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Inhibition of Various Receptor Tyrosine Kinase (rtk) Families

Abstract
Activation of cell surface growth factor receptor tyrosine kinases (RTKs) results in cellular proliferation,
differentiation and survival. Humans have 58 RTKs, categorized into twenty subfamilies based on their
structural properties and ligand specificity. One of the most well-studied RTKs, the epidermal growth factor
receptor (EGFR), is mutated or overexpressed in many human cancers including non-small cell lung cancer
and glioblastoma. Several EGFR inhibitors have been approved by the FDA, and numerous additional
inhibitors are being pursued as potential cancer therapeutics. Structural studies of the EGFR tyrosine kinase
domain suggest that different inhibitors bind selectively to either the active or the inactive conformation of the
kinase. Contrary to this supposition, computational studies of inhibitor-stabilized EGFR conformations have
suggested that erlotinib can bind equally well to either the active or inactive forms of the EGFR kinase
domain. We tested this hypothesis using a mutated EGFR kinase domain that can adopt either the inactive or
active kinase conformation in crystals, and determined a structure with erlotinib bound to the inactive
conformation – suggesting that this inhibitor can bind either ‘state’. We also determined the crystal structure
of this EGFR kinase variant bound to a novel ErbB2 inhibitor (55A) found in screens designed to select
inhibitors that bind the active state. When bound to this compound, the EGFR kinase domain adopted only
the active conformation, suggesting that erlotinib and 55A select different kinase ‘states’. Collaborative
approaches combining biochemical, structural and cell signaling studies suggest new considerations in
predicting modes of inhibitor binding in the development of therapeutic agents for cancer.

Several activating mutations in the anaplastic lymphoma kinase (ALK) gene have been implicated in
neuroblastoma. The small molecule tyrosine kinase inhibitor crizotinib, which inhibits ALK and Met, was
recently approved by the FDA for the treatment of non-small cell lung cancer (NSCLC), and is currently in
early-phase clinical testing in patients with neuroblastoma (NB). Numerous additional ALK inhibitors are
also being pursued as potential therapeutics. However, more and more mutations in the ALK tyrosine kinase
domain (TKD) are being found in patients with neuroblastoma. Several of these are associated with primary
resistance to currently available ALK inhibitors, and several mutations in oncogenic ALK fusions have been
linked to acquired crizotinib resistance. Understanding how different ALK mutations activate its kinase
domain, and how they change inhibitor sensitivity, is therefore crucial for further clinical development of
ALK-targeted therapeutics. We have studied the biochemical consequences of a wide variety of ALK kinase
domain mutations in parallel both with studies of their transforming abilities and computational studies of
their structural effects. Our first goal was to use these data to predict the effects of new clinically emerging
ALK mutations on ALK’s transforming ability, signaling activity, and drug sensitivity. A second goal was to
identify the most potent ALK inhibitor that has inhibitory effects on the widest possible range of ALK
mutants using biochemical and cellular assays, with a view to identifying a clinical path forward. Our studies
provide valuable mechanistic insight into how ALK is regulated, and also lay important groundwork for
guiding more refined targeted therapy in neuroblastoma patients.
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ABSTRACT 

 

INHIBITION OF VARIOUS RECEOPTOR TYROSINE KINASE (RTK) FAMILIES  

Jin H. Park 

Mark A. Lemmon 

 

Activation of cell surface growth factor receptor tyrosine kinases (RTKs) results in cellular 

proliferation, differentiation and survival. Humans have 58 RTKs, categorized into twenty 

subfamilies based on their structural properties and ligand specificity. One of the most well-

studied RTKs, the epidermal growth factor receptor (EGFR), is mutated or overexpressed in 

many human cancers including non-small cell lung cancer and glioblastoma.  Several EGFR 

inhibitors have been approved by the FDA, and numerous additional inhibitors are being pursued 

as potential cancer therapeutics.   Structural studies of the EGFR tyrosine kinase domain suggest 

that different inhibitors bind selectively to either the active or the inactive conformation of the 

kinase. Contrary to this supposition, computational studies of inhibitor-stabilized EGFR 

conformations have suggested that erlotinib can bind equally well to either the active or inactive 

forms of the EGFR kinase domain. We tested this hypothesis using a mutated EGFR kinase 

domain that can adopt either the inactive or active kinase conformation in crystals, and 

determined a structure with erlotinib bound to the inactive conformation – suggesting that this 

inhibitor can bind either ‘state’. We also determined the crystal structure of this EGFR kinase 

variant bound to a novel ErbB2 inhibitor (55A) found in screens designed to select inhibitors that 

bind the active state.  When bound to this compound, the EGFR kinase domain adopted only the 

active conformation, suggesting that erlotinib and 55A select different kinase ‘states’. 

Collaborative approaches combining biochemical, structural and cell signaling studies suggest 

new considerations in predicting modes of inhibitor binding in the development of therapeutic 

agents for cancer. 
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            Several activating mutations in the anaplastic lymphoma kinase (ALK) gene have been 

implicated in neuroblastoma. The small molecule tyrosine kinase inhibitor crizotinib, which inhibits 

ALK and Met, was recently approved by the FDA for the treatment of non-small cell lung cancer 

(NSCLC), and is currently in early-phase clinical testing in patients with neuroblastoma (NB).  

Numerous additional ALK inhibitors are also being pursued as potential therapeutics. However, 

more and more mutations in the ALK tyrosine kinase domain (TKD) are being found in patients 

with neuroblastoma.  Several of these are associated with primary resistance to currently 

available ALK inhibitors, and several mutations in oncogenic ALK fusions have been linked to 

acquired crizotinib resistance.  Understanding how different ALK mutations activate its kinase 

domain, and how they change inhibitor sensitivity, is therefore crucial for further clinical 

development of ALK-targeted therapeutics. We have studied the biochemical consequences of a 

wide variety of ALK kinase domain mutations in parallel both with studies of their transforming 

abilities and computational studies of their structural effects. Our first goal was to use these data 

to predict the effects of new clinically emerging ALK mutations on ALK’s transforming ability, 

signaling activity, and drug sensitivity. A second goal was to identify the most potent ALK inhibitor 

that has inhibitory effects on the widest possible range of ALK mutants using biochemical and 

cellular assays, with a view to identifying a clinical path forward.  Our studies provide valuable 

mechanistic insight into how ALK is regulated, and also lay important groundwork for guiding 

more refined targeted therapy in neuroblastoma patients. 
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1.1 Catalytic mechanism of receptor tyrosine kinase (RTK) family 

Kinases are enzymes that catalyze phosphotransfer or phosphorylation reactions, and in 

combination with phosphatases, this reversible modification represents a wide and significant 

mechanism utilized to modify protein function. Following the initial identification of protein 

phosphorylation at serines and threonines, tyrosine phosphorylation of proteins was discovered 

over 30 years ago, through studies of animal tumor virus transforming proteins such as the Rous 

sarcoma virus c-Src protein (Hunter and Sefton, 1980)  

Bioinformatics and targeted cDNA cloning revealed large numbers of protein kinases, 

which form a large family.  The catalog of human protein kinases (the kinome) compiled by 

Manning et al (2002) contains 58 known receptor tyrosine kinases (RTK) which are subdivided 

into 20 families depending on their structural properties and ligand specificity (Lemmon and 

Schlessinger, 2010) (Figure 1.1). They all share a similar molecular architecture, with an 

extracellular ligand-binding region connected to an intracellular tyrosine kinase domain (TKD) by 

a single transmembrane domain.  Additional intracellular regulatory regions are found either in the 

juxtamembrane regions or the carboxy terminal tail.  Ligand binding to the extracellular region of 

RTKs promotes homo- or heterodimerization of receptors, bringing their intracellular kinase 

domains into close proximity and promoting allosteric trans-activation and autophosphorylation at 

multiple tyrosine sites.  Some of these phosphorylation events serve to activate the kinase itself, 

typically those that occur in the so-called activation loop of the kinase.  Other autophosphorylation 

sites serve as docking sites to recruit downstream signaling molecules, which bind to 

phosphotyrosines via their Src homology-2 (SH2) or phosphotyrosine binding (PTB) domains. 

The docked adaptor proteins couple the activated receptor to various downstream signaling 

molecules (for example, Ras, phospholipase Cγ, and phosphatidylinositol-3-kinase), which in turn 

signal towards the control of key transcription factors. These signal transduction cascades are 

essential for various cellular processes such as proliferation, differentiation, adhesion, migration 

and apoptosis (Blume-Jensen and Hunter, 2001; Ullrich and Schlessinger, 1990)  
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 A small subset of RTKs that are known to lack kinase activity cannot function in this way. 

These kinase-inactive RTKs, called pseudokinases, must utilize different signal transducing 

mechanisms.  In one such example, an inactive pseudokinase RTK dimerizes with a kinase-

active RTK upon ligand binding and is then phosphorylated by the active RTK to create the 

binding sites for downstream signaling molecules.  This is true for heterodimers of ErbB3 (a 

pseudokinase) with ErbB2 (an active kinase), for example.  Alternatively, a cytoplasmic tyrosine 

kinase activated by another pathway might phosphorylate the inactive RTK and produce 

phosphorylation sites that recruit signaling molecules to the pseudokinase. 

 

Figure 1.1 Receptor tyrosine kinases families  

Schematic representation of 58 human RTKs, which fall into 20 subfamilies identified by structure 

determination and sequence analysis. Activation of cell surface growth factor RTKs results in 

cellular proliferation, differentiation and survival. (Lemmon and Schlessinger, 2010) 
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1.2 General features of tyrosine kinase domains 

The overall structural fold is extremely well conserved among Ser/Thr and Tyr kinases, and is 

divided into two lobes (Huse and Kuriyan, 2002); the N-terminal lobe (N-lobe) which is involved in 

ATP binding and the C-terminal lobe (C-lobe) which binds the substrate while contributing to ATP 

binding and activation as well (Taylor et al., 2004). The ATP and peptide binding sites are formed 

by the interface between the two lobes. The smaller N-lobe is composed of a five-stranded β-

sheet plus one α-helix (helix αC, which plays a key regulatory role), while the larger C-lobe is 

predominantly composed of α-helices.  Protein kinase domains all adopt strikingly similar 

structures in the active state.  Where they differ (if they differ) is in their inactive structure – each 

kinase family is inactivated by a unique set of autoinhibitory interactions (Lemmon and 

Schlessinger, 2010). Upon TKD activation through requisite receptor dimerization, these 

autoinhibitory interactions are broken, allowing the TKDs to adopt the canonical active structure 

that positions all of the critical elements involved in substrate binding and catalysis in both N- and 

C-lobes for phosphotransfer from the γ-phosphate of ATP to the hydroxyl group of tyrosine 

(Zhang et al., 2006). In most active RTKs, the activation loop – 20-30 residue-long loop providing 

peptide substrate binding sites when it is activated by phosphorylation – is phosphorylated and 

structured, leading to the stabilization of an open conformation. Helix αC in the N-lobe is also 

correctly positioned in the active structure by ionic interaction between a key glutamate side-chain 

in αC and a key lysine side-chain from β3 in the substrate binding pocket (Figure 1.2). 

 As shown in the sequence alignment below (Figure 1.3), there are several key well-

conserved residues around the active site that are directly implicated in the catalytic mechanism. 

Three motifs are known to be essential. Those motifs are the Val-Ala-Ile-Lys (VAIK) motif, in 

which the lysine residue anchors and orients the ATP by interacting with α and β phosphates of 

ATP; the His-Arg-Asp (HRD) motif, in which the catalytic aspartate acts as a base acceptor to 

achieve proton transfer by enhancing nucleophilic attack of ATP; and the Asp-Phe-Gly (DFG) 

motifs where the aspartate residue chelates Mg2+ ions, bridging the β and γ phosphates of ATP in 
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the nucleotide binding cleft (Figure 1.2) (Boudeau et al., 2006). In fact, mutation of either K721 

(VAIK motif) or D813 (HRD motif) in EGFR abolishes tyrosine autophosphorylation in vivo (Thiel 

and Carpenter, 2007; Zhang et al., 2006). Also, it is reported that reverting mutations of the ‘DNA 

motif’ in receptor-like tyrosine kinase (Ryk) to canonical ‘DFG motif’ restores catalytic activity 

(Katso et al., 1999). Kinase domains lacking one or more of these conserved motifs are assumed 

to be catalytically inactive and are termed pseudokinases. 

 

 

Figure 1.2 Active structure of the Insulin receptor TKD 

Cartoon representation of the insulin receptor TKD in an active conformation (PDB: 1IR3), with 

zoomed view of the nucleotide and peptide binding cleft shown at right. Elements readily 

recognized in the active structure are an αC helix (colored brown) in the ‘in’ position, a fully 

ordered activation segment (colored orLysange), and a key salt bridge between the catalytic 

lysine residue and a glutamate residue in αC helix. Three essential motifs in catalytic domains are 

VAIK (subdomain II), HRD (subdomain VIb), DFG (subdomain VII).  
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Figure 1.3 Sequence alignments of the partial catalytic domains from the 12 RTKs  

3 conserved motifs for catalysis are boxed, and highly conserved residues are indicated by black 

boxes with white lettering 

 

1.3 Diverse mechanism of RTK activation 

It is broadly accepted that ligand binding to RTKs induces receptor dimerization and thus leads to 

their activation (Ullrich and Schlessinger, 1990). For example, in the absence of bound growth 

factor EGF, the human epidermal growth factor receptor (EGFR) remains largely as monomers. 

