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Safety-Assured Model-Based Development of Real-Time Embedded
Software for the Gpca Infusion Pump

Abstract
Many safety-critical embedded systems must meet safety requirements associated with timing constraints.
Not only shall a system read/write correct input or output values, but also those operations shall be
performed with the right timing. Failing to meet those timing constraints results in serious safety issues (e.g.,
medical device malfunctions may harm patients). It is difficult to develop complex embedded software in a
correct way without rigorous and systematic handling of various sources that affect the timed behavior of a
system.

We propose the model-based development framework that enables timing aspects of a system to be formally
modeled, verified, and further implemented in a systematic way.

The fundamental idea is to separate the timing concerns of the platform-independent and the platform-
dependent aspects of a system. In the platform-independent development phase, input and output timed
interactions between a system and its environment is modeled and verified using state-transition formalism
(e.g., UPPAAL) by hiding platform-dependent timing details. In the platform-dependent development phase,
such platform-dependent timing details are modeled using architectural modeling languages (e.g., AADL)
that are necessary to execute the platform-independent code on a particular platform, such as internal
interactions among software components (e.g., threads) and hardware components (e.g., sensors and
actuators). The platform-independent code and the platform-dependent code are independently developed
from the different levels of timing abstractions, and composed together in the integration phase. In this phase,
we propose a way to systematically extend the platform-independent model into different platform-specific
models, which formally characterize the implementation-level timed behavior that can be verified for timing
requirement conformance. In case this verification step fails, we propose a way to adjust the timing parameters
of the platform-independent code by compensating for the platform-dependent processing delays in such a
way that the resulting implementation meets the timing requirements verified in the platform-independent
model.

Applicability of this development approach was demonstrated by developing software running on several
Patient-Controlled Analgesia (PCA) infusion pump systems. We hope that this approach is also applicable to
other safety-critical domains where generic software needs to be developed independently of a particular
platform, and integrated with many different platforms in a way that conforms to timing requirements.
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ABSTRACT

SAFETY-ASSURED MODEL-BASED DEVELOPMENT OF

REAL-TIME EMBEDDED SOFTWARE FOR THE GPCA INFUSION PUMP

BaekGyu Kim

Insup Lee

Oleg Sokolsky

Many safety-critical embedded systems must meet safety requirements associated with tim-

ing constraints. Not only shall a system read/write correct input or output values, but

also those operations shall be performed with the right timing. Failing to meet those tim-

ing constraints results in serious safety issues (e.g., medical device malfunctions may harm

patients). It is difficult to develop complex embedded software in a correct way without

rigorous and systematic handling of various sources that affect the timed behavior of a

system.

We propose the model-based development framework that enables timing aspects of a sys-

tem to be formally modeled, verified, and further implemented in a systematic way. The

fundamental idea is to separate the timing concerns of the platform-independent and the

platform-dependent aspects of a system. In the platform-independent development phase,

input and output timed interactions between a system and its environment is modeled and

verified using state-transition formalism (e.g., UPPAAL) by hiding platform-dependent

timing details. In the platform-dependent development phase, such platform-dependent

timing details are modeled using architectural modeling languages (e.g., AADL) that are

necessary to execute the platform-independent code on a particular platform, such as in-

ternal interactions among software components (e.g., threads) and hardware components

(e.g., sensors and actuators). The platform-independent code and the platform-dependent

code are independently developed from the different levels of timing abstractions, and com-
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posed together in the integration phase. In this phase, we propose a way to systematically

extend the platform-independent model into different platform-specific models, which for-

mally characterize the implementation-level timed behavior that can be verified for timing

requirement conformance. In case this verification step fails, we propose a way to adjust

the timing parameters of the platform-independent code by compensating for the platform-

dependent processing delays in such a way that the resulting implementation meets the

timing requirements verified in the platform-independent model.

Applicability of this development approach was demonstrated by developing software run-

ning on several Patient-Controlled Analgesia (PCA) infusion pump systems. We hope that

this approach is also applicable to other safety-critical domains where generic software needs

to be developed independently of a particular platform, and integrated with many different

platforms in a way that conforms to timing requirements.
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CHAPTER 1 : Introduction

1.1. Motivation

Meeting timing constraints is crucial in many safety-critical embedded systems, such as

medical, avionic and automotive systems, and failing to meet those constraints may lead

to catastrophic situations. Such systems interact with their intended environments (e.g.,

patients for medical devices), hence, timing constraints are typically expressed in terms of

the timing of the interaction between the systems and their environments. For example,

when the environment generates an input, the system shall produce an output within a

bounded time. Therefore, it is important to build a system in such a way that its internal

processing - reading sensor input from the environment, computing output, and writing

actuator output to the environment - meets the timing constraints.

Implementing software executing as a part of such systems is non-trivial. One of the major

challenges comes from the fact that the timed behavior of the software is closely tied to

a platform’s specific timing aspects (e.g., scheduling mechanisms provided by operating

systems, and timing overhead of device drivers for sensors and actuators) where the software

is running; in addition, their interactions occur in a complicated pattern. Therefore, an ad-

hoc software development approach without rigorous analysis of the complex interaction

between software and platforms is unsuitable when building high assurance safety-critical

systems.

We believe that a good software development approach should enable one to abstract such

timed behavior of systems precisely toward rigorous verification and analysis of timing con-

straint preservation in the early development stage. Furthermore, an implementation should

be essentially derived from the abstraction as systematically as possible to preserve the ver-

ified timing constraints. The motivation of this dissertation is to find such a rigorous and

systematic software development approach that is based on formal methods, and applicable

in the safety-critical domains.
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Note that many researchers have spent significant efforts in formal verification/analysis

methods and tools to assure timing constraints of systems that can be applicable to realizing

such a development approach. We believe that applying these prior outcomes in concert

to building a concrete safety-critical application which goes through the full development

cycle - requirements, system design and verification, implementation, testing and validation

- would introduce another level of problem spaces and challenges related to timing aspects

that are necessary to be solved. For this purpose, we introduce an infusion pump system

that is used as an example safety-critical system to which these techniques are applied,

giving focus on timing aspects.

1.2. Background: Infusion Pumps Safety and GIP Project

An infusion pump is a safety-critical embedded system that injects drugs into patients’

bodies in a controlled manner for various medical treatment purposes. In order to increase

the effectiveness of traditional infusion therapies manually performed by caregivers, modern

infusion pumps are equipped with mechanical structures that enable a drug administration

process to be precisely performed in an automatic fashion by entering infusion parameters

such as dose rate and volume-to-be-infused. The mechanical process of infusion pumps

involves pumping mechanisms in which the rotation of pump-motors generates physical

forces to move a syringe (or a drug bag) so that drugs can flow from a syringe to a patient

through an intravenous tube. Furthermore, the mechanical structure is designed in such

a way that alarming conditions, such as empty-reservoir, occlusion and air-in-line, can be

detected and informed to caregivers so that patients can avoid serious conditions such as

under or over-infusion.

Software plays an important role in infusion pumps in order to make such mechanical

processes happen by interacting with sensors and actuators attached to the mechanical

structures. In modern infusion pumps, software complexity is growing to implement ad-

vanced features in order to provide more effective infusion therapies; for example, network

capabilities are included in modern infusion pumps to enable downloading drug libraries

2



and auto-programming of infusion parameters to reduce efforts and errors of manual entry.

According to the FDA, such infusion pump softwares may contain more than 100,000 lines

of code [4].

It is necessary that infusion pump software meets high safety standards in order to mini-

mize harms to patients while performing infusion therapies. However, according to FDA’s

infusion pump improvement initiative [53], the FDA received numerous reports of adverse

events associated with the use of infusion pumps, including serious injuries or deaths. In

particular, the 87 infusion pump recalls conducted from 2005 to 2009 due to safety problems

have raised awareness of safety issues from stakeholders such as government agencies (e.g.,

the FDA), device manufacturers, caregivers, and patients. Software defects are identified as

one of the most common types of reported problems. For example, software fails to activate

pre-programmed alarms when problems occur; software triggers alarms when no problem is

present and, thus, interrupts normal infusion therapies; or software interprets a single key

stroke as multiple keystrokes, a so called key bounce problem, causing over-infusion to the

patients [5].

To address the safety concerns of infusion pump systems, the FDA initiated the Generic

Infusion Pump (GIP) project [2] aiming at creating software safety models and reference

specifications that can be used by manufacturers and research communities to improve

infusion pump software safety. Among a range of different types of infusion pumps, Patient

Controlled Analgesia (PCA) infusion pumps are used for controlling the post-surgery pain

of patients by injecting pain medication such as morphine. The FDA released two resources

that address safety issues of PCA infusion pump systems to the public: (1) Generic PCA

pump safety requirements (GPCA safety requirements), and (2) a Generic PCA pump model

(GPCA model). The GPCA safety requirements include requirements that are expected to

hold in general PCA infusion pumps to ensure a minimum degree of safety. On the other

hand, the GPCA model is an abstract representation of common software behaviors found

in typical PCA infusion pumps. This model was built using Mathworks Simulink [47] and
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Stateflow [48].

While these FDA resources focus more on extracting functional requirements and modeling

the functional behavior of PCA pump software, we argue that timing aspects are worth being

considered more explicitly throughout the software development process. This is important

because, when it comes to safety, the functional aspects cannot be separately considered

from the timing aspects, since critical functionality of PCA pumps are often timing depen-

dent. For example, a bolus infusion is the basic functionality of PCA pumps to provide

additional drugs upon patients’ request by pressing a button. Meeting this requirement

also implicitly implies that the functionality should be implemented by conforming to some

type of timing constraints; for example, upon requesting a bolus, a bolus infusion should

start and finish within a bounded time after delivering the expected volume of drugs. If this

timing constraint associated with the functionality does not hold, then the infusion therapy

will start late or finish prematurely, thus, giving too much or too little drugs, which may

harm the patient due to over or under-infusion. One goal of this dissertation is to study

how such timing aspects can be explicitly modeled and verified along with the functional

aspects of PCA pumps throughout the software development cycles.

In addition, in spite of the availability of the safety requirements and the software model,

there is not much reported on how PCA pump software can be implemented in a safe

manner. In comparison to modeling and verification of timed behavior of the software,

implementing a software from a verified model, particularly one that can operate on a PCA

pump hardware platform, raises different dimensions of timing-related problems that might

be interesting to both academic and industrial researchers and developers. By building a

concrete system from abstract models, we envision to identify and formalize these problems

in order to provide solutions.

Even though a PCA pump is one type of safety-critical application, we believe that the

timing issues that we address in this dissertation have common ground with other safety-

critical systems, such as avionics and automotive vehicles, that also need to guarantee
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timing constraints with different granularity to assure safety. Therefore, we hope that our

PCA pump case-study is used as an exemplar by demonstrating how the timing aspects of

safety-critical domains can be modeled, verified, and implemented to achieve high safety

assurance of systems.

1.3. The Research Goal and Challenges

This dissertation aims at systematically developing source code from formal models of PCA

pumps that can operate on a range of PCA pump hardware platforms by focusing on

timing aspects. Figure 1 illustrates the overview of this research project: during Phase

a, the platform-independent timed behavior of PCA pump systems is abstracted using

modeling languages that can be formally verified against timing requirements. During Phase

b, source code (e.g., C code) is automatically generated from the verified timed models

through the code generation process; and the generated code is expected to operate on a

range of PCA pump platforms; by platforms, we mean it is a collection of hardware (e.g.,

sensors and actuators) and accompanied system software routines (e.g., operating systems

or device drivers) that are not compatible with other device manufacturers. During Phase

c, the generated code is integrated with a PCA pump platform that is manufactured by

a particular device manufacturer through the platform integration process. During Phase

d, the implemented system (i.e., the integration of the source code and a chosen platform)

is tested against the timing requirements by generating test cases from the models. This

research road-map provides us with benefits as well as research challenges in addressing

timing concerns in developing PCA infusion pump software.

Note that the timed behavior of PCA pump systems is abstracted without clear distinction

between software and platforms. That is, the timing aspects of a system are expressed inde-

pendently of a specific target platform. Such a platform-independent timing abstraction of

a system is useful and necessary from the software development perspective in the following

sense:
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Figure 1: The overview of the GPCA reference implementation project

(1) Lack of platform-dependent timing information: When a software development is started,

the design decision for the timing critical parts should be made by having sufficient platform-

dependent timing information. For example, software design complexity to implement a

certain control law may vary depending on how fast a chosen platform can execute the soft-

ware. However, such detailed platform-dependent timing information may not be available

in the early development stage for several reasons. For example, hardware platforms may

not be ready at the moment when a software design needs to be started, or developing

hardware platforms may be performed in parallel with the software development process.

Therefore, it is necessary to have a system model that is independent of any particular

platform in order to initiate a software development process in the absence of platform-

dependent timing information; accordingly, the integration decision can be deferred to a
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later stage when the platform-dependent timing information becomes available.

(2) Reducing model complexity: A formal verification is used to check whether a system

model conforms to timing requirements or not. In some formal verification techniques, as

the number of state variables in the model increases, the size of the system state space

grows exponentially resulting in a significant increase of verification time [22]. In the initial

development stage, modeling platform-dependent timing details, such as real-time schedul-

ing algorithms and I/O processing delays of device drivers, may be less important, and

incorporating such timing aspects adds unnecessary complexity to the model. Therefore, it

is needed to abstract away such platform-dependent timing details to make a system model

simplified in order to perform the formal verification at a reasonable cost.

(3) Reusability of formally verified software: Building a system model independently of a

particular platform enables its generated code to be reused for a range of target platforms.

Therefore, after gaining timing assurance about a platform-independent source code through

formal verification and code generation processes, it is more cost-effective to use the same

source code across different platforms instead of redoing the modeling, verification and code

generation processes whenever platforms are changed. For example, PCA infusion pumps

released by different device manufacturers have common software aspects to deliver drugs

upon the patient’s request, and to raise alarms upon detecting abnormal conditions. Such

common aspects can be abstracted as a platform-independent software model, and source

code generated from the model can be shared by different device manufacturers.

In spite of such benefits by adopting a platform-independent abstraction of a system, one

naturally encounters challenges as to how to incorporate the platform-dependent part, and

how to link it to the platform-independent abstraction toward the system-wide timing as-

surance. These challenges are as follows:

• What kind of timing information should be considered in designing the interface of

the platform-independent code in a way that it can be integrated with different types
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of platform-dependent code?

• What kind of platform-dependent timing information should be considered to operate

the platform-independent code on a particular platform, and how should the timing

information be abstracted and implemented on a platform?

• Upon integration, how should the platform-independent timing abstraction be mapped

to the platform-dependent timing abstraction?

• How to reason about the timing conformance of an implemented system from the

formal verification result of the platform-independent model?

We address the above challenges in our safety-assured model-based implementation frame-

work to develop PCA infusion pump systems.

1.4. The Approach Overview

Our approach relies on reconciling two different levels of timing abstraction in developing

final implemented systems: behavioral and architectural timing abstractions.

The behavioral-level timing abstraction intends to capture changes of internal system sta-

tuses through a series of input/output interactions with the system’s environment; in par-

ticular, timing constraints (e.g., min/max bounds) are associated with each input/output

interaction so that the timed behavior of a system can be expressed in terms of expected

timing bounds where each input and output may occur. Several transition-system based

formalisms, such as timed automata or Stateflow, adopt such behavioral-level timing ab-

stractions.

On the other hand, the architectural-level timing abstraction intends to capture the in-

put/output information flow among different hardware components (e.g., sensors or actu-

ators) and software components (e.g., threads or processes). Each component is associ-

ated with component-level timing properties that determine how a component is sched-

uled to read input or write output to/from another component (e.g., time or event-trigger
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mechanism). Several modeling languages such as AADL or UML MARTE, adopt such

architectural-level timing abstractions.

The key idea of our approach is to use the two timing abstractions to separately model

the platform-independent timing aspects (with behavioral-level timing abstraction) and

the platform-dependent timing aspects (with architectural-level timing abstraction). Such

separation enables the platform-independent code to be developed from the I/O behavioral

perspective independently of particular platform-dependent architectural timing aspects.

Next, we need to check whether the platform-independent code can be integrated with a

particular platform in a way that conforms to the timing requirements. Our integration

strategy provides several systematic mechanisms to check such compatibility between the

platform-independent code and a particular platform.

Such separation of concerns is realized in three development phases illustrated in Figure 2:

the platform-independent development phase (PI-Phase), the platform-dependent develop-

ment phase (PD-Phase), and the integration phase (ITG-Phase).
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Figure 2: The approach overview of the safety-assured model-based implementation

Platform-Independent Development Phase (PI-Phase): The objective of the PI-Phase is to

model and verify the input and output timing interactions between a system and its en-

vironment by abstracting details of the platform-dependent architectural timing aspects.
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By abstracting such timing details, the developed platform-independent code is not tied to

a particular platform architecture, instead it is expected to operate on a range of tar-

get platforms that may have different platform-specific timing aspects. The PI-Phase

uses the following timing abstractions in constructing the platform-independent model:

(1) the platform-independent abstraction of the input and output processing mechanisms:

the platform-independent model expresses timed behavior of a system in terms of input

and output events that are observable at the boundary of a system and its environment;

however, it hides the internal details of the input and output processing mechanisms, such

as how a platform reads and writes sensor inputs and actuator outputs (e.g., polling or

interrupt-based mechanisms), at this level of abstraction; (2) the platform-independent ab-

straction of execution schemes: source code generated from a platform-independent model

needs to be executed (or scheduled) by a platform in order to realize the interaction between

a system and its environment. Such an internal execution scheme is typically implemented

by encapsulating the code behavior in a higher level software component such as threads

or processes that can be executed according to a certain real-time scheduling mechanism.

However, such a platform-dependent execution scheme is not represented at this level of

abstraction.

Here is the development process of PI-Phase that follows this level of timing abstraction.

Two inputs are given to the PI-Phase: (1) the platform-independent specification of PCA

infusion pumps, and (2) the timing requirements. In this dissertation, for example, the

FDA’s GPCA model and safety requirements are used to extract a platform-independent

specification and timing requirements respectively. Given a platform-independent specifi-

cation, a UPPAAL model is created to abstract the input and output timed behavior of

a system. According to the chosen level of timing abstraction, this platform-independent

model hides the details of the internal architectural information flow of a system. In other

words, from the perspective of the platform-independent model, it is sufficient to model that

a system should produce an output within a bounded time once it receives an input from

the environment; however, it hides the details about what kind of internal architectural
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aspects are necessary to realize such bounded delays. In the verification process (b), the

UPPAAL model is verified using model-checking to see whether a system conforms to the

timing requirements during the interaction with its environment. In the code generation

process (c), the platform-independent code (e.g., C code) is automatically generated from

the verified UPPAAL model using read/write/trigger primitives. These primitives are the

implementation level interface that allows the platform-independent code to interact with

an arbitrary platform that realizes a certain architectural option.

Platform-Dependent Development Phase (PD-Phase): The objective of the PD-Phase is to

model and develop the platform-specific timing aspects of a system that are hidden at the

PI-Phase to achieve the platform-independency, but necessary to support execution of the

platform-independent code on a platform. This platform support includes mechanisms as to

how the code is scheduled along with other types of platform-dependent codes (e.g., device

drivers) by operating system schedulers, and how the code reads data from sensors (e.g.,

polling or interrupt-based mechanisms), and how the code writes data to actuators. The

timing abstraction of the PD-Phase intends to express such platform-specific mechanisms

to support the execution of the platform-independent code.

Here is the development process of the PD-Phase that follows this level of timing abstrac-

tion. Suppose a platform is given. In this dissertation, for example, a platform is considered

to be PCA infusion pump hardware (manufactured by a certain company) and accompa-

nies real-time operating systems and I/O device drivers. The information of a platform

is used to construct the platform specifications, and further create a platform-dependent

model. The platform-dependent model enumerates necessary hardware (e.g., sensors and

actuators) and software components (e.g., threads and processes) that are required to create

the final implemented system, and define dependency among these components to realize

the internal information flow of a system. For this purpose, AADL is used to abstract

such platform-dependent architectural information. In the code generation process (d), a

platform-dependent code (e.g., C code) is automatically generated to implement the inter-
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nal architectural information that is expressed by the AADL model. Note that it is not

necessary to have the same architectural information for any platform. Each platform may

have its own architectural information to support the execution of the platform-independent

code. Hence, the resulting platform-dependent code may also be different to accommodate

such platform-dependent variation.

Integration Phase (ITG-Phase): The objective of the ITG-Phase is to build a final imple-

mented system by composing a platform-independent and a platform-dependent code that

have been developed from different levels of timing abstraction. An implemented system is

considered correct if it conforms to the timing requirements. Note that not all compositions

result in correct implementations since it has not been analyzed yet as to how the two

levels of timing abstraction is correlated with each other in terms of the timing requirement

conformance. Therefore, a major concern in the ITG-phase is to check whether a platform-

independent code can be composed with a platform-dependent code in a way so that timing

requirements are satisfied.

Our ITG-Phase consists of two steps in order to check the timing requirement conformance

in the final implemented system: platform-specific timing verification and timing param-

eter adjustment. The platform-specific timing verification (e) is to formally verify (using

model-checking) whether an implemented system conforms to the timing requirements in

case the platform-independent code is implemented using the same timing parameters - such

as min/max timing bounds of input and output occurrences - of the platform-independent

model without compensating the platform processing delays. This verification step is real-

ized by constructing a platform-specific model (PSM ) whose timed behavior is close to that

of such an implemented system. We first abstract platform processing delays (originally

modeled as AADL models) using the UPPAAL semantics that can then be systematically

composed with the platform-independent model (originally modeled as UPPAAL). This

platform-specific model is used to perform the platform-specific timing verification; it may

pass (f) if additional platform processing delays do not result in the timing requirement
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violation; it may fail (g) if the platform processing delays result in the timing requirement

violation.

The major reason of the verification failure is due to the fact that the platform-independent

code does not account for the platform-processing delays during the PI-Phase. Hence, the

timing parameter adjustment step is proposed to find new timing parameters that can be

used in the platform-independent code to compensate the platform-processing delays, and

if such a parameter adjustment is feasible (h), the platform-independent code generated

with the new timing parameters can be integrated with the platform by conforming to the

timing requirements.

Finally, in order to validate the timing requirement conformance in the implemented sys-

tem, the testing process (i) generates test cases that are necessary to validate whether an

implemented system conforms to the timing requirements; then, the test cases are fed into

a final implemented system in order to validate the timing requirement conformance.

1.5. Contribution

We have made the following contributions:

• We formalized the system boundary of implemented systems based on Parnas’ four

variable model to establish the mapping from the input/output timing semantics of

the model to that of implemented systems (Chapter 4);

• We proposed the primitive-based code generation that enables the platform-independent

code to be generated in the absence of the timing information as to how a platform

schedules the platform-independent code, and how a platform reads input or writes

output to/from the environment, while at the same time allowing the code to be

integrated with many different platforms that may implement those primitives in a

different way (Chapter 4);

• We proposed the platform-dependent code generation algorithm that systematically
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generates source code needed to support execution of the platform-independent code

on a particular platform by characterizing its timing aspects using AADL models and

code snippet repositories (Chapter 5);

• We proposed the platform-specific timing verification framework that enables us to

construct the platform-specific models (PSM ) by systematically extending the platform-

independent model; PSM can then be used to formally verify the timing requirement

conformance of an implemented system, and to quantify the deviation of the imple-

mentation from the platform-independent model with respect to the timing require-

ments (Chapter 6);

• We developed a method that automatically adjusts timing parameters used for deter-

mining the timing of reading input and writing output in the platform-independent

code by compensating the platform-specific input/output processing delays. This

strategy enables us to check whether it is feasible to execute the platform-independent

code on a platform by conforming timing requirements verified in the platform-

independent model; if feasible, it automatically finds the new timing parameters of the

platform-independent code that need to be used upon integration with the platform

(Chapter 7);

• We proposed a layered approach of testing timing requirements that enables us to

not only check the timing requirement conformance of the implemented system, but

also to measure the specific delay-segments that contribute to the timing constraint

violation (Chapter 6).

1.6. Dissertation Outline

The rest of this dissertation is organized as follows: Chapter 2 explains the related work,

Chapter 3 provides a general information about infusion pump systems in order to help

understanding the basic operations and hardware platforms of actual infusion pump sys-

tems. In addition, we introduce the GPCA hazard analysis and safety requirements and the
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GPCA model provided by the FDA. Chapter 4 introduces the platform-independent devel-

opment phase; starting from categorizing the GPCA safety requirements, we introduce how

platform-independent timed behavior is formally verified against the timing requirements,

and further generated into platform-independent source code that is expected to operate

on a range of platforms. Chapter 5 introduces the platform-dependent development phase.

Given a particular target platform, we introduce how platform-dependent timing aspects

are abstracted using modeling languages, and generated into platform-dependent source

code that is expected to operate the platform-independent code. Chapter 6 introduces two

different approaches to check the timing constraint conformance of the final implemented

system: the first approach is the platform-specific timing verification that can be used

when the timing information of a chosen platform can be formally abstracted along with

the platform-independent model; the second approach is the platform-specific timing test-

ing that can be used when the timing information is unknown, but has to be validated for

the timing constraint conformance. Chapter 7 introduces the delay adjustment algorithm

for the platform-independent code when it has to be integrated with a particular platform

by conforming the timing constraints that have been verified in the platform-independent

model. Finally, we give a summary and conclusion of this dissertation in Chapter 8.
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CHAPTER 2 : Related Work

This dissertation proposes approaches that enable a system to be developed by separating

timing concerns between the platform-independent and the platform-dependent aspects.

The basic idea is to decompose the design space of a system that needs to be separately

handled due to several constraints, such as model complexity and information availability;

and then to compose the produced artifacts that have been separately developed by reason-

ing about the correctness of the composition with respect to timing requirements. In this

chapter, we explain the related works from the following four different problem spaces, and

argue about relevances and differences with our work:

• (Category 1) The software development processes

• (Category 2) The formal verification techniques for platform integration

• (Category 3) The code generation techniques

• (Category 4) The testing techniques

2.1. The software development processes

The work proposed by Thompson et al. [50, 49] indicates the importance of software proto-

typing in the early development stage and proposed an approach to the specification-based

prototyping in which a detailed software specification is repeatedly refined from a formal ex-

ecutable model of the system requirements. In order to achieve such a prototyping flow, the

Requirement State Machine Language (RSML) is designed to precisely describe the system

specification based on the variables and state-transition formalism. Then, the NIMBUS en-

vironment enables the software specification to be structured by incrementally refining the

system requirements. The case studies of developing software for the altitude switch system

in the avionics domain [50] and the mobile robotics system [49] show the applicability of the

proposed approach. The major concern in the work of Thompson et al. is (1) how to capture

a system specification in a reusable way that evolves throughout the development cycles,
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and (2) how to get the software specification from such a system specification. Similarly,

we are also concerned about how to construct a formal model of a system in case the timing

information of platforms (sensors and actuators in Thompson’s work) is not precisely known

in the early development stage; in addition, when that information becomes available later,

we study how to develop software that will be integrated with a range of platforms that

may have different timing characteristics. Even though the problem space is similar, we

give more focus on timing aspects by choosing modeling languages such as UPPAAL and

AADL that can express timing aspects of systems, which is difficult to express in RSML

and NIMBUS.

Parnas proposed the four variable models [43] with which system requirements are formally

described using four variables, namely, monitored (m), controlled (c), input (i) and output

(o). This formalism enables a system to be expressed by decomposing software systems

from input/output devices so that the system requirements can be formally represented

through the mapping of those variables to the boundary of the subsystems. We utilize

Parnas’ formalism as a means to define the information flow occurring at the two system

boundaries (i.e., this dissertation calls them mc-boundary and io-boundary) that separate

the platform-independent and the platform-dependent parts. Such a scoping of the two

different aspects enables us to precisely define the timing relationship among various models

constructed in our development process.

Unified Modeling Language (UML) has been extensively used to model a system from vari-

ous abstraction levels and to help stakeholders to understand the system requirements and

design. In particular, Gomaa’s work [24] introduces the software engineering process for

the development of software product lines using UML notations. The major concern in

Gomaa’s work is to separate common functionality from variable functionality to achieve

software reuse when developing multiple systems that are similar to each other. Gomaa’s

work extends the UML-based modeling methods that are used for single systems to ad-

dress software product lines, and claims that the proposed approach is more cost-effective
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than developing each system individually from scratch. Such a product line approach is

similar to our development process in a sense that it separates the common functionality

(matched to our platform-independent aspects) from the variable functionality (matched

to our platform-dependent aspects) to improve software reuse so that a series of similar

systems (e.g., infusion pump systems) can be constructed in a cost-effective manner. How-

ever, UML lacks formal semantics that makes it difficult to automatically verify whether

a system actually meets the system requirements. Therefore, it typically plays a role of

having common understanding about the system requirements and designs among different

stakeholders without providing formal guarantees as to whether the constructed designs

actually conform to the requirements. In addition, UML gives more focus on expressing

functional requirements and design, not for timing requirements, which are one of the most

important aspects that we want to capture and verify through using UPPAAL and AADL.

Sangiovanni-Vincentelli et al. introduced the contract-based design for cyber-physical sys-

tems [44]. A contract is a pair of assumptions and promises that are properties satisfied by

the set of all inputs and all outputs of a design. In order to handle high complexity of sys-

tems, Sangiovanni-Vincentelli argues that it is necessary to apply such an assume/guarantee

reasoning throughout all steps of the design process. Sangiovanni-Vincentelli also showed

how the concept of the contract-based design is realized in the platform based design (PBD),

where functionality (what the system is supposed to do) is strictly separated from architec-

ture (how the functionality could be implemented) at each abstraction layer. We believe that

our work is also aligned with the design philosophy proposed by Sangiovanni-Vincentelli.

Our platform-independent model aims at capturing the functionality independently of a

particular architecture adopted by a platform, and such architectural aspects are then com-

posed with the platform-independent code in order to build the final implementation.

2.2. Formal verification techniques for the platform integration

One challenge that arises by separating timing concerns is to reason about the correctness

of the integration of the platform-independent and the platform-dependent codes. In par-

18



ticular, when it comes to timing properties, this reasoning can be challenging due to the

complex timing interactions that come from different levels of timing abstraction. There

have been a number of approaches to bridge such timing gaps between a high-level model

and its implementation. Here are a few works that are closely related to our work:

The work proposed by Altisen et al. [11] studied whether timed automata can be imple-

mented on a given platform satisfying a desired property using its standard semantics. Our

work also relies on timed automata semantics to abstract the platform-independent timed

behavior, but with three major differences between Altisen’s and our work: firstly, their

implementation methodology that transforms a timed automaton into a program is similar

to our implementation schemes in a sense that both study the possible ways to implement

a timed automata on a given platform. However, Altisen’s work studied only a restricted

set of implementation methodologies, whereas we provide more general sets of implemen-

tation schemes. For example, (a) the buffering scheme for the communication between a

platform and a program, and (b) the polling scheme for reading environmental signals, are

commonly used implementation schemes that we consider; however, their work only consid-

ers the communication scheme using a shared-variable, and the interrupt-based scheme in

reading inputs from the environment. Secondly, Altisen’s work does not give details about

how one can systematically transform an original timed automata model into a program

model. Our work focuses on providing a systematic algorithm so that the transformation

from the platform-independent model to the platform-specific model can be automated

given an implementation scheme. Thirdly, Altisen’s work focuses more on studying the

property preservation under platform refinements; that is, when a slower platform is re-

placed with a faster one, they want to check whether the same property holds or not. On

the other hand, our work focuses on providing a framework that enables one to compose a

platform-independent model with a particular implementation scheme so that the composed

platform-specific model can be used to verify timing properties.

The work proposed by Sifakis et al. [10, 51] also studied how platform-specific timing aspects
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can be combined with the platform-independent model. These works introduced how an

abstract model (that is matched to our PIM ) can be transformed into a physical model (that

is matched to our PSM ). The basic idea of their transformation is to construct the physical

model by assigning the execution time to each action transition of the abstract model (i.e.,

transitions that are associated with input or output synchronization); more specifically, a

single transition in the abstract model is decomposed into two separate transitions in the

physical model. At the first transition, the clocks used in the abstract model freeze while

performing the synchronization (i.e., time does not flow while performing synchronizations),

then, at the second transition, it compensates the execution time of the input (or the

output) by adding timing guards associated with additional clock variables, which enables

the transition to be completed after a constant execution time. However, this transformation

simplifies several platform-specific aspects on which our work wants to focus. To the best

of our knowledge, for example, their transformation does not consider a notion of event

buffering or invocation mechanisms. Hence, the following scenarios cannot be captured and

verified in their physical model: (1) "even though an input event is read by the platform,

the input may not lead to a transition in the model due to a buffer over-run condition, (2)

"when the generated code invoked is too slow while the frequency of the input generated from

the environment is relatively faster, the code may not process all the inputs".

Wulf et al. [54] proposed an approach to tackle the timed automata implementability prob-

lem based on a new semantics called Almost ASAP that is parameterized by a platform-

processing delay. It presented a way to check whether a model that is constructed using

this semantics can be implemented with a sufficiently fast platform; and if a faster platform

replaces a slower one, the property still remains hold. However, Wulf’s work didn’t consider

what constitutes the platform-specific delays specifically, wheres our work focuses on the

source of timing delays that affects the platform-processing delays.

Bonakdarpour et al. [18] proposed a way to desynchronize distributed components modeled

as the BIP semantics (Behavior, Interaction, Priority) in a way that the behavior of the
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transformed BIP components is observationally equivalent with that of the original BIP

model. During the desynchronization process, they inserted a notion of manager that me-

diates the communication among distributed BIP components in an asynchronous manner.

Even though the distributed setting of their work is different from the stand-alone setting of

ours, the problem of the interaction desynchronization is similar to our problem. However,

they did not consider timing issues, whereas our main focus is to desynchronize the timed

behavior of the platform-independent model from its environment by inserting a platform.

2.3. The code generation techniques

Lublinerman et al. [39, 38] introduces a code generation technique using the modeling lan-

guage Synchronous Block Diagram (SBD). In SBD, the relationship between input and out-

put is precisely defined at every synchronous round, and its semantic extension is currently

being used in the Simulink/Stateflow model. Lublinerman’s work considers the following

implementation-specific criteria when generating code from a SBD: (1) internal structures

of the generated code need to be sometimes hidden from the outside (e.g., for intellectual-

property concerns) and (2) a part of the generated code needs be reused in different contexts.

To take into account these criteria, it introduces two quantifiable metrics, (1) modularity

and (2) reusability, that can be used to measure how well the generated code from a block

diagram can be used along with other code generated from different block diagrams in or-

der to form a particular context. Then, several code generation algorithms are introduced,

each of which maximize different metrics so that the generated code meets the respective

implementation criteria while preserving the SBD semantics.

Lublinerman’s work is similar to our code generation on how to generate a code that can

be reused in different contexts (c.f., different platforms in our work), with several differ-

ences. One major difference is on the level of abstraction to model implementations and

how Lublinerman’s work and ours model them. Lublinerman’s work models an implemen-

tation based on the single modeling language (SBD) to abstract the relationship among

different components characterized by a set of input and output dependencies. Our work
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models more detailed platform-dependent interactions among thread and sensor/actuator

components that comprises an implementation using AADL. In addition, our platform-

independent modeling intends to capture behavioral aspects that should be implemented

independently from such platform-dependent aspects. Therefore, our modeling strategy

consequently makes our code generation generate source code that covers more details of

the final implementation compared to Lublinerman’s work.

Another difference comes from the metrics that each work wants to characterize in judging

the composition. In order to consider the trade-off between reusability and modularity,

Lublinerman’s work manipulates the number of false dependencies in a way that each aspect

can be maximized. However, Lublinerman’s work does not consider timing aspects as to how

the composition of different codes generated from different blocks impact timing requirement

conformance; these timing aspects are the major concern in our work.

Henzinger et al. [28, 27] introduces a modeling language called Giotto, that can describe

timed behavior of hard real-time applications. Logical Execution Time (LET) is the main

abstraction of the Giotto timing semantics in order to implement deterministic timed be-

havior of the control application; that is, given a sequence of inputs, the output is produced

at a pre-determined timing. When generating code from a Giotto model, Henzinger’s work

considers the following implementation-specific criteria: (1) the generated code should be

ported on a range of platforms, and (2) the execution of the generated code should preserve

the deterministic timing semantics of the Giotto model. However, achieving both code

portability and deterministic timing semantics is challenging, since each platform may have

different platform-dependent timing semantics (e.g., different real-time scheduling policies),

which will lead to different timed behavior of the generated code on its respective platforms.

Henzinger et al. proposed a way to mediate the Giotto timing semantics and the platform-

dependent timing semantics by separating the code generation into two processes. In the

platform-independent process, E-code is generated in which the timing information is en-

coded independently of a particular platform’s timing semantics; the generated E-code is
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expected to operate on a virtual machine called the E-machine. In the platform-dependent

process, the time-safety property is checked to see if platform-dependent timing semantics

can operate the E-code preserving the Giotto semantics. If such a time-safety check is

passed, the E-code can be run on a target platform preserving the Giotto timing semantics.

