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Abstract
Ischemic brain injury represents a major cause of death and disability. Developing targeted therapies for
neuroprotection requires increased understanding of the molecular mechanisms of neuronal injury following
ischemia. Both disruption of Ca2+ homeostasis and pathological activation of proteases are believed to play
causal roles in delayed neuronal death after ischemia-reperfusion. Presented here are data supporting a novel
role for proteolysis of an intracellular Ca2+ release channel, inositol 1,4,5-trisphosphate receptor (InsP3R), in
ischemic brain injury. We identified a unique calpain cleavage site in the type 1 InsP3R (InsP3R1) and utilized
a recombinant truncated form of the channel (capn-InsP3R1) to investigate the functional consequences of
InsP3R1 proteolysis. Using a combination of single-channel electrophysiology and single-cell Ca2+ imaging,
we determined that capn-InsP3R1 has InsP3-independent gating and constitutive channel activity. This
constitutive channel activity decreased Ca2+ content of intracellular stores in Neuro-2A cells by increasing
endoplasmic reticulum (ER) Ca2+ leak. Additionally, capn-InsP3R1 compromised ER Ca2+ buffering capacity
in primary cortical cultures, leading to decreased neuronal viability and enhanced sensitivity to excitotoxic
injury. Using stereotaxic intracerebral injection of viral vectors, we transduced neurons in vivo with capn-
InsP3R1 and observed spontaneous degeneration of subpopulations of neurons in the hippocampus.
Together, these results reveal a previously unknown role of calpain-cleaved InsP3R1 in disruption of
intracellular Ca2+ homeostasis and neuronal death. Importantly, we also provide evidence of calpain-mediated
proteolysis of InsP3R1 in neurons in the cerebellum after ischemic brain injury. The findings presented here
provide the first functional studies of calpain-cleaved InsP3R1, and advance our understanding of the
pathological role of the cleaved channel in neurodegeneration. Inhibiting Ca2+ release through calpain-
cleaved InsP3R1 may emerge as a novel therapeutic strategy for intervention in ischemic brain injury and
other neurodegenerative diseases associated with disruption of Ca2+ homeostasis.
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ABSTRACT 
 

 

NEUROPATHOLOGIC ROLE OF INOSITOL (1,4,5)-TRISPHOSPHATE 

RECEPTOR PROTEOLYSIS 

 

Catherine M. Kopil 

Robert W. Neumar 

 

Ischemic brain injury represents a major cause of death and disability.  Developing 

targeted therapies for neuroprotection requires increased understanding of the molecular 

mechanisms of neuronal injury following ischemia.  Both disruption of Ca2+ homeostasis 

and pathological activation of proteases are believed to play causal roles in delayed 

neuronal death after ischemia-reperfusion.  Presented here are data supporting a novel 

role for proteolysis of an intracellular Ca2+ release channel, inositol 1,4,5-trisphosphate 

receptor (InsP3R), in ischemic brain injury.  We identified a unique calpain cleavage site 

in the type 1 InsP3R (InsP3R1) and utilized a recombinant truncated form of the channel 

(capn-InsP3R1) to investigate the functional consequences of InsP3R1 proteolysis.  Using 

a combination of single-channel electrophysiology and single-cell Ca2+ imaging, we 

determined that capn-InsP3R1 has InsP3-independent gating and constitutive channel 

activity.  This constitutive channel activity decreased Ca2+ content of intracellular stores 

in Neuro-2A cells by increasing endoplasmic reticulum (ER) Ca2+ leak.  Additionally, 

capn-InsP3R1 compromised ER Ca2+ buffering capacity in primary cortical cultures, 



 vi 

leading to decreased neuronal viability and enhanced sensitivity to excitotoxic injury.  

Using stereotaxic intracerebral injection of viral vectors, we transduced neurons in vivo 

with capn-InsP3R1 and observed spontaneous degeneration of subpopulations of neurons 

in the hippocampus.  Together, these results reveal a previously unknown role of calpain-

cleaved InsP3R1 in disruption of intracellular Ca2+ homeostasis and neuronal death.  

Importantly, we also provide evidence of calpain-mediated proteolysis of InsP3R1 in 

neurons in the cerebellum after ischemic brain injury.  The findings presented here 

provide the first functional studies of calpain-cleaved InsP3R1, and advance our 

understanding of the pathological role of the cleaved channel in neurodegeneration.  

Inhibiting Ca2+ release through calpain-cleaved InsP3R1 may emerge as a novel 

therapeutic strategy for intervention in ischemic brain injury and other neurodegenerative 

diseases associated with disruption of Ca2+ homeostasis.   
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INTRODUCTION 
 

 

The long-term goal of this project is to understand the mechanisms of neuronal 

Ca2+ dysregulation that contribute to delayed neuronal death after ischemic brain injury.  

Ca2+ homeostasis in post-ischemic neurons is potentially disrupted by proteolytic 

modification of Ca2+ regulatory proteins.  This dissertation focuses on calpain-mediated 

cleavage of the endoplasmic reticulum (ER) Ca2+ release channel inositol (1,4,5)-

trisphosphate receptor (InsP3R).  Previously published studies and data presented in this 

dissertation suggest that type 1 InsP3R (InsP3R1) is a target for proteolysis following 

ischemia, and that the cleaved channel has dysregulated gating and leaks Ca2+ from ER 

stores.  Based on these findings, we hypothesize that calpain proteolysis of InsP3R1 plays 

a causal role in Ca2+ dysregulation and neuronal death following ischemic brain injury.  

The results presented in this thesis provide fundamental understanding of the mechanisms 

by which calpain proteolysis of InsP3R1 could cause neurodegeneration through 

pathological disruption of intracellular Ca2+ homeostasis.   

 

Ischemic Brain Injury 
 

Each year, more than 300,000 people in the United States suffer global brain 

ischemia due to cardiac arrest (Lloyd-Jones et al., 2010), often resulting in death or 

severe, long-term disability (CDC, 2001).  Despite extensive clinical and basic science 

research in ischemic brain injury, the prognosis for patients remains poor.  Treatment for 
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cardiac arrest targets early reperfusion and restoration of blood flow, as the severity of 

neurological injury depends on the duration of ischemia.  Periods of ischemia that are 

sufficient to trigger depolarization of neuronal plasma membranes are widely known to 

activate molecular injury mechanisms leading to neuronal death (Kristian and Siesjo, 

1998; Neumar, 2000; Szydlowska and Tymianski, 2010).  In global brain ischemia, as 

occurs with cardiac arrest, ischemia-induced membrane depolarization occurs within 1 or 

2 min of cessation of blood flow (Nakashima et al., 1995).  Resuscitation and survival 

after prolonged cardiac arrest is uncommon.  Thus, nearly all patients who are 

successfully resuscitated experience brief to intermediate durations of ischemic 

depolarization (5 to 30 min) followed by reperfusion (Neumar, 2000).  Reperfusion after 

these durations of global ischemia typically results in initial restoration of adenosine 

trisphosphate (ATP) synthesis (Sims, 1992) and neuronal membrane repolarization 

(Silver and Erecinska, 1992).  Despite this apparent return of physiological function 

however, subpopulations of neurons eventually undergo delayed cell death following 

ischemia-reperfusion. 

Interestingly, transient global brain ischemia results in selective 

neurodegeneration.  Vulnerable neuron populations include CA1 pyramidal neurons in 

hippocampus, Purkinje cells in cerebellum, small and medium spiny neurons in the 

dorsolateral striatum, and neurons in layers 3 and 5 of cortex (Pulsinelli et al., 1982; 

Smith et al., 1984; Pulsinelli, 1985; Katz et al., 1995; Yamashima et al., 2003; Hara et al., 

2007).  Cells outside of these selectively vulnerable areas are usually unaffected by brief 

durations of ischemia experienced by most cardiac arrest survivors.  Within the 

vulnerable brain regions, neuronal death is delayed hours to days after the initial ischemic 
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event (Kirino, 1982; Pulsinelli et al., 1982; Kirino et al., 1984; Smith et al., 1984; 

Yamashima et al., 2003).  Therefore, there is a potentially wide therapeutic window for 

neuroprotective interventions following cardiac arrest and ischemic brain injury.   

Identifying the molecular events that cause delayed post-ischemic neuronal death 

is essential to developing innovative, targeted therapies.  However, nearly 3 decades after 

delayed neuronal death was first documented, the precise mechanisms responsible are not 

yet fully understood. Impaired Ca2+ homeostasis, pathological protease activation, 

mitochondrial dysfunction, activation of the unfolded protein response, altered gene 

expression, and inflammation have all been identified as molecular mechanisms of post-

ischemic neuronal injury (Kristian and Siesjo, 1998; Fiskum et al., 1999; Neumar, 2000; 

Paschen and Mengesdorf, 2005; Zipp and Aktas, 2006; Bevers and Neumar, 2008; 

Szydlowska and Tymianski, 2010).  Cross-talk between these pathways has been well 

established, and may play a critical role in the ultimate execution of cell death following 

ischemia-reperfusion.  Particularly relevant to this dissertation, protease-mediated 

cleavage of Ca2+ regulatory proteins has emerged as a novel mechanism that links 

pathological activation of proteases to irreversible disruption of neuronal Ca2+ 

homeostasis (Bevers and Neumar, 2008).  Proteolytically modified Ca2+ channels that 

become dysregulated following cleavage could represent novel therapeutic targets for 

reducing neuronal pathology and degeneration after ischemic brain injury. 

Disruption of Neuronal Ca2+ Homeostasis during Ischemia and Reperfusion 
 

Calcium is a universal intracellular messenger, essential to proper neuronal 

function and survival.  A diverse array of ion channels, buffers, pumps and exchangers 
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work in concert to allow for dynamic and tight regulation of neuronal Ca2+ signaling 

(Berridge et al., 2000; Berridge et al., 2003).  Disruption of these molecular Ca2+-

homeostatic mechanisms can serve as a trigger for cell death (Berridge et al., 2000; 

Berridge et al., 2003; Orrenius et al., 2003; Mattson, 2007; Zhivotovsky and Orrenius, 

2011).  Brain ischemia and reperfusion dramatically disrupts neuronal Ca2+ homeostasis, 

and there is compelling evidence for a causal role of Ca2+ overload in post-ischemic 

neuronal death. 

Ischemic Depolarization 
 

Brain ischemia initiates a number of cellular events that dramatically increase 

cytoplasmic free Ca2+ concentration ([Ca2+]i) in neurons.   Loss of blood flow to the brain 

results in oxygen and glucose deprivation, which depletes neuronal energy stores 

(Dirnagl et al., 1999).  Without ATP, neurons are unable to maintain the electrochemical 

gradients across their plasma membrane.  This ischemic depolarization activates voltage-

gated Ca2+ channels, leading to Ca2+ influx from the extracellular space.  Depolarization 

and elevated presynaptic [Ca2+]i stimulate release of neurotransmitters, including the 

excitatory amino acid glutamate.  Glutamate, in turn, acts to further increase [Ca2+]i 

through activation of its postsynaptic ionotropic and metabotropic receptors (Michaelis, 

1998).  Glutamate binding to N-methyl-D-aspartate (NMDA) receptors enhances neuronal 

Ca2+ influx, where as binding to G-protein coupled receptors releases Ca2+ from 

intracellular stores via InsP3 signaling.  In addition to ATP depletion and membrane 

depolarization, changes in cellular pH and production of reactive oxygen species (ROS) 

associated with ischemia increase [Ca2+]i through activation of Ca2+-permeable transient 
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receptor potential channels (Aarts et al., 2003) and acid-sensing ion channels (Allen and 

Attwell, 2002; Xiong et al., 2004).   

Ischemia also impairs normal cellular mechanisms for removing Ca2+ from the 

cytoplasm. Sustained depolarization and loss of the Na+ gradient changes the direction of 

the Na+/Ca2+ exchanger (NCX), transporting Na+ out of the cell and Ca2+ into the cell 

(Jeffs et al., 2007).   Additionally, depleted energy stores during ischemia prevent energy-

dependent Ca2+ pumps, located on intracellular stores and the plasma membrane, from 

removing Ca2+ from the cytoplasm.  In global ischemia, these aberrant Ca2+ signaling 

events and the resulting elevation in [Ca2+]i can occur to varying degrees in all neurons 

throughout the brain.   

Changes in [Ca2+]i with Ischemia-Reperfusion 
 

In selectively vulnerable neurons, ischemia-induced disruption of neuronal Ca2+ 

homeostasis generates a 100- to 1,000-fold transient increase in [Ca2+]i.  Intracellular 

microelectrode measurements from CA1 hippocampal neurons in vivo have demonstrated 

an increase in [Ca2+]i from a baseline of 60-90 nM to a peak of 20-200 µM with 8 min of 

low-flow ischemia (Silver and Erecinska, 1990; Erecinska and Silver, 1992; Silver and 

Erecinska, 1992). Interestingly, measurements from CA3 hippocampal neurons in the 

same animals revealed changes in [Ca2+]i that were much smaller (mean peak ~3 µM) 

than those observed in CA1 neurons (Erecinska and Silver, 1992; Silver and Erecinska, 

1992). Increases in neuronal [Ca2+]i during ischemia correspond to a modest, but 

significant decrease in extracellular [Ca2+] ([Ca2+]e), suggesting that Ca2+ influx from the 
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extracellular space is primarily responsible for the initial rise in [Ca2+]i (Nicholson et al., 

1977; Hansen, 1985; Silver and Erecinska, 1992).   

With restoration of blood flow, energy stores are replenished (Sims, 1992) and 

neurons are able to repolarize (Silver and Erecinska, 1992).  As a result, physiological 

Ca2+ homeostasis is restored in neurons. Specifically, [Ca2+]i returns to pre-ischemic 

levels within 20 min and [Ca2+]e reaches baseline levels with longer periods of 

reperfusion (Silver and Erecinska, 1990, 1992).  The repolarization of neuronal 

membranes and reinstatement of normal [Ca2+]i following reperfusion proves that 

vulnerable neurons are not dead immediately following ischemic brain injury.  This 

highlights the truly delayed nature of post-ischemic neurodegeneration, and suggests that 

secondary damage is responsible for neuronal death.  

A secondary rise in [Ca2+]i occurs selectively in neurons that undergo delayed cell 

death after ischemia.  Microelectrode measurements from CA1 hippocampal neurons 

indicate that a second rise in [Ca2+]i begins as early as 2 h following ischemia-reperfusion 

(Silver and Erecinska, 1992).  More crude measurements of total tissue [Ca2+] or 

ultrastructural localization of neuronal Ca2+ deposits reveal significant accumulation of 

Ca2+ hours to days after ischemia, depending on the injury severity and animal model 

(Simon et al., 1984; Deshpande et al., 1987; Kumar et al., 1987; Martins et al., 1988). 

These secondary rises in [Ca2+]i are specific to selectively vulnerable neurons and do not 

occur in CA3 pyramidal cells or other neuronal populations that exhibit limited signs of 

injury following ischemia (Martins et al., 1988; Silver and Erecinska, 1992).  

Importantly, the secondary rise in [Ca2+]i and intracellular accumulation of Ca2+ 

following ischemia-reperfusion consistently precede histological evidence of 
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neurodegeneration.  This suggests that delayed, secondary elevation of [Ca2+]i may signal 

or initiate neuronal cell death.  In contrast to the initial, reversible increase in [Ca2+]i  

following ischemia, which is predominately related to Ca2+ influx from the extracellular 

space, the source of the secondary increase in neuronal [Ca2+]i is unknown. 

How might delayed, secondary rises in [Ca2+]i lead to execution of neuronal 

death?  Sustained elevations in [Ca2+]i could exert adverse effects by acting directly or 

indirectly on numerous cell death pathways.  For example, Ca2+ could trigger delayed 

post-ischemic neurodegeneration through oxidative stress and mitochondrial dysfunction, 

or by pathological activation of phosopholipases, endonucleases, and proteases (Kristian 

and Siesjo, 1998; Neumar, 2000; Szydlowska and Tymianski, 2010). Ca2+-dependent 

activation of cytoplasmic calpain proteases in particular provides a potentially important 

feed-forward mechanism for executing cell death.  Calpains have been shown to cleave a 

number of Ca2+ regulatory proteins following ischemia, leading to altered substrate 

function (Bevers and Neumar, 2008; Vosler et al., 2008).  Dysfunction of Ca2+ regulatory 

proteins mediated by calpain proteolysis likely contributes to the delayed, secondary rise 

in [Ca2+]i, and could lead to further activation of calpains and eventual necrotic cell death.  

Alterations in [Ca2+] within Intracellular Organelles During Ischemia-Reperfusion 
 

Mitochondria and the ER play critical roles in neuronal Ca2+ homeostasis 

(Berridge et al., 2000; Berridge et al., 2003; Gleichmann and Mattson, 2011; Stutzmann 

and Mattson, 2011).  Not surprisingly, ischemia-reperfusion dramatically alters Ca2+ 

uptake and release from these intracellular organelles.  Dysfunction of normal Ca2+ 
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signaling from mitochondria and the ER is likely an important component of the dynamic 

and pathological changes in [Ca2+]i following ischemia.  

Neuronal mitochondria can serve as a sink for pathological Ca2+ overload 

(Nicholls, 1985).  Micromolar [Ca2+] in the cytoplasm during ischemia provides optimal 

conditions for mitochondrial Ca2+ uptake through the mitochondrial uniporter (Colegrove 

et al., 2000; Collins et al., 2001).  Data from ischemic brain tissue reveal a transient rise 

in mitochondrial [Ca2+] ([Ca2+]m) within 10 to 20 min of reperfusion (Dux et al., 1987; 

Zaidan and Sims, 1994)).  The timing of the increased [Ca2+]m corresponds to the 

decrease in [Ca2+]i immediately following reperfusion, suggesting that mitochondria 

sequester Ca2+ from the cytoplasm after ischemia.  [Ca2+]m also returns to baseline after 

longer periods of reperfusion (Simon et al., 1984; Dux et al., 1987; Zaidan and Sims, 

1994) and normal cellular metabolism is restored to neurons (Arai et al., 1986).  Similar 

to temporal perturbations in [Ca2+]i described above, delayed secondary increases in 

[Ca2+]m have been observed in neurons that go on to die after ischemia (Dux et al., 1987; 

Zaidan and Sims, 1994).  Although the time course of the secondary increase in [Ca2+]m 

is variable depending on the model and severity of injury, it reliably precedes histological 

evidence of neuronal death.  Excessive accumulation of Ca2+ in the mitochondrial matrix 

can impair ATP synthesis, increase ROS production, alter mitochondrial membrane 

permeability, and cause the release of pro-apoptotic factors (Starkov et al., 2004).  Many 

of these pathological consequences of mitochondrial Ca2+ overload are involved in the 

execution of cell death following ischemia-reperfusion (Neumar, 2000; Starkov et al., 

2004). 
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Evidence for the role of disrupted ER Ca2+ homeostasis in post-ischemic neuronal 

death primarily comes from studies examining ER Ca2+ uptake and release in ischemic 

tissue or in vitro models.  Although not well characterized, there are most likely two 

distinct phases of ER Ca2+ regulation following ischemia—early accumulation and 

subsequent release (Chen et al., 2008).  With restoration of energy stores following early 

reperfusion, the ER likely sequesters cytoplasmic Ca2+ through activation of the 

sacroplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump, contributing to the 

return to resting [Ca2+]i.  Indeed, data support the idea of increased ER Ca2+ filling at 

early time points after ischemia in vitro (Chen et al., 2008; Sirabella et al., 2009).  At 

later time points following ischemia-reperfusion, Ca2+ release from the ER may critically 

contribute to neuronal injury and Ca2+-mediated death.  This hypothesis is supported by 

evidence that: 1) ER Ca2+ release significantly contributes to elevated [Ca2+]i in in vitro 

models of ischemia (Mitani et al., 1993; Pisani et al., 2000), 2) preventing Ca2+ release 

through ER channels is neuroprotective in vivo (Wei and Perry, 1996; Rao et al., 2000), 

and 3) neuronal ER Ca2+ stores in vivo are relatively depleted at later time points 

following ischemia-reperfusion (Kohno et al., 1997; Xing et al., 2004).  

While disruption of mitochondrial and ER Ca2+ homeostasis can both 

independently contribute to neuronal injury following ischemia, coupling of Ca2+ 

signaling between these organelles suggests that these pathological pathways also 

overlap.  Close proximity of mitochondria to the ER provides a privileged environment 

for high [Ca2+] microdomains (Csordas et al., 2006; Csordas et al., 2010).  The physical 

and functional connection between mitochondria and the ER may make mitochondria 

more prone to Ca2+ overload (Pinton et al., 2008).  This effect may potentially explain the 
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secondary rise in [Ca2+]m following ischemia-reperfusion, further emphasizing the role of 

aberrant ER Ca2+ release in post-ischemic cell death. 

Neuroprotective Strategies Targeting [Ca2+]i Following Ischemia 
 

Increased understanding of disrupted neuronal Ca2+ homeostasis has inspired 

development of neuroprotective pharmacologic strategies for intervention following 

ischemic brain injury (Sahota and Savitz, 2011).  The majority of these treatments have 

targeted plasma membrane Ca2+
 regulatory proteins in an effort to prevent secondary 

neuronal Ca2+ overload.  Unfortunately, despite promising results in animal models, all 

clinical trials of therapeutic agents have proven ineffective in attenuating post-ischemic 

neuronal death (Roine et al., 1990; Brain Resuscitation Clinical Trial II Study Group, 

1991; Calle et al., 1993; Auriel and Bornstein, 2010; Mongardon et al., 2011; Sahota and 

Savitz, 2011).  Thus, there is an obvious need for improved therapies and molecular 

targets for intervention following ischemia-reperfusion.  Based on the data presented 

above, we propose that targeting pathological ER Ca2+ release may provide an effective 

strategy for neuroprotection by preventing both ER Ca2+ depletion and secondary [Ca2+]i 

and [Ca2+]m overload in post-ischemic neurons.  

 

Role of Calpain in Post-ischemic Neuronal Death 
 

One of the downstream effects of elevated [Ca2+]i in ischemic brain tissue is 

pathological activation of proteases (Kristian and Siesjo, 1998; Neumar, 2000; 

Szydlowska and Tymianski, 2010).  Proteolysis is an important component of cell death 

pathways and substantial evidence exists to support the role of protease activation in 
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post-ischemic neurodegeneration (Bevers and Neumar, 2008; Nakka et al., 2008).  Here, 

we will explore the role of the Ca2+-dependent calpain family of proteases in mediating 

neuronal death after ischemia-reperfusion. 

Calpain Activation and Function 
 

Calpains—calcium-dependent proteases with papain-like activity—are cysteine 

proteases typically thought to be directly and reversibly activated by Ca2+.  There are 15 

identified members of the calpain family of proteases, a subset of which are expressed in 

brain (Bevers and Neumar, 2008).  Of the calpain isoforms found in the brain, the calpain 

catalytic subunit isoforms 1 and 2 are the most ubiquitous and best characterized.  These 

cytoplasmic calpains were initially named µ- and m-calpain respectively based on their 

[Ca2+] requirements for activation determined from in vitro assays (Goll et al., 2003).  

