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The Role of ΑV integrins in Human Skin Tissue Homeostasis, Wound
Healing and Squamous Cell Carcinoma

Abstract
Integrins play crucial roles in epithelial adhesion, proliferation, wound healing and cancer. In the epidermis,
the roles of many integrin subunits are incompletely defined and mechanistic details regarding their functions
are lacking. We performed a multiplexed shRNA screen to define roles for each subunit in human organotypic
skin. This screen identified the integrin αv class of heterodimers as essential for generation of human skin
tissue. We demonstrate that integrin αv loss drives a keratinocyte G1-S cell cycle checkpoint block.
Surprisingly, αv integrins are not localized within keratinocyte focal adhesions and instead maintain
proliferation by controlling c-myc translation through FAK, p38 and p90RSK signaling pathways. These
phenotypes depend only on αv’s binding partners β5 and β6, but not β1 or β8. Utilizing inducible genetic
depletion of integrin αv, or blocking antibodies targeting αv heterodimers, we show that αv integrins are
required for de novo tissue generation, but dispensable for epidermal maintenance. In an in vivo human
xenograft skin model, we use blocking antibodies to show that integrin αv is required for epidermal
proliferation during wound healing, but is dispensable for normal epidermal homeostasis.

In organotypic human neoplasias driven by Cdk4 R24C and oncogenic H-Ras G12V, we show that integrin αv
is necessary for neoplastic tissue thickness and invasion through the basement membrane. This is dependent
on expression of both binding partners β5 and β6. Blocking antibodies targeting αv heterodimers reduce
tumor burden and proliferation in an inducible, orthotopic xenograft cutaneous squamous cell carcinoma
tumor model. In conclusion, we demonstrate, for the first time, essential roles for αv integrins in human
cutaneous wound re-epithelialization and tumorigenesis. We further determine a novel focal adhesion-
independent signaling mechanism for αv’s involvement in cell cycle progression.
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ABSTRACT 

THE ROLE OF αv INTEGRINS IN HUMAN SKIN TISSUE HOMEOSTASIS, WOUND HEALING 

AND SQUAMOUS CELL CARCINOMA 

Elizabeth K. Duperret 

Todd W. Ridky 

Integrins play crucial roles in epithelial adhesion, proliferation, wound healing and cancer. 

In the epidermis, the roles of many integrin subunits are incompletely defined and mechanistic 

details regarding their functions are lacking. We performed a multiplexed shRNA screen to define 

roles for each subunit in human organotypic skin. This screen identified the integrin αv class of 

heterodimers as essential for generation of human skin tissue. We demonstrate that integrin αv 

loss drives a keratinocyte G1-S cell cycle checkpoint block. Surprisingly, αv integrins are not 

localized within keratinocyte focal adhesions and instead maintain proliferation by controlling c-

myc translation through FAK, p38 and p90RSK signaling pathways. These phenotypes depend 

only on αv’s binding partners β5 and β6, but not β1 or β8. Utilizing inducible genetic depletion of 

integrin αv, or blocking antibodies targeting αv heterodimers, we show that αv integrins are 

required for de novo tissue generation, but dispensable for epidermal maintenance. In an in vivo 

human xenograft skin model, we use blocking antibodies to show that integrin αv is required for 

epidermal proliferation during wound healing, but is dispensable for normal epidermal 

homeostasis. 

In organotypic human neoplasias driven by Cdk4 R24C and oncogenic H-Ras G12V, we 

show that integrin αv is necessary for neoplastic tissue thickness and invasion through the 

basement membrane. This is dependent on expression of both binding partners β5 and β6. 

Blocking antibodies targeting αv heterodimers reduce tumor burden and proliferation in an 

inducible, orthotopic xenograft cutaneous squamous cell carcinoma tumor model. In conclusion, 

we demonstrate, for the first time, essential roles for αv integrins in human cutaneous wound re-

epithelialization and tumorigenesis. We further determine a novel focal adhesion-independent 

signaling mechanism for αv’s involvement in cell cycle progression.  
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CHAPTER 1 

Introduction: Integrins and focal adhesion proteins in skin and skin cancers 

 

Parts of this chapter have been previously published in: 

 

Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell 

carcinoma. Cell Cycle. 2013; Oct 15;12(20):3272-3285. Review.  

 

Duperret EK, Dahal A, Ridky TW. Focal adhesion-independent integrin αv regulation of FAK and 

c-myc is necessary for 3D skin formation and tumor invasion. J Cell Sci. 2015; 128(21):3997-

4013.  

 

Duperret EK, Oh SJ, McNeal A, Prouty SM, Ridky TW. Activating FGFR3 mutations cause mild 

hyperplasia in human skin, but are insufficient to drive benign or malignant skin tumors. Cell 

Cycle. 2014;13(10):1551-1559. 

 

Overview 

The discovery of focal adhesions in the 1970’s as highly conserved signal integrators that 

physically link the extracellular matrix (ECM) and the actin cytoskeleton suggested that these 

large protein complexes may be functionally necessary for tissue structure and the multicellularity 

of organisms (Hynes, 2004). Integrins, which function as αβ heterodimers, are catalytically 

inactive receptors within focal adhesions (FAs) that directly bind ECM ligands (such as Collagen, 

Fibronectin, and Vitronectin, among others) to initiate downstream signaling responses. There is 

a large number of integrin subunits (18 α subunits and 8 β subunits) and αβ heterodimers (24 

total), all of which have some redundancy in ligand binding. Despite this, many individual integrin 

subunits are necessary for organismal viability (Bader et al., 1998; Fassler and Meyer, 1995; 

Gurtner et al., 1995; Stephens et al., 1995; Zhu et al., 2002). Relevant mouse models have 
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revealed that certain integrin subunits or focal adhesion proteins are necessary for embryonic 

development, while others are required only for development and homeostasis of certain tissue 

types. This is very apparent in skin, where loss of specific FA proteins can lead to defects in 

adhesion, wound healing and proliferation. 

In pathological conditions such as squamous cell carcinoma, micro-environmental 

changes cause disorganization of the epidermis, degradation of the basement membrane, 

overexpression of specific integrin subunits and altered secretion and cleavage of ECM 

components. These micro-environmental changes lead to altered focal adhesion formation and 

downstream signaling, which has been shown to enhance the ability of tumor cells to proliferate, 

invade and metastasize. Functional studies defining the roles of specific focal adhesion complex 

proteins in both normal and tumor tissues has led to a better understanding of how individual 

members of these complexes can be targeted therapeutically. 

 

Structure and organization of the skin 

 Similar to nearly every epithelial tissue in the body, the skin contains a stratified tissue 

layer lined with an extracellular matrix-rich basement membrane zone, and an underlying layer of 

dermis, immune cell infiltrates, fat and connective tissue (Watt and Fujiwara, 2011). Unlike many 

other tissues in the body, however, the epidermal portion of the skin is exposed to air and the 

environment, and thus comes in contact with heat, infectious agents, microbes, chemical 

carcinogens, ultraviolet radiation and physical abrasion. Thus, the epidermis of the skin must 

provide 1) a protective barrier to prevent excessive water loss and infection, 2) protection against 

UV- and chemical-induced carcinogenesis, and 3) a mechanism for rapid tissue regeneration 

upon injury. In addition to the inter-follicular epidermis, the epidermis contains several specialized 

appendages, including hair follicles, sweat glands and sebaceous glands. Unlike most other 

mammals, human skin consists primarily of inter-follicular epidermis, with thickness ranging from 

0.05mm (on the eyelids) to 1.5mm (on the palms and soles). This is in contrast to mice, which 

have vastly more hair follicles, and much thinner, less protective epidermis that is <0.025mm 
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(only 2-3 cell layers) thick (Khavari, 2006). For this dissertation, I will focus specifically on the 

inter-follicular epidermis. 

 The human inter-follicular epidermis consists of several layers of keratinocytes (the 

epithelial cells of the skin). All of these cells contain fibrous structural intermediate filaments 

called keratins. The basal layer is a one-cell thick layer that lines the basement membrane and is 

highly proliferative (Blanpain and Fuchs, 2009). This layer is thought to contain inter-follicular 

epidermal stem cells, though the exact properties of these stem cells are highly contested (Fuchs, 

2008; Hsu et al., 2014; Watt and Fujiwara, 2011). Melanocytes, pigment-producing cells of the 

epidermis, are interspersed throughout the basal layer at a ratio of approximately 1:5 

(melanocyte:keratinocyte). Melanocytes produce pigment and transfer pigment to keratinocytes 

for protection against UV-induced carcinogenesis. Basal epidermal keratinocytes differentiate into 

the spinous layer. Spinous layer cells lose their proliferative capacity, and begin to express 

differentiation markers such as Keratin10, Keratin1 and Involucrin (Fuchs, 2008; Lopez-Pajares et 

al., 2012). Langerhans cells, specialized dendritic cells, are located within the spinous layer to 

help fight infection. In the granular layer, the keratinocytes undergo enucleation and contain 

cytoplasmic granules that hold keratin filaments together. Lamellar bodies, secretory organelles 

that release impermeable lipids via exocytosis, begin to form in the spinous and granular layers. 

The final stage of differentiation is in the formation of the stratum corneum at the skin surface 

(Fuchs, 2008). In the stratum corneum, keratinocytes are converted into a non-living, cornified 

keratin-rich layer which provides most of the protective barrier function of the skin (Fuchs, 2008). 

 In response to injury, human wounds heal through three major processes: re-

epithelialization, deposition of granulation tissue (connective tissue) and contraction (Grinnell, 

1994; Singer and Clark, 1999). Upon injury, fibroblasts migrate into the wound space and begin to 

proliferate and secrete extracellular matrix proteins such as Fibronectin, Vitronectin and 

Collagen—termed granulation tissue (Arwert et al., 2012; Schäfer and Werner, 2008; Singer and 

Clark, 1999). Angiogenesis into the granulation tissue occurs, and leukocytes migrate rapidly to 

the wound site to prevent infection (Shaw and Martin, 2009; Singer and Clark, 1999). Then, 
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epidermal keratinocytes migrate over the granulation tissue and proliferate to form full-thickness 

epidermis (Arwert et al., 2012; Singer and Clark, 1999). Both keratinocytes and fibroblasts 

synthesize key extracellular matrix components to re-form the basement membrane beneath the 

wound. Some contraction does occur during human wound healing, primarily due to pulling of 

fibroblasts on the extracellular matrix, which typically results in excess Collagen deposition and 

scarring (Penn et al., 2012; Shaw and Martin, 2009; Werner and Grose, 2003). Contraction and 

scarring are not essential for wound healing in humans, since scarless fetal wounds are observed 

(Penn et al., 2012). Disruption of any of the major phases of wound healing—re-epithelialization, 

granulation tissue formation, or contraction—can lead to complications such as chronic wounds 

or pathological scarring.  

 

Squamous Cell Carcinoma (SCC): Current Therapy 

Cutaneous squamous cell carcinoma (cSCC) is a generally under-appreciated public 

health concern, as non-melanoma skin malignancies cases are typically excluded from national 

cancer registries. The incidence of cSCC in the US is now estimated to be over 700,000 new 

cases/year, with a 4-12.5% risk of metastasis (Brantsch et al., 2008; Cherpelis et al., 2002; 

Rogers et al., 2010). Although this metastasis risk is lower than many other malignancies, the 

large burden of disease is such that in most regions of the U.S., total deaths due to cSCC may be 

as common as those from melanoma (Karia et al., 2013). While surgical excision is very effective 

treatment for local tumors, therapeutic options for disseminated disease are limited with few 

proven effective treatments. Clinical treatment regimens based on traditional chemotherapeutic 

agents including cisplatin, bleomycin, doxorubicin and fluoropyrimidines, radiation therapy, or 

newer targeted biologics including EGFR or general tyrosine kinases inhibitors do not result in 

long-term remissions in most cases (Cranmer et al., 2010; Maubec et al., 2011; Preneau et al., 

2014). New therapeutic agents are needed to improve treatment outcomes for unresectable 

cSCC. 
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cSCC is primarily the consequence of chronic UV photodamage resulting in loss of p53 

function, followed by activation of EGFR and its downstream pathways including Ras MAPK, 

PI3K/Akt, PLCγ/PKC, and Src kinases (Ratushny et al., 2012). Oncogenic signaling through 

these pathways in skin, as well as other epithelial tissues, is frequently associated with 

upregulation of integrin proteins. As activation of effector cascades initiating at integrin-containing 

focal adhesions appears to be necessary for the full malignant potential of some epithelial tumors, 

targeting integrins at the relatively accessible plasma membrane is an attractive option that may 

have clinical utility (Reuter et al., 2009). 

 

Models for studying wound healing and squamous cell carcinoma 

 Historically, skin tissue homeostasis, wound healing and tumorigenesis have been 

studied primarily using in vivo mouse models. Important considerations for the study of wound 

healing in a laboratory setting are key differences between mouse and human wound healing. 

Mice have an additional muscle layer beneath the dermis called the panniculosus carnosus, 

which contributes significantly to the process of wound contraction, yet is not found in human skin 

(with the exception of certain portions of the head and neck region) (Wong et al., 2011). Rodents 

also have much looser skin, which results in rapid wound contraction with basically no residual 

scarring (Wong et al., 2011). This rapid wound contraction in murine models leads to little re-

epithelialization, and thus contributions of epidermal keratinocytes to wound healing are difficult to 

study in these models. To prevent this rapid wound contraction, many groups have adopted a 

wound split protocol, in which the mouse skin is held in place during the course of wound healing 

(Galiano et al., 2004; Wang et al., 2013). Another approach is to graft human skin onto 

immunocompromised mice, and then wound the human skin tissue. This has been shown to 

significantly reduce the amount of contraction in the wound and re-capitulate the key features of 

human skin wounding in vivo (Escámez et al., 2004; Truong et al., 2005). 

 Chemical carcinogenesis protocols have been used for over 60 years for the study of 

cutaneous squamous cell carcinomas in mice. In a traditional protocol there are two stages: the 
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application of a chemical carcinogen, such as DMBA (7,12-Dimethylbenz(a)anthracene), which is 

known to cause activating mutations in the proto-oncogene H-Ras, followed by treatment with a 

tumor promoter such as TPA (12-O-tetradecanoylphorbol-13-acetate), which has a mitogenic 

function to accelerate tumor formation (Abel et al., 2009). Results from this model vary greatly 

with the mouse strain, which can impact the rate at which tumors form and the malignant potential 

of individual tumors (Abel et al., 2009). High levels of UVB exposure, over long periods of time, 

can also induce Squamous Cell Carcinoma formation in hairless mice (Tang et al., 2007). 

Transgenic mouse models driving expression of Src, Fyn, MEK-1, H-Ras G12V and ErbB2 in the 

epidermis develop cutaneous SCCs (Ratushny et al., 2012). While all of these mouse models for 

SCC formation provide an elegant way to study tumor progression in an in vivo setting, there are 

of course drawbacks. Transgenic models take a long time to develop, which makes it difficult to 

functionally interrogate signaling pathways that are deregulated during tumor progression. 

Additionally, there are key differences between mouse and human skin, as reviewed earlier in this 

chapter, which may result in differences between mouse and human tumorigenesis. 

Additional models for studying human cSCC tumors in vivo include the use of human 

tumor cell lines, which can be injected subcutaneously and develop tumors rapidly (Ratushny et 

al., 2012). In this model, immunocompromised mice must be used, and thus the contribution of 

the immune system cannot be studied. Gene expression can be manipulated in 2D culture using 

lentiviruses to study functional roles for genes within the tumor cells. However, subcutaneous 

tumors do not reflect the proper tissue microenvironment and are not lined with basement 

membrane. 

In our laboratory we have elected to utilize genetically engineered human skin xenografts 

for studying skin and skin cancers (Duperret et al., 2014; Duperret et al., 2015; Lazarov et al., 

2002; Ridky et al., 2010). As a matrix scaffold we utilize intact human dermis containing a native, 

fully functional basement membrane. We isolate primary human keratinocytes, melanocytes and 

fibroblasts from human foreskins, culture these cells on plastic to manipulate gene expression, 

and then seed the cells onto a dermal matrix that is supported at the air-liquid interface using 
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metal support stands (Figure 1.1A). After only 2 weeks in culture, this tissue exhibits complete 

stratification and differentiation to form 3D skin in vitro (Figure 1.1C). This 3D skin contains proper 

expression of the differentiation marker Keratin10 in the suprabasal layers, and the proliferation 

marker Ki67 in basal epidermal cells (Figure 1.1C). We can incorporate melanocytes at the 

basement membrane to form pigmented skin, and can graft this skin onto immunocompromised 

mice (Figure 1.1B). We have the ability to transduce these keratinocytes with a physiologically 

relevant set of oncogenes—Cdk4 (R24C, resistant to cyclin dependent kinase inhibitors), 

dominant-negative p53 (dnp53, R248W) and oncogenic H-Ras (G12V)—to form squamous cell 

carcinoma in vivo (Figure 1.2). This SCC displays high levels of proliferation and ERK1/2 

phosphorylation (Figure 1.2). This is an ideal model for studying integrin signaling, because it 

contains a physiologically relevant human extracellular matrix and basement membrane zone. 

 

Focal adhesion structure and dynamics 

Integrins are delivered to the cellular membrane as inactive, bent heterodimers. These 

heterodimers are initially partially activated through binding of cytoplasmic proteins (primarily 

Talin and Kindlin) to the intracellular integrin tails (“inside-out” signaling). Subsequent binding to 

extracellular matrix ligands (“outside-in” signaling), further extends the heterodimer and generates 

the fully-active receptor. These integrin receptors lack intrinsic catalytic activity, and execute their 

signaling and structural roles through recruitment of other proteins to adhesion complexes at the 

plasma membrane (Figure 1.3). Many of these focal adhesion proteins directly link integrins to the 

Actin cytoskeleton, thus allowing cells to directly sense their environment and exert forces that 

result in activation of signaling pathways—a process termed mechanotransduction. 

Adhesion formation typically occurs at the leading edge of the cell, within the 

lamellipodium. Nascent adhesions are immobile and transient, and typically consist of Talin, 

Vinculin, FAK (Focal Adhesion Kinase) and p130CAS (CRK-associated substrate), among many 

others (Lo, 2006). Nascent adhesion formation is dependent on the Actin cytoskeleton, and 

maturation of nascent adhesions into mature adhesions is a Myosin II-dependent process 
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(Vicente-Manzanares and Horwitz, 2011; Zamir and Geiger, 2001). The process of adhesion 

maturation is dependent on the motility of the cells: more Actin cytoskeleton turnover leads to 

faster adhesion turnover and less adhesion maturation (Vicente-Manzanares and Horwitz, 2011; 

Zamir and Geiger, 2001). Mature adhesions are pulled towards the center/trailing edge of the cell, 

and form more stable interactions with bundled Actin filaments. These mature focal adhesions 

have a much longer half-life and are larger and more elongated (Vicente-Manzanares and 

Horwitz, 2011; Zamir and Geiger, 2001). 

To date, mass spectrometry approaches have identified hundreds of proteins associated 

with focal adhesions (Byron et al., 2012; Humphries et al., 2009; Schiller et al., 2013). While 

many of these specific proteins are certainly integrin heterodimer, cell type and environment 

dependent, a putative core set of focal adhesion proteins has been identified across all cellular 

contexts (Humphries et al., 2009). This core set of adhesion proteins include structural proteins 

(α-Actinin, Parvin, Talin, Tensin, VASP, Vinculin, and Kindlin), kinases (FAK and Src) and 

adapters (p130Cas, Migfilin, Paxillin, PINCH and Zyxin) (Humphries et al., 2015; Kanchanawong 

et al., 2010). High resolution microscopy techniques have demonstrated that these proteins are 

organized in specialized layers: a membrane-proximal layer containing integrin tails, FAK and 

Paxillin, an intermediate layer containing Vinculin and Talin, and a membrane-distal layer that 

directly connects the adhesion to the actin cytoskeleton through Zyxin, VASP and α-Actinin 

(Kanchanawong et al., 2010). Because of the enormity of potential interactions within these 

complex adhesion structures, there is still active research ongoing to define 1) which specific 

adhesion components are required for adhesion formation and maturation, 2) which adhesion 

components are required for physiologic processes, including in vitro cellular phenotypes and in 

vivo morphologic processes, and 3) the role for focal adhesion proteins or focal adhesions in 3D 

tissues. It is recently becoming clear that focal adhesions have drastically different architecture in 

3D environments; however, many focal adhesion proteins appear to maintain their 2D functions 

despite this different organization (Fraley et al., 2010). 
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Biological processes and signaling pathways regulated by integrins 

 The primary function of integrin adhesions is to promote cellular proliferation, adhesion, 

survival and migration. Many of the major biological processes regulated by integrins and focal 

adhesions are thought to be due to the action of the major kinases within these adhesions—FAK 

and Src—and their interactions with focal adhesion adaptor proteins (Moreno-Layseca and 

Streuli, 2014; Schwartz and Assoian, 2001). 

 FAK can directly bind to the p85 subunit of PI3K, thus initiating a PI3K-Akt downstream 

signaling pathway which blocks the action of several cyclin dependent kinase inhibitors and pro-

apoptotic proteins (Reiske et al., 1999). This pathway ultimately leads to Skp2-dependent p27 

degradation and down-regulation of p21 (Shanmugasundaram et al., 2013). FAK can also 

stimulate Ras-ERK signaling to promote Cyclin D1 transcription (Zhao et al., 2001). A 

FAK/Src/p130CAS complex is able to recruit Rac1 to the membrane to stimulate JNK signaling 

and subsequent cell cycle progression (Oktay et al., 1999). FAK also influences a major cell cycle 

checkpoint, p53, by binding to p53 or facilitating its degradation, to suppress its apoptotic and 

transcriptional activities (Golubovskaya et al., 2005; Lim et al., 2008). In addition to stimulation of 

FAK activity, integrins can also directly complex with growth factor receptors (such as EGFR and 

PDGFR) and mediate their activity to directly enhance PI3K and MAPK signaling pathways (Bill et 

al., 2004).  

