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described, and we set out to characterize it in more detail. Expression profiling of mTR-/- crypts and an
unbiased gene set enrichment analysis revealed broadly decreased expression of Wnt pathway genes in crypt
epithelia and underlying stroma. We describe abnormalities in the Wnt-dependent intestinal stem cell (ISC)
niche in these mice, including decreased expression of ISC marker genes Ascl2, Lgr5, and Sox9. The
importance of these changes was revealed by rescue of crypt apoptosis along with Ascl2 and Sox9 expression
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cultured mTR-/- intestinal crypts. Rescue was associated with reduced telomere-dysfunction induced foci
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independent of previously suggested connections between Wnt and the catalytic component of telomerase,
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ABSTRACT 

	  

MUTUAL REINFORCEMENT BETWEEN TELOMERE CAPPING AND CANONICAL 
WNT PATHWAY ACTIVITY IN THE INTESTINAL STEM CELL NICHE  

Ting-Lin Yang  
F. Bradley Johnson 

 
Mice lacking telomerase (e.g. mTR-/-) for several generations develop dysfunctional 

telomeres and severe gastrointestinal pathology. Intestinal stem cell (ISC) abnormalities 

in late-generation mTR mice have been described, and we set out to characterize it in 

more detail. Expression profiling of mTR-/- crypts and an unbiased gene set enrichment 

analysis revealed broadly decreased expression of Wnt pathway genes in crypt epithelia 

and underlying stroma. We describe abnormalities in the Wnt-dependent intestinal stem 

cell (ISC) niche in these mice, including decreased expression of ISC marker genes 

Ascl2, Lgr5, and Sox9.  The importance of these changes was revealed by rescue of 

crypt apoptosis along with Ascl2 and Sox9 expression upon treatment of mice with Wnt 

pathway agonists, as well as enhanced survival and Lgr5 expression in cultured mTR-/- 

intestinal crypts.  Rescue was associated with reduced telomere-dysfunction induced 

foci (TIFs) and anaphase bridges, indicating improved telomere capping, which 

correlates with upregulation of Trf2 and Pot1a, encoding capping proteins in the shelterin 

complex.  Similar gene expression changes, and rescue by Wnt pathway activation, 

were observed in human cells suffering from telomere dysfunction, including those 

derived from dyskeratosis congenita and Werner syndrome patients.  These findings are 

independent of previously suggested connections between Wnt and the catalytic 

component of telomerase, TERT, and demonstrate a mutually reinforcing relationship 

between telomere capping and Wnt signaling, which may provide new approaches to 

diseases characterized by telomere dysfunction. 
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CHAPTER 1: INTRODUCTION 

The idea that a limited ability of cells to divide might contribute to the 

pathogenesis of age-related diseases was first raised by Hayflick and Moorehead 

a half century ago.  It was based on their observation that human fibroblasts 

have a finite replicative capacity when cultured in the laboratory, a process 

termed cell senescence (1, 2).  It is now known that a major factor limiting cellular 

replicative lifespan is the shortening and consequent dysfunction of telomeres, 

structures that normally cap and protect the ends of chromosomes.  And 

because telomeres shorten with cell division and age in most human tissues, it 

has been hypothesized that such shortening might lead to loss of telomere 

function and thus be a fundamental driver of aging.  Although an attractive and 

seemingly simple concept, it has taken decades to begin to assess potential 

roles for telomere dysfunction in human aging.  Recently, substantial evidence 

has emerged supporting such roles, but the details are proving more complex 

than perhaps envisioned originally.  Furthermore, many questions remain 

concerning the degree to which telomere biology contributes to human age-

related pathologies, and concerning underlying mechanisms.  We will begin with 

brief descriptions of telomere structure and function, and findings from cultured 

human cells and from mice.   

TELOMERES AND TELOMERASE 

Telomere Structure and Function  

Telomeres are the structures at chromosome ends and are composed of 

tandem-repeats of DNA sequences ((5’-TTAGGG-3’)n in all vertebrates including 
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humans) and associated factors such as the shelterin proteins.  When fully intact, 

telomeres perform several functions collectively known as “capping” (3).  First, 

capped telomeres protect chromosome ends from degradation by exonucleases.  

Second, they prevent chromosome ends from being recognized as generic 

double strand breaks and thus eliciting cell cycle checkpoint responses leading to 

either stable cessation of cell division (cell senescence) or programmed cell 

death (apoptosis).  Third, capped telomeres inhibit DNA repair reactions that 

could otherwise lead to deleterious products, e.g. end-to-end chromosome 

fusions.  In addition to these well-established functions, recent evidence indicates 

that telomere status also impacts gene expression on a broad scale.  Capped 

telomeres are thus critical for genome stability, for the progression of cell division 

and survival, and for normal cell physiology. 

An important contributor to capping is the length of the telomere repeat 

DNA, and critical shortening leads to uncapping.  Adult human telomeres are 

approximately 5 – 15 kb in length, and end with 3’ single-stranded overhang 

extending roughly between 50 and 300 nucleotides.  For several reasons, 

telomere length can shorten through rounds of cell division.  Shortening is most 

commonly attributed to the so-called “end replication problem”, which is the 

inability of the standard replication machinery to generate a DNA copy extending 

all the way to the 3’ terminus of the chromosome (4, 5).  This is because the 

telomere strand that ends in the 3’ direction (the so-called G-strand) must be 

copied by lagging strand synthesis, and each Okazaki fragment begins with a 12-

14 nt long RNA primer that is ultimately removed.  For the final Okazaki 
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fragment, this leaves a terminal gap that cannot be filled by additional DNA 

synthesis.  However, actual measured rates of telomere shortening, e.g. 50 – 

100 bp per cell division in cultured human fibroblasts, exceed those predicted by 

the simplest version of the end replication problem, in which the RNA primer is 

laid down at the very end of the telomere.  Recent measurements indicate that 

final RNA primer is actually located ~70-100 nt internal to the very end, helping to 

explain the faster rate of telomere shortening (6).  Furthermore, exonucleolytic 

processing events lead to shortening of the other telomere strand, i.e. the C-

strand, following its replication.  The C-strand is copied by leading strand 

synthesis, which can yield a full copy, but subsequent 5’-to-3’ exonucleolytic end-

resection occurs to generate a single-stranded 3’ overhang, thus shortening the 

telomere (7).  This makes sense, because the 3’ overhang is essential for 

telomere capping.  Thus cells intentionally use mechanisms to replicate and 

process telomere ends that promote capping of longer telomeres, even though 

they can ultimately contribute to uncapping via shortening.   

Additional, less telomere-intrinsic, mechanisms also contribute to telomere 

shortening.  First, oxidative damage can accelerate telomere shortening, 

apparently by increasing the level of single-stranded breaks in telomeres, which 

are converted into double-stranded breaks during replication (8-10).  Similarly, 

high levels of UV light can cause telomere shortening apparently by inducing 

DNA oxidative damage (11).  However, even though telomeres are particularly 

susceptible to UV-specific damage, primarily the formation of cyclobutane 

pyrimidine dimers (CPD), elevated telomere CPD may not lead to enhanced 
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shortening (12).  Second, telomeres are intrinsically difficult to replicate, similar to 

so-called fragile sites and perhaps due to formation of DNA secondary structures 

that impede replication.  Thus conditions that lead to replication stress, e.g. 

activation of oncogenes, RNA bound to DNA ahead of the fork, and limiting levels 

of dNTPs, can lead to sudden and dramatic telomere shortening caused by 

broken replication forks (13-16).  To what extent the telomere-extrinsic and 

telomere–intrinsic mechanisms of shortening described here and above are 

modulated by the environment and with age to contribute to telomere losses in 

aging tissues is currently not well understood, but they have the potential to have 

significant impacts. 

In some tissues telomere shortening is countered by the enzyme 

telomerase.  Telomerase is a reverse transcriptase that carries its own RNA 

template, which it uses to encode repeat DNA added to the 3’ end of telomeres, 

and which is followed by lagging-strand synthesis to generate the complementary 

strand of the telomere duplex (17).  However, in most human tissues telomerase 

activity is present at levels insufficient to prevent age-related telomere losses. 

Also critical for capping are several factors that associate with telomere 

DNA.  In humans, central players are the six shelterin complex proteins, TRF1, 

TRF2, RAP1, TIN2, TPP1 and POT1 (18), and the three components of the CST 

complex, CTC1, STN1 and TEN1.  TRF1 and TRF2 each bind as homodimers to 

duplex telomere repeats in a sequence-specific fashion.  POT1 binds the 3’ 

single-stranded overhang, also in a sequence-specific fashion, and the bridging 

of TRF1/TRF2 to POT1 by the TIN2 and TPP1 proteins yields a protein complex 
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that targets the telomere DNA with high affinity and specificity.  All six shelterin 

proteins exist in mice, with the exception of Pot1 having two forms in mice, Pot1a 

and Pot1b, which have different functions: Pot1a appears to play a more 

important role in telomere capping and suppresses the DNA damage response 

while Pot1b regulates length of the 3’ telomeric overhang (19). Shelterin uses its 

components in different ways to suppress ATM and ATR-dependent DNA 

damage responses and to inhibit DNA break repair pathways (20, 21).  One 

particularly remarkable way is the TRF2-dependent assembly of the telomere 

end into a t-loop, formed by the invasion of the 3’ ss-overhang into the base of 

the telomere repeats to form a D-loop (or possibly a Holliday junction), thus 

obscuring the end (22, 23).  Shelterin also helps recruit and regulate the activity 

of many additional proteins that maintain telomere structure and function.  

Remarkably, among these are proteins involved in recognizing and repairing 

DNA breaks, but under the influence of shelterin at capped telomeres these 

functions are tamed and redirected toward telomere maintenance. The CST 

complex plays a general role in DNA replication, facilitating restart of damaged 

replication forks (24).  This is particularly important at telomeres, because they 

are generally each replicated by only a single fork, in contrast to other genomic 

regions, which, if their replication by one fork fails, can often be replicated by a 

convergent fork from a neighboring origin of replication. Furthermore, the CST 

complex also facilitates fill-in of the C-strand after elongation of the G-strand by 

telomerase (25).  Both the shelterin and the CST complexes also play roles in 

regulating telomerase action at telomere ends (26). 
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Although it is clear that inherited mutations in telomerase, shelterins, and 

other telomere maintenance factors can cause premature telomere dysfunction 

and thus diseases (some of which resemble natural age-related pathology; see 

below), there is little evidence that age-related changes in the activity of these 

factors underlie normal diseases.  Whereas such changes are possible, and are 

worthy of investigation, current understanding suggests that damage to the 

telomeric DNA itself (e.g. critical shortening) with age is a more likely primary 

driver of age-related telomere defects.   

Measurement of Telomere Lengths 

Different techniques are used to measure telomere lengths.  Because of 

their relative ease and ability to measure small amounts of material, real-time 

PCR-based approaches that measure telomere repeat content in comparison to 

a single copy gene (T/S ratio) are most common (27, 28).  However, this 

provides only a mean telomere length measurement, and because there is strong 

evidence that the shortest telomere or telomeres are more important in driving 

cell senescence than mean telomere length, this is a potential drawback (29-32).  

This also holds true for “flow-FISH”, which measures the mean telomere length 

per cell (33).  Other approaches used less widely primarily due to their labor-

intensiveness, are classical Southern analysis of chromosome terminal restriction 

fragments, and Q-FISH, which uses quantitative fluorescence microscopy to 

measure individual telomere intensities in metaphase chromosome spreads (34, 

35).  These can reveal information about length distributions, though Southern 

analysis is not sensitive for detecting extremely short telomeres and is also 
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affected by inter-individual and inter-telomere variability in subtelomeric 

sequences.  The Southern approach can be more precise than real-time PCR, 

but in typical use they yield similar findings for mean length (36, 37).  A new 

automated method, HT Q-FISH, provides benefits of Q-FISH in a high-throughput 

format, although it required dissociated cells and also cannot detect chromosome 

ends lacking all (or almost all) telomere repeats (38-40). 

Telomerase Structure and Function 

Telomerase is a ribonucleoprotein complex composed of the enzymatic 

reverse transcriptase protein TERT and the RNA template TR (also known as 

TERC), which encodes the telomere repeat. Multiple accessory proteins have 

been implicated in telomerase assembly, function, and localization, but in vitro 

analyses have determined that TR RNA and TERT together are sufficient for 

synthesizing telomeric DNA repeats (41, 42). The first step of telomeric DNA 

synthesis requires base pair formation between TR and the 3’ telomeric G-rich 

overhang within the active site of TERT. The second step involves the addition of 

nucleotides onto the 3’ telomeric end to elongate telomeres. Telomerase then 

translocates to the new 3’ overhang to restart the telomeric synthesis process 

again (reviewed in (17, 43)). Over 30 proteins have been proposed to associate 

with telomerase, but the heart of the catalytic core of human telomerase is 

composed of two copies each of TERT, TR, and dyskerin (44). Telomerase likely 

exists in different conformations (reviewed in (45)), and the secondary structure 

of hTR seems to be important for TERT tethering and telomerase interaction with 

accessory proteins, including dyskerin, hGAR1, NHP2, NOP10, and TCAB1 (46).  
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Telomerase activity may be regulated by several different mechanisms, 

and levels of telomerase expression do not always correlate with its activity. Both 

hTR and hTERT are required to be expressed in the cell. In fact, hTR is generally 

ubiquitously expressed, even in cells without telomerase activity (47). hTERT 

expression exhibits more tissue specificity and seems to be the rate-limiting 

factor for telomerase activity. Indeed, telomerase activity can be induced when 

hTERT is overexpressed in mortal cells without telomerase activity (41, 48). 

Telomerase activity can be measured by the TRAP assay, a PCR-based 

method compatible with crude cell or tissue extracts (49). Telomerase present in 

the extract extends a synthetic substrate primer, and the extended products are 

then amplified by PCR.  On an electrophoretic gel, reaction products of the TRAP 

assay have a distinctive banding pattern, which corresponds to the discrete 6 bp 

additions of telomeric repeats by telomerase, and can thus give some information 

for both overall activity and approximate levels of processivity of the telomerase 

activity.  A real time PCR-based assay also exists, which is convenient to run on 

large numbers of samples but gives information related only to overall activity 

(50).  Based on early TRAP assays, telomerase activity was detected in almost 

all cancer cells and in developing human embryonic tissues and germ cells but 

not in quiescent or terminally differentiated somatic cells (49, 51, 52). During 

embryonic development, telomerase activity disappears in brain and bone 

extracts after 16 weeks of gestation and progressively shuts off in other tissues 

(adrenal gland, muscle, lung, skin, and liver) during fetal development.  Later 

studies showed that many tissues that naturally undergo regeneration express 
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telomerase activity, including the esophageal epithelium (53), intestinal 

epithelium (54), basal keratinocytes (55), cycling endometrium (56, 57), and 

hematopoietic stem cells (58). It is now apparent that many adult human stem 

and progenitor cells exhibit telomerase activity. Telomerase activity is present in 

the proliferative and regenerative zones of the human skin and hair follicles (59, 

60). Similarly, in the intestine, where a crypt-villus axis exists to reflect stem to 

progenitor to differentiated cell states, telomerase activity is restricted to the crypt 

base with no detectable activity in the villi (54).  Proliferating spermatozoa have 

constitutive telomerase activity throughout the entire lifespan.  Telomerase 

activity can also be activated in other physiologic states, such as growth-

stimulated lymphocytes and uroepithelial cells (61, 62).  

Telomerase activity may also be regulated by hTERT mRNA alternate 

splicing and hTERT localization. In the fetal kidney, full length hTERT mRNA is 

expressed until gestational week 15, when telomerase activity is present. After 

week 15, when inactive splice variants of hTERT are expressed instead of full-

length hTERT transcripts, telomerase activity is no longer detectable (63). 

Likewise, lymphocytes can control telomerase activity independent of hTERT 

protein levels. Telomerase activity-positive thymocytes and telomerase-activity 

negative peripheral T cells express hTERT protein levels at a comparable level. 

Upon CD4 T cell activation, telomerase activity can be induced by the nuclear 

translocation of hTERT in a phosphorylation-dependent manner (64).  

Cellular Consequences of Telomere Dysfunction 
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The cellular consequences of telomere shortening and uncapping are 

manifold and can vary according to cell type.  Uncapped telomeres lose their 

ability to be masked as double strand breaks, and so a proximal response is the 

activation of the ATM and ATR-dependent DNA damage responses (31, 65, 66).  

Indeed, one way to detect uncapped telomeres in cells and tissues is using the 

microscopy-based TIF (telomere dysfunction-induced focus) assay, which 

visualizes the colocalization between telomere ends and DNA damage response 

(DDR) factors (e.g. γH2AX or 53BP1) (66, 67).  A remarkable feature of 

telomeres is their capacity to resist DNA repair, even after levels of uncapping 

sufficient to activate DNA damage responses (which can occur before all 

telomere repeat DNA is lost, thus allowing aspects of telomeric character to 

persist; see below) (68, 69).  This suppression of repair leads to persistent DDR 

signaling that consolidates further cellular responses.  One general cellular 

response is apoptosis, which has relatively simple consequences because the 

cell in question is eliminated.   Apoptosis seems most common in cell types 

whose corpses are easily disposed of, for example skin and intestinal epithelial 

cells, which are normally and efficiently shed into the environment, or 

lymphocytes, which are efficiently cleared by macrophages.    

Cell senescence is another general cellular response to uncapped 

telomeres, wherein the cell survives but undergoes substantial changes in its 

physiology, including stable arrest of its cell cycle.  Senescent cells are thus 

marked by a number of phenotypic changes - for example expression of 

lysosomal senescence-associated β-galactoside activity, increased levels of 
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heterochromatic proteins such as macroH2A, increased levels of cell cycle 

inhibitors such as p21 and p16 - but no known marker is perfectly sensitive or 

specific for detecting senescence in all settings (70).  Senescence is a 

programmed response to diverse stresses, including telomere uncapping as well 

as oncogene activation, oxidative damage, ionizing radiation, and changes in 

chromatin structure (70).  The program is thought to have evolved to prevent the 

growth of pre-cancerous cells into more advanced tumors, and a large body of 

evidence strongly supports this view, although it also appears to play important 

roles during development and in anti-viral responses (71-73).  Senescent cells 

may be cleared by the immune system, but in some cases can persist. For 

example melanocytes in benign nevi (i.e. skin moles) appear to be in a 

senescence state for decades (74).  Remarkably, there is some evidence that 

seemingly telomere-independent stresses that induce senescence (e.g. oxidative 

stress; activated oncogenes) may actually lead to senescence, at least in part, by 

their effects at telomeres.  For example, oncogene-induced replicative stress 

may be particularly pronounced at telomeres, and any resulting broken 

replication forks may be least likely to be repaired at telomeres, leading to their 

premature shortening.  Thus a global stress is transformed into a more telomere-

focused one (16).   

Senescence is thought to contribute to age-related pathology in at least 

two ways.  First, senescence of stem cells may limit their capacity to produce 

progeny needed to maintain tissue homeostasis.  Support for this idea includes 

mouse experiments in which genetic inactivation of p16INK4a, a cyclin kinase 
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inhibitor that enforces cell senescence by preventing cell cycle progression, was 

shown to prevent age-related stem cell deficits in the brain, pancreas, and bone 

marrow (75-77).  Second, senescent cells are thought to contribute to aging by 

having dominant effects on their surrounding cells.  Central to this idea is the so-

called senescence-associated secretory phenotype (SASP), substances 

released by senescent cells, including matrix metalloproteinases and 

inflammatory cytokines that can have profound tissue effects (78-80).  Direct 

support for the contribution of senescent cells to tissue pathology was 

demonstrated by inducing selective apoptosis of p16-expressing (i.e. senescent) 

cells in a mutant BubR1 mouse model.  The BubR1 mutant accumulates an 

unusually high level of senescent cells, and elimination of the cells alleviated 

pathology in several tissues (81).  It will be important to determine if these 

findings translate to telomere-induced senescence and to natural aging. 

Shortened and uncapped telomeres have other effects, which may 

contribute to apoptosis and senescence but are also separate from these 

processes and might contribute independently to aging.  First, they lead to 

dramatic changes in gene expression that may contribute to cell and tissue 

dysfunction.  The mechanisms underlying these changes are under active 

investigation, and appear to involve widespread changes in chromatin 

architecture that suggest important communication between telomere events and 

the rest of the genome (82-84).  Of particular interest, evidence is emerging that 

even before a telomere has become short enough to be uncapped, its shortening 

can influence gene expression (85, 86).  Therefore changes in telomere lengths 
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with age may contribute to changes in gene expression prior to the onset of 

apoptosis or senescence.  A second set of important changes include 

compromised mitochondrial biogenesis and function (87-89).  Studies in 

telomerase-deficient mice with critically shortened telomeres showed these 

effects are mediated in large part by p53-dependent inhibition of the Pgc1a and 

Pgc1b transcriptional co-activators, and are accompanied by other broad 

changes in metabolism also regulated by these co-activators (90).  Interestingly, 

these changes occurred in several tissues, including those with very low cell 

turnover (e.g. myocardium), suggesting these mechanisms may connect 

telomere changes to aging of post-mitotic cells.  And third, uncapped telomeres 

can lead to inter-telomere recombination.  This can take the form of homologous 

recombination-dependent telomere lengthening, which occurs at undefined rates 

in some normal cells and is used as an alternative to telomerase for telomere 

length maintenance in about 10% of cancers (91, 92).   Alternatively, and more 

ominously, inter-telomere recombination can take the form of non-homologous 

end joining-mediated fusions between telomere ends. Such fusions can lead to 

chromosomal aneuploidy, because at mitosis the resulting dicentric 

chromosomes can break at sites outside the point of fusion or are not disjoined, 

and thus unequal chromosomes complements are inherited by the daughter 

cells.  This can lead to cell death, senescence, or to cancer (see below).  