Its extracellular region forms a ‘tethered’ conformation in which a key dimerization site is occluded 

by intramolecular interactions, and the intracellular kinase domain is inactive. However, when 

ligand binds to the extracellular regions of EGFR, it changes its conformation dramatically to an 

‘extended’ conformation in which a key dimerization arm is exposed, and drives dimerization of 

the receptor (Burgess et al., 2003).  This ligand-induced dimerization of the extracellular region 

brings the two kinase domains in an EGFR dimer into close proximity such that one activates the 

other allosterically in an activating intracellular dimer.  Although the contribution of the single 

transmembrane (TM) helix that connects the extracellular and the intracellular regions to EGFR 

activation is not yet clear, it does appear that the TM helices do promote receptor dimerization in 
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some cases (Moore et al., 2008). A similar paradigm seemingly applies to many other RTKs such 

as stem cell factor receptor KIT, vascular endothelial growth factor receptor VEGFR, and nerve 

growth factor receptor TrkA, although details of both the dimerization mechanism and kinase 

activation mechanism have unique features. 

 Interestingly, there are also RTKs that form oligomers in the absence of activating ligand. 

For example, the insulin receptor (IR) and other members of the IR subfamily, including the 

insulin-like growth factor-1 receptor (IGF1R) are preformed, disulfide-linked heterotetramers with 

two extracellular alpha subunits and two membrane-spanning, tyrosine-kinase containing beta 

subunits on the cell surfaces.  Ligand binding to the insulin and IGF1 receptors must promote 

activation by triggering conformational changes within the dimer to stimulate the tyrosine kinase 

domains (TKD) – activating the kinase by promoting trans-phosphorylation (Ward et al., 2007). In 

addition, the Eph and Tie2 angiopoietin cell surface receptors are suggested to require the 

formation of even larger oligomers for efficient signaling although the exact role of these larger 

oligomers is still not fully understood (Barton et al., 2006; Himanen and Nikolov, 2003). And of 

course, there are cases like anaplastic lymphoma kinase (ALK) receptor whose nature of ligand 

still remains elusive for binding and activation – although a ligand called augmentor has recently 

been proposed as an ALK activator (Murray et al., 2015). 

 In all cases, though, whether the RTK is monomeric or dimeric before ligand binding, the 

common paradigm is that ligand binding must stabilize a specific dimer in which a particular 

relationship between the receptor molecules is promoted and leads to activation.  Once 

stimulated with ligand, one receptor of a dimer/oligomer phosphorylates one or more tyrosine in 

its neighbor, and the tyrosine-phosphorylated RTK functions as a docking site, enabling 

recruitment of intracellular signaling molecules containing pTyr-binding domain such as SH2 and 

PTB, and direct phosphorylation of substrate to propagate downstream signaling (Pawson et al., 

2001; Schlessinger and Lemmon, 2003).  
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1.4 Autoregulatory mechanism of intracellular kinase domain in RTKs 

It has been gradually uncovered how ligand-induced extracellular dimerization or oligomerization 

is coupled to activation of the intracellular tyrosine kinase domain (TKD) in many RTKs. 

Surprisingly, the activation mechanisms of different RTKs are quite different, although a common 

element of their activation in RTK signaling involves autophosphorylation of intracellular regions 

of the receptor.  Each RTK is held in an inactive state by a characteristic set of autoinhibitory 

interactions. Release of this autoinhibition is responsible for receptor activation in response to 

extracellular stimuli, such as growth factors.  

 The first crystal structure of the insulin receptor TKD revealed the first RTK autoinhibition 

mechanism to be appreciated (Hubbard et al., 1994). In the absence of Mg2+-ATP, the 

unphosphorylated activation loop in IRK makes autoinhibitory interactions, in which a key tyrosine 

Y1162 in the activation loop (in the sequence YxxxYY) projects into the active site of the kinase 

and makes a hydrogen bond with the catalytic base aspartate D1132. In this configuration (Figure 

1.4, Inactive A), the N-terminal end of activation loop (DFG motif) also blocks access of ATP to 

the kinase. As a result, the insulin receptor kinase domain is cis-autoinhibited by its own 

activation loop (blocking ATP and protein substrate binding), and is activated following insulin 

binding by trans-autophosphorylation on Y1162 by its own partner to release these autoinhibitory 

interactions.  A crystal structure of the fibroblast growth factor receptor 1 (FGFR1) tyrosine kinase 

domain revealed that FGFR1 also employs a conceptually similar autoinhibitory mechanism. 

Even though the unphosphorylated Y653 (equivalent to Y1162 in IRK) does not directly occupy 

the substrate-binding site, it is held in a location such that the C-terminal end of the activation 

loop interferes with substrate binding (Mohammadi et al., 1996). Upon FGF binding, receptor 

dimerization allows trans-phosphorylation of the activation loop tyrosines and thus breaks this cis-

autoinhibitory interaction – allowing the kinase to adopt the characteristic active configuration (or 

destabilizing inactive configuration). 

 The intracellular regions of RTKs also contain other regulatory elements outside of the 

TKD, such as the intracellular juxtamembrane segment (iJM) and carboxy-terminal (C-terminal) 
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tail; these are also implicated in the mechanisms of intracellular kinase domain regulation.  The 

JM region is known to play regulatory roles in cis-autoinhibition in the Eph receptors (Wybenga-

Groot et al., 2001), the platelet-derived growth factor receptor (PDGFR) family Flt3 (Griffith et al., 

2004) and KIT (Mol et al., 2004), and Musk (Till et al., 2002) from biochemical and structural 

studies.  Again, the precise mechanisms differ in details among different RTKs, but all 

autoinhibitory interactions involve a key tyrosine in the JM region making extensive contacts with 

the TKD and stabilizing an autoinhibited inactive conformation of the receptor (Figure 1.4, Inactive 

B). Activation of these receptors requires disruption of cis-autoinhibitory interaction by trans-

autophosphorylation promoted by ligand-induced receptor dimerization (Hubbard, 2004).  

In KIT/PDGFR, the key residues that maintain autoinhibitory JM interactions turn out to be 

oncogenic hot spots; mutations that release the autoinhibitory restraints activate RTKs 

constitutively and are frequently found in human cancers (Dibb et al., 2004). Interestingly, the JM 

region of EGFR stands in contrast to these cases and functions as an activating (rather than 

inhibitory) domain, by stabilizing the dimerization interface between two interacting kinase 

domains (Jura et al., 2009; Red Brewer et al., 2009). A V665M mutation in this region that 

stabilizes JM-mediated interactions has been found to promote cellular transformation and 

tumorigenesis, highlighting the complexity of regulatory mechanisms in RTKs and the necessity 

of further understanding this JM region.  

 Additional autoregulatory interactions are seen that involve the C-terminal tail of the 

receptor, exemplified by the angiopoietin receptor Tie2. According to the general mechanism of 

RTK activation, the C-tail of each receptor serves as docking sites for SH2 and PTB domain 

containing proteins once phosphorylated; and its phosphorylation also works as a tool to tightly 

regulate catalytic activity of the kinase on multiple levels. In the Tie2 kinase domain, the activation 

loop adopts an active-like conformation independent of phosphorylation.  In the inactive 

conformation of the receptor, however, the C-tail adopts an extended conformation and projects 

into the active site to block substrate access and inactivate the receptor (Figure 1.4, Inactive C) 

(Shewchuk et al., 2000). Mutated Tie2 with deleted C-terminal residues exhibits enhanced kinase 
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activity and signaling compared to wild-type Tie2 (Niu et al., 2002). In much the same way that 

trans-autophosphorylation of tyrosines in the activation loop or juxtamembrane segment release 

cis-autoinhibitory interaction in panels A and B of Figure 1.4 to activate RTKs, 

autophosphorylation of the C-tail of Tie2 is thought to be a key for disrupting its autoinhibitory 

interactions with TKD – leading to receptor activation.  

 

 

Figure 1.4 Regulatory mechanisms of receptor tyrosine kinases 

Dimerization of RTKs allows autophosphorylation of tyrosine in the activation loop (Inactive A), 

the juxtamembrane segment (Inactive B), and/or the C-terminal tail (Inactive C) to release 

autoinhibitory interactions for activation of intracellular kinase domains of RTKs (Lemmon and 

Schlessinger, 2010). 
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 We have so far seen that even though different RTKs are autoinhibited by mechanisms 

that differ in detail, trans-phosphorylation of a key ‘inhibitory’ tyrosine is a key step, whether that 

occurs in the activation loop, juxtamembrane segment, or C-tail.  In each case, bringing two TKDs 

together into a specific dimer increases the probability of trans-phosphorylation at particular sites, 

which in turn leads to receptor activation. Interestingly, the one RTK family for which a 

phosphorylation event of this sort is not required is the EGFR/ErbB family (Burgess et al., 2003; 

Gotoh et al., 1992; Jura et al., 2011). Instead, crystal structures of the activated EGFR TKD, 

combined with mutational studies, have revealed that the EGFR TKD is activated by allosteric 

interaction between the kinase domains of adjacent molecules in a dimer.  The mechanism is 

much like that observed in the activation of cyclin-dependent kinases (CDKs) by cyclins (Zhang et 

al., 2006). As depicted in Figure 1.5, the helical C-lobe of one EGFR TKD (the ‘activator’) abuts 

the N-lobe of another EGFR TKD (the ‘receiver’) in an asymmetric TKD dimer.  This dimerization 

induces conformational changes in the asymmetric dimer interface that breaks cis-autoinhibitory 

interactions within the N-lobe of the receiver TKD seen in inactive EGFR TKD crystal structures, 

and causes the kinase to adopt the active conformation (αC helix in position, salt bridge between 

catalytic lysine residue and glutamate residue in αC helix, and fully structured activation loop).  

Helical cyclins achieve similar allosteric activation of CDKs by abutting their N-lobe.  Mutational 

studies on the asymmetric EGFR TKD dimerization interface confirmed its importance for EGFR 

activation.  Moreover, whereas the wild-type EGFR TKD always forms this asymmetric dimer in 

crystals – and is thus always seen in its active conformation, an EGFR TKD V924R mutant in 

which the interface is disrupted crystallizes in the inactive conformation (Zhang et al., 2006).  The 

hydrophobic interaction at the asymmetric dimer interface promotes dimerization that induces 

conformational changes to the N-lobe of the acceptor kinase, leading to activation of EGFR TKD.  

ErbB4 and ErbB2 TKDs form similar dimers in crystals, arguing that they share this activation 

mechanism. 
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Figure 1.5 Allosteric activation of the EGFR TKD by asymmetric dimerization  

The EGFR TKD does not require phosphorylation of the activation loop for TKD activation. 

Dimerization induces conformational changes in the EGFR TKD, which is allosterically activated 

by direct contacts between the C-lobe of the activator kinase (donor, colored yellow) and the N-

lobe of receiver kinase (acceptor, colored green) (Red Brewer et al., 2009). 
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1.5 RTKs in disease  

Activation of cell surface growth factor RTKs plays important roles in cellular proliferation, 

differentiation and survival. It is also well known that unregulated inappropriate activation of many 

RTKs is involved in development of various human cancers. From the initial observation of the 

effect of aberrant growth factor signaling in cell transformation in the 1960s (Temin, 1966), 

numerous studies of unregulated RTKs in human diseases have accumulated. RTK dysfunction 

in cancer can be categorized into four principal mechanisms: autocrine activation, gain-of-function 

mutations, overexpression, or chromosomal translocations (Lemmon and Schlessinger, 2010).  

 Gain-of-function mutations in KIT are located in a cluster within the TKD, intracellular JM 

region and extracellular ligand-binding region (Corless and Heinrich, 2008). Intracellular 

mutations disrupt cis-autoinhibitory restraints in the KIT TKD, and thus activate the receptor 

constitutively.  Extracellular mutations stabilize homotypic interactions between the membrane-

proximal D5 domains, thus promoting constitutive receptor dimerization (Lemmon and 

Schlessinger, 2010; Yuzawa et al., 2007). Overactivity of KIT due to these gain-of-function 

mutations has been observed in many diseases such as gastrointestinal-stromal tumors (GIST), 

acute myeloid leukemia (AML), mastocytosis, and melanoma (Lemmon and Schlessinger, 2010).  

 Chromosomal translocations result in the expression of dimeric fusion proteins with 

potent oncogenic function. Expression of activated fusion proteins containing the TKDs of FGFR1 

or FGFR3 have been identified in variety of cancers. FGFR1 has 11 fusion partners, and most of 

them have been identified in patients with the myeloproliferative disorder stem cell leukemia/ 

lymphoma (SCLL). Translocation leading to FGFR3 overexpression under the control of a strong 

enhancer region has also been identified in multiple myelomas (MM) (Ahmad et al., 2012). 

