk3β) (Dorn 

and Force, 2005).  

The PI3K/Akt pathway is highly regulated. The termination of PI3K/Akt 

signaling by degradation of PtdIns(3,4,5)P3 can be mediated by at least two different 

types of phosphatases,  3-ptases (inositol polyphosphate 3-phosphatases), which 

converts PtdIns(3,4,5)P3 back to PtdIns(4,5)P2, and 5-ptases (inositol polyphosphate 

5-phosphatases), which generates PtdIns(3,4)P2 (Ooms et al., 2009).  

 

1.3 Inositol polyphosphate phosphatases 

Phosphoinositides (PIs) are quantitatively minor phospholipids of cell 

membranes but their metabolism is highly active and accurately controlled by specific 

PI kinases and phosphatases (Pendaries et al., 2003). The importance of these PI 

phosphatases in cell regulation is illustrated by their involvement in human diseases 

such as cancer and diabetes (Blero et al., 2007) (Table 1.1). Cellular levels of 

PtdIns(3,4,5)P3 are about 50 nM in unstimulated cells but increase 40 fold within 

seconds to within 2 µM following agonist stimulation (Insall and Weiner, 2001; 
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Stephens et al., 1993). PtdIns(3,4,5)P3 is dephosphorylated within seconds by 

phosphatases.  The most well-studied PtdIns(3,4,5)P3 3-ptase is PTEN (phosphatase 

and tensin homolog deleted on chromosome ten) (Cantley, 2002; Oudit et al., 2004), 

while the 5-ptases are a large family comprising 10 mammalian and 4 yeast members 

(Astle et al., 2006). 

1.3.1 PTEN 

PTEN was first identified as tumor suppressor gene localized on chromosome 

10q23 (Li et al., 1997; Steck et al., 1997). Human germline mutations in PTEN are 

associated with several rare autosomal dominant cancer predisposition syndromes 

including Cowden disease (Knobbe et al., 2008; Liaw et al., 1997; Marsh et al., 1998) 

(Table 1.1). Mice homozygous for targeted deletions within the PTEN gene (PTEN -/-) 

die during embryonic development (between Days 6.5 and 9.5), while heterozygous 

mice develop normally but are prone to a wide range of tumor types including cancers 

of the breast, thyroid, endometrium and prostate as well as T cell lymphomas (Di 

Cristofano et al., 1998; Podsypanina et al., 1999; Stambolic et al., 1998; Suzuki et al., 

1998). PTEN +/- mice also develop signs of autoimmune disease (Di Cristofano et al., 

1999).  

The main physiological substrates of PTEN are PtdIns(3,4,5)P3 and possibly 

PtdIns(3,4)P3. PTEN is considered the principal regulator of basal cellular 

PtdIns(3,4,5)P3 levels (Leslie and Downes, 2002). A lot of studies using PTEN null 

cell lines have been done to study the effects of PTEN activity on cellular 
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PtdIns(3,4,5)P3 (Leslie and Downes, 2002; Maehama and Dixon, 1998; Stambolic et 

al., 1998; Sun et al., 1999). Deletion of PTEN in murine fibroblasts and embryonic 

stem cells results in greatly elevated unstimulated PtdIns(3,4,5)P3 levels (Stambolic et 

al., 1998; Sun et al., 1999). Similar results have also been obtained with human tumor 

cell lines lacking PTEN, and PtdIns(3,4,5)P3 levels are reduced dramatically upon re-

expression of the phosphatase (Taylor et al., 2000). HPLC analysis of labeled cellular 

PIs has also shown that PtdIns(3,4)P2 levels appear similarly high and decrease with 

PTEN re-expression (Taylor et al., 2000). In addition to this direct evidence, a wealth 

of data has shown greatly increased activity of the downstream kinase Akt in many 

PTEN null cell types, and that this activity is reduced by expression of PTEN (Haas-

Kogan et al., 1998; Li and Sun, 1998; Li et al., 1998; Myers et al., 1998; Nakashima 

et al., 2000; Persad et al., 2000; Ramaswamy et al., 1999; Stambolic et al., 1998; Sun 

et al., 1999; Wu et al., 1998). Cardiac specific PTEN knockout mice have also been 

generated (Crackower et al., 2002) and the detailed phenotypes will be reviewed later. 

1.3.2 Inositol polyphosphate 5-phosphatases 

1.3.2.1 Src homology 2 (SH2) domain-containing inositol polyphosphophate 5-

phosphatases 1 and 2 (SHIP and SHIP2) 

SHIP and SHIP2 are capable of removing the 5-phosphate from PtdIns 

(3,4,5)P3 to yield PtdIns (3,4)P2. SHIP is expressed predominantly in hematopoietic 

cells where it is an important negative regulator of cytokine signaling. SHIP-/- mice 

have shorter life span associated with massive myeloid cell infiltration of the lungs 
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and numerous hematopoietic abnormalities (Helgason et al., 1998; Liu et al., 1998). 

SHIP2 is more widely expressed, most highly in brain, skeletal muscle and heart 

(Astle et al., 2006). It plays an important role in insulin signaling and obesity 

regulation (Grempler et al., 2007; Sleeman et al., 2005). When exposed to a normal 

diet, SHIP2-/- mice exhibit a basal metabolic rate similar to wild type controls 

However, SHIP2-/- mice are highly resistant to weight gain when placed on a high-fat 

diet. Under these conditions, SHIP2-/- mice demonstrate an increased metabolic rate 

and show no increase in serum lipids, insulin or glucose levels. The liver and skeletal 

muscle of the SHIP2-/- mice shows evidence of enhanced activation of the Akt 

signaling pathway (Sleeman et al., 2005). Genotypic analyses of diabetic rat and 

human subjects have found a significant association between SHIP2 gene 

polymorphisms and type 2 diabetes (Kagawa et al., 2005; Kaisaki et al., 2004; Marion 

et al., 2002).  

1.3.2.2 Synaptojanin 1/2 

Two synaptojanin isoforms (1 and 2) are 5-phosphatases which are able to 

hydrolyze PtdIns(3,4,5)P3 and PtdIns(4,5)P2 (McPherson et al., 1996; Woscholski et 

al., 1997). Synaptojanin 1 is a nerve terminal protein of 145 kDa that appears to 

participate with dynamin in synaptic vesicle recycling (McPherson et al., 1996). 

Synaptojanin 1-deficient mice die shortly after birth due to neurological defects 

(Cremona et al., 1999). Linkage analysis for bipolar disorder identified synaptojanin 1 

as a candidate gene (Saito et al., 2001; Stopkova et al., 2004). The cDNA encoding 
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Synaptojanin 2 was identified by polymerase chain reaction using degenerate primers 

(Nemoto et al., 1997). It regulates the early stages of endocytosis. Depletion of 

synaptojanin 2 in A-549 cells causes a decrease in the number and size of vesicles at 

all stages of endocytosis (Rusk et al., 2003). Targeted depletion of synaptojanin 2 in 

glioblastoma cells also inhibits the formation of lamellipodia and invadopodia, and 

cell migration and invasion (Chuang et al., 2004).  

Both Synaptojanin 1 and 2 have a Sac domain, which contains phosphatase 

activity (Guo et al., 1999). The Sac domain has approximately 400 amino acid 

residues and is defined by seven conserved motifs which appear to define the catalytic 

and regulatory regions of the phosphatase (Hughes et al., 2000). The highly conserved 

sequence RXNCXDCLDRTN in the sixth motif is proposed to be the catalytic core of 

the Sac domain phosphatases. The CX5R(T/S) motif within this sequence is also 

found in a number of metal-independent protein phosphatases and inositol 

polyphosphate phosphatases and is known to be a phosphatase catalytic site (Guo et 

al., 1999; Hughes et al., 2000). Interestingly, the Sac domain of the yeast 

synaptojanin-like protein Inp51p does not exhibit phosphatase activity, and the 

cysteine, arginine and threonine/serine residues are absent from the CX5R(T/S) motif 

of this protein, being replaced by alanine, lysine and proline respectively. Furthermore, 

mutations of the first conserved aspartate residue in the RXNCXDCLDRTN sequence 

as seen in the yeast sac1-8 and sac1-22 mutant alleles were demonstrated to inactivate 

the Sac1p functions (Hughes et al., 2000; Kearns et al., 1997; Zhong and Ye, 2003). 
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Together, this evidence suggests that the RXNCXDCLDRTN motif could well 

represent the catalytic core of the Sac phosphatases. 

1.3.2.3 Inositol polyphosphate-5-phosphatase F (Inpp5f) 

Inpp5f is a novel Sac domain-containing phosphoinositide 5-phosphatase whose 

activity is specific for PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in vitro (Minagawa et al., 

2001). As I will discuss later in the next chapter, I was able to identify the seven 

conserved motifs and the sixth conserved region of Inpp5f in both mouse and human 

has the highly conserved CX5R(T/S) motif, suggesting it is catalytically active. It is 

widely expressed in several tissues including brain, heart, skeletal muscle, kidney 

(Minagawa et al., 2001). However, its in vivo role has not been characterized prior to 

this study. 

 

1.4 PI3K/Akt signaling in cardiac hypertrophy 

The PI3K/Akt pathway is essential for both basal cell growth as well as 

adaptive (physiologic) and maladaptive (pathologic) hypertrophy (Oudit et al., 2004). 

Several transgenic and knockout models support a fundamental role of this pathway in 

the regulation of hypertrophy (Summarized in Table 1.2).  
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1.4.1 PI3K 

PI3K inhibitors attenuate basal rates of protein synthesis in unstimulated cells 

and abolish increases in protein synthesis induced by insulin in neonatal 

cardiomyocytes (Pham et al., 2000). The complete knockout of p110α, the catalytic 

subunit of PI3Kα, was lethal at E9.5-E10.5 due to a severe proliferation defect (Bi et 

al., 1999) and therefore was of limited usefulness for cardiac studies. Cardiac specific 

over-expression of constitutively active PI3Kα (CA-PI3Kα) in mice results in 

enlarged hearts owing to increased cardiomyocyte size (Crackower et al., 2002; Shioi 

et al., 2000), whereas over-expression of dominant negative PI3Kα (DN-PI3Kα) 

produces smaller hearts with reduced cardiomyocyte size without affecting cell 

number (Crackower et al., 2002; McMullen et al., 2003; Shioi et al., 2000). These 

changes in heart size are associated with corresponding alterations in Akt, and p70S6-

kinase (p70S6K) phosphorylation and activities. These studies suggest a positive role 

of PI3K in cardiac growth. 

1.4.2 PDK1 

PDK1 is a ubiquitously expressed 67 kDa kinase containing a N-terminal 

catalytic domain and a C-terminal PH domain (Storz and Toker, 2002; Toker and 

Newton, 2000). It is central in the PI3K signaling pathway and whole-body knockout 

of PDK1 is associated with embryonic lethality (Lawlor et al., 2002) while cardiac 

specific PDK1 ablation leads to reduced cardiomyocyte size and cardiomyopathy (Ito 

et al., 2009; Mora et al., 2003).     
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1.4.3 Akt/PKB 

Akt is a serine/threonine protein kinase family comprising three closely related, 

highly conserved isoforms: Akt1 (PKBα), Akt2 (PKBβ) and Akt3 (PKBγ) (Chan et al., 

1999; Oudit and Penninger, 2009). Akt2 and Akt3 show 81 and 83% amino acid 

identity, respectively, with Akt1 (Shioi et al., 2002). Only Akt1 and Akt2 are highly 

expressed in the heart (Dorn and Force, 2005). The activity of Akt is primarily 

controlled by PI3K and PTEN via the modulation of PtdIns(3,4,5)P3 levels (Maehama 

et al., 2001; Stambolic et al., 1998; Vanhaesebroeck et al., 2001) 

Several Akt knockout and transgenic mouse models have been generated to 

study the physiological roles of Akt. Targeted disruption of the Akt1 gene in mice 

results in a growth retardation phenotype. They have a 20% reduction in body size, 

with a concomitant reduction in heart size (Chen et al., 2001; Cho et al., 2001b). More 

recently, Akt1 null mice were shown to be resistant to exercise-induced cardiac 

hypertrophy. Furthermore, adult murine cardiac myocytes are resistant to IGF-1 

stimulated protein synthesis in vitro suggesting that Akt1 deficiency in myocytes 

account for the reduction in heart growth in this mouse model (DeBosch et al., 2006b). 

It may be useful to confirm these findings in a cardiac-specific Akt1 knockout model. 

Akt2 null mice exhibit insulin resistance and depending on genetic background, mild 

growth retardation (Cho et al., 2001a; Garofalo et al., 2003). Consistent with this, a 

mutation in the human AKT2 gene has been shown to be associated with autosomal 

dominant inheritance of severe insulin resistance and diabetes mellitus (George et al., 
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2004). Akt2 null mice displayed normal cardiac growth responses to provocative 

stimulation, including ligand stimulation of cultured cardiomyocytes, pressure 

overload by transverse aortic constriction, and myocardial infarction. However, Akt2 

is absolutely required for the maintenance of normal cardiac glucose metabolism and 

for cardiomyocyte survival in response to ischemic injury (DeBosch et al., 2006a). 

Akt3 null mice have smaller brain size due to the reduction in both cell size and cell 

number. However, they do not show the general growth retardation phenotype 

(Easton et al., 2005; Tschopp et al., 2005). Thus, data from the available Akt 

knockout models support a critical role specifically for Akt1 in normal growth of the 

heart. Akt1/Akt2 double-null animals die shortly after birth due to defects in multiple 

tissues including skeletal muscle, bone and skin (Peng et al., 2003). Akt1/Akt3 

double-mutant mice die by E12 with more severe developmental defects in the 

cardiovascular and nervous systems (Yang et al., 2005). Thus, the phenotypes of these 

compound mutants suggest functional redundancy among the three Akt proteins. 

In transgenic studies, myristoylated Akt1 (membrane-targeted Akt1, myr-Akt1) 

(Cook et al., 2002; Matsui et al., 2002; Shiojima et al., 2005) or a phosphorylation 

mimicking mutant of Akt1 (Akt1 T308D/S473D) (Shioi et al., 2002) or PH domain 

mutant of Akt1 (Akt1 E40K), which has increased affinity to phospholipids, 

(Condorelli et al., 2002; Kim et al., 2003) has been used as a constitutively active (CA) 

Akt1. One common phenotype associated with overexpression of CA-Akt1 in the 

heart is cardiac hypertrophy with an increase in myocyte size (Condorelli et al., 2002; 

Kim et al., 2003; Matsui et al., 2002; Shioi et al., 2002; Shiojima et al., 2005). And 
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the CA-Akt1 T308D/S473D mutant protein circumvented cardiac growth retardation 

induced by a KD-PI3K mutant protein (Shioi et al., 2002), suggesting Akt functions 

downstream of PI3K. In contrast, mice over-expressing kinase dead (KD)-Akt1 

(K179M), in which the critical ATP binding site was mutated, has similar heart and 

myocyte size as their control littermates. However, The KD-Akt1 mutant protein 

attenuated the CA-PI3K-induced overgrowth of the heart (Shioi et al., 2002). Cardiac-

specific myristoylated Akt3 transgenic mice also exhibited marked cardiac 

hypertrophy (Taniyama et al., 2005). 