 FAK, along with Paxillin, directly binds to GEFs and GAPs that control small GTPase 

activation (specifically, Rac activation) to ultimately promote cellular migration (Provenzano and 

Keely, 2011). Src binding to FAK through its SH2 domain is absolutely essential for cell migration 

(Yeo et al., 2006). The FAK-Src complex promotes both focal adhesion assembly and 

disassembly, and thus more rapid cell migration, through 1) phosphorylation of α-Actinin, to 

reduce crosslinking of stress fibers and release of these fibers from focal adhesions, 2) 

phosphorylation of N-WASP to promote Arp2/3-mediated Actin polymerization, and 3) 

phosphorylation of p190RhoGEF to promote stress fiber formation (Mitra et al., 2005). While FAK 

and Src play the major enzymatic roles in promoting these signaling pathways and cellular 
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phenotypes, other adaptor and structural focal adhesion proteins are key in coordinating the 

recruitment of major signaling players to these signaling hubs at the membrane. 

 

Hemidesmosomes in skin 

Integrin heterodimers are key components of two distinct types of adhesion complexes: 

FA complexes, which link the Actin cytoskeleton to the ECM, and hemidesmosomes, which 

structurally link intermediate filaments to the ECM.  Through these complexes, integrin receptors 

play both a structural role mediating physical attachment of epithelial cells to underlying 

basement membrane, and also a signaling role promoting cellular proliferation and migration. 

Hemidesmosomes play major structural role in the epidermis, but have also been shown 

to activate several intracellular signaling pathways, including Rac1, RhoA and Akt signaling 

(Marinkovich, 2007). Unlike focal adhesions, hemidesmosomes are not frequently recycled, and 

therefore serve to maintain keratinocyte anchorage to the basement membrane. Loss of the only 

hemidesmosomal integrin heterodimer, α6β4, leads to severe epidermal adhesion defects 

(Dowling et al., 1996; Georges-Labouesse et al., 1996). Integrin α6β4 and its ligand, Laminin-

332, are also both required for squamous cell carcinoma formation in relevant epidermal in vivo 

models (Dajee et al., 2003). Because of the frequently severe skin blistering seen in patients 

lacking a number of different extracellular and intracellular hemidesmosomal proteins, targeting 

hemidesmosomal components was initially not considered to be a viable therapeutic strategy.  

However, it was later discovered that a specific domain of Laminin-332, G45, is present only in 

tumor tissue, and promotes tumor formation and progression (Tran et al., 2008). Blocking 

antibodies against G45 were shown in a pre-clinical model to be effective against SCC tumor 

formation through blockade of PI3K and ERK signaling, but to have no effect on normal skin 

homeostasis (Tran et al., 2008). This is one of the few examples of targeting specific ECM 

ligands for cancer therapy, but highlights the need for a deeper understanding of how the role of 

adhesion signaling and specific ECM ligands differ between various homeostatic and pathologic 

states.  
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Focal adhesion integrins in skin 

 Much effort has been focused on defining roles for individual integrin subunits in 

epidermal homeostasis. As integrin signaling requires an intact, structurally correct basement 

membrane zone lacking in traditional tissue culture, much of this work has employed mouse 

genetic models. Efforts have been made to generate knockout mice or conditional knockout mice 

for each of the 26 integrin subunits. Out of these 26 subunits, 18 are expressed at a detectable 

level in human or mouse skin, while the others are leukocyte-specific. Knockout mice have been 

generated for all of these 18 subunits, but many of these mice experience embryonic lethality and 

the skin specific null phenotypes have not been determined for some subunits (Table 1.1). 

Regardless, the available knockout mice have provided valuable insight into the roles of integrins 

in epidermal proliferation, hair follicle formation and turnover, wound healing and susceptibility to 

Squamous Cell Carcinoma (Janes and Watt, 2006; Margadant et al., 2010). In the next section, I 

provide a brief overview of these phenotypes. 

 

β1 integrin and its phosphorylation 

Severe phenotypes are seen in β1-null mouse skin. Loss of β1 during development leads 

to severe epidermal defects, including skin blistering and hair loss (Brakebusch et al., 2000; 

Raghavan et al., 2000). There are differences in these phenotypes depending on the promoter 

used for Cre-mediated recombination. K5-Cre induced β1 deletion leads to differentiation defects, 

skin thickening and mouse death at approximately 6 weeks after birth, potentially due to 

hypoproliferation in the esophagus (Brakebusch et al., 2000). K14-Cre induced β1 deletion 

results in normal differentiation, but significant epidermal hypoproliferation, and perinatal death 

within days after birth (Raghavan et al., 2000). Despite these severe developmental defects, β1 

loss in adult mouse skin has no apparent deleterious phenotype (López-Rovira et al., 2005; 

Reuter et al., 2009). Using gene expression profiling and network topology analysis, integrin β1 

was identified as a key oncogenic hub in a human skin graft model of squamous cell carcinoma 

(Reuter et al., 2009). Subsequently, antibody-mediated blockade of integrin β1 both prevented 
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tumor formation and slowed tumor progression, with no deleterious effects on normal human skin 

tissue or overall mouse health (Figure 1.3B) (Reuter et al., 2009). 

Binding of Talin to β1 cytoplasmic tails disrupts a salt bridge between the α and β 

cytoplasmic tails, helping to separate the tails and enhance integrin binding affinity to ECM 

ligands. This is thought to be the first step in “inside-out” integrin activation. With subsequent 

integrin activation and clustering, Src phosphorylation of β1 tyrosines in the cytoplasmic NPxY 

motifs is thought to reduce binding of the adaptor proteins Talin and Kindlin (Anthis et al., 2009). 

This is consistent with the rounded morphology and loss of adhesion seen in v-Src transformed 

cells, which have high levels of β1 tyrosine phosphorylation (Sakai et al., 2001). In addition, focal 

adhesion kinase (FAK), which plays a role in promoting oncogenic transformation, is activated in 

response to β1 integrin phosphorylation (Figure 1.3) (Wennerberg and Armulik, 2000). 

Complicating this understanding determined largely from cell culture systems are in vivo 

studies suggesting that the tyrosine residue itself, and not its phosphorylation, is most important 

for β1 function (Chen et al., 2006). Mutation of tyrosine to alanine in either the membrane 

proximal NPxY motif (Y783, Talin binding motif) or the membrane distal NPxY motif (Y795, 

Kindlin binding motif) results in embryonic lethality (Czuchra et al., 2006). However, mutation of 

either of these residues to phenylalanines, which contains the aromatic ring but is unable to be 

phosphorylated, results in viable, fertile mice with no apparent abnormalities (Chen et al., 2006; 

Czuchra et al., 2006). 

Mice with keratinocyte-restricted expression of both Y783A and Y795A (YY/AA) using the 

K5-Cre promoter phenocopy mice with keratinocyte-restricted deletion of β1 (Czuchra et al., 

2006). These mice experience impaired hair follicle morphogenesis, abnormal skin pigmentation, 

skin blistering and thickened epidermis (Czuchra et al., 2006). In vitro, keratinocytes with the 

YY/AA mutation have no β1 integrin activation, and decreased expression of other integrin 

subunits, including β4, α6 and α2 (Czuchra et al., 2006). Mice with keratinocyte-restricted 

expression of either Y783A or Y795A have much less severe epidermal defects (Meves et al., 

2013). These individual mutations lead to patchy hair loss, but normal proliferation, epidermal 
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adhesion and hemidesmosome localization (Meves et al., 2013). In vitro, keratinocytes containing 

the Y783A mutation experience adhesion and spreading defects, and rapid terminal 

differentiation, implying that binding of Talin to β1 inhibits keratinocyte differentiation (Meves et 

al., 2013). Mice containing both Y783F and Y795F mutations (YY/FF mice) develop normally and 

have normal skin (Meves et al., 2011). However, these mice are less susceptible to DMBA-TPA 

induced skin tumorigenesis (Meves et al., 2011). Mutation of each residue alone does not have 

any effect on susceptibility to tumor formation (Meves et al., 2011). Although Talin1, Talin2, 

Kindlin1 and Kindlin2 preferentially bind to wild-type β1 over YY/FF β1 in vitro, binding to the 

mutants is only reduced by approximately 50% (Meves et al., 2011). This indicates that the YY/FF 

mouse may have hypomorphic β1 activity, which is sufficient to block tumor formation but not to 

affect normal skin homeostasis. 

Integrin β1 binds to α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11 and αv. Integrin β1 

heterodimers bind to Laminin (α1β1, α2β1, α3β1, α6β1, α7β1, α10β1), Collagen (α1β1, α2β1, 

α10β1, α11β1), Thrombospondin (α2β1, α3β1, α4β1), Fibronectin (α4β1, α5β1, α8β1, αvβ1, 

αvβ3), Osteopontin (α4β1, α5β1, α8β1, α9β1, αvβ1), Tenascin (α8β1, α9β1), VCAM-1 (α4β1, 

α9β1), LAP-TGFβ (αvβ1) or Vitronectin (α8β1) (Humphries et al., 2006). As summarized in 

Table1.1, integrin α1, α2, α7, α10 and α11 knockout mice are viable and fertile, with no apparent 

epidermal defects and no skin-specific knockout mice exist (Bengtsson et al., 2005; Chen et al., 

2002; Gardner et al., 1996; Mayer et al., 1997; Popova et al., 2007; Werner et al., 2000). Integrin 

α4, α5 and α8 knockout mice die in utero or immediately after birth, and no skin-specific knockout 

mice exist (Gurtner et al., 1995; Müller et al., 1997; Yang et al., 1993). 

Integrin α3-null mice exhibit skin blistering and basement membrane disorganization, as 

well as kidney and lung defects that lead to lethality shortly after birth (Kreidberg et al., 1996). 

Mice with epidermis-specific ablation of integrin α3 exhibit the same skin blistering defect and 

additional hair follicle and wound healing abnormalities (Conti et al., 2003; DiPersio et al., 2000; 

Margadant et al., 2009). Previously, human skin disease had not been associated with mutations 

in integrin α3, or any other FA integrin. Recently, however, homozygous mutations in the integrin 
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α3 gene were described in three patients with skin blistering disease (Has et al., 2012). These 

three mutations are different, but are all predicted to lead to loss of integrin α3 function (Has et 

al., 2012). All three of these patients died within 2 years of birth due to infection or multi-organ 

failure associated with reduced kidney and lung barrier function, similar to the phenotype seen in 

integrin α3-null mice (Has et al., 2012; Kreidberg et al., 1996). It was also recently shown that 

mice with a skin-specific deletion of integrin α3 have significantly reduced susceptibility to tumor 

formation upon DMBA-TPA treatment (Sachs et al., 2012). The authors show that this reduced 

susceptibility to tumor development is the result of increased epidermal turnover seen in mouse 

epidermis lacking α3, leading to increased differentiation and shedding of the cells that 

accumulate mutations upon carcinogen treatment (Sachs et al., 2012). Despite this reduced 

tumor formation, the Squamous Cell Carcinomas that do form in mouse skin lacking α3 show 

reduced differentiation, an indication of increased malignancy, suggesting that integrin α3 plays 

dual roles in tumor formation and progression (Sachs et al., 2012). 

 Several other β1-binding integrins are utilized in specific epidermal contexts. For 

instance, integrin α9 plays a crucial role in enhancing keratinocyte migration and proliferation 

during wound healing (Singh et al., 2009). Integrin α2 was shown to play a key role in HPV-driven 

SCC tumorigenesis and metastasis (Tran et al., 2011). K14-HPV16/ITGA2-/- mice had reduced 

lymph node metastases in comparison to K14-HPV16/ITGA2+/+ mice (Tran et al., 2011). In 

addition, SCC cell lines developed from tumors in the K14-HPV16/ITGA2-/- mice had reduced 

tumor growth and increased tumor latency compared to SCC lines derived from K14-

HPV16/ITGA2+/+ mice (Tran et al., 2011). While it remains to be seen whether this metastasis 

phenotype is microenvironment-dependent, this study indicates that targeting integrin α2 may be 

a viable therapeutic target for HPV-driven SCC. 

 

αv integrins 

αv integrin binds to β1, β3, β5, β6 and β8. None of these integrin heterodimers bind to 

Collagen and Laminin, but instead bind to ligands with RGD binding motifs, such as Fibronectin 
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(αvβ1, αvβ3, αvβ6), Vitronectin (αvβ3, αvβ5), Osteopontin (αvβ1, αvβ3, αvβ5, αvβ6), LAP-TGFβ 

(αvβ1, αvβ3, αvβ6, αvβ8), Thrombospondin (αvβ3) and von Willebrand Factor (αvβ3) (Humphries 

et al., 2006). Most αv knockout mice die in utero due to placental defects, but approximately 20% 

are born and die shortly after birth, likely due to hemorrhage (Bader et al., 1998). Notably, β3, β5 

and β6 knockout mice are viable and fertile, and thus the embryonic lethality of the αv knockout 

mice is likely due to the action of either αvβ1 or αvβ8 (Huang et al., 1996; Huang et al., 2000a; 

Reynolds et al., 2005; Zhu et al., 2002). 

It has long been recognized that αv integrins are up-regulated during wound healing in 

humans; however, wound healing has not been examined in the skin-conditional αv knockout 

mouse (Cavani et al., 1993; Clark et al., 1996; Savar et al., 2014). β3 knockout mice display 

accelerated wound healing; however, as shown in later chapters, β3 is not expressed in 

epidermal keratinocytes and thus this phenotype is likely due to altered signaling within stromal 

fibroblasts (Reynolds et al., 2005). Young integrin β6 null mice show no defects in wound healing; 

however, aged β6 null mice show delayed wound healing compared to age-matched controls 

(AlDahlawi et al., 2006; Huang et al., 1996). In contrast, constitutive expression of integrin β6 in 

the epidermis leads to formation of chronic wounds (Häkkinen et al., 2004). Integrin β5 null mice 

show no difference in the rate of cutaneous wound healing, though this was not tested in aged 

mice (Huang et al., 2000a). The epidermal contribution to these phenotypes is unclear since β5 

and β6 have not been ablated specifically in mouse skin. 

αv integrins have been suggested to play both tumor-promoting and tumor-suppressive 

roles in epithelial tissues. In mouse skin, αv deletion cooperates with p53 loss to transiently 

promote initial SCC formation, but ultimately results in decreased tumor growth (Savar et al., 

2014). Integrin αv knockout in the mouse eyelids and conjunctiva also seems to promote SCC 

formation (McCarty et al., 2008). Integrin β6 has a growth-suppressive role in the mouse skin and 

hair follicles, since skin and hair follicles lacking β6 are thicker with more Ki67+ cells (Xie et al., 

2012). However, in humans, αvβ6 overexpression correlates with decreased survival in human 

cervical SCC, αvβ6 is over-expressed in epidermal squamous cell carcinoma, and αvβ6 promotes 
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invasion in human oral SCC cell lines (Hazelbag et al., 2007; Nystrom et al., 2006; Reuter et al., 

2009). These conflicting data could reflect inherent differences between mouse and human skin.  

 

TGFβ signaling in wound healing and tumorigenesis 

The transforming growth factor β (TGFβ) isoforms—TGFβ1, TGFβ2, and TGFβ3—are 

secreted cytokines that bind to a heterodimers of TGFβRI and TGFβRII, which form 

serine/threonine kinase receptors. Ligand binding leads to phosphorylation of both Smad2 and 

Smad3, which then bind to Smad4 to form transcription factor complexes that translocate to the 

nucleus to control gene expression. TGFβ signaling is known to promote the expression of cyclin 

dependent kinase inhibitors p21 and p15, and suppress the expression of pro-proliferation protein 

c-myc (Gordon and Blobe, 2008; Massagué, 2008). TGFβ also promotes the acquisition of motile, 

mesenchymal traits through up-regulation of Snail and Slug transcription factors (Gordon and 

Blobe, 2008; Massagué, 2008). 

After synthesis, the TGFβ dimer interacts with a Latency Associated Peptide (LAP) and a 

Latent TGF-β binding protein (LTBP) in the extracellular matrix (Annes et al., 2003). TGFβ must 

be released from this complex in order to have biologic activity (Annes et al., 2003). TGFβ 

release can be mediated directly or indirectly by integrin heterodimers (Annes et al., 2003). 

Specifically, αv integrins have a well-established role in activating latent TGFβ through force-

dependent or MMP-dependent mechanisms (Mamuya and Duncan, 2013). Furthermore, several 

integrin genes are direct transcriptional targets of TGFβ-Smad signaling. Thus, the integrin-TGFβ 

interaction serves as a feed-forward mechanism to potentiate the signaling pathway effects. 

 TGFβ’s role in promoting granulation tissue formation during wound healing is well-

appreciated (Desmoulière et al., 1993; Penn et al., 2012). TGFβ stimulates migration of 

fibroblasts and endothelial cells into the wound tissue and promotes deposition of ECM proteins. 

However, the role of TGFβ signaling in re-epithelialization of wound keratinocytes is controversial. 

Re-epithelialization is inhibited in mice that overexpress TGFβ1 in basal keratinocytes, and is 

accelerated in mice that lack TGFβRII in keratinocytes or lack Smad2 or Smad3 in the whole 
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mouse, suggesting that TGFβ signaling delays wound re-epithelialization (Amendt et al., 2002; 

Ashcroft et al., 1999; Chan et al., 2002; Falanga et al., 2004; Guasch et al., 2007; Werner and 

Grose, 2003). However, TGFβ signaling promotes expression of ECM proteins and integrins. 

Additionally, integrins that are known to activate latent TGFβ, such as the αv integrins, are over-

expressed at the wound edge (Cavani et al., 1993; Clark et al., 1996). Furthermore, previous 

efforts have linked TGFβ signaling to Focal Adhesion Kinase (FAK) activity and/or FAK protein 

expression through a variety of different mechanisms (Cicchini et al., 2008; Kracklauer et al., 

2003; Thannickal et al., 2003; Wang et al., 2004; Wendt and Schiemann, 2009). FAK is essential 

for keratinocyte survival, proliferation and migration (Essayem et al., 2006; Mitra et al., 2005; 

Sulzmaier et al., 2014). Thus, the effects of TGFβ on re-epithelialization may be dose-dependent 

and highly localized. 

 Due to its pleiotropic signaling effects, TGFβ has a dual role in cancer progression: it is 

thought to both inhibit cell proliferation, yet promote the epithelial-mesenchymal transition and 

tumor metastasis. The anti-proliferative effects of TGFβ signaling are evident in the skin, where 

disruption of TGFβ signaling elements results in higher susceptibility to malignant skin cancer 

(Bornstein et al., 2009; Cui et al., 1996; Glick, 2012; Glick et al., 1994; Go et al., 2000; Guasch et 

al., 2007; Mordasky Markell et al., 2010; Wang et al., 1997).  However, this may be highly 

dependent on the dose of TGFβ signaling, since reduction in TGFβ1 expression leads to reduced 

papilloma formation in mouse skin (Glick, 2012; Pérez-Lorenzo et al., 2010). Despite this, loss-of-

function mutations in TGFβ signaling pathway elements, such as Smad2/3/4, or TGFβRII, are 

commonly found over the course of tumor progression (Bellam and Pasche, 2010; Glick, 2012; 

Logullo et al., 2003; Markowitz et al., 1995; Xie et al., 2003). In the absence of Smads, TGFβ can 

initiate non-canonical signaling pathways, including ERK1/2 activation, JNK/p38 activation, 

PI3K/Akt activation and Rho GTPase activation, which can all contribute to tumor progression 

(Zhang, 2009). The contribution of non-canonical TGFβ signaling to tumor progression remains 

unclear.  
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Focal Adhesion Kinase in skin 

Focal Adhesion Kinase (FAK) in normal skin 

 Focal Adhesion Kinase (FAK) has been shown to be both a signaling kinase and an 

adaptor protein that helps link integrin adhesion complexes to the Actin cytoskeleton (Mitra et al., 

2005; Parsons, 2003). While FAK is only indirectly associated with β integrin cytoplasmic 

domains through binding to Paxillin and Talin, it is rapidly recruited to focal adhesions and auto-

phosphorylated upon cellular adhesion to ECM proteins (Figure 1.3). This auto-phosphorylation 

can lead to recruitment and activation of a variety of downstream signaling proteins (Mitra et al., 

2005; Parsons, 2003). 

FAK is required for mouse development, since FAK-null mice die during embryogenesis 

at about E8.5, with mesodermal defects (Furuta et al., 1995a; Furuta et al., 1995b). This 

phenotype is highly similar to the phenotype of the Fibronectin knockout mouse, which also 

shows specific defects in mesoderm development (George et al., 1993). This suggests that FAK 

is essential for focal adhesions involving the Fibronectin-binding integrins, including: α4β1, α5β1, 

αIIbβ3, αvβ3, αvβ6, and αvβ8. Autophosphorylation is required for FAK function in vitro; however, 

mice lacking the autophosphorylation site of FAK have a slightly different phenotype than FAK 

knockout mice (Corsi et al., 2009). Mice lacking exon 15 of FAK, which contains the Y397 

autophosphorylation site, proceed through embryonic development until E12.5, 5 days longer 

than FAK-null mice (Corsi et al., 2009). These mutant mice display hemorrhage, edema, and 

vascular remodeling defects at E12.5 (Corsi et al., 2009). While it remains clear that this 

autophosphorylation plays an essential role in development, this study highlights the fact that 

FAK likely plays an important scaffolding role as well. 

 Skin-specific deletion of FAK leads to: hair cycle irregularities, sebaceous gland 

hypoplasia, and slight epidermal thinning (Essayem et al., 2006). Isolated keratinocytes from 

these mice undergo apoptosis in culture, potentially due to inability to adhere to tissue culture 

plastic (Essayem et al., 2006). The phenotypes of FAK loss are not nearly as striking as the 
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phenotype of β1 loss in the epidermis, indicating that FAK is only responsible for mediating a 

fraction of β1 integrin function in skin (Brakebusch et al., 2000; Raghavan et al., 2000). 

 Despite the epidermal defects, FAK deletion in the epidermis does not lead to defects in 

cutaneous wound healing (Essayem et al., 2006). However, FAK deletion in the intestinal 

epithelium leads to reduced epithelial proliferation in response to dextran-sulfate-sodium induced 

injury (Owen et al., 2011). Surprisingly, a FAK homologue, Pyk2 (Proline-rich protein tyrosine 

kinase 2), is expressed in the epidermis and contributes to wound healing in vivo (Koppel et al., 

2014; Schindler et al., 2007). However, Pyk2 appears to be primarily localized to the nucleus in 

epidermal keratinocytes and controls re-epithelialization through activation of PKCδ and MMPs 

(Koppel et al., 2014; Schindler et al., 2007). Thus, the relationship of Pyk2 to focal adhesion 

signaling is unclear.  