Henzinger’s work is similar to ours in a sense that it mainly focuses on separating the two

timing concerns in the code generation process - the platform-independent and the platform-

dependent timing aspects. The verification flow to check correctness of the composition

is also similar; both works generate the platform-independent code independently from

a particular platform; upon integration, Henzinger’s work performs time-safety checking

that verifies whether a platform has enough performance to execute E-code according to

the Giotto semantics. Similarly, our approach also constructs the platform-specific model

(PSM ) for the purpose of verifying whether the composition of the two types of code meets

the timing requirement.

However, the scope of the code that our work generates is different from theirs. Hen-

zinger’s work generates E-code (c.f., the platform-independent code in our work) that is

compatible to platforms that run an E-machine, but our work does not require a platform

to run a middleware to execute the platform-independent code. This is because, in ad-

dition to generating the platform-independent code, our work also aims at generating a

platform-dependent code that can support the execution of the platform-independent code

by constructing a more refined platform model to explicitly capture the platform-dependent

timing aspects. As a result, our platform-independent code can be executed on a platform

that runs the platform-dependent code that are characterized in the platform-dependent

modeling stage (i.e., no need for our platforms to run a particular middleware to execute

the platform-independent code).

Such differences can also be highlighted when comparing our work to the AADL code genera-

tion using Ocarina [37] which requires platforms to run PolyORB middleware to execute the

generated code. The assumption that any platform will run the same middleware makes the
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code generation algorithm more simple, but we believe that designing a platform-dependent

code generation algorithm that allows us to explicitly describe only the necessary parts of

a platform will result in producing more efficient code, especially in the embedded systems

domain.

Functional Mockup Interface (FMI) is a tool independent standard for the exchange of

dynamic models and for co-simulation [17]. This standard intends to enable the composi-

tion of model components that are designed using distinct modeling tools. The standard

is currently evolving and being extended through collaboration between simulation tool

vendors and research institutes. One of the extension efforts has been made by Broman et

al. [20, 21]. Broman proposed a way to extend the standard to enable deterministic execu-

tion for a much broader class of models [20], and defined a suite of requirements for hybrid

co-simulation standards [21]. In our work, we utilized multiple modeling languages, such

as UPPAAL, Stateflow, and AADL. Thus, if FMI standard supports the model exchange

and co-simulation environment for the modeling languages that we have used in this work,

we believe that some of the manual process (e.g., the model translation from Stateflow to

UPPAAL) would be more efficiently performed.

There are also other works that studied separating concerns between specification and

hardware-dependent details in generating source code. In particular, Schirner et al. [46]

proposed automatic generation of hardware dependent software for MPSoCs platforms from

abstract system specifications. The approach of Schirner’s work is similar to ours in the

sense that one can write specifications of embedded systems hiding the details of imple-

mentation, and later mapping to an actual platform to generate code separately. However,

Schirner’s work uses a modeling language, Transaction Level Models (TLM), as an input to

the process as opposed to AADL which we use. In addition, they do not consider dealing

with heterogeneous aspects of programming interfaces exposed by different platforms, which

are characterized by our parametrized code snippet repositories.
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2.4. The testing techniques

Our development process aims at gaining timing assurance of the software by using formal

methods and systematic code generation approaches throughout the development cycles,

ideally to reduce (or remove) the cost spent in testing. However, the models (e.g., the

platform-independent and the platform-dependent model) that we create are an abstraction

of an implementation by hiding some details of the implementation. In practice, such an

abstraction is necessary in order to keep the model size manageable for formal verification

due to several limitations that come from a chosen technique (e.g., scalability issues from

the model checking). This makes testing necessary in concert with using formal methods.

There have been several attempts at using UPPAAL to test implementations. Larsen et

al. [36] introduced a tool for online black-box testing for real-time embedded systems using

UPPAAL specifications. In Larsen’s work, the system behavior (e.g., the PCA pump be-

havior) is modeled using an UPPAAL automaton that is composed with another UPPAAL

automaton that models the behavior of the environment (e.g., the patients) with which the

system will interact. This information is fed into a UPPAAL-TRON for checking input-

output conformance of the system. This tool can be used in our work to automatically

generate test cases and to execute the tests in order to systematically check the correct-

ness of the integration between the platform-independent and the platform-dependent code.

Hessel et al. [30, 29] also used UPPAAL to derive test suites specifying the expected behav-

ior of the implemented systems based on structural coverage criteria. We expect that these

systematic online testing approaches can reduce test costs compared to manual testing.

Gay et al. [25, 23] studied the testing problem of using a model as an oracle to test

implemented systems. Gay’s work highlights the challenges of using a model as an oracle due

to several aspects that are not properly abstracted in the model, but should be considered

at the implementation level to perform more accurate testing such as input processing

delays, execution time fluctuation, and hardware inaccuracy. Neglecting such gaps leads to

excessive amounts of false positive testing results that need to be inspected further by adding
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extra costs. The proposed solution is to adapt the model behavior to the implementation

by comparing the state of the model to that of the implementation. In order to realize such

an adaptation, Gay’s work introduces a notion of the tolerance constraints that defines

allowable changes to certain variables of the model. Next, the dissimilarity function is used

to compare the state of the model to the observable state of the System-Under-Test (SUT).

Finally, using the SMT-based bounded model checking technique, the framework finds a

solution to the constraint that gives a new model state that is more similar to the behavior

of the SUT; as a result, the new model can be used as a better testing oracle.

In comparison to our work, Gay’s work addresses the similar issue in a sense that, in order to

reason about the correctness of an implementation, there should be additional consideration

about the impact of the timing gaps between the model and the implementation. One major

difference is that our work focuses on constructing a new model (i.e., PSM ) for model

checking; on the other hand, Gay’s work creates a new model for testing. More specifically,

our approach relies on abstracting the platform-specific portion in a composable way so that

it can be integrated with the platform-independent model. The resulting PSM is eventually

used to formally verify the correctness of the integration between the platform-independent

and the platform-dependent code. On the other hand, Gay’s work gives more focus on

transforming a model into another model through a steering process so that the resulting

model behavior becomes closer to the implementation; the resulting model can then be

used as a better testing oracle by reducing false positive testing results. We believe that

these two works can complement each other to add more timing assurance to reason about

the correctness of the composition of the platform-independent and the platform-dependent

aspects of the implementations.

Mathwork introduces a concept of Model-in-the-Loop (MIL), Software-in-the-Loop (SIL)

and Processor-in-the-Loop (PIL) testing [19] to validate the constructed artifacts from

Simulink/Stateflow models (e.g., models, source code, and microprocessors running the

source code) throughout the development cycles in a systematic way. This multi-layer
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testing approach enables a system designer to develop a model of a system in the early de-

velopment stage from which a test suite is automatically generated to perform MIL testing;

this test suite is used to check whether the model conforms to the requirements. Next, SIL

testing is performed to check whether the behavior of the source code generated from the

model matches that of the model by elaborating the test suite that was used in MIL. After

that, PIL testing enables the microprocessor that is running the source code to be checked

for the requirement conformance by further elaborating the test suite.

Such a layered approach is useful in our work to test the behavior of three different artifacts:

(1) the platform-independent model (using MIL) (2) the platform-independent code (using

SIL) (3) the final implemented system that is composed of the platform-independent and the

platform-dependent code (using PIL). However, this approach does not explicitly explain

how a test suite used in MIL should be refined to perform the next level of testing (e.g., SIL

and PIL). Particularly, such a test suite refinement is quite challenging when the notion of

input and output used in the test suite of MIL are not well matched to those used in SIL

and PIL for some reasons. For example, such scenarios may include a single input (e.g.,

alarm condition) in MIL which is matched to two different inputs (e.g., empty reservoir and

occlusion condition) in SIL and PIL. Feeding an input (or observing an produced output)

at SIL and PIL takes non-zero execution time as opposed to MIL which assumes zero delay

for processing such input and output.
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CHAPTER 3 : Background

3.1. Infusion Pump Preliminary

3.1.1. Infusion Pump Classification

An infusion pump can be classified based on its intended use in various medical treatments.

The GIP class diagram shown in Figure 3 [2] classifies infusion pumps based on two criteria:

(1) how an infusion pump physically contacts with patients, and (2) what types of medical

treatment is targeted using an infusion pump.

Figure 3: Generic Infusion Pump (GIP) Class Diagram

An infusion pump is classified as an external or an implanted pump depending on the way

a pump physically contacts with patients. An external pump provides patients with drugs

through an administration set that is connected to a patient intravenous system. This type

of pump is typically located in close proximity to patients so that patients or caregivers

may start infusion by setting a dose rate and Volume-To-Be-Infused (VTBI) through a

user-interface whenever a short-term infusion therapy is needed. On the other hand, an

implanted pump is surgically placed inside the patient body by threading a catheter into

the desired position. A programmer, a separate device from a pump, is used to program
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infusion parameters; after programming infusion parameters by caregivers, a pump is able

to provide a constant-rate infusion at the location where the pump is implanted. This type

of pump is typically battery-operated, and aims at providing long-term drug infusion in

order to cure chronic diseases.

An infusion pump is also classified according to its targeting medical therapies. A pump

may be used for therapeutic purposes. For example, an insulin pump is used to provide

insulin for the treatment of diabetes patients in order to control a blood glucose level of

patients’ bodies; an infusion pump is also used for chemotherapy by delivering drugs to

help eliminate cancer cells and keep those cells from multiplying in patients’ bodies. On the

other hand, a pump may also be used for analgesic purposes in order to help post-surgical

patients be relieved from pain. For example, a Patient-Controlled Analgesia (PCA) pump

is used to deliver morphine to patients upon their request by pressing a button (called a

bolus infusion) or at a continuous rate.

Infusion pumps belonging to different classes may introduce different hazards so that dif-

ferent safety requirements may be required to mitigate those hazards. Among a range

of infusion pumps explained above, this thesis considers external PCA infusion pumps to

demonstrate the software development approach.

3.1.2. Hardware Platforms of PCA Infusion Pumps

A PCA pump hardware platform is equipped with mechanical structures that enable pain-

relief treatment to be automatically performed based on infusion parameters set by patients

or caregivers. We give a brief description of PCA pump hardware platforms here, and

additional explanation will be provided later on when necessary.

A PCA pump hardware platform is basically designed to perform three major operations:

(1) drug administration (2) detection of alarming conditions and (3) user interactions. We

introduce hardware platforms of syringe-type PCA pumps. Figure 4 shows two syringe-type

PCA pump hardwares produced by different device manufacturers, which are also used as
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target platforms of our case study.

1 

Pump motor (Actuator) 

Buzzer (Actuator) 

Empty-Reservoir Switch (Sensor) 

Door Switch (Sensor) 

Patient Button (Sensor) 

<Baxter PCA Pump Hardware> <Lifecare PCA Pump Hardware> 

Figure 4: PCA Infusion Pump Hardware Platforms

(1) Drug administration: in order to realize infusion administration, a PCA pump hardware

platform is designed to take a particular form of drug reservoir, such as syringes or drug-

bags, where drugs are filled in a liquid form. A syringe-type pump is equipped with a

syringe slot in order to firmly locate a syringe. A syringe bar mechanically connected to

a lead screw is used to press the syringe located in the slot so that drugs can flow from

a syringe to an administration set tube, and from the tube to the patient. Rotation of a

lead screw generates a physical force to the syringe bar so that the bar can press a syringe

vertically or horizontally. A pump motor (actuator) is used to realize the rotation of a lead
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screw.

(2) Detection of alarming conditions: a pump is designed to detect alarming conditions in

order to mitigate hazards that may harm to a patient during a drug administration. For

example, an empty reservoir switch (sensor) is attached to a particular position where a

syringe bar cannot move beyond that position. Therefore, the switch is pressed when no

drugs are left in the syringe, so a syringe-empty condition can be detected by monitoring

the empty reservoir switch status (pressed or released). Some pumps are equipped with

additional switches in order to detect a syringe-low condition using a similar mechanism

with the empty-reservoir detection. An accidental removal of a syringe from a slot during

infusion is prevented by closing and locking a door with a key. A person is only able to

access a syringe located in the syringe slot by opening this door for the purpose of removal

or insertion of syringes. A door switch (sensor) is used to detect the status of a door (locked

or unlocked). A pressure sensor is used to detect occlusion conditions that typically occur

when a tube is twisted which results in an irregular flow of drugs. Such a pressure sensor is

turned on or off by comparing occlusion pressures delivered to a pump motor to an occlusion

pressure threshold that has been set a priori. Upon detecting these alarming conditions,

a pump should trigger visible and audible alarm signals to patients and caregivers so that

those alarming conditions can be removed by human intervention. An LED display or a

buzzer (actuators) are used to trigger such a visible and audible alarm.

(3) User interactions: A pump is designed to interact with patients and caregivers in order

to set infusion parameters and to initiate various types of infusions. A keypad is a means

for caregivers to enter infusion parameters such as dose rate and VTBI in order to start

drug administration. According to Oladimeji’s work [42], typical keypads found in infusion

pumps are based on either a serial number entry or incremental number entry mechanism.

A keypad supporting serial number entry has numbered keys (from 0 to 9) and a decimal

point that enables users to enter infusion parameters serially, digit by digit. A keypad

supporting incremental number entry is only able to increment or decrement the number

31



typically using a pair of up/down keys or rotary dials. In addition to keypads, a PCA pump

has a patient-pendant that is used for patients to initiate a bolus infusion by pressing the

button. Whenever a patient feels pains, a patient may press this button in order to receive

additional amounts of drugs during infusion.

3.2. Generic PCA Pump Safety Resources

We give the following definitions found in [52] in order to explain the safety resources by

the FDA.

• Hazard: A possible source of danger or a condition which could result in human injury.

• Hazard Analysis: Identification of hazards and their initiating causes.

• Hazard Mitigation: Reduction in the severity of the hazard, the likelihood of the

occurrence, or both.

3.2.1. Hazard Analysis for the Generic PCA Pump

The GPCA hazard analysis includes a list of hazards and their causes when patients use

the PCA infusion pump systems. Table 1 shows example hazards and their causes from the

GPCA hazard analysis [3].

Table 1: Example Hazards from GPCA Hazard Analysis
ID Hazard Cause Mitigated by
1.1. Over-infusion Programmed flow rate too high Drug library
1.2. Over-infusion Dose limit exceeded due to too many bolus

requests
Flow sensor

1.8. Under-infusion Reservoir Empty Flow sensor, Drug li-
brary

1.7. Under-infusion Occlusion Flow sensor
1.10 Under-infusion Flow rate does not match programmed rate Flow sensor
1.16 Improper flow Inaccurate flow rate; Infusion intermittent Flow sensor

Over-infusion and under-infusion are major hazards that may result in a patient’s injury

by injecting drugs more or less than expected. Over-infusion is caused in several different

scenarios. For example, patients are allowed to press a bolus-request button in order to ad-
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minister additional amounts of doses due to severe pain during infusion. However, referring

to the hazard ID-1.1. in Table 1, if a pump does not limit the maximum number of doses

that patients can receive by pressing a bolus-request button, it will result in delivering a

larger amount of drugs than patients are expected to receive. Under-infusion occurs as well

as a result of several different scenarios. For example, when a syringe becomes empty during

infusion, caregivers need to replace the empty syringe with a new one so that the infusion

therapy can continue. However, referring to the hazard ID-1.8. in Table 1, if a caregiver fails

to detect empty-syringe conditions, which leads to failure to replace the empty syringe with

a new one, a patient may receive a smaller amount of drugs than the patient is expecting

to receive during the infusion session.

The identified hazards in the GPCA hazard analysis are expected to be avoided or ade-

quately mitigated when patients are using the PCA infusion pump systems.

3.2.2. Safety Requirements for the Generic PCA Pump

The GPCA safety requirements include a list of requirements that should be guaranteed

in general PCA infusion pumps in order to avoid or mitigate the hazards identified in the

GPCA hazard analysis. Table 2 shows example GPCA safety requirements found in [6].

For example, the safety requirement 1.4.11. in Table 2 intends to mitigate the over-infusion

hazard 1.2 in Table 1 by setting a maximum permissible limit of bolus requests for a certain

time period. Therefore, a pump can raise an alarm when the number of bolus requests by a

patient exceeds this limit, which informs the patient or caregivers that the patient is taking

an excessive amount of drugs. As another example, the safety requirement 1.5.6. in Table 2

intends to mitigate the under-infusion hazard 1.8 in Table 1 by monitoring the remaining

volume of drugs; a pump should raise an alarm when the volume reaches a certain threshold,

denoted as a parameter y ml. Therefore, caregivers who recognize the alarm can intervene

in the infusion therapy by finishing the current infusion, removing an administration set

from a patient, or by continuing the infusion, replacing the empty syringe with a new one.
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Table 2: Example GPCA Safety Requirements
ID Safety Requirements
1.4.1. A bolus dose shall be given when requested by the patient (normal bolus) or programmed

to be administered over a period of time (square bolus).
1.2.2. If the pump is equipped with a flow rate sensor and the flow rate exceeds the pro-

grammed rate setting by more than n% over a period of more than t minutes, or if
the pump goes into free flow, the pump shall issue an alarm to indicate over-infusion
of the patient.

1.4.11. If a bolus request causes the bolus dose to exceed the maximum permissible limit (for
a given time period), the pump shall issue a dose limit exceeded alarm.

1.4.10. No normal bolus doses should be administered when the pump is alarming (in an error
state).

1.5.6. If the calculated volume of the reservoir is y ml, and an infusion is in progress, an
Empty Reservoir alarm shall be issued.

2.2.4. If the pump is idle for t minutes while programming a dose setting, the pump shall
issue an alert to indicate that the user needs to finish programming and start infusion.

As shown in these example safety requirements, all requirements are specified in natural

language and may contain symbolic parameters, e.g., y in the requirement 1.5.6., to meet

the needs of a wide range of PCA pump classes.

3.2.3. Generic PCA Pump Model

The GPCA model, provided by the FDA, abstracts software behavior that is commonly

found in typical PCA pump software. The model is built using Mathworks Simulink and

Stateflow. Figure 5 illustrates a high-level block diagram of the GPCA model. The Alarm

Detecting Component and State Controller are two major state machines that consist of

the GPCA model.

The Alarm Detecting Component serves as an interface to receive alarm signals, e.g., empty

reservoir, occlusion, and abnormal flow rate, from hardware sensors. These alarm signals

are categorized into three levels based on their levels of severity - level 1 alarms (e.g., CPU

failure), level 2 alarms (e.g., empty reservoir) and warnings (e.g., infusion paused for too

long). It also notifies the State Controller of any alarm signals so that the State Controller

can react to the alarming conditions appropriately based on the level of severity.

On the other hand, the primary purpose of the State Controller is to regulate the rest
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Figure 5: System Architecture of the FDA’s GPCA Pump Model

of the pump to fulfill its expected functionality, i.e., administering the right drug to the

right patient at a right rate and dosage. The State Controller receives infusion requests

from the user through a user interface and instructs the pump motor to deliver medication

accordingly. It also provides additional functions to ensure the correct operation of the

pump, including checking patient information, checking the correctness of infusion param-

eters, guiding the user on how to use the device, notifying the user of unsafe conditions via

alarms, and so on.

This thesis uses the State Controller as a functional abstraction of the platform independent

model, and shows how this model is extended to incorporate platform-independent and

platform-dependent timing aspects toward building final implemented systems.
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CHAPTER 4 : Platform-Independent Development Phase

4.1. The Problem Statements and Challenges

The FDA’s GPCA model written in the Stateflow semantics is claimed to be the general

system behavior found in a range of PCA infusion pumps. The main problem of the PI-

Phase is to systematically develop a platform-independent code from the GPCA model that

meets the GPCA safety requirements with formal assurance. Here are several challenges in

developing such a platform-independent code.

Challenge 1: The GPCA model is expressed using the informal semantics pro-

vided by Stateflow, which makes it difficult to directly apply formal verification

techniques. Even though the GPCA model abstracts the system behavior that is com-

monly found in PCA infusion pumps using the Stateflow semantics, its conformance to the

safety requirements has not been formally verified. Here, the formal verification means that

a model is checked against a formal query translated from a requirement by systematically

exploring all possible cases occurring in the whole state space of the model; in other words, if

the formal verification result proves the conformance, there is no such case that violates the

requirement in any behavior introduced from the model; otherwise, the model may contain

behavior that can lead to a requirement violation. 1 In spite of the fact that Stateflow has

become popular in designing system behaviors in many industrial domains, it has several

semantical issues that originate from its absence of formal semantics as indicated in several

literatures [45] [26]. This becomes a big obstacle for formal verification of the system design

modeled in Stateflow.

Challenge 2: Not all the safety requirements are written in a way that formal

verification can be performed in the context of the GPCA model. Ideally, all the

safety requirements are to be formally verified so that the subsequent development phases
1We note that this kind of formal verification technique is distinguished from testing or simulation-based

techniques that are typically used to check a subset of the whole system space by providing a finite sequence
of input and comparing the observed output with its expected output.
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can inherit the verified property from the model. However, it is challenging to formally

verify every requirement in the GPCA model for several reasons. We observed that the

level of abstraction adopted in some safety requirements is different from that of the GPCA

model. For example, some requirements include detailed functionality of PCA infusion

pumps, whereas the GPCA model does not explicitly model such details; some requirements

explain functionality belonging to the environment (e.g., the user interface) with which the

system expressed in the GPCA model should interact (i.e., those functionalities are out

of the scope of the GPCA model). We also observed that some requirements are vaguely

written from the perspective of formal verification. These aspects that we observed impede

the formal verification of all the safety requirements at the PI-Phase.

Challenge 3: Designing a well-defined interface of the platform-independent

code is difficult since it is not directly matched to the timing semantics of the

platform-independent model. The platform-independent code constitutes only a part of

a final implemented system in our model-based implementation; in addition, the platform-

independent code should be integrated with many different platforms in the later stage.

Therefore, the platform-independent code should be generated along with a well-defined

interface that allows it to be integrated with a range of platforms. Designing such a code-

level interface needs correct translation of the timing semantics of the platform-independent

model, but such a translation is complex. For example, an input transition semantics of

a model requires multiple actions to be performed at the code-level: reading sensor input,

making a transition decision by comparing the current clock value to the guard condition

associated with the transition, and choosing the next transition from a transition table. In

addition, this series of actions may be tightly coupled with the platform-dependent timing

aspects (e.g., implementation of clock semantics is different across different platforms).

Therefore, designing such an interface requires consideration in terms of what aspects should

be decoupled as platform-independent and platform-dependent timing aspects, and how

those decoupled aspects should interact with each other. Nonetheless, state-of-the-art code

generators do not utilize this concept well enough: existing code generators produce a code
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that is specific to a particular platform, which makes it difficult to be integrated with

other platforms (i.e., the generated code is tightly coupled with a particular platform-

dependent code), or they do not provide a standard way about how the generated code

should be integrated with a range of platform-dependent codes. These aspects of existing

code generators requires the addition of a glue code in an ad-hoc fashion, which makes the

final implemented system difficult to reason about how timing semantics at the boundary

between the platform-independent and platform-dependent code are implemented.

We give the overview of our approach to tackle these challenges in the next section.

4.2. The Approach Overview of the PI-Phase

The approach for challenge 1: In order to tackle the informal semantics issue of the

GPCA model written in Stateflow, we translate the GPCA model into another model that

has formal semantics. UPPAAL is a modeling language whose semantics are the extension

of timed automata semantics [12]. UPPAAL has a formal semantics, thus system behaviors

modeled using UPPAAL result in no ambiguous interpretation. We transform the GPCA

model into the UPPAAL model by defining a set of rules. The transformation rules capture

the structure of the GPCA model in the UPPAAL model through mapping semantics of

locations, transitions, input and output. The resulting UPPAAL model formally expresses

the platform-independent system behavior that is similar to that of the GPCA model. 2

The UPPAAL model is used for the formal verification with the safety requirements, and

for the platform-independent code generation.

The approach for challenge 2: Due to the abstraction gaps between the safety require-

ments and the GPCA model, it is necessary to figure out what requirements are formally

verifiable at the level of abstraction of the UPPAAL model that has been translated from

the GPCA model. For this purpose, the safety requirements are categorized into four cate-
2We note that the UPPAAL model is not a precise replication of the GPCA model in a strict sense due to

the semantics differences originating from the two languages, but our mapping rules enable the functionalities
intended from the GPCA model to be translated into the UPPAAL model.
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gories: (1) safety requirements that can be formalized and verified in the UPPAAL model,

(2) safety requirements that can be formalized, with the UPPAAL model requiring addi-

tional information to verify them, (3) safety requirements that cannot be formalized, but

can be validated at the implementation level; (4) safety requirements that cannot be formal-

ized because they address issues related to the environment of the GPCA model or vague

in description. We translate the requirements belonging to the category 1 into UPPAAL

queries, and these queries are fed into the model checker along with the UPPAAL model for

the formal verification purpose. The verification result produces a binary output (i.e., pass

or fail). Informally speaking, the verification announces pass only if it cannot find a trace

that violates the query by exploring all possible traces generated from the UPPAAL model;

otherwise, it announces fail producing counter-examples that are traces generated from the

UPPAAL model, which lead to the requirement violation. In case a system design defect

exists in the UPPAAL model (that presumably comes from the original GPCA model),

counter-examples can be used as useful information to fix the defect before starting imple-

mentation. The code generation process proceeds only if the formal verification announces

pass for all safety requirements belonged to category 1.

The approach for challenge 3: In order to exploit the separation of concern at the code

generation level, we first formally define the system boundary of the final implemented sys-

tem using Parna’s four-variable model [43] by precisely specifying the scope of the platform-

independent code and the platform-dependent code, respectively. We compare how existing

code generators (RealTimeWorkshop [40] and TIMES [14]) generate source code that is

mapped to the scope of the platform-independent part; then, we extract common platform-

dependent supports that need to be integrated for the execution of the platform-independent

code on a target platform. Using these platform-dependent supports, we define primitives

that are expected to be generated during the code generation process. The proposed code

generation strategy generates the platform-independent code using primitive signatures only

in the PI-Phase (i.e., its internal implementation has not been completed yet); on the other

hand, the internal implementation of such primitives are completed in the later platform-
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dependent code generation process conducted in the PD-Phase. Such primitive-based code

generation exploits clear separation of the scope of the platform-independent and platform-

dependent code, and enables systematic integration of those codes in the later stage.

Figure 6 illustrates the overview of the PI-Phase, and a detailed explanation of our approach

is given in the following sections.

GPCA Safety Requirements 
GPCA Specification 

(Simulink/Stateflow) 

Manual translation  Manual translation  

UPPAAL Queries UPPAAL Model 

Formal Verification 

Verification Result  
(Pass/Fail) 

Code-Generation 

Platform-Independent Code 
(C code) Pass 

Figure 6: The platform-independent phase of the safety-assured model-based implementa-
tion

4.3. Platform-Independent Modeling Process

The platform-independent modeling process aims at developing a formal model of the PCA

pump system using formal modeling languages. One criteria of such a formal model is

to have a level of timing abstraction that is independent from any particular PCA pump

platform. For the purpose of constructing such a formal model, we utilize the FDA’s GPCA

model as a specification, which is claimed to be a typical real-world PCA pump functionality

that is common to the broad class of PCA pumps.

In particular, the State Controller that we utilized to demonstrate our model-based imple-
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mentation framework consists of four parts as illustrated in Figure 5: (1) Power-On-Self-

Test (POST ), (2) Check Drug Routine, (3) Infusion Configuration Routine, (4) Infusion

Session Submachine. The behavior of the State Controller is represented as Stateflow state-

transition charts, which in total consists of more than 50 states and 100 transitions. The

control flows of these charts depend on about 50 user events and hardware conditions. We

explain how such behavior is formally modeled and verified, and further generated into

source code.

Criteria for choosing a modeling language: We choose a modeling language that can

be used for formally modeling the GPCA model with consideration from the perspective

of both a design stage and its implementation stage. Here is our criteria in choosing a

modeling language for the platform-independent modeling process:

• Appropriate expressiveness to capture the specification: The FDA’s GPCA model, that

is used as our specification, is described as a state-transition system where behavioral

aspects of systems are represented as a finite set of states; transitions are accompanied

with input that triggers a transition and output that is expected to be produced upon

taking a transition. A modeling language used in our framework should have a similar

expressiveness in describing such behavioral aspects that are used in the platform-

independent specification in order to minimize gaps in translating a specification into

a formal model.

• Formally defined semantics: The FDA’s GPCA model relies on a Simulink/Stateflow

modeling language; however, it has a lack of formal semantics, which may lead to

inconsistent model behavior from what the model was originally intended for. For

example, as indicated in the literature [45], Stateflow has several semantical issues in

processing a run-to-completion semantics of event broadcast leading to stack overflow;

junction backtracking without restoring the previous values of the variables, and so

on. We believe that choosing a modeling language that has precise formal seman-

tics is crucial in reasoning the correctness, not only of a specification, but also its
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implementation.

• Formal verification capability: The conformance of a developed model with respect to

the timing requirements should be verified before starting its implementation. Such

verification can be categorized into a simulation-based verification or a formal verifica-

tion [35]. In simulation-based verification, one generates input vectors from a timing

requirement, and feeds them into the model, and compares its output timing with its

expected output timing in order to judge the conformance of the requirement. On the

other hand, the formal verification expresses the desired output behavior in a form of

queries, and then lets a formal checker prove or disprove the queries. In writing such

a query, it is not necessary to consider how many input vectors should be fed since

a formal checker will automatically explore all possible cases in order to verify the

query. In our framework, a modeling language that is accompanied with such formal

verification capability is required in order to make sure the timing requirements are

verified in a model by exploring all possible cases.

• Code generation capability: We envision that a developed model is automatically

transformed into source code in order to preserve the properties that have been verified

in the verification process. A code generator takes a model as an input, and produces

source code (e.g., C code) as an output. In our framework, a modeling language that

is supported by such code generation capability is required in order to obtain source

code automatically instead of obtaining it through error-prone manual coding process.

UPPAAL [16] is an integrated tool environment for modeling, validation and verification

of real-time systems. Its modeling language is based on timed automata [12] extended

with data types such as bounded integers and arrays. UPPAAL supports a model checking

capability with which one can write properties using UPPAAL query language, and verify

whether a model satisfies those properties. If a model satisfies a property, the model checker

announces "pass", otherwise "fail" by showing counter examples that show why the property

is not satisfied in the model.
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We use UPPAAL to model the GPCA specification, and to verify the timing requirements

since it meets the above criteria. However, we note that UPPAAL is not the only modeling

language that can be used in our model-based implementation framework; other modeling

languages that meet the above criteria are also equally good.

Transformation of the FDA’s GPCA Specification into the UPPAAL model:

We transform the State Controller part of the GPCA model expressed in Simulink and

Stateflow into a network of UPPAAL automata through a manual translation process. The

State Controller is organized as four sequentially connected state machines. Each of these

four state machines separately abstracts a series of system behavior that interacts with its

environment from the moment when a PCA pump is turned on, until the moment when an

infusion administration finishes. Each of these four state machines has a final state that

is associated with an event that results in a transition to an initial state of another state

machine.

To retain as much of the syntactic structure of the Stateflow model as possible, the transfor-

mation maintains one-to-one mapping between states, conditions, actions, and transitions

in the two models. It is noted that our transformation process is not intended to have a

precise replication of the Simulink/Stateflow model by overcoming all the semantics dif-

ferences between the two models. Instead, we reconstructed the general functions of the

Simulink/Stateflow model in the UPPAAL model, which can be formally verified against

the GPCA safety requirements. While it is possible to combine the four state machines into

a single UPPAAL automaton, we chose to model them separately, preserving the model

structure. As a result of the transformation, most states and transitions in the UPPAAL

model corresponds to those of the State Controller of the GPCA model.

During the transformation, we also had to introduce quantitative timing information into the

UPPAAL model. The State Controller of the GPCAmodel contains timeout transitions, but

constraints triggering timeout transitions are not specified. We introduced a clock shared

by all UPPAAL automata to capture the progress in time. Then, we added invariants to
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the automata locations and extended transition guards to enforce timeout constraints. The

timeout constraints were derived from the GPCA safety requirements and instantiated with

specific values when used in UPPAAL models.

As illustrated in Figure 7, the transformed UPPAAL model consists of four automata that

correspond to the four parts of the State Controller of the GPCA model. The details of each

automata is explained in Appendix A.1, and we here briefly explain each with its relevant

GPCA safety requirements that should be guaranteed for the safety operation of a PCA

pump.
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Figure 7: The mapping between the GPCA model and the UPPAAL model

The POST Session. The Power-On-Self-Test (POST ), triggered by turning the power

on, includes self-tests of processors and memory, critical circuitry, indicators, displays and

alarms to ensure that a device is ready for use. The GPCA model abstracts relevant testing

procedures into a state, called POST, which is mapped to the POST-In-Progress state in

the UPPAAL model as shown in Figure 43 of Appendix A.1. An alarm state is entered if

the POST check fails or stalls for a certain period of time. The GPCA safety requirements

related to the POST session are:
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◦ No bolus dose shall be possible during the POST.

◦ The POST shall take no longer than t seconds.

We note that the second requirement cannot be checked at the model level, since the details

of actual POST operations and times they take are abstracted away. Instead, we interpreted

the requirement to mean that if POST does not complete within t seconds, the pump enters

into an alarm state. This interpretation is consistent with the GPCA model, which includes

an alarm state in the POST session that is entered by a timeout transition.

The Check Drug Routine. The Check Drug Routine checks drug type and concentration

to make sure that the right drug is loaded. The result of each check is decided by the

user, and can take one of the two possible outcomes: a successful outcome will move the

automaton to a state where the next check can be performed, while an unsuccessful one

raises an alarm to be displayed by the user interface. The corresponding UPPAAL automata

is shown in Figure 44 of Appendix A.1.

The Infusion Configuration Routine. The Infusion Configuration Routine describes a

workflow that a caregiver goes through to setup an infusion administration program (i.e.,

prescription). Dose rate and volume-to-be-infused (VTBI) are typical infusion parameters

that should be entered before starting any infusion session. To reduce potential dose errors,

this submachine also checks the entered infusion parameters against a pre-loaded drug

library. If the entered parameter values exceed the soft or hard limits specified in a drug

library, the submachine would prompt the user to either reconfigure them or abort the

infusion by raising alarms. Figure 45 of Appendix shows the UPPAAL model of the Infusion

Configuration Routine. Relevant GPCA safety requirements are:

◦ The pump shall include a programmable drug library configurable according to patient

type (adult, pediatric, etc.) and care area (home care, ambulatory, clinic, etc.).

◦ If the programmed infusion parameters exceed the upper or lower hard/soft limits, the
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pump shall issue an alarm and prompt the user to revise the parameters.

◦ If the pump is idle for t minutes while programming an infusion prescription, the

pump shall issue an alert to indicate that the user needs to finish programming and

start infusion.

We note that the GPCA model does not specify a timeout on the states that require user

inputs such as ChangeDoseRate or ChangeVTBI. This is one of the places that we added

timeout values and extended transition guards to capture the timing requirements.

The Infusion Session Submachine. The Infusion Session Submachine abstracts how

a system coordinates the rest of the pump to complete the infusion process. The user

may change the pump administration process, such as canceling or suspending the infusion,

requesting boluses, adjusting infusion parameters and so on. In addition, upon receiving

alarm signals from the Alarm Detecting Component during infusion, a pump should handle

those alarm signals appropriately by raising an alarm or pausing the current infusion.

Figure 46 of Appendix A.1 is the UPPAAL model of the Infusion Session Submachine. The

Infusion Session Submachine is entered after acceptable infusion parameters have been set.

The pump performs the infusion in the Infusion-NormalOperation state in which it reacts to

multiple user requests or failure conditions. In particular (1) a patient can request a bolus

during the ongoing infusion as reflected by the E-RequestBolus event; (2) the caregiver can

pause a current infusion by pressing a pause button that triggers the event E-PauseInfusion;

(3) an empty-reservoir condition (condition Cond-6-3 ) occurs if the remaining volume of

the drug reservoir is less than a pre-specified threshold; and (4) the condition Level-Two-

Alarm should be processed if a hardware failure such as the drug reservoir door is open or

an occlusion is detected. Transitions caused by failure conditions must take precedence over

those caused by user events. To model this rule, we gave higher priority to the transitions

triggered by failure conditions such as Cond-6-3 or Level-Two-Alarm over the transitions

triggered by user events such as E-RequestBolus or E-PauseInfusion.
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Relevant GPCA safety requirements are:

◦ The pump shall issue an alert if paused for more than t minutes.

◦ If the calculated volume of the reservoir is y ml, and an infusion is in progress, an

Empty-Reservoir alarm shall be issued.

Note that the second requirement affects both the Infusion Session Submachine and the

Alarm Detecting Component, which performs volume calculations and sets the low-volume

condition (Cond-6-3 ). Since the latter component is not modeled in our case study, the

requirement is restated as: if condition Cond-6-3 is set and an infusion is in progress, an

Empty Reservoir alarm shall be issued.

The Environment Model. The above UPPAAL model, translated from the State Con-

troller part of the GPCA model, abstracts the platform-independent system behavior. In

order to perform formal verification, an environmental behavior needs to be specified in the

form of a model, which interacts with the platform-independent model. Therefore, one can

check whether the system behavior specified in the platform-independent model meets the

safety requirements when its environment behaves according to the environment model.

For example, the transition from the location Infusion-NormalOperation to the location

BolusRequest in Figure 46 is taken when an input called E-BolusRequest is received from the

environment. Next, an environmental behavior needs to be defined to determine how such

an input is generated in order to verify, for example, that the E-BolusRequest input leads

to a transition from the location Infusion-NormalOperation to the location BolusRequest.