1.4.4 Gsk3β 

Gsk3β was initially identified as a kinase that phosphorylates and inactivates 

glycogen synthase but is now recognized as a regulator of multiple processes 

including development, tumorigenesis, and metabolism (Doble and Woodgett, 2003). 

Gsk3β is constitutively active in unstimulated cells where it phosphorylates and 

negatively regulates most of its substrates. In response to RTK/GPCR activation, 

phosphorylation of the serine-9 residue in the N-terminal region of Gsk3β by Akt 

inhibits Gsk3β thereby leading to diverse effects (Doble and Woodgett, 2003; Toker 

and Cantley, 1997). Whole-body knockout of Gsk3β leads to embryonic lethality by 

E16.5 due to severe liver degeneration (Hoeflich et al., 2000). Cardiac specific 

overexpression of wildtype Gsk3β (Michael et al., 2004) or expression of Gsk3β (S9A) 

(Antos et al., 2002) reduces maturational growth of the heart, and reduces the cardiac 

hypertrophy induced by isoproterenol (ISO) infusion, transverse aortic constriction 
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(TAC) or overexpression of constitutively activated calcineurin (Antos et al., 2002), 

confirming that GSK-3β functions as a negative regulator of hypertrophy in vivo. 

Furthermore, inducible expression of Gsk3β (S9A) in the adult heart reduces the 

extent of established hypertrophy produced by TAC, as assessed by left ventricular 

weight/body weight (Sanbe et al., 2003). In contrast, cardiac overexpression of 

dominant-negative Gsk3β (K85M/K86I) results in hypertrophy (Hirotani et al., 2007).   

Several potential mechanisms are proposed for the negative regulatory role of 

Gsk3β in cardiac hypertrophy. First, Gsk3β may attenuate cardiac hypertrophy by 

phosphorylating and inducing nuclear export of NFAT (nuclear factor of activated T-

cells) (Heineke and Molkentin, 2006). Because calcineurin, a calcium-dependent 

phosphatase and a transducer of cardiac stress signals, induces of hypertrophy through 

dephosphorylation and nuclear import of NFAT (Molkentin et al., 1998), 

phosphorylation of NFAT by Gsk3β masks its nuclear localization sequence and 

antagonizes the hypertrophic effects of calcineurin. Indeed, constitutively active 

Gsk3β inhibits endothelin-1-induced NFAT nuclear import (Haq et al., 2000), and 

concomitant Gsk3β overexpression markedly reduces hypertrophy of calcineurin-

transgenic mice (Antos et al., 2002). Second, because Gsk3β induces nuclear export 

of Gata4 (Morisco et al., 2001) and reduces transcriptional activity of myocardin 

(Badorff et al., 2005), both of which are transcription factors implicated in 

hypertrophic responses of myocytes (Perrino and Rockman, 2006; Pipes et al., 2006), 

Gsk3β may attenuate cardiac hypertrophy by suppressing the activities of these 

transcription factors. Third, Gsk3β inhibits initiation of protein translation by 
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negatively regulating eukaryotic translation initiation factor 2B (eIF2B) (Dorn and 

Force, 2005) and enhanced protein synthesis is an important feature during 

hypertrophy. In cultured cardiac myocytes, it was shown that phosphorylation of 

eIF2B by Gsk3β is critical for anti-hypertrophic effects of Gsk3β (Hardt et al., 2004). 

eIF2B phosphorylation is also increased in the heart of Gsk3β transgenic mice 

(Michael et al., 2004). 

1.4.5 mTOR 

mTOR is a 289 kDa evolutionarily conserved serine/threonine kinase that is 

inhibited by the drug rapamycin (Harris and Lawrence, 2003; Schmelzle and Hall, 

2000). The best characterized function of mTOR in mammalian cells is regulation of 

translation (Inoki et al., 2005). Two most important downstream targets of mTOR are 

ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E binding protein 1 

(4EBP1), which are key regulators of protein translation (Inoki et al., 2005). 

Rapamycin has been shown to decrease agonist-induced hypertrophy in vitro 

(Sadoshima and Izumo, 1995) and load-induced hypertrophy in mice (Shioi et al., 

2003). Cardiac hypertrophy induced by Akt overexpression is effectively blocked by 

rapamycin treatment (Shioi et al., 2002; Shiojima et al., 2005).  

1.4.6 PTEN 

The role of PTEN in cardiac hypertrophy has been studied in both cultured 

myocytes and mouse models. In neonatal cardiomyocytes, expression of DN-PTEN 
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increases protein synthesis and cell size associated with elevated level of phospho-

Akt,, while overexpression of wildtype PTEN impaired these responses 

(Schwartzbauer and Robbins, 2001). Cardiac specific knockout of PTEN increases 

phospho-Akt, phospho-Gsk3β and phospho-p70S6K levels, resulting in increased 

cardiomyocyte and heart size.  And co-expression of DN-p110α  reverses the 

phenotype (Crackower et al., 2002).  

 

1.5 Overview of histone deacetylases 

Gene expression is regulated not only at the level of individual promoters, but 

also, at a more global level, by modulation of chromatin structure. Modification of 

core histones, around which DNA is wrapped, affects the packaging of nucleosomes 

and the accessibility of specific regions of DNA to transcription factors and the basal 

transcriptional machinery. Histone acetylation, mediated by HATs, results in 

chromatin relaxation and transcriptional activation (Gallinari et al., 2007), while 

HDACs induce deacetylation, chromatin condensation, and transcriptional repression 

(Ekwall, 2005; Johnson and Turner, 1999). HDACs lack intrinsic DNA binding 

ability and are recruited to target genes via their incorporation into large multiprotein 

transcriptional complexes as well as direct association with transcriptional activators 

or repressors (Grunstein, 1997). There are 11 HDACs encoded by mammalian 

genome, which can be classified into four families (class I, IIa, IIb and IV). The class 

I HDAC family consists of HDAC1, 2, 3 and 8, which are expressed ubiquitously and 
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consist mainly of a deacetylase domain with short amino- and carboxy-terminal 

extensions (Ekwall, 2005; Haberland et al., 2009). Class IIa HDACs (HDACs 4, 5, 7, 

and 9) have large N-terminal extensions in addition to the catalytic domain, and they 

have restricted express pattern. The extensions have conserved binding sites for the 

transcription factor myocyte enhancer factor 2 (MEF2) and the chaperone protein 14-

3-3 (Haberland et al., 2009). HDAC5 and HDAC9 are highly expressed in muscle, 

heart and brain (Chang et al., 2004; Zhang et al., 2002). HDAC4 is mainly found in 

the brain and growth plates of the skeleton (Vega et al., 2004), and HDAC7 is 

expressed in endothelial cells and thymocytes (Chang et al., 2006). The class IIb 

family consists of HDAC6 and HDAC10. HDAC6 mainly exists in cytoplasm in 

mammalian cells (Zhang et al., 2008). Little is known about HDAC10. HDAC11 is 

the sole class IV HDAC, which has been shown to regulate the expression of 

interleukin 10 and immune tolerance (Villagra et al., 2009).  

Mammalian HDACs are also able to deacetylate non-histone targets. 

Acetylation has been shown to affect protein stability, DNA binding, transcription 

activation, protein interactions, localization and enzymatic activity (Spange et al., 

2009). For example, acetylation of p53 activates its sequence-specific DNA binding 

activity and consequently increases activation of its target genes (Gu and Roeder, 

1997), while deacetylation of p53 by HDAC1 represses p53-dependent transcriptional 

activation and modulates p53-mediated cell growth arrest and apoptosis (Luo et al., 

2000). As p53 acetylation might favor DNA binding and transcriptional activation, 

this mechanism has likewise been suggested for the transcription factors c-Myb (Sano 



19 

 

and Ishii, 2001; Tomita et al., 2000), GATA factors (Boyes et al., 1998; Hayakawa et 

al., 2004; Yamagata et al., 2000), E2F1 (Martinez-Balbas et al., 2000; Marzio et al., 

2000), MyoD (Sartorelli et al., 1999) and many others. 

 

1.6 HDACs in regulating cardiac hypertrophy 

The roles of HDACs in cardiac hypertrophy have been investigated through 

several gene-targeting studies in the mouse. Mice lacking either HDAC5 or HDAC9 

are normal at early age. However, by about 8 months of age, mutant animals develop 

spontaneous cardiac hypertrophy that appears to reflect sensitization to age-related 

cardiac insults. HDAC5 and HDAC9 mutant mice also develop grossly enlarged 

hearts in response to pressure overload or constitutive cardiac activation of 

calcineurin (Chang et al., 2004; Zhang et al., 2002). In HDAC9 knockout animals, 

MEF2 activity is increased (Zhang et al., 2002). It is proposed that HDAC5 and 9 can 

interact with MEF2 through the N terminal extension and thus lead to repression of 

hypertrophic genes, while class I HDACs lack this domain and fail to directly regulate 

the activity of MEF2 (Lemercier et al., 2000; Lu et al., 2000a; Lu et al., 2000b; Miska 

et al., 1999; Sparrow et al., 1999; Zhang et al., 2001). Besides MEF2, class II HDACs 

have been shown to associate with and repress the transcriptional activity of SRF, 

GATA, NFAT and myocardin, each of which have been shown to regulate cardiac 

hypertrophy (Frey and Olson, 2003).  



20 

 

However, chemical HDAC inhibitors including trichostatin A (TSA), actually 

prevent cardiac hypertrophy, leading to the conclusion that distinct HDACs play 

positive or negative roles in the control of cardiomyocyte hypertrophy (Antos et al., 

2003; Kong et al., 2006). Consistent with this idea, HDAC2, a class I HDAC is 

important for inducing hypertrophy in homeodomain only protein (HOP) transgenic 

mice (Kook et al., 2003). Recently we have shown that global loss of HDAC2 results 

in partial perinatal lethality due to cardiac developmental defects that include 

enhanced cardiac myocyte proliferation. HDAC2 deficient mice were resistant to 

cardiac hypertrophy when exposed to hypertrophic stimuli (Trivedi et al., 2007). 

Resistance to hypertrophy was associated with increased expression of Inpp5f 

resulting in constitutive activation of Gsk3β via inactivation of Akt and Pdk1. While 

transgenic overexpression of HDAC2 in the heart reactivated fetal genes and induced 

cardiac hypertrophy. Inpp5f was significantly downregulated in HDAC2 transgenic 

heart (Trivedi et al., 2007). 

 

1.7 GATA4 in heart development 

In the later chapter of my thesis, I will describe some interesting HDAC2 

knockout mice phenotypes which are related to GATA4 activity. The GATA family 

of transcription factors, GATA1-6, are known to be critical for embryonic 

development, cell growth, and differentiation (Viger et al., 2008). GATA transcription 

factors are defined by an evolutionarily conserved DNA binding domain consisting of 
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two zinc finger motifs that recognize the consensus-binding site WGATAR (Ko and 

Engel, 1993; Merika and Orkin, 1993). The GATA family can be separated into two 

subgroups based on spatial and temporal expression patterns. GATA1-3 are 

predominantly expressed in hematopoietic cell lineages and are essential for erythroid 

and megakaryocyte differentiation, the proliferation of hematopoietic stem cells, and 

the development of T lymphocytes (Weiss and Orkin, 1995). In contrast, GATA4-6 

are expressed in several mesoderm and endoderm derived tissues such as the heart, 

gut and gonad (Charron and Nemer, 1999; Molkentin, 2000). GATA4 is one of the 

earliest genes expressed by specified cardiac precursors at the cardiac crescent stage 

of mouse development (Arceci et al., 1993; Kelley et al., 1993) and it has been 

extensively characterized as an essential regulator of cardiac development and 

differentiation, as well as in regulating survival and hypertrophic growth of the adult 

heart (Oka et al., 2007). GATA4 regulates the expression of genes that are important 

for cardiac contraction as well as the expression of other cardiac transcription factor 

genes, such as Mef2c, Hand2, and Nkx2-5 (Dodou et al., 2004; Lien et al., 1999; 

McFadden et al., 2000). Global loss of Gata4 in mice causes embryonic lethality at 

E9.5 as a result of severe defects in the extra-embryonic endoderm and aberrant heart 

and foregut morphogenesis (Kuo et al., 1997; Molkentin et al., 1997). Clinical studies 

have indicated a role in human congenital heart defects (CHD) (Garg et al., 2003; 

Pehlivan et al., 1999). Studies involving tissue-specific loss of Gata4 in murine 

cardiac myocytes have demonstrated a critical role for Gata4 in embryonic myocyte 

proliferation. Conditional inactivation of Gata4 using Nkx2-5 Cre resulted in 
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embryonic lethality around E11.5, with decreased cardiomyocyte proliferation and 

major defects in the development of the right ventricle (Zeisberg et al., 2005).  Mice 

lacking Gata4 in the anterior heart field (AHF), for example, die by E13.5 due to 

significant right ventricular and interventricular septal myocyte proliferation defects. 

Gata4-null cardiomyocytes show down-regulation of a wide array of cell cycle 

associated genes, some of which are direct transcriptional targets of Gata4, including 

cyclinD2 and cdk4 (Rojas et al., 2008). 

 

1.8 GATA4 post-translational modification and activity 

GATA4 activity is modulated in response to a number of intracellular signaling 

pathways, and GATA4 protein is subject to post-translational modifications including 

phosphorylation, acetylation and sumoylation (Kawamura et al., 2005; Liang et al., 

2001b; Wang et al., 2004). S105 phosphorylation by MEK1-ERK1/2 signaling 

enhances Gata4 DNA binding and transcription activation in cardiomyocytes (Kitta et 

al., 2003; Liang et al., 2001b). Gata4 is also activated by S261 phosphorylation via 

the cAMP/Protein Kinase signaling pathway in gonadal cells (Tremblay and Viger, 

2003). Sumoylation is required for Gata4 to gain the ability to activate endogenous 

cardiac-specific genes (Wang et al., 2004). The histone acetyl transferase p300 is able 

to acetylate Lys311, 318, 320, and 322 of Gata4, resulting in enhanced DNA binding 

and transcriptional activity (Takaya et al., 2008). In transgenic mice, p300 over-

expression in the heart induces Gata4 acetylation and cardiac hypertrophy (Miyamoto 
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et al., 2006; Yanazume et al., 2003a). Interestingly, p300 null mice die at E9.5 

exhibiting defects in proliferation and cardiac development (Yao et al., 1998). 

Mechanisms for Gata4 deacetylation have, to our knowledge, not been previously 

described. 
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Table 1.1: The role of phosphatases in physiology and pathology in human and 

mice 

 

Gene Function Substrate(s) Human disease Mice phenotype Reference

s 

PTEN 3-ptase PtdIns(3,4)P2

, 

PtdIns(3,4,5)

P3 

Cowden disease, 

Lhermitte-Duclos 

disease, Bannayan–

Riley–Ruvalcaba 

syndrome, Cancer 

Embryonic lethality of 

PTEN -/-. 

Tumorigenesis in 

PTEN +/-. 

(Leslie 

and 

Downes, 

2002; 

Pendaries 

et al., 

2003 

SHIP 5-ptase PtdIns(3,4,5)

P3 

Acute Myelogenous 

Leukemia 

Myeloproliferative 

phenotype with 

progressive 

splenomegaly, 

massive myeloid 

infiltration of the 

lungs, shortened 

lifespan of knockout 

mice. Severe 

osteoporotic 

phenotype. 

