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Insights into the Role of Chemokines and Chemokine Receptors During
HIV-1 Pathogenesis

Abstract
Sexual transmission of HIV-1 is often established by one genetic variant, the transmitted/founder (T/F)
virus. T/F HIV-1 may have specific phenotypic properties that are selected for during transmission. To date,
the most consistent phenotypic property associated with T/F viruses is use of the chemokine receptor CCR5
as a coreceptor for entry. Small molecule CCR5 antagonists, such as Maraviroc (MVC), inhibit HIV-1 entry
by functioning as allosteric inhibitors. These molecules bind within the transmembrane helices of CCR5,
inducing a conformational change that prevents the HIV-CCR5 interaction. As with most drugs, HIV-1 has
developed strategies to overcome this inhibition. Some viruses develop mutations in the envelope (Env)
glycoprotein that enable the use of antagonist-bound CCR5. In Chapter Two, we evaluate 87 CCR5-using
viruses to address differences between T/F viruses and viruses isolated from chronically infected individuals
(chronic controls-CC) in their ability to mediate entry via varying amounts of CCR5 in the presence of MVC.
We demonstrate that CC viruses exhibit partial resistance (PR) to MVC more frequently than T/F viruses,
suggesting that T/F and CC HIV-1 differentially utilize CCR5 in a manner that may be biologically important
in the context of transmission. Following the discovery of the chemokine receptors CXCR4 and CCR5 as
cofactors for HIV-1 entry, it was revealed that their cognate chemokine ligands could inhibit HIV-1 infection
in vitro. Multiple cell types have been implicated in secreting chemokines that function to modulate HIV-1
infection. Recently the platelet-derived chemokine PF4 was shown to inhibit HIV-1. However, despite plasma
and local concentrations of PF4 being within the range used in these studies, HIV-1 is still able to propagate in
vivo. In Chapter Four, we sought to understand the mechanism of action of PF4 and determine it’s in vivo
relevance. I confirmed and extended previous studies showing that PF4 inhibits infection by HIV-1 and other
viruses. However, the inhibitory capacity of PF4 is limited to a defined concentration range, after which
inhibition wanes and viral infection is ultimately enhanced at higher chemokine concentrations that are
commonly found in vivo. Thus, rather than being a potential anti-viral agent as previously suggested, PF4 may
contribute to the hematologic abnormalities commonly seen in HIV-infected individuals by enhancing virus
infection in the bone marrow.
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ABSTRACT 
 

INSIGHTS INTO THE ROLE OF CHEMOKINES AND CHEMOKINE 

RECEPTORS DURING HIV-1 PATHOGENESIS 

Zahra F. Parker 

Robert W. Doms 

Sexual transmission of HIV-1 is often established by one genetic variant, 

the transmitted/founder (T/F) virus. T/F HIV-1 may have specific phenotypic 

properties that are selected for during transmission. To date, the most consistent 

phenotypic property associated with T/F viruses is use of the chemokine receptor 

CCR5 as a coreceptor for entry. Small molecule CCR5 antagonists, such as 

Maraviroc (MVC), inhibit HIV-1 entry by functioning as allosteric inhibitors. These 

molecules bind within the transmembrane helices of CCR5, inducing a 

conformational change that prevents the HIV-CCR5 interaction. As with most 

drugs, HIV-1 has developed strategies to overcome this inhibition. Some viruses 

develop mutations in the envelope (Env) glycoprotein that enable the use of 

antagonist-bound CCR5. In Chapter Two, we evaluate 87 CCR5-using viruses 

to address differences between T/F viruses and viruses isolated from chronically 

infected individuals (chronic controls-CC) in their ability to mediate entry via 

varying amounts of CCR5 in the presence of MVC. We demonstrate that CC 

viruses exhibit partial resistance (PR) to MVC more frequently than T/F viruses, 

suggesting that T/F and CC HIV-1 differentially utilize CCR5 in a manner that 

may be biologically important in the context of transmission. Following the 
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discovery of the chemokine receptors CXCR4 and CCR5 as cofactors for HIV-1 

entry, it was revealed that their cognate chemokine ligands could inhibit HIV-1 

infection in vitro.  Multiple cell types have been implicated in secreting 

chemokines that function to modulate HIV-1 infection. Recently the platelet-

derived chemokine PF4 was shown to inhibit HIV-1. However, despite plasma 

and local concentrations of PF4 being within the range used in these studies, 

HIV-1 is still able to propagate in vivo. In Chapter Four, we sought to understand 

the mechanism of action of PF4 and determine it’s in vivo relevance. I confirmed 

and extended previous studies showing that PF4 inhibits infection by HIV-1 and 

other viruses. However, the inhibitory capacity of PF4 is limited to a defined 

concentration range, after which inhibition wanes and viral infection is ultimately 

enhanced at higher chemokine concentrations that are commonly found in vivo.  

Thus, rather than being a potential anti-viral agent as previously suggested, PF4 

may contribute to the hematologic abnormalities commonly seen in HIV-infected 

individuals by enhancing virus infection in the bone marrow.
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CHAPTER 1 

Introduction to HIV-1 entry and transmission 
 

HIV-1 ENTRY 
 

Human immunodeficiency virus type I (HIV-1) infection poses a significant 

global disease burden, with approximately 34 million people currently infected, 

and roughly 2.5 million new cases annually (292). HIV-1 infection leads to 

Acquired Immunodeficiency Syndrome (AIDS), which has caused mortality of an 

estimated 36 million people since the start of the global pandemic in the mid 

1980s, with approximately 1.6 million AIDS-related deaths annually (292). AIDS 

is a disease characterized by the gradual decline of circulating CD4+ T cells over 

time. Once a threshold of approximately 200 x 109 CD4+ T cells/liter is passed, 

the individual is said to be immune compromised and highly susceptible to 

opportunistic infections by otherwise non-life-threatening pathogens. Generally, 

HIV-1 transmission rates are low, ranging from 0.1% to 10% per coital act (33, 

101, 196, 212). However, once an individual becomes infected with HIV-1, a 

primary or acute viral infection results within a few weeks, and is characterized 

by high viral replication and massive loss of gut associated lymphoid tissue 

(GALT) CD4+ T cells. Understanding the early events of HIV-1 infection is 

important as they provide insight into the later course of disease. Thus, it is most 

appropriate to study the very earliest interactions between the virus and the host 

as the starting point of studying HIV-1 pathogenesis. HIV-1 entry into target 
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cells—primarily CD4+ T cells—is mediated by the type I integral membrane viral 

glycoprotein Env. The Env precursor (gp160) is proteolytically processed within 

the cell, generating the surface unit (gp120) and the transmembrane component 

(gp41), which remain associated via non-covalent interactions. Env comprises 

gp120 and gp41, and exists as a trimer of heterodimers incorporated into the 

viral membrane (296).  

HIV-1 entry into cells involves four distinct stages: attachment to the host 

cell, binding of gp120 to the primary receptor (CD4), binding of gp120 to the 

coreceptor (CCR5 or CXCR4), and gp41-mediated fusion of the viral and host 

membranes (Fig 1). The initial, and rate-limiting, step of infection in vitro involves 

relatively nonspecific interactions between Env, or other host-derived proteins 

within the viral membrane, and cellular attachment factors such as the 

negatively-charged glycosaminoglycan (GAG) heparan sulfate proteoglycan 

(245). More targeted interactions have also been described between Env and the 

C-type lectin dendritic cell–specific intercellular adhesion molecular 3-grabbing 

non-integrin (DC-SIGN) (95). DC-SIGN, and other C-type lectins (148, 278, 279), 

expressed on dendritic cells can boost HIV-1 infection by binding to high-

mannose sugars on Env (114) and enhancing infection efficiency in vitro by 

transferring bound virions to surrounding CD4+ T cells (a process known as 

trans-infection).   Additionally, monomeric HIV-1 Env has been shown to 

specifically interact with the gut homing integrin α4β7 (14, 57), which is 

approximately three times larger than CD4, making it a prominent attachment 

factor for efficient viral capture to increase viral attachment and cell-cell spread. 
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Notably, the discovery of α4β7 as an attachment factor is interesting because the 

integrin is upregulated on activated CCR5-expressing CD4+ T cells within the 

GALT, a site highly relevant to HIV-1 pathogenesis. Whether α4β7 binds trimeric 

Env remains to be investigated. Viral attachment to the cell brings the virus and 

cell in close proximity to each other, enhancing the efficiency of infection (194). 

While significant, these early, low-affinity interactions are not essential for virus 

entry—as is the case for the viral receptor CD4. 

The primary receptor for HIV-1 is CD4 (168, 173), a glycoprotein and 

member of the immunoglobulin superfamily found on the surface of T helper 

cells, monocytes, macrophages, and dendritic cells. HIV-1 Env interacts with 

CD4 (145) to initiate a cascade of conformational changes within gp120 required 

for successful entry, and with very few exceptions CD4 binding is a prerequisite 

for HIV-1 entry. HIV-1 gp120 contains five conserved domains (C1–C5) and five 

genetically variable loops (V1–V5). The variable loops are situated at the surface 

of gp120 and are involved in immune evasion. V3 is particularly important for 

coreceptor binding (109, 266). CD4 binding to gp120 induces major structural 

rearrangements in gp120 by inducing the formation of the bridging sheet (formed 

by the rearrangement of two pairs of β-sheets from the inner and outer domains 

of gp120 into a four-stranded β-sheet structure), rotating each gp120 monomer, 

and the extending of the variable loops (V1/V2 and V3). These conformational 

changes draw the viral and cell membranes into closer proximity, as well as 

create and expose the coreceptor-binding site.  
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Coreceptor engagement follows CD4 binding. In humans, the most 

important coreceptors are the seven-transmembrane G-protein-coupled 

receptors (GPCRs) CCR5 and CXCR4. GPCRs are integral membrane proteins 

with an extracellular N-terminal segment, three extracellular loops (ECL) formed 

between transmembrane regions, and an intracellular DRY motif that is critical for 

G-protein signaling components (Fig 2). CCR5 and CXCR4 are chemokine 

receptors, where binding of the cognate chemokine ligands to the chemokines 

receptors results in a G-protein-mediated cascade of intracellular signaling 

events, which regulate trafficking and the effector response of leukocytes. 

Surface expression of various chemokine receptors is specific for certain types of 

leukocytes. This expression pattern of chemokine receptors on target cells is the 

basis for coreceptor tropism of HIV-1, with some viruses exclusively using CCR5 

(R5-tropic), some engaging only CXCR4 (X4-tropic), and others taking 

advantage of both (R5X4/dual-tropic) for entry. CCR5 expression is mainly 

restricted to memory CD4+ T cells, while CXCR4 expression is more widespread 

and predominates on naïve CD4+ T cells (30).  Despite this expression pattern, 

most infections are initiated by R5-tropic viruses, while disease progression to 

AIDS is often associated with the emergence of X4-tropic or dual-tropic variants 

(64, 247, 267). Several lines of evidence (3, 23, 76, 84, 266) suggest that both 

the tyrosine-sulfated N-terminal segment and the second extracellular loop 

(ECL2) are involved in gp120 binding, specifically through interactions with the 

bridging sheet and the crown of the V3 loop (which shares striking homology with 

the beta2-beta3 loop in chemokines—the natural ligand of chemokine receptors 
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(46)). As such, the amino acids in the gp120 coreceptor-binding site are highly 

conserved between HIV-1, HIV-2, and SIV (223, 224), and could serve as 

potential targets for the development of broadly-active therapeutic agents.  

Binding of gp120 to the coreceptor triggers further conformational changes 

in Env that enable gp41-mediated fusion of the viral and cellular membranes. 

The current model of gp41-mediated fusion is based on studies of HIV-1 crystal 

structures/imaging (52, 290), fusion inhibitors (138, 161, 293), entry kinetic 

studies (94, 134, 219), and similarities between gp41 and other well-

characterized type I membrane fusion proteins including the influenza virus 

glycoprotein, hemagglutinin (HA) (52, 290).  In this model, following the formation 

of Env-receptor-coreceptor complex, the transmembrane gp41 fusion peptide 

inserts into the host membrane. The fusion peptide is an N-terminal hydrophobic 

portion of gp41 primarily involved in anchoring the viral and cell membranes. The 

fusion peptide of each gp41 in the trimer refolds into a thermodynamically stable 

structure termed the 6-helix bundle (6HB). The 6HB is formed when an N-

terminal helical region (HR1) and a C-terminal helical region (HR2) from each 

gp41 subunit come together (52, 290). The energy used to form the 6HB 

juxtaposes the viral and host membranes, driving the formation of a fusion pore 

(77, 174). Although the mechanisms of fusion for retroviruses have been 

extensively studied, the location—plasma membrane or endosome—of the fusion 

pore formation remains controversial (280). Reports showing that the majority of 

retroviruses do not require low pH to activate the fusion process (62) suggest 

that HIV-1 likely fuses with the target cell at the plasma membrane, though it is 
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important to note that pH-independence does not in an of itself imply spatial 

information. However, multiple lines of evidence suggest that endocytic entry of 

HIV-1 can lead to infection (177), and may be a preferred route of entry into 

certain cell types (175). Further studies are needed to elucidate the relevance of 

endocytic uptake of HIV-1 in vivo.  

INHIBITING HIV-1 ENTRY 

Targeting CD4 
 

Each interaction in the multistep HIV-1 entry pathway can be targeted for 

drug development. Efforts to block HIV-1 at this stage of infection have led to a 

class of interventions termed HIV-1 entry inhibitors.  Initial attempts to develop 

specific inhibitors of HIV-1 entry focused on blocking viral binding to the cell.  

These attempts led to the generation of recombinant soluble CD4 (sCD4) 

molecules, which lack the transmembrane and cytoplasmic domains of CD4, but 

retain the two outer-most domains (D1 and D2). These constructs maintain the 

ability to bind gp120, and thus can act as molecular decoys during infection. 

Although sCD4 showed promising in vitro activity against laboratory-adapted 

strains of HIV-1 (90, 119, 258, 273), activity in clinical trials did not follow suit (69, 

246). Additionally, producing large enough quantities of the protein for clinical 

use may be challenging. Furthermore, studies demonstrated that HIV-1 primary 

isolates are less sensitive to neutralization by sCD4 than lab-adapted strains (69, 

246, 277). Subsequent studies with PRO 542, a tetravalent CD4-Ig fusion protein 

comprising D1 and D2 of human CD4 fused to the heavy and light chain constant 

regions of human IgG2,κ, yielded more encouraging results (7, 120). Moderate 
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reductions in plasma HIV-1 RNA levels were observed in a phase I trial of PRO 

542 in patients with advanced HIV-1 disease. However, disadvantages of this 

therapeutic platform are that the drug would have to be delivered intravenously, 

would require a cold chain (which is not practical for treating individuals in 

resource-limiting settings), and would be expensive to develop. 

Conserved structures/domains in gp120, such as the CD4-binding site and 

coreceptor-binding domain, serve as attractive targets for antibodies or small-

molecule inhibitors. Unsurprisingly, small molecule inhibitors that block the 

gp120-CD4 interaction show greater promise. One such inhibitor (BMS-378806) 

(159, 285) exhibits potent antiviral activity in vitro against HIV-1 subtype B 

(independent of coreceptor tropism), but is inactive against HIV-2 and SIV (159). 

BMS-378806 binds within the CD4 binding pocket of gp120, preventing 

engagement with cellular CD4 receptors. The antiviral activity in vivo is 

demonstrated by a phase I study with the related compound, BMS-488043, 

which resulted in 1-log10-reduction in plasma HIV-1 RNA in study subjects (107). 

However, relatively high doses were required (1,800 mg), driving the virus in 17% 

of subjects to easily acquire resistance. Moreover, baseline resistance to BMS-

488043 was detected in another 17% of subjects (306). The compound is no 

longer in clinical development.  

Small molecules targeting CCR5 
 

Multiple methods have been employed to generate inhibitors targeting the 

gp120-CCR5 interaction. Targeting CCR5 has been an attractive therapeutic 

angle since the discovery of a naturally occurring mutation in ccr5 (ccr5∆32) that 
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truncates CCR5, preventing cell surface expression of the chemokine receptor. 

Individuals homozygous for this mutation are less susceptible to infection by R5-

tropic HIV-1, although they remain sensitive to infection by X4-tropic viruses 

(117, 160, 244), but still these individuals are rarely infected (27, 189, 268). Drug 

development efforts to block CCR5 have led to the generation of small molecule 

antagonists, monoclonal antibodies (mAbs), and analogues of natural CCR5 

ligands. The small molecule CCR5 antagonists have been named with the suffix 

“-viroc”, denoting “viral receptor occupancy”. These molecules possess no 

agonist properties and do not impact surface expression of CCR5, yet exhibit 

potent inhibition of HIV-1 replication in vitro against lab-adapted and primary 

isolates across all subtypes of HIV-1. Three of these inhibitors—aplaviroc (APL), 

maraviroc (MVC), and vicriviroc (VVC)—have advanced to at least phase II 

clinical trials and will be discussed here.  

Aplaviroc (formerly, compound 873140) is an allosteric noncompetitive 

inhibitor of CCR5, exhibiting potent antiviral activity during short-term 

monotherapy studies. Administering 600 mg APL twice daily produced up to a 

1.6-log10-reduction in plasma HIV-1 RNA levels during 10 days of treatment 

(147). Mechanistic studies showed that nanomolar concentrations of APL block 

the activity of the CCR5 ligand, MIP-1α, but not signaling by another CCR5 

ligand—RANTES (288). Although initially promising as an antiviral agent, follow-

up studies reported APL-associated hepatotoxicity (drug-induced hepatitis) in 5 

subjects during phase IIb and III clinical trials (188). While no fatalities resulted 
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from the hepatotoxicity, and pathology resolved with drug discontinuance, APL 

development is not being pursued further due to this side effect. 

Maraviroc (formerly, UK-427,857) is also a noncompetitive allosteric 

inhibitor of CCR5, with potent antiviral activity both in vitro and in vivo. Like APL, 

MVC does not induce signaling and calcium mobilization upon binding to CCR5, 

nor does it impact CCR5 surface expression. However, unlike APL, MVC is a 

functional CCR5 antagonist that blocks binding of, and signaling by, CCR5 

ligands including MIP-1α and RANTES at nanomolar concentrations (80). In a 

10-day monotherapy phase IIa clinical trial conducted in 63 subjects infected with 

R5-tropic HIV-1, 600 mg of MVC daily resulted in ≥1.6 log10-reduction of plasma 

HIV-1 (86). 

The in vivo efficacy of MVC was confirmed in two double-blind 

randomized, placebo-controlled phase III clinical trials—MVC versus Optimized 

Therapy in Viremic Antiretroviral Treatment-Experienced Patients (MOTIVATE 1 

and 2) (85, 103). MOTIVATE 1 was conducted in the United States and Canada, 

and MOTIVATE 2 was conducted in Australia, Europe, and the United States. All 

1049 study participants had been taking one or more drugs from at least three 

antiretroviral classes and showed evidence of resistance to drugs from these 

antiretroviral classes, had plasma HIV-1 RNA levels >5,000 copies/mL, median 

CD4 cells count of 169cells/mm3, and were infected exclusively with R5-tropic 

virus as assessed by the Trofile assay (164). Participants were randomized to 

receive one of two dosing regimens of MVC (300 mg given once or twice daily) or 

placebo. At 48 weeks, in both studies, the change in HIV-1 RNA from baseline 
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was greater with MVC than with placebo; -1.66 and -1.82 log10 copies/mL with 

the once-daily and twice-daily regimens, respectively, versus -0.80 with placebo 

in MOTIVATE 1, and -1.72 and -1.87 log10 copies/mL, respectively, versus -0.76 

with placebo in MOTIVATE 2. Additionally, in both studies more than twice as 

many MVC recipients had plasma HIV-1 RNA levels below 50 copies/mL 

compared to placebo recipients (42-47% in both MVC groups versus 16% in the 

placebo group in MOTIVATE 1; 45% versus 18% in MOTIVATE 2). Furthermore, 

increases in CD4 cell counts ranged from 110-130 cells/mm3 in the MVC arms as 

compared to 50-70 cells/mm3 in the placebo arms.  

Repeated Trofile testing showed that when virologic failure occurred, it 

was associated with emergence of X4-tropic virus in 57% of subjects (85). 

Although all subjects had R5-tropic virus at the failure screening time point, 8% 

were found to have dual (X4/R5)-tropic or mixed (X4-tropic and R5-tropic) (D/M) 

virus at baseline (day 0). These variants were undetected before MVC treatment 

because they were present at levels below the limit of detection of the assay. 

Subjects infected with D/M-tropic virus at baseline had a lower rate of virologic 

response, shorter time to virologic failure, and smaller CD4 increases as 

compared to those exclusively infected with R5-tropic virus. Owing to the results 

of the MOTIVATE trials, the makers of MVC received approval by the FDA for 

treatment-experienced patients with poor control of multidrug resistant, R5-tropic 

HIV-1.  