Various types of skeletal dysplasias have been connected to gain-of-function mutations in 

FGFR1, FGFR2 and FGFR3 as well (Eswarakumar et al., 2005). 
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 The EGFR/ErbB family RTKs are well known for their oncogenic potential, and EGFR is 

one of the most well-studied RTKs structurally and biochemically. Members of this family are 

overexpressed or mutated in several cancers. The orphan receptor ErbB2 adopts an extended 

conformation in its extracellular region in the absence of ligand (Burgess et al., 2003), and has 

been shown to exhibit strong transforming potential when overexpressed in NIH3T3 cells (Di 

Fiore et al., 1987). ErbB2 overexpression as a result of gene amplification is found in ~30% of 

breast cancer patient (Slamon et al., 1989). Amplification of the EGFR gene results in 

overexpression of EGFR in glioblastoma (Libermann et al., 1985). An oncogenic truncation, 

known as EGFR variant III (deletion of residues 6-273) and several point mutations in the 

extracellular region have been reported in glioblastoma patients (Lee et al., 2006). Surprisingly, 

EGFR variant III (vIII) shows constitutive TKD activity despite the absence of residues that 

correspond to the dimerization arm, which is known to be key for activation of the wild-type 

receptor (Burgess et al., 2003). The fact that EGFRvIII has constitutive kinase activity even 

though it cannot dimerize through the same mechanism as the wild-type receptor suggests the 

possibility of EGFRvIII aggregation in ER due to misfolding (Lemmon and Schlessinger, 2010). 

One example of an oncogenic mutated RTK that is known to be activated as a consequence of 

misfolding in the ER is Flt3-ITD (Choudhary et al., 2009).  Point mutations in the EGFR 

extracellular region that are seen in glioblastoma may alternatively weaken the autoinhibitory 

tether and thus induce activation of EGFR.   

 Point mutations, insertions and deletions in the TKD of EGFR have been identified in 

non-small cell lung cancer (NSCLC) patients. In clinical trials of the EGFR-specific inhibitor 

gefitinib in NSCLC patients, it was found that about 10% of patients responded, and each of 

those that did respond carried somatic mutations in key elements of the EGFR TKD, leading to 

disruption of the cis-autoinhibitory interactions described above (Lynch et al., 2004; Sharma et al., 

2007; Zhang et al., 2006). These mutations trigger constitutive activation and cause the EGFR to 

be an oncogenic driver. For example, the L834R mutation (also referred as L858R) lies in the 

activation loop and destabilizes a conserved hydrophobic interaction between the αC helix and a 
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short helix found in the activation loop in only the inactive conformation of the TKD.  This 

mutation, which accounts for ~40% of EGFR mutations in cancer (Eck and Yun, 2010) mimicks 

the allosteric activation mechanism depicted in Figure 1.5. Another activating mutation, V665M, 

occurs in the JM region, and stabilizes key acceptor/donor interactions to constitutively activate 

EGFR in lung cancer (Red Brewer et al., 2009). 

 Oncogenic ALK alterations were initially discovered in anaplastic large cell lymphoma 

(ALCL), where a chromosomal translocation leads to fusion of the ALK intracellular region to 

nucleophosmin (NPM) making a dimeric (active) form of ALK-TKD that is expressed in the cytosol 

(Morris et al., 1994). Additional potent oncogenic fusion proteins are also found in non-small cell 

lung cancers (NSCLC), inflammatory myofibroblastic tumors (IMTs) and other cancers (Palmer et 

al., 2009; Soda et al., 2007). More recently, activating mutations in the full-length ALK RTK were 

discovered in approximately 8% of neuroblastoma (Chen et al., 2008; George et al., 2008; 

Janoueix-Lerosey et al., 2008; Mosse et al., 2008).  

 Advances in sequencing technology have dramatically accelerated the pace of discovery 

of RTK mutations in cancer, as listed in the COSMIC (Catalogue Of Somatic Mutation In Cancer) 

database (Shepherd et al., 2011). It has been quite clear from the beginning, however, that not all 

of these mutations are activating, and many of them are already known to be so-called 

‘passenger’ mutations (or variants of unknown significance) rather than bona fide ‘driver’ 

mutations (Dancey et al., 2012). Biochemical and cellular analyses, aided by structural studies 

are essential in order to utilize these genetic studies to understand the consequence of each 

mutation and to identify the best strategies for inhibiting aberrant RTK activities 

pharmacologically.  

1.6 RTKs are important therapeutic targets 

Given that many RTKs are involved in development of human diseases, RTKs are highly 

promising therapeutic targets.  Numerous drugs have been developed for treating diseases 
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driven by RTKs, and several FDA-approved drugs are now being applied in the clinic (Lemmon 

and Schlessinger, 2010). Pharmacological inhibitors of aberrant signaling by oncogenic RTKs 

generally fall into two categories: monoclonal antibodies and small molecule inhibitors. 

Monoclonal antibodies targeting the extracellular region of RTK can function either by competing 

with ligand binding or by binding to different region of the extracellular region to inactivate the 

receptor allosterically.  In addition, antibodies can induce cell-mediated immunological responses 

against the target cancer cell. Cetuximab and trastuzmab are examples of chimeric or humanized 

monoclonal antibodies that bind to the extracellular regions of EGFR and ErbB2 respectively, and 

are used in treatment of mammary carcinoma (trastuzumab) and colorectal and head and neck 

cancers (cetuximab) (Reichert and Valge-Archer, 2007). Small molecule inhibitors target the ATP 

binding site of the intracellular kinase domain, competing with ATP for binding to the active site of 

kinase. Several are now in clinical use.  Imatinib (Gleevec®) targets Abl kinase and KIT.  Erlotinib 

(Tarceva®), gefitinib (Iressa®) and lapatinib (Tykerb®) all target EGFR (lapatinib also inhibits 

ErbB2).  Crizotinib (Xalkori®), which is a subject of my research, as described later in this thesis, 

targets ALK and Met (Christensen et al., 2007; Shawver et al., 2002). These small molecule 

inhibitors have mostly been identified through chemical library screening.  Although several have 

been successful in initial applications, subsequent development of acquired resistance (or 

discovery of primary resistance) has underlined the need for application of these drugs in patients 

to be accompanied by guidance from biochemical and genetic studies of the target RTKs. For 

example, the EGFR-specific inhibitor gefitinib did not seem very promising in initial trials, since 

there was no patient stratification based on EGFR – and an assumption that EGFR was generally 

important. The drug was not effective in the general population of lung adenocarcinoma patients 

(Fukuoka et al., 2003; Kris et al., 2003), but even showed high efficacy in lung cancer in a subset 

of patients (never-smoker Asian female) whose oncogenic driver mutations were later found in 

EGFR TKD (Thatcher et al., 2005). The lesson from this is that identifying the driver is key to the 

success of targeted therapies.  Small molecule tyrosine kinase inhibitors have shown to 

successfully inhibit kinase activity in treatment of several different cancers, however there are still 
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significant hurdles to overcome such as the possibility of off-target effect especially, since these 

drugs all target the ATP binding site which look very similar among different kinases, as well as 

drug resistance through development of drug-resistant variants of the target or other 

compensatory signaling networks. Therefore, a full understanding the mechanism of activation as 

well as drug resistance guided by biochemical, genetic and structural studies is invaluable for 

guiding patent treatment and designing novel therapeutic approaches.  
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Structural studies of ErbB receptor tyrosine kinase domains 
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2.1 Selective inhibition of EGFR 

N.B. This is collaborative work with Yingting Liu from the laboratory of Ravi 
Radhakrishnan in the Department of Bioengineering at U. Penn, and can be found in Park 
et al. (2012) Biochem. J. 448, 417-423.  Work contributed by Yingting Liu (Y.L.) is marked 
accordingly in tables and figures. 
	  

2.1.1 Introduction 

Activating mutations in the epidermal growth factor receptor (EGFR) are now well accepted as 

oncogenic drivers in certain cancers, notably non-small cell lung cancer (NSCLC) (Sharma et al., 

2007) and glioblastoma (Cancer Genome Atlas Research, 2008; Vivanco et al., 2012).  Several 

drugs that inhibit EGFR signaling are now in clinical use, including antibody therapeutics and 

ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) (Pao and Chmielecki, 2010).  

Approved EGFR-targeted TKIs include erlotinib and gefitinib (which are EGFR-specific), lapatinib 

(which inhibits both EGFR and HER2/ErbB2), and vandetanib (which inhibits EGFR, VEGFR, and 

Ret).  Many more EGFR-targeted TKIs are currently being developed and/or tested.  

          Not all EGFR-driven cancers are sensitive to EGFR-targeted TKIs (Pao and Chmielecki, 

2010). Effective clinical application of these agents presents several major challenges.  The first 

is the identification of patients whose tumors are in fact dependent on EGFR.  This has been 

illustrated best in non-small cell lung cancer (NSCLC).  Broad initial clinical trials of EGFR-

targeted TKIs in NSCLC gave disappointing results, but highlighted a subset of patients with 

activating EGFR mutations that responded very well to treatment (Lynch et al., 2004).  The 

second major challenge is acquired resistance, a current area of intense activity.  In EGFR-

mutated NSCLC, for example, primary resistance is seen in about 25% of cases.  Where 

responses are seen, acquired resistance to first generation TKIs invariably occurs (Janne et al., 

2009) – often through secondary EGFR mutations (Yoshikawa et al., 2013; Yun et al., 2008). A 

third challenge is that not all EGFR-activating mutations are equal, and selectivity of response to 

different EGFR-targeted TKIs depends on how the receptor is activated.   
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          Clinical trials in NSCLC with the EGFR-targeted TKIs erlotinib and gefitinib led to the 

discovery that the tumors of responding patients all harbored mutations in the EGFR intracellular 

tyrosine kinase domain (Sharma et al., 2007).  Patients with these mutations frequently showed 

dramatic responses (Lynch et al., 2004).  These studies appeared to identify a subgroup of 

NSCLC cases in which EGFR is clearly the oncogenic driver – raising the hope that all tumors 

with EGFR mutations might be responsive to these TKIs, and motivating efforts to identify EGFR 

mutations in many other cancers.  Meanwhile, clinical experience with glioblastoma (GBM) has 

told a different, and rather puzzling, story.  GBM was the first human tumor type in which 

amplification and mutation of EGFR was reported (Libermann et al., 1985), frequently expressing 

so-called ‘variant III’ EGFR (EGFRvIII) that has a 267aa deletion from its extracellular region 

(Sugawa et al., 1990) that activates the receptor.  It seemed reasonable to expect that GBM 

patients might be primary beneficiaries of EGFR-targeted agents – but this has unfortunately not 

been the case.  GBM patients expressing EGFRvIII have not responded well to gefitinib or 

erlotinib for reasons that remain unclear – although it is also true that the mechanism of EGFRvIII 

activation remains obscure (Lemmon and Schlessinger, 2010).  

Mellinghoff and colleagues (Vivanco et al., 2012) made the remarkable discovery that 

efficacy depends on the type of the EGFR-targeted TKI that is used (Figure 2.1). Erlotinib and CI-

1033 are so-called ‘Type 1’ TKIs that bind the active conformation of the kinase domain (Stamos 

et al., 2002), and are ineffective in GBM.  By contrast, inhibitors that selectively bind the inactive 

conformation of the receptor’s kinase domain were effective against EGFR variants found in GBM 

(including EGFRvIII) and efficiently induced cell death in EGFR-mutated GBM cells.  Specifically, 

the inhibitors used were lapatinib and HKI-272, which are reversible and covalent/irreversible 

EGFR/ErbB2 dual-specific TKIs respectively that selectively bind the inactive conformation of 

EGFR’s kinase domain (Wood et al., 2004; Yun et al., 2008). For ease of clarification of those 

inhibitors binding active or inactive conformation, they are classified here as ‘Type 1’ and ‘Type 

1.5’ inhibitors (Liu and Gray, 2006), which both bind EGFR-TKD in the ‘DFG (Asp-Phe-Gly) - in’ 

conformation, but differ in the position of the αC helix in EGFR-TKD crystal structures.  Type 1 
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inhibitors can bind with αC in the ‘in’ position seen in active kinases, whereas type 1.5 inhibitors 

require αC to be in the ‘out’ position seen in inactive kinases (Figure 2.1). 

	    

Figure 2.1 Cartoon representation of the active and inactive conformations of the EGFR 

kinase domain.   

In the inactive state (right), the key αC helix is displaced, breaking an important salt bridge 

between a glutamate in αC (red sticks) and a lysine in the ATP-binding site (blue sticks).  In the 

active conformation (left), αC is moved in towards the center of the N-lobe, so that this salt bridge 

forms to stabilize ATP binding.  Type 1 inhibitors such as gefitinib and erlotinib bind to the active 

conformation (left), whereas type 1.5 inhibitors (such as lapatinib) bind only to the inactive (αC-

out) conformation.  Only type 1 inhibitors are effective in NSCLC, whereas only type 1.5 inhibitors 

effectively inhibit EGFR variants found in glioblastoma. 
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Just as type 1 inhibitors such as erlotinib are more effective in killing EGFR-addicted 

NSCLC cells than GBM cells, so is the reverse also true.  Whereas the type 1.5 inhibitor lapatinib 

induced significant death in EGFR-addicted GBM cells, it was substantially less effective against 

NSCLC-derived EGFR variants, consistent with in vitro studies showing that EGFR harboring 

NSCLC-derived mutations is resistant to lapatinib (Wang et al., 2011) – or indeed cetuximab.  