 

Focal Adhesion Kinase (FAK) in Squamous Cell Carcinoma 

 FAK expression and activity is elevated in multiple epithelial cancers, including 

Squamous Cell Carcinoma. In a mouse model of SCC driven by loss of TGFβRII in the mouse 

epidermis, enhanced integrin-FAK-Src signaling and keratinocyte migration was observed 

(Guasch et al., 2007). Further, loss of only one FAK allele significantly reduces papilloma 

formation upon DMBA-TPA treatment (McLean et al., 2001). Loss of both alleles prevents 

papilloma progression to SCC (McLean et al., 2004). FAK was shown to be necessary for 

phosphorylation of ERK downstream of Ras in cultured cells, and loss of FAK reduced migration 

of keratinocytes in vitro (McLean et al., 2001; McLean et al., 2004). Use of a FAK kinase inhibitor, 

PF-562,271, also blocks tumor cell migration, anchorage independent growth, and SCC xenograft 

growth (Figure 1.3B) (Serrels et al., 2012). This inhibition of FAK activity correlates with a 

decrease in phosphorylation of Src at tyrosine 416 (Serrels et al., 2012). Skin-specific loss of FAK 

also prevents phorbol ester induced skin carcinogenesis, potentially due to prevention of β-

catenin-induced stem cell mobilization in the bulge of the hair follicle (Ridgway et al., 2012). 
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Inhibition of Src, a kinase that intricately associates with FAK at FA complexes also shows the 

same effect on preventing stem cell mobilization (Ridgway et al., 2012). 

While FAK clearly plays a pro-tumorigenic role, loss of FAK in SCC also results in 

increased resistance to radiation therapy (Graham et al., 2011). This resistance appears 

dependent on p53-mediated induction of p21(Graham et al., 2011). In many contexts, FAK has 

been shown to both bind p53 and mediate its degradation (Golubovskaya and Cance, 2010; 

Golubovskaya et al., 2005; Lim et al., 2008). While further studies are required to verify this 

phenomenon in an orthotopic in vivo context, this result suggests that the viability of FAK as a 

therapeutic target may depend on p53 status. 

 

C-myc in wound healing and tumorigenesis 

C-myc is a basic Helix-Loop-Helix (bHLH) transcription factor that is involved in regulating 

expression of genes involved in cell cycle progression and apoptosis. Myc regulates gene 

expression by dimerizing to Max and binding to Enhancer Box sequences (E-boxes) and 

recruiting histone acetyltransferases (HATs) to modify the chromatin and induce gene expression. 

It can also repress gene expression through binding to Miz-1 and removing the p300 co-activator. 

Myc regulates up to 15% of the human genome, and its major targets serve to promote cell cycle 

progression (through induction of Cyclin D2 and CDK4 and repression of p21, p15 and GADD45), 

promote anchorage-independent growth (through repression of integrins and N-cadherin), 

promote metabolism and protein synthesis (through induction of lactate dehydrogenase, ornithine 

decarboxylase, glutaminase, and the ribosomal proteins EIF4E and EIF2A), promote 

angiogenesis (through induction of IL1β and miR17-92 and repression of thrombospondin) and 

promote chromosomal instability and production of reactive oxygen species (ROS) (Dang, 1999; 

Dang, 2012; Eilers and Eisenman, 2008; Meyer and Penn, 2008). Myc can also trigger apoptosis 

in a p53-dependent manner by inducing expression of the p14ARF gene, or in a p53-independent 

manner through induction of pro-apoptotic protein Bax (Hoffman and Liebermann, 2008). 
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C-myc knockout in the epidermis during development leads to severe skin defects, 

including fragility, hypoproliferation and impaired wound healing (Zanet et al., 2005). However, 

inducible c-myc deletion in adult mouse epidermis is well tolerated, with no obvious skin 

abnormalities (Oskarsson et al., 2006). These phenotypes are consistent with the intestinal 

epithelium, where c-myc is necessary for crypt formation but dispensable for crypt homeostasis 

(Bettess et al., 2005). C-myc is thus able to function differently based on various environmental 

stresses and physiological states. 

It is clear that c-myc promotes tumorigenesis in nearly every human cancer, including 

skin cancer. In fact, c-myc amplification was shown in 50% of SCCs from patients undergoing 

immune suppression therapy (Boukamp, 2005). The effects of c-myc over-expression in the skin 

depend on the promoter used. Interestingly, over-expression of c-myc in the epidermis using the 

K14 promoter leads to hyperproliferative sebaceous glands and sebaceous adenomas upon 

treatment with carcinogens, indicating that c-myc can influence keratinocyte fate (Honeycutt et 

al., 2010). Expression of c-myc in suprabasal layers of the epidermis using an involucrin promoter 

reverses keratinocyte differentiation and induces papilloma formation (resembling pre-cancerous 

actinic keratosis) without carcinogen treatment (Pelengaris et al., 1999). Inducible deletion of c-

myc in the epidermis (using the K5 promoter) protects the skin from DMBA-TPA induced tumors, 

through a p21-dependent mechanism (Oskarsson et al., 2006). While the individual skin 

phenotypes differ slightly between models, it is clear that c-myc promotes proliferation and 

neoplastic transformation in the epidermis.  

 

Signaling pathways controlling protein translation 

 The first step in cap-dependent eukaryotic translation initiation is binding of initiation 

factors (eukaryotic Initiation Factors—eIFs) to the 5’ cap and the 5’UTR of the mRNA to hold the 

mRNA in place for binding to the small ribosomal subunit, the 40S (Merrick, 2004; Silvera et al., 

2010). Translation is intiated with an initiator methionine-tRNA complex. Once this complex has 

entered the small ribosomal subunit, it signals for association of the large subunits (60S) to form a 
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complete ribosome (80S), which carries out translation elongation (Merrick, 2004). While most 

mRNAs are translated in a cap-dependent manner, some mRNAs contain an Internal Ribosome 

Entry Site (IRES), which allows translation initiation without scanning for the start codon, termed 

cap independent translation (Komar and Hatzoglou, 2011; López-Lastra et al., 2005; Merrick, 

2004). mRNAs that are able to undergo cap-independent translation include Cyclin D1, c-Jun and 

c-myc, which may use this translation mechanism in response to certain types of cellular stress 

(Komar and Hatzoglou, 2011; López-Lastra et al., 2005). 

 Much of the regulation of protein synthesis centers on formation of the eIF4F initiation 

complex (Silvera et al., 2010). This complex consists of the initiation factors eIF4A, eIF4G and 

eIF4E, and is essential for initiation of protein translation. 4E-BP family members are crucial for 

regulating the pool of available eIF4E in the initiation complex. 4E-BPs bind to eIF4E and prevent 

eIF4E from incorporating into the initiation complex. Phosphorylation of 4E-BP prevents it from 

binding and inhibiting eIF4E. mTOR, a serine/threonine kinase that is activated by Akt, directly 

phosphorylates 4E-BP to prevent its association with eIF4E to promote cap-dependent translation 

(Laplante and Sabatini, 2009; Wang and Proud, 2006). 

 Another layer of regulation lies in the stimulation of eIF4A activity by eIF4B (which is not 

a member of eIF4F) (Andreou and Klostermeier, 2014; Silvera et al., 2010). eIF4B can be 

phosphorylated by two different kinases: p70S6K (S6 Kinase) or p90RSK (ribosomal S6 kinase) 

(Silvera et al., 2010). P70S6K is activated by mTOR, while p90RSK is activated by MAPK 

signaling. Phosphorylation of eIF4B stimulates the ATPase and RNA helicase activities of eIF4A 

(Andreou and Klostermeier, 2014). p70S6K and p90RSK are also known to directly 

phosphorylate ribosomal protein S6 (RPS6), which is a component of the 40S ribosomal subunit 

and directly stimulates translation (Silvera et al., 2010). These kinases phosphorylate RPS6 on 

different sites: p70S6K phosphorylates RPS6 at Serines 240/244 while p90RSK phosphorylates 

RPS6 at Serine235. 

 As described earlier, integrins clearly play a role in promoting translation through their 

activation of the PI3K-Akt signaling pathway. Interestingly, it has been shown that localized 
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translation occurs at focal adhesion complexes, likely providing a mechanism for rapid synthesis 

of proteins at the leading edge of cells (Chicurel et al., 1998; Katz et al., 2012).  

 

Therapeutic targeting of integrins and focal adhesion proteins 

Inhibitors targeting integrin activation and the kinases FAK and ILK are in various stages 

of development, with clinical trials currently ongoing for integrin inhibitors, integrin blocking 

antibodies, and FAK inhibitors. Although in vitro data support the use of ILK kinase inhibitors for 

therapy, no clinical trials have been started for those compounds. 

Cilengitide (EMD 121974) is an RGD-based peptide targeted against αvβ3 and αvβ5 

integrins, which are up-regulated on blood vessels during tumor angiogenesis (Brooks et al., 

1994). In preclinical studies, this drug showed induction of apoptosis of angiogenic endothelial 

cells, and additional direct anti-tumor activity (Scaringi et al., 2012). While preclinical models 

showed promise, only a fraction of glioblastoma patients respond to therapy, and there is 

variability in response of patients with other types of tumors to the drug (Scaringi et al., 2012). 

Treatment of patients with squamous cell carcinomas of the head and neck with cilengitide 

resulted in partial response or stable disease for all patients tested, and randomized phase II 

clinical trials are currently in progress (Vermorken et al., 2011). More recently, it was shown that 

low concentrations of this inhibitor actually stimulate tumor growth by promoting VEGFR-2 

trafficking to the endothelial cell surface (Reynolds et al., 2009). It is therefore possible that dose 

of the drug is highly important in tumor response, which could account for some of the variability 

seen thus far.  

CNTO-95 (intetumumab) is a fully humanized anti-αv-integrin monoclonal antibody which 

was also developed to target angiogenic blood vessels and some primary tumors, but broadly 

binds to all αv heterodimers (Trikha et al., 2004). The expression of αv integrins has been shown 

to be essential for survival of melanoma cells in three-dimensional cultures, and thus most of the 

clinical trials for this antibody have been for stage IV melanoma patients (Bao and Strömblad, 

2004). This therapy was well tolerated in Phase I trials, and has shown variable success in phase 
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II trials (Mullamitha et al., 2007; O’Day et al., 2011; Robinson et al., 2012). There is a trend 

toward improved survival, but it is not yet significant and studies with larger patient cohorts may 

be necessary.  

In preclinical studies, inhibition of FAK kinase activity shows promising anti-tumor activity 

for a variety of different types of malignancies. A specific inhibitor, PF-00562271, has shown 

safety and some efficacy in phase I trials for advanced solid tumors (including head and neck 

tumors) (Infante et al., 2012). Phase I trials are currently ongoing for a second FAK kinase 

inhibitor, GSK2256098.  

Another potential strategy for targeting integrin activation in cancer is to target specific 

extracellular matrix ligands. Secretion of proteases during tumorigenesis can lead to cleavage of 

ECM components to generate new ligands with distinct structure and binding affinity for specific 

integrin heterodimers. Cleavage of type IV Collagen into two epitopes, HU177 and HUIV26, 

occurs in the extracellular matrix surrounding melanoma tumors. This Collagen cleavage exposes 

additional integrin-binding motifs within these epitopes that enhance signaling of αvβ3 within 

angiogenic blood vessels (Xu et al., 2001). Blocking antibodies against these epitopes have 

shown anti-angiogenic, anti-tumor and anti-metastasis efficacy (Roth et al., 2006). Additionally, 

increased shedding of HU177 is observed in melanoma patient sera, and has been shown to 

correlate with poor prognosis and disease progression (Hamilton et al., 2010; Ng et al., 2008). 

More work is required to determine if additional epitopes are released, and if this differs between 

tumor types. 

 

Thesis objectives 

 While several integrins have well-understood roles in skin homeostasis and 

tumorigenesis, the roles for many specific subunits—in particular the αv class of heterodimers—

remains poorly understood. Given the up-regulation of αv integrins in human wounds and human 

Squamous Cell Carcinomas, we hypothesize that αv integrins play crucial roles in these 

physiological processes. In Chapter 3, we utilize a multiplexed shRNA screen to identify αv 
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integrins as crucial mediators of organotypic skin formation. We further define a fundamental role 

for αv (and its binding partners β5 and β6, but not β1 and β8) in organotypic tissue proliferation, 

but not maintenance, and hyperproliferation during wound healing in vivo. In Chapter 4, we define 

the specific signaling mechanism through which integrin αv controls cell cycle progression. We 

determine an integrin αvTGFβFAKp38p90RSK mechanism that controls c-myc 

translation to promote cellular proliferation. This is the first time that c-myc has been shown to be 

controlled by αv integrins. In Chapter 5, we demonstrate that αv and its binding partners β5 and 

β6 are necessary for squamous cell carcinoma invasion in organotypic culture. We also show that 

blockade of αv integrins blocks SCC tumor formation in vivo.   
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TABLES 

Integrin 
α1 

-viable, fertile and no 
apparent abnormalities 
(Gardner et al., 1996) 

N/A N/A 

Integrin 
α2 

-Healthy, viable, fertile 
(Chen et al., 2002) 

-No change in re-
epithelialization or BM 
deposition, but increase in 
neoangiogenesis during 
wound healing (Grenache 
et al., 2007; Zweers et al., 
2007) 

N/A -K14-HPV mice 
crossed with α2-null 
mice shows 
decreased lymph 
node metastases 
and tumor formation 
(Tran et al., 2011) 

Integrin 
α3 

-survive until birth, but die 
shortly after due to kidney 
and lung defects 

-minor blistering of the 
epidermis, but normal 
stratification (Kreidberg et 
al., 1996) 

-disorganized BM
-blistering at epidermal-
dermal junction 

-spatial and temporal 
differentiation is intact 
(DiPersio et al., 1997; 
DiPersio et al., 2000) 

-hair loss and impaired hair 
follicle growth (Conti et al., 
2003) 

-enhanced re-
epithelialization during 
wound healing (Margadant 
et al., 2009) 

-enhanced epidermal 
turnover (Sachs et al., 
2012) 

-significantly reduced 
papilloma formation 
upon DMBA-TPA 
treatment of mice 
lacking α3 in the 
epidermis 

-SCCs that form are 
more poorly 
differentiated (Sachs 
et al., 2012) 

Integrin 
α4 
(VCAM-
1) 

-required for formation of 
umbilical cord and placenta 
during development 

-mostly embryonic lethal 
E8.5, but a small number 
of viable, fertile mice 
(Gurtner et al., 1995) 

N/A N/A 

Integrin 
α5 

-mesodermal defects and 
embryonic death at E10-11 
(Yang et al., 1993) 

N/A N/A 

Integrin 
α6 

-embryonic lethal at E14.5-
E18.5 

-skin blistering similar to 
epidermolysis bullosa 
(Georges-Labouesse et al., 
1996) 

-normal differentiation and 
stratification of the 
epidermis (DiPersio et al., 
2000; Georges-Labouesse 
et al., 1996) 

-mild hyperproliferation, 
blistering and inflammation 
upon tamoxifen-induced 
deletion in epidermis 
(Niculescu et al., 2011) 

See integrin β4 
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Integrin 
α7 

-viable, fertile mice (Mayer 
et al., 1997) 

-muscular dystrophy 

-defective axonal 
elongation (Werner et al., 
2000) 

N/A N/A 

Integrin 
α8 

-death immediately after 
birth likely due to renal 
deficiencies (Müller et al., 
1997) 

N/A N/A 

Integrin 
α9 

-normal at birth, but die at 
day 6-12 due to respiratory 
failure 

-edema and lymphocyte 
infiltration into chest wall 
(Huang et al., 2000b) 

-Poor re-epithelization 
during wound healing 
(Singh et al., 2009) 

N/A 

Integrin 
α10 

-viable, fertile  

-stunted growth of long 
bones (Bengtsson et al., 
2005) 

N/A N/A 

Integrin 
α11 

-viable, fertile 

-dwarfism and defective 
tooth movement (Popova 
et al., 2007) 

N/A N/A 

Integrin 
αv 

-mostly embryonic lethal at 
E9.5, but 20% of mice born 
alive 

-defects in placental 
function 

-intracerebral and intestinal 
hemorrhage 

-cleft palates (Bader et al., 
1998) 

N/A -Induction of SCC 
formation upon dual-
ablation of p53 and 
αv 
-Slower SCC growth 
upon αv deletion 
(Savar et al., 2014) 

Integrin 
β1 

-embryonic lethal
-die immediately after 
attaching to uterine 
epithelia and invading the 
stroma, around E5 (Fassler 
and Meyer, 1995; 
Stephens et al., 1995) 

-Severe hair loss
-reduced numbers of 
hemidesmosomes 
-disruption in BM and 
blistering 

-K14-Cre model shows 
normal spatial and 
temporal differentiation, but 
K5-Cre model shows 
enhanced differentiation 

-K14-Cre model shows 
epidermal thinning, but K5-
Cre model shows 
epidermal thickening 
(Brakebusch et al., 2000; 
Raghavan et al., 2000) 

-poor re-epithelialization 
during wound healing 
(Grose et al., 2002) 

-K14-CreER 4-OHT 
excision in adult epidermis 

-Activating mutation 
T1881β1 stimulated 
conversion of 
papillomas to SCCs 
upon DMBA-TPA 
(Ferreira et al., 2009) 

-Blocking antibodies 
against integrin β1 
block tumor 
formation and 
progression in a 
human tissue graft 
model of SCC 
(Reuter et al., 2009) 
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has no apparent 
phenotype (López-Rovira 
et al., 2005) 

Integrin 
β3 

-enhanced re-
epithelialization during 
wound healing (Reynolds 
et al., 2005) 

N/A N/A 

Integrin 
β4 

-die shortly after birth due 
to respiratory and intestinal 
failure and skin fragility 

-skin blistering defects 
similar to epidermolysis 
bullosa 

-normal stratification of the 
epidermis (Dowling et al., 
1996) 

-loss of hemidesmosomes, 
skin blistering, but normal 
differentiation and 
proliferation (DiPersio et 
al., 2000; Raymond et al., 
2005) 

-β4 knockout or 
blocking antibodies 
prevented Ras-
driven tumorigenesis 
in human tissue graft 
model of SCC (Dajee 
et al., 2003) 

Integrin 
β5 

-Viable, fertile and no 
apparent 
abnormalities(Huang et al., 
2000a) 

N/A N/A 

Integrin 
β6 

-Hair loss 

-Inflammation of skin and 
lungs (Huang et al., 1996) 

-retarded hair follicle 
regression after depilation 

-enhanced keratinocyte 
proliferation(Xie et al., 
2012) 

N/A 

Integrin 
β8 

-65% die at midgestation 
due to insufficient 
vasculogenesis 

-35% die shortly after birth 
due to intracerebral 
hemorrhage 

-leaky brain capillaries and 
endothelial hyperplasia 
(Zhu et al., 2002) 

N/A N/A 

 

Table 1: Functional roles for integrins in mouse development and mouse skin. 
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Figure 1.3: Depiction of focal adhesion structure, key phosphorylation events and therapeutics 

targeting individual focal adhesion proteins for treatment of cSCC. A. In normal basal 

keratinocytes, integrin binding to the ECM initiates Talin binding to the membrane proximal NPxY 

motif (Y783) and Kindlin binding to the membrane distal NPxY motif (Y795). FAK is recruited to 

the adhesion and undergoes auto-phosphorylation at Y397. Src kinase phosphorylates both 

NPxY tyrosines on the β1 integrin tail, and phosphorylates active FAK at Y925. It remains 

controversial whether ILK phosphorylates β1 integrin at these same sites. This adhesion 

assembly and phosphorylation sequence ultimately promote cell cycle progression, and inhibit 

differentiation and apoptosis programs. B. Three current strategies in development for treatment 

of cSCC are: blocking β1 integrin with a P5D2 blocking antibody, inhibiting ILK kinase activity 

using QLT0267, and inhibiting FAK kinase activity using PF-562,271 or GSK2256098. 
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CHAPTER 2 

Materials and Methods 

 

Parts of this chapter have been previously published in: 

 

Duperret EK, Dahal A, Ridky TW. Focal adhesion-independent integrin αv regulation of FAK and 

c-myc is necessary for 3D skin formation and tumor invasion. J Cell Sci. 2015; 128(21):3997-

4013. 

 

Duperret EK, Oh SJ, McNeal A, Prouty SM, Ridky TW. Activating FGFR3 mutations cause mild 

hyperplasia in human skin, but are insufficient to drive benign or malignant skin tumors. Cell 

Cycle. 2014;13(10):1551-1559.  

 

Materials and Methods 

 

Cell culture and reagents 

Primary human keratinocytes, melanocytes and fibroblasts were isolated from neonatal 

foreskins obtained from the Hospital of the University of Pennsylvania. Foreskins were incubated 

in 50:50 dispase (Fisher):DMEM (Dulbecco modified Eagle medium, high glucose 4.5g/L) + 5% 

FBS (fetal bovine serum, Invitrogen) mixture overnight at 4�C. The epidermis was carefully 

peeled from the underlying dermis and incubated in trypsin for 10 minutes at 37�C. The trypsin 

was neutralized with DMEM + 5% FBS and 1% antibiotic/antimycotic (Gibco) and spun at 300 g 

for 5 minutes. The supernatant was removed, and the pellet was plated in keratinocyte media 

containing 50% Gibco Keratinocyte-SFM + L-glutamine + EGF and BPE, 50% Gibco Cascade 

Biologics 154 medium for keratinocytes and 1% penicillin/streptomycin (100U/mL, Gibco) for 

keratinocyte culture, or Melanocyte Medium 254 (Gibco) with Human Melanocyte Growth 

Supplement and 1% penicillin/streptomycin (100U/mL, Gibco) for melanocyte culture. For 
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fibroblast isolation, the dermis was chopped into small pieces, and incubated in 1mL collagenase 

(10mg/mL, Roche) at 37ºC for 15 minutes. 1mL of 0.05% trypsin (Gibco) was added and 

incubated for another 10 minutes at 37ºC. 1mL of DMEM + 5% FBS was added to quench the 

trypsin, and the pieces of dermis were removed and discarded. The remaining solution was 

centrifuged at 300g for 5 minutes. The supernatant was removed and the pellet plated in DMEM 

+ 5% FBS + 1% antibiotic/antimycotic. 293T cells, Phoenix cells, A375 cells, SK-MEL-2 cells, SK-

MEL-5 cells, WM2664 cells and SK-MEL-28 cells were purchased from ATCC and also cultured 

in DMEM + 5% FBS + 1% antibiotic/antimycotic. All small molecules and recombinant proteins 

used are listed in Table 2.2.  

