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Vitamin A Metabolism and Commensal Stimulationi in the Promotion of
Mucosal Immunity

Abstract
The gastrointestinal tract is replete with commensal microbes and dietary nutrients that provide homeostatic
signals. Antigen presenting dendritic cells (DC) residing in the underlying lamina propria (Lp) respond to
these signals; however, how they contribute to intestinal T cell homeostasis is unclear. In Chapter 2, LpDC are
revealed to uniquely induce naïve T cell differentiation into the Foxp3+ regulatory T cell (Treg) subset.
Further, the molecular mechanisms controlling this capacity both in vitro and in vivo are shown to hinge on
the vitamin A metabolite, retinoic acid (RA), which LpDC are equipped to synthesize, and the cytokine,
TGF-beta. T cell expression of retinoic acid receptor alpha (RARalpha) is shown to be critical for RA to
induce enhanced Foxp3+ Treg induction. Chapter 3 extends upon these findings and addresses the influence
of the commensal microbiota in the regulation of this pathway. A Toll like receptor (TLR) 9 ligand,
commensal derived DNA, is identified as a potent adjuvant in the gut mucosa, which shapes T cell
homeostasis in the GI tract. Accordingly Tlr9–⁄– mice display an intestinal site-specific increase in
Foxp3+Treg concomitant with a decrease in TH cells. Dysregulation in Foxp3+ Treg/TH homeostasis results
in mucosal-specific impaired immune responses in Tlr9–⁄– animals, which can be reversed upon partial
depletion of Foxp3+ Treg. Chapter 4 builds upon findings from Chapter 2. The role of vitamin A metabolism
in the regulation of mucosal immunity is examined. Vitamin A insufficient (VAI) mice, which lack vitamin A
and metabolic derivatives, mount impaired mucosal TH-1 and TH-17 responses. These defects are reversed
upon administration of RA. Moreover, Rara–⁄– mice recapitulate the homeostatic and immune defects
observed in VAI mice. Strikingly, loss of basal RA/RARalpha signaling hinders early T cell activation events.
Cumulatively, the data argue that steady-state cues from microbiota and nutrients shape the inflammatory
tone of the Lp to prime mucosal TH responses. These data also identify a fundamental role for vitamin A
metabolism in T cell activation and suggest this pathway may have evolved with the development of adaptive
CD4+ T cell responses to coordinate host protection.
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Abstract	  
 

Vitamin A metabolism and commensal stimulation in the promotion of mucosal immunity 

Jason A. Hall 

Yasmine Belkaid  

 

The gastrointestinal tract is replete with commensal microbes and dietary 

nutrients that provide homeostatic signals. Antigen presenting dendritic cells (DC) 

residing in the underlying lamina propria (Lp) respond to these signals; however, how 

they contribute to intestinal T cell homeostasis is unclear. In Chapter 2, LpDC are 

revealed to uniquely induce naïve T cell differentiation into the Foxp3+ regulatory T cell 

(Treg) subset.  Further, the molecular mechanisms controlling this capacity both in vitro 

and in vivo are shown to hinge on the vitamin A metabolite, retinoic acid (RA), which 

LpDC are equipped to synthesize, and the cytokine, TGF-β. T cell expression of retinoic 

acid receptor alpha (RARα) is shown to be critical for RA to induce enhanced Foxp3+ 

Treg induction. Chapter 3 extends upon these findings and addresses the influence of the 

commensal microbiota in the regulation of this pathway. A Toll like receptor (TLR) 9 

ligand, commensal derived DNA, is identified as a potent adjuvant in the gut mucosa, 

which shapes T cell homeostasis in the GI tract. Accordingly Tlr9–⁄– mice display an 

intestinal site-specific increase in Foxp3+ Treg concomitant with a decrease in TH cells. 

Dysregulation in Foxp3+ Treg/TH homeostasis results in mucosal-specific impaired 

immune responses in Tlr9–⁄– animals, which can be reversed upon partial depletion of 

Foxp3+ Treg. Chapter 4 builds upon findings from Chapter 2. The role of vitamin A 

metabolism in the regulation of mucosal immunity is examined. Vitamin A insufficient 

(VAI) mice, which lack vitamin A and metabolic derivatives, mount impaired mucosal TH-
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1 and TH-17 responses. These defects are reversed upon administration of RA. 

Moreover, Rara–⁄– mice recapitulate the homeostatic and immune defects observed in 

VAI mice. Strikingly, loss of basal RA/RARα signaling hinders early T cell activation 

events. Cumulatively, the data argue that steady-state cues from microbiota and 

nutrients shape the inflammatory tone of the Lp to prime mucosal TH responses. These 

data also identify a fundamental role for vitamin A metabolism in T cell activation and 

suggest this pathway may have evolved with the development of adaptive CD4+ T cell 

responses to coordinate host protection. 
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CHAPTER	  1:	  Intestinal	  immune	  homeostasis:	  influential	  contributions	  by	  
the	  commensal	  microbiota	  and	  vitamin	  A	  metabolism	  	  
 

The	  intestinal	  microbiota	  establishes	  a	  commensal	  relationship	  with	  the	  
host	  

 

The mucosal surfaces are comprised of the oronasopharyngeal, urogenital, and 

gastrointestinal tracts and serve as the primary interface between the outside 

environment and the body. Although they are opportunistic sites for pathogen entry, they 

are also home to a dense array of microbial populations. The total number of these 

microorganisms exceeds the number of cells in the body by at least an order of 

magnitude (Garrett et al.). Far from bystanders, these microorganisms typically forge a 

commensal relationship with the host. Nowhere is this more apparent than in the 

gastrointestinal tract, which contains, by far, the densest microbial niche in the body. 

Studies using germ-free or gnotobiotic, as well as, antibiotic treated animals have 

highlighted the crucial role of the microbiota in the regulation of a broad range of 

processes, which include: 1) Metabolism via degradation of otherwise indigestible 

products and nutrient absorption (Hooper and Gordon, 2001; Hooper et al., 2002). 2) 

Intestinal tissue development via the elaboration of underlying microvasculature and 

isolated lymphoid follicles, respectively (Bouskra et al., 2008; Stappenbeck et al., 2002). 

3) Intestinal tissue repair and maintenance via regulation of growth factor expressing 

cells (Brown et al., 2007; Rakoff-Nahoum et al., 2004). 4) Immunity via growth and 

proper development of secondary lymphoid tissue (Pollard and Sharon, 1970; 

Stepankova et al., 1980). 5) Protection against opportunistic microbial invasion via 

elicitation of microbicidal proteins from epithelial cells, most prominently, Paneth cells, 

which reside at the base of intestinal crypts (Vaishnava et al., 2008); (Brandl et al., 
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2008). Release of these microbicidal proteins also regulates the composition of the 

commensal microbiota under steady-state conditions (Salzman et al.). 

 

Despite the plethora of benefits conferred onto the host by the presence commensal 

microbiota, itʼs important to bear in mind that its compartmentalization is central to 

maintaining a long-term advantage to the host, with impairments provoking an immunological 

imbalance that can drive aberrant local immune responses, such as inflammatory bowel 

disease (Nenci et al., 2007), and in other instances, distal or even systemic immune 

responses, the most extreme example being sepsis (Cohen, 2002).   

 

While the commensal barrier is maintained, in part, through goblet cell secretion of 

an overlaying mucus layer and a dynamic and resilient epithelial layer (Johansson et al., 

2008; Turner, 2009), other cell populations interdigitated within or beneath this barrier also 

play an essential role. These populations, which include cells of both the innate and adaptive 

arms of immunity, have evolved in close association with the commensals and in contact 

with their stimulatory ligands. Consequently, immune cells protecting this region, and by 

extension other mucosal sites, have acquired specialized functions to facilitate coexistence 

with the commensals, while maintaining the capacity to induce a potent immune response in 

the event of a pathogenic encounter. The execution of these dichotomous functions also 

contributes to the commensal composition, which is a critical factor in the establishment and 

maintenance of intestinal immune homeostasis (Fagarasan et al., 2002; Garrett et al.; 

Garrett et al., 2007). 

 

In addition to aberrant immune reactivity against the commensals, aberrant reactivity 

against dietary antigen also poses a substantial risk to intestinal immune homeostasis and 

can promote a variety of outcomes, ranging from tissue destruction in the case of celiac 
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disease to immunoglobulin E mediated anaphylaxis in the case of peanut allergy (Izcue et 

al., 2006; Jabri and Ebert, 2007; Li et al., 2000). Thus, the orchestration of tolerance to food-

borne antigen likely hinges on similar, if not, redundant immunological mechanisms with 

those that are in place to regulate the presence of commensals.  

 

The seemingly disparate tasks of the immune system protecting the GI tract, then, 

are to maintain a state of détente with commensals and food antigens, while retaining the 

capacity to mount a swift immune response upon pathogen encounter. Further, this must be 

achieved in a manner that avoids grossly jeopardizing host tolerance to commensals and 

food antigen. To begin to consider the cells and interactions that are involved in carrying out 

these duties it is important to understand the basic anatomy and organization of the GI tract 

and its associated lymphoid tissues. For conciseness and simplicity, the description to follow 

is intended to provide a framework for considering the complex and dynamic regulation of 

immunity in the small intestine. This tissue is of primary focus in the research to be described 

herein. 

The	  intestinal	  immune	  system	  is	  composed	  of	  inductive	  and	  effector	  sites	  
 

Broadly, the immune system of the gastrointestinal (GI) tract and the associated 

lymphoid tissues (GALT) can be separated into inductive sites and effector sites (Figure 

1).  

I. Inductive sites, including the mesenteric lymph nodes (mln), which drain 

the GI tract, and organized lymphoid aggregates called Peyer’s patches 

(Pp). These structures increase in frequency as the density of the 

commensal microbiota increases from the proximal duodenum to the 
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terminal ileum, underscoring their dependence on interactions with 

commensals (Neutra et al., 2001).  

II. Effector sites, which include the intestinal epithelial lymphocyte (IEL) 

and lamina propria (Lp) compartments (Mowat, 2003; Newberry and 

Lorenz, 2005). 

I.	  Lymphocyte	  activation	  in	  inductive	  sites	  
 

Under steady-state conditions, naive T cells constitutively enter into the Pp and mln from 

blood via high endothelial venules (HEV) (Jalkanen et al., 1987). Upon exit from HEVs, 

these cells may come into contact with dendritic cells (DC), which have captured and 

processed their cognate antigen (Ag) (Bajenoff et al., 2003). Ag is delivered into Pp 

usually via microvilli-lacking, specialized epithelial cells, called M cells. Upon trancytosis 

or endocytosis, these antigens are captured by DCs residing within the sub-epithelial 

dome (Cerutti and Rescigno, 2008). While Ag may also be captured in this manner 

within the Lp, upon entry into isolated lymphoid follicles (Jang et al., 2004; Vallon-

Eberhard et al., 2006), Ag can also be actively captured by DC that extend protrusions 

into the intestinal lumen; however, the physiological importance of this latter mode of 

capture remains controversial (Chieppa et al., 2006; Niess and Reinecker, 2005; 

Rescigno et al., 2001). Ag-bearing DCs from the Lp, then, migrate via the afferent 

lymphatics into the mln, where a cognate T cell potentially lies in wait. Intriguingly, the 

subset of LpDC that undergo migration (CD103+) is reportedly different from those 

capable of extending processes into the intestinal lumen (CX3CR1+CD103–) (Bogunovic 

et al., 2009; Schulz et al., 2009); however, it remains unclear whether CD103+ LpDC are 

also capable of this function (Chieppa et al., 2006).  
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During activation in the Pp and mln, CD4+ T cells receive signals that result in the 

upregulated expression of mucosal homing receptors including the chemokine receptor 

CCR9 and the integrin heterodimer, α4β7, which facilitate their migration to and retention 

in the Lp (Berlin et al., 1993; Iwata et al., 2004; Johansson-Lindbom et al., 2003; Kunkel 

et al., 2000; Mora et al., 2003). Activated CD4+ T cells within Pp can also undergo 

directed migration from T cell areas toward B cell areas and, in turn, induce 

immunoglobulin A (IgA) class switching in B cells, which then migrate into the Lp to 

undergo full differentiation into IgA secreting plasma cells (Allen and Cyster, 2008; 

Fagarasan et al.). This process also occurs independently of T cells in situ, specifically 

within ILFs (Tsuji et al., 2008). Although they were not investigated in the studies to be 

described herein, IgA+ B cells have potent regulatory capacity and shape the luminal 

composition of the commensal microbiota (Fagarasan et al., 2002).  

II.	  Lymphocyte	  organization	  in	  effector	  sites	  
 

In spite of their adjacent locations, the IEL and Lp compartments are, in fact, 

comprised of quite distinct lymphocyte populations during steady-state. One obvious 

distinction is the presence of γδT cells in the IEL, which are largely absent in the Lp 

(Bucy et al., 1988; Bucy et al., 1989). These cells were previously shown to promote 

intestinal epithelial cell (IEC) survival and maturation via incompletely defined 

mechanisms (Chen et al., 2002; Komano et al., 1995). Another striking distinction 

between the IEL and Lp is the MHC class restriction of αβ T cells: while most in the IEL 

are MHC I or MHC I-like restricted and are CD8+, the majority in the Lp are MHC II 

restricted and CD4+ (Bonneville et al., 1988; Chiba et al., 1986; Park et al., 1999). 

Nevertheless, MHC II restricted cells, such as Foxp3+ regulatory T cells, are still present 

in this compartment and serve important function. The immunological basis for this 
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dichotomy has several potential explanations. Notably, CD8+ cells are known to engage 

in a vivid dialogue with the IEC barrier and can dispose of infected/damaged IECs via 

the release of cytolytic granules without, necessarily, the concomitant release of pro-

inflammatory cytokines (Hayday et al., 2001; Jabri and Ebert, 2007). This feature implies 

that these cells are ideal sensors of tissue distress during steady-state conditions. 

However, in situations of extreme tissue distress, for instance, upon encounter with an 

alimentary allergen or infectious pathogen, resident CD8+ T cells may expand and 

become potent producers of pro-inflammatory cytokines (Jabri and Ebert, 2007). 

Moreover, such scenarios also foster the activation and recruitment of naive CD8+ αβ T 

cells from inductive sites.  
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Figure 1. Representation of the intestinal mucosal environment and several of 
the important mediators of innate and adaptive immune responses 
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LpDC	  actively	  sample	  luminal	  content:	  
 

While one could argue that the primary duty of the IEL compartment is to avoid 

direct engagement with antigen, the Lp compartment appears poised for active sampling 

of the luminal environment during steady-state conditions. Indeed, the Lp is host to a 

sizable population of antigen presenting cells (APC), which include resident 

macrophages, as well as CCR7– and CCR7+ resident and migratory DCs, respectively 

(Bogunovic et al., 2009; Chirdo et al., 2005; Jang et al., 2006; Johansson-Lindbom et al., 

2005; Mayrhofer et al., 1983; Schulz et al., 2009). Previous studies have shown that 

specific subpopulations of CD11c+ MHC II+ cells, which may also encompass 

macrophages in this tissue (Denning et al., 2007; Uematsu et al., 2008), are able to 

extend balloon-like protrusions into the luminal space (Chieppa et al., 2006; Niess and 

Reinecker, 2005). In this regard, the resident CX3CR1+ subpopulation (CCR7– CD103–) 

which was the first population characterized to display this property in an intact tissue, 

was revealed to readily take up both fluorescently-labeled non-pathogenic bacteria and 

food antigen from the intestinal lumen (Niess and Reinecker, 2005; Schulz et al., 2009). 

Although migratory CCR7+CD103+ LpDC are less phagocytic than their CX3CR1+CCR7– 

counterparts (Brian Kellsall, personal communication), this sub-population was found to 

possess inclusions of apoptotic cells, including epithelia, upon transit into the mln 

(Huang et al., 2000). It was recently speculated that migratory LpDC also acquire 

luminal-captured antigen from resident CX3CR1+CCR7– DC via a mechanism that 

remains to be clarified (Rescigno, 2009). Cumulatively, these findings indicate that the 

Lp compartment, via resident and migratory APC, constantly surveys the luminal 

environment. These processes likely play a significant role in the composition of CD4+ T 

cells residing within the Lp. 
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APC	  are	  influenced	  by	  IEC	  interactions	  at	  the	  barrier	  interface:	  
 

Another element to consider is the effect of the luminal content on the exchange 

of information between the IEC and Lp compartment. This conversation is likely 

dependent on the sensing of microbial components relayed by pattern recognition 

receptors, including: 1) intracellular nucleotide-binding-oligomerisation domains (Nod), 

which recognize muramyl dipeptides derived from bacterial cell wall components, and 3) 

extracellular and intracellular toll-like receptors (TLR), which recognize an array of 

structurally conserved molecules derived from microbes (Garrett et al.; Lavelle et al.). 

Nods, in particular Nod2, may influence microbiota composition via constitutive Paneth 

cell secretion of antimicrobial peptides (Kobayashi et al., 2005; Petnicki-Ocwieja et al., 

2009). TLRs signal through the adaptor proteins TRIF and/or MyD88 (Yamamoto et al., 

2004).  While TLR3 and TLR4 can utilize TRIF, all other TLRs, including TLR4, utilize 

MyD88, which is recruited following recognition of: lipopeptides (TLR2/1 and TLR2/6) 

peptidoglycans (TLR2), lipopolysaccharides (TLR4), flagellin (TLR5), ssRNA (TLR7/8) 

bacterial and viral DNA (TLR9) (Kawai and Akira). Importantly, the localization, 

expression, and regulation of each of these TLRs vary in the IEC and, therefore, may 

differentially contribute to intestinal immune homeostasis (Artis, 2008). Nevertheless, 

using a more encompassing strategy, Germain and colleagues found that the ability of 

LpDC to sample the luminal small bowel was dependent on MyD88 signaling in the 

epithelia (Chieppa et al., 2006). Thus, the rate at which LpDC sample the luminal 

environment is likely tailored to the types of constituents present in the microbiota. As 

such, one could imagine this mechanism especially coming into play when compositional 

shifts in the commensals occur, such as during infection or inflammation (Finlay and 
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Medzhitov, 2007; Heimesaat et al., 2006). Another example of IEC/Lp cross talk is the 

influence of IEC secreted thymic stromal lymphopoietin (TSLP). This cytokine inhibits the 

capacity of LpDC to induce proinflammatory cytokines (Rimoldi et al., 2005; Zaph et al., 

2007). Notably, the role of the commensal microbiota on the regulation of TSLP 

production remains unclear. However, one could speculate that it may inversely 

correlate with the pathogenicity of the microbiota. 

 

GALT	  activated	  lymphocytes	  are	  imprinted	  to	  traffic	  to	  intestinal	  effector	  sites:	  
 

 A general feature of activation in Pp and mln is T and B lymphocyte upregulation 

of α4β7 and CCR9, which equips these cells with the superior capacity to migrate into 

intestinal effector tissues (Mora et al., 2008; Sigmundsdottir and Butcher, 2008). 

Specifically, α4β7 enables activated lymphocytes to bind to mucosal vascular addressin 

cell-adhesion molecule-1 (MadCAM-1) present on post capillary venules in the intestinal 

Lp (Bargatze et al., 1995; Wagner et al., 1996). CCR9 reinforces adherence to post 

capillary venules via binding to the chemokine, TECK (CCL25), which is generated and 

secreted by small intestinal epithelia (Hieshima et al., 2004; Kunkel et al., 2000). 

Strikingly, the upregulation of α4β7 and CCR9 is critically dependent on nutrient 

metabolism of vitamin A, which will be discussed in greater detail further on (Iwata et al., 

2004; Mora et al., 2006).  

CD4+	  T	  cell	  composition	  in	  the	  Lp:	  
 

The composition of CD4+ T cells in the small intestinal Lp compartment is quite 

heterogeneous and strongly reflects: I) the cytokines produced by the local tissue and II) 

the types of antigens constantly available for survey in the intestinal lumen, which likely 
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also influence the local cytokine milieu.  Indeed, antigen sampling features heavily in this 

region, and plays a probable role in the control of both steady-state tolerance and 

responsiveness to pathogenic insult. In order to proceed with this crucial function intact, 

the Lp tissue requires T cells with both immunoregulatory and sentinel effector 

capacities. (I) On the immunoregulatory hand, this includes regulatory T cells (Treg), 

which, in particular express the transcription factor, forkhead box protein 3 (Foxp3). (II) 

On the effector hand, this includes T-Helper (TH) cells capable of producing pro-

inflammatory cytokines, in particular IFN-γ (TH-1) and IL-17A (TH-17). As discussed 

below, the balance of these opposing elements may exert a crucial influence on 

the ability of the host to mount an immune response when this site is challenged. 

The defining features of these cells, including their induction and their relevance to 

mucosal immunity will be outlined in the proceeding sections. 

I.	  Foxp3+	  regulatory	  T	  cells	  (Foxp3+	  Treg)	  
 

Foxp3+ Treg, which in most secondary lymphoid tissues during steady-state can 

be distinguished by constitutive expression of the high-affinity IL-2Rα (CD25), are key 

mediators of the coordination and maintenance of peripheral tissue homeostasis 

throughout the lifespan of the host (Bennett et al., 2001; Fontenot et al., 2003; Hori et al., 

2003; Kim et al., 2007; Wildin et al., 2001). Their absence culminates in fatal 

inflammatory lesions propagated by the activation and proliferation of self-reactive 

clones that have escaped negative selection in the thymus (Sakaguchi et al., 2008). 

Thus, even in the absence of a commensal microbiota, ablation of Foxp3+ Treg results in 

fatal autoimmunity, albeit with slower kinetics and altered pathogenesis (Chinen et al.). 

Nevertheless Foxp3+ Treg are still crucial for the prevention of spontaneous reactivity 

against both the commensal microbiota and food antigen and play an important role in 
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regulating the intensity of immune responses to foreign pathogens (Izcue et al., 2006; 

Josefowicz and Rudensky, 2009). They comprise typically 20% of the CD4+ T cell 

population within the small intestinal Lp and a variable proportion actively produces the 

potent immunoregulatory cytokine, IL-10, which can also be expressed by Foxp3 cells in 

this tissue (Maynard et al., 2007). Given their widespread influence, Foxp3+ Treg are not 

particularly limited in the means by which they can perform their regulatory duties, which 

include but are not limited to: (1) secretion of IL-10 and/or TGF-β(Belkaid, 2002; Li et al., 

2007; Rubtsov et al., 2008; Zhang et al., 2009a), (2) contact dependent suppression of 

APC function (Tadokoro et al., 2006; Tang et al., 2006), (3) control of DC homeostasis 

(Liu et al., 2009), (4) and abrogation of certain effector functions through an as yet 

defined mechanism (Mempel et al., 2006). Importantly, none of these mechanisms are 

mutually exclusive (Figure 2).  

 

 To date, the precise signals that govern the induction of the Foxp3+ Treg program 

remain an enigma (Gavin et al., 2007; Lin et al., 2007). Since, seminal thymectomy 

experiments indicated that thymic development of Foxp3+ Treg was required for the 

maintenance of self-tolerance (Sakaguchi and Sakaguchi, 1990), many studies have 

looked to the thymus for clues into the differentiation pathway of these cells. In this 

regard, several elegant studies have revealed that Foxp3+ Treg can develop and survive 

negative selection in the presence of strong agonist ligands (Jordan et al., 2001; van 

Santen et al., 2004). On the other hand, in the absence of a negatively selecting agonist 

ligand, which can be achieved experimentally upon crossing a naive TCR transgene with 

a recombination activating gene deficient (RAG–⁄–) mouse, these cells do not develop 

intrathymically (Walker et al., 2003). Such mice, in turn, have served as ideal tools to 

assess the extrathymic development of Foxp3+ Treg. 
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Figure 2. Foxp3+ Treg regulate immune responses through multiple pathways 
(1) Foxp3+ Treg produce immunoregulatory cytokines, including TGF-β and IL-10. (2) Their 
interactions with dendritic cells (DC) can prevent stable interactions between naïve T cells 
and antigen presenting DC. They can also inhibit immature DC maturation and/or 
migration. (3) Foxp3+ Treg inhibit the production of FMS-like tyrosine kinase ligand (Flt3L), 
which promotes DC maturation from precursor Pre DC. (4) They also can prohibit certain 
effector functions, including the capacity of CD8+ cytotoxic T cells to kill. This mechanism 
of suppression requires TGF-β signaling.  
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In an effort to determine whether Foxp3+ Treg development could occur 

extrathymically in vivo, Von Boehmer and colleagues administered prolonged sub-

cutaneous low-dose infusions of hemagglutinin (HA) peptide to thymectomized, RAG–⁄– x 

TCR-HA mice. This technique induced a long-lasting CD25+ population that 

concomitantly expressed high levels of Foxp3 transcript and possessed suppressive 

properties similar to Foxp3+ Treg (Apostolou and von Boehmer, 2004). Another study, in 

which OVA-specific, Foxp3– CD4+ DO11.10 T cells were transferred into lymphopenic 

hosts, engineered to secrete OVA, yielded similar findings (Knoechel et al., 2005). Using 

a more refined strategy, subimmunogenic targeting of peptides to DCs was also shown 

to induce antigen specific Foxp3+ Treg (Kretschmer et al., 2005). Altogether, these 

findings suggest that chronic exposure to low doses of antigen and DC presentation in 

non-inflamed settings can promote the de novo acquisition of Foxp3 by peripherally 

activated cells. These criteria bear remarkable similarity to what one may consider 

“status quo” in the GI tract, where, in fact, oral feeding of OVA was also shown to induce 

CD25+ with high transcript levels of Foxp3 (Mucida et al., 2005). However, the immune 

cells responsible for the coordination of this mechanism were not investigated. 

 

Are DC in the GI tract specially equipped to foster the differentiation of Foxp3+ 

Treg from naïve precursors? 

 
The cytokine, transforming growth factor-beta (TGF-β) is a heavily regulated 

cytokine (Annes et al., 2003), which plays a dominant role in immune homeostasis. In 

addition to promoting thymic Foxp3+ Treg survival and maintaining naïve T cell 

quiescence, it’s been showcased to potently induce Foxp3+ Treg differentiation from naïve 

CD4+ T cells upon stimulation, in vitro (Chen et al., 2003; Li et al., 2006; Marie et al., 

2006; Ouyang et al.). TGF-β is also produced in abundance by IEC; this source 
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potentially serves a non-redundant function in maintaining good relations with the host 

microbiota and dietary antigen (Barnard et al., 1993; Dignass and Podolsky, 1993). More 

recent studies have revealed that APC upon phagocytosis of apoptotic cells are also 

able to produce TGF-β (Perruche et al., 2008; Torchinsky et al., 2009). Assuming that 

the apoptotic inclusions present in their cytoplasm are a result of phagocytosis, 

migratory CD103+ LpDC may also be endowed with the capacity to produce this 

cytokine. Further, this implies that this population may be uniquely poised to induce 

Foxp3+ Treg under physiological settings. In Chapter 2, this possibility will be 

investigated and the role of other mucosal factors in the induction of Foxp3 will be 

considered.  

II.	  T-‐Helper	  cells	  in	  the	  Lp	  compartment	  
 

Foreign microbial challenge results in the elicitation of an adaptive immune 

response, which accompanies CD4+ T helper (TH) cell differentiation. Analogous to this 

type of challenge, the presence of the commensal microbiota and dietary antigen in the 

GI tract also elicits an adaptive immune response, resulting in the sustained recruitment 

of IgA+ B cells and various TH subsets into in the Lp (Atarashi et al., 2008; Klaasen et al., 

1993; Mazmanian et al., 2005). Until recently, the categories of TH subsets were cast in 

essentially binary terms, namely TH-1 and TH-2, based on the classic experiments of 

Coffman and colleagues (Mosmann et al., 1986). However, recent studies have upended 

this paradigm, leading to the inclusion of several new subsets. While further study is 

necessary to reconcile these newer subsets, which appear to retain less committed 

features than their foregoing TH-1 and TH-2 counterparts (Locksley, 2009), one subset 

has emerged as quite an important player in infectious disease and mucosal immunity. 
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This subset of cells, referred to as TH-17, will be discussed along with TH-1 and TH-2 

cells. 

 

  TH-1 cells are defined by production of IFN-γ and canonical expression of the 

transcription factor, T-bet (Mullen et al., 2001; Szabo et al., 2000). They play 

instrumental roles in priming and sustaining inflammatory macrophage function (Hu and 

Ivashkiv, 2009), and as such help mediate adaptive immune responses against a range 

of intracellular pathogens, including, those which infect the host through the alimentary 

route, such as microsporidia and Toxoplasma gondii (Casciotti et al., 2002; Moretto et 

al., 2004). TH-2 cells are defined by production of IL-4, IL-5 and IL-13 and canonical 

expression of the transcription factor GATA-3 (Loots et al., 2000). They elicit an 

“alternatively” activated macrophage program that is linked with tissue repair and 

mediate protective immune responses against helminths (Maizels et al., 2009; Mosser 

and Edwards, 2008). Further, they are commonly associated with allergic responses 

(Kim et al.). In contrast to TH-1 development, previous studies have suggested that 

normal commensal microbiota derived signals actively constrain steady-state TH-2 

development (Mazmanian et al., 2005; Troy and Kasper). Consistent with these reports, 

broad-spectrum antibiotic treatment was revealed to trigger oral sensitization to a food 

allergen (Bashir et al., 2004). However, a more recent study found that cells from the 

terminal ileum of conventionally reared mice readily secreted TH-2 cytokines, including 

IL-4 and IL-13, upon polyclonal T cell restimulation (Gaboriau-Routhiau et al., 2009). 

Thus, whether the commensal microbiota actively restrains TH-2 cell development is a 

matter of debate.  

