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ABSTRACT

MODULI PROBLEMS IN DERIVED NONCOMMUTATIVE GEOMETRY

Pranav Pandit

Tony Pantev, Advisor

We study moduli spaces of boundary conditions in 2D topological field theo-

ries. To a compactly generated linear∞-category X , we associate a moduli functor

MX parametrizing compact objects in X . The Barr-Beck-Lurie monadicity the-

orem allows us to establish the descent properties of MX , and show that MX is

a derived stack. The Artin-Lurie representability criterion makes manifest the re-

lation between finiteness conditions on X , and the geometricity of MX . If X is

fully dualizable (smooth and proper), thenMX is geometric, recovering a result of

Toën-Vaquie from a new perspective. Properness of X does not imply geometricity

in general: perfect complexes with support is a counterexample. However, if X is

proper and perfect (symmetric monoidal, with “compact = dualizable”), thenMX

is geometric.

The final chapter studies the moduli of Noncommutative Calabi-Yau Spaces

(oriented 2D-topological field theories). The Cobordism Hypothesis and Deligne’s

Conjecture are used to outline an approach to proving the unobstructedness of this

space, and constructing a Frobenius structure on it.
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Chapter 1

Introduction

The subject of this thesis, derived noncommutative geometry, is the natural coming

together of two fundamental paradigm shifts: one within mathematics, and the

other in physics. The first is a movement away from mathematics based on sets, to

a mathematics where the primitive entities are shapes. The second, is the radical

idea in physics that the notion of space-time is not intrinsic to a physical theory.

Sections §1.1 and §1.2 are devoted to a cursory overview of these two incipient

revolutions in the way we perceive reality. In section §1.3, we sketch in quick, broad

strokes the emerging contours of derived noncommutative geometry. Our purpose

in including these sections is to place this thesis within the broader context into

which it naturally fits, and to lend some perspective to the results proven here.

Section §1.4 details, in a semi-informal tone, the main results of this article, and

outlines the organizational structure of the document.
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1.1 Brave New Mathematics

For several centuries, the scientific approach has been conflated with the reduction-

ist paradigm. The tremendous advances in human knowledge during the aforemen-

tioned era, stand testimony, no doubt, to the power and efficacy of reductionism.

Nevertheless, as with any approach to understanding and perceiving reality that

has thought as its basis, it is inherently limited. What follows is a brief discussion

of one particular limitation.

The dominance of the atomic, reductionist world-view is apparent in the very

foundations of mathematics. Modern mathematics is based on sets. The notion of

a set abstracts the essence out of the everyday experience of collections of objects.

Central to this abstraction is a notion of “sameness” or “equality”: one posits that

the only reasonable question that one can ask of two members of a set is whether

they are equal. Furthermore a set is determined by its members, and the only

question that one can ask of two sets is whether they are equal, and so on.

In as much as mathematics is an attempt to mirror the phenomena of Nature

within the mental structures created by thought, this set-theoretic model is funda-

mentally flawed. The notion of equality does not accurately mirror relationships

between physical entities. Rather than say that two such entities are equal, it is

more natural and useful to specify a particular identification of the two. Often,

there are several. The idea that there can be a multitude of ways of identifying

an object with itself is the notion of symmetry, which has played such a vital role
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throughout the history of science.

If one adopts the viewpoint put forth in the previous paragraph, then it becomes

logically incumbent upon one to apply the same reasoning to the “identifications”

(which we will henceforth suggestively refer to as either “morphisms” or “paths”)

of objects: rather than ask whether two morphisms are equal, one seeks to describe

the totality of all morphisms between the two given morphisms. This reasoning

continues ad-infinitum, applying to the morphisms between morphisms, as so on.

This leads one to contemplate a mathematical notion, which we will call “shape”,

that captures the everyday experience of an aggregate of objects, together with the

totality of all identifications between them, and the totality of all identifications

between those identifications, ad infinitum. Fortunately, such structures have been

studied in algebraic topology for several decades, under the name “homotopy types”.

Within the world of set-theoretical mathematics, there are several models for the

notion of a “homotopy type”, such as topoligical spaces and simplicial sets. In each

of these models, the notions described above have concrete avatars. For instance,

the points of a topological space incarnate the objects of the “shape” it represents,

the paths represent the identifications between objects, the homotopies of paths

represent the identifications between identifications, and so forth. It is important

to emphasize, however, that each of these models contains redundant information -

for instance the real line and a point represent the same shape, while being distinct

topological spaces.
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The point of view that we adopt is that there exists a universe of discourse

which has shapes as the primordial entities in place of sets, and which exists without

reference to the set-theoretical world. Following Waldhausen (who in turn borrowed

the term from Aldous Huxley’s book “Brave New Worlds”), we will refer to this

universe of discourse as “Brave New Mathematics”.

The axiomatization of the shape theoretical world (Brave New Foundations)

seems to be a thing of the future. However, thanks to the monumental efforts of

Grothendieck [Gro83], Simpson [Sim10], Toën-Vezzosi [TV05, TV08], Lurie [Lur09a,

Lur11b, Lur04] and several others, we do have a shape-theoretical universe of dis-

course. Their approach has been to construct models for Brave New Mathematics

within the set-theoretical world.

Most of the objects of classical mathematics have brave new analogues. The

table on the next page summarizes some of the important examples from algebra,

topology and geometry. In many respects, these shape-theoretical analogues have

many of the same formal properties as their classical counterparts. In fact, a cursory

glance at the table will convince the reader that many of these structures have

been studied under one guise or another in classical mathematics. For instance, the

subject of stable homotopy theory is largely concerned with the analogues of abelian

groups, while homological algebra is concerned with the brave new analogue of

algebra over Z. The notions of geometric∞-stacks have also had classical precursors

- namely, Artin stacks.
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Classical Entity Brave New Analogue

Sets Spaces

Categories ∞-categories

Abelian groups Spectra

Associative rings A∞-ring spectra

En-rings

Commutative rings E∞-rings

Topoi ∞-topoi

Algebraic Spaces Geometric ∞-stacks

Manifolds Derived Smooth Manifolds

Abelian Categories Stable ∞-categories

k-linear Grothendieck categories k-linear presentable ∞-categories

Throughout this paper, the objects that we study will live on the right hand side

of this column. The reader who is willing to accept the existence of the brave new

analogues, and take for granted that they have certain formal similarities to their

classical counterparts, can read most of this paper without an intimiate knowlegde

of inner workings of the shape theoretical world.

For a detailed discussion of the myriad ways in which the shape theoretical

perspective clarifies our understanding of various questions in classical mathematics,

we refer the reader to the beautiful survey articles [Toë03, Toë09, TV07b].
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1.2 Quantum Geometry

The reductionist worldview has also been challenged by the revolutions within

physics during the last century. Relativity has destroyed the illusion of space and

time (resp. matter and energy) as separate entities, while the Quantum Revolution

has shaken even the most fundamental assumptions about causality, and the di-

chotomy between the observer and the observed. It is perhaps accurate to say that

most singular contribution of String Theory has been to question the very notion

of space-time itself. It is to this radical idea that we devote this section.

After Feynman’s fundamental insights, the art of doing physics (or, at least,

QFT) can be described as follows. One starts out by choosing a space-time mani-

fold, together with some additional geometric structure on it, such as a Riemannian

metric or a complex structure. This geometric structure gives rise to a Lagrangian,

which in turn is used to write down a “path-integral”. The final output of the path-

integral formalism are certain “correlation functions” which organize themselves

naturally into a mathematical structure called a Quantum Field Theory. The pre-

cise meanings of the terms used above are not important for our purposes. The

point we wish to make is that entire process of “doing physics” can be summarized

schematically as follows:


Geometric

Background

Data

 Path integral//

(
Quantum Field

Theory

)
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As shown in the next figure, there are a variety of different types of geometric

background data (“space-times”) that give rise to Quantum Field Theories. This

list is by no means exhaustive - the possible types of geometric background data

that can be used to construct a field theory being limited only by our imagination.

Other examples include representations of groups, and differential equations.

(
Symplectic

Spaces

)

Path Integral
**

oo //

(
Algebraic

Spaces

)

Path Integral

��

oo //

(
Germs of

Singularities

)

Path Integral
tt

( Quantum Field Theory )

The remarkable discovery of the string theorists is that space-times of superfi-

cially disparate origins can give rise to equivalent Quantum Field Theories (QFTs).

Thus, for instance, a symplectic space and an algebraic variety may give rise to

the same physical theory. Since the correlation functions of the QFT are the only

experimentally verifiable aspect of the model, the two geometric backgrounds are

indistinguishable from a physical point of view. This suggests that the very notion

of space-time, in the classical sense, is not intrinsic to the physical theory. Rather, it

is an auxiliary construct that proves expedient for obtaining a better understanding

of the theory, in much same way that choosing a basis for a vector space may prove
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useful for certain computations.

A natural question that arises in this context is the following: is there a “notion

of geometry” (which one might refer to as “quantum geometry”), that is intrinsic

to a Quantum Field Theory? A tautological solution to this problem is to take the

very notion of a Quantum Field Theory as a proxy for the notion of a quantum

geometry or quantum space-time. While conceptually sound, this approach has two

major drawbacks. The first is that QFTs are very complicated, and not very well

understood as mathematical objects. The second, more serious drawback is that

the path integral is not, at the present time, a well-defined mathematical construct.

1.3 Derived Noncommutative Geometry

In this section, we will provide a brief synopsis of the noncommutative geometry

program proposed in [KKP08], as understood by the present author.

In order to circumvent the difficulties of working with the notion of “quan-

tum space” introduced in the previous section, one may choose to work with a toy

model for physical theories. One possible toy model for the QFTs arising in physics

is the notion of a 2-dimensional topological field theory (2D-TFT). After the sem-

inal work of Atiyah [Ati88], it is understood that topological field theories should

be seen as symmetric monoidal functors from a certain fixed symmetric monoidal

category Cobn to another symmetric monoidal category C (we will call such a thing

a n-dimensional-TFT with values in C). In light of the cobordism hypothesis, it is
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clear that it is better to work with the shape theoretical analogue of these TFTs

- namely the extended topological field theories of [Lur09b]. We refer the reader

to loc. cit. for precise definitions, and for a beautiful exposition of this circle of

ideas. The 2D-TFTs of greatest relevance in physics are symmetric monoidal func-

tors from a certain symmetric monoidal (∞, 2)-category Bordfr
2 (and its variants)

to the symmetric monoidal (∞, 2)-category of k-linear∞-categories, for some com-

mutative ring k. The cobordism hypothesis asserts that such a functor is uniquely

determined by its value on a single object (a framed point), and thus by a single

k-linear ∞-category.

In keeping with the philosophy of the previous section, we would like to take

the point of view that a derived noncommutative space over k is a 2D-TFT valued

in k-linear ∞-categories. Or equivalently, by the cobordism hypothesis, a derived

noncommutative space over k is a k-linear ∞-category. Derived noncommutative

spaces themselves organize themselves into a k-linear (∞, 2)-category.

While the path integral is not a well defined mathematical operation, there are

rigorous constructions associating derived noncommutative spaces to various types

of geometric background data. For instance, to a commutative space (geometric

∞-stack), one can associate the∞-category of quasi-coherent sheaves on it. This is

discussed in some detail in Chapter 2. To a symplectic manifold, one can associate

its derived Fukaya category. Another example of a different flavor is furnished

by associating to a commutative space X the ∞-category of DX-modules. Thus,

9



derived noncommutative geometry provides a unified framework in which to discuss

superficially disparate notions of geometry. It provides a natural setting in which

to understand the mysterious “string dualities”, such as Mirror Symmetry and

Langlands Duality, which we alluded to in the previous section.

It is a remarkable fact that much of the geometry of a “geometric background”

(algebraic space, symplectic manifold,...) is encoded in the noncommutative shadow

attached to it, and the associated 2D-TFT. For instance, the smoothness and

properness of a scheme X is encoded in the (full) dualizability of QC(X) as an ob-

ject of the symmetric monoidal (∞, 2)-category of k-linear presentable∞-categories.

Conjecturally, the Hodge structure of X can be recovered from the TFT associated

to QC(X). There are similar statements for other geometric backgrounds, such as

symplectic manifolds. We will briefly touch upon these ideas in Chapter 5. For a

detailed treatment, the reader is referred to [KKP08, Lur09b].

1.4 About this work

We have seen that to a commutative space (geometric ∞-stack), one can associate

its category of quasi-coherent sheaves, which is a noncommutative space. There is

a construction going in the other direction, which associates to a noncommutative

space, the moduli of compact objects in it, which is a derived stack. On certain

subcategories, this pair of functors restricts to an adjunction (see [TV07a]). The

first question that we investigate is the following:

10



Question 1 : What conditions on a linear ∞-category X ensure that the moduli of

compact objects in X is a geometric ∞-stack?

The other question that finds mention in this paper is the following:

Question 2 : Is there a geometric ∞-stack parametrizing smooth and proper non-

commutative spaces? What additional geometric structures exist on this stack, if

it exists?

Organization of this document:

Each chapter begins with a detailed description of its contents, and most sections

begin with a brief synopsis of what follows. Therefore, we will be brief here.

In Chapter 2, we will introduce the primary characters in our story: geometric

stacks and derived noncommutative spaces. The final section of this chapter defines

the moduli of compact branes on a noncommutative space, and several related

moduli functors. These will be main objects of study in Chapters 3 and 4.

Chapter 3 is devoted to a study of the descent properties of the moduli functors

introduced in 2. Theorem 3.5.3 summarizes the results of this chapter. The main

result from this chapter that will be used in the next chapter is the fact that the

moduli functor parametrizing compact branes is a derived stack.

In Chapter 4, which is the heart of this dissertation, we investigate the geo-

metricity of the moduli of compact branes on a noncommutative space. The main

results of this chapter are Theorems 4.3.1 and 4.4.1. The first asserts that there
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is a geometric stack parametrizing compact branes on a smooth and proper non-

commutative space. The second describes a certain algebraic structure on a proper

noncommutative space that ensures that the moduli functor of compact branes is

geometric. Proposition 4.5.2 give says that the moduli of perfect complexes with

support along a subscheme is almost never geometric. In particular, properness

does not imply geometricity.

The final chapter outlines ongoing work on the moduli of noncommutative

spaces. We state a conjecture regarding the existence of a geometric stack parametriz-

ing certain noncommutative spaces. Furthermore, we conjecture that the deforma-

tion theory of Calabi-Yau noncommutative spaces is unobstructed, and sketch a

proof of this fact. Finally, we outline an approach to constructing a Frobenius

structure on the moduli space of noncommutative Calabi-Yau spaces.

1.5 Background and Notation

Throughout this work, we will assume familiarity with the language of homotopical

mathematics as developed by Lurie in [Lur09a, Lur11b, Lur04]. Specifically, we will

assume that the reader has at least a fleeting acquaintance with the rudiments of

topology, algebra and algebraic geometry in the∞-categorical context. Having said

that, we would like to emphasize that an intimate knowledge of the inner workings

of the theory in loc. cit. is not needed in order to read this paper.

An attempt has been made to keep the statements of the results and the proofs

12



devoid of references to a particular model for ∞-categories. Any equivalent (in a

suitable sense) model will suffice. In particular, the reader who is more comfortable

with the parlance of Toën/Toën-Vezzosi [Toë07, TV05, TV08], should encounter

little difficulty in translating most results of this paper into that language. There

is one caveat: for statements that involve functor categories, monads and the Barr-

Beck-Lurie theorem, model categories must be replaced by a more flexible notion

such as Segal Categories, as is done, for instance, in [TV02].

To a large extent, the notation used in this paper is consistent with the notation

in [Lur09a, Lur11b, Lur04]. The following is a list of some frequently used notation.

Notation 1.5.1 (Bibliographical Convention). We will use the letter

• “T” to refer to the book Higher Topos Theory [Lur09a].

• “A” to refer to the book, Higher Algebra [Lur11b].

• “G” to refer to the thesis Derived Algebraic Geometry [Lur04].

Thus, for example, T.3.2.5.1. refers to [Lur09a, Remark 3.2.5.1.], while A.6.3.6.10.

refers to [Lur11b, Theorem 6.3.6.10].

Notation 1.5.2 (Spaces). We will denote by S (resp. Ŝ) the ∞-category of small

(resp. large) spaces (T.1.2.1.6.), and by S∞ := Stab(S) the stable ∞-category of

spectra. For an ∞-category C, Stab(C) is its stabilization (A.1.4.) We will denote

by (−)' the functor that associates to an ∞-category the maximal subgroupoid.
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Notation 1.5.3 (∞-categories). Throughout, κ will denote an arbitrary regular

cardinal, and ω is the smallest one. We will denote by

• Cat∞ (resp. Ĉat∞) the ∞-category of essentially small (resp. large) ∞-

categories.

• CatEx
∞ (resp. Cat∨∞) the subcategory of Cat∞ consisting of small stable (resp.

idempotent complete stable) ∞-categories and exact functors.

• PrL (resp. PrR) the subcategory of Ĉat∞ consisting of presentable ∞-

categories and left adjoints (resp. accessible right adjoints). See T.5.5.

• PrLκ (resp. PrRκ ) the subcategory of PrL (resp. PrR) consisting of κ-compactly

generated ∞-categories and functors that preserve κ-compact objects (resp.

are κ-accessible). See T.5.5.7.

• PrLst the subcategory of PrL consisting of stable ∞-categories.

Notation 1.5.4 (Functor categories). For C, D in Cat∞, Fun(C,D) denotes the

∞-category of functors C → D. We will denote by

• FunL(C,D) (resp. FunR(C,D)) the full subcategory of Fun(C,D) consisting of

functors that preserve all small colimits (resp. are accessible, and preserve all

small limits).

• FunLAd(C,D) (resp. FunRAd(C,D)) the full subcategory of Fun(C,D) consist-

ing of functors that have right adjoints (resp. have left adjoints).
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• FunL
κ(C,D) (resp. FunR

κ (C,D)) the full subcategory of Fun(C,D) consisting

of functors that preserve all small colimits and κ-compact objects (resp. are

κ-accessible, and preserve all small limits).

By the adjoint functor theorem (T.5.5.2.9.), if C and D are presentable, then we have

natural equivalences FunL(C,D) ' FunLAd(C,D) and FunR(C,D) ' FunRAd(C,D).

Notation 1.5.5. Small objects: compact objects and dualizable objects. We will

denote by X κ the ∞-category of κ-compact objects in an ∞-category X . (−)κ

defines a functor PrLκ → Cat∞. If X is the underlying category of a symmetric

monoidal ∞-category X⊗, we will denote by X fd the full subcategory of dualizable

objects. More generally if X is the underlying category of a symmetric monoidal

(∞, n)-category, X fd denotes the full (∞, n)-subcategory of fully dualizable objects.

Notation 1.5.6 (Categorical hom and tensor). The categories PrL and PrLκ are

symmetric monoidal, and the inclusion functor PrLκ ⊆ PrL is symmetric monoidal

(A.6.3.) with unit S. We will denote by ⊗ the tensor product on PrL. This is not

to be confused with the Cartesian monoidal structure “×”on Ĉat∞. The functors

FunL(−,−) (resp. FunL
κ(−,−)) defines an internal hom on PrL (resp. PrLκ ).

Notation 1.5.7 (Algebras and modules). Let O⊗ be an ∞-operad, C⊗ → O⊗ be

an O-monoidal category and letM be an ∞-category tensored over C (A.4.2.1.9.).

We will denote by AlgO(C) the ∞-category of O-algebra objects in C. For A in

AlgO(C), we will write ModOA(M) for the ∞-category of A-modules in M. When
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O is the commutative operad CAlg(C) := AlgO(C), and ModA(M) := ModOA(M).

When O is the associative operad (A.4.1.1.), Alg(C) := AlgO(C). We will use the

abbreviation ModA := ModA(S∞) for A in CAlg(S∞).

Notation 1.5.8 (1-Categories). We will denote by Cat the ∞-category of 1-

categories. In the quasicategorical model, this is the simplicial nerve of the Dwyer-

Kan localization of the 1-category of categories along the subcategory of weak equiv-

alences. We will denote by

• N(−) the natural inclusion Cat→ Cat∞. In the quasicategorical model, this

is the nerve functor.

• h : Cat∞ → Cat the left adjoint to N(−). We will refer to hC as the homotopy

category of C.

Notation 1.5.9 (Ground ring). Throughout, we will fix a connective E∞-ring k.

We will assume that k is a Derived G-ring in Chapter 4.

Notation 1.5.10 (Algebraic geometry). . We will denote by CAlgk the∞-category

of connective E∞-algebras in Modk. We will denote by Affk the category of derived

affine schemes. By definition Affk := CAlgopk . We will denote by Spec : CAlgopk →

Affk and O : Affk → CAlg the tautological equivalences. We will denote by Stk

the ∞-topos of derived stacks over k. For F in Stk we will write StF the ∞-topos

(Stk)F/.
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Notation 1.5.11 (Diagrams and limits). For K in Cat∞, K/ (resp. K.) will denote

the category obtained from K by adjoining an initial (resp. final) object {∞}. For

x in K we will usually denote by ψx the unique morphism ∞→ x (resp. x→∞).

Our terminology regarding limits follows T.4.

