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Genome-Wide Analysis of RNA Secondary Structure in Eukaryotes

Abstract
The secondary structure of an RNA molecule plays an integral role in its maturation, regulation, and function.
Over the past decades, myriad studies have revealed specific examples of structural elements that direct the
expression and function of both protein-coding messenger RNAs (mRNAs) and non-coding RNAs
(ncRNAs). In this work, we develop and apply a novel high-throughput, sequencing-based, structure mapping
approach to study RNA secondary structure in three eukaryotic organisms.

First, we assess global patterns of secondary structure across protein-coding transcripts and identify a
conserved mark of strongly reduced base pairing at transcription start and stop sites, which we hypothesize
helps with ribosome recruitment and function. We also find empirical evidence for reduced base pairing
within microRNA (miRNA) target sites, lending further support to the notion that even mRNAs have
additional selective pressures outside of their protein coding sequence.

Next, we integrate our structure mapping approaches with transcriptome-wide sequencing of ribosomal
RNA-depleted (RNA-seq), small (smRNA-seq), and ribosome-bound (ribo-seq) RNA populations to
investigate the impact of RNA secondary structure on gene expression regulation in the model organism
Arabidopsis thaliana. We find that secondary structure and mRNA abundance are strongly anti-correlated,
which is likely due to the propensity for highly structured transcripts to be degraded and/or processed into
smRNAs.

Finally, we develop a likelihood model and Bayesian Markov chain Monte Carlo (MCMC) algorithm that
utilizes the sequencing data from our structure mapping approaches to generate single-nucleotide resolution
predictions of RNA secondary structure. We show that this likelihood framework resolves ambiguities that
arise from the sequencing protocol and leads to significantly increased prediction accuracy.

In total, our findings provide on a global scale both validation of existing hypotheses regarding RNA biology
as well as new insights into the regulatory and functional consequences of RNA secondary structure.
Furthermore, the development of a statistical approach to structure prediction from sequencing data offers
the promise of true genome-wide determination of RNA secondary structure.
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ABSTRACT 

GENOME-WIDE ANALYSIS OF RNA SECONDARY STRUCTURE IN EUKARYOTES 

Fan Li 

Brian D. Gregory 

Li-San Wang 

 The secondary structure of an RNA molecule plays an integral role in its maturation, 

regulation, and function. Over the past decades, myriad studies have revealed specific examples 

of structural elements that direct the expression and function of both protein-coding messenger 

RNAs (mRNAs) and non-coding RNAs (ncRNAs). In this work, we develop and apply a novel 

high-throughput, sequencing-based, structure mapping approach to study RNA secondary 

structure in three eukaryotic organisms.  

 First, we assess global patterns of secondary structure across protein-coding transcripts 

and identify a conserved mark of strongly reduced base pairing at transcription start and stop 

sites, which we hypothesize helps with ribosome recruitment and function. We also find empirical 

evidence for reduced base pairing within microRNA (miRNA) target sites, lending further support 

to the notion that even mRNAs have additional selective pressures outside of their protein coding 

sequence. 

 Next, we integrate our structure mapping approaches with transcriptome-wide 

sequencing of ribosomal RNA-depleted (RNA-seq), small (smRNA-seq), and ribosome-bound 

(ribo-seq) RNA populations to investigate the impact of RNA secondary structure on gene 

expression regulation in the model organism Arabidopsis thaliana. We find that secondary 

structure and mRNA abundance are strongly anti-correlated, which is likely due to the propensity 

for highly structured transcripts to be degraded and/or processed into smRNAs. 

 Finally, we develop a likelihood model and Bayesian Markov chain Monte Carlo (MCMC) 

algorithm that utilizes the sequencing data from our structure mapping approaches to generate 

single-nucleotide resolution predictions of RNA secondary structure. We show that this likelihood 
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framework resolves ambiguities that arise from the sequencing protocol and leads to significantly 

increased prediction accuracy. 

 In total, our findings provide on a global scale both validation of existing hypotheses 

regarding RNA biology as well as new insights into the regulatory and functional consequences of 

RNA secondary structure. Furthermore, the development of a statistical approach to structure 

prediction from sequencing data offers the promise of true genome-wide determination of RNA 

secondary structure. 
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Chapter 1 

Introduction 

 The central dogma of molecular biology, as originally stated by Francis Crick(17), placed 

RNA as an intermediary in the flow of information from genetically-encoded DNA to the functional 

protein form. The primary job of an RNA molecule, then, was to undergo translation into protein. 

Over sixty years later, we now know that a veritable alphabet soup of functional RNA species 

plays a multitude of roles beyond that of protein encoding. In many cases, the function of an RNA 

molecule is closely linked to both its primary nucleotide sequence as well as its secondary 

structure. 

 

1.1 RNA secondary structure 

 An RNA molecule comprises a chain of nucleotides joined together much like beads on a 

string. Each nucleotide in the chain consists of a ribose sugar, a phosphate group attached to the 

5’ carbon, and a base attached to the 1’ carbon. The string then, in our analogy, is a 

phosphodiester bond between the 5’ phosphate group of one nucleotide and the 3’ hydroxyl of 

another. As a result, the chain is directional, with the 5’ end representing the nucleotide with a 

free phosphate group and the 3’ end representing the nucleotide with a free hydroxyl (Figure 1.1). 
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Figure 1.1: The molecular structure of ribonucleic acid (RNA). 

 

 RNA can contain four different bases at the 1’ position carbon of each nucleotide – 

adenine (A), guanine (G), cytosine (C), and uracil (U). The ordering of bases within an RNA 

strand is known as the primary sequence, and specific hydrogen bond interactions between the 

various bases determine its secondary structure. 

 

1.1.1 Biochemistry of secondary structure 

 The most common hydrogen bond interactions occur as adenine-uracil (A-U) and 

guanine-cytosine (G-C) interactions and are known as Watson-Crick base pairs. A third type of 

interaction (G-U) is also possible, but is less energetically favorable and therefore is referred to as 

the wobble base pair (Figure 1.2).  
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Figure 1.2: Diagram of RNA base pairing interactions. Hydrogen bonds are shown in red. ΔG 

values are taken from (69). 

 

Taken together, the collection of intramolecular base pairing interactions contained within a single 

RNA strand is referred to as its secondary structure. Intermolecular interactions between bases 

on two separate strands of RNA are also common, particularly in the realm of RNA silencing (see 

Section 1.1.2 below). 

 Generally, base pairing interactions lower the free energy of an RNA molecule and are 

therefore preferred over the alternative of unpaired nucleotides. A natural extension of this fact is 
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that an RNA molecule will tend to adopt a secondary structure that maximizes the number of 

base paired nucleotides, which leads to complex and often stunning structures such as the tRNA 

cloverleaf. Other thermodynamic considerations also contribute to the overall secondary 

structure; for example, paired bases must be separated by at least three nucleotides in adjacent 

sequence space due to the rigidity of the sugar backbone. Additionally, bases must pair in a 

nested order such that the interactions do not overlap with one another. Of note, a number of 

RNAs including telomerase(16) are known to have non-nested base pairing interactions termed 

pseudoknots; these are essential to their proper function but are typically considered to be tertiary 

structural elements. 

 The typical notation used to represent RNA secondary structure consists of a three letter 

alphabet [“(“, “)”, “.”]. Matching left and right parenthesis represent base paired nucleotides, 

whereas dots represent unpaired nucleotides. In this way, every valid secondary structure can be 

uniquely represented by a dot-paren string of the same length (Figure 1.3).  
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Figure 1.3: Dot-paren (middle) and 2D (bottom) representations of RNA secondary structure. The 

structure shown here is a tRNA from Drosophila melanogaster.  

Further projection of the dot-paren string into a 2D structure can be done in a variety of ways, 

most commonly by a radial algorithm that attempts to minimize overlap between helices(98). The 

resultant 2D representation shows the structural backbone of the RNA molecule with base paired 

nucleotides connected by line segments and is the preferred method to visualize non-

pseudoknotted structures. 

 

1.1.2 Functional and regulatory roles for RNA secondary structure 

 The cellular RNA population can be broken down conceptually into two classes: 

messenger RNAs (mRNAs) that code for proteins, and many types of non-coding RNAs 

(ncRNAs) that do not. Among the various types of non-coding RNAs (Table 1.1), secondary 

structure is often crucial to proper biogenesis, maturation, and function.  

 

Class Functions 

Transfer RNA (tRNA) Adapter between mRNA and protein during translation 

Ribosomal RNA (rRNA) RNA component of the ribosome 

Small nuclear RNA (snRNA) Splicing, alternative polyadenylation 

Small nucleolar RNA 

(snoRNA) 
Chemical modification of rRNAs, tRNAs, and other RNAs 

MicroRNA (miRNA) 
Post-transcriptional gene regulation by target cleavage and/or 

translational inhibition 

Small interfering RNA (siRNA) 
Post-transcriptional and epigenetic gene regulation, transposon 

silencing 

Piwi-interacting RNA (piRNA) Post-transcriptional and epigenetic gene regulation 

Long non-coding RNA 

(lncRNA) 

Transcriptional, post-transcriptional, and epigenetic gene 

regulation 

  

 

Table 1.1: Functional non-coding RNA classes 
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Transfer RNAs (tRNAs), as mentioned above, must fold into the canonical cloverleaf structure in 

order to correctly interact with the ribosome during protein translation(122). The ribosome itself is 

a large complex of four ribosomal RNAs (rRNAs) and approximately eighty proteins, and also 

requires the correct folding of the various rRNA subunits in order to assemble and function in 

protein translation(96). Small nuclear RNAs (snRNAs) contain an evolutionarily conserved core 

secondary structure that is crucial to their function in splicing as well as alternative 

polyadenylation(7, 11). Finally, long non-coding RNAs (lncRNAs) likely derive their regulatory 

functions from secondary structure, not sequence(103, 108, 112). 

 In the realm of protein-coding mRNAs, structural elements modulate alternative 

splicing(85, 112) by masking or revealing splice sites. Perhaps the best known example is that of 

the Drosophila Dscam gene, which encodes 38016 distinct transcript isoforms through mutually 

exclusive alternative splicing of 95 exons. In this case, conserved structural elements in the exon 

6 cluster affect inclusion of the various exon variants(71). The secondary structure of mRNAs has 

also been shown to modulate transcript stability(33), protein translation(36), and microRNA-

mediated regulation(61). A significant caveat to many of these findings is that they are derived 

from computational predictions of secondary structure, which suffer from reliability issues 

particularly for longer sequences such as mRNAs(26, 70). Thus, one major goal of this work is to 

provide empirical evidence for the suggested functional and regulatory roles of mRNA secondary 

structure (see Chapter 3). 

 Expounding on the topic of regulation, secondary structure is also vital to the entire 

repertoire of RNA-mediated silencing mechanisms. In plants, these regulatory pathways are 

mediated by microRNAs (miRNAs) and several classes of endogenous small interfering RNAs 

(siRNAs)(6, 106). miRNAs are short 21-22 nucleotide (nt) RNAs direct post-transcriptional or 

translational repression of specific mRNAs through direct base pairing interactions with 

complementary sites in the target transcript sequence. Furthermore, their biogenesis also 

involves formation of a hairpin stem-loop structure that is then recognized by Dicer-like (DCL) 

proteins for processing. Endogenous siRNAs are produced in a similar fashion by DCL-mediated 

cleavage of long double-stranded RNA (dsRNA). Indeed, the entire life cycle of many a small 
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RNA from biogenesis to function is keyed upon specific base pairing interactions either with itself 

(intramolecular) or with another transcript (intermolecular). 

 

1.2 Determination of RNA secondary structure 

 In the previous section, we described the biochemistry of RNA secondary structure, as 

well as its functional and regulatory roles. Given the importance of secondary structure in the 

biogenesis and function of many classes of non-coding RNAs, as well as its myriad effects on 

mRNA splicing, stability, and translation, an immense deal of effort has been poured into the 

exact determination of the base pairing interactions that describe a secondary structure. Roughly 

speaking, the approaches can be distinguished as experimental or computational based on their 

primary mode of operation. In the next section, we explain the motivations and insights gained 

from the various studies and highlight a few key approaches in the prediction of RNA secondary 

structure. 

 

1.2.1 Experimental methods 

 Experimental methods for studying RNA secondary structure include a host of 

biochemical (e.g. RNase footprinting, chemical probing) and physical (e.g. X-ray crystallography, 

nuclear magnetic resonance spectroscopy) approaches. Although the approaches vary widely in 

terms of mechanism and operation, the end results are strikingly similar: low-throughput, high-

quality predictions of secondary structure. In the next few paragraphs, we highlight several of 

these methods as well as the insights gained from each. 

 

X-ray crystallography 

 Briefly, X-ray crystallography involves generation of crystals from purified RNA followed 

by exposure to X-rays. Subsequent analysis of the diffraction patterns yields an electron density 

map that can be further decomposed into a model of the RNA in question. As experimental 

approaches go, X-ray crystallography is by far the most labor intensive and time consuming due 
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to the large number of crystallization trials needed to produce crystals that generates useful 

diffraction data. However, several key structures including the hammerhead ribozyme and group I 

self-splicing introns(27) have been determined in this manner. 

 

Nuclear magnetic resonance (NMR) spectroscopy 

 NMR spectroscopy encompasses many variations of the same principle, namely that 

different types of nuclei give off different characteristic chemical shift frequencies when exposed 

to a magnetic field. Depending on the technique, these shift data can be used to study the 

dynamics of RNA folding in a very sensitive manner(9). It is beyond the scope of the current work 

to describe specific approaches in detail, and we will suffice to say that NMR spectroscopy is an 

extremely powerful, low-throughput technique for determination of RNA secondary structure. 

 

Chemical probing 

 Many chemical reagents modify RNA in some way, and these modifications can be read 

out as a measure of structural properties such as hydrogen bonding, solvent accessibility, and 

local nucleotide accessibility(114). One popular method, selective 2’-hydroxyl acylation analyzed 

by primer extension (SHAPE), uses hydroxyl-selective electrophiles such as NMIA and 1M7 that 

preferentially form 2’-O-ester adducts with more flexible nucleotides(116). Sites of 2’-O-ester 

adduct formation can then be detected as stops to primer extension by reverse transcriptase. 

Analysis of the per-base reactivities in conjunction with free energy-based modeling techniques 

can then be used to infer secondary structure. The accuracy of SHAPE-based secondary 

structure predictions is extremely high and compares favorably with the best computational 

methods currently available (see next section). 

 SHAPE chemistry has been widely used to study the secondary structure of many RNAs 

including the entire HIV genome(113). More recently, SHAPE chemistry has been used in 

conjunction with high-throughput sequencing to simultaneously infer the secondary structure of 

many pooled RNAs(64). In this sense, the throughput of the SHAPE method can be tremendously 
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increased, albeit with the significant caveat that a correspondingly large number of custom-

designed primers are still required.  

 

RNase footprinting 

 Another biochemical approach to measure RNA secondary structure utilizes 

ribonucleases (RNases) that preferentially cleave the sugar backbone at either paired (e.g. 

RNase V1) or unpaired (e.g RNases ONE, T1, and A) bases. The resultant cleavage sites are 

then visualized by autoradiography or reverse transcription followed by gel or capillary 

electrophoresis. The data from enzymatic cleavage and chemical mapping experiments are very 

similar and a mixture of the two approaches is often used to generate complementary 

results(108). One key advantage of RNase footprinting is that the technique does not require tiled 

primers as in SHAPE chemistry, and therefore lends itself very well to the genomic-level analyses 

that are the subject of this work. 

 

1.2.2 Computational methods 

 Complementary to the myriad experimental approaches for secondary structure 

determination is an equally extensive host of computational methods. Indeed, these methods 

have often evolved in lockstep so as to leverage additional structure mapping or modeling data. 

Conceptually, computational approaches for structure prediction can be broken down as either 

free energy-based or comparison-based.  

 

Free energy-based modeling 

 The base pairing interactions that comprise RNA secondary structure decrease the free 

energy of an RNA molecule in a well-characterized manner. For example, a G-C base pair 

decreases the free energy (ΔG) by 3kcal/mol whereas an A-U base pair has a ΔG of -

2kcal/mol(129). A seminal paper by Zuker and Stiegler in 1981 utilized dynamic programming to 

identify the combination of base pairing interactions that would result in the lowest free 

energy(129). This landmark work has led to a veritable explosion of improvements over the past 
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decades, both in terms of additions and refinements to the energy parameters used, as well as in 

the algorithm used to predict secondary structure(70). Current methods such as the Vienna 

RNAfold package(62), RNAstructure(89), and Sfold(24) include a plethora of features such as 

loop stability, noncanonical (G-A) base pairing, and partition function-based folding. As alluded to 

previously, these methods also include direct incorporation of experimental chemical mapping or 

nuclease cleavage data as a pseudo free-energy term(20).  

 Jointly, these energy-based prediction methods have become a fundamental tool in the 

RNA field due to their efficiency, ease of use, and acceptable reliability. However, as a trade-off 

to their relatively unbounded throughput, these methods suffer from mediocre accuracy 

particularly when long-range base pairing interactions are involved(26, 70). Additionally, free 

energy parameters cannot account for in vivo factors such as protein binding and folding 

dynamics that may alter the true secondary structure of an RNA molecule(66, 97). 

 

Comparative methods 

 The other major class of computational prediction methods, the so-called comparative 

methods, has attempted to address some of the limitations of the free energy-based single 

sequence approaches. In principle, comparative methods leverage the tendency for homologous 

RNAs to form common base pairing interactions in order to produce a consensus secondary 

structure that likely best represents the entire family of homologous RNAs. Schematically, there 

are three approaches to comparative analysis. Approach 1, “align then fold”, first attempts to align 

the input RNA sequences and then infers a consensus structure from the multiple sequence 

alignment. Approach 2, “fold then align”, ignores primary sequence information and instead 

attempts to directly align the individually predicted secondary structures. Finally, Approach 3, 

“simultaneous fold and alignment”, combines classical sequence alignment and dynamic 

programming-based maximal base pairing. 

 Regardless of the approach taken, the most useful underlying implementation involves 

stochastic context free grammars (SCFGs), which can be used to directly represent both the 

primary sequence and secondary structure of RNAs. SCFG-based methods have proven 
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immensely useful in constructing large-scale, gold standard RNA structure databases such as 

Rfam(11, 81).  

 

1.3. Outline of dissertation 

 On the whole, both experimental and computational approaches to secondary structure 

prediction have yielded important insights into the functional and regulatory outcomes of RNA 

secondary structure. However, the classic trade-off between performance and efficiency has 

limited to applicability of existing methods to true genome-wide studies. In this work, we develop 

a novel high-throughput, sequencing-based, structure mapping approach to study RNA 

secondary structure that bridges the gap between limited efficiency experimental methods and 

limited performance computational methods. 

 In Chapter 2, we describe our novel assays for RNA secondary structure termed double-

stranded RNA sequencing (dsRNA-seq) and single-stranded RNA sequencing (ssRNA-seq). We 

also provide a meaningful and statistically robust method for transforming sequencing data into 

base pair resolution structure mapping scores. Finally, we validate the reliability of our method in 

both biological and molecular contexts. 

 In Chapter 3, we use the structure mapping data in three eukaryotic organisms to identify 

structural features that demarcate regions of protein translation and microRNA targeting. We find 

empirical proof of previous hypotheses of decreased secondary structure near translation start 

sites and within microRNA target sites. Additionally, we use our structure mapping data to 

produce genome-wide collections of RNA secondary structure models. 

 In Chapter 4, we examine the regulatory impact of RNA secondary structure in the 

transcriptome of the model plant Arabidopsis thaliana. By integration of our structure mapping 

data with transcriptome-wide sequencing of ribosomal RNA-depleted (RNA-seq), small (smRNA-

seq), and ribosome-bound (ribo-seq) RNA populations, we find that mRNA secondary structure 

globally regulates the abundance of these transcripts within the cell. We also show that this 
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regulatory activity is likely due to the propensity for highly structured mRNAs to be degraded 

and/or processed into small RNAs.  

 In Chapter 5, we narrow our focus to the task of RNA secondary structure prediction for a 

single molecule. Here, we develop a likelihood model that explicitly accounts for the production of 

sequencing-compatible fragments during the dsRNA-/ssRNA-seq experimental protocols. We 

develop a Bayesian Markov chain Monte Carlo (MCMC) algorithm termed RNA-seq-fold that uses 

this underlying likelihood model to reconstruct a secondary structure from the observed 

sequencing reads. Furthermore, we show that this rigorous statistical treatment of the structure 

mapping data resolves ambiguities in the experimental protocol and leads to increased prediction 

accuracy for both simulated and real datasets. 

 Finally, in Chapter 6, we highlight potential applications of our genome-wide structure 

assays to RNA biology. We also discuss additional developments that are needed to achieve true 

base pair resolution secondary structure prediction at a genomic scale. 
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Chapter 2 

A genome-wide method for structure determination 

 In this section, we describe a novel methodology for genome-wide studies of RNA 

secondary structure. We outline the statistical methods used to interpret the data generated from 

these experiments and validate their reliability by biological and molecular modes. 

 

This section references work from: 

• Zheng Q, Ryvkin P, Li F, Dragomir I, Valladares O, Yang J, et al. Genome-Wide Double-

Stranded RNA Sequencing Reveals the Functional Significance of Base-Paired RNAs in 

Arabidopsis. PLoS Genet. 2010 (127) 

• Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, Aiyer S, et al. Global analysis of RNA 

secondary structure in two metazoans. Cell Rep. 2012 (54) 

• Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, Gregory BD. Regulatory Impact of 

RNA Secondary Structure across the Arabidopsis Transcriptome. Plant Cell. 2012 (55) 

 

2.1 Introduction 

 As discussed in the preceding chapter, methods for structure prediction run the gamut 

from single molecule approaches such as X-ray crystallography to genome-scale approaches 

such as free energy-based modeling. However, all of these methods are constrained by the 

performance versus throughput paradigm that has limited the ability to perform true genome-wide 

studies. To address this gap, we developed a pair of sequencing-based methodologies termed 

double-stranded RNA sequencing (dsRNA-seq) and single-straned RNA sequencing (ssRNA-

seq). 

