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Ab initio Quantum Chemistry Methods for Modeling Molecular Excited
States Beyond Configuration Interaction Singles

Abstract
Electron transfer and energy transfer play a central role in photo-induced excited state chemical dynamics and
are critical for understanding the fundamental processes in photosynthesis. Understanding electron and
energy transfer at the molecular level is essential, since they must compete with deactivation processes back to
the molecular ground state-- and deactivation releases any captured energies as wasted heat. Modeling
electronic relaxation process is very challenging, however, for 2 reasons: i) Obtaining accurate potential
energy surfaces (PESs) by solving the electronic Hamiltonian (only) is nontrivial, since all electrons are
coupled together, which is essentially a many-body problem. It is even more difficult in the context of
photochemistry, where the relevant molecules are typically big; ii) The Born-Oppenheimer Approximation of
separating electronic and nuclear motion may be invalid, and thus one has to model nonadiabatic dynamics.
This thesis is focused on the first problem above, i.e. solving the electronic Hamiltonian, where there is
currently a lack of effective ab initio quantum chemistry methods, especially in the presence of charge transfer
(CT) states.

Historically Configuration Interaction Singles (CIS) has been the standard method for modeling electronic
excited states with qualitatively correct wavefunctions, but CIS is highly biased against charge transfer states--
which are very important for modeling photo-induced relaxation. Nevertheless, in this thesis, CIS proves to
be a good starting point for improved ab initio quantum chemistry methods, that build in the correct
molecular orbital optimization. These algorithms are labeled as: i) Orbital Optimized Configuration
Interaction Singles (OO-CIS), ii) Variational Orbital Adapted Configuration Interaction Singles (VOA-CIS),
and iii) Fully Variational Orbital Adapted Configuration Interaction Singles (FVOA-CIS).

Each of the three algorithms above represents an improvement upon its predecessor. i) OOCIS is able to
recover perturbative corrections for CT states; ii) its variational extension VOA-CIS proves to be very
effective for constructing globally smooth adiabatic PESs even with CT states; and iii) because it is fully
variational, FVOA-CIS PESs are so smooth that it should allow analytic gradients. We believe these
approaches will be widely used for future accurate electronic structure calculations.
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ABSTRACT

AB INITIO QUANTUM CHEMISTRY METHODS

FOR MODELING MOLECULAR EXCITED STATES

BEYOND CONFIGURATION INTERACTION SINGLES

Xinle Liu

Joseph E. Subotnik

Electron transfer and energy transfer play a central role in photo-induced excited state

chemical dynamics and are critical for understanding the fundamental processes in photo-

synthesis. Understanding electron and energy transfer at the molecular level is essential,

since they must compete with deactivation processes back to the molecular ground state–

and deactivation releases any captured energies as wasted heat. Modeling electronic relax-

ation process is very challenging, however, for 2 reasons: i) Obtaining accurate potential

energy surfaces (PESs) by solving the electronic Hamiltonian (only) is nontrivial, since all

electrons are coupled together, which is essentially a many-body problem. It is even more

difficult in the context of photochemistry, where the relevant molecules are typically big;

ii) The Born-Oppenheimer Approximation of separating electronic and nuclear motion may

be invalid, and thus one has to model nonadiabatic dynamics. This thesis is focused on

the first problem above, i.e. solving the electronic Hamiltonian, where there is currently a

lack of effective ab initio quantum chemistry methods, especially in the presence of charge

transfer (CT) states.

Historically Configuration Interaction Singles (CIS) has been the standard method for mod-

eling electronic excited states with qualitatively correct wavefunctions, but CIS is highly

biased against charge transfer states– which are very important for modeling photo-induced

relaxation. Nevertheless, in this thesis, CIS proves to be a good starting point for im-

proved ab initio quantum chemistry methods, that build in the correct molecular orbital
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optimization. These algorithms are labeled as: i) Orbital Optimized Configuration Inter-

action Singles (OO-CIS), ii) Variational Orbital Adapted Configuration Interaction Singles

(VOA-CIS), and iii) Fully Variational Orbital Adapted Configuration Interaction Singles

(FVOA-CIS).

Each of the three algorithms above represents an improvement upon its predecessor. i) OO-

CIS is able to recover perturbative corrections for CT states; ii) its variational extension

VOA-CIS proves to be very effective for constructing globally smooth adiabatic PESs even

with CT states; and iii) because it is fully variational, FVOA-CIS PESs are so smooth that

it should allow analytic gradients. We believe these approaches will be widely used for

future accurate electronic structure calculations.
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Nn: Number of nuclei in a molecule
Ne, N : Number of electrons in a molecule
NB: Number of basis functions
No: Number of occupied orbitals
Nv: Number of virtual orbitals
Mα: Mass of nucleus α
m: Mass of electrons

Rα: Spatial coordinate of nucleus α
r: Spatial coordinate of an electron
x = (r, ω): Coordinate of an electron (spatial and spin)

E(k)
n : kth order correction for En
|n(k)〉: kth order correction for |n〉

|χ〉: Atomic Orbital (AO)
|φ〉: Molecular Orbital (MO)
Cµp: MO Coefficients
U: Unitary transformation matrix

|Φ〉: Ground state wavefunction
Adiabatic states

|Ψ〉: Electronically excited state wavefunction
|Ξ〉: Diabatic states

µ, ν, λ, σ: Index for AOs
i, j, k, l: Index for occupied MOs or electrons
a, b, c, d: Index for virtual MOs
p, q, r, s: Index for any MOs
I, J,K,L: Index for excited states (adiabatic)
A,B: Index for diabatic states

Ĩ , J̃ , K̃, L̃: Index for ground state or excited states

a†p: Creation Operator in |φp〉
ap: Annihilation Operator in |φp〉

〈pq|rs〉:
∫
φ∗p(x1) φ∗q(x2)

1

|x1 − x2|
φr(x1) φs(x2) dx1 dx2

〈pq || rs〉: 〈pq|rs〉 − 〈pq|sr〉

t: CIS amplitudes
f : Oscillator Strength
A±B: Value (A) ± Standard Error (B)
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1.1. Basic Quantum Chemistry Theory

1.1.1. Born-Oppenheimer Approximation

Modern quantum chemistry desires an accurate description of electronically excited states,

especially for medium-sized or large organic molecules widely involved in photosynthesis.

When chromophores absorb a photon in the UV-visible region, electrons can undergo an ul-

trafast (∼fs) excitation, triggering electron transfer and energy transfer within the molecule,

or even with molecules in the vicinity. Modeling an accurate potential energy surface is chal-

lenging, due to the many-body interactions in the Hamiltonian Ref. [8], [9] and [10]. Assume

we have a molecular system of Nn nuclei and Ne electrons, with their masses being Mα and

m, and their charges being Zαe and e respectively, then the Hamiltonian can be written as:

Ĥ = −
Nn∑
α=1

~2

2Mα
∇2
α −

Ne∑
i=1

~2

2m
∇2
i

+
Nn∑
α=1
β=1
α 6=β

ZαZβe
2

|Rα −Rβ|
−

Nn∑
α=1

Ne∑
i=1

Zαe
2

|Rα − ri|
+

Ne∑
i=1
j=1
i 6=j

e2

|ri − rj |
(1.1)

The first two terms correspond to the kinetic energies of nuclei and electrons respectively,

while the last three terms represent potential energies. More specifically, they are interac-

tions among nuclei, between nuclei and electrons, and among electrons that can be poten-

tially strong. All these motions are coupled together, making it extremely difficult to solve

for an exact solution to Ĥ.

Fortunately, as is well known, the mass of electrons are much smaller than that of nuclei

(ratio ≤ 1

1836
), such that the motion of the former is typically much faster than the latter.

The Born-Oppenheimer approximation assumes that the motions of electrons are so fast

that they can respond instantaneously to any motion of the much heavier (and thus much

slower) nuclei. In this way, one can separate the total Hamiltonian into two parts. One
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is the motion of electrons corresponding to a stationary set of nuclear configuration {Rα},

at any instant of time. The set of eigenstates for the electrons Hamiltonian are the so-

called adiabatic electronic states, which form a complete basis set for electronic motion; the

eigenvalues of the electronic Hamiltonian are a set of potential energy surfaces (PESs), for

the typically much slower motion for nuclei. The equation for electrons only is the following

(where Ĥe is called the electronic Hamiltonian):

Ĥe = −
Ne∑
i=1

~2

2m
∇2
i +

Ne∑
i=1
j=1
i 6=j

e2

|ri − rj |
−

Nn∑
α=1

Ne∑
i=1

Zαe
2

|Rα − ri| (1.2)

and then the total Hamiltonian (nuclear plus electronic) reduces to:

Ĥ = −
Nn∑
α=1

~2

2Mα
∇2
α +

Nn∑
α=1
β=1
α 6=β

ZαZβe
2

|Rα −Rβ|
+ Ee

(1.3)

where Ee is the eigenvalue one gets when solving for Ĥe, which constructs a potential

energy surface for the nuclei. In the end, the total wavefunction (nuclear plus electronic) is

a product of the electronic one and the nuclear one:

|Ψ({ri}; {Rα})〉 = |Ψe({ri}|{Rα})〉 |Ψn({Rα})〉 (1.4)

The advantage of separating the motion of electrons from that of nuclei is that, if the

potential energy surface Ee is well separated from other potential energy surface, and if we

assume that nuclei are so slow that they can be treated classically, then Eqn. 1.3 can be

solved with Newtonian Mechanics if we replace the Laplacian − ~2

2Mα
∇2
α by the classical

kinetic energy
P 2

2Mα
. That being said, Eqn. 1.2 must always be solved from quantum

mechanics. In fact, even solving Eqn. 1.2 only within chemical accuracy, has been the

most challenging problem in quantum chemistry, due to the many-body interactions among

electrons, which is the primary motivation for this thesis.
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1.1.2. Mean Field Approximation

As mentioned in Sec. 1.1.1, Eqn. 1.2 is still a many-body problem, with all electronic

motions still coupled together; as such, solving Eqn. 1.2 exactly is still very difficult. A

further approximation is the mean field approximation. The main idea is to reduce a n-

body problem to n 1-body problem with a good choice of external field as a replacement.

Normally, the external field is the average or effective interaction of one electron with all

other electrons.

A mean field approximation is able to reduce the n-body problem to n 1-body problem, and

as such the problem one has to solve is simplified a lot. Moreover, all electrons are treated

equivalently. As such, it has been widely used in modern quantum chemistry.

1.1.3. Slater Determinant and Hartree-Fock Approximation

With approximations in Sec. 1.1.1 and Sec. 1.1.2, solving Eqn. 1.2 can be simplified a

lot. Note that it is also constrained by the Pauli Exclusion Principle, which means that a

many-electron wavefunction must be antisymmetric with respect to the interchange of the

coordinate x ≡ (r, ω), which accounts for not only the spatial coordinate r, but also its spin

coordinate ω.

|Ψ(· · ·xi · · ·xj · · · )〉 = − |Ψ(· · ·xj · · ·xi · · · )〉 (1.5)
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Thus from the conclusion of linear algebra, a many-body wavefunction had better reads as

a determinant, then Eqn. 1.5 is satisfied trivially:

|Ψ(x1 · · ·xN )〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) · · · χi(x1) · · · χj(x1) · · · χN (x1)

...
. . .

...
. . .

...
. . .

...

χ1(xi) · · · χi(xi) · · · χj(xi) · · · χN (xi)

...
. . .

...
. . .

...
. . .

...

χ1(xj) · · · χi(xj) · · · χj(xj) · · · χN (xj)

...
. . .

...
. . .

...
. . .

...

χ1(xN ) · · · χi(xN ) · · · χj(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1.6)

or, it can be written equivalently in a more compact way: |χ1 · · ·χi · · ·χj · · ·χN 〉. Starting

with a given set of atomic orbitals (AOs) {|χµ〉}, one can write molecular orbitals (MOs)

{|φp〉} as a linear combination of AOs, with a transformation matrix Cµp:

|φp〉 = Cµp |χµ〉 (1.7)

Hence, solving for MOs {φp} is equivalent to solve for the best MO Coefficient matrix Cµp.

Since the ground state is the most stable state for a given molecular system, one can get the

best set of molecular orbitals (MOs) according to the variational principle. According to the

Hartree-Fock theory, it would be equivalent to solve the eigenvalue problem for spin-orbitals

below:

f̂ |φp〉 = εp |φp〉 (1.8)

in which the fock operator f̂ can be written as:

f̂ = ĥ+
∑
j 6=i

Ĵ −
∑
j 6=i

K̂ (1.9)
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Here, ĥ is the one-electron term:

ĥ |i〉 =

(
− ~2

2m
∇2
i −

∑
α

Zαe
2

|Rα − xi|

)
|i〉 (1.10)

while both Ĵ and K̂ are two-electron operators, which captures the interactions between

them. More specifically, Ĵ is the Coulombic repulsion term:

Ĵ |i〉 =
∑
j 6=i

∫
φ∗i (xi) φ

∗
j (xj)

e2

|xi − xj |
φi(xi) φj(xj) dxj (1.11)

while K is the exchange term, which has no classic analogue:

K̂ |i〉 =
∑
j 6=i

∫
φ∗i (xi) φ

∗
j (xj)

e2

|xi − xj |
φj(xi) φi(xj) dxj (1.12)

Both for these two terms result from the mean field approximation shown in Sec. 1.1.2,

accounting for interactions among electrons. Eqn. 1.8 can be solved iteratively until self-

consistent, as such the Hartree-Fock method is also called SCF-HF method.

In the end, the ground state energy from Hartree-Fock theory reads as:

EHF =
∑
i
hii +

1

2

∑
i 6=j
〈ij || ij〉 (1.13)

with the following notations:

〈pq|rs〉 ≡
∫
φ∗p(x1) φ∗q(x2)

1

|x1 − x2|
φr(x1) φs(x2) dx1 dx2 (1.14)

〈pq || rs〉 ≡ 〈pq|rs〉 − 〈pq|sr〉 (1.15)

Hartree-Fock theory, is the traditional starting point both for correlated ground state meth-

ods as well as for electronically excited states. By definition, a mean field approximation

only accounts for an average or effective term for interactions between electrons, and there-

fore HF ignores any instantaneous interactions, which can be potentially problematic when
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accuracy is critical. Fortunately, there are many post-HF methods, attempting to capture

those correlations and improve the accuracy systematically. The main goal of this thesis

is to explore ab initio quantum chemistry methods that yield a hopefully good trade-off

between computational cost and accuracy, for both the ground state and excited states.

Note that, although this thesis focuses on wavefunction based methods, other popular meth-

ods exist as well. Among them, density function theory (DFT) is widely used for study-

ing crystal structures and properties. Instead of solving for wavefunctions, which require

conditional probabilities and phases, DFT solves for electron density directly (at least in

principle).

1.1.4. Second Quantization

In the matrix form of quantum mechanics, all physical observables can be written as Her-

mitian operators, and thus all expressions can be evaluated conveniently through second

quantization, with the creation operator a†p and the annihilation operator ap, defined in

Eqns. 1.16 and 1.17.

The creation operator a†a creates an electron in orbital |χa〉:

a†a |χi · · ·χj〉 = |χaχi · · ·χj〉 (1.16)

while the annihilation operator ak destroies an electron in orbital |χk〉:

ak |χkχi · · ·χj〉 = |χi · · ·χj〉 (1.17)

With Eqns. 1.16 and 1.17, together with the antisymmetric property of Slater determinants,
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it is very straightforward to show the identities below:

a†pa
†
q + a†qa

†
p = 0 (1.18)

apaq + aqap = 0 (1.19)

a†paq + aqa
†
p = δpq (1.20)

Eqn. 1.20 is an essential identity, which allows us to move creation operators a†i or anni-

hilation operators aa to the right side of a braket, and moving creation operators a†a or

annihilation operators ai to the left side of a braket, eventually generate trivial terms for

any matrix elements.

As a simple example:

aia
†
a |χi〉 = (δai − a†aai) |χi〉

= −a†a | 〉

= − |χa〉

(1.21)

The simple example shown in Eqn. 1.21 shows that, the net effect of operator a†aai is

to transform wavefunction |χi〉 to |χa〉, which is equivalent to exciting one electron from

occupied orbital |χi〉 to virtual orbital |χa〉.

Through second-quantization, excitations become very intuitive and straightforward. In

fact, almost all matrix elements in this thesis have been evaluated through second quanti-

zation. When developing wavefunction methods, one frequently finds analytic expressions

with more than 10 operators sandwiched between non-interacting bra’s and ket’s. In such

a case, deriving the analytic equations is extremely tedious. Therefore, I have written

scripts to evaluate such calculations whenever necessary. Any scripting language dealing

with regular expressions can do the job.
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1.2. Wavefunction-Based Methods

I will now discuss methods to go beyond mean-field theory to compute ground and excited

states accurately.

1.2.1. Variational Theory

Given a Hamiltonian (H) and a set of basis functions {|Φi〉 , i = 1, 2 · · ·N}, the basic idea

of variational method is have guess a “trial” wavefunction Ψ, consisting of variational pa-

rameters {ci}:

|Ψ〉 =
∑
i
ci |Φi〉 (1.22)

The variational parameters {ci} can be optimized to minimize the energy:

Etrial =
〈Ψ |H|Ψ〉
〈Ψ |S|Ψ〉

=

∑
ij
cicj 〈Φi |H|Ψj〉∑

ij
cicj 〈Φi |S|Ψj〉

≡

∑
ij
cicjHij∑

ij
cicjSij

(1.23)

To minimize the energy for each state, one can differentiate Eqn. 1.23, to solve for the

parameters.

It is not difficult to show that the variational method is equivalent to the following linear

equations:



H11 H12 · · · H1N

H21 H22 · · · H2N

...
...

. . . · · ·

HN1 HN2 · · · HNN





c1

c2

...

cn


= E



S11 S12 · · · S1N

S21 S22 · · · S2N

...
...

. . . · · ·

SN1 SN2 · · · SNN





c1

c2

...

cn


(1.24)
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In the language of linear algebra, this is no more than a generalized diagonalization problem,

for the pair of Hamiltonian matrix H and the overlap matrix S, with parameters {ci} being

the wavefunction, and with E being the state energy. It is also called the “secular” equation

in quantum chemistry:

|H − ES| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

H11 − ES11 H12 − ES12 · · · H1N − ES1N

H21 − ES21 H22 − ES22 · · · H2N − ES2N

...
...

. . . · · ·

HN1 − ESN1 HN2 − ESN2 · · · HNN − ESNN

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (1.25)

Note that, in solving Eqn. 1.25, one computes not only the ground state but also a set of

excited states that are orthogonal to each other. The end product is a variational approxi-

mation to the exact wavefunction and energy.

Variational method predict an upper bound for all states, and in practice, the method is

robust and reliable– but the computational cost can be pretty expensive by diagonalizing

a big matrix. If one cares only about the lowest lying n states, the Davidson algorithm is

widely used to save the computational cost, as discussed in Sec. 5.2.2.

CIS. Configuration Interaction Singles (CIS) is probably the most widely used variational

method in quantum chemistry, due to its simplicity. For a brief overview see Sec. 2.1.

1.2.2. Perturbation Theory

In what follows, it will be important that we have a familiar frame of reference for under-

standing perturbation theory.

Non-degenerate Perturbation Theory

Assume that one has already solved a well-defined problem with Ĥ0:

Ĥ0 |n(0)〉 = E(0)
n |n(0)〉 (1.26)
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Now, if a small perturbation Ĥ1 applied, the total Hamiltonian is:

Ĥ = Ĥ0 + λĤ1, λ� 1 (1.27)

Solving Ĥ from scratch

Ĥ |n〉 = En |n〉 (1.28)

would be very awkward and in fact it not necessary at all, since Eqn. 1.28 should be very

similar to the original problem Eqn. 1.26, and more specifically |n〉 ≈ |n(0)〉 in the limit of

λ→ 0.

Now the eigenvectors {|n(0)〉} form a complete basis set, so any other wavefunction can be

written as a linear combination, including those new eigenvectors {|n〉} for Ĥ. With a guess

wavefunction and energy expression of:

 |n〉 = |n(0)〉+ λ |n(1)〉+ λ2 |n2〉+ · · ·

En = E(0)
n + λE(1)

n + λ2E2
n + · · ·

(1.29)

we plug back into Eqn. 1.28:

(
Ĥ0 + λĤ1

) (
|n(0)〉+ λ |n(1)〉+ λ2 |n2〉+ · · ·

)
=(

E(0)
n + λE(1)

n + λ2E2
n + · · ·

) (
|n(0)〉+ λ |n(1)〉+ λ2 |n2〉+ · · ·

)
.