EGFR mutations found in NSCLC are almost exclusively intracellular, within the tyrosine kinase 

domain of the receptor (Sharma et al., 2007).  The GBM mutations (including that in EGFRvIII) 

are exclusively extracellular (Lee et al., 2006; Vivanco et al., 2012).  The fact that the different 

classes of activating EGFR mutations yield receptor variants that are responsive to distinct types 

of EGFR-targeted TKIs implies that these mutations activate the receptor in different ways.  Basal 

phosphorylation of EGFR promoted by all extracellular mutations tested is more potently inhibited 

by lapatinib than by erlotinib, whereas the opposite is true for NSCLC-derived intracellular kinase 

domain mutations (Figure 2.2) (Vivanco et al., 2012). By contrast, regardless of which mutations it 

harbors, the EGF-activated receptor is most effectively inhibited by erlotinib. This dichotomy in 

inhibitor sensitivity of oncogenic EGFR variants has important clinical implications, and other 

activating (and resistance) mutations may show an even wider range of specificities. 
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Figure 2.2 Differential sensitivity of endogenously expressed glioma- versus lung cancer–

specific EGFR mutants to lapatinib versus erlotinib.  

In this EGFR domain structure, mutations indicated in green have been documented in 

glioblastoma (GBM) but not in lung cancer, while those indicated in red are seen in non-small cell 

lung cancer (NSCLC) and not in GBM. The indicated GBM and lung cancer cell lines were treated 

with various doses of lapatinib or erlotinib (modified figure from Vivanco et al, 2012). Cells were 

harvested and analyzed by Western blotting with antibodies for phosphor EGFR (pEGFR) or total 

EGFR (tEGFR). Erlotinib (which can bind to the active conformation of the kinase) is effective in 

NSCLC, whereas only lapatinib (which binds only to the inactive conformation of the kinase) 

effectively inhibits EGFR variants found in GBM.  

 

2.1.2 Current view of conformational selectivity of EGFR inhibitors 

Previous structural studies of EGFR-TKD bound to different TKIs (Eck and Yun, 2010) suggest 

that individual drugs differ in their preference for the ‘active’ compared with ‘inactive’ conformation 

of the kinase.  Crystal structures of erlotinib-bound (Stamos et al., 2002) or gefitinib-bound (Yun 
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et al., 2008) EGFR-TKD show the kinase in the same active conformation, allosterically stabilized 

by a characteristic asymmetric dimer that forms in the crystals (Zhang et al., 2006).  By contrast, 

crystals of EGFR-TKD bound to lapatinib (Wood et al., 2004) or HKI-272 (neratinib) (Yun et al., 

2008) show a distinct Src-like inactive conformation in which a short activation loop α-helix makes 

autoinhibitory interactions with the displaced αC helix in the ‘out’ position (Zhang et al., 2006).  

Based on these studies, erlotinib and gefitinib have been argued to bind only the active EGFR-

TKD conformation, whereas lapatinib and neratinib are thought to bind only the inactive 

conformation. 

          Despite these structural views, biochemical and binding studies argue that EGFR-targeted 

TKIs may not in fact be so conformationally selective. Extensive direct binding studies suggested 

that erlotinib, gefitinib and lapatinib all bind similarly (within 3-fold) to both wild-type inactive and 

mutationally-activated forms of EGFR-TKD (Fabian et al., 2005). Erlotinib and gefitinib affinities 

were also reported (Lu et al., 2012) not to be affected by a C-lobe mutation (V924R) that prevents 

formation of the activated asymmetric dimer (Zhang et al., 2006), again suggesting that these 

inhibitors bind similarly to inactive and active EGFR-TKD. Moreover, studies of near full-length 

EGFR (Wang et al., 2011) indicated that the apparent Ki value for inhibition by lapatinib is 

increased only 1.8-fold upon receptor activation. It should be noted, however, that some other 

published data do suggest affinity differences between active and inactive EGFR-TKD for some 

of these inhibitors. For example, the apparent Ki for lapatinib inhibition of near full-length EGFR 

was increased >25-fold when activated by the oncogenic L834R mutation (Wang et al., 2011). 

Blocking EGFR activation with cetuximab also increased the apparent Ki for erlotinib (Wang et al., 

2011), suggesting that inactive EGFR has a reduced affinity for erlotinib. Moreover, one set of 

direct gefitinib-binding studies suggested that this TKI binds more tightly to the activated (L834R) 

EGFR-TKD than to the inactive conformation (Yun et al., 2007). On balance, it therefore remains 

unclear whether EGFR inhibitors are truly conformationally selective. It is clear, however, that a 
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full understanding of which TKIs bind more tightly to which mutated EGFR variants found in 

patients could have significant potential impact on inhibitor choice in the clinic. 

 To investigate the conformational selectivity of EGFR inhibitors further, we undertook 

computational and crystallographic studies of erlotinib binding to EGFR-TKD in both its active and 

inactive states. Our computational studies predicted that erlotinib binds similarly to both inactive 

and active TKD conformations. We used X-ray crystallography to test this prediction, and 

describe here a structure of inactive EGFR-TKD with bound erlotinib. The findings of the present 

study cast further doubt on the conformational selectivity of EGFR inhibitors, and also suggest 

that other characteristics, such as differences in inhibitor dissociation (Wood et al., 2004) or 

cycling rates (Barkovich et al., 2012), may underlie the distinct effects of erlotinib and lapatinib on 

NSCLC and glioblastoma cell lines (Vivanco et al., 2012) summarized in Figure 2.2, and will need 

to be understood in order to counter TKI resistance in the clinic. 

2.1.3 Computational analysis of erlotinib binding to EGFR-TKD 

To investigate the possible basis for preferential binding of erlotinib to the active conformation of 

EGFR-TKD, we used computational approaches in collaboration with Yingting Liu from the 

Radhakrishnan lab. Docking erlotinib on to wild-type EGFR-TKD in its active conformation, as 

described in the Experimental section, closely reproduced the binding mode observed 

crystallographically in PDB entry 1M17 (Stamos et al., 2002), as shown in Figure 2.3, with N1 of 

the erlotinib quinazoline moiety accepting a predicted hydrogen bond from the amide nitrogen of 

Met769. The docked structures were subjected to MD simulations, which showed that erlotinib was 

stable in this bound conformation (cyan in Figure 2.3) throughout the entire course of a 10 ns run 

(Figure 2.4). Notably, two water molecules (W1 and W2 in Figure 2.3) were also found to remain 

in the binding pocket, contributing to a stable network of hydrogen bonds involving residues 

Thr766, Gln767 and Thr830 of EGFR-TKD. Docking erlotinib into L834R-mutated EGFR-TKD gave 

very similar results (J. H. Park et al., 2012). Moreover, estimates of binding energy using Glide 

(Friesner et al., 2006), MM/PBSA calculations (see the Experimental section) or FEP (Free 
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Energy Perturbation) calculations indicated no increase in erlotinib binding affinity to the L834R 

mutant (Table 2.1). 

 

 

Figure 2.3. Erlotinib binding to active EGFR-TKD in the crystal structure (1M17) and model 

Erlotinib is shown bound to active EGFR-TKD in our computational model (cyan) and in the 

erlotinib/EGFR-TKD (active conformation) crystal structure reported in PDB entry 1M17 

(magenta).  Functional groups in several EGFR-TKD residues that interact directly or indirectly 

with the bound erlotinib are shown, and the cartoon from only 1M17 is shown.  The backbone 

amide of Met769 donates a predicted hydrogen-bond to N1 of the erlotinib quinazoline moiety.  

The backbone carbonyl of Gln767 and side-chains of Thr766 and Thr830 participate in a predicted 

hydrogen-bonding network to which water molecules (W1 and W2 in our model; W1 in 1M17) 

also contribute.  The Lys721 and Asp831 side-chains are shown for reference.  Polypeptide in the 

foreground has been removed for clarity. (Computational model was done by Y.L) 
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Figure 2.4:  RMSD of erlotinib and key distances between EGFR-TKD and erlotinib, as well 

as the distance of waters from EGFR-TKD or erlotinib monitored during 10ns MD 

simulation.  Data for the wild-type active-conformation simulation are blue, and data for the 

L834R (active conformation) simulation are green.  Data from the first 2 ns (pre-equilibration) are 

not shown. (Experiments were done by Y.L) 

 

Molecule Glide score (kcal/mol) MM/PBSA (kcal/mol) FEP (kcal/mol) 

Wild-type −9.34 −28.2  

L834R −9.35 −30.7  

ΔΔG −0.01 −2.5 0.83±1.16 

 

Table 2.1 Erlotinib-binding energies calculated by Glide, MM/PBSA and FEP for wild-type 

and L834R EGFR-TKD in the active conformation (experiments were performed by Y.L) 
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2.1.4 Computational studies of erlotinib binding to inactive EGFR-

TKD 

To challenge the assumption that erlotinib, gefitinib and other related inhibitors only bind to (and 

stabilize) the active EGFR-TKD conformation, we used the same computational approaches to 

ask whether erlotinib can bind to the inactive conformation of the kinase. Surprisingly, docking 

erlotinib into a crystal structure of the inactive EGFR-TKD (PDB entry 1XKK), after removing 

lapatinib from the model, yielded a very similar Glide score (−9.72 kcal/mol) to that seen for active 

EGFR-TKD (−9.34 kcal/mol). Moreover, when the two models were overlaid (Figure 2.5), the 

orientation of erlotinib and the conformation of its binding site were very similar in active (cyan) 

and inactive (yellow) EGFR-TKD models. N1 of the erlotinib quinazoline moiety receives a 

hydrogen bond from the amide nitrogen of Met769 in both cases. The two water molecules (W1 

and W2) mentioned above form essentially the same hydrogen-bonding network in each model, 

which also involves the Gln767 backbone carbonyl, the Thr766 side chain, nitrogen N3 of the 

erlotinib quinazoline moiety and the Thr830 side chain (Figure 2.5). An additional third strongly 

bound water molecule (W3 in Figure 2.5) was seen in the model of erlotinib-bound inactive 

EGFR-TKD. Distances between erlotinib and protein (and between bound waters and erlotinib) 

were stable throughout a 10 ns MD simulation, as plotted in Figure 2.6. Thus, our computational 

studies failed to provide any explanation for why erlotinib might bind preferentially to the active 

conformation of EGFR-TKD. Yun et al. (2007) suggested that favorable van der Waal’s 

interactions between gefitinib and the back of the ATP-binding cleft in active EGFR-TKD may be 

lost in the inactive state, but this was not seen in our modeling. 
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Figure 2.5 Comparison of erlotinib binding to active and inactive EGFR-TKD models 

On the basis of the computational models described here, erlotinib is shown bound to both active 

EGFR-TKD (cyan) and inactive EGFR-TKD (yellow). The protein structure in the background is 

similarly colored (light cyan for active, yellow for inactive). Functional groups in several EGFR-

TKD residues that interact directly or indirectly with the bound erlotinib are shown. The backbone 

amide of Met769 donates a hydrogen bond to N1 of the erlotinib quinazoline moiety. The backbone 

carbonyl of Gln767 and side chains of Thr766 and Thr830 participate in a hydrogen-bonding network 

to which water molecules (W1 and W2) also contribute. The Lys721 and Asp831 side chains are 

shown for reference. Polypeptide in the foreground has been removed for clarity. 

(Computational model was done by Y.L) 



	  
	  

35	  

 

Figure 2.6 Comparison of RMSD values for critical hydrogen bonds in active and inactive 

wild-type simulations.   

Values for the distance between N1 of the erlotinib quinazoline moiety and Met769, as well as the 

distance from erlotinib N3 of the three waters shown in the model in Figure 2.8 (A) were 

monitored during the 10ns simulation (omitting the first 2ns), and are plotted in green.  For 

comparison, data for the wild-type active EGFR-TKD conformation (as in Figure 2.4) are shown in 

blue. (Experiments were done by Y.L.) 

	  

	  

2.1.5 Crystal structure of erlotinib bound to inactive EGFR-TKD 

Following the unexpected suggestion from our collaborative computational studies that erlotinib 

binds similarly to active and inactive EGFR-TKD, I sought to crystallize the kinase domain in its 

inactive conformation with erlotinib bound. Previous crystal structures of active EGFR-TKD with 

erlotinib (Stamos et al., 2002) or gefitinib (Yun et al., 2007) bound were obtained by soaking the 

drug into pre-formed crystals. However, it is now clear that wild-type EGFR-TKD (or variants 

harboring NSCLC mutations) always adopt the active conformation in crystals (Stamos et al., 

2002; Wood et al., 2004; Zhang et al., 2006), because of EGFR-TKD's intrinsic tendency to form 
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asymmetric dimers in which the C-lobe of one molecule associates with the N-lobe of its neighbor 

to allosterically stabilize the active conformation. Although EGFR-TKD co-crystallized with 

lapatinib (Wood et al., 2004), HKI-272 (Yun et al., 2008), or related inhibitors adopt the inactive 

conformation, wild-type EGFR-TKD only crystallizes in the inactive conformation when the 

asymmetric dimer is disrupted by a mutation in its interface (such as V924R in the C-lobe) (Jura 

et al., 2009; Zhang et al., 2006) or by a Mig6-derived peptide that binds to the C-lobe dimerization 

site (Zhang et al., 2007). 

