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Clinical Importance of the Drug interaction Between Statins and CYP3A4
Inhibitors

Abstract
Statins reduce the risk of major coronary outcomes and all cause mortality. They are generally well tolerated,
but are associated with uncommon but serious adverse events. Pharmacokinetic studies show statins
metabolized by the CYP3A4 isoenzyme (statin 3A4 substrates) are susceptible to drug interactions when
concomitantly administered with drugs that inhibit the CYP3A4 isoenzyme (CYP3A4 inhibitors) -
potentially increasing the risk for adverse events. Studies to evaluate the clinical importance of the statin-
CYP3A4 inhibitor interaction are limited to anecdotal findings. This research endeavored to evaluate the
clinical importance of the statin-CYP3A4 inhibitor drug interaction in two empiric investigations and a
methodologic study.

The preliminary empiric study was an analysis of spontaneous rhabdomyolysis reports. It showed an increased
rhabdomyolysis reporting rate for simvastatin (a statin 3A4 substrate) but not for pravastatin (a statin
non-3A4 substrate) with a concomitant CYP3A4 inhibitor. Substantial internal validity limitations, inherent
in spontaneous reporting analyses, warranted additional research.

To further assess the clinical importance of this drug interaction, we evaluated the validity of the multinomial
propensity score as a confounding adjustment method in a simulated drug interaction study. The results from
the simulation study provided support for using the multinomial propensity score in the second empiric
study. The results showed the multinomial propensity score reduced bias, had greater coverage probability,
and increased precision compared to binary propensity score methods. Investigators studying multinomial
exposures, such as drug interactions, should consider the multinomial propensity score for confounding
adjustment.

The second empiric study was a large retrospective cohort study. The objective was to evaluate the hazard of
muscle toxicity, renal dysfunction, and hepatic dysfunction among patients exposed to statin 3A4 substrates
(atorvastatin and simvastatin) compared to statin non-3A4 substrates (fluvastatin, pravastatin, and
rosuvastatin) with and without CYP3A4 inhibitor concomitancy. We found no overall increased hazard of
muscle toxicity, renal dysfunction, or hepatic dysfunction associated with statin 3A4 substrates compared to
statin non-3A4 substrates with versus without a concomitant CYP3A4 inhibitor. Given the magnitude and
validity of this investigation, the drug interaction between statins and CYP3A4 inhibitors therefore does not
represent a substantial public health concern.
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ABSTRACT 

 
CLINICAL IMPORTANCE OF THE DRUG INTERACTION BETWEEN STATINS AND CYP3A4 

INHIBITORS 
 

Christopher G. Rowan 
 

Supervisor: Brian L. Strom MD, MPH 
 

Statins reduce the risk of major coronary outcomes and all cause mortality. They are 

generally well tolerated, but are associated with uncommon but serious adverse events. 

Pharmacokinetic studies show statins metabolized by the CYP3A4 isoenzyme (statin 3A4 

substrates) are susceptible to drug interactions when concomitantly administered with drugs that 

inhibit the CYP3A4 isoenzyme (CYP3A4 inhibitors) - potentially increasing the risk for adverse 

events.  Studies to evaluate the clinical importance of the statin-CYP3A4 inhibitor interaction are 

limited to anecdotal findings.  This research endeavored to evaluate the clinical importance of the 

statin-CYP3A4 inhibitor drug interaction in two empiric investigations and a methodologic study.   

The preliminary empiric study was an analysis of spontaneous rhabdomyolysis reports.  It 

showed an increased rhabdomyolysis reporting rate for simvastatin (a statin 3A4 substrate) but 

not for pravastatin (a statin non-3A4 substrate) with a concomitant CYP3A4 inhibitor.  Substantial 

internal validity limitations, inherent in spontaneous reporting analyses, warranted additional 

research.  

To further assess the clinical importance of this drug interaction, we evaluated the validity of 

the multinomial propensity score as a confounding adjustment method in a simulated drug 

interaction study. The results from the simulation study provided support for using the multinomial 

propensity score in the second empiric study. The results showed the multinomial propensity 

score reduced bias, had greater coverage probability, and increased precision compared to 

binary propensity score methods. Investigators studying multinomial exposures, such as drug 

interactions, should consider the multinomial propensity score for confounding adjustment. 

The second empiric study was a large retrospective cohort study. The objective was to 

evaluate the hazard of muscle toxicity, renal dysfunction, and hepatic dysfunction among patients 

exposed to statin 3A4 substrates (atorvastatin and simvastatin) compared to statin non-3A4 
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substrates (fluvastatin, pravastatin, and rosuvastatin) with and without CYP3A4 inhibitor 

concomitancy.  We found no overall increased hazard of muscle toxicity, renal dysfunction, or 

hepatic dysfunction associated with statin 3A4 substrates compared to statin non-3A4 substrates 

with versus without a concomitant CYP3A4 inhibitor. Given the magnitude and validity of this 

investigation, the drug interaction between statins and CYP3A4 inhibitors therefore does not 

represent a substantial public health concern.    
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DISSERTATION INTRODUCTION 
 

Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are 

extremely effective in the treatment of dyslipidemia. They have been shown to reduce the risk of 

major coronary outcomes and all cause mortality.1, 2 While statins are well tolerated by the vast 

majority of patients, they are associated with infrequent muscle, renal, and hepatic adverse 

events.3-9  Statin associated muscle and renal toxicity occur on a continuum from minor myalgias 

and proteinuria to severe myositis, renal failure, and fatal rhabdomyolysis.10-12  Statin associated 

hepatic toxicity is characterized by transaminitis and rarely serious hepatic dysfunction or hepatic 

failure.13, 14  Clinical trials, case reports, and observational studies show these adverse events are 

associated with all marketed statins.9, 15-17 While the incidence of serious statin adverse events is 

low, muscle toxicity is a leading cause of statin discontinuation - particularly among patients 

treated with high-potency statin therapy.18, 19  It has been shown that statin-related adverse 

events occur in a dose dependent manner.  It has been hypothesized that they may be 

exacerbated by pharmacokinetic (PK) statin-drug interactions that increase statin system 

exposure.8, 15, 20 17, 21 22-25   

However, not all statins have the same drug interaction potential.   The unique 

physiochemical property of each statin makes certain statins more likely to interact with 

concomitant medications. Of particular importance is the drug interaction between statins and 

drugs that inhibit the CYP3A4 metabolic pathway.  The CYP3A4 isoenzyme is the most prevalent 

isoenzyme in the cytochrome P450 enzyme system.  The CYP3A4 isoenzyme metabolizes more 

than 50% of all marketed pharmaceuticals.26 Statins that undergo phase I metabolism by the 

CYP3A4 isoenzyme are referred to as statin 3A4 substrates.  Statins that do no use the CYP3A4 

isoenzyme metabolic pathway are referred to as statin non-3A4 substrates. This investigation 

focuses on statin phase I metabolic inhibition, specifically the clinical importance of the drug 

interaction between statins and concomitant drugs which inhibit the CYP3A4 isoenzyme 

(CYP3A4 inhibitors). CYP3A4 inhibitors prevent CYP3A4 isoenzymes from metabolizing other 

drugs (e.g., statin 3A4 substrates). As serious statin adverse events are potency and plasma 

concentration related, it is recognized that plasma levels of statins 3A4 substrates may increase 
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with concomitant administered of CYP3A4 inhibitors.27  Currently marketed pharmaceuticals that 

are CYP3A4 inhibitors are commonly used.  They include calcium channel blockers, H2 receptor 

antagonists, antibiotics, antifungals, antidepressants, antiretrovirals, and immunosuppresants.28  

The purpose of this investigation is to study the clinical importance of the drug interaction 

between statins and CYP3A4 inhibitors.  Given the physiochemical properties, drug interaction 

potential, and prior research, we hypothesized an increased relative hazard for statin 3A4 

substrates compared to statin non-3A4 substrates with CYP3A4 inhibitor concomitancy. Studies 

to quantify the hazard of statin-related adverse events for different statins (with different 

metabolism) with CYP3A4 inhibitor concomitancy have not been conducted.   

We conducted two empiric investigations and a methodologic study to evaluate the clinical 

importance of the drug interaction between statins and CYP3A4 inhibitors. The first empiric study 

uses spontaneous reports of rhabdomyolysis associated with simvastatin and pravastatin to 

determine if the CYP3A4 mediated drug interaction results in a selective increase in 

rhabdomyolysis reporting rates based on different statin metabolic pathways. Given the 

aforementioned physiochemical characteristics of each statin, we hypothesize an increased risk 

for simvastatin, but not for pravastatin, with CYP3A4 inhibitor concomitancy. The project title is: 

Clinical importance of the drug interaction between statins and CYP3A inhibitors - analysis of 

spontaneous reports of rhabdomyolysis. Its specific aim is: to determine if the CYP3A4 mediated 

drug interaction results in a selective increase in spontaneous rhabdomyolysis reporting rates 

based on different statin metabolic pathways. The study’s hypothesis is: because of the potential 

increased statin exposure when a statin 3A4 substrate is concomitantly prescribed with a 3A4 

inhibitor, there will be greater spontaneous rhabdomyolysis reporting compared to patients 

concomitantly prescribed a statin non-3A4 substrate and a 3A4 inhibitor. 

The methodologic study is a simulation study to evaluate propensity score methods in the 

setting of a drug-drug interaction study.  In drug-drug interaction studies, such as with 

aforementioned empiric studies of statins and CYP3A4 inhibitors, there may be more than two 

non-ordered exposure categories. No applied methodologic research using simulations to 

evaluate different propensity score methods in multiple, non-ordered exposure categories have 
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been published.  This study evaluated relative bias and coverage probability associated with 

different binary and multinomial propensity score methods. Researchers studying drug 

interactions may find this research informative to guide their confounding adjustment method. By 

evaluating each propensity score method under different scenarios, we intended to provide drug-

drug interaction researchers with a broadly applicable tool that will guide their choice of PS 

method.  Specifically, the title is:  A comparison of multinomial and binary propensity score 

methods in a drug-drug interaction study. Its specific aim is to use Monte Carlo simulation to 

compare bias, precision, and coverage probability of multinomial and multiple binary propensity 

score methods in the setting of drug-drug interaction studies. The study’s hypothesis is: the 

multinomial propensity score will reduce bias, increase precision, and have better empiric 

coverage than multiple different binary propensity score methods. 

The second empiric study endeavors to evaluate the clinical importance of the drug 

interaction between statins and CYP3A4 inhibitors in a large retrospective cohort study using a 

validated electronic medical record database.  In three separate cohort studies, we evaluated the 

relative hazard of (i) muscle toxicity, (ii) kidney dysfunction, and (iii) hepatic dysfunction 

associated with statin 3A4 substrates compared to statin non-3A4 substrates with CYP3A4 

inhibitor concomitancy. The project title is: Clinical importance of the drug interaction between 

statins and CYP3A4 inhibitors - THIN Cohort study. Its specific aim is: to compare the relative 

hazard of muscle toxicity, kidney dysfunction, and hepatic dysfunction following concomitant 

therapy with a: [statin CYP3A4 substrate plus a CYP3A4 inhibitor] vs. [statin non-CYP3A4 

substrate plus a CYP3A4 inhibitor]. The study’s hypothesis is: because of the potential increased 

statin exposure when a statin CYP3A4 substrate is concomitantly prescribed with a CYP3A4 

inhibitor, there will be greater relative hazard of muscle toxicity, renal dysfunction, and hepatic 

dysfunction compared to patients concomitantly prescribed a statin non-CYP3A4 substrate and a 

CYP3A4 inhibitor. 
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PROJECT 1: CLINICAL IMPORTANCE OF THE DRUG INTERACTION BETWEEN STATINS 
AND CYP3A4 INHIBITORS - ANALYSIS OF SPONTANEOUS REPORTS OF 
RHABDOMYOLYSIS (AERS) 
 
Title of the paper: Rhabdomyolysis reports show interaction between simvastatin and CYP3A4 
inhibitors 
 
Names of the Authors: 
Christopher Rowan, B.S.1 
Allen D. Brinker, M.D., M.S.2 
Parivash Nourjah, Ph.D.2 
Jennie Chang, Pharm.D.2 
Andrew Mosholder, M.D., M.P.H.2 
Jeffrey S. Barrett, Ph.D., FCP3 
Mark Avigan, M.D., C.M.2 
 
Names of the Institutions: 
1 University of Pennsylvania School of Medicine 
Center for Clinical Epidemiology and Biostatistics 
 
2 Division of Drug Risk Evaluation, Office of Surveillance and Epidemiology, Center for Drug 
Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 
 
3 Laboratory for Applied PK/PD, Clinical Pharmacology & Therapeutics Division 
The Children's Hospital of Philadelphia 
 
Contact information for the corresponding author: 
Christopher Rowan 
University of Pennsylvania School of Medicine 
Center for Clinical Epidemiology and Biostatistics 
Room 108, Blockley Hall 
423 Guardian Drive 
Philadelphia, Pennsylvania, 19104 
E-mail: crowan@mail.med.upenn.edu 
 
Five key points: 
1. We studied spontaneous reports of rhabdomyolysis associated simvastatin, a CYP3A4 
substrate, and pravastatin, a non-CYP3A4 substrate, for evidence of CYP3A4 interaction. 
2. We found 3 out of 25 pravastatin reports and 56 out of 118 simvastatin reports were associated 
with a concomitant CYP3A4 inhibitor 
3. Fifteen percent of pravastatin and 12.5 percent of simvastatin prescriptions were concomitantly 
prescribed with a CYP3A inhibitor. 
4. The adverse event reporting rate ratios for rhabdomyolysis (statin w/CYP3A4 inhibitor vs. statin 
w/o CYP3A4 inhibitor) were 0.77 and 6.34 for pravastatin and simvastatin respectively. 
5. The comparison of reporting rate ratios (simvastatin/pravastatin) suggests effect modification 
by CYP3A4 inhibitor as predicted in FDA approved labeling for simvastatin. 
 
Requests for reprints should be sent to: 
crowan@mail.med.upenn.edu 
Conflict of Interest: None declared 
Disclaimer: The views expressed are those of the authors and do not necessarily represent those 
of the Food and Drug Administration or imply its endorsement. 
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ABSTRACT 

Purpose:  To assess spontaneous reports of rhabdomyolysis associated with simvastatin and 

pravastatin for evidence of concomitant CYP3A4 inhibitor interaction. Clinical trial results 

advocate for the use of cholesterol lowering in high-risk patients including diabetics and the 

elderly.  Given the association between advancing age, metabolic, and cardiovascular disease, 

many patients are treated with concomitant medications upon statin initiation. Although statins are 

generally safe, minor and severe adverse reactions arise, especially when given to patients 

taking concomitant medications that inhibit the statin clearance and lead to increased statin 

plasma concentration.   

Methods: We conducted a comparative case series of rhabdomyolysis reports associated with 

simvastatin and pravastatin. Domestic spontaneous reports were obtained from the FDA's 

Adverse Event Reporting System (AERS). Drug utilization data were obtained from IMS HEALTH 

and the National Ambulatory Medical Care Survey (NAMCS). Adverse event reporting rates 

(AER) and ratios (AERR) of rhabdomyolysis associated with simvastatin and pravastatin - 

stratified the presence and absence of a concomitant CYP3A4 inhibitor concomitancy were 

determined. 

Results: Stratification by CYP3A4 inhibitor concomitancy did not change the rhabdomyolysis AER 

for pravastatin with versus without a CYP3A4 inhibitor (2.4 cases and 3.1 cases per 10 million Rx, 

respectively). However, stratification of simvastatin reports with versus without a concomitant 

CYP3A4 inhibitor resulted in a rhabdomyolysis AER of 38.4 and 6.0 cases per 10 million Rx. The 

corresponding AERR with versus without a CYP3A4 inhibitor was 0.77 for pravastatin and 6.43 

for simvastatin. 

Conclusions:  

Spontaneous adverse event reports provide evidence of increased risk for rhabdomyolysis based 

on the interaction between simvastatin and selected CYP3A4 inhibitors.  

 
 

5



INTRODUCTION 

Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are 

extremely effective in the treatment of dyslipidemias.29, 30 They are well tolerated by the vast 

majority of patients, but are infrequently associated with muscle related toxicity.  Statin associated 

muscle toxicity occurs on a continuum from minor myalgias to potentially fatal rhabdomyolysis.10  

Though rare, rhabdomyolysis has been reportedly associated with all currently marketed statins. 

Postmarketing reports of rhabdomyolysis resulted in the suspension of cerivastatin marketing, 

likely due to a drug-drug interaction.23  However, because statins have variable physiochemical 

properties, certain statins may be more or less likely to interact with concomitant medications. 

Due to high affinity and selectivity for the HMG-CoA reductase enzyme, statins have little 

potential to alter the pharmacokinetics of other drugs.31  However, the unique pharmacokinetic 

(PK) characteristics of each statin may substantially impact their susceptibility to be modified by 

concomitant medications.27  The PK differences between statins include: solubility, phase I and II 

metabolism, utilization of hepatic transporters, formation of active metabolites, bioavailability, 

protein binding, and excretion. Importantly, simvastatin (SV) and lovastatin (LV) are administered 

as lactone pro-drugs while the other statins are administered as β-hydroxy acids.  SV and LV 

lactone undergo hydrolysis in the plasma, intestinal mucosa, and liver to form active β-hydroxy 

acids.32-36 One PK characteristic shared by all statins is extensive first pass hepatic extraction.   