(1.30)

By collecting different orders of λk (k = 0, 1 · · · ), one rederives perturbation theory. More

specifically, for k = 0 and 1, one gets:

Ĥ0

∣∣n(0)
〉

= E(0)
n

∣∣n(0)
〉

(1.31)

Ĥ1

∣∣n(0)
〉

+ Ĥ0

∣∣n(1)
〉

= E(0)
n

∣∣n(1)
〉

+ E(1)
n

∣∣n(0)
〉

(1.32)

Note that, for the zeroth-order approximation, Eqn. 1.31 is exactly the same as the original
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problem Ĥ0 shown in Eqn. 1.26. The first-order approximation is defined by Eqn. 1.32,

which is usually the key point of perturbation theory. This equation can be separated into

|n(1)〉 and |n(0)〉:

(
Ĥ0 − E(0)

n

)
|n(1)〉 =

(
E(1)
n − Ĥ1

)
|n(0)〉 (1.33)

Projecting Eqn. 1.33 onto 〈n(0)| and 〈m(0)| (m 6= n) respectively, we find:

 0 = E(1)
n −

〈
n(0)

∣∣∣Ĥ1

∣∣∣n(0)

〉
(
E(0)
m − E(0)

n

)
〈m(0)|n(1)〉 = −

〈
m(0)

∣∣∣Ĥ1

∣∣∣n(0)

〉 (1.34)

Or, equivalently:


E(1)
n =

〈
n(0)

∣∣∣Ĥ1

∣∣∣n(0)

〉
〈m(0)|n(1)〉 = −

〈
m(0)

∣∣∣Ĥ1

∣∣∣n(0)

〉
E(0)
m − E(0)

n

(1.35)

This implies:


E(1)
n =

〈
n(0)

∣∣∣Ĥ1

∣∣∣n(0)

〉
|n(1)〉 =

∑
m6=n
−

〈
m(0)

∣∣∣Ĥ1

∣∣∣n(0)

〉
E(0)
m − E(0)

n

∣∣m(0)
〉 (1.36)

Eqn. 1.36 defines standard first-order Rayleigh-Schrodinger perturbation theory, through

which one can estimate the effect of Ĥ1 in a very simple way, relative to the original

problem, for both energy and wavefunction corrections.

There are a few drawbacks to this approach, however.

1. So far we have talked only about non-degenerate perturbation theory, which breaks

down when states get close in energy, as can be easily seen in Eqn. 1.36. Whenever

there are any degeneracies (E(0)
m = E(0)

n ), the eigenstates are not unique, and the

interactions among those states can not be neglected, so the assumption of |n〉 ≈
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∣∣n((0))
〉

breaks down, and Eqn. 1.36 is not valid any more. In this case, non-degenerate

perturbation theory is entirely not reliable, and degenerate perturbation theory has

to be applied. The same is almost always true for near-degeneracies (E(0)
m ≈ E(0)

n ) as

well.

2. At first order, there is no interaction between corrections to each individual state:

(a) In the context of photochemistry, the energy corrections for charge transfer (CT)

states are typically much bigger than the corrections for non-CT states. There-

fore, with perturbation theory, one is not really confident about the new state

ordering.

(b) The new set of wavefunctions are no longer orthogonal.

3. Whenever λ gets big, a first order approximation is likely insufficient. In this case,

one can certainly go to the second order or even higher order when necessary, but the

computational cost grows quickly.

Degenerate Perturbation Theory

As shown in Eqn. 1.36, the energy difference between zeroth order eigenstates appears in the

denominator, and this factor implies a break down whenever states get close energetically.

Mathematically, let the block Hamiltonian matrix be as follows:



. . .
...

. . .
...

. . .

· · · Hii · · · Hij · · ·
. . .

...
. . .

...
. . .

· · · Hji · · · Hjj · · ·
. . .

...
. . .

...
. . .


(1.37)

in the basis |Ψk〉 , k = {· · · i · · · j · · · }. Perturbation theory will fail when the off-diagonal

elements are much bigger than the diagonal differences.
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In such a case, the only reliable way forward is to block diagonalize the Hamiltonian among

those degenerate or nearly degenerate states, which hopefully lifts all the frustrating de-

generacies. Thereafter, one can apply non-degenerate perturbation theory safely for those

new states. This “block diagonalization” is also called degenerate perturbation theory. In

practice, the variational method is often simpler to apply than degenerate perturbation

theory.

1.3. Adiabatic Representation and Diabatic Representation

According to Sec. 1.1.1, adiabatic states are the eigenvectors obtained by diagonalizing the

molecular electronic Hamiltonian at a given nuclear geometry. Thus, adiabatic states are

the stationary states for electrons evolving in time, and they have usually been the most

convenient representation for quantum chemistry.

However, the nuclear derivative coupling

〈ΦI |∇R|ΦJ〉 (1.38)

is typically non-zero, so adiabatic states are not fully stationary. And, in the context

of non-adiabatic processes, adiabatic states need not be appropriate. For example, when

photo-excited systems undergo different electron or energy transfer processes, the initial

and final states of those processes are not always adiabatic states ({|ΦJ〉 , J = 1, 2 · · · }).

As another example, one can find the adiabatic states in the gas phase are unstable in a

condensed phase system when solvent is present. In general, in many large systems, the

derivative couplings to nuclear motion can be significant, and lead to a complete failure of

the Born-Oppenheimer approximation. For all these reasons, the adiabatic states from an

electronic structure calculation may not be meaningful.

As an alternative to adiabatic states, diabatic states ({|ΞA〉 , A = 1, 2 · · · }) are historically
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defined to be electronic states with zero coupling to the nuclear motion:

〈ΞA |∇R|ΞB〉 = 0 (1.39)

and for many circumstances, diabatic states are appropriate initial and final electronic

states for chemical dynamics (e.g., when Marcus theory [11] applies), thus the diabatic

representation is more meaningful. Even though the constraint of zero derivative coupling

may be impossible to achieve [12], the notion of nearly diabatic states is very helpful in

quantum chemistry and has a very rich history [13, 14, 15].

1.3.1. Diabatization Methods

Though diabatic states have been defined according to Eqn. 1.39, usually strictly diabatic

states do not exist, and one can only minimize derivative couplings. In practice, there are

many other definitions for approximate diabatization as well, roughly categorized as three

approaches [16]:

1. According to the formal definition one can find the unitary transformation to apply to

adiabatic states to generate diabatic states, and one can form such a transformation

so as to minimizes the derivative coupling term. The main drawback for this method

is that one requires explicit calculation of derivative coupling, which is usually very

expensive.

2. Instead of minimizing derivative couplings explicitly, one can also try minimizing them

implicitly by imposing desirable mathematical constraints on a set of diabatic states.

The block-diagonalization and the fourfold way are two popular approaches. The

former relies on some target reference diabatic states, and attempts to minimize the

distance (in wavefunction space) between target and reference states. The latter intro-

duces diabatical molecular orbitals, extending the idea of “configurational uniformity”

to “molecular orbital uniformity”.
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3. A third, and more physically intuitive, approach for characterizing diabatic states is

to use a physical observable, e.g. dipole moment ~µ, rather than focus on the wave-

functions or transformations directly. One of the most widely used algorithm is the

Generalized Mulliken-Hush (GMH) [17], which was initially developed specifically for

electron transfer problems. Boys diabatization method, as introduced below, is equiv-

alent to GMH for the two-state problem.

1.3.2. Localized Diabatic States

Localized diabatization is an important tool for generating nearly diabatic states. The

motivation behind localized diabatization is to construct electronic states that function as

the initial and final states of electron and energy transfer processes. In brief, to generate a

set of localized diabatic states, one rotates together a set of adiabatic states via a unitary

transformation UJA:

|ΞA〉 =
∑
J

|ΦJ〉UJA. (1.40)

All localized diabatization techniques are defined via a rotation matrix U. Current available

methods are Generalized Mulliken Hush (GMH) [17], Fragment Charge Difference(FCD)

[18], Fragment Energy Difference(FED) [19, 20, 21], Constrained DFT (CDFT) [22], Boys

localization [23], ER localization [24], etc. For a review of localized diabatization and the

implicit assumptions therein, see Ref. [23].

In this thesis, Sec. 4.1.1, we will use Boys localization, which is a computationally cheap

generalization of the Cave/Newton GMH approach [17]. The physical motivation for the

Boys algorithm is that, for CT systems, charges are stabilized and localized by a linear

electric field from some solvent molecule or other auxiliary field. In practice, just like Boys

localization of orbitals [24, 25, 26], Boys localized diabatization suggests that diabatic charge
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centers should be moved as far apart as possible, thereby maximizing the quantity below:

fBoys(U) = fBoys({ΞA})

≡
∑
AB

|〈ΞA |~µ|ΞA〉 − 〈ΞB |~µ|ΞB〉|2 .
(1.41)

It has been shown that Boys localized diabatic states indeed have very small derivate cou-

plings as expected [27, 28].

1.4. Outline of this Dissertation

The goals of this thesis are primarily to explore electronic structure calculations of excited

states for modeling photosynthesis and less importantly, to calculate the couplings between

these states. We now provide an outline of our contributions to this goal.

1.4.1. Chapter 2

In Ref. [29], Subotnik showed that configuration interaction singles (CIS) has a systematic

bias against charge-transfer (CT) states, wherein the computed vertical excitation energies

for CT states are disproportionately too high (by 1-2 eV) – as compared with non-CT

states. In Chapter 2, we show that this CIS error can be corrected approximately by

performing a single Newton-Raphson step to reoptimize orbitals, thus establishing a new set

of orbitals which better balances ground and excited state energies. The computational cost

of this correction is exactly that of one coupled-perturbed Hartree-Fock (CPHF) calculation,

which is effectively the cost of the CIS calculation itself. In other words, for twice the

computational cost of a standard CIS calculation, or roughly the same cost as a TDHF

calculation, one can achieve a balanced, size-consistent description of CT versus non-CT

energies, ideally with the accuracy of a much more expensive doubles CIS(D) calculation.

1.4.2. Chapter 3

Post-CIS corrections do exist but most often, if they are computationally inexpensive, these

methods rely on perturbation theory. At the same time, inexpensive variational post-CIS
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methods would be ideal since modeling electronic relaxation usually requires globally smooth

potential energy surfaces (PESs) and there will inevitably be regions of near electronic

degeneracy. With that goal in mind, in Chapter 3 we present a new method entitled

variationally orbital optimized CIS (VOA-CIS). We show that VOA-CIS yields a uniform

improvement to CIS, rebalancing the energies of CT states versus non-CT states within the

same framework. Furthermore, VOA-CIS finds energetic corrections for CT states that are

even larger than those predicted by CIS(D). The computational cost of VOA-CIS depends

strongly on the number of excited states requested (n), but otherwise should be proportional

to the cost of CIS itself.

1.4.3. Chapter 4

Chapter 4 provides the necessary benchmarking for the VOA-CIS method introduced in

Chapter 3. On the one hand, we show that in the ground-state geometry, VOA-CIS performs

comparably to CIS(D) at predicting relative excited state energies. On the other hand,

far beyond CIS(D) or any other perturbative method, VOA-CIS correctly rebalances the

energy of charge-transfer (CT) states versus non-CT states, while simultaneously producing

smooth PESs–including the important case of avoided crossings. In fact, through localized

diabatization of VOA-CIS excited states, one can find a set of reasonable diabatic states

modeling CT chemical dynamics.

1.4.4. Chapter 5

In Chapter 5 we propose one final variational method, Fully Variational Orbital Adapted

Configuration Interaction Singles (FVOA-CIS), as a potential improvement upon VOA-CIS.

We show that FVOA-CIS is generally consistent with its predecessor VOA-CIS, but it is

uniformly more robust and accurate than the latter, in the presence of avoided crossings

and conical intersections. We also show that, if we use the molecular orbitals from TDDFT

with hybrid density functionals (as opposed to HF), the FVOA-CIS PESs are smoother,

and a smaller number of excited states is needed. Future benchmarking will be necessary
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to validate the general applicability of the method, but preliminary data look reasonably

encouraging.

1.4.5. Chapter 6

Chapter 6 is a brief summary and overview of future directions for ab initio quantum

chemistry methods.
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CHAPTER 2 : The Orbital Optimized Configuration Interaction Singles

Method

This chapter is reprinted from [Liu, Fatehi, Shao, Veldkamp, and Subotnik, J. Chem. Phys.

136, 161101, 2012].
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2.1. Introduction

Configuration interaction singles (CIS) is the simplest and most intuitive approach for con-

structing excited electronic states. A CIS wave function has the form of |ΨCIS〉 =
∑
ia
tai |Φa

i 〉,

and it depends on two sets of variables: (i) the choice of occupied (“i”) and virtual (“a”)

orbitals, and (ii) the choice of amplitudes or singles excitations (“tai ”). In a standard cal-

culation, the choice of orbitals is dictated by a Hartree-Fock (HF) calculation to ensure

orthogonality to the ground-state, and the amplitudes are chosen variationally by diagonal-

izing the Hamiltonian in the basis of single excitations A:

A ≡
〈

Φa
i |H|Φb

j

〉 ∑
jb

Aiajbt
b
j = ECISt

a
i (2.1)

Although it is well-known that CIS does not recover accurate vertical excitation energies

from the ground state [31], CIS is often good enough to predict accurate rates of electronic

excitation transfer between non-CT excited states [32, 33]. By implication, this means

that CIS often does a decent job of predictingrelative energies between non-CT excited

states.Other attractive features of CIS include: (i) it is variational; (ii) it is computationally

cheap; (iii) it recovers the correct −1/r asymptotic behavior of CT states that comes about

because of the Coulombic attraction between electron attachments and detachments [34].

For all of the reasons above, our research group has attempted to use CIS theory to consider

electron transfer events between excited states, though we have had little success. As we

showed in a recent publication [29], even though CIS recovers the correct −1/r asymptotic

behavior of CT states, CIS excitation energies are highly biased against CT states, shifted

usually by 1-2 eV. Thus, the relative energies between CT and non-CT states are unreliable,

and quite often the very ordering of CT and non-CT excited states is incorrect with CIS.

Now, the standard alternative to CIS for large systems is time-dependent density functional

theory [35] (TD-DFT), a method that typically obtains better vertical excitation energies

than CIS for non-CT states. Unfortunately, however, standard TD-DFT fails miserably for
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CT states because it does not recover the correct −1/r asymptotic behavior [34], which

leads to CT excitation energies that are often many eV too low (and getting worse for

larger systems) [36, 37, 38, 39, 40]. This failure of TD-DFT stems from the approximate

(adiabatic) exchange-correlation functional [41, 42], and Tozer and co-workers [43, 44] have

argued that TD-DFT errors can be correlated in general with a measure of charge-transfer

(though this is not always true [45]). To correct the CT problem in TD-DFT, cutting-

edge research in quantum chemistry is creating new long-range corrected (LRC) TD-DFT

functionals that add in exact Hartree-Fock exchange at long distances by partitioning the

Coulomb operator [46, 47, 48, 49]. LRC functionals are a creative approach to blend together

DFT functionals (that underestimate CT state energies) with CIS theory (for which CT

state energies are overestimated, but with the correct asymptotic behavior). In the future,

it will be interesting to see whether LRC-TD-DFT functionals can give a correct and robust

description of both CT and non-CT excited state energies. As with all DFT development,

there is no systematic way to improve accuracy in general.

Rather than exploring TD-DFT, the goal of this chapter is to provide a simple approach for

correcting CIS energies to give a balanced description of CT versus non-CT states. While

the accuracy of CIS can always be improved by using an expanded configuration interaction

subspace (i.e., including doubles, à la CISD or CIS(D) [2, 50], etc.), we will show below that

one can find the correct balance between CT and non-CT states simply by reoptimizing

orbitals. We emphasize that we do not address here the intrinsically poor vertical excitation

energies of CIS, which arise from not including electron-electron correlation. Instead, here

we intend only to improve relative excitation energies, with the aim in mind of using CIS

to model electron transfer between excited states in the future.

2.2. Theory

CIS wave functions are optimized with respect to amplitudes – ∂ECIS/∂t
a
i = 0 – but CIS

wave functions are certainly not optimized with respect to choice of orbitals. Using standard

analytical gradient theory [51, 52], one can parameterize the space of orbital rotations using
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the anti-symmetric generator of the orthogonal group. Starting with a set of atomic orbitals

{χµ} and a fixed initial set of orthonormal molecular orbitals,
{
φ0
i

}
, φ0

i =
∑
µ
χµC

0
µi, all

possible choices of molecular orbitals are parameterized by orbital coefficients C:

Cµp =
∑
q

C0
µq

(
eΘ
)
qp

Θ =
∑
p>q

θpqJpq (2.2)

(Jpq)rs = −δprδqs + δpsδqr (2.3)

Using the standard definition of the Fock matrix Fpq, the CIS energy has the form

ECIS = EHF +
∑
abi

tai t
b
iFab −

∑
aij

tai t
a
jFij +

∑
aibj

tai t
b
j 〈aj||ib〉 (2.4)

Differentiating with respect to θpq, we find that ∂ECIS/∂θij(0) = ∂ECIS/∂θab(0) = 0, while

Yai ≡
∂ECIS

∂θai

∣∣∣∣
Θ=0

= 2
∑
jb

taj t
b
jFib − 2

∑
jbc

tbjt
c
j 〈ca||bi〉

+2
∑
jb

tbjt
b
iFaj + 2

∑
jkb

tbjt
b
k 〈ji||ka〉 (2.5)

+2
∑
jkb

taj t
b
k 〈ik||jb〉 − 2

∑
jbc

tbi t
c
j 〈bj||ac〉 6= 0

We will show below that Yai is much larger for CT states than for non-CT excited states.

While this result in itself is not surprising, the scale of the energy difference is rather

surprising: looking at Y alone is often enough to discern a CT state from a non-CT state.

Given this result, one is tempted to correct standard CIS states by accounting for orbital

optimization. The simplest correction is to take a Newton-Raphson step. Thus, we expand

the excitation energy to second order,

ECIS(Θ) = ECIS(0) + Yaiθai +
∑
aibj

1

2

∂2ECIS

∂θai∂θbj

∣∣∣∣
Θ=0

θaiθbj (2.6)
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and searching for the optimal Θ, we find:

θoptai = −
∑
bj

(
∂2ECIS

∂θai∂θbj

)−1

Ybj (2.7)

Eopt
CIS ≈ ECIS(0)−

∑
aibj

1

2
Yai

(
∂2ECIS

∂θai∂θbj

∣∣∣∣
Θ=0

)−1

Ybj (2.8)

Now, unfortunately, this approach has two drawbacks. First, the method requires us to

invert the second-derivative matrix individually for each excited state, rather than all at

once. Second, there is no guarantee that ∂2ECIS
∂θai∂θbj

will be or should be a positive definite

matrix, and as such, the method may be unstable. To that end, a reasonable solution is to

replace the second-derivative in Eqns. 2.6- 2.8 with the HF second-derivative; our intuition

here is that for larger displacements in the choice of orbitals (i.e. large Θ), the HF term

in Eqn. 2.4 dominates. Thus, our final expression for the orbital-optimized OO-CIS energy

correction is

θoptai = −
∑
bj

(
∂2EHF

∂θai∂θbj

)−1

Ybj (2.9)

Eopt
CIS ≈ ECIS(0)−

∑
aibj

1

2
Yai

(
∂2EHF

∂θai∂θbj

∣∣∣∣
Θ=0

)−1

Ybj (2.10)

which corresponds to a first-order (in Θ) perturbative wavefunction:

|Ψopt
CIS〉 ≈ |ΨCIS〉+

∑
ai

tai θ
opt

ai |ΨHF〉 −
∑
aibj

tai θ
opt

bj

∣∣∣Φab
ij

〉
(2.11)

In the next section, we will show that Eqn. 2.10 yields a strong correction for CT states that

is in approximate agreement with CIS(D) [2, 50] in the limit of long-range charge transfers.

Conveniently, Eqn. 2.10 can be solved using only one z-vector call [53] to invert ∂2EHF
∂θai∂θbj

for

all excited states at once.
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2.3. Results: PYCM

To test the theory above, we have studied the PYCM molecule from Ref. [29] (shown in

the inset of Fig. 2.1). For a set of 500 different nuclear geometries, we have computed

the first 12 excited states, amongst which there is almost always at least one CT state:

the electron donor is the dimethyl alkene group and the electron acceptor is the dicyano

group. Electronic absorption experiments have shown that the CT state should be the

lowest-lying excited state [54], but CIS calculations in vacuum drastically overestimate the

vertical excitation energy of this CT state, ranking the CT state always between the third

and seventh excited state, in disagreement with experiment. Of course, in solution, a CT

state would be stabilized by the surrounding solvent molecules – which we ignore in our

calculation – but solvent effects are not large enough to account for the discrepancy. In Ref.