However, even though it is sometimes implied in the scientific literature that such 

fusions are a frequent outcome of telomere uncapping and are a primary cause 

of senescence, in normal human cells such fusions occur at a minority of 
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uncapped telomeres and are not required for senescence (29, 93, 94).  Indeed, 

there appear to be intermediate degrees of telomere uncapping sufficient to 

activate partial DNA damage responses that drive senescence, but which occur 

before a telomere has become further uncapped and fusogenic (29, 95).   Cells 

that have lost responses to intermediate levels of uncapping (e.g. p53-deficient 

cells) can continue to shorten telomeres to the point of full uncapping, leading to 

fusions and thus genome instability that can drive cancer.   

Given that the loss of replicative capacity was the original attribute that led 

to the identification of cell senescence, it has been natural to assume that the 

transition from a replicative to a non-replicative state is an essential feature of 

senescence.  This is consistent with the idea that a key purpose of the 

senescence program is to inhibit the growth of pre-cancerous cells.  However, 

recent evidence suggests that even cells that are already post-mitotic can display 

other features of senescence.  As such, senescence might be viewed as a 

programmed response of cells to particular stresses.  For example, elevated 

markers of oxidative and DNA damage, and senescence-associated changes in 

chromatin and gene expression including upregulation of the inflammatory 

cytokine IL-6 and of the cyclin kinase inhibitors p16 and p21 have been reported 

in neurons of aged mice (96).   It is possible that telomere dysfunction contributes 

to this type of neuronal senescence, because the markers were more 

pronounced in telomerase-deficient mice.  Furthermore persistent DNA damage 

foci in the neurons of normal mice exposed to ionizing radiation occur 
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preferentially at telomeres, indicating telomeres may be key transducers of 

stresses into senescence responses even in post-mitotic cells (68).   

Proof that telomere shortening is an important cause of cultured human 

cell senescence was demonstrated by the bypass of senescence upon 

upregulation of telomerase activity via artificial overexpression of hTERT (97).  

hTERT expression was sufficient to provide telomerase activity, and thus 

telomere lengthening, because other telomerase components (e.g. hTR) were 

already expressed naturally.  Although potential extra-telomeric roles for hTERT 

have been reported, e.g. in mitochondria, DNA repair, stem cell maintenance, 

and modulation of Wnt signaling (46, 98-100), some of these are controversial 

(101), and regardless it is the extension of telomere length that most likely 

underlies the bypass of senescence.  Strongly supporting this idea is the 

demonstration the degree of telomere lengthening following a transient pulse of 

telomerase activity correlates with subsequent cell replicative lifespan (102).  

However, we want to emphasize that even though telomere shortening clearly 

drives the senescence of cultured cells, it is not yet clear to what extent 

senescence in humans is a telomere-driven process, and more work needs to be 

done to determine whether senescent cells, particularly those driven into 

senescence by telomere dysfunction, contribute to age-related pathology in 

humans.   

Telomeres and Aging, and Telomere Syndromes 

In the normal human population, telomere lengths range from 

approximately 5 to 15 kb and change during pre and postnatal development and 
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aging. There is ample support for the idea that telomeres tend to shorten with 

age in most human tissues, even including tissues with low levels of cell turnover 

such as brain (103) (104-106).   

Telomere lengths are highly similar among tissues within an individual in 

utero and soon after birth (107, 108). However, they vary among individuals but 

are not different between male and female newborns, suggesting that increased 

variability in length between individuals and genders arises from different rates of 

telomere attrition later in life.  After birth, telomerase activity is repressed in most 

somatic cells, and thus telomeres shorten during growth to adulthood.  

Importantly, there is some telomerase activity in stem and progenitor cells, which 

helps counter but not prevent shortening.  Telomeres shorten most during the 

rapid growth to adulthood, around 1kb from birth to 4 years of age and 

decreasing to less than 100bp per year thereafter in leukocytes (109). They 

shorten in rough proportion to the proliferative rate of the tissue, e.g. telomeres 

shorten more rapidly in peripheral blood leukocytes than in skeletal muscle, but 

shortening rates may also be influenced by differences in levels of telomerase 

among tissues.  Telomere lengths are nonetheless correlated among tissues 

when making comparisons between people, i.e. a person with longer-than-

average telomeres in skeletal muscle will also have longer-than-average 

telomeres in leukocytes (110, 111).  

Within a lineage of cell types, telomere lengths correlate positively with 

telomerase expression and activity, and in stem cells where telomerase 

expression is high, telomere lengths are also the longest. Stem cells have longer 
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telomeres than progenitor cells, which in turn have longer telomeres than 

differentiated cells. Q-FISH analyses of murine skin, intestine, testes, cornea, 

and brain found the longest telomeres to be located in stem cell compartments, 

with progressively shorter telomeres towards the more differentiated cell 

compartments (112). Stem cells also undergo telomere attrition with age, despite 

expressing telomerase activity. Telomeres in stem cells from two year old mice 

are significantly shorter than from two month old mice, which may be explained in 

part by the concurrent decline in telomerase activity with age (112, 113). 

Similarly, in humans, despite the presence of telomerase activity in stem cells, 

telomere attrition still occurs in stem cells with age – hematopoietic stem cells 

(HSCs) and mesenchymal stem cells (MSCs) have shorter telomeres with age 

(114, 115).  However, the converse seems to be true in male germ cells – 

telomeres are longer in spermatozoa produced by older men (116).  

There is clear evidence that telomeres shorten with age, but is the 

shortening during the lifetime of an individual enough to contribute to telomere 

dysfunction in aging mammals? Indeed, there exists direct evidence that links 

aging and uncapped telomere in primates. There is an exponential increase in 

the frequency of dysfunctional telomeres in baboon dermal fibroblasts with age, 

as measured by TIFs. Correspondingly, there is also an exponential increase in 

cellular senescence and p16INK4a expression in the baboon skin fibroblasts with 

age, with 80% of the senescent fibroblasts positive for TIFs (117). Several rare 

genetic diseases displaying premature onset of some features of aging, called 

progeroid disorders, are associated with defects in telomere maintenance 
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factors.  Understanding the mechanisms underlying these diseases can therefore 

provide insight into potential contributions of telomere dysfunction to age-related 

pathologies.   

The first progeroid disease to be connected clearly to telomeres is 

dyskeratosis congenita (DC) (118).  DC was originally defined by a classical triad 

of clinical signs including oral leukoplakia, dystrophic nails, and skin 

hyperpigmentation, but includes several other pathologies including IPF, GI 

dysfunction, osteoporosis, cirrhosis, bone marrow failure and increased rates of 

cancer, the last two which are the primary causes of death.  Mutations in several 

different genes cause DC, and most of these lead to decreased levels of 

telomerase function, including TERT, TERC, DKC1, NOP10, NHP2, and TCAB1.   

Recently, mutations in other telomere maintenance factors TINF2, CTC1, and 

RTEL have been found to cause rare cases of DC, and about a third of cases 

remain of unknown genetic origin.  DC is now recognized as part of a spectrum 

of diseases, including the more severe Hoyeraal-Hreiderasson, Coats Plus and 

Revesz syndromes, which are also caused by more severe mutations in some of 

the same genes.  Accordingly, all of these diseases are characterized by 

prematurely shortened telomeres, which appear to be central to pathogenesis.  

There are other progeroid diseases in which telomere maintenance is 

compromised, including Werner syndrome (WS), Hutchinson-Gilford progeria 

syndrome (HGPS), ataxia telangiectasia, Fanconi anemia, Bloom syndrome and 

Rothmund Thompson syndrome.  Each of these is caused by mutations in 

proteins that also have clear effects outside of telomeres, e.g. in each of these 
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diseases, the genome is destabilized globally, and thus it is unclear to what 

extent the telomere defects are the primary drivers of pathology.  WS is caused 

by the loss of the WRN DNA helicase, which is important for efficient 

recombination and DNA replication, including telomere lagging strand synthesis 

(119, 120).  WS is particularly notable for two reasons.  First, among all progeroid 

diseases, its spectrum of pathologies most closely mimics that of natural aging 

(121).  These include atherosclerosis, type II diabetes mellitus, osteoporosis, loss 

of subcutaneous adipose tissue, hair greying, bilateral cataracts, and elevated 

rates of cancer, albeit with some notable differences from natural aging, e.g. the 

osteoporosis affects primarily the limbs rather than axial skeleton, and the cancer 

spectrum is skewed from carcinomas to sarcomas.  Along these lines, it is 

noteworthy that WRN polymorphisms have been associated with longevity (122, 

123).  Second, there is strong evidence that telomere defects in fact make major 

contributions to WS.  Artificial expression of hTERT in cultured WS fibroblasts 

rescues their short telomeres and growth defects, and strongly suppresses the 

elevated rate at which chromosome aberrations are generated, indicating 

chromosome instability is driven by telomere dysfunction (124).  And in mice, the 

naturally high levels of telomerase appear to mask defects that otherwise emerge 

when WRN is lost (125, 126).  Therefore it may be that telomere-related 

degenerative defects in WS are skewed toward those occurring in tissues in 

which telomerase activity is particularly low, e.g. in several mesenchymal tissues, 

which are generally most affected in WS (this excludes bone marrow, where 

telomerase activity is relatively high).  
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 The DC spectrum of diseases have come to be known as “the telomere 

syndromes” or “telomeropathies”, and for good reason, given the clear primary 

role of telomere defects in these diseases and their overlap with telomere-related 

pathologies in “normally” aged individuals such as aplastic anemia or idiopathic 

pulmonary fibrosis.   However, as suggested previously (127), it may be that the 

DC spectrum of diseases reveals primarily how telomere dysfunction affects 

highly proliferative tissues (e.g. bone marrow, GI epithelium, epidermis, or 

tissues that are induced to proliferate by injury, e.g. lung epithelium, liver 

epithelium), whereas WS may provide complementary information on the 

consequences of telomere defects in less proliferative tissues, and thus the full 

spectrum of “telomere syndromes” may be broader than those illustrated by the 

DC-related set of diseases. This idea fits reasonably well with mutations in 

telomerase components being the chief source of DC spectrum diseases, and 

with higher levels of telomerase expression in highly proliferative tissues.  It is not 

yet clear if telomere defects play more important roles in natural aging in tissues 

with low levels of proliferation and telomerase or with high levels of proliferation 

and telomerase.  

MOUSE MODELS OF TELOMERE DYSFUNCTION 

Telomeres in Mice  

Inbred lab mice are the most widely used mammalian models for the study 

of telomerase and telomere biology. Compared with humans, these mice have 

much longer telomeres, higher telomerase activity in somatic tissues, and yet a 

much shorter lifespan. These facts are sometimes used to argue that telomere 
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shortening cannot be a cause of human aging, but this assertion is based on the 

notion that aging mechanisms need to be evolutionarily conserved.  In fact, 

because they are executed primarily after the age of reproduction, pro-aging 

mechanisms are under relatively little selective pressure, and so are more free to 

vary among species (128).   As argued above, humans appear to have evolved a 

strategy that uses telomere shortening to combat cancer, whereas mice have not, 

and so humans may be more subject to the downside of this strategy, i.e. tissue 

homeostasis limited by telomere dysfunction at later ages (129, 130).  Consistent 

with this view, there is no correlation between telomere length and longevity 

among mouse strains. Commonly used strains of inbred lab mice (C57BL/6J, 

FVB/NJ, and 129/SvJ) with long heterogeneous telomere lengths ranging from 

30-150 kb do not live significantly longer than other wild-derived inbred lab mice 

(Mus spretus and Mus musculus castaneus) with shorter telomere lengths (18-20 

kb).  Moreover, the non-Mus wild-derived Peromyscus leucopus mouse has a 

long relative lifespan of 5-7 years compared to that of the inbred lab mouse (~2 

years), yet its average telomere length (~12 kb) is relatively short (131).  Also 

consistent with the view that telomere length is not limiting in inbred lab mice are 

observations that when a core component of telomerase (mTR or mTert) is 

knocked out telomeres shorten, but the first generation (G1) of such mice have 

little apparent phenotypes or pathologies because telomeres apparently do not 

shorten to a critical length (132-135). 

Nonetheless, there is evidence that telomeres may affect cancer and 

aging in normal mice to some degree.  Telomere attrition does occur with age in 
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mice, and even though only to mean lengths that are longer than dysfunctional 

human telomeres, one cannot rule out the possibility that critically shortened 

telomeres may be present (136).   Indeed, TIFs increase in frequency with age in 

mice - and caloric restriction, which delays aging, delays telomere shortening 

(69, 137).  Furthermore, overexpression of telomerase causes elevated rates of 

cancer in mice, but in mice protected from cancer by additional copies of p53 and 

p16/Arf, the extra telomerase extended median (but not maximum) lifespan 

approximately 15% and delayed age-related pathologies (138).  To the extent 

that telomeres play more limiting roles in humans than in mice, one would expect 

that strategies to improve telomere maintenance would have much larger effects 

in humans.  These effects might be beneficial, as well as deleterious (e.g. via 

promoting cancer). 

Mouse models of telomere dysfunction 

Telomerase deficient mice have helped us understand the consequences 

of critical telomere shortening (132-135). Since there is no telomerase in the 

germ line of telomerase knockout mice, they pass on shorter telomeres to their 

offspring, although it is an open question as to what extent ALT activity during 

development – particularly prior to the blastocyst stage – might counter critical 

shortening (139).  Regardless, after several generations of breeding, 

successively shorter telomeres are passed down to the next generation.  

Eventually, once telomeres have shortened to a critical length, pathologies 

associated with dysfunctional telomeres become apparent. How many 

generations must elapse before telomerase deficiency manifests its effects 
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depends on the starting telomere length.  In the CAST/Eij mouse model where 

the starting telomere length is comparable to humans, telomerase 

haploinsufficiency (mTR+/- or mTert+/-) is enough to critically shorten telomeres, 

similar to DC patients who are haploinsufficient for telomerase (140, 141). In 

C57Bl/6 mice, which have longer telomeres than CAST/Eij mice (142), mTR-/- 

deficiency by later generations (G4-G6) leads to decreased lifespan and signs of 

premature aging and decreased somatic and germ cell replicative capacities, 

characterized by apoptosis and growth arrest, particularly in high turnover 

tissues, similar to pathology in DC. Deletion of shelterin proteins in mice has also 

informed us of the function of these proteins in mouse telomere biology. Trf1, 

Trf2, Tpp1, Pot1a, and Tin2 deletion result in embryonic lethality, while Rap1 and 

Pot1b knockout mice survive to adulthood and have no apparent phenotypes 

(143-148). Knocking out Trf1 and Trf2 in cells rapidly induces end-to-end 

chromosome fusions and cellular senescence. As mentioned earlier, late-

generation mTR-/- mice have a phenotype that is characterized by decreased 

proliferation capacity in organs with high tissue turnover rates. Intestinal atrophy, 

infertility, poor wound healing, alopecia and greying of the fur, neural tube 

closure defects, bone marrow aplasia, cardiac dysfunction, and runting are some 

of the degenerative features of the mTR-/- mice (149, 150).  

Dysfunctional telomeres are recognized as double stranded DNA breaks 

and set off DNA damage responses (20). First, the MRN (Mre11-Rad50-Nbs1) 

complex recognizes double stranded DNA breaks and recruits ATM to the site of 

damage. Following auto-phosphorylation and thus activation, ATM 
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phosphorylates key proteins to activate the DNA damage checkpoint, leading to 

DNA repair, cell cycle arrest, or apoptosis. CHK2, H2AX, and p53 are some of 

the DNA damage proteins that ATM directly phosphorylates and activates. 

Uncapped telomeres results in the activation of p53, a tumor suppressor gene 

that can initiate apoptosis or cell cycle arrest and activate DNA repair proteins. 

Activated p53 can act as a transcription factor and can activate expression of 

several genes such as microRNA-34a (miR-34a), CDKN1a (i.e. p21), PUMA, and 

SIAH1 (151).  

p53 conducts many of the downstream effects seen with uncapped 

telomeres. Deletion of p53 in different contexts of telomere dysfunction (caused 

by critical telomere shortening or telomere uncapping from shelterin defects) is 

able to rescue many aspects of the pathology, such as cell cycle arrest, 

apoptosis, and stem cell function. For example, mice lacking Trf1 in the stratified 

epithelium die perinatally but survive to adulthood when p53 is deleted (152). 

Similarly, p53 deletion rescues many aspects of stem cell dysfunction in late-

generation mTR-/-  mice (which we will discuss in more detail later) (153-156). 

However, deletion of p53 leads to unchecked cell cycle progression in these cells, 

which allows the cells to further accumulate genomic instability, resulting in end-

to-end chromosome fusions and breakage-fusion-bridge cycles during mitosis. 

This sets the stage for the cell to turn into cancer through genomic deletions, 

duplications, and rearrangements. Indeed, rates of cancer are increased in mice 

lacking p53 and mTR or Trf1 in stratified epithelium.  
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Conversely, telomere dysfunction with an intact p53 response exerts a 

tumor suppressive effect, as mTR-/- mice have reduced incidences of cancer, and 

delays cancer onset in the cancer-prone Ink4a/Arf-/- mice (157). Telomere 

dysfunction can be thought of a driver for genomic instability, and may actually 

increase cancer initiation (e.g. late-generation mTR-/-APC+/min mice increases 

numbers of early-stage microadenomas), but decrease cancer progression – 

telomere shortening in the absence of telomerase but in the presence of 

functional p53 can inhibit malignant cell division (e.g. late-generation mTR-/-

APC+/min mice have decreased numbers of late-stage macroadenomas) (158, 

159). 

Cell senescence or apoptosis caused by telomere uncapping has been 

thought to be cell autonomous. Thus, genetic inactivation of factors that minimize 

telomere degradation (Exo1) or responses to uncapped telomeres (p53, p21, or 

PUMA) has been found to be of benefit in mice lacking telomerase (156, 160-

162).  But the recent demonstration that cell senescence can be propagated in 

an intercellular fashion (80) raises the possibility that non-cell autonomous 

mechanisms might impact pathology caused by telomere uncapping. 

WNT SIGNALING, INTESTINAL STEM CELLS, AND TELOMERES 

Wnt Pathway 

The Wnt pathway was initially discovered in Drosophila when the Wingless (Wg) 

gene was mutated to cause wingless fruitflies (163). Wg had a high degree of 

conservation across species, including the Int-1 (integration) oncogene in mice 

(now known as Wnt1), discovered as a site of frequent retroviral integration by 
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the mouse mammary tumor virus (MMTV), which causes mammary tumors in 

mice (164). The Wg gene is important for segment polarity during embryonic 

development. The Wg/Int pathway was eventually renamed as Wnt, to reflect 

both origins of discovery.  

The Wnt signaling pathways are a group of highly conserved signal 

transduction pathways that can be classified into two main categories: the 

canonical Wnt pathway and the noncanonical Wnt pathway. Both the canonical 

and the noncanonical pathways are activated by extracellular Wnt protein ligands 

that bind to specific cell surface receptors (Frizzled receptors, Fzd) to activate 

downstream intracellular signals through the Dishevelled protein. The canonical 

Wnt pathway leads to an accumulation of β-catenin to regulate gene expression, 

while the noncanonical pathways operate independently of β-catenin. The 

noncanonical Wnt pathway has been described to be involved in planar cell 

polarity (165, 166). 

The canonical Wnt pathway is initiated when extracellular Wnt ligand 

proteins bind to the Fzd, LRP5/6 cell surface protein receptors, which activate the 

intracellular Dsh protein. Activated Dsh inhibits the GSK3/Axin/APC destruction 

complex, which sequesters β-catenin in the cytoplasm and targets it for 

ubiquitination and subsequent degradation. Once the destruction complex is 

inhibited, levels of β-catenin build up in the cytoplasm and localize to the nucleus. 

In the nucleus, β-catenin binds to the TCF/LEF transcription factors to initiate 

gene expression changes. There are other players involved in the Wnt pathway, 

including other ligands and receptors. R-spondin proteins are a family of proteins 
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that are secreted and can activate the canonical Wnt pathway via the Lgr family 

of receptors, Lgr4/5/6 (167, 168). R-spondin proteins may also bind to and inhibit 

the ZNRF3 and RNF43 transmembrane molecules, which are Wnt target genes 

but also negatively feedback on Wnt signaling by increasing turnover of the Fzd 

receptors (169). Similarly, Ror proteins are a family of tyrosine kinase receptors 

that can modulate Wnt signaling depending on the cell type, and they may 

sequester Wnt ligands to prevent them from binding to Fzd receptors. Ryk is 

another family of tyrosine kinase receptors that can activate the canonical Wnt 

pathway through Dsh. It has long been thought that specific Wnt ligands activate 

different Wnt pathways (e.g., Wnt 11 activates the noncanonical Wnt pathway), 

but it is now thought that the signaling outcome is dependent on the combination 

of receptors activated (170). 

There are several inhibitors of the canonical Wnt pathway, including Wnt 

inhibitory factor-1 (Wif-1), Dickkopf (Dkk), Cerberus, Wise, SOST, Frzb, and the 

soluble frizzled proteins (Sfrps). There are also cytosolic inhibitors of Wnt 

signaling, including Axin2 and Nkd, which are both Wnt targets and negatively 

feedback on the pathway. Wnt ligand diffusion may be inhibited through 

interactions with Dally and glypican 3. Dkk (forms 1-4) can bind to LRP and 

Kremen, which may downregulate LRP from the cell surface. Sfrps are secreted 

proteins that mimic Fzd proteins (without transmembrane domains) and can 

sequester Wnt ligands. Similarly, Wif1 also binds Wnt ligands to prevent them 

from binding to Wnt receptors (171). 

Wnt Signaling in Intestinal Stem Cell Homeostasis 
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The canonical Wnt pathway is important for the embryonic development of the 

gastrointestinal tract and the maintenance of intestinal stem cell (ISC) 

homeostasis (172). Mutation of genes involved in canonical Wnt signaling can 

disrupt the development of the GI tract and can also initiate tumors. When Tcf1 

(also known as Tcf7) and Tcf4, transcription factors of canonical Wnt signaling, 

are both knocked out in mice, severe hindgut and gastrointestinal defects are 

present (173). Inactivating mutations of APC can lead to unchecked Wnt 

signaling and intestinal adenomas and cancer in mice and humans (158). Wnt 

signaling is also important for maintaining the ISC niche environment in adult 

intestinal crypts. 