(Takeshita 

et al., 

2002) 

Helgason 

et al., 

1998; Liu 

et al., 

1998 

SHIP2 5-ptase PtdIns(3,4,5)

P3 

Type 2 diabetes highly resistant to 

weight gain when 

placed on a high-fat 

diet 

Grempler 

et al., 

2007; 

Sleeman 

et al., 

2005 

Synapt

ojanin 

1 

5-ptase PtdIns(4,5)P2

, 

PtdIns(3,4,5)

P3 

Bipolar disorder die shortly after birth 

due to neurological 

defects 

Cremona 

et al., 

1999; 

Saito et 

al., 2001; 

Stopkova 

et al., 

2004 

Synapt

ojanin 

2 

5-ptase PtdIns(4,5)P2

, 

PtdIns(3,4,5)

P3 

N/A N/A  

Inpp5f 5-ptase PtdIns(4,5)P2

, 

PtdIns(3,4,5)

P3 

N/A Cardiac specific KO is 

sensitive to 

hypertrophic stimuli 

Zhu et al., 

2009 
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Table 1.2: Gene-targeted and transgenic models with altered PI3K/Akt signaling 

in the heart 

Genotype Phenotype References 

Whole-body p110α KO E9.5-E10.5 lethality  Bi et al., 1999 

Cardiac-specific CA-

PI3Kα 

Increased heart and 

cardiomyocyte size 

Crackower et al., 2002; 

Shioi et al., 2000 

Cardiac specific DN-

PI3Kα 

Reduced heart and 

cardiomyocyte size 

Crackower et al., 2002; 

McMullen et al., 2003; 

Shioi et al., 2000 

Whole body PDK1 KO E9.5 lethality Lawlor et al., 2002 

Cardiac-specific PDK1 Cardiomyopathy, reduced 

cardiomyocyte size, 

increased sensitivity to 

hypoxia, increased 

cardiomyocyte apoptosis 

Ito et al., 2009; Mora et 

al., 2003 

Whole body Akt1 KO Growth retardation, 

normal glucose tolerance, 

defective in physiological 

hypertrophy 

Chen et al., 2001; Cho et 

al., 2001b; DeBosch et al., 

2006 

Whole body Akt2 KO Insulin resistance, mild 

growth retardation, normal 

cardiac growth 

Cho et al., 2001a; Garofalo 

et al., 2003; DeBosch et 

al., 2006a 

Whole body Akt3 KO Reduced brain size Easton et al., 2005; 

Tschopp et al., 2005 

Cardiac-specific CA-Akt1 

(myr-Akt1) 

Cardiac hypertrophy, 

normal myocardial 

contractility 

Matsui et al., 2002; 

Shiojima et al., 2005 

Cardiac-specific CA-Akt1 

(Akt1 T308D/S473D) 

Cardiac hypertrophy, 

reduced myocardial 

contractility 

Shioi et al., 2002 

Cardiac-specific CA-Akt1 

(Akt1 E40K) 

Cardiac hypertrophy, 

enhanced myocardial 

contractility 

Condorelli et al., 2002; 

Kim et al., 2003 

Cardiac-specific KD-Akt1 

(Akt1 K179M) 

attenuated the CA-PI3K-

induced overgrowth of the 

heart, normal myocardial 

contractility 

Shioi et al., 2002 

Cardiac-specific CA-Akt3 

(myr-Akt1) 

Cardiac hypertrophy, 

reduced myocardial 

contractility 

Taniyama et al., 2005 

Whole body Gsk3β KO E16.5 lethality Hoeflich et al., 2000 

Cardiac-specific Gsk3β Reduced maturational 

growth of the heart 

Michael et al., 2004 

Cardiac-specific CA 

Gsk3β (Gsk3β S9A) 

Impaired hypertrophic 

responses 

Antos et al., 2002 
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Cardiac-specific inducible 

Gsk3β (Gsk3β S9A) 

Reversal of pre-existing 

hypertrohpy 

Sanbe et al., 2003 

Cardiac-specific DN 

Gsk3β (K85M/K86I) 

Cardiac hypertrophy with 

improved contractility 

Hirotani et al., 2007 

Whole body knockin of 

Gsk3β (Gsk3β S9A) 

Reduced hypertrophy Matsuda et al., 2008 

Cardiac-specific CA-

mTOR 

Normal response to 

hypertrophic stimuli 

Shen et al., 2008 

Cardiac-specific KD-

mTOR 

Normal response to 

hypertrophic stimuli, 

reduced function 

Shen et al., 2008 

Muscle-specific PTEN KO Increased heart and 

cardiomyocyte size; 

reduced myocardial 

contractility 

Crackower et al., 2002, 

Oudit et al., 2008 
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Figure 1.1: Overview of the PI3K/Akt pathway. 
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Figure 1.1: Overview of the PI3K/Akt pathway. 

Upon activation, PI3K translocates to the cell membrane, converting PIP2 to PIP3. 

The PH domain of both Akt and its activator PDK1 associate with PIP3 allowing 

PDK1 to activate Akt. Activation of Akt then leads to activation of mTOR, a central 

regulator of protein synthesis. Akt also phosphorylates and inhibits a kinase, Gsk3β. 

Since Gsk3β inhibits protein translation and a number of transcription factors believed 

to play roles in the induction of the hypertrophic program of gene expression, 

inhibition of Gsk3β promotes both protein synthesis and gene transcription. 
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Chapter 2 Inpp5f is a Polyphosphoinositide Phosphatase that 

Regulates Cardiac Hypertrophic Responsiveness 

 

Significant portions of this chapter have been published in Circulation Research (Zhu 

et al., 2009).  

 

2.1 Summary 

Cardiac hypertrophy occurs in response to a variety of extrinsic and intrinsic 

stimuli that impose increased biomechanical stress. The PI3K/Akt pathway has 

previously been strongly associated with hypertrophic signaling in the heart, and with 

the control of cell size in multiple contexts. This pathway is tightly regulated by many 

factors, including a host of kinases and phosphatases that function at multiple steps in 

the signaling cascade. For example, the PTEN tumor suppressor protein is a 

phosphoinositide 3-phosphatase that, by metabolizing PtdIns(3,4,5)P3, acts in direct 

antagonism to growth factor stimulated PI3K. Inhibition of PTEN leads to 

cardiomyocyte hypertrophy.  Here, I characterize another polyphoinositide 

phosphatase, inositol polyphosphate-5-phosphatase F (Inpp5f), which has recently 

been implicated in regulation of cardiac hypertrophy. Like PTEN, this phosphatase 

can degrade PtdIns(3,4,5)P3 and thus modulates the PI3K/Akt pathway. Inpp5f 

knockout mice have augmented hypertrophy and reactivation of the fetal gene 

program in response to stress when compared to wild type littermates.  Furthermore, 
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cardiac over-expression of Inpp5f in transgenic mice reduces hypertrophic 

responsiveness.  These results suggest that Inpp5f is a functionally important 

endogenous modulator of cardiac myocyte size and of the cardiac response to stress. 

 

2.2 Introduction 

Cardiovascular disease remains the number one cause of mortality in the 

Western world, with heart failure representing the fastest growing subclass over the 

past decade (Heineke and Molkentin, 2006).  In many cases, cardiac hypertrophy 

precedes cardiac dilation and heart failure. Cardiac hypertrophy can occur in response 

to normal physiological stimuli or may be maladaptive leading to cardiac dilatation 

and congestive heart failure. However, the cellular mechanisms that regulate the 

hypertrophic response to agonists or to stretch remain poorly understood, and the 

transition from hypertrophy to failure is also ill-defined. On the other hand, evidence 

accumulating over the last few decades confirms that intercellular signaling pathways 

and gene expression are fundamentally altered in states of hypertrophy and failure and 

a thorough understanding of these changes will provide therapeutic targets (Dorn and 

Force, 2005).  

Recently, we showed that Hdac2 deficient mice are resistant to cardiac 

hypertrophy when exposed to hypertrophic stimuli (Trivedi et al., 2007). Resistance to 

hypertrophy in Hdac2
-/-

 mice is associated with increased expression of the gene 
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encoding inositol polyphosphate-5-phosphatase f (Inpp5f) and constitutive activation 

of Gsk3β via inactivation of Akt and Pdk1. Conversely, transgenic over-expression of 

Hdac2 in the heart reactivates fetal genes and induces cardiac hypertrophy. In these 

transgenic hearts, Inpp5f is significantly down-regulated, Akt is activated, and Gsk3ß 

is inactive (Trivedi et al., 2007).  Further studies suggest that Hdac2 is a direct 

regulator of Inpp5f (Trivedi et al., 2007).  Thus, I hypothesized that Inpp5f might 

functionally contribute to cardiac regulation of the Akt/Gsk3β pathway in response to 

stress. 

Inpp5f is one of several polyphosphoinositide phosphatases that have been 

identified and partially characterized (Astle et al., 2007). Prior work demonstrates that 

Inpp5f can degrade both phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2, PIP2) 

and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3, PIP3) by removing the 

5’ phosphate from the inositol ring(Minagawa et al., 2001). Although the PIP3 3’ 

phosphatase PTEN has previously been shown to regulate cardiac myocyte 

hypertrophy and Akt signaling in the heart (Crackower et al., 2002; Oudit et al., 2004), 

a functional role for a PIP3 5’ phosphatase in the heart has been less clear.  However, 

in various non-cardiac model systems, both 3’ and 5’ inositol phosphatases are 

important regulators of PIP3 activity and downstream signaling.  For example, the 

SH2 domain-containing inositol 5'-phosphatase (SHIP) and PTEN both play 

important roles to regulate PIP3 and Akt in immune cells (Kashiwada et al., 2007). 

In order to determine the role of Inpp5f in the adult heart, I have created both 



32 

 

gain- and loss-of-function models. Our results indicate that Inpp5f transgenic mice are 

unable to reactivate fetal genes or to exhibit normal hypertrophic responses to 

adrenergic agonists, while Inpp5f knockout mice exhibit augmented hypertrophy and 

exaggerated reactivation of the fetal gene program under stress.  

 

2.3 Results 

2.3.1 Inpp5f regulates the PI3K/Akt pathway in vitro 

Inpp5f removes the 5-phosphate from PIP3 (Minagawa et al., 2001) and thus I 

predicted that Inpp5f is able to affect PI3K/Akt pathway activity. To test this, I 

performed both transfection overexpression and siRNA knockdown experiments in 

H9C2 cells, a cardiomyocyte cell line. Transfection of Inpp5f resulted in down-

regulation of pAkt and pGsk3β (Fig 2.1A). This effect was readily apparent despite an 

estimated transfection efficiency of 50%. The decrease in Akt and Gsk3β 

phosphorylation induced by Inpp5f overepression was reversed by co-transfection 

with a constitutively activated Akt (caAkt) (Fig 2.1A), suggesting that Akt is 

downstream of Inpp5f and is capable of regulating Gsk3β. Knockdown of Inpp5f in 

H9C2 cells with siRNA resulted in enhanced Akt phosphorylation (Fig 2.1B). Thus, 

Inpp5f is capable of modulating the Akt-Gsk3β pathway in vitro. 
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2.3.2 Generation of Inpp5f antibody 

To our knowledge, there are no commercially available Inpp5f antibodies. In 

order to facilitate the study, I chose two epitope antigens (one from N-terminus and 

the other from C-terminus of the protein) for antibody generation based on 

hydrophilicity, orientation, flexibility and antigenecity analysis. I cloned these two 

regions into pGEX-2T vectors separately. The plasmids were transformed into BL21 

bacteria and glutathione S-transferase (GST) fusion proteins were extracted, purified 

and confirmed by Coomassie blue staining (Fig 2.2A). The fusion proteins were then 

sent to Cocalico Biologicals, Inc (Reamstown, PA) for injection into rabbit. By 

computer prediction, the mouse Inpp5f protein is 129 kD. To confirm this prediction, I 

made an N-terminal FLAG-tagged Inpp5f and a C-terminal MYC-tagged Inpp5f, 

transfected into Cos7 cells and probed the cell proteins with either anti-FLAG 

antibody or the anti-MYC antibody (Fig 2.2B). A predominant 130 kD band is 

observed in Fig 2.2B. The rabbit anti-sera after the second injection was examined on 

both FLAG-tagged Inpp5f containing vector and empty vector transfected cells. The 

result shows that all four antibodies could recognize a band approximately 130 kD in 

the Inpp5f expressing cells which was not detected in the control transfected cells (Fig 

2.2C). Therefore, all 4 antibodies could recognize a protein of the predicted molecular 

weight. Since the antibody #2086 gives less background, it was chosen for future 

studies. 
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2.3.3 Inactivation of Inpp5f 

In order to produce mice lacking Inpp5f, we identified a gene-trap embryonic 

stem (ES) cell line in which the endogenous Inpp5f locus has been disrupted within 

intron 6, upstream of the exons encoding the catalytic phosphatase domain.  This 

gene-trap insertion is predicted to result in the production of a fusion protein 

composed of the amino-terminal region of Inpp5f fused to ß-geo (Fig 2.3A). 

Heterozygous gene-trap ES cells were injected into blastocysts to create chimeric 

mice, which were bred to produce germ-line offspring.  Resulting heterozygous mice 

were inter-crossed to produce homozygous Inpp5f
-/-

 offspring, which were born in 

expected Mendelian ratios (Table 2.1), survived into adulthood and appeared healthy.  

Genotype was confirmed by Southern blot (Fig 2.3B) and by PCR (Fig 2.3C). I 

confirmed the lack of full length Inpp5f transcripts by real-time PCR using mRNA 

from adult Inpp5f
-/-

 and wild-type hearts (Fig 2.3D). Western blot using antibody 

recognizing the C-terminus of Inpp5f demonstrated a lack of protein expression in the 

knockout (Fig 2.3E). Thus, I conclude that I have generated a null allele for Inpp5f.   

 

2.3.4 Further characterization of the Inpp5f genomic locus 

Since the insertion is predicted to result in a fusion protein with the N-terminal 

region of Inpp5f fused to β-geo, I sought to detect the β-gal activity in the knockouts. 

I performed β-gal staining in E13.5 embryos as well as in several tissues of adult mice 
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including the brain, liver and heart. However, I did not detect any β-gal staining (data 

not shown). To exclude the possibility that the level of expression is too low to detect, 

I utilized a sensitive β-galactosidase assay (Shaper et al., 1994; Young et al., 1993).In 

the protein extracts from the Z/EG reporter mouse tail, which constitutively express 

lacZ under the control of the CMV promoter (Novak et al., 2000), I was able to detect 

large amounts of β-galactosidase activity. However, analysis of tissues from knockout 

mice yielded results similar to those of the wildtypes (data not shown) and they are far 

below the positive control.  