 

Hybridoma culture and antibody purification 

The mouse L230 and 10D5 hybridoma cell lines were obtained from ATCC (HB-8448 and 

RB44-10D5.19-.21) and cultured according to ATCC guidelines. Supernatant was collected and 

filtered using a 0.22µm filter. Antibody was isolated from supernatant and concentrated using the 

Nab Protein G Spin Kit (Thermo). Antibody concentration was quantified by measuring 

absorbance at 280nm. 

 

Lentiviral and retroviral constructs 

A list of hairpins used in this study is included in Table 2.3. The following pRRL 

constructs were used in this study: pRRL-c-myc, pRRL-Cdk4 R24C, pRRL-Cyclin D1 WT, pRRL-

Cyclin D1 T286A, pRRL-dnp53 (R248W), pRRL-FAK, pRRL-H-Ras G12V, pRRL-luciferase, 

pRRL-MKK6(glu), pRRL-Skp2, and pRRL-SuperFAK (K578E, K581E). These constructs were 

PCR amplified from cDNA or from addgene plasmids, and ligated into the pRRL lentiviral vector. 

The following LZRS retroviral constructs were used in this study: LZRS-ER-HRas G12V, LZRS-

Cdk4 R24C, LZRS-luciferase, and LZRS-MKK7. The following TRIPZ lentiviral constructs were 

used in this study: TRIPZ-β3, TRIPZ-luci-puro, TRIPZ-5’UTR c-myc-luci-puro, and TRIPZ-luci-

3’UTR c-myc-puro.  
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Lentivirus and retrovirus production and transduction 

Phoenix cells and HEK293T cells were used for retrovirus and lentivirus production, 

respectively. HEK293T cells were seeded at 70% confluency on 6-well plates and transfected 

with 1.22µg lentiviral plasmid mixed with packaging plasmids pCMV∆R8.91 (0.915µg) and pUC-

MDG (0.305µg) per well using Fugene6 transfection reagent (Promega). Phoenix cells were 

transfected using the same protocol without the packaging plasmids. 10mM sodium butyrate 

(Sigma) was added 16 hours after transfection, and cell culture media was replaced 24 hours 

after transfection and virus-producing cells were moved to 32ºC. Human keratinocytes, 

melanocytes and fibroblasts were transduced at 10-40% confluence with lentivirus harvested 48 

and 72 hours post-transfection of packaging cells. Lentivirus was filtered through a 45-μm filter 

(Argos) and supplemented with 5μg/mL of polybrene (hexadimethrine bromide, Sigma). 

Subsequently, cells were spun at 300g for 1 hour at room temperature. Complete growth media 

was replaced after 15 minutes of incubation at 37�C.  

 

Antibodies and immunoblot analysis 

Adherent cells were washed with PBS and then lysed with RIPA Lite lysis buffer: 50mM 

Tris pH 7.5, 150mM NaCl, 1mM EDTA, 1% NP-40 containing protease inhibitors (Roche) and 

phosphatase inhibitors (Roche). Lysates were quantified using Bradford assay, and reduced in 

Laemmli sample buffer containing β-mercaptoethanol (BioRad). Cell lysates were subjected to 

SDS gel electrophoresis in 4-15% Tris-Glycine precast polyacrylamide gels (BioRad) in running 

buffer (25mM Tris, 192mM glycine, 0.1% SDS, pH 8.3). Protein was transferred to PVDF 

membrane (Millipore) using a Trans-blot Semi-Dry Transfer Cell (BioRad) in semi-dry transfer 

buffer. Membranes were blocked with 5% milk in TBST or 5% BSA in TBST and incubated in 

primary at 4ºC overnight. After incubation with HRP secondary antibody (cell signaling) for 30 

minutes-1 hour at 4ºC, proteins were detected using ECL Western Blotting Detection Reagents 

(GE-Amersham Biosciences) or Luminata Crescendo Western HRP Substrate (Millipore). All 

antibodies used are listed in Table 2.2. 
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RNA Isolation and qPCR 

RNA was isolated using an RNeasy Plus Mini Kit (Qiagen), and RNA was converted to 

cDNA using the Applied Biosystems High Capacity RNA to cDNA kit. qPCR was performed using 

Power SYBR Green Master Mix using a ViiA 7 Real-Time PCR System (Life Techologies). 

Relative expression levels were calculated using the 2-∆∆Ct method. All qPCR primers used are 

listed in Table 2.1.  

 

Immunofluorescence 

Skin tissues were embedded in Tissue-Tek OCT compound and sectioned at 8µm 

thickness using a cryostat. Tissue sections were fixed in cold methanol for 2 minutes. Cultured 

cells were fixed and permeabilized using microtubule stabilization buffer (MTSB, 0.1M PIPES, pH 

6.75, 1mM EGTA, 1mM MgSO4, 4% (w/v) poly(ethylene glycol), 1% Triton X-100, 2% 

Paraformaldehyde). Both tissue sections and cultured cells were blocked in 5% horse serum in 

PBS for 30 minutes and incubated 1% horse serum in PBS for primary and secondary antibody 

incubation (30 minutes each). For FAK staining, cells were fixed in cold methanol for 10 minutes 

instead of paraformaldehyde. Tissue sections were mounted using Prolong Gold Antifade plus 

DAPI reagent. Images of tissues were taken using an Olympus BX-61 inverted microscope and 

images of cultured cells were taken using a Zeiss LSM 710 Confocal Microscope. For BrdU 

staining, tissues were fixed in cold 70% EtOH for 5 minutes at room temperature. Tissue sections 

were rinsed with PBS, incubated in 1.5M HCl for 30 minutes, then rinsed in PBS again. Tissues 

were blocked in 5% horse serum + 0.3% Triton X-100 in PBS for 60 minutes, then incubated in 

primary antibody overnight in 1% BSA in PBS. Secondary antibody was incubated in 1% BSA for 

1 hour at room temperature. For TUNEL staining, TUNEL enzyme and TUNEL label (Roche) 

were used according to the manufacturer’s guidelines. All antibodies used are listed in Table 2.2. 

 

Immunohistochemistry  
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Tissue was fixed using 10% neutral-buffered formalin. Immunostaining was performed on 

5 μm formalin fixed paraffin embedded (FFPE) skin sections. Briefly, tissue sections were 

deparaffinized in xylene and rehydrated in alcohol. For antigen retrieval, tissues were immersed 

in 10 mM citrate buffer pH 6.0 and heated at 95°C for 10 min, cooled at RT, and washed 10 times 

for 3 min. Endogenous peroxidase was quenched with 3% H2O2 and subsequently washed 2–3 

times with PBS. Tissue sections were incubated with blocking buffer (1% BSA and 10% normal 

goat serum in PBS) for 30 min and primary antibody at 4°C overnight. Following multiple washes, 

goat anti-rabbit HRP conjugated secondary antibodies were incubated for 20 min at RT. The 

signal was further amplified with DAB mix solution (Abcam). Slides were counterstained, 

dehydrated, and mounted with a coverslip. The following antibodies were used for IHC: Ki67 and 

phospho-ERK1/2 (Cell Signaling). 

 

Immunoprecipitation 

Keratinocytes were lysed in RIPA for membrane proteins (TBS pH 7.5 supplemented with 

2mM CaCl2, 1mM MgCl2, 1% NP-40 and 1% Triton X-100 plus protease and phosphatase 

inhibitors). The Pierce Crosslink Immunoprecipitation Kit was used for immunoprecipitation 

according to manufacturer’s protocol (Thermo). All antibodies used for immunoprecipitation are 

listed in Table 2.2. 

 

Fluorescence Activated Cell Sorting 

For all doxycycline-inducible experiments, keratinocytes were sorted to achieve 

maximum hairpin induction. pTRIPZ transduced human keratinocytes were induced with 

doxycycline for 24 hours prior to cell sorting. Cells were trypsinized and resuspended in 1X PBS 

containing 1% BSA in a polypropylene tube (Falcon) at a density of 10x106 cells/mL. The top 20% 

of RFP+ cells were sorted onto 6-well plates containing keratinocyte growth medium using a BD 

FACSAria II cell sorter, at the UPenn Flow Cytometry & Cell Sorting Facility. Cells were allowed 

to recover from the sort in doxycycline-free media for 1-2 weeks prior to experimentation.  
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Propidium Iodide staining and flow cytometry 

Keratinocyte nuclei were isolated and stained with propidium iodide using the CycleTEST 

PLUS DNA Reagent Kit (BD). Cells were analyzed using a BD FACSCalibur in the UPenn Flow 

Cytometry & Cell Sorting Facility. Data were analyzed and percentages calculated using ModFit 

software. 

 

Luciferase Assay 

Firefly luciferase activity was measured using Dual-Glo Luciferase Assay System 

(Promega) on a BD Monolight 3096 Microplate Luminometer.  

 

Organotypic culture 

Split-thickness human skin was obtained and washed in PBS containing 

penicillin/streptomycin, and incubated at 37oC for 7-10 days. PBS was changed every 2 days. 

The epidermis was separated from the dermis and subsequently discarded. The dermis was 

washed and incubated in PBS at 4oC for 6-12 weeks. PBS was changed every 2-3 days. For 

assembly of organotypic tissue, the dermis was cut into 1cm2 square pieces and placed into 12 

well culture plates with the basement membrane side facing down. 100,000 fibroblasts were 

seeded into each well and incubated at 37oC with 5% humidified CO2 for 3-4 days. The dermis 

with FB was elevated to a sterilized annular dermal support tissue culture insert device in a 

manner such that the basement membrane was oriented up. Several drops of BD matrigel were 

placed on the bottom of the dermis to create a seal. The growth media was changed to KGM (3:1 

mixture of DMEM:Ham's F12 supplemented with 10% FBS, adenine (1.8x 10-4M), hydrocrtisone 

(0.4µg/mL), insulin (5µg/mL), cholera toxin (1x 10-10M), EGF (10ng/mL), transferrin (5µg/mL), and 

triido-L-thyronine (1.36ng/mL)). Epithelial cells were seeded onto the BM side at density of 1x106 

per cm2, in a total volume of 80µL. For incorporation of human melanocytes, KGM was replaced 

with Melanocyte Xenograft Seeding Media (MXSM). MXSM is a 1:1 mixture of KGM and 

Keratinocyte Media 50/50 (Gibco) containing 2% FBS, 1.2mM calcium chloride, 100nM ET-3 
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(endothelin-3), 10ng/mL rhSCF (recombinant human stem cell factor), and 4.5ng/mL r-basic FGF 

(recombinant basic fibroblast growth factor). 1.5x105 melanocytes and 5.0x105 keratinocytes were 

suspended in 80uL MXSM.  For organotypic skin, the upper chamber was kept dry and exposed 

only to air while the media on the lower chamber was changed every other day. Organotypic skin 

tissue was harvested at 10-14 days, and organotypic transformed tissue was harvested at 10 

days. For BrdU labeling, organotypic tissue was incubated with BrdU labeling reagent (Invitrogen) 

at 1:100 dilution in KGM for 1 hour. 

 

Invasion assay 

For invasion measurements, we established organotypic tissues (described in detail 

above) containing keratinocytes transduced with mutant Cdk4 (R24C) and oncogenic H-Ras 

(G12V) in the epidermal compartment and primary, non-transduced human fibroblasts in the 

dermal compartment. These epidermal transformed keratinocytes spontaneously invade through 

the basement membrane of these organotypic tissues, into the dermis. We quantified invasion 

area (in mm2) per field by imaging these tissues across the length of the entire 1cm2 tissue. We 

measured the area of K5+ labeled epidermal keratinocytes that invaded past the basement 

membrane (labeled with CollagenVII) into the dermis using ImageJ. We then averaged the 

invasive area across the entire tissue, and then across biological replicates. 

 

Organotypic re-epithelialization assay 

Re-epithelialization assay runways were 3D printed through the UPenn biomedical 

library. Runways were sterilized in 70% ethanol in H2O prior to use. Human keratinocytes and 

melanocytes were seeded onto half of the 3D runway platform, and the cover was placed on top 

to prevent keratinocyte migration to the other half. After 5 days, the cover was removed and the 

tissue was treated with antibodies and proteins. Tissue was harvested at day 10 after seeding.  

 

Human skin xenografts  
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Organotypic human skin was assembled (as described previously) without fibroblasts, 

and incubated at 37°C for 3-4 days before being grafted onto SCID mice. For skin grafting, SCID 

mice were anesthetized in an isoflurane chamber, and 1 cm2 of epidermis was removed on the 

dorsal region of the mouse, down to fascia. Reconstituted human skin was sown onto the mouse 

dorsal region with individual interrupted stitches using 6–0 nylon sutures. Mice were dressed with 

Bactroban ointment, Adaptic, Telfa pad, and Coban wrap. Mice were unwrapped 2 weeks after 

grafting. 

 

 Blocking antibody treatment 

 In organotypic culture, the following antibodies were used at a concentration of 7µg/mL 

(with media changes every other day): L230 (ATCC hybridoma), 10D5 (ATCC hybridoma), Mouse 

IgG (Thermo), P1F6 (Iowa hybridoma bank), and P5H9 (Iowa hybridoma bank). For in vivo 

wound healing experiments, mouse IgG, mouse IgG1 (BioXCell) or L230 were delivered 

subcutaneously underneath the xenograft in PBS. 100µg of antibody/mouse was delivered every 

day, beginning the day prior to wounding. For in vivo tumor experiments, mouse IgG or L230 

were delivered subcutaneously underneath the xenograft in PBS. 100µg of antibody/mouse was 

delivered every other day, beginning the day prior to doxycycline administration, until the end of 

the experiment.  

 

 In vivo wound healing 

 Human skin xenografts were wounded approximately 6 weeks after grafting. Wounding 

was performed using a 2mm punch biopsy. Human skin and dermis was removed, while the 

fascia and muscle layer remained intact. Wounds were dressed with Bactroban ointment, 

Adaptic, Telfa pad, and Coban wrap, and monitored every day.  

 

Quantification and statistical analysis 
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Tissue thickness, tumor invasion and tumor cross-section area were quantified using 

ImageJ software. Focal adhesion size and number were also quantified using ImageJ software. 

For experiments with 2 groups, statistical significance was measured using a student’s t-test, 

unless otherwise indicated in figure legend. For experiments with >2 groups, one-way ANOVA 

was used to measure statistical significance. For experiments in which ANOVA showed 

significance, Tukey’s HSD (honest significance difference) test was performed. *=p<0.05, 

**=p<0.005, ***=p<0.0005, and NS= not statistically significant. TCGA data was generated by the 

TCGA Research Network: http://cancergenome.nih.gov/. TCGA data was downloaded using the 

cbioportal R package. Kaplan-Meier analysis was done using R, and statistical significance was 

calculated using the log-rank test. Heat maps were generated using MATLAB.  
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TABLES 
 

Target Sequence (5’ 3’) 
Integrin β1 F GCGCGTGCAGGTGCAATGAA 
Integrin β1 R ACACACTGTCCGCAGACGCA 
Integrin β3 F GAGGCGGACGAGATGCGAGC 
Integrin β3 R CCCAGAGGCAGGGCCTCATCA 
Integrin β4 F CAACCCCACAGAGCTGGTGCC 
Integrin β4 R TGCTTTTTCCCGGCATTGGGA 
Integrin β5 F CGGCCCGGTGACAAGACCAC 
Integrin β5 R TCTGGTACCTCGGTGCCGTGT 
Integrin β6 F TGGGGCCTCGCTGTGAGTGT 
Integrin β6 R CAGTCGCCGTTACCTCCGCA 
Integrin β7 F TGCGGAGGCTTTGGTCGCTG 
Integrin β7 R CAGCCTGGGCATTGGTCGCA 
Integrin β8 F GTGCCAGGTGCCTTGCGCT 
Integrin β8 R CTTCGGCTCCTGGACGCAGC 
Integrin α1 F CGCTGGAAGATGATCACGGGG 
Integrin α1 R TCTCGGGACCAGAAGAGGGCA 
Integrin α2 F TCACCGAGGTGACCAGATTGGCT 
Integrin α2 R TGCCCTCGGGGCCTTCAAGA 
Integrin α3 F GGTGGGCGCCCCCTACTACT 
Integrin α3 R GGAGCTCCCACAGCAATATCCTGA 
Integrin α4 F CGAGAGCGCATGGCTTGGGA 
Integrin α4 R CGCACCCACTAGGAGCCATCG 
Integrin α5 F CCCCGGGCTCCTTCTTCGGA 
Integrin α5 R CCAGGAGCCGAGAGCCTTTGC 
Integrin α6 F ATGTGGCGGTGGTGGACCTCA 
Integrin α6 R GGAGCTCCAACTGCAATATCTGGGT 
Integrin α7 F GGCACGGCCAACTGTGTGGT 
Integrin α7 R TCACTGGGATCACTGTGGAGGCA 
Integrin α9 F GTGGGCGCACCAAAGGCAGA 
Integrin α9 R AGCACAGGCCAACACACGGC 
Integrin α10 F TGCCCAACGCTGCCCAACAT 
Integrin α10 R CCCTCCCGCCGACTGAGCTT 
Integrin α11 F ATAAGTGGCTGGTCGTGGGCG 
Integrin α11 R GGCCGAGGCGCATGTTGTCT 
Integrin αD F TCCCCTCAACGCGCTGCTCA 
Integrin αD R TCCCACCACGAGTCGAGATCCA 
Integrin αE F TGGACACTGGGACGGCCTCT 
Integrin αE R CCGGGAGCGGAACACAACCG 
Integrin αv F TGGGTTGTGGAGTTGCTCAGTGC 
Integrin αv R AGTGGTAACCAATGTGGAGTTGGTG 
Actin F CTGGAACGGTGAAGGTGACA 
Actin R TCTGGACTTGGGAGAGGACT 
Blue Barcode (BBC) F TGGACAAGGGCGGCAACAGC 
Blue Barcode1 (BBC1) R GTTGATTGTCGACCTGTGAA 
Blue Barcode2 (BBC2) R GTTGATTGTCGACAGACCTA 
Blue Barcode3 (BBC3) R GTTGATTGTCGACTCTGAGA 
Blue Barcode4 (BBC4) R GTTGATTGTCGACGACATCA 
Blue Barcode5 (BBC5) R GTTGATTGTCGACGCAATAT 
Blue Barcode6 (BBC6) R GTTGATTGTCGACTAGGATT 
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Blue Barcode7 (BBC7) R GTTGATTGTCGACCGCCGGT 
Blue Barcode8 (BBC8) R GTTGATTGTCGACATTTCCT 
Cyan Fluorescent protein 
(CFP) F 

ACAGATGCCAGTTCCACACC 

Cyan Fluorescent protein 
(CFP) R 

CCTTGTCCAGGTCGGTTCTG 

c-myc F AGGGAGATCCGGAGCGAATA 
c-myc R GTCCTTGCTCGGGTGTTGTA 
FAK F GGGTCCGATTGGAAACCAAC 
FAK R CTGAAGCTTGACACCCTCGT 
MAPK11 F GGAGATGACCGGCTATGTGG 
MAPK11 R ATATGTCCGGGCGTGTTCTG 
MAPK14 F TCTGTGTGTGCTGCTTTTGAC 
MAPK14 R TTGTTCAGATCTGCCCCCAT 
RPS6KA1 F GGAGGGCCACATCAAACTCA 
RPS6KA1 R AGCTTCGCCTTCAGAATCAGT 
RPS6KA2 F CCAAAGAGGTCATGTTCACGGA 
RPS6KA2 R AGTACGCTCTCTTGTCGTGG 
RPS6KA3 F AGACCATCTACATAGCCTGGGA 
RPS6KA3 R AGCATTTCAAACATTAACACACCA 

 

Table 2.1: List of qPCR primers used in this study.  
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Target Antibody/Company Application Concentration 
β-actin Cell Signaling 8H10D10 Immunoblot 1:5000 
Phospho-Akt S473 Cell Signaling D9E Immunoblot 1:2000 
Akt Cell Signaling 11E7 Immunoblot 1:1000 
Phospho-c-Jun Ser73 Cell Signaling D47G9 Immunoblot 1:1000 
c-Jun  Cell Signaling 60A8 Immunoblot 1:1000 
c-myc Cell Signaling D84C12 Immunoblot 1:1000 
Cdk4 Santa Crus H-303 Immunoblot 1:500 
Cyclin D1 Millipore Ab-3 Immunoblot 1:500 
phospho-eIF4B 
Ser422 

Cell Signaling #3591 Immunoblot 1:1000 

eIF4B Cell Signaling #3592 Immunoblot 1:1000 
Phospho-ERK1/2 
T202/Y204, 
T185/Y187 

Millipore AW39R Immunoblot 1:1000 

ERK1/2 Millipore 06-182 Immunoblot 1:1000 
Phospho-FAK Y397 Cell Signaling D20B1 Immunoblot 1:1000 
Phospho-FAK Y925 Cell Signaling #3284 Immunoblot 1:1000 
FAK Cell Signaling #3285 Immunoblot 1:1000 
Integrin α4 Cell Signaling #4600 Immunoblot 1:1000 
Integrin α10 Millipore AB6030 Immunoblot 1:1000 
Integrin αv BD 21/CD51 Immunoblot 1:1000 
Integrin β1 Abcam 12G10 Immunoblot 1:200 
Integrin β3 Santa Cruz D11 Immunoblot 1:100 
Integrin β5 Cell Signaling #4708 Immunoblot 1:1000 
Integrin β6 Santa Cruz C-19 Immunoblot 1:200 
Integrin β8 Santa Cruz G-17 Immunoblot 1:200 
P21 Cell Signaling 12D1 Immunoblot 1:500 
P27 Cell Signaling D69C12 Immunoblot 1:1000 
phospho-p38 
T180/Y182 