          By soaking erlotinib into crystals formed by a V924R-mutated EGFR-TKD variant, I was 

able to determine the structure of erlotinib bound to inactive EGFR-TKD at a resolution of 2.75 Å 

(Table 2.2). As shown in Figure 2.7, my structure of inactive EGFR-TKD closely resembles that 

seen in PDB entry 1XKK (in complex with lapatinib). The RMSD (root mean square deviation) 

between α carbon positions in these two structures was 1.30 Å, and the α carbon RMSD for 

overlay of my inactive structure with PDB entry 3GT8 was 1.42 Å. As illustrated in Figure 2.8, the 

crystal structure shows erlotinib (green in Figure 2.8A) to be slightly shifted in the binding site 

compared with its predicted position in the computational model (yellow in Figure 2.8A); to the left 

in the aspect of Figure 2.8A by approximately 1 Å. The distance between the amide nitrogen of 

Met769 in EGFR-TKD and N1 of the erlotinib quinazoline moiety is maintained at 2.9 Å in the 

crystal structure and 3.2 Å in the model. The slight shift of erlotinib is associated with a similar 

shift in the polypeptide backbone in the region of residues 767–770. Other key side chains 

(Thr766, Thr830, Asp831 and Lys721) shown in Figure 2.8A are located very similarly in the model 

and crystal structure. Importantly, the pattern of water molecules predicted by our model was also 

observed crystallographically (compare yellow and green waters in Figure 2.8A). W1 and W2 are 

in very similar positions in the crystal structure and model, providing crystallographic evidence 

that the predicted water-mediated hydrogen-bonding network involving the quinazoline moiety of 

erlotinib, and Thr766/Gln767/Thr830 of EGFR-TKD is maintained in the inactive conformation. 

Interestingly, equivalent waters are also seen in the published crystal structure of lapatinib-bound 

inactive EGFR-TKD (Figure 2.8B) (Wood et al., 2004). Moreover, a crystallographic water was 
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seen in our erlotinib/inactive EGFR-TKD structure close to the position of W3 in the computational 

model, and near the side chains of Thr766 and Thr830. Additional waters labeled W4 and W5 in 

Figure 2.8A are seen in our erlotinib/EGFR-TKD crystal structure and not the model. Interestingly, 

as shown in Figure 2.8B, waters W3–W5 in our structure lie in the same pocket within inactive 

EGFR-TKD that is occupied by the (3-fluorobenzyl)oxy group of lapatinib in PDB entry 1XKK; 

these waters also interact with the EGFR-TKD backbone in parts of the αC helix (Met742) and 

Phe832 of the DFG motif. 

 

 

 

 

 

 

 

 



	  
	  

38	  

 

Figure 2.7 Crystal structures of TKI-bound EGFR-TKD 

(A) The 2.75 Å resolution structure of V924R-mutated EGFR-TKD in its inactive form bound to 

erlotinib (green: PDB ID 4HJO) as described in the text and Table 2.2. (B) Crystal structure from 

PDB entry 1XKK showing lapatinib (blue) bound to inactive EGFR-TKD. (C) Crystal structure from 

PDB entry 1M17 showing erlotinib (magenta) bound to active EGFR-TKD. Note that the αC helix 

is in the ‘in’ or ‘active’ position in (C), but in the ‘out’ or ‘inactive’ position in (A) and (B), and that 

the characteristic short α-helix seen in the inactive EGFR-TKD activation loop is present in (A) 

and (B), but not (C). As described in the text, the crystal structure shown in (A) confirms our 

computational findings that erlotinib can bind to the inactive EGFR-TKD conformation. 
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Table 2.2 Data collection and refinement statistics (molecular replacement)  

Each dataset was collected from a single crystal. Values for highest resolution shell are shown in 
parentheses. 

 EGFR/erlotinib 

Data collection  

Space group C2221 

Cell dimensions  

    a, b, c (Å) 78.0, 114.3, 84.9 

    a, b, g  (°)  90, 90, 90 

Resolution (Å) 64.4-2.75 

Rsym 0.159 (0.494) 

I/σ 12.8 (2.1) 

Completeness (%) 96.1 (82.1) 

Redundancy 4.8 (2.8) 

Refinement  

Resolution (Å) 2.75 

No. reflections 9712 

Rwork / Rfree 0.25/0.28 

No. atoms  

    Protein 2201 

    Ligand 29 

    Water 26 

B-factors  

    Protein 44.6 

    Ligand 42.8 

    Water 35.1 

R.m.s. deviations  

    Bond lengths (Å) 0.008 

    Bond angles (°) 1.096 
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Figure 2.8 Erlotinib binding to inactive EGFR-TKD	  

(A) The crystallographically observed mode of erlotinib binding to inactive EGFR-TKD (green: 

PDB ID 4HJO) is compared with the computational model (yellow). Protein structure in the 

background colored green for the crystal structure and yellow for the model. (B) The mode of 

erlotinib binding to inactive EGFR-TKD observed crystallographically (green) is compared with 

the mode of lapatinib binding to inactive EGFR-TKD in PDB entry 1XKK (grey), in a view rotated 

by 180° about a vertical axis compared with that seen in (A). Waters W1–W5 are labeled for the 

erlotinib/inactive EGFR-TKD structure. Waters W1 and W2 are also found in the lapatinib 

complex. W3–W5 in the erlotinib complex structure lie in a pocket occupied by the (3-

fluorobenzyl)oxy group of lapatinib in PDB entry 1XKK. Functional groups, side chains and bound 

waters are shown as described in Figure 2.5. Polypeptide in the foreground has been removed 

for clarity. 

 

2.1.6 Conclusions 

It is generally assumed and stated that the EGFR inhibitors gefitinib and erlotinib bind selectively 

to the active conformation of EGFR-TKD, whereas lapatinib selectively binds the inactive 

configuration. A preference of lapatinib for inactive EGFR-TKD can easily be rationalized, since it 

has a bulky [(3-fluorobenzyl)oxy] substituent on its aniline ring that projects into the space opened 

up upon displacement of the αC helix in the inactive kinase (as shown in Figure 2.7B). For 

erlotinib, however, no significant difference in the binding affinity for inactive and active EGFR-

TKD conformations could be detected – or rationalized – using a range of computational 

approaches. This led us to efforts to confirm crystallographically that erlotinib can indeed bind to 

EGFR-TKD in its inactive conformation (Figure 2.7A and Figure 2.8). These findings have several 

important implications. 
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 First, our findings complicate suggestions in the literature that erlotinib and gefitinib drive 

EGFR dimerization by stabilizing the active configuration. Since asymmetric dimerization of 

EGFR-TKD promotes its acquisition of the active conformation, the converse should also be true: 

that stabilization of the active TKD conformation drives dimerization. Thus if erlotinib and gefitinib 

selectively bind and stabilize the active EGFR-TKD conformation, their binding should drive 

asymmetric dimer formation. Indeed, it has been reported that gefitinib stabilizes formation of 

EGFR-containing heterodimers in cells (Anido et al., 2003). Moreover, Springer and colleagues 

have reported in negative stain electron microscopy studies (Lu et al., 2012; Mi et al., 2011) that 

gefitinib promotes dimerization of near full-length EGFR by inducing structures that resemble 

asymmetric EGFR-TKD dimers – although it should be noted that this is only seen in the particles 

that they selected from images. The finding in the present study that erlotinib also binds to 

inactive (monomeric) EGFR-TKD is difficult to reconcile with the simple interpretation of these 

reports, as are other published data indicating that neither stabilizing the active conformation of 

EGFR-TKD with oncogenic mutations nor disrupting the asymmetric dimer interface with a V924R 

mutation (and thus stabilizing the inactive conformation) alters the affinity of EGFR-TKD for 

gefitinib or erlotinib (Fabian et al., 2005; Lu et al., 2012). 

          Secondly, the findings of this study argue that the relative abilities of erlotinib/gefitinib-type 

EGFR TKIs and lapatinib/neratinib TKIs to inhibit different mutationally activated EGFR variants is 

more complicated than previously thought. Given the results described here, the fact that NSCLC 

mutants and glioblastoma mutants are selectively (and exclusively) inhibited by erlotinib and 

lapatinib respectively (Vivanco et al., 2012) seems unlikely to reflect simply stabilization of 

different conformational states of EGFR-TKD in the two cancers (active for NSCLC, inactive for 

glioblastoma). Rather, the different sensitivities of the EGFR mutants are likely to reflect more 

complicated conformational, and dynamic, characteristics – as suggested by a previous study 

(Barkovich et al., 2012). It is clear, for example, that lapatinib dissociates from EGFR-TKD much 

more slowly than erlotinib or gefitinib (Wood et al., 2004) – although it is also true that covalent 

inhibitors dissociate even more slowly, yet still show differential effects. More extensive analysis 
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is required to identify the differences between these groups of inhibitors, which ultimately should 

aid in tailoring the type of inhibitor used clinically to the mode in which EGFR has been aberrantly 

activated in cancer. 

 

2.2 Selective inhibition of HER2/HER3 oncogenic complex 

N.B. This is collaborative work with Chris Novotny from the laboratory of Kevan Shokat at 
University of San Francisco. Work contributed by Chris Novotny (C.N.) is marked 
accordingly in tables and figures. 
	  

2.2.1 Introduction 

Activation of members of the epidermal growth factor receptor/ErbB tyrosine kinase family 

involves an allosteric mechanism. Prior to activation, ErbB family kinases are auto-inhibited by 

hydrophobic interactions between helix αC and a short helix seen within the activation loop of the 

inactive (but not active) kinase. Asymmetric dimerization of the kinase domains within a receptor 

dimer disrupts these hydrophobic interactions, with the C-lobe of the ‘activator’ kinase abutting 

the N-lobe of the ‘receiver’ kinase and allosterically activating it (Jura et al., 2009; Zhang et al., 

2006). Among four members of the ErbB/HER family of growth factor receptor tyrosine kinases 

(RTKs), ErbB3 (HER3) is known for it interestingly distinct features. When first cloned, it was 

noted as a likely ‘kinase-dead’ member of the family due to its unusual amino acid changes in 

highly conserved catalytic motifs, notably replacement of the catalytic base aspartate with an 

asparagine and loss of the key glutamate in helix αC (Hanks et al., 1988; Kraus et al., 1989).  

Early biochemical studies supported this idea (Citri et al., 2003), although it was since challenged 

(Shi et al., 2010), as described below. It is also important to note that the ErbB3 ligand, 

neuregulin (NRG), fails to induce ErbB3 homodimerization, making ErbB3 an obligate 

heterodimerization partner with other ErbBs (Berger et al., 2004; Citri et al., 2003; Ferguson et al., 

2000). 
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ErbB3 plays an important role in cancer cell survival and proliferation by forming 

heterodimers with other ErbB receptors in which its TKD functions as the ‘activator’ kinase in the 

asymmetric dimer described above (Jura et al., 2009; Zhang et al., 2006). Heterodimerization 

causes allosteric activation of EGFR and ErbB2 in EGFR/ErbB3 and ErbB2/ErbB3 heterodimers 

respectively, and transphosphorylation of C-tail tyrosines in ErbB3, which serve as binding sites 

for the p85 subunit of phosphoinositide 3-kinase (PI3K) at the plasma membrane (Baselga and 

Swain, 2009). Therefore, ErbB3 is crucial in activating the PI3K-Akt pathway. Overexpression of 

ErbB3 or its aberrant signaling has been observed in many forms of cancer, such as breast 

cancer (Holbro et al., 2003; Lee-Hoeflich et al., 2008; Vaught et al., 2012), NSCLC (H. Y. Chen et 

al., 2007), ovarian (Tanner et al., 2006), colon and gastric cancers (Sithanandam and Anderson, 

2008). 

          Compared to other ligand-induced ErbB combinations, the ErbB2/ErbB3 heterodimer is 

generally considered to be the most potently mitogenic signaling complex.  For example, mouse 

studies using transfected NIH3T3 cell transplantations showed most aggressive tumor growth 

with cells expressing this combination of receptors (Alaoui-Jamali et al., 2003; Citri et al., 2003; 

Holbro et al., 2003).  Deletion of ErbB3 in the mammary epithelium of mice expressing ErbB2 

dramatically reduces tumor formation (Vaught et al., 2012), and depletion of ErbB3 by RNAi in 

ErbB2-overexpressing breast cancer cell lines is just as toxic as – or more toxic than – 

knockdown of ErbB2 by RNAi (Lee-Hoeflich et al., 2008).  Similarly, doxorubicin-mediated 

ablation of ErbB3 is as effective as lapatinib treatment in reducing ErbB2-dependent tumors in 

mice (Vaught et al., 2012). Overall, ErbB3 is required for both breast cancer development and 

tumor maintenance, and these findings implicate ErbB3 as a potentially very attractive therapeutic 

target. However, therapeutic antibodies or small molecule tyrosine kinase inhibitors (TKI) aimed 

at suppressing ErbB2/ErbB3 signaling have been focused largely on ErbB2 (J. W. Park et al., 

2008).  Examples of therapeutic agents targeting ErbB2 (HER2) are Herceptin and Tykerb 

(lapatinib), which have proven clinically effective in breast cancer (Bedard et al., 2009; Sergina 

and Moasser, 2007). ErbB3 has largely been ignored because it is generally considered a ‘dead-
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kinase’, although several potentially useful ErbB3-targeted antibody therapeutics have now been 

described (Sala et al., 2012; Schaefer et al., 2011; Schoeberl et al., 2010).  