 

TH-17 cells are associated with the production of the cytokines: IL-17-A, IL-17F, 

IL-21 and IL-22 (Khader et al., 2009). While IL-17A and IL-17F are strictly dependent on 
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the transcription factor, Retinoic acid receptor-related orphan nuclear receptor gamma 

(RORγ) and, to a much lesser extent, RORα, IL-21 and IL-22 can be generated 

independently of these transcriptional programs (Ivanov et al., 2006; Korn et al., 2007; 

Nurieva et al., 2007; Yang et al., 2008; Zhou et al., 2007). Of interest, IL-22 production 

by TH-17 cells is strictly dependent on the environmental toxin-activated, transcription 

factor, aryl hydrocarbon receptor (AHR), which was also demonstrated to amplify 

production of IL-17A and IL-17F (Veldhoen et al., 2009; Veldhoen et al., 2008a). Shortly 

after the discovery of IL-17 (IL-17A, specifically) it became associated with human 

autoimmune syndromes, such as Rheumatoid Arthritis and Lupus (Kotake et al., 1999; 

Kurasawa et al., 2000; Ziolkowska et al., 2000). In mice, as well, these cells have been 

pegged as pivotal instigators of autoimmunity and have an extraordinary capacity to both 

stimulate the release and production of inflammatory mediators from myeloid cells and to 

recruit innate cells, such as neutrophils to sites of inflammation (Jovanovic et al., 1998; 

Ye et al., 2001). This has been amply demonstrated in mouse models of collagen 

induced arthritis and, in particular, experimental autoimmune encephalitis, which has 

been exploited to great lengths, resulting in an onslaught of molecular insights into the 

pathways that control the production of IL-17 (Hirota et al., 2007; Ivanov et al., 2006). As 

such, it is now clear that TGF-β signaling in the context of inflammatory mediators, such 

as IL-6, IL-1 and IL-21 are critical for TH-17 differentiation, while IL-23 regulates its 

effector function in vivo (Ahern et al.; Bettelli et al., 2006; Korn et al., 2007; Mangan et 

al., 2006; McGeachy et al., 2007; McGeachy et al., 2009; Nurieva et al., 2007; Veldhoen 

et al., 2006; Zhou et al., 2007). Although IL-23 shares an IL-12p40 subunit with IL-12, 

which drives TH-1 inflammation, this cytokine regulates distinct pathways (Cua et al., 

2003; Murphy et al., 2003; Trinchieri et al., 2003). Similar to the reciprocal inhibition of 

TH-1 and TH-2, both IL-4 and IFN-γ potently suppress TH-17 differentiation (Harrington et 

al., 2005). However, pathogenic TH-17 cells, at least, also appear to retain some TH-1 
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like features, and can, in fact, morph into IFN-γ producing cells during inflammation (Lee 

et al., 2009).  

 

Despite the association of this subset with auto-inflammatory disorders, multiple 

studies have revealed that TH-17 cells serve as critical effectors against fungal, 

extracellular bacterial, and in some instances, intracellular bacterial infections (Acosta-

Rodriguez et al., 2007; Aujla et al., 2008; Conti et al., 2009; Happel et al., 2005; 

Ishigame et al., 2009; Khader et al., 2009; LeibundGut-Landmann et al., 2007; Lin et al., 

2009; Pitta et al., 2009; Saijo et al.; Zheng et al., 2008). Among their protective 

functions, IL-17A, IL-17F and IL-22 each have been shown to mediate epithelial cell 

production of anti-microbial peptides, including β-defensins (Conti et al., 2009; Ishigame 

et al., 2009; Kao et al., 2004; Wolk et al., 2004) and lectins (Sanos et al., 2009; Zheng et 

al., 2008). Bearing this in mind, IL-17A secreting TH-17 cells, a proportion of which also 

express IL-22 (Ivanov et al., 2009), are typically detected in the small intestinal Lp during 

steady-state and express the chemokine receptor, CCR6, which favors their proximity to 

IEC (Ishigame et al., 2009; Ivanov et al., 2008; Nagler-Anderson, 2001). Thus, while 

clearly in possession of potent inflammatory capacity, in non-inflamed conditions TH-17 

cells seem to be well integrated into the intestinal immune system’s microbial 

containment strategy. Although not the focus of the work to be described, it is worth 

mentioning that other studies that have examined innate cells, such as γδT cells, 

lymphoid tissue inducer - like (Lti-like) cells, NK, NKp46+ NK-like cells, and even Paneth 

cells have noted their capacity to produce IL-17 (γδT, NK*, Lti-like*, Paneth cells*; *upon 

inflammatory stimulation) and/or IL-22 (γδT*, Lti-like*, NKp46+; *upon inflammatory 

stimulation) in various contexts, further emphasizing the importance of these cytokines 

to mucosal barrier regulation (Cua and Tato). Indeed, innate sources of IL-22 were 
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recently revealed to be absolutely required for the early phase of protection against 

bacterial pathogens that attach to and efface the IEC barrier (Zheng et al., 2008)  

 

III.	  Foxp3+	  Treg/TH	  populations	  are	  in	  a	  dynamic	  equilibrium	  
 

The preceding description may lead to the misapprehension that the immune 

system protecting the GALT is strictly designed for coping with the everyday stresses 

imposed by the commensal microbiota and food antigen; however, this site is also one of 

the most convenient ports of entry for foreign pathogen, and, therefore, must also be 

equipped with the capacity to stage a swift and simultaneous immune response. One 

possibility is that the steady-state immunological landscape in the IEL and Lp 

compartments has negligible bearing on how the host will respond to foreign microbial 

challenge. However, such an untethered strategy in this region could prove inefficient 

and impinge on the capacity of the host to mount a timely and robust immune response. 

Further, it could potentially disrupt the sensing mechanisms that are in place to maintain 

and/or restore mucosal homeostasis in the event of a pathogenic challenge. Another 

consideration, which casts further doubt on this possibility, is that the mucosal immune 

system is alerted to the presence of a pathogen via the same pattern recognition 

receptors that are engaged by the commensal microbiota (Sansonetti and Di Santo, 

2007). Rather, the alternative hypothesis - that the ongoing steady-state immune 

response in the GI tract heavily influences the ability of the host to respond to a 

pathogenic threat – is more likely. 

 

APC within the Lp compartment express a variety of pattern recognition 

receptors, particularly among the TLR family, suggesting that they can receive 
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instructive signals directly from the commensal microbiota (Coombes et al., 2007; 

Uematsu et al., 2008). The precise nature of these signals and their influence on the 

regulation and distribution of Foxp3+ Treg and TH subsets within the Lp remain obscure. 

In view of their sensing, migratory, and priming characteristics, LpDC are potentially 

strongly equipped for processing and dispatching these cues to CD4+ T cells and, in 

turn, influencing the Foxp3+ Treg /TH landscape within the Lp. In Chapter 3 this 

possibility will be explored, first, using an in vitro assay to identify potential 

components of the microbiota, which impose natural constraints on the Foxp3+ 

Treg axis in the GALT.  

 

One paradigm that has emerged to provide a basic understanding of the 

homeostatic regulation of T cell subsets in this region is the documented reciprocal 

nature of Foxp3+ Treg and TH-17 cells. Both are dependent on TGF-β for their induction 

and/or survival (Bettelli et al., 2006; Liu et al., 2008; Manel et al., 2008; Mangan et al., 

2006; Ouyang et al.; Veldhoen et al., 2006; Volpe et al., 2008) however, where Foxp3+ 

Treg cells seem inclined to mediate the suppression of inflammatory cascades, TH-17 

cells seem inclined to do just the opposite. Their Janus-like relationship is also apparent 

in other contexts. In terms of gene regulation, Foxp3 was shown to sequester RORγ and 

to prevent its binding to DNA, while diversion of cells from the Foxp3+ Treg lineage was 

shown relieve cells of their inability to produce IL-17 (Gavin et al., 2007; Zhou et al., 

2008). In terms of cytokine regulation, IL-6−/− mice were shown to lack TH-17 cells in their 

Lp, but harbored an enhanced frequency of Foxp3+ Treg (unpublished finding) (Korn et 

al., 2007). On the other hand, IL-2−/− mice were shown to be unable to sustain Foxp3+ 

Treg cells in their periphery, but harbored an enhanced frequency of TH-17 cells (D'Cruz 

and Klein, 2005; Fontenot et al., 2005; Laurence et al., 2007).  
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Taking into account what is known about the intestinal mucosal environment: 

abundant TGF-β, a large proportion of Foxp3+ Treg, and the constitutive presence of TH-

17 cells, these findings suggest that the indigenous microbiota may be able to leverage 

this delicate relationship to shape the inflammatory tone of the tissue. Further, when 

pathogenic microbial signals converge onto these indigenously derived signals, skewing 

away from the Foxp3+ Treg axis of control may be amplified. In this regard, Littman and 

colleagues recently demonstrated that a commensal microbial community, which 

promotes a steady-state skewing toward the TH-17 subset, can potentiate immune 

responses to the TH-17 eliciting bacterial pathogen, Citrobacter rodentium (Ivanov et al., 

2009). This study also identified a microbial species known as segmented filamentous 

bacteria (SFB) that was particularly potent at inducing a prominent TH-17 subpopulation 

(Ivanov et al., 2009). However, the precise stimulatory pathways utilized by SFB to 

promote TH-17 activity were not completely clarified. Indeed, the individual 

contributions of discrete signaling pathways, which are engaged by specific 

microbial component/pattern recognition receptor interactions, to the regulation 

of intestinal homeostasis and mucosal immunity are unclear.  

 

Insofar as this paradigm applies to the Foxp3+ Treg and TH-17 subsets of T cells, it 

does not sufficiently encompass the heterogeneity of the microbial communities that are 

constitutively present in the GI tract, which also should add to TH diversity and potentially 

the functional characteristics of Foxp3+ Treg in the Lp compartment. Indeed germ-free 

mice that were reconstituted with a commensal microbiota from naturally colonized mice 

displayed dramatic increases in both TH-1 and TH-17 subsets within the ileal Lp 

compartment (Gaboriau-Routhiau et al., 2009). Moreover, commensal derived 

components, such as the polysaccharide of Bacteroides fragilis, have been shown to 

regulate the TH-1/TH-2 balance during steady-state (Mazmanian et al., 2005). Thus the 
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commensal microbiota was also demonstrated to affect sensitivity to food borne allergies 

(Bashir et al., 2004). Regarding Foxp3+ Treg cells, specific microbial interactions have 

been proposed to augment their regulatory activity, including TLR 4 and 5 (Caramalho et 

al., 2003; Crellin et al., 2005), while others involving TLR 2, 8 and 9 have been proposed 

to restrain their regulatory activity (Larosa et al., 2007; Liu et al., 2006; Pasare and 

Medzhitov, 2003; Peng et al., 2005; Sutmuller et al., 2006). Altogether, these data 

provide compelling evidence that the composition of the microbiota is able to 

exert a strong influence on the T cell landscape of intestinal effector sites, which 

in turn may condition the efficiency of the mucosal response to an invasive 

pathogen. This concept will be examined in Chapter 3. 

Convergence	  of	  nutrient	  metabolism	  with	  the	  mucosal	  immune	  system:	  
 

The essential function of the GI tract is to digest food and extract nutrients, some 

of which are otherwise inaccessible in the absence of the commensal microbiota (Wikoff 

et al., 2009). Accumulating evidence reveals that the intestinal immune system has 

adapted to this process through utilization of nutrient metabolites. Similar to microbial 

driven signals, nutrient metabolite driven signals appear to serve as key moderators of 

the immunological conversation taking place at mucosal barrier interfaces. In many 

ways, they are also as well tailored as microbial signals to provide the host with a local 

immunological advantage. For instance, butyrate, which is a short-chain fatty acid 

produced by the commensal microbiota upon metabolism of dietary fiber, was shown to 

inhibit the multiplication of pathogenic enteric bacteria and quelled the inflammatory 

profile of monocytes, in vitro (Bohnhoff et al., 1964; Saemann et al., 2000). Catabolism 

of the essential amino acid tryptophan, which occurs constitutively in the GALT, was 

shown to limit basal Ab production to commensal microbiota (Harrington et al., 2008). 

Recent data also support the hypothesis that tryptophan catabolism positively regulates 
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the Foxp3+ Treg/TH-17 ratio (Favre et al.). Another nutrient that especially bares this 

point is vitamin A and, in particular, its metabolic derivative, retinoic acid. 

 

Vitamin	  A	  is	  a	  critical	  nutrient	  for	  the	  GALT	  immune	  system:	  
 

In the early 20th century E.V. McCollum discovered that certain lipids contained a 

factor essential for growth, which he termed  “fat soluble factor A” or, Vitamin A (Mc, 

1952). Mammals and most higher order organisms are dependent on dietary ingestion 

for acquisition of this vitamin. Its sources include carotenoids, which are present in fruits 

and vegetables and retinyl esters, which are abundant in meats and poultry. These 

compounds are broken down into retinol (1) for absorption by the small intestine and 

subsequently esterified for storage in the liver (Harrison, 2005; Mc, 1952).  

Retinoic	  acid	  can	  be	  generated	  or	  obtained	  through	  multiple	  pathways:	  
 

Retinoic acid (RA) is the end product of a series of enzymatic steps in Vitamin 

A’s metabolism. When required, retinyl esters are hydrolyzed into retinol and deployed 

into circulation along with its chaperone, retinol-binding protein (RBP) (Wolf, 2007). It’s 

uptake into cells, including IEC and APC, is mediated by the surface receptor, STRA6, 

which binds with high affinity to RBP (Kawaguchi et al., 2007). Once in the cytosol, the 

ubiquitously expressed family of alcohol dehydrogenases (ADH) (2) reversibly catalyzes 

the oxidation of retinol to retinal (Mic et al., 2003). Retinal dehydrogenases (RALDH) (3) 

then bind to retinal and catalyze the final and irreversible step in RA synthesis. In the 

GALT, this predominantly results in all-trans RA, which can eventually isomerize to its 9-

cis form. However, this form has yet to be detected in vivo (Mic et al., 2003). Notably, 

RALDH expression is cell and tissue specific, making RA synthesis a controlled process 
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(Iwata et al., 2004). While the processes regulating RALDH induction are unclear, it was 

recently demonstrated that lipid mediators, which are widely present in the GALT, induce 

RALDH2 through the fatty acid binding receptor, PPAR-γ (Szatmari and Nagy, 2008).  

 
 

As previously mentioned, GALT DC promote lymphocyte homing to intestinal 

effector sites through coordinate upregulation of α4β7 and CCR9. The first clue that RA 

controlled the induction of these ligands was the finding that adding it exogenously to 

APC-free cultures induced their expression on stimulated T cells (Iwata et al., 2004). 

Then came the seminal observation that adult mice reared on a vitamin A deficient diet 

had a diminished number of T lymphocytes residing in intestinal effector sites (Iwata et 

al., 2004). Consistent with their ability to synthesize RA, PpDC and mlnDC expressed 

messenger RNA for RALDH1 and RALDH2, respectively. Nevertheless, IEC were also 

revealed to prominently express RALDH1. Therefore, GALT DC may also acquire RA 

passively from IEC (Iwata et al., 2004). Further, although its physiological significance is 

unclear, it should be noted that RA is also detectable in serum, albeit at very low levels 

(Kane et al., 2008a; Kane et al., 2008b). 

Retinoic	  acid	  contributes	  to	  lymphocyte	  function:	  
 

Apart from its immunological influence on homing, there are compelling data that 

link RA to the functional capacity of lymphocytes, particularly B cells. For example, DC 

and stromal derived, follicular DC from Pp were revealed to drive naïve B cell 

differentiation into IgA+ B cells and/or to preferentially induce IgA+ class switching in 

activated B cells (Mora et al., 2006; Suzuki et al.). RA was demonstrated to be essential 

to these processes, since antagonism of RA signaling inhibited the ability of PpDC to 

generate IgA+ B cells, while adding RA in conjunction with IL-6 and/or IL-5 dramatically 
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enhanced IgA production in peripheral LN DC cocultures (Mora et al., 2006). In concert 

with these data, Fagarasan and colleagues reported that activating peripheral LN 

follicular DC with RA synergized with TLR 2 and 4 ligands to induce production of active 

TGF-β, which is also a critical factor for IgA+ class switching (Cerutti and Rescigno, 

2008; Suzuki et al.). Thus, vitamin A metabolism appears to contribute to the generation 

of IgA+ B cells through both direct effects on B cells and indirect effects through DC 

modulation, although this has not yet been completely resolved.  

 

RA may also exert direct effects on T cells. For instance, RA was shown to 

enhance T cell proliferation under mitogenic stimulatory conditions, which was correlated 

with a gross increase in IL-2 production (Ertesvag et al., 2002). However, data have also 

suggested that RA can inhibit production of IL-2 during naïve T cell activation (Ertesvag 

et al., 2009). Notably, these findings were obtained in humans and mice, respectively; 

therefore system differences could account for these discrepancies. RA was also 

proposed to directly inhibit TH-1 polarization in vitro; however, the effect in these assays 

was relatively minor and a clear mechanism for the action of RA was not proposed 

(Iwata et al., 2003). Thus, what role RA plays in T cell activation and TH polarization, if 

any, is still ambiguous. 

 

Retinoic	  acid	  signaling	  is	  mediated	  through	  nuclear	  retinoic	  acid	  receptors:	  
 
 

RA signals through several families of nuclear hormone receptors in the nucleus. 

The best characterized are RA receptors (RAR) which form obligate dimers with retinoid 

X receptors (RXR) and in turn, transcriptionally activate RA response elements (RARE) 

in the promoter regions of various genes (Chambon, 1996). Recently, RA was also 
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shown to be able to signal through PPARβδ; however, the potential importance of this 

pathway in immune cell populations awaits further scrutiny and was not examined in the 

studies that will be described in the forthcoming sections (Schug et al., 2007). While 

RXRs dimerize with several nuclear receptors to transduce signals by other small 

molecules, RARs bind exclusively with RA (Ziouzenkova and Plutzky, 2008). Three, in 

particular, have been identified - α, β and γ. Underscoring their influence on a score of 

genes, as well as their complex regulation, aberrant expression of RARs (positive and 

negative) has been strongly linked to metabolic disorders and various cancers (de Lera 

et al., 2007; Hua et al., 2009; Walkley et al., 2007; Yang et al., 2005).   RA was shown to 

mediate TGF-β production in follicular DC via RARβ (Suzuki et al.). However, in contrast 

to RARα and RARγ, RARβ is not detectable in lymphocytes (Elias et al., 2008). 

Intriguingly, protein expression of RARα was found to increase dramatically upon CD4+ 

T cell activation in the presence of TGF-β, and as will be highlighted in the forthcoming 

chapters, may have a driving influence on Foxp3+ Treg/TH-17 regulation (Schambach et 

al., 2007). Furthermore, dysregulation of these receptors has been linked to various 

cancers, including leukemias. The prevalence of vitamin A metabolism occurring in 

the GALT, suggests that RA/RAR interactions may bear significance in the 

regulation of T cell homeostasis and immunity in this region. Work to be 

described in Chapter 2 and Chapter 4 will start to address this possibility.   

A	  role	  for	  retinoic	  acid	  in	  infection	  and	  immunity	  
 

On a typical western diet, retinol absorption exceeds the body’s homeostatic 

requirements. This results in the accrual of retinyl esters in the liver. However, in 

developing countries, where malnutrition and diarrhea are common, Vitamin A intake 

and absorption are reduced. When combined with pregnancy, which increases Vitamin A 
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metabolism, the risk of Vitamin A insufficiency (VAI) both to mother and unborn infant 

increases dramatically. According to the most recent WHO estimate, there are 

approximately 250 million children presenting with subclinical and/or clinical signs of VAI 

at this precise moment (informational website).  

 

VAI has long been linked to increased prevalence of diarrheal diseases and 

mortality from gastrointestinal infection (Duggan et al., 2002; Villamor and Fawzi, 2000). 

While numerous studies indicate that Vitamin A supplementation mitigates the incidence 

and severity of these infections, determining the impact of RA mediated mechanisms on 

these outcomes has proven difficult (Long et al., 2006a; Long et al., 2007a; Long et al., 

2007b; Long et al., 2006b). Complicating this task is the variability in degree of VAI and 

preexisting disease states within single cohorts. Rodent models of VAI, which prevent 

these complications, have shed some light on the role of RA in GALT immunity to 

infection. For example, RA signaling was required for the development of a proper TH-2 

response in mice infected with the helminth, Trichinella spiralis, whereas VAI resulted in 

an aberrant TH-1 response to this infection (Cantorna et al., 1994; Carman et al., 1992). 

However, another report demonstrated that RA administered concomitantly during 

infection with Mycobacterium tuberculosis enhanced TH-1 responses in vivo and 

facilitated bacterial clearance (Yamada et al., 2007). VAI mice were found to be 

significantly more susceptible to rotavirus than their WT counterparts. However, while 

this study compared architectural changes in various tissues, including the gut, immune 

responses were not assessed in these mice (Ahmed et al., 1990). Thus, the impact of 

RA mediated signaling on TH responses is still unclear and may depend on the local site 

of infection.  To date, there has been a paucity of studies that have considered the 

role of RA, in situ, during intestinal immune responses. Moreover, the precise 

mechanisms that underlie exacerbated enteric infections during VAI remain 
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undefined. Studies in Chapter 4 will tackle this question and help define how in situ Lp 

responses are impacted by VAI.  

 

Models	  of	  infection:	  
 

To gain mechanistic insight into the questions that have been raised in this 

section the following challenge models will be employed:  

Encephalitozoon	  cuniculi	  (E.	  cuniculi):	  
 
 

Microsporidia are spore forming obligate intracellular parasites that have recently 

been classified as fungi (James et al., 2006). They infect a wide range of hosts, primarily 

through oral transmission (Didier et al., 2004). Species that infect humans, such as E. 

cuniculi, tend to induce a sub-clinical chronic infection accompanied with mild or acute 

symptoms, most typically diarrhea. Upon ingestion, spores infect the epithelia of the 

duodenum and replicate in parisotophorous vacuoles (Mathews et al., 2009). 

Importantly, E. cuniculi can infect a variety of other cells, including APC (Orenstein et al., 

1992), and can readily disseminate to other tissues in the body. As such, these 

infections are particularly severe and problematic in immunocompromised individuals 

(Farthing, 2006; Ferreira et al., 2001; Mertens et al., 1997; Wanachiwanawin et al., 

1998).  E. cuniculi is also a natural mouse pathogen (Keeble, 2001). Studies in 

laboratory animals have shed light on the course of infection and the immunological 

requirements for control of this pathogen, which include both CD4+ and CD8+ T cells 

during the natural route of infection (Moretto et al., 2004; Salat et al., 2006). In order to 

address how enteric commensal driven signals influence host ability to respond to 
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infection, mice will be infected with this pathogen. The results obtained from these 

studies will be described in Chapter 3. 

 

Toxoplasma	  gondii	  (T.	  gondii):	  
 

Toxoplasma gondii (T. gondii) is a protozoan parasite naturally acquired through 

the oral route that infects up to a third of the world’s population (Montoya and Liesenfeld, 

2004). While primary infection manifests in a subclinical response, unless treated, T. 

gondii establishes a chronic phase of infection in the host, which is exemplified by the 

formation of Bradyzoite cysts in the muscle and brain tissue whose pathological 

consequences are limited by a multitude of host regulatory and inflammatory factors 

(Stumhofer et al., 2007; Wilson et al., 2005). Extensive mouse studies have established 

the critical importance of both CD4+ and CD8+ T cells and a controlled TH-1 response in 

the development and maintenance of immunity to this parasite (Combe et al., 2005; 

Gazzinelli et al., 1992; Gazzinelli et al., 1996; Liesenfeld et al., 1996). Consequently, T. 

gondii can have fatal consequences in immunocompromised individuals upon 

reactivation of the chronic phase (Israelski and Remington, 1988). Based on virulence in 

mice, T. gondii has been classified into 3 strains. Type I are acutely lethal, regardless of 

the dose of pathogen administered, while Type II and type III strains are generally 

considered non-lethal, depending on the strain of mice and dose administered (Bradley 

and Sibley, 2007). For the studies that will be highlighted in Chapter 4, a clone of the 

type II strain, ME-49 will be utilized. 
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Summary:	  
  

The immune system of the gastrointestinal tract has adapted in close apposition 

with the commensal microbiota, food protein and environmental antigens. As such, it 

maintains a dynamic presence of both effector and regulatory lymphocyte populations. 

Yet, the mechanisms in place to orchestrate this balanced dichotomy have not been well 

defined. To gain insight into this broad question, the studies, which will be discussed 

herein, were focused particularly on understanding CD4+ T cell regulation within the 

intestinal Lp compartment as a model of homeostasis. Chapter 2 explores the 

convergence of potentially redundant regulatory pathways in this region, specifically, 

Foxp3+ Treg generation and presents data that identifies retinoic acid as a cofactor in the 

extrathymic development of Foxp3+ Treg. Chapter 3 then examines how commensal 

components intersect with host regulatory strategies to favor the development of 

mucosal immune responses. Finally, Chapter 4 inspects more closely the role of vitamin 

A metabolism in immunity. 
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CHAPTER	  2:	  GALT	  Foxp3+	  Treg	  development	  is	  critically	  dependent	  on	  
vitamin	  A	  metabolism	  
 

Abstract:	  
 

The gastrointestinal tract is a home to a broad reservoir of regulatory T cells, 

including those which express the transcription factor, Foxp3. Although, most studies 

and differentiation models mark the origin of these cells as the thymus, recent evidence 

has showcased their potential to arise from naïve precursors and/or in the absence of a 

thymically generated pool. In this study, the GI tract and its associated lymphoid tissues 

(GALT) were studied as potential nucleating sites for the generation of extrathymic 

Foxp3+ Treg. The following findings emerged:  

 

1. Antigen introduced through the oral route robustly induced naïve T cell 

upregulation of Foxp3 protein in the GALT.  

2. Dendritic cells from the intestinal lamina propria (Lp) and those draining 

into the mesenteric lymph nodes (mln) uniquely promoted in vitro Foxp3+ 

Treg generation via active TGF-β  signaling and the synthesis of retinoic 

acid (RA). 

3. RA enhanced TGF-β  induced Foxp3+ Treg generation via retinoic acid 

receptor alpha.  

4. Vitamin A metabolism was essential for GALT Foxp3+ Treg induction. 
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Rationale:	  
 

Previous studies have demonstrated that TCR stimulation of naïve CD4+ T cells in 

the presence of TGF-β could promote the induction of Foxp3 (Chen et al., 2003; Fantini 

et al., 2004). Further, sub-immunogenic (Kretschmer et al., 2005) or chronic exposure to 

antigen (Apostolou and von Boehmer, 2004; Knoechel et al., 2005) was also shown to 

lead to long-lasting adoption of this transcription factor in extra-thymic naïve CD4+ T cells. 

Therefore, the immune system protecting the GI tract and associated lymphoid tissues 

(GALT) was hypothesized to serve as a candidate environment for peripheral Foxp3+ Treg 

development. Indeed, the small intestinal tissue was shown previously to constitutively 

express large amounts of TGF-β (Barnard et al., 1993) and is continuously exposed to 

gut commensal microbiota or dietary antigens in what is largely deemed a non-

immunogenic manner. 
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Results:	  
 

De	  novo	  generation	  of	  Foxp3+	  Treg	  cells	  can	  occur	  in	  the	  GALT	  	  
 

In order to address if the gastrointestinal tract and its associated lymphoid 

tissues (GALT) could favor de novo production of Foxp3+ Treg from naïve T cells, Ly5.2+ 

T cells from RAG1–/– OT-II Tg mice, which are specific for the peptide sequence 323-339 

of chicken ovalbumin (OVA) protein, were adoptively transferred into Ly5.1+ replete 

recipients. Because these cells bear a TCR that does not recognize endogenous 

antigen, they retain a naïve phenotype and are devoid of regulatory features, including 

CD25 (Jordan et al., 2001) and Foxp3 (Walker et al., 2003). Following transfer, the 

Ly5.1+ recipients were fed OVA antigen dissolved in drinking water for 5 consecutive 

days. This feeding regimen was previously demonstrated to suppress airway 

inflammation if implemented prior to immunization and intra-nasal challenge with OVA 

antigen, and was associated with upregulated Foxp3 mRNA expression in CD25+ CD4 T 

cells (Mucida et al., 2005). A recent study by the same group demonstrated that Foxp3 

was essential for this effect (Curotto de Lafaille et al., 2008).  

 

After 5 days of OVA administration, Ly5.2+ OVA-specific T cells had expanded 

and were readily detectable in the GALT, spleen, and even in distal lymph nodes, such 

as the sub-mandibular (subLN) (Figure 3A). However, in spite of the broad 

dissemination of transferred cells, Foxp3+ expressing T cells were only appreciably 

detected in the GALT, including the mesenteric lymph nodes (mln), small intestinal 

lamina propria (Lp) and the Peyer’s Patches (Pp) (Figure 3B). Although the highest 

frequency of Foxp3+ converted OVA-specific T cells was consistently found in the Lp, 
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with a mean frequency of 16.8 ± 6.5%, it is important to note that these mice were 

sacrificed only 24 hrs post-feeding and that longer resting periods may have led to the 

redistribution of the cells to other tissues. Nevertheless, these findings argue that in 

response to oral exposure to antigen, the GALT environment can promote the 

emergence of Foxp3+ T cells from a naïve population in an antigen dependent manner. 

Importantly, feeding irrelevant antigen, such as bovine serum albumin was shown to not 

be able to induce Foxp3+ upregulation in a similar setting (Coombes et al., 2007).  