[29], we showed that CIS(D) gives a strong correction, lowering the energy of the CT state

(making it the first or second excited state), and that correction is to a good approximation

proportional to the excited state dipole moment. If OO-CIS is a valid theory, we expect

that it should behave similarly. We now present three pieces of evidence in the method’s

favor.

As our first piece of evidence, in Fig. 2.1 we show that the orbitals are indeed far less

optimized for CT-states as compared with non-CT states, just as we asserted above. We

have plotted a histogram of the trace of YTY (Eqn. 2.5), separated according to the relative

dipole moment of the excited states (|~µrel|. Non-CT states are colored blue, and CT states

are colored dark red. Of our 6000 calculations (500× 12), we identify 498 CT states, all of

which have relatively large norms for Yai.
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Figure 2.1: Histogram of Trace(YTY) for 6000 excited state PYCM calculations (500 ge-

ometries × 12 excited states/ geometry.). See Eqn. 2.5. Here, we have 498 CT states

(defined as |~µrel| > 2.5 a.u.). Notice that Yai almost always has a larger norm for CT

states compared to non-CT states: the very smallest value for a CT states is 0.03 and

the largest value for a non-CT state is 0.07. This demonstrates the HF orbitals are

poor for CT states calculated with CIS. Inset: Molecular structure for 2-(4-(propan-2-

ylidene)cyclohexylidene)malononitrile (PYCM).

Reprinted with permission from Ref. [30]. Copyright c©2012, AIP Publishing LLC.
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Next, in Fig. 2.2, we present a scatter plot of both ∆ECIS(D) = ECIS(D)−ECIS and ∆EOO-CIS =

EOO-CIS − ECIS versus the magnitude of the relative dipole moment of each excited state,

|~µrel| = |~µ − ~µHF|. For non-CT states (on the left-hand side), ∆ECIS(D) follows no obvious

pattern, and can be positive or negative. For OO-CIS, the energy correction is always

negative, because the HF Hessian is positive definite, but the energy correction is very

small for non-CT states. By contrast, for CT states (on the right-hand side of Fig. 2.2),

both CIS(D) and OO-CIS are proportional to the dipole moment, with nearly the same

slope! Thus, our OO-CIS approach recovers the CIS(D) correction roughly for strong CT

states, up to a constant shift in energy; according to OO-CIS, the CT state is usually the

first, second, or third excited state.
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Figure 2.2: A scatter plot of energy correction ∆E ≡ E − ECIS versus the magnitude of

dipole moment relative to the ground state |~µrel| ≡ |~µ− ~µgs|, from CIS(D) and OO-CIS.

Note the near agreement between the OO-CIS and CIS(D) for CT states.

Reprinted with permission from Ref. [30]. Copyright c©2012, AIP Publishing LLC.
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Finally, to strengthen our argument, we present in Fig. 2.3 a scatter plot of ∆EOO-CIS

versus ∆ECIS(D), showing the cross-correlations between the OO-CIS and CIS(D) energy

corrections. We color points differently according to their OO-CIS correlation energy: (i)

states with ∆EOO-CIS > −0.46 eV (corresponding roughly to non-CT states, |~µrel| < 2.5

a.u.) are colored blue; (ii) states with −0.46 eV > ∆EOO-CIS > −1.22 eV (355 points

corresponding roughly to weak CT states, 2.5 a.u. < |~µrel| < 4.5 a.u.) are colored green;

(iii) states with −1.22 eV > ∆EOO-CIS (135 points corresponding roughly to strong CT

states, |~µrel| > 4.5 a.u.) are colored red. While the correction energies appear uncorrelated

for non-CT states, they become highly correlated for CT states. In fact, a linear fit of

these points shows a slope of 0.79 for the red and green points, and a slope roughly 0.96,

much closer to 1, for the red dots alone. In total, this data indicates that, for at least one

molecule with CT excited states, OO-CIS gives a very meaningful energy correction, quite

comparable to CIS(D).
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Figure 2.3: A scatter plot of energy corrections ∆EOO-CIS ≡ EOO-CIS−ECIS versus ∆ECIS(D) ≡

ECIS(D) − ECIS. See text for exact definition of non-CT, weak CT, and strong CT states.

Note the near agreement between the OO-CIS and CIS(D) for CT states. The fitted slopes

are 0.79 for the green line (weak CT states) and 0.96 for the red line (strong CT states).

Reprinted with permission from Ref. [30]. Copyright c©2012, AIP Publishing LLC.
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2.4. Discussion and Conclusions

The data above demonstrates that orbital optimization is crucial for correcting the relative

energies of CT versus non-CT excited states. This fact suggests many novel avenues for

exploration. First, it will be crucial in the future to implement and analyze the more rigorous

corrections in Eqns. 2.7 and 2.8, where the step size in orbital space is determined by the

second derivative of the CIS energy (rather than the HF energy). Preliminary evidence

suggests that Eqn. 2.8 may yield larger corrections (in absolute value) for CT state energies

as compared with Eqn. 2.10, but that the CIS Hessian may not always be positive definite.

Is it reasonable to expect that excited states must correspond to minima, or are saddle

points also physical? Second, one may wonder if similar treatments of orbital optimization

can be applied to TD-DFT; the CT problem is not yet completely solved in the framework

of TD-DFT, and orbital optimization may yield new insight. Third and finally, OO-CIS

wave functions are of the form in Eqn. 2.11, and are thus orthonormal only to first order,

and orthogonal to the ground-state only to zeroth order. Future research must analyze the

properties of these wavefunctions beyond energetics. Moreover, do the doubles corrections

found in Eqn. 2.11 match explicitly the doubles corrections found in CIS(D), which are

clearly necessary to describe CT states [29]?

In summary, we have shown that a simple one-step orbital optimization (Eqn. 2.10) yields

a meaningful correction to CIS excitation energies for CT states, comparable in fact to

a CIS(D) correction. The approach is clearly size-consistent and the computational cost

of this correction is minimal: inverting ∂2EHF
∂θai∂θbj

has the same cost (approximately) as the

CIS calculation itself, which is an order of magnitude cheaper than CIS(D). Thus, for

only twice the computational cost of standard CIS, or exactly the same cost as TDHF,

the OO-CIS approach rebalances the relative excitation energies of CT versus non-CT CIS

states. Because this cost is so minimal, we expect Eqn. 2.10 will likely become a standard

component of all future CIS calculations.
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CHAPTER 3 : The Variatonal Orbital Adapted Configuration

Interaction Singles Method

This chapter is reprinted from [Liu, Ou, Alguire, and Subotnik, J. Chem. Phys. 138,

221105, 2013] and [Liu and Subotnik, J. Chem. Theory Comp. 10, 1004, 2014].

32



3.1. Introduction

Our research group desperately needs practical, inexpensive wavefunction methods for mod-

eling excited states: such methods must be (i) inexpensive and applicable to large molecules

and (ii) accurate enough to capture excited state crossings (which are essential for under-

standing electronic relaxation).

Configuration Interaction singles (CIS) is perhaps the simplest approach to electronic ex-

cited states. One assumes that an excited state wavefunction is a linear combination of

single excitations on top of the ground state. On the plus side, CIS is variational, size-

consistent, and most of the time, CIS-wavefunctions are qualitatively correct (in terms of

detachment and attachment plots [50]). On the negative side, CIS energies are simply not

accurate and one cannot ascertain relative excited state energies from a CIS calculation

alone: the CIS ansatz captures too little electron correlation and thus represents too great

a simplification of the excited state wavefunctions for chemical accuracy. One cardinal fail-

ure of CIS is its notorious overestimation of charge-transfer(CT) excited state energies by

1-2 eV [29].

The goal of this chapter is to introduce a new and powerful method that builds a variational

wavefunction on top of zeroth-order CIS wavefunction [55]. The format of this chapter will

be as follows. In Sec. 3.2, we review existing post-CIS excited state methods and motivate

our new VOA-CIS approach. In Sec. 3.3, we provide the theoretical framework for VOA-CIS

as well as the computational details for extracting VOA-CIS wavefunctions and energies.

Sec. 3.4 shows its numerical results for PYCM ground state, and twisted ethylene, and Sec.

3.5 is a brief summary, which also suggests benchmarking for the new method as shown in

Chapter 4.
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3.2. Background: Post-CIS Methods

3.2.1. CIS(D)

The simplest post-CIS excited state methodology is CIS(D). CIS(D) [2] proposes a pertur-

bative improvement to CIS, modeled roughly after CIS-MP2 [56]. Whereas CIS-MP2 ap-

plies standard perturbation theory in the entire doubles and triples space
{∣∣∣Φab

ij

〉
,
∣∣∣Φabc

ijk

〉}
,

CIS(D) applies standard perturbation theory only in the doubles space; for the triples space,

CIS(D) hypothesizes a first-order wavefunction correction via an intuitive ansatz, rather

than strictly applying formal perturbation theory: CIS(D) proposes that the amplitudes

for triply excited excitations are the products of CIS singles excitations with ground-state

MP2 double excitations. The validity of this hypothesis can be tested numerically. In the

end, the CIS(D) correction can be broken up into three parts: one component from the

doubles manifold, and two components from the triples manifold– one “disconnected” and

one “connected” component. The disconnected component cancels exactly with the ground-

state MP2 energy, and the resulting two terms make up the vertical excitation energy. The

final CIS(D) energy is size-consistent (unlike CIS-MP2) and the overall cost of the method

is O(N5).

Although CIS(D) reduces the computational cost of CIS-MP2 from O(N6) to O(N5), as

N gets big, the amount of work increases quickly. Luckily, in recent years, through the

implementation of the resolution-of-the-identity (RI) approximation [57, 58], the CIS(D)

prefactor has been reduced greatly, and currently the method is applicable to the calcula-

tion of vertical excitation energies in small to medium-sized molecules; local pair-natural

orbital approaches can further reduce the cost [59]. That being said, CIS(D) still cannot

be implemented to help solve most problems in electronic relaxation. Beyond the failure

of CIS(D) to capture enough electron-electron correlation energy for CT states [29], the

biggest culprit is the perturbative nature of the CIS(D) ansatz itself. In general, electronic

relaxation (as mediated by phonons or nuclear motion) occurs at nuclear geometries where

several electronic states come close together in energy; this is the entire basis of classical

34



Marcus theory [60, 61]. At such geometries, however, the use of perturbation theory is

usually not valid: the zeroth order wavefunctions can still be strongly interacting and, in

such cases, the resulting CIS(D) wavefunctions and energy corrections will be unreliable.

Thus, in the end, CIS(D) can be used to model only those electronic states that are well-

separated energetically; the method also fails if the S0−S1 gap becomes too small and there

is strong mixing between ground and excited states. Note that these limitations apply to

all perturbative excited state methods.

3.2.2. CIS(Dn) and CC2

As a non-degenerate perturbative method, CIS(D) cannot deal with near-degeneracies.

Among the set of post-CIS excited state methods, CIS(Dn) [62] is a quasi-degenerate im-

provement to CIS(D). CIS(Dn) was designed around the principle of “perturb and then

diagonalize”. The CIS(Dn) correction is found by diagonalizing a perturbative approxima-

tion to the second-order response matrix for the MP2 ground state.

Within the CIS(Dn) framework, one always approximates the doubles-doubles block of the

response matrix by excitations of the diagonal Fock matrix. If this is the only enforced

approximation, diagonalization of the response matrix is entitled CIS(D∞), which closely

resembles [63] the CC2 [64] method. Otherwise, one can expand the self-energy of the

doubles-doubles block in a Taylor series, and with truncation one generates CIS(D0) and

CIS(D1). Formally, CIS(D0) and CIS(D1) require diagonalization of a dressed matrix with

size Nov×Nov, just like CIS; CIS(D∞) requires diagonalization of a matrix of size N2
ov×N2

ov

(through several tricks help). In practice, full CIS(D0) and CIS(D1) are significantly more

expensive than CIS(D) calculations.

Overall, the CIS(Dn) suite of algorithms are a powerful means to investigate avoided cross-

ings between excited states, but they suffer from several drawbacks:

• The computational cost can be prohibitive. Recently, progress has been made to

reduce the cost of CIS(D0) through an empirically scaled opposite-spin (SOS) ap-
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proximation [1]. For CC2 methods, local approximations with density fitting have

also been made [65], as have pair natural orbital approaches [66].

• For n > 0, the CIS(Dn) effective Hamiltonian is not Hermitian, and thus the method

can fail at near-degeneracies, especially near conical intersections where imaginary

frequencies are possible [63]. To improve upon CC2 near a true degeneracy, the

algebraic diagrammatic construction (ADC) method [67] symmetrizes the response

matrix and thus one must diagonalize only a Hermitian matrix.

• The CIS(Dn) approach will not be effective when the S0−S1 energy gap becomes too

small, or when doubly excited states are important.

3.2.3. ADC(2)

A natural alternative to CIS(D∞) (or CC2) with the flavor of configuration interaction is

the algebraic diagrammatic construction (ADC) method [67]. (For a more complete set of

ADC(2) references, see Ref. [68]) As mentioned above, the ADC(2) method symmetrizes

the CC2 response matrix and thus one must diagonalize only a Hermitian matrix; thus, the

method is applicable near avoided crossings as well as conical intersections. Importantly,

ADC(2) yields a means to calculate electronic matrix elements between excited states [69]

which is useful for electronic dynamics [70]. Unfortunately, the cost of the method is

approximately the cost of a CC2 calculation, which can be prohibitive for large systems,

even though local approximations are possible [66]. S1 − S0 crossings will also be difficult

to converge (as with any single reference ground-state theory).

Lastly, it must be noted that one can go beyond strict ADC(2) via the ADC(2)-x algorithm

[71] that includes all off-diagonal terms in the doubles-doubles block of the effective Hamil-

tonian. Thus, ADC(2)-x allows for the possibility of doubly excited states, but the cost

of ADC(2)-x grows accordingly (as N6, on the order of EOM-CCSD). Overall, ADC is a

promising approach for generating the excited states necessary for describing electronic re-

laxation, but computational cost remains an obstacle (and S1−S0 crossings are a potential
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problem).

3.2.4. CISD

According to the standard quantum chemistry dogma, the formal answer to all problems

in electronic structure theory is full-CI. However, full-CI requires diagonalization of the

Hamiltonian at all levels of excitation. As such, full-CI has an exponentially large cost and

is practical only for very small molecules. For medium-sized or large molecules, if one is keen

on configuration interaction, one must settle for truncated-CI– which is still variational but

unfortunately not size-consistent. The accuracy of truncated CI deteriorates as the number

of electrons increases, though corrections for recovering size-consistency are well-known for

CISD [72].

Now, it is important to recognize that CISD’s size-consistency problem for excited states

can be partially removed by excluding the HF ground-state from the Hamiltonian diagonal-

ization. In such a case, intuitively, if we have two infinitely separated fragments A and B,

excitations localized to fragment A (set #1) are entirely decoupled from excitations local-

ized to fragment B (set #2). The only problematic complication is that we can find a third

set (set #3) of excited states with excitations on both fragments A and B. However, this

third set of excitations is entirely decoupled from sets #1 and #2 and thus, by inspection,

one can pick out excited states with size-consistent wavefunctions and energies. For more

details, see Sec. 3.6.2 in the appendix.

Despite this glimmer of hope, however, we must emphasize that straight CISD necessarily

produces poor excitation energies. On the one hand, if the HF state is excluded, excitation

energies are always too low – after all, only the excited states are stabilized with correlation

energy. On the other hand, if we include the HF state, CISD is known to overstabilize the

ground state [73] and yield erroneously large excitation energies (see also Fig. 4.1 below).

This failure of CISD results from the fact that the ground and excited states are not treated

equivalently: while the ground state couples strongly to the doubles space and gains a great
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deal of dynamical correlation, a CIS excited state wavefunction will not relax sufficiently

without inclusion of the corresponding triples space. In the end, the variational benefits of

full CISD must be weighed against the distorted CISD absolute vertical excitation energies.

(For a discussion of multi-reference configuration interaction in the context of the VOA-CIS

algorithm below, please see the Appendix.)

3.2.5. Perturbative OO-CIS

Using all of the background above, over the past few years our research group has been

working to develop our own post-CIS excited state methods, introduced in Chapter 2. Given

that CIS states are strongly coupled to the space of double excitations (on the one hand),

but including entire doubles space a la CISD is counterproductive (on the other hand),

our original intuition was that a meaningful post-CIS excited state wavefunctions could

be obtained by partial orbital optimization. In particular, our hope was that reasonably

accurate excited state energies could be obtained by optimizing the MOs for each specific

excited state, rather than always using the same SCF orbitals that were optimized for the

ground state. Moreover, as long as the orbital changes were small, each excited state would

keep its identity and the algorithm would remain stable. The end product of this line of

thinking was an algorithm entitled perturbative orbital optimized CIS (OO-CIS), as shown

in Chapter 2 [30].

Here, we would redefine the Y and θ matrix, shown in Eqns. 2.5 and 2.7, as a generalization

of the original OO-CIS method, for later use in this chapter:

−1

2
Y IJ
ai ≡ +

∑
bcjk

tcIk

〈
Φc
k

∣∣∣Ĥ a†aai

∣∣∣Φb
j

〉
tbJj (3.1)

= +
∑
bcj

(
tcIi t

bJ
j 〈cj || ab〉+ tcIj t

bJ
j 〈ci || ba〉

)
+
∑
bjk

(
taIk t

bJ
j 〈ij || bk〉+ tbIk t

bJ
j 〈ij || ka〉

)
θIJai ≡ − Y IJ

ai

εa − εi + EJ − EI
(3.2)
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In practice, OO-CIS has some appealing properties. First, although we invoke orbital

optimization in spirit for each CIS state, all optimization is actually performed with the

initial SCF orbitals; this approach is completely free from cherry picking orbitals in an

active space. Second, the algorithm is incredibly fast and low-demanding.

Despite these attributes, however, the OO-CIS method is still perturbative (like CIS(D)),

and we have found empirically that it yields significant improvement only for charge-transfer

states (and, even then, the CT correction is not large enough). Lastly, because the excited

states are non-orthogonal to the ground state, transition moments might be difficult to

extract. Ideally, one would like an excited state approach with the speed of OO-CIS but

the accuracy of a balanced variational calculation (which can treat SI −SJ crossings for all

I, J).

3.3. Variational Orbital Adapted CIS (VOA-CIS)

With the previous background material in mind, we now describe the VOA-CIS approach.

In the spirit of CIS(Dn) (and also CIS(2) [74]), our intention is to perturb-then-diagonalize,

rather than vice versa; however, unlike the case of CIS(Dn), we will formally use the full

Hamiltonian matrix rather than an approximate response matrix. Thus, the VOA-CIS

approach can be decomposed into two primary steps. First, will generate a basis of wave-

functions in the spirit of a generalized OO-CIS approach. On the one hand, it is computa-

tionally cheap to generate perturbative wavefunctions through orbital optimization; on the

other hand, we believe that orbital optimization should capture the most important doubles

correction for excited states. Second, we diagonalize the Hamiltonian in the basis of all per-

turbed wavefunctions, thus yielding variational energies and eigenvectors. All Hamiltonian

matrix elements can be evaluated through second-quantization and, in simplified form, the

matrix elements are given in Eqns. 3.12, 3.13 and 3.14 in Sec. 3.3.2.

We will now discuss these steps in more detail. In the end, the notation for our algorithm

can be cast in the form VOA-CIS-C(n, m); in what follows, we will explain the meaning of
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C, n and m.
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m
C

O G X

1
∣∣ΨJJJ

〉
(2n) |ΦHF〉,

∣∣ΨJJJ
〉

(1 + 2n) |ΦHF〉,
∣∣ΨJJJ

〉
(1 + 2n)

2
∣∣ΨJKK

〉
(n+ n2) |ΦHF〉,

∣∣ΨJKK
〉

(1 + n+ n2) |ΦHF〉,
∣∣ΨJKK

〉
,
∣∣ΨGKK

〉
(1 + 2n+ n2)

3
∣∣ΨJKL

〉
(n+ n3) |ΦHF〉,

∣∣ΨJKL
〉

(1 + n+ n3) |ΦHF〉,
∣∣ΨJKL

〉
,
∣∣ΨGKL

〉
(1+n+n2+n3)

Table 3.1: Additional basis functions included alongside the zeroth order CIS wavefunctions

({
∣∣ΨI

CIS

〉
}) for VOA-CIS-C(n, m). I, J,K,L = {1, 2 · · ·n}. In parentheses is the total

number of basis wavefunctions (NB) for each option.

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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3.3.1. Choosing the VOA-CIS Basis

We will define NB as the size of the VOA-CIS basis.