While the approval of MVC targets the treatment of patients with R5-tropic 

virus, its potential in patients with D/M-tropic virus has also been evaluated (230). 
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A total of 186 study participants infected with D/M-tropic virus, with median CD4 

cell counts of 42 cells/mm3 and HIV-1 viral load of >5000 copies/mL within each 

cohort (300 mg MVC once-daily, twice-daily, or placebo), were enrolled in a 

randomized double-blind, placebo-controlled phase IIb clinical trial A4001029. 

This study found no significant virologic benefit of MVC as compared to placebo 

over 24 weeks. These results and those of the MOTIVATE trials suggest that 

although the presence or outgrowth of X4-tropic virus dampened the response to 

MVC, it was not associated with rapid CD4 decline or disease progression. 

Vicriviroc, (formerly, SCH417690 or SCH-D) is a third class of allosteric 

noncompetitive CCR5 inhibitor. VVC is an orally bioavailable small molecule 

CCR5 antagonist that, like MVC, blocks signaling by the C-C chemokines at 

nanomolar concentrations (265). Early in vivo studies demonstrated that VVC 

produced seizures in animals at high doses, but no VVC-associated adverse 

effects in the CNS have been reported in human clinical trials. A 14-day 

monotherapy trial demonstrated a reduction of plasma HIV-1 RNA by 

approximately 1.0-1.5 log10 copies/mL (248). However, a phase IIb study of VVC 

(plus dual nucleoside reverse-transcriptase inhibitors—NRTIs) in treatment-naïve 

HIV-1-infected subjects was halted due to increased rates of virologic failure in 

the VVC arms compared to the control dual NRTI arm (149). Despite these 

setbacks, a placebo-controlled phase IIb study conducted in antiretroviral-

experienced participants demonstrated potent suppression of HIV-1 by VVC 

(administered at 5, 10 or 15 mg daily) in combination with a protease inhibitor 

(297). Mean changes in plasma HIV-1 RNA levels at 24 weeks ranged from 1.5-
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1.9 log10 copies/mL in the VVC-treated participants as compared to 0.29 

log10 copies/mL in the placebo group. The same trend was observed 48 weeks 

post treatment. However, development of VVC was not further pursued due to 

lack of convincing efficacy gains when it was added to background therapy 

comprising two antiretroviral drugs in two randomized phase III clinical trials (48).   

Targeting CXCR4 
 

As with CCR5, the development of small molecule inhibitors of CXCR4 

has been an attractive therapeutic option (262). Initial animal toxicity studies with 

two small molecule inhibitors (AMD3100 and AMD11070) (78) provided enough 

evidence of safety to proceed with human studies (110). Preliminary human 

studies with AMD3100 showed selective blockade of CXCR4 and inhibition of 

X4-tropic HIV-1 and HIV-2, but development of this compound as an anti-HIV-1 

drug was discontinued because it lacked bioavailability and caused substantial 

peripheral leukocytosis—mobilization/release of progenitor hematopoietic stem 

cells from the bone marrow into the blood (91, 110). This side effect turned out to 

be a benefit, though not for HIV-1, as AMD3100 (now known as plerixafor) has 

since been approved for use during autologous transplantation in patients with 

non-Hodgkin’s lymphoma and multiple myeloma (43, 75). Phase I and II studies 

with another CXCR4 inhibitor AMD11070 showed a reduction in the X4-tropic 

HIV-1 population in participants infected with D/M virus (180). However, further 

development of this drug has been halted due to abnormal liver histology in long-

term animal studies. The long-term safety of targeting CXCR4 remains in 

question. 
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Targeting fusion 
 

Membrane fusion mediated by HIV-1 gp41 is yet another viable drug 

target in the HIV-1 entry pathway. Because the 6HB structure is critical for 

membrane fusion, peptide inhibitors mimicking the HR1 or HR2 region of the 

gp41 subunit have been designed to prevent membrane fusion (122). One such 

peptide, enfuvirtide (T20), is the only FDA-approved HIV-1 fusion inhibitor (147, 

151). T20 is a 36-mer synthetic peptide whose sequence matches that of the 

HR2 region of gp41. Interaction of T20 with HR1 prevents the association of HR1 

with HR2, thus inhibiting fusion and blocking virus entry (294). The drug has 

minimal toxicity, however because it is a peptide, it must be administered by 

subcutaneous injection. T20 co-administered with other drugs (darunavir, 

tirapanavir, and maraviroc) in clinical trials lead to significant improvements in 

response rates to those compounds (58, 112). Unfortunately, as with most entry 

inhibitors, viral resistance to T20 emerges rapidly; predominantly in regimens 

where viral inhibition is incomplete or due to naturally occurring polymorphisms in 

the gp41 region of genetically diverse forms of HIV-1 (47, 208). This underscores 

the need for combination therapy in the management of HIV-1 infection (124, 

282).  

THE VIRAL BOTTLENECK DURING HIV-1 SEXUAL TRANSMISSION  
 

The majority of new HIV-1 infections occur in the developing world, with 

women being disproportionally affected compared to men. Of these new 

infections, approximately 80% result from heterosexual intercourse (65, 228, 
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298). Sexual transmission of HIV-1 is an inefficient process, with the incidence of 

transmission between discordant couples being estimated to be between 0.1%-

10% transmission rate per coital act (33, 101, 196, 212). Sexual transmission of 

HIV-1 is characterized by a genetic bottleneck in which one or few viral variants 

from the diverse viral swarm in the donor cross the mucosal epithelium in the 

recipient and encounter susceptible target cells to seed the infection. This theory 

of the genetic bottleneck was initially described over 20 years ago, when 

researchers studying donor-recipient pairs discovered that viral sequences 

isolated from recipients were usually homogenous and macrophage-tropic, while 

viral populations of the donors showed heterogeneity both in sequence and cell 

tropism (299, 300, 304, 307). Other studies suggested that multiple viral variants 

may initially cross the physical mucosal barrier, however most are extinguished 

due to intrinsic differences in reproductive rates (131, 152, 154). As a result, 

successful transmission generally results from the expansion and propagation of 

a single genetic variant, termed the transmitted/founder (T/F) virus (Fig 3) (131). 

T/F viruses may have specific properties that are selected for during 

transmission, and identifying such traits may inform and facilitate the 

development of pre- and post-exposure therapies targeting these early viruses. 

KNOWN PROPERTIES OF TRANSMITTED HIV-1 
 

The first report of genotypic differences between viruses isolated from 

donor-recipient pairs came from studies of vertical transmission of three mother-

infant pairs (300). Infant viral sequences of the V3-V5 region of Env were less 

diverse than those from their respective mother. Additionally, a potential N-linked 
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glycosylation site (PNLG) within V3 was conserved in each mother’s sequences, 

but lost in her corresponding infant’s viral sequences. Furthermore, fewer PNLGs 

have been reported in vertically transmitted subtype A and C Envs isolated from 

mother-infant pairs (229, 301, 303). These data suggest that viruses with fully 

glycosylated Envs are perhaps selected against as they traverse the placenta 

into the infant host, or may acquire a fitness cost that hampers their replication in 

the new host (303).  

While these early studies in mother-to-child transmission (MTCT) pairs 

were invaluable as MTCT accounted for approximately 25% of global 

transmission during that time (1991) (35), by 1994 MTCT rates had began to 

dramatically drop (to as low as 4%) owing to the development of highly active 

therapy preventing vertical transmission (63, 207). This highlighted the 

importance of studying transmission in pairs that characterized the majority of the 

pandemic—sexually transmitted pairs. As observed in MTCT pairs, analysis of 

Envs from acutely infected individuals with subtype C infection also revealed 

shorter variable loops with fewer PNLGs compared to those from their 

transmitting partners (73). Other studies reported shorter V1 and V2 regions and 

fewer PNLGs in acutely infected individuals with subtype A and B virus (56, 235). 

Moreover, an assessment of thousands of Env sequences to discern patterns in 

amino acid signatures that are significantly associated either with transmission or 

with the chronic phase of the infection revealed two statistically associated 

signatures of acute viruses; the first was located at position 12 in the signal 

peptide, and the second was a loss of a PNLG in the cytoplasmic tail of gp41 
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(96).  These genotypic signatures are likely not randomly transmitted as work by 

multiple groups has shown that T/F viruses arise from a minor population of the 

donor’s plasma virus (32, 93, 300). Furthermore, studies have shown that these 

transmitted minor variants are genetically similar to sequences isolated from 

earlier time points in the donor, not those circulating at the time of transmission 

(218), suggesting that the donor’s plasma quasispecies at the time of 

transmission may not accurately predict the T/F virus. These data also support 

the theory that certain genotypic (or phenotypic) properties are particularly 

favored during transmission, and are selected even when they account for the 

minority of sequences present in the donor. 

Given the genotypic evidence of the transmission bottleneck, many groups 

have sought to identify the viral traits/phenotypes that account for transmission 

fitness by comparing HIV-1 envelope glycoprotein (env) sequences from 

chronically infected individuals with those isolated from their newly-infected 

partners. Multiples studies reported that viruses that are transmitted between 

individuals preferentially use CCR5 to mediate entry into target cells (51, 121, 

131, 199, 200, 239, 295). This provides some insight into why, as mentioned 

above, individuals who are homozygous null for ccr5 rarely become infected, 

even though they remain susceptible to infection by X4-tropic viruses (27, 189, 

268). Additional studies showed that one or few viruses with compact, glycan-

restricted Envs that were sensitive to donor neutralizing antibodies, typically 

established new infections (56, 68, 73, 96, 157, 162). While other groups have 

not been able to confirm the neutralization sensitivity of T/F Envs (31, 92, 229), 
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these initial studies served to stimulate research interest in this area. Recent 

work from Beatrice Hahn and George Shaw has attempted to more precisely 

identify targetable traits of transmitted viruses using single-genome amplification 

with replication competent subtype B and C viruses (199). They found that T/F 

viruses were marginally more infectious and contained approximately twice more 

Env per virion compared to chronic viruses. T/F viruses were more readily 

transferred to CD4+T cells by dendritic cells, but replicated with similar kinetics in 

primary cells as chronic viruses. Lastly, T/F were more resistant to IFN-α 

treatment compared to chronic viruses.  

While the field has made great progress in elucidating properties that are 

associated with transmitted HIV-1, so far the only consistent phenotype 

associated with transmitted viruses is the use of CCR5. Approximately one-half 

of transmissions are thought to occur when the donor is still in the acute stage of 

infection (209, 289), therefore this property may have easily been missed had the 

studies discussed above not assessed differences between T/F viruses and 

viruses isolated from chronically-infected individuals, where X4-tropism is more 

prevalent (28, 202, 222, 247, 261). This underscores the importance of 

comparing T/F viruses to chronic viruses to increase the likelihood of detecting 

subtle differences that significantly impact transmission that may otherwise be 

overlooked. The genotypic and phenotypic properties outlined here likely act in 

concert to evade host immune pressure and foster viral diversification, and may 

serve as attractive therapeutic targets for the development of AIDS interventions.
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PROJECT GOAL I: IDENTIFYING TARGETABLE PROPERTIES OF 
TRANSMITTED VIRUSES  
 

T/F viruses may have specific properties that are selected for during 

transmission, and identifying such traits may inform and facilitate the 

development of pre- and post-exposure therapies targeting these early viruses. 

To date, the most consistent property associated with transmitted viruses is the 

use of the CCR5 coreceptor. CCR5 is a GPCR that functions as a chemokine 

receptor to regulate trafficking and the effector response of leukocytes. Ligand 

(MIP1-α, MIP1-β, and RANTES)-binding induces a conformational change of the 

protein and activates trimeric G-proteins, which leads to subsequent signaling 

events that mediate CCR5 effector function. Thus, like other GPCRs, CCR5 is 

conformationally plastic. We, and others, have used conformation-dependent 

monoclonal antibodies to confirm antigenically distinct forms of CCR5 on primary 

cells and cell lines (25, 153). The impact of this conformational heterogeneity on 

infection varies by virus strain. We know that viruses differ in their ability to 

interact with CCR5, with some viruses being heavily reliant on the amino 

terminus (NT) and others on the second extracellular loop (ECL2) for entry (3, 

272). Additionally, some viruses are naturally capable of utilizing structurally 

altered antagonist-bound CCR5 for entry (108, 271).  

Although we know that a spectrum of CCR5 engagement by various HIV-1 

exists, the implications of these interactions are unknown. We were interested in 

understanding how various viruses interact with CCR5—particularly, different 

conformations of CCR5. To this end, I evaluated a panel of 87 R5-tropic viruses 
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(from MVC treatment-naïve patients) to address differences between T/F and 

chronic control (CC) HIV-1 in their ability to mediate entry via varying amounts of 

CCR5 in the presence of MVC. Our lab had previously reported no statistical 

difference in MVC sensitivity between subtypes B and C T/F and CC viruses on a 

microglial cell line—NP2/CD4/CCR5 (200, 295).  
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Figure 1: HIV-1 entry process.  HIV-1 entry can be divided into three key steps, all mediated by the viral envelop glycoprotein (Env) 
gp120. First, nonspecific, low-affinity interactions bring the virion into close proximity to the cell surface, allowing gp120 to bind to the 
receptor CD4. Second, CD4 binding induces a conformational change in Env exposing the coreceptor binding site and facilitating 
coreceptor (typically, CCR5 or CXCR4) engagement. Coreceptor binding induces another structural change in Env, triggering the 
formation of the fusion pore and membrane fusion of the viral and host membranes. (Image from Wilen et al. Adv Exp Med Biol. 2012; 
726: 223-42) 
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Figure 2: Schematic of CCR5 coreceptor. CCR5 is a seven-transmembrane G-protein-coupled receptor (GPCR) that functions as a 

chemokine receptor, and serves as a coreceptor for HIV-1 infection. HIV-1 Env binds the 352 amino acid protein at the amino terminus (N-
terminus) and/or the second extracellular loop (ECL2) at the pink and purple colored residues, respectively. Sites of posttranslational 
modifications are also shown and contribute to changes in CCR5 3D structure. Conformational plasticity is a key feature of GPCRs such 
as CCR5. (Image adapted from Lopalco et al. J Transl Med 2010 9 (Suppl 1):S4) 
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Figure 3: HIV-1 genetic bottleneck.  Sexual transmission of HIV-1 is characterized by a genetic bottleneck in which a diverse viral swarm 
in the donor, represented by the differentially-colored virions on the left, must initially cross the mucosal epithelium in a new host and 
encounter target cells to infect.  Multiple variants may cross this physical barrier, however the majority will die out or be outcompeted. As a 
result, approximately 80% of the time, successful transmission is carried out by a single genetic variant, termed the transmitted/founder 
(T/F) virus.  (Image adapted from Brandon Keele) 
 

 

Adapted from B Keele 
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ABSTRACT 
 

Infection by HIV-1 most often results from the successful transmission and 

propagation of a single virus variant, termed the transmitted/founder (T/F) virus. 

Here, we compared the attachment and entry properties of envelope (Env) 

glycoproteins from T/F and Chronic Control (CC) viruses. Using a panel of 40 T/F 

and 47 CC Envs, all derived by single genome amplification, we found that 52% 

of clade B and C CC Envs exhibited partial resistance to the CCR5 antagonist 

maraviroc (MVC) on cells expressing high levels of CCR5, while only 15% of T/F 

Envs exhibited this same property. Moreover, subtle differences in the magnitude 

with which MVC inhibited infection on cells expressing low levels of CCR5, 

including primary CD4+ T cells, was highly predictive of MVC-resistance when 

CCR5 expression levels were high. These results are consistent with previous 

observations showing a greater sensitivity of T/F Envs to MVC inhibition on cells 

expressing very high levels of CCR5 and indicate that CC Envs are often capable 

of recognizing MVC-bound CCR5, albeit inefficiently on cells expressing 

physiologic levels of CCR5. When CCR5 expression levels are high, this 

phenotype becomes readily detectable. The utilization of drug-bound CCR5 

conformations by many CC Envs was seen with other CCR5 antagonists, with 

replication competent viruses, and did not obviously correlate with other 

phenotypic traits. The striking ability of clade B and C CC Envs to use MVC-

bound CCR5 relative to T/F Envs argues that the more promiscuous use of 

CCR5 by these Env proteins is selected against at the level of virus transmission 

and is selected for during chronic infection.  
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INTRODUCTION 
 

Physical and innate immune barriers serve to make mucosal transmission 

of HIV-1 a relatively inefficient process.  As a result, establishment of virus 

infection in a naïve host most often results from the transmission and subsequent 

propagation of a single virus strain, termed a transmitted/founder (T/F) virus (19, 

73, 131, 158, 198, 210, 299, 300, 304, 307). Virologic traits that might enable a 

virus to overcome one or more of these barriers could be selected for during 

transmission, and identification of such traits should lead to a greater 

understanding of the earliest events in HIV-1 infection and could suggest new 

prevention strategies. 

Single genome amplification has enabled the inference of a large number 

of T/F envs from multiple virus clades (1, 105, 131, 190, 238, 239). This has 

made it possible to seek genotypic and phenotypic differences between T/F Env 

proteins and those derived from chronically infected individuals (CC Envs). 

Several phenotypic characteristics are clearly associated with transmission: T/F 

Envs virtually always use CCR5 rather than CXCR4 or other non-canonical 

coreceptors (24, 51, 121, 131) and generally infect T cells but not macrophages 

(131, 190, 239, 295) as a result of requiring relatively high levels of CD4 to 

mediate virus entry (98, 171, 182, 203, 204, 242). Other phenotypic and 

genotypic traits that have been linked to transmission are less well defined: Envs 

isolated from acute infection have sometimes been reported to be more 

neutralization sensitive (295) have on average fewer putative N-linked 

glycosylation sites (73, 96), and have shorter variable loops (56, 73, 234, 235) 
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compared to Envs isolated from chronically infected individuals.  

Recently, Swanstrom and colleagues reported an additional phenotypic 

difference between clade C T/F and chronic Env proteins (127). They found that 

CC Envs were more likely than T/F Envs to exhibit partial resistance to the CCR5 

antagonist maraviroc (MVC) on 293T cells expressing high levels of CCR5, but 

not on 293T cells expressing lower levels of CCR5. This finding suggests that CC 

Envs are often capable of infecting cells by using the MVC-bound conformation 

of CCR5 or that they are able to utilize a form of CCR5 that is unable to bind 

MVC. However, work by us and others has not revealed differences in MVC 

sensitivity between T/F and CC Envs on an NP2 cell line (200, 219, 272, 295). 

To reconcile these findings, we examined a previously described panel of 

clade B and clade C Env proteins from T/F and chronic viruses (200, 295) for 

their ability to infect cell lines and primary human  CD4 + T cells in the presence 

of saturating concentrations of MVC. On 293T cells expressing high levels of 

CCR5, we confirmed that clade C CC Envs were much more likely than T/F Envs 

to mediate infection in the presence of MVC as shown by Swanstrom and 

colleagues with a different panel of clade C Env proteins (127). We found this 

property to be shared by clade B Envs and extended these observations further 

to include cell lines expressing 5- to 10-fold lower levels of CCR5 and on primary 

human CD4 + T cells. Subtle differences in the efficiency with which MVC 

inhibited infection of 87 different T/F and chronic viruses on cells expressing low 

levels of CCR5 was highly predictive of more overt MVC-resistance when CCR5 

expression levels were high.  This property was also seen with other CCR5 
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antagonists, with replication competent infectious molecular clones (IMCs), and 

did not correlate with other phenotypic properties. Since the efficiency of virus 

entry in the presence of MVC increased with CCR5 expression levels, we 

conclude that many CC Envs can utilize at least some of the drug-bound 

conformations of CCR5, albeit inefficiently. Nonetheless, the differential ability of 

clade B and C chronic and T/F Envs to use MVC-bound CCR5 argues that the 

more promiscuous use of CCR5 conformations by many chronic viral Env 

proteins is selected against at the level of virus transmission by a mechanism(s) 

that has not yet been elucidated by in vitro assays, but is selected for during 

chronic infection. Differences in the populations of CD4+CCR5+ cells that are 

targeted by HIV in acute versus chronic infection may reveal differences in how 

T/F and CC Envs mediate virus infection and could suggest new prevention 

strategies. 
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MATERIALS AND METHODS 
 

Description of Envs and infectious molecular clones (IMCs). The 

derivations of all the Env clones and IMCs used in this study have been 

described previously (131, 200, 239, 295). Briefly, the sequences of all Envs and 

IMCs were inferred from single genome sequencing of acute or chronically 

infected donors. The Envs or IMCs were then amplified from the first-round PCR 

product or gene synthesized and then sub-cloned into pCDNA3.1+ directional 

TOPO or pCRXL TOPO vector (Invitrogen). Clade B CC Envs were randomly 

selected amongst sequences from the chronic swarm that were predicted to be 

functional, while clade C CC Envs were generated by determining the most-

recent common ancestor of discrete clonally-expanded populations, evident as 

minor populations in phylogenetic trees of chronic sequences (200). A summary 

of the geographic origin and infection status for Envs and IMCs is shown in Table 

S1.  