 

2.1.1 Double-stranded RNA sequencing (dsRNA-seq) 

 dsRNA-seq marries high-throughput sequencing with classical nuclease chemistry  (see 

Section 1.2.1 above) to generate genome-wide views of RNA secondary structure. In brief, 
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purified RNA is treated with RNase ONE, which specifically digests single-stranded RNA regions 

and leaves a population of RNA that is enriched for double-stranded molecules. The resultant 

fragments are then subjected to standard Illumina library preparation protocols and sequenced 

(Figure 2.1).  

 

 

Figure 2.1: Outline of the dsRNA-seq and ssRNA-seq methods. 
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It is worth noting that dsRNA-seq does not distinguish between intramolecular and intermolecular 

base pairing interactions, as both provide the same protection against enzymatic cleavage. 

Additionally, the initial input consists of in vitro renatured RNA that may not represent the true in 

vivo species. However, this second caveat is characteristic of most RNA secondary structure 

assays, and the first may be addressed by lowering the concentration of input RNA or by 

additional computational procedures. 

 

2.1.2 Single-stranded RNA sequencing (ssRNA-seq) 

 ssRNA-seq is identical to dsRNA-seq in principle, but utilizes a different enzyme (RNase 

V1) that specifically targets base paired RNAs. Therefore, the sequenced RNA population 

consists primarily of unpaired (single-stranded) RNA fragments (Figure 2.1). Taken together, the 

two protocols provide a complete readout of the base pairing statuses of the entire input RNA 

pool. 

 

2.1.3 From sequencing to structure mapping 

 To interpret dsRNA-seq and ssRNA-seq data in a meaningful manner, we define a per-

base structure score 𝑠𝑖 as the generalized log-ratio (glog) of dsRNA-seq to ssRNA-seq coverage 

(𝒏𝒅𝒔,𝒏𝒔𝒔) after normalization by the total number of mapped reads in each library (𝑵𝒅𝒔 and 𝑵𝒔𝒔): 

𝑆𝑖 = glog(𝑑𝑠𝑖) − glog(𝑠𝑠𝑖) = log2 �𝑑𝑠𝑖 + �1 + 𝑑𝑠𝑖2� − log2 �𝑠𝑠𝑖 + �1 + 𝑠𝑠𝑖2� 

where 

𝑑𝑠𝑖 = 𝑛𝑑𝑠 ×
max(𝑁𝑑𝑠,𝑁𝑠𝑠)

𝑁𝑑𝑠
,   𝑠𝑠𝑖 = 𝑛𝑠𝑠 ×

max(𝑁𝑑𝑠,𝑁𝑠𝑠)
𝑁𝑠𝑠

  

 Roughly speaking, the structure score represents the likelihood of each base being 

involved in a pairing interaction. Larger (more positive) values indicate positions that are likely to 

be base paired, and smaller (more negative) values indicate positions likely to be unpaired 

(Figure 2.2).  
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Figure 2.2: Interpretation of dsRNA-seq and ssRNA-seq data. Mapped reads (top panel) are 

converted into per-base structure scores, which are a normalized log-ratio of dsRNA- to ssRNA-
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seq coverage. Higher scores indicate positions that are likely to be base paired, whereas lower 

scores indicate positions that are likely to be unpaired (bottom panel). 

We can also defined a standardized z-score, 

𝒁𝒊 =
𝑺𝒊 − 𝑆̅
𝑠2

 

where 𝑆̅ and 𝑠2are the mean and standard deviation of scores 𝑺𝒊 for a given transcript. These z-

scores, in conjunction with permutation-based thresholding, can then be used to constrain certain 

bases as being either paired or unpaired (see Section 3.6 for details). 

 

2.1.4 Datasets 

 Throughout the remainder of this work, we will reference datasets generated from four 

eukaryotic species – Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, 

and Homo sapiens (Table 2.1).  

 

Organism Source Sequenced 

Arabidopsis thaliana Columbia (Col-0) bud tissue 

dsRNA, ssRNA, smRNA, total 

RNA, ribosome-associated 

RNA 

Drosophila melanogaster DL1 culture cells dsRNA, ssRNA, smRNA 

Caenorhabditis elegans Mixed stage N2 worms dsRNA, ssRNA, smRNA 

Homo sapiens HeLa culture cells dsRNA, ssRNA 

 

Table 2.1: Datasets used in this work 

 

Most analyses described in Chapters 2-4 focus on the three model organisms, with Homo 

sapiens data being used primarily in Section 2.2.3. Read processing and alignment are described 

in detail in Section 2.4. 
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2.2 Validation of dsRNA-seq and ssRNA-seq 

 In the model plant Arabidopsis thaliana, the RNA-dependent RNA polymerase RDR6 

generates double-stranded RNAs from a single-stranded RNA template(57, 118). Our initial 

dsRNA-seq experiment leveraged this biological process to characterize RDR6 substrates as 

regions of depleted dsRNA in a mutant rdr6 plant(127). Agreement with previously known RDR6 

substrates as well as RT-PCR assays provided excellent validation for the dsRNA-seq assay. In 

this section, we describe three additional experiments that as a whole demonstrate the reliability 

and accuracy of the novel dsRNA-seq and ssRNA-seq methodologies. 

 

2.2.1 dsRNA hotspots and siRNA-mediated heterochromatin formation 

 In both plants and animals, RNA silencing acts to repress transposons and other parasitic 

genomic elements by chromatin modification of the endogenous loci(14, 67, 78, 83). Formation of 

heterochromatin at these target loci is directed by various small RNAs such as small interfering 

RNAs (siRNAs) and piRNAs that require a double-stranded intermediate for their biogenesis. 

 We used this aspect of smRNA biogenesis to validate our structure mapping approaches 

by examining the histone modifications present at highly structured genomic regions (dsRNA 

hotspots, see Section 2.4 for details). In all three organisms surveyed (Arabidopsis, Drosophila, 

and C. elegans), we found a significant enrichment for heterochromatic modifications (H3K9me2, 

H3K9me3, H3K27me1, H3K27me3, and 5mC) within dsRNA hotspots (Figure 2.3).  
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Figure 2.3: (A) Fraction of base pairs within Arabidopsis thaliana dsRNA (red) and ssRNA (blue) 

hotspots as well as the entire genome (gray) that are marked by specific histone modifications as 

indicated. (B) As in (A), but for Drosophila melanogaster. Orange indicates hotspots that also 
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produce a significant quantity of small RNAs. (C) As in (B), but for C. elegans. *** denotes p-value 

< 2.2e-16, Χ2 test. 

Further separation of dsRNA hotspots into those that produced small RNAs increased the 

enrichment of heterochromatic modifications, which is consistent with the known RNA silencing 

pathways. 

 

2.2.2 Confirmation of dsRNA and ssRNA hotspots by molecular assays 

 We also wanted to validate our genome-wide protocols at a molecular level. To this end, 

we randomly selected highly structured and highly unstructured (dsRNA and ssRNA hotspots, 

respectively) regions identified by our high-throughput assays for RT-PCR follow-up. We 

repeated the dsRNA-seq and ssRNA-seq experimental protocols on identical input RNA samples 

and then amplified the regions of interest by RT-PCR. As expected, dsRNA hotspots were 

exceptionally susceptible to degradation by the double-stranded specific RNase (V1) but not by 

the single-stranded specific RNase (RNase ONE) (Figure 2.4). The converse was also true, as 

ssRNA hotspots were sensitive to RNase ONE but not V1.  
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Figure 2.4: RT-PCR validation of dsRNA hotspots following RNase treatment as indicated. Note 

the lack of amplification following dsRNase treatment (lane 3), but not ssRNase treatment (lane 

2). (Top) Six dsRNA hotspots from Drosophila, (bottom) six dsRNA hotspots from Arabidopsis. 

 Many of the dsRNA and ssRNA hotspots identified were localized to intergenic space, 

suggesting that they may represent novel transcription units (Table 2.2). 

 

 Organism 

Class 
Arabidopsis Drosophila C. elegans 

dsRNA ssRNA dsRNA ssRNA dsRNA ssRNA 

Protein-coding 28.7% 92.1% 28.9% 41.7% 74.2% 92.0% 

Non-coding 

RNA 
1.4% 0.9% 9.1% 15.5% 2.1% 3.0% 

Transposon 48.0% 1.6% 48.3% 28.9% 16.7% 1.0% 

Other repeats 5.0% 1.6% 9.6% 5.7% 3.9% 2.4% 

Intergenic 16.9% 3.8% 4.1% 8.2% 3.1% 1.6% 

 

Table 2.2: Functional classification of dsRNA and ssRNA hotpots 

 

To confirm our sequencing data and hotspot calling approach, we selected ten of these newly 

identified transcripts (four in Drosophila, six in C. elegans) for RT-PCR validation across a panel 

of tissues and developmental stages (Figure 2.5).  



22 

 

Figure 2.5: RT-PCR validation of novel hotspots in (A) Drosophila and (B) C. elegans. 

Tissues/cells and hotspots are as indicated. (RNA in white, nuclei stained with DAPI in blue). 

 

All four of the Drosophila hotspots were found in the original culture cell line used for our dsRNA-

seq and ssRNA-seq libraries, and three of the four showed dramatic tissue- and developmental 

stage-specific expression patterns. We also confirmed the expression of six novel highly base 

paired RNAs, including three that were recently identified by high-throughput sequencing(31), in 

mixed stage C. elegans. Furthermore, we characterized the spatiotemporal expression of three 
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additional novel dsRNAs in C. elegans by single molecule RNA FISH (fluorescence in situ 

hybridization)(87). Use of this technology, which allows direct observation of single RNA 

molecules, revealed dynamic patterns of expression across development as well as sites of 

active transcription (Figure 2.6). 
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Figure 2.6: RNA FISH of the novel dsRNA hotspots in C. elegans. (A) dsRNA hotspot 

chrIV_h1804-1806 (RNA in white, nuclei stained with DAPI in blue). Images are maximum 

merges of a series of optical sections at a variety of developmental stages (41-cell stage, left 

panel; pretzel stage, middle panel; L1, right panel). Scale bars are 5 mm long. (B-D) Additional 

FISH images of three highly base paired RNAs of C. elegans (chrV_h1921 in B, chrV_h2006 in C, 

and chrI_h719 in D) taken at single molecule resolution at a variety of developmental stages. The 

top panels show the nuclei (stained with DAPI), whereas the bottom panels show maximum 

merges of a series of optical sections of the RNA labeled with probes coupled to the TMR 

fluorophore. Notice that the images contain spots of variable intensity. The dimmer spots most 

likely represent single dsRNA molecules (based on a comparison of spot intensity to previous 

acquired data(87), whereas the brighter spots mostly likely arise from the accumulation of 

multiple dsRNAs. We believe these agglomerations are most likely located at the site of 

transcription, given that we see at most 1 or two per cell and that they are located within the 

nucleus. All scale bars are 5 mm long. 

 

 In total, these molecular studies confirm the reliability of our dsRNA-seq and ssRNA-seq 

protocols both in terms of their ability to accurately measure base pairing as well as the potential 

to discover novel transcription units. 

 

2.2.3 Reproducibility between replicates 

 Finally, in order to assess the reproducibility of dsRNA-seq and ssRNA-seq, we 

examined transcriptome-wide studies in three sets of replicate libraries prepared from HeLa cell-

extracted RNA (see Section 2.4 for details). Initial examination of these samples revealed 

extremely similar distributions in terms of their genomic distribution (Figure 2.7), as well as high 

correlation in read coverage across the genome (Figure 2.8).  
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Figure 2.7: Functional classification of dsRNA-seq and ssRNA-seq reads from three HeLa cell 

replicates.  
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Figure 2.8: Correlation in dsRNA-seq and ssRNA-seq read counts between three HeLa cell 

replicates. Values are shown in log2 reads per million mapped (RPM) in 1kb bins across the 

genome. 
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To assess reproducibility at single base resolution, we first computed transcriptome-wide 

structure scores independently for each replicate. We then compared these scores at all 

informative positions (where the structure score si is nonzero) and found a surprisingly low 

correlation between all pairs of replicates (Figure 2.9, average Pearson correlation r = 0.32).  

 

 

Figure 2.9: Correlation in structure score (log-ratio of dsRNA-seq to ssRNA-seq read depth) at all 

informative positions between three HeLa cell replicates. 

 

However, when we restricted this analysis to high confidence positions (those with a standardized 

z-score zi outside a 95% confidence interval), we found an extremely high level of agreement for 

constrained positions (Table 2.3, 92.4% average concordance). 

 

Comparison 
Number of high-

confidence positions 
Concordant Discordant 

Replicate 1v2 114,656 106,911 (93.2%) 7,745 (6.8%) 

Replicate 1v3 80,624 73,809 (91.5%) 6,815 (8.5%) 

Replicate 2v3 198,214 183,335 (92.5%) 14,879 (7.5%) 

 

Table 2.3: Concordance at constrained positions between three replicates 
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These results indicate that the many of the positions with nonzero structure scores are quite noisy 

and highlight the importance of a stringent statistical treatment in their interpretation. 

 

2.3 Discussion 

 In this section, we described novel, high-throughput, sequencing-based assays (dsRNA-

seq and ssRNA-seq) to determine RNA secondary structure. We validated these protocols in a 

biological sense by examining their relationship to the siRNA-mediated silencing pathways. We 

also showed that highly structured and unstructured regions as identified by our sequencing 

assays are marked by significantly diverging nuclease sensitivities that correspond to their 

structure. Finally, we found the reproducibility of dsRNA-seq and ssRNA-seq to be extremely 

consistent between replicates. Taken together, these results suggest that these genome-scale 

methods can reliably and efficiently interrogate RNA secondary structure on a global scale. 

 It is worth noting that two other genome-wide methods were developed concurrently by 

other groups (Table 2.4).  

 

 ds/ssRNA-seq PARS FragSeq SHAPE-Seq 

RNA Input In vitro renatured In vitro renatured 
In vitro 

renatured 

In vitro 

nondenatured 

Probe(s) 
RNases ONE 

and V1 

RNases S1 

And V1 
Nuclease P1 NMIA or 1M7 

Control None None 
Untreated and 

PNK-treated 
DMSO-treated 

Base pairing 

readout 
Both Both 

Single-stranded 

only 

Single-stranded 

only 

Throughput Genome-wide Genome-wide Genome-wide 
Limited by primer 

extension 

Applications 

Arabidopsis, 

Drosophila, and 

C. elegans whole 

transcriptomes 

polyadenylated 

mRNAs from 

yeast 

non-coding 

RNAs from 

mouse 

Synthetic RNA 

pool 

 
Table 2.4: Genome-wide methods for RNA structure determination 
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Parallel analysis of RNA structure (PARS)(45) and fragmentation sequencing (FragSeq)(104) are 

conceptually similar to dsRNA-/ssRNA-seq, but differ in their execution. PARS uses RNases V1 

and S1, along with a single-hit kinetics model, to identify cleavage sites within paired or unpaired 

bases. FragSeq compares cleavage patterns between RNase P1, which cleaves single-stranded 

bases, and endogenous 5’ OH and 5’ P controls. Compared to dsRNA-/ssRNA-seq, both PARS 

and FragSeq are limited in their sensitivity due to the single-hit kinetics model. The two protocols 

are also limited in the type of RNAs that are interrogated; PARS only measures base pairing 

within polyadenylated mRNAs and FragSeq primarily measures structure within non-coding RNAs 

such as snoRNAs. In general, however, the three methods are fairly comparable and seem to 

agree on certain features of RNA secondary structure (see Section 3.2). In the next two chapters, 

we shift our focus from dsRNA-seq and ssRNA-seq as tools to the analysis and interpretation of 

data generated from these assays in three eukaryotic organisms. 

 

2.4 Materials and methods 

RNA materials 

 Arabidopsis thaliana (Columbia (Col-0) ecotype) immature flower bud clusters, 

Drosophila melanogaster DL1 culture cells, C. elegans mixed stage N2 worms, and HeLa culture 

cells were used for all experiments.  

 

Double-stranded RNA sequencing (dsRNA-seq) 

 40 µg of total RNA (13.33 µg from each of three biological replicates) was subjected to 

two rounds (1X RiboMinus) of rRNA depletion per manufacturer’s instructions (RiboMinus, 

Invitrogen (Carlsbad, CA)). Next, these rRNA-depleted RNA samples were treated with a single-

strand specific ribonuclease per manufacturer’s instructions (RNase ONE, Promega (Madison, 

WI)). dsRNA was then purified using a phenol:chloroform extraction. The purified dsRNA sample 

was subjected to a fragmentation reaction (Fragmentation Reagents, Applied Biosystems (Foster 

City, CA)) per manufacturer’s instructions. To resolve the dsRNAs after single-stranded RNase 
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treatment and fragmentation, they were treated with T4 polynucleotide kinase (T4 PNK, New 

England Biolabs (Cambridge, MA)) as previously described(110). The fragmented RNA sample 

was then used as the substrate for sequencing library construction using the Small RNA Sample 

Prep v1.5 kit (Illumina, San Diego, CA) per manufacturer’s instructions. Sequencing was carried 

out on an Illumina HiSeq2000 platform (Illumina Inc., San Diego, CA) according to manufacturer’s 

instructions. A detailed experimental protocol follows: 

 

dsRNA-seq protocol: 

I. Start with 40 µg of RNA from desired source material, suspended in 40 µL DEPC-

treated water. 

II. Ribosomal RNA (rRNA) depletion using the RiboMinus Eukaryote Kit (manual here: 

http://tools.lifetechnologies.com/content/sfs/manuals/ribominus_eukaryote_man.pdf). 

Resuspend rRNA-depleted sample in 18 µL DEPC-treated water. 

III. RNase ONE treatment 

a. Add 2.5 µL RNase ONE Buffer, 2.5 µL 2µg/µL acetylated BSA (e.g. from 

Promega), and 2.0 µL RNase ONE to 18 µL sample. 

b. Incubate at 37°C for one hour. 

c. Bring volume up to 200 µL by adding 175 µL DEPC-treated water. 

d. Phenol:chloroform extraction (e.g. 

http://openwetware.org/wiki/Phenol/chloroform_extraction) 

e. Precipitate aqueous layer in 20 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 600 

µL 100% EtOH. 

f. Resuspend in 9 µL DEPC-treated water. 

IV. RNA fragmentation 

a. Add 1 µL Ambion 10X Fragmentation Reagent to 9 µL sample. 

b. Incubate at 70°C for 5 minutes. 

c. Add 1 µL Stop Solution to the fragmentation reaction. 

http://tools.lifetechnologies.com/content/sfs/manuals/ribominus_eukaryote_man.pdf
http://openwetware.org/wiki/Phenol/chloroform_extraction
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d. Bring volume up to 100 µL by adding 89 µL DEPC-treated water. 

e. Precipitate the fragmented RNA by adding 10 µL 3M NaOAc (pH 5.5), 3 µL 

glycogen, and 300 µL 100% EtOH. 

f. Resuspend in 16 µL DEPC-treated water. 

V. T4 PNK treatment 

a. Add 2 µL NEB T4 DNA Ligase buffer, 1 µL T4 PNK, and 1 µL 10mM ATP to 16 

µL sample. 

b. Incubate at 37°C for one hour. 

c. Bring volume up to 100 µL by adding 80 µL DEPC-treated water. 

d. Precipitate by adding 10 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 300 µL 

100% EtOH. 

e. Resuspend in 10 µL DEPC-treated water. 

VI. Size selection 

a. Prepare 1000 mL 1X TBE running buffer (100 mL 10X TBE extended range + 

900 mL Milli-Q water). 

b. Pre-run 15% TBE-Urea polyacrylamide gel (e.g. from Invitrogen) for 25 minutes 

at 155 V. 

c. While gel is pre-running, prepare ladder and sample: 

i. Ladder: 1.5 µL 10bp DNA ladder, 8.5 µL DEPC-treated water, and 10 µL 

Gel Loading Buffer (e.g. from NEB). 

ii. Add 10 µL Gel Loading Buffer to sample. 

iii. Place sample (but not ladder) at 70°C for 5 minutes, followed by 3 

minutes on ice. 

d. After pre-run is complete, run ladder and sample at 155 V for approximately 1.5 

hours. 
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e. Stain gel with ethidium bromide. Add 14 µL 10 mg/mL ethidium bromide to 200 

mL 1X TBE buffer in a clean RNase-free tray. Add gel and rock gently for 10 

minutes. 

f. Cut 20-100bp band from gel and place gel slice in a 0.5mL tube with holes (e.g. 

Gel Breaker Tubes #3388-100 from IST Engineering Inc.), placed inside a clean 

2mL tube. 

g. Spin sample at 14000RPM, 4°C for 2 minutes. Repeat until all of the gel goes 

through the 0.5mL tube. 

h. Add 300 µL 0.3M NaCl and rotate for 4 hours. 

i. Pipette entire sample into a Spin-X column and spin at 14000RPM, 4°C for 2 

minutes. Transfer eluent to new 1.5mL tube. 

j. Precipitate by adding 30 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 900 µL 

100% EtOH. 

k. Resuspend in 5 µL DEPC-treated water. 

VII. Adapter ligation (from TruSeq Small RNA Sample Preparation Guide) 

a. Add 5 µL sample and 1 µL 5 µM RNA 3’ Adapter (RA3) to a sterile, nuclease-free 

200 µL PCR tube on ice. 

b. Pipette mixture up and down 6-8 times to thoroughly mix and then centrifuge 

briefly. 

c. Incubate in thermal cycle at 70°C for 2 minutes, then at 4°C for 2 minutes. 

d. Add 2 µL Ligation Buffer, 1 µL RNase Inhibitor (e.g. RNaseOUT from Life 

Technologies), and 1 µL Epicentre T4 RNA ligase 2 deletion mutation (200 

U/µL). Mix thoroughly. 

e. Incubate at 28°C for 75 minutes in thermal cycler. 

f. With 5 minutes left, heat 1 µL 25µM 5’ Adapter (RA5) to 70°C for 2 minutes, then 

place on ice for 2 minutes. 
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g. Add 1 µL RA5, 1 µL 10mM ATP, and 1 µL T4 RNA Ligase 1 to sample tube. Mix 

thoroughly. 

h. Incubate at 28°C for one hour in thermal cycler. Store at -20°C overnight unless 

proceeding directly to next step. 