Size of CIS Subspace (n)

In choosing a set of basis functions for diagonalization, the first and most immediate question

is the number of requested excited states. Very often, photochemical experiments can be

interpreted by considering the dynamics of the lowest 10 excited states. This fortunate

circumstance forms the basis for the entire VOA-CIS algorithm. Effectively, the VOA-CIS

approach uses CIS as a means of generating a set of many-electron excited states as an

“active” space. We define n as the number of CIS states which must be calculated initially

(i.e., NB = n), and the smaller n is, the faster the VOA-CIS algorithm will be. Although our

algorithm will not be independent of n, luckily, from our experience [55], VOA-CIS excited

state wavefunctions and absolute energies do not change greatly with n; n can be chosen

robustly. At the same time, though, the VOA-CIS ground-state will change dramatically

as n gets very large and the VOA-CIS energy approaches the CISD limit; see the energy

diagram in Fig. 4.1. This difference in behavior as a function of n will actually be exploited

later.

Additional parameters we use are m and C. Roughly speaking, m is an indication of how

many doubles we have for perturbed wavefunctions, while C tells how the ground state

should be balanced against the excited states . The details are shown below.

Size of Doubles Space (m)

Having picked an initial size for the CIS subspace n (NB = n), we must next address

the number of double excitations to be included in the (post-CIS) VOA-CIS basis. As

mentioned above, we will select candidate doubles excitations using a generalized OO-CIS

framework, with the following mathematical structure:

{∣∣ΨIJK
〉
≡ −

∑
bj

θIJbj a
†
baj
∣∣ΨK

CIS

〉}
.

See Eqn. 3.2 for a definition of θ; recall that I is the index of the CIS state from which the

42



doubles are generated. In general, there are three nested options for choosing the number

of such double excitations:

1. {
∣∣ΨIII

〉
} (m= 1): For the m = 1 case, VOA-CIS adds n doubly excited wavefunc-

tions to the basis, on top of the original n CIS wavefunctions (NB+= n). These n

wavefunctions are exactly the same as the first order wavefunctions one constructs by

allowing for orbital relaxation in perturbative OO-CIS. See equation Eqn. 2.8 above.

2. {
∣∣ΨIJJ

〉
} (m= 2): For them = 2 case, VOA-CIS adds n2 doubly excited wavefunctions

to the basis, on top of the original n CIS wavefunctions (NB+ = n2). These n2

wavefunctions include all wavefunctions proposed in the m = 1 case. Now, the basic

idea is to expand each of the n excited CIS states in a basis of doubly excited states

that can be generated by single excitations from those same n excited states. This

gives n2 different combinations of the form {
∣∣ΨIJJ

〉
}. The m = 2 subspace is a clear

improvement over the m = 1 subspace because, at an avoided crossing, excited states

will begin to mix and thus, in order to capture electron-electron correlation correctly,

we must allow for mixing between the doubly-excited configurations generated from

different CIS states.

3. {
∣∣ΨIJK

〉
} (m= 3): For the m = 3 case, VOA-CIS adds n3 doubly excited wavefunc-

tions to the basis, on top of the original n CIS wavefunctions (NB+= n3). These n3

wavefunctions include all wavefunctions proposed in the m = 2 case, but there is no

physical basis for including all {
∣∣ΨIJK

〉
} (m= 3) in the VOA-CIS basis. Instead, the

only justification that can be given is mathematical: notice that the m = 3 basis is

well-defined even at a point of exact degeneracy between two CIS states. The same

conclusion is not true for the m = 1 or m = 2 subspaces.

Treatment of Ground State (C)

The final question that must be addressed for the VOA-CIS basis is our treatment of the

ground state. On the one hand, for an exactly size-consistent algorithm, one should exclude
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the ground state from the basis. (See the Appendix for a proof.) On the other hand, without

including the ground state, a post-CIS algorithm cannot construct meaningful wavefunctions

and energies whenever the ground state is energetically close to the first excited state (which

is not uncommon far from the equilibrium geometry). Facing this dilemma, we believe that

most often the correct choice is to include the ground-state, while also comparing results

with the case of ground-state exclusion.

In the end, just as for the choice of double spaces, we can define three nested possible

routes by which VOA-CIS can treat the ground state. These options are defined through

the parameter C:

1. C = O: When considering the ground-state, the simplest option is to ignore the

ground state and not include the Hartree-Fock determinant in the VOA-CIS basis.

Thus, NB is unchanged. We label this option ‘O’. In this case, one recovers exact

size-consistency.

2. C = G: Vice versa, the next simplest option is simply to include the HF determinant

in the basis, which we label the ‘G’ option (NB+= 1). The ‘G’ option is especially

important when the S0−S1 energy gap gets small and ground-excited state mixing is

unavoidable. In such cases, it make sense to forgo exact size-consistency for the sake

of reasonable energetics around an avoided crossing. Moreover, Ref. [55] showed that,

in the case of twisted ethylene, VOA-CIS excitation energies are not changed greatly

by including the HF determinant. In fact, VOA-CIS-G excitation energies are well-

balanced; unlike CISD, the VOA-CIS-G ground state is not overstabilized relative to

the excited states and VOA-CIS yields reliable absolute excitation energies.

3. C = X: We label our third and final option for treating the ground state with the

letter ‘X’. For this option, we include not only the Hartree-Fock determinant in our

basis, but we also include the doubly excited determinants generated by the interaction

of the HF state with single excitations on top of CIS states.
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Mathematically, just as one CIS state can be expanded in a basis of orbital optimized

CIS states, so too can the HF ground state be expanded in a basis of orbital opti-

mized CIS states. Thus, just as was done previously, one can define a set of doubly

excited determinants {
∣∣ΨGJK

〉
} to relax the HF ground state. These doubly-excited

determinants are defined analogously to Eqns. 3.1 and 3.2 through the intermediate

quantities Y GJ and θGJ :

−1

2
Y GJ
ai ≡

〈
ΦHF

∣∣∣Ha†aai∣∣∣ΨJ
CIS

〉
=
∑
bj

tbJj 〈ij || ab〉 (3.3)

θGJai = − Y GJ
ai

εa − εi + EJCIS − EHF

(3.4)

In Sec. 4.2.2, we will show that this ‘X’ option is closely related to the TDHF for-

malism.

• For the case of m = 1, the ‘X’ option is redundant; the electronic bases in

VOA-CIS-G(n, 1) and VOA-CIS-X(n, 1) are exactly the same (NB+= 1).

• For the case m = 2, we include all {
∣∣ΨGJJ

〉
}, and so we set NB+= n;

• For the case m = 3, we include all {
∣∣ΨGJK

〉
}, and so we set NB+= n2.

Synopsis

In the end, there are as many as 9 (or really 8) different flavors of VOA-CIS. Henceforward,

we will use the notation VOA-CIS-C(n, m), as defined in Table 3.1. A priori, it would

appear difficult to predict the optimal algorithm. Luckily, according to our experience, for

large enough n, the relative energies among excited states remain almost unchanged for all

choices. That being said, though, choosing the absolutely best ground-state option can be

tricky and absolute excitation energies can change with method options. Thus far, if we

seek the best absolute potential energy surfaces – including geometries far from equilibrium

– VOA-CIS-G(n, 2) seems to be the best choice.
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3.3.2. Matrix Elements for VOA-CIS

Having constructed a well-defined basis for excited state wavefunctions, we must now diag-

onalize the Hamiltonian. The necessary matrix elements for the Hamiltonian (H), overlap

(S) and dipole (~R ≡ (X,Y, Z)) operators are quite similar. Of course, the matrix elements

for S and ~R are simpler than those for H in that the former are purely single-electron

operators. All necessary matrix elements are given in Eqns. 3.12, 3.13 and 3.14. For conve-

nience, we use several convenient intermediate quantities defined below: in Eqns. 3.5- 3.11,

M can be of any size while A,B,C and D are all of size Nv ×No:

Lvopq(A) ≡
∑
ai

〈pi || qa〉Aai (3.5)

Lvvpq (M) ≡
∑
ab

〈pb || qa〉Mab (3.6)

Loopq(M) ≡
∑
ij

〈pj || qi〉Mij (3.7)

Fai(A) ≡ Lvoai (A) (3.8)

+
∑
b

FabAbi −
∑
j

AajFji

Kab(A,B) = Lvvab(ABT )− Looab(BTA) (3.9)

Kij(A,B) = Lvvij (ABT )− Looij (BTA) (3.10)

M(A,B,C,D) ≡ D ·
(
ABTC + CBTA

)
(3.11)
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〈ΦHF |H|ΦHF〉 = EHF〈
ΨI

CIS |H|ΨJ
CIS

〉
= δIJE

J
CIS〈

ΨĨJK |H|ΨĨ′J ′K′
〉

=
∑
abij

θĨJbj θ
Ĩ′J ′
ai

〈
ΨK

∣∣∣a†jabHa†aai∣∣∣ΨK′
〉

= +(tK · tK′
)(θIJ · θI′J ′

)EHF +(tK · θI′J ′
)(θIJ · tK′

)EHF

−M(θIJ , θI
′J ′
, tK , tK

′
)EHF

+(tK · F (tK
′
))(θIJ · θI′J ′

) +(tK · tK′
)(θIJ · F (θI

′J ′
))

+(tK · θI′J ′
)(θIJ · F (tK

′
)) +(F (tK) · θI′J ′

)(θIJ · tK′
)

−M(θIJ , θI
′J ′
, tK ,F (tK

′
)) −M(θIJ , tK

′
, tK ,F (θI

′J ′
))

−M(θIJ , θI
′J ′
,Lvovo(tK), tK

′
) −M(tK , tK

′
,Lvovo(θIJ), θI

′J ′
)

+θIJ ·
(
Kvv(tK

′
, tK) θI

′J ′
)

−θIJ ·
(
θI

′J ′Koo(tK
′
, tK)

)
+θIJ ·

(
Kvv(θI

′J ′
, tK) tK

′
)

−θIJ ·
(
tK

′Koo(θI
′J ′
, tK)

)
〈
ΦHF |H|ΨL

CIS

〉
= 0〈

ΦHF |H|ΨĨJK
〉

=
∑
ai
θĨJai

〈
ΦHF

∣∣∣Ha†aai∣∣∣ΨK
〉

=
∑
abij

θĨJai t
bK
j 〈ij || ab〉

= θĨJ ·
(
Lvoov(tK)

)T〈
ΨL

CIS |H|ΨĨJK
〉

= θĨJ ·
(
−2Y LK

)

(3.12)
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〈ΦHF |X|ΦHF〉 =XHF〈
ΨI

CIS |X|ΨJ
CIS

〉
= δIJX

I
HF + tI ·

(
Xvvt

J − tJXoo

)〈
ΨĨJK |X|ΨĨ′J ′K′

〉
=
∑
abij

θĨJbj θ
Ĩ′J ′
ai

〈
ΨK

∣∣∣a†jabXa†aai∣∣∣ΨK′
〉

= +(tK · tK′
)(θIJ · θI′J ′

)XHF + (tK · θI′J ′
)(θIJ · tK′

)XHF

−M(θIJ , θI
′J ′
, tK , tK

′
)XHF

−M(θIJ , θI
′J ′
, tK , (Xvvt

K′ − tK′
Xoo))

−M(θIJ , tK
′
, tK , (Xvvθ

I′J ′ − θI′J ′
Xoo))

+(tK · (Xvvt
K′ − tK′

Xoo))(θ
IJ · θI′J ′

)

+(tK · tK′
)(θIJ · (Xvvθ

I′J ′ − θI′J ′
Xoo))

+(tK · θI′J ′
)(tK · (Xvvθ

I′J ′ − θI′J ′
Xoo))

+((Xvvt
K − tKXoo) · θI

′J ′
)(tK

′ · θIJ)〈
ΦHF |X|ΨL

CIS

〉
= tL ·Xvo〈

ΦHF |X|ΨĨJK
〉

= 0〈
ΨL

CIS |X|ΨĨJK
〉

=
(
tL · θĨJ

) (
tK ·Xvo

)
+
(
tL · tK

) (
θĨJ ·Xvo

)
−M(tL, tK , Xvo, θ

ĨJ)

(3.13)

〈ΦHF |S|ΦHF〉 = 1〈
ΨI

CIS |S|ΨJ
CIS

〉
= δIJ〈

ΨĨJK |S|ΨĨ′J ′K′
〉

=
∑
abij

θĨJbj θ
Ĩ′J ′
ai

〈
ΨK

∣∣∣a†jabSa†aai∣∣∣ΨK′
〉

= +(tK · tK′
)(θIJ · θI′J ′

) + (tK · θI′J ′
)(θIJ · tK′

)

−M(θIJ , θI
′J ′
, tK , tK

′
)〈

ΦHF |S|ΨL
CIS

〉
= 0〈

ΦHF |S|ΨĨJK
〉

= 0〈
ΨL

CIS |S|ΨĨJK
〉

= 0

(3.14)

In Alg. 3.1 and Alg. 3.2, we provide a flowchart for how we have calculated VOA-CIS to

date. Though this algorithm is not yet optimal or parallelized, it offers the reader a taste of
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how easy VOA-CIS energies and wavefunctions are to compute. In this flowchart, we define

Nθ to be the number of θĨJs.
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Algorithm 3.1 VOA-CIS algorithm [7]

1: for I= 1 : n do . Calculate Y IJ , θIJ

2: for J= 1 : n do

3: A = tI ;B = tJ

−1

2
Y IJ
ai = +

∑
b

LvoTab (B)Abi −
∑
j
AajLvoTji (B) +Lvvai (ABT ) −Looai (BTA)

θIJai = − Y IJ
ai

EJCIS − EICIS + εa − εi

4: end for

5: end for

6:

7: for J= 1 : n do . Calculate Y GJ , θGJ

−1

2
Y GJ
ai =

(
Lvoia (tJ)

)T
θGJai = − Y GJ

ai

EJCIS − EHF + εa − εi

8: end for

9: Nθ = n2 + n

10: NB = n+ 1 + n2 + n3

11:

12: for ĨJ= 1 : Nθ do . Normalize θĨJ

13: θĨJ = θĨJ/ |θĨJ |

14: end for

15:

16: for I= 1 : n do . Save expensive matrices

17: Save Lvoai (tI), Fai(tI)

18: end for

19: for ĨJ= 1 : Nθ do

20: Save Lvoai (θĨJ), Fai(θĨJ)

21: end for
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Algorithm 3.2 VOA-CIS algorithm (cont) [7].

22: for I= 1 : n do

23: for J= 1 : n do

24: A= tI ;B = tJ

25: Save Kab(t, t) = Lvvab(ABT )− Looab(BTA)

26: Save Kij(t, t) = Lvvij (ABT )− Looij (BTA)

27: end for

28: end for

29: for ĨJ= 1 : Nθ do

30: for K= 1 : n do

31: A= θĨJ ;B = tK

32: Save Kab(θ, t) = Lvvab(ABT )− Looab(BTA)

33: Save Kij(θ, t) = Lvvij (ABT )− Looij (BTA)

34: end for

35: end for

36: . Construct the Hamiltonian

37: for |Ψ1〉 ∈ { |ΦHF〉 ,
∣∣ΨL

CIS

〉
,
∣∣ΨIJK

〉
} do

38: for |Ψ2〉 ∈ { |ΦHF〉 ,
∣∣ΨL

CIS

〉
,
∣∣ΨIJK

〉
} do

39: Save H12, S12, ~R12

40: end for

41: end for

42: . {H,S, ~R, NB}

43: Hv = SvE → {vi, Ei}, i = 1, 2 · · ·NB

44: {vi} → {~Ri, Oscillator Strength fi}

45:

46: for i= 1 : NB do . Loop over {vi}

47: Mapping: |ΨVOA-CIS〉 → |ΨCIS〉 with max overlap

48: end for
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3.4. Results

The VOA-CIS algorithm was implemented using a developers’ version of the Q-Chem soft-

ware package [75]. In the following calculations, the basis set was 6-31G* basis set together

with the rimp2-cc-pvdz auxiliary basis set. We present results for two molecules: 2-(4-

(propan-2-ylidene)cyclohexylidene)malononitril (PYCM, shown in inset of Fig. 3.1(f)) and

twisted ethylene (C2H4).

3.4.1. PYCM

Experimentally, the absorption spectrum of PYCM shows a strong non-CT band at 5.4

eV and a CT band at 4.6 eV in hexane [54]. At the ground-state geometry, CIS predicts

that the CT state is the 7th state, while CIS(D) correctly predicts the CT state is the first

excited state. From SOS-CIS(D0) both the lowest-lying two excited states have a large

dipole moment, indicting both are a mixture of the CT state and non-CT state. Because

the non-CT decays radiationlessly, Verhoeven et al predicted [54] a crossing between the CT

and non-CT as a function of the torsional motion along the double bond of the ethylenic-CN

group. VOA-CIS confirms such a crossing, and this will be presented in Chapter 4.

In this communication, we will focus exclusively on the potential energy surface near the

ground-state geometry. Previously [29], we have generated 500 geometries from a ground-

state classical trajectory, and we consider the first 12 excited states, each with roughly 1 CT

state apiece, for a total of 6000 data points. In this region of configuration space, with no

torsional motion, we do not expect to see any crossings between the CT and non-CT state.

Strangely, however, CIS does predicts such crossings. When faced with such an unexpected

crossing, CIS(D) encounters adiabatic CIS states that are incorrectly mixtures of CT and

non-CT states; as such, CIS(D) does the best that it can, and it gives a correction lying

anywhere from big to small. As such, according to CIS(D), the CT state is not consistently

the lowest excited state.

By contrast, VOA-CIS does not predict such a crossing. In Fig. 3.1(a)- (d), we plot the
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VOA-CIS energy correction versus CIS(D) energy correction for different combinations of

parameters in VOA-CIS-C(n, m). The red dots are from CT states, while blue dots are

from non-CT ones. To construct ∆EVOA-CIS, we mapped each CIS eigenstate to the VOA-

CIS eigenstate with maximum overlap. The data is striking: unlike CIS(D), VOA-CIS

always finds a sharp boundary for ∆E between non-CT and CT states and does not mix

CT and non-CT states. The m = 2 and m = 3 corrections give an even more consistent

correction than m = 1. (By comparing (c) with (b), we see that adding in the ground-state

can shift all the excitation energies up.) Our data is summarized in (e) which shows a

histogram of energy corrections for CIS(D) and VOA-CIS-G(12, 2). The former has a wide

and continuous distribution, while the latter yields a bimodal distribution– with one sharp

peak for CT states (≈ −2 eV) and another for non-CT ones (≈ 0 eV).

Turning to dipole moments, in (f), we plot the relative dipole moments of the excited

states, |~µrel| = |~µex − ~µgs|, comparing VOA-CIS-G(12, 2) with CIS. Whereas CIS predicts

|~µrel| values that change continuously from non-CT through weak CT states to strong CT

states, again VOA-CIS predicts a completely bimodal distribution of dipole moments: there

are CT states with large dipole moments and there are non-CT states with small dipole

moments. As such, VOA-CIS yields an extremely intuitive picture of the valence excited

states.

In the end, this PYCM data suggests that, by rediagonalizing the Hamiltonian matrix

instead of applying perturbation theory, VOA-CIS is not limited by the failure of CIS for

treating CT states.
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Figure 3.1: In (a)- (d), we plot the VOA-CIS energy correction versus the CIS(D) energy

correction, with different VOA-CIS options for m and C, for 6000 excited states PYCM

calculations (500 geometries × 12 states/ geometry). Data points with |~µrel| bigger than

4 a.u. are colored red (for CT states); non-CT states are colored blue. (e) shows a histogram

of energy corrections from both CIS(D) and VOA-CIS-G(12, 2). In (f), we plot the VOA-

CIS-G(12, 2) |~µrel| ≡
∣∣~µVOA-CIS-G(12, 2) − ~µVOA-CIS-G(12, 2)

gs

∣∣ versus |~µCIS
rel | ≡

∣∣~µCIS − ~µHF
gs

∣∣. The

insert is the PYCM structure. All the green lines are y = x for reference. Note that

all VOA-CIS combinations find a clear separation between CT and non-CT states, while

CIS(D) does not.

Adapted with permission from Ref. [55]. Copyright c©2013, AIP Publishing LLC.
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3.4.2. Twisted Ethylene

Twisted ethylene is a paradigmatic example of an avoided crossing [76]: at 90◦, the π and

π∗ orbitals come together in energy. As a result there are three low-lying singlet states,

with roughly π2, ππ∗, and (π∗)2 character [3]. To assess the VOA-CIS approach, we plot in

Fig. 3.2 the relative energy of the first few excited states along the torsional angle τ from

60◦ to 120◦, with geometries from Ref. [5].

In Fig. 3.2, (a)-(c), we plot low-lying excitation energies from VOA-CIS-G(n, 2) with n =

5, 6, 7 and 14. Note how a new excited state appears in our model Hamiltonian as n goes

from 5 to 7; this is the doubly excited (π∗)2 state and its appearance suggests that VOA-

CIS can predict some doubly excited states (though perhaps only serendipitously). Observe

also that increasing the basis beyond n = 7 yields no big changes (see n = 14). Altogether,

this implies in order to get an accurate description of the first n′ states, the parameter n in

VOA-CIS-C(n, m) does not have to be much bigger than n′.