Cell culture. 293T17, 293T-derived Affinofile, NP2/CD4/CCR5, 

NP2/CD4/CXCR4, and U87/CD4 cell lines were maintained in Dulbecco’s 

modified Eagle medium (DMEM) with 10% (vol/vol) fetal bovine serum (FBS) 

(Sigma-Aldrich) and 1% penicillin/streptomycin. Affinofile cells were maintained in 

DMEM supplemented with 10% FBS, 1% penicillin/streptomycin per ml, 50 μg/ml 

blasticidin per ml, and 200 μg/ml G418 per ml. 

Pseudovirus production and normalization. HIV-1 Env pseudoviruses 

were produced by calcium phosphate co-transfection of 6 µg of pcDNA3.1+ 

containing the desired env clone with 10 µg of HIV-1 core (pNL43-ΔEnv-vpr+-luc+ 
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or pNL43-ΔEnv-vpr+-eGFP) into 293T17 cells. At 72 h post transfection, the 

pseudovirus-containing supernatant was harvested and filtered through a 0.45-

µm filter, aliquoted, and stored at -80°C. For primary CD4+ T cell infections, 

pseudovirus was concentrated approximately 100-fold by ultracentrifugation at 

113,000 x g for 2 h at 4°C through a 20% sucrose cushion. Pelleted pseudovirus 

was then resuspended in phosphate-buffered saline (PBS). All luciferase-

encoding pseudoviral stocks were serially diluted on NP2/CD4/CCR5 cells to 

define the linear range of the assay. Relative light units (RLUs) of all viruses 

used were well within the 5-log linear range of the assay. 

Virus inhibition assays. The HEK293T-based CD4/CCR5 dual-inducible 

cell line (Affinofile) was employed to assess sensitivity of pseudovirions and 

replication competent viruses to CCR5 antagonists at different levels of CCR5 

surface expressions. CD4 expression was induced with minocycline and CCR5 

expression was induced with ponasterone A (pon A) as described 

previously(126). Briefly, 650 cells were plated in each well of a 96-well plate and 

then 48 h later they were induced with a final concentration of 10 ng/ml 

minocycline to maximally express CD4 and either 2 µM or 0.031 µM pon A to 

express high and low CCR5, respectively. 18 h post-induction, CD4 and CCR5 

expression levels were determined by quantitative flow cytometry (BD 

QuantiBrite) as described below. Induced Affinofile cells, NP2/CD4/CCR5 or 

U87/CD4 cells transiently transfected with pcDNA3.1+ encoding CCR5 using 

Lipofectamine 2000 (Invitrogen) were used for CCR5 antagonist inhibition 

studies.  Cells were preincubated for 30min at 37°C with either 2µM of drug, 
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previously shown to be saturating (57), or three-fold serial dilutions from 6µM to 

0.1µM of the CCR5 antagonists maraviroc (MVC), aplaviroc (APL), CMPD-167, 

TAK-779, vicriviroc (VVC), or media alone prior to infection with the indicated 

luciferase reporter pseudovirus. After addition of pseudovirus, plates were 

spinoculated at 450 x g for 2 h at 4°C and then incubated at 37°C. We also 

performed experiments without spinoculation and obtained similar results: 

spinoculation increased infection by approximately 2-fold, but did not impact the 

sensitivity of viruses to maraviroc. Cells were lysed with Brite-Glo (Promega) at 

72 h post-infection and relative light units (RLUs) assessed on a Luminoskan 

Ascent luminometer. All inhibition assays were done in triplicate in each of at 

least two independent experiments using a MVC-sensitive and MVC-partially 

resistant R5-tropic Env as controls.  

Primary human CD4+ T cell infections. Primary human CD4+ T cells, 

purified by negative selection, were obtained from the Human Immunology Core 

of the University of Pennsylvania’s Center for AIDS Research (CFAR). Cells 

were infected as described previously (295). Briefly, 1.5 x 106 cells per condition 

were stimulated with plate-bound anti-CD3 (clone OKT3; eBiosciences) and anti-

CD28 (clone 28.2; BD Biosciences) and 20 U/ml recombinant interleukin-2 (IL-2; 

Aldesleukin) in Rosewell Park Memorial Institude (RPMI) medium containing 

10% FBS. Three days post-stimulation cells were transferred to 96-well V-bottom 

plates and incubated for 30 min with 6µM MVC or a no drug control. 

Approximately 5µg p24 of concentrated HIV-green fluorescent protein (GFP) 

pseudovirus was used to infect cells in triplicate in a total volume of 50µl at a cell 
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concentration of 1 x 107 cells/ml. Plates were then spinoculated at 1,200 x g for 2 

h at 4°C. Cells were resuspended at 1 x 106 cells/ml. Three days post-infection, 

cells were stained with live/dead aqua (1µl) (Invitrogen), anti-CD4 Alexa Fluor 

700 (2µl)  (Invitrogen), and anti-CD3 Qdot 655 (0.5µl) (Invitrogen) and examined 

by flow cytometry and the fraction of cells that were GFP-positive determined. 

HIV-infected cells were defined as live/dead CD3+CD4-GFP+ as cell surface 

CD4 is down-regulated upon infection. 

Flow cytometry. Cell staining was perferomed at room temperature in 

50µl FACS wash buffer (PBS, 2.5% FBS, 2 mM EDTA). For CD4 + T cells, cells 

were first washed in PBS, then live/ dead aqua (Invitrogen) was added and 

incubated for 10 min. Next, anti-CCR7 IgM (1µl) in FACS buffer was added and 

incubated for 30 min. Cells were then washed in FACS buffer before staining with 

anti-CD4–Qdot 655 (0.5µl) (Invitrogen), anti-CD45RO–phycoerythrin (PE)-Texas 

Red (3µl) (Beckman Coulter), and anti-CCR5 (2D7)–PE (5µl) (BD Biosciences) 

for 30 min. Cells were then washed in FACS buffer and resuspended in 1% 

paraformaldehyde (PFA). Samples were run on an LSRII (BD) instrument and 

analyzed with FlowJo 10.0 (Treestar). Cells were gated as follows: singlets (FSC-

A by FSC-H), then live cells (SSC-A by live/dead), then lymphocytes (SSC-A by 

FSC-A), then CCR5+ cells (SSC-A by 2D7-PE).  

Quantitative FACS. Quantitative FACS was performed to convert mean 

fluorescence intensity (MFI) into antibody-binding sites (ABS) by using a 

standardized microbeads kit (BD Biosciences) according to the manufacturer’s 
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instructions. The MFI of the isotype control for each experiment was converted to 

ABS and subtracted from the ABS value obtained with the experimental sample. 

Statistical and correlation analyses.  Infection values obtained with T/F 

and chronic Env pseudovirions were compared using Mann-Whitney tests, 

Fisher’s exact, or t-tests, and correlations were assessed using Spearman tests. 

P-values of less than 0.05 were considered significant. Data were analyzed with 

Prism 5.0 software.  

Ethics statement. All human cells used in this study were from normal 

healthy donors who provided written informed consent after approval by the 

University of Pennsylvania’s Institutional Review Board. 
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RESULTS 
 

Partial resistance to MVC on Affinofile cells with high CCR5 surface 

expression. Swanstrom and colleagues observed that chronic clade C Envs 

mediate low levels of infection on Affinofile cells expressing high levels of CCR5 

in the presence of MVC more frequently than T/F Envs. To assess if an 

independent panel of 87 clade B and C Envs (200, 295) would recapitulate this 

finding, we also utilized the 293T-derived Affinofile cell system. Among these 

pseudoviruses were 24 clade B and 16 clade C T/F Envs, as well as 28 clade B 

and 19 clade C CC Envs, all derived by single-genome amplification and 

described in earlier reports (131, 200, 295). The Affinofile cell line makes it 

possible to independently modulate surface expression of CD4 and CCR5 by 

applying different concentrations of the transcriptional activators minocycline and 

pon A, respectively (126).We examined the sensitivity of HIV-1 Env 

pseudoviruses to MVC on Affinofile cells expressing relatively low (low CCR5 

Affinofile cells) or high levels of CCR5 (high CCR5 Affinofile cells), while 

maximally inducing CD4 levels. PonA treatment increased the overall expression 

of CCR5 on Affinofile cells from 2,723 (uninduced) to 23,470 (high induction) 

antibody binding sites (ABS) per cell (Fig. 1A). To confirm that 6µM MVC was 

saturating at the highest level of CCR5 expression, we assessed the difference in 

residual infection between the two highest concentrations of MVC employed and 

found that there was no increase in inhibition of infection from 2µM to 6µM MVC, 
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indicating that 2µM was saturating and that further increases in drug did not have 

any additional inhibitory effect (P = 0.70 by paired t-test) (Fig. 1B).  

Affinofile cells expressing low or high levels of CCR5 were infected by 

each of the 87 pseudoviruses in the presence or absence of increasing 

concentrations (to a maximum of 6µM) of MVC, after which we calculated the 

maximal percent inhibition (MPI). We imposed an arbitrary MPI cutoff of 95%, 

where MPI values >95% were considered MVC sensitive, while samples with 

MPIs less than or equal to 95% were assumed to be partially resistant to MVC. 

We found that infection by all 87 pseudoviruses was inhibited by >95% at 

saturating concentrations of MVC on low CCR5 Affinofile and NP2/CD4/CCR5 

cells, consistent with our previous results (200, 295). On high CCR5 Affinofile 

cells, 57 of 87 (66%) of the pseudoviruses were inhibited by MVC by >95% 

(representative pseudovirus is shown in Fig. 1C, top panel), while 30 of 87 (34%) 

of the pseudoviruses exhibited partial resistance defined by a MPI ≤ 95% in the 

presence of 6µM MVC, with some pseudoviruses exhibiting considerable MVC 

resistance (MPI values as low as 60%) (Fig. 1C, middle panel). JRFL, which is 

MVC sensitive, was included as a control in all experiments (Fig. 1C, bottom 

panel). When CCR5 levels were high, the amount of MVC needed to achieve 

maximal inhibition increased for all viruses as expected. These results confirmed 

a central finding of Swanstrom and colleagues (127), in that a considerable 

number of viruses do indeed exhibit a reduced MPI when MVC is used to inhibit 

infection on high CCR5 Affinofile cells. 
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Partial MVC resistance is enriched in chronic HIV-1, but is not clade 

or antagonist specific.  There was a striking difference in the frequency with 

which T/F and CC Envs exhibited partial MVC resistance (15% [6 of 40] versus 

52% [24 of 47]; P < 0.0001 by Fisher’s exact test) (Fig. 2A). This partial 

resistance was not clade-specific as 50% (14 of 28) of clade B and 53% (10 of 

19) of clade C CC Envs exhibited partial resistance to MVC, whereas only 17% 

(4 of 24) of clade B and 13% (2 of 16) of clade C T/F Envs exhibited this property 

under conditions of high CCR5 expression  (clade B P =0.02, clade C P = 0.02 

by Fisher’s exact test) (Fig. 2B).  Not only was the distribution of MVC-sensitive 

and resistant Envs similar for clade B and C pseudoviruses, but these 

distributions were similar to those reported by Swanstrom and colleagues with 

their panel of clade C Envs (127). Thus, partial resistance to MVC on cells 

expressing high levels of CCR5 is reproducible, and is not clade specific. 

To assess if MVC-resistance predicted resistance to other CCR5 

antagonists, we evaluated the sensitivity of four partially MVC-resistant 

pseudoviruses to four additional small molecule CCR5 inhibitors: aplaviroc, 

CMPD-167, TAK-779, and VVC. Similar to the results with MVC, all four 

pseudoviruses tested were inhibited by >95% by all CCR5 antagonists on 

Affinofile cells expressing low levels of the coreceptor. However, at high CCR5 

surface expression, all four pseudoviruses were partially resistant to the other 

CCR5 antagonists, similar to the results obtained with MVC (representative 

results shown in Figure 2C). Furthermore, the residual infection seen at high 

levels of CCR5 on Affinofile cells in the presence of CCR5 antagonists was not 
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due to the use of low endogenous levels of CXCR4 present on 293T cells, as the 

addition of the CXCR4 inhibitor AMD3100 did not affect the MPI of partially 

resistant pseudoviruses (data not shown). Finally, we tested four IMCs whose 

Env proteins had been tested as part of the pseudovirus panel, including two T/F 

IMCs that were sensitive to MVC on high CCR5 Affinofile cells and two chronic 

IMCs that exhibited partial MVC resistance. The results with the replication 

competent viruses mirrored the results obtained with the respective 

pseudoviruses (data not shown), indicating that the partial resistance phenotype 

observed under conditions of high CCR5 is not an artifact of the pseudotyping 

system. Taken together, these results suggest that clade B and C CC Envs 

exhibit partial resistance to CCR5 antagonists at high levels of CCR5 much more 

frequently than T/F Envs.  

MVC sensitivity on cells expressing low CCR5 levels predicts MVC 

resistance on cells expressing high levels of CCR5. We previously reported 

that T/F and chronic Env pseudovirus infection of NP2/CD4/CCR5 cells 

expressing CD4 and CCR5 were equally sensitive to MVC, exhibiting similar IC50 

values. In addition, all T/F and CC Envs were inhibited by saturating 

concentrations of MVC by >95% (200, 295). However, dose-response curves 

with different slopes can appear similar on traditional semi-log plots, masking 

differences in maximal inhibition (243, 252). Therefore, we performed new 

infection assays using the entire panel of viruses on NP2/CD4/CCR5 cells, which 

stably express intermediate levels of CCR5 (Fig. 1A), and compared the results 

to those obtained on low CCR5 and high CCR5 Affinofile cells by plotting the 
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residual infection for each virus on a log-scale (Fig. 3). While MVC inhibited all 

pseudoviruses by >95% on both low CCR5 Affinofile and NP2/CD4/CCR5 cells, 

there was considerable variability in residual infection values for different T/F and 

chronic Env pseudotypes. On NP2/CD4/CCR5 cells there was a significant 

difference in median residual infection between T/F and CC Envs (T/F 

median=0.06%, chronic median=0.15%; P = 0.01 by Mann-Whitney test). The 

magnitude of this difference was more pronounced on high CCR5 Affinofile cells 

(T/F median=0.54%, chronic median=4.8%; P = 0.0003 by Mann-Whitney test) 

but was not apparent on low CCR5 Affinofile cells (T/F median=0.18%, chronic 

median=0.14%; P = 0.94 by Mann-Whitney test). When we re-examined the 

NP2/CD4/CCR5 infection data from our previous studies (200, 295), the same 

correlations were observed. 

Are the low and variable levels of infection on low CCR5 Affinofile and 

NP2/CD4/CCR5 cells in the presence of MVC predictive of more efficient 

infection in the presence of MVC when CCR5 levels are high? To determine this, 

we plotted residual infection on low CCR5 Affinofile (Fig. 4A) or NP2/CD4/CCR5 

cells (Fig. 4B) in the presence of saturating MVC against that of each virus on 

high CCR5 Affinofile cells in the presence of saturating MVC. We found a 

moderate correlation between these values when comparing low CCR5 Affinofile 

and high CCR5 Affinofile cells (Spearman correlation coefficient= 0.22; P = 0.04) 

(Fig. 4A) and a more significant correlation when comparing NP2/CD4/CCR5 to 

high CCR5 Affinofile cells (Spearman correlation coefficient= 0.65; P < 0.0001) 

(Fig. 4B).  These results argue that an appreciable number of CC Envs can 
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utilize MVC-bound CCR5 but that this ability is less obvious on cells expressing 

low to moderate levels of CCR5, unless results are plotted on a log scale. When 

this is done, small differences in residual virus infection are not only evident, but 

highly predictive of substantive infection when CCR5 expression levels are high. 

To further confirm this finding, we examined a subset (4 T/F and 8 CC Envs) of 

our pseudoviruses on U87/CD4 cells in which CCR5 was transiently expressed, 

resulting in high levels of CCR5 (Fig. 1A). These experiments recapitulated our 

findings on high CCR5 Affinofile cells: viruses that exhibited MPIs of <95% on 

high CCR5 Affinofile cells likewise exhibited reduced MPIs on transiently 

transfected U87/CD4 cells, while viruses that remained highly sensitive to MVC 

under these conditions were likewise efficiently inhibited on CCR5-expressing 

U87/CD4 cells (data not shown). 

Utilization of CCR5 in the presence of MVC is evident on primary 

human CD4+ T cells. To assess whether this phenotype is recapitulated under 

more physiologically relevant conditions, we infected primary human CD4+ T 

cells with GFP-expressing Env pseudoviruses in the presence or absence of 

saturating concentrations of MVC. To maximize the sensitivity of this primary cell 

assay, we selected three T/F pseudoviruses that were efficiently inhibited by 

MVC on high CCR5 Affinofile cells and three chronic pseudoviruses that 

exhibited significant resistance to MVC under these conditions. Peripheral blood 

CD4+ T cells from two uninfected donors, in each of two independent 

experiments, were purified by negative selection and stimulated with plate-bound 

anti-CD3/anti-CD28 and IL-2 for three days. Cells were incubated in the 
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presence or absence of saturating levels of MVC (6µM) 30 min prior to infection. 

Three days post-infection, cells were analyzed by flow cytometry and infected 

cells were determined by gating on live CD3+CD4-GFP+ events. We found that 

the three chronic pseudoviruses exhibited significant residual infection compared 

to T/Fs on CD4+ lymphocytes in the presence of saturating MVC (P = 0.04 by t-

test) (Fig. 5). Further, these differences reflected those previously observed for 

these viruses on high CCR5 Affinofile cells and on NP2/CD4/CCR5 cells (Fig. 5). 

The differences were most pronounced on high CCR5 Affinofile cells (which 

express the highest levels of CCR5), less pronounced on NP2/CD4/CCR5 cells 

(intermediate CCR5 levels), and the least pronounced (but still observable) on 

primary CD4+ T cells (low CCR5 levels). Thus, these results are again consistent 

with the hypothesis that many CC Envs can utilize MVC-bound CCR5, and that 

high levels of CCR5 magnify this property, revealing differences in how T/F and 

CC Envs engage this coreceptor.  

 Ability to use MVC-bound CCR5 is not related to overall level of 

infectivity or other viral phenotypes. The ability of some HIV-1 strains to 

recognize MVC-bound CCR5 has been linked to differences in how the Env 

protein engages its chemokine coreceptor (214, 215, 291). As a result, it is 

possible that the striking difference in the frequencies with which T/F and chronic 

viruses mediate infection in the presence of MVC, albeit inefficiently at 

physiologic levels of CCR5 expression, is a surrogate measure for some other 

phenotypic property. In two previous studies, we tested these clade B and C 

pseudoviruses in a variety of phenotypic assays, comparing T/F to CC Envs 
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(200, 295). With the exception of some clade-specific neutralization sensitivity, 

no significant genotypic or phenotypic differences were identified. In light of our 

current findings, we re-analyzed these data, comparing Envs that were partially 

resistant to MVC on high CCR5 Affinofile cells to 18 previously determined Env 

properties (Table 1). None of the phenotypic characteristics previously measured 

for these panels correlated strongly with incomplete inhibition by MVC, including 

CD4 use efficiency, neutralization by monoclonal antibodies (b12, VRC01, PG9, 

PG16) or by pooled sera from patients infected with either clade B or C HIV-1 

strains (clade B/C HIV Ig), or primary CD4+ T cell subset tropism. Except for V5 

length, we found no strong genetic correlates of incomplete MVC inhibition, 

including V1-V4 individual and total variable loop lengths and potential N-linked 

glycosylation sites. We also asked whether the ability to utilize CCR5 in the 

presence of MVC was simply a property of highly functional Env proteins or 

highly infectious Env pseudoviruses.  To address this, we plotted pseudoviral 

infectivity (RLU) in the absence of MVC against residual infection at saturating 

concentrations of MVC. There was no correlation between overall infectivity and 

the partial resistance phenotype (Spearman correlation coefficient = 0.02 P = 

0.84) (Fig. 6). Therefore, residual infection was not a surrogate measure for 

increased infectivity. 
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DISCUSSION 
 

In addition to using CCR5 and being T-cell tropic, several other phenotypic 

and genotypic traits have been associated with T/F Env proteins relative to those 

from chronic viruses (56, 73, 131, 200, 234, 235, 238, 239, 295). Among these, 

the differential utilization of CCR5 first observed by Swanstrom and colleagues, 

confirmed and extended here, is arguably the most robust.  Both clade B and C 

T/F Envs are far more likely to be inhibited in entry by MVC on cells expressing 

high levels of CCR5 than are CC Envs. The ability of many CC Envs to mediate 

infection in the presence of MVC under conditions where CCR5 expression 

levels are high indicates that these Envs can utilize one or more conformations of 

CCR5 better than most T/F Envs. This suggests that there is selective pressure 

against the more promiscuous CCR5 utilization phenotype exhibited by many CC 

Envs at the level of HIV transmission and selection for this trait during chronic 

infection. Questions that remain to be addressed are the mechanism that 

underlie this phenotype, whether genetic signatures associated with differential 

use of CCR5 can be identified, and whether this phenotype observed on a cell 

line expressing levels of CCR5 that greatly exceed those seen on primary cells is 

a correlate for another property that would be more meaningful at the level of 

mucosal transmission of HIV-1. 