Physiologically, the difference in Ca2+ sensitivity of these isoforms is likely served by 

different subcellular localizations of calpains 1 and 2.  Traditionally, calpain 1 is believed 

to be diffuse throughout the cytoplasm and often associated with cytoskeletal elements 

(Goll et al., 2003; Bevers and Neumar, 2008), whereas calpain 2 has predominately been 

localized to membranes and sites of Ca2+ entry into the cytoplasm (Hood et al., 2003; 

Hood et al., 2004; Samanta et al., 2007; Leloup et al., 2010).  Calpain activity is regulated 

by its endogenous inhibitor, calpastatin (Goll et al., 2003).  Under normal conditions, the 

calpain-calpastatin system plays an important role in physiological neuronal processes 

including signal transduction, neurite growth, and synaptic remodeling (Goll et al., 2003; 

Bevers and Neumar, 2008). 
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Calpain proteolysis of substrates is limited and site-specific. There have been 

substantial efforts to determine or predict primary amino acid sequences preferentially 

targeted by calpain however, no consensus sequences have been identified (Tompa et al., 

2004; Cuerrier et al., 2005).  More likely, calpain cleaves substrates via recognition of 

secondary or tertiary protein structure, making it difficult to identify de novo calpain 

substrates and their precise cleavage sites.  Directed calpain proteolysis generally alters 

rather than eliminates substrate function.  Unlike many other proteases, calpain 

proteolysis does not strictly lead to substrate degradation, and instead can mediate 

complex physiological and pathological signaling processes.  

Role of Calpain in Ischemic Brain Injury  
 

Data collected over the past 2 decades have linked both the initiation and 

execution of ischemic cell death in vivo to the calpain family of proteases.  As increased 

[Ca2+]i directly activates calpain, temporal evidence of calpain activation in ischemic 

brain tissue closely mirrors that of the bimodal rises in [Ca2+]i (Saido et al., 1993; 

Roberts-Lewis et al., 1994; Neumar et al., 1996; Yamashima et al., 1996; Bartus et al., 

1998; Neumar et al., 2001; Zhang et al., 2002; Yamashima et al., 2003).  Importantly, 

pathological calpain activity identified in these studies was localized to selectively 

vulnerable neuron populations.  Pharmacologic inhibition of calpains before (Lee et al., 

1991; Rami and Krieglstein, 1993; Yokota et al., 1999) or after global brain ischemia (Li 

et al., 1998; Frederick et al., 2008) has been effective in attenuating post-ischemic 

neuronal death.  Additionally, genetic approaches to calpain inhibition, either by 

overexpression of calpastatin (Higuchi et al., 2005) or knockdown of specific calpain 
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isoforms (Bevers et al., 2010), have been neuroprotective in models of excitotoxic and 

ischemic brain injury. Together, these data suggest that calpain plays a causal role in 

mediating neuronal death following ischemia-reperfusion.   

Calpain Proteolysis of Ca2+ Regulatory Proteins 
 

 Due to the numerous and diverse cellular substrates for proteolysis, there are 

potentially multiple mechanisms by which calpain can initiate or execute neuronal death 

following ischemia-reperfusion.  One particularly compelling model for calpain-mediated 

cell death in ischemic brain injury is calpain proteolysis of Ca2+ regulatory proteins 

(Bevers and Neumar, 2008).  As calpain proteolysis typically alters substrate function, 

cleavage of Ca2+ regulatory proteins provides a unique pathway through which calpain 

may increase [Ca2+]i, thereby further increasing calpain activity.   

A number of different Ca2+ regulatory proteins are known substrates for calpain 

(Table 1.1). In most instances, the functional consequences of proteolysis on substrate 

function have been investigated.  Cleavage of some of these substrates has been observed 

in ischemic brain tissue, whereas others are only putative targets for calpain-mediated 

proteolysis following ischemia-reperfusion.  

 I. Ca2+ extrusion mechanisms targeted by calpain 
 

Calpain can cleave several Ca2+ pumps and transporters.  Evidence from 

excitotoxic and ischemic injury models provide evidence of calpain cleavage of both the 

plasma membrane Ca2+-ATPase (PMCA) (Pottorf et al., 2006; Ferragamo et al., 2009) 

and SERCA (Parsons et al., 1999; French et al., 2006).  Proteolysis of PMCA and 

SERCA lead to a loss of Ca2+ pump activity and accumulation of Ca2+ in the cytoplasm.  
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Similarly, calpain proteolysis of NCX eliminates Ca2+ transport function (Bano et al., 

2005; Samanta et al., 2009), which increases [Ca2+]i in post-ischemic neurons (Bano et 

al., 2005).  Proteolysis of these substrates may contribute individually or in concert to the 

delayed secondary rise in [Ca2+]i following ischemia-reperfusion. 

 II. Ca2+-permeable ion channels cleaved by calpain 
 

Two ion channels on the plasma membrane are known calpain substrates—L-type 

Ca2+ channel and NMDA receptor.  Proteolysis of L-type Ca2+ channels increases channel 

open probability (Po), likely increasing [Ca2+]i (De Jongh et al., 1994; Wei et al., 1994; 

Hell et al., 1996).  The NR2 subunit of NMDA receptors is the specific substrate for 

calpain and has been shown to be cleaved following excitotoxic injury (Guttmann et al., 

2002; Simpkins et al., 2003).  The functional consequence of NMDA receptor proteolysis 

is unclear, although the cleaved forms of the channel remain on the plasma membrane 

and may contribute to excitotoxicity through altered electrophysiological properties or 

interactions with signaling molecules (Simpkins et al., 2003; Dong et al., 2006).   

Additionally, calpain cleaves two ER Ca2+ release channels—Ryanodine receptor 

(RyR) and InsP3R1.  Calpain-mediated proteolysis of RyR impairs channel inactivation 

and increases Po (Rardon et al., 1990), which may increase [Ca2+]i.  Calpain cleavage of 

InsP3R1 has been observed in vitro and in vivo (Magnusson et al., 1993; Wojcikiewicz 

and Oberdorf, 1996; Igwe and Filla, 1997; Diaz and Bourguignon, 2000).  However, the 

functional consequences of calpain proteolysis on electrophysiological properties of 

InsP3R1 and the potential impact on [Ca2+]i following ischemia-reperfusion were 

previously unknown.   
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Dysfunctional Ca2+-permeable ion channels generated by calpain proteolysis may 

be central players in disruption of neuronal Ca2+ homeostasis following ischemia.  

Unfortunately, blocking Ca2+ entry through voltage-gated Ca2+ channels and NMDA 

receptors has not been a clinically effective strategy for neuroprotection in ischemic brain 

injury (Mongardon et al., 2011; Sahota and Savitz, 2011).  Instead, blocking aberrant ER 

Ca2+ release following ischemia-reperfusion may be an appealing target for future 

interventional strategies.   

Role of InsP3R1 Proteolysis in Ischemic Brain Injury 

Prior to the investigations presented in this dissertation, the significance of calpain 

proteolysis of InsP3R1 was unclear and the role of InsP3R-mediated Ca2+ signaling in 

post-ischemic neuronal death was incompletely understood. We hypothesized that both 

are potentially important factors in either the initiation or execution of neuronal death 

following ischemia-reperfusion.  In spite of our previously limited understanding of the 

role of InsP3R in ischemic brain injury, the molecular structure and physiological 

functions of InsP3R have been well studied.  Foskett et al. (2007) provides an excellent 

and extensive review of the InsP3R Ca2+ release channel. The overview presented here 

provides a brief survey of the literature particularly relevant to this thesis. 

Structure and Gating of InsP3R 
 

InsP3R is a ubiquitous intracellular Ca2+ release channel predominately located on 

the ER membrane.  The large InsP3R protein (2749 amino acids in rat) includes an 

amino-terminal InsP3 ligand-binding domain, a large, central coupling (modulatory) 

domain, and 6 transmembrane domains in the carboxyl-terminal region (Figure 1.1) 
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(Taylor et al., 2004; Bezprozvanny, 2005; Foskett et al., 2007).  Within the 

transmembrane domains, helices 5 and 6 form the basic pore structure of the ion channel 

and confer selectivity (Taylor et al., 2004; Foskett et al., 2007).  InsP3Rs function as 

tetrameric channels. The carboxyl-terminal portion of InsP3R is important for both 

subunit oligomerization and localization of the channel to the ER membrane (Sayers et 

al., 1997; Galvan et al., 1999; Parker et al., 2004).   

InsP3R activity is regulated by a number of different ligands, the most important 

of which are InsP3 and Ca2+ (Foskett et al., 2007).  Both of these ligands are required for 

appreciable channel activity, making InsP3R a molecular coincidence detector.  InsP3, a 

second messenger generated by phospholipase C hydrolysis of phosphatidylinositol 4,5-

bisphosphate, connects activation of Gq-coupled receptors on the plasma membrane with 

InsP3R channel opening (Streb et al., 1983).  InsP3 binding to the ligand-binding domain 

of InsP3R is important for both channel gating and modulating InsP3R sensitivity to its 

other principal ligand, Ca2+ (Foskett et al., 2007).  Data suggest that Ca2+ binds to InsP3R 

at multiple sites with different affinities to regulate InsP3-dependent Ca2+ activation, and 

InsP3-dependent and independent Ca2+ inhibition, although the precise binding sites are 

unclear (Foskett et al., 2010).  Ca2+ regulation of InsP3R is biphasic, with non-optimal 

[Ca2+]i
 leading to decreased channel Po.  This modulation by InsP3R’s physiologically 

permeant ion provides important positive and negative feedback for InsP3R-mediated 

Ca2+ signaling (Foskett et al., 2007; Foskett et al., 2010).  Upon binding of optimal 

concentrations of both ligands, the InsP3R channel gate opens and Ca2+ diffuses down its 

concentration gradient into the cytoplasm.  
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The transduction mechanism by which InsP3 and Ca2+ binding opens the gate is 

poorly understood.  Initial studies suggested that InsP3 binding induces a conformational 

change in the channel, which opens the gate (Mignery and Sudhof, 1990).  More recent 

evidence has proposed that an interaction between the ligand-binding domain and 

carboxyl-terminus of InsP3R mechanically transmits the signal for gating (Schug and 

Joseph, 2006; Chan et al., 2010; Yamazaki et al., 2010).  Interestingly however, deletion 

of large portions of the amino-terminus of InsP3R upstream of the transmembrane 

domains or through the fourth transmembrane helix generates a channel with constitutive 

activity (Ramos-Franco et al., 1999; Nakayama et al., 2004).  This suggests a different or 

perhaps more complex model of gating and channel regulation than initially predicted.   

Expression and Function of InsP3R in Neurons 
 

There are 3 distinct isoforms of InsP3Rs, types 1, 2 and 3 (Foskett et al., 2007).  

Of these, InsP3R1 is the most ubiquitous and abundant isoform expressed in the brain 

(Furuichi et al., 1993; Sharp et al., 1993).  Immunohistochemical labeling of brain tissue 

reveals heterogeneous expression patterns of InsP3R across neuronal populations and 

within cells.  Interestingly, the level of InsP3R expression in neurons positively correlates 

with vulnerability to ischemic injury.  For example, within hippocampus, InsP3R 

expression is relatively high in CA1 pyramidal neurons and low in both CA3 pyramidal 

neurons and granule cells in the dentate gyrus (Sharp et al., 1993).  Similarly, InsP3R 

expression in cerebellum is predominately localized to Purkinje neurons (Sharp et al., 

1993).  This expression pattern suggests a possible role for InsP3R-mediated Ca2+ 
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signaling in disruption of Ca2+ homeostasis and neuronal injury following ischemia-

reperfusion.   

As the ER is the major storage organelle for Ca2+, InsP3Rs are vital to intracellular 

Ca2+ signaling in neurons (Stutzmann and Mattson, 2011).  Ca2+ release through InsP3R 

has diverse temporal and spatial signaling properties.  Stimulation of InsP3R can evoke 

small, localized elevations in [Ca2+]i through activation of a only a few channels, or larger 

waves of increased [Ca2+]i that propagate through the cell by activating clusters of 

neighboring InsP3Rs (Foskett et al., 2007).   Differential expression patterns of InsP3R in 

somatic, dendritic, and synaptic neuronal compartments leads to even more complex Ca2+ 

signaling patterns that play important roles in neuronal excitability, gene transcription, 

and synaptic plasticity (Bardo et al., 2006; Stutzmann and Mattson, 2011).  

InsP3R-mediated Ca2+ Signaling in Neuropathology 
 

In addition to their fundamental importance to neuronal physiology, InsP3Rs also 

contribute to pathological Ca2+ signaling and neurodegeneration (Verkhratsky and 

Toescu, 2003; Foskett, 2010).  Reports that cells deficient in InsP3Rs were resistant to 

apoptosis (Jayaraman and Marks, 1997; Sugawara et al., 1997) initially suggested a role 

for InsP3R-mediated Ca2+ signaling in cell death.  Subsequent studies have shown that 

allosteric modulation of InsP3R channel function induces aberrant neuronal Ca2+ 

signaling in a variety of neurodegenerative diseases, including Alzheimer’s disease 

(Leissring et al., 1999a; Leissring et al., 1999b; Stutzmann et al., 2004; Cheung et al., 

2008; Cheung et al., 2010), Huntington’s disease (Tang et al., 2003; Tang et al., 2005; 
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Higo et al., 2010), spinocerebellar ataxias (Liu et al., 2009), and ischemia (Boehning et 

al., 2003; Beresewicz et al., 2006).   

In models of ischemic brain injury, data suggest additional changes in InsP3R 

function that appear unrelated to the characterized allosteric modulation of the channel.  

Specifically, decreased InsP3 binding (Jorgensen et al., 1991; Nagasawa and Kogure, 

1991; Dahl et al., 2000) and decreased InsP3-induced Ca2+ release (Nagata et al., 1999) 

have been observed in vivo following ischemia-reperfusion.  These changes are not 

associated with a decrease in InsP3R protein levels (Dahl et al., 2000).  Proteolytic 

cleavage of the cytosolic amino-terminus of InsP3R could explain these observations. 

Proteolysis of InsP3R1 
 

InsP3R1 is a target for proteolysis by both caspase and calpain cysteine proteases. 

Cleavage of InsP3R1 by either protease generates a stable ~95 kDa carboxyl-terminal 

fragment that contains the transmembrane domains and channel pore.  While the 

functional effects of InsP3R1 proteolysis by calpain were previously unexamined, studies 

of the caspase-cleaved form of the channel provided some initial insights.    

Caspase-3 cleaves InsP3R1 at a highly conserved consensus sequence within the 

coupling domain (Figure 1.1) (Hirota et al., 1999), and InsP3R1 has been identified as a 

substrate for caspase-3 during apoptosis (Hirota et al., 1999; Diaz and Bourguignon, 

2000; Haug et al., 2000; Verbert et al., 2008).  Of the 3 InsP3R isoforms, only the type 1 

receptor contains the DEVD sequence for caspase-3 recognition and proteolysis (Hirota 

et al., 1999).  While activation of caspase-3 is traditionally considered an executioner of 

apoptosis rather than an initiator, there is evidence that caspase-cleavage of InsP3R1 is 
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required for apoptosis (Assefa et al., 2004) and is an early event in the cell death cascade 

(Haug et al., 2000).  Caspase-3-mediated proteolysis of InsP3R1 in cells results in 

decreased InsP3 binding (Diaz and Bourguignon, 2000) and diminished InsP3-induced 

Ca2+ release (Hirota et al., 1999; Diaz and Bourguignon, 2000), while preserving 

structural and functional integrity of the channel domain (Hirota et al., 1999).  These 

studies suggested that caspase-proteolysis of InsP3R1 sensitizes cells to apopotosis by 

disruption of Ca2+ homeostasis.   

To directly examine the role of caspase-cleaved InsP3R1 in cell death, previous 

studies have expressed a truncated, recombinant form of InsP3R1 that corresponds to the 

carboxyl-terminal channel fragment derived from caspase-3 proteolysis.  Expression of 

caspase-cleaved InsP3R1 in these studies resulted in decreased ER releasable Ca2+ 

(Nakayama et al., 2004; Verbert et al., 2008), increased ER Ca2+ leak rate (Verbert et al., 

2008), and slowed ER Ca2+ uptake (Verbert et al., 2008).  These data suggest that 

caspase-3 proteolysis of InsP3R1 generates a leaky channel that decreases ER Ca2+ 

buffering capacity.  Additionally, expression of caspase-cleaved InsP3R1 impaired 

normal ER Ca2+ signaling (Verbert et al., 2008) and increased the rate of apoptosis 

following injury (Assefa et al., 2004).  Together, these data support a role for InsP3R1 

proteolysis in disruption of Ca2+ homeostasis and cell death. 

InsP3R1 is also a known substrate for calpain, which sequentially cleaves the 

channel into 200, 130, and 95 kDa carboxyl-terminal fragments (Magnusson et al., 1993; 

Igwe and Filla, 1997).  While the stable predominant 95 kDa calpain-derived fragment is 

reported to be similar in size to the caspase-derived fragment, the cleavage sites are 

different.  To the best of our knowledge, there was no published description of the 
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functional consequences of calpain cleavage of InsP3R1 prior to our investigation.  

However, based on studies of the caspase-cleaved channel, we hypothesized that calpain-

mediated cleavage of InsP3R1 disrupts normal channel gating, and that this dysregulation 

increases ER Ca2+ release and limits ER Ca2+ buffering capacity.  We further speculated 

that InsP3R1 proteolysis by calpain would significantly contribute to delayed [Ca2+]i and 

[Ca2+]m overload and secondary activation of calpain following ischemia-reperfusion.    

Rationale 
 

The molecular injury mechanisms that result in neurodegeneration after ischemic 

brain injury are incompletely understood.  However, disruption of Ca2+ homeostasis and 

pathological calpain activation are key components of post-ischemic neuronal death. 

InsP3R1, as both a Ca2+ regulatory protein and proteolytic target of calpain, is critically 

poised to execute cell death pathways.   

At the onset of this investigation, we hypothesized that InsP3R1 proteolysis by 

calpain irreversibly disrupts cellular Ca2+ homeostasis and that Ca2+ signaling through the 

cleaved channel triggers post-ischemic neuronal death (Figure 1.2).  Based on earlier 

studies of InsP3R1 proteolysis, we speculated that calpain cleavage generates a channel 

with InsP3-independent gating that increases ER Ca2+ leak and impairs intracellular Ca2+ 

buffering.  These alterations in normal InsP3R1-mediated Ca2+ signaling could lead to 

neuronal Ca2+ overload and death by shifting Ca2+ from the ER lumen to the cytoplasm 

and mitochondria.  Increases in [Ca2+]i may initiate a positive feedback loop leading to 

augmented calpain activity.  Alternativey, increased [Ca2+]m could amplify intrinsic cell 

death pathways through release of pro-apoptotic factors.  Thus, InsP3R1 proteolysis 
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potentially represents a pivotal transition to irreversible neuronal injury.  If calpain 

proteolysis of InsP3R1 plays a causal role in post-ischemic neuronal death, then blocking 

the cleaved channel could emerge as a novel therapeutic strategy.  The experiments 

presented in this dissertation serve to elucidate the neuropathologic role of InsP3R1 

proteolysis by calpain.   
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Figure 1.1 
 

 
 
Figure 1.1 Domain structure of InsP3R1   

The InsP3R1 protein, depicted as a linear amino acid sequence, contains 3 major domains. The amino-
terminal region is the InsP3 ligand-binding domain (red).  The central coupling domain (yellow) contains 
the DEVD sequence for caspase-3 cleavage (arrow).  The channel domain (green) of InsP3R1 is located 
near the carboxyl-terminus of the protein and consists of 6 transmembrane domains (grey).  Mutation of 
D2550 (to A or N; arrow) in the pore forming region eliminates Ca2+ permeability of the channel.  
Residues are numbered according to the rat type 1 SI+, SII+, SIII- sequence (protein accession no. 
NP_001007236.1; Adapted from Foskett et al., 2007). 
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Figure 1.2 

 

 
 
 
Figure 1.2 Neuropathologic role of InsP3R1 proteolysis   

Schematic representation of known and hypothesized molecular cascades initiated by ischemic brain injury.  
(A) Ischemic depolarization of neurons causes Ca2+ influx, resulting in an initial increase in [Ca2+]i, and 
subsequent calpain activation.  We hypothesize that this early calpain activity results in proteolysis of 
InsP3R1.  (B) We additionally hypothesize that InsP3R1 proteolysis generates a dysregulated channel that 
leaks Ca2+ from the ER, which increases [Ca2+]i.  Sustained elevations in [Ca2+]i can lead to pathological 
activation of calpain, or mitochondrial Ca2+ overload, permeability transition (MPT), and release of pro-
apoptotic factors (green).  Together, these events may be responsible for delayed neuronal death following 
ischemia-reperfusion.  
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SUMMARY 
 

The type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) is a ubiquitous intracellular 

Ca2+ release channel that is vital to intracellular Ca2+ signaling.   InsP3R1 is a proteolytic 

target of calpain, which cleaves the channel to form a 95 kDa carboxyl-terminal fragment 

that includes the transmembrane domains, which contain the ion pore.  However, the 

functional consequences of calpain proteolysis on channel behavior and Ca2+ homeostasis 

are unknown.  In the present study, we have identified a unique calpain cleavage site in 

InsP3R1, and utilized a recombinant truncated form of the channel (capn-InsP3R1) 

corresponding to the stable, carboxyl-terminal fragment to examine the functional 

consequences of channel proteolysis.  Single-channel recordings of capn-InsP3R1 

revealed InsP3-independent gating and high open probability (Po) under optimal 

cytoplasmic Ca2+ concentration ([Ca2+]i) conditions.  However, some [Ca2+]i regulation of 

the cleaved channel remained, with a lower Po  in sub-optimal and inhibitory [Ca2+]i. 

Expression of capn-InsP3R1 in N2a cells reduced the Ca2+ content of ionomycin-

releasable intracellular stores and decreased endoplasmic reticulum Ca2+ loading 

compared with control cells expressing full-length InsP3R1.  Using a cleavage-specific 

antibody, we identified calpain-cleaved InsP3R1 in selectively vulnerable cerebellar 

Purkinje neurons following in vivo cardiac arrest.  These findings indicate that calpain 

proteolysis of InsP3R1 generates a dysregulated channel that disrupts cellular Ca2+ 

homeostasis.  Furthermore, our results demonstrate that calpain cleaves InsP3R1 in a 

clinically relevant injury model, suggesting that Ca2+ leak through the proteolyzed 

channel may act as a feed-forward mechanism to enhance cell death.   



 

  28 

INTRODUCTION 

 
Changes in cytoplasmic free Ca2+ concentration ([Ca2+]i) act as a ubiquitous 

signaling system that is essential to proper neuronal function and survival.  Conversely, 

disrupted [Ca2+]i can serve as a trigger for cell death (Berridge et al., 2000; Orrenius et 

al., 2003).  In particular, compelling evidence suggests that disruption of cellular Ca2+ 

homeostasis, caused in part by dysfunction of Ca2+ regulatory proteins, plays a causal 

role in both acute brain injury and chronic neurodegenerative diseases (Bevers and 

Neumar, 2008).  