Notation 1.5.12 (Moduli Functors). Let X ∈ PrLω,k. For the definition of the

moduli functors MX , M†
X , M\

X , M[
X , MX and M∨

X we refer the reader to §2.4

and Notation 2.4.1.
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Chapter 2

Brane Moduli

The purpose of this chapter is twofold. Firstly, we will elucidate the structure of

commutative and noncommutative spaces to a point where we will be able to define

precisely the primary objects of study in this thesis: moduli of objects (“branes”)

in linear ∞-categories. Secondly, we will collect together several definitions and

propositions that will play an important role in the sequel. The reader would do

well to just skim over this chapter on the first reading, or to skip it altogether,

referring back when necessary.

We begin, in §2.1 with a rapid overview of derived stacks. The notion of ge-

ometric stacks is recalled. These are derived stacks that are, in a certain precise

sense, sufficiently close to derived affine schemes so as to make them amenable to

study via the techniques of algebraic geometry. One of the main goals of this thesis

is to determine whether certain stacks are geometric.
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In §2.2 we will recall some of the main features of the theory of presentable

∞-categories and compactly generated ∞-categories. We will then recall how the

notion of dualizability arising from the symmetric monoidal structure on presentable

categories gives rise to finiteness conditions of geometric content on categories. The

symmetric monoidal structure will also be used to define the notion of an∞-category

that is linear over a ground ring k. We will then go on to introduce the notion of

perfect symmetric monoidal∞-categories, which will play an important role in this

paper. These are presentable symmetric monoidal∞-categories where the compact

objects coincide with the dualizable ones. Some basic properties of perfect categories

are noted in this section; however, the primary reason for their importance in the

context of this paper will only become apparent in §2.3. The section closes with

the definition of quasi-coherent sheaves on derived stacks, and a “derived” version

of faithfully flat cohomological descent.

In §2.3 we collect together various useful facts about limits of∞-categories that

will be used frequently later in the paper. Special attention is paid to the behavior

of compact objects in this context.

In §2.4 we define the central objects of study in this thesis - moduli of objects

in k-linear ∞-categories.
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2.1 Commutative Spaces

The following schema for defining the notion G of a geometric space is ubiquitous

in mathematics. One starts with some (ordinary) category C of “affine models”.

One then defines G-spaces by “gluing” together objects of C in a prescribed way.

One way of making precise this notion of gluing, is to say that G-spaces are certain

sheaves on C with respect to a Grothendieck topology τ . Algebraic geometry is

characterized by the assumption that C is the opposite of a category of “algebraic

objects”, such as, for instance, the category of commutative rings in a symmetric

monoidal category. This schema carries over verbatim to the shape theoretical

context, giving rise to derived algebraic geometry.

Our reference for what follows is [Lur04]. The main purpose of what follows

is to fix terminology. We take Affk := CAlgop
k as our ∞-category of affine builing

blocks, objects of which will be called derived affine schemes. Let τ be a topology

on Affk in the sense of [Lur04]. Recall that a simplicial object U• : N(∆op)→ Affk

is a τ -hypercover if for all n the natural morphism Un+1 → (cosknU•)n+1 is in τ . By

a 1-coskeletal hypercover, we mean one of the form cosk0(f) for some f in τ . We

will refer to cosk0(f) as the Čech nerve of f .

Definition 2.1.1. Let F ∈ P(Affk) := Fun(Affop
k ,S). We say that F is a sheaf

for the τ -topology if it preserves products and carries the Čech nerve of any mor-

phism τ -cover U → X to a limit diagram. We will say that F is a sheaf for the

τ -hypertopology if it preserves products and carries any τ -hypercover to a limit
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diagram.

Recall from [Lur04] the definitions of the various topologies (flat, étale, etc) on

Affk.

Definition 2.1.2. The∞-topos Stk of derived∞-stacks over k (or simply, derived

stacks), is the full subcategory of the category P(Affk) consisting of functors that

are sheaves for the étale topology.

Definition 2.1.3. 1. We adopt definition G.5.1.3. as our definition of a relative

n-stack, or n-representable morphism. We will say that F ∈ P(Affk) is a

derived algebraic n-stack if F is a derived n-stack in the sense of [Lur04]. That

is, F is a derived algebraic n-stack if F → Spec(k) is a relative n-stack. The

terms geometric n-stack and algebraic n-stack will be used interchangeably.

2. We will say that F is a locally geometric ∞-stack if it can be written as a

filtered colimit of a diagram {Fα} of stacks such that

(a) Each Fα is a derived algebraic n-stack for some n.

(b) Every morphism in the diagram is a monomorphism.

We will say F is locally of finite presentation if each Fα can be chosen locally

of finite presentation.
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2.2 Noncommutative Spaces

Presentable Categories. Throughtout this paper, we will work with large ∞-

categories. It will usually be necessary to know that these large ∞-categories are

“controlled”, in a certain precise sense, by a “small amount of data”. The theory of

presentable ∞-categories developed by Lurie in [Lur09a] offers a framework where

one can make precise statements of this type. We refer the reader to loc. cit. for

a detailed discussion of presentable categories. In the paragraphs that follow, we

will collect together some of the main definitions and theorems about presentable

categories that will be used frequently in the rest of the paper.

Definition 2.2.1. Let κ be a regular cardinal, and let X be a large ∞-category.

We will say that

(1) X is κ-accessible if there exists a small ∞-category X 0 and an equivalence

Indκ(X 0) ' X . We will say X is accessible if it is κ-accessible for some regular

cardinal κ. X is presentable if it is accessible and admits all small colimits.

(2) X is κ-compactly generated if it is presentable and κ-accessible. X is compactly

generated if it is ω-compactly generated.

(3) A functor f : X → Y between presentable∞-categories is κ-good if it preserves

κ-compact objects, and κ-accessible if it preserves κ-filtered colimits.

(4) An object X in X is a κ-compact generator for X if X is presentable, X is

κ-compact, and for every object Y in X , we have that X (X, Y ) ' {∗} implies
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that Y is a final object of X . A compact generator is an ω-compact generator.

We will make frequent use of the following theorem of Schwede-Schipley. The

reader is referred to [Lur11b] for a treatment in the language of the current paper.

Theorem 2.2.2. Let X be a ω-compactly generated A-linear ∞-category. Then

we have an equivalence Fun(X ω,ModA) ' X . If X admits a compact generator

X, then we have an equivalence X ' LModE , where E is the associative algebra

MorA(X,X) in ModA.

For the definition of linear∞-categories, the reader is referred to the subsection

on quasi-coherent sheaves in this section.

Dualizability. For the definition of symmetric monoidal∞-categories, and for the

various facts about dualizability that we will need, we refer the reader to [Lur11b,

Lur09b, BZFN10, TV08]. Here we recall some of the main definitions and facts that

we will need.

The proof of the following lemma is straightforward.

Lemma 2.2.3. If X ∈ PrLω,k, then X is dualizable as an object of the symmetric

monoidal (∞, 1)-category PrLk . A dual of X is X op.

Definition 2.2.4. We will say that X ∈ PrLω,k is smooth and proper if it is dualiz-

able as an object of the symmetric monoidal (∞, 1)-category (PrLω,k)⊗.

For a discussion of the properties of smooth and proper categories, we refer the

reader to [TV07a]. The lemma that follows can be found in [BZFN10]. It will play
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a crucial role in Chapters 3 and 4.

Lemma 2.2.5. Let C⊗ be a symmetric monoidal ∞-category, and let X be a du-

alizable object in the underlying category C. Then the functor X ⊗ (−) : C → C

commutes with all limits.

Quasi-coherent sheaves. To a derived stack X, or more generally any functor

X ∈ Fun(Affk,S), one can associate a k-linear presentable ∞-category QC(X),

which can be thought of as a noncommutative shadow of the commutative space X.

This subsection is devoted to giving a definition of this category and taking note of

some of its basic properties.

There is a functorM : CAlgk → Ĉat∞ whose action on objects and 1-morphisms

can be described as follows. To an object A in CAlgk,M assigns the∞-category of

A-modules, ModA. The action of M on 1-morphisms f : A→ B in CAlgk is given

by base change (left Kan extension). In symbols:

M(A) := ModA

M(f) := B ⊗A (−)

It is important to note that the formulas given above do not, by themselves,

guarantee the existence of an ∞-functor M with the prescribed action on objects

and 1-morphisms: in order to specify M it is also necessary to specify various

“higher order” coherences. The existence of the ∞-functor M can be established
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in several ways. In the language of [Lur11b, §6.6.3., §6.3.5.9.],M is the composite:

CAlgk
// Alg(Modk) // Ĉat

alg

∞
Θ̂ // Ĉat

Mod

∞
// Ĉat∞

Recall that, roughly speaking, the∞-category Ĉat
alg

∞ consists of pairs (C⊗, A), where

where C⊗ is a (not necessarily small) symmetric monoidal ∞-category and A is

an object in Alg(C). Similarly, the ∞-category Ĉat
Mod

∞ consists of pairs (C⊗,N ),

where C⊗ is a symmetric monoidal ∞-category, and N is a (not necessarily small)

∞-category tensored over C⊗. In the diagram above, the first arrow is the forgetful

functor from E∞-algebras to E1-algebras, and the last arrow is the forgetful functor

that sends (C⊗,N ) to the underlying ∞-category N . The functor Alg(Modk) →

Ĉat
alg

∞ is the inclusion of the subcategory consisting of pairs (C⊗, A), where C⊗ '

Mod⊗k , and the morphisms are equivalent to the identity on C⊗. Roughly speaking,

Θ̂ associates to (C⊗, A) the pair (C⊗,RModA(C)).

Remark 2.2.6. The ∞-category M(A) = ModA is presentable. This follows, for

instance, from A.4.2.3.7., and the fact the ∞-category of spectra is presentable.

Furthermore, the category ModA is ω-compactly generated.

Remark 2.2.7. For any f : A → B in CAlgk, the functor M(f) has a right

adjoint, namely, the forgetful functor ModB → ModA. More is true: the right

adjoint M(B) → M(A) preserves all colimits. In particular, it is ω-accessible. It

follows that M(f) :M(A)→M(B) preserves ω-compact objects.

Remark 2.2.8. The categories ModA have a symmetric monoidal structure in-

duced by the symmetric monoidal structure on S∞. Thus,M(A) can be viewed as
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commutative algebra object in PrL. In particular, itM(A) is a module over itself;

i.e., it can viewed as an object in ModM(A)(PrL) =: PrLA.

For A in CAlgk, functor M(θA) : M(k) → M(A) induced by the structure mor-

phism θA : k → A is symmetric monoidal (A.4.4.3.1), i.e., it is a morphism in

CAlg(PrL). Restricting the action of M(A) along M(θA), we get an induced

M(k)-module structure on M(A). Morphisms in CAlgk commute with the struc-

ture maps θ(−) by definition; this immediately implies that the functors M(f) are

M(k)-linear.

Recall that PrLω (resp. PrLω,k) denotes the subcategory of PrL (resp. PrLk ) consisting

of all compactly generated∞-categories (resp. all Modk-linear compactly generated

∞-categories), and morphisms that preserve small colimits and ω-compact objects.

The preceding three remarks are summarized by the following proposition:

Lemma 2.2.9. There exists a functor M⊗
1 : CAlgk → CAlg(PrLω,k) such that the

diagram below is (homotopy) commutative:

CAlg(PrLω,k)

��
PrLω,k

��
CAlgk

M⊗1

<<

M
// Ĉat∞
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Notation 2.2.10. Let M1 denote the functor obtained by composing M⊗
1 with the

forgetful functor CAlg(PrLω,k)→ PrLω,k. Let QCaff denote the composite

Affopk
O // CAlgk

M1 // PrLω,k // PrLk

For a derived affine scheme X in Affk, QCaff(X) is the∞-category of quasicoherent

sheaves on X. We would like to extend this functor to arbitrary derived stacks.

Let j : Affk → P(Affk) denote the Yoneda embedding. By the universal property

of categories of presheaves, left Kan extension defines an equivelance Fun(Affk, C) '

FunL(P(Affk), C), for any C that admits all small colimits. Take C = (PrLk )op, and

let Q̃C denote that image of M under the induced equivalence Fun(Affopk ,PrLk ) '

FunR(P(Affk)op,PrLk ).

Notation 2.2.11. Let a : P(Affk) → Stk be the localization functor, with right

adjoint i, and let QC denote the composite Q̃C◦iop. We will often implicitly identify

Stk with the essential image of the fully faithful functor i.

Definition 2.2.12. For a derived stack X over k, the ∞-category QC(X) is called

the ∞-category of quasicoherent sheaves on X.

Remark 2.2.13. The ∞-category QC(X), is stable. This follows, for instance,

from the fact that Modk-linear ∞-categories are stable [].

Remark 2.2.14. Let X be a discrete scheme. Then the relationship between the

∞-category QC and the abelian category Qcoh(X) of quasicoherent sheaves on X

27



is as follows: there is a t-structure on QC such that QC♥ ' Qcoh(X), and we have

an equivalence hQC ' D(Qcoh(X)).

Remark 2.2.15. The étale topology is subcanonical, so for A in CAlgk, Spec(A)

is a derived stack. Furthermore, we have M(A) = QC(Spec(A)).

Remark 2.2.16. Let F ∈ P(Affk), and Φ : (j/F) → P(Affk) be the functor that

carries Spec(A)→ F to Spec(A). Then we have a natural equivalence F ' colim Φ.

Take F = i(X) for some derived stack X. Using the preceding remark and the fact

that Q̃C preserves limits, we have

QC(X) ' lim(Q̃C ◦ Φop) ' lim
Spec(A)→X

QC(Spec(A))

The diagram Φ : (j/F)→ P(Affk) is large, and consequently the description of

QC in 2.2.16 is not very useful in practice. In the category Stk, one often has small

diagrams taking values in (the essential image of) Affk whose colimit is a given

derived stack X. For example, if U• → X is an étale (or flat) hypercover then we

have colimn Un ' X. However, since iop does not preserve limits, one has to work

much harder to show that QC(X) ' limnQC(Un). The following proposition is the

homotopical/derived analogue of flat descent for quasicoherent sheaves on ordinary

schemes:

Proposition 2.2.17. The functor QC : Stopk → PrLk is a sheaf for the flat hyper-

topology.
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Proof. This is known to the experts; see e.g. [Lur04, Example 4.2.5] and [TV08,

Theorem 1.3.7.2]. It also follows from Theorem 3.2.1; indeed, it is the special case

of that theorem when X ' k̂.

Dualizability vs. Compactness: Perfect Symmetric Monoidal Categories.

In this subsection, we will introduce the notion of perfect symmetric monoidal ∞-

categories, and observe that the class of perfect categories is stable under the tensor

product on presentable ∞-categories. Some examples of perfect categories will be

given. The relevance of perfect categories to this paper lies in the fact that limit

diagrams taking values in perfect categories are particularly well behaved, in a sense

that will be made precise in §2.3.

Definition 2.2.18. Let X be in PrLω,k. A perfect symmetric monoidal structure on

X is a symmetric monoidal structure ⊗ that distributes over colimits, and is such

that X ω ' X fd. Denote by PrLperf the full subcategory of CAlg(PrLω,k) consisting of

perfect symmetric monoidal ∞-categories.

Remark 2.2.19. By the Eckmann-Hilton argument all symmetric monoidal struc-

tures compatible with a perfect symmetric monoidal structure are perfect.

For the purposes of this paper, the most important example of a perfect sym-

metric monoidal category is the category of modules over an E∞-ring.

Proposition 2.2.20 ([TV08, BZFN10, Lur11b]). Let A ∈ CAlg(S∞). Then the

symmetric monoidal∞-category ModA is perfect. In particular, the functor M⊗
1 de-
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fined in Lemma 2.2.9 factors through the∞-category of perfect symmetric monoidal

∞-categories:

PrLperf

��
PrLω,k

��
CAlgk

M⊗1

??

M
// Ĉat∞

The category of commutative algebra objects in a symmetric monoidal cate-

gory X inherits a symmetric monoidal structure from the underlying category. In

particular, presentable k-linear symmetric monoidal ∞-categories inherit a sym-

metric monoidal structure from PrLk . The next lemma says that perfect symmetric

monoidal categories are closed under the tensor product:

Lemma 2.2.21. The category PrLperf admits a symmetric monoidal structure, and

the inclusion PrLperf ⊆ CAlg(PrLω,k) is symmetric monoidal.

Proof. Let X and Y be perfect symmetric monoidal categories. We will show that

the induced symmetric monoidal structure on X ⊗ Y is perfect. Since X and Y

are perfect and the unit is always dualizable, we have 1X ∈ X ω and 1Y ∈ Yω.

Consequently 1X⊗Y = 1X ⊗ 1Y ∈ X ω ⊗ Yω ⊆ (X ⊗ Y)ω. Recall that if 1C is a

compact object in a symmetric monoial ∞-category C then every dualizable object
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is compact. This follows easily from the equivalence C(X ⊗ Y, Z) ' C(X, Y ∨ ⊗ Z)

for any X, Y , Z. See for e.g., [TV08, Prop 1.2.3.7]. Therefore we have (X ⊗Y)fd ⊆

(X ⊗ Y)ω.

To prove the converse, note that by our hypotheses, we have X ω ⊆ X fd and

Yω ⊆ Y fd, and consequently, since dualizable objects are stable by tensor product,

we have X ω ⊗ Yω ⊆ (X ⊗ Y)fd. Since (X ⊗ Y)ω is the idempotent completion of

X ω⊗Yω, and (X⊗Y)fd is stable under retracts, it follows that (X⊗Y)ω ⊆ (X⊗Y)fd.

To complete the proof, it remains only to observe that the unit Modk for the

monoidal structure on CAlg(PrLω,k) is perfect by Lemma 2.2.20.

The inclusion PrLω,k ⊆ PrLk does not reflect limits in general: the limit in PrLk

(or equivalently in Ĉat∞) of a diagram of compactly generated categories need not

be compactly generated. Consequently, QC(X) need not be compactly generated.

Following [BZFN10], we make the following definition:

Definition 2.2.22. A derived stack X is perfect if it has affine diagonal and QC(X)

is an ω-compactly generated ∞-category. Let Stperf
k denote the full subcategory of

Stk consisting of perfect stacks.

Let X and Y be commutative spaces (schemes, or more generally, derived

stacks). Then any quasi-coherent sheaf F on X×Y gives rise to a functor FM(F) :

QC(X) → QC(Y ) defined by FM(F)(E) := pY ∗(F ⊗ p∗XE), where pX and pY are

the projections from the product to the individual factors. In particular, any corre-

spondence j : Z → X×Y gives rise to a functor FM(j∗OZ). Correspondences may
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be thought of as morphisms in a suitable category of commutative motives. Thus

one may think of FM as a construction that assigns to a morphism of commutative

motives X and Y , a morphism between the noncommutative shadows QC(X) and

QC(Y ). Perhaps one of the main reasons for the utility of the notion of perfect

stacks is that for perfect stacks, every map between the noncommutative shadows

arises in this way. More precisely, we have the following theorem:

Theorem 2.2.23 ([Toë07],[BZFN10]). The cartesian symmetric monoidal structure

on Stk restricts to a symmetric monoidal structure on Stperf
k . Furthermore, the

restriction of QC to Stperf
k is symmetric monoidal. In other words, if X and Y are

perfect stacks over k, then X ×k Y is perfect and we have a natural equivalence:

QC(X)⊗Modk
QC(Y ) ' QC(X ×k Y )

Furthermore, we have a natural equivalence

QC(X ×k Y ) ' FunL
k(QC(X),QC(Y ))

2.3 Gluing Noncommutative Spaces

The operation of passing to compact objects is not, in general, compatible with

taking limits in PrL. This section is devoted to careful study of this phenomenon.

There is no single “main proposition” in this section - our purpose is simply to

collect together several results about limits of∞-categories that will be used in the

sequel. The reader would do well to skip this section on the first reading.
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We begin with some simple observations about the relationship between linear

structures and limits. In the sequel, we will prove several results about diagrams

taking values in PrLω . By virtue of the next two lemmas, each of these results

remains true if we replace PrLω by PrLω,k, and PrL by PrLk .

Lemma 2.3.1. The forgetful functor PrLω,k := ModModk(PrLω) → PrLω preserves

and reflects all small limits.

Proof. This follows from the general statement that the forgetful functor from a

module category to the underlying category preserves and reflects all small limits

A.4.2.3.3.

Lemma 2.3.2. The forgetful functor iLk : PrLk → Ĉat∞ preserves and reflects all

limits.

Proof. We have iLk = iL ◦ πLk , where iL : PrL → Ĉat∞ is the natural inclusion,

and πLk : PrLk := ModModk
(PrL) → PrL is the forgetful functor. The functor πLk

preserves and reflects all limits by A.4.2.3.1. According to T.5.5.3.13., the categories

PrL and Ĉat∞ admits all small limits and iL preserves all small limits. The fact

that iL is conservative, together with the following lemma, implies that iL reflects

all small limits.

Lemma 2.3.3. Let f : C → D be a functor between ∞-categories, and let K be a

simplicial set. Assume that C admits limits of diagrams of shape K, that f preserves

these limits, and that f is conservative. Then f reflects limits of shape K.
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Proof. Let φ : K/ → C be a diagram, and suppose that f ◦ φ : K/ → D is a

limit diagram. Since C admits limits of diagrams of shape K, there exists a limit

diagram ψ : K/ → C with ψ|K ' φ|K . By the definition of limits, there is a

morphism α : φ→ ψ in FunK(K/, C). We will complete the proof by showing that

α is an equivalence. Since f is conservative, it will suffice to show that f(α) is an

equivalence.