Unfortunately, it is challenging to precisely define such environmental behavior in the be-

ginning of the development process. Therefore, we take a conservative approach in creating

such an environment model; that is, it is assumed that the environment is able to provide the

platform-independent model with inputs at any point of time. If the platform-independent

model has different behavior on a particular state, depending on inputs received from the
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environment, the environment generates those inputs in a non-deterministic manner.

According to the scope of the GPCAmodel illustrated in Figure 5, the User Interface and the

System Model are considered as an environment with which the GPCA model is expected to

interact. The User Interface is an environment that displays various messages, and allows

users to program the pump. On the other hand, the System Model is an environment

that abstracts signals that hardware components might provide to the pump software, such

as alarming signals. Each environment is modeled as a separate UPPAAL automaton as

illustrated in Figure 8, and the environment model is composed with the UPPAAL model

that is translated from the State Controller part of the GPCAmodel. The formal verification

is performed in the context of such environmental behavior at the platform-independent

development phase.

(a) The Environment Model for User Interface (b) The Environment Model for the System Model 

Figure 8: The Environment Model

4.4. Platform-Independent Verification Process

The platform-independent verification process aims at verifying the conformance of a formal

model of PCA pump systems with respect to the safety requirements. Ideally, we expect

all the GPCA safety requirements to be verified using the UPPAAL model, so that the

rest of the development processes can inherit sufficient safety assurance from the beginning.

However, we were only able to formally verify some of the GPCA safety requirements using

the UPPAAL model for the following reasons.
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Firstly, the GPCA model is not detailed enough to verify some of the safety requirements.

This is because the GPCA model relies on a different level of abstraction from that of the

safety requirements. For example, the GPCA model does not describe detailed functions

related to the calculation of the reservoir time remaining, which is mentioned in the following

requirement: the reservoir time remaining shall be re-calculated at the beginning of every

bolus dose. Such functions are considered platform-dependent since different platforms may

have different ways of calculating the reservoir time remaining using platform-dependent

parameters such as availability of sensors to detect a certain threshold of remaining volume.

As another example, the following requirement couldn’t be verified for a similar reason since

the GPCA model does not detail the behavior of the pump stroke: if the suspend occurs due

to a fault condition, the pump shall be stopped immediately without completing the current

pump stroke.

Secondly, some requirements could not be formalized regardless of the abstraction level of

the GPCA model. Even if these requirements were formalized in any form, the meaning of

the formal property would be difficult to verify in the context of the safety requirements. For

example, the following requirement -the flow rate for the bolus dose shall be programmable

- requires a system to have the functionality to maintain flow-rate information in memory

so that it can be modified on demand. Since this requirement describes implementation-

specific functionality, developers need to assure this requirement at the implementation level

through validation instead of formal verification.

Thirdly, some safety requirements are too vague from the formal verification perspective,

so they can neither be formalized for verification nor be validated at the implementation

level. For example, the following requirement -flow discontinuity at low flows (f ml/hr or

less) should be minimal -, or the requirement - a clear indication should be displayed any

time the drug library is not in use - contains unclear definitions of minimal and a clear

indication, respectively. These requirements need to be clarified and improved before they

can be formally verified at the model level or validated at the implementation level.
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Table 3: Categorization of GPCA Safety Requirements
Category 2

SR 1.5.4. Reservoir amount remaining shall be re-calculated at the beginning of every
bolus dose.

SR 1.6.2. If the suspend occurs due to a fault condition, the pump shall be stopped
immediately without completing the current pump stroke.

Category 3
SR 1.4.2. The flow rate for the bolus dose shall be programmable.
SR 1.11.3. Each log entry shall be stamped with a corresponding date/time value.

Category 4
SR 1.1.3. Flow discontinuity at low flows (f ml/hr or less) should be minimal.
SR 5.1.7. A clear indication should be displayed any time the drug library is not in use.

Based on this observation, we divided these safety requirements into four categories:

◦ Category 1 : Safety requirements that can be formalized and verified in the UPPAAL

model.

◦ Category 2 : Safety requirements that can be formalized, but the GPCA Simulink/S-

tateflow model needs additional information to verify them.

◦ Category 3 : Safety requirements that cannot be formalized, but can be validated at

the implementation level.

◦ Category 4 : Safety requirements that cannot be formalized because they address

issues related to the ambient environment of the pump or they are vague in description.

Out of 97 safety requirements, we identified 20 requirements as Category 1; 23 as Category

2; 31 as Category 3; and 23 as Category 4. Table 3 shows example safety requirements

belonging to Categories 2, 3, and 4; we introduce how the safety requirements belonging to

Category 1 are verified using the UPPAAL model.

Formal Verification of Safety Requirements in Category 1: The GPCA safety

requirements belonging to Category 1 are manually translated into a temporal logic formula

expressed in the UPPAAL query language. The UPPAAL query language consists of state

formula and path formula [15]. State formula describes an expression that can be evaluated
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for a state without looking at the behavior of the model; on the other hand, the path formula

quantifies over paths or traces of the model, which can be classified into reachability, safety

and liveness. Even though there is no systematic way to translate informal requirements

into formal queries, our translation process roughly follows the strategy: (1) expressing

the state formula using relevant UPPAAL locations and variable conditions, (2) extending

the state formula with the path formula so that the context of the safety requirement is

appropriately represented in the form of reachability or safety or liveness properties.

For example, consider the safety requirement, No bolus dose shall be possible during the

POST. This requirement can be captured by the following UPPAAL query:

A[ ] (! (POST.POST-In-Progress && ISSM.BolusRequest)) ,

where the word No is mapped to the logic operator !(not), POST.POST-In-Progress is

used to indicate a location that abstracts that the POST checking is being performed, and

ISSM.BolusRequest is used to indicate the location that abstracts that a bolus infusion is

in progress. This forms a state formula that is mapped to the safety requirement. Then,

the state formula is further extended with the path formula A[ ] (invariantly) to express a

safety property that enforces the above state formula to be satisfied by the model in all its

executions.

Consider another requirement, the pump shall issue an alert if paused for more than t min-

utes. In order to write a state formula for this requirement, three locations are identified

from the UPPAAL model: ISSM.InfusionPaused is a location that abstracts a pump is in a

paused state after a user presses a confirm-pause button in order to pause the current infu-

sion for a while. ISSM.PausedStopConfirm is another location that can be reached from the

ISSM.InfusionPaused location by pressing a stop-infusion button; ISSM.PausedStopConfirm

location abstracts that a pump is in a paused state waiting for a user to press a confirm-

stop button in order to completely stop the current infusion. If a pump is in either

ISSM.InfusionPaused or ISSM.PausedStopConfirm location, the pump is expected to be in a
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state where the current infusion is paused. On the other hand, ISSM.Alrm-TooLongInfusion-

Pause is a location that abstracts that a pump is raising an alarm due to the fact that the

pump is paused for more than a certain time-limit that is defined as t minutes in the safety

requirement.

One can write a state formula, ISSM.InfusionPaused && x1 > MAX-PAUSED-T, where x1

is a clock variable reset to 0 when it enters the ISSM.InfusionPaused location, to indicate a

condition that the pump stays in the location ISSM.InfusionPaused for more than t minutes.

Here, t is instantiated as a constant variable MAX-PAUSED-T ; and this state formula is

extended with the path formula → (lead to) to express that if the former state formula

holds, the later state formula, ISSM.Alrm-TooLongInfusionPause, will eventually satisfy.

The corresponding UPPAAL query is:

(ISSM.InfusionPaused && x1 > MAX-PAUSED-T ) → ISSM.Alrm-TooLongInfusionPause

Similarly, ISSM.PausedStopConfirm should be extended with the path formula as follows:

(ISSM.PausedStopConfirm && x1 > MAX-PAUSED-T ) →

ISSM.Alrm-TooLongInfusionPause

Several more examples of requirement formalization are shown in Table 4. The current

GPCA safety requirements contain 97 requirements. We translated 20 requirements into

UPPAAL queries, and verified them in the UPPAAL model. More details of the platform-

independent verification can be found in [33].

In order to give intuition as to how such formal verification can be used to detect defects of

software designs, we give an example of the verification result and analysis here. In fact, the

last query turns out to be not satisfied in the UPPAAL model that is translated from the

GPCA model. Provided with a counter example produced as a result of the verification,

the value of the clock variable x1 can diverge forever in the ISSM.PausedStopConfirm

location; and the root cause is that the original GPCA model did not have a transition
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Table 4: Mapping between Safety Requirements and UPPAAL queries
Category Safety Requirement(SR) / Safety Property(SP)

SR 1.4.3 No normal bolus doses should be administered when the pump is alarming (in an
error state).

Query A[](! (ISSM.BolusRequest && CDR.Alrm-UnknownDrug))
SR 3.4.3 The POST shall take no longer than t seconds.
Query (POST.Post-In-Progress && x1 > MAX-POST-WAIT) → POST.Alrm-

POSTFailure
SR 1.5.6 If the calculated volume of the reservoir is y ml, and an infusion is in progress, an

Empty Reservoir alarm shall be issued.
Query (ISSM.Infusion-NormalOperation && Cond-6-3 == true ) → (ISSM.Alrm-

EmptyReservior)
SR 2.2.4 If the pump is idle for t minutes while programming a dose setting, the pump

shall issue an alert to indicate that the user needs to finish programming and start
infusion.

Query (ICR.ChangeDoseRate && x1 > MAX-WAIT-INPUT-T) → (ICR.Alrm-
LongWait-ChangeDoseRate)

from ISSM.PausedStopConfirm to ISSM.Alrm-TooLongInfusionPause that should be taken

upon time-out; consequently, the UPPAAL model, translated from the GPCA model, does

not have the corresponding transition either. We fixed this design defect (i.e., adding a

missing transition to the UPPAAL model)3, and moved to the next development process

after verifying all safety requirements belonging in Category 1. One may manually find such

a type of design defect in an ad-hoc manner, but we believe that identifying such defects

in an automatic fashion using formal verification will result in a higher safety assurance of

systems.

4.5. Platform-Independent Code Generation Process

The platform-independent code generation process aims at automatically generating source

code from a verified system model, which is expected to operate on a range of target

platforms. Such a systematic transformation process, typically implemented as a part of

a code generator, reduces error-prone aspects of a manual implementation conducted in

an ad-hoc fashion. A code generator is able to generate source code (e.g., C code) that

implements transition tables, boolean (or integer) variables to represent input and output
3We also reported this verification result to the FDA, and expect it to be reflected in the next version of

the GPCA model.
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occurrences and execution logic (switch-case of if-then-else statements), which maps to the

model structure. In this section, we formally define the scope of the platform-independent

code in the final implemented system (Subsection 4.5.1), and explore how existing code

generators generate source code for such a structural correspondence between a model

and source code (Subsection 4.5.2), and propose additional support required for its better

integration with different platform-dependent code (Subsection 4.5.3).

4.5.1. System boundaries of the final implemented system

The platform-independent code generated from the model will be executed as a part of the

final implemented system. We formally define a system boundary of the final implemented

system in order to precisely specify the scope of the platform-independent code.

Figure 9-(a) illustrates the platform-independent model that interacts with its environ-

ment model. Such model-level interactions are expressed using input and output seman-

tics provided by modeling languages; for example, UPPAAL provides channel synchroniza-

tions or condition variables that can abstract input and output interactions among differ-

ent UPPAAL automata. Once verifying the timing requirements at the model level, the

platform-independent code generation process, illustrated in Figure 9-(c), transforms the

platform-independent model into source code. As illustrated in Figure 9-(b), the platform-

independent code constitutes only a part of the final implemented system, and it is expected

to be integrated with a particular platform-dependent code that is not yet known at the

moment when the platform-independent code is produced.

We argue that the relationship between (1) how the platform-independent model interacts

with its environment model and (2) how its generated code interacts with its real environ-

ment should be precisely defined in order to reason about the timed behavior of the final

implemented system w.r.t. its model behavior. However, due to the fact that the platform-

independent code forms only a part of the final implemented system, there is a mismatch in

mapping the system boundary. That is, the input and output interaction occurring at the
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model level can be matched to the interaction between the platform-independent code and

the platform-dependent code; or it can be matched to the interaction between the hardware

platforms and the real environment. We believe that a uniform interpretation is necessary

for precise reasoning about the relationship between the platform-independent model and

the implemented system that executes the generated code from it.

Environment 
Model 

Output 
Device 

Input 
Device 

Hardware Platform 

Real 
Environment 

(a) Model-Level (b) Implementation-Level 

c m 

o i 

Platform-Independent 
Model 

Platform-Independent 
Code 

output input 

(c) Platform-Independent 
Code Generation 

IO-Boundary  

MC-Boundary 

Figure 9: The mapping between the model and the implementation using Parnas’ four
variables

We propose a mapping of the system boundary between the platform-independent model

and its implemented system using Parnas’ four-variable model. The Four-variable model

originally proposed by Parnas is a well-known technique in requirement engineering and has

been used to precisely describe safety-critical system requirements [43]. In this formalism,

the separation among three subsystems - Software, Input Device, and Output Device - is

explicitly defined using four variables, namely, monitored (m), controlled (c), input (i) and

output (o). In our context, the Software refers to the platform-independent code that

is generated from the model; the Input-Device and Output-Device refer to the platform-

dependent code that needs to be integrated for the execution of the platform-independent

code on a particular platform. We give a brief description of the role of each variable:

Monitored and Controlled variables: monitored variables (m) and controlled variables

(c) are used to express physical environmental changes that can be observed and enforced
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by the hardware platform. A monitored variable (m) characterizes physical environmental

changes and a hardware platform typically uses sensors to observe the status of m variable.

For example, m-BolusReq is a monitored Boolean variable that captures the events, pressed

or released, associated with the bolus request button (e.g., [m-BolusReq==True] implies

that the bolus request button is in a pressed state). A controlled variable (c) characterizes

physical environmental changes, and a hardware platform uses actuators to enforce changes

in physical dynamics. For example, the c-PumpMotor variable may have a range of integer

values in order to specify the speed associated with the pump-motor (e.g., [c-PumpMotor

== 10] implies the pump-motor rotates at a speed level of 10). From now on, we use

m-event and c-event to refer to any changes in m-variable and c-variable, respectively.

Input and Output variables: input variables (i) and output variables (o) are used to

express the input and output of the platform-independent code. An input variable (i) char-

acterizes events that are read by the platform-independent code. For example, the platform-

independent code may have i-variables, i-BolusReq. Input-Device (a part of the platform-

dependent code) is responsible for converting the events in m-variable that is changed by

the real environment into the events in i-variable that is read by the platform-independent

code. Sensors and their accompanied device drivers are the example of Input-Device. An

output variable (o) characterizes events that are written by the platform-independent code.

For example, the platform-independent code may have o-variables, o-PumpMotor. Output-

Device (a part of the platform-dependent code) is responsible for converting the events in

o-variable into the events in c-variable. Actuators and their accompanied device drivers are

examples of Output-Device. We use i-event and o-event to refer to any changes in i-variable

and o-variable, respectively.

Two aspects need to be considered in reasoning about the relationship between the platform-

independent model and an implemented system:

1. How the timing of the input/output synchronizations in the model-level is mapped to

the implementation-level?
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2. How the instantaneous synchronization semantics in the model-level is mapped to the

implementation-level?

Here is our mapping considered in this dissertation: the timing of the input or output

synchronization occurrence in the platform-independent model is mapped to the timing of

the corresponding input and output event occurrences at the mc-boundary. That is, an

implemented system (i.e., composition of the platform-independent code and a platform)

should guarantee the same timing constraints at the mc-boundary in order to conform to

the timing constraints verified at the model level.

The processing delays of the synchronization semantics at the model level is considered in-

stantaneous, and this instantaneous timing semantics is mapped to non-zero processing de-

lays incurred from a platform. That is, a platform will add certain amounts of input/output

processing delays; an input event occurred from the mc-boundary requires input processing

delay until it gets delivered to the platform-independent code, and an output produced by

the platform-independent code at the io-boundary requires output processing delay until

it gets written to the environment. In Chapter 5, we explain what aspects contribute to

these platform-processing delays, and in Chapter 6 and 7, we explain how to reason about

the impact of such platform-processing delays to the timed behavior of the implemented

system. In this chapter, we focus on how existing code generators generate code from the

platform-independent model, and what kind of considerations is required to design a better

code generator for the platform-independent code, while deferring the discussion about the

platform-dependent timing aspects to the later chapters.

4.5.2. Code Generation Mechanisms of Existing Code Generators

RealTimeWorkshop is a code generator that produces C source code from Simulink/State-

flow models [40], and TIMES is a code generator that produces C source code from UPPAAL

models [14]. Even though our platform-independent model is created using UPPAAL, com-

paring source code generated from both code generators helps us to understand the common

57



issues that arise at the integration stage. Therefore, we give two example models, one writ-

ten in Simuilink/Stateflow and the other written in UPPAAL, and explore common aspects

that need to be considered for the integration with different platform-dependent codes.

Figure 10 and Figure 11 illustrate the two models that are constructed using Simulink/S-

tateflow and UPPAAL, respectively. The two models illustrate the software behavior of the

PCA infusion pump during an infusion session that is in progress, which is motivated from

the Infusion Session Submachine of the GPCA model. It is noted that even though the

two models looks syntactically similar, the semantics of their behavior are different from

each other. We give informal description of their model semantics here that is enough to

understand the generated code from each model.

sIdle 

sBolus 
Requested sInfusion 

sAlarm 

sBolusReq == true 

Before(10, EClk) 

sMotorState:=1 

At (40, EClk) 
sMotorState:=0 

sClearAlarm == true 
sBuzzerState:= 0 

sEmptyAlarm == true 
sMotorState:=0 
sBuzzerState:=1 

Figure 10: The example Stateflow model

For a clear explanation of the two models, the syntax of the Stateflow model is annotated

with a prefix ’s’ and the syntax of the UPPAAL model is annotated with a prefix ’u’.

Figure 10 is a Stateflow model that abstracts the timed behavior of a PCA infusion pump.

This Stateflow model is invoked at every EClk event that is periodically triggered from a

Simulink model that is not shown here; upon invocation, it executes the transition system

based on the Stateflow semantics. It has four locations and five variables to express input

and output; sIdle, which is an initial location, represents a pump that is waiting for a

bolus request from a patient; sBolusRequested is entered when a patient requests a bolus by
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pressing a bolus request button, which is expressed as a variable condition sBolusReq ==

true; a transition from sBolusRequested to sInfusion is taken before an EClk event occurs

10 times since sBolusRequested is entered; sInfusion illustrates that a pump is providing

a bolus infusion, and is entered by updating a variable sMotorState := 1 where 1 implies

that a pump motor is in a rotating status; a transition from sInfusion to sIdle is taken

when no empty-alarm occurs until EClk triggers 40 times; otherwise, a transition from

sInfusion to sEmptyAlarm is taken by updating sMotorState := 0 and sBuzzerState := 1;

the sEmptyAlarm location illustrates that a pump is alarming since a drug reservoir becomes

empty, and when a caregiver presses a clear-alarm button, which is implied in the update

sClearAlarm == true, it takes a transition to sIdle by updating a variable sBuzzerState :=

0.

uIdle

uBolus
Requested uInfusion

uAlarm

uBolusReq?

uMotorStart!

uMotorStop!

uClearAlarm?

uEmptyAlarm?

x1 := 0

x1 ≤ 10

x1 ≥ 0

x1 ≤ 40
x1 := 0

x1 == 40
uEnv

uBolusReq! uClearAlarm!

uEmptyAlarm!uMotorStop?
uMotorStart?

(a) System model (b) Environment model

Figure 11: The example UPPAAL model

Figure 11 is a UPPAAL model that abstracts the similar timed behavior with the Stateflow

model in Figure 10. In comparison to the condition variables used in the Stateflow model,

channel synchronizations are used in the left side UPPAAL automaton to express input

(e.g., uBolusReq?) and output (e.g., uMotorStart!) behavior with its environment on the

right side. In addition, a clock variable x1 is used to express a progress of continuous time;

this clock variable is used in clock reset statements (e.g., x1 := 0) or invariants (e.g., x1 ≤

10) or clock guard conditions (e.g., x1 == 40) in order to represent the timed behavior.
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We briefly explain the automatically generated code from the two example models. List-

ing 4.1 and Listing 4.2 are the code snippets that are automatically generated from the

Stateflow model in Figure 10 using RealTimeWorkshop. Three input variables used in the

Stateflow model are mapped to three boolean variables that are encapsulated in U, which

is a C-structure type. In addition, EClk is generated as a part of input variables whose

value changes results in the execution of the logic in Listing 4.2. The execution logic of the

transition system, so called step function, is generated to perform the following actions in

order; (1) checks the current location using a locID variable, (2) checks guard conditions

associated with its temporal counter (e.g., tCnt) or input variables (e.g., U.sEmptyAlarm),

(3) perform updates on temporal counters or output variables (e.g., Y.sMotorState), and

(4) updates a new location using a locID variable.
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Listing 4.1: (RTW) Mapping of input and

output variables
1 /* External inputs */

2 typedef struct {

3 boolean_T sBolusReq;

4 boolean_T sEmptyAlarm;

5 boolean_T sClearAlarm;

6 real_T EClk;

7 } U;

8

9 /* External outputs */

10 typedef struct {

11 boolean_T sMotorState;

12 boolean_T sBuzzerState;

13 } Y;

Listing 4.2: (RTW) Step function logic
1 function step (void)

2 tCnt := tCnt + 1;

3 if EClk is triggered and a chart is active

4 switch (locID)

5 case sBolusRequested:

6 if tCnt < 10

7 Y.sMotorState := True;

8 locID := sInfusion;

9 tCnt := 0;

10 endif

11 break;

12 case sEmptyAlarm:

13 if U.sClearAlarm

14 Y.sBuzzerState := False;

15 locID := sIdle;

16 endif

17 break;

18 case sIdle:

19 if U.sBolusReq

20 locID := sBolusRequested;

21 tCnt := 0;

22 endif

23 break;

24 case sInfusion:

25 if U.sEmptyAlarm

26 Y.sMotorState := False;

27 Y.sBuzzerState := True;

28 locID := sEmptyAlarm;

29 else

30 if tCnt == 40

31 Y.sMotorState := False;

32 locID := Idle;

33 endif

34 endif

35 break;

36 endswitch

37 endif

38 endfunction
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Listing 4.3 and Listing 4.4 and Listing 4.5 and Listing 4.6 are the code snippets that are

automatically generated from the UPPAAL model in Figure 11 using TIMES. The transition

table shown in Listing 4.3 encodes information in the trans-t, which is a C structure type,

as to (1) whether a transition is active or not, (2) a source location, (3) a destination

location, (4) an associated channel synchronization. Note that Figure 11 has a total of 10

transitions, so the corresponding trans-t contains the same number of items. The check-

trans function in Listing 4.4, which encodes the execution logic and whose purpose is similar

to the step function in Listing 4.2, evaluates transitions defined in the model using the

eval-guard function in Listing 4.5. Note that if a transition t in the UPPAAL model

contains channel synchronization such as uEmptyAlarm?, check-trans tests its complement

transition t’, which in this case would be defined in the environmental model. Also note

that evaluating the clock guard conditions (e.g., x1 == 40) or assigning a new value to the

clock variables (e.g., x1 := 0) are performed through calling API rdClock and setClock as

shown in Listing 4.5 and Listing 4.6, respectively.

Listing 4.3: (TIMES) pseudo-code of tran-

sition table
1 trans_t TRANS[NB_TRANS] = {

2 {true, uIdle, uBolusRequsted, uBolusReqS},

3 {false,uBolusRequsted,uInfusion,uMotorStartR},

4 {false, uInfusion, uEmptyAlarm, uEmptyAlarmS},

5 {false, uEmptyAlarm, uIdle, uClearAlarmS},

6 {false, uInfusion, uIdle, uMotorStopR},

7 {true, uEnv, uEnv, uBolusReqR},

8 {true, uEnv, uEnv, uMotorStopS},

9 {true, uEnv, uEnv, uEmptyAlarmR},

10 {true, uEnv, uEnv, uClearAlarmR},

11 {true, uEnv, uEnv, uMotorStartS}

12 };

Listing 4.4: (TIMES) pseudo-code of

check-trans
1 function check-trans

2 for each transition t ∈ trans-t array

3 if t is active and eval-guard(t) is true

4 if t contains a channel synchronization.

5 if there exists a t’s complement

transition, t’, and eval-guard (t’) is true

6 assign(t) and assign(t’)

7 endif

8 else if t has no channel synchronization

9 assign(t)

10 endif

11 endif

12 endfor

13 endfunction
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Listing 4.5: (TIMES) eval-guard function
1 bool eval_guard(int trn) {

2 switch(trn) {

3 case 1: return (rdClock(x1)>=0);

4 case 4: return (rdClock(x1)==40);

5 case 0:

6 case 2:

7 case 3:

8 case 5:

9 case 6:

10 case 7:

11 case 8:

12 case 9:

13 return true;

14 }

15 return false;

16 }

Listing 4.6: (TIMES) assign function
1 void assign(int trn) {

2 switch(trn) {

3 case 0:

4 setClock(x1,0); break;

5 case 1:

6 setClock(x1,0); break;

7 }

8 }

This amount of source code that constitutes the platform-independent code in Figure 9-(b)

correctly translates the model structure into that of source code. However, such platform-

independent code cannot be executed by itself without the appropriate platform-dependent

support. In Subsection 4.5.3, we summarize the necessary platform-dependent supports

that need to be considered during the platform-independent code generation toward its

integration with different platform-dependent code.

4.5.3. Separating concerns for the interface implementation of the platform-independent

and platform-dependent code

Based on the observation from the two existing code generators in Section 4.5.2, we cat-

egorize the necessary parts to be considered for the integration between the platform-

independent and dependent code. Next, we propose a way to generate code that implements

those parts as a set of primitives. The implementation of these primitives are separated

as a platform-independent part and a platform-dependent part as illustrated in Figure 12.

That is, signatures of such primitives are generated as a part of the platform-independent
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code, and the implementation of those primitives is generated as a platform-dependent code.

In this Subsection, we introduce signatures of such primitives that need to be generated

along with the platform-independent code. In Chapter 5, we introduce how such platform-

dependent details to implement such primitives can be represented in the form of the AADL

model, and automatically generated in a platform-dependent manner.
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Model 

Code Generation 

Platform-Independent Code  
(C code) 

I/O 
Implementation 

Clock  
Implementation 

Platform Library 

Pump Sensors/Actuators 

Clock Read/Set 
Primitive 

I/O Read/Write 
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PI-Phase PD-Phase Interface 

use 

use 

Platform-Dependent 
Clock Implementation 

Platform-Dependent 
I/O Implementation 

provide 

provide 

Abstracted clock 

Abstracted I/O 

Trigger 
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Platform-Dependent 
Trigger Implementation 

Trigger  
Implementation 

use provide 

Figure 12: The primitives for the interaction between the platform-independent and
platform-dependent code

(Category 1) Interfacing platform-independent I/O operations: The platform-

independent code shown in Subsection 4.5.2 includes a set of input and output variables

that are expected to be integrated with the platform-dependent code that processes the

input and output of its environment. For example, the boolean variables in Listing 4.1 are

mapped to input and output variables of the Stateflow model in Figure 10. The value of each

variable is examined by the execution logic (step function) in Listing 4.2 in order to make

a decision for relevant input or output transitions. Similarly, Listing 4.3 includes channel

synchronization between the platform-independent model and its environment model in the

form of a transition table which is used in check-trans function to perform relevant input

or output transitions.
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The level of abstraction of these input and output variables are matched to the IO-boundary

in Figure 9 that has yet to be integrated with the platform-dependent code that handles

input and output at the mc-boundary level. For example, the value of sBolusReq in List-

ing 4.1 is expected to change from false to true when a patient presses a bolus request

button. The platform-dependent code accepts such sensor input at the mc-boundary and

processes it in a way that the value of sBolusReq is changed accordingly at the io-boundary.

Similarly, when the step function in Listing 4.2 updates the output value of sMotorState

from false to true, this output update needs to result in the rotation of the pump-motor.

The platform-dependent code accepts such platform-independent output at the io-boundary

and processes it in a way that the value changes become visible to the real environment at

the mc-boundary (e.g., by providing electrical signal to the pump motor).

In order to implement such I/O interactions, we define read(i-variable) and write(o-variable)

primitives. The platform-independent code is generated with read(i-variable) signatures

that return values associated with an input i-variable; the value is written by the platform-

dependent code by the transformation of the m-event (at the mc-boundary) into an i-event

(at the io-boundary). For example, three signatures - read(uBolusReq), read(uEmptyAlarm),

read (uClearAlarm) - are generated from the UPPAAL model in Figure 11 as a part of the

platform-independent code; but, it is platform-dependent how actually the internal opera-

tion of the read primitives works on different target platforms. Similarly, write(o-variable)

signatures that are used to write output values, which is expected to be read by the platform-

dependent code. For example, two signatures - write(uMotorStart), write(uMotorStop) -

are generated from the same UPPAAL model as a part of the platform-independent code,

leaving its internal implementation to the platform-dependent code. The I/O interaction

between the platform-independent and platform-dependent code can only be performed

through these read and write primitives.

(Category 2) Interfacing platform-independent clock operations: In case a platform-

independent model deals with a notion of time to express timed behavior of a system, its
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corresponding code should have a way to implement such timing semantics. For example,

the UPPAAL model in Figure 11 uses a continuous clock variable x1 that is proportionally

increased over real-time; this clock variable is reset to zero or its current value is compared

with constant values (e.g., 0 or 40) to represent timed behavior. As a result, its generated

code includes a way to implement such timing semantics. For example, eval-guard function

in Listing 4.5 uses a generated rdClock(x1 ) function that returns the current value of clock

variable x1 ; a returned value is compared with two constant values in line 3 and 4 in order

to check whether the timing guard conditions associated with the two transitions are satis-

fied. Similarly, the assign function in Listing 4.6 uses a generated setClock(x1, 0) function

in order to reset the clock to a new value 0.

In order to implement such clock operations, we define readClock(clk) and setClock(clk,

val) primitives. The platform-independent code is generated with readClock(clk) signatures

that return the current value of a clock whose identification is clk; the value of clk is

increased by the platform-dependent code in proportion to real-time. Similarly, setClock(clk,

val) signature is generated as a part of the platform-independent code, which resets the

current value of a clock with a specific value, val; it is platform-dependent how such a

reset operation is implemented. The clock operation between the platform-independent

and platform-dependent code can only be performed through these readClock and setClock

primitives.

(Category 3) Interfacing invocation mechanisms of the platform-independent

execution logic: The platform-independent code includes an execution logic that imple-

ments transition semantics based on the current inputs and clock values, and produces

outputs under the assumption that category 1 and 2 are correctly interfaced with the

platform-dependent code. For example, the step function in Listing 4.2 and check-trans

function in Listing 4.4 are examples of such an execution logic. These functions are ex-

pected to be invoked according to some invocation mechanisms (e.g., periodic invocation

or aperiodic invocation); upon invocation, transition conditions are examined to be taken.
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In order to implement such invocation mechanisms, we define a trigger primitive. The

platform-independent code is generated with a trigger primitive whose internal is an im-

plementation of an execution logic that maps to a model structure; but, it is platform-

dependent how this trigger primitive is invoked on a target platform.

In [32], we demonstrated how these primitive signatures generated as a part of the platform-

independent code can be integrated with two different PCA pump platforms that implement

the internal of the primitives in a different way.

4.6. Summary of the PI-Phase

In the PI-Phase, we showed how the timed behavior of a system can be modeled inde-

pendently of a particular platform. The basic idea of the platform-independent timing

abstraction is to express the timing and dependency of input and output events occurring

at the mc-boundary (i.e., the system boundary between a platform and the environment).

On the other hand, this level of timing abstraction hides internal platform-specific details

of how such input and output can be processed by a platform and how a platform internally

interacts with software at the io-boundary (i.e., the system boundary between a platform

and the platform-independent code). In order to define such an abstraction level of PCA

pumps, we utilized the FDA’s GPCA model that expresses generic behavior of PCA pumps;

and we showed the formal verification result by translating it into the UPPAAL model.

It is also challenging to obtain the platform-independent code from the model since we

do not know yet what platforms will be integrated with the platform-independent code

in this development phase. In order to facilitate the integration process with unknown

platforms in the later stage, we defined three types of primitives, by comparing two existing

code generators, that are necessary to operate the platform-independent code, but need to

be implemented in a platform-dependent way. The platform-independent code is generated

using the primitive signatures only while having their internals implemented by a particular

platform.
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In the next chapter, we explain what kind of platform-dependent timing information needs

to be considered to generated platform-dependent code, and how the primitive signatures

used in the platform-independent code can be implemented in a platform-dependent manner.
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CHAPTER 5 : Platform-Dependent Development Phase

5.1. The Problem Statements and Challenges

A platform is defined as a hardware (e.g., sensors and actuators) and a software stack (e.g.,

accompanied device drivers and operating systems) on which the platform-independent code

is expected to be operating. The platform-independent code that has been developed in

the PI-Phase is not sufficient by itself to operate on a platform; for example, the inter-

nal implementation of the primitive signatures (e.g., trigger primitives or I/O primitives)

has not been completed yet. Roughly speaking, the platform-dependent code is defined

as a source code that implements particular architectural timing aspects that enable the

platform-independent code to interact with the hardware through APIs provided from the

software stack. Here are two objectives of the PD-Phase:

• (G1) the PD-Phase should provide a systematic way to implement its platform-

dependent code that is compatible with a given hardware platform,

• (G2) the PD-Phase should provide a flexible way to implement the platform-dependent

code for a range of platforms.

We note that achieving (G1) does not necessarily mean achieving (G2), because a systematic

approach that implements a platform-dependent code targeting a particular platform may

not equally apply to another platform. For example, if the PD-Phase has a systematic way

to implement the trigger primitive for the platform A, it may not apply to the platform B,

that has a different software stack. We also note that achieving (G2) does not necessarily

mean achieving (G1) either, because one can implement different platform-dependent codes

in a non-systematic way; for example, the PD-phase may not place any restriction in the

way of implementing the platform-dependent code, leaving one to implement it in an ad-hoc

manner. There are several challenges to achieve both (G1) systemization and (G2) flexibility

in order to implement the platform-dependent code.
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Challenge 1: Among a range of abstraction levels that are relevant to charac-

terizing a platform, one needs to choose an appropriate level of abstraction to

describe a platform for systematic generation of the platform-dependent code.

The range of the level of abstraction for defining a platform is wide. For example, in order

to control sensors and actuators that are physically interfaced to a micro-controller, ini-

tializing appropriate values for corresponding registers (e.g., general purpose I/O) of the

micro-controller is of an important concern. In case multiple threads are expected to run on

a platform, designing a real-time scheduling algorithm to schedule those threads is also of an

important concern. Using appropriate code patterns imposed by the underlying software

stack is also of an important concern. In order to systematically generate the platform-

dependent code, however, considering all levels of platform abstraction is practically diffi-

cult, and there is no consensus about which level of abstraction is most appropriate. The

challenging part is to decide a right abstraction level in describing a platform, and to provide

the means to formally express such aspects from which source code can be systematically

generated that can support the execution of the platform-independent code.

Challenge 2: As a platform changes from one to another, different styles of code

should be generated due to heterogeneous aspects of platforms. In general, as a

platform changes, its platform-dependent code is likely to change accordingly for several

reasons. Each platform adopts its own architectural option to support the execution of the

platform-independent code. For example, a platform may implement the trigger primitive

using a periodic invocation mechanism (i.e., the platform-independent code is executed

every pre-defined period); others may use an aperiodic invocation mechanism (i.e., the

platform-independent code is executed whenever events arrive). A platform may have mul-

tiple options for reading environmental input (e.g., polling or interrupt-based mechanisms).

In addition, each platform has its own software stack that provides a set of APIs to imple-

ment a certain architectural option. For example, source code that implements the periodic

invocation mechanism using real-time operating system A is different from the source code

using real-time operating system B since the two operating systems may provide different
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sets of APIs and code patterns that need to be followed to implement the same architectural

option. In order to support flexibility that allows choosing a range of platforms, one needs

to deal with such variations that appear whenever a platform changes.

We give the overview of our approach to tackle these challenges in the next section.

5.2. The Approach Overview of the PD-Phase

We propose a way to abstract the timing aspects of a platform using Architectural Anal-

ysis Description Language (AADL) model and a code snippet repository from which the

platform-dependent code is systematically generated.

AADL is a modeling language for describing real-time embedded systems from an archi-

tectural perspective. In particular, we abstract architectural information flows that need

to be implemented as a platform-dependent code using a subset of AADL; that is, an

AADL model captures how a platform reads sensor values (e.g., polling or interrupt-based

mechanism), how a platform processes and stores the retrieved sensor values to be read by

the platform-independent code (e.g., shared variable or buffer mechanism), how a platform

invokes the platform-independent code for its computation (e.g., periodic or aperiodic invo-

cation), and how the produced output from the platform-independent code is delivered back

to a platform, which can be used to control actuators. From the systematization point of

view (G1), the AADL provides a means to formally express such architectural aspects from

which the platform-dependent code can be systematically generated. From the flexibility

point of view (G2), as a platform changes from one to another, the modular aspects of

AADL enable such architectural changes to be easily accommodated.