MVC is a CCR5 antagonist that potently inhibits infection by virtually all R5 

strains of HIV-1 in vitro (80), blocks vaginal transmission of SHIV-162P3 in a 

rhesus macaque model (281), and significantly diminishes virus loads in HIV-1 

infected individuals (86). Clearly, MVC is an effective inhibitor of HIV infection 
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under most experimental and clinical conditions. Thus, the finding by Swanstrom 

and colleagues that approximately one-half of CC Envs are inhibited less than 

95% by MVC on 293T cells expressing high levels of CD4 and CCR5 was 

surprising.  Here, we confirmed this finding using a large panel of Clade C Envs, 

and found that Clade B Envs also exhibited this property to a similar magnitude.  

What is the mechanism that underlies the differential effects of MVC on 

T/F versus chronic HIV-1 Envs? CCR5 antagonists are allosteric inhibitors – 

upon binding to CCR5, they induce a conformation that is not recognized by most 

HIV-1 strains (26, 82, 130, 133, 250, 276, 288). Thus, the ability of many chronic 

HIV-1 Envs to mediate some degree of infection in the presence of saturating 

concentrations of MVC could mean that under these conditions a fraction of 

CCR5 molecules assume a conformation that is unable to bind MVC but that can 

be utilized by many chronic Env proteins.  If so, then CCR5 may exhibit 

enhanced conformational heterogeneity when expression levels are high relative 

to when expression levels are lower, with one or more of these conformations not 

binding MVC or doing so only poorly. CCR5 and seven-transmembrane domain 

receptors in general can assume different conformations as a result of binding 

ligands or G proteins (18, 50, 84, 186, 187), and CCR5 has been shown to 

exhibit antigenic heterogeneity (11, 21, 22, 153). It is also possible that at high 

levels of CCR5 expression posttranslational modifications such as sulfation of the 

N-terminal domain or coupling to G proteins could become saturated, resulting in 

conformational heterogeneity. Thus, our results could be explained by a model in 

which one such conformation fails to bind MVC or does so only poorly, with this 
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conformation being recognized by a large subset of CC Envs but by only a small 

fraction of T/F Env proteins. When coupled with the fact that HIV-1 Env 

interactions with CCR5 are variable as judged by the differential effects that 

some mutations in CCR5 have on infection by diverse HIV-1 strains (146, 272), it 

is certainly plausible that CCR5 conformation could be influenced by expression 

levels in a manner that preferentially allows infection by chronic but not T/F 

viruses in the presence of MVC. 

A second possible mechanism to account for the ability of some Envs to 

mediate infection in the presence of MVC when CCR5 levels are high is that 

these Envs can utilize the drug-bound conformation of CCR5 very inefficiently, 

such that under physiological levels of CCR5 expression infection appears fully 

suppressed by MVC and by other CCR5 antagonists. Our data as well as work 

by Gorry and colleagues (225) clearly favors this interpretation. Typically, virus 

inhibition curves are plotted on a linear scale.  However, if inhibition is plotted on 

a log-scale and a highly reproducible and quantitative assay is used, different 

antiretroviral agents can be revealed to exhibit considerable variability in their 

abilities to maximally inhibit HIV-1 (243, 252).  When we examined the ability of 

MVC to inhibit HIV-1 infection on NP2/CD4/CCR5 cells in this way, it became 

apparent that while some viruses were inhibited by 99.9%, others were inhibited 

by 99.0% or somewhat less. We found that these small, residual levels of 

infection were highly predictive of the ability of a virus to mediate appreciable 

levels of infection when both CCR5 and MVC levels are high. When a subset of 

viruses were tested on primary human CD4+ T cells in this way, the same results 
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were obtained: viruses that mediated obvious levels of infection on CCR5-high 

cells in the presence of MVC were inhibited less efficiently than viruses that 

remained highly sensitive to MVC regardless of CCR5 expression levels. Roche 

et al. have also found that some Envs that appear fully sensitive to MVC on cells 

expressing low to moderate levels of CCR5 exhibit some degree of resistance 

when CCR5 levels are high (225). Thus, we conclude that using a cell line that 

expresses high levels of CCR5 simply amplifies a phenotype that is already 

present on cells expressing lower levels of CCR5 that can be easily over-looked 

(200, 295).  

Given that some R5 HIV-1 strains can mediate readily detectable levels of 

infection in the presence of high levels of both CCR5 and MVC, can this 

information be used to predict clinical outcomes when MVC is used as part of an 

antiviral regimen? The most common mechanism that underlies clinical failure 

associated with MVC treatment is expansion of pre-existing viral variants that 

utilize CXCR4 to mediate infection (102, 104, 147, 149, 178, 276). Less 

commonly, mutations in the Env protein enable it to use MVC-bound CCR5, 

sometimes with impressive efficiency (272, 291). The question is whether these 

clinical failures are associated with preexisting viruses that are not completely 

inhibited by MVC, with this property being clearly evident only when using cells 

that express high CCR5 levels. In fact, Roche et al. found that a viral Env 

predisposed to acquire high-level resistance to CCR5 antagonists exhibited a low 

level ability to use MVC-bound CCR5 on cell lines expressing high levels of this 

coreceptor (225).  Whether this will be a general property of viral Envs from 
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patients who fail MVC via this pathway is not known, but could be examined by 

testing the ability of Envs from such individuals to infect Affinofile CCR5-high 

cells in the presence of MVC. 

The most important question resulting from this work is why the ability to 

use MVC-bound CCR5 is associated so clearly with chronic but not T/F Envs.  

What results in the selection of this phenotype during the course of natural HIV-1 

infection in the absence of MVC therapy, and what selects against this 

phenotype at the level of mucosal transmission? Clearly, the reason cannot have 

anything to do with MVC per se as none of the patients from whom we derived 

Envs had been treated with MVC. Thus, the striking difference between chronic 

and T/F Envs seen by Swanstrom and colleagues and in our study is likely a 

surrogate for some other viral property. In our previous studies, we compared the 

phenotypic properties of panels of T/F and geographically-matched CC Envs 

(200, 295). We reanalyzed these data, comparing Envs that were almost totally 

inhibited by MVC on CCR5-high cells to those that were not regardless of 

whether they were chronic or T/F Envs (Table 1). These analyses failed to 

identify any cross-clade phenotypic differences between these two groups, 

including the ability to infect different CD4+ T cell subsets, use alternative 

coreceptors, neutralization sensitivity, dependence upon CD4 levels, and the 

ability to be captured by DCs and transmitted to T cells. In addition, there were 

no obvious genetic signatures between the two groups save for a correlation with 

V5 loop length, with longer V5 loops being correlated with reduced MPI on high 

CCR5 Affinofile cells. While Swanstrom and colleagues found that slightly higher 
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glycosylation was associated with the MVC-resistant phenotype (127), this 

correlation was not evident in our panel of combined clade B and C Envs. Given 

the plasticity with which Envs can interact with their coreceptors and the multiple 

Env determinants that can influence CCR5 interactions (137, 142, 143, 146, 170, 

260, 263, 265, 272), this is perhaps not surprising: much larger numbers of Env 

clones and sequences may be needed to identify genetic characteristics that are 

consistently linked with the ability to utilize MVC-bound CCR5. The more 

promiscuous utilization of CCR5 conformations by CC Envs may reflect selection 

pressures in chronic infection where neutralizing antibodies are abundant and 

certain populations of CD4+CCR5+ cells have been diminished or otherwise 

altered by viral cytopathicity. Earlier studies have shown that R5 viruses can 

become increasingly resistant to entry inhibitors over time, consistent with 

alterations in CCR5 use (100, 129, 221). More promiscuous utilization of CCR5 

could expand viral tropism under these conditions, in contrast to de novo 

infection of naïve hosts where virus infection of a more homogeneous population 

of CD4+CCR5+ cells could be favored.  Further characterization of the 

CD4+CCR5+ cells that are targeted during acute infection may reveal differences 

in the abilities of T/F and chronic Env proteins to mediate virus entry as well as 

identify new approaches to prevention. 
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FIGURES 

Figure 1. Partial resistance to saturating amounts of maraviroc on Affinofile 

cells expressing high CCR5.  (A) Quantitative assessment of cell surface 

expression of CCR5 was determined by staining cells with PE-labeled CCR5 
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mAb 2D7 followed by quantitative flow cytometry, making it possible to calculate 

the number of 2D7 binding sites per cell. (B) MVC saturation was confirmed by 

measuring residual infection between the two highest concentrations used. No 

differences in virus inhibition were observed between 2µM and 6µM MVC (P = 

0.70). (C) MVC sensitive pseudoviruses dispayed a MPI >95% on both low (grey) 

and high (black) CCR5 293-Affinofile cells. Two phenotypes were observed. 57 

pseudoviruses and the JRFL control virus displayed a MPI >95% regardless of 

CCR5 expression levels (1st and 3rd panels). However, 30 pseudoviruses were 

efficiently inhibited by MVC on cells expressing low CCR5, but exhibited MPI 

values of ≤95% on high CCR5 Affinofile (middle panel). All experiments were 

done in at least triplicate in each of at least three independent experiments. Error 

bars represent standard deviations. 
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Figure 2. Partial resistance is enriched in chronic HIV-1 Envs compared to 

T/F Envs, irrespective of clade and CCR5 antagonist. (A) 87 pseudoviruses 

were tested on high CCR5 Affinofile cells. There was a higher frequency of 

partial reisistance to MVC in CC Envs compared to T/F Envs (P < 0.0001). (B) 
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Data was segregated by clade (52 clade B and 35 clade C) and independently 

confirmed an enrichment of the partially resistant phenotype in CC Envs (Clade B 

P = 0.02; clade C P = 0.02). (C) Representative resistant (704010330.G5h) and 

sensitive (700010040.C9.4520) pseudoviruses were tested for sensitivity to other 

CCR5 antagonists on high CCR5 Affinofile cells. Cells were pretreated with 

varying concentrations of MVC, aplaviroc, CMPD-167, TAK779, and VVC prior to 

infection.  MPI values of MVC-resistant (grey) and sensitive (black) pseudovirus 

are shown. Data were analyzed by Fisher’s exact test. All infections were done in 

at least triplicate in each of at least three independent experiments. Error bars 

represent standard deviations. 
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Figure 3. Residual infection on cells expressing different levels of CCR5.  

All pseudoviruses were tested on low CCR5 Affinofile cells, NP2/CD4/CCR5 

cells, and high CCR5 Affinofile cells and the residual infection in the presence of 

saturating MVC was plotted for all cell types evaluated. There was a significant 

difference between T/F (black) and chronic (grey) residual infection in both 

NP2/CD4/CCR5 and high CCR5 Affinofile cells (NP2/CD4/CCR5 P = 0.01, high 

CCR5 Affinofiles P = 0.0003), but not on low CCR5 Affinofile cells (P = 0.94). 

Data were analyzed by Mann-Whitney test. All experiments were done in at least 

triplicate in each of at least two independent experiments. 
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Figure 4. Residual infection on cells expressing low levels of CCR5 is 

predictive of MVC resistance on cells expressing high CCR5. (A) The 

residual infection on low CCR5 Affinofile cells was plotted against that on high 

CCR5 Affinofiles in the presence of saturating MVC. Residual infection on low 

CCR5 Affinofiles was predictive of partial MVC resistance on high CCR5 

Affinofile cells (Spearman correlation coefficient = 0.22; P = 0.04). (B) The 

residual infection on high CCR5 Affinofile cells was also plotted against that on 

NP2/CD4/CCR5 in the presence of saturating MVC.  Similarly, residual infection 

on NP2/CD4/CCR5 was predictive of residual infection on high CCR5 Affinofile 

cells (Spearman correlation coefficient = 0.65; P < 0.0001).  
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Figure 5. CC Envs exhibit greater residual infection compared to T/F Envs 

on primary human CD4 + T cells.  Levels of residual infection for three T/F 

(black) and three chronic (grey) Envs on CD4 + T cells were assessed in the 

presence of saturating MVC. Higher levels of residual infection were mediated by 

CC Envs in the presence of MVC compared to T/F Envs (chronic median = 1.1% 

versus T/F median = 0.51%; P = 0.10) . Residual infection for the three T/F and 

CC Envs were compared between CD4 + T cells, High CCR5 Affinofile cells, and 

NP2/CD4/CCR5 cells . In all three cell types, CC Envs displayed higher residual 

infection compared to T/F Envs. All primary cell infections were done with at least 

two donors in triplicate in at least two independent experiments.   
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Figure 6. Infectivity is not associated with partial resistance phenotype. 

Pseudoviral infectivity in the absence of MVC was plotted against residual 

infection in the presence of saturating MVC to determine whether partial 

reistance correlated with infectivity. There was no correlation (Spearman 

correlation coefficient = 0.02; P = 0.84). 
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TABLE 1 Genotypic and phenotypic correlates of partial resistance.

!
Env 

Type Clade 

Env clone 

designation 

Coreceptor 

tropism 

Geographic 

location 

Risk 

factor
a
 Gender 

Viral load 

(copies/ml) 

Fiebig stage/ min time 

since infection Reference 

Accession 

number 

T/F B REJO.D12.1972 R5 Alabama HSX M  722,349  V 2 EU576707 

 B THRO.F4.2026 R5 Alabama MSM M  5,413,140  V 2 EU577077 

 B 1018-10.A5.1732 R5 South Carolina SPD M  270,000  III 2 EU575091 

 B WITO.B10.2062 R5 Alabama HSX M  325,064  II 2 EU577388 

 B RHPA.A19.2000 R5 Alabama HSX F  1,458,354  V 2 EU576734 

 B SUMAd5.82.1713 R5 Alabama MSM M  939,260  II 2 EU577061 

 B 700010040.C9.4520 R5 North Carolina MSM M  298,026  V 2 EU576418 

 B 700010058.A4.4375 R5 North Carolina unknown M  394,649  III 2 EU576440 

 B 1053-07.B15.1648 R5 South Carolina SPD M  1,400,000  III 2 EU575201 

 B 9010-09.A1.4924 R5 South Carolina SPD F  146,954  II 2 EU575771 

 B 9015-07.A1.4729 R5 South Carolina SPD M  500,000  II 2 EU575795 

 B TT35P.11H8.2874 R5 Trinidad HSX M  1,849,301  II 2 EU577329 

 B 9021-14.B2-4571 R5 California SPD M  143,379  II 2 EU575924 

 B 1006-11.C3.1601 R5 North Carolina SPD M  1,600,000  III 2 EU575025 

 B 1056-10.TA11.1826 R5 South Carolina SPD M  140,000  II 2  EU575305 

 B SC05.8C11.2344 R5 Trinidad HSX M  9,980,952  II 2 EU576774 

 B SC20.8A8.2437 R5 Trinidad HSX M  2,789,313  IV 2 EU576838 

 B 9032-08.A1.4685  R5 Alabama SPD M  40,815  III 2 EU576114 

 B PRB956-04.B22.4267  R5 Virginia SPD n/a  600,000  II 2 EU576603 

 B PRB959-02.A7.4345  R5 South Carolina SPD n/a >2,000,000 II 2 EU576693 

 B 034v1 (IDU) R5 Montreal IDU M  75,000,000  III 9 GU562170  

 B 034v2 (IDU) R5 Montreal IDU M  75,000,000  III 9 GU562198 

 B AD17.1 env R5 New York MSM M  47,600,000  II 10 n/a 

 C 706010018. 2E3 R5 S. Africa HSX F  93,700  VI 11 FJ444047 

 C 20258279-V2_3A5 R5 S. Africa SPD F  281,838  IV 31 HQ595763 

 C 2833264_3G11 R5 S. Africa SPD M  234,423  I/II 31 HQ595757 

 C 21197826-V1_3A1 R5 S. Africa SPD F  343,923  I/II 31 HQ595753 

 C 21283649_3E8 R5 S. Africa SPD M  3,180  I/II 31 HQ595756 

 C 20927783_3E2 R5 S. Africa SPD F  1,886  I/II 31 HQ595750 

 C 1245045_3C7 R5 S. Africa SPD M  234,068  I/II 31 HQ595742  

 C 20258279-V4_3D10 R5 S. Africa SPD F  281,838  IV 31 HQ595764 
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Env 

Type Clade 

Env clone 

designation 

Coreceptor 

tropism 

Geographic 

location 

Risk 

factor
a
 Gender 

Viral load 

(copies/ml) 

Fiebig stage/ min time 

since infection Reference 

Accession 

number 

T/F C ZM247Fv1.Rev- R5 Zambia HSX F  10,823,500  II 12, 13, 18 n/a 

 C ZM249M-B10 R5 Zambia HSX M  2,000,000  IV 12, 13, 18 EU166862 

 C 704809221.1B3 R5 S. Africa HSX M  750,000  I/II 11 FJ444116  

 C 703010054.2A2 R5 Malawi HSX M  13,936  V 11 FJ443808  

 C 703010217.B6 R5 Malawi HSX F  102,602  V/VI 11 FJ443589 

 C ZM247Fv2.fs R5 Zambia HSX F  10,823,500  II 12, 13, 18 n/a 

 C 704010042. 2E5 R5 S. Africa HSX M  181,000  IV 11 FJ443745 

 C 705010185.tf R5 S. Africa HSX F  14,800  I/II  in prep
b
 n/a 

Chronic B HEMA.A4.2125 R5 Alabama MSM M  49,755  1yr 10mo 2 EU578133 

 B SHKE.A7.2118 R5 Alabama MSM M  544,000  1yr 2mo 2 EU578458 

 B HEMA.A23.2143 R5 Alabama MSM M  49,755  1yr 10mo 2 EU578132 

 B SHKE.A26.4112 R5 Alabama MSM M  544,000  1yr 2mo 2 EU578453 

 B WICU.B4.2973 R5 Alabama MSM M  8,424  5yr 11mo 2 EU578642 

 B OLLA.A14.1923 R5 Alabama HSX F  382,000  2yr 1mo 2 EU578231 

 B SAMI.A8.1863 R5 Alabama MSM M  116,000  3yr 11mo 2 EU578272 

 B SHKE.A4.2116 R5 Alabama MSM M  544,000  1yr 2mo 2 EU578456 

 B SMRE.A13.4127 R5 Alabama HSX F  135,858  1yr 4mo 2 EU578471 

 B TALA.A2.1780 R5 Alabama MSM M  228,200  6yr 11mo 2 EU578494 

 B WICU.C1.2992 R5 Alabama MSM M  8,424  5yr 11mo 2 EU578657 

 B YOMI.F2.4137 R5 Alabama MSM M  14,178  6yr 1mo 2 EU578683 

 B SC05.A10.2362 R5 Trinidad HSX M  19,514  5yr 5mo 2 EU578358 

 B SC05.8H2.3243 R5 Trinidad HSX M  19,514  5yr 5mo 2 EU576786 

 B SC05.8A11.2363 R5 Trinidad HSX M  19,514  5yr 5mo 2 EU578359 

 B 1632-ta9 R5 Washington MSM M  97,800  2yr 5mo 26 HQ216892 

 B 1632-a17 R5 Washington MSM M  97,800  2yr 5mo 26 HQ216864  

 B 1632-a6 R5 Washington MSM M  97,800  2yr 5mo 26 HQ216883  

 B 1632-ta1 R5 Washington MSM M  97,800  2yr 5mo 26 HQ216887  

 B 1632-a7 R5 Washington MSM M  97,800  2yr 5mo 26 HQ216884  

 B 1632-a23 R5 Washington MSM M  97,800  2yr 5mo 26 HQ216869  

 B 1588-ta7 R5 Washington MSM/ IDU M  99,600  7yr 2mo 26 HQ216783 

 B 1470-d27 R5 Washington MSM/ IDU M  492,200  4yr 3mo 26 HQ216683 

 B 1451-d17 R5 Washington MSM M  532,000  20yr 3mo 26 HQ216655 

 B 1451-c16 R5 Washington MSM M  532,000  20yr 3mo 26 HQ216638 

 B 1451-d1 R5 Washington MSM M  532,000  20yr 3mo 26 HQ216651 
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a 
HSX= heterosexual exposure; MSM=men who have sex with men; IDU=intravenous-drug user. 