The inositol 1,4,5-trisphosphate receptor (InsP3R), a ubiquitous intracellular Ca2+ 

release channel located on the endoplasmic reticulum (ER) membrane, may be an 

important component of the pathologic cascades leading to disrupted Ca2+ homeostasis in 

many disease states.  Cells deficient in InsP3Rs are resistant to apoptosis (Jayaraman and 

Marks, 1997; Sugawara et al., 1997) suggesting that InsP3R mediated Ca2+ signaling 

plays a mechanistic role in cell death.  Altered InsP3R channel function induces aberrant 

neuronal Ca2+ signaling in a variety of neurodegenerative diseases including Alzheimer’s 

disease (Leissring et al., 1999a; Leissring et al., 1999b), Huntington’s disease (Tang et 

al., 2003) and ischemia (Beresewicz et al., 2006).  Observations in brain ischemia models 

also suggest altered InsP3R function, specifically, decreased InsP3 binding (Nagasawa 

and Kogure, 1991; Dahl et al., 2000), decreased InsP3-induced Ca2+
 release (Nagata et al., 

1999) and depletion of releasable Ca2+
 stores (Zaidan and Sims, 1994; Kohno et al., 

1997).  Proteolytic cleavage of InsP3R could explain these observations.   
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The type 1 InsP3R (InsP3R1), the predominant neuronal isoform, is a substrate for 

both the caspase and calpain families of cysteine proteases (Foskett et al., 2007).  These 

proteases are indirectly (caspase-3) and directly (calpain) activated by Ca2+ and are 

known to play a central role in apoptotic and necrotic cell death pathways (Wang, 2000). 

Proteolytic activity of these enzymes is limited and site specific, typically altering rather 

than eliminating substrate function.  In the case of Ca2+ regulatory proteins, this may 

initiate a positive feedback loop that further increases protease activation via increases in 

[Ca2+]i.   

Caspase-3 or calpain cleavage of InsP3R1 generates carboxyl-terminal fragments 

of approximately 95 kDa (Hirota et al., 1999).  Caspase-3 cleaves InsP3R1 at a highly 

conserved DEVD consensus sequence within the coupling domain (Hirota et al., 1999) 

(Figure 2.1A).  Caspase-mediated proteolysis of the channel has been observed in several 

models of apoptosis (Hirota et al., 1999; Diaz and Bourguignon, 2000; Haug et al., 2000).  

Previous studies have demonstrated altered ER Ca2+ homeostasis in cell lines expressing 

a recombinant caspase-derived carboxyl-terminal fragment of InsP3R1, suggesting that 

cleavage generates an unregulated channel that may leak Ca2+ from intracellular stores 

(Assefa et al., 2004; Nakayama et al., 2004; Verbert et al., 2008).  InsP3R1 is also a 

substrate for calpain, which sequentially cleaves the protein into 200, 130 and 95 kDa 

carboxyl-terminal fragments (Magnusson et al., 1993; Wojcikiewicz and Oberdorf, 1996; 

Igwe and Filla, 1997).  However the specific calpain cleavage site that generates the 

stable 95 kDa fragment has not been established, and the functional consequences of 

proteolysis on channel activity are unknown.  We hypothesized that calpain-mediated 

proteolysis, which removes the amino-terminal ligand binding domain and a large portion 
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of the regulatory domain, generates a channel with InsP3-independent gating that leaks 

Ca2+
 from ER stores. 

In the present study, we have identified the unique calpain-cleavage site of 

InsP3R1 and investigated the electrophysiological and functional properties of the 

truncated carboxyl-terminal channel.  Using a combination of single-channel nuclear 

patch clamp electrophysiology and single-cell Ca2+
 imaging, we have determined that the 

cleaved channel is constitutively active in the absence of InsP3, although its gating retains 

sensitivity to [Ca2+]i.  Constitutive channel activity accounts for an observed reduction in 

the Ca2+ content of the ER lumen in cells expressing recombinant calpain-cleaved InsP-

3R1.  Importantly, we provide evidence of calpain-mediated proteolysis of InsP3R1 in an 

in vivo model of ischemic brain injury.  These data highlight the important functional 

consequences of calpain-mediated channel proteolysis, which may critically disrupt 

intracellular Ca2+ homeostasis, particularly under pathologic conditions where other Ca2+ 

regulatory proteins are also compromised.   
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EXPERIMENTAL PROCEDURES 
 
 Materials—Unless otherwise noted, all chemical reagents were purchased from 

Sigma-Aldrich.   

 Antibodies—The anti-InsP3R1 polyclonal antibody targeted against the 20 

carboxyl-terminal residues of rat InsP3R1 was generously provided by Dr. Suresh Joseph 

(Thomas Jefferson University) (Joseph and Samanta, 1993).  The antibody to calpain-

cleaved spectrin (Ab38) was generously provided by Dr. Robert Siman (University of 

Pennsylvania).  Anti-calreticulin (CRT) polyclonal antibody was purchased from Thermo 

Scientific Pierce Antibodies (PA3-900).  Alexa-488 conjugated secondary antibody used 

for immunofluorescence was purchased from Invitrogen.  The antibody against calpain-

cleaved InsP3R1 (Ab2054) was generated against the peptide ASAATRKAC and is 

described in the Results section. 

 Cerebellar Microsome Isolation—Male Long-Evans rats were deeply 

anesthetized with pentobarbital (200 mg/kg) and decapitated.  The brain was extracted, 

and the cerebellum dissected and homogenized in cold MSHE buffer (in mM): 220 

mannitol, 70 sucrose, 2 K-HEPES (pH 7.4), 0.5 EGTA with 0.1% fatty-acid free bovine 

serum albumin (BSA) and protease inhibitor cocktail.  The homogenate was centrifuged 

at 650 x g for 10 min at 4° C to remove nuclei (P1).   The supernatant from the preceding 

fraction (S1) was centrifuged again at 8,000 X g for 10 min at 4° C to separate cytoplasm 

and microsomes from mitochondria and synaptosomes.  The remaining supernatant (S2) 

was centrifuged at 100,000 X g for 1 h in a micro-ultracentrifuge (ThermoFisher 

Scientific).   The pellet from the final spin (P3) containing microsomes was resuspended 
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in either MSHE buffer without BSA for western blot or digest buffer for subsequent in 

vitro digest, snap frozen and stored at -20° C.   

 InsP3R1 Peptide Generation—The amino acid sequences of rat InsP3R1 from 

residues 1582 to 1932 or from residues 1932 to 2257 were fused to an amino-terminal 

glutathione S-transferase (GST) using the linker sequence LEVLFQGP, and cloned into 

pGEX expression vectors. The fusion protein was grown in BL21 E. coli and purified 

using Glutathione Sepharose 4B (GE Healthcare).  The GST tag was removed from the 

InsP3R1 1582-1932aa peptide following purification using PreScission Protease, which 

recognizes the sequence LEVLFQ/GP and cleaves between the Q and G residues (GE 

Healthcare). 

 In Vitro Caspase-3 and Calpain 1 Digests of Microsomes and InsP3R1 Peptide—

For in vitro caspase-3 digest of cerebellar microsomes, freshly isolated microsomes were 

resuspended in lysis buffer (in mM: 50 Tris-HCl (pH 7.4), 5 EDTA, 1 DTT (Fisher) with 

1% Triton X-100) and incubated at 4° C for 90 min prior to snap freezing.  For 

subsequent digest, lysed microsomes were diluted to 1 µg/µl in digest buffer (in mM: 100 

Tris-HCl (pH 7.4), 2 EDTA, and 20 DTT).  Samples were preincubated with 1 µM 

calpastatin peptide (CAST; EMD Biosciences) to inhibit endogenous calpain activity and 

then digested with recombinant active human caspase-3 (0.05 units/µl; Millipore) for 4 h 

at 37° C.  Loading buffer was added to the digest to stop the reaction. 

 For in vitro calpain digest of cerebellar microsomes, freshly isolated microsomes 

were resuspended in a modified digest buffer (in mM: 25 HEPES (pH 7.4), 250 sucrose, 

1 EDTA) and snap frozen.  For subsequent digest, microsomes were diluted to 1 µg/µl in 

complete digest buffer (in mM: 25 HEPES (pH 7.4), 250 sucrose, 1 EDTA, 2 DTT, and 2 
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CaCl2).  Samples were preincubated with 1 mM Z-VAD-FMK (Promega) to inhibit 

endogenous caspase activity, and then digested with 0.5 µM calpain 1 (µ-calpain) from 

human erythrocytes (EMD Biosciences) at 4° C for various times. Loading buffer was 

added to the digest to stop the reaction. 

For in vitro calpain digest of the GST-InsP3R1 fusion peptides, purified peptide was 

diluted in digest buffer (in mM: 25 HEPES (pH 7.5), 250 NaCl, 2 DTT, 1 CaCl2 with 

1.2% CHAPS).  Samples were digested with 0.1 µM calpain 1 at 4° C for various times.  

Adding loading buffer to the digest terminated the reaction.   

 Edman N-terminal Sequencing to Determine Cleavage Site—N-terminal 

automated Edman sequencing was performed on an Applied Biosystems 494 Protein 

Sequencer using standard programs and reagents (Wistar Institute, Proteomics Core 

Facility).  Samples were excised from stained PVDF membranes, wetted with MeOH and 

sonicated in MilliQ water for 5 min.  Samples were then removed and placed in MeOH 

prior to loading into the upper sample cartridge unit.  The cartridge was assembled, the 

sample was dried with argon, inserted into the instrument, and processed with a standard 

pulsed liquid method for 8 cycles. 

 Plasmids—The pIRES2-EGFP (Clontech) expression vector for wild type (wt) rat 

InsP3R1 was previously generated (Li et al., 2007).  To construct the expression vector 

for calpain-cleaved InsP3R1 (capn-InsP3R1; Figure 2.3A), we amplified the 3’-portion of 

rat InsP3R1 cDNA sequence corresponding to the stable carboxyl-terminal fragment of 

the channel generated by calpain proteolysis (2.6 kb) using primers 5’—

GCGAATTCATGGCATCTGCTGCCACCAG—3’ and 5’—

GTCTCTAGAAAATGTACTTAAGCGCACAT—3’ (underlined regions indicate EcoRI 
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and XbaI restriction sites).  PCR was performed using PfuTurbo DNA polymerase 

(Stratagene) and subcloned the capn-InsP3R1 PCR product into the pIRES2-EGFP 

expression vector using EcoRI and XbaI restriction sites.  EGFP was expressed with 

InsP3R1 constructs from a single bicistronic mRNA using an internal ribosome entry site 

in the pIRES2-EGFP expression vector. 

 Cell Culture, DNA Transfection and Lysate Preparation—Neuro-2A (N2a) cells 

were cultured in Minimum Essential Medium (Invitrogen) supplemented with 10% fetal 

bovine serum and maintained at 37° C in a humidified incubator with 5% CO2.  N2a cells 

were grown on polystyrene multiwell plates (Western blot), polystyrene tissue culture 

flasks (electrophysiology), or 20 x 50 mm glass coverslips (single-cell Ca2+ imaging) and 

transfected using Lipofectamine 2000 (Invitrogen).  For Western blot, cells were 

harvested by trypsinization and resuspended in homogenization buffer (in mM: 50 Tris, 

150 NaCl, 2 EGTA) and sonicated.  Lysates were treated with SDS loading buffer, boiled 

and analyzed on SDS-PAGE gels.  Where indicated, capn-InsP3R1 transfected cells were 

solubilized and denatured in buffer supplemented with 5 M urea or 1% SDS.     

Single-Channel Electrophysiology—Nuclei from N2a cells were isolated 24 h post-

transfection as previously described (White et al., 2005; Ionescu et al., 2006; Cheung et 

al., 2008; Cheung et al., 2010).  Briefly, nuclei were mechanically isolated, and plated 

onto a glass-bottomed dish with standard bath solution (in mM: 140 KCl, 10 Hepes, 0.5 

BAPTA and 0.192 CaCl2 (free [Ca2+] ≈ 70 nM), pH 7.1).  The pipette solution contained 

(in mM): 140 KCl, 0.5 ATP, 10 Hepes pH 7.3, and 0.5 dibromo-BAPTA and 0.3 CaCl2 

(free [Ca2+] ≈ 2 µM), 0.5 BAPTA and 0.192 CaCl2 (free [Ca2+] ≈ 70 nM), or 0.5 HEDTA 

and 0.43 CaCl2 (free [Ca2+] ≈ 25 µM).  Where indicated, 10 µM InsP3 with or without 
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100 µg/ml heparin were included in the pipette solution.  Data were acquired at room 

temperature using an Axopatch 200A amplifier (Axon Instruments) and analyzed as 

previously described (Cheung et al., 2010).  

 Single-Cell Ca2+ Imaging—To measure [Ca2+]i, N2a cells were plated onto glass-

coverslips (Warner Instruments) and transfected.  Six h post-transfection, cells on 

coverslips were secured in a perfusion chamber, and mounted on the stage of an inverted 

microscope (Nikon Eclipse TE2000).  Cells were loaded with Fura-2-AM (Molecular 

Probes; 2.5 µM) for 30 min at room temperature in Ca2+-containing extracellular solution 

(in mM: 137 NaCl, 2 KCl, 2 CaCl2, 10 HEPES, pH 7.3) supplemented with 1% BSA. 

Fura-2 was alternately illuminated at 340/380 nm, and fluorescence intensity filtered at 

510 nm.  Data were collected and recorded as described previously (White et al., 2005; 

Cheung et al., 2008).  Cells were perfused with 2 mM Ca2+ extracellular solution to 

establish baseline [Ca2+]i before ionomycin (Invitrogen; 2 µM) was applied in 0-Ca2+ 

extracellular solution (in mM: 137 NaCl, 2 KCl, 0.5 EDTA, 0.5 EGTA, 10 HEPES, pH 

7.3) to measure Ca2+ release from intracellular stores.  At the end of the experiment, Mn2+ 

was used to quench Fura-2 fluorescence (2 mM Ca2+ extracellular solution supplemented 

with 10 mM MnCl2 and 10 µM ionomycin).  The remaining background fluorescence 

following Mn2+ quench was subtracted during analysis.  

 To measure ER lumenal [Ca2+] ([Ca2+]ER), transfected cells (6 h post-transfection) 

were loaded with the low-affinity Ca2+ indicator Mag-Fura-2-AM (Invitrogen; 10 µM) 

for 30 min at 37° C in HEPES-HBSS buffer (HBSS solution supplemented with (in mM): 

10 HEPES, 4.2 NaHCO3, 1.8 CaCl2, and 0.8 MgCl2, pH 7.3) with 1% BSA.  After 

loading, cells were permeabilized with 10 µg/ml digitonin for 2 min in MgATP-free 
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cytoplasm-like medium (CLM; in mM: 140 KCl, 20 NaCl, 1 EGTA, 0.375 CaCl2 (final 

concentration ≈ 70 nM), 20 PIPES, pH 7.3).  Cells were perfused with CLM for 30 min 

to wash out digitonin and deplete ER Ca2+ stores.  ER store loading was activated by 

addition of 1.5 mM MgATP to the perfusate to stimulate SERCA-mediated Ca2+ uptake.  

Following filling, the passive ER Ca2+ leak was evaluated by measuring [Ca2+]ER during 

exposure to 10 µM cyclopiazonic acid (CPA; Calbiochem) in the absence of MgATP.  

Mag-Fura-2 excitation and emission were monitored as described above.  Rates for ER 

loading and release were calculated by fitting individual single-cell responses using 

single exponential functions and determining the mean of those rates.   

 Changes in [Ca2+]i and [Ca2+]ER are presented as changes in fluorescence ratio.  

Dye calibration was achieved by applying experimentally determined constants to the 

equation: [Ca2+] = Kd β(R–Rmin)/(Rmax–R).  Macros used for analysis were custom 

macros written for IGOR Pro (WaveMetrics). 

 Cardiac Arrest Model—Male Long-Evans rats weighing 300-350 g (Harlan 

Laboratories Inc.) were subjected to asphyxial cardiac arrest followed by 

cardiopulmonary resuscitation and post-cardiac arrest temperature regulation as 

previously described (Katz et al., 1995; Neumar et al., 1995; Che et al., In Press).  Rats 

were anesthetized, orotracheally intubated and mechanically ventilated.  Temperature 

was maintained between 37.0 and 37.5° C.  To initiate cardiac arrest, rats were 

chemically paralyzed using intravenous vecuronium (2 mg/kg) and asphyxia induced by 

discontinuing mechanical ventilation.  Cessation of arterial pulse pressure and reduction 

of mean arterial pressure to < 20 mmHg was used to confirm circulatory arrest, which 

usually occurred within 3-4 min.  Following the 7 min asphyxia, mechanical ventilation 
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resumed with 100% O2, intravenous epinephrine (0.005 mg/kg) and HCO3 (1.0 mEq/kg) 

were administered, and external chest compressions were performed (350-400 

compressions/min).  Following return of spontaneous circulation, rats were maintained on 

mechanical ventilation for 1 h.  An intraperitoneal telemetric temperature probe was 

surgically implanted in the abdomen (Data Systems International).   Rats were then 

extubated and transferred to a computer controlled temperature regulation chamber, 

which telemetrically monitored intraperitoneal temperature.  Post-cardiac arrest body 

temperature was maintained between 36.5 and 37.5° C using software-driven relays 

connected to a heat-lamp, water misters and a cooling fan (Colbourne et al., 1996; Che et 

al., In Press).  This study was approved by the University of Pennsylvania Institutional 

Animal Care and Use Committee. 

 Immunohistochemical Staining of Cerebellum—At indicated time points 

following cardiac arrest (24 or 48 h), rats were anesthetized with pentobarbital (200 

mg/kg) and transcardially perfused with cold phosphate buffered saline (PBS, pH 7.4) 

followed by 4% paraformaldehyde (PFA) in 0.1M phosphate buffer (PB).  Brains were 

extracted, post-fixed in 4% PFA over-night and cryoprotected using serial incubations in 

0.1 M PB containing 10%, 20% and 30% sucrose.  Serial sagittal sections through the 

cerebellum (40 µm) were cut on a freezing sliding microtome and stored in 

cryoprotectant (0.1 M PB with 30% sucrose and 30% glycerol) at -20°C for future use.   

Immunohistochemistry to identify calpain-cleaved InsP3R1 (Ab2054) required heat-

induced epitope retrieval (HIER).  Cerebellar tissue sections were removed from 

cryoprotectant, rinsed in dH2O, and incubated in citrate buffer (10 mM sodium citrate 

with 0.05% Tween-20, pH 6.0) at 95°C for 20 min.  Following HIER, tissue was 
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removed from heat and rinsed in PBS (pH 7.2).  Standard immunohistochemical staining 

procedures followed.   

 Floating cerebellar brain sections were rinsed in PBS (pH 7.2) and blocked using 

PBS with 4% normal goat serum and 0.5% Triton X-100.  Sections were incubated in 

primary antibody (Ab38 or Ab2054) diluted in block solution overnight at 4° C.  Sections 

were rinsed with PBS and incubated with Alexa 488 fluorescent secondary antibody.  

Finally, sections were rinsed with PBS, counterstained with Hoescht (5 µg/ml in PBS) to 

label nuclei, mounted on slides and coverslipped under Fluormount-G (Electron 

Microscopy Sciences).   

 For Fluoro-Jade labeling, PFA-fixed sections were mounted onto gelatin-coated 

slides and dried.  Tissue was treated with 100% ethanol, 70% ethanol and dH2O rinses.  

Hydrated tissue was incubated with 0.06% potassium permanganate for 10 min, rinsed 

with dH2O, and stained with 0.0004% Fluoro-Jade B (Millipore) in 0.1% acetic acid for 

20 min.  Stained tissue was rinsed with dH2O, dried at 37°C, dehydrated with xylene and 

coversliped using Permount (Fisher Scientific).   

 Immunofluorescence was studied at 100X using an epifluorescence microscope 

(Leica DM4500B).   

 Analyses and Statistics—Data are presented as the mean ± SEM, and statistical 

significance of differences between the means was assessed using either unpaired t-tests 

or analysis of variance (ANOVA) for repeated-measures using Barlett’s test for equal 

variances and a Bonferroni correction.  Differences between means were accepted as 

statistically significant at the 95% level (p < 0.05).  
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RESULTS 
 

Identifying the calpain-cleavage site of InsP3R1 
 

InsP3R1 is a known substrate of calpain, which sequentially cleaves the protein 

into 200, 130, and 95 kDa carboxyl-terminal fragments, with the 95 kDa fragment being 

the stable, predominant cleavage product (Figure 2.1B) (Magnusson et al., 1993; 

Wojcikiewicz and Oberdorf, 1996; Igwe and Filla, 1997).  While the 95 kDa calpain-

derived fragment is similar in size to the caspase-derived fragment, the cleavage sites are 

different.  To determine the calpain cleavage site of InsP3R1, we first examined the 

relative sizes of the caspase- and calpain-cleaved carboxyl-terminal fragments of InsP3R1 

using in vitro digests of rat cerebellar tissue, which is enriched in InsP3R1.  We 

performed in vitro digests of cerebellar microsomes with either recombinant, 

constitutively active caspase-3 or exogenous calpain 1.  A Western blot of the digest 

products using a carboxyl-terminal InsP3R1 antibody demonstrated loss of the full-length 

protein and generation of stable carboxyl-terminal fragments of approximately 95 kDa 

(Figure 2.1C). Shown here for the first time, calpain cleavage of InsP3R1 generates a 

slightly smaller fragment than the fragment generated by caspase cleavage.   

Caspase cleavage of InsP3R1 is known to occur at the carboxyl-terminal end of 

the 
1888DEVD consensus sequence (Figure 2.1A) (Hirota et al., 1999).  Based on the 

relative sizes of the caspase and calpain InsP3R1 cleavage products, we deduced that the 

calpain cleavage site responsible for generating the 95 kDa stable fragment was less than 

30 residues downstream of the caspase-3 cleavage site.  To identify the site we utilized a 

GST-fusion peptide containing residues 1583 to residue 1932 of rat InsP3R1, which 
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includes the caspase-3 cleavage site (Supplemental Figure 2.1A).  As a control, we used a 

GST-fusion peptide containing an adjacent sequence within InsP3R1 (residues 1932 to 

2257) that does not include the caspase-3 cleavage site.  We digested both GST-fusion 

peptides with exogenous calpain 1, separated reaction products using SDS-PAGE, and 

transferred them to PVDF membranes for protein staining.  Protein staining of digest 

products identified a single proteolytic fragment derived from the 1582-1932aa peptide, 

but not the 1932-2257aa peptide, confirming that the calpain-cleavage site is between 

residues 1582 and 1932 (Supplemental Figure 2.1B).  Addition of the calpain inhibitor 

calpastatin blocked generation of the proteolytic fragment produced by calpain digest of 

InsP3R1 peptide 1582-1932aa (Figure 2.1D).  Eight rounds of Edman degradation and N-

terminal sequencing of the proteolytic fragment from the calpain-digested GST-fusion 

peptide returned 4 potential sequences, only one of which (1918ASAATRKA) was 

downstream of the caspase-DEVD site (Figure 2.1E).  Based on the location of this 

sequence in InsP3R1, the predominant calpain cleavage product is expected to have a 

molecular mass of 94.84 kDa.  This fragment is 3.02 kDa smaller than the caspase-

cleaved fragment, which is consistent with Western blot comparisons of calpain and 

caspase in vitro digests of microsomal InsP3R1 (Figure 2.1C). These data demonstrate 

that calpain cleaves rat InsP3R1 between residues 1917 and 1918 to generate the 95 kDa 

carboxyl-terminal fragment.  The sequences surrounding the cleavage site are highly 

conserved in InsP3R1 across species, although it is not present in type 2 or type 3 

receptors.  
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Calpain-cleaved InsP3R1 antibody 
 

To facilitate investigations of calpain-cleaved InsP3R1, we generated an antibody 

specific to the calpain-derived carboxyl-terminal fragment of the channel using a 

neoepitope specific approach (Roberts-Lewis et al., 1994).  The peptide ASAATRKAC, 

corresponding to the new amino-terminus of InsP3R1 following calpain-cleavage, was 

synthesized and covalently linked to a keyhole limpet hemocyanin to elicit an immune 

response (Figure 2.2A; Covance ImmunoTechnologies).  A New Zealand White rabbit 

(2054) was immunized by subcutaneous injections of the peptide, and serum ELISA 

demonstrated a 1:843,000 titer at the time of test-bleed 1.  