I sought to further analyze the Inpp5f genomic locus to make sure that the β-

geo cassette is inserted in the right locus and the mice are true knockouts. First of all, 

I designed several primers to map the exact locus where the cassette is inserted (Fig 

2.4A). As seen in Fig 2.4B, the cassette is somewhere between primer R3 and R4 

within intron 6.  I cloned the PCR product from FR3 in Fig 2.4A and sequencing 

suggests that the insertion is at the 1752nd nucleotide within intron 6, which has 3291 

nucleotides total. PCR from cDNA from the heart shows the existence of the fusion 

transcript of the first 6 exons and β-geo (Fig 2.4C, D). Further in depth analysis of the 

Inpp5f genomic locus affected by the gene-trap revealed that the insertion event was 

accompanied by a loss of endogenous genomic sequence spanning exons 7-13 (Fig 

2.5).  Thus, the affected allele cannot produce a full-length protein or one with 

functional phosphatase activity.  There are several possibilities why the fusion 

transcript is produced but no β-galactosidase activity is detected. Perhaps the fusion 

protein is not stable. It is also possible that large deletion of gemonic DNA results in a 
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loss of some important enhancer elements that are required for efficient tissue-specific 

transcription. 

 

2.3.5 Inpp5f null hearts appear normal 

We examined cardiac histology, size and function in Inpp5f
-/-

 and littermate 

control mice. H&E staining of hearts was performed at E14.5, P0 and 2 months of age. 

At these time points, we could not identify any differences and Inpp5f null mice 

appear normal by gross and histological assessment (Fig 2.6A). We measured cardiac 

weight in relation to total body weight to determine relative cardiac size.  At both 2 

and 9 months of age, there was no difference in heart to body weight ratio between 

wild type and Inpp5f
-/- 

littermates (Fig 2.6B, C). 

In order to evaluate the functional impact of the loss of Inpp5f, we performed 

echocardiography on Inpp5f
-/- 

and wild type litter mates at 2 and 9 months (Table 2.2). 

We did not observe any significant difference in the inter-ventricular septum (IVS), 

left ventricular posterior wall (LVPW) and the left ventricular internal diameter (IVID) 

measurements at either end-diastole or end-systole. Left ventricular (LV) ejection 

fraction (EF) and fractional shortening (FS) also was not different between groups. 

Thus, under basal conditions, Inpp5f
-/- 

mice appear to have normal cardiac form and 

function. 
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2.3.6 Inpp5f regulates stress-induced hypertrophy 

Next, we sought to determine if adult mice lacking Inpp5f would be more 

susceptible to agonist-induced cardiac hypertrophy. Wild-type and Inpp5f
-/- 

litter 

mates at 2 months of age were treated with a constant infusion of saline or 

isoproterenol (ISO) delivered by osmotic mini-pump for 14 days. Animals lacking 

Inpp5f showed an increase in ISO-induced cardiac hypertrophy as measured by either 

the heart to body weight ratio or the heart weight to tibia length ratio (Fig 2.7A). In 

response to ISO, Inpp5f
-/- 

heart also showed more potent reactivation of the fetal 

program of gene expression than wild type litter mates; transcripts for Nppa (encoding 

atrial natriuretic factor, ANF), Myh7 (encoding β-MHC) and Nppb (encoding BNP) 

increased more dramatically in the knockout hearts (Fig 2.7B). Cellular hypertrophy, 

as revealed by wheat germ agglutinin (WGA) staining followed by quantification, was 

more pronounced in the Inpp5f
-/-

 hearts compared to wild-type hearts after ISO (Fig 

2.7C) (256.5 + 21.8 µm
2
 for Inpp5f 

-/-
 mice treated with ISO, n = 446 cells from 3 

hearts; 194.8 + 6.8 µm
2
 for wild type mice treated with ISO, n = 514 from 3 hearts). 

Patchy areas of fibrosis were more evident in ISO-treated Inpp5f
-/-

 hearts when 

compared to controls (Fig 2.7D) (Quantification of fibrotic area was 7.3% for Inpp5f 
-

/-
 mice, 25 sections, three hearts; 1.8% for wild type mice, 27 sections, three hearts). 

We also observed more apoptotic cells in the Inpp5f
-/-

 hearts after ISO treatment 

compared to wild type (0.37% of 16,804 cells from 4 Inpp5f
-/-

 hearts, 0.24% of 21,558 

cells from 5 wild type hearts, p = 0.01). Functional assessment by echocardiography 

after 2 weeks of ISO treatment revealed relative preservation fractional shortening 
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and ejection fraction, with thickening of the posterior wall in Inpp5f
-/-

 animals at this 

time point (Table 2.3). 

Neonatal myocytes isolated from Inpp5f
-/- 

and wild type littermates revealed 

similar levels of Akt and Gsk3ß phosphorylation under basal conditions (Fig 2.7E).  

Treatment with ISO resulted in increased phosphorylation of Akt and Gsk3β in 

knockout cells when compared to controls (Fig. 2.7E), while no significant 

differences in Erk activation were noted (data not shown). IGF-1 treatment of 

myocytes revealed similar results (data not shown). Taken together, our data suggest 

that cardiac myocytes lacking Inpp5f are sensitive to stress-induced cardiac 

hypertrophy and activation of the Akt pathway. 

 

2.3.7 PIP3 levels are altered in Inpp5f null mice 

Although a prior report has indicated that Inpp5f exhibits 5-phosphatase activity 

when PtdIns(3,4,5)P3 and PtdIns(4,5)P2 are used as substrates in vitro (Minagawa et 

al., 2001), I sought to determine directly if loss of Inpp5f alters endogenous cardiac 

PIP3 levels in vivo. Endogenous PtdIns(3,4,5)P3 levels are low, and I am unaware of 

prior studies that directly measure levels of this important signaling molecule in vivo 

in genetically engineered animals.  Therefore, I took two approaches simultaneously. 

First, I pursued collaboration with Dr Andrew Quong at the Thomas Jefferson 

University to measure the PIP3/PIP2 levels in the lipid extraction from adult knockout, 
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Tg and wildtype hearts by mass spectrometry. Our preliminary results (Fig 2.8A) with 

wild type hearts suggest that accurate measurements would be possible though 

significant optimization is required. The major problem is that signals are weak and 

they don’t separate well enough from other signals. All the major signals turned out to 

be glycerophosphocholine, sphingomyelin, glycerophosphoethanolamide and 

glycerophosphatidic acids. As an alternative approach, I adapted an ELISA-based 

sensitive assay that has been used for cultured cells and compared PIP3 levels in 

control and Inpp5f
-/-

 hearts before and after ligand stimulation intended to augment 

PIP3 levels. Heart tissue from 4 mice age 3-5 weeks was combined for each condition, 

and some samples were treated ex vivo with IGF-1, a potent activator of PI3K and 

AKT in the heart.  Our data shows that PIP3 levels in Inpp5f
-/-

 mice are ~1.6 fold 

greater than wild type littermates. However, upon IGF-1 stimulation, PIP3 levels in 

the knockout hearts increased to 4.9 fold those of stimulated wild type littermates (Fig 

2.8B). Thus, loss of Inpp5f sensitizes the heart to hypertrophic stimulation.  

 

2.3.8 Cardiac-specific Inpp5f transgenic mice  

I used the well-characterized α-myosin heavy chain (α-MHC) promoter to 

direct cardiac-restricted expression of Inpp5f in transgenic mice (Fig 2.9A).  I utilized 

two distinct strategies.  First, I generated Flag-tagged Inpp5f.  However, epitope 

tagging always has the possibility of affecting protein function. Therefore, I also 

generated a transgenic construct in which I included an IRES-GFP sequence after the 
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Inpp5f coding region.  With this construct, I would be able to easily determine if the 

transgene is specifically expressed in the heart (via GFP expression) and accurate 

transgenic protein levels would be determined by the Inpp5f antibody I generated. 2 

transgenic lines were generated for the Flag-tagged transgenic mice and 6 lines were 

generated for the IRES-GFP transgenic mice in order to control for effects mediated 

by sites of insertion. With both two strategies, I was able to confirm the germline 

transmission of the transgene by PCR (Fig 2.9B).  For the Flag-tagged Inpp5f 

construct, I was also able to determine the transgene mRNA level by real-time PCR 

(data not shown) and verify the transgenic expression by Western blotting (Fig 2.9C) 

which revealed similar levels of protein expression in the two independent lines. 

However, for the IRES-GFP construct, Real-time PCR for Inpp5f gene didn’t show 

any increase in the mRNA level (data not shown) and Western Blot for GFP didn’t 

show detectable expression either (Fig 2.9D), which may be due to gene silencing, 

recombination, etc. I analyzed the phenotypes using the two lines of Flag-Inpp5f 

transgenic mice. 

 

2.3.9 Inpp5f transgenic mice are resistant to stress-induced hypertrophy 

Adult Inpp5f transgenic mice appeared healthy. Heart to body weight ratios of 

transgenic and wild type littermates were not significantly different at P60 (Fig 

2.10A).  Control and Inpp5f transgenic littermates at 2 months of age were treated 

with a constant infusion of saline or ISO for 14 days. As predicted, wild-type mice 
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exhibited cardiac hypertrophy, as revealed by an increase in both the heart to body 

weight ratio and the heart weight to tibia length ratio (Fig 2.10A). Hypertrophy of 

Inpp5f transgenic mice in response to ISO was significantly blunted (Fig 2.10A).  

Likewise, reactivation of the fetal gene program that accompanied hypertrophy in 

control animals was markedly attenuated in transgenic animals (Fig 2.10B). After 

treatment with ISO, we noted activation of the Akt pathway with enhanced 

phosphorylation of Akt and Gsk3ß in the control hearts (Fig 2.10C).  However, ISO-

induced increases in phospho-Akt and phospho-Gsk3ß were blunted in transgenic 

hearts.   

 

2.3.10 Inpp5f has a Sac domain and it has the conserved catalytic motifs 

As discussed in the introduction, Inpp5f has a Sac domain, which is 

approximately 400 amino acid residue in length and defined by seven conserved 

motifs which appear to define the catalytic and regulatory regions of the 

phosphatase(Hughes et al., 2000). The highly conserved sequence 

RXNCXDCLDRTN in the sixth motif is proposed to be the catalytic core of the SAC 

domain phosphatases. The SAC domain of the yeast synaptojanin-like protein Inp51p 

does not exhibit phosphatase activity, and the cysteine, arginine and threonine/serine 

residue are absent from CX5R(T/S) motif of this protein. In order to examine whether 

this novel protein also has these seven conserved motifs and the active catalytic core, 

I downloaded the sac1p and the Inp51p protein sequences in S.cerevisiea from NCBI, 
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and aligned these sequences together with the human and mouse Inpp5f sequences by 

CLUSTALW(Chenna et al., 2003). Sac1p exhibits phosphatase activity and actually it 

is the first protein in which the Sac domain is identified(Guo et al., 1999; Hughes et 

al., 2000). I identified seven highly conserved motifs and the sixth conserved region 

of Inpp5f in both mouse and human has the highly conserved CX5R(T/S) motif (Fig 

2.11). 

 

2.3.11 Interaction of Inpp5f with PDK1 

I have showed that one mechanism for Inpp5f to regulate PI3K/Akt pathway is 

by dephosphorylating PIP3. As an attempt to look for other mechanisms how Inpp5f 

might affect this pathway, I identified a potential PDK1 interaction domain. I 

hypothesized that Inpp5f would interact with PDK1 and down-regulate its activity. I 

tested the interaction by co-transfecting Flag tagged Inpp5f and Myc tagged PDK1 

and performing co-immunoprecipitation. As shown in Fig 2.12, I didn’t detect any 

interaction between Inpp5f and PDK1. Some possibilities exist. First, PDK1 might 

interact with Inpp5f only under certain conditions, such as activation of the PI3K/Akt 

pathway. Second, some post-translational modifications might be required for the 

interaction, such as phosphorylation, acetylation, etc. Further experiment could be 

performed to detect the interaction under other conditions. 
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2.3.12 Genetic epistasis analysis 

We have demonstrated that Hdac2 promotes cardiac hypertrophy and Inpp5f is 

up-regulated in Hdac2 knockout hearts, both during late gestation and in the adult 

while it is down-regulated in Hdac2 transgenic mice that over-express Hdac2 in the 

heart. Hdac2 can deacetylate histones at the Inpp5f upstream genomic region, 

consistent with direct regulation (Trivedi et al., 2007). My data also suggests that 

Inpp5f transgenic mice were unable to reactivate fetal genes or to exhibit normal 

hypertrophic responses and the transgenic hearts have decreased levels of phospho-

AKT and phospho-GSK3β. In contrast, Inpp5f knockout mice have augmented 

hypertrophy associated with reactivation of the fetal gene program. However, it 

remains unclear to what extent Hdac2 regulates hypertrophy via Inpp5f as opposed to 

other, yet to be identified, mechanisms. To examine this, I crossed Hdac2+/- mice to 

Inpp5f-/- mice, and the resulting Hdac2+/-, Inpp5f+/- offspring were intercrossed to 

produce Hdac2-/-, Inpp5f-/- animals. I expect that the absence of Inpp5f will restore 

hypertrophic responsiveness in Hdac2 knockout mice. Table 2.4 shows the genotyping 

result I have obtained so far. I have not detected any double nulls, which could be 

either due to limited numbers or embryonic lethality. More genotyping and further 

analysis are needed to investigate this question. 

Similarly, my work has also supported a role of Akt in the phenotypes I 

observed in Inpp5f knockout and transgenic mice. Deletion of Inpp5f leads to higher 

level of phospho-Akt and reactivation of fetal gene programs, which results in 
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sensitivity to hypertrophic stimuli. To further test the genetic epstasis of this pathway, 

I crossed Akt+/- mice, a general gift from Dr. Morris J. Birnbaum, to Inpp5f-/- mice, 

and then I crossed the resulting Akt+/-, Inpp5f+/- offspring to produce Akt-/-, Inpp5f-

/- animals. Table 2.5 displays the genotyping result. Likewise, more numbers are 

necessary before firm conclusions can be made. 

 

2.4 Discussion 

In this study, we investigated the effects of gain- and loss-of-function of Inpp5f. 

Our results suggest that Inpp5f modulates stress-induced hypertrophic responsiveness 

in the heart. Under basal conditions, Inpp5f knockout and transgenic mice appear 

normal, with preserved cardiac structure and function.  However, in the setting of 

adrenergic stimulation produced by infusion of isoproterenol, Inpp5f
-/-

 animals had 

elevated level of PIP3 and showed accentuated hypertrophy as measured by heart size, 

myocyte size and gene expression.  Isolated myocytes lacking Inpp5f were 

hypersensitive to ISO and IGF-1 as reflected by accentuated activation of Akt 

compared to control myocytes.  Conversely, Inpp5f transgenic mice were relatively 

resistant to hypertrophic stimulation. 