b 
Kappes JC et al. manuscript in preparation. 

c 
IMC Accession number. 

d
 Kirchherr JL et al.2011. Identification of amino acid substitutions associated with neutralization phenotype in the human immunodeficiency virus type-1 subtype C gp120. Virology 409:163–174.
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Env 

Type Clade 

Env clone 

designation 

Coreceptor 

tropism 

Geographic 

location 

Risk 

factor
a
 Gender 

Viral load 

(copies/ml) 

Fiebig stage/ min time 

since infection Reference 

Accession 

number 

Chronic B 1599-b11 R5 Washington IDU M,F  112,000  6yr 7mo 26 HQ216802 

 B 1444-a21 R5 Washington MSM M  86,300  7yr 26 HQ216583 

 C 704010330.G5h R5 S. Africa HSX M  46,100  n/a 31 JQ777128 

 C 704010207.D11 R5 S. Africa HSX F  15,400  n/a 31 JQ777073  

 C 702010141.E80 R5 Malawi HSX F  151,282  n/a 31 JQ779320 

 C 702010432.E16 R5 Malawi HSX M  40,570  n/a 31 JQ779232 

 C 703010167.E15 R5 Malawi HSX F  73,505  n/a 31 JQ779889 

 C ZM414.1 R5 Zambia HSX F  213,600  n/a 68 GU329415 

 C 707010457 R5 Tanzania HSX F  234,671  n/a 31 KC156220 
c 

 C ZM414.20 R5 Zambia HSX F  213,600  n/a 68 GU329426 

 C 705010534.E35 R5 S. Africa HSX F  63,300  n/a 31 JQ779192 

 C 704010499.H1 R5 S. Africa HSX F  15,200  n/a 31 JQ777164 

 C 704010461.A7h R5 S. Africa HSX F  22,900  n/a 31 JQ777137  

 C 704010028.F6 R5 S. Africa HSX F  9,220  n/a 31 JQ777039 

 C 703010269.E30 R5 Malawi HSX F  30,434  n/a 31 JQ777184 

 C 704010273. E5 R5 S. Africa HSX F  25,700  n/a 31 JQ777098  

 C 3902.bmLG14 R5 Malawi HSX F  19,900  n/a 

Kirchher JL et 

al.c HM070661  

 
C 4403.A18 R5 Malawi HSX F  100,892  n/a 

Kirchher JL et 

al.
c 

HM070677  

 C 4403.D1 R5 Malawi HSX F  100,892  n/a 

Kirchher JL et 

al.
c 

HM070689  

 C 4403.bmR.B6 R5 Malawi HSX F  100,892  n/a 

Kirchher JL et 

al.
c 

HM070754  
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CHAPTER 3 

Chemokines and HIV-1: Viral inhibition and enhancement 

CHEMOKINES: THE BASICS 
 

Chemokines are a group of low-molecular weight (7 to 12 kDa) secreted 

proteins that primarily function in leukocyte development, maturation, and homing 

(192). They are also central players in many physiopathological processes such 

as allergies, angiogenesis, inflammation, infectious and autoimmune diseases, 

tumor growth and hematopoiesis.  Chemokines induce chemotaxis in a variety of 

cells (monocytes, neutrophils, lymphocytes, eosinophils, fibroblasts, and 

keratinocytes) by interacting with chemokine receptors, which are members of 

the seven-transmembrane GPCR superfamily and glycosaminoglycans (GAGs) 

to promote migration and impart directionality to cell movement (237). GPCRs 

couple chemokine binding outside the cell to activation of intracellular signaling 

cascades that lead to cell motility. GAGs are complex carbohydrates attached to 

protein cores on the cell surface (proteoglycans) or free flowing in the 

extracellular space. In addition to numerous functions, GAGs immobilize 

chemokines to provide a chemotactic gradient to direct migrating cells to sites of 

injury or inflammation (213). To date, more than 50 chemokines and 20 

chemokines receptors have been described (Fig 1) (34, 165, 191, 302). Multiple 

chemokines can bind and signal through the same receptor, providing 

redundancy in chemokine/receptor function.   



 60

As a group, chemokines exhibit between 20-70% amino acid homology 

(115, 191) and are characterized by the presence of three to four conserved 

cysteine residues. They can be divided into four subfamilies (CXC, CC, C, or 

CX3C), based on the positioning of the amino terminal cysteine residues (17). 

Structurally, CC-chemokines are defined by the tandem arrangement of cysteine 

residues in the amino terminus, while CXC-subfamily cysteines are separated by 

a single amino acid. The majority of described chemokines belong to these two 

subfamilies. The third subfamily (C) members contain a single cysteine residue in 

the conserved position. The fourth subfamily (CX3C) has two cysteines 

separated by three variable amino acids in the amino terminus. This subtle 

structural difference informs the quaternary structure of the chemokine and has 

implications not only for receptor recognition, but also oligomer formation (123, 

237). It is well known that chemokines oligomerize in a variety of homo- and 

hetero-oligomeric forms at high concentrations both in solution and in 

physiological settings to carry out their effector functions (16, 184, 185, 284). 

However, studies have reported differences in the quaternary structures of CC- 

and CXC-chemokines and suggested that these differences may be important for 

how chemokine subfamilies are recognized by, and signal through, their cognate 

receptors and GAGs (123, 195, 216, 220, 286). Therefore the dynamic 

equilibrium of chemokine oligomeric states is critical for function, allowing specific 

interactions with both GPCRs and GAGs.  
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CHEMOKINES AND HIV-1 PATHOGENESIS 
 

 Important discoveries in the last two decades have defined a close 

relationship among chemokines, their receptors, and HIV-1 infection (6, 55, 59, 

60, 71, 79, 81, 88). For several years, it was known that CD8+ T cells secrete 

soluble factors that suppress HIV-1 replication in CD4+ T cells (38, 283). 

Supporting evidence for the presence of a noncytolytic suppressive product of 

CD8+ T cells came from clinical reports that correlated disease progression with 

the absence or presence of CD8+ T cell activity (99, 167). Furthermore, it was 

shown that a high level of CD8+ T cell suppressor activity was associated with 

long-term survivors of HIV-1 infection (45). Lastly, the noncytolytic activity of 

CD8+ T cells controlled disease pathology in nonhuman primates (49, 83, 211). 

The identity of these soluble factors remained elusive until Cocchi et 

al. demonstrated that the β-chemokines MIP-1α (macrophage inflammatory 

protein 1α), MIP-1β (macrophage inflammatory protein 1β) and RANTES 

(regulated on activation, normal T expressed and secreted) were responsible for 

a significant fraction of the noncytolytic CD8+ T cell suppressive effect (59). 

These chemokines, in addition to others belonging to the α-chemokine family (ie: 

stromal cell-derived factor 1—SDF-1), suppress viral replication of R5- and X4-

tropic HIV-1 strains in vitro most commonly by competing with Env for binding to 

the cognate chemokine receptor (29, 193). Receptor downregulation in response 

to chemokine binding can also suppress viral replication by decreasing the 

density of surface coreceptors (8, 166, 254). In vivo studies to corroborate these 
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in vitro findings are limited by the inherent difficulties in measuring circulating 

chemokine concentrations. However, further research by Cocchi et al. 

demonstrated an inverse relationship between levels of β-chemokines in vivo and 

the outcome of HIV-1 infection, where higher concentrations of MIP-1α, MIP-1β, 

and RANTES from CD8+ T cells correlated with asymptomatic HIV-1 infection 

(61). Additionally, nonhuman primate studies have shown that immunization with 

simian immunodeficiency virus (SIV) grown in human CD4+ T cells induces 

unusually high production of RANTES, MIP-1α, and MIP-1β, which protects 

macaques from subsequent SIV challenge (287).  

 Paradoxically, chemokines have also been described to enhance HIV-1 

infection, at least in vitro. RANTES can modulate virus infection in a variety of 

ways that are dependent upon its concentration. At low concentrations, RANTES 

inhibits HIV-1 infection by blocking its interaction with the viral coreceptor CCR5 

(59, 274). At high and likely supra-physiological concentrations, RANTES forms 

oligomers that bind to the viral Env protein as well as cell surface GAGs, 

enhancing virus attachment and infection (132, 135, 274). RANTES can also 

modulate HIV-1 infection by transducing signals via CCR5 that over time render 

cells more permissive for viral replication (97, 274). In addition to RANTES, 

previous work has demonstrated that the α-chemokine SDF-1 enhances R5-

tropic, but not X4-tropic, HIV-1 and vesicular stomatitis virus (VSV) infection in 

vitro (169). Specifically, SDF-1 was reported to enhance infection via signaling-

mediated increase of Tat transactivation of the HIV-1 long terminal repeat.  
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 Additional studies have highlighted novel ways in which chemokines 

enhance HIV-1 infection both in vitro and in vivo. In 2007, Saleh et al. identified a 

novel mechanism of HIV-1 latent infection of resting CD4+ T cells, in which the 

CCR7 ligands, CCL19 and CCL21, were found to significantly increase the 

permissiveness of resting CD4+ T cells to HIV-1 infection (241).  Interestingly, 

this enhancement was attributed to chemokine-mediated increases in viral DNA 

nuclear import and integration, but not to productive HIV-1 replication. The same 

group further showed that the mechanism of the CCL19-CCR7 interaction is 

similar to that of the HIV-1 gp120-CXCR4 interaction in triggering cofilin 

activation and actin dynamics, which drastically enhance viral nuclear import and 

integration (44, 302). These results are consistent with in vivo data showing that 

enhanced levels of CCL19 and CCL21 in HIV-1-infected patients correlate with 

viral load, disease progression and response to HAART (70).  

Canonically, chemokine suppression of HIV-1 infection involves 

competitive inhibition of viral entry by binding to the cognate chemokine 

coreceptors. These more recent results suggest that HIV-1 infection could also 

be affected by chemokines interacting with multiple receptors such as CCR7 

(and others not discussed in this section) that may synergize with or antagonize 

HIV-1-mediated coreceptor signaling pathways. This widens therapeutic 

opportunities and our understanding of viral pathogenesis, as multiple surface 

receptors and intracellular signaling molecules might now serve as attractive 

targets for therapy.  
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PLATELET FACTOR 4 (PF4) AND HIV-1 INFECTION 
 

Although MIP-1α, MIP-1β, and RANTES were initially shown to contribute 

to the HIV-1 suppressive effect of CD8 + T cells, other cells types have been 

implicated in the production of anti-HIV-1 chemokines. Several studies have 

shown that monocytes, macrophages, and natural killer cells are important 

sources of CC- and CXC-chemokines that antagonize HIV-1 entry and replication 

in vitro (38, 42, 59, 259, 283). More recently, activated platelets have been 

shown to possess anti-HIV-1 properties (259). Platelets are specialized blood 

cells that primarily function to promote coagulation at sites of vascular injury by 

adhering to subendothelial matrix proteins. During vascular injury, activated 

platelets release a number of mediators from their α-granules, including 

connective tissue-activating peptide III (CTAP-III/CXCL7), RANTES, and platelet 

factor 4 (PF4/CXCL4) (36, 118).  

PF4 is a cationic α-chemokine that functions primarily to promote 

coagulation by moderating the effects of heparin-like molecules (20, 257), and 

can be found in nanomolar and micromolar concentrations within plasma and 

serum, respectively (37, 54, 89, 128). PF4 has been shown to be chemotactic for 

immune cells by acting through interactions with a splice variant of the GPCR 

CXCR3B and an integral chondroitin sulfate proteoglycan expressed on the 

surface of cells (140, 150, 181). Additionally, there is evidence that PF4 is 

involved in the differentiation of monocytes to macrophages. Recently, PF4 has 

been described to possess potent and broadly-active antiviral activity against 

HIV-1 in vitro (15, 259).  
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 The antiviral role of PF4 during HIV-1 infection is not unanticipated, as 

several previous studies have linked platelet malfunction and HIV-1 infection—

with thrombocytopenia (platelet count below 150,000cells/mm3) and thrombosis 

(clotting) being frequent complications during infection (66, 201, 251). These 

hemostatic disorders affect roughly 10-50% of HIV-1-infected individuals (67, 

236). Individuals with platelet dysfunctions that increase the risk of thrombosis 

are likely to receive heparin treatment (87). PF4 binds with high affinity (4-30nM) 

to heparin and heparin-like molecules (163, 264), leading to the development of 

ultra large complexes (ULCs), which are highly immunogenic (217). Antibodies 

against these ULCs bind to PF4 on platelets and monocytes, activating these 

cells, resulting in both thrombocytopenia and thrombosis in a condition known as 

heparin-induced thrombocytopenia and thrombosis (HITT) (9).  Unsurprisingly, 

when the incidence of HITT in HIV-1-infected patients treated with unfractionated 

heparin (UFH) therapy was compared with that in an UFH-treated uninfected 

control group, HIV-1 infection correlated with increased incidence of HITT (270).  
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PROJECT GOAL II: ELUCIDATING THE MECHANISM AND PHYSIOLOGICAL 

RELEVANCE OF PF4 ACTIVITY DURING HIV-1 INFECTION 

 
 PF4 has been shown to directly inhibit HIV-1 infection in vitro at 

concentrations less than 0.5µM (15, 259). However, despite plasma and local 

tissue concentrations of PF4 ranging from 0.25nM to 10µM (37, 54, 89, 128), 

HIV-1 is able to successfully replicate and escape the inhibitory effects of PF4 in 

vivo. The mechanism of this discordance remains unclear. In this study, we 

sought to understand the mechanism of action of PF4 and whether it’s in vitro 

activity was biologically meaningful in the context of human infection; in an effort 

to clarify whether PF4 is a suitable therapeutic candidate for HIV-1 infection.  
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Figure 1: Known human 
chemokines and chemokine 
receptors.  More than 50 
chemokines and 20 chemokine 
receptors have been identified to 
date. The difference in numbers, 
coupled with the fact that multiple 
chemokines can bind to, and signal 
through, the same chemokine 
receptor suggests a redundancy in 
chemokine/receptor function. 
(Image adapted from Wu et al 
Retrovirology 2010; 7:86) 
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CHAPTER 4 

Platelet-Factor 4 (PF4) inhibits and enhances HIV-1 infection in a 

concentration-dependent manner by modulating viral attachment 

Zahra F. Parker1, Ann H. Rux2, Amber M. Riblett1, Fang-Hua Lee1, Lubica 

Rauova 3, 4Douglas B. Cines2, Mortimer Poncz3, 4, Bruce S. Sachais2, 5,  
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ABSTRACT 
 

Platelet-factor 4 (PF4) has been recently shown to inhibit infection by a 

broad range of HIV-1 isolates in vitro. We found that the inhibitory effects of PF4 

are limited to a defined concentration range where PF4 exists largely in a 

monomeric state. Under these conditions, PF4 bound the HIV-1 envelope protein 

and inhibited HIV-1 attachment to the cell surface. However, as concentrations 

increased to the point where PF4 exists largely in tetrameric or higher-order 

forms, viral infection in vitro was enhanced. Enhancement could be inhibited by 

mutations in PF4 that shift the oligomeric equilibrium towards the monomeric 

state, or by using soluble glycosaminoglycans (GAGs) to which tetrameric PF4 

avidly binds. We conclude that at physiologically relevant concentrations, 

oligomeric PF4 enhances infection by HIV-1 by interacting with the viral envelope 

protein as well as cell surface GAGs, enhancing virus attachment to the cell 

surface. This effect was not specific to HIV-1, as enhancement was seen with 

some but not all other viruses tested. The biphasic effects of PF4 on HIV-1 

infection suggest that native PF4 will not be a useful antiviral agent, and that PF4 

could contribute to the hematologic abnormalities commonly seen in HIV-infected 

individuals by enhancing virus infection in the bone marrow.
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INTRODUCTION 
 

Human immunodeficiency virus type 1 (HIV-1) entry into target cells 

results from sequential interactions between the HIV-1 envelope glycoprotein 

(Env) with the cellular receptor CD4 and a coreceptor, either CCR5 or CXCR4 (6, 

55, 71, 79, 81, 88). The efficiency of this process can be regulated in vivo by 

cytokines and chemokines that bind to the viral coreceptors or that influence 

coreceptor expression levels (38, 42, 59, 74). A variety of cell types secrete 

cytokines or chemokines that can modulate HIV infection, including activated 

platelets that have been shown to possess anti HIV-1 properties in vitro (38, 42, 

59, 259, 283).  

During vascular injury, activated platelets release a number of mediators 

from their α-granules, including connective tissue-activating peptide III (CTAP-

III/CXCL7), RANTES (CCL5), and Platelet-factor 4 (PF4/CXCL4) (36, 118). PF4 

is a cationic α-chemokine that functions primarily to promote coagulation by 

moderating the effects of heparin-like molecules (20, 257). PF4 is present in 

nanomolar and micromolar concentrations within plasma (0.5 to 3 nM) and serum 

(0.4 to 1.9 µM), respectively (37, 54, 89, 128). PF4 has been shown to be 

chemotactic for immune cells by acting through interactions with a splice variant 

of the G-protein coupled receptor CXCR3B and cell surface proteoglycans (140, 

150, 181). Recently, PF4 has been described to possess potent and broadly-

active antiviral activity against HIV-1 in vitro at concentrations less than 0.5 µM 
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(15, 259), though the mechanism and in vivo relevance of these results are 

uncertain. 

In this study, we find that the previously reported inhibitory effects of PF4 

are limited to a narrow concentration range where PF4 exists predominantly as a 

monomer (172). Under these conditions, PF4 binds directly to Env and inhibits 

virus infection by preventing its attachment to the cell surface. At physiologic 

concentrations, where PF4 exists largely as a tetramer, it enhanced infection 

several-fold above untreated controls. This biphasic activity of PF4 was not 

restricted to the HIV-1 Env, as we observed similar results with HIV-1 

pseudoviruses bearing the glycoproteins of murine leukemia virus (HIV-1MLV), 

simian immunodeficiency viruses (HIV-1SIVmac316 and HIV-1SIVsmmE660) and 

vesicular stomatitis virus (HIV-1VSV-G). However, PF4 did not antagonize nor 

enhance the entry of pseudoviruses bearing the glycoprotein of influenza (HIV-

1H5N1). We further demonstrated that PF4 carries out its dual activity during viral 

infection by modulating viral attachment to the cell. Lastly, we provide evidence 

that oligomeric PF4 directly interacts with cellular glycosaminoglycans (GAGs) as 

well as the HIV-1 envelope glycoprotein gp120, perhaps serving as a bridge 

between cell surface GAGs and the viral envelope glycoprotein, thus enhancing 

virus attachment and infection at high PF4 concentrations. This could play a role 

in vivo, as PF4 produced in the bone marrow could impact virus infection of stem 

cells and other progenitors, contributing to the hematologic abnormalities 

commonly associated with HIV/AIDS.   
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METHODS 
 

Cell Culture. 293T17 and HeLa-derived JC53 cells were maintained in 

Dulbecco’s modified Eagle medium (DMEM) with 10% (vol/vol) fetal bovine 

serum (FBS)—D10F media. Multinuclear activation of galactosidase indicator 

cells stably expressing human CD4 and CCR5 (MAGI-CCR5) were obtained from 

the National Institutes of Health-AIDS Research and Reference Reagent 

Program and maintained in DMEM supplemented with 10% FBS and 1mg/ml 

puromycin.  SupT1-CCR5 and Jurkat-CCR5 immortalized cell lines were 

maintained in Roswell Park Memorial Institute (RPMI) medium containing 10% 

FBS (R10F media). Primary human CD4+ T cells were obtained from the Human 

Immunology Core of the University of Pennsylvania’s Center for AIDS Research.  

Virus production and normalization. HIV-1 Env pseudoviruses were 

produced by calcium phosphate co-transfection of 6 µg of pcDNA3.1+ containing 

the desired env clone with 10 µg of HIV-1 core (pNL43-∆Env-vpr+ -luc+ or pNL43-

∆Env-vpr+ -eGFP) into 293T17 cells. At 72 hr post-transfection, the pseudovirus-

containing supernatant was harvested and filtered through a 0.45-µm-pore-size 

filter and stored at -80°C. Influenza (H5N1) pseudoviruses were produced by 

calcium phosphate co-transfection of 400 ng of pCMV8/R containing H5 (VRC 

7705) and 100 ng of pCMV8/R containing N1 (VRC 7708) with 10 µg of HIV-1 

core (pNL43-∆Env-vpr+ -luc+) into 293T17 cells. HEPES buffer (1:100; Invitrogen) 

was added to the media to maintain basic pH and minimize acid-induced HA 

triggering. At 48 hr post-transfection, the pseudovirus-containing supernatant 

was harvested as described for HIV-1 Env pseudoviruses. GFP pseudoviruses 
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were concentrated approximately 100-fold by ultracentrifugation at 113,000 x g 

for 2 hr at 4°C through a 20% sucrose cushion. Pelleted pseudovirus was then 

resuspended in phosphate-buffered saline (PBS) and stored at -80°C.  