Since f preserves K-limit diagrams, f ◦ψ is also a limit diagram. Furthermore,

we have (f ◦ψ)|K = (f ◦φ)|K . Since the restriction FunK(K/,D)→ FunK(K,D) '

{f ◦φ} is a trivial Kan fibration, we have a natural equivalence β : f ◦ψ → f ◦φ in

FunK(K/,D). Using the fact that FunK(K/,D)→ FunK(K,D) is a trivial fibration

again, we conclude that β◦f(α) is an equivalence. By the two out of three property,

f(α) is an equivalence.

Let ν : K → PrLω,k be a diagram. We have induced diagrams, ν ′ : K → Ĉat∞

and (−)ω ◦ ν : K → Cat∞. Understanding the relatioships between the limits of

these three diagrams will play a central role in this paper. Lemma 2.3.5 says that

there is essentially no difference between computing limits in PrLω and Cat∞. We

begin with a simple observation that we will need in the proof of that lemma.

Lemma 2.3.4. The functor (−)ω : PrLω → Cat∞ is conservative.

Proof. Let Cat
REx(ω)
∞

∨
⊆ Cat∞ denote the subcategory consisting of essentially small

idempotent complete ∞-categories that admit ω-small colimits, and functors that

preserve ω-small colimits. Since the subcategory of ω-compact objects in a com-
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pactly generated ∞-category is stable under ω-small colimits, and the morphisms

in PrLω preserve all colimits, the functor (−)ω factors through Cat
REx(ω)
∞

∨
:

PrLω //

(−)ω %%KKKKKKKKKK Cat
REx(ω)
∞

∨

��
Cat∞

The right vertical map is manifestly conservative. The dotted arrow is an equiva-

lence by virtue of T.5.5.7.9 and T.5.5.7.10. The lemma follows.

Lemma 2.3.5. The categories PrLω and Cat∞ admit all small limits, and the functor

(−)ω : PrLω → Cat∞ preserves and reflects and limits.

Proof. The fact that PrLω admits all limits is a consequence of A.6.3.7.9., and

A.6.3.7.10., which state that PrLω is in fact presentable. The fact that Cat∞ admits

all limits is proven in T.3.3.3.

Let K be a simplicial set, let ν : K/ → PrLω be a diagram, and let V → K/ be a

coCartesian fibration classified by ν. Then V is characterized by: FunL
ω(W ,V∞) '

limx∈KFunL
ω(W ,Vx) for all W in PrL. Here, the limit on the right is computed

in Cat∞ (note that the functor categories are essentially small). Taking W = S,

the ∞-category freely generated under colimits by a single object, we find that

Vω∞ ' limVωx . This proves that (−)ω preserves small limits. The fact that it also

reflects limits follows from the fact that (−)ω is conservative (Lemma 2.3.4), and

Lemma 2.3.3.

The relationship between the limit of a diagram ν : K → PrLω , and the limit of
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the induced diagram ν ′ : K → Ĉat∞ is more subtle. The definition that follows iso-

lates a key property of diagrams with values in Ĉat∞ that facilitates the comparison

of the two limits.

Definition 2.3.6. Let K be a simplicial set, and let ν : K/ → Ĉat∞ be a limit

diagram classifying a coCartesian fibration ν[ : V → K/. Let ψx : V∞ → Vk be

the natural functor. We will say that ν has Property ¶ is the following condition is

satisfied: An object X in V∞ is compact if and only if ψx(X) is compact for all x

in K.

The two propositions that follow describe restrictions on the codomain of a

diagram that ensure that it have Property ¶. One of the main reasons why perfect

categories play an important role in this paper is that diagrams taking values in

perfect categories have Property ¶.

Lemma 2.3.7. Let K be a simplicial set and let µ : K/ → PrLperf be a limit diagram

taking values in perfect categories. Let π : PrLperf → PrLω,k be the forgetful functor

and let ν = π ◦ µ. Then ν has Property ¶.

Proof. This follows from the definition of a perfect category, and the following

propostion.

Proposition 2.3.8 (Lurie). Let ν : K/ → CAlg(PrL) be a diagram of symmetric

monoidal categories, and let V → K/ be a coCartesian fibration classified by ν.

Then X ∈ V fd
∞ if and only if ψx(X) ∈ V fd

∞ for all x in K.
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Proof. This is A.2.4.5.11. Here is a rough outline. To a symmetric monoidal ∞-

category C one associates the ∞-groupoid DDat(C) of duality data in C. Roughly

speaking, DDat(C) classifies triplies (X,X∨, evX , coevX), where evX : X ⊗X∨ → 1

and coevX : 1→ X∨⊗X are morphisms exhibiting X∨ as dual to X. The essential

thing to check is that the map DDat(C) → Cfd that carries (X,X∨, evX , coevX)

to X is a trivial fibration. This is A.4.2.5.10. The result then follows from the

observation that the functor C → DDat(C) commutes with limits.

In contrast with the previous two results, the following lemma describes a re-

striction on the domain of a diagram that ensures that Property ¶ holds. This

observation will play an important role in proving that compact objects descend

along étale morphisms.

Lemma 2.3.9. Let K be a finite simplicial set. Then every limit diagram ν : K/ →

PrLω has Property ¶.

Proof. Let V → K/ be a coCartesian fibration classified by ν. Let X ∈ V∞The only

thing that needs proof is that if ψx(X) is compact for all x in K then X is compact

in V∞.

The category Sect(K,V) of coCartesian sections of V|K are a full subcategory of

the functor category Fun(K,V). Mapping spaces in functor categories are computed

by ends. In particular, (by virtue of the equivalence Sect(K,V) ' V∞) we have for

X, A in V∞, V∞(X,A) ' Endx∈K(χ, α), where χ, α are coCartesian sections of V|K
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with χ∞ = X and α∞ = A. Since K is a finite simplicial set, this end is a finite

limit.

Now assume that χx ∈ Vωx for all x in K, and let Λ be an ω-filtered category, and

let A• : Λ → V∞ be a diagram. Let α• : Λ → Sect(K,V) be the induced diagram.

We have the commutative diagram:

colim V∞(X,Aλ)

o
��

// V∞(X, colim Aλ)

o
��

colim Endx∈KVx(χx, αλ,x) //

o
��

Endx∈KVx(χx, colim αλ,x)

o
��

Endx∈Kcolim Vx(χx, αλ,x) ∼ // Endx∈KVx(χx, colim αλ,x)

The upper vertical maps are equivalences by the paragraph above. The bottom

vertical maps are equivalences because ω-filtered colimits commute with ω-small

limits in S (T.5.3.3.3). Finally, the bottom horizontal map is an equivalence by

our assumption that χx ∈ Vωx . It follows that the top horizontal morphism is an

equivalence, proving that X ∈ Vω∞.

We now turn our attention to establishing a relationship between the limit of

a diagram ν : K → PrLω and the limit of the induced diagram ν ′ : K → Ĉat∞,

obtained by composing ν with the inclusion PrLω ⊆ Ĉat∞. Property ¶ will play a

central role in this discussion.

Lemma 2.3.10. Let K be a simplicial set, and let ν : K/ → PrLω be a diagram.

Let i : PrLω → Ĉat∞ be the natural inclusion. Assume that i ◦ ν is a limit diagram

which has Property ¶. Then ν is a limit diagram.
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Proof. Since the inclusion PrL ⊆ Ĉat∞ preserves and reflects limits, we may view

ν as a limit diagram in PrLω . The limit V∞ of ν|K in PrL is charaterized upto

equivalence by FunL(W ,V∞) ' limx∈KFunL(W ,Vx), for any W in PrL. Our hy-

pothesis that ν takes values in PrLω implies that each of the functors ψx preserves

ω-compact objects, and therefore this equivalence restricts to a fully faithful functor

FunL
ω(W ,V∞)→ limx∈KFunL

ω(W ,Vx), where FunL
ω(−,−) ⊆ FunL(−,−) denotes the

full subcategory of functors that preserve ω-compact objects. We will show that

this functor is essentially surjective.

Now letW ∈ PrLω , and let w[ :W] → K/ be a cocartesian fibration classified by

the constant functor K/ → PrLω that sends every object to W , and let σx :W]
∞ →

W]
x denote the functor (equivalence) induced by the unique morphism ∞→ x. Let

X ∈ limx∈KFunL
ω(W ,Vx), and let χ :W]

|K → V|K be the corresponding cocartesian

section. Note that χx : W]
x → Vx preserves ω-compact objects for all x in K. The

equivalence FunL(W ,V∞) ' limx∈KFunL(W ,Vx) implies that χ extends to a map

χ : W] → V defined by a cocartesian section such that χ∞ ∈ FunL(W∞,V∞). We

have natural equivalences χx ◦ σx ' ψx ◦ χx, since χ is cocartesian.

Let X ∈ W]
∞ be a compact object. For every x in K, we have an equivalence

χx(σx(X)) ' ψx(χ∞(X)) in Vx. Since σx is an equivalence and σx preserves compact

objects, we conclude that ψx(χ∞(X)) is compact. Property ¶ now implies that

χ∞(X) is compact. Thus χ∞ ∈ FunL
ω(W]

∞,V∞), so χ defines an element X ′ in

FunL
ω(W ,V∞) that maps to X . This proves essential surjectivity of the natural
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functor mapping FunL
ω(W ,V∞) to limx∈KFunL

ω(W ,Vx).

So we have FunL
ω(W ,V∞) ' limx∈KFunL

ω(W ,Vx). This equivalence characterizes

V∞ as a limit of ν|K in PrLω , so φ : K/ → PrLω is a limit diagram.

Lemma 2.3.11. Let K be a simplicial set, and let ν : K/ → PrLω be a diagram,

and let i : PrLω → Ĉat∞ be the natural inclusion. Let ν ′ : K/ → Ĉat∞ be a limit

diagram with ν ′|K ' i ◦ ν|K, and let V ′ → K/ be a coCartesian fibration classified

by ν ′. Assume that ν ′ has Property ¶, and that V ′∞ is compactly generated, i.e.,

V ′∞ ∈ PrLω . Then the following are equivalent:

(1) i ◦ ν is a limit diagram and has Property ¶.

(2) ν is a limit diagram.

(3) The induced diagram (−)ω ◦ ν : K/ → Cat∞ is a limit diagram.

Proof. We have already proven that (1) ⇒ (2) and (2) ⇒ (3) (Lemmas 2.3.10 and

2.3.5 respectively). These implications do not require that additional hypothesis

that V ′∞ is compactly generated.

We will now prove that (3) ⇒ (1). Assume that (−)ω ◦ ν is a limit diagram.

Let φ : V∞ → V ′∞ be the morphism induced by the universal property of V ′. We

will complete the proof by showing that φ is an equivalence. By virtue of the

fact that PrL ⊆ Ĉat∞ reflects limits, we have that φ ∈ FunL(V∞,V ′∞). Since V ′∞

is compactly generated by hypothesis, it will suffice to show that φ induces an
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equivalence φω : Vω∞ → (V ′∞)ω on the subcategories of compact objects. We now

proceed to identify the compact objects on both sides.

The coCartesian fibration V[ → K/ classifying (−)ω ◦ ν can be described as

follows: it is the full subcategory V[ ⊆ V whose objects are determined by the

condition V[x = Vωx for all x in K/. Since V[ classifies a limit diagram, it follows

that Vω∞ can be identified with the full subcategory of cocartesian sections χ of V|K

that are levelwise compact (those for which χx is compact in Vx for all x in K).

One the other hand, since V ′ is a classifies Ĉat∞-limit diagram and has property

¶, (V ′∞)ω can be identified with the cocartesian sections of V ′|K that are levelwise

compact. Since V ′|K ' V|K by hypothesis, this show that Vω∞ ' (V ′)ω∞. This

completes the proof.

We conclude this section with two lemmas that will be used in the sequel

Lemma 2.3.12. The functor π : PrLω,k → PrLk preserves reflects ω-small products.

Proof. This follows from the following fact: If {Cα} is a finite family of∞-categories

with product C, then an object X in C is ω-compact as soon as its image in each

Cα is ω-compact (T.5.3.4.10).

Lemma 2.3.13. The functors (−)' : Ĉat∞ → Ŝ and (−)' : Cat∞ → S, which

carry an∞-category to the maximal∞-groupoid that it contains, preserve all limits.

Proof. The functor (−)' is a right adjoint, and therefore preserves all limits: the

natural inclusion π≤∞ of spaces into ∞-categories is left adjoint to (−)'.
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2.4 Moduli of Compact Branes

The purpose of this section is to give precise definitions of the moduli functors that

will be the central object of study in the next two chapters of this thesis.

To a quasi-compact quasi-separated scheme X over a field k, one can associate

two moduli functorsMQC
X : CAlgk → Ĉat∞ andMperf

X : CAlgk → Cat∞ parametriz-

ing quasi-coherent sheaves on X and perfect complexes on X respectively. These

functors can be described by the formulas

MQC
X (A) := QC(X ×k Spec(A))

Mperf
X (A) := Perf(X ×k Spec(A))

The tensor product theorem, Proposition 2.2.23, empowers us with the following

enlightening description of these functors

MQC
X (A) := QC(X)⊗Modk

ModA

Mperf
X (A) := (QC(X)⊗Modk

ModA)ω

This last description of the functors makes manifest the fact that the functors

MQC
X andMperf

X are in fact invariants of the noncommutative shadow QC(X) of X.

It suggests that for any k ∈ CAlgk and any X ∈ PrLk (i.e., for any noncommutative

space) one should introduce moduli functors M†
X : CAlgk → PrLk , and M[

X :
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CAlgk → Cat∞ defined by the formulae

M†
X (A) := X ⊗Modk

ModA

M[
X (A) := (X ⊗k ModA)ω

If X is, furthermore, compactly generated, then X ⊗Modk
ModA is compactly

generated. We have already seen in the section on quasi-coherent sheaves, that

for any f : A → B in CAlgk, the induced functor B⊗A : ModA → ModB

preserves compact objects. Thus, the functor M†
X admits a natural lift to a

functor MX : CAlgk → PrLω,k. The association X 7→ MX defines a functor

PrLω,k → Fun(CAlgk,PrLω,k). Indeed, this is the functor that is adjoint to the natural

functor

PrLω,k × CAlgk
id×M1 // PrLω,k × PrLω,k

⊗ // PrLω,k

If X is the underlying category of a symmetric monoidal category X , there is

yet another analogue of the moduli of perfect complexes on a scheme, namely the

functor M∨
X : CAlgk → Cat∞ defined by

M∨
X (A) := (X ⊗Modk

ModA)fd

Recall that (X⊗Modk
ModA)fd denotes the subcategory of fully dualizable objects

in the symmetric monoidal ∞-category (X ⊗Modk
ModA)fd.

Notation 2.4.1. We will need several variants of the functors that we have just in-

troduced. These functors are defined by the requirement that the following diagram
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be commutative

Ĉat∞

PrLk

OO

CAlgk
MX //

M\
X

BB����������������������������������

M†X

99ssssssssssssssssssssss

M[
X

%%LLLLLLLLLLLLLLLLLLLLLL

MX

��:::::::::::::::::::::::::::::::::
PrLω,k

OO

(−)ω

��
Cat∞

(−)'

��
S
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Chapter 3

Brane Descent

In this chapter, we will study the descent properties of the moduli functors intro-

duced in §2.4. The material is organized as follows. We begin, in §3.1 by recalling

the Barr-Beck-Lurie monandicity theorem and its relation to descent. In §3.2 we

apply the monadicity theorem to show that the moduli functor M\
X parametriz-

ing all objects in a compactly generated category is a sheaf for the flat topology

(Proposition 3.2.1). In §3.3, we use the results of the previous section to deduce

that dualizable objects in compactly generated symmetric monoidal ∞-categories

descend along flat maps (Proposition 3.3.1). The next section, §3.4, is devoted to

the study of the descent properties of compact objects. Since the notion of compact-

ness is not local for the flat topology, one cannot immediately deduce the descent

properties of the functor MX , parametrizing compact objects in X , from the cor-

responding properties for M\
X . Nevertheless, it turns out that for an arbitrary

45



compactly generated category X , the functorMX is a sheaf for the étale topology.

Furthermore, if one imposes some finiteness conditions on X , then this functor is

in fact a sheaf for the flat topology. The main result of this section, Proposition

3.4.1, is an essential ingredient in Chapter 4, where we investigate the geometricity

of the moduli of compact objects in a compactly generated category X . However,

the reader who is willing to accept this theorem on faith, can read that chapter

independently of this one. Finally, in the last section, §3.5, we point out that all

of the sheaves that we have consider are in fact hypersheaves - that is, they satisfy

descent with respect to arbitrary flat/étale hypercovers. Theorem 3.5.3 summarizes

all the results of this chapter. We will not need the results of this section in the

rest of the paper.

3.1 The Barr-Beck-Lurie Theorem

The involution on the (∞, 2)-category of∞-categories that takes an∞-category to

its opposite, interchanges left adjoints with right adjoints, and monads with comon-

ads. Consequently, every theorem about monads has a dual comonadic analogue.

In particular, we have the following comonadic analogue of the Barr-Beck-Lurie

theorem.

Theorem 3.1.1 (Lurie [Lur11b, Theorem 6.2.2.5]). Let f : C → D be an∞-functor

that admits a right adjoint g : D → C. Then the following are equivalent:
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1. f exhibits C as comonadic over D.

2. f satisfies the following two conditions:

(a) f is conservative, i.e., it reflects equivalences.

(b) Let U be a cosimplicial object in C, which is f -split. Then U has a limit

in C, and this limit is preserved by f .

In practice, we will use the following consequence of the comonadic Barr-Beck-

Lurie theorem, which is the dual version of A.6.2.4.3. Recall the notion of a right

adjointable diagram (A.6.3.2.13).

Proposition 3.1.2. Let C• : N(∆+) → Ĉat∞ be a coaugmented cosimplicial ∞-

category, and set C := C−1. Let f : C → C0 be the evident functor. Assume that:

1. The∞-category C admits totalizations of f -split cosimplicial objects, and those

totalizations are preserved by f .

2. (Beck-Chevalley conditions) For a morphism α : [m] → [n] in ∆+, let α̃ be

the morphism defined by α̃(0) = 0 and α̃(i) = α(i − 1) for 1 ≤ i ≤ m. Then

for every α, the diagram

Cm

α

��

d0 // Cm+1

α̃
��

Cn d0 // Cn+1

is right adjointable.

Then the canonical map θ : C → lim∆ C• admits a fully faithful right adjoint. If f

is conservative, then θ is an equivalence.
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3.2 Flat Descent for Branes

In this section we will use comonadic yoga outlined in the previous section to show

that families of branes descend along faithfully flat and quasi-compact morphisms.

More precisely, we will prove the following theorem:

Proposition 3.2.1. Let X be a presentable k-linear ∞-category. Assume that X

is dualizable as an object of the symmetric monoidal ∞-category PrL,⊗k (this holds,

in particular, when X is ω-compactly generated). Then the Ĉat∞-valued presheaf

M]
X on Affk defined in Notation 2.4.1 is a sheaf for the flat topology.

The proof of the proposition will occupy the rest of this section. The essential

point is to verify that M\
X carries the Čech nerve of a faithfully flat morphism

f : A → A0 to a limit diagram in Ĉat∞. For this, we will appeal to Proposition

3.1.2. We begin by collecting together some preliminary results that will allow us

the verify the hypotheses of that Proposition.

The lemma that follows facilitates the verification of the “Beck-Chevalley con-

ditions” of Proposition 3.1.2:

Lemma 3.2.2. (Base change). For any X in PrLω,k, the functor M\
X : CAlgk →

Ĉat∞ of Notation 2.4.1 carries cocartesian squares to right adjointable squares.

Proof. The proof is essentially the same as [TV08, Prop 1.1.0.8]. Let

A
p //

f

��

A′

f ′

��
B

p′
// B′
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be a cocartesian square in CAlgk, and let

ModA(X )
p∗ //

f∗

��

ModA′(X )

f ′∗

��

p∗

xx

ModB(X )
p′∗

// ModB′(X )

p′∗

xx

be the diagram in Ĉat∞ by induced by M\
X . Here, for a morphism p : A → A′ in

CAlgk, p∗ :=M\
X (p) = MX(p) = A⊗A′ (−), and p∗ : ModA′(X )→ ModA(X ) is the

forgetful functor, which is right adjoint to p∗ (see Remark ??).

Let M ∈ ModA′(X ). To prove the lemma, we must show that the natural morphism

νM : f ∗p∗M → p′∗f
′∗M is an equivalence. This follows from the following peculiarity

of commutative algebras: pushouts coincide with tensor products in CAlgk, i.e., we

have B′ ' A′
∐

AB ' A′ ⊗A B. Consequently, we have a chain of equivalences:

M ⊗A′ B′−̃→M ⊗A′ (A′ ⊗A B)−̃→M ⊗A B

which, as the reader will readily check, is a homotopy inverse of νM .

Let A• : N(∆+) → CAlgk be the Čech nerve of a faithfully flat morphism

f : A → A0, and let X ∈ PrLω,k. In order to deduce from the base change lemma

that the cosimplicial ∞-category M\
X (A•) satisfies the Beck-Chevalley conditions,

we need following simple observation:

Lemma 3.2.3. Let f : A → A0 be a morphism in CAlgk, and let A• : N(∆+) →

CAlgk be the Čech nerve Č(f) := cosk0(f). For a morphism α in ∆+, let α̃ be the
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morphism defined in Proposition 3.1.2. Then for each α : [m] → [n] in ∆+, the

following diagram is cocartesian:

Am

A(α)

��

d0 // Am+1

A(α̃)

��
An

d0 // An+1

(†)

Proof. Since A• is the 0-coskeleton of f , we have An ' ⊗n+1
A A0 '

∐n+1
A A0, and d0 is

the inclusion of the summand
∐n+1

A A0 → A0
∐

A(
∐n+1

A A0). It follows immediately

that the square (†) is cocartesian for any α : [m]→ [n].