Hepatic extraction occurs by two primary mechanisms - active transport and passive 

diffusion.  Organic anion transporting polypeptide (OATP) is the primary membrane protein which 

actively transports hydrophilic statins pravastatin (PV) and rosuvastatin (RV) from portal 

circulation into the hepatocyte (influx).  The lipophilic statins atorvastatin (AV), CV, fluvastatin 

(FV), LV, and SV enter mainly by passive diffusion; however, the acid forms of these statins also 

utilize active transport mechanisms.27, 37-40  

Following entry into the hepatocyte each statin undergoes a unique cascade of metabolic 

and non-metabolic processes which ultimately results in cholesterol biosynthesis inhibition and 

statin elimination.  The metabolic processes include phase I oxidation (mediated by cytochrome 

P450 (CYP) isoenzymes) and phase II glucuronidation (mediated by UDP glucuronosyl 

 
 

6



transferase (UGT)). The CYP isoenzymes responsible for phase I statin metabolism are 3A4, 

2C8, 2C9, and 2C19. Atorvastatin, LV, and SV are oxidized by the CYP3A4 isoenzyme to form 

both active and inactive metabolites.41, 42 Cerivastatin (CV) is oxidized by CYP2C8 and to a lesser 

extent CYP3A4.43 Fluvastatin (FV) is oxidized by CYP2C9.39, 43  Pravastatin (PV) has no phase I 

metabolism and is minimally metabolized by phase II glucuronidation. Rosuvastatin (RV) also has 

negligible phase I metabolism (by  CYP2C9 and CYP2C19) and is primarily eliminated as the 

unchanged parent compound.36, 44  

Following hepatocyte entry and metabolism (phase I and II), statins exert their cholesterol 

inhibitory effect and are subsequently eliminated. However, a varying proportion of statin reaches 

systemic circulation, by efflux transport and passive diffusion.27, 37, 38 The efflux transport proteins: 

P-glycoprotein (P-gp) and multidrug resistance associated protein 2 (MRP2), are believed to 

affect the disposition, bioavailability and elimination of all statins - primarily in the acid form.45 For 

most statins, elimination occurs through biliary excretion, PV is partially eliminated by renal 

excretion.  Inhibition of statin metabolism (phase I or II) and/or active membrane transporters 

(influx or efflux) may result in elevated plasma concentrations and has the potential to increase 

the risk for statin-related adverse events.  

Gemfibrozil (GEM) and cyclosporine (CSA) have been shown to interact with statins via both 

metabolic and hepatic transport pathways.  Shitara et al showed the drug interaction between 

GEM and CV occurred via GEM inhibiting CV hepatic uptake (via OATP) and oxidation (via 

CYP2C8).46  Similarly, CSA has been shown to inhibit hepatic uptake (OATP), efflux transporters 

(P-gp and MRP2), and oxidation (via CYP3A4).47 Olbricht et al showed a 5 and 20 fold increase 

in area under the curve (AUC) for PV and LV respectively in kidney transplant patients treated 

with CSA.48 Given PV is not a CYP3A4 substrate, the increased AUC is the likely result of 

transporter mediated inhibition.  

This investigation focuses on statin phase I metabolic inhibition, specifically the drug 

interaction between statins and concomitant drugs which inhibit CYP3A4 mediated metabolism 

(CYP3A4 inhibitors).  As serious statin adverse events are dose and plasma concentration 

related, it is recognized that plasma levels of statins oxidized by the CYP3A4 isoenzyme may 
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increase when these statins are concomitantly administered with CYP3A4 inhibitors.41, 49, 50 Many 

commonly used pharmaceuticals are CYP3A4 inhibitors.28  Some of the drug classes that include 

CYP3A4 inhibitors are calcium channel blockers, antibiotics, antifungals, antidepressants, 

anitretrovirals, and immunosuppresants.28 

The CYP3A4 isoenzyme metabolizes more than 50% of marketed drugs.26  A recent 

investigation showed 25% of new statin initiators received a concomitant CYP3A4 inhibitor in the 

first year of statin therapy.51 Case reports, risk-factor models, and clinical trials have shown 

concomitant administration of statins and CYP3A4 inhibitors may increase the risk for 

rhabdomyolysis.52-54 Because of the potential increased risk, some statin product labels warn 

against concomitant administration with CYP3A4 inhibitors. 

To study the clinical impact of this association we studied two statins with different Phase I 

metabolism, but similar hepatic transport mechanisms.  SV (a CYP3A4 substrate) was chosen as 

the object drug and PV (a non-CYP3A4 substrate) as the comparator object drug.  While the 

phase I metabolic pathways for SV and PV are different, both statins should be similarly impacted 

by influx and efflux hepatic transporters (via OATP, P-gp, and MRP2).55, 56  Based on published 

reports by Hsiang37 and Chen45 et al, it is believed that hepatic transport (influx and efflux) of SV 

acid and PV are equally involved.   Any transporter inhibition, due to co-administration of a 

CYP3A4 inhibitor (e.g., CSA), should impact transporter mediated shunting of SV acid and PV 

similarly.  

Studies to quantify the hazard of rhabdomyolysis for different statins (with different 

metabolism) with CYP3A4 inhibitor concomitancy have not been conducted.  The purpose of this 

investigation is to study spontaneous reports of rhabdomyolysis associated with SV and PV to 

determine if the CYP3A4 mediated drug interaction results in a selective increase in 

rhabdomyolysis reporting rates based on different statin metabolic pathways. Given the 

aforementioned physiochemical characteristics of each statin, we hypothesize an increased risk 

for SV, but not for PV, with CYP3A4 inhibitor concomitancy. 

METHODS 
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We conducted a comparative case series of spontaneous reports of rhabdomyolysis 

associated with PV and SV to assess interaction with selected CYP3A4 inhibitors. To control for 

population exposure to each statin, we used the estimated total number of PV and SV 

prescriptions as denominators for each case group. 

Case source: This analysis was conducted at the Food and Drug Administration’s (FDA) 

Center for Drug Evaluation and Research (CDER).  Cases consisted of domestic (U.S.) 

spontaneous adverse event reports of rhabdomyolysis associated with PV and SV.  These 

reports were submitted to the FDA by pharmaceutical manufacturers or health care professionals 

through the MedWatch program.  MedWatch reports are archived in CDER’s Adverse Events 

Reporting System (AERS) database and coded according to the Medical Dictionary for 

Regulatory Activities (MedDRA). A concise review of the history and treatment of adverse drug 

event reports at CDER, including epidemiological inference, has been reported seaparately.57  

Case definition:  

Spontaneous reports of rhabdomyolysis associated with PV and SV were obtained from the 

AERS database.  We acquired all cases of rhabdomyolysis associated with these two agents 

from market launch (November 1991 for PV; January 1992 for SV) through July 2001.   The cut-

off date of July 2001 was selected to limit the effect of stimulated rhabdomyolysis reporting 

following the suspension of cerivastatin marketing in August 2001.  Reports were selected using 

the MedDRA terms rhabdomyolysis, myopathy, or myalgia with further restriction for 

rhabdomyolysis that required hospitalization. After identification of putative cases, all reports were 

manually reviewed by the authors (C.R., A.B.).   

A case of rhabdomyolysis was defined as a patient with a health care professional (HCP) 

diagnosis of rhabdomyolysis or a HCP diagnosis of myositis or myopathy with a creatine 

phosphokinase (CPK) > 10,000 IU/L.  Exclusion criteria included non-U.S. reports, non-HCP 

reports, duplicate reports, “hearsay” reports, published reports, and cases with a history of: non-

statin-related rhabdomyolysis, myositis, dermatomyositis, renal transplantation, or HIV infection / 

treatment. In order to reduce confounding by concomitant statin-fibrate exposure, reports listing 
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concurrent use of gemfibrozil (GEM) were excluded from the primary analysis, but were included 

in a secondary analysis. 

Case exposure definition:  

Each report was carefully reviewed for specific mention of recent administration of PV or SV 

and a concomitant CYP3A4 inhibitor. We further verified the temporality of the statin without a 

CYP3A4 inhibitor or the statin-CYP3A4 inhibitor concomitancy to the event date.  We required 

both the statin and the CYP3A4 inhibitor to be listed (within 30 days of each other) in either the 

concomitant medications section or specific mention of a concomitant (statin-CYP3A4 inhibitor) 

therapy in the report narrative.  Additionally, we required documentation of the statin-CYP3A4 

inhibitor concomitancy to be no more than 30 days prior to the event date or specific mention of 

close temporal association between concomitant exposure and the event in the narrative.  

The CYP3A4 inhibitors chosen for this investigation were: cyclosporine, clarithromycin, 

erythromycin, diltiazem, verapamil, mibefradil, itraconazole, ketoconazole, fluconazole, 

nefazodone, and fluvoxamine. Despite our attempt to study CYP3A4 inhibitors known for potent 

and selective CYP3A4 inhibition, some of the selected CYP3A4 inhibitors also inhibit other 

metabolic and uptake transport pathways.  

Population exposure source:  

Drug utilization data were acquired for the purpose of estimating total U.S. exposure to PV 

and SV with and without a CYP3A4 inhibitor during the study period (denominator data).  These 

data were acquired from two different sources - IMS HEALTH National Prescription Audit Plus 

(NPA Plus) and the NAMCS. NPA Plus data were used to estimate the total number PV and SV 

prescriptions dispensed in the United States from November 1991 through July 2001.15 The 

concomitant statin-CYP3A4 inhibitor frequency was determined using the National Ambulatory 

Medical Care Survey (NAMCS).  

NAMCS is a national probability sample survey of office-based physicians conducted by the 

National Center for Health Statistics, Centers for Disease Control and Prevention.  Statistics 

derived from NAMCS are representative of all ambulatory care visits to physicians engaged in 

non-federal, office-based health care. Participating physicians agree to systematic sampling and 
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review (via chart abstraction) of patient visits during a randomly selected week of the year.  For 

the sampled visits, the physician provides details of specific patient information including patient 

demographics, reason for the visit, up to three medical diagnoses, treatments, and disposition. 

New and continued prescriptions are recorded as well as other treatments and recommendations. 

Data gathered from this survey are transcribed into standard international classification of 

diseases (ICD-9) nomenclature.  Concomitancy data for PV and SV with a CYP3A4 inhibitor were 

collected from NAMCS during the time period 1993-2001. NAMCS is a practical source to 

estimate statin-CYP3A4 concomitancy, although it may not be representative of the overall United 

States concomitant frequency distribution.  

In order to calculate the number of statin prescriptions with a concomitant CYP3A4 inhibitor, 

we multiplied the total number of PV and SV prescriptions by the concomitant frequency 

proportion for PV and SV with a CYP3A4 inhibitor. The remainder of each calculation is the total 

number of PV and SV prescriptions without a CYP3A4 inhibitor. 

Measures of effect:  

The adverse event reporting rate (AER), measured as number of cases per 10 million 

prescriptions, will be calculated using the actual number of cases of rhabdomyolysis associated 

with either PV or SV (as the numerator) and the estimated population exposure as the 

denominator. The adverse event reporting rate ratio (AERR) will also be calculated to reveal the 

relative effect for each statin with and without a concomitant CYP3A4 inhibitor.  

The primary analysis consisted of calculating the rhabdomyolysis AER and AERR 

associated with PV and SV stratified by the presence or absence of a CYP3A4 inhibitor. 

Secondary analyses were conducted to evaluate the potential impact of statin dose and to 

compare the rhabdomyolysis AER and AERR with statin-GEM concomitancy. 

RESULTS 

A search of the AERS database MedWatch reports from 1991 through July 2001, recovered 

73 and 321 potential cases of rhabdomyolysis associated with PV and SV respectively.  Following 

hands-on review, 25 and118 reports, for PV and SV respectively, were classified as unique cases 

fitting the case definition. Demographic and clinical characteristics of these cases are shown in 
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Table 1.  The median age for both groups was 66 years.  Fifty-five percent and 44% of the reports 

were for female patients for PV and SV, respectively. The median dose reported was 20 mg for 

PV and 40 mg SV.  The median reported time to onset of rhabdomyolysis was eight months for 

PV and 5.5 months for SV.  A temporal dose increase was reported in zero out of 25 (0%) PV 

cases and 22 out of 118 (19%) SV cases. A switch from one statin to another statin within 60 

days of the event was reported in one out of 25 (4%) PV cases and 11 out of 118 (9%) SV cases.  

Five (20%) PV and 25 (21%) SV treated patients reported acute renal failure or required dialysis. 

Four patients reportedly died from events presumably related to the adverse drug reaction (two 

(8%) patients treated with PV and two (2%) treated with SV).   

Among the 25 PV and 118 SV associated cases, three (12%) and 56 (47%) reported a 

concomitant CYP3A4 inhibitor, respectively. The distribution of PV and SV cases with specific 

concomitant CYP3A4 inhibitor is shown in Table 2. Of interest, six cases associated with SV and 

one case associated with PV reported two concomitant CYP3A4 inhibitors. 

Table 3 shows the SV dose analysis stratified by the presence or absence of a concomitant 

CYP3A4 inhibitor.  Importantly, the median SV dose with and without a concomitant CYP3A4 

inhibitor was equivalent (40 mg).  However, the mean SV dose was higher (56 mg vs. 38mg) for 

cases reporting a concomitant CYP3A4 inhibitor than for cases not reporting a concomitant 

CYP3A4 inhibitor. A similar dose analysis for PV cases was not possible due to missing dose 

information among the three PV cases reporting a concomitant CYP3A4 inhibitor. A recent dose 

increase was reported was reported in 0 out of 25 (0%) PV cases and 23 out of 118 (19%) SV 

cases. 

Reporting rate analysis: The NPA Plus audit produced 83,673,000 and 120,188,000 U.S. 

dispensed retail prescriptions for PV and SV from initial marketing.15  The observed range of 

physician response for NAMCS was 63% (1999) to 73% (1993). Table 4 shows the NAMCS 

concomitant frequency data for selected CYP3A4 inhibitors and GEM. The proportion of mentions 

of PV and SV with a concomitant CYP3A4 inhibitor was 0.15 and 0.12 respectively.  For use in 

the secondary analysis, the proportion of concomitant mentions of PV and SV with concomitant 

GEM was 0.0079 and 0.0149 respectively.  Based on these data, we found the estimated US 
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population exposure for PV and SV to be approximately 83 million and 118.4 million U.S. 

dispensed prescriptions (without GEM concomitancy). The primary analysis will use these two 

numbers for calculating the AER and AERR.   

Table 5a shows the unadjusted AER analysis for PV and SV.  Twenty five cases of 

rhabdomyolysis associated with PV were identified among an estimated 83 million PV 

prescriptions yielding an AER of 3.0 cases per 10 million prescriptions.  One hundred eighteen 

cases of rhabdomyolysis associated with SV among an estimated 118.4 million SV prescriptions 

yielding an AER of 10.0 cases per 10 million prescriptions. Without adjusting for CYP3A4 inhibitor 

concomitancy, the rhabdomyolysis AERR (SV/PV) was 3.3.   

AERs and AERRs stratified by concomitant use of CYP3A4 inhibitors are shown in Table 5b. 

The AERs for PV with and without a concomitant CYP3A4 inhibitor are 2.4 and 3.1 cases per 10 

million prescriptions (AERR = 0.77). The AERs for SV with and without a concomitant CYP3A4 

inhibitor are 38.4 and 6.0 cases per 10 million prescriptions (AERR = 6.43).  Table 5b also shows 

the relative effect of SV cases to PV cases.  When stratified by CYP3A4 inhibitor, the relative 

effect (AERR) of SV/PV was 16.0 (38.4/2.4) with a concomitant CYP3A4 inhibitor and 1.9 

(6.0/3.1) without a concomitant CYP3A4 inhibitor. 

Tables 6a and 6b show the secondary analysis with concomitant statin and GEM.  Twenty 

eight PV and 159 SV spontaneous reports of rhabdomyolysis met the prespecified inclusion 

criteria. Among these cases, 3 PV and 41 SV cases reported concomitant exposure to GEM. The 

crude AERs were 3.3 and 13.2 per 10 million prescriptions for PV and SV, respectively.  

Stratifying the PV cases by concomitant GEM gave AERs of 3 and 45 per 10 million prescriptions 

with and without GEM, respectively (AERR = 15). Stratifying the SV cases by concomitant GEM 

gave AERs of 229 and 10 cases per 10 million prescriptions with and without GEM, respectively 

(AERR = 23). 

All results use the aggregate proportion of all CYP3A4 inhibitors with a concomitant statin 

(SV =0.1526, PV=0.1231). However, individual CYP3A4 inhibitor concomitancy with SV resulted 

in AER point estimates greater than the baseline AER (6.0 cases per 10 million SV Rxs without a 

CYP3A4 inhibitor) (data not shown). 
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DISCUSSION 

This descriptive analysis of rhabdomyolysis AERs and AERRs associated with PV and SV 

reveals noteworthy effect modification by CYP3A4 inhibitor concomitancy for SV but not PV 

(Table 5b). The crude AERs and AERRs (Table 5a) for SV and PV are consistent with previous 

findings. Chang et al. reported a crude reporting rate ratio of 4 (SV/PV), which approximates our 

curde AERR of 3.3 (SV/PV).15 Contrasting the crude AERR with the stratified AERR (by CYP3A4 

inhibitor concomitancy) suggests a striking interaction consistent with the different 

pharmacokinetic clearance pathways for PV and SV. 