Cell Signaling #9211 Immunoblot 1:1000 

P38 Cell Signaling #9212 Immunoblot 1:1000 
Phospho-p70 T389 Cell Signaling #9205 Immunoblot 1:1000 
P70 S6 kinase Cell Signaling 49D7 Immunoblot 1:1000 
Phospho-Rb S795 Cell Signaling #9301 Immunoblot 1:1000 
Rb Cell Signaling 4H1 Immunoblot 1:1000 
phospho-RPS6 
Ser235/236 

Cell Signaling 91B2 Immunoblot 1:1000 

Phospho-RPS6 
Ser240/244 

Cell Signaling D68F8 Immunoblot 1:1000 

RPS6 Cell Signaling 54D2 Immunoblot 1:1000 
Phospho-p90RSK Thr 
573 

Cell Signaling #9346 Immunoblot 1:1000 

RSK1/RSK2/RSK3 Cell Signaling 32D7 Immunoblot 1:1000 
Skp2 Cell Signaling #2652 Immunoblot 1:1000 
phospho-Smad3 
Ser423/425 

Cell Signaling C25A9 Immunoblot 1:1000 

Smad3 Cell Signaling #9523 Immunoblot 1:1000 
Phospho-Src family 
Y416 

Cell Signaling #2101 Immunoblot 1:1000 

Src Cell Signaling 32G6 Immunoblot 1:1000 
Talin 1 Cell Signaling #4021 Immunoblot 1:1000 
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Vinculin Millipore MAB3574 Immunoblot 1:2000 
Alexa Fluor 488 
Phalloidin 

Life Technologies Immunofluorescence 1:40 

BrdU Cell Signaling Bu20a Immunofluorescence 1:1600 
Collagen VII Millipore MAB2500 Immunofluorescence 1:200 
Collagen VII Calbiochem 234192 Immunofluorescence 1:200 
Cytokeratin 10 Covance DE-K10 Immunofluorescence 1:100 
FAK Santa Cruz sc-932 Immunofluorescence 1:50 
Integrin αv L230, hybridoma ATCC Immunofluorescence 7µg/mL 
Integrin β1 Abcam 12G10 Immunofluorescence 1:200 
Integrin β3 Santa Cruz D-11 Immunofluorescence 1:200 
Keratin5 Covance PRB-160P Immunofluorescence 1:5000 
Ki67 Thermo 9106 Immunofluorescence 1:200 
Paxillin Abcam Y113 Immunofluorescence 1:200 
PCNA Cell Signaling D3H8P Immunofluorescence 1:1000 
Vinculin Millipore MAB3574 Immunofluorescence 1:200 
Integrin αv  Millipore AB1930 Immunoprecipitation 1:50 
Normal Rabbit IgG Cell Signaling 2729 Immunoprecipitation 1:50 
PF-573228 Sigma-Aldrich Small molecule  1µM in DMSO 
BI-D1870 Santa Cruz Small molecule  1µM in DMSO 
SB 202190 Sigma-Aldrich Small molecule  1µM in DMSO 
Cytochalasin D Sigma-Aldrich Small molecule 1µM in DMSO 
MMP-2/MMP-9 
inhibitor I 

Calbiochem CAS 
193807 

Small molecule 10nM in DMSO 

Doxycycline hyclate 
hydrochloride 

Sigma-Aldrich Small molecule 2µg/mL in H2O 

4-hydroxytamoxifen Sigma-Aldrich Small molecule 100nM in 100% 
EtOH 

Cycloheximide Cell Signaling Small molecule 10µg/mL in 
DMSO 

TGFβ1 R&D Recombinant protein 0.1pM-1nM 
Rat tail Collagen  Recombinant protein 25µg/mL in 

0.02M acetic 
acid 

Fibronectin Fisher Recombinant protein 10µg/mL in 
PBS 

Vitronectin Sigma Recombinant protein 0.1µ/mL in H2O 
 

Table 2.2: List of antibodies, small molecules and recombinant proteins used in this study.  
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Target ID # Hairpin sequence (5’3’) 
ITGB1 TRCN0000029646 TACATTCTCCACATGATTTGG 
ITGB3 TRCN0000003234 ATAGTACTGGAATCTGACGAC 
ITGB4 TRCN0000057768 AAGGATGGAGTAGCTGAGGAG 
ITGB5 TRCN0000057743 TTGAAGCCATTTCATAGCGGG 
ITGB6 TRCN0000057707 AATACTACTGCAAGGGTTGGC 
ITGB7 TRCN0000057721 TTAGGAATCAGTTTACTCAGC 
ITGB8 TRCN0000057763 ATTCTATTGAATCAACTGAGC 
ITGA1 TRCN0000057750 TTAAAGGTTGTGTTTCGAGGG 
ITGA2 TRCN0000057731 TATATAGCACTATCTGGCCGG 
ITGA3 TRCN0000057715 TTTACCATGCTAAGCGAGGTC 
ITGA4 TRCN0000029654 GCTCCGTGTTATCAAGATTAT 
ITGA4 TRCN0000029655 CCAAACTGATAAGCTGTTCAA 
ITGA4 TRCN0000029656 TTGCATTCATTACTGCTCCCG 
ITGA5 TRCN0000029652 AATTCTGACTCGTTCCTGAGG 
ITGA6 TRCN0000057775 ATCGTTATCAAACTCGATCCG 
ITGA7 TRCN0000057709 ATCTAACACATAGTCCAGGGC 
ITGA9 TRCN0000057740 ATAGTAGATGTTCTTCCAGCG 
ITGA10 TRCN0000057726 CGGCTAAAGGATGGGATTCTT 
ITGAV TRCN0000010768 TTTATCCTGTTTCGACCTCAC 
ITGAV TRCN0000003239 ATTCTCAAGATTAGCTCAGTC 
ITGAV V3THS_365149 TGTCGTCTGGAAGTCTCCT 
MAPK11 TRCN0000196579 GAGAATCTACACGCATGTATG 
RPS6KA1 TRCN0000001385 GCTCTATCTCATTCTGGACTT 
RPS6KA1 TRCN0000001386 GAAGGAGACCATGACACTGAT 
PTK2 TRCN0000001620 CCGGTCGAATGATAAGGTGTA 
PTK2 TRCN0000001621 CGACAGCAACAGGAAATGGAA 

 
Table 2.3: List of short hairpin RNAs (shRNAs) used in this study.  
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CHAPTER 3 

The role of αv integrins in human skin tissue generation, maintenance and wound healing 

 

Parts of this chapter have been previously published in: 

 

Duperret EK, Dahal A, Ridky TW. Focal adhesion-independent integrin αv regulation of FAK and 

c-myc is necessary for 3D skin formation and tumor invasion. J Cell Sci. 2015; 128(21):3997-

4013.  

 

RESULTS 

RNAi screen to identify integrins necessary for organotypic skin 

 In order to define functional roles for all integrins expressed in human epidermis, we 

designed an shRNA screen in human organotypic skin. We first determined which integrins are 

expressed in primary keratinocytes and found robust expression of 16 of the 26 integrin subunits 

(Figure 3.1A,B). The well-studied β3 integrin subunit was not expressed in human keratinocytes, 

though it was robustly expressed in human melanocytes (Figure 3.1A,B). We then screened 

shRNA libraries to identify individual hairpins with the ability to reduce transcript levels by more 

than 75% (Figure 3.1C). 

Individual keratinocyte populations were transduced with each shRNA hairpin, and a 

second virus driving expression of a unique barcoded fluorescent reporter to allow for 

quantification of the relative representation of each cell population in a mixed group (Figure 3.2A). 

Pooled integrin knockdown cells and scrambled hairpin control cells were mixed at equal ratios 

and used to regenerate epidermis. The relative representation of each cell population in the 

starting mixture was compared to that in established day 14 tissue (Figure 3.2A). Several 

subunits appeared necessary for keratinocyte proliferation and survival, including α4, α5 and αv 

(Figure 3.2B). Keratinocytes lacking these subunits displayed a greater than 100-fold fitness 

disadvantage compared to controls (Figure 3.2B). We chose to focus functional studies on αv, 
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because 1) it was strongly selected against in the screen, 2) it dimerizes with nearly all β 

subunits, 3) it’s role in human skin was poorly understood, and 4) it has been shown to promote 

cancer in other tissues (Ricono et al., 2009; Weis and Cheresh, 2011). In contrast to the 

keratinocyte results, we found that αv loss in melanocytes conferred no survival advantage or 

disadvantage in tissue (Figure 3.2B). This helps confirm that the fitness disadvantage in the αv 

knock down keratinocytes did not result from non-specific off target toxicity. 

 

Integrin αv is necessary for organotypic skin tissue generation 

 Integrin αv is expressed in healing skin wounds (Cavani et al., 1993; Clark et al., 1996). 

We determined that αv is also robustly expressed in neonatal skin, with highest expression in the 

plasma membrane of proliferative basal layer cells (Figure 3.3A). To verify the critical role of αv in 

normal skin in a non-competitive context, we knocked down αv in human keratinocytes using two 

independent hairpins and seeded these cells in organotypic culture (Figure 3.3B). Loss of αv 

resulted in severely compromised tissue that was approximately 1/3 the thickness of controls, and 

lacked proliferative, BrdU+ basal cells (Figure 3.3B,C). This proliferation arrest was not caused by 

premature differentiation, as skin tissue lacking αv still lacks K10 expression in the basal layer 

(Figure 3.3B). This organotypic skin lacking integrin αv did not form viable tissue when grafted 

onto SCID mice, and only resulted in inflammation and scarring with no epidermis present (Figure 

3.3D). These results indicate a crucial role for integrin αv in establishing human epidermis.  

 

Integrin αv’s major binding partners in skin are β5 and β6 

 Integrin αv has several potential binding partners including β1, β3, β5, β6 and β8, all of 

which except β3 are expressed in keratinocytes (Figure 3.4A,B). In immunoprecipitation and 

western blotting experiments, we found that αv bound to β5, β6 and β8, but not β1 (Figure 3.4B). 

To determine which β subunits are most critical in mediating the αv loss phenotype, we knocked 

down each β subunit individually (Figure 3.4C). β5, β6 and β8 are all obligate binding partners 

with αv and cannot bind to any other α subunit. Thus, knock down of each β subunit alone leads 
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to depletion of only one αv heterodimer. Immunoprecipitation experiments showed that knock 

down of one β subunit did not lead to increased αv heterodimerization with other β subunits 

(Figure 3.4D). In contrast, β5 knock down led to a slight reduction in αv immunoprecipitation with 

β6 and vice versa (Figure 3.4E). 

To determine the specific effects of αvβ5, αvβ6 and αvβ8 on skin tissue generation, we 

knocked down each β subunit individually in keratinocytes and then seeded them onto our 

organotypic skin model (Figure 3.5A). We found that loss of αvβ5 or αvβ6 individually were able 

to phenocopy the loss of skin tissue proliferation seen upon loss of all αv heterodimers (Figure 

3.5A-C). αvβ5 was slightly more essential than αvβ6, according to tissue thickness and BrdU 

quantification (Figure 3.5B,C). Knock down of β8 alone had no appreciable effect on skin tissue 

thickness and BrdU uptake, indicating that αvβ8 is dispensable for skin tissue generation (Figure 

3.5B,C). These results correlate well with our shRNA screening results and also with the relative 

expression levels of each of these β subunits.  

Knock down of integrin β1 in skin tissue leads to distinct morphological changes in 

comparison to αv loss (Figure 3.6A,B). Loss of β1 led to blistering at the epidermal-dermal 

junction, and no change in BrdU uptake (Figure 3.6A). In conclusion, the impairment in tissue 

formation in response to αv loss is due to the action of αvβ5 and αvβ6. 

 

Integrin αv is required for organotypic skin tissue generation, but not tissue maintenance 

These initial analyses focused on the roles of integrins in tissue generation, and in 

cultured, “activated” keratinocytes. To determine the effects of integrin αv loss on tissue 

maintenance, we developed a doxycycline-inducible integrin αv knock down system. We use a 

TRIPZ vector, where expression of an integrin αv hairpin and RFP are driven off of a doxycycline-

inducible promoter. In order to get effective knock down in primary cells with this vector, we 

induced expression of the vector, and then flow sorted the cells for high RFP expression (top 

20%). We then allowed the cells to recover in doxycycline-free media. We used this system to 

knock down αv at successive time points during organotypic tissue regeneration (Figure 3.7A). 
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Integrin αv loss occurred 3-4 days post doxycycline-induction, and persisted throughout the 

course of the experiment (Figure 3.7C). The phenotypic tissue effects of αv loss were seen only 

at the earliest time points with thin tissue and corresponding lack of BrdU incorporation (Figure 

3.7B). Tissue treated with doxycycline 2 days prior to seeding (day -2) was slightly thicker than 

the tissue treated with dox 4 days prior to seeding (day -4). The day -2 tissue was able to 

proliferate for 1-2 days before αv knock down occurred, while the day -4 tissue displayed loss of 

αv prior to seeding. All other time points showed normal tissue thickness and normal basal 

epidermal proliferation (Figure 3.7D,E) despite robust loss of αv. These observations indicated 

that integrin αv is only necessary for the earliest stages of tissue generation, and is not required 

for maintenance of normal epidermis. 

We next examined the effects of αv blockade with a blocking antibody targeting integrin 

αv, L230. This antibody is reported to target all αv heterodimers (Goswami et al., 2011; 

Weinacker et al., 1994). We found that treatment with 7µg/mL of blocking antibody led to efficient 

labeling of organotypic skin primarily in the basal epidermal cells (Figure 3.8C). We performed a 

similar organotypic tissue generation timecourse utilizing this antibody. We found that treatment 

of organotypic tissue with L230 blocking antibody at day 0 led to a reduction in tissue thickness, 

similar to that seen upon αv knock down (Figure 3.8A,B). However, treatment with L230 at a later 

time point, day 5, did not alter tissue thickness in this organotypic model (Figure 3.8A,B).  

We wondered whether these data indicate that αv is required for wound re-

epithelialization, but not normal epidermal tissue maintenance. We therefore developed an 

organotypic re-epithelialization assay utilizing a 3D-printed runway platform (Figure 3.9A). In this 

system, keratinocytes and melanocytes were seeded onto the left half of the runway, and were 

blocked from migrating to the right half using a 3D-printed cover (Figure 3.9A). Upon removal of 

the cover, keratinocytes were induced to migrate and cover the right half of the runway; however, 

we observed that human melanocytes do not migrate in this system (Figure 3.9A). Utilizing these 

runway stands, we began antibody treatment 5 days after seeding keratinocytes and 

melanocytes, at the same time the covers were removed and the keratinocytes were induced to 
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migrate (Figure 3.9B). Within this re-epithelialization system, it can be visually observed that the 

L230 blocking antibody prevents re-epithelialization compared to control antibody treatment 

(Figure 3.9C). Histological examination of this tissue shows that, while control tissue is able to re-

epithelialize onto the right side of the tissue, L230 treated epidermis is not (Figure 3.9D). 

Additionally, the L230 treated tissue on the left side of the runway appeared histologically distinct 

from the control tissue, despite their similarity in tissue thickness (Figure 3.9E). The L230-treated 

tissue appeared fragile, with detachment of many epidermal cells from each other and from the 

basement membrane, after only 5 days of antibody treatment (Figure 3.9E).   

 

Integrin αv is required for proliferation during human wound healing in vivo 

 We next utilized this αv blocking antibody to examine the effects on epidermal processes 

in vivo. We found that the L230 blocking antibody targets human αv, but not mouse αv. Staining 

of a human foreskin grafted onto a SCID mouse at the human-mouse junction revealed an 

absence of staining in the mouse epidermal compartment (Figure 3.10A). We next grafted human 

skin onto SCID mice and examined the effects of L230 treatment on this human skin in vivo. 

While treatment with this antibody led to efficient labeling of the human skin, it did not alter the 

thickness or overall histological appearance of the skin, compared to control antibody treatment 

over the course of one week (Figure 3.10B,C). This is in contrast to the L230 treatment in 

organotypic culture, which led to skin fragility (Figure 3.9E).  

 We next wondered whether L230 treatment would alter the course of wound healing in 

our in vivo model. As mentioned in the introduction, it has been shown that human skin grafted 

onto mice resists contraction upon wounding (Escámez et al., 2004). We tested this in our human 

skin xenograft model. We wounded human skin xenografts on SCID mice using a 2mm punch 

biopsy, which removed the epidermis and dermis, without altering the fascia and panniculosus 

carnosus layers (Figure 3.11). We monitored these wounds over time and found that these 

wounds re-epithelialized without contracting the size of the original xenograft (Figure 3.11). We 

next examined wound healing at day 2 or day 4 in xenografted mice treated with a mouse IgG (or 
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IgG1 isotype) control antibody or an L230, αv-blocking, antibody (Figure 3.12, 3.13). At day 2, 

none of the wounds had healed completely. In control tissue, the wound edge displayed much 

higher levels of epidermal proliferation compared to wound-adjacent tissue. At the wound edge, it 

was evident that the L230-treated epidermis was thinner and less proliferative than the control 

IgG-treated epidermis (Figure 3.12A,B). However, human epidermis that was far from the wound 

edge did not show any difference in proliferation or epidermal tissue thickness (Figure 3.12B,C). 

There was no significant difference in the distance that the epidermal tissue had migrated into the 

wound at this time point (Figure 3.12C). At day 4, all wounds had almost completely re-

epithelialized, though the L230-treated wounds showed the same trend with reduced epidermal 

proliferation and epidermal thickness compared to mouse IgG1-treated epidermis (Figure 

3.13A,B). These data indicate that αv integrins are necessary for rapid hyperproliferation in the 

wound environment, but are dispensable for normal tissue homeostasis.  
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cultured human keratinocytes (only the subunits that are expressed within 2000-fold of integrin β1 

are shown). Data shown represents the mean of 2 biological replicates ± SD.  
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Eosin (H&E) stain shows tissue graft failure (inflammation and scarring) upon αv knock down. 

***=p<0.0005, using Tukey’s post hoc HSD.  
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P=7.52x10-8 using one-way ANOVA. Scale bar=200μm. **=p<0.005, ***=p<0.0005, using Tukey’s 

post hoc HSD. 
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Figure 3.9: Blocking antibody targeting integrin αv blocks re-epithelialization in an organotypic 

wound healing model. A. Images of 3D printed runway for organotypic re-epithelialization assay. 

B. Timecourse for organotypic re-epithelialization assay. Keratinocytes and melanocytes are 

seeded onto the left side of the runway on day 0, and the right side of the runway is blocked using 

cover until day 5. On day 5, blocking antibodies are added, and keratinocytes migrate over to the 

right side over the course of 5 days, until the tissue is harvested on day 10. C. Visualization of re-

epithelialization assay upon treatment with control (Ms IgG) antibody or L230 antibody. L230 

clearly blocks re-epithelialization at day 8 of the assay. D. Representative Hematoxylin & Eosin 

(H&E) stain for tissue shown in (C), harvested at day 10. Arrow indicates the start of re-

epithelialization. Scale bar=1mm. E. Representative H&E images of left portion of tissue shown in 

(C), that is not induced to re-epithelialize. Scale bar=100µm.  
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grafted onto a SCID mouse at the human-mouse junction. Tissue was stained with L230 to show 

that L230 is a human-specific antibody. B. Representative images of normal human skin grafted 

onto SCID mice, treated with a mouse IgG control antibody or L230 blocking antibody over the 

course of one week (200µg of antibody, administered subcutaneously every other day). C. L230-

treated human tissue in vivo, stained with secondary antibody only to show efficient labeling of 

human keratinocytes with antibody. Scale bar= 200µm.  
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with a control mouse IgG antibody or an L230 antibody. Mice were treated with 100µg of antibody 

per day, beginning the day prior to wounding. Wounds were harvested 2 days after wounding. B. 

Representative images of Ki67 and mouse secondary antibody labeling of wound edge and 

wound adjacent tissue. Dotted lines outline epidermal part of wound. C. Quantification of %Ki67+ 

epidermal cells and epidermal thickness at wound edge and in wound adjacent tissue, and 

epidermal migration into wound (mm). Wound edge was considered within 0.25mm of wound. 

NS= not statistically significant. P values were calculated using a student’s t-test. Scale bar= 

200µm.  
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days after wounding.  B. Quantification of %Ki67+ epidermal cells and epidermal thickness at 

wound edge and in wound adjacent tissue, and epidermal migration into wound (mm). Wound 

edge was considered within 0.25mm of wound. NS= not statistically significant. P values were 

calculated using a student’s t-test. Scale bar= 200µm.  
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DISCUSSION 

 αv integrins and several of their ligands, including TGFβ, Thrombospondin and 

Vitronectin, are up-regulated in the wound environment (Longmate and Dipersio, 2014). It was 

previously unclear what the role for αv integrins were in this setting, since previous reports 

described no effect for β5 in wound healing, and only an effect of β6 in wound healing in aged 

mice (AlDahlawi et al., 2006; Huang et al., 1996; Huang et al., 2000a). Here, we have shown for 

the first time that αv integrins—primarily αvβ5 and αvβ6 are necessary for rapid proliferation 

during organotypic tissue generation and during epidermal wound re-epithelialization. 

 The remodeling of the extracellular matrix is a crucial event during the course of wound 

healing. It is essential to understand how keratinocytes respond to changes in the extracellular 

matrix to stimulate re-epithelialization of the wound. Dysregulation in the process of wound 

healing—at the level of inflammation, ECM deposition, ECM degradation or keratinocyte 

proliferation and migration—can result in chronic wound formation (Reinke and Sorg, 2012). 

Chronic wounds comprise a significant health burden in the United States, with over 6.5 million 

patients affected (Sen et al., 2009). Chronic wounds rarely occur in healthy populations, but 

rather are frequent in elderly populations and patients suffering from diabetes and obesity (Sen et 

al., 2009). Chronic wound types include venous stasis ulcerations, pressure sores and diabetic 

foot ulcers. Inflammation in non-healing skin wounds can promote secondary Squamous Cell 

Carcinoma formation within the wound itself (Trent and Kirsner, 2003). Currently, there are limited 

treatment options for chronic wounds, with only 2 FDA-approved therapies: platelet derived 

growth factor (PDGF) and a human skin equivalent (Mustoe, 2004). These treatments have 

limited clinical success, and there are no approved treatments that promote keratinocyte re-

epithelialization.  

