
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2013

Analyzing Massive Graphs in the Semi-streaming
Model
Kook Jin Ahn
University of Pennsylvania, kookjin@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/606
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Ahn, Kook Jin, "Analyzing Massive Graphs in the Semi-streaming Model" (2013). Publicly Accessible Penn Dissertations. 606.
http://repository.upenn.edu/edissertations/606

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76395566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/606?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/606
mailto:libraryrepository@pobox.upenn.edu

Analyzing Massive Graphs in the Semi-streaming Model

Abstract
Massive graphs arise in a many scenarios, for example,

traffic data analysis in large networks, large scale scientific

experiments, and clustering of large data sets.

The semi-streaming model was proposed for processing massive graphs. In the semi-streaming model, we have
a random

accessible memory which is near-linear in the number of vertices.

The input graph (or equivalently, edges in the graph)

is presented as a sequential list of edges (insertion-only model)

or edge insertions and deletions (dynamic model). The list

is read-only but we may make multiple passes over the list.

There has been a few results in the insertion-only model

such as computing distance spanners and approximating

the maximum matching.

In this thesis, we present some algorithms and techniques

for (i) solving more complex problems in the semi-streaming model,

(for example, problems in the dynamic model) and (ii) having

better solutions for the problems which have been studied

(for example, the maximum matching problem). In course of both

of these, we develop new techniques with broad applications and

explore the rich trade-offs between the complexity of models

(insertion-only streams vs. dynamic streams), the number

of passes, space, accuracy, and running time.

1. We initiate the study of dynamic graph streams.

We start with basic problems such as the connectivity

problem and computing the minimum spanning tree.

These problems are

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/606

http://repository.upenn.edu/edissertations/606?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages

trivial in the insertion-only model. However, they require

non-trivial (and multiple passes for computing the exact minimum

spanning tree) algorithms in the

dynamic model.

2. Second, we present a graph sparsification algorithm in the

semi-streaming model. A graph sparsification

is a sparse graph that approximately preserves

all the cut values of a graph.

Such a graph acts as an oracle for solving cut-related problems,

for example, the minimum cut problem and the multicut problem.

Our algorithm produce a graph sparsification with high probability

in one pass.

3. Third, we use the primal-dual algorithms

to develop the semi-streaming algorithms.

The primal-dual algorithms have been widely accepted

as a framework for solving linear programs

and semidefinite programs faster.

In contrast, we apply the method for reducing space and

number of passes in addition to reducing the running time.

We also present some examples that arise in applications

and show how to apply the techniques:

the multicut problem, the correlation clustering problem,

and the maximum matching problem. As a consequence,

we also develop near-linear time algorithms for the b-matching

problems which were not known before.

Degree Type
Dissertation

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/606

http://repository.upenn.edu/edissertations/606?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Sudipto Guha

Keywords
Algorithms, Graphs, Semi-streaming Model

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/606

http://repository.upenn.edu/edissertations/606?utm_source=repository.upenn.edu%2Fedissertations%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYZING MASSIVE GRAPHS IN THE SEMI-STREAMING

MODEL

Kook Jin Ahn

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2013

Supervisor of Dissertation

Sudipto Guha, Associate Professor, Computer and Information Science

Graduate Group Chairperson

Val Tannen, Professor, Computer and Information Science

Dissertation Committee

Rajeev Alur, Professor, Computer and Information Science

Sampath Kannan, Professor, Computer and Information Science

Aaron Roth, Assistant Professor, Computer and Information Science

Piotr Indyk, Professor, Computer Science and Artificial Intelligence Lab, MIT

ANALYZING MASSIVE GRAPHS IN THE SEMI-STREAMING

MODEL

COPYRIGHT

2013

Kook Jin Ahn

Acknowledgments

I would not have been able to finish this thesis without help from many people.
It has been my great honor to have a chance to work with and learn from them.
First and foremost, I would like to express my deepest gratitude to my advisor, Dr.
Sudipto Guha for being a wonderful advisor and providing me a great environment for
research. Without his guidance and support, I would not have been able to achieve a
lot of results in this thesis. I would like to thank Dr. Andrew McGregor for being my
co-author, suggesting a great research topic, and a joyful atmosphere his jokes made.

I would also like to thank Dr. Rajeev Alur, Dr. Piotr Indyk, Dr. Sampath
Kannan, and Dr. Aaron Roth for agreeing to be on my thesis committee. Their
comments and questions allowed me improve this thesis. I would like to thank all the
staffs in Penn CIS. Without their help on administrative work, I would not have been
able to focus on research. I would like to thank fellow theory group students: Anand
Bhalgat, Mickey Brautbar, Tanmoy Chakraborty, Zhiyi Hwang, and Sudeepa Roy.

This thesis is dedicated to my mother, Younghee Oh. She has been always sup-
portive of me and my decision to study in US.

iii

ABSTRACT

ANALYZING MASSIVE GRAPHS IN THE SEMI-STREAMING MODEL

Kook Jin Ahn

Sudipto Guha

Massive graphs arise in a many scenarios, for example, traffic data analysis in large

networks, large scale scientific experiments, and clustering of large data sets. The

semi-streaming model was proposed for processing massive graphs. In the semi-

streaming model, we have a random accessible memory which is near-linear in the

number of vertices. The input graph (or equivalently, edges in the graph) is presented

as a sequential list of edges (insertion-only model) or edge insertions and deletions

(dynamic model). The list is read-only but we may make multiple passes over the list.

There has been a few results in the insertion-only model such as computing distance

spanners and approximating the maximum matching.

In this thesis, we present some algorithms and techniques for (i) solving more com-

plex problems in the semi-streaming model, (for example, problems in the dynamic

model) and (ii) having better solutions for the problems which have been studied (for

example, the maximum matching problem). In course of both of these, we develop

new techniques with broad applications and explore the rich trade-offs between the

complexity of models (insertion-only streams vs. dynamic streams), the number of

passes, space, accuracy, and running time.

iv

• We initiate the study of dynamic graph streams. We start with basic problems

such as the connectivity problem and computing the minimum spanning tree.

These problems are trivial in the insertion-only model. However, they require

non-trivial (and multiple passes for computing the exact minimum spanning

tree) algorithms in the dynamic model [7].

• Second, we present a graph sparsification algorithm in the semi-streaming model

[4, 7]. A graph sparsification is a sparse graph that approximately preserves all

the cut values of a graph. Such a graph acts as an oracle for solving cut-related

problems, for example, the minimum cut problem and the multicut problem.

Our algorithm produce a graph sparsification with high probability in one pass.

• Third, we use the primal-dual algorithms to develop the semi-streaming al-

gorithms [5, 2, 6]. The primal-dual algorithms have been widely accepted as a

framework for solving linear programs and semidefinite programs faster. In con-

trast, we apply the method for reducing space and number of passes in addition

to reducing the running time.

We also present some examples that arise in applications and show how to apply

the techniques: the multicut problem, the correlation clustering problem [6], and the

maximum matching problem [5, 2]. As a consequence, we also develop near-linear

time algorithms for the b-matching problems which were not known before.

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contributions . 7

1.3 Related Work . 13

1.4 Organization . 15

2 Preliminaries 17

2.1 `p-Sampling . 17

2.2 Graph Sparsification . 20

2.3 Primal-Dual Frameworks . 21

2.4 The Matching Polytope . 35

3 Graphs and Linear Measurements 37

3.1 Connectivity (Spanning Forest) . 37

3.2 Minimum Spanning Tree (MST) . 45

3.3 Maximal Matching . 50

vi

4 Distance Spanners 53

4.1 A Space-efficient Local BFS Algorithm 53

4.2 A Pass-efficient Recursive Contraction Algorithm 55

5 Graph Sparsification 59

5.1 A Warmup: The Minimum Cut Problem 59

5.2 A Simple Sparsification . 61

5.3 A Better Sparsification . 65

5.4 Eliminating a Fully Independent Hash Function 69

5.5 Sparsifying a Weighted Graph . 71

6 Primal-Dual Frameworks and Bipartite Matching 73

6.1 Approach I : Explicit Verification . 75

6.2 Approach II : Implicit Verification . 112

6.3 Approach III: Dual-Primal Approach 120

6.4 Discussion . 133

7 Application I: b-Matching 136

7.1 The Standard LP Formulation and Results 137

7.2 Algorithm Overview . 139

7.3 (1− ε)-Approximate Fractional b-Matching 144

7.4 Perturbation Theorem and Combinatorial Characterizations 152

7.5 Finding a Laminar Family of Dense Odd Sets 158

vii

7.6 Initial Solutions . 167

7.7 Lagrangians and The Oracle . 170

7.8 Rounding Fractional Uncapacitated b-Matchings 172

8 Application II: Capacitated b-Matching 177

8.1 The Standard LP Formulation and Results 177

8.2 Algorithm Overview . 180

8.3 Finding a Fractional Solution in (near) Linear Time 184

8.4 Rounding Fractional Capacitated b-Matching 193

9 Application III: Dual-Primal Approach to Nonbipartite b-Matching198

9.1 A Framework for a Dual-Primal Approach 199

9.2 The Unweighted b-Matching Problem 207

9.3 The Weighted b-Matching Problem 220

9.4 Deferred Sparsification . 239

9.5 Disentangling Compressed Fractional Solutions 240

10 Application IV: Multicut and Correlation Clustering 243

10.1 Problem Definitions and Techniques 243

10.2 The Multicut Problem . 246

10.3 Correlation Clustering: Minimizing Disagreements 251

10.4 Correlation Clustering: Maximizing Agreements 257

viii

Chapter 1

Introduction

1.1 Background

The streaming model has gained attention as a model for analyzing massive data sets.

In the streaming model, we have sequential access to the input data and a random

accessible memory of size sublinear (preferably logarithmic) in the input size. The

computation proceeds as passes (preferably one) over the input data. There has been

significant progress in some areas in the streaming model: for example, analyzing

distributions (see [80, 62] and the references therein) and sampling from data streams

(see [45, 64] and the references therein). However, similar progress has not been made

for graph problems. Massive graphs arise in a many scenarios, such as traffic data

analysis in large networks, large scale scientific experiments, and clustering of large

data sets, to name a few.

1

Graph problems were considered in the streaming model and it was proven that

even simple problems like connectivity problem requires Ω(n) space [58] (throughout

this thesis n will denote the number of vertices and m will denote the number of

edges). The lower bound on space motivates the introduction of the semi-streaming

model [80] where the algorithm uses near-linear space in n, i.e., we allow the space

larger than the lower bound by (1) a polylogarithmic factor in the input size, (2) a

constant factor that depends on the approximation parameter 0 < ε� 1, and/or (3)

a small polynomial factor, for example, n0.1.

In the following sections, we formally define the semi-streaming model and review

the previous research results in the semi-streaming model.

1.1.1 The Semi-streaming Model

In the streaming model, the input data is a sequence of items. We consider data

streams for graph problems or graph data streams. We consider two types of graph

data streams: insertion-only graph stream and dynamic graph stream.

Definition 1.1.1 (Insertion-only Graph Stream). In this model, a stream 〈a1, . . . , at〉

where ak ∈ [n] × [n] defines a multi-graph G = (V,E) where V = [n] and the

multiplicity of an edge (i, j) equals the number of occurrences of (i, j). 2

Definition 1.1.2 (Dynamic Graph Stream). In this model, a stream S = 〈a1, . . . , at〉

where ak ∈ [n] × [n] × {−1, 1} defines a multi-graph G = (V,E) where V = [n] and

2

the multiplicity of an edge (i, j) equals

A(i, j) = |{k : ak = (i, j,+)}| − |{k : ak = (i, j,−)}| .

We assume that the edge multiplicity is non-negative and that the graph has no

self-loops. 2

In the insertion-only model, we can maintain some information on the input graph

before the end of the stream and based on the information, adapt the algorithm for

the rest of the stream. For example, suppose that we want to test the connectivity

of a graph. If we already know that two vertices u and v are connected, dropping

(u, v) from the stream does not affect the output and therefore, the algorithm can

safely ignore (u, v) in the rest of the stream. In the dynamic model, such an approach

does not work because it is possible to erase all the inserted edges. We also define

weighted graph streams as follows:

Definition 1.1.3 (Insertion-only Weighted Graph Stream). In this model, a stream

〈a1, . . . , at〉 where ak ∈ [n]×[n]×[W] defines a multi-graph G = (V,E) where V = [n],

W is the maximum edge weight, and the multiplicity of an edge (i, j, w) equals the

number of occurrences of (i, j, w). 2

Definition 1.1.4 (Dynamic Weighted Graph Stream). In this model, a stream S =

〈a1, . . . , at〉 where ak ∈ [n] × [n] × [W] × {−1, 1} defines a multi-graph G = (V,E)

where V = [n], W is the maximum edge weight and the multiplicity of an edge (i, j, w)

equals

A(i, j, w) = |{k : ak = (i, j, w,+)}| − |{k : ak = (i, j, w,−)}| .

3

We assume that the edge multiplicity is non-negative and that the graph has no

self-loops. 2

In this thesis, we assume that edge weights are polynomially bounded in the

number of vertices. Also, note that the definition of dynamic weighted graph stream

does not support changing edge weights. For example, if we insert an edge (i, j, 7),

we cannot delete (i, j, 3) to make its weight 4. Given a graph stream, we define the

semi-streaming model as follows:

Definition 1.1.5 (The Semi-streaming Model). The semi-streaming model is the

streaming model for graph streams where algorithms use space that is near-linear in

n but sublinear in m.

There are several important factors that define the quality of an algorithm in the

semi-streaming model:

1. Space: The most central constraint of all streaming algorithms is the space

requirement. The preferable result in this context is O(n poly(1
ε
, log n)) but

some algorithms may have exponential dependency on 1
ε

or n1+c space for some

0 < c < 1.

2. Passes: The number of passes required by an algorithm is arguably the most

highlighted aspect of an algorithm in the semi-streaming model. The preferable

result is a single-pass algorithm since it expands the application domain of the

algorithm. For example, single-pass algorithms may function as building blocks

4

of another algorithm without increasing the overall number of passes. So this

is important in the context of dynamic streams.

3. Accuracy: Since the space is restricted in the semi-streaming model, we cannot

hope for exact optimal solution for most problems. So the approximation factor

(or accuracy) is also an important quality of an algorithm. The most preferable

result is (1− ε)-approximation (0 < ε ≤ 1).

4. Running Time: Another factor we consider for analyzing semi-streaming

algorithms is its running time. The semi-streaming model is motivated by

massive graphs and algorithms are less useful if they do not run in near-linear

time (throughout this thesis, near-linear time means O(Cεm polylog n) time).

We also investigate the trade-offs between number of passes, accuracy, space, and

running time. The most interesting trade-offs arises between space and number of

passes, for example, there are algorithms that run in O(p) passes and use n1+1/p

space. These translate to O(log n)-pass algorithms in the semi-streaming model as

well as constant-pass algorithms when we allow space (polynomially) slightly larger

than lower bound (for example, n1.1).

1.1.2 Overview of Previous Research

Early results in graph streams mainly address statistical aspects of graphs, e.g., count-

ing triangles [23, 15, 63] and analyzing degree sequences [29, 24] The semi-streaming

5

model became formalized after Ω(n) space lower bound was proven for problems, for

example, determining if a graph is connected [58].

Results in the insertion-only semi-streaming model prior to this thesis mainly

consisted of distance estimation [43, 44, 16, 40] and the maximum matching prob-

lem [43, 74, 95, 42, 39, 38].

Most known distance estimation algorithms in the semi-streaming model produce

spanners. Once constructed, a spanner works as an oracle for distance-related prob-

lems such as shortest path problem. Many single-pass algorithms have been studied

[43, 44] as well as multi-pass algorithms [16, 40].

Definition 1.1.6 (Distance Spanner). A subgraph H = (V,E ′) of G = (V,E) is

a (α, β)-spanner (of G) if, for any pair of vertices u, v ∈ V , dG(u, v) ≤ dH(u, v) ≤

α · dG(u, v) + β. where dG(u, v) denotes the distance between u and v in G. 2

The maximum matching problem is the most extensively studied problem in the

semi-streaming model and shows the rich trade-offs between number of passes, approx-

imation factor, and space. For the maximum cardinality matching (MCM), Feigen-

baum et al. [43] presented (2/3−ε)-approximation algorithm which was later improved

to (1−ε)-approximation by McGregor [74]. This algorithm repeatedly finds augment-

ing paths through random mapping of vertices. However, the number of passes used

by this result is exponential in 1/ε. Eggert et al. [39] improved the number of passes

to polynomial in 1/ε, but this only applies to bipartite graphs. On the other hand,

finding even a single augmenting path for the maximum weighted matching (MWM)

6

is difficult in the semi-streaming model and single-pass constant-factor approximation

algorithms have been studied [43, 95, 42].

The lower bound results in the semi-streaming model mainly address Ω(n) space

for a variety of problems [58]. Buchsbaum et al. [22] have proven a number of

lower bounds for determining if there exists any pair (u, v) of vertices such that the

number of vertices that are neighbors of both u and v exceeds a given threshold.

The lower bound varies from Ω(n) to Ω(n2) depending on various aspects of the

problem and input. For example, two-sided error algorithm requires Ω(n1.5) space if

the threshold is o(n) while it requires Ω(n2) space if the threshold is Θ(n). Lower

bounds for distance spanners are also interesting and give space-accuracy trade-offs.

Feigenbaum et al. [44] showed Ω(n1+1/γ) lower bound to approximate the distance

between two vertices upto factor 1/γ. Woodruff [94] showed that any (1, 2k − 1)-

spanner has Ω(1
k
n1+1/k) edges.

1.2 Contributions

1.2.1 General Directions of Research

In this thesis, we investigate three directions of research for solving more complex

problems in the semi-streaming model and explore the rich trade-offs between the

complexity of models, the number of passes, space, accuracy, and running time. The

directions can be categorized as models, tools, and techniques.

7

(i) Models: We initiate the study of dynamic graph streams. In the insertion-only

streaming model, the deletions of input items cannot be processed without a huge

number of passes. So the study of dynamic graph streams is essential for applica-

tions which require the updates on the input graph. We start with basic problems

such as the connectivity problem and computing the minimum spanning tree (MST).

These problems are trivial in the insertion-only model. However, they require non-

trivial algorithms (and multiple passes for computing the exact MST) in the dynamic

model [7]. This demonstrates the richness of the problem space in the semi-streaming

model.

(ii) Tools: A roadblock in solving a wide range of problems in the semi-streaming

model is lack of tools that are useful in many graph problems. We investigate distance

spanners and graph sparsification. Recall spanners are defined in Definition 1.1.6. We

can use a distance spanner as a building block in many distance-related problems.

A graph sparsification is a sparse graph that approximately preserves all the cut

values of a graph. Formally, it is defined as follows:

Definition 1.2.1 (Graph Sparsification). A graph H = (V,E ′, w′) is a (1 ± ε)-

sparsification of G = (V,E,w) if, for any cut (A, V \ A), (1 − ε)cG(A, V \ A) ≤

cH(A, V \A) ≤ (1 + ε)cG(A, V \A) where cG(A, V \A) is the cut value of (A, V \A)

in G. 2

A graph sparsification has a similar flavor as a distance spanner except it approximates

8

cut values instead of distance. It acts as an oracle for solving cut-related problems, for

example, the minimum cut problem and the multicut problem. We present a one-pass

graph sparsification algorithm in the semi-streaming model that succeeds with high

probability [4, 7, 8]. The algorithm is built upon the k-connectivity algorithm and

works in the dynamic model using a single pass. Naturally, the algorithm performs

better in the insertion-only model.

(iii) Techniques: The tools we previously mentioned – distance spanners and

graph sparsification – are tied to specific properties – distances and cut values. How-

ever, in order to solve complex graph problems, we need general techniques (or ap-

proaches) to design algorithms.

We investigate adopting convex optimization techniques such as linear program

(LP) and semidefinite program (SDP) to the semi-streaming model. We use primal-

dual algorithms to develop semi-streaming algorithms [5, 2, 6]. Primal-dual algo-

rithms like the multiplicative weights update method [11] has been widely accepted

as a framework for solving LPs and SDPs faster. In contrast, we apply the method

for reducing space and number of passes in addition to reducing the running time.

1.2.2 Summary of Results

In this section, we discuss the general directions in further details and summarize

corresponding results in this thesis.

9

Linear Measurements and Dynamic Graph Streams: For dynamic graph

streams, we solve problems through linear measurements.

Definition 1.2.2 (Linear Measurements). A vector SX where X ∈ Rn is an input

vector and S ∈ Rd×n is a (random) linear projection. 2

The idea is to take linear measurements while reading the stream and solve the

problem offline from the linear measurements. Because of linearity of the measure-

ments, the update of measurements (for an insertion or a deletion) can be performed

without looking at other items in the data stream. Therefore, the algorithms based

on linear measurements are suitable for dynamic graph streams. In addition, such

algorithms can be used in many distributed models since the computation of linear

measurements is embarrassingly parallelizable.

Our algorithms build upon sampling algorithms which are based on linear mea-

surements. Specifically, we use `0-sampling which returns one non-zero coordinate

given a vector when the vector is specified as a stream of updates. We use multiple

`0-sampling in parallel by concatenating linear projections for `0-sampling. We also

use random hash functions and pseudo random generators. Such tools are useful when

we create a (virtual) stream by subsampling a large number of edges (for example,

subsampling edges with probability 1/2). Note that having a single-pass algorithm

based on linear measurements makes it easy to prove such an algorithm using the

argument in [61].

We present single-pass semi-streaming algorithms for testing connectivity (span-

10

ning forest), k-connectivity, and bipartiteness. We also present O(p)-pass n1+1/p-space

algorithms for minimum spanning tree and maximal matching. Finally, we present

algorithms for constructing distance spanner in the dynamic model. However, our

algorithm takes multiple passes over the data.

Graph Sparsification: In this thesis, we present a single-pass semi-streaming

graph sparsification algorithm which builds upon the k-connectivity algorithm. The

algorithm works for the dynamic model and has better performance in the insertion-

only model. As in the case of distance spanners, the graph sparsification has many

applications. For example, the multi-cut problem and the correlation clustering prob-

lem can be made space efficient with the use of the graph sparsification. We construct

a sparsification for the input graph and solve the problem for the sparsified graph in-

stead of the input graph. The approach gives a single-pass semi-streaming algorithm.

Our maximum matching algorithm (for non-bipartite graphs) also uses the graph

sparsification as its subroutine.

Primal-Dual Algorithms: We investigate the use of primal-dual based algo-

rithms such as the multiplicative weights update method [11] and the fractional pack-

ing/covering framework [84] for solving a subclass of LPs and SDPs on graphs. These

primal-dual algorithms use an oracle to progressively improve the feasibility of the

primal linear program, but uses a (guessed) value of the optimal solution. If the

oracle does not fail to provide these improvements within a predetermined number

11

of iterations, we are guaranteed an approximately feasible primal solution. If the

oracle fails to provide an improvement, the oracle proves that the guessed value of

the optimal solution is incorrect by either (i) give us a feasible dual solution or (ii)

prove that the oracle would have produced an improvement if the guessed value was

correct. Both these properties together gives an overall scheme to find approximately

feasible solutions of LPs and SDPs.

Designing an efficient separation oracle is not always trivial even without any

constraint on space. However, even if we could design an efficient oracle, the overall

scheme to obtain a good semi-streaming algorithm faces a number of roadblocks.

First, primal-dual algorithms typically require super-constant number of iterations

(to determine feasibility) — this translates to a super-constant number of passes.

Reducing the number of passes to a constant often requires significant effort and new

ideas. It is non-trivial to simultaneously ensure that enough global progress is being

made per pass, yet the computation in a pass is local (and in small space).

We present multiple applications of the primal-dual algorithms: (1) the maximum

matching problem [5, 2], (2) the multicut problem, and (3) the correlation cluster-

ing [6],

The maximum matching problem demonstrates the difficulties in such an ap-

proach. The maximum matching problem is well-studied in the random access mem-

ory (RAM) model and there is a near-linear time (in the number of vertices) ap-

proximation scheme for the maximum weighted matching problem [34]. In the semi-

12

streaming model, the problem has received a lot of attention but a similar result has

not been shown. For MCM, previous results require a huge number of passes [74]

or the input graph must be bipartite [39, 38]. This is because they use the ap-

proach of augmenting paths. For MWM, the approximation factors are not opti-

mal [43, 74, 95, 42]. We use the linear programming approach to improve and unify

the previous results. The maximum matching problem requires deep understanding

of the problem structure (such as laminarity of the optimal solution) and introduces

complications in combining building blocks for an overall algorithm.

On the other hand, the multicut problem and the correlation clustering problem

demonstrate the use of graph sparsification and linear programming in the semi-

streaming model. We translate existing algorithms [52, 33, 91] to the semi-streaming

model with (relatively) straight-forward modifications.

1.3 Related Work

There are a variety of notions of approximating graphs other than distance spanner

and sparsification. Spielman and Teng [89] generalizes the notion of the (cut) sparsi-

fication to the spectral sparsification which preserves
∑

i,j wij(xi−xj)2 for any vector

x ∈ [0, 1]n.1 The result has been improved later in [88, 18] and also a semi-streaming

algorithm has been presented in [68]. Another notion of graph approximation is

vertex sparsification which is introduced by Moitra [77]. The vertex sparsification

1The cut sparsification preserves
∑
i,j wij(xi − xj)2 for any vector x ∈ {0, 1}n.

13

preserves minimum cuts separating all partitions of terminals (a subset of vertices)

rather than all cuts in the graph. The result has been improved later in [71, 26]. The

vertex sparsification is smaller than the cut sparsification but has a larger approxi-

mation factor [71]. In addition, the concept of spanners is not limited to distance.

For example, transitive-closure spanners preserves a set of transitive closures [21].

Transitive-closure spanners have been implicitly studied in a number of areas includ-

ing access control, property testing, and data structures. See [21] for the more detailed

history of spanners.

The matching problem has a rich literature, see [37, 50, 59, 76, 35, 36], as well

as fast, near-linear time approximation algorithms [65, 85, 93, 83, 34]. These results

cover both MCM and MWM in bipartite graphs as well as general graphs.

The current best algorithms for the b–Matching all require quadratic in running

time. The following is the list of the current best algorithms;

• Gabow [49] gave an O(nm log n) algorithm for the unweighted (wij = 1, men-

tioned as cardinality problem in [49]) capacitated problem.

• For the weighted uncapacitated case Anstee [10] gave an O(n2m) algorithm; an

Õ(m2) algorithm is in [49].

• Lechtford et al. [73], building on Padberg and Rao [82], gave anO(n2m log(n2/m))

time algorithm for the weighted, uncapacitated/capacitated problem.

• In terms of approximation algorithms there has been a sequence of results that

have culminated in a O(mmaxi bi) time 1
2

approximation for weighted unit

14

capacity b–Matching [75]. Distributed algorithms with weaker approximation

guarantees are discussed in [69].

It is not too hard to see that if we were to copy each vertex bi times then the b–

Matching problems reduce to maximum weighted matching. However the size of the

graph increases drastically2. A compressed representation was introduced in [49] to

avoid this blowup. But this representation is not approximation preserving – see the

discussion in [60]. On the other hand, if we do not copy the vertices then standard

augmentation path based techniques (including recent elegant results for maximum

matching such as [34, 35, 36]) do not immediately apply. The augmentation struc-

ture needed for b–Matching are not just blossoms (which are standard in matching

literature) but also blossoms with “petals/arms” or forests that are attached to the

blossom, see the discussion in [79]. We note that b–Matching is a fundamental prob-

lem with a long and rich history in combinatorial optimization, see [86, Chapters

31–33] for a brief history.

1.4 Organization

This thesis consists of three parts.

1. In the first part, we discuss basic problems including testing connectivity(finding

spanning forest), finding minimum spanning tree, and the maximal matching

2Consider a star graph where the central node has bi = n and the leaf nodes have bi = 1. The

replication of the central node will make the number of edges n2.

15

problem in Chapter 3 and distance spanners in Chapter 4. The algorithms for

the dynamic model appeared in [7, 8]. The graph sparsification and maximum

matching results build upon the connectivity and maximal matching results.

2. In the second part, we discuss the graph sparsification. The graph sparsification

in the semi-streaming model appeared in [4]. The algorithm in [4] was for the

insertion-only model. We extended the result to the dynamic stream model in

[8]. The algorithm in [8] is simpler and applicable to both models if a spanning

forest algorithm is given as a black box. Hence, we only explain the algorithm

in [8].

3. The third part focuses on convex optimization, such as LPs and SDPs in the

context of the semi-streaming model. We consider a variety of applications such

as maximum matching, b-matching, multi-cut, and correlation clustering. These

algorithms build upon graph sparsification and maximal matching algorithms.

In Chapter 6, we discuss the general approaches to LPs and SDPs with algo-

rithms for bipartite maximum matching. These results first appeared in [5]. In

Chapters 7, we extend the results to b–Matching in non-bipartite graphs which

appeared in [2]. In Chapters 9, we again discuss b–Matching in non-bipartite

graphs but using a dual-primal approach to LPs. The results first appeared in

[3]. In Chapter 10, we discuss the multicut and correlation clustering problem.

16

Chapter 2

Preliminaries

2.1 `p-Sampling

`p-sampling is a problem that has recently enjoyed considerable attention [45, 30, 78,

64, 51]. Consider a stream S = 〈s1, . . . , st〉 where each sj = (uj,∆j) ∈ [n] × R and

the aggregate vector x ∈ Rn defined by this stream of updates, i.e., xi =
∑

j:uj=i
∆j.

Definition 2.1.1 (`p-Sampling). An (ε, δ) `p-sampler for x 6= 0 fails with proba-

bility at most δ and otherwise returns some i ∈ [n] with probability in the range[
(1−ε)|xi|p
`pp(x)

, (1+ε)|xi|p
`pp(x)

]
, where `pp(x) =

∑
i∈[n] |xi|p.

We use `p-sampling technique to sample an edge in the input graph. Solving

problems in the dynamic graph streams often requires a technique to output an edge

in the input graph without remembering all the edges in the graph. For example,

finding a spanning forest requires such a technique since its output consists of edges

17

in the input graph. Suppose that we interpret the input graph as a vector in which

each coordinate corresponds to a pair of vertices and its value indicates whether there

exists an edge between the pair. By using `p-sampling for this vector, we can sample

an edge from the input graph.

The next lemma, due to Jowhari et al. [64], summarizes the state-of-the-art result

for p ∈ {0, 1}.

Lemma 2.1.2. There exists linear sketch-based algorithms that perform `p-sampling

using:

1. O(log2 n log δ−1) space for p = 0. Note we may set ε = 0 in this case.

2. O(ε−1 log ε−1 log2 n log δ−1) space for p = 1.

We describe the `0-sampling algorithm of [64] in Algorithm 2. The algorithm relies

on the unique element data structure [45] which is described in Algorithm 1.1 The

unique data structure takes a sequence of updates on the input vector and returns a

coordinate and its value only if there is exactly one non-zero coordinate. Otherwise,

it returns ⊥. The `0-sampling algorithm samples “coordinates” with probability 1/2k

for k = 0, 1, · · · , blog nc. With constant probability, the algorithm will sample exactly

one non-zero coordinate from the input vector and the corresponding unique element

data structure will report the non-zero coordinate. We can also achieve a smaller

failure probability δ by repeating the algorithm log(1/δ) times in parallel. There is

1In [64], the authors used an exact recovery of sparse vector. However, the unique element data

structure is sufficient for our purpose.

18

one remaining issue. It takesO(n) space to generate and store Ik if we pick coordinates

fully independently. However, we can replace the random bits with Nisan’s random

bits generator [81] which will increase the memory requirement by factor of O(log n).

Algorithm 1 The Unique Element Data Structure [45]

Update(ui,∆i)

1: c0 ← c0 + ∆i.

2: c1 ← c1 + ui ·∆i.

3: c2 ← c2 + u2
i ·∆i.

Report

1: if c0 · c2 − c2
1 6= 0 or c0 = 0 then

2: return ⊥ (fail).

3: else

4: return (c1/c0, c0).

5: end if

Algorithm 2 `0-Sampling Algorithm [64]

1: Let Ik for k = 0, 1, · · · , blog kc be a subset of coordinates [n] such that each

coordinate is independently chosen with probability 1/2−k. (I0 = [n]).

2: For each k, construct the unique element data structure of the input vector re-

stricted to the coordinates in Ik.

3: The algorithm fails if the unique element data structure returns ⊥ for all k.

Note that the whole `0-sampling algorithm is in fact based on linear measurements

and the measurement matrix is generated from a random generator of O(polylog n)-

size description.

19

2.2 Graph Sparsification

Karger [67] initiated a study on constructing a graph that contains a smaller number

of edges than a given graph while preserving cut values of the given graph. The

following lemma summarizes the main result.

Lemma 2.2.1 (Uniform Sampling Lemma [67]). Given an undirected unweighted

graph G, let λ be the minimum cut value. If we sample each edge with

p = Ω (λ−1ε−2 log n) and assign weight 1/p to sampled edges, every cut value is pre-

served within 1± ε factor with high probability.

Benczür and Karger [19] used Lemma 2.2.1 to construct a graph sparsification

algorithm. Fung et al. [46] generalized the algorithm for the graph sparsification and

presented an algorithm that uses the standard edge connectivity (the minimum cut

value which the edge crosses) using the framework. The following is the result.

Definition 2.2.2 (Fung et al. [46]). For an edge e = (u, v), let λe be the cut value of

the minimum u−v cut. A skeleton Gε is a graph that is constructed by sampling each

edge with probability pe ≥ min
{

253λ−1
e ε−2 log2 n, 1

}
independently and assigning

weight 1/pe for sampled edges. For a cut C, let c and ĉ be the cut value of C in G

and Gε respectively. We write Gε ∈ (1± ε)G if 1
1+ε

c ≤ ĉ ≤ (1 + ε)c for every cut C.

Theorem 2.2.3 (Fung et al. [46]). A skeleton Gε ∈ (1± ε)G with high probability.

The framework in [46] applies to other definitions of connectivities not just edge

connectivity. However, we are not going to use the other results.

20

2.3 Primal-Dual Frameworks

In this section, we summarize the techniques for solving convex optimization: “primal-

dual” algorithms. Primal dual algorithms have become an increasingly important

technique and are used in many disparate fields, with a multitude of variations and

applications; see the excellent survey of Arora, Hazan and Kale [4]. In this thesis,

“primal-dual” terminology to refer to algorithms that provide fast and approximate

solutions to linear programs (LPs), fractional packing problems, and semidefinite pro-

grams (SDPs). We mainly use the multiplicative weights update method surveyed

by Arora, Hazan, and Kale [11] and the framework by Plotkin, Shmoys, and Tar-

dos [84] among many variations. Although they were originally developed for faster

approximation, they are also useful for solving linear programs in small space. We

also summarize a framework for the semidefinite programming (SDP) by Steurer [90]

and Arora and Kale [12].

Algorithms that use these frameworks consist of two-party games between the

framework and an oracle. The oracle is a problem-specific part of the algorithm. The

framework maintains a primal candidate and computes a dual candidate. Although

these candidates have the form of primal and dual variables, they are often infeasible

and therefore, not solutions. The oracle’s role is very similar to the separation ora-

cle [56]. The oracle interprets the dual candidate as weights of constraints and finds

a primal witness which satisfies constraints of primal LP (or SDP) on (weighted)

average. The primal witness also has the form of primal variables like the primal

21

candidate and provides a direction in which the primal candidate can be “improved”.

The framework updates its primal candidate and dual candidate. If the primal wit-

ness violates a constraint, the framework increases the corresponding variable in the

dual candidate in a multiplicative way. The intuition behind it is that if the oracle

repeatedly returns primal witnesses which violate a constraint, dual variable corre-

sponding to the constraint will increase exponentially and therefore, the oracle has

no choice but to satisfy the constraint.

2.3.1 Multiplicative Weights Update Method

In this section, we briefly explain the multiplicative weights update method; we follow

the discussion presented by Arora, Hazan, and Kale [11]. Suppose that we are given

the following LP, its dual LP, and a guess of the optimal solution α, where A ∈

Rm×n,b ∈ Rm, c ∈ Rn:

LP:


max cTx

s.t Ax ≤ b, x ≥ 0

Dual LP:


min bTy

s.t ATy ≥ c, y ≥ 0

The algorithm proceeds along the weak separation framework [56]. Suppose that

the optimal solution is α. The violation of constraint i is Aix− bi. The complemen-

tary slackness conditions mandate that for an optimal solution that yi(Aix− bi) = 0.

One way to express the complementary slackness conditions into a single condition

is to interpret the dual variables (which are always maintained as positive) as prob-

abilities, and ask: Is there a vector x which satisfies cTx = α, such that the expected

22

violation is at most δ? The vector x, which is the answer to the question, is termed

as a primal witness.

If the answer to the question posed to an oracle is “yes”, and the probabilities

were chosen such that constraints which had larger violations had larger probability

mass; then we have a direction in which the feasibility of the primal candidate can

be improved. The improvement is measured by a potential function, which is akin to

the notion of dual gap.

If the answer is “no” (referred to as the failure of the oracle) — then we know that

there is no “good direction” to improve the solution. This serves as a certificate that

the LP (with the additional constraint that the solution is at least α) is not feasible.

For example, a feasible dual solution which is less than α can be one such certificate.

However since we are asking questions to the oracle that have an approximation

parameter, the certificate is also approximate at best.

But, note that, neither of the above gives us a solution to the primal. However

we can produce a primal solution if we achieve two things, in addition to designing

an oracle.

• First, if we are careful in choosing the probabilities (which is what the multi-

plicative update framework achieves), then we have a way to extract a primal

candidate which approximately satisfies all the primal constraints. In fact the

solution will be the average of the primal witnesses found, and this average will

approximately satisfy the primal constraints. It is easy to see that the average

23

satisfies cTx = α. Now in many situations, and for the problems in this the-

sis, a simple scaling (multiplying each coordinate by of this average vector by

a constant c) can ensure primal feasibility and we have a c approximate dual

solution.

• Second, note that the approximation also depends on the appropriate guess of

the optimum solution, α. Therefore we need a way of verifying the feasibility

of the parameter α. In this thesis we will achieve this by (i) creating a dual

feasible solution which is at most (1 + O(δ))α, or (ii) implicitly proving that

there is no admissible solution using a known constant factor approximation

algorithm.

Since this thesis is regarding the application of the multiplicative weights update

method in the streaming setting and not about the framework itself, we refer the

reader to the original article of [11] for further discussion of the intuition behind the

framework. In what follows, we provide a brief review of the main definitions and

notation (Definition 2.3.1) and the meta-algorithm (Algorithm 3), and an extension

(Theorem 2.3.2) of the main ingredient of [11] which is used in this thesis.

Definition 2.3.1. The multiplicative weights update method (Algorithm 3) proceeds

in iterations and in iteration t finds a primal witness xt. We define M(i,xt) = Aix
t−bi

to be the violation for primal constraint i in iteration t. The expected violation

M(Dt,xt) is the expected value of M(i,xt) when choosing i with probability propor-

tional to uti, i.e.,
∑

i
uti∑
j u

t
j
M(i,xt). The primal witness xt is defined to be admissible

24

Algorithm 3 The Multiplicative Weights Update Method [11]

1: u1
i = 1 for all i ∈ [n].

2: for t = 1 to T do

3: Given ut, the oracle returns an admissible primal witness xt. Note that xt is

not required to be feasible.

4: Let M(i,xt) = Aix
t − bi (for all i).

5: For all i, set ut+1
i =


uti(1 + ε)M(i,xt)/ρ if M(i,xt) ≥ 0

uti(1− ε)−M(i,xt)/ρ if M(i,xt) < 0

6: end for

7: Output x̃ =
(

mini
bi

bi+4δ

)
1
T

∑
t x

t. Note, for use in this thesis bi ≥ 1. This step is

dependent on the specific problem, here given for matching.

if it satisfies

M(Dt,xt) ≤ δ, cTxt ≥ α, and M(i,xt) ∈ [−`, ρ] ∀i ∈ [n] = {1, . . . , n}

for parameters of the oracle ` and ρ such that 0 < ` ≤ ρ The parameters `, ρ will be

constants for the oracles in this thesis; ρ is called the width parameter of the oracle.

The parameters ε and T depend on ρ, `, and δ. Note that admissibility does not

imply feasibility and that the admissibility is a property of (ut,xt).

Theorem 2.3.2. Let δ > 0 be an error parameter and ε = min{ δ
4`
, 1

2
}. Let Υt

i =

uti/
∑

j u
t
j and let Ψi ≥ Υt

i for all t. Suppose that the oracle returns admissible pri-

mal witnesses (See Definition 2.3.1) for T = 2ρ
δε

ln maxi
Ψi
Υ1
i

iterations in the mul-

tiplicative weights update method, then for any constraint 1 ≤ i ≤ m we have:

25

(1− ε)
∑

t M(i,xt) ≤ δT +
∑

t M(Dt,xt). Moreover x̃ is a feasible solution of the LP.

Proof. We analyze the algorithm using a potential function Φt =
∑

j u
t
j. Let Υt

i =

uti/Φ
t. We assume we have an upper bound Ψi ≥ Υt

i. Note that Υt
i and Ψi are not

used in [11]. In this theorem, we use Ψi = 1 for all i — which is obvious from the

fact that all weights uti are positive. We will use a smaller value of Ψi to strengthen

the theorem later.

We rewrite the proof of [11] using Υt
i and Ψi. Observe that (1− ε)−x and (1 + ε)x

are convex (in x) for 0 < ε ≤ 1
2
. Therefore it follows that

(1− ε)−x ≤ (1 + εx) for x ∈ [−1, 0]

(1 + ε)x ≤ (1 + εx) for x ∈ [0, 1]

since equality is achieved at the respective endpoints (x = −1, 0 for the first fact and

x = 0, 1 for the second fact). From M(i,xt)/ρ ∈ [−1, 1] (notice ` ≤ ρ) and the above

facts we have:

Φt+1 =
∑
i

ut+1
i =

∑
i:M(i,xt)<0

uti(1− ε)−M(i,xt)/ρ +
∑

i:M(i,xt)≥0

uti(1 + ε)M(i,xt)/ρ

≤
∑
i

uti(1 + εM(i,xt)/ρ) = Φt +
ε

ρ

∑
i

utiM(i,xt)

= Φt +
εΦt

ρ

∑
i

uti
Φt
M(i,xt)

= Φt(1 + εM(Dt,xt)/ρ)
(
Using the definition of M(Dt,xt)

)
≤ Φte(εM(Dt,xt)/ρ).

26

Therefore we can conclude that,

ΦT+1 ≤ Φ1e(ε
∑T
t=1M(Dt,xt)/ρ). (2.3.1)

From the algorithm and the definitions of Ψi,

u1
i (1 + ε)(

∑
t:M(i,xt)≥0 M(i,xt)/ρ) · (1− ε)−(

∑
t:M(i,xt)<0 M(i,xt)/ρ)

= uT+1
i ≤ ΦT+1Ψi. (2.3.2)

From the definition of Φt,Υt
i,Ψi, we get Φ1 = u1

i /Υ
1
i . Using Φ1 in equations (2.3.1)

and (2.3.2), we get,

u1
i (1 + ε)(

∑
t:M(i,xt)≥0 M(i,xt)/ρ) · (1− ε)−(

∑
t:M(i,xt)<0 M(i,xt)/ρ)

≤ Ψi

Υ1
i

u1
i e

(ε
∑T
t=1 M(Dt,xt)/ρ).

Applying the natural log function and simplifying we get:

ln(1 + ε)
∑

t:M(i,xt)≥0

M(i,xt)− ln(1− ε)
∑

t:M(i,xt)<0

M(i,xt) ≤ ρ ln
Ψi

Υ1
i

+ ε

T∑
t=1

M(Dt,xt).

Now ln(1 + ε)− ε(1− ε) ≥ 0; we have equality at ε = 0 and the first derivative of the

left hand side with respect to ε is positive for ε > 0. Likewise (using the derivative,

but only over the range 0 < ε ≤ 1
2
) we have ln(1− ε) + ε(1 + ε) ≥ 0. Therefore using

ln(1 + ε) ≥ ε(1− ε) and ln(1− ε) ≥ −ε(1 + ε) we get:

ρ

ε
ln

Ψi

Υ1
i

+

T∑
t=1

M(Dt,xt) ≥ (1− ε)
∑

t:M(i,xt)≥0

M(i,xt) + (1 + ε)
∑

t:M(i,xt)<0

M(i,xt)

= (1− ε)
T∑
t=1

M(i,xt) + 2ε
∑

t:M(i,xt)<0

M(i,xt)

≥ (1− ε)
T∑
t=1

M(i,xt)− 2ε`T
(
From M(i,xt) ≥ −`

)

27

Selecting T = maxi
2ρ
δε

ln Ψi
Υ1
i
, Ψi = 1, and ε = min

{
δ
4`
, 1

2

}
, we obtain (1 −

ε)
∑

t M(i,xt) ≤ δT +
∑

t M(Dt,xt). Since 1
T

∑
t M(i,xt) = M(i, 1

T

∑
t x

t) and

M(Dt,xt) ≤ δ for all t, we have M(i, 1
T

∑
t x

t) ≤ (1 − ε)−1(2δ) ≤ 4δ (dividing

both the left and right side of the inequality by T) or Ai

(
1
T

∑
t x

t
)
≤ bi + 4δ. This

translates to the fact that x̃ satisfies Aix̃ ≤ bi.

Setting u1
i = 1, Ψi = 1 and Υ1

i = 1
n

we get the following corollary.

Corollary 2.3.3 (A slight rewording of Corollary 3 in [11]). Let δ > 0 be an error

parameter and ε = min{ δ
4`
, 1

2
}. Suppose that the oracle returns an admissible solution

(See Definition 2.3.1) for T = 2ρ ln(m)
δε

iterations in Algorithm 3, then for any con-

straint 1 ≤ i ≤ n we have: (1− ε)
∑

t M(i,xt) ≤ δT +
∑

t M(Dt,xt). Moreover x̃ is

a feasible solution of the Dual LP.

2.3.2 A Framework for Fractional Packing or Covering Prob-

lems

Plotkin, Shmoys, and Tardos [84] presented a framework for solving fractional packing

and fractional covering problems. A fractional packing problem can be written as

follows:

min λ

s.t. Ax ≤ λb

x ∈ P

28

Algorithm 4 The framework for the fractional packing [84], with a slight modifica-

tion.
1: Let λ0 = maxi Aix/bi.

2: Let κ be a parameter with κ ≥ 4λ−1
0 δ−1 ln(2mδ−1) and σ = δ

4κρ
.

3: while maxi Aix/bi ≥ (1− δ)λ0 and y do not satisfy (P2) do

4: yi ← 1
bi

exp(κAix/bi) for all i.

5: Find x̃ ∈ P such that yTAx− yTAx̃ > δ(yTx + λyTb).

6: x← (1− σ)x + σx̃

7: end while

where P is a convex polytope. The algorithm assumes that minx∈P cTx can be

computed efficiently for all c.

Definition 2.3.4. The width parameter of P is defined as ρ = maxi maxx∈P Aix/bi.

(Ai and bi are the ith rows of A and b respectively. Aix ≤ λbi is the ith constraint

of the packing problem.)

In Algorithm 4, we present the algorithm with a slightly modified description. The

algorithm maintains a primal candidate x and computes a dual candidate y (using

exponential weights). Then, the oracle solves a subproblem given y(line 5) and re-

turns the solution to the algorithm. The algorithm updates its primal candidate and

proceeds to the next iteration. In this process, the framework is fixed but the oracle

varies depending on the problem. So we need to design a problem-specific oracle in

order to use the framework.

29

Definition 2.3.5. [84] Let λOPT be the optimal solution of the fractional packing

problem. Let λ = maxi Aix/bi and CP (y) = minx∈P yTAx. x is δ-optimal if x ∈ P

and λ ≤ (1 + δ)λOPT .

(P1) (1− δ)λyTb ≤ yTAx

(P2) yTAx− CP (y) ≤ δ(yTAx + λyTb)

Lemma 2.3.6 (A slight rewording of Lemma 2.3 in [84]). If x and y satisfies (P1) and

(P2) with δ ≤ 1/6, x is 6δ-optimal. Moreover, let Φ = yTb be a potential function

and let Φ̂ be the potential function after the update. Then, Φ̂ ≤ (1 − κσδλ)Φ ≤

(1− Ω(δ
2λ0

ρ
))Φ.

For any x, its corresponding y in Algorithm 4 satisfies (P1). Therefore, if (P2) is also

satisfied, then we have a proof that x is near-optimal. If on the other hand, (P2) is

not satisfied then the algorithm shows that the potential drops significantly. Initially,

Φ ≤ m exp(κλ0) and the algorithm terminates if Φ ≤ exp((1 − δ)κλ0). Combined

with the above lemma, we obtain the following:

Theorem 2.3.7. Given the initial solution with objective value λ0, we find a solution

with objective value (1− δ)λ0 in O(κρ
δ

) iterations.

Theorem 2.3.7 holds even if we find x̃ approximately, i.e., find x̃ such that yTAx̃ ≤

(1 + δ/2)CP (yt) + (δ/2)λyTb [84]. It is also sufficient to compute yTAx and λyTb

approximately (within a 1 − δ factor) based on the same ideas. Note that there is

a slight difference between our parameters and the parameters in [84] which uses

30

the smallest possible κ, namely κ = 4λ−1
0 δ−1 ln(2mδ−1). We will use a larger value

for κ in Chapter 7. This allows us to use structural properties of the polytope and

subsequently allows us to approximate x̃ easily.

Note that the admissibility condition in Section 2.3.1, i.e., the primal witness

satisfying the constraints in expectation, implies (P2) is not satisfied:

yTAx̃ ≤ (1 + δ/2)yTb =⇒ (1 + δ/2)yTAx̃ ≤ (1− δ/2)yTAx− δyTb/2

So it is sufficient to find a primal witness that satisfies the constraints in expectation

like in the case of the multiplicative weights update method.

A Framework for Fractional Covering Problems

The framework for fractional covering problems is almost identical to the frame-

work for fractional packing problems except two differences. First, we use y =

1
bi

exp(−κAix/bi). Note that the exponent is negative rather than positive. Sec-

ond, (P1) and (P2) conditions are replaced by the following conditions.

Definition 2.3.8. [84] Let λ = mini Aix/bi and CC(y) = minx∈P yTAx. x is

δ-optimal if x ∈ P and λ ≥ (1− δ)λ∗.

(C1) (1 + δ)λyTb ≥ yTAx

(C2) CC(y)− yTAx ≤ δ(yTAx + λyTb)

The subroutine to find x̃ is a maximization problem given the cost y, i.e.,

argmaxx∈P yTAx or finding x̃ ∈ P such that yTAx̃ ≥ (1 + δ)yTAx + δλyTb. Again,

31

it is sufficient to find x̃ that satisfies the constraints in expectation, i.e.,

yTAx̃ ≥ (1− δ/2)yTb =⇒ (1− δ/2)yTAx̃ ≥ (1 + δ/2)yTAx + δyTb/2

The rest of the algorithm and proofs is almost identical to the fractional packing

framework. We have the following theorem.

Theorem 2.3.9. [84] If the initial solution is 6ε-optimal for ε ≤ 1/12, we find a

3ε-optimal solution in O(ε−2ρ log(mε−1)) iterations.

Mixing the Two Primal-Dual Algorithms

There are three main differences between the multiplicative weights update method

in Section 2.3.1 and the fractional/packing covering framework in Section 2.3.2.

1. Construction of Dual Candidates:

2. Polytope and Additional Constraints:

3. Admissibility:

2.3.3 The SDP Feasibility Algorithm

Steurer’s SDP feasibility algorithm [90] is based on the matrix multiplicative weights

method given by Arora and Kale [12]. The feasibility algorithm is similar to the

multiplicative weights update method [11]. The algorithm consists of multiple iter-

ations of two-party game. In each iteration, the algorithm produces a candidate X

32

(which corresponds to the weights of constraints in the multiplicative weights update

method) and an oracle returns a separating hyperplane (A, b) (which corresponds to

the dual witness). We define a canonical form of a semidefinite feasibility problem as

follows:

Definition 2.3.10. For matrices A,B, let A ◦ B denote
∑

i,j AijBij. Let A � 0

mean that A is (positive) semidefinite and let A � B mean that A−B is (positive)

semidefinite. A canonical form of a semidefinite feasible problem can be written as:

? C ◦X ≥ α

Aj ◦X ≤ bj for all j

X � 0.