VIII. Size selection to reduce adapter adapter 

a. Run sample on 15% TBE-Urea polyacrylamide gel as in Step VI. Cut 70-150bp 

band, taking care to avoid 50bp adapter-adapter band. Resuspend in 6 µL 

DEPC-treated water. 

IX. Reverse transcription 

a. Incubate 6 µL sample and 1 µL 100µM RNA RT Primer (RTP) at 70°C for 2 

minutes in preheated thermal cycler. Then incubate at 4°C for 2 minutes. 

b. Add 2 µL 5X First Strand Buffer, 0.5 µL 12.5mM dNTP mix (12.5mM of each 

nucleotide), 1 µL 100mM DTT, 1 µL RNase Inhibitor (e.g. RNaseOUT), and 1 µL 

SuperScript II Reverse Transcriptase. Mix thoroughly. 

c. Incubate at 50°C for one hour. 

X. PCR amplification 

a. Prepare PCR master mix: 35 µL 2X Phusion Mix, 21 µL 5mM betaine, 2 µL 10µM 

RNA PCR Primer (RP1), and 2 µL 10µM RNA PCR Primer Index (RPIX).  

b. Add 60 µL master mix to 12.5 µL sample, then aliquot mixture to 3 PCR tubes 

with approximately 25 µL in each tube. 

c. PCR amplification program in thermal cycler 

i. 98°C for 30 seconds 

ii. 98°C for 10 seconds 

iii. 60°C for 30 seconds 

iv. 72°C for 15 seconds 

v. Cycle to step ii 11X 

vi. 72°C for 10 minutes 
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vii. Hold at 4°C 

d. Precipitate by adding 10 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 300 µL 

100% EtOH. 

e. Resuspend in 10 µL DEPC-treated water. 

XI. Size selection 

a. Prepare 1000 mL 1X TBE running buffer (100 mL 10X TBE extended range + 

900 mL Milli-Q water). 

b. Prepare ladder and sample: 

i. Ladder: 1.5 µL 25bp DNA ladder, 8.5 µL DEPC-treated water, and 10 µL 

Gel Loading Buffer (e.g. from NEB). 

ii. Add 10 µL Gel Loading Buffer to sample. 

c. Run ladder and sample at 155 V for approximately 30 minutes. 

d. Stain gel with ethidium bromide. Add 14 µL 10 mg/mL ethidium bromide to 200 

mL 1X TBE buffer in a clean RNase-free tray. Add gel and rock gently for 10 

minutes. 

e. Cut 138-218bp band from gel and place gel slice in a 0.5mL tube with holes (e.g. 

Gel Breaker Tubes #3388-100 from IST Engineering Inc.), placed inside a clean 

2mL tube. Adapter-adapter is 118bp at this point. 

f. Spin sample at 14000RPM, 4°C for 2 minutes. Repeat until all of the gel goes 

through the 0.5mL tube. 

g. Add 300 µL 1X NEB Buffer 2 and rotate for 2 hours. 

h. Pipette entire sample into a Spin-X column and spin at 14000RPM, 4°C for 2 

minutes. Transfer eluent to new 1.5mL tube. 

i. Precipitate by adding 30 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 900 µL 

100% EtOH. 

j. Resuspend in 12 µL DEPC-treated water for sequencing. 
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Single-stranded RNA sequencing (ssRNA-seq) 

 40 µg of total RNA (13.33 µg from each of three biological replicates) was subjected to 

two rounds (1X RiboMinus) of rRNA depletion per manufacturer’s instructions (RiboMinus, 

Invitrogen (Carlsbad, CA)). Next, these rRNA-depleted RNA samples were treated with a double-

strand specific ribonuclease per manufacturer’s instructions (RNase V1, Applied Biosystems 

(Foster City, CA)). ssRNA was then purified using a phenol:chloroform extraction. The purified 

ssRNA sample was subjected to a fragmentation reaction (Fragmentation Reagents, Applied 

Biosystems (Foster City, CA)) per manufacturer’s instructions. To resolve the ssRNAs after 

double-stranded RNase treatment and fragmentation, they were treated with T4 polynucleotide 

kinase (T4 PNK, New England Biolabs (Cambridge, MA)) as previously described(110). The 

fragmented RNA sample was then used as the substrate for sequencing library construction 

using the Small RNA Sample Prep v1.5 kit (Illumina, San Diego, CA) per manufacturer’s 

instructions. Sequencing was carried out on an Illumina HiSeq2000 platform (Illumina Inc., San 

Diego, CA) according to manufacturer’s instructions. The experimental protocol for ssRNA-seq is 

identical to dsRNA-seq except for the following step, which replaces the RNase ONE treatment 

(Step III) above. 

III. RNase V1 treatment 

a. Add 3 µL 10X RNA Structure Buffer and 5 µL RNase V1 to 22 µL sample. 

b. Incubate at 37°C for one hour. 

c. Bring volume up to 200 µL by adding 170 µL DEPC-treated water. 

d. Phenol:chloroform extraction (e.g. 

http://openwetware.org/wiki/Phenol/chloroform_extraction) 

e. Precipitate aqueous layer in 20 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 600 

µL 100% EtOH. 

f. Resuspend in 9 µL DEPC-treated water. 

 

Read processing and alignment 

http://openwetware.org/wiki/Phenol/chloroform_extraction
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 Details of read processing and alignment are provided in Table 2.5. 

 

Organi
sm 

Library 
name 

GEO 
accession Platform Adapter 

trimming Mapping Mapped 
reads 

Ath dsRNA-
seq GSE23439 Illumina GA2 cross_match, 

min 6 nt 

cross_match, 
≤ 8% 
mismatches 

10,441,682 

Ath ssRNA-
seq GSE40209 Illumina 

HiSeq 2000 
cutadapt, 
min 6nt 

Bowtie, ≤ 4% 
seed-
mismatches 
and ≤ 6% 
total-
mismatches, 
up-to 100 hits 
per read 

19,536,080 

Ath smRNA-
seq GSE28524 Illumina GA2 VectStrip, 

min 6 nt 

cross_match, 
≤ 8% 
mismatches 

9,214,751 

Ath RNA-seq GSE28524 ABI SOLiD None 
cross_match, 
≤ 8% 
mismatches 

21,067,985 
(rep 1); 
26,548,982 
(rep2) 

Ath Ribo-seq GSE40209 Illumina 
HiSeq 2000 

cutadapt, 
min 8 nt 

Bowtie, ≤ 6% 
seed-
mismatches 
and <= 6% 
total-
mismatches, 
up-to 100 hits 
per read 

28,388,928 

Ath 

Degrado
me 
(GMUCT
) 

GSE11070 Illumina GA2 cutadapt, 
min 8 nt 

Bowtie, ≤ 6% 
seed-
mismatches 
and ≤ 6% 
total-
mismatches, 
up-to 100 hits 
per read 

Public 
dataset 

Dme dsRNA-
seq GSE29571 

Illumina GA2 
and HiSeq 
2000 

cross_match, 
min 6 nt 

cross_match, 
≤ 6% 
mismatches 

86,920,519 

Dme ssRNA-
seq GSE29571 

Illumina GA2 
and HiSeq 
2000 

cross_match, 
min 6 nt 

cross_match, 
≤ 6% 
mismatches 

20,330,923 

Dme smRNA-
seq GSE29571 Illumina GA2 cross_match, 

min 6 nt 

cross_match, 
≤ 6% 
mismatches 

4,207,161 

Cel dsRNA-
seq GSE29571 

Illumina GA2 
and HiSeq 
2000 

cross_match, 
min 6 nt 

cross_match, 
≤ 6% 
mismatches 

52,662,711 

Cel ssRNA-
seq GSE29571 Illumina GA2 

and HiSeq 
cross_match, 
min 6 nt 

cross_match, 
≤ 6% 13,177,958 
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2000 mismatches 

Cel smRNA-
seq GSE29571 Illumina GA2 cross_match, 

min 6 nt 

cross_match, 
≤ 6% 
mismatches 

4,190,517 

HeLa dsRNA-
seq GSE49309 Illumina 

HiSeq 2000 
cutadapt, 
min 6 nt 

TopHat, ≤ 2 
mismatches 72,498,559 

HeLa ssRNA-
seq GSE49309 Illumina 

HiSeq 2000 
cutadapt, 
min 6 nt 

TopHat, ≤ 2 
mismatches 53,475,807 

 

Table 2.5: Read processing and alignment 

 

Identification of dsRNA and ssRNA hotspots 

 dsRNA and ssRNA hotspots were identified using a modified version of the CSAR 

software package(79). Specifically, structure scores were calculated for each base position in the 

genome and regions with significantly higher or lower than background scores at an FDR of 5% 

were called as dsRNA and ssRNA hotspots, respectively. Recall that higher (more positive) 

structure scores indicate a greater probability of being paired, whereas lower (more negative) 

structure scores indicate a greater probability of being unpaired. The background distribution for 

determining the FDR was calculated by randomly shuffling dsRNA-seq and ssRNA-seq reads and 

then identifying hotspots with these shuffled data. 

 

Histone modification datasets 

 Various histone modification ChIP-seq and ChIP-chip data were downloaded from 

modENCODE (http://www.modencode.org) and other sources (Table 2.6).  

 

Organism Experiment type Modification Source 

Arabidopsis thaliana ChIP-chip H3K9me2 (8) 

Arabidopsis thaliana ChIP-seq 
H3K27me1, 

H3K27me3 
(43) 

Arabidopsis thaliana ChIP-chip 
H3K4me2, H3K4me3, 

H3K36me2, 5mC 
(94) 

Drosophila 

melanogaster 
ChIP-seq 

H3K4me1, H3K4me3, 

H3K9me3, H3K9ac, 
(46) 

http://www.modencode.org/
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H3K27me3, H3K27ac 

Caenorhabditis elegans ChIP-chip 

H3K4me2, H3K4me3, 

H3K9me2, H3K9me3, 

H3K27me3, 

H3K79me1 

(31) 

 

Table 2.6: Histone modification datasets 

 

For ChIP-seq data, genomic intervals of enriched regions were directly compared to dsRNA and 

ssRNA hotspots. For ChIP-chip data, ChIPOTle v1.11(10) was first used to identify genomic 

intervals of enriched histone modifications. Genomic intervals of significantly enriched histone 

modifications were then overlapped with the locations of dsRNA and ssRNA hotspots. 

 

RT-PCR analyses 

 RNase ONE digestion (dsRNA selection) was performed on three 20 µg total RNA 

samples per manufacturer’s instructions. Following digestion, these three samples were pooled 

together and purified using a phenol:chloroform extraction. To obtain ssRNA, a dsRNase 

digestion (RNase V1, (Ambion, Foster City, CA)) was carried on three 20 µg total RNA samples 

per manufacturer’s instructions. Following digestion, these three samples were pooled together 

and purified using a phenol:chloroform extraction. Each experiment was replicated three times. 

 

Fluorescence in situ hybridization (FISH) 

 In preparation for FISH experiments, we harvested embryos and larvae from 

synchronized and unsynchronized cultures of N2 worms.  We fixed, permeabilized, and 

performed single molecule FISH on C. elegans embryos and larvae as previously described(87). 

We determined the concentration of probe empirically, ending up with roughly the same 

concentration per fluorescently labeled oligonucleotide as used previously(87). 

 

Reproducibility studies 
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 Three independent sets of dsRNA-seq and ssRNA-seq libraries were prepared as 

described above except without rRNA depletion. Instead, duplex-specific normalization (DSN) 

was performed after T4 PNK treatment but prior to library construction.  
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Chapter 3 

Global patterns of RNA secondary structure 

 We now proceed to explore the genomic landscape of RNA secondary structure in three 

eukaryotic organisms. We show empirical support for previously hypothesized roles for secondary 

structure and also highlight new structural features that are revealed by genome-wide analyses. 

 

This section references work from: 

• Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, Aiyer S, et al. Global analysis of RNA 

secondary structure in two metazoans. Cell Rep. 2012 (54) 

• Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, Gregory BD. Regulatory Impact of 

RNA Secondary Structure across the Arabidopsis Transcriptome. Plant Cell. 2012 (55) 

• Li F, Ryvkin P, Childress DM, Valladares O, Gregory BD, Wang LS. SAVoR: a server for 

sequencing annotation and visualization of RNA structures. Nucleic Acids Res. 

2012;40(Web Server issue):W59-64 (53) 

 

3.1 Introduction 

 Many roles have been described for RNA secondary structure. For non-coding RNAs, 

their biogenesis and function often depend on their secondary structure (see Section 1.1.2). 

Protein-coding mRNAs also contain many structural features that modulate their stability, splicing, 

translation, and localization. Well-known moieties such as the AU-rich element(28), iron response 

element(47), and terminal 3’ stem-loop of histone mRNAs(105) exist as structured hairpins. More 

generally, secondary structure is thought to be relaxed near the translation initiation site so as to 

allow easier ribosome binding. Free energy-based prediction of secondary structures showed a 

near-universal decrease in mRNA stability (corresponding to less secondary structure) near the 

translation initiation site(36). Experimental proof of these findings would address concerns about 

whether this is a real phenomenon or simply a byproduct of the sequence bias (e.g. Shine-

Delgarno, Kozak sequences) present at these sites. 
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 Secondary structure is also thought to affect microRNA-mediated regulatory pathways. In 

order for a miRNA to carry out its regulatory role, it must form base pairing interactions with a 

complementary sequence on the mRNA transcript. The miRNA-target interaction is thought to 

extend along the entire length of plant miRNAs. However, in animals, this interaction mostly 

involves complementary base pairing only between nucleotides 2 – 8 of a miRNA (counted from 

its 5’ end) (seed region) and a binding site in a target transcript. In both cases, the intramolecular 

base pairing interactions contained within the target site must first be disrupted to allow for 

binding of the miRNA. The notion that perhaps miRNA target sites have evolved to be less 

structured so as to reduce the “cost” of miRNA-mediated regulation is quite intriguing and has 

been studied extensively in recent years.  

 The first study to incorporate target site structure in miRNA target prediction found 3-

nucleotide accessible regions to be an important predictor of targeting efficiency in Drosophila 

melanogaster(91). This observation was then extended to a more general trend of decreased 

structural complexity and increased accessibility in regions containing miRNA target sites(126). 

Additional studies based on free energy-based modeling of ensemble structures highlighted the 

importance of target site and flanking region accessibility in miRNA targeting efficiency(44, 61). A 

recent genome-wide analysis of miRNA target site folding energies in four plant genomes 

revealed significantly higher site accessibility when compared with random sequences in genes 

rich in guanines and cytosines (GC-rich), but no such difference in GC-poor genes(35). However, 

as with the observations regarding structural complexity at translation initiation sites, these are all 

based on computationally predicted structures and true experimental proof is lacking. 

 In this section, we apply dsRNA-seq and ssRNA-seq to obtain a global view of RNA 

secondary structure in the three eukaryotes Arabidopsis thaliana, Drosophila melanogaster, and 

Caenorhabditis elegans. Using these new genome-wide methodologies, we show secondary 

structure is greatly reduced upstream of translation initiation sites and within miRNA target sites. 

We also highlight distinct structural patterns that mark regions of protein translation. Finally, we 

provide a collection of structural models based on a combination of free energy-based modeling 

and our experimental data. 
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3.2 Secondary structure as a marker for protein translation 

 To identify structural features within protein coding mRNAs, we examined the average 

structure score (see Section 2.1.3) across the CDS and both 5’ and 3’ UTRs of all detected 

mRNA transcripts. In all three organisms, we found significant decreases (p -> 0) in structure 

score at both the start and stop codons of the CDS, revealing increased mRNA accessibility at 

the regions where protein translation begins and ends (Figure 3.1).  

 

 

Figure 3.1: The average structure score plotted over the 5’ UTR, CDS, and 3’ UTR of all 

detectable protein-coding transcripts for Arabidopsis (orange), Drosophila (blue), and C. elegans 

(green). The overall average for each specific transcript region is shown as a dotted line. Red 

arrows highlight significant (p-value < 2.2e-16, t test) dips in secondary structure that occur at the 

junctions between the UTRs and the coding region. 
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A similar study of yeast mRNAs by the PARS method revealed the same trend(45); these 

findings, in conjunction with the computational predictions of Gu et al.(36), strongly suggest that 

structural demarcation of protein translation is a conserved feature of eukaryotic protein-coding 

transcripts.  

 Our analyses also revealed strong differences in secondary structure between the 

protein-coding CDS and untranslated regions (UTRs). In Arabidopsis, the UTRs tend to be less 

structured than the CDS, whereas in both animals, the UTRs tend to be more highly structured 

(Figure 3.1). Intriguingly, these differences may reflect the prevalence and complexity of RNA-

binding protein (RBP) mediated regulation in these organisms. Animals are thought to encode a 

much larger repertoire of RBPs than plants(15, 63, 99), and the fact that these proteins often bind 

structured elements in the 3’ UTR provides a possible explanation for the increased secondary 

structure observed within Drosophila and C. elegans UTRs.  

 

3.3 Reduced base pairing at microRNA target sites 

 The global nature of the data generated by dsRNA-seq and ssRNA-seq allowed us to 

also interrogate the average secondary structure observed at and flanking microRNA target sites. 

In both Arabidopsis and C. elegans, we observed significantly (p → 0 for Arabidopsis, p = 2.7e-13 

for C. elegans) lower structure scores within predicted target sites compared to the flanking 

sequences 50bp up- and downstream (Figure 3.2).  
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Figure 3.2: The average structure score across miRNA binding sites and for 50 bp up- and 

downstream flanking regions in Arabidopsis (orange), Drosophila (blue), C. elegans (green) target 

transcripts. C. elegans miRNA sites that are additionally bound by ALG-1 are shown in dark 

green. The overall structure score average for the entire ~121-bp region is shown as a dotted 

line. p-values were calculated by a t test. 

 

Further analysis confined to target sites experimentally determined to be bound by ALG-1 (the 

ARGONAUTE (AGO) protein at the core of C. elegans miRISC)(128) uncovered similarly 

decreased base pairing within the 3’ end of microRNA target sites. Notably, the structure score 

profile of C. elegans target sites appears to fit the animal model of seed pairing; that is, the 

decreased base pairing was largely confined to bases 2-8 of the microRNA corresponding to the 

3’ end of the target site. To the best of our knowledge, this is the first experimental evidence for 

decreased base pairing as a selective pressure within microRNA target sites, and again highlights 

the importance of RNA secondary structure on a genome-wide level. Interestingly, we did not 



46 

observe a decrease in secondary structure at predicted microRNA target sites in Drosophila 

(Figure 3.2), indicating that large-scale differences in microRNA targeting may be present within 

eukaryotes. 

 

3.4 Models of mRNA secondary structure 

 Very little is known about the secondary structure of full-length mRNAs. Structured 

regulatory moieties such as iron response elements and AU-rich elements (see Section 3.1) have 

been identified by a variety of biochemical methods, but these comprise only a small fraction of 

the total length of mRNA sequence. Computationally predicted mRNA secondary structures are 

available, but they suffer from limited accuracy(26). General trends of secondary structure, such 

as the decreased base pairing at sites of protein translation and microRNA-mediated regulation 

described in the previous sections, have been identified and now validated, but these only detail 

the propensity of individual nucleotides to be involved in a base pairing interaction and do not 

capture the specific interaction itself. In other words, we can assert that a particular nucleotide is 

likely to be base paired, but with what other nucleotide we cannot say. Often, however, it is vitally 

important to know exactly the pairs of bases that comprise the secondary structure of an RNA 

molecule, for example in the context of mutational or comparative analyses. 

 To this end, we developed a method that integrates experimental data from dsRNA-seq 

and ssRNA-seq with free energy-based modeling to produce accurate, single-nucleotide 

resolution models of RNA secondary structure. In short, our method identifies nucleotides that are 

likely to be involved in a base pairing interaction based on a null distribution of randomly sampled 

sequencing reads, constrains these positions to preferentially exist in a base paired configuration, 

and then uses RNAfold to determine the exact pairs of interacting bases. We used this approach 

to generate a comprehensive collection of mRNA structure models for Arabidopsis, Drosophila, 

and C. elegans. Strikingly, experimentally-derived structure models for the FBtr0100406 (and 

other) mRNAs revealed significant differences from free energy-based folding, particular with 

respect to the large number of ≥7nt loops present in the RNAfold model (Figure 3.3).  
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Figure 3.3: Model of secondary structure for the Drosophila FBtr0100406 transcript determined by 

default RNAfold (left, labeled RNAfold) or our high-throughput sequencing-based, structure 

mapping approach (right, labeled Structure score). The region of this RNA interrogated in Figure 

2.4 is shown in this figure. The heatscale indicates the normalized log-ratio of dsRNA-seq to 

ssRNA-seq reads at each base position. Red arrows indicate regions of the RNA model where ~7 

nt are unpaired. 

 

RT-PCR analysis of this mRNA region showed relatively low sensitivity to ssRNase (see Section 

2.2), which is not likely if the many loops predicted by free energy alone were actually present. 

These results and others suggest that our “constrained” models more accurately reflect the true 

secondary structure of transcripts in the cell. 
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 During the process of deriving these structure models, we found that existing tools for 

RNA structure layout (e.g. RNAplot) lacked an effective means to visualize additional information 

such as our structure scores. To address this gap, we developed the Sequencing Annotation and 

Visualization of RNA structure (SAVoR) software tool. SAVoR combines RNA backbone layout 

information from RNAplot(62) with annotation values such as dsRNA-seq and ssRNA-seq derived 

structure scores to produce highly informative and annotated models of RNA secondary structure 

(Figure 3.4).  