In (d), we plot VOA-CIS-X(14, 3) data versus SF-XCIS [5] data (shown in red). SF-

XCIS effectively introduces a π − π∗ active space and should be extremely accurate for

this problem. The figure suggests that VOA-CIS finds accurate relative energies among

the excited states, (although VOA-CIS overestimates the ground states by roughly 0.5 eV

compared to SF-XCIS). In (e), we plot the CIS/EHF and CIS(D)/MP2 data, which totally

miss the doubly excited state and ignore coupling with the ground-state. SOS-CIS(D0) is

almost the same to CIS(D) results, with a maximum difference of 0.2 eV for those two states.

From this data, we tentatively conclude that VOA-CIS is stable near avoided crossings, with

the added benefit that doubly-excited states are possibilities.

In (f), we plot the dependence of VOA-CIS-X(n, 3) energies upon the number of states n

(for the τ = 80◦ geometry). S0 is the ground state, while Si(i = 1, 2) is the ith excited

state. On the far right, we plot CISD data (which is equivalent to VOA-CIS-X(∞, 3)). Note

that (i) VOA-CIS energies does not depend strongly on n and (ii) VOA-CIS excited state
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energies are close to CISD energies for n = 15, but the ground-state energy is still far away.

This is likely a feature of our method, because CISD is known to wildly overestimate vertical

excitation energies (by over-stabilizing the ground state [73]). For instance, compare the

CISD data (Eex
1 ≡ ES1 −ES0 = 7.7 eV) with the SF-XCIS data (which includes triples, Eex

1

= 3.4 eV) and our VOA-CIS-X(14,3) data (Eex
1 = 3.2 eV). Altogether, (f) suggests that we

can get reasonable potential energy surface for n not too big or too small.
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Figure 3.2: In parts (a)- (d), we plot VOA-CIS energies for ethylene along the torsional

angle τ , with different VOA-CIS options. Red in (d) is SF-XCIS [5] active-space result.

CIS/EHF and CIS(D)/MP2 are plotted in (e). (f) shows the VOA-CIS-X(n, 3) energy as a

function of n at τ = 80◦, compared with CISD data (x’s). All energies are relative to the

ground state at τ = 60◦ in (d) (black solid dot). Note that VOA-CIS is able to find the

low-lying doubly excited state.
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3.5. Conclusions and Caveats

VOA-CIS-C(n, m) is a variational, black-box approach for solving excited state problems

without choosing active space orbitals. The only parameters in our approach are the number

of CIS states n and the number of doubles added ∼ nm. Thus far, there appears to be little

dependence on the number of states n, provided n is not too small. This is crucial because

the cost goes up quickly with n. In our experience, m = 2, 3 convincingly outperforms m = 1

when treating state crossings. In all cases, VOA-CIS gives a strong energy correction for

CT states, far stronger than is found with perturbation theory. Thus far, the strongest

drawback to VOA-CIS is that the method appears to underestimate Rydberg excitation

energies, though this may not be crucial for photochemistry [77] especially in the condensed

phase [78].

Intensive benchmarking of VOA-CIS is crucial and will be reported in Chapter 4. At

worst, VOA-CIS is a cheap algorithm to generate approximate CISD energies from an

expansion in the doubles space. At best, VOA-CIS is an inexpensive approach for valence

CISD energy calculations–where static and dynamic correlation are balanced and vertical

excitation energies are not exaggerated. For these reasons, we are currently working on an

optimal VOA-CIS algorithm. Because VOA-CIS requires only O(n2NoNv) memory (e.g.,

to represent θĨJai ) and the number of important excited states is often small (e.g., n ≤ 10), a

VOA-CIS algorithm should be highly parallelizable and quite affordable for big molecules.

If such an algorithm can be implemented, VOA-CIS methods will have a strong impact on

excited state calculations, where new methods are sorely needed.
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3.6. Appendix

3.6.1. Matrix Elements from Second-Quantization

For completeness, we now give the formula for the doubles-doubles block of the VOA-CIS

algorithm. Eqn. 3.15 can be used to derive Eqn. 3.12 in the text above.

〈
ΨI

CIS

∣∣∣a†jab Ĥ a†aai

∣∣∣ΨJ
CIS

〉
= tdIl

〈
ΦdI
l

∣∣∣a†jab Ĥ a†aai

∣∣∣ΦcJ
k

〉
tcJk =

+δabδijt
cI
k t

cJ
k EHF −δabtcIi tcJj EHF −δijtaIk tbJk EHF +taIi t

bJ
j EHF

+δabδijt
dI
k t

cJ
k fdc −δabδijtcIl tcJk fkl +δabt

cI
i t

cJ
k fkj −δabtdIi tcJj fdc

−δabtcIk tcJk fij +δabt
cI
l t

cJ
j fil −δijtaIk tcJk fbc +δijt

cI
k t

cJ
k fba

−δijtdIk tbJk fda +δijt
aI
l t

bJ
k fkl +taIi t

cJ
j fbc −taIi tbJk fkj

−tcIi tcJj fba +tdIi t
bJ
j fda +taIk t

bJ
k fij −taIl tbJj fil

+δabδijt
dI
l t

cJ
k 〈dk || lc〉 +δabt

dI
i t

cJ
k 〈dk || cj〉 +δabt

dI
k t

cJ
k 〈di || jc〉 +δabt

cI
l t

cJ
k 〈ik || jl〉

+δabt
dI
l t

cJ
j 〈di || cl〉 +δijt

dI
k t

cJ
k 〈bd || ac〉 +δijt

aI
l t

cJ
k 〈bk || cl〉 +δijt

cI
l t

cJ
k 〈bk || la〉

+δijt
dI
l t

bJ
k 〈dk || al〉

+taIi t
cJ
k 〈bk || jc〉 +tcIi t

cJ
k 〈bk || aj〉 +tdIi t

cJ
j 〈bd || ca〉 +tdIi t

bJ
k 〈dk || ja〉

+taIk t
cJ
k 〈bi || cj〉 +tcIk t

cJ
k 〈bi || ja〉 +tdIk t

bJ
k 〈di || aj〉 +taIl t

cJ
j 〈bi || lc〉

+taIl t
bJ
k 〈ik || lj〉 +tcIl t

cJ
j 〈bi || al〉 +tdIl t

bJ
j 〈di || la〉

(3.15)

3.6.2. Size-Consistency of VOA-CIS Method

In the text above, we claimed that the VOA-CIS algorithm provided a size-consistent ap-

proach provided that the ground state was not included in the rediagonalized Hamiltonian.

To show this, we will now demonstrate explicitly that VOA-CIS-m(O, n) (m = 1, 2) is

size-consistent. In other words, suppose that we are given two molecular fragments A and

B that are infinitely far away from each other in space. For an excitation on fragment A,

we must prove that EAB(A∗) = EA(A∗), where “AB” signifies a calculation with both frag-
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ments included and “A” signifies a calculation with only the one fragment. To prove this

statement, consider the AB calculation. Note that there can be no charge transfer excited

states between fragments A and B because of their infinite separation. Let I and J be local

excitations on A and B respectively. According to Eqn. 3.1, we then find that θIJ (which is

proportional to Y IJ) will be 0: this follows because all interfragment two-electron integrals

must vanish. θIJai can be nonzero only if excitations I, J are located on the same fragment

(say A), and the molecular orbitals a, i are also localized to that same fragment (A).

Now, for the m = 1, 2 options, all doubly excited wavefunctions have the form
∣∣ΨIJJ

〉
=∑

bj

θbja
†
baj
∣∣ΨJ

CIS

〉
. Thus, all doubly excited configurations require that both excitations be on

the same fragment (again A). Finally, note that in the Hamiltonian to be rediagonalized,

localized excitations on A and B cannot couple to each other at all– either directly or

indirectly (because we have removed the ground-state). From this logic, we may conclude

that excited states on A will not mix with excited states on B, and thus, we must have

EAB(A∗) = EA(A∗), i.e. size-consistent excitation energies. One final word is necessary

about size-consistency.

For the m = 3 option, the doubly-excited configurations have the form:

∣∣ΨIJK
〉

=
∑
bj

θbja
†
baj
∣∣ΨK

CIS

〉
. In this case, one does allow for the possibility of excitations

on both fragments, since CIS state K could be localized to fragment B, while CIS states

I, J could be localized to fragment A. Nevertheless, it is easy enough to show that, after

diagonalizing the Hamiltonian, we will find three distinct and nonmixing classes of excited

states: those with excitations exclusively on A, those with excitations exclusively on B, and

those with excitations on both A and B. The first two sets will have size-consistent energies

and be meaningful. This situation is the exact scenario described in Sec. 3.2.4 above.
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3.6.3. Connection to Multireference Configuration Interaction and Neeses Spec-

troscopy Oriented Configuration Interaction

In Sec. 3.2.4 above, we discussed the limitations of bare CISD. Of course, there are many

effective multi-reference CI (MRCI) approaches towards generating excited states that out-

perform CISD and generate strong absolute and relative excitation energies [79]. While such

MRCI methods are not post-CIS approaches, in general MRCI algorithms are very powerful

techniques (though often expensive). Recently, Neese has proposed a spectroscopy oriented

configuration interaction approach (SORCI) to excited states built on top of a CASSCF

calculation for treating large molecules. At the heart of the SORCI algorithm, working

in a meaningful set of average natural orbitals, the SORCI algorithm prescribes: (i) one

perform a CASSCF calculation, (ii) one truncates the CASSCF wavefunctions to a smaller

set of reference configurations, (iii) one generates excitations into a predefined strongly in-

teracting subspace, and (iv) finally one rediagonalizes the Hamiltonian. (A perturbative

correction for dynamic correlation is also added.) Using SORCI, one can generate quite

accurate excited states for a very broad variety of molecules, small and large, for small

enough configuration interactions. Nevertheless, the caveat for SORCI is that one must

first choose an active space for CASSCF and second invoke several thresholds for choosing

average natural orbitals, truncating the relevant reference states, and defining a strongly

interacting subspace. For these reasons, the method is not “black box”.

In the end, Neeses SORCI approach can not be mapped onto the model we propose in

this chapter (if we replace a CASSCF calculation by a CIS calculation). The reasoning

is as follows. The VOA-CIS approach generates a set of doubly excited configurations in

the form of a linear combination via perturbation theory. By contrast, SORCI performs no

such contraction; instead, SORCI uses one threshold to generate a set of truncated reference

states and a second threshold to generate a strongly interacting subspace. Thus, SORCI

requires the diagonalization of a matrix of dynamic size (depending on thresholds); whereas,

VOA-CIS requires the diagonalization of a matrix of static size. In general, for reasonable
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thresholds, we can expect that VOA-CIS will be less accurate but also significantly less

expensive than a typical SORCI calculation.
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CHAPTER 4 : Benchmarking the VOA-CIS Method

This chapter is reprinted from [Liu and Subotnik, J. Chem. Theory Comp. 10, 1004, 2014].

63



As shown in the last chapter, we would prefer a variational approach similar to OO-CIS, this

is the origin for the VOA-CIS approach. Similar to the spirit of CIS(Dn) (and also CIS(2)

[74]), our approach is to perturb and then diagonalize, rather than vice versa though more

common. Chapter 3 shows preliminary data for the success of VOA-CIS methods, this

chapter we show more results out of VOA-CIS to verify its validity.

In Sec. 4.1, we benchmark VOA-CIS excited states versus results from high-level approaches

in excited state theory and experimental data. In Sec. 4.2 we present a brief and pictorial

discussion of how and why VOA-CIS works, and its close connection with Time-Dependent

HF (TDHF) [80, 81]. We conclude in Sec. 4.3 with a summary of the VOA-CIS approach

and a look toward future extensions, theoretical and computational.
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4.1. Results

The VOA-CIS algorithm was implemented in a developmental version of the Q-Chem [75]

software package. We will now describe the results of applying the VOA-CIS algorithm to

a broad range of photoexcitable organic molecules.

4.1.1. PYCM

Absorption

Over the years, our research group has focused a great deal of attention on the molecule in

Fig. 4.1 (abbreviated PYCM for 2-(4-(propan-2-ylidene)cyclohexylidene)malononitril) [82].

Experimentally, PYCM has a low-lying CT absorption peak at 36,800 cm−1 (4.56 eV),

where the donor (D) is the methylene group and the acceptor (A) is the dicyano group.

Above the the CT state, there is also a local A → A∗ excitation absorption peak on the

cyano groups at 43,900cm−1 (5.44 eV) (both in n-hexane at 20◦C) [54].
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Figure 4.1: Comparison of VOA-CIS-G(n, 2) energies with (approximate) CISD energies

[6] at the ground state geometry, for the first three singlet states, relative to the original

EHF. On the right is the PYCM molecular structure, with the dihedral angle τ shown with

bold bonds. Note that VOACIS excitation energies are close to experimental values and

relatively insensitive to n for n not too big and not too small (n ∈ [8, 12]). Here, S1 is the

CT state and finds a big correction with n = 8. By contrast, note that CISD excitation

energy are grossly unphysical (with E1 − E0 = 38.41 eV!)

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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In Fig. 4.1, we plot the dependence of the VOA-CIS energies (VOA-CIS-G(n, 2)) on the

number of states n. All calculations were performed at the ground state geometry with

the 6-31G* basis set (optimized with MP2 ), and we plot energies for the ground state and

the first two excited states. S1 is the CT state and S2 is the locally excited state. On the

right hand side of Fig. 4.1, we identify (approximate) CISD energies [6]. Recall that CISD

energies are equivalent to VOA-CIS energies for n =∞. Similar to our previous results for

ethylene in Ref. [55], in Fig. 4.1 we find again that CISD vastly overstabilizes the ground

state; the vertical excitation energy of S1 is a whopping 38.41 eV according to CISD.

By contrast, VOA-CIS-G(12, 2) yields far more balanced excitation energies than straight

CISD, with S1 having an excitation energy of 5.12 eV, which compares well with experiment

(4.56 eV). Moreover, our results are not highly dependent on n; we believe the energy of

the S1 state changes sharply at n = 7 only because the CT state is the seventh excited

state according to CIS (but the CT state is the first excited state according to VOACIS).

Finally, notice that VOA-CIS-G(12, 2), VOA-CIS-O(12, 2) find very similar energies here

for S0, S1, and S2, relative to the original ground-state energy EHF: −0.46, 4.66 and 5.69 eV

versus 0.00, 4.66 and 5.66 eV. Altogether, on the basis of its reasonable excitation energies

and its weak dependence on n, we find this data very encouraging and supportive of our

claim that meaningful excited state energies can be found by diagonalizing only a sub-block

of the CISD matrix.

Smooth PES and Emission

Regarding emission, experimentally the lower-lying PYCM CT state decays with measurable

fluorescence, while the non-CT excited state decays exclusively radiationlessly. Verhoeven

et al [54] have postulated that these experimental signatures can be explained by breaking

the ethylenic double bond connecting cyclohexane to the dicyano groups. More specifically,

they have proposed an avoided crossing between the S1 and S2 excited states along the

torsional angle (τ). According to the Verhoeven picture, the S1 excited state lives in a

weak local minimum that can radiate to the ground state, while the S2 state undergoes an
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ultrafast cis-trans isomerization back to the ground state after photoexcitation. See Fig. 7

in Ref. [54].

To simulate this putative relaxation process, we have investigated the PES of PYCM as

follows. First, we performed a geometry optimization for the first excited state (S1) at the

CIS level. Although we had no confidence in the accuracy of the CIS method to generate

excitation energies, we reasoned that if twisting a double bond were really a robust feature

of PYCM, then CIS approach should find an optimal structure with the ethylenic groups

pointed out of plane; indeed, our results confirmed such a geometry. Second, apart from the

dihedral angle τ shown in Fig. 4.1, (i.e. the dihedral angle along the cyclohexane-dicyano

group double bond), we froze all the other geometrical coordinates in PYCM. At equilibrium

τ is 0◦. Then, we calculated the PESs along τ to learn about electronic relaxation, and we

found a small barrier for the S1 state between τ = 0◦and τ = 90◦.

In Fig. 4.2, we plot VOA-CIS energies (left-hand side) and relative dipole moments (|~µrel| ≡

|~µex − ~µg|, right-hand side) as a function of the torsional angle τ , for a few different VOA-

CIS parameter options. We plot the first 4 singlet states, S0−S3, with S0 being the ground

state. From the dipole moment plot, one can see that the CT state
∣∣D+A−

〉
changes

adiabatic surface as a function of τ , moving smoothly from S1 (red) to S2 (green) as τ goes

from 0◦ to 90◦. Conversely, the locally excited state |DA∗〉, changes adiabat as well, moving

smoothly from S2 to S1. In Fig. 4.3, these VOA-CIS findings are confirmed by EOM-CCSD

[83] data, where we show that both methods (VOA-CIS-G(12, 2) and EOM-CCSD) yield

very similar absolute dipole moments for S1. From the energy plot, we compute that the

corresponding avoided crossing occurs when τ is around 40◦. Thus, VOA-CIS captures

PYCM’s experimental features described above, and in the process highlights the power of

a variational method near an avoided crossing.
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Figure 4.2: VOA-CIS-C(12, m) energies and corresponding dipole moments (relative to the

ground state) |~µrel| ≡ |~µ− ~µgs| as a function of torsional angle τ for PYCM. Each color

represents a singlet state Si, i ∈ [0, 3]. Note that in subfigure (a) (VOA-CIS-O(n, m)) the

ground state is not included in the basis; thus, the HF energy is used for S0.

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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Figure 4.3: |~µabs| (a.u.) for S1 as a function of torsional angle τ , for EOM-CCSD and

VOA-CIS-G(12, 2) for PYCM. Note that both methods find very similar geometries for the

avoided crossing as a function of τ .

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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To underscore the importance of a variational method, we provide a comparison with CIS(D)

in Fig. 4.4(a) Here, although CIS(D) finds the correct excited states in the τ = 0 and

τ = 90 limits, because the method is perturbative at bottom, CIS(D) PESs and dipole

moments are not smooth (and in fact, completely distorted) along the τ coordinate. In

part (b), we show results from SOS-CIS(D0) the scaled-opposite version of the CIS(D0).

Recall that the CIS(Dn) suite of methods were designed to handle quasi-degenerate excited

states. As expected, SOS-CIS(D0) curves are much smoother than CIS(D) curves. However,

numerically, we find that SOS-CIS(D0) excitation energies are problematic. In particular, at

the equilibrium geometry τ = 0◦, which should be far away from the crossing, SOS-CIS(D0)

predicts that the
∣∣D+A−

〉
and the |DA∗〉 diabatic states should be strongly mixed together

in the S1 and S2 adiabatic states, according to the dipole moments. Thus, SOS-CIS(D0)

would appear to not stabilize CT states enough. As a side note, we showed in Ref. [55]

that CIS(D) also does not stabilize CT states enough, though CIS(D) does better than

SOS-CIS(D0) and much better than straight CIS.

Fig. 4.4 (c) and (d) present time-dependent DFT (TDDFT) results, using the exchange-

correlation functionals B3LYP [84] and ωB97x [47] respectively. The former shows a large

gap (∼ 2 eV) for S1 and S2 at τ = 0◦, which is significantly larger than any other method

(and the experimental data, 0.88 eV as well). Moreover, the predicted crossing of diabatical

states is incorrectly around 70◦. These errors are likely a reflection of the well-known failure

of TD-DFT for CT states [34, 36, 37, 38, 39, 40] when there is no long-range correction

[46, 47, 48, 49, 85, 86, 87, 88, 89, 90, 91, 92, 93].

By including long-range exchange, ωB97x [47] performs much better than B3LYP in gener-

ating balanced CT vs. non-CT excited states, and it locates an avoided crossing near 30◦

(in agreement with EOM-CCSD and VOA-CIS).
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Figure 4.4: CIS(D), SOS-CIS(D0) and TDDFT(B3LYP and ωB97x) energies and corre-

sponding dipole moments (relative to the ground state) |~µrel| ≡ |~µ− ~µgs| as a function of

torsional angle τ for PYCM. Each color represents a singlet state Si, i ∈ [0, 3].

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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Finally, around τ = 90◦, we found an intersection between S1 and S0. Avoided crossings

between ground and excited states are common for systems that decay vibronically, and as

for all near degeneracies, an accurate energetic description can be made only by invoking a

variational electronic structure method. For PYCM, at the S0 − S1 crossing, it is a locally

excited state |DA∗〉 that is mixed together with the ground state.