In order to further explore the phase I interaction hypothesis, we conducted a secondary 

analysis among PV and SV reports with concomitant GEM as the interacting drug. GEM has been 

shown to inhibit Phase I metabolism (via primarily the CYP2C8 isoenzyme), Phase II metabolism 

(glucuronidation), and uptake transport (via OATP).46 In contrast to CYP3A4 inhibitors, GEM 

minimally inhibits the phase I metabolic pathway for either PV or SV.  Thus, we hypothesized no 

effect modification for PV and SV with concomitant GEM. Supporting this hypothesis, the results 

show that although PV-GEM and SV-GEM concomitancy is associated with elevated AERs 

(Table 6b), the relative effect (AERR) is seemingly non-differential between PV (AERR = 15) and 

SV (AERR = 23) with versus without GEM.  

The statin-GEM findings provide another level of evidence to support the effect modification 

found in the primary analysis.  While GEM exhibited interaction potential with cerivastatin 

plausibly through both metabolic (CYP2C8) and uptake transport (OATP) pathways, it does not 

possess PK characteristics that make it likely to differentially interact with PV or SV.  Although 

both PV and SV rely on hepatic uptake transport via OATP, neither drug undergoes phase I 

metabolism by CYP2C8. Thus, the non-differential finding with concomitant GEM is expected and 

reassuring.  

As shown in Table 3, stratification by statin dose provides inconclusive results for SV and PV 

associated rhabdomyolysis when adjusted for a concomitant CYP3A4 inhibitor.  Despite skewed 

data with large variances, SV-associated cases have the same median dose regardless of 

CYP3A4 concomitancy.  However, for PV cases, it is not possible to compare the impact of 
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increasing dose between the two strata due to missing dose information for cases reporting 

CYP3A4 concomitancy.  Further analyses need to be conducted to fully evaluate the potential 

interaction by statin dose given missing and inconsistent data inherent to voluntary, spontaneous 

reports. 

Although the findings from this study are consistent with a robust and selective interaction 

between SV and CYP3A4 inhibitors, the study has limitations which should be highlighted.  

Spontaneous AERs are believed to underestimate actual incidence rates substantially.  This 

occurs because the adverse event must be: diagnosed, attributed to a drug, reported to the FDA 

or to the manufacturer, and documented with specific information in order to meet study inclusion 

criteria.  Furthermore, the discrepancy between reporting rates and incidence rates may increase 

as physicians become more comfortable identifying and managing statin-related adverse drug 

reactions.   

Other limitations involve the quality of case reports. Although the MedWatch form has 

changed little during the study period, the content of each case report may differ considerably 

from report to report. This difference is further complicated by the reporting source, e.g., 

pharmaceutical manufacturer or health care provider.  In order to improve study precision, we 

excluded cases reported by non-health care providers and recorded the reporting source as a 

potential confounding variable. Fortunately, there was near perfect balance of reports reported to 

the FDA by the pharmaceutical manufacturers for SV and PV.  However, this does not rule out 

differential protocols for managing adverse event reporting between the manufacturers.   

Further limitations should be considered regarding the drug utilization estimates (the 

denominator used in calculating the adverse event reporting rates (AER)). This is particularly true 

for the proportion of concomitant CYP3A4 inhibitor therapy with PV (0.15) and SV (0.12). These 

concomitant frequency proportions were derived from NAMCS, a weighted and projected annual 

national survey of approximately 2,000 office-based physicians in the US. There may be 

substantial variability for infrequent events - such as infrequently used drug products.  This 

variability is therefore increased in the assessment of coincident events, such as the concomitant 

use of two specific agents (e.g., a rarely used drug product in conjunction with a statin).  
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Furthermore, NAMCS may not capture drugs prescribed by non-NAMCS participating 

physicians, particularly specialists.  Section 9 of the NAMCS survey requests information on 

“medications that were ordered, supplied, administered or continued during this visit.”  As this 

statement is subject to interpretation, one practice may record all patients medications while 

another may record only those ordered, supplied, administered or continued during that specific 

office visit.  For example, if a NAMCS participating primary care physician records the statin 

therapy he initiated (or refilled), but does not record the antifungal therapy prescribed by a 

dermatologist, the concomitancy therapy is not recorded.  This potential inconsistency may 

underestimate the true proportion of concomitant statin-CYP3A4 inhibitor therapy.  

Underestimating concomitancy (statin-CYP3A4 inhibitor or statin-GEM concomitancy) would 

overestimate the reporting rates and reporting rate ratios.  To better understand the impact of a 

potential underestimation of the proportion of statin-CYP3A4 inhibitor concomitancy, we 

conducted a sensitivity analysis for different proportions of statin-CYP3A4 inhibitor concomitancy. 

Table 7 shows an inverse relationship between the concomitant frequency proportion and the 

AERs and AERRs. That is, if the concomitancy estimate is underestimated, the reporting rates 

and reporting rate ratios may be biased.  

Conclusion 

Despite these limitations, our findings are consistent with increased risk of rhabdomyolysis 

during concomitant use of SV, a CYP3A4 substrate statin, and a CYP3A4 inhibitor. Additionally, 

the results support observations regarding muscle toxicity in SV clinical trials with concomitant 

CYP3A4 inhibitors. Further analytic research is warranted to fully elucidate these findings. 

 
 

16



TABLES 

AERS TABLE 1 

Case attributes Pravastatin (n=25) Simvastatin (n=118)

Age (years) n=16 n=102
range 24 - 79 27-93
median 66 66
mean 61 64

Sex n=22 n=110
female 12 48
male 10 62
unknown 3 8

Weight (lbs) n=5 n=48
mean 171 181
median 181 173

Reported statin switch n=25 n=118
number switched (%) 1 11

Concomitant meds n=14 n=106
median number 5 4
standard deviation 3 3

Reaction onset (months) n=15 n=82
range 0.2 - 33 0.1 - 90
median 8 5.5
mean 12 13

Outcome variables n=25 n=118
hospitalized 25 118
death 2 2
CK median 12,300 19,240
CK range 1,076 - 700,000 761 - 625,333
acute renal failure or dialysis 5 25

Report characteristics n=25 n=118
manufacturer report 17 81
report year (median) 1997 1999
report year range 1992-2001 1993-2001

Table 1. Demographic and clinical attributes of domestic spontaneous 
reports of rhabdomyolysis associated with pravastatin and simvastatin*

* Excluding cases with concomitant gemfibrozil and gemfibrozil prescriptions  
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AERS TABLE 2 

CYP3A4 inhibitor(s)
 Number of 
simvastatin 

cases

Number of 
pravastatin 

cases

Statin plus 1 reported inhibitor

clarithromycin 10

mibefradil 10

verapamil 8

nefazodone 6

cyclosporine 5

diltiazem 5 2

itraconazole 3

erythromycin 2

ketoconazole 1

Statin plus 2 reported inhibitors

cyclosporine, diltiazem 1 1

cyclosporine, itraconazole 1

cyclosporine, ketoconazole 1

cyclosporine, mibefradil 1

cyclosporine, verapamil 1

mibefradil, verapamil 1

Total 56 3

Table 2. Domestic spontaneous reports of rhabdomyolysis 
associated with simvastatin or pravastatin and concomitant 
CYP3A4 inhibitors
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AERS TABLE 3 

SV PV SV PV SV PV
Reports of rhabdomyolysis n=118 n=25 n=56 n=3 n=62 n=22

Number reporting dose (%) 95 (80) 13 (52) 46 (82) 0 49 (79) 13 (52)
Dose range (mg) 5-160 20-40 5-160 n/a 5-80 20-40
Mean / median / sd  (mg) 47 / 40 / 31 26 / 20 / 10 56 / 40 / 34 n/a 38 / 40 / 27 26 / 20 / 10
Reported taking max* statin dose ( 32 (34) 4 (31) 20 (43) n/a 12 (24) 4 (31)
Recent statin dose increase (%) 23 (19) 0 (0) 13 (23) n/a 10 (16) 0 (0)

* Max dose refers to the maximum FDA approved dose in the United States (pravastatin = 40mg; simvastatin = 80mg)

Table 3. Dose analysis for domestic spontaneous reports of rhabdomyolysis associated with pravastatin and 
simvastatin stratified by concomitant use of a selected CYP3A4 inhibitor

All cases w/ CYP3A4 inhibitor w/o CYP3A4 inhibitor
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AERS Table 4 

Selected CYP3A4 inhibitors Pravastatin Simvastatin

clarithromycin 0.80% 0.01%

erythromycin 0.77% 0.19%

cyclosporine 0.52% 0.04%

mibefradil 0.06% 0.01%

verapamil 5.02% 3.80%

diltiazem 8.01% 7.53%

nefazodone 0.20% 0.27%

itraconazole/ketoconazole 0.28% 0.39%

Combined total 15.26% 12.31%

Fibrates

gemfibrozil 0.79% 1.49%

Table 4.  Proportion of concomitant mentions of pravastatin or 
simvastatin and selected CYP3A4 inhibitors or gemfibrozil in the 
National Ambulatory Care Survey (NAMCS), 1993-2001

 



AERS TABLE 5A 

Pravastatin Simvastatin AERR

25 118
83,012,000 118,397,000
3.0 10.0

Table 5a. Reporting rates (AER) and ratios (AERR) for domestic spontaneous 
reports of rhabdomyolysis associated with pravastatin and simvastatin*

All cases
Cases of Rhabdomyolysis

3.3
Rxs (1991-2001)

AER (per 107 Rxs)
* Excluding cases w ith concomitant gemfibrozil and gemfibrozil prescriptions

 
AERS TABLE 5B 

w/ CYP3A4 
inhibitor

w/o CYP3A4 
inhibitor

AERR

3 22
12,668,000 70,344,000
2.4 3.1

Cases of Rhabdomyolysis 56 62
14,575,000 103,822,000
38.4 6.0

Table 5b. Reporting rates (AER) and ratios (AERR) for domestic spontaneous 
reports of rhabdomyolysis associated with pravastatin and simvastatin stratified 
by concomitant use of a selected CYP3A4 inhibitor*

Pravastatin cases
Cases of Rhabdomyolysis

0.77
Rxs (1991-2001)

AER (per 107 Rxs)

Simvastatin cases

6.43
Rxs (1991-2001)

AER (per 107 Rxs)
* Excluding cases w ith concomitant gemfibrozil and gemfibrozil prescriptions
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AERS TABLE 6A 

Pravastatin Simvastatin AERR

28 159
83,673,000 120,188,000
3.3 13.2

Table 6a. Reporting rates (AER) and ratios (AERR) for domestic spontaneous 
reports of rhabdomyolysis associated with pravastatin and simvastatin**

All cases
Cases of Rhabdomyolysis

4Rxs (1991-2001)

AER (per 107 Rxs)
** Including cases w ith concomitant gemfibrozil and gemfibrozil prescriptions

 
AERS TABLE 6B 

w/ gemfibrozil w/o gemfibrozil AERR

Cases of Rhabdomyolysis 3 25
Rxs (1991-2001) 661,000 83,012,000

AER (per 107 Rxs) 45.4 3.0

Cases of Rhabdomyolysis 41 118
Rxs (1991-2001) 1,791,000 118,397,000

AER (per 107 Rxs) 228.9 10.0
** Including cases w ith concomitant gemfibrozil and gemfibrozil prescriptions

15

23

Table 6b. Reporting rates (AER) and ratios (AERR) for domestic spontaneous 
reports of rhabdomyolysis associated with pravastatin and simvastatin stratified 
by concomitant use of gemfibrozil**

Pravastatin cases

Simvastatin cases
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AERS TABLE 7 

w/ CYP3A4 
inhibitor

w/o CYP3A4 
inhibitor

w/ CYP3A4 
inhibitor

w/o CYP3A4 
inhibitor

Pravastatin (n=3) (n=22)
0 83,012,000 0% - 2.7 -

4,150,600 78,861,400 5% 7.2 2.8 2.6

8,301,200 74,710,800 10% 3.6 2.9 1.2

12,667,631 70,344,369 15.26% 2.4 3.1 0.8

16,602,400 66,409,600 20% 1.8 3.3 0.5

20,753,000 62,259,000 25% 1.4 3.5 0.4

Simvastatin (n=56) (n=62)

0 118,397,000 0% - 5.2 -

5,919,850 112,477,150 5% 94.6 5.5 17.2

11,839,700 106,557,300 10% 47.3 5.8 8.1

14,574,671 103,822,329 12.31% 38.4 6.0 6.4

17,759,550 100,637,450 15% 31.5 6.2 5.1

23,679,400 94,717,600 20% 23.6 6.5 3.6

29,599,250 88,797,750 25% 18.9 7.0 2.7

*** excluding cases w ith concomitant gemfibrozil and gemfibrozil prescriptions

Table 7. Sensitivity analysis of statin-CYP3A4 inhibitor concomitancy***

* AER is the number of reports/ the number of estimated prescriptions (per 10 million prescriptions)

** AERR is calculated as the reporting rate w / a CYP3A4 inhibitor/ the reporting rate w /o a CYP3A4

Number of prescriptions AER*Concomitant 
%

AERR**
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ABSTRACT 

Purpose: The propensity score was developed to control for differences in observed covariates 

for two treatment groups. In drug-drug interaction studies, there are usually more than two non-

ordered exposure categories.  The theoretical framework for the multinomial score was previously 

described. However, simulation studies to evaluate the performance characteristics of different 

propensity score methods in analyzing multiple, non-ordered exposure categories have not been 

published. This is important for empiric investigations where the presence and quantity of model 

misspecification is rarely known.  

Methods: In a simulated drug-drug interaction study, we evaluated the statistical performance of 

multiple multinomial and binary propensity score approaches of confounding adjustment. Monte 

Carlo simulations were performed on a synthetic cohort with a binary outcome (Y), three binary 

exposure variables (A1, A2, A3=A1*A2), and three covariates (X1, X2, X3).  We compared percent 

bias, coverage probability, and precision (MSE) of the interaction ratio parameter from four 

different binary propensity score adjusted models and the multinomial propensity score adjusted 

model.  We also compared the relative performance of each propensity score approach to an 

unadjusted model (the null model) and the correctly specified multivariate model (the MV model). 

We evaluated statistical performance under a variety of scenarios typical of drug safety research. 

To achieve this, we determined baseline coefficient values for each parameter from those found 

in drug safety research.  Holding baseline parameters constant, we varied individual parameters 

one at a time to assess performance characteristics under a variety of scenarios. We varied the 

sample size, the prevalence of exposure, the strength of association between exposure variables, 

the interaction between one exposure variable and a covariate, the outcome incidence, the 

strength of the interaction ratio, and propensity score form.   

Results: The results from these drug interaction simulations show the multinomial propensity 

score adjusted model was the least biased, had the greatest coverage probability, and best 

precision compared to four different binary propensity score adjusted models. For all scenarios, 

the multinomial propensity score model demonstrated consistently superior statistical 
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performance - similar to the rarely identifiable MV model. The multinomial propensity score was 

the least biased in the presence of model misspecification.  

Conclusion: Investigators conducting drug-drug interaction research should consider using the 

multinomial propensity score approach to adjust for confounding. 
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INTRODUCTION 

Inferring the causal effect of one or more treatments that are not randomly assigned is often 

the goal of empiric observational research.  However, absent random treatment assignment, the 

researcher has no assurance that patients receiving different treatments have similar distributions 

of factors that influence outcome occurrence.  Therefore, researchers must make every effort to 

account for inter-patient differences in pre-treatment (baseline) characteristics, using appropriate 

statistical methodology.  

One approach to account for (or balance) patient baseline characteristics is to use the 

propensity score, which is the predicted probability of treatment conditional on the observed 

(baseline) covariates.58 The propensity score is a one dimensional covariate used to describe a 

multidimensional covariate matrix, and has been shown to be particularly useful when studying 

rare outcomes with many potential confounders, where it is not feasible to include all of the 

confounders in the statistical models.59  The propensity score was originally developed to control 

for differences in observed covariates for two treatment groups (i.e., for a binary exposure).58   

Methods have been described for deriving and using the propensity score for ordered 

exposure categories (e.g., in dose response analyses).60-62  However, little research has been 

conducted using the propensity score to balance the predicted probability of treatment for more 

than two, non-ordered treatment categories.  Imai et. al and Imbens et. al described the 

theoretical framework for the multinomial propensity score (PSm).61, 63 They showed the predicted 

probability of more than two treatments could be derived given observed covariates. Huang and 

colleagues applied the PSm in a cross-sectional study of patient satisfaction with asthma care 

(the outcome) associated with twenty different physician groups (the multinomial exposure).64 

They showed the multinomial propensity score approach balanced the covariates among the 

different physician groups.  While this study showed covariate balancing properties of the PSm, 

the authors didn't conduct simulations to investigate further PSm performance characteristics 

compared to other binary PS approaches or with correlated exposures.   

The multinomial propensity score approach has potential applications in numerous settings 

where the exposure has more than two categories.  A drug-drug interaction (DDI) study is one 
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example of a multinomial exposure.  DDI studies often have more than two unordered exposure 

categories made up of combinations of an object drug and a precipitant drug. An object drug is a 

drug that is affected by a drug-drug interaction (e.g., reduced metabolism and increased 

bioavailability). The object drug is often a substrate for a specific hepatic enzyme.  A precipitant 

drug is a drug that catalyzes the drug-drug interaction through inhibition of the specific hepatic 

enzyme. Each patient may be in one of four exposure categories.  The exposure categories 

include: (i) the object drug only, (ii) the comparator object drug only, (iii) the object drug and the 

precipitant drug, and (iv) the comparator object drug and the precipitant drug.  Importantly, there 

is no assumed ordering to these four exposure categories.  Using this type of DDI study 

framework, we propose to evaluate the statistical performance of different propensity score 

methods (multinomial and binary) through simulation.    