The normal maintenance of mammalian intestinal epithelium involves 

remarkably high rates of cell turnover.  For example, the small intestinal 

epithelium of mice is replaced every 3-5 days (174, 175).  Fundamental to this 

homeostasis are the activities of intestinal stem cells (ISCs), which reside within 

the deepest recesses of the intestinal epithelium at the base of each crypt.  ISCs 

include both so-called crypt base columnar cells (CBCs) and label-retaining cells 

(LRCs).  CBCs divide on a daily basis (176) and are located at the base of crypts 

where they are intercalated between Paneth cells, which along with underlying 

stromal cells contribute to the CBC niche.  Importantly, both Paneth and stromal 

cells provide intercellular Wnt signals (e.g. Wnt3 from Paneth cells) to support 

the CBC niche (177).  In contrast, LRCs divide infrequently, are located above 

Paneth cells at approximately the +4 position, and are independent of Wnt 

signals (178). Both CBCs and LRCs produce progeny that can differentiate into 
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all intestinal epithelial cell types, and it is thought that CBCs typically serve this 

function, whereas LRCs divide to replace CBCs on the occasion of their loss. 

The crypt niche environment is composed of ISCs and Paneth cells, which 

produce bactericidal enzymes but also secrete EGF, the Notch ligand Dll4, and 

multiple Wnt ligands, Wnt11 and Wnt3 (177). Wnt3 is an important Wnt ligand for 

ISC maintenance, and Paneth cells are the sole source of Wnt3 production in the 

crypt epithelium. The underlying stroma is also an important source of Wnts and 

can compensate for loss of Wnts from Paneth cells (179). Wnt3 is not essential 

for ISC maintenance in vivo because stromal sources of Wnt (e.g. Wnt2B) can 

compensate, but ex vivo cultures of intestinal organoids, without the presence of 

stromal cells, Wnt3 and Paneth cells are essential for organoid and ISC survival 

(179). Wnt3 can substitute for R-spondin1 or other Wnt-activating agents, such 

as CHIR99021 (an inhibitor of GSK3) in ex vivo intestinal organoid cultures. The 

standard recommended ex vivo/in vitro organoid culture system is supplemented 

with the growth factors EGF, Noggin, and R-spondin1 (180).  

Wnt and Aging 

Wnt signaling is important in development and cancers, and recent reports 

suggest Wnt signaling is also important in replicative senescence and aging, 

although many studies report contradictory roles for Wnt signaling. The 

discrepancies between the studies have yet to be resolved, since it is context-

dependent and also depends on the models/tissues/cells used. WI-38 cells 

undergoing replicative senescence or oncogenic-activated senescence have 

decreased Wnt2 ligand expression, and knockdown of Wnt2 was sufficient to 
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induce premature senescence (181). Exogenous Wnt3a delayed oncogene-

induced senescence in one setting, but in another study, increased Wnt signaling 

activity in the Klotho mouse model accelerated cell senescence and aging (182). 

The Klotho protein has many functions, one of which is to sequester Wnt3 and 

inhibit it from activating the Wnt pathway. Impairment in Klotho gene expression 

increases Wnt pathway activity, and also decreases stem cells in the skin and 

intestine (182). However, Klotho also inhibits the insulin/IGF pathway, which has 

also been implicated in aging and stem cell biology, and can affect additional 

pathways and so the role of Wnt signaling in these experiments is unclear. 

Another study saw an increase Wnt pathway activity in mesenchymal stem cells 

incubated with aged rat serum and inhibition of Wnt signaling promoted 

proliferation (183). Skeletal muscles have also been observed to convert from a 

myogenic to a fibrogenic lineage and found to have increased Wnt signaling 

when incubated with aged serum, and muscle regeneration in aged mice was 

enhanced by the inhibition of Wnt signaling (184). However, Wnt signaling is 

typically mediated in a short-range paracrine fashion, and pro-Wnt factors in the 

serum may be different from short-acting Wnt ligands. Differences in the above 

conflicting reports may also be explained in part by the pleotropic and tissue-

specific effects of Wnt signaling. As mentioned earlier, the combination of Wnt 

receptors that are activated on the cell surface can result in very different 

downstream consequences, and the timing and duration of the signals can have 

opposite effects. For example, even though Wnt signaling promotes 
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hematopoietic stem cell proliferation, constitutive Wnt activation can drive 

hematopoietic stem cell exhaustion (185-188).  

Wnt and Telomeres 

Telomerase and Wnt signaling play important roles in the regulation of cancer, 

aging, and stem cell biology, and many studies explore their relationship with 

each other. TERT has been shown in several systems to be a target gene of the 

canonical Wnt pathway, and other studies have also proposed that TERT acts as 

a transcription factor within the canonical Wnt pathway, although discrepancies 

exist which question the validity and the physiologic relevance of the latter model. 

We will go into a brief overview of the studies that describe these connections, 

the discrepancies, and their relevance to this thesis.  

TERT is a direct and canonical Wnt target gene in normal and cancer cells 

of humans and mice through the binding of β-catenin directly to the TERT 

promoter. Activation of Wnt signaling by LiCl (which inhibits GSK3, among other 

activities), Wnt3a-conditioned medium, or overexpression of constitutively active 

β-catenin induced hTERT expression and telomerase activity in multiple human 

cell lines, through TCF4-mediated transcription. Inhibition of β-catenin expression 

reduced hTERT expression, telomerase activity, and increased rates of telomere 

shortening (189). Similar results were found in a separate study looking at mouse 

embryonic stem cells, mouse intestinal cancers caused by overactive Wnt 

signaling and human cancer cell lines, mediated by β-catenin and KLF4 binding 

at the Tert promoter (190). These observations are in addition to what is already 
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known about the regulation of TERT transcription through the c-Myc transcription 

factor, which itself can be regulated by β-catenin/Wnt signaling. 

Many investigators have studied the overexpression of TERT in human 

and mouse systems, and many have observed non-telomere lengthening effects 

of telomerase, including the inhibition of apoptosis and promotion of cell division. 

TERT overexpression in mouse skin induced robust follicular bulge stem cell 

proliferation that resulted in robust hair growth, which was still the case even 

when telomerase-lengthening effects were abolished (i.e. in mice lacking mTR or 

when a catalytically-inactive form of TERT was overexpressed)(191, 192). The 

authors identified changes in gene expression regulated by the Myc and Wnt 

pathways when TERT expression was switched off (192). Follow-up studies by 

the group identified direct association of endogenously FLAG-tagged mTERT 

with β-catenin and BRG1, a chromatin remodeling factor shown to promote β-

catenin target gene expression (99).  The authors also describe mild homeotic 

transformations in first-generation mTERT-/- mice (before telomeres are critically 

short), characterized by loss of the 13th rib on one or both sides in 6 out of 13 

mice. Multiple groups have attempted to replicate these results, but to date, there 

have been no success yet. Moreover, it would be expected that extra-telomeric 

functions of TERT would manifest in phenotypes of mTERT-/- mice that are 

different from mTR-/- mice. This was investigated through comparisons of several 

models – livers from mTERT-/- and mTR-/- mice, mouse embryonic fibroblasts 

(MEFs) from mTERT-/- and wild-type littermates produced from heterozygous 

mTERT+/- parents, and comparisons between mTERT-/- and mTR-/- mice on a 
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different strain background – but there was lack of evidence for any gene 

expression or phenotypic differences between mTERT-/- and mTR-/- (140, 193).  

Many have also raised the question of physiologic relevance in an 

overexpression system, where TERT could have gain-of-function phenotypes. 

TERT overexpression in several human cell lines was also contributed to the 

increase in Wnt reporter activation (99, 194). However, in hepatocellular 

carcinomas with mutations in the promoter-region of hTERT (which increases 

TERT expression), there was no activation of the Wnt pathway (195). 

Futhermore, hTERT overexpression failed to activate Wnt signaling in various 

cancer cells, including some of the same cells from previous studies (101). The 

authors postulate that the discrepancies are due to differences in cell types and 

the numbers of TCF/LEF sites in the reporters used. Surprisingly, they also failed 

to detect interaction between FLAG-hTERT and endogenous BRG1 or between 

BRG1 and β-catenin. However, they detected interaction between non-affinity-

purified anti-FLAG M2 antibody and β-catenin antibody, which raises the 

possibility that previous reports were detecting artifact from antibody cross-

reactivity.  

Another connection exists between Wnt and telomeres through the 

regulation of TRF2 expression by the Wnt pathway. TRF2 expression was 

described to be highly upregulated in human hepatocellular carcinomas with 

activating mutations in β-catenin and similarly in mouse intestines with increased 

Wnt signaling activity from mutations in APC (196). The TRF2 gene was 

discovered to contain TCF-LEF transcription binding sites, where β-catenin was 
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also found to bind. Furthermore, when β-catenin was knocked down by siRNA 

approach, there was a marked decrease in TRF2 and telomere dysfunction, 

which was rescued by TRF2 overexpression. Depletion of TRF2 or disruption of 

TRF2 function in mice and in human cells (through knock-out models or 

overexpression of a dominant negative form of TRF2, respectively) has been 

shown to be deleterious, causing rapid telomere uncapping, loss of 3’ G-rich 

overhangs, resulting in non-homologous end joining of chromosome ends (143, 

197). In this thesis, I describe functional connections between telomeres and the 

Wnt pathway that align most closely with this last set of observations, i.e. a role 

for Wnt signaling in promoting expression of TRF2 and thus telomere capping.  

And furthermore, I present novel evidence that the regulation runs in the reverse 

direction as well, with telomere capping helping to support active Wnt signaling, 

thus describing a positive feedback loop between telomere capping and Wnt 

pathway activity. 

 

MICRORNAS 

Introduction to microRNAs  

 Less than 2% of the transcribed human genome codes for proteins. Non-

coding RNAs (ncRNAs) are divided into two simple classes based on nucleotide 

length: long ncRNAs (lncRNAs) of transcripts longer than 200 nucleotides, and 

small ncRNAs less than 200 nucleotides in length. Among the small ncRNAs are 

microRNAs, Piwi-interacting RNAs, small nucleolar RNAs, tRNAs, short 
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interfering RNAs, and other RNAs. Of particular interest to this thesis is 

microRNAs, which are highly conserved across species and are important for the 

regulation of gene expression (198, 199). 

Functional mature microRNAs are 18-25 nucleotide small RNAs that 

target specific and unique mRNAs for degradation or to inhibit mRNA translation. 

microRNAs are encoded by their own genes or from introns or exons (200). They 

are transcribed in the nucleus by RNA polymerase II or III into primary-

microRNAs (pri-miRNAs), which are capped at the 5’ end, and polyadenylated 

and spliced. Drosha (a ribonuclease) and DGCR8 (an RNA-binding protein) 

cleave the pri-miRNAs into the hairpin precursor miRNAs (pre-miRNAs), which 

are shuttled out of the nucleus by Exportin-5. In the cytoplasm, the RNAse Dicer, 

along with TRBP (a double-stranded RNA-binding protein), cleaves the loop from 

pre-miRNAs into a resulting 3’ and 5’ arm duplex, yielding the mature microRNA 

duplex (201, 202). The miRNA duplex contains a guide strand, which is ultimately 

loaded onto the RNA-induced silencing complex (RISC) with Argonaute (Ago2) 

proteins to direct the functional output of the miRNA, along with an imperfectly-

complementary passenger strand (miRNA*), which is typically targeted for 

degradation (203, 204). When one arm of the duplex is found in much higher 

amounts and is the predominant guide strand, the asterisk indicates the mature 

miRNA on the other, less functional, arm (198). However, since in some cases, 

either the 5’ or the 3’ arm of the miRNA duplex (termed miRNA-5p or miRNA-3p, 

respectively) can act as a guide strand, depending on the cell type and the 
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condition, the -5p or -3p designation is becoming the preferred suffix over the 

asterisk. 

An introduction of miRNAs is not complete without an overview of 

microRNA nomenclature. MIR refers to the gene encoding the microRNA (e.g. 

MIR-145) and uncapitalized “mir-“ refers to the pri-miRNA and pre-miRNA (e.g. 

mir-145), while the capitalized “miR-“ refers to the mature miRNA (miR-145). 

miRNAs with 1 or 2 nucleotide differences are annotated with a lower case letter 

(e.g. the sequence of miR-34a is similar to miR-34b and miR-34c, and they are 

all encoded by different genes). When different genes, pri-miRNAs or pre-

miRNAs encode for identical mature miRNA sequences, they are annotated with 

a dash-number suffix (e.g. pre-miRNAs hsa-mir-194-1 and hsa-mir-194-2 both 

encode for hsa-miR-194). The species of origin is designated by a 3-letter prefix 

(e.g. mmu-miR-34a is from Mus musculus and hsa-miR-34a is from Homo 

sapiens) (205).  

Only one strand of the miRNA duplex is generally loaded onto RISC, and 

selection of the guide strand is based on the thermodynamic stability of the 5’ 

ends. Generally, the strand with the less stable 5’ pairing to its complement is 

incorporated into RISC as the guide (206, 207). Argonaute proteins are important 

for the function of RISC. They directly bind to the mature miRNA with two RNA-

binding domains: the PAZ domain that binds the 3’ end and the PIWI domain that 

binds the 5’ end of the mature miRNA (208). Argonaute proteins may directly 

cleave target mRNA transcripts with its endonuclease activity or recruit proteins 

that will inhibit mRNA translation. In humans, there are two families of Argonaute 
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proteins, the Ago subfamily (ubiquitously expressed in all mammalian cells) and 

the Piwi subfamily (expressed in germ cells and hematopoietic stem cells). Ago 

proteins associate with miRNAs and siRNAs while Piwi proteins associate with 

piRNAs. Perfect complementarity of miRNAs and target mRNA promotes Ago-

mediated degradation of the mRNA, whereas partial complementarity promotes 

inhibition of mRNA translation or deadenylation (209).  

Only ~seven nucleotides of the mature miRNA are required to have 

complementarity in order to recognize its target, and this is known as the seed 

region (210). The seed region is at nucleotide positions 2-7 of the mature miRNA, 

and mutations in the sequence has been attributed to several genetic disorders . 

Several other features also promote specificity of miRNA recognition to target 

mRNA (211). A single miRNA can have hundreds of target mRNAs. Attempts to 

identify miRNA targets include computational approaches to predict mRNA 

targets based on sequence complementarity, which can result in thousands of 

predicted targets for a single miRNA, and follow-up functional biological 

experiments to confirm target specificity is required but can be tedious. HITS-

CLIP (high-throughput sequencing of RNA isolated by crosslinking 

immunoprecipitation) of Argonaute proteins have been able to identify mRNA 

targets of miRNAs (212).  

microRNAs in Aging and Disease 

Even though the field of non-coding RNAs is relatively new – with the 

initial discovery of the miRNA, lin-4, in C. elegans in 1993 (213), followed by the 

discovery of let-7 in 2000 (214) – it is now widely recognized that miRNAs play 
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important roles in development, aging, and disease. miRNAs fine tunes and does 

not completely turn off gene expression, and they have been shown to affect 

gene expression by only 1.2 to 4-fold (215). New miRNAs are still being 

discovered (approximately 500-1000 have been found by RNA-seq), and we 

have only begun to scratch the surface in revealing what regulates them and 

what their functions are. There is a huge need but a lack of a high-throughput 

approach to evaluate the functional role of miRNAs. Currently, the most common 

approaches to evaluate miRNA changes is with miRNA microarrays, and in silico 

analyses are used to predict mRNAs targeted by miRNAs, confirmed by 

functional studies overexpressing, knocking-out, or knocking-down specific 

miRNAs knocking-down miRNAs.  

The profile of miRNAs during aging and senescence is still relatively 

obscure but of great interest, and several investigators have begun to 

characterize them. There are common miRNAs that are upregulated and 

downregulated in different tissues and conditions of aging. In a number of in vitro 

and in vivo studies across species and tissues, the most commonly and 

consistently upregulated miRNA with age is miR-34a (216-220). Overexpression 

of miR-34a has contributed to accelerated senescence and cell cycle arrest in 

multiple cell lines (221-226). Furthermore, miR-34a has been found to play a 

significant role in aging and the lifespan of C. elegans, and loss of function of 

miR-34a delays age-related pathology, reduces oxidative stress and extends 

lifespan (227). Other notable miRNAs that are upregulated with aging are miR-

181, miR146a, miR-195, the miR-200 family members, among others (228, 229). 
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There are also miRNAs that are consistently downregulated with aging from C. 

elegans to multiple human cell types, such as the miR-17-92 cluster, which 

encode for six mature miRNAs, one of which (miR-19) targets PTEN and 

activates the AKT/mTOR pathway, a key pathway involved in lifespan regulation. 

The paralogous clusters of miR-17-92, which are miR-106a-366 and miR-106b-

25, are also downregulated in replicatively senescent cells and aged human 

tissues (230, 231). Many of the miRNAs upregulated in aging are also involved in 

inflammatory processes and cancers, such as miR-146a and miR-181 family 

members (215). It is interesting to note that the same miRNA can be upregulated 

in some cancers and downregulated in other cancers (e.g. miR-181 family 

members are upregulated in breast and colorectal cancer but downregulated in 

glioblastomas and prostate cancer) (232-235). 

In summary, telomeres are important for genome stability, cancer and 

aging, and we do not yet fully comprehend their roles nor the underlying 

mechanisms.  We have found evidence for a positive feedback loop between 

telomere capping and Wnt pathway activity in the small intestinal stem cell niche, 

which can also be described as a circuit in which telomere uncapping drives 

downregulation of the Wnt pathway.  Consistent with this idea, and the 

established role for p53 in mediating DDRs in response to uncapped telomeres, 

we have found some evidence that the p53-regulated microRNA miR-34a plays 

roles in downregulating the Wnt pathway in this setting. 
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CHAPTER 2: GENERAL METHODS 

Study Design 

Histologic comparisons of WT, G2, and G4 mTR-/- mice were made between 

groups each having similar average age, and all mice were younger than 12 

months. RNA samples for microarray analysis and qRT-PCR validation were 

obtained from WT and G4 mTR-/- mice aged 7-8 months. For each of the lithium 

and Rspo1 treatment experiments, littermates were divided equally into the 

control and treatment groups.  Comparisons were made between littermates to 

minimize differences in inherited telomere lengths. For cultured crypts 

experiments, G4 mTR-/- mice aged 3 months or younger were used because 

survival of crypts dropped precipitously beyond this age.  

Mice 

All mice were on the C57BL/6J background, and mTR+/- mice were crossed to 

generate G1 mTR-/- mice, which were crossed to generate G2 mice, and so forth 

(135).  A male miR-34a-/- breeder was initially obtained from Jackson 

Laboratories and crossed with mTR-/- mice. All studies were approved by the 

University of Pennsylvania Institutional Animal Care and Use Committee 

(IACUC). The mice were housed in a standard animal care room with 12:12-h 

light-dark cycle with free access to food and water. For lithium treatment, mice 

were given an ad libitum lithium-chow diet of 0.212% lithium chloride-

supplemented chow (Harlan Teklad, Madison, WI) for 3 days, followed by 0.4% 
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lithium chloride-supplemented chow for 7 days. Lithium chow-fed mice were 

given a supplemental source of drinking water containing 1.5% (w/v) sodium 

chloride to counteract potential toxicities of lithium. For Rspo1 experiments, mice 

are injected at 4 µg Rspo1 (in PBS, or PBS alone for controls) per gram body 

weight subcutaneously daily for 8 days. RSpo1 was expressed and purified as 

described (236). 

Cell lines 

Primary human fibroblasts were obtained from the Coriell Institute. The two 

dyskeratosis congenita (DC) lines were: GM01774 (population doubling level 

(PD) 25; from 7 year-old male), and AG04646 (PD 21; from 11 year-old male). 

The three healthy control (WT) lines were: GM01786 (PD 25; 30-year old mother 

of GM01774), GM00409 (PD ~16; from 7 year-old male), and GM00323 (PD 

23.6; from 11 year-old male).  The Werner syndrome line was AG05229B (PD 

~30; from 25 year-old male), which was retrovirally transduced with pBABE-puro-

hTERT, or with the empty pBABE-puro vector as a control. Fibroblasts were 

cultured in DMEM with 15% FBS, with 1X penicillin/streptomycin/amphotericin-B 

at 37oC in a 6% C02 and 3% O2 atmosphere. 

Tissue histology 

Standard five-micron sections were cut from formalin-fixed and paraffin-

embedded samples.  In situ hybridization for Ascl2 was as described (237), and 

immunostaining for Sox9 and for Ki67 used Millipore AB5535 and Abcam 

Ab16667 antibodies, respectively.  TUNEL assays were performed using the 
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ApopTag Peroxidase In Situ apoptosis Detection Kit (Chemicon).  Images within 

each set of staining were taken with identical settings on a Nikon Eclipse E600 

microscope. Brightness and contrast were adjusted post-capture in a linear and 

equal fashion for all samples.  120 crypts per mouse from hematoxylin and eosin 

(H&E) stained sections were surveyed for the presence of anaphase bridges.  

Isolation of intestinal crypt and stromal cells for microarrays 

8 cm of ileum was longitudinally cut and rinsed in cold PBS, followed by firm 

scraping of intestinal villi with hemacytometer coverslip, incubation in 10 ml 30 

mM EDTA and 1.5 mM DTT in PBS on ice for 20 minutes. The intestine was 

transferred to 10 ml 30 mM EDTA in PBS at 37°C for 8 minutes, followed by 3 

rounds of shaking per second for 30-40 seconds. The supernatant was 

centrifuged at 200 g for 1 minute at 4°C, followed by passage through a 70 µm 

cell strainer. The strained supernatant was spun down again at 130 g for 1 

minute at 4°C to deplete single cells, and the crypt pellet was collected for RNA 

extraction. The remaining intestinal tissue is scraped with a coverslip to remove 

residual epithelial cells and is mechanically homogenized with a TissueRuptor 

(Qiagen) before RNA extraction.  