 

 

 

Figure 3. Acquisition of Foxp3 in CD4+ T cells responding to orally delivered 
antigen. 
On day 6 after transfer, donor T cells were assessed flow cytometrically for Foxp3 
expression via intracellular staining in cell suspensions from the sub-mandibular lymph 
nodes (subLN), spleen (Sp), mesenteric lymph nodes (mln), Peyer’s patches (Pp), and 
small intestinal lamina propria (Lp). (A) Top dot plots were gated on total CD4+ cells. 
Ly5.2 was used to identify the transferred population.  Bottom contour plots show Foxp3 
expression by Ly5.2 gated cells (B) Summary of the percentage of Ly5.2+ RAG1-/- OT-II 
T cells expressing Foxp3. Each dot represents a single mouse. Data were combined 
from 2 individual experiments (3 mice each). Statistical comparisons were performed 
using the Student’s T test, with Sp tissue serving as the baseline comparison for each 
tissue. ns = not significant,, P < 0.001. 
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Characterization	  of	  lamina	  propria	  dendritic	  (LpDC)	  cells	  	  
 

The observations above suggest that the GALT microenvironment is particularly 

poised for the peripheral generation of Foxp3+ Treg. As detailed in Chapter 1, tissue 

resident dendritic cells (DC) constitutively migrate from the Lp into the mesenteric lymph 

nodes (Huang et al., 2000); this property is essential for the polarization of antigen 

specific T cells in the draining mln upon antigen feeding (Johansson-Lindbom et al., 

2005). It was plausible, therefore, that Lp derived DC may play a dynamic role in the 

generation of Treg. Examining the dual expression of CD11c and MHC II, which are the 

two surface antigens typically used to denote DC, in unfractionated Lp tissue 

suspensions indicated that these cells accounted for typically 25% of the hematopoietic 

cells within the Lp. As illustrated in Figure 4A, CD11c+ MHC II+ cells comprised a 

heterogeneous population, where two dominant subpopulations emerged: one (I) 

expressed higher levels of CD11c and slightly less MHC II, while the second (II) stained 

slightly lower for CD11c, but higher for MHC II. A third subpopulation has also been 

characterized by another laboratory, which stains much dimmer for CD11c and very 

bright for MHC II. Recent findings have identified these cells as the serosal 

macrophages (Bogunovic et al., 2009). As a side note, this population was not sorted in 

assays in which LpDC were isolated. Consistent with previous reports, when 

CD11c+MHC II+ cells were assessed for surface integrins, virtually all were CD11b+ 

(Niess and Reinecker, 2005), while up to 30% expressed αE, also known as CD103 

(Figure 4A) (Johansson-Lindbom et al., 2005). The majority of CD103+ LpDC co-

expressed CD11b. Unlike their counterparts in the Lp, SpDC were almost uniformly 

CD103–, although in some experiments a portion of the CD11b– subpopulation 
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expressed this marker, albeit it dimly (Figure 4A and data not shown). Moreover, while 

these observations were made in C57BL/6 mice, for unclear reasons, the CD11b–

CD103+ SpDC subpopulation is known to be more prominent in BalbC strains (Annacker 

et al., 2005). Thus, the basal status of activation within the host may affect the 

constitutive presence of this population in the spleen. Upon cell sorting, Giemsa staining 

revealed that LpDC displayed the characteristic features of conventional DC with a 

stellar shape comparable to freshly sorted SpDC (Figure 4B). Analysis of costimulatory 

molecules on LpDC indicated comparable levels of CD80 and CD86 to SpDC, while 

CD40 was enhanced (Figure 4C). MHC II was also more highly expressed in LpDC. In 

concert with these findings, LpDC were shown to be at least as efficient as SpDC at 

inducing T cell proliferation when pulsed with peptide (Johansson-Lindbom et al., 2005). 
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 Figure 4. Phenotypic traits of small intestinal lamina propria DC (LpDC).  
(A) Lp and Sp cell suspensions were labeled with αMHCII, αCD11c, αCD11b and 
αCD103 mAb. Higher panels indicate the percentages of CD11c+MHCII+ cells. Lower 
panels, gated on CD11c and MHCII, show CD103 versus CD11b expression. Numbers 
represent the percentage of events in each quadrant. (B) * Giemsa staining of sorted Lp 
(left) and Sp (right) CD11c+MHCII+ DC. (Magnification X 1000) (C) * Histograms depict 
the expression levels of CD40, CD80, CD86, and MHC II on LpDC (red) and SpDC 
(black). Isotype controls are shown in grey (Stained with pooled Lp and Sp samples). 
*Performed by Cheng Ming Sun, Ph.D. 
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LpDC	  preferentially	  induced	  Foxp3-‐	  T	  cells	  to	  become	  Foxp3+	  Treg	  cells	  in	  Treg	  
polarizing	  conditions	  

  

LpDC were next assayed for their capacity to induce Treg generation.  To this end, 

DC from the Lp or spleen were isolated, co-cultured with purified Foxp3 negative CD4 T 

cells, and stimulated with polyclonal αCD3 mAb. In order to isolate live Foxp3– CD4 T 

cells, we used a transgenic reporter mouse in which an IRES eGFP construct was 

inserted downstream of the Foxp3 coding sequence (Bettelli et al., 2006). While αCD3 

was unable to efficiently induce Foxp3, provision of exogenous TGF-β resulted in the 

production of Foxp3+ T cells in both cultures, as determined by intracellular cytokine 

staining (Figure 5A). However, under the same conditions and at several T cell to DC 

ratios, the frequency of Foxp3+CD4+ T cells was typically 3 fold greater in LpDC cultures 

(Figure 5B). Notably, the intensity of Foxp3 expression was higher when induced in the 

presence of LpDC than with SpDC (mean fluorescence intensity (MFI): 90.9 vs. 57.4, 

Figure 5A). These findings were recapitulated in an antigen specific setting, in which 

OVA peptide was used to stimulate OT-II transgenic T cells in DC cocultures (data not 

shown). To test the functionality of the induced Foxp3+ T cells, eGFP expressing cells 

were isolated from cocultures and their suppressive capacity was tested in vitro 

(Thornton and Shevach, 1998). Foxp3+ T cells obtained from both LpDC and SpDC 

cocultures were as capable as freshly isolated, ex vivo, Foxp3+ Treg at curbing the 

proliferation of Foxp3- responder T cells upon stimulation, suggesting that these induced 

cells have regulatory capabilities (Figure 6).  
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Figure 5. Small intestinal LpDC induce Foxp3+ Treg at a significantly higher rate of 
efficiency than SpDC.  
(A-B) 105 sorted, Foxp3– CD4+ T cells were cocultured with 104 – 2.5x103 Sp or LpDC 
for 5 days, with αCD3 mAb alone or in concert with TGF-β. Viable cells were then 
assessed for intracellular Foxp3 expression. (A) Contour plots show the percentage of 
CD4+ T cells that express Foxp3. MFI = mean fluorescence intensity. DC:T cell ratio  
1:10 (B) Bar graphs illustrate the frequency of Foxp3+ T cells detected upon termination 
of culture for each condition. Error bars indicate the high and low values (average of 
triplicate wells) from two experiments. 
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Figure 6. Induced Foxp3+ T cells 
behave similar to ex vivo isolated 
Foxp3+ Treg.  
5 x 104 eGFP–CD4+ T (Teff) cells were 
mixed with graded doses of eGFP+ T cells 
that were sort purified from day 5 SpDC or 
LpDC cocultures and then stimulated with 
irradiated splenocytes and αCD3 mAb (0.5 
mg/ml). Proliferation was measured by the 
incorporation of 3H-Thymidine during the 
last 6 hr of culture. eGFP+ T cells sorted 
ex vivo (nTreg) were used for comparison. 
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The induced Foxp3+ Treg expressed high levels of CD25 and GITR (data not shown) 

regardless of the origin of the stimulating DC, while CD103 expression was consistently 

enhanced when induced by LpDC (MFI: 594 vs. 275, Figure 7A). Since CD103 

expression was previously shown to be upregulated by TGF-β signaling (El-Asady et al., 

2005), the influence of the dose of TGF-β on Foxp3 T cell generation was examined in 

DC cocultures. Significantly, the ability of SpDC to induce Foxp3 was much more 

sensitive to the dose of TBF-β, where lowering the dose led to a precipitous reduction in 

the frequency of this induced population. Conversely, the ability of LpDC to induce a 

sizable Foxp3+ population remained robust across various TBF-β concentrations (Figure 

7B). These findings raised the possibility that TGF-β signal transduction is augmented in 

T cells stimulated by LpDC. Though not part of these studies, it would be intriguing to 

investigate the kinetics and degree of smad phosphorylation, which is downstream of 

TGF-β receptor signaling (Li and Flavell, 2008), in T cells during stimulation with Lp vs. 

SpDC. 

 

CD103 expression by DC is required for suppression of T cell mediated colitis in 

the adoptive transfer model, suggesting that this subset possesses regulatory function in 

vivo (Annacker et al., 2005). Therefore, it was important to test whether the CD103+ 

subset was the subpopulation of LpDC that was promoting preferential Foxp3+ Treg 

induction. To address this, LpDC were further sort purified based on CD103 expression. 

Strikingly, CD103+ LpDC, were uniquely able to induce Foxp3 expression in the absence 

of exogenous TGF-β (Figure 8). Moreover, in the presence of TGF-β they consistently 

induced a higher frequency of Foxp3+ cells, though this was not very dramatic, 

especially when compared with SpDC. Purification of the CD103+ DC subpopulation 

from the intestinal draining mln indicated that these cells shared the same competency 
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to induce Foxp3+ Treg as their counterparts in the Lp. This held true both in absentia and 

in the presence of exogenous TGF-β (Figure 8). On the other hand, even with 

exogenous TGF-β, the CD103– subpopulation still induced less than half of the Foxp3 

frequency when compared to the CD103 expressing subset (Figure 8). These findings 

suggest that the CD103+ DC subset in the mln originates from the intestinal Lp, while the 

CD103– subset likely does not.  Consistent with this idea, an elegant study demonstrated 

that, although DC were readily detected, the CD103– subset was selectively excluded 

from lymph vessels draining the intestine (Schulz et al., 2009). 

 

 

Figure 7. TGF-β  responsiveness is enhanced in the presence of LpDC  
(A) eGFP–CD4+ T cells were cocultured at a 10:1 ratio with SpDC or LpDC in Treg 
polarizing conditions. On day 5, eGFP+ T cells were assessed for CD103 expression via 
flow cytometry. Red = SpDC, Black = LpDC. (B) As in A; however, the amount of TGF-β 
in coculture was tested at several concentrations.  
 



 43 

 

Figure 8. CD103+ Lp and mln DC are specialized to induce Foxp3+ Treg in the 
absence of exogenous factors.  
eGFP–CD4+ T cells were cocultured at a 10:1 ratio with CD103+ or CD103– DC purified 
from Lp or mln tissues and stimulated with αCD3, in the presence or absence of TGF-β. 
Cells were harvested 5 days later, and eGFP expression was assessed on viable CD4+ 
T cells as a surrogate for Foxp3.  
 



 44 

LpDC	  induce	  sustained	  Foxp3	  expression	  
 

The relative paucity of converted Treg in SpDC cocultures may have been due to 

a lower viability or a reduced proliferative potential of cells that acquired Foxp3. To 

determine the potential contribution of these elements, the survival of in vitro activated T 

cells was measured. In both SpDC and LpDC cocultures, Foxp3+ T cells remained 

significantly more viable than the Foxp3 null population. Thus, the lower yield of Treg cells 

in SpDC cocultures was not the result of increased cell mortality (Figure 9A). T cell 

proliferation in cocultures was explored next. Since eGFP and CFSE share overlapping 

emission spectra, naïve CD4+ T cells (Foxp3 contamination was < 0.5%) were isolated 

from non-transgenic mice (However, in subsequent experiments it became clear that 

eGFP is not retained when fix/permeabilized with the Foxp3 staining buffer kit offered by 

eBioscience). Consistent with findings using CD4+ T cells from reporter mice, the 

proportion of converted Treg continued to dominate in LpDC co-cultures (54.5% vs. 

14.9%, Figure 9B). CFSE dilution profiles indicated that CD4+ T cells proliferated 

vigorously regardless of the origin of DC during the length of incubation. While the 

Foxp3+ Treg lineage is typically distinguished by its hypoproliferative characteristics (Ref), 

this observation may in part be explained by the polarizing system used, in which IL-2, a 

potent growth factor for Treg in these stimulating conditions, was added at 24 hrs and 72 

hrs post-culture. Importantly, even at late division cycles the proportion of Foxp3+ Treg 

remained high in LpDC cocultures (Figure 9C).  These data suggest an initiation of a 

more stable Foxp3+ Treg program in the presence of LpDC. 
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Figure 9. Maintenance of Foxp3 contributes to higher frequency of Foxp3+CD4+ T 
cells in the presence of LpDC.  
(A) eGFP–CD4+ T cells were co-cultured with purified DC at a 5:1 ratio in Treg polarizing 
conditions. At indicated time points, cells were harvested, and stained with 7AAD (dead) 
and annexinV (apoptotic). Foxp3 expression was determined based on eGFP 
fluorescence. The percentage of 7AAD– annexinV– cells is depicted by white bars for 
LpDC and black bars for SpDC. Data are from one of 2 independent experiments. (B) 
CFSE labeled naive CD4+ T cells were co-cultured with purified DC as described above. 
On day 5, cells were harvested and stained for CD4 and intracellular Foxp3. Dot plots of 
Foxp3 versus CFSE are illustrated. The percentage of Foxp3+ cells and the MFI was 
defined as the bordered population.  (C) The proportion of Foxp3+ cells among CD4 T 
cells is plotted as a function of the number of cell divisions. LpDC () of SpDC ().   
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LpDC	  are	  equipped	  to	  metabolize	  vitamin	  A	  derivatives	  in	  retinoic	  acid	   	  
  

 Prior to this work, a number of studies have attributed several unique functional 

properties to GALT DC. Specifically, these studies found that lymphocytes activated in 

the presence of GALT DC, including those from the Lp, selectively up-regulate the gut 

homing surface molecules CCR9 and α4β7, which as mentioned in Chapter 1 results in 

their preferential migration into intestinal tissue (Johansson-Lindbom et al., 2005; 

Johansson-Lindbom et al., 2003; Mora et al., 2003; Mora et al., 2006). This upregulation 

was recently shown to depend on retinoic acid (RA) (Iwata et al., 2004; Mora et al., 

2006). Corresponding to this feature, GALT DC from Pp and mln were found to uniquely 

express high levels of messenger RNA for certain retinaldehydrogenases (RALDH), 

which are the enzymes that irreversibly catalyze the metabolism of the vitamin A 

derivative, retinal, into RA (Mic et al., 2003).   In order to assess for the functional 

expression of this family of enzymes in LpDC, a cell-membrane-penetrating probe that 

fluoresces upon binding to active RALDH was incubated with Sp and Lp tissue cell 

suspensions, and then examined flow cytometrically. Strikingly, only LpDC displayed 

high levels of functional RALDH; more specifically, these high levels were restricted to 

the CD103+ LpDC population (Figure 10A). Nevertheless, inhibition of RALDH activity 

using the alcohol dehydrogenase inhibitor, diethylaminobenzaldehyde (DEAB), during 

incubation with the RALDH probe indicated that both CD103– LpDC and SpDC have 

marginal, albeit detectable RALDH activity. Consistent with more RALDH activity in 

LpDC, upregulated α4β7 expression was consistently observed on induced Foxp3+ T 

cells in LpDC but not in SpDC cocultures (Figure 10B).  
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Figure 10. LpDC synthesize retinoic acid, which can enhance Foxp3+ Treg 
generation in cooperation with TGF-β .  
(A) Sp and Lp cell suspensions were incubated with a RALDH substrate possessing a 
fluorescent indicator. Where indicated, cell suspensions were concomitantly treated with 
a RALDH inhibitor, DEAB. RALDH activity was assessed by flow cytometry, with gating 
strategy showed. (B) In vitro cocultured cells were stained for α4β7 and assessed for 
eGFP fluorescence (Foxp3) by flow cytometry. (C) The dose responsiveness of eGFP 
(Foxp3) expression by CD4 T cells cocultured with SpDC was determined by flow 
cytometry. Error bars represent the standard error of the mean (s.e.m.) of 3 individual 
samples from one experiment. Statistical significance was determined using the 
Student’s T test. , P < 0.05; , P < 0.01; , P < 0.001. 
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Retinoic	  Acid	  enhances	  Foxp3+	  Treg	  generation	  in	  SpDC	  cocultures	  via	  retinoic	  
acid	  receptor	  alpha	  (RARα)	  
 

 To proceed with the previous findings, the capacity of RA to enhance the 

generation of Foxp3+ T cells in Treg polarizing conditions was tested. To this end, 

SpDC/T cell cocultures were prepared with αCD3 and TGF-β in the presence of 

increasing doses of the synthetic RA, all-trans RA, which is the predominant 

physiologically detectable form of retinoic acid (Mic et al., 2003). While RA alone did not 

induce Foxp3 expression, RA in the presence of TGF-β enhanced the frequency of 

Foxp3+ Treg recovered in culture in a dose dependent manner, also leading to 

upregulated α4β7 on these cells (Figure 10C and data not shown). The enhanced 

generation of Foxp3+ T cells was markedly significant at RA concentrations of 1nM and 

above, and plateaued at 10nM, with the percentage of Foxp3+ cells reaching 40-55% 

(Figure 10C). Since exogenous RA in the absence of TGF-β was unable to induce Treg 

generation in vitro, the effects of this molecule seem to require TGF-β. In this regard, RA 

was recently shown to enhance smad3 phosphorylation and its nuclear translocation in 

Treg polarizing conditions (Nolting et al., 2009; Xiao et al., 2008). Nevertheless, RA was 

capable of augmenting the frequency of Foxp3+ cells in the absence of smad3 (Nolting 

et al., 2009).  Therefore, although RA may influence other aspects of TGF-β signaling in 

the absence of smad3, another plausible explanation is that RA signals complement the 

effect of TGF-β signals. Regardless of these interpretations, TGF-β appears requisite for 

the establishment of a baseline level of Foxp3 differentiation, in vitro, at least. 

  

 To determine the signaling pathway utilized by RA to induce this outcome, naïve 

CD4+ T cells deficient in retinoic acid receptor alpha (Rara), beta (Rarb), or gamma 

(Rarg), respectively, were incubated with WT SpDC in Treg polarizing conditions, with or 
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without RA. Strikingly, only in the absence of RARα did RA fail to enhance the frequency 

of Foxp3+ T cells recovered in cocultures (Figure 11A). Indicative that RARα was an 

important transcriptional effector of RA driven pathways, α4β7 upregulation was also 

attenuated in the absence of this gene (Figure 11B). Not examined in these 

experiments was whether the effect of other isoforms, such as 9-cis RA, was also 

diminished in the absence of RARα. This form of RA, although not readily detected in 

vivo, was also shown to enhance Foxp3 generation (Mucida et al., 2007).  

 

Figure 11. RA signaling through RAR-alpha enhances Foxp3+ Treg generation.  
(A) Naïve CD4+ T cells from Rara, Rarb, or Rarg deficient mice and their WT littermates 
were cocultured at a 10:1 ratio with WT SpDC in Treg polarizing conditions, ± RA (10nM). 
Intracellular Foxp3 expression was assessed on day 5. Bars depict the average percent 
increase (of duplicate samples) in the proportion of Foxp3+ T cells recovered when 
cultured with RA. Percent increase was calculated based on the average frequency of 
Foxp3+ T cells recovered from duplicate wells cultured w/o RA. Error bars mark the high 
and low values. (B) α4β7 expression was measured on total CD4+ T cells after coculture. 
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LpDC	  facilitate	  Foxp3	  induction	  via	  retinoic	  acid	  mediated	  signaling	  
  

 Exogenous RA in the presence of TGF-β in LpDC cocultures also increased the 

proportion of Foxp3+ T cells generated and diminished the intrinsic differences between 

CD103+ and CD103– subsets’ abilities to induce Treg (Figure 12A). Notably, in LpDC 

cultures containing the CD103+ subset, in which the frequency of Foxp3+ cells was 

already high, RA exerted a more dramatic effect on α4β7 than on Foxp3 expression. This 

suggested that the signaling pathways evoked by RA for the generation of Foxp3 and 

upregulation of α4β7 may differ, independent of their dependency on RARα, and that the 

effects of RA on the regulatory pathway is saturated at smaller concentrations of RA. 

Interestingly, addition of RA to CD103+ LpDC cocultures stimulated without TGF-β, in 

which a small frequency of Foxp3+ T cells was already induced, did not lead to the 

expansion of this population (data not shown), indicating that the endogenous level of 

RA is not the limiting component in these conditions. 

 
The accumulating data suggested that the capacity of LpDC to synthesize RA 

was, in part, responsible for Foxp3+ Treg induction observed in these cocultures. To 

address this hypothesis the synthetic RA receptor antagonists LE540 and LE135 (RAi) 

were added to LpDC cocultures in an attempt to block RA mediated signaling. 

Remarkably, the addition of 1µM each of these inhibitors inhibited Treg conversion by 

67% and 57% in CD103+ and CD103– LpDC cocultures, respectively (Figure 12A). 

Drawing from these data, we hypothesized that RA signals conveyed by LpDC 

synergized with TFG-β to favor Treg induction. In support of this, either blockade of TGF-

β or RA receptor signaling resulted in a significant decline of spontaneous αCD3 induced 

Treg induction by CD103+ LpDC, (87%, P < 0.0005 and 73%, P < 0.001, respectively) 

(Figure 12B).  
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Figure 12.  RA production by LpDC is requisite for optimal Foxp3+ Treg induction.  
(A) Foxp3– CD4+ T cells were cocultured with both CD103± LpDC at a 10:1 ratio in Treg 
polarizing conditions. However, in some wells, RA (100nM), or the RA receptor 
antagonists (RAi), LE540 and LE135 were added. Cells were subsequently stained and 
assessed for α4β7 and eGFP fluorescence (Foxp3) by flow cytometry. (B) Foxp3– CD4+ 
T cells were cocultured with CD103+ DC and stimulated with αCD3 ± TGF-β neutralizing 
antibody (isotype IgG1) or LE540 and LE135. Error bars depict the s.e.m. of three 
independent experiments. Statistical significance was determined using the Student’s T 
test. ns = non significant; , P < 0.001.  
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Vitamin	  A	  metabolism	  is	  essential	  for	  GALT	  generation	  of	  Foxp3+	  Treg	  cells	  in	  
response	  to	  antigen	  feeding	  
 

Although RA receptor blockade prevented Treg generation in vitro, it remained 

unclear whether vitamin A metabolism was an essential mediator of Treg induction in the 

GALT upon antigen feeding. To begin to address this, a natural model of diet-induced, 

vitamin A insufficiency (VAI) was employed, in which mice no longer received vitamin A in 

their diet starting at day 14.5 in utero (Smith et al., 1987). At 10 weeks of age, these 

mice, which displayed normal gut histology and thymic T cell development (data not 

shown), were deficient in vitamin A and its derivative metabolites as evidenced by 

diminished α4β7 expression on CD44hi CD4+ T cells (Figure 13A). Moreover, the capacity 

of LpDC to synthesize RA, based on assessment of functional RALDH, was abrogated 

during VAI (Figure 13B). These data suggested that the metabolism of vitamin A in LpDC 

is controlled by a positive feedback loop. Further, they indicated that even in the event 

that residual vitamin A/metabolites lingered in the VAI host, LpDC would be unable to 

induce RA mediated signals during polarization.  



 53 

 

Figure 13. RA synthesis is abolished in vitamin A deficient diet fed mice at 10 wks 
of age. 
 (A) Cell suspensions from Sp, mln and Lp of Ctl and VAI mice were stained for T cell 
markers, α4β7, and CD44 and analyzed flow cytometrically. α4β7 expression was then 
assessed on gated CD44hi CD4+ T cells. Bars depict the average values (n = 4 per 
group). Error bars depict the standard deviation (s.d.). , P < 0.001. (B) Lp cell 
suspensions from Ctl and vitamin A insuffient (VAI) mice were pooled (2 per group) and 
incubated with the functional RALDH probe. RALDH activity on LpDC was assessed by 
flow cytometry. The RALDH inhibitor, DEAB, shows the specificity of the probe.  
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To determine whether VAI mice retained the capacity to promote GALT Treg generation 

upon antigen feeding, Foxp3–Ly5.2+ T cells from Foxp3eGFP X OT-II Tg mice were 

adoptively transferred into Ly5.1+ VAI recipients. As expected, after 5 days of OVA 

feeding, an appreciable frequency of transferred cells adopted Foxp3 in the Lp of mice 

fed a vitamin A sufficient diet (control – Ctl) (Figure 14A). In contrast, transferred cells 

failed to upregulate Foxp3 in any of the tissues analyzed in VAI hosts, including the Lp, 

Sp and mln (Figure 14A-C). This outcome was unlikely due to a defect in antigen 

presentation, as CFSE labeling indicated that OVA specific cells readily divided in 

response to OVA feeding. Nevertheless, despite the breakdown of this pathway, thymic 

Foxp3+ Treg development appeared grossly unimpaired in VAI animals (Figure 15A-B). 

Taken together, these results unequivocally reveal a requirement for vitamin A in GALT 

Treg induction in vivo. 
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Figure 14. Vitamin A insufficiency results in diminished GALT Foxp3+ Treg 
induction.  
(A) CD45.1+ WT and VAI mice were intravenously injected with CFSE labeled, sorted 
CD45.2+ Foxp3– OTII transgenic T cells and fed OVA antigen in their drinking water for 5 
consecutive days. Transferred cells were assessed in the Sp, mln, and Lp for de novo 
expression of intracellular Foxp3 via flow cytometry. Representative dot plots gated on 
CD45.2+ CD4+ T cells show Foxp3 as a function of CFSE.  (B) Summary of the 
frequency Foxp3 expression in transferred cells. (C) Summary of the absolute number of 
induced Foxp3+ Treg. Error bars illustrate the s.d. Statistical comparisons were performed 
using the unpaired Student’s t test , P < 0.05; , P < 0.01; , P < 0.001, ns = not 
significant. n = 3-4 mice per group.  
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Figure 15. CD4+ T cell development appears normal in VAI mice.  
(A) Thymic CD4 and CD8 profile of Ctl and VAI mice at 10 wks of age. Absolute number 
of CD4 single positive cells is displayed above each dot plot. n = 4 mice per group. (B) 
Cells were fixed and intracellularly stained for Foxp3. Dot plots illustrate CD25 versus 
Foxp3 expression upon gating on viable CD4+ cells. The frequency of Foxp3+ cells is 
summarized on the right-hand side. Each dot represents and individual mouse.  
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Discussion	  
 

The data herein demonstrate that the GALT environment is able to promote the 

de novo generation of Foxp3+ Treg. Specifically, the findings described reveal that DC 

from the small intestinal lamina propria are uniquely endowed with the capacity to induce 

Foxp3+ Treg in vitro via a mechanism that, in addition to TGF-β, is dependent on the 

vitamin A metabolite, retinoic acid. Underscoring the relevance of this pathway for the 

development of peripheral Treg in vivo, mice devoid of RA are unable to induce Treg in 

the GALT upon antigen feeding.  

 

The induction of oral tolerance has been linked to a number of immunoregulatory 

processes, including: the polarization of TGF-β (TH-3) and IL-10 (TR-1) producing T cells, 

clonal deletion in the periphery, and more recently, the upregulation of Foxp3+ mRNA, 

which is essential for the programming of Foxp3+ Treg cell function (Chen et al., 1995; 

Chen et al., 1994; Gavin et al., 2007; Lin et al., 2007; Mucida et al., 2005). It is now clear 

that Foxp3 protein expression is acquired, as well, during this process (Coombes et al., 

2007; Sun et al., 2007). The high frequency of Foxp3+ Treg, sometimes exceeding 20%, 

detected within the small bowel Lp suggests that this site may serve as a niche for this 

population of cells. Lending support to this hypothesis, this lab has demonstrated using a 

lymphopenic transfer model that induced Foxp3+ Treg preferentially accumulate in the Lp 

(Sun et al., 2007).  

 

Based on the capacity of LpDC to induce Foxp3+ Treg, compounded with the high 

frequency of these cells that was recovered from the Lp, one interpretation is that de 

novo Foxp3 production occurs in situ. However, this possibility is unlikely for several 

reasons:   
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1. Naïve cells are rarely present in the intestinal tissue (<5% based on CD44 

and CD62L staining, data not shown).  

2. Though not tested on naïve T cells per se, Foxp3 could not be induced in 

CD4+ T purified from the Lp. Regardless, it would be worthwhile to repeat 

this experiment with Lp T cells that were isolated based on expression of 

naïve surface markers. 

3. From a kinetic standpoint, impressive Foxp3 induction initially occurred in 

the mln and Pp. One caveat of these findings, however, is that the 

adoptive transfer system that was used for these experiments involved 

the injection of 1x106 OT-II T cells or less. As such, it was difficult to 

identify transferred OTII cells within the Lp shortly after transfer (i.e. within 

36 hrs).  

4. Removal of the mesenteric lymph nodes or genetic disruption of the 

ability of LpDC to migrate into them was previously demonstrated to 

abrogate oral tolerance induction (Worbs et al., 2006). 

 

It was recently revealed that the CD103+ LpDC population is the predominant migratory 

subset of CD11c+MHCII+ cells within the intestinal Lp and is much more efficient than the 

CD103– subset at polarizing T cells (Bogunovic et al., 2009; Schulz et al., 2009). Thus, 

whether the CD103– subset plays a physiological role in GALT Foxp3+ Treg generation 

and maintenance of oral tolerance is unclear. Based on their capacity to promote Treg in 

vitro in the presence of exogenous TGF-β, as well as their capacity to efficiently take-up 

antigen (Schulz et al., 2009), it’s plausible that these cells could act to maintain or 

propagate de novo generated Foxp3+ cells. Arguing in favor for such a role, 

F4/80+CD11c+CD11b+ cells, i.e. surface markers, which correspond to the CD103– 

subset, were shown to prevent T cell mediated transfer colitis via IL-10 production and 
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the maintenance of the Foxp3 Treg (Murai et al., 2009). Intriguingly, another study 

described a macrophage-like subset, which expressed low/negative levels of CD11c, 

and potently induced Foxp3+ Treg generation in vitro via IL-10 (Denning et al., 2007). 

These cells were also found to express message for RALDH2 enzyme. 

 

Although the antigen-feeding model employed in these assays favors the 

emergence of Treg in the GALT, this protocol in other studies has been shown to limit 

airway inflammation in a Foxp3 dependent manner (Curotto de Lafaille et al., 2008), 

underscoring the circulatory capacity of these induced regulatory cells. Moreover, 

suggestive that a similar tolerogenic process occurs in tissues that are in contact with 

other natural sites of opportunistic entry, such as the nasal cavities, intranasal 

administration of antigen also was revealed to curb airway inflammation. It would be 

interesting to examine whether Foxp3+ Treg induction in this system also depends on 

vitamin A metabolism. Interestingly, RA was recently demonstrated to limit airway 

responses in a model of allergic asthma; however, the cellular-source of RA responsible 

for these effects was not clear, nor was the dependency on Foxp3+ Treg induction 

(Goswami et al., 2009).  

 

Indeed, the capacity to synthesize RA is not restricted to GALT DC. For example, 

epithelial cells are also endowed with this feature (Iwata et al., 2004). More recently, it 

was revealed that the stroma of the mesenteric lymph nodes also share this capability 

(Hammerschmidt et al., 2008). In fact, in elegant surgical experiments, this capacity was 

demonstrably essential for the effective upregulation of α4β7 and CCR9 on newly 

activated T cells upon antigen feeding. This finding indicates that, rather than merely 

serving as a collecting reservoir for migrating LpDC, the mln may actively participate in 

the fates of activated T cells. In this regard, it would be of interest to test how selective 
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ablation of RA synthesizing capacity in the mln stroma would effect Foxp3+ Treg induction 

and development of oral tolerance.  
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RA	  and	  TGF-‐β :	  partners	  in	  oral	  tolerance	  
 

While the potential participation of other sources of RA in the induction and 

regulation of GALT Foxp3+ Treg generation remains enigmatic, the importance of 

vitamin A metabolism in this process is unequivocal. Thus, VAI mice that are devoid of 

vitamin A and its metabolites were unable to support the differentiation of Foxp3+ Treg in 

response to antigen feeding. Based on this finding, a reasonable question to test is 

whether oral tolerance is also hindered in these animals. Nevertheless, the manifold 

problems that accompany VAI may confound the interpretation of such experiments. 