 Current strategies in development for treatment of chronic wounds target the processes 

of re-epithelialization, angiogenesis and/or tissue granulation (Mustoe, 2004). Current treatments 

in development include plasminogen administration, MMP-9 inhibition, keratinocyte growth factor 

(KGF) administration and granulocyte-macrophage colony stimulating factor (GM-CSF) 
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administration (Gooyit et al., 2014; Koria et al., 2011; Marques da Costa et al., 1997; Shen et al., 

2012). However, activation of integrins to promote wound re-epithelialization has not been 

examined. Based on our results, activation of integrin αv using RGD-based peptides or agonistic 

antibodies may be a potential therapeutic strategy for treatment of chronic wounds. However, 

caution must be taken because β6 over-expression in the mouse results in chronic wound 

formation (Häkkinen et al., 2004).  

 This newly discovered role for αv integrins in epidermal proliferation may extend to other 

epithelial tissues. Thus far, the majority of research on αv integrins has focused on mesenchymal 

tissues and the hematopoietic system. Deletion of αv integrins in myeloid lineages causes 

depletion of Tregs (specifically, Th17 T helper cells), enhanced T cell activation and failure of 

macrophages and dendritic cells to properly remove apoptotic cells (Acharya et al., 2010; Lacy-

Hulbert et al., 2007). These phenotypes are largely attributed to dysregulation of TGFβ signaling 

in response to αv loss. Depletion of αv in myofibroblasts results in reduced susceptibility to 

hepatic, pulmonary and renal fibrosis, also due to reduced TGFβ activation (Henderson et al., 

2013). In the brain, αv loss in neural cells results in defective association between vessels and 

brain parenchyma, resulting in hemorrhage (McCarty et al., 2002; McCarty et al., 2005). The roles 

that αv plays in various tissues may be entirely dependent on the roles of TGFβ signaling in that 

particular tissue. The roles for αv in other epithelial tissues with proliferative basal cells, such as 

breast, colon, intestine, ovary, cervix, esophagus, and many others, are still unknown. Given the 

role for αv in re-epithelialization during cutaneous wound healing, this integrin may also contribute 

to mucosal wound healing in inflammatory bowel diseases like Crohn’s disease or ulcerative 

colitis, thus opening up new therapeutic opportunities (Neurath, 2014).  

 Despite our evidence for a pro-proliferative role for integrin αv during wound healing, 

there are several reports for an anti-proliferative role of αv integrins in epithelial tissues. The role 

of integrin αv has been examined in epithelial cells of the eyelid and conjunctiva, and in a skin 

tumor model (McCarty et al., 2008; Savar et al., 2014). Deletion of αv in the eyelid and 

conjunctiva results in spontaneous squamous cell carcinoma formation, potentially due to 
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dysregulation of TGFβ signaling (McCarty et al., 2008). Deletion of αv in the mouse epidermis in 

the absence of p53 leads to accelerated tumor formation (potentially due to Akt activation), but 

then slowed tumor growth, potentially due to decreased immune cell infiltration and 

vascularization of the tumors (Savar et al., 2014). This was found to be a TGFβ-independent 

phenotype. Integrin β6 deficient mice show enhanced proliferation in hair follicles after depilation, 

also in a TGFβ-dependent manner (Xie et al., 2012). Some of these differences in phenotypes 

may be the result of the dose-dependent effects of TGFβ signaling. Partial blockade of αv 

integrins may have different effects compared to complete genetic ablation of this gene. 

Furthermore, TGFβ signaling may have slightly different effects in mouse and human skin. We 

will address the dependence of our αv phenotypes on TGFβ signaling more in Chapter 4.  

  



75 
 

CHAPTER 4 

Focal adhesion-independent integrin αv control of cell cycle progression through TGFβ, 

FAK and c-myc signaling pathways 

 

Parts of this chapter have been previously published in: 

 

Duperret EK, Dahal A, Ridky TW. Focal adhesion-independent integrin αv regulation of FAK and 

c-myc is necessary for 3D skin formation and tumor invasion. J Cell Sci. 2015; 128(21):3997-

4013.  

 

RESULTS 

Integrin αv does not localize to focal adhesions in keratinocytes 

To identify critical αv-activated signaling pathways, we first examined its spatial 

localization relative to focal adhesions (FAs) in keratinocytes compared to dermal fibroblasts. 

Consistent with previous reports indicating a role for αv integrins in fibroblast adhesion maturation 

(Schiller et al., 2013), αv localized to large Paxillin-containing FAs in fibroblasts, while β1 

localized to smaller, less mature, FAs (Figure 4.1A). In striking contrast, we found that αv did not 

associate with keratinocyte FAs, while β1 was tightly co-localized with all keratinocyte FAs 

(Figure 4.1B). We confirmed this result on a variety of different substrates, including Collagen, 

Fibronectin and Vitronectin (Figure 4.1C). Keratinocytes on these substrates still secrete β1 

ligands and thus still form Paxillin-containing adhesions (Alitalo et al., 1982; Chung et al., 2011). 

However, Vitronectin, an αv-specific ligand, did not induce αv FAs (Figure 4.1C).  

Integrin αv knock down did not alter the number or size distribution of FAs within 

keratinocytes grown on Collagen, Fibronectin or Vitronectin (Figure 4.2A,C). In contrast, β1 knock 

down in human keratinocytes abolished nearly all FA formation (Figure 4.2A). Loss of β1, but not 

αv, also significantly decreased cell spreading area and mechanical adhesion to the growth 

surface (Figure 4.2B). 
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Further, while β1 localized to the tips of actin filaments in keratinocytes, αv did not, 

indicating that αv likely does not connect the ECM to the actin cytoskeleton in keratinocytes 

(Figure 4.3C). Consistent with this idea, αv expression was not restricted to the cell-substrate 

basal adhesive surface in keratinocytes, and instead localized throughout the cell membrane 

(Figure 4.3A,B). We confirmed αv expression at the cell surface by immunofluorescence without 

permeabilization (Figure 4.3D). 

 The mechanistic basis for the differential αv localization between keratinocytes and 

fibroblasts is unclear. We considered the possibility that β3, which is absent in human 

keratinocytes yet present in fibroblasts, directs αv to FAs. To test this possibility, we expressed 

β3 in human keratinocytes and examined the localization of the αvβ3 heterodimer (Figure 

4.4A,B). While we achieved high levels of β3 expression which localized to the plasma 

membrane, it was insufficient to direct αv to Paxillin-containing FAs (Figure 4.4B). Consistent with 

this, β3 depletion in human fibroblasts decreased the number of αv-containing FAs, but did not 

abolish them completely (Figure 4.4C). 

  

Integrin αv controls cell cycle progression in keratinocytes 

The differing roles of αv and β1 in keratinocyte adhesion are consistent with the tissue 

phenotypes observed upon knock down of each of these subunits in Chapter 3. Integrin αv knock 

down led to decreased tissue thickness and BrdU incorporation, while β1 knock down led to 

minor blistering at the dermal-epidermal junction, with no effects on tissue thickness or BrdU 

incorporation. Cultured keratinocytes on plastic lacking αv undergo the same cell cycle arrest, 

and exhibit a 4-5 fold increase in the G1/S ratio, measured using PI staining and flow cytometry 

(Figure 4.5A,C). Cultured keratinocytes lacking αv also lack Rb phosphorylation, consistent with 

activation of a G1-S cell cycle checkpoint (Figure 4.5B). αv knock down also led to decreased 

levels of total Rb, potentially due to the fact that Rb is an E2F transcriptional target (Shan and 

Chang, 1994).  
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To determine which signaling pathways are involved in cell cycle progression 

downstream of integrin αv, we examined several candidate pathways known to be involved in 

integrin signaling or cell cycle progression. We did not observe a change in Src signaling or Cdk4 

levels; however, we observed a decrease in both total and phospho-c-Jun protein, and an 

increase in p27 protein (Figure 4.6A). Since c-Jun and other integrin-regulated pathways are 

known to control Cyclin D levels, we re-introduced wild-type or degradation resistant (T286A) 

Cyclin D1 to control or αv knock down cells (Figure 4.6B). However, over-expression of these 

proteins was insufficient to restore Rb phosphorylation in keratinocytes lacking αv (Figure 4.6B). 

We rescued c-Jun phosphorylation through expression of MKK7, an upstream activator of c-Jun 

(Figure 4.6C). Despite efficient rescue of c-Jun phosphorylation, this was insufficient to restore 

Rb phosphorylation to αv knock down cells (Figure 4.6C). We also observed a decrease in Skp2, 

an E3 ubiquitin ligase for p27, upon integrin αv knock down (Figure 4.6D). We hypothesized that 

the decrease in Skp2 might be responsible for the dramatic increase in p27 protein levels. 

However, re-expression of Skp2 in αv knock down cells was insufficient to rescue either p27 

protein levels or Rb phosphorylation (Figure 4.6D). Even co-expression of a cyclin-dependent 

kinase inhibitor-resistant Cdk4 (R24C) and a dominant-negative p53 (dnp53) was insufficient to 

rescue the G1-S checkpoint blockade in αv knock down cells (Figure 4.6E). 

 

Integrin αv controls cell cycle progression through a FAK c-myc signaling axis 

Despite the lack of αv localization within keratinocyte FAs, we observed a near-complete 

loss of both phosphorylated and total Focal Adhesion Kinase (FAK), a key regulator of FA 

signaling, upon αv knock down (Figure 4.7A). We also observed a striking loss of c-myc protein 

levels with either αv knock down or specific FAK inhibition (Figure 4.7A,C). To gain further insight 

into mechanisms driving cell cycle arrest after αv loss, we used doxycycline-inducible αv shRNA 

to define the sequence and timing of the loss of downstream signaling pathways (Figure 4.7B). 

Integrin αv loss was nearly complete at 3 days post dox induction (dpi); FAK depletion followed at 

4-5 dpi (consistent with FAK’s long half-life), and ultimately c-myc loss at 6 dpi, immediately prior 
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to cell cycle arrest (Figure 4.7B). Unlike the other signaling pathways that we examined, re-

expression of c-myc was sufficient to rescue the growth arrest without affecting upstream FAK 

levels (Figure 4.7D). This 2D cell culture phenotype was re-capitulated in organotypic culture, 

where re-expression of c-myc in αv-null skin was sufficient to rescue tissue thickness and basal 

cell proliferation, while preserving normal stratification and differentiation (Figure 4.7E-G). These 

data suggest that αv controls cell cycle progression through a FAKc-myc signaling pathway. 

While FAK loss in murine keratinocytes leads to anoikis in in vitro culture (McLean et al., 

2004), we did not observe anoikis in our human αv-depleted keratinocytes lacking FAK (Figure 

4.8A). In contrast, β1 depletion in keratinocytes led to significant anoikis (Figure 4.8A). To 

determine whether this discrepancy might be due to differences between mouse and human 

keratinocytes, we examined anoikis upon FAK inhibition in both human and murine primary 

keratinocytes (Figure 4.8A,B). While FAK inhibition did not induce anoikis in human keratinocytes, 

FAK inhibition in murine keratinocytes led to a modest increase in TUNEL staining (Figure 

4.8A,B). These differences might be the result of in vitro culture conditions, since mouse 

keratinocytes lacking FAK can proliferate under certain optimized conditions (Schober et al., 

2007).  

 

Integrin αv controls FAK expression and activation through TGFβ signaling 

We next questioned how αv controls FAK expression and activation. αv regulates FAK at 

the post-transcriptional level since αv loss does not alter FAK mRNA (Figure 4.9A). Previous 

efforts have linked TGFβ signaling to FAK activity and/or FAK expression through a variety of 

different mechanisms (Brooks et al., 1996; Cicchini et al., 2008; Kracklauer et al., 2003; Rolli et 

al., 2003; Thannickal et al., 2003; Wang et al., 2004; Wendt and Schiemann, 2009). Because of 

αv’s role in activating latent TGFβ through force-dependent or MMP-dependent mechanisms, we 

questioned if this could explain the FAK loss observed upon αv depletion (Mamuya and Duncan, 

2013). Consistent with the hypothesis that αv loss inhibits TGFβ, we observed a loss of Smad3 

phosphorylation upon αv knock down (Figure 4.9B). We treated control or αv knock down cells 
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with exogenous TGFβ1 and observed a dose-dependent increase in both phospho- and total FAK 

protein in αv null cells that peaks at 10pM and tapers off at higher concentrations (Figure 4.9C). 

The lack of dose-dependent increase in FAK phosphorylation in control cells is potentially due to 

saturation of FAK activation (Asthagiri et al., 1999). This suggests that αv control of TGFβ 

signaling is at least partially responsible for maintaining FAK expression and activity. 

We next wondered whether αv’s regulation of TGFβ signaling was responsible for αv’s 

role in re-epithelialization. We thus performed re-epithelialization assays using a pan-αv blocking 

antibody, L230, and an αvβ6 specific blocking antibody, 10D5. We also treated these runways 

with 1pM or 100pM TGFβ1. We found that both L230 and 10D5 significantly reduced epidermal 

re-epithelialization, though the effect of L230 was stronger (Figure 4.10A-C). We also found that 

addition of TGFβ1 in the presence of either L230 or 10D5 at least partially rescued re-

epithelialization in a dose-dependent manner (Figure 4.10B,C). 100pM of TGFβ1 was sufficient to 

almost completely rescue both epidermal migration and epidermal thickness for both L230 and 

10D5 treatments (Figure 4.10B,C). Thus, αv’s control of epidermal re-epithelialization depends on 

TGFβ signaling.  

To determine whether TGFβ is regulated by MMP or force dependent mechanisms in 

keratinocytes, we treated keratinocytes with either a dual MMP2/9 inhibitor or the actin 

polymerization inhibitor Cytochalasin D (Figure 4.11A). We observed a decrease in p-Smad3 with 

MMP inhibition, but not with Cytochalasin D-mediated cytoskeleton disruption (Figure 4.11A,B). 

These results suggest that αv does not control TGFβ signaling through adhesion-mediated 

forces, but rather through MMPs. It is also possible that MMPs and αv are required in parallel for 

regulation of TGFβ signaling. 

 To further explore the mechanism by which αv controls FAK protein in keratinocytes, we 

expressed wild-type FAK or hyperactive SuperFAK and then induced αv knock down. 

Exogenously expressed FAK or SuperFAK was properly phosphorylated at its Y397 auto-

phosphorylation site in control cells (Figure 4.12A,C). Expression of exogenous FAK or 

SuperFAK was sufficient to rescue total FAK protein, but not FAK activity in αv-null keratinocytes 
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(Figure 4.12A,C). Furthermore, FAK localization at FAs was lost upon αv knock down, even in the 

presence of supplemental exogenous FAK (Figure 4.12B). This indicates that αv contributes to 

both FAK expression and FA localization in human keratinocytes. 

 

Integrin αv and FAK control c-myc protein translation through p38 and p90RSK 

 αv and FAK regulation of c-myc protein occurs post-transcriptionally as c-myc transcript 

levels are unaltered upon either αv knock down or FAK inhibition (Figure 4.13D,E). We next 

examined c-myc half-life in αv knockdown or FAK inhibited cells and found no enhancement of c-

myc protein degradation in either setting (Figure 4.13F,G). This indicates that αv and FAK likely 

influence c-myc translation. To test the hypothesis that c-myc protein translation is regulated by 

αv and FAK through elements in the 5’ or 3’UTR, we generated chimeric reporter constructs 

containing doxycycline-inducible luciferase with 1) no UTRs, 2) the 5’UTR of myc, or 3) the 3’UTR 

of myc (Figure 4.13A). We transduced keratinocytes with these constructs, antagonized αv or 

FAK, and then induced luciferase expression. αv loss or FAK inhibition led to decreased 

luciferase activity only when the luciferase transcript contained the myc 5’UTR (Figure 4.13B,C). 

These findings indicate that αv and FAK control 5’UTR-dependent c-myc translation.  

Cap-dependent c-myc protein translation is partially regulated by Akt-mTOR signaling in 

some settings (Gera et al., 2004). However, we observed an increase in both Akt and p70 S6K 

phosphorylation upon αv loss, indicating that c-myc translation is likely controlled through 

alternative αv and FAK- regulated pathways (Figure 4.14A). In that regard, ERK and p38 MAPK 

are also known to control 5’UTR-dependent c-myc translation through cap-dependent and –

independent mechanisms (Shi et al., 2005; Stoneley et al., 2000; Subkhankulova et al., 2001). αv 

depletion did not consistently alter ERK1/2 phosphorylation, but did decrease p38 MAPK 

phosphorylation, indicating that this pathway may be involved in c-myc translation (Figure 4.14B). 

Furthermore, we observed a decrease in the phosphorylation of p90RSK upon αv knock down 

(Figure 4.14B). While ERK1/2 has a well-established role in phosphorylating p90RSK, p38 MAPK 

has also been shown to promote activation of p90RSK indirectly in some cell types (Roux et al., 
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2007; Zaru et al., 2015). Furthermore, we observed a decrease in phosphorylation of two RSK 

translation machinery targets, RPS6 at Ser235 (but not Ser240) and eIF4B, upon αv knock down 

(Figure 4.14C) (Degen et al., 2013; Roux et al., 2007). RPS6 phosphorylation at Serine240 is 

controlled by p70 S6K (Pende et al., 2004). FAK inhibition or FAK knock down led to similar 

decrease in phosphorylation of both p38 MAPK and p90RSK (Figure 4.14D, 4.15A). This 

indicates that FAK activity is necessary for activation of these signaling pathways downstream of 

αv. To test whether lack of p38 activation was directly responsible for these signaling events, we 

next inhibited p38 (Figure 4.14E). Inhibition of p38 MAPK led to an immediate decrease in RSK 

phosphorylation, eIF4B phosphorylation, RPS6 Ser235 phosphorylation, c-myc protein 

expression and Rb phosphorylation without altering ERK1/2 activity or upstream FAK protein 

levels (Figure 4.14E). We confirmed these results with small molecule inhibitors by using genetic 

approaches. The p38 inhibitor SB202190 targets both p38α (encoded by MAPK14) and p38β 

(encoded by MAPK11). At the RNA level, MAPK11 is expressed 10-fold higher than MAPK14, 

and we thus targeted this transcript with shRNA (Figure 4.15B), which recapitulated the effects of 

the small molecule p38 inhibitor (Figure 4.15D). Furthermore, restoration of p38 phosphorylation 

levels in αv-null keratinocytes through expression of a constitutively active MKK6 mutant 

(MKK6(glu)) was sufficient to rescue cell growth and c-myc protein levels (Figure 4.14G). To test 

whether RSK activity was directly responsible for these signaling pathway changes, we inhibited 

RSK (Figure 4.14F). Inhibition of RSK led to a decrease in eIF4B phosphorylation, RPS6 Ser235 

phosphorylation, c-myc protein expression, and subsequent growth arrest, without altering FAK 

levels (Figure 4.14F). We also confirmed these signaling pathway changes using genetic 

approaches. P90RSK1 (encoded by RPS6KA1) is the predominant p90RSK isoform expressed in 

keratinocytes (Figure 4.15B). Further, only hairpins targeting p90RSK1 (but not the other two 

isoforms) reduced pan-RSK1/2/3 levels in keratinocytes (Figure 4.15C). Knock down of p90RSK1 

recapitulated the effects of the small molecule p90RSK inhibitor (Figure 4.15E). These data taken 

together support a pathway in which αv controls c-myc protein translation through activation of 

FAK, p38 and RSK (Figure 4.14H).  
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FAK, p38 and p90RSK are necessary for skin tissue generation, but not tissue 

maintenance 

Next, we sought to determine whether the FAKp38p90RSK pathway mediating the 

effects of αv loss in cultured cells was similarly required in 3-D tissue. We inhibited each of these 

pathway elements at two different time points during epidermal tissue generation: day 0 and day 

4. Inhibition of each pathway component led to a decrease in epidermal tissue thickness and S-

phase basal cells when inhibitors were added at day 0, but not at day 4 (Figure 4.16A,B). 

Furthermore, organotypic tissue formed from αv knock down cells showed decreased FAK, c-

myc, and p38 and p90RSK phosphorylation, indicating that this pathway is also active in 

organotypic tissue (Figure 4.16C). Taken together, these data indicate that the 

αvFAKp38p90RSK signaling pathway plays a crucial role in organotypic epidermal tissue 

formation, but is relatively dispensable for epidermal maintenance.  



 

F
 

 

F

im

β

R

st

IGURES 

igure 4.1: Int

mages of hum

1 and Paxillin

Representative

tained for αv a

tegrin αv does

man fibroblasts

n and/or incub

e images of h

and Paxillin a

s not localize 

s (A) or huma

bated with Ph

human keratin

and imaged us

83 

to focal adhe

an keratinocyt

alloidin, then 

nocytes cultur

sing confocal

esions in kera

ytes (B) cultur

imaged using

red on Fibron

l microscopy. 

atinocytes. A,

red on Collage

g confocal mi

ectin or Vitron

 Scale bar= 1

B. Represent

en stained fo

icroscopy. C.

nectin, then 

100µm. 

 

tative 

r αv, 



 

 

 

F

A

sc

fib

in

on

(A

Q

ke

**

igure 4.2: αv

A. Boxplots sh

cramble hairp

bronectin or V

nterquartile ra

ne-way ANOV

A). P=3.79x10

Quantification 

eratinocytes (

**=p<0.0005, 

v knock down 

howing quantif

pin, an αv hair

Vitronectin (n=

nge). P=2.45

VA. B. Boxplo

0-9 (Collagen)

of the size dis

(n=30-40 cells

using Tukey’

does not alte

fication of the

rpin, or a β1 h

=30-40 cells p

5x10-12 (Collag

ots showing q

), 2x10-16 (Fib

stribution of fo

s, mean ± SD

s post hoc HS

84 

er the size, nu

e number of F

hairpin, and s

per condition,

gen), 8.15x10

quantification 

bronectin), 2x1

ocal adhesion

D, none of the

SD.

umber or size 

FAs per cell fo

seeded onto c

, boxplot whis

0-15 (Fibronect

of cell spread

10-16 (Vitrone

ns upon αv or

e differences a

 distribution o

or keratinocyt

coverslips coa

sker ends are

tin), 2x10-16 (V

ding area for 

ctin) using on

r β1 knock do

are statistical

of focal adhes

tes infected w

ated with Coll

e at 1.5 

Vitronectin) u

the same cel

ne-way ANOV

own in human

ly significant)

 

sions. 

with a 

agen, 

using 

ls in 

VA. C. 

n 

). 