For a faithful and smooth representation of a crossing, one must treat all ground and excited

states on equal footing. Note, however, that all methods in Fig. 4.4 ignore S0 − S1 mixing

and, as such, one often finds erroneous potential energy surfaces (e.g., S0 − S1 conical

intersections with the wrong topology). Among the suite of VOA-CIS methods, VOA-CIS-

O(n, m) has the exact same problem; in fact, VOA-CIS-O(n, m) predicts that S1 can have

a lower energy than the ground state energy EHF. Fortunately, using VOA-CIS-G(n, m)

or VOA-CIS-X(n, m) we can safely include the ground state wavefunction while barely

changing with relative energies among the excited states. This fortunate state of affairs

reflects the beauty of VOA-CIS as a variational method.

Diabatization with Boys Localization

Having calculated smooth adiabatic potential energy surfaces through the VOA-CIS al-

gorithm, one can make a preliminary analysis of electronic relaxation processes through

diabatization. In the Appendix, we briefly review Boys localization as a tool for generating

localized diabatization. Using Boys localized diabatization, in Fig. 4.5 we plot the energies

and relative dipole moments from VOA-CIS-G(12, 2), for both adiabatic states (S1 and S2)

and their corresponding diabatic states for the PYCM molecule (again, as a function of the

torsional angle τ). States 1, 2 and a, b represent adiabatic and diabatic states respectively.

As would be expected in an avoided crossing, the energies of diabatic states a and b do cross

near τ = 40◦. Moreover, in part (b), the dipole moments show that diabatic state a is indeed

the CT state, characterized by a large dipole moment; whereas state b is a non-CT excited

state. Thus, Boys-localized diabatic VOA-CIS is in agreement with the experimentalist’s

picture of PYCM, and we may conclude that the VOA-CIS algorithm gives us a meaningful
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starting point for studying electronic relaxation.

Lastly, beyond individual surface energies, Fig. 4.5 provided us with a plot of the diabatic

coupling hab (in part (a)) as a function of τ . According to the Condon approximation [11],

one assume that hab is a constant at all geometries. From the figure, however, we see that

hab increases smoothly with τ , so that the absolute value of hab at τ = 80◦ is roughly twice

as big as the value at τ = 0◦. This form of the diabatic coupling will be important for

calculating the physical relaxation time for PYCM.
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Figure 4.5: (a) VOA-CIS-G(12, 2) energy relative to E1 at τ = 80◦ and (b) |~µrel| relative to

the ground state, as a function of torsional angle τ for PYCM, for both adiabatic(labeled as

1, 2) and diabatic(labeled as a, b) states. In part (a), diabatic coupling hab is also shown.

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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4.1.2. Benchmark Molecules

As another test of the VOA-CIS method, we study the 28 small to medium-sized molecules

recently benchmarked by the Thiel group [4]. This rich set of organic test molecules in-

cludes unsaturated aliphatic hydrocarbons, aromatic hydrocarbons and heterocycles, car-

bonyl molecules (including aldehydes, ketones and amides) and nucleobases. The relevant

excited states are usually of valence character, though several Rydberg states are also in-

cluded; nominally, all vertical excitations can be classified as either σ → π∗, π → π∗ or

n→ π∗. In Ref. [4], the Thiel group provided singlet and triplet energies, as calculated by

a variety of different methods, including CASPT2, CC2, CCSD and CC3.

In this work, we have performed VOA-CIS calculation for all singlet excited states considered

by Thiel et al [4], specifically 104 calculations. We restricted ourselves to singlets because

we do not yet have functional VOA-CIS triplet code. All calculations were performed with

the TZVP basis set and we used the geometries as provided in Ref. [4]. Using the symmetry

of each electronic state, we were able to compare our VOA-CIS data with all other electronic

structure data in Table 4.4 in the Sec. 4.4.1.

Method #1 for Quantifying Accuracy: Absolute Error

In order to compare VOA-CIS data quantitatively versus the Thiel benchmarked data, two

different approaches seem intuitive. On the one hand, we can use absolute errors. To be

precise, assume we have two sets of energies obtained from different methods, one labeled

std for reference, and the other labeled trial for our new data. For the mth (m = 1, 2 · · · 28)

molecule, assuming we get nm states, and for each state j, we can define an absolute error

for that state:

Errm,j = Etrial
m,j − Estd

m,j (j = 1, 2 · · ·nm)

With this in mind, we can estimate the overall quality of the VOA-CIS method by computing

a mean absolute error relative to the standard reference energy. In other words, fore each
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molecule m, we compute the mean absolute value Errm,j :

Erram ≡

nm∑
j=1
|Errm,j |

nm
(4.1)

Method #2 for Quantifying Accuracy: Relative Error

Beyond absolute energy errors, another option is to analyze the VOA-CIS method through

relative energy errors. Because VOA-CIS was designed to optimize orbitals and thus re-

balance relative vertical excited state energies (rather than absolute vertical energies), we

might expect to see better performance for relative energies according to VOA-CIS. In

fact, for a few cases, we find that VOA-CIS tends to underestimate excitation energies –

for instance, in Sec. 4.1.4 we will show that VOA-CIS consistently underestimates abso-

lute vertical excitation energies of Rydberg states. Nevertheless, even with Rydberg states

present, the method VOA-CIS does find much more accurate relative excited state energies

than absolute excited state energies. With that in mind, we can define a simple measure of

the relative error of VOA-CIS for molecule m as :

Errbm ≡

√√√√√ nm∑
i,j=1

(Errm,i − Errm,j)
2

n2
m

(4.2)

(Since nm can be 1, it is not convenient to define the denominator in Eqn. 4.2 as nm(nm−1)

as would be standard for a variance calculation.)

Notice that, if there were two sets of excitation energies with the following form,

ym,j = xm,j + cm, j = 1, 2 · · ·nm.

then Erram would give the overall shift |cm|, while Errbm is exactly 0, according to the

definitions above. For this reason, it is clear that Erra and Errb offer two important and
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complementary means of assessing the validity of the VOA-CIS algorithm.

Results

In Fig. 4.6 and Fig. 4.7, we plot Erra and Errb respectively for the 28 different molecules in

Thiel benchmark set. Now unfortunately, as the Thiel group emphasizes, it is not usually

possible to conclude which reference method is the most accurate among the list of CC2,

CC3, EOM-CCSD, CASPT2 and post-processed experimental data As such, in Figs. 4.6 and

4.7, we compare VOA-CIS versus all possible references, and we do the same for CIS and

CIS(D). Both VOA-CIS and CIS(D) vastly outperform CIS, and most of the time, VOA-

CIS closely follows CIS(D), suggesting that the latter two methods are nearly comparable.

While CIS(D) does perform slightly better than VOA-CIS at vertical excitation energies,

this discrepancy is not very surprising: CIS(D) includes all doubles and even triples at

some level of perturbation theory, while VOA-CIS includes only a small subset of the doubles

space. At the same time, by being a variational method, VOA-CIS works very well far away

from the ground-state geometry, where CIS(D) fails. Furthermore, the Thiel benchmark

set does not include any charge transfer complexes, where CIS(D) is unreliable [55].

Future work in this arena might well benefit by further extending the basis of the VOA-

CIS Hamiltonian into the triples manifold, in order to give the method additional energetic

accuracy. Currently, the VOA-CIS-G Hamiltonian is very small (dimension n2×n2 roughly),

and improvements in the VOA-CIS algorithm may well be possible with only minimal cost.
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Figure 4.6: Absolute errors (Erra) of CIS, VOA-CIS-G(12, 2) and CIS(D) as compared with

different “standard” methods. “Best” here refers to the numerical values which Thiel et al

have judged most accurate [4].

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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Figure 4.7: Relative errors (Errb) of CIS, VOA-CIS-G(12, 2) and CIS(D) as compared with

different “standard” methods. “Best” here refers to the numerical values which Thiel et al

have judged most accurate.

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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4.1.3. CH2O

For our final two test cases, we choose small organic molecules where Rydberg states are

embedded in valence states. As the reader will see, these cases present difficulties for the

VOA-CIS algorithm. We begin with formaldehyde.

Because of a plethora of Rydberg states mixed with valence states, for accurate results

on formaldehyde, one is forced to use a large basis replete with diffuse functions and then

one must hope for a balanced measure of the energies of valence states versus Rydberg

states. When using a big basis set 6-311(2+, 2+)G(d, p), EOM-CCSD almost recovers

experimental data; for the standard suite of post-CIS methods out there (CIS(D), CIS(D0),

SOS-CIS(D0)), each successive method improves on the accuracy of its predecessor [1].

In Table 4.1 and Table 4.2, we present energies and oscillator strengths respectively, for

CIS, TDHF, VOA-CIS-G(14, m) with m = 1, 2, 3, EOM-CCSD and experimental data.

Experimental state assignments are from Ref. [1]. VOACIS and CIS excited states were

matched up according to wavefunction overlap. In the case of VOA-CIS, we find that

our results closely follow experimental data, with the exception of the S1 state. For the

most part, where experimental evidence is available, the difference between VOA-CIS and

experiment is within 0.2 eV, much smaller than typical CIS data.

These are encouraging features of the VOA-CIS algorithm. For this problem, we find that

VOA-CIS can actually address Rydberg states quite well (and with a much cheaper cost

than EOM-CCSD). Nevertheless, the reader should note that VOA-CIS and EOM-CCSD

oscillator strengths are quite different, often by a factor of 2.
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# ECIS ETDHF E1 E2 E3 EEOM-CCSD EExp state

1 4.48 4.30 3.56 3.51 3.58 3.95 4.07 V

2 8.64 8.63 7.03 7.05 7.12 7.06 7.11 R

3 9.37 9.36 7.78 7.91 7.98 7.89 7.97 V

4 9.46 9.08 8.78 8.81 8.91 10.00 - R

5 9.67 9.42 8.85 9.01 9.08 8.00 - R

6 9.67 9.59 7.90 8.02 8.05 - 8.14 V

7 9.78 9.78 8.07 8.19 8.26 8.23 8.37 R

8 10.61 10.61 8.87 9.02 9.12 9.07 8.88 R

9 10.87 10.86 9.13 9.28 9.37 9.38 - R

10 10.89 10.86 9.22 9.34 9.43 9.27 - R

Table 4.1: Comparison of excitation energies for CH2O from various ab initio methods with

experimental data. Note the almost perfect recovery of experimental data from VOA-CIS

except for the first state. Em,m ∈ {1, 2, 3} corresponds to VOA-CIS-G(12, m). Nuclear

geometries are optimized with MP2/6-31G* (following Ref. [1]); EOM-CCSD and exper-

imental data are also from Ref. [1]. Valence (V) and Rydberg (R) state assignments are

from Ref. [2].

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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# fCIS fTDHF f1 f2 f3 fEOM-CCSD

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0227 0.0216 0.0096 0.0115 0.0123 0.0160

3 0.0467 0.0456 0.0390 0.0357 0.0397 0.0376

4 0.2606 0.2219 0.1335 0.1414 0.1312 0.2217

5 0.0005 0.0003 0.0001 0.0000 0.0000 0.0482

6 0.0160 0.0203 0.0338 0.0358 0.0318 -

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0143 0.0138 0.0023 0.0018 0.0023 0.0115

9 0.0023 0.0025 0.0004 0.0006 0.0000 0.0330

10 0.0059 0.0033 0.0674 0.0516 0.0417 0.0193

Table 4.2: Comparison of oscillator strengths for CH2O from various ab initio methods.

fm,m ∈ {1, 2, 3} corresponds to VOA-CIS-G(12, m). Nuclear geometries are optimized

with MP2/6-31G* (following Ref. [1]).

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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4.1.4. C2H4

For our final test case, we now show a clear failure of the VOA-CIS approach: the molecule

ethlyene. Following the work of Martinez et al [94, 95], many researchers have studied the

photochemistry of C2H4; after photoexcitation, the molecule is quickly funneled through

a conical intersection where it pyramidalizes while also breaking a double bond to yield

a cis-trans isomerization. Ethylene photoisomerization is a prototypical model system for

photochemistry.

For ethylene, even more so than formaldehyde, at many geometries the lowest-lying states

are dominated by Rydberg states (rather than valence states). In fact, at the equilibrium

geometry the lowest lying few states are all Rydberg states (R(3s), R(3px), R(3py) and

R(3pz)) for C2H4, except for one valence state π → π∗ [3]. For the most part, the Rydberg

states were ignored by early nonadiabatic dynamics calculations [77] that focus on valence

states instead; at the same time, however, the electronic structure community recognizes

ethylene as a difficult test case for electronic structure precisely because of valence-Rydberg

mixing.

With this in mind, we have sought to test the VOA-CIS method on ethylene, and to check

whether we can find accurate potential energy surfaces. In Ref. [55], we reported strong

results for twisted ethylene, where our results matched up well with MRCI results; but

for a twisted geometry, all low-lying excited states for ethylene are valence states. In this

chapter, in Table 4.3 we report results for ethylene at the ground-state geometry, where

most Rydberg state compete lie energetically below any valence states.

Unfortunately, from Table 4.3, we find that the VOA-CIS method does poorly in this case.

In particular, we find that Rydberg states are strongly stabilized by the VOA-CIS method,

while (perhaps unsurprisingly) the ground state does not gain much correlation energy by

orbital relaxation of Rydberg states. As a result, the VOA-CIS vertical excitation energies

in Table 4.3 are all too low (by 1.0 to 1.5 eV). Even the CIS results agree much better with
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the experiment than VOA-CIS. Lastly, and worst of all, VOA-CIS does not find the correct

relative energies for this example. Over all, this molecule highlights that VOA-CIS is not

a good option for electronic structure problems dominated by Rydberg states. Luckily, our

interest is in condensed phase chemistry, and Michl has argued convincingly that Rydberg

states will not be important in most solvents [78].
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# ECIS E1 E2 E3 Eexp state

1 7.12 5.84 5.83 6.13 7.11 R(3s)

2 7.71 6.47 6.49 6.79 7.80 R(3py)

3 7.74 6.98 7.05 7.37 7.60 V

4 7.86 6.47 6.48 6.77 8.01 R(3pz)

5 8.09 6.74 6.79 7.11 8.29 R(3px)

Table 4.3: Comparison of excitation energies for C2H4. Em,m ∈ {1, 2, 3} corresponds to

VOA-CIS-G(12, m). Nuclear geometries are optimized with MP2/6-31G* (following Ref.

[1]). Experimental data also from Ref. [1]. Valence (V) and Rydberg (R) state assignments

are from Ref. [3].

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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4.2. Discussion

Having demonstrated the strengths of the VOA-CIS algorithm (as well as its limitations),

we now want to address two subtle points about how the VOA-CIS algorithm works, which

may also give insight into its performance.

4.2.1. Visualizing the θ Matrix for Orbital Relaxation

The VOA-CIS algorithm finds an improved balance between CT and non-CT excited states

via orbital relaxation. To that end, one can ask a very simple question: what is the nature

of that orbital relaxation for the case of a CT excited state? To answer this question, in

Fig. 4.8, we visualize the attachment-detachment densities [50] of the t matrix, together

with the θIIai matrix associated with a CT CIS state (
∣∣ΨI

CIS

〉
). In other words, for the latter

we consider the electronic density of the state |Ψ〉 =
∑
ai
θIIai a

†
aai |ΨHF〉. In analogy with

standard CIS densities, the attachment-detachment densities for θIIai are:

Ddet
ij =

∑
a

θIIai θ
II
aj (4.3)

Aatt
ab =

∑
i

θIIai θ
II
bi (4.4)

From Fig. 4.8, one can easily infer that, in the case of a CT excited state, according to VOA-

CIS, orbital relaxation remains entirely local. Thus, even though a CT state is characterized

by one bare electron moving a long distance from detachment to attachment, VOA-CIS

predicts that the subsequent energetic drop in energy caused by electron-electron correlation

is due to local orbital relaxation. This local nature of electronic shielding is consistent with

the simple He2 example studied in Ref. [29], and suggests that local correlation approaches

[96] on top of CIS might even be possible.
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tdet tatt θdet θatt

Figure 4.8: Detachment and attachment plots of t and θ for the CT state for PYCM.

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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4.2.2. Relation with TDHF

In broad terms, the VOA-CIS ‘X’ option stipulates that, by considering the set of CIS

states, one can introduce wavefunctions into the electronic basis that help to capture the

dynamical correlation of the ground state. For the sophisticated quantum chemist, this

language bears the signature of TDHF, and indeed there is a close connection between

TDHF and the VOA-CIS-X(n, m) algorithm. We will now demonstrate as much.

Using the language of Ref. [81] for this section only, the TDHF [80, 81] excitation energies

and quasi-wavefunctions are defined via:

 A B

B∗ A∗


 X

Y

 = ω

 1 0

0 −1


 X

Y

 , (4.5)

in which ω = ECIS − EHF is the excitation energy, and the corresponding matrix elements

are:

Aia,jb = δijδab(εa − εi) + 〈aj || ib〉

Bia,jb = 〈ab || ij〉
(4.6)

Now, let us write out Eqn. 4.5 as two separate equations:

 AX +BY = ωX

B∗X +A∗Y = −ωY
(4.7)

Setting B=0 corresponds to standard CIS theory (or the Tamm-Dancoff approximation for

TD-DFT).

If we now stipulate that the B matrix should be a first order perturbation in the Hamiltonian

relative to CIS, while the Y vector should be the first order correction to the wavefunction,

we notice that in Eqn. 4.7, the first equation is second order in Y, while the second one is first

order in Y. At this point, one can solve for Y in a straightforward manner via perturbation
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theory. If one further approximates that A is diagonally-dominant when computing A−1

matrix, one arrives at the final form:

Yai ≈ −
∑
bj

〈ab || ij〉Xbj

ω + εa − εi
= −

〈
ΦHF

∣∣∣Ha†aai∣∣∣ΨCIS

〉
εa − εi + ECIS − EHF

(4.8)

Eqn. 4.8 is identical to Eqn. 3.3 (up to a constant factor). This connection is a strong en-

dorsement of our VOA-CIS algorithm. The usual interpretation of the Y is a “de-excitation”

of the ground state relative to a singles wavefunction, or in other words, a doubly excited

contribution to the ground-state. Thus, it would appear that the VOA-CIS algorithm is

an extension of TDHF to include the electron-electron correlations that excited states in-

flict on each other (not just on the ground state). In the future, it would be interesting

to compare the ground-state correlation energy produced by VOA-CIS-X(n, m) with the

TDHF(or RPA) correlation energy.

4.3. Conclusions and Future Directions

In this article, we have presented the VOA-CIS algorithm and benchmarked its performance

across a series of interesting photoexcitable organic molecules. VOA-CIS is a variational

post-CIS electronic structure theory method that generates smooth and (usually) accurate

potential energy surfaces; it works well for isolated energies or when there are degeneracies

present. The method will not work well for molecules where Rydberg states dominate the

excited state spectrum. The essential input for the VOA-CIS algorithm is the number of

CIS states requested n; otherwise, the algorithm can be viewed as a blackbox approach.

In many cases, VOA-CIS achieves energetic accuracy comparable to much more expensive

methods and with a much cheaper cost.

Looking forward, our next goals in developing the VOA-CIS algorithm are threefold. 1. We

plan to optimize our VOA-CIS code, and implement a completely parallelizable algorithm.