Crypt culture 

Intestinal crypts used for culturing were isolated from the proximal half of the 

small intestine as described (180), except that the intestinal fragments were 

incubated with 30 mL of 30 mM EDTA in PBS for 15 minutes on ice, with 

occasional inversion.  Isolated crypts were cultured in Matrigel (BD Biosciences) 
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with advanced DMEM/F12 medium containing final and basal concentrations of 

100 ng/mL noggin, 50 ng/mL mEGF, and 1 µg/mL RSpo1 (higher levels of 

RSpo1 were used for some experiments as indicated). Approximately 500 

crypts/50 µL of Matrigel were plated per well in a pre-warmed 24-well plate and 

cultured at 37oC in a 6% CO2 incubator with ambient O2. CHIR99021 (Tocris 

Biosciences) was prepared as a 2 mM stock solution in DMSO. 

RNA extraction  

All RNA extractions were performed with the miRNeasy Kit (Qiagen). RNA 

quantity and quality were confirmed with Nanodrop spectrophotometry or Agilent 

Bioanalyzer 2100 with either the Agilent RNA 6000 Nano or Pico kits. 

Quantitative RT–PCR 

Reverse transcription was performed with miScript II RT Kit (Qiagen) according 

to the manufacturer, using miScript HiFlex buffer. This allows for the qRT-PCR 

analysis of both microRNAs and mRNAs. The ability of the miScript II RT Kit to 

detect mRNAs was confirmed by simultaneous reverse transcription reactions 

with MultiScribe Reverse Transcriptase (Life Technologies). Real-time PCR was 

performed on a Roche LightCycler 480 using SYBR Green JumpStart Taq 

ReadyMix (Sigma). Reactions (10 mL) were performed in triplicate, as follows: 10 

minutes at 950C, 45 cycles of 15s at C95oC, 30s at 59oC, 30s at 72oC. Melt curve 

and gel electrophoretic analyses were performed to verify specific target 

amplification. Amplification from experimental samples was normalized to 

standard curves that were made from dilutions of pooled samples. Cp values 
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from each amplification curve were computed by the second-derivative method, 

the mRNA expression levels were normalized to that of β-actin, and the mature 

miRNA expression levels were normalized to that of RNU6. Primer sequences 

are provided in the Tables section.  Student’s t-tests were used for comparisons, 

except that a 2-way ANOVA (multiple comparisons) was used for statistical 

analyses of human fibroblasts, comparing the gene expression at each dose of 

CHIR99021 to no drug within each genotype. 

Statistics 

p-values were calculated with Prism. Unpaired t-tests assuming equal population 

SD were performed unless specified.  
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CHAPTER 3: WNT-SPECIFIC ISC MARKERS ARE DOWNREGULATED IN 

MICE WITH DYSFUNCTIONAL TELOMERES WITHOUT APPARENT LOSS 

OF CBCS 

INTRODUCTION 

 Stem cells of the GI tract are located in specific regions: the crypt base of 

the small intestine, the mid-crypt of the ascending colon, and the crypt base of 

the descending colon (238). Characterization of intestinal stem cells in mTR-/- 

mice has mostly been described in the small intestine despite pathology existing 

in the colon as well, most likely because murine models of intestinal cancers 

have the most pronounced phenotype in the small intestines (in contrast to 

human intestinal cancers, which are predominantly in the colon) (239). We also 

focus our studies on the small intestine of mTR-/- mice. The small intestine is 

divided into 3 different parts, the duodenum, jejunum, and ileum, and these 

distinctive parts are difficult to distinguish grossly in mice, although their location 

along the small intestine roughly corresponds to thirds by length (i.e. duodenum 

makes up the first third of the small intestine, and so on). The small intestinal 

epithelium is composed of villi that project into the lumen and intestinal crypt 

invaginations. There exists a crypt-villus axis that reflects the differentiation state 

of the cells. There also exists a gradient of decreasing Wnt signals and 

increasing BMP signals along the crypt-villus axis, which has been suggested to 

contribute to the stemness/differentiation state of cells along the axis (172). Each 

crypt comprises approximately 250 cells, containing ISCs and Paneth cells at or 

near the crypt base (240). Each crypt of the small intestine has a remarkable 
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capacity to divide and give rise to cells that differentiate into several lineages that 

contribute to the epithelium of 2-3 villi. ISCs give rise to rapidly-cycling progenitor 

cells called transit-amplifying (TA) cells, which differentiate terminally into 

absorptive enterocytes, goblet cells, Paneth cells, enteroendocrine cells, and 

other cells. In the mouse small intestine, the movement of cells is from the base 

of the crypt to the villus tip except for Paneth cells, which are anchored at the 

base of the crypt . The small intestinal epithelium in mice turns over 

approximately every 3-5 days, and epithelial cells are shed from villus tips into 

the lumen (241).  

 As mentioned briefly in the introduction, two types of ISCs exist, the fast-

cycling CBCs at the base of the crypt and the slow-cycling LRCs at the +4 to +7 

position from the base of the crypt (they have also been called +4 LRCs). There 

is an estimated number of 15 CBCs per crypt (242). It has been suggested that 

LRCs serve as a stem cell reserve pool, and can divide into CBCs to replace 

damaged/dying CBCs (178, 243). There is also evidence that CBCs have the 

potential to convert into LRCs (244). Both CBCs and LRCs share some common 

stem cell markers, but they are also driven by different signals (e.g. CBCs are 

driven predominantly by Wnt signaling) and have distinct stem cell signatures 

(241). There is no consensus in regards to what markers define the putative stem 

cell populations, as there is some controversy in how some have determined the 

stem cell signature (i.e. based on their position within the crypt, or lineage tracing, 

etc.) (241). However, there is agreement that Lgr5 is a specific CBC marker, and 

that is both a direct Wnt target gene and is itself a Wnt receptor at the cell 
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membrane (245-247). Gene expression analysis of Lgr5-EGFP crypt cells has 

determined a signature of CBCs, and identifies Ascl2 (another Wnt target gene) 

and Olfm4, an indirect Wnt target gene (itself a target gene of Ascl2), as robust 

CBC markers (237, 245). Visualization of single mRNA transcripts by in situ 

hybridization confirmed that Lgr5 and Ascl2 are exclusively expressed in CBCs, 

while Olfm4 and Musashi-1 (Msi1) have a broader expression, with Msi1 

extending into the TA cells (248, 249). Many +4 LRC markers have been 

proposed, with Bmi1 being the first marker that was described. Bmi1+ cells are 

distinct from Lgr5 cells, are relatively quiescent, and are independent of Wnt 

signaling. HopX, mTert, Lrig1, and many other genes have been described to 

mark +4 LRCs, but there is a lot of evidence that suggest their broad expression 

in other cell types (241, 249). For example, Lgr5+ cells have the highest levels of 

endogenous telomerase activity in the crypt (250). 

Intestinal stem cell (ISC) exhaustion has been hypothesized to underlie 

compromised epithelial integrity in late-generation telomerase-deficient mice. We 

therefore investigated ISC marker gene expression in these mice. Further, as 

mentioned in the introduction, because the TERT protein has been suggested to 

have functions beyond telomere maintenance (99), we examined mTR-deficient 

mice (lacking only the telomerase RNA template) to avoid any such non-

telomeric effects and instead focus on the consequences of telomere 

dysfunction.   

METHODS 
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Microarray target preparation, hybridization and analysis 

Microarray experiments were conducted by the University of Pennsylvania 

Molecular Profiling Facility, including quality control tests of the total RNA 

samples by Agilent Bioanalyzer and Nanodrop spectrophotometry.  Crypt and 

stromal RNA was obtained, respectively, from three or two wild type and three or 

four G4 mTR-/- mice, with samples from each mouse analyzed on an individual 

array.  All protocols were conducted as described in the Ambion WT Expression 

Manual and the Affymetrix GeneChip Expression Analysis Technical Manual, 

using 250 ng of total RNA for first-strand cDNA synthesis. cDNA yields ranged 

from 9.4-10.7 µg, and 5.5 µg of labeled cDNA was hybridized to Mouse Gene 

1.0ST GeneChips, stained with streptavidin-phycoerythrin, and visualized with a 

GeneChip 3000 7G scanner.  Affymetrix probe intensity (.cel) files were imported 

into Partek Genomics Suite (v6.6, Partek Inc., St. Louis, MO) where RMA 

normalization was applied. The resulting log2-transformed intensities were 

filtered to exclude the IDs corresponding to technical controls, and analyzed for 

differential expression using SAM (Significance Analysis of Microarrays, samr 

v2.0, Stanford University (251)), generating q-values (False Discovery Rate) and 

fold change for each Transcript ID. 

Heat map and gene set enrichment analysis (GSEA): 

Heat maps were generated with Multiple Experiment Viewer (MeV) (252) v4.8.1 

from the Dana-Farber Cancer Institute. GSEA (253) v2.0.13 from the Broad 

Institute was used to identify significant enrichments in the microarray data. The 

C2 collection containing 4850 curated gene sets from the Molecular Signature 
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Database (MSigDB) v3.1 was used to identify enriched pathways in WT vs. G4 

mTR-/- crypts. Chip2Chip was used to translate gene identifiers from the C2 

collection to the Affymetrix Mouse Gene 1.0ST probeset IDs. GSEA was 

performed as follows: log2-transformed RMA values from each individual sample 

were used for the expression dataset. Parameter details are as follows: 

Permutations: 1000, ‘Collapse dataset’ = FALSE, Permutation type = gene_set, 

Max size = 5000, Min size = 1. GSEA was also performed using user-defined 

gene sets from the transcriptomic profile of ISCs or downregulated genes in 

Lgr4/5 KO crypts, described as follows. 361 genes out of 379 genes defined as 

the transcriptomic profile of Lgr5+ ISCs on the Affymetrix platform (249) matched 

the Affymetrix Mouse Gene 1.0ST platform that was used for measurements, and 

these were used to generate the heat map and GSEA enrichment plot. We also 

used the 125 genes out of 135 genes defined as the ISC transcriptome (237) that 

matched our microarray platform. For the gene set describing downregulated 

genes in Lgr4/5 KO crypts (167), 259 of 306 genes from the array platforms 

matched the Affymetrix platform and were used in GSEA. GSEA was performed 

for proliferating (PD32) and replicatively senescent (PD88) IMR90 cells using 

publicly available Gene Expression Omnibus (GEO) dataset GSE36640 (83). 

Chip2Chip was used to translate gene identifiers from the C2 collection to the 

Affymetrix Human Genome U133 Plus 2.0 Array. GSEA was performed as 

follows: raw dataset values from each individual sample were used for the 

expression dataset. Parameter details are as follows: Permutations: 1000, 

‘Collapse dataset’ = FALSE, Permutation type = gene_set, Max size = 10000, 
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Min size = 5, and 4721 out of 4722 C2 collection of gene sets from MsigDB v4.0 

passed the criteria for analysis. 
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RESULTS 

ISC abnormalities in mice with dysfunctional telomeres are specific to Wnt-

responsive stem cell markers 

Crypt epithelium and underlying stroma were each isolated from wild type (WT) 

and G4 mTR-/- mice and used for mRNA expression profiling.  Gene set 

enrichment analysis (GSEA) (253) allowed us to take an unbiased approach to 

determine which gene sets amongst the 4000+ curated gene sets in the 

Molecular Signature Database are significantly down or upregulated in our G4 

mTR-/- crypts. One of the sets most significantly downregulated in the mutant 

crypts is that with genes similarly downregulated in crypts upon deletion of β-

catenin, the key mediator of Wnt signaling between the cytoplasm and nucleus 

(NES -2.27, FDR <0.0001; Table 3.1 and Figure 3.1). Also significantly 

downregulated were gene sets involved in stem cell maintenance (TLX-

dependent) and cell cycle progression (E2F3-dependent), consistent with stem 

cell defects.   

Table 3.1. Gene set enrichment analysis (GSEA) of G4 mTerc-/- versus WT 
intestinal crypts. Top 5 gene sets downregulated in G4 mTerc-/- crypts compared to WT 
crypts as determined by GSEA, using the C2 (curated) database of gene sets published 
in the Molecular Signature Database version 3.1.  

Gene set name 
in MSigDB 

Enrichment 
Score 

Normalized 
ES 

FDR Gene set description 

ZHANG_TLX_TA
RGETS_UP -0.75 -2.41 0.000 

Genes upregulated in neural stem 
cells after cre-lox TLX knockout 

FEVR_CTNNB1_
TARGETS_DN -0.58 -2.27 0.000 

Genes downregulated in 
intestinal crypt cells upon β-

catenin deletion 
PUJANA_XPRES
S_INT_NETWOR

K -0.65 -2.36 0.000 

Intersection of genes correlating 
with BRCA1, BRCA2, ATM, and 

CHEK2 in normal tissues 
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REN_BOUND_BY
_E2F -0.69 -2.32 0.000 

Genes whose promoters were 
bound by E2F1 and E2F4 by ChIP 

in WI-38 fibroblasts 

PUJANA_BRCA_
CENTERED_NET

WORK -0.66 -2.31 0.000 

Genes constituting the BRCA-
centered network (genes 

potentially associated with higher 
breast cancer risk) 

 

Figure 3.1. Gene set enrichment analysis plots of G4 mTR-/- versus WT 
intestinal crypts. GSEA plot comparing genes with altered expression in the 
intestinal crypts of G4 mTR-/- mice vs those downregulated in b-catenin knockout 
mice (FEVR_CTNNB1_TARGETS_DN) 

Examination of Wnt-dependent ISC gene expression, including in situ 

hybridization for Ascl2 mRNA (CBC-specific) and immunofluorescent staining for 

Sox9 protein (expressed in CBCs and transit amplifying (TA) cells) revealed 

dramatically decreased expression in late generation (G4) mTR-/- mice (Figure 

3.2).  There was no difference in the expression of Msi1 protein, an ISC marker 

that is expressed in a Wnt-independent fashion in +4 LRCs and that persists into 

CBCs (254, 255) (Figure 3.2). The minimal changes in Ascl2 and Sox9 

expression in G2 mice indicates the defective expression is caused by 

dysfunctional telomeres rather than telomerase deficiency per se.  
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Figure 3.2. Defects in small intestinal Wnt-dependent stem cell markers in 
late-generation mTR-/- mice. In situ hybridization for Ascl2 transcripts (top 
panel) and immunostaining for Sox9 (middle panel) and Msi1 (bottom panel) in 
ileum from wild-type and G2 and G4 mTR-/-mice. N = 3 mice of each genotype for 
Ascl2 and Msi1 staining; N = 5 WT mice, 2 G2 mice, and 4 G4 mice for Sox9 
staining, * p<0.05. Scale bars: 100µm (top) and 50µm (middle and bottom). 

Since multiple cell types (Paneth cells, +4LRCs, CBCs, TA cells) reside in 

crypts, changes in expression profiling could reflect gene expression changes in 

several cell populations or in a single cell type, or it could reflect a change in the 

composition of cells that make up the crypt. We wanted to determine whether the 

alteration in expression profiling reflects a change in a specific pathway (i.e. beta-

catenin) or a change in the cellular makeup of the crypt. Staining for lysozyme-

positive granules characteristic of Paneth cells revealed neither loss of these 

cells nor of interposed cells (Figure 3.3), which is where CBCs reside in normal 

mice. Thus, the diminished expression of CBC marker genes apparently reflects 
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changes in the state, rather than the presence, of CBCs. This conclusion was 

also supported by several additional findings, as described below.  There were 

also no significant changes in genes expressed in +4LRCs including Bmi1, 

mTert, Hopx, and Lrig1 (Figure 3.4). Because +4LRCs are independent of Wnt, 

this suggests maintenance of some or all Wnt-independent pathways in the 

mutants.  We conclude that expression of at least some CBC-specific genes 

targeted by the canonical Wnt pathway is compromised in mice with 

dysfunctional telomeres caused by generations of telomerase deficiency. 

 

Figure 3.3. CBCs numbers are unchanged in wild-type and G4 mTR-/- ileum. 
Immunostaining for Paneth cell lysozyme in wild-type and G4 mTerc-/- ileum and 
β-catenin staining marks cell peripheries (top panel). (Middle panel) The enlarged 
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insets show examples of cells at the normal CBC location between lysozyme-
positive Paneth cells. Quantitation of Paneth cell counts (top right panel) and 
intercalated cells (bottom panel) from wild-type and G4 mTR-/- crypts. N = 6 of 
each genotype for lysozyme staining, * p<0.05. Scale bars: 50µm. 
 

 

Figure 3.4. Wnt-independent ISC marker gene transcript levels are 
unchanged in intestinal crypts of mTR-/- mice. Microarray signals of Wnt-
independent ISC marker genes in WT and G4 mTR-/- crypts. 

Broadly abnormal expression of Wnt pathway genes in G4 mTR-/- crypt 

epithelium and underlying stroma. 

Wnt ligands produced by stromal and Paneth cells provide support 

essential to CBC function (177).  Because Ascl2 and Sox9 are direct targets of 

the Wnt signaling pathway, we hypothesized that their diminished expression in 

G4 mTR-/- crypts reflects a defect in the Wnt pathway caused by telomere 

dysfunction. qRT-PCR was used to verify the altered expression of a number of 

the Wnt pathway and target genes, including Wnt3, Lrp6, and Lgr5 (Figure 3.5).  

The decline in Wnt3 transcripts is particularly revealing, because it occurred even 

though 1) Paneth cells are the only apparent intestinal source of Wnt3 (177), and 

2) there is no loss of Paneth cells in G4 mTR-/- crypts (Figure 3.3), thus 

confirming downregulation of Wnt pathway genes independent of cell losses. 
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Figure 3.5. G4 mTR-/- mice have reduced expression of pro-Wnt pathway 
genes in ileal crypts and stroma. qRT-PCR analyses of gene expression for 
the Wnt ligand (Wnt3), Wnt co-receptor (Lrp6), and Wnt target gene (Lgr5) in WT 
and G4 mTR-/-  crypts (left). qRT-PCR analyses of gene expression for the Wnt 
ligand (Wnt4) and Wnt receptor inhibitor (Sfrp3) in WT and G4 mTR-/- stroma 
(right). N = 4 mice per genotype, * p<0.05, *** p<0.005. 

 

In the stroma, expression changes were also consistent with decreased 

Wnt pathway activity, including upregulation of several of the SFRP Wnt 

antagonists (Figure 3.5 and 3.6). Several Wnts and cell surface receptors (Fzds) 

were also downregulated in G4 mTR-/- crypts (Figure 3.6).  qRT-PCR confirmed 

the altered expression of Sfrp3 and Wnt4 (Figure 3.5).  Collectively, the data from 

epithelium and stroma indicate broad suppression of Wnt pathway components 

in G4 mTR-/- intestinal tissues.  
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Figure 3.6. Microarray 
gene profiling of the 
small intestinal stroma 
and epithelium of WT 
and G4 mTR-/- crypts.  
Affymetrix Mouse Gene 
1.0ST microarray 
analyses of mRNA levels 
were performed on crypts 
or stroma each isolated 
from wild-type and G4 
mTR-/- mice.  Examples 
indicating downregulation 
of multiple Wnt pathway 
genes (i.e. Wnt ligands 
and receptors) and 
upregulation of Wnt 
ligand inhibitors (i.e. 
stromal SFRPs) in G4 
mTR-/- intestine, which 
support the GSEA 
analyses (see Figure 
S3).  (A) Fold changes of 
SFRPs (Wnt ligand 
inhibitors) in G4 mTR-/- 
intestinal stroma. (B) 
Fold changes of Wnt 
ligands in G4 mTR-/- 
intestinal crypts and (C) 
stroma; Wnt ligands 
known to be expressed in 
robust amounts in each 
compartment are 
highlighted in purple. (D) 
Fold changes of Fzd 
genes (Wnt ligand 
receptors) in G4 mTR-/- 
intestinal crypts. * p<0.05 
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Based on defects in G1 mTert-/- but not G1 mTR-/- mice, Park et al. (99) 

have suggested that Tert but not TR regulates Wnt signaling, and does so 

independent of its telomere-lengthening function. As discussed in the introduction, 

this idea has been questioned, and moreover is a story that is quite separate 

from ours.  First, our mice are genetically deficient for mTR and not mTert, and 

indeed levels of mTert transcripts were not decreased in late-generation mTR-/- 

crypts (Figure 3.4), consistent with published findings (256). Second, the 

suppression of Wnt pathway gene expression progressed with successive 

generations of telomerase deficiency (Figure 3.2), confirming that telomere 

dysfunction, rather than telomerase deficiency per se causes the suppression.  

We wanted to see if telomere dysfunction induces Wnt signaling 

suppression in other cell types as well, and we mined the GEO database for 

expression profiles of cells with telomere dysfunction, and we focused on a 

dataset that compared early-passage proliferating to replicatively senescent 

IMR90 fibroblasts (83). GSEA reveals that Wnt pathway gene sets are 

significantly downregulated within cells that have senesced due to telomere 

shortening (Table 3.2). Similarly, the expression of Axin2 (the ubiquitous and 

canonical Wnt target gene in all cells) was significantly decreased in primary 

human fibroblasts from patients with telomere dysfunction, namely dyskeratosis 

congenita (Figure 3.7). Furthermore, in primary human fibroblasts with Wrn 

mutations (which causes telomere dysfunction), Axin2 expression is rescued 

once telomere capping is restored (with hTERT overexpression) (Figure 3.7). 
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These data strongly support that telomere dysfunction result in a suppression of 

Wnt signaling.  