 

 

F

th

αv

(A

igure 4.3: Int

he cellular me

v, Paxillin and

A). The Z axis

tegrin αv is no

embrane. A. C

d Phalloidin, s

s was stretche

ot localized to

Confocal Z-sta

shown as ind

ed to 20X the

85 

o the tips of ac

ack of culture

ividual panels

e original size 

ctin filaments

ed human ker

s. B. X-Z proj

to aid in visu

s and is expre

atinocytes sta

ections of the

ualization. C. R

essed through

ained for integ

e images show

Representativ

 

hout 

grin 

wn in 

ve 



86 
 

images of keratinocytes stained with integrin β1, integrin αv and Phalloidin. Cells were plated on 

Collagen. D. Representative image of human keratinocytes stained with integrin αv (L230) 

without permeabilization. Scale bar= 100µm. 
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Figure 4.6: Evaluation of potential signaling pathways controlled by integrin αv in keratinocytes. 

A. Western blots of signaling pathway changes in cultured keratinocytes infected with a 

scrambled control hairpin, or two independent integrin αv hairpins. B. Western blots of signaling 

pathway changes in keratinocytes infected with a luciferase control, Cyclin D1 wild-type (D1 WT) 

or degradation-resistant Cyclin D1 T286A (D1 T286A), then infected with indicated shRNAs. C. 

Western blots of signaling pathway changes in cultured keratinocytes infected with a luciferase 

control or MKK7, then infected with indicated shRNAs. D. Western blots of signaling pathway 

changes in cultured keratinocytes infected with luciferase control or Skp2, then infected with the 

indicated shRNAs. E. Signaling pathway changes in cultured keratinocytes infected with 

luciferase control, Cdk4 R24C, dnp53, or both Cdk4 R24C and dnp53, then infected with the 

indicated shRNAs. 
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Figure 4.7: Integrin αv controls cell cycle in keratinocytes through an αvFAKc-myc signaling 

axis. A. Western blot showing signaling pathway changes in keratinocytes infected with indicated 

shRNAs. B. Western blot showing temporal changes in signaling pathways upon αv loss using a 

doxycycline-inducible αv knock down. C. Western blot showing signaling pathway changes upon 

treatment of keratinocytes with DMSO or FAK inhibitor (1μM PF-573228) for 24 or 48 hours. D. 

Western blot showing signaling pathway changes upon expression of c-myc in keratinocytes 

infected with indicated hairpins. E. Morphological analysis of organotypic tissue made with 

keratinocytes infected with indicated hairpins and constructs. F. Quantification of tissue thickness 

from (E), measured in mm (mean ± SD). N=3 organotypic tissues. P=0.000253 using one-way 

ANOVA. G. Quantification of BrdU uptake from (E), measured as the percentage of BrdU+ basal 

epidermal cells (mean ± SD). N=3 organotypic tissues. P=0.000952 using one-way ANOVA. 

Scale bar= 200μm. *=p<0.05, **=p<0.005, ***=p<0.0005, using Tukey’s post hoc HSD.  
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Figure 4.10: αv’s role in re-epithelialization is partially dependent on TGFβ signaling. A. 

Representative Hematoxylin & Eosin stain for runway re-epithelialization assay utilizing the 

indicated antibodies and TGFβ1 treatments. TGFβ1-containing media was replaced every day. 

Arrows indicate the starting edge for the re-epithelialization assay. B,C. Quantification of tissues 

from (A), in terms of epidermal thickness. Epidermal thickness was measured at various 

distances away from the starting edge of the re-epithelialization assay. The same mouse IgG 

control tissues are depicted in B and C for clarity. N=3-6 tissues per group. p<0.005 (B) and 

p<0.05 (C) by two-way ANOVA. *=p<0.05, **=p<0.005, ***=p<0.0005, calculated using Tukey’s 

HSD post-hoc test. Scale bar= 1mm.  
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luciferase or WT FAK and subsequently infected with a control hairpin or an integrin αv hairpin. B. 

Immunofluorescence images of the cells in (A), stained with FAK and Vinculin. C. Western blot 

for keratinocytes expressing luciferase or SuperFAK and subsequently infected with a control 

hairpin or two independent integrin αv hairpins. Scale bar=100µm.  
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10µg/mL) timecourse and subsequent western blot in keratinocytes treated with DMSO (vehicle) 

or 1µM PF-573228 (FAK inhibitor) for 48 hours. *=p<0.05, **=p<0.005, ***=p<0.0005 using 

Tukey’s HSD post-hoc test.  
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keratinocytes with DMSO or FAK inhibitor (1μM PF-573228) for 24 or 48 hours. E. Western blot 

showing changes in signaling pathways upon treatment of keratinocytes with DMSO or p38 

MAPK inhibitor (10μM SB-202190) for 24 or 72 hours. F. Western blot showing changes in 

signaling pathways upon treatment of keratinocytes with DMSO or p90RSK inhibitor (1µM BI-

D1870) for 24 or 48 hours. G. Western blot showing signaling pathway changes upon expression 

of MKK6(glu) in keratinocytes infected with indicated hairpins. H. Schematic of signaling pathway. 
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level. D. Western blot showing signaling pathway changes upon knock down of p38 (MAPK11). 

E. Western blot showing signaling pathway changes upon knock down of p90RSK1 with 2 

independent hairpins.  
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DISCUSSION 

Here, we describe a focal adhesion (FA)-independent role for αv integrins and show that 

the lack of αv localization to FAs in keratinocytes is not due to lack of keratinocyte β3. Active, 

ligand-engaged integrins have been shown, in some instances, to localize outside of focal 

adhesions. Activated integrins can switch between immobile, focal adhesion-associated, states 

and freely diffusing states (Rossier et al., 2012). However, it is unclear whether these freely 

diffusing integrins can signal downstream. It was recently shown that ligand-engaged integrins 

can signal within endosomes to suppress anoikis (Alanko et al., 2015). We have shown for the 

first time that αv integrins are completely dissociated from mature focal adhesions in 

keratinocytes, that this integrin can signal outside of focal adhesions, and that this phenomenon 

is cell type-dependent. It is unclear, however, what the temporal dynamics of αv integrins in 

keratinocytes are. It is possible that they transiently associate with focal adhesions, or that they 

form nascent adhesions that never mature into visible focal adhesions. Examining this integrin 

over time using super-resolution microscopy may shed some light onto the dynamics of αv 

trafficking. It is also unclear why αv has different localization dependent on the cell type. 

Proteomic analyses of both focal adhesions and αv adhesions in different cell types may reveal 

specific mechanisms by which αv is excluded from focal adhesions in keratinocytes. This may 

additionally provide insight regarding how αv controls FAK expression levels without affecting the 

structural integrity of the β1-containing FAs. The fact that L230 blocking antibody treatment, 

which is reported to block αv interaction with one of its ligands Vitronectin, phenocopies αv knock 

down indicates that αv’s functions in keratinocytes are likely ligand-dependent (Weinacker et al., 

1994). 

αv integrins have been shown previously to signal through Src-FAK, Ras-MEK-ERK, and 

PI3K-Akt pathways to promote proliferation and survival (Bianchi-Smiraglia et al., 2013; Hood, 

2003; Janes and Watt, 2004). Specifically, in a squamous cell carcinoma cell line, αvβ6 was 

shown to suppress anoikis through increased PKB/Akt activation (Janes and Watt, 2004). 

However, in cultured primary human keratinocytes, we show that αv depletion does not alter 
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signaling through Src or ERK pathways, does not affect anoikis, and increases Akt activity. This is 

consistent with the mouse model of αv loss in the epidermis, in which elevated Akt activity is 

observed (Savar et al., 2014). This discrepancy in results indicates a clear context-dependent 

role for αv integrins; however, it is unclear what factors may affect the choice in signaling 

pathways.  

We show instead that αv controls cap-dependent c-myc translation through control of a 

FAKp38p90RSK signaling pathway. We provide evidence that αv controls c-myc protein 

synthesis specifically, and that this is essential for αv’s control of cell cycle. There are many 

additional changes in total protein levels in the cell upon αv loss that may also be the direct result 

of αv’s translational control. We observe decreased FAK, c-jun, Skp2 and Rb protein levels upon 

αv knock down. This may be the result of signaling feedback, but could also be the direct result of 

translation defects. We know that FAK mRNA is unaltered in response to αv loss; however, due 

to FAK’s long half-life (>20 hours), it is difficult to determine whether FAK is controlled by αv at 

the level of protein synthesis or protein degradation (Ochel et al., 1999). 

We do show that αv’s control of FAK expression is at least partially dependent on TGFβ 

signaling. The exact mechanism for this is unclear. Several reports have shown highly divergent 

mechanisms for TGFβ induced activation of FAK, including Src-dependent, adhesion-dependent 

and ECM remodeling-dependent mechanisms (Cicchini et al., 2008; Thannickal et al., 2003; 

Wang et al., 2004; Wendt and Schiemann, 2009). There could be TGFβ-dependent defects in the 

focal adhesions upon αv loss that prevent recruitment, stability, or activation of FAK at focal 

adhesions. We further show that αv’s regulation of re-epithelialization in our organotypic model is 

partially dependent on TGFβ signaling. This is in contrast to the majority of the literature which 

shows that genetic ablation of TGFβ signaling pathway components results in accelerated wound 

re-epithelialization, potentially due to release of TGFβ’s anti-proliferative effects (Amendt et al., 

2002; Ashcroft et al., 1999; Chan et al., 2002; Falanga et al., 2004; Guasch et al., 2007; Werner 

and Grose, 2003). These differences may lie in the mechanism of TGFβ signaling inactivation. αv 

regulates the direct activation of latent TGFβ in the extracellular matrix. Upon genetic ablation of 
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TGFβ receptors or Smads, there is still TGFβ ligand present, which can induce non-canonical 

TGFβ signaling. This may be solely responsible for accelerated wound healing or tumorigenesis 

in the absence of canonical TGFβ signaling. There are a few reports describing a pro-proliferative 

role for TGFβ in wound healing in vivo. In a corneal wound model in vivo, ablation of TGFβRII 

delayed wound healing, as well as p38 MAPK activation (Terai et al., 2011). Consistent with this, 

TGFβ was shown to promote keratinocyte proliferation in an in vivo wound healing model through 

up-regulation of miR-132, indicating that TGFβ can have pleiotropic effects (Li et al., 2015b). We 

show that αv’s regulation of TGFβ in keratinocytes is necessary for epidermal re-epithelialization.  

The p38p90RSK component of this signaling pathway is particularly novel since 

p90RSK was thought to be primarily activated by ERK signaling, not by p38 (Roux et al., 2007). 

P38 was shown to activate p90RSK in dendritic cells through intermediates MK2 and MK3 (Zaru 

et al., 2007; Zaru et al., 2015). We show that p38 blockade (through a small molecule inhibitor or 

shRNA) does not alter ERK phosphorylation, but decreases p90RSK phosphorylation. This 

indicates that this non-canonical p38p90RSK pathway extends beyond dendritic cells to 

keratinocytes. It will be interesting to determine whether this also occurs through MK2 and MK3 

intermediates. While p38 is not known to have a role in cutaneous wound healing, inhibition of 

p38 delays corneal wound healing (Sharma et al., 2003). P38β (the predominant p38 isoform in 

keratinocytes) knockout mice are viable and fertile, and cutaneous wound healing has not been 

tested in this model (Beardmore et al., 2005). No p90RSK1 knockout mouse has been made, and 

its role in wound healing is unknown. 

The phenotypes that we observe upon αv loss are consistent with mouse models of 

epidermal c-myc loss. C-myc appears to control proliferation in mouse epidermis during 

development, but does not alter skin homeostasis when deleted in adult epidermis (Oskarsson et 

al., 2006; Zanet et al., 2005). The effects of c-myc depletion on wound healing in these mice has 

not been tested. In the intestinal epithelium, c-myc plays a similar role in crypt generation but not 

crypt homeostasis (Bettess et al., 2005). In contrast to our results, c-myc is shown to be up-
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regulated at the epidermal wound edge in chronic wounds (Stojadinovic et al., 2005). The in vivo 

relevance of this observation, however, is unclear.  

FAK deletion in the epidermis does not alter wound healing in mice (Essayem et al., 

2006). However, these wounds were not stinted and thus the epidermal contribution of FAK to the 

specific process of re-epithelialization may have been masked by rapid wound contraction. FAK 

does seem to play a role in intestinal epithelial proliferation in response to injury (Owen et al., 

2011). A thorough examination of the in vivo roles of these additional pathway elements—FAK, 

p38, p90RSK and c-myc—utilizing physiologically relevant wound healing models is warranted to 

determine whether all of these signaling pathways contribute equally to wound healing and 

whether they could be targeted pharmacologically to treat pathologic scarring and/or chronic 

wounds. 
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CHAPTER 5 

Role of integrin αv in squamous cell carcinoma and potential therapeutic utility of blocking 

antibodies 

 

Parts of this chapter have been previously published in: 

 

Duperret EK, Dahal A, Ridky TW. Focal adhesion-independent integrin αv regulation of FAK and 

c-myc is necessary for 3D skin formation and tumor invasion. J Cell Sci. 2015; 128(21):3997-

4013.  

 

RESULTS 

αvβ6 is up-regulated in squamous cell carcinomas and correlates with poor prognosis in 

Head and Neck Squamous Cell Carcinoma (HNSCC) 

 Because tissue generation and epidermal carcinoma are both associated with 

upregulated basal cell proliferation, we hypothesized that αv might be required during 

tumorigenesis. We examined αv expression and localization in human epidermal squamous cell 

carcinomas, and found that nearly every tumor cell displayed intense membrane-localized αv 

staining (Figure 5.1A). Various αv integrin binding partners have shown increased expression at 

the RNA and protein level in epithelial carcinomas (Bandyopadhyay and Raghavan, 2009; Reuter 

et al., 2009). Specifically, integrin β6 protein is increased in oral SCCs at the invasive edge 

(Hamidi et al., 2000; Jones et al., 1997). We examined the temporal changes in RNA levels for 

various integrin subunits in a previously published dataset from a human xenograft model of 

SCC, and found temporal up-regulation of integrin β6 RNA in both Ras and Raf driven tumors 

(Figure 5.1B) (Reuter et al., 2009). Integrin αv and its other β binding partners showed minimal 

change upon tumor induction (Figure 5.1B). To examine the potential clinical significance of 

integrin β6 in head and neck SCC (HNSCC), we analyzed 400 HNSCC cancer specimens from 

The Cancer Genome Atlas (TCGA). We found that increased β6 expression significantly 
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correlated with decreased overall survival for HNSCC patients (Figure 5.2A). 210 of these clinical 

samples also contained phospho-protein array data. To determine which signaling pathways 

might be associated with increased β6 RNA levels in HNSCC patients, we took an unbiased 

approach and examined levels of all 43 phospho-proteins in the dataset. Significant changes 

were seen in only 5 phospho-proteins when comparing patients with high versus low β6 RNA 

expression (Figure 5.2B). 4 of the 5 proteins identified are involved in protein translation (Figure 

5.2B). Consistent with our previous data, we observed a positive correlation between RPS6 S235 

phosphorylation, p38 T180 phosphorylation and integrin β6 RNA expression in HNSCC tumors 

(Figure 5.2C,D). There was also a specific positive correlation between RPS6 S235 but not S240 

phosphorylation (Figure 5.2D). These data indicate that the integrin p38-dependent, αvβ6 

translational effects we observed in our genetically-defined organotypic skin models are also 

reflected in spontaneous head and neck SCCs, and that this pathway likely contributes to 

enhanced tumor progression.  

 

Integrins αvβ5 and αvβ6 are required for SCC tumor invasion at all stages of 

tumorigenesis 

To determine whether αv or its binding partners, β5, β6 and β8, are required for tumor 

initiation, we knocked down each of these subunits in keratinocytes engineered to express a 

medically relevant oncogene pair including active Cdk4 (R24C), and HRas (G12V), which are 

sufficient to convert normal organotypic epidermis into SCC that invades through the basement 

membrane into dermis (Lazarov et al., 2002; Ridky et al., 2010). We found that knock down of αv, 

β5 or β6 in tissue prior to oncogene activation blocked tumor invasion, while β8 knock down had 

no major effect (Figure 5.3A,B). The requirement for β5 in tumor invasion was interesting, given 

that this subunit is not over-expressed at the RNA level in cutaneous SCCs. 

To determine whether αv is also required for tumor invasion in already established 

organotypic tumors, we performed a doxycycline-inducible αv knock down time course (similar to 

that presented in Figure 3.7) in keratinocytes expressing Cdk4 (R24C) and H-Ras (G12V) (Figure 
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5.4A). Doxycycline-induction was sufficient to inhibit neoplastic invasion at every time point, 

including 2 days post-seeding, indicating that integrin αv is required for both neoplastic invasion 

initiation and progression (Figure 5.4B,C). These results suggest that integrins αvβ5 and αvβ6 

may be useful therapeutic targets for SCC. 

 To identify potential therapeutic agents for blocking αvβ5 or αvβ6, we treated organotypic 

tissue made from keratinocytes expressing Cdk4 R24C and H-Ras G12V (an ER-HRas fusion 

responsive to tamoxifen administration) with various blocking antibodies. We tested L230, a pan-

αv blocking antibody, 10D5, a β6-specific blocking antibody, and P1F6 and P5H9, both β5-

specific blocking antibodies (Mitjans et al., 1995; Ramos et al., 2002; Thomas et al., 2002). We 

found that both L230 and 10D5 were highly effective in blocking tumor invasion and reducing 

organotypic tumor area (Figure 5.5A,B). P1F6 and P5H9 did not reduce either tumor area or 

tumor invasion (Figure 5.5A,B). Based on this data, it is clear that blocking antibodies targeting 

pan-αv integrins or specifically αvβ6 can be effective at reducing organotypic tumor burden. While 

both β5 blocking antibodies were not sufficient to block tumor invasion, we cannot conclude that 

β5 is a poor therapeutic target, since it is possible that these blocking antibodies have lower 

binding affinities or poor blocking function compared to the other antibodies tested. 

 

FAK, p38 and p90RSK are similarly required for SCC tumor invasion 

Next, we questioned whether the pathway elements that we found downstream of αv in 

normal tissue (FAKp38p90RSK) may also be therapeutic targets for SCC. Inhibition of each 

of these elements with small molecule inhibitors, at doses that did not affect normal tissue (Figure 

4.16), significantly attenuated Ras-driven neoplastic invasion (Figure 5.6A,B).  

 

L230 treatment reduces tumor burden in vivo 

 We next wondered whether αv was equally required for tumor formation in vivo. While 

both L230 (pan-αv) and 10D5 (αvβ6) were effective in organotypic culture, we chose to test L230 

in an orthotopic xenograft model in vivo, because it is a human-specific antibody and allowed us 
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to specifically define the contribution of epidermal αv in tumor progression. For this study, we 

utilized skin grafts expressing Cdk4 R24C and a doxycycline-inducible TRIPZ-H-Ras G12V 

construct. When grafted onto mice, these tissues generate normal skin and can be induced to 

form tumors by with doxycycline administration. To test the effects of αv blockade in these 

inducible tumors, we began L230 treatment 1 day prior to oncogene activation, and harvested 

tumors at 2 weeks. Histological analysis of these tumors revealed that control, mouse IgG 

treated, tumors were all large and invasive (Figure 5.7). L230 treatment resulted in large 

reduction of tumor burden in 4/7 cases, and minimal reduction in 3/7 cases (Figure 5.7). This 

variability in response can potentially be attributed to differences in antibody delivery or binding in 

vivo. Quantification in tumor area and Ki67 staining shows a statistically significant reduction 

upon αv blockade (Figure 5.8A-C). The Ki67 marker used in this case is a human-specific 

antibody, and thus we can be certain that we are quantifying only human tissue. Phospho-

ERK1/2 staining showed no difference (per tumor area) in positive area or staining intensity 

between control and L230-treated groups, indicating that the reduction in tumor burden was not 

likely due to lack of induction of the H-Ras G12V oncogene (Figure 5.8D,E). Overall, these data 

indicate that αv contributes to human cutaneous squamous cell carcinoma tumor formation and 

proliferation in vivo. 
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phospho- and total- p38 MAPK (C) or phospho- and total RPS6 (D) protein levels in high and low 

β6-expressing tumors. Statistical analysis for C,D was calculated using student’s t-test. 
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mm2 (mean ± SD). Representative of 2 independent experiments. N=3 organotypic tissues. 

P=0.00155 using one-way ANOVA. Scale bar=200µm. *=P<0.05, **=P<0.005 using Tukey’s HSD 

post-hoc test.  

 
 
  



 

 

F

in

C

fo

(α

fr

igure 5.5: Blo

nvasion. A. M

Cdk4 R24C, E

ollowing antib

αvβ5). B. Qua

om (A) meas

ocking antibo

orphologic an

R-HRas G12

odies: Mouse

antification of 

ured in mm2 

dies targeting

nalysis of orga

V (treated wit

e IgG (control

organotypic t

(mean ± SD).

121 

g all αv integr

anotypic tissu

th 100nM 4-O

), L230 (pan-

tumor area (to

. N=3 organot

rins (L230) or 

ue containing 

OHT) and trea

αv), 10D5 (αv

otal K5+ area

typic tissues.