No applied methodologic research using simulations to evaluate different propensity score 

methods in multiple, non-ordered exposure categories have been published.  This study 

evaluates relative bias, coverage probability, and mean squared error associated with different 

binary and multinomial propensity score methods. We simulated scenarios relevant to drug safety 

investigations.  By evaluating each propensity score method under different scenarios, we 

provide drug-drug interaction researchers with a broadly applicable tool that will guide their choice 

of confounding adjustment method.  The results from this study provide guidance regarding the 

validity of the multinomial propensity score.  If the multinomial propensity score adequately 

reduced bias under the scenarios evaluated, we will use this method for confounding adjustment 

in the confirmatory drug-drug interaction cohort study.   

METHODS 

For the simulated drug-drug interaction study, the primary effect estimate is the interaction 

between the object drug and the precipitant drug. The interaction term is referred to as the 

interaction ratio (I*R). The I*R is a ratio of two ratios.  Under the proposed DDI study, the I*R 

compares the association of the object drug with the precipitant drug to the association of the 

comparator object drug with the precipitant drug, adjusted for the effect of the object drug and 

comparator object drug without the precipitant drug.  This contrast represents the relative effect of 
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the object drug with a concomitant precipitant drug compared to the comparator object drug with 

a concomitant precipitant drug independent of the individual effects of either the object drug or 

the comparator object drug alone.  Since we are interested in the effect of the drug-drug 

interaction independent of the effects of the object/comparator object drugs alone, this 

investigation will focus on the I*R. 

Simulation approach to creating synthetic cohorts: 

We used 1,000 simulated data sets to evaluate the performance of multinomial and binary 

propensity score methods. We used Stata version 11.1 to perform all Monte Carlo simulations.  

We used the random number generator provided by Stata. The methods for generating normal 

(Gaussian) and uniform random numbers in Stata were derived by Knuth (1998) 65; Marsaglia, 

MacLaren, and Bray (1964); and Walker (1977). 

Monte Carlo simulations were performed on the synthetic cohort of patients with a binary 

outcome (Y), three binary primary exposure variables (A1, A2, A3=A1*A2), and three covariates 

(X1, X2, X3).   The binary outcome variable (Y), represents the presence or absence of the 

outcome (Y=1: outcome present; Y=0: outcome absent). The binary exposure variable A1 

represents exposure to either the object drug (A1=1) or the comparator object drug (A1=0). The 

binary exposure variable A2 represents exposure to the precipitant drug (precipitant drug present 

or absent: A2=1 or A2=0). The binary exposure interaction variable (A3) represents the interaction 

between A1 and A2 (A1*A2).  When A3=1 cohort members are exposed to the object drug (A1=1) 

and the precipitant drug (A2=1).  When A3=0 cohort members are exposed to: the object drug 

without the precipitant drug (A1=1, A2=0), the comparator object drug with the precipitant drug 

(A1=0, A2=1), or the comparator object drug without the precipitant drug (A1=0, A2=0).  

To evaluate the multinomial propensity score, we generated a multinomial exposure variable 

(A4). This non-ordered, categorical variable was derived from the four possible exposure 

categories for A1 and A2. The four categories of A4 are: A4=1 (A1=1,A2=1); A4=2 (A1=1,A2=0); 

A4=3 (A1=0,A2=1);  A4=4 (A1=0,A2=0). We generated the covariates X1 and X2 as random 

continuous variables (standard normal mean 0; standard deviation 1). We generated X3 as 

random binary variable (1,-1) with p(1)=0.0).  To compare to statistical performance of the 
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multinomial propensity score, we generated several binary propensity scores from A1, A2, and A3 

(described below). 

We generated associations among the exposure variables (A1, A2, A3) and covariates (X1, 

X2, X3) to approximate those found in medical research. For the exposure variables and 

covariates, we varied the coefficients to evaluate statistical performance under a variety of 

conditions.  

Description of base equations: 

In simulation studies the investigator builds equations where associations among the 

outcome, exposure, and confounding variables are known (because these associations are 

determined by the investigator).  We used three base equations, each with investigator 

determined coefficients (see base equations below). Using base equation Y as the true outcome 

model, we evaluated how closely each propensity score method estimated the interaction ratio 

(λ3) in this model.  Below we present base equations used to derive A1 (the object 

drug/comparator object drug), A2 (the precipitant drug present/absent), and Y (the binary outcome 

yes/no).  In base equation A1 we determined the associations among A1 and the covariates X1, 

X2, X3. In base equation A2 we determined the associations among A2 and the exposure variable 

A1, the covariates X1, X2, X3, and the A1*X1 interaction. In base equation Y we determined the 

association among the outcome variable (Y) and the exposure variables A1, A2, A3 and the 

covariates X1, X2, X3.  

Base Equation A1 - object/comparator drug model 

Logit p(A1=1) = β0 + β1X1 + β2X2 + β3X3 

Base Equation A2 - precipitant drug model 

Logit p(A2=1) = θ0 + θ1A1 + θ2X1+ θ3X2 + θ4X3 + θ5(A1*X1) 

Base Equation Y - true outcome model 

Logit p(Y=1) = λ0 + λ1A1 + λ2A2 + λ3A3 + λ4X1+ λ5X2 + λ6X3 

Baseline values: 

In order to evaluate the performance of each propensity score, we first determined baseline 

values for each coefficient in the base equations.  Baseline coefficient values were selected 
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based on the approximate values in an empiric drug interaction study conducted by the principal 

investigator (data not yet published).  Holding baseline values constant, we varied specific 

coefficients (one at a time), to evaluate relative bias, coverage probability, and mean squared 

error (MSE) under a variety of conditions.  The baseline sample size was set to 100,000 synthetic 

cohort members.   

In base equation A1, the baseline coefficients were set to the following values. 

Logit Pr(A1=1) = β0 + β1X1 + β2X2 + β3X3 

Baseline coefficients: β0=1.0;  β1=1.0;  β2=0.0; β3=1.0 

The baseline constant (β0) was set to 1.0. This baseline value set the proportion of A1=1 to 

0.65 and A1=0 to 0.35.  The baseline associations for A1 with X1, X2, and X3 were set to β1=1.0, 

β2=0.0, β3=1.0, respectively.   

In base equation A2, the baseline coefficients were set to the following values. 

Logit Pr(A2=1) = θ0 + θ1A1 + θ2X1+ θ3X2 + θ4X3 + θ5(A1*X1) 

Baseline coefficients: θ0=-1.0; θ1=0.2; θ2=0.0; θ3=1.0; θ4=1.0; θ5=0.2 

This baseline constant of -1.0 set the proportion of A2=1 to 0.35 and A2=0 to 0.65. The 

baseline association between A1 and A2 (θ1) was set to 0.2. This represents a modest association 

between the object drug and precipitant drug.  The baseline associations for A2 with X1, X2, and 

X3 were set to θ2=0.0, θ3=1.0, θ4=1.0, respectively.  The baseline interaction between A1 and X1 

(θ5) was set to 0.2. This represents a weak interaction between the covariate X1 and the object 

drug A1.  

In base equation Y, the coefficients were set to the following values. 

Logit p(Y=1) = λ0 + λ 1A1 + λ 2A2 + λ 3A3 + λ 4X1+ λ 5X2 + λ 6X3 

Baseline coefficients: λ0=-2; λ 1=0.1; λ 2=0.1; λ 3=0.4; λ 4=1.0; λ 5=1.0; λ 6=1.0 

The baseline constant of -2.0 (λ0=-2.0) set the proportion of Y=1 to 0.2 and Y=0 to 0.8. The 

baseline association between A1 and Y was set to 0.1 (λ1=0.1). The baseline association between 

A2 and Y was set to 0.1 (λ2=0.1). The baseline association between A3 and Y was set to 0.2 

(λ3=0.4). The baseline association between the covariates (X1, X2, and X3) and the outcome Y 

was set to1.0.   

 
 

31



Statistical properties evaluated: 

Relative bias was our primary measure of statistical performance.  Relative bias reflects the 

difference between the estimated λ3 value and the true λ3 value. We expressed relative bias as a 

percentage [(estimated λ3 - true λ3)/ true λ3)*100]. Positive (negative) percent bias indicated an 

overestimation (underestimation) of the association.  Zero percent bias values indicated no bias. 

Ninety five percent confidence intervals for percent bias were derived using the bootstrap 

percentile method.  Based on 1000 simulated λ3 estimates, percent bias was calculated. 

We also evaluated coverage probability and mean squared error (MSE) of the estimated 

value of λ3.  Coverage probability was estimated as the proportion of times the confidence interval 

for the estimated value of λ3 included the true value of λ3. Precision was estimated by determining 

the MSE value of the estimated value of λ3 over 1000 Monte Carlo repetitions. We determined the 

MSE by adding the average bias squared and the average bias standard deviation squared 

([average bias]2 + [average bias standard deviation]2). 

Propensity score methods to be compared: 

We evaluated the performance of the multinomial propensity score and other binary 

propensity scores methods in the setting of a hypothetical drug interaction study. Because we are 

interesting in studying a four level, non-ordered exposure; the multinomial propensity score was 

derived using multinomial logistic regression (MLR).63 MLR is an adaption of binary logistic 

regression for multiple, non-ordered outcomes. Using MLR, the multinomial propensity score was 

derived by regressing the covariates X1, X2, & X3 on the categorical (four level) exposure variable 

A4. MLR compares each exposure category of A4 (1, 2, 3, and 4) through a combination of binary 

logistic regressions. As with traditional propensity score methods, MLR is followed by arithmetic 

transformation of odds (probability/1-probability) into the predicted probability (odds/1+odds) of 

being in one of the following exposure categories: 1 vs 4, 2 vs 4, and 3 vs 4.  Category 4 was set 

as the base level for MLR. The probability of being in a particular exposure category (1, 2, 3, or 4) 

is a quantitative representation of the joint distribution of each exposure category given the set of 

covariates. We derived the multinomial propensity score (PS4) by determining the predicted 

probability of each A4 category given X1, X2, & X3. Functionally this equates to estimating the 
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following  conditional probabilities (i) Pr(A4=1| X1, X2, X3), (ii) Pr(A4=2| X1, X2, X3), (i) Pr(A4=3| X1, 

X2, & X3), (iii) Pr(A4=4| X1, X2, & X3). Because the cumulative sum of these four probabilities is 

one, confounding adjustment with PS4 uses three of the four probabilities.  

For comparison with the multinomial propensity score (PS4), we used logistic regression to 

derive the predicted probability of other binary exposure variables A1, A2, and A3 given X1, X2, and 

X3.  Functionally this equates to estimating the following conditional probabilities: Pr(PS1: A1=1| 

X1, X2, X3), Pr(PS2: A2=1| X1, X2, X3), and Pr(PS3: A3=1| X1, X2, X3). Below is a summary 

derivation of each propensity score evaluated included in this investigation.  

PS1:  logit Pr(A1=1) = ρ01 + ρ11X1 + ρ21X2 + ρ31X3 

PS2:  logit Pr(A2=1) = ρ02 + ρ12X1 + ρ22X2 + ρ32X3 

PS3: logit Pr(A3=1) = ρ03 + ρ13X1 + ρ23X2 + ρ33X3 

PS4:  mlogit  Pr(A4=1): ρ041 + ρ141X1 + ρ241X2 + ρ341X3 

 mlogit  Pr(A4=2): ρ042 + ρ142X1 + ρ242X2 + ρ342X3 

 mlogit  Pr(A4=3): ρ043 + ρ143X1 + ρ243X2 + ρ343X3 

 mlogit  Pr(A4=4): ρ044 + ρ144X1 + ρ244X2 + ρ344X3 

PS12: PS1 & PS2 

We evaluated each of these models in the presence of weak model misspecification.  

Evaluating statistical performance in the presence known model misspecification, informs us 

about the effectiveness of the different confounding adjustment approaches under this common 

(and often unknown) condition. It is often the case in empiric research that model misspecification 

occurs.  Under model misspecification we did not account for the weak interaction between A1 

and X1 (A1*X1). The A1*X1 interaction is depicted in base equation A2.  

Propensity score form: 

We evaluated each propensity score using three approaches:  spline, categorical, and 

continuous covariates. Categorical propensity scores were derived using quintiles of the predicted 

probabilities. Spline propensity scores were derived through cubic spline regression with five 

interior knot points placed at quintiles of the estimated propensity score. Continuous propensity 

scores used the linear form of the predicted probabilities. In general, spline and categorical 
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covariates are useful when the relationship between the dependent variable (Y) and the 

independent variables is not linear. Regression splines also provide flexibly to model a 

nonparametric relationship between the propensity score and outcome variable. We used the 

spline propensity score adjustment as the baseline form.  While propensity scores stratification 

and matching are commonly used methods, applications of these methods with a multinomial 

exposure have not been developed.    

Outcome models: 

All propensity score adjusted outcome models used logistic regression with three exposure 

variables (A1, A2, A3) and the propensity score (E[Y| A1, A2, A3, PS]). We refer to propensity score 

outcome models using PS* to indicate that we evaluated each propensity score (described 

above). We compared each propensity score outcome model to an unadjusted model (the null 

model) and a correctly specified multivariable (MV) model. The null model included only exposure 

variables regressed on Y (E[Y| A1, A2, A3]). The null model allowed us to quantify bias without 

covariate adjustment.  The MV model included each exposure variable and the three covariates 

regressed on Y (E[Y| A1, A2, A3, X1, X2, X3]).  In empiric research, the correctly specified MV 

model is rarely known.  It is presented in this study to illustrate the relative performance of the 

propensity score methods to the performance of the correctly specified model. We present bias, 

coverage probability, and MSE for the interaction ratio (the estimated value of λ3) from the null 

model, the MV model, and each propensity score model.  The five propensity score models were 

independently evaluated in PS*. The outcome models are presented below.  

Null outcome model:  Logit Pr(Y=1) = ξ0 + ξ1A1 + ξ 2A2 + ξ 3A3 

MV outcome model:  Logit Pr(Y=1) = ω0 + ω 1A1 + ω 2A2 + ω 3A3 + ω 4X1 + ω 5X2 + ω 6X3 

PS* outcome model: Logit Pr(Y=1) = φ0 + φ1A1 + φ 2A2 + φ 3A3 + φ 4PS*  

Diagnostic evaluation of propensity score balance: 

In empiric investigations, with one "real" dataset, researchers commonly evaluate the 

distribution of propensity scores for each treatment group.  This is done to evaluate balance 

between exposed and unexposed individuals given their respective vector of covariates. The 

primary reason to check propensity score balance is to evaluate the assumption of positivity.  
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Positivity exists when exposed and unexposed individuals exist at every level of each confounder.  

While the propensity score does not tell you if there are exposed and unexposed at every level of 

each confounder, it provides a composite covariate vector which summarizes the probability of 

treatment.  Assuming no gross positivity violations, one expects the PS distributions (for exposed 

and unexposed) to have some degree of overlap. The proportion of overlap informs the 

investigator about the heterogeneity of the composite covariate vector in each treatment group. In 

an extreme example, if the distributions of propensity scores, for exposed and unexposed, have 

no overlap, an excess in covariate heterogeneity suggests these two groups are not comparable.  

In order to evaluate PS balance, we present quintile box plots for each derived propensity 

score quintile.  Visual inspection of quintile box plots depicts the composite covariate overlap at 

each propensity score quintile for each exposure category.  For the binary propensity scores 

(PS1, PS2, PS3), this equates to evaluating the composite covariate distribution at each 

propensity score quintile for exposed and unexposed synthetic cohort members.  For the 

multinomial propensity score (PSm), this equates to evaluating the composite covariate 

distribution for each propensity score quintile at each of the four exposure categories. Because 

PSM is comprised of the predicted probability of four exposure categories (i.e., Pr(A4=1), 

Pr(A4=2), Pr(A4=3), and Pr(A4=4)),  we present quintile box plots for each exposure category.   

Scenarios evaluated (seven simulation studies): 

To evaluate the statistical performance of different propensity score methods, we varied 

seven different parameters - holding the other baseline values constant. The parameters we 

varied are described below.  

Confounding:   We evaluated statistical performance over a spectrum of confounding by 

changing the associations between the covariates (X1, X2, and X3) and the outcome (Y).  In the 

true outcome model (base equation Y), we evaluated beta coefficients at 0.0, 0.4, 0.7, 1.0, and 

1.39. These values range from no confounding to very strong confounding.  For all confounding 

strengths, the associations among the exposure variables (A1 and A2) and the covariates (X1, X2, 

and X3) were fixed at the baseline values.   
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Sample size: We evaluated three sample sizes of 50,000, 100,000, and 150,000 synthetic 

cohort members. These sample sizes were chosen to emulate typical drug safety data, to avoid 

finite sample bias, as well as to permit the study of both common and rare events.   

Prevalence of exposure to the precipitant drug: We evaluated three scenarios for the 

prevalence of exposure to the precipitant drug (A2=1). By varying the θ0 coefficient (from base 

equation A2), we determined the proportion of the synthetic cohort exposed to the precipitant drug 

A2 (A2=1).  We evaluated the following three proportions: 0.35 (θ0= -1.0), 0.20 (θ0= -2.0), and 0.10 

(θ0= -3.0). 

Association between object drug and precipitant drug: We varied the association between 

the object drug (A1) and the precipitant drug (A2) using θ1 (from base equation A2). This allowed 

us to evaluate each propensity score method in the presence of a null (θ1=0), a moderate 

(θ1=0.7), and a strong (θ1=1.39) association. This is equivalent to evaluating different proportions 

of concomitant exposure to A1 and A2.  

Interaction between the object drug and the covariate: We varied the interaction between the 

object drug (A1) and the covariate X1 using θ5 from base equation A2. Varying this association 

allowed us to understand how each propensity score method performed in the presence of a null 

(θ5=0), a moderate (θ5=0.4), or strong (θ5=0.7) model misspecification.  