Inpp5f encodes a 5’ PIP3 phosphatase that is predicted to reduce PIP3 levels 

and subsequent activation of Akt and downstream signals.  Our biochemical findings 

in Inpp5f transgenic and knockout hearts are consistent with this mode of action.  The 
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Akt signaling network in the adult heart has been extensively examined and has been 

shown to contribute to both adaptive (physiologic) and maladaptive (pathologic) 

hypertrophy(Oudit et al., 2004). Akt1
-/-

 mice have a 20% reduction in body size, with 

a concomitant reduction in heart size(Cho et al., 2001b) and they are defective in 

exercise-induced cardiac hypertrophy(DeBosch et al., 2006b). Cardiac specific over-

expression of constitutively active or dominant negative forms of Akt lead to larger or 

smaller hearts respectively(Condorelli et al., 2002; Matsui et al., 2002; Shioi et al., 

2002). Enhanced Akt activity is associated with increased p70S6 kinase activity and 

increased phospho-Gsk3β(Matsui et al., 2002; Shioi et al., 2002). Cardiac-specific 

over-expression of constitutively active Gsk3β is associated with reduced agonist and 

pressure-overload hypertrophy confirming that Gsk3β functions as a negative 

regulator of hypertrophy in vivo(Zhang et al., 2002). Thus, the alterations in Akt and 

Gsk3β phosphorylation that we observed in Inpp5f knockout and transgenic hearts are 

consistent with a model in which Inpp5f regulates PIP3 levels, Akt and Gsk3β activity 

and subsequent hypertrophic responsiveness.  

The inositol polyphosphate 5-phosphatases are a large family of enzymes 

comprising at least 10 mammalian and 4 yeast members(Astle et al., 2006).  Inpp5f 

has a Sac phosphatase domain which exhibits phosphatidylinositol polyphosphate 

phosphatase activity(Minagawa et al., 2001). The Sac domain is approximately 400 

amino acid residue in length and defined by seven conserved motifs which appear to 

define the catalytic and regulatory regions of the phosphatase(Hughes et al., 2000). 

The highly conserved sequence RXNCXDCLDRTN in the sixth motif is proposed to 
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be the catalytic core of the SAC domain phosphatases. The CX5R(T/S) motif within 

this sequence is also found in a number of metal-independent protein phosphatases 

and inositol polyphosphate phosphatases and is known to be a phosphatase catalytic 

site(Guo et al., 1999; Hughes et al., 2000). Interestingly, the SAC domain of the yeast 

synaptojanin-like protein Inp51p does not exhibit phosphatase activity, and the 

cysteine, arginine and threonine/serine residue are absent from CX5R(T/S) motif of 

this protein, being replaced by alanine, lysine and proline respectively. Furthermore, 

mutations of the first conserved aspartate residue in the RXNCXDCLDRTN sequence 

as seen in the yeast sac1-8 and sac1-22 mutant alleles were demonstrated to inactivate 

the Sac1p functions(Hughes et al., 2000; Kearns et al., 1997; Zhong and Ye, 2003).  

Some 5-phosphatases, such as the Src homology 2 (SH2) domain-containing 

inositol polyphosphophate 5-phosphatases 1 and 2 (Ship and Ship2) have been 

extensively characterized(Backers et al., 2003; Dyson et al., 2005; Harris et al., 2008; 

Krystal et al., 1999; Rohrschneider et al., 2000). Ship is expressed predominantly in 

hematopoietic cells where it is an important negative regulator of cytokine signaling. 

Ship
-/-

 mice have a short life span associated with massive myeloid cell infiltration of 

the lungs and numerous hematopoietic abnormalities(Helgason et al., 1998; Liu et al., 

1998). Ship2 is more widely expressed, with high expression in brain, skeletal muscle 

and heart(Astle et al., 2006). It plays an important role in insulin signaling and obesity 

regulation(Grempler et al., 2007; Sleeman et al., 2005).  Ship2 has been reported to be 

a negative regulator of Akt activation. Although loss of Ship2 is not sufficient to 

activate Akt, the absence of Ship2 allows for greater activity upon Akt 
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stimulation(Rommel et al., 2001; Wada et al., 2001). These findings are reminiscent 

of our results with regard to Inpp5f-mediated regulation of basal and agonist-induced 

activation of Akt in the heart. 

Although PTEN and the 5-phosphatases can all degrade PIP3, the degradation 

products are distinct. Whereas PTEN converts PIP3 to PI(4,5)P2, the 5-phosphatases 

convert PIP3 to PI(3,4)P2, which can function as a second messenger (Dowler et al., 

2000). Therefore, the production of PI(3,4)P2 from PIP3 by Inpp5f and Ship 

phosphatases may function in part via active signaling, whereas PTEN action appears 

to be mediated through loss of active PIP3 signaling(Leslie and Downes, 2002). For 

example, PI(3,4)P2 has been shown to activate reactive oxygen species (ROS)(Brown 

et al., 2003) and the generation of ROS is a process that is increasingly recognized as 

an important contributor to depressed cardiac function and maladaptive 

remodelling(Takimoto and Kass, 2007). Thus, this process could also contribute to the 

phenotype we observed. Moreover, PI(3,4)P2 activity has been shown to correlate 

with Akt phosphorylation and activity(Ma et al., 2008). Inpp5f can also 

dephosphorylate PI(4,5)P2(Minagawa et al., 2001), and depletion of PI(4,5)P2 may 

contribute to cardiomyocyte apoptosis and subsequent heart failure(Halstead et al., 

2005). Thus, regulation of PI(4,5)P2 levels may contribute to the mechanism by 

which Inpp5f regulates hypertrophy. 

Under the sedentary conditions, we found that Inpp5f null mice have slightly 

higher level of cardiac PIP3, though phospho-Akt and phospho-Gsk3β are unaltered 
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and the mice do not show abnormal hypertrophy. However, upon IGF-1 stimulation, 

PIP3 levels in the knockout mice increase dramatically and they are more sensitive to 

hypertrophic stimuli. Hence, unlike PTEN, which alters the basal level of PIP3(Leslie 

and Downes, 2002), Inpp5f appears to modulate PIP3 levels primarily upon agonist-

induced stimulation.  

Our prior studies have suggested that Inpp5f is repressed at the transcriptional 

level by Hdac2.  Inpp5f transcripts are elevated in Hdac2 knockout hearts and are 

diminished by over-expression of Hdac2 in the heart.  siRNA-mediated knockdown of 

Hdac2 or chemical Hdac inhibition in H9C2 myocytes results in increased levels of 

Inpp5f and decreased phosphorylation of Akt and Gsk3ß.  Although Hdac2 may 

modulate cardiac myocyte size and hypertrophic signaling via multiple pathways, our 

analysis of Inpp5f knockout and transgenic mice are consistent with a functional 

relationship between Hdac2 and Inpp5f in the setting of hypertrophic stimulation.  

Taken together, the work presented here suggests that Inpp5f functions as a 

negative regulator of cardiac hypertrophy and Akt signaling.  Loss of Inpp5f sensitize 

the heart’s response to hypertrophic stimuli by modulating PI(3,4,5)P3 levels. 

 

2.5 Materials and methods 

Inpp5f
-/-

 knockout mice. An Inpp5f gene-trap ES clone was obtained from 

BayGenomics (now the International Gene Trap Consortium, ES clone no. XL0571). 
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The Inpp5f genomic locus is interrupted by insertion of the pGT01xf vector, which 

integrated into intron 6. Chimeric mice were produced by blastocyst injection 

according to standard protocols. Mice were genotyped by Southern blotting analysis 

of ScaI digested genomic DNA. Inpp5f
+/+

 and Inpp5f
–/–

 mice were subsequently 

genotyped by PCR using:  

Wt F: 5' -AAAGCAGGTTGTGAAGTGGAGCTG- 3',  

Wt R: 5' -TGCTCTTGTCATCATCCGAGGACT- 3',  

Mut F: 5' -ATATTGAAACCCACGGCATGGTGC- 3' and  

Mut R: 5' -TTTGATGGACCATTTCGGCACAGC- 3' primers. The mutant mice have 

one band at 323 bp, and the wild type mice have one band at 1039 bp. 

The loss of Inpp5f was confirmed by qRT-PCR using  

5' -ACAGGAGAAAGGAAGTTGGCAGGA -3' and  

5' -AGCTTCATGCTCCTTCTCCTTGGT -3' primers, and by Western blot analysis 

using a rabbit polyclonal antibody targeted to the C terminus of Inpp5f (generated by 

our lab, see below). 

 

Inpp5f-transgenic mice. A cDNA encoding human Flag-tagged Inpp5f was cloned 

into an expression plasmid containing the Myh6 (encoding α-Mhc) promoter(Heine et 

al., 2005), and transgenic mice were generated by standard techniques. Genotyping 

was performed by PCR analysis of genomic DNA using 5'-

TCTTCCAAGCCAAGGACCACTACA- 3' and 5' - 

TCTGCACGGAATTGGTCAGGTCAT- 3', and cardiac specific expression of Inpp5f 
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was revealed by qRT-PCR using 5' -ACAGGAGAAAGGAAGTTAGCAGGA- 3' and 

5' -AGCTTCATGTTCTTTCTCCTTGGT- 3' primers and Western blot analysis using 

antibodies to Flag (Sigma, F3165) or Inpp5f (generated by our lab, see below). 

 

Inpp5f antibody generation. GST-Inpp5f fusion protein was expressed in bacteria, 

purified by standard techniques and used to immunize rabbits (Cocalico Biologicals 

Inc). A region of mouse Inpp5f cDNA encoding 61 C-terminal amino acids was 

amplified by PCR using primers 5'-CGGACTGGCTTCACAAAGCCCA-3', 5'-

AGGAGGCGTCTGTCCCATTGGT-3' and cloned into the pGEX-2T vector. The 

GST fusion protein was expressed in BL21 bacteria, extracted and purified using 

Glutathione Sepharose 4B (GE Healthcare) according to the manufacturer’s 

instructions.  Purified protein was used to immunize rabbits (Cocalico Biologicals 

Inc). 

 

Western blotting. Tissue lysates were prepared in lysis buffer consisting of 20 mM 

Tris HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 

1 µg/ml leupeptin, 2.5 mM sodium pyrophosphate, 1 mM Na3VO4, 1 mM β-

glycerophosphate. 1mM PMSF was added before use. Samples were separated by 

SDS-PAGE and transferred to PVDF membranes. We used antibodies to Gapdh 

(1:5,000 dilution, Chemicon, MAB374), phospho-Gsk3β (Ser 9), total Gsk3β, 

phospho-Akt (Ser 473), total Akt (1:1000 dilution, Cell Signaling, #9336, #9315, 

#4058, #9272). Primary antibody binding was visualized by using the Western Breeze 
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Kit (Invitrogen) according to the manufacturer’s instructions. Inpp5f antibody was 

purified by Melon Gel IgG Spin Purification kit (Thermo Scientific) and then diluted 

1:100 in 5% milk. 

 

Treatment with isoproterenol. Isoproterenol (Sigma, I5627) was delivered by 

implanting a micro-osmotic pump (Alzet, Durect; model 1002) subcutaneously under 

pentobarbital anesthesia. ISO (30 mg/kg/d) or vehicle (Dulbecco’s phosphate buffered 

saline, Gibco) was infused subcutaneously for 14 days as described previously
13

. 

 

Histology: Adult mouse hearts were collected in ice-cold PBS, fixed overnight in 4% 

paraformaldehyde at 4°C, washed with PBS, and dehydrated through an ethanol series 

prior to paraffin embedding. Masson’s Trichrome (to reveal fibrosis) and H&E stains 

were performed according to standard protocols.  

 

ββββ-galactosidase assay: β-galactosidase activity is measured by Galacto-Light (Tropix, 

BL100G). Activity was expressed as units/mg protein. 

 

Apoptosis analysis. Apoptosis was measured by TUNEL assay (Roche, 1684795). 

The total number of cells was quantified using ImageJ software. 

 

Quantitative real time PCR. Total RNA was isolated from dissected mouse hearts 

using Trizol (Invitrogen).  RNA was reverse-transcribed using random hexamers and 
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the Superscript First Strand Synthesis Kit (Invitrogen). Gene expression was then 

evaluated by qRT-PCR (ABI PRISM 7900) using the SYBR Green (Applied 

Biosystems).  Signals were normalized to their corresponding Gapdh controls and the 

ratios expressed as fold changes compared to wild-type.  PCR conditions and primer 

set sequences are available upon request.  

 

IGF-1 treatment. Hearts from one-month old mice were minced and incubated with 

100nM Insulin like growth factor 1 (IGF-1) (Sigma, I8779) for 30 min at 37
o
C 

followed by lipid extraction. 

 

PIP3 ELISA. Mouse heart tissue was pulverized under liquid nitrogen using a mortar 

and pestle, followed by lipid extraction and ELISA assays as per manufacture’s 

instruction (Echelon Biosciences Inc, K-2500). ELISA measurements were performed 

in triplicate after combining tissue from 4 hearts. . 

 

Inpp5f
-/-

 knockout mice. Inpp5f
+/+

 and Inpp5f
–/–

 mice were genotyped by PCR using:  

Wt F: 5' -AAAGCAGGTTGTGAAGTGGAGCTG- 3',  

Wt R: 5' -TGCTCTTGTCATCATCCGAGGACT- 3',  

Mut F: 5' -ATATTGAAACCCACGGCATGGTGC- 3' and  

Mut R: 5' -TTTGATGGACCATTTCGGCACAGC- 3' primers.  

The mutant mice have one band at 323 bp, and the wild type mice have one band at 

1039 bp. 
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The loss of Inpp5f was confirmed by qRT-PCR using  

5' -ACAGGAGAAAGGAAGTTGGCAGGA -3' and  

5' -AGCTTCATGCTCCTTCTCCTTGGT -3' primers. 

 

Inpp5f-transgenic mice. Genotyping was performed by PCR analysis of genomic 

DNA using 5'-TCTTCCAAGCCAAGGACCACTACA- 3' and 5' - 

TCTGCACGGAATTGGTCAGGTCAT- 3', and cardiac specific expression of Inpp5f 

was revealed by qRT-PCR using 5' -ACAGGAGAAAGGAAGTTAGCAGGA- 3' and 

5' -AGCTTCATGTTCTTTCTCCTTGGT- 3' primers. 

 

Inpp5f antibody generation. The primers for amplifying mouse Inpp5f cDNA are 5'-

CGGACTGGCTTCACAAAGCCCA-3', 5'-AGGAGGCGTCTGTCCCATTGGT-3'. 

 

 

Statistic analysis. All data are expressed as the mean ± SD. Student’s t test was used 

to compare heart to body weight ratios and heart weight to tibia length ratios. 

Probability values <0.05 were considered statistically significant. 
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Table 2.1: Loss of Inpp5f does not lead to embryonic or perinatal lethality. 

 

 

 

 

 

 

 

 

 

Reproduced from (Zhu et al., 2009).  

Genotype 

(offspring of 

heterozygous 

crosses) 

P0~P21 

Expected Observed 

Inpp5f 
+/+

 105 123 

Inpp5f 
+/-

 210 192 

Inpp5f 
-/-

 105 105 

Total 420 420 

χ
2
=4.629, 2 DOF, p=0.10 
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Table 2.2 Inpp5f
-/-

 mice have normal cardiac function by echocardiography. 