Lemma 3.2.5 almost says that if A• : N(∆+)→ CAlgk is the Čech nerve of a flat

morphism f : A→ A0 in CAlgk, thenM\
X (A•) satisfies condition 1. of Proposition

3.1.2. In preparation for the proof of Lemma 3.2.5, we prove the following special

case of that lemma:

Lemma 3.2.4. Let f : A→ B be a morphism in CAlgk, and let f ∗ : ModA → ModB

be the functor defined by f ∗(M) := B ⊗A M . Assume that f is flat. Then f ∗

preserves totalizations of f ∗-split cosimplicial objects.

Proof. Let M• ∈ Fun(N(∆),ModA) be an f ∗-split cosimplicial module. We wish to

show that the natural map

B ⊗A |M•| −→ |B ⊗AM•| (∗)

is an equivalence. Since the forgetful functor, ModB → S∞ is conservative, White-

head’s theorem implies that it will suffice to show that the induced morphism on πn
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is an isomorphism for all n ∈ Z. We will use the Bousfield-Kan spectral sequence

to compute the homotopy groups, and show that we have an isomorphism on the

E2 page.

There is a Bousfield-Kan spectral sequence with Ep,q
2 = π−pπqM

•, and Ep+q
∞ =

πp+q|M•|. Here π−pπqM
• is the (−p)th cohomotopy group of the cosimplicial

abelian group πqM
•. Since B is a flat A-module, π0B is a flat π0A-module. So

we have an induced spectral sequence with Ep,q
2 = π0B ⊗π0A π−pπqM• and Ep+q

∞ =

π0B ⊗π0A πp+q|M•|. Finally, since B is flat over A, we have πp+q(B ⊗A |M•|) '

π0B ⊗π0A πp+q|M•|. So, in summary, we have a spectral sequence

Ep,q
2 = π0B ⊗π0A π−pπqM• =⇒ πp+q(B ⊗A |M•|)

Similarly, we have a Bousfeld-Kan spectral sequence for the right hand side of (∗),

with Ep,q
2 = π−pπq(B ⊗AM•) and Ep+q

∞ = πp+q|B ⊗AM•|. Using the flatness of B

over A again, we have π−pπq(B⊗AM•) ' π−p(π0B⊗π0AπqM•) ' π0B⊗πoAπ−pπqM•.

So the spectral sequence becomes

Ep,q
2 = π0B ⊗π0A π−pπqM• =⇒ πp+q|B ⊗AM•|

Thus, the E2 pages of the spectral sequences for the left and right hand sides of (∗)

coincide. To complete the proof, it will suffice to show that these spectral sequences

degenerate. Let N → N• be a split coaugmented cosimplicial B-module. Then

πqN → πqN
• is a split coaugmented cosimplical abelian group for all q, and so we

have π−pπqN
• = 0 for p 6= 0, and π0πqN

• = πqN . Applying this to N• := B⊗AM•,
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and N = |B ⊗AM•|, we see that both the spectral sequences above degenerate at

the E2 page.

Lemma 3.2.5. Let f : A → B be a flat morphism in CAlgk, and let X be an

object of PrLω,k. Then the category M\
X (A) admits all small limits, and the functor

M\
X (f) : M\

X (A) → M\
X (B) preserves totalizations of M\

X (f)-split cosimplicial

objects.

Proof. The first statement is clear: the ∞-category M\
X (A) ' X ⊗Modk

ModA is

presentable (2.2.6), and in particular admits all small limits and colimits.

Since X is a compactly generated k-linear ∞-category, Proposition ?? says

that the restricted Yoneda embedding gives an equivalence X ' Funk(X ω,Modk).

Furthermore, for any A in CAlgk, we have M\
X (A) ' ModA(Funk(X ω,Modk)) '

Funk(X ω,ModA).

Let X ∈ X ω be an object classified by a morphism of small k-linear∞-categories

ψX : Bk → X ω. Using the natural identifications Funk(Bk,ModA) ' Modk⊗A '

ModA, we see that pullback along ψX defines a functor ψ∗X,A : Funk(X ω,ModA) →

ModA.

Let f : A → B be a morphism in CAlgk. Under the identification M\
X (A) '

Funk(X ω,ModA), the functor M\
X (f) corresponds to the functor f ∗ ◦ (−), where

f ∗ := M\
1(f) = B ⊗A (−). Furthermore, for every X in X ω, we have a homotopy
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commutative diagram in Ĉat∞

Funk(X ω,ModA)
f∗◦(−) //

ψ∗X,A

��

Funk(X ω,ModB)

ψ∗X,B

��
ModA f∗

// ModB

Now suppose that f : A → B is a flat morphism. Let M• be a cosimplicial

object in Funk(X ω,ModA), for which the induced cosimplicial object f ∗M• is split.

To complete the proof of the lemma, it will suffice to show that the natural morphism

νM• : f ∗(limM•)→ limf ∗(M•) is an equivalence.

Since the family of functors {ψ∗X,B}X∈Xω is jointly conservative, it is enough

to show that for each X in X ω, the morphism ψ∗X,B(νM•) is an equivalence. The

commutativity of the diagram above, together with the fact that the functors ψ∗X,−

commute with all limits, implies that this equivalent to showing that the natural

morphism νψ∗X,A(M•) : f ∗(limψ∗X,A) → limf ∗(ψ∗X,A(M•)) is an equivalence for every

object X in X ω.

Note that the cosimplicial B-module f ∗(ψ∗X,A(M•)) is split, being the image

under ψ∗X,B of the split cosimplicial object f ∗(M•). Applying Lemma 3.2.4 to the

A-module ψ∗X,A(M•), we see that the morphism νψ∗X,A(M•) is an equivalence for every

X is X ω.

Lemma 3.2.6. Let f : A→ B be a faithfully flat morphism in CAlgk, and let X be
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an object in PrLω,k. Then the functor M\
X(f) :M\

X (A)→M\
X (A) is conservative.

Proof. We will retain the notation from Lemma 3.2.5. Since the family {ψ∗X,B}X∈Xω

is jointly conservative,M\
X (f) is conservative if and only if {ψ∗X,B ◦M

\
X (f)}X∈Xω =

{f ∗ ◦ψ∗X,A}X∈Xω is a jointly conservative family. Using the fact that {ψ∗X,A}X∈Xω is

jointly conservative, we see that this is equivalent to asking that f ∗ : ModA → ModB

is conservative. Since ModB is stable, this is equivalent to asking that f ∗ reflects

zero objects. But this is what is means for a flat morphism to be faithfully flat.

Lemma 3.2.7. Let X be an object in PrLω,k. The functor M\
X preserves finite

products.

Proof. This is formal. Let Ai, i = 1, 2, be commutative k-algebras, and let A :=

A1 × A2. Consider the adjunction

M\
X (A)

&&

M\
X (A1)×M\

X (A2)oo

The left adjoint, which is the natural morphism M\
X (A) → limM\

X (Ai), carries

M ∈ ModA(X ) to (M ⊗A A1,M ⊗A A2). The right adjoint carries (M1,M2) to

p1∗M1× p2∗M2, where pi : A→ Ai is the natural projection, and pi∗ : ModAi(X )→

ModA(X ) is the forgetful functor. We will show that the unit and counit of this

adjunction are equivalences.

The ∞-category ModA(X ) is stable, and therefore we have natural equivalences

M ⊕N 'M ×N for M , N in ModA(X ). Using this, together with the projection
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formula, we have, for M in ModA(X ):

p1∗(M ⊗A A1)× p2∗(M ⊗A A2) 'M ⊗A p1∗A1 ×M ⊗A p2∗A2

' (M ⊗A p1∗A1)⊕ (M ⊗A p2∗A2)

'M ⊗A (p1∗A1 ⊕ p2∗A2)

'M ⊗A A

'M

One checks that the composite morphism p1∗(M ⊗A A1) × p2∗(M ⊗A A2) → M is

inverse to the unit of the adjunction, proving that the unit is an equivalence.

For Mi in ModAi(X ), we have natural equivalences pi∗Mi⊗AAi 'Mi and pi∗Mi⊗A

Aj ' 0 for i 6= j. From this, one immediately deduces that the natural maps

(p1∗M1 × p2∗M2) ⊗A Ai ' (p1∗M1 ⊗A Ai) ⊕ (p2∗M2 ⊗A Ai) → Mi are equivalences.

This shows that the counit is an equivalence.

We are now in a position to prove the main proposition of this section.

Proof of Proposition 3.2.1. We will first consider the case where X is compactly

generated. Let X be in PrLω,k. We must show that M]
X preserves finite products

and carries the Čech nerve of and flat morphism to a limit diagram. By virtue of

Lemma 3.2.7, only the second statement remains to be proved.

Let U• : N(∆op
+ ) → Affk be the Čech nerve of a flat morphism, and let A• :=

O(U•) : N(∆+) → CAlgk. Put A := A−1. Lemma 3.2.5 says that the associated

diagram M\
X (A•) : N(∆op

+ ) → Ĉat∞, satisifies condition 1. of the corollary of the
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Barr-Beck-Lurie theorem, Proposition 3.1.2. The base change lemma for branes

(Lemma 3.2.2), together with Lemma 3.2.3, implies that M\
X (A•) satisfies condi-

tion 2. of Proposition 3.1.2. Finally, Lemma 3.2.6 tells us that the natural map

M\
X (A) → M\

X (A0) is conservative. Thus, by Proposition 3.1.2, the natural map

M\
X (A) → limM\

X (An) is an equivalence. This proves the proposition when X is

compactly generated.

For the general case, let X be a dualizable object in PrL,⊗k , and let A• be as

above. By the compactly generated case, we know thatM\
1(A•) is a limit diagram

in Ĉat∞, and therefore ModA• is a limit diagram in PrLk by Lemma 2.3.2. Since

X is a dualizable object of PrLk , the functor X ⊗Mod⊗k
(−) : PrLk → PrLk commutes

with all limits. Consequently, ModA•(X ) is a limit diagram in PrLk , and hence, by

Lemma 2.3.2, M\
X (A•) is a limit diagram in Ĉat∞. This proves that M\

X carries

the Čech nerve of any faithfully flat morphism to a limit diagram in Ĉat∞.

The proof of the fact that M\
X preserves products is identical - in the previous

paragraph, one only need replace the simplicial set N(∆+) by the simplicial set K

that indexes product diagrams.

3.3 Flat Descent for Dualizable Branes

Recall that in §2.4 we associated with a k-linear presentable symmetric monoidal∞-

category X⊗, a moduli functorM∨
X : CAlgk → Ĉat∞, which carries a commutative

k-algebra A to the ∞-category of dualizable objects in ModA(X ). The purpose of
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this section is to state and prove the following proposition.

Proposition 3.3.1. Let X⊗ be a Modk-linear symmetric monoidal presentable ∞-

category. Assume that the underlying category X is dualizable as an object of PrLk

(this holds, in particular, if X is in PrLω,k). Then the functor M∨
X : CAlgk → Ĉat∞

defined in §2.4 is a sheaf for the flat hypertopology.

The proposition follows almost immediately from the results of the previous

section. The only additional ingredient that we will need is the following analogue

of Lemma 2.3.5:

Lemma 3.3.2. The functor (−)fd : CAlg(PrLk )→ Ĉat∞, which carries a symmetric

monoidal category to its subcategory of dualizable objects, preserves all limits.

Proof. Let ν[ : K/ → CAlg(PrLk ) be a diagram. According to A.3.2.2.5, ν[ is a

limit diagram if and only if the induced diagram ν ′ : K/ → PrLk , obtained by

composing ν[ with the functor that carries a symmetric monoidal category X⊗ to

the underlying category X : X⊗〈1〉, is a limit diagram. We have already seen that the

forgetful functor ψ : PrLk → Ĉat∞ preserves and reflects all limits (Lemma 2.3.2).

So ν[ is a limit diagram if and only if the induced diagram ν := ψ ◦ν ′ : K/ → Ĉat∞

is a limit diagram.

Assume that ν[ is a limit diagram, and let V → K/ (resp. V fd → K/) be a

coCartesian fibration classifiying ν (resp. (−)fd ◦ν). Note that V fd can be identified

with a full subcategory of V . Theorem 5.17 in [Lur11a] characterizes Ĉat∞-valued
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limit diagrams as those Ĉat∞-valued diagrams that classify coCartesian fibrations

that have certain properties. Since ν[ is a limit diagram, V has all of these proper-

ties. One checks that Proposition 2.3.8 implies that the full subcategory V fd inherits

all these properties. Applying [Lur11a, Theorem 5.17] again, we see that (−)fd ◦ ν

is a limit diagram. This completes the proof.

We now turn to the proof of the descent property for dualizable branes:

Proof of Proposition 3.3.1. Let X⊗ be a symmetric monoidal∞-category satisfying

the hypotheses of the proposition. Let A• : N(∆+) → CAlgk be the Čech nerve

of a flat morphism A−1 → A0. By Proposition 3.2.1, the induced coaugmented

cosimplicial objectM\
X (A•) in Ĉat∞ is a limit diagram. By virtue of Lemma 2.3.2,

the coaugmented cosimplicial object ModA•(X ) is a limit diagram in PrLk . Applying

Lemma 3.3.2, we have that M∨
X (A•) is a limit diagram in Ĉat∞. Similarly, if

A ' A1×A2 , then ModA(X ) ' ModA1(X )×ModA2(X ) in PrLk by Proposition 3.2.1,

and by Lemma 3.3.2, we have that M∨
X (A) 'M∨

X (A1)×M∨
X (A2) in Ĉat∞.

3.4 Étale Descent for Compact Branes

While families of branes descend along arbitrary faithfully flat maps, descent may

destroy the property of being compact. This is due to the fact that an object X

in the limit C of a diagram {Cα} of ∞-categories need not be compact even if it

has compact image in each Cα. In other words, the inclusion PrLω,k ⊆ Ĉat∞ does
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not reflect limits. One solution to this problem is to pass to coarser topology τ , for

which the notion of being compact is τ -local:

Proposition 3.4.1. Let X be a presentable Modk-linear ∞-category. Let M[
X be

the functor defined in Notation 2.4.1.

(1) Assume that X admits a compact generator. Then M[
X is a sheaf for the étale

topology.

(2) Assume that X is smooth and proper. ThenM[
X is a sheaf for the flat topology.

(3) Assume that there is a perfect symmetric monoidal ∞-category X⊗ whose un-

derlying category is X . Then M[
X is a sheaf for the flat topology.

The proposition will be the outcome of the next several lemmas. We will deduce

descent for compact branes from the descent property of big branes (Proposition

3.2.1) by appealing to Lemma 2.3.11. This in turn is facilitated by the fact that the

étale topology is generated by the Nisnevich topology and the finite étale topology.

Let {A → Aα}α∈Λ be a collection of étale morphisms in CAlgk, and let Xα :=

Spec(π0Aα), and X := Spec(A). Recall from G.4.2. that the family {A→ Aα}α∈Λ is

a covering family for the Nisnevich topology τNis on CAlgk if and only if the following

condition is satisfied: there exists a finite subset {A1, A2, ..., An} ⊆ {Aα}α∈Λ and

a sequence of compact open subsets ∅ = U0 ⊆ U1 ⊆ ... ⊆ Un = X such that

Xi ×X (Ui − Ui−1) contains an open subscheme which maps isomorphically onto
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Ui − Ui−1. Let us say that a cartesian square in Affk

U ′ //

��

X ′

π

��
U // X

is a distinguished Nisnevich square if U is open in X and π is an isomorphism over

X − U . The next Proposition, which is a version of the Morel-Voevodsky descent

theorem, will allow us to deduce Nisnevich descent forM[
X from the corresponding

descent property for M\
X . This is Propostion 4.4.2 in [Lur04].

Proposition 3.4.2. Let C be an ∞-category and let F : Affop
k → C be a functor.

Then F is a sheaf for the Nisnevich topology if and only if it carries distinguished

Nisnevich squares to homotopy pullback squares.

With this proposition at our disposal, Nisnevich descent for compact branes

follows immediately from results that we have already proven.

Proposition 3.4.3. Let X be a compactly generated k-linear∞-category. Then the

functor M[
X (see Notation 2.4.1) is a sheaf for the Nisnevich topology.

Proof. Since the flat topology is finer than the Nisnevich topology, the presheaf

M\
X is a Nisnevich sheaf by Proposition 3.2.1. Let K be the simplicial set whose

nondegenerate simplices are pictured below:

• //

��

•

��
• // •
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Since K is finite, Lemma 2.3.9 implies that any diagram ν : K → Ĉat∞ has Property

¶ (see Definition 2.3.6). In particular, for any distinguished Nisnevich square µ :

K → CAlgk, the induced diagram M\
X ◦ µ : K → Ĉat∞ has Property ¶, and

is also a limit diagram by virtue of Proposition 3.4.2, since M\
X is a Nisnevich

sheaf. Applying Lemma 2.3.11, we conclude that M[
X ◦ µ = (−)ω ◦M\

X ◦ µ : K →

Cat∞ is a limit diagram. Since ν was an arbitrary distinguished Nisnevich square,

applying Proposition 3.4.2 again, we conclude thatM[
X is a sheaf for the Nisnevich

topology.

To verify the étale descent property for compact branes, it will suffice to check

thatM[
X is also a sheaf for the finite etale topology. Recall that a morphism A→ B

in CAlgk is finite if the π0B is a finite π0A-module. The covering families for the

finite étale topology are the collections {A → Aα}α∈Λ of morphisms in CAlgk for

which there exists a finite subset Λ0 ⊆ Λ such that
∏

α∈Λ0
Aα is faithfully flat, étale

and finite over A. The key property of finite étale maps that allows us to deduce

descent for compact branes is the following:

Lemma 3.4.4. Let X be in PrLω,k, and assume that X admits a compact generator.

Let f : A → B be an finite étale morphism in CAlgk. Then the forgetful functor

f∗ : ModB(X )→ ModA(X ) preserves ω-compact objects.

Proof. Let X be a compact generator for X , and let E := MorX (X,X) be its

endormorphism object, which is an E1-algebra in Modk. By Theorem ??, we have
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an equivalence X ' RModE ' LModEop . We will write f ∗ for (−) ⊗A B, the left

adjoint to f∗.

By virtue of being a right adjoint, f∗ preserves arbitrary limits, and hence, in

particular, finite limits. Since the categories involved are stable, it also preserves

finite colimits. The category LModωEop⊗A is stable under finite colimits and retracts,

and the category LModωEop⊗B is generated by E ⊗k B under finite colimits and

retracts. Consequently, it will suffice to show that E ⊗k B ∈ LModωEop⊗A.

Following [TV08], let us say that an A-module M is strong if the natural mor-

phism π∗A ⊗π0A π0M → π∗M is an equivalence. Since A → B is finite étale, we

have that π0A → π0B is finite étale, and B is a strong A module. In particular,

we have that π0B is a flat π0A-module of finite presentation, and is therefore a

projective π0A-module. Since B is also a strong A module, it follows from [TV08,

Lemma 2.2.2.2.] that B is a projective A-module of finite presentation. Since the

tensor produc distributes over colimits, it follows that E ⊗k B is finitely presented

over E ⊗k A. Since the compact modules are precisely the retracts of modules of

finite presentation, the result follows.

In order to verify thatM[ satisfies the Beck-Chevalley conditions of Proposition

3.1.2. we will need an analogue of the base change lemma 3.2.2. The previous lemma

allows us to deduce such a base change result from Lemma 3.2.2.

Lemma 3.4.5. Let X be an object of PrLω,k which admits a compact generator. Let

f : A−1 → A0 be a finite étale morphism in CAlgk and let A• : N(∆+) → CAlgk
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be its Čech nerve. Then for each morphism α : [m] → [n] in ∆+, the functor M[

carries the commutative diagram

Am
d0 //

α

��

Am+1

α̃
��

An
d0

// An+1

to a right adjointable square in Cat∞.

Proof. Let f : [m] → [n] be an arbitrary morphism in ∆+. To simplify notation,

let A := Am, A′ := Am+1, B := An, B′ := An+1, p := d0 : A → A′ and p′ := d0 :

B → B′. By Lemma 3.2.3 and Lemma 3.2.2, we have a right adjointable square

ModA(X )
p∗ //

f∗

��

ModA′(X )

f ′∗

��

p∗

xx

ModB(X )
p′∗

// ModB′(X )

p′∗

xx

Since A• is a Čech nerve, the map p : A → A′ is the inclusion of the summand

⊗n+1
A−1A

0 → A0 ⊗A−1 (⊗n+1
A−1A

0). Finite étale maps are stable under base change and

composition, and A−1 → A0 is finite étale by hypothesis. It follows that p is finite

étale. Similarly, p′ is finite étale. By Lemma 3.4.4, the right adjointable square

above restricts to a right adjointable square
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ModA(X )ω
p∗ //

f∗

��

ModA′(X )ω

f ′∗

��

p∗

ww

ModB(X )ω
p′∗

// ModB′(X )ω

p′∗

ww

Since M[
X (A) = ModX (A)ω by definition, and M[

X (f) = f ∗ for any morphism

f : A→ B in rings, this completes the proof.