Development of resistance – particularly to small molecule TKIs – has become a very 

significant problem (Bedard et al., 2009; F. L. Chen et al., 2008) in cancers treated with ErbB 

receptor inhibitors. It is in this regard that ErbB3 has recently become a focus of attention, as 

upregulation of ErbB3 phosphorylation appears to play an important role in resistance to EGFR- 

and ErbB2-targeted TKI drugs such as gefitinib and lapatinib (Engelman et al., 2007; Sergina et 

al., 2007).  It has been shown that cancer cells increase the transcription, translation, and 

membrane localization of ErbB3 in response to multiple FDA-approved inhibitors of EGFR, 

ErbB2, PI3K, and other kinases within 96 hrs of treatment in cell culture experiments. This 

increase in ErbB3 levels is thought to allow the small amount of remaining kinase activity of either 

EGFR or ErbB2 to phosphorylate enough ErbB3 to keep Akt stimulated via PI3K activation . 

Inhibiting ErbB3 phosphorylation with inhibitors of the ErbB2 kinase releases feedback from the 

PI3K/Akt pathway to cause such an increase in total ErbB3 levels (Amin et al., 2010; Sergina et 

al., 2007). A similar increase in ErbB3 expression and phosphorylation is seen in cells treated 

with PI3K inhibitors (Chakrabarty et al., 2012). Upregulation of ErbB3 expression via FOXD3 has 

also been identified as being a critical short term adaptive response to BRAF mutant melanomas 

treated with PLX4720 (Abel et al., 2013). This raises the concern that traditional kinase inhibitors 

will be unable to alter ErbB3 signaling, since their activity will be mitigated by this feedback 

response.  

2.2.2 Possible importance of the intrinsic kinase activity of ErbB3 in 

ErbB signaling 

Despite possessing sequence alterations in catalytically important motifs, our lab previously 

demonstrated that the so-called ‘dead-kinase’ TKD in ErbB3 retains ATP binding ability (KD = 1.1 

µM) and sufficient kinase activity to carry out trans-autophosphorylation in vitro – although it’s 

kinase activity was estimated to be 500-1000 fold less than that of the EGFR kinase domain 
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under similar conditions (Shi et al., 2010). Given the importance of ErbB3 in resistance to EGFR- 

and ErbB2-targeted therapies in breast and other cancers, our lab has focused on trying to 

determine whether the intrinsic kinase activity of ErbB3 is important for its signaling, using model 

Ba/F3 and CHO cell lines.  

In order to investigate whether ErbB3’s intrinsic kinase activity is required for 

transphosphorylation of ErbB2 within a neuregulin-induced ErbB2/ErbB3 heterodimer, Ba/F3 cells 

(null background for endogenous ErbB receptors) were engineered to co-express wild type ErbB2 

protein and ErbB3 (wild type or mutants). The ErbB3 variants tested here included K723M and 

V836A/R, which impair both ATP binding and (therefore) kinase activity (Shi et al., 2010), but do 

so through different mechanisms. Mutations at K723 (equivalent to K721 in EGFR) directly impact 

the ATP-binding and catalytic sites, whereas V836 (equivalent to L858 in EGFR) is more remote 

and is involved in interactions between αC and the activation loop helix that stabilize the inactive-

like conformation of kinase. Neuregulin-induced tyrosine phosphorylation of ErbB2 and ErbB3 in 

Ba/F3 cells was determined by Western blotting (Figure 2.9A). Interestingly, ErbB3 mutations that 

block its kinase activity failed to impair neuregulin-induced ErbB2 and ErbB3 phosphorylation.  

These data suggest that the ErbB3 kinase activity detected in vitro is not required for ligand 

induced autophosphorylation of ErbB2/ErbB3 heterodimers.  

Our next question was whether ErbB3 kinase domain mutations affect the ability of the 

receptor to activate PI3K/Akt signaling in response to neuregulin. Neuregulin-dependent Akt 

activation (detected with specific pAkt antibodies) can be detected in CHO cells overexpressing 

wild-type ErbB3, but not in parental cells.  As shown in Figure 2.9B, neuregulin-dependent Akt 

activation was observed in CHO cells stably expressing any of the full-length ErbB3 variants, 

regardless of whether the mutations introduced impaired kinase activity. These results suggest 

that the kinase activity of ErbB3 is not required for signaling. We therefore concluded that ErbB3 

plays an important role in ErbB2/ErbB3 heterodimer signaling even if its ability to signal via 

PI3K/Akt pathway is not a result of kinase activity. 
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Figure 2.9 Influences of intrinsic kinase activity of ErbB3 in induced autophosphorylation 

of ErbB2/ErbB3 heterodimer and signaling  

(A) Autophosphorylation of ligand induced ErbB2/ErbB3 heterodimers in BaF3 cells. BaF3 cells 

were stably transfected pIRES plasmids containing both wildtype ErbB2 and (wildtype or 

mutated) ErbB3 mutants allowing constitutive coexpression of both full length ErbB2 and ErbB3 in 

the cells. After sorted for high ErbB expression using FACS, BaF3 cells were serum starved for 6 

hours, washed, and stimulated with neuregulin 1β (50ng/ml) for 10 min at 4°C. Lysed samples 

were analyzed by immunoblotting with indicated antibodies to detect ErbB2 and ErbB3 

autophosphorylation.  

(B) NRG-induced AKT activation in ErbB3 expressing CHO cells. CHO cells were transiently 

transfected with pcDNA3.1 plasmids containing full length ErbB3 (wildtype or mutant) or parental 

pcDNA3.1 plasmid. Cells were serum starved overnight, stimulated with neuregulin 1β (40ng/ml) 

for 30 min. Lysed samples were analyzed by immunoblotting with antibodies against ErbB3 

(upper lane), pAkt (middle lane), and total Akt (lower lane) (Figure is from doctoral dissertation of 

Fumin Shi, Ph.D., University of Pennsylvania, 2012; AAT3551554) 
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2.2.3 Identification of a novel inhibitor of the ErbB2/ErbB3 

heterodimer through high throughput cell-based screening 

As mentioned above, the ErbB2/ErbB3 heterodimer can act as oncogenic driver, and its formation 

is responsible for resistance to existing ErbB2-targeted tyrosine kinase inhibitors. This motivated 

us to develop/identify novel small molecule inhibitors capable of inhibiting the active ErbB2/ErbB3 

oncogenic complex in collaboration with the laboratory of Kevan Shokat at UCSF.  The key issue 

is that the ErbB2 kinase domain is stabilized in its active form in neuregulin-induced ErbB2/ErbB3 

heterodimers, with the C-lobe of the ErbB3 kinase domain inducing this conformational change 

via contacts with the ErbB2 TKD’s N-lobe. 

In order to identify inhibitors of mitogenic signaling by ErbB2/ErbB3 heterodimers, the 

Shokat laboratory screened almost a million compounds in a library from the California Institute 

for Biomedical Research (Calibr).  They engineered Ba/F3 cells to be dependent on the formation 

of neuregulin-stimulated ErbB2/ErbB3 heterodimers. Survival and proliferation of Ba/F3 cells 

normally requires interleukin-3 (IL-3), but this requirement can be replaced by almost any RTK 

(including EGFR alone, or ErbB2/ErbB3 heterodimers), allowing EGF or neuregulin to promote IL-

3 independent cell survival and proliferation in appropriately engineered Ba/F3 cells (Walker et al, 

2004). Ba/F3 cells stably expressing ErbB3 and ErbB2 were generated sequentially selected. 

Since ErbB2 is capable of transforming cells independently of ErbB3, 9 tyrosines in the C-

terminal tail of ErbB2 were mutated to phenylalanine (creating ErbB2YF) to prevent downstream 

signaling through ErbB2 homodimers, and to ensure that Ba/F3 cell survival and proliferation 

would be dependent on ErbB3. Neuregulin was then provided in the medium after withdrawal of 

IL-3 to select for neuregulin-dependent ErbB2YF/ErbB3wt heterodimers (2YF/3wt). The resulting 

2YF/3wt cell line allowed screening for inhibitors of signaling by ErbB2/ErbB3 heterodimers.  

Generally cytotoxic hits were efficiently removed with counter-screening of same 2YF/3wt 

cells in presence of IL-3. In addition, wild-type ErbB2 dependent cells and wild-type Axl (unrelated 

RTK that activates PI3K pathway) dependent cells were created in order to remove other hit 
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compounds that were not directly inhibiting the ErbB2/ErbB3 heterodimer. A diverse collection of 

950,000 drug-like molecules (Z’ ≥0.75) was screened as in the schematic representation shown 

in Figure 2.10.  This led to the identification of 3 hit compounds that share the same scaffold and 

showed preferential inhibition of neuregulin-stimulated, ErbB2/ErbB3 heterodimer-dependent 

proliferation. SAR optimization was further pursued using an iterative scheme with 10-20 

compounds per batch screened against the Ba/F3 panel, finally converging on compound 55A 

which yielded a large jump in specificity and potency in inhibition of NRG driven cells.  
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Figure 2.10 Schematic of a high-throughput screen to identify a novel ErbB2/ErbB3 

inhibitor Compounds were first screened for the ability to inhibit the proliferation of the 2YF/3wt + 

neuregulin (NRG) cells (≥ 50% inhibition vs DMSO), counter-screened against the same cell line 

in the presence of IL-3 (≥ 2 fold change in IC50 for + NRG vs IL-3), and then screened in dose 

response against all 3 cell lines. (Designed and executed by C.N.) 
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2.2.4 55A is differentiated from clinically available ErbB inhibitors 

Based on the in vitro biochemical and cell signaling studies outlined above, and described in the 

literature (Littlefield et al., 2014), we hypothesized that productive ErbB2/ErbB3 heterodimer 

signaling via the PI3K/Akt pathway might be inhibited selectively by small molecules capable of 

binding to the ErbB2 TKD in its ‘active-like’ conformation, or possibly to ErbB3 in its inactive-like 

conformation if disruption of allosteric ErbB2 activation could be achieved.  The high potency and 

specificity of compound 55A observed in NRG stimulated ErbB2YF/ErbB3wt Ba/F3 cells might 

represent one of these possibilities. 

In order to understand its mechanism of action further, we evaluated 55A’s ability to 

interact with ErbB2 or ErbB3 using in vitro kinase assays and a thermofluor assay (Figure 2.11). 

In analyses of ErbB2 TKD inhibition in vitro, 55A turned out to have the same potency as the 

EGFR/ErbB2 inhibitor lapatinib, as seen in Figure 2.11A.  55A was also shown to be capable of 

binding the ErbB3 TKD – stabilizing it against thermal denaturation to the same extent as seen 

with ATP (Figure 2.11B). Current FDA-approved EGFR- and ErbB2-specific inhibitors (such as 

gefitinib, erlotinib and lapatinib) all target the ATP binding site of kinases, but none inhibit  

autophosphorylation of purified ErbB3 ICD in vitro (Shi et al., 2010).  Intriguingly, 55A contrasts 

with these inhibitors in that it does block the autophosphorylation activity of ErbB3 (Figure 2.12), 

indicating that it binds to the active site of ErbB3 as well as ErbB2.  Moreover, inhibitor profiling 

studies showed that 55A can inhibit the EGFR kinase domain. 
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Figure 2.11. 55A is able to interact with ErbB2 and ErbB3  

(A) 55A is as potent an ErbB2 inhibitor as lapatinib as assessed in in vitro kinase assays. 

(B) 55A binds and stabilizes the ErbB3 kinase domain to the same extent as ATP – as 

determined by Thermofluor assay. (Experiments were done by C.N.).	  

	  

	  
Figure 2.12 Inhibition of ErbB3 kinase autophosphorylation in vitro  

Western blot to analyze the effect of inhibitors on ErbB3 activity. ErbB3 ICD665-1323 (1 µM) protein 

was incubated with inhibitors and 10 µM lipid vesicles (10% NTA-Ni-DOGS in DOPC background) 

in 100 mM MOPS pH 7.4, containing 200 mM NaCl, 2mM MnCl2, 5mM MgCl2, 5 % glycerol, 0.1 

mM DTT and 0.2 mM ATP for 1 hour at 25 ̊C. The reaction mixture was separated by SDS-PAGE 

and immunoblotted using anti-phosphotyrosine(pY20) and anti-(His)5.  
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2.2.5 Structural characterization of a 55A-bound ErbB kinase domain 

by X-ray crystallography  

The EGFR- and ErbB2-targeted drug lapatinib can only bind to the inactive state of ErbB kinase 

(Wood et al., 2004) because its (3-fluorobenzyl)oxy group must occupy a hydrophobic pocket 

adjacent to the αC helix that is not available in the active state when αC occupies the ‘in’ position 

shown in Figure 2.1 (see also Figure 2.8). This preferential binding to the inactive state of ErbB2 

poses a resistance problem clinically, because cancers dependent on the ErbB2/ErbB3 can 

rapidly escape the inhibitor when stimulated with growth factor, which induces formation of the 

active ErbB2/ErbB3 asymmetric dimer. We hypothesized that, in order to be useful, an ATP 

competitive inhibitor of the ErbB2/ErbB3 complex may need to be conformation-specific.  