 

2 months 9 months 

wild type 

(n=3) 

Inpp5f KO 

(n=3) 

p Value 

wild type 

(n=4) 

Inpp5f KO 

(n=4) 

p Value 

IVSd (mm) 0.69+0.06 0.66+0.03 ns 0.66+0.06 0.67+0.07 ns 

IVSs (mm) 1.13+0.12 1.00+0.04 ns 0.96+0.10 1.02+0.09 ns 

LVPWd (mm) 0.69+0.06 0.64+0.07 ns 0.65+0.03 0.70+0.06 ns 

LVPWs (mm) 1.02+0.13 0.90+0.07 ns 0.95+0.14 1.04+0.07 ns 

LVIDd (mm) 3.92+0.16 3.76+0.13 ns 4.13+0.22 4.13+0.48 ns 

LVIDs (mm) 2.57+0.10 2.54+0.17 ns 2.98+0.12 2.92+0. 40 ns 

LVEF (%) 64+2 60+4 ns 56+4 57+4 ns 

LVFS (%) 34+1 31+3 ns 29+3 29+2 ns 

ns: not significant 

 

Reproduced from (Zhu et al., 2009). This data was produced in collaboration with 

L.Yuan at the Physiology Core of the Cardiovascular Institute at the University of 

Pennsylvania. 
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Table 2.3: Echocardiography of wild type and Inpp5f-/- mice after 2 weeks of 

ISO infusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reproduced from (Zhu et al., 2009).  

 

2 months 

wild type 

(n=5) 

Inpp5f KO 

(n=5) 

p Value 

IVSd (mm) 0.69+0.10 0.78+0.15 ns 

IVSs (mm) 1.01+0.17 1.16+0.25 ns 

LVPWd (mm) 0.65+0.06 0.74+0.06 0.04 

LVPWs (mm) 0.98+0.13 0.98+0.16 ns 

LVIDd (mm) 3.97+0.36 3.96+0.45 ns 

LVIDs (mm) 2.80+0.45 2.76+0.60 ns 

LVEF (%) 57+12 59+12 ns 

LVFS (%) 30+8 31+8 ns 
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Table 2.4: Genotyping result from Hdac2+/-, Inpp5f+/- intercross (N=75). 

 

Genotype N 

Hdac2 +/+ Inpp5f +/+ 8 

Hdac2 +/+ Inpp5f +/- 10 

Hdac2 +/+ Inpp5f -/- 7 

Hdac2 +/- Inpp5f +/+ 9 

Hdac2 +/- Inpp5f +/- 24 

Hdac2 +/- Inpp5f -/- 11 

Hdac2 -/- Inpp5f +/+ 4 

Hdac2 -/- Inpp5f +/- 2 

Hdac2 -/- Inpp5f -/- 0 
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Table 2.5: Genotyping result from Akt+/-, Inpp5f+/- intercross (N=86). 

 

Genotype N 

Akt +/+ Inpp5f +/+ 10 

Akt +/+ Inpp5f +/- 13 

Akt +/+ Inpp5f -/- 6 

Akt +/- Inpp5f +/+ 10 

Akt +/- Inpp5f +/- 21 

Akt +/- Inpp5f -/- 15 

Akt -/- Inpp5f +/+ 5 

Akt -/- Inpp5f +/- 6 

Akt -/- Inpp5f -/- 0 
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Reproduced from (Trivedi et al., 2007). 

Figure 2.1: Inpp5f regulates PI3K/Akt pathway in vitro. 
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Figure 2.1: Inpp5f regulates PI3K/Akt pathway in vitro.  

(A) Overexpression of Inpp5f in H9C2 cells resulted in decreased phosphorylation of 

Gsk3β and Akt. Phosphorylated and total Gsk3β and Akt were measured by Western 

Blot with or without transfection of Inpp5f and caAkt expression vectors. (B) H9C2 

cells were treated with siRNA to knockdown Inpp5f, and total and phosphorylated 

Akt levels were measured by Western Blot. 
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Figure 2.2: Generation and confirmation of Inpp5f antibodies. 
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Figure 2.2: Generation and confirmation of Inpp5f antibodies.  

A. Coomassie blue staining of the GST fusion protein. Lane 1, maker; Lane 2, 

unpurified protein; Lane 3, GST only; Lane 4, GST fused with epitope N; Lane 5, 

GST fused with epitope C. B. Tranfection of Cos7 cells with epitope tagged plasmid 

to determine the size of Inpp5f protein. Lane 1, control cell protein; Lane 2, FLAG-

tagged Inpp5f transfected cell protein; Lane 3, MYC-tagged Inpp5f transfected cell 

protein. C. Examination of 4 sera on both Flag-tagged Inpp5f containing plasmid 

(Lane 1, 3, 5, 7) and empty vector transfected cells (Lane 2, 4, 6, 8).  
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Reproduced from (Zhu et al., 2009). 

Figure 2.3: Inactivation of Inpp5f. 
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Figure 2.3: Inactivation of Inpp5f.  

(A) Schematic representation of Inpp5f protein (top) and gene structure.  The wild 

type and gene trap alleles are shown; exons are represented by black boxes. The sizes 

of the expected restriction fragments recognized by the Southern probe (indicated) are 

shown. (B) Southern blot of adult mice tail DNA resulting from a cross between 

Inpp5f
+/-

heterozygotes. (C) PCR genotyping of offspring resulting from a cross 

between Inpp5f 
+/-

heterozygotes. (D) Real-time quantitative PCR of mRNA from adult 

wild-type and Inpp5f
-/-

 hearts shows the absence of Inpp5f mRNA in the knockout 

hearts. (E) Western blot of wild-type and Inpp5f
-/- 

adult heart tissue shows loss of 

Inpp5f protein in mutant hearts. 
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Figure 2.4: Confirmation of genetrap insertion and existence of fusion mRNA. 
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Figure 2.4: Confirmation of genetrap insertion and existence of fusion mRNA.  

(A) Schematic of Inpp5f genomic DNA and the predicted genomic locus following 

the genetrap cassette insertion. The primers for PCR are shown. (B) PCR results from 

knockout and wildtype mice using 4 different reverse primers are shown. (C) 

Schematic representation of the Inpp5f fusion mRNA transcript. The primers for the 

Real-time PCR are shown. (D) Real-time RCR of mRNA from four individual 

knockout mice and their wild type littermate controls using primers shown in (C). 
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Figure 2.5: Examination of the endogenous Inpp5f genomic sequence. 

 

Reproduced from (Zhu et al., 2009). 
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Figure 2.5: Examination of the endogenous Inpp5f locus and the targeted locus.  

Primers specific for each exon (4-20) were used to determine if the genomic sequence 

corresponding to these exons was present in the wildtype and homozygous mutant 

genome. PCR results show that exon 7 to 13 are deleted in the Inpp5f homozygous 

mutant genome. 
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Reproduced from (Zhu et al., 2009). 

Figure 2.6: Inpp5f 
-/-

 hearts appear normal. 
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Figure 2.6: Inpp5f 
-/-

 hearts appear normal.  

(A) H&E-stained sections of wild-type and Inpp5f
-/-

 hearts at E14.5, E16.5 and P65 

(scale bar, 400 µm) reveals normal heart structure. (B) Heart to body weight and heart 

to tibia length ratios of Inpp5f
+/+

 (n = 8) and Inpp5f
 -/-

 (n = 12) mice at 2 month of age. 

(C) Heart to body weight and heart to tibia length ratios of Inpp5f
+/+

 (n = 4) and 

Inpp5f
 -/-

 (n = 4) mice at 9 month are shown. NS: not significant. 
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Adapted and modified from (Zhu et al., 2009). 

Figure 2.7: Inpp5f-deficient mice are susceptible to agonist-induced cardiac 

hypertrophy. 
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Figure 2.7: Inpp5f-deficient mice are susceptible to agonist-induced cardiac 

hypertrophy. 

(A) Wild-type and Inpp5f
-/-

 littermates were subjected to chronic infusion of saline or 

ISO for 14 days. Heart weight to body weight and heart weight to tibia length ratios 

(± s.d.) were determined. (B) Transcripts for Nppa, Nppb and Myh7 were detected by 

real-time quantitative PCR in hearts from wild-type and Inpp5f
-/-

 mice following 

chronic infusion of saline or ISO. The values are expressed as the fold change in 

transcript abundance (± s.d.) compared to wild-type mice. (C) Wheat germ agglutinin 

(WGA) staining shows increased myocyte size in Inpp5f
-/-

 compared to wild-type 

hearts (scale bar, 25 µm). (D)Trichrome staining demonstrates more fibrosis (blue) in 

Inpp5f
-/-

 hearts treated with ISO (scale bar, 150 µm,) compared to control. (E) Western 

blots from neonatal cardiomyocytes treated with or without 10 µM ISO for 10 min are 

shown; Gapdh is shown as a loading control.  
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Adapted and modified from (Zhu et al., 2009). The mass spec data was obtained in 

collaboration with Dr Andrew Quong at Tomas Jefferson University. 

Figure 2.8: PIP3 levels are altered in the Inpp5f knockout mice. 
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Figure 2.8: PIP3 levels are altered in the Inpp5f knockout mice.  

(A) Mass spec results from lipid extracts of 4 heart samples. Peak 886 (red circle) 

represents PIP3. (B) PIP3 levels, normalized to heart weight, in the Inpp5f
-/-

 and 

wildtype hearts after 30 min of 100 nM IGF-1 stimulation were assayed as indicated 

in “Materials and Methods”.  
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Adapted and modified from (Zhu et al., 2009). 

Figure 2.9: Generation of Inpp5f transgenic mice. 
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Figure 2.9: Generation of Inpp5f transgenic mice.  

(A) Schematic representation of the Inpp5f transgenic constructs. (B) PCR genotyping 

result for both constructs. 6 lines for IRES-EGFP and 2 lines for Flag construct are 

shown. 1 positive control and 2 negative controls are also shown. (C) Western blot 

analysis of myocardium from 2-month-old wild-type and Inpp5f-Tg mice. 

Transgenically expressed Inpp5f was epitope-tagged and was detected using an Inpp5f 

antibody and a Flag antibody. Arrow: Inpp5f protein. (D) Western Blot to detect the 

expression of GFP. Heart protein lysates from 6 lines of IRES-EGFP were extracted 

and probed with GFP antibody. The last lane is a positive control showing the 

expression of GFP. 
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Adapted and modified from (Zhu et al., 2009). 

Figure 2.10: Inpp5f-Tg mice are resistant to agonist-induced cardiac hypertrophy. 
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Figure 2.10: Inpp5f-Tg mice are resistant to agonist-induced cardiac hypertrophy.  

(A) Wild-type and Inpp5f-Tg littermates were subjected to chronic infusion of saline 

or ISO for 14 days. Heart weight to body weight and heart weight to tibia length ratios 

(± s.d.) were determined. (B) Transcripts for Nppa, Nppb and Myh7 were detected by 

real-time quantitative PCR from hearts of wild-type and Inpp5f-Tg mice following 

chronic infusion of saline or ISO. The values are expressed as the fold change in 

transcript abundance (± s.d.) compared to wild-type mice. (C) Western blots of 

myocardium from 2-month-old wild-type and Inpp5f-Tg mice subjected to infusion of 

saline or ISO for 14 days. Gapdh is shown as a loading control. 
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Figure 2.11: Inpp5f has a Sac domain and it has the conserved catalytic motifs. 
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Figure 2.11: Inpp5f has a Sac domain and it has the conserved catalytic motifs. 

The Sac domain contains seven highly conserved motifs, including the putative 

catalytic RXNCXDCLDRTN motif (conserved motif 6, shown in red). These are 

shown for the human Inpp5f, mouse Inpp5f and the yeast Sac domain-containing 

proteins Sac1p and Inp51p. 
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Figure 2.12: Inpp5f does not interact with PDK1. 
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Figure 2.12: Inpp5f does not interact with PDK1 . (A) Western blot shows the 

expression of two proteins in transfected Cos7 cells. (B) The proteins were extracted 

from transfected Cos7 cells. Co-immunoprecipitation was performed with an anti-

Myc antibody. Inpp5f did not interact with PDK1 when immunoprecipated with an 

anti-Myc antibody and detected with anti-Flag antibody. Input control is shown on the 

left. Immunoblot (IB) of Myc control is shown at the bottom. 
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Chapter 3 Regulation of Gata4 deacetylation and stability by Hdac2 

Some of this Chapter has been published in (Trivedi et al.). 

 

3.1 Summary 

In chapter 2, I examined the effects of gain and loss of Inpp5f in the heart, 

which might function downstream of Hdac2. However, Hdac2 nulls also display 

enhanced cardiac myocyte proliferation during embryonic stages, which I did not 

observe in Inpp5f mutant mice. This suggests that mechanisms unrelated to Inpp5f 

might be responsible for the embryonic phenotypes of Hdac2 nulls. In this chapter, I 

describe that Hdac2 and Gata4 physically interact and I map the Gata4 interaction 

domain. I also investigate the function of acetylation on Gata4 stability.  

 

3.2 Introduction 

Gata4 is one of the earliest genes expressed by specified cardiac precursors at 

the cardiac crescent stage of the mouse development (Arceci et al., 1993; Kelley et al., 

1993). Global loss of Gata4 in mice causes embryonic lethality at E9.5 as a result of 

severe defects in the extra-embryonic endoderm and aberrant heart and foregut 

morphogenesis (Kuo et al., 1997; Molkentin et al., 1997). Studies involving tissue-

specific loss of Gata4 in murine cardiac myocytes have demonstrated a critical role 

for Gata4 in embryonic myocyte proliferation (Zeisberg et al., 2005). Mice lacking 
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Gata4 in the anterior heart field (AHF), for example, die by E13.5 due to significant 

right ventricular and interventricular septal myocyte proliferation defects (Rojas et al., 

2008). Gata4-null cardiomyocytes show down-regulation of a wide array of cell cycle 

associated genes, some of which are direct transcriptional targets of Gata4, including 

cyclinD2 and cdk4 (Rojas et al., 2008).  

Recently, we
 
have shown that global loss of HDAC2 results in partial perinatal 

lethality due to cardiac developmental defects that include enhanced cardiac myocyte 

proliferation (Trivedi et al., 2007). Microarray and RT-PCR analysis suggested that 

several cell cycle genes were up-regulated in Hdac2 null hearts at E16.5, including 

transcripts of known Gata4 targets, cyclin-D2 and cdk4. Interestingly, Gata4 protein 

levels were unaltered in the knockout hearts (unpublished data).  

Gata4 transcriptional activity is known to be regulated by post-translational 

modification including acetylation, phosphorylation and sumoylation (Kawamura et 

al., 2005; Liang et al., 2001a; Wang et al., 2004). For example, the histone acetyl 

transferase (HAT) p300 is able to acetylate Lys311, 318, 320, and 322 of Gata4, 

resulting in enhanced DNA binding and transcriptional activity. In transgenic mice, 

p300 over-expression in the heart induces Gata4 acetylation and cardiac hypertrophy 

(Miyamoto et al., 2006; Yanazume et al., 2003a). Interestingly, p300 null mice die at 

E9.5 exhibiting defects in proliferation and cardiac development (Yao et al., 1998). 

Mechanisms for Gata4 deacetylation have, to our knowledge, not been previously 

described. This leads us to hypothesize that Hdac2 might deacetylate Gata4 and thus 
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regulates it transcriptional activity. As an initial step to test this hypothesis, I 

investigated the interaction between Gata4 and Hdac2. My results suggest that Gata4 

is able to interact with Hdac2 and the lysine rich domain of is responsible for the 

interaction. 