Virus inhibition assay. MAGI-CCR5 cells were treated with varying 

concentrations of PF4 or media only prior to infection with the indicated luciferase 

reporter pseudovirus or full-length infectious molecular clone. After addition of 

pseudovirus, plates were spinoculated at 1,200 x g for 2 hr at 4°C and then 

incubated at 37°C. Viral inoculum was replaced with fresh complete media 

(supplemented with PF4 for replication competent infections) after 4 hr. Inhibition 

assays were also conducted with the SupT1-CCR5 and Jurkat-CCR5 cell lines 

as described above. For single-cycle infections using luciferase-encoding 

pseudovirus, cells were lysed with Brite-Glo (Promega) at 72 hr postinfection, 

and relative light units (RLUs) were measured. For spreading infections of 

replication competent infectious virus, HIV-1 replication was assessed by 

measuring p24 Gag protein in cell-free culture supernatants taken between days 

3 and 9 postinfection using a commercial enzyme immunoassay (AlphaLISA; 

Perkin-Elmer). All inhibition assays were done in at least duplicate in each of at 

least three independent experiments. 

Viral attachment assay. Human CD4+ T cells (106 cells per condition) 

were stimulated for 3-5 days with anti-CD3/anti-CD28 beads (Invitrogen) and 20 

U/ml recombinant interleukin-2 (IL-2; Aldesleukin; Prometheus Laboratories) in 

R10F media. Cells were pretreated with 200 μl of 200 nM or 4 μM PF4WT with or 

without 10 μg/ml soluble heparan sulfate proteoglycan (HSP), 4 μM PF4K50E, 15 
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μM maraviroc (MVC), 15 μM plerixafor (AMD3100), 40 μg/ml DEAE-dextran, or 

serum-free PBS at room temperature for 30 mins. Cells were subsequently 

exposed to 200 μl of undiluted HIV-1R3A (2.3 µg p24/ml) and incubated at 37°C 

for 4 hr in the absence or presence of each drug treatment. To determine 

background signal level, 2 x 106 untreated cells were infected and incubated at 

4°C for 4 hr. After incubation, cells were washed twice in PBS to remove 

unbound virus. Cells were then split into two aliquots: one aliquot was treated 

with 50 μl of prewarmed 0.05% trypsin-EDTA at 37°C for 10 mins, followed by 

trypsin inactivation with 5 ml cold R10F media. The other aliquot was left trypsin-

untreated in R10F media. Both trypsin-treated and -untreated cells were washed 

three times with cold PBS, then the cell pellets lysed with 100 μl of 0.5% (wt/vol) 

Triton X-100. Cell-associated p24 was measured using the p24 AlphaLISA 

(Perkin-Elmer). The final p24 concentration was calculated by subtracting the 

concentration of the trypsin-treated cells incubated at 4°C from the p24 signal 

measured in each test sample. 

Primary human CD4+ T cell infections. Primary human CD4+ T cells 

(106 cells per condition) were stimulated with anti-CD3/anti-CD28 magnetic 

beads (Invitrogen) and 20 U/ml recombinant IL-2 in R10F media. Three days 

post-stimulation, cells were transferred to 24-well plates and incubated for 30 min 

with no PF4, 200 nM PF4, or 4 µM PF4. Viral input was normalized by reverse 

transcriptase (RT) activity as determined by a colorimetric assay (Roche). 

Approximately 3 ng RT of replication competent HIV-1CH077 was used to infect 

cells in duplicate in a total volume of 250 µl. Plates were incubated at 37°C, and 
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media was replaced every 48 hr with fresh IL-2 containing R10F with PF4. HIV-1 

replication was assessed by measuring the p24 Gag protein in cell-free culture 

supernatants collected 6 days postinfection. Assays were done in duplicate with 

each of at least three independent donors. 

Generation and purification of PF4 in S2 cells. cDNA encoding human 

PF4 was cloned into the plasmid pMT/BiP/V5-His A (Invitrogen) for expression. 

PF4 expression was induced by adding copper sulfate (0.5mM) to S2 cells. The 

induced S2 cells were then incubated in serum-free medium Insect-Xpress 

(Lonza) for 3 to 5 days; supernatants were collected and the media filtered 

through a 0.22-µm filter.  PF4WT was purified from the media on a heparin HiTrap 

column on an ATKA Prime (GE Healthcare) at 4°C in 10 mM Tris, 1 mM EDTA, 

pH 8.0 buffer. Media were loaded in buffer containing 0.5 M NaCl, and PF4 was 

eluted at 1.8 M NaCl using a linear gradient. Fractions containing purified PF4 as 

detected by silver staining of 12% NuPAGE Bis-Tris gels (Invitrogen) were 

pooled, concentrated, and the buffer was exchanged into 50 mM HEPES, 0.5 M 

NaCl, pH ~7.2 using an Amicon Ultra centrifugal filter (3K NMWL; Millipore). 

Protein was quantified using a bicinchoninic acid assay (Pierce Chemical). 

PF4K50E and PF4E28R/K50E were purified as PF4WT, with the following 

modifications: the column buffer system used was 50 mM MES, 1 mM EDTA, 

and pH 6.5. Media were loaded in buffer containing 0.3 M NaCl and the proteins 

were eluted at 1.3 M NaCl using a linear gradient. Commercially available PF4 

isolated from human platelets (Calbiochem) and commercially available 
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recombinant PF4 (R&D Systems) were tested along with laboratory-generated 

recombinant PF4. 

Enzyme-linked immunosorbent assay (ELISA). Chemokines were 

immobilized on 96-well plates (Immulon 4HBX; Thermo Scientific) in PBS-/- (Life 

Technologies) overnight at room temperature. Wells were washed three times 

with 250 µl PBS containing 0.1% Tween-20 (PBST), followed by blocking with 

200 µl of 1% BSA in PBS (BPBS) at room temperature for 1 hr. Wells were then 

washed three times with PBST. In binding experiments, 50 µl of purified gp120 

was added to chemokine-coated or control wells and allowed to react for 30 mins 

at room temperature. Wells were then washed three times. To detect bound 

gp120, 50 µl of a gp120-specific polyclonal rabbit serum (1170) created in our 

laboratory (1:1250 dilution in BPBS) was added to wells and reacted at room 

temperature for 30 mins. The wells were washed three times before the addition 

of 50 µl HRP-conjugated secondary goat anti-rabbit antibody (1:2500 dilution in 

BPBS; Cell Signaling Technology). After 30 mins reaction at room temperature, 

the wells were washed six times. To visualize color, 100 µl of the 

tetramethylbenzidine (TMB) substrate solution (R&D Systems) was added to the 

wells. The OD450 was measured using an MRX Revelation microplate reader 

(Dynex Technologies) immediately after the addition of 50 µl 2 N sulfuric acid 

stop solution (R&D Systems).  

Antibody inhibition assays. PF4 was preincubated in the absence or 

presence of 2X excess RTO or KKO anti-hPF4 antibodies at room temperature 

for 25 mins. The antibody-PF4 mixture was then added to MAGI-CCR5 cells prior 
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to infection with the indicated luciferase reporter pseudovirus. After addition of 

pseudovirus, plates were spinoculated at 1,200 x g for 2 hr at 4°C and then 

incubated at 37°C. Infection inoculum was replaced with fresh complete media 

after 2 hr. Cells were then lysed with Brite-Glo (Promega) at 72 hr postinfection, 

and RLUs were measured. 

Statistical analysis. Infection values obtained with or without PF4 

treatment were compared using t tests. P values of less than 0.05 were 

considered significant. Data were analyzed with Prism 5.0 software. 

Ethics statement. These studies were approved by the University of 

Pennsylvania’s Institutional Review Board. All human cells used in this study 

were from normal healthy donors who provided written informed consent.  
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RESULTS 
 

PF4 exhibits a biphasic effect on HIV-1 entry. Initial studies evaluating 

the effect of recombinant human PF4 on HIV-1 infection in vitro demonstrated 

that PF4 possesses broad antiviral activity against multiple HIV-1 genetic clades, 

irrespective of coreceptor tropism (15, 259). We utilized an independent panel of 

previously described (200, 295)14 clade B and 9 clade C HIV-1 Envs (Table 1) to 

further explore the antiviral properties of this chemokine. Of the 23 Envs tested, 

18 were CCR5 (R5)-tropic, one was CXCR4 (X4)-tropic, and four were R5/X4 

(dual)-tropic, and 12 of the 23 Envs were derived from transmitted/founder (T/F) 

viruses (96, 121, 131, 136, 200, 238, 239). Multinuclear activation of 

galactosidase indicator cells stably expressing human CD4 and CCR5 (MAGI-R5 

cells) (53) were pretreated with increasing concentrations of recombinant PF4 for 

30 minutes, and subsequently infected with HIV-1 Env pseudoviruses. PF4 

inhibited infection by all HIV-1 Env pseudoviruses tested, with maximal inhibition 

occurring at approximately 200 nM added protein (mean % inhibition = 85 ± 6; p 

< 0.0001). T/F Envs were inhibited as efficiently as Envs derived from other 

viruses. However, when PF4 was added at concentrations above 200 nM, 

infection was inhibited less efficiently and was enhanced above (mean % 

infection = 174 ± 67; p < 0.0001) that of untreated controls at the highest 

concentration of PF4 tested (Figs 1A and 1B).  

For our studies, we tested commercially available PF4 isolated from 

human platelets, commercially available recombinant PF4, as well as laboratory-

produced recombinant PF4. We found that both recombinant forms of PF4 



 

 79

impacted HIV-1 infection identically over a broad concentration range, while the 

concentration needed for native PF4 to maximally inhibit (24 nM) and then 

enhance (200 nM) HIV-1 infection was approximately one-log less, perhaps 

reflecting inefficient refolding of the recombinant proteins. Nonetheless, as all 

three forms of PF4 exhibited similar biphasic effects on HIV-1 infection, we 

proceeded with the laboratory-developed recombinant PF4 for subsequent 

experiments. 

The MAGI assay was also performed utilizing replication competent R5-, 

X4-, and dual-tropic HIV-1 (CH141, HxB, and R3A, respectively). As was 

observed with the pseudoviruses, 200 nM PF4 maximally inhibited infection of 

the clade C primary isolate HIV-1CH141 (mean % inhibition = 93 ± 4; P = 0.0007), 

the clade B primary isolate HIV-1R3A (mean % inhibition = 86, ± 10; P = 0.0044), 

and the laboratory-adapted strain HIV-1HxB (mean % inhibition = 90 ± 9; P = 

0.0034).  In contrast, at 4 µM, PF4 enhanced infection of all three viruses by 2-3 

fold (Fig 1C).  A saturating concentration of the membrane fusion inhibitor 

enfuvirtide (T20) was used as a negative control in these experiments, inhibiting 

infection of all three viruses by 94-99% of untreated control.  

PF4 activity is evident on multiple cell types against a variety of 

viruses. To evaluate whether the activity of PF4 was specific to the MAGI-R5 

cells, CD4+ T cell lines stably expressing CCR5 (SupT1-R5 and Jurkat-R5) and 

primary human CD4+ T cells were infected with either HIV-1 pseudoviruses or 

replication competent HIV-1 in the absence or presence of PF4. The biphasic 

activity of PF4 was observed in all cell types with all viruses tested (Fig 1D). 
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These results confirm the findings of previous studies (15, 259), that infection by 

R5- and X4-tropic HIV-1 strains is reduced in the presence of PF4. However, the 

inhibitory effects of PF4 were limited to a relatively narrow concentration range, 

above which viral infection in vitro was consistently enhanced.  

 To assess the specificity of anti-viral PF4 activity, we examined the ability 

of HIV-1 pseudotyped viruses bearing the envelope glycoproteins from 

SIVsmE660, SIVmac316, MLV, influenza (H5N1) or VSV to infect MAGI-R5 cells in 

the absence or presence of increasing concentrations of PF4. Infection by HIV-

1SIVmac316 and HIV-1MLV was robustly inhibited by PF4 at approximately 200 nM 

(mean % inhibition = 84 ± 1; p value < 0.0001 and 95 ± 2; P = 0.0002, 

respectively), but significantly enhanced (mean % infection = 265 ± 71; p < 

0.0212 and 286 ± 65; P = 0.0015, respectively) by 4 µM PF4. Infection by HIV-

1VSV-G and HIV-1SIVsmmE660 was inhibited to a lesser degree (mean % inhibition = 

78 ± 5; P = 0.0013 and 70 ± 20; P = 0.0256, respectively) with inhibition being 

lost as PF4 concentrations were increased, while HIV-1H5N1 infection was 

unaffected by PF4 (mean % inhibition = 4 ± 8; P = 0.2483) (Fig 1E).  Given that 

these pseudoviruses share a common HIV-1 core (NL4.3) yet were inhibited to 

varying degrees by PF4, we conclude that both the inhibitory as well as the viral 

enhancement effects of PF4 occur at the level of entry and are not restricted to 

HIV-1.  

 PF4 modulates viral entry by acting on viral attachment. To explore 

the mechanism of action by which PF4 modulates HIV-1 infection, we first 

performed time of addition experiments and found that, as previously reported 
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(15), PF4 most strongly inhibited HIV-1 when added before or simultaneously 

with the virus, consistent with it impacting HIV-1 entry (data not shown). To 

determine if PF4 impacts the first step of virus infection – binding of virions to the 

cell surface – we examined the ability of low and high concentrations of the 

chemokine to interfere with viral attachment. For this purpose, primary human 

CD4+ T cells were exposed to HIV-1R3A for 4 hr at 37°C in the presence or 

absence of PF4. Cells were then split into two aliquots; one aliquot was treated 

with trypsin to remove attached viral particles remaining on the cell surface, while 

the other aliquot was left untreated. Attachment was measured by quantifying 

total vs. trypsin-resistant cell-associated HIV-1 p24 Gag protein.  When added at 

200 nM, PF4 inhibited virus infection and also significantly reduced viral 

attachment to cells by 55% ± 9% compared to the no treatment control (P = 

0.0008) (Fig 2). In contrast, the infection-enhancing concentration of PF4 (4 µM) 

increased viral attachment to primary cells by 61% ± 12% relative to the no 

treatment control (P = 0.0006). The polycation DEAE-dextran was used as a 

positive control and enhanced viral attachment 42-fold above the untreated 

control (P = 0.0004). The coreceptor small molecule antagonists maraviroc 

(MVC) and AMD-3100, which block viral engagement of CCR5 and CXCR4 

respectively, had no significant effect on viral attachment as expected (Fig 2). 

These data suggest that low levels of PF4 inhibit viral infection by decreasing 

viral adsorption to cells, while higher concentrations of the chemokine enhance 

viral attachment and thus increase infection. 
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PF4 interacts with cellular GAGs. PF4 could potentially impact virus 

attachment by interacting with cell surface components, with the viral 

glycoprotein or with both. There is considerable evidence that many chemokines 

interact with cell surface GAGs which in turn facilitate attachment of many 

viruses to cells (106, 125, 213). To determine if PF4 may interact with cell 

surface molecules in a manner that impacts virus attachment, we treated MAGI-

R5 cells with an inhibitory concentration of PF4 (200 nM) for 30 minutes, then 

either washed the cells with PBS (wash) or left unwashed (no wash), and 

subsequently infected with HIV-1 pseudovirus. We hypothesized that if PF4’s 

mechanism of action entailed interactions with the viral glycoprotein, then pre-

binding to the cell surface followed by washing should have little impact on virus 

infection.  If, however, PF4 binds to a cell surface molecule that participates in 

virus attachment, then washing off pre-bound PF4 should reduce the 

chemokine’s effect on virus infection depending on the affinity of the interaction. 

Pre-binding PF4 to the cell surface followed by extensive washing decreased 

subsequent infection by HIV-1MLV, HIV-1JRFL, and HIV-1VSV-G by 45% ± 12% (P = 

0.016), 51% ± 7% (P = 0.007), and 24% ± 16% (P = 0.13), respectively (Fig 3A); 

consistent with PF4 interacting with a cell surface molecule(s) to antagonize viral 

infection. As expected, pre-binding and then washing PF4 from cells had no 

effect on HIV-1H5N1 infection (mean % infection = 106 ± 9; P = 0.4080) (Fig 3A).  

 Since it is well established that PF4 binds to negatively charged GAGs 

such as heparan sulfate proteoglycans (HSP) and chondroitin sulfate 

proteoglycans (CSP),(141, 163, 205, 231) we performed competition assays 
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using soluble HSP. MAGI-R5 cells were infected with HIV-1 pseudoviruses in the 

presence or absence of increasing concentrations of soluble HSP and no, low 

(200 nM), or high (2 µM) concentrations of PF4. As the concentration of soluble 

HSP was increased, the ability of the low concentration of PF4 to inhibit infection 

waned, eventually reaching the same level as no PF4. In addition, high amounts 

of HSP ablated the capacity of the high concentration of PF4 to enhance 

infection (HIV-1JRFL shown in Fig 3B). Similar results were observed with soluble 

CSP (data not shown). The fact that soluble HSP reduced the ability of PF4 to 

inhibit virus infection and entirely ablated the ability of high concentrations of PF4 

to enhance virus infection could be linked to virus binding—at inhibitory 

concentrations of PF4, the presence of 10 µg/ml soluble HSP slightly increased 

virus binding (mean % cell-associated p24 200nM vs. 200nM + HSP = 55 ± 9 vs. 

70 ± 9; P = 0.3), while at enhancing concentrations of PF4 the presence of HSP 

strongly reduced virus binding to the cell surface (mean % cell-associated p24 = 

57 ± 7; P < 0.0001) (Fig 3C). These data are consistent with PF4 being able to 

bind to GAGs, particularly at high PF4 concentrations, with this in turn being 

linked to enhanced virus binding to the cell surface. 

HIV-1 gp120 binds specifically to PF4. The ability of PF4 to bind to 

GAGs does not, by itself, explain how it can enhance virus infection at high 

concentrations. Therefore, we hypothesized that at high concentrations, PF4 

might function as an electrostatic bridge between virions and cell surface GAGs 

to modulate attachment. If this is true, not only should PF4 interact with cell 

surface GAGs, it should also interact with the virus. To test this, we assessed the 
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ability of purified HIV-1 envelope glycoprotein gp120 to bind to polystyrene-

immobilized PF4 by ELISA. Graded amounts of PF4 were immobilized overnight 

before incubation with varying concentrations of purified HIV-1JRFL gp120 for 30 

mins. After washing, bound gp120 was detected using a rabbit polyclonal serum 

(4). We found that gp120 bound to PF4 in a concentration-dependent manner 

(Fig 4A). Likewise, gp120 also bound to RANTES in a concentration-dependent 

manner, consistent with previous work (274). In contrast, gp120 failed to bind to 

immobilized IL-8 or SDF-1 using the same assay conditions (Fig 4B).  From 

these results, we conclude that the bimolecular interaction observed between 

gp120 and PF4/RANTES is direct and has some degree of specificity.  

PF4 oligomerization state correlates with its effects on virus 

infection.  PF4 in solution exists in a dynamic state; at low concentrations it is 

largely monomeric, while at high concentrations it forms tetramers (20, 172, 179, 

233). Chemical cross-linking was used to confirm this equilibrium using the 

recombinant PF4 used in our studies (217). Although this equilibrium exists in 

solution in vitro, under physiologic conditions it has been hypothesized that PF4 

exists primarily as a tetramer and avidly binds to heparin and GAGs to form the 

ultra-large antigenic complexes noted in the clinical disorder of heparin-induced 

thrombocytopenia (HIT) (10, 20, 116, 172, 179, 217). Mutations that decrease 

the formation of PF4 tetramers have been shown to reduce the formation of 

these large complexes. Rauova et al. disrupted the ionic interactions between 

recombinant PF4 dimers by substituting Lys at position 50 with Glu to create 

PF4K50E, which shifts the equilibrium of PF4 to favor dimers and monomers (217). 
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Additionally, a double mutant was generated in which the Glu28 and Lys50 in PF4 

were replaced with Arg and Glu (PF4E28R/K50E) to reinstate the ionic interactions 

between dimers, significantly restoring the ability to form tetramers at high 

concentrations (217). Given this concentration-dependent oligomerization of PF4 

and its two opposing effects on viral entry, we reasoned that inhibition might be 

linked to the presence of monomers that bind directly to Env and prevent it from 

interacting with the cell surface, whereas PF4 tetramers may function to enhance 

viral infection by forming a bridge between cell surface GAGs and Env, overriding 

the inhibitory effect and thereby enhancing virus attachment.  