2. We will explore the possibilities of incorporating triples excitations into the VOA-CIS
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algorithm for extra accuracy. 3. We will develop analytic gradients and derivate coupling for

VOA-CIS. In the end, we believe the VOA-CIS algorithm can become a robust algorithm

for studying electronic relaxation in almost all organic chromophores.
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4.4. Appendix

4.4.1. Table for Benchmark Molecules

We now list the individual excited state energies that were calculated and averaged together

to make up Figs. 4.6- 4.7. 28 molecules are included in the benchmark set of Thiel et al.

name #mol #S #CIS #V∗ CASPT2 CASPT2 CC2 CCSD CC3 Best ECIS E∗
V

Ethene 0 0 0 1 7.98 8.62 8.40 8.51 8.37 7.80 8.01 7.64

E-Butadiene 1 0 0 0 6.23 6.47 6.49 6.72 6.58 6.18 6.44 5.90

1 1 6 3 6.27 6.83 7.63 7.42 6.77 6.55 9.22 7.76

all-E- 2 0 0 0 5.01 5.31 5.41 5.72 5.58 5.10 5.47 4.96

Hexatriene 2 1 6 2 5.20 5.42 6.67 6.61 5.72 5.09 8.24 6.92

all-E- 3 0 3 1 4.38 4.64 5.87 5.99 4.97 4.47 7.50 6.32

Octatetraene 3 1 0 0 4.42 4.70 4.72 5.07 4.94 4.66 4.83 4.19

Cyclopropene 4 0 1 0 6.36 6.76 6.96 6.96 6.90 6.76 7.34 6.21

4 1 0 1 7.45 7.06 7.17 7.24 7.10 7.06 6.92 6.59

Cyclopentadiene 5 0 0 0 5.27 5.51 5.69 5.87 5.73 5.55 5.54 5.09

5 1 3 3 6.31 6.31 7.05 7.05 6.61 6.31 8.42 7.49

5 2 5 9 7.89 8.52 8.86 8.95 6.69 -0.00 8.92 8.86

Norbornadiene 6 0 0 0 5.28 5.34 5.57 5.80 5.64 5.34 5.67 5.18

6 1 1 1 6.20 6.11 6.37 6.69 6.49 6.11 7.25 6.50

6 2 3 5 6.48 7.32 7.65 7.87 7.64 -0.00 8.04 7.70

6 3 4 4 7.36 7.44 7.66 7.87 7.71 -0.00 8.27 7.57

Benzene 7 1 0 0 6.30 6.45 6.68 6.74 6.68 6.54 6.10 4.99

Naphthalene 8 0 1 1 4.03 4.24 4.45 4.41 4.27 4.24 5.24 4.70

8 1 0 0 4.56 4.77 4.96 5.21 5.03 4.77 5.09 4.50

8 2 5 6 5.39 5.90 6.22 6.23 5.98 5.90 7.34 6.96

8 3 2 2 5.53 6.00 6.21 6.53 6.07 6.00 6.77 6.42

8 3 2 4 5.53 6.00 6.21 6.53 6.07 6.00 6.77 6.69
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8 4 3 3 5.54 6.07 6.25 6.55 6.33 6.07 7.08 6.44

8 6 4 5 5.93 6.33 6.57 6.77 6.57 6.33 7.27 6.72

Furan 9 0 0 0 6.04 6.43 6.75 6.80 6.60 6.32 6.53 6.26

9 1 2 1 6.16 6.52 6.87 6.89 6.62 6.57 8.16 6.57

9 2 7 7 7.66 8.22 8.78 8.83 8.53 8.13 9.15 8.97

Pyrrole 10 0 2 1 5.92 6.31 6.61 6.61 6.40 6.37 7.65 6.43

10 1 0 2 6.00 6.33 6.83 6.87 6.71 6.57 6.78 6.70

10 2 8 8 7.46 8.17 8.44 8.44 8.17 7.91 8.89 8.63

Imidazole 11 0 1 0 6.52 6.81 6.86 7.01 6.82 6.81 7.21 6.23

11 1 0 1 6.72 6.19 6.73 6.80 6.58 6.19 7.07 6.52

11 2 3 3 7.15 6.93 7.28 7.27 7.10 6.93 7.96 7.15

11 3 2 2 7.56 7.91 8.00 8.15 7.93 -0.00 7.90 6.79

11 4 9 9 8.51 8.15 8.62 8.70 8.45 -0.00 9.33 8.78

Pyridine 12 0 1 1 4.84 5.02 5.32 5.27 5.15 4.85 6.19 5.48

12 1 0 0 4.91 5.14 5.12 5.25 5.05 4.59 6.13 5.44

12 2 6 6 5.17 5.47 5.39 5.73 5.50 5.11 8.61 8.08

12 3 2 3 6.42 6.39 6.88 6.94 6.85 6.26 6.51 6.68

12 4 4 5 7.23 7.46 7.72 7.94 7.70 7.18 8.42 7.99

12 5 5 4 7.48 7.29 7.61 7.81 7.59 7.27 8.44 7.86

Pyrazine 13 0 0 0 3.63 4.12 4.26 4.42 4.24 3.95 5.13 4.01

13 1 4 2 4.52 4.70 4.95 5.29 5.05 4.81 7.03 4.92

13 2 1 1 4.75 4.85 5.13 5.14 5.02 4.64 5.98 4.76

13 3 3 3 5.17 5.68 5.92 6.02 5.74 5.56 6.70 5.35

13 4 11 5 6.13 6.41 6.70 7.13 6.75 6.60 9.81 6.58

13 5 2 4 6.70 6.89 7.10 7.18 7.07 6.58 6.65 6.37

13 6 5 6 7.57 7.79 8.13 8.34 8.06 7.72 8.75 7.80

13 7 6 7 7.70 7.65 8.07 8.29 8.05 7.60 9.07 7.85

Pyrimidine 14 0 0 0 3.81 4.44 4.49 4.70 4.50 4.55 5.87 4.88

14 1 2 1 4.12 4.81 4.84 5.12 4.93 4.91 6.56 5.52

14 2 1 2 4.93 5.24 5.51 5.49 5.36 5.44 6.50 5.87

14 3 3 4 6.72 6.64 7.12 7.17 7.06 6.95 6.90 7.15
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14 4 7 7 7.32 7.64 8.08 8.24 8.01 -0.00 8.88 8.48

14 5 6 6 7.57 7.21 7.79 7.97 7.74 -0.00 8.61 8.06

Pyridazine 15 0 0 0 3.48 3.78 3.90 4.11 3.92 3.78 4.91 3.59

15 1 1 1 3.66 4.32 4.40 4.76 4.49 4.32 6.10 4.78

15 2 2 2 4.86 5.18 5.37 5.35 5.22 5.18 6.32 5.24

15 3 4 3 5.09 5.77 5.81 6.00 5.74 5.77 7.29 5.61

15 4 6 5 5.80 6.52 6.40 6.70 6.41 -0.00 8.43 7.00

15 5 3 4 6.61 6.31 7.00 7.09 6.93 -0.00 6.56 6.34

15 6 5 6 7.39 7.29 7.57 7.79 7.55 -0.00 8.32 7.43

15 7 7 7 7.50 7.62 7.90 8.11 7.82 -0.00 8.67 7.83

s-Tetrazine 17 0 0 0 1.96 2.24 2.47 2.71 2.53 2.24 3.52 1.83

17 1 1 1 3.06 3.48 3.67 4.07 3.79 3.48 5.67 3.61

17 2 2 2 4.51 4.73 5.10 5.32 4.97 4.73 6.08 4.53

17 3 3 4 4.89 4.91 5.20 5.27 5.12 4.91 6.24 4.76

17 4 4 3 5.05 5.18 5.53 5.70 5.34 5.18 6.56 4.72

17 6 5 5 5.28 5.47 5.50 5.70 5.46 5.47 6.65 5.12

17 7 9 6 5.48 6.07 6.32 6.76 6.23 -0.00 9.36 6.12

17 8 11 8 5.99 6.38 6.91 7.25 6.87 -0.00 9.79 6.77

17 10 8 9 6.37 6.77 6.70 6.99 6.67 -0.00 8.68 6.97

17 11 6 7 7.13 6.96 7.60 7.66 7.45 -0.00 6.88 6.52

17 12 7 10 7.54 7.43 7.75 8.06 7.79 -0.00 8.58 7.28

17 13 10 11 7.94 8.15 8.65 8.88 8.51 -0.00 9.53 8.35

Formaldehyde 18 0 0 0 3.91 3.98 4.09 3.97 3.95 3.88 4.46 2.93

18 1 1 2 9.09 9.14 9.35 9.26 9.18 9.10 9.62 9.04

18 2 2 3 9.77 9.31 10.34 10.54 10.45 9.30 9.67 9.05

Acetone 19 0 0 0 4.18 4.42 4.52 4.43 4.40 4.40 5.10 3.78

19 1 3 3 9.10 9.27 9.29 9.26 9.17 9.10 9.77 9.31

19 2 2 2 9.16 9.31 9.74 9.87 9.65 9.40 9.69 8.89

Formamide 21 0 0 0 5.61 5.63 5.76 5.66 5.65 5.63 6.42 5.25

21 1 2 1 7.41 7.44 8.15 4.52 8.27 7.44 8.82 6.84
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21 2 4 3 10.50 10.54 11.24 11.34 10.93 -0.00 10.57 8.37

Acetamide 22 0 0 0 5.54 5.80 5.77 5.71 5.69 5.80 6.58 5.26

22 1 2 2 7.21 7.27 7.66 7.85 7.67 7.27 9.02 7.07

22 2 4 3 10.08 10.09 10.71 10.77 10.50 -0.00 9.86 7.65

Propanamide 23 0 0 0 5.48 5.72 5.78 5.74 5.72 5.72 6.62 5.20

23 1 2 2 7.28 7.20 7.56 7.80 7.62 7.20 9.00 7.22

23 2 4 3 9.95 9.94 10.33 10.34 10.06 -0.00 9.82 7.73

Cytosine 24 0 0 0 4.39 4.68 4.80 4.98 -0.00 4.66 6.07 5.26

24 1 1 1 5.00 5.12 5.13 5.45 -0.00 4.87 6.85 5.39

24 2 2 2 6.53 5.54 5.01 5.99 -0.00 5.26 7.21 5.59

24 3 3 3 5.36 5.54 5.71 5.95 -0.00 5.62 7.45 6.21

24 4 5 6 6.16 6.40 6.65 6.81 -0.00 -0.00 7.99 7.30

24 5 10 9 6.74 6.98 6.94 7.23 -0.00 -0.00 9.04 7.82

Thymine 25 0 0 0 4.39 4.94 4.94 5.14 -0.00 4.82 6.23 4.80

25 1 1 1 4.88 5.06 5.39 5.60 -0.00 5.20 6.31 5.88

25 2 4 4 5.88 6.15 6.46 6.78 -0.00 6.27 8.24 7.17

25 3 3 2 5.91 6.38 6.33 6.57 -0.00 6.16 7.67 6.12

25 4 6 5 6.10 6.52 6.80 7.05 -0.00 6.53 8.65 7.45

25 5 7 6 6.15 6.86 6.73 7.67 -0.00 -0.00 8.88 8.09

25 6 5 7 6.70 7.43 7.18 7.87 -0.00 -0.00 8.58 8.15

25 7 8 8 7.13 7.43 7.71 7.90 -0.00 -0.00 9.59 8.63

Uracil 26 0 0 0 4.54 4.90 4.91 5.11 -0.00 4.80 6.22 4.81

26 1 1 1 5.00 5.23 5.52 5.70 -0.00 5.35 6.49 6.03

26 2 4 4 5.82 6.15 6.43 6.76 -0.00 6.26 8.36 7.16

26 3 2 2 6.00 6.27 6.73 7.68 -0.00 6.10 7.61 6.09

26 4 3 3 6.37 6.97 6.26 6.50 -0.00 6.56 7.82 7.13

26 5 5 5 6.46 6.75 6.96 7.19 -0.00 6.70 8.76 7.58

26 6 7 8 6.95 7.28 7.12 7.74 -0.00 -0.00 9.33 8.83

26 7 8 7 7.00 7.42 7.66 7.81 -0.00 -0.00 9.47 8.48

Adenine 27 0 0 0 5.13 5.20 5.28 5.37 -0.00 5.25 6.23 5.76

27 1 1 2 5.20 5.30 5.42 5.61 -0.00 5.25 6.37 5.89
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27 2 2 1 6.15 5.21 5.27 5.58 -0.00 5.12 7.05 5.80

27 3 4 3 6.86 5.97 5.91 6.19 -0.00 5.75 7.50 6.78

27 4 5 7 6.24 6.35 6.58 6.83 -0.00 -0.00 7.69 7.28

27 5 8 8 6.72 6.64 6.93 7.17 -0.00 -0.00 8.16 7.55

27 6 10 10 6.99 6.88 7.49 7.72 -0.00 -0.00 8.37 8.01

Table 4.4: A comparison of VOA-CIS energies with results from other excited-state ap-

proaches. Benchmark molecules and reference data taken from Ref. [4]. “Best” refers to

the data which Thiel et al estimated to be most reliable Ref. [4].

∗: “V” means VOA-CIS results.

Reprinted with permission from Ref. [7]. Copyright c©2014, American Chemical Society.
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CHAPTER 5 : The Fully Variatonal Orbital Adapted Configuration

Interaction Singles Method

This chapter is adapted from Ref. [97].
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5.1. Introduction

Calculating accurate excited states for photochemistry is a difficult problem, in no small

part because of the many practical requirements. For photochemistry, an accurate model

cannot be perturbative because state crossings are crucial for modeling relaxation; conical

intersections are of great interest. Furthermore, photochemistry requires sampling a large

configuration space of geometries, so that any useful must be very cheap. Finally, the dae-

mons of electron-electron correlation theory are always exposed in excited state calculations,

where one must calculate the relative energies of excited state with very different character

(some local excitations, some charge transfer (CT)) to within a kcal/mol. Altogether, these

requirements make up a significant challenge.

5.1.1. Overview of the Variational Orbital Adapted CIS (VOA-CIS)

In the previous chapters, we have proposed a new protocol for treating excited states based

on the concept of orbital adaptation. We will now briefly review the concept of orbital

adaptation in the context of wavefunctions theory. Recall that, according to configuration

intersection singles (CIS), one builds an excited state by making the ansatz that the state

should be an arbitrary combination of single excitations on top of a ground state reference.

Thus, a typical CIS wavefunction can be written as
∣∣ΨI

CIS

〉
=
∑
ai
taIi |Φa

i 〉. Usually, CIS

wavefunctions are qualitatively correct, but the energies of CIS states are not close to

chemical accuracy. In the context of photoexcitation experiments, whenever charge transfer

states arise, CIS fails miserably due to its overestimation of CT state excitation energies of

1-2 eV.[29]

With this in mind, in Chapter 2, we proposed a simple Orbital Optimized CIS (OO-CIS)

perturbative correction to CIS. The main idea of the OO-CIS correction was to correct the

molecular orbitals to better account for excited state density, rather than the HF ground

state. Recall that, according to the usual CIS procedure, the molecular orbitals are opti-

mized for the HF ground state only and then frozen for all subsequent CIS excited states.
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According to OO-CIS one can rotate the occupied space slightly in the virtual space (with

an amount depending on the specific state), and thus achieve a better representation of the

final wavefunction. For charge-transfer states, OO-CIS energies can be comparable to [30]

CIS(D)[2] energies (which are also perturbative).

Unfortunately, we have found that the perturbative nature of OO-CIS prevents any wide

applicability in photochemistry. First, for charge transfer states, we now believe that the

OO-CIS correction, while large, is still not big enough! Second, as a perturbative method,

OO-CIS is not appropriate for modeling any curve crossings. For these reasons, we have

come to realize that, to describe the electronic relaxation after photoexcitation, there may

be no substitute for a variational approach. Such a reasoning has led us to construct a

Variational Orbital Adapted CIS (VOA-CIS) ansatz. VOA-CIS is somewhat similar in

spirit both to Head-Gordon’s CIS(Dn)[62], Jorgensen’s CC(2)[64] and Matsika’s CIS(2)[74].

The basic premise is to “perturb-and-then-diagonalize”, rather than diagonalize and then

perturb (which is more common). VOA-CIS requires the diagonalization of the Hamiltonian

in a reduced subspace of single and double excitations.

As detailed Ref. [7, 55], there are several options available for a typical VOA-CIS calculation.

A VOA-CIS calculation can be specified by the notation VOA-CIS-C(n, m), where C, n,m

must be specified. Here, n is the number of CIS states to be included in a variational

calculation; one can consider this CIS subspace effectively an active space. m refers to the

number of double excitations included in our variational space, and C refers to treatment

of the ground state. In practice, in Ref. [7], we found that VOA-CIS-G(n, 2) yield the

consistently best results among all different options, and this will be the only method

against which we compare below. For a VOA-CIS-G(n, 2) calculation, one diagonalizes the

Hamiltonian in the following basis:

{
|ΦHF〉 ,

∣∣ΨI
CIS

〉
,
∑
ai

θIJai a
†
aai
∣∣ΦJ

CIS

〉}
(5.1)
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Here, the basis of double excitations are obtained by performing perturbation theory (similar

to those in OO-CIS). The θIJs are defined as:

−1

2
Y IJ
ai ≡ +

∑
bcjk

tcIk

〈
Φc
k

∣∣∣Ĥ a†aai

∣∣∣Φb
j

〉
tbJj (5.2)

= +
∑
bcj

(
tcIi t

bJ
j 〈cj || ab〉+ tcIj t

bJ
j 〈ci || ba〉

)
+
∑
bjk

(
taIk t

bJ
j 〈ij || bk〉+ tbIk t

bJ
j 〈ij || ka〉

)
θIJai ≡ − Y IJ

ai

εa − εi + EJ − EI
(5.3)

The total dimensionality of the basis is 1 + n + n2. All matrix elements necessary for the

diagonalization can be easily evaluated through second-quantization, as shown in Chapter

3.

5.1.2. Shortcomings of VOA-CIS

Despite our efforts, the VOA-CIS still has several shortcomings. First, the VOA-CIS al-

gorithm depends not only on the CIS subspace, but also on the specific choice of CIS

wavefunctions. Thus, the algorithm is not well-defined whenever there is a degeneracy of

CIS states. Second, because a set of CIS states (as ordered by energy) can change dra-

matically as a function of nuclear geometry, it would necessarily be difficult to construct a

stable gradient or derivative coupling for a set of VOA-CIS states (where amplitude response

would likely lead to numerical instabilities [98]).

5.1.3. Outline of This Chapter

With this history in mind, in Sec. 5.2 will introduce a fully variational VOA-CIS (FVOA-

CIS) algorithm, including all technical and computational details. The fundamental differ-

ence between FVOA-CIS and VOA-CIS is the choice of doubles space: whereas VOA-CIS

includes only a small set of doubles (as calculated by perturbation theory in Eqn. 5.1),

FVOA-CIS includes a more a larger (and thus more flexible) space of doubles; see Eqn. 5.4.
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Moreover, FVOA-CIS is fully variational–it depends only on the CIS subspace (rather than

on the individual of CIS eigenvectors) – so that a gradient and derivative coupling should

be possible. In Sec. 5.3, we will present an application to a model system. In Sec. 5.4, we

show FVOA-CIS computational cost might be reduced by starting with TDDFT orbitals

and amplitudes. Sec. 5.5 is a brief discussion and conclusion.

5.2. FVOA-CIS method

To construct a more general ansatz for the post-CIS wavefunction (which depends only on

the initial choice of CIS subspace), we will make the following Fully Variational Orbital

Adapted CIS (FVOA-CIS) ansatz:

|ΨFVOA-CIS〉 = +cHF |ΦHF〉+
∑
I

cICIS

∣∣ΨI
CIS

〉
+
∑
aiI

caiIa†aai
∣∣ΨI

CIS

〉 (5.4)

As constructed, the FVOA-CIS ansatz depends only the subspace of CIS states
{∣∣ΨI

CIS

〉}
.

The FVOA-CIS wavefunction is determined by diagonalizing the Hamiltonian in in a re-

duced basis
{
|ΦHF〉 ,

∣∣ΨI
CIS

〉
, a†aai

∣∣ΨI
CIS

〉}
and determining the ~c coefficients.

Let NOV be the number of occupied orbitals multiplied by the number of virtual orbitals,

NOV= NO×NV; in other words, NOV is the dimensionality of the singles block of the

Hamiltonian. And let n be the number of CIS wavefunctions that we include in our basis.

With this ansatz, it is obvious that the dimension of the FVOA-CIS variational ansatz is

1 + n + n × NOV. Thus, even within our reduced post-CIS scheme, one is not able to

diagonalize the Hamiltonian directly. Instead, one must invoke an iterative Davidson or

Davidson-Jacobi [72, 99, 100, 101, 102, 103] algorithm, and focus only on the lowest few

excited states (which are, after all, the only relevant states).
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5.2.1. Matrix Elements

In terms of analytical expressions, the necessary matrix element for FVOA-CIS are identical

to the matrix elements necessary for VOA-CIS. The latter matrix elements have already

been published in details elsewhere [7, 55] and are reproduced in the Appendix. In practice,

one requires matrix elements of the form
〈

ΨJ
CISa

†
jab |H| a

†
aaiΨ

I
CIS

〉
. Now,the only meaningful

algorithmic difference between a calculation of FVOA-CIS versus VOA-CIS wavefunctions

comes from the iterative nature of the former. While a VOA-CIS algorithm permits one

to calculate all necessary elements of the form 〈ΨL |H|ΨR〉 only once (before a large diag-

onalization), FVOA-CIS works iteratively–so that one must repeated form matrix-vector

products of the form H |ΨR〉.

5.2.2. Nonorthogonal Davidson Algorithm

One of the interesting details of the FVOA-CIS algorithm is the need to perform iterative

diagonalization in a nonorthogonal basis.

Given hermitian matrices H and S, a generalized (nonorthogonal) diagonalization must

satisfy the following equation: HU = SUE. In an ideal situation, where H and S are

diagonal dominant– i.e. absolute values of the off-diagonals are much smaller compared

with the difference of the diagonals– one can achieve cubic convergence with a generalized

Davidson Algorithm. The basic idea is the following.