The present study focused on the role of Hdac2 during embryonic cardiac 

development.  However, our prior studies have implicated important roles for Hdac2 

in the adult heart (Kook et al., 2003; Trivedi et al., 2007).  Gata4 also functions in 

homeostasis of the adult myocardium, and alterations in transcriptional activity, 

including those regulated by p300-mediated acetylation of Gata4, affect adult cardiac 

hypertrophy (Dai and Markham, 2001; Hirai et al., 2004; Yanazume et al., 2003a; 

Yanazume et al., 2003b).  However, the model presented here to explain the roles of 

Hdac2 and Gata4 in regulation of embryonic myocardial proliferation cannot easily 

explain the roles for these proteins during adult cardiac hypertrophic processes.  

Hdac2 deficiency results in resistance to cardiac hypertrophy.  Cardiac hypertrophy is 

generally associated with enhanced Gata4 activity, which drives cardiac structural 

gene expression.  A simple extension of the model presented here would suggest that 

loss of Hdac2 would result in enhanced Gata4 activity, which is not consistent with 

the adult phenotypes.   However, we have noted a dramatic loss of Gata4 protein in 

newborn mice lacking Hdac2 (unpublished data), suggesting that hyper-acetylation 

results in protein degradation, with resulting loss of Gata4 activity.  This would be 

consistent with the adult phenotypes we have observed. Actually, a previous study has 

provided evidence that acetylated GATA-1 is targeted for degradation via the 
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ubiquitin/proteasome pathway and activation by acetylation simultaneously marks 

GATA-1 for degradation (Hernandez-Hernandez et al., 2006). The other part of my 

study is to elucidate the mechanisms by which acetylation of Gata4 leads to 

degradation. My preliminary results suggest that deacetylation of Gata4 by Hdac2 

stabilizes Gata4.  

 

3.3 Results 

3.3.1 Hdac2 and Gata4 physically interact 

Other Gata factors have been shown to be able to recruit Hdacs to regulate gene 

expression (Cantor and Orkin, 2005; Hong et al., 2005; Svensson et al., 1999; Tsang 

et al., 1997). For example, Hdac3 interacts with Gata2 to regulate transcriptional 

repression in hematopoietic progenitor cells (Ozawa et al., 2001). Gata1 recruits 

Hdac5 leading to reduced Gata1 transcriptional activity (Watamoto et al., 2003). In 

order to test if Gata4 and Hdac2 can physically interact with each other, I transfected 

293 cells with HA-tagged Gata4. Total lysates were immunoprecipitated by anti-HA 

antibody to immunoprecipitate Gata4 and Western blot analysis was performed with 

Hdac2 antibody. The data suggest that Gata4 and Hdac2 can interact (Fig 3.1).  
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3.3.2 The interaction between Hdac2 and Gata4 requires the lysine rich domain 

of Gata4 

The protein structure for Gata4 has been widely studied. It contains a domain of 

two adjacent zinc fingers (Cys-X2-Cys-X17-Cys-X2-Cys) that directs preferential 

binding to the nucleotide sequence element 5’-(A/T)GATA(A/G)-3’ of target gene 

promoters (Pikkarainen et al., 2004). A lysine rich motif is present in between the two 

zinc fingers and two separate transcriptional activation domains are present within the 

N terminus of the protein (Morrisey et al., 1997). In order to identify the Hdac2 

interaction domain in Gata4, eight Gata4 N-terminal deletion constructs and four C-

terminal deletion constructs were made (Fig 3.2A). Expression analysis shows that 

three of the N-terminal deletion constructs and all four C-terminal deletion constructs 

expressed (Fig 3.2B). Co-immunoprecipitation experiments showed that all seven 

expressed constructs were able to interact with Hdac2 (Fig 3.3).  Because all 

constructs have a common region amino acid 241-274 (Fig 3.2A), I hypothesized that 

this is the region that is responsible for the interaction. I then tried to optimize the 

transfection conditions for two N-terminal deletion constructs which do not contain 

region 241-274 (∆265, ∆294).  However, by adjusting the DNA/superfect ratio and 

incubation time, I failed to detect any expression (data not shown). Similarly, an N-

terminal deletion construct with the first 240 aa did not express either (data not 

shown). I then made an internal deletion construct in which amino acids 241-274 were 

absent using a technique called splicing overlap extension PCR (Fig 3.4A). I 

confirmed the expression of the protein by Western blot (Fig 3.4B). However, the 
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expression level of this construct is much lower than the full length construct. I 

optimized the transfected DNA amount, DNA/superfect ratio as well as incubation 

time. Unfortunately, I found that these factors did not improve the expression level 

(Fig 3.5). Therefore, I diluted the full length Gata4 transfected cell lysate using the 

untransfected lysate so that the expression levels of the full length Gata4 and the 

internal deletion are similar (Fig 3.6A). This construct was unable to bind Hdac2 (Fig 

3.6B).  Therefore, our data suggest that Gata4 is able to interact with Hdac2 and the 

lysine rich motif 241-274 in Gata4 is responsible for this interaction. 

 

3.3.3 Deacetylation of Gata4 by Hdac2 stabilizes Gata4 

I hypothesized that acetylation of Gata4 positively signals ubiquitination and 

degradation in the heart. I first transfected H9c2 cells, a cardiomyocyte cell line, with 

HA-tagged Gata4 and then treated them with cycloheximide (CHX) after 48 hours to 

inhibit further protein synthesis. I measured Gata4 decay by Western blots and found 

that after 9 hrs, the protein disappeared by half and after 28 hrs, it was almost 

completely degraded (Fig 3.7). However, one caveat for this approach is that the 

protein half-life is measured when overall protein synthesis is abrogated and thus may 

not reflect the actual turnover rate under normal growth conditions. The stability and 

abundance of the proteolytic enzymes themselves might also be affected, which 

further complicates the accurate measurement of protein turnover rate. Therefore, I 

also used pulse chase as an alternative method, which imposes minimal disruption 
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with normal cell growth and metabolism. H9c2 cells were transfected with HA-Gata4 

and cells were metabolically labeled for 30 min with [
35

S] methionine/cysteine. The 

cells were harvested after 0, 2, 6, 11h of chase. This experiment gave me the time 

frame to measure Gata4 stability. The result suggested that after 2 h of chase, the 

amount of Gata4 showed a reduction of ~70% (Fig 3.8A). I then hypothesized that co-

transfection with Hdac2 leads to increased Gata4 stability. Western blot showed over-

expression of Hdac2 in the co-transfected cells (Fig 3.8C), while Gata4 is expressed at 

equal amount (data not shown). Preliminary pulse chase results suggest that Hdac2 

stabilizes Gata4 though this experiment needs to be repeated for statistical analysis 

(Fig 3.8B). 
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3.4 Discussion 

In this chapter, I demonstrated that Gata4 is able to interact with Hdac2 and the 

lysine rich domain located between the two zinc fingers is necessary for interaction. 

My preliminary results also suggest that deacetylation of Gata4 by Hdac2 might play 

a role in Gata4 stability. 

Gata4 contains two distinct zinc finger domains and a C-terminal nuclear 

localization sequence that together constitute the DNA binding and protein-protein 

interaction domain (Molkentin, 2000). Gata4 also contains two transcriptional 

activation domains in the N-terminus (Pikkarainen et al., 2004). Gata4 has been 

shown to cooperate with a number of other transcription factors and co-activators. 

Specifically, the C-terminal zinc finger domain has been found to interact physically 

with several other factors to regulate cardiac gene promoters including p300, dHAND, 

Nkx-2.5 and NFAT (Dai et al., 2002; Dai and Markham, 2001; Lee et al., 1998; 

Molkentin et al., 1998). However, a co-repressor protein FOG-2 (friend of Gata-2) 

interacts with N-terminal zinc finger, and Gata6 may require both zinc fingers for 

their interaction (Charron et al., 1999; Lu et al., 1999; Svensson et al., 2000; Svensson 

et al., 1999; Tevosian et al., 1999). My studies identify the lysine rich domain located 

between the two zinc fingers as the region necessary for interaction with Hdac2. 

Previous reports have indicated that Gata factors can recruit Hdacs to target 

genes, either by directly interacting or by associating with Fog proteins that can 
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recruit the NuRD complex containing Hdac1 and Hdac2 (Cantor and Orkin, 2005; 

Hong et al., 2005; Svensson et al., 1999; Tsang et al., 1997). For example, interaction 

of Hdac3 with Gata2 leads to transcriptional repression of Gata2 in hematopoietic 

progenitor cells (Ozawa et al., 2001). Similarly, Hdac5 interacts with Gata1 and 

represses its transcriptional activity (Watamoto et al., 2003). In each case, Hdac 

function suppresses Gata dependent transcriptional activity. Although it was generally 

assumed that Hdac-mediated transcriptional repression of Gata activity was mediated 

by histone deacetylation and chromatin remodeling, it will be interesting to re-address 

this question in light of our results to determine if other Gata proteins are regulated by 

Hdacs via direct deacetylation. 

Acetylation has been shown regulate protein stability in two opposing ways. 

Lysines are targets for both acetylation and ubiquitination. Therefore, acetylation can 

stabilize proteins by preventing subsequent ubiquitination (Kouzarides, 2000) as 

demonstrated for both p53 (Li et al., 2002) and Smad7 (Gronroos et al., 2002). 

However, the opposite possibility also exists: acetylation at some lysines might 

positively signal ubiquitination at other lysines to thus cause protein loss. For example, 

acetylated GATA-1 is targeted for degradation via the ubiquitin/proteasome pathway 

and activation by acetylation simultaneously marks GATA-1 for degradation 

(Hernandez-Hernandez et al., 2006). Therefore, a lysine mutated construct of Gata4 is 

of limited use in studying the effect of acetylation on Gata4 stability. In my study, I 

used Hdac2 co-transfection with Gata4. Alternative methods such as p300 co-

transfection and Hdac2 inhibitor can also be performed to examine the effect of 
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acetylation on Gata4 stability. 

 

3.5 Materials and methods 

Immunoprecipitation. 293 cells were homogenized in immunoprecipitation buffer 

(50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% Nonidet P-40, 1 mM EDTA, 1 mM 

DTT) containing 1 mM PMSF, phosphatase inhibitors (Sigma), and protease 

inhibitors mixture (Sigma). The samples were sonicated five times for 3 s. The lysate 

was collected by centrifugation at 16,000 X g for 10 min at 4°C. Pre-cleared lysates 

with beads were incubated with primary antibodies for 16 h at 4°C. After incubation 

for 1 h at 4°C with beads, immunocomplexes were collected, washed three times with 

immunoprecipitation buffer at 4°C, and applied to 4-12% SDS-polyacrylamide gels 

for Western blot analysis. 

 

Western blotting. Tissue lysates were prepared in lysis buffer consisting of 20 mM 

Tris HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 

1 µg/ml leupeptin, 2.5 mM sodium pyrophosphate, 1 mM Na3VO4, 1 mM β-

glycerophosphate. 1mM PMSF was added before use. Samples were separated by 

SDS-PAGE and transferred to PVDF membranes. We used antibodies to Gapdh 

(1:5,000 dilution, Chemicon, MAB374), HA (1:1000 dilution, SantaCruz) and Hdac2 

(1:1000 dilution, Invitrogen). Primary antibody binding was visualized by using the 

Western Breeze Kit (Invitrogen) according to the manufacturer’s instructions. 
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Transient transfections. H9c2 myoblasts and 293 cells were transfected with 

SuperFect reagent (Qiagen) as per manufacturer's protocol.  

 

Plasmids and deletion constructs cloning. Plasmids for expression of Hdac2 and 

Gata4 are previously described (Durocher et al., 1997; Kook et al., 2003; Trivedi et al., 

2007). Various deletion mutants of HA tagged Gata4 cDNA were created by PCR 

amplification, sequence verified, and subcloned into the pGC eukaryotic expression 

vector. Primers sequences for Gata4 deletion constructs are as follows: 

N terminal deletion constructs: 

Reverse primer is 5'-TTACGCGGTGATTATGTCCC-3' 

Forward primer: 

∆80: 5'- 

GCCACCatgTACCCATACGATGTTCCAGATTACGCTGGGACCCAGCAGGGTA

G-3' 

∆129: 5'-

GCCACCatgTACCCATACGATGTTCCAGATTACGCTGCAGCCTACAGCAGTAG

C-3' 

∆183: 5'-

GCCACCatgTACCCATACGATGTTCCAGATTACGCTTTCGACAGCCCAGTCCT

G-3' 

∆209: 
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5'-

GCCACCatgTACCCATACGATGTTCCAGATTACGCTTTCTCAGAAGGCAGAG

AGTGT-3' 

∆240: 5'-

GCCACCatgTACCCATACGATGTTCCAGATTACGCTGGCCTCTACCACAAGAT

GAAT-3' 

∆265: 

5'-

GCCACCatgTACCCATACGATGTTCCAGATTACGCTGTAGGCCTCTCCTGTGC

C-3' 

∆294: 

5'-

GCCACCatgTACCCATACGATGTTCCAGATTACGCTGGCCTCTACATGAAGCT

CC-3' 

∆329: 

5'- 

GCCACCatgTACCCATACGATGTTCCAGATTACGCTCCAGCAGGTCCTCCTGG

-3' 

C terminal deletion constructs: 

Forward primer is 5'-

GCCACCatgTACCCATACGATGTTCCAGATTACGCTTACCAAAGCCTGGCTAT

G-3' 
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Reverse primer:  

∆391-440: 5'-TTAGCCGGACACAGTACTGAATGT-3' 

∆337-440: 5'-TTACTCGCCAGGAGGACCTG-3' 

∆311-440: 5'-TTACCGCATTGCAAGAGGCCT-3' 

∆275-440: 5'-TTACTGGCAGTTGGCACAGGA-3' 

 

Splicing overlap extension PCR. The PCR methods are previously described 

(Warrens et al., 1997). Primers sequences for the splicing overlap extension PCR are 

as follows: 

Gata4 primer A: 5’-ATG TAC CAA AGC CTG GCT AT-3’ 

Gata4 primer B hybrid: 5’-CAG TGT GGT GGT GGT AGT ACA GGC GTT GCA 

TAG GTA-3’ 

Gata4 primer C hybrid: 5’-TAC CTA TGC AAC GCC TGT ACT ACC ACC ACC 

ACA CTG-3’ 

Gata4 primer D: 5’-TTA CGC GGT GAT TAT GTC CC-3’ 

 

Pulse chase. Cells were starved for 30 min in 2 ml of methionine/cysteine-free 

medium (Invitrogen) at 37
o
C, metabolically labeled for 30 min with 125 µCi/ml of 

35
S 

methionine/cysteine (pulse), washed free of unbound radioactive amino acids, and 

incubated in prewarmed complete medium (chase). At the indicated time points, the 

cells were disrupted in ice-cold lysis buffer and immunoprecipitated with anti-HA 

antibody. Proteins were subjected to SDS-PAGE. Labeled proteins were visualized 
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and quantitatively analyzed with phosphor imager. 
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Figure 3.1: Hdac2 and Gata4 physically interact. 
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Figure 3.1: Hdac2 and Gata4 physically interact. 

293 cells were transfected with HA-Gata4. Immunoprecipitation were performed by 

anti- HA antibody to immunoprecipitate Gata4 and western blot analysis was 

performed with Hdac2 antibody to detect the endogenous Hdac2. n.s. non-specific 

band. 
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Adapted and modified from (Trivedi et al.). 