C ◦X ≥ α is a special constraint that corresponds to the (maximization) objective

value of the SDP. We denote the set of the feasible solutions as X .

In each iteration, an oracle of the feasibility algorithm is given a candidate X and

does one of the following:

1. The algorithm declares the SDP feasible and returns a feasible (either fractional

or integral) solution.

2. The algorithm returns a hyperplane (A, b) that separates X from a feasible

area.

If the oracle returns a feasible solution, the algorithm stops and otherwise, it up-

dates X and continues to the next iteration. If there exists a feasible solution, the

33

candidate X keep moving toward the feasible area and eventually the oracle cannot

find a suitable separating hyperplane. Formally, we have the following definition and

theorem.

Definition 2.3.11. [90] Let X be the set of feasible solutions of a SDP and let (A, b)

be the hyperplane returned by the corresponding separation oracle (if it returns a

hyperplane). A separation oracle is δ-separating and ρ-bounded if every hyperplane

satisfy that

1. A ◦X ≤ b− δ and A ◦X′ ≥ b for all X′ ∈ X , and

2. −ρD � A− bD � ρD.

δ and ρ correspond to the error parameter and the width parameter of the multiplica-

tive weights update method.

Theorem 2.3.12. [90] If X is non-empty, the oracle outputs a feasible (fractional

or integral) solution within T = O(ρ
2 logn
δ2) iterations.

In order to implement the feasibility algorithm, the algorithm computes X approx-

imately with the Johnson-Lindenstrauss lemma. Let d be the projected dimension of

the Johnson-Lindenstrauss lemma, r be the degree of freedom (or precision), and TM

be the time for a multiplication between a linear combination of returned A’s and a

vector. Then X can be approximated within O(d · r · TM) time. For the purposes of

this thesis, d = O(logn
δ2), r = O(log 1

δ
), and TM = O(m′).

34

2.4 The Matching Polytope

The first step in defining LPs for the matching problem and its variants is to find

a proper relaxation of variables and constraints. In other words, we need to define

fractional variables (in contrast to integral variables of the problem) and a polytope.

There is well-known polytope for the matching.

Definition 2.4.1. Given a graph G = (V,E) and a matching M , let xM be an

indicator vector of edges in M , i.e., xij is 1 if (i, j) ∈ M and 0 otherwise. Then, the

matching polytope of G is a convex hull of xM for all matchings in G.

Theorem 2.4.2. [86] For any graph G = (V,E), the polytope defined by the following

constraints is the matching polytope:

∑
j:(i,j)∈E xij ≤ 1 for all i ∈ V (vertex constraints)∑
i,j∈U xij ≤

⌊
|U |
2

⌋
for all U ⊆ V (set constraints)

Observe that the feasibility of the constraint for a set U where |U | is even follows

from the feasibility of the vertex constraints, since each yij is summed up twice for

i, j ∈ U . Therefore it suffices to focus on odd (size) sets U . Observe that the same

observation holds for approximate feasibility, where the right hand sides of the equa-

tions corresponding to the constraints are multiplied by (1− ε). From the definition

of the matching polytope and Theorem 2.4.2, we can construct a linear program for

the maximum matching problem with integrality gap one. LP1 and LP2 are the

primal and dual linear programs for the maximum weighted matching problem. The

35

maximum cardinality matching problem is the case when wij = 1 for all (i, j) ∈ E

and have a similar linear program formulation.

max
∑

i,j wijxij

s.t
∑

j xij ≤ 1 ∀i∑
i,j∈U xij ≤

⌊
|U |
2

⌋
∀U

xij ≥ 0

(LP1)

min
∑

i yi +
∑

U zU

s.t yi + yj +
∑

i,j∈U zU ≥ wij ∀(i, j) ∈ E

yi, zU ≥ 0

(LP2)

The matching polytope is a well-studied object. One of the celebrated results

on the matching polytope (with relation to the maximum matching problem) is the

Cunningham-Marsh theorem.

Theorem 2.4.3 (The Cunningham-Marsh Theorem [31, 86]). If all edge weights are

integers, there exists an optimal solution for the maximum weighted matching linear

program(LP1) such that all yi and zU are integers and {U |zU > 0} is laminar.

Note that the theorem does not claim that yi, zU are 0/1 – which is only true when

wij = 1. This issue is important in solving the LP for the weighted matching case.

The most accessible proof of laminarity that uses an adaptive two-stage optimiza-

tion (See [86], volume A, pages 440–442). The proof finds an optimal solution that

maximizes
∑

U zU |U |2 (among optimal solutions) and shows that such an optimal

solution satisfies the laminarity. The integrality of the optimal solution follows from

the laminarity.

36

Chapter 3

Graphs and Linear Measurements

Chapter Outline: In this chapter, we discuss three basic graph problems: connec-

tivity, minimum spanning tree, and maximal matching. These problems demonstrate

the difference between insertion-only streams and dynamic streams.

3.1 Connectivity (Spanning Forest)

In this section, we explain the algorithms for finding a spanning forest of a graph which

is specified as a stream of updates over edges. We also discuss some applications of the

algorithms: testing k-(edge-)connectivity, bipartiteness, and approximate minimum

spanning tree.

In the insertion-only model, we have a trivial single-pass semi-streaming algorithm

(Algorithm 5) for finding a spanning forest using a union-find data structure. The

algorithm keeps a spanning forest of the input graph. As new edge arrives, if the edge

37

Algorithm 5 The SpanningForest Algorithm (for insertion-only streams)

1: Initialize a union-find data structure of size n and a forest F = ∅.

2: for each edge e = (u, v) do

3: If find(u) = find(v), discard e. (u and v are already connected by the forest)

4: Otherwise, F ← F ∪ {e} and union(u, v)

5: end for

6: Assert F as a spanning forest.

connects two disconnected component of the input graph, it is added to the spanning

forest.

The algorithm for the insertion-only model is not applicable to dynamic streams

because deletion of edges may disconnect a connected component. We now present

a single-pass, semi-streaming algorithm that returns a spanning forest in a dynamic

graph stream (Algorithm 6). The algorithm is based on constructing sketches for

`0-sampling from the rows of a matrix that we now define.

Definition 3.1.1. Given an unweighted graph G = (V,E), define the n×
(
n
2

)
matrix

AG with entry (i, (j, k)) ∈ [n]×
(

[n]
2

)
defined by

ai,(j,k) =



1 if i = j and (j, k) ∈ E

−1 if i = k and (j, k) ∈ E

0 otherwise

Let a1, . . . , an be the rows of AG where ai corresponds to a vertex i. The following

preliminary lemma follows immediately from the above definition.

38

Algorithm 6 The SpanningForest Algorithm (for dynamic streams)

1: Sketch a1, . . . , an using the sketch matrices S1, . . . ,St where t = O(log n).

2: Initialize the set of supervertices as V̂ = V .

3: for r ∈ [t] do

4: For each s ∈ V̂ , try to sample an inter-supervertex edge using the sketch∑
i∈s Sr(ai)

5: Update V̂ by collapsing connected supervertices.

6: end for

7: Assert that G has |V̂ | connected components and that any maximal acyclic sub-

graph of the set of sampled edges is a spanning forest.

Lemma 3.1.2. Let ES = E(S, V \ S) be the set of edges across the cut (S, V \ S).

Then, |ES| = `0(x) where x =
∑

i∈S ai. Furthermore, x ∈ {−1, 0, 1}(
n
2) with |x(j,k)| =

1 iff (j, k) ∈ ES.

Our algorithm is based on the following simple O(log n) stage process. In the

first stage, we find an edge incident on each vertex. We then collapse each of the

resulting connected components into a “supervertex”. In each subsequent stage we

find an edge from each supervertex to another supervertex if one exists. If the graph

has cc(G) connected components, the difference between the number of supervertices

and cc(G) halves with each stage and therefore after O(log n) stages the graph has

collapsed into cc(G) supervertices and will not collapse further. The challenge is to

emulate the algorithm space-efficiently in a single pass over a dynamic graph stream.

39

To emulate the algorithm efficiently, we will construct a number of sketches of each

ai that will facilitate the `0-sampling. Let the sketch matrices be S1, . . . ,St where

t = O(log n). Constructing a sketch of each vertex, using each sketch matrix requires

O(nt log2 n) for constant δ. For our algorithm it will suffice to set the `0-sampling

parameters as ε = 0 and δ = 1/100.

To sample an edge incident on i, we can use the sketch S1(ai). Appealing to

Lemma 3.1.2, this succeeds with probability 1 − δ. At the next step, to sample an

edge from the supervertex s = {i, j} we can use the sketch S2(ai)+S2(aj) to find such

an edge with probability at least 1 − δ. This follows by the linearity of the sketches

and by appealing again to Lemma 3.1.2. We emphasize that using S1(ai) + S1(aj)

rather than S2(ai) + S2(aj) will not work for two reasons: (a) it would mean that

we has used S1 in the first stage to determine our use of S1 in the second stage and

such adaptivity is not permissible in general and (b) the probabilities from Lemma

3.1.2 would not be independent. In short, we need to use a new sketching matrix Si

in each round. See Algorithm 6 for the full algorithm.

The correctness of the algorithm follows because in each stage we expect to de-

crease |V̂ | − cc(G) by at least a third by appealing to the linearity of expectation.

Hence, it suffices to set t = O(log n).

Theorem 3.1.3. There exists a single-pass, O(n · log3 n)-space, O(m polylog n)-time

algorithm for dynamic connectivity. The algorithm returns a spanning forest of the

graph.

40

3.1.1 k-Edge-Connectivity

In this section, we present single-pass algorithms for k-edge-connectivity. The starting

point for the algorithm is the following simple k phase algorithm:

1. For i = 1 to k: Let Fi be a spanning forest of (V,E \
⋃i−1
j=1 Fj)

2. Then (V, F1 ∪ F2 ∪ . . . ∪ Fk) is k-edge-connected iff G = (V,E) is at least k-

edge-connected.

The correctness of this algorithm is simple to show.

Lemma 3.1.4. Given a graph G = (V,E), for i ∈ [k], let Fi to be a spanning forest

of (V,E \
⋃i−1
j=1 Fj). (V, F1 ∪ F2 ∪ . . . ∪ Fk) is k-edge-connected iff G = (V,E) is at

least k-edge-connected.

Proof. Let E ′ = F1 ∪ . . . ∪ Fk. Consider a cut (S, V \ S) and let ES ⊂ E be the

set of edges that cross this cut. Similarly, let E ′S be the set of edges among E ′ that

cross this cut. Clearly |ES| ≥ |E ′S| since E ′ ⊂ E. Hence, it suffices to prove that

|E ′S| ≥ k if G is k-edge-connected. Suppose there exists i such that Fi ∩ ES = ∅

(otherwise we are done by the edge-disjointness of the k spanning forests.) Then

ES ∩ (F1 ∪ F2 ∪ . . . ∪ Fi−1) = ES and hence |E ′S| = |ES| ≥ k.

We call F1, · · · , Fk a witness of k-connectivity. Both algorithms for insertion-only

streams and dynamic streams return a witness. Such witness will be used for the

graph sparsification algorithm (see Chapter 5).

41

Algorithm 7 The k-Connectivity Algorithm (for insertion-only streams)

1: Initialize union-find data structures UF1, UF2, · · · , UFk of size n and forests

F1, F2, · · · , Fk = ∅.

2: for each edge e = (u, v) do

3: Find the first i such that UFi.find(u) 6= UFi.find(v). (If UFi.f ind(u) =

UFi.f ind(v) for all i, discard e).

4: Fi ← Fi ∪ {e} and UFi.union(u, v).

5: end for

6: Assert F1, F2, · · · , Fk as a witness.

The algorithm for insertion-only streams is rather straight-forward (Algorithm 7).

Since we know which edge will be selected for the output spanning forest, we can

(virtually) create a new stream without those edges belong to the spanning forest.

Repeating k times, we obtain a single-pass, semi-streaming algorithm.

The algorithm for dynamic streams builds upon ideas in the previous section. It is

relatively straight-forward to design a O(k)-pass algorithm using the spanning forest

algorithm from the previous section. However, by exploiting the linearity of sketches,

we show that it is possible to test k-edge connectivity in only one pass (Algorithm 8).

Because of instantiations I1, . . . , Ik are independent, we may update them as

claimed.

Theorem 3.1.5. There exists a one-pass, O(kn)-space, O(kmα(n))-time algorithm

for testing k-connectivity in insertion-only graph streams. There exists a one-pass,

42

Algorithm 8 The k-Connectivity Algorithm (for dynamic streams)

0: Construct the sketches for k independent instantiations I1, . . . , Ik of the spanning

forest algorithm.

0: For i ∈ [k]:

1. Use the sketches for Ii to find a spanning forest Fi of (V,E \F1∪ . . .∪Fi−1)

2. Update the sketches for Ii+1, . . . , Ik by deleting all edges in Fi

0: Assert F1, F2, · · · , Fk as a witness.

O(kn log3 n)-space, O(km polylog n)-time algorithm for testing k-connectivity in dy-

namic graph streams.

3.1.2 Bipartiteness

Next, we reduce the bipartiteness problem to the problem of counting the number of

connected components. The reduction is based on the following local mapping.

Definition 3.1.6. For a graph G = (V,E), let D(G) = (V ′, E ′) be the graph con-

structed as follows. For each v ∈ V construct v1, v2 ∈ V ′ and for each edge (u, v) ∈ E,

create two edges (u1, v2) and (u2, v1). D(G) is called the bipartite double cover of G.

See Figure 3.1 for an illustration of the action of D.

Lemma 3.1.7. Let K be the number of connected components in G. Then, D(G)

has 2K connected components if and only if G is bipartite.

43

(a) G (b) D(G) (c) G′ (d) D(G′)

Figure 3.1: The map D doubles the number of connected components iff the graph

is bipartite.

Proof. Let G1, G2, · · · , GK be the connected components in G. By the construction,

D(G) consists of D(G1), D(G2), · · · , D(GK). If we sum the number of connected

components in each D(Gi), we have the total number of connected components in

D(G).

Suppose that there exists an odd cycle in Gi which contains u. The odd cycle

corresponds to a path from u1 to u2 or vice versa in D(Gi). And each path from u

to v in Gi corresponds to a path from u1 to v1 or v2 and a path from u2 to the other

copy of v. Since Gi is connected, there exists a path from u to any v ∈ V . So there

is a path from u1 to any vertex in v ∈ V ′ and D(Gi) is connected. On the other

hand, if Gi is bipartite, D(Gi) is not connected because any path from u1 to u2 in G′

corresponds to an odd cycle in G.

If G is bipartite, every Gi is bipartite. Therefore, there are 2K connected compo-

nents in D(G). On the other hand, if G is not bipartite, there must be Gi that is not

bipartite. So there is less than 2K connected components.

44

Applying Theorem 3.1.3 on G and D(G), we can compute the number of connec-

tivity components in G and D(G). Combining with the above lemma, we obtain the

following result:

Theorem 3.1.8. There exists a one-pass, O(n)-space, O(mα(n))-time algorithm

for testing bipartiteness in insertion-only graph streams. There exists a one-pass,

O(n log3 n)-space, O(m polylog n)-time algorithm for testing bipartiteness in dynamic

graph streams.

3.2 Minimum Spanning Tree (MST)

In this section, we present algorithms for finding exact and approximate MST. In the

insertion-only model, we have a single-pass, semi-streaming algorithm for finding an

exact MST. However, it takes multiple passes to find an exact MST in the dynamic

model.

3.2.1 Exact Minimum Spanning Tree

We assume that there are no two edges with the same edge weight. We achieve by

tie-breaking edge weight arbitrarily (for example, using lexicographic order when two

edges have the same edge weight). Then, there is a unique MST and the follow-

ing lemma and the algorithm for the exact MST (Algorithm 9) follows from Prim’s

algorithm.

45

Lemma 3.2.1. Let T1 be the MST of G1. Then, the MST of T1 ∪G2 is the MST of

G1 ∪G2.

Algorithm 9 The MST Algorithm (for insertion-only streams)

1: Initialize a spanning tree T = ∅.

2: repeat

3: Read n edges from the stream. Let H be the set of edges.

4: Compute the minimum spanning tree of T ∪H.

5: Remember the new minimum spanning tree as T .

6: until the end of the stream

6: Assert T as the minimum spanning tree.

Now we proceed to the algorithm for dynamic streams. Our starting point is

Boruvka’s algorithm for finding the MST. This algorithm proceeds in O(log n) phases.

In each phase, the minimum weight edge incident on each vertex is added and the

resulting connected components are collapsed to form new vertices. This algorithm

can be implemented in the dynamic stream setting in O(log2 n) passes by emulating

each phase in O(log n) passes of the dynamic graph stream. We emulate a phase

as follows: In the first pass, we `0-sample an incident edge on each vertex without

considering the weights. Suppose we sample an edge with weight wv on vertex v. In

the next pass, we again `0-sample incident edges but this time we ignore all edges of

weight at least wv on vertex v when we construct the sketch. Repeating this process

O(log n) ensures that we succeed in finding the minimum weight edge incident on

46

each vertex. Thus the algorithm takes O(log2 n) passes as claimed. In the rest of this

section, we transform the algorithm into a new algorithm that uses O(n1+1/p) space

and O(p) passes which translates to a O(log n/ log log n)-pass, O(n polylog n)-space

algorithm.

Reducing the Number of Passes.

Our first step is to show that O(log n log log n) passes suffice. The algorithm is based

on the observation that the number of vertices under consideration in the ith phase

is at most n/2i. Hence, during the ith phase we can afford to sample ti = 2i incident

edges without violating the semi-streaming space restriction. Therefore, the ith phase

can be emulated in O(logti n) passes which implies that the total number of passes is∑logn
i=1 log2i n = O(log n log log n).

The next step is to reduce the number of phases. The basic idea is to not just find

the lightest incident edge for each vertex, but to find the k lightest edges. It follows

from the next lemma that this allows us to reduce the number of vertices by a factor

k.

Lemma 3.2.2. In a simple weighted graph G = (V,E), if E ′ ⊂ E contains the k

lightest incident edges on each vertex, then we can identify the lightest edge in the cut

(S, V \ S) for any subset S ⊂ V of size at most k.

Proof. If |S| ≤ k then we know the lightest edge incident on each v ∈ S in E(S, V \S)

because v has at most k − 1 neighbors in S.

47

Unfortunately, after the first phase the graph under consideration is a multi-graph

and the above lemma does not apply directly. For example, the lightest k incident

edges on v may all connect v to the same neighbor. However, we can rectify this situa-

tion by constructing O(log n) random partitions P1, . . . , PO(logn) of the vertices where

each partition is of size 2k. For each vertex v and each partition P = {V1, . . . , V2k}

we find the lightest edge from v to each Vi. Let E ′ be the set of edges collected.

Lemma 3.2.3. With high probability, E ′ contains the k lightest edges to distinct

neighbors.

Proof. Let Nv be the k closest neighbors of v and consider u ∈ Nv. With high

probability there exists a partition P = {V1, . . . , V2k} where u is the only element in

Vi ∩Nv for some i. Hence, we identify the lightest edge between u and v.

The next theorem is proved by carefully combining the above idea with the

O(log n log log n) pass algorithm.

Theorem 3.2.4. There exists a O(p)-pass, Õ(n1+1/p)-space algorithm that finds the

MST of a dynamic graph stream. In particular there is a semi-streaming algorithm

that uses O(log n/ log log n) passes.

Proof. Suppose at some point we have n1+1/p/t remaining vertices. Then we can find

the
√
t closest neighbors of a vertex in O(log√t n) passes as follows: construct O(log n)

random partitions each of size 2
√
t and then use O(log√t n) successive batches of

√
t

sketches for `0-sampling to find the lightest edges between each vertex and a vertex

48

in each set of each partition. Let ni be the number of vertices at the start of the

ith phase and define ti = n1+1/p/ni. Then t1 = n1/p, t2 = n3/(2p), t3 = n9/(4p) . . . and

hence
∑

i logti(n) = O(p).

3.2.2 Approximate Minimum Spanning Trees

Unless we have Ω(n2) space, it is not possible to compute the exact minimum spanning

tree in dynamic streams. However, we can (1 + ε)-approximate the MST in one-pass

with near linear space. We reduce the problem of estimating the weight of the MST

to the problem of counting the number of connected components in graphs. The

reduction uses an idea due to Chazelle et al. [27]. Consider a graph G with edge

weights are in the range [1,W] where W = poly(n). We will assume that G is

connected but our algorithm can be used to estimate the weight of the minimum

weight spanning forest if G is unconnected. Let Gi be the subgraph of G consisting

of all edges whose weight is at most wi = (1 + ε)i and let cc(H) denote the number

of connected components of a graph H.

Lemma 3.2.5. Let T be a minimum spanning tree of G and set r =
⌈
log1+εW

⌉
.

Then

w(T) ≤ n− (1 + ε)r +
r∑
i=0

λicc(Gi) ≤ (1 + ε)w(T)

where λi = (1 + ε)i+1 − (1 + ε)i.

Proof. Consider the G′ formed by rounding each edge weight up to the nearest power

of (1 + ε). Then it is clear that w(T) ≤ w(T ′) ≤ (1 + ε)w(T) where T ′ is a minimum

49

spanning tree of G′. It remains to compute w(T ′) and we do this by considering the

operation of Kruskal’s algorithm on G′. Kruskal’s algorithm will first add n− cc(G0)

edges of weight 1, then cc(G0)− cc(G1) edges of weight (1 + ε) etc. The total weight

of edges added will be

w(T ′) = (n− cc(G0)) +
r−1∑
i=1

(1 + ε)i(cc(Gi)− cc(Gi+1))

which simplifies to give the claimed quantity.

Hence, we can estimate the weight of the minimum spanning tree using the con-

nectivity algorithm.

Theorem 3.2.6. There exists a single-pass, O(ε−1 ·n · log4 n)-space, O(m ·polylog n)-

time algorithm that (1 + ε) approximates the weight of the minimum spanning tree of

a dynamic graph.

3.3 Maximal Matching

The maximal matching in the insertion-only model is straight-forward (Algorithm

10). The algorithm finds a maximal matching in one pass, O(n) space, and O(m)

time.

To find a maximal matching in dynamic streams we appeal to a result by Lat-

tanzi et al. [70] for finding a maximal matching (with no deletions) in the MapReduce

model. Their algorithm repeatedly samples a subset of η = O(n1+1/p) edges in each

50

Algorithm 10 The MaximalMatching Algorithm (for insertion-only streams)

1: M← ∅.

2: for each edge e = (u, v) do

3: If u or v is matched in M, discard e.

4: Otherwise, M←M∪ {e}.

5: end for

6: Return M.

Algorithm 11 The MaximalMatching Algorithm (for dynamic streams)

1: M← ∅.

2: for O(p) rounds do

3: Sample n1+1/p edges uniformly at random.

4: Find a maximal matching among the sampled edges and include them in M

5: Exclude all matched vertices and edges incident to them.

6: end for

7: Return M.

round and finds a maximal matching among the sampled edges, for p rounds; the ver-

tices in the matching are excluded in the subsequent rounds. The same algorithm can

be implemented in the dynamic semi-streaming model using sketches for `0-sampling

(see Algorithm 11). In each pass, we can sample η edges uniformly at random and

hence, each round of the algorithm corresponds to a single pass. Summarizing, we

obtain the following theorem:

Theorem 3.3.1. There exists a O(p)-pass, O(n1+1/p)-space algorithm that finds a

51

maximal matching in the dynamic graph streams with high probability.

52

Chapter 4

Distance Spanners

In this section we discuss the construction of distance preserving synopsis structures

— that is given a graph G, we want to create a small-space representation such that

we can answer queries such as the distance from between two specified vertices. Since

the synopsis may not be able to answer the distance exactly, we will be interested in

the distortion of the answers. In particular, an α-spanner is a spanner that answers

all the distance queries within an approximation factor of α > 1.

4.1 A Space-efficient Local BFS Algorithm

There has been several papers that investigate the construction of spanners in the

(insertion only) streaming model [44, 17], and the best result is a (2k − 1)-spanner

using O(n1+1/k) space in a single pass. Moreover it is also known that this trade-off

of approximation factor and space is optimal. These algorithms use local breadth-

53

first-search trees (BFS); and the roots of these trees are connected to every vertex

in the other tree. However, as intermediate steps, the algorithm also maintains BFS

trees from other vertices such that the entire algorithm can proceed in a single pass

[17]. However that algorithm cannot be implemented in the presence of deletions.

We first discuss a simple adaptation of that algorithm using `0-sampling that can be

implemented in O(k) passes.

Algorithm `0-BFS: The algorithm has two parts.

• Part 1: Growing Trees This part consists of k − 1 phases where at the end

of phase i we have constructed a set of rooted vertex-disjoint trees Ti[v] where

v is the root of the tree and the set of roots is going to be denoted by Si. Each

Ti[v] will have the property that the distance between a leaf and v is at most i.

At the end of phase i there may also be many vertices that are not in a tree.

– First phase: Pick each vertex with probability n−1/k. Call the selected

vertices S1. We will start growing trees around the selected vertices where

the selected vertices will be the roots of their respective trees. Specifically,

if vertex u is adjacent to a selected vertex v add (u, v) to the tree T1[v]. If

u is adjacent to multiple selected vertex, add (u, v) to one of the trees ar-

bitrarily. If a vertex u is not adjacent to any selected vertex, we remember

the set of incident edges L(u).

54

– ith phase Construct Si from S(i−1) by sampling each vertex with probability

n−1/k. For each v ∈ Si initialize Ti[v] = T(i−1)[v]. If u is adjacent to a vertex

w in some tree Ti[v] add (u,w) to Ti[v]. If u is adjacent to multiple trees,

just add u to one of the trees (doesn’t matter which). Again if a vertex is

not adjacent to any selected tree, then remember the set of incident edges

L(u) where you only store one edge to vertices in the same T(i−1) tree.

• Part 2: Final Clean Up: Once we’ve defined T(k−1)[v] for v ∈ S(k−1) (and

deleted all vertices not in these trees) let V ′ be the set of vertices involved in

the T(k−1) trees (and roots, leaves, intermediate vertices etc.) For each u ∈ V ′

add (at most one) edge to a vertex in some T(k−1)[v] if such an edge exists.

Following the proofs outlined in [44, 17], we can show that:

Theorem 4.1.1. Algorithm `0-BFS uses O(k) passes and gives a (2k − 1)-spanner

using Õ(n1+1/k) space.

4.2 A Pass-efficient Recursive Contraction Algo-

rithm

The BFS growth algorithm gives an optimum trade-off between space Õ(n1+1/k) and

approximation 2k − 1, but uses O(k) passes which is less desirable. For example, to

achieve a semi-streaming space bound, the number of passes is O(log n). While this

55

is interesting1, a natural question arises: can we produce a spanner in fewer passes?

In what follows, we answer the question in the affirmative and provide an algorithm

that uses O(log k) passes at the expense of a worse approximation factor.

The main intuition for the improvement in number of passes is the following: in

the BFS algorithm we are growing regions of small diameter (at various granularities)

and in each pass we are growing the region by 1 edge. Thus the growth of the regions

is slow. Moreover in each of these steps we are using O(n) space (if the graph is

dense) — yet the space allowed for the vertex is Õ(n1+1/k) and we expect the extra

space to matter precisely when the graphs are dense! But if we are growing BFS trees,

the extra edges are simply not useful. We will therefore relax the BFS constraint —

this will allow us to grow the regions faster. The algorithm RecurseConnect is

presented below.

Algorithm RecurseConnect :

1. The algorithm proceeds in phases which correspond to the passes. In the phase

i, we have a graph G̃i which is contraction of the graph G = G̃0; that is,

subsets of vertices of the G have been merged into a collection of supervertices.

This process will proceed recursively; and we will maintain |G̃i| ≤ n1−(2i−1)/k.

Therefore after log k passes we have a graph of size
√
n and we remember the

connectivity between every pair of vertices in O(n) space. We describe how to

achieve G̃i+1 from G̃i below.

1Observe that we cannot “sort” a stream in O(log n) passes in a read only model.

56

2. For each vertex in G̃i we sample n2i/k distinct neighbors — vertices p, q in G̃i

(note that p, q are subsets of the original vertex set) are neighbors in G̃i if there

exists an edge (u, v) ∈ G such that u ∈ p and v ∈ q. To do this, for each vertex

in G̃i, we independently partition the vertex set of G̃i into Õ(n2i/k) subsets, and

use an `0 sampler for each partition. This can be achieved in Õ(n1/k) space per

vertex and in total Õ(n1+1/k) space, using the hypotheses |G̃i| ≤ n1−(2i−1)/k.

Note that using the standard coupon-collector argument we can find all the

vertices in G̃i whose degree is at most n2i/k as well.

3. The set of sampled edges in G̃i gives us a graph Hi. We now choose a clustering

of Hi where the centers of the clusters are denoted by Ci. Consider the subset

Si of vertices of Hi which have degree at least n2i/k — we will ensure that Ci

is a maximal (not maximum) subset of Si which is independent in H2
i . This

is a standard construction used for the approximate k-center problem. More

specifically: We start from the set C0
i being an arbitrary vertex in Hi. We

repeatedly augment Cj
i to Cj+1

i by adding vertices which are (i) at distance at

least 3 (as measured in number of hops in Hi) from each vertex in Cj
i . and (ii)

have degree at least n2i/k. Denote the final Cj
i , when we cannot add any more

vertices, as Ci. Observe that |Ci| ≤ |G̃i|/n2i/k ≤ n1−(2(i+1)−1)/k.

4. For each vertex p ∈ Ci all neighbors of p in Hi are assigned to p. For each vertex

q with degree at least n2i/k in G̃i, if it is not chosen in Ci, we have a center p in

Ci within 2 hops of q in Hi; then q is assigned to p as well.

57

5. We now collapse all the vertices assigned to p ∈ Ci into a single vertex and

these |Ci| vertices define G̃i+1.

It is immediate that after at most log k passes G̃i shrinks below
√
n. We now prove

the approximation achieved by the above algorithm. Observe that the distances are

now primarily in the collapsed vertices.

Lemma 4.2.1. The distance between any adjacent u, v ∈ G is at most 5log k − 1 =

klog2 5 − 1.

Proof. Define the maximum distance between any u, v which are in the same collapsed

set in G̃i as ai. Note that a1 = 4 since the clustering C1 has radius 2, and therefore

any collapsed pair are at a distance at most 4. For i > 1 observe that ai+1 = 5ai + 4

and the result follows.

Theorem 4.2.2. RecurseConnect gives us a klog2 5−1 approximation using log k

passes and Õ(n1+1/k) space.

58

Chapter 5

Graph Sparsification

Chapter Outline: In this chapter, we present the semi-streaming graph sparsi-

fication algorithm. We first discuss the minimum cut algorithm to demonstrate the

high-level idea and then apply the same idea to the graph sparsification. Both al-

gorithms require an access to random bits for edges which are not available for the

insertion-only model.

5.1 A Warmup: The Minimum Cut Problem

To warm up, we start with a one-pass semi-streaming algorithm (Algorithm 12, for

the minimum cut problem. This will introduce some the ideas used in the subsequent

sections on sparsification. The algorithm is based on Karger’s Uniform Sampling

Lemma (Lemma 2.2.1) [67].

See Algorithm 12 for our minimum cut algorithm. The algorithm generates a

59

Algorithm 12 The MinCut Algorithm. Steps 1-5 are performed together in a single

pass. Step 6 is performed in post-processing.

1: Let hi : E → {0, 1} be a uniform hash function for i ∈ {1, . . . , b2 log nc}.

2: for i = 0 to b2 log nc in parallel do

3: Let Gi be the subgraph of G containing edges e such that
∏

j≤i hj(e) = 1

(G0 = G).

4: Let Hi ← k-Connectivity (Gi) (Algorithm 7 for the insertion-only model or

Algorithm 8 for the dynamic model) for k = O(ε−2 log n)

5: end for

6: return 2jλ(Hj) where j = min{i : λ(Hi) < k}

sequence of graphs G = G0 ⊇ G1 ⊇ G2 ⊇ . . . where Gi is formed by indepen-

dently removing each edge in Gi−1 with probability 1/2. Simultaneously we use

k-Connectivity to construct a sequence of graphs H0, H1, H2, . . . where Hi con-

tains all edges in Gi that participate in a cut of size k or less. The idea is that if i is

not too large, λ(G) can be approximated via λ(Gi) and if λ(Gi) ≤ k then λ(Gi) can

be calculated from Hi.

Theorem 5.1.1. Assuming access to fully independent random hash functions, there

exists a single-pass, O(ε−2n log4 n)-space algorithm that (1+ε)-approximates the min-

imum cut in the dynamic graph stream model. The requirement of fully independent

random hash functions will be eliminated in Theorem 5.4.2

Proof. If a cut in Gi has less than k edges that cross the cut, the witness contains all

60

such edges. On the other hand, if a cut value is larger than k, the witness contains

at least k edges that cross the cut. Therefore, if Gi is not k-edge-connected, we can

correctly find a minimum cut in Gi using the corresponding witness.

Let λ(G) be the minimum cut size of G and let

i∗ =

⌊
log max

{
1,

λε2

6 log n

}⌋
.

For i ≤ i∗, the edge weights in Gi are all 2i and therefore Gi approximates all the cut

values in G w.h.p. by Lemma 2.2.1. Therefore, if MinCut returns a minimum cut

from Gi with i ≤ i∗, the returned cut is a (1 + ε)-approximation.

By Chernoff bound, the number of edges in Gi∗ that crosses the minimum cut of

G is O(ε−2 log n) ≤ k with high probability. Hence, MinCut terminates at i ≤ i∗

and returns a (1 + ε)-approximation minimum cut with high probability.

5.2 A Simple Sparsification

See Algorithm 13 for a simple sparsification algorithm. The algorithm extends

the MinCut Algorithm by taking into account the connectivity of different edges.

Lemma 5.2.1. Assuming access to fully independent random hash functions, Simple-

Sparsification uses O(ε−2n log5 n) space and the number of edges in the sparsifica-

tion is O(ε−2n log3 n).

Proof. Each of the O(log n) instance of k-Connectivity runs in O(kn log2 n) space.

Hence, the total space used by the algorithm is O(ε−2n log5 n). Since the total number

61

Algorithm 13 The Simple-Sparsification Algorithm. Steps 1-5 are performed

in a single pass. Step 6 is performed in post-processing.

1: Let hi : E → {0, 1} be a uniform hash function for i ∈ {1, . . . , b2 log nc}.

2: for i = 0 to b2 log nc in parallel do

3: Let Gi be the subgraph of G containing edges e such that
∏

j≤i hj(e) = 1

(G0 = G).

4: Let Hi ← k-Connectivity (Gi) (Algorithm 7 for the insertion-only model or

Algorithm 8 for the dynamic model) for k = O(ε−2 log n)

5: end for

6: For each edge e = (u, v), find j = min{i : λe(Hi) < k}. If e ∈ Hj, add e to the

sparsification with weight 2j. Return the constructed sparsification.

of edges returned is O(kn log n), the number of edges in the sparsification is also

bounded by O(ε−2n log3 n).

As mentioned earlier, the analysis of our sparsification result uses a modification

of Theorem 2.2.3 that arises from the fact that we will not be able to independently

sample each edge. The proof of Theorem 2.2.3 is based on the following version of

the Chernoff bound.

Lemma 5.2.2 (Fung et al. [46]). Consider any subset C of edges of unweighted edges,

where each edge e ∈ C is sampled independently with probability pe for some pe ∈ (0, 1]

and given weight 1/pe if selected in the sample. Let the random variable Xe denote

the weight of edges e in the sample; if e is not selected, then Xe = 0. Then, for any

62

p ≤ pe for all edges e, any ε ∈ (0, 1], and any N ≥ |C|, the following bound holds:

P

[∣∣∣∣∣∑
e∈C

Xe − |C|

∣∣∣∣∣ ≥ εN

]
< 2 exp(−0.38ε2pN) .

We will need to prove an analogous lemma for our sampling procedure. Consider

the Simple-Sparsification algorithm as a sampling process that determines the

edge weight in the sparsification. Initially, the edge weights are all 1. For each round

i = 1, 2, . . . if an edge e is not k-connected in Gi−1, we freeze the edge weight. For

an edges e that is not frozen, we sample the edge with probability 1/2. If the edge is

sampled, we double the edge weight and otherwise, we assign weight 0 to the edge.

Definition 5.2.3. Let Xe,i be random variables that represent the edge weight of e

at round i and let Xe be the final edge weight of e. Let pe = min
{

253λ−1
e ε−2 log2 n, 1

}
where λe is the edge-connectivity of e and let p′e = min {4pe, 1}. Let Be be the event

that the edge weight of e is not frozen until round blog 1/p′ec and let BC = ∪e∈CBe

for a set C of edges.

In the above process, freezing an edge weight at round i is equivalent to sampling

an edge with probability 1/2i−1. We will use Azuma’s inequality, which is an expo-

nentially decaying tail inequality for dependent random process, instead of Lemma

5.2.2.

Lemma 5.2.4 (Azuma’s inequality). A sequence of random variables X1, X2, X3, . . .

is called a martingale if for all i ≥ 1,

E [Xi+1|Xi] = Xi.

63

If |Xi+1 −Xi| ≤ ci almost surely for all i, then

P [|Xn −X1| ≥ t] < 2 exp

(
−t2

2
∑

i c
2
i

)
.

We prove the following lemma which is identical to Theorem 5.2.2 if no bad event

Be occurs.

Lemma 5.2.5. Let C be a set of edges. For any p ≤ pe for all e ∈ C and any

N ≥ |C|, we have

P

[
¬BC and

∣∣∣∣∣∑
e∈C

Xe − |C|

∣∣∣∣∣ ≥ εN

]
< 2 exp(−0.38ε2pN) .

Proof. Suppose that we sample edges one by one and let Yi,j be the total weight of

edges in C after j steps at round i. If Yi,0 ≥ |C|+ εN for any i, we stop the sampling

process.

For each step in round i, we change the edge weight from 2i−1 to either 2i or

0 with equal probability. The expectation of the edge weight is 2i−1 and therefore,

E [Yi,j|Yi,j−1] = Yi,j−1. In addition, there are at most |C|+εN
2i−1 random variables Yi,j

at round i since otherwise, Yi,0 has to be greater than |C| + εN and we would have

stopped the sampling process. So

∑
i′<i

∑
j

|Yi′,j − Yi′,j−1|2 ≤
∑
i′<i

|C|+ εN

2i′−1
22(i′−1)

=
∑
i′<i

2i
′−1(|C|+ εN) ≤ 2i+1N .

Now the following inequality follows from Azuma’s inequality.

P [|Yi,0 − |C|| ≥ εN] < 2 exp

(
−ε

2N

2i+2

)

64

Let i = blog max{1/(4p), 1}c. If BC does not occur, Yi,0 =
∑

e∈C Xe. From the

definition of i, i = 0 or 2−(i+2) ≥ 0.38p. If i = 0, obviously Yi,0 = |C|. If 2−(i+2) ≥

0.38p, we get the desired result: P [|Yi,0 − |C|| ≥ εN] < 2 exp(−0.38ε2pN).

Theorem 5.2.6. Assuming access to fully independent random hash functions, there

exists a single-pass, O(ε−2n log5 n)-space (1± ε)-sparsification algorithm in the semi-

streaming model.

Proof. By replacing Theorem 5.2.2 by Lemma 5.2.5, we can conclude that Simple-

Sparsification produces a sparse graph that approximates every cut with high

probability or for some edge e, Be occurs. Consider an edge e = (u, v) and some

minimum u-v cut of cut value λe. For i = blog 1/p′ec, the expected number of edges

in this cut is smaller than k/2 (assuming that we use a sufficiently large constant to

decide k). By the Chernoff bound, e is not k-connected in Gi with high probability.

By union bound, Be do not occur for all e with high probability and we obtain the

desired result.

5.3 A Better Sparsification

In this section we present a more efficient implementation of Simple-Sparsification.

See Algorithm 14. The idea is to first construct a less accurate “rough” sparsifier that

we can use to estimate the connectivity of an edge. Then, rather than constructing

all the Hi graphs via k-Connectivity, we can use the more efficient sparse-recovery

65

Algorithm 14 The Sparsification Algorithm. Steps 1-6 are performed in a single

pass. Steps 7-13 are performed in post-processing.
1: Using Simple-Sparsification, construct a (1± 1/2)-sparsification H.

2: For i ∈ {1, . . . , 2 log n}, let hi : E → {0, 1} be a uniform hash function.

3: for i = 0 to b2 log nc in parallel do

4: Let Gi be the subgraph of G containing edges e such that
∏
j≤i hj(e) = 1.

5: For each u ∈ V , compute k-Recovery (xu,i) for k = O(ε−2 log2 n) where xu,i ∈

{−1, 0, 1}(
V
2) with entries

xu,i[v, w] =



1 if u = v and (v, w) ∈ Gi

−1 if u = w and (v, w) ∈ Gi

0 otherwise

. (5.2.1)

6: end for

7: Let T = (V,ET , w) be the Gomory-Hu tree of H.

8: for each edge e ∈ ET do

9: Let C be the cut induced by e and let w(e) be the weight of the cut.

10: Let j =
⌊
log(max{w(e)ε2/ log n, 1})

⌋
.

11: k-Recovery (
∑

u∈A xu,j) returns all the edges in Gj that cross C with high proba-

bility.

12: Let e = (u, v) be a returned edge and f be the minimum weight edge in the u-v path

in the Gomory-Hu tree. If f induces C, include e to the graph sparsification with

edge weight 2j .

13: end for

66

algorithm k-Recovery in combination with the Gomory-Hu data structure.

1. Rough-Sparsification: We construct a (1 ± 1/2)-sparsification using the algo-

rithm in the previous section. The goal is to compute the sampling probability

of edges upto a constant factor.

2. Final-Sparsification: For each edge e = (u, v), we find a O(1)-approximate

minimum u-v cut Ce using the rough sparsification. Based on the cut value of

Ce, we compute a sampling probability pe of e. Let ie = blog 1/pec. We find

all edges in Gie that cross Ce. If e ∈ Gie , assign weight 2ie to e and otherwise,

assign weight 0 to e.

It is important to note that dividing the process into two steps is conceptual and that

both steps are performed in a single pass over the stream.

We next discuss finding the cut Ce for each e. Note that the collection of Ce has

to be efficiently computable and stored in a small space. Fortunately, Gomory-Hu

tree [55] is such a data structure, and it can be computed efficiently [86].

Definition 5.3.1. A tree T is a Gomory-Hu tree of graph G if for every pair of

vertices u and v in G, the minimum edge weight along the u-v path in T is equal to

the cut value of the minimum u-v cut.

Each edge in the Gomory-Hu tree induces a cut. It is a well-known fact that the

cut value of such a cut is equal to the weight of the corresponding edge.

67

The method for finding the edges across a cut (line 11) is based an ideas developed

in Chapter 3 for the spanning forest problem. Recall that the definition of xu,i in

Eq. 5.2.1 ensures that for any cut (A, V \ A),

support(
∑
u∈A

xu,i) = EGi(A) ,

where EGi(A) is the set of edges in Gi that cross the cut. Because k-Recovery is a

linear sketch, to find EGi(A) (on the assumption there are at most k edges crossing

the cuts) it suffices to have computed k-Recovery (xu,i) because

∑
u∈A k-Recovery (xu,i)= k-Recovery (

∑
u∈A xu,i) .

Theorem 5.3.2. Assuming access to fully independent random hash functions, there

exists a single-pass, O(n(log5 n+ ε−2 log4 n))-space (1± ε)-sparsification algorithm in

the semi-streaming model. The requirement of fully independent random hash func-

tions will be eliminated in Theorem 5.4.3.

Proof. The algorithm can be implemented in one pass. The sparse-recovery sketches

do not require any knowledge of the Gomory-Hu tree and thus can be constructed

in parallel with the rough sparsification. The rest of the algorithm is performed in

post-processing.

The space required to construct a (1 ± 1/2)-sparsification is O(n log5 n). The

space required for each sampler is O(k log n) which is O(ε−2 log3 n). Since there are

n such samplers per Gi, the total space required for the samplers is O(ε−2n log4 n).

We obtain the desired space bound by summing up both terms.

68

5.4 Eliminating a Fully Independent Hash Func-

tion

Algorithm MinCut, Simple-Sparsification, and Sparsificationall relies on a

uniform random hash function. However, remembering such a random hash function

takes too much space. In this case, we Ω̃(m) bits. In the insertion-only, we can

simply generate all the necessary random bits required for an edge and forget them

after processing the edge. However, the approach of forgetting random bits associated

with an edge does not work for the dynamic model since we have to reuse the same

random bits for edge insertion and deletion.

In this section, we prove that we can replace the uniform random hash function

with Nisan’s pseudorandom generator [81]. This can be viewed as a limited indepen-

dence style analysis, however this construction yields the basic result cleanly. Nisan’s

pseudorandom generator has the following property.

Theorem 5.4.1 (Nisan [81]). Any randomized algorithm that runs in S space and

using one way access to R random bits may be converted to an algorithm that uses

O(S logR) random bits and runs in O(S logR) space using a pseudorandom genera-

tor.

A pseudorandom generator is different from a hash function that only one-way read

is allowed. If a random bit has been read, it cannot be read again. So Theorem 5.4.1

does not apply to the graph sparsification algorithm as it is. Instead, we rearrange

69

the input data so that the algorithm read each random bit only once. The argument

was used first in Indyk [61].

Assume that the data stream is sorted, i.e., insertion and deletion operations of the

same edge appear consecutively. For each edge, we generate necessary random bits

(which are O(polylog n) in number) and remember them until all the operations on the

edge are read. In this way, we read each random bit only once and the algorithm still

runs in S = Õ(n) space and R is at most polynomial in n. We apply Theorem 5.4.1

to the algorithm with the sorted input stream. The graph sparsification algorithm

(with the pseudorandom generator) succeeds with high probability.

Now note that because the algorithm is sketch-based, the algorithm’s behavior

does not change even if we change the order of the data stream. Therefore, the

algorithm succeeds with high probability. The same argument also applies to the

minimum cut algorithm. We have the following theorems. We also state the results

for the insertion-only model here for the sake of comparison.

Theorem 5.4.2 (Variant of Theorem 5.1.1). There exists a single-pass, O(ε−2n log5 n)-

space algorithm that (1 ± ε)-approximates the minimum cut in the dynamic graph

stream model. The same algorithm uses O(ε−2n log4 n) space in the insertion-only

graph stream model.

Theorem 5.4.3 (Variant of Theorem 5.3.2). There exists a single-pass, O(n(log6 n+

ε−2 log5 n))-space (1± ε)-sparsification algorithm in the dynamic graph stream model.

The same algorithm uses O(n(log5 n + ε−2 log4 n)) space in the insertion-only graph

70

stream model.

5.5 Sparsifying a Weighted Graph

Lemma 5.5.1. Let C be a set of edges such that edge weights are in [1, L]. For any

p ≤ pe for all e ∈ C and any N ≥ |C|, we have

P

[
¬BC and

∣∣∣∣∣∑
e∈C

Xe −
∑
e∈C

we

∣∣∣∣∣ ≥ εNL

]
< 2 exp(−0.38ε2pN)

Lemma 5.5.1 is a variant of Lemma 5.2.5 where we have a weighted graph with

edge weights in [1, L] rather than an unweighted graph. The proof of Lemma 5.5.1

is identical to Lemma 5.2.5. Lemma 5.5.1 implies that by increasing sampling prob-

ability of edges by factor L (or equivalently, increasing k by factor L), we have a

sparsification algorithm for a weighted graph with edge weights in [1, L]. This in-

creases the space requirement and the number of edges in the graph sparsification.

Lemma 5.5.2. There is a semi-streaming sparsification algorithm that runs in a

single pass, O(nL(log6 n + ε−2 log5 n)) space, and polynomial time in the dynamic

graph stream model where edge weights are in [1, L].

For graphs with polynomial edge weights, we will partition the input graph into

O(log n) subgraphs where edge weights are in range [1, 2), [2, 4), We construct

a graph sparsification for each subgraph and merge the graph sparsifications. The

merged graph is a graph sparsification for the input graph. Summarizing, we have

the following theorem:

71

Theorem 5.5.3. There is a semi-streaming sparsification algorithm that runs in a

single pass, O(n(log7 n+ε−2 log6 n)) space, and polynomial time in the dynamic graph

stream model where edge weights are O(poly n).

Remarks

One caveat of algorithms in this chapter is its reliance on Nisan’s pseudorandom

generator in the dynamic graph stream model. Although Nisan’s pseudorandom gen-

erator allows us a relatively easy analysis of the algorithm, pseudorandom generator

near-linear time rather than polylogarithmic time to generate one bit when the access

pattern is not sequential [81]. Goel et al. later proved that O(poly(log n, ε−1))-wise

independence for sampling edges incident on any given vertex is sufficient to guaran-

tee the accuracy of the sparsification and thus, improved the the running time of the

algorithm to near-linear time in the dynamic graph streams [54].

72

Chapter 6

Primal-Dual Frameworks and

Bipartite Matching

Chapter Outline: In this chapter, we present three general approaches for uti-

lizing the primal-dual algorithms. The primal-dual algorithms maintain a primal

candidate and iteratively improve the primal candidate. An oracle finds a “good

direction” to improve the primal candidate. When the oracle cannot find such a

direction, it provides a certificate of infeasibility. Two approaches differ in how to

provide such a certificate. The first approach, “explicit verification”, produces a dual

solution whose objective value is (1 +O(δ))α which directly proves that α is (almost)

infeasible. On the other hand, the other approach, “implicit verification”, proves

non-existence of such a direction using a constant (or polylogarithmic) factor ap-

proximation algorithm. The third approach, “dual-primal approach”, concerns of the

73

choice of the primal LP to solve. More specifically, the approach start with the dual

of the original problem and thus, has the name dual-primal. These approaches have

been presented implicitly in previous research results. However, those results were

mainly in the context of speed rather than space requirement which is of importance

in the semi-streaming model.

We use the maximum matching problem in the bipartite graphs as an example.

We also introduce some improvements of the framework through a careful analysis

of the method. LP3 and LP4 are the standard primal and dual LPs for the maxi-

mum cardinality matching. LP5 and LP6 are the standard primal and dual LPs for

the maximum weighted matching. Note that the edges are undirected in these LP

formulations.

max
∑

(i,j)∈E xij

s.t
∑

j:(i,j)∈E xij ≤ 1 ∀i ∈ V

xij ≥ 0 ∀(i, j) ∈ E

(LP3)

min
∑

i yi

s.t yi + yj ≥ 1 ∀(i, j) ∈ E

yi ≥ 0 ∀i ∈ V

(LP4)

max
∑

(i,j)∈E wijxij

s.t
∑

j:(i,j)∈E xij ≤ 1 ∀i ∈ V

xij ≥ 0 ∀(i, j) ∈ E

(LP5)

min
∑

i yi

s.t yi + yj ≥ wij ∀(i, j) ∈ E

yi ≥ 0 ∀i ∈ V

(LP6)

The integrality gap of LP3 (and LP5) is one, since we have a bipartite graph [86].

We first present an algorithm for MCM and then generalize the algorithm for MWM.

Throughout this thesis, we round the fractional solution using an (1− ε) approx-

74

imation algorithm for MWM [34]. If we find a fractional solution {xij} in which the

number of non-zero edges is small, we collect edges {(i, j)|xij 6= 0} and apply the

algorithm which returns an integral matching of weight at least (1−O(ε))
∑

i,j wijxij.

At the end of this chapter, we discuss some possible design choices in order to

achieve a space- and time-efficient algorithm using primal-dual frameworks. For the

simplicity of analysis, we use the insertion-only model in this chapter.

6.1 Approach I : Explicit Verification

In this section, we introduce the explicit verification approach to oracle design. We

use the context of the multiplicative weights update method (see Section 2.3.1) but

the approach itself is applicable to the fractional packing/covering framework as well.

Algorithm 15 is a general way to construct an oracle.1 In Section 2.3.1, we defined

the “admissibility” of a primal witness. The correctness, i.e., the convergence of the

algorithm is guaranteed by two conditions of admissibility which are conflicting each

other:

1. Objective Value: We want a witness whose objective value (cTx) is at least

α. Assuming that the coefficients are positive, this condition prevents the oracle

from assigning small values (or even zeros) to all variables.