To explore the effect of oligomeric state on PF4 activity, MAGI-R5 cells 

were infected with HIV-1 pseudoviruses in the absence or presence of increasing 

concentrations of recombinant PF4WT, PF4K50E, or PF4E28R/K50E. For all viruses 

tested, PF4K50E exhibited an approximately 1-log increase in IC50 compared to 

PF4WT, while the double mutant PF4E28R/K50E partially rescued this loss in potency 

(Fig 5A). As previously observed, HIV-1JRFL and HIV-1MLV infection was 

enhanced approximately 2-fold of untreated control (mean % infection = 210 ± 51 

and 200 ± 32, respectively) at the highest concentration (4 µM) of PF4WT tested. 

Relative to PF4WT, 4 µM of the monomer-favoring PF4K50E did not enhance, but 

rather inhibited HIV-1JRFL and HIV-1MLV infection (mean % inhibition = 66 ± 11; P 

= 0.028 and 63% ± 8%; P = 0.008, respectively), while the complementary 

mutant PF4E28R/K50E restored the enhancing activity (mean % infection = 121 ± 9; 

p =0.45 and 136% ± 18%; P = 0.16, respectively), although not to the levels of 

PF4WT (Fig 5A & 5B). Compared to the untreated control, HIV-1VSV-G infection was 
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inhibited by 4 µM PF4K50E (mean % inhibition = 33 ± 9; P = 0.0154), but not 

significantly impacted by 4 µM PF4WT or PF4E28R/K50E (mean % infection = 97 ± 

16; P = 0.89 and 104 ± 11; p =0.19, respectively) (Fig 5A & 5B). Additionally, we 

tested the ability of PF4K50E to modulate viral attachment as we had previously 

done with low and high concentrations of PF4WT. As observed with the low 

concentration of PF4WT, the monomer-favoring PF4K50E significantly decreased 

viral attachment at 4 µM compared to untreated controls (% cell-associated p24 

= 35 ± 6; p < 0.0001) (Fig 5C).  From these data, we conclude that the antiviral 

property of PF4 occurs under conditions where tetramers are not prevalent, while 

the presence of tetramers is associated with enhancement of viral infection. 

 Antibodies that recognize distinct oligomeric forms of PF4 were used to 

further probe the role of oligomeric state on PF4 activity during viral infection. 

The monoclonal anti-hPF4 antibody RTO selectively binds to PF4 monomers 

while the HIT-like monoclonal antibody KKO induces the oligomerization of PF4 

tetramers and preferentially recognizes large complexes comprised of PF4 

tetramers (13, 232). If monomers and dimers are responsible for the inhibitory 

effect of PF4 on virus infection, then both RTO and KKO should ablate the 

inhibitory effect of 200 nM PF4, which in fact we observed (Fig 6). However, at 4 

µM PF4 where preformed tetramers predominate, the antibodies should differ in 

their effects—RTO should not impact PF4 activity since it preferentially binds 

monomers, while KKO may further enhance infectivity by inducing even greater 

PF4 oligomerization which enhances attachment of virus to the cell surface. We 

found this to be the case, with KKO further enhancing infectivity of both HIV-1JRFL 
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and HIV-1MLV pseudotypes in the presence of 4 µM PF4 (Fig 6). These results 

further support the hypothesis that oligomeric forms of PF4 enhance viral 

infection.  
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DISCUSSION 
 

Increased platelet activation, thrombocytopenia, and thrombosis are 

complications associated with HIV-1 infection (10, 66, 113, 201, 251). Several 

studies describe an anti-viral role for chemokines released from activated 

platelets including RANTES and PF4 (15, 59, 259). RANTES can modulate virus 

infection through diverse mechanisms that are dependent upon its concentration. 

At low concentrations, RANTES can inhibit HIV infection by blocking its 

interaction with the viral coreceptor CCR5 (12, 40, 59, 166, 193, 256, 274, 275). 

At high, and likely supra-physiological concentrations, RANTES forms higher-

order oligomers that bind to the viral Env protein as well as cell surface GAGs, 

enhancing virus attachment and infection, at least in vitro (274).  RANTES can 

also modulate virus infection by transducing signals via CCR5 that over time 

render cells more permissive for virus replication (97). Likewise, we find that PF4 

can both inhibit and enhance HIV-1 infection in a concentration-dependent 

manner, with enhancement being observed at PF4 concentrations likely to be 

found in proximity to cell surfaces.  

Recent studies that examined the impact of PF4 on HIV-1 infection 

suggested that the in vitro inhibitory effects of PF4 could be exploited 

therapeutically (15, 259). Enhancement of infection by PF4 was not reported in 

these studies, though concentrations greater than 650 nM were not tested. 

However, a previous study by Schwartzkopff et al. showed that higher 

concentrations of PF4 (4 µM) actually enhanced HIV-1 infection in macrophages 

(249). The availability of recombinant PF4, PF4 mutations that impact its 
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oligomeric properties, and oligomeric-state specific anti-PF4 antibodies allowed 

us to more fully explore this chemokine’s biphasic effects on HIV-1 infection. We 

confirmed earlier findings that at low concentrations PF4 inhibits HIV-1 infection 

by approximately 1-log, and linked this inhibition to the ability of PF4 to bind 

directly to the gp120 subunit of the viral Env protein and to decrease binding of 

virions to the cell surface.  However, PF4 also inhibited infection by several other 

viruses that bear little similarity to HIV-1, and inhibited all of the genetically 

diverse HIV-1 strains that we tested indicting that it has broad anti-viral potency. 

From this we conclude that while PF4 can engage the viral Env protein, it likely 

does so in a relatively non-specific manner that may well limit its therapeutic use. 

Further, the fact that PF4 inhibited infection of all HIV-1 strains we tested in vitro 

suggests that it has not applied sufficient selective pressure in vivo to drive the 

development of widespread resistance.  

PF4 exists in dynamic equilibrium in solution, where monomers assemble 

into tetramers via dimer intermediates in a concentration dependent manner (20, 

172, 179, 233). However, it is likely that under physiological conditions PF4 

exists predominantly as a tetramer complexed with GAGs (20, 116, 172, 179). 

The biphasic effect of PF4 on HIV-1 infection can be explained by its tendency to 

oligomerize at physiologically relevant concentrations and its ability to bind to cell 

surface GAGs in a manner analogous to RANTES (20, 116). As PF4 

concentrations increased, with a concomitant shift toward tetrameric and higher-

order complexes, the inhibitory capacity of PF4 waned and viral infection was 

ultimately enhanced. This finding was observed for all HIV-1 strains tested as 
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well as virions bearing the SIV and MLV glycoproteins. Collectively, these data 

suggest that in vivo, where PF4 likely exists primarily as a GAG-associated 

tetramer, the inhibitory effects of the monomeric chemokine are less likely to 

predominate.  

The mechanism by which PF4 enhanced virus infection at high 

concentrations was again at the level of virus binding. Like most chemokines, 

oligomeric PF4 binds with high affinity to polyanionic GAGs such as heparin and 

heparan sulfate proteoglycans (HSP) (264). Since PF4 can also bind to the viral 

Env protein, we hypothesized that PF4 oligomers can function as an electrostatic 

bridge between virions and cell surface GAGs. In support of this hypothesis, we 

found that high concentrations of PF4 enhanced virus binding, and that the 

addition of soluble heparan and chondroitin sulfate proteoglycans significantly 

mitigated the enhancing, but not the inhibitory, effects of PF4 by decreasing viral 

attachment to cells. This is not entirely surprising, as PF4 tetramers have been 

shown to exhibit higher affinity for GAGs due to their favorable quaternary 

structure, which exposes a ring of basic amino acids (264, 305). Additionally, by 

promoting oligomerization, the HIT-like antibody KKO likely induced the formation 

of ultra large complexes of PF4 tetramers that further potentiated the basal 

enhancement effect of 4µM PF4 in vitro. 

While RANTES and PF4 can both inhibit viral infection at low 

concentrations, the mechanisms are different: RANTES inhibits virus infection in 

a highly specific manner by interacting with the viral coreceptor while PF4 inhibits 

HIV-1 infection by binding to the viral Env protein.  In contrast, both chemokines 
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can enhance virus infection at high concentrations by forming higher-ordered 

complexes and enhancing virus binding to cells through interactions with cell 

surface GAGs.  However, while the concentrations at which RANTES enhances 

HIV-1 infection in vitro are unlikely to be found in vivo, it is likely that 

physiological concentrations of PF4 can enhance virus infection. These findings 

underscore the importance of examining the full spectrum of relevant 

concentrations when assessing the impact of chemokines on virus infection given 

their ability to form oligomers that in turn influence their interactions with cell 

surface molecules.  In addition, it is possible that the enhancing effect of PF4 on 

virus infection could impact HIV-1 pathogenesis. PF4 is produced by 

megakaryocytes in the bone marrow leading to intramedullary release (Lambert 

M et al., submitted), and regulates hematopoietic stem cell cycle activity (39). 

The presence of PF4 in the bone marrow could enhance HIV-1 infection of stem 

cells and other progenitors, contributing to the well-documented hematopoietic 

abnormalities that are common in HIV-infected individuals.  



 

 92

ACKNOWLEDGEMENTS 
 
We thank Beatrice Hahn for providing HIV-1 viral stocks. We thank Gary Nabel 

and the Vaccine Research Center (VRC) of the National Institute of Allergy and 

Infectious Diseases for providing influenza plasmids. We also thank Chuka 

Didigu, Shilpa Iyer, Paul Bates, and Craig Wilen for helpful comments and 

technical advice. Additionally, we thank the University of Pennsylvania’s Center 

for Aids Research (CFAR) human immunology and flow cytometry core facilities 

for reagents and equipment. This work was supported by the National Institutes 

of Health (NIH) grant P01HL110860-01. The content in this publication is solely 

the responsibility of the authors and does not necessarily represent the official 

views of the NIH. Z.F.P. is the recipient of a National Science Foundation 

Graduate Research Fellowship (fellow ID: 2012140562). 

 

 

 

 

 

 

 

 

 

 

 



 

 93

FIGURES 

 
Figure 1: PF4 exhibits biphasic activity on viral entry. (A) 14 clade B and (B) 

9 clade C HIV envelope pseudotypes were tested on MAGI-R5 cells in the 
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E Figure 1: PF4 exhibits biphasic activity on viral entry. (A) 14 

clade B and (B) 9 clade C HIV envelope pseudotypes were tested 

on MAGI-R5 cells in the absence or presence of increasing concen -

trations of PF4. PF4 inhibited infected of all Env pseudoviruses 

tested at concentrations below 200nM. However , at concentrations 

above 2μM, infection of all viruses was enhanced 2-5 fold by PF4. 

(C) The dual activity of PF4 was recapitulated with CCR5- and 

CXCR4-using replication competent HIV-1. (D) PF4 exhibited 

biphasic activity against a replication competent dual-tropic primary 

HIV-1 isolate (CH077) on multiple cell lines. (E) The effect of PF4 

was not specific to HIV-1 as the dual activity was evident to varying 

degrees with SIVmac316, SIVE660, VSV-G, and MLV. Influenza 

H5N1 infection was unaffected by the presence of PF4. All experi-

ments were done in at least triplicate in each of at least three 

independent experiments. Error bars represent standard deviations. 

ns p > 0.05, ** p < 0.005, *** p < 0.0008, **** p < 0.0001
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absence or presence of increasing concentrations of PF4. PF4 inhibited infected 

of all Env pseudoviruses tested at concentrations below 200nM. However, at 

concentrations above 2μM, infection of all viruses was enhanced 2-5 fold by PF4. 

(C) The dual activity of PF4 was recapitulated with CCR5- and CXCR4-using 

replication competent HIV-1. (D) PF4 exhibited biphasic activity against a 

replication competent dual-tropic primary HIV-1 isolate (CH077) on multiple cell 

lines. (E) The effect of PF4 was not specific to HIV-1 envelope as the dual 

activity was evident to varying degrees with HIV-1 pseudoviruses bearing the 

glycoprotein of SIVmac316, SIVE660, VSV, and MLV. HIV-1 pseudotypes 

bearing the influenza glycoprotein H5N1 infection was unaffected by the 

presence of PF4. All experiments were done in at least triplicate in each of at 

least three independent experiments. Error bars represent standard deviations. 

ns p > 0.05, * p < 0.05, ** p < 0.005, *** p < 0.0001 
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Figure 2: PF4 modulates viral attachment to cells. Replication competent 

HIV-1 R3A binding to the cell surface was assessed in the absence or presence 

of PF4. The inhibitory concentration of PF4 (200nM) significantly decreased viral 

attachment to cells compared to the untreated control (% cell-associated p24 = 

55.2 ± 9.4; p = 0.0008). Contrastingly, the enhancing concentration of PF4 (4μM) 

significantly increased viral binding to cells compared to control (% cell-

associated p24 = 161.3 ± 12.5; p = 0.0006). The positive control DEAE-dextran 

increased viral attachment approximately 42-fold above control (% cell-

associated p24 = 4207.0 ± 790.7; p = 0.0004). The small molecule coreceptor 

antagonists maraviroc (MVC) and AMD3100 served as negative controls and did 
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not impact viral attachment as they work downstream of early attachment events. 

All experiments were done in duplicate with three donors in at least three 

independent experiments. Error bars represent standard error. 
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Figure 3: PF4 interacts with cell surface glycosaminoglycans.  (A) To 

address whether PF4 interacts with a cell surface molecule to modulate infection, 

cells were pretreated with 200nM PF4 and either washed five times with PBS or 

left unwashed, followed by infection with HIV-1 pseudoviruses bearing the 

glycoprotein of either MLV, H5N1, JRFL, or VSV. Washing off PF4 before 

infection reduced entry by approximately 2-fold. Infection was inhibited at least 3-

fold when PF4 was left on cells. The negative control HIV-1H5N1 infection was 
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Figure 3: PF4 interacts with cell surface glycosaminoglycans.  (A) 

To address whether PF4 interacts with a cell surface molecule to 

modulate infection, cells were pretreated with 200nM PF4 and either 

washed five times with PBS or left unwashed, followed by infection 

with HIV-1 pseudoviruses bearing the glycoprotein of either MLV, 

H5N1, JRFL, or VSV. Washing off PF4 before infection reduced entry 

by approximately 2-fold. Infection was inhibited at least 3-fold when 

PF4 was left on cells. The negative control H5N1 infection was 

unaffected by either treatment. (B) Effect of cell surface GAGs on PF4 

activity. Infection of JRFL was measured in the presence of 0nM, 

200nM, or 2000nM PF4 with increasing concentrations of soluble 

HSP. 10μg/ml HSP significantly diminished the effect of 2000nM PF4 

on viral infection, impacting infection aprroximately 18-fold. HSP  had 

a 2-fold effect on infection in the presence of low concentrations of 

PF4 and in the absence of PF4. (C) Addition of soluble heparan sulfate 

proteoglycan (HSP) to the low concentration of PF4 did not signifi -

cantly impact its effect on viral binding. However, adding HSP to the 

high concentration of PF4 significantly decreased cell-associated virus 

to levels comparable to 200nM PF4 (% cell-associated p24 = 56.7± 

7.5; p < 0.0001). All experiments were done in at least triplicate in each 

of at least three independent experiments. Error bars represent standard 

deviations.  ns p > 0.05, ** p < 0.005, *** p < 0.0008, **** p < 0.0001
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unaffected by either treatment. (B) Effect of cell surface GAGs on PF4 activity. 

Infection of HIV-1JRFL was measured in the presence of 0nM, 200nM, or 2000nM 

PF4 with increasing concentrations of soluble HSP. 10μg/ml HSP significantly 

diminished the effect of 2000nM PF4 on viral infection, impacting infection 

aprroximately 18-fold. HSP had a 2-fold effect on infection in the presence of low 

concentrations of PF4 and in the absence of PF4. (C) Addition of soluble 

heparan sulfate proteoglycan (HSP) to the low concentration of PF4 did not 

significantly impact its effect on viral binding. However, adding HSP to the high 

concentration of PF4 significantly decreased cell-associated virus to levels 

comparable to 200nM PF4. All experiments were done in at least triplicate in 

each of at least three independent experiments. Error bars represent standard 

deviations.
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Figure 4: HIV-1 gp120 binds specifically to immobilized PF4. (A) Graded 

amounts of PF4 were immobilized overnight before incubating with varying 

concentrations of purified HIV-1 JRFL gp120. JRFL gp120 bound to PF4 in a 

concentration-dependent manner. (B) To assess selectivity of gp120 binding, we 

tested the ability of other chemokines of similar size and charge to PF4 to bind 

gp120. RANTES was used as a positive control and bound JRFL gp120. 

However, gp120 did not bind IL-8 or SDF-1. All experiments were done in at least 

triplicate in each of at least three independent experiments. Error bars represent 

standard deviations. 
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Figure 5: PF4 oligomeric state correlates with its biphasic activity on viral 

infection. (A) MAGI-R5 cells were infected with HIV-1 pseudoviruses bearing the 

glycoprotein of MLV (top), JRFL (middle), and VSV (bottom) in the absence or 

increasing presence of PF4WT, PF4K50E, or PF4E28R/K50E. (B) Virus entry was 

measured at high (4μM) concentrations of PF4WT, PF4K50E, or PF4E28R/K50E.  

PF4WT enhanced infection of HIV-1JRFL and HIV-1MLV approximately 2-fold. 

PF4K50E significantly inhibited HIV-1JRFL, HIV-1MLV, and HIV-1VSV-G entry.  
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PF4E28R/K50E restored the enhancement observed with PF4WT.   PF4WT and 

PF4E28R/K50E did not significantly impact HIV-1VSV-G entry. (C) High concentrations 

of the monomer-favoring mutant PF4K50E significantly reduced viral binding to 

cells. All experiments were done in at least triplicate in each of at least three 

independent experiments. Error bars represent standard deviations. ns p > 0.05, 

* p < 0.05, ** p < 0.005, *** p < 0.0001 
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Figure 6: Antibodies recognizing distinct oligomeric forms of PF4 impact 

chemokine activity during infection. 0, 200nM, or 4µM PF4 was preincubated 

in the absence or presence of excess RTO or KKO anti-hPF4 antibodies. The 

mixture was then added to MAGI-R5 cells, followed by HIV-1JRFL (top) or HIV-1MLV 

(bottom) infection. For both pseudoviruses tested, RTO and KKO did not 
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significantly impact viral infection in the absence of PF4. However, both 

antibodies prevented 200nM PF4-mediated viral inhibition. At 4µM PF4, RTO did 

not impact viral enhancement compared to no antibody control. KKO further 

enhanced viral infection in the presence of 4µM PF4. All experiments were done 

in at least triplicate in each of at least three independent experiments. Error bars 

represent standard deviations. ns p > 0.05, * p < 0.05, ** p < 0.005, *** p < 

0.0001 
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TABLE I Summary of T/F and chronic HIV-1 env clones 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             
 

Env 

Type 
Clade 

Numerical 

designation 

Env clone 

designation 

Coreceptor 

tropism 
Reference 

Accession 

number 

T/F B 1 REJO.D12.1972  R5 27 EU576707 

 
B 2 WEAUd15.410.5017  R5/X4 27 EU289202 

 
B 3 700010058.A4.4375  R5 27 EU576440 

 
B 4 700010077.SA2.6559  R5/X4 27 EU578999.2 

 
B 5 TT35P.11H8.2874  R5 27 EU577329 

 
B 6 1006-11.C3.1601 R5 27 EU575025 

 
B 7 1056-10.TA11.1826  R5 27 EU575305 

 
B 8 1058-11.B11.1550  R5/X4 27 EU289187 

 
C 1 2833264_3G11  R5 32 HQ595757 

 
C 2 1245045_3C7  R5 32 HQ595742 

 
C 3 ZM246F.F R5 28-30 n/a 

 
C 4 ZM247Fv2.fs  R5 28-30 n/a 

Chronic B 9 CRPE.B28.4072  R5/X4 27 EU578065.1 

 
B 10 JOTO.TA1.2247  X4 27 EU578181.1 

 
B 11 OLLA.A14.1923  R5 27 EU578231 

 
B 12 SAMI.A8.1863  R5 27 EU578272 

 
B 13 SHKE.A26.4112  R5 27 EU578453 

 
B 14 1632-a6 R5 31 HQ216883 

 
C 5 704010330.G5h  R5 32 JQ777128 

 
C 6 702010141_w12_e80.F  R5 32 JQ779320 

 
C 7 704010461.A7h  R5 32 JQ777137 

 
C 8 4403.A18 R5 33 HM070677 

 
C 9 4403.bmL.B6 R5 33 HM070754 
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CHAPTER 5 

Summary, discussion, and future directions 
 

PROJECT I: T/F AND CC DIFFERENTIALLY UTILIZE CCR5 
 

The concept of selective HIV-1 transmission was initially suggested by 

studies assessing envelope (env) diversity between donor-recipient pairs 

(transmission pairs) (299, 300, 304, 307). While these studies incited substantial 

interest and work in this area, they were limited by the fact that they were 

relatively qualitative in nature—chronically infected individuals were described as 

harboring genetically diverse viral quasispecies, and acutely-infected individuals 

could be grouped as having a “homogenous” or “heterogeneous” infection, born 

of a single donor viral variant or multiple closely-related donor variants, 

respectively. Thus, while it was apparent that HIV-1 transmission involved a 

genetic bottleneck, a more quantitative approach to enumerate and define the 

characteristics of transmitted viruses was required. The development of single-

genome amplification (SGA) aimed to precisely identify and quantitatively 

characterize the transmitted/founder (T/F) virus(es).  SGA involves limiting 

dilution of vRNA/cDNA, such that only a single template is amplified, followed by 

amplicon sequencing (131). SGA overcomes the limitations of conventional PCR 

followed by cloning and sequencing of the amplified template by eliminating Taq 

polymerase-induced recombination and ensuring proportional representation of 

target sequences (197, 238, 253, 255). Using this method, George Shaw and 
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colleagues were able to unambiguously infer the T/F env lineage of 98 out of 102 

acutely-infected individuals; each lineage was characterized by a distinctive set 

of identical or near identical sequences (131). Subsequent cloning and in vitro 

characterization of pseudoviruses bearing each of these Envs, demonstrated that 

all T/F Envs were functional; capable of mediating CD4- and CCR5-dependent 

cell entry. This is expected as these Envs successfully initiated infection in a new 

host. In contrast, it is not uncommon to find nonfunctional Envs in cloned Envs 

from chronically infected individuals (136, 200, 240). Studying SGA-derived T/F 

Envs has revealed that the most consistent property associated with transmitted 

viruses is the use of the CCR5 coreceptor (24, 51, 121, 131).  