On the other hand, the proposed code snippet repository captures code patterns that im-

plement an AADL model using a programming interface provided by a software stack of a

particular platform. From the systematization point of view (G1), a code snippet repository

is categorized according to their functions to implement AADL components from which a

code can be systematically generated. In other words, one can implement a code generation
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algorithm such that, given an AADL model, the algorithm finds a corresponding cate-

gory that contains a particular code snippet in order to systematically generate respective

platform-dependent codes. From the flexibility point of view (G2), the category is general

enough so that each platform can fill the categories with different code snippets that are

compatible with their respective programming interfaces. In other words, the categorization

of the code snippet repository remains the same across different platforms, but the contents

of each category changes to accommodate the different code patterns required to implement

an AADL model on respective platforms.

Given a platform description using an AADL model and a code snippet repository, the

proposed code generation algorithm systematically composes the two resources to system-

atically generate the platform-dependent code. Figure 13 illustrates the overview of the

PD-Phase, and a detailed explanation of our approach is given in the following sections.

Platform 
Specification 

AADL Model 

Platform-Dependent 
Code 

Platform-Dependent 
Code Generation 

Code Snippet 
Repository 

PCA Pump 
Hardware Platform 

Figure 13: The platform-dependent phase of the safety-assured model-based implementation
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5.3. Platform-Dependent Software Aspects

Consider the following Category 1 and Category 3 of the primitives explained in Subsec-

tion 4.5.3 of the PI-Phase:

• (Category 1) Interfacing platform-independent I/O operations,

• (Category 3) Interfacing invocation mechanisms of the platform-independent execu-

tion logic.

The platform-independent code is generated using primitives belonging to each category ex-

pecting that the internals of these primitives are to be implemented in a platform-dependent

manner. This chapter explains how such primitives can be systematically implemented in

a platform-dependent manner.

Figure 11 is a platform-independent model in a sense that it does not explicitly express the

timing information on how it should be executed on target platforms. Hence, its gener-

ate code (i.e., the platform-independent code) cannot be executed without the appropriate

platform-dependent supports. Two orthogonal aspects need to be considered toward imple-

mentation of such platform-dependent supports:

Platform-dependent architectural aspects: Each platform has its own platform de-

pendent mechanism to execute the same platform-independent computation. Regarding

Category 1, different platforms can implement the semantics of uBolusReq? differently:

one platform may implement a periodic thread that samples the status of the electrical

signal level of the patient-controlled button, wheres another platform may implement an

aperiodic thread that is invoked upon the interrupt-trigger when it detects the change of

the signal level of the button. These two platforms equally have a capability to read the

input from the environment, but in a different way. Regarding Category 2, different plat-

forms can invoke the platform-independent code differently: one platform may execute the

platform-independent computation as a periodic thread, which periodically reads input from
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the platform, computes transitions, and writes output to the platform. However, another

platform may execute the same computation as an aperiodic thread, which performs the

computation only when input arrives. For example, the platform-independent model in

Figure 11 may periodically read inputs for uBolusReq?, uEmptyAlarm?, uClearAlarm?, and

then take the corresponding outgoing transitions and write outputs. However, the model

may also read those inputs aperiodically; that is, the platform-independent computation is

performed only if any of those events occurs.

We call these aspects the platform-dependent architectural timing aspects. Such differences

in executing the platform-independent computation are captured using AADL models, from

which source code that is compatible to each platform can be generated.

Platform-dependent programming interfaces: Each platform has its own software

stack (e.g., real-time operating system) that provide APIs to access to the platform-dependent

mechanisms. As an example, Listing 5.1 shows the code snippet that implements a periodic

thread for empty reservoir detection running on FreeRTOS [8]. The code snippet includes

several API calls that are provided by FreeRTOS. TaskCreate API (Line 8) is called to regis-

ter necessary information to the OS kernel such as thread’s priorities and callback functions.

vTaskDelayUntil API (Line 17) is called to block the callback function cbEmptyRsv until

the next invocation period (in this example, the period is 500 ms).

We call these aspects the platform-dependent programming interfaces. Such different code

snippets are categorized according to their functions to implement AADL components such

as periodic/aperiodic threads and their interactions. This code snippet category is used to

generate different platform-dependent source code along with AADL models.

Listing 5.1: Code snippet of a periodic task in FreeRTOS
1 //Declaration part

2 const portTickType periodEmptyRsv=500;

3 const portBASE_TYPE prioirtyEmptyRsv=2;

4 const portBASE_TYPE stacksizeEmptyRsv=500;

5
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6 //Initialization part

7 void init_EmptyRsv( void ){

8 TaskCreate(cbEmptyRsv,’’EmptyRsv’’,stacksizeEmptyRsv, NULL,prioirtyEmptyRsv,NULL);

9 }

10

11 //Thread callback function part

12 void cbEmptyRsv (void* pvParameters){

13 portTickType xLastWakeTime;

14 xLastWakeTime = xTaskGetTickCount();

15 for(;;){

16 //Wait for the next cycle

17 vTaskDelayUntil(&xLastWakeTime,periodEmptyRsv);

18 //Perform action here

19 //(1)Read

20 //(2)Compute

21 //(3)Write

22 }

23 }

5.4. Platform-Dependent Modeling using AADL

This section explains how to capture the platform-dependent architectural timing aspects

using AADL models. The differences in the hardware/software architectures are highlighted

from the code generation perspective.

AADL is a modeling language for describing real-time embedded systems from an architec-

tural perspective. It provides an abstraction of software components (e.g., periodic/ape-

riodic threads) and hardware components (e.g., devices and processors). The interactions

among such components are abstracted using ports and port connections. We note that

only a subset of AADL components and their semantics is used to explain the idea under-

lying the platform-dependent code generation; a broader scope of AADL components and

their semantics can be found in [1].

Figure 14 shows the graphical representations of two AADL models, M1 (top model) and

M2 (bottom model), that specify the hardware/software architectures of two different in-
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Figure 14: AADL models of two infusion pump platforms

fusion pump systems. The big rounded box in the center of each model denotes a system

component, which represents the scope of the software system. Each system component

contains several thread components, represented by the dotted rectangles. Some thread

components are connected to device components, represented by the double-lined rectangles

outside the system component. Thread and device components are interconnected to each

other using port connections, denoted by the different types of directional lines in the figure.

The informal semantics of each component is as follows.

Threads: A thread is a concurrent schedulable unit of sequential computation, with one or

more assigned properties. There are five threads in M1 and six threads in M2. Each thread

has a property of dispatch protocols. For instance, the M1.BolusRequestDetection thread

has an aperiodic dispatch protocol: any event that arrives on its input ports can invoke the

thread to perform its execution; upon completion, the thread becomes idle until the next
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event occurrence on its input ports. In contrast, the M2.BolusRequestDetection thread has

a periodic dispatch protocol: the thread is invoked periodically (e.g., every 500ms in the

example) and independent of the occurrences of events on its input ports. There are several

other properties that are not shown in the graphical format, which we will explain as is

needed.

Devices: A device, such as a sensor or an actuator, is an abstraction of the physical

device that exposes only its input/output ports to the external environment. For instance,

the M1.BolusRequestButton and M2.EmptyReservoir-Switch in Figure 14 represent sensor-

type devices that provide output ports. These output ports are connected to the input ports

of the threads, M1.Bolus-RequestDetection and M2.EmptyReservoirDetection, through the

port connections, D1 and D7, respectively.

Port and Port Connections: A port connection represents the relationships among

ports that enable the directional exchange of data and events. The interactions among

components can be expressed using port connections. There are nine and eleven port

connections (with identifiers T1–T9 and D1–D11) in M1 and M2, respectively. There are

three different types of port connections (represented by different shapes in the figure), as

detailed below.

• Data port connections express interactions between components without queuing, and

a type of data message can be defined. For instance, M2.D6 is a data port connection

between the device M2.BolusRequestButton and the periodic thread M2.BolusRequest-

Detection. The data on this connection may represent the status of the bolus request

button (e.g., the button is pressed or released);

• Event port connections are used to deliver events among components with queu-

ing. For example, M1.D1 is an event port connection between the device M1.Bolus-

RequestButton and the aperiodic thread M2.Bolus-Request-Detection. A button-

pressed event may be delivered to the aperiodic thread via a queuing mechanism;
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• Event-Data port connections are used for event transmissions with queuing, and

each event may be associated with data. For example, M2.T7 is an event-data

port connection between the two periodic threads, M2.Low-ReservoirDetection and

M2.PlatformIndependentRoutine. The status of a low reservoir condition may be

delivered via this port connection through a queuing mechanism.

As was for the threads, there are several port properties that are not shown in the graphical

format, which we will explain as needed.

This example implies that (1) the platform-independent code requires being composed with

a platform-dependent architectural option for its execution; (2) different platforms may pro-

vide different architectural options, hence a different platform-dependent code is required.

Here is the summary of the architectural differences between M1 and M2, which will result

in different types of source code:

• Different thread types lead to different source code. For example, the thread M1.Bolus-

RequestDetection is an aperiodic thread that is invoked only if an event is generated by

the thread M1.BolusRequestButton; however, the thread M2.BolusRequestDetection

is a periodic thread that is invoked every 500ms, regardless of when such an event

occurs.

• Different types of port connections lead to different source code. For example, M1.T1

is an event-data port connection between two threads, M1.BolusRequestDetection

and M1.PlatformIndependent-Routine. In contrast, M2.D10 is a data port connection

between the M2.PumpMotorControl thread and the M2.PumpMotor device.

• Different numbers of AADL components lead to different source code. For example,

M2 has a LowReservoirSwitch (device), LowReservoirDetection (thread), D8 (data

port connection), and T7 (event-data port connection) that do not appear in M1.

The more information is given in the AADL model, the more source code needs to be
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generated.

5.5. Platform-Dependent Code Snippet Repositories

This section explains how to capture the platform-dependent programming interfaces using

code snippet repositories.

Intuitively speaking, the code generation algorithm works as follows: to generate code for a

particular platform, it first finds an AADL component (in the AADL model of the platform

capability) to be generated into source code (e.g., the periodic thread of M1.AlarmControl

or the event-data port connection M2.T9 in Figure 14). Next, it looks up appropriate

code snippets in the corresponding code snippet repository that can implement the chosen

component. Finally, it generates the source code for the platform based on these snippets.

To automate the code generation process, it is necessary to construct a mapping between

AADL components and code snippet repositories. Our approach is to construct code snip-

pet repositories that are categorized according to the functions to implement the AADL

components. Consequently, each category can be filled with different code snippets that are

written using programming interfaces compatible with each platform. The code generation

algorithm uses this categorization to find mappings between the AADL models and the

code snippets.

Table 15 shows the categorization of code snippet repositories. The first column provides the

code generation algorithm with the information for checking whether a target platform has

the programming support to implement AADL components. The second column provides

a more detailed level of categorization that guides the code snippets of each programming

support to be written in a particular format. For example, consider the periodic thread

component M2.EmptyReservoirDetection in Figure 14. To generate the code that is mapped

to this periodic thread component, the code generation algorithm refers to the periodic

thread category in the programming support column in Table 15 to check whether the

code snippets of each subcategory of the programming support exist, and if so, it uses the

79



Table 5: Categorization of code snippets
Programming
support

Code snippet category

Dispatch mechanism
Declaration
Initialization
Dispatch invocation function

Periodic thread
Declaration
Initialization
Thread callback function

Aperiodic thread
Declaration
Initialization
Thread callback function

Device-to-
Thread port
connection

Data port
Declaration
Initialization
Get primitives

Event and Event
Data port

Declaration
Initialization
Interrupt callback function

Thread-to-
Device port
connection

Declaration
Initialization
Set primitives

Thread-to-
Thread port
connection

Data port

Declaration
Initialization (shared variables)
Read primitives
Write primitives

Event and Event
Data port

Declaration
Initialization (FIFO queues)
Read primitives
Write primitives
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corresponding code snippets to generate the code.

5.5.1. Case Study of Code Snippet Repositories: FreeRTOS vs. bare platform

We demonstrate the applicability of the categorization of code snippet repositories in Ta-

ble 15 using a case study of two different platforms, denoted by FreeRTOS and Bare-

Platform, which have different programming interfaces. The FreeRTOS platform runs the

FreeRTOS operating system, which supports a preemptive scheduler with which program-

mers implement periodic/aperiodic threads. The BarePlatform platform is a platform that

does not run any operating system; therefore, one needs to implement a dispatch mechanism

that can invoke periodic/aperiodic threads. We explain each category of the categorization

shown in Table 15 using example code snippets implemented on these two platforms.

Dispatch mechanism: A programming interface should provide a dispatch mechanism,

i.e., periodic or aperiodic, for threads to be scheduled. Some platforms may already

have such a dispatch mechanism implemented; for example, FreeRTOS provides the API

vTaskStartScheduler(), and it is sufficient to call this function to start the dispatch mech-

anism. However, other platforms (e.g.,BarePlatform) may not have a dispatch mechanism,

in which case the platforms should add code snippets that implement dispatch mechanisms

following the Dispatch mechanism category in Table 15.

Listing 5.2: Code snippets of Dispatch mechanism on the BarePlatform
1 //Declaration

2 const int Dispatch_Invocation_Interval = 10;

3

4 //Initialization

5 void init_dispatch ( void ){

6 hardware_timer_init ( Dispatch_Invocation_Interval , cbDispatchInvocation );

7 }

8

9 //Dispatch invocation

10 void cbDispatchInvocation (void* pvParameters ){

11 Disable_interrupt ;

12 Update_Dispatch_Flag ();
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13 Dispatch_Aperiodic_Threads ();

14 Dispatch_Periodic_Threads ();

15 Enable_interrupt ;

16 }

Listing 5.2 gives an example code snippet of the dispatch mechanism implemented on Bare-

Platform, which belongs to the code snippet category of Dispatch mechanism in Table 15.

The operation of the dispatch mechanism is as follows. In Lines 4–7, the code snippet

initializes a hardware timer of the microprocessor with a fixed millisecond-basis period

(Dispatch_Invocation_Interval) defined in Line 2 of the Declaration part, and a pointer

to the callback function (cbDispatchInvocation) in the Initialization part. This enables cb-

DispatchInvocation, implemented in the Dispatch invocation part, to be called every period

(i.e., 10 ms in this example). Upon being activated, the invocation function checks the list

of periodic and aperiodic threads1 that need to be invoked at the current invocation pe-

riod; this is implied in Update_Dispatch_Flag() in Line 12. Then, the invocation function

executes all checked threads in Lines 13–14, and it completes the current dispatch round.

Periodic/Aperiodic thread implementation: A programming interface should provide

a mechanism to implement periodic and aperiodic threads that can be scheduled by the

dispatch mechanism explained above. Code snippets that implement such threads vary

across platforms that expose different programming interfaces.

Listing 5.3: Parametrized code snippet of Aperiodic thread in FreeRTOS
1 //Declaration part

2 const portBASE_TYPE prioirty#Ftid(ext)#=#Fpriority(ext)#;

3 const portBASE_TYPE stacksize#Ftid(ext)#=#Fstack(ext)#;

4

5 //Initialization part

6 void init_#Ftid(ext)#( void ){

7 TaskCreate(cb#Ftid(ext)#,’’#Ftid(ext)#’’,stacksize#Ftid(ext)#, NULL,prioirty#Ftid(ext)#,NULL);

8 }

9

10 //Thread callback function part

1This information is implemented in the declaration part, but not shown here for clarity
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11 void cb#Ftid(ext)# (void* pvParameters){

12 for(;;){

13 #Finput(ext)# //Wait for the input

14 //Compute

15 #Foutput(ext)# //Write output

16 }

17 }

Listings 5.3 and 5.4 show the code snippets for aperiodic threads that can be executed

on FreeRTOS and BarePlatform, respectively. Special functions (e.g., Ftid(ext)) enclosed

with two sharp signs (#) are used to specify parametrized code snippets that need to be

replaced with some other codes, which we will explain in Subsection 5.5.2. Both code

snippets implement aperiodic threads on each platform; however, they are different in the

following sense.

Listing 5.4: Parametrized code snippet of Aperiodic thread in BarePlatform
1 //Declaration part

2 const int prioirty#Ftid(ext)#=#Fpriority(ext)#;

3

4 //Initialization part

5 void aperiodic_#Ftid(ext)#_init( void ){

6 register_aTask(cb#Ftid(ext)#, prioirty#Ftid(ext)#);

7 }

8

9 //Thread callback function part

10 void cb#Ftid(ext)# (void* pvParameters){

11 #Finput(ext)# //Read input

12 //Compute

13 #Foutput(ext)# //Write output

14 }

The two programming interfaces require different information to initialize aperiodic threads.

For example, the FreeRTOS code snippet in Listing 5.3 specifies the stack size (Line 3) of

the maximum amount of memory that a thread can occupy at run time. This parameter is

passed to the TaskCreate API (Line 7), so that the OS kernel triggers exceptions in case of

stack overflows at run time. On the contrary, BarePlatform does not require explicit stack
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sizes of threads, since the platform is incapable of specifying stack sizes and capturing stack

overflows.

The two programming interfaces provide different ways of implementing interactions be-

tween their thread callback functions and dispatch mechanisms. For example, the FreeR-

TOS code snippet in Listing 5.3 implements the infinite for-loop (Line 12–16), in which

blocking functions are used to interact with the scheduler (the function #Finput(ext)# in

Line 13 will be replaced with such blocking functions in our framework). However, the

BarePlatform code snippet in Listing 5.4 does not have such a for-loop: its dispatch mech-

anism is invoked periodically, and the called thread callback function will be returned in

the current dispatch invocation without looping.

The two programming interfaces provide different names of APIs to perform similar func-

tions. For instance, to register the thread information to the kernel, the FreeRTOS uses the

TaskCreate API (Line 7), whereas the BarePlatform uses the register_aTask API (Line 6).

Note that the code snippet category of aperiodic threads in Table 15 is filled with different

code snippets of Listing 5.3 and Listing 5.4 for FreeRTOS and BarePlatform, respectively.

Port connection implementation: Each programming interface should provide a mech-

anism to implement the port connections that enable thread and device components to

interact with one another (e.g., D1–D11 and T1–T7 in Figure 14). Different types of

port connections (e.g, data or event-data ports) lead to different code snippets. Moreover,

different instances of a port connection can be implemented by different code snippets, de-

pending on whether they cut through the software system scope (that need to be generated

into source code) or not. For example, M1 and M2 in Figure 14 contain system compo-

nents (big rounded boxes in the middle) that represent the scope of the software system;

therefore, thread components within the scope are subject to code generation. In contrast,

device components outside the scope are not subject to code generation. Finally, the port

connections of M1.{D1-D5} and M2.{D6-D11} cut through the scope of software system.
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In our code snippet repository, such port connections are separately categorized from port

connections that have both of their source and destination components residing inside the

scope (e.g., M1.{T1-T4} and M2.{T5-T9})

Based on the above observation, the code snippet repository in Table 15 distinguishes three

different categories of port connections:

• The Device-to-Thread port connection category stores code snippets that are used

to implement directional port connections from device to thread components. This

port connection is typically used by thread components to read sensor values. For

example, the implementations of M1.{D1, D2}, M2.{D6, D7, D8} use code snippets

from this category. This category includes code snippets that process input only (i.e.,

it does not have a code snippet that writes outputs). Inputs can be read from devices

in two different ways. First, a thread component may read values from a device

component through data ports (e.g., M1.D2 and M2.{D6, D7, D8}); in this case,

the code snippet provides Get primitives that can be called by thread components to

retrieve data from device components. Second, a thread component may read values

from device components through event or event-data ports (e.g., M1.D1); in this case,

the code snippet provides the Interrupt callback function that is called when events

from device components occur.

• The Thread-to-Device port connection category stores code snippets that are used to

implement directional port connections from thread to device components. This port

connection is typically used by thread components to actuate actuators by writing

values. For example, the implementations of M1.{D3, D4, D5}, M2.{D9, D10, D11}

use code snippets from this category. This category includes code snippets that pro-

cess output only (i.e., it does not have a code snippet that reads inputs). Thread

components can write outputs to devices by calling the Set function.

• The Thread-to-Thread port connection category stores code snippets that are used
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to implement port connections between two thread components. For example, the

implementations of T1-T9 in M1 and M2 use code snippets from this category. Unlike

the above port connection types, this category includes code snippets that process both

inputs and outputs. Two threads can communicate with each other through either

data port or event-data port. In the former case, a shared variable is used with

the associated read/write primitives; in the latter, a FIFO queue is used with the

associated read/write primitives.

We next give an example of the code snippet for thread-to-thread port connection imple-

mentation on FreeRTOS.

Listing 5.5 shows the code snippet of (event-data port) thread-to-thread port connection of

FreeRTOS. We note that this code snippet is written following the four categories related

to the (event-data port) thread-to-thread port connection shown in Table 15.

Declaration: Lines 1–6 implement the declaration part, which lists the necessary variables

to implement the port connection using a FIFO queue: the handler of the FIFO queue (Line

2), the queue size (Line 3), the dequeue policy (Line 4), the blocking mode (Line 5), and

the overflow handling policy (Line 6).

Initialization: Lines 8–11 implement the initialization function that creates a FIFO queue

using FreeRTOS API, xQueueCreate; the variables in the declaration part is passed to the

API call.

Read primitive: Lines 13–28 implement the read primitives that can be used by threads to

read items from the FIFO queue. Note that two different read primitives are implemented,

and which one is generated depends on the dequeue policy that is specified in Line 4. This

is intended to capture the AADL property Dequeue_Protocol, whose value can be either

OneItem (read a single item from the queue) or AllItems (read all items from the queue).

xQueueReceive is a FreeRTOS API that dequeues items from the queue. In case the queue
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is empty, the blocking mode, specified as edQBlockMode#Fpid(ext)# in Line 5, decides

whether a caller of this API should be blocked until any item arrives, or it should be

timed-blocked (i.e., blocked for only a certain amount of time), or non-blocked (i.e., never

blocked). The uxQueueMessagesWaiting API in Line 24 returns the number of items in the

queue, which is needed to read all the items from the queue (Lines 23–25).

Write primitive: Lines 30–49 implement the write primitive that can be called by threads to

insert items to the FIFO queue. The xQueueSend API is used to insert an item to the FIFO

queue in Line 32. Lines 34–45 show the three different ways for handling the queue overflow

exception, depending on the value of the AADL property Overflow_Handling_Protocol

(i.e., DROP_OLDEST or DROP_NEWEST or ERROR). The code that handles such an

overflow handling protocol is not detailed here.

Listing 5.5: Parametrized code snippet of Thread-to-Thread port connection in FreeRTOS
1 //Declaration part

2 static xQueueHandle edQHandle#Fpid(ext)#;

3 const portBASE_TYPE edQSize#Fpid(ext)# = #Fqsize(ext)#;

4 const portBASE_TYPE edDQPolicy#Fpid(ext)# = #Frpolicy(ext)#;

5 const portBASE_TYPE edQBlockMode#Fpid(ext)# = #Fwmode(ext)#;

6 const portBASE_TYPE edQOverflowHandling#Fpid(ext)# = #Fwpolicy(ext)#;

7

8 //Initialization part

9 void ed#Fpid(ext)#_Init( void ){

10 edQHandle#Fpid(ext)# = xQueueCreate(edQSize#Fpid(ext)#, sizeof(#Fitemtype(ext)#));

11 }

12

13 //Read primitive

14 #if edDQPolicy#Fpid# == OneItem

15 portBASE_TYPE Read_#Fpid(ext)# (#Fitemtype(ext)#* buf){

16 xQueueReceive(edQHandle#Fpid(ext)#, buf, edQBlockMode#Fpid(ext)#);

17 return TRUE;

18 }

19 #elif edDQPolicy#Fpid# == AllItem

20 portBASE_TYPE Read_#Fpid# (#Fitemtype(ext)#* buf){

21 portBASE_TYPE item_count = 0;

22 item_count = uxQueueMessagesWaiting(edQHandle#Fpid(ext)# ) );
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23 for(int i = 0 ; i < item_count ; i++){

24 xQueueReceive(edQHandle#Fpid(ext)#, buf + i*sizeof(#Fitemtype(ext)#), edQBlockMode#Fpid(ext)#);

25 }

26 return item_count;

27 }

28 #endif

29

30 //Write primitive

31 portBASE_TYPE Write_#Fpid(ext)# (#Fitemtype(ext)#* buf){

32 portBASE_TYPE result = xQueueSend(edQHandle#Fpid(ext)#, buf, edQBlockMode#Fpid(ext)# );

33 if(result == FALSE){

34 switch(edQOverflowHandling#F_pid(ext)#){

35 case DROP_OLDEST:

36 //Drop oldest and enqueue

37 break;

38 case DROP_NEWEST:

39 //Drop newest and enqueue

40 break;

41 case ERROR:

42 //Raise an exception

43 break;

44 default:

45 }

46 return FALSE;

47 }

48 return TRUE;

49 }

5.5.2. Parametrized Code Snippets

As described in Subsection 5.5.1, the AADL models and the code snippet repositories are

created independently of one another. Hence, it is necessary to inform the code generation

algorithm of the scope of the code that should be related to the information of the AADL

model of a platform. This is done via parametrized code snippets, which specify the place-

holders that later can be filled by the code generation algorithm based on the AADL model.

Therefore, our framework separates concerns between how the code snippets are written

and how they are actually used in a certain architectural context. For example, the code
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snippet for aperiodic threads in Listing 5.3 is written independently of how it is used to

implement M1.BolusRequestDetection or M2.PlatformIndependentRoutine in Figure 14.

Parametrized code snippets can be written using functions that take a set of input pa-

rameters and return a piece of code. Such functions enable a parametrized code snippet

to be instantiated into several different pieces of code; for instance, the code snippets in

Listing 5.3, 5.4, 5.5 use the parametrized code snippets that are enclosed with two sharp

signs(#). These functions also specify the rules for instantiating the code using external

information that is passed through ext. For example, Ftid(ext) in Line 11 of Listing 5.3

specifies how a thread identification should be represented in the aperiodic thread callback

function using external information ext. Suppose the string “BolusRequest” is passed as ext,

then one may define a function Ftid that converts the string into “BolusReq” and returns it

as a piece of code. Then, the code snippet after resolving the parameter of Line 11 becomes

“void cbBolusReq (void* pvParameters).”

As another example, one may define a function, Fperiod(ext), to specify the rule to convert

ext into a value that represents the period of a periodic thread in the code snippet. In

Figure 14, the period property of M2.EmptyReservoirDetection is represented as a string of

“500 ms". This string is passed as a parameter of ext. The internal of Fperiod converts “500

ms" into some appropriate values. Suppose, we want to get the code in Line 2 of Listing 5.1.

Then, the function simply removes “ms" from the string, resulting in the value 500. How-

ever, the returned value is not always necessarily 500 to represent "500 ms" of period in the

code snippet. Because different programming interfaces may require to scale the numeric

value differently to represent “500 ms" of period. For example, the dispatch mechanism of

BarePlatform in Listing 5.2 invokes the dispatch mechanism every 10 ms as specified in line

2. The code snippet for periodic threads (not shown here) requires to specify periods of

thread relative to the dispatch invocation interval. Then, Fperiod(ext) should convert “500

ms" into 50 instead of 500. This example shows different platforms interpret the same infor-

mation coming from the AADL model in a different way. Therefore, having parametrized
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code snippets provides flexibility to deal with such heterogeneous programming interfaces.

In Section 5.6, we explain the proposed code generation algorithm that co-relates an AADL

model (explained in Section 5.4) and a code snippet repository (explained in this section),

in order to produce the platform-dependent code for different platforms.

5.6. Platform-Dependent Code Generation Process

The constructed AADL model and the code snippet repository of a particular platform

are used together with the platform-independent code as inputs to the code generation

algorithm to generate the platform-dependent code. In this section, we explain how the

algorithm processes and correlates the AADL model and code snippet repository to produce

the platform-dependent code.

The AADL model is expressed in textual form. Listing 5.6 shows a textual representation

of M2.EmptyReservoir-Detection in Figure 14. The scope starting with thread (Line 2)

and ending with end (Line 15) characterizes M2.Empty-ReservoirDetection. Lines 4–9

characterize the input and output ports that are associated with the thread. Lines 11–14

specify the properties that characterize the periodic thread.

Listing 5.6: Textual representation of the periodic thread component

M2.EmptyReservoirDetection in Figure 14
1 –- Define thread type of EmptyReservoirDetection

2 thread thd_empty_rsv

3 features

4 D7: in data port;

5 T6: out event data port{

6 Overflow_Handling_Protocol => Error;

7 Dequeue_Protocol => AllItems;

8 Queue_Size => 5;

9 };

10 properties

11 Dispatch_Protocol => Periodic;

12 Period => 500 Ms;

13 SEI::Priority => 2;
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14 Source_Stack_Size => 500 B;

15 end thd_empty_rsv

We note that the AADL standard provides a rich set of properties to characterize AADL

components. In addition, one may also define custom properties associated with AADL

components. As a result, it is difficult to design a code generation algorithm that takes into

account all possible properties. Instead, we provide a finite set of AADL properties that

are sufficient for our case study; we expect that extensions of this property set can easily

be done as are needed.

Table 6 summarizes the list of AADL properties of thread and port connection components

that are used by our code generation algorithm in order to find appropriate code snippets

in the code snippet repository.

Table 6: Information extracted from the AADL model
AADL
component

Property Example value

Thread

Thread ID EmptyReservoirDetection
Thread type Periodic/Aperiodc
Thread period 100ms or 10sec
Thread priority 3
Source stack size 500 B
Input port connection IDs D1, D2, T1
Output port connection IDs D1, D2, T1
Connection ID D1, D2, T1
Interaction type Device-to-Thread, Thread-to-Thread
Source component ID EmptyReservoirDetection

Port connec-
tion

Destination component ID PlatformIndependent-Routine

Port connection type Data, Event, Event-Data
Queue size 5
Read policy Read one item, Read all item
Write policy Drop oldest, Drop newest, Error

Listing 5.7 gives the pseudo code of the code generation algorithm that generates platform-

dependent code from an AADL model and a code snippet repository. The parameters

M and C that are passed as input to the function CodeGen in Line 16 are the abstracted

representation of the information obtained from the AADL model in Table 6 and the code
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snippet repository in Table 15, respectively.

Listing 5.7: Pseudo code of the platform-dependent code generation algorithm
16 function CodeGen(M, C)

17 exp_scope

18 //Generating code for thread components

19 for each thread, T hread[i] ∈ M

20 if M.T hread[i].type == PERIODIC

21 SnippetHandle := C.PeriodicThreadSnippet;

22 else if M.T hread[i].type == APERIODIC

23 SnippetHandle := C.APeriodicThreadSnippet;

24 endif

25 for each parametrized function, Fk ∈ SnippetHandle

26 SnippetHandle.Fk(M.T hread[i]);

27 endfor

28 Generate(SnippetHandle);

29 endfor

30 //Generating code for port connection components

31 for each port connection, P ortConn[j] ∈ M

32 if M.P ortConn[j].type == Device-to-Thread

33 SnippetHandle := C.Device-to-ThreadSnippet

34 else if M.P ortConn[j].type == Thread-to-Device

35 SnippetHandle := C.Thread-to-DeviceSnippet

36 else if M.P ortConn[j].type == Thread-to-Thread

37 SnippetHandle := C.Thread-to-ThreadSnippet

38 endif

39 for each parametrized function, Fl ∈ SnippetHandle

40 SnippetHandle.Fl(M.T hread[i]);

41 endfor

42 Generate(SnippetHandle);

43 endfor

44 exception(No matched code snippets)

45 //Exception handling

46 exception(No matched parameters)

47 //Exception handling

48 endexp_scope

49 endfunction

The algorithm generates the platform-dependent code for thread components of M in Lines
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19–29. The for-loop in these lines finds a match between thread components in M and the

code snippets in C. Using the dispatch protocol property of M, the algorithm finds different

code snippets from C. After such a match is found, the algorithm resolves the parametrized

code snippets (explained in Subsection 5.5.2) of the matched code snippet in Lines 25–27.

The properties of the matched thread in M are passed as a parameter to the function of the

parametrized snippets. This function converts the parameter into a piece of code using the

rules specified in the function. After resolving all parametrized code snippets, the algorithm

generates the platform-dependent code of the thread components in M, which is implied in

Line 28; here, Generate is a simple function that copies and pastes the code snippet into

some output files. The code generation for port connection components (Lines 31–43) is

similar to the generation for thread components, except that the generation algorithm uses

the interaction type property of the port connection to find a match between M and C.

We note that the code generation algorithm deals with two types of exceptions implied in the

exception scope (Lines 17–48). Specifically, the No matched code snippets exception is raised

when the algorithm cannot find a matched code snippet in C to generate a component in

M. For example, the code snippet repository may not contain code snippets that implement

periodic threads, but the AADL model has periodic thread components to be generated into

code. One should handle such an exception appropriately, e.g., by registering a code snippet

to C that implements periodic threads. The No matched parameters exception is raised

when the algorithm cannot find a match of a conversion function in any parametrized code

snippets. There are two cases to trigger this exception: (1) M does not have the information

that is needed for C to generate code; for example, C requires the blocking mode on the

FIFO queue (#Fwmode(ext)#) to be specified, so as to implement read/write primitives for

port connection components in Line 5 of Listing 5.5, but M does not have such a property

in Table 6, and (2) C does not have the capability to implement the properties of M; for

example, M has a property of source stack size, but C does not have the code snippet that

contains this information. Both exceptions should be handled by users (e.g., by adding

missing information in M or by using the default value of C).
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Composition with Platform-Independent Code: As explained in Section 5.3, the

platform-independent code (e.g., Listing 4.3 4.4 4.5 4.6) generated from the platform-

independent model (e.g., Figure 11) should be composed with the platform-dependent

code by (1) interfacing platform-independent I/O operations, and (2) interfacing invoca-

tion mechanisms of the platform-independent execution logic. We explain several places

that need to be considered in our framework for the composition. Consider the example

platform-independent model in Figure 11. The model can be systematically transformed

into source code that repeats the following sequential operations, which is also used in

several code generators [7][14]:

1. Read inputs from some variables, PIinput, that is updated by some external piece of

code

2. Compute the next state using transition tables (encoded as switch-case statements or

array structures) based on PIinput

3. Write outputs to some variables, PIoutput, that are read by some external piece of

code

The AADL model utilizes port connections to express input/output relationship among dif-

ferent AADL components such as threads and devices. On the other hand, the code snippet

repository in Table 15 contains code snippets of the port connection that implement read

and write primitives using the target programming interfaces. An example of read/write

primitives can be found in Listing 5.5. In order to interface I/O operations, one needs to

resolve (1) read dependencies between PIinput and the read primitives, and (2) write de-

pendencies between PIoutput and the write primitives. In Listing 5.4, #Finput(ext)# (line

11) and #Foutput (ext)# (line 13) specify such placeholders in the form of parametrized

code snippets (i.e., one should provide the implementations of such functions to resolve

input/output dependencies).

In addition, the semantics of repeated execution of (1), (2), (3) in the platform-independent
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code needs to be mapped to the platform-dependent code as well. A thread component of

the AADL model is an abstraction of sequential computation in which input is read from

input port connections and output is written to output port connections. Therefore, one

may implement such a mapping using either periodic or aperiodic thread components. In

case of periodic threads, the execution of (1), (2) and (3) can be performed periodically.

In case of aperiodic threads, the execution of (1), (2) and (3) can be performed only if

any input is available from one of the input ports. Either case equally implements the

platform-independent model by executing (1) (2) (3) repeatedly.

5.7. Summary of the PD-Phase

In the PD-Phase, we showed how a platform-dependent code can be systematically produced

in a way that it can be composed with the platform-independent code on a particular

platform.

Our approach is to selectively generate platform-dependent code by characterizing architec-

tural timing aspects and programming interfaces of a platform. An AADL model is used

as a means to capture platform-dependent architectural timing aspects, and a code snippet

repository is used as a means to capture programming interfaces of a platform. The specified

platform-dependent timing information is used to systematically generate code to interface

I/O operations and invocation mechanisms required to operate the platform-independent

code on a particular platform.

In comparison to the PI-Phase, where the input and output timing occurring at the mc-

boundary is modeled, the PD-Phase abstracts internal platform delays required for process-

ing input and output events, such as polling or interrupt-based interactions with sensors

or thread scheduling mechanisms. Such platform processing delays vary across a range of

platforms as each platform may adopt different architectural options that can be composed

with the same platform-independent code. This implies that the observable delays of input

and output events at the mc-boundary may also vary depending on what platforms will be
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composed with the platform-independent code.

Thus, even though the platform-independent model has been verified against timing require-

ments, it cannot guarantee that the composition of the platform-independent code and the

platform-dependent code also meets the same timing requirements at the implementation

level. Therefore, it is necessary to analyze whether the composition is actually performed

in a way that the implementation meets the timing requirements that have been verified in

the platform-independent model. In Chapter 6, we explain two different approaches (i.e.,

testing and formal verification approaches) to check the correctness of such a composition in

terms of timing requirement conformance; in case the composition does not conform to the

timing requirements, in Chapter 7, we explain how to optimize the platform-independent

code in a way that the implementation meets the timing constraints.
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CHAPTER 6 : Integration Phase (Part 1)

6.1. The Problem Statements and Challenges of the ITG-Phase

In order to gain benefits from the separation of concerns, the platform-independent model

is created and verified independently from any particular platform-specific timing aspects.