We tested specificity of Ab2054 for the 95 kDa calpain-derived InsP3R1 fragment 

by Western blot of rat cerebellar microsomes following in vitro digestion.  Using a 

carboxyl-terminal InsP3R1 antibody, we detected full-length, caspase-digested and 

calpain-digested InsP3R1 (Figure 2.2B).   Using Ab2054 on the same blot, we detected no 

signal in undigested microsomes or microsomes digested with caspase-3, but a single 

band at ~95 kDa was observed in microsomes digested with calpain 1, indicating the 

antibody reacts exclusively with the stable 95 kDa calpain-cleaved form of InsP3R1 

(Figure 2.2C). These data validate Ab2054 as specific antibody for calpain-cleaved 

InsP3R1.   

Expression of recombinant InsP3R1 constructs 
 

To examine the consequences of calpain cleavage of InsP3R1 on channel function, 

we generated a truncated cDNA of the protein (△1-1917) corresponding to the stable 

carboxyl-terminal fragment derived from calpain cleavage (capn-InsP3R1).  We used full-
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length wild type (wt) rat InsP3R1 as a control (Figure 2.3A).  

For all functional experiments, we studied wt- and capn-InsP3R1 expressed 

transiently in N2a mouse neuroblastoma cells.  We chose N2a cells as they are neural in 

tissue origin and have high transfection efficiency.  To examine the time course of 

expression of recombinant rat InsP3R1 in N2a cells, we transiently transfected cells with 

either wt-InsP3R1 or capn-InsP3R1 and harvested cells at 6, 16, 24, or 48 h later.  Western 

blotting of whole-cell lysates using the carboxyl-terminal InsP3R1 antibody demonstrated 

expression of both wt- and capn-InsP3R1 by 6 h post-transfection.  For capn-InsP3R1, 

expression was maximal at 24 and decreased by 48 h post-transfection, whereas 

expression of the wt channel continued to increase up to 48 h, suggesting toxicity or 

cellular regulation of gene expression associated with capn-InsP3R1 (Figure 2.3B).  In 

lysates from wt-InsP3R1 cells, we occasionally observed lower molecular weight 

fragments, which are possibly proteolytic degradation products.  In lysates from cells 

expressing capn-InsP3R1, we observed high molecular weight smears, which are likely 

aggregates of capn-InsP3R1.  Similar high molecular weight smears have been observed 

when expressing the caspase-3 cleaved form of InsP3R1 (Nakayama et al., 2004).  These 

smears were eliminated by harvesting capn-InsP3R1 transfected cells in lysis buffer 

containing either 5 M urea or 1% SDS (Supplemental Figure 2.2). 

InsP3-independent gating of capn-InsP3R1 
 

To determine whether capn-InsP3R1 still functioned as an ion channel, we 

examined single channel activity in native ER membranes.  We utilized patch clamp 

electrophysiology of the outer membrane of isolated N2a cell nuclei to study the channel 
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activities of recombinant InsP3R1 constructs (Foskett et al., 2007).  To maximize the 

likelihood of recording recombinant channels, we performed patch clamp experiments at 

24 h post-transfection, when expression of capn-InsP3R1 was maximal.  We monitored 

channel activity with the pipette solution (cytoplasmic side) containing 2 µM Ca2+ and 

0.5 mM ATP.  In untransfected cells, we observed endogenous InsP3R with single 

channel conductance of 395 ± 12 pS with saturating 10 µM InsP3 in the pipette solution 

(Supplemental Figure 2.3A-B).  In nuclei from cells transfected with recombinant rat wt-

InsP3R1, we observed channel activities that had a smaller single channel conductance 

(231 ± 10 pS; Supplemental Figure 2.3C).  Despite their smaller single channel 

conductance, we identified these channels as InsP3R based on their dependence on InsP3 

for activation (n=10; Figure 2.4A) and their sensitivity to competitive inhibition by 

heparin (100 µg/ml in pipette solution; n=5; Figures 2.4A, 2.4C-D).  With 10 µM InsP3 in 

the pipette solution, the recombinant wt channels had an open probability (Po) of 0.69 ± 

0.08 (n=8; Figures 2.4A, 2.4C-D).   In cells transfected with capn-InsP3R1, we observed 

channel activities with a single channel conductance (230 ± 10 pS) similar to the 

recombinant wt-InsP3R1 (Supplemental Figure 2.3D).  Strikingly, we observed these 

channels even in the absence of InsP3 in the pipette solution.  Exposed to pipette solution 

containing no InsP3, 2 µM Ca2+ and 0.5 mM ATP, the spontaneously active capn-InsP3R1 

channels had high Po in either the absence (Po=0.82 ± 0.04, n=9) or presence (Po=0.74 ± 

0.09, n=5) of heparin (Figures 2.4B-D).  These results indicate that a truncated InsP3R1 

corresponding to the carboxyl-terminal calpain cleavage fragment forms a functional ion 

channel with InsP3-independent gating.  
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Ca2+ regulation of capn-InsP3R1 gating 
 

Channel activity of InsP3R1 is both activated and inhibited by Ca2+, resulting in a 

biphasic, bell-shaped Po dependence on [Ca2+]i (Foskett et al., 2007).  While InsP3 

regulation of the truncated channel was absent, we asked whether any Ca2+ regulation of 

capn-InsP3R1 remained.  Accordingly, we next examined channel activity at low [Ca2+] 

(70 nM), typical of resting cytoplasmic levels.  With 10 µM InsP3 and 70 nM free Ca2+ in 

the pipette solution, Po of wt-InsP3R1 was 0.016 ± 0.004 (n=8; Figures 2.5A, C), 

significantly lower than the observed Po in 2 µM Ca2+ (Po~0.7; p<0.001).  With no InsP3 

and 70 nM free Ca2+ included in the pipette solution, Po of capn-InsP3R1 was 0.26 ± 0.06 

(n=5; Figures 2.5B-C), also significantly lower than the observed Po in 2 µM Ca2+ 

(Po~0.8; p<0.001), but significantly higher than that of wt-InsP3R1 at low Ca2+ 

(p<0.001). These data suggest that capn-InsP3R1 may constitute an ER Ca2+ leak 

permeability in resting cells.  To determine whether high [Ca2+] still inhibits capn-

InsP3R1, we examined channel activity at 25 µM Ca2+, which corresponds to pathologic 

neuronal cytoplasmic levels immediately following ischemia (Erecinska and Silver, 1992; 

Silver and Erecinska, 1992).  With 10 µM InsP3 and 25 µM free Ca2+ in the pipette 

solution, Po of wt-InsP3R1 was 0.22 ± 0.06 (n=8; Figures 2.5A, C).  In the absence of 

InsP3, with heparin (100 µg/ml) and 25 µM free Ca2+ in the pipette solution, Po of capn-

InsP3R1 was 0.39 ± 0.08 (n=8; Figures 2.5B-C).  Po of wt- and capn-InsP3R1 channels in 

25 µM Ca2+ were significantly lower than the corresponding Po of each channel in 2 µM 

Ca2+ (p<0.001).  Po of capn-InsP3R1 at 25 µM Ca2+ was not, however, significantly 

different from Po of wt-InsP3R1 at that [Ca2+].  These data demonstrate that Ca2+ 

regulation of channel activity is preserved in capn-InsP3R1.  
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Decreased intracellular Ca2+ stores in cells expressing capn-InsP3R1 
 

To investigate the functional consequence of InsP3R1 proteolysis on cellular Ca2+ 

homeostasis, we first used single-cell Ca2+ imaging to examine [Ca2+]i
 and estimate total 

Ca2+ content of intracellular stores.  We identified individual transfected cells by EGFP 

expression driven by the pIRES2-EGFP expression vector.  To avoid potential 

complications from compensatory changes in gene expression, we performed Ca2+ 

imaging at an early time point (6 h) following transfection. [Ca2+]i was monitored with 

Fura-2 in transiently transfected N2a cells expressing wt-InsP3R1, capn-InsP3R1 or a 

control plasmid (EGFP).  We utilized the Ca2+ ionophore ionomycin (2 µM) to liberate 

Ca2+ from intracellular stores in the absence of extracellular Ca2+ and measured the 

resulting increase in [Ca2+]i (Figure 2.6A). We used ionomycin instead of a 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor because it 

produces a much faster leak and consequent rise in [Ca2+]i, providing a better estimate of 

the Ca2+ content of intracellular stores. Expression of capn-InsP3R1 did not effect resting 

[Ca2+]i in N2a cells (Figure 2.6B).  However, expression of capn-InsP3R1 significantly 

decreased the ionomycin-induced peak [Ca2+]i (252 ± 15 nM) compared with control cells 

(540 ± 30 nM) or cells over-expressing wt-InsP3R1 (520 ± 60 nM; p<0.001; Figure 

2.6C).  These data indicate that capn-InsP3R1 causes partial depletion of intracellular 

Ca2+ stores consistent with the hypothesis that calpain-cleaved InsP3R1 is a Ca2+ leak 

channel.  

Decreased ER Ca2+ loading in cells expressing capn-InsP3R1 
 

To directly examine ER Ca2+ leak caused by truncated InsP3R1, we monitored 
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[Ca2+]ER in N2a cells using Mag-Fura-2 at 6 h post-transfection.  We permeabilized the 

plasma membranes of Mag-Fura-2 loaded EGFP expressing cells by a brief exposure to 

digitonin under microscopic observation.  After depleting ER stores by washing with 

ATP-free CLM for 30 min, we initiated Ca2+ filling of ER stores by perfusing 

permeabilized cells with saturating 1.5 mM MgATP to stimulate the SERCA pump.  

After a steady-state [Ca2+]ER was reached, we observed the ER Ca2+ leak by inhibiting the 

pump with CPA (10 µM) and removing ATP (Figure 2.7A).  Expression of capn-InsP3R1 

significantly decreased the steady-state loading level of the ER to 26.8 ± 1.1 µM 

compared with 36.3 ± 0.9 µM in controls and 33.4 ± 1.0 µM in cells expressing wt-

InsP3R1 (p<0.001; Figure 2.7B).  

To compare the kinetics of ER Ca2+ loading and passive leak in cells expressing 

various InsP3R1 constructs, we determined the average rate of ER loading and release by 

fitting each respective portion of single-cell responses with a single exponential equation.  

Expression of capn-InsP3R1 reduced the rate of ER Ca2+ loading compared with cells 

expressing wt-InsP3R1, although the rate was similar to that observed in EGFP-

expressing cells (Figure 2.7C), suggesting that SERCA activity was sufficient to 

overcome Ca2+ leak through the truncated channel.  Expression of capn-InsP3R1 and, to a 

lesser extent, wt-InsP3R1 significantly increased the ER Ca2+ leak rate compared with 

control (p<0.001; Figure 2.7D). Taken together, these data demonstrate that calpain-

cleaved InsP3R1 alters ER Ca2+
 homeostasis.   

Calpain-mediated proteolysis of InsP3R1 following in vivo ischemia 
 

To determine whether calpain proteolysis of InsP3R1 occurs in vivo in a clinically 
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relevant injury model, we examined rat cerebellum following 7 min of asphyxial cardiac 

arrest. We chose this model because cerebellar Purkinje neurons express high levels of 

InsP3R1 and are selectively vulnerable to transient global ischemia caused by cardiac 

arrest (Neumar, 2000).  We first performed Western blot analysis of rat cerebellar 

microsomes from naïve animals or from animals resuscitated from cardiac arrest.  Using 

the carboxyl-terminal InsP3R1 antibody, which reacts with both unproteolyzed and 

cleaved InsP3R1, we observed evidence of InsP3R1 proteolysis and the appearance of a 

faint ~95 kDa fragment at both 1 and 24 h after return of spontaneous circulation (Figure 

2.8A).  Using Ab2054, which specifically recognizes the stable 95 kDa carboxyl-terminal 

fragment generated by calpain proteolysis, we identified calpain-cleaved InsP3R1 in both 

post-cardiac arrest samples (Figure 2.8B).    

To determine which cell populations within the cerebellum contained calpain-

cleaved InsP3R1, we performed immunohistochemical analysis of rat cerebellum 24 and 

48 h following cardiac arrest using naïve animals as a control (Figure 2.8C).  

Immunolabeling with Ab38, which reacts with calpain-cleaved spectrin, demonstrated 

robust calpain activity within sub-populations of Purkinje neurons at 24 h post-cardiac 

arrest, which decayed but was still evident at 48 h post-cardiac arrest.   Using Ab2054, 

we detected calpain-cleaved InsP3R1 in sub-populations of Purkinje neurons in a 

distribution similar to that of calpain-cleaved spectrin (Figure 2.8C).   The intensity of 

Ab2054 staining was comparable at 24 and 48 h after cardiac arrest, suggesting that the 

calpain-derived InsP3R1 fragment is more stable than the spectrin fragment.   

Finally, to evaluate the relationship between calpain cleavage of InsP3R1 and cell 

death, we used Fluoro-Jade B to identify degenerating neurons in the cerebellum (Figure 
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2.8C).  At both time points examined following cardiac arrest, we observed selective 

Fluoro-Jade labeling of sub-populations of Purkinje neurons.  The intensity of Fluoro-

Jade staining was greater at 48 h compared with 24 h post-cardiac arrest, and was 

accompanied by a shrunken somatic morphology consistent with neurodegeneration.  The 

morphological changes and increased Fluoro-Jade intensity in Purkinje cells at 48 h post-

injury suggests that both enhanced calpain activity and cleavage of InsP3R1 precede 

neurodegeneration.  We did not observe any Ab38, Ab2054 or Fluoro-Jade labeling in 

naïve tissue.   

Together, these data demonstrate that calpain cleaves InsP3R1 in vivo in a 

clinically relevant model of brain ischemia, and that calpain-mediated proteolysis of 

InsP3R1 is an early molecular event in the injury cascade.  
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DISCUSSION 
 

The present study is the first functional investigation of calpain-cleaved InsP3R1.  

Based on our results from single-channel electrophysiology and Ca2+ imaging 

experiments, we conclude that capn-InsP3R1 forms a dysregulated channel with InsP3-

independent gating, which functions as a leak channel in the ER.  Moreover, evidence of 

calpain-mediated InsP3R1 proteolysis in the brain following cardiac arrest demonstrates 

that InsP3R1 proteolysis is a clinically relevant cellular pathway that is active in a 

neurodegenerative disease.   

Calpain proteolyzes InsP3R1 at a unique cleavage site 
 

Previous reports (Magnusson et al., 1993; Wojcikiewicz and Oberdorf, 1996; 

Igwe and Filla, 1997) and data presented here (Figure 2.1) establish that InsP3R1 is a 

proteolytic target of calpain, which cleaves the channel at multiple sites to form 200, 130, 

and 95 kDa carboxyl-terminal fragments.  Calpains, unlike caspases, do not use 

consensus sequences for target recognition and proteolysis.  Our data show that calpain 

cleaves InsP3R1 between residues 1917 and 1918 to generate the stable 95 kDa channel 

fragment (Figure 2.1D-E).  The InsP3R1 calpain cleavage site and surrounding residues 

are highly conserved in mouse and human homologs, and are unique to the type 1 

isoform of the channel.  Our cleavage specific antibody (Ab2054; Figure 2.2) targeting 

the new amino-terminus of InsP3R1 following calpain proteolysis provides a useful tool 

for studying the truncated form of the channel in multiple species, including human (data 

not shown).  



 

  50 

To begin characterizing the functional consequences of calpain proteolysis of 

InsP3R1, we utilized a recombinant channel construct corresponding to the 95 kDa 

carboxyl-terminal fragment of InsP3R1 produced by calpain cleavage (Figure 2.3).  We 

expected the recombinant truncated InsP3R1 to tetramerize in the ER, as previous studies 

demonstrated that the transmembrane domains and carboxyl-terminal tail of the channel 

are sufficient for ER localization and oligomerization (Sayers et al., 1997; Galvan et al., 

1999).  We had attempted to study capn-InsP3R1 on a null-background using the InsP3R-

deficient DT40 cell line.  The extremely low transfection efficiency of these cells requires 

working in stable lines.  However, we were unable to generate stable InsP3R-deficient 

DT40 lines expressing capn-InsP3R1 despite our lab and others being able to generate 

stable lines expressing the similarly sized caspase-3 cleaved form of the channel (Assefa 

et al., 2004; Verbert et al., 2008).1  The apparent toxicity associated with expression of 

capn-InsP3R1 in the DT40 cell system suggests that the truncated channel may cause cell 

death or attenuate proliferation. Instead of using stable lines, we studied capn-InsP3R1 in 

transiently transfected N2a cells at early time points following transfection to minimize 

the impact of potentially confounding compensatory changes as seen in stable lines over-

expressing wt-InsP3R1 (Fischer et al., 1994; Mackrill et al., 1996; Davis et al., 1999).  

Furthermore, studying capn-InsP3R1 in transiently transfected cells expressed under the 

CMV promoter strongly increases the probability that the recombinant truncated subunits 

form homotetramers.  Thus, heteroligomerization of truncated subunits with endogenous, 

full-length InsP3R was unlikely in the studies presented here.  However, understanding 

                                                
1 C.M. Kopil, H. Vais, K.-H.Cheung, A.P. Siebert, D.-O.D. Mak, J.K. Foskett, and R. W. 
Neumar, unpublished observation. 
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the possible existence and implications of heteroligomerization of truncated and full-

length InsP3R requires additional studies.  

Our approach to studying the functional consequence of calpain proteolysis of 

InsP3R1 using capn-InsP3R1 does have limitations.  Foremost, it is unknown if the 

amino-terminus of InsP3R1 completely dissociates from the channel domain following 

proteolysis.  Limited digestion of cerebellar microsomes with trypsin results in channel 

fragments that remain associated via noncovalent or indirect interactions (Joseph et al., 

1995; Yoshikawa et al., 1999).  The trypsinized channel also remains functional, 

demonstrated by InsP3-induced Ca2+ release from microsomes (Yoshikawa et al., 1999).  

Thus, expression of capn-InsP3R1 may not accurately reflect the conformation that exists 

following proteolysis in vivo.  Caspase-3 proteolysis of InsP3R1 however, results in loss 

of InsP3-mediated Ca2+ release from microsomes in a manner that corresponds to the 

percentage of digestion (Hirota et al., 1999). The same is likely true for calpain-cleaved 

InsP3R1.   By studying capn-InsP3R1, we are likely examining a model of an InsP3R1 

channel in which all four subunits have been completely proteolyzed by calpain.    

Understanding the behavior of InsP3R1 channels with both intact and calpain-cleaved 

subunits warrants future investigation.   

Calpain-cleaved InsP3R1 has InsP3-independent, Ca2+-dependent channel gating 
 

To explore how calpain cleavage affects InsP3R1 channel function, we examined 

the single channel properties of recombinant capn-InsP3R1 using nuclear patch clamp 

electrophysiology.  Recordings from N2a nuclei expressing recombinant InsP3R1 

revealed channels with smaller single channel conductances than that of endogenous 
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InsP3R.  This difference is potentially mediated by interactions with endogenous proteins, 

which may modulate recombinant rat InsP3R1 activity differently than endogenous 

mouse InsP3R. The low conductance of recombinant InsP3R1 was cell type specific, as 

we did not observe such reduction in conductances when the channels were expressed in 

HEK293 cells.2  Nevertheless, it provided a means to distinguish recombinant and 

endogenous InsP3R channels in N2a cells.  In examining capn-InsP3R1 specifically, we 

observed activity of single channels in patches in the absence of InsP3, indicating that 

calpain cleavage does not eliminate channel function but instead leads to constitutive 

InsP3-independent gating (Figure 2.4B).  Previous studies of the caspase-3 cleaved form 

of InsP3R1 similarly suggested that the proteolyzed channel retained activity (Nakayama 

et al., 2004; Verbert et al., 2008).  

In addition to InsP3, Ca2+ is the most important ligand for InsP3R1 (Foskett et al., 

2007).  Even in saturating concentrations of InsP3, [Ca2+]i greater than 100 nM is required 

for the InsP3R1 channel to be appreciably activated (Foskett et al., 2007).  Unlike the 

InsP3-binding site in InsP3R1, which is known and missing in the carboxyl-terminal 

fragment generated by calpain proteolysis, the location of functionally important Ca2+ 

binding sites within the primary sequence of InsP3R1 are largely unknown (Foskett et al., 

2007).  Therefore, while we expected that capn-InsP3R1 activity would be InsP3-

independent if it formed a functional channel, we made no a priori assumptions about 

Ca2+ regulation of capn-InsP3R1 activity. To experimentally determine if the Ca2+ 

requirement for channel activation was retained in capn-InsP3R1, we also studied 

                                                
2 C.M. Kopil, H. Vais, K.-H.Cheung, A.P. Siebert, D.-O.D. Mak, J.K. Foskett, and R. W. 
Neumar, unpublished observation. 
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recombinant channel gating at non-optimal [Ca2+] (70 nM and 25 µM).  As expected, the 

Po of wt-InsP3R1 was significantly decreased at 70 nM and 25 µM Ca2+ compared with 

channel Po at optimal 2 µM Ca2+ (Figure 2.5).  Notably, the constitutively active capn-

InsP3R1 channel demonstrated a similar behavior (Figure 2.5).  This result suggests that 

the carboxyl-terminal part of InsP3R1 beyond residue 1917 contains functionally relevant 

Ca2+ binding sites involved in channel activation and inhibition.  The Po of capn-InsP3R1 

at 70 nM Ca2+ was, however, significantly greater than that of wt-InsP3R1 at this [Ca2+].  

This difference may reflect loss of the high affinity, InsP3-regulated Ca2+ binding site in 

the truncated channel (Foskett et al., 2007).  However, because of the complexity of Ca2+ 

regulation of InsP3R channel activity, involving multiple functional Ca2+ binding sites 

(Foskett et al., 2010), future studies are required to determine what elements of Ca2+ 

regulation are modified in the truncated channel.  These investigations may provide 

critical clues needed to identify additional Ca2+ binding sites within the primary InsP3R 

sequence.  