CCR5 is a seven-transmembrane domain G-protein-coupled receptor 

(GPCR) that primarily functions as a chemokine receptor to regulate trafficking 

and the effector response of leukocytes. While CCR5 use is a major contributor 

to the genetic bottleneck, it is clear that on average one, or a select few, CCR5-

using (R5-tropic) variants with specific genetic signatures (see Chapter 1) cross 

the mucosal epithelium to infect a new host. The use of CCR5 to mediate viral 

entry can be inhibited by the small molecule antagonist maraviroc (MVC). MVC, 

and other small molecule antagonists discussed in chapter 1, function as 

allosteric inhibitors, inducing a conformational change of CCR5, which prevents 

the viral envelope glycoprotein (Env) gp120 from engaging the coreceptor. 

However, some viruses become resistant to MVC by acquiring mutations that 

enable them to recognize and bind to the drug-bound conformation of CCR5. 

Thus, coreceptor conformation is clearly important. We know that, like other 
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GPCRs (139), CCR5 exists in different conformations, perhaps related to 

membrane microdomains (186, 187), differences in posttranslational 

modifications such as sulfation and glycosylation (50, 84), and coupling to G 

proteins (226, 269). We and others have shown that distinct CCR5 conformations 

can been detected on multiple cell types through the use of conformation-

dependent antibodies (25, 153). Additionally, studies on MVC resistant viruses 

have shown variability in how viruses can productively engage CCR5—with 

some being more reliant on the amino terminus of CCR5, while others 

preferentially engage the second extracellular loop (3, 272). Moreover, some 

viruses are naturally resistant to CCR5-antagonists like MVC and can mediate 

entry via antagonist-bound CCR5 (108, 271). Given this background, it is logical 

to ask whether T/F viruses interact with CCR5 in a manner that is different from 

what is seen with viruses isolated from chronically infected individuals (chronic 

controls—CC). Understanding this phenotypic difference in coreceptor usage can 

provide insight into how Env-CCR5 interactions shape transmission fitness, and 

also inform the development of tests to better predict whether a patient will 

benefit from a CCR5-antagonist therapy.  

While we know that there exists a continuum of CCR5 engagement by 

various HIV-1 strains, the implications of these interactions are unknown. We 

were interested in understanding how various viruses interact with CCR5—

particularly, different conformations of CCR5, and whether this interaction was 

meaningful in the context of transmission. To this end, we evaluated a panel of 

87 CCR5-using viruses (from MVC treatment-naïve patients) to address 
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differences between T/F and CC viruses in their ability to mediate entry via CCR5 

in the presence of MVC. Our lab had previously reported no statistical difference 

in MVC sensitivity between subtypes B and C T/F and CC viruses on a microglial 

cell line—NP2/CD4/CCR5—stably expressing human CD4 and CCR5 (200, 295).  

In project I, however, we described a difference in the magnitude of MVC 

inhibition of T/F and CC viruses that was readily apparent on cells with high 

surface levels of CCR5. We can modulate cell surface expression of CCR5 using 

the 293-derived Affinofile cell line (126). Affinofile cells expressing low or high 

levels of CCR5 were infected with each of 87 viruses in the absence or presence 

of increasing concentrations (to saturating levels—6µM) of MVC, after which we 

calculated the maximal percent inhibition (MPI). The MPI measures residual 

entry of resistant viruses in the presence of MVC. We imposed an arbitrary MPI 

cutoff of 95%, where MPI values >95% were considered fully sensitive (FS) to 

MVC, while samples with MPIs ≤95% were defined as partially resistant (PR) to 

MVC. All 87 viruses were inhibited by >95% at 6µM MVC on low-CCR5 

Affinofiles. However, on high-CCR5 Affinofiles, only 66% of the viruses were 

inhibited by MVC by >95%, while 34% of the viruses exhibited PR in the 

presence of 6µM MVC, with some viruses exhibiting extensive MVC resistance. 

These results were confirmed using additional CCR5 antagonists, replication 

competent HIV-1, and on primary human CD4+ T cells. When we parsed the 

viruses in our panel by Env type, we found a difference in the frequency with 

which T/F and CC viruses exhibited partial MVC resistance (15% and 52%, 

respectively). From these data, we conclude that at baseline, there is a 
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significant variability in MVC MPI among different viral isolates and that the 

magnitude of this variability is in part dependent on CCR5 expression. 

Furthermore, these results suggest that T/F and CC viruses differentially utilize 

CCR5 to mediate entry (111).  

What does differential utilization of CCR5 signify in the context of 

transmission? The fact that the PR phenotype segregates with CC Envs 

suggests that this property is favored by the virus during a chronic infection, but 

disadvantageous to the virus (and likely selected against) during transmission 

and acute infection. One hypothesis is that at later stages of infection, when the 

virus is pressured by the host immune system and readily available target cell 

numbers precipitously decline, the ability to use multiple conformations of CCR5 

could expand the availability of CD4+ CCR5+ target cells. Indeed, Paul Gorry and 

colleagues have shown that R5-tropic viruses become increasingly resistant to 

CCR5 inhibitors with time, consistent with changes in CCR5 use (100, 221).  

Another hypothesis is that different conformational variants of CCR5 exist 

on mucosal targets cells that are readily available during acute 

infection/transmission, compared to CD4+ CCR5+ cells in the blood or other distal 

tissues later in infection. Employing a number of mAbs specific for different 

epitopes on CCR5, Berro et al (25) revealed the existence of multiple antigenic 

forms of CCR5 expressed on the surfaces of U87/CD4/CCR5 cells and CD4+ T 

cells. The authors further showed that CCR5 antagonist-sensitive and -resistant 

viruses use the forms of coreceptor differentially for entry in the presence or 

absence of CCR5 antagonists. These results and our data suggest that 
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differences in CCR5 conformation may provide additional insights into the 

coreceptor determinants of the PR phenotype and the significance of this 

phenotype during HIV-1 transmission/pathogenesis.  

Future studies should aim to define the molecular determinants of the PR 

phenotype and address the impact of differential CCR5 usage on mucosal 

transmission. First, chimeras can be used to elucidate the viral and coreceptor 

contribution to the PR phenotype by identifying Env and coreceptor molecular 

determinants of this phenotype. CCR5 is known to be conformationally dynamic, 

thus, comparing the conformational forms of CCR5 on target cells from mucosal 

tissue to those on blood-derived target cells using monoclonal antibodies will 

reveal whether there exists differences in CCR5 antigenic forms in distinct 

compartments. Next, it is important to investigate the role of this phenotypic 

difference during mucosal transmission in vivo.  The bone marrow-liver-thymus 

(BLT) humanized mouse model may be a suitable system for these studies 

because it has been shown to be the only mouse model that leads to the 

generation of a human mucosal immune system. Additionally, the model has 

been shown to faithfully repopulate the mouse female reproductive tract with the 

appropriate human immune cells (DCs, Macrophages, and T cells) (72). 

Moreover, these mice exhibit high numbers of human immune cells in the blood, 

as well as organs and tissues (176). Together these experiments will define the 

mechanisms and implications of variable CCR5 usage during mucosal 

transmission, which may provide new insights into HIV-1 therapy. 
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PROJECT II: PF4 INHIBITS AND ENHANCES HIV-1 INFECTION 

 Recent studies have described an anti-viral role for platelets (259). These 

specialized anucleated blood cells release a number of chemokines to promote 

coagulation. One such platelet-derived chemokine is platelet factor-4 (PF4), 

which was recently described to posses potent and broad anti-HIV-1 activity (15, 

259). However, despite in vivo plasma and local concentrations of PF4 being 

within the range used in these studies (36), HIV-1 is still able to establish 

productive infection. In this study, we sought to understand the mechanism of 

action of PF4 and whether it’s in vitro activity was biologically meaningful in the 

context of human infection.  

Utilizing a distinct panel of primary HIV-1 isolates and other viruses, we 

showed that the inhibitory effects of PF4 are not restricted to HIV-1 and 

constrained to a narrow concentration window. As the concentration of PF4 

increased, the inhibitory capacity of the chemokine waned, and infection was 

ultimately enhanced. Although PF4 was broadly active against a number of 

different retroviruses, the fact that it exhibited modest effects on VSV-G entry and 

no effect on H5N1 infection suggests that the chemokine functions in a relatively 

non-specific manner. Using an ELISA assay, we demonstrated that HIV-1 Env 

gp120 binds specifically and directly to immobilized PF4. However, exactly where 

PF4 binds on the viral envelope glycoprotein remains unclear—Auerbach et al. 

suggest that PF4 interacts with HIV-1 gp120 at a site proximal to (but not 

including) the CD4 binding site to inhibit infection (15). However, since not all 



 

 112

PF4-sensitive viruses require CD4 for entry, the precise site of PF4 binding on 

the viral envelope glycoprotein may have more generalizable characteristics, 

such as net charge or quaternary structure. 

Auerbach et al. and Tsegaye et al. demonstrated potent antiviral activity of 

recombinant PF4 and activated platelet supernatant, respectively.  Neither study 

reported the enhancing activity of PF4 we observed, though concentrations 

above 650nM were not tested.  However, consistent with what we report here, 

previous research by Schwartzkopff et al. showed that high amounts of PF4 

(4µM) potentiated HIV-1 infection in macrophage-colony stimulating factor (M-

CSF)-derived macrophages (249). The observation that PF4, at higher 

concentrations, enhanced viral infection is not surprising, as the enhancing role 

of certain CC-chemokines has been well characterized (97, 135, 183, 274). 

Trkola et al. reported that RANTES oligomers increase viral infectivity in vitro 

(274). The similarities between how RANTES and PF4 enhance viral infection 

are striking in that high concentrations (presumably oligomers) of both 

chemokines interact with glycosaminoglycans (GAGs) to increase viral 

attachment to the cell surface and subsequent infection. As was reported with 

RANTES, we also show specific interaction between HIV-1 gp120 and PF4, but 

not with other cationic chemokines (stromal derived factor-1 (SDF-1) and IL-8). 

Additionally, the effects of RANTES are also relatively non-specific as infection of 

HIV-1 pseudovirus bearing the glycoprotein of MLV or VSV is also enhanced.  

There are key differences, however, between the two chemokines that 

influences their role in modulating viral infection. First, RANTES and PF4 belong 
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to different subfamilies of chemokines; the former belongs to the CC-subfamily 

and the latter to the CXC-chemokine subfamily. Structurally, CC-chemokines are 

defined by the tandem arrangement of cysteine residues in the amino terminus, 

while CXC-subfamily cysteines are separated by a single amino acid. This subtle 

structural difference informs the quaternary structure of the chemokine and has 

implications not only for receptor recognition, but also oligomer formation (123, 

237). It is well known that chemokines oligomerize in a variety of homo- and 

hetero-oligomeric forms at high concentrations both in solution and in 

physiological settings to carry out their effector functions (16, 184, 185, 284). 

However, studies have reported differences in the quaternary structures of CC- 

and CXC-chemokines and suggested that these differences may be important for 

how chemokine subfamilies are recognized by, and signal through, their cognate 

receptors (123, 195, 216, 220, 286). To illustrate this point, Trkola et al. report 

that one mechanism by which RANTES enhances infection is by signaling 

through its G protein-coupled receptor CCR5. In addition to RANTES, previous 

research has shown that the α-chemokine SDF-1 enhances R5-tropic, but not 

X4-tropic, HIV-1 and VSV-G infection (169). Specifically, SDF-1 was reported to 

enhance infection via signaling-mediated increase of Tat transactivation of the 

HIV-1 long terminal repeat. In our study, however, two lines of evidence suggest 

that signaling via the PF4 receptor CXCR3B plays no appreciable role in the 

chemokine’s activity during infection; first, time-of-addition experiments showed 

that infection was inhibited or enhanced when PF4 was added either before or 

simultaneously with virus. It is reasonable to assume that if signaling was critical, 
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only with PF4 pretreatment of cells (presumably allowing sufficient binding and 

signaling events to occur) would PF4 possess anti- or proviral effects.  Second, 

pretreating cells with an antibody to PF4’s receptor CXCR3B inhibited agonist-

induced phosphorylation of Akt and p44/42 (Erk1/2), but did not ablate the 

biphasic activity of PF4 during viral infection (data not shown). It is possible that 

longer (>24 hrs) PF4 pretreatment could result in signaling-mediated effects on 

viral infection as observed with RANTES and SDF-1.   

Another significant difference between RANTES and PF4 that influences 

their role in modulating viral infection is the range of in vivo concentrations. The 

concentrations at which RANTES enhances infection is supraphysiological and 

unlikely to be found in vivo (274). However, PF4 concentrations that enhance 

viral infection (> 2µM) in vitro are likely to be present in vivo, where 

concentrations at local sites of platelet degranulation can be as high at 10µM 

(308). This suggests that, unlike RANTES, PF4 could modulate HIV-1 

pathogenesis by enhancing HIV-1 infection in vivo. Therefore, while RANTES, 

SDF-1, and PF4 similarly inhibit and enhance viral infection in a relatively non-

specific manner, understanding the differences in how these chemokines 

execute the same functions may elucidate a new paradigm for how we think 

about chemokines and their role during viral infection, and might reveal new 

virus-chemokine interactions that could influence virus infection in vivo. 

It is well documented that chemokines require interaction with GAGs in 

vivo to carry out their primary effector function of directing the migration of 

leukocytes to sites of injury or during usual immune surveillance (125, 144, 213).  
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Chemokine binding to GAGs on endothelial cells and extracellular matrix serves 

as a gradient to direct cell migration (2, 41, 227). Without this anchoring 

interaction, the chemokine would freely disperse, effectively lowering the 

concentration needed to activate its cognate receptor (213). This is verified by 

the fact that chemokines that are engineered to lack the GAG-binding domain 

can still interact with their cognate receptors, but fail to induce cell migration in 

vivo (5, 206, 213). Thus, it was logical to assume that GAGs likely play a role in 

the activity of PF4 during viral infection. Like most chemokines, PF4 binds with 

high affinity to polyanionic GAGs such as heparin and heparan sulfate 

proteoglycans (HSP) (156, 257). Moreover, it is secreted from activated platelets 

in conjunction with chondroitin sulfate proteoglycans (20, 116, 155). We showed 

that a cell surface molecule was partially involved in the activity of PF4 as 

evidenced by the fact that washing cells thoroughly post PF4 pretreatment before 

infection still decreased viral entry. Furthermore, we found that the addition of 

soluble GAGs (heparan and chondroitin sulfate proteoglycans) significantly 

mitigated the enhancing, but not the inhibitory, effect of PF4 by decreasing viral 

attachment to cells. This is not entirely surprising, as PF4 tetramers have been 

shown to exhibit higher affinity for GAGs due to their favorable quaternary 

structure, which exposes a ring of basic amino acids (264, 305). Since we 

observed the greatest impact of soluble GAGs in the presence of high 

concentrations of PF4, one might predict that uncoupling GAG-binding from PF4 

would attenuate or ablate the tetramer-related enhancement of infection.  
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PF4 exists in dynamic equilibrium in solution, where monomers aggregate 

into tetramers via dimer intermediates in a concentration dependent manner (20, 

172, 179, 233). However, under physiological conditions PF4 exists 

predominantly as a tetramer complexed with chondroitin sulfate proteoglycans 

(20, 116, 172, 179). Noticing that the biphasic activity of PF4 correlated with its 

concentration, we postulated that oligomeric state might contribute to the anti- 

and proviral effects. To address this, we utilized PF4 mutants that differ in their 

ability to oligomerize, while still retaining functionality (217). At comparably high 

concentrations (4µM), wildtype PF4 enhanced infection by HIV-1 JRFL, the 

monomer-favoring PF4K50E decreased infection, and the complementary mutant 

PF4E28R/K50E restored the enhancing phenotype.  From this, we concluded that 

the monomeric state of PF4 correlated with inhibition, while the presence of 

tetrameric PF4 (or absence of monomers) was associated with increasing viral 

infection. If monomers were fully responsible for the inhibitory effect we 

observed, we would predict that the monomer-favoring PF4K50E would be at least 

as potent as wildtype PF4 in inhibiting infection. However, we noted that the 

K50E mutation reduced the potency of PF4, while the complementary mutant 

PF4E28R/K50E partially restored the loss in potency. As mentioned above, PF4K50E 

and PF4E28R/K50E are both able to bind heparin comparable to wildtype PF4 (217), 

thus this decrease in potency is not due to a defect in chemokine function. We 

cannot, however, rule out the possibility that introducing a mutation(s) into PF4 

may affect other properties/domains of the protein that are important for its anti- 

or proviral activity, while only subtly affecting anionic-binding functionality.  
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Increased platelet activation and heparin-induced thrombocytopenia and 

thrombosis (HITT) are complications associated with HIV-1 infection (66, 201, 

251). PF4 is produced by megakaryocytes in the bone marrow and regulates 

hematopoetic stem cell cycle activity. The presence of PF4 in the bone marrow 

could enhance HIV-1 infection of stem cells and other progenitors, contributing to 

the well-documented hematopoietic abnormalities that are common in HIV-

infected individuals. The heightened activation of platelets leads to enhanced 

release of platelet-derived chemokines such as RANTES (113) and PF4. 

Previous studies examining the role of PF4 in HIV-1 infection have suggested 

that the potent in vitro inhibitory effects of PF4 may be exploited in vivo to 

prevent transmission. Though an attractive option, it may not be feasible given 

the data we describe in project II. In this study, we demonstrate that the inhibitory 

capacity of PF4 was confined to a narrow concentration range characterized by 

the prevalence of PF4 monomers. As monomers aggregate to form tetramers at 

high concentrations, we found that the inhibitory capacity of PF4 waned and viral 

infection was ultimately enhanced. Collectively, these data suggest that in vivo, 

where PF4 exists primarily as a GAG-associated tetramer, the inhibitory effects 

of the chemokine are less likely to predominate. In fact, enhancement of viral 

infection is most likely the physiological impact of PF4 during viral infection. 

Whereas Auerbach et al. reported that three of 13 primary HIV-1 isolates were 

resistant to PF4 inhibition, none of the 23 primary viruses used in this study 

showed a resistance phenotype. This suggests that PF4 has perhaps not applied 

sufficient pressure in vivo to drive the development of widespread resistance.  
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In vivo studies on the role of chemokines in a disease setting are 

inherently difficult to perform and can only prove association, not causation. 

However, further studies could examine the in vivo dynamics of PF4 and HIV-1 

pathogenesis. Specifically, measuring endogenous PF4 production levels (both 

locally and systemically) and/or genetic polymorphisms in PF4 and the impact on 

HIV-1 infection. Additionally, retrospective studies can be performed on HIV-1 

patients with platelet dysfunction to assess whether PF4 (and other platelet 

chemokines such as RANTES) levels correlate with disease progression and 

pathology. These studies would be informative for whether endogenous PF4 

levels (in addition to CD4+ T cell count) could be used as a prognostic factor in 

HIV-1 disease. 
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