 In order to understand how 55A interacts with ErbB kinases, I tried extensive co-

crystallization of compound 55A with different ErbB kinase constructs. The ErbB3-TKD WT – 

which has been only ever been crystallized in an inactive-like conformation (Jura et al., 2009; Shi 

et al., 2010) failed to give single crystals. Given the results of kinase inhibitor profiling, which 

showed that 55A can also inhibit EGFR, I also attempted to co-crystallize 55A with the EGFR-

TKD in active-like and inactive-like conformations.  The WT EGFR-TKD almost always 

crystallizes in the ‘active’ conformation, whereas a V924R-mutated EGFR-TKD V924R variant 

has been shown to crystallize selectively in the inactive conformation, because this C-lobe 

mutation disrupts the activating N-lobe/C-lobe interactions (Jura et al., 2009; Stamos et al., 2002). 

EGFR WT/55A co-crystals did not diffract to better than ~8 Å resolution, whereas an EGFR 

V924R/55A co-crystal generated a useable 3.3 Å data set (Table 2.3).  

 Strikingly, as shown in Figure 2.13, the EGFR V924R variant did not adopt the expected 

inactive conformation when co-crystallized with 55A – whereas our previous work showed that it 

adopts the inactive state when bound to erlotinib (J. H. Park et al., 2012).  Even though the 

V924R mutations breaks the asymmetric dimer normally responsible for adopting the active 
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conformation, this mutated TKD adopts the active conformation when bound to 55A – in the 

absence of the normal allosterically activating interactions. This crystallographic analysis 

suggests that 55A has a strong and unexpected conformational selectivity, and stabilizes the 

active conformation of ErbB kinase family members (Figure 2.14). Further analysis of Ba/F3 cell 

inhibition using a series of BaF3 cell lines dependent on NRG-induced HER2/HER3 heterodimers 

that possessed methionine gatekeeper mutations (TM) in either kinase (2YF/3TM and 

2YFTM/HER3wt) or both (2YFTM/3TM) showed inhibition by 55A was only affected by the HER2 

gatekeeper mutation, whereas the gatekeeper mutation in HER3 had little influence indicating 

cellular influences of 55A are mediated by its binding to ErbB2 rather than ErbB3. The effect of 

55A thus appears to arise from inhibition of ErbB2 in its active conformation – although changing 

the conformation of ErbB3 (from ‘inactive-like’ to ‘active-like’) could potentially alter its ability to 

allosterically activate ErbB2, and may aid 55A effects. 
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Figure 2.13 Crystal structure of 55A-bound EGFR V924R kinase 

Cartoon representation is shown for EGFR-TKD672-998 V924R/55A complex with a zoomed-in view 

of the active site at right. Key structural elements typically seen in kinases in their active 

conformation are clearly observed: conformation change in αC helix (in position), salt bridge 

between the catalytic lysine residue and a glutamate residue in the αC helix, and fully ordered 

activation segment.  
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Figure 2.14 Comparison of erlotinib-bound inactive conformation and 55A-bound active 

conformation of EGFR-TKD672-998 V924R structure 

The crystallographically observed mode of erlotinib binding to inactive EGFR-TKD (yellow) is 

compared with that of 55A binding to active EGFR-TKD (cyan). The protein structure in the 

background is similarly colored. Sidechain shift of Asp831 (in DFG motif) due to 55A binding could 

be responsible for disruption of activation loop helical segment stabilizing ‘inactive’ hydrophobic 

interaction with αC helix.  
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Table 2.3 Data collection and refinement statistics (molecular replacement)  

Each dataset was collected from a single crystal. Values for highest resolution shell are shown in 
parentheses. 

 EGFR/55A 

Data collection  

Space group P 31 2 1 

Cell dimensions  

    a, b, c (Å) 69.4, 69.4, 192 

    a, b, g  (°)  90, 90, 120 

Resolution (Å) 50-3.30 

Rsym 0.057 (0.982) 

I/σ 21.4 (1.26) 

Completeness (%) 99.7 (99.7)  

Redundancy 3.4 (3.5) 

Refinement  

Resolution (Å) 50-3.30 

No. reflections 8562 

Rwork / Rfree 0.24/0.27 

No. atoms  

    Protein 2333 

    Ligand/Ion 38 

B-factors  

    Protein 154.5 

    Ligand/Ion 128.5 

R.m.s. deviations  

    Bond lengths (Å) 0.003 

    Bond angles (°) 0.630 
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2.2.6 Conclusions 

We have identified a novel inhibitor 55A that preferentially binds and inhibits the active state of 

ErbB2 through a high throughput screen of Ba/F3 cells dependent on neuregulin-stimulated 

HER2/HER3. The complete mechanism of action of this compound is still under investigation, and 

there is room for further optimization as well. However, I hope to gain some insights from the 

inhibitor-bound structure on how small molecule kinase inhibitors prefer ‘inactive-like’ or ‘active-

like’ conformation of the kinase domain for further improvement on binding affinity and selectivity 

of the compounds. Collaborative approaches combining cell signaling studies, biochemistry and 

structural biology will help us to identify potentially very important therapeutic agent preventing 

non-mutational resistance to currently available drugs, and also to understand the role of 

conformationally regulated pseudokinase scaffold in cancer. 

 

2.3 Experimental Procedures 

2.3.1 Plasmid Construction 

DNA encoding kinase domain residues 672-998 (mature protein numbering), equivalent to 

residues 696-1022 (precursor protein numbering) of human EGFR (NCBI reference sequence 

NP_005219.2) was amplified by PCR using primers that included an N-terminal hexahistidine tag 

and SpeI/XhoI restriction sites.  The PCR product was subcloned into pFastBac1 (Invitrogen) for 

generating recombinant baculovirus with the Bac-to-Bac system (Invitrogen) for protein 

expression in Spodoptera frugiperda Sf9 cells.  To generate the V924R mutation, the codon for 

Val924 (mature protein numbering) was substituted with an arginine codon using the QuikChange 

method (Agilent Technologies). 
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For wild-type ErbB3 protein, DNA encoding residues 665-1323 (mature protein numbering) of 

human ErbB3 intracellular region was subcloned into the pFastBac1 with N-terminal hexa-

histidine tag (Shi et al., 2010). 

2.3.2 Protein production and purification 

Sf9 cells at 1.5-2 x 106/ml were infected with recombinant baculovirus, and harvested by 

centrifugation after 3 days.  Cells expressing histidine-tagged EGFR672-998/V924R (~3 liters of 

medium) were lysed by sonication in 100 ml of lysis buffer (20 mM Tris-HCl, pH 8.0, containing 

500 mM NaCl, 5 mM 2-mercaptoethanol, and protease inhibitor cocktail (Roche)).  After 

centrifugation at 40,000 x g for 30 min to remove cell debris, the supernatant was passed through 

a 0.45 µm filter and incubated with Ni-NTA agarose beads (Qiagen) for 1 hr at 4ºC.  Beads were 

washed in 50 column-volumes of lysis buffer, and bound EGFR TKD protein was eluted in lysis 

buffer containing increasing concentrations of imidazole.  Eluted protein was then further purified 

using an UnoQ anion exchange column (Bio-Rad) equilibrated with 20 mM Tris-HCl, pH 8.0, 

containing 5% glycerol, 2 mM DTT and eluting with a gradient from 75 mM to 1 M NaCl over 20 

column volumes.  EGFR TKD protein was then subjected to a final step of size exclusion 

chromatography using a Superdex 200 column (GE Healthcare) equilibrated in 20 mM Tris-HCl, 

pH 8.0, containing 150 mM NaCl and 2 mM DTT.  1-2 mg of purified EGFR672-998/V924R protein 

was typically obtained per liter of Sf9 cell culture. 

 

ErbB3-ICD665-1323  wild-type protein expression and purification was performed exactly as 

described by Shi et al. (2010). 

2.3.3 Crystallization and structure determination 

Crystals were obtained using the hanging drop vapor diffusion method, by mixing equal volumes 

of protein and reservoir solutions and equilibrating over the reservoir solution at 21˚C.  For the 

EGFR TKDV924R/erlotinib structure, EGFR TKD protein was concentrated to 6 mg/ml in 20 mM 

Tris-HCl, pH 8.0, containing 150 mM NaCl and 2 mM DTT.  Crystals were obtained with a 
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reservoir solution of 0.25 M NaSCN pH 6.9, 27% (w/v) PEG3350, and when 10 mM taurine had 

been included as ‘additive’ in the hanging drop, and were soaked for 2 hours at 21˚C in mother 

liquor containing 1 mM erlotinib.  Crystals were cryo-protected in reservoir solution with added 

20% (w/v) glycerol, and were flash frozen in liquid nitrogen.  Diffraction data were collected at 

beamline 23ID-D of GM/CA@APS (Advanced Photon Source), where crystals diffracted to 2.75 

Å, and were processed using HKL2000 (see Table 2.2).  The structure was solved by molecular 

replacement using Phaser with the inactive EGFR (V924R) TKD structure (PDB 3GT8) as search 

model.  Repeated cycles of manual building/rebuilding using Coot were alternated with rounds of 

refinement employing REFMAC, plus composite omit maps calculated using CNS.  PHENIX and 

TLS refinement were used in the later stages.  Coordinates, parameter files and molecular 

topology of erlotinib was generated by PRODRG.  Data collection and refinement statistics are 

shown in Table 2.2.  One molecule of EGFR672-998/V924R is present in the asymmetric unit, and 

the model of its structure complexed with erlotinib includes amino acids 679-709 and 714-960 

(mature EGFR numbering).  Structural figures were generated with PyMOL. 

 

For the EGFR TKDV924R/55A structure, EGFR TKD protein was concentrated to 8 mg/ml in 20 mM 

Tris-HCl, pH 8.0, containing 150 mM NaCl and 2 mM DTT.  Protein was co-crystallized with 

excess of a drug 55A (1:2 molar ratio) in a reservoir solution of 1.34M Ammonium sulfate, 1.34% 

(v/v) PEG 400, and 0.1M sodium acetate/acetic acid pH 5.5 in the hanging drop at 21˚C.  Crystals 

were cryo-protected in reservoir solution with added 20% (w/v) glycerol and were flash frozen in 

liquid nitrogen.  Diffraction data were collected at beamline 23ID-B of GM/CA@APS (Advanced 

Photon Source), where crystals diffracted to 3.3 Å, and were processed using HKL2000 (see 

Table 2.3).  The structure was solved by molecular replacement using Phaser with the active 

EGFR (WT) TKD structure (PDB 1M17) as search model.  Repeated cycles of manual 

building/rebuilding using Coot were alternated with rounds of refinement employing 

REFMAC(Murshudov et al., 2011) and PHENIX, plus composite omit maps calculated using 

PHENIX. Coordinates, parameter files and molecular topology of 55A was generated by 
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PRODRG.  Data collection and refinement statistics are shown in Table 2.3.  One molecule of 

EGFR672-998/V924R is present in the asymmetric unit, and the model of its structure complexed 

with 55A includes amino acids 675 - 978 (mature EGFR numbering).  Structural figures were 

generated with PyMOL. 

2.3.4 Analysis of autophosphorylation by western blotting 

To monitor the change in autophosphorylation, 1µM ErbB3-ICD665-1323 proteins were incubated 

with inhibitors (varied concentrations noted in the Figure) and DOGS-Ni-NTA (prepared as 

described in Zhang et al, 2006) in 100 mM MOPS pH 7.4, containing 200 mM NaCl, divalent 

cations (2mM MnCl2 plus 5mM MgCl2), 5 % glycerol, 0.1 mM DTT and 200 µM ATP for 1 hour at 

25 ̊C, and the reactions were stopped by adding 50 mM EDTA and SDS-PAGE gel-loading buffer 

for rapid qualitative comparison of autophosphorylation by SDS-PAGE and immunoblotting with 

anti-phosphotyrosine (pY20) and anti-(His)5. 

2.3.5 Molecular modeling:  System preparation and molecular 

docking  

Active EGFR-TKD was modeled based on PDB entries 1M17 (which also provided the initial 

erlotinib conformation) and 2ITX, and L834R using PDB entry 2ITV.  Inactive EGFR-TKD was 

modeled based on PDB entries 2GS7 and 1XKK.  Protein and ligand conformations were 

prepared using the Protein Preparation Wizard and LigPrep protocols from Schrödinger Software 

(New York, NY).  All docking simulations employed the OPLS (Optimized Potentials for Liquid 

Simulations) force field, and used Schrödinger’s Induced Fit Docking (IFD) package.  Ligand was 

first docked to rigid protein using Glide XP.  For the resulting top 20 complex conformations, the 

protein side chains within 5.0 Å of the ligand in that pose were subject to conformational search 

and minimized using Prime and the ligand was redocked to the 20 new receptor conformations. 
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2.3.6 MD simulations 

Conformations generated from induced fit docking were energy minimized and subsequently 

equilibrated by performing MD using the CHARMM27 force field.  Each system was subjected to 

a constant temperature and constant pressure molecular dynamics runs at 300 K and 1 atm, 

followed by constant temperature equilibrium at 300 K with periodic boundaries enforced and 

long-range electrostatics taken into consideration for 10 ns. 