The platform-independent code generated from the model is thus an incomplete version

of the final implemented system; it can only be completed when the platform-independent

code is integrated with a particular platform-dependent code. Therefore, in order to claim

the timing requirement conformance of the final implemented system, it is necessary to

show that the composition of the two codes have been performed in a way that conforms to

the timing requirements. The main objective of the ITG Phase is to establish a systematic

framework that enables one to check the correctness of such a composition in terms of

the timing requirement conformance. We are particularly concerned about (1) how the

timed behavior of an implemented system is changed after the composition from that of

the platform-independent model, and (2) how such changes impact to the requirement

conformance. Here is the challenge in checking the correctness of such a composition:

Challenge: The relationship of timed behavior between the two codes has not

been expressed in their respective development process, but this information is

necessary to check the correctness of the composition.

In order to check a composition of different aspects of a system, it is necessary to precisely

express their relationship. However, the platform-independent code has been developed

from the model that describes the timed behavior of a system using the behavioral se-

mantics, whereas the platform-dependent code has been developed from the model with

the architectural semantics. For example, the platform-independent model uses a timed

transition system where a system state changes upon input and output synchronization,

time-invariants and guard conditions to express timed behavior of a system. On the other

hand, the platform-dependent model expresses the platform’s timed behavior using interac-
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tions among different architectural components (e.g., threads, buffers) and their associated

properties (e.g., periodic invocation, buffer size). In order to check the correctness of the

composition to reason about the timed behavior of a system as a whole, it is necessary to

understand how the two levels of abstraction is related to each other.

6.2. The Approach Overview of the ITG-Phase

We propose two processes conducted in the ITG phase that enable the implemented system

to be checked for timing requirement conformance - (1) the platform-specific timing verifica-

tion process (formal verification approach), (2) the platform-specific timing testing process

(testing approach). The two processes are performed under different assumptions about

the platform-specific timing information. Timing verification is performed when the timing

aspects of the platform-dependent code are known, and can be formally abstracted along

with the platform-independent model. On the other hand, timing testing is performed when

the platform-independent code is composed with the platform-dependent code, though, the

timing aspects of the platform-dependent code are not known. Two processes can be used

together or independently depending on the availability of the platform-specific timing in-

formation. Here are the overviews for each approach:

Formal verification approach: We propose the platform-dependent timing verification

framework as illustrated in Fig. 15. In order to build an implemented system, the platform-

independent code is assumed to be composed with the platform-dependent code that imple-

ments a particular architectural option. We propose the implementation scheme category

that separately categorizes such possible architectural options that a platform may choose,

based on (1) how a platform-dependent code interacts with its real environment, and (2)

how a platform interacts with the platform-independent code. Each platform may choose

its own implementation scheme that matches with the architectural option implemented to

support the execution of the platform-independent code. Then, we propose a transforma-

tion algorithm that systematically transforms a platform-independent model (PIM ) into a

platform-specific model (PSM ) using UPPAAL semantics. This transformation algorithm
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composes the platform-independent model with the chosen implementation scheme in a

modular way; that is, when composed, the internal structure of the platform-independent

model remains unchanged. The transformed platform-specific model is now a new abstrac-

tion of the timed behavior of a particular implemented system. Therefore, the same timing

requirements verified in the platform-independent model can still be used to verify the

platform-specific model in order to check the timing requirement conformance of the imple-

mented system through model-checking. The details of this approach is given from Section

6.3 to Section 6.8.

Implementation-Level (IMP)

Implementation Scheme
Category (IS)

PIM

PSM
Transformation

Model-Level (PSM)

MIO

EXEIO

IFMI IFOC

ENVMC

Platform-Independent
Code

If PSM conforms to the timing requirement, 
then IMP conforms to the timing requirement as well

Output
Device

Input 
Device

Hardware Platform

Real Environment

Figure 15: The Formal Verification Approach in the Integration Phase

Testing approach: Testing is a widely used technique to show the requirement confor-

mance when a part of the internal of an implemented system is not known explicitly. We

propose a layered testing approach that enables the implemented system to be checked

for timing requirement conformance in a systematic way as illustrated in Fig. 16. Under

the assumption that the timing aspects of the platform-dependent code is unknown, this

approach defines the testing interface using Parnas’ four-variables (m, i, o, c) that can

separately measure the delays occurring at the platform-independent and the platform-

dependent code respectively. This interface is used by two different types of testing -
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R-testing and M-testing. R-testing checks whether the implemented system conforms to

the timing requirements. In this testing, test cases that consists of a pair of m-stimulus

and c-response with the maximum allowable delay are generated using the testing interface

at the mc-boundary. If the testing result shows that a timing requirement is violated in

the implemented system, then, M-testing is followed. In M-testing, testing points are gen-

erated at both the mc-boundary and io-boundary to measure several delay segments, such

as input delay or output delay, in order to quantify timing deviation between the platform-

independent model and its implemented system. The details of this approach is given from

Section 6.10 to Section 6.12.
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Figure 16: The Testing Approach in the Integration Phase

6.3. The Problem Statement (PSM Verification)

6.3.1. Motivating Example

We first give a running example motivated from the GPCA safety requirements and the

GPCA model explained in Section 3.2 in order to explain the platform-dependent verifica-
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tion process.

Consider the following informal timing requirement that is obtained from the GPCA safety

requirements [6]:

• (REQ1) “When a patient requests a bolus, a bolus infusion should start within 500ms."1

In the PI-Phase, a platform-independent code is developed by going through the two pro-

cesses:

Platform-independent modeling and verification: the timed behavior of a system

is first formalized using timed modeling languages. Fig. 17 shows a UPPAAL model that

abstracts the timed behavior of the infusion pump system and its environment. This model

is a parallel composition of two automata, M and ENV. M models the system using a

clock variable (x), input synchronizations (m-BolusReq and m-EmptySyringe), and output

synchronizations (c-StartInfusion and c-StopInfusion and c-Alarm). ENV models the en-

vironment using a clock variable (env-x) and complementary synchronizations with that of

M.

(1) M (2) ENV 

Figure 17: The example PIM

The informal semantics of the model is as follows: ENV can perform synchronizations, m-

BolusReq and m-EmptySyringe, with its respective minimum inter-arrival times (200 and
1Note that the specific timing parameter (500ms) is added to the original requirement to explain our

work.
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400 time-units). In case the m-BolusReq synchronization is enabled while M is in the Start

location, M makes a transition to BolusRequested location and then performs the output

synchronization c-StartInfusion in between 300 and 500 time-units; similarly, M makes a

transition either to the Start or EmptyDetected location depending on the timing guards

and the available synchronization.

We can show that REQ1 is satisfied in this model (by describing REQ1 as a logic formula,

which states that the maximum delay of two successive synchronizations – m-BolusReq

followed by c-StartInfusion – does not exceed 500 time-units, and verifying it using model

checking).

Platform-independent code generation: a code generation process automatically gen-

erates the platform-independent code (e.g., C code) from the verified model (e.g., the model

in Fig. 17). Listing 6.1 gives the pseudo code of the generated code that is typically produced

by existing code generators [14] [40].

Listing 6.1: Abstraction of Code(PIM)

1 Code(PIM){

2 loop forever

3 await();

4 local_i:=readInput(i);

5 Compute-InputTrans(local_i, getClock());

6 local_o:=Compute-OutputTrans(getClock());

7 writeOutput (local_o);

8 end loop

9 }

The pseudo code interacts with a platform via several platform-specific primitives (which

must be implemented by any platform that executes the generated code) as follows: First,

the code waits for a trigger (await in Line 3) from a platform so that the subsequent blocks

of the code can be executed. Once being triggered, it reads inputs (readInput in Line 4)

from the platform, and uses the obtained values to make a decision for input transitions
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(Compute-InputTrans in Line 5) along with the current clock time (which can be read from

a platform through getClock). Subsequently, it performs a transition decision for outputs

(Compute-OutputTrans in Line 6) along with the current clock time. Finally, it writes the

produced output to the platform (writeOutput in Line 7), and repeats this series of actions.

6.3.2. Problem Statement

The example platform-independent model (PIM ) in Fig. 17, which is one of the artifacts

produced in the PI-Phase (Chapter 4), does not explicitly capture the platform-specific

timing information. For example, it only describes that M is synchronized with ENV over

the m-BolusReq channel for the input interaction, but it does not express information about

how such synchronization is to be implemented on a particular platform. On the other

hand, the PD-Phase (Chapter 5) aims at expressing such platform-dependent information

from which the platform-dependent code can be generated to support the execution of the

platform-independent code. This information includes, e.g., how a platform reads a bolus

request input from a sensor (e.g., interrupt or sampling), how a platform processes the

sensor readings and delivers them to the software (e.g., shared variable or buffering), and

how tasks are scheduled by a platform (e.g., periodic or aperiodic invocation) to read the

input values and to take transitions.

The above separation of timing concerns is necessary in the model-based implementation,

because these platform-specific timing details are not typically available or less concerned in

the early modeling/verification stage, and the generated code is also expected to be re-used

on a range of target platforms through platform-specific customizations. However, it also

leads to timing gaps between a model and its implementation. In other words, the testing

result of the timing requirements on the final implementation may not be consistent with

the timing verification result of the platform-independent model, mainly because of the

missing platform-specific timing details in the early modeling stage.

To describe the problem more precisely, we introduce some notations used in this chap-
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ter. Code(PIM ) denotes the platform-independent code generated from a PIM . This code

needs to be composed with platform-specific primitives (e.g., read/write API) to realize

the platform-specific interactions. IS denotes an implementation scheme that is used for

such a composition. The implemented system is denoted by IMP, which indicates that the

resulting implementation is the platform-independent code executed with the support of an

implementation scheme IS . Finally, P(∆mc) denotes a timing requirement that the delay

between an input m and an output c must be within ∆mc time units (e.g., the delay between

the bolus request and the start infusion must be within 500ms).

As explained in the infusion pump example, the timing information of a chosen IS is not

explicitly modeled in the PIM and hence, the following claim may not always hold:

PIM |= P(∆mc) implies IMP |= P(∆mc).

To better describe the timed behavior of the implementation, we need a platform-specific

version of the PIM that captures the timed behavior of the IS , such that if this platform-

specific model (PSM ) is verified to meet a timing requirement, then its implementation

also satisfies the requirement. In addition, as was discussed earlier, the IS may introduce

an additional delay to the response time between an input m and an output c, which can

lead to a violation of the timing requirement P(∆mc) in the implementation. To quantify

how close the implementation is from satisfying P(∆mc), we would like to compute a new

delay bound ∆′mc for which P(∆′mc) holds in the implementation. In other words, we need

to derive a platform-specific model (PSM ) and a bound ∆′mc such that

PSM |= P(∆′mc) implies IMP |= P(∆′mc).

To this end, our goals are (1) to identify the necessary information to obtain such a PSM ,

(2) to develop a method for systematically transforming a PIM into a PSM based on the

identified information, and (3) to compute the bound ∆′mc.

In the next section, we introduce a platform-dependent verification framework that achieves

these goals.
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6.4. The Approach Overview (PSM Verification)

We assume that a platform consists of several building blocks to support the execution

of Code(PIM ), including the Input-Device that processes inputs generated from the en-

vironment, the Output-Device that processes outputs generated from Code(PIM ), and the

Code-Execution that invokes Code(PIM ) to perform transitions based on the environmental

inputs and the clocks’ values. Fig. 18-(a) shows the block diagram that illustrates these

blocks in an implemented system.

Code(PIM)

Code Execution

Input 
Device

Output 
Device

m c

i o i o

m c

Real Environment

MIO

EXEIO

IFMI IFOC

ENVMC

(a) Implementation
(IMP)

(b) Platform-Specific Model
(PSM)

Figure 18: The mapping between (a) the implemented system and (b) its platform-specific
model

To model the platform-specific information, we propose a general category of implementa-

tion schemes that lists possible mechanisms to implement each interaction of the platform

with the environment and with the Code(PIM ). A platform can select a particular combi-

nation of mechanisms from the category as its implementation scheme. Based on a chosen

implementation scheme IS , we can systematically transform a PIM into a PSM . The

transformed PSM is the parallel composition of the UPPAAL models shown in Fig. 18-(b)

(i.e., MIO‖IFMI‖IFOC‖EXEIO‖ENVMC ). Here, IFMI and IFOC model the platform-specific

input and output processing mechanisms for interacting with the environment (modeled
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as ENVMC ). EXEIO models the platform-specific invocation mechanism to schedule the

platform-independent code so as to receive (deliver) the code’s inputs (outputs) from (to)

a platform. Finally, MIO models the timed behavior of the platform-independent code exe-

cuted with the support of the implementation scheme IS . Each of these models is matched

to its respective building blocks shown in Fig. 18-(a).

Our transformation algorithm is modular and preserves the original structure of the PIM .

The algorithm ensures that the resulting PSM has a similar timed behavior2 to that of

the IMP. Based on the obtained PSM , we can verify whether the delay between an in-

put m and an output c is bounded; if so, we derive the delay bound ∆′mc from the total

processing delays of the Input-Device, the Code-Execution, and the Output-Device. By veri-

fying the PSM against the timing requirement P(∆′mc), we can formally check whether the

implementation meets this relaxed timing requirement.

6.5. Implementation Schemes

We define the system boundaries of an implemented system using Parnas’ four-variables [43]

that is similar to the mapping in Subsection 4.5.1. In this mapping, Code(PIM ) is integrated

with a platform, and their interaction occurs at the io-boundary. Code(PIM ) is (1) invoked

by a platform, (2) reads input from a platform in the form of i-variables, (3) makes transition

decisions, (4) writes outputs to the platform in the form of o-variables, and (5) waits for

another invocation from a platform. A platform is composed of the Input-Device and

Output-Device, and it interacts with the environment at the mc-boundary. The Input-

Device (1) reads inputs from the environment in the form of m-variables, (2) processes

the inputs, and (3) delivers the processed inputs to Code(PIM ) in the form of i-variables.

Similarly, the Output-Device reads (1) outputs from Code(PIM ) in the form of o-variables,

(2) processes the outputs, and (3) delivers the processed outputs to the environment in the

form of c-variables. Fig. 18 illustrates the mapping of an implemented system (IMP) with
2We use the term “similar timed behavior” since it requires further assumptions to argue that the

implementation shows exactly the “same timed behavior” with the PSM in a strict sense.
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the four-variables model.

An implementation scheme defines a mechanism for implementing each interaction at the

two system boundaries:

Definition 1 (Implementation Scheme). An implementation scheme is a pair {MC , IO},

where

• MC specifies a reading (writing) mechanism and associated parameters for each vari-

able v ∈ m ∪ o (v′ ∈ i ∪ c);

• IO specifies a reading (writing) mechanism and associated parameters for each variable

v ∈ i (v′ ∈ o), as well as an invocation mechanism for the Code(PIM ).

We next explain the implementation scheme in detail.

6.5.1. The mc-boundary interactions

An implementation scheme for the mc-boundary interaction is categorized in Table 7. An

implementation scheme for the Input-Device specifies (1) what types of input signals are

generated from the environment (in the form of m-variables), (2) how the Input-Device

reads these input signals and delivers the processed inputs to Code(PIM ) (in the form of

i-variables), and (3) the minimum and maximum delays – represented by the platform-

specific parameters delaymin and delaymax – that the Input-Device takes to transform an

input signal to a program value that can be read by the Code(PIM ). Similar information

can be defined by an implementation scheme for the Output-Device.

Implementation scheme MCs: The input interaction subcategory includes implementa-

tion schemes that a platform reads the m-variables whose signals (or values) are changed

by the environment. The schemes are categorized based on the types of signals generated

from the environment. Fig.19-(a) illustrates three types of signals considered in the input

interaction.
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Table 7: Implementation Scheme for Environment-to-Platform Interaction (m, c)
Interaction

Type
Signal
Type

Read
Policy

Platform Specific Parameters
(Pmc)

Input Interaction
(Env->Platform)

Pulse Signal
(Type 1)

Interrupt
(Rising Edge)

(1) Min/Max input processing delay  
(2) Input minimum inter-arrival time (Env)

Sustained Signal
(Type 2)

Interrupt
(Rising Edge) (1) Min/Max input processing delay

(2) Input minimum inter-arrival time (Env)
(3) Input sustained duration (Env)Interrupt

(Falling Edge)

Polling

(1) Min/Max input processing delay   
(2) Input sustained duration (Env)
(3) Input minimum inter-arrival time (Env)
(4) Polling Interval 

Sustained Signal
Until Read (Type 3)

Interrupt
(Rising Edge)

(1) Min/Max input processing delay
(2) Input minimum inter-arrival time (Env)

Polling
(1) Min/Max input processing delay   
(2) Polling Interval 
(3) Input minimum inter-arrival time (Env)

Output
Interaction

(Platform->Env)

Pulse Signal (Type 1) -

(1) Min/Max output processing delay
Sustained Signal (Type 2)

Non-Blocking

Blocking

Sustained Signal
Until Read (Type 3)

Non-Blocking

Blocking

The type-1 signal is a pulse signal. This signal does not have a sustained duration; more

precisely, its sustained duration is too short to be captured through a polling-based scheme.

Therefore, a platform is only able to read the type-1 signal through an interrupt-based

policy, in which an interrupt-service routine is automatically called for processing whenever

any signal change is detected on a sensor. For example, an infusion pump should detect

drug-drops using a drop sensor in order to precisely calculate the volume of drugs infused.

Such a drug-drop passes the sensor too fast, so that it is typically detected through an

interrupt-based scheme.

The type-2 signal has a non-zero sustained duration; once the signal is triggered, it is

sustained for a certain amount of time-duration, and then disappears. Therefore, a platform

has options to read the type-2 signal, either as an interrupt-based or a polling-based scheme.

In the interrupt-based scheme, a platform has two additional options in choosing the timing
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(Type 3) (Type 2) 

Rising edge Falling edge 

(Type 1) 

Time 

(M-BolusReq, t1) 

Time (M-EmptySyringe, t1’) 

(M-BolusReq, t2) (M-BolusReq, t3) 

(M-EmptySyringe, t2’) 

(a) Three types of m-variables 

(b) Inter-arrival time of m-variables 

The minimum inter-arrival time of M-BolusReq 

The minimum inter-arrival time of M-EmptySyringe 

(M-BolusReq, t4) 

Rising edge 

Read 

Figure 19: The environmental signal types

of signal reading, a rising-edge or a falling-edge. For example, an infusion pump should

detect a pressed state of a bolus request button or a closed state of an empty syringe sensor;

the granularity of the sustained time for both signals are far greater than a drug-drop so

that they can be detected through a polling-based scheme.

The type-3 signal is sustained until the signal is read by a platform. Like the type-2 signal, a

platform can read the type-3 signal through either an interrupt-based scheme or a polling-

based scheme. However, in case of the interrupt-based scheme, a platform is only able

to read the signal at its rising-edge since a falling-edge is triggered immediately when a

platform reads it. For example, the environment is another system that keeps an item in a

buffer until a platform reads the item.

The output interaction subcategory includes implementation schemes that a platform writes

signals to the environment, which is typically performed through actuators. Like the input

interaction, the output interaction considers three different types of environmental signals.

Unlike the input interaction, however, a platform can be blocked or non-blocked over the

outputs that are currently being produced. In the former case, a platform cannot produce
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another output until the current output is read by the environment or disappears due to a

time-out. In the latter case, a platform can produce another output at any time, regardless

of the output currently produced.

We believe that the three types of signal categories are sufficiently general enough in de-

scribing discrete environment3 and implemented systems, so any platform may choose one

of the implementation schemes to read inputs from and to write outputs to the environment.

Platform Specific Parameters Pmc: These implementation schemes require platform-

specific parameters to be implemented on a platform. Once an input signal is read either

through an interrupt or a polling-based scheme at the mc-boundary, the Input-Device re-

quires a processing delay until it is transformed into a program value that can be read

by Code(PIM ) at the io-boundary. This processing delay is characterized as (delaymin,

delaymax); a processed input value will be available for Code(PIM ) in between this time

interval. In case of using a polling-based scheme to read type-2 or type-3, the Input-Device

specifies a polling interval at which it samples the availability of the signals. Note that the

environmental signals also have parameters. For the type-2 signal, its sustained duration

is characterized as (min-sus, max-sus); that is, once a signal is triggered, it is sustained

for at least min-sus time, but it disappears before max-sus time. In addition, each input

signal generated from the environment is associated with a minimum inter-arrival time that

specifies the minimum duration in which a particular input never occurs. For example,

Fig.19-(b) shows that two inter-arrival time defined over m-BolusReq and m-EmptySyringe

inputs, respectively. Even though these parameters are related to the environment, changes

on these parameters lead to different timed behaviors of a platform. For example, if the sus-

tained duration of type-2 signal is too short compared to the polling interval of a platform,

a platform may miss the input. If the inter-arrival time of input is too short compared to

the processing delay of a platform, a platform may suffer buffer-full conditions.
3Our categorization does not consider the aspects of the continuous environment. If we take into account

the continuous signals generated from the environment, the categorization needs to be more elaborated.
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6.5.2. The io-boundary interactions

An implementation scheme for the io-boundary interaction is categorized in Table 8. An im-

plementation scheme for the interactions at the io-boundary specifies (1) how the Code(PIM )

is invoked for its execution by a platform, and (2) how the Code(PIM ) receives inputs from

the Input-Device and delivers outputs to the Output-Device.

Implementation scheme IOs: The invocation type subcategory includes implementation

schemes about how a platform triggers Code(PIM ) (its example is Listing 6.1). In case of

the periodic invocation, Code(PIM ) is periodically triggered (e.g., the line 3 in Listing 6.1

is unblocked periodically), and reads inputs from a platform (e.g., the line 4 in Listing 6.1).

Assume that a platform finished processing an input that had been read from the envi-

ronment; for example, electrical signal changes on the bolus-request button (m-variable) is

detected at the mc-boundary, and the Input-Device converts it in the form of a program

value (e.g., true or false in i-variable) that needs to be passed through io-boundary. Then,

there are two communication data structures to pass the processed input (i.e., i-variables)

to Code(PIM ); one is through shared variables, and another is through buffers that can

accommodate a finite size of items. When using a buffer, Code(PIM ) has two additional

options in reading the buffer upon every invocation: (1) a single input is read from a buffer,

(2) all inputs are read from a buffer.

Fig. 20 illustrates the timed behavior of the implementation scheme among the environment

(ENV ), a platform, and Code(PIM ). Here, in the mc-boundary, ENV generates three type-

2 signals, m1, m2, m3 in order; and, a platform reads them using an interrupt-based scheme

on their rising edges. In the io-boundary, a buffer is used to deliver the processed inputs

to Code(PIM ); Code(PIM ) is invoked periodically (five consecutive invocations are shown

here). Depending on the choice of the read policy from a buffer, Code(PIM ) uses different

sets of inputs to make transition decisions, which is performed at the line 5 in Listing 6.1.

For example, when Code(PIM ) makes a transition decision at 4th invocation, it uses a single
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Table 8: Implementation Scheme for Platform-to-Code Interaction (i, o)
Invocation 

Type
Interaction

Type
Communication

Mechanism
Read
Policy

Platform-Specific
Parameters (Pio)

Periodic

Input
Interaction
(Platform->

Code)

Shared variable - (1) Invocation period

Buffers

Read One
(Code) (1) Invocation period 

(2) Input buffer sizeRead All
(Code)

Output
Interaction

(Code -> 
Platform)

Shared variable -
(1) Invocation period 
(2) Polling interval

Buffers

Read One
(Platform) (1) Invocation period 

(2) Output buffer size 
(3) Polling intervalRead All

(Platform)

Aperiodic

Input 
Interaction
(Platform

Code)

Shared variable - (1) Aperiodic trigger event

Buffers

Read One
(Code) (1) Aperiodic trigger event

(2) Input buffer sizeRead All
(Code)

Output
Interaction

(Code -> 
Platform)

Shared variable -
(1) Aperiodic trigger event
(2) Polling interval

Buffers

Read One
(Platform) (1) Aperiodic trigger event

(2) Output buffer size 
(3) Polling intervalRead All

(Platform)

input value (i2) in case the read-one policy is used; on the other hand, it uses two input

values (i2 and i3) in case the read-all policy is used. Using different read-policies results in

different timed behaviors of Code(PIM ).

As another implementation scheme, Code(PIM ) can be triggered in an aperiodic manner;

that is, a set of events is defined that can trigger Code(PIM ); Code(PIM ) is triggered only

if an event in this set occurs. A shared variable can also be used to deliver inputs from a

platform to Code(PIM ); Code(PIM ) can read a shared variable, and a platform overwrites

it whenever a new input comes in.

Platform Specific Parameters Pio: This implementation scheme requires platform-

specific parameters to be implemented on a platform. If a buffer-scheme is used to implement
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Figure 20: The illustration of the interactions at the io-boundary

a communication medium, a platform should specify its maximum buffer size.

Code(PIM ) should check the communication medium to read inputs written by a platform.

Code(PIM ) is able to read the communication medium only if it is being invoked. Under

periodic invocation, a platform should specify the invocation period; every expiration of

the invocation period, Code(PIM ) reads inputs from the communication medium, performs

transitions, and writes outputs. Similarly, a platform should check the communication

medium too to read outputs written by Code(PIM ). A platform can check the communica-

tion medium through either an interrupt or a polling-based mechanism. In the interrupt-

based mechanism, a platform is informed when outputs are written by Code(PIM ). In the

polling-based mechanism, a platform periodically checks the communication medium; in

this case, it should specify the polling interval.

Different implementation schemes lead to different delays from the instant the environment

generates an input signal until the instant the Code(PIM ) reads the processed input. For

example, using a polling mechanism for detecting the environmental input (m-variables)
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can prolong the reading up to the next polling time, and using an aperiodic invocation

for the Code(PIM ) can reduce the delay by invoking Code(PIM ) immediately whenever

the processed input is inserted to the buffer. In Section 6.6, we introduce a modular

transformation algorithm that transforms a PIM into a PSM for a particular combination

of implementation schemes as an example.

6.6. Modular Transformation from PIM to PSM

The transformation algorithm takes a PIM and an implementation scheme (IS) as inputs,

and produces a PSM as an output. A resulting PSM introduces a similar timed behavior

close to the timed behavior of an actual implementation, IMP. The algorithm is modu-

lar, as it preserves the structure of the PIM for any implementation scheme defined in

Section 6.5. This modularity makes the platform-specific timing verification possible for a

range of implementation schemes that an arbitrary target platform may choose to execute

the Code(PIM ). Before describing the algorithm, we first discuss the timed behavior of the

PSM that the algorithm constructs from the PIM and the IS .

We give the definitions of PIM , PSM , IS below to explain the transformation algorithm.

Definition 2 (PIM ). A PIM is defined as a network of UPPAAL automata of M ‖ ENV ,

and M is defined as M= (L, l0, C, A, E, I), where L is a set of locations, l0 is an initial

location, C is a set of clocks, A is a union of a set of input synchronizations Am = {m1, ...

, mk}, and a set of output synchronizations Ac = {c1, ... , cj}, and E is a set of transitions,

I is a set of invariants.

Note that input and output synchronizations in Definition 2 are expressed usingm and c vari-

ables only, which implies that the interactions between M and ENV occur at the mc-

boundary. This means that the interactions at the io-boundary is not expressed at the

PIM level of abstraction.

Definition 3 (PSM ). A PSM is defined as a network of UPPAAL automata of MIO ‖

IFMI1 , ... , IFMIk
‖ IFOC1 , ... , IFOCj ‖ EXEIO ‖ ENVMC
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Note that a subscript of each automaton in Definition 3 specifies a system boundary where

the interactions occur. For example, MIO and EXEIO model the interactions at the io-

boundary; IFMIk
and IFOCj model the interactions at both the mc-boundary and io-

boundary; and ENVMC models the interactions at the mc-boundary. Such interactions are

modeled using either channel synchronizations or variables in UPPAAL semantics.

The transformation algorithm is compatible with the following implementation scheme IS1 .

Algorithms compatible for other implementation schemes can be similarly designed preserv-

ing the modular structures.

Example 6.6.1 (IS1 ). The implementation scheme 1 is given by IS1 = {MC 1, IO1}, where:

(1) MC 1(v) = 〈(pulse signal, interrupt, rising-edge); (delaymin= 1, delaymax= 3)〉 and

MC 1(v′) = 〈(pulse signal); (delaymax= 1, delaymax= 3)〉 for all v ∈ m ∪ o, and v′ ∈ i ∪ c;

and (2) IO1(v) = 〈(Buffers, Read-all); (buffer-size= 5)〉 for all v ∈ i ∪ o, and IO1(invoke)

= 〈(Periodic invocation); (period = 100)〉.

Fig. 21 illustrates the different timed behaviors of the PIM and the PSM . As shown in

the figure, in the PIM , M is directly synchronized with ENV at the mc-boundary: when-

ever an input is triggered (mk!), M can immediately accept it (mk?); similarly, whenever

M produces an output (ck!), the output is immediately visible to the environment (ck?).

However, in the PSM , MIO (which will be constructed from M) is indirectly synchronized

with the environment ENVMC via a platform whose behavior is abstracted as the parallel

composition of IFMI (input interface), IFOC (output interface), and EXEIO (code exe-

cution) automata. Specifically, when an input is triggered (mk!), it is first read (mk?),

processed, and enqueued to a buffer by IFMI . The buffered input is then dequeued by

EXEIO, which also performs the synchronization with MIO (ik!). Subsequently, MIO pro-

duces the corresponding output and enqueues the output to a buffer at the io-boundary.

Finally, IFOC dequeues the output, processes it, and makes the processed output visible to

ENVMC (ck!).
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Figure 21: The illustration of the timed behavior of PIM and PSM under the implementation
scheme

We next explain the detailed algorithm for constructing a PSM with the above timed behav-

ior. We focus on a transformation algorithm that is compatible with the implementation

scheme IS1 in Example 6.6.1; algorithms compatible for other schemes can be designed

similarly.

We first define the necessary operations that are used for the transformation algorithm:

• Rename(ssrc, sdst): returns an item whose name is changed from ssrc into sdst,

• Copy(Ssrc, Sdst): a pair-wise copy of items in a set Ssrc into another set Sdst,

• Insert(ssrc, Sdst): inserts an item ssrc into a set Sdst,

• CreateL(lk, invk): creates a new location lsrc whose invariant is invk,
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• CreateT (e, lsrc, ldst): creates a new transition e whose source location is lsrc, and

destination location is ldst,

• Associate(e, g, a, u): Associate a transition e with a guard condition (g), and an input

or an output synchronization (a), and an update statement (u),

• ID(s): returns an identification of s, which is either a location or a synchronization.

The next three subsections explain (1) MIO‖ENVMC , (2) IFMI‖IFOC , and (3) EXEIO that

comprises the PSM .

6.6.1. Construction of MIO and ENVMC

In contrast to the M synchronizations with the environment over m and c variables, MIO is

desynchronized from the environment. This implies that Code(PIM ) should directly interact

with a platform at the io-boundary to communicate with the environment (see Fig. 18).

The purpose of this transformation is to obtain MIO that abstracts a part of such timed

behavior of Code(PIM ) when interacting with its platform.

MIO is defined as MIO = (LIO, lIO0, CIO, AIO, EIO, IIO), and Listing 6.2 is a pseudo

algorithm (Transform1 ) that constructs MIO from M . Intuitively, MIO remains syntacti-

cally the same asM except its synchronizations are renamed from m to i, which implies the

interaction between Code(PIM ) and a platform at the io-boundary. curLoc is an integer

variable that keeps track of current locations of MIO; this variable is updated every tran-

sition to record the identification of the current location. The value of curLoc is used to

perform necessary synchronizations in EXEIO that will be introduced in Subsection 6.6.3.

Listing 6.2: The pseudo algorithm for M to MIO transformation
function Transform1(M, MIO)

Copy(L, LIO);

Copy(l, lIO0);

Copy(C, CIO);

Copy(I, IIO);

for each mk ∈ Am and ck ∈ Ac
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Insert(Rename(mk, ik), AIO);

Insert(Rename(ck, ok), AIO);

endfor

for each ek ∈ E

CreateT(eIOk, ek.lsrc, ek.ldst);

Associate(eIOk, ek.g, ek.a, (ek.u ∪ curLoc:=ID(eIOk.ldst)));

Insert(eIOk, EIO);

endfor

endfunction

Fig. 22-(1) is the example of MIO transformed from M in Fig. 17-(1) using the algorithm

Transform1 ; Fig. 22-(2) is the example of ENVMC transformed from ENV in Fig.17-(2).

Note that the environment model remains exactly the same under the current implemen-

tation scheme where only type1 signal is considered. Now, the two input synchronizations

in MIO, i-BolusReq and i-EmptySyringe, are not synchronized with the output synchro-

nizations of ENVMC , m-BolusReq and m-EmptySyringe as implied in their different names.

Similarly three output synchronizations in MIO, o-StartInfusion and o-StopInfusion and

o-Alarm, are not synchronized with their complementary synchronizations of ENVMC for

the same reason. Such desynchronization between MIO and ENVMC results in some missing

information in connecting the input and output data flow across the two system boundaries.

We introduce the input and output interface automata that fill such missing information in

Subsection 6.6.2.

(1) MIO (2) ENVMC 

Figure 22: The MIO and ENVMC of the PSM
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6.6.2. Construction of IFMI and IFOC

The transformed MIO is desynchronized from its environment according to the Transform1

algorithm in Listing 6.2. IFMI (IFOC ) is an input (output) interface automaton that models

the data flow from m to i (from o to c), which is performed by the Input-Device (Output-

Device). This automaton models (1) the platform-specific delays introduced when convert-

ing an environmental input to a program input (a program output to an environmental

output), and (2) the communication mechanism used to deliver a program input to the

Code(PIM ) (a program output to the platform).

Construction of IFMI : IFMI is an input interface automaton that abstracts the data

flows from m to i that are performed by the Input-Device. IFMI is synchronized with

ENVMC over m-variables to read environmental input signals (e.g., type1 signal). Then,

it finishes input processing in between minimum and maximum processing delay defined

in Pmc1 of IS1 . The processed inputs in the form of i-variables are enqueued in a buffer

since a buffer scheme is used in IS1 for the input interaction between the Input-Device and

Code(PIM ). The buffered inputs are ready for being read by Code(PIM ). The purpose of

this transformation is to obtain IFMI that abstracts such timed behavior of the Input-Device.

IFMI is a network of UPPAAL automata defined as IFMI = IFMI1 ‖ IFMI2 ‖ ... ‖ IFMIk
,

where k is the number of input synchronizations in Am of M . An IFMIk
automaton is

defined as IFMIk
= (LMI , lMI0 , CMI , AMI , EMI , IMI). Listing 6.3 is the pseudo algorithm

(Transform2 ) that constructs IFMI from M and IS1 .

Listing 6.3: The pseudo algorithm for IFMI construction
function Transform2(IS1, M, IFMI)

for j = 1 to k

Insert(iClk, IFMIj
.CMI);

Insert(CreateL(lidle, null), IFMIj
.LMI);

Insert(CreateL(lproc, iClk ≤ IS1.MaxDelayj), IFMIj
.LMI);

Insert(mj ∈ Am, IFMIj
.AMI);

for i = 1 to 4

case i == 1:
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Create(ei, lidle, lproc);

Associate(ei, null, mk, iClk := 0);

case i == 2:

Create(ei, lproc, lidle);

Associate(ei, (iClk ≥ MINDelayj ∧ ilen < IS1.iN), null, ienqueue(ID(mk)) ∪ iClk := 0);

case i == 3:

Create(ei, lproc, lidle);

Associate(ei, (iClk ≥ MINDelayj ∧ ilen == IS1.iN), null, null);

case i == 4:

Create(ei, lproc, lproc);

Associate(ei, null, mj, null);

Insert(ei, IFMIj
.EMI);

endfor

IFMI = IFMI ‖ IFMIj
;

endfor

endfunction

Here are intuitions of the timed behavior of the IFMIj . Regarding to the two locations, the

lidle location implies the Input-Device is ready to read an input mj from ENVMC ; the lproc

location implies the Input-Device is currently processing the input mj that has been read

from ENVMC . Once the input mj is read by making a transition e1, a processed input is

ready in between (IS1.MinDelayj , IS1.MaxDelayj) that is defined in Pmc1. A processed

input is delivered to Code(PIM ) through a finite size of buffer whose size is IS1.iN that

is defined in Pio1. Therefore, there are two cases when the processed input needs to be

inserted into the buffer, (1) the buffer has an empty slot (implied in the transition e2), or

(2) the buffer is full (implied in the transition e3).

Note that it is possible for different types of inputs to have different processing delays; for

example, m-BolusReq may have a processing delay (300, 500), while m-EmptySyringe has

a processing delay (200, 600). Also, while processing an input mj , the same type of input

(i.e., mj) is ignored as implied in the transition e4. However, processing an input mj does

not block processing other types of inputs mk where k 6= j; for example, while IFMIBolusReq

is in the lproc location, it is possible for a platform to read an input m-EmptySyringe

for processing in IFMIEmptySyringe
. Fig. 23 shows the IFMIBolusReq

and IFMIEmptySyringe
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constructed from M in Fig. 17 and IS1 .