Incidence of the outcome: We varied the proportion of synthetic cohort members having the 

outcome (Y=1). This allowed us to understand how each propensity score method performed 

under different incidences of the outcome.  We evaluated each method with the outcome 

incidence (Y=1) set at 0.2 (λ0= -2.0), 0.1 (λ0= -3.0), and 0.05 (λ0= -4.0). Given the work by 

Cepeda et. al. (ref), the incidence of the outcome may be an important characteristic in 

determining the performance of each method.   

Association between the interaction ratio with the outcome: We varied the strength of 

association between the interaction term (λ3) and the outcome (Y).  This allowed us to understand 

how each propensity score method performed in the presence of a weak (λ3=0.3), a moderate 

(λ3=0.6), or a strong (λ3=0.9) association. Depending on the strength of the association between 
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the interaction term and the outcome; it is plausible that the performance of each propensity 

score method will vary based on this association.   

Propensity score form:  Using the baseline coefficient values describe above, we evaluated 

the performance of each propensity score as a continuous, spline, and categorical covariate. 

RESULTS 

The results from the seven simulation studies are presented in Figures and Tables 1-7. 

Under each scenario evaluated, the multinomial propensity score model (PS4) demonstrated 

superior statistical performance compared to the binary propensity score models (PS1, PS2, PS3, 

PS12). Statistical performance of the PS4 model was similar to that of the MV model. As 

previously mentioned, it is rarely feasible to fit the MV model. Thus, the ability of the PS4 model 

to achieve similar performance is important.  

Confounding scenarios: Figures 1a, 1b, and Table 1 show the performance of each model 

over the spectrum of confounding (no confounding to very strong confounding).  The null model is 

increasingly biased, with worsening coverage probability, and less precision (increased MSE) as 

the strength of confounding increased. The MV model is consistently unbiased, with excellent 

coverage probability, and consistent precision over the spectrum of confounding.  The binary 

propensity score models (PS1, PS2, PS3, and PS12) were increasingly biased, had worsening 

coverage probability, and became less precise as the strength of confounding increased. Over 

the spectrum of confounding, the PS4 model demonstrated superior statistical performance 

compared to the binary propensity score models.  The PS4 model had similar percent bias, 

coverage probability, and precision to the MV model.   

Sample size variation: Figure 2 and Table 2 show the statistical performance for the three 

different sample sizes (50,000, 100,000, and 150,000).  For all models evaluated, percent bias 

was consistent with narrowing 95% confidence intervals as sample size increased. The null 

model and propensity scores models PS1, PS2, PS3, and PS12 revealed excess percent bias for 

each sample size.  The MV and PS4 models remained consistently unbiased for each sample 

size. Coverage probability for the MV and PS4 models remained consistently at 0.95. Coverage 

probability for the null and PS1, PS2, PS3, and PS12 models reduced as sample size increased.  
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The precision (MSE) of the MV and PS4 models was at least twice as precise as the binary 

propensity score models.  All models show increased precision with larger sample sizes.   

Prevalence of exposure to the precipitant drug: Figure 3 and Table 3 show statistical 

performance for three different proportions (0.35, 0.2, 0.1) of synthetic cohort members exposed 

to the precipitant drug (A2=1).  The null and binary propensity score models (PS1, PS2, PS3, and 

PS12) show increasing percent bias as the frequency of precipitant drug exposure decreases. 

The MV and PS4 models remained consistently unbiased for each proportion of precipitant drug 

exposure.  Coverage probability increased for binary propensity score models PS1, PS2, and 

PS12 and increased as the proportion of precipitant drug exposure decreased.  Coverage 

probability for the MV and PS4 models remained consistent across each proportion of precipitant 

drug exposure. For all models, precision was reduced as the proportion of precipitant drug 

exposure decreases (i.e., MSE was increased as the proportion of precipitant drug exposure 

decreased). 

Association between the object drug and the precipitant drug: Figure 4 and Table 4 show the 

statistical performance for three different associations (null, moderate, strong) between the object 

drug (A1) and the precipitant drug (A2). Across each strength of association between the object 

drug and precipitant drug, the MV and PS4 models remained unbiased, had approximately 95% 

coverage probability, and maintained a consistent level of precision (MSE).  With the 

strengthening association between the object drug and precipitant drug, percent bias and 

coverage probability for the null and the binary propensity models score trended toward 

decreasing bias and increased coverage probability.  These models also showed better precision 

(reduced MSE) as the object drug and precipitant drug association strengthened. 

Interaction between object drug and covariate: Figure 5 and Table 5 show statistical 

performance for the null, moderate, and strong interaction between the object drug (A1) and one 

of the covariates (X1). The strength of this interaction represents the amount of model 

misspecification. Under model misspecification, only the MV model is correctly specified. For 

each interaction level, the MV and PS4 models remained similarly unbiased, with near 95% 

coverage probability, and maintained a consistent level of precision. The null model showed less 
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bias, better coverage probability, and greater precision with increasing A1*X1 interaction strength.  

The binary propensity score models show varied performance across interaction levels, all with 

substantial bias and inferior coverage probability. 

Incidence of the outcome: Figure 6 and Table 6 show statistical performance under three 

incidences of outcome occurrence (Y=1). For each outcome incidence, the MV and PS4 models 

remained unbiased, with near 95% coverage probability. The null, PS1, PS2, PS3, and PS4 

models remained consistently biased over each outcome incidence. Coverage probability for the 

null and binary propensity score models was greater as the incidence of the outcome decreased. 

As evidenced by increasing MSE, precision for all models decreased with lower outcome 

incidence. 

Strength of the interaction ratio: Figure 7 and Table 7 show statistical performance for three 

interaction ratio strengths. The MV and PS4 models showed negligible bias, excellent coverage 

probabilities, and consistent precision for varied strengths of interaction ratio. Percent bias 

decreased for the null and binary propensity score models as the strength of the interaction ratio 

increased. For PS2, PS3, and PS12 coverage probability increased as the strength of the 

interaction increased.  PS1 showed reduced coverage probability with increasing interaction ratio 

strength.  Precision was increased (i.e., MSE decreased) for the null and binary propensity score 

models as the strength of the interaction ratio increased.   

Propensity score form: Figure 8 and Table 8 show statistical performance for the continuous, 

spline, and categorical propensity score forms.  For PS4, the spline form was less biased but had 

similarly good coverage probability and precision compared to the continuous and categorical 

forms.   

Balance diagnostic: The results from propensity score balance diagnostics are presented in 

Figures 9, 10, 11, 12a, 12b, 12c, and 12d.  For all propensity scores evaluated, the propensity 

score quintile box plots show sufficient covariate balance for each propensity score method to 

support the assumption of positivity. This represents similar composite covariate distributions for 

each level of the propensity score.      

Model convergence for each model evaluated was more than 99%. 
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DISCUSSION 

The results from these drug interaction simulations show the multinomial propensity score 

(PS4) was the least biased, had the greatest coverage probability, and best precision compared 

to binary propensity score methods. For all scenarios, the multinomial propensity score model 

demonstrated consistently superior statistical performance - similar to the rarely identifiable MV 

model. The multinomial propensity score was the least biased in the presence of model 

misspecification. This is important for empiric investigations where the presence and quantity of 

model misspecification is rarely known.  Superior performance of the multinomial propensity 

score was expected since each of the conditional probabilities of exposure, four each of the four 

exposure categories, given the set of covariates is determined using multinomial logistic 

regression.  Binary propensity score methods are limited since they do not account for each of 

the four exposure categories simultaneously.  

This applied simulation project builds on the theoretical approaches to the multinomial 

propensity score described by Imai et al. and Imbens et al.61, 63  In addition, these results are 

concordant with the findings of Huang et al. who showed the multinomial propensity score 

improved covariate distribution balance across twenty exposure categories compared to 

conventional methods.64 Researchers evaluating multi-level, non-ordered exposure categories, 

particularly in the setting of drug-drug interaction studies, should consider confounding 

adjustment with the multinomial propensity score. 

The simulated cohort in this investigation was nested in a cohort of object drug and 

comparator object drug users.  We did not consider scenarios where synthetic cohort members 

were truly unexposed.  However, investigators may extrapolate these results to other scenarios 

where the comparator object drug group alone (A1=0, A2=0) represents an unexposed group.  

The results of this investigation are generalizable to other studies under similar scenarios as 

those investigated in this study.  While we attempted to evaluate broadly applicable scenarios 

found in drug safety research, there may be other situations where these results will not be 

applicable.  For example, we studied statistical performance using a spectrum of confounding, 
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three incidences of the outcome, three associations between the object drug and the precipitant 

drug, three strengths of the covariate-drug interaction (A1*X1), and three associations of the drug 

interaction (A1*A2) with the outcome Y. Despite our efforts to study associations commonly found 

in drug safety research, additional research is warranted to evaluate scenarios substantially 

different from those we studied. 

 We evaluated three covariates to estimate statistical performance of different propensity 

score methods.  As demonstrated by Cepeda et al. 59, the propensity score is most 

advantageous, with regard to bias reduction, when the number of covariates is large compared to 

the number of outcomes.  Using three covariates adequately demonstrated relative statistical 

performance; however, future studies of scenarios with additional covariates with more complex 

distributions, interactions, and transformations may be beneficial for drug-drug interaction 

researchers.   

Matching and stratification on the propensity score are commonly used methods to adjust for 

confounding.  The complexity of the multinomial propensity score does not extrapolate directly to 

either matching or stratification. Methods for matching on a four level categorical exposure have 

not been developed.  This is an area for future research.  Likewise, propensity score stratification 

does not have a multinomial equivalent. Given the multinomial propensity score approach 

includes three propensity scores used in the final model, propensity score stratification would not 

provide a single overall estimate.  This strategy may not be applicable to the multinomial 

approach.  

The results from this investigation presume the assumptions for causal inference are not 

violated.  These assumptions include no unmeasured confounding, positivity, and no model 

misspecification.66 We make the assumption that, given measured covariates (X1, X2, and X3), 

there are no additional covariates that influence the association among the multi-level exposure 

and the outcome.  Investigators must make every effort to evaluate all potential covariates 

associated with the exposure and the outcome.  This is not a testable assumption. Positivity, on 

the other hand, is a testable assumption.  As previously stated, positivity exists when exposed 

and unexposed individuals exist at every level of each covariate. While this is difficult to test for 
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continuous covariates, one may evaluate positivity by examining the composite covariate 

distribution for exposed and unexposed individuals. If the distributions are similar, it may be 

assumed that positivity is achieved.  We evaluated the quintile box plots for all exposure 

categories within each propensity score quintile (for each covariate).   

Correct model specification (for logistic regression) means the relationship between the 

independent variables and the dependent variable is linear on the log scale.67 However, as 

previously described, we intentionally created weak model misspecification through the A1*X1 

interaction variable.  This was done to evaluate propensity score performance with known model 

misspecification. In empiric investigations, model misspecification may often exist, yet be 

unknown to the researcher. To provide a comprehensive evaluation (with and without model 

misspecification), we evaluated performance with a null, moderate, and strong A1*X1 interaction. 

Under all scenarios evaluated, with our without model misspecification, the multinomial propensity 

score showed superior statistical performance to binary propensity score methods. 

Conclusion 

The results from these simulation studies show the multinomial propensity score eliminated 

most bias, had greater coverage probability, and increased precision than comparator binary 

propensity score methods. The results were essentially comparable to the correctly specified MV 

model, which is rarely attainable in empiric research. Based on these results, Investigators 

studying drug-drug interactions should consider using the multinomial propensity score approach 

to adjust for confounding. 

 
 

42



TABLES 

METHODS FIGURE 1 PERCENT BIAS (SPECTRUM OF CONFOUNDING) 

Percent bias by the spectrum of confounding  
(betas for assoc. b/t Y and Xs: 0.0, 0.4, 0.7, 1.0, 1.39)
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METHODS FIGURE 1A COVERAGE PROBABILITY (SPECTRUM OF CONFOUNDING) 

Coverage Probability over the spectrum of confounding
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METHODS TABLE 1 COVERAGE PROBABILITY AND MSE (SPECTRUM OF CONFOUNDING) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

0.0 0.953 0.953 0.949 0.950 0.950 0.950 0.954
0.4 0.944 0.945 0.932 0.822 0.920 0.917 0.945
0.7 0.611 0.960 0.883 0.705 0.853 0.825 0.964
1.0 0.041 0.948 0.693 0.612 0.731 0.621 0.950
1.4 0.000 0.958 0.369 0.607 0.627 0.429 0.950

Mean squared error (bias)
0.0 0.002 0.002 0.002 0.002 0.002 0.002 0.002
0.4 0.002 0.002 0.002 0.004 0.003 0.003 0.002
0.7 0.007 0.002 0.003 0.006 0.004 0.004 0.002
1.0 0.026 0.002 0.006 0.007 0.006 0.008 0.002
1.4 0.055 0.002 0.012 0.008 0.008 0.013 0.002

Methods Table 1 (coverage probability and MSE)

confounding
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METHODS FIGURE 2: PERCENT BIAS (SAMPLE SIZE) 

Sample size (50,000; 100,000; 150,000)
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METHODS TABLE 2: COVERAGE PROBABILITY AND MSE (SAMPLE SIZE) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

50,000 0.246 0.955 0.817 0.776 0.827 0.771 0.956
100,000 0.041 0.948 0.693 0.612 0.731 0.621 0.950
150,000 0.002 0.951 0.558 0.488 0.628 0.484 0.945

Mean squared error (bias)
50,000 0.028 0.004 0.008 0.010 0.008 0.010 0.004

100,000 0.026 0.002 0.006 0.007 0.006 0.008 0.002
150,000 0.025 0.001 0.005 0.007 0.005 0.007 0.001

Methods Table 2 (coverage probability and MSE)

Sample size
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METHODS FIGURE 3: PERCENT BIAS (PROPORTION A2=1) 

Proportion of cohort exposed to the precipitant drug (A2=1) 
( 0.35, 0.20, 0.10)
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METHODS TABLE 3: COVERAGE PROBABILITY AND MSE (PROPORTION A2=1) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

0.35 0.041 0.948 0.693 0.612 0.731 0.621 0.950
0.20 0.001 0.961 0.682 0.624 0.671 0.583 0.963
0.10 0.021 0.959 0.767 0.677 0.704 0.658 0.959

Mean squared error (bias)
0.35 0.026 0.002 0.006 0.007 0.006 0.008 0.002
0.20 0.050 0.003 0.008 0.010 0.009 0.011 0.003
0.10 0.068 0.005 0.010 0.015 0.015 0.017 0.005

Methods Table 3 (coverage probability and MSE)
Proportion A2 

=1
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METHODS FIGURE 4: PERCENT BIAS (ASSOC. BETWEEN THE OBJECT AND PRECIPITANT 
DRUGS) 

Association between the object drug (A1) & precipitant drug(A2) 
(null, moderate, stong)
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METHODS TABLE 4: COVERAGE PROBABILITY AND MSE (ASSOC. BETWEEN THE 
OBJECT AND PRECIPITANT DRUGS) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

null 0.023 0.952 0.705 0.655 0.725 0.594 0.955
weak 0.103 0.950 0.700 0.575 0.782 0.675 0.953
stong 0.411 0.945 0.796 0.586 0.870 0.752 0.941

Mean squared error (bias)
null 0.027 0.002 0.006 0.007 0.006 0.008 0.002

weak 0.020 0.002 0.006 0.008 0.005 0.007 0.002
stong 0.011 0.002 0.005 0.009 0.004 0.006 0.002

Methods Table 4 (coverage probability and MSE)

A1 & A2 
assoc.
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METHODS FIGURE 5: PERCENT BIAS (STRENGTH OF A1*X1 INTERACTION) 

Interaction between the object drug (A1) & covariate (X1) 
(null, moderate, stong)
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METHODS TABLE 5: COVERAGE PROBABILITY AND MSE (STRENGTH OF A1*X1 
INTERACTION) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

null 0.000 0.952 0.577 0.745 0.933 0.874 0.942
weak 0.685 0.955 0.791 0.046 0.418 0.334 0.956
stong 0.745 0.945 0.863 0.001 0.668 0.133 0.949

Mean squared error (bias)
null 0.066 0.002 0.008 0.005 0.002 0.004 0.002

weak 0.006 0.002 0.005 0.031 0.012 0.014 0.002
stong 0.005 0.002 0.004 0.054 0.007 0.022 0.002

Methods Table 5 (coverage probability and MSE)

A1 & X1 
interaction
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METHODS FIGURE 6: PERCENT BIAS (FREQUENCY OF OUTCOME OCCURRENCE (Y=1)) 

Frequency of outcome occurrence (Y=1) 
(0.20, 0.10, 0.05)
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METHODS TABLE 6: COVERAGE PROBABILITY AND MSE (FREQUENCY OF OUTCOME 
OCCURRENCE (Y=1)) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

0.20 0.041 0.948 0.693 0.612 0.731 0.621 0.950
0.10 0.086 0.950 0.806 0.732 0.788 0.701 0.953
0.05 0.474 0.953 0.916 0.808 0.853 0.801 0.950

Mean squared error (bias)
0.20 0.026 0.002 0.006 0.007 0.006 0.008 0.002
0.10 0.037 0.004 0.008 0.010 0.009 0.011 0.004
0.05 0.037 0.008 0.010 0.017 0.015 0.017 0.008

Methods Table 6 (coverage probability and MSE)

Outcome 
frequency
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METHODS FIGURE 7: PERCENT BIAS (STRENGTH OF THE INTERACTION RATIO (I*R)) 