One starts off, somehow, with a trial vector vi, which is (hopefully) not too far from the

true eigenvector yi of H. Let δi be the error. Then, the Rayleigh quotient θi and then the

residue vector ri can be written as:

θi =
vTi Hvi

vTi Svi

ri = Hvi − θiSvi

= −(H − θiS)δi

(5.5)
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To find the correction vector δi, one must construct the matrix inverse (H − θiS)−1, which

is why Davidson is called a “shift-and-invert” method. Assuming H and S are diagonal

dominant, one can safely approximate δi ≈ −(Hd − θiSd)−1ri, where Hd(Sd) are only the

diagonal elements of the H(S) matrix with all off-diagonals set to be zero. If H and S

are indeed diagonal dominant, the Davidson method converges cubically and is an effective

approach to diagonalization.

The above math assumed we were searching for only one root. To find multiple eigenvectors,

one can effectively retain the same procedure. Just as above, one builds and updates a search

subspace Vk. Within Vk, one must keep all trial eigenvectors orthogonal. If the dimension

of Vk, dim(span(Vk)) ever increases to the full dimensionality of the whole space d, one is

guaranteed to calculate the exact result but, in practice, convergence is usually achieved far

before dim(span(Vk)) gets close to d. For the case of the many eigenvectors, the generalized

Davidson algorithm in a nonorthogonal basis is shown in Alg. 5.1.
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Algorithm 5.1 Davidson diagonalization

1: . a set of orthonormal trial vectors

2: Guess the search space Vk ≡ {vi; i = 1 · · ·n}.

3: Interaction matrices H ′ and S′:  H ′ = vTHv

S′ = vTSv
(5.6)

4: . In the reduced space

5: Generalized diagonalization: H ′y = S′yΘ.

6: . Expand the trial vectors in the original (full) basis

7: Ritz vectors: u = vy.

8: for i= 1 : n do

9: Residual vector: ri ≡ Hui − θiSui. . θi = Θii

10: if ||ri|| ≥ ε then

11: Correction vector: ti = −(Hd − θiSd)−1ri.

12: end if

13: end for

14: . Check for convergence

15: if dim(span(Tk ≡ {tj , j = 1 · · ·m,m ≤ n}))= 0 then

16: exit. . Converged

17: else

18: if dim(span({Vk, Tk})) > max(span(Vk)) then

19: . Shrink the space as needed

20: Vk = {ui; i = 1 · · ·n}.

21: end if

22: end if

23: New trial space: V ′
k = {Vk, Tk}.

24: Go back to line 3 with V ′
k, until convergence on line 16.
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Now, the Davidson algorithm is very efficient with the “shift-and-invert” trick, when H and

S matrices are diagonal dominant; convergence can be painful otherwise. For a FVOA-CIS

calculation, one might wonder about how the Davidson algorithm would perform. After

all, the basis vectors in a FVOA-CIS calculation are strongly linearly dependent– so that

the absolute value of off-diagonal elements can be comparable or even much bigger than

the difference of the diagonal elements. Fortunately, in practice, we have consistently found

that convergence is not problematic and from our experience, FVOA-CIS is able to converge

in roughly 15 iterations.

5.2.3. FVOA-CIS-G vs FVOA-CIS-O

Before showing the results of FVOA-CIS calculations, there is one final nuance to be dis-

cussed, namely how to treat the ground state. There are effectively two possible options.

On the one hand, according to Eqn. 5.4, one option is optimize the ground state together

with the excited states. Unfortunately, for such an option, we find that vertical excited state

energies are usually too large; the ground state is somewhat overstabilized. This result is not

surprising, given the spectacular failures of CISDexcited state energies[55]. That being said,

the raw errors in FVOA-CIS excitation energies are not terrible (and nothing compared to

CISD energies). Henceforward, if the ground state is optimized iteratively along with the ex-

cited states (i.e. the Hamiltonian is diagonalized in the basis
{
|ΦHF〉 ,

∣∣ΨI
CIS

〉
, a†aai

∣∣ΨI
CIS

〉}
),

we will refer to such an algorithm the FVOA-CIS-G option.

Now, a second option is to optimize the excited states alone (i.e. diagonalize the Hamiltonian

in the basis
{∣∣ΨI

CIS

〉
, a†aai

∣∣ΨI
CIS

〉}
), and then, after such optimization, perform one more

diagonalization where we include the ground HF state. Such a procedure does ensure that

the excited states are orthogonalized relative to the ground state. We will refer to such an

algorithm as the FVOA-CIS-O option.

Empirically, we find that FVOA-CIS-G and FVOA-CIS-O excited states are almost always

identical, but FVOA-CIS-G and FVOA-CIS-O ground states can be significantly different.
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5.3. Results

The FVOA-CIS algorithm just proposed has been implemented in a developmental version

of the quantum chemistry package, Q-Chem[75]. As a test, we now report results for a key

model system (PYCM) that will stress the ability of the method to recover the correct ratio

between charge transfer and non-CT excited states. The molecule PYCM [2-(4-(Propan-2-

Ylidene) Cyclohexylidene)Malononitrile] is shown in Fig. 5.1. According to Ref. [54], one

can expect a low-lying CT state (where charge is transferred from the methylene unit to the

cyano groups) and another low-lying CT state (where the excitation is local to the cyano

groups).

5.3.1. Absorption

PYCM can be considered a donor-bridge-acceptor (DBA) system, where the donor (D) is

the alkene group and the acceptor (A) is the dicyano group. At the ground state geometry,

the lowest excitation (S1) in PYCM is a HOMO→ LUMO transition. Since the HOMO sits

on the D site and LUMO on the A site, S1 is a CT state and can be detected experimentally

by an absorption peak at 36800 cm−1 or 4.56 eV.[54] The locally excited state A → A∗ is

slightly higher, peaking at 43900 cm−1 or 5.44 eV. The reported measurements were made

at 20◦C in n-hexane, which is a nonpolar solvent, so the solvent effect should be minimal.[54]
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Figure 5.1: FVOA-CIS-G(n), FVOA-CIS-O(n) and VOA-CIS-G(n, 2) energies for PYCM,

as a function of n (the number of CIS states included in our active space [ see Eqn. 5.4]).

The reference energy is E = −571.5 a.u.. Each color represents a singlet state Si, i ∈ [0, 3].

In the limit that n → ∞, all methods will recover the CISD energies. Note that, for all

methods, one recovers the correct S1 state only when we include at least 7 CIS states.
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In Fig. 5.1, we plot the FVOA-CIS energies as function of the number of CIS states n

included in the active space. For comparison, we also plot VOA-CIS-G(n, 2) energies,

which were previously reported in Ref. [55]. The nuclear geometry has been optimized at

the MP2 level, For this calculation, and all subsequent calculations, we use the 6-31G*

basis and two-electron matrix elements are evaluated through the resolution of the identity

[57, 58], with the auxiliary rimp2-cc-pvdz basis set. In Ref. [55] we showed that, for this

system, the CIS excited state orderings are completely unreliable. Whereas the CT state

S7 according to CIS, VOA-CIS-G(n, 2) and TD-DFT (functional ωB97x) both (correctly)

assert that the CT state should be S1. Thus, in Fig. 5.1, one can observe a sharp dip

in the VOA-CIS S1 energy around n = 7. Moreover, also according to Ref. [55], CISD

gives abysmal excitation energies (38.41 eV)[7], because the ground state energy recovers a

disproportionate share of the correlation energy; by contrast, VOA-CIS-G(n, 2) achieves a

good balance between the ground state and excited states and the excitation energies (5.12

eV)[7] are pretty good. Let us now discuss the new FVOA-CIS results.

A comparison of ground states

From Fig. 5.1, it is clear that, in the treatment of the ground state, VOA-CIS, FVOA-

CIS-G, and FVOA-CIS-O all predict different structure. Empirically, it would appear that:

EFVOA-CIS-G(n)
g < EVOA-CIS-G(n, 2)

g < EFVOA-CIS-O(n)
g . We believe the first inequality should

always hold (for any molecular system): after all, FVOA-CIS-G fully optimizes the ground

state energy using all possible double excitations on top of the CIS active space (a†aai
∣∣ΨI

CIS

〉
);

see Eqn. 5.4. At the same time, for VOA-CIS-G(n, 2), one optimizes using only a much

smaller fraction of the doubles space. For this reason, raw excitation energies according to

FVOA-CIS-G will (unfortunately) depends strongly on the number of CIS states included

in the active space (n), while VOA-CIS-G(n, 2) and FVOA-CIS-O excitation energies will

be far less sensitive. Next, for the second inequality, it is not obvious why one should expect

EVOA-CIS-G < EFVOA-CIS-O; both methods would appear to contain very similar amounts of
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correlation energy. As such, we are hesitant to make any universal conclusions (from this

limited data set).

A comparison of excited states

With regards to excited state energies, FVOA-CIS-G and FVOA-CIS-O energies are almost

identical, which is a strong indication that the HF ground state does not interact strongly

with any one excited state; by contrast, the ground state correlation energy is entirely

dynamical in nature. Interestingly, VOA-CIS and FVOA-CIS are also parallel to each other

for all values of n and quite close in energy, so that one may conclude that full versus partial

orbital adaptation does not significantly affect the quality of the excited states. Thus, the

quality of the vertical excitations is defined by the quality the ground state and one’s ability

to generate a balanced description of the ground state. For n = 12, the calculated absorption

energies of S1 are 4.52 eV, 5.12 eV and 6.21 eV according to FVOA-CIS-O, VOA-CIS and

FVOA-CIS-G(compared with the experimental value 4.56 eV). For the S2−S1 energy gap,

all methods give the same value (1.07 eV).

Finally, as we mentioned above, one obvious problem with all of the methods just discussed

is the need to include at least 8 CIS states in the calculation (n ≥ 8) in order to recover a

reliable result for S1. The need for many CIS states can represent a significant computational

cost; an alternative approach (based on TD-DFT) will be discussed in Sec. 5.4.

5.3.2. Smooth PES and Emission

PYCM emission spectra are very interesting. Whereas the locally excited state decays radi-

ationlessly, CT state shows a broad structureless fluorescence, whose position and intensity

are sensitive to the polar or nonpolar solvents.[54] Verhoeven et al expected PYCM to show

an avoided crossing between the S1 and S2 states, with a cis-trans transformation τ along

the ethylenic double bond with reaction coordinate τ (the angle of rotation). Thereafter,

around near τ = 90◦, Verhoeven et al predicted a crossing between the S1 and S0 states (as
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is the case for ethylene [3, 77]), thus allowing a complete (radiationless) decay back to the

ground state. See Figure 7 in Ref. [54] for the intuitive details predicted by Verhoeven.

In Ref. [7], by building an accurate PES along the torsional angle τ (from 0◦ to 90◦),

we largely verified the Verhoeven view of electronic relaxation in PYCM. The previously

published VOA-CIS data[7] is shown in Fig. 5.2. To construct this graph, we used a nuclear

geometry optimized for the S1 excited state, (at the level of CIS and basis set of 6-31G*),

and then, after fixing all other molecular coordinates, we rotated only the dihedral angle τ .

The data is shown in Fig. 5.2 for τ ranging from 0◦ to 100◦. As one can see, according to

VOA-CIS there is a simple crossing between S2 and S1, and a very complicated crossing

between S1 and S0. We will now follow the same procedure for FVOA-CIS.

110



0 20 40 60 80 1000

1

2

3

4

5

6

7

8

9

10

τ(°)

E(
eV

)

 

 

VOACIS−G(n, 2)
FVOACIS−G
FVOACIS−O

Figure 5.2: VOA-CIS-G(12, 2), FVOA-CIS-G(12) and FVOA-CIS-O(12) energies for

PYCM, as a function of torsional angle τ . The reference energy is E = −571.5 a.u.. Each

color represents a singlet state Si, i ∈ [0, 3]. Note that only FVOA-CIS-G recovers the

correct shape of the S1 − S0 avoided crossing around τ = 90◦.
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Ground state - excited state crossing

Fig. 5.2 shows the S0−S3 PESs as a function of τ , as predicted from FVOA-CIS-G, FVOA-

CIS-O and VOA-CIS. As would be expected, FVOA-CIS-G energies are strictly lower than

VOA-CISand FVOA-CIS-Oenergies, and FVOA-CIS-O energies can be larger or smaller

than VOA-CIS energies,

Focusing first on the ground state, we find (as before) the FVOA-CIS-G and FVOA-CIS-O

can differ a lot– the difference is roughly 1eV far away from the S1−S0 crossing. As stated

earlier, this difference stems for the overstabiliziation of the CISD ground state. At the

same time, the FVOA-CIS-O ground state energy is very close to EHF far away from the

S1 − S0 crossing; the FVOA-CIS-O approach does not significantly add correlation energy

if the ground state is well separated from the excited states.

Let us now focus on the crossing region, where E1 − E0 is very small (around τ = 90).

At this geometry, there is a very strong interaction between S0, S1 and the ground-state

picks up static (and not just dynamic) correlation. Unfortunately, here we find that VOA-

CIS and FVOA-CIS-O fail mostly because neither method introduces enough correlation

energy to the ground state. Both methods predict an erroneous local minimum in the

ground state energy at τ = 90 and the topology does not resemble a typical crossing (as

would be expected). Both methods also fail to predict a strong minimum in the S1 excited

state energy at τ = 90. By contrast, when we fully optimize the ground and excited state

energies, with FVOA-CIS-G, we find a relatively simple avoided crossing between S0 and

S1. Overall, this data highlights the fact that, near a S1−S0, there is no substitute for full

optimization (FVOA-CIS-G).

Relative Excitation Energies

It is important to note that, although FVOA-CIS-G and FVOA-CIS-O S0 can differ by

nearly 1.5eV, both methods give almost identical predictions for raw excited state energies.
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This agreement confirms our intuition that the G/O distinction should not affect the relative

energies in the excited space. In fact, we find that both FVOA-CIS algorithms are almost

always parallel to and thus consistent with VOA-CIS as before. In particular, both FVOA-

CIS methods do recover the simple S2 − S1 crossing around τ ≈ 40◦.

Thus, in the end, we can make the following conclusions: (i) only the FVOA-CIS-G PESs

are fully consistent with the Verhoeven picture of electronic relaxation [54] and recover both

the S2 − S1 and S1 − S0 crossings; (ii) near the ground-state geometry, the FVOA-CIS-O

option gives the best vertical excitation energies (E1 − E0).

5.4. Discussion: FVOA-CIS with DFT orbitals and TDDFT amplitudes

One of the biggest drawbacks of any post-CIS excited state method is that CIS often yields

completely unreliable excited state orderings and, thus, any post-CIS rediagonalization must

include a large number of CIS states. For instance, as discussed above, for PYCM the CT

enters as S7 according to CIS. Thus, we must use at least n ≥ 7 (and n ≥ 10 is better)

for convergence, and the computational cost of FVOA-CIS scales sharply with n. Given

this drawback and given the fact that TD-DFT often does a better job in state-ordering

(certainly, for PYCM [7]), it is appealing to apply a FVOA-CIS rediagonalization on top

of a set of TD-DFT states. In other words, one can simply run the FVOA-CIS algorithm

with DFT orbitals (instead of HF orbitals) and TD-DFT amplitudes (in the Tamm-Dancoff

approximation) rather than CIS amplitudes. Here, the motivation would be that long-range

TDDFT corrections usually do a better job of describing CT states than almost all other

options, and thus, with a good functional, TD-DFT states are more likely to be a better

starting point for further optimization. For example, Davidson showed long ago that DFT

orbitals are closer to Dyson orbitals than HF orbitals[104].
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Figure 5.3: FVOA-CIS-G(n) and FVOA-CIS-O(n) energies for PYCM from TDDFT molec-

ular orbitals (ωB97x) and singles amplitudes, as a function of torsional angle n. The ref-

erence energy is E = −571.5 a.u.. Each color represents a singlet state Si, i ∈ [0, 3]. Note

that, unlike the case of CIS (see Fig. 5.1), there is no state reordering if we use TD-DFT

excited states with DFT molecular orbitals to form an active space.
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In Fig. 5.3, we graph the FVOA-CIS energies as a function of n, only now using DFT

molecular orbitals and TD-DFT/TDA singles amplitudes. Several conclusions are imme-

diate from this graph. First, the FVOA-CIS-G and FVOA-CIS-O ground states do differ

for the ground state, just as was discussed above for the case of HF orbitals/CIS ampli-

tudes. Second, and more interestingly, one finds very different behavior when comparing

FVOA-CIS excited states. In contrast to the case of HF/CIS, when we use DFT orbitals

and TD-DFT/TDA singles amplitudes (with the ωB97x pseudopotential), we clearly do not

see any sharp features that indicate state reordering. Within the FVOA-CIS doubles space,

rediagonalization using TD-DFT states (rather than CIS states) gives reasonably converged

excited state energies with only n = 2 (where CIS requires n ≥ 7). If such improved con-

vergence is general, one might consider replacing a CIS subspace with a TD-DFT/TDA

subspace more generally for the computational savings. However, that being said, one

should note that the final FVOA-CIS-O energy (as calculated with TD-DFT) is better with

HF orbitals rather than TD-DFT orbitals (which is not surprising – TD-DFT states are

calculated with pseudopotentials rather than the exact Hamiltonian). Thus, replacing CIS

with TD-DFT for a post-TDDFT correction may not be as simple as a free lunch.

5.5. Conclusion

We have presented two slightly different variations of a fully variational orbital adaptation

scheme to improve upon CIS excited state energies. The results of our efforts are mixed.

Let ∆E1 = E1−E0. On the one hand, given that FVOA-CIS-G is the only accurate method

near a S1 − S0 avoided crossing (∆E1 small), one might recommend the G algorithm for

studying photochemistry. On the other hand, given FVOA-CIS-O reproduces better vertical

excitation energies for near the equilibrium ground state geometry (∆E1 large), one might

prefer the O algorithm. In general, neither method is completely satisfactory. With this in

mind, it is very tempting to interpolate between these two extreme methods using ∆E1 as
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a guide:

∣∣ΨI
FVOA-CIS

〉
= α(∆E1)

∣∣ΨI
FVOA-CIS-G

〉
+ β(∆E1)

∣∣ΨI
FVOA-CIS-O

〉
(5.7)

Here, one would choose α and β as functions of the energy gap ∆E1 = E1 − E0, such that

α(∆E1) + β(∆E1) = 1. We should then require:

 lim∆E1→0 α = 1, lim∆E1→0 β = 0

lim∆E1→∞ α = 0, lim∆E1→∞ β = 1
(5.8)

Obviously, fitting FVOA-CIS data with an empirical parameter would make the method no

longer strictly ab initio. That being said, however, such interpolation might be a good idea

in general, given the difficulty of finding a good size-extensive method that is also able to

correctly treat ground-excited state crossings. Clearly, the gradient of such an interpolated

scheme would be easy to calculate, but a derivative coupling would be difficult. Given the

difficulty of reproducing accurate and cheap excited state PESs for photochemistry, future

work may well investigate such an interpolated approach.
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CHAPTER 6 : Conclusion and Future Directions
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In this thesis, we have proposed a series of three different ab initio quantum chemistry

methods for modelling molecular excited states, especially in the context of photochemistry,

and balancing non-charge transfer and charge transfer states:

• Orbital Optimized Configuration Interaction Singles (OO-CIS): Perturbative;

• Variatonal Orbital Adapted Configuration Interaction Singles (VOA-CIS) with 9 op-

tions: Variational;

• Fully Variatonal Orbital Adapted Configuration Interaction Singles (FVOA-CIS) with

2 options: Variational.

Each method has been carefully studied and benchmarked in order to assess speed vs.

accuracy. We have shown the second and third options are able to balance non-CT vs CT

excited state energies. We hope that these methods will play important roles in future

electronic structure calculations, and will certainly inspire other post-CIS corrections for

wavefunction theory. In addition to any success we have had, there are many low-lying

fruits to be seized upon for these current projects:

• Parallelization. We have already implemented pieces of code for the algorithms

above with OpenMP [105], and we can reduce the wall time needed for medium-sized

molecules. We are reasonably confident, however, that the total wall time can be

further optimized, either with OpenMP or MPI.

• Analytic Gradient. As mentioned in Chapter 5, perhaps the primary motivation

for a fully variational FVOA-CIS method is the need for globally smooth PESs with

analytical gradient. With a fully variational method, constructing a gradient should

now be both practical and numerically stable.

• Conical Intersections. Though Chapter 4 and Chapter 5 provide a demonstration

of the VOA-CIS and FVOA-CIS algorithms near an avoided crossing, no applications

have been made yet regarding true conical intersections. Such calculations might be
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very instructing as far as assessing how the location of conical intersections change

when correlation energy is included at a higher level.

• Chemical Dynamics. Finally, our group has done a lot of work in the realm of

chemical dynamics, but thus far all ab initio work has been done only at the CIS

theoretical level– presumably limited by the huge computational cost of electronic

structure. Once better parallelization is realized, one would love to explore chemical

dynamics with optimal PESs. Our instinct is that, using VOA-CIS or FVOA-CIS,

one might well discover some rich new physics.
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