Expression of capn-InsP3R1 decreases Ca2+ content of intracellular Ca2+ stores  
 

How does InsP3-independent activity of capn-InsP3R1 affect cellular Ca2+
 

regulation? Using changes in [Ca2+]i to indirectly measure the Ca2+ content of 

intracellular stores, we observed that expression of capn-InsP3R1 significantly reduced 

ionomycin releasable Ca2+ compared with wt-InsP3R1 and EGFP controls, although it did 

not completely deplete intracellular stores (Figure 2.6A and C).  The kinetics of the 

ionomycin response in capn-InsP3R1 expressing cells was also slower than in EGFP wt-

InsP3R1 controls, which suggests a smaller Ca2+ driving force, consistent with a smaller 
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intracellular Ca2+ store. On the other hand, expression of capn-InsP3R1 was not 

associated with an increased basal [Ca2+]i, suggesting that Ca2+ transport mechanisms 

were able to compensate for enhanced ER Ca+ leak through the cleaved channel, at least 

at the early times after transfection studied (Figure 2.6B).  In ER Ca2+ imaging 

experiments, expression of capn-InsP3R1 significantly reduced the steady-state Ca2+ 

loading capacity of the ER compared with wt-InsP3R1 and EGFP controls (Figure 2.7A 

and B).  The steady-state [Ca2+]ER represents the equilibrium between the passive Ca+ 

leak and Ca2+ uptake by SERCA.  Under steady-state filling conditions, the enhanced 

Ca2+ leak induced by expression of capn-InsP3R1 exceeds the SERCA mediated Ca2+ 

uptake rate, resulting in lower [Ca2+]ER.  The small effect of capn-InsP3R1 expression on 

the ER filling rate may reflect the negligible driving force for Ca2+ leak under these 

conditions (Figure 2.7C). Of note, the ER leak rate in capn-InsP3R1 was considerably 

higher than that observed in control or wt-InsP3R1 expressing cells. (Figure 2.7D).  

Taken together, our results suggest that capn-InsP3R1 acts as a Ca2+ leak channel that 

perturbs normal ER Ca2+ homeostasis.   

The results from nuclear patch clamp electrophysiology and Ca2+ imaging 

experiments together elucidate the physiologic relevance of calpain-mediated InsP3R1 

proteolysis.  Evidence that InsP3-independent gating of capn-InsP3R1 remains Ca2+ 

dependent may explain why expression of capn-InsP3R1 induces only a moderate, albeit 

significant decrease in intracellular and ER Ca2+ stores, at least at the early time point 

examined following transfection (6 h).  The electrophysiology data suggest that resting 

[Ca2+]i is insufficient to fully activate the truncated channel, thus reducing the Ca2+ leak.  

It is interesting to speculate that this result may also account for conflicting findings 
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regarding the effects of caspase-3 cleavage of InsP3R1 on Ca2+ homeostasis.  Previous 

studies have reported that expression of caspase-cleaved InsP3R1, which is only 26 

residues longer than the calpain-cleaved form, either depletes (Nakayama et al., 2004) or 

does not deplete (Verbert et al., 2008) Ca2+ stores in the resting state.  While it was 

agreed that caspase-3-cleaved InsP3R1 represents a leak channel, the size and impact of 

that leak remains disputed.  It is possible that different [Ca2+]i in the two studies resulted 

in channels with different Po, which would likely lead to distinct effects on cellular Ca2+ 

homeostasis. Electrophysiological recordings of caspase-cleaved InsP3R1, similar to 

those performed here for capn-InsP3R1, may clarify the functional consequences of 

caspase-mediated channel proteolysis.  

InsP3R1 is cleaved by calpain following ischemic brain injury  
 

Under pathologic conditions, particularly those associated with elevated [Ca2+]i 

and impaired ATP-dependent Ca2+ removal mechanisms, as in ischemia, calpain cleavage 

of InsP3R1 may be an important mechanistic component of cell death.  Brain ischemia 

and reperfusion dramatically disrupt neuronal Ca2+ homeostasis, and there is compelling 

evidence for a causal role of both Ca2+ overload and consequent pathologic calpain 

activation in ischemic neurodegeneration (Neumar, 2000; Bevers and Neumar, 2008).  As 

both a Ca2+ regulatory protein and calpain substrate, InsP3R1 is at a critical intersection 

between protease activation and disruption of cellular Ca2+ homeostasis during the 

molecular injury cascade.  Here, we demonstrate that InsP3R1 proteolysis occurs in vivo 

in an animal model of ischemic brain injury (Figure 2.8).  In this cardiac arrest model, 

calpain cleavage of InsP3R1 occurred in cerebellar Purkinje neurons, which are 
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selectively vulnerable to post-ischemic neurodegeneration (Neumar, 2000).  Moreover, 

identification of calpain-cleaved InsP3R1 in cerebellar microsomes as early as 1 h after 

cardiac arrest and reperfusion demonstrates that channel proteolysis is an early event in 

the cell death cascade rather than merely reflecting broad cellular degradation.  The 

persistence and stability of calpain-cleaved InsP3R1 at the latest time point examined 

after cardiac arrest (48 h) also suggests that the leaky, proteolyzed channel may act as a 

feed-forward mechanism for Ca2+ overload and increased calpain activation that 

eventually lead to neuronal death.   In addition to InsP3R1, a number of Ca2+ regulatory 

proteins are also calpain substrates, including the NMDA receptor, plasma membrane 

Ca2+-ATPase, Na+/Ca2+ exchanger, L-type Ca2+ channel, SERCA and ryanodine receptor 

(Bevers and Neumar, 2008).  Thus, calpain cleavage of InsP3R1 may be an important 

component of a broader pathway of calpain-mediated disruption of neuronal Ca2+ 

homeostasis in neurodegenerative diseases associated with Ca2+ dysregulation. 

Conclusions 
 

In summary, our results indicate that calpain proteolysis of InsP3R1 creates an ER 

Ca2+ release channel that is InsP3-independent and constitutively active.  Expression of 

the truncated channel reduces the content of intracellular Ca2+ stores, which may have 

detrimental effects on Ca2+ signaling and buffering under pathologic conditions.  

Evidence of calpain cleavage of InsP3R1 in neurons following cardiac arrest provides a 

potential mechanism to account for decreased InsP3 binding (Nagasawa and Kogure, 

1991; Dahl et al., 2000), depletion of ER Ca2+ stores (Kohno et al., 1997) and disruption 

of Ca2+ homeostasis reported in previous studies of in vivo brain ischemia.  Together, 



 

  57 

these results provide important insights into a molecular pathway that may act as a feed-

forward mechanism to enhance cell death.  Futhermore, the results presented here 

identify a novel target for therapeutic intervention following brain ischemia or in other 

neurodegenerative disorders associated with Ca2+ dysregulation and protease activation. 
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FIGURES AND LEGENDS 

 
Figure 2.1 
 

 

Figure 2.1 Calpain cleavage site in InsP3R1 

(A) Domain structure of InsP3R1 protein (top), and GST-InsP3R1 fusion peptide containing residues 1583 
to 1932 (bottom). Residues numbered according to rat type 1 SI+, SII+, SIII- sequence (protein accession 
NP_001007236.1).  (B) Western blot of rat cerebellar microsomes following in vitro digestion with calpain-
1 using antibody against the carboxyl-terminal 20 amino acids of rat InsP3R1 (1:5,000).  Digestion with 
calpain-1 results in cleavage of InsP3R1 into 200, 130 and 95 kDa carboxyl-terminal fragments.  With 
longer digestion, the 95 kDa fragment becomes predominant.  Proteolysis does not occur in the absence of 
Ca2+

 and is blocked by the addition of the calpain inhibitor calpastatin (CAST), demonstrating the calpain 
dependence.  (C) Western blot of microsomes following in vitro digest with caspase-3 (4 h) and calpain-1 
(1 h) using carboxyl-terminal InsP3R1 antibody, demonstrating difference in size of the resulting stable 
carboxyl-terminal InsP3R1 fragments.  (D) Amido black protein stain of PVDF membrane demonstrating 
calpain-mediated degradation of the GST-InsP3R1 fusion peptide.  Arrow indicates unique calpain-
degradation product, which was not present in samples without exogenous calpain or samples treated with 
CAST.  The ~12 kDa band (arrow) was submitted for N-terminal sequencing.  (E) Amino acid sequence of 
InsP3R1 at caspase-3 and calpain-cleavage sites. DEVD consensus sequence for caspase-3 proteolysis 
highlighted in red.  The new N-terminus of InsP3R1 generated by calpain proteolysis and the sequence 
identified by Edman N-terminal sequencing is underlined and highlighted in red. 
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Figure 2.2 
 

 
 
 Figure 2.2 Antibody targeted against calpain-cleaved InsP3R1 

(A) Calpain cleavage site of rat InsP3R1 and corresponding synthetic peptide used to generate polyclonal 
antibody Ab2054. (B) Western blot of rat cerebellar microsomes following in vitro digestion with caspase-3 
or calpain 1 using carboxyl-terminal InsP3R1 antibody that reacts with unproteolyzed, caspase-cleaved and 
calpain-cleaved InsP3R1.  (C) Western blot in B, stripped and reprobed using Ab2054 (1:10,000).  Ab2054 
reacts specifically with the 95 kDa carboxyl-terminal fragment of calpain-cleaved InsP3R1.  
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Figure 2.3 
 

 

 

Figure 2.3 Schematic representation and expression of recombinant capn-InsP3R1 

(A) Domain structure of the full-length (wt) and calpain-cleaved InsP3R1 recombinant proteins. (B) 
Western blot analysis of whole cell lysates from untransfected N2a cells or N2a cells expressing wt- or 
capn-InsP3R1 at 6, 16, 24 and 48 h post-transfection.  Carboxyl-terminal InsP3R1 antibody was used to 
detect endogenous and recombinant InsP3R1.  Antibody against actin (1:3,000) used as loading control. 
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Figure 2.4 
 

 
 

Figure 2.4 Capn-InsP3R1 channel activity in the absence of InsP3 

(A) Representative current traces recorded in outer membrane of nuclei isolated from N2a cells transfected 
with wt-InsP3R1 in the absence (top panel) or presence (middle/bottom panels) of saturating InsP3 in the 
pipette solution.  Pipette solution contained 2 µM Ca2+.  Arrow indicates closed channel current level.  
Channel activity of wt-InsP3R1 required InsP3 and was inhibited by heparin.  (B) Representative current 
recordings in isolated nuclei from N2a cells expressing capn-InsP3R1 in absence of InsP3.  Heparin did not 
inhibit channel activity of capn-InsP3R1, confirming that InsP3-independent gating was not caused by local 
InsP3 in the patch pipette.  (C) Summary of effects of InsP3 and heparin on Po of recombinant InsP3R1. (D) 
Summary of Po from endogenous InsP3R (Endo InsP3R) and recombinant wt- and capn-InsP3R1.   There is 
no statistically significant difference between mean Po values of recombinant wt- and capn-InsP3R1 by one-
way ANOVA.   
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Figure 2.5 
 

 

Figure 2.5 Ca2+ regulation of capn-InsP3R1 

(A) Representative current traces recorded in outer membrane of nuclei isolated from N2a cells transfected 
with wt-InsP3R1 with 10 µM InsP3 and 70 nM (top), 2 µM (middle), or 25 µM (bottom) Ca2+ included in 
the pipette solution. (B) Representative current traces recorded in outer membrane of nuclei isolated from 
N2a cells transfected with capn-InsP3R1 in the absence of InsP3 with 70 nM (top), 2 µM (middle), or 25 
µM (bottom) Ca2+.  (C) Summary of effects of [Ca2+] on Po of wt- and capn-InsP3R1 (Po data at 2 µM Ca2+ 
are the same as shown in Figure 2.4). Po of both wt- and capn-InsP3R1 at 70 nM and 25 µM Ca2+ were 
decreased compared to the Po of either channel at 2 µM Ca2+ (unpaired t-tests, p<0.001).  At 70 nM Ca2+, Po 
of capn-InsP3R1 was higher than that of wt-InsP3R1 at 70 nM Ca2+ (unpaired t-test with unequal variance; 
*, p<0.001).   
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Figure 2.6 
 

 

Figure 2.6 Expression of capn-InsP3R1 decreases Ca2+ content of intracellular stores 

(A) Averaged single-cell [Ca2+]i responses to 2 µM ionomycin in Fura-2 loaded N2a cells transfected with 
empty vector (green), wt-InsP3R1 (blue) or capn-InsP3R1 (red).  (B) Summary of resting [Ca2+]i.  (C) 
Summary of peak [Ca2+]i responses elicited by 2 µM ionomycin, demonstrating a decrease in releasable 
Ca2+

 in capn-InsP3R1 expressing cells (unpaired t-tests with unequal variance; *, p<0.001). 
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Figure 2.7 
 

 

Figure 2.7 Capn-InsP3R1 decreases ER Ca2+ loading 

(A) Averaged single-cell responses demonstrating ER Ca2+ loading and release in response to 1.5 mM 
MgATP and 10 µM CPA/ 0 ATP, respectively.  Averaged traces are from permeabilized Mag-Fura-2 
loaded N2a cells transfected with empty vector (green), wt-InsP3R1 (blue) or capn-InsP3R1 (red).  (B) 
Summary of steady state [Ca2+]ER, showing decreased ER loading in cells expressing capn-InsP3R1 (one-
way ANOVA; *, p<0.001).  (C) Summary of averaged single-cell ER loading rates in response to MgATP 
stimulation of SERCA in transfected cells (unpaired t-tests; *, p<0.05, **, p<0.01).  (D) Summary of 
averaged single-cell ER leak rates in response to CPA inhibition of SERCA in transfected cells.  
Expression of capn-InsP3R1 and to a lesser extent wt- InsP3R1 increase leak rate compared to control 
(unpaired t-tests with unequal variance; *, p<0.001). 
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Figure 2.8 
 

 

 
Figure 2.8 Calpain-cleavage of InsP3R1 in vivo following cardiac arrest 

Western blot of rat cerebellar microsomes 1 and 24 h after resuscitation from cardiac arrest.  (A) A 
carboxyl-terminal InsP3R1 antibody used to detect full-length and cleaved InsP3R1 shows the appearance 
of a faint band at 95 kDa with cardiac arrest.  An antibody against calreticulin (CRT; 1:1,000) was used as a 
loading control.  (B) Western blot in A stripped and reprobed with Ab2054, demonstrating calpain-cleaved 
InsP3R1 in post-cardiac arrest samples.  (C) Immunofluorescence staining of naïve rat cerebellum and rat 
cerebellum 24 and 48 h after resuscitation from cardiac arrest.  Arrows indicate Purkinje cell layer.  Ab38 
(1:10,000; top panel) was used as a marker of calpain-activity with a Hoechst counterstain.  Following 
heat-induced epitope retrieval, Ab2054 (1:10,000; middle panel) labels calpain-cleaved InsP3R1 with a 
Hoechst counterstain.  Fluoro-Jade B was used to label degenerating neurons (bottom panel).   Here, we 
detect calpain-activity, calpain-cleaved InsP3R1 and neurodegeneration in Purkinje cells from post-cardiac 
arrest brains. 
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SUPPLEMENTAL DATA 

 

Supplemental Figure 2.1 
 

 

 
Supplemental Figure 2.1 Site-specific calpain proteolysis of InsP3R1 

(A) Schematic of the linear InsP3R1 protein with regions corresponding to two different GST-InsP3R1 
fusion peptides indicated as A and B (top). GST-InsP3R1 fusion peptides containing residues 1583 to 1932 
(peptide A) or residues 1932 to 2257 (peptide B) are also depicted (bottom). (B) Amido black protein stain 
of PVDF membrane demonstrating calpain mediated degradation of GST-InsP3R1 fusion peptide A 
following 8 h incubation with exogenous calpain 1. Arrow indicates the unique calpain-degradation 
product, which was not present in either undigested peptide or calpain-digested fusion peptide B. 
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Supplemental Figure 2.2  
 
 

 
Supplemental Figure 2.2  High molecular weight smears of capn-InsP3R1 can be solubilized and 
denatured 

Western blot analysis of whole cell lysates from N2a cells expressing capn-InsP3R1 at 24 h post-
transfection.  Cells were harvested in standard homogenization buffer (lane 1) or buffer supplemented with 
5 M urea (lane 2) or 1% SDS (lane 3).  Lysis buffer containing urea or SDS resolved the high molecular 
weight smear associated with expression of capn-InsP3R1.  Carboxyl-terminal InsP3R1 antibody was used 
to detect endogenous and recombinant InsP3R1.  Antibody against actin was used as loading control. 
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 Supplemental Figure 2.3  
 

 
 
Supplemental Figure 2.3  Recombinant rat InsP3R1 channels have smaller conductances than 
endogenous InsP3R in N2a cells 

(A) Representative current traces recorded in outer membrane of nuclei isolated from untransfected N2a 
cells with 2 µM Ca2+ and 10 µM InsP3 included in the pipette solution.  Channel activity of endogenous 
InsP3R required InsP3.  (B) I-V relation from voltage-ramp protocol for endogenous InsP3R in untransfected 
N2a cells.   (C) I-V relation for recombinant wt-InsP3R1 with 2 µM Ca2+ in presence of InsP3.  (D) I-V 
relation for capn-InsP3R1 from voltage-ramp protocol with 2 µM Ca2+ in absence of InsP3.  Capn-InsP3R1 
displays linear I-V relation, characteristic of InsP3R1.  
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SUMMARY 
 
Disruption of neuronal Ca2+ homeostasis plays a well-established role in cell death in a 

number of neurodegenerative disorders.  Recent evidence suggests that proteolysis of the 

type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1), a Ca2+ release channel on the 

endoplasmic reticulum (ER), generates a dysregulated channel, which may contribute to 

aberrant Ca2+ signaling and neurodegeneration in disease states.  However, the specific 

effects of InsP3R1 proteolysis on neuronal Ca2+ homeostasis are unknown, as are the 

functional contributions of this pathway to neuronal death.  This study evaluates the 

consequences of calpain-mediated InsP3R1 proteolysis on neuronal Ca2+ signaling and 

survival using adeno-associated viruses to express a recombinant cleaved form of the 

channel (capn-InsP3R1) both in vitro and in vivo.  Here, we demonstrate that expression 

of capn-InsP3R1 in rat primary cortical neurons reduced cellular viability.  This effect 

was associated with increased resting cytoplasmic Ca2+ concentration ([Ca2+]i), increased 

[Ca2+]i response to glutamate, and enhanced sensitivity to excitotoxic stimuli.  In vivo, 

expression of capn-InsP3R1 in rat brain triggered selective degeneration of CA2 

pyramidal neurons in the hippocampus.  Together, our results demonstrate that InsP3R1 

proteolysis disrupts neuronal Ca2+ homeostasis, and potentially acts as a feed-forward 

pathway to initiate or execute neuronal death. 
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INTRODUCTION 
 

Spatial and temporal regulation of cytoplasmic free Ca2+ concentration ([Ca2+]i) 

plays a vital role in neuronal signaling, and dysregulation of [Ca2+]i can trigger neuronal 

cell death (Berridge et al., 2000; Berridge et al., 2003; Orrenius et al., 2003; Mattson, 

2007).  Under physiological conditions, changes in neuronal [Ca2+]i are tightly controlled 

by transmembrane Ca2+ pumps, Ca2+-binding proteins, and intracellular organelles. The 

endoplasmic reticulum (ER), the primary Ca2+ storage organelle in neurons, is capable of 

both Ca2+ sequestration and release. Proper ER Ca2+ regulatory function is essential to 

neuronal [Ca2+]i buffering, signaling, and survival (Mattson et al., 2000; Bardo et al., 

2006; Stutzmann and Mattson, 2011).   

A ubiquitous mechanism for Ca2+ signaling in neurons is Ca2+ release from the 

ER lumen through the inositol 1,4,5-trisphosphate receptor (InsP3R) (Foskett et al., 

2007).  Of the 3 identified InsP3R genes, type 1 InsP3R (InsP3R1) is the most abundant 

isoform expressed in the brain (Furuichi et al., 1993; Sharp et al., 1993).  Physiological 

InsP3R1-mediated Ca2+ signaling in neurons is important for gene expression, synaptic 

plasticity, membrane excitability, and learning and memory (Furuichi and Mikoshiba, 

1995; Bardo et al., 2006; Foskett et al., 2007).  InsP3R1 dysfunction has been implicated 

in a number of neurodegenerative disease states as a mechanism for impaired ER Ca2+ 

buffering, disruption of neuronal Ca2+ homeostasis, and neuronal death (Verkhratsky and 

Toescu, 2003; Foskett, 2010).  In most of these cases, InsP3R1 dysfunction has been 

associated with allosteric modulation of the channel (Foskett et al., 2007).  However, 

increasing evidence suggests that proteolytic modification of InsP3R1 can also 
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dramatically disrupt channel physiology (Assefa et al., 2004; Nakayama et al., 2004; 

Verbert et al., 2008; Kopil et al., 2011), and may potentially contribute to 

neurodegeneration.   

InsP3R1 is a target for caspase-3 and calpain-mediated proteolysis, which 

generate similarly sized ~95 kDa carboxyl-terminal fragments (Magnusson et al., 1993; 

Wojcikiewicz and Oberdorf, 1996; Hirota et al., 1999; Haug et al., 2000; Kopil et al., 

2011).  Both caspase and calpain-mediated proteolysis of InsP3R1 remove the amino-

terminal ligand-binding domain and a large portion of the coupling domain, leaving the 

pore-forming transmembrane domains intact.  Studies examining the functional 

properties of the caspase-derived carboxyl-terminal InsP3R1 fragment demonstrated 

increased ER Ca2+ leak, and corresponding decreased ER [Ca2+] ([Ca2+]ER) and buffering 

capacity in cell lines expressing the recombinant channel (Assefa et al., 2004; Nakayama 

et al., 2004; Verbert et al., 2008).  These effects were mediated by InsP3-independent 

Ca2+ release through caspase-cleaved InsP3R1, and expression of the truncated channel 

increased cellular sensitivity to apoptotic stimuli (Assefa et al., 2004).  Our laboratory 

recently identified the calpain-cleavage site for InsP3R1 and determined that the calpain-

derived carboxyl-terminal channel fragment displayed InsP3-independent gating and 

constitutive channel activity (Kopil et al., 2011).  When expressed in cell lines, calpain-

cleaved InsP3R1 decreased [Ca2+]ER via increased ER Ca2+ leak (Kopil et al., 2011).  

Although no study to date has investigated the effects of caspase- or calpain-cleaved 

InsP3R1 on neuronal Ca2+ homeostasis, these observations suggest that proteolysis of 

InsP3R1 may profoundly transform spatial and temporal regulation of neuronal [Ca2+]i  
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and potentially signal cell death.  Consistent with this hypothesis, we previously 

identified calpain-cleaved InsP3R1 in selectively vulnerable cerebellar Purkinje cells at 

both early and late times following ischemic brain injury (Kopil et al., 2011).  