Rather, with consideration to the importance of RA/RARα driven signals in Foxp3+ Treg 

generation in vitro, it may be more straightforward to test the requirement of RARα by T 

cells in this process in vivo and its significance in oral tolerance induction. However, this 

experiment would first require crossing Rara–/– mice to OTII transgenic mice.    

 

Although vitamin A metabolism is essential for GALT Foxp3+ Treg generation, it is 

not sufficient. TGF-β signaling was also critical for the capacity of LpDC to induce Foxp3 

in CD4+ T cells in vitro. This point was illustrated in experiments using αTGF-β mAb. 

This finding, however, was not altogether surprising, as virtually every report detailing 

the peripheral requirements for the generation of CD25+ or Foxp3+ Treg, both in vitro and 

in vivo, has noted the critical involvement of TGF-β (Chen et al., 2003; Fantini et al., 

2004; Kretschmer et al., 2005; Wan and Flavell, 2005). Nevertheless, this is the first 

demonstration that LpDC and their mln counterparts are capable to produce and/or 

process active TGF-β (Coombes et al., 2007; Sun et al., 2007). Indeed, in comparing DC 

subsets in the mln, Powrie and colleagues found that the CD103+ mlnDC subset was 

uniquely capable of expressing TGF-β related genes (Coombes et al., 2007). Further 
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highlighting the potential importance of this finding, it was recently demonstrated that the 

ability of DC to activate TGF-β on their surface via integrin alpha(v) is vital to the 

maintenance of intestinal homeostasis (Lacy-Hulbert et al., 2007; Travis et al., 2007). 

Assimilating these findings and putting them into context with the data reported above 

tempts speculation that the CD103+ LpDC population is selectively armed with this 

integrin. Importantly, CD103 expression on DC is important for protection against T cell 

transfer mediated colitis(Annacker et al., 2005), yet LpDC from animals genetically 

deficient in this marker are still capable of synthesizing RA (Jaensson et al., 2008). 

Thus, one possibility is that CD103 expression regulates the expression of alpha(v) 

integrins, potentially via cellular crosstalk, as CD103’s chief binding partner is E-

cadherin, which is broadly expressed throughout the GI tract. 

 

It is still unclear why RA acts merely as a cofactor with TGF-β to enhance Foxp3 

generation in vitro, yet seems absolutely required for Treg generation in the GALT. 

Perhaps this discrepancy could derive from alterations to the endogenous LpDC 

population in VAI mice that transcend a deficit in RA production. Related to this 

possibility, deficiency in vitamin A has been shown to alter the intestinal epithelial 

landscape, as well as mucous production (Cha et al.). Additionally, TGF-β activity may 

also be disrupted during VAI. Consistent with this possibility, a recent study showed that 

TGF-β production was impaired in follicular DC - which do not share their origin with 

hematopoietic DC - from Pp of VAI mice (Suzuki et al.). 
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Influence	  of	  environmental	  cues	  on	  Foxp3	  promoting	  capacity	  of	  LpDC	  
 

Importantly, changes in epithelial homeostasis may have broad implications on 

the conditioning of DC within the Lp. For instance, intestinal epithelial production of the 

cytokine, thymic stromal lymphopoietin (TSLP), was revealed to promote IL-10 secretion 

by DC and diminish their capacity to polarize a TH-1 response (Rimoldi et al., 2005) 

(Zaph et al., 2007). TSLP was also found to promote Treg induction in human thymic T 

cells via effects on DC maturation (Watanabe et al., 2005). In light of these discoveries, 

a potential role for TSLP in controlling the ability of LpDC to preferentially induce Foxp3+ 

Treg was evaluated. However, LpDC from TSLP receptor deficient (TSLPR–/–) mice were 

as competent as their WT counterparts at promoting high frequencies of Foxp3+ T cells 

in coculture (Figure 16). Moreover, these animals displayed no alterations in the 

frequency and absolute number of Foxp3+ Treg across several lymphoid and non-

lymphoid tissues (data not shown). Yet, it is still possible that other conditioning factors 

produced by epithelia contribute to the capacity of LpDC to drive a Foxp3 program.  

Highlighting this possibility, RA and TGF-β released from an intestinal epithelial line were 

 

Figure 16. TSLP signals are not 
required for the ability of LpDC 
to induce Foxp3+ Treg.  
Foxp3– cells were cultured with Sp 
or LpDC and stimulated in Treg 
polarizing conditions at a 10:1 
ratio for 5 days. Dot plots are 
gated on CD4+ cells and the 
percentages of Foxp3+ cells are 
shown.  
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shown to confer RA synthesizing capacity, CD103 and active TGF-β in conditioned bone 

marrow DC (Iliev et al., 2009). Alternatively, LpDC may receive environmental cues from 

other cells within the lamina propria. For example, GM-CSF secreted from an F4/80 

(macrophage like) population was proposed to potentiate RA synthesizing capacity in 

LpDC (Yokota et al., 2009).  

 

In summary, the data provided here suggest that the intestinal immune system, 

through the simultaneous production of TGF-β and RA, has evolved a self-contained 

strategy to promote Foxp3+ Treg induction. The dual necessity for these factors would 

likely restrict this process to lymphatic sites draining tissues that reside in close contact 

with opportunistic points of entry, such as the gastrointestinal, nasopharyngeal, and 

possibly the urogenital tract. Notably, in response to antigen feeding, Foxp3+ induced 

cells were found to preferentially accumulate in the Lp tissue and were detected less 

commonly in the draining mln. This may be a reflection of the sentinel role played by 

these cells, which could facilitate their rapid deployment into tissue. In this regard, it 

deserves mention that a recent and elegantly conducted study, which compared TCRα 

sequences across various CD4+ T cell subsets in an effort to correlate TCR specificity 

with peripherally versus thymically generated Foxp3+ Treg, concluded that the frequency 

of peripherally generated Foxp3+ Treg was quite low (Lathrop et al., 2008). However, 

several caveats in this study may have led to an underestimation of the contribution of 

peripherally induced Foxp3+ T cells to the Foxp3+ Treg repertoire. First, the mice used for 

analysis possessed a fixed TCRβ chain, so only alpha rearrangements could occur. 

Second, the authors did not evaluate Foxp3+ Treg and non-Treg repertoires in tissue sites, 

where the data described here would predict most of the induced Treg reside. Thus, 

based on a high probability that the thymus and gut, as well as other tissues exposed to 
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non-sterile environments maintain a degree of non-overlapping antigen repertoires, it is 

plausible that peripheral Foxp3+ Treg generation potentially expands the Foxp3+ Treg 

repertoire. 
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CHAPTER	  3:	  Commensal	  DNA	  limits	  peripheral	  Foxp3+	  Treg	  generation	  and	  
is	  an	  adjuvant	  of	  intestinal	  immune	  responses	  

 

Abstract:	  
 

The intestinal tract is in intimate contact with the commensal microbiota. Yet, how 

commensal signals communicate with cells in this tissue to ensure immune homeostasis 

is still unclear. In addition, the importance of these signals in the regulation and 

generation of mucosal immune responses has not been amply investigated. Continuing 

from findings described in Chapter 2, this study begins with an assessment of the 

influence of commensal components on the Foxp3+ Treg polarizing capacity of DC from 

the intestinal lamina propria. Remarkably, only TLR9 engagement was found to have a 

significant impingement on the induction of Foxp3+ Treg. Pairing these findings with work 

initiated by Dr. Nicolas Bouladoux, resulted in a collaborative effort (each figure that was 

a collaboration is indicated by an (*)), which produced the following data: 

 

1. TLR9 stimulation of LpDC limited Foxp3+ Treg generation in favor of the 

generation of Teff equipped with mucosal homing capacity. 

2. Commensal microbiota derived DNA (gfDNA) was a natural TLR9 ligand 

that impaired Foxp3+ Treg generation  

3. TLR9−/− mice experienced dysregulated Treg/TH homeostasis in the GI tract, 

and displayed an expansion of Foxp3+ Treg that contributed to impaired 

mucosal T cell responses following oral infection with 

Encephalitozoon cuniculi.   

4.  gfDNA was a natural adjuvant of mucosal TH responses. 
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Rationale: 
 

The ability of the gastrointestinal tract and its associated lymphoid tissues to 

support the induction Foxp3+ Treg may help curb untoward responses to dietary, floral 

and environmental antigens, which otherwise put the host at risk for allergic 

hyperresponsiveness and tissue damage (Curotto de Lafaille et al., 2008).  Yet this 

mode of regulation, as well as others that are constitutively supported in this tissue must 

be tempered in order to avoid compromising effective immunity. Commensal and 

pathogenic microbes routinely reveal and radio their presence to the host immune 

system through conserved ligands that are cardinal features of microorganisms, which 

commonly signal through the toll like family of receptors (TLR) and subsequently through 

the adaptor protein, Myd88 (Sansonetti and Di Santo, 2007) (Medzhitov et al., 1998). 

These signals positively regulate the sampling of luminal content by DC in the underlying 

Lp tissue (Chieppa et al., 2006; Niess and Reinecker, 2005), indicating that LpDC 

constitutively “sense” commensals and dietary antigen. Indeed, the constant exposure of 

the intestinal immune system to flora and its constituent ligands provides a rationale to 

consider the physiological impact of TLR signaling not just on GALT Treg generation, 

maintenance and regulation, but more broadly in the control of T cell homeostasis in this 

region. Such an understanding will be critical to unraveling how regulatory thresholds are 

set and overcome in the control of host tissue immunity.  
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Results:	  

TLR9	  signaling	  limits	  LpDC	  mediated	  Foxp3+	  Treg	  induction	  in	  vitro.	  	  
 

To begin to address how the commensal flora may influence peripheral Foxp3+ Treg 

induction in the GALT, LpDC were cocultured with naïve CD4+ T cells in Treg polarizing 

conditions and exposed to various purified and synthesized TLR ligands. With intent to 

avoid direct responses of the T cells to TLR stimulation, T cells from Myd88 deficient 

mice were used for these experiments. LpDC were revealed to express weak to 

undetectable levels of TLRs 2 and 4, yet readily expressed message for TLRs 5 and 9 

(Uematsu et al., 2008). Thus, the addition of peptidoglycan (PGN), or lipopolysaccharide 

(LPS), which engage TLRs 2 and 4, respectively, only marginally affected the outcome 

of Foxp3+ T cell generation in coculture (Figure 17A). The addition of flagellin (Flgn), 

which engages TLR5 (Uematsu et al., 2006), also had no obvious effect on Foxp3+ Treg 

induction even at a high input concentration, raising the possibility that TLR5 expression 

may vary depending on the animal facility in which the mouse is reared. Conversely, the 

addition of ODN1826 (CpG), which stimulates cells through TLR9, resulted in a potent 

reduction in the frequency of Foxp3+ Treg recovered at the end of coculture (Figure 17A-

B). This inhibition was observed at CpG doses equal to or exceeding 100ng/ml (Figure 

17A-B). Analysis of α4β7 revealed that rather than being inhibited, the expression of this 

retinoic acid signaling dependent integrin was increased, most notably on the Foxp3 

negative population (Figure 17C). Consequently, the tolerogenic and homing effects of 

RA are decoupled in the presence of a strong adjuvant, such as CpG.   

 

Cells that failed to up-regulate Foxp3 had potentially outgrown Treg cells in CpG 

stimulated cocultures. To assess this, naïve TLR9−/− T cells were CFSE labeled prior to 
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culture. However, gating on the Foxp3– cells indicated that they proliferated comparably 

in both CpG stimulated and non-stimulated cocultures (Figure 17D). The next question 

was whether TLR9 signaling could inhibit naïve T cell up-regulation of Foxp3 during 

differentiation. In fact, even before Foxp3 cells had undergone a single division, their 

frequency was reduced 50% in cocultures containing CpG.  
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Figure 17. TLR9 signaling inhibits LpDC induced Foxp3+ Treg generation.  
(A) FACS-sorted naïve CD4CD25–CD44lo T cells isolated from myd88–⁄– mice were 
cultured in Treg polarizing conditions with WT LpDC at a 10:1 ratio in the presence of the 
indicated TLR ligand for 5 days. PGN (TLR2), LPS (TLR4), Flgn (TLR5) or CpG (TLR9) 
was added at a starting concentration of 2 µg/ml, 10 µg/ml, 1 µg/ml or 10 µg/ml, 
respectively. Two subsequent five-fold dilutions of each ligand were tested (wedge). 
Results were then normalized to the frequency of Foxp3+ T cells generated in Treg 
polarizing conditions without TLR ligands Cross bars indicate the high and lows of 
duplicate cultures. (B) Dosage effect of CpG on LpDC induced Foxp3+ Treg generation. 
(C) Same as in A. Dot plots are gated on viable CD47-AAD– T cells and illustrate α4β7 
versus Foxp3 expression following culture with or without CpG (10 µg/ml). (D) Naïve 
CD4CD25−CD44lo T cells were isolated from TLR9−/− mice, labeled with CFSE, and 
cultured as in A. CFSE dilution was assessed as a function of Foxp3 at the indicated 
time points. Histogram overlay of CFSE dilution profiles for CD4Foxp3– T cells, 
indicated in the boxed in regions (solid line: control; dotted line: in presence of CpG).  
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TLR9	  signaling	  promotes	  TH	  cell	  differentiation	  in	  lieu	  of	  Foxp3
+	  Treg.	   

 

CpG stimulation of LpDC was found to induce their production of proinflammatory 

cytokines, including: IL-6, IL-12p40, and TNF-α (Figure 18A). The IL-12p40 subunit can 

form a heterodimer with IL-12p35 to comprise IL-12 or with IL-23p19 to comprise IL-23; 

however, these cytokines were not examined in these experiments. IL-27 was also not 

examined, although it deserves mention that LpDC have been shown to express both of 

the subunits comprising this cytokine, EBI3 and IL27p28 at steady-state (Oldenhove et 

al., 2009). Nevertheless, in comparison to other TLR stimuli, CpG was the only one that 

induced a strong proinflammatory cytokine profile by LpDC (Figure 18B). Consequently, 

in place of Foxp3, TLR9 activated LpDC differentiated naïve T cells into TH capable of IL-

17A, IFN-γ as well as IL-4 secretion (Figure 19). Thus, coupled with its ability to induce 

α4β7, TLR9 stimulation of LpDC may help shape Treg/TH composition throughout the 

GALT.  
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Figure 18. TLR9 stimulation of LpDC promotes robust pro-inflammatory cytokine 
production.  
(A) 5x104 FACS purified LpDCs were stimulated over night in the presence or absence 
of CpG (1 µg/ml) in complete media supplemented with 40 ng/ml of GM-CSF. 
Supernatants were assessed for cytokines by ELISA. (B) Lp cell suspensions were 
stimulated with the indicated TLR ligands (1µg/ml) for 4 hrs and subsequently surface 
stained with CD11b, CD11c, Class II, F4/80, and fixable live/dead dye. Upon 
fixation/permeabilization, cells were stained intracellularly for IL-6, IL-12p40 and TNF-α. 
Counter plots are gated on CD11chi and CD11chi CD11b+ cells. 
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Figure 19. TLR9 stimulated LpDC induce Teff 
programs in Foxp3+ Treg polarizing conditions.  
CD4 CD25–CD44loFoxp3– T cells from Tlr9–⁄– 
Foxp3eGFP mice were cultured in Treg polarizing 
conditions in the presence or absence of CpG for 
5 days and then restimulated with PMA + 
ionomycin for assessment of intracellular cytokine 
production. Cytokine percentages in bordered 
regions are expressed as a percentage of viable 
CD4 cells. 
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TLR9	  signaling	  abrogates	  Foxp3+	  Treg	  generation	  through	  undefined	  innate	  
pathways	  	  

 

Among the innate cytokines, IL-6 and IL-27 were previously reported to potently 

inhibit Foxp3+ Treg generation in vitro (Bettelli et al., 2006; Korn et al., 2007). Depending 

on the conditions and source of costimulation, IL-12 was shown to have a marginal to 

moderate negative impact on Treg polarization (Bettelli et al., 2006; Wei et al., 2007), 

while IL-23, had a minimal influence (Izcue et al., 2008). To test the relative significance 

of TLR9-induced IL-6 production on the subversion of Foxp3+ Treg induction, IL-6 

signaling was blocked with anti-receptor and neutralizing Abs (αIL-6) or bypassed with 

LpDC genetically deficient for IL-6 (Il-6−/−). While both of these measures curbed IL-17A 

production, neither was sufficient to reverse the effect of TLR9 stimulation on Treg 

inhibition (data not shown and Figure 20A). Additional blockade with antibody against 

IL-27p28 also failed to induce any appreciable rebound; nevertheless it is important to 

note that the efficacy of this mAb was not confirmed for these assays (Figure 20A). 

Assuming that αIL-27 reduced IL-27 signaling in the assays described, these data 

indicated that TLR9 signaling hindered the capacity of LpDC to induce Foxp3+ Treg 

through complex innate pathways. In this regard, the group that showed that IL-23 was 

unable to inhibit Foxp3+ Treg induction in vitro more recently showed that the IL-23R was 

a cell intrinsic regulator of the differentiation/accumulation of Foxp3+ Treg in vivo (Ahern et 

al.). As such, IL-23 signaling may negatively regulate Foxp3+ 

differentiation/accumulation in concert with other cytokines. Although further addition of 

an Ab directed against IL-12p40, which has been validated to block both free IL-12p40 

and the IL-12 heterodimer, in cocultures containing Il-6−/− LpDC also failed to relieve 

Foxp3 inhibition, the efficacy of this Ab against IL-23 has not yet been tested (Figure 

20A). In light of the effectiveness of Abs directed against αIL-6/αIL-6R, it may be 
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worthwhile in the future to perform these experiments with LpDC obtained from 

IL12p40−/− mice. 

 

Intriguingly, blockade of IL-6 treatment consistently enhanced IFN-γ, IL-4, and IL-10 

production (Figure 20B). While IL-10 was recently demonstrated to only slightly reduce 

the frequency of Foxp3+ T cells generated in Treg polarizing conditions (Bettelli et al., 

2006), IFN-γ and especially IL-4, were revealed to antagonize Foxp3+ Treg generation in 

a Stat1 and Stat6 dependent manner, respectively (Wei et al., 2007). Moreover, 

enforced expression of TH-1 and TH-2 transcription factors was sufficient to effect this 

inhibition in the absence of these cytokines.  These findings coupled with the cytokine 

modulation that occurred in the face of IL-6 blockade indicated that deviation towards TH-

1 and TH-2 programs, in addition to TH-17, was potentially complicit in TLR9-induced 

Foxp3 inhibition. In accord with this hypothesis, the addition of neutralizing Abs against 

both IL-4 and IFN-γ, in addition to αIL-6, resulted in a ~70% rebound in the frequency of 

Foxp3+ Treg cells (Figure 21A and B). IL-4 neutralization drove a greater rebound in the 

frequency of Foxp3+ T cells at the end of culture than IFN-γ neutralization. 

Complementing these data, addition of each of these cytokines blocked LpDC-induced 

Foxp3 development in a dose dependent fashion, where IL-6 exerted the most potent 

inhibition at all concentrations tested. Notably, suppression was further enhanced when 

the cytokines were combined (Figure 21C). These data demonstrated that TLR9 

activation overrode preferential Treg induction via non-specific TH programming. 
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Figure 20. TLR9 stimulated LpDC redirect polarization of T cells in Foxp3+ Treg 
polarizing conditions via multiple innate pathways. 
 (A) CD4CD25–CD44loFoxp3– T cells from Tlr9–⁄– Foxp3eGFP mice were cocultured with 
LpDCs purified from WT or IL-6−/− mice for 5 days. In wells where CpG (10µg/ml) was 
added, the effect of various cytokine blocking Abs was assessed, including: αIL-27p28 
and αIL-12p40/p70. Each condition was tested in triplicate. (B) Supernatants from 
cocultures in A were assayed for IL-4, IFN-γ and IL-10 by ELISA. Error bars depict the 
s.e.m. (#, sample was tested in duplicate; , P <0.01; , P <0.001).    
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Figure 21. Partial rescue of Foxp3 development in the face of TLR9 activated 
LpDCs.  
(A) Naïve CD4CD25–CD44lo T cells from Myd88−

/
− mice were cultured in Treg polarizing 

conditions for 5 days in the presence or absence of CpG (10µg/ml). In wells containing 
CpG, antibodies to IL-6 and IL-6 receptor α (αIL-6), IL-4 (αIL-4) and IFN-γ (αIFN-γ) were 
added at the start of culture as indicated. Bracketed areas indicate the percentage of 
Foxp3 cells. (B) Summary of results in A normalized to baseline Treg induction. 
Crossbars represent the high and lows of conditions cultured in duplicate. (C) Blockade 
of LpDC induced Foxp3+ Treg generation by IL-6, IL-4 and IFN-γ. Naïve CD4CD25–

CD44lo T cells were cocultured with LpDCs in Treg polarizing conditions. Various doses of 
IL-6, IL-4, IFN-γ or a combination of all 3 cytokines were added at the start of culture. 
Cytokine concentration is shown on the x-axis. In wells containing cytokine 
combinations, the same concentration of each cytokine was used. 
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Engagement	  of	  TLR9	  by	  commensally	  derived	  gut	  flora	  DNA	  inhibits	  Foxp3+	  Treg	  
induction	  in	  vitro	  	  
 

TLR9 recognizes unmethylated CpG dinucleotides, which are abundant in the DNA 

of various prokaryotic species populating the GI tract (Dalpke et al., 2006). To test 

whether physiological ligation of TLR9 influenced LpDC in a manner similar to CpG, 

DNA was extracted from the gut content of caeca (gfDNA) and colons in naïve C57BL/6 

mice and added to LpDC cocultures in Foxp3+ Treg polarizing conditions. In the absence 

of a defined sequence length for gfDNA, a control condition to guarantee cellular uptake 

was also included. In this condition, gfDNA was complexed to the monocationic lipid 

transfection reagent, DOTAP, prior to stimulation (Bucci et al., 1992). Notably, 

cathelicidins, which are a family of cationic antimicrobial peptides secreted by intestinal 

epithelial cells, and innate cells, including neutrophils and macrophages, may serve a 

physiologically analogous role to DOTAP, by virtue of their ability to package DNA 

(Lande et al., 2007), Regardless of whether DOTAP was present, gfDNA consistently 

and significantly reduced the frequency of Foxp3+ Treg recovered from culture, and 

upregulated α4β7 on Foxp3− cells (Figure 22A-B). This effect was abolished when 

purified LpDC from Tlr9−/− mice were used, demonstrating that gfDNA targeted TLR9. 



 79 

 
 

Figure 22. DNA enriched from the gut flora prevents Foxp3+ Treg production in a 
TLR9 dependent manner.  
(A) Naïve CD4CD25–CD44lo T cells isolated from WT or Tlr9–⁄– mice were cultured in 
Treg polarizing conditions with LpDC from WT or Tlr9–⁄– mice, respectively. In some 
culture wells, CpG (10µg/ml), DNA enriched from murine gut flora (gfDNA) or gfDNA 
formulated with the cationic liposome, DOTAP, was added (DO_gfDNA). (A) Foxp3 and 
α4β7 expression was analyzed on day 5. Dot plots are gated on viable CD4+ cells. (B) 
Summary of results from A (normalized to the baseline Treg frequency. Error bars 
represent the s.e.m. of triplicate cultures (, P <0.01; , P <0.001).  
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TLR9	  signaling	  regulates	  Foxp3+	  Treg/TH	  cell	  ratio	  in	  intestinal	  tissues	  
 

The preceding data suggested that gfDNA/TLR9 signaling contributed to T cell 

homeostasis in the GALT. To test this hypothesis, Foxp3+ Treg populations were first 

assessed in various tissues of naïve Tlr9−/− and WT mice. Strikingly, Tlr9−/− mice 

displayed greater percentages and absolute numbers of Foxp3+ Treg cells than their WT 

counterparts throughout the GALT, including the intestinal epithelial lymphocyte (IEL), 

small intestinal Lp, and Peyer’s patch (Pp) compartments (Figure 23A-C). This trend did 

not extend to the mesenteric lymph nodes (mln), nor was it observed outside of the small 

intestinal compartment. To exclude the possibility that these findings arose due to 

distinct commensal populations residing within these animal strains, these differences 

were assayed and reconfirmed in animals that were co-housed for several weeks (data 

not shown). Importantly, the selective expansion of Foxp3+ Treg in the GALT was 

observed in chimeric WT mice reconstituted with Tlr9−/− bone marrow, while it was 

reversed in chimeric Tlr9−/− mice reconstituted with WT bone marrow (Figure 23D). 

These data demonstrated that the hematopoietic compartment controlled Foxp3+ Treg 

homeostasis in the GALT. Further, based on the previous in vitro experiments, it was 

plausible that this likely occurred, at least in part, via constitutive gfDNA/TLR9 

interactions in LpDC.  
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To further probe how constitutive TLR9 signaling shaped the T cell landscape in the GI 

tract, Lp tissue cell suspensions, in which most conventional αβ T cells are of the CD4+ 

lineage, and IEL tissue cell suspensions, in which a majority are of the CD8+ lineage, 

from both WT and Tlr9−/− mice were restimulated with phorbol 12-myristate 13-acetate 

(PMA) and ionomycin, and then analyzed for cytokine production. In Tlr9−/− mice, a 

significant reduction in both the frequency and absolute number of IL-17A and IFN-γ 

producing cells was observed in the Lp compartment, while IL-10 was less affected 

(Figure 24A-B). A similar reduction in the frequency and absolute number of IFN-γ 

producing cells was also observed in the IEL of Tlr9−/− mice (Figure 24A-B). Thus, the 

loss of TLR9 signaling in the GI tract resulted in disequilibrium of T cell subset 

distribution within this tissue, culminating in an expansion of Foxp3+ Treg cells and a 

concomitant reduction in TH cells. 

 

Figure 23. (*) Hematopoietic derived TLR9 signals regulate Foxp3+ Treg 
homeostasis in the gastrointestinal tract during steady-state.  
(A) Comparative assessment of CD4Foxp3 Treg cells in the spleen (Sp), mesenteric 
lymph node (mln), intestinal epithelium lymphocyte (IEL), intestinal lamina propria (Lp) 
and Peyer’s patch (Pp) compartments of age-matched naïve WT and Tlr9–⁄– mice. Cells 
gated on CD4 and TCR-β were analyzed for expression of Foxp3 and CD25 by flow 
cytometry. Numbers in quadrants refer to the percentage of each subset. (B) Summary 
of Treg frequencies in naïve WT (closed circle) and Tlr9–⁄– (open circle) mice. cLp = colon 
lamina propria. Each dot represents the results from one experiment (three mice pooled 
per group). Crossbars depict the mean of three independent experiments. (C) Same as 
B, but a summary of the absolute number of Treg. (D) Frequency of Foxp3 Treg was 
analyzed in various tissues of BM chimeric mice, in which the hematopoietic or the non-
hematopoietic compartment lacked TLR9 expression. CD45.1+ cells were gated on CD4 

and TCR-β, and then analyzed for Foxp3 expression. (, P <0.05; , P <0.01; , P 
<0.001) 
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Figure 24. (*) TLR9 signaling contributes to the basal TH tone of the GI tract.  
(A) Thy 1.2 enriched cells from the Lp and IEL compartments were stimulated with 
PMA+ionomycin, and then stained intracellularly for IL-10, IL-17 and IFN-γ. Cytokine 
percentages in bordered regions are expressed as a percentage of CD4 cells. (B) A 
summary of the absolute numbers of CD4 and/or CD8α T lymphocytes expressing 
IFN-γ and IL-17 in naïve WT (closed circle) and Tlr9−

/
− (open circle) mice. Each dot 

represents a single mouse and each bar delineates the mean. (, P <0.05; , P <0.01; 
, P <0.001). 
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TLR9	  signaling	  is	  requisite	  for	  optimal	  responses	  to	  oral	  infection	  	  
 

The profound influence of constitutive TLR9 signaling on the activation status of 

T cells within the GI tract suggested that gfDNA/TLR9 interactions played a potential role 

in establishing and amplifying protective immunity to pathogenic encounters in the 

GALT. To test this, Tlr9−/− and WT mice were infected with the obligate intracellular 

fungal parasite, Encephalitozoon cuniculi, (E. cuniculi), which naturally infects its host 

through the alimentary tract and belongs to the microsporidia phylum (Didier, 2005).  In 

addition to the oral route, E. cuniculi induces a productive TH-1 response following 

intraperitoneal (IP) challenge (Khan and Moretto, 1999; Moretto et al., 2004). To assess 

whether any systemic priming defects were present in Tlr9−/− mice, animals were first 

inoculated with E. cuniculi IP Measurement of the cardinal TH-1 cytokine, IFN-γ, following 

in vitro antigen recall on day 11 of infection demonstrated that Tlr9−/− mice mounted 

immune responses that were comparable to their WT counterparts (Figure 25A). 

Parasite burdens were also similar between knockout and WT animals (Figure 25B). 

Together, these data indicated that systemic priming did not require TLR9 signaling. 