Figure 3.2: Generation of 12 Gata4 deletion constructs. 
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Figure 3.2: Generation of 12 Gata4 deletion constructs. 

(A) Schematic representation of Gata4 and deletion constructs. (B) Western blot was 

performed to examine the expression of the 12 deletion constructs. 7 constructs were 

expressed. 
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Adapted and modified from (Trivedi et al.). 

Figure 3.3: Hdac2 is able to interact with all seven deletion constructs. 
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Figure 3.3: Hdac2 is able to interact with all seven deletion constructs. Total 

lysates from Gata4 or various Gata4 deletion constructs transfected 293 cells were 

immunoprecipitated with anti-HA antibody and Western blot analysis was performed 

with anti-Hdac2 antibody to detect endogenous Hdac2. n.s. - non-specific. 
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Figure 3.4: Generation of a Gata4 internal deletion construct ∆∆∆∆241-274. 



104 

 

Figure 3.4: Generation of a Gata4 internal deletion construct ∆∆∆∆241-274. (A) The 

schematic representation of splicing overlap extension PCR. The details are discussed 

in the materials and methods section. cDNAs are represented lined as bars. Modified 

from (Warrens et al., 1997). (B) The internal deletion construct is expressed though at 

a much lower level as detected by Western blot. The H9c2 cells were transfected with 

different amounts of DNA as indicated in the figure. 
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Figure 3.5:  Optimization of ∆∆∆∆241-274 construct transfection conditions. 
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Figure 3.5:  Optimization of ∆∆∆∆241-274 construct transfection conditions. DNA 

amounts, DNA/Superfect ratios and incubation times were adjusted to increase the 

construct expression. 
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Figure 3.6: The internal deletion construct ∆∆∆∆241-274 was unable to interact with 

Hdac2.  
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Figure 3.6: The internal deletion construct ∆∆∆∆241-274 was unable to interact with 

Hdac2. (A) Gata4 full length construct transfected cell lysate was diluted 50 fold with 

untransfected lysate. 50 µg total protein was loaded to compare the level of Gata4 and 

Hdac2. (B) Total lysates from Gata4 or the internal deletion construct ∆241-274 

transfected 293 cells were immunoprecipated with anti-HA antibody and Western blot 

analysis was performed with anti-Hdac2 antibody to detect endogenous Hdac2. ns-

non specific. 
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Figure 3.7:  Blockage of protein synthesis leads to Gata4 degradation. 
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Figure 3.7:  Blockage of protein synthesis leads to Gata4 degradation. 

(A) H9c2 cells were transfected with HA-Gata4. 48 hrs after transfection, the cells 

were treated with 10 µg/ml CHX for indicated time periods. The cells were lysed and 

the protein lysates were subjected to SDS-PAGE. Western blot was performed using 

anti-HA antibody. (B) Quantification of the remaining protein amount. 
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Figure 3.8: Co-transfection with Hdac2 stabilizes Gata4. 
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Figure 3.8: Co-transfection with Hdac2 stabilizes Gata4. (A) H9c2 cells were 

transfected with HA-Gata4. 48 hrs after transfection, the cells were pulse labeled with 

35
S and then collected at indicated time points. The protein lysates were 

immunoprecipitated with anti-HA antibody and proteins were subjected to SDS-

PAGE. Labeled proteins were visualized with phosphor imager. The quantification is 

shown on the right. (B) H9c2 cells were transfected with either HA-Gata4 alone or 

HA-Gata4 and Hdac2 both. Pulse chase experiment was performed similarly. (C) 

Western blot confirms the over-expression of Hdac2 in the Hdac2 and Gata4 co-

transfected cells. 
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Chapter 4 Conclusions and Future Directions 

4.1 Summary 

In this dissertation I have investigated the potential mechanisms of Hdac2 in the 

regulation of adult cardiac hypertrophy and embryonic myocyte proliferation. In 

chapter 2, I described the function of a poorly described PIP3 5’ phosphatase Inpp5f 

in cardiac hypertrophic responsiveness. Our prior work (Trivedi et al., 2007) had 

implicated this gene in cardiac hypertrophy because it is regulated by Hdac2, and 

Hdac2 deficiency protects against hypertrophy by modulating the Akt pathway. My 

work directly tests the functions of Inpp5f via both gain and loss of function studies. I 

describe the knockout mouse, and transgenic mice over-expressing Inpp5f in the heart. 

In both cases, the mice are normal under basal conditions, but the response to 

hypertrophic stimuli are abnormal in terms of cardiac size, myocyte size and gene 

expression. This work has important clinical implications.  The lack of basal defects 

suggests that this phosphatase may be a tractable target for therapeutic intervention 

for heart failure. In chapter 3, I studied the potential mechanisms of how Hdac2 might 

regulate myocyte proliferation during embryonic development. My preliminary 

results suggest that Gata4 may be responsible for the hyper-proliferation defects in 

Hdac2 null mice. Hdac2 is able to interact with Gata4. However, since Gata4 also 

functions in homeostasis of the adult myocardium and cardiac hypertrophy is 

generally associated with enhanced Gata4 activity, the model presented in chapter 3 

cannot easily explain its role during adult cardiac hypertrophy. Therefore, in chapter 3, 
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I also sought to study the effects of acetylation on Gata4 stability. My preliminary 

result suggests that deacetylation stabilizes Gata4. In the absence of Hdac2, Gata4 is 

hyper-acetylated leading to more proliferation during embryonic development. 

However, hyper-acetylation also marks Gata4 for degradation, which explains the 

significant down-regulation of Gata4 levels after birth. Many critical questions still 

remain for Inpp5f, Gata4 and Hdac2 and I discuss below several aspects that I feel 

worth further investigation. 

 

4.2 Future directions 

4.2.1 Inpp5f, a tumor suppressor? 

My results suggest that Inpp5f negatively regulates the PI3K/Akt pathway in 

vivo. The PI3K/Akt pathway activation initiates a signal transduction cascade that 

promotes cell growth, survival and metabolism. The abnormal activation of this 

pathway has been validated by epidemiological and experimental studies as an 

essential step toward the initiation and maintenance of human tumors (Garcia-

Echeverria and Sellers, 2008). PTEN, a negative regulator of this pathway, acts as a 

tumor suppressor. It is mutated or lost in both heritable and spontaneous cancers. 

Germline mutations in PTEN cause autosomal dominant hamartoma tumor syndromes, 

whereas sporadic missense mutations occur frequently in central nervous system 

(20%), endometrial (39%), colorectal (9%), skin (17%), prostate (14%) and breast 

(6%) cancers. Monoallelic loss of PTEN contributes to tumor growth in the context of 
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other somatic mutations, and PTEN protein levels correlate with disease severity 

(Yuan and Cantley, 2008). When I first got the Inpp5f null mice, I expected that they 

would develop some kind of tumors as they age. However, I did not observe any sign 

of cancer in these mice. PTEN is considered the principal regulator of basal cellular 

PtdIns(3,4,5)P3 levels (Leslie and Downes, 2002). Other PIP3 phosphotases only 

allow for greater pathway activity upon Akt stimulation. For example, a single 

somatic missense mutation in the phosphatase domain of SHIP1 has been identified in 

patients with acute myeloid leukemia which reduced the catalytic activity of SHIP1. 

The basal level of Akt phosphorylation was comparable between leukemia cells with 

and without the mutation. However, leukemia cells with this mutation showed 

enhanced Akt phosphorylation following stimulation (Luo et al., 2003). Besides, 

Ship2 has been reported to be a negative regulator of Akt activation. Although loss of 

Ship2 is not sufficient to activate Akt, the absence of Ship2 allows for greater activity 

upon Akt stimulation (Rommel et al., 2001; Wada et al., 2001). Therefore, it is very 

possible that unlike PTEN, which as a stringent regulator attenuates PtdIns(3,4,5)P3 

signaling, the 5-phosphatases could function as more subtle modulators of the 

PtdIns(3,4,5)P3 signals. It would be interesting to see if Inpp5f increases tumor 

development in a Pten null or heterozygous background. Other 5’ phosphatases may 

be able to compensate for Inpp5f under the relatively sedentary conditions under non-

stressed situations. It would also be informative to test if loss of Inpp5f in 

combination with loss of Ship1 and/or Ship2 would result in cancer. 
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4.2.2 Inpp5f, a poorly characterized 5’ phosphatase 

In chapter 2, I demonstrated that Inpp5f was able to degrade PIP3 in the heart. I 

also identified seven highly conserved motifs and the sixth conserved region of Inpp5f 

in both mouse and human has the highly conserved CX5R(T/S) motif. It would be 

interesting to see if mutations in the cysteine, arginine and threonine/serine residues 

could disrupt its enzymatic activity. We could either transfect the mutated Inpp5f and 

measure Akt level or measure PIP3 levels directly by ELISA. 

 

4.2.3 To what extent does Hdac2 regulate hypertrophy through Inpp5f? 

In chapter 2, I elucidated the role of Inpp5f in regulating cardiac hypertrophy by 

utilizing a gene-trap Inpp5f global knockout mouse model and a cardiac specific over-

expression mouse model. My data suggests that Inpp5f transgenic mice were unable 

to reactivate fetal genes or to exhibit normal hypertrophic responses while Inpp5f 

knockout mice have augmented hypertrophy associated with reactivation of the fetal 

gene program. Biochemical analysis indicated that these responses were mediated by 

the PI3K/Akt pathway. Furthermore, we have also shown that Hdac2 promotes 

cardiac hypertrophy (Trivedi et al., 2007) and that Inpp5f is up-regulated in Hdac2 

knockout hearts, both during late gestation and in the adult while it is down-regulated 

in Hdac2 transgenic mice that over-express Hdac2 in the heart. Hdac2 can deacetylate 

histones at the Inpp5f upstream genomic region, consistent with direct regulation 
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(Trivedi et al., 2007). However, it remains unclear whether Hdac2 regulates 

hypertrophy partially or entirely via Inpp5f. I performed some preliminary crosses 

with Hdac2+/- and Inpp5f -/- to generate Hdac2-/-Inpp5f-/-. Future experiments can 

be done to see if these double knockout mice respond differently to hypertrophic 

stimuli from the Hdac2 nulls. I predict that these double knockout mice will be 

relatively sensitive to hypertrophy and the PI3K/Akt pathway will be activated 

compared with the Hdac2-/-. Similarly, Inpp5f transgenic mice can be crossed to 

Hdac2 transgenic mice to determine if the double transgenic mice are less susceptible 

to hypertrophic stimuli than the Hdac2 transgenic mice. 

 

4.2.4 Does Inpp5f function upstream of Akt? 

My results suggest that loss of Inpp5f leads to hyper-activation of the PI3K/Akt 

pathway upon stimulation while over-expression of Inpp5f results in down-regulation 

of the pathway activity in the heart. I performed Akt+/- and Inpp5f -/- crosses to 

address the question if Inpp5f really functions upstream of Akt in vivo. Future 

experiments can be done to analyze the double knockout phenotypes. I expect that the 

double knockout would be relatively resistant to hypertrophy compared with Inpp5f 

single nulls. 
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4.2.5 Does Gata4 need Friend of GATA (Fog) to recruit Hdac2? 

Most of the protein-protein interactions of GATA factors are mediated by its C-

terminal zinc finger, including the interaction with p300, Nkx2.5, NFAT, while the N-

terminal zinc finger interacts with Fog transcription factors (Pikkarainen et al., 2004). 

My study identifies the lysine rich domain located between the two zinc fingers as the 

region necessary for interaction with Hdac2. It is unknown whether this interaction is 

direct or requires other co-factors. Gata factors can recruit Hdacs to target genes, 

either by directly interacting or by associating with Fog (Friend of Gata) proteins that 

can recruit the NuRD complex containing Hdac1 and Hdac2 (Cantor and Orkin, 2005; 

Hong et al., 2005; Svensson et al., 1999; Tsang et al., 1997). The lysine rich domain 

we identified is very close to the region where Fog interacts with Gata. Therefore, it 

would be interesting to investigate if Gata4 requires Fog to interact with Hdac2. 

Several mutation screens have been done to identify point mutations in Gata-1 that 

disrupt binding to FOG-1 (Crispino et al., 1999; Crispino and Orkin, 2002) and these 

residues are highly conserved among all vertebrate GATA factors (Cantor and Orkin, 

2005). Experiments can be performed using in vitro translated Gata4 and Hdac2 

proteins to test if the interaction is direct or not. Co-IP can also be done in a Fog 

expressing cell line using mutated Gata4 that cannot recruit Fog and to see if the 

mutant Gata4 can interact with Hdac2 or not. 
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4.2.6 Can Hdacs deacetylate other Gata members? 

Other Gata family members have also been shown to recruit Hdacs to mediate 

transcriptional repression. For example, Hdac3 associates with and represses Gata2 in 

hematopoietic progenitor cells (Ozawa et al., 2001). Gata1 interaction with Hdac5 

results in reduced Gata1 transcriptional activity (Watamoto et al., 2003). In each case, 

Hdac function suppresses Gata dependent transcriptional activity. Although it was 

generally assumed that Hdac-mediated transcriptional repression of Gata activity was 

mediated by histone deacetylation and chromatin remodeling, it will be interesting to 

re-address this question in light of my results to determine if other Gata proteins are 

regulated by Hdacs via direct deacetylation. 

 

4.2.7 To what extent does Hdac2 regulates cardiomyocyte proliferation through 

Gata4 acetylation? 

In chapter 3, I showed that Hdac2 interacted with Gata4. Our lab also 

demonstrates that Hdac2 is able to deacetylate Gata4 and in Hdac2 null hearts Gata4 

acetylation is increased. Acetylated Gata4 has enhanced DNA binding and 

transcriptional ability (Takaya et al., 2008). Several studies have demonstrated a 

critical role for Gata4 in embryonic myocyte proliferation (Rojas et al., 2008; 

Zeisberg et al., 2005). All this evidence suggests that Hdac2 inhibits cardiomyocyte 

proliferation through deacetylating Gata4. However, we did not perform the definitive 
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experiments to test this concept. Future work could address this, by crossing Hdac2 

nulls with cardiac specific Gata4 nulls. We could expect the myocytes from double 

nulls have less proliferation rates than Hdac2 nulls. A cardiac specific Gata4 

acetylation deficient (by mutating lysine to alanine) knockin mouse model could also 

be generated. These mice can then be crossed with Hdac2 knockouts. Since the 

mutated Gata4 could not be acetylated, loss of Hdac2 would not lead to more myocyte 

proliferation. 

 

4.3 Concluding remarks 

The studies presented here define the mechanisms of Hdac2 in regulating 

embryonic heart development and adult heart hypertrophy. I identified two targets of 

Hdac2, Inpp5f and Gata4, and I investigated how they contribute to the phenotypes of 

Hdac2 nulls.  Hdac2 regulates Inpp5f through modifying the histones of its promoter 

while it regulates Gata4 through acetylating the Gata4 protein itself. The 

characterization of Hdacs and HATs and their various activities has attracted 

increasing investigative interest because of their importance in stem and progenitor 

cell biology and in cellular reprogramming. It would be exciting to see how these 

findings will contribute to the study of embryology to human medicine.  
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