 

Table 3.2. Gene set enrichment analysis (GSEA) of Wnt pathway related 
gene sets significantly enriched in proliferating versus replicatively 
senescent IMR90 cells. Wnt pathway related gene sets enriched in proliferating 
(PD32) as compared to senescent (PD88) IMR90 cells (from GSE36640 dataset 
of GEO), as determined by GSEA using the C2 (curated) database of 4722 gene 
sets as published in the Molecular Signature Database version 4.0.   
Gene set name in 

MSigDB 
Enrichment 

Score 
Normalized 

ES 
FDR Gene set description 

FEVR_CTNNB1_TA
RGETS_DN 0.64 2.16 0.000 

Genes downregulated in 
intestinal crypt cells upon β-

catenin deletion 

LABBE_WNT3A_TA
RGETS_UP 0.55 1.69 0.005 

Genes upregulated in NMuMG 
cells after Wnt3a stimulation 

FIRESTEIN_CTNNB
1_PATHWAY 0.65 1.67 0.006 

Genes required for and β-
catenin activation in APC colon 

cancer cells 
FIRESTEIN_CTNNB
1_PATHWAY_AND_ 

PROLIFERATION 0.75 1.67 0.006 

Genes required for proliferation 
and β-catenin activation in APC 

colon cancer cells 
 

 
Figure 3.7. qRT-PCR analysis of Axin2 expression in primary human 
fibroblasts with telomere dysfunction. Expression of AXIN2 mRNA levels in 
primary human fibroblasts from (left panel) three healthy people (WT) and two 
people with dyskeratosis congenita (DC), and (right panel) a person with Werner 
syndrome (WS) infected with retrovirus expressing hTERT or a vector control. * 
p<0.05 
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DISCUSSION 

Our study reveals that loss of telomere capping can lead to broad suppression of 

Wnt pathway components and activities in the mouse intestine.  Expression of 

multiple Wnt pathway genes, from those encoding Wnt ligands and receptors, to 

those that are targets of Wnt-dependent transcription factors, is reduced in the 

intestinal crypts of late generation mTR-/- mice.  The changes are most 

pronounced in crypt epithelium, but also occur in the underlying stroma, including 

enhanced expression of Wnt pathway inhibitors, which may contribute to 

inhibition of signaling.  The progressive nature of these changes with increasing 

generation of mTR-/- mice, indicates that uncapped telomeres are the basis for 

Wnt suppression, rather than telomerase deficiency per se. 

 We considered the possibility that the Wnt pathway suppression might be 

secondary to losses in cells expressing these genes, rather than downregulation 

in extant cells.   Our observations argue against this.  First, Wnt3 transcript levels 

decline in the intestinal epithelium of G4 mTR-/- mice, even though Paneth cells, 

which are the sole expressors of Wnt3 in this tissue, are not lost.  Second, even 

though the expression of CBC marker genes (e.g. Lgr5, Ascl2, Sox9, all of which 

are Wnt-dependent) declined, there were no losses of cells intercalated between 

Paneth cells, which is where CBCs reside, indicating a change in CBC state 

rather than survival.  We emphasize that because the defining gene expression 

signature of CBCs depends entirely on Wnt pathway genes, it is not possible to 

use such expression to enumerate CBCs in the G4 mice.  Third, we observed a 

gradual loss in Ascl2 and Sox9 levels in earlier generations of mTR-/- mice (e.g. 
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intermediate losses in G2 mice; Figure 3.2), indicating declines in expression 

precede frank losses.  Fourth, examination of microarray expression data from 

proliferative and replicatively senescent IMR90 fibroblasts (83) reveals that Wnt 

pathway gene sets are significantly downregulated within cells that have 

senesced due to telomere shortening (Table 3.2), and such downregulation 

occurs in a setting where changes in gene expression cannot be explained by 

cell losses. 

It would be ideal to explore changes in gene expression specific to a 

single cell type (i.e. CBCs) with telomere dysfunction, since the crypt contains 

many populations of cells and the changes we detect may reflect changes in 

more than one cell type. We considered crossing mice with reporters for ISC-

markers (e.g. Lgr5-EGFP or Axin2-TdTomato mice) onto our mTR-/- mice to sort 

out CBCs and perform expression profiling on an enriched population of CBCs. 

However, since there are no known Wnt-independent markers specific to CBCs 

(241), and the phenotype we observe is a suppression in Wnt signaling, we 

would be sorting and selecting for a population of CBCs that have strong Wnt 

signaling and not as severe a phenotype as we would otherwise see.  

Given these constraints, we have proposed future experiments that may 

address some of the pitfalls in the design of our original experiments. To address 

whether acute telomere uncapping results in Wnt pathway suppression, we have 

recently developed a system of where we can acutely induce telomere 

dysfunction in organoid cultures established from the Axin2-TdTomato reporter 

mouse. We have cloned and infected a Tet-On lentiviral system to express a 
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dominant negative form of Trf2, which rapidly uncaps telomeres, in Axin2-

TdTomato organoids. Axin2 is expressed predominantly in the CBCs (Figure 

3.8). If our hypothesis is correct, we expect to see decreased TdTomato intensity 

(i.e. decreased Wnt target gene expression) upon acute telomere uncapping. We 

hope to track Axin2-TdTomato intensity before cells die from critical telomere 

shortening but after telomeres are uncapped, to ensure that any loss of signal 

intensity is not due from dying cells. We plan to use real-live imaging and flow 

cytometry to track and measure Axin2-TdTomato intensity upon induced 

telomere uncapping over time, which will inform us of the Wnt signaling status.  

 

Figure 3.8. Wnt reporter Axin2-TdTomato organoid vs WT organoid in 
culture. (Left panel) Axin2-TdTomato organoids grown in culture and (right 
panel) wild-type organoid grown under the same conditions. Brightfield image 
superimposed on fluorescent image taken with a Cy3 filter. Autofluorescence in 
central lumen of organoid (dashed line). 
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CHAPTER 4: P53 AND MIR-34A IN WNT SUPPRESSION  

INTRODUCTION 

When expression of many components of the Wnt pathway are 

downregulated (and not just the targets of Wnt signaling, but components at 

multiple steps of the pathway), one wonders whether there is a master conductor 

or several different regulators that can specifically target the pathway. There are 

a few hypotheses that we generated for the mechanism of Wnt pathway 

suppression, which we outline below.  

Wnt pathway suppression has been attributed to p53 activation, 

specifically through downstream targets of p53, SIAH1 and miR-34a (223, 226). 

SIAH1 is an E3 ubiquitin ligase transcriptionally activated by p53, and it targets 

beta-catenin protein for degradation, and simultaneously targets TRF2 protein for 

degradation during p53-activated replicative senescence of human cultured cells 

(151, 257). In our experiments, RNA levels of beta-catenin are unchanged in G4 

crypts compared to WT crypts on microarray, and Trf2 RNA levels are decreased 

(on microarray and confirmed by qRT-PCR). Siah1 is not expected to change 

RNA levels of beta-catenin or Trf2, and therefore the decreased Trf2 levels that 

we observe in G4 crypts are presumably due to other factors. Although we have 

not confirmed Siah1a or Siah1b upregulation in G4 crypts by qRT-PCR or WB, 

our microarray results suggest that altered Siah1 expression does not explain 

Wnt pathway downregulation in the intestinal crypt epithelium of mice with 

uncapped telomeres. 
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p53 has been conditionally knocked out in the intestine of mTR-/- mice 

(156), and downstream components of p53, p21 and PUMA, have also been 

knocked out in mTR-/- mice (161, 162). G4 mTR-/- mice lacking intestinal p53 had 

rescue in the expression of the CBC marker, Olfm4, which is a target of Ascl2, 

itself a Wnt target gene. These mice had increased crypt proliferation but also 

increased crypt genomic instability (characterized by increased telomere 

dysfunction and DNA damage responses) and apoptosis (156). Overall, this 

strongly suggests that p53 activation mediates the suppression of CBC marker 

expression in late generation mTR-/- crypts. Given that miR-34a is direct 

transcriptional target of p53 that has been found to suppress expression of 

multiple genes of the Wnt pathway (258, 259), it is plausible to hypothesize that 

miR-34a mediates the suppression of Wnt pathway components that we observe.  

Several miRNAs have been described to be upregulated in aged tissues 

and associate with senescence pathways. miRNAs can downregulate a whole 

class of genes, and miRNAs (specifically miR-34a) are good candidates for the 

mechanism of suppressed expression of multiple Wnt pathway genes upon 

telomere uncapping and p53-activation (260, 261). miR-34a is of particular 

interest, as it is implicated in the DNA damage response pathway and aging, 

including cardiac aging and aging skeletal muscles (262). miR-34a belongs to a 

family of miRNAs that include miR34b and miR34c. miR-34a is encoded on 

chromosome 4 of mice and chromosome 1 of humans, while miR34b and 

miR34c are both 500bp within each other on the same chromosome 9 in mice 

and 11 in humans. miR-34a has tumor suppressor activities and is activated by 
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p53, which is activated upon DNA damage including telomere dysfunction. There 

are also other important miRNAs that may be important in gene regulation in the 

G4 crypts.  

Deletion of chromosomal region 1p36, where miR-34a is located but no 

other tumor suppressor genes are, has been described in various cancers, 

including colon cancer (263, 264). miR-34a-knockout mice on a normal C57BL/6 

background, however, have no obvious developmental or pathological 

abnormalities up to 12 months (265). Apparent phenotypes include increased 

somatic reprogramming efficiency of miR-34a-/- MEFs and increased bone 

resorption and reduced bone mass (266). However, in aged mice, miR-34a 

contributes to cardiac aging in mice in part due to its inhibition of PNUTS, which 

binds to TRF2 to prevent telomere shortening (262). miR-34a is directly 

downstream of the p53-activation pathway and has also been shown to have a 

feed-forward effect on p53 activation through inhibition of Mdm4, an inhibitor of 

p53 (267). Other important targets of miR-34a include SIRT1 (268), and 

interestingly, multiple genes of the Wnt pathway, namely Wnt1, Wnt3, Lrp6, beta-

catenin, and Lef1. We hypothesize that miR-34a mediates part of the pathology 

we observe in G4 crypts, specifically, the decreased expression of Wnt pathway 

genes that we have observed.  

METHODS 

MicroRNA microarray 

Microarray experiments were conducted by the University of Pennsylvania 

Molecular Profiling Facility, including quality control tests of the total RNA 
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samples by Agilent Bioanalyzer and Nanodrop spectrophotometry.  Crypt RNA 

was obtained from three G4 mTR-/- mice, with samples from each mouse 

analyzed on an individual array.  Amplification steps were performed with the 

Genisphere FlashTag (miRNA) kit and the Affymetrix GeneChip miRNA 3.0 Array 

chips were used. Affymetrix probe intensity (.cel) files were imported into Partek 

Genomics Suite (v6.6, Partek Inc., St. Louis, MO) where RMA normalization was 

applied. The resulting log2-transformed intensities were filtered to exclude the 

IDs corresponding to technical controls, and analyzed for differential expression 

using SAM (Significance Analysis of Microarrays, samr v2.0, Stanford University 

(251)), generating q-values (False Discovery Rate) and fold change for each 

Transcript ID. 

Mice 

The breeding scheme for generating miR-34a-/- onto the different generations of 

mTR-/- mice is outlined in the following diagram. For simplicity, we will refer to the 

genotype of mTR-/- by generation (e.g. G1 for first generation mTR-/- mice) and 

we will refer to the genotype of miR-34a by allele status (e.g. WT for miR-34a+/+, 

HET for miR-34a+/-, and KO for miR-34a-/-). For example, a third-generation mTR-

/- mouse heterozygous for miR-34a is referred to G3-het. 
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Lentiviral infection of crypt organoid cultures 

Lentiviruses were made at the Wistar Vector Core from System Biosciences 

MirZip vectors coding for with anti-microRNAs: MirZip scramble control vector 

and MirZip vector targeting miR-34a. Organoids were cultured and established in 

5 µM CHIR conditions for several passages before infection. Organoids 

embedded in Matrigel were counted and washed once with cold PBS, and the 

organoids and Matrigel were broken up by pipetting. Organoids were spun down 

at 300g in a cold centrifuge and resuspended in culture media containing 5 µM 

CHIR. Lentiviruses were added to the organoid suspension at different 

multiplicities of infection (MOI of 25 or 50) for 4-6 hours in a 37°C incubator. After 

incubation, organoids were collected and spun down at 300g, resuspended in 

Matrigel, plated, and grown at 5 µM CHIR for 2-3 days before 2 µg/mL puromycin 

selection.  

	    

mTR+/- x miR-34a-/- 

ê 
G1mTR-/- miR-34a+-/

 
x G1mTR-/-

 
miR-34a+/- (G1-het x G1-het) 

ê 
G2-het x G2-het 

ê 
G3-het x G3-het 

ê 
G4-WT; G4-het; G4-KO 
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RESULTS 

We performed a microRNA microarray on WT and G4 crypts (n=3 each) 

using service from the UPenn Pathology Core (using standard core suggested 

preparation methods for the Affymetrix GeneChip miRNA 3.0 Array) (data tables 

in Appendix). Since the chip contains many probes for miRNAs and pre-miRNAs 

that are not yet experimentally determined and are based on unvalidated in silico 

data (from miRBase version 17), we can rely on the newer version of the online 

miRBase database (currently at version 21) to investigate individual miRNA hits. 

miRBase contains information about read counts from available deep sequencing 

experiments, predicted mRNA targets, experimentally-validated mRNA targets, 

etc. Out of the top 10 upregulated miRNA in G4 crypts, 8 miRNAs do not have 

validated mRNA targets or are misannotated. For example, the second most 

increased miRNA hit, miR-5097, is noted to be a misannotation on miRBase and 

is actually derived from a fragment of tRNA and it is not processed by Dicer or 

loaded into RISC. A large proportion of the top 100 upregulated miRNAs belong 

to the misannotated class or have yet to be experimentally identified. miR-34a is 

the most upregulated (validated) miRNA in G4 crypts.  

There are several other interesting validated miRNAs that have 

significantly upregulated expression in G4 crypts, including the miR-23a~27a~24-

2 cluster . The miR-23a~27a~24-2 cluster is encoded by a single pri-miRNA that 

generates 3 different mature miRNAs: 23a, 27a, and 24-2. In many pathological 

conditions the cluster is overexpressed, such as in cancer. In silico analysis has 

shown the cluster to regulate many genes of the Wnt pathway: Wnt3a, Wnt4 are 
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targeted by miR-27a and -24a, respectively; Lrp5 and Lrp6 by miR-23a and -27a 

respectively; Fzd4 and Fzd7 by both miR-23a and -27a; Dvl1 by miR-27a; Tcf7 

by miR-24. The Wnt target gene Cyclin D is also targeted by miR-23a. 

Conversely, inhibitors of the Wnt pathway are also targeted – APC by miR-23a 

and PP2A by miR27a. However, these Wnt pathway gene targets of the miR-

23a~27a~24-2 cluster have not been experimentally validated (269). We focus 

on miR-34a because it has been consistently described and validated to be 

overexpressed in multiple different tissues across species with aging and DNA 

damage responses. 

How expression of Wnt pathway components is broadly downregulated in 

the intestines of late-generation mTR-/- mice is not yet clear.  However, it is well 

established that dysfunctional telomeres elicit a p53-dependent DNA damage 

response, and p53-activated upregulation of miR-34a has been implicated 

recently in the suppression of multiple Wnt pathway genes (258).  Indeed, we 

detected increasing levels of p53 activation (as measured by p21 expression, 

Figure 4.1) with successive generations of mTR-/- crypts along with a 

corresponding decrease in Wnt target genes, Lgr5 and Trf2 (Figure 4.1), and the 

suppression in Wnt signaling corresponds to levels of p53 activation. We have 

validated the increased expression of miR-34a by qRT-PCR in G4 crypts 

compared to WT. Indeed, there is an incremental increase in miR-34a expression 

with increasing generations of mTR-/- mice (Figure 4.1). The incremental increase 

in miR-34a also corresponds to the incremental decrease in Wnt target genes, 

consistent with others’ observation of miR-34a activation by p53 to suppress 
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expression of Wnt pathway genes. One of the targets of miR-34a is PNUTS, 

which has been described to maintain telomere length through its interaction with 

TRF2. As expected, PNUTS is downregulated in G4 crypts (Figure 4.2), which 

may contribute to the further uncapping of telomeres.  

 

Figure 4.1. Expression of p53-activated genes, Wnt target genes in WT and 
mTR-/- crypts. qRT-PCR of p21, mir-34a, Lgr5, and Trf2 in WT, G2, G3, and G4 
mTR-/- crypts. 
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Figure 4.2. Expression of miR-34a target gene PNUTS in WT and G4 mTR-/- 
crypts. qRT-PCR of PNUTS in WT and G4 mTR-/- crypts. 

Given the considerations described above, it is plausible that miR-34a 

contributes to the suppression of the Wnt pathway in intestinal crypts of late-

generation mTR-/- mice. To test this hypothesis, we crossed the miR-34a-/- mouse 

onto the mTR-/- background. The breeding scheme (described in the Methods 

section) allows us to obtain mTR-/- mice at each generation with the proper 

littermate controls: miR-34a+/+, miR-34a+/-, and miR-34a-/-. In early generations 

(G1-3) of mTR-/-, mice were born with the expected miR-34a+/+, miR-34a+/-, and 

miR-34a-/- Mendelian frequencies (Table 4.1). In the 4th generation, the birth 

frequency is skewed towards more mTR-/- mice being born with miR-34a-/- (Chi-

squared p-value of 0.1170), which suggests that there is an embryonic/neonatal 

survival advantage of miR-34a-/- at later generations of mTR-/-, when telomeres 

become critically short and when p53 and miR-34a activation would occur.  

Since miR-34a activation occurs after telomeres become dysfunction, we 

do not see any survival advantage of miR-34a deletion until later generations. 
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degrees of telomere dysfunction within the same generation, and even amongst 

littermates (270), larger sample sizes are necessary to provide us with more 

substantial and significant evidence of any survival advantages of miR-34a 

deletion. Indeed, the telomere length variation that exists amongst mice of the 

same generation might also explain why there seem to be certain G3 breeding 

pairs that produce G4 pups at the expected miR-34a Mendelian frequency and 

other breeding pairs that only produce G4 pups with miR-34a-/- or miR-34a+/- but 

no miR-34a+/+ (not shown). We have not yet measured telomere lengths in the 

different breeding pairs, but we hypothesize that the former pairs would have 

longer telomeres than the latter pairs. 

Table 4.1. Actual vs. expected Mendelian frequencies of miR-34a+/+, miR-
34a+/-, and miR-34a-/- in G2, G3, and G4 mTR-/- mice. Chi-squared test two-
tailed p-values are 0.3198, 0.9350, and 0.1170, for G2, G3, and G4 mTR-/- mice, 
respectively. 
G2 mTR-/- Actual genotype Expected genotype Total pups 
+/+ 8 12.5 50 
+/- 29 25  
-/- 13 12.5 

 
 
G3 mTR-/- Actual genotype Expected genotype Total pups 
+/+ 16 16.75 67 
+/- 33 33.5  
-/- 18 16.75  
 
G4 mTR-/- Actual genotype Expected genotype Total pups 
+/+ 13 19.75 79 
+/- 40 39.5  
-/- 26 19.75  
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We have isolated crypts for organoid culturing from two pairs of G4 

littermates with miR-34a+/+ and miR-34a-/- statuses. We also obtained crypts from 

a G4 miR-34a+/- littermate for one experiment, from which we also cultured 

fibroblasts from ears. In addition, we are currently performing miR-34a 

knockdown experiments with lentiviral vectors expressing anti-miR-34a shRNAs 

in G4 miR-34a+/+ organoids and ear fibroblasts. Ear fibroblast and anti-miR-34a 

shRNA experiments are ongoing, and we will not present those results here. Our 

preliminary data indicate a survival advantage in G4 organoids lacking miR-34a 

over those with intact miR-34a (Figure 4.3 and 4.4), with increased expression of 

the Wnt target gene, Lgr5 (Figure 4.5). It would be necessary to do parallel 

control experiments comparing WT vs miR-34a-/- mice or early generation G1 

miR-34a+/+ vs G1 miR-34a-/- mice, where we would not expect a survival 

advantage in organoids lacking miR-34a.  
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Figure 4.3. G4miR-34a+/+ and G4miR-34a-/- organoid survival 8 days after 
harvest (left panel) or loss from 4 to 8 days after ex vivo harvest (right 
panel). Intestinal organoids were harvested from one pair of G4miR-34a+/+ and 
G4miR-34a-/- littermates and cultured under standard conditions (1 µg/ml Rspo1) 
or augmented with the GSK-3 inhibitor CHIR99021. N=20 wells at 0µM, 8 wells 
at 1µM, and 5 wells at 2µM and 5µM CHIR; *p<0.0005 
 

 
Figure 4.4. G4miR-34a+/+ and G4miR-34a-/- organoids in culture with 
CHIR99021. Representative brightfield images of intestinal organoids harvested 
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from one pair of G4miR-34a+/+ and G4miR-34a-/- littermates and cultured under 
standard conditions (1 µg/ml Rspo1) or augmented with the GSK-3 inhibitor 
CHIR99021. 

 
 
Figure 4.5. qRT-PCR analysis of Lgr5 expression in G4miR-34a+/+ and 
G4miR-34a-/- organoids 8 days after ex vivo harvest. qRT-PCR measurement 
of Lgr5 transcripts in G4miR-34a+/+ and G4miR-34a-/- littermate organoids 8 days 
after crypt harvest, and treated with 5µM CHIR99021. N=1 for G4miR-34a+/+ and 
N=2 for G4miR-34a-/- organoids. 
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DISCUSSION 

How uncapped telomeres lead to repressed expression of Wnt pathway 

factors in the intestine of late generation mTR-deficient mice is not yet clear.  

However, it is well established that uncapped telomeres activate p53-dependent 

responses, and recently the p53-activated miRNA-34a was found to inhibit 

expression of Wnt pathway genes (258, 260), including many of those we find 

downregulated in G4 mTR-/- crypts.  We observe increased expression of miR-

34a in late generation mutant crypts, where it could contribute to such inhibition. 

Consistent with this idea, Wnt pathway gene suppression caused by uncapped 

telomeres likely depends on p53, as deletion of p53 in late-generation mTR-/-

 mice rescues expression within intestinal CBCs of Olfm4 (156), which is a target 

of the Wnt-activated transcription factor Ascl2 (237).  

The experiments that we have designed and presented above have begun 

to address the hypothesis that miR-34a contributes to the suppression of Wnt 

pathway genes we observe in G4 crypts. The fact that we see a trend toward a 

perinatal survival advantage from miR-34a deletion only in later generations of 

mTR-/- mice, informs us that miR-34a may have effects beyond the regulation of 

Wnt suppression in the intestinal crypt. Currently, all of the mice we have not 

sacrificed for experiments are still alive and since most of these mice are still 

relatively young, we have not yet had the opportunity to perform a survival curve. 