2. Satisfying Constraints in Expectation: We want to satisfy the constraints

1This approach was demonstrated in [12] but the generalization was not made.

75

Algorithm 15 General Oracle Construction (Explicit). Steps 2 and 8 must be care-

fully designed to obtain a small width parameter.

1: Normalize u (normalized vector being y) so that the objective value of dual

program (bTy) to be α.

2: Find a subset of violated constraints in the primal program.

3: Let S = {i1, i2, · · · , ik} be the violated constraints (AT
j y < ci for i ∈ S) and let

∆ =
∑

i∈S ci.

4: if ∆ is large enough then

5: Let xi = α/∆ for i ∈ S and xi = 0 otherwise.

6: return {xi} as a primal witness.

7: else

8: Construct a new y′ from y so that y′ satisfies all the constraints and cTy′ =

(1 +O(δ))α.

9: end if

in expectation, i.e., yT(Ax − b) ≤ δ
∑

j yj. Assuming that the coefficients

are positive, this condition force the oracle from assigning large values to all

variables to satisfy the objective value condition.

Therefore, the problem reduces into finding xi such that ci is large and AT
i y is small.

Algorithm 15 achieves that by finding violated dual constraints (AT
i y < ci). Lemma

6.1.1 formally shows the admissibility of the primal witness returned by Algorithm

15

76

Lemma 6.1.1. If bi > 0 for all constraints, Algorithm 15 returns an admissible

primal witness.

Proof. It is obvious that cTx = α. Since the width parameter is not specified, the only

remaining condition of the admissibility is M(D,x) ≤ δ. We prove that M(D,x) ≤ 0.

M(D,x) =
1∑
j yj

∑
j

yjM(j,x) =
1∑
j yj

∑
j

yj(Ajx− bj)

=
1∑
j yj

(∑
j

yjAjx−
∑
j

yjbj

)

=
1∑
j yj

(∑
i

xi(A
T
i y)−

∑
j

yjbj

)

≤ 1∑
j yj

(∑
i

xici −
∑
j

yjbj

)
=

1∑
j yj

(cTx− bTy) = 0

The forth line comes from the fact that we assign a positive value to xi only if the

corresponding dual constraint is violated, i.e., AT
i y < ci. Also we assign values to x

so that cTx = α and normalize y so that bTy = α. Therefore, M(D,x) ≤ 0.

The admissibility of primal witnesses does not guarantee the efficiency of the

overall algorithm. The efficiency rather depends on producing admissible witnesses

with a small width parameter as well as the efficiency of the oracle itself. Larger

the width parameter, more iterations are required to obtain a feasible solution for

the LP. In Algorithm 15, this part still depends on problem-specific design of the

oracle. However, it provides an intuition how to achieve a small width parameter.

Suppose that there are many violated constraints, i.e., we have large value of ∆. Then,

Algorithm 15 will assign relatively small values to xi’s which implies small values of

77

M(i,x). On the other hand, if we have a small number of violated constraints, it

would be possible to alter y in Algorithm 15 in small amount and obtain a feasible

dual solution y′. In Section 6.1.1 through Section 6.1.3, we demonstrate this approach

and some improvements.

6.1.1 Warming Up: O(1
ε3 log n)-pass Algorithms

In this section, we provide a (1− ε)-approximation algorithm for bipartite MCM and

MWM that uses O(1
ε3

log n) passes. We will use the multiplicative weights update

method reviewed in Section 2.3.1. Recall that the method provides a solution to the

primal problem, provided that the oracle does not fail.

The Simple Case of MCM

We apply the multiplicative weights update method with the oracle provided in Al-

gorithm 16. Recall that if the oracle does not fail, Algorithm 3 returns a feasible

solution for LP3 after T iterations.

Recall that we can compute a maximal matching in one pass, O(m) time and O(n)

space in the insertion-only model. It is trivial to observe that any maximal matching

is a 2 approximation to the maximum cardinality matching.

Lemma 6.1.2. If ∆ ≥ δα, the oracle described in Algorithm 16 returns an admissible

solution with ` = 1 and ρ = 1/δ.

Proof. Note xij = α/|S| for (i, j) ∈ S and xij = 0 for (i, j) 6∈ S. Therefore, it is

78

Algorithm 16 Oracle for LP4. The input is {uti}i∈V , α.

1: Let yi = α∑
j u

t
j
uti. Let Eviolated = {(i, j)|yi + yj < 1}.

2: Find a maximal matching S in Eviolated.

3: Let ∆ = |S|.

4: if ∆ < δα then

5: For each (i, j) ∈ S, increase yi and yj by 1. Observe that y is feasible for LP4

and
∑

i yi ≤ (1 + 2δ)α.

6: Return y and report failure.

7: else

8: Return xij = α/∆ for (i, j) ∈ S and xij = 0 otherwise.

9: end if

obvious that
∑

(i,j)∈E xij = α. Since the vector c is all 1, we have cTx ≥ α.

For each edge (i, j) ∈ S we have yi+yj < 1, and therefore we have
∑

(i,j)∈S xij(yi+

yj) < α. Therefore
∑

(i,j)∈E xij(yi + yj) =
∑

(i,j)∈S xij(yi + yj) < α. This rewrites to∑
i yi
∑

j:(i,j)∈E xij < α. Observe that
∑

i yi = α and therefore
∑

i yi(
∑

j:(i,j)∈E xij −

1) < 0.

Thus M(Dt,x) = 1
α

∑
i yiM(i,x) ≤ 0 < δ. Now M(i,x) =

∑
j:(i,j)∈E xij−1 ≥ −1.

Since S is a matching, for every i at most one xij 6= 0 and moreover xij ≤ 1/δ

(otherwise the oracle has failed). Therefore −1 ≤M(i,x) ≤ 1/δ and the solution is

admissible.

Lemma 6.1.3. If ∆ < δα, Algorithm 16 returns a feasible solution for LP4 with

79

value at most (1 + 2δ)α.

Proof. Consider (i, j) ∈ E such that yi + yj < 1. Since S was maximal, there exists

an edge in S that is incident on either i or j. So yi or yj is increased by at least 1

and the constraint corresponding to edge (i, j) is satisfied. For each edge (i′, j′) ∈ S,

we increase the objective value by 2 and |S| ≤ δα. Since we started with
∑

i yi = α,

the solution returned has value at most (1 + 2δ)α after the increase.

Theorem 6.1.4. For any ε ≤ 1
2

let T = O(1
ε3

log n). Using T + 1 passes and space

O(nT
ε

) and time O(mT
ε

) time we can find a (1 − ε) approximation to the maximum

cardinality matching in bipartite graphs. This implies a 2
3
(1 − ε) result for general

graphs using the integrality gap results of [47, 48].

Proof. We use the first pass to compute OPT to within factor 2 — this follows from

the fact that any maximal matching is a 2 approximation to the maximum cardinality

matching. Suppose the size of the maximal matching we found is q. We try all possible

values of α = (1 + ε
3
)jq where j ≥ 0 and α ≤ 2q(1 + ε

3
) in parallel. This corresponds

to O(1
ε
) guesses of α.

Let δ = ε/12. Therefore ε = min{ δ
4
, 1

2
} = ε/48 since ` = 1. Note, the parameters

ε, ε are different. We now apply the Algorithm 3 using Algorithm 16 as the oracle.

Let α0 to be the smallest value of α which is above OPT , i.e., α0 ≥ OPT >

α0/(1 + ε
3
). Consider α ≤ α0/(1 + ε

3
)2 < OPT/(1 + ε

3
). For any such value of α it

is impossible that the oracle fails since we return a feasible primal solution of value

at most (1 + 2δ)α = (1 + ε/6)α ≤ (1 + ε
6
)OPT/(1 + ε

3
) < OPT . Therefore if we

80

consider the largest value of α for which we do not return a feasible primal solution,

that value must satisfy α ≥ α0/(1 + ε
3
)2. Let this value be α∗. Using Corollary 2.3.3,

after T iterations we have a feasible primal solution x̃. Note all bi = 1 and 4δ = ε/3.

By construction
∑

(i,j)∈E x
t
ij = α∗ for every t. Therefore,

∑
(i,j)∈E

x̃ij ≥
1

1 + 4δ
α∗ =

α∗

1 + ε
3

≥ α0

(1 + ε
3)3
≥ (1− ε)α0 ≥ (1− ε)OPT

The time and space bounds follow easily. To find the actual matching: Let ε = ε′/2

and we run the above steps to find a fractional solution. We find T matchings before

we return the best fractional solution, there are at most m′ = O(nT) non-zero entries

in the solution. Focus on the graph G′ defined by these edges only. The fractional

solution of the original graph remains a fractional solution inG′. We now have random

access to these edges in G′ and can find a (1− ε) approximation to the best matching

contained in these edges (which is at least the same value as the fractional solution,

we use the integrality of the bipartite matching polytope) in time Õ(m′) using known

algorithms [59, 76, 65]. The overall approximation is (1− ε)2 ≥ (1− ε′).

The oracle, Algorithm 16 is an example of the explicit approach (Algorithm 15).

The intuition behind the oracle will be used in the subsequent algorithms for bipartite

MCM and MWM. In Algorithm 16 we must choose a subset S of edges which balances

two critical properties:

Admissibility : Each vertex i is adjacent to at most one edge in S. The weights as-

signed to the edges in S (note, they are identical for a specific iteration t) define

the parameters `, ρ. These parameters determine the number of iterations.

81

Verification : Focusing on the violations in the primal solution allows us to produce

a feasible primal solution and verify α. For each violated edge (i, j) in the primal

solution, we pick at least one adjacent edge.

Any maximal matching in Eviolated satisfies both conditions. Since we consider the

violated edges only, the algorithm is natural. Observe that the framework operates

on primal violations whereas the oracle operated on dual violations. In a sense, the

problem of finding the maximum matching problem in bipartite graphs reduces to

the problem of repeatedly finding maximal matchings in subgraphs defined by dual

violations (corresponding to the edges). These violations can be easily defined by a

simple filtering conditions, for example, does the input edge satisfy yi + yj < 1 using

the current solution y of the dual, and can be implemented in the semi-streaming

model. We now proceed to discuss weighted graphs — observe that weights will also

arise naturally in the unweighted case as we improve Theorem 6.1.4.

The Not So Simple Case of MWM

Note that the input for weighted problems in the semi-streaming model is a sequence

of tuples {(i, j, wij)} and the weights do not have to be stored. We can easily compute

a maximal matching in a single pass using O(n) space and O(m) time. It is shown in

[43] that we can compute a 1/6 approximation to the maximum weighted matching

in a single pass using O(n) space and O(m) time.

In a weighted graph, the verification condition must be strengthened to handle

82

the complications introduced by edge weights. In LP3, if we increase yi by 1, then

all the edges adjacent to i are satisfied. Therefore if only a few primal constraints

were violated then we could produce a primal feasible solution which is close to α. It

is not true in LP5, we now have to increase yi by the amount of violation. However

trying to fix the verification condition by itself does not help, any change also has to

ensure the admissibility condition and a larger increase in yi corresponds to larger ρ.

Let w(S) =
∑

(i,j)∈S wij denote the total weight for any set of edges S. The oracle

will search for a set S of edges which satisfy the following:

Weighted Admissibility of S : There exists a matching S ′ contained in S such

that w(S ′) = Ω(w(S)). We use S ′ to construct a dual witness. Since S ′ is a

matching we will have some control over `, ρ.

Weighted Verification of S : For each violated edge (i, j), we pick at least one

edge adjacent to it whose weight is Ω(wij). We need all of S to produce an

upper bound of the primal solution.

In order to satisfy the modified conditions, we partition the edges depending on their

weights.

Definition 6.1.5. An edge (i, j) is in tier k if α/2k < wij ≤ α/2k−1.

Algorithm 17 is the oracle for LP6. Before we prove the admissibility and verification

conditions we prove a useful lemma which is a property of the constraints.

83

Algorithm 17 Oracle for LP6.

1: Let yi = α∑
j u

t
j
uti.

2: Let Eviolated,k = {(i, j)|yi + yj < wij, α/2
k < wij ≤ α/2k−1}.

3: Find a maximal matching Sk in Eviolated,k for each k = 1, · · · , dlog n
δ
e = O(log n).

4: Let S = ∪kSk,∆ = w(S).

5: if ∆ < δα then

6: For each (i, j) ∈ S, increase yi and yj by 2wij.

7: Further increase every yi by δα
n

.

8: Return y and report failure.

9: else

10: S ′ ← ∅.

11: repeat

12: Pick a heaviest edge (i, j) from S and add it to S ′

13: Eliminate all edges adjacent to i or j from S.

14: until S = ∅

15: Return xij = α/w(S ′) for (i, j) ∈ S ′ and xij = 0 otherwise.

16: end if

84

Lemma 6.1.6. If y satisfies
∑

(i,j)∈E wijyij = α then for any weights ut, if we have

xti = αuti/(
∑

j u
t
j) then M(Dt,y) = 1

α

(∑
(i,j)∈E yij(x

t
i + xtj − wij)

)
.

Proof. From the definition of M(Dt,y) we have:

αM(Dt,y) =
∑
i

xti(
∑

j:(i,j)∈E

yij − 1) =
∑

(i,j)∈E

yij(x
t
i + xtj)−

∑
i

xti

=
∑

(i,j)∈E

yij(x
t
i + xtj)−

∑
(i,j)∈E

wijyij =
∑

(i,j)∈E

yij(x
t
i + xtj − wij)

The lemma follows.

Lemma 6.1.7. (Weighted Admissibility.) The matching S ′ ⊆ S constructed by Al-

gorithm 17 satisfies w(S ′) ≥ w(S)/5. As a consequence, if ∆ ≥ δα the Algorithm 17

returns an admissible dual witness with ρ = 5
δ

and ` = 1.

Proof. Observe that in S there is at most one edge incident to i from each tier

of weight. Consider the matching S ′ constructed by Algorithm 17. Suppose that

(i, j) ∈ S ′ is in tier k and consider the edges Ai = {(i, j′)|(i, j′) ∈ S, j 6= j′} which are

eliminated from S by the inclusion of this edge (i, j) in S ′. Each element in Ai has a

lower weight than (i, j); otherwise we would have chosen that eliminated edge instead

of (i, j) (the weights cannot be equal since there cannot be any other edge from tier

k which is incident on i). Therefore the edges in Ai belong to tiers numbered k+ 1 or

larger (since they have a lower weight). The weight of any ignored edge in tier k + q

can be upper bounded by wij/2
q−1. These weights add up to 2wij since we have at

most one edge from each tier. Therefore the sum of the weights of the edges in Ai, Aj

amount to at most 4wij. Summing over all (i, j) ∈ S ′, w(S − S ′) ≤ 4w(S ′) and thus

w(S ′) ≥ w(S)/5.

85

For the second part of the lemma, observe that xij = α/w(S ′) ≤ 5α/w(S) =

5α/∆ ≤ 5
δ
. The parameter ` remains 1 and ρ is 5

δ
due to the same reason as in the

proof of Lemma 6.1.2. We observe that (since yij = 0 for (i, j) 6∈ S ′);

cTy =
∑

(i,j)∈E

wijyij =
∑

(i,j)∈S′
wijyij =

∑
(i,j)∈S′

wij
α

w(S ′)
=

α

w(S ′)
w(S ′) = α

Applying Lemma 6.1.6 we immediately get αM(Dt,y) =
∑

(i,j)∈E yij(x
t
i + xtj − wij).

Now if xti +xtj−wij ≥ 0 then yij = 0 by construction. Or in other words, M(Dt,y) ≤

0 ≤ δ. The lemma follows..

Lemma 6.1.8. (Weighted Verification.) For every violated edge (i, j) in one of the

O(log n) tiers, we pick at least one edge in S adjacent to (i, j) whose weight is at

least wij/2. As a consequence, if ∆ < δα then the algorithm returns a feasible primal

solution for LP6 with value at most (1 + 5δ)α.

Proof. Suppose that (i, j) is violated in tier k. Then, since Sk is a maximal matching,

we must have chosen at least one edge in Sk which is adjacent to i or j. The weight

of that chosen edge in Sk has to be at least wij/2 since the weights of two edges that

belong to the same tier differ at most by a factor of 2.

For the second part of the proof we follow the argument in Lemma 6.1.3, with one

change. Suppose that yi + yj < wij for an edge (i, j) ∈ E. We have two cases, either

the edge was chosen in one of the tiers (say k) or wij ≤ δα/n. The second case is

easier, since we increase each yi by at least δα/n, we definitely satisfy the constraint

for (i, j) in this case.

86

For the first case, observe that in the first part of the lemma we proved that we

selected an edge e ∈ S incident on i or j with weight we ≥ wij/2. Therefore we

increased xi or xj by at least 2we ≥ wij. We satisfy the constraint for (i, j) in this

case as well. Therefore x is feasible.

For each edge (i, j) ∈ S, we increase
∑

i yi by 4wij. Therefore over all the edges

we increase
∑

i yi by 4w(S) = 4∆. Since we started with
∑

i yi = α we have
∑

i yi =

α+4∆ < (1+4δ)α after we increase xi based on the edges. We now have an additional

increase in yi which adds δα to
∑

i yi. The lemma follows.

The rest of the argument is almost identical to MCM and proof of Theorem 6.1.4

with four changes: (i) ρ increases to 5
δ

from 1
δ

(ii) we need to set δ = ε/30 since

the primal feasible solution returned is at most (1 + 5δ)α (iii) we start with the 1/6

approximation provided by [43] which uses O(n) space and (iv) for the final rounding

scheme we use the recent result of [34]. The space bound increases since the oracle

now uses O(n log n) space due to the O(log n) tiers (and as before we have O(1
ε
)

oracles being run in parallel).

Theorem 6.1.9. For any ε ≤ 1
2

in T = O(1
ε3

log n) passes, and O(nT
ε

+ n
ε

log n) space

we can compute a (1− ε) approximation for maximum weighted matching in bipartite

graphs.

87

6.1.2 Reducing Space and Passes

So far we have not used the fact that we are trying to solve the same LP for different

guesses of the parameter α. Moreover we have used one pass for each invocation of

the oracle. The number of passes is equal to the number of iterations plus one; the

first pass is used to guess the values of α.

In this section, we first reduce the space required to manage the multiple guesses

of α. Subsequently, we reduce the number of passes by executing multiple iterations of

the algorithm in one pass – this can be viewed as making a “step” which is significantly

larger than what is provided by the basic analysis in the previous section. We focus

on the weighted case.

Reducing the Space Requirement

In what follows we show how to preserve the admissibility condition across different

values of the guessed parameter α, and run the O(1
ε
) guesses (in Theorem 6.1.9) in

parallel without increasing the space requirement by a factor O(1
ε
). The key intuition

is that we are trying to find feasible solutions for the same instance of LP5 but

different values of the objective function. If in a single iteration we make progress for

a large value of α then we also make progress for a smaller value of α.

Observe that the proofs of Theorem 6.1.4 and 6.1.9 use α∗ which is the largest

value of α for which we have not produced a feasible primal solution. Suppose that

we can prove that we would make the same choices for different values of α. Then,

88

when we produce a feasible primal solution for some guess of α (the oracle fails), it

may be that for a smaller guess of α the oracle does not fail. We can continue with

the smaller guess of α, as if the larger guess was never made! Therefore we will avoid

running separate oracles for the different guesses of α and thereby save space. We

begin with the following definition:

Definition 6.1.10. A sequence x1,x2, · · · ,xt is admissible if all xs for 1 ≤ s ≤ t are

admissible when we apply x1,x2, · · · ,xt in the given order. Recall that admissibility

is a property of both u,x (Definition 2.3.1).

Lemma 6.1.11. Let α, α′ be guesses of the optimal solution with α > α′. If a sequence

x1,x2, · · · ,xt is admissible for α, the sequence is also admissible for α′.

Proof. Consider running the two copies of the Algorithm 3: for the values of α and

α′. Observe that M(i,x) only depends on x and therefore the parameters `, ρ do

not depend on α, α′. Moreover the actual weights of the edges do not change and

therefore for any vector x if cTx ≥ α then cTx > α′.

Therefore to show admissibility, it suffices to prove that M(Dq,xq) ≤ δ for all

q ≤ t for the smaller value α′ assuming that xq satisfied M(Dq,xq) ≤ δ for all q ≤ t

for the larger value α. We prove this using induction.

Initially u is same for both copies of the algorithm (as described so far, we have

used ui1 = 1, but we will be changing this in the next section). Now M(D1,x1) =

1∑
j u

1
j

∑
i u

1
iM(i,x1) and is independent of α. Therefore x1 is admissible for α′. This

proves the base case.

89

Suppose that we have proven the hypothesis up to q = k and we apply x1, · · · ,xk

to both the algorithms corresponding to α and α′. Observe that ρ,M(i,x) are

unchanged and therefore the weights uk+1
i is the same for both α and α′. But

M(Dk+1,xk+1) = 1∑
j u

k+1
j

∑
i u

k+1
i M(i,xk+1) and for all i both algorithms have the

same value of 1∑
j u

k+1
j

uk+1
i and M(i,xk+1) since these quantities are independent of α.

Therefore xk+1 is also admissible for α′. The lemma follows by induction.

The algorithm: We start with α being the upper bound of the maximum matching.

Each time the oracle fails, we reduce α by (1 + ε
3
) factor while keeping the weights

of constraints and {xt} fixed which were computed so far. This is possible since the

sequence of x remains admissible with the same width parameter. The total number

of successful iterations remains the same but we need an additional iteration for each

time the oracle reports failure. However we only have to provision for solving one

copy of the oracle.

We can now show that Theorem 6.1.9 holds with space O(n(T + log n)), but uses

T ′ = T +O(1
ε
) passes. Formally,

Theorem 6.1.12. For any ε ≤ 1
2

in T = O(1
ε3

log n) passes, and O(n(T + log n))

space we can compute a (1 − ε) approximation for maximum weighted matching in

bipartite graphs.

90

Algorithm 18 Improved Algorithm for MWM (reducing space).

1: In one pass, find a 6 approximate maximum matching using [43] and let α0 be

the weight of the matching.

2: u1
i = 1 for all i ∈ [n] and α = 6α0

3: for t = 1 to T do

4: Given uti, run the oracle (Algorithm 17).

5: If the oracle failed decrease α by factor (1 + ε
3
) and repeat line 4.

6: Let M(i,xt) = Aix
t − bi. (x is an admissible dual witness now)

7: ut+1
i =


uti(1 + ε)M(i,xt)/ρ if M(i,xt) ≥ 0

uti(1− ε)−M(i,xt)/ρ if M(i,xt) < 0

8: end for

9: Output 1
T

1
1+4δ

∑
t x

t.

Reducing the number of passes

Consider the two conditions for the oracle given in the previous section, and for the

sake of example, consider the cardinality case. Suppose that we just performed an

update based on a primal witness x. Observe that yt = x(ut) and for the next step,

the admissibility condition (M(Dt,x) ≤ 0 ≤ δ) remains satisfied as long as the edges

(i, j) in support(x) satisfy yti +ytj < 1. Therefore as a new approach, we do not invoke

the oracle again as long as we have such a solution. In other words, we can use the

same matching returned as a primal witness for multiple iterations or until one of its

edges satisfies the corresponding dual constraint yi + yj ≥ 1.

Therefore it appears that we can simulate multiple iterations in a single pass. But

91

if yi + yj is close to 1 then this idea need not be useful because we may satisfy that

edge in a single step. Observe that this idea automatically brings up the notion of

weights even in the context of MCM. The high-level idea for the oracle is similar to

the construction in Section 6.1.1 – but there are significant differences and two major

issues arise.

• First, we cannot use uniform values for the entries of y as in Section 6.1.1,

even in the setting of MCM. Suppose that S contains (i, j) and (i′, j′) where

1 − yi′ − yj′ is greater than 1 − yi − yj. If we assign large values to xij and

xi′j′ , it decreases the number of iterations per pass (due to normalization the yi

for the matched edges rise quickly, and we satisfy the constraint). If we assign

small values to xij and xi′j′ , it increases the total number of iterations and it

may also result in inadmissible x, i.e., cTx < α.

• Second, we have to modify the verification condition in Section 6.1.1 so that

the condition handles the values of wij − yi − yj and keep the increase of the

solution minimal. For example, (again using the cardinality case as an example)

increasing the value of yi and yj less than 1 in the verification step can result

in an infeasible primal solution. On the other hand, increasing yi and yj by 1

can result in a larger approximation factor.

In what follows, we avoid both the issues by defining the tier of an edge based on

the violation instead of the edge weight. Moreover we ensure that for different edges

(i, j) the xij values are different — this can be viewed as setting wijxij proportional to

92

the violation in (i, j). Therefore the accounting for the admissibility and verification

conditions are different.

Definition 6.1.13. Define vij = wij − yi− yj to be the (dual) violation of an edge

(i, j) ∈ E (the edge is not violated if vij < 0). An edge (i, j) is in violation-tier

k if α/2k < vij ≤ α/2k−1. Observe that if α ≥ maxi,j wij then every edge belongs

to a violation-tier numbered by a natural number. For any set of edges S, define

V (S) =
∑

(i,j)∈S vij. Define ṽij = max{vij/wij, 0}.

The improved oracle is given in Algorithm 19.

Lemma 6.1.14. In Algorithm 19, if ∆V ≥ δα then we have a matching x such that∑
(i,j)∈E wijxij = α, and for all i either M(i,x) = −1 or M(i,x) ≤ 5

δ
ṽij − 1 where

(i, j) ∈ S ′. As a consequence if ∆V ≥ δα then Algorithm 19 returns an admissible

solution with ` = 1 and ρ = 5
δ
.

Proof. The proof is similar to the proof of Lemma 6.1.7, except that we will use

violations (whereas the proof of Lemma 6.1.7 used the weights). Observe that since

xij = 0 if (i, j) 6∈ S ′ we have

∑
(i,j)∈E

wijxij =
∑

(i,j)∈S′
wijxij =

∑
(i,j)∈S′

wij
ṽijα

∆′V
=

α

∆′V

∑
(i,j)∈S′

vij = α

Note
∑

i yi = α =
∑

(i,j)∈E wijxij (observe α is not changed within an iteration).

Now suppose that (i, j) ∈ S ′ is in violation-tier k and consider edges adjacent to

i. All of them are in violation-tier k + 1 or higher and for each such tier we have at

most two edges (one adjacent to i and one adjacent to j) because we pick a maximal

93

Algorithm 19 Improved Oracle for LP6.

1: Let yi = α∑
j u

t
j
uti.

2: Let Eviolated,k = {(i, j)|(i, j) is in violation-tier k}. for k = 1, · · · , K = dlog2
n
δ
e

3: Find a maximal matching Sk in each Eviolated,k.

4: Let S = ∪kSkand ∆V = V (S).

5: if ∆V < δα then

6: For each (i, j) ∈ S, increase yi and yj by 2vij.

7: Further increase all yi by δα
n

. Return x and report failure.

8: else

9: S ′ ← ∅.

10: repeat

11: Pick a edge (i, j) from S with largest vij and add it to S ′

12: Eliminate all edges adjacent to i or j from S.

13: until S = ∅

14: Let ∆′V = V (S ′).

15: Return xij = ṽijα/∆
′
V for (i, j) ∈ S ′ and xij = 0 otherwise.

16: end if

94

matching for each violation-tier. So the total violation of edges that are eliminated

by (i, j) is at most
∑∞

k′=1
2vij

2k′−1 ≤ 4vij. This shows that V (S − S ′) ≤ 4V (S ′) and

therefore V (S ′) ≥ V (S)/5. Hence α/∆′V ≤ 5α/∆V ≤ 5/δ (otherwise the oracle has

failed).

Now M(i,x) =
∑

j:(i,j)∈E xij − 1. Therefore if i is unmatched in S ′ we have

M(i,x) = −1. Otherwise M(i,x) = xij − 1 = ṽijα/∆
′
V − 1 ≤ 5

δ
ṽij − 1 where

(i, j) ∈ S ′. This proves the first part of the lemma.

For the second part observe that cTx =
∑

(i,j)∈E wijxij = α
∆′V

∑
(i,j)∈S′ wij ṽij =

α. Using Lemma 6.1.6 we have αM(Dt,y) =
∑

(i,j)∈E xij(y
t
i + ytj − wij). Now if

yti + ytj − wij ≥ 0 then xij = 0 by construction. Therefore αM(Dt,x) ≤ 0 and so

M(i,x) ≤ 0 ≤ δ. Finally 0 ≤ ṽij ≤ 1 and therefore −1 ≤ M(i,x) ≤ 5
δ
. The lemma

follows.

Lemma 6.1.15. If ∆V < δα, then Algorithm 19 returns a feasible solution for LP6

with value at most (1 + 5δ)α.

Proof. The proof follows similar arguments as in the proof of Lemma 6.1.8; except

that we use violations in this proof instead of weights (as in the proof of Lemma 6.1.8).

We consider the normalized weights y as a primal candidate for LP6. If the oracle

fails, we augment y to obtain a feasible primal solution with a small increase.

Suppose that (i, j) is in violation-tier k. Since Sk was maximal, there exists an

edge that is adjacent to either i or j. So xi or xj is increased by at least α/2k−1 and

the constraint is satisfied. If (i, j) did not belong to any of the violation-tiers then its

95

violation was less than δα/n and since xi, xj are increased by δα/n this constraint is

also satisfied.

For each edge (i, j) ∈ S, we increase the objective value by 4vij and
∑

(i,j)∈S vij =

∆V < δα. Finally, we increase all yi by δα/n which increases the objective value by

at most δα. So our primal solution has value at most (1 + 5δ)α.

The next lemma is the central idea in this subsection. Consider running Algorithm 18,

but with Algorithm 19 as the oracle instead of Algorithm 17. Based on Lemmas 6.1.14

and 6.1.15, and Theorem 6.1.12 we know that in T = O(1
ε3

log n) iterations we will

find a (1 − ε) approximation of the maximum weighted matching. Surprisingly, we

will now prove that even if we do not update the witness x for 1
δ

steps, the witness

remains admissible!

Lemma 6.1.16. Consider running Algorithm 18, but with Algorithm 19 as the oracle

instead of Algorithm 17. If the dual witness x computed by the Algorithm 19) in

iteration t is admissible, then x remains admissible for all iterations t + q where

q ≤ 1/δ.

Proof. Since x was admissible (in any iteration) −` ≤ M(i,x) ≤ ρ. Since y was

computed in iteration t we know from the proof of Lemma 6.1.14 that
∑

(i,j)∈E wijxij =

α and M(i,x)/ρ ≤ ṽtij. We use ṽtij to indicate that this is the fractional violation that

was used to determine xij. Note that wij(1− ṽtij) = yti + ytj. Also note 0 < ṽtij ≤ 1 for

a violated edge.

96

Note that even though we are not updating x across the iterations, u,y are being

updated (using the same x at every step) and we need to prove M(Dt+q,x) ≤ δ for

every t+ q where q ≤ 1/δ.

Then by Lemma 6.1.6,

Mq(Dt+q,x) =
1

α

∑
(i,j)∈E

wijxij
yt+qi + yt+qj − wij

wij

and since
∑

(i,j)∈E wijxij = α, it is sufficient to show that
yt+qi +yt+qj −wij

wij
≤ δ for xij 6= 0.

This means that we need to focus on the edges in the matching S ′ only, since all other

edges have xij = 0.

In the following yt+q refers to the dual candidate after q iterations of Algorithm 18

using the witness x at every step from iteration t. Note ε = δ/4` (since we will

eventually set δ � 1 based on ε, and therefore ε� 1
2
) and ` = 1. Note that,

yt+1
i ≤ yti

(1 + δ/4)ṽ
t
ij

(1− δ/4)δ/5
=⇒ yt+qi ≤ yti

(1 + δ/4)qṽ
t
ij

(1− δ/4)qδ/5

The inequality on the left follows from ρ = 5/δ. Note that we have the 1/(1−δ/4)δ/5

term because we decrease the weight of the unmatched vertices and then renormalize

the total weight to α. The renormalization effectively increases the weight of the

matched vertices by the same factor. The equations can be derived by first computing

ut+1 and renormalizing.

For any δ > 0 and q ≤ 1/δ, we have (1 + δ/4)q ≤ (1 + δ/4)1/δ < e1/4 < 2 and

1/(1− δ/4)qδ/5 ≤ 1/(1− δ/4)1/5 ≤ 1 + δ. Therefore,

yt+qi + yt+qj ≤ (yti + ytj)
(1 + δ/4)qṽ

t
ij

(1− δ/4)qδ/5
≤ (yti + ytj)2

ṽtij (1 + δ)

97

Since 2ṽ
t
ij ≤ 1 + ṽtij for 0 ≤ ṽtij ≤ 1 and (yti + ytj) = wij(1− ṽtij) we have:

yt+qi + yt+qj ≤ wij(1− ṽtij)(1 + ṽtij)(1 + δ) ≤ wij(1 + δ)

This implies that
yt+qi +yt+qj −wij

wij
≤ δ for all yij 6= 0 and therefore Mq(Dt+q,x) ≤ δ.

Now we can claim using induction that x remains admissible for all q ≤ 1/δ iterations

(the inductive hypothesis was necessary to ensure that α did not change). The lemma

follows.

Algorithm 20 Overall Algorithm for MWM.

1: In one pass, find a 6 approximate maximum matching using [43] and let α0 be

the weight of the matching. Also ensure α0 ≥ wij for all (i, j) ∈ E.

2: u1
i = 1 for all i ∈ [n] and α = 6α0

3: for t = 1 to T do

4: Given uti, run the oracle (Algorithm 19).

5: If the oracle failed decrease α by factor (1 + ε
3
) and repeat line 4.

6: Let M(i,xt) = Aiy
t − bi. (x is an admissible primal witness now)

7: ut+1
i =


uti(1 + ε)M(i,xt)/5 if M(i,xt) ≥ 0

uti(1− ε)−M(i,xt)/5 if M(i,xt) < 0

(This line is modified compared to Algorithm 3.)

8: end for

9: Output 1
T

1
1+4δ

∑
t y

t.

Theorem 6.1.17. Theorem 6.1.12 holds with T = O(1
ε2

log n) (and with T+1 passes)

using Algorithm 20.

98

Proof. We use Lemma 6.1.16 repeatedly. We can compute x1 (using Algorithm 18

and Algorithm 19 as oracle) and use it for the next 1
δ

iterations. Observe that

Lemma 6.1.16 shows that we can omit the oracle for 1
δ

iterations, so there can be

no failure and α cannot change. Repeating the same argument we compute the wit-

ness only for every 1
δ

iterations. Observe that the overall algorithm simplifies to the

description given in Algorithm 20.

Therefore we have O(δ
ε3

log n) = O(1
ε2

log n) actual computations of the dual wit-

ness, we have a (1 − ε) approximation, where δ = ε/30. Computation of each x

requires a pass. Note that we may need to repeat an iteration if the y was not ad-

missible (as in Theorem 6.1.12) — but this only adds O(1
ε
) iterations. The space

requirement is O(n(T + log n)) since we need to only remember the different x values

we computed.

6.1.3 Removing the Dependency on n

In this section, we present (1− ε) approximation algorithms for bipartite MCM and

MWM where the number of passes does not depend on the number of nodes. In each

case we use the Algorithm 20 but we use a subgraph of the input graph and apply

further analysis to bound the number of iterations T . Moreover, instead of starting

from an initial state u1
i = 1 we will start the algorithm with different values of u1

i .

We will also need to use the Theorem 2.3.2 instead of Corollary 2.3.3. Re-

call that the number of iterations of the multiplicative weights update method is

99

O(1
δ3 (ln maxi

Ψi
Υ1
i
)) where Υt

i = uti/(
∑

j u
t
j) and Ψi = maxt Υt

i. Of these, 1
δ

iterations

can be performed in a single pass. In what follows, we will reduce or bound the

(ln maxi
Ψi
Υ1
i
) term. The key observation we will use in this regard is the following

lemma:

Lemma 6.1.18. If u1
i ≥ wij for all (i, j) ∈ E then during the execution of Algo-

rithm 20, yi ≤ 2u1
i .

Proof. As the parameter α is decreased in Algorithm 20, (because a larger value of

α ended up returning a primal feasible solution and so we are now decreasing α) the

value of yi decreases because u remains unchanged but α decreases. Thus it suffices

to analyze the case when we do not change α.

We first observe that if yti ≥ wij for all (i, j) ∈ E then vertex i is not involved

in any violations. Then no edge adjacent to i can be chosen in x and we will have

M(i,x) =
∑

j:(i,j)∈E xij − 1 = −1. Then we will be setting ut+1
i = uti(1− ε)1/5 (based

on the subroutine Algorithm 20). Moreover observe that
∑

j u
t+1
j ≥

∑
j(1 − ε)1/5utj,

since for every j we have M(j,x) ≥ −1. Therefore,

yt+1
i =

αut+1
i∑

j u
t+1
j

=
αuti(1− ε)1/5∑

j u
t+1
j

≤ αuti(1− ε)1/5∑
j(1− ε)1/5utj

=
αuti∑
j u

t
j

= yti

Therefore yi can increase only if it is involved in some violation. But then yi < wij ≤

u1
i . So the maximum value yi can achieve is when it is increased in a single step of

Algorithm 20 to above u1
i . The maximum value ut+1

i /uti in a step of Algorithm 20 is

(1 + ε)M(i,x)/5 ≤ (1 + ε)1/δ. Note that ε ≤ δ
4`

and therefore (1 + ε)1/δ ≤ e1/4. However

we may also be decreasing
∑

i u
t
i; which can decrease by a factor (1− ε)1/5. Therefore

100

yi, which is the relative contribution of ui to
∑

i ui can increase at most by a factor

of e1/4(1− ε)−1/5 which is at most 2 for ε ≤ 1
2
. The lemma follows.

In Algorithm 20 Υt
i = yti/α. Note α ≥ OPT/6 after the first pass where OPT is

the maximum weighted matching. Therefore if u1
i ≥ wij for all (i, j) ∈ E then using

Lemma 6.1.18 Ψi ≤ 12u1
i

OPT
and Ψi

Υ1
i
≤ 12(

∑
j u

1
j)

OPT
= O(

(
∑
j u

1
j)

OPT
). Setting δ = ε/30 we get a

variant of Theorem 6.1.17 as follows:

Theorem 6.1.19. If wij ≤ u1
i for all edges (i, j) ∈ E then for any ε ≤ 1

2
in T passes

where T = O(1
ε2

log
(
∑
j u

1
j)

OPT
), and O(n(T + log n)) space we can compute a (1 − ε)

approximation for maximum weighted matching in bipartite graphs.

The Simple Case of MCM

In this context OPT denotes the size of the maximum cardinality matching in G.

Consider the Algorithm 21 and the following lemma:

Lemma 6.1.20. Let OPTS denote the size of maximum matching in the subgraph

induced by the vertex set S ⊆ V , then (using the notation of Algorithm 21), we have

OPT −OPTSt+2 ≤ 2
3
(OPT −OPTSt). This proof does not use bipartiteness.

Proof. Fix an optimal solution in the original graph G and an optimal solution in the

subgraph induced by St. From the symmetric difference of two matchings, we can

find OPT − OPTSt vertex disjoint augmenting paths, say P . We show that at least

1
3
|P| vertex disjoint augmenting paths are included in the graph induced by St+2.

101

Algorithm 21 A constant pass algorithm for maximum cardinality matching

1: Find a maximal matching and find a 2 approximation of OPT .

2: Let S0 be the set of vertices that are matched.

3: for t = 1 to 2
⌈

log(2/ε′)
log(3/2)

⌉
do

4: Find a maximal matching between St−1 and V − St−1. Let Tt be the set of

vertices in the maximal matching.

5: St = St−1 ∪ Tt.

6: end for

7: Let G′ be a subgraph induced by ST . This can be achieved by filtering the stream.

8: Run Algorithm 20 on G′

Order the vertex disjoint augmenting paths P arbitrarily. Let i′ − i− Z − j − j′

be the first path (where Z is some sequence of vertices in St). Then i′, j′ 6∈ St and

i′ 6= j′. In what follows we will show the condition C : we have an augmentation path

i′′− i−Z − j− j′′ available in St+2 for some i′′ 6= j′′, i′′, j′′ ∈ V −St and i′′, j′′ ∈ St+2.

(Note {i′, j′} can intersect {i′′, j′′}.)

If we prove this condition C, then any augmentation path we find can remove

at most two additional paths in P (since i′′, j′′ are now unavailable). Therefore we

can find at least 1
3
|P| augmentations in St+2. This means that OPTSt+2 ≥ OPTSt +

1
3
(OPT −OPTSt) and therefore

OPT −OPTSt+2 ≤ OPT −
(
OPTSt +

1

3
(OPT −OPTSt)

)

Therefore if we prove this condition C the lemma follows. We now prove the condition

102

C. If both i′, j′ were included in the matching in step t+ 1 or t+ 2 then the condition

holds with i′′ = i′ and j′′ = j′ since we consider all edges in the induced subgraph.

Therefore at least one of them, say i′, was not included in any of the two maximal

matching in steps t+ 1, t+ 2. This means that i was matched to some ĩ1 in step t+ 1

and some ĩ2 in step t+ 2 with ĩ1 6= ĩ2. Now two cases arise (i) j′ 6= ĩ1 and (ii) j′ = ĩ1.

In case (i) where j′ 6= ĩ1, it must be that j or j′ was matched in step t + 1 since

the edge (j, j′) was available. If j′ was matched then the condition is satisfied with

i′′ = ĩ1 and j′′ = j′. Otherwise j was matched, say to j′′, in step t + 1 and j′′ 6= ĩ1

since i is matched to ĩ1 in the same matching. The condition is satisfied with i′′ = ĩ1.

In case (ii) where j′ = ĩ1 the condition is satisfied with i′′ = ĩ2 and j′′ = j′. Therefore

the lemma follows.

If Lemma 6.1.20 is repeated as many times as in Algorithm 21, the difference be-

tween OPT (the size of the optimal matching in G) and the optimal solution in the

subgraph G′ is at most
(

2
3

)(log 2
ε′)/(log 3

2
)

= 2− log 2
ε′ = ε′/2 times OPT (notice that

OPT −OPTS0 ≤ OPT since we started with a 2 approximation). Therefore G′ now

contains a (1− ε′/2) approximation of the maximum matching in G. The size of each

maximal matching is O(|OPT |) and we repeat O(log 1
ε
), the subgraph contains at

most O(|OPT | log 1
ε
) vertices. The number of passes to find the subgraph is O(log 1

ε
)

since we can find a maximal matching in one pass. Using Theorem 6.1.19 we have:

Theorem 6.1.21. For any ε ≤ 1
2

Algorithm 21 provides a (1 − ε) approxima-

tion for the maximum cardinality matching problem in bipartite graphs using T =

103

O(1
ε2

log log 1
ε
) passes, and O(n′(T + log n′)) space where n′ = min{n, |OPT | log 1

ε
}.

This implies a 2
3
(1 − ε) result for general graphs using the integrality gap results

of [47, 48]. The size of the matching can be computed in O(n′ log n′) space.

Observe that to estimate the size we only need to remember G′ and the u both of

which can be done using O(n′) space. The oracle (Algorithm 19) requires O(n′ log n′)

space.

The Not So Simple Case of MWM

The weighted case is significantly more difficult than the unweighted case. The sub-

graph will now be expressed implicitly using the vertex weights ui as proxy. In the

language of Linear Programming this means that, instead of starting from an uni-

form random sample of the constraints, we will start from a weighted sample. Let

the maximum weighted matching be M.

Before proceeding further, for the rest of this section we assume that the weights

are discrete, i.e., wij ∈ {1, (1+ν), · · · , (1+ν)L} where L = O(1
ν

log n
ν
) to simplify the

analysis for ν ≤ 1/6. Observe that if ν ≥ 1/n then L = O(1
ν

log n). This discretization

can be achieved in four steps and a single pass by: (i) using a single pass to find both a

1
6

approximation of w(M) using the algorithm of [43], and the maximum weight edge.

Denote the larger of these two values by w′ (which is a lower bound on the weight of

M). (ii) deciding to ignore all edges of weight νw′/n and (iii) deciding to multiply

all edge weights by n/(νw′) and (iv) performing the discretization by rounding down

104

the weights to powers of (1 + ν). Note that in step (i) we reduce the optimal solution

by a (1− ν) factor. Subsequently given any matching in this scaled setting, we have

a matching in the original setting which is related by a simple scaling factor. The

discretization of the weights reduces the optimal solution by another factor which is

at most 1/(1 + ν).

Given a discretized set of edges we run Algorithm 22. The Algorithm 22 that

computes the weights of the vertices is similar to Algorithm 21, but is significantly

non-trivial. Let M′ denote the maximum weight matching in this new discretized

setting and its weight be w(M′). We ensure that:

C1:
∑

i u
1
i ≤

(
42
ν3 ln 1

ν

)
w(M′).

C2: Let G′ = (V,E ′) be a subgraph that consists of edges (i, j) such that wij ≤

u1
i , u

1
j . Then, G′ contains a matching with weight at least (1− 3ν)w(M′).

Hence, using Theorem 6.1.19 we obtain a (1 − ε)-approximation of the maximum

matchingM′′ in G′ in O(1
ε2

log 1
ν
) passes. Then using C2 we would have a (1−3ν)(1−

ε) approximation for the maximum weight matchingM′ in G′. This corresponds to a

(1−3ν)(1− ε) (1−ν)
(1+ν)

approximation for the maximum weight matchingM in G — the

weights in the original graph are scaled differently, but the relationship is one-to-one.

Setting ν = ε′

16
and ε = ε′/2 we would get a (1 − ε′) approximation of M (for all

ε′ ≤ 1
2
). We now proceed to ensure C1 and C2.

Lemma 6.1.22. (Condition C1.)
∑

i u
1
i ≤

(
42
ν3 ln 1

ν

)
w(M′). Bipartiteness is not used

in this proof.

105

Algorithm 22 A constant pass algorithm for maximum weighted matching.

1: (i, j) is in level k if wij = (1 + ν)k

2: for each level k = 0, 1, · · · , L in parallel do

3: Find a maximal matching E0
k .

4: Let Ck be the set of nodes matched in the maximal matching.

5: Let S1
k = Ck

6: for t = 1 to q = 8d 1
ν2 ln 1

ν
e do

7: Find a maximal matching Et
k between Ck and V − Stk.

8: Let T tk be the set of nodes matched in the maximal matching.

9: St+1
k = Stk ∪ T tk.

10: end for

11: Let N (i, k) denote the neighbors of vertex i in ∪qt=0E
t
k.

12: end for

13: Let u1
i = (1 + ν)k for the maximum k with i ∈ Sqk. Vertices not present in any Sqk

have u1
i = 0.

14: Let G′ = (V,E ′) where E ′ = {(i, j) : wij ≤ u1
i , u

1
j}.

15: Run Algorithm 20 on G′ with initial weights u1
i and return its result.

106

Proof. For a vertex i define k(i) to be the maximum k with i ∈ Sqk. Therefore

u1
i = (1 + ν)k(i). In what follows we will show a charging scheme where we charge u1

i

to different edges in M′. Consider the edge ei = (i, j) that caused the inclusion of i

to Sqk(i). Note that |N (i′, k′)| ≤ q for all i′, k′.

At least one of i and j must be matched in M′, otherwise M′ is not optimal.

Moreover either i or j must have an edge adjacent to it in M′ with weight at least

1
2
(1 + ν)k(i) (otherwise we can remove both those edges and add ei to increase the

weight of M′). Let the edge with the larger weight (between the two possible edges

inM′ adjacent to i, j) be f(ei). We charge f(ei) the value u1
i . Note that f(ei), ei are

adjacent.

Now consider an edge e = (i′, j′) ∈ M′ with we = (1 + ν)k. This collects a

charge for any vertex i in level k(i) such that 1
2
(1 + ν)k(i) ≤ (1 + ν)k = we. In each

such level k(i), we can have e = f(ei) for at most 2q + 2 different vertices i since

ei, e must be adjacent. If ei = (i′, i) then there are at most q + 1 possibilities for i

(including i′). This is because either i = i′ or i ∈ N (i′, k(i)) and |N (i′, k(i))| ≤ q.

Counting the ei that arise from j′ as well, we know that e = f(ei) for at most 2q + 2

vertices i. Therefore the charge on e from vertices i with the largest value of k(i) is

2(q + 1)2we. From the vertices that are in the immediately lower level, the charge is

4(q+1)we
(1+ν)

. Summing over all the levels, the charge is

4(q + 1)we

(
1 +

1

1 + ν
+

1

(1 + ν)2
+ · · ·

)
≤ 4(q + 1)(1 + ν)

ν
we

Summing over all edges in M′, since 4(q+1)(1+ν)
ν

≤ 42
ν3 ln 1

ν
we have the desired result

(we use the fact that q + 1 ≤ 9q
8

).

107

Lemma 6.1.23. (Condition C2.) G′ contains a matching with weight at least (1 −

3ν)w(M′).

Proof. We start withM′ and modify it into a matching F so that F contains only the

edges in G′. We charge the loss induced by the modification to the edges inM′ ∪F .

We first describe the modification procedure:

1. Initially M =M′. F = ∅. We will maintain M ∪ F to be a matching.

2. Pick the edge in M with the highest weight. Let this edge be e = (i, j) with

weight we = (1 + ν)k in level k. Since E0
k was a maximal matching, either i or

j is in Ck. Without loss of generality, let it be i. Thus k(i) ≥ k. If k(j) ≥ k

then both u1
i , u

1
j are at least we and e ∈ G′. We add (i, j) to F and remove

(i, j) from M . Therefore it suffices to consider k(j) < k and j 6∈ Sqk then i has

at least q neighbors in Sqk and N (i, k) = q; since the edge (i, j) was available

for potential inclusion in the q maximal matchings.

(a) Suppose there is i′ ∈ N (i, k) that is not matched inM or F . Then k(i′) ≥ k

and (i, i′) ∈ G′. Add (i, i′) to F and remove (i, j) from M .

(b) Otherwise each i′ ∈ N (i, k) is matched in M or F . If i′ is matched in M

denote its partner to be σ(i′,M). Otherwise i′ is matched in F and denote

its partner as σ(i′,F).

i. If there exist at least q/2 vertices (q is even) in N (i, k) which are

matched in F , then delete (i, j) from M and give every (i′, σ(i′,F))

108

where i′ ∈ N (i, k) a red charge of 2
q
we.

ii. If there exists i′ ∈ N (i, k) which is matched in M and its weight

w((i′, σ(i′,M))) < νwe, then we delete both (i, j) and (i′, σ(i′,M))

from M and add (i′, i) to F . Note (i′, i) ∈ G′. Then (i′, i) collects a

green charge of w((i′, σ(i′,M))).

iii. Otherwise, there exist at least q/2 vertices inN (i, k) which are matched

inM , let this set beQi. Find the smallest weight edge inM incident on

a vertex inQi, let that vertex be i0. Delete both (i, j) and (i0, σ(i0,M))

from M and add (i, i0) to F . Each edge (i′, σ(i′,M)) where i′ ∈ N (i, k)

receives a blue charge of 2
q
w0 where w0 = w(i0, σ(i0,M)).

Observe that the sets N (i, k) are disjoint for a fixed k. This is because the

matched vertices Stk are ruled out from participating in step t + 1 or later. Observe

that the edges are added to F in non-increasing order of weight. Moreover, during

the execution of the above procedure, at any point we have the invariant I: that

every edge in F has a weight at least as much as the edge with the heaviest weight

in M .

The red charges are collected by edges in F . Consider edge e ∈ F with we =

(1 + ν)k. Edge e collects a red charge from edge e′ if we′ ≤ we. This is a consequence

of the invariant I. Moreover, for each k′ ≤ k the edge e can collect 2 such red

charges for edges e′. This is because the two endpoints can be in N (i, k′) for at most

2 different choices of i (this is a consequence of N (i, k′) being disjoint for a fixed k).

109

The charge collected due to edges e′ in level k′ is 22
q
(1 + ν)k

′
. The total red charge

collected by e can be bounded by
∑k

k′=0 22
q
(1 + ν)k

′ ≤ 4
νq

(1 + ν)k = 4
νq
we. The overall

red charge sums to 4
νq
w(F).

An edge e ∈ F collects a green charge from edge e′ if we′ ≤ νwe. Moreover, this

charge is collected at most once. Therefore the total green charge is νw(F).