The proof that M[
X satisfies the remaining conditions of Proposition 3.1.2 is

almost identical to the corresponding proof for M\
X . The following lemma says

that condition 1. of that proposition is satisfied.

Lemma 3.4.6. Let f : A → B be a faithfully flat morphism in CAlgk, and

let X be an object of PrLω,k that admits a compact generator. Then the cate-

gory M[
X (A) admits limits of M[

X (f)-split cosimplicial objects, and the functor

M[
X (f) :M[

X (A)→M[
X (B) preserves these limits.

Proof. The proof is essentially identical to that of Lemma 3.2.5. The only additional

thing that needs proof is the fact that M[
X (A) := ModA(X )ω admits totalizations

of M[
X (f)-split cosimplicial objects.

As in the proof of Lemma 3.4.4, we fix a compact generator X in X , and

identify M[
X (A) with LModωEop⊗A. We have M[

X (A) ' M\
X (A)ω ' ModAX ω '

(LModA(LModEop))ω ' LModωA⊗Eop . The functorM[
X (f) can be identified with the

functor B ⊗A (−).
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Let M• : N(∆)→ LModωA⊗Eop be a M[
X (f)-split cosimplicial object. The proof

of Lemma 3.2.5 shows that π0B ⊗π0A π−pπqM vanishes for p 6= 0. Since A → B is

faithfully flat, the same is true of π0A → π0B. Consequently, it follows from the

previous statement that π−pπqM vanishes for p 6= 0. Since the standard t-structure

on LModωA⊗E is left and right complete by A.7.1.1.13, Corollary A.1.2.4.10 (applied

to (LModωA⊗E)
op) now implies that M• admits a totalization in LModωA⊗E .

Lemma 3.4.7. Let f : A→ B be a faithfully flat morphism in CAlgk, and let X be

an object in PrLω,k. Then the functor M[
X(f) :M[

X (A)→M[
X (A) is conservative.

Proof. The functor M[
X(f) is the restriction of the functor M\

X(f) (see Notation

2.4.1) to the subcategory of compact objects in M[
X(A). Therefore, the lemma is

an immediate consequence of Lemma 3.2.6.

Lemma 3.4.8. Let X be an object of PrLω,k. Then functor M[
X : CAlgk → Ĉat∞

preserves products.

Proof. Let Ai, i = 1, 2, be objects of CAlgk, and let A := A1 × A2. By Lemma

3.2.7, the natural diagram

ModA(X )

''OOOOOOOOOOO

wwooooooooooo

ModA1(X ) ModA2(X )

is a limit diagram in Ĉat∞. Since every finite diagram has Property ¶ (Lemma

2.3.9), it follows from Lemma 2.3.10, that it is also a limit diagram in PrLω,k. Lemma
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2.3.5 then asserts that the induced diagram

ModA(X )ω

''PPPPPPPPPPPP

wwnnnnnnnnnnnn

ModA1(X )ω ModA2(X )ω

is a limit diagram in Cat∞, which is exactly what we set out to prove.

We will have now assembled all of the essential facts that are necessary to prove

the main proposition of this section.

Proof of Proposition 3.4.1. We will first prove (1). Let X be an object of PrLω,k,

and assume that X admits a compact generator. The étale topology on CAlgk is

generated by the Nisnevich topology and the finite étale topology (see [Ryd10]). We

have already proven thatM[
X is a Nisnevich sheaf (Proposition 3.4.3). To complete

the proof, we must show thatM[
X is also a sheaf for the finite étale topology, i.e., we

must show thatM[
X preserves products and carries the Čech nerve of any surjective

finite étale morphism to a limit diagram in Cat∞.

The first statement is Lemma 3.4.8. To prove the second statement, let A• :

N(∆+)→ CAlgk be the Čech nerve of a faithfully flat finite étale morphism A−1 →

A0. By Lemmas 3.4.6, 3.4.5 and 3.4.7, the induced coaugmented cosimplicial ∞-

categoryM[
X (A•) satisfies all the hypotheses of Proposition 3.1.2, and consequently,

is a limit diagram in Cat∞. This completes the proof of (1).

We will now prove (2). Let X be a smooth and proper object in PrLω,k. We

will show thatM[
X carries the Čech nerve of any flat morphism to a limit diagram,
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and preserves produces. We will deduce these statements from the corresponding

statements for M\
X , the moduli of “big” branes.

Let A• : N(∆+) → CAlgk be the Čech nerve of a flat morphism. Let i :

PrLω → Ĉat∞ denote the natural inclusion. By Proposition 3.2.1, the diagram

M\
1(A•) := i ◦M1(A•) : N(∆+) → Ĉat∞ is a limit diagram. Lemmas 2.2.20 and

2.3.7 imply that M1(A•) has Property ¶. Consequently, by Lemma 2.3.10, the

diagram M1(A•) : N(∆+) → PrLω,k is a limit diagram. Since X is dualizable in

PrLω,k, the functor X ⊗Modk
(−) : PrLω,k → PrLω,k commutes with limits. It follows

that MX (A•) := X ⊗Modk
M1(A•) is a limit diagram. Lemma 2.3.5 now implies

that M[
X (A•) := MX (A•)ω is a limit diagram, which is what we set out to prove.

The proof that M[
X preserves products similar - in the proof above, one only need

replace the simplicial set N(∆+) by the simplicial set that indexes product diagrams.

This completes the proof of (2).

We turn now to (3). Assume that X is the underlying category of a perfect

symmetric monoidal category X⊗. Then, by definition, we have an equivalence

M[
X ' M∨

X . The result is therefore a consequence of the flat descent property of

dualizable branes (Proposition 3.3.1).

3.5 Hyperdescent

All of the sheaves that we have considered so far in this chapter are hypercomplete

in the sense of [Lur09a]. That is, all of these sheaves satisfy descent with respect
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to hypercovers. It is possible to deduce this from the results of this chapter, and

certain simplicial techniques from the theory of cohomological descent.

Definition 3.5.1. Let D be an∞-category that admits all colimits and limits, and

let F be a D-valued presheaf on Affk. Let U• : N(∆op
+ ) → Affk be an augmented

simplicial derived affine scheme. Put U := U−1. We will say that U• is of F -

cohomological descent if the natural map F(U)→ limF(U•) is an equivalence. We

will say that U• is universally of F -cohomological descent, if any base change of U•

is of F -cohomological descent.

For a map f : U0 → U in Affk, the Čech nerve of f , denoted Č(f), is the

0-coskeleton of f computed in (Affk)/U . Let PF denote the class of morphisms in

Affk whose Čech nerve is universally of F -cohomological descent.

Theorem 3.5.2. PF -hypercovers are universally of F-cohomological descent.

The proof of this theorem is essentially contained in the theory of cohomological

descent developed in [Del74, SGA72]. The techniques needed to prove this theorem

are of a simplicial nature, and do not depend on the specific choice of an ∞-site

Affk - any ∞-site with certain formal properties (that are almost always satisfied)

will suffice. Since we do not need the results of this section in the rest of this paper,

we will relegate the proof of this theorem to a forthcoming paper. We close this

chapter by observing that in light of Theorem 3.5.2, the results of this chapter can

be summarized as follows:

68



Theorem 3.5.3. Let X be a dualizable object of PrLk . Let the notation be as in

Notation 2.4.1. Then the following is true

(1) The functor M\
X is a sheaf for the flat hypertopology

(2) Assume that X admits a compact generator. Then MX and M[
X are sheaves

for the étale hypertopology.

(3) Assume that X is smooth and proper. Then M[
X and MX are sheaves for the

flat hypertopology.

(4) Assume that X admits a symmetric monoidal structure. Then M∨
X is a sheaf

for the flat hypertopology.

(5) Assume that X admits a perfect symmetric monoidal strucuture. Then M[
X

and MX are sheaves for the flat hypertopology.

Proof. In light of the fact that flat maps and étale maps are stable under base

change, this theorem is an immediate consequence of Theorem 3.5.2 and Proposi-

tions 3.2.1, 3.4.1 and 3.3.1.
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Chapter 4

Geometricity

In the previous chapter, we saw that the moduli functors defined in §2.4 are, in fact,

derived∞-stacks. That was a significant first step in the direction of understanding

whether these moduli functors are represented by geometric objects. In this chapter,

we will continue and conclude our analysis of the geometricity of the moduli of

objects in linear ∞-categories.

Our main tool in this investigation is the Artin-Lurie representability criterion,

Theorem 4.1.4. Section 4.1 is devoted to collecting together the various definitions

needed to formulate this theorem, and to recalling the theorem itself.

In §4.2, we study the deformation theory of objects in linear ∞-categories. The

main result of this section, Proposition 4.2.4, describes conditions under which the

moduli functorMX (see Notation 2.4.1) admits a cotangent complex. The existence

of the cotangent complex is one of the conditions in the Artin-Lurie criterion, and
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often the hardest to verify in practice. So this result represents a major step in

the direction of understanding the geometricity of MX . Along the way, we will

establish conditions on a category X that guarantee the geometricity of the stack of

maps (resp. equivalences) between any two compact objects in X . In the sections

that follow, we will see that these conditions are always satisfied when X is smooth

and proper, or proper and perfect symmetric monoidal.

The main result of §4.3, Theorem 4.3.1, states that if X is smooth and proper,

thenMX is a locally geometric∞-stack. This is a result of Toën-Vacquié ([TV07a]).

The proof given here is quite different in flavor from the one given in loc. cit. We find

that the Artin-Lurie criterion makes manifest the role of dualizability (recall that

X ∈ PrLω,k is smooth and proper iff it is dualizable) in establishing the geometricity

ofMX . The essential point here is that if X is dualizable, then X ⊗ (−) commutes

with limits.

In §4.4, we drop the hypothesis of smoothness. Proposition 4.5.2 of §4.5 describes

a large class of proper noncommutative spaces X for which MX is not geometric.

However the main result of §4.4, Theorem 4.4.1, shows that in the presence of

additional algebraic structure - namely, a perfect symmetric monoidal structure -

the functor MX is representable by a locally geometric ∞-stack. In particular,

when X is a proper scheme over k, or more generally a perfect stack, the moduli

of perfect complexes on X is locally geometric. This generalizes a result of Lieblich

[Lie06], and provides a new “homotopical” perspective on his work.
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For the rest of this chapter, we assume that k is a derived G-ring in the sense

of [Lur04]. This holds, in particular, when k- is a field of characteristic 0, which is

the main case of interest to us.

4.1 The Artin-Lurie Criterion

In order to state the Artin-Lurie representability criterion, we need some basic

definitions. Our reference for a detailed discussion of the contents of this section,

and for any terms that are not defined here, is [Lur04].

Definition 4.1.1. Let C be an ∞-category, let F : CAlgk → C be a functor. We

will say that

(1) F is ω-accessible if it preserves ω-filtered colimits.

(2) F is nilcomplete if it carries Postnikov towers in CAlgk to limit diagrams in C.

(3) F is infinitesimally cohesive if it carries small extensions to pullback squares.

(4) F is formally effective if for any complete discrete local Noetherian k-algebra

A with maximal ideal m, the natural morphism F(A) → limF(A/mn) is an

equivalence.

We turn now to the definition of the cotangent complex, which is the brave

new analogue of the cotangent space. Any geometric ∞-stack admits a cotangent

complex, and the existence of one is perhaps the most non-trivial of the conditions

in the Artin-Lurie recognition principle.
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Definition 4.1.2. Let f : F → F ′ be a morphism of derived stacks over k. For

A ∈ CAlgk and M ∈ ModA, we will denote by A〈M〉 the square-zero extension of

A by M (see [Lur11b]).

1. Let A ∈ CAlgk, and let x ∈ F(A). Then the functor

DerF(x,−) : ModA → S

is defined to be the homotopy fiber at x of the natural morphism of functors

F(A〈M〉)→ F(A)

For any M ∈ ModA, the morphism A〈M〉 → A has a canonical section.

Therefore DerF(x,M) is a pointed space. One defines the functor

DerF/F ′(x,−) : ModA → S

to be homotopy fiber of the natural morphism df : DerF(x,−)→ DerF ′(x,−).

2. Let A ∈ CAlgk, and let x ∈ F(A). We will say that f : F → F ′ has a

relative cotangent complex at x if there is an integer n for which the functor

DerF/F ′(x,−) is corepresented by a (−n)-connective A-module LF/F ′,x. The

module LF/F ′,x will be called the relative cotangent complex of F over F ′.

3. We will say that f : F → F ′ has a relative cotangent complex if it satisfies

the following two conditions

(a) For any A ∈ CAlgk and any x ∈ F(A), the morphism f has a relative

cotangent complex LF/F ′,x at x.
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(b) Given any commutative diagram in StF ′ :

Spec(A) u //

x
$$HHHHHHHHH

Spec(A′)

x′zzuuuuuuuuu

F

The natural morphism u∗LF/F ′,x′ → LF/F ′,x is an equivalence in ModA.

4. Let A ∈ CAlgk, and x ∈ F(A). We will say that F has an absolute cotangent

complex at x, if the structure morphism F → Spec(k) has a relative cotangent

complex at x. The absolute cotangent complex at x will be denoted LF ,x,

and referred to simply as the cotangent complex at x. Similarly, F has a

cotangent complex if the structure morphism F → Spec(k) has a relative

cotangent complex.

Notation 4.1.3. When F ′ is a derived affine scheme Spec(A), we will simply write

LF/A,x for LF/Spec(A),x.

Having collected together all of the necessary terminology, we are ready to state

the main theorem of this section, which is a shape theoretical analogue of Artin’s

representability criterion. This deep theorem is due to Jacob Lurie.

Theorem 4.1.4 ([Lur04]). Let k be a derived G-ring. Then a functor F : CAlgk →

S is a derived n-stack locally of finite presentation over k if and and only if the

following conditions are satisfied:

(1) The functor F is ω-accessible.
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(2) The functor F is a sheaf for the étale topology.

(3) The functor F is formally effective

(4) The functor F has a cotangent complex.

(5) The functor F is infinitesimally cohesive.

(6) The functor F is nilcomplete.

(7) The restriction of F to discrete commutative rings factors through τ≤nS.

The Artin-Lurie criterion will play a central role in the rest of this chapter.

4.2 Infinitesimal theory: Brane Jets

In this section, we will investigate the deformation theory of objects in a k-linear

category. Before we can state the main proposition, we need some definitions.

Definition 4.2.1. Let A be an object of CAlgk.

1. Let M ∈ ModA. For a, b ∈ Z ∪ {−∞,∞}, we will say that M has Tor

amplitude contained in [a, b] if for any discrete A-module N, we have that

πk(M ⊗A N) = 0 for k /∈ [a, b]. We will say that M has Tor amplitude ≤ n if

it has Tor amplitude contained in [−∞, n].

2. Let X be an object of PrLA, and let X ∈ X . We will say that X is of amplitude

≤ n if the ModA-valued mapping object MorA(X,X) has Tor amplitude ≤ n.
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Note thatM is flat iff it has Tor amplitude≤ 0. For a discussion of the important

properties of Tor amplitude, we refer the reader to [TV07a, § 2.4] and [Lur04].

Definition 4.2.2. Let A be in CAlgk. An object X in PrLA is locally compact over

A if for all X, Y , in X ω, the mapping object MorX (X, Y ) is a compact object in

ModA. We will say that X is locally compact if it is locally compact over k.

Remark 4.2.3. One only expects this to be a well behave notion when we restrict

ourselves to categories that are ω-compactly generated.

Proposition 4.2.4. Let X be a locally compact object of PrLk . In addition, assume

that the functor MX defined in Notation 2.4.1 is

(1) ω-accessible

(2) Nilcomplete

(3) Infinitesimally cohesive

(4) Formally effective

(5) A sheaf for the étale topology

Then the functor MX : CAlgk → S has a cotangent complex.

The proof of this proposition, which will occupy the rest of this section, will be

based on the following proposition and the Artin-Lurie representability criterion:
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Proposition 4.2.5. Let F : CAlgk → S be a derived stack. Assume that F is

infinitesimally cohesive, and that the diagonal ∆ : F → F × F is n-representable

for some n. The F has a cotangent complex.

Proof. This is Proposition 1.4.2.7. in [TV08].

Notation 4.2.6. Let A ∈ CAlgk and let X, Y be objects inM[
X (A) := ModA(X )ω.

We define a functor ΩX,YMX : CAlgk → S by the requirement that the following

square be cartesian:

ΩX,YMX //

��

MX

∆

��
Spec(A)

{X,Y } //MX ×MX

Our strategy for the proof of Proposition 4.2.4 is the following. We will use our

hypothesis on X , and on the associated functor M[
X , to show that for any A in

CAlgk, and any X, Y in MX (A), the functor ΩX,YMX is an algebraic n-stack, for

some n depending on A, X and Y . The proof of the algebraicity of ΩX,YMX will

itself be based on the Artin-Lurie criterion. We will then appeal to Propostion 4.2.5

to conclude that MX has a cotangent complex.

While we are proving the algebraicity of ΩX,YMX , we will also prove the alge-

braicity of a larger “linear” object
−→
ΩX,YM[

X , which we now introduce. Intuitively,

the functor
−→
ΩX,YM[

X : CAlgk → S is a natural “(∞, 2) categorical analogue” of

ΩX,YMX , in that it can be thought as being defined by the requirment that the
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following is a “lax (∞, 2)-categorical pullback square”

−→
ΩX,YMX

//

��

Spec(A)

Y

��
Spec(A) X //M[

X

Rather than attempting to make precise the notion of a lax 2-pullback, we will

simply give an explicit definition of
−→
ΩX,YM[

X . Let A ∈ CAlgk, let X, Y ∈M[
X (A),

and let B be a commutative A-algebra. We have the following description of the

restriction of the functors
−→
ΩX,YMX and ΩX,YMX to CAlgA/.

−→
ΩX,YMX (B) := MapModB(X )(X ⊗A B, Y ⊗A B)

ΩX,YMX (B) = IsoModB(X )(X ⊗A B, Y ⊗A B)

Here Iso(−,−) ⊆ Map(−,−) is the full subcategory whose objects are mor-

phisms that become invertible in hModB(X ). An immediate consequence of this

explicit description of the functors, is the following lemma, which describes the

relation between the two stacks that we have just introduced, in the special case

where X admits a compact generator:

Lemma 4.2.7. Let X be an object of PrLk , and assume that X has a compact

generator. Let
−→
ΩX,YM[

X and ΩX,YMX be as in Notation 4.2.6. Then the natural

morphism i : ΩX,YMX →
−→
ΩX,YM[

X is a Zariski open immersion. In particular, if

−→
ΩX,YM[

X is an algebraic n-stack, then the same is true of ΩX,YMX
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Proof. The second statement is an immediate consequence of the first statement and

the fact that n-representable morphisms are stable under composition (G.5.1.4.).

To prove the first statement, suppose that we are given a morphism Spec(B)→

−→
ΩX,YM[

X , classified by Φ ∈ MapModB(X )(X ⊗A B, Y ⊗A B). By Theorem ??, we

may identify ModB(X ) with LModEop⊗B. Let Un ⊆ Spec(π0B) be the complement

of the support of πncone(Φ). By the upper semicontinuity of cohomology groups,

Un is open. Since X and Y are perfect A-modules, so is cone(Φ). Therefore for all

but finitely many n, we have Un = Spec(π0B). It follows that U :=
⋂
Un is Zariski

open in Spec(π0B). Let f1, ..., fn be elements in B that are lifts of elements in π0B

that cut out the complement of U . Let V := Spec(B[f−1
i ]). Let j : V → Spec(B)

denote the natural inclusion. Note that Φ|V is an equivalence, since its cone is

contractible by construction our of V .

We will now prove that the map i is a Zariski open immersion. Let F be the

fiber of i over Spec(B), so that square below is cartesian.

V
π // F //

i′

��

ΩX,YMX

i

��

Spec(B)
{Φ} // −→ΩX,YM[

X

For any C in CAlgk, F(C) is a classifying space for triples {(f,Φ′, α)}, where

f : Spec(C) → Spec(B), Φ′ ∈ IsoModC(X )(X ⊗A C, Y ⊗A C), and α : Φ ⊗B C → Φ′

is an equivalence. The map π is sends a morphism f : Spec(C) → V to the triple
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{(j ◦ f,Φ⊗B C, id)}.

To prove that i is a Zariski open immersion, it will suffice to show that i′ is a

monomorphism, that π is surjective, and that i′ ◦ π is a Zariski open immersion of

affine schemes.

Recall that a morphism f : S → T in an ∞-category is a monomorphism if

the induced map S → S ×T S is an equivalence. Observe that i (and therefore

i′) is a monomorphism. Indeed, for any C in CAlgk, i(C) is the natural map

IsoModC(X )(X ⊗A C, Y ⊗A C) → MapModC(X )(X ⊗A C, Y ⊗A C). Since the equiva-

lences constitute a union of connected components in the space of maps, this is a

monomorphism.

For any (f,Φ′, α) ∈ F(C), we have that cone(Φ′) is a contractible, since Φ′ is an

equivalence. The equivalence α induces an equivalence cone(Φ ⊗B C) ' cone(Φ′).

Since V is the complement of the support of cone(Φ), f must factor through V .

This proves the surjectivity of π.

Finally, the composite i′ ◦ π is just the natural inclusion j : Spec(B[f−1
i ]) →

Spec(B), which is obviously a Zariski open immersion.