To define the role of InsP3R1 proteolysis in disruption of neuronal Ca2+ 

homeostasis and neurodegeneration, we examined responses of primary neurons and 

neurons in vivo to expression of calpain-cleaved InsP3R1.  Expression of the cleaved 

channel reduces viability of primary cortical neurons, and increases their sensitivity to 

excitotoxic injury.  Using single-cell Ca2+ imaging, we have determined that calpain-

cleaved InsP3R1 increases resting neuronal [Ca2+]i and leads to greater rises in [Ca2+]i in 

response to physiological stimuli.  Interestingly, we found that expression of calpain-

cleaved InsP3R1 also causes degeneration of a select subpopulation of hippocampal 

neurons in vivo.  Together, these data suggest a specific role for proteolyzed InsP3R1-

mediated Ca2+ signaling in the molecular injury cascade in neurons, which has important 

therapeutic implications for neurodegenerative disorders associated with Ca2+ 

dysregulation.  
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RESULTS 
 

Expression of recombinant InsP3R1 constructs in primary cortical neurons 
 

Previously, we showed that expression of a recombinant form of rat InsP3R1 

corresponding to the stable carboxyl-terminal fragment generated by calpain proteolysis 

(capn-InsP3R1; ∆1-1917; Figure 3.1A) altered [Ca2+]i  homeostasis in immortalized cell 

lines.  In the current study we examined the functional consequences of capn-InsP3R1 

expression in neurons, which are a more metabolically demanding and electrically active 

cell type.  To achieve high transduction efficiency of primary cortical cultures, we 

utilized adeno-associated virus (AAV) 2/1 mediated gene delivery of capn-InsP3R1, 

which transduces over 90% of cells in primary mixed cortical cultures (Royo et al., 2008; 

Bevers et al., 2009).  As a control for InsP3-independent Ca2+ release through the 

truncated channel, we generated AAV 2/1 vector expressing capn-InsP3R1 with a 

D2550A point mutation in the putative pore-forming region of the channel (capn-InsP3R1 

D2550A; Figure 3.1A).  This point mutation eliminates Ca2+ permeability of wild type 

(wt) InsP3R1 (Boehning and Joseph, 2000; Boehning et al., 2001; Cardenas et al., 2010).  

Because of the genome size of AAV, viral packaging capacity of transgenes is limited 

(Dong et al., 1996), and we were unable to generate control AAV vectors expressing the 

8.5 kb full-length InsP3R1 with or without the D2550A mutation. We used AAV 2/1 

expressing lacZ to control for effects of viral transduction.   

To examine expression of InsP3R1 constructs in neurons, we stably transduced 

cortical cultures with AAV 2/1 expressing capn-InsP3R1, capn-InsP3R1 D2550A, or lacZ 
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at 7 d in vitro (DIV) and harvested cells 1 week later (14 DIV).  Western blotting of 

whole-cell lysates using a carboxyl-terminal InsP3R1 antibody demonstrated expression 

of endogenous 260 kDa wt-InsP3R1 in all samples (Figure 3.1B).  In lysates from cultures 

transduced with capn-InsP3R1 and capn-InsP3R1 D2550A, we also detected the 95 kDa 

form of the channels confirming expression of our recombinant InsP3R1 constructs.   

Expression of capn-InsP3R1 reduces viability of primary cortical neurons 
 

To determine the effects of capn-InsP3R1 on viability of primary cortical neurons, 

we transduced 7 DIV cultures with capn-InsP3R1, capn-InsP3R1 D2550A, or lacZ control 

vectors.  One week post-transduction (14 DIV), we immunostained the cultures for 

microtubule associated protein 2 (MAP2; Figure 3.2A, left) and quantified the number of 

surviving neurons (Figure 3.2B).  Expression of capn-InsP3R1 resulted in significant 

decrease in the percentage of viable neurons compared with expression of capn-InsP3R1 

D2550A or lacZ (capn-InsP3R1=65.3 ± 5.5%, capn-InsP3R1 D2550A=112.7 ± 5.8%, 

lacZ=100.0 ± 3.8%; p<0.001).  To confirm the capn-InsP3R1 toxicity phenotype, we 

incubated transduced cultures with calcein-AM and propidium iodide (PI) to identify 

living and dead cells respectively (Figure 3.2A, right).  A significant decrease in the 

percentage of surviving cells was again observed in cultures transduced with capn-

InsP3R1 compared with controls (capn-InsP3R1=76.7 ± 4.5%, capn-InsP3R1 

D2550A=112.5 ± 6.5%, lacZ=100.0 ± 4.0%; p<0.001; Figure 3.2C).  Interestingly, the 

percentage of viable cells in capn-InsP3R1-transduced cultures determined by calcein-

AM and PI staining was significantly higher than the percent of viable cells in the same 

cultures quantified by counts of MAP2 labeled cells (p<0.05).  This likely reflects the 
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mixed constituents of the cortical cultures, which contain ~10% glia 3 that are identified 

using calcein-AM but not MAP2, suggesting that glial viability is not altered by capn-

InsP3R1.  Together, these results suggest that expression of capn-InsP3R1 specifically 

reduces neuronal viability.   

We hypothesized that expression of capn-InsP3R1 reduced neuronal viability by 

disrupting intracellular Ca2+ homeostasis.  The recombinant cleaved channel, which has 

InsP3-independent gating and increases ER Ca2+ leak (Kopil et al., 2011), could 

potentially trigger neurodegeneration through either ER Ca2+ depletion and induction of 

ER stress, or by increased [Ca2+]i and feed-forward activation of proteases.  To examine 

the mechanism responsible for capn-InsP3R1 reductions in neuronal viability, we 

performed Western blotting of whole-cell lysates from transduced cultures. Using an 

antibody against the stress-inducible ER chaperone protein BiP (Supplemental Figure 

3.1A), we did not detect differences in activation of the ER stress pathway in capn-

InsP3R1-transduced cultures compared with controls (Supplemental Figure 3.1B). Nor 

did we detect differences in calpain or caspase-3 protease activation using an antibody 

against a shared substrate, α-spectrin (Supplemental Figures 3.1C and D).  Absence of 

Western blot evidence of increased ER stress or protease activation with expression of 

capn-InsP3R1 does not conclusively imply that neither pathologic cascade plays a causal 

role in capn-InsP3R1 induced neuronal death.  However, if either pathway is responsible 

for executing cell death in capn-InsP3R1-transduced cultures, Western blotting of 

neuronal lysates is not sensitive enough to detect it at the times examined here. 

                                                
3 C.M. Kopil, A.P. Siebert, J.K. Foskett and R.W. Neumar, unpublished observation. 
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Capn-InsP3R1 does not deplete intracellular Ca2+ stores 
 

Previous data from our laboratory indicated that capn-InsP3R1 functions as a Ca2+ 

leak channel in the ER (Kopil et al., 2011).  To examine whether this leak was sufficient 

to deplete intracellular Ca2+ stores in neurons, we utilized single-cell Ca2+ imaging to 

measure InsP3-induced changes in [Ca2+]i. We monitored somatic [Ca2+]i using Fura-2 in 

primary cortical cultures transduced with capn-InsP3R1, capn-InsP3R1 D2550A or lacZ 

(Figure 3.3A).  To stimulate Ca2+ release from InsP3-sensitive stores, we applied 

saturating concentrations of the Group I metabotropic glutamate receptor agonist (S)-3,5-

dihydroxyphenylglycine (DHPG; 10 µM).  Expression of capn-InsP3R1 significantly 

increased resting [Ca2+]i in neurons (90 ± 3.3 nM) compared with capn-InsP3R1 D2550A 

(70 ± 1.8 nM) and lacZ controls (70 ± 1.6 nM; p<0.001; Figure 3.3B), supporting 

previous evidence that capn-InsP3R1 leaks Ca2+ from the ER.  Application of DHPG 

elicited responses, defined as >10% increase from baseline, in a majority of neurons from 

all transduced cultures (Figure 3.3C). Despite the apparent basal Ca2+ leak through the 

cleaved channel, expression of capn-InsP3R1 did not affect the DHPG-induced peak 

[Ca2+]i in neurons (Figure 3.3D) or  the maximum change in [Ca2+]i from baseline to peak 

(Figure 3.3E).  These data demonstrate that expression of the cleaved channel, while 

sufficient to increase resting [Ca2+]i, does not deplete [Ca2+]ER.  

Decreased ER Ca2+ buffering in neurons expressing capn-InsP3R1 
 

To examine the effect of calpain-cleaved InsP3R1 on neuronal Ca2+ homeostasis 

more broadly, we measured changes in [Ca2+]i in response to acute glutamate (10 µM) 

application (Figure 3.4A), which activates both ionotropic and metabotropic glutamate 
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receptors (Michaelis, 1998). Consistent with results from Ca2+ imaging experiments 

above, resting [Ca2+]i was significantly increased in neurons expressing capn-InsP3R1 

compared with capn-InsP3R1 D2550A and lacZ expressing cells (p<0.001; Figure 3.4B).  

Additionally, expression of capn-InsP3R1 significantly increased the glutamate-induced 

peak [Ca2+]i (1,520 ± 43 nM) compared with capn-InsP3R1 D2550A (1,030 ± 36 nM) and 

lacZ controls (940 ± 25 nM; p<0.001; Figure 3.4C).  Stimulation of an alternate pathway 

for Ca2+ influx also resulted in a significantly increased peak [Ca2+]i in cultures 

transduced with capn-InsP3R1 (50 mM KCl; Supplemental Figure 3.2).  This result 

suggests that the increased glutamate-induced [Ca2+]i in capn-InsP3R1-transduced 

neurons is not dependent on increased glutamate receptor expression.  Instead, the 

increased [Ca2+]i rise is likely due to an impaired ability to buffer Ca2+ influx from the 

extracellular space. Together, these data indicate that capn-InsP3R1 disrupts normal 

intracellular Ca2+ homeostasis. 

Capn-InsP3R1 increases sensitivity to glutamate-induced neurotoxicity 
 

To determine whether the observed capn-InsP3R1-induced impairment of ER Ca2+ 

buffering increased neuronal susceptibility to excitotoxic injury, we exposed transduced 

14 DIV primary cortical cultures to 1 µM glutamate or HEPES buffered saline (HBS) 

vehicle.  We selected this dose from initial studies performed in untransduced cultures, 

where treatment with 1 µM glutamate resulted in negligible injury (Supplemental Figure 

3.3).  After incubation in glutamate for 24 h, the cultures were immunostained for MAP2 

to quantify the number of surviving neurons (Figure 3.5A).  To account for baseline 
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differences in viability between capn-InsP3R1- and control-transduced cultures, the 

percentage of MAP2-positive neurons in glutamate-injured cultures was normalized to 

vehicle-treated cultures transduced with the same vector.  Exposure to 1 µM glutamate 

resulted in significant loss of neurons in all cultures compared with vehicle treated 

controls (p<0.05).  Interestingly, cultures transduced with capn-InsP3R1 were particularly 

susceptible (survival: capn-InsP3R1=36.9 ± 10.6%, capn-InsP3R1 D2550A=77.2 ± 

10.1%, lacZ=79.5 ± 9.2%; p<0.001).  This result indicates that capn-InsP3R1 increases 

neuronal susceptibility to excitotoxic injury.   

To further examine the enhanced vulnerability to glutamate-mediated injury in 

capn-InsP3R1-transduced cultures, we treated primary cortical neurons with a wide range 

of glutamate doses (0.01 to 50 µM).  As we did not observe differences between neuronal 

survival in lacZ- and capn-InsP3R1 D2550A-transduced cultures at baseline or following 

glutamate injury, we chose a single control (lacZ) for these experiments.  Transduced 

primary cortical neurons were incubated with glutamate or HBS vehicle and the number 

of surviving neurons was quantified 24 h later by MAP2 staining (Figure 3.5B).  

Glutamate concentrations ≥ 0.3 µM induced significant loss of neurons in cultures 

transduced with capn-InsP3R1 (p<0.01), whereas lacZ-transduced cultures were only 

sensitive at concentrations ≥ 1 µM.  To facilitate comparison across doses, we fit data 

using a Hill equation to produce normalized dose-response curve.  Capn-InsP3R1 

expression resulted in a leftward shift of the glutamate dose-response curve compared 

with lacZ control.  These results suggest that the proteolyzed channel increases neuronal 

sensitivity to glutamate-mediated injury and decreases the threshold for excitotoxicity. 
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Capn-InsP3R1 triggers neurodegeneration of hippocampal pyramidal neurons in vivo 
 

Since primary neuron cultures do not fully recapitulate the metabolism and 

connectivity of mature neurons in vivo, we have begun to translate studies of capn-

InsP3R1 to an in vivo model.  To examine whether calpain-cleaved InsP3R1 can cause 

neurodegeneration in mature neurons in vivo without prior activation of calpain 

proteolytic injury cascades, we performed stereotaxic intracerebral injections of AAV 2/1 

vector expressing capn-InsP3R1 and a fluorescent marker protein (mCherry; Figure 3.6A) 

into rat striatum, cortex and hippocampus (n=4; Figures 3.6B and C; Supplemental 

Figure 3.4).  We selected these brain regions as they contain neuron subpopulations that 

are selectively vulnerable to ischemic brain injury (Neumar, 2000), a model where we 

previously identified calpain-cleaved InsP3R1 in vivo (Kopil et al., 2011).  The results of 

these experiments are preliminary, and additional control injections of capn-InsP3R1 

D2550A and mCherry controls are pending.   

To determine whether expression of capn-InsP3R1 induced neurodegeneration in 

vivo, we used Fluoro-Jade B to identify degenerating neurons.  We performed Fluoro-

Jade staining on tissue from naïve (n=1) and mCherry injected (n=1) animals as controls.  

At 3 weeks post-injection, we did not observe Fluoro-Jade labeling of capn-InsP3R1 

transduced neurons in the striatum, cortex or the majority of the hippocampus.  However, 

expression of capn-InsP3R1 caused selective degeneration of hippocampal CA2 sector 

pyramidal neurons (Figures 3.6D and E).  In 3 out of 4 animals injected with AAV 2/1 

expressing capn-InsP3R1 and mCherry, we observed transduction of this population of 

neurons as identified by mCherry fluorescence.  In 2 of those 3 animals, CA2 pyramidal 
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neurons labeled with Fluoro-Jade.  To confirm these results, we performed 

immunolabeling of adjacent tissue sections with an antibody targeting neuronal nuclei 

(NeuN).  Interestingly, in animals where we identified Fluoro-Jade positive cells, we 

observed a concurrent loss of NeuN labeling in CA2 pyramidal neurons (Figures 3.6 F 

and G).  We did not observe any Fluoro-Jade labeling or alterations in NeuN 

immunostaining in controls.  These preliminary data provide the first in vivo evidence 

that expression of calpain-cleaved InsP3R1 is sufficient to induce neurodegeneration 

independent of prior [Ca2+]i dysregulation or calpain activity.  
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DISCUSSION 
 

While several studies have examined the effects of InsP3R1 proteolysis on cellular 

Ca2+
 homeostasis (Assefa et al., 2004; Nakayama et al., 2004; Verbert et al., 2008; Kopil 

et al., 2011), the current study presents the first functional investigation of calpain-

cleaved InsP3R1 in neurons.  We have demonstrated that capn-InsP3R1 disrupts [Ca2+]i 

homeostasis and decreases neuronal viability in vitro.  Impaired ER Ca2+ buffering 

caused by the leaky channel also likely accounts for the increased sensitivity to 

excitotoxic injury observed in primary cortical neurons expressing capn-InsP3R1.  

Results from our in vivo experiments further demonstrate that capn-InsP3R1-mediated 

Ca2+ signaling is sufficient to trigger neurodegeneration in specific neuronal populations.  

Together, these results suggest that InsP3R1 proteolysis is a novel possible feed-forward 

pathway for executing neuronal cell death. 

Capn-InsP3R1 is sufficient to signal neuronal death in culture 
 

Previous studies examining caspase- or calpain-cleaved InsP3R1 in cell lines did 

not report effects of the dysregulated channel on baseline cell viability (Assefa et al., 

2004; Nakayama et al., 2004; Verbert et al., 2008; Kopil et al., 2011).  This is likely due 

to the relatively low open probability of the cleaved channel at resting [Ca2+]i (Kopil et 

al., 2011).  Unlike cell lines however, primary neurons in culture form complex networks 

with spontaneous activity and neurotransmission, leading to transient increases in [Ca2+]i 

(Murphy et al., 1992; Maeda et al., 1995).   Thus, we hypothesized that expression of 

capn-InsP3R1 in neurons would be sufficient to signal cell death through disruption of 
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neuronal Ca2+ homeostasis.  To examine the effect of capn-InsP3R1 on neuronal viability, 

we employed AAV mediated gene delivery to achieve high transduction efficiency in 

primary cortical cultures.  We determined that expression of capn-InsP3R1 indeed 

significantly decreased neuronal viability at baseline (Figure 3.2).  However, capn-

InsP3R1 expression did not lead to complete cell loss, as the majority (~65%) of capn-

InsP3R1-transduced neurons were viable, at least at the time studied.  This likely explains 

why we were unable to determine the mechanism(s) for capn-InsP3R1 induced cell death 

using Western blotting (Supplemental Figure 3.1). The moderate effect of capn-InsP3R1 

on baseline neuron viability may suggest gene expression heterogeneity within the 

population of neurons in primary cortical cultures.  Identifying gene expression 

differences and understanding their potential interactions with capn-InsP3R1 that 

modulate neuronal death requires additional investigation. 

Functional properties of heteroligomeric InsP3R1  
 

 Studying capn-InsP3R1 in neurons using AAV mediated gene delivery has some 

limitations.  Foremost, the limited packaging capacity of AAV prohibits viral vector 

expression of full-length InsP3R1 as a control (Dong et al., 1996; Donnelly et al., 2001).  

As an alternative control, we expressed capn-InsP3R1 with a point mutation in the 

putative pore selectivity filter between transmembrane domains 5 and 6.  In wt-InsP3R1, 

replacing the aspartate at residue 2550 with alanine (D2550A) results in a channel that is 

still able to bind InsP3 and gates normally, but lacks Ca2+ permeability and does not have 

Ca2+ release activity (Boehning and Joseph, 2000; Boehning et al., 2001; Cardenas et al., 
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2010).  The capn-InsP3R1 D2550A mutant channel is expected to have reduced Ca2+ 

conductance similar to the mutant full-length channel, but with InsP3 independent gating, 

similar to capn-InsP3R1.  Thus, the structure and function of capn-InsP3R1 D2550A 

serves as a specific control for the effects of InsP3-independent Ca2+ release through 

capn-InsP3R1.   

Studying the Ca2+ permeable and impermeable capn-InsP3R1 in neurons may be 

complicated by heteroligomerization of the recombinant truncated channels with 

endogenous InsP3R.  At 14 DIV, we observed expression of each 95 kDa InsP3R1 

constructs at an approximately 1:1 ratio with endogenous 260 kDa InsP3R1 (Figure 3.1B; 

densitometry analysis not shown).  Additional studies are required to fully elucidate the 

stochiometry and functional properties of the different heteroligomeric channels.  The 

single-cell Ca2+ imaging results may provide some initial insights into the functional 

properties of heteroligomeric channels.  Specifically, we did not observe a reduction in 

the percentage of cells with InsP3-induced Ca2+ release in capn-InsP3R1 D2550A-

transduced cultures (Figure 3.3C).  Nor did we observe a reduction in Ca2+ released from 

InsP3 sensitive stores (Figures 3.3D and E).  Assuming that recombinant InsP3R1 

subunits oligomerized with endogenous InsP3R in transduced neurons, we conclude that 

expression of the D2550A mutant under the conditions of our experiments did not exert a 

dominant-negative effect on Ca2+ permeability.  This is consistent with theoretical models 

of a similar mutation in the ryanodine receptor, where mutating a negatively charged 

residue in the selectivity filter of an individual subunit resulted in only a partial decrease 

in Ca2+ conductance (Gao et al., 2000; Wang et al., 2005).   By analogy, we speculate that 
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calpain cleavage of a single InsP3R1 subunit in the tetrameric InsP3R is unlikely to induce 

an all-or-nothing effect and may be insufficient to completely eliminate the InsP3-

requirement for channel gating.  By studying the effects of stable capn-InsP3R1 

expression in neurons with endogenous InsP3R, we are perhaps more closely modeling a 

physiologically relevant process of limited proteolysis of the channel.   

Neuronal Ca2+ homeostasis is disrupted by capn-InsP3R1 
 

How does InsP3-independent Ca2+ release through capn-InsP3R1 affect neuronal 

Ca2+ homeostasis?   Using single-cell Ca2+ imaging, we observed normal InsP3-induced 

Ca2+ release in capn-InsP3R1 transduced cortical neurons through activation of Gq 

coupled mGluR1 and mGluR5 receptors (Figures 3.3B and D-E) (Conn and Pin, 1997; 

Fagni et al., 2000).  This result is consistent with previous reports showing that 

expression of caspase- or calpain-cleaved InsP3R1 does not deplete [Ca2+]ER, even though 

it increases the rate of ER Ca2+ leak (Assefa et al., 2004; Verbert et al., 2008; Kopil et al., 

2011).  This increased ER Ca2+ leak in neurons expressing capn-InsP3R1 was manifested 

as elevated resting [Ca2+]i (Figures 3.3B and 3.4B, Supplemental Figure 3.2B).  While the 

resting [Ca2+]i  was variable across experiments performed on cortical cultures from 

different embryos and platings, the ~20 nM increase in [Ca2+]i in capn-InsP3R1-

transduced neurons versus controls remained consistent.  This elevated resting [Ca2+]i 

suggests that capn-InsP3R1 generates an ER Ca2+ leak that can not be fully compensated 

for by other Ca2+ transport mechanisms.  This is in contrast to our previous data from 

Neuro-2A cells, where we did not detect any effect of capn-InsP3R1 on resting [Ca2+]i 
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(Kopil et al., 2011).  The elevated basal [Ca2+]i observed here could be a cell-type 

specific effect, or a consequence of chronic capn-InsP3R1 expression, as our previous 

study examined changes in [Ca2+]i at 6 h post-transfection.  In either case, chronic 

elevations in resting [Ca2+]i may explain the decreased neuronal viability in primary 

cortical cultures expressing capn-InsP3R1. 

The apparent increased ER Ca2+ leak through capn-InsP3R1 resulted in more 

pronounced changes in neuronal [Ca2+]i in response to Ca2+ influx.  Expression of capn-

InsP3R1 significantly increased the peak [Ca2+]i response to glutamate (Figure 3.4C). 

This likely reflects a decreased capacity of normal ER Ca2+ buffering in neurons 

expressing capn-InsP3R1.  The kinetics of the glutamate Ca2+ responses were also altered 

in capn-InsP3R1-transduced cultures.  [Ca2+]i in lacZ- and capn-InsP3R1 D2550A-

transduced neurons rapidly reached a plateau after the initial rise, whereas [Ca2+]i in 

capn-InsP3R1-transduced neurons continued to rise until glutamate was removed from the 

bath (Figure 3.4A).  Interestingly, average peak [Ca2+]i in capn-InsP3R1 expressing 

neurons approached 2 µM, which is optimal [Ca2+]i for wt-InsP3R1 and capn-InsP3R1 

activation (Foskett et al., 2007; Kopil et al., 2011).  We expect that increased channel 

open probability of capn-InsP3R1 at this higher [Ca2+]i compromises ER Ca2+ buffering, 

and provides a potential mechanism for increased sensitivity to glutamate injury (Figure 

3.5) through irreversible disruption of neuronal Ca2+ homeostasis.  

It is important to note that we measured somatic [Ca2+]i. in these experiments.  As 

neuronal dendritic and synaptic structure is complex, with heterogeneous distributions of 

ER and InsP3R (Bardo et al., 2006; Stutzmann and Mattson, 2011), capn-InsP3R1 may 
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exert varying influences in these cellular compartments. Understanding the spatial 

complexity and functional consequences of capn-InsP3R1-mediated Ca2+ signaling in 

dendrites and synapses warrants future investigation.   

Role of calpain-cleavage of InsP3R1 in neurodegeneration 
 

Sustained pathological rises in [Ca2+]i are a key component of both apoptotic and 

necrotic cell death (Berridge et al., 2000; Orrenius et al., 2003; Mattson, 2007).  