They further implied that TLR9 recognition of E. cuniculi was dispensable for triggering 

immunity to this parasite.  
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Figure 25. (*) Systemic priming and immunity to E. cuniculi is independent of 
TLR9 signaling.  
WT and Tlr9–⁄– mice were infected with 5×106 freshly isolated E. cuniculi spores i.p. 
(A) On day 11 of infection, pooled, single cell suspensions from various tissues were 
incubated in triplicate with uninfected (DC) or E. cuniculi-infected BMDC (inf. DC). 
ELISA was performed on supernatants 72 hrs later. Histograms depict the mean 
cytokine concentration ± s.d. (B) Measurement of parasite load in the duodenum and 
liver using quantitative real-time pcr. Each dot represents an individual mouse. n = 5 per 
group. Bars indicate the means. 
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In contrast to IP inoculation, oral inoculation with E. cuniculi produced a significantly 

different picture in Tlr9−/− and WT mice. Specifically, antigen specific IFN-γ and IL-17A 

production were severely impaired in the IEL and LP of Tlr9−/− mice, manifesting in 

defective parasite clearance both in the primary (duodenum) and dissemination (liver) 

sites of infection (Figure 26A-B). Consequently, systemic immune impairments, 

determined by splenocyte recall of IFN-γ and IL-17A production, were also observed 

(Figure 26A). There are numerous instances illustrating that inefficient control of 

parasitic infection can be a consequence of improper T cell polarization (Else et al., 

1994; Scott, 1991; Zaph et al., 2007). Nevertheless, although impaired TH-1 and TH-17 

responses were accompanied with higher systemic concentrations of IL-10 and IL-4, 

deviation towards a (TH-2) response was not observed in the GALT of Tlr9−/− mice 

(Figure 26C and data not shown).  
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Figure 26. (*) Immunity to oral infection with E. cuniculi is dependent on TLR9 
signaling.  
WT and Tlr9–⁄– mice were infected by gavage with 5×106 freshly isolated E. cuniculi 
spores. (A) On day 11 of infection, pooled, single cell suspensions from various tissues 
were incubated in triplicate with uninfected (DC) or E. cuniculi-infected BMDC (inf. DC). 
ELISAs for IFN-γ and IL-17 were performed on supernatants 72 hrs later. Histograms 
depict the mean cytokine concentration ± s.d. (B) Measurement of parasite load in the 
duodenum and liver using quantitative real-time pcr. Bars indicate the means. (C) Same 
as in A measuring IL-10 and IL-4. (# = not detected; n.s. = not significant; , P <0.01; 
, P <0.001). Each dot represents an individual mouse. n = 5 per group. 
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The	  expansion	  of	  GALT	  Foxp3+	  Treg	  in	  the	  absence	  of	  TLR9	  signaling	  contributes	  
to	  deficient	  mucosal	  immune	  responses	  	  

 

Increased Foxp3+ Treg cell frequencies within the intestinal tissue persisted in 

orally infected Tlr9−/− mice (Figure 27A). These cells have the capacity to negatively 

modulate the effector stages of infectious immunity through both antigen specific and 

non-specific means (Belkaid and Tarbell, 2009; Oldenhove et al., 2009; Shafiani et al.). 

Thus, it was possible that the enhanced number and frequency of Foxp3+ Treg in the GI 

tract contributed to the impaired TH response that ensued following oral inoculation with 

E. cuniculi. To address this hypothesis, WT and Tlr9−/− animals were treated with an 

antibody against CD25 (clone PC-61), an activation marker mainly restricted to Foxp3+ 

Treg during steady-state conditions (Fontenot et al., 2003; Khattri et al., 2003). This 

antibody was previously shown to reduce the absolute number of Foxp3+ Treg by as 

much as 50% in vivo and inhibit CD25 expression (Couper et al., 2007). Although CD25 

is also a hallmark of activated T cells, the depletion protocol employed for these assays 

consistently enhanced pro-inflammatory TH-1 cytokine production in both WT and Tlr9−/− 

mice, suggesting that bystander loss of TH cells did not pose a significant confounding 

element to consider in the interpretation of infectious outcomes in treated animals 

(Figure 27B). Strikingly, α-CD25 treatment markedly improved parasite clearance in the 

duodenum and liver of infected Tlr9−/− mice, while having no discernible effect in WT 

mice, in which parasite burdens were already relatively low (Figure 27C). While these 

data argue that the elevated proportion of Foxp3+ Treg (in the GI tract of Tlr9−/− mice) 

constituted a barrier to efficacious mucosal immunity upon oral challenge, Lp IFN-γ 

production was still reduced in α-CD25 treated Tlr9−/− animals in comparison to isotype 

Ab treated WT animals post-infection. Based on the low expression of CD25 on Treg in 

the Lp, one explanation was that α-CD25 failed to trigger sufficient depletion of these 
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cells in this tissue. The implication of this type of scenario could be that Foxp3+ Treg 

negatively regulate the amplitude and/or maintenance of TH responses in situ. However, 

a previous report demonstrated that TLR9 signaling in DC made TH resistant to Treg 

regulation (Pasare and Medzhitov, 2003), indicating that gfDNA/TLR9 interactions may 

also promote TH responses independent of Treg.  

 

Figure 27. (*) The expansion of Treg in the GI tract contributes to impaired mucosal 
immunity in the absence of TLR9.  
WT and Tlr9–⁄– mice were infected by gavage with 5×106 freshly isolated E. cuniculi 
spores. (A) On day 11 of infection, the percentage of CD4Foxp3 Treg cells in various 
tissues was assessed via flow cytometry. (B-C) Mice 3 days preceding and on day 0 and 
day 7 of infection were injected i.p. with αCD25 or isotype control Ab (Isot). (B) In vitro 
recall was performed as described in Figure 26A. Histograms depict the mean cytokine 
concentration ± s.d. (C) Measurement of parasite load in the duodenum and liver using 
quantitative real-time pcr. Each dot represents an individual mouse. n = 5 per group. 
(, P <0.05; , P <0.01; , P <0.001). 
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Gut	  flora	  DNA	  from	  conventional	  gut	  flora	  is	  a	  natural	  adjuvant	  of	  intestinal	  
immune	  responses	  
 

Taken together, the preceding in vitro and in vivo data suggested that 

commensal gfDNA engagement of TLR9 provided pro-inflammatory cues during both 

steady-state and pathogenic challenge, thereby promoting mucosal immunity. To test 

this, the impact of other gut floral signals in the GI tract were minimized by placing mice 

on a cocktail of antibiotics (ATB) (Rakoff-Nahoum et al., 2004), while LPS, CpG, or 

gfDNA was provided orally once per week. 6 wk into treatment, mice were orally infected 

with E. cuniculi. While the frequency and absolute number of CD4 and CD8 T cells 

remained comparable between all different treatment groups (data not shown), ATB 

treated mice mounted noticeably impaired IFN-γ and IL-17A responses in both the IEL 

and Lp compartments (Figure 28A). Paralleling these impairments, parasite burden was 

consistently elevated in ATB treated animals (Figure 28B). These data demonstrated 

that the commensal flora were required to promote and sustain mucosal immune 

responses. Providing back LPS (a TLR4 ligand) led to a restoration of the systemic 

immune response to E. cuniculi in ATB treated animals, based on the IFN-γ recall 

response in the spleen. However, this commensal product failed to boost the immune 

response in the small intestinal Lp (Figure 28C). As such, the parasite burden in LPS 

treated mice remained elevated and comparable to mice receiving ATB alone (Figure 

28B). In contrast, the addition of CpG induced a significant rebound in systemic cytokine 

production and propelled mucosal IFN-γ and IL-17A cytokine production to levels 

observed in control (Ctl) mice, which did not receive any ATB (Figure 28A and C).  
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This recovery of the mucosal response in CpG treated animals was also associated with 

a reduced parasite burden (Figure 28B). These data suggest that flora derived TLR9 

signaling is a significant driver of mucosal immunity. Nevertheless, ATB treating Tlr9−/− 

mice also resulted in a reduction in the mucosal immune response, confirming that other 

commensally derived components can amplify mucosal immune responses, either 

normally or through compensatory mechanisms when TLR9 signaling is deprived or 

disrupted (data not shown). Strikingly, gfDNA restored the mucosal response to E. 

cuniculi in WT ATB treated mice, but not in Tlr9−/− mice (Figure 28-B and data not 

shown). Thus, gfDNA functions as a natural TLR9 specific adjuvant of mucosal immune 

responses.  

Figure 28. (*) Gut floral DNA restores immune responses in commensally depleted 
mice orally infected with E. cuniculi.   
3 wk old mice received a commensal depleting antibiotic cocktail (ATB) in their drinking 
water for 6 weeks and, in tandem, received oral weekly treatments of PBS vehicle or 
100 µg of CpG, 500 µg gfDNA, or 25 mg/kg of lipopolysaccharide from Escherichia coli 
(LPS). Control mice received no ATB treatment. Mice were infected orally with 
E. cuniculi after 6 weeks of treatment. (A) On day 11 of infection, pooled IEL and Lp 
suspensions from each group were restimulated as previously described. Supernatants 
were assessed for IFN-γ and IL-17 by ELISA. Histograms depict the mean cytokine 
concentration ± s.d. (B) 8 wk-old mice were treated and infected as described in A. 
Parasite burden was evaluated in the duodenum and liver on day 11 of infection by 
quantitative real-time PCR. Each dot represents one mouse and each bar the mean of 
three or four mice analyzed (C) Cell suspensions from B were in vitro restimulated and 
IFN-γ production was measured by ELISA. n.s. = not significant; , P <0.05; , P <0.01; 
, P <0.001.  
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Discussion	  
 

The tissues of the GI tract are constantly exposed to TLR ligands harbored by 

the commensal gut flora (Pamer, 2007); yet how these interactions factor into the 

regulation and development of immunity in this region have not been investigated in 

depth.  The data revealed in this study, demonstrated that TLR9 stimulation, via gfDNA, 

antagonizes the Treg polarizing capacity of LpDC. As such, in the absence of natural 

TLR9 signals in vivo, the GI tract harbored an expanded frequency of Foxp3+ Treg and a 

concomitant reduction in TH, which in turn subdued the development of an efficient 

protective response upon mucosal challenge. Loss of TLR9 signaling in the 

hematopoietic compartment recapitulated this homeostatic dysregulation.  Strikingly, 

orally introduced gfDNA potently adjuvanted the mucosal response to infection with E. 

cuniculi, when signals from other gut floral compents were diminished. Altogether, these 

data highlight the importance of in situ signaling from gut floral components in the 

generation of protective immune responses at sites of mucosal challenge. 

Stromal	  vs	  hematopoeitic	  TLR9	  engagement	  	  -‐	  controlling	  injury	  vs	  immunity	  
 

In contrast to hematopoeitic cells, which recognize TLR9 intracellularly (Ahmad-

Nejad et al., 2002; Latz et al., 2004), epithelia in the GI tract basally express TLR9 on 

their surface (Ewaschuk et al., 2007; Lee et al., 2006). Although intracellular 

compartmentalization was revealed as a prerequisite for TLR9 activation in antigen 

presenting cells (Ewald et al., 2008), physiologically acidic environments may confer 

functional activity to TLR9 expressed on epithelial surfaces. In this regard, epithelial 

driven TLR9 signals were shown to promote the expression of proteins that drive Paneth 

cell maturation and have the potential to regulate flora composition, thereby linking 

lumenal signals from gfDNA to intestinal homeostasis (Lee et al., 2006). Accordingly, the 
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absence of TLR9 led to exacerbated colitis induced by oral administration of the 

polysaccharride, DSS, which disrupts epithelial integrity and facilitates bacterial 

translocation (Lee et al., 2006; Okayasu et al., 1990). These findings were reminiscent of 

an earlier study, which revealed that commensal sensing by the intestinal epithelial 

compartment was essential for recovery from DSS induced colitis (Rakoff-Nahoum et al., 

2004).  Coupled with a study demonstrating the MyD88 dependece of Paneth cell 

mediated barrier protection (Vaishnava et al., 2008), these findings suggest that 

gfDNA/TLR9 interactions on the intestinal epithelia promote barrier protection and 

facilitate recovery from acute intestinal epithelial injury. 

 

While intestinal epithileal sensing of gfDNA appears to drive mucosal 

homeostasis through barrier repair and maintenance of tissue integrity, this function is 

distinct from gfDNA‘s impact on steady-state T cell equilibrium within the GI tissue. Thus, 

the absence of TLR9 expression in the hematopoeitic compartment was sufficient to 

promote Foxp3+ Treg expansion within the GI tract. Further, although the data were not 

presented here, this absence resulted in an attenuated immune response to oral 

infection with E. Cuniculi (Hall et al., 2008). The question then to arise from these 

findings is which hematopoeitic cells does gfDNA signal through to drive robust mucosal 

immune responses. In this study, LpDC were singled out: first, for their known function in 

initiating primary immune responses (Banchereau and Steinman, 1998); second, for 

their capacity to sense luminal bacterial components (Chieppa et al., 2006). Indeed, 

engaging LpDC with TLR9 ligands, including gfDNA, hindered their capacity to promote 

a Foxp3+ Treg program in Treg polarizing conditions, and instead could promote T cell 

differentiation into TH-17, TH-2 or TH-1 cells. This in vitro finding remarkably paralleled 

the differences in ex vivo activation statuses that was observed between CD4+ T cells 

isolated from the Lp of WT versus Tlr9−/− mice. Consistent with a role for LpDC in the 
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effector status of T cells in the GI tract, temporary ablation of LpDC via oral 

administration of diptheria toxin (DT) to mice expressing a Diptheria toxin receptor 

transgene under the control of the CD11c promotor (CD11c-DTR) was shown to reduce 

constitutive TH-17 production in the Lp (Denning et al., 2007).  

TLR9	  signaling	  on	  other	  immune	  cells	  
 

 Nevertheless, gfDNA signaling may act on other immune cell populations 

besides DC within the GI tract, which in turn could contribute to the promotion and 

maitenance of mucosal immune responses. In this regard, DT administration to CD11c-

DTR mice would likely ablate resident macrophages in addition to DC in the Lp, since 

they also express CD11c. Indeed, based on the current controversy and difficulty 

associated with discerning Lp macrophages from classical LpDC (Varol et al., 2009); 

Schulz, 2009 #1360}, it is possible that the LpDC preperations used in the experiments 

described above contained some proportion of contaminating macrophages. As such, 

TLR9 ligands may also act directly on macrophages, which themselves or indirectly via 

effects on LpDC could provide inflammatory cues to naive T cells in culture or to already 

activated cells in situ. Plasmacytoid DC also reside within the intestinal Lp (Yrlid et al., 

2006a) and their activation in situ can direct the migration and maturation of CD103+ 

LpDC (Yrlid et al., 2006b). Thus, it would be interesting to assess whether gfDNA can 

induce pDC activation, which may facilitate antigen transport into the draining mln. 

Based on their potent capacity to produce type I IFNs upon stimulation, secretion of 

these cytokines upon stimulation in vitro could first be examined to address this 

possibility (Theofilopoulos et al., 2005). 
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 Recent studies have indicated that MyD88 intrinsic signals promote sustained T 

cell responses in various infection models (LaRosa et al., 2008; Rahman et al., 2008). 

Along these lines, TLR9 expression has been reported in naive and activated CD4+ T 

cells (Gelman et al., 2004). Further, TLR9 activation via CpG was shown to directly 

enhance T cell proliferation and Teff survival (Gelman et al., 2006). Based on these 

findings, one could speculate that gfDNA also provides survival/activation cues directly 

to T cells in the GI tract. This possibility could be investigated with the generation of 

50:50 (Tlr9−/−/WT) mixed bone marrow chimeras.   

TLR9	  signaling	  –	  polarization	  versus	  amplification	  	  
 

 The implication that other immune cell populations are directly affected by the 

sensing of gfDNA and that these TLR9 interactions contribute to the efficacy of mucosal 

immune responses raises another important question, at what step of the immune 

response is gfDNA sensing the mucosal response? The evidence that the ability of 

LpDC to polarize a regulatory respnse is abrogated upon TLR9 engagement would 

suggest that gfDNA sensing plays a role in polarization. However, this has not been 

confirmed in vivo, and is difficult to do in an infection for which immunodominant 

peptides are not known, such as E. cuniculi.  

 

Although not described in the data section, the importance of TLR9 stimulation in 

the GI tract was also verified using the mucosal adjuvant, LT(129G) (a non-toxic mutant 

of the E. coli labile toxin) (Chong et al., 1998), which was administered in conjuntion with 

OVA as a model antigen. This vaccination protocol is typically administered several 

times prior to assessment of the immune response; however, if the vaccine were 

introduced into WT or Tlr9−/− mice that were adoptively transferred with CD4+ T cells 
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expressing the OT-II transgene, then a potential contributing role of gfDNA/TLR9 

interactions to Teff polarization could be better investigated. A role for gfDNA/TLR9 

interactions in GALT Teff polarization notwithstanding, the sensing of gfDNA may also 

amplify mucosal immune responses directly in situ. While this possibility could still 

implicate LpDC, gfDNA interactions with resident macrophages, resident plasmacytoid 

DC, TH, as well as Foxp3+ Treg, would need to be considered.  

In	  situ	  regulation	  of	  immune	  responses	  via	  Foxp3+	  Treg	  
 

The selective expansion of Foxp3+ Treg in the GI tract of Tlr9−/− mice strongly 

correlated with the specificity of the immune impairments in response to the mucosal 

route of challenge. Moreover, partial Treg depletion with αCD25 during infection led to a 

resurgence both in mucosal cytokine production and parasite clearance. Together, these 

data argue that the expansion of these cells was complicit in the suboptimal 

development/maitenance of mucosal immune responses in the absence of gfDNA 

sensing. In addition to augmented numbers, there is also recent evidence that the 

absence of TLR9 increases Foxp3+ Treg suppressive function in a cell intrinsic manner. 

This is based on unpublished data from Dr. Nicolas Bouladoux of the lab as well as a 

recent report showing that CpG hindered Treg suppressive capacity in vitro (data not 

shown) (Larosa et al., 2007). As there have been multiple recent demonstrations of the 

ability of Foxp3+ Treg to inhibit a variety of innate processes, including: DC differentiation 

from immediate precursors (Liu et al., 2009), DC migration from tissues (Zhang et al., 

2009a), not to mention inflammatory chemokine production from multiple cell sources, 

such as DC, NK cells and stroma (Lund et al., 2008), the impact of augmented Treg 

proportions in the GI tract of Tlr9−/− mice could be two-fold. 



 98 

gfDNA/TLR9	  intreactions	  and	  T	  cell	  homeostasis	  in	  the	  GI	  milieu	  	  
 

Although their steady-state increase is likely one of the root causes of impaired 

mucosal immunity, the mechanisms that drive Foxp3+ Treg expansion in the absence of 

TLR9 signals within the GI tract are still unclear. Based on the in vitro data presented 

here, one potential explanation is that gfDNA/TLR9 interactions place natural constraints 

on extrathymic GALT Treg generation. Indeed TLR9 engagement of LpDC drove multiple 

proinflammatory signals, including: IL-6, IL-12/23p40, and likely IL-27 (although not 

investigated in these studies), which alone or in concert have been shown to impede the 

development of Foxp3+ Treg in vitro and/or in vivo (Bettelli et al., 2006; Korn et al., 2007) 

(Ahern et al.; Wei et al., 2007). IL-6−/− mice, in particular, display several features that are 

reminiscent of Tlr9−/− mice. First, they lack TH-17 cells in the intestinal Lp during steady-

state (Ivanov et al., 2006). Second, they fail to mount robust immune responses, on 

account of an inability to overcome Treg suppression (Korn et al., 2007; Pasare and 

Medzhitov, 2003). Thus, the effect of IL-6 blockade on LpDC induction of Foxp3+ Treg 

was tested during TLR9 stimulation in vitro. Rather than restoring Foxp3+ cell 

generation, both antibody blockade and coculture with IL-6−/− LpDC resulted in enhanced 

TH-1 and TH-2 cytokine production, while impeding TH-17. These data emphasize that 

TLR9 sensing induces an inflammatory cytokine profile with the potency to induce a 

diversity of Teff programs, which are indeed observed in the GI tracts of WT mice during 

steady-state. While further attempts at innate cytokine inhibition also failed to rescue 

Foxp3+ Treg generation (suggesting that a microarray screen of TLR9 engaged LpDC 

versus an unstimulated control may be useful, to acquire a full sense of the inflammatory 

signature that results), antibodies against IL-4 and IFN-γ in addition to IL-6 led to a 

significant restoration. Both IL-4 and IFN-γ were recently revealed to inhibit Treg 

development in vitro (Wei et al., 2007). Further, IL-4 in conditions containing TGF-β was 
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shown to induce IL-9 secretion by T cells (TH-9) (Dardalhon et al., 2008; Veldhoen et al., 

2008b), a cytokine whose role in intestinal homeostasis is not clear and which was not 

examined in these experiments. The transcription factor, interferon regulatory factor -4 

(IRF-4) is essential for TH-2, TH-17, and TH-9 development (Brustle et al., 2007; Staudt et 

al.). In light of these findings, it would be interesting to assess how steady-state IRF-4 

expression in T cells within the GI tract is affected by gfDNA sensing. 

Controll	  of	  extrathymic	  Foxp3+	  Treg	  generation	  	  
 

If extrathymic GALT Foxp3+ Treg generation is controlled by gfDNA sensing, an 

important consideration is the stage at which this inhibition is occurring. The two 

scenarios that are known to induce Foxp3 in T cells within the GALT are lymphopenia 

and oral exposure to antigen in the absence of pathogenic signals (Coombes et al., 

2007; Lathrop et al., 2008; Sun et al., 2007; Zheng et al.). Mice are obviously in a state 

of lymphopenia immediately after birth and the time after weaning might also represent a 

time of dynamic change within the GI tract upon loss of maternal antibodies. Thus, it 

would be worthwhile to measure the number and frequency of Foxp3+ Treg within the GI 

tract of WT and TLR9−/−  mice as a function of age, which would offer insight into when 

gfDNA sensing limits the de novo generation and/or expansion of these cells. Foxp3+ 

Treg induction in response to exposure to antigen traversing the gut is also likely a 

dynamic process. As such, these cells may turn over very fast and their acquisition of a 

Foxp3 program may at early time points be subject to destabilizing factors, such as 

gfDNA, both at sites of priming and in Lp tissue itself. Therefore, the absense of TLR9 

signals may promote an induced Foxp3+ Treg that is longer lived. An alternative possibility 

with a similar outcome is that in the absence of TLR9 signaling, signaling by other TLRs 

can gain precedence. TLR2 signaling, for example favors Treg cell expansion through 
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both cell intrinsic (Liu et al., 2006; Sutmuller et al., 2006) and cell extrinsic means. The 

latter being regulated via the induction of retinoic acid synthesizing capacity in DC  

(Manicassamy et al., 2009). Accordingly, Foxp3+ Treg cell frequencies are decreased in 

TLR2−/− mice (Liu et al., 2006; Sutmuller et al., 2006). Altogether, these findings  suggest 

that TLR ligands can discretely influece T cell homeostasis in the GI tract, which may 

explain why MyD88−/− and MyD88−/− Trif−/− mice have no apparent gross changes in the 

frequency of Foxp3+ Treg or TH-17 cells in this tissue (Atarashi et al., 2008; Cha et al.; 

Ivanov et al., 2008; Min et al., 2007). 

Not	  all	  TLR	  ligands	  are	  created	  equal	  
 

 Minimization of gut floral signals with broad-spectrum antibiotic treatment 

(ATB) also impaired the mucosal immune response to infection with E. Cuniculi and 

resulted in a concomitant increase in parasite burden. TLR9 but not TLR4 activation was 

sufficient to rescue immune responses in ATB treated animals, illustrating both the 

discrete functions of individual TLR ligands in the promotion and regulation of immunity 

and the potency of TLR9 engagement as an adjuvant. Intriguingly, TLR4 activation with 

LPS, while failing to improve parasite control and immune responses within the GI tract, 

elicited a complete rebound in the systemic cytokine response to oral E cuniculi 

infection. This finding is consistent with recent reports illustrating that peripheral TLR4 

signals, which occur upon floral translocation, can enhance the activation status of T 

cells (Brenchley et al., 2006; Paulos et al., 2007). Despite these findings, however, TLR4 

signals may also operate in other ways, specifically within the GI tract. In this regard, 

exposure of the intestinal epithelia to LPS during birth was found to result in tolerance of 

this tissue to subsequent LPS stimulation (Lotz et al., 2006). More recently, LPS 

engagement of TLR4 was also revealed to temper T cell activation via enhancement of 
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phosphatase activity in a cell intrinsic manner (Gonzalez-Navajas et al.). This may be 

especially relevant in sites where T cell interactions with LPS are likely, such as the 

GALT. 

 

The experiments in this study illustrated that DNA purified from the entire gut 

flora exerted an adjuvant effect on mucosal immune responses; yet it is important to 

bear in mind that gut flora bacteria possess differential capapacities to stimulate TLR9 

(Dalpke et al., 2006). Moreover, some DNA motifs may, in fact, exert inhibitory effects on 

TLR9 activation or actively promote regulatory features, which are still dependent on 

TLR9 (Trieu et al., 2006). As such, experiments are currently underway by other 

members of the laboratory to address whether gfDNA derived from different commensal 

species imparts specific effects on the development, control and maintenance of 

mucosal immune responses and whether these effects can be extrapolated to the types 

DNA motiffs present in these species. 

TLR9	  in	  other	  infections	  
 

In contrast to sterile sites, mucosal sites in the body are in ritual contact with 

commensals and their byproducts. The finding that Tlr9−/− mice exhibited a specific 

mucosal defect in response to infection, in this instance the fungal parasite, E. cuniculi, 

suggested that gfDNA/TLR9 interactions in the GI tract shape mucosal immune 

responses through release of immunoregulatory elements. One in particular that was 

showcased in these findings was immunosuppression via Foxp3+ Treg. Previous 

immunological studies of infections that are initiated at mucosal sites, such as 

Toxoplasma gondii and Herpes simplex virus, have also defined a role for TLR9 in the 

regulation of mucosal inflammation and viremia, respectively (Lund et al., 2006; Minns et 
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al., 2006). Although TLR9 is clearly important in the recognition of these microbes, it is 

also plausible that the absence of gfDNA/TLR9 interactions at these sites of challenge 

both during steady-state and infection could have additional bearing on the phenotype 

observed.  
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CHAPTER	  4:	  Essential	  role	  for	  retinoic	  acid	  in	  the	  promotion	  of	  CD4+	  T	  cell	  
effector	  responses	  via	  retinoic	  acid	  receptor	  alpha	  

	  

Abstract:	  
 

The data presented in Chapter 2 along with numerous recent reports indicate 

that the vitamin A metabolite, retinoic acid (RA), promotes Foxp3+ Treg induction in vitro 

and in vivo. However, incorporation of the data from Chapter 3 into these findings also 

suggested that RA signaling, rather than suppressing the differentiation of Teff cells, 

could also promote their migration into the intestinal mucosa. While an initial 

interpretation of these findings could suggest context dependent roles of RA during 

tolerance and infection, they also could imply that RA possesses a more fundamental 

function in the regulation of T cell activation/differentiation. To begin to address this 

hypothesis, immune responses to the parasite, T. gondii, and the mucosal adjuvant, 

LT(R129G), were examined in mice reared on a vitamin A deficient diet. Unexpectedly, 

these studies led to the following insights: 

 

1. TH-1 and TH-17 immunity were abrogated in the absence of vitamin A 

metabolites. 

2. Retinoic acid rescued TH-1 and TH-17 immune responses in the absence of 

vitamin A. 

3. RA receptor alpha expression was necessary for CD4+ T cell immunity and 

homeostasis. 

4. RA receptor driven signals maintained the ability of T cells to properly 

respond to TCR/CD3 stimulation in a cell intrinsic manner. 
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Rationale:	  
 

 In Chapter 2, LpDC and their migratory counterparts in the mesenteric lymph 

nodes were revealed to be specially equipped with the capacity to induce Foxp3+ Treg 

(Coombes et al., 2007; Sun et al., 2007). This feature was dependent on their ability to 

convey both TGF-β and retinoic acid mediated signals to T cells. At approximately the 

same time that these findings emerged, other groups demonstrated that exogenous RA 

was able to: reduce TH-17 polarization via inhibition of IL-6 and IL-23 receptors  (Elias et 

al., 2008; Mucida et al., 2007; Xiao et al., 2008); facilitate Foxp3 induction in the face of 

high levels of costimulation (Benson et al., 2007), and negatively modulate cytokine 

production by effector/memory T cells during restimulation (Hill et al., 2008). Prior to 

these reports, RA was also shown to promote IgA-secreting plasma B cell differentiation 

(Mora et al., 2006). Altogether, these findings reinforced an emerging perception that RA 

drove anti-inflammatory programs and synchronized with the paradigm of mucosal 

tissues as hypo-responsive environments during steady-state conditions. Nevertheless, 

in the event of pathogenic exposure, overcoming these regulatory hurdles is essential 

and how RA is integrated into this framework is unclear. In Chapter 3, adjuvant 

activated LpDC were revealed to lose their capacity to induce Foxp3+ Treg; however, this 

effect was likely not a consequence of impaired RA signaling, as the RA-inducible 

integrin heterodimer, alpha4beta7 (α4β7) was strongly upregulated on Foxp3– T cells. 

Indeed, α4β7 upregulation is a well-appreciated hallmark of T cells activated in the GALT, 

which in turn drives their migration into the GI tract (Johansson-Lindbom et al., 2003).  

 

Deficiency in vitamin A, which is the precursor of RA, is known to manifest in 

susceptibility to mucosal infections (Sommer, 2008; Underwood, 2004). Although this 

susceptibility, in part, may be driven by impairments in epithelial barrier protection 
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(Biesalski and Nohr, 2004; Stephensen, 2001), to date, the in situ regulation of mucosal 

CD4+ T cell responses via RA and/or other retinoids has not been investigated. Gaining 

an understanding of these pathways will help unravel how vitamin A metabolism 

contributes to host protective immunity. 
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Results:	  

Retinoic	  acid	  mediated	  signaling	  occurs	  during	  systemic	  inflammation	  
 

To address the role of vitamin A metabolism in immunity, the induction of 

mucosal homing markers was evaluated during oral infection with Toxoplasma gondii (T. 

gondii). This parasite induces a strong inflammation and a robust systemic TH-1 

response (Gazzinelli et al., 1992; Suzuki et al., 1988). Mice were inoculated with 10 

cysts of the type II avirulent T. gondii strain, ME-49, and CD4+ T cells were examined 

during the acute stage of infection, at which time they are the predominant responding T 

cell subset. Accordingly, a large proportion of activated cells within the small intestinal 

lamina propria, the draining mesenteric lymph nodes, and the spleen expressed the 

transcription factor, T-bet, which mediates interferon gamma (IFN-γ) production (Figure 

29A). Expression of, α4β7 and CCR9, which are indicative of retinoic acid signaling 

(Iwata et al., 2004; Svensson et al., 2008), were also observed on a proportion of 

activated CD4+ T cells in each of these tissues (Figure 29A and data not shown). 

Notably, expression of these markers was mainly confined to T-bet+ cells (Figure 29A). 

To determine whether α4β7 induction was unique to the oral route of infection with T. 

gondii animals were next inoculated intraperitoneally (IP). Strikingly, a large proportion of 

activated CD4+ T cells expressed α4β7, and, again, most of these coexpressed T-bet 

(Figure 29B).  These results suggested that RA signaling was sustained and occurred 

systemically during inflammatory responses.  