Strength of the interaction ratio (I*R) 
(weak, moderate, strong)
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METHODS TABLE 7: COVERAGE PROBABILITY AND MSE (STRENGTH OF THE 
INTERACTION RATIO (I*R)) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

weak 0.140 0.946 0.791 0.513 0.701 0.574 0.953
moderate 0.002 0.954 0.459 0.796 0.800 0.712 0.939

strong 0.000 0.951 0.136 0.929 0.869 0.822 0.923
Mean squared error (bias)

weak 0.018 0.002 0.005 0.009 0.007 0.009 0.002
moderate 0.045 0.002 0.011 0.005 0.005 0.006 0.002

strong 0.084 0.002 0.020 0.002 0.004 0.005 0.003

Methods Table 7 (coverage probability and MSE)

Interaction 
Ratio 
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METHODS FIGURE 8: PERCENT BIAS (COVARIATE FORM) 

Propensity score form  
(continuous, spline, categorical)

-100

-75

-50

-25

0

25

50

75

100
P

e
rc

e
n

t 
B

ia
s

Null PS4PS12PS3PS2PS1MV

 
METHODS TABLE 8: COVERAGE PROBABILITY AND MSE (COVARIATE FORM) 

Null MV PS1 PS2 PS3 PS12 PS4
Coverage probability

continuous 0.041 0.948 0.942 0.877 0.683 0.267 0.918
spline - - 0.693 0.612 0.731 0.621 0.950

categorical - - 0.633 0.724 0.440 0.698 0.932
Mean squared error (bias)

continuous 0.026 0.002 0.002 0.003 0.007 0.017 0.003
spline - - 0.006 0.007 0.006 0.008 0.002

categorical - - 0.007 0.006 0.011 0.006 0.002

Methods Table 8 (coverage probability and MSE)

Propensity score 
form
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METHODS FIGURE 9 (PS1 BALANCE DIAGNOSTIC) 
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METHODS FIGURE 10 (PS2 BALANCE DIAGNOSTIC) 
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METHODS FIGURE 11 (PS3 BALANCE DIAGNOSTIC) 
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METHODS FIGURE 12A (PS4A BALANCE DIAGNOSTIC) 
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METHODS FIGURE 12B (PS4B BALANCE DIAGNOSTIC) 
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METHODS FIGURE 12C (PS4C BALANCE DIAGNOSTIC) 
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METHODS FIGURE 12D (PS4D BALANCE DIAGNOSTIC) 
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PROJECT 3: CLINICAL IMPORTANCE OF THE DRUG INTERACTION BETWEEN STATINS 
AND CYP3A4 INHIBITORS - A RETROSPECTIVE COHORT STUDY IN THE HEALTH 
IMPROVEMENT NETWORK (THIN) 
 
Title of the paper: Statins and concomitant CYP3A4 inhibitors show no difference in statin-related 
adverse events based on statin metabolism 
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Five key points: 
1. We studied the relative hazard of muscle toxicity, renal dysfunction, and hepatic dysfunction 
associated with statin 3A4 substrates compared to statin non-3A4 substrates with a concomitant 
CYP3A4 inhibitor 
2. We found no overall difference in muscle toxicity, renal dysfunction, and hepatic dysfunction 
associated with statin 3A4 substrates compared to statin non-3A4 substrates with a concomitant 
CYP3A4 inhibitor 
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3. The stratified dose response analysis showed a non-significant increased hazard of muscle 
toxicity for high dose statin 3A4 substrates with a CYP3A4 inhibitor compared to high dose statin 
non-3A4 substrates with a CYP3A4 inhibitor 
4. The duration of response analysis showed a non-significant increased hazard of muscle 
toxicity in the first six months for statin 3A4 substrates with a CYP3A4 inhibitor compared to statin 
non-3A4 substrates with a CYP3A4 inhibitor 
5. In this large drug interaction study of statins and CYP3A4 inhibitors, the overall results show no 
evidence of increased hazard of statin-related adverse events based on statin metabolism  
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ABSTRACT 

Title: Statins and concomitant CYP3A4 inhibitors show no difference in statin-related adverse 

events based on statin metabolism 

Background: Although generally safe, statins have the potential for severe adverse reactions. 

Objective: To compare the relative hazard of muscle toxicity, renal dysfunction, and hepatic 

dysfunction between patients initiating statins metabolized by the CYP3A4 isoenzyme (statin-3A4 

substrates (atorvastatin & simvastatin)) to patients initiating statins not metabolized by the 

CYP3A4 isoenzyme (statin non-3A4 substrates (fluvastatin, pravastatin, and rosuvastatin)) with 

and without CYP3A4 inhibitor concomitancy.  

Methods: The Health Improvement Network (THIN) was used to conduct a retrospective cohort 

study from 1990-2008. Each cohort included new statin initiators and compared the relative 

hazard of statin-related adverse events. The interaction ratio (I*R) was the primary contrast of 

interest. The I*R represents the relative effect of each statin type (statin 3A4 substrate vs. statin 

non-3A4 substrate) with a CYP3A4 inhibitor, independent of the effect of the statin type without a 

CYP3A4 inhibitor. We adjusted for confounding variables using propensity scores. 

Results: The median follow-up time per cohort was 1.5 years. There were 7889 muscle toxicity 

events among 362,809 patients. The adjusted muscle toxicity I*R was 1.22 (95% CI: 0.90-1.66).  

There were 1449 renal dysfunction events among 272,099 patients. The adjusted renal 

dysfunction I*R was 0.91 (95% CI: 0.58-1.44).  There were 1434 hepatic dysfunction events 

among 367,612 patients. The adjusted hepatic dysfunction I*R was 0.78 (95% CI: 0.45-1.31).   

Conclusions: Overall, this study found no difference in the relative hazard of muscle toxicity, renal 

dysfunction, or hepatic dysfunction for patients prescribed a statin-3A4 substrate versus a statin 

non-3A4 substrate with CYP3A4 inhibitor concomitancy.  
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INTRODUCTION 

Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are 

effective in the treatment of dyslipidemia, and have been shown to reduce the risk of major 

coronary outcomes and all cause mortality.1, 2 While statins are well tolerated by the vast majority 

of patients, they are associated with infrequent muscle, renal, and hepatic adverse events.3-9  

Statin associated muscle and renal toxicity occur on a continuum from minor myalgias and 

proteinuria to severe myositis, renal failure, and fatal rhabdomyolysis.10-12  Statin associated 

hepatic toxicity is characterized by transaminitis and rarely serious hepatic dysfunction or hepatic 

failure.13, 14  Clinical trials, case reports, and observational studies show these adverse events are 

associated with all marketed statins.9, 15-17 While the incidence of serious statin adverse events is 

low, muscle toxicity is a leading cause of statin discontinuation.18, 19  It has been shown that 

statin-related adverse events occur in a potency dependent manner and therefore may be 

exacerbated by pharmacokinetic (PK) statin-drug interactions that increase statin system 

exposure.8, 15, 20 17, 21 22-25   

Statin-drug interactions occur via inhibition of statin metabolic and/or non-metabolic (i.e., 

hepatic transport) pathways. Statin metabolism involves phase I oxidation (mediated by 

cytochrome P450 isoenzymes (CYP)) and phase II glucuronidation (mediated by UDP 

glucuronosyl transferase (UGT)). The specific hepatic isoenzymes mediating phase I statin 

metabolism are CYP3A4 (for atorvastatin and simvastatin), CYP2C8 (for cerivastatin), CPY2C9 

(for fluvastatin), and CYP2C19 (rosuvastatin). 41, 42  Pravastatin undergoes negligible metabolism 

by CYP isoenzymes.  It is primarily metabolized by glucuronidation (phase II). The non-metabolic 

statin pathways are mediated by influx and efflux transport proteins.  Inhibition of statin 

metabolism (phase I or II) and/or hepatic transport (influx or efflux) results in elevated statin 

plasma concentrations and prolonged systemic exposure, which has the potential to increase the 

risk for statin-related adverse events. 

Not all statins have the same drug interaction potential. The unique physiochemical property 

of each statin makes certain statins more likely to interact with concomitant medications. Of 

particular importance is the drug interaction between statins and drugs that inhibit the CYP3A4 
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metabolic pathway.  The CYP3A4 isoenzyme is the most prevalent isoenzyme in the cytochrome 

P450 enzyme system.  The CYP3A4 isoenzyme metabolizes more than 50% of marketed 

pharmaceuticals.26 Statins that undergo phase I metabolism by the CYP3A4 isoenzyme are 

referred to as statin 3A4 substrates (atorvastatin and simvastatin).  Statins that do no use the 

CYP3A4 isoenzyme metabolic pathway are referred to as statin non-3A4 substrates (pravastatin, 

fluvastatin, and rosuvastatin).  CYP3A4 inhibitors prevent CYP3A4 isoenzymes from metabolizing 

other drugs (e.g., statin 3A4 substrates). As serious statin adverse events are potency and 

plasma concentration related, it is recognized that plasma levels of statins 3A4 substrates may 

increase with concomitant administration of CYP3A4 inhibitors.27  Due to the documented 

increased systemic statin exposure (demonstrated through PK studies) and increased potential 

for adverse events, statin 3A4 substrate product labels warn against concomitant administration 

of these statins with CYP3A4 inhibitors.  Despite these warnings, statin 3A4 substrates and 

CYP3A4 inhibitors are frequently co-prescribed.51  Commonly used CYP3A4 inhibitors include 

calcium channel blockers, H2 receptor antagonists, antibiotics, antifungals, antidepressants, 

antiretrovirals, and immunosuppresants.28  

Studies quantifying the relative hazard of statin adverse events for different statins (with 

different metabolism) with CYP3A4 inhibitor concomitancy are limited.  The clinical importance of 

this drug interaction was described in an preliminary analysis of spontaneous adverse event 

reports associated with statin use.22  In this investigation, we compared the adverse event 

reporting rate (AER) and ratio (AERR) of rhabdomyolysis reports for simvastatin (a statin 3A4 

substrate) and pravastatin (a statin non-3A4 substrate) with versus without a CYP3A4 inhibitor.  

This study showed a six fold increase in the AERR for simvastatin (with vs. without a CYP3A4 

inhibitor) and no increase for pravastatin (with vs. without a CYP3A4 inhibitor).22  Given the 

limitations of spontaneous report analyses, further research was warranted to fully elucidate 

these findings. 

The purpose of the current investigation was to study the clinical importance of the drug 

interaction between statins and CYP3A4 inhibitors in a large retrospective cohort study.  Our 

specific aim was to determine the relative hazard of muscle toxicity, kidney dysfunction, and 
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hepatic dysfunction associated with statin 3A4 substrates compared to statin non-3A4 substrates 

with and without CYP3A4 inhibitor concomitancy.  Given the physiochemical properties, drug 

interaction potential, and prior research, we hypothesized an increased relative hazard for statin 

3A4 substrates compared to statin non-3A4 substrates with CYP3A4 inhibitor concomitancy.  

METHODS 

Study Population 

The study population was drawn from The Health Improvement Network (THIN) from 1990 

through October 2008.  THIN is an anonymized electronic medical record database of primary 

care medical records from the United Kingdom (UK). The database consists of contributions from 

415 general practices and data from more than three million actively registered patients (as of 

mid-year 2007).  Record selection was restricted to acceptable medical records, ensuring that 

only patients currently or once permanently registered with a general practice were included.68 

Statin initiators were eligible for cohort entry if they were eighteen years of age (at statin 

initiation) and registered with a general practice for twelve months prior to the first statin drug 

code. The twelve month period prior to statin initiation is referred to as the baseline period.  The 

rationale for requiring a twelve month baseline period prior to statin initiation is to collect baseline 

medical, therapy, outcome, and confounder data.   

Exclusion criteria were implemented based on information obtained prior to statin initiation. 

We excluded patients not continuously registered during the baseline period and those with a 

statin drug code prior to or during the baseline period. Cerivastatin initiators were excluded given 

the idiosyncratic increased risk for serious adverse events.  We excluded patients with an organ 

transplant. 

Definition of Exposure 

As noted, the cohort included subjects exposed to statins.  We categorized statin exposure 

by the metabolic properties of each statin with and without a concomitant CYP3A4 inhibitor. Statin 

3A4 substrates, metabolized by the CYP3A4 isoenzyme, included atorvastatin and simvastatin. 

Statin non-3A4 substrates, not metabolized by the CYP3A4 isoenzyme, included fluvastatin, 

pravastatin, and rosuvastatin. Statin potency was evaluated as a categorical, time varying 
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covariate. Statin potency categorization was based on percent low density lipoprotein cholesterol 

(LDL-C) reduction.69   

The four exposure categories included: statin 3A4 substrates with and without a concomitant 

CYP3A4 inhibitor and statin non-3A4 substrates with and without a concomitant CYP3A4 

inhibitor.  We identified CYP3A4 inhibitors from the University of Indiana's cytochrome P450 

table.28  We included concomitant exposure to the following CYP3A4 inhibitors: clarithromycin,52 

erythromycin,70 telithromycin, norfloxacin, diltiazem,25 verapamil,70 mibefradil71, amiodarone, 

ketoconazole,72 itraconazole,50 voriconazole, fluconazole72, nefazodone,73 fluvoxamine,74 

cyclosporine,47 cimetidine, ritonavir, saquinavir, nelfinavir, indinavir, lopinavir, imatinib, and 

aprepitant. For use in secondary analyses, a strong inhibitor was defined as one that causes 

greater than 5-fold increase in the plasma AUC values or more than 80% decrease in 

clearance.28 A moderate inhibitor was defined as one that causes a greater than 2-fold increase 

in the plasma AUC values or 50-80% decrease in clearance.28 

Follow-up was measured in person-time on a statin, either with or without a concomitant 

CYP3A4 inhibitor, beginning after the first day of the first statin drug code and continued with 

subsequent statin drug codes. Due to the pharmacology of the drug interaction, we excluded 

outcomes occurring on the first day of statin exposure.  Follow-up was censored at the first 

occurrence of: (i) the end of the statin days supplied (and no subsequent statin drug code), (ii) a 

drug code for a different statin (other than the one they initiated), (iii) the outcome in question, or 

(iv) the end of the study (October 2008). Each statin-exposed person-day was attributed to one of 

four exposure categories:  (i) a statin 3A4 substrate with a CYP3A4 inhibitor, (ii) a statin 3A4 

substrate without a CYP3A4 inhibitor, (iii) a statin non-3A4 substrate with a CYP3A4 inhibitor, and 

(iv) a statin non-3A4 substrate without a CYP3A4 inhibitor.   

Definition of Outcome 

To be classified as an outcome, the READ code or laboratory elevation must have occurred 

during or within thirty days following the end of included follow-up time, consistent with the work 

of Graham and colleagues.8 The thirty day period following the end of statin exposure (with no 

subsequent statin exposure) accounts for imperfect patient adherence and delayed outcome 
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recording. Outcomes were attributed to one of the four exposure categories. If an outcome 

occurred more than thirty days following included follow-up time, patient follow-up was censored.  

Outcome definitions were derived from recently published research on statin-related adverse 

events. 3-7, 75, 76 Each outcome was analyzed independently. We utilized medical diagnoses or 

laboratory evidence to identify incident outcomes.  Medical diagnoses are recorded in THIN using 

READ codes which are analogous to ICD-9 codes.  All READ codes and laboratory criteria were 

independently reviewed and verified by the study authors to identify muscle toxicity, renal 

dysfunction, and hepatic dysfunction (CR, SB, PR, JM, and JF).  

Muscle toxicity was defined by a READ code for muscle symptoms (e.g., myalgia, myopathy, 

myositis, and muscle pain) or a creatine kinase (CK) elevation greater than five times the upper 

limit of normal (>5 X ULN).   

Renal dysfunction was defined by a READ code for acute kidney injury, chronic kidney 

disease, end stage renal disease, dialysis, or a doubling of serum creatinine (sCr) (elevated to at 

least above the sCr upper limit of normal) over the baseline sCr or a single sCr value greater than 

twice the ULN (>2X ULN). The baseline sCr measurement was the lowest sCr value occurring 

within 365 days before the elevated sCr measurement.  A secondary analysis excluded patients 

with a READ code for chronic kidney disease. 

Hepatic dysfunction was defined as the first READ code for hepatic failure, toxic liver 

disease, acute liver necrosis, acute hepatitis, jaundice, or an ALT/AST measurement greater than 

five times the upper limit of normal (>5X ULN).  We utilized the 5X ULN ALT/AST outcome 

threshold, consistent with the Drug-Induced Liver Injury Network criteria.77 Additionally, we 

conducted a secondary analysis of severe transaminitis (using the ALT/AST threshold of 10X 

ULN). 

Outcomes identified by laboratory evidence were considered confirmed. Outcomes identified 

by READ codes with no laboratory evidence but with additional outcome evidence from physician 

comments in the electronic medical record were also considered confirmed. We conducted 

secondary analyses using confirmed outcomes only.  

Confounding Variables 
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We evaluated potential confounding variables associated with each outcome from previous 

research.17, 19, 21, 78  Patient demographics and medical history were collected during or prior to 

the twelve month baseline period prior to statin initiation.  Laboratory, patient surveillance, and 

pharmaceutical therapy data were collected only during the baseline period. Table 1 shows the 

specific potential confounding variables we evaluated.   

Due to incomplete baseline laboratory data (e.g., cholesterol, CK, sCr, and ALT/AST), only 

baseline cholesterol was evaluated as a potential confounder. The other laboratory measures 

were used to evaluate the patient surveillance rate.  That is, the number of normal (below the 

threshold for outcome/exclusion from the specific cohort) measurements during the baseline 

period.  