Apart from the existence of the cotangent complex, the fact that ΩX,YMX

satisfies the conditions of Theorem 4.1.4 follows formally from our hypotheses. The

only observation one needs is the following evident lemma:
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Lemma 4.2.8. Let C be an ∞-category, and let

F //

��

F1

��
F2

// F0

be a carestian square in P(C). Let K be a simplicial set.

1. Let ν : K/ → C be a diagram, and suppose that Fi ◦ ν is a limit diagram for

i = 0, 1, 2. Then F ◦ ν is a limit diagram.

2. Assume K is ω-filtered. Let ν : K. → C be a diagram, and suppose that Fi ◦ν

is a colimit diagram for i = 0, 1, 2. Then F ◦ ν is a colimit diagram.

Proof. The first statement follows from that fact that products (in fact, arbitrary

limits) commute with all limits. The second statement is a consequence of the fact

that products (in fact, all finite limits) commute with ω-filtered colimits in S.

As an immediate consequence we have the following:

Lemma 4.2.9. Let X be a presentable k-linear ∞-category satisfying conditions

(1)-(5) of Proposition 4.2.4, and let ΩX,YMX be as in Notation 4.2.6. Then

ΩX,YMX is ω-accessible, nilcomplete, infinitesimally cohesive, formally effective,

and a sheaf for the étale topology.

Proof. This follows immediately from our hypotheses, the definitions of the various

terms, and Lemma 4.2.8.
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Our next goal is to prove the analogue of the previous lemma for
−→
ΩX,YM[

X . If

we had enough (∞, 2)-categorical machinery at our disposal, the proof would be

very similar to that for ΩX,YMX . We will take a more hands-on approach.

Lemma 4.2.10. Let ν : K/ → Cat∞ be a limit diagram classifying a coCartesian

fibration ν[ : V → K/. Let X, X ′ ∈ V∞, and let χ, χ′ ∈ FunK/(K,V) be the

corresponding coCartesian sections. Then we have a natural equivalence V(x, x′) '

limx∈KVx(χx, χ′x) in S.

Proof. According to [Lur11a, Lemma 5.17], there are coCartesian sections χ, χ′

in Funk/(K
/,V) such that χ|K = χ, χ′|K and χ∞ = X and χ′∞ = X ′. Further-

more, the aforementioned lemma tells us that χ′ is a ν[-limit diagram. This im-

plies that V(X ′, X) ' limx∈KV(X,χ′x). Furthermore, the lemma tells us that for

each x ∈ K, χ carries the morphism ∞ → x to a ν[-cartesian morphism. Con-

sequently, we have V(X,χ′x) ' Vx(χx, χ′x). Putting this together with the previ-

ous equivalence, and using the fact that V∞ ⊆ V is a full subcategory, we have

V(X ′, X) ' limx∈KVx(χx, χ′x).

Lemma 4.2.11. Let X be an object of PrLk , let
−→
ΩX,YM[

X be as in Notation 4.2.6

and let µ : K/ → CAlgk be a diagram. Assume that the induced diagram M[
X ◦ µ :

K/ → Cat∞ is a limit diagram. The the diagram
−→
ΩX,YM[

X ◦µ : K/ → S is a limit

diagram.

Proof. Apply Lemma 4.2.10 with ν =M[
X ◦ µ, X = X, and X ′ = Y .
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Finally, we need to check that
−→
ΩX,YM[

X preserves filtered colimits.

Lemma 4.2.12. Let X be an object of PrLk , and let
−→
ΩX,YM[

X be as in Notation

4.2.6. The
−→
ΩX,YM[

X : CAlgk → S is an ω-accessible functor.

Proof. Let {Aα} be an ω-filtered diagram of commutative k-algebras with colimit

A′. We have natural equivalences:

colim
−→
ΩX,YM[

X (Aα) := colim MapModAα (X )(X ⊗A Aα, Y ⊗A Aα)

' colim MapModA(X )(X, Y ⊗A Aα)

' MapModA(X )(X, colim Y ⊗A Aα)

' MapModA(X )(X, Y ⊗A colim Aα)

' MapModA′ (X )(X ⊗A A′, Y ⊗A A′)

=
−→
ΩX,YM[

X (A′)

We used the fact that X is (by definition, sinceM[
X (A) := ModA(X )ω) compact in

going from the second line to the third line. The rest is formal algebraic manipula-

tion.

We have thus proven that
−→
ΩX,YM[

X inherits the good properties of M[
X :

Lemma 4.2.13. Let X be an object of PrLk , and assume that M[
X satisfies hy-

potheses (1) -(5) of Proposition 4.2.4. Let
−→
ΩX,YM[

X be as in Notation 4.2.6. Then

−→
ΩX,YM[

X is ω-accessible, nilcomplete, infinitesimally cohesive, formally effective

and a sheaf for the étale topology.
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Proof. This follows immediately from Lemmas 4.2.11 and 4.2.12.

In order to apply the Artin-Lurie theorem to verify that, under the hypotheses of

Proposition 4.2.4, the functors
−→
ΩX,YM[

X and ΩX,YMX are algebraic stacks, it only

remains to verify conditions (4) and (6) of that theorem. We now to turn to (4),

which is the existence of the cotangent complex. We begin with two straightforward

lemmas:

Lemma 4.2.14. Let X be an object of PrLk , and let X ∈ ModA(X )ω. Then the

functor Mor(X,−) : ModA(X ) → ModA commutes with all colimits. For any

Y ∈ ModA(X ), and M ∈ ModA, we have MorA(X, Y ⊗AM) 'MorA(X, Y )⊗AM ,

where MorA(−,−).

Proof. The second statement follows from the first since ModA is generated un-

der colimits by A, and ⊗A distributes over colimits. We will now prove the first

statement. Note that since Mor(X,−) is a right adjoint by definition, it commutes

with all limits, and in particular with finite limits. Since ModA(X ) is stable (being

k-linear), this implies the Mor(X,−) commutes with all finite limits. Given any

filtered diagram {Xα} in ModA(X ), we have a commutative diagram:

MapA(A, colim Mor(X,Xα)) // MapA(A,Mor(X, colim Xα))

colim MapA(A,Mor(X,Xα)) //

o

OO

MapA(A,Mor(X, colim Xα))

o

OO

colim MapA(X,Xα) ∼ //

o

OO

MapA(X, colim Xα)

o

OO
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The first row is equivalent to the second by compactness of A in ModA. The second

and third rows are equivalent by adjunction. The bottom horizontal row is an

equivalence by compactness of X in ModA(X ). It follows that the top horizontal

row is an equivalence. Since A is a generator for ModA, the functor MapA(A,−)

is conservative, since in the stable setting a map is an equivalence if and only if

its fiber is contractible. It follows that the natural map colim Mor(X,Xα) →

Mor(X, colim Xα) is an equivalence. We have shown that Mor(X,−) commutes

with finite colimits and ω-filtered colimits. Applying T.5.5.1.9., we conclude that

Mor(X,−) commutes with all colimits.

Lemma 4.2.15. Let X be a presentable k-linear category that is locally compact

over k. Then for all A in CAlgk, ModA(X ) is a locally compact category over A.

Proof. We have a natural identification ModA(X ) ' X ⊗Modk
ModA. Since X ⊗

ModA ' Ind(X ω ⊗k ModωA), and ModωA is generated under finite colimits by A, we

see that every compact object in X ⊗Modk
ModA is a retract of a finite colimit of

objects of the form X ′ ⊗k A, with X ′ in X ω. Furthermore, under the identification

above, it is clear that for any two objects X ′ ⊗k A and Y ′ ⊗k A, we have

MorModA(X )(X
′ ⊗k A, Y

′ ⊗k A) 'MorX (X ′, Y ′)⊗k A.

In particular, if X ′, Y ′ ∈ X ω, then, since MorX (X, Y ) is compact in Modk by our

hypothesis, it follows that MorModA(X )(X
′ ⊗k A, Y

′ ⊗k A) is compact in ModA.
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Now let X, Y in ModA(X )ω be arbitrary. We will show that MorA(X, Y )

is compact. Write X (resp. Y ) as a retract of a finite colimit colim Xα ⊗k A

(resp. colim Yβ ⊗k A), with Xα, Yβ in X ω. Then MorA(X, Y ) is a retract of

MorA(colim Xα ⊗k A, colim Yβ ⊗k A), so it will suffice to prove that the latter

is compact in ModA, since compact objects are stable under retracts. Mor(−,−)

commutes with finite colimits in the second variable by stability. Therefore we have

MorA(colim Xα ⊗k A, colim Yβ ⊗k A) ' limαcolimβ MorA(Xα ⊗k A, Yβ ⊗k A).

Since ModA is stable, the class of finite colimit diagrams coincides with class of

finite limit diagrams, and so the right hand side can be written as a finite colimit,

each of whose terms is compact by our remarks in the previous paragraph. It follows

that MorA(colim Xα ⊗k A, colim Yβ ⊗k A) is compact, completing the proof.

Proposition 4.2.16. Let X be a locally compact category over k. Let A ∈ CAlgk,

X, Y ∈ ModA(X )ω, and let
−→
ΩX,YM[

X and ΩX,YMX be as in Notation 4.2.6. Then

the functors
−→
ΩX,YM[

X and ΩX,YMX have cotangent complexes.

Proof. For the duration of this proof we will use the following notation: F :

CAlgA/ → S (resp. G := CAlgA/ → S) denotes the restriction of
−→
ΩX,YM[

X :

CAlgk → S (resp. ΩX,YMX : CAlgk → S) along the natural functor CAlgA/ →

CAlgk. Note that, by virtue of G.3.2.12, and the fact that the structure morphism

Spec(A)→ Spec(k) has a cotangent complex, it will suffice to prove the morphisms

F → Spec(A) and G → Spec(A) have relative cotangent complexes.
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We begin by considering F . Let B ∈ CAlgA/, and x : Spec(B) → F be a

morphism in StA. We will now show that the functor DerF/A(x,−) : ModB → S

is corepresentable. Let M ∈ ModB and let B〈M〉 ∈ CAlgB/ be the square zero

extension of B by M , whose underlying B-module is B⊕M . Consider the following

diagram:

MapB〈M〉(X ⊗A B〈M〉, Y ⊗A B〈M〉) // MapB(X ⊗A B, Y ⊗A B)

MapA(X, Y ⊗A (B ⊕M)) //

o
OO

MapA(X, Y ⊗A B)

o

OO

MapA(X, Y ⊗AM)×MapA(X, Y ⊗A B)

o

OO

// MapA(X, Y ⊗A B)

o

OO

The equivalence of the second row with the first is by adjunction. The second and

third rows are equivalent by the stability of ModA(X ), which allows us to identify

sums with products. It is manifest in this diagram that DerF/A(x,M), which by

definition is the homotopy fiber at x of the top horizontal morphism, is equivalent
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to MapA(X, Y ⊗AM). We have a chain of equivalences

DerF/A(x,M) ' MapA(X, Y ⊗AM)

' Ω∞MorA(X, Y ⊗AM)

' Ω∞(MorA(X, Y )⊗AM)

' Ω∞((MorA(X, Y )⊗A B)⊗B M)

' Ω∞(MorB((MorA(X, Y )⊗A B)∨,M))

' MapB((MorA(X, Y )⊗A B)∨,M)

In going from the second line to the third, we have used Lemma 4.2.14, and in

going from the fourth to the fifth, we have used the fact that MorA(X, Y ) is com-

pact by Lemma 4.2.15, and the fact that compact objects coincide with dualizable

ones in ModB (Proposition 2.2.20). Thus, we see that the functor DerF/A(x,−) is

corepresented by the B-module LF/A,x := (MorA(X, Y )⊗A B)∨.

Now suppose that we are given a commutative diagram of functors CAlgA/ → S:

Spec(C) u //

y

$$HHHHHHHHH
Spec(B)

x
zzvvvvvvvvv

F
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We have an induced commutative diagram:

u∗LF/A,x //

o
��

LF/A,y
o

��
(MorA(X, Y )⊗A B)∨ ⊗B C //

o
��

(MorA(X, Y )⊗A C)∨

o
��

MorA(MorA(X, Y ), B)⊗B C // MorA(MorA(X, Y ), C)

The first and second rows are equivalent by the definitions of LF/A,− and the top

horizontal morphism. The second and third rows are equivalent by adjunction.

Finally, the bottom horizontal map is an equivalence by Lemma 4.2.14. Thus, the

morphism u∗LF/A,x → LF/A,y is an equivalence. This proves the existence of a

relative cotangent complex LF/A ∈ QC(F) for the morphism f : F → Spec(A).

Now let x : Spec(B)→ G be a point of G, and let i : G → F be the natural map.

Then we claim that we have equivalence of functor DerG/A(x,−) ' DerF/A(i(x),−).

To prove the claim, let M ∈ ModB, and consider the commutative diagram:

DerG/A(x,M) //

��

G(B〈M〉) π′ //

iB〈M〉
��

G(B)

iB
��

DerF/A(i(x),M) // F(B〈M〉) π
// F(B)

For any C ∈ CAlgA/, G(C) is a union of connected components of F(C). There-

fore, passing to the long exact sequences on homotopy groups associated with

the fiber sequences above and applying the five lemma, we immediately see that

πnDerG/A(x,M)→ πnDerF/A(i(x),M) is an isomorphism for n > 0, and an injection

for n = 0.
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We will now prove that π0DerG/A(x,M) → π0DerF/A(i(x),M) is an isompor-

phism as well. In view of the fact that G(B) (resp. G(B〈M〉)) is a union of con-

nected components of F(B) (resp. F(B〈M〉)), the only thing that needs proof

is the following: if Φ ∈ π0F(B〈M〉) is in the inverse image of [i(x)] ∈ π0F(B),

then Φ is in the image of G(B〈M〉). Unravelling the definitions, one readily checks

that this follows from the following more general fact: the functor (−) ⊗B〈M〉 B :

ModB〈M〉(X )→ ModB(X ) is conservative.

To prove the conservatism of this last functor, note that since the categories

involved are stable, it will suffice to prove that the functor reflects zero objects. Let

X ∈ ModB〈M〉(X ) and suppose that X ⊗B〈M〉 B ' 0. The object of X underlying

X ⊗B〈M〉 B is the cofiber of the action map a : M ⊗ X → X. Consequently, a is

an equivalence in X . On the other hand, the multiplication map m : M ⊗M →M

is the zero map, by definition of a square zero extension. So in hX , we have

equalities 0 = [a ◦ (m⊗ id)] = [a ◦ (id⊗ a)]. The last map is an isomorphism with

target X, so it follows that X ' 0. This completes the proof of the conservatism of

(−)⊗B〈M〉B, and therefore also the proof of the fact that the map π0DerG/A(x,M)→

π0DerF/A(i(x),M) is an isomporphism.

To summarize: we have shown that the natural map from DerG/A(x,−) to

DerF/A(i(x),−) is an equivalence of functors. It follows DerG/A(x,−) is corepre-

sented by LG/A,x := (MorA(X, Y ) ⊗A B)∨ = LF/A,i(x). The fact that LG/A,− is

compatible with base change follows from the corresponding statement for LF/A,−.
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This completes the proof of the fact G → Spec(A) has a relative cotangent com-

plex.

We now turn our attention to verifying that the functors
−→
ΩX,YM[

X and ΩX,YMX

satisfy condition (7) of the Artin-Lurie criterion (truncatedness).

Lemma 4.2.17. Let X be in PrLk , and let X, Y be compact objects in ModA(X ).

Assume that MorA(X, Y ) has Tor amplitude ≤ n. Then the functors
−→
ΩX,YM[

X and

ΩX,YMX defined in Notation 4.2.6 are n-truncated. That is, the restriction of these

functors to discrete commutative algebras factors through τ≤nS.

Proof. Let B be a discrete object in CAlgA/. We have equivalences:

−→
ΩX,YM[

X (B) ' MapB(X ⊗A B, Y ⊗A B)

' MapA(X, Y ⊗A B)

' Ω∞MorA(X, Y ⊗A B)

' Ω∞(MorA(X, Y )⊗A B)

In passing from the third line to the fourth line we have made use of the fact that

X is compact (Lemma 4.2.14). Since MorA(X, Y ) is of Tor-amplitude ≤ n, and

B is discrete, we have that πk(
−→
ΩX,YM[

X (B), x) = 0 for k > n, and any choice

of basepoint x. Since ΩX,YMX (B) is the union of a set connected components of

−→
ΩX,YM[

X (B), it follows that πk(ΩX,YMX (B), x) = 0 for k > n, and any choice of

basepoint x.
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We are now ready to apply the Artin-Lurie criterion to prove the algebraicity of

the stacks
−→
ΩX,YM[

X and ΩX ,YMX .

Proposition 4.2.18. Let X be an object of PrLk that is locally compact and satisfies

conditions (1)-(5) of Proposition 4.2.4. Let A ∈ CAlgk, and let X, Y ∈ ModA(X )ω.

Then there exists n ≥ 0 such that the functors
−→
ΩX,YM[

X and ΩX,YMX defined in

Notation 4.2.6 are derived algebraic n-stacks, locally of finite presentation over k.

Proof. Note that by our hypotheses on X , and Lemma 4.2.15, MorA(X, Y ) is a

compact object of ModA. Consequently, by [TV07a, Proposition 2.22], there exists

n ≥ 0 such that MorA(X, Y ) has Tor amplitude ≤ n. Throughout this proof, n

will refer to this number. We will prove that
−→
ΩX,YM[

X and ΩX,YMX are derived

algebraic n-stacks.

According to Lemma 4.2.13,
−→
ΩX,YM[

X satisfies conditions (1), (2), (3), (5) and

(6) of Theorem 4.1.4. Proposition 4.2.16 guarantees the existence of a cotangent

complex for
−→
ΩX,YM[

X , which is condition (4). Lemma 4.2.17, it also satisfies condi-

tion (7) with n as above. It follows from Theorem 4.1.4 that
−→
ΩX,YM[

X is a derived

algebraic n-stack.

Similarly, by Lemma 4.2.9, ΩX,YMX satisfies conditions (1), (2), (3), (5) and

(6) of the Artin-Lurie criterion. Proposition 4.2.16 tells us that it satisfies condition

(4). Finally, Lemma 4.2.17, it also satisfies condition (7) with n as above. It follows

from Theorem 4.1.4 that
−→
ΩX,YM[

X is a derived algebraic n-stack.

Having established the algebraicity of the loop stack of MX , we now return to
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our original purpose - to prove the existence of a cotangent complex for the functor

MX . Unfortunately, we cannot directly deduce Proposition 4.2.4 from Propositions

4.2.5 and 4.2.18. The reason is the following: although Proposition 4.2.18 does

show that the fiber of the diagonal map ∆ : MX → MX ×MX over any point

Spec(A) →MX ×MX is an algebraic n-stack for some n, the value of n depends

on the point we choose. Thus, in general, there is no single number n for which

the diagonal ∆ : MX → MX ×MX is an n-representable morphism. This is not

a major impediment, because MX is a filtered colimit of substacks Mn
X , each of

which has a diagonal that is n-representable for some n. We now introduce the

substacks Mn
X :

Lemma 4.2.19. Let n be an integer, and let X be an object of PrLk . Then there is

a monomorphism of functors M[,n
X ⊆M[

X such that for any A in CAlgk, M[,n
X (A)

is the full subcategory of M[
X (A) consisting of objects that are of amplitude ≤ n.

Proof. Let f : A → B be a morphism in CAlgk. We must show that the natural

functor f ∗ : M[
X (A) → M[

X (B) carries M[,n
X (A) into M[,n

X (B). Let X ∈ M[
X (A)

be an object of amplitude ≤ n. We will now show that X⊗AB has amplitude ≤ n.

We have

MorB(X ⊗A B,X ⊗A B) 'MorA(X,X ⊗A B)

'MorA(X,X)⊗A B

The first equivalence is by adjunction, and the second is a consequence of Lemma

4.2.14, sinceX is compact by hypothesis. The A-module MorA(X,X) has amplitude
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≤ n by our assumptions on X. Tor amplitude is stable by base change ([TV07a,

Proposition 2.22]). Therefore, it follows that MorA(X,X)⊗AB is of Tor-amplitude

≤ n, proving that X ⊗A B is of amplitude ≤ n. This completes the proof of the

existence of the subfunctor M[,n
X ⊆M[

X .

Definition 4.2.20. Let X be an object of PrLk . For each integer n, we define the

functorM[,n
X : CAlgk → Cat∞ as in Lemma 4.2.19. We defineMn

X : CAlgk → S to

be the composite Mn
X := (−)' ◦M[,n

X .

Lemma 4.2.21. Let X be an object of PrLk , and assume that X is locally compact.

Then M[
X is a filtered colimit of the functors M[,n

X . Similarly, MX is the filtered

colimit of the functors Mn
X .

Proof. Let A in CAlgk and X ∈ M[
X (A) = ModA(X )ω. The condition that X

is locally compact implies, in particular, that MorA(X,X) is a compact object of

ModA. Consequently, by [TV07a, Proposition 2.22], there is an integer n such that

MorA(X,X) is of Tor amplitude ≤ n. In other words, there is an integer n for

which X ∈M[,n
X (A). The rest is clear.

We will not need the full strength of the following proposition until the next

section. In this section, we will only need the fact that M[,n
X is infinitessimally

cohesive, in order to apply Proposition 4.2.5.