 

An alternate scenario compatible with these findings was that signaling 

molecules, other than RA, contributed to α4β7 expression in response to infection. To 
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address this possibility, vitamin A insufficient (VAI) mice at 10 wks of age were 

inoculated with T. gondii.  
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Figure 29. Vitamin A metabolite dependent signaling is sustained and systemic 
during T. gondii infection  
(A) C57BL/6 mice were infected per-orally with 10 bradyzoite cysts of ME-49 clone C1. 
On day 8 post-infection (p.i.), single cell suspensions prepared from the spleen (Sp), 
mesenteric lymph nodes (mln) and small intestinal lamina propria (Lp), were stained with 
fluorochrome labeled antibodies and assessed for a4b7 and T-bet expression by flow 
cytometry. Dot plots are gated on Foxp3- CD44hi CD62Llo CD4+ T cells and 
representative of 3 mice per group. (B) C57BL/6 mice were infected intraperitoneally 
with 10 bradyzoite cysts of ME-49 clone C1. On day 8 p.i., single cell suspensions 
prepared from the Sp were stained and assessed as described in A  (C) Ctl and VAI 
mice were infected per-orally with T. gondii. On day 8 single cell suspensions were 
stained for α4β7. Bar graphs summarize the average frequency of Foxp3- CD44hi CD4+ T 
cells expressing α4β7, n = 3-4 mice per group. (D) Ctl and VAI mice were infected 
intraperitoneally with T. gondii and assessed as described in part c. n = 6-8 mice.  For C 
and D, error bars illustrate the s.d. Statistical comparisons were performed using the 
unpaired Student’s t test , P < 0.001, ns = not significant.  
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Significantly, 8 days post infection, α4β7 remained virtually absent on activated CD4+ T 

cells in VAI mice infected either by the oral or IP route with T. gondii, strongly suggesting 

that its upregulation was strictly dependent on RA during both steady-state and 

inflammatory conditions (Figure 29C and D). Thus, RA signaling was sustained during 

infection and exerted a systemic influence on CD4+ T cells regardless of the route of 

infection, an indication that vitamin A metabolism may imprint features that exceed 

homing potential during infection.  

Mucosal	  and	  systemic	  CD4+	  T	  cell	  immunity	  is	  impaired	  in	  the	  absence	  of	  
vitamin	  A	  metabolites	  
  

To explore the functional consequence of vitamin A insufficiency during infection, 

the acute-phase TH-1 response in VAI mice was evaluated following oral inoculation with 

T. gondii. To this end, magnetically enriched T cells from mice on day 8 post-infection 

were restimulated with soluble T. gondii antigen (STAg) in the presence of BMDC in 

vitro. 48hrs later, IFN-γ in supernatants was measured. Strikingly, T cells enriched from 

the mln, Lp, as well as the Sp of infected VAI mice produced significantly smaller 

amounts of IFN-γ than their control counterparts upon recall (Figure 30A). The reduction 

in TH-1 responsiveness was reflected in the enhanced parasite burden observed both 

systemically (Sp) and in the Lp of VAI mice (Figure 30B). IP infection with T. gondii 

yielded similar findings, in which, CD4+ T cells removed from VAI animals and 

rechallenged with STAg produced lower levels of IFN-γ on a per cell basis (MFI = 

1800±380 in VAI versus 5300±870 for Ctl, p < 0.003). Enhanced parasite burdens in the 

peritoneal exudates (Pecs) and Sp of these animals were also observed (Figure 30C), 

emphasizing that impaired TH-1 immunity to T. gondii during vitamin A insufficiency is not 

solely a consequence of defective responsiveness in the GALT. These data suggested a 
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direct or indirect role for vitamin A metabolites in the capacity of CD4+ T cells to acquire 

effector function during infection.  

  

 T. gondii infects all nucleated cells and triggers multiple innate pathways that 

synergize to induce a strong adaptive TH-1 response. Therefore, the influence of vitamin 

A metabolism on mucosal immunity was also tested in a non-infectious system with a 

model antigen. To this end, mice were orally vaccinated with a mixture of OVA and the 

mucosal adjuvant, LT (R129G), a non-toxic mutant of the heat-labile enterotoxin of 

Eschericia coli. This regimen previously was demonstrated to induce a TH-1 and robust 

TH-17 response (Hall et al., 2008); the latter distinguished by expression of the 

transcription factor, ROR(γ)t, in T cells (Ivanov et al., 2006). After two rounds of 

vaccination one week apart, abundant IFN-γ and IL-17A were detected in the 

supernatants of in vitro restimulated Lp and Peyer’s patch (Pp) tissues from control 

mice, while less was detected in the mln (Figure 30D). Coincident with IL-17A protein, 

flow cytometric analysis revealed substantial expression of ROR(γ)t in Foxp3– CD4+ T 

cells from the Lp (44.8±6.4%) and Pp (9.3±0.4%) (Figure 30E-F). Yet, GALT cells from 

VAI mice secreted only marginal amounts of IFN-γ and IL-17A.  This reduction in IL-17A 

corresponded with diminished ROR(γ)t expression in both the Lp (13.7±5.9%) and Pp 

(1.7±0.8%). Moreover, the frequency of CD4+ T cells expressing the nuclear proliferation 

antigen, Ki-67 (Gerdes et al., 1983), was significantly reduced, indicating decreased 

activation/proliferation in response to vaccination in VAI mice (Figure 30E-F). 

Collectively, these results suggest that vitamin A is critical for optimal T cell responses.   
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RA	  restores	  CD4+	  T	  cell	  immunity	  in	  the	  absence	  of	  vitamin	  A	  
 

Impaired TH-1 and TH-17 responses in VAI mice could also emerge from a 

developmental defect in these animals, and not reflect a genuine role for vitamin A 

metabolites on TH-1 and TH-17 development (Mora et al., 2008; Ziouzenkova et al., 

2007). Vitamin A metabolism produces several derivatives with signaling capacity in the 

host. RA, in particular, has been shown previously to induce strong effects on a variety 

of immune cell populations in vitro (Geissmann et al., 2003; Mora et al., 2008) and in 

vitamin A-replete settings in vivo (Mucida et al., 2007; Xiao et al., 2008). However, the 

effect of RA on T cell immunity in the absence of other vitamin A metabolites, which may 

exert confounding influences, has never been interrogated. To test if RA could restore 

protective immunity in vivo, VAI mice were prophylactically treated with RA every other 

day. On day 5 of treatment, they were innoculated orally with T. gondii. Administration of 

RA or the vehicle control continued every other day until day 8 of infection, when the 

animals were analyzed. In contrast to vehicle treated animals, T. gondii infected VAI 

Figure 30. TH-1 and TH-17 immune responses are impaired in the absence of 
vitamin A metabolites  
(A-B) Ctl and VAI mice were infected per-orally with T. gondii (A) At day 8 p.i., pooled 
tissue suspensions were enriched for T cells and cultured with irradiated BMDC +/- 
soluble T. gondii antigen (STAg) for 48 hr. IFN-γ was measured in triplicate supernatants 
by ELISA. n = 4-5 mice per group. (B) Parasite burdens in Sp and Lp of individual mice 
from A were determined by plaque assay. Results are expressed as plaque forming 
units (PFU). Each dot represents an individual mouse (C) Ctl and VAI mice were 
infected intraperitoneally with T. gondii. Parasite burden was assessed day 8 p.i. as 
described in B. n = 6-8 mice per group. (D-F) Ctl and VAI mice were immunized orally 
with a mixture of OVA and the mutant E. coli labile toxin, LT(R129G), once per week. On 
day 14, pooled cell suspensions from mln, Pp and Lp were cultured with BMDC infected 
with recombinant vaccinia virus expressing OVA (iDC) for 72 hours. Triplicate 
supernatants were assayed for IFN-γ and IL-17A by ELISA. n = 3-4 mice per group. (E-
F) Lp (E) and Pp (F) suspensions from individual mice were assessed for intracellular 
RORγ(t) and Ki-67 by flow cytometry. Representative dot plots from Lp of WT and VAI 
mice gated on viable Foxp3– CD4+ T cells are shown. Bar graphs summarize the 
frequency of Ki-67+ and RORγ(t)+. Error bars in A and D depict the s.e.m.; error bars in E 
and F depict the s.d. , P < 0.05; , P < 0.01; , P < 0.001.  
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mice that received short-term RA displayed a striking recovery in ex vivo T cell IFN-γ 

responses to STAg, both in the Sp and Lp (Figure 31A). Assessment of intracelular IFN-

γ further revealed that Lp CD4+ T cells responded as potently as their control 

counterparts to antigen restimulation (Figure 31B). Importantly, this rebound culminated 

in functional immunity to toxoplasmosis, enhancing parasite clearance so that parasite 

burdens mirrored those observed in control infected animals (Figure 31C-D). The effect 

of RA was also examined on TH-17 responses via oral vaccination with LT(R129G) and 

OVA. For these experiments, mice were treated with the same drug regimen. To 

accommodate this, the vaccination schedule was performed four days apart, rather than 

one week. Significantly, Lp Foxp3– CD4+  T cells from RA treated animals regained their 

capacity to produce IL-17A, in some instances to a degree that exceeded what was 

observed in control animals (Figure 31E). This capacity was coupled to a rebound in 

RORγ(t) expression and markedly enhanced T cell proliferation, as measured by 

intracellular Ki-67 (Figures 31E-F). The efficacy of short-term treatment with RA, argued 

that rather than a developmental deficit causing impaired CD4+ T cell immunity in VAI 

mice, this metabolite provided essential signals to mediate TH-1 and TH-17 responses.   
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RARα 	  regulates	  CD4+	  T	  cell	  immunity	  and	  homeostasis	  	  
 

As mentioned in Chapter 1, RA signals through several families of nuclear 

hormone receptors. The best characterized are RA receptors (RAR) α, β and γ, which 

transcriptionally regulate gene expression in partnership with retinoid X receptors 

(Chambon, 1996). Previously, TGF-β was shown to induce RARα expression 

(Schambach et al., 2007). Accordingly, it was also shown in Chapter 2 that this receptor 

was required for RA to enhance Foxp3+ Treg differentiation in vitro (Hill et al., 2008; 

Nolting et al., 2009). Using real time quantitative PCR, naïve CD4+ T cells were found to 

readily express mRNA for RARα. RARγ was also detected. Similar to observations in 

activated cells, RARβ was not detectable (#) (Figure 32A) (Elias et al., 2008). To 

deduce whether RARα played a role in RA directed immunity, RARα deficient (Rara−/−) 

mice were orally vaccinated with LT (R129G) and OVA. Unlike VAI mice, which after 16 

weeks begin to succumb to a wasting disease, these animals display no overt 

Figure 31. Retinoic acid is required for CD4+ T cell immunity  
(A-D) Ctl and VAI mice treated with RA or vehicle were infected orally with T. gondii. n = 
3 mice per group. (A) At day 8 p.i., pooled cell suspensions from Sp or Lp were enriched 
for T cells and cultured with irradiated BMDC +/- STAg for 48 hr. Bar graphs present the 
average amount of IFN-γ in duplicate or triplicate supernatants. (B) Lp samples treated 
as described in A were incubated for 14 hrs with STAg, and analyzed for intracellular 
IFN-γ via flow cytometry. Stacked histograms are gated on viable, Foxp3– CD4+ T cells. 
(C) Parasite burden in Sp and Lp of individual mice was measured by PFU. (D) 
Visualization of parasite localization in duodenal-jejunal sections of individual mice on 
day 9 p.i. (E-F) Ctl and VAI mice treated with RA or vehicle were immunized orally with a 
mixture of OVA and LT(R129G) on day 0 and 4. n = 3 mice per group. (E) On day 7, 
suspensions pooled from Lp were enriched for T cells and cultured with SpDC +/– OVA 
for 14 hr and examined for intracellular IL-17A and IFN-γ. Contour plots are gated on 
viable, Foxp3– CD4+ T cells. (F) Lp cells from individual mice were analyzed for 
intracellular RORγ(t) and Ki-67 by flow cytometry. Bar graphs depict Ki-67 and RORγ(t) 
as a frequency of Foxp3– CD4+ T cells. (A-F), RA treated groups received 250mg RA 
intraperitoneally 5 days prior to infection or vaccine and every other day thence until 
takedown. Error bars in A depict the s.e.m.; Error bars in C and F depict the s.d. , P < 
0.05; , P < 0.01; , P < 0.001; ns = not significant.  
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impairments as adults (Lufkin et al., 1993). Notably, this vaccine regimen was unable to 

induce an antigen specific TH-17 response in mice on this mixed 129 background (data 

not shown). Nevertheless, relative to WT littermates, CD4+ T cells from Rara−/− mice 

expressed attenuated levels of the TH-1 driving transcription factor, T-bet, after 

vaccination and secreted virtually no IFN-γ upon antigen recall (data not shown and 

Figure 32B), Thus, abrogation of Rara impaired CD4+ T cell immunity.  

 

In Chapter 2, disruption of RA/RAR signaling, either by antagonism in vitro or by 

loss of RA in vivo was shown to inhibit peripheral Foxp3+ Treg generation. Other 

laboratories corroborated in vitro inhibition of Foxp3+ Treg generation using RAR 

antagonists, as well (Coombes et al., 2007; Mucida et al., 2007). Despite the inability to 

generate GALT Foxp3+ Treg upon oral feeding (Figure 14), a paradoxical increase in the 

frequency of Foxp3+ Treg was observed within the Lp of VAI mice (Figure 32C). As noted 

previously, a parallel increase was also observed in the frequency of Lp Foxp3+ Treg in 

Rara−/− mice (Hill et al., 2008). However, in both VAI and Rara−/− animals, thymic 

production of Foxp3+ Treg was unperturbed (Figure 15 and data not shown).  Thus, 

upon loss of RA or RARα mediated signaling, impaired GALT Foxp3+ Treg generation 

was coupled with an aberrant increase in the frequency of thymically derived Foxp3+ Treg 

in the Lp. Based on their potential to raise the threshold of immune activation, which was 

demonstrated in Chapter 3 (Figure 27), the relative increase in thymically derived 

Foxp3+ Treg in this region was considered a potential cause of impaired CD4+ T cell 

responses. In order to test this, VAI DEREG mice were generated (Lahl et al., 2007), in 

which Foxp3+ Treg could be selectively depleted upon injection of diphtheria toxin (DT). 

Oral vaccination in conjunction with DT treatment readily depleted Foxp3+ Treg and 

restored Foxp3- CD4+ T cell proliferation in the Lp (Figure 32D). However, TH-1 and TH-

17 cells remained undetectable in VAI mice after this treatment (Figure 32E).  
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Thus, the enhanced frequency of Foxp3+ Treg in the Lp was not a primary cause of 

impaired mucosal immune responses upon loss of vitamin A dependent signaling.  

 

The increase in the frequency of Lp Foxp3+ Treg revealed that GALT T cell 

homeostasis was perturbed in both Rara−/− and VAI mice. Quantification of CD4+T cell 

subsets indicated that in both these animals, the increase in Lp Foxp3+ Treg frequency 

was due to a 2 to 4 fold selective reduction in the number of Foxp3- CD44hi CD4+ T cells 

within the Lp (Figure 32F). Importantly, treating VAI mice with RA during T. gondii 

infection and vaccination restored GALT T cell equilibrium in addition to TH responses 

(Figure 32G). These findings demonstrated that deficiency in RARα alone could 

Figure 32. The RA/RARα  signaling axis regulates CD4+ T cell immunity and 
homeostasis. 
(A) mRNA from sort-purified naïve CD4+ T cells (Foxp3– CD25– CD44lo) was assessed 
for RARs: α, β, and γ via quantitative RT-PCR and normalized to the house-keeping 
gene, hypoxanthine phosphoribosyltransferase. # = not detected. (B) Rara−/− and 
littermate control WT mice were immunized orally with a mixture of OVA and the mutant 
E. coli labile toxin, LT(R129G), once per week. On day 21, suspensions pooled from Sp 
were enriched for T cells and cultured with BMDC infected with recombinant vaccinia 
virus expressing OVA (iDC) for 72 hours. IFN-γ was quantified in triplicate supernatants. 
Results are representative of 2 independent experiments. (C) Lp cell suspensions from 
VAI, Rara−/− and their respective control counterparts were assessed for Foxp3+ Treg via 
flow cytometry. Results are expressed as a proportion of viable TCRβ+ CD4+ T cells. (D-
E) Ctl, VAI and VAI DEREG mice immunized orally with a mixture of OVA and 
LT(R129G) on days 0 and 4 were treated with 1mg of diphtheria toxin72 and 24 hrs prior 
to vaccination and every subsequent 48 hrs through termination of experiment. (D) On 
day 7, suspensions from individual mice were assessed for intracellular Foxp3 and Ki-67 
by flow cytometry. Data are gated on CD4+ T cells. Each dot represents an individual 
mouse. (E) Suspensions pooled from the Lp were enriched for T cells and cultured with 
purified SpDC +/– OVA for 14 hr, then assessed for intracellular IL-17A and IFN-γ via 
flow cytometry. Contour plots are gated on viable Foxp3– CD4+ T cells. n = 3-4 mice per 
group (F) Summary of the absolute number of Foxp3+ and Foxp3– CD4+ T cells in the Lp 
of mice. (G) Vehicle or RA treated mice were orally infected with T. gondii or vaccinated 
as described in Figure 3. A summary of the frequency of Lp Foxp3+ Treg ± s.d. as a 
proportion of viable CD4+ T cells is shown. n = 3 mice per group. Data are representative 
of 2-3 experiments. Error bars in A and B depict the s.e.m. , P < 0.01; , P < 0.001; 
ns = not significant.  
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recapitulate the effects of vitamin A insufficiency on T cell homeostasis. Further, they 

identified a crucial contribution of RA/RARα signaling to vitamin A dependent CD4+ T cell 

homeostasis and protective immunity.  

RARα 	  regulates	  T	  cell	  activation	  	  
 

Although RA mediated enhancement of protective immunity could involve 

multiple cellular targets, expression of RARα in naïve CD4+ T cells, combined with 

impaired T helper immunity in Rara−/− mice, suggested a potential cell intrinsic 

requirement for this receptor in T cell responses. To address this, magnetically isolated 

naïve WT or Rara−/− CD4+ CD62Lhi T cells were stimulated in an APC-free system under 

TH-1 and TH-17 polarizing conditions, in vitro. After 48hrs in culture, relative to WT T 

cells, significant reductions of IFN-γ and IL-17A were detected in supernatants from TH-1 

and TH-17 polarized Rara−/− T cells (Figure 33A). However, these cultures contained 

significantly fewer cells than WT cultures, indicating that differences in cytokine levels 

were potentially secondary to impaired cell proliferation. Confirming this hypothesis, 

intracellular cytokine staining revealed that surviving Rara−/− T cells were as capable as 

WT T cells to produce cytokine (data not shown). Indeed, T cells lacking RARα failed to 

proliferate as efficiently as their WT counterparts upon polyclonal T cell receptor (TCR) 

activation with anti-CD3. The lack of proliferation persisted in the presence of co-

stimulation and upon exogenous provision of IL-2 (Figure 33B), suggesting that the loss 

of RARα signaling may cause a fundamental activation and/or survival defect. A 

potential defect in activation was explored first. After 16 hrs of stimulation, there was less 

upregulation of the activation markers: CD69, CD25 and the iron transferrin receptor, 

CD71, on Rara−/− T cells (Figure 33C). Expression of CD71 was recently shown to 

depend on activation of the mammalian target of rapamycin kinase (mTOR) (Zheng et 
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al., 2007), which regulates cell growth, proliferation, survival and differentiation pathways 

via two distinct complexes, mTORC1 and mTORC2 (Guertin et al., 2006; Loewith et al., 

2002; Wullschleger et al., 2006); (Delgoffe et al., 2009; Lee et al.). mTORC1 activity 

regulates protein translation via activation of the ribosomal S6 kinase (S6K1) (Holz et al., 

2005), while mTORC2 activity regulates cell growth, proliferation and survival via 

activation of AKT (kinase mediated phosphorylation of serine 473) and additional 

pathways. In accord with a reduction in CD71, phosphorylation of the S6K1 target, 40S 

ribosomal protein S6, (pS6) was decreased by as much as 50% in Rara–⁄– T cells relative 

to WT T cells, indicating a reduction in mTORC1 activity (Figure 33D). Suggesting a 

global reduction in mTOR activity, short stimulation with plate-bound anti-CD3 and anti-

CD3 + anti-CD28 resulted in less efficient Akt phosphorylation at serine position 473, in 

Rara–⁄– T cells (Figure 33E).   
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Figure 33. Role of RARα  signaling for T cell activation  
(A) CD4+ CD62Lhi T cells purified from Sp and lymph nodes of Rar−/− and 
littermate/WT mice were activated with plate-bound α-CD3 + soluble α-CD28, in TH-1 
or TH-17 polarizing conditions for 48 hrs. IFN-γ and IL-17A ± s.e.m. in culture 
supernatants were measured by ELISA. ***, P < 0.001 (B) CD4+ T cells were plated 
for 48 hrs in the following conditions: I. unstimulated II. α-CD3 III. α-CD3 + α-CD28 
IV. α-CD3 + α-CD28 + IL-2. After 48 hrs, cells were rested overnight in IL-2 and 
assayed for CFSE intensity by flow cytometric analysis. Histograms are gated on 
viable CD4+ T cells. (C) CD4+ CD62Lhi T cells were isolated and activated with α-CD3 
+ α-CD28 + IL-2 for 16 hrs, then assessed for the activation markers: CD69, CD25, 
and CD71. (D) Naïve T cells were activated as described in C and stained for pS6. 
Roman numerals indicate same conditions used in B. (E) CD4+ T cells (5x106) were 
stimulated with plate-bound α-CD3 (2µg/ml) and/or α-CD28 (10µg/ml) for the 
indicated times and then lysed. Total cell lysates were immunoblotted for 
phosphorylated (Ser473) and total Akt. 
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Basal	  RARα 	  activity	  regulates	  responsiveness	  to	  signaling	  via	  TCR/CD3	  complex	  	  
 

TCR engagement results in the orchestration of signaling pathways, which 

promote naïve T cell transition into effector T cells. The observed decrease in activation 

markers at 16hrs suggested that an upstream defect might impair signal transduction 

pathways in Rara−/− T cells. Ca2+ mobilization is a critical biochemical mediator of early T 

cell activation events, which is initiated upon stimulation through the T cell receptor 

(TCR)/CD3 complex. To determine whether RARα signaling was involved in the 

regulation of these events, the rate and magnitude of cytoplasmic Ca2+ flux was 

assayed. Strikingly, upon anti-CD3 crosslinking, Ca2+ mobilization was dramatically 

reduced in Rara–⁄– CD4+ T cells relative to WT counterparts (Figure 34A). As RA and its 

metabolic precursors are constitutively present in serum (Kane et al., 2008a; Kane et al., 

2008b), we could not exclude the possibility that that deficiency in Rara may result in a 

long-lasting metabolic defect that may also impair T cell activation. As such, we also 

incubated WT cells with the pan-RAR antagonist, LE540, prior to T cell activation. 

Treatment with this antagonist recapitulated the Rara–⁄– phenotype, manifesting in 

impaired Ca2+ mobilization upon anti-CD3 crosslinking (Figure 34B). Supporting the idea 

that RARα exerts a function downstream of the TCR/CD3 complex, Ca2+ mobilization 

was unaffected in LE540 treated cells stimulated with the Ca2+ ionophore, ionomycin (Liu 

Table 1. Impaired proliferation of Rara–⁄– T cells upon activation 
The percent of cells that underwent proliferation and calculated  
proliferation index are indicated. 
 

% (Cell 
divided) WT Rara-/- 

Prolif 
Index WT Rara-/- 

II 51 8 II 2.2 1.5 
III 74.8 15.8 III 3.4 2.1 
IV 76.4 15.4 IV 3.5 2.2 
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and Hermann, 1978). These findings imply that transient blockade of RARα signaling is 

sufficient to impede signal transduction events upon TCR recognition. Consequently, 

RARα is a crucial regulator of T cell responses.  
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Figure 34. Loss of basal RARa signaling impairs responsiveness to TCR/CD3 
engagement  
(A) Analysis of Ca2+ fluxes in Rara–⁄– (grey line), and WT mice (black line). Cells are 
gated on total CD4+ T cells. (B) Vehicle treated (black line) versus LE540 (grey line, 
2.5µM) treated cells. Black-tipped arrow denotes the addition of biotin α-CD3 
(10µg/ml). White-tipped arrow denotes the addition of streptavidin (20µg/ml). White 
arrowhead denotes addition of ionomycin. Cells are gated on total CD4+ T cells. 
Histograms depict the median ratio of DAPI-A/Indo-1-A of Ca2+ fluxing cells as a 
function of time (sec = seconds).  
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Discussion:	  
 

Although vitamin A insufficiency has long been linked to impaired immunity to 

pathogens, the role of vitamin A metabolism in the regulation of CD4+ T cell responses 

remains poorly understood. The experiments detailed herein indicate that the retinoic 

acid/RARα signaling axis is essential for adaptive CD4+ T cell immunity. Specifically, 

mucosal TH-1 and TH-17 responses to oral infection and vaccination were compromised 

upon loss of vitamin A. These impairments were unlikely to be manifestations of a 

developmental defect propagated upon loss of vitamin A, as RA rapidly restored 

mucosal TH-1 and TH-17 responses. This finding, in particular, suggested that this 

metabolite is the cardinal mediator of vitamin A dependent immunity in vivo. Strikingly, 

genetic ablation of Rara was sufficient to recapitulate the phenotype of VAI mice, both at 

steady-state and during infection. Furthermore, T cells lacking RARα or subjected to RA 

receptor antagonism display early activation defects and proliferate less efficiently in 

response to T cell stimulation.  Thus, the RA/RARα axis controls the fate of adaptive 

immunity, at least in part, via cell autonomous effects on CD4+ T cells and reveals one 

potential explanation for the broad control of this pathway over various T cell fates.  

RA	  does	  not	  impair	  adaptive	  TH-‐1	  responses	  	  
  

RA has been proposed to foster the reciprocal development of Foxp3+ Treg and 

TH-17 cells (Mucida et al., 2007); however, the findings described here suggest that on 

some fundamental level RA is a physiological mediator of TH-17 responses, as well as 

TH-1 responses. Importantly, the majority of CD4+ T cells that displayed a RA signature 

(based on α4β7), co-expressed T-bet, the transcription factor required for TH-1 

commitment (Szabo et al., 2000). Further, in vivo add-back experiments demonstrated 
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that RA was capable of restoring TH-1 responses in VAI mice. These data are somewhat 

in conflict with previous reports that have suggested that RA is a negative regulator of 

TH-1 inflammation (Cui et al., 2000). For instance, VAI mice produced abnormally high 

levels of IFN-γ during infection with the nematode, Trichinella Spiralis and failed to elicit 

a proper and robust TH-2 response (Carman et al., 1992). In this system, RA was shown 

to decrease IFN-γ production when added to in vitro restimulated cell suspensions and 

was, hence, as a TH-1 suppressor (Cantorna et al., 1994). However, this type of “add-

back” experiment is difficult to interpret physiologically, especially when considering that 

the cells treated in culture were likely of a heterogeneous activation status. In this 

regard, RA was shown to be able to inhibit effector/memory T cell cytokine production 

(Hill et al., 2008). Integrating these data into a working model suggests that RA signaling 

is potentially biphasic - driving T cell activation/differentiation during the early stages of 

an immune response, but regulating the amplitude at later stages. In terms of tissue 

immunity, this could be a particularly effective strategy to minimize tissue damage. 

RA	  may	  potentiate	  TH-‐17	  through	  a	  multitude	  of	  effects	  in	  the	  intestinal	  mucosa	  	  
 

TH-17 cells are elicited via the actions of multiple cytokines, including TGF-b, and 

any combination of IL-6, IL-21, IL-23 and/or IL-1 (Korn et al., 2009). The data described 

here demonstrate that diminished vitamin A prevented the acquisition of a robust TH-17 

response in vivo. The ability of RA to restore TH-17 responses in VAI mice was also 

unexpected in light of recent studies that have reported negative effects of RA on IL-17 

production in vitro (Elias et al., 2008; Mucida et al., 2007) and in certain animal models of 

autoimmune disease (Xiao et al., 2008). Nevertheless, in systems that have scrutinized 

the effects of RA at low doses (Wang et al.) and in conjunction with microbial stimuli, 

such as TLR5 ligands (Uematsu et al., 2008), TH-17 generation was shown to be 
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unaffected or enhanced, respectively. Thus, in physiological settings and microbial rich 

environments, RA may favor the generation of TH-17 cells. Compatible with this idea, two 

recent studies revealed that TH-17 cells were virtually ablated in the Pp and Lp of VAI 

mice during steady-state (Cha et al.; Wang et al.). In one of these studies, the authors 

attributed this result to impeded migration of TH-17 cells into the gut; however, deficiency 

did not result in their increase elsewhere(Wang et al.). Therefore, at the minimum, the 

intestinal mucosal environment is requisite for promoting TH-17 development and/or 

maintenance. Moreover, the other study, which observed TH-17 depletion, detected this 

defect while the mice were young and TH homing capacity to mucosal sites would have 

been intact (Cha et al.). Strikingly, this study also reported large shifts in the commensal 

microbial phyla that were present within the intestinal ileum when mice were reared on a 

vitamin A deficient diet. Not only was the total amount of bacteria decreased in these 

animals, but SFB, which was present in the control diet fed mice, was also completely 

missing. This finding indicates that RA may be able to influence both the density and the 

composition of the commensal microbiota, which when considered alongside the 

findings described in Chapter 3, could also explain, in part, the attenuation of TH 

responses in VAI mice. Supposing that the influence of RA and TLR ligands on follicular 

DC can extend to LpDC, another possibility is that RA may foster TH-17 development via 

promotion of TGF-β production (Suzuki et al.). Importantly, these potential modes of TH-

17 generation are consistent with the proposed biphasic model of RA on T cell 

activation, where RA could provide a source of active TGF-β in situ. 