We are currently starting to characterize these mice and to perform functional 

experiments. We would like to assess for telomere capping status through 

metaphase-TIFs in G4 ear fibroblasts and organoids lacking miR-34a. 
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We have only concentrated our efforts thus far on miR-34a, which is 

upregulated in G4 crypts, but of equal interest are miRNAs that are significantly 

downregulated in G4 crypts. One of the top most downregulated miRNAs belong 

to that of the miR-181, miR-30, and miR-200 families, and each family play 

important roles in cancer, inflammation, and development. As mentioned in the 

introduction, the miR-17-92 family cluster that is consistently downregulated in 

aging, is also significantly downregulated in G4 crypts. Any of these and other 

miRNAs that are significantly changed in G4 crypts may play important functional 

roles in the pathophysiology or downstream effects of telomere dysfunction. A 

high-throughput approach to assess the functional role of specific miRNAs does 

not currently exist, but would greatly advance and accelerate the field of miRNA 

research. 
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CHAPTER 5: RESCUE OF TELOMERE DYSFUNCTION IN INTESTINAL 

CRYPTS OF LATE-GENERATION TELOMERASE-KNOCKOUT MICE 

INTRODUCTION 

Our results indicate that G4 mTR-/- ISCs experience a niche poor in the Wnt 

pathway activities that normally support CBCs.  Remarkably, Wnt signaling leads 

to upregulation of target genes that encode key components of the Wnt pathway 

itself, e.g. Lgr5.  Thus, downregulation of Wnt pathway activity could lead to 

further downregulation of expression of pathway components via this feedback 

loop.  In addition, Trf2 is a Wnt target gene that encodes a critical telomere 

capping protein, and thus loss of Wnt pathway activity could lead to enhanced 

telomere uncapping, in turn leading to additional downregulation of Wnt pathway 

as described above. We detect incremental decreases in Trf2 expression that 

mirrored the decrease in Axin2 expression from WT to G2 to G4 crypts, and the 

decrease in Trf2 could theoretically exacerbate the state of telomere uncapping 

in G4 crypts. Based on these considerations, it is reasonable to hypothesize that 

supplementation with exogenous Wnt pathway agonists would ameliorate 

pathology by restoring the niche environment, perhaps including restoration of 

Trf2 expression and rescuing telomere dysfunction. 
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METHODS 

TIF and telomere Q-FISH analyses 

Tissue sections were hybridized with a Cy3-labeled PNA telomere repeat probe 

((CCCTAA)3)and anti-53BP1 antibodies (Novus, NB100-304) as described (16). 

Confocal images were obtained with a Nikon Ti-U inverted microscope with CSU-

10 spinning disk confocal head (Spectral Boralis) using a Nikon Plan APO60x/1.4 

lens and Hamamatsu Orca-ER camera. The Cy3 laser was held at a constant 

intensity to capture all images. Images from mice treated with lithium and Rspo1 

were obtained in 16-bit grey scale and 8-bit RGB24 formats, respectively. To 

measure telomere lengths, quantitative image analysis was performed on 

confocal images using Media Cybernetics and ImageProPlus 7.01 software. The 

DAPI images were used to define the nuclear area in which to measure telomere 

intensities. Images were first deconvoluted, and nuclear outlines of interest were 

drawn and applied as a mask onto the Cy3 images. Cy3 images were also 

deconvoluted, and telomere intensities within each nucleus were obtained (for 

16-bit images applied filters were: 1000-65535 pixel intensity threshold and area 

larger than 11.25sq. microns; for 8-bit images applied filters were: 

density/intensity ratio threshold of 0-254). Statistical analyses were performed 

using the Mann-Whitney U-test. 
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RESULTS 

Wnt pathway agonists rescue survival of G4 mTR-/- crypt epithelial cells in 

vivo and in vitro. 

We examined effects of Rspo1 and the selective GSK-3 inhibitor CHIR99021 on 

epithelial organoids cultured in vitro.  This provided a test of Wnt pathway 

agonists under internally controlled conditions (i.e. on tissues from individual 

mice, rather than between mice).  Under standard culture conditions, wild type 

organoids are long-lived and appear as roughly spherical epithelium surrounding 

a central cavity representing the lumen, and have crypts radiating outward from 

their peripheries. G4 mTR-/- organoids were prone to degeneration and had fewer 

crypts, but Rspo1 or CHIR99021 each improved mutant organoid survival and 

morphology in a dose-dependent manner (Figure 5.1).  Although these agents 

also affected WT organoid survival and morphology, they had more pronounced 

effects on mutant organoids. G4 mTR-/- organoids were larger and grew more 

buds (each bud is representative of an individual crypt) with higher doses of 

CHIR99021 (Figure 5.2). At the highest dose (5µM), the organoids lose the 

budding structures and predominantly obtain the morphology of a large spheroid, 

which has been observed in organoids cultured from crypts with high Wnt 

activity. Cultured G4 mTR-/- organoids had reduced levels of Lgr5 transcripts, 

which were partially rescued by CHIR99021 (Figure 5.3).  Furthermore, 

transcripts encoding the pro-apoptotic protein, Noxa, decreased in proportion to 

CHIR99021 dose (Figure 5.3). In sum, these in vitro data establish roles for Wnt 
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pathway agonists in rescuing abnormalities in G4 mTR-/- crypts related to 

morphology, apoptosis and CBC-related gene expression.   

 

	    

Figure 5.1. Wnt pathway agonists rescue survival and morphology of 
cultured G4 mTR-/- intestinal organoids. (Top panel) Intestinal organoids from 
WT and G4 mTR-/- mice were cultured under standard conditions (1 µg/ml Rspo1) 
or augmented with elevated levels of Rspo1 or the GSK-3 inhibitor CHIR99021. 
The survival index is expressed as a percentage of the number of organoids 
divided by the average maximum number of organoids counted in the viewing 
field (4 viewing fields per sample were counted with a 4x objective). N = 3 for 
Rspo1-treated crypts, N = 6 for CHIR-treated crypts. * p<0.05, ** p<0.005, *** 
p<0.0005, **** p<0.0001 
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Figure 5.2. Bud count of per WT or G4 mTR-/- organoids cultured with 
CHIR99021. G4 mTR-/- organoids were cultured in increasing doses of 
CHIR99021 and counted for the number of buds on each organoid.  
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Figure 5.3. qRT-PCR analysis of Lgr5 and Noxa expression in G4 mTR-/- 
crypts cultured with CHIR99021. qRT-PCR measurement of Lgr5 and Noxa 
transcripts in WT and G4 mTR-/- crypts at t=0, and treated with increasing doses 
of CHIR99021 at days 4 or 8. ** p<0.01, **** p<0.0001. 

 

We also see an improvement of G4 mTR-/- crypts with Wnt pathway 

agonists in vivo. Crypt apoptosis was rescued in G4 mTR-/- mice fed with chow 
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5.4). Since lithium has effects beyond GSK-3 inhibition, we also treated G4 mTR-

/- mice with a specific Wnt/Lgr5 receptor agonist, Rspo1. Daily subcutaneous 
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mice were made between littermates, to avoid effects from stochastic differences 

in inherited telomere lengths.  Rescue was not associated with improved 

proliferation in the crypt base as measured by Ki-67 (Figure 5.6), nor increased 

numbers of Paneth cells, but was associated with increased proliferation in the 

TA region. Therefore, reduced apoptosis of crypt epithelial cells along with 

increased TA cell proliferation may contribute to the rescue provided by Wnt 

pathway agonists. 

 

Figure 5.4. TUNEL staining of G4 mTR-/- and Li-treated G4 mTR-/- small 
intestinal crypts. (Top panel) G4 mTR-/- mice were treated with the GSK-3 
inhibitor lithium in dietary chow (0.2% for 3 days followed by 0.4% for 7 days). 
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(Bottom panel) TUNEL staining was performed on the ileal crypts, and apoptotic 
bodies per crypt were counted. N = 3 mice per condition, * p<0.05. 

 

 

 

 

Figure 5.5. Enhanced Wnt signaling rescues G4 mTR-/- crypt apoptosis and 
Wnt-responsive ISC markers in vivo. G4 mTR-/- mice treated for eight days 
with subcutaneous injections of R-spondin1 (Rspo1) have reduced small 
intestinal apoptosis as measured by TUNEL (top panel), increased expression of 
Ascl2 transcripts (middle) and Sox9 protein (bottom). N = 5 control G4 mice and 
4 Rspo1-treated G4 mice for TUNEL staining; N = 3 mice per genotype for Ascl2 
staining; N = 4 control G4 mice and 3 Rspo1-treated G4 mice for Sox9 staining, * 
p<0.05. Scale bars: 20µm (top), 100µm (middle and bottom).
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Figure 5.6. Ki67 staining in WT, G4 mTR-/-, and Rspo1-treated G4 mTR-/- 
small intestinal crypts. (Left panel) Ki67 staining was performed on the small 
intestine of WT, G4 mTR-/-, and Rspo1-treated G4 mTR-/- mice. (Right panel) 
Quantification of crypt bases positive for Ki67 staining. N = 4 WT mice, 5 control 
G4 mice and 5 Rspo1-treated G4 mice, *** p<0.0005, **** p<0.0001. 
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Wnt pathway agonists upregulate shelterin components and rescue 

telomere capping.  

We explored the hypothesis that Wnt pathway agnoists can upregulate 

Trf2 expression in the organoid culture system, and indeed, we observed dose-

dependent upregulation of Trf2 transcripts in G4 mTR-/- crypt cultures treated with 

CHIR99021, thus rescuing the reduced levels of Trf2 transcripts in the mutant 

crypts (Figure 5.6). Other shelterin proteins are also important in the 

maintenance of telomere capping, and we analyzed published datasets to test for 

additional evidence that shelterin genes are regulated by Wnt, and found that a) 

Trf2 transcripts are up and down regulated, respectively, in epithelia from APC-

knockout (271) and β-catenin-knockout mice (272), b) the Wnt-responsive 

intestinal epithelial transcription factor TCF4 is bound at high levels within the 

human TRF2, POT1, and TRF1 genes as assessed by ChIP (from the ENCODE 

database (273)), and c) the expression gradient of these genes within murine 

crypts corresponds to that of the Wnt target gene EphB2 (274) (Figure 5.7).  

Consistent with these observations and with Wnt pathway suppression in the 

mutants, we also detected significant downregulation of genes encoding other 

shelterin proteins, including Pot1a, Pot1b, and Trf1, in addition to Trf2, in G4 

mTR-/- crypts (Figure 5.7). In addition, similar to Trf2, Pot1a transcript levels were 

also upregulated in response to increasing doses of CHIR99021. We confirm in 

MEFs that TRF2 protein levels are increased with increasing doses of LiCl 

(Figure 5.8).  
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Figure 5.6. Wnt pathway agonists rescue Trf2 and Pot1a expression in 
cultured G4 mTR-/- intestinal organoids. Dose- and time-dependent increase 
of Tfr2 and Pot1a transcript expression as measured by qRT-PCR in WT and G4 
mTR-/- crypts cultured with CHIR99021 for 4 or 8 consecutive days. * p<0.05, ** 
p<0.005, *** p<0.0005, **** p<0.0001. 

 

 
Figure 5.7. Expression of shelterin genes in WT and mTR-/- crypts, and 
distribution of shelterin gene expression in different EphB2-expressing 
crypts. (Top panel) Microarray gene profiling of shelterin genes in WT and G4 
mTerc-/- crypts. (Bottom panel) Microarray gene profiling of shelterin genes in 

Trf2

0 1 2 5 0 1 2 5
0.0

0.5

1.0

1.5

Tr
f2
:β
-a
ct
in

4 80

***

*
*
*

* Pot1a

0 1 2 5 0 1 2 5
0.0

0.5

1.0

1.5

2.0

P
ot
1a
:β
-a
ct
in

4 80

G4
WT*

**
***
*

Shelterin in crypts

T
rf
2

P
ot
1a

P
ot
1b

T
rf
1

Ti
n2

T
pp
1

R
ap
1

7

8

9

10

11

R
aw

 A
rra

y 
S

ig
na

l

WT
G4

Trf2 Pot1a Pot1b Trf1 Tin2 Rap1 Tpp1

6

8

10

12

R
aw

 A
rra

y 
S

ig
na

l

Shelterin in relation to EphB gradient

Hi
Med
Lo



89	  

crypt epithelial cells sorting according to surface expression levels of EphB2 
(high, medium or low) (274).  

 

Figure 5.8. Expression of TRF2 protein in MEFs treated with LiCl. Wild-type 
MEFs treated with 0, 5, 10, and 20mM of LiCl were probed for TRF2 (with TRF2 
antibody from Imgenex, IMG-124A) and GAPDH. 

 

With the rescue of shelterin protein expression and tissue fitness with Wnt 

pathway activation, we therefore investigated whether there is an associated 

improvement in telomere capping. We scored telomere dysfunction-induced foci 

(TIFs), measured by colocalization of telomere and 53BP1 foci, and found a 

significant decrease in the number of TIFs in crypts of G4 mTR-/- mice treated 

with Rspo1 (Figure 5.9). Furthermore, Rspo1 treatment reduced anaphase 

bridges, a marker of break-fusion-bridge cycles caused by telomere dysfunction 

(Figure 5.9).  Remarkably, our results therefore suggest that Wnt pathway 

activation is able to rescue uncapped telomeres, even in the absence of 

telomerase.  
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Figure 5.9. Enhanced Wnt signaling rescues telomere capping in G4 mTR-/- 
crypts in vivo. G4 mTR-/- mice treated for eight days with subcutaneous 
injections of R-spondin1 (Rspo1) have reduced telomere dysfunction as 
measured by (top panel) telomere-dysfunction induced foci (TIFs) and (bottom) 
anaphase bridges (arrowheads on left panel; asterisks mark normal anaphases 
in Rspo1-treated mice on right). 120 crypts per mouse from 5 control G4 mice 
and 4 Rspo1-treated G4 mice were surveyed for anaphase bridges, ** p<0.005, 
*** p<0.0005. Scale bars: 10µm (top panel).  
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Telomere capping also depends on telomere length, and Wnt signaling has 

recently been shown to upregulate TERT to elongate telomeres (190), but 

elongation by telomerase is not possible in mTR-/- mice. To rule out telomerase-

independent mechanisms of telomere elongation (i.e. alternative lengthening of 

telomeres, ALT), we compared telomere lengths of treated and untreated G4 

mTR-/- mice using quantitative telomere FISH. Telomere lengths in crypt epithelial 

cells of lithium or Rspo1-treated G4 mTR-/- mice were not longer than those of 

untreated G4 mTR-/- mice (Figure 5.10).  Therefore, the rescue of uncapped 

telomeres is not explained by increased telomere length. Our data indicate that 

Trf2 and Pot1a are Wnt-responsive genes, and raise the possibility that the 

rescue of uncapped telomeres by Wnt pathway activation may be explained by 

an upregulation of shelterin components to improve telomere capping.  
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Figure 5.10. Histogram of telomere fluorescence frequency by Q-FISH 
analysis of intestinal crypts of G4 mTR-/- mice treated with Rspo1 or 
lithium-chow. (A) Three pairs of untreated and Rspo1-treated G4 mTR-/- mice 
were stained and imaged on different days; hence comparisons were not 
averaged. (B) One pair of untreated and Li-treated G4 mTR-/- mice. Mean and SD 
of telomere fluorescence, and the number of nuclei analyzed, are indicated on 
each graph.   
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Wnt pathway suppression in human fibroblasts with telomere dysfunction 

is rescued by Wnt pathway agonists. 

Patients with dyskeratosis congenita (DC) suffer from short telomeres secondary 

to telomerase deficiency, and display gastrointestinal pathology closely 

resembling that seen in late-generataion mTR-/- mice (275). As described in 

Figure 5.11, we analyzed mRNA levels in primary cultured fibroblasts from DC 

patients carrying mutations in the telomerase component dyskerin, and 

compared to primary fibroblasts from healthy controls, DC fibroblasts had 

reduced expression of AXIN2, a direct target of the Wnt pathway (Figure 5.11). 

Levels of TRF2 and POT1 transcripts were also reduced in DC fibroblasts, and 

upon treatment with CHIR99021, the levels of transcripts from all three genes 

were elevated (Figure 5.11). Similar results were obtained for primary Werner 

syndrome (WS) fibroblasts, which also suffer from telomere loss events, but 

which are caused by DNA replication defects that can be rescued by telomerase 

(e.g. from overexpression of hTERT) (120). Indeed, hTERT expression in WS 

cells led to elevated levels of AXIN2, TRF2, and POT1, as did CHIR99021. 
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Figure 5.11. Primary human fibroblasts with telomere dysfunction display 
reduced expression of WNT pathway target genes include shelterins, which 
is rescued by CHIR99021.  Expression of AXIN2, TRF2, and POT1 mRNA 
levels in primary human fibroblasts from three healthy people (WT) and two 
people with dyskeratosis congenita (DC) treated with the indicated levels of 
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CHIR99021 for 48 hours (top three panels), and a person with Werner syndrome 
(WS) infected with retrovirus expressing hTERT or a vector control and treated 
with the indicated levels of CHIR99021 for four days (bottom three panels). * 
p<0.05, ** p<0.005, **** p<0.0001. 

 

DISCUSSION 

The functional importance of the Wnt pathway downregulation in the intestines of 

late generation mTR-/- mice is highlighted by the rescue provided by treatment of 

the mutant mice with Wnt pathway agonists.  Treatment with lithium or Rspo1 

reduces apoptosis, improves epithelial architecture and restores expression of 

Wnt pathway genes.  Similarly, treatment of cultured mutant intestinal organoids 

with Rspo1 or CHIR990201 improves survival, crypt budding, and gene 

expression.  Importantly, components of the Wnt pathway are Wnt target genes 

themselves (e.g. Lgr5, encoding the Rspo1-responsive component of the Wnt 

receptor complex), providing a mechanism by which the effects of Wnt pathway 

agonists can be amplified over time to restore the pathway.  An component of the 

rescue was that telomere capping is reestablished, as indicated by reduced TIF 

levels and complete rescue of anaphase bridges.  The telomere capping is not 

explained by telomere lengthening, but rather is associated with restoration of 

expression of key shelterin genes, including Trf2 and Pot1a.   Suboptimal levels 

of these factors lead to telomere dysfunction (146, 197), and TRF2 

overexpression can cap telomeres that have shortened to the point where they 

would otherwise be uncapped (276). We therefore suggest that restored shelterin 

expression plays a key role in the improved telomere capping and overall rescue.  
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This hypothesis will be explored in future studies, but we note that it is strongly 

supported by the recent demonstration that loss of telomere capping caused by 

diminished Wnt signaling (via reduced β-catenin expression) in human cancer 

cells can be rescued by TRF2 overexpression (196). To see if TRF2 upregulation 

is sufficient to rescue uncapped telomeres and G4 crypt survival, we have begun 

designing experiments to express exogenous TRF2 in G4 organoids (lentiviral 

system) or to upregulate endogenous TRF2 in G4 organoids with statin treatment 

(which has been shown to stimulate TRF2 expression (277)). Regardless of the 

exact mechanisms by which Wnt pathway activation mediates improved telomere 

capping, these findings suggest that telomere capping is influenced by 

extracellular cues, and raise the possibility that disorders in which telomere 

dysfunction plays a pathogenic role (e.g. DC, and perhaps also inflammatory 

bowel diseases and age-related disorders (278, 279)) might be treated by Wnt 

pathway agonists. 
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CHAPTER 6: MOUSE COLONOSCOPY AS A USEFUL TOOL FOR 

TRACKING DISEASE IN MICE 

INTRODUCTION 

Mice are the most commonly used model to study diseases of the GI tract, and 

until most recently, there was no non-lethal way to visualize intestinal pathology – 

the organ in question had to be harvested and processed accordingly, which 

required the mouse to be killed. Owing to the small nature of the mouse and the 

small diameter of the murine colon, endoscopies have not been a convenient 

technique to perform. Instead, indirect measurements that offered hints about GI 

function and pathology (i.e. weight gain/loss, food and water intake/outtake, 

presence of blood in the stool, etc.) are used to track pathology over time in an 

individual mouse. However, these parameters are not sensitive or specific for 

minor or major changes occurring in the GI tract. Endoscopies are a useful tool to 

visualize the gastrointestinal tract for pathology. They are regularly used in 

humans as a modality for diagnostic purposes, for visualization of cancers 

(polyps) or sources of inflammation/bleeding, to track disease progression or 

improvement, among other purposes. In recent years, endoscopic technology in 

small mammals has improved to a point where high-resolution movies and 

images can be consistently obtained from the colon of a living mouse (280). More 

recently, advances to the technology (i.e. flexible sigmoidoscopy) allow us to 

visualize more proximal regions of the colon (281). Chromoendoscopy employs 

the use of dyes as contrast medium with endoscopy (such as methylene blue or 

indigo carmine) and can offer us additional information about the architecture of 
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the colonic crypts, and certain patterns are indicative of certain disease 

processes. Multiple scoring systems exist to allow us to evaluate degrees of 

inflammation, although there is a lack of standardization among the community 

(280, 281). Researchers have been slow to adopt the use of the endoscope to 

assess and track colonic state, since the initial equipment costs are prohibitive 

and there is no established protocol on scoring pathology in mouse colons.  

We want to characterize and track mTR-/- mouse gastrointestinal 

pathology in a non-lethal and relatively non-invasive way over time, since there is 

a lot of variation between age-matched littermates, between generations and age 

of the mice. We also want to see whether the pathology we see on colonoscopy 

is representative of the pathology in the rest of the GI tract. In humans, different 

inflammatory bowel diseases have distinct regions of pathology in the GI tract.  