Analysis 

For each analysis, patients with documented evidence of the outcome prior to statin initiation 

were excluded, as were patients with chronic medical conditions related to that outcome.  For the 

analyses of muscle outcomes, we excluded those with prior codes for that outcome, and also 

those who ever had a code for dermatomyositis or myositis specifically attributed to another 

disorder. For the analyses of the renal dysfunction outcome, we excluded those with prior codes 

for that outcome, patients with a sCr above the upper limit of normal within the twelve months 

prior to statin initiation, and also those who ever had codes for genetic kidney disease and 

chronic nephritis.  For the analyses of the hepatic outcomes, we excluded patients with prior 

codes for that outcome, with an ALT or AST greater than 3X ULN within twelve months prior to 

statin initiation, and those who ever had a history of alcoholism and viral hepatitis. As noted, 

patients with chronic conditions (e.g., dermatomyositis, chronic nephritis, and alcoholism) were 

excluded, even if those chronic conditions were first diagnosed after cohort entry; since these 

were chronic conditions, we felt their appearance after cohort entry was simply a reflection of 

when the disease was recorded in the medical record, rather than the true onset of the condition. 

In a planned secondary analysis, we censored follow-up at documentation of these specific 

conditions, rather than excluding the entire patient record.  
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In descriptive analyses, continuous variables were described using means and categorical 

variables were described using percentages.  

The primary effect estimates were derived through Cox proportional hazards regression.79 

Statin potency was included as a time varying covariate in each analytic model. The contrast of 

interest is the interaction ratio (I*R). The I*R is a ratio of two hazard ratios (HR). It represents the 

relative hazard of each statin type with a concomitant CYP3A4 inhibitor adjusted for the hazard of 

each statin type without a CYP3A4 inhibitor.  This method controls for the hazard of the outcome 

associated with each statin type alone, thus, focusing on the effect on the differential hazard due 

to the statin-CYP3A4 inhibitor interaction.  

In addition to the primary analyses, we conducted secondary analyses of those with 

confirmed outcomes.  Other secondary analyses evaluated the effect of statin potency and 

duration of response.  

In order to evaluate different CYP3A4 inhibitor potencies, we conducted secondary analyses 

restricted to CYP3A4 inhibitors exhibiting moderate and strong inhibitory characteristics. We also 

conducted secondary analyses based on duration of CYP3A4 inhibitor use.  We evaluated the I*R 

for antibiotics and antifungals as short duration CYP3A4 inhibitors and other long duration use 

drugs (e.g., antihypertensives) as chronically used CYP3A4 inhibitors. We also present an 

analysis with specific concomitant CYP3A4 inhibitors. 

To control for confounding we used the multinomial propensity score. Multinomial propensity 

score methodology was described by Imai and Imbens and applied by Huang.61, 63, 64 The 

multinomial propensity score determines the probability of being in each exposure category given 

baseline covariates. Using the propensity score variable selection method described by 

Brookhart,80 we included only baseline variables associated (p<0.1) with the outcome.  This 

confounder selection procedure was conducted independently for each outcome. To assess 

baseline covariate balance we graphically evaluated the distribution of propensity scores for each 

of the four exposure categories. Graphic representation of propensity score distributions showed 

ample overlap to permit valid comparison among the four exposure categories (data not shown).   
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Missing data was handled using median value imputation and multiple imputation. For 

statins or CYP3A4 inhibitors missing the prescribed quantity or dosing instructions, we used 

median value imputation based on the derived median prescription duration for statins or 

CYP3A4 inhibitors with available prescribed quantity and dosing instructions. The proportion of 

statin and CYP3A4 inhibitor drug codes missing either the prescribed quantity or dosage 

instructions was 0.1 for statins and 0.2 for CYP3A4 inhibitors. Baseline body mass index (BMI) 

and cholesterol values were imputed using multiple imputation.81 We determined the average 

propensity score adjusted interaction ratio from ten imputed datasets.  Rubin's method was used 

to determine the variance; this method accounts for the within and between dataset variation.81, 82 

Monte Carlo simulation was used to estimate empiric power. Based on an estimated 

600,000 and 50,000 statin person-years with and without a concomitant CYP3A4 inhibitor 

(respectively), our empiric power simulations determined there was more than 80% power to 

detect an I*R of 2.0 (or above), for each outcome.  

Stata version 11.1 was used to perform all analyses. 

This study was approved by the Institutional Review Board at the University of Pennsylvania 

and registered with the National Health Service - Central Office for Research Ethics Committees 

(COREC), United Kingdom.  

RESULTS 

Figure 1 displays the subjects in the cohort who were excluded/included in each analysis. 

The median follow-up time in each analysis was 1.5 years (see Table 1).  Approximately 88% of 

patients initiated a statin 3A4 substrate.  Mean age, proportion of males, and BMI were balanced 

within between statin 3A4 substrate and statin non-3A4 substrate initiators.  

The results for muscle toxicity (primary and confirmed outcome analyses) are presented in 

Table 2a.  Baseline variables associated with muscle toxicity and therefore included in the 

propensity score adjusted model are listed at the bottom of Table 2a.  The adjusted relative 

hazard of muscle toxicity for each statin type with a concomitant CYP3A4 inhibitor, adjusted for 

the effect of each statin type without a CYP3A4 inhibitor is depicted by the I*R. The primary 

muscle toxicity adjusted I*R (95% CI) was 1.22 (0.90-1.66).  The confirmed muscle toxicity I*R 
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(adjusted) was 0.90 (0.53-1.52).  Muscle toxicity hazard ratios for each statin type with versus 

without a CYP3A4 inhibitor are presented in Table 2a.  

The results for renal dysfunction (primary analysis, confirmed outcome analysis, and CKD 

exclusion analyses) are presented in Table 2b.  The baseline variables included in the propensity 

score adjusted model are listed at the bottom of Table 2b. For the primary renal dysfunction 

analysis the adjusted I*R was 0.91 (0.57-1.43).  The confirmed renal dysfunction outcome I*R 

(adjusted) was 0.86 (0.50-1.45).  The adjusted I*R excluding CKD outcomes was 0.91 (0.55-

1.49).  Renal dysfunction hazard ratios for each statin type with versus without a CYP3A4 

inhibitor are presented in Table 2b. 

The results for hepatic dysfunction (primary, confirmed, and ALT/AST >10X ULN) are 

presented in Table 2c.  The baseline variables included in the propensity score adjusted model 

are listed at the bottom of Table 2c. For the primary analysis the adjusted I*R for renal 

dysfunction was 0.78 (0.45-1.33).  The confirmed hepatic dysfunction outcome (adjusted) I*R was 

0.66 (0.38-1.14).  The adjusted I*R for the ALT/AST 10X ULN was 0.85 (0.39-1.87).  Hepatic 

dysfunction hazard ratios for each statin type with versus without a CYP3A4 inhibitor are 

presented in Table 2c. 

Statin potency analyses are presented in Table 3.  The table shows specific statin dosages 

included in each category.  The test for trend among the muscle toxicity potency strata was not 

significant (p=0.46). For renal dysfunction, due to sparse events (and person-years) in the statin 

non-3A4 substrate with a CYP3A4 inhibitor exposure category, we could not obtain an interaction 

ratio in the high potency strata.  

Duration of response analyses are presented in Table 4.  Due to sparse events in the statin 

non-3A4 substrate with a CYP3A4 inhibitor exposure category, we could not obtain stable 

interaction ratios earlier than six months following statin initiation.  We also attempted to 

determine the I*R during the first course of statin therapy, but there were insufficient person-years 

and events to obtain stable I*R estimates.  Given this, we stratified the duration of follow-up as 

follows: 0-6 months, 6-12 months, 12-24 months, and >24 months.   
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Table 5 describes the person-years and events for specific CYP3A4 inhibitors jointly 

prescribed with statins.  Overall, the concomitant statin-CYP3A4 inhibitor person-years and 

events were similarly distributed for patients exposed to statin 3A4 substrates and statin non-3A4 

substrates.  For each cohort, diltiazem, verapamil, and amiodarone make up nearly 85% of all 

CYP3A4 inhibitor concomitancy among statin users.   

The results from the secondary analysis censoring follow-up for patients with specific chronic 

medical conditions identified after statin initiation rather than excluding the entire patient record 

were consistent with the primary findings (data not shown). For each outcome, the I*R from the 

moderate/strong CYP3A4 inhibitor analysis and the short/chronic CYP3A4 inhibitor analysis were 

consistent from the primary analysis findings (data not shown).  

DISCUSSION 

For each outcome, the primary and confirmed analyses show no significant increased 

hazard associated with statin 3A4 substrates compared to statin non-3A4 substrates with a 

concomitant CYP3A4 inhibitor, adjusted for the hazard of each statin type without a concomitant 

CYP3A4 inhibitor. The I*R is an appropriate effect estimate for evaluating the clinical importance 

of drug interactions provided a suitable comparator group is available. For the primary and 

confirmed outcome analyses, statin person-years in each of the four exposure categories 

contributed sufficient person-years to allow I*R estimation. The results from this investigation 

indicate the clinical implications of this well documented drug interaction may be of less 

importance than suggested by pharmacokinetic studies, case reports, and analyses of 

spontaneous reports. 

Pharmacokinetic studies consistently show rapidly increased systemic statin exposure with 

co-administration of statin 3A4 substrates and a CYP3A4 inhibitor compared to statin 3A4 

substrates alone.71, 83-85  The results of this study suggest the short term increased systemic statin 

exposure does not translate into increased hazard for statin-related adverse events. We 

evaluated the early effect this drug interaction by conducting a duration-of-response analysis. For 

renal and hepatic dysfunction, the I*R showed no increased hazard in the first six months 

following statin initiation.  For muscle toxicity, the I*R showed a non-significant increased hazard 
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in the first six months following statin initiation (I*R=2.07 (0.95-4.48)). Further evaluation of 

muscle toxicity may be warranted within six months following the joint exposure to statins and 

CYP3A4 inhibitors. 

Previous research shows statin potency is associated with muscle toxicity.19, 21  As expected, 

we saw an increase in the hazard of all three outcomes for each successive increase in statin 

potency, not quite statistically significant for renal dysfunction (data not shown). However, the 

continuous potency analysis shows the association between statin potency and the outcome, but 

does not address the differential hazard for each statin type with a CYP3A4 inhibitor, compared to 

each statin type without a CYP3A4 inhibitor. This contrast (i.e., the I*R) is depicted in the stratified 

potency analyses, where the interaction ratios show no increasing effect in subsequent potency 

strata.  

Other recent observational studies evaluated statin-associated adverse events with 

concomitant CYP3A4 inhibitors. Cziraky and colleagues reported a six fold (RR=6.01 95% CI 

(2.08-17.38)) increased risk of muscle toxicity for statins with CYP3A4 inhibitors compared to 

atorvastatin alone.9 However, statin exposure was aggregated among all person-years attributed 

to cerivastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin with a 

concomitant CYP3A4 inhibitor. Stratification of statin exposure by oxidative metabolism was not 

evaluated, so they could not disaggregate the independent risk from the CYP3A4 inhibitor from 

the risk from the drug interaction. In the present study, the interaction ratio separates the effect of 

the statin type with a CYP3A4 inhibitor from the effect of each statin type without a CYP3A4 

inhibitor.   

The results from the present study are also discordant from our preliminary spontaneous 

report study in which we found a six fold increased adverse event reporting rate ratio (AERR) for 

simvastatin reports with a concomitant CYP3A4 inhibitor compared to simvastatin reports without 

a concomitant CYP3A4 inhibitor.22  Substantial methodologic differences favoring validity in the 

present study likely drive the inconsistent finding.  The present study included only new statin 

initiators, excluded patients with prior outcomes, excluded organ transplant patients, used a 

validated electronic medical record database, adjusted for potential confounding variables, had a 

 
 

66



true denominator of statin person-years with and without CYP3A4 inhibitor concomitancy, was not 

dependent on external outcome reporting, and used Cox proportional hazards regression to 

estimate the interaction ratio with 95% confidence intervals. Spontaneous report analyses are 

critical for signal generation. However, the conclusiveness of their findings is limited.86 The 

present study is the largest observational study specifically designed to evaluate the clinical 

importance of the statin-CYP3A4 inhibitor drug interaction.  

THIN has been used in many epidemiologic studies and has been validated for numerous 

medical conditions including studies of statin-related side effects.87-89 Despite this, practice 

patterns, patient populations, prescribing patterns, and patient surveillance may be systematically 

different in the UK from in other countries.  We compared the baseline patient characteristics in 

this study to those in other recent statin safety investigations.3-7, 9, 75, 78, 90, 91 These baseline 

patient characteristics were consistent with the baseline patient characteristics from other US, 

Canadian, and European statin safety cohorts.   

Regarding confounding, we did not control for variables which we could not identify or could 

not measure.  However, we captured important variables previously shown to be risk factors for 

each outcome.   We also separately controlled for confounding by chronic diseases, whether they 

were diagnosed before or after the initiation of the statin; the results were the same. 

We addressed potential bias associated with depletion of susceptibles by including only new 

statin initiators.  The rationale for employing the new user design is to circumvent under-

ascertainment of outcomes occurring early in therapy and to evaluate potential confounders prior 

to statin exposure.  This is important because some potential confounders (e.g., cholesterol) may 

change as a result of statin exposure.  Furthermore, if outcomes occurred rapidly following statin 

initiation, as was expected with muscle toxicity and hepatic dysfunction, and if the occurrence of 

these early outcomes were associated with statin type, our estimates would be biased.  The new 

user design diminishes this risk of this potential bias. 

In order to minimize exposure misclassification, we defined precise exposure criteria for 

each exposure category, used up to date drug codes, and carefully constructed exposure 

episodes. Use of THIN diminishes the possibility of poor medication adherence, since in the UK 
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patients are given only a 28-day prescription at a time.  Regardless, we would not expect 

medication adherence to differ by statin type.  

One noteworthy class of CYP3A4 inhibitors not represented in this investigation is 

antiretroviral therapy (e.g., ritonavir, saquinavir, nelfinavir, indinavir, and lopinavir).  This 

investigation included person-years of concomitant exposure to statins and antiretrovirals, but 

there was negligible use included in THIN.  In the UK, antiretroviral treatment is given mainly by 

specialized genitourinary medical clinics, not by physicians in general practice.  The results from 

this investigation may or may not extrapolate to statins with concomitant antiretroviral therapy.  

Outcome misclassification threatens the validity of all retrospective cohort studies. To 

evaluate potential outcome misclassification, we conducted secondary analyses restricted to 

confirmed outcomes. This provided a sensitivity analysis to reveal the accuracy of our original 

outcome classification; the findings from the confirmed outcome analyses were consistent with 

the primary analyses.   

Conclusion 

This large retrospective cohort study showed no overall increased hazard for muscle toxicity, 

renal dysfunction, or hepatic dysfunction associated with statin 3A4 substrates compared to statin 

non-3A4 substrates with versus without a concomitant CYP3A4 inhibitor. Additional research 

could further evaluate the non-significant yet increased muscle toxicity interaction ratio we 

observed for highly potent statin dosages and within six months following statin initiation. 