αvβ6 block o

keratinocytes

ated with 7µg/

vβ6), P1F6 (α

a, left) and inv

 P=0.0015 (le

organotypic tu

s infected wit

/mL of the 

αvβ5) or P5H9

vasive area (r

eft) and P<0.0

 

umor 

h 

9 

right) 

0001 



122 
 

(right) using one-way ANOVA. Scale bar= 200µm. *=p<0.05, **=p<0.005, ***=p<0.0005 using 

Tukey’s HSD post-hoc test. 
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doxycycline-inducible H-Ras G12V was grafted onto SCID mice. After complete healing of the 

skin graft (3 weeks after grafting), antibody treatment was started and mice were switched to 

doxycycline chow one day later. Mice were treated with 100µg of antibody every other day for 2 

weeks, and the tumors were harvested. Shown are composite H&E images of whole tumor cross-

sections from control (mouse IgG) treated mice and L230 treated mice. All images are to scale 

relative to one another. On the right side, the tumors with large reductions in area are shown on 

the bottom (4/7 tumors) and tumors that had minimal reduction are shown on the top (3/7 

tumors). Scale bar=1mm.  
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ERK1/2. The L230-treated tumor shown is a tumor that had reduced area (lower right quadrant of 

Figure 5.7). B. Quantification of tumor cross-section area from Figure 5.7 in mm2. P=0.0025 using 

non-parametric Mann Whitney test. C. Quantification of %Ki67+ tumor cells within the tumor from 

tumors represented in Figure 5.7. P=0.0177 using Mann Whitney test. D. Average intensity of p-

ERK1/2 staining in tumor sections from figure 5.7. NS= not statistically significant. A.U.= arbitrary 

units. E. Percentage of the tumor area (of tumors from Figure 5.7) that is p-ERK1/2-positive. NS= 

not statistically significant. Scale bar=1mm.  
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DISCUSSION 

 Here, we show that integrin αv heterodimers are necessary for tumor progression and 

invasion both in organotypic culture and in an inducible, orthotopic human xenograft SCC model 

in vivo. We also show that blocking antibodies targeting both pan-αv integrins (L230) and αvβ6 

specifically (10D5) can block tumor invasion. The downstream signaling pathway controlled by αv 

in normal skin—FAKp38p90RSK—is also essential for tumor invasion, thus providing 

additional potential therapeutic targets for this disease.  

While most cutaneous SCCs in immunocompetent individuals can be treated with local 

excisions or topical delivery of immunomodulatory and chemotherapy, there are frequently cases 

in which patients are not good surgical candidates. Additionally, immunosuppressed SCC 

patients often suffer from SCC metastasis and unfortunately have limited treatment options.  

As mentioned in previous chapters, αv integrins have been shown to have tumor-

suppressive roles in certain mouse models (McCarty et al., 2008; Savar et al., 2014; Xie et al., 

2012). However, in many human cancers and human cancer models, αv appears to have a 

tumor-promoting role. αvβ6 is over-expressed in epidermal SCC, higher αvβ6 expression 

correlates with decreased survival in human cervical SCC, and αvβ6 promotes invasion in human 

oral SCC cell lines (Hazelbag et al., 2007; Hsu et al., 2011; Li et al., 2003; Li et al., 2013; Nystrom 

et al., 2006; Reuter et al., 2009; Van Aarsen et al., 2008; Xue et al., 2001). Also potentially 

complicating direct comparisons between mouse and human systems is the fact that in most 

mouse models, integrin expression is depleted during embryogenesis, rather than in adult tissue. 

Acute loss of integrins in adult mouse skin has been shown to have markedly different phenotypic 

effects compared to loss during development (Brakebusch et al., 2000; López-Rovira et al., 2005; 

Raghavan et al., 2000). Of course, if long-term blockade of αv leads to spontaneous tumor 

formation (as seen in the eyelid and conjunctiva upon genetic deletion of αv), this would certainly 

be cause for concern (McCarty et al., 2008). The long-term effects of αv blockade should 

certainly be examined more thoroughly before promoting use of αv blocking agents in the clinic. 
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The idea of targeting specific αv heterodimers as an anti-cancer strategy is intriguing, 

since these specific heterodimers appear to control both FAK and c-myc. FAK is known to 

promote tumor formation in mouse SCC models, and several small molecule FAK inhibitors are in 

early stage clinical trials (McLean et al., 2001; McLean et al., 2004; Sulzmaier et al., 2014). 

Targeting FAK indirectly through αv may lead to greater specificity than small molecule kinase 

inhibitors, and as a cell surface protein, αv may be vulnerable to blocking antibodies and peptide 

based agents. It will also be interesting to determine whether αv controls the FAKp38c-myc 

pathway in other epithelial malignancies dependent on myc signaling (Gabay et al., 2014). 

Targeting each heterodimer individually may lead to fewer side-effects than antagonism of the 

entire αv group, since the β subunits are not as ubiquitously expressed as αv, and their 

corresponding knockout mice have minimal phenotypes (Huang et al., 1996; Huang et al., 

2000a). 

While it is clear that αv integrins promote cutaneous SCC progression, the roles of αv 

integrins may differ in other tumor types. In pancreatic cancer, αvβ6 suppresses tumor formation 

likely through TGFβ signaling (Hezel et al., 2012). However, in breast cancer αvβ6 is necessary 

for invasion and metastasis, and up-regulation of mRNA for β6 is associated with poor survival in 

patients (Eberlein et al., 2013; Li et al., 2015a; Moore et al., 2014). β6 mRNA is also up-regulated 

in colon tumors and is associated with reduced survival (Bates et al., 2005). There is less known 

about the specific roles of β5 integrins in tumor progression. β5 knock down can reduce tumor 

volume in breast and ovarian cancer cell lines, and is associated with increased tumor stage in 

ovarian cancer (Bianchi-Smiraglia et al., 2013; Tancioni et al., 2014). However, there is little 

known about the role of αvβ5 in other malignancies. In our organotypic SCC model, β5 knock 

down decreases tumor invasion; however, it is unclear whether a blocking antibody targeting β5 

may be effective in reducing tumor burden. Development of more effective blocking β5 antibodies 

may be necessary for preclinical testing.  
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In summary, we have shown that acute loss of αvβ5 and αvβ6 leads to loss of de novo 

epidermal tissue generation and tumor invasion, but not tissue maintenance; therefore these 

heterodimers may be useful targets for human epidermal cancer. 
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CHAPTER 6 

Summary and Future Directions 

 

Parts of this chapter have been previously published in: 

 

Duperret EK, Dahal A, Ridky TW. Focal adhesion-independent integrin αv regulation of FAK and 

c-myc is necessary for 3D skin formation and tumor invasion. J Cell Sci. 2015; 128(21):3997-

4013.   

 

Major Conclusions 

 Here, we have utilized an shRNA screen in organotypic skin to identify the αv family of 

integrins as essential mediators of skin tissue generation. We have found that αv mediates its 

functions through binding partners β5 and β6, but not β1 or β8 (Figure 6.1). We show that integrin 

αv is dispensable for skin tissue maintenance in organotypic culture and in vivo, but is necessary 

for proliferation during human wound healing in vivo. αv plays a specific role in promoting cell 

cycle progression, but not adhesion, in keratinocytes. It promotes a signaling pathway involving 

TGFβ- and FAK- mediated control of protein translation. Specifically, αv controls c-myc 

translation through p38 and p90RSK signaling pathways (Figure 6.1). Surprisingly, αv mediates 

its signaling functions and control of FAK activation outside of classic focal adhesions. We find 

that the key downstream targets of αv—FAK, p38 and p90RSK—are similarly necessary for skin 

tissue generation, but dispensable for tissue maintenance. Because of αv’s role in promoting 

hyperproliferation in human wounds, we wondered whether it may contribute to cutaneous 

squamous cell carcinoma. We found that αvβ6 is up-regulated in squamous cell carcinoma and 

correlates with poor prognosis in head and neck SCCs. αvβ5 and αvβ6 and downstream targets 

FAK, p38 and p90RSK are required for organotypic SCC invasion. Blockade of all αv 

heterodimers (using blocking antibody L230) or αvβ6 specifically (using blocking antibody 10D5) 

also halts organotypic SCC progression. Finally, treatment of an orthotopic human xenograft 
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model of cutaneous SCC with L230 reduces tumor burden in vivo. These results have provided 

novel functional and specific mechanistic insight into the roles of αv integrins in both skin tissue 

homeostasis and Squamous Cell Carcinoma.  

 

Future Directions: Validation of additional RNAi screen targets 

 While we chose to focus on the αv class of integrins for this dissertation, our RNAi screen 

identified several additional β1-binding integrins that were necessary for skin tissue generation. 

Knock down of integrins α2, α4, α5 and α10 all led to remarkable fitness disadvantage in skin 

tissue. The results from α4 and α10 were surprising since they have not been reported to be 

expressed in skin tissues, while α2 and α5 have constitutive expression in the skin (Duperret and 

Ridky, 2013; Margadant et al., 2010). We verified that α4 and α10 are indeed expressed, albeit at 

low levels, in freshly isolated primary human keratinocytes (Figure 6.2A). To verify that the results 

for α4 knock down in our shRNA screen were not an off-target shRNA effect, we knocked down 

α4 with three independent shRNAs in cultured human keratinocytes (Figure 6.2B). Two of the 

hairpins effectively reduced α4 protein level in keratinocytes, and also resulted in decreased Rb 

phosphorylation, while the other hairpin (hairpin #2) had no effect on either α4 protein or Rb 

phosphorylation (Figure 6.2B). This indicates that α4 does play a role in controlling cell cycle 

progression in human keratinocytes.  

 The integrin α2 knockout mouse is viable, fertile and normal (Chen et al., 2002). There is 

no reported change in re-epithelialization during wound healing in this mouse; however, no skin-

specific conditional knockout strain has been generated (Grenache et al., 2007; Zweers et al., 

2007). The knockout mouse for integrin α10 is also viable and fertile, and wound healing has not 

been assessed in this mouse (Bengtsson et al., 2005). Knockout mice for integrins α4 and α5 

exhibit embryonic lethality, and the corresponding skin-specific knockout mice have not been 

generated (Gurtner et al., 1995; Yang et al., 1993). Thus, this is a wide-open area for future 

research into the specific functions of these integrins in skin tissue homeostasis, skin tissue 

generation in the context of wound healing and tumorigenesis.  
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 Utilizing similar approaches as those described in this dissertation, we can determine 

whether integrins α2, α4, α5 or α10 may be involved in re-epithelialization during wound healing 

by: 1) examining their expression and localization in human skin and human skin wounds, 2) 

determining their role in organotypic skin tissue through constitutive and inducible shRNA knock 

down approaches, and 3) Determining their functional relevance in in vivo epidermis and wound 

healing using function-blocking antibodies (which exist for all of these subunits with the exception 

of α10) (Byron et al., 2009). Additionally, we can define the roles for α2 and α10 in tumorigenesis 

by performing DMBA-TPA chemical carcinogen treatment on the backs of the corresponding 

knockout mice. This will help determine whether blockade of either of these subunits may 

potentially be therapeutically beneficial. In the case of the α2-null mouse, it has been shown that 

α2 deletion blocks tumor formation and metastasis in a K14-HPV background (Tran et al., 2011). 

It remains to be determined, however, whether this can be extended to other oncogenic driver 

mutations.  

 

Future Directions: Determine how integrin αv controls FAK recruitment to focal adhesions 

 A major unanswered question from this work is: how does integrin αv control FAK 

activation and localization to focal adhesions? Integrin αv is not localized to focal adhesions, yet 

somehow alters focal adhesions indirectly. Within the focal adhesion, the known major FAK 

binding partners are Talin and Paxillin (Calderwood et al., 2013; Schaller, 2010). We 

demonstrated that Paxillin is present in focal adhesions upon αv knock down. Furthermore, 

Paxillin is dispensable for targeting of FAK to focal adhesions (Cooley et al., 2000). In mature 

adhesions, Talin has been suggested to recruit FAK (Chen et al., 1995; Frame et al., 2010; 

Lawson et al., 2012). TGFβ signaling is known to upregulate several integrin subunits and focal 

adhesion proteins (Margadant and Sonnenberg, 2010). There is also some evidence that TGFβ 

signaling can regulate Talin expression (Rafiei, 2007). We thus wondered if αv knock down would 

result in depletion of Talin protein from keratinocytes. Indeed, when we knocked down αv, Talin1 

protein levels were reduced (Figure 6.3). This reduction in Talin1 protein expression could be 
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rescued by addition of TGFβ1 at doses ranging from 1pM-1nM (Figure 6.3). This indicates that αv 

controls Talin1 expression through TGFβ signaling.  

 The roles of Talin1 in maintaining focal adhesion structure and recruiting FAK to focal 

adhesions are somewhat controversial and cell-type dependent. In mammary epithelial cells, 

Talin knock down leads to efficient attachment to the ECM and integrin-dependent cell spreading; 

however, Vinculin, Paxillin, FAK and ILK are not recruited to adhesion sites (Rossier et al., 2012; 

Wang et al., 2011). In contrast, Talin 1/2 null mouse embryonic fibroblasts have normal Src family 

kinase activation, but no integrin linkage to the extracellular matrix, severe defects in cell 

spreading, adhesion and FAK signaling (Zhang et al., 2008). While Talin was originally thought to 

recruit FAK to focal adhesions, recent evidence supports a role for FAK in recruiting Talin to 

nascent adhesions (Chen et al., 1995; Frame et al., 2010; Lawson et al., 2012). Thus, it would be 

valuable to clarify the role of Talin in FAK recruitment to focal adhesions in human keratinocytes, 

and determine the relevance of αv’s control of Talin1.  

 First, we should examine the expression and localization of both Talin isoforms, Talin1 

and Talin2, in response to αv knock down. Talin1 and Talin2 can compensate for one another in 

culture; however, their localization is slightly different: Talin1 is localized only at focal adhesions, 

while Talin2 is additionally localized at fibrillar adhesions (larger adhesion complexes located 

closer to the body of the cell) (Praekelt et al., 2012). αv knock down did not completely abolish 

Talin1 expression (Figure 6.3), and thus it is possible that the stoichiometry of Talin1 protein 

within the adhesion is altered upon αv loss. Next, we should examine the effects of Talin1/2 

knock down in keratinocytes, and determine whether that results in loss of FAK expression, 

activation, and/or localization to focal adhesions. Finally, if Talin disruption alters FAK activity, we 

should restore Talin expression in αv-deficient keratinocytes and determine whether that is 

sufficient to restore FAK function.  

 It is possible that Talin is not the only mediator of FAK activity in keratinocytes, and thus 

we should take a proteomics approach to determine what might be different about focal 

adhesions in the absence of αv, which will be detailed in the next section. 
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Future Directions: Utilize proteomics to determine how αv alters focal adhesions and 

identify novel binding partners for αv 

 A recent wave of advances in proteomics has allowed the identification of hundreds of 

focal adhesion-associated proteins (Ajeian et al., 2015; Byron et al., 2012; Byron et al., 2015; 

Horton et al., 2015; Humphries et al., 2009; Jones et al., 2015; Kuo et al., 2011; Robertson et al., 

2015). Almost all of these efforts have focused on identifying the integrin adhesome for 

Fibronectin-binding integrins, primarily α4β1, α5β1 and αvβ3. Specific protocols exist for 

identifying adhesion complexes after plating cells for short time periods on specific extracellular 

matrix substrates (Jones et al., 2015). These protocols have been optimized for mesenchymal 

cell types, and may require optimization for rigid, keratin-rich keratinocytes (Jones et al., 2015). 

However, these focal adhesion isolation approaches, combined with mass spectrometry, can 

potentially identify key focal adhesion components that change upon αv depletion in 

keratinocytes.  

 While these approaches are effective at identifying components within adhesions, it will 

be more challenging to determine with what integrin αv directly interacts. Conventional 

immunoprecipitation approaches in our hands have been effective at determining with which β 

subunits integrin αv interacts (Figure 3.4). However, mass spectrometry of these 

immunoprecipitates has not consistently identified any additional binding partners across 

biological replicates. This is likely due to the harsh lysis conditions required for isolation of 

integrins from the membrane for the immunoprecipitation protocol. New approaches have been 

developed to biotin-label proteins in living cells (Lam et al., 2014; Rhee et al., 2013). APEX2, an 

engineered peroxidase, can be fused to a protein of interest, and in the presence of biotin-phenol 

and H2O2, APEX2 is able to oxidize biotin-phenol to create a radical that can covalently tag 

endogenous proteins proximal to APEX2 with biotin (Lam et al., 2014; Rhee et al., 2013). 

Biotinylated proteins can then be enriched using streptavidin beads for subsequent proteomic 

analysis. We can utilize this approach, by tagging αv integrin cytoplasmic tails, to identify 

interacting partners of αv without the need for immunoprecipitation approaches. 
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Future Directions: Determine the therapeutic potential for targeting FAK, p38 or p90RSK in 

cutaneous Squamous Cell Carcinoma 

 Currently, several small molecule inhibitors targeting FAK and various p38 isoforms are 

in clinical trials for cancer. Compounds have been developed that block FAK catalytic activity, 

either through ATP-competitive inhibition or targeting FAK scaffolding properties (Sulzmaier et al., 

2014). Initial Phase I clinical trials of PF-562,271 (Pfizer) showed low toxicity and stable disease 

for a variety of different advanced solid tumors (Infante et al., 2012). Phase II trials are currently 

ongoing for additional compounds, including VS-6063 (Pfizer); however, no results are currently 

available from these trials (NCT01951690 and NCT02004028, clinicaltrials.gov). FAK mRNA is 

over-expressed in human head and neck squamous cell carcinoma, genetic ablation of FAK in in 

vivo cutaneous SCC models decreases tumor growth and invasion, FAK blockade has been 

shown to enhance radiosensitivity of SCC cancer cell lines, and treatment of mice with the FAK 

inhibitor PF-562,271 reduced subcutaneous SCC xenograft tumor size (Canel et al., 2006; Eke et 

al., 2012; Graham et al., 2011; McLean et al., 2001; McLean et al., 2004; Serrels et al., 2012). 

However, the mechanism of action of FAK blockade in SCC tumors remains largely unknown. 

Defining mechanisms of action for drugs is important, because it can define potential biomarkers 

for therapeutic efficacy, and potentially help identify new targets. In the case of FAK inhibition, 

reports have shown that FAK inhibition may be more effective in non-small cell lung cancers that 

have INK4a/Arf inactivation and that loss of the neurofibromatosis 2 tumor suppressor gene in 

mesothelioma sensitizes to FAK inhibition (Konstantinidou et al., 2013; Shah et al., 2014). Thus, 

future experiments in our laboratory could include evaluation of FAK inhibitors in our in vivo 

orthotopic cutaneous SCC model, and identification of specific downstream mechanisms of 

action. It will be interesting to determine whether FAK inhibition leads to c-myc loss in the context 

of tumorigenesis, and if this signaling pathway could be extended to other tumor types that may 

be addicted to myc signaling.  

 Similarly, p38 inhibitors have shown pre-clinical therapeutic utility for treatment of a 

variety of different malignancies (Igea and Nebreda, 2015). P38 isoforms are known to play a pro-
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proliferative role within tumor cells, and to be highly activated by inflammatory cytokines in the 

tumor microenvironment. Because p38 regulates inflammatory signaling, caution must be taken 

when utilizing p38 inhibitors, since p38 has been shown to be essential for protection against 

colitis-associated colon cancer in the intestinal epithelium (Gupta et al., 2014). P38 inhibitors 

were initially developed for treatment of inflammatory diseases such as rheumatoid arthritis, but 

many showed initial toxicity and no therapeutic efficacy (Coulthard et al., 2009; Genovese, 2009). 

Currently, Phase I studies are ongoing to test several p38 inhibitors (LY2228820, LY3007113) in 

solid tumors and lymphomas (NCT02364206, NCT01463631, NCT01393990) (Campbell et al., 

2014). Pre-clinical models have shown efficacy for p38 inhibition for the treatment of head and 

neck SCC in xenograft tumor models (Leelahavanichkul et al., 2014). Similar to the FAK inhibitor 

data, there is little known regarding the specific mechanism of action of these p38-targeting drugs 

in halting tumor growth.  

 P90RSK represents a new potential therapeutic target, as no p90RSK inhibitors are in 

clinical trials for cancer. Targeting the translation machinery is becoming a promising new 

therapeutic area for treatment of cancer, with targets including mTOR signaling pathway 

elements, components of the eukaryotic initiation factor complex, and MNK (Bhat et al., 2015; 

Grzmil and Hemmings, 2012). Several studies have reported pre-clinical efficacy for p90RSK 

inhibitors (Smith et al., 2005; Sulzmaier and Ramos, 2013). RSK2 was shown to be essential for 

head and neck SCC tumor growth and invasion in vivo. However, our studies show that RSK1 is 

the more important isoform for the cutaneous epithelium (Duperret et al., 2015). It would thus be 

useful to characterize the efficacy of the dual- RSK1/2 inhibitor BI-D1870 in treatment of 

cutaneous SCC in our in vivo orthotopic model (Sapkota et al., 2007). Toxicity, dose-escalation 

and efficacy studies may be required for this compound to bring it closer towards inclusion in 

clinical trials.  

 

Future Directions: Extend our findings into an in vivo orthotopic melanoma model 
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 Our laboratory recently showed that loss of the tumor suppressor locus CDKN2B, which 

encodes the p15 protein, is essential for development of radial-phase melanomas from benign 

nevi utilizing our human orthotopic xenograft model (McNeal et al., 2015). However, what 

regulates invasive behavior in this model is poorly understood. Others have shown that Akt 

activation (primarily through genetic loss of the PTEN tumor suppressor) can promote the 

transition between radial and vertical growth phase in melanoma (Govindarajan et al., 2007). We 

have confirmed that expression of a constitutively active AKT3 mutant (E17K) results in increased 

invasion of human melanomas generated using primary nevus melanocytes in our orthotopic 

xenograft model in vivo (Figure 6.4) (Davies et al., 2008). Integrins (in particular αvβ3) have also 

been implicated in the transition of melanoma from radial to vertical growth phase  (Hsu et al., 

1998; Petitclerc et al., 1999). We analyzed integrin subunit expression at the RNA level in primary 

melanocytes compared to a panel of melanoma cell lines and melanocytes transduced with 

oncogenes. This revealed that many integrin subunits are highly over-expressed in melanomas 

(some exhibit over 200-fold over-expression) (Figure 6.5). In particular, the α4, α6 and α7 

subunits were highly over-expressed in all cases (Figure 6.5). There is very little known about the 

roles for these integrins in invasive melanoma. Thus, we can use the same shRNA screening 

approaches to define specific functional roles for various integrins in the context of radial and 

vertical growth phase melanoma. In summary, the toolkit and screening techniques that I have 

developed as a part of this dissertation can be utilized for many additional tumor types that may 

rely on integrins for malignant behavior.  
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