Therefore, we hypothesized that the dramatic glutamate-induced rise in [Ca2+]i in capn-

InsP3R1 expressing primary cortical neurons would increase their sensitivity to 

excitotoxic injury.  We tested this by exposing transduced cultures to glutamate rather 

than NMDA, as expression of pathogenic NMDA receptor subunits is developmentally 

regulated in primary neurons (O'Donnell et al., 2006) and glutamate produced a more 

consistent, dose-dependent injury in untransduced 14 DIV cultures.4  As predicted, 

expression of capn-InsP3R1 significantly decreased the percentage of surviving neurons 

over a range of glutamate concentrations (Figure 3.5).  Enhanced glutamate-induced cell 

death is likely precipitated by Ca2+-induced Ca2+ release through capn-InsP3R1 in 

addition to decreased basal ER Ca2+ buffering in these cells.  Together, these impairments 

of neuronal Ca2+ homeostasis increase sensitivity to excitatory stimuli, leading to [Ca2+]i 

overload.  The downstream effects of this [Ca2+]i overload may signal cell death through 

either necrotic or apoptotic pathways.  Sustained elevations of [Ca2+]i could directly lead 

to pathologic activation of calpains and calpain-mediated cell death (Goll et al., 2003; 

                                                
4 C.M. Kopil, A.P. Siebert, J.K. Foskett and R.W. Neumar, unpublished observation. 
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Vosler et al., 2008).  Alternatively, [Ca2+]i overload could enhance mitochondrial Ca2+ 

uptake triggering mitochondrial permeability transition and caspase-mediated apoptosis 

(Orrenius et al., 2003; Taylor et al., 2008).   Future mechanistic studies are required to 

clarify the precise pathologic pathway(s) activated by capn-InsP3R1-mediated Ca2+ 

signaling.  However, current available data suggest that calpain proteolysis of InsP3R1 in 

neurons acts to activate and accelerate cell death pathways after injury through [Ca2+]i 

overload. 

To fully elucidate the role of capn-InsP3R1-mediated Ca2+ signaling in 

neurodegeneration, we have begun translating experiments from primary cortical cultures 

to mature neurons in the brain.  Although we transduced neurons in the striatum, cortex 

and hippocampus, capn-InsP3R1 expression only caused obvious neurodegeneration in a 

subpopulation of hippocampal neurons (Figures 3.6D-G; Supplemental Figure 3.4) at the 

time examined.  This preliminary result provides the first in vivo evidence that capn-

InsP3R1 expression is sufficient for signaling neuronal death without upstream disruption 

of Ca2+ homeostasis or prior calpain activation.  The apparent selective vulnerability of 

hippocampal CA2 pyramidal neurons raises a number of interesting questions, 

particularly because of the dearth of information about these cells compared with CA1 

and CA3 pyramidal cells.  Molecular profiling has emerged as a useful tool for 

distinguishing between CA subregions and may be the most definitive way to identify 

CA2 pyramidal neurons (Zhao et al., 2001; Lein et al., 2004; Lein et al., 2007).   The 

molecular characteristics that confer susceptibility to capn-InsP3R1-mediated 
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neurodegeneration in CA2 neurons are a subject for future investigations, and priority 

should be devoted to studying genes related to Ca2+ signaling in these cells. 

Conclusions 
 

In summary, our results indicate that expression of calpain-cleaved InsP3R1 

impairs neuronal ER Ca2+ buffering, leading to increased sensitivity to excitotoxic stimuli 

and neurodegeneration in vitro and in vivo.  As an early part of the molecular injury 

pathway (Kopil et al., 2011), calpain proteolysis of InsP3R1 could contribute a feed-

forward pathway to accelerate neuronal death through [Ca2+]i overload.  Thus, inhibiting 

Ca2+ release through calpain-cleaved InsP3R1 is a potentially important therapeutic 

strategy for intervention in disorders associated with calpain activity and disruption of 

Ca2+
 homeostasis.   
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MATERIALS AND METHODS 
 

Materials—Unless otherwise noted, all chemicals were purchased from Sigma-

Aldrich (USA).   

Antibodies—Rabbit polyclonal antibody targeted against the 20 carboxyl-terminal 

residues of rat InsP3R1 was generated using previously described methods (Joseph and 

Samanta, 1993; Kopil et al., 2011) (Covance ImmunoTechnologies). Rabbit polyclonal 

antibody to MAP2 was a gift from Dr. Virginia Lee (University of Pennsylvania).  Mouse 

monoclonal antibody to BiP/GRP78 was purchased from BD Biosciences. Mouse 

monoclonal antibody to α-spectrin (Ab1622) was purchased from Chemicon 

International. Mouse monoclonal antibody to NeuN (MAB377) was purchased from 

Millipore.  Alexa Fluor 488- and Alexa Fluor 568-conjugated secondary antibodies used 

for immunofluorescence were purchased from Invitrogen.  Horseradish peroxidase-linked 

secondary antibodies used for immunoblotting were purchased from Perkin Elmer. 

Rat Primary Mixed Cortical Cultures—Rat primary cortical neurons were 

cultured using standard technique described previously (Cummings et al., 1996).  Briefly, 

cortices from E19 Sprague-Dawley rat embryos were trypsinized in Dulbecco’s minimum 

essential medium (DMEM; Whittaker Bioproducts) at 4ºC for 20 min.  Cells were 

triturated in media consisting of DMEM supplemented with 10% bovine calf serum 

(Hyclone), 10% Ham’s F12 with glutamine (Whittaker Bioproducts), and 50 U/ml 

penicillin-streptomycin.  Dissociated cortical cultures were plated on poly-L-lysine 

coated 35-mm dishes (400,000 cells/mL; Western blot), 12-mm glass coverslips in 24-

well plates (200,000 cells/mL; immunofluorescence), or 20 X 50-mm glass coverslips in 
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4-well plates (800,000 cells/mL; single-cell Ca2+ imaging).  Dissociated cells were grown 

in serum-free Neurobasal medium (Gibco) supplemented by B27 (Gibco) and cultured at 

37ºC in a humidified 5% CO2 incubator.  Mitotic inhibitors and antibiotics were not used.   

Constructs and Site Directed Mutagenesis—The transgene for rat calpain-cleaved 

InsP3R1 (capn-InsP3R1; Figure 3.1A) was previously generated (Kopil et al., 2011).  To 

construct the inactivating D2550A pore mutation (capn-InsP3R1 D2550A), site-directed 

mutagenesis was performed with QuikChange (Stratagene) using primers (5’–

GGCGGAGTAGGAGCTGTGCTCAGGAAG–3’ and 5’–

CTTCCTGAGCACAGCTCCTACTCCGCC–3’ (codon change is shown in boldface 

type and underlined)) and capn-InsP3R1 as a template.  The mutation was confirmed by 

DNA sequencing.  For transduction of primary neurons, both capn-InsP3R1 and capn-

InsP3R1 D2550A were subcloned into a plasmid containing the AAV inverted terminal 

repeats (ITRs) and polyA sequence for viral vector generation.  For transduction of 

neurons in vivo, we utilized an AAV plasmid containing a cis-acting hydrolase element 

(CHYSEL) to create vectors with bicistronic expression of transgenes and a marker 

protein (mCherry) from a single transcript.  The CHYSEL sequence contains a canonical 

DVIEXNPG(2A)P(2B) motif, which results in cleavage between the 2A glycine and 2B 

proline (Donnelly et al., 2001; de Felipe et al., 2003; Szymczak et al., 2004).  

Viral Vector Generation—Recombinant AAV vectors were generated by the 

University of Pennsylvania Vector core as previously described (Fisher et al., 1997).  

Briefly, AAV vectors were prepared by triple transfection of HEK293 cells and purified 

by cesium chloride gradient sedimentation.  AAV 2/1 vectors were designed to express 
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capn-InsP3R1, capn-InsP3R1 D2550A or lacZ control.  All transgenes were expressed 

under the control of the cytomegalovirus promoter (CMV). 

AAV 2/1 Vector Transduction of Primary Neurons—Rat primary cortical cultures 

were transduced at 7 DIV by adding AAV 2/1 vector in a vehicle of phosphate-buffered 

saline (PBS) with 10% glycerol directly to the culture media.  Cultures were transduced 

with 7.5 x 1010 genome copies (GC) per mL.  All cell viability, biochemical, and 

functional assays were performed 1 week later (14 DIV).  

Cell Viability Assays—Transduced cultures were fixed with 4% paraformaldehyde 

(PFA), immunolabeled for the neuronal marker MAP2 with a goat anti-rabbit secondary 

antibody (Alexa Fluor 568), and counterstained with 4,6-diamidino-2-phenylindole 

(DAPI) nuclear label (Vector Laboratories).  Five random 100X images were taken from 

each 12-mm coverslip.  The number of surviving MAP2-labeled neurons per coverslip 

was estimated by blinded counting of all captured fields.  For each transduction 

condition, 8 to 12 coverslips were counted from 2 or more independent experiments.  To 

control for variability in culture health between experiments, the percentage of viable 

cells was determined by normalizing to the average cell count from lacZ transduced 

cultures for each independent experiment.  The average of the normalized experiments is 

shown.  Reported SE and error bars reflect propagated error through normalization.   

Cell viability was independently measured by staining cultures with calcein-AM 

and PI (Invitrogen).  Live cultures were incubated with 3 µM calcein-AM and 5 µM PI in 

Dulbecco’s PBS (DPBS; Gibco) for 30 min at 37ºC and 5% CO2.  Cultures were rinsed 

with DPBS and immediately imaged.  Five random 100X images were taken from each 



 

  94 

12-mm coverslip.  The number of surviving, calcein-AM-positive, PI-negative cells per 

coverslip was estimated by blinded counting of all captured fields.  For each transduction 

condition, 6 to 14 coverslips were counted from 2 or more independent experiments.  The 

number of viable cells in each transduction condition was normalized to lacZ controls as 

described above.   

Western Blotting of Primary Neuron Cultures—Media was removed from 

transduced cultures and replaces with 4ºC DPBS.  Cells were harvested by scraping and 

resuspended in homogenization buffer (50 mM Tris, 150 mM NaCl, 2 mM EGTA) with a 

protease inhibitor cocktail and sonicated.  Lysates were treated with SDS loading buffer, 

boiled and analyzed on SDS-PAGE gels.  Western blots were visualized using enhanced 

chemiluminescence supplies purchased from Perkin Elmer.  Protein and polypeptide 

densities were quantified by computer densitometry (ImageJ) and normalized to lacZ 

controls. 

Single-Cell Ca2+ Imaging—Cortical cultures were plated onto glass-coverslips 

(Warner Instruments) and transduced with AAV 2/1 at 7 DIV.  One week following 

transduction, cells on coverslips were secured in a perfusion chamber, and mounted on 

the stage of an inverted microscope (Nikon Eclipse TE2000).  Cells were loaded with 

Fura-2-AM (Molecular Probes; 2.5 µM) for 45 min at 37ºC and 5% CO2 in Ca2+-

containing extracellular solution (in mM: 120 NaCl, 4 KCl, 20 HEPES, 15 Glucose, 2 

CaCl2, 1 MgCl2, pH 7.3). Fura-2 was alternately illuminated at 340/380 nm, and 

fluorescence intensity filtered at 510 nm.  Data were collected and recorded as described 

previously (White et al., 2005; Cheung et al., 2008).  Cells were perfused with 2 mM 
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Ca2+ extracellular solution to establish baseline [Ca2+]i before glutamate (10 µM), KCL 

(50 mM), or DHPG (10 µM) was applied in the extracellular solution.  At the end of the 

experiment, Mn2+ was used to quench Fura-2 fluorescence (Ca2+-containing extracellular 

solution supplemented with 10 mM MnCl2 and 10 µM ionomycin).  The remaining 

background fluorescence following Mn2+ quench was subtracted during analysis.  Glial 

cells were identified by enhanced Fura-2 loading and morphological characteristics, and 

were excluded from analysis.  Experiments using glutamate, KCL and DHPG were 

performed on different weeks, in cultures from different platings.  Within each 

experiment using either glutamate, KCl or DHPG however, the studied lacZ, capn-

InsP3R1 D2550A and capn-InsP3R1 transduced cultures were derived from the same 

plating.   

Changes in [Ca2+]i are presented as changes in fluorescence ratio.  Dye calibration 

was achieved by applying experimentally determined constants to the equation: [Ca2+] = 

Kd β(R–Rmin)/(Rmax–R).  Macros used for analysis were custom macros written for IGOR 

Pro (WaveMetrics). 

Glutamate Injury Characterization—HBS (in mM: 145 NaCl, 3 KCl, 10 HEPES, 

8 Glucose, 2 CaCl2, 1 MgCl2, pH 7.4) with or without L-glutamic acid was added to the 

media of transduced cortical cultures at 14 DIV.  Twenty-four hours after HBS or 

glutamate application, cultures were fixed with 4% PFA, immunolabeled for MAP2, and 

counter-stained with DAPI. Five random 100X images were taken from each 12-mm 

coverslip.  The number of surviving MAP2-labeled neurons per coverslip was estimated 

by blinded counting of all captured fields.  For each transduction condition, 6 to 8 
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coverslips were counted from 2 or more independent experiments. To control for 

variability in culture health between experiments and differences in baseline toxicity, the 

percent of viable cells at each glutamate dose was determined by normalizing within 

transduction conditions to the average cell count from HBS treated cultures.  Data were 

normalized within independent experiments and the average of the normalized 

experiments is shown. Reported SE and error bars reflect propagated error through 

normalization.  Dose response curves were calculated by fitting plotted mean data points 

using the Hill equation and holding the base and max values at 0 and 100 respectively.  

Reported error for LD50 values represent error of the fit.   

Viral Vector Injection—Intracranial injection of AAV 2/1 vectors was performed 

as described previously (Bevers et al., 2010).  Briefly, male rats weighing 375-425 g were 

anesthetized by inhalation of 4% isoflurane in 70% O2 and 30% N2O and a surgical plan 

of 2% isoflurane.  A longitudinal surgical incision in the scalp was made and the skull 

exposed by blunt dissection.  Bilateral burr holes were centered 2.6 mm lateral to the 

midline and 1.6 mm caudal to Bregma (for striatum and overlying cortex) and 2.0 mm 

lateral to the midline and 3.8 mm caudal to Bregma (for hippocampus and overlying 

cortex).  Sterotaxically-guided injections were made at depths of 4.4 mm (striatum), 3.0 

mm (hippocampus), and either 1.0 or 1.8 mm (cortex) below the dural surface.  At each 

site, 2 µl of AAV 2/1 vector solution (1 x 1010 GC total) was infused at a rate of 0.5 

µl/min.  After injection, the needle was held in place for 5 min and then removed slowly 

over 2 min.  The scalp was sutured closed and rats recovered.   
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Immunohistochemical Staining of Rat Forebrain—At 3 weeks post-intracranial 

vector injection, rats were anesthetized with pentobarbital (200 mg/kg) and transcardially 

perfused with cold PBS (pH 7.4) followed by 4% PFA in 0.1M phosphate buffer (PB).  

Brains were extracted, post-fixed in 4% PFA for 4 h and cryoprotected using serial 

incubations in 0.1 M PB containing 10%, 20% and 30% sucrose.  Serial coronal sections 

through the forebrain (40 µm) were cut on a freezing sliding microtome. Sections were 

immunolabeled with primary antibody targeting the neuron-specific marker protein NeuN 

and a goat anti-mouse secondary antibody (Alexa Fluor 488). Sections were 

counterstained with Hoechst (5 µg/mL) and mounted with Fluoromount medium 

(Electron Microscopy Sciences).  

For Fluoro-Jade labeling, PFA-fixed sections were processed as described 

previously (Kopil et al., 2011).  As Fluoro-Jade labeling decreased mCherry 

fluorescence, tissue was mounted, temporarily coversliped with water and imaged for 

expression of mCherry.  Coverslips were then removed, and hydrated tissue was 

incubated with 0.06% potassium permanganate for 10 min, rinsed with dH2O, and stained 

with 0.0004% Fluoro-Jade B (Millipore) in 0.1% acetic acid for 20 min.  Stained tissue 

was rinsed with dH2O, dried at 37°C, dehydrated with xylene and coversliped using 

Permount (Fisher Scientific).   

Data analysis and statistics— Data are presented as the mean ± SE, and statistical 

significance of differences between the means was assessed using either unpaired t-tests 

or analysis of variance for repeated-measures using Barlett’s test for equal variances and 
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a Bonferroni correction.  Differences between means were accepted as statistically 

significant at the 95% level (p < 0.05). 
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FIGURES AND LEGENDS 

 

Figure 3.1 
 

 

Figure 3.1 Schematic representation and expression of recombinant InsP3R1 constructs in primary 
neurons 

(A) Protein domain structure of wt-InsP3R1 (top), calpain-cleaved InsP3R1 (middle), and calpain-cleaved 
InsP3R1 with the D2550A point mutation (bottom; red arrowhead).  Residues numbered according to rat 
type 1 SI+, SII+, SIII- sequence (protein accession NP_001007236.1).  (B) Western blot analysis of whole 
cell lysates from untransduced rat primary cortical cultures and primary cortical cultures transduced with 
AAV 2/1 expressing lacZ, capn-InsP3R1 D2550A, or capn-InsP3R1 at 1 week post-transduction (14 DIV).  
Carboxyl-terminal InsP3R1 antibody was used to detect endogenous and recombinant truncated rat 
InsP3R1.  Antibody against actin was used as a loading control.   
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Figure 3.2  

 
 
Figure 3.2 Primary cortical neuron viability is reduced by expression of capn-InsP3R1 

Rat primary cortical cultures were transduced with AAV 2/1 expressing lacZ, capn-InsP3R1 D2550A, or 
capn-InsP3R1 (7 DIV).  (A) One week following transduction (14 DIV), cultures were stained for MAP2 
(red) and nuclei (blue; left panel), or incubated with calcein-AM (green) and PI (red; right panel).  
Representative 100X epifluorescence images captured for counting are shown.  (B) Percent neuronal 
survival as determined by counts of MAP2 reactive cells (one-way analysis of variance; *, p<0.001).  (C) 
Percent cell survival as determined by counts of calcein-AM positive, PI-negative cells (unpaired t tests 
with unequal variance; *, p<0.001).  Expression of capn-InsP3R1 resulted in a significant decrease in the 
percentage of viable neurons compared with lacZ and capn-InsP3R1 D2550A as determined by both assays. 
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Figure 3.3 

 
 
Figure 3.3 Capn-InsP3R1 does not deplete InsP3-sensitive stores 

(A) Representative single cell [Ca2+]i responses to DHPG in Fura-2 loaded primary cortical neurons (14 
DIV) transduced with lacZ (green), capn-InsP3R1 D2550A (blue) or capn-InsP3R1 (red).  (B) Summary of 
average resting [Ca2+]i in neurons from cultures used for DHPG Ca2+ imaging experiments. Neurons 
expressing capn-InsP3R1 demonstrate increased resting [Ca2+]i (unpaired t-tests with unequal variance; *, 
p<0.001). (C) Percentage of neurons in transduced cortical cultures that exhibited >10% increase in [Ca2+]i 
in response to DHPG. (D) Summary of average peak [Ca2+]i responses elicited by DHPG.  (E) Summary of 
average change in [Ca2+]i from resting to peak [Ca2+]i.  Despite significant differences in resting [Ca2+]i in 
these experiments, no statistical differences were observed in average change in [Ca2+]i.   
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Figure 3.4 

 
 
Figure 3.4 Neurons expressing capn-InsP3R1 have increased glutamate-induced rises in [Ca2+]i 

(A) Averaged single-cell [Ca2+]i responses to glutamate in Fura-2 loaded primary cortical neurons (14 DIV) 
transduced with lacZ (green), capn-InsP3R1 D2550A (blue) or capn-InsP3R1 (red).  (B) Summary of 
average resting [Ca2+]i in neurons from cultures used for glutamate Ca2+ imaging experiments.  Expression 
of capn-InsP3R1 significantly increased resting [Ca2+]i in neurons (108.2 ± 2.6 nM) compared with capn-
InsP3R1 D2550A (81.0 ± 2.5 nM) and lacZ controls (87.3 ± 2.6 nM; unpaired t-tests with unequal variance; 
*, p<0.001). (C) Summary of average peak [Ca2+]i responses elicited by glutamate shows an increased 
maximum [Ca2+]i achieved in capn-InsP3R1 expressing neurons (unpaired t-tests with unequal variance; *, 
p<0.001).  
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Figure 3.5   

 
 
Figure 3.5 Expression of capn-InsP3R1 increases neuronal susceptibility to glutamate-mediated 
injury 

(A) Transduced primary cortical cultures (14 DIV) were exposed to 1 µM glutamate or HBS vehicle.  
Twenty-four hours later, cultures were stained for MAP2 and percent neuronal survival quantified relative 
to vehicle treated cultures. Expression of capn-InsP3R1 resulted in a significant decrease in percentage of 
MAP2-positive cells following glutamate injury compared with lacZ and capn-InsP3R1 D2550A (one-way 
analysis of variance; *, p<0.01).  (B) Glutamate dose-response curves for lacZ and capn-InsP3R1 
transduced cultures (data at 1 µM glutamate are the same as shown in Figure 3.5A).  Expression of capn-
InsP3R1 significantly decreased the percentage of MAP2-positive cells following treatment with 0.3, 0.5, 
and 1 µM glutamate compared with lacZ (unpaired t tests; *, p<0.01) and resulted in a shift in the 
glutamate-dose response curve.  LD50 for glutamate in neurons expressing capn-InsP3R1 (0.75 ± 0.19 µM) 
is reduced compared with neurons expressing lacZ (2.61 ± 0.78 µM). 
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Figure 3.6 

 
 
Figure 3.6 Expression of capn-InsP3R1 causes neurodegeneration in subpopulations of hippocampal 
neurons in vivo.   