2.3.7 MM/PBSA (molecular mechanics/Poisson-Boltzmann surface 

area) calculation 

We used MM/PBSA to calculate the absolute binding free energy and compared it to the Glide 

score based on the 10 ns MD simulation.  MM/PBSA energies of each modeled complex 

conformation were calculated as the average of single point MM/PBSA energy of 500 snapshots 

taken from the 10 ns simulation.  Water molecules and salt ions were removed from the trajectory 

before calculation.  The molecular mechanics energy, UMM, was evaluated by averaging energies 

over all structures using an infinite cutoff for non-bonded interactions.  The electrostatic 

contribution to the solvation free energy, WPB, was calculated using Poisson-Boltzmann Solver in 

CHARMM.  The reference system had a solvent dielectric constant of 1 and salt concentration of 

0 M, and the solvated system had a dielectric constant of 80 and salt concentration of 100 mM.  

Nonpolar contribution to the solvation free energy, WSA, was approximated with the surface area 

model  ΔWSA=[0.00542 kcal/mol/Å2] x SASA + 0.92 kcal/mol, where the surface accessible 

surface area (SASA) was estimated using a 1.4 Å solvent probe radius.  Terms for entropy 

changes in the MM/PBSA score were neglected. 
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CHAPTER 3: 

Activation and Inhibition of Anaplastic lymphoma kinase (ALK) 
in neuroblastoma 
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N.B. This is collaborative work with Scott C. Bresler from the Lemmon Lab, Peter J. Huwe 
from the Radhakrishnan lab, Daniel A. Weiser and Nicole R. Infarinato from the Mossé lab; 
and can be found published in Bresler et al. (2014) Cancer Cell 26(5): 682-94 and Infarinato 
et al. (2016) Cancer Discovery 6(1): 96-107. Works contributed are marked accordingly in 
tables and figures. 

3.1 Introduction 

Neuroblastoma (NB) is a devastating pediatric cancer of the autonomic nervous system, 

accounting for 12% of childhood cancer deaths (Maris, 2010). Despite major enhancements in 

treatment approaches, such as dose-intensive chemotherapy, radiation therapy and integration of 

immunotherapeutic strategies, the cure rate for patients with high-risk neuroblastoma remains 

unsatisfactory (Maris, 2010; Yu et al., 2010). Recent clinical studies have focused on increasing 

dose intensity of those therapies that showed improved response (Pearson et al., 2008); 

however, potential long-term side effects still remain a major concern (Hobbie et al., 2008; Smith 

et al., 2010). The most important clinical prognostic marker for neuroblastoma, MYCN copy 

number status, is not sufficient alone to guide optimal treatment. 

            Genetic studies have established the anaplastic lymphoma kinase (ALK), a cell surface 

receptor tyrosine kinase, as the only tractable oncogenic product for targeted therapy in 

neuroblastoma.  Germline and somatic aberrations in the gene encoding ALK are implicated in 

approximately 8% of all neuroblastomas (Chen et al., 2008; George et al., 2008; Janoueix-

Lerosey et al., 2008; Mosse et al., 2008). Within the high-risk subset of neuroblastoma patients, 

the overall frequency of ALK aberration at diagnosis is 14% (10% point mutations and 4% 

amplification) and correlates with inferior outcome (Bresler et al., 2014). Additional ALK mutations 

at relapse have also been reported (Eleveld et al., 2015; Schleiermacher et al., 2014). The 

activating mutations are found at several sites in the tyrosine kinase domain of full-length ALK 

(Bresler et al., 2014) (Figure 3.1), including three hotspots, R1275, F1174, and F1245. These 

findings motivated a phase I trial of the ATP-competitive ALK/MET/ROS1 inhibitor crizotinib in 

children with refractory neuroblastoma or other malignancies driven by ALK rearrangements, 

such as anaplastic large cell lymphoma (ALCL) and inflammatory myofibroblastic tumors (IMT) 
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(Mosse et al., 2013). Results from this trial underscored the importance of ALK across 

histologically diverse tumors, but recorded less frequent responses in neuroblastoma than in 

ALK-rearranged tumors – highlighting likely differences between therapeutic targeting of full-

length ALK in neuroblastoma and of cytoplasmic ALK fusion proteins in ALCL, IMTs, and lung 

cancer. Results also underlined the need for detailed analysis of the spectrum of ALK mutations 

and how it relates to tumor biology and patient outcome, thus fully categorizing aberrations in 

ALK for optimal clinical application of ALK inhibitors in neuroblastoma. The findings from such 

studies will lay the groundwork for opportunities to refine treatment, to identify patients likely to 

benefit from ALK inhibition and to predict which newly emerged mutations are clinically relevant 

and ‘actionable’. 

 

 

Figure 3.1 Distribution of ALK mutations in tumor samples from neuroblastoma patients 

The 126 potentially disease-related mutations observed were distributed over the 16 positions 

marked in the ALK TKD plus R1060 (between the TKD and the transmembrane domain, upper 

part of the figure). Variants with red asterisks (in red text) were also found in germline DNA. 

(Bresler et al., 2014) 
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            Parallel preclinical work has further revealed differential sensitivity to crizotinib for the 

most common ALK variants observed in neuroblastoma (Bresler et al., 2011b; Hallberg and 

Palmer, 2013; Tucker et al., 2015), with cells harboring the F1174L ALK mutation being resistant 

when compared with those expressing R1275Q-mutated ALK. Despite real-time integration of 

these findings in the clinic, and a recommended phase II dose of crizotinib in pediatric patients 

that is nearly twice the adult maximum tolerated dose (Mosse et al., 2013), these studies 

emphasize the need to identify an optimal inhibitor for direct ALK kinase inhibition in 

neuroblastoma in order to maximize clinical benefit. 

3.2 Activity of mutated ALK-TKD in its non-phosphorylated form is an 

excellent predictor of transforming ability in NIH 3T3 cells 

Our collaborator, Yael Mossé and colleagues analyzed somatic and germline ALK DNA 

alterations of primary tumor samples from neuroblastoma patients in order to examine the full 

spectrum of ALK mutations. The analytic cohort of 1596 patients was representative of the natural 

spectrum of disease in neuroblastoma. After comprehensive genomic studies of ALK mutations 

across 1596 diagnostic neuroblastoma samples, 8% of samples were found to contain ALK-TKD 

mutations (at 3 hot spots and 13 minor sites, Figure 3.1), which correlated significantly with poor 

survival in high- and intermediate- risk neuroblastoma.  It seems highly unlikely that all of the 

mutations observed are activating and oncogenic, and it is very important from a clinical 

perspective to know which ALK mutations observed in neuroblastoma patients are likely to be 

oncogenic drivers. Ideally, we would like to be able to predict – as they are observed – which 

mutations are true drivers that cause ligand-independent ALK signaling and which should be 

considered passengers or variants of unknown significance.  Comprehensive information of this 

sort will be important in refining therapeutic ALK mutation-based patient stratification in the clinic.  

In efforts to define the relationship between ALK DNA aberrations, tumor phenotype, and 

prognosis, we assessed both the biochemical effects of clinically observed ALK TKD mutations in 

vitro and the transforming ability of ALK molecules harboring those mutations. 
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            First, we analyzed the differential effects of patient-derived mutations on the activity of the 

purified ALK TKD in peptide phosphorylation assays in vitro that used peptide mimics of the ALK 

activation loop as substrate.  Protein kinases exist in a dynamic equilibrium between a non-

phosphorylated inactive form and a phosphorylated active form.  Oncogenic mutations could 

activate the receptor either by rendering the phosphorylated (activated) kinase even more active 

than wild-type, causing excessive signaling.  Alternatively, the mutations could shift the 

equilibrium between active and inactive states so that the non-phosphorylated kinase has greatly 

increased basal activity and signals in the absence of normal activation.  Or, both effects could be 

important.  We assayed the activity of recombinant ALK kinase domains in both their non-

phosphorylated (‘basal’) and fully autophosphorylated (‘activated’) states, determining the kinetic 

parameters kcat, and Km, ATP.  As shown in Figure 3.2, the effects of mutations on the basal activity 

of non-phosphorylated ALK TKD vary vastly according to their locations, whereas Km, ATP values 

for non-phosphorylated ALK TKD variants all fell within a narrow range (0.12-0.39 mM), 

suggesting that all ALK TKD variants are saturated with ATP under physiological conditions 

(where [ATP] is in the mM range).  Compared to wild-type non-phosphorylated ALK-TKD, the 

catalytic rate (kcat) increased about 40-fold for mutations in Phe core (F1174, F1245: red in Figure 

3.2), more than 10-fold for mutations in αC helix (M1166, I1170, I1171: blue in Figure 3.2) and the 

short helix in activation loop (R1275, Y1278: also blue in Figure 3.2), and only slightly for 

mutations in the P-loop, N-lobe (except the germline mutation R1192P), active site (except the 

gatekeeper mutation L1196M), and C-lobe. By contrast, none of the mutations increased kcat for 

the phosphorylated ALK TKD by more than approximately 2-fold (except I1170N, which actually 

decreased kcat by slightly more than 2-fold. 
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Figure 3.2 Effects of neuroblastoma mutations on the activity of non-phosphorylated and 

fully autophosphorylated ALK-TKD variants 

(A) kcat values for non-phosphorylated ALK TKD variants at saturating (2 mM) ATP, with 2 mM 

YYY peptide and 10 mM MgCl2.  (B) KM, ATP values for non-phosphorylated ALK TKD variants, 

determined with YYY peptide at 1.0 mM, ATP concentrations from 0.3125–2.0 mM, and 10mM 

MgCl2. (C) kcat values for fully phosphorylated ALK TKD variants, determined as in (A). Data are 

shown as mean ± SEM from at least three independent experiments. (D) Location of the 

mutations studied in biochemical analysis are shown in the ALK TKD crystal structure (PDB ID: 

3LCS) with important structural regions colored as follows: αC/activation loop interface, blue; Phe 

core, red; P-loop, cyan; N-lobe, green; active site, magenta; and C-lobe, gray. (Bresler et al., 

2014) 
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 To further assess the transforming properties of selected ALK  variants, and to determine 

how our biochemical studies compare with transformation ability, we monitored focus formation in 

NIH 3T3 cells transiently transfected with constructs directing expression of full-length ALK 

harboring the same mutations (Figure 3.3A). NIH 3T3 cells are normally subject to contact 

inhibition, and stop growing when they come into physical contact with one another.  Expression 

of a transforming oncogene, however, causes the cells to lose contact inhibition and form areas 

of densely packed cells called foci following transfection. The number of foci was normalized by 

the number of G418-resistant colonies in order to correct for transfection efficiency, and the value 

of ‘foci per colony’ serves as an index of transformation (Figure 3.3B).  In parallel, experiments 

using transient transfection in NIH 3T3 and CHO cells and Western blotting showed that the 

levels of expression of the different ALK variants was unaffected by the mutations (not shown).  

The focus formation assays revealed that 11 out of 24 tested mutations were not significantly 

transforming, suggesting them to be silent (or near silent) mutations.  Neuroblastoma cell lines 

expressing these mutated variants are unlikely to be responsive to targeted ALK inhibition by 

crizotinib. Remarkably, the focus formation assay results showed a very close correspondence 

between transforming potential (Figure 3.3B) and in vitro kcat for non-phosphorylated ALK TKD 

variants (Figure 3.2A). When the transforming abilities of ALK TKD variants were plotted against 

kcat for the non-phosphorylated and phosphorylated ALK TKD, yields correlation coefficients (r) of 

0.95 (p < 0.0001) and 0.095 (p = 0.68) were calculated respectively (Figure 3.3C). 

 Taken together, the data in Figure 3.2 and 3.3 argue that the activity of the non-

phosphorylated ALK-TKD is an excellent predictor of ALK’s transforming ability in NIH 3T3 cells, 

and likely its ability to function as an oncogenic driver.  Mutated ALK-TKD variants with increases 

of just 4.6- to 4.8-fold in kcat of the non-phosphorylated protein were transforming in NIH 3T3 

cells, judging from results with the G1128A (cyan) and L1196M (magenta) variants (Figure 3.3).  

If kcat was elevated by 4 fold or less, however, the variant appears not to be transforming in our 

assays. 
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Figure 3.3 Transformation potential of ALK mutations from NIH 3T3 focus formation 

assays 

(A) Representative focus formation assays for NIH 3T3 cells transfected with intact ALK variants 

or empty vector. (B) Quantitation of data presented in (A).  Each independent experiment was 

performed in duplicate, and data are presented as mean ± SEM of at least three independent 

experiments. (C) Plots of the focus formation index against the in vitro kcat for non-phosphorylated 

ALK TKD (left) or autophosphorylated ALK TKD (right). The lines are linear regressions to the 
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data. Correlation coefficients were 0.95 (non-phosphorylated) and 0.095 (phosphorylated), with a 

significant deviation from zero for the non-phosphorylated ALK TKD (p < 0.0001) but not for the 

phosphorylated ALK TKD (p = 0.68). (Bresler et al., 2014) 

 