However, it is clear that the drug interaction between statins and CYP3A4 inhibitors does not 

represent an important public health concern. 
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TABLES 

THIN FIGURE 1 

Total statin users

 (1990-2008) Prevalent/former statin users

n=487,727 n=106,539 Cerivastatin initiators

Organ transplant patients

n=18,379 Muscle cohort

n=109,089 Renal cohort

n=13,576 Hepatic cohort

Subjects included in 
the muscle cohort

Subjects included in 
the renal cohort

n=362,809 n=272, 099 n=367,612

Excluded from all cohorts:

n=381,188

Figure 1. Subjects excluded/included in the muscle, renal, hepatic cohorts

Subjects included in 
the hepatic cohort

Excluded because of outcome evidence prior 
to the first statin or other chronic muscle, 
renal, or hepatic disorders
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THIN TABLE 1 

Baseline characteristics Statin 3A4 
substrate

Statin non-
3A4 substrate

Statin 3A4 
substrate

Statin non-
3A4 substrate

Statin 3A4 
substrate

Statin non-
3A4 substrate

# of statin initiators 325,460 37,349 243,707 28,392 329,668 37,944
Age (mean) 63 64 62 62 64 63

<54 22% 22% 26% 27% 21% 22%
55-64 29% 30% 32% 32% 29% 30%
65-74 30% 32% 28% 29% 30% 32%
>75 20% 17% 14% 13% 20% 17%

Male 54% 54% 56% 56% 53% 53%
BMI (mean) 28 28 28 28 28 28
Alcoholism 1.6% 1.3% 1.9% 1.5% excluded excluded
Current smoker 11% 6% 12% 6% 11% 6%

Medical diagnoses (anytime prior to statin initiation)
CHF 4% 5% 2% 3% 4% 5%
Previous MI 28% 37% 26% 35% 28% 37%
Previous Stroke 4% 5% 4% 4% 4% 5%
Diabetes 21% 19% 19% 16% 21% 19%
Hypertension 52% 49% 47% 45% 52% 49%
Hypothyroidism 4% 4% 4% 3% 5% 4%
Acute kidney disease 0.5% 0.4% excluded excluded 0.5% 0.4%
Chronic kidney disease 3.4% 1.2% excluded excluded 3.4% 1.2%
Acute liver disease 0.4% 0.3% 0.3% 0.3% excluded excluded
Chronic liver disease 0.3% 0.2% 0.3% 0.3% excluded excluded

Subject Surveillance Rate  (within 12 months prior to statin initiation)
Office visits 2.0 1.7 1.8 1.6 2.0 1.7
Serum creatinine 1.0 0.6 0.9 0.6 1.0 0.6
ALT or AST 0.7 0.4 0.7 0.4 0.7 0.4

Baseline labs  (within12 months prior to statin initiation)
Total cholesterol (mmol/L)

n 273,245 26,734 202,169 19,707 276,993 27,150
% w/measurement 84.0 71.6 83.0 69.4 84.0 71.6
mean cholesterol 6.3 6.4 6.3 6.5 6.3 6.4

Serum creatinine (sCr) (μmol/L)
n 235,183 18,122 166,387 12,124 238,169 18,395
% w/measurement 72.3 48.5 68.3 42.7 72.2 48.5
mean sCr 93.1 95.1 83.9 84.9 93.1 95.1

ALT or AST (U/L)
n 150,614 8,827 109,144 6,195 151,670 8,887
% w/measurement 46.3 23.6 44.8 21.8 46.0 23.4
mean ALT 28.8 29.1 30.1 30.1 27.3 27.3

Creatine Kinase (CK) (U/L)
n 16,090 1,120 11,625 800 17,012 1,172
% w/measurement 4.9 3.0 4.8 2.8 5.2 3.1
mean CK 112.1 112.0 126.0 131.2 122.8 124.3

First statin
Atorvastatin 26% - 25% - 26% -
Simvastatin 74% - 75% - 74% -
Fluvastatin - 17% - 17% - 17%
Pravastatin - 64% - 63% - 64%
Rosuvastatin - 19% - 20% - 19%

Standardized statin potency category (at statin initiation)
Low 20% 59% 20% 59% 20% 59%
Medium 49% 23% 49% 22% 49% 23%
High 31% 18% 31% 19% 31% 18%

Pharmacotherapy (at statin initiation)
CYP3A4 inhibitor 6% 8% 5% 7% 6% 8%
Diabetes drug 11% 10% 10% 8% 11% 10%
Hypertension drug 63% 64% 57% 60% 63% 65%
Thyroid drug 7% 7% 6% 6% 7% 7%
Gemfibrozil 0.1% 0.1% 0.1% 0.2% 0.1% 0.1%
Other fibrate 1.1% 1.8% 1.0% 1.8% 1% 2%
Niacin 0.0% 0.0% 0.0% 0.0% 0.01% 0.01%
Vitamin D 2.0% 1.4% 1.6% 1.1% 0% 0%

Hepatic cohortMuscle cohort Renal cohort

Table 1. Subject characteristics - (at or prior to the first statin)
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THIN TABLE 2A 

Unadjusted Adjusted† Unadjusted Adjusted†

Primary analysis

0.93 0.97
(0.85-1.03) (0.88-1.07)

1.20 1.22
(0.89-1.63) (0.90-1.66)

0.76 0.75
(0.57-1.01) (0.56-1.00)

Totals 7889 792665 9.95

Confirmed outcomes

0.79 0.88
(0.66-0.94) (0.74-1.06)

0.87 0.90
(0.52-1.48) (0.53-1.52)

0.89 0.94
(0.54-1.46) (0.57-1.55)

Totals 2718 792665 3.43

Events

2.35

statin 3A4 substrate 2358

50608 8.81

statin 3A4 substrate*

statin non-3A4 substrate +  CYP3A4X 49

HR (95% CI) I*R (95% CI) 
IRp-y

†Model adjusted for the following baseline variables (i.e., at or prior to statin initiation): age, sex, cholesterol, year at statin initiation, CHF, 
stroke, diabetes, hypothyroidism, fluoroquinolone antibiotics, diabetes drugs, thyroid drugs, number of office visits, sCr measurements, 
and ALT/AST measurements during the baseline period, statin potency (as a time varying covariate)

3.59

9.10

2.73

statin non-3A4 substrate +  CYP3A4X

657276

Table 2a. Muscle toxicity analyses: number of events (events), person-years (p-y), incidence rates per 1000 person 
years (IR), unadjusted and adjusted hazard ratios (HR), and unadjusted and adjusted interaction ratios (I*R)

statin 3A4 substrate + CYP3A4X 131 50608 2.59

statin 3A4 substrate‡ + CYP3A4X↑ 446

6688 657276 10.18

7227 6.78

statin non-3A4 substrate 212 77555

statin non-3A4 substrate 706 77555

17 7227
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THIN TABLE 2B 

Unadjusted Adjusted† Unadjusted Adjusted†

Primary

2.10 1.69
(1.79-2.46) (1.43-1.99)

0.95 0.91
(0.60-1.50) (0.57-1.43)

2.21 1.80
(1.44-3.39) (1.16-2.79)

Totals 1449 574584 2.52
Confirmed outcomes

2.53 2.15
(2.09-3.05) (1.77-2.60)

0.90 0.86
(0.51-1.46) (0.50-1.45)

2.80 2.23
(1.71-4.56) (1.35-3.69)

Totals 934 574584 1.63

2.20 1.75
(1.85-2.62) (1.46-2.08)

0.96 0.91
(0.59-1.57) (0.55-1.49)

2.27 1.79
(1.44-3.60) (1.12-2.86)

Totals 1220 574601 2.12

HR (95% CI) I*R (95% CI) 
Events p-y IR

statin 3A4 substrate + CYP3A4X 152 33543 4.53

statin 3A4 substrate 935 478847 1.95

statin non-3A4 substrate 82 57339 1.43

statin non-3A4 substrate +  CYP3A4X 20 4872 4.10

statin 3A4 substrate 701 478830 1.46

Table 2b. Renal dysfunction analyses: number of events (events), person-years (p-y), incidence rates per 1000 
person years (IR), unadjusted and adjusted hazard ratios (HR), and unadjusted and adjusted interaction ratios (I*R)

statin 3A4 substrate + CYP3A4X 131 33543 3.91

statin non-3A4 substrate 130 57339 2.27

statin non-3A4 substrate +  CYP3A4X 25 4872 5.13

statin 3A4 substrate 1119 478830 2.34

statin 3A4 substrate + CYP3A4X 175 33543 5.22

Excluding chronic kidney disease outcomes

†Model adjusted for the following baseline variables (i.e., at or prior to statin initiation): age, sex, BMI, cholesterol, alcoholism, year at statin 
initiation, CHF, MI, stroke, diabetes, hypertension, vitamin D, diabetes drug use, hypertension drug use, # of office visits during the baseline 
period, statin potency (as a time varying covariate)

statin non-3A4 substrate 111 57339 1.94

statin non-3A4 substrate +  CYP3A4X 22 4872 4.52
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THIN TABLE 2C 

Unadjusted Adjusted† Unadjusted Adjusted†

Primary analysis

1.25 1.19
(1.03-1.52) (0.97-1.44)

0.78 0.78
(0.46-1.32) (0.46-1.33)

1.62 1.64
(0.99-2.66) (0.98-2.72)

Totals 1434 815945 1.76
Confirmed outcomes

1.21 1.20
(0.98-1.50) (0.97-1.49)

0.65 0.66
(0.37-1.11) (0.38-1.14)

1.86 2.01
(1.12-3.07) (1.20-3.36)

Totals 1241 815945 1.52
ALT/AST 10X ULN OR med codes

1.27 1.14
(0.97-1.65) (0.87-1.49)

0.86 0.85
(0.39-1.88) (0.39-1.87)

1.47 1.34
(0.70-3.09) (0.63-2.86)

Totals 754 816000 0.92

HR (95% CI) I*R (95% CI) 
Events p-y IR

statin non-3A4 substrate 102 80052 1.27

statin non-3A4 substrate +  CYP3A4X 18 7624 2.36

statin 3A4 substrate 1024 675312 1.52

Table 2c. Hepatic dysfunction analyses: number of events (events), person-years (p-y), incidence rates per 1000 person 
years (IR), unadjusted and adjusted hazard ratios (HR), and unadjusted and adjusted interaction ratios (I*R)

statin 3A4 substrate + CYP3A4X 97 52957 1.83

statin non-3A4 substrate 117 80052 1.46

statin non-3A4 substrate +  CYP3A4X 18 7624 2.36

statin 3A4 substrate 1183 675312 1.75

statin 3A4 substrate + CYP3A4X 116 52957 2.19

statin 3A4 substrate + CYP3A4X 62 52961 1.17

statin 3A4 substrate 627 675358 0.93

statin non-3A4 substrate +  CYP3A4X 8 7625 1.05

†Model adjusted for the following baseline variables (i.e., at or prior to statin initiation): age, sex, cholesterol, year at statin initiation, CHF, MI, 
stroke, diabetes, hypertension, hypothyroidism, diabetes drugs, hypertension drugs, # of office visits, sCr measurements, ALT/AST 
measurements in the 12 months prior to statin initiation, statin potency (as a time varying covariate)

statin non-3A4 substrate 57 80056 0.71
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THIN TABLE 3 

Outcome
Statin 

Potency†
# of 
Events

Person-
years

IR/1000 p-y
Adjusted‡ 

I*R
95% CI

low1 1436 166470 8.63 1.06 (0.87-1.12)

medium2 3405 348824 9.76 1.28 (0.77-2.11)

high3 3048 277371 10.99 2.85 (0.70-11.62)

low 291 120934 2.41 0.84 (0.39-1.83)

medium 620 251108 2.47 0.78 (0.42-1.45)

high 538 202542 2.66 - -

low 257 171580 1.50 0.51 (0.22-1.15)

medium 609 359195 1.70 1.27 (0.97- 1.67)

high 568 284086 2.00 0.97 (0.13-7.45)

‡ Models adjusted for the same variables in the primary analysis.  See tables 3a, 3b, 3c for specific variables.

Table 3. Standardized potency† analysis

Muscle toxicity

Renal dysfunction

Hepatic dysfunction

1 Low potency: < 25% LDL-C reduction (atorvastatin <=5mg, simvastatin <=10mg, fluvastatin <=20mg, pravastatin 
<=20)

2 Medium potency: 25-30% LDL-C reduction (atorvastatin 10mg, simvastatin 20mg, fluvastatin 80mg, pravastatin 40)

3 High potency: is >30% LDL-C reduction  (atorvastatin >=20mg, simvastatin >=40mg, fluvastatin 160mg, pravastatin 
>=80, rosuvastatin >=5mg)

† Statin potency standardization
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THIN TABLE 4 

cyp + cyp - cyp + cyp -

0-6 events 122 2520 7 211 2860
p-years 6509 104377 1019 11781 123685

6-12 events 63 1082 10 89 1244
p-years 6678 106370 1018 11772 125838

12-24 events 78 1264 8 137 1487
p-years 10988 160601 1629 18213 191431

>24 events 183 1822 24 269 2298
p-years 26433 285624 3561 35789 351408

0-6 events 22 198 3 19 242
p-years 4363 78150 710 8959 92183

6-12 events 17 153 3 12 185
p-years 4454 78550 699 8821 92524

12-24 events 30 210 5 25 270
p-years 7236 117080 1097 13524 138937

>24 events 106 558 14 74 752
p-years 17489 205049 2366 26035 250939

0-6 events 17 296 4 23 340
p-years 6702 105868 1061 11982 125614

6-12 events 11 172 2 15 200
p-years 6904 108304 1063 12035 128305

12-24 events 21 259 4 25 309
p-years 11387 164342 1704 18696 196130

>24 events 67 456 8 54 585
p-years 27964 296798 3796 37339 365897

Table 4. Duration of response analysis for muscle toxicity, renal dysfunction, and hepatic dysfunction stratified 
by statin 3A4 substrates and statin non-3A4 substrates with and without a CYP3A4 inhibitor (cyp). 

Muscle 
toxicity

IR/1000 
p-y

Events & P-
years

Months

9.89 0.72

7.77 1.37

Statin 3A4 substrate

3.00 0.99

Adjusted‡ 

I*R

Statin non-3A4 
substrate

23.12 2.07

(0.54-1.82)

6.54 1.20

1.94 0.89 (0.32-2.51)

(0.26-3.51)

2.00 0.60 (0.15-2.33)

(0.95-4.49)

(0.36-1.44)

(0.65-2.89)

(0.79-1.87)

0.65 (0.13-3.19)

Renal 
dysfunction

Hepatic 
dysfunction

2.71 0.43

1.58 0.67

2.63 0.96

Outcome Totals 95% CI

‡ Models adjusted for the same variables in the primary analysis.  See tables 3a, 3b, 3c for specific variables.

(0.21-2.09)

1.60 1.08 (0.49-2.36)

(0.13-1.38)

1.56
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THIN TABLE 5 

p-years %† Events p-years %† Events p-years %† Events p-years %† Events p-years %† Events p-years %† Events

Statin w/o CYP3A4 inhibitor 657726 - 6688 77555 - 706 478830 - 1119 57339 - 130 675312 - 1183 80052 - 117

Statin w/ CYP3A4 inhibitor 50608 - 446 7227 - 49 33543 - 175 4872 - 25 52957 - 116 7624 - 18

Diltiazem 36770 72.75 330 5083 70.65 36 25835 77.04 85 3644 74.88 9 38558 73.05 57 5318 70.89 11

Amiodarone 7644 15.11 57 1214 16.78 7 3548 10.58 67 623 12.81 11 7807 14.79 42 1243 16.57 7
Cimetidine 3218 6.37 22 483 6.71 1 2048 6.11 10 309 6.35 1 3361 6.37 9 500 6.66 1
Verapamil 2111 4.18 29 283 3.93 2 1481 4.42 7 198 4.08 1 2211 4.19 4 288 3.84 -
Erythromycin 777 1.54 9 98 1.36 - 545 1.63 2 72 1.48 - 816 1.55 2 104 1.39 -
Clarithromycin 447 0.88 4 70 0.98 - 321 0.96 6 51 1.06 2 474 0.90 1 74 0.99 -

Cyclosporine 183 0.36 2 66 0.92 3 63 0.19 2 29 0.59 1 179 0.34 1 65 0.87 -
Fluconazole 101 0.20 1 13 0.18 - 76 0.23 1 8 0.17 - 106 0.20 1 13 0.18 -
Fluvoxamine 80 0.16 1 9 0.13 - 68 0.20 - 8 0.17 - 75 0.14 - 9 0.13 -
Nefazadone 42 0.08 - 16 0.22 - 33 0.10 - 13 0.26 - 48 0.09 - 15 0.19 -
Itraconazole 34 0.07 - 5 0.07 - 27 0.08 - 3 0.06 - 34 0.07 - 5 0.07 -
Norfloxacin 23 0.05 - 3 0.04 - 18 0.05 - 2 0.04 - 27 0.05 - 3 0.04 -
Ketoconazole 3 0.01 - 1 0.01 - 3 0.01 - 0 0.00 - 3 0.01 - 1 0.01 -
Mibefradil 2 0.00 - 4 0.05 - 1 0.00 - 3 0.06 - 2 0.00 - 4 0.05 -
Imatinib 0 0.00 - - - - 0 0.00 - - - - 0 0.00 - - - -
Voriconazole 0 0.00 - 0 0.00 - 0 0.00 - - - - 0 0.00 - 0 0.00 -

† percent of total concomitant statin plus CYP3A4 inhibitor person-years

Muscle toxicity Renal dysfunction

Statin 3A4 substrate
Statin non-3A4 

substrate
Statin 3A4 substrate

Statin non-3A4 
substrate

Statin 3A4 substrate Statin non-3A4 substrate

Hepatic dysfunction

Table 5. Descriptive analysis of statin person-years and events with and without specific concomitant CYP3A4 inhibitors for muscle toxicity, renal dysfunction, 
and hepatic dysfunction stratified by statin 3A4 substrates and statin non-3A4 substrates.

Specific concomitant CYP3A4 inhibitors
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DISSERTATION CONCLUSION 
 

This research endeavor evaluated the clinical importance of the drug interaction between 

statins and CYP3A4 inhibitors.  Two empiric investigations and a methodologic study were 

conducted.  The preliminary empiric study (the AERS study) showed an increased adverse event 

reporting rate of rhabdomyolysis for simvastatin, a statin 3A4 substrate statin, with a concomitant 

CYP3A4 inhibitor. There was no increased adverse event reporting rate for pravastatin, a statin 

non-3A4 substrate, with a concomitant CYP3A4 inhibitor.  These results supported observations 

in clinical trials and case reports regarding increased risk of muscle toxicity for statin 3A4 

substrates with concomitant CYP3A4 inhibitors. However, substantial limitations of internal 

validity, inherent in spontaneous report analyses, warranted additional research to fully elucidate 

these findings. 

To assess the validity of the multinomial propensity score, we evaluated the statistical 

performance of different propensity score methods in the setting of a simulated drug interaction 

study. The results from this methodologic investigation showed the multinomial propensity score 

reduced bias, had greater coverage probability, and increased precision than comparator binary 

propensity score methods. Investigators studying drug-drug interactions may consider the 

multinomial propensity score approach for confounding adjustment. 

To further address the clinical importance of this drug interaction, we conducted a 

retrospective cohort study in the THIN database (the THIN study).   This was the largest study 

specifically designed to evaluate statin-related adverse events based on statin metabolism with 

CYP3A4 inhibitor concomitancy.  We used a multinomial propensity score to control confounding. 

The results of this study showed no overall increased hazard for muscle toxicity, renal 

dysfunction, or hepatic dysfunction associated with statin 3A4 substrates compared to statin non-

3A4 substrates with versus without a concomitant CYP3A4 inhibitor. We only identified a non-

significant increased hazard of muscle toxicity for highly potent statin dosages and within six 

months following statin initiation for statin 3A4 substrates compared to statin non-3A4 substrates.   

Given the magnitude of this investigation, the drug interaction between statins and CYP3A4 

inhibitors does not represent a substantial public health concern.   
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