 

 

Figure 3.4: Workflow for the SAVoR structure visualization web server. Upon validation of user 

input, the primary sequence and genomic location of the user-submitted transcript(s) are 

determined, and intersecting sequence reads are converted to the desired annotation values. The 

secondary structure is then determined and plotted with the specified visualization options. 
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In addition to its usage in generating the experimentally-constrained mRNA structure models 

described above, we also implemented SAVoR as a publicly available web server 

(http://tesla.pcbi.upenn.edu/savor) with an extremely easy-to-use yet powerful user interface. 

SAVoR will be useful to many researchers in rapid prototyping and experimental design (e.g. 

oligo/primer design, structure prediction) as well as analyses of downstream data (e.g. SNPs, 

smRNA-seq, etc.). 

 

3.5 Discussion 

 In this chapter, we described the genomic landscape of RNA secondary structure with 

respect to sites of protein translation and microRNA targeting. Using global measurements of 

secondary structure in three eukaryotic organisms, we found that a greatly decreased propensity 

for base pairing upstream of translation initiation sites. A link between protein translation and 

secondary structure has long been hypothesized(49), but we have provided the first experimental 

evidence of this process on a genome-wide scale. Interestingly, we also found the same 

decreased base pairing at stop codons; further experiments will be necessary to determine the 

functional role of such a mark as well as how it differs from the start codon. One hypothesis is 

that as the ribosome scans along an mRNA transcript(22, 86), the sudden decrease in secondary 

structure simply jars the ribosome loose, thereby terminating translation. Fully resolving the 

relationship between secondary structure and protein translation will yield important insights into 

this fundamental biological process and may offer particular avenues for RNA-mediated 

modulation of protein expression in a disease context. 

 From our dsRNA-seq and ssRNA-seq data, we also observed a marked decrease in 

base pairing within microRNA target sites relative to flanking sequences in Arabidopsis and C. 

elegans. These structural tendencies mirrored the known modes of action in the two organisms 

(full-length pairing in Arabidopsis and seed pairing in C. elegans), suggesting that base pairing is 

indeed a selective pressure on mRNA transcripts. Moreover, binding affinity of the ALG-1 protein 

in C. elegans was shown to be inversely proportional to the structural content of the target, 

http://tesla.pcbi.upenn.edu/savor
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implying a direct connection between target site structure and microRNA targeting efficiency. 

Intriguingly, target site base pairing was not significantly reduced in Drosophila, suggesting that 

multiple modes of microRNA targeting may be active within the eukaryotic clade. Additional 

examination of secondary structure at true (as opposed to predicted) microRNA target sites, 

perhaps via immunoprecipitation of RISC-bound mRNA transcripts, is necessary to identify and 

characterize the action mechanisms of this important regulatory pathway. Finally, given the 

crucial role of microRNAs in cancer(30, 59, 120), neurodegenerative disorders(1, 19, 52, 95), and 

myriad other pathologies(39, 93), a thorough understanding of their targeting and regulatory 

principles will prove invaluable in the therapeutic setting. 

 To maximize the utility of our dsRNA-seq and ssRNA-seq data, we compiled a database 

of mRNA structure models for all three organisms studied (available at 

http://gregorylab.bio.upenn.edu/arabidopsisStructure/ and 

http://gregorylab.bio.upenn.edu/twoMetazoans/). We have also provided all of our sequencing 

data through the AnnoJ (http://gregorylab.bio.upenn.edu/annoj/) and JBrowse 

(http://gregorylab.bio.upenn.edu/jbrowse/) genome browsers as a resource for the research 

community. Finally, the SAVoR web server (http://tesla.pcbi.upenn.edu/savor) has also remained 

under active development, and recent updates include direct entry of annotation values as well as 

a web-enabled batch mode. It is our sincere hope that these data and tools are useful to 

researchers from a variety of fields and disciplines; for example, one might want to look up the 

secondary structure of a particular transcript of interest, identify instances of a newly discovered 

structural motif, or compare the structures of two orthologous transcripts. 

 

3.6 Materials and methods 

mRNA structure score profiles 

 mRNA annotations were downloaded from TAIR (version 9), FlyBase (r5.22), and 

WormBase (WS205), respectively. Structure scores were calculated as described in Section 2.1.3 

but with normalization to the total number of mapped dsRNA-seq and ssRNA-seq reads per 

http://gregorylab.bio.upenn.edu/arabidopsisStructure/
http://gregorylab.bio.upenn.edu/twoMetazoans/
http://gregorylab.bio.upenn.edu/annoj/
http://gregorylab.bio.upenn.edu/jbrowse/
http://tesla.pcbi.upenn.edu/savor/
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transcript (𝑵𝒅𝒔 and 𝑵𝒔𝒔). Each mRNA transcript was then split into 100 equally-sized bins for the 

5’ UTR, CDS, and 3’ UTR, and the average structure score in each bin was computed. Finally, 

the genome-wide mRNA structure profile was calculated by averaging the profiles for all 

expressed mRNAs. Significance of differences in structure score within translation initiation and 

termination sites was determined by a Student’s t-test. 

 

Structure score at microRNA target sites 

 For Arabidopsis, microRNA target site predictions were downloaded from the 

psRNATarget web server(18), using the 243 published Arabidopsis thaliana miRNAs from 

miRBase(50) release 16 and all protein-coding mRNA transcripts from TAIR9. For Drosophila and 

C. elegans, predictions were downloaded from TargetScanFly (http://www.targetscan.org/fly_12/) 

and TargetScanWorm (http://www.targetscan.org/worm_12/) using ‘Predicted Conserved 

Targets’. ALG-1 binding sites were downloaded from (128). Average structure profiles for target 

sites (full-length in Arabidopsis and seed (bases 2-8) in Drosophila and C. elegans) and 50 bps 

upstream and downstream were computed as described above. Significance was assessed by a 

Student’s t-test. 

 

Experimentally-derived models of mRNA secondary structure 

 A standardized version of the structure score 𝒁𝒊 was used to constrain RNAfold (from the 

Vienna package)(62) predictions of secondary structure for each transcript: 

𝒁𝒊 =
𝑺𝒊 − 𝑆̅
𝑠2

 

where 𝑆̅ and 𝑠2 are the mean and standard deviation of scores 𝑺𝒊 for a given transcript. To 

determine thresholds to call paired and unpaired positions (𝑡𝑝𝑎𝑖𝑟𝑒𝑑  and 𝑡𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑, respectively), a 

null distribution of standardized structure scores was calculated by randomly shuffling dsRNA and 

ssRNA reads and re-computing the standardized scores. Thus, positions with a structure score 

greater than 𝑡𝑝𝑎𝑖𝑟𝑒𝑑 were constrained as paired ('|' in the structural constraint input), positions with 

a structure score less than 𝑡𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 were constrained as unpaired (‘x’ in the structural constraint 
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input), and all other positions were left unconstrained ('.' in the structural constraint input). All 

other RNAfold parameters were left as default. 

 

SAVoR web server 

 The SAVoR webserver runs Apache 2.2.3 on a CentOS 5.7 machine with 2x Intel Xeon 

E5450 3.00 GHz processors and 16GB RAM. Asynchronous JavaScript and XML (AJAX) 

technology is used to dynamically render PHP output into formatted HTML. A local MySQL 

database is used to store Rfam and Refseq/SGD/TAIR entries, and a local installation of BLAST+ 

is used to retrieve sequence and genomic locus information. Structure prediction is optionally 

performed using a local installation of RNAfold [version 1.8.4] or RNAstructure [version 5.6], and 

backbone layout is done using RNAplot. SAMtools(56) is used to extract annotation values from 

BAM files, and custom Perl and Ruby scripts are used to process BED files. Inkscape [version 

0.47] is used to convert from the native SVG format to publication-quality PDF and PNG output 

files. 
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Chapter 4 

Regulatory impact of RNA secondary structure 

 In this chapter, we focus on the regulatory roles of RNA secondary structure. We 

integrate data from sequencing of multiple RNA subpopulations in the model plant Arabidopsis 

thaliana to identify global relationships between secondary structure and gene expression at the 

RNA and protein levels. Additionally, we reveal a novel mechanism by which the cellular RNA 

silencing pathways directly regulate mRNA abundance. 

 

This section references work from: 

• Zheng Q, Ryvkin P, Li F, Dragomir I, Valladares O, Yang J, et al. Genome-Wide Double-

Stranded RNA Sequencing Reveals the Functional Significance of Base-Paired RNAs in 

Arabidopsis. PLoS Genet. 2010 (127) 

• Li F, Zheng Q, Vandivier LE, Willmann MR, Chen Y, Gregory BD. Regulatory Impact of 

RNA Secondary Structure across the Arabidopsis Transcriptome. Plant Cell. 2012 (55) 

 

4.1 Introduction 

 RNA secondary structure is a critical component of many cellular regulatory processes. 

Proper folding is required for the biogenesis, maturation, and function of most, if not all, classes of 

non-coding RNAs (described in Table 1.2). In particular, the effectors of RNA silencing pathways 

(microRNAs and various siRNAs in plants) are generally produced from double-stranded 

precursors (Figure 4.1).  
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Figure 4.1: smRNA biogenesis pathways in plants. 

 

MicroRNAs are initially transcribed by RNA Pol II, and this primary transcript (pri-miRNA) is then 

cleaved by DICER-LIKE 1 (DCL1) to yield a canonical stem-loop hairpin(106). An additional 

cleavage step then yields the mature miRNA as a ~20-21 nucleotide product that directs post-

transcriptional or translational repression of specific mRNAs through direct base pairing 

interactions with complementary sites in the target transcript sequence. siRNAs are generated in 

a similar process by the three other members of the Dicer-like family (DCL2, DCL3, and DCL4) 

from a variety of double-stranded precursors(12). Two key differences separate microRNAs and 

siRNAs. First, microRNAs are defined as being exclusively endogenous, whereas siRNAs can be 

derived from exogenous sources such as viral, transgene, or injected dsRNA. Additionally, 

whereas microRNA precursors are incompletely base paired, siRNAs are thought to require 

perfect base pairing within their precursors. However, the line between the two small RNA 

classes is being increasingly blurred as more and more overlap is revealed between their modes 

of biogenesis and action(106). 

 Secondary structure is also a major player in regulation of protein-coding genes. A host 

of structured elements (see Section 3.1), located primarily in the untranslated regions, regulate 
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the stability, splicing, and localization of mRNA transcripts. Beyond these short features, 

however, little is known about how secondary structure is related to mRNA processing and 

maturation. Control of translation initiation and elongation is also tightly linked to secondary 

structure. Computational predictions(32, 36) as well as our results from the previous chapter have 

suggested a propensity for decreased structure at initiation sites to facilitate ribosome binding. 

Recent studies have also proposed that mRNA secondary structure impedes translation 

elongation(32, 115). To date, the global role of RNA secondary structure within these myriad 

frameworks have remained elusive primarily due to the lack of available structural data. 

 In this section, we attempt to ascertain the exact nature of structure-mediated control at 

the levels of RNA processing, abundance, and translation. We integrate the structure data from 

our dsRNA-seq and ssRNA-seq studies in Arabidopsis thaliana with transcriptome-wide maps of 

RNA abundance, small RNA production, and ribosome binding to reveal the many regulatory 

roles of secondary structure. These results uncover a particularly intriguing possibility of direct 

processing of highly structured mRNAs by RNA silencing machinery.  

 

4.2 Integration of multiple genomic datasets in Arabidopsis 

 We started with the determination of secondary structure across all expressed mRNA 

transcripts in the model plant Arabidopsis thaliana as described in Chapters 2 and 3. From these 

dsRNA-seq and ssRNA-seq data, we computed the structure score at each position with the 

mature mRNA as well as the average for each transcript. We then compared the average 

structure score for every detected transcript with other measurements of the transcript’s 

properties. 

 

4.2.1 Secondary structure and mRNA abundance 

 We determined steady-state mRNA abundance by sequencing of the ribosomal RNA-

depleted transcriptome (RNA-seq), and found that RNA folding had a significant negative effect 

(Pearson correlation r = -0.45, p → 0) on total transcript levels (Figure 4.2).  



56 

 

 

Figure 4.2: Average structure score (x axis) plotted against average expression values 

determined by RNA-seq (y axis) for all detectable Arabidopsis mRNAs. 

We then confirmed this observation using qRT-PCR (quantitative reverse transcription PCR) on 

five highly and seven lowly structured mRNAs (12 total mRNAs). From this analysis, we found 

that the less structured mRNAs were all significantly (p < 0.001) more abundant than those 

transcripts with high levels of folding (Figure 4.3).  
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Figure 4.3: Random hexamer-primed qRT-PCR analysis of seven lowly (blue bars) and five highly 

(red bars) structured Arabidopsis mRNAs. Error bars, 6 SE. ** denotes p-value < 0.001, one-

tailed t test. 

In total, these findings reveal that mRNA secondary structure has a significantly negative 

regulatory effect on the overall abundance of mRNAs in the Arabidopsis transcriptome. 

 

4.2.2 Degradation and smRNA production from structured mRNAs 

 Given these findings, we considered the possibility that mRNA degradation and/or 

smRNA processing could explain the relationship between secondary structure and overall 

transcript abundance. To test this, we normalized previously published genome-wide RNA 

degradation (‘degradome’) data(34) by total transcript abundance as measured by RNA-seq data 

to ascertain the degradation rates for every detectable mRNA. We found a significant positive 

correlation (Pearson correlation r = 0.21, p → 0) between the overall structure score and 

degradation level of Arabidopsis mRNAs (Figure 4.4), indicating that highly folded mRNAs tend to 

be degraded more frequently than less structured transcripts.  

 

 

Figure 4.4: Average structure score (x axis) plotted against average degradation values 

determined by correcting degradome values by RNA-seq (y axis) for all detectable Arabidopsis 

mRNAs. 
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Interestingly, this relationship between structure and transcript degradation level is even stronger 

for mRNAs with predicted miRNA target sites (Pearson correlation r = 0.36, data not shown). This 

is likely because highly structured RNAs can be targeted for degradation both by miRNA binding 

events and intrinsic structural features. Taken together, these results suggested that RNA 

secondary structure is an intrinsically destabilizing feature of protein-coding mRNAs in 

Arabidopsis. More intriguingly, our findings also hinted at the possibility of direct smRNA 

processing of highly structured mRNAs as these fragments would be captured by the 

‘degradome’ sequencing data. 

 To address this hypothesis, we used smRNA-seq (see Section 4.4) to assess the 

abundance of small RNAs that were directly processed from mRNA transcripts. Using this 

approach, we found a significant positive correlation (Pearson correlation r = 0.62, p → 0) 

between increasing mRNA secondary structure and higher levels of sense smRNA production 

(Figure 4.5).  

 

 

Figure 4.5: Average structure score (x axis) plotted against the total abundance of smRNAs 

present per transcript in the sense orientation as determined by smRNA-seq (y axis) for all 

detectable Arabidopsis mRNAs. 
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We also found a similar trend for production of smRNAs from the antisense strand (Pearson 

correlation r = 0.65, Figure 4.6), suggesting that initial processing of highly structured mRNAs 

leads to secondary dsRNA synthesis (likely by an RNA-dependent RNA polymerase) and 

subsequent production of both sense and antisense smRNAs. 

 

 

Figure 4.6: Average structure score (x axis) plotted against the total abundance of smRNAs 

present per transcript in the antisense orientation as determined by smRNA-seq (y axis) for all 

detectable Arabidopsis mRNAs. 

 

4.2.3 Direct processing of highly structured mRNA elements 

 Our findings of increased degradation and smRNA production from structured mRNAs 

could be explained by bulk processes; that is, perhaps these structured transcripts tend to be 

lowly expressed due to turnover and rapid degradation of the entire mRNA by the exosome. We 

wanted to test the alternative possibility that highly structured regions of mRNAs were in fact 

being directly targeted by the RNA silencing machinery in a manner similar to that of the small 

RNA biogenesis pathways. To do so, we used our smRNA-seq data to define portions of mRNA 

transcripts that produced a significant amount of small RNAs (see Section 4.4). As expected 

under the second hypothesis, the regions of mRNAs that are processed into smRNAs were 
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significantly (p → 0, t-test) more structured than the regions that are not cleaved into smRNAs 

(Figure 4.7).  

 

 

Figure 4.7: The average structure score (y axis) of mRNA regions processed into smRNAs (left 

box, smRNA sites) compared with those that are not (right box, other positions). *** denotes p-

value < 2.2e-16, t test. 

 

We also repeated the correlation analysis between secondary structure and smRNA production 

described in Section 4.2.2 but limited the calculation of smRNA levels for each transcript to those 

that were derived exclusively from highly structured intervals within the mRNA (dsRNA hotspots). 

This analysis replicated our previous findings of a strong positive correlation between mRNA 

structure and smRNA processing (Figure 4.8, Pearson correlation r = 0.41), suggesting a novel 

adaptation of the small RNA biogenesis machinery to directly process and thereby regulate 

mRNA levels. 
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Figure 4.8: Average structure score (x axis) plotted against the total abundance of smRNAs 

present per dsRNA hotspot in the sense orientation as determined by smRNA-seq (y axis). 

 

4.2.4 Secondary structure and ribosome binding 

 On the basis of computationally predicted base pairing as well as individual examples, 

mRNA secondary structure is known to be a strong impediment to translational initiation and 

elongation. Given our ability to measure secondary structure in a high-throughput and reliable 

manner, we wanted to examine the global relationship between RNA structure and translation. 

Therefore, we utilized the ribo-seq method(41, 80) to assess ribosome binding density across the 

transcriptome and found a strong positive correlation (Pearson correlation r= 0.37, p → 0) 

between mRNA structure and ribosome binding (Figure 4.9). We confirmed this observation using 

qRT-PCR (quantitative reverse transcription PCR) on four highly and seven lowly structured 

mRNAs (11 total mRNAs) 
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Figure 4.9: Average structure score (x axis) plotted against average ribosome association values 

determined by normalizing ribo-seq values by RNA-seq (y axis) for all detectable Arabidopsis 

mRNAs. 

 

 

Figure 4.10: Random hexamer-primed qRT-PCR analysis of seven lowly (blue bars) and five 

highly (red bars) structured Arabidopsis mRNAs using ribosome-bound RNA fractions with values 

corrected by total RNA abundance as also measured by qRT-PCR. Error bars indicate 6SE. ** 

denotes p-value < 0.001, one-tailed t test. 
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Unfortunately, we were unable to distinguish between paused/stalled ribosomes and actively 

translating ribosomes using the ribo-seq approach, and therefore are left to speculate as to the 

underlying basis of this relationship (see Discussion below).  

 

4.3 Discussion 

 In this chapter, we explored the regulatory significance of RNA secondary structure by an 

integrative analysis of multiple high-throughput sequencing datasets. An initial comparison of 

dsRNA-seq, ssRNA-seq, and total RNA-seq data revealed a strongly negative correlation 

between secondary structure and mRNA abundance. By adding smRNA-seq and ‘degradome’ 

sequencing, we further established that the relationship between mRNA structure and steady 

state levels is at least partially explained by smRNA processing and/or degradation. Finally, by 

restricting our analyses to highly structured elements within mRNAs, we found that these regions 

are indeed directly processed into small RNAs (Figure 4.8). 

 Many outstanding and intriguing questions yet remain. For instance, how are these 

structured moieties processed? Our favored hypothesis is that the canonical small RNA 

biogenesis pathway is co-opted; additional experiments to characterize mRNA processing in 

microRNA mutants (e.g. dcl2, hen1) would confirm or disprove this possibility. On a smaller scale, 

in vitro “dicing” assays with specific mRNAs that contain structure ‘hotspots’ but no known 

microRNA target sites may be able to identify the biogenesis mechanism, at least for those 

transcripts. If direct processing of highly structured mRNAs is indeed found to be Dicer-

dependent, additional follow-up experiments would be needed to carefully tease out the 

differences between these structural elements and canonical pre-miRNA hairpins. 

 Another question relates to the potential function of these mRNA-derived small RNAs. If 

they are produced by the canonical smRNA biogenesis pathways, then it stands to reason that 

they might function as smRNAs in a regulatory sense. However, we consider this to be unlikely as 

we did not observe a substantial microRNA-like size pattern within smRNA reads that mapped to 

highly structured mRNA intervals. Given the steric constraints imposed by the PAZ domain of the 
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Argonaute effector proteins(100, 121), it is highly improbable that many of these mRNA-derived 

smRNAs could even be loaded into a RISC complex. We instead favor the hypothesis that the 

processing of these small RNAs is their function, insomuch as this processing thereby regulates 

mRNA levels. Interestingly, more than half of the bases in an mRNA are expected to be 

paired(115); this implies the existence of ‘dark matter’ secondary structure that is not accounted 

for by the existence of known structured regulatory moieties (see Section 3.1). Our findings of 

direct smRNA processing from newly-characterized structured elements may explain a large 

portion of this dark matter, pushing to further prominence the role of secondary structure in 

mRNA regulation and function.  

 We also identified a positive correlation between mRNA secondary structure as 

measured by dsRNA-/ssRNA-seq and ribosome binding density using the ribo-seq approach. 

However, because our ribo-seq data were unable to differentiate stalled and actively translating 

ribosomes, we are left to present possible explanations for our results. One likely possibility is 

that increased secondary structure leads to slowing or pausing of elongation which is then 

captured by ribo-seq as increased density. Increased base pairing at stop codons could also 

decrease the efficiency of translation termination, as suggested by the profiles of mRNA 

secondary structure (Figure 3.1). Additional experiments that separately measure active and 

inactive ribosome density (e.g. ribosome and polysome profiling) are necessary to truly assess 

the impact of secondary structure on translation. 

 Over the past three chapters, we have described the development and application of 

sequencing-based methodologies to assess RNA secondary structure on a global scale. 