Lemma 4.2.22. Let X be an object of PrLk , and suppose that M[
X satisfies condi-

tions (1)-(5) of Proposition 4.2.4. Then M[,n
X satisfies conditions (1)-(5) of Propo-

94



sition 4.2.4, and so does Mn
X .

Proof. Assume that X satisfies the hypotheses of the lemma. Since M[
X is a sheaf

for the étale topology by hypothesis, the fact that M[,n
X is a sheaf for the étale

topology follows immediately from the fact (G.3.5.3) that the property of being of

Tor amplitude ≤ n is local for the flat topology (and therefore also local for the

étale topology). This proves that M[,n
X satisfies (5).

Let ν : N(Z≤0)/ → CAlgk be a Postnikov tower. Let ν−∞ = A, so that ν−k '

τ≤kA. By our assumption that M[
X is nilcomplete, the induced diagram M[

X ◦ ν :

N(Z≤0)/ → Cat∞ is a limit diagram. According to [TV07a, Proposition 2.22(3)], an

M ∈ ModA is perfect of amplitude ≤ n if and only if M⊗Aπ0A ∈ Modπ0A is perfect

of amplitude ≤ n. It follows thatM[
X ◦ ν has the following analogue of Property ¶

(see Definiton 2.3.6): an object X ∈ M[
X (A) is in M[,n

X (A) if and only if its image

in M[
X(τ≤kA) lands in M[,n

X (τ≤kA) for all k. Since M[
X ◦ ν is a limit diagram, it

follows that M[,n
X ◦ ν is a limit diagram. Thus M[,n

X is nilcomplete (condition (2)).

Let A be a discrete Noetherian commutative k-algebra with maximal ideal m.

Then M ∈ ModA has Tor amplitude ≤ n iff M ⊗A A/m has Tor amplitude ≤ n.

Therefore, by an argument similar to the one in the previous paragraph, one deduces

the formal effectivity of M[,n
X from formal effectivity of M[

X . The proof of the

infinitesimal cohesiveness of M[,n
X is essentially identical. As in the proof of formal

effectivity, the essential point is to note that the condition on Tor amplitude can be

checked after base change to geometric points. We leave the details to the reader.
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The statement aboutMn follows immediately from the corresponding statement

forM[,n
X , and the fact that the functor (−)' preserves all limits and filtered colimits.

We can now apply Proposition 4.2.5 to deduce the existence of a cotangent

complex for Mn
X :

Proposition 4.2.23. Let X be an object of PrLk satisfying all the hypotheses of

Proposition 4.2.4. Then, for each integer n, the functor Mn
X has a cotangent com-

plex.

Proof. By Lemma 4.2.22, the functorMn
X is infinitesimally cohesive, and by Propo-

sition 4.2.18 its diagonal is a relative n-stack. Therefore by Proposition 4.2.5, Mn
X

admits a cotangent complex.

Proof of Proposition 4.2.4. The proposition follows from Proposition 4.2.23, and

Lemma 4.2.21.

In practice, we will use Proposition 4.2.23. We decided not to state this Propo-

sition at the beginning of the section, so as not to obscure the main ideas.

4.3 Dualizability implies Geometricity

In their seminal work, Toën and Vaquié prove the following beautiful theorem:
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Theorem 4.3.1 (Toën-Vaquié, [TV07a]). Let X be a smooth and proper k-linear

∞-category. That is, let X be a dualizable object of PrLω,k. Then the functor MX :

CAlgk → S defined in Notation 2.4.1 is a locally geometric derived ∞-stack, locally

of finite presentation over k.

This section is devoted to giving a new proof of this theorem. As we will see

shortly, the proof given here makes manifest the role of dualizability. In order to

exploit the dualizabilty of X as an object of PrLω,k, it will be necessary to work

with the PrLω,k-valued functor MX , of which the space valued functorMX is a pale

shadow. The importance and expediency of working with these more structured

moduli functors is another point that we wish to bring out and emphasize. With

this as our motivation, we will happy to take for granted the following theorem,

which is also proven in [TV07a]. The methods of this paper could be used to give

a direct proof of this result, using the Artin-Lurie theorem.

Proposition 4.3.2. The functor M1 : CAlgk → S is a locally geometric derived

∞-stack, locally of finite presentation over k.

We begin with some lemmas that will be used to prove thatMX is infinitesimally

cohesive, nilcomplete and formally effective (Propostion 4.3.6).

Lemma 4.3.3. Let K be a simplicial set, and let ν : K/ → PrLω,k be a diagram.

Assume that the induced diagram (−)' ◦ (−)ω ◦ ν : K/ → S is a limit diagram, and

that ν has Property ¶ (see Definition 2.3.6). Let η denote the unit of the natural
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adjunction

ν∞ // lim ν|K
{{

Then the following are equivalent:

(1) ν is a limit diagram

(2) For every compact object X in ν∞, ηX is an equivalence.

Proof. The implication (1) ⇒ (2) is obvious. We will now prove that (2) ⇒ (1).

Assume that (2) holds. By Lemma 2.3.5, it will suffice to show that the induced

diagram (−)ω ◦ ν is a limit diagram. To prove this, we must show that the natural

map νω∞ → (lim ν|K)ω is an essential surjective and fully faithful.

We turn first to the essential surjectivity. Note that a functor f : C → D is

essentially surjective iff the induced map of spaces f' : C' → D' is surjective on

connected components. We have a commutative diagram

ν'∞ //

!!DDDDDDDDDDDDDDDDDDDDD
((lim ν|K)ω)'

��
(lim(ν|K)ω)'

��
lim((ν|K)ω)'

The top vertical arrow is an equivalence by virtue of our assumption that ν has

Property ¶. The bottom vertical map is an equivalence because (−)' commutes

with limits (Lemma 2.3.13). Finally, the diagonal map is an equivalence because
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of our assumtion that (−)' ◦ (−)ω ◦ ν is a limit diagram. It follows that the top

horizontal morphism is an equivalence of spaces, and, in particular, is surjective on

connected components. This proves the essential surjectivity.

We will now prove that the functor νω∞ → (lim ν|K)ω is fully faithful. Note that

the fact that this functor is essentially surjective, together with the assumption

(2), implies that the right adjoint limν|K → ν∞ preserves compact objects, and

consequently we have an induced adjunction

(ν∞)ω // (lim ν|K)ω
xx

The fact that νω∞ → (lim ν|K)ω is fully faithful now follows from the following more

general fact, together with our assumption (2): a left adjoint f : C → D between

arbitrary∞-categories is fully faithful iff the unit of the adjunction is an equivalence.

This in turn is manifest in the following commutative diagram:

C(X, Y )
ηY ◦(−) //

f

$$JJJJJJJJJJJJJJJJJJJJ
C(X, gfY )

o

��
D(fX, fY )

Here g is the right adjoint to f , and η is the unit of the adjunction. The vertical

equivalence is a consequence of adjointness. The diagonal map is an equivalence for

all X, Y if and only if f is fully faithful, by definition. By the Yoneda lemma, the top

horizontal map is an equivalence for all X, Y if and only if ηY is an equivalence for

all Y . Putting together the last three statements, one sees that η is an equivalence

iff f is fully faithful.

99



Lemma 4.3.4. Let µ : K/ → CAlgk be a limit diagram, and suppose that M1 ◦ µ :

K/ → S is a limit diagram. Then M1 ◦ µ : K/ → PrLω,k is a limit diagram.

Proof. Let A = µ∞, let Ax = µx for x ∈ K, and let ν = M1 ◦ µ. By definition, we

have M1 ◦ µ = (−)' ◦ (−)ω ◦ ν. Since M1 ◦ µ is a limit diagram by hypothesis,

Lemma 4.3.3 implies that, in order to prove the present lemma, it will suffice to

show that the unit of the adjunction

M1(A) // limx∈KM1(Ax)
xx

satisfies condition (2) of Lemma 4.3.3. For M ∈M1(A)ω = ModωA, the unit of this

adjunction is the natural morphism

M ⊗A A→ limx∈KM ⊗A Ax

Since ModA is a perfect symmetric monoidal category by Lemma 2.2.20, the com-

pact object M is dualizable. Consequently, by Lemma 2.2.5, the functor M ⊗A (−)

commutes with all limits. It follows that the unit map above is an equivalence.

Proposition 4.3.5. The functor M1 : CAlgk → PrLω,k is nilcomplete, infinitesi-

mally cohesive and formally effective.

Proof. Since M1 is locally geometric and locally of finite presentation by Proposi-

tion 4.3.2, it is nilcomplete, infinitesimally cohesive and formally effective by virtue

of the Artin-Lurie recognition principle (Theorem 4.1.4). The proposition now fol-

lows from Lemma 4.3.4 and the definitions.
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Let C be an ∞-category. Let us say that a functor F : CAlgk → C is good if

it is infinitesimally cohesive, nilcomplete, a sheaf for the étale topology, formally

effective and ω-accessible.

Proposition 4.3.6. Let X be a smooth and proper k-linear ∞-category, i.e., a du-

alizable object of the symmetric monoidal ∞-category (PrLω,k)⊗. Then the following

is true

1. The functor MX : CAlgk → PrLω,k is good.

2. The functor M[
X : CAlgk → Cat∞ is good.

3. For any n ∈ Z, the functor M[,n
X : CAlgk → Cat∞ is good.

4. For any n ∈ Z, the functor Mn
X : CAlgk → S is good.

See Notation 2.4.1 and Definition 4.2.20 for the definitions of the various functors.

Proof. Note that all the conditions that go into the definition of a good functor,

assert that the functor commutes with certain limits and filtered colimits. Since

(−)ω : PrLω,k → Cat∞ commutes with all limits and filtered colimits (Lemma 2.3.5),

we see that (1) ⇒ (2). Lemma 4.2.22 says that (2) ⇒ (3). Finally, (3) ⇒ (4) by

virtue of Lemma 2.3.13, which says that the functor (−)' commutes with limits

and filtered colimits. Thus, to prove the proposition, it will suffice to sow that (1)

holds.

Since X is dualizable, the functor X ⊗Modk
(−) : PrLω,k → PrLω,k commutes with

all small limits (Lemma 2.2.5). Consequently, if M1 carries a diagram K/ → CAlgk
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to a limit diagram in PrLω,k, then so does MX := X⊗Modk
M1. In view of Proposition

4.3.5, this implies that MX is infinitesimally cohesive, nilcomplete and formally

effective.

Proposition 3.4.1 says that M[
X is a sheaf for the flat topology. By virtue of

the fact that (−)ω : PrLω,k → Cat∞ reflects limits (Lemma 2.3.5), and the definition

of the notion of sheaf, it follows that MX is a sheaf for the flat topology, and

consequently a sheaf for the étale topology. We would like to pause to point out

that Proposition 3.4.1 was proven by first showing that M1 is a sheaf for the flat

topology, and then using the fact that X ⊗Modk
(−) commutes with limits to deduce

that MX is a sheaf for the flat topology.

The ω-accessibility of MX follows from the ω-accessibility of M1, and the fact

that X⊗Modk
(−) distributes over colimits for any X ∈ PrLω,k. To complete the proof

of the proposition, it remains only to show that M1 is ω-accessible. The argument

for this is identical to [TV07a, Lemma 2.10].

Lemma 4.3.7. Let X be an object of PrLk , and let Mn
X : CAlgk → S be as in

Definition 4.2.20. The functor Mn
X is (n+ 1)-truncated for every n ∈ N.

Proof. Let A be a discrete commutative ring, and let X ∈ Mn
X (A). By definition

of Mn
X , MorA(X,X) is an A-module of Tor amplitude ≤ n. Since MapA(X,X) '

Ω∞MorA(X,X), and A is discrete, this immediately implies that MapA(X,X) is n-

truncated. The proposition now follows from the observation that πk+1(Mn
X , X) '

πk(MapA(X,X), idX) for k > 0, since Mn
X (A) is the underlying ∞-groupoid of a
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full subcategory of ModA(X )ω.

Proposition 4.3.8. Let X be a dualizable object of PrLω,k, and let n ∈ N. The

functor Mn
X : CAlgk → S (see Definition 4.2.20) is a derived algebraic (n + 1)-

stack, locally of finite presentation over k.

Proof. By virtue of Proposition 4.3.6 and Lemma 4.3.7, the functor Mn
X satisfies

conditions (1)-(3) and (5)-(7) of the Artin-Lurie recognition principle (Theorem

4.1.4). Since X is dualizable, it is, in particular, proper. Consequently, it is locally

compact. Thus, X satisfies all the hypotheses of Proposition 4.2.23, and therefore

Mn
X admits a cotangent complex, which is condition (4) of Theorem 4.1.4. Thus,

Mn
X satisfies all the hypothesis of the Artin-Lurie theorem. The proposition follows.

We can now prove the main theorem of this section:

Proof of Theorem 4.3.1. The functorMX is the filtered colimit of the functorsMn
X

(Lemma 4.2.21), and furthermore each morphism Mn
X →MX is a monomorphism

(Lemma 4.2.19). The stackMn
X is a derived algebraic (n+1)-stack, locally of finite

presentation, by Proposition 4.3.8.

4.4 Proper Perfection implies Geometricity

The purpose of this section is to prove the following theorem.

103



Theorem 4.4.1. Let X⊗ be a perfect k-linear symmetric monoidal ∞-category in

the sense of Definition 2.2.18. Assume that the underlying category X is compactly

generated, and locally compact. Then the functor MX : CAlgk → S (see Notation

2.4.1), is a locally geometric derived ∞-stack, locally of finite presentation over k.

Example 4.4.2. If X is a proper perfect stack over k in the sense of Definition

2.2.22, then X := QC(X) satisfies the hypotheses of the theorem. Thus, this

theorem generalizes the main result of [Lie06], which asserts the existence of an

Artin 1-stack parametizing certain “sufficiently rigid” perfect complexes on a proper

scheme.

Remark 4.4.3. The role of local compactness in the proof is twofold. Firstly, it is

needed in our proof of the existence of the cotangent complex (Proposition 4.2.4).

The other aspect, which will play an important role in this section, is the following.

If X is compactly generated, we have a natural equivalence Funk(X ω,ModA) '

ModA(X ) for any A ∈ CAlgk. We have the functor pA : ModA(X )→
∏

x∈Xω ModA,

where pA := (evx)x∈Xω . The functor pA is manifestly conservative. Secondly, our

local compactness assumption implies that pA preserves compact objects. This

follows immediately from [TV07a, Lemma 2.8(1)] and T.5.3.4.10. The next several

lemmas will show how these two properties of the functor pA will allow us to deduce

that MX satisfies several of the Artin-Lurie conditions, from that fact that M1

satisfies the corresponding conditions.

Lemma 4.4.4. Assume that the following diagram is a right adjointable square in
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Ĉat∞, that the maps p, p′ are conservative, and that the pair (f ′, g′) is an adjoint

equivalence.

X
f //

p

��

X ′

p′

��

g

||

Y
f ′

// Y ′

g′

||

Then the pair (f, g) is an adjoint equivalence.

Proof. Let (η, ε) (resp. (η′, ε′)) be the pair (unit, counit) for the adjuntion (f, g)

(resp. (f ′, g′)). Let ξ : p ◦ g → g′ ◦ p′ be the natural morphism, which is an

equivalence by virtue of the right adjointability of the diagram.

Assume that (f ′, g′) defines an adjoint equivalence, i.e., that η′ and ε′ are equiv-

alences. We will prove that the η and ε are equivalences. We have the following

homotopy commutative diagram in Fun(X ,Y):

p pη //

oη′p

��

pgf

o ξ

��
g′f ′p g′p′f

∼oo

The bottom horizontal map is the equivalence that exists by the homotopy commu-

tativity of the right adjointable square. Since the left and right vertical maps are

equivalences by our hypotheses, it follows that p ◦ η is an equivalence. Since p is
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conservative, this implies that η is an equivalence. The proof that ε is an equivalence

is essentially identical.

The following is a slightly refined version of the previous lemma, that will be

useful. The proof ofis essentially the same - in fact, the previous lemma is a special

case of what follows. We have decided to present them separately, so as not to

obscure the simplicity of the proof.

Lemma 4.4.5. Let the notation be as in Lemma 4.4.4, but do not assume that

(f ′, g′) is an adjoint equivalence. Suppose that there exist subcategories X] ⊆ X ,

X ′] ⊆ X ′, Y] ⊆ Y, Y ′] ⊆ Y ′, such that the following conditions are satisfied:

(1) The functor p maps X] into Y], and the functor p′ carries X ′] into Y ′].

(2) The adjoint pair (f ′, g′) restricts to an adjoint equivalence between Y] and Y ′].

Then for every X in X] the unit ηX is an equivalence, and for every X ′ in X ′] , the

counit εX′ is an equivalence.

Proof. The proof is identical to that of Lemma 4.4.4, except that one has to keep

track of whether various objects live in the appropriate subcategories. We leave the

details to the reader.

The next lemma explains the relevance of the previous two to the problem at

hand.
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Lemma 4.4.6. Let A• : K/ → CAlgk be a limit diagram. Let A := A∞. We have

a right adjointable square

M†
X (A)

φX
//

pA

��

limx∈KM†
X (Ax)

lim pAx

��

ψX

vv

M†
1(A)

φ1
// limx∈KM†

1(Ax)

ψ1

ww

where pA is the morphism defined in Remark 4.4.3.

Proof. The existence and commutativity of the diagram of left adjoints is clear. The

essential point is to check the right adjointability of the diagram. The existence of

the right adjoints is a formal consequence of the fact that the limits are computed

in PrLk (recall from 2.4.1 that M†
X takes values in PrLk ), since every morphism in

PrLk has a right adjoint (which is only a morphism in Ĉat∞, a priori), by the adjoint

functor theorem.

To check the adjointability of the diagram, we make use of the antiequivalence

PrL ' (PrR)op, which allows us to identify limits in PrL with colimits in PrR.

Since limits in PrLk can be computed in PrL, we have a natural equivalence

lim
PrL
x∈KM

†
X (Ax) ' colimPr

R

x∈KM
†
X (Ax)

Let αxX denote the natural morphismM†
X (Ax)→ colimPr

R

x∈KM
†
X (Ax), and let ψxX :=

ψX ◦ αxX . By the universal property of the colimit, it will suffice, in order to check
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the adjointability of the diagram, to verify the homotopy commutativity of the

following diagram for every x ∈ K

M†
X (A)

pA

��

M†
X (Ax)

pAx

��

αxXoo

M†
1(A) M†

1(Ax)
αx1oo

By our construction of αxX , it is clear that αxX is just the forgetful functor ModAx →

ModA, left adjoint to the base change morphism ModA → ModAx induced by the

map A = A∞ → Ax. From this description of αxX , the commutativity of the above

diagram is immediate.

We will be interested in applying the previous lemma in the situation when the

diagram A• represents one of the following

1. The diagram ν : N(Z≤0)/ → CAlgk witnessing A as the inverse limit of A/mN ,

whereA is a discrete, complete, Noetherian local ring, with maximal ideal m.

2. Any diagram ν : K/ → CAlgk realizing a small extension in CAlgk.

3. Any Postnikov tower ν : N(Z≤0)/ → CAlgk.

Unfortunately, it is rarely, if ever, true that the bottom row of the equivalence

in the previous lemma is an adjoint equivalence (even if we restrict ourselves to

diagrams of the special types listed above). Therefore, we cannot apply Lemma
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4.4.4 directly in order to deduce the good properties of MX from those of M1.

However, with some care, we will be able to apply Lemma 4.4.5. First, we need

some preparatory lemmas.

Lemma 4.4.7. Let f : X → Y be a morphism in PrLω , let g : Y → X be a right

adjoint of the functor f , and let Y] ⊆ Y be a subcategory. Assume that f restricts

to an equivalence f ′ : X ω → Y]. Then the adjoint pair (f, g) restricts to an adjoint

equivalence

X ω
f ′

// Y]

g′

||

In particular, g carries Y] into X ω.

Proof. Let η (resp. ε) denote to unit (resp. counit) of the adjunction (f, g). Assume

that f ′ : X ω → Y] is an equivalence. Then f ′ is fully faithful. For X, X ′ ∈ X ω,

consider the diagram

X (X,X ′)
ηX′◦(−) //

f

%%KKKKKKKKKKKKKKKKKKKKK
X (X, gfX ′)

o

��
Y(fX, fX ′)

Since f ′ is fully faithful, the diagonal map is an equivalence, and consequently, so is

the upper horizontal map. Thus, X (X, ηX′) is an equivalence for every ω-compact

object X. Since X is compactly generated, this implies that ηX′ is an equivalence.

This true for an arbitrary X ′ ∈ Xw.
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Let Y ∈ Y]. Since f ′ is an equivalence, it is essentially surjective. Consequently,

there exists X ∈ X ω and an equivalence α : fX → Y . By the previous paragraph,

the unit ηX : X → gfX is an equivalence. Therefore, the composite gα ◦ ηX : X →

gY is an equivalence. Since X ∈ X ω and X ω is replete, it follows that gY ∈ X ω.

This proves that the restriction of g to Y] factors through X ω.