For example, Crohn’s disease (CD) affects the entire length of the GI tract 

whereas ulcerative colitis (UC) is restricted to the colon. We do not know whether 

GI pathology occurs simultaneously in the mTR-/- small intestine as it does in the 

colon. It is also reasonable to ask whether different parts of the small intestine 

and colon have different degrees of pathology. Since rates of telomere 

shortening depend on the rates of cell division, it is reasonable to propose that 

the onset and degree of GI pathology depends on when telomeres become 

uncapped and is dependent on rates of stem cell proliferation/epithelial turnover 

in different parts of the GI tract.  
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The epithelial turnover rate generally depends in part on the length of the 

crypt-villus distance, and the type and function of the epithelium in question. The 

epithelial turnover rate of the small intestine is around 3-5 days (15 days for 

Paneth cells) (175). The stem cell dynamics of the ascending and descending 

colon are different. There are fewer proliferative stem cells and the cell cycle 

duration is longer in the ascending colon compared to the descending colon 

(282). And since the stem cells are located in the mid-crypt region in the 

ascending colon, there is a bi-directional movement of progeny cells whereas 

there is an lumenal movement of progeny cells from the base of the crypts in the 

descending colon. The turnover rate of the colonic epithelium is about 5 days 

(the ascending colon has deep crypt secretory cells that turnover every 14-21 

days) (238). 

It would useful to correlate the degree of pathology seen with colonoscopy 

to the telomere capping state (measured by TIFs) on histology. If there is good 

correlation between a certain degree of telomere dysfunction to the visualized 

pathology, we will be able to reliably use endoscopic images to assess for the 

progression of telomere dysfunction. We can also use endoscopy to readily see if 

certain factors (e.g. drugs, diets, or introducing a genetic mutation) can help 

prevent or even reverse the observed pathology in late generation mTR-/- mice. If 

we are able to track disease progression/amelioration in one mouse, there is less 

need for large numbers of animals per study to minimize mouse-to-mouse 

differences since it is internally controlled.  
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The intestinal pathology in mTR-/- mice has been somewhat well-

characterized, but has mostly focused on the small intestine. There is certainly 

also disease in the colon of the mTR-/- mice, and it has been described in brief in 

a handful of papers, characterized to the full extent in literature by whole mount 

methylene blue staining of the colon (161). Otherwise, description of the 

pathology is vague, usually describing a loss of crypt numbers, and increased 

inflammation, but beyond that, there is little data. In this section, we outline our 

experimental plans to correlate the pathlogy seen on colonoscopy to that seen 

with histology, including markers of telomere dysfunction, along the length of the 

intestine. We provide preliminary data and give our initial impressions on the 

usefulness and validity of the technique. This part of the thesis was conducted in 

the lab of Arturo Londoño-Vallejo at Institut Curie of France. 

METHODS 

The following procedures were performed at Institut Curie with the collaboration 

and support of Drs. Arturo Londoño-Vallejo and Danijela Matic-Vignjevic.  A 

straight-type rigid miniature Coloview mouse endoscopic system (Karl-Storz) 

(Figure 6.1) linked to a computer with video acquisition software was used to 

visualize and record videos and images of the mouse colon. The setup is as 
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seen in Figure 6.1. 

 

Figure 6.1. Setup of colonoscopy equipment. A straight-type rigid miniature 
Coloview mouse endoscopic system (Karl-Storz) was used. 

After mouse anesthesia with isoflurane administered from a vaporizer 

connected to an enclosed chamber, the mouse anus was lubricated and the 

colon was flushed with a small amount of 1% methylene blue dye, and moved to 

a platform with isoflurane administered through a nose mask. After 3-5 minutes, 
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the colon was flushed with water to clean out any stool or extra methylene blue 

dye. The endoscope probe was introduced to the mid-descending colon, and 

videos and images were recorded. The images were chosen carefully to show 

similar viewpoints in terms of endoscopy camera orientation. Table 4 provides a 

summary of all of the mice we scoped, which includes their genotype, age, sex, 

and other measurements, such as weight and general physical appearance. We 

chose as many littermates as we could of various ages from different genotypes 

(littermates are indicated by the same age). We did not harvest intestines from all 

of the mice we performed colonoscopies on, but for those that we did, we waited 

3-5 days after colonoscopy for the methylene dye to pass, in case the dye 

interfered with downstream histology analyses. We harvested the following 

tissues separately: duodenum, jejunum, ileum, ascending colon and descending 

colon.  

RESULTS 

We surveyed mice of different ages of different genotypes, performing one-time 

colonoscopies and organ harvest a few days later (Table 4). Representative 

images obtained from the colonoscopy will be shown in the following figures as 

described. In the wild-type, mTR+/- (F1), and G1 mTR-/- mice, there were no 

unexpected or remarkable findings in terms of age-inappropriate weight loss or 

pathology in outward appearance. All mice appeared healthy and normal, with no 

physical signs of pathology commonly seen in late generation mTR-/- mice (e.g. 

kyphosis, greying hair, rectal prolapse, diarrhea, etc.). Littermates were of 
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comparable age, with one G1 mouse being slightly heavier than two of its 

littermates.  

Table 6.1. Description of mice that had undergone colonoscopies. Mice of 
different ages (in weeks) of each indicated genotype underwent colonoscopies 
and their general physical appearance were noted (including any findings during 
organ harvest). Their weights (in grams) were taken right before the colonoscopy 
and if their intestines were collected for histology, right before harvest. Lengths of 
small intestines from the duodenum to just before the cecum were measured if 
intestines were collected for histology (in centimeters). 

Genotype 
Age 

(wks) Sex 
Wt 
(g) 

Wt at 
harvest 

Small int 
length 
(cm) Physical appearance 

WT 6 M 16.3 19.4 33 Looks healthy 
WT 47 M 30.4 

  
Looks healthy 

WT 47 M 
 

36.6 32 Looks healthy 
F1 7 M 21.1 

  Looks healthy 
F1 7 M 21 

  
Looks healthy 

F1 7 M 19.8 
  

Looks healthy 

F1 16 M 29.6 33.7 37 
Looks healthy, peritoneal 

6x6mm mass (sent for histo) 
F1 16 M 30.9 

  
Looks healthy 

F1 30 F 24.6 23.4 33 Looks healthy 
F1 37 M 27.9 

  
Looks healthy 

G1 7 F 16.5   Looks healthy 
G1 7 M 16.7 

  Looks healthy 
G1 7 M 20.2 

  Looks healthy 

G1 9 F 17 17.7 33 

Looks healthy, ileum 
epithelium is bumpy/rough 

looking 
G1 39 M 25.5 29.7 28 Looks healthy 

G1 110  23.5   
Looks mainly healthy, minor 

kyphosis 
G2 7 M 20.5   

Looks healthy 
G2 7 M 19.4   

Looks healthy 
G2 7 M 14.5   

Loose stool, otherwise 
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healthy looking 

G2 9 M 21.5 
  

Looks healthy 
G2 9 M 19.5 21.3 32 Looks healthy 
G2 55 M 20.9 21.7 21 Graying hair, kyphosis 
G2 55 F 25.1 24.5 29 Looks healthy 
G2 57 M 20.4 

  
Looks healthy, mild kyphosis 

G2 59 F 18.9 
  

Graying hair, kyphosis, rectal 
prolapse 

G2 70  23   Looks healthy 
G2 70  14.5   Kyphosis 
G3 7 F 13   Looks healthy 
G3 24 F 16.3   Looks healthy 
G3 24 F 13.2   Graying hair, diarrhea 
G3 32 F 21.3 22 35 Alopecia 

G3 32 F 20 
  

Alopecia, crusting around 
rectum 

G3 45 F 18.2 17.7 
 

Graying hair, kyphosis 

G3 45 M 13.1 
  

Looks sick and weak, 
graying hair, small head, 

kyphosis 

G3 59 F 14.7 
  

Looks sick, blood and 
crusting around rectum 

G3 59 F 18.5 18.3 25 Skinny, kyphosis 
G3 70  24.4   Looks healthy 

G3 70  18.3   
Looks sick, kyphosis, 

diarrhea 

G4 7 M 15.8 
  

Looks healthy (failed 
colonoscopy attempt) 

G4 7 M 15.5 17.2 34 Looks healthy 
G4 20  26   Looks healthy 
G4 20  17   Looks healthy 
G4 22 F 14.1 15.3 21 Mild kyphosis 

G4 22 F 14.1 14.8 24 

Looks sick, graying hair, 
kyphosis, bloody rectum, 

diarrhea 
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On colonoscopy (Figure 6.2, only F1 shown), the WT and F1 mice had a nice, 

dense honeycomb crypt pattern, with easy visualization of the underlying 

mucosal blood vessels. However, when comparing a 32-week and a 110-week 

old G1 mTR-/- mouse, there was a drastic difference in the colonoscopy exam. 

Like WT and F1 mice, the 32-week old G1 mouse colon also had a dense 

honeycomb crypt pattern with visible mucosal blood vessels, whereas the 110-

week old G1 mouse colon had major crypt losses, with enlarged crypt lesions, 

loss of blood vessel visualization (Figure 6.3), indicative of severe inflammation 

(280). Given these findings, it seems that endoscopy may be more sensitive at 

detecting age-related pathology than other physical measurements (e.g. weight). 

          
Figure 6.2. Chromoendoscopy images of seven-week old F1 littermate 
colons. Healthy-appearing F1 littermates weighing 21g (left panel) or 19.8g (right 
panel). 
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Figure 6.3. Chromoendoscopy images of G1 mouse colons. Healthy-
appearing G1 mouse of 32 weeks of age weighing 33g (left panel) and a G1 
mouse of 110 weeks of age weighing 23.5g with mild kyphosis (right panel) 
 
 

In the G2 cohort, two out of three of the youngest littermates (seven 

weeks of age) had age-appropriate weights and had a healthy appearance. 

However, one of the littermates had markedly reduced weight and some diarrhea. 

On colonoscopy (Figure 6.4), both of these mice had dense honeycomb crypt 

structures (although perhaps not as dense or organized as the WT or young 

healthy F1/G1 colons) and visualization of underlying blood vessels. In this 

littermate matchup, there was no obvious difference in the pathology as 

assessed by colonoscopy. This is an instance where it would be interesting to 

track these littermates over time to see if weight difference is a good early 

predictor/parameter of: 1) degree of telomere dysfunction, 2) lifespan of the 

individual, and 3) degree of intestinal pathology. 



107	  

    
Figure 6.4. Chromoendoscopy images of seven-week old G2 littermate 
colons. G2 littermates weighing 20.5g (left panel) or 14.5g with loose stool (right 
panel). 
 

Among the older G2 cohort (55-59 weeks of age), outward signs of 

pathology are more obvious, with the heaviest mouse out of the four having no 

obvious signs of pathology, and the other three all showing signs of kyphosis, 

two of which have greying hair, and the skinniest of the four also with rectal 

prolapse and wasting. Similarly, in the oldest G2 cohort (70-week old littermates), 

one sibling appears healthy while the other has kyphosis and weight loss. On 

colonoscopy (Figure 6.5), these 70-week old G2 littermates both have a loss of 

dense and organized crypt structures and loss of vessel visualization, with the 

smaller and sicker mouse having a more severe colonic pathology. It is 

interesting but perhaps not counterintuitive to see much more severe changes on 

the colonoscopy images than what we can detect from other physical 
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measurements (e.g. weight, appearance, etc). Morever, there is a trending 

correlation between weight, outward appearance, and colonoscopy changes. 

   

Figure 6.5. Chromoendoscopy images of 70-week old G2 littermate colons. 
G2 littermates weighing 23g and healthy-appearing (left panel) or 14.5g with 
kyphosis (right panel). 
 

Among the G3 cohort, there are signs of disease anticipation (where 

pathology shows up earlier in later generations than the earlier generations due 

to the inheritance of shorter telomeres), as seen in the 24-week old G3 mouse 

with diarrhea and greying hair. Interestingly, its slightly larger littermate had no 

outward signs of pathology. Likewise, on colonoscopy, (Figure 6.6), the sicker 

littermate had signs of colonic pathology whereas the healthier littermate had 

very little colonic pathology.  
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Figure 6.6. Chromoendoscopy images of 24-week old G3 littermate colons. 
G3 littermates weighing 16.3g and healthy-appearing (left panel) or 13.2g with 
kyphosis, diarrhea, and greying hair (top and right panels). 
 

In almost all of the G3 mice older than 32 weeks of age, there were signs 

of wasting (age-inappropriate weight loss compared to WT, F1, and G1 mice of 

similar ages) and other late-generation mTR-/- related pathologies, with 

degenerative crypt losses seen with colonoscopy. In the pair of 70-week old 

littermates, one mouse looked healthy while the other had diarrhea and kyphosis. 

As seen in earlier examples, despite a lack of observable gross pathology in the 
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healthier and heavier mouse, the colonoscopy images show clear disease 

(Figure 6.7), and the sicker, skinner mouse had almost a complete loss of crypts.  

     
Figure 6.7. Chromoendoscopy images of 70-week old G3 littermate colons. 
G3 littermates weighing 24.4g and healthy-appearing (left panel) or 18.3g with 
kyphosis, and diarrhea (right panel). 
 

Disease anticipation can also be seen in the G4 cohort, with both of the 

22-week old littermates showing signs of wasting, kyphosis, and one of the two 

mice having diarrhea and rectal bleeding. On colonoscopy (Figure 6.8), both 

mice have comparable levels in the loss of crypts and blood vessel visibility. At 7 

weeks, the two G4 littermates are comparable in weight and outward appearance, 

having no signs of physical pathology. One of the mice had a perforated colon 

during colonoscopy, and we were not able to obtain any useful images. 
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Figure 6.8. Chromoendoscopy images of 22-week old G4 littermate colons. 
G4 littermates weighing 14.1g and kyphosis (left panel) or 14.1g with kyphosis, 
diarrhea, and bloody rectum (right panel). 
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DISCUSSION 

With our survey of cohorts of mice at different ages and genotypes, we are 

beginning to appreciate the huge variations that exist in physical characteristics 

(e.g. weight, kyphosis, diarrhea) and pathology seen with colonoscopy. What is 

clear is that changes in the colon (i.e. loss of vessel visualization, crypt losses 

and aberration) appear before any changes in weight or physical appearance 

occur in mTR-/- mice, which makes sense considering the higher rates of 

environmental insult and epithelium turnover the intestine experiences compared 

to other tissues. What has already been known from literature is the variation in 

telomere lengths between littermates and within a generation of mTR-/- mice, and 

we also see large variation in colon pathology within same generation mTR-/- 

littermates. We will have to confirm and correlate these findings with histological 

analyses (e.g. Q-FISH, TIFs, anaphase bridge counts, etc.). Further, our study 

clearly shows the disease anticipation aspect of mTR-/- pathology, with later 

generations displaying pathology at younger ages. We also see that if you age 

an early generation (110-week old G1) mouse long enough, telomeres can 

shorten critically within an individual to cause pathology. It is unlikely but possible 

that this individual G1 mouse inherited critically short telomeres at birth, and we 

cannot confirm it at this time since we did not perform colonoscopy on this mouse 

when it was younger. But with the advantages of colonoscopy (i.e. non-lethal, 

and we can take sample biopsies), we can longitudinally characterize the colon 

of an individual mouse. Histologic analyses have yet to be performed, but we 

plan to evaluate the H&E staining for general morphology, TUNEL staining for 
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apoptosis measurements, TIF staining for measurements of telomere dysfunction. 

In addition, we hope to be able to find a correlation between degrees of 

pathology seen in different parts of the small intestine to the proximal and distal 

colon and colonoscopy. In summary, we conclude that colonoscopies provide us 

with sensitive approach to evaluate mTR-/- pathology, between littermates, ages, 

and genotypes, or within a single mouse. It also give us a the potential to design 

better experiments in the future by picking mice for experiments based on 

degrees of pathology and not necessarily based on littermates or age-matched 

controls. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

This thesis has further characterized the pathology in the mTR-/- mouse model. 

To summarize our findings, we observe a suppression of Wnt pathway 

components in intestinal crypts of mice with dysfunctional telomeres (late-

generation mTR-/-). Multiple components of the canonical Wnt signaling pathway 

are downregulated in G4 crypts (i.e. ligand, receptor, and downstream effectors), 

which all conspire to downregulate Wnt target gene expression. Specifically, 

there was a dramatic loss of Wnt-responsive ISC marker expression (i.e. Ascl2, 

Sox9, and Lgr5, which mark CBCs) without losses in non-Wnt-responsive ISC 

markers (i.e. Msi1) or apparent losses of crypt cells that are intercalated between 

Paneth cells, which represent the CBC population. Lgr5 is a Wnt target gene but 

also an important Wnt receptor in CBCs, providing positive feedback on Wnt 

signaling, therefore, downregulation of Lgr5 in G4 crypts will further decrease 

Wnt signaling. We (and others) have found evidence that several components of 

the shelterin complex, important in the maintenance of telomere capping, are 

Wnt target genes. Indeed, in G4 crypts, we detect a significant downregulation in 

Trf2 and Pot1a expression, which may add further insult to an already injured 

(uncapped) telomere. This positive feedback between Wnt signaling and 

telomere capping may be an anti-cancer mechanism that a cell with a high 

propensity for genomic instability and carcinogenesis (fast cycling cells with rich 

pro-Wnt signals) has acquired. In the case of the APCMin mouse model, loss of 

wild-type Apc allele causes an unchecked activation of Wnt signaling, eventually 

manifesting as intestinal adenomas that initiate as microadenomas and progress 
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into macroadenomas, resulting in death in 100% of the animals by 4-6 months. 

When the mTR-/- allele is introduced into APCMin mice, there is a decrease in 

survival in G2 and G3 mTR-/-APCMin compared to APCMin, but there is a drastic 

increase in survival at G4 (all the animals survived until sacrifice at 7 months to 

assess tumor burden) (283). The improved survival at G4 mTR-/-APCMin is 

associated with increased microadenomas but reduced macroadenomas, which 

suggests that telomere dysfunction may contribute to genomic instability and 

cancer initiation, but ultimately, advanced telomere dysfunction can set off DNA 

damage responses and apoptosis to halt cancer progression. The authors did not 

assess for Wnt pathway defects in the G4 mTR-/-APCMin intestine, but it is 

plausible that advanced telomere dysfunction halted cancer progression in the 

APCMin model by suppressing Wnt signaling via DNA damage responses.  

The suppression of Wnt signaling appears to be dependent on DNA 

damage responses and p53 activation, and we hypothesize miR-34a activation 

by p53 to be one of the mediators of the Wnt pathway suppression. It is the most 

overexpressed miRNA in the G4 crypt, and it has been shown to promote 

senescence and tumor suppression and suppress multiple components of the 

Wnt pathway. Our preliminary results show a perinatal survival advantage of G4 

mice lacking miR-34a and an increase in survival of G4 miR-34a-/- organoids over 

G4 miR-34a+/+. As we have seen with the endoscopic study in this thesis, there 

are huge natural variations in the phenotypes of these mice, even amongst 

littermates (which is most likely due to the inheritance of different telomere 

lengths), and larger sample sizes are necessary before we can make conclusive 
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statements about the significance of knocking out miR-34a in mTR-/- mice. 

Moreover, since miR-34a has so many different targets, it would be difficult to 

determine exactly what is mediating the rescue downstream of miR-34a. The cell 

has evolved many mechanisms and pathways downstream of DDR to arrest cell 

cycle progression and the accumulation of genomic instability. In fact, a positive 

feedback loop also exists between p53 and miR-34a, where miR-34a inhibits 

Mdm4, an inhibitor of p53. Similarly, inhibition of the Wnt pathway by miR-34a is 

another possible anti-cancer mechanism that has evolved.  

Next, we questioned the functional relevance of the Wnt suppression in 

G4 crypts and hypothesized that supplying exogenous Wnt signals can 

upregulate shelterin proteins Trf2 and Pot1a to improve telomere capping in G4 

crypts. Indeed, we detect a dose-dependent upregulation of Trf2 and Pot1a in 

organoids cultured with Wnt agonists CHIR99021, and G4 mice treated with 

Rspo1 had reduced TIFs and anaphase bridges in their crypt cells. The 

upregulation of Trf2 and Pot1a and the improvement in telomere capping 

corresponded to an improvement in G4 organoid survival, and rescue of CBC 

markers (i.e. Lgr5, Ascl2, and Sox9) in the G4 crypts.  

We present novel findings that demonstrate a mutually supportive 

feedback loop between Wnt signaling and telomere capping, which provides 

insight into how Wnt signaling and telomeres may interact in cancer. Recent 

studies show Wnt signaling to regulate TERT expression, and our study, among 

others, provide evidence for Wnt signaling to regulate shelterin expression.  