The blue charges are collected by the edges in M′. Consider edge e ∈ M′ with

we = (1+ν)k which collect a blue charge when edge e′ was the heaviest weight edge in

M which was deleted from M along with e′′. Observe that since we were considering

the edges in M in decreasing order of weight, we′ ≥ we. Moreover we ≥ we′′ , otherwise

we would have deleted e and charged e′′ in that step. And finally, we′′ ≥ νwe′ ,

otherwise we would be in the green case. Therefore we have we ≥ νwe′ and the edge

e is charged at most 2
q
we′′ ≤ 2

q
we.

Let we′ = (1 + ν)k
′

then (1 + ν)k
′ ≥ (1 + ν)k ≥ ν(1 + ν)k

′
and we have 0 ≤

k′ − k ≤ ln 1
ν

ln(1+ν)
≤ 2

ν
ln 1

ν
. The edge e can collect 2 such blue charges for edges e′ in

level k′ (again follows from N (i, k′) being disjoint). The total blue charge on edge

e is at most (2
ν

ln 1
ν
)22

q
we = (8

νq
ln 1

ν
)we. The overall blue charge sums to at most(

8
νq

ln 1
ν

)
w(M).

Observe that we maintained that w(M′) = w(F) +A where A is the total charge.

Putting the charges together, we have

w(M′) ≤ w(F) +
4

νq
w(F) + νw(F) +

8

νq
ln

1

ν
w(M′)

110

Using q = 8d 1
ν2 ln 1

ν
e and rearranging we get

(1− ν)w(M′) ≤

(
1 +

ν

2 ln 1
ν

+ ν

)
w(F) ≤ (1 + 2ν)w(F)

This translated to w(F) ≥ 1−ν
1+2ν

w(M′) ≥ (1−3ν)w(M′) for all ν ≤ 1
6

and the lemma

follows.

It takes q = O((1
ε′

)2 log 1
ε′

) passes (for this setting of ν = ε/16, see the discussion

before Lemma 6.1.22) andO(nL) = O(n logn
ε′

) space to find the subgraphG′. Therefore

(changing variables), we have

Theorem 6.1.24. For any ε ≤ 1
2

in T = O(1
ε2

log 1
ε
) passes, and O(n(T + logn

ε
))

space we can compute a (1−ε) approximation for the maximum weighted matching in

bipartite graphs. This translates to a 2
3
(1− ε) approximation for general graphs using

the integrality gap results of [47, 48]. The weight can be estimated using O(n
ε

log n)

space.

Observe that to estimate the weight we need to compute and store the subgraph

G′ which can be done using O(n
ε

log n) space since we need to remember O(n) vertices

for each of the discretized weight levels. If we are only interested in the weight, the

computation of the Algorithm 20 only needs O(n log n) space for the oracle and can

remember u in space O(n).

111

6.2 Approach II : Implicit Verification

In this section, we introduce the implicit verification approach to oracle design. Again,

we use the context of the multiplicative weights update method (see Section 2.3.1)

but the approach itself is applicable to the fractional packing/covering framework as

well.

In Section 6.1, we prove the infeasibility of α by producing a dual feasible solution.

However, the construction of a dual feasible solution is not always easy even if a

dual candidate is given. The natural question arises: is it possible to prove the

infeasibility without producing an explicit dual solution? The answer to the question

is yes. Suppose that we have a 2-approximation algorithm for the problem and the

approximation algorithm fails to produce a solution with objective value at least α/2.

This simply proves that α is infeasible. We apply this idea and obtain a general

approach to construct an oracle. Algorithm 23 and Algorithm 24 describes such an

approach.

Recall the goal of the oracle in Section 6.1. We want to find x ∈ {cTx ≥ α; Ax ≤

b}. The primal-dual algorithm maintains u and then, the goal of the oracle is to

find x such that cTx ≥ α and uT(A− b) ≤ δ
∑

j uj. As a consequence, the problem

reduces into a problem of finding xi such that ci is large and AT
i u is small.

Algorithm 23 describes the implicit verification approach. In Algorithm 23, the

two conditions are summarized into “effective coefficients” in L(x, %) = cTx−%uTAx

using the Lagrangian multiplier method. Note that we lose (1 − δ) factor in the

112

Algorithm 23 General Oracle Construction (Implicit).

1: Let L(x, %) = cTx− %uTAx.

2: Let γ = uTb.

3: Consider:

cTx ≥ (1− δ)α,uTATx ≤ uTb,Ax ≤ ρb (LP7)

L(x, %) ≥ α− %γ,Ax ≤ ρb (LP8)

4: Let x% be a solution of LP8 for %. If α is feasible, we always find x that satisfies

LP8 using Algorithm 24.

5: Use O(1
δ
) (parallel) calls to LP8 to find %+ and %− that satisfies:

1. %− ≤ %+ ≤ %− + δα
2γ

,

2. uTAx%
+ ≤ uTb, and

3. cTx%
− ≥ α.

6: if any call to LP8 returns x% such that L(x%, %) < α− % then

7: Declare a failure. α is infeasible.

8: else

9: Take a linear combination of x%
+

and x%
−

to find x that satisfies LP7.

10: Return x as a primal witness.

11: end if

113

Algorithm 24 Algorithm for LP7.

1: If α is feasible, there exists x such that:

L(x, %) ≥ α− %γ,Ax ≤ b (LP9)

2: if α− %γ < 0 then

3: Return x = 0 (a zero vector).

4: end if

5: Find a ρ-approximate solution x′ for LP9, i.e.,

L(x′, %) ≥ 1

ρ
(α− %γ),Ax′ ≤ b.

6: Return x = ρx′.

objective value as a consequence, i.e., the linear combination of primal witnesses has

an objective value of (1− δ)α (or greater) rather than α. The Lagrangian multiplier

method reduces the problem into a problem of the same format but with a different

objective function and relaxed constraints. (See LP8) Algorithm 24 solves the reduced

problem using a ρ-approximation algorithm.

Lemma 6.2.1 states that Algorithm 24 is always successful if α is feasible. The

consequence of this lemma is that if the algorithm is unsuccessful, i.e., it returns x

such that L(x, %) < α − %γ, we can conclude that the guess α is infeasible, thus,

the name implicit verification. Lemma 6.2.2 states that Algorithm 23 returns an

admissible primal witness. Combined with Corollary 2.3.3, the overall algorithm

finds a feasible primal solution x with objective value (1 − δ) mini
bi
bi+δ

α. Note that

we have an additional factor (1− δ).

114

Lemma 6.2.1. If bi > 0 for all constraints and α is feasible, Algorithm 24 always

returns x that satisfies LP8 for any % ≥ 0.

Proof. Suppose that LP9 is feasible. Then, the rest of the proof is straightforward. If

α−%γ is negative, it is obvious that the zero vector would satisfy LP8. Otherwise, the

ρ-approximation algorithm will find x′ that satisfies all the constraints of the original

with the objective value at least 1/ρ times the optimal value which is greater or equal

to 1
ρ
(α − %γ). Therefore, the simple scaling step (Step 6) gives a desired result if

bi > 0 for all constraints.

Let xOPT be the optimal solution. Then, cTxOPT ≥ α and uTAx ≤ uTb since

Aix ≤ bi and ui, bi > 0 for all i. Therefore, for any %, L(xOPT , %) ≥ α − %γ. The

lemma follows.

Lemma 6.2.2. If bi > 0 for all constraints and α is feasible, Algorithm 23 returns

an admissible primal witness.

Proof. We already proved the statement in step 4. The remaining parts are: (i) we

can find %+ and %− that satisfies the conditions in step 5 and (ii) such x%
+

and x%
−

produces an admissible primal witness.

Recall that Algorithm 24 returns a zero vector for any % > α
γ
. The zero vector

satisfies the condition 2. On the other hand, x0 satisfies the condition 3 since L(x, 0) =

cTx and α − 0 · γ = α. If we call LP8 for % = 0, δα
2γ
, δα
γ
, · · · , we will find %+ and %−

that satisfies all three conditions with O(1
δ
) calls.

115

We take a linear combination x = ax%
+

+(1−a)x%
−
, a ∈ [0, 1] such that uTAx = γ.

Note that

aL(x%
+
, %+) + (1− a)L(x%

−
, %−) ≥ α− %−γ − a(%+ − %−)γ

≥ (1− δ)α− %−γ

where we use %+ − %− ≤ δα
2γ

, γ ≥ 0. Therefore

cTx = aL(x%
+
, %+) + (1− a)L(x%

−
, %−) + a%+uTAx%

+
+ (1− a)%−uTAx%

−

≥ (1− δ)α− %−γ + a(%+ − %−)uTAx%
+

+ uTA(a%−x%
+

+ (1− a)%−x%
−

)

≥ (1− δ)α− %−γ + 0 + uTA(a%−x%
+

+ (1− a)%−x%
−

)

(Using uTAx%
+ ≥ 0 and %+ − %− ≥ 0)

≥ (1− r)α− %−γ + uTA%−x (Using x = ax%
+

+ (1− a)x%
−

)

≥ (1− r)α− %−(γ − uTAx) = (1− r)α (Using γ = uTAx)

The lemma follows.

The following lemma is a generalized version of the Lagrangian method we use

here and will be used later in this thesis. We skip the proof since it is almost identical

to the proof of Lemma 6.2.2. The only difference is that the “effective objective” does

not have to be greater than β1 − %β2. Rather an approximation is sufficient. Note

that A1 and A2 are row vectors not matrices.

Lemma 6.2.3. Suppose P is a polytope such that P ⊂ {x; A2x ≥ 0; x ≥ 0} and

116

β1, β2 ≥ 0. Consider the system LP10:

{x;A1x ≥ β1;A2x ≤ β2;x ∈ P} (LP10)

For any r > 0, 1 ≥ q > 0, given LP10 and a subroutine that finds x ∈ P such that

(A1−%A2)x ≥ q(β1−%β2) for any % ≥ 0, we can find x ∈ P such that A1x ≥ q(1−r)β1

and A2x ≤ β2 with O(1
r
) (parallel) invocations of the subroutine.

6.2.1 O(1
ε2 log n)-pass Algorithm

In this section, we demonstrate the implicit verification approach using the bipartite

MWM. A disadvantage of the approach is that we do not have a precise control over

the primal witness since we use an approximation algorithm as a black box. As a

consequence techniques in Sections 6.1.2 and 6.1.3 do not apply and we obtain a worse

number of passes for the bipartite MCM and MWM.

However, the implicit verification approach allows us a easier oracle construction

as long as we have a constant factor approximation algorithm. Therefore, it suits

better in dealing with more complex LPs. For MWM, Feigenbaum et al. gave a

one-pass 6-approximation algorithm in the insertion-only model [43]. 2

Algorithm 25 and Algorithm 26 are the oracle for the bipartite MWM problem

(LP5). Note that unlike the explicit verification approach, we do not need to design

a new algorithm for this specific purpose. We just use Algorithm 23 and Algorithm

2There are other one-pass algorithms that achieve a better approximation factor [95, 42]. How-

ever, any constant factor approximation would be sufficient to demonstrate the approach.

117

Algorithm 25 Oracle for the bipartite MWM.

1: Let L(x, %) =
∑

(i,j)∈E wijxij − %
∑

i u
t
i

∑
j xij.

2: Let γ =
∑

i u
t
i.

3: Consider:

∑
(i,j)∈E

wijxij ≥ (1− δ)α,
∑
i

uti
∑
j

xij ≤
∑
i

uti,
∑
i

∑
j

xij ≤ 6 (LP11)

L(x, %) ≥ α− %γ,
∑
i

∑
j

xij ≤ 6 (LP12)

4: Use O(1
δ
) parallel calls to LP12 to find %+, %− such that:

1. %− ≤ %+ ≤ %− + δα
2γ

,

2.
∑

i u
t
i

∑
j xij ≤

∑
i u

t
i, and

3.
∑

(i,j)∈E wijx
%−

ij ≥ α.

5: if any call to LP12 returns x% such that L(x%, %) < α− % then

6: Declare a failure. α is infeasible.

7: else

8: Take a linear combination of x%
+

and x%
−

to find x that satisfies LP11.

9: Return x as a primal witness.

10: end if

.

118

Algorithm 26 Subroutine for MWM.

1: If α is feasible, there exists x such that:

∑
i,j

xij(wij − %(uti + utj)) ≥ α− %γ

2: if α− %γ < 0 then

3: Return x = 0 (a zero vector).

4: end if

5: In one pass, find a 6-approximate matching given “effective weight” w′ij = wij −

%(uti + utj) for (i, j) ∈ E.

6: Return xij = 6 for any (i, j) in the matching and xij = 0 for other edges.

24 with the 6-approximation algorithm as a subroutine. The width parameter of the

oracle is 6.

Note that the space-reducing technique in Section 6.1.2 applies to this approach.

The oracle uses O(n
ε
) space for the computation and returns a vector with O(n)

non-zero coordinates. Overall, we obtain the following result using this oracle.

Theorem 6.2.4. For any ε ≤ 1
2

in T = O(1
ε2

log n) passes, and O(n(T + 1
ε
)) space

we can compute a (1− ε) approximation for maximum weighted matching in bipartite

graphs (the size can be computed in less space).

119

6.3 Approach III: Dual-Primal Approach

In this section, we introduce the dual-primal approach. We use the context of the

fractional packing/covering framework (see Section 2.3.2) rather than the multiplica-

tive weights update method. The fractional packing/covering framework allows us to

set aside some constraints as long as the primal witnesses satisfy those constraints in

every iteration. These constraints were represented as a polytope P . It is possible to

modify the multiplicative weights update method to handle such constraints as well

but it requires the modification of the standard form.

In Sections 6.1 and 6.2, we introduced two approaches to design an oracle. In this

section, we present another approach of using the primal-dual algorithms. However,

the approach is not about oracle design. While we presented a variety of techniques to

utilize the primal-dual algorithms in the semi-streaming model, an obvious question

remains:

Should we focus on the primal or on the dual?

Primal and dual LPs describe the same combinatorial object and are often inter-

changeable. But that does not hold under two circumstances: the presence of (i)

approximations and (ii) resource constraints, specially in access to data. This imme-

diately suggests that we have a choice between starting from the primal (the algorithm

provides dual candidate to an oracle) or starting from the dual (the algorithm pro-

vides dual of dual, i.e., primal candidate, to an oracle). It would probably be more

appropriate to call the latter style of algorithms as “dual-primal” since they would

120

start from the dual formulation. It is worth noting that in the context of approxi-

mation algorithms, “primal-dual algorithms” start from the dual formulation — they

construct a feasible (possibly fractional) dual solution and an integral primal solution

that relates directly to the feasible dual solution, see [92, 87]. It can be argued that

a primal-dual approximation algorithm uses the structure of the dual polytope more

critically. The structure of the dual polytope has also received a lot of attention in the

exact optimization literature as well and notions such as total dual integrality (TDI)

have been studied widely. Therefore it is reasonable to speculate if the benefits of

studying the dual formulation also apply to fast solutions of LPs.

Suppose we want to solve a maximization problem {max bTx; ATx ≤ c; x ≥ 0}.

Say A,b, c ≥ 0. The dual is a minimization problem and we can conceive a feasibility

version of ∃y such that P ′(β) = {Ay ≥ b; cTy ≤ β; y ≥ 0}. To find such an y

using the primal-dual paradigm we would repeatedly need to find some y′ such that

uTAy′ ≥ (1−O(ε))uTb where the u corresponds to weights on the constraints (rows

of A) for that iteration.

In the explicit verification approach, we prove that this polytope P ′(β) = {Ay ≥

b; cTy ≤ β; y ≥ 0} is infeasible through weak duality and a dual feasible solution

that violates the cTy ≤ β part; that is, provide x such that bTx > β and ATx ≤ c.

But notice that the proof of infeasibility is already a feasible solution for the problem

we wanted to solve! Now simply consider staring from a small value of β which is

provably impossible for the dual and slowly increase it by factors of (1 + ε). At some

121

value of β∗ we will not be able to prove that the dual problem is infeasible – but

then for β∗/(1 + ε) we have a feasible solution for our original problem. Observe

that we never have to worry about part (b) at all! A similar logic holds if we show

bTx > (1−O(ε))β and ATx ≤ c. Observe that an amazing consequence also falls out

from this discussion: the actual y1,y2, . . . returned by the oracle are not so critical.

The only use of these y are in providing a “algorithmic proof” of the final β∗ for which

the dual-primal algorithm succeeded! This implies that we can seek a feasible solution

of some P ′′(β) as long as we have a proof that the feasibility of P ′′(β) implies the

feasibility of P ′(β). Working with P ′′(β) allows us to prove faster converge bounds.

So the dual-primal paradigm starts from a parameterized polytope P ′′(β) which

is somewhat related to the feasible dual of the optimization problem P we are trying

to solve. The oracle either provides us a solution of P of value β, or eventually finds

a β such that P ′′(β) is feasible. If we were increasing β slowly in powers of (1 + ε)

we would eventually find a β∗ such that (i) P ′′(β∗) is feasible and therefore P ′(β∗)

is feasible and we immediately know that the optimum solution is at most β∗ and

(ii) we have a solution of P with value (1− O(ε))β∗. P ′′ is chosen so that the width

(convergence) is lower (faster) and easier to analyze. The main hurdle is to produce

the oracle which provides a clean proof of dual infeasibility as mentioned

The basic outline of the dual-primal method is outlined above. The natural ques-

tion is how does the idea help? Does it help us prove some new result? Does it

help us improve existing results? In the subsequent section, we show that both these

122

questions can be answered in the affirmative using bipartite MWM as an exemplar.

6.3.1 O(n1+1/p)-space O(p/ε)-pass Algorithm

In this section we prove the following:

Theorem 6.3.1. For any 0 < ε ≤ 1 and p ≤ logn

64(log 1
ε
+log logn)

we can construct an

integral solution for the bipartite maximum weighted matching to a factor (1−O(ε))

in O(p/ε) passes and O(pm poly(ε−1, log n)) time and O(n1+1/p) space.

Recall that LP5 captures optimum matching in bipartite graphs (compare LP22).

For (i, j) 6∈ E we force xij = 0 and we use an undirected formulation; xij = xji.

β∗ = max
∑

(i,j)∈E wijxij

s.t
∑

j:(i,j)∈E xij ≤ 1 ∀i ∈ V

xij ≥ 0 ∀(i, j) ∈ E

(LP5)

Definition 6.3.2. Assume that we the weights are rounded down to powers of 1/(1−

ε) and scaled such that the smallest weight is 1. Therefore any matching loses at most

a factor of (1 − ε). Given (i, j, wij) we can compute the “level” k of the edge (i, j)

(higher level corresponds to higher weight). Let wk be the weight of the edges in level

123

k. LP5 rewrites to LP13 with β̂ ≤ β∗ ≤ β̂/(1− ε). Note xijk = xjik.

β̂ = max
∑
i

∑
k

∑
(i,j)∈level k

wkxijk

∑
(i,j)∈level k xijk ≤ xi(k) ∀i, k∑
k xi(k) ≤ 1 ∀i

xijk, xi(k) ≥ 0 ∀i, j, k

(LP13)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β̂ = min
∑

i yi

yi(k) + yj(k) ≥ wk ∀i, j, k

yi − yi(k) ≥ 0 ∀i, k

yi, yi(k) ≥ 0

(LP14)

LP14 is the dual of LP13. We insert yi(k) ≤ Λwk for Λ ≥ 1 without affecting the

optimality of LP13 – this defines the covering problem LP15. To solve LP15, we need

to solve LP16 (Define uijk = 0 if (i, j) 6∈ level k for convenience; note that uijk = ujik.

We also added the redundant constraint yi(k) ≤ 4wk/ε.):

A :
{
yi(k) + yj(k) ≥ wk ∀i, j, (i, j)

∈ level k

P(β,Λ) :



∑
i yi ≤ β

yi − yi(k) ≥ 0 ∀i, k

yi(k) ≤ Λwk ∀i, k

yi, yi(k) ≥ 0

(LP15)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A′(Λ) :
{
yi(k) ≤ Λwk ∀i, k∑

(i,j),k

yi(k)uijk ≥
(

1− ε

2

) ∑
(i,j),k

uijk

P̃(β) :



∑
i

yi ≤ β

yi(k) ≤ 4wk/ε ∀i, k

yi − yi(k) ≥ 0 ∀i, k

yi, yi(k) ≥ 0

(LP16)

The Basic Algorithm: Suppose that we have a solution of value
∑

i yi = β0 < β̂

which satisfies xi(k) + xj(k) ≥ wk/8 and satisfies every other constraint of LP15 with

Λ = 1 (such a solution is not difficult and discussed in Section 6.3.3). Now suppose

we apply the fractional covering approach to LP15 with Λ = 2 (thus the Λ = 1 initial

124

solution also applies). The next lemma proves the framework.

Lemma 6.3.3. Suppose that an oracle provides us a either (i) solution of LP16 with

Λ = 2 (ii) a (compressed) feasible solution of LP5 such that
∑

(i,j) wijxij ≥ (1− ε
4
)β,

and in case (ii) we raise β. After O(ε−2 log n + 1
ε
) queries to the oracle we have a

(1− 6ε) approximate solution to LP5. The weights uijk lie between n±O(1/ε).

Proof. Note that since P(β,Λ) is laminar as β increases; the solutions provided to

LP16 for smaller values of β remain feasible. Note that we can keep reusing those

solutions and eventually have O(ε−2 log n) successful solutions to LP16 — since we

cannot continue increasing β if (1 − ε)β > β∗ because there cannot be be any such

{yij} (duality). Then for the current value of β we will have a (1− 3ε) approximate

solution for LP15 with Λ = 2. But this will imply that β̂ ≤ β/(1 − 3ε) based on a

simple scaling argument and duality. From the {xij} corresponding to the previous

β we have
∑

(i,j) wijxij ≥ (1 − ε
4
)β/(1 + ε). The bound on the weights follows from

(1± ε)O(ε−2 logn). The lemma follows.

A Modified Algorithm: The question therefore is to design an oracle as specified

in Lemma 6.3.3. Consider a deferred estimation problem: we are given {ςij} with the

promise that ςij/χ ≤ uijk ≤ ςijχ. We decide to store some of the edges based on ςij.

Then the exact weights uijk of only those stored edges are revealed to us. We now

have to produce nonnegative {usijk} (obeying the symmetry usijk = usjik) such that

(1 − ξ)
∑

j u
s
ijk ≤

∑
j uijk ≤ (1 + ξ)

∑
j u

s
ijk for all i, k. If such a deferred estimation

were available to us, we can immediately set χ = n1/(4p), ξ = ε/8 and reduce the

125

effective number of iterations by a factor of t = log1+ε χ = O(1
ε

1
p

log n) to O(p/ε)

from O(ε−2 log n) if we solve LP17:

∑
(i,j),k

yi(k)u
s
ijk ≥

(
1− ε

8

) ∑
(i,j),k

usijk in addition to A′(Λ) and P̃(β) (LP17)

since easy calculations show that LP17 =⇒ LP16. On the other hand, if LP15 with

Λ = 1 is feasible then LP17 is feasible for Λ = 1 for any nonnegative {usijk}. This

immediately suggests that the oracle is solving the fractional packing problem LP18

to an approximation (1 + 6δ) for δ = 1/6 (see the review in Section 2.3.2).

A′(1) :
{
yi(k) ≤ wk ∀i, k (LP18)∑

(i,j),k

yi(k)u
s
ijk ≥

(
1− ε

8

) ∑
(i,j),k

usijk

yi, yi(k) ∈ P̃(β)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i,k

ζikyi(k) ≤
13

12

∑
i,k

ζikwk (LP19)

∑
(i,j),k

yi(k)u
s
ijk ≥

(
1− ε

8

) ∑
(i,j),k

usijk

yi, yi(k) ∈ P̃(β)

Observe that no initial solution is required and we need a MiniOracle to either

(i) solution to LP19 given {ζik} or (ii) a (compressed) feasible solution of LP5 such

that
∑

(i,j) wijxij ≥ (1− ε
4
)β. The fractional packing framework may declare LP18 to

be infeasible, but that implies LP15 is infeasible for Λ = 1. Therefore the Oracle for

Lemma 6.3.3 is achieved!

Before we proceed further, let us establish an algorithm for the deferred estimation

problem:

Definition 6.3.4 (The Deferred Degree Counter Problem). Consider the problem:

We are given a weighted graph G = (V,E, u) but the weights are not revealed to us.

Instead we are given {ςij} with the promise that ςij/χ ≤ uij ≤ ςijχ. We can have

126

a single pass over the m = |E| edges and have to produce a smaller summary data

structure D (ξ-deferred degree counter) storing only some of the edges. Once the data

structure is constructed, then the exact weights uij of only those edges stored in our

structure D are revealed to us. We then have to output a ξ-degree counter, a graph

H = (V,E ′, us) such that (1− ξ)
∑

j uij ≤
∑

j u
s
ij ≤ (1 + ξ)

∑
j uij. Note that this is

implemented in a single pass over the graph.

Lemma 6.3.5. (Proved in Section 6.3.2.) Given bound % and {ςij} factor and

edge weights are in [1, O(poly n)], we can generate a deferred degree counter of size

O(χ
2n
ξ2 log4 n). We can construct a graph H = (V,E ′, us) such that (1 − ξ)

∑
j uij ≤∑

j u
s
ij ≤ (1 + ξ)

∑
j uij when the edge weights of the stored edges are revealed. The

algorithm runs in O(χ
2m
ξ2 log n) time and O(χ

2n
ξ2 log4 n) space. In this paper χ = n1/(4p).

We will be using Lemma 6.3.5 when χ = n1/(4p) and ξ = ε/16. To implement the

MiniOracle we need two more steps. A generalization of Lemma 6.3.6 is proved in

Section 9.1.

Lemma 6.3.6. We can solve LP19 using O(log 1
ε
) invocations of LP20 where 0 ≤

% < %o =
12

∑
i,j,k wku

s
ijk

13
∑
ik wkζik

.

∑
i,k

yi(k)

∑
j

usijk − %ζik

+ %
∑
i,k

wkζik ≥
∑

(i,j),k

wku
s
ijk −

∑
i,k

wk%ζik

subject to P̃(β) (LP20)

Proof. In case (ii), we can stop the whole algorithm since we already obtained the

fractional solution. So in the rest of this proof, we assume case (i). Suppose that the

127

main oracle returns y for % = 0 that satisfies

∑
i,k

ζikyi(k) ≤
13

12

∑
i,k

ζikwk. (6.3.1)

If y satisfies LP19, then y is the desired output.

Suppose not. For % ≥ %0, y = 0 is a feasible solution which satisfies Equation

6.3.1. Now using a binary search over [0, %0] and find an interval [%1, %2] where the

corresponding y1 does not satisfy Equation 6.3.1 while y2 satisfies Equation 6.3.1

(but both satisfy LP20). We can narrow the interval so that %2−%1 ≤ ε%0, %2 > %1 in

O(log 1
ε
) invocations of LP20. Now find a linear combination of y1 and y2 such that

it exactly satisfies 6.3.1, i.e.,

∑
i,k

ζikyi(k) =
13

12

∑
i,k

ζikwk.

Then, such y satisfies LP19. Note that the factor (1 − ε
8
) in LP19 is introduced at

this step and we can make it arbitrarily small by decreasing the length of the interval

[%1, %2]. The details of the mathematical equations will be given in Section 9.1 where

we give a generalization of Lemma 6.3.6 (see Lemma 9.1.6).

Lemma 6.3.7. (The main oracle.) Given any nonnegative {usijk}, {ζik}, β, ε, for

any 0 ≤ % ≤ %0, we can either (i) provide {yi}, {yi(k)} that satisfies LP20 or (ii)

provide a (compressed) solution for LP5 such that
∑

(i,j) wijxij ≥ (1− 3ε/2)β.

Proof. Let γ =
∑

(i,j),k wku
s
ijk −

∑
i,k wk%ζik, B(i) =

{
k
∣∣∣∑j u

s
ijk − %ζik > 0

}
∆(i, `) =

∑
k≥`,k∈B(i)

w`(
∑
j

usijk − %ζik) +
∑

k<`,k∈B(i)

wk(
∑
j

usijk − %ζik)

S =

{
(i, k∗i)

∣∣∣∣k∗i = argmax
`

∆(i, `) >
γw`
β

}
and ∆S =

∑
(i,k∗i)∈S

∆(i, k∗i)

128

If ∆S ≥ εγ/4 then for (i, k∗i) ∈ S we set y′i(k) = γ
∆S
wk for k < k∗i ; k ∈ B(i) and

y′i(k) = γ
∆S
wk∗i for k > k∗i ; k ∈ B(i). Every other y′i(k) = 0. Set y′i = maxk y

′
i(k). It

follows that:

∑
i,k

y′i(k)

∑
j

usijk − %ζik

 =
γ

∆S

∑
(i,k∗i)∈S

∆(i, k∗i) =
γ

∆S
∆S = γ

=
∑

(i,j),k

wku
s
ijk −

∑
i,k

wk%ζik

∑
i

y′i =
∑

(i,k∗i)∈S

y′i =
γ

∆S

∑
(i,k∗i)∈S

wk∗i ≤
γ

∆S

∑
(i,k∗i)∈S

∆(i, k∗i) =
β

∆S
∆S = β

Therefore we satisfy the lemma in this case. Therefore we focus in the case ∆S ≤

εγ/4. In this case let k′ij the level which is immediately above max{k∗i , k∗j}.

Define ûijk = usijk for k ≥ k′ij, k ∈ B(i) and 0 otherwise. Likewise set ζ̂ik = ζik for

k > k∗i , k ∈ B(i) and 0 otherwise. Observe that

∑
(i,j),k

wkûijk −
∑
i,k

wk%ζ̂ik ≥ γ −∆S ≥ γ(1− ε/4) and

∑
j

ûijk =
∑

j,k≥k′ij ,k∈B(i)

uijk ≤
∆(i, k∗i + 1) +

∑
k>k∗i

%wk∗i ζ̂ik

wk∗i

≤ γ

β
+
∑
k>k∗i

%ζ̂ik =
γ

β
+
∑
k

%ζ̂ik

from the definition of S. Now order the vertices in an arbitrary order. We process the

vertices in this order — when we are at vertex i, if for some k we have
∑

j ûijk ≤ %ζ̂ik

then we set xij = 0 (Note that we do not need to know if the edge exists). If we

are at a k such that
∑

j ûijk > %ζ̂ik then we calculate aik = (
∑

j ûijk − %ζ̂ik)/
∑

j ûijk.

We set xij = β
γ
aikûijk (the fact that usijk > 0 implies that we already have the edge

129

stored). Observe that

γ

β

∑
(i,j)

wijxij ≥
∑

(i,j),k

wkûijk −
∑
i,k

wk%ζ̂ik ≥ γ(1− ε/4)

γ

β

∑
j

xij ≤
∑
k

∑
j

ûijk − %ζ̂ik

 ≤ γ

β

Therefore we have a feasible solution for LP5.

Theorem 6.3.1 follows from Lemmas 6.3.3–6.3.7. Note that the size of the frac-

tional solution produced in Lemma 6.3.7, i.e., the number of non-zero edges in xij

is Õ(n1+1/p). We apply the recent algorithm in [34] to obtain an integral solution in

Õ(n1+1/p) space and time.

6.3.2 Deferred Degree Counter

Definition 6.3.8 (The Deferred Degree Counter Problem). Consider the problem:

We are given a weighted graph G = (V,E, u) but the weights are not revealed to us.

Instead we are given {ςij} with the promise that ςij/χ ≤ uij ≤ ςijχ. We can have

a single pass over the m = |E| edges and have to produce a smaller summary data

structure D (ξ-deferred degree counter) storing only some of the edges. Once the data

structure is constructed, then the exact weights uij of only those edges stored in our

structure D are revealed to us. We then have to output a ξ-degree counter, a graph

H = (V,E ′, us) such that (1− ξ)
∑

j uij ≤
∑

j u
s
ij ≤ (1 + ξ)

∑
j uij. Note that this is

implemented in a single pass over the graph.

Suppose that we know uij exactly and we only want to sparsify the graph. Then,

130

we can simply sample O(1
ξ2 log n) edges per vertex and by Chernoff bound, we will

estimate
∑

j uij within (1± ξ) factor. (i, j) is sampled with probability pij = min{1,

O(1
ξ2 log n) · uij∑

j′ uij′
}. This is the scheme used for the sparsification. The remaining

part is the uncertainty in uij value. As shown in Section 5.5, it is actually safe to

oversample, i.e., the same guarantee holds when we sample (i, j) with probability p′ij ≥

pij. So we calculate the upperbound of pij and use it for the sampling probability.

Summarizing, we obtain the following lemma:

Lemma 6.3.5. Given bound % and {ςij} factor and edge weights are in [1, O(poly n)],

we can generate a deferred degree counter of size O(χ
2n
ξ2 log4 n). We can construct a

graph H = (V,E ′, us) such that (1 − ξ)
∑

j uij ≤
∑

j u
s
ij ≤ (1 + ξ)

∑
j uij when the

edge weights of the stored edges are revealed. The algorithm runs in O(m) time and

O(χ
2n
ξ2 log n) space. 3 Note χ = n1/(4p).

Proof. The first step is to partition edges depending on ςij O(log n) layers where ςij

differ by powers of Λ, i.e, the range of ςij for layers are [1,Λ), [Λ,Λ2), [Λ2,Λ3), · · · .

If we estimates
∑

j:Λk−1≤ςij<Λk uij for all k, we can add them to estimate
∑

j uij.

Let Lk = {(i, j)|Λk−1 ≤ ςij < Λk}. We sample each (i, j) ∈ Lk with probability

pe = min{1, Cχ2

ξ2 log n} for a sufficiently large constant C and let Sk be the set of the

edges sampled from Lk. We estimate U =
∑

(i,j)∈Lk uij with Z = 1
pe

∑
(i,j)∈Sk uij. Note

that U = Z (if pe = 1) or
uij
pe
≤ ξ2

C logn
. In the latter case, (1 − ξ)U ≤ Z ≤ (1 + ξ)U

3The running time and the space bound is for the insertion-only model. For the dynamic model,

the running time is O(χ
2m
ξ2 log n) and the space is O(χ

2n
ξ2 log4 n).

131

with high probability by Chernoff bound (see Lemma 5.2.2).

6.3.3 Initial Solutions

We now show how to get initial solution to the bipartite MWM problem. Recall LP13

and :

β̃ = min
∑

i yi

yi(k) + yj(k) ≥ wk ∀(i, j) ∈ level k

yi − yi(k) ≥ 0 ∀i, k

yi, yi(k) ≥ 0

LP13

In fact we will consider LP21 from whose solution we can easily construct a feasible

solution for LP13 of the same objective value:

β̃ = min
∑

i yi

yi + yj ≥ wij ∀(i, j)

yi ≥ 0

(LP21)

Consider the following online algorithm: We maintain yi and on a new edge with

weight wij which violates yi + yj ≥ wij we increases yi, yj by ∆(yi),∆(yj) to satisfy

the constraint while maintaining ∆(yi) = ∆(yj).

Consider the optimum fractional solution (or any feasible fractional solution for

that matter) of LP21 denoted by {y∗i }. If yi + yj ≥ y∗i + y∗j we clearly will not be

increasing yi, yj. Therefore any increase must be due to the fact that yi < y∗i or

yj < y∗j . In the case yi < y∗i we charge i the total increase due to the edge (that

132

is, 2∆(yi)). Otherwise we charge j an amount of 2∆(yj). This charging depends on

{y∗i }; but it immediate that the total charge to i is at most 2y∗i . Therefore we have

a 2 approximation for LP21. Multiplying each yi by 1/3 gives us β0 ≤ β∗ ≤ β̂ ≤

(1 + ε)β∗ ≤ 3(1 + ε)β0 and ε0 = 2/3.

6.4 Discussion

In this chapter, we presented two approaches to primal-dual algorithms and a variety

of techniques related to the multiplicative weights update method through the exam-

ple of the bipartite matching problems. The two approaches and the technique de-

scribed in Section 6.1.2 are applicable to other frameworks, for example, the fractional

packing framework given by Plotkin et al. [84]. However, the technique described in

Section 6.1.3 only works with the multiplicative weights update method due to its re-

liance on the specific potential function. We also presented the dual–primal approach

in which we start from the dual LP rather than the primal LP.

When using the primal-dual algorithms, there is another aspect that we have to

carefully consider: Which variant of the primal-dual algorithm do we use? Although

the primal-dual algorithms for LPs in Section 2.3 use the same intuition of increasing

the weight (or importance) of violated constraint exponentially, they vary in details:

for example, they use different ways of constructing dual candidates and different

potential functions to bound the number of iterations. This gives us an interesting

choice.

133

As we already mentioned, the technique in Section 6.1.3 only works for the multi-

plicative weights update method. The analysis for the fractional packing framework

in [84] relies on the global potential function unlike the constraint-by-constraint anal-

ysis in [11] (see Section 2.3.1).4 The consequence of the difference is that the number

of passes in the semi-streaming model can be reduced to a constant using the multi-

plicative weights update method while the fractional packing framework suffers from

the barrier of (log n) factor in the number of passes.

On the other hand, the fractional packing framework uses a simpler way of con-

structing a dual candidate. It only relies on the violation of the current primal

candidate rather than the history of the primal witnesses. In addition, it uses a

“smoother” equation in constructing a dual candidate. Recall the update rule of the

multiplicative weights update method:

ut+1
i =


uti(1 + ε)M(i,xt)/ρ if M(i,xt) ≥ 0

uti(1− ε)−M(i,xt)/ρ if M(i,xt) < 0

whose derivate is not continuous at M(i,xt) = 0. Also recall that the dual variable

in the fractional packing framework is defined as:

yi ←
1

bi
exp(κAix/bi)

whose derivate is continuous. In the next two chapters, we demonstrate this point

through the non-bipartite b–Matching problem. We also demonstrate that we can

4We do not claim that it is impossible to apply the technique to the fractional packing framework.

We are simply stating that it requires a different analysis.

134

use properties of a polytope to design an efficient algorithm for (exponentially) large

LPs.

135

Chapter 7

Application I: b-Matching

Chapter Outline: In this chapter, we present algorithms for the (uncapacitated)

b–Matching problems in general graphs. As in Chapter 6, we solve the problem

through LPs. However, the LP for the matching problem in general graphs contains

exponentially many constraints and therefore, requires a different way to compute

a dual candidate efficiently. In this chapter, we show that only a small number

of constraints actually matter to the oracle and present an algorithm to find such

constraints efficiently. We also give an algorithm to round the fractional solution

efficiently. Again, for the simplicity of analysis, we use the insertion-only model in

this chapter.

136

7.1 The Standard LP Formulation and Results

In this chapter we provide algorithms for finding fractional as well as integral solutions

for the weighted maximum b-matching problem in general graphs. We address the

uncapacitated version of the problem, defined as follows:

Definition 7.1.1. [86, Chapter 31] In the b–Matching problem we are given a

weighted (possibly non-bipartite) graph G = (V,E, {wij}, {bi}) where wij is the

weight of edge (i, j) and bi is the capacity of the vertex i. Let |V | = n and |E| = m.

For simplicity we assume bi, wij are integers in [0, poly n]. We can select an edge (i, j)

with multiplicity xij such that
∑

j:(i,j)∈E xij ≤ bi for all vertices i and the goal is to

maximize
∑

(i,j)∈E wijxij. Let B =
∑

i bi, note that without loss of generality, B ≥ n.

The standard exact linear programming formulation for b–Matching has m vari-

ables and 2n constraints. We begin with the standard LP formulation.

Definition 7.1.2 (Volume of Sets & Odd-Sets). Given a graph G = (V,E), with

|V | = n and |E| = m, and non-negative values bi for each i ∈ V , define the volume

of a set U ⊆ V to be ||U ||b =
∑

i∈U bi. Define O = {U | ||U ||b is odd } and Oδ =

{U |U ∈ O; ||U ||b ≤ 1/δ}.

Consider the (undirected) formulation LP22 (See also [86, Chapter 31]).

β∗ = LP22(b) = max
∑

(i,j)wijxij∑
j xij ≤ bi ∀i ∈ V∑
(i,j):i,j∈U xij ≤ b||U ||b/2c ∀U ∈ O

xij ≥ 0

(LP22)

137

Then the variable xij (which is the same as xji) corresponds to the fractional re-

laxation of the “multiplicity” of the edge (i, j) in the uncapacitated b–Matching. If

(i, j) /∈ E then xij = 0 throughout this paper. We assume (i, i) /∈ E; no self loops are

allowed. The constraints in the primal LP22 correspond to the vertices and odd sets.

It is well known that the formulation LP22 has an integral optimum solution when

bi are integers.

Statement of Results and Roadmap: Theorems 7.1.3 and 7.1.4 summarize the

results for b–Matching problem. The overall algorithm is presented in Sections 7.2

and 7.3 along with the important parts of the proof. The full details of the proof is

modularized and are in Sections 7.6 and 7.7, which handle finding the initial solution

and computing the updates efficiently respectively. To avoid repetitions, we discuss

the capacitated problem alongside the uncapacitated problem while finding the initial

solution (Section 7.6). Section 7.8 proves the rounding algorithm of Theorem 7.1.4

and is self contained.

Theorem 7.1.3 (Fractional b–Matching). For any 0 < δ ≤ 1/16 we find a (1 −

14δ)-approximate maximum fractional weighted b-Matching using additional “work”

space (space excluding the read-only input) O(n poly{δ−1, lnn}) and making R =

O(δ−4 lnn) passes over the list of edges. The running time is O(mT+n poly{δ−1, lnn})

for T = O(δ−5 lnn).

Theorem 7.1.4 (Integral b–Matching). Given a fractional b-matching x where xij

138

indicates the amount with which the edge (i, j) is included in the matching, we can

find an integral b–Matching of weight at least (1−2δ)
∑

(i,j) wijxij in O(m′δ−3 ln(1/δ))

time and O(m′/δ2) space where m′ = |{(i, j)|xij > 0}|.

7.2 Algorithm Overview

It is not difficult to see that if we only retain the constraints for odd sets U where

U ∈ Oδ then a fractional solution of the modified system; when multiplied by (1− δ);

satisfies LP22. The relaxed formulation that captures 1 − δ approximate solutions

still has n1/δ constraints which is exponential in 1/δ. In order to solve such a system

efficiently, the approaches in in the previous chapter alone are not sufficient. The

frameworks for LPs, maintain an infeasible primal candidate and seek to improve it

iteratively by maintaining (the multiplicative weights update method) or constructing

(the fractional packing) a dual candidate that indicates an “improvement direction”.

The multiplicative weights update method in its standard form uses the sign of the

violation to decide between increasing or decreasing the dual weights – but comput-

ing and maintaining the n1/δ violations and variables in the dual candidate is not

efficient. Instead, we use the fractional packing framework [84]. The fractional pack-

ing framework uses linear operations (no signs) and compute (rather than maintain)

n1/δ dual variables. Although the computation can be done in small space on de-

mand, i.e. computing one dual variable at a time when it is required, the process is

time-inefficient.

139

We begin our solution starting from the question: Can we develop a technique that

bypasses the evaluation of these exponentially many weights? This question is remi-

niscent of the maximum violation approach in the context of Ellipsoid algorithms (see

[56]) where a separation oracle is sufficient from the perspective of polynomial time

solvability even in the presence of exponentially many constraints. The approach of

Padberg-Rao [82] is one such approach in the context of matching. However all these

proofs rely on exact optimality – or more specifically, on the structure of the opti-

mum solution, and the polynomial time solvability which is guaranteed is insufficient

to design near linear time algorithms or even algorithms with just a small number of

iterations. This development of weak separation coincided with a fascinating devel-

opment of combinatorial techniques such as Total Dual Integrality (TDI), laminarity1

etc., (see Giles and Pulleyblank [53], Cook [28], Cunningham and Marsh [31], and also

Schrijver [86]). However the entire discussion was focused on the optimum primal and

dual solutions – in fact such relationships do not exist for arbitrary feasible primal

or dual solutions. It is then natural to ask the follow up question – If notions such

as laminarity do not exist for arbitrary feasible primal or dual solutions – then can

we modify the polytope to achieve such properties? The answer to the last question is

surprising – if we perturb the polytope slightly, then two interesting theorems can

be proven:

Theorem 7.2.1 (Perturbation Theorem). For a graph G with n vertices and any

1L is defined as laminar if for any two sets U,U ′ ∈ L, U ∩ U ′ is either U , U ′ or ∅.

140

non-negative edge weights x̂ij = x̂ji such that x̂ii = 0 and
∑

j x̂ij ≤ bi for all i; and

δ ∈ (0, 1
16

], define:

λ̂U =

∑
(i,j):i,j∈U x̂ij

b̃U
where b̃U =

⌊
||U ||b

2

⌋
−
δ2||U ||2b

4
and λ̂ = max

U∈Oδ
λ̂U

If λ̂ ≥ 1 + 3δ, the set L1 = {U : λ̂U ≥ λ̂ − δ3;U ∈ Oδ} defines a laminar family.

Moreover for any x ≥ 2 we have |{U : λ̂U ≥ λ̂− δx;U ∈ Oδ}| ≤ n3 + (n/δ)1+δ(x−3)/2

.

In other words, Theorem 7.2.1 states that if we were to focus at constraints that

are almost as violated as the maximum violated constraint of the perturbed polytope,

then those constraints correspond to a laminar family for any plausible (such as non-

negative, obeying the vertex constraints, etc.) primal solution candidate {x̂ij}. This

can be viewed as a strengthening of the laminarity properties which were observed

at the optimum Dual solution in [31, 86]. Theorem 7.2.1 extends the characterization

to all primal candidates (modulo adding the perturbations). The intuitive reason is

simple — if we were to ignore the floor and ceil functions then for a fixed λ̂U , the

function
∑

(i,j):i,j∈U x̂ij is a concave function of ||U ||b. As a result if two such U1, U2

intersect at a non-singleton odd set U3 6= U1, U2 (the union U4 6= U1, U2 is also an odd

set) then max{λ̂U3 , λ̂U4} will exceed min{λ̂U1 , λ̂U2} by δ3. Of course, the floor and

ceil functions, singleton or even set intersections cannot be ignored and more details

are required, but the idea behind the proof remains the same. Theorem 7.2.1 is a

standalone combinatorial characterization and is proved in Section 7.4. Interestingly

the theorem also hints at a simple proof of TDI for b–Matching along the lines of

Schrijver’s proof for regular matchings; this is discussed in Section 7.4.1. However

141

Theorem 7.2.1, does not (yet) give us an algorithm. This leads us to the next main

theorem:

Theorem 7.2.2. For a graph G with n vertices and {x̂ij} and the definitions of {λ̂U}

exactly as in the statement of Theorem 7.2.1 and δ ∈ (0, 1
16

], if λ̂ ≥ 1 + 3δ we can

find the set L2 = {U : λ̂U ≥ λ̂− δ3

10
;U ∈ Oδ} in O(m′+n poly{δ−1, log n}) time using

O(nδ−5) space where m′ = |{(i, j)|x̂ij > 0}|.

The proof of Theorem 7.2.2 relies on the fact that L2 ⊆ L1 is a laminar family as

proved in Theorem 7.2.1, these two theorems are intended to be used in tandem

along with the observation that if λ̂ is small then we are in an easy case. The proof

of Theorem 7.2.2 is presented in Section 7.5. We provide a sketch of a proof and

algorithmic ideas here. There are two hurdles to overcome in Theorem 7.2.2: (i) How

do we even know λ̂ efficiently, i.e., in near linear time? and (ii) How do we find all

sets in L2 efficiently? An inefficient answer to (i) follows from the minimum odd-cut

approach of Padberg and Rao [82], because large λ̂U implies a small cut. But that

approach uses exact Gomory-Hu trees and the computation of such is not known to

be in near linear time. As regards (ii) we show that using the specific way λ̂ is being

found, we can find all sets in L2 simultaneously.

Define L1(`) = {U |U ∈ L1, ||U ||b = `} and L2(`) = {U |U ∈ L2, ||U ||b = `} for

` ∈ [3, 1/δ]. Note that L1(`) ⊇ L2(`). Observe that it suffices to identify L2(`) for

some fixed ` – we can repeat this for different `. Now, if we can reduce the problem

of finding L2(`) to some problem of finding low cuts in an unweighted graph then

142

there exists near linear time algorithms for finding a representation of all small cuts

[57, 20] (the equivalent of Gomory-Hu trees for small cuts). Note, that the algorithm

of [82] still guarantees finding one cut.

Our solution (see Section 7.2.2) is to construct an unweighted graph Gϕ with

pij = bϕx̂ijc parallel edges between i and j where ϕ = 50/δ4. We can merge all

pairs of nodes which have more than 2ϕ edges between them, and delete nodes with

degree larger than 2ϕ/δ giving us a bounded degree graph which can be stored in

small space. Subsequently, we add a special node s and construct unweighted graphs

Gϕ(`, λ̃) with the following two properties:

Property 1. If λ̃− δ3

100
< λ̂ ≤ λ̃, then (i) all sets in L2(`) have a cut which is at most

κ(`) and (ii) all odd sets of Gϕ(`, λ̃) which do not contain s and have cut at most

κ(`) belong to L1(`). Here κ(`) = bϕλ̃(1− δ2`2/2)c+ 12`
δ

+ 1 < 2ϕ.

Property 2. We show in Lemma 7.5.1 that we can extend the algorithm in [82] to

efficiently extract a collection L of maximal odd-sets in Gϕ(`, λ̃), not containing s

and cut at most κ(`) – such that any such set which is not chosen must intersect with

some set in the collection.

If we have a maximal collection L then L ⊆ L1(`) by condition (ii) of Property 1.

Due to Theorem 7.2.1, the intersection of two such sets U1, U2 ∈ L1(`) will be either

empty or of size ` by laminarity – the latter implies U1 = U2. Therefore the sets in

L1(`) are disjoint. Any U ∈ L2(`) − L has a cut of at most κ(`) using condition (i)

of Property 1 and therefore must intersect with some set in L. This is impossible

143

because U ∈ L2(`) implies U ∈ L1(`) and L ⊆ L1(`) and we just argued that the sets

in L1(`) are disjoint! Therefore no such U exists and L2(`) ⊆ L.

We now have a complete algorithm: we perform a binary search over the estimate

λ̃ ∈ [1 + 3δ, 3
2

+ δ2], and we can decide if there exists a set U ∈ L2(`) in time

O(n poly(δ−1, log n)) as we vary `, λ̃. This gives us λ̃. We now find the collections L

for each ` and compute all λ̂U exactly (either remembering the x̂ij of the the edges

stored in Gϕ or by another pass over G). We can now return ∪`L2(`). The complete

proof of Theorem 7.2.2 is in Section 7.5.

7.3 (1− ε)-Approximate Fractional b-Matching

In this section we prove Theorem 7.1.3 using a primal-dual algorithm. Algorithm 27

is the main algorithm of this chapter. We first show how the two main theorems 7.2.1

and 7.2.2 are used in this algorithm. Using the notation of Algorithm 27 we prove:

Lemma 7.3.1. Fix δ ∈ (0, 1
16

]. If λ > 1 + 8δ then we can find L = {U |λU ≥

λ− δ3/10;U ∈ Oδ} in O(m+ n poly{δ−1, lnn}) time. Moreover L defines a laminar

family. Finally, for any x ≥ 2 we have |{U : λU ≥ λ − δx;U ∈ Oδ}| ≤ n3 +

(n/δ)1+δ(x−3)/2

.

Proof. Let λ = max{1,maxi(1 − 4δ)λi} = max{1,maxi
∑

j xij/bi} and x̂ij = xij/λ.

Let λ̂U =
∑

i,j∈U x̂ij/b̃U and λ̂ = maxU∈Oδ λ̂U . Observe that λU = λλ̂U and if λ >

maxi λi then λ = λλ̂. Moreover we satisfy
∑

j x̂ij ≤ bi.

144

Algorithm 27 Near Linear Time Approximation Scheme for b–Matching (Part I)

1: Let ||U ||b =
∑

i∈U bi and O = {U | ||U ||b is odd }. Fix δ ∈ (0, 1
16]. Let Oδ = {U |U ∈

O; ||U ||b ≤ 1/δ}.

2: Initialize ε = 1/8. Find an initial solution (See Section 7.6) with β = β0 (and β∗ ≤

β0 ≤ 6β∗), λ ≤ λ0 = 12 such that LP23 holds. Note xij = xji throughout.