(A) Vector design for transduction of neurons in vivo.  Plasmid contains AAV-specific ITRs for vector 
generation and a CHYSEL sequence (T2A) for bicistronic expression of capn-InsP3R1 and mCherry. (B) 
mCherry expression in rat hippocampus 3 weeks after injection of AAV 2/1 vector shown in A.  
Hippocampal neurons in CA1, CA2, and CA3 were transduced in this animal.  (C) Higher magnification of 
region highlighted in B (white box).  Closed arrow indicates CA2 region, open arrow indicates CA3 region.  
(D) Fluoro-Jade labeling of adjacent tissue section.  Degenerating neurons were identified in the CA2 
region.  (E) Region highlighted in D at higher magnification shows shrunken somatic morphology of 
Fluoro-Jade positive cells consistent with neurodegeneration.  (F) Immunostaining of adjacent tissue 
section using NeuN (green) to label neurons. mCherry (red) expression identifies transduced cells.  Fluoro-
Jade positive region shown in D does not label with NeuN. (G) Region highlighted in F at higher 
magnification shows loss of NeuN labeling and presence of red debris.  Expression of capn-InsP3R1 in vivo 
leads to selective neurodegeneration of CA2 hippocampal neurons in the pyramidal layer.   
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 SUPPLEMENTAL DATA  

 

Supplemental Figure 3.1 
 

 
Supplemental Figure 3.1 Activation of ER stress markers and proteases in transduced primary 
cortical neurons 

Western blot analysis of whole cell lysates from primary cortical cultures transduced with AAV 2/1 
expressing lacZ, capn-InsP3R1 D2550A, or capn-InsP3R1 at 1 week post-transduction (14 DIV).  (A) 
Antibody against BiP was used to detect activation of ER stress response.  Untransduced cultures were 
treated with thapsigargin (Tg; 1 µM) as a positive control for ER stress and increased BiP. Antibody against 
actin was used as a loading control.  (B) BiP band densities were quantified and normalized to actin.  
Changes in protein expression are expressed relative to lacZ controls.  (C) Antibody against α-spectrin was 
used to detect calpain- and caspase-mediated proteolysis. Calpain-mediated cleavage of α-spectrin (260 
kDa) generates 150 and 145 kDa polypeptides while caspase-mediated cleavage generates 150 and 120 kDa 
polypeptides. (D) Full-length (260 kDa) and proteolyzed (145/150 kDa and 120 kDa) α-spectrin band 
densities were quantified and normalized to actin.  Changes in intact α-spectrin and α-spectrin fragment 
densities are expressed relative to lacZ controls.  There are no statistically significant differences between 
BiP or α-spectrin band densities in lacZ-, capn-InsP3R1 D2550- and capn-InsP3R1-transduced cultures.   
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Supplemental Figure 3.2 
 

 
 
Supplemental Figure 3.2 Neurons expressing capn-InsP3R1 have increased rises in [Ca2+]i in response 
to depolarization 

(A) Averaged single-cell [Ca2+]i responses to depolarization with 50 mM KCl in Fura-2 loaded primary 
cortical neurons (14 DIV) transduced with lacZ (green) or capn-InsP3R1 (red).  (B) Summary of average 
resting [Ca2+]i in neurons from cultures used for KCl Ca2+ imaging experiments.  Consistent with data 
presented in Figures 3.4B and 3.5B, cultures expressing capn-InsP3R1 demonstrate increased baseline 
[Ca2+]i (capn-InsP3R1=96.7 ± 3.5 nM, lacZ=76.2 ± 2.9 nM; unpaired t-tests with unequal variance; *, 
p<0.001).  (C) Summary of average peak [Ca2+]i responses elicited by KCl shows an increased maximum 
[Ca2+]i achieved in capn-InsP3R1 expressing neurons (capn-InsP3R1=1540 ± 73 nM, lacZ=1035 ± 65 nM; 
unpaired t-tests with unequal variance; *, p<0.001). 
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Supplemental Figure 3.3 
 

 
 

Supplemental Figure 3.3 Characterization of glutamate injury model 

(A) Untransduced rat primary cortical cultures (14 DIV) were exposed to HBS vehicle or 1, 5, 10 or 50 µM 
glutamate.  Twenty-four hours later, cultures were stained for MAP2 and percent neuronal survival 
quantified relative to vehicle treated controls. The percentage of surviving cells was significantly reduced 
in cultures treated with glutamate concentrations > 5 µM (1 µM=91.5 ± 10.6 %, 5 µM=38.3 ± 4.4 %, 
10µM=13.9 ± 3.7 %, 50µM=4.3 ± 2.6 %; one-way analysis of variance; *, p<0.01).  LD50 for glutamate in 
these cultures is 3.49 ± 0.48 µM.  
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Supplemental Figure 3.4 

 

 

Supplemental Figure 3.4 CA1 neurons tolerate expression of capn-InsP3R1 

(A) Representative image (100X) of immunostained rat hippocampus 3 weeks after injection of AAV 2/1 
vector expressing capn-InsP3R1 and mCherry. CA1 pyramidal neurons were robustly transduced in this 
animal as evidenced by mCherry expression in the soma, and apical and basal dendrites (top).  NeuN 
labeling (center) demonstrates healthy neurons in CA1 pyramidal layer.  (B) Fluoro-Jade staining of an 
adjacent tissue section reveals no evidence of degeneration in CA1 pyramidal layer (closed arrow).  These 
data provide evidence that expression of capn-InsP3R1 is well tolerated by certain neuronal populations. 
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DISCUSSION 

 
 

Ischemic brain injury resulting from cardiac arrest represents a major cause of 

severe cognitive impairment, disability and death.  The molecular mechanisms of delayed 

neuronal death following ischemia-reperfusion remain incompletely understood.  The 

work described in the previous chapters extends our understanding of how both calpain 

and disruption of neuronal Ca2+ homeostasis contribute to neuropathology resulting from 

ischemia.  In this thesis, we present data that demonstrate calpain proteolysis of type 1 

inositol 1,4,5-trisphosphate receptor (InsP3R1) generates a leaky channel that impairs 

normal Ca2+ buffering by the endoplasmic reticulum (ER) and may contribute to neuronal 

death following ischemic brain injury.  Specifically, in Chapter 2, we identified the 

precise cleavage site responsible for generating the stable carboxyl-terminal channel 

fragment of InsP3R1, and determined that the cleaved channel has InsP3-independent 

gating and constitutive activity.  The calpain-cleaved form of InsP3R1 decreased Ca2+ 

content of intracellular stores via increased ER Ca2+ leak.  Importantly, we provided the 

first evidence of calpain-mediated proteolysis of InsP3R1 in vivo, which we identified in 

selectively vulnerable cerebellar Purkinje neurons at early and late time points after 

cardiac arrest.  Following these studies, we proceeded, in Chapter 3, to examine the 

functional consequences of calpain-cleaved InsP3R1 on neuronal Ca2+ homeostasis and 

survival.  We found that expression of truncated InsP3R1 decreased neuronal viability in 

primary cultures, dramatically altered intracellular Ca2+ homeostasis, and increased 

sensitivity to excitotoxic injury.  Finally, we began translation of these studies in vivo, 
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where we observed degeneration of CA2 hippocampal neurons induced by expression of 

calpain-cleaved InsP3R1 without prior injury.  Together, these findings support the novel 

role of InsP3R1 proteolysis in post-ischemic neuronal death and expand our 

understanding of cell death pathways in neurodegenerative diseases associated with 

pathological protease activation and disruption in Ca2+
 homeostasis.   

Calcium Signaling Through Calpain-cleaved InsP3R1 
 

Our functional studies of calpain-cleaved InsP3R1 raise important questions for 

future research into Ca2+ signaling through the proteolyzed channel.  First, the InsP3-

independent gating of recombinant calpain-cleaved InsP3R1 (capn-InsP3R1; Chapter 2) 

suggests that proteolysis induces a shift in channel function from InsP3-induced Ca2+ 

release (IICR) to Ca2+-induced Ca2+ release (CICR).  The combination of IICR and CICR 

through InsP3Rs normally coordinates propagation of Ca2+ signals by facilitating 

activation of neighboring clusters of InsP3Rs (Berridge, 1997; Foskett et al., 2007).  

Under physiological conditions, this Ca2+ signaling is regulated by 1) the InsP3 

requirement for channel gating, and 2) channel inactivation by high cytoplasmic free Ca2+ 

concentration ([Ca2+]i).  In pathological states where calpain cleaves InsP3R1, the 

truncated channel no longer depends on InsP3 for activation, and while the biphasic Ca2+ 

regulation of the channel stills exists, this may not be enough to prevent aberrant CICR.   

Cytoplasmic diffusion of Ca2+ released through InsP3R is typically spatially 

restricted, resulting in microdomains of elevated [Ca2+]i that decrease with distance from 

the channel pore.  [Ca2+]i adjacent to an open InsP3R channel may reach 100 µM or more, 

whereas 1 or 2 µM from the pore, the concentration steeply decreases to only 1 µM 
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(Neher, 1998).  Interestingly, high [Ca2+]i (25 µM; Chapter 2) reduces capn-InsP3R1 

channel open probability (Po), however [Ca2+]i in the low micromolar range is, in fact, 

optimal for capn-InsP3R1 gating (Chapter 2).  Thus, InsP3R clustering and spatial 

organization of capn-InsP3R1-mediated Ca2+ release may lead to continuous unregulated 

CICR.  Additional experiments are required to characterize spatial domains of Ca2+ 

released by capn-InsP3R1.  Flash photolysis of caged Ca2+ provides a tool for uniformly 

elevating [Ca2+]i, which has been helpful in characterizing CICR properties of ryanodine 

receptors (RyR) (Shirokova and Niggli, 2008).  This technique, in combination with 

dantrolene to block RyR-mediated Ca2+ release, could potentially elucidate the 

characteristics and global effects of CICR within neurons expressing capn-InsP3R1.   

In addition to causing a shift from IICR to CICR, calpain proteolysis of the 

amino-terminus of InsP3R1 potentially alters normal receptor degradation pathways.  

InsP3R1 expression can be down-regulated in an activity-dependent fashion by 

ubiquitination and proteasomal degradation (Wojcikiewicz, 2004).  Chronic activation of 

G-protein coupled receptors linked with generation of InsP3, as well as Ca2+ release 

through InsP3R1 can cause ubiquitination of the channel (Alzayady and Wojcikiewicz, 

2005; Bhanumathy et al., 2006).  Thus, chronic Ca2+ release through calpain-cleaved 

InsP3R1 may be a signal for ubiquitination.  Recent data using mass spectrometric 

analysis has identified 11 lysine residues within InsP3R1 that can be ubiquitinated (Sliter 

et al., 2008).  Based on the InsP3R1 cleavage site we identified (Chapter 2), calpain 

proteolysis of the channel removes 8 of the 11 potential sites for ubiquitination.  

Additionally, calpain proteolysis removes all of the polyubiquitination sites in the amino-
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terminus of InsP3R1 (Bhanumathy et al., 2006; Sliter et al., 2008), which are required for 

proteasomal degradation (Hicke, 2001; Ikeda and Dikic, 2008).  While the functional 

significance of monoubiquitination of InsP3R1 is unclear, these data suggest that calpain-

cleaved InsP3R1 cannot be targeted for proteasomal degradation, despite its constitutive 

activity.  Thus, calpain cleavage of InsP3R1 may be critical to executing cell death by 

removing activity dependent regulation of the channel thereby causing Ca2+ overload. 

Our studies of calpain-cleaved InsP3R1 that demonstrate disrupted intracellular 

Ca2+ homeostasis also raise questions about Ca2+-induced remodeling of Ca2+ signaling.  

Ca2+ itself is a potent activator of gene transcription, and InsP3R-mediated Ca2+ signaling 

is an important component of that process (Mellstrom and Naranjo, 2001; Berridge et al., 

2003).  Substantial evidence supports the role of Ca2+-dependent transcription of Ca2+ 

regulatory proteins as a feedback mechanism for maintaining cellular Ca2+ homeostasis.  

Capn-InsP3R1-mediated Ca2+ signaling may alter these pathways.  Elevated resting 

[Ca2+]i, as seen in neurons expressing capn-InsP3R1 (Chapter 3), is known to decrease 

neuronal excitability through Ca2+-activated K+ channels (Fakler and Adelman, 2008).  

However, previous data demonstrated that cultured neurons transfected with an inwardly 

rectifying K+ channel eventually recover normal firing rates despite continued channel 

expression (Burrone et al., 2002).  This suggests that compensatory alterations in 

expression of other genes occur to maintain an ideal level of neuronal excitability 

(Turrigiano, 2008).  A similar compensatory mechanism may be activated by proteolyzed 

InsP3R1, which could potentially lead to pathologically increased sensitivity to excitatory 

stimulation.  Alternatively, Ca2+ signaling through calpain-cleaved InsP3R1 may trigger 
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cell death if compensatory changes in other Ca2+ regulatory proteins are insufficient to 

restore normal spatiotemporal properties of neuronal Ca2+ signaling.   

Future investigation of these Ca2+-induced Ca2+ signaling remodeling processes 

may provide important insights into post-ischemic changes in gene expression in 

vulnerable neurons.  Currently identified alterations in post-ischemic gene expression 

include changes in NMDA and AMPA glutamate receptor (Pellegrini-Giampietro et al., 

1992; Pellegrini-Giampietro et al., 1994; Gorter et al., 1997; Zhang et al., 1997; Gascon 

et al., 2005; Liu et al., 2010), and voltage-gated Ca2+ channel expression (Chung et al., 

2001a; Chung et al., 2001b).  If these changes in expression are a downstream 

consequence of aberrant Ca2+ release through calpain-cleaved InsP3R1, then blocking the 

truncated channel may prove to be neuroprotective. 

How can Ca2+ release through calpain-cleaved InsP3R1 be blocked?  Heparin is an 

effective inhibitor of wild type (wt) InsP3R (Ghosh et al., 1988).  However, it acts as a 

competitive inhibitor of InsP3 binding, and therefore does not block capn-InsP3R1 

(Chapter 2).  Another InsP3R antagonist is the membrane permeant 2-

aminoethoxydiphenyl-borate (2-APB) (Maruyama et al., 1997; Bilmen and Michelangeli, 

2002).  Unlike heparin, 2-APB does not prevent InsP3 binding to the receptor.  Instead, it 

more likely acts as an allosteric inhibitor (Bilmen and Michelangeli, 2002) and may be 

able to block calpain-cleaved InsP3R1.  Unfortunately, 2-APB is not a specific inhibitor 

of InsP3R, and has also been shown to target store operated channels (Bootman et al., 

2002; Park et al., 2002), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 

(Bilmen et al., 2002; Peppiatt et al., 2003), and transient receptor potential channels (Hu 
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et al., 2004).  Another potentially useful InsP3R blocker is xestospongin (Xe).  Several 

forms of Xe have been used to specifically block Ca2+ release from InsP3R (Gafni et al., 

1997).  Their mechanism of action has not been definitively identified although it is 

speculated that XeB acts at an allosteric site on InsP3R.5  The potent inhibition of wt-

InsP3R-mediated Ca2+ release by XeB warrants examining the effects on calpain-cleaved 

InsP3R1.   Single-channel electrophysiology and single-cell Ca2+ imaging experiments 

using cultured cells expressing capn-InsP3R1 provide useful models for determining 

whether XeB can effectively block the cleaved channel and restore Ca2+ homeostasis.   

Defining the Role of InsP3R1 Proteolysis in Cell Death Pathways 
 

The work presented in this dissertation supports the causal role of calpain-cleaved 

InsP3R1 in neurodegeneration and lays the framework for future investigations studying 

the cleaved channel in cell death pathways.  An obvious question is, does blocking 

calpain proteolysis of InsP3R1 prevent cell death?   Unfortunately, this is experimentally 

difficult to answer as calpain sequentially cleaves InsP3R1 into 200, 130 and 95 kDa 

carboxyl-terminal fragments (Magnusson et al., 1993; Igwe and Filla, 1997).  Preventing 

calpain cleavage of the channel would require mutation of all 3 cleavage sites.  However, 

only the site responsible for generating the 95 kDa fragment has been identified (Chapter 

2).  Investigations of the ~95 kDa caspase-3 cleaved form of InsP3R1 could provide some 

insights.  In one study, wt, caspase-cleaved, and caspase-resistant InsP3R1 were 

expressed in InsP3R deficient B-lymphocytes to examine the impact of InsP3R1 

proteolysis on apoptotic cell death (Assefa et al., 2004).  Expression of caspase-cleaved 

                                                
5 J. Molgo, via personal communication with G.E. Stutzmann, October 16, 2011 
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InsP3R1 accelerated apoptosis in response to staurosporin and B-cell receptor stimulation 

compared with wt-InsP3R1.  In contrast, cleavage-resistant InsP3R1 dramatically slowed 

apoptosis to levels observed in InsP3R deficient cells, and prevented Ca2+ overload and 

secondary necrosis.  We speculate that calpain-resistant InsP3R1 would afford similar 

protection against cell death.  Since generating a calpain-resistant InsP3R1 mutant is 

complicated at this time, future studies should focus on investigating the potentially 

protective effects of blocking Ca2+ release through the cleaved channel.   

The proximal location of caspase and calpain cleavage sites within the primary 

amino acid sequence of InsP3R1 further imply that proteolysis of InsP3R1 is critical to 

cell death.  This structural redundancy may be a fail-safe for cell death pathways, as there 

appear to be functional similarities between the caspase- and calpain-cleaved forms of 

InsP3R1.  The results presented in this dissertation regarding the effect of calpain-cleaved 

InsP3R1 on Ca2+ homeostasis and cell death are similar to previously published studies of 

caspase-cleaved InsP3R1 (Assefa et al., 2004; Verbert et al., 2008), suggesting that 

channel proteolysis by either caspase or calpain may produce a similar effect.  

Interestingly, InsP3R1 digestion with caspase in vitro seems to prevent further proteolysis 

by calpain (unpublished observation).  The implications of this are unclear, however it 

appears that InsP3R1 proteolysis by either enzyme alone is sufficient for cell death.  

Importantly, both caspase (Haug et al., 2000) and calpain (Chapter 2) cleavage of 

InsP3R1 are early steps in the molecular injury cascade suggesting a role for channel 

proteolysis in both the initiation and execution of cell death. 
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The idea that caspase- and calpain-proteolysis of InsP3R1 provide a convergent 

pathway for cell death is further supported by evidence that there is considerable overlap 

between caspase and calpain proteolytic systems (Wang, 2000), and that calpain 

inhibition can shift cell death from calpain-mediated necrosis to caspase-mediated 

apoptosis (McGinnis et al., 1999; Zhu and Uckun, 2000; Neumar et al., 2003).  

Importantly, immunohistochemical staining for caspase- and calpain-specific substrate 

cleavage in ischemic brain tissue demonstrates distinct spatiotemporal patterns of activity 

for each enzyme (Zhang et al., 2002).  Thus, InsP3R1 proteolysis, by both caspase and 

calpain, may play a more diverse role in post-ischemic neurodegeneration than currently 

appreciated.   

In ischemic brain injury, the effects of calpain-cleaved InsP3R1 on impaired ER 

Ca2+ buffering (Chapters 2 and 3) may be compounded by proteolysis of other substrates.   

For example, calpain may further increase ER Ca2+ release by altering InsP3 processing.  

Calpain cleavage of the B isoform of InsP3 kinase prevents its localization to the ER 

membrane (Pattni et al., 2003), where it is responsible for converting InsP3 into InsP4 

(Irvine et al., 1986), which cannot activate InsP3Rs.  Therefore, calpain proteolysis of 

InsP3 kinase could reasonably increase the half-life of InsP3 (Bevers and Neumar, 2008).  

This in turn would likely increase InsP3 concentration, thereby activating more InsP3Rs.  

Increased InsP3 half-life also has interesting implications for the activity of 

heterotetrameric InsP3Rs with cleaved and full-length subunits following ischemia-

reperfusion.  We postulate that calpain proteolysis of individual subunits results in a 

gradual shift away from InsP3-dependent Ca2+ activation.  In the absence of InsP3, this 
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means channel Po increases with the number of subunits that are cleaved.  In the presence 

of InsP3, channels with non-cleaved subunits should have higher Po.  Although 

understanding the precise, complex function of heterotetrameric channels requires 

additional studies, based on this rationale, we predict that extended InsP3 half-life 

resulting from calpain cleavage of InsP3 kinase would result in a net increase in ER Ca2+ 

release over time.  Additionally, proteolytic modification of SERCA could impair ER 

Ca2+ sequestration.  While data demonstrating calpain-mediated cleavage of SERCA is 

tenuous, the predicted effect of proteolysis is a decrease in Ca2+ uptake into the ER 

(Parsons et al., 1999; Bevers and Neumar, 2008).  Inhibition of ER Ca2+ store filling by 

impaired SERCA function can itself lead to depletion of lumenal ER [Ca2+] over time, 

and calpain-cleaved InsP3R1 would certainly accelerate the effect.  In our model 

expressing capn-InsP3R1 in Neuro-2A cells, we observed slowed ER Ca2+ uptake, 

enhanced ER Ca2+ leak, and decreased steady-state ER [Ca2+] compared with controls 

(Chapter 2).  In primary neuron culture, we observed increased resting [Ca2+]i and 

impaired ER buffering of Ca2+ influx in neurons transduced with capn-InsP3R1 (Chapter 

3).  These data indicate that, to a certain extent, the rate of Ca2+ leak through capn-

InsP3R1 is able to exceed the rate of Ca2+ uptake by functional SERCA.  Under 

conditions in which calpain cleaves both InsP3R1 and SERCA, the impact on intracellular 

Ca2+ homeostasis would likely be far more catastrophic.  Together, these alterations in 

ER Ca2+ release and sequestration could represent an irreversible point of cellular injury, 

signaling post-ischemic neurodegeneration through cytoplasmic or mitochondrial Ca2+ 

overload.  Better understanding of the sequence of these proteolytic and Ca2+ signaling 
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events, and identification of the calpain isoform(s) responsible may point to new targets 

for intervention in ischemic brain injury. 

Implications for Therapeutic Intervention in Neurodegenerative Disease 
 

The work presented in this thesis advances our understanding of the functional 

consequences of InsP3R1 proteolysis and the broader role of the cleaved channel in 

neurodegeneration.  Based on our results, we propose that blocking calpain-cleaved 

InsP3R1 is a promising target for therapeutic intervention following ischemic brain 

injury.  Moreover, calpain proteolysis of InsP3R1 may be an important component of cell 

death pathways in a number of other neurodegenerative diseases characterized by 

disrupted Ca2+ signaling.   

Translation of our investigation of calpain-cleaved InsP3R1 into an in vivo system 

provides a potentially exciting and useful model for testing the neuroprotective efficacy 

of new therapeutic agents.  Using intracranial injection and viral vector mediated gene 

delivery of capn-InsP3R1, we successfully expressed the truncated channel in neurons in 

the adult brain, and observed degeneration of CA2 hippocampal neurons (Chapter 3).  

The selective vulnerability of this brain region lends itself to histological and 

stereological quantification of neuronal death.  This in turn provides a simple, 

quantitative assay of neuroprotection afforded by potential therapeutic compounds.  

Limited neurodegeneration in this model also allows for studying compound effects in 

healthy, uninjured cells.  Furthermore, using an in vivo system necessarily involves 

screening compounds for bioavailability in the brain, making results highly translatable.  
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Depending on results from in vitro experiments proposed above, XeB might provide a 

useful starting point for drug testing in our in vivo model.   

 Finally, our antibody directed against calpain-cleaved InsP3R1 (Chapter 2) 

provides a valuable tool for examining InsP3R1 proteolysis in other neurodegenerative 

diseases.  Similar to data from ischemic brain injury, reductions in InsP3-binding have 

been reported in brains from patients with Huntington’s (Tanaka et al., 1993) and 

Alzheimer’s diseases (Young et al., 1988; Garlind et al., 1995; Haug et al., 1996).  

Additionally, studies using animal models of excitotoxic injury (Haug et al., 1996) and 

prion disease (Lee et al., 2010) report decreased InsP3R expression, although Western 

blot analysis of InsP3R only examines the high molecular weight, full-length protein (260 

kDa).  Calpain proteolysis of InsP3R1 could explain these results.  Our cleavage specific 

antibody provides a sensitive way to detect calpain proteolysis of InsP3R1 in brain 

homogenates and fixed tissue.  Future investigators could utilize this antibody to screen 

animal and patient tissue for cleaved InsP3R1.  Regardless of which neurodegenerative 

diseases calpain-cleaved InsP3R1 is identified in, these results will lay the groundwork 

for diverse future investigations of the broad neuropathologic role of InsP3R1 proteolysis.   
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