(1) IFMI_BolusReq 

(2) IFMI_EmptySyringe 

Figure 23: The input interface automata of PSM

Construction of IFOC : IFOC is an output interface automaton that abstracts the data

flows from o to c that are performed by the Output-Device. IFOC is synchronized with

ENVMC over c-variables to read outputs from Code(PIM ). Then, it finishes output pro-

cessing in between minimum and maximum processing delay that is defined in Pmc1 of IS1 .

The processed outputs in the form of c-variables are ready to be written to ENVMC . The

purpose of this transformation is to obtain IFOC that abstracts such timed behavior of the

Output-Device.

Here is the construction algorithm of IFOC . Similar to IFMI , IFOC is a network of UPPAAL

automata defined as IFOC = IFOC1 ‖ IFOC2 ‖ ... ‖ IFOCj , where j is the number of output

synchronizations in Ac of M . An IFOCj automaton is defined as IFOCj = (LOC , lOC0 ,

COC , AOC , EOC , IOC). Listing 6.4 is the pseudo algorithm (Transform3 ) that constructs

IFOC from M and IS1 .
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Listing 6.4: The pseudo algorithm for M to IFOC transformation
function Transform3(IS1, M, IFOC)

for j = 1 to n

Insert(oClk, IFOCj
.COC);

Insert(CreateL(lidle, oClk≤IS1.MaxDQDelayj), IFOCj
.LOC);

Insert(CreateL(lproc, oClk≤IS1.MaxDelayj), IFOCj
.LOC);

Insert(cj ∈ Ac, IFOCj
.AOC);

for i = 1 to 3

case i == 1:

Create(ei, lidle, lproc);

Associate(ei, (olen > 0 ∧ ofind(ID(cj)) == true), null, odequeue(ID(cj)) ∪ oClk := 0);

case i == 2:

Create(ei, lproc, lidle);

Associate(ei, oClk ≥ IS1.MinDelayj, cj, oClk := 0);

case i == 3:

Create(ei, lidle, lidle);

Associate(ei, ((olen == 0 ∨ ofind(ID(ck)) == false) ∧ oClk == IS1.MAXDQInterval), null, oClk :=

0);

Insert(ei, IFOCj
.EMI);

endfor

IFOC = IFOC ‖ IFOCj
;

endfor

endfunction

The timed behavior of the IFOC is similar to that of IFMI except the data flows in an

opposite direction. Since a buffer scheme is used in IS1 for the output interaction between

the Output-Device and Code(PIM ), IFOC now dequeues buffered outputs in the form of

o-variables; then, it converts the buffered outputs into the outputs in the form of c-variables

in between (IS1.MinDelayj , IS1.MaxDelayj) that can be written to the environment.

We make a note for the platform-specific parameter IS1.MaxDQDelayj that is the polling

interval defined in Pio1. This parameter specifies the upper time limit until the Output-

Device is forced to check the output buffer to read outputs for processing. If this parameter

is set to infinite, there is no timing constraint enforced to the Output-Device in reading the

output buffer. In this case, it is possible for Output-Device not to read the output buffer

forever so that output values are never visible at the mc-boundary even though Code(PIM )
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keeps writing outputs to the buffer at the io-boundary. If it is set as an integer number, the

Output-Device has to read the output buffer before the timeout. Fig. 24 shows the example

IFOCStartInfusion
and IFOCStopInfusion

and IFOCAlarm
transformed from M in Fig. 17 and

IS1 .

(1) IFOC_StartInfusion 

(2) IFOC_StopInfusion 

(3) IFOC_Alarm 

Figure 24: The output interface automata of PSM

6.6.3. Construction of EXEIO

MIO is transformed from M according to the Transform1 algorithm in Listing 6.2. Oc-

currences of synchronizations in AIO of MIO imply that Code(PIM ) has read inputs from

the Input-Device, or Code(PIM ) has written outputs to the Output-Device. However, even

though IFMI and IFOC abstract the behavior of the Input-Device and the Output-Device,
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there is no direct synchronizations in between MIO and these automata; for example, the

IFMIBolusReq
automaton in Fig. 23-(1) is synchronized with ENVMC through them-BolusReq

channel, but there is no synchronization over the i-BolusReq channel with MIO. This is be-

cause the chosen communication scheme (i.e., a buffer-scheme) prevents MIO from directly

synchronizing with IFMI and IFOC . In other words, once an input is written to the input

buffer by the Input-Device, Code(PIM ) does not need to read it immediately; similarly, once

an output is written to the output buffer by Code(PIM ), the Output-Device does not need

to read it immediately. These situations are illustrated in Fig. 21 as the two timing gaps

(1) the time passage between enq(i) and deq(i), and (2) the time passage between enq(o)

and deq(o).

EXEIO automaton performs such synchronizations with MIO only if when MIO reads inputs

from the buffer, and when MIO writes outputs to the buffer. Such timing for buffer read-

/write operations is closely tied to the invocation implementation scheme of Code(PIM ); in

other words, buffer read/write operations can occur while Code(PIM ) is being invoked by

a platform. In IS1 , Code(PIM ) is invoked periodically (i.e., await function is periodically

unblocked in Listing 6.1). Upon invocation, Code(PIM ) first dequeues all inputs from the

buffer (since IS1 uses read-all policy), and performs a single input synchronization (since

IS1 uses a single input transition per invocation policy); an output synchronization is per-

formed afterward when an output is enqueued to the buffer in a similar manner. After

finishing the read and write operations, EXEIO becomes idle waiting for the next periodic

invocation. The purpose of this transformation is to obtain EXEIO that abstracts such

timed behavior of periodic invocation and synchronizations with MIO.

EXEIO is an UPPAAL automaton that is defined as EXEIO = (LEXE , lEXE0, CEXE , AEXE ,

EEXE , IEXE). The construction of EXEIO from MIO and IS1 consists of the construction

for non-buffer and buffer operations.

Construction of the non-buffer operation part: Transform4 in Listing 6.5 is the con-

struction algorithm of the non-buffer operation part of EXEIO. It creates six locations that
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correspond to the execution of the Code(PIM ) abstraction in Listing 6.1 as follows; lwait

implies that Code(PIM ) is waiting for an invocation (i.e., await is being blocked); lactive

location implies that Code(PIM ) has been invoked, and ready for the execution of the rest

of the code (i.e., await is unblocked); lreadready, lreadcomplete, lwriteready, lwritecomplete loca-

tions imply that the respective computations -readInput, Compute-InputTrans, Compute-

OutputTrans, writeOutput- occur. The two platform-specific parameters, IS1.InvokePrd

and IS1.WCET , are associated with the invariants of these locations. IS1.InvokePrd is the

invariants of lwait that specify the periodic invocation interval defined in Pio1; IS1.WCET

is the invariant of the rest of the locations that specifies the worst case execution time of

Code(PIM ) defined in Pcd1. Fig. 25 is the EXEIO constructed from MIO in Fig .22-(1)

where these six locations are represented.

Listing 6.5: The pseudo algorithm for construction EXEIO from MIO to transformation

(Non-buffer operation part)
function Transform4(IS1, MIO, EXEIO)

Insert(eClk, CEXE);

Insert(CreateL(lwait, eClk ≤ IS1.InvokeP rd), LEXE);

Insert(CreateL(lactive, eClk ≤ IS1.W CET ), LEXE);

Insert(CreateL(lreadready, eClk ≤ IS1.W CET ), LEXE);

Insert(CreateL(lreadcomplete, eClk ≤ IS1.W CET ), LEXE);

Insert(CreateL(lwriteready, eClk ≤ IS1.W CET ), LEXE);

Insert(CreateL(lwritecomplete, eClk ≤ IS1.W CET ), LEXE);

Copy(AIO, AEXE);

for i = 1 to 8

case i == 1:

Create(ei, lwait, lactive);

Associate(ei, eClk == IS1.InvokeP rd, null, eClk := 0);

case i == 2:

Create(ei, lactive, lreadready);

g := null;

for each lk ∈ LIO

if lk has at least one ek ∈ EIO such that ek is associated with an input synchronization ik ∈

AIO

g := g ∨ curLoc == ID(lk);

endif
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endfor

Associate(ei, g, null, null);

case i == 3:

Create(ei, lactive, lreadcomplete);

g := null;

for each lk ∈ LIO

if lk has no ek ∈ EIO such that ek is associated with an input action ik ∈ AIO

g := g ∨ curLoc == ID(lk);

endif

endfor

Associate(ei, g, null, null);

case i == 4:

Create(ei, lreadready, lreadcomplete);

Associate(ei, ilen == 0, null, null);

case i == 5:

Create(ei, lreadcomplete, lwriteready);

g := null;

for each lk ∈ LIO

if lk has at least one ek ∈ EIO such that ek is associated with an output synchronization ok ∈

AIO

g := g ∨ curLoc == ID(lk);

endif

endfor

Associate(ei, g, null, null);

case i == 6:

Create(ei, lreadcomplete, lwritecomplete);

g := null;

for each lk ∈ LIO

if lk has no ek ∈ E such that ek is associated with an output synchronization ok ∈ AIO

g := g ∨ curLoc == ID(lk);

endif

endfor

Associate(ei, g, null, null);

case i == 7:

Create(ei, lwriteready, lwritecomplete);

Associate(ei, olen == oN, null, null);

case i == 8:

Create(ei, lwritecomplete, lwaiting);

Associate(ei, null, null, eClk := 0);

Insert(ei, EEXE);
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endfor

endfunction

This algorithm also generates transitions that are selectively taken depending on the pres-

ence of synchronizations associated with the current locations of MIO. Therefore, transitions

to lreadready and lwriteready locations can be skipped if no input and output synchronizations

are possible in the current location of MIO, respectively. For this purpose, the algorithm

generates two outgoing transitions, e2 and e3, from the lactive location; e2 is taken only if

MIO is in locations whose outgoing transitions include at least one input synchronization;

for example, Start and Infusion are such locations in Fig. 22-(1). e3 is taken only if MIO is

in locations whose outgoing transitions include at least one output synchronization; for

example, Bolus and Infusion and Empty are such locations in Fig. 22-(1).

It also additionally generates the two transitions, e4 and e7, that are taken when the input

buffer is empty and the output buffer is full in which case no synchronizations can happen

(i.e., MIO has nothing to read an input from the empty buffer, and cannot write an output

due to the fact that the buffer is full).

Construction of the buffer operation part:

Transform5 in Listing 6.6 is the transformation algorithm that constructs the buffer op-

eration part of EXEIO. Given the constructed locations using the non-buffer operation

part, this algorithm basically adds necessary input and output transitions according to the

following rules. For an input synchronization ik associated with a transition ek in MIO, it

creates two types of transitions from lreadready to lreadcomplete in EXEIO. The first transition

e′k1 implies that there is a buffered input associated with ik, and the guard condition of the

transition ek is satisfied; then, it dequeues the input performing the input synchronization

between MIO and EXEIO over ik. The second transition e′k2 implies that the guard condi-

tion of the transition ek is satisfied; therefore, it cannot synchronize over ik even though

there is an associated input in the buffer.
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Transitions associated with output synchronizations are constructed in a similar way. Fig. 25

is the EXEIO constructed from MIO in Fig. 22-(1).

Listing 6.6: The pseudo algorithm for construction EXEIO from MIO(Buffer-operation

part)
function Transform5(IS1, MIO, EXEIO)

for each ek ∈ EIO such that ek is associated with an input synchronization ik ∈ AIO

//Create the first transition.

CreateT(e′
k1, lreadready, lreadcomplete);

g′ := null;

Copy(ek.g, g′);

Associate(e′
k1, (ilen > 0) ∧ g′ ∧ ifind(ID(ik)), ik, idequeue(ID(ik)));

Insert(e′
k1, EEXE);

//Create the second transition.

Create(e′
k2, lreadready, lreadcomplete);

g′ := null;

Copy(negate(ek.g), g′);

Associate(e′
k2, (ilen > 0) ∧ g′, null, null);

Insert(e′
k2, EEXE);

endfor

for each ek ∈ EIO such that ek is associated with an output synchronization ok ∈ AIO

//Create the first transition.

Create(e′
k1, lwriteready, lwritecomplete);

g′ := null;

Copy(ek1.g, g′);

Associate(e′
k1, (olen < IS1.oN) ∧ g′ ∧ curLoc == ID(ek.src) , ok, oenqueue(ID(ok)));

Insert(e′
k1, EEXE);

//Create the second transition.

Create(e′
k2, lwriteready, lwritecomplete);

g′ := null;

Copy(negate(ek.g), g′);

Associate(e′
k2, (olen < IS1.oN) ∧ g′ ∧ curLoc == ID(ek.src), null, null);

Insert(e′
k2, EEXE);

endfor

endfunction
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Figure 25: The EXEIO synchronized with MIO in Fig.22-(1)

6.7. The Property of the PSM

We explain the property of the PSM that has been transformed from the PIM according

to the proposed algorithm. Here are definitions of three types of maximum delays of a pair

(j) of input and output:

1) M-C Delay ∆mc: specifies the maximum time passage from the instant the environment

triggers an input (mj , tmj ) until the instant the environment observes an output (cj , tcj )

at the mc-boundary, i.e., ∆mc = tcj - tmj ; this delay is illustrated in Fig. 21 as the time

passage between the two synchronizations (mk! and ck?) of ENVMC .

2) Input-Delay ∆mi: specifies the maximum time passage from the instant the environ-

ment triggers an input (mj , tmj ) at the mc-boundary until the instant the Code(PIM ) reads

the input (ij , tij ) at the io-boundary, i.e., ∆mi = tij - tmj ; this delay is illustrated in Fig. 21

as the guarded section of IFMI .

3) Output-Delay ∆oc: specifies the maximum time passage from the instant Code(PIM )

produces an output (oj , toj ) at the io-boundary until the instant the environment observes
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the output (cj , tcj ) at the mc-boundary, i.e., ∆oc = tcj - toj ; this delay is illustrated in

Fig. 21 as the guarded section of IFOC .

Given PIM |= P(∆mc), our goal is to find ∆′mc such that,

PSM |= P(∆′mc), and ∆′mc ≥ ∆mc.

∆′mc is a relaxed timing constraint from the original constraint ∆mc. Such relaxation should

be considered in terms of the Input-Delay and the Output-Delay. The Input-Delay is a func-

tion of ENVMC , IFMI , EXEIO; that is, once the environment triggers an input, the sustained

duration of the input signal, the input interaction scheme (e.g., polling or interrupt-scheme),

invocation-scheme (e.g., periodic or aperiodic scheme) constitute the delay. On the other

hand, the Output-Delay is a function of ENVMC , IFOC , EXEIO; that is, once Code(PIM )

produces an output, the output interaction scheme, invocation-scheme, and the environ-

mental behavior constitute the delay.

Remark 1. In general, we cannot determine the bound of ∆′mc because some combinations

of platform-specific parameters (Pmc, Pio) make ∆′mc unbounded. However, we can derive

timing constraints on implementation schemes that make ∆′mc bounded. If they are satisfied,

we can find such a bound.

We now show the four constraints that make ∆′mc bounded:

• (Constraint 1) Detection of all input signals: Given an input pattern generated from

ENVMC , (1) IFMI can detect all input signals, and (2) the maximum input processing

delay of IFMI is shorter than the minimum inter-arrival time.

• (Constraint 2)No overflow of the input buffer : The invocation interval of EXEIO should

be small enough w.r.t. the input processing speed of IFMI so that each input can be

read by EXEIO before the input buffer overflows.

• (Constraint 3) No overflow of the output buffer : Given an output pattern generated

by MIO, (1) IFOC has sufficient processing speed to process all outputs before the
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output buffer overflows, and make them visible to ENVMC , and (2) ENVMC can read

the produced outputs by IFOC fast enough.

• (Constraint 4) No internal transition occurrences: Since ENVMC generates an input,

MIO does not take internal transitions until the input is processed by IFMI , and read

by MIO.

Lemma 1. If the system constraints are verified in PSM, then (1) the Input-Delay is

bounded by the function of all maximum platform-specific parameters that are used for

ENVMC , IFMI , EXEIO, (2) the Output-Delay is bounded by the function of all maximum

platform-specific parameters that are used for ENVMC , IFOC , EXEIO,

Proof. Here is the proof for the Input-Delay: Since the constraint 1 holds, the triggered

input is read by IFMI until:

• (Case 1) type-1 signal is immediately accepted;

• (Case 2) type-2 signal is accepted up to max-sus time;

• (Case 3) type-3 signal is accepted up to polling-interval.

Once an input signal is read by IFMI , since the constraint 2 holds, it takes up to delaymax in-

put processing delay until it is inserted into the input-buffer; the inserted input is waiting

to be read by Code(PIM ) whose behavior is modeled in EXEIO. There are two different

invocation mechanisms, and each introduce different maximum delays.

In case of the periodic invocation:

• (Case 1: Read-All policy) the buffered input is read within 2*invocation-interval since

EXEIO will read the buffered input either in the current invocation or the next invo-

cation;

• (Case 2: Read-One policy) the buffered input is read within (input-buffer-size)*2*

invocation-interval since a buffered input needs to wait until other inputs that have
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been previously inserted are read by Code(PIM ); the buffer size determines the bound

of the maximum waiting delay.

In case of the aperiodic invocation:

• (Case 1: Read-All policy) the delay takes up to 2*WCET, since if the current execution

stage of Code(PIM ) already passes, the buffered input will be read immediately after

completing the current invocation;

• (Case 2: Read-One policy) the delay takes up to (input-buffer-size)*WCET, which

constitutes the delays taken for Code(PIM ) to read other inputs that have been al-

ready buffered.

Finally, since the constraint 4 holds, there is no internal transition occurring up to this

point since the input is triggered from ENVMC ; therefore, MIO can synchronize with the

input read from the buffer. Therefore, Input-Delay is bounded by the summation of these

platform-specific timing parameters, and the upper bound of the Output-Delay can be

proved similarly.

Recall that ∆mi and ∆oc are the upper bounds of Input-Delay and Output-Delay as ∆mi

and ∆oc. Let ∆io−internal be the maximum internal delay of the PIM for processing the

input and output pair (i, o). The following lemma holds:

Lemma 2. If the system constraints are verified in PSM, then, we can determine ∆′mc

such that, PSM |= P(∆′mc), and ∆′mc = ∆mi + ∆oc +∆io−internal.

Proof. The rest of the delays that contribute to ∆′mc is the internal delay of PIM for

processing the input i and the output o. Therefore, the maximum possible M-C delay is

bounded by the summation of these three types of delays.

We make the following claim:

Theorem 1. If PSM verifies the system constraints, and if a platform is correctly described
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using the implementation scheme, then PSM |= P(∆′mc) implies IMP(Code(PIM), IS) |=

P(∆′mc).

We can validate the assumption: "if a platform is correctly described using the implemen-

tation scheme" through testing, and show the case-study in Section 6.8.

6.8. Case Study of the PSM Verification

The case study is intended to show how the proposed timing verification framework can be

used.

Case study setting: We created a PIM that meets REQ1 using UPPAAL; that is, it

verifies that the PIM starts infusion within 500ms when a patient requests a bolus (i.e.,

PIM |= P(∆mc)). Then, the PIM is automatically generated into C-code using TIMES

tool [14] to obtain Code(PIM ). The Code(PIM ) is then integrated with the Baxter PCA

infusion pump platform as shown in Fig. 26-(a), and all timing information is measured

using the oscilloscope. The Code(PIM ) is integrated with the target platform following

IS1 except the polling scheme is used to read the bolus request input. Fig. 26-(b) shows the

platform-specific parameters used in this implementation. The PSM is transformed from

the PIM and IS1 according to the algorithm introduced in Section 6.6.

Under this setting, we performed 60 times of the bolus request scenarios on the Baxter

PCA infusion pump platform, and measured the timing delays using the oscilloscope. Some

of these parameters are obtained from testing (e.g., input processing delay, WCET), and

some of these parameters are set by ourselves (e.g., polling interval, invocation period).

Throughout the 60 times of bolus request testing, the M-C delay, the Input-Delay and the

Output-Delay are measured together, and their average, maximum, minimum time delays

are summarized in the Measured Delay-(IMP) row in Table 9.

PSM Verification over P(∆mc): REQ1 is not satisfied under the PSM (i.e., PSM 6|=

P(∆mc)). In other words, when the PIM is composed with the implementation scheme IS1 ,
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(a) Baxter PCA Pump Hardware

(b) Oscilloscope

(c) Microcontroller (SAM7X, FreeRTOS)

(d) Bolus Request Button

(e) Intravenous Tube

Category Parameter Value

Pmc1

Sustained duration 

(for m-BolusReq)

Min: 100ms

Max: 300ms

Input processing delay 

(for m-BoulsReq)

Min: 3ms

Max: 10ms

Input polling interval 50ms

Output processing delay 

(for c-StartInfusion)

Min: 3ms

Max: 10ms

Pio1

Invocation period 100ms

Dequeue interval 300ms

Input-buffer size 5

Output-buffer size 5

Pcd1

Minimum inter-arrival time 

(for m-BolusReq)
2000ms

WCET 30ms

(a) the experimental platform setup (b) the platform-specific parameters

Figure 26: The experimental setup (PCA Infusion Pump System)

it takes more than 500ms until the infusion is started from the moment when a bolus is

requested. This is because the additional platform-dependent delays originated from the

composition of PIM and IS1 contribute to the prolonged delay. From this PSM verification

result, we can conclude that the actual implementation may introduce a case where the

actual delay (∆′mc) is greater than the delay (∆mc) that has been verified in PIM . Among

60 test results, we observed 53 times of the timing requirement violations (i.e., only 7 cases

showed the delay is less than 500ms); this implies IMP 6|= P(∆mc).

Table 9: The experiment result

M-C 
delay

Input 
Delay 

Output 
Delay 

Buffer 
Overflow

Verified 
Upper Bound (PSM)

1430ms 490ms 440ms X

Measured
Delay
(IMP)

Avg. 610ms 97ms 215ms

XMax 748ms 152ms 304ms

Min 456ms 48ms 100ms

PSM Verification over P(∆′mc): Now, we verify a more relaxed timing requirement

P(∆′mc). Given the measuredM-C delay, we chose a ∆′mc (1430ms) determined by Lemma 1
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and 2 based on the platform-specific parameters in Fig. 26-(b); here, the verified M-C delay

and Input-Delay and Output-Delay are 1430ms (490ms + 440ms + 500ms), 490ms, 440ms,

respectively. We also verified the system constraints under the PSM . Thus, assuming the

validated platform-specific parameters through testing are correct, we can conclude IMP |=

P(∆′mc). Note that this verified result is also consistent with the testing result; in other

words, all measured time-delays are bounded by the verified time-bound (i.e., 1430ms).

6.9. Summary of the PSM Verification

The integration phase aims at obtaining a final implemented system by (1) composing the

platform-independent code (produced in the PI-Phase) and the platform-dependent code

(produced in the PD-Phase), and by (2) checking whether the composition conforms to the

timing requirements.

In particular, Sections 6.3 to Section 6.8 introduced the platform-dependent verification

process that particularly focuses on the timing aspects of the implemented system; that

is, this verification process enables the timed behavior of the implemented system to be

formally verified against the timing requirements. The general category of implementation

schemes are proposed from which a platform can choose a particular combination for the

execution of the platform-independent code. Then, the proposed transformation algorithm

systematically transforms a PIM into a PSM given an implementation scheme. If a platform

is correctly described using the implementation scheme and meeting the system constraints,

the resulting PSM introduces the timed behavior that is close to the timed behavior of the

actual implemented system.

6.10. The Problem Statement (Timing Testing)

The formal verification approach introduced from Section 6.3 to Section 6.8 can be used

under the assumption that the platform-specific timing information required to construct

an implementation scheme are known a priori, and can be formally abstracted along with

the platform-independent model. In other words, if such platform-specific timing informa-
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tion is not known for some reason (e.g., the internal of the platform-dependent code is

considered proprietary information from the device manufacturer’s perspective), one needs

to consider a different approach to show the timing requirement conformance of the imple-

mented system. In the rest of the sections, a timing testing approach is proposed, which can

be alternatively used to show timing requirement conformance when such platform-specific

timing information is not known.

Timing 
Requirements 

Modeling 
&Verification 

Code 
Generation 

Platform 
Integration 

Code(PIM) 

[Artifacts] 

(a) Model-level timing conformance 

(b) Testing Goal: Implementation-level timing conformance 

[Process] 

(1) 

(2) 

Environment 
Model 

Output 
Device 

Input 
Device 

Code(PIM) 

Hardware Platform 

i o 

m c 

(3) 

Real 
Environment 

input output 

PIM 

Figure 27: The goal of the testing framework in the model-based implementation.

Fig. 27 shows the model-based implementation process that we have used to develop infusion

pump software. Consider the following timing requirement:

• (REQ1) A bolus dose shall be started within 100ms when requested by the patient.

The modeling and verification phase (1) aims at creating a model that interacts with the

environment model. For example, Fig. 28 is a Stateflow model that captures the timed

behavior of the infusion pump system, and the timing requirement of REQ1 can be verified;

the details of this model are explained later.

Code generation (2) aims at automatically generating source code that preserves the model

behavior. Note that the generated code (denoted as Code(PIM )) is assured to conform to
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the model structure through this process. For example, the code generator used in [40]

is able to generate C source code that implements transition tables, boolean (or integer)

variables to represent input and output occurrences, and execution logic (switch-case or

if-then-else statements), which maps to the model structure of Fig. 28.

Idle 

Bolus 
Requested Infusion 

Empty 
Alarm 

m-BolusReq 
[function1] 

Before(100, E_CLK) 

c-MotorState:=1 
[function2] 

At (4000, E_CLK) 
c-MotorStatus:=0 

m-ClearAlarm 
c-BuzzerState:= 0 

m-EmptyAlarm 
c-MotorState:=0 
c-BuzzerState:=1 

Figure 28: The example Stateflow model for infusion pump system

Platform integration (3) aims at adding interfacing code that is necessary for Code(PIM )

to be executed on a platform. For example, input/output interfacing code bridges physical

input/output (denoted as m and c variables) and abstracted input/output of Code(PIM )

(denoted as i and o variables). In this example, input interfacing code converts pressing the

bolus request button, which generates an electrical signal change (that is mapped to the

m-BolusReq input in Fig. 28), into updating the corresponding generated boolean variable

of Code(PIM ).

Our goal is to characterize such a potential source of timing gaps precisely so that the timing

testing can be performed to identify timing violations in the final implemented system.

6.11. The Approach Overview (Timing Testing)

We introduce a layered testing approach in which conformance to a timing requirement is

first checked. Then, if the timing requirement is violated, then several delay-segments that
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contribute to the violation are measured. The measured delay-segments are used as useful

information in debugging the timing requirement violation of the implemented systems.

6.11.1. Mapping the four-variables to the implemented system

To test the timing requirements of an implemented system, we identify the relevant input

and output of the implemented system with associated timing constraints. One assumption

made in the platform-independent model is that the model of the system and the environ-

ment processes their input and output instantaneously (i.e., zero processing time for input

and output). However, this assumption creates uncertainty when reasoning about the exact

timing of the input and output in the implemented system since several different interpre-

tations are possible. For example, the input timing can be considered to be when a physical

event happens at the boundary between the hardware platform and the real environment

(e.g., electrical signal changes when pressing the bolus request button). Another possible

interpretation is that the input timing is when Code(PIM ) reads the input event that is

pre-processed by some input processing mechanism (e.g., sampling routines) executing on

the hardware platform.

In order to have a uniform interpretation of the input and output of the implemented

system, Parnas’ four-variables model (that were used in the formal verification approach

introduced from Section 6.3 to Section 6.8) is also used for this testing approach to formally

define different abstraction boundaries of the implemented system. Fig. 27-(3) illustrates

the implemented system that shows the mapping with the four variables (m, i, o, c). Here

is the implication of the mapping of the four variables to the implemented systems in the

testing approach:

Monitored and Controlled variables: monitored variables (m) and controlled vari-

ables (c) are used to express physical environmental changes that can be observed and

enforced by the hardware platform. A monitored variable (m) characterizes physical en-

vironmental changes and a hardware platform typically uses sensors to observe the status
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of m variable. For example, m-BolusReq in Fig. 28 is a monitored Boolean variable that

captures the events, pressed or released, associated with the bolus request button (e.g.,

[m-BolusReq==True] implies the bolus request button is in a pressed state). A controlled

variable (c) characterizes physical environmental changes, and a hardware platform uses ac-

tuators to enforce changes in physical dynamics. For example, c-MotorState variable may

have a range of integer values in order to specify the speed associated with the pump motor

(e.g., [c-MotorState == 10] implies the pump-motor rotates at a speed level of 10). From

now on, we use m-event and c-event to refer to any changes in m-variable and c-variable,

respectively.

Input and Output variables: input variables (i) and output variables (o) are used to ex-

press the input and output of Code(PIM ). An input variable (i) characterizes events that are

read by Code(PIM ). For example, Code(PIM ) that is generated from the model in Fig. 28

has three i-variables; i-BolusReq, i-EmptyAlarm, i-ClearAlarm. Input-Device is responsible

for converting the corresponding events in m-variable into the events in i-variable. Sensors

and their accompanied device drivers are the example of Input-Device. An output variable

(o) characterizes events that are written by Code(PIM ). For example, Code(PIM ) has two

o-variables; o-MotorState and o-BuzzerState. Output-Device is responsible for converting

the events in o-variable into the events in c-variable. Actuators and their accompanied

device drivers are examples of Output-Device. We use i-event and o-event to refer to any

changes in i-variable and o-variable, respectively.

Note that the four-variable mapping enables the implemented system to separate the input

and output in the boundary between Code(PIM ) and the platform (i.e., io-boundary)

from those in the boundary between the platform and the physical environment (i.e., mc-

boundary). Also note that the platform-independent model expresses the timing of input

and output at the mc-boundary; on the other hand, its generated code Code(PIM ) will

be composed with a platform at the io-boundary. We next explain the testing framework

based on the four-variable mapping.
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6.11.2. Testing Objectives and R-M testing

In the model-based implementation as shown in Fig. 27, the timing requirements that were

verified in the model (Fig. 27-(1)) may be violated in the implemented system (Fig. 27-(3)).

Such a violation can be due to many different possible sources of timing deviation in an

implemented system. Our proposed testing framework is to deal with such timing deviation

and aims at achieving the following two separate goals:

(G1) The implemented system is checked whether the timing requirements are violated or

not;

(G2) The implemented system is measured as to how much it deviates from the timed

behavior of the platform-independent model.

The outcome from (G1) is a pass-fail testing result after performing a series of test cases

extracted from a given timing requirement; we call this R-testing. The outcome from (G2)

is a quantitative measurement (e.g., 10 ms or 100 ms) of delay-segments extracted from the

model; we call this M-testing.

R-Testing: The conformance of the implemented system w.r.t. the timing requirements

is checked through R-testing. In this testing, test cases are generated from the timing

requirements in the form of m-variable and c-variable. For example, REQ1 can be expressed

using a pair of m and c variables with its timing constraint:

• (REQ1-a) {(m-BolusReq, tm1), (c-BolusStart, tc1)}

• (REQ1-b) tc1 - tm1 ≤ 100ms

where (i) m-BolusReq is an m-event (value changes in m-variable) that can be observed

from the hardware platform of the infusion pump; the timing of the m-event occurrence

is denoted as tm1, and (ii) c-BolusStart is a c-event (value changes in c-variable) that is

expected to be visible from the hardware platform upon receiving the prior m-event (m-
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BolusReq); the timing of the c-event occurrence is denoted as tc1. The timing constraint

required in REQ1 is specified by REQ1-b; that is, the time difference from tm1 to tc1 should

be within 100 ms. Given the timing requirement, R-test cases are generated in order to check

whether the implemented system conforms to the requirement using m and c variables only.

For example, consider the following test sequence of input events generated from REQ1-a:

{(m-BolusReq, 10ms), (m-BolusReq, 300ms), (m-BolusReq, 500ms), . . . }

Then, the expected output timing of c-BolusStart event should be within 110 ms, 400 ms,

600 ms, ... according to REQ1-b. If all measured time differences from the implemented

system conforms to this timing constraint, then R-testing passes; otherwise, R-testing fails.

M-Testing: If the R-testing result is false, the timing requirement verified at the platform-

independent model does not hold in the implemented system that executes Code(PIM ).

For example, a bolus infusion is not started within 100 ms upon a patient’s request in

the infusion pump system even though it is shown to be satisfied by the model. The

purpose of M-Testing is to measure delay-segments that constitute the timing deviation of

the implemented system.

Given the timing requirement of REQ1, Fig. 29 illustrates the timed behavior of the model

(Fig. 29-(a)), and its implemented system using four-variables (Fig. 29-(b),(c),(d)). In

Fig. 29-(a), when m-BolusReq event is provided to the model of Fig. 28, the c-MotorState

event is produced within 100 ms. Fig. 29-(b) shows the timed behavior of the implemented

system captured through R-testing.

Suppose the R-testing result shows that REQ1 does not conform in the implemented system

(i.e., the delay is greater than 100 ms). Fig. 29-(c) and (d) illustrate several delay-segments

that constitute the requirement violation, which are introduced below:

(1) Input-Delay is defined as a time passage from the occurrence of m-event to i-event.

That is, it measures a delay from the physical input occurrence accepted by the hardware

platform until Code(PIM ) actually reads the input (after being processed by Input-Device).
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Figure 29: The illustration of the timing testing in the R-M testing framework

For example, Input-Delay in Fig. 29-(c) illustrates the time delay associated with the (m-

BolusReq, i-BolusReq) pair.

(2) Output-Delay is defined as a time passage from the occurrence of o-event to c-event.

That is, it measures a delay from when Code(PIM ) writes the output until the moment the

output becomes actually visible to the physical environment. For example, Output-Delay

in Fig. 29-(c) illustrates the time delay associated with the (o-MotorState, c-BolusStart)

pair.

(3) Code(PIM)-Delay is defined as a time passage from the occurrence of i-event to o-event.

That is, it measures a delay from when Code(PIM ) reads an i-event until the moment an

o-event is produced. For example, Code(PIM )-Delay in Fig. 29-(c) illustrates the time delay

associated with the (i-BolusReq, o-MotorState) pair.

(4) Transition-Delay is defined as a time passage for executing transitions from the occur-

rence of i-event to o-event. Multiple transitions can occur during this period due to internal
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transitions, and each transition delay is separately measured in our testing framework. For

example, two transitions constitute a pair of (i-BolusReq, o-MotorState) events in Fig. 28:

transition from Idle to BolusRequested and transition from BolusRequested to Infusion.

Fig. 29-(d) shows two transition delays {Trans1-Delay (e.g., 11 ms), Trans2-Delay (e.g.,

20 ms)}. The time difference from the start to the end of each transition is measured and

this set of delays is called the transition delay of the (i-BolusReq, o-MotorState) pair.

6.12. Case Study of the Timing Testing

In this case study, we use the model-based implementation of an infusion pump system

and apply the proposed testing framework to detect the timing requirement violation of the

implementation, and how to measure the timing deviation from the platform-independent

model.

Case-Study Setting: We consider REQ1 to be a timing requirement that needs to be

satisfied in both the model and the implemented system. A model (Figure 27-(1)) is created

using Stateflow, and a part of this model is shown in Figure 28. The timing requirement

is verified in the model using the Simulink Design Verifier [41]. That is, the value of o-

MotorState changes from zero to one within 100 ms when i-BolusReq is triggered while the

system is in Idle state. RealTimeWorkshop [40] is used to automatically generate C source

code (Fig. 27-(2)) from the verified model.

The generated code (Code(PIM )) is then interfaced with the platform-dependent Input-

Device and Output-Device on the infusion pump hardware used for the GPCA reference

implementation. We use a Baxter PCA Syringe Pump as an infusion pump hardware and

interface sensors and actuators to the ARM7 micro-controller that runs the FreeRTOS

real-time operating system.

Case-Study Scenarios: This case study shows how the proposed testing framework can

be used to detect the requirement violation, and to measure the timing deviation of dif-

ferent implemented systems. We consider three representative implementation schemes to
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integrate Code(PIM ) with the target platform. The three implementation schemes are as

follows:

Implementation Scheme 1 (Single-threaded implementation): The implementation, Code(

PIM ), is executed by a single thread that is invoked periodically. In our case study,

Code(PIM ) is invoked every 25 ms to read m-events from the sensors (e.g., bolus-request

button); and to write c-events to the actuators at the end of Code(PIM ) computations

(e.g., pump motor).

Implementation Scheme 2 (Multi-threaded implementation): This implementation uses mul-

tiple threads to read m-events from sensors and to write c-events to actuators. In addition,

a thread that executes Code(PIM ) is separately run to read i-events from the sensing

threads, and to write o-events to the actuation threads. Therefore, it is possible to sample

sensor values, and to give commands to actuators at a different frequency from that of the

Code(PIM ) execution. In our case study, the summation of the thread periods along the

path of sensing-Code(PIM )-actuation routines is less than 100 ms in order to make sure

that any c-event is produced within 100 ms after an m-event is accepted by the sensing

threads. The communication among sensing/actuation threads and Code(PIM ) threads is

implemented using FIFO queues.