Genomic analyses of these dsRNA-seq and ssRNA-seq datasets in three eukaryotic organisms – 

Arabidopsis thaliana, Drosophila melanogaster, and C. elegans – offered empirical and global 

evidence for many long-hypothesized features of RNA biology. For example, our structure 

mapping data demonstrated reduced base pairing at translation initiation and termination sites as 

well as microRNA target sites; these trends have been suggested based on computationally 

predicted base pairing models but we provide the first direct proof of their generality. Additional 

integration of our structure data with readouts of total RNA abundance, degradation, and small 



65 

RNA processing revealed a novel mechanism by which mRNA levels are directly regulated by 

processing of highly structured regions and subsequent degradation. In total, our findings have 

highlighted the importance and power of genome-wide studies, particularly when used in 

complement with classical hypothesis-driven approaches. In the next chapter, we shift our focus 

from genome-scale analyses to the task of single nucleotide resolution prediction of individual 

secondary structures.  

 

4.4 Materials and methods 

Total RNA sequencing (RNA-seq) 

 Two replicate RNA-seq libraries were produced using the SOLiD Total RNA-seq library 

preparation kit (Applied Biosystems, Carlsbad, CA). Subtraction of ribosomal RNA was carried 

out with the RiboMinus kit (Invitrogen, Carlsbad, CA) according to manufacturer’s instructions. 

Both replicates were sequenced on an ABI SOLiD 3+ (ABI, Foster City, CA) according to 

manufacturer’s instructions. 

 

Small RNA sequencing (smRNA-seq) 

 smRNA-seq libraries were produced using the Small RNA Sample Prep v1.5 kit (Illumina, 

San Diego, CA) per manufacturer’s instructions. Sequencing was carried out on an Illumina GA2 

Analyzer (Illumina Inc., San Diego, CA). A detailed protocol follows: 

I. Start with 40 µg of RNA from desired source material, suspended in 40 µL DEPC-

treated water. 

II. Size selection 

a. Prepare 1000 mL 1X TBE running buffer (100 mL 10X TBE extended range + 

900 mL Milli-Q water). 

b. Pre-run 15% TBE-Urea polyacrylamide gel (e.g. from Invitrogen) for 25 minutes 

at 155 V. 

c. While gel is pre-running, prepare ladder and sample: 
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i. Ladder: 1.5 µL 10bp DNA ladder, 8.5 µL DEPC-treated water, and 10 µL 

Gel Loading Buffer (e.g. from NEB). 

ii. Add 10 µL Gel Loading Buffer to sample. 

iii. Place sample (but not ladder) at 70°C for 5 minutes, followed by 3 

minutes on ice. 

d. After pre-run is complete, run ladder and sample at 155 V for approximately 1.5 

hours. 

e. Stain gel with ethidium bromide. Add 14 µL 10 mg/mL ethidium bromide to 200 

mL 1X TBE buffer in a clean RNase-free tray. Add gel and rock gently for 10 

minutes. 

f. Cut 15-45bp band from gel and place gel slice in a 0.5mL tube with holes (e.g. 

Gel Breaker Tubes #3388-100 from IST Engineering Inc.), placed inside a clean 

2mL tube. 

g. Spin sample at 14000RPM, 4°C for 2 minutes. Repeat until all of the gel goes 

through the 0.5mL tube. 

h. Add 300 µL 0.3M NaCl and rotate for 4 hours. 

i. Pipette entire sample into a Spin-X column and spin at 14000RPM, 4°C for 2 

minutes. Transfer eluent to new 1.5mL tube. 

j. Precipitate by adding 30 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 900 µL 

100% EtOH. 

k. Resuspend in 5 µL DEPC-treated water. 

III. Adapter ligation 

a. Add 5 µL sample and 1 µL 5 µM RNA 3’ Adapter (RA3) to a sterile, nuclease-free 

200 µL PCR tube on ice. 

b. Pipette mixture up and down 6-8 times to thoroughly mix and then centrifuge 

briefly. 

c. Incubate in thermal cycle at 70°C for 2 minutes, then at 4°C for 2 minutes. 
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d. Add 2 µL Ligation Buffer, 1 µL RNase Inhibitor (e.g. RNaseOUT from Life 

Technologies), and 1 µL Epicentre T4 RNA ligase 2 deletion mutation (200 

U/µL). Mix thoroughly. 

e. Incubate at 28°C for 75 minutes in thermal cycler. 

f. With 5 minutes left, heat 1 µL 25µM 5’ Adapter (RA5) to 70°C for 2 minutes, then 

place on ice for 2 minutes. 

g. Add 1 µL RA5, 1 µL 10mM ATP, and 1 µL T4 RNA Ligase 1 to sample tube. Mix 

thoroughly. 

h. Incubate at 28°C for one hour in thermal cycler. Store at -20°C overnight unless 

proceeding directly to next step. 

IV. Size selection to reduce adapter adapter 

a. Run sample on 15% TBE-Urea polyacrylamide gel as in Step VI. Cut 65-95bp 

band, taking care to avoid 50bp adapter-adapter band. Resuspend in 6 µL 

DEPC-treated water. 

V. Reverse transcription 

a. Incubate 6 µL sample and 1 µL 100µM RNA RT Primer (RTP) at 70°C for 2 

minutes in preheated thermal cycler. Then incubate at 4°C for 2 minutes. 

b. Add 2 µL 5X First Strand Buffer, 0.5 µL 12.5mM dNTP mix (12.5mM of each 

nucleotide), 1 µL 100mM DTT, 1 µL RNase Inhibitor (e.g. RNaseOUT), and 1 µL 

SuperScript II Reverse Transcriptase. Mix thoroughly. 

c. Incubate at 50°C for one hour. 

VI. PCR amplification 

a. Prepare PCR master mix: 35 µL 2X Phusion Mix, 21 µL 5mM betaine, 2 µL 10µM 

RNA PCR Primer (RP1), and 2 µL 10µM RNA PCR Primer Index (RPIX).  

b. Add 60 µL master mix to 12.5 µL sample, then aliquot mixture to 3 PCR tubes 

with approximately 25 µL in each tube. 

c. PCR amplification program in thermal cycler 
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i. 98°C for 30 seconds 

ii. 98°C for 10 seconds 

iii. 60°C for 30 seconds 

iv. 72°C for 15 seconds 

v. Cycle to step ii 11X 

vi. 72°C for 10 minutes 

vii. Hold at 4°C 

d. Precipitate by adding 10 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 300 µL 

100% EtOH. 

e. Resuspend in 10 µL DEPC-treated water. 

VII. Size selection 

a. Prepare 1000 mL 1X TBE running buffer (100 mL 10X TBE extended range + 

900 mL Milli-Q water). 

b. Prepare ladder and sample: 

i. Ladder: 1.5 µL 25bp DNA ladder, 8.5 µL DEPC-treated water, and 10 µL 

Gel Loading Buffer (e.g. from NEB). 

ii. Add 10 µL Gel Loading Buffer to sample. 

c. Run ladder and sample at 155 V for approximately 30 minutes. 

d. Stain gel with ethidium bromide. Add 14 µL 10 mg/mL ethidium bromide to 200 

mL 1X TBE buffer in a clean RNase-free tray. Add gel and rock gently for 10 

minutes. 

e. Cut 133-163bp band from gel and place gel slice in a 0.5mL tube with holes (e.g. 

Gel Breaker Tubes #3388-100 from IST Engineering Inc.), placed inside a clean 

2mL tube. Adapter-adapter is 118bp at this point. 

f. Spin sample at 14000RPM, 4°C for 2 minutes. Repeat until all of the gel goes 

through the 0.5mL tube. 

g. Add 300 µL 1X NEB Buffer 2 and rotate for 2 hours. 
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h. Pipette entire sample into a Spin-X column and spin at 14000RPM, 4°C for 2 

minutes. Transfer eluent to new 1.5mL tube. 

i. Precipitate by adding 30 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 900 µL 

100% EtOH. 

j. Resuspend in 12 µL DEPC-treated water for sequencing. 

 

Ribosome-associated sequencing (ribo-seq) 

 Ribo-seq libraries were made using ribosome-associated mRNAs from unopened flower 

buds that were isolated by differential centrifugation according to Mustroph et al.(80) with the 

following modifications. The ribosomes and associated mRNAs pelleted by centrifugation through 

a sucrose cushion were resuspended in 0.2 M Tris pH 8.0, 0.2 M KCl, 0.035 M MgCl2, 50 µg/ml 

chloramphenicol, and 50 µg/ml cycloheximide. 40 µg of resuspended RNA was centrifuged over a 

15-60% sucrose gradient (0.04 M Tris, pH 8.0, 0.02 M KCl, 0.02 MgCl2, 5 µg/ml chloramphenicol, 

and 5 µg/ml cycloheximide).  Following centrifugation, 50 µl fractions of the gradient were isolated 

and the OD260 of each was measured. The monosomal and polysomal fractions were pooled, 

and the RNA was isolated using the Qiagen miRNeasy Mini Kit. Eight µg of isolated RNA were 

depleted of ribosomal RNA using the RiboMinus Plant Kit (Life Technologies, Carlsbad, CA), 

fragmented using RNA Fragmentation Reagents (Ambion, Austin, TX), treated with T4 PNK 

(NEB, Boston, MA) to repair 5’ and 3’ ends, and used for library preparation using the Illumina 

TruSeq smRNA-seq library preparation kit and accompanying protocols (Illumina, San Diego, 

CA). Sequencing was carried out on an Illumina HiSeq2000 (Illumina Inc., San Diego, CA). 

 

Regions of small RNA production (smRNA hotspots) 

 Regions of significant small RNA production were determined using the following 

approach. First, consecutive smRNAs were identified on each chromosome and then pre-

grouped into smRNA clusters (smRNA contigs). Next, a derived “per-smRNA site” abundance 

(PSS-abundance) was calculated for all smRNA clusters as 𝑁𝑟
𝐿𝑐

× 𝑋�𝑠, where 𝑁𝑟 and 𝐿𝑐 are the total 
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number of cloned reads and length for this smRNA cluster, respectively, and 𝑋�𝑠 is the average 

length of all smRNA reads. Finally, the derived PSS-abundance on each chromosome was 

assumed to follow a Poisson distribution: 
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where 𝑋𝑖 is the derived PSS-abundance and 𝜆𝑖 is the expected number of smRNA reads per 

smRNA-site on chromosome 𝑖. Thus, the derived PSS-abundance data can be fitted to this 

Poisson distribution model, the parameters 𝜆𝑖 estimated, and the confidence intervals for PSS-

abundance of all smRNA clusters estimated for each chromosome. Finally, smRNA hotspots 

were identified as smRNA clusters with higher PSS-abundance than expected by chance. 

 

Quantitative reverse transcription PCR (qRT-PCR) 

 RNA was isolated using the miRNeasy Mini Kit (Qiagen, Valencia, CA). Random 

hexamer-primed cDNA was made for at least three biological replicates per experiment. 

Transcripts were then quantified by qPCR using the comparative threshold cycle method (∆∆Ct), 

using Actin 2 (At3g18780) as the endogenous reference and the lowest expressed transcript for 

renormalization. 
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Chapter 5 

Sequencing-based prediction of RNA secondary structure 

 In this chapter, we present an approach for sequencing-based inference of RNA 

secondary structure. We develop a novel likelihood model that describes the generation of 

dsRNA-seq and ssRNA-seq reads from an underlying structure, as well as a corresponding 

simulator and Markov chain Monte Carlo (MCMC) algorithm. Application of our new method to 

eight known secondary structures reveals marginally increased accuracy compared with 

traditional free energy-based algorithms. 

 

This section references work from: 

• Li F, Ryvkin P, Silverman IS, Wang LS, Gregory BD. Sequencing-based inference of 

RNA secondary structure. Unpublished results. 

 

5.1 Introduction 

 The field of RNA secondary structure is by now quite well-developed, with perhaps 

hundreds of methods whose throughput ranges from single molecule crystallography to genome-

wide free energy-based prediction (see Section 1.2). In particular, free energy-based methods 

have become a mainstay in the task of structure prediction due to their simplicity and ease of use. 

These approaches generally use a predefined set of energy parameters (e.g. base pairing, base 

stacking, loop penalties, etc.) along with dynamic programming to identify the set of pairing 

interactions that results in the lowest free energy conformation. Although additional refinements 

such as non-canonical base pairs and centroid-based folding have further improved the reliability 

of these methods, they still cannot compete with the accuracy of more focused experimental 

approaches such as X-ray crystallography, chemical probing, and RNase footprinting. 

 Recently, several groups have attempted to increase the performance of energy-based 

prediction by incorporating experimental structure data. SHAPE-CR and later SHAPE-seq(64) 

utilized chemical probing reactivities as a pseudo-free energy term in the RNAstructure(89) 
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algorithm to greatly improve prediction accuracy. We and others (see Section 2.3) developed 

global RNase footprinting approaches that were then used to either pre-constrain RNAfold-based 

structure prediction (Section 3.4) or post-select from clusters of predicted secondary 

structures(84). Although these methods differ widely in their execution, they share the common 

thread of heavy reliance on free energy-based prediction. In this section, we describe a 

completely new paradigm of initial structure prediction based on Markov chain Monte Carlo 

optimization of a likelihood function that describes the generation of dsRNA-seq and ssRNA-seq 

data. 

 MCMC methods are a general class of algorithms for sampling from a posterior 

distribution that is difficult to directly estimate. As the name suggests, these methods work by 

building a Markov chain of samples which converges to the desired posterior distribution at some 

point along the chain. Successive moves along the chain are determined either completely at 

random or semi-randomly (hence the ‘Monte Carlo’). A useful analogy is to imagine a hiker 

walking amongst a range of hills and attempting to reach the lowest point in the range (Figure 5.1, 

top panel). Moves along the Markov chain correspond to steps taken by the hiker in either 

direction (Figure 5.1, middle panel), albeit with the constraint that he/she is averse to taking large 

uphill steps. After an appropriate number of steps(74), the Markov chain has converged to the 

target distribution and our hiker has found the lowest valley (Figure 5.1, bottom panel). There are 

a number of conditions that may lead to extremely slow convergence; these include local optima 

(shallow valleys in our analogy), inefficient mixing (the hiker frequently backtracks), and bad initial 

estimates (the hiker starts very far from the lowest valley). 
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Figure 5.1: A cartoon representation of MCMC. (Top) From some initial point, our hiker must 

reach the lowest valley (red flag). (Middle) Move options for the hiker as indicated by arrows. 

Obstacles such as hills make the hiker less likely to go in that particular direction. (Bottom) After a 

series of moves (dotted line), our hiker reaches the target. 

 

 One popular MCMC method, the Metropolis-Hastings algorithm, attempts to mitigate 

these possibilities by drawing candidate steps from a proposal distribution. These candidate 

moves are then accepted or rejected based on the likelihood ratio between the candidate and 

current state. Simply put, if a candidate state 𝑥∗ is more likely than the current state 𝑥𝑡, it is 

automatically accepted; however, if the candidate state is less likely, it can still be accepted with 

probability 

𝑃(𝑥∗)𝑄(𝑥𝑡|𝑥∗)
𝑃(𝑥𝑡)𝑄(𝑥∗|𝑥𝑡)

  

where 
𝑃(𝑥∗)
𝑃(𝑥𝑡)  is the likelihood ratio between the candidate and current states 
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and 
𝑄(𝑥𝑡|𝑥∗)
𝑄(𝑥∗|𝑥𝑡)  is the ratio of the proposal density 

In our analogy, this accept-reject paradigm allows the hiker to climb hills that he/she would other 

be loathe to traverse and can thereby overcome many of the obstacles described. 

 The ability of MCMC methods to approximate a target distribution without direct sample 

proves extremely useful in the context of Bayesian inference. Bayes’ theorem 

𝑃(𝜃|𝑫) =
𝑃(𝑫|𝜃)𝑃(𝜃)

𝑃(𝑫)  

expresses the posterior probability of observing parameters 𝜃 given some data 𝑫 as a function of 

the likelihood function 𝑃(𝑫|𝜃) and a prior distribution of parameters 𝑃(𝜃). Additionally, the term 

𝑃(𝑫) is typically equivalent for all parameters θ and therefore becomes a constant: 

𝑃(𝜃|𝑫) ∝ 𝑃(𝑫|𝜃)𝑃(𝜃) 

At this point, analytical optimization of the posterior 𝑃(𝜃|𝑫) is difficult, but MCMC methods such 

as the Metropolis-Hastings algorithm can be used to sample from this distribution and eventually 

converge upon an approximately optimal solution. 

 As such, MCMC methods are widely used in many applications that can be framed in a 

Bayesian context but are too complex to solve analytically. In the realm of RNA secondary 

structure prediction, several algorithms have utilized so-called Bayesian MCMC to address 

various tasks. SimulFold(77) uses the Metropolis-Hastings algorithm to simultaneously infer RNA 

structures, alignments, and trees from unaligned multiple sequence data. McQFold(75) attempts 

to predict pseudoknotted RNA secondary structures by a similar MCMC approach. Our algorithm, 

termed RNA-seq-fold, also implements the Metropolis-Hastings algorithm, but with a very 

different likelihood function that is based on the production of dsRNA-seq and ssRNA-seq reads 

rather than thermodynamic or sequence considerations. In the next section, we describe our 

likelihood model in greater detail and provide direct experimental motivation for each of its 

mathematical terms. We then apply our novel approach to eight non-coding RNAs with known 

secondary structures.  
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5.2 A Bayesian framework for dsRNA- and ssRNA-seq 

 The Bayesian interpretation is a natural fit for dsRNA-seq and ssRNA-seq data, as we 

have observations (sequencing reads) as well as unknown parameters (the underlying secondary 

structure, enzyme digestion rates, etc.). As before, we have: 

𝑃(𝜃|𝑫) ∝ 𝑃(𝑫|𝜃)𝑃(𝜃) 

which can be rewritten as: 

𝑃(𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥|𝑹) ∝ 𝑃(𝑹|𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥)𝑃(𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥) 

where 𝒔 is a secondary structure of length 𝑙, 𝒖 and 𝒗 are enzyme digestion rates, 𝑁 is the number 

of enzymatic events per molecule, 𝑟𝑚𝑖𝑛 is the minimum cloneable fragment size, 𝑟𝑚𝑎𝑥 is the 

maximum cloneable fragment size, and 𝑹 is our sequencing data. Importantly, this formulation is 

directly motivated by the experimental protocol that is used to generate dsRNA-seq and ssRNA-

seq libraries. 

 

5.2.1 From experimental protocol to likelihood model 

 Let us first consider the likelihood term 𝑃(𝑹|𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥), which describes the 

probability of observing a set of sequencing reads 𝑹 from an underlying structure 𝒔 of length 𝑙. 

We start by assuming independence of individual reads, such that 

𝑃(𝑹) = �𝑃(𝑅𝑘)
𝑚

𝑘=1

 

for an experiment with m total reads. To derive 𝑃(𝑅𝑘), let us consider our experimental setup. We 

start with a dilute solution of RNA molecules and RNase (Figure 5.2, step 1). In this situation, 

each individual RNA molecule will be subjected to stochastic interaction with free RNase; 

conditioning on the number of such ‘enzymatic events’ (Figure 5.2, step 2) gives: 

𝑃(𝑅𝑘) = �𝑃(𝑅𝑘|𝑁)𝑃(𝑁)
𝑁

 

Next, we define a set of cleavage patterns 𝑪𝑵 where each 𝐶𝒊𝑁 = [𝑐𝑎 , 𝑐𝑏 , … ] is a vector of length 

� 𝑙𝑁� representing the positions that are cleaved by RNase (Figure 5.2, step 3). This gives: 
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𝑃(𝑅𝑘) = ��𝑃(𝑅𝑘|𝐶𝒊)𝑃(𝐶𝒊|𝑁)𝑃(𝑁)
𝐶𝒊𝑁

 

The left-most term 𝑃(𝑅𝑘|𝐶𝒊) is simply an indicator variable 

𝑃(𝑅𝑘|𝐶𝒊) = �1, if fragment 𝑅𝑘 is contained in 𝐶𝒊
0, otherwise                                           

that represents the possibility of cloning and sequencing the given fragment if enzymatic 

cleavage were to occur at the specified positions (Figure 5.2, step 4).  
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Figure 5.2: Generation of cloneable sequence fragments using the dsRNA-seq protocol. In a pool 

of RNA molecules and enzymes (1), cleavage events occur in a stochastic manner (2). The 

possible cleavage patterns 𝑪𝑵 for a given number 𝑁 of cleavage events per individual RNA 

molecule have probabilities that reflect the digestion rates at each of the 𝑁 cleavage events (3). 

Finally, the probability of observing fragments is encoded as an indicator function (4) given the 

cleavage pattern 𝐶𝑖𝑁 and the minimum and maximum fragment size (𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥). 



78 

𝑃(𝑅𝑘|𝐶𝒊) is also restricted by the parameters 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 as fragments that do not fall within the 

allowable size distribution are treated as non-cloneable. The middle term 𝑃(𝐶𝒊|𝑁) depends on the 

enzyme digestion rates 𝒖 and 𝒗 (where 𝑢𝑐 and 𝑣𝑐 are the probability of digestion occurring 3’ of 

nucleotide 𝑐 in the structure if the position is paired or unpaired, respectively) (Figure 5.2, step 3). 

𝑃(𝐶𝒊|𝑁) = � 𝐷𝑖

𝑁

𝑖∈{𝑎,𝑏,… }

 

where 

𝐷𝑖 = 𝑠𝑖𝑢𝑐𝑖 + (1 − 𝑠𝑖)𝑣𝑐𝑖   and  𝑠 = �1, if position 𝑖 is paired     
0, if position 𝑖 is unpaired 

The right-most term 𝑃(𝑁) describes the probability of having 𝑁 enzymatic events per RNA 

molecule and is determined by the relative concentrations of RNA and RNase in the experimental 

setup. To summarize, the probability of observing a single read 𝑅𝑘 is the sum of all cleavage 

pattern probabilities that yield a compatible fragment, and we obtain the final full probability of all 

reads 𝑹 simply as the product of probabilities for all 𝑅𝑘 ∈ 𝑹. 