A :


∑
j xij ≤ λb̃i ∀i ∈ V where b̃i = (1− 4δ)bi∑

(i,j):i,j∈U

xij ≤ λb̃U ∀U ∈ Oδ where b̃U =
⌊
||U ||b

2

⌋
− δ2||U ||2b

4

P[β] :



∑
(i,j)

wijxij ≥ (1− δ)β

P :


∑
j xij ≤ 6bi ∀i ∈ V

xij ≥ 0

(LP23)

3: Let α = 50δ−3 lnn. Define λi =
∑

j xij/b̃i and λU =
∑

(i,j):i,j∈U xij/b̃U and λ =

{maxi λi,maxU∈Oδ λU}.

4: The algorithm proceeds in superphases which are further subdivided into phases. A

new superphase starts when λ ≤ 1 + 8ε (we will be decreasing ε gradually). A new

phase starts either at the start of a superphase or when λ ≤ (1− 8δ)λt where λt is the

value of λ at start of phase t. Note ε ≥ δ.

145

Algorithm 27 Near Linear Time Approximation Scheme for b–Matching (Part II)
1: while ε > δ do

2: while in phase t do

3: Compute λ exactly (for every iteration within the phase) and find a laminar col-

lection of odd sets L such that U /∈ L ⇒ λU ≤ λ − δ3/2. (Lemma 7.3.1 proves

the validity of lines 6, 7.)

4: If λ < max{1 + 8ε, (1− 8δ)λt} then end phase t (goto line 10).

5: Set xi = exp(αλi)/b̃i for i ∈ V . For U ∈ L set zU = exp(αλU)/b̃U else zU = 0.

6: Let L(x′, %) =
∑

(i,j)wijx
′
ij − %

(∑
(i,j) x

′
ij(xi + xj +

∑
U∈L;i,j∈U zU)

)
for % ≥ 0.

Let γ =
∑

i xib̃i +
∑

U∈Oδ zU b̃U . Consider:

∑
(i,j)

x̃ij(xi + xj +
∑

U∈L;i,j∈U
zU) ≤ γ s.t. x̃ ∈ P[β] (LP24)

L(x′, %) ≥ β − %γ s.t. x′ ∈ P (LP25)

7: Use O(1
δ) (parallel) calls to LP25 to find a {x̃ij} feasible for LP24 (Lemma 7.3.2).

If any of the substeps fail then set β ← (1 − δ)β and repeat this same step till a

feasible solution is found.

8: Set xij ← (1− σ)xij + σx̃ij where σ = ε/(4λ0) = ε/(48α).

9: end while

10: If (ε = δ) output result (line 13).

11: If (λt ≤ 1 + 8ε) then start new superphase (and phase) with ε← max{2ε/3, δ} else

start phase t+ 1.

12: end while

13: Output: {xsij =
xij

1+8δ}. Note
∑

(i,j)wijx
s
ij ≥ (1− 14δ)β∗ and {xsij} is feasible for LP22

(Theorem 7.3.3).

146

Suppose that λ̂ ≤ 1 + 3δ and λ = 1. Then for all U we have λU = λλ̂U ≤ λλ̂ ≤

λ(1 + 3δ) < 1 + 8δ and maxi λi ≤ (1− 4δ) ≤ 1 + 8δ for δ ∈ (0, 1
16

]. This contradicts

the assumption that λ > 1 + 8δ. Therefore, if λ̂ ≤ 1 + 3δ then we must have λ > 1.

Now consider the vertex i which defined λ; then

λ ≥ λi =
λ

1− 4δ
≥ (1 + 4δ)λ ≥ (1 + 3δ)λ+ δλ > λ̂λ+ δ (7.3.1)

which implies λ− δ ≥ λU for every U . In this case L = ∅ and |{U : λU ≥ λ− δx;U ∈

Oδ}| = 0 for x ≥ 2. Therefore the remaining case is λ̂ > 1 + 3δ. But in this case

Theorems 7.2.1 and 7.2.2 apply! This is because we satisfy
∑

j x̂ij ≤ bi. To find L,

compute λ, x̂ij and run the algorithm in Theorem 7.2.2 and check if λ̂ > 1 + 3δ based

on the sets returned. If the check is true then we can compute λ = {λλ̂,maxi λi} and

return the sets satisfying λU ≥ λ− δ3/10.

The following lemma is a slight rewording of Lemmas 6.2.1 and 6.2.2 and we prove it

in Section 7.7.

Lemma 7.3.2. If (1−4δ)β∗ ≥ β then (i) we always solve LP25 (and do not decrease

β) and (ii) we can solve LP24 using O(1/δ) (parallel) invocations of LP25 (for differ-

ent % ≥ 0) and using the convex combination of two solutions. The solution for LP25

uses O(m) time, O(n/δ) space, a single pass over the edges and outputs a solution

with O(n) non-zero edges.

Theorem 7.3.3. Algorithm 27 produces a feasible fractional b–Matching of weight at

least (1−14δ)β∗ in R = O(δ−4 lnn) passes and invokes LP25 at most T = O(δ−5 lnn)

times.

147

Proof. The first observation is that based on Theorem 7.3.2 the algorithm never

decreases β once β ≤ (1− 4δ)β∗. Therefore the final value of β is at least (1− δ)(1−

4δ)β∗. Observe that the entire algorithm can be analyzed at the final value of the β.

Since the constraints P [β1] ⇒ P [β2] for β1 ≥ β2, we apply induction that any step

for β1 continues to be a legitimate step for β2. In effect we are running the algorithm

simultaneously for all β.

When Algorithm 27 stops, all the constraints A are violated by at most a factor

of 1 + 8δ. Scaling the xij to x′′ij = xij/(1 + 8δ) we ensure that all constraints are

satisfied. Note that
∑

j x
′′
ij ≤ (1− 4δ)bi. Therefore for any U 6∈ Oδ we have

2
∑

(i,j):i,j∈U

x′′ij ≤
∑
i∈U

∑
j

x′′ij ≤
∑
i∈U

(1− 4δ)bi ≤ (1− 4δ)||U ||b ≤ ||U ||b − 1

therefore all constraints of LP22 are satisfied. We are guaranteed
∑

(i,j) wijx
′′
ij ≥

(1 + 8δ)−1(1 − δ)β (the polytope P has the (1 − δ) approximation built in). When

Algorithm 27 stops,
∑

(i,j) wijxij ≥ (1 + 8δ)−1(1 − δ)2(1 − 4δ)β∗ ≥ (1 − 14δ)β∗.

The rest of the proof will be similar in spirit to [84], however the analysis is quite

different materially. We analyze the number of rounds within phase t; when λ >

max{1 + 8δ, 1 + 6ε, (1− ε)λt} and ε remains unchanged.

Define z′U = eλUα/b̃U for all U ∈ Oδ. Note zU = z′U for U ∈ L and 0 otherwise.

Denote {yi}, {z′U} by the vector u(Oδ) and denote {yi}, {zU} by the vector u(L).

u(L)TAx =
∑
i

λie
λiα +

∑
U∈L

λUe
λUα and γ =

∑
i

b̃iyi +
∑
U∈L

zU b̃U =
∑
i

eλiα +
∑
U∈L

eλUα.

Observe that eλα ≤ γ since λ = maxi λi or λ = maxU∈Oδ λU for some U ∈ L.

Finally γ ≤ 2neλα since L is laminar and therefore has at most n sets. Obviously,

148

u(Oδ)TAx ≥ u(L)TAx.

Define Ψ =
∑
i

b̃iyi +
∑
U∈Oδ

z′U b̃U =
∑
i

eλiα +
∑
U∈Oδ

eλUα and note γ ≤ Ψ. Now,

(i) If λU ≤ (1−δ2)λ ≤ λ−δ2 then the corresponding eλUα ≤ eλα−δ
2α ≤ eλαe−50δ−1 lnn

= eαtλ/n(50/δ). There are at most n1/δ such sets and therefore
∑

U :λU≤(1−δ2)λ e
λUα

≤ eλα/n(49/δ).

(ii) Likewise (assuming δ(x−3)/2 ≥ 2) if λU ≤ (1 − δx+∆(x))λ ≤ λ − δx+∆(x) then

the corresponding eλUα ≤ eαλ/n50δx+∆(x)
. Using Theorem 7.2.1 we know that

there are at most n3 + (n/δ)1+δ(x−3)/2

≤ nδ
(x−3)/2+4 such sets. We can set ∆(x) =

3−x
2

and the total contribution of
∑

U :λU≤λ−δx+∆(x) eλUα ≤ eλα/n49δ(x−3)/2−4 ≤

eλα/n98−4 ≤ eλα/n94.

(iii) We now geometrically divide the interval (x, 3] (for the analysis) and recurse

on (x+3
2
, 3] till δ(x−3)/2 < 2. At this point the number of remaining constraints

is small since n3 + (n/δ)1+δ(x−3)/2

≤ 2(n/δ)3. We will reach the point within

2+log log(1/δ) iterations. Now for the remaining U ∈ Oδ if U 6∈ L then we have

λU ≤ λ− δ3

10
. Each such eλUα ≤ eλαe−δ

3α/10 = eλαe−5 lnn = eλα/n5. Summing up

over such 2(n/δ)3 sets the total contribution is still at most 2eλαδ−3/n2.

Since 1
n49/δ + 2+log log(1/δ)

n94 + 2δ−3

n2 ≤ 1
n
; we get:

∑
U :λU /∈L

eλUα ≤ eλα

n
≤ γ

n
=⇒

Ψ = γ +
∑

U /∈L;U∈Oδ

eλUα ≤ γ
(

1 +
1

n

)
≤ 4neαλ (7.3.2)

149

Since U ∈ L⇒ λU ≥ (1− δ3/10)λ,
∑

j yij = λib̃i,
∑

i,j∈U yij = λU b̃U we have:

u(L)TAx =
∑
i

eλiαλi +
∑
U∈L

λUe
λUα ≥

∑
i:λi≥(1−δ3/10)λ

eλiαλi +
∑
U∈L

λUe
λUα

= λ

(
1− δ3

10

)γ − ∑
i:λi<(1−δ3/10)λ

eλiα


but

∑
i:λi<(1−δ3/10)λ e

λiα can again be bounded as γ/n exactly as in step (i)-(iii),

because λ > 1 and there are only n terms. This implies u(L)TAx ≥ λ(1− δ3/10)(1−

1/n)γ. From Equation (7.3.2), with some simplification,

u(Oδ)TAx ≥ u(L)TAx > (1 + 4ε)Ψ (7.3.3)

Now for any x̃ ∈ P , i.e.,
∑

j x̃ij ≤ 6bi, we have
∑

i,j∈U x̃ij ≤ 6||U ||b/2 as well as∑
j x̃ij ≤ 12b̃i since δ ≤ 1

8
.
∑

i,j∈U x̃ij ≤ 3||U ||b implies
∑

i,j∈U x̃ij ≤ 12b̃U , since

b̃U ≥
⌊
||U ||b

2

⌋
− 1

4
for U ∈ Oδ and ||U ||b/

(⌊
||U ||b

2

⌋
− 1

4

)
is maximized at ||U ||b = 3.

As a consequence λ̃i, λ̃U ≤ λ0. Since we repeatedly take convex combination of

the current candidate solution x with a x̃ ∈ P , and the initial solution satisfies

λ ≤ λ0; we have λi, λU upper bounded by λ0 throughout the algorithm. Therefore

λ̃U =
∑

i,j∈U x̃ij/b̃U ≤ 12.

Note u(Oδ)TAx̃ =
∑

i λ̃ie
λiα +

∑
U∈Oδ λ̃Ue

λUα. u(L)TAx̃ has the second summand

restricted to
∑

U∈L. Using first part of Equation (7.3.2):

u(L)TAx̃ ≥ u(Oδ)TAx̃−
∑
U /∈L

λ̃Ue
αλU ≥ u(Oδ)TAx̃− 12

n
γ (7.3.4)

After the update, let the new current solution be denoted by {x′′ij}. Let λ′′i =∑
j x
′′
ij/b̃i;λ

′′
U =

∑
i,j∈U x

′′
ij/b̃U . Note λ′′i = (1−σ)λi +σλ̃i and λU = (1−σ)λU +σλ̃U .

Since λi, λU ≤ 12 we have all |ασ(λ̃i−λi)| and |ασ(λ̃U−λU)| ≤ ε/4. For |∆| ≤ ε
4
≤ 1

4
;

150

we have ea+∆ ≤ ea(1 + ∆ + ε|∆|/2). Therefore:

eαλ
′′
i ≤ eαλi

(
1 + σα(λ̃i − λi) + εσα(λ̃i + λi)

)
and

eαλ
′′
U ≤ eαλU

(
1 + σα(λ̃U − λU) + εσα(λ̃U + λU)

)
Rearranging and summing over i, U we get

Ψ′′ =
∑
i

eαλ
′′
i +

∑
U∈Oδ

eαλ
′′
U

≤ Ψ +
(

1 +
ε

2

)
σαu(Oδ)TAx̃−

(
1− ε

2

)
σtαtu(Oδ)TAx

≤ Ψ + σα
(

1 +
ε

2

)(
u(L)TAx̃ +

12

n
γ

)
− σα

(
1− ε

2

)
u(Oδ)TAx

(Using Eqn. 7.3.4)

≤ Ψ + σα
(

1 +
ε

2

)(
1 +

12

n

)
γ − σα

(
1− ε

2

)
u(Oδ)TAx

(Using LP24, u(L)TAx̃ ≤ γ)

≤ Ψ + σα
(

1 +
ε

2

)(
1 +

12

n

)
γ − σα

(
1− ε

2

)
(1 + 4ε)Ψ

(Using Equation 7.3.3)

≤ (1− εσα)Ψ (Using γ ≤ Ψ and 1
n � δ ≤ ε ≤ 1

6)

Therefore the potential decreases. Note that between two phases e(1−8δ)λtα ≤ Ψ ≤

4neλtα from Equation (7.3.2). This implies that each phase will end within O(lnn
εσα

+

δλtα
εσα

) updates to x; which is O(λ0 lnn
ε2

+ λ0λtδ−2 lnn
ε2

) which is O(δ
−2 lnn
ε2

) since 1 + 8ε ≤

λt ≤ 1 + 12ε (the previous value of ε being larger by a factor 3/2 and λ0 = O(1))

for the superphase containing the phase t. Therefore the number of updates in a

phase is bounded by O(δ
−2 lnn
ε2

). The number of phases in a superphase is at most

ln 1
1−8δ

1+12ε
1+8ε

= O(ε
δ
). Therefore the number of updates in a superphase is O(δ

−3 lnn
ε

).

151

Now ε is decreased by a factor of 3/2 and therefore the last two terms dominate

(corresponding to ε = δ and ε ∈ [δ, 3δ/2], giving us R = O(δ−4 lnn). Note each

iteration uses one pass and invokes LP25 O(1
δ
) times in parallel. This proves the

bound on T once we have β∗(1 − 4δ) ≥ β. The number of extra steps in decreasing

β is at most O(1
δ
) since 6β∗ ≥ β0 ≥ β∗ and is absorbed in O(δ−4 lnn).

Based on Theorem 7.3.3, we can conclude Theorem 7.1.3.

7.4 Perturbation Theorem and Combinatorial Ch-

aracterizations

We observe a simple fact before we prove Theorem 7.2.1.

Fact 7.4.1. Recall b̃U =
⌊
||U ||b

2

⌋
− f(||U ||b) where f(`) = δ2`2

4
and δ ∈ (0, 1

16
]. We can

verify that f(`) is convex, monotonic for 0 ≤ ` ≤ 2/δ and:

(F1): For 3 ≤ ||U ||b ≤ 2/δ (irrespective of odd or even) we have b̃U ≥ (1− δ)
⌊
||U ||b

2

⌋
.

(F2): For any `1, `2; f(`1) + f(`2) = f(`1 + `2 − 1)− (2`1`2 − 2`1 − 2`2 + 1) δ
2

4
.

(F3): For integers `1, `2, `3, `4 ∈ [3, 2/δ] such that `1 + 2t ≤ `2 ≤ `3 ≤ `4 − 2t and

`1 + `4 = `2 + `3, f(`2) + f(`3) ≤ f(`1) + f(`4)− 2t2δ2.

Theorem 7.2.1. For a graph G with n vertices and any non-negative edge weights

x̂ij = x̂ji such that x̂ii = 0 and
∑

j x̂ij ≤ bi for all i; and δ ∈ (0, 1
16

], define:

λ̂U =

∑
(i,j):i,j∈U x̂ij

b̃U
where b̃U =

⌊
||U ||b

2

⌋
−
δ2||U ||2b

4
and λ̂ = max

U∈Oδ
λ̂U

152

If λ̂ ≥ 1 + 3δ, the set L1 = {U : λ̂U ≥ λ̂ − δ3;U ∈ Oδ} defines a laminar family.

Moreover for any x ≥ 2 we have |{U : λ̂U ≥ λ̂− δx;U ∈ Oδ}| ≤ n3 + (n/δ)1+δ(x−3)/2

.

Proof. Consider two sets A1, A2 ∈ Oδ such that λ̂A1 , λ̂A2 ≥ λ̂ − δx > 1 + 2δ (since

x ≥ 2) and neither A1−A2, A2−A1 6= ∅. For any set U (with ||U ||b ≥ 1, even or odd,

large or small) define x̂U =
∑

(i,j):i,j∈U x̂ij and b̃U . For ||U ||b = 1 we have x̂U = 0. Let

λ̂U = x̂U/b̃U . There are now two cases.

Case I: ||A1 ∩ A2||b is even. Let ||A1 ∩ A2||b = ||D||b = 2t.

Let Q1 =
∑

i∈D
∑

j∈A1−A2
x̂ij (the cut between D and A1−A2 using the edge weights

x̂ij) and Q2 =
∑

i∈D
∑

j∈A2−A1
x̂ij. Without loss of generality, assume that Q1 ≤ Q2

(otherwise we can switch A1, A2). Let C = A1 − A2 and A = A1. Let 2`− 1 = ||C||b

which is odd. Then, using Q1 ≤ Q2 and definitions of x̂C , x̂D we have x̂C = x̂A −

Q1 − x̂D and x̂D ≤ 1
2
(
∑

i∈D
∑

j x̂ij −Q1 −Q2) ≤ ||D||b
2
− Q1+Q2

2
. This implies:

x̂C ≥ x̂A −
||D||b

2
− Q1

2
+
Q2

2
≥ x̂A −

||D||b
2

= x̂A − t (7.4.1)

Now x̂A = λ̂Ab̃A > (1 + 3δ)(1 − δ)
⌊
||A||b

2

⌋
≥
⌊
||A||b

2

⌋
using Condition F1, Fact 7.4.1

for δ ≤ 1
8
, and the lower bound on λ̂. Therefore x̂A > t and x̂C > 0 which means

||C||b ≥ 3. Therefore we can refer to b̃C , λ̂C . Since ||D||b = ||A||b − ||C||b,

b̃A − b̃C =

⌊
||A||b

2

⌋
− f(||A||b)−

⌊
||C||b

2

⌋
+ f(||C||b)

=
||D||b

2
− (f(||A||b)− f(||C||b)) = t− tδ(t+ 2`− 1)δ ≥ (1− δ)t (7.4.2)

where the last line uses 1
δ
≥ ||A||b ≥ (2t + 2` − 1) because A ∈ Oδ. From Equa-

153

tions (7.4.1) and (7.4.2), and x̂C = λ̂C b̃C , x̂A = λ̂Ab̃A we get:

λ̂b̃C ≥ λ̂C b̃C = x̂C ≥ x̂A − t = λ̂Ab̃A − t ≥ (λ̂− δx)b̃A − t = λ̂b̃A − δxb̃A − t

≥ λ̂(b̃C + (1− δ)t)− δxb̃A − t > λ̂b̃C + (1 + 3δ)(1− δ)t− δxb̃A − t ≥ λ̂b̃C + δt− δxb̃A

Since b̃A ≤ 1/δ this implies that t < δx−1b̃A ≤ δx−2 which contradicts A1 ∩ A2 6= ∅

for x ≥ 2.

Case II: ||A1 ∩ A2||b is odd. Let C = A1 ∪ A2, and D = A1 ∩ A2. Let ||A1||b =

`1||A2||b = `2. Even if ||C||b ≥ 1/δ extend the definitions b̃C =
⌊
||C||b

2

⌋
− f(||C||b) and

λ̂C = x̂C/b̃C . Now x̂A ≤ ||C||b
2

since
∑

j x̂ij ≤ bi. Note that if ||C||b ≥ 1/δ then using

Condition F1, Fact 7.4.1:

b̃C ≥ (1− δ)
⌊
||C||b

2

⌋
= (1− δ) ||C||b

2

(
1− 1

||C||b

)
≥ (1− δ)2 ||C||b

2

which implies that λ̂C ≤ (1− δ)−2 ≤ 1 + 3δ < λ̂. Now, we always have: x̂C + x̂D =

x̂A1 + x̂A2 and
⌊
||C||b

2

⌋
+
⌊
||D||b

2

⌋
=
⌊
||A1||b

2

⌋
+
⌊
||A2||b

2

⌋
. Therefore:

x̂C + x̂D = x̂A1 + x̂A2 = λ̂A1 b̃A1 + λ̂A2 b̃A2 ≥ (λ̂− δx)(b̃A1 + b̃A2) (7.4.3)

If ||D||b = 1, then by Condition F3 in Fact 7.4.1: b̃C = b̃A1 + b̃A2 − δ2

4
(2`1`2 − 2`1 −

2`2 + 1):

λ̂b̃C ≥ λ̂C b̃C = x̂C ≥ (λ̂− δx)(b̃A1 + b̃A2) ≥ λ̂(b̃A1 + b̃A2)− δx(b̃A1 + b̃A2)

≥ λ̂b̃C +
δ2λ̂

4
(2`1`2 − 2`1 − 2`2 + 1)− δx

(
`1 + `2 − 2

2

)
since b̃A1 + b̃A2 ≤ (`1 + `2 − 2)/2. Therefore we would have a contradiction if

λ̂(2`1`2 − 2`1 − 2`2 + 1)− 2δx−2(`1 + `2 − 2) > 0 (7.4.4)

154

Observe that for x ≥ 3 the term 2δx−2(`1 + `2 − 2) is at most 2 whereas (2`1`2 −

2`1 − 2`2 + 1) ≥ 7 since 3 ≤ `1, `2 ≤ 1
δ
. Since λ̂ > 1 we have a contradiction for

||D||b = 1, x ≥ 3.

Now consider ||D||b ≥ 3. Without loss of generality, ||A2 − D||b ≥ ||A1 − D||b.

Let ||A1 −D||b = 2t. Using Condition F3 in Fact 7.4.1, b̃C + b̃D ≤ b̃A1 + b̃A2 − 2t2δ2.

Note λ̂D ≤ λ̂. From Equation (7.4.3):

λ̂
(
b̃C + b̃D

)
≥ λ̂C b̃C + λ̂D b̃D = x̂C + x̂D ≥ λ̂(b̃A1 + b̃A2)− δx(b̃A1 + b̃A2)

≥ λ̂(b̃C + b̃D) + 2t2δ2λ̂− δx(b̃A1 + b̃A2) (7.4.5)

Again, this is infeasible if x ≥ 3 since b̃A1 + b̃A2 ≤ 2/δ and λ̂ ≥ 1. Therefore for

x ≥ 3, in all cases we arrived at a contradiction to A1∩A2 6= ∅. Thus we have proved

that {U : λ̂U ≥ λ̂− δ3;U ∈ Oδ} is a laminar family. We now prove the second part.

Consider L′` = {U : λ̂U ≥ λ̂ − δx;U ∈ Oδ; ||U ||b = `}. From Case I, no two distinct

sets A1, A2 ∈ L′` intersect when ||A1 ∩ A2||b is even. From Case II for ` ≥ 5, they

cannot have ||D||b = 1 because (2`2 − 4` + 1) − 2(2` − 2) > 0 for ` ≥ 5. Note

||A1 − D||b = ||A2 − D||b because ||A1||b = ||A2||b = `. Moreover for t ≥ δ(x−3)/2

we would have 2t2δ2λ̂ > δx(b̃A1 + b̃A2) in Equation 7.4.5. Therefore two distinct

sets A1, A2 ∈ L′` which intersect, cannot differ by more than δ(x−3)/2 elements. This

means that |L′`| ≤ n (n/δ)δ
(x−3)/2

for ` ≥ 5 — to see this choose a maximal collection

of disjoint sets and every other set has to intersect one of these sets. If we fix a

set we can throw out δ(x−3)/2 elements in `δ
(x−3)/2

ways and include new elements

in nδ
(x−3)/2

ways. Note |L′3| ≤ n3 and ` ≤ 1/δ. Thus the total number of sets is

155

n3 + (n/δ)(n/δ)δ
(x−3)/2

. The lemma follows.

7.4.1 A Simple Proof of TDI for the b–Matching Polytope

The idea of a laminar family in the context of maximum matching was first explored

by Cunningham and Marsh [31]. They showed that there exists an integral optimum

dual solution for the maximum matching problem; that is, LP22 is total dual integral

(TDI) for bi = 1. Schrijver [86, pages 441-442, vol A], gave an alternate and simpler

proof. We show in Theorem 7.4.2 that the claim extends to b–Matching. However we

separate the proof of laminarity from the proof of integrality. In this paper we only

need laminarity — moreover the perturbed capacities are non-integral. The proof of

Theorem 7.4.2 indicates a three-step choice and the functional forms are reminiscent

of the perturbation in Algorithm 27 (but other convex functions with large second

derivatives work for both the algorithm and Theorem 7.4.2). Intuitively we extend

the statement that “the optimum dual solution is laminar” to the statement that the

most violated constraints in the neighborhood of any infeasible primal define a laminar

family. The optimum primal solution is of course a boundary point of infeasible primal

solutions. Without further ado we present Theorem 7.4.2.

Theorem 7.4.2. Consider the dual of LP22, presented in LP26

min
∑
i

biyi +
∑
U∈O
b||U ||b/2c zU

yi + yj +
∑

U∈O;i,j∈U
zU ≥ wij ∀(i, j) ∈ E

yi, zU ≥ 0 ∀i ∈ V ;∀U ∈ O

(LP26)

156

There exists an optimal solution of LP26 such that L = {U : zU 6= 0} is a laminar2

family. Recall, O = {U |U ⊆ V ; ||U ||b is odd } where ||U ||b =
∑

i∈U bi and bi are

integers. If wij are integral it also follows that there exists an optimum solution LP26

which is integral as well as laminar.

Proof. We follow the proof in [86], page 441-442. Let S be the set of optimal so-

lutions of LP26. Let S2 ⊆ S be the subset of optimal solutions which minimize∑
zU 6=0 zU ||U ||b among the optimum solutions. We choose a solution from S2 that

maximizes
∑

zU 6=0 zU ||U ||2b . This is a three step choice. We show that L is a

laminar family for the optimal solution we have chosen.

Suppose that L is not a laminar family. Then, there exist A,B ∈ L such that (a)

zA, zB 6= 0 and (b) A ∩B 6= ∅, A or B. There are two cases: ||A ∩B||b is either even

or odd. In both cases, we change the solution (while preserving the objective value

and the feasibility of the solution).

1. ||A ∩ B||b is even: Let z = min{zA, zB}. We reduce zA and zB by z and

increase zA−B, zB−A by z. Observe that both A−B,B −A are nonempty and

odd. We now increase every yi for i ∈ A ∩ B by z. These changes preserve

the feasibility and the objective value of the solution. On the other hand, they

decrease
∑

zU 6=0 zU ||U ||b because we replace A and B by A − B and B − A

(obviously, ||A−B||b < ||A||b and ||B−A||b < ||B||b). Therefore, it contradicts

the fact that the chosen solution belongs to S2.

2U is laminar if for any two sets U1, U2 ∈ U we have U1

⋂
U2 to be U1 or U2 or ∅.

157

2. ||A ∩ B||b is odd: Let z = min{zA, zB}. We reduce zA and zB by z and

increase zA∪B, zA∩B by z. Again, these changes preserve the feasibility and the

objective value of the solution. Since ||A ∪ B||b + ||A ∩ B||b = ||A||b + ||B||b

and ||A ∪ B||b > ||A||b, ||B||b, ||A ∪ B||2b + ||A ∩ B||2b ≥ ||A||2b + ||B||2b . So∑
zU 6=0 zU ||U ||2b increases which contradicts the fact that the solution maximizes∑
zU 6=0 zU ||U ||2b .

Therefore, L is a laminar family. For the second part of the theorem, use Corol-

lary 31.3a [86, page 553, vol A] which shows that LP22, dual of LP26, is total dual

integral (TDI). Apply the transformations above starting from that integral optimum

solution. Observe that the parameter z is integral and the transformations preserve

integrality.

7.5 Finding a Laminar Family of Dense Odd Sets

In this section, we prove Theorem 7.2.2. We first state Lemma 7.5.1 which would be

used in the proof of Theorem 7.2.2. We then state and prove the theorem and finish

the section with the proof of Lemma 7.5.1.

Lemma 7.5.1. Given an unweighted graph G with parameters κ, φ and a special node

s, in time O(n poly(δ−1, log n)) we can identify a collection L of odd-sets which (i)

do not contain s (ii) define cut of at most κ in G and (iii) every other odd set not

containing s and with a cut less than κ intersects with a set in L.

158

Theorem 7.2.2. For a graph G with n vertices and any non-negative edge weights

x̂ij = x̂ji such that x̂ii = 0 and
∑

j x̂ij ≤ bi for all i; and δ ∈ (0, 1
16

], define:

λ̂U =

∑
(i,j):i,j∈U x̂ij

b̃U
where b̃U =

⌊
||U ||b

2

⌋
−
δ2||U ||2b

4
and λ̂ = max

U∈Oδ
λ̂U

If λ̂ ≥ 1 + 3δ we can find the set L2 = {U : λ̂U ≥ λ̂ − δ3/10;U ∈ Oδ} in O(m′ +

n poly{δ−1, log n}) time using O(nδ−5) space where m′ = |{(i, j)|x̂ij > 0}|.

Proof. We first observe that L2 is a laminar family using Theorem 7.2.1 and L2 ⊆ L1.

Second, observe that for any U we have
∑

(i,j):i,j∈U x̂ij ≤
1
2

∑
i∈U
∑

j x̂ij ≤
1
2

∑
i∈U bi =

||U ||b/2. Therefore λ̂ ≤ 3
2
/(1 − δ2

4
) < 3

2
+ δ2; the worst case gap between the vertex

constraints and odd-set constraints of size up to 1/δ still happen at size 3 for the said

range of δ.

We maintain an estimate λ̃ of such that λ̃− δ3

100
< λ̂U ≤ λ̃ ≤ 3

2
+ δ2. This estimate

can be found using binary search (as described below).

Create a graph Gϕ with pij = bϕx̂ijc parallel edges between i and j where ϕ = 50/δ4

(this parameter can be optimized but we omit that in the interest of simplicity). This

is an unweighted graph. This graph can be constructed in a single pass over {(i, j)}.

We also “merge” all pairs of vertices i and j if pij exceeds 2ϕ. Moreover delete vertices

i with 2ϕ/δ edges – note that these vertices must have bi ≥
∑

j x̂ij > 1/δ and cannot

participate in any odd set in Oδ. This gives us a graph Gϕ with at most O(nδ−5)

edges.

Now for an odd ` ∈ [3, 1/δ] and λ̃, create Gϕ(`, λ̃) as follows: Let qi = bϕλ̃(1 −

δ2`)bic for all i. Since qi > (1 + δ)ϕbi >
∑

j pij (because λ̃ is large) we can add a new

159

node s and add qi −
∑

j pij edges between s and i (for all i). This gives us a graph

Gϕ(`, λ̃) of size O(nδ−5) edges for all `. Let κ(`) = bϕλ̃(1− δ2`2/2)c+ 12`
δ

+ 1 < 2ϕ.

Now:

qi − κ(`) ≥ ϕλ̃(1− δ2`)− 1− ϕλ̃(1− δ2`2/2)− 12`

δ
− 1 =

ϕλ̃δ2`(`− 2)

2
− 12`

δ
− 2

which is positive for ϕ = 50/δ4 and ` ≥ 3. Therefore qi > κ(`). We now show that

for Cut(U) to be small for any odd set U we must have ||U ||b ≤ 1/δ. Now for any odd

set U ∈ O with ||U ||b > 1/δ:

Cut(U) − κ(`) =
∑
i∈U

qi − 2
∑

(i,j):i,j∈U

pij − κ(`)

≥
∑
i∈U

(ϕλ̃(1− δ2`)bi − 1)− 2ϕ
∑

(i,j):i,j∈U

x̂ij − ϕλ̃(1− δ2`2/2)− 12`

δ
− 1

≥ ϕλ̃(1− δ2`)||U ||b − |U | − ϕ||U ||b − ϕλ̃(1− δ2`2/2)− 12`

δ
− 1

(Since for any U ,
∑

(i,j):i,j∈U x̂ij ≤ ||U ||b/2)

≥ ϕλ̃(1− δ2`)||U ||b − |U | − ϕ||U ||b − ϕλ̃−
12`

δ
− 1

≥ ϕλ̃(1− δ)||U ||b − ϕ||U ||b − ϕλ̃− δ2ϕ||U ||b

(Since ` ≤ 1/δ and δ2ϕ||U ||b > |U |+ 12`
δ + 1)

= ϕ
(
λ̃(1− δ)||U ||b − λ̃− (1 + δ2)||U ||b

)
≥ ϕ

(
(1 + 3δ)(1− δ)||U ||b −

3

2
− δ2 − (1 + δ2)||U ||b

)
(Since 1 + 3δ ≤ λ̂ ≤ λ̃ ≤ 3

2 + δ2)

> ϕ

(
2δ(1− 2δ)||U ||b −

3

2
− δ2

)
> ϕ

(
2(1− 2δ)− 3

2
− δ2

)
> 0

where the last inequality follows from ||U ||b > 1/δ and δ ∈ (0, 1
16

]. Therefore no

160

odd-set with ||U ||b > 1/δ satisfies Cut(U) ≤ κ(`).

We now show Property 1, namely: If λ̃ − δ3

100
< λ̂ ≤ λ̃, then (i) all sets in L2(`)

have a cut which is at most κ(`) and (ii) all odd sets of Gϕ(`, λ̃) which do not contain

s and have cut at most κ(`) belong to L1(`). For part (i) for a set U ∈ L2(`) with

||U ||b = `, note |U | ≤ ||U ||b = ` and:

Cut(U) =
∑
i∈U

qi − 2
∑

(i,j):i,j∈U

pij ≤
∑
i∈U

ϕλ̃(1− δ2`)bi − 2ϕ
∑

(i,j):i,j∈U

x̂ij + |U |2

≤ ϕλ̃(1− δ2`)||U ||b − 2ϕλ̂U b̃U + `2

≤ ϕλ̃(1− δ2`)||U ||b − 2ϕ

(
λ̃− δ3

100
− δ3

10

)
b̃U + `2

= ϕλ̃(1− δ2`2/2) +
11δ3ϕb̃U

50
+ `2 = ϕλ̃(1− δ2`2/2) +

11b̃U
δ

+ `2

≤ ϕλ̃(1− δ2`2/2) +
12

δ
≤ κ(`) (since b̃U < ||U ||b = ` ≤ 1/δ)

To prove part (ii) if Cut(U) ≤ κ(`) then:

∑
(i,j):i,j∈U

pij =
1

2

(∑
i∈U

qi − Cut(U ′)

)
≥ 1

2

(∑
i∈U

(
ϕλ̃(1− δ2`)bi − 1

)
− κ(`)

)

≥ 1

2

(∑
i∈U

(
ϕλ̃(1− δ2`)bi − 1

)
− ϕλ̃(1− δ2`2/2)

)
− 12`

δ
− 1

≥ ϕλ̃

(⌊
||U ||b

2

⌋
−
δ2||U ||2b

4

)
+
ϕλ̃δ2

4
(||U ||b − `)2 − |U |

2
− 12`

δ
− 1

= ϕλ̃b̃U +
ϕλ̃δ2

4
(||U ||b − `)2 − |U |

2
− 12`

δ
− 1

But since λ̃ ≥ λ̂ ≥ λ̂U and ϕb̃U λ̂U = ϕ
∑

(i,j):i,j∈U x̂ij ≥
∑

(i,j):i,j∈U pij we have

ϕλ̃b̃U ≥ ϕλ̂U b̃U ≥ ϕλ̃b̃U +
ϕλ̃δ2

4
(||U ||b − `)2 − |U |

2
− 12`

δ
− 1 (7.5.1)

But that is a contradiction unless ||U ||b = `, otherwise the quadratic term,

ϕλ̃δ2

4
(||U ||b − `)2 ≥ 12.5δ−2 is larger than the negative terms which are at most 1

2δ
+

161

12
δ2 + 1 in the RHS of Equation 7.5.1. Therefore Cut(U) ≤ κ(`) for an odd-set implies

||U ||b = `. But then Equation 7.5.1 implies (again using |U | ≤ ||U ||b = `):

ϕλ̂U b̃U ≥ ϕλ̃b̃U −
`

2
− 12`

δ
− 1

Now b̃U ≥ `
3
(1− 3δ

4
) when ||U ||b = ` ≥ 3; thus we have:

λ̂U ≥ λ̃− `

2ϕb̃U
− 12`

δϕb̃U
− 1

ϕb̃U

≥ λ̃− 3δ4

100(1− 3δ
4)
− 36δ3

50(1− 3δ
4)
− δ4

50
> λ̃− δ3 ≥ λ̂− δ3

in other words, Cut(U) ≤ κ(`) for an odd-set implies U ∈ L1(`), as claimed in part(ii).

We now apply Lemma 7.5.1 to extract a collection L of odd-sets in Gϕ(`, λ̃), not

containing s and cut at most κ(`) – such that any such set which is not chosen must

intersect with some set in the collection L.

If we have a maximal collection L then L ⊆ L1(`) by part (ii) of Property 1.

Due to Theorem 7.2.1, the intersection of two such sets U1, U2 ∈ L1(`) will be either

empty or of size ` by laminarity – the latter implies U1 = U2. Therefore the sets

in L1(`) are disjoint. Any U ∈ L2(`) − L has a cut of at most κ(`) using part (i)

of Property 1 and therefore must intersect with some set in L. This is impossible

because U ∈ L2(`) implies U ∈ L1(`) and L ⊆ L1(`) and we just argued that the sets

in L1(`) are disjoint! Therefore no such U exists and L2(`) ⊆ L.

We now have a complete algorithm: we perform a binary search over the estimate

λ̃ ∈ [1 + 3δ, 3
2

+ δ2], and we can decide if there exists a set U ∈ L2(`) in time

O(n poly(δ−1, log n)) as we vary `, λ̃. This gives us λ̃. We now find the collections L

162

for each ` and compute all λ̂U exactly (either remembering the x̂ij of the the edges

stored in Gϕ or by another pass over G). We can now return ∪`L2(`). Observe that

Gϕ does not need to be constructed more than once; it can be stored and reused. The

running time follows from simple accounting.

In the remainder of the section we prove Lemma 7.5.1.

7.5.1 Proof of Lemma 7.5.1

Lemma 7.5.1. Given an unweighted graph G with parameters κ, φ and a special

node s, in time O(n poly(δ−1, log n)) we can identify a collection L of odd-sets which

(i) do not contain s (ii) define cut of at most κ in G and (iii) every other odd set not

containing s and with a cut less than κ intersects with a set in L.

Proof. The algorithm is given in Algorithm 28. First, consider the following:

Theorem 7.5.2 ([20, 57]). Given a graph with n nodes and m edges (possibly with

parallel edges), in time O(m) + Õ(nκ2) we can construct a weighted tree T that rep-

resents all min s–t cuts in G′ of value at most κ. The nodes of this tree are subsets

of vertices. The mincut of any pair of vertices that belong to the same subset (the

same node in the tree T) is larger than κ and for any pair of vertices i, j belonging to

different subsets (nodes in the tree T) the mincut is specified by the partition corre-

sponding to the least weighted edge in the tree T between the two nodes that contain

i and j respectively.

163

Algorithm 28 Finding a maximal collection of odd-sets

1: K ← ∅. Initially G′ = G. The node s ∈ V (G).

2: repeat

3: Assign the s duplicity bs = 1 if
∑

i∈V (G′) bi is odd. Otherwise let bs = 2.

4: Construct a tree T that represents all low s–t cuts in G′ using Theorem 7.5.2. The

nodes of this tree T correspond to subsets of vertices of V (G′).

5: Make the vertex set containing s the root of T and orient all edges towards the

root. The oriented edges represent an edge from a child to a parent. Let D(e)

indicate the set of descendant subsets of an edge e (including the child subset which

is the tail of the edge, but not including the parent subset which is the head of the

edge).

6: Using dynamic programming starting at the leaf, mark every edge as admissi-

ble/inadmissible based on the
∑

S∈D(e)

∑
i∈S bi over the descendant subsets of that

edge being odd/even respectively.

7: Starting from the root s downwards, pick the edges e in parallel such that (c1) the

weight of e (corresponding to a cut) is at most κ, (c2)
∑

S∈D(e)

∑
i∈S bi is odd and

(c3) no edge e′ on the path from e to s satisfies (i) and (ii). Let the odd-set Ue

corresponding to this edge e ∈ T be Ue = ∪S∈D(e)S.

8: If the odd-sets found are Ue1 , . . . , Ueg then K ← K∪{Ue1 , . . . , Uet}. Observe that the

sets Uer are disjoint and do not contain s.

9: Merge all vertices in
⋃g
r=1 Uer with s. Observe that for any set U that does not

contain s and does not intersect any Uer , the cut Cut(U) is unchanged.

10: until no new odd set has been found in G′

11: return L.

164

Lemma 7.5.3 (Implicit in [82]). For any odd-set U in G with cut κ, there exists an

edge (u, v) in the low min s-t cut tree T such that u ∈ U, v 6∈ U and removing (u, v)

from the tree results in two connected components of odd sizes. In addition, one of

the components define an odd set with cut κ in the original graph G.

Proof. (Of Lemma 7.5.3) Consider all the edges in the tree T that crosses the bound-

ary of U . Removing each such edge from the tree results in two connected components

where sizes of two components are both even or both odd. U can be represented as

inclusion and exclusion of these sets. Therefore, if the size of these sets are all even,

then ||U ||b has to be even. So there exists at least one edge (u, v) in the tree T such

that its removal results in two connected components of odd sizes. U is an u − v

cut and therefore, the weight of (u, v) in the tree T is at most κ. Choosing the side

that does not contain s, we obtain an odd set in the original graph. In addition, the

corresponding cut size is less than κ.

(Continuing with Proof of Lemma 7.5.1.) All that remains to be proven is that the

loop in Algorithm 28 needs to be run only a few times. Suppose after t′ repetitions Qt′

is the maximum collection of disjoint odd-sets which are κ-attached and we choose

Ue1 , . . . , Ueg to be added to L in the t′+ 1st iteration. We first claim that |Qt′+1| ≤ g.

To see this we first map every odd-set in Qt′+1 to an edge in the tree as specified by

the existence proof in Lemma 7.5.3. This map need not be constructive – the map is

only used for this proof. Observe that this can be a many to one map; i.e., several

sets mapping to the same edge.

165

Now every edges e1, . . . , eg chosen in Algorithm 28 satisfy the property for all j:

no edge e′ on the path from the head of ej (recall that the edges are oriented towards

the root s) to s is one of the edges in our map. Because in that case we would have

chosen that edge e′ instead of ej.

Therefore the sets in Qt′+1 could not have mapped to any edges in the path towards

s. Now, if a set in Qt′+1 mapped to an edge e′ which is a descendant of the tail of

some ej (again, the edges are oriented towards s) then this set intersects with our

chosen Uej which is not possible.

Therefore any set in Qt′+1 must have mapped to the same edges in the tree; i.e.,

e1, . . . , eg. But then the vertex at the head of the edge belongs to the set in Qt′+1.

Therefore there can be at most g such sets. This proves |Qt′+1| ≤ g.

We next claim that |Qt′+1| ≤ |Qt′ | − g. Consider Q′ = Qt′+1 ∪ {Ue1 , . . . , Ueg}. Q′

is a collection of disjoint odd-sets which define a cut of size κ in G after t′ repetitions.

Obviously |Q′| = |Qt′+1| + g and by the definition of Qt′ , |Q′| ≤ |Qt′ |. Therefore,

|Qt′+1| ≤ |Qt′| − g.

Therefore, in the worst case, |Qt′| decreases by a factor 1/2 and therefore in

O(log n) iterations over this loop we would eliminate all odd-sets that define a cut of

size κ in G′.

166

7.6 Initial Solutions

In this section we provide primal-dual approximation algorithms for both uncapac-

itated and capacitated b–Matching. The capacities b′i, c
′
ij, for vertices and edges re-

spectively, need not be integral for this section. Each edge (i, j) has weight w′ij. In

the uncapacitated case c′ij =∞. The formulation LP27 captures the basic constraints

which are sufficient for the purposes of this section – we are explicitly writing down

a relaxation which omits non-bipartite constraints. The system LP28 is the dual of

LP27. These formulations are undirected and we have only one variable for both

(i, j) = (j, i).

β̂ = min
∑

(i,j)w
′
ijxij

1
b′i

∑
j xij ≤ 1 ∀i

1
c′ij
xij ≤ 1 ∀(i, j) ∈ E

xij ≥ 0

(LP27)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β̂ = min
∑

i pi +
∑

(i,j) qij

pi
b′i

+
pj
b′j

+
qij
c′ij
≤ w′ij ∀(i, j) ∈ E

pi, qij ≥ 0

(LP28)

A simple primal-dual algorithm is provided in Algorithm 29. Observe that we main-

tain a feasible primal and a feasible dual solution. Observe that after the update, for

any deleted edge we have pi
b′i

+
pj
b′j
≥ w′ij.

Definition 7.6.1. Let Υ =
∑

i pi. Define the increase in pi, pj due to the edge

(i, j) to be the direct contribution of edge (i, j). If the edge (i, j) replaces e1, . . . , e`

(possibly the last edge is replaced fractionally) then make two copies of the edge e`,

one copy got deleted and the other copy stayed in the solution. Therefore without

loss of generality define the indirect contribution of the edge (i, j) to be the sum of

167

Algorithm 29 Linear time single pass algorithm for capacitated b–Matching
1: We start with all pi = 0. Throughout the algorithm we will maintain the invariant

pi ≥ 2
∑

j w
′
ijxij . Assume that we have some hypothetical vertex v which has 0 weight

edges to every other node with bv =∞ and xvj = bj for all j.

2: for each new edge e = (i, j) do

(a) If pi
b′i

+
pj
b′j
≥ w′ij then do nothing, otherwise:

(b) Let x = min{c′ij , b′i, b′j}.

(c) Delete the cheapest x (fractionally) edges incident to i (and same for j). In more

detail: Order the edges {(i′, j)|xi′j ≥ 0} in increasing order of w′i′j . Find i(j) such

that
∑

i′<i(j) xi(j)j < x and
∑

i′≤i(j) xi′j ≥ x. Set yi(j)j ←
∑

i′≤i(j) xi′j − x. For

i′ > i(j) keep xi′j unchanged. For i′ < i(j) set xi′j = 0.

(d) Set xij = x. Increase pi, pj to be at least 2
∑

j w
′
ijxij , 2

∑
iw
′
ijxij respectively.

168

the direct and indirect contributions of the edges e1, . . . , e`.

The direct contribution of any edge (i, j) is at most 4w′ijxij (two vertices, each of whose

pi value increases by at most 2w′ijxij). We increased pi, pj only when pi
b′i

+
pj
b′j
< w′ij.

Since pi ≥ 2
∑

j w
′
ijxij (and likewise for pj) before the edges incident on i (and some

of the edges incident to j) were deleted; the direct contribution of the edges deleted

when (i, j) was inserted is at most 1
2

(
2w′ijxij

)
. To see this, divide (i, j) and the

deleted edges infinitesimally; for each infinitesimal copy of (i, j) with xij = ∆. If an

infinitesimal copy of (i, j) causes the deletion of e1, e2 (incident at i, j respectively,

each with the same infinitesimal ∆ij amount as (i, j)) then w′ij ≥ 2(w′(e1) + w′(e2))

because we deleted the cheapest edges. The direct contribution of these edges is

∆(2w′(e1) + 2w′(e2)). Therefore the direct contribution of the edges deleted by the

insertion of (i, j) is at most 1
2

(
2w′ijxij

)
= w′ijxij. Inductively, the indirect contribution

of edge (i, j) is also at most 2w′ijxij using the facts that the weights of the (sets of)

edges in a chain of deletions decrease geometrically by factor 2. Therefore
∑

i pi =

Υ ≤ 6
∑

(i,j)w
′
ijxij. The above accounting of the charge is the “trail of the dead”

analysis in [43], and can also be found in the analysis of call-admission algorithms [1].

Therefore if at the end we are left with a set S of edges; for the capacitated problem

we set qij = w′ijyij for (i, j) ∈ S and 0 otherwise. This is a feasible dual solution and

observe that
∑

i pi +
∑

i,j qij ≤ 7
∑

(i,j)∈S w
′
ijxij. But this is a feasible dual solution

and therefore β̂ ≤ 7
∑

(i,j)∈S w
′
ijxij. Furthermore, observe that the solution either

saturates and edge or a vertex at each step. Thus:

169

Theorem 7.6.2. We can solve the capacitated b–Matching problem to an approxima-

tion factor 7 within the optimum fractional solution. Moreover the number of edges

in the solution is min{m,B}.

For the uncapacitated case, the variables qij do not exist. Therefore
∑

i pi ≤

6
∑

(i,j)∈S w
′
ijxij. This gives a 6 approximation and we have at most O(n) edges.

Theorem 7.6.3. We can solve the uncapacitated b–Matching problem to an approx-

imation factor 6 of the optimum fractional solution. Moreover the number of edges

in the solution is O(n). Furthermore setting y†ij = 6xij will give us a solution where∑
(i,j) x

†
ijw
′
ij ≥ β∗ and

∑
j y
†
ij ≤ 6b′i which gives us the initial solution for Algorithm 27

as well as the solution sought after in Lemma 7.3.2.

7.7 Lagrangians and The Oracle

In this section we prove Lemma 7.3.2. Recall γ =
∑

i yib̃i +
∑

U∈L zU b̃U where b̃i =

(1− 4δ) and b̃U =
⌊
||U ||b

2

⌋
− δ2||U ||2b/4.

Lemma 7.3.2. If (1−4δ)β∗ ≥ β then (i) we always solve LP25 (and do not decrease

β) and (ii) we can solve LP24 using O(1/δ) invocations of LP25 (for different % ≥ 0)

and using the convex combination of two solutions. The solution for LP25 uses O(m)

time, O(n/δ) space, a single pass over the edges and outputs a solution with O(n)

170

non-zero edges. β∗ is defined in LP22 (repeated for convenience).

L(y′, %) =
∑
(i,j)

wijx
′
ij − %

∑
(i,j)

x′ij(yi + yj +
∑

U∈L;i,j∈U
zU)

 ≥ β − %γ (LP25)

P :


∑

j x
′
ij ≤ 6bi ∀i ∈ V

x′ij ≥ 0

∑
(i,j)

x̃ij(yi + yj +
∑

U∈L;i,j∈U
zU) ≤ γ

P[β] :


∑
(i,j)

wijxij ≥ (1− δ)β

x ∈ P

(LP24)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β∗ = max
∑
(i,j)

wijxij

∑
j xij ≤ bi ∀i ∈ V∑
(i,j):i,j∈U xij ≤ b||U ||b/2c ∀U ∈ O

xij ≥ 0

(LP22)

Proof. Consider the optimum solution of LP22 given by {x∗ij} and define x′ij =

(1 − 4δ)x∗ij. This solution satisfies
∑

(i,j)wijx
′
ij = (1 − 4δ)β∗ and

∑
j x
′
ij ≤ (1 −

4δ)bi = b̃i and
∑

(i,j):i,j∈U x
′
ij ≤ (1 − 4δ)

⌊
||U ||b

2

⌋
for any U . In particular we satisfy∑

(i,j):i,j∈U x
′
ij ≤

⌊
||U ||b

2

⌋
− δ2||U ||2b

4
= b̃U .