Potential	  roles	  of	  RA/RARα 	  in	  the	  regulation	  of	  T	  cell	  activation	  	  
 

Rara−/− mice complemented VAI mice on multiple levels. First, the number of Lp 

effector T cells was reduced in both animals compared to their control counterparts (~3 
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fold for VAI; ~2 fold for Rara−/−). These findings suggest that RARα is critical for 

upregulation of homing receptors, which fits with the data presented in Figure 11 of 

Chapter 2. In that experiment, Rara−/− T cells failed to upregulate α4β7, when cultured in 

the presence of RA, albeit in Foxp3+ Treg polarizing conditions. Remarkably, transient 

provision of RA restored both T cell equilibrium and the CD4+ T cell response within the 

Lp of VAI mice. Since RA restored both of these parameters, it is difficult to comment on 

the relative contribution of homing versus effects on T cell activation to the restoration of 

immunity in this tissue. However, suggesting that RA/RARα signals impart more than 

merely homing features to T cells, systemically infecting VAI mice with T. gondii still 

resulted in a markedly impaired TH-1 response. This outcome could be the product of 

both direct and indirect actions of RA/RARα signaling on T lymphocytes. 

 

Nevertheless, indicative that this pathway can function directly through T cells, 

RARα was observed to mediate signal transduction events downstream of TCR 

recognition, which governed T cell activation. In the absence of RARα CD4+ T cells 

failed to respond efficiently to T cell stimulation and growth factors. While this deficiency 

could potentially reflect a T cell developmental defect in Rara−/− mice, retinoic acid 

receptor antagonism of WT cells also impaired Ca2+ mobilization upon TCR activation, 

which was similarly observed in RARα deficient T cells. Prolonged Ca2+ mobilization 

induces the dephosphorylation and subsequent translocation of a series of transcription 

factors collectively referred to as the nuclear factor of activated T cells (NFAT), into the 

nucleus (Winslow et al., 2003). Transcriptional events mediated by NFAT result in a host 

of genetic changes, culminating in cell growth, proliferation and effector function (Feske 

et al., 2001). Thus, one possibility is that loss or antagonism of RARα results in delayed 

translocation of NFAT.  
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Recent findings indicate a role for nutrient metabolism in T cell activation. For 

instance, vitamin D/vitamin D receptor (VDR) signaling was shown to promote the 

proliferation of human T cells in response to TCR stimulation via the induction of 

PLCγ (von Essen et al.). The DNA binding capacity of VDR presumably mediates this 

induction via transcription. RARα is also recognized to regulate gene expression in the 

same fashion (Chambon, 1996). As RA, as well as other retinoids, are present in the 

serum and tissues of mice (Kane et al., 2008a; Kane et al., 2008b), it is intriguing to 

speculate that these compounds exert constitutive effects on the phosphorylation status, 

localization and/or conformation of RARα in T cells, which may in turn regulate this 

protein’s function. Short-term incubation (< 1 hr) with a pan-RAR antagonist impaired T 

cell Ca2+ mobilization in a manner similar to that observed in the absence of RARα. One 

explanation for this finding is that nuclear RARα regulates the expression or kinase 

activity of a mediator of T cell activation through its function as a transcription factor. 

Another possibility is that extra-nuclear RARα molecules facilitate TCR dependent signal 

transduction. Indeed, unconventional roles for RARα in mitogen-activated protein kinase 

as well as PI3K regulation have been reported in non-hematopoietic cells (Rochette-Egly 

and Germain, 2009). In line with these activities, RARα was shown to localize to the 

plasma membrane of a neuroblastoma cell line in an RA dependent manner (Masia et 

al., 2007).  

 

It is also worth noting that RARα expression is not necessarily restricted to 

expression in T cells and may also affect the function of APC, including DC. In this vein, 

RARα ligands were shown to synergize with inflammatory mediators and enhance the 

activation of human Langerhans cell-type dendritic cells (Geissmann et al., 2003). 
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Therefore, it is possible that altered APC function also contributes to impaired adaptive 

CD4+ T cell responses in VAI and Rara−/− mice. 

  

In summary, the GI tract must be able to tolerate constant exposure to food 

antigen and commensals, while maintaining the capacity to rapidly respond to 

encounters with pathogen. These conflicting pressures confront the host immune system 

defending the GI tract with a unique challenge. One would predict that the most judicious 

strategy to respond to this spectrum of recurring challenges would involve a conserved 

pathway that can readily adjust to environmental cues. Here we identify the RA/RARα 

signaling pathway as fitting this mode of host control, promoting Foxp3+ Treg generation 

and likely tolerance during steady-state conditions, while adaptive T cell responses in 

the face of pathogen. As such, we propose that RA regulates adaptive immunity in a 

manner that is symmetrical to TGF-β, where accompanying signals dictate whether a 

response ultimately becomes regulatory in nature or inflammatory. An important 

consideration is that adaptive immune responses often involve multiple waves of antigen 

presenting cell recruitment. Based on the systemic RA mediated signals that we observe 

during infection, it will be interesting to examine how newly recruited APC contribute to 

the RA/RARα signaling axis during inflammation. Finally, the requirement of RARα for T 

cell activation suggests that this pathway may have evolved early with the development 

of adaptive CD4+ T cell responses to coordinate host protection. 
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CHAPTER	  5:	  Conclusion	  
 

Vitamin	  A	  metabolism	  drives	  Foxp3+	  Treg	  generation	  in	  vitro	  and	  in	  response	  to	  
oral	  antigen,	  in	  vivo	  
 

The ability of the GI tract to provide a nutrient source to the body is dependent on 

maintaining homeostasis in the face of constant exposure to the external environment 

and the intestinal microbiota. To adapt to the constant level of stimulation in this 

environment, the intestinal immune system has evolved a multitude of regulatory 

strategies. In Chapter 2, one of these regulatory strategies, the local generation of 

Foxp3+ Treg, was revealed to depend on a specialized population of migratory GALT 

dendritic cells, which was able to synthesize retinoic acid from vitamin A derivatives. RA 

receptor antagonism was shown to hinder LpDC-induced Foxp3+ Treg generation, while 

RA was shown to enhance SpDC-induced Foxp3+ Treg generation, thus, highlighting the 

potential importance of this metabolite in GALT Foxp3+ Treg development (Sun et al., 

2007). Reinforcing this idea, the induction of Foxp3+ Treg in the GALT was abrogated in 

mice, which lacked vitamin A and its associated metabolites (VAI mice). Studies on VAI 

mice further revealed that vitamin A was required for LpDC to retain the capacity to 

synthesize RA. This finding indicates the intestinal immune system has adapted to take 

advantage of the abundant intake and remarkable storage capacity of vitamin A. Indeed, 

RA is also an important mediator of IgA+ class switching in B cells (Mora et al., 2006; 

Suzuki et al.), and the upregulation of intestinal-homing surface markers on lymphocytes 

(Iwata et al., 2004). 

 

At the time that the findings in Chapter 2 were published (Sun et al., 2007), 

several other groups reported similar data with mesenteric lymph node DC, particularly 
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the CD103+ subset, which derived from the intestinal lamina propria (Coombes et al., 

2007; Mucida et al., 2007). A host of other groups also reported that RA could enhance 

Foxp3+ Treg generation in vitro under a variety of circumstances, including: during high 

costimulatory activity, in the presence of TH cytokines, and in otherwise non inhibitory 

conditions (Benson et al., 2007; Elias et al., 2008; Hill et al., 2008; Nolting et al., 2009). 

Despite several demonstrations that RARα was required for RA to be able to enhance 

Foxp3+ Treg induction, the molecular mechanism by which RA/RARα signaling stimulates 

Foxp3 activity remains unclear (Hill et al., 2008; Nolting et al., 2009). One interesting 

conjecture is that RA mediates these effects through the inhibition of the transcriptional 

complex, activation protein – 1 (AP-1), in T cells (von Boehmer, 2007). Rao and 

colleagues recently demonstrated that NFAT partnering to Foxp3 rather than AP-1 

favors the development of Foxp3+ Treg in lieu of effector T cells (Wu et al., 2006). 

Therefore, inhibition of AP-1 may promote Foxp3+ Treg generation. Indeed RA/RARα has 

been shown to inhibit several aspects of the AP-1 pathway, including: upstream 

activation of JNK (Lee et al., 1999; Xu et al., 2002), subunit expression (Fisher et al., 

1998; Talmage and Lackey, 1992), and DNA binding (Schule et al., 1991).  

TLR9	  /	  Commensal	  microbial	  DNA	  interactions	  are	  requisite	  for	  mucosal	  T	  cell	  
homeostasis	  and	  immunity	  

 

While GALT mediated Foxp3+ Treg induction may represent a default pathway to 

promote tolerance to food antigen and commensals, data presented in Chapter 3 

suggested that this process is tightly controlled by components of the commensal 

microbiota. Specifically, engagement of TLR9 by microbiota derived DNA strongly 

inhibited the capacity of LpDC to promote the generation of Foxp3+ Treg and instead 

drove the formation of TH cells, including TH-17, TH-1 and TH-2. Complementing this 

finding, Tlr9–⁄– mice were found to have an increased ratio of Foxp3+ Treg / TH within 
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intestinal effector sites. Although this shift had no bearing when Tlr9–⁄– mice were 

infected systemically with E. cuniculi, the adaptive immune response in these animals 

was dramatically impaired upon infection through the oral route. Together, these findings 

suggest that commensal DNA sensing is a critical mediator of adaptive immune 

responses to pathogens that gain access to the host through the gastrointestinal tract. 

Previously, Nod2 was shown to affect immune responses to bacterial infection in a 

similar manner, i.e. Nod2–⁄– mice were susceptible specifically to the oral route of 

challenge (Kobayashi et al., 2005). However, the data described in Chapter 3 also 

illustrate that perturbation of the Foxp3+ Treg / TH ratio can markedly influence adaptive 

immune responses at mucosal sites of challenge. This finding may have significant 

bearing on oral vaccination strategies and also provides a framework for thinking about 

how the composition of the microbiota could influence the ability of the host to respond 

to intestinal challenge. In particular, more comprehensive analyses of the commensal 

microbiota may facilitate the identification of immuno-stimulatory/regulatory DNA motifs 

that can be utilized in oral vaccine design.  

 

Around the time that the TLR9 findings were published (Hall et al., 2008), Littman 

and colleagues demonstrated that TH-17 cells were strongly diminished in the absence 

of the commensal microbiota (Ivanov et al., 2008). Another study showed that TH-1 cells 

were also strongly diminished in germ-free conditions (Gaboriau-Routhiau et al., 2009). 

The fact that TH-1 and TH-17 cells are not altogether ablated in these conditions may be 

due to residual TLR ligands present in the diet fed to these animals (Hill et al.). 

Surprisingly, Littman and colleagues also noted in their study that the frequency of TH-17 

cells was unaffected in mice lacking both MyD88 and TRIF. However, Chapter 3 

showed that both the frequency and absolute number of TH-1 and TH-17 cells were 

decreased in mice deficient in Tlr9, which is known to signal through MyD88 (Hemmi et 
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al., 2000). One possibility is that discrete microbial components, via signaling through 

distinct canonical pattern recognition receptors (TLR, Nod, and C type lectin) 

differentially contribute to the induction, proliferation and/or maintenance of TH-1, TH-17 

and Foxp3+ Treg cells. It is also possible that combinatorial signals through these 

receptors influence the composition of these cells in intestinal effector sites.   

 

In regard to toll like receptor signaling, microbial sensing and the type of 

response that it evokes are dependent not only on the nature of the microbe, but also on 

the cellular compartmentalization of the TLR in question. Surface TLRs, especially those 

expressed on intestinal epithelial surfaces are in direct apposition to the commensal 

microbiota, and are thus more inclined to experience receptor engagement. With the 

exception of industrialized countries and areas with access to water sanitation, IECs are 

also commonly in apposition with intestinal dwelling parasites. These pressures have 

likely compelled tissue adaptations, which regulate the ability of surface TLRs to 

promote signal transduction cascades that terminate in pathological situations. For 

example, TLR4 signaling in IEC results in the down-regulation of IRAK1, and thereby 

prevents the induction of an inflammatory program (Chassin et al.). TLR9 is also readily 

present on the surface of IEC (Lee et al., 2006); however to what extent these receptors 

are functional is unclear, as environmental pH plays a critical role in regulating functional 

TLR9 activity (Engel and Barton). Other mechanisms to avoid gross activation of the 

epithelial barrier upon recognition of luminal derived TLR ligands also likely exist.  

 

Hematopoietic cells in the intestinal lamina propria have also evolved 

mechanisms to sustain constitutive TLR engagement in the absence of an undue 

pathological response. For instance, expression of the ubiquitin-editing enzyme, A20, in 

APC prevents spontaneous reactivity to the commensal microbiota (Turer et al., 2008). 
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Such a pathway illustrates the importance of having regulatory mechanisms in place to 

modulate the activation status of APC within the intestinal tract and also demonstrates 

that these cells constitutively receive commensal dependent signals. This 

notwithstanding, constitutive recognition of commensal DNA via TLR9 endows APC with 

the capacity to elicit TH responses in intestinal effector sites in the absence of overt 

pathology. Given that TLR9/bacterial DNA interactions are predicated on an active 

sensing mechanism in these cells, it stands that the ability of this pathway to drive an 

inflammatory response is conserved in the event of pathogen encounter. 

Vitamin	  A	  metabolism	  promotes	  TH-‐1	  and	  TH-‐17	  adaptive	  immune	  responses	  via	  
retinoic	  acid/RARα 	  

 

A summary of the data in Chapter 2 and Chapter 3 indicates that signals 

dependent on vitamin A metabolism and TLR9 engagement contribute to T cell 

homeostasis in the GI tract, which in turn, shapes host responsiveness to mucosal 

pathogens. Although vitamin A metabolism in LpDC appears to favor Foxp3+ Treg 

development and/or maintenance in the GALT, while commensal DNA interactions with 

TLR9 in LpDC appear to favor TH development and/or maintenance, how the signaling 

pathways downstream of these cues converge and regulate one another in T cells is 

unclear and merits further investigation. Studies in this regard will also help to further 

clarify findings in Chapter 4, which demonstrate that vitamin A metabolism is required 

for GALT Foxp3+ Treg differentiation and optimal TH-1 and TH-17 responses. Previous 

studies have demonstrated the importance of RA precursors, such as retinol and retinal 

in the maintenance of energy homeostasis (Acin-Perez et al.; Ziouzenkova et al., 2007). 

However, work here suggests that these precursors are dispensable for adaptive 

immune responses. In support of this, administration of RA to VAI mice orally challenged 
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with T. gondii or vaccinated with a mutated E. coli labile toxin, completely restored CD4+ 

T cell responses to levels observed in WT animals.  

 

RA signals are transduced by at least four known nuclear receptors including: 

RARα, RARβ, RARγ, and PPARβδ, which are expressed differentially in multiple cell 

types (Mora et al., 2008). Given the nature of the add-back experiments performed in 

Chapter 4, it is difficult to propose a precise and all-inclusive mechanism for the 

coordinated activities of RA, which would account for the restoration of adaptive immune 

responses. One receptor that appeared particularly important was RARα, which has in 

fact been shown to facilitate accessibility to other genes involved in vitamin A 

metabolism, including RARβ2, which also controls other inducible RA responsive genes 

(Corlazzoli et al., 2009; Ren et al., 2005). An examination of the GALT in Rara–⁄– mice 

indicated that they shared several overlapping immunological defects with VAI mice. In 

addition to a disrupted T cell equilibrium in GALT effector sites, the immune response 

upon oral vaccination was similarly impaired in Rara–⁄– animals. But, perhaps, the most 

unexpected finding in Chapter 4 was the importance of RA/RARα signaling in T cell 

activation and proliferation.  

RARα 	  regulates	  the	  acquisition	  of	  effector	  T	  cell	  function	  in	  a	  cell	  intrinsic	  
manner	  

 

In the absence of RARα, T cell activation, proliferation, and survival were 

impaired as a result of a cell intrinsic defect. Mammalian TOR activation, which regulates 

multiple pathways essential for cell growth, proliferation, survival and differentiation 

(Wullschleger et al., 2006), was noticeably reduced. Further, Ca2+ mobilization in 

response to TCR/CD3 engagement was impaired in Rara–⁄– T cells, as well as, WT T 

cells exposed to the pan RAR antagonist, LE540, prior to activation. As retinoids are 
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constantly present in the serum (Kane et al., 2008a; Kane et al., 2008b), and naïve T 

cells were observed to actively transcribe Rara, it is possible that steady-state RA/RARα 

signals constitutively modulate protein expression and/or kinase activity to facilitate T 

cell activation upon TCR engagement. In this regard, it may be worthwhile to examine 

steady-state RA activity in T cells, which could be performed using mice that have been 

engineered with a transgenic RA-responsive element reporter (Svensson et al., 2008). 

Although these findings would theoretically impact the development of all TH subsets, 

including Foxp3+ Treg, it is important to note that the foregoing studies did not assess TH-

2 responses in VAI mice nor in Rara–⁄– mice. Therefore, it is still not clear precisely how 

defects in RA/RARα signals contribute to TH-2 development.  

 

Previously, it was demonstrated that the strength of signal through the TCR could 

function as a crucial determinant in TH-1 versus TH-2 polarization. In particular, weaker 

stimulation achieved with a low-dose of cognate peptide or an altered peptide ligand 

favored the development of TH-2 cells, both in vitro and in vivo (Constant et al., 1995; 

Hosken et al., 1995; Pfeiffer et al., 1995). Conversely, increasing the antigen dose or 

strength of peptide/MHC interactions with TCR favored the development of TH-1 cells. 

These findings set the stage for more recent data highlighting that TH-1 and TH-2 cell 

induction may have different signaling requirements. For instance, altered peptide 

ligands, which skew T cell polarization in the TH-2 direction, were observed to induce 

sustained reductions and more transient spikes in Ca2+ mobilization (Brogdon et al., 

2002). Pharmacological inhibition/reduction of extracellular signal-related kinase (ERK) 

activity was also shown to sensitize cells for TH-2 polarization under normally TH-1 

polarizing circumstances (Yamane et al., 2005). As for a TH-2 polarizing antigen, 

Schistosoma mansoni egg antigen was recently shown to contain a ribonuclease that 

specifically impaired conjugate formation between dendritic cells and CD4 T cells, 
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presumably lowering the strength of TCR signaling (Steinfelder et al., 2009). Based on 

these findings, it is tempting to speculate that the activation defects observed in the 

absence of RA/RARα may have a less pronounced impact on in vivo TH-2 responses. 

Nevertheless, there is a notable correlation between the incidence of worm infection, 

which requires a TH-2 response for effective expulsion (Paul and Zhu), and micronutrient 

deficiencies, particularly in vitamin A (Koski and Scott, 2001). Importantly, epithelial cells 

and accessory cells, such as basophils, often play critical roles in the initiation and 

amplification of TH-2 responses in vivo (Anthony et al., 2007; Paul and Zhu). The 

function of these cells may be dysregulated in the absence of RA/RARα signaling. 

Multipotent progenitors and innate lymphoid cells, which are also important mediators of 

TH-2 responses (Moro et al.; Neill et al.; Saenz et al.), may also be affected in these 

conditions.  

 

Based on the data reported above, a tentative model for the influence of 

RA/RARα in mucosal immunity may be constructed. Antigen derived from 

food/environmental constituents, commensals or invasive pathogens is captured in the 

lamina propria by antigen presenting cells, which include both migratory and resident 

subsets. The migratory APC that captures antigen is the CD103+ lamina propria DC, 

which is able to synthesize RA. The resident APC that captures antigen is CD103– and is 

less capable to synthesize RA. How antigens captured by these cells end up being 

transferred to and presented by the migratory CD103+ subset remain unclear, though it 

may involve a mechanism such as exosomal transfer and apoptosis (Thery et al., 2009; 

Trombetta and Mellman, 2005). Upon entry into the draining mesenteric lymph nodes, 

CD103+ LpDC may form a cognate interaction with a naïve T cell constitutively 

expressing RARα. RA secreted by LpDC may influence the phenotype of the T cell 
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during activation, including the upregulation of mucosal homing markers and the 

acquisition of Foxp3. Ultimately, however, the cytokines and costimulatory signals 

elicited by the antigen and environment shape the polarity of the response (Figure 35, 1 

versus 2). There is also a possibility that autocrine/paracrine interactions with RA 

influence cytokine production by LpDC and contribute to the polarity of the response. For 

instance, RA was shown to enhance TGF-β production by follicular DC, and may 

potentially exert similar effects on LpDC (Figure 35, 3). As TGF-β is critical for the 

development of both Foxp3+ Treg and TH-17 cells, this could explain why the induction of 

both of these subsets is impaired in VAI mice. Nevertheless, these aspects are 

secondary to the role of RA/RARα signals in controlling early T cell activation and 

proliferation. The data in Chapter 4 also suggest that RA/RARα plays a role in 

regulating tonic T cell signal transduction. Therefore, other sources of RA, including the 

serum and stroma may be critical for the coordination of early T cell activation events 

(Figure 35, 4). 

Understanding	  the	  localization	  of	  RARα 	  will	  provide	  clues	  into	  how	  it	  regulates	  
T	  cell	  activation.	  

 

RARα is a complexly regulated protein, making it difficult to draw any immediate 

conclusions on how precisely it regulates signaling events involved in T cell activation 

and proliferation. In addition to it’s clear function as a transcriptional modifier, extra-

nuclear activities of RARα have previously been noted in non-hematopoietic cells 

(Rochette-Egly and Germain, 2009). For example, RARα has been described to interact 

with the p85 subunit of phosphoinositide 3-kinase (PI3K) (Masia et al., 2007), which is 

involved in activating the Akt pathway. Although, little is known about the steady-state 

regulation and localization of RARα in T cells, a mechanism on par with this is at least 
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consistent with the reduction of Akt phosphorylation observed upon activation of Rara–⁄– 

T cells in Chapter 4. Of course, RARα has also been linked to other pathways involved 

in T cell activation, most notably the AP-1 pathway. In particular, RARα has been shown 

to induce expression of the phosphatase, MKP-1, which negatively regulates JNK 

activity through both transcriptional dependent and independent means (Lee et al., 1999; 

Xu et al., 2002). This in part explains the inhibitory effect of RA on AP-1 activity. 

Although it is unclear whether RA/RARα positively regulates MKP-1 in T cells, loss of 

this protein was shown to impair T cell activation, as well as TH-1 and TH-17 responses in 

vivo (Zhang et al., 2009b). Importantly, proper regulation of JNK activity has also been 

demonstrated to be crucial for T cell proliferation, where early over-activation promotes 

cell death, while lack of activation promotes proliferation (Berger et al.; Dong et al., 

2000). Future studies on the role of RA/RARα in T cell function will benefit by a better 

understanding of the localization and regulation of RARα, in addition to the target 

molecular pathways. 

Influence	  of	  RA	  on	  T	  cell	  responses	  in	  situ:	  
 
 The potential inhibitory effect of RA/RARα signaling on AP-1 activation in T cells 

coupled with recent data showing that RA can curb cytokine production by 

effector/memory T cells suggest that RA may down-modulate T cell activity in situ 

(Figure 36, 1). RA may support yet another regulatory circuit, as previously discussed, 

via activation of TGF-β in this tissue environment. In these ways, RA may contribute to 

the preservation of tissue integrity and barrier protection. These regulatory effects may 

promote the maintenance, functional differentiation, and/or expansion of Foxp3+ Treg and 

also counter the risk of excessive responsiveness to bacteria lying in close apposition to 

the epithelial barrier, such as SFB, the presence of which also depends on vitamin A 

(Figure 36, 2 and 3). Although a recent report pointed out that deficiency in vitamin A 
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can result in perturbations to the commensal microbiota, including the loss of SFB, a 

comprehensive metagenomic analysis of the differences between commensal microbial 

communities in vitamin A replete versus deficient hosts has not been undertaken. From 

an evolutionary perspective, the model proposed here argues that vitamin A metabolism 

may not only permit the propagation and survival of commensal bacterial species with 

more immunostimulatory features, but also facilitates host evolutionary mechanisms to 

tolerate these species. 

Closing	  Remarks:	  
 

 

The experiments described in this thesis highlight the importance of commensal 

DNA and retinoic acid in the promotion of mucosal immunity. Constitutive signals derived 

from both of these cues were essential to the maintenance of T cell homeostasis in the 

GI tract, without which adaptive mucosal immune responses could not proceed 

efficiently. Although TLR9 signaling was revealed to possess a non-redundant function 

in the GI tract, it was dispensable for immune responses to systemic challenge. In 

contrast, RA was required for both mucosal and systemic adaptive immune responses 

and was revealed to regulate the acquisition of effector T cell responses in a cell intrinsic 

manner. Evolutionarily, these findings correspond with the compartmentalization of these 

elements: where commensal DNA is typically restricted to the GI tract; while RA, through 

robust storage and chaperone mechanisms, is able to traverse the entire body. Given 

this ubiquity, the capacity of RA to induce both regulatory and inflammatory responses 

also likely constitutes an adaptation. Overarchingly, these data support the premise that 

the successful integration of commensal microbial and nutrient derived signals provides 

a crucial immunological advantage to the host. 
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Models:	  

Figure 35. Retinoic acid in the induction of Foxp3+ Treg and helper T cell 
responses. 
(1) In the absence of an inflammatory stimulus, LpDC are poised to induce Foxp3+ Treg. 
This process may occur in response to food or environmentally derived antigen (2) 
Commensal microbiota potentially alter the ability of LpDC to induce Foxp3+ Treg. For 
example, commensal derived DNA provide a potent tonic signal that favors the 
development of various TH programs. Other inflammatory stimuli, especially invasive 
pathogens, also lead to the induction of TH programs. These studies, in particular, were 
focused on the development of adaptive TH-1 and TH-17 responses. (3) Migratory 
CD103+ lamina propria DC possess classical DC functions, including the ability to 
initiate T cell responses. Their polarizing capacity may be modified in situ via autocrine 
or paracrine RA signaling. (4) RA/RARα signaling critically controls early T cell 
activation and proliferation. Although LpDC derived RA is likely instrumental for 
upregulation of mucosal homing molecules and acquisition of Foxp3, other sources, 
including serum and stroma, may regulate T cell signal transduction events. 
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Figure 36. Retinoic acid in the regulation of adaptive T cell responses and 
composition in intestinal tissue 
(1) RA can directly inhibit cytokine production by effector/memory T cells (Hill et al., 
2008). This metabolite was also shown to suppress T cell expression of IL-6R and IL-
23R, which may also down-modulate their effector capacity (Hill et al., 2008; Xiao et al., 
2008)   (2) The ability of RA to promote the activation of TGF-β may also limit the 
outgrowth of TH cells and promote Foxp3+ Treg activities and/or expansion. (3) Vitamin A 
sustains the presence of certain commensal microbiota, including SFB, and may be an 
important factor for establishing and maintaining commensal diversity. 
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CHAPTER	  6:	  Material	  and	  Methods	  	  

General	  methods:	  
 

Mouse strains: 

C57BL/6 (WT), B6.SJL (CD45.1), OTII transgenic, and OT-II transgenic RAG-1–/– mice 

were purchased from Taconic Farms (Rockville, MD). Foxp3eGFP and DEREG mice were 

originally obtained from Dr. M. Oukka (Bettelli et al., 2006) and Dr. T. Sparwasser (Lahl 

et al., 2007), respectively, and bred in house. B6.129P2-Tlr9tmAki (Tlr9–/–) (Hemmi et al., 

2000) mice were obtained from Dr. S. Akira (Osaka University) via Dr. R. Seder (Vaccine 

Research Center, NIH) and backcrossed 11 generations onto the C57BL/6 background 

from Taconic Farms. OTII transgenic Foxp3eGFP mice were generated by crossing the F2 

progeny of OTII x Foxp3eGFP breeders. Tlr9–/–Foxp3eGFP mice were generated by crossing 

the F1 progeny of Tlr9–/– x Foxp3eGFP breeders. Tlr9–/–B6.SJL mice were generated by 

crossing the F1 progeny of Tlr9–/– x B6.SJL breeders. Rarα–/– mice were a generous gift 

of Dr. P. Chambon (Chapellier et al., 2002) and obtained via Dr. C. Benoist (Harvard 

Medical School), then bred in house. Experiments with Rarb–/– and Rarg–/– mice were 

performed under the guidance of Dr. N. Ghyselinck (igbmc, France). B6.129S6-Il6tm1Kopf 

(Il-6–/–) mice were purchased from the Jackson Laboratory and B6.129P2-Myd88tmAki 

(Myd88–/–) mice were kindly provided by Dr A. Sher.  

 

All mice were bred and maintained under pathogen-free conditions at an American 

Association for the Accreditation of Laboratory Animal Care accredited animal facility at 

the NIAID and housed in accordance with the procedures outlined in the Guide for the 

Care and Use of Laboratory Animals under an animal study proposal approved by the 
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NIAID Animal Care and Use Committee. For each experiment, mice were gender, aged 

and/or littermate matched. All mice were used between 9 and 13 weeks of age. 

 

Vitamin A diet studies: 

Vitamin A deficient (TD.09838, yellow) and sufficient (20,000 IU vitamin A/kg, TD.09839, 

orange) diets were purchased from Harlan Teklad Diets. At day 14.5 of gestation, 

pregnant females were administered either Vitamin A deficient or sufficient diet and 

maintained on diet until weaning of litter. Upon weaning, females were returned to 

standard Harlan chow, while weanlings were maintained on special diet until use. Diet 

was replaced in feed hopper every 3-4 days to prevent degradation and stored at 4-8oC. 

Diet stocks were stored in vacuum-sealed packages and discarded 3 weeks after 

opening. For breeding, females were rested on a standard Harlan chow diet for at least 2 

weeks prior to re-mating. After 3 birth cycles under the vitamin A deficient diet, females 

were retired.  

 

Tissue preparations: 

Cells from Spleen (Sp) and mesenteric lymph nodes (mln), were prepared by teasing 

and gently smashing the tissue through a 70-µm cell strainer with the rubber end of a 

plunger from a 3ml syringe (BD).  

 

In order to prepare small intestinal lamina propria (Lp) tissue cell suspensions, adventitial 

fat was carefully stripped away from the whole small intestine. Peyer’s patches (Pp) 

were then carefully excised, and the remaining tissue was cut longitudinally, extensively 

washed in cold HBSS w/o Ca2+ and Mg2+ (cellgro), then cut into ~ 1cm segments. 

Segments were treated with RPMI-1640 medium (Hyclone) containing: 3% FCS, 

100µg/ml Penn/Strep, 25 mM HEPES (Hyclone), 50 µM β-mercaptoethanol (β-ME) 
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(Gibco 1000X), 5mM EDTA, and 145 µg/ml of Dithiothreitol (DTT) for 20 min in an 

incubator at 37ºC/5% CO2 with constant magnetic stirring.  