 The prior term 𝑃(𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥) is not well characterized and we therefore rely on 

several assumptions to arrive at a reasonable estimate. First, we treat all parameters as 

independent such that 

𝑃(𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥) = 𝑃(𝒔)𝑃(𝒖)𝑃(𝒗)𝑃(𝑁)𝑃(𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥) 

Next, we assume that all valid secondary structures 𝒔 are equally likely, although another 

possibility would be to use free energy-based methods to assign prior weights. For the digestion 

rates 𝒖 and 𝒗, we use the total number of read endpoints that fall on paired or unpaired positions 

within some subset of known secondary structures. Of note, good initial estimates of 𝒖 and 𝒗 are 

therefore inherently reliant on the presence of known structures in the dataset at hand. This can 

be addressed experimentally by inclusion of a spike-in RNA with a known secondary structure. 

We estimate the number of enzymatic events 𝑁 by comparing the distribution of read lengths 

relative to the size of the initial full-length RNA molecule. Finally, 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 are set based on 

the actual fragment lengths that are excised during the experimental procedures. 
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5.2.2 Metropolis-Hastings implementation 

 Using the framework described above, we now turn to the task of sampling from the 

posterior distribution 𝑃(𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥|𝑹) by random walk Metropolis-Hastings on the 

parameter space {𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥}. We define a move set 𝑴 that simply and comprehensively 

explores the entire parameter space (Table 5.1).  

 

Move Example Parameter Constraints 

Add a pairing 

interaction 

...((........))... 

↓ 

..(((........))).. 

𝑠 → 𝑠∗ 

Must be a valid base 

pair, follow steric 

hindrance rules, and 

result in a fully nested 

structure. 

Delete a pairing 

interaction 

...((........))... 

↓ 

...(..........)... 

𝑠 → 𝑠∗ None 

 

Table 5.1: Metropolis-Hastings move set 

 

The ratio of the proposal density between two structures 𝒔 and 𝒔∗ is given by: 

𝑄(𝒔|𝒔∗)
𝑄(𝒔∗|𝒔) =

𝐼�𝑴(𝒙 → 𝒔)�
𝐼�𝑴(𝒙 → 𝒔∗)�

 

where 𝐼�𝑴(𝒙 → 𝒔)� is the number of valid structures that can yield structure 𝒔 in a single move. 

Note however that the symmetrical nature of the move set 𝑴 allows us to calculate 𝐼�𝑴(𝒙 → 𝒔)� 

simply as the number of valid moves from the structure 𝒔. Taken together, we have the following 

pseudocode for the Metropolis-Hastings implementation: 

1. Initialize {𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥} based on prior distribution 𝑃(𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥) 

2. Generate candidate state {𝒔∗,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥} using move set 𝑴 

3. Compute Metropolis-Hastings likelihood ratio: 

𝐿 =
𝑃(𝑹|𝒔∗,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥)𝑄(𝒔|𝒔∗)
𝑃(𝑹|𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥)𝑄(𝒔∗|𝒔)  
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4. Assign new state {𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥}: 

{𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥} = �
{𝒔∗,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥}, if 𝐿 > runif(0,1)
{𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥},           otherwise             

5. Repeat steps 2-4 until convergence or maximum number of iterations reached 

 

The resultant samples from the posterior distribution 𝑃(𝒔,𝒖,𝒗,𝑁, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥|𝑹) can be interpreted 

in terms of base pairing probabilities along our structure of interest. Formally, we define a base 

pairing probability vector 𝒃 of length 𝑙: 

𝒃 = �
𝐼�𝒔𝒕𝟎+𝒘𝒕�
𝑗 − 1

𝑡={0,1,…,𝑗}

                       𝐼(𝑠𝑡) = �1, 𝑠𝑡  is paired
0, 𝑠𝑡  is unpaired 

where 𝐼�𝒔𝒕𝟎+𝒘𝒕� is an indicator on the structure 𝒔 at time 𝑡0 + 𝑤𝑡, with 𝑡0 and 𝑤 being the burn-in 

period and sampling frequency, respectively. Conceptually, this is analogous to the base pairing 

probabilities that are derived from free energy models via a marginal distribution on the ensemble 

of secondary structures: 

𝒑 = � 𝐼(𝒔)𝑝(𝒔|𝑥)
𝒔∈𝑺(𝑥)

 

where 𝐼(𝒔) is the indicator function described above and 𝑝(𝒔|𝑥) is a probability distribution on the 

set 𝑺(𝑥) of all possible secondary structures for sequence 𝑥 given by the Boltzmann 

distribution(23, 42, 72). However, we have replaced 𝑝(𝒔|𝑥) with a distribution of equally weighted 

MCMC samples at the time points 𝑡0 + 𝑤𝑡. 

 

5.2.3 Generation of simulated sequencing datasets 

 To accurately infer secondary structure from dsRNA-seq and ssRNA-seq data using the 

described framework, two conditions (corresponding to the previous two sections) need to be 

met. First, the likelihood model must fit the actual experimental process of generating sequencing 

data. Additionally, the Metropolis-Hastings algorithm must converge on the desired target 

distribution (e.g. the true structure) within a reasonable number of iterations. We decided to 

initially address the second condition by implementing a read simulator with the exact likelihood 
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model used in the MCMC algorithm. In this ideal environment, sequencing noise and other 

variations in model fit are eliminated and we can focus exclusively on ability of our Metropolis-

Hastings implementation to find the true secondary structure. 

 For a given structure 𝒔 of length 𝑙, we define an 𝑙 × 𝑙 matrix 𝑳 where 𝐿𝑖𝑗 is the probability 

of generating the fragment [𝑖, 𝑗]. To set the values of 𝑳, we iterate through all possible cleavage 

patterns 𝐶𝑖 and increment the appropriate entries: 

𝐿𝑖𝑗+= ��𝑃�𝑅𝑖𝑗�𝐶𝒊�𝑃(𝐶𝒊|𝑁)𝑃(𝑁)
𝐶𝒊𝑁

 

where 𝑅𝑖𝑗 is the fragment [𝑖, 𝑗]. Once the values of 𝑳 are set, direct sampling can be used to 

generate faux sequencing reads that perfectly fit the likelihood model used in our algorithm. 

 

5.3 Monte Carlo estimation of RNA secondary structure 

 With our simulation and inference framework in hand, we next turned to selection of an 

appropriate dataset on which to test RNA-seq-fold. Given the novelty of our approach, we wanted 

to limit the initial testing to RNAs with previously-determined secondary structures so that we 

could have a reasonable ‘gold standard’ with which to compare our inferred structures. We also 

wanted to test our algorithm on a reasonably complex mixture of structures with differences in 

stem and loop sizes and composition. To meet these criteria, we chose a total of eight non-coding 

RNA species (Table 5.2) with known secondary structures from the Rfam(11) and miRBase(50) 

databases. 

 

RNA Length (nt) Structure source 

U1 snRNA 158 
Rfam (RF00003); based on 

chemical probing(51) 

U3 snRNA 216 
Rfam (RF00012); based on 

phylogenetic comparison(68) 

U5 snRNA 114 Rfam (RF00020); based on 
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phylogenetic comparison(102)  

SNORD15 (U15) snoRNA 146 (104) 

U22 snoRNA 126 (104) 

U97 snoRNA 142 (104) 

hsa-let-7a-1 80 miRBase (MI0000060) 

hsa-mir-17 84 miRBase (MI0000071) 

 

Table 5.2: Selected non-coding RNAs 

 

The selected RNAs vary widely in terms of their overall size (80nt hsa-let-7a-1 to 216nt U3 

snoRNA) and base pairing composition (Figure 5.3, compare the small loops in hsa-mir-17 to the 

large loops in U97 snoRNA) and therefore provide a wide spectrum of structures along which 

both the sensitivity and specificity of RNA-seq-fold can be tested. 
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Figure 5.3: Known secondary structures for eight non-coding RNAs. 

 

5.3.1 Simulation results 

 We used the simulator described in Section 5.2.3 to generate 100,000 simulated dsRNA-

seq reads for each of the eight ncRNA loci under parameters that roughly approximate our 

observations during the experimental protocol (Table 5.3).  

 

Parameter Description Value 

𝑠 Secondary structure 𝑠𝑘𝑛𝑜𝑤𝑛 

𝑢{A,C,T,G} Digestion rates at paired positions {0.04, 0.045, 0.05, 0.04} 

𝑣{A,C,T,G} Digestion rates at unpaired positions {0.08, 0.09, 0.10, 0.08, } 

𝑁 Number of cleavage events per molecule {1,2,3} 

𝑟𝑚𝑖𝑛 Minimum fragment size 10 

𝑟𝑚𝑎𝑥 Maximum fragment size 40 

 

Table 5.3: Simulation parameters 

 

We then ran RNA-seq-fold for 100,000 iterations using RNAfold structure predictions and re-

estimated digestion parameters from all eight RNAs as the initial parameter values (Table 5.4). 

 

Digestion rate Original values Re-estimated values 

𝑢{A,C,T,G} {0.04, 0.045, 0.05, 0.04} {0.04, 0.045, 0.05, 0.04} 

𝑣{A,C,T,G} {0.08, 0.09, 0.10, 0.08, } {0.082, 0.074, 0.088, 0.053} 

 

Table 5.4: Re-estimated digestion rates from simulated data 
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Note that only one set of digestion rates is changed during the re-estimation process as we are 

simply comparing the ratio of digestion at paired versus unpaired positions. After discarding the 

first 10,000 iterations as burn-in, we computed the posterior base pairing probability 𝒃 with a 

sampling frequency of 100 (e.g. using every 100th MCMC iteration) (Figure 5.4).  

 

Figure 5.4: Base pairing posteriors estimated from simulated dsRNA-seq data. Shaded circles 

represent posterior values (as indicated by the color scale) drawn on the known secondary 

structure for each locus. 

 

We also used the free energy-based methods RNAfold and RNAstructure to predict secondary 

structures for these loci (Figure 5.5).  
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Figure 5.5: RNAfold predicted secondary structures overlayed with the known secondary 

structure for each locus. Red and blue circles indicate paired and unpaired positions, 

respectively. 

 

To compare our method to the free energy-based structure predictions from these algorithms, we 

counted positions 𝑖 where 𝑏𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ and 𝑏𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ as paired and unpaired, respectively, 

across a range of threshold values. For 7 of the 8 loci, RNA-seq-fold outperformed the free 

energy methods across almost the entire range of threshold values, with the lone exception being 

hsa-mir-17 whose structure was predicted perfectly by RNAfold and RNAstructure (Table 5.5).  

 

Locus 
Lengt

h (nt) 

Num. 

correct 

Num. 

incorrect 
F-score MCC Method 𝑡ℎ𝑟𝑒𝑠ℎ 

hsa-let-7a-1 80 
77 (96.2%) 3 (3.8%) 0.97 0.92 MCMC 0.5 
77 (96.2%) 3 (3.8%) 0.97 0.92 MCMC 0.55 
76 (95.0%) 4 (5.0%) 0.96 0.9 MCMC 0.6 
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72 (90.0%) 8 (10.0%) 0.92 0.81 MCMC 0.65 
70 (87.5%) 10 (12.5%) 0.89 0.77 MCMC 0.7 
68 (85.0%) 12 (15.0%) 0.87 0.73 MCMC 0.75 
62 (77.5%) 18 (22.5%) 0.79 0.63 MCMC 0.8 
57 (71.2%) 23 (28.8%) 0.72 0.55 MCMC 0.85 
51 (63.8%) 29 (36.2%) 0.61 0.47 MCMC 0.9 
45 (56.2%) 35 (43.8%) 0.49 0.38 MCMC 0.95 
66 (82.5%) 14 (17.5%) 0.87 0.6 RNAfold NA 
66 (82.5%) 14 (17.5%) 0.88 0.63 RNAstructure NA 

hsa-mir-17 84 

73 (86.9%) 11 (13.1%) 0.91 0.66 MCMC 0.5 
73 (86.9%) 11 (13.1%) 0.91 0.66 MCMC 0.55 
75 (89.3%) 9 (10.7%) 0.93 0.73 MCMC 0.6 
74 (88.1%) 10 (11.9%) 0.92 0.7 MCMC 0.65 
74 (88.1%) 10 (11.9%) 0.92 0.7 MCMC 0.7 
75 (89.3%) 9 (10.7%) 0.93 0.74 MCMC 0.75 
73 (86.9%) 11 (13.1%) 0.9 0.72 MCMC 0.8 
72 (85.7%) 12 (14.3%) 0.89 0.72 MCMC 0.85 
67 (79.8%) 17 (20.2%) 0.84 0.64 MCMC 0.9 
55 (65.5%) 29 (34.5%) 0.69 0.48 MCMC 0.95 
84 
(100.0%) 0 (0.0%) 1 1 RNAfold NA 

84 
(100.0%) 0 (0.0%) 1 1 RNAstructure NA 

U1_snRNA 158 

124 
(78.5%) 34 (21.5%) 0.78 0.57 MCMC 0.5 

123 
(77.8%) 35 (22.2%) 0.77 0.56 MCMC 0.55 

122 
(77.2%) 36 (22.8%) 0.75 0.54 MCMC 0.6 

117 
(74.1%) 41 (25.9%) 0.71 0.48 MCMC 0.65 

115 
(72.8%) 43 (27.2%) 0.68 0.46 MCMC 0.7 

118 
(74.7%) 40 (25.3%) 0.68 0.52 MCMC 0.75 

114 
(72.2%) 44 (27.8%) 0.63 0.48 MCMC 0.8 

112 
(70.9%) 46 (29.1%) 0.6 0.47 MCMC 0.85 

111 
(70.3%) 47 (29.7%) 0.57 0.47 MCMC 0.9 

95 (60.1%) 63 (39.9%) 0.31 0.29 MCMC 0.95 
92 (58.2%) 66 (41.8%) 0.54 0.16 RNAfold NA 
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90 (57.0%) 68 (43.0%) 0.6 0.15 RNAstructure NA 

U3_snRNA 216 

189 
(87.5%) 27 (12.5%) 0.89 0.75 MCMC 0.5 

189 
(87.5%) 27 (12.5%) 0.89 0.75 MCMC 0.55 

179 
(82.9%) 37 (17.1%) 0.85 0.67 MCMC 0.6 

176 
(81.5%) 40 (18.5%) 0.83 0.65 MCMC 0.65 

174 
(80.6%) 42 (19.4%) 0.81 0.65 MCMC 0.7 

169 
(78.2%) 47 (21.8%) 0.79 0.62 MCMC 0.75 

162 
(75.0%) 54 (25.0%) 0.74 0.58 MCMC 0.8 

153 
(70.8%) 63 (29.2%) 0.68 0.55 MCMC 0.85 

147 
(68.1%) 69 (31.9%) 0.64 0.51 MCMC 0.9 

120 
(55.6%) 96 (44.4%) 0.41 0.35 MCMC 0.95 

124 
(57.4%) 92 (42.6%) 0.65 0.11 RNAfold NA 

128 
(59.3%) 88 (40.7%) 0.66 0.15 RNAstructure NA 

U5_snRNA 114 

93 (81.6%) 21 (18.4%) 0.82 0.63 MCMC 0.5 
91 (79.8%) 23 (20.2%) 0.8 0.6 MCMC 0.55 
90 (78.9%) 24 (21.1%) 0.79 0.58 MCMC 0.6 
90 (78.9%) 24 (21.1%) 0.78 0.59 MCMC 0.65 
85 (74.6%) 29 (25.4%) 0.72 0.51 MCMC 0.7 
83 (72.8%) 31 (27.2%) 0.69 0.49 MCMC 0.75 
80 (70.2%) 34 (29.8%) 0.65 0.45 MCMC 0.8 
79 (69.3%) 35 (30.7%) 0.62 0.45 MCMC 0.85 
73 (64.0%) 41 (36.0%) 0.52 0.38 MCMC 0.9 
65 (57.0%) 49 (43.0%) 0.35 0.27 MCMC 0.95 
62 (54.4%) 52 (45.6%) 0.62 0.07 RNAfold NA 
66 (57.9%) 48 (42.1%) 0.65 0.15 RNAstructure NA 

U15_snoRNA 146 

128 
(87.7%) 18 (12.3%) 0.89 0.75 MCMC 0.5 

128 
(87.7%) 18 (12.3%) 0.89 0.75 MCMC 0.55 

125 
(85.6%) 21 (14.4%) 0.87 0.71 MCMC 0.6 

124 22 (15.1%) 0.86 0.7 MCMC 0.65 
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(84.9%) 
120 
(82.2%) 26 (17.8%) 0.84 0.64 MCMC 0.7 

119 
(81.5%) 27 (18.5%) 0.82 0.64 MCMC 0.75 

114 
(78.1%) 32 (21.9%) 0.78 0.59 MCMC 0.8 

109 
(74.7%) 37 (25.3%) 0.73 0.54 MCMC 0.85 

96 (65.8%) 50 (34.2%) 0.59 0.42 MCMC 0.9 
92 (63.0%) 54 (37.0%) 0.53 0.4 MCMC 0.95 
92 (63.0%) 54 (37.0%) 0.69 0.24 RNAfold NA 
100 
(68.5%) 46 (31.5%) 0.74 0.35 RNAstructure NA 

U22_snoRNA 126 

91 (72.2%) 35 (27.8%) 0.73 0.54 MCMC 0.5 
88 (69.8%) 38 (30.2%) 0.7 0.47 MCMC 0.55 
95 (75.4%) 31 (24.6%) 0.74 0.55 MCMC 0.6 
95 (75.4%) 31 (24.6%) 0.74 0.53 MCMC 0.65 
98 (77.8%) 28 (22.2%) 0.75 0.56 MCMC 0.7 
100 
(79.4%) 26 (20.6%) 0.75 0.58 MCMC 0.75 

101 
(80.2%) 25 (19.8%) 0.75 0.59 MCMC 0.8 

102 
(81.0%) 24 (19.0%) 0.76 0.6 MCMC 0.85 

100 
(79.4%) 26 (20.6%) 0.72 0.56 MCMC 0.9 

88 (69.8%) 38 (30.2%) 0.47 0.35 MCMC 0.95 
90 (71.4%) 36 (28.6%) 0.74 0.55 RNAfold NA 
92 (73.0%) 34 (27.0%) 0.75 0.57 RNAstructure NA 

U97_snoRNA 142 

110 
(77.5%) 32 (22.5%) 0.73 0.57 MCMC 0.5 

113 
(79.6%) 29 (20.4%) 0.75 0.6 MCMC 0.55 

115 
(81.0%) 27 (19.0%) 0.77 0.62 MCMC 0.6 

117 
(82.4%) 25 (17.6%) 0.77 0.64 MCMC 0.65 

117 
(82.4%) 25 (17.6%) 0.77 0.64 MCMC 0.7 

117 
(82.4%) 25 (17.6%) 0.76 0.62 MCMC 0.75 

117 
(82.4%) 25 (17.6%) 0.75 0.61 MCMC 0.8 
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118 
(83.1%) 24 (16.9%) 0.74 0.62 MCMC 0.85 

117 
(82.4%) 25 (17.6%) 0.7 0.61 MCMC 0.9 

109 
(76.8%) 33 (23.2%) 0.54 0.48 MCMC 0.95 

70 (49.3%) 72 (50.7%) 0.49 0.08 RNAfold NA 
74 (52.1%) 68 (47.9%) 0.44 0.05 RNAstructure NA 

 

Table 5.5: Comparison of RNA-seq-fold and free energy-based methods with simulated data. 

MCC = Matthews correlation coefficient. 

 

Notably, our method outperformed RNAfold and RNAstructure by a substantial margin on 

U97_snoRNA, likely due to extraneous base pairing in the large loops that is favored by a free 

energy minimization method (compare U97_snoRNA in Figures 5.4 and 5.5). 

 RNA-seq-fold, as with most MCMC algorithms, is computationally demanding due to the 

large parameter space and stochastic nature of its exploration. This expense is further multiplied 

by the fact that likelihood estimation in this case cannot be written in a closed form and therefore 

must be computed numerically. In fact, the number of contributions to the likelihood term 

𝑃(𝑅𝑘) = ��𝑃(𝑅𝑘|𝐶𝒊)𝑃(𝐶𝒊|𝑁)𝑃(𝑁)
𝐶𝒊𝑁

 

grows as � 𝑙𝑁� where 𝑙 is the length of the RNA molecule and 𝑁 is the number of cleavage events 

per locus. Using the hsa-mir-17 locus as a test case, we analyzed the running time of RNA-seq-

fold under a variety of conditions (Table 5.6).  

 

 dsRNA-seq replicate 1 dsRNA-seq replicate 2 

hsa-let-7a-1 35,538 64,665 

hsa-mir-17 38,967 101,251 

U1_snRNA 375,922 764,652 

U3_snRNA 986,115 1,531,236 
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U5_snRNA 150,877 241,020 

U15_snoRNA 222,781 250,871 

U22_snoRNA 142,825 201,929 

U97_snoRNA 1,527,835 2,073,011 

 

Table 5.6: Number of mapped reads per locus 

 

As expected, running time scaled linearly with the number of MCMC iterations whereas read 

depth had little effect on the computational expense. The choice of 𝑁 = {1,2,3}, {1,2,3,4},

and {1,2,3,4,5} demonstrated near-factorial growth due to the number of terms in the likelihood 

calculation; therefore, we chose to limit our subsequent analyses with the condition 𝑁 =  {1,2,3}. 

In the future, optimization of the likelihood calculation should enable this constraint to be dropped 

(see Discussion). 

 Another major consideration in MCMC approaches is chain convergence (i.e. if the 

sampling distribution approximates the target distribution within some error tolerance). To assess 

convergence, we computed the posterior base pairing probability 𝒃 from successively shorter 

MCMC chains and then compared the performance of these subsampled chains to that of the full 

length posterior. We observed almost prediction accuracy at 10% of the original chain length 

(Figure 5.6), suggesting that RNA-seq-fold converges rapidly to the most likely secondary 

structure.  
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Figure 5.6: Convergence of RNA-seq-fold with simulated dsRNA-seq data. MCC (y-axis) is 

plotted against chain length (x-axis) for each locus as indicated in the legend. 

We also examined the effect of sequencing depth on prediction accuracy by running on RNA-seq-

fold with subsampled dsRNA-seq read data. As with chain length, sequencing depth appeared to 

have little to no effect on performance (Figure 5.7), although some locus-dependent variation was 

observed.  