Since yi, zU are non-negative, {x′ij} satisfies the linear combination that

∑
i

yi
∑
j

x′ij +
∑
U∈L

zU
∑

(i,j);i,j∈U

x′ij ≤
∑
i

yib̃i +
∑
U∈L

zub̃U ≤
∑
i

yib̃i +
∑
U∈Oδ

zub̃U = γ

The left hand side rearranges to:
∑

(i,j) x
′
ij(yi + yj +

∑
U∈L;i,j∈U zU)) ≤ γ which

implies that LP24 is feasible as long as β ≥ (1 − 4δ)β∗. And since % ≥ 0 we have:

L(y′, %) ≥ β∗ − %γ which implies that LP25 is feasible with the stronger constraint

that
∑

j y
′
ij ≤ bi.

171

Given an L we can precompute and store the quantities (yi + yj +
∑

U∈L;i,j∈U zU)

for all (i, j) irrespective of in E or otherwise. This can be done in n/δ time and

space since each set of L is at most of size O(1/δ) and therefore we affect at most

O(n/δ) edges. The problem LP25 reduces to finding a b–Matching (ignoring the odd

set constraints) using “effective weights” instead of wij. Suppose we had a single

pass O(m) time 6 approximation algorithm using O(n) edges, then we can find that

solution {x†ij} and simply set x′ij = 6x†ij. The approximation factor guarantees that

the contribution of x′ij is more than (1 − 4δ)β∗ − %γ. Note that the solution {x′ij}

only needs to satisfy
∑

j xij ≤ 6bi. We show in Theorem 7.6.3, in Section 7.6, how

to find such a 6 approximation (along with how to compute an initial solution),

but any O(m) time c-approximation will work (making λ0 = 2c in Algorithm 27).

Lemma 7.3.2 follows from applying Lemma 6.2.3 with q = 1 and r = δ.

7.8 Rounding Fractional Uncapacitated b-Matchi-

ngs

In this section, we discuss a space and time efficient rounding algorithm.

Theorem 7.1.4. Given a fractional b-matching x which satisfies LP22(b) (param-

eterized over b) where |{(i, j)|xij > 0}| = m′, we find an integral b–Matching of

weight at least (1− 2δ)
∑

(i,j) wijxij in O(m′δ−3 log(1/δ)) time and O(m′/δ2) space.

The algorithm is given in Algorithm 30. We prove the following lemma:

172

Algorithm 30 Rounding a fractional b–Matching (Part I)

1: First Phase: Removing edges with large multiplicities t = d2/δe.

(a) If xij ≥ t add x̂
(0)
ij = bxijc − 1 copies of (i, j) to M(0).

(b) Set x
(1)
ij = 0 if xij ≥ t and x

(1)
ij = xij otherwise.

(c) Let b
(1)
i = min

{
bi −

∑
j x̂

(0)
ij , d

∑
j x

(1)
ij e+ 1

}
.

2: Second Phase: Subdividing large capacity vertices.

(a) While there exists a vertex i s.t.
∑

j x
(1)
ij ≥ 3t do

(i) Observe that given a set of numbers q1, . . . , qk such that each qj ≤ 1 and∑
j qj = Y ≥ 3; we can easily partition the set of numbers such that each

partition S satisfies 1 ≤
∑

j∈S qj ≤ 3.

(ii) Order the vertices adjacent to i arbitrarily. Select the prefix S in that order

such that the sum is between t and 2t (each edge is at most t from Step 1b).

Create a new copy i′ of i with this prefix and x
(1)
i′j = x

(1)
ij for j ∈ S and delete

the edges from S incident to i.

(b) If no copies of i were created then b
(2)
i = b

(1)
i . For every new i′ (corresponding to

i) created from the partition S (which may have now become S′ with subsequent

splits), assign b
(2)
i′ = b

∑
j∈S′ x

(1)
ij c. Note b

(2)
i ≤ 3t for all vertices. We now have a

vertex set V (2). Set x
(2)
ij = (1− δ)x(1)

ij for i, j ∈ V (2).

173

Algorithm 30 Rounding a fractional b–Matching (Part II)
1: Third Phase: Reduction to weighted matching.

(a) For each i ∈ V (2) with b
(2)
i , create i(1), i(2), · · · , i(b(2)

i).

(b) For each edge (i, j), create a complete bipartite graph between i(1), i(2), · · · and

j(1), j(2), · · · with every edge having weight wij . Let this new graph be G(3). As

an example:

u

3

v

2

w

3

u2

u2

u3

v2

v2

w2

w2

w3

(c) Run any fast approximation for finding a (1 − ε)-approximate maximum weighted

matching in G(3) let this matching be M(3).

2: Final Phase: Output: Observe that (i) Matching M(3) implies a b–matching M(2) in

G(2) of same weight (merge edges). (ii) Matching M(2) implies a b–matching M(1) in

G(1) of same weight (merge vertices). Output M(0) ∪M(1).

174

Lemma 7.8.1. (First Phase and the Output Phase) Suppose that all vertex con-

straints are satisfied and
∑

j xij ≤ bi−1. Then, for any odd set U that contains i, the

corresponding odd set constraint is satisfied. The fractional solution {x(1)
ij } obtained

in the first phase of Algorithm 30 is feasible for LP22(b(1)) — and a an integralM(1)

which is a (1 − 2δ)-approximation of LP22(b(1)) can be output along with M(0) to

satisfy Theorem 7.1.4.

Proof. For any U ∈ O, i ∈ U ,
∑
i′,j∈U

xi′j ≤
1

2

∑
i′∈U

∑
j

xi′j ≤
1

2
((
∑
i′∈U

bi′)− 1) =
||U ||b − 1

2
=⌊

||U ||b
2

⌋
. Thus it follows that any vertex which has an edge incident to it in M(0)

cannot be in any violated odd-set in LP22(b(1)). Then any violated odd-set in

LP22(b(1)) with respect to {x(1)
ij }must also be a violated odd-set in LP22(b); contra-

dicting the fact that we started with a {xij} is feasible for LP22(b). NowM(0)∪M(1)

is feasible since both are integral and we know that b
(1)
i ≤ bi −

∑
j x̂

(0)
ij . Observe

that w(M(0)) ≥ (1 − δ)
∑

(i,j)∈E wij

(
xij − x(1)

ij

)
where w(M(0)) =

∑
(i,j)∈E x̂

(0)
ij wij.

Therefore if w(M(1)) ≥ (1 − 2δ)
∑

(i,j)∈E wijx
(1)
ij then w(M(0)) + w(M(1)) is at least

(1− 2δ)
∑

(i,j)∈E wijxij as desired.

Lemma 7.8.2. (Second Phase) If {x(1)
ij } satisfies LP22(b(1)) over V , then {x(2)

ij }

satisfies LP22(b(2)) over G(2). Moreover
∑

i,j wijx
(2)
ij = (1− δ)

∑
i,j wijx

(1)
ij

Proof. Observe that any vertex which participates in any split produces vertices which

have (fractionally) at least t edges. After scaling we have (1− δ)
∑

j x
(1)
ij ≤

∑
j x

(1)
ij −

δt ≤
∑

j x
(1)
ij − 2 ≤ b

(2)
i − 1 from the definition of b(2) in line (3b) of Algorithm 30.

Therefore the new vertices cannot be in any violated vertex or set constraint; from the

175

first part of Lemma 7.8.1 (now applied to LP22(b(1)) instead of LP22(b)). Therefore

the Lemma follows.

Finally It is easy to see that any integral b–Matching in G(2) has an integral match-

ing in G(3) of the same weight and vice versa — moreover given a matching for

G(3) the integral b–Matching for G(2) can be constructed trivially. Also, the number

of edges in G(3) is at most O(δ−2m′) since each vertex in G(2) is split into O(δ−1)

vertices in G(3). We are guaranteed a maximum b–Matching in G(2) of weight at

least
∑

(i,j)∈E(2) wijx
(2)
ij since {x(2)

ij } satisfies LP22(b(2)) over G(2). Therefore we are

guaranteed a matching of the same weight in G(3). Now, we use the approximation al-

gorithm in [34, 35] which returns a (1−δ)-approximate maximum weighted matching

in G(3) in O(m′δ−3 log(1/δ)) time and space. From the (1−δ)-approximate maximum

matching we can construct a b–Matching in G(2) of the same weight (and therefore a

a b–Matching M(1) in G(2) of the same weight). Theorem 7.1.4 follows.

176

Chapter 8

Application II: Capacitated

b-Matching

Chapter Outline: In this chapter, we present algorithms for the capacitated b–

Matching problems in general graphs. We reduce the capacitated b–Matching problem

into the uncapacitated b–Matching problem and apply the algorithm in Chapter 7.

However, the size of the graph increases as a result of the reduction and we apply

nontrivial modifications to the algorithm. Again, for the simplicity of analysis, we

use the insertion-only model in this chapter.

8.1 The Standard LP Formulation and Results

In this chapter we provide algorithms for finding fractional as well as integral solutions

for the capacitated b-matching problem in general weighted graphs. The problem is

177

defined as follows:

Definition 8.1.1. [86, Chapters 32 & 33] In the Capacitated b–Matching problem

we have an additional restriction for every edge (i, j) ∈ E that xij ≤ cij where cij

are also given in the input (also assumed to be an integer in [0, poly n]). A problem

with cij = 1 for all (i, j) ∈ E is also referred to as an “unit capacity” or “simple”

b–Matching problem in the literature.

The standard exact linear programming formulation for capacitated b–Matching

is similar to the LP for uncapacitated b–Matching (LP22). LP29 is the standard LP.

LP29 also has an integral optimum solution when bi and cij are integers (See also [86,

Chapter 32]).

Definition 8.1.2 (Volume of Sets & Odd-Sets for Capacitated b–Matching). Given

a graph G = (V,E, c), with |V | = n and |E| = m, and non-negative values bi for each

i ∈ V , define the volume of a set U ⊆ V to be ||U ||b,c =
∑

i∈U bi +
∑

i∈U
∑

j∈V \U cij.

Define O = {U | ||U ||b,c is odd } and Oδ = {U |U ∈ O; ||U ||b,c ≤ 1/δ}.

β∗ = LP29(b, c) = max
∑

(i,j)wijxij∑
j xij ≤ bi ∀i ∈ V∑
(i,j):i,j∈U xij ≤ b||U ||b,c/2c ∀U ∈ O

0 ≤ xij ≤ cij

(LP29)

178

Statement of Results and Roadmap: Theorems 8.1.3 and 8.1.4 summarize the

results for capacitated b–Matching problem. Note that the restriction
∑

(i,j)∈Ê wij ≤

Tβ∗ of Theorem 8.1.3 is explicitly used in Theorem 8.1.4. Section 8.2 present an

overview of the algorithm. Section 8.3 and Section 8.3.2 prove Theorem 8.1.3. Section

8.4 proves Theorem 8.1.4.

Theorem 8.1.3 (Fractional Capacitated b–Matching). For any 0 < δ ≤ 1/16,

we find a (1 − 14δ)-approximate fractional weighted capacitated b-Matching using

O(min{m,B poly{δ−1, lnn}}) additional “work” space where B =
∑

i bi and making

R = O(δ−4(ln2(1/δ)) lnn) passes over the list of edges. The algorithm runs in time

O(mT + min{B,m} poly{δ−1, lnn}) where T = O(δ−5(ln2(1/δ)) lnn). The algorithm

returns a solution {x̂ij} such that the subgraph Ê = {(i, j)|(i, j) ∈ E, x̂ij > 0} satisfies∑
(i,j)∈Ê wij ≤ Rβ∗ where β∗ is the weight of the optimum capacitated b–Matching.

Theorem 8.1.4 (Integral Capacitated b–Matching). Given a feasible fractional ca-

pacitated b–Matching x such that the optimum solution is at most β∗ and∑
(i,j)∈Ê wij ≤ Rβ∗ where Ê = {(i, j)|xij > 0}, we can find an integral b-matching of

weight at least (1 − δ)
∑

(i,j) wijxij − δβ∗ in O(m′Rδ−3 ln(R/δ)) time and O(m′/δ2)

space where m′ = |Ê|. If the fractional solution is (1−14δ)-approximate then we have

a (1− 16δ)-approximate integral solution.

179

8.2 Algorithm Overview

Assume that the graph is presented as a read only list 〈. . . , (i, j, wij, cij), . . .〉 in arbi-

trary order. We are given a graph G = (V,E) with |V | = n, |E| = m and B =
∑

i bi.

We also assume that the working space is Õ(B) rather than Õ(n) because it is pos-

sible for an approximation b–Matching to have B edges. For example, suppose that

G is a complete unweighted graph with bi = n for all i and cij = 1 for all (i, j).

Then, the optimal solution or any constant-factor approximation solution requires

O(B) = O(n2) edges. Our approach will be to use a reduction to the uncapacitated

b–Matching problem while maintaining the following invariant:

Invariant 1. During the execution of the primal dual algorithm we will maintain that

xij ≤ cij (for any current solution as well as any updates).

Assuming that the invariant holds, we can reduce the capacitated b–Matching

problem into an equivalent b–Matching problem. This connection is known in the

literature (see [86, Chapter 32]) and has been exploited before; however we will have

differences with the existing approaches, which will be described in the footnotes.

Intuitively, the graph obtained from this reduction can be viewed as a “long code”

of the capacitated graph, and we will run Algorithm 27 on that encoding. We then

indicate which substeps of Algorithm 27 are modified to ensure the invariant. Note

that a primal candidate is infeasible and thus, it can violate the invariant even if the

invariant is written as a constraint. We begin with the following:

Definition 8.2.1. Given a graph G = (V,E) with vertex and edge capacities. Con-

180

sider subdividing each edge e = (i, j) into (i, pij,i), (pij,i, pij,j), (pij,j, j) where pij,i, pij,j

are new additional vertices with capacity bcpij,i = bcpij,j = cij. For i ∈ V set bci = bi.

We use the weights 1
2
wij, 0,

1
2
wij for (i, pij,i), (pij,i, pij,j), (pij,j, j) respectively. De-

note this graph as Long(G). Let the vertex set of Long(G) be VL. We use

wcij for the edge weights and ||U ||b,c =
∑

i∈U b
c
i for U ⊆ VL to indicate the vol-

ume of a set U in Long(G). The odd-sets in Long(G) are OL. Likewise define

OδL = {U ∈ OL, ||U ||b,c is odd }. The notation distinguishes G and Long(G) since

they will be used simultaneously.

Definition 8.2.2. Given an assignment x = {xij} over G such that xij ≤ cij for all

(i, j) ∈ E we define Long(x) = {xci′j′} over Long(G) as follows: we set xci,pij,i =

xcpij,j ,j = xij and xcpij,i,pij,j = cij − xij.

Likewise given an assignment xc = {xci′j′} over Long(G) such that xci,pij,i =

xcpij,j ,j and xci,pij,i + xcpij,i,pij,j = cij we define Short(xc) over G as follows: we set

xij = xci,pij,i . As long as the capacity constraints are met initially by x,xc note that

Short(Long(x)) = x and Long(Short(xc)) = xc.

Note that Invariant 1 implies that x is non-negative vector if and only if Long(x) is

non-negative. It is easy to see that the capacitated b–Matching in G is equivalent to

(uncapacitated) b–Matching in Long(G).

Theorem 8.2.3. [86, Implicit in proof of Theorem 32.2, Vol A, pages 564–565]

181

Long(x) is feasible for LP31 on Long(G) iff x is feasible for LP30 on G.

∑
i,j∈U xij ≤

⌊
||U ||b,c

2

⌋
∀U ⊂ V∑

j xij ≤ bi ∀i ∈ V

xij ≤ cij ∀(i, j) ∈ E

xij ≥ 0 ∀i, j ∈ V

(LP30)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i,j∈U x

c
ij ≤

⌊
||U ||b,c

2

⌋
∀U ∈ OL∑

j x
c
ij ≤ bci ∀i ∈ VL

xcipij,i + xcpij,ipij,j = cij ∀(i, j) ∈ E

xcpij,ipij,j + xcpij,jj = cij ∀(i, j) ∈ E

xcij ≥ 0 ∀i, j ∈ VL

(LP31)

Corollary 8.2.4. If β∗ = max
∑

i,j xijwij subject to (LP30) and β′ = max
∑

i,j x
c
ijw

c
ij

subject to (LP31) then β∗ = β′. This is a consequence of the special weight sequence1

1
2
wij, 0,

1
2
wij. Thus we need to max

∑
i,j x

c
ijw

c
ij subject to (LP31).

Now suppose we run Algorithm 27 on page 145 on Long(G) staring from the for-

mulation LP32 (instead of LP23, and using m instead of n in determining αt; note

1This is different from the weights wij , wij , wij used in [86, Theorem 32.4, Vol A, page 567], which

showed that capacitated b–Matching reduced to uncapacitated b–Matching with a “constant shift”

in the objective function of
∑

(i,j)∈E cijwij . Introducing the shift at the top level of a primal-dual

algorithm means that the substeps have to be more accurate.

182

m ≤ n2) and solving appropriate subproblems in lines 11-13.

Ac
L :


∑

j x
c
ij ≤ λb̃ci ∀i ∈ VL where b̃ci = (1− 4δ)bci∑

i,j∈U
xcij ≤ λb̃cU ∀U ∈ OδL where b̃cU =

⌊
||U ||b,c

2

⌋
− δ2||U ||2b,c

4

Qc[β] :



∑
i,j

wcijx
c
ij ≥ (1− δ)β

Qc :



xcipij,i + xcpij,ipij,j = bcpij,i ∀(i, j) ∈ E

xcpij,ipij,j + xcpij,jj = bcpij,j ∀(i, j) ∈ E∑
j x

c
ij ≤ λc0bci/2 ∀i ∈ V (not VL); note bci = bi for i ∈ V

xcij ≥ 0

(LP32)

Differences between LP32 and LP23 raises two questions:

1. How do we compute a dual candidate when we cannot even enumerate all the

constraints? Long(G) has O(m) vertices rather than n vertices and therefore,

we cannot store the vertices in the working space. We answer this question by

proving that most violated odd sets consist of vertices in G and edge-induced

vertices pij,i such that xcipij,i 6= 0.

2. How do we maintain Invariant 1 or equivalently how do we maintain xc ∈

Qc? We approximate capacitated b–Matching in G rather than b–Matching in

Long(G). This guarantees that two additional constraints in Qc. However,

this is not sufficient. xcpij,ipij,j < 0 if xij > cij, which is equivalent to xcipij,i > cij.

In order to avoid this problem, we replace a simple oracle of multiplying a

constant-factor approximation with a multi-pass semi-streaming algorithm.

183

8.3 Finding a Fractional Solution in (near) Linear

Time

Observe that the entire proof of Theorem 7.3.3 holds provided:

(a) β is not decreased below (1−O(δ))β∗ and we solve:

∑
i,j

x̃cij(y
c
i + ycj +

∑
U∈Lc;i,j∈U

zcU) ≤ γc subject to x̃c ∈ Qc[β] (LP33)

(instead of LP24) while preserving Invariant 1, where γc =
∑

i∈VL y
c
i b̃
c
i+∑

U∈Lc z
c
U b̃

c
U . We label the laminar family as Lc here.

(b) We have an initial solution where λc0 and βc0 ≥ β∗ are not too large (again pre-

serving Invariant 1). We show that λc0 = O(ln 1
δ
) and βc0 ≤ O(β∗ ln 1

δ
).

The number of invocations of LP33 will be R′ = O(λc0δ
−4 lnn) – exactly along the

lines of the proof of Theorem 7.1.3. We begin with the following:

Definition 8.3.1. Denote ηi′j′ = yci′ + ycj′ +
∑

U∈L;i′,j′∈U z
c
U for an edge (i′, j′) in

Long(G). For an edge (i, j) ∈ E (in G) define aij = ηi,pij,i + ηpij ,j − ηpij,ipij,j . Define

K =
∑

(i,j)∈E ηpij,ipij,jcij.

Theorem 8.3.2. If β ≤ (1− 4δ)β∗ a solution to LP34 always exists

∑
(i,j)∈E

aij x̃ij ≤ γc −K subject to x̃ ∈



∑
i,j wijxij ≥ β

xij ≤ cij ∀(i, j) ∈ E∑
j xij ≤ bi ∀i ∈ V

xij ≥ 0

(LP34)

184

where K =
∑

(i,j)∈E ηpij,ipij,jcij as in Definition 8.3.1. Moreover, if aij = ηi,pij,i +

ηpij ,j − ηpij,ipij,j ≥ 0 for all (i, j) ∈ E, and LP34 is feasible then we can solve LP33

∑
(i′,j′)

x̃ci′j′ηi′,j′ ≤ γc subject to x̃c ∈ Qc[β] (LP33)

in O(m
δ

ln(1
δ
)) time using O(min{m,B} · 1

δ
ln(1

δ
)) space and q = O(ln(1

δ
)) passes over

the list of edges of G. Moreover if we define S = {(i, j) ∈ E|Short(x̃c)ij > 0} then∑
(i,j)∈S wij ≤ qβ∗ and |S| ≤ O(min{m,B} ln 1

δ
). This also provides us with an initial

solution with λ0 = O(ln 1
δ
) and β0 = O(β∗ ln 1

δ
).

Lemma 8.3.3. If λ > 1 + 8δ (otherwise the algorithm has stopped) and xc ∈ Qc

(will be an invariant) some U ∈ Oδ(V ′) contains any pij,i such that either (i) both

i, j /∈ U or (ii) xcipij,i = xcpij,jj = 0, then λU < λ − δ2. As a consequence of (i),

aij = ηipij,i + ηpij,jj − ηpij,ipij,j ≥ 0. As a consequence of (ii), we can compute the zU

in time O(m′ poly{δ−1, log n}) where m′ = |{(i, j)|Short(xc)ij 6= 0}|.

Theorem 8.3.2 and Lemma 8.3.3 guarantee that R′ = O(λc0δ
−4 lnn) invocations of

LP33 will provide us a (1−14δ) approximation. It takes R = O(δ−4(ln 1
δ
)2 lnn) passes

over the input. We will have |Ê| = m′ = O(Rmin{m,B}) and therefore the overall

running time will not exceed O(mT + min{B,m} poly{δ−1, log n}) where T = R
δ
.

Along the lines of proof of Theorem 7.1.3, the additional 1
δ

factor is from 1
δ

parallel

invocations of the constant-factor approximation algorithm. Therefore Theorem 8.1.3

will follow. In the subsequent sections, we prove Lemma 8.3.3 and Theorem 8.3.2.

185

8.3.1 Proof of Lemma 8.3.3

Lemma 8.3.3. If λ > 1 + 8δ (otherwise the algorithm has stopped) and xc ∈ Qc

(will be an invariant) some U ∈ Oδ(V ′) contains any pij,i such that either (i) both

i, j /∈ U or (ii) xcipij,i = xcpij,jj = 0, then λU < λ − δ2. As a consequence of (i),

aij = ηipij,i + ηpij,jj − ηpij,ipij,j ≥ 0. As a consequence of (ii), we can compute the zU

in time O(m′ poly{δ−1, log n}) where m′ = |{(i, j)|Short(xc)ij 6= 0}|.

Proof. Define Xc
U =

∑
(i′,j′):i′,j′∈U x

c
i′j′ for all sets U (even or odd). For an odd set U

we have λU b̃cU = Xc
U .

We focus on the first part of the lemma. Assume (for contradiction) λU ≥ λ−δ2 ≥

1 + 7δ for such a set U as in the statement of the lemma. Note bcpij,i = cij. Also note

that for any U ∈ OδL we have (1− δ)
⌊
||U ||b,c

2

⌋
≤ b̃cU (based on F1 from Fact 7.4.1 in

page 152).

If pij,j /∈ U define U ′ = U − {pij,i}. In this case Xc
U = Xc

U ′ (in both cases (i) and

(ii)). If cij is odd then ||U ′||b,c is even but in that case:

λU b̃cU = Xc
U = Xc

U ′ ≤
1

2

∑
i′∈U ′

∑
j′

xci′j′ ≤
1

2
λ
∑
i′∈U ′

b̃ci′ =
1

2
λ(1− 4δ)||U ′||b,c

= λ(1− 4δ)

⌊
||U ||b,c

2

⌋
≤ λ(1− 4δ)

b̃cU
(1− δ)

≤ λ(1− δ)b̃cU (since δ ≤ 1
8)

which implies λU ≤ (1−δ)λ. But if cij is even (and therefore ≥ 2) then U ′ cannot be a

single element because then 0 = Xc
U ′ = Xc

U = λU b̃cU > (1+7δ)b̃cU which is impossible.

Therefore U ′ is an odd-set and λU ′ , b̃cU ′ is defined. Now ||U ′||b,c = ||U ||b,c − cij, and

therefore b̃cU − b̃cU ′ =
cij
2
− δ2cij||U ||b,c ≥ (1 − 2δ)cij/2 ≤ cij/4 since U ∈ OδL and

186

δ ≤ 1/8, therefore ||U ||b,c ≤ 1
δ
. Now, λb̃cU ′ ≥ λU ′ b̃cU ′ = Xc

U ′ = Xc
U = λU b̃cU implying:

λ ≥ λU
b̃cU

b̃cU ′
= λU

(
1 +

cij

4b̃cU ′

)
≥ λU

(
1 +

δ

4

)

implying λ(1 − δ/8) ≥ λU . Therefore if pij,j /∈ U then λ(1 − δ2) ≥ λU in all cases.

Therefore, for the first part all that remains to be considered is pij,j ∈ U .

If pij,j ∈ U ′, define U ′ = U − {pij,i, pij,j}. Observe that ||U ′||b,c = ||U ||b,c − 2cij is

always odd and Xc
U ′ = Xc

U−cij (in either case of (i) i, j /∈ U or (ii) xcipij,i = xcpij,jj = 0).

Since Xc
U > (1 + 7δ)b̃cU and b̃cU ≥ (1 − δ)

⌊
||U ||b,c

2

⌋
≥ (1 − δ)cij. Therefore Xc

U ′ ≥

(1 + 7δ)(1− δ)cij− cij > 0. Therefore U ′ is not a singleton set and λU ′ , b̃cU ′ is defined.

But then, b̃cU− b̃cU ′ = cij−2δ2cij||U ||b,c ≥ (1−2δ)cij. Using 1+7δ ≤ 2, 14δ ≤ 2, cij ≥

1, b̃cU ′ ≤ 1
δ
, we have:

λb̃cU ′ ≥ λU ′ b̃cU ′ = Xc
U ′ = Xc

U − cij = λU

(
b̃cU −

cij
λU

)
≥ λU

(
b̃cU −

cij
1 + 7δ

)
≥ λU b̃cU ′

(
b̃cU

b̃cU ′
− cij

(1 + 7δ)b̃cU ′

)
≥ λU b̃cU ′

(
1 +

(1− 2δ)cij

b̃cU ′
− cij

(1 + 7δ)b̃cU ′

)

= λU b̃cU ′

(
1 +

(5− 14δ)δcij

(1 + 7δ)b̃cU ′

)
= λU b̃cU ′

(
1 +

3δ2

2

)
≥ λU b̃cU ′

(
1

1− δ2

)
(Using δ ≤ 1/8)

and therefore the first part of the lemma follows, that is, in either case of (i) i, j /∈ U

or (ii) ycipij,i = ycpij,jj = 0 we have λU ≤ λ− δ2. Therefore no such U is chosen in Lc or

is needed to be counted as a candidate in the number of odd sets in Theorems 7.2.1

and 7.2.2 in this context. For the second part of the lemma, observe that based on

187

Definition 8.3.1;

aij =

xci + xcpij,i +
∑

U ;i,pij,i∈U
zcU

+

xcj + xcpij,j +
∑

U ;j,pij,j∈U
zcU


−

xcpij,i + xcpij,j +
∑

U ;pij,i,pij,j∈U
zcU


= xci + xcj +

∑
U ;i,pij,i∈U

zcU +
∑

U ;j,pij,j∈U
zcU −

∑
U ;pij,i,pij,j∈U

zcU

but then aij can only be negative if there exists a set U ∈ Lc such that pij,i, pij,j ∈ U

and i, j 6∈ U . The first part of the lemma, case (i), just ruled out that possibility.

Case (ii) rules out computing odd sets containing pij,i or pij,j such that ycipij,i = 0 or

that Short(xc)ij = 0. It is also worth noting that xpij,i is independent of ycipij,i for

xc ∈ Qc and can be stored implicitly.

8.3.2 Proof Of Theorem 8.3.2

Theorem 8.3.2. If β ≤ (1− 4δ)β∗ a solution to LP34 always exists

∑
(i,j)∈E

aij x̃ij ≤ γc −K subject to x̃ ∈



∑
i,j wijxij ≥ β

xij ≤ cij ∀(i, j) ∈ E∑
j xij ≤ bi ∀i ∈ V

xij ≥ 0

(LP34)

where K =
∑

(i,j)∈E ηpij,ipij,jcij as in Definition 8.3.1. Moreover, if aij = ηi,pij,i +

ηpij ,j − ηpij,ipij,j ≥ 0 for all (i, j) ∈ E, and LP34 is feasible then we can solve LP33

∑
(i′,j′)

x̃ci′j′ηi′,j′ ≤ γc subject to x̃c ∈ Qc[β] (LP33)

188

in O(m
δ

ln(1
δ
)) time using O(min{m,B} · 1

δ
ln(1

δ
)) space and q = O(ln(1

δ
)) passes over

the list of edges of G. Moreover if we define S = {(i, j) ∈ E|Short(x̃c)ij > 0} then∑
(i,j)∈S wij ≤ qβ∗ and |S| ≤ O(min{m,B} ln 1

δ
). This also provides us with an initial

solution with λ0 = O(ln 1
δ
) and β0 = O(β∗ ln 1

δ
).

Proof. Suppose β ≤ (1−4δ)β∗ then consider the optimum solution x∗ = {x∗ij} over G.

Further consider x′ = x∗(1−4δ). Note that
∑

(i,j)∈E y
′
ijwij ≥ β. Now Long(x′) ∈ Qc

satisfies LP32 with λ = 1 (note that b̃cU ≥ (1 − δ)
⌊
||U ||b,c

2

⌋
≥ (1 − 4δ)

⌊
||U ||b,c

2

⌋
)

and
∑

(i′,j′) Long(x′)i′j′w
c
i′j′ =

∑
(i,j)∈E x

′
ijwij ≥ β. Multiplying rows of Ac

L with the

non-negative numbers {yci}, {zcU} we get that

∑
(i′,j′)

Long(x′)i′j′

yci′ + ycj′ +
∑

U∈Lc;i′,j′∈U
zcU

 =
∑

(i′,j′)

Long(x)i′j′ηi′,j′ ≤ γc

⇐⇒
∑

(i,j)∈E

aijx
′
ij ≤ γc −K

This would imply LP34 is feasible. This proves the first part of the theorem. If LP34

is feasible, then aij ≥ 0 imply γc −K ≥ 0 moreover for any % ≥ 0;

∑
(i,j)

(wij − %aij)xij ≥ β − %(γc −K)

subject to x



xij ≤ cij ∀(i, j) ∈ E∑
j xij ≤ bi ∀i ∈ V

xij ≥ 0

(LP35)

189

the system LP35 is feasible. Suppose for any % ≥ 0, we can find x such that:

∑
(i,j)

(wij − %aij)xij ≥
(

1− δ

2

)
(β − %(γc −K))

s. t. x ∈ Q :



xij ≤ cij ∀(i, j) ∈ E∑
j xij ≤ λ0bi/2 ∀i ∈ V

xij ≥ 0

(LP36)

We apply Lemma 6.2.3, proved in page 116 (using β2 = γc−K ≥ 0, β1 = β ≥ 0, q =

1− δ/2, r = δ/2 and that
∑

i,j aijxij ≥ 0 for x ∈ Q since all aij are non-negative) and

we will get x† satisfying:
∑

i,j aijx
†
ij ≤ (γc −K)∑

i,j wijx
†
ij ≥ (1− r)qβ =

(
1− δ

2

) (
1− δ

2

)
β ≥ (1− δ)β

and (C1)

x†ij ≤ cij ∀(i, j) ∈ E∑
j x
†
ij ≤ λ0bi/2 ∀i ∈ V

x†ij ≥ 0

Now consider Long(x†). Based on the condition (C1), Long(x†) ∈ Qc[β] and

∑
(i,j)

aijx
†
ij ≤ (γc −K) =⇒

∑
(i′,j′)

Long(x†)i′j′

yci′ + ycj′ +
∑

U∈Lc;i′,j′∈U
zcU

 ≤ γc
by rearrangement and we have a solution for LP33. Note that |{(i′, j′)|Long(x†)i′j′ >

0}| is at most twice the maximum number of non-zero entries in any x returned to

satisfy LP36. In what follows we show that this number is at most O(min{B,m}),

and λ0/2 = 7 ln 2
δ

and we find a solution to LP36 in O(λ0m) time, completing the

proof of Theorem 8.3.2.

190

We rewrite LP35 as a maximization problem LP37 using weij = max{0, wij − %aij}

and c′ij = min{cij, bi, bj}. We also formulate the (slightly modified) dual LP38.

τ∗ = max
∑

i,j w
e
ijxij

xij ≤ c′ij ∀(i, j) ∈ E∑
j xij ≤ bi ∀i ∈ V

xij ≥ 0

(LP37)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τ∗ = min
∑

i pi +
∑

i,j qij

pi
bi

+
pj
bj

+
qij
c′ij
≤ weij ∀(i, j) ∈ E

pi, qij ≥ 0

(LP38)

If LP35 is feasible then the optimum solution x̂ij of LP37 satisfies
∑

i,j w
e
ijx̂ij = τ ∗ ≥

β − %(γc −K). Note that x̂ij can be fractional (and our proof of feasibility of LP34

used a fractional vector).

Now suppose for any bi, cij ≥ 0 we can find a solution x(1) such that
∑

i,j w
e
ijx

(1)
ij =

τ1 ≥ τ ∗/7 using Theorem 7.6.2 in Section 7.6. Define τ ∗(1) = τ ∗. We run an itera-

tive procedure where we set the constraints of LP37 to xij ≤ max{0, c′ij − x
(1)
ij } then

the optimum solution of this modified LP37 denoted by τ ∗(2) is at least τ ∗(1) − τ1.

Otherwise it is easy to see that the optimum solution of unmodified LP37 cannot be

τ ∗. Therefore we can obtain a solution x(2) such that
∑

i,j w
e
ijx

(2)
ij = τ2 ≥ τ ∗(2). We

now repeat the process by modifying LP37 to xij ≤ max{0, c′ij − x
(1)
ij − x

(2)
ij }. Pro-

ceeding in this fashion we obtain solutions
{
x

(`)
ij

}7 ln 2
δ

`=1
. Observe, that by construction∑7 ln 2

δ
`=1 x

(`)
ij ≤ cij for all (i, j) and therefore the union of these 7 ln 2

δ
solutions satisfies

Invariant 1. We now claim:

r∑
`=1

∑
i,j

weijx
(`)
ij ≥

(
1−

(
6

7

)r)
τ∗ (8.3.1)

191

We prove Equation (8.3.1) by induction for all τ ∗ for a fixed upper bound on r; we

just proved the base case for r = 1 since τ1 ≥ τ ∗/7. In the inductive case, applying

the hypothesis on 2, . . . , r we get
∑r

`=2

∑
i,j w

e
ijx

(`)
ij ≥

(
1−

(
6
7

)r−1
)
τ ∗(2). Now if

τ ∗(2) ≥ 6
7
τ ∗ then

r∑
`=1

∑
i,j

weijx
(`)
ij ≥

1

7
τ∗ +

(
1−

(
6

7

)r−1
)

6

7
τ∗

and Equation (8.3.1) holds. Otherwise if τ ∗(2), 6τ ∗/7 then:

r∑
`=1

∑
i,j

weijx
(`)
ij ≥ (τ∗ − τ∗(2)) +

(
1−

(
6

7

)r−1
)
τ∗(2)

≥ τ∗ −
(

6

7

)r−1

τ∗(2) ≥
(

1−
(

6

7

)r)
τ∗

Therefore in all cases we will have
∑7 ln 2

δ
`=1 weijx

(`)
ij ≥

(
1− δ

2

)
τ ∗. This implies that if

we collect 7 ln 2
δ

solutions given by the 7 approximation algorithm then their union

will be more than
(
1− δ

2

)
τ ∗ ≥

(
1− δ

2

)
(β − %(γc −K)) provided LP35 is feasible.

Therefore if for any % ≥ 0 we collect these many solutions and find that∑7 ln 2
δ

`=1 weijx
(`)
ij < (1 − δ/2)(β − %(γc − K)) then we know that it is impossible that

β ≤ (1− 4δ)β∗ and we reduce β. Note that the number of times we reduce β is now

1
δ

ln ln 1
δ
, and we may spend O(ln 1

δ
) passes for each such reduction. This can still be

ignored in comparison to the number of passes O(λ0δ
−4(ln2 1

δ
) lnn).

On the other hand, if the union of 7 ln 2
δ

solutions is at least (1−δ/2)(β−%(γc−K))

(for each different %) then we have a solution for LP36; and by the previous discussion

(applying Lemma 6.2.3, which implies a repeating for O(ln 1
δ
) non-negative values of %)

we have a solution as desired by the Theorem. This proves the bound on q = O(ln2 1
δ
).

For the initial solution, set % = 0. This proves the bound on λ0, β0 and the

192

number of edges. Finally note that in each pass of the algorithm we compute a feasible,

integral, capacitated b–Matching (with capacities less than that of the original graph)

and therefore
∑

(i,j)∈S wij ≤ qβ∗.

8.4 Rounding Fractional Capacitated b-Matching

In this section, we prove the following:

Theorem 8.1.4. Given a fractional capacitated b-matching x such that the opti-

mum solution is at most β∗ and
∑

(i,j)∈Ê wij ≤ Rβ∗ where Ê = {(i, j)|xij > 0},

we can find an integral b-matching of weight at least (1 − δ)
∑

i,j wijyij − δβ∗ in

O(m′Rδ−3 log(R/δ)) time and O(m′/δ2) space where m′ = |Ê|. Note that if the frac-

tional solution is at least (1−14δ)-approximate then we have a (1−16δ)-approximate

integral solution.

The rounding is achieved by Algorithm 31. The general outline of the algorithm and

its proof is similar to the uncapacitated case discussed in Section 7.8.

Lemma 8.4.1. x
(1)
ij is a feasible fractional capacitated b–Matching in G

(1)
c .

Proof. Consider Long(x(1)) and Long(G). The only vertices whose capacities were

affected in Long(G) are the following vertices: (i) the corresponding vertex in G

has an edge incident to it in M(1)
c and (ii) the corresponding edge (i, j) ∈ G had

cij > dx(1)
ij e+ 1.

193

Algorithm 31 Rounding a fractional capacitated b–Matching in small space (Part

I)

1: First Phase: Removing edges with large multiplicities (no change from Algo-

rithm 30 except tracking edge capacities). t = d2/δe.

(a) If xij ≥ t add x̂
(0)
ij = bxijc − 1 copies of (i, j) to M(0)

c .

(b) Set x
(1)
ij =


0 if xij ≥ t

xij otherwise

. Set b
(1)
i = min

{
bi −

∑
j x̂

(0)
ij , d

∑
j x

(1)
ij e+ 1

}
and

c
(1)
ij = min{cij , dx(1)

ij e+ 1}. This describes the graph G
(1)
c . Note c

(1)
ij ≤ t+ 1.

2: Second Phase: Subdividing vertices with large multiplicities. (no change from

Algorithm 30 except tracking edge capacities). We set c
(2)
i′j′ = c

(1)
ij where the edge (i, j)

got assigned to i′ and j′ which are copies of i and j respectively. This defines G
(2)
c . Note

the edges are not split, only vertices are split.

p

3

q

4

r

3

3 2

p1

p2

p3

q1

q2

q3

q4

r1

r2

r3

3 3

3

3

3
2

2

2

2

Figure 8.1: Example of Reduction from the maximum capacitated b–Matching Prob-

lem to the Maximum Matching Problem. The edges in the complete bipartite graphs

have the same weight.

194

Algorithm 31 Rounding a fractional capacitated b–Matching in small space (Part

II)
1: Third Phase: Reducing the problem to a weighted matching on small graph.

(different from Algorithm 30). The following steps can be viewed as first constructing

Long(G
(2)
c) and then applying the third phase of Algorithm 30. In more details:

(a) For each i ∈ V (2) with b
(2)
i , create i(1), i(2), · · · , i(b(2)

i). For each edge e = (i, j), we

create 2c
(2)
ij vertices pei,1, pei,2, · · · , pei,c(2)

ij

, pej,1, pej,2, · · · , pej,c(2)
ij

.

(b) Add edges (pei,`, pej,`) with edge weight wij . Add a complete bipartite graph be-

tween i1, i2, · · · and pei,1, pei,2, · · · with edge weight wij . See Figure 8.1.

(c) Run any fast approximation for finding a (1 − δ
4(R+1))-approximate maximum

weighted matching in G(3) let this matching be M(3)
c .

2: Final Phase: Output (same as Algorithm 30). Matching M(3)
c implies a b–Matching

M(2)
c in G

(2)
c of same weight (merge edges) which in turn implies a b–MatchingM(1)

c in

G
(1)
c of same weight (merge vertices). M(0)

c ∪M(1)
c is the final solution.

195

In both cases the difference between the sum of the new edge multiplicities and the

new capacities (the slack) is at least 1 and the first part of Lemma 7.8.1 tells us that

these vertices in Long(G) cannot be part of a violated odd-set in Long(G). Therefore

Long(x(1)) is feasible for Long(G). The lemma follows from Theorem 8.2.3.

Therefore the only task that remains is to find a (1− δ) approximate rounding of the

fractional solution x
(1)
ij on G

(1)
c = (V,E(1)) with vertex and capacities {b(1)

ij } and {c(1)
ij }

respectively.

Lemma 8.4.2. Let OPT (1) be the maximum capacitated b–Matching of G
(1)
c = (V,

E(1)). Let W =
∑

(i,j)∈E(1) c
(1)
ij wij. Then W ≤ 2Rβ∗ +OPT (1) ≤ (2R + 1)β∗.

Proof. OPT (1) ≤ β∗ because we are only decreasing vertex and edge capacities. By

construction, c
(1)
ij ≤ dx

(1)
ij e+ 1 ≤ x

(1)
ij + 2. Note

∑
(i,j)∈E(1) x

(1)
ij wij ≤ OPT (1). We have

already seen that
∑

(i,j)∈Ê wij ≤ Rβ∗. Observe that
∑

(i,j)∈E(1) wij ≤
∑

(i,j)∈Ê wij.

The lemma follows.

Lemma 8.4.3. Algorithm 31 outputs a capacitated b–Matching of weight at least

(1− δ)
∑

(i,j)∈E wijxij − δβ∗.

Proof. Since second phase is exactly the same as in the uncapacitated case in Sec-

tion 7.8, we have
∑

(i,j)∈E(2) wijx
(2)
ij ≥ (1−δ)

∑
(i,j)∈E(1) wijx

(1)
ij . Moreover since we did

not introduce any new edge W =
∑

(i,j)∈E(2) wijc
(2)
ij =

∑
(i,j)∈E(1) c

(1)
ij wij ≤ (2R+1)β∗.

Now consider the step 4 (third phase) of Algorithm 31; we first construct

Long(G
(2)
c) where the edge (i, j) gets subdivided to (i, pij,i), (pij,i, pij,j), (pij,j, j) with

196

weights wij, wij, wij. Based on [86, Theorem 32.4, Vol A, page 567], there exists a feasi-

ble uncapacitated b–Matching in Long(G
(2)
c) whose weight is at least∑

(i,j)∈E(2) wijx
(2)
ij + W . Moreover if we find an uncapacitated b–Matching in

Long(G
(2)
c) of weight W then there exists a capacitated b–Matching in G

(2)
c of weight

W −W .

The step 4 of Algorithm 31 then reduces finding an uncapacitated b–Matching in

Long(G
(2)
c) to a matching in G

(3)
c where we replace every edge by a complete bipartite

graph corresponding to the capacities of the two endpoints. Let the weight of the

maximum matching of this graph G
(3)
c be w(M∗).Then w(M∗) ≥

∑
(i,j)∈E(2) wijx

(2)
ij +

W . Suppose that we find a δ
4T+4

-approximate maximum matching in G
(3)
c , using the

algorithm in [34, 35] which takes time |E(G
(3)
c)| times

O(R
δ

log(R/δ)) which is O(m′Rδ−3 log(R/δ)). This gives us a matching of weight at

least w(M∗)− δw(M∗) which corresponds to a capacitated b–Matching in G
(2)
c with

weight w(M∗)− δw(M∗)−W . Now

w(M∗)− δw(M∗)−W ≥
∑

(i,j)∈E(2)

wijx
(2)
ij + W − δw(M∗)−W

=
∑

(i,j)∈E(2)

wijx
(2)
ij −

δw(M∗)
4(R+ 1)

≥
∑

(i,j)∈E(2)

wijx
(2)
ij − δβ

∗ ≥ (1− δ)
∑

(i,j)∈E(1)

wijx
(1)
ij − δβ

∗

We get a matching M(1)
c in G

(1)
c of weight w(M(1)

c) ≥ (1 − δ)
∑

(i,j)∈E(1) wijx
(1)
ij −

δβ∗. Observe that w(M(0)
c) ≥ (1 − δ)

∑
(i,j)∈E wij

(
xij − x(1)

ij

)
where w(M(0)

c) =∑
(i,j)∈E x̂

(0)
ij wij. Then w(M(0)

c) + w(M(1)
c) is at least (1− δ)

∑
(i,j)∈E wijxij − δβ∗ as

desired. This proves Lemma 8.4.3, which in turn proves Theorem 8.1.4.

197

Chapter 9

Application III: Dual-Primal

Approach to Nonbipartite

b-Matching

Chapter Outline: In this chapter, we apply the dual-primal approach in Section

6.3 to the nonbipartite b–Matching problem. We presented the dual-primal approach

in Section 6.3 with an example of the bipartite MWM. The algorithm for the nonbi-

partite b–Matching problem is similar to the bipartite MWM. However, we generalize

its building blocks in order to handle odd set constraints. Recall that the standard

198

LP for the nonbipartite b–Matching problem:

β∗ = LP22(b) = max
∑

(i,j)wijxij∑
j xij ≤ bi ∀i ∈ V∑
(i,j):i,j∈U xij ≤ b||U ||b/2c ∀U ∈ O

xij ≥ 0

(LP22)

We give the generalized version of the dual-primal approach and building blocks

in Section 9.1. In Sections 9.2 and 9.3, we present algorithms for the unweighted and

weighted b–Matching problems. In Section 9.4, we present the deferred sparsification

algorithm which is a generalization of the deferred degree counting (see Section 6.3.2).

In Section 9.5, we present a rounding algorithm for the compressed fractional solution.

9.1 A Framework for a Dual-Primal Approach

Suppose we have the following packing optimization problem:

β∗ = max cTx (Primal)

ATx ≤ b

x ≥ 0

where c ∈ Rm
+ (where R+ denotes the nonnegative reals) b ∈ RM

+ and A ∈ Rm×M
+ .

In the example of the b–Matching problem, x is a fractional assignment over edges

in the graph and so m = poly(n) for the problem size n, for example, the number of

vertices.

199

Definition 9.1.1. Define Primal to be Dual-Primal amenable if for the feasibility

problem Dual(β,Λ) defined as

Outer Covering: {Ay ≥ c

Q(β,Λ) :



Inner Packing: {Poy ≤ Λqo

Q̃(β) :



bTy ≤ β

Piy ≤ qi

y ≥ 0

(Dual(β,Λ))

where A ∈ Rm×N
+ , y,b ∈ RN

+ , Po,Pi ∈ Rn×N
+ , qo,qi ∈ Rn

+, ρo, ρi,Λ ∈ R+ and the

following holds:

(d1) Poy ≤ qo and y ≥ 0 implies Ay ≤ ρoc.

(d2) Poy ≤ 2qo and y ≥ 0 implies Piy ≤ qi.

(d3) Piy ≤ qi and y ≥ 0 implies Poy ≤ ρiqo.

(d4) If there exists y such that Ay ≥ (1− 3ε)c and bTy ≤ β; then β∗ < β/(1− a0ε).

Of course the pairs (A,A) and (b,b) have to be related – in this paper A,b will

correspond to projections of A, b to fewer rows and indices respectively (from M to

N); that is, by padding y with 0 entries we can get y ∈ RM
+ such that Ay ≥ c and

bTy ≤ β implies Ay ≥ c and bTy ≤ β. The transformation allows us to reduce M to

N ; in the example of the b–Matching problem, we will have M = 2n and N = nO(1/ε).

Definition 9.1.1 is stating that the addition of a small number of constraints Poy ≤ qo

200

does not affect the covering program but allow us to prove a width of ρo. Likewise

there exists a relaxed version of Poy ≤ qo which is Piy ≤ qi, where the relaxation is

by a factor ρi.

A Basic Algorithm: Suppose a0, a1, a2 are small constants. Consider:

uTAy ≥
(

1− ε

2

)
uTc subject to y ∈ Q(β, 2) (Outer)

Suppose that for any nonnegative u ∈ Rm
+ we have an Oracle that either (i)

provides a solution for Outer or (ii) provides a (compressed) feasible solution for

Primal satisfying cTx ≥ (1− a1ε)β along with additional properties Prop. Moreover

if Dual(β, 1) is feasible it always returns the solution as (i). Also suppose that we

have an initial solution y0 which satisfies Q(β0, 1) along with Ay0 ≥ (1 − ε0)c and

β∗/a2 ≤ β0 < β∗/2.

Then we can apply the fractional covering framework to Dual(β, 2) (see Section

2.3.2 for the details of the framework). In cases (i), we can use the solution for Outer

as a witness for the fractional covering framework. In cases (ii) we simply increase β

by a factor of (1 + ε). Clearly we cannot increase β beyond β∗/(1 − a1ε) < 2β∗ due

to case (ii) since we exceed the maximum possible value of Primal. Moreover, any

admissible witness returned for case (i) for a particular value of β, continues to be

admissible for larger values of β (see Section 6.1.2). Therefore eventually, we must

have O(ρoε
−2 log n) admissible witnesses for some β. Since the width is ρo using (d1)

we have a Ay ≥ (1 − 3ε)c. Therefore from (d4) we have β∗ ≤ β/(1 − a0ε). But if

we remembered the x returned for β/(1 + ε) then we know cTx ≥ (1− a2ε)β/(1 + ε).

201

This implies that cTx ≥ (1 − (a0 + a1 + 1)ε)β∗; and the property Prop also holds.

The total number of queries to Oracle is O(ρo(ε
−2 + 1

ε
log 1

1−ε0) logm + 1
ε

log a2).

Assuming ε0 <
15
16

, i.e., sufficiently separated from 1, the number of queries to the

oracle is O(ρoε
−2 logm). After each query, any specific u` increases or decreases by

at most e±ε; thus the entries of u are in range m±O(1/ε).

Note that Q(β, 2) is described using O(n) constraints – and it is plausible that

we can find a solution y to Outer in each step which has O(n poly(ε−1, log n))

nonzero entries. Then the y maintained by the overall covering formulation will also

have O(n poly(ε−1, log n)) non-zero entries provided logm = poly(ε−1, log n). Note

that the entries of the vector u are generated implicitly (using exponentials) by the

fractional covering paradigm, namely u` = 1
b`

exp
(
− (Ay)`

b`

)
, then if we can compute

(Ay)` then we would not even have to store A – if n poly(ε−1, log n) = o(m) we can

solve the problem Primal with o(m) storage. Observe that we get a solution for the

system ATx ≥ b in space which is sublinear! Summarizing:

Theorem 9.1.2 (The basic algorithm). Assume logm = poly(ε−1, log n). Suppose

that given y with O(n poly(ε−1, log n)) non-zero entries we can construct the vector

u in O(1) passes in the semi-streaming model. Suppose that for any nonnegative

u ∈ Rm
+ we have an Oracle that either (i) provides a solution for Outer using

O(n poly(ε−1, log n)) space, O(m poly(ε−1, log n)) time and O(1) passes; (ii) provides

a (compressed) feasible solution for Primal satisfying cTx ≥ (1 − a1ε)β along with

additional properties Prop. Moreover if Dual(β, 1) is feasible it always returns the

202

solution as (i). Then starting from a suitable initial solution we can find a compressed

solution of Primal using O(n poly(ε−1, log n)) space and O(m poly(ε−1, log n)) time

and O(ρoε
−2 logm) passes over an implicit representation of ATx ≥ b.

Improving the basic algorithm: Is the number of passes or rounds in Theo-

rem 9.1.2 optimal? This is the central question we ask. We show that if we can

provide suitably defined deferred data structures to store u (approximately) then we

may not even need to compute all the entries of u.