Implementation Scheme 3 (Multi-threaded implementation with other threads): Often, there

are additional threads in addition to threads used by the model-based implementation (e.g.,

network drivers on infusion pump systems). This scheme aims to allow non-stand-alone

implementation with additional functionalities executed by threads in addition to sensing,

actuation, and Code(PIM ) threads of the implementation scheme 2. In our case study,

three additional threads are scheduled. One of the threads has the same priority with the

Code(PIM ) thread, and the other two threads have a higher and a lower priority than the

Code(PIM ) thread respectively. These threads do not communicate with the Code(PIM ),

but execute their own independent tasks.
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Table 10: Testing Results: Measured time-delays for the bolus request scenario in REQ1

Table 10 is the experimental results that show the time delays measured while each imple-

mented system processed the bolus processing scenario in REQ1. Ten test samples obtained

from each implemented system are shown in the table to explain how our testing framework

works. The results of R-testing and M-testing are separately shown for each implemented

system. Note that R-testing measures the time delay between m-event and c-event, and

compares it to REQ1 in order to check the requirement violation; here, the numbers in R-

testing columns imply the time delay between the m-BolusReq event and the c-BolusStart

in milliseconds (ms). Red numbers in the R-testing columns imply that these test samples

violate the timing requirement of REQ1 (i.e., the delays are greater than 100 ms). MAX

implies that c-BolusStart was not observed until time-out after providing the m-BolusReq

event. For those test cases that violate the timing requirement in R-testing, M-testing is

followed to measure the specific delay-segments that constitute the requirement violation.

The measured delay-segments can be used as useful information in debugging the timing

requirement violation in the implemented system.

6.13. Summary of the Timing Testing

Section 6.10 to Section 6.12 introduced the platform-dependent timing testing process that
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can be applied to the implemented system in which the timing information of the platform-

dependent code is not explicitly known. This testing process systematically measures the de-

lay occurring during the interaction between the platform-dependent code and the platform-

dependent code through R-testing and M-testing. R-testing measures the time difference

of the input and output events occurring at the boundary of the platform and the environ-

ment (i.e., mc-boundary); this type of testing enables the implemented system to check a

timing requirement violation. M-testing measures the delay-segments that constitute the

timing deviation of the implemented system w.r.t. the platform-independent model using

the input and output events occurring at the boundary of the platform-independent code

and the platform-dependent code (i.e., io-boundary); this type of testing can be used to

quantify timing deviation of implemented systems from the platform-independent model.

This timing testing process can be alternatively used with the platform-dependent timing

verification process introduced in Sections 6.3 to Section 6.8 depending on the availability

of the platform-dependent timing information of an implemented system in order to show

the timing requirement conformance.
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CHAPTER 7 : Integration Phase (Part 2)

7.1. The Problem Statements and Challenges

In Chapter 6, we introduced an issue that an implemented system may experience pro-

longed delays from that of the platform-independent model. This is mainly because the

platform-independent code is directly generated from the platform-independent model with-

out compensating the platform-processing delay. Fig. 30 illustrates this issue. When the

platform-independent model is constructed, it only models input/output timing that can be

observed at the mc-boundary by hiding the internal timing details as to how the platform-

independent code interacts with a particular platform. Accordingly, when the platform-

independent code is generated using existing code generators [40] [40], the model-level

timing parameters are directly translated into the code-level timing parameters in order

to determine the input/output timing at the io-boundary. This is problematic because the

platform-processing delay will be again added to the delays implemented by the platform-

independent code. This situation may result in the implemented systems that do not

conform to the timing requirements that have been verified in the platform-independent

model. The techniques proposed in Chapter 6 aim at analyzing how such deviations impact

the timing requirement conformance.

In this chapter, we introduce a way to optimize the platform-independent code by ad-

justing the timing parameters of the platform-independent model in case those prolonged

delays result in the timing requirement violation. In other words, we want to appropri-

ately compensate the platform-processing delay by adjusting the timing parameters of the

platform-independent model; hence, if such a timing parameter adjustment is successful, it

will result in an implemented system that conforms to the timing requirements verified in

the platform-independent model.

Here is the challenge in adjusting the timing parameters to achieve the desired compensation

of the platform-processing delay:
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Figure 30: The source of the timing deviation between the platform-independent model and
its implementation

Challenge: It is not straightforward how to calculate how much timing parame-

ters of a platform-independent model should be adjusted to achieve such a com-

pensation; this is because several I/O semantics mismatches between the model

and the implementation makes those timing parameters sometimes decreased

or increased in a complicated pattern in order to realize the compensation.

The delays implemented by the platform-independent code should compensate the addi-

tional delay required from a given platform. However, such a compensation cannot be

obtained only by reducing the values of all timing parameters of the platform-independent

model. For example, the timing semantics of the synchronization in UPPAAL applies the

same regardless of whether the transition type is an input or output synchronization; that

is, the transitions associated with any types of synchronization should occur taking zero

time when it should happen. On the other hand, the implemented system processes in-

put and output differently as illustrated in the information flow of Fig. 30; that is, the

platform-independent code can read an input (from a buffer) only after the environment

has generated the input, followed by the platform that processes it by placing the input
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value in the buffer; on the contrary, an output can be visible in the environment only af-

ter the platform-independent code produced output by placing it in the buffer, followed

by the platform that has processed the output. Due to such differences, the values of the

timing parameters sometimes has to be reduced or increased in order to obtain the platform-

independent code that meets the desirable timed behavior of the implemented system.

7.2. The Approach Overview

We aim at addressing this challenge by proposing a model transformation approach for

the code generation. We argue that the platform-independent models are not appropriate

representations of the code-level timed behavior, especially when the generated code has

to be integrated with platforms that have non-zero I/O processing delays. We transform a

platform-independent model into a software model by explicitly characterizing (non-zero)

platform-processing delays and appropriately compensating those delays. The software

model is then used to generate code, which would be implemented on the platform whose

processing delays are compensated during the model transformation process. The resulting

implemented system is guaranteed to meet the timing constraints that have been verified

in the platform-independent model.

Our model transformation approach involves two steps. First, check whether it is feasible

to compensate the processing delays of a given platform while preserving the bounds on

the delays between observable events in the platform-independent model and implemented

systems. Second, adjust the timing parameters in the platform-independent model to obtain

a software model that compensates the platform-processing delays. We formulate and solve

the problem using Integer Linear Programming (ILP). We define the objective function

of ILP based on the goal of obtaining a software model with the least timed behavior

perturbation from the platform-independent model. The linear constraints of ILP are given

to quantify the delay-bound differences between the platform-independent model and an

implemented system, taking into account the model’s I/O delays accumulated over paths

(between pairs of I/O transitions) and the platform-processing delays. By solving the ILP
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problem, we obtain a set of timing parameter assignments that can be used to transform

the platform-independent model into a software model.

We demonstrate the usefulness of our approach via a case study of infusion pump sys-

tems. Experimental results show that systems implemented with the code generated from

our transformed software models have better a performance in terms of timing constraints

preservation compared to the systems implemented with the code directly generated from

the platform-independent model.

7.3. Problem Formulation

7.3.1. Motivating Example

We first explain, through the following example, why we need to transform platform-

independent models for representing the code-level timed behavior. Consider a platform-

independent model represented as an event-clock automaton [13] (cf. Definition 5) shown

in Figure 31. Each transition in the model is labelled with either an input (a1? and a3?)

or an output (a2!) event. Each event is associated with a clock, which is automatically

reset to zero whenever a transition associated with the corresponding event is taken. For

example, the clock xa1 is reset to zero when the transition labelled with the input event

a1? is taken. Transitions are also annotated with clock guard conditions. For example,

the guard condition xa1 ≥ 2 ∧ xa1 ≤ 10 means that the transition can be taken anytime

in between 2 and 10 time-unit after the previous transition. It is straightforward to verify

that the example model satisfies the following timing constraint:

(REQ0): “a system shall produce the output a2! within 2 and 10 time-units since the input

a1? event occurs from the environment”.

The timing parameters in the clock guard conditions do not distinguish code-level delays and

platform-processing delays. Suppose the platform-processing delay is 2 time units. Then

a system implemented using the code generated from the model shown in Figure 31 would
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Figure 31: Model 1 with variable assignment (Sequential Pattern)

not preserve REQ0, because the delay of output a2! is now bounded by 4 and 12 time units.

This implies that the platform-independent model shown in Figure 31 is not an appropriate

representation for the code generation. Thus, there is a need for model transformation.

In practice, the given platform-processing delays are often in a range (i.e., minimum and

maximum bounds) rather than a single constant, which makes the model transformation

challenging. Because we need to consider the intermix of min/max platform-processing

delays and code-level delays, while the latter may also be affected by the model structure

(e.g., loops). Once we know what the ranges of platform delays are, timing guards in the

model can be adjusted so that the generated code, running on the platform, would exhibit

correct system-level behavior.

7.3.2. Problem Statement

Figure 32 shows an overview of relations between platform-independent model, software

model, code, platform and implementation. We adopt Parnas’ four-variable model [43] to

define the boundaries of an implemented system (shown in the right side of the figure).

Based on this variable mapping, we define the boundaries of an implemented system to for-

malize the problem: io-boundary that separates a platform and the code, and mc-boundary

that separates an environment and a platform. Suppose that, for a given platform, the

minimum and maximum delays of processing each input/output event is known (cf. Defini-

tion 6). The goal is to transform a platform-independent model (Ms) into a software model

(Mc) by compensating the platform-processing delays (P), in order to preserve the timing
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constraints in the implemented system.

We first define three functions: fMs , fSOF, and fIMP, which quantify the min/max delay-

bounds of the occurrence of an I/O event succeeding another event in the platform-independent

model, io-boundary (software model), and mc-boundary, respectively. Formally, we define

fMs(i, j) as the min/max delay-bounds of simple paths (i.e., those without cycles) starting

from the transition i and ending with the transition j in the platform-independent model

Ms. For example, the timing constraint REQ0 can be formally denoted by fMs(1 , 2 )=[2,10],

representing that the output transition 2 shall be taken in between 2 and 10 time-units after

taking the input transition 1 of Model 1 shown in Figure 31. Given a simple path p, we

can also write fMs(p). We define fSOF and fIMP in a similar fashion as for fMs . In the model

transformation from Ms to Mc, we only adjust the timing parameters (i.e., clock guards)

and do not change the model structure. Therefore, there are one-to-one mappings between

transitions i and j for fMs(i, j), fSOF(i, j) and fIMP(i, j).

Definition 4 (Delay-Bound Inclusion Constraint). A system implementation preserves the

delay-bound inclusion constraint with respect to the corresponding platform-independent

model iff:

• the minimum delay bound of fIMP for any pair of I/O events at the mc-boundary is

no less than that of fMs ,

• the maximum delay bound of fIMP for any pair of I/O events at the mc-boundary is

no greater than that of fMs .

Formally, we denote the constraint satisfaction by fIMP(i, j) ∈ fMs(i, j) iff f min
IMP(i, j)≥ f min

Ms
(i, j)

and f max
IMP (i, j) ≤ f max

Ms
(i, j) for any pair of I/O transitions (events) i and j.

Example 7.3.1. Model 1 shown in Figure 31 has three pairs of I/O transitions, where

fMs(1 , 2 )=[2,10], fMs(2 , 3 )=[7,10], fMs(1 , 3 )=[9,20]. The delay-bound inclusion constraint

holds for a system implementation with fIMP(1 , 2 )=[4,6], fIMP(2 , 3 )=[8,9], fIMP(1 , 3 )=[15,19]},

because f min
IMP ≥ f min

Ms
and f max

IMP ≤ f max
Ms

for all possible pairs of I/O transitions.
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Figure 32: Mapping from system models to implementations

The key of model transformation from a platform-independent model Ms into a software

model Mc lies in solving the research problem of finding a suitable function fSOF such that the

induced function fIMP (based on the known platform-processing delay P) preserves the delay-

bound inclusion constraint with respect to the function fMs (determined by Ms). We also

need to show that any implemented system meeting the delay-bound inclusion constraint is

guaranteed to satisfy the timing requirements that are verified in the platform-independent

model Ms.

7.3.3. Approach Overview

Finding a suitable function fSOF is a challenging problem. On the one hand, we need to

consider its dependency to the function fIMP and the platform-processing delay P. On

the other hand, we need to make sure that the derived function fIMP and the platform-

independent model function fMs satisfy the delay-bound inclusion constraint. The simple

shrinking or expanding timing guards of fMs would not give us a satisfying fSOF, because

the change of timing guards in one transition (e.g., with the intent of decreasing fSOF) may

actually increase fSOF for another transition/path, due to the complex dependency among
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various I/O transitions and the mixture of minimum/maximum delays.

Our approach is to formalize those dependencies in terms of a set of linear constraints to

automatically find timing parameter assignments for the function fSOF using the ILP. First,

we propose algorithmic procedures to compute fMs and fIMP. The computation of fMs is

based on the timing parameters (i.e., clock guard constants) in the platform-independent

model Ms, while the computation of fIMP is based on the timing parameters of the software

model Mc (represented as variables in fSOF) and the platform-processing delays P. Then,

we formalize the delay-bound inclusion constraint between fMs and fIMP as a set of linear

inequality constraints for ILP. A satisfying solution of the ILP problem gives us a set of

variable assignments for fSOF, which can be used to parameterize the timing guards of the

software model Mc. Finally, we show by Theorem 2 that the system implemented using the

code generated from the software model Mc is guaranteed to satisfy the timing requirements

(i.e., bounded delays between a pair of I/O events).

7.4. Computing fMs and fIMP

In this section, we develop algorithmic procedures for computing fMs and fIMP, which are

functions that quantify the min/max delay-bound of any pair of I/O transitions and events

in the platform-independent model and the implementation, respectively. In this paper, we

consider platform-independent models that are represented as event-clock automata [13].

Definition 5 (Event-Clock Automata). An event-clock automaton is a tuple M= (L, L0,

Lf , Σ, E), where L is a set of locations; L0 ∈ L and Lf ∈ L are an initial and a final

location, respectively; Σ = Σin ∪ Σout is an alphabet with a set of input (resp. output)

events Σin (resp. Σout); E = {(L,L′, a, ϕ)} is a fine set of transitions with each transition

connecting a starting location L and an ending location L′, labelled with an input/output

event a ∈ Σ, and associated with a clock constraint ϕ over the clocks CΣ.

We refer to [13] for the formal operational semantics of event-clock automata. An informal

semantic description for an example model could be found in Section 7.3.1. In this paper, we
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Figure 33: Model 2 with variable assignment (Alternative Pattern)

consider three different model structure patterns, namely, sequential (e.g., Model 1 shown in

Figure 31), alternative (e.g., Model 2 in Figure 33), and cyclic (e.g., Model 3 in Figure 34).

7.4.1. Computing fMs

The computation of the function fMs , which represents the minimum and maximum delay-

bounds between two I/O transitions in the platform-independent model, is non-trivial.

Firstly, there can be many different paths in between two transition occurrences. In this

case, the path that has the minimum delay can be different from the one that has the max-

imum delay. Therefore, we need to examine all possible paths between the two transitions

in order to compute fMs . Secondly, paths connecting two transitions may include cycles.

Since we assume non-negative guard conditions, the minimum delay bound is obtained by

considering only a simple path. However, when it comes to the maximum delay bound, it

differs depending on how many cycles are taken between the two transitions. For example,

in Model 3 (cf. Figure 34), the maximum delay-bound between transitions 1 and 3 increases

as more cycles are taken.

We first show how to compute fMs for a pair of transitions which are connected by simple

paths (i.e., paths that do not contain any repeating locations) only. To this end, we adapt
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Figure 34: Model 3 with variable assignment (Cyclic Pattern)

the Floyd-Warshall algorithm. The Floyd-Warshall algorithm computes the minimum and

maximum timing intervals between the entering of locations Li and Lj in a model with

n locations, denoted by Dmin(Li ,Lj ,n) and Dmax(Li ,Lj ,n), respectively. We cannot use

the Floyd-Warshall algorithm to compute fMs directly, because the function represents the

delay-bound between two transitions rather than locations. Instead, we define:

f min
Ms (i, j) = Dmin(Lpost

i ,Lpre
j ,n) + νl

j (7.1a)

f max
Ms (i, j) = Dmax(Lpost

i ,Lpre
j ,n) + νu

j (7.1b)

where Lpost
i is the ending location of transition i, Lpre

j is the starting location of transition j,

νl
j and νu

j are the lower and upper bounds of clock valuations associated with transition j.

For example, Figures 35(a)-(b) show the results of applying the Floyd-Warshall algorithm

to Model 3, while Figures 35(c)-(d) show the computation results of fMs for Model 3. Note

that the values of the main diagonal entries are undefined in Figures 35(c)-(d), because the

method described above is only applicable for transitions connected with simple paths.

Now, we generalize the computation of fMs for paths with cycles (i.e., non-simple paths).

Lemma 3. The min/max delay-bound over a (non-simple) path p in a platform-independent
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Model 3

model Ms, denoted by fMs(p), is the summation of the min/max delay-bounds of all simple

paths that comprise p.

Proof. Suppose p consists of a series of transitions ti. . . tj , where ti is the starting transition

of p, and tj is the ending transition of p. Let tp1. . . t
p
k be the ending (and starting) transitions

in between ti and tj that comprises all simple paths ∈ p; that is, p = ti. . . tp1. . . t
p
2. . . t

p
k. . . tj

with a set of simple paths ti. . . tp1, and t
p
1. . . t

p
2,. . . , and t

p
k−1. . . t

p
k, and t

p
k. . . tj . In an event-

clock automaton, the min/max interval of a particular simple path can be calculated inde-

pendently of the min/max interval of its adjacent simple paths (i.e., the min/max interval

of a prior simple path immediately followed by this simple path, and the post simple path

immediately following this simple path) using an event-recording clock that is reset to zero

upon taking a starting transition of a simple path. Therefore, the minimum interval of

fMs(p) is calculated as follows: f min
Ms

(p) = f min
Ms

(ti , tp
1 ) + f min

Ms
(tp

1 , t
p
2 ) + . . . + f min

Ms
(tp

k−1 , t
p
k ) +

f min
Ms

(tp
k , tj); and the maximum interval of fMs(p) is also similarly calculated.
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Note that Lemma 3 is only applicable to event-clock automata where clocks reset on every

transition, which is sufficient for this paper. The computation for more general cases (e.g.,

clocks reset in arbitrary transitions) was studied in [31] using the reachability graph, but

that algorithm may not terminate in the presence of cycles.

Example 7.4.1. Consider a path p in Model 3 that starts with the transition t1 and ends

with t3 after repeating two cycles; that is, p=t1,t2,t3,t1,t2,t3. The path p consists of the

following simple paths: p1=t1,t2,t3; p2=t3,t1,t2; and p3=t2,t3. From Figures 35(c)-(d), we

know that fMs(1 , 3 )=[9,20], fMs(3 , 2 )=[2,20], and fMs(2 , 3 )=[7,10]. Based on Lemma 3, we

obtain that f min
Ms

(p)=f min
Ms

(1 , 3 )+f min
Ms

(3 , 2 )+f min
Ms

(2 , 3 ) and f max
Ms

(p)=f max
Ms

(1 , 3 )+f max
Ms

(3 , 2 )+

f max
Ms

(2 , 3 ). Thus, we have fMs(p)=[18,50].

7.4.2. Computing fIMP

In the following, we describe how to compute the function fIMP based on the platform-

processing delay P and the code-level delay fSOF.

Definition 6 (Platform-Processing Delay). For any I/O event ak ∈ Σ, the platform-

processing delay P(ak) = [δmin
k , δmax

k ], where δmin
k and δmax

k are the minimum and maximum

times needed for the platform to process the event ak, respectively.

The platform-processing delay characterizes the min/max delays consumed by a given plat-

form (independently of the code-level delays) to process each I/O event. In Figure 32, this

delay is considered as the input delay consumed over the information flow from m to i, and

the output delay consumed over the information flow from o to c.

Example 7.4.2. There are three I/O events {a1?, a2!, a3?} in Model 1 shown in Figure 31.

Suppose the platform-processing delay is given by P={P(a1 )=[1,2],P(a2 )=[3,4],P(a3 )=[2,5]}

That is, it takes the platform at least 1 and at most 2 time-units from the moment it reads

the input event a1 (mapped to m variable in Figure 32) from the environment at the mc-

boundary until the moment the code reads the processed input event (mapped to i variable)

at the io-boundary. Similarly, it takes the platform at least 3 and at most 4 time-units from

the moment the code writes the output event a2 (mapped to o variable) at the io-boundary
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until the moment the platform writes the processed output event (mapped to c variable) to

the environment at the mc-boundary.

time 
[ ] 

[ ] 

( , ) 8
sM 1 2 

IMP( , ) 101 2 

(a) Platform-independent model behavior 

(b) Implementation behavior (before delay-adjustment) 
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Figure 36: The timed behavior comparison between the platform-independent model (Ms)
and the implementation (P(a1 )=[1,2] and P(a2 )=[1,2]); the arrows imply the events of the
mc-boundary, while the diamond polls imply the events of the io-boundary

Now, we explain the relation between the system implementation delay fIMP, the code-level

delay fSOF, and the platform-processing delay P. For example, Figure 36 illustrates how the

platform-independent model and the implementation behave differently when processing

a pair of the input transition 1 (t1) and the output transition 2 (t2) of Model 1. In the

system model, t2 is taken (lower-direction arrow) in between 2 and 10 time-units since t1

has been taken (upper-direction arrow); therefore, fMs(1 , 2 )=[2,10]. In the implementation,

the delay-bound fIMP(1 , 2 ) may differ from fMs(1 , 2 ) if the same timing parameters (Ts)

of Ms is used to implement the code-level delay (fSOF). Suppose the code is generated

using Ts (i.e., 2 and 10), and this code is to be integrated with a platform that has the
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processing delay: P=[1,2] (assuming that the same min/max bound is applied to all I/O

events). Assume that the code interacts with the platform through a set of primitives: read

primitive to read the processed input values from the platform or to read current clock

values; reset primitive to set the clock values to zero; write primitive to write the output

values to the platform. Note that the time instances when these primitives are called by the

code are different from the times when the corresponding I/O occurs in the environment,

due to the platform delays.

This implemented system behaves as follows: when the input (denoted as am
1 ) associated

with the transition t1 of Ms is generated from the environment, (1) the platform reads am
1

first at the mc-boundary (red upper arrow); (2) the code reads the processed input (denoted

as ai
1) at the io-boundary sometime after, in between 1 and 2 time-units (first green diamond

poll) due to P(a1 ), and reset the associated clock (xa1); (3) the code produces the output

(denoted as ao
2) at the io-boundary (second diamond poll) in between 2 and 10 time-units

after reading the previous input (ai
1); (4) the platform processes and writes the output

(denoted as ac
2) to the environment at the mc-boundary (red lower arrow) in between 1 and

2 time-units due to P(a2 ). Intuitively, fIMP(1 , 2 ) will be larger than fMs(1 , 2 ) (i.e., fIMP 6∈

fMs) in this case; this deviation occurs since the I/O information flow and P have not been

compensated in implementing the code-level delay (fSOF) (i.e., the code-level delay should

have been shrinked for the compensation in this case).

In general, fIMP can be larger or smaller than fMs depending on the event type and the

amount of the platform-processing delay and the dependency among different transitions;

the four possible I/O patterns and their implementation behavior are illustrated in Fig-

ure 37. Therefore, it is problematic to generate the code using the same parameters (Ts)

of Ms. Instead, we want to find a new timing parameter assignment (Tc) that can be used

for the code so that the delay-bound inclusion constraint holds.

In order to find Tc, we derive the equation of fIMP by separating two parts: we consider

the part that constitutes the platform-processing delay (P) as known parameters, while we
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Figure 37: The four cases of the delay bound computation at the implementation level

leave the part that constitutes the code-level delay (fSOF) as unknown variables; now, fIMP

for any pair of I/O events can be calculated as follows:

Each event (i, j) occurring at the mc-boundary is either input or output, hence there are

four combinations for a pair of events that can be calculated as follows:

• Case 1: i is an input event and j is an output event:

[f min
SOF(i, j)+(Pmin(aj)+Pmin(ai)), f max

SOF (i, j)+(Pmax(aj)+Pmax(ai))]

• Case 2: i is an output event and j is an output event:

[f min
SOF(i, j)+(Pmin(aj)−Pmax(ai)), f max

SOF (i, j)+(Pmax(aj)−Pmin(ai))]
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• Case 3: i is an output event and j is an input event:

[f min
SOF(i, j)− (Pmax(aj)+Pmax(ai)), f max

SOF (i, j)−(Pmin(aj)+Pmin(ai))]

• Case 4: i is an input event and j is an input event:

[f min
SOF(i, j)− (Pmax(aj)−Pmin(ai)), f max

SOF (i, j)−(Pmin(aj)−Pmax(ai))]

These equations are obtained by the straightforward case analysis illustrated in Figure 37.

We only show Case 1 since the rest of the equations are similarly derived.

(Case 1: input ti and output tj) Refer to the information flow of Case 1 in Fig-

ure 37. Suppose the code reads the input i at τi and the code writes the output j at

τj at the io-boundary. The possible range of the input occurrence at the mc-boundary

is [τi−Pmax(ai), τi−Pmin(ai)] because the input at the mc-boundary has to occur before

reading the input at the io-boundary. The possible range of the output occurrence at

the mc-boundary is [τj+Pmin(aj), τj+Pmax(aj)] because the output at the mc-boundary

has to occur after writing the output at the io-boundary. Then, the minimum interval of

these two events is (τj+Pmin(aj))−(τi−Pmin(ai)); the maximum interval of these two events

is (τj+Pmax(aj))−(τi−Pmax(ai)). By rewriting, the min/max interval of the two event is

[τj−τi+Pmin(aj)+Pmin(ai), τj−τi+Pmax(aj)+Pmax(ai)]. Note that, the term τj−τi is the

code-level delay-bound that is unknown; the minimum interval of the two events can be ob-

tained by having the minimum interval of the code-level delay; hence, the term τj−τi of the

minimum interval is rewritten as f min
SOF(i, j) that indicates the unknown minimum interval of

the code-level delay. The maximum interval of the two events can be obtained by having the

maximum interval of the code-level delay; hence, the term τj−τi of the maximum interval

is rewritten as f max
SOF (i, j) that indicates the unknown maximum interval of the code-level

delay. As a result, we obtain the final equation of fIMP(i, j) for Case 1 as follows:

[f min
SOF(i, j)+( Pmin(aj)+Pmin(ai)), f max

SOF (i, j)+(Pmax(aj)+Pmax(ai))]
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7.5. Delay-Bound Adjustment using Integer Linear Programming

In this section, we explain how to find the unknown variables (Tc) that will be used to

implement the code-level delay (fSOF) using the integer linear programming (ILP).

7.5.1. Intuition of the Delay-Bound Adjustment

We formalize the ILP problem to find Tc to generate the code that can be integrated with a

platform preserving the delay-bound inclusion constraint with respect to the system model

(Ms). Before explaining the details, the intuition behind this formalization is given.

Consider the timed behavior of Ms and the implemented system in Figure 36. In case the

code is generated using Ts, two orthogonal aspects result in the deviation of the timed

behavior between Ms and the implementation.

(1) the deviation of the uncertainty range: the uncertainty range of a pair of I/O

transition ti and tj of Ms and the uncertainty range of a pair of the corresponding I/O

events of an implemented system is defined as follows:

∆Ms(i, j) = f max
Ms (i, j)− f min

Ms (i, j) (7.2a)

∆IMP(i, j) = f max
IMP (i, j)− f min

IMP(i, j) (7.2b)

This range implies that the time interval where the second transition (tj) is allowed to

occur following the first transition (ti). However, if the code is generated using the original

timing parameter assignment (Ts), the platform-independent model uncertainty (∆Ms) is

directly implemented as a code as well. The issue is that the chosen platform will add

another uncertainty that comes from the platform-processing delay (P). For example, in

Fig. 36-(b), the uncertainty range of the implementation (∆IMP) becomes 10 that is larger

than the platform-independent model uncertainty (∆Ms) by 2; this additional amount comes

from P that results in violation of the delay-bound inclusion constraint. To remedy this, we
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introduce the Shrinking operation to adjust either upper-bound or lower-bound of the guard

condition of the code to compensate P; this will make ∆IMP fit into that of ∆Ms by either

increasing the lower-bound or decreasing the upper-bound (i.e., ∆IMP(i, j) ≤ ∆Ms(i, j)).

In Figure 38-(c), for example, the uncertainty range of the implementation is reduced by

changing the guard condition associated with t2 from [2,10] to [4,10] (i.e., the lower bound

of the original guard condition is increased by 2).

[ ] 
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[ ] 
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Figure 38: The illustration of the delay adjustment algorithm

(2) I/O information flow directions: In spite of the shrinking operation in Figure 38-

(c), the resulting fIMP(1 , 2 ) is [6,14] that is not included in fMs(1 , 2 )=[2,10] (i.e., fIMP(1 , 2 )

6∈ fMs(1 , 2 )). This implies that it is not sufficient to perform the Shrinking operation only

in order to obtain Tc. The main reason is that the shrinking operation only makes ∆IMP

fit into ∆Ms , but it does not consider the aspects originating from different combinations of

I/O information flows.
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Depending on the types of I/O event pairs, the delay-bound of an implementation is deviated

from Ms in four different ways as illustrated in Figure 37. To remedy this, we introduce

the Shift operation that moves the relative timing of the second event occurrence back and

forth by adjusting both the upper and lower guard condition of the code (c.f., the shrinking

operation only adjusts either guard condition). In Figure 38-(d), for example, both the

lower and upper guard condition of the code are decreased by 4; the result of this shift

operation is that the code should now produce the output in between 0 and 6 time-units;

then the implementation preserves the delay-bound inclusion constraint with respect to

Ms (i.e., fIMP(1 , 2 )=[2,10] ∈ fMs(1 , 2 )=[2,10]).

Applying the shrinking/shift operations for all possible pairs of I/O transitions is challenging

since there are many different aspects intertwined with each other in a complicated pattern,

such as the platform-processing delay, the I/O information flows and the dependency among

different I/O transitions. We explain how these conditions are formalized in terms of the

ILP so that the two operations (i.e., shrinking and shifting) can be automatically performed

for all possible I/O transitions to adjust the code-level delay.

7.5.2. Formalization of the ILP Problem for Acyclic Models

We first explain how the problem is formalized for acyclic models, and then explain how it

can be extended to cyclic models.

Integer Variable Mapping to the Model: To formalize the ILP problem, we first map

integer variables to the system model (Ms) that express the unknown min/max code-level

delay (fSOF). Here is our mapping: two integer variables, tlk and tuk , are mapped to each

transition of Ms; these variables represent the lower and upper bounds, respectively, of

the guard condition associated with the transition. In general, this mapping requires 2n

variables if Ms has n transitions. For example, six variables (tl1,tu1 ,tl2,tu2 ,tl3,tu3) are used to

represent Model 1. This variable mapping enables the min/max code-level delay (fSOF) for

any pair of I/O transitions to be represented in terms of a linear combination of variables.
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We will use this representation to define constraints as follows:

Defining Linear Constraints: For all pairs of I/O transitions in Ms, we formalize the

following constraints using the linear combination of the integer variables:

• (Type 1) The minimum delay-bound of the implemented system should be equal or

greater than that of Ms (i.e., f min
IMP ≥ f min

Ms
);

• (Type 2) The maximum delay-bound of the implemented system should be equal or

less than that of Ms (i.e., f max
IMP ≤ f max

Ms
);

• (Type 3) Each min/max delay-bound of the code should be non-negative;

• (Type 4) The minimum delay-bound of the code should be equal or less than the

maximum delay bound.

Type 1 and type 2 characterize the delay-bound inclusion constraints of Definition 4; we

need the constraints of type 3 and type 4 to obtain only non-negative guard conditions

whose minimum delay bound is less than the maximum bound.

Example 7.5.1 (Linear Constraints for Model 1). Model 1 has three pairs of I/O transi-

tions: (1,2), (2,3), (1,3), and here are the linear constraints:

• (C1a) tl2+Pmin(a2 )+Pmin(a1 )≥2

• (C1b) tu2+Pmax(a2 )+Pmax(a1 )≤10

• (C2a) tl3−(Pmax(a3 )+Pmax(a2 ))≥7

• (C2b) tu3−(Pmin(a3 )+Pmin(a2 ))≤10

• (C3a) tl2+tl3−(Pmax(a3 )−Pmin(a1 ))≥9

• (C3b) tu2+tu3−(Pmin(a3 )−Pmax(a1 ))≤20

• (C4) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0
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• (C5) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3

Suppose a platform is characterized as P=[1,2], and the code is assumed to be generated

from Model 1. In this case, the linear constraints are obtained by plugging in P as follows:

(C1a) tl2≥0; (C1b) tu2≤6; (C2a) tl3≥11; (C2b) tu3≤12; (C3a) tl2≥10; (C3b) tu2+tu3≤19; (C4)

tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0; (C5) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3

The constraints (C1a,b), (C2a,b), (C3a,b) are relevant to the pairs of transitions (1,2), (2,3),

(1,3), respectively. The constraints (C1a)-(C3a) and (C1b)-(C3b) are the type 1 and type 2

constraints, respectively; the right hand side of these constraints come from the calculated

fMs according to Lemma 3, while the left hand side are obtained based on the calculations

of fIMP in Section 7.4 by replacing f min
SOF(i, j) and f max

SOF (i, j) with the linear combination of (1)

the relevant integer variables that express the unknown code-level delay, and (2) the known

platform-processing delay. On the other hand, the constraint (C4) and (C5) are the type 3

and type 4 constraints needed independently of the platform-processing delay (P).

The linear constraints for Model 2 are also similarly defined as follows:

Example 7.5.2 (Linear Constraints for Model 2). Model 2 has four pairs of I/O transitions:

(1,2), (1,3), (1,4), (3,4), and here are the linear constraints:

• (C1a) tl2+Pmin(a2 )+Pmin(a1 )≥2

• (C1b) tu2+Pmax(a2 )+Pmax(a1 )≤10

• (C2a) tl3−(Pmax(a3 )−Pmin(a1 ))≥7

• (C2b) tu3−(Pmin(a3 )−Pmax(a1 ))≤10

• (C3a) tl3+tl4+(Pmin(a4 )+Pmin(a1 ))≥11

• (C3b) tu3+tu4+(Pmax(a4 )+Pmax(a1 ))≤18

• (C4a) tl4+(Pmin(a4 )+Pmin(a3 ))≥4
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• (C4b) tu4+(Pmax(a4 )+Pmax(a3 ))≤8

• (C5) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0∧ tl4≥0∧ tu4≥0

• (C6) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3 ∧ tl4≤tu4

Suppose a platform is given characterized as P=[2,4]; and the code is assumed to be gen-

erated from Model 2. The corresponding linear constraints are as follows: (C1a) tl2≥−2;

(C1b) tu2≤2; (C2a) tl3≥9; (C2b) tu3≤8; (C3a) tl3≥7; (C3b) tu3+tu4≤10; (C4a) tl4≥0; (C4b)

tu4≤0; (C5) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0∧ tl4≥0∧ tu4≥0; (C6) tl1≤tu1 ∧ tl2≤tu2

∧ tl3≤tu3 ∧ tl4≤tu4

Defining Objective Functions for Optimization: Our goal is to find the parameter

assignments (Tc) for the unknown variables that satisfy these linear constraints. Note that

there can be many possible parameter assignments that satisfy these linear constraints. For

example, in Figure 38, the guard condition (lower bound: 0 and upper bound: 6) for the

pair of I/O transition allows the code to write an output (ao
2) in between 0 and 6 time-

units since it has read the input (ai
1) with the result of fIMP(1 , 2 )=[2,10]. Another possible

assignment is (lower bound: 0, upper bound: 1) that results in fIMP(1 , 2 )=[2,5], which still

preserves the delay-bound inclusion property with respect to Model 1.

To this end, we define optimality in choosing Tc by considering the following aspect: apart

from the platform-processing delay (P), the code also requires some computation time for

its internal processing; for example, the code computes the output based on the input

according to the control law that can be a complex function. Therefore, a better solution

is to find Tc that maximizes the room for the internal computation of the code. In the

above example, the assignment (lower bound: 0, upper bound: 6) is a better solution

than the other assignment (lower bound: 0, upper bound: 1) since the code can have

more computation time before producing the second event (i.e., 6 time-unit versus 1 time-

unit). Such an optimal assignment can be obtained by defining the objective function that

maximizes the uncertainty range of the implementation (∆IMP) as close as to that of the
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system model (∆Ms); this will allow us to find the largest room for the code computation

while preserving the linear constraints.

Suppose a system model (Ms) has n pairs of I/O transitions. Then, we also have n un-

certainty ranges for the platform-independent model (∆Ms) and an implemented system

(∆IMP) that corresponds to each pair of I/O transitions. ∆Ms is known since it is calculated

from the known Ts, but ∆IMP is unknown since it is calculated from the unknown Tc. Let

∆IMP(k) be the uncertainty range of an implemented system for a particular pair (k) of I/O

transitions. Then, the general form of our objective function is as follows:

maximize
n∑

i=1
∆IMP(i) (7.3)

For example, Model 1 has three uncertainty ranges that correspond to the three pairs of

I/O transitions.