 

 

Figure 5.7: Power analysis of RNA-seq-fold. MCC (y-axis) is plotted against sequencing depth (x-

axis) for each locus as indicated, as well as the average across all loci (black line).  

 



92 

It is possible that these differences would be minimized by additional sampling trials, but we did 

not test this hypothesis due to computational limitations. In general, our simulations demonstrated 

consistent and reliable inference of known secondary structures using the RNA-seq-fold 

framework across a range of parameters. 

 

5.3.2 Structure determination of eight in vitro transcribed non-coding RNAs 

 Given the promising results achieved with our simulated data, we next set out to test 

RNA-seq-fold on real data generated by performing a modified dsRNA-seq protocol (see Section 

5.5) on a pool of the eight selected RNAs. Two independent replicates yielded an average of 

~544,000 mapped reads per locus per replicate (Table 5.6), with no locus having fewer than 

~35,000 reads. An initial diagnostic analysis of enzyme digestion rates revealed a surprisingly 

high level of noise with little separation between paired and unpaired positions (Table 5.7, 

compare 𝑣 values to those in Table 5.4).  

 

Digestion rate Estimated values 

𝑢{A,C,T,G} {0.04, 0.045, 0.05, 0.04} 

𝑣{A,C,T,G} {0.055, 0.052, 0.079, 0.062} 

 

Table 5.7: Estimated digestion rates from experimental data. Note that 𝑢 is arbitrarily fixed as the 

baseline digestion rate and cannot be directly estimated from sequencing data. 

 

However, the relative digestion rates trended according to the known enzyme specificities, 

suggesting that we could still distinguish the pairing status of each nucleotide position based on 

the pattern of cleavage events. We also examined the distribution of read endpoints in our 

experimental data and found a significant bias due to nonlinear PCR amplification (Figure 5.8). 

Therefore, to offset the exponential clonal amplification that resulted from the PCR step, we used 

a log2 transform on our mapped read counts for all subsequent analyses. 
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Figure 5.8: Distribution of read endpoints from simulated data (left), raw experimental data 

(middle), and log2 transformed experimental data (right). Each cell in the heatmap represents the 

number of reads whose 5’ and 3’ endpoints are located at the column and row values, 

respectively. Data are shown for the U1_snRNA locus as a representative example. 

 

 As with the simulated data, we ran RNA-seq-fold for 100,000 iterations and then calculated the 

base pairing posterior probabilities 𝒃 following a burn-in period of 10,000 iterations and with a 

sampling frequency of 100 (Figure 5.9).  
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Figure 5.9: Base pairing posteriors estimated from in vitro dsRNA-seq data. Shaded circles 

represent posterior values (as indicated by the color scale) drawn on the known secondary 

structure for each locus. 

 

Using the same thresholding approach described for simulated data, we found marginal to no 

improvement of our method versus free energy-based predictions (Table 5.8).  

 

Locus 
Lengt

h (nt) 

Num. 

correct 

Num. 

incorrect 
F-score MCC Method 𝑡ℎ𝑟𝑒𝑠ℎ 

hsa-let-7a-1 80 

64 (80.0%) 16 (20.0%) 0.85 0.55 MCMC 0.5 

63 (78.8%) 17 (21.2%) 0.84 0.52 MCMC 0.55 

63 (78.8%) 17 (21.2%) 0.84 0.52 MCMC 0.6 

64 (80.0%) 16 (20.0%) 0.85 0.55 MCMC 0.65 

65 (81.2%) 15 (18.8%) 0.85 0.59 MCMC 0.7 
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65 (81.2%) 15 (18.8%) 0.85 0.59 MCMC 0.75 

63 (78.8%) 17 (21.2%) 0.83 0.55 MCMC 0.8 

64 (80.0%) 16 (20.0%) 0.84 0.58 MCMC 0.85 

58 (72.5%) 22 (27.5%) 0.77 0.46 MCMC 0.9 

51 (63.8%) 29 (36.2%) 0.65 0.37 MCMC 0.95 

66 (82.5%) 14 (17.5%) 0.87 0.6 RNAfold NA 

66 (82.5%) 14 (17.5%) 0.88 0.63 RNAstructure NA 

hsa-mir-17 84 

60 (71.4%) 24 (28.6%) 0.78 0.44 MCMC 0.5 

60 (71.4%) 24 (28.6%) 0.78 0.44 MCMC 0.55 

61 (72.6%) 23 (27.4%) 0.78 0.5 MCMC 0.6 

60 (71.4%) 24 (28.6%) 0.77 0.49 MCMC 0.65 

59 (70.2%) 25 (29.8%) 0.76 0.47 MCMC 0.7 

59 (70.2%) 25 (29.8%) 0.76 0.47 MCMC 0.75 

54 (64.3%) 30 (35.7%) 0.69 0.41 MCMC 0.8 

55 (65.5%) 29 (34.5%) 0.7 0.45 MCMC 0.85 

47 (56.0%) 37 (44.0%) 0.58 0.35 MCMC 0.9 

36 (42.9%) 48 (57.1%) 0.37 0.27 MCMC 0.95 

84 

(100.0%) 
0 (0.0%) 1 1 RNAfold NA 

84 

(100.0%) 
0 (0.0%) 1 1 RNAstructure NA 

U1_snRNA 158 

85 (53.8%) 73 (46.2%) 0.59 0.09 MCMC 0.5 

87 (55.1%) 71 (44.9%) 0.59 0.11 MCMC 0.55 
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85 (53.8%) 73 (46.2%) 0.57 0.08 MCMC 0.6 

83 (52.5%) 75 (47.5%) 0.53 0.05 MCMC 0.65 

84 (53.2%) 74 (46.8%) 0.53 0.06 MCMC 0.7 

84 (53.2%) 74 (46.8%) 0.52 0.06 MCMC 0.75 

84 (53.2%) 74 (46.8%) 0.49 0.06 MCMC 0.8 

84 (53.2%) 74 (46.8%) 0.46 0.06 MCMC 0.85 

85 (53.8%) 73 (46.2%) 0.39 0.07 MCMC 0.9 

85 (53.8%) 73 (46.2%) 0.26 0.07 MCMC 0.95 

92 (58.2%) 66 (41.8%) 0.54 0.16 RNAfold NA 

90 (57.0%) 68 (43.0%) 0.6 0.15 RNAstructure NA 

U3_snRNA 216 

124 

(57.4%) 
92 (42.6%) 0.65 0.1 MCMC 0.5 

121 

(56.0%) 
95 (44.0%) 0.63 0.08 MCMC 0.55 

119 

(55.1%) 
97 (44.9%) 0.62 0.08 MCMC 0.6 

117 

(54.2%) 
99 (45.8%) 0.6 0.06 MCMC 0.65 

120 

(55.6%) 
96 (44.4%) 0.6 0.11 MCMC 0.7 

126 

(58.3%) 
90 (41.7%) 0.6 0.19 MCMC 0.75 

126 90 (41.7%) 0.59 0.21 MCMC 0.8 
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(58.3%) 

121 

(56.0%) 
95 (44.0%) 0.54 0.19 MCMC 0.85 

109 

(50.5%) 

107 

(49.5%) 
0.44 0.11 MCMC 0.9 

104 

(48.1%) 

112 

(51.9%) 
0.35 0.11 MCMC 0.95 

124 

(57.4%) 
92 (42.6%) 0.65 0.11 RNAfold NA 

128 

(59.3%) 
88 (40.7%) 0.66 0.15 RNAstructure NA 

U5_snRNA 114 

65 (57.0%) 49 (43.0%) 0.63 0.13 MCMC 0.5 

67 (58.8%) 47 (41.2%) 0.62 0.17 MCMC 0.55 

71 (62.3%) 43 (37.7%) 0.64 0.24 MCMC 0.6 

70 (61.4%) 44 (38.6%) 0.63 0.23 MCMC 0.65 

67 (58.8%) 47 (41.2%) 0.58 0.18 MCMC 0.7 

68 (59.6%) 46 (40.4%) 0.55 0.21 MCMC 0.75 

67 (58.8%) 47 (41.2%) 0.53 0.2 MCMC 0.8 

67 (58.8%) 47 (41.2%) 0.51 0.21 MCMC 0.85 

62 (54.4%) 52 (45.6%) 0.4 0.14 MCMC 0.9 

59 (51.8%) 55 (48.2%) 0.18 0.17 MCMC 0.95 

62 (54.4%) 52 (45.6%) 0.62 0.07 RNAfold NA 

66 (57.9%) 48 (42.1%) 0.65 0.15 RNAstructure NA 
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U15_snoRNA 146 

90 (61.6%) 56 (38.4%) 0.67 0.22 MCMC 0.5 

92 (63.0%) 54 (37.0%) 0.67 0.25 MCMC 0.55 

91 (62.3%) 55 (37.7%) 0.65 0.25 MCMC 0.6 

90 (61.6%) 56 (38.4%) 0.63 0.24 MCMC 0.65 

90 (61.6%) 56 (38.4%) 0.62 0.25 MCMC 0.7 

93 (63.7%) 53 (36.3%) 0.63 0.3 MCMC 0.75 

90 (61.6%) 56 (38.4%) 0.6 0.27 MCMC 0.8 

86 (58.9%) 60 (41.1%) 0.55 0.22 MCMC 0.85 

86 (58.9%) 60 (41.1%) 0.54 0.24 MCMC 0.9 

75 (51.4%) 71 (48.6%) 0.36 0.13 MCMC 0.95 

92 (63.0%) 54 (37.0%) 0.69 0.24 RNAfold NA 

100 

(68.5%) 
46 (31.5%) 0.74 0.35 RNAstructure NA 

U22_snoRNA 126 

73 (57.9%) 53 (42.1%) 0.57 0.2 MCMC 0.5 

77 (61.1%) 49 (38.9%) 0.59 0.25 MCMC 0.55 

77 (61.1%) 49 (38.9%) 0.57 0.23 MCMC 0.6 

78 (61.9%) 48 (38.1%) 0.56 0.23 MCMC 0.65 

79 (62.7%) 47 (37.3%) 0.54 0.23 MCMC 0.7 

76 (60.3%) 50 (39.7%) 0.47 0.15 MCMC 0.75 

77 (61.1%) 49 (38.9%) 0.46 0.16 MCMC 0.8 

79 (62.7%) 47 (37.3%) 0.46 0.19 MCMC 0.85 

73 (57.9%) 53 (42.1%) 0.29 0.04 MCMC 0.9 

73 (57.9%) 53 (42.1%) 0.23 0.02 MCMC 0.95 
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90 (71.4%) 36 (28.6%) 0.74 0.55 RNAfold NA 

92 (73.0%) 34 (27.0%) 0.75 0.57 RNAstructure NA 

U97_snoRNA 142 

61 (43.0%) 81 (57.0%) 0.42 -0.07 MCMC 0.5 

60 (42.3%) 82 (57.7%) 0.4 -0.1 MCMC 0.55 

62 (43.7%) 80 (56.3%) 0.4 -0.08 MCMC 0.6 

62 (43.7%) 80 (56.3%) 0.39 -0.09 MCMC 0.65 

65 (45.8%) 77 (54.2%) 0.38 -0.07 MCMC 0.7 

65 (45.8%) 77 (54.2%) 0.33 -0.12 MCMC 0.75 

68 (47.9%) 74 (52.1%) 0.29 -0.12 MCMC 0.8 

75 (52.8%) 67 (47.2%) 0.29 -0.06 MCMC 0.85 

74 (52.1%) 68 (47.9%) 0.19 -0.14 MCMC 0.9 

83 (58.5%) 59 (41.5%) 0.17 -0.06 MCMC 0.95 

70 (49.3%) 72 (50.7%) 0.49 0.08 RNAfold NA 

      
 

Table 5.8: Comparison of RNA-seq-fold and free energy-based methods with in vitro data. MCC = 

Matthews correlation coefficient 

 

This unexpected result is likely due to several factors including overdigestion and local RNA 

folding (see Section 5.4 for detailed discussion). 

 

5.4 Discussion 

 In this chapter, we developed a Bayesian Markov chain Monte Carlo (MCMC) approach 

to infer secondary structure from the dsRNA-seq and ssRNA-seq protocols. We tested our 

likelihood model and estimator on simulated sequencing data from eight non-coding loci with 
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known secondary structure and found a substantial improvement in prediction accuracy versus 

free energy-based methods. However, analysis of dsRNA-seq data generated from in vitro 

transcribed RNA showed only marginally better performance. We propose several possibilities for 

our findings and suggest alternative approaches that may address these issues in future studies. 

 Based on our past experiences, we decided here to size select fragments from 10-40 

nucleotides in length after RNase treatment. In retrospect, given the size range of the full-length 

RNA molecules (80-216 nt), the selected fragments are likely the result of multiple cleavage 

events per RNA molecule. We hypothesize that these experimental conditions have resulted in 

nonspecific overdigestion at positions that do not necessarily reflect the structure-sensitive nature 

of the RNase used. Future studies to determine the specificity of RNase ONE as a function of its 

concentration and digestion time are needed to test this idea. Of note, we do not expect 

anticipate large-scale conformational changes to occur as a result of sequential cleavage 

events(109) as long as these cleavages occur in single-stranded regions. The reasoning here is 

that such events are unlikely to cause spontaneous unfolding of base paired regions, although 

the converse is probably not true. 

 Another explanation for the lack of agreement between our predictions and the gold 

standard structures is simply that they were obtained under different conditions. Importantly, the 

three snoRNA structures are based on in vitro transcribed and denatured RNA with subsequent 

renaturation(104), whereas we did not denature our transcription products before enzyme 

treatment. It is possible that our data reflect a conformation that is suboptimal on the global 

structure landscape, but rather forms as a result of co-transcriptional folding(3, 76, 119). To 

address this possibility, future experiments should be performed on renatured and non-renatured 

RNA popluations to specifically interrogate the differences between global and local RNA folding 

pathways. 

  In these initial studies, we utilized simple parallelization of individual MCMC chains to 

offset the computational expense of RNA-seq-fold. However, application of our approach to 

longer RNAs such as mRNAs will require more extensive measures to ensure convergence within 

a reasonable time frame. Empirically, we observed � 𝑙𝑁� growth in the computational cost as a 
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function of RNA length 𝑙 and the number of enzymatic cleavage events 𝑁. Fortunately, dynamic 

programming can be used to reduce growth to a manageable polynomial function. Such an 

approach works because any given problem of size (𝑁, 𝑙) is reducible to two subproblems of size 

(𝑁1, 𝑙 − 𝑖) and (𝑁2, 𝑖) where 𝑁1 + 𝑁2 = 𝑁 and 𝑖 is the position of the 𝑁𝑡ℎ cleavage event (Figure 

5.10). 

 

 

Figure 5.10: A dynamic programming approach to RNA-seq-fold. The problem of 𝑁 cleavage 

events along an RNA of length 𝑙 is reducible to subproblems for each of the two fragments 

generated by the 𝑁𝑡ℎ cleavage event. 𝑁 = 4, 𝑁1 = 1, and 𝑁2 = 2 in this example, with cleavage 

events marked by dotted lines. 

 

5.5 Materials and methods 

In vitro transcription 

 Sequence-specific primers with a T7 promoter (Table 5.9) were designed for the eight 

selected ncRNA loci and used to selectively amplify these regions from genomic DNA (gDNA). 

These PCR products were then transcribed using an in vitro system.  

 



102 

Locus Primers 

U1_snRNA Forward: TAATACGACTCACTATAGGTTAGTTCCGGTGCGTTTGTT 

Reverse: CATGAGAAAGTGAGAACGCAGT 

U3_snRNA Forward: 

TAATACGACTCACTATAGGAAGACTATACTTTCAGGGATCATTTAT 

Reverse: ATCACTCAGGCTGCATCTT 

U5_snRNA Forward: TAATACGACTCACTATAGGATACTCTGGTTTCTCTTCAGATCGT 

Reverse: CCGTCTCAAACAAAACAAAAC 

U15_snoRNA Forward: TAATACGACTCACTATAGGCTTCAGTGATGACACGATGACG 

Reverse: CCTTCTCAGACAAATGCCTCTAAAT 

U22_snoRNA Forward: TAATACGACTCACTATAGGTCCCAATGAAGAAACTTTCAC 

Reverse: ATCCCTCAGACAGTTCCTTCT 

U97_snoRNA Forward: TAATACGACTCACTATAGGTTGCCCGATGATTATAAAAAGAC 

Reverse: TTGCCCTCATATCTCATAATCTTC 

hsa-let-7a-1 Forward: 

TAATACGACTCACTATAGGTGGGATGAGGTAGTAGGTTGTATAG 

Reverse: TAGGAAAGACAGTAGATTGTATAGTTATCTC 

hsa-mir-17 Forward: 

TAATACGACTCACTATAGGGTCAGAATAATGTCAAAGTGCTTACA 

Reverse: GTCACCATAATGCTACAAGTGC 

 

Table 5.9: Primers used to amplify selected ncRNA loci. Note that the forward primers contain the 

T7 promoter sequence. 

 

A detailed protocol follows: 

I. Start with 0.2 µg of genomic DNA, suspended in 12 µL nuclease-free water. 

II. PCR amplification 

a. Add genomic DNA sample, 2 µL 10X Ex Taq buffer, 1.6 µL 25mM MgCl2, 1.6 µL 

2.5mM dNTP mix, 0.1 µL Ex Taq, 1 µL forward primer, and 1 µL reverse primer 

to a sterile, nuclease-free PCR tube. Note: Ex Taq is available from 

http://www.millipore.com/catalogue/item/RR001A. 

b. PCR amplification program in thermal cycler: 

http://www.millipore.com/catalogue/item/RR001A
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i. 98°C for 30 seconds 

ii. 98°C for 10 seconds 

iii. 61°C for 30 seconds 

iv. 72°C for 15 seconds 

v. Cycle to step ii 24X 

vi. 72°C for 10 minutes 

vii. Hold at 4°C 

c. Recover product using a PCR purification kit (e.g. QIAquick PCR Purification Kit). 

d. Resuspend PCR product in 11.5 µL DEPC-treated water and quantify. 

III. In vitro transcription 

a. Aliquot 1 µg of PCR template into a new sterile, nuclease-free PCR tube. Add 

sufficient DEPC-treated water to bring total volume up to 154 µL. 

b. Add 8 µL 25mM rNTP mix, 20 µL 10X transcription buffer (e.g. 500mM Tris-HCl 

pH 7.5, 150mM MgCl2, 50mM DTT, 20mM spermidine), 10 µL 2µg/µL acetylated 

BSA, 4 µL RNaseOUT, and 4 µL T7 RNA polymerase 

(https://www.neb.com/products/m0251-t7-rna-polymerase). Mix thoroughly. 

c. Incubate at 37°C for 4 hours.  

d. Add 4 µL Turbo DNase 

(http://www.lifetechnologies.com/order/catalog/product/AM2238) and incubate at 

37°C for an additional 30 minutes. 

e. Precipitate by adding 30 µL 3M NaOAc (pH 5.5), 2 µL glycogen, and 1000 µL 

100% EtOH. 

f. Resuspend in 10 µL DEPC-treated water. 

IV. Gel purification 

a. Prepare 1000 mL 1X TBE running buffer (100 mL 10X TBE extended range + 

900 mL Milli-Q water). 

https://www.neb.com/products/m0251-t7-rna-polymerase
http://www.lifetechnologies.com/order/catalog/product/AM2238
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b. Pre-run 15% TBE-Urea polyacrylamide gel (e.g. from Invitrogen) for 25 minutes 

at 155 V. 

c. While gel is pre-running, prepare ladder and sample: 

i. Ladder: 1.5 µL 10bp DNA ladder, 8.5 µL DEPC-treated water, and 10 µL 

Gel Loading Buffer (e.g. from NEB). 

ii. Add 10 µL Gel Loading Buffer to sample. 

iii. Place sample (but not ladder) at 70°C for 5 minutes, followed by 3 

minutes on ice. 

d. After pre-run is complete, run ladder and sample at 155 V for approximately 1.5 

hours. 

e. Stain gel with ethidium bromide. Add 14 µL 10 mg/mL ethidium bromide to 200 

mL 1X TBE buffer in a clean RNase-free tray. Add gel and rock gently for 10 

minutes. 

f. Cut 20-100bp band from gel and place gel slice in a 0.5mL tube with holes (e.g. 

Gel Breaker Tubes #3388-100 from IST Engineering Inc.), placed inside a clean 

2mL tube. 

g. Spin sample at 14000RPM, 4°C for 2 minutes. Repeat until all of the gel goes 

through the 0.5mL tube. 

h. Add 300 µL 0.3M NaCl and rotate for 4 hours. 

i. Pipette entire sample into a Spin-X column and spin at 14000RPM, 4°C for 2 

minutes. Transfer eluent to new 1.5mL tube. 

j. Precipitate by adding 30 µL 3M NaOAc (pH 5.5), 3 µL glycogen, and 900 µL 

100% EtOH. 

k. Resuspend in 21.5 µL DEPC-treated water and quantify. 

 

RNase ONE and RNase V1 treatment 
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 RNase digestions and subsequent library preparations were performed as described in 

Section 2.4 with the following modifications.  

• 0.1 µg of each of the eight transcribed RNAs was combined for a total of 0.8 µg of 

starting RNA. 

• Digestions were performed with 1 µL of 0.3 U/µL (3:10 dilution of manufacturer stock) 

RNase ONE and 1 µL of 0.004 U/µL (1:250 dilution of manufacturer stock) RNase V1, 

respectively. These concentrations were selected by extensive testing of enzyme 

dilutions to achieve the desired digestion fragment sizes of 10-40nt. 

• No RiboMinus or fragmentation was performed. 

Libraries were sequenced on a single lane of an Illumina HiSeq 2000 to a length of 100 bases. 

 

Data processing and mapping 

 Adapter sequences were removed with cutadapt -a 

TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACCATGGCATCTCGTATGCCGTCTTCTGCTT

G -e 0 -O 63 -m 6, which required a perfect adapter sequence to be matched at the 3’ end of 

each sequence. Trimmed reads were then mapped using bowtie with options ‘-v 0 -m 1 -y --norc -

-all --best –strata’. To remove PCR amplification biases, we used a log2 transform on the mapped 

read counts (rounding up to the nearest integer value). 