Theorem 9.1.3. Suppose we have a MicroOracle that either (i) provides a solu-

tion for Inner defined as:

zTPoy ≤
13

12
zTqo

uT
sAy ≥

(
1− ε

8

)
uT
s c and G

Q̃(β) :



bTy ≤ β

Piy ≤ qi

y ≥ 0

(Inner)

or (ii) provides a solution of Primal with the additional property Prop. Then we can

find a solution of Primal with property Prop using O(pρo
ε

logm
logn

) rounds of construction

of deferred u–Sparsifiers, with O(ρoε
−2 logm) in total, and O(ρoρiε

−2(log n)(logm) log 1
ε
)

queries to MicroOracle with % ≤ 12uT
s c

13zTqo
. The overall space complexity of the algo-

rithm will be O(n1+1/p) assuming p = O
(

logn

log 1
ε
+log logn

)
is not too large.

Definition 9.1.4. (A Deferred u-Sparsifier.) Suppose given {ς`} and the promise

that ς`/χ ≤ u` ≤ χς`, we can construct a data structure that samples a subset of u

203

and stores them. After the subset has been stored, the exact values of those store

entries of u are revealed and the data structure constructs nonnegative us such that

for some property G which is convex;

uT
sAy ≥

(
1− ε

8

)
uT
s c and G =⇒ uTAy ≥

(
1− ε

2

)
uTc (Simple)

Assume 0 satisfies G; further assume that there exists an algorithm to construct

such deferred u-sparsifiers using small space; say O(n poly(χ, ε, log n)) – in our case

the running time will be O(nχ
2

ξ2 log4 n).

Lemma 9.1.5. Suppose we are given an algorithm to construct deferred u-Sparsifiers,

an initial solution as described in the basic algorithm and a ModOracle that that

either (i) provides a solution for Sparse given as:

uT
sAy ≥

(
1− ε

8

)
uT
s c and G subject to y ∈ Q(β, 2) (Sparse)

or (ii) provides a (compressed) feasible solution for Primal satisfying cTx ≥ (1 −

a1ε)β along with additional properties Prop. Then we can find a (1 − (a0 + a1 +

1))-approximate solution with additional properties Prop using O(pρo
ε

logm
logn

) rounds of

creating these data structures.

Proof. Then we can simultaneously create t = O(log1+ε χ) different data structures

and simulate t steps of the basic algorithm without reading any further input. If

χ = n1/(4p) for some p > 1 then this reduces the effective number of steps (when we

construct these data structures) by a factor of O(1
pε

log n).

204

Lemma 9.1.6. Suppose we have MicroOracle that either (i) provides us a solution

for LagInner defined as:

uT
sAy − %zTPoy ≥ uT

s c− %zTqo and G

Q̃(β) :



bTy ≤ β

Piy ≤ qi

y ≥ 0

(LagInner)

or (ii) a (compressed) feasible solution for Primal satisfying cTx ≥ (1 − a1ε)β

along with additional properties Prop. Then we can implement ModOracle using

O(ρi(log n) log 1
ε
) queries to MicroOracle. Further, we never need to invoke Mi-

croOracle for any % ≥ 12uT
s c

13zTqo
.

Proof. First observe that if MicroOracle answers (ii) then we immediately have

our solution for ModOracle. In the remainder we can assume that MicroOracle

never answers (ii); observe that is assumed if Dual(β, 1) is feasible.

First note that if LagInner is solved, i.e., part (i) applies, then using O(log 1
ε
) and

standard Lagrangian application we can solve Inner. To see that; observe that the

solution of MicroOracle also implies a solution of (along with the other constraints)

since zTqo ≥ 0:

uT
sAy − %zTPoy ≥ uT

s c−
13

12
%zTqo (9.1.1)

We invoke the MicroOracle with % = 0. If the returned solution y satisfies

zTPoy ≤
13

12
zTqo (9.1.2)

205

then we have immediately a solution for Inner. Now if % ≥ %0 = 12uT
s c

13zTqo
then y = 0

is a feasible solution for Equation 9.1.1 since right hand size is 0. Note y = 0 also

satisfies G by assumption and definitely satisfies Equation 9.1.2.

Therefore we can perform a binary search over % and finally achieve an interval

[%1, %2] where in the corresponding solutions; ỹ1 does not satisfy Equation 9.1.2 and

ỹ2 does (but both satisfy Equation 9.1.1, G and Q̃(β)). Let Υ = 13
12

zTqo. Eventually

we can narrow the interval %2 − %1 ≤ ε%0, %2 > %1 and

zTPoỹ1 = Υ1 > Υ =
13

12
zTqo and zTPoỹ2 = Υ2 ≤ Υ

We can then find two numbers s1, s2 such that s1 + s2 = 1 and s1Υ1 + s2Υ2 = Υ =

13
12

zTqo. Let y = s1ỹ1 + s2ỹ2. Observe that y satisfies Equation 9.1.2, G and Q̃(β).

Now observe that since ỹ1, ỹ2 both satisfy Equation 9.1.1,

uT
sAy = s1u

T
sAỹ1 + s2u

T
sAỹ2

≥ s1

(
uT
s c− %1

13

12
zTqo + %1z

TPoỹ1

)
+ s2

(
uT
s c− %2

13

12
zTqo + %2z

TPoỹ2

)
= uT

s c− %1s1 (Υ−Υ1)− %2s2 (Υ−Υ2)

= uT
s c− %1s1 (Υ−Υ1)− %1s2 (Υ−Υ2)− (%2 − %1) (Υ−Υ2)

= uT
s c− %1 (Υ− (s1Υ1 + s2Υ2))− (%2 − %1) (Υ−Υ2)

= uT
s c− 0− (%2 − %1) (Υ−Υ2) ≥ uT

s c− ε%0Υ = uT
s c− εuT

s c

But observe that Inner is exactly the oracle required for solving Sparse using the

fractional packing framework! This requires O(ρi log n) invocations of Inner since

the width is ρi and we want a (1 + 6δ) approximate solution of fractional packing

206

where δ = 1
6
. Again, if we fail to find any of these O(ρi log n) solutions, then we

already have a solution for part (ii) of ModOracle. Note the condition on % follows

from the construction.

In summary we get Theorem 9.1.3.

9.2 The Unweighted b-Matching Problem

In this section we prove the following theorem:

Theorem 9.2.1. For any 0 < ε ≤ 1 and p ≤ logn

64(log 1
ε
+log logn)

we can construct an

integral solution for the unweighted maximum b-Matching to a factor (1 − O(ε)) in

O(p/ε) passes and O(pm poly(ε−1, log n)) time and O(n1+1/p) space.

The formulation LP39 is the unweighted version of the standard LP formulation for

the b–Matching problem. Recall that variable xij corresponds to the multiplicity of

the edge (i, j) in the optimum solution. We assume that xij = 0 for all (i, j) 6∈ E.

Again, this is an undirected formulation so xij = xji, i.e., the order of the indices of

x are not relevant. Also, ||U ||b =
∑

i∈U bi and O = {U ⊆ V ; ||U ||b is odd}. We have

207

the following primal and dual programs:

β∗ = max
∑
(i,j)

xij

∑
j

xij ≤ bi ∀i ∈ V

∑
(i,j):i,j∈U

xij ≤ b||U ||b/2c ∀U ∈ O

xij ≥ 0 (LP39)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β∗ = min
∑
i

biyi +
∑
U∈O
b||U ||b/2c zU

yi + yj +
∑

U∈O;i,j∈U
zU ≥ 1 ∀(i, j) ∈ E

yi, zU ≥ 0 (LP40)

We would like to proceed as in Section 6.3, by altering the formulation LP40 so that

it is amenable to the dual-primal method. However that step is significantly more

involved. We first use an intermediate formulation.

Lemma 9.2.2. β̂ = β∗ where β̂ is defined as follows:

β̂ = min
∑
i

biyi +
∑
U∈O
b||U ||b/2c zU

yi + yj +
∑

U∈O;i,j∈U
zU ≥ 1 ∀(i, j) ∈ E

2yi +
∑

U∈O:i∈U
zU ≤ 2 ∀i

yi, zU ≥ 0 (LP41)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β̂ = max
∑
(i,j)

xij − 2
∑
i

µi

∑
j

xij − 2µi ≤ bi ∀i

∑
(i,j):i,j∈U

xij −
∑
i∈U

µi ≤
⌊
||U ||b

2

⌋
∀U ∈ O

xij , µi ≥ 0 (LP42)

Proof. Cunningham and Marsh [31] show that the optimum solution {y∗i }, {z∗U} of

LP40 is laminar and integral for regular matching. This is proved for b–Matching in

[2]. However those result in themselves are not sufficient to prove the lemma.

Start from a laminar integral solution of LP40. Observe that all y∗i , z
∗
U ≤ 1 since

208

edge weights are at most 1. Next observe that if z∗U = 1 then we will never have

z∗U ′ = 1 for any U ′ ⊂ U . Therefore {U |z∗U = 1} form a disjoint family.

Finally for an odd set U with z∗U = 1 let U∗ = {i|y∗i = 1; i ∈ U}. If U∗ 6= ∅ then

we can set ŷj = 1
2

for j ∈ U \ U∗ and ŷi = 1 for i ∈ U∗. Set ẑU = 0 and for all other

sets U ′ we keep ẑU ′ = z∗U ′ and for all vertices j 6∈ U we have ŷj = y∗j . Then this new

solution {ŷi}, {ẑU} satisfies all the constraints and has a better or equal objective

value! Therefore we can assume
⋃
U :z∗U=1 U and {i|y∗i = 1} are disjoint. Therefore the

constraint 2yi +
∑

U∈O:i∈U zU ≤ 2 follows for all i. Note that this constraint is true

for an optimum half-integral solution of LP40.

The actual formulation used is given by the next lemma:

Lemma 9.2.3. Let Os = {U ⊆ V ; ||U ||b is odd and ||U ||b ≤ 4/ε}. Consider:

A :

yi + yj +
∑

U∈Os;i,j∈U
zU ≥ 1 ∀(i, j) ∈ E

Q(β,Λ)



A′(Λ) :

{
2yi +

∑
U∈Os:i∈U

zU ≤ 2Λ ∀i

Q̃(β) :



∑
i

biyi +
∑
U∈Os

b||U ||b/2c zU ≤ β

2yi +
∑

U∈Os:i∈U
zU ≤ 4/ε ∀i

yi, zU ≥ 0

(LP43)

The (1 − 3ε) feasibility of LP43 for any Λ ≥ 1, i.e., yi + yj +
∑

U∈Os;i,j∈U zU ≥

(1− 3ε),∀(i, j) ∈ E implies β∗ ≤ β/(1− 3ε). As a consequence the formulation LP42

is Dual-Primal amenable according to Definition 9.1.1. Note, m = n2 still, even

though we have N = nO(1/ε) variables.

209

Proof. If we have a (1− 3ε) feasible solution of LP43 we have β∗ ≤ β/(1− 3ε) simply

by scaling and feasibility of LP40 (we have a feasible solution of LP40 only using

some of the variables).

We now prove the following two theorems; which together imply Theorem 9.2.1.

Theorem 9.2.4. We either provide a feasible (but compressed) solution to LP42

with
∑

(i,j)∈E xij − 2
∑

i µi ≥ β(1 − 3ε/2) with the additional property
∑

i µi ≤ 6β

or we prove that β ≥ (1 − 6ε)β∗. For the parameter p given in Theorem 9.2.4 we

can implement the algorithm using O(p/ε) passes, O(pmε−4 log2 n+ n1+1/p) time and

O(n1+1/p) space.

Theorem 9.2.5. For any 0 < ε ≤ 1
6

given a feasible (but compressed) solution of

LP42 with β/(1 − 6ε) ≥
∑

(i,j)∈E xij − 2
∑

i µi ≥ β(1 − 3ε/2) and the additional

property that
∑

i µi ≤ 6β we can produce an integral b–Matching of size at least

(1− 5ε)β using O(n poly ε−1 log n) space and time.

We prove Theorem 9.2.4 first – this is where the feasible solution is produced. Theo-

rem 9.2.5 is about rounding and is proved in Section 9.2.1. To prove Theorem 9.2.4

we would want to apply Theorem 9.1.3 to Lemma 9.2.3; but first we must show the

existence of a deferred sparsification as in Section 6.3; and define the property G

defined in Definition 9.1.4 and used in Theorem 9.1.3.

Lemma 9.2.6. Suppose we have H = (V,E ′, us) as a (ε/16)-Cut-Sparsifier for G =

(V,E, u). Define the constraint G to indicate the property that for any z̃U > 0 the set

210

U satisfies
∑

(i,j):i,j∈U u
s
ij ≥

∑
i∈U
∑

j 6∈U u
s
ij = C(U, us). Then,

∑
i

ỹi
∑
j

usij +
∑
U∈Os

z̃U
∑

(i,j):i,j∈U

usij ≥ (1− ε

8
)
∑
(i,j)

usij =⇒

∑
i

ỹi
∑
j

uij +
∑
U∈Os

z̃U
∑

(i,j):i,j∈U

uij ≥ (1− ε

2
)
∑
(i,j)

uij

Proof. Observe that (1−ε/16)
∑

j u
s
ij ≤

∑
j uij ≤ (1+ε/16)

∑
j u

s
ij using a cut defined

on the single vertex. Note

∑
(i,j)

usij =
1

2

∑
i

∑
j

usij ≥
1

2

∑
i

∑
j

uij

 1

(1 + ε/8)

≥
(

1− ε

8

) 1

2

∑
i

∑
j

uij =
(

1− ε

8

)∑
(i,j)

uij

Also for any U with z̃U > 0 we have:

∑
(i,j):i,j∈U

uij =
1

2

∑
i∈U

∑
j

uij − C(U, u)


≥ 1

2

∑
i∈U

(
1− ε

16

)∑
j

usij −
(

1 +
ε

16

)
C(U, us)


=
(

1− ε

16

) 1

2

∑
i∈U

∑
j

usij − C(U, us)

− ε

16
C(U, us)

≥
(

1− ε

16

) ∑
(i,j):i,j∈U

usij −
ε

16

∑
(i,j):i,j∈U

usij

(
since

∑
(i,j):i,j∈U u

s
ij ≥ C(U, us)

)

211

which implies
∑

(i,j):i,j∈U uij ≥
(
1− ε

8

)∑
(i,j):i,j∈U u

s
ij. Therefore

∑
i

ỹi
∑
j

uij+
∑
U∈Os

z̃U
∑

(i,j):i,j∈U

uij

≥
∑
i

ỹi

(
1− ε

16

)∑
j

usij +
∑
U∈Os

z̃U

(
1− ε

8

) ∑
(i,j):i,j∈U

usij

≥
(

1− ε

8

)∑
i

ỹi
∑
j

usij +
∑
U∈Os

z̃U
∑

(i,j):i,j∈U

usij


≥
(

1− ε

4

)(
1− ε

8

)∑
(i,j)

usij

≥
(

1− ε

4

)(
1− ε

8

)(
1− ε

8

)∑
(i,j)

uij ≥
(

1− ε

2

)∑
(i,j)

uij

The lemma follows.

The algorithm for constructing a deferred sparsification will be given in Section 9.4.

Theorem 9.2.4 follows from Lemma 9.2.8 and Theorem 9.1.3. We need Lemma 7.5.1.

Lemma 7.5.1. Given an unweighted graph G with parameters κ and a special node

s, in time O(n poly(δ−1, log n)) we can identify a collection L of odd-sets which (i)

do not contain s (ii) define cut of at most κ in G and (iii) every other odd set not

containing s and with a cut less than κ intersects with a set in L.

We will be using a corollary of the above:

Lemma 9.2.7. Given a graph G = (V,E), non-negative numbers qij on edges and q̂i

on nodes i ∈ V such that

(A1) If bi = 1 then q̂i ≥ C.

(A2)
∑

j qij ≤ q̂i for all i.

212

(A3) Any odd-set U with ||U ||b > 4/ε satisfies
∑

i∈U

(
q̂i −

∑
j qij

)
> 1.

using space O(nε−2) and O(m)+O(n poly(ε−1, log n)) time and a single pass over the

list of edges we can find a collection L such that (i) every odd-set U ∈ L satisfies

∑
(i,j):i,j∈U

qij ≥
1

2

(∑
i∈U

q̂i − 1

)
(9.2.1)

and (ii) every odd set U 6∈ L either intersects with a set in L or satisfies

∑
(i,j):i,j∈U

qij ≤
1

2

(∑
i∈U

q̂i − (1− ε)

)
(9.2.2)

Observe the conditions (A1) and (A3) imply that singleton vertices or very large sets

cannot be present in L and be returned.

Proof. Follows from creating a graph H on the vertex set V ∪ {s} where we have

bqij8ε−3c parallel edges between i and j. After the edges have been added we add

edges between i and s till the degree of s is dq̂i8ε−3e — this is feasible due to (A2).

We now apply Lemma 7.5.1 with κ = b8ε−3c. Note that any set which is returned

in L satisfies Equation 9.2.1 easily since

∑
(i,j):i,j∈U

bqij8ε−3c ≥ 1

2

(∑
i∈U
dq̂i8ε−3e − b8ε−3c

)
=⇒

∑
(i,j):i,j∈U

qij ≥
1

2

(∑
i∈U

q̂i − 1

)

For any odd set which is not returned and does not intersect the any of the sets

returned, the cut after discretization is at least κ;

∑
(i,j):i,j∈U

bqij8ε−3c ≤ 1

2

(∑
i∈U
dq̂i8ε−3e − b8ε−3c

)

=⇒
∑

(i,j):i,j∈U

qij ≤
(

4/ε
2

)
8ε−3

+
1

2

(∑
i∈U

q̂i +
4/ε

8ε−3
− 1

)

which gives us Equation 9.2.2.

213

We now prove the property required by the MicroOracle in Theorem 9.1.3.

Lemma 9.2.8. Given any nonnegative {usij}, {ζi}, β, ε, for any 0 ≤ % <
6
∑

(i,j) u
s
ij

13
∑
i ζi

, we

can either (i) provide {yi}, {zU} that satisfies LP44

∑
i

xi

∑
j

usij − 2%ζi

+
∑
U∈Os

zU

 ∑
(i,j):i,j∈U

usij −
∑
i∈U

%ζi

+ 2%
∑
i

ζi ≥
∑
(i,j)

usij

subject to Q̃(β) and G (LP44)

or (ii) provide a compressed representation of a solution for LP42 such that
∑

(i,j) xij−

2
∑

i µi ≥ (1 − 3ε/2)β with the property
∑

i µi ≤ 6β (which corresponds to Prop in

Theorem 9.1.3).

Proof. Set γ′ =
(∑

(i,j) u
s
ij − 2%

∑
i ζi

)
. Note that

γ′ ≥

∑
(i,j)

usij −
12

13

∑
(i,j)

usij

 =
1

13

∑
(i,j)

usij ≥
1

6

∑
i

%ζi (9.2.3)

First we compute S = {i|
∑

j u
s
ij−2%ζi > γ′bi/β} and ∆S =

∑
i∈S

(∑
j u

s
ij − 2%ζi

)
If ∆S ≥ εγ′/4 then we set y′i = γ′

∆S
for all i ∈ S and set all other y′i, z

′
U to 0. It is easy

to see that ∑
(i,j)

usij − 2%
∑
i

ζi

 = γ′ =
∑
i∈S

y′i

∑
j

usij − 2%ζi


γ′ =

∑
i∈S

y′i

∑
j

usij − 2%ζi

 >
∑
i∈S

y′i
γ′

β
bi =⇒

∑
i∈S

y′ibi < β

and {y′i}, {z′U} satisfy the system LP44. Note that no odd sets are used. Therefore

in the remainder we assume that ∆S < εγ′/4. To apply Lemma 9.2.7 on the vertex

214

set V \ S set:

qij = (1− ε/4)βusij/γ
′ if both i, j ∈ V \ S and 0 otherwise

q̂i = bi + 2(1− ε/4)%βζi/γ
′

Observe that: ∑
(i,j):i,j∈U

(1− ε/4)βusij
γ′

 ≥ 1

2

(∑
i∈U

(
bi +

2(1− ε/4)%βζi
γ′

)
−X

)

⇐⇒ (1− ε/4)β

γ′

 ∑
(i,j):i,j∈U

usij −
∑
i∈U

%ζi

 ≥ 1

2

(∑
i∈U

bi −X

)
(9.2.4)

Observe that we satisfy the conditions A1, A2 trivially. We also satisfy A3 since

for any i ∈ V \ S we have
∑

j u
s
ij − 2%ζi ≤ γ′bi/β, and for ||U ||b > 4/ε we have:

∑
i∈U

q̂i −∑
j

qij

 =
∑
i∈U

bi +
2(1− ε/4)%βζi

γ′
−
∑
j

(1− ε/4)βusij
γ′


=
∑
i∈U

bi − (1− ε

4

) β
γ′

∑
j

usij − 2%ζi


≥
∑
i∈U

εbi/4 = ε||U ||b/4 > 1

Using Lemma 9.2.7 we get a collection of odd-sets K where each U ∈ K is a subset

of V \ S and satisfies the condition
∑

(i,j):i,j∈U qij ≥
1
2

(∑
i∈U q̂i − 1

)
. Using Equa-

tion 9.2.4 for X = 1 and the fact that
∑

i∈U bi − 1 = b||U ||b/2c ≥ 1
3

∑
i∈U bi: ∑

(i,j):i,j∈U

usij −
∑
i∈U

%ζi

 >
γ′

β

⌊
||U ||b

2

⌋
≥ 1

3

∑
i∈U

γ′bi
β

≥ 1

3

∑
i∈U

∑
j

usij − 2%ζi

 (9.2.5)

since we have
∑

j u
s
ij − 2%ζi ≤ γ′bi/β for i ∈ V \ S.

215

Let ∆K =
∑

U∈K

(∑
(i,j):i,j∈U u

s
ij − %

∑
i∈U ζi

)
. If ∆K ≥ εγ/8 then we set z′U =

γ′/∆K and otherwise, we set y′i, z
′
U = 0. Observe that

∑
i

y′i

∑
j

usij − 2%ζi

+
∑
U∈Os

z′U

 ∑
(i,j):i,j∈U

usij − 2%
∑
i∈U

ζi


=
∑
U∈K

γ′

∆K

 ∑
(i,j):i,j∈U

usij − %
∑
i∈U

ζi

 =
γ′

∆K
∆K = γ′

∑
i

y′ibi +
∑
U∈Os

z′U b||U ||b/2c =
∑
U∈K

γ′

∆K
b||U ||b/2c

≤
∑
U∈K

γ′

∆K

β

γ′

 ∑
(i,j):i,j∈U

usij − %
∑
i∈U

ζi

 = β

 ∑
(i,j):i,j∈U

usij −
∑
i∈U

%ζi

 ≥ 1

3

(∑
i∈U

usij −
∑
i∈U

2%ζi

)

=⇒
∑

(i,j):i,j∈U

usij ≥
∑
i∈U

∑
j 6∈U

usij +
∑
i∈U

%ζi ≥
∑
i∈U

∑
j 6∈U

usij

We use Equation 9.2.5 in the last two equations. Therefore {y′i}, {z′U} satisfy LP44.

Thus the only case we are left to discuss is ∆K < εγ′/8 and ∆S ≤ εγ′/4. First,

“delete” the edges/vertices associated with S and K that is i ∈ S ∪ V (K) where

V (K) =
⋃
U∈K U :

ûij = us
ij if i, j 6∈ S ∪ V (K) and 0 otherwise

ζ̂i = ζi if i 6∈ S ∪ V (K) and 0 otherwise

216

Observe that S and V (K) are disjoint; and

∑
(i,j)

ûij − 2%
∑
i

ζ̂i =
∑

(i,j):i,j 6∈S∪V (K)

usij − 2%
∑

i 6∈S∪V (K)

ζi

=

∑
(i,j)

usij − 2%
∑
i

ζi

− ∑
i∈S∪V (K)

∑
j

usij − 2%ζi


= γ′ −

∑
i∈S

∑
j

usij − 2%ζi

− ∑
U∈V (K)

∑
i∈U

∑
j

usij − 2%ζi


≥ γ′ −∆S − 3∆K

(Using Equation 9.2.5 and definition of ∆K)

≥ γ′(1− ε/4− 3ε/8) = γ′(1− 5ε/8) (9.2.6)

Now set xij =
(1−ε/4)ûijβ

(1+ε/2)γ′
and µi = (1−ε/4)%ζ̂iβ

(1+ε/2)γ′
, which implies that:

∑
(i,j)

xij − 2
∑
i

µi ≥
(1− ε/4)β

(1 + ε/2)γ′

∑
(i,j)

ûij − 2%
∑
i

ζ̂i


≥ (1− ε/4)β

(1 + ε/2)γ′
γ′(1− 5ε/8) > β(1− 3ε/2)

Moreover (Using Equation 9.2.3) we have:

∑
i

µi ≤
∑
i

(1− ε/4)%ζ̂iβ

(1 + ε/2)γ′
≤ (1− ε/4)β

(1 + ε/2)

∑
i %ζi
γ′

≤ (1− ε/4)β

(1 + ε/2)
6 ≤ 6β

To verify that {xij}, {µi} satisfy LP42, observe that for any i ∈ S ∪ V (K) the

constraints are satisfied trivially since yij = µi = 0. Moreover if an i ∈ S ∪ V (K)

causes a violation of any odd-set U then either ||U−{i}||b is odd (which implies there

is a smaller violated odd-set) or

∑
(i′,j′):i′,j∈U−{i}

xi′j −
∑

i′∈U−{i}

µi′ >
||U − {i}||b

2
=⇒

∑
i′∈U−{i}

∑
j

xi′j − 2µi′ − bi′

 > 0

217

which implies that there is a vertex violation. Therefore it suffices to focus on

V \ (S ∪ V (K)).

Observe that for any i 6∈ S (and therefore for all i ∈ V \ (S ∪ V (K))) we have:

∑
j

xij − 2µi ≤
(1− ε/4)β

(1 + ε/2)γ′

∑
j

usij − 2%ζi

 ≤ (1− ε/4)

(1 + ε/2)
bi

Therefore all vertex constraints are satisfied. For U ⊆ V \ (S ∪ V (K)), observe that

if ||U ||b ≥ 4/ε then:

∑
i∈U

∑
j

xij − 2µi

 ≤ (1− ε/4)

(1 + ε/2)
||U ||b ≤ ||U ||b − 1 =⇒

∑
(i,j):i,j∈U

xij −
∑
i∈U

µi ≤
⌊
||U ||b

2

⌋

Therefore all that remain to be verified are odd-sets U ⊆ V \ (S ∪ V (K)) with

||U ||b < 4/ε. Using Equation 9.2.2 from Lemma 9.2.7 (and Equation 9.2.4 with

X = 1− ε) for any small odd-set U ⊆ V \ S disjoint from K we have:

∑
(i,j):i,j∈U

xij − 2
∑
i∈U

µi ≤
1

(1 + ε/2)

1

2

(∑
i

bi − (1− ε)

)
=

1

(1 + ε/2)

1

2

(∑
i

bi − 1 + ε

)

=
1

(1 + ε/2)

(⌊
||U ||b

2

⌋
+ ε/2

)
≤
⌊
||U ||b

2

⌋

The lemma follows.

9.2.1 Proof Of Theorem 9.2.5

Theorem 9.2.5. For any 0 < ε ≤ 1
6

given a feasible solution of LP42 with β/(1−

6ε) ≥
∑

(i,j)∈E xij − 2
∑

i µi ≥ β(1 − 3ε/2) and the additional property that
∑

i µi ≤

6β we can produce an integral b–Matching of size at least (1 − 5ε)β using O(n

218

poly(ε−1, log n)) space and time.

β̂ = max
∑
(i,j)

xij − 2
∑
i

µi

∑
j

xij ≤ bi + 2µi ∀i ∈ V

∑
(i,j):i,j∈U

xij ≤
⌊
||U ||b

2

⌋
+
∑
i∈U

µi ∀U ∈ O

xij , µi ≥ 0 (LP42)

Proof. Set x′ij = (1 − ε)xij and µ′i = (1 − ε)µi if µi ≥ ε/4 and µ′i = 0 otherwise.

Observe that {x′ij}, {µ′i} represent a feasible solution of LP42. Let V ′ = {i|µ′i > 0}.

Note since
∑

i µi ≤ 6β under the assumption in the theorem, we can immediately

conclude that |V ′| ≤ 24β/ε. Note
∑

(i,j)∈E x
′
ij −

∑
i µ
′
i ≥ (1− 3ε)β.

For each i ∈ V ′ add a new node designated as the “mate” of i with b = 2. Add an edge

between i and its mate and choose that new edge with fractional weight 2(dµ′ie−µ′i).

Let the set of mates V ′′ and this new solution be {x̂ij}. Note:

∑
(i,j)

x̂ij =
∑
(i,j)

x′ij +
∑
i

2(dµ′ie − µ′i) ≤
∑
(i,j)

x′ij + 2|V ′|

≤ (
∑
(i,j)

x′ij − 2
∑
i

µ′i) + 2
∑
i

µ′i +
48β

ε
<

50β

ε

Since we are adding nodes with even b values; these new nodes cannot create any

violated odd-sets in the new graph (otherwise we can remove the new nodes and

continue to preserve the violations). Therefore {x̂ij} is a feasible b–Matching in this

new graph with capacities bi + dµ′ie for the old vertices in V and 2 for vertices in V ′′.

219

Now perform the rounding of {x̂ij} to a factor (1 − ε2/25) as discussed in Theo-

rem 9.5.1 in Section 9.5 (setting ε = ε2/125). Discard 2dµ′ie edges from each i ∈ V ′

as follows. First discard any edge from a node in V to its mate in V ′′. At this point

we have no edges incident to any vertex in V ′′ and have deleted at most 2 edges per

vertex. We now delete the remainder of the edges arbitrarily, such that 2dµ′ie edges

in total are deleted from each i ∈ V ′. We have an integral b–Matching which respects

the capacities bi and whose value is at least (1− ε2/25)
∑

(i,j) x̂ij−
∑

i 2dµ′ie. Observe

that

(1− ε2/25)
∑
(i,j)

ŷij −
∑
i

2dµ′ie ≥
∑
(i,j)

ŷij −
∑
i

2dµ′ie − 2εβ

=
∑
(i,j)

y′ij −
∑
i

2µ′i − 2εβ ≥ (1− 3ε)β − 2εβ

Theorem 9.2.5 follows.

9.3 The Weighted b-Matching Problem

In this section we prove the following theorem; we remark that the main point of the

theorem is that the number of passes is independent of n and the running time is

near linear in m.

Theorem 9.3.1. For any 0 < ε ≤ 1 and p ≤ logn

64(log 1
ε
+log logn)

we can construct a com-

pressed fractional solution for the maximum unweighted b-Matching to a factor (1−9ε)

in O(pε−13 log2 1
ε
) = O(p poly ε−1) passes (or rounds) and O(m poly(ε−1, logB)) time

and O(n1+1/p) space.

220

New ideas needed and Roadmap: The algorithm and the proof of Theorem 9.3.1

will follow the discussion in Sections 6.3 and Section 9.2 but with major differences.

(i) We implement an initial “pruning” step which removes very low weight edges

which are unlikely to impact any maximal matching. This step is critical to en-

sure that the covering program has low width. This is discussed in Section 9.3.1.

(ii) The covering program we formulate is significantly different from previous sec-

tions. The key intuition is to restrict the space of odd-sets further (we already

saw ||U ||b ≤ 4/ε). This is also critical in ensuring that the width of any for-

mulation is small. This restriction along with the resulting fractional covering

formulation is discussed in Section 9.3.2.

(iii) The Oracle is much more complicated than in Sections 6.3 and 9.2. Intuitively

the oracle in those sections used the fact that either there were offending vertices

or there were offending odd-sets; and removal of both gave an almost feasible

solution. However we now have different tiers of weight, and the number of tiers

depend on n. If we want to ensure that the width is independent of n then

we have to analyze multiple tiers of weight simultaneously. This implies that

Lemma 9.2.7 is invoked multiple times; which in turn indicates why isolation

was necessary (to ensure that the different invocations of Lemma 9.2.7 refer to

the same quantities). This is described in Section 9.3.4.

221

Step 1: Bounding the smallest edge weight and Discretizing Weights. We

throw away all edges smaller than εW/B where B =
∑

i bi and W is the largest

weight. We then scale the edge weight such that the smallest edge weight Wm is

scaled to 1. We then round the weight of every edge down to the nearest power of

(1+ε). Let L denote the number of different edge weights we have: L = O(1
ε

logB). It

is immediate that the maximum weighted b–Matching in this new graph G′, denoted

by M(G′), satisfies M(G) ≥ WmM(G′) ≥ (1−ε)
(1+ε)
M(G) > (1 − 2ε)M(G). Therefore

estimatingM(G′) to (1−O(ε)) factor gives us a (1−O(ε)) approximate estimate for

M(G).

Lemma 9.3.2. Given any input graph G′ = (V,E ′) and a b-Matching instance which

has been discretized as in Step 1, we can compute a graph G̃ and a corresponding

b-Matching instance and vertex weights {$i} such that M(G′) ≥ M(G̃) ≥ (1 −

4ε)M(G′) and the edge weight of an edge wij in G̃ incident to the vertex i, is in the

range [$i
ϑ
, $i] where ϑ = 8

ε2

⌈
1
ε2

log 1
ε

⌉
. We use O(1

ε2
log 1

ε
) passes for this and each

wij remains at least 1. The number of vertices Ṽ in G̃ is at most O(n
ε

logB) and the

number of edges Ẽ is at most O(m
ε2

log2 1
ε
) and

∑
i∈Ṽ $i ≤ 6εϑM(G̃).

Observe that G̃ will not have integer weights, but it will not be relevant due to the

following non-trivial lemma – note Cunningham-Marsh [31] assumes integer weights.

Lemma 9.3.3. Let O = {U ⊆ Ṽ ; ||U ||b is odd, ||U ||b ≤ 4
ε
, 3ϑ$j ≥ ε3$i for all i, j ∈

222

U}.

β̂ = min
∑

i biyi +
∑

U∈O b||U ||b/2c zU

s.t yi + yj +
∑

U∈O;i,j∈U zU ≥ wij ∀(i, j) ∈ Ẽ

2yi +
∑

U∈O;i∈U zU ≤ 2$i ∀i ∈ Ṽ

yi, zU ≥ 0 ∀i ∈ Ṽ ;∀U ∈ O

(LP45)

There exists a feasible solution {ŷi}, {ẑU} for LP45 such that the objective value is

β̂ ≤ (1 + ε)M(G̃) and L = {U |ẑU 6= 0} is a laminar family.

The above lemma is completed by the complementary lemma regarding its dual;

Lemma 9.3.4. Given a (compressed; i.e., specified by a streaming algorithm) solution

{xij} to the system LP46,

∑
(i,j)wijxij = β∑
j xij ≤ bi ∀i∑

(i,j):i,j∈U

xij ≤
⌊
||U ||b

2

⌋
∀U ∈ O

xij ≥ 0

(LP46)

we can produce a solution (a transducer which produces the solution on reading the

streaming input one more time) {x̂ij} using O(ε−3) passes and O(n poly(ε−1, log n))

space such that
∑

(i,j) wijx̂ij = (1 − O(ε))β and the constraints
∑

j xij ≤ bi for all i;

and
∑

(i,j):i,j∈U xij ≤
⌊
||U ||b

2

⌋
for all U ∈ O = {U |||U ||b is odd } (not just O) hold,

i.e., the system LP22 is satisfied. Note that this implies a feasible fractional solution

for the b–Matching problem on G̃.

223

On the basis of Lemmas 9.3.3 and 9.3.4, we formulate the following fractional covering

problem where ρ = 24ϑ2/ε4 = O(ε−12 log2 1
ε
):

A :

{
yi + yj +

∑
U∈O;i,j∈U

zU ≥ wij ∀(i, j) ∈ Ẽ

Pw :



∑
i biyi +

∑
U∈O b||U ||b/2c zU ≤ β

yi + yj +
∑

U∈O;i,j∈U zU ≤ ρwij ∀(i, j) ∈ Ẽ

yi, zU ≥ 0

(LP47)

The final two lemmas complete Theorem 9.3.1.

Lemma 9.3.5. Given a deferred sparsification {usij} of {uij}, a solution to LP48 such

that in addition we satisfy that or any U ∈ O such that z′U > 0 we have
∑

i,j∈U u
s
ij ≥∑

i∈U
∑

j 6∈U u
s
ij = C(U, us),

∑
i

y′i
∑
j

usij +
∑
U∈O

z′U
∑
j

usij ≥
∑

(i,j)∈Ẽ

usijwij subject to Pw (LP48)

also satisfy LP49 with yi = y′i and zU = z′U ;

∑
i

yi
∑
j

uij +
∑
U∈O

zU
∑
i,j∈U

uij ≥
(

1− ε

2

) ∑
(i,j)∈Ẽ

uijwij subject to Pw (LP49)

Note that solutions of LP49 are collected to produce a feasible solution to LP47. This

algorithm runs in time O(n1+1/(2p)) and space.

Lemma 9.3.6. Given an instance of LP48 we either (i) produce a solution or a (ii)

feasible solution for LP46 in time and space O(n poly(logB, ε−1)).

Observe that we are not using a two step dual-primal algorithm, rather a one step

approach – primarily due to the simplicity of the one step process. It seems a two-step

224

approach is feasible, exactly along the lines of Section 9.2, however the rounding will

be a bit more involved. Moreover in that case the number of passes will reduce to

O(pϑ/ε4) — which is still best thought of as O(poly ε−1) and the overall characteristic

of the algorithm does not change significantly to merit the more detailed discussion.

However the main point of Theorem 9.3.1 is that we can solve maximum weighted

b–Matching in a streaming setting using passes (or rounds in a map-reduce setting)

which are polynomial in 1/ε. The best results to date, for the weighted matching

problem were a O(1) approximation and not approximation schemes (using subex-

ponential time). Our result resolves the status of weighted matching as well as the

generalization to b–Matching.

9.3.1 Proof of Lemma 9.3.8: A Filtering Step to Bound Ver-

tex Width

As mentioned earlier, given a graph G which has a maximum weighted b–Matching

of weight M(G), we generate a graph G1 such that estimating M(G′) will give us a

(1− ε) approximation forM(G). We will perform and discretization and scaling, and

while it is possible to express the following in unscaled terms, we chose the scaling

approach since it uses previous results in a blackbox fashion.

Bounding the maximum weight of any (useful) edge adjacent to a vertex.

We now use a previous result proved in Section 6.1.3 in the context of matching

225

Algorithm 32 Finding G′′, bounding the range of edge weights at a vertex for

the Matching problem. Except line 14, the algorithm is the same algorithm as

Algorithm 22 in Section 6.1.3

1: Let q = 8
⌈

1
ε2

log 1
ε

⌉
.

2: Let tier k to contain all edges of weight (1 + ε)k.

3: for each tier k = 0, 1, · · · , L in parallel do

4: Find a maximal matching.

5: Let Ck be the set of nodes matched in the maximal matching.

6: Let S1
k = Ck

7: for t = 1 to q do

8: Find a maximal matching between Ck and V − Stk.

9: Let T tk be the set of nodes matched in the maximal matching.

10: St+1
k = Stk ∪ T tk.

11: end for

12: end for

13: Let $i = (1 + ε)k for the maximum k with i ∈ Sq
k.

14: Return G′′ = (V,E′′) with E′′ = {(i, j) : ε
2

q $i,
ε2

q $j ≤ wij ≤ $i, $j}.

226

and not b–Matching. However we use it different way. We first discuss the case

of weighted Matching, and then show how the algorithm can be implemented for

b–Matching efficiently.

Lemma 9.3.7 (Lemma 6.1.22 and 6.1.23). Given any input graph G′ = (V,E ′) which

has been discretized as in Step 1, once {$i} are computed by Algorithm 32, if we only

consider the graph GL with an edge set {(i, j)|(i, j) ∈ E1;wij ≤ min{$i, $j}} then

M(G′) ≥M(GL) ≥ (1−3ε)M(G′) and
∑

i$i ≤ 42
ε3

log 1
ε
M(GL). Here M(GL),M(G′)

denote the weight of the respective maximum matching in the two graphs (and not

the maximum b–Matching).

Intuitively this lemma tells us that if we find sufficiently many matchings and a

particular edge e = (i, j) did not appear then for one of the vertices adjacent to the

edge, say j, there are many edges of similar weight. Therefore even though this edge

e may have a large weight among all edges incident to i, this edge is not critical for a

large matching and can be dropped. In Section 6.1.3 this was used to upper bound

the growth of dual variables in the bipartite formulation of the matching problem.

And an upper bound was sufficient for the purposes therein.

Here, we also need the lower bound (and that would be clear in the next step).

We discard all edges incident to vertex i which has a weight less than ε2$i/q. The

reason is that the only handle on M(GL) we have so far is
∑

i$i and if we wish to

allow a small approximation for M(GL) then we need consider a fairly large range of

weights at each vertex. However the important aspect is that this range parameter is

227

independent of n, B or the weights. Summarizing:

Lemma 9.3.8. Given any input graph G′ = (V,E ′) which has been discretized as

in Step 1, the graph G′′ computed by Algorithm 32 satisfies M(G′) ≥ M(G′′) ≥

(1 − ε)M(GL) ≥ (1 − 3ε)(1 − ε)M(G′) > (1 − 4ε)M(G′) and for any pair of edges

wij, wij′ in G′′ incident to the same vertex i, wij ≤ wij′ϑ where ϑ = 8
ε2

⌈
1
ε2

log 1
ε

⌉
. For

each node $i ≥ wij for all j and
∑

i∈V $i ≤
(

42
ε3

log 1
ε

)
M(G′′). Further each wij ≥ 1.

Implementing Algorithm 32 for b-Matching: Any maximum weighted b–mat-

ching problem instance reduces to a maximum weighted matching problem instance

with B vertices as follow: for each vertex i, we construct bi vertices i1, i2, · · · , ibi and

for each vector (i, j), we add edges (il, jl′) for all l ∈ [bi], l
′ ∈ [bj]. This new graph will

have O(B) vertices. We will be using this reduction virtually - as a proof and we will

not be running this in the algorithm.

Now we have a maximum weighted matching instance, we can conceptually dis-

cretize the edge weights and apply Algorithm 32. Then, we can merge vertices il and

il′ (which were copies of the original vertex i) into one vertex if $il = $il′
and create

a maximum weighted b-matching instance. Let bi(k) be the number of times any copy

of vertex i has been matched in Algorithm 32 at the edge weight tier k, that is with

weight (1 + ε)k. We will create a vertex i′ = i(k) with bi′ = bi(k). Observe that the

number of vertices we can have is now O(nL) = O(n
ε

logB) — which is one vertex

per tier of edge weight. Once we have defined the copies i(k) for different k, we set

$i(k) = (1 + ε)k. Now,
∑

i∈V
∑

k$i(k)bi(k) ≤
(

42
ε3

log 1
ε

)
M(G′).

228

An Efficient Implementation: The naive implementation of this process requires

O(B
ε

logB) space. However, the algorithm can be implemented implicitly, i.e., without

actual construction of intermediate maximum weighted matching instance, which is

what we describe next.

Observe that there is no difference between two different copies of the vertex i,

say ik, ik′ when we match them to a vertex jl. Also observe that the specific identity

of the edges were not important — we were only using the maximum weight tier a

vertex participated in, which implies that we do not need to remember the copies of

the vertices we produce! So when we execute Algorithm 32, we always use the copy of

the vertex i with the lower index; for example, we match the copy of i1 first and then

i2, i3, · · · etc., whenever we match any copy of i. Therefore it suffices to only remember

the highest index that is matched for each vertex i in each edge weight tier and this uses

O(nL) = O(n
ε

logB) space. However we need to compute bi(k). Let h(i, k) be largest

index we remembered for vertex i in tier k. Clearly bi(L) = h(i, L). Assuming we have

defined bi(k′) for all k′ > k we can now define bi(k) = max{h(i, k) −maxk′>k bi(k′), 0}.

This is because if bi(k′) ≥ l for some k′ > k then il is already matched in tier k′ or

above; and therefore has an edge with larger edge weight than (1 + ε)k incident to it

and therefore $il > (1 + ε)k.

Again, once we have defined the copies i(k) for different k, we set $i(k) = (1 + ε)k.

For each (i, j) ∈ E ′ in G′ if wij = (1 + ε)k] we allow an edge from all i(l) to all

j(l′) where k ≤ l, l′ ≤ k′ where k′ = argmink′′(1 + ε)k
′′ ≥ q(1 + ε)k/ε2. It is easy to

229

observe that we increase the number of edges by O(1
ε2

log2 1
ε
) factor. The number of

vertices in increased by a factor O(1
ε

logB). Let this new graph be G̃ = (Ṽ , Ẽ). Note

M(G′) ≥M(G̃) ≥ (1− 3ε)M(G′). Summarizing we have:

Lemma 9.3.2. Given any input graph G′ = (V,E ′) and a b-Matching instance which

has been discretized as in Step 1, we can compute a graph G̃ and a corresponding

b-Matching instance and vertex weights {$i} such that M(G′) ≥ M(G̃) ≥ (1 −

4ε)M(G′) and for any pair of edges wij, wij′ in G̃ incident to the same vertex i,

wij ≤ wij′ϑ where ϑ = 8
ε2

⌈
1
ε2

log 1
ε

⌉
. Moreover the number of vertices Ṽ in G̃ is at

most O(n
ε

logB) and the number of edges Ẽ is at most O(m
ε2

log2 1
ε
). For each node

$i ≥ wij for all j and
∑

i∈Ṽ $i ≤ 6εϑM(G̃). Further each wij ≥ 1.

9.3.2 Proof of Lemma 9.3.3

Lemma 9.3.3. Let O = {U ⊆ Ṽ ; ||U ||b is odd, ||U ||b ≤ 4
ε
, 3ϑ$j ≥ ε3$i for all i, j ∈

U}.

β̂ = min
∑

i biyi +
∑

U∈O b||U ||b/2c zU

s.t yi + yj +
∑

U∈O;i,j∈U zU ≥ wij ∀(i, j) ∈ Ẽ

2yi +
∑

U∈O;i∈U zU ≤ 2$i ∀i ∈ Ṽ

yi, zU ≥ 0 ∀i ∈ Ṽ ;∀U ∈ O

(LP45)

There exists a feasible solution {ŷi}, {ẑU} for LP45 such that the objective value is

β̂ ≤ (1 + ε)M(G̃) and L = {U |ẑU 6= 0} is a laminar family.

Proof. Using Theorem 7.4.2 in Section 7.4.1, we have an optimal solution for LP45

230

such that L = {U |zU 6= 0} is a laminar family (and not necessarily integral). Let

(y∗, z∗) be that optimal solution. Observe that y∗i +
∑

U ;i∈U z
∗
U ≤ $i. If y∗i +∑

U ;i∈U z
∗
U > $i, we can simply reduce y∗i or reduce z∗U while increasing y∗j for

j ∈ U, j 6= i.

We construct (ŷ, ẑ) that satisfies the conditions of the lemma as follows:

ŷi = y∗i +
∑

U∈O2;i∈U,U 6∈O
z∗U/2 and ẑU =


z∗U if U ∈ O

0 otherwise

This step increases the objective value by z∗U/2 for every U 6∈ O. We “charge”

that increase to argmaxi∈U $i. To bound the charge collected by a vertex i, observe

that the sets U1, U2, . . . , Ul that caused i to be charged, intersect at i. Using the

laminarity property, we can renumber the sets such that U1 ⊂ U2 ⊂ · · · ⊂ Ul. Now

consider the vertex j(i) that causes the charge from Ul; we know 3ϑ$j(i) < $i. Since

j(i) is present in all of the sets that caused i to be charged, the total charge collected

by i is bounded by 1
2

∑
U∈O;j(i)∈U zU ≤

1
2
$j(i) ≤ $i/(6ϑ). The total charge therefore is

(
∑

i$i) /(6ϑ) ≤ εM(G̃) (by Lemma 9.3.2) andM(G̃) = β∗. The lemma follows.

231

9.3.3 Proof of Lemma 9.3.4

Lemma 9.3.4. Given a (compressed; i.e., specified by a streaming algorithm) solu-

tion {xij} to the system LP46,

∑
(i,j)wijxij = β∑
j xij ≤ bi ∀i∑

(i,j):i,j∈U

xij ≤
⌊
||U ||b

2

⌋
∀U ∈ O

xij ≥ 0

(LP46)

we can produce a solution (a transducer which produces the solution on reading the

streaming input one more time) {x̂ij} using O(ε−3) passes and O(n poly(ε−1, log n))

space such that
∑

(i,j) wijx̂ij = (1 − O(ε))β and the constraints
∑

j xij ≤ bi for all i;

and
∑

(i,j):i,j∈U xij ≤
⌊
||U ||b

2

⌋
for all U ∈ O = {U |||U ||b is odd } (not just O) hold,

i.e., the system LP22 is satisfied. Note that this implies a feasible fractional solution

for the b–Matching problem on G̃.

Proof. The easiest proof of the Lemma relies on Theorems 7.2.1 and 7.2.2. We

rephrase the theorems here:

Theorem 9.3.9 (Theorems 7.2.1 and 7.2.2). Let Oδ = {U ∈ O, ||U ||b ≤ 1/δ} for a

graph G with n vertices, and

λU =

∑
(i,j):i,j∈U xij

b ||U ||b2 c −
δ2||U ||2b

4

λ =

{
max
U∈Oδ

λU ,max
i
λi =

∑
j xij

(1− 4δ)bi

}
If λ > 1 + 8δ and δ ∈ (0, 1

8
], given x ≥ 0 such that xii = 0 for all i, we can find

L = {U |λU ≥ λ − δ3/2;U ∈ Oδ} in O(m
′

δ
ln(1/δ) + n poly{δ−1, lnn}) time where

m′ = |{xij 6= 0}|. Moreover L defines a laminar family.

232

In our case δ = ε/4 and Oδ = {U ⊆ Ṽ ; ||U ||b is odd, ||U ||b ≤ 4
ε
}. Therefore for

every set U ∈ Oδ −O there exists i, j ∈ U such that 3ϑ$j < ε3$i. For such an U ,

let high(U) = maxi∈U $i and low(U) = minj∈U $j. Then ε3 high(U) > ϑ low(U).

Note that λ ≤ 1 + 32ε we can multiply every xij by (1 − ε)/(1 + 32ε) and the

statement of Lemma 9.3.4 will follow. Note in our case λi ≤ 1. Moreover, by the

statement of the Lemma, we only have to consider sets in Oδ −O. Therefore we will

use the following strategy:

(a) If we apply the algorithm in Theorem 9.3.9, such that L 6= ∅ and λ > 1 + 32ε;

then for each U ∈ L and i ∈ U it must be that
∑

j∈U xij ≥ ε. Otherwise we

cannot have λU ≥ 1 + 32ε − 32ε3. Recall that the algorithm first constructs

a graph Gϕ which has at most O(n poly(ε−1)) edges (see Section 7.5). Given

a transducer which produces xij, the construction of Gϕ can be done in one

pass and the rest of the algorithm do not require any access to the original

graph. Also, binary searches to find λU can be replaced by O(poly(ε−1) parallel

executions. Therefore, the algorithm runs in one pass, O(n poly(ε−1, log n)) space,

and O(m poly(ε−1) + n poly(ε−1, log n)) time.

(b) For each such U ∈ L, deleting 64ε3 edges “fractionally” which are incident to the

vertex which defines low(U) and some other vertex in U (such edges exist, by

Step a) will cause the updated λu to be less that λ− 32ε3.

(c) We will charge the deletions to the edges in Step b to the set of edges which are

incident to the vertex that defines high(U) and some other vertex in U — by

233

Step a there are at least ε such edges (fractionally).

(d) The weight of each of the edges that are being charged in Step c is at least

high(U)/ϑ (from Lemma 9.3.8) and the weight of the edges that are causing the

charge is at most low(U) (again from Lemma 9.3.8). Therefore the charge to a

vertex is 64ε2ϑ low(U)
high(U)

times its contribution to
∑

(i,j) wijxij.

(e) Moreover the charge can occur 2/ε times due the laminarity over odd-sets of

maximum size 4/ε and thus the charge can be 128εϑlow(U)
high(U)

times its contribution

to
∑

(i,j) wijxij. Note that

128εϑ low(U)

high(U)
≤ 128ε4 (9.3.1)

After the above steps are repeated we are guaranteed that λ has decreased by 32ε3.