We have a commutative diagram

fgfX
fgα //

εfX

��

fgY

εY

��
fX α

// X

The horizontal morphisms are equivalences, since α is an equivalence. Therefore,

in order to show that εY is an equivalence, it will suffice to show that εfX is an

equivalence. We have the triangular identity

fX
fηX //

idfX

""DDDDDDDDDDDDDDDDD
fgfX

εfX

��
fX

We have already shown that ηX is an equivalence. It follows by the the “two-out-

of-three” property of equivalences that εfX is an equivalence. By our remark above,

εY is an equivalence. Since Y was arbitrary, this completes the proof of the fact

that the counit ε is an equivalence. Since the unit and counit of the adjoint pair

(f ′, g′) are equivalences, it follows that (f ′, g′) is an adjoint equivalence.
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Lemma 4.4.8. Let A• : K/ → CAlgk be a limit diagram, and suppose that the

induced diagram M1(A•) : K/ → PrLω,k is a limit diagram. Put A := A∞. Then the

adjoint pair

M†
1(A) // limM†

1(Ax)
ww

restricts to an adjoint equivalence

M†
1(A)fd // (limM†

1(Ax))
fd

vv

Proof. By virtue of Lemma 2.3.5 and our hypotheses, the natural morphism in

Cat∞, M[
X (A) → limx∈KM[

X (Ax) is an equivalence. Since X is perfect, so is

each of the categories ModA(X ) = X ⊗ModA (Proposition 2.2.21). Consequently,

the previous statement is equivalent to the assertion that the natural morphism

M†
X (A)fd → limx∈KM†

X (Ax)
fd is an equivalence. Proposition 2.3.8 tells us that we

the map (limx∈KM†
X (Ax))

fd → limx∈KM†
X (Ax)

fd is an equivalence. In summary,

we have shown that the natural mapM†
X (A)fd → (limM†

X (Ax))
fd is an equivalence.

To complete the proof, we apply Lemma 4.4.7.

Lemma 4.4.9. Let X be a locally compact, compactly generated, perfect symmetric

monoidal ∞-category, and let A• : K/ → CAlgk be a diagram. Then the vertical

arrows in the right adjointable square of Lemma 4.4.6 are conservative and preserve

dualizable objects.

Proof. The conservatism of pA and pAx is Remark 4.4.3. The conservatism of lim pAx

follows easily. To see this, note that it will suffice to show that this functor reflects
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zero objects, since the categories involved are stable. Let V → K (resp. V ′ → K)

be coCartesian fibrations representing limM†
X (Ax) (resp. limM†

1(Ax)). Let X ∈

limM†
X (Ax) be an element represented by a coCartesian section χ ∈ FunK(K,V),

and suppose that its image χ′ ∈ FunK(K,V ′) is a zero object. Then χ′x ' 0 for all

x ∈ K, whence, by the conservatism of pAx , we have that χx ' 0 for all x ∈ K. It

follows that χ ' 0.

Since X is locally compact, Remark 4.4.3 says that pA preserves compact objects.

SinceM†
X (A) is perfect by our hypotheses and Proposition 2.2.21, this is equivalent

to asserting that pA preserves dualizable objects. The same proof shows that each

functor pAx preserves dualizable objects. Since (limM†
X (Ax))

fd ' limM†
X (Ax)

fd by

Proposition 2.3.8, this show that lim pAx preserves dualizable objects, and completes

the proof.

Lemma 4.4.10. Let X be a compactly generated, locally compact, perfect symmetric

monoidal ∞-category. Let A• : K/ → CAlgk be a diagram. Put A := A∞. Suppose

that the induced diagram M1(A•) : K/ → PrLω,k is a limit diagram. Let η (resp. ε)

denote the unit (resp. counit) of the canonical adjunction

M†
X (A) // limM†

X (Ax)
ww

Then for any X ∈ M†
X (A)fd, the unit ηX is an equivalence, and for any X ′ ∈

(limM†
X (Ax))

fd, the counit εX′ is an equivalence.

Proof. In view of Lemma 4.4.9 and Lemma 4.4.8, the right adjointable square of
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Lemma 4.4.6 satisfies all the hypotheses of Lemma 4.4.5. The subcategories X], etc

are the obvious ones - we leave the details to the reader.

Lemma 4.4.11. Let ν : K/ → CAlgk be a limit diagram, and suppose that the

induced diagram M1 ◦ ν : K/ → PrLω,k is a limit diagram. Let X be a perfect

compactly generated symmetric monoidal ∞-category. Then the natural functor

φνX :M†
X (ν∞)→ lim M†

X ◦ ν|K

admits a right adjoint, and any right adjoint preserves dualizable objects.

Proof. The existence of the right adjoint is immediate. Indeed, the limit is computed

in PrLk , and therefore φνX is a morphism in PrLk . By the adjoint functor theorem

every morphism in PrLk has a right adjoint (the adjoint itself is only a morphism in

Ĉat∞). Let us denote the right adjoint by ψνX .

To begin, let us note that the following conditions are equivalent:

(1) M1 ◦ ν : K/ → PrLω,k is a limit diagram.

(2) M[
1 ◦ ν : K/ → Cat∞ is a limit diagram.

(3) (−)fd ◦M†
1 ◦ ν : K/ → Cat∞ is a limit diagram.

The first two are equivalent by virtue of Lemma 2.3.5. The second and third are

equivalent because the two functors are in fact equivalent, in view of Proposition

2.2.20, which asserts that M†
1 is a perfect category. Since (1) is true by our hy-

pothesis, we conclude that the natural morphism M†
1(ν∞)fd → limM†

1(ν|K)fd is
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an equivalence. Proposition 2.3.8 says that natural morphism (limM†
1(ν|K))fd →

limM†
1(ν|K)fd is an equivalence. Furhtermore, since M†

1(ν∞) is perfect, we have

M†
1(ν∞)fd ' M†

1(ν∞)ω. Putting all this together, we see that φν1 restricts to an

equivalence

φν,[1 :M†
1(ν∞)ω → (limM†

1(ν|K))fd

Applying Lemma 4.4.7 to the adjoint pair (φν1, ψ
ν
1), we conclude that the restric-

tion of ψν1 to (limM†
1(ν|K))fd factors through M†

1(ν∞)ω, i.e., ψν1 carries dualizable

objects to compact ones. Or, equivalently (since M†
1 is perfect), ψν1 preserves du-

alizable objects. Since X is compactly generated, it is dualizable as an object

of PrLk , and so X ⊗ (−) : PrLk → PrLk commutes with limits. In particular ,

limM†
X (ν|K) ' X ⊗ limM†

1(ν|K), and hence ψνX ' X ⊗ ψν1. Since ψnu1 preserves

dualizable objects, so does ψνX .

Lemma 4.4.12. Let X be a compactly generated, locally compact, perfect symmetric

monoidal ∞-category. Let A• : K/ → CAlgk be a diagram. Put A := A∞. Suppose

that the induced diagram M1(A•) : K/ → PrLω,k is a limit diagram. Then the

cannonical adjunction

M†
X (A) // limM†

X (Ax)
ww

restricts to an adjoint equivalence

(M†
X (A))fd // (limM†

X (Ax))
fd

vv

Proof. Combine Lemmas 4.4.10 and 4.4.11.

114



Lemma 4.4.13. Let the notation and hypotheses be exactly as in the previous

lemma. Then the canonical adjunction

M†
X (A) // limM†

X (Ax)
ww

induces an equivalence

(M†
X (A))ω // limM†

X (Ax)
ω

Proof. According to 2.3.8 we have a natural equivalence

(limM†
X (Ax))

fd ' limM†
X (Ax)

fd

Since X is perfect, using Lemma 2.2.21 we have that

M†
X (Ax)

fd 'M†
X (Ax)

ω

for all x ∈ K/. In view of these facts, the lemma is an immediate consequence of

Lemma 4.4.12.

Proposition 4.4.14. Let X be (the underlying category of) compactly generated,

locally compact, perfect symmetric monoidal ∞-category. Then the functor M[
X :

CAlgk → Cat∞ is infinitesimally cohesive, nilcomplete and formally effective.

Proof. Since 1 is smooth and proper, it satisfies the hypotheses of Proposition 4.3.6.

Combining this with Lemma 4.4.13, the result follows.

We can now prove the main theorem of this section.
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Proof of Proposition 4.4.1. Combining Proposition 4.4.14, Lemma 4.2.22 and Lemma

2.3.13, we see that Mn
X is infinitesimally cohesive, nilcomplete and formally effec-

tive.

The proof of ω-accessibility in Lemma 4.3.6 only used the fact that X ⊗ (−)

preserves filtered colimits, which holds for an arbitrary X ∈ PrLω,k. Thus Mn
X is

ω-accessible.

Theorem 3.3.1 implies that Mn
X is a sheaf for the étale topology. Indeed, since

X is perfect, we have natural equivalences M[
X ' M∨

X . It follows that M[
X is a

sheaf for the flat topology, and hence by Lemma 4.2.22 thatM[,n
X is a sheaf for the

flat topology. By Lemma 2.3.13,Mn
X is a sheaf for the flat topology, and hence also

for the étale topology.

In view of the previous two paragraphs, and our hypothesis that X is locally

compact, X satisfies all the hypotheses of Proposition 4.2.23. Consequently,Mn
X

admits a cotangent complex.

Finally, Lemma 4.3.7 tells us thatMn
X is (n+ 1)-truncated. Thus,Mn

X satisfies

all the hypotheses of Theorem 4.1.4, and thereforeMn
X is a derived algebraic (n+1)-

stack, locally of finite presentation over k. Since MX is the filtered colimit of the

functor Mn
X , this MX is a locally geometric ∞-stack locally of finite presentation.
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4.5 A Proper Counterexample

The result of the previous section might naturally lead one to wonder whether the

functor MX is geometric for an arbitrary proper or locally compact category X .

This turns out not to be the case. In fact, there is a whole family of counterexamples,

as the next proposition shows.

Notation 4.5.1. Let k be a field, and let X be a smooth and proper (ordinary,

discrete) quasi-separated quasi-compact Noetherian scheme over k. Let j : Z ↪→ X

be a closed immersion defined by an ideal sheaf J ⊆ OX , and assume Z 6= X.

Let QCZ(X) be the full subcategory of quasi-coherent sheaves on X that are set-

theoretically supported along Z.

Proposition 4.5.2. Let X := QCZ(X) be as in Notation 4.5.1. Then X is a

proper category (it is locally compact and admits a compact generator). However,

the functors M[
X and MX are not formally effective. In particular, MX is not

representable by a locally geoemtric ∞-stack.

Proof. Since QC(X) is proper X is proper. In particular it is locally compact. It

follows that the full subcategory X ⊆ QC(X) is locally compact. By the main

results of [BvdB03], Z admits a compact generator E . By the standard devissage

(see, for example, [Rou08]), every perfect complex with support along Z is generated

under finite colimits by j∗E . Thus, j∗E is a compact generator for X = QCZ(X).

This proves that X is proper.
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For a scheme Y and A ∈ CAlgk, let YA denote the derived scheme Y ×Spec(A).

By the results of [Pre11], for any other quasi-compact quasi-separated scheme X ′,

and subscheme Z ′ ↪→ X ′, we have PerfZ×Z′(X×X ′) ' PerfZ(X)⊗kPerfZ′(X
′). This

implies the following explicit description of the functor M[
X : for any A ∈ CAlgk,

we have M[
X (A) = PerfZA(XA).

Let z ∈ Z, and let A := ÔX,z be the formal completetion of the structure sheaf at

z. Let m be the maximal ideal of A, and let An := A/mn. Let in : X×Spec(An)→

X × X denote the natural inclusion, and let ∆ : X → X × X be the diagonal.

Since X is smooth, ∆∗OX is a perfect complex. The family {i∗n∆∗OX}n∈N defines

an object F in limnPerfZAn (XAn), which is clearly not J -torsion. On the other

hand, every sheaf in PerfZA(XA) is J -torsion. Thus, F is not in the essential image

of the map

PerfZA(XA)→ limnPerfZAn (XAn)

This proves thatM[
X is not formally effective. Passing to the underlying groupoids,

we see that the natural maps MX (A) → limMX (An) is not essentially surjective

as well, showing that MX is not formally effective. By the Artin-Lurie critertion,

this implies that MX is not representable by a geometric stack.
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Chapter 5

Moduli of Noncommutative

Spaces

The previous two chapters were devoted to the study of moduli of objects in k-linear

∞-categories. In view of the Cobordism Hypothesis, this can also be interpreted

as the study of moduli spaces of boundary conditions in certain two dimensional

topological field theories (2D-TFTs). In this chapter, we turn our attention to

the moduli space of 2D-TFTs themselves. Once again, in light of the Cobordism

Hypothesis, we may interpret this as a moduli space of certain k-linear∞-categories.

We will provide almost no proofs in this chapter. The material discussed here is

work in progress - detailed proofs of some of the results will appear in a forthcoming

paper [Pan11]. Some other statements made here are of a speculative nature.

We assume k is a field of characteristic zero in this chapter. Some of the results
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hold without this assumption.

5.1 Geometricity

Compactly generated k-linear ∞-categories are themselves objects in a certain ∞-

category: namely, the∞-category PrLω,k. Thus, by analogy with the moduli functor

M\
X which parametrizes objects in X , we define moduli functorsM\

PrLω,k
: CAlgk →

Ĉat∞ and M\

PrLk
: CAlgk → Ĉat∞

M\

PrLω,k
(A) := ModModA(PrLω,k)

M\

PrLk
(A) := ModModA(PrLk )

Note that we are not using the notation from Notation 2.4.1 - the similarity

is only suggestive. Since the categories ModA and PrLω,k are symmetric monoidal,

so is M\

PrLω,k
(A). We have two induced functors Mfd

PrLω,k
: CAlgk → Ĉat∞ and

MPrLω,k
: CAlgk → S given by

Mfd
PrLω,k

(A) :=M\

PrLω,k
(A)fd

MPrLω,k
(A) :=MPrLω,k

(A)'

The dualizable objects in the (∞, 1)-category ModModA(PrLω,k) are precisely the

categories that are smooth and proper over A, and compactly generated. This

justifies the following definition

Definition 5.1.1. The functor MPrLω,k
is the moduli of smooth and proper (a.k.a.
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saturated) noncommutative spaces. For the rest of this section, we will denote it

by M.

Conjecture 5.1.2. The moduli of smooth and proper noncommutative spaces is

a locally geometric ∞-stack, locally of finite presentation over k. At any k-valued

point corresponding to a category X , the tangent complex TM,X is computed by the

shifted Hochschild cohomology spectrum: HH•(X )[2].

This conjecture is by no means new. No claim of originality is being made.

In fact, for some time it seems that this conjecture was commonly accepted as a

theorem in many circles. Closer examination reveals that even the formal deforma-

tion theory is not completely understood. We refer the reader to [Toe10] for more

details.

Here is a possible strategy for the proof of the conjecture, which is based on

the techniques developed in the previous chapter. Observe that we have a natural

consertive functor M\

PrLω,k
(A) = PrLω,A → ModA given by

X 7→ ⊕x,y∈XωX (x, y)

Using Lemma 4.4.4 and the techniques of §4.4, it seems plausible that one may

be able to deduce that the functorM satisfies the hypotheses of the Artin-Lurie cri-

terion, from the fact that the functor A 7→ ModA satisfies these conditions (Propo-

sition 4.3.2).

It is worth noting that in order for any such approach to work, it is imperative

that one work with lift of the moduli functor M\

PrLω,k
taking values in symmetric
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monoidal∞-categories, and not merely its shadowM, which takes values in spaces.

Perhaps an even better approach would be the following. One first promotes the

category PrLk to a symmetric monoidal (∞, 2)-category PrL,⊗k . We let PrL,⊗ω,k denote

the full subcategory of compactly generated categories. One also promotes the

moduli functorM\

PrLω,k
to a moduli functor M taking values in symmetric monoidal

(∞, 2)-categories. This functor is defined by the formula

M(A) := PrL,⊗ω,A

It is a remarkable fact (see [Toe10]), that the ∞-groupoid of fully dualiz-

able (see [Lur09b] for the definitions) objects in the symmetric monoidal (∞, 2)-

category PrL,⊗ω,A coincides with the∞-groupoid of dualizable objects in the symmet-

ric monoidal (∞, 1)-category PrLω,A. Consequently, the space/∞-groupoid valued

functor obtained from the functor M by discarding noninvertible morphisms is pre-

cisely the functor M. Based on our experiences in the previous chapters, it seems

likely that working with the functor M, which is the most structured version of

the moduli of noncommutative spaces that seems to be available, would be most

expedient. In any case, we will use the functor M in the next section.

5.2 Frobenius Manifolds: From TFTs to CohFTs

In this section, we will outline an approach to proving the unobstructedness of

the moduli of Calabi-Yau noncommutative spaces, and constructing a Frobenius
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manifold structure on it. The approach proposed here generalizes, and provides a

new perspective on the results of [BK98] and [Cos09].

Our main tool will be the Cobordism Hypothesis. This beautiful theorem was

proven recently by Jacob Lurie. Our main reference for everything pertaining to

the Cobordism Hypothesis and symmetric monoidal (∞, n)-categories is [Lur09b].

Another excellent reference for some of the material that follows is [Cos07].

Let Catsm
(∞,n) denote the∞-category of rigid symmetric monoidal (∞, n)-categories.

Denote by Fun⊗(−,−) the Ĉat∞ valued internal hom on this category, and let

(−)∼ : Catsm
(∞,n) → Cat(∞,0) be the forgetful functor that takes an (∞, n)-category

to the ∞-groupoid obtained by discarding all non-invertible morphisms. Recall

that, roughly speaking the cobordism hypothesis asserts that this functor has a

left adjoint Bordfr
n/(−). For an space/∞-groupoid X, the category Bordfr

n/X is a

certain (∞, n) category of “framed bordisms over X”. The reader is referred to

[Lur09b] for the details.

Now let X be an ∞-topos. We will need a version of the cobordism hypoth-

esis that is “internal to X”. Let X sm
(∞,n) denote the ∞-category of stacks in rigid

symmetric monoidal∞-categories on X . That is X sm
(∞,n) := FunR(X ,Catsm

(∞,n)). The

category X sm
(∞,n) is the ∞-category of rigid symmetric monoidal (∞, n)-categories

internal to X . One can also describe this category as, for instance, certain n-fold

Complete Segal Space objects in X . Similarly, the ∞-category of ∞-groupoid ob-

jects in X is the category X(∞,0) := FunR(X ,Cat(∞,0)) ' FunR(X ,S) ' X . This
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last chain of equivalences is just the statement that∞-groupoid objects are effective

in X . The functor (−)∼ : Catsm
(∞,n) → Cat(∞,0) induces a functor X sm

(∞,n) → X , which

we will also denote by (−)∼. With this terminology, we can state the following

theorem

Theorem 5.2.1. The underlying groupoid functor (−)∼ : X sm
(∞,n) → X(∞,0) admits

a left adjoint Bordfr
n/(−).

This theorem is an immediate formal consequence of the cobordism hypothesis.

The main point is that for an object X in an ∞-topos X , and a manifold M , there

exists an exponential XM , and hence one had a notion of bordisms internal to X .

Recall from [Lur09b] the notion of a Calabi-Yau object of dimension d in a

symmetric monoidal (∞, 2)-category X⊗. We will say that an object X ∈ X admits

a Calabi-Yau structure if it is in the essential image of the map XCY,d → X for some

d. Here XCY,d is the category of Calabi-Yau objects of dimension d. Let M(A)CY

denote the full subgroupoid of M(A) consisting of categories that admit a Calabi-

Yau structure. We conjecture that the moduli functor MCY is representable by a

locally geometric∞-stack. We have the following generalization of the Bogomolov-

Tian-Todorov Theorem.

Conjecture 5.2.2. The deformation theory ofMCY is unobstructed, and it admits

a Frobenius structure.

Idea of proof. Fix a point Spec(k) →MCY. This corresponds to a smooth proper

Calabi-Yau category X . By Deligne’s conjecture, the chain complex HH•(X ) admits
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an action of the framed little discs operad. By the Cobordism Hypothesis, HH•(X )

admits an action of the framed little discs operad. The circle action on HH•(X )

induced by rotating the framings on the discs corresponds to Connes B-operator.

By Hodge Theory (see [KKP08]), this circle action is homotopically trivial, since X

is smooth and proper. The Calabi-Yau condition implies that Hochschild Homology

can be identified with Hochschild cohomology, upto a shift. If we could also identify

the circle actions on these two complexes, we would have that the circle action

on HH•(X ) is homotopically trivial. Using the triviality of the circle action and

Conjecture 5.1.2. (which identifies the tangent complex as a shifted Hochschild

cochain complex), one then shows that the TM,X [−1] is L∞-formal. This implies

the unobstructedness.

In order to construct the “Frobenius Structure”, one promotes the moduli func-

tor MCY to a functor MCY taking values in rigid symmetric monoidal (∞, 2)-

categories. Then MCY, defines an object in (Stsmk )(∞,2). It seems plausible that the

triviality of the circle action together with Theorem 5.2.1 can be used to construct

a Frobenius structure. We will present a more detailed discussion of this idea in

[Pan11].

The unobstructedness part of the previous conjecture also appears in [KKP08].

The author arrived at these ideas independently, and prior to the publication of

[KKP08].
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[Toë09] , Higher and derived stacks: a global overview, Algebraic

geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer.

Math. Soc., Providence, RI, 2009, pp. 435–487.

[Toe10] B. Toen, Derived Azumaya algebras and generators for twisted derived

categories, ArXiv e-prints (2010).

[TV02] B. Toen and G. Vezzosi, Segal topoi and stacks over Segal categories, ArXiv

Mathematics e-prints (2002).
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[TV07a] Bertrand Toën and Michel Vaquié, Moduli of objects in dg-categories, Ann.
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