 

Estimation of enzyme efficiency 

 Inference of base pairing status is based on the differential sensitivity of paired versus 

unpaired positions to the specific ribonuclease used, which can be estimated by simply counting 

the ratio of read endpoints that fall in paired and unpaired positions according to the gold 

standard structure. Therefore, for fixed values of 𝒖, we estimated 𝒗 as: 

𝑣𝑐 = �
𝑒𝑐𝑢

𝑒𝑐
𝑝�𝑢𝑐 

where 𝑒𝑐
𝑝 and 𝑒𝑐𝑢 are the number of read endpoints that fall in paired and unpaired positions with 

the given nucleotide 𝑐, respectively. 
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RNA-seq-fold implementation 

 RNA-seq-fold is written in C++ and requires both STL and Boost libraries. The read 

simulator is coded as an R script, and both are available from [insert site here]. Running time 

analyses were performed on a single CPU core of an Intel Xeon. 

 

MCMC performance analysis 

 Each position of the pairing posterior 𝒃 was considered as paired if 𝑏𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ for 

𝑡ℎ𝑟𝑒𝑠ℎ ∈  {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95} and unpaired otherwise. A 2x2 

contingency table was then calculated to assess sensitivity and specificity measures (Table 5.10).  

 

 Paired in known structure Unpaired in known structure 

𝑏𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ True positive False positive 

𝑏𝑖 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ False negative True negative 

 

Table 5.10: Definitions of sensitivity and specificity for RNA-seq-fold 

 

The F-score was calculated as: 

𝐹 = 2 ×
� 𝑇𝑃
𝑇𝑃 + 𝐹𝑃� × � 𝑇𝑃

𝑇𝑃 + 𝐹𝑁�
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

= 2 ×
PPV × recall
PPV + recall

 

The Matthews correlation coefficient was calculated as: 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

�(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

RNAfold version 2.1.1 and Fold version 5.6 (from the RNAstructure package) were used to 

generate free energy-based structure predictions. All parameters were left as default. 

 To assess MCMC convergence, chains of length 𝑙𝑠𝑢𝑏 ∈ {10000, 20000, … , 90000} were 

taken from the full length chain with a burn-in period of 𝑙𝑠𝑢𝑏
10

 and a sampling frequency of 𝑙𝑠𝑢𝑏
1000

. 
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Performance of these subsampled chains was then calculated as described above with 𝑡ℎ𝑟𝑒𝑠ℎ =

0.5 as this appeared to generally produce the best predictive accuracy with the full length chain. 
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Chapter 6 

Conclusions and future directions 

 In this work, we have described a novel approach to the task of genome-wide 

determination of RNA secondary structure. We applied these methods to study the global 

patterns as well as regulatory functionalities of secondary structure in four eukaryotic species. We 

also developed a Bayesian model and optimization framework to infer base pair resolution 

secondary structures from our structure-sensitive sequencing datasets. 

 

6.1 Summary of results 

 In Chapter 2, we introduced a pair of high-throughput, structure-sensitive sequencing 

approaches termed dsRNA-seq and ssRNA-seq to assay RNA secondary structure on a global 

scale. To interpret these data, we developed a per-base structure score that captures the relative 

tendency of each nucleotide to be base paired. We then validated the reliability and 

reproducibility of our methods in three ways. First, we assessed the prevalence of various 

heterochromatic histone modifications within regions of high base pairing (dsRNA hotspots). 

Based on the requirement for base paired intermediates in the biogenesis pathways of small 

RNAs that direct heterochromatin formation, we expected to find significant enrichment for 

heterochromatic marks within our dsRNA hotspots. As expected, we found that dsRNA hotspots 

identified in three eukaryotic species (Arabidopsis thaliana, Drosophila melanogaster, and 

Caenorhabditis elegans) were all enriched for heterochromatic marks. We also validated the 

reliability of dsRNA-seq and ssRNA-seq by more direct molecular assays. Using nuclease 

digestion coupled with RT-PCR, we showed that regions of high base pairing as determined by 

our genome-wide approaches were extremely sensitive to double-stranded RNase (dsRNase) but 

not single-stranded RNase. Finally, we repeated our structure mapping approach on three 

replicates of HeLa cell RNA and found that positions of high predictive confidence were in almost 

perfect agreement across all three samples. 
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 With our dsRNA-seq and ssRNA-seq techniques in hand, we next set out to explore the 

global landscapes of RNA secondary structure in three eukaryotes (Chapter 3). By mapping 

profiles of secondary structure across protein-coding mRNAs, we revealed a striking reduction in 

base pairing at sites of translational initiation and termination that was conserved across all three 

species. We also found large-scale differences in overall 3’ UTR structure content between 

animals and plants, which may reflect the complexity of RBP-mediated regulation in the various 

organisms. Finally, we assessed the relationship between microRNA targeting and secondary 

structure, and found a strong inhibitory effect of target site structure on microRNA binding affinity 

in C. elegans. Although this effect has long been suggested by computational predictions of 

secondary structure, our data provided the first global experimental evidence as such. 

Surprisingly, we did not observe a similar relationship in Drosophila, suggesting that there may be 

general differences in microRNA targeting modes within animals. 

 In addition to identifying global patterns of secondary structure, we also addressed the 

regulatory functions and mechanisms of this important feature (Chapter 4). To do so, we 

performed an integrative analysis of several genomic datasets (RNA-seq, smRNA-seq, 

degradome sequencing, and ribo-seq, as well as our dsRNA-seq and ssRNA-seq data) in the 

model plant Arabidopsis thaliana. In general, we found that highly structured mRNA transcripts 

tended to be lower in overall abundance, were more likely to be degraded, and produced more 

smRNA species in both sense and antisense directions. Taken together, these results hinted at 

the possibility of direct processing of highly structured transcripts by the RNA silencing 

machinery. Additional findings of increased structure within regions of high smRNA production as 

well as positive correlation between smRNA production and structure score within regions of high 

base pairing provided further support for this hypothesis. Further studies are necessary to 

definitely prove our model and elucidate the exact mechanism by which structured mRNAs and 

“proper” silencing precursors are delineated. 

 In Chapter 5, we shifted our focus from genome-wide analyses of RNA secondary 

structure to smaller scale but higher resolution studies. We developed a Bayesian framework and 

Markov chain Monte Carlo (MCMC) algorithm termed RNA-seq-fold to predict the secondary 
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structure of individual RNA molecules based on dsRNA-seq and ssRNA-seq data. Starting with 

simulated dsRNA-seq reads, we showed that RNA-seq-fold outperforms free energy-based 

methods on most of the tested structures, particularly for those containing large loop segments. 

We also observed quick and reliable convergence to the correct secondary structure even with 

fairly shallow sequencing depth. However, when tested with in vitro datasets, RNA-seq-fold did 

not greatly outperform free energy-based methods. The primary impediment to high predictive 

accuracy was found to be nonspecific digestion at both paired and unpaired nucleotides. To 

address this shortcoming, we are currently in the process of repeating the in vitro structure 

mapping experiments with a reduced enzyme concentration and a modified protocol that 

preferentially selects for longer digestion fragments. 

 

6.2 Applications to RNA biology 

 One of the major contributions of this work has been to provide a resource of structural 

data for future RNA-centric studies of cellular gene expression and functionality. In this next 

section, we highlight two areas to which our datasets are particularly well suited and suggest 

approaches to their study. 

 

6.2.1 mRNA secondary structure as a regulatory feature 

 Our findings from Chapter 4 point to a novel mode of gene regulation via smRNA 

processing of highly structured mRNA regions. We proposed as a mechanism the co-opting of 

small RNA pathways to directly cleave and thereby regulate mRNA transcripts, which may not be 

surprising given the relaxed binding specificities of Dicer-like (DCL) proteins in plants and 

Drosha-DGCR8 and Dicer in animals(38, 48, 125). Of note, the main requirement for pri-miRNA 

recognition appears to be a ~33nt stem with single-stranded flanking sequences(38); this 

suggests that wayward processing of similar stem-loop structures contained within mRNA 

transcripts is not uncommon. Additionally, DGCR8 was recently shown to bind non-specifically to 

single-stranded, double-stranded, and random hairpin transcripts(92), thereby leading the authors 
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to conclude that Drosha-DGCR8 heterodimers impart specificity to the detection of true 

substrates. In light of these findings, free DGCR8 may be the most likely candidate for direct 

processing of mRNA transcripts assuming that such a mechanism exists in animals. As our 

findings were from Arabidopsis and plant DCL proteins carry out the functions of both Drosha-

DGCR8 and Dicer in animals, we can only speculate that the DCL proteins are key players in the 

plant pathway.  

 To address this question, as well as those of regulatory functionality and secondary 

effects, we propose the following studies. First, in vitro dicing assays can be used to identify the 

protein(s) responsible for directing cleavage of these structured mRNA regions. To show the 

same result in vivo is a bit more difficult as miRNA-mediated regulation and secondary 

transcriptional effects must be taken into consideration. A reasonable start would be to select 

mRNA transcripts containing candidate regions of high secondary structure, but no known miRNA 

target sites. Abundance of these transcripts as well as the candidate smRNAs could then be 

measured in wild-type and DCL mutant plants. Techniques that specifically capture cleaved RNA 

fragments(117, 124) could also be used to identify sites of DCL-mediated cleavage within the 

candidate regions. If it is indeed the case that a Dicer-like protein is responsible for direct 

processing of stem-loops within mRNAs, then subsequent follow-up studies to assess the 

functionality of the smRNAs produced from these loci would be desirable. For example, one 

possible approach may be to look for these RNA species in RISC (e.g. by Argonaute CLIP). 

Additionally, target transcripts of these small RNAs could be examined for evidence of miRNA-

like regulation. Finally, comparison of structured mRNA regions that are shown to be processed 

by DCL with known miRNA precursors may yield incredible insights into the specificity 

determinants of the small RNA biogenesis pathways. To close this section, we note that parallel 

studies may need to be performed in plants and animals as the protein players and smRNA 

maturation pathways are not identical between the two clades. 
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6.2.2 Detection of structural motifs 

 Another topic that may benefit substantially from our genome-wide structure datasets is 

the detection and characterization of structural motifs. Existing instances of these moieties (e.g. 

AU-rich element, iron response element, etc.) have been identified primarily by targeted study(13, 

73) or computational approaches such as TEISER, MEMERIS, RNAMotif, and 

RNAMotifModeler(33, 40, 65, 111). The major caveat of existing computational methods is that 

they rely on predictions of secondary structure, such that their reliability is inherently capped by 

the performance of the underlying structure prediction. In fact, TEISER discards structure 

prediction entirely and operates on the basis of possible stem-loop structures, although this 

assumption is ameliorated somewhat by the requirement for functional effect of a detected 

motif(33). Our genome-wide structure data may prove useful for improving computational motif 

identification as it combines the accuracy of more laborious studies with the throughput of the 

methods described above. We propose an approach that builds upon the expectation-

maximization (EM) framework popularized by the MEME(4) algorithm in a manner similar to that 

of MEMERIS(40). 

 Given a set of input sequences 𝑿 = {𝑋1,𝑋2, … ,𝑋𝑛}, MEME operates on the two quantities 

𝒁 and 𝝆, where 𝑍𝑖𝑗 is the probability of a given motif starting at position 𝑗 in sequence 𝑖 and 𝜌𝑐𝑘 is 

the probability of having character 𝑐 at position 𝑘. The probability of observing any given 

sequence 𝑋𝑖 is given by: 

𝑃𝑟�𝑋𝑖�𝑍𝑖𝑗 = 1,𝜌� = �𝜌𝑐𝑘,0

𝑗−1

𝑘=1

� 𝜌𝑐𝑘,𝑘−𝑗+1

𝑗+𝑊−1

𝑘=𝑗

� 𝜌𝑐𝑘,0

𝐿

𝑘=𝑗+𝑊

 

In the E-step, 𝒁 is estimated from 𝝆 by: 

𝑍𝑖𝑗
(𝑡) =

𝑃𝑟�𝑋𝑖�𝑍𝑖𝑗 = 1,𝜌(𝑡)�
∑ 𝑃𝑟(𝑋𝑖|𝑍𝑖𝑘 = 1,𝜌(𝑡))𝐿−𝑊+1
𝑘=1

 

Intuitively, the probability of having a motif at position 𝑗 is the probability of observing the 

particular sequence that contains the motif at position 𝑗 divided by the sum of probabilities of all 

motif positions. Similarly, for the M-step, 𝝆 is estimated from 𝒁: 
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𝜌𝑐,𝑘
(𝑡) =

𝑛𝑐,𝑘 + 𝑑𝑐,𝑘

∑ 𝑛𝑏,𝑘𝑏 + 𝑑𝑏,𝑘
 where 𝑛𝑐,𝑘 =

⎩
⎪
⎨

⎪
⎧� � 𝑍𝑖𝑗 , 𝑘 > 0

�𝑗�𝑋𝑖,𝑗+𝑘−1=𝑐�𝑖

𝑛𝑐 −�𝑛𝑐,𝑗 ,                    𝑘 = 0
𝑊

𝑗=1

 

As with the E-step, the M-step is quite intuitive – the probability of observing character 𝑐 at 

position 𝑘 in the motif is simply the fraction of all instances of the character that is contained 

within the motif locations 𝒁. MEME thus proceeds by alternating between the E-step and M-step 

until some convergence criterion is reached. A straightforward modification of the basic MEME 

approach could incorporate our genome-wide structure scores (Section 2.1.3) as continuous-

valued vectors 𝒀 = {𝑌1,𝑌2, … ,𝑌𝑛}. The joint sequence-structure probability function is then: 

𝑃𝑟�𝑋𝑖 ,𝑌𝑖�𝑍𝑖𝑗 = 1,𝜌, 𝜏� = �𝜌𝑐𝑘,0

𝑗−1

𝑘=1

� 𝜌𝑐𝑘,𝑘−𝑗+1𝑠(𝜏𝑘)
𝑗+𝑊−1

𝑘=𝑗

� 𝜌𝑐𝑘,0

𝐿

𝑘=𝑗+𝑊

 

where 𝜏𝑘 is the average value of the vectors 𝒀 at position 𝑘 and 𝑠(𝜏𝑘) is some scoring function for 

how closely the given sequence resembles the current motif 𝜏. The E-step is modified only to 

include a scoring function for 𝜏: 

𝑍𝑖𝑗
(𝑡) =

𝑃𝑟�𝑋𝑖�𝑍𝑖𝑗 = 1,𝜌(𝑡), 𝜏(𝑡)�
∑ 𝑃𝑟(𝑋𝑖|𝑍𝑖𝑘 = 1,𝜌(𝑡), 𝜏(𝑡))𝐿−𝑊+1
𝑘=1

 

For the M-step, we add the following calculation: 

𝜏𝑘
(𝑡) =

∑ ∑ 𝑍𝑖𝑘𝑌𝑖𝑘𝐿−𝑊+1
𝑘𝑖

𝑛
 

which represents the weighted average profile of continuous data values 𝒀 at the current motif 

locations 𝒁. This approach is similar to that of the MEMERIS algorithm, except that the free 

energy-based modeling has been replaced by our experimental structure data. Alternatively, as 𝒀 

is simply a vector of continuous-valued data, they could be replaced with the pairing posteriors 

derived from RNA-seq-fold (Chapter 5). 

 Regardless of the data source used, integration of sequence and experimentally-derived 

structure data is likely to increase the sensitivity and accuracy of structural motif prediction. 

Improved prediction of structural motifs would have far-reaching implications in a number of 

research areas. For example, the known role of secondary structure in alternative splicing(85, 
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112) suggests that splicing predictors(5) may benefit from incorporation of structural motifs. 

Structure-sensitive analysis would also be useful in the study of RNA-binding proteins (RBPs), 

many of which bind to specific structural elements within their target RNAs(99). Finally, single 

nucleotide polymorphisms (SNPs) detected by genome-wide association studies (GWAS) could 

be screened against a database of structural motifs to help prioritize and interpret these 

mutations. Such a tool would be extremely valuable in mechanistic, pharmacogenomic, and 

therapeutic studies of disease-associated polymorphisms. 

 

6.2.3 Long non-coding RNAs 

 A third application of the dsRNA-seq and ssRNA-seq methodologies is the 

characterization of long non-coding RNAs (lncRNAs). lncRNAs are a diverse class of transcripts 

that biochemically resemble protein-coding mRNAs but are distinguished by their length (> 200 

nt), lack of coding potential, and high level of secondary structure(29, 82, 90, 107). These RNAs 

are thought to function primarily as regulators of gene expression and are almost uniformly 

expressed at very low levels in extremely spatiotemporal specific patterns(21, 88). To 

characterize lncRNAs, recent studies have variously utilized chromatin structure(37), manual 

curation(21), and custom tiling arrays(60, 88) as a means of focusing on these elusive transcripts. 

Given the relatively high structural content of lncRNAs, it is likely that dsRNA-seq and ssRNA-seq 

could be used to selectively interrogate the lncRNA population while simultaneously generating 

the first comprehensive map of lncRNA secondary structure. Furthermore, as these transcripts 

are thought to function through their structure rather than sequence(29, 82, 107), such studies 

may also provide substantial insight into lncRNA function, a topic that as of yet remains mostly 

unexplored. 

 Taken together, the dsRNA-seq and ssRNA-seq protocols, in conjunction with the 

analysis methods presented in this work, hold considerable promise for future studies of many 

aspects of RNA biology. General and extensive application of our novel structure mapping 

approaches to a multitude of organisms, cell types, and conditions (in particular the three areas 

mentioned above) should prove exceptionally useful to their respective researchers. 
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6.3 Improved methods for RNA structure prediction 

 As our data suggests, the work herein is only a first step towards the ultimate goal of 

genome-wide secondary structure prediction at base pair resolution. Therefore, continued 

development of both experimental and computational aspects of our approaches concomitant 

with their widespread application, will be crucial to future RNA structural studies. In this next 

section, we consider new experimental approaches that will enable measurement of in vivo 

secondary structure. We also examine the generalizability of RNA-seq-fold as it pertains to large-

scale predictions of RNA secondary structure and address several potential pitfalls. 

 

6.3.1 In vivo approaches 

 To date, most RNA structural studies have been carried out in vitro on denatured and 

renatured RNAs. A prominent concern, therefore, is that these assays do not measure the true in 

vivo structure as it may be affected by other factors such as protein binding, cellular localization, 

and co-transcriptional folding(25, 97, 123). Several methods have been developed to probe in 

vivo secondary structure(2, 58, 101), but none of these can be used to feasibly perform genome-

wide studies. In contrast, dsRNA-seq and ssRNA-seq can be performed on in vivo cross-linked 

RNA populations; the cross-linking in effect holds RNA molecules in their native conformation and 

thereby allows our mapping techniques to detect true cellular structure. In fact, we recently used 

this approach to study the global landscape of RNA-protein interactions based on formaldehyde 

cross-linking of nucleic acids and proteins, with additional follow-up studies of the secondary 

structure at these interaction sites currently in the works. These future investigations will provide 

the first genome-wide characterization of in vivo secondary structure and should contribute 

substantially to our current understanding of RNA structure and its functionality. 
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6.3.2 Towards genome-wide structure prediction at single base pair resolution 

 In this work, we have provided global structure-sensitive assays (dsRNA- and ssRNA-

seq) and the tools to infer secondary structure from these data (RNA-seq-fold). Our initial proof-

of-principle study of eight in vitro transcribed non-coding RNAs achieved moderate predictive 

accuracy under reasonable sequencing depth, suggesting that the approach can be scaled up to 

genome-wide studies. Before such a study is undertaken, several topics should be taken under 

careful consideration. First and foremost, the experimental conditions (e.g. concentration of input 

RNA, extent of RNase treatment, etc.) must be optimized to generate a range of cloneable 

fragments that can be used to accurately infer the secondary structure. In our pilot study, an 

extremely dilute enzyme concentration was used in an attempt to maintain high cleavage 

specificity; however, the nonspecific digestion that we observed suggests that even more dilute 

conditions are required. In addition, it remains unclear if such digestion conditions are suitable for 

genome-wide experiments in which the more varied RNA population likely results in a broader 

range of enzyme affinities. On the other hand, as the RNases used in our protocols are 

insensitive to intramolecular versus intermolecular base pairing, it is imperative to maintain the 

RNA pool at a dilute concentration so as to avoid heteroduplex formation. Careful investigation of 

the differences between in vivo and in vitro structures is a challenge that needs to be addressed. 

On the computational side, additional model parameters may be needed to interpret the RNA 

population complexity as well as the corresponding increase in stochasticity. 

 Even with these caveats, our approach promises substantial advances in the study of 

RNA secondary structure. Extensive application of our methods to different RNA populations (e.g. 

poly(A)+, size-selected) can be used to generate a comprehensive atlas of secondary structure. 

Such a resource would be of great value to all RNA-related fields ranging from detailed 

mechanistic studies to high-throughput drug and RNA therapeutic screening. Our methods could 

also be used to study multiple related species, thereby allowing insight into the evolution of RNA 

secondary structure. 
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6.4 Concluding remarks 

 Secondary structure is an intrinsic feature of all cellular RNAs and plays a fundamental 

role throughout their biogenesis, regulation, and function. In this work, we have established a 

novel high-throughput, sequencing-based, structure mapping approach to study RNA secondary 

structure on a genome-wide scale. We also developed a Bayesian Markov chain Monte Carlo 

algorithm to infer base pair resolution secondary structures from our global structure-sensitive 

sequencing data. With the ever-increasing throughput and proliferation of sequencing 

technologies, the methods described in this work present a unique opportunity to vastly expand 

the scope and breadth of RNA structural studies. Widespread application of our novel structure 

mapping approaches, in conjunction with additional development of computational methods to 

interpret these data, will undoubtedly increase our understanding of RNA secondary structure and 

its many functional roles. 
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