Sufficient Wnt signaling can help maintain telomeres in a capped state by 
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regulating shelterin and TERT expression, especially important in cells where 

maintenance of capped telomere is essential.  However, too much Wnt activity 

can be detrimental, as evidenced by inactivating mutations of APC in humans, 

which lead to unchecked Wnt signaling and colorectal cancer.  On the other hand, 

if telomeres become uncapped (i.e. from uncontrolled cell division in 

preneoplastic cells), DNA damage responses are activated to suppress Wnt 

signaling, which in turn suppresses shelterin and TERT expression, reinforcing 

the state of uncapped telomeres. This feedback loop may serve as an anti-

cancer mechanism – Wnt signaling, which can be a pro-cancer signal, is 

suppressed. Furthermore, the reinforced uncapping of telomeres can drive 

preneoplastic cells towards apoptosis. In instances where preneoplastic cells 

with uncapped telomeres escape checkpoint responses, however, uncapped 

telomeres may actually contribute to genomic instability to drive cancers.  
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APPENDIX 

Table A1. Upregulated miRNAs in G4 crypts. miRNAs upregulated in microarray with a q-
value cutoff of 5% 

Transcript	  ID	  

Fold-‐
Change	  
(G4	  vs.	  
WT)	  

q-‐value	  
(%)	  

p-‐value	  
(G4	  vs	  WT)	  

Targets	  experimentally	  
validated/Properly	  
annotated?	  

miR-‐5097	   9.65	   0.00	   0.00	   tRNA	  
miR-‐3096b-‐5p	   9.59	   0.00	   0.00	   misannotation	  

miR-‐1983	   8.61	   0.00	   0.00	  
dicer	  processed	  from	  alt	  
tRNA	  seq	  

miR-‐34a	   7.51	   0.00	   0.00	   Yes	  
miR-‐3472	   7.48	   0.00	   0.00	   No	  

miR-‐712-‐star	   6.93	   0.00	   0.00	  

712	  form	  is	  potential	  
biomarker	  for	  
atherosclerosis	  

miR-‐3473b	   6.25	   0.00	   0.00	   No	  
miR-‐122	   5.96	   0.45	   0.01	   Yes	  
miR-‐2137	   5.34	   0.00	   0.00	   No	  
miR-‐3096b-‐3p	   5.32	   0.81	   0.02	   misannotation	  
miR-‐195-‐star	   5.07	   2.46	   0.06	   Yes	  
miR-‐5122	   4.82	   0.00	   0.00	   No	  
miR-‐326-‐star	   4.80	   0.00	   0.00	   Yes	  
miR-‐23a-‐star	   4.79	   0.45	   0.01	   Yes	  
miR-‐3473	   4.58	   0.00	   0.00	   Multiple	  forms	  (a-‐g)	  exist	  

miR-‐3093-‐3p	   4.39	   0.00	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐3096-‐3p	   4.36	   0.45	   0.01	   misannotation	  
miR-‐711	   4.35	   0.00	   0.00	   No	  
miR-‐92b-‐star	   4.05	   0.00	   0.00	   Yes	  
miR-‐5115	   3.88	   0.45	   0.01	   fragment	  of	  LSU	  rRNA	  
miR-‐1906	   3.88	   0.00	   0.00	   No	  
miR-‐762	   3.87	   0.00	   0.00	   No	  
miR-‐714	   3.58	   0.00	   0.00	   No	  
miR-‐135a-‐1-‐
star	   3.58	   0.00	   0.00	   Yes	  
miR-‐16-‐1-‐star	   3.58	   1.28	   0.03	   Yes	  
miR-‐1982-‐star	   3.51	   0.00	   0.00	   No	  

miR-‐712	   3.51	   0.00	   0.00	  

712	  form	  is	  potential	  
biomarker	  for	  
atherosclerosis	  
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miR-‐1894-‐3p	   3.45	   0.00	   0.00	   No	  

miR-‐1224	   3.42	   0.00	   0.00	  
No,	  but	  confirmed	  by	  
extensive	  cloning	  

miR-‐298	   3.34	   0.00	   0.00	   Yes	  

miR-‐1249-‐star	   3.32	   0.45	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐3096-‐5p	   3.27	   0.45	   0.01	   misannotation	  
miR-‐223	   3.26	   2.81	   0.06	   Yes	  
miR-‐1949	   3.21	   0.45	   0.01	   No	  

miR-‐5130	   3.20	   0.00	   0.00	  
dicer	  processed	  from	  alt	  
tRNA	  seq	  

miR-‐3104-‐5p	   3.16	   0.00	   0.00	   No	  
miR-‐5131	   3.15	   0.45	   0.01	   No	  
miR-‐1893	   3.10	   0.45	   0.00	   No	  
miR-‐1945	   3.08	   0.00	   0.00	   No	  
miR-‐134	   3.08	   0.45	   0.01	   Yes	  
miR-‐210	   3.05	   1.50	   0.03	   Yes	  
miR-‐3067-‐star	   3.03	   1.65	   0.04	   No	  
miR-‐34a-‐star	   2.99	   1.06	   0.02	   Yes	  
miR-‐874	   2.99	   0.45	   0.01	   Yes	  
miR-‐1946b	   2.94	   0.45	   0.01	   No	  
miR-‐1956	   2.82	   1.28	   0.03	   No	  
miR-‐5109	   2.79	   0.00	   0.00	   fragment	  of	  LSU	  rRNA	  
miR-‐128-‐2-‐star	   2.75	   3.07	   0.06	   Yes	  128	  
miR-‐150-‐star	   2.71	   0.45	   0.01	   Yes,	  150	  
miR-‐3100-‐5p	   2.68	   0.81	   0.01	   No	  
miR-‐125a-‐3p	   2.67	   2.46	   0.05	   Yes,	  mir-‐10	  family	  

miR-‐669f-‐5p	   2.65	   1.80	   0.04	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐696	   2.64	   1.80	   0.04	   No	  
miR-‐1903	   2.61	   0.00	   0.00	   No	  

miR-‐669m-‐5p	   2.60	   1.06	   0.02	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐211-‐star	   2.57	   0.00	   0.00	   Yes	  
miR-‐328-‐star	   2.56	   0.45	   0.01	   Yes	  
miR-‐3077-‐star	   2.54	   0.00	   0.00	   No	  

miR-‐1247-‐star	   2.49	   0.45	   0.01	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐3102-‐star	   2.47	   0.00	   0.00	   No	  
miR-‐5128	   2.47	   0.45	   0.00	   No	  
miR-‐323-‐5p	   2.46	   0.00	   0.00	   No,	  but	  belongs	  to	  mir-‐154	  



120	  

family	  
miR-‐199b-‐star	   2.45	   2.46	   0.05	   Yes	  
miR-‐346-‐star	   2.42	   0.45	   0.00	   Yes	  

miR-‐760-‐3p	   2.38	   0.00	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐24-‐2-‐star	   2.36	   0.45	   0.01	   Yes	  

miR-‐504-‐star	   2.36	   4.77	   0.09	  
Yes,	  -‐504	  form	  negatively	  
reg	  p53	  

miR-‐27a	   2.36	   0.00	   0.00	   Yes	  
miR-‐3092	   2.34	   0.45	   0.01	   No	  
miR-‐370	   2.34	   2.81	   0.05	   Yes	  

miR-‐770-‐3p	   2.32	   0.45	   0.01	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐677-‐star	   2.32	   0.81	   0.02	   No	  

miR-‐1943	   2.30	   0.45	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐615-‐5p	   2.30	   2.81	   0.05	   Yes	  
miR-‐3090-‐star	   2.30	   0.45	   0.01	   No	  
miR-‐149-‐star	   2.28	   0.00	   0.00	   Yes,	  149	  
miR-‐3113	   2.28	   0.81	   0.02	   No	  
miR-‐5120	   2.26	   0.00	   0.00	   No	  
miR-‐92a-‐2-‐star	   2.26	   0.45	   0.01	   Yes	  
miR-‐23a	   2.24	   0.00	   0.00	   Yes	  

miR-‐668	   2.23	   0.45	   0.01	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐1940	   2.22	   2.46	   0.04	   No	  
miR-‐494	   2.19	   0.81	   0.02	   No	  
miR-‐2182	   2.16	   1.28	   0.02	   No	  
miR-‐466j	   2.16	   2.46	   0.05	   No	  
miR-‐193b-‐star	   2.14	   0.45	   0.00	   Yes	  
miR-‐129-‐5p	   2.13	   2.81	   0.05	   Yes	  
miR-‐297a	   2.10	   1.28	   0.02	   Yes	  
miR-‐212-‐3p	   2.09	   1.06	   0.02	   Yes	  
miR-‐214	   2.08	   0.45	   0.01	   Yes	  
miR-‐466f	   2.06	   0.45	   0.01	   No	  
miR-‐1946a	   2.06	   0.81	   0.01	   No	  
miR-‐3087-‐star	   2.05	   0.00	   0.00	   No	  
miR-‐22	   2.05	   0.45	   0.01	   Yes	  
miR-‐2136	   2.02	   4.77	   0.07	   No	  
miR-‐5119	   2.00	   1.80	   0.04	   No	  
miR-‐720	   2.00	   3.80	   0.07	   fragment	  of	  tRNA	  
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miR-‐27a-‐star	   1.99	   2.46	   0.04	   Yes	  
miR-‐718	   1.98	   0.00	   0.00	   No	  
miR-‐2861	   1.94	   0.00	   0.00	   Yes,	  clustered	  with	  3960	  
miR-‐5126	   1.93	   0.00	   0.00	   No	  

miR-‐466m-‐5p	   1.92	   3.07	   0.06	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐204-‐star	   1.92	   1.80	   0.04	   Yes	  
miR-‐1199	   1.92	   3.07	   0.05	   No	  
miR-‐3960	   1.90	   0.00	   0.00	   Yes	  
miR-‐705	   1.89	   0.45	   0.01	   No	  
miR-‐1892	   1.89	   1.06	   0.02	   No	  

miR-‐3091-‐5p	   1.88	   0.00	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐497	   1.88	   3.07	   0.06	   Yes	  
miR-‐678	   1.87	   0.45	   0.00	   No	  
miR-‐29b-‐2-‐star	   1.87	   2.46	   0.04	   Yes	  
miR-‐5111	   1.85	   1.50	   0.03	   fragment	  of	  tRNA	  
miR-‐132	   1.85	   0.45	   0.01	   Yes	  
miR-‐5105	   1.85	   0.45	   0.00	   fragment	  of	  LSU	  rRNA	  

miR-‐1934-‐star	   1.83	   0.45	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐667	   1.82	   2.81	   0.05	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐365-‐2-‐star	   1.81	   0.45	   0.01	   Yes	  
miR-‐290-‐5p	   1.81	   3.80	   0.06	   Yes	  
miR-‐199b	   1.78	   1.28	   0.02	   Yes	  
miR-‐199a-‐5p	   1.77	   3.80	   0.06	   Yes	  
miR-‐690	   1.77	   0.00	   0.00	   No	  

miR-‐3061-‐5p	   1.77	   3.80	   0.07	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐5121	   1.76	   0.45	   0.01	   No	  
miR-‐199a-‐3p	   1.74	   1.50	   0.02	   Yes	  
miR-‐195	   1.73	   1.28	   0.02	   Yes	  

miR-‐5132	   1.71	   1.28	   0.02	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐21-‐star	   1.70	   1.28	   0.02	   Yes	  
miR-‐505-‐5p	   1.69	   1.65	   0.02	   Yes	  
miR-‐3470a	   1.68	   1.80	   0.03	   No	  

miR-‐675-‐5p	   1.66	   3.07	   0.05	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐99b	   1.65	   3.07	   0.05	   Yes	  
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miR-‐1199-‐star	   1.64	   3.07	   0.05	   No	  
miR-‐1931	   1.64	   1.06	   0.01	   No	  
miR-‐126-‐3p	   1.63	   2.46	   0.03	   Yes	  
miR-‐432	   1.62	   1.28	   0.02	   No	  
miR-‐296-‐3p	   1.62	   0.45	   0.01	   Yes	  

miR-‐598-‐star	   1.61	   1.80	   0.03	  
No,	  but	  high	  annotation	  
confidence	  

let-‐7e	   1.60	   1.06	   0.01	   Yes	  

miR-‐665-‐star	   1.59	   1.28	   0.02	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐5099	   1.59	   3.07	   0.05	   No	  

miR-‐3098-‐3p	   1.56	   0.45	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐292-‐5p	   1.56	   1.80	   0.03	   Yes	  
miR-‐5106	   1.56	   0.45	   0.00	   No	  
miR-‐203	   1.55	   0.45	   0.01	   Yes	  
miR-‐339-‐3p	   1.53	   3.07	   0.05	   Yes	  
miR-‐18a	   1.53	   2.46	   0.03	   Yes	  

miR-‐3081-‐star	   1.53	   3.80	   0.05	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐3077	   1.52	   1.06	   0.01	   No	  
miR-‐24	   1.52	   0.45	   0.00	   Yes	  
miR-‐128-‐1-‐star	   1.51	   3.80	   0.05	   Yes	  128	  
miR-‐5102	   1.47	   3.07	   0.04	   probably	  28S	  rRNA	  
miR-‐296-‐5p	   1.46	   1.80	   0.03	   Yes	  
miR-‐763	   1.40	   1.80	   0.02	   No	  
miR-‐344g-‐3p	   1.40	   4.77	   0.06	   No	  

miR-‐1196	   1.38	   2.81	   0.03	  
misannotation	  (Alu/B1	  SINE	  
element)	  

miR-‐212-‐5p	   1.37	   1.65	   0.01	   Yes	  
miR-‐1195	   1.37	   2.46	   0.02	   No	  
miR-‐3076-‐3p	   1.36	   4.77	   0.05	   No	  
miR-‐138	   1.35	   3.07	   0.04	   Yes	  
let-‐7b-‐star	   1.34	   1.06	   0.01	   Yes	  
miR-‐3065	   1.33	   3.07	   0.03	   No	  
miR-‐3102-‐5p.2	   1.33	   3.80	   0.04	   No	  

miR-‐1247	   1.30	   3.80	   0.04	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐1188	   1.29	   1.28	   0.01	   No	  
miR-‐467h	   1.26	   3.80	   0.03	   No	  
miR-‐744	   1.25	   0.45	   0.00	   Yes	  
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miR-‐3093-‐5p	   1.23	   2.81	   0.02	  
No,	  but	  high	  annotation	  
confidence	  

 

Table A2. Downregulated miRNAs in G4 crypts. miRNAs downregulated in microarray with 
a q-value cutoff of 5% 

Transcript	  ID	  

Fold-‐
Change	  
(G4	  vs.	  
WT)	   q-‐value	  (%)	  

p-‐value	  
(G4	  vs	  
WT)	  

Targets	  experimentally	  
validated/Properly	  

annotated?	  
let-‐7b	   -‐1.18	   1.65	   0.00	   Yes	  
let-‐7f	   -‐1.42	   0.87	   0.00	   Yes	  
let-‐7i-‐star	   -‐1.56	   3.80	   0.03	   Yes	  
miR-‐103	   -‐1.17	   3.80	   0.00	   Yes	  
miR-‐106b-‐star	   -‐1.41	   1.28	   0.00	   Yes	  
miR-‐10a	   -‐2.08	   0.84	   0.00	   Yes,	  mir-‐10	  family	  
miR-‐10a-‐star	   -‐3.96	   0.00	   0.00	   Yes,	  mir-‐10	  family	  
miR-‐10b	   -‐1.89	   0.84	   0.00	   Yes,	  mir-‐10	  family	  

miR-‐1198-‐5p	   -‐1.43	   1.09	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐130b	   -‐1.70	   0.84	   0.00	   Yes	  
miR-‐130b-‐star	   -‐2.69	   1.28	   0.02	   Yes	  
miR-‐139-‐5p	   -‐2.40	   1.50	   0.02	   Yes	  
miR-‐140-‐star	   -‐1.25	   2.81	   0.01	   Yes	  
miR-‐141	   -‐1.84	   0.84	   0.00	   Yes	  
miR-‐144	   -‐1.29	   1.65	   0.00	   Yes	  
miR-‐148a	   -‐2.30	   0.87	   0.01	   Yes	  
miR-‐150	   -‐5.25	   2.81	   0.04	   Yes	  
miR-‐151-‐3p	   -‐1.41	   2.46	   0.01	   Yes	  
miR-‐151-‐5p	   -‐1.27	   1.09	   0.00	   Yes	  
miR-‐152	   -‐1.82	   2.46	   0.02	   Yes	  
miR-‐15a	   -‐1.58	   0.84	   0.00	   Yes	  
miR-‐15b	   -‐1.40	   1.50	   0.01	   Yes	  
miR-‐16	   -‐1.30	   0.87	   0.00	   Yes	  
miR-‐17-‐star	   -‐1.36	   1.65	   0.01	   Yes	  
miR-‐181a	   -‐4.20	   0.00	   0.00	   Yes	  
miR-‐181b	   -‐4.53	   0.00	   0.00	   Yes	  
miR-‐181b-‐1-‐
star	   -‐1.18	   3.80	   0.01	   Yes	  
miR-‐181c	   -‐5.84	   0.00	   0.00	   Yes	  
miR-‐181c-‐star	   -‐3.30	   0.84	   0.00	   Yes	  
miR-‐181d	   -‐3.22	   0.00	   0.00	   Yes	  
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miR-‐1839-‐5p	   -‐1.67	   0.87	   0.01	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐187	   -‐2.15	   1.65	   0.02	   Yes	  
miR-‐18b	   -‐1.39	   1.09	   0.00	   Yes	  

miR-‐190b-‐star	   -‐1.43	   4.77	   0.03	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐192-‐star	   -‐1.47	   0.87	   0.00	   Yes	  
miR-‐194-‐2-‐star	   -‐1.46	   3.80	   0.02	   Yes	  
miR-‐196a-‐1-‐
star	   -‐3.29	   2.46	   0.03	   Yes	  
miR-‐19b	   -‐1.34	   2.46	   0.01	   Yes	  
miR-‐200a	   -‐1.94	   0.00	   0.00	   Yes	  
miR-‐200a-‐star	   -‐1.55	   1.65	   0.01	   Yes	  
miR-‐200b	   -‐1.53	   0.84	   0.00	   Yes	  
miR-‐200b-‐star	   -‐1.47	   0.84	   0.00	   Yes	  
miR-‐206	   -‐1.24	   3.80	   0.01	   Yes	  
miR-‐20b	   -‐1.98	   0.00	   0.00	   Yes	  
miR-‐221	   -‐1.31	   4.77	   0.02	   Yes	  
miR-‐222	   -‐1.51	   2.46	   0.02	   Yes	  
miR-‐224	   -‐1.80	   2.81	   0.02	   Yes	  
miR-‐23b	   -‐1.28	   1.09	   0.00	   Yes	  
miR-‐25	   -‐1.86	   0.00	   0.00	   Yes	  
miR-‐26a	   -‐1.36	   0.00	   0.00	   Yes	  
miR-‐26b	   -‐1.86	   0.84	   0.00	   Yes	  
miR-‐27b	   -‐1.21	   3.07	   0.01	   Yes	  
miR-‐28-‐star	   -‐1.29	   2.81	   0.01	   Yes	  
miR-‐28c	   -‐1.59	   2.46	   0.02	   Yes	  
miR-‐295-‐star	   -‐1.25	   4.77	   0.02	   Yes	  
miR-‐29b	   -‐2.08	   1.09	   0.01	   Yes	  
miR-‐29c	   -‐2.54	   0.84	   0.00	   Yes	  
miR-‐3089-‐3p	   -‐1.27	   3.07	   0.01	   No	  
miR-‐30a	   -‐1.81	   0.00	   0.00	   Yes	  
miR-‐30a-‐star	   -‐2.23	   1.65	   0.02	   Yes	  
miR-‐30b	   -‐1.80	   0.00	   0.00	   Yes	  
miR-‐30b-‐star	   -‐1.91	   0.84	   0.00	   Yes	  
miR-‐30c	   -‐1.55	   0.84	   0.00	   Yes	  
miR-‐30c-‐2-‐star	   -‐2.80	   0.87	   0.01	   Yes	  
miR-‐30d	   -‐1.78	   0.00	   0.00	   Yes	  
miR-‐30e	   -‐2.76	   0.00	   0.00	   Yes	  
miR-‐30e-‐star	   -‐2.22	   0.84	   0.00	   Yes	  
miR-‐31-‐star	   -‐1.68	   2.46	   0.02	   Yes	  
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miR-‐3105-‐3p	   -‐2.80	   0.00	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐3105-‐5p	   -‐3.05	   1.65	   0.02	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐320	   -‐1.75	   1.28	   0.01	   Yes	  
miR-‐324-‐3p	   -‐2.23	   0.87	   0.01	   Yes	  
miR-‐326	   -‐1.88	   2.46	   0.02	   Yes	  
miR-‐340-‐5p	   -‐1.52	   2.81	   0.02	   Yes	  
miR-‐342-‐3p	   -‐2.19	   0.00	   0.00	   Yes	  
miR-‐342-‐5p	   -‐2.83	   1.09	   0.01	   Yes	  
miR-‐34b-‐5p	   -‐1.43	   2.46	   0.01	   Yes	  

miR-‐350	   -‐1.74	   0.84	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐363-‐3p	   -‐6.62	   0.84	   0.00	   Yes	  
miR-‐363-‐5p	   -‐6.78	   0.00	   0.00	   Yes	  
miR-‐374	   -‐3.00	   0.87	   0.01	   Yes,	  activates	  Wnt	  signaling	  
miR-‐375	   -‐1.70	   3.07	   0.03	   Yes	  
miR-‐375-‐star	   -‐1.34	   4.77	   0.03	   Yes	  
miR-‐378-‐star	   -‐1.34	   2.46	   0.01	   Yes	  
miR-‐378b	   -‐1.50	   2.81	   0.02	   No	  
miR-‐3962	   -‐1.27	   4.77	   0.02	   No	  
miR-‐411-‐star	   -‐1.31	   1.80	   0.01	   Yes	  
miR-‐433-‐star	   -‐1.24	   1.65	   0.00	   Yes	  
miR-‐450a-‐1-‐
star	   -‐1.32	   0.84	   0.00	   Yes	  
miR-‐466p-‐3p	   -‐1.49	   3.80	   0.03	   No	  
miR-‐467a	   -‐2.53	   3.80	   0.05	   Yes	  
miR-‐467a-‐star	   -‐1.96	   1.80	   0.02	   Yes	  
miR-‐493-‐star	   -‐1.41	   1.65	   0.01	   Yes	  
miR-‐532-‐3p	   -‐1.63	   1.80	   0.01	   Yes	  
miR-‐532-‐5p	   -‐1.23	   3.80	   0.01	   Yes	  

miR-‐543	   -‐1.34	   4.77	   0.02	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐574-‐3p	   -‐2.14	   0.87	   0.01	   Yes,	  activates	  Wnt	  signaling	  
miR-‐652	   -‐1.49	   0.87	   0.00	   Yes	  

miR-‐676	   -‐3.29	   0.84	   0.00	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐700-‐star	   -‐1.45	   2.81	   0.02	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐7a-‐1-‐star	   -‐3.48	   1.09	   0.01	   Yes	  
miR-‐802	   -‐1.42	   3.07	   0.02	   Yes	  



126	  

miR-‐871-‐3p	   -‐1.36	   2.46	   0.01	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐872	   -‐1.89	   1.65	   0.01	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐883a-‐3p	   -‐1.24	   3.80	   0.01	  
No,	  but	  high	  annotation	  
confidence	  

miR-‐92a	   -‐1.66	   0.84	   0.00	   Yes	  
miR-‐92b	   -‐1.79	   0.84	   0.00	   Yes	  
miR-‐93	   -‐1.23	   1.65	   0.00	   Yes	  
miR-‐93-‐star	   -‐1.78	   0.00	   0.00	   Yes	  
miR-‐96	   -‐2.06	   0.87	   0.01	   Yes	  
miR-‐99a	   -‐2.11	   0.84	   0.00	   Yes,	  mir-‐10	  family	  
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