IEL fraction: Tissue was then collected into a hand-held, fine mesh, sieve placed atop a 

collection beaker on ice. The pieces were then collected and placed into a 50ml conical 

containing 10-15ml of serum free media. Tissue was then further digested in serum free 

media containing: 25 mM HEPES and 50 µM β-ME with liberase CI (200 µg/ml, Roche) 

or liberase Tl (100 µg/ml, Roche) in conjunction with DNase I (500 µg/ml, Sigma-Aldrich) 

under continuous magnetic stirring in an incubator at 37ºC/5% CO2 for 26-30 min. 

Digested tissue was then immediately diluted in RPMI-1640 medium containing: 3% 

FCS, 100µg/ml Penn/Strep, 25 mM HEPES and 50 µM β-mercaptoethanol, and serially 

mashed through 70- and 40-µm cell strainers (BD Biosciences). Cell suspensions were 

spun down and resuspended in complete RPMI-1640 medium (Complete) containing: 

10% FBS, 100µg/ml Penn/Strep, 25mM HEPES, 2mM L-glutamine, 1 mM Na Pyruvate 

(cellgro), 1X MEM nonessential amino acids (MEM) (cellgro) and 50 µM of β-ME – prior 

to use.  

 

For Pp preparations, lymphoid aggregates were treated with RPMI-1640 medium 

containing: 3% FCS, 100µg/ml Penn/Strep, 25 mM HEPES, 50 µM β-ME, 5mM EDTA, 

and 145 µg/ml of DTT for 20 min in an incubator at 37ºC/5% CO2. They were then 

washed up-and-down several times with a 1ml pipette and strained from media, which 

was then discarded. Next, tissue was resuspended with serum free RPMI-1640 

containing: 25mM HEPES, 50 mM β-ME, liberase CI (100 µg/ml) or liberase Tl (50 

µg/ml) and 150 µg/ml DNase I, minced, and digested for 20 min prior to serially 

smashing through 70- and 40-µm cell strainers. 
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CD4+ T cell purification for in vitro studies: 

Sp and peripheral LNs were harvested, teased apart and gently passed through a 70µm 

filter. After washing, cells were RBC lysed in ACK-lysis buffer (Lonza) for 1.5 min on ice, 

washed again and then enriched for CD4+ T cells using a negative selection CD4 T cell 

isolating kit and an autoMACs™ as outlined above. The enriched fraction was further 

labeled with a mAb cocktail containing: α-CD4 (RM4-5), α-CD25 (7D4), α-CD44, (IM7) 

and α-CD62L (MEL-14), where indicated. Cells were then sort purified on a 

FACSVantage™ or FACSAria™. When eGFP reporter strains were used, eGFP+ cells 

were also excluded. All antibodies were purchased from eBioscience. 

 

CFSE labeling of T cells: 

Cells were labeled at a final density of 1x107cell/ml in 1µM CFSE (CellTrace™ Kit, 

Invitrogen) dissolved in HBSS w/o Ca2+ and Mg2+ for 7 min in an incubator at 

37oC/5%CO2. Labeling was quenched by washing cells 2X in complete RPMI 

supplemented with 30% FBS. Finally, cells were resuspended in ice-cold PBS for 

adoptive transfer via tail vein injection or, alternatively, in complete RPMI as described 

above for in vitro assays. 

 

Dendritic Cell (DC) purification: 

For LpDC, Lp tissue cell suspensions were obtained as described. Cells were then well 

resuspended in a 1.077 g/cm3 iso-osmotic NycoPrep™ medium (Accurate Chemical & 

Scientific Corp.) and gently overlaid with serum free media (one intestine: 5ml 

NycoPrep™ medium + 2ml serum free media in 15ml conical). The low-density fraction 

was collected after centrifugation at 1650 x g for 15 min with the brake off. Note: The 

NycoPrep™ gradient excludes debris, red blood cells and decreases lymphocyte 
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numbers without significantly altering the composition of the different subsets of LpDC. 

Cells were then washed in 4 volumes of RPMI-1640 medium containing: 3% FCS, 

100µg/ml Penn/Strep, 25 mM HEPES, 50 µM β-mercaptoethanol and incubated with a 

mixture of mAb containing: blocking α-CD16/32 (2.4G2) and Rat IgG (Jackson 

Immunoresearch); α-CD11c (HL-3), α-MHC II (I-Ab, AF6-120.1); a non-DC component 

including, α-NK1.1 (PK136) and α-B220 (RA3-6B2); and the DNA intercalater 7-Amino-

actinomycin D (7-AAD, eBioscience) in order to exclude dead cells. α-CD103 mAb (2E7) 

was added in experiments where these cells were desired. All antibodies were 

purchased from eBioscience unless noted. LpDC were defined as CD11c+MHCII+ cells 

and were sort purified on a FACSVantage™ or FACSAria™. In some experiments 

CD103+ and CD103– LpDC were separated. Purity was verified and always exceeded 

90% or cells were not used.  

 

For SpDC, Sp were thoroughly perfused with Liberase CI (100 µg/ml) and DNase I (150 

µg/ml) in serum free media, prepared as described above using a tuberculin syringe 

(BD). Perfused Sp were then cut into fragments and digested for 25 min in an incubator 

at 37ºC/5% CO2. During the last 5 min, 5mM EDTA was added. Sp cell suspensions 

were then gently smashed through a 70µm filter, washed, and enriched for mononuclear 

cells using the NycoPrep™ gradient, as detailed for LpDC. Cells were subsequently 

labeled using the CD11c+ magnetic bead positive selection kit (Miltenyi Biotec) per the 

manufacturer’s instructions, washed, 40µm filtered, and ran through an autoMACs™ 

machine using the purification program, Posseld2. Cells were then washed and 

incubated with a mixture of mAb containing: blocking α-CD16/32 (2.4G2), α-CD11c (HL-

3), α-MHC II (AF6-120.1), and 7-AAD. Labeled cells were sorted as described above to 

purity resulting in > 98%.  
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Flow cytometry: 

All antibodies used were obtained from eBioscience unless specified otherwise. All cell 

acquisition was performed using an LSRII machine with FACSDiVa software (BD 

Biosciences). Data were analyzed using FlowJo software (TreeStar). To calculate 

absolute numbers, the fraction of a particular subset to singlet gated, total living cells 

was multiplied by the total cellularity of the tissue based on trypan blue exclusion. 

 

Statistics: 

Groups were compared with Prism software (GraphPad) using the unpaired or paired 

Student’s t test. 

Chapter	  2:	  
 

In vivo generation of Foxp3+ Treg (oral feeding protocol): 

Cells were extracted from the mesenteric lymph nodes (mln) of OT-II transgenic RAG-1–

/– mice and then adoptively transferred into B6.SJL (CD45.1) hosts. Alternatively, cells 

were extracted from the spleen (Sp) and secondary LNs of OTII transgenic Foxp3eGFP 

mice (CD45.2). They were then labeled using a negative selection CD4 T cell isolating 

kit (Miltenyi Biotec) per the manufacturer’s instructions, washed, 40µm filtered, and ran 

through an autoMACs™ on the sensitive mode to obtain highly enriched CD4 T cells. 

These cells were labeled with a non-CD4+ T cell cocktail of mAb, including: blocking α 

-CD16/32 (2.4G2), α-CD8α (53-6.7), α-NK1.1 (PK136), and α-B220 (RA3-6B2); and 

α-CD25 (7D4). Cells were then sort purified on a FACSAria™ to obtain a pure 

CD4+CD25–eGFP– population, subsequently labeled with CFSE, and then adoptively 

transferred into 10 wk-old B6.SJL (CD45.1) hosts on diet study. In each case, recipients 
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received 1x106 cells and were fed 1.5% OVA (grade V; Sigma-Aldrich) dissolved into 

autoclaved drinking water for 5 consecutive days. Solution was replaced every 48 hrs. 

Tissues were collected on day 6, and Foxp3 expression was assessed in transferred 

cells by intracellular staining as detailed below.  

 

Assessment of DC costimulatory activity:  

MHC II+ CD11c+ DC were stained with the following fluorescent dye-conjugated mAb: 

α-CD11b (M1/70), α-CD103 (2E7), α-CD40 (3/23, BD Biosciences), α-CD80 (16-10A1, 

BD Biosciences) and α-CD86 (GL-1, BD Biosciences)  

 

In vitro Foxp3+ Treg induction assay and analysis: 

105 CD4+eGFP– T cells or CD4+CD25–CD62+CD44– naïve T cells from WT, OT-II, Rara–/–

, Rarb–/– or Rarg–/– mice were cultured with 2.5 x 103 – 2 x 104 purified Lp or SpDC in 

250µl of complete medium (10% FBS, 25mM HEPES, 2mM L-glutamine, 100µg/ml 

Penn/Strep, 1 µM Na Pyruvate, 1X MEM, 50 µM of β-ME) with soluble α-CD3ε mAb (1 

µg/ml) (145-2C11, BD Bioscience) and recombinant hTGF-β (0.6 or 3 ng/ml) (Cell 

Science or R&D Systems) for 5 days. For each Rar–/– mouse, the appropriate littermate 

controls were used. The precise ratio of T cells to DC used is provided in the text.  In 

some experiments the following were included in the cococulture conditions:  

1. All-trans retinoic acid (Sigma) or vehicle control at varying concentrations  

2. Retinoic acid receptor inhibitors: LE540 (Wako Chemicals USA) and LE135 

(Tocris Bioscience) or vehicle control. Each were added at 1µM 

3. α-TGF-β mAb (1D11.16.8) or isotype control mAb MOPC (31C) (both from 

ATCC) at 10µg/ml.  
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All-trans retinoic acid, LE540 and LE135 were resuspended in Biotechnology 

Performance Certified DMSO (Sigma). Human recombinant hIL-2 (5 ng/ml) (Peprotech) 

was added to cultures wells every other day beginning on day 2. On day 5, cells were 

stained with α-CD4 mAb (RM4-5) and 7-AAD, to discriminate live/dead cells. Foxp3+ 

cells were then detected either by eGFP expression and/or α−Foxp3 (FJK-16) following 

fixation and permeabilization with the kit provided by eBioscience in accordance with the 

manufacturerʼs protocol.  

 

For viability assays, cultured cells were additionally stained with annexin V (BD 

Biosciences) and 7-AAD (1:50) in annexin-V binding buffer (BD Biosciences) per 

manufacturer’s instructions to detect dying/dead cells.  

 

For phenotypic assessment, eGFP+CD4+ cells were further stained for α-CD103 (2E7) or 

α-α4β7 (DATK32) mAb, α-CD25 (PC61.5) and 7-AAD. Live cells were analyzed by flow 

cytometry. 

 

In vitro suppression Assays: 

Treg ability to suppress T cell proliferation was determined as previously reported 

(Thornton and Shevach, 1998). Briefly, CD4+GFP+ Treg that were obtained after sorting 

cells from SpDC cocultures, LpDC cocultures or ex vivo were cultured in 96-well flat-

bottom plates (Costar) with 5 x 104 freshly isolated CD4+GFP- T cells used as responder 

T cells. For antigen presenting cells, splenocytes were depleted of CD90+ cells using a 

positive selecting isolation kit and running through an autoMACs™. They were then 

irradiated and cultured at 105 per well. Cells were stimulated with 0.5 µg/ml α-CD3 (145-
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2C11) mAb for 72 hours in an incubator at 37ºC/5% CO2. Cultures were pulsed with 

[3H]TdR (MP Biomedicals, Solon, OH) at 1 µCi/well for the last 8 hours of culture.  

 

Retinal dehydrogenase (RALDH) activity in DC:  

Single-cell suspensions were incubated in ice-cold HBSS with blocking α-CD16/32 

(2.4G2) and 0.2mg/ml Rat IgG, and stained with the following fluorochrome-conjugated 

mAb: α-CD11c (N418), MHC II (M5/114.15.2), α-CD11b (M1/70), α-F4/80 (BM8), α-

CD103 (2E7) and α-TCR-β (H57-597) for 15min on ice. Surface labeled cells were then 

washed and resuspended in 100µl of ALDEFLUOR assay buffer containing 1/100 

ALDEFLUOR® reagent. Control wells were pre-incubated with (1/25) DEAB solution that 

came with the kit. Samples were then stored in an incubator at 37oC/5% CO2 for 30min 

away from light. Cells were then washed with 150ml of fresh ALDEFLUOR assay buffer, 

centrifuged, and resuspended in 200ml of ALDEFLUOR assay buffer containing 

0.3µg/ml DAPI (Sigma Aldrich) to discriminate living/dead cells. All reagents were 

prepared according to the manufacturer’s protocol (STEMCELL Technologies). 

Chapter	  3:	  
 

T cell phenotype:  

Single-cell suspensions were stained with fluorochrome-conjugated to the following 

antibodies: α-TCR-β (H57-597), α-CD4 (RM4-5), α-CD8α (53-6.7), α-CD25 (PC61.5) in 

the presence of for 15min on ice. For examination of transcription factors and cellular 

proliferation, cells were subsequently treated with the Foxp3 staining kit (ebioscience) in 

accord with the manufacturer’s instructions and stained for 30-45 min on ice with Ki-67 

(B56, BD Pharmingen), Foxp3 (FJK-16s), T-bet (eBio4B10) and/or RORγ(t) (AFKJS-9) 
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or isotype controls: mouse IgG1 (BD Pharmingen) rat IgG2a (eBR2a), mouse IgG1 

(clone P3) - in 1/100 α-mouse CD16/32 and 0.2mg/ml purified Rat IgG.  

 

In vitro T cell/LpDC coculture assays: 

CD4+eGFP– T cells or CD4+CD25–CD62+CD44– naïve T cells from Foxp3eGFP, Tlr9–/–

Foxp3eGFP, WT, Tlr9–/– or Myd88–/– mice were cocultured with purified LpDC at a 1:10 ratio in 

complete medium, as described above, in Foxp3+ Treg cell polarizing conditions. These 

conditions included soluble α−CD3 (1 µg/ml) (145-2C11) and rhTGF-β (0.6 ng/ml) (R&D 

Systems). 5 ng/ml of rhIL-2 was supplemented in cocultures every 2 days. In experiments 

detailed in Figure 17 the following were added to co-coculture conditions: a) peptidoglycan 

(PGN, from Staphylococcus aureus), ultra-pure lipopolysaccharide (LPS, E. coli K12), 

flagellin (Flgn, from S. typhimurium), ODN 1826 (CpG, 5ʼ-tccatgacgttcctgacgtt-3ʼ) at the 

indicated concentrations. All were purchased from Invivogen. In experiments detailed in 

Figures 20 and 21, various combinations of mAb including: α-IL-6 (MP5-20F3), α-IL-6R 

(D7715A7), α-IL12/23p40 (C17.8), α-IL27p28 (R&D) and/or α-IFN-γ (XMG1.2 or 11B11), or 

isotype controls α-IgG1κ (R3-34) and/or α-IgG2α (R35-95) were added at the initiation of 

cocultures in Foxp3+ Treg cell polarizing conditions containing CpG (10 µg/ml). All antibodies 

were purchased from BD Biosciences, excluding α-IL27p28, which was purchased from R&D 

Systems. On day 5, cells were surface stained with the following fluorochrome-conjugated 

antibodies: α-CD4 (RM4-5), α-α4β7 (DATK32), α-CD25 (PC61.5), and the viability marker 7-

AAD. Foxp3 cells were detected by eGFP expression and/or α−Foxp3 (FJK-16) following 

fixation and permeabilization with the kit provided by eBioscience in accordance with the 

manufacturerʼs protocol.  
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ELISA: 

Upon harvest of coculture supernatants, IL-4, IL-10, IFN-γ and IL-17A were quantitated 

with the DuoSet® ELISA system (R&D Systems) per the manufacturer’s instructions.  

 

Gut flora DNA extraction: 

Gut contents from the caecum and the colon of naïve C57BL/6 mice were collected and 

washed in cold PBS. The pellet was resuspended in lysis buffer (10 mM Tris/HCl, 50 mM 

EDTA, pH 8.0) containing lysozyme (0.5 mg/ml; Sigma-Aldrich). After incubation at 37°C for 

2 h, 2 mg/ml of proteinase K and 1% SDS were added and the sample incubated at 60°C for 

3 h. DNA was then purified by a series of 7 consecutive phenol-chloroform-isoamyl alcohol 

affinity extractions. 

 

Intracellular cytokine staining of ex vivo isolated cells from naïve mice: 

For assessment of CD4+ T cells from WT Foxp3eGFP and Tlr9–/–Foxp3eGFP mice, cell 

suspensions were enriched for T cells by incubating with CD90.2 positive selecting 

magnetic beads (Miltenyi Biotec) in accordance with the manufacturer’s protocol. T cells 

were obtained by running the labeled suspension through an autoMACs™ on the 

program Posseld2. Enriched T cell suspensions were then mitogenically stimulated with 

phorbol 12-myristate 13-acetate (PMA, 50ng/ml) + ionomycin (5µg/ml) for 4 hours in U-

Bottom 96-well plates containing complete (200µl/well) media and Brefeldin A (BFA, 

GolgiPlug™). Residual DMSO was then washed from wells and cells were incubated 

with 1/500 of Molecular Probes LIVE/DEAD® Fixable Blue Dead cell stain kit (Invitrogen) 

in HBSS according to the manufacturer’s guidelines to distinguish healthy from dying 

cells, and subsequently fixed in 1.6% paraformaldehyde (PFA, Electron Microscopy 

Sciences) prior to staining intracellularly for cytokines. For intracellular cytokine staining, 
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cells were stained with the following fluorochrome-conjugated antibodies: α-TCR-β, α-

CD4, α-CD8α, α-IFN-γ (XMG1.2), α-IL-17A (eBio17B7), α-IL-10 (JES5-16E3) or isotype 

controls: rat IgG1, rat IgG2a, ratIgG2b, and mouse IgG1 (clone P3) in the presence of α-

mouse CD16/32 and 0.2mg/ml of Rat IgG for 45 min on ice in FACS buffer containing 

0.5% saponin from Quillaja bark (Sigma).  

 

E. cuniculi infection Protocol: 

Parasite cultivation: A rabbit isolate of E. cuniculi was obtained from Waterborne Inc. 

and used throughout the study. The parasites were maintained by continuous passage 

in rabbit kidney (RK13) cells obtained from the American Type Culture Collection (ATCC 

#CCL37) and maintained as previously described (Bouladoux et al., 2003).  

 

For infection: Spores were resuspended in sterile PBS, and immediately used for 

inoculation of mice or cell cultures. Mice were infected by intragastric gavage with 5×106 

fresh spores in a volume of 200 µl. In some experiments, mice were infected i.p. using 

the same number of spores of E. cuniculi.  

 

For CD25+ cell depletion: C57BL/6 and Tlr9−/− mice were injected i.p. with 0.5 mg of anti-

CD25 (clone PC61.5) or the corresponding isotype control (clone GL113) 3 days 

preceding and on day 0 and day 7 of infection. 

 

Quantification of E. cuniculi in tissues:  

 

Duodenum (1cm piece starting at 3cm) and liver (weighed out piece from same lobe) 

were removed from infected mice and instantly snap frozen in liquid nitrogen. Tissues 

were next homogenized and then digested with proteinase K (Invitrogen or Qiagen). 
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DNA was subsequently extracted either with phenol-chloroform-isoamyl alcohol followed 

by ethanol precipitation or with the DNeasy® Tissue kit from Qiagen. Quantitative 

real-time PCR was performed in triplicates with 50 ng of total tissue DNA, the iQ SYBR 

Green Supermix (BioRad), and the following primers specific for a 268-bp DNA 

sequence of the SSU rRNA gene from E. cuniculi (Weiss and Vossbrinck, 1998): forward 

5’-GTGAGACCCTTTGACGGTGT-3’ and reverse 5’-CTCAGACCTTCCGATCTTCG-3’. 

Real-time PCR was conducted on a Bio-Rad iCycler under the following conditions: 

3 min at 95°C; 40 cycles of: 45 s at 95°C, 60 s at 60°C, and 45 s at 72°C. Genomic DNA 

were extracted from known amounts of E. cuniculi with the QIAamp DNA stool mini-kit 

(Qiagen) and used as PCR standards. A standard curve was generated by linear 

regression on plotted cycle threshold (CT) values of the standards against the logarithms 

of parasite numbers using iCycler iQ Optical System software (version 3.1; Bio-Rad). 

 

In vitro recall assay to E. cuniculi 

 

Single-cell suspensions of Sp, mln, IEL, Lp, and Pp of vaccinated or E. cuniculi-infected mice 

were prepared as described above. BMDC were generated as previously described (Lutz et 

al., 1999). Leukocytes (5×105) were incubated with 1×105 BMDC in 250 µl RPMI, 55 mM 

2-β mercaptoethanol, and 10% FBS per well of a 96-well U-bottom plate. BMDC were 

previously incubated for 8 hrs with or without recombinant vaccinia virus expressing OVA 

protein (10 pfu / BMDC), E. cuniculi spores (parasite:BMDC ratio, 10:1) or OVA peptide (1 

µg/ml)  in the presence of 20 ng/ml GM-CSF (Peprotech) and washed before culture with 

leukocytes. After 3 days at 37°C in 5% CO2, culture supernatants were collected for cytokine 

assays. IFN-γ, IL-4, IL-6, IL-10, and IL-17 were quantitated in culture supernatants of 

restimulated leukocytes using the DuoSet® ELISA system. 
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Antibiotic treatment: 

3-wk or 8-wk-old C57BL/6 male mice were provided ampicillin (1 g/l), vancomycin 

(500 mg/l), neomycin trisulfate (1 g/l), and metronidazole (1 g/l) in drinking water as 

previously described (Rakoff-Nahoum et al., 2004). All antibiotics were purchased from 

Sigma-Aldrich. Where indicated, mice also orally received: 100 µg CpG ODN 1826 in 

sterile PBS (Coley Pharmaceutical) or 500 µg of extracted gut floral DNA in sterile water 

or 25 mg/kg of LPS from Escherichia coli (serotype 026:B6 from Sigma-Aldrich) once 

weekly from the start of the antibiotic course. 

Chapter	  4:	  
 

T cell phenotype:  

Single-cell suspensions were incubated in ice-cold HBSS with 1/100 α-mouse CD16/32, 

1/500 LIVE/DEAD® to exclude dead cells, and stained with the following fluorochrome-

conjugated antibodies: α-TCR-β (H57-597), α-CD4 (RM4-5), α-CD8α (53-6.7), α-CD25 

(PC61.5), α-CD44 (IM7), α-CD62L (MEL-14), α-CD103 (2E7), and α-α4β7 (DATK32) for 

15min on ice. For examination of transcription factors and cellular proliferation, cells 

were subsequently treated with the Foxp3 staining kit (eBioscience) in accord with the 

manufacturer’s instructions and stained for 30-45 min on ice with Ki-67 (B56, BD 

Pharmingen), Foxp3 (FJK-16s), T-bet (eBio4B10) and/or RORγ(t) (AFKJS-9) or isotype 

controls: mouse IgG1 (BD Pharmingen) rat IgG2a (eBR2a), mouse IgG1 (clone P3) - in 

1/100 α-mouse CD16/32 and 0.2mg/ml purified Rat IgG.  

 

E. coli LT (R129G)Vaccine Protocol: 

For vaccination, mice were orally inoculated with an isotonic bicarbonate buffer (7.5%, 

200µl/mouse). 10min later, mice were gavaged with a 200µl mixture of 1mg of OVA and 
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20 µg of the mutant form of E. coli LT (R129G) prepared in the same buffer. For 

reconstitution experiments with RA, mice were vaccinated again on day 4. Immune 

responses were then assessed on day 8. For all other experiments, mice were 

vaccinated once per week and immune responses were assessed one week after the 

final challenge.  

 

T. gondii Infection Protocol: 

The parental ME-49 type II strain (ATCC no. 50840) (American Type Culture Collection, 

Manassas, VA, USA) of T. gondii was electroporated with RFP and selected for red 

fluorescence. ME-49 clone C1 was established and passed through mice. To obtain 

tissue cysts, brains were removed from C57BL/6 mice that were inoculated with three 

cysts by gavage 1–2 months prior and homogenized in 1 ml of phosphate buffer saline 

(pH 7.2). Cysts were counted on the basis of 2 aliquots of 20 µl. Diet study mice were 

infected orally with 10 cysts at 9.5-11.5 wks of age. STAg was prepared as previously 

described (Grunvald et al., 1996). 

 

Parasite Burden: 

Human fibroblast (Hs27; ATCC no. CRL-1634) cultures were used to quantify parasite 

burden as described previously (Pfefferkorn and Pfefferkorn, 1976) and (Roos et al., 

1994). In brief, titrations of single-cell tissue suspensions (1x104 up to 1x106 cells) were 

added onto confluent fibroblast monolayers cultured in DMEM (Sigma) supplemented 

with 100mg/ml Penn/Strep and 10% FBS (in 24-well plates). Plaques were detected by 

fluorescence using an Axiovert 40 inverted microscope (Zeiss) outfitted with an RFP 

filter. Titration results are reported in Plaque Forming Units (PFUs). 

 

In vivo RA reconstitution: 
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250µg of all-trans-RA (Sigma Aldrich), resuspended in 30µl of Biotechnology 

Performance Certified DMSO was administered intraperitoneally to vitamin A insufficient 

(VAI) mice every other day. 24hrs after the 3rd injection, mice were infected with T. gondii 

or vaccinated. Injection of RA continued until takedown of the mice. Mice not receiving 

RA, received DMSO vehicle instead. RA was stored at -80oC in pure DMSO in amber 

ependorf tubes. Aliquots were one use only. 

 

Intracellular cytokine staining: 

Tissues were harvested from infected or vaccinated mice, pooled by group, and 

enriched for T cells by incubating with CD90.2 selecting magnetic beads (Miltenyi) in 

accord with the manufacturer’s protocol. T cells were obtained by running the labeled 

suspension through an Automacs (Miltenyi) on the program Posseld2. For T. gondii, T 

cells (2.5x105) were incubated with irradiated BMDCs (5x104) ± STAg (5mg/ml). For 

vaccine, T cells (2.5x105) were incubated with SpDC (5x104) ± OVA (100mg/ml) 

(Worthington). Cells were cultured for 14 hrs in an incubator at 37oC/5%CO2 in 

250µl/well in 96-well flat bottom plates. BFA was added for the final 7 hrs of culture. 

Cells were washed with FACS buffer and stained with 1/500 LIVE/DEAD® fixable Blue 

Dead cell stain kit in HBSS on ice for 15min. After washing 1X with FACS buffer, cells 

were fixed with 1.6% PFA for 20 min at room temp. For intracellular cytokine staining, 

cells were stained with the following fluorochrome-conjugated antibodies: α-TCR-β, α-

CD4, α-CD8α, α-IFN-γ (XMG1.2), α-IL-17A (eBio17B7), α-Foxp3 (FJK-16), α-T-bet 

(eBio4B10), or isotype controls: rat IgG1, rat IgG2a, and mouse IgG1 (clone P3) in the 

presence of α-mouse CD16/32 and 0.2mg/ml purified Rat IgG for 45 min on ice in FACS 

buffer containing 0.5% saponin. All antibodies were purchased from eBioscience. 
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ELISA: 

Tissues were harvested from infected or vaccinated mice, pooled by group, and 

enriched for T cells as described above. For T. gondii, T cells (2.5x105) were incubated 

with irradiated day-6 BMDCs (5x104) ± STAg (5mg/ml) in 250ml/well in 96-well round 

bottom plates for 48 hrs at 37oC, 5% CO2. For vaccine, T cells (2.5x105) were incubated 

with day-7 BMDCs (5x104) that had been infected or not for 8hrs with recombinant 

vaccinia virus expressing OVA (MOI 10:1) for 72hrs at 37oC, 5% CO2. Upon harvest of 

supernatants, IFN-γ and IL-17A was quantitated with the DuoSet® system. In initial 

vaccine experiments, pooled suspensions were not T cell enriched, but rather cultured at 

5x105 cells to 1x105 infected or uninfected BMDCs. 

 

CD4+ T cell activation/ polarization assays: 

Cells were extracted from the Sp and secondary LNs of Rarα–/– or littermate WT mice 

and enriched for CD4+ CD62Lhi T cells using the CD4+ CD62Lhi T cell isolation kit II 

(Miltenyi Biotec) in accordance with the manufacturer’s protocol. For magnetic selection 

steps, cells were 40µm filtered and subsequently passed through manual columns. Cells 

were then CFSE labeled as described above, plated in complete media at 3.38-3.5x105 

cells/well into 96-well flat bottom plates, and stimulated with 1µg/ml of plate-bound α-

CD3ε (BD Pharmingen, 145-2C11, coated over night in 100ml at 4oC) + soluble α-CD28 

(BD Pharmingen, 37.51) + 50U of rhIL-2 (Peprotech). To assess activation, cells were 

harvested after 18hrs and stained for CD4, CD25, CD69 (H1.2F3), and CD71 (R17217) 

in HBSS containing 1/500 of the LIVE/DEAD® stain kit, 1/100 of blocking α-CD16/32, 

and 0.2mg/ml purified Rat IgG for 15 min on ice. Expression of markers was compared 

to unstimulated cells. To assess polarization, cells were further cultured in TH-1 or TH-17 

(no rhIL-2) biased conditions, which included: purified α-IL-4 (11B11) + 10ng/ml of rmIL-
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12; or purified α-IL-4 + α-IFN-γ (R4-6A2) + 20ng/ml rmIL-6 + 0.7ng/ml rhTGF-b, 

respectively. All cytokines, except hIL-2, were purchased from R&D Systems. 48hrs 

post-activation, half the supernatant from each well was removed and measured for the 

cytokines (IFN-γ and IL-17A) by ELISA. Complete media, including polarizing cytokines 

+ blocking antibodies were replenished as cells were removed from αCD3ε and 

transferred into 96-well round bottom plates for 24hrs. CFSE proliferation was then 

measured. 

 

Real-time quantitative PCR: 

Naïve CD4+ T cells were purified from splenic and peripheral LN of 2 mice/assay. RNA 

was then extracted with RNAeasy columns (QIAGEN) and analyzed by quantitative RT-

PCR according to the manufacturer's instructions using primers for murine Rara, Rarb, 

and Rarg (QIAGEN). 

 

Immunoblotting and Reagents: 

Lysates were immunoblotted with the following antibodies: anti-phosphoSer473Akt and 

anti-Akt (Cell Signaling Technology). 
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