∆IMP(1, 2) = (tu2 + Pmax(a2 ) + Pmax(a1 ))− (tl2 + Pmin(a2 ) + Pmin(a1 ))

∆IMP(2, 3) = (tu3 − (Pmin(a3 ) + Pmin(a2 )))− (tl3 − (Pmax(a3 ) + Pmax(a2 )))

∆IMP(1, 3) = (tu2 + tu3 − (Pmin(a3 )− Pmax(a1 )))− (tl2 + tl3 − (Pmax(a3 )− Pmin(a1 )))

The following is the objective function for Model 1:

maximize ∆IMP(1, 2) + ∆IMP(2, 3) + ∆IMP(1, 3)

Our solver will find the parameter assignment for the six variables (tl1,tu1 ,tl2,tu2 ,tl3,tu3) by

maximizing the summation of the uncertainty range of the implementation.

Example 7.5.3 (Optimal parameter assignment of Model 1). Suppose the code is to be

generated from Model 1, and integrated with a platform characterized as P=[1,2]; then the

optimal parameter assignment for the code is (tl1,tu1 ,tl2,tu2 ,tl3,tu3) = (0, INF, 0, 6, 11, 12),

where INF implies the absence of the upper bound. Consider another P=[1,3]; then there

is no possible parameter assignment for the code generation.
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In Example 7.5.3, the solver finds no feasible parameter assignment for the code in case the

platform with P=[1,3] has to be used. This implies that no code can be generated from

Model 1 for this platform by preserving the delay-bound inclusion constraint. However,

suppose another platform P=[1,2] is chosen whose maximum I/O processing delay is 1

time-unit faster than the previous platform. In this case, the solver can find the optimal

parameter assignment that can be used to generate the code running on this platform.

The objective function for Model 2 is also similarly defined. Model 2 has four uncertainty

ranges that correspond to the four pairs of I/O transitions.

∆IMP(1, 2) = (tu2 + Pmax(a2 ) + Pmax(a1 ))− (tl2 + Pmin(a2 ) + Pmin(a1 ))

∆IMP(1, 3) = (tu3 − (Pmin(a3 )− Pmax(a1 )))− (tl3 − (Pmax(a3 )− Pmin(a1 )))

∆IMP(1, 4) = (tu3 + tu4 + (Pmax(a4 ) + Pmax(a1 )))− (tl3 + tl4 + (Pmin(a4 ) + Pmin(a1 )))

∆IMP(3, 4) = (tu4 + (Pmax(a4 ) + Pmax(a3 )))− (tl4 + (Pmin(a4 ) + Pmin(a3 )))

The following is the objective function for Model 2:

maximize ∆IMP(1, 2) + ∆IMP(1, 3) + ∆IMP(1, 4) + ∆IMP(3, 4)

We believe that one can define more refined notions of optimality in terms of the internal

computation time for the code. One possible notion is to give more internal computation

time for a particular I/O transition than the other in case adjusting both ∆IMP equally

conforms linear constraints. Accommodating such refined optimality will result in more

complex objective functions than Equation 7.3. Exploring all possible notions of optimality

and comparing them to each other is out of the scope of this dissertation.

7.5.3. Handling Cyclic Models

Note that, if a platform-independent model contains cycles, there can be an infinite number

of paths between a pair of transitions. For example, Model 3 contains a cycle closed by

transition 3. Consider a pair of transitions (t1, t3); there are an infinite number of paths,
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corresponding to the number of times the cycle has been followed. Yet, we want to preserve

the delay-bound inclusion property for each of these paths. To this end, we show that

it is sufficient to consider only the simple paths through the model to guarantee that the

delay-bound inclusion property for arbitrary paths, as follows:

Theorem 2. Given a platform processing delay P and a platform-independent model Ms,

if fIMP(i, j) ∈ fMs(i, j) for every pair of transitions ti and tj, then fIMP(p) ∈ fMs(p) for any

path p that starts with ti and ends with tj.

Proof. (Proof by contradiction) Suppose ∃ p such that fIMP(p) 6∈ fMs(p), where p = ti . . . tp1

. . . tp2 . . . tpk . . . tj with a set of simple paths ti . . . tp1, and t
p
1 . . . tp2, . . . , and t

p
k−1 . . . tpk, and

tpk . . . tj . By Lemma 3, fMs(p) is calculated as follows:

f min
Ms

(p)=f min
Ms

(ti , tp
1 )+f min

Ms
(tp

1 , t
p
2 )+. . . +f min

Ms
(tp

k−1 , t
p
k )+f min

Ms
(tp

k , tj)

f max
Ms

(p)=f max
Ms

(ti , tp
1 )+f max

Ms
(tp

1 , t
p
2 )+. . . +f max

Ms
(tp

k−1 , t
p
k )+f max

Ms
(tp

k , tj)

Since fIMP(p) 6∈ fMs(p), either of the following cases must be satisfied:

(Case 1) f min
IMP(p) < f min

Ms
(p)

(Case 2) f max
IMP (p) > f max

Ms
(p)

Suppose (Case 1) holds; then,

f min
IMP(ti , tp

1 )+f min
IMP(tp

1 , t
p
2 )+. . . +f min

IMP(tp
k−1 , t

p
k )+f min

IMP(tp
k , tj) <

f min
Ms

(ti , tp
1 )+f min

Ms
(tp

1 , t
p
2 )+. . . +f min

Ms
(tp

k−1 , t
p
k )+f min

Ms
(tp

k , tj).

However, this is not possible due to the assumption that f min
IMP(ti , tj) ≥ f min

Ms
(ti , tj) for ∀ ti, tj .

Suppose (Case 2) holds; then,

f max
IMP (ti , tp

1 )+f max
IMP (tp

1 , t
p
2 )+. . . +f max

IMP (tp
k−1 , t

p
k )+f max

IMP (tp
k , tj) >

f max
Ms

(ti , tp
1 )+f max

Ms
(tp

1 , t
p
2 )+. . . +f max

Ms
(tp

k−1 , t
p
k )+f max

Ms
(tp

k , tj).

However, this is not possible due to the assumption that f max
IMP (ti , tj) ≤ f max

Ms
(ti , tj) for ∀ ti,
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tj .

This contradicts the fact that either (Case 1) or (Case 2) must be satisfied.

Example 7.5.4 (Linear Constraints for Model 3). According to Theorem 2, we only need to

consider a finite number of simple paths in Model 3, and the corresponding linear constraints

are listed below:

• (C1a) tl2+Pmin(a2 )+Pmin(a1 )≥2

• (C1b) tu2+Pmax(a2 )+Pmax(a1 )≤10

• (C2a) tl2+tl3-(Pmax(a3 )-Pmin(a1 ))≥9

• (C2b) tu2+tu3 -(Pmin(a3 )-Pmax(a1 ))≤20

• (C3a) tl3+tl1-(Pmax(a2 )+Pmax(a1 ))≥7

• (C3b) tu3+tu1 -(Pmin(a2 )+Pmin(a1 ))≤20

• (C4a) tl3-(Pmax(a3 )+Pmax(a2 ))≥7

• (C4b) tu3 -(Pmin(a3 )+Pmin(a2 ))≤10

• (C5a) tl3-(Pmax(a1 )-Pmin(a3 ))≥0

• (C5b) tu3 -(Pmin(a1 )-Pmin(a3 ))≤10

• (C6a) tl1+tl2+(Pmin(a3 )+Pmin(a2 ))≥2

• (C6b) tu1+tu2+(Pmax(a3 )+Pmax(a2 ))≤20

• (C7) tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0 ∧ tu3≥0

• (C8) tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3
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Now, the objective function can be similarly defined as Model 1 and Model 2; the following

is the list of uncertainty ranges that correspond to the pairs of I/O transitions in Model 3:

∆IMP(1, 2) = (tu2 + Pmax(a2 ) + Pmax(a1 ))− (tl2 + Pmin(a2 ) + Pmin(a1 ))

∆IMP(1, 3) = (tu2 + tu3 − (Pmin(a3 )− Pmax(a1 )))− (tl2 + tl3 − (Pmax(a3 )− Pmin(a1 )))

∆IMP(2, 1) = (tu3 + tu1 − (Pmin(a2 ) + Pmin(a1 )))− (tl3 + tl1 − (Pmax(a2 ) + Pmax(a1 )))

∆IMP(2, 3) = (tu3 − (Pmin(a3 ) + Pmin(a2 )))− (tl3 − (Pmax(a3 ) + Pmax(a2 )))

∆IMP(3, 1) = (tu3 − (Pmin(a1 )− Pmax(a3 )))− (tl3 − (Pmax(a1 )− Pmin(a3 )))

∆IMP(3, 2) = (tu1 + tu2 + (Pmax(a3 ) + Pmax(a2 )))− (tl1 + tl2 + (Pmin(a3 ) + Pmin(a2 )))

The following is the objective function for Model 3:

maximize ∆IMP(1, 2) + ∆IMP(1, 3) + ∆IMP(2, 1) + ∆IMP(2, 3) + ∆IMP(3, 1) + ∆IMP(3, 2)

Example 7.5.5 (Optimal parameter assignment of Model 3). Suppose the code is to be

generated from Model 3, and integrated with a platform characterized as P=[0,1]; then the

optimal parameter assignment for the code is (tl1,tu1 ,tl2,tu2 ,tl3,tu3) = (0, 10, 2, 8, 9, 9). Consider

another P=[1,2]; then there is no possible parameter assignment for the code generation.

7.6. Case Study: Infusion Pump Systems

In order to show the applicability of the proposed approach, we generate the code for the

Baxter II Syringe PCA infusion pump platform, and validated several delay-bound inclusion

constraints (the equipment setup is shown in Appendix). Here are the details of the case

study:

(1) Modeling and verification for the infusion pump systems: Model 4 in Figure 39

is the system model (Ms) used for this case study, and its informal semantics and the

implication in the actual PCA pump implementation are as follows: in the initial location

(L1), the pump waits for the patient’s bolus request (in the implementation, the input
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mBolusReq is generated by pressing a button). However, the pump shall not accept a

bolus request occurring earlier than 5000 ms 1 since the previous infusion has been either

normally finished by providing the expected amount of drugs or abnormally finished due to

the alarming condition (i.e., those premature bolus requests should be ignored). Otherwise,

the pump shall process any valid bolus request by taking the transition from L1 to L2. In

L2, the pump shall initiate the bolus infusion in between 150 ms and 470 ms by taking the

transition from L2 to L3 (in the implementation, the output cStartInfusion is produced

by rotating the pump motor at a calculated speed). Any bolus infusion will finish in

between 300 ms and 750 ms by taking the transition from L3 to L1 (in the implementation,

the output cStopInfusion is produced by stopping the pump motor rotation), unless it

encounters the empty syringe condition. During the infusion, if the empty syringe is detected

(in the implementation, the input mEmptySyringe is detected from the switch sensor that

is pressed when the syringe hits the bottom), the pump takes a transition from L3 to L4 to

prepare alarms. In L4, the pump raises an alarm in between 200 ms and 500 ms by taking

the transition from L4 to L1 (in the implementation, the output cAlarm is produced by

providing signals to a buzzer and alarm LEDs).

Here are three timing constraints considered in this case study:

• (REQ1) When a patient requests a bolus, the bolus infusion should start in between

150 ms and 470 ms;

• (REQ2) The bolus infusion should be active at least 300 ms, and at most 750 ms;

• (REQ3) When a patient requests a bolus, the bolus infusion should finish in between

450 ms and 1220 ms in the absense of the empty reservoir alarm.

(2) Obtaining the platform-processing delay (P): We measured the platform-processing

delay (P) of each input and output of the Baxter PCA pump according to the measurement

method introduced in [34], and here is the brief explanation:
1We assume 1 time unit in the model is mapped to 1 ms in the implementation
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Figure 39: Model 4 with variable assignment (Simplified GPCA model)

To measure the input processing delay, we obtained the timestamp (tm) when the input is

generated from the environment (mc-boundary), and obtained another timestamp (ti) when

the code reads the processed input (io-boundary); the input processing delay is calculated by

subtracting tm from ti. To measure the output processing delay, we obtained the timestamp

(to) when the output is generated from the code (io-boundary), and another timestamp (tc)

when the platform actually writes the processed output to the environment (mc-boundary);

the output processing delay is calculated by subtracting to from tc.

We obtained each timestamp using the oscilloscope that captures the signal changes of the

sensors and actuators of the PCA pump. The measurement has been performed 20 times

to measure each I/O delay (two inputs and three outputs), and the min/max bound and

the average of the measured platform processing delay are summarized in Table. 11.

From this measurement, we characterize the platform-processing delay of the Baxter PCA

pump platform as P={P(mBolusReq)=[50,151],P(cStartInfusion)=[100,303],
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I/O Event Type           (ms)        (ms) Avg. (ms) 

Input 50 151 105.27 

Output 100 303 225.97 

Output 98 302 213.64 

Input 104 200 142.8 

Output 298 303 300.05 

minP

maxP

mBolusReq?

cStartInfusion!

cStopInfusion!

mEmptySyringe?

cAlarm!

Table 11: The measured platform processing delay of the Baxter II syringe pump platform

P(cStopInfusion)=[98,302], P(mEmptySyringe)=[104,200], P(cAlarm)=[298,303]}.

(3) Formalizing the ILP problem: According to the procedure explained in Section 7.5,

we formalized the ILP problem to find the optimal parameter assignment to generate the

code. Firstly, two integer variables are mapped to each I/O transition of the model, which

are unknown variables that need to be solved to implement the code-level delay; a total

of 10 integer variables are mapped to the model (tl1,tu1 ,tl2,tu2 ,tl3,tu3 ,tl4,tu4 ,tl5,tu5). Secondly, fMs

has been calculated for the simple paths between all pairs of I/O transitions; a total of 20

pairs of fMs are calculated. Thirdly, based on the calculated fMs , 42 linear constraints have

been formalized that need to be satisfied for delay-bound inclusion constraint. Finally, the

objective function is defined with the given P, and the solver finds the optimal parameter

assignment as summarized in Table 12. This parameter assignment is used to implement

the guard conditions in generating the code that will be executing on the given platform.

                           

5000 INF 150 470 300 750 0 1500 200 500 

5454 INF 0 16 505 548 503 1704 0 202 

l

1t

sM
T

cM
T

u

1t 2
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l
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u

3t
l
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4t
l

5t
u
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Table 12: The parameter assignment (Ts) of Ms and the parameter assignment (Tc) of Mc

(4) Validating the optimal solution: The goal of the validation is to compare how

well the two different codes generated from the platform-independent model (Ms) and the

software model (Mc) preserve the delay-bound inclusion constraint. We generated the two
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different codes from each model using the TIMES tool [14]. In order to obtain the im-

plemented system, the generated codes are interfaced with the same platform-specific I/O

processing routines whose min/max processing delay-bound is measured as shown in Ta-

ble 11.

In order to validate the delay-bound inclusion constraint, we measured the delay between a

pair of I/O events associated with each timing constraint at the mc-boundary. For example,

in order to validate REQ1, we obtained the timestamp (tmBolusReq) for the signal change

occurring at the bolus request button (its signal changes from 5 volts to 0 volts if the

button is pressed by the patient); and we obtained another timestamp (tcStartInfusion) for

the signal change occurring at the pump motor (its signal changes from 0 volts to 5 volts

if the motor starts rotating); the delay between the two signal changes are measured by

subtracting tmBolusReq from tcStartInfusion.

For each code, the delay measurement has been performed 20 times for each timing con-

straint; the trends of the delay-bound for each constraint throughout the testing are shown

in Figure 40 41 42; their min/max/average delays are summarized in the two separate fIMP

columns of Table 13; at the same time, fMs is also shown in Table 13 as well for comparison.

REQ 
Min (ms) Max(ms) Min(ms) Max(ms) Avg.(ms) Min(ms) Max(ms) Avg.(ms) 

REQ1 150 470 603 843 695.8 155 459 283.4 

REQ2 300 750 603 907 845 595 619 606.6 

REQ3 450 1220 1400 1710 1537 747 1070 887.55 

sM
f ( , )sMIMPf T P ( , )cMIMPf T P

Table 13: The validation result of the delay-bound inclusion constraint of the GPCA refer-
ence implementation

Analysis: Meeting the delay-bound inclusion constraint means that all the measured im-

plementation delays of each timing constraint should be within the time interval allowed

by the platform-independent model (Ms) (i.e., f min
IMP ≥ f min

Ms
and f max

IMP ≤ f max
Ms

). If at least

one delay measurement is out of the interval allowed by Ms, the implementation does not
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Figure 40: Validation Result for REQ1

conform to the delay-bound inclusion constraint.

Figure 40, 41, 42 show the validation result of REQ1, REQ2, REQ3, respectively. The purple

line and and green line represent f min
Ms

and f max
Ms

, respectively. Hence, the implementation

delay (fIMP) is expected to stay within these min/max bounds. The blue line represents the

actual delay of the implemented system that executes the code generated from the system

model (Ms) without any delay adjustment; on the other hand, the red line represents the

actual delay of the implemented system that executes the code generated from the software

model (Mc) that has been constructed according to the proposed approach.

According to our testing results, all measured implementation delays of the system running

the code generated from Mc are within the delay-bound allowed by Ms for the three timing

constraints (i.e., the delay-bound inclusion constraint holds under this testing set). On the

other hand, most measured implementation delays of the system running the code generated

from Ms are out of the interval allowed by Ms for all three timing constraints (i.e., the delay-
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Figure 41: Validation Result for REQ2

bound inclusion constraint does not hold under this testing set). This result shows that a

platform-independent model (Ms) is not an appropriate model to generate the code for the

timing constraint conformance; instead, a software model (Mc) has to be used to generate

the code toward the timing constraint conformance.

7.7. Summary of the Platform-Specific Code Generation

This chapter introduced a way to compensate the platform-processing delay by adjusting the

timing parameters of the platform-independent model during code generation. In particular,

we introduced a notion of the delay-bound inclusion constraint that is well matched to

formally describe the timing constraints among occurrences of input and output. In order

to meet the delay-bound inclusion constraint in the implementation level, we formalized the

integer linear programming (ILP) problem in order to identify how much model delay should

be adjusted in a way that it can be used to generate the code. This formalization enables

the timing parameters to be automatically adjusted using the ILP solver by compensating
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Figure 42: Validation Result for REQ3

the platform-processing delay. In addition, if a platform does not have sufficient processing

power to run code generated from the platform-independent model, the solver gives output

that says that there is no feasible adjustment strategy for the given platform. On the

other hand, as long as the solver finds any valid timing parameter adjustment, then the

solution guarantees the code to use the maximum computation time on a given platform

while preserving the delay-bound inclusion constraint.

One benefit of this approach is that, by adjusting only the timing parameters of a platform-

independent model, we can still use the capability of existing code generation tools that can

automatically produce source code based on the model structure. In addition, if the solver

finds a valid timing parameter assignment to obtain such a code, no additional verification

or testing process is required to check how much timing deviation exists in the implemented

system with respect to the platform-independent model due to the platform-processing

delay; because, the delay has been already compensated while generating the code in a way

that the implemented system conforms to the timing constraints.
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CHAPTER 8 : Conclusions

Summary: This dissertation introduced how timing aspects of safety-critical systems can

be modeled, verified, and implemented by demonstrating it through the PCA pump case

study. By separating concerns of the platform-independent and the platform-dependent

timing aspects, timed behavior of a system can be modeled, verified and implemented in-

dependently of platform-specific timing aspects. Such a development framework enables

software not only to be reused across a range of platforms, but also to be developed in

the absence of the platform-specific timing information. In addition, such decoupled devel-

opment processes facilitate a system to be modeled through different levels of abstraction

using modeling languages that can appropriately express each abstraction layer. In our

work, we used state-transition formalism (e.g., UPPAAL) to abstract the input/output

timed behavior of the platform-independent aspect, while the architectural modeling (e.g.,

AADL) is used to abstract the platform-dependent aspects, such as the thread components

and interactions with sensors and actuators.

Besides, since software is developed independently of a particular platform, software may

not be integrated with any platform in a way that the final implementation preserves timing

constraints that have been verified in the platform-independent model. This is because how

the timing overhead, originating from a chosen platform, impacts the timed behavior of the

platform-independent model is not guaranteed. Therefore, our integration stage provides

two different approaches to check whether such integration can be performed by conform-

ing the timing constraints. The first approach is to systematically extend the platform-

independent model into the platform-specific model that explicitly models the timing over-

head of a platform. Hence, the platform-specific model has a similar timed behavior with

that of the final implementation, so one can formally verify it to check whether the timing

constraints are satisfied at the implementation level. The second approach is to optimize the

platform-independent code by adjusting the timing parameters of the platform-independent

model in a way that the platform-specific timing overhead can be appropriately compen-
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sated to hold the timing constraints in the final implementation. Hence, as long as the code

is integrated with a platform that is used to adjust the timing parameters, the implemen-

tation guarantees the timing constraints that has been verified in the platform-independent

model.

Perspective: This dissertation gave special focus on the safety assurance associated with

the timing aspects. Apart from the timing aspects, we believe that it is also worthwhile to

discuss the advantages of the model-based development in building safety critical systems

from a more general perspective.

The complexity of safety critical systems is growing fast. Hence, it becomes more challenging

to reason about system-wide safety properties as a result of various internal interactions

occurring across many different system layers that affect those properties in a complicated

pattern. Unless complexity is handled in a way that a system can be developed in a traceable

way, it is hard to expect the final implementation to meet high safety standards.

We believe that the model-based development - one example of such an application was

demonstrated in this dissertation - is promising in a sense that a system can be formally

modeled so that rigorous safety analysis is performed in the early development stage; con-

sequently, implementations are systematically constructed from the verified model. The

resulting implementation has a higher safety assurance in comparison to those developed in

an adhoc fashion.

Applying this technique throughout the complete development cycle of building complex

systems is challenging. One reason is that many modeling languages have different seman-

tics, expressiveness and verification capability that may fit better than others to abstract

certain aspects of systems. The associated modeling, verification and code generation tech-

niques need to be used in concert to reason about the safety of the whole systems in order

to gain the benefit from the model-based development to the fullest extent. We believe

that more research has to be conducted especially regarding such interoperability for the
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seamless connection among different modeling languages.

Development cost is an important issue from the industrial perspective. The development

cost includes not only the money spent for the system development, but also the time dura-

tion until the system is released to the market and the reviewing efforts by the government

authorities to approve the systems to be sold in the market. Even though we have not quan-

tified such a cost in this PCA pump case study, we believe that the overall development

cost can be reduced or at least worth spending on improving system safety in comparison to

other development processes (i.e., non model-based development process) for the following

reasons:

Development Cost: Modeling and verification will add more costs to the early development

stage since one needs an additional step of modeling systems to be developed. However,

those additional modeling costs can be well compensated by the rest of the development:

automatic code generation will reduce the implementation cost in comparison to the manual

coding; automatic test case generation will reduce the cost in comparison to the manual

test case generation from informal requirements and specifications.

Maintenance Cost: The model-based development can adapt to users’ requirements that

may change over time in a cost-effective way. Accommodating a minor requirement change

can be costly in the safety-critical domain since one needs to argue how the change affects

the safety claims that have been established in the existing implementation. In particular,

if a system is complex, it is non-trivial how such minor changes will impact the whole

system behavior without any means to trace them from the specification level down to the

implementation level. In the model-based development, by modifying existing models, one

can trace how such changes impact the system behavior through the model verification

process. In addition, those modified aspects of the models can be systematically reflected

to the implementation and testing process which will reduce the maintenance cost.

Reviewing cost: Safety-critical systems are typically reviewed by authorities, such as govern-
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ment agencies, before they are released to the market. For example, infusion pumps require

510 (k) approval from the FDA, by demonstrating it is at least as safe and effective as a

legally marketed device before they are sold. Such a reviewing process is challenging from

both the reviewer and device manufacturer side. Device manufacturers need to convince

the authorities by demonstrating the relationship of developed artifacts, such as design

specification, source code, and testing results, in order to make the higher level safety claim

of the device to be marketed. Reviewers need to understand and investigate the linkage

of the artifacts to identify if there exists some holes between the safety claim and those

artifacts. Without traceable artifacts, the review process can be challenging for both sides.

In this sense, the model-based development can benefit both the device manufacturer and

the reviewing authorities by enabling those artifacts to be produced in a traceable way so

that it facilitates the reviewing process.

To conclude this dissertation, we hope that our case study of applying the model-based

development to PCA pumps become a good exemplar so that it can promote the use of the

model-based development in many other safety critical domains.
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APPENDIX

A.1. The GPCA UPPAAL model

The four UPPAAL automata are translated from POST, Check Drug Routine, Infusion Con-

figuration Routine, Infusion Session Submachine of State Controller of the GPCA Stateflow

model that is explained in Section 4.3. We follow the naming convention of the GPCA

Stateflow model to define locations and input/output synchronizations in the UPPAAL

model.

Figure 43: The POST Session

A.2. Appendix: Code Generation with Timing

A.2.1. Notations used in Chapter 7

Table 14 summarizes the notations used in Chapter 7.

A.2.2. ILP Formalization of Model 4

Model 4 has total 42 linear constraints as follows:
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Figure 44: The Check Drug Routine

A.3. The Experimental Platforms for the GPCA Reference Implementations

A.3.1. Introduction to the GPCA experimental platforms

We introduce the experimental hardware platforms used for the GPCA infusion pump

reference implementations. The model-based implementation methodology introduced in

the previous chapters is validated by executing the developed source codes on these real

PCA infusion pump hardware platforms. The intention of the case study using real PCA

pumps is to provide a better understanding about how the model-based implementation
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Figure 45: The Infusion Configuration Routine

can be applied in practice not only to the academic field, but also to the industrial field.

We aim at demonstrating the proposed idea on a range of platforms that have different

hardware structures. In order to meet this aim, the following criteria were considered in

selecting PCA infusion pump hardware platforms:

• (Criteria 1) Each PCA pump hardware platform should be produced by different

device manufacturers,

• (Criteria 2) In case PCA pumps are produced by the same device manufacturer,

those should belong to different model categories.

We believe that those criteria will guide us to choose good candidate platforms whose

internal hardware structures are different from each other enough for demonstrating our

model-based implementation methodology. Figure 47 shows the two PCA infusion pump
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Figure 46: The Infusion Session Submachine

hardware platforms that have been obtained based on the criteria; their internal hardware

structures are compared in Figure 4 in Chapter 3. We dismantled these hardware platforms,

and implemented device drivers for sensors and actuators; such device drivers are considered

as platform-dependent code that should be integrated with the platform-independent code.

We note that since device manufacturers do not reveal information about how to interface

their sensors and actuators publicly, we identified functionality of hardware pins connected

to each sensor and actuator in a brute-force way (i.e., examining all possible combinations

of the hardware pins). All case studies and experiments were conducted on both or either

hardware platforms depending on the research context introduced in the previous chapters.

A.3.2. Comparison of commercial PCA pump hardware platforms

In order to develop an embedded system - like infusion pumps - that meets safety require-

ments, understanding its hardware platform (e.g., sensors and actuators) is as important as
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Infusion Pump Platform 2 
•Hardware: Lifecare 4100 PCA 
•Operating system: None 
•Microcontroller: FreeScale HCS12 

Infusion Pump Platform 1 
• Hardware: Baxter PCA Syringe 
•Operating system: FreeRTOS 
•Microcontroller: ARM7 

ARM7 micro-controller 

Baxter PCA II Syringe Pump 

Electronic balance 

(a) The evaluation hardware platforms (Baxter and Lifecare PCA pump) (b) The test setup for the flow-rate accuracy testing 

Figure 47: (a) The evaluation hardware platforms for the GPCA reference implementation
(Baxter PCA Syringe Infusion Pump and Lifecare 4100 PCA Infusion Pump) (b) The test
setup for the flow-rate accuracy testing based on the IEC 60601-2-24 standard [9]

understanding the software which will operate on the hardware platform. This is because

the operation of such software is closely tied to the way the hardware platform is structured

to interact with its physical environment. Therefore, some safety requirements may not be

implemented using only software unless its platform has the necessary hardware supports,

or the software should be implemented differently depending on the way its hardware plat-

form is configured. These considerations are necessary in the development of PCA infusion

pump systems as well. To understand the hardware aspects of the PCA infusion pump

system, we compared three PCA infusion pump hardware platforms. Table 16 summarizes

the comparison of sensors and actuators equipped in these PCA infusion pumps, and we

had the following observations:

(Observation 1) Each platform has different sets of sensors and actuators, which

requires different roles of software in implementing safety requirements:

Consider the following safety requirement:

• If the current value / calculated volume of the reservoir is less than x ml, and an

infusion is in progress, a Low Reservoir alert shall be issued.
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In order to implement this safety requirement in the Baxter PCA II Syringe platform, the

software can utilize the hardware input read from the reservoir low sensor; if the sensor

reading is true (i.e., the syringe is close to empty), then the software can produce an alarm

output. However, in order to implement the same requirement in the LifeCare 4100 PCA

pump or the Baxter AP II PCA pump that are not equipped with such a sensor, the

software should detect the low reservoir condition differently (e.g., using the software time-

out mechanism). From this observation, we expect that the platform-independent code will

be integrated with quite different platform-dependent codes on different hardware platforms

in order to fulfill the safety requirements depending on the availability of hardware supports.

Hence, the software development approach should take into account such a variation when

exploiting separation of concerns between the platform-independent and dependent aspects.

(Observation 2) Some safety requirements mandate a platform to have a certain

sensor realize the safe operation, but some platforms are not equipped with the

sensor:

Consider the following safety requirements:

• If the pump is equipped with a flow rate sensor and the flow rate exceeds the pro-

grammed rate setting by more than n% over a period of more than t minutes, or if

the pump goes into free flow, the pump shall issue an alarm to indicate overinfusion

of the patient

• If the pump is equipped with a flow rate sensor and the flow rate is less than n% of

the programmed rate setting over a period of t minutes, the pump shall issue an alarm

to indicate underinfusion of the patient.

In order to implement these requirements, a hardware platform must be equipped with a

flow rate sensor (or a drop sensor) in order to calculate the actual flow rate of drug passing

through intravenous tubes; in other words, software cannot calculate the actual flow rate

without such a sensor. However, we observed that none of the three PCA infusion pumps in
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Table 16 is equipped with a drop sensor. Therefore, a PCA pump system cannot satisfy these

safety requirements no matter what software is implemented on these hardware platforms.

This implies that formal verification and testing techniques introduced in this thesis can be

applied to assure safety requirement conformance, but they may not be sufficient to assure

some other safety requirements due to practical limitations of the system that we want to

develop. In this case, we believe that the conformance of the safety requirements should be

considered from the environmental context where the developed system will operate. For

example, caregivers (i.e., environment) should monitor the actual flow rate often enough

so that such over-infusion or under-infusion situations can be reasonably detected, which

could not be detected by the system itself.
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Notations Definitions

The system model

The software model

The timing parameter assignments to the system model and the software model

The lower/upper bound of clock values associated with a transition k of the software model

The lower/upper bound of clock values associated with a transition k in the system model

The min/max platform processing delay of the event ak;

By adding min and max superscripts, each indicates minimum delay bound and maximum 

delay bound separately.

The min/max delay bound of a transition j succeeding a transition i in the system model;

By adding min and max superscripts, each indicates minimum delay bound and maximum 

delay bound separately

The min/max delay bound of a path p in the system model; 

By adding min and max superscripts, each indicates minimum delay bound and maximum 

delay bound separately

The min/max delay bound of an event j (corresponding to transition j in the system model) 

succeeding an event i (corresponding to transition i in the system model) at the mc-

boundary; By adding min and max superscripts, each indicates minimum delay bound and 

maximum delay bound separately

The min/max delay bound of a final event (corresponding to the final transition of p in the 

system model) succeeding a start event (corresponding to the start transition of p in the 

system model) at the mc-boundary; By adding min and max superscripts, each indicates 

minimum delay bound and maximum delay bound separately

The min/max delay bound of an event j (corresponding to transition j in the system model) 

succeeding an event i (corresponding to transition i in the system model) at the io-boundary;

By adding min and max superscripts, each indicates minimum delay bound and maximum 

delay bound separately

The system model-level input/output event (identifier: k)

The implementation-level input event: the input (m) generated from the environment at the 

mc-boundary; the input (i) processed by the platform at the io-boundary (identifier: k)

The implementation-level output event: the output (o) generated by the code at the io-

boundary; the output (c) generated by the platform at the mc-boundary (identifier: k)

The event clock associated with the event ak

The uncertainty range of the event j occurrence following the event i occurrence in the 

system model

The uncertainty range of the event j occurrence following the event i occurrence in the 

implemented system

sM
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SOF( , )f i j
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sM ( , )i j

IMP( , )i j

,m i
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s s

min max

M M[ ( , ), ( , )]f i j f i j

min max

IMP IMP[ ( , ), ( , )]f i j f i j

min max

SOF SOF[ ( , ), ( , )]f i j f i j

P( )ka
min max[P ( ),P ( )]k ka a

sM ( )f p

IMP( )f p

s s

min max

M , M[ ( ), ( )]f p f p

min max

IMP IMP[ ( ), ( )]f p f p

Table 14: Notations used in Chapter 7
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Table 15: The Linear Constraints for Model 4 (Figure 39 in Chapter 7)
ID Constraint ID Constraint
C1a tl2+P 2

min+P 1
min≥ 150 C1b tu2+P 2

max+P 1
max≤ 600

C2a tl2+tl3+P 3
min+P 1

min≥ 900 C2b tu2+tu3+P 3
max+P 1

max≤ 2100
C3a tl2+tl4−(P 4

max−P 1
min)≥ 150 C3b tu2+tu4−(P 4

min−P 1
max)≤ 2100

C3a tl2+tl4−(P 4
max−P 1

min)≥ 150 C3b tu2+tu4−(P 4
min−P 1

max)≤ 2100
C4a tl2+tl4+tl5+P 5

min+P 1
min≥ 350 C4b tu2+tu4+tu5+P 5

max+P 1
max≤ 2600

C5a min[tl3+tl1−(P 1
max+P 2

max),
tl4+tl5+tl1−(P 1

max+P 2
max)] ≥ 5200

C5b max[tu3+tu1−(P 1
min+P 2

min),
tu4+tu5+tu1−(P 1

min+P 2
min)]≤ INF

C6a tl3+P 3
min−P 2

max≥ 750 C6b tu3+P 3
max−P 2

min≤ 1500
C7a tl4−(P 4

max+P 2
max)≥ 0 C7b tu4−(P 4

min+P 2
min)≤ 1500

C8a tl4+tl5+(P 5
min−P 2

max)≥ 200 C8b tu4+tu5+(P 5
max−P 2

min)≤ 2000
C9a tl1−(P 3

max+P 1
max)≥ 5000 C9b tu1−(P 3

min+P 1
min)≤ INF

C10a tl1+tl2+(P 3
min−P 2

max)≥ 5150 C10b tu1+tu2+(P 3
max−P 2

min)≤ INF
C11a tl1+tl2+tl4−(P 4

max+P 3
max)≥ 5150 C11b tu1+tu2+tu4−(P 4

min+P 3
min)≤ INF

C12a tl1+tl2+tl4+tl5+(P 5
min−P 3

max)≥ 5350 C12b tu1+tu2+tu4+tu5+(P 5
max−P 3

min)≤ INF
C13a tl5+tl1−(P 1

max−P 4
min)≥ 5200 C13b tu5+tu1−(P 1

min−P 4
max)≤ INF

C14a tl5+tl1+tl2+P 2
min+P 4

min≥ 5350 C14b tu5+tu1+tu2+P 2
max+P 4

max≤ INF
C15a tl5+tl1+tl2++tl3+P 3

min+P 4
min≥ 6100 C15b tu5+tu1+tu2++tu3+P 3

max+P 4
max≤ INF

C16a tl5+P 5
min+P 4

min≥ 200 C16b tu5+P 5
max+P 4

max≤ 500
C17a tl1−(P 5

max+P 1
max)≥ 5000 C17b tu1−(P 5

min+P 1
min)≤ INF

C18a tl1+tl2+(P 2
min−P 5

max)≥ 5150 C18b tu1+tu2+(P 2
max−P 5

min)≤ INF
C19a tl1+tl2+tl3+(P 3

min−P 5
max)≥ 5900 C19b tu1+tu2+tu3+(P 3

max−P 5
min)≤ INF

C20a tl1+tl2+tl4−(P 4
max−P 5

max)≥ 5150 C20b tu1+tu2+tu4−(P 4
min+P 5

min)≤ INF
C21 tl1≥0 ∧ tu1≥0 ∧ tl2≥0 ∧ tu2≥0 ∧ tl3≥0

∧ tu3≥0 ∧ tl4≥0 ∧ tu4≥0 ∧ tl5≥0 ∧
tu5≥0

C22 tl1≤tu1 ∧ tl2≤tu2 ∧ tl3≤tu3 ∧ tl4≤tu4 ∧
tl5≤tu5

Table 16: The comparison of three commercial PCA infusion pump hardware platforms
Type Hardware Part LifeCare 4100 PCA  

pump 
Baxter PCA II Syringe  

pump 
Baxter AP II PCA  

pump 

Sensor 

Door sensor O O O 

Reservoir Empty Sensor O O X 

Reservoir Low Sensor X O X 

Drop sensor X  X X 

Pressure sensor O O O 

Air-in-line sensor X X X 

Humidity sensor X X X 

Temperature sensor X X X 

Voltage sensor  O O O 

Patient-Pendant O O O 

Drug-Loaded Sensor O X X 

- Shaft Sensor X X 

Actuator 
Pump Motor O (Stepper Motor) O (DC Motor) O (DC motor) 

Buzzer O O O 
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