This can happen at most 1/(32ε3) before we have a ratio less than 1 + 32ε since the

initial ratio is at most 3/2+ε < 2. Therefore the total charge to any edge is at most 4ε

times its contribution to
∑

(i,j) wijxij using Equation 9.3.1. The lemma follows.

9.3.4 The Oracle: Proof of Lemma 9.3.6

Lemma 9.3.6. Given an instance of LP48 we either (i) produce a solution or a (ii)

feasible solution for LP46 in time and space O(n poly(logB, ε−1)).

234

Proof. Recall the systems:

∑
(i,j)wijxij = β∑
j xij ≤ bi ∀i∑

(i,j):i,j∈U

xij ≤
⌊
||U ||b

2

⌋
∀U ∈ O

xij ≥ 0

(LP46)

and

∑
i

y′i
∑
j

usij +
∑
U∈O

z′U
∑
j

usij ≥
∑

(i,j)∈Ẽ

usijwij

Pw :



∑
i biy

′
i +
∑

U∈O b||U ||b/2c z′U ≤ β

y′i + y′j +
∑

U∈O;i,j∈U z
′
U ≤ ρwij ∀(i, j) ∈ Ẽ

y′i, z
′
U ≥ 0

(LP48)

Let γw =
∑

(i,j)∈Ẽ u
s
ijwij. We compute S = {i|

∑
j u

s
ij > γwbi/β} and ∆S =∑

i∈S $i

∑
j u

s
ij. If ∆S ≥ εγw/4 then we set y′i = $i

γw
∆S

for all i ∈ S and set all

other y′i, z
′
U to 0. It is easy to see that

∑
i∈S

y′i
∑
j

usij +
∑
U∈Os

z′U
∑
i,j∈U

usij =
∑
i∈S

y′i
∑
j

usij =
∑
i∈S

$i
γw
∆S

∑
j

usij

=
γw
∆S

∑
i∈S

$i

∑
j

usij =
γw
∆S

∆S = γw

∑
i

y′ibi +
∑
U∈Os

z′U b||U ||b/2c =
∑
i∈S

y′ibi ≤
β

γw

∑
i∈S

y′i
∑
j

usij =
β

γw
γw = β

and y′i ≤ 4$i/ε. Since any wij adjacent to i satisfies wij ≥ $i/ϑ we have that

y′i ≤ wijρ. Thus {y′i}, {z′U} satisfy Equation LP48 and can be returned.

Therefore, in the remainder, we assume that ∆S =
∑

i∈S $i

∑
j u

s
ij < εγ/4. For

i 6∈ S we have
∑

j u
s
ij ≤ γwbi/β. We differ from the proof of Lemma 9.2.8 here.

235

We will use Lemma 9.2.7, but we will use Lemma 9.2.7 multiple times per oracle.

Let W = maxi$i. Initially we will consider the subset V1 = {i|i 6∈ S,W ≥ $i ≥

ε3W/(3ϑ)} and run Lemma 9.2.7 (we describe the parameters below). Observe that

any odd subset U of V1 with ||U ||b ≤ 4/ε will be in O and also will be considered in

this application of Lemma 9.2.7.

If i, j ∈ V1 set qij = β(1 − ε/4)usij/γw, otherwise qij = 0. Set q̂i = bi, C = 1

and apply Lemma 9.2.7 with ν = ε on V1. It is easy to verify (exactly as in Proof

of Lemma 9.2.8) that we satisfy A1, A2, and A3. Using Lemma 9.2.7 we get a

collection of disjoint odd-sets K1 where each U ∈ K1 satisfies

∑
i,j∈U

(
1− ε

4

) β

γw
usij ≥

1

2

(∑
i∈U

bi − 1

)
=

⌊
||U ||b

2

⌋
≥ 1

3
||U ||b ≥

1

3

∑
i∈U

∑
j

β

γw
usij (9.3.2)

∑
i,j∈U

usij ≥
∑
i∈U

∑
j 6∈U

usij = C(U, us) (9.3.3)

Let ∆K1 =
∑

U∈K1
(maxi∈U $i)

∑
i,j∈U u

s
ij. But we do not return the oracle immedi-

ately. Let V (K1) = ∪U∈K1U . We now consider all odd sets in V2 which would consider

i : ε3W
3ϑ(1+ε)

≤ $i ≤ W
(1+ε)

; but we exclude vertices in S and V1 (recall edge weights are

powers of (1 + ε), Lemma 9.3.2). In general we would consider V` where

V` =

{
i

∣∣∣∣∣i 6∈ S, i 6∈
`−1⋃
l=1

Vl,
ε3W

3ϑ(1 + ε)`−1
≤ $i ≤

W

(1 + ε)`−1

}

And we would find a set of odd-sets K` where each U ∈ K` also satisfy Equations 9.3.2

and 9.3.3. We define ∆K` =
∑

U∈K` (maxi∈U $i)
∑

i,j∈U u
s
ij.

We will run Lemma 9.2.7 O(1
ε

logB) times (recall that is the number of distinct

236

weights by construction (from Lemma 9.3.2). If
∑

` ∆K` ≥ εγw/8 then for U ∈ K` we

set

z′U =
γw (maxi∈U $i)∑

` ∆K`
≤ 8

ε

(
max
i∈U

$i

)
All y′i = 0 and for any U ∈ O which is not in any K` set z′U = 0. Now;

∑
i

y′i
∑
j

uij +
∑
U∈O

z′U
∑
i,j∈U

uij =
∑
U∈O

z′U
∑
i,j∈U

uij

=
∑
`

γw (maxi∈U $i)∑
`′ ∆K`′

∑
i,j∈U

uij =
γw
∑

` ∆K`∑
`′ ∆K`′

= γw

∑
i

y′ibi+
∑
U∈O

z′U

⌊
||U ||b

2

⌋
=
∑
U∈O

z′U

⌊
||U ||b

2

⌋

≤
∑
U∈O

z′U
β

γw

∑
i,j∈U

uij (Using Equation 9.3.2)

=
β

γw

∑
U∈O

z′U
∑
i,j∈U

uij =
β

γw
γw = β

Observe that
∑

i∈U ;U∈O z
′
U ≤ 24ϑ$i/ε due to disjointedness of the collection ∪`K`

(since the vertex sets were separate) and the fact that for any i ∈ U ;U ∈ O we have

3ϑ$i ≤ ε3 (maxi∈U $i). Now for any wij adjacent to i we have $i ≤ ϑwij. Therefore∑
i,j∈U ;U∈O z

′
U ≤ (24ϑ2/ε4)wij = ρwij. Therefore {y′i}, {z′U} satisfy the system LP48

and can be returned (note all sets satisfy Equation 9.3.3).

Thus the only case we are left to discuss is
∑

` ∆K` < εγw/8 and ∆S ≤ εγw/4. We

show that β̂ ≥ (1 − 2ε)β. Let Vbad = S ∪ {i|i ∈ U ;U ∈ K`}; the set of vertices

associated with any K`. Suppose U ⊆ Ṽ \ Vbad be an odd-set in O. Then we would

have considered this set in one of the invocations of Lemma 9.2.7. Since U 6∈ K` and

237

U ∈ O, we have

∑
i,j∈U

(
1− ε

4

) β

γw
usij ≤

⌊
||U ||b

2

⌋
+ ε/2 =

(
1 +

ε

2

)⌊ ||U ||b
2

⌋

Moreover for i ∈ Ṽ \Vbad we have
∑

j
β
γw
usij ≤ bi. Therefore setting xij = β

γw

(1−ε/4)
(1+ε/2)

uij

for i, j ∈ Ṽ \ Vbad and xij = 0 otherwise. We will satisfy the constraints of LP46 —

observe the vertices in Vbad do not matter since all edges incident to them have been

“deleted”. Therefore all that remains is to evaluate
∑

i,j xij, which is given by:

(1 + ε/2)

(1− ε/4)

γw
β

∑
i,j

wijxij =
(1 + ε/2)

(1− ε/4)

γw
β

∑
i,j∈Ṽ \Vbad

wijxij

=
∑

i,j∈V \Vbad

wiju
s
ij =

∑
i,j

wiju
s
ij −

∑
i∈Vbad

∑
j

wiju
s
ij

= γw −
∑
i∈S

∑
j

wiju
s
ij −

∑
`

∑
U∈V (K`)

∑
i∈U

∑
j

wiju
s
ij

(All V (K`),S are mutually disjoint)

≥ γw −
∑
i∈S

∑
j

$iu
s
ij −

∑
`

∑
U∈V (K`)

∑
i∈U

∑
j

$iu
s
ij (Definition of $i)

≥ γw −
∑
i∈S

$i

∑
j

usij −
∑
`

∑
U∈V (K`)

(
max
i∈U

$i

)∑
i∈U

∑
j

usij

≥ γw −∆S −
∑
`

∑
U∈V (K`)

(
max
i∈U

$i

)
3
∑
i,j∈U

usij (Using Equation 9.3.2)

= γw −∆S − 3
∑
`

∆K` ≤ γw − εγw/4− 3εγw/8 ≥
(

1− 5ε

8

)
γw

Therefore
∑

i,j xij ≥ (1− 5ε/8)(1− ε/4)β/(1 + ε/2) ≥ (1− 3ε/2)β. This proves that

we have a feasible solution for LP46. This concludes the proof of the oracle.

238

9.4 Deferred Sparsification

Definition 9.4.1 (The Deferred Sparsifier Problem). Consider the problem: We are

given a weighted graph G = (V,E, u) but the weights are not revealed to us. Instead

we are given {ςij} with the promise that ςij/χ ≤ uij ≤ ςijχ. We can have a single

pass over the m = |E| edges and have to produce a smaller summary data structure

D storing only some of the edges. Once the data structure is constructed, then the

exact weights uij of only those edges stored in our structure D are revealed to us. We

then have to output a sparsifier H = (V,E ′, us). Note that this is implemented

in a single pass over the graph.

Lemma 9.4.2. Given bound % and {ςij} factor and edge weights are in [1, O(poly n)],

we can generate a deferred sparsification of size O(χ
2n
ξ2 log4 n). We can construct a

(1 ± ξ)-sparsification from the deferred sparsification when the edge weights of the

stored edges are revealed. The algorithm runs in O(m(logχ + log 1
ξ

+ log log n)αm,n)

time and O(χ
2n
ξ2 log4 n) space. In this paper χ = n1/(4p).

Proof. Recall the semi-streaming algorithm for the graph sparsification (see Algo-

rithm 14). The main intuition (which in some form dates back to [19]) we need is

that weighted sparsifiers are constructed using an unweighted graph by (i) we first

determine the probability pe of sampling the edge e and then (ii) if e is sampled then

assign it a value/importance we/pe. We can simply decouple these two steps in a

deferred sparsifier. For a weighted graph with weights in [1, χ2] the the number of

sampled edges increase by χ2. For a graph with larger deviation of edge weights, this

239

process is repeated over a layered graph where the edge weights differ by powers of

Λ and this process runs independently for each layer. We can easily observe that the

sum (allowing multiple edges between two nodes) of sparsifiers of a set of graphs is a

sparsifier of the sum of the graphs. We can split the graph using ςij values, construct

the deferred sparsifier of each graph, and then take the sum of the sparsifiers. The

Lemma follows.

9.5 Disentangling Compressed Fractional Solutions

In this section we prove the following Theorem:

Theorem 9.5.1. Given a streaming oracle that provides xij for the edges (i, j) in the

formulation LP22, such that
∑

(i,j)wijxij ≥ (1 − ε)β∗, we can compute an integral

(1−5ε) approximate solution using a single additional pass, time O(nε−6(log 1
ε
) log n)

and space O(nε−5 log n). The exponents of ε are slightly better for the bipartite case.

Recall that:

β∗ = max
∑

(i,j)wijxij∑
j xij ≤ bi ∀i ∈ V∑
(i,j):i,j∈U xij ≤ b||U ||b/2c ∀U ∈ O

xij ≥ 0

(LP22)

We are given an access to a data structure that on being provided (i, j) ∈ E gives

us a fractional assignment yij such that we satisfy the relaxed b–Matching polytope

(where we only have constraints for each odd set U such that
∑

i∈U bi = ||U ||b ≤ 4/ε).

We assume that yij = 0 if (i, j) /∈ E.

240

Definition 9.5.2. For (i, j) ∈ E; if bi < bj then let h(i, j) = i else h(i, j) = j.

Definition 9.5.3. Let r = 100ε−3 log n. For a vertex i let High(i) = {(i, j)|(i, j) ∈

E, xij ≥ bi/r}. Let Low(i) = {(i, j)|(i, j) ∈ E, xij ≤ bi/r}. Note that
∑

j xij ≤ bi

then |High(i)| ≤ r.

Fact 9.5.4. (Bernstein Inequality) Given a sequence of independent Bernoulli ran-

dom variables {Xi} with respective expectations and variances {E [Xi] , V ar[Xi]},

such that for all i, Xi ≤ E[Xi] +M we have

Pr

[∑
i

Xi −
∑
i

E [Xi] ≥ t

]
≤ exp

(
− t2∑

i V ar[Xi] + 2tM/3

)

Lemma 9.5.5. Assuming β =
∑

(i,j) xijwij ≥ (1 − ε)β∗ where β∗ is the optimum

b–Matching, the ensuing algorithm OneStep provides a feasible fractional (1 − 2ε)

optimum b–Matching with high probability with O(rn) non-zero edges.
Algorithm OneStep:

(1) For every vertex i we remember the edges in High(i) along with the and the

assignment xij. For any edge (i, j) such that it is in High(i) or High(j) we

set Yij = xij.

(2) For every other (i, j) ∈ E: Let Xij =


bh(i,j)

r With probability
rxij
bh(i,j)

0 Otherwise

.

(3) Set x̂ij = Xij/(1 + ε)2.

Proof. First let us consider the objective function. Let β =
∑

(i,j) xijwij. Let Zij =(
bh(i,j)

r
−Xij

)
wij. Now it is straightforward to see that β∗ ≥ bh(i,j)wij for all edges

(i, j) — consider a b–matching with just this edge. As a consequence Zij−EZij ≤ β∗/r

241

and ∑
(i,j)

V ar[Zij] ≤
∑
(i,j)

w2
ijb

2
h(i,j)

r2

rxij
bh(i,j)

≤ 1

r

∑
(i,j)

(
wijbh(i,j)

)
xijwij ≤

β∗β

r

And therefore:

Pr

∑
(i,j)

Zij ≤
∑
(i,j)

E [Zij]− εβ∗
 ≤ exp

(
− ε2r

β
β∗ + 2ε/3

)

or in other words the objective function is preserved with high probability if β ≥ β∗/2.

Now for each constraint at vertex i, for each (i, j) we have Xij − E [Xij] ≤
bh(i,j)

r
≤ bi

r

and

V ar[Xij] ≤
b2h(i,j)

r2

rxij
bh(i,j)

=
bh(i,j)xij

r
≤ bixij

r

As a consequence
∑

j V ar[Xij] ≤ bi
r

∑
j xij ≤

b2i
r

. Thus using Bernstein Inequality,

Fact 9.5.4 we get

Pr

∑
(i,j)

Xij ≥ (1 + ε)bi

 ≤ exp

(
− ε2r

1 + 2ε/3

)
Or in other words the vertex constraints are satisfied with high probability. If

we were only considering bipartite graphs, we can stop at this point — note that

r = Ω(ε−2 log n) suffices in that case.

Observe that this same reasoning extends to the odd set constraints of size 4/ε

or less. There are potentially n4/ε such odd sets. This is the reason we need rε2 =

Ω((log n)/ε). It is easy to see that if Xij/(1 + ε) satisfies all vertex constraints then

Xij/(1 + ε)2 satisfies all odd set constraints where the odd-set has size
∑

i bi ≥ 4/ε.

Therefore Xij/(1 + ε)2 is a feasible solution for the b–Matching LP. The Lemma

follows.

We now use Theorem 7.1.4 and Theorem 9.5.1 follows.

242

Chapter 10

Application IV: Multicut and

Correlation Clustering

Chapter Outline: In this chapter, we present one-pass algorithms for the multi-

cut problem and the correlation clustering problem. The algorithms in this chapter

combine the sparsification algorithm and existing algorithms. The existing algorithms

use LPs for the multicut problem and correlation clustering (minimization) and an

SDP for correlation clustering (maximization). We apply primal-dual algorithms in

order to obtain space- and time-efficient algorithms.

10.1 Problem Definitions and Techniques

The multicut problem is relatively well-studied problem and is defined as follows:

Definition 10.1.1 (The Multicut Problem). Given a weighted undirected graph and

243

k pairs of vertices (si, ti), the multicut problem is to minimize the weight of the subset

of edges whose removal disconnects these pairs.

Ω(log n) lower bound is known for the multicut problem [32] and a matching O(log n)-

approximation algorithm is also known [52]. The algorithm uses a region growing

technique [72].

Definition 10.1.2 (Correlation Clustering). In the correlation clustering problem,

we are given a graph G with each edge annotated either ‘+’ (positive) or ‘-’ (negative).

We denote the set of positive edges as E+ and the set of negative edges as E−. A

clustering C = {C1, C2, · · · , C`} agrees with (u, v) if either (a) (u, v) ∈ E+ and

u, v ∈ Ci for some i, or (b) (u, v) ∈ E− and u ∈ Ci, v ∈ Cj for some i 6= j. Otherwise,

we say that C disagrees with (u, v). The objective of the correlation clustering problem

is either (i) maximize the agreements or (ii) to minimize the disagreements. These

two problems are equivalent for the optimal solution, but they are different if we

consider approximation algorithms.

Correlation clustering problem was proposed by Bansal et al. [14]. They present

algorithms for maximizing agreements and minimizing disagreements in complete

unweighted graphs. Demaine et al. [33] observe the connection between the mini-

mization version of correlation clustering and the multicut problem. They also pre-

sented an O(log n)-approximation algorithm for the minimization version using the

region growing technique. There has a number of subsequent results on correlation

clustering, for example, [91, 25, 9] but the space requirement of the algorithms (in the

244

general case) has not been addressed. Note that the number of clusters is not fixed in

advance and arises from the optimization naturally and therefore expressing this as a

CSP requires an alphabet of size O(n). Although there is a time- and space-efficient

algorithm for CSP (constraint satisfaction problem) [90], the algorithm’s running time

and space requirement depends exponentially on the alphabet size. Also note that

some of the previous results are efficient for special cases of edge weights (namely

when the weights satisfy a triangle inequality, or the graph is a complete graph) —

we do not make any such assumption. Especially, the algorithms for general weighted

graphs solve LP and SDP [33, 91, 25].

Techniques: We first sparsify the input graph so that we can remember the whole

graph in Õ(n) space which will be explained. We then construct and approximate

an LP or an SDP for the sparsified graph. We use the multiplicative weights update

method ([11], see Section 2.3.1) for approximating the LP and use the SDP feasibility

framework ([12, 90], see Section 2.3.3) for approximating the SDP.

For the multicut problem and the minimization version of correlation clustering,

we introduce a new idea for constructing an oracle. The LPs for the problems have

either (i) triangular inequality or (ii) exponentially many constraints. However note

that we are interested in the final rounding of the fractional solution rather than the

feasibility of the fractional solution. Therefore, we round the fractional solution using

existing rounding algorithms [52, 33]. If it fails to produce an integral solution, we

find a constraint which causes the failure and produce a primal witness using the

245

constraint. This method can be viewed as a “simpler” variant of the dual-primal

approach.

For the maximization version of correlation clustering, the best known approx-

imation algorithm for uses an SDP formulation [91]. We develop a semi-streaming

algorithm using the explicit verification approach.

10.2 The Multicut Problem

In this section, we present a O(log n)-approximation algorithm for the multicut prob-

lem. The multicut problem can be solved using LP-rounding approach. We solve the

LP in the semi-streaming model and round the fractional solution using the region

growing technique. We proceeds as follows.

1. We sparsify the graph. The sparsification algorithm preserves the every multicut

value within 1± δ factor. In the rest of the algorithm, we use this sparsification

as our input graph and therefore, we have a single-pass algorithm.

2. We repeatedly guess the optimal solution α using a binary search. For each

guess α,

(a) Given α, we contract all edges with weight greater than α and remove all

edges with weight less than δα/m′ where m′ is the number of edges in the

sparsification. The contracted edges have to be satisfied in order for α to

be a correct guess. Removed edges contribute at most δα to the objective

246

value and hence, can be ignored.

(b) We reformulate the linear program slightly. The LP formulation will be

explained in Section 10.2.1. and we solve the LP with the multiplicative

weights update method. The oracle consists of two phases. It first rounds

the current fractional solution. The rounding algorithm also checks if there

exists a violated constraint. If there is such a constraint, the oracle con-

structs a dual witness with the violated constraint. Otherwise, the round-

ing algorithm produces a multicut. The oracle will be presented in Section

10.2.2.

Summarizing the above, we obtain (see Section 10.2.2 for the proof):

Theorem 10.2.1. There exists a single-pass O(log k)-approximation algorithm for

the multicut problem in the semi-streaming model that runs in Õ(n
2

ε7
) time and Õ(n

ε2
+

k) space.

10.2.1 Linear Programming Formulation

A multicut problem can be formulated as LP50. In LP50, xij indicates if (i, j) is in

the multicut or not. If xij = 1, (i, j) is in the multicut and otherwise, it is not in the

multicut. We now interpret the xij as assignment of lengths and write the following

LP:

247

min
∑

(i,j)∈E wijxij

s.t
∑

(k,l)∈p xkl ≥ 1 for all si − ti path p

(LP50)

We replace xij by 1
wij
x′ij. We obtain an equivalent LP but it is easier to explain

the oracle when we have x′ij instead of xij. LP51 and LP52 are the resulting LP and

its dual LP.

min
∑

(i,j)∈E x
′
ij

s.t
∑

(k,l)∈p
1
wkl
x′kl ≥ 1 for all si − ti path p

(LP51)

max
∑

p βp

s.t 1
wij

∑
(i,j)∈p βp ≤ 1 for all (i, j) ∈ E

(LP52)

10.2.2 Oracle

We start with LP52 since it contains only Õ(nε−2) constraints and therefore, require

a smaller number of iterations given the same width parameter. Now the framework

maintains a fractional solution of LP51 and the oracle tries to round it. The rounding

algorithm for the multicut problem uses the region growing technique [72, 52, 92]. For

the details of the technique and proof, see Chapter 20 of [92].

Definition 10.2.2. Let luv be the edge length of an edge (u, v) and let d(u, v) be the

distance, i.e., the length of the shortest u−v path. Given edge lengths, a ball B(u, r)

248

is defined as {v|d(u, v) ≤ r}. We define c(B(u, r)) as the total weight of edges that

are cut by B(u, r), i.e., (v1, v2) such that d(u, v1) ≤ r < d(u, v2).

Also let vol(B(u, r)) be the volume of B(u, r) which is defined as the sum of

lv1v2wv1v2 for (v1, v2) ∈ B(u, r). For edge (v1, v2) with d(u, v1) ≤ r < d(u, v2), we

assume that B(u, r) contains r−d(u,v1)
lv1v2

fraction of the edge volume. We denote the

total edge volume as F and for the sake of the proof, we assume that vol(B(u, 0)) =

F/k 6= 0.

The region growing process starts at an arbitrary node u and the radius r of the

ball gradually increases until c(B(u, r)) = (C log k)vol(B(u, r)). The following lemma

bounds the radius of B(u, r).

Lemma 10.2.3. [52, 92, 33] If C = 3 ln(k + 1), the ball stops growing before the

radius becomes 1/3.

The rounding algorithm repeatedly applies the region growing technique with xij

as edge lengths and declares each ball as a cluster. Since the radius of each ball is at

most 1/3 and the distance between any source-sink pair is at least 1, the rounding

algorithm returns a feasible multicut.

Since the constructed balls are disjoint, the total volume is bounded by twice of

the LP solution (due to the edge volume and volume on each node). And the total

cut value is bounded by O(log k) times the total volume and therefore, the cut value

of the rounded solution is bounded by O(log n) times the LP solution.

Note that the algorithm actually finds a (shortest) path from u to v if v belongs to

249

Algorithm 33 Oracle for LP51

1: Normalize xij so that
∑

ij wijxij +
∑

ij wijyij = α.

2: Let lij = xij for (i, j) ∈ E+ and lij = 1− xij for (i, j) ∈ E−.

3: Round the fractional solution.

4: if u and v belong to the same cluster for (u, v) ∈ E− and luv > 2/3 then

5: Find the corresponding path p (that violates a constraint).

6: Return βp = α and βp′ = 0 for p′ 6= p.

7: else

8: Return the rounded solution.

9: end if

the ball starting at u. If the triangle inequality is violated and the rounding algorithm

puts a source-sink pair in the same cluster, we can actually find the violated constraint

and construct a dual witness with the violated constraint. If it does not find any such

source-sink pair, the rounding algorithm returns a valid multicut and the objective

value is at most O(log n) times the LP solution. We use this fact for the oracle.

The next lemma is straightforward:

Lemma 10.2.4. The oracle for LP51 returns an admissible dual witness with the

width parameter m′/δ where m′ is the number of edges in the sparsification.

Proof. By the way its constructed and Lemma 6.1.1, the oracle returns an admissible

dual witness. By the construction, βp = α and only one βp has a non-zero value. Since

we remove all the edges of weight less than δα/m′, the width parameter is bounded

250

by αm′

δα
= m′/δ.

Proof of Theorem 10.2.1. By Theorem 2.3.3 and the width parameter, the multiplica-

tive weights update method finds an (almost) feasible solution of LP52 in Õ(m′/δ3) =

Õ(n/δ5) iterations. Each iteration takes Õ(m′) time and therefore, we find either a

rounded solution (with value at most O(log n)α) or a (almost) feasible dual solution

(which proves that our guess α is smaller than or close to the optimal solution) in

Õ(n
2

ε7
) time. The binary search for α requires O(logm′) repetitions. Summarizing,

we obtain the desired result.

10.3 Correlation Clustering: Minimizing Disagree-

ments

In this section, we present a O(log n)-approximation algorithm for the minimization

correlation clustering problem with an additive error O(δW) where W is the total

edge weight. If the optimal disagreement is more than δW/ log n, the algorithm re-

turns a O(log n)-approximation solution. On the other hand, if it is smaller than

δW/ log n, it returns a solution with a O(δW) additive error. We denote this as a

(O(log n), O(δW))-approximation. Observe that this is different than using the solu-

tion for the maximization version. Since the maximization is an O(1) approximation,

using that algorithm will not allow us to get arbitrarily small additive error as is

achieved by our algorithm.

251

Our algorithm is based on the O(log n)-approximation algorithm given in [33].

The basic idea is to apply the algorithm to the semi-streaming model. However, the

algorithm solves a linear program with O(n2) variables and O(n3) constraints which

results in several complications when applied to the semi-streaming model. We use

the intuition derived from multicut, namely that, if there are few edges which are

negative then we can solve the correlation clustering using an algorithm similar to

the Multicut algorithm. However there are some subtle but significant differences,

namely, in the correlation clustering model we need not separate a negative edge. This

corresponds to an ”outlier version” (a Lagrangian relaxation) of the multicut problem

where there is a penalty for not cutting an edge. In the following we assume that we

have ω(n poly log n) negative edges. If the number of negative edges is O(n poly log n)

then we can omit step 1 and eliminate the additive guarantee. We proceed as follows.

1. We sparsify the graph. The sparsification algorithm preserves the optimal so-

lution within δW
logn

additive error.

2. We reformulate the linear program so that it has Õ(n) variables but expo-

nentially many constraints. Limiting the number of variables enables us to

approximate the linear program in near linear space. The LP formulation will

be explained in Section 10.3.1.

3. We solve the linear program with the multiplicative weights update method.

The oracle consists of two phases. It first rounds the current fractional solution.

Rounding algorithm also checks if there exists a violated constraint. If there

252

is one, the oracle constructs a dual witness with the violated constraint. The

oracle will be presented in Section 10.3.2.

4. If the rounding algorithm succeeds, it returns a (O(log n), O(δW))-approxima-

tion solution.

Summarizing the above, we obtain:

Theorem 10.3.1. There is an one-pass (O(log n), O(εW))-approximation algorithm

for the minimizing disagreements problem in the semi-streaming model that runs in

Õ(n
2

ε7
) time.

Proof. From the width parameter, the number of iterations is Õ(n/δ5) and the run-

ning time for each iteration is Õ(n/δ2). Therefore, the running time of the algorithm

is Õ(n2/δ7).

The optimal fractional solution for the sparsification is bounded by OPT + 2δW
logn

.

The rounded solution has at most O(log n) times the fractional solution which is

at most O(log n)OPT + O(δ)W . Ignored edges (due to small edge weight) and the

sparsification process contributes additional δW and 2δW
logn

additive error. By summing

up all the errors, we obtain the desired result.

10.3.1 Linear Program Formulation

LP53 is the LP used in [33]. The LP is similar to LP50 except there are negative

edges and the edge length is bounded by 1 due to the objective value of negative

253

edge length. If there is no upperbound on the edge length, we can set the length of

a negative edge to be infinite to obtain a negative infinite objective value.

min
∑

(i,j)∈E− wij(1− xij) +
∑

(i,j)∈E+ wijxij

s.t xik + xkj ≤ xij for all i, j, k ∈ V

xij = xji for all i, j ∈ V

0 ≤ xij ≤ 1 for all i, j ∈ V

(LP53)

As in Section 10.2, we reformulate the LP so that the constraints correspond to

paths and there are m′ variables in the LP. We also replace xij by 1− yij for negative

edges. Then, again we change variables xij and yij by x′ij = wijxij and y′ij = wijyij.

We obtain LP54 and LP55.

min
∑

(i,j)∈E− y
′
ij +

∑
(i,j)∈E+ x′ij

s.t 1
wij
y′ij +

∑
(k,l)∈p

1
wkl
x′kl ≥ 1 for all p ∈ P+

ij , (i, j) ∈ E−
(LP54)

max
∑

p βp

s.t 1
wij

∑
p:i−j path βp ≤ 1 for all (i, j) ∈ E−

1
wij

∑
(i,j)∈p βp ≤ 1 for all (i, j) ∈ E+

(LP55)

10.3.2 Oracle

As in Section 10.2, we start with LP55 rather than LP54 and the oracle uses the

rounding algorithm in [33] which is also based on the region growing technique. The

254

rounding algorithm first applies to the region growing technique on positive edges.

Let LP+ and LP− be the objective values induced by the positive edges and the

negative edges respectively and let lv1v2 = xv1v2 . By Lemma 10.2.3 guarantees that

the disagreements with positive edges is bounded by O(log n)LP+ while radius of

each ball is bounded by 1/3.

Now consider negative edges. In order for a negative edge (v1, v2) to disagree

with the clustering, d(u, v1), d(u, v2) < 1/3 for some u. By the triangular inequalities,

lv1v2 < 2/3 which means that the disagreement with (v1, v2) in the fractional solution

is at least 1/3. Therefore, the disagreements with negative edges is bounded by 3LP−.

Note that the algorithm actually finds a path from u to v1 and v2. If the triangular

inequality is violated and the rounding algorithm puts v1 and v2 in the same cluster

for xv1v2 > 2/3, we can actually find the violated constraint and construct a dual

witness with the violated constraint.

Again, the next lemma is straightforward and using it Theorem 10.3.1 follows.

Lemma 10.3.2. The oracle for LP55 returns an admissible dual witness with the

width parameter m′/δ where m′ is the number of edges in the sparsification.

Proof. By the way its constructed and Lemma 6.1.1, the oracle returns an admissible

dual witness. Since we remove edges with weight less than δW/m′ and βp = α =

O(W), the width parameter is O(m′/δ).

Proof of Theorem 10.3.1. From the width parameter, the number of iterations is

Õ(n/δ5) and the running time for each iteration is Õ(n/δ2). Therefore, the running

255

Algorithm 34 Oracle for LP55

1: Normalize xij and yij so that
∑

ij wijxij +
∑

ij wijyij = α.

2: Let lij = xij for (i, j) ∈ E+ and lij = 1− yij for (i, j) ∈ E−.

3: Round the fractional solution.

4: if u and v belong to the same cluster for (u, v) ∈ E− and luv > 2/3 then

5: Find the corresponding path p (that violates a constraint).

6: Return βp = α and βp′ = 0 for p′ 6= p.

7: else

8: Return the rounded solution.

9: end if

time of the algorithm is Õ(n2/δ7).

The optimal fractional solution for the sparsification is bounded by OPT + 2δW
logn

.

The rounded solution has at most O(log n) times the fractional solution which is

at most O(log n)OPT + O(δ)W . Ignored edges (due to small edge weight) and the

sparsification process contributes additional δW and 2δW
logn

additive error. By summing

up all the errors, we obtain the desired result.

256

10.4 Correlation Clustering: Maximizing Agree-

ments

In this section, we present a 0.7666(1 − ε)-approximation algorithm for the maxi-

mization correlation clustering problem. There are algorithms based on SDP in the

RAM model [91, 25]. We apply Swamy’s 0.7666-approximation algorithm to the semi-

streaming model with the SDP feasibility algorithm by Steurer [90]. The outline of

the algorithm is as follows.

1. We sparsify the graph. The sparsification algorithm preserves the optimal value

with δW additive error. Since the optimal solution is at leastW/2, this preserves

optimal clustering within 1 ± δ factor. We then formulate the SDP for the

sparsified graph. The following is the SDP formulation.

max
∑

(i,j)∈E+ wij(||xi||2 + ||xj||2 − ||xi − xj||2)
∑

(i,j)∈E− wij||xi − xj||2

s.t. ||xi||2 = 1 for all i ∈ V

xi · xj ≥ 0 for all i, j ∈ V

(SDP1)

2. We solve the SDP with the feasibility algorithm. The feasibility algorithm re-

quires a separation oracle which finds a set of violated constraints. The feasibil-

ity algorithm will be explained in Section 2.3.3 and the oracle will be explained

in Section 10.4.1.

3. We round the fractional solution with Swamy’s algorithm [91] which requires a

257

proof that the rounding algorithm is robust, i.e., the algorithm still works even

if constraint are violated by small amount δ. This is proven in Section 10.4.2.

Summarizing the above, we obtain:

Theorem 10.4.1. There is an one-pass 0.7666(1−ε)-approximation algorithm for the

maximizing agreements problem in the semi-streaming model that runs in Õ(m+ n
ε8

)

time.

Proof. We need O(logn
δ4) iterations since the width parameter ρ = O(1/δ) (see Lemma

10.4.3) and each iteration of the algorithm takes Õ(n/δ4) (see Lemma 10.4.4). The

final rounding algorithm takes Õ(m′) time. Since we have O(1/δ) guesses of the

optimal solution, the total running time is Õ(n/δ9).

10.4.1 Oracle

We design an oracle for SDP1 in a similar way to the oracles for LP55 and LP52.

We find a set of violated constraints. There are entries of A that correspond to the

violated constraints. We assign non-zero values to those entries. Algorithm 35 shows

the oracle for SDP1.

The oracle has the following properties which bounds the running time of the

algorithm.

Lemma 10.4.2. Algorithm 35 is δ − separating.

258

Algorithm 35 Oracle for SDP1

1: Let D be the diagonal matrix with with Dii = di∑
j dj

= di
2W

. For the separating

hyperplane, we only describe non-zero entries.

2: Let S1 = {i|||xi||2 ≥ 1 + δ} and ∆1 =
∑

i∈S1
di.

3: Let S2 = {i|||xi||2 ≤ 1− δ} and ∆2 =
∑

i∈S2
di.

4: Let S3 = {(i, j)|xi · xj < −δ} and ∆3 =
∑

(i,j)∈S3
wij.

5: if ∆1 ≥ δα then

6: Let Aii = − di
∆1

for i ∈ S1 and b = −1. Return (A, b).

7: else if ∆2 ≥ δα then

8: Let Aii = di
∆2

for i ∈ S2 and b = 1. Return (A, b).

9: else if ∆3 ≥ δα then

10: Let Aij =
wij
∆3

for (i, j) ∈ S3 and b = 0. Return (A, b).

11: end if

12: Ignore all nodes in S1 and S2 and all edges in S3. Let C′ be the matrix that

corresponds to the objective function of the modified graph.

13: if C′ ◦X < (1− 4δ)α then

14: Let A = 1
α
C′ and b = 1− 3δ. Return (A, b).

15: else

16: Round X and return the rounded solution.

17: end if

259

Proof. For line 6, A ◦ X ≤
∑

i∈S1
−di(1+δ)

∆1
= −1 − δ since ||xi||2 ≥ 1 + δ for all

i ∈ S1. On the other hand, for any feasible X′, ||xi||2 = 1 for all i. Hence A ◦X′ =∑
i∈S1

−di
∆1

= −1. At line 8 and line 10, we have almost identical proofs.

For line 14, we do not use the violated constraints. Instead we use C′ to construct

A. We show that C′ ◦X′ ≥ (1− 3δ)α. We start from the fact that C ◦X′ ≥ α. By

removing all nodes in S1, we remove all edges adjacent to the removed nodes. The

total weight of removed edges are bounded by ∆1 ≤ δα. Similarly, we lose at most

δα for S2 and S3. Hence, the difference between C′ ◦X′ and C ◦X′ is bounded by

3δα. Therefore, A ◦X ≤ 1− 4δ while A ◦X′ ≥ 1− 3δ for X′ ∈ X .

Lemma 10.4.3. Algorithm 35 is O(1/δ)-bounded.

Proof. We prove that for any X, |A ◦X| ≤ O(1
δ
)D ◦X. For line 6 (and line 8), the

proof is straight forward. A is also a diagonal matrix where |Aii| = di
∆1
≤ O(1

δ
)di
α

.

On the other hand, Dii = di
2W

. From the fact that α ≥ W/4, we have |Aii| = O(1
δ
)Dii

which proves that |A ◦X| ≤ O(1
δ
)D ◦X. The proof is identical for line 8.

For line 10 and line 14, we use the fact that xi · xj ≤ ||xi||2 + ||xj||2. By replace

each Aijxi · xj by |Aij|(||xi||2 + ||xj||2) we obtain a diagonal matrix A′. We now

compare A′ii with Dii. For line 10, A′ii = 1
∆3

∑
(i,j)∈S3

2wij = O(δdi
α

). By the same

argument as line 6, we have |A ◦X| ≤ O(1
δ
)D ◦X. For line 14, let d′i be the degree

in the modified graph. Then, A′ii =
O(1)d′i
α

. Therefore, |A ◦X| ≤ O(1)D ◦X.

Summarizing, Algorithm 35 is O(1/δ)-bounded.

260

Lemma 10.4.4. Approximating X and the execution of Algorithm 35 can be done in

Õ(n/δ4) time.

Proof. In order to execute Algorithm 35 correctly, we have to approximate diagonal

entries of X with 1 ± O(δ) additive error which can be done with d = O(logn
δ2). In

addition, for edges (i, j) with 1−δ ≤ ||xi||2, ||xj||2 ≤ 1+δ, xi·xj must be approximated

with O(δ) additive error which can be done with d = O(logn
δ2). So d = O(logn

δ2) is

enough. Also, r = O(log 1
δ
) is enough from the same error bounds.

There are at most O(m′ + n) non-zero entries on A since Aij 6= 0 only if (i, j) is

in the sparsified graph. Therefore, TM = O(m′ + n) = Õ(n/δ2) and it takes Õ(n/δ4)

time to approximate X. Once X is approximated, the execution of Algorithm 35 can

be also done in O(m′) time which is dominated by Õ(n/δ4).

10.4.2 Rounding the Fractional Solution

The proof of the next lemma is routine for SDP based approximation — it is a simple

robustness property. However this lemma has to be shown for every oracle for the

overall framework to work.

Lemma 10.4.5. If Algorithm 35 returns a rounded solution, it returns a clustering

with agreements at least 0.7666(1−O(δ))α.

Proof. We show that the rounding algorithm returns a clustering with agreements at

least 0.7666(1 − O(δ))C′ ◦ X. Combined with the fact that C′ ◦ X > (1 − δ)α, we

obtain the desired result.

261

Since we deal with C′ instead of C, we can ignore all nodes and edges in S1, S2,

and S3. We first change the vectors in X to be unit vectors. Since all remaining

vectors has length between 1− δ and 1 + δ, this only changes the objective value by

O(δwij) for each edge and hence, the total decrease is bounded by O(δW) = O(δα).

We then change the objective value of edges (i, j) with −δ < xi · xj < 0. This

decreases the objective value by at most δwij for each negative edge. Again, the

objective value decreases by at most O(δα).

We then use the Swamy’s rounding algorithm [91] which obtains 0.7666 approx-

imation factor. One problem is that the constraint xi · xj ≥ 0 is not satisfied for

some edges. However, the rounding algorithm is based on random hyperplanes and

the probability that xi and xjj are split by a hyperplane only increases as xi · xj

decreases. For positive edges, we already account its objective value as 0 (always

disagrees). For the negative edges, the probability we put i and j in different clusters

only increases by having negative xi · xj. Note that we already changed the objec-

tive value so that xi · xj = 0. Therefore, we obtain a clustering that agrees at least

0.7666(1−O(δ)) fraction of C′ ◦X.

262

Bibliography

[1] R. Adler and Y. Azar. Beating the logarithmic lower bound: Randomized pre-

emptive disjoint paths and call control algorithms. SODA, pages 1–10, 1999.

[2] K. Ahn and S. Guha. A fully-polynomial (near) linear time approximation

schemes for b– matching problems in general graphs. Manuscript, 2013.

[3] K. Ahn and S. Guha. Primal dual or dual primal? iterative algorithms for linear

programming. Manuscript, 2013.

[4] K. J. Ahn and S. Guha. Graph sparsification in the semi-streaming model. In

ICALP (2), pages 328–338, 2009.

[5] K. J. Ahn and S. Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. In ICALP (2), pages 526–538,

2011.

[6] K. J. Ahn and S. Guha. Multicut and correlation clustering in the semi-streaming

model. Manuscript, 2011.

263

[7] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear

measurements. In SODA, 2012.

[8] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: Sparsification, spanners

and subgraphs. Proc. of PODS, 2012.

[9] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:

Ranking and clustering. J. ACM, 55(5), 2008.

[10] R. P. Anstee. A polynomial algorithm for b-matchings: An alternative approach.

Information Processing Letters, 24(3):153 – 157, 1987.

[11] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a

meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[12] S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite

programs. In STOC, pages 227–236, 2007.

[13] B. Bahmani, A. Goel, and K. Munagala. Efficient primal dual algorithms for

mapreduce. Manuscript, 2012.

[14] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,

56(1-3):89–113, 2004.

[15] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algo-

rithms, with an application to counting triangles in graphs. In SODA, pages

623–632, 2002.

264

[16] S. Baswana. Faster streaming algorithms for graph spanners. Manuscript, avail-

able at http: // arxiv. org/ abs/ cs/ 0611023 , 2006.

[17] S. Baswana and S. Sen. A simple and linear time randomized algorithm for

computing sparse spanners in weighted graphs. Random Struct. Algorithms,

30(4):532–563, 2007.

[18] J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers.

In STOC, pages 255–262, 2009.

[19] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2)

time. In STOC, pages 47–55, 1996.

[20] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. An Õ(mn) Gomory-Hu

tree construction algorithm for unweighted graphs. Proc. STOC, 2007.

[21] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. P.

Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425,

2012.

[22] A. L. Buchsbaum, R. Giancarlo, and J. Westbrook. On finding common neigh-

borhoods in massive graphs. Theor. Comput. Sci., 1-3(299):707–718, 2003.

[23] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler.

Counting triangles in data streams. In PODS, pages 253–262, 2006.

265

[24] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for

computing the entropy of a stream. In SODA, pages 328–335, 2007.

[25] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative infor-

mation. J. Comput. Syst. Sci., 71(3):360–383, 2005.

[26] M. Charikar, T. Leighton, S. Li, and A. Moitra. Vertex sparsifiers and abstract

rounding algorithms. In FOCS, pages 265–274, 2010.

[27] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum span-

ning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.

[28] W. Cook. On box totally dual integral polyhedra. In Mathematical Programming,

pages 48–61, 1986.

[29] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams.

In PODS, pages 271–282, 2005.

[30] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and mining

inverse distributions on data streams via dynamic inverse sampling. In VLDB,

pages 25–36, 2005.

[31] W. H. Cunningham and A. B. Marsh. A primal algorithm for optimum matching.

Polyhedral Combinatorics, Mathematical Programming Studies, 8:50–72, 1978.

266

[32] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-

nakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894,

1994.

[33] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering

in general weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006.

[34] R. Duan and S. Pettie. Approximating maximum weight matching in near-linear

time. In FOCS, pages 673–682, 2010.

[35] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for approximate and exact

maximum weight matching. In Arxiv http://arxiv.org/abs/1112.0790, 2011.

[36] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in

bipartite graphs. In SODA, pages 1413–1424, 2012.

[37] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal

of Research of the National Bureau of Standards, 69:125–130, 1965.

[38] S. Eggert, L. Kliemann, P. Munstermann, and A. Srivastav. Bipartite graph

matchings in the semi-streaming model. Technical Report, Institut für Infor-

matik, available at http://arxiv.org/abs/1104.4058, 2011.

[39] S. Eggert, L. Kliemann, and A. Srivastav. Bipartite graph matchings in the

semi-streaming model. In ESA, pages 492–503, 2009.

267

[40] M. Elkin and J. Zhang. Efficient algorithms for constructing (1+epsilon, beta)-

spanners in the distributed and streaming models. Distributed Computing,

18(5):375–385, 2006.

[41] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification – a

technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696,

1997.

[42] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guaran-

tees for weighted matching in the semi-streaming model. Proc. of STACS, pages

347–358, 2010.

[43] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph

problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216,

2005.

[44] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances

in the data-stream model. SIAM Journal on Computing, 38(5):1709–1727, 2008.

[45] G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic data streams and

applications. Int. J. Comput. Geometry Appl., 18(1/2):3–28, 2008.

[46] W. S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrahi. A general frame-

work for graph sparsification. In STOC, pages 71–80, 2011.

268

[47] Z. Füredi. Maximum degree and fractional matchings in uniform hypergraphs.

Combinatorica, 1(2):155–162, 1981.

[48] Z. Füredi, J. Kahn, and P. D. Seymour. On the fractional matching polytope of

a hypergraph. Combinatorica, 13(2):167–180, 1993.

[49] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph

and bidirected network flow problems. Proc. STOC, pages 448–456, 1983.

[50] H. N. Gabow. Data structures for weighted matching and nearest common an-

cestors with linking. In SODA, pages 434–443, 1990.

[51] S. Ganguly. Counting distinct items over update streams. Theor. Comput. Sci.,

378(3):211–222, 2007.

[52] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-

(multi)cut theorems and their applications. SIAM J. Comput., 25(2):235–251,

1996.

[53] F. R. Giles and W. R. Pulleyblank. Total dual integrality and integer polyhedra.

Linear Algebra and Applications, 25:191–196, 1979.

[54] A. Goel, M. Kapralov, and I. Post. Single pass sparsification in the streaming

model with edge deletions. Manuscript, available at http: // arxiv. org/ abs/

1203. 4900 , 2012.

269

[55] R. E. Gomory and T. C. Hu. Multi-Terminal Network Flows. Journal of the

Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[56] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combina-

torial Optimization. Springer, 1993.

[57] R. Hariharan, T. Kavitha, and D. Panigrahi. Efficient algorithms for computing

all low s-t edge connectivities and related problems. Proc. SODA, 2007.

[58] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams,

1998.

[59] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[60] S. Hougardy. Linear time approximation algorithms for degree constrained sub-

graph problems. Research Trends in Comb. Opt., Springer, pages 185–200, 2008.

[61] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data

stream computation. J. ACM, 53(3):307–323, 2006.

[62] P. Indyk and D. Woodruff. Optimal approximations of the frequency moments

of data streams. In Proceedings of the thirty-seventh annual ACM symposium on

Theory of computing, pages 202–208. ACM New York, NY, USA, 2005.

[63] H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles in

graphs. In COCOON, pages 710–716, 2005.

270

[64] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for lp samplers, finding

duplicates in streams, and related problems. In PODS, pages 49–58, 2011.

[65] B. Kalantari and A. Shokoufandeh. Approximation schemes for maximum car-

dinality matching. Technical Report LCSR-TR-248, Laboratory for Computer

Science Research, Department of Computer Science. Rutgers University, 1995.

[66] M. Kapralov. Better bounds for matchings in the streaming model. SODA, 2013.

[67] D. R. Karger. Random sampling in cut, flow, and network design problems. In

STOC, pages 648–657, 1994.

[68] J. A. Kelner, G. L. Miller, and R. Peng. Faster approximate multicommodity

flow using quadratically coupled flows. STOC, pages 1–18, 2012.

[69] C. Koufogiannakis and N. E. Young. Distributed fractional packing and maxi-

mum weighted b-matching via tail-recursive duality. DISC, pages 221–238, 2009.

[70] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for

solving graph problems in mapreduce. In SPAA, pages 85–94, 2011.

[71] F. T. Leighton and A. Moitra. Extensions and limits to vertex sparsification. In

STOC, pages 47–56, 2010.

[72] F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and

their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

271

[73] A. N. Letchford, G. Reinelt, and D. O. Theis. A faster exact separation algorithm

for blossom inequalities. Proceedings of IPCO, LNCS 3064, pages 196–205, 2004.

[74] A. McGregor. Finding graph matchings in data streams. In APPROX-

RANDOM, pages 170–181, 2005.

[75] J. Mestre. Greedy in approximation algorithms. ESA, pages 528–539, 2006.

[76] S. Micali and V. V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum

matching in general graphs. In FOCS, pages 17–27, 1980.

[77] A. Moitra. Approximation algorithms for multicommodity-type problems with

guarantees independent of the graph size. In FOCS, pages 3–12, 2009.

[78] M. Monemizadeh and D. P. Woodruff. 1-pass relative-error lp-sampling with

applications. In SODA, pages 1143–1160, 2010.

[79] M. Müller-Hannemann and A. Schwartz. Implementing weighted b-matching

algorithms: towards a flexible software design. J. Exp. Algorithmics, 4, 1999.

[80] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations

and Trends in Theoretical Computer Science, 1(2), 2005.

[81] N. Nisan. Pseudorandom generators for space-bounded computation. Combina-

torica, 12(4):449–461, 1992.

[82] M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Math-

ematics of Operations Research, 7(1):67–80, 1982.

272

[83] S. Pettie and P. Sanders. A simpler linear time 2/3-epsilon approximation for

maximum weight matching. Inf. Process. Lett., 91(6):271–276, 2004.

[84] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for

fractional packing and covering problems. Mathematics of Operations Research,

20:257–301, 1995.

[85] R. Preis. Linear time 1/2 -approximation algorithm for maximum weighted

matching in general graphs. In Proceedings of the 16th annual conference on

Theoretical aspects of computer science, STACS’99, pages 259–269, Berlin, Hei-

delberg, 1999. Springer-Verlag.

[86] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency, volume 24

of Algorithms and Combinatorics. Springer, 2003.

[87] D. Shmoys and D. Williamson. The Design of Approximation Algorithms. Cam-

bridge University Press, 2011.

[88] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances.

In STOC, pages 563–568, 2008.

[89] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM J.

Comput., 40(4):981–1025, 2011.

[90] D. Steurer. Fast SDP algorithms for constraint satisfaction problems. In SODA,

pages 684–697, 2010.

273

[91] C. Swamy. Correlation clustering: maximizing agreements via semidefinite pro-

gramming. In SODA, pages 526–527, 2004.

[92] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[93] D. E. D. Vinkemeier and S. Hougardy. A linear-time approximation algorithm for

weighted matchings in graphs. ACM Transactions on Algorithms, 1(1):107–122,

2005.

[94] D. P. Woodruff. Lower bounds for additive spanners, emulators, and more. In

FOCS, pages 389–398, 2006.

[95] M. Zelke. Weighted matching in the semi-streaming model. Proc. of STACS,

pages 669–680, 2008.

274

	University of Pennsylvania
	ScholarlyCommons
	1-1-2013

	Analyzing Massive Graphs in the Semi-streaming Model
	Kook Jin Ahn
	Recommended Citation

	Analyzing Massive Graphs in the Semi-streaming Model
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	tmp.1408554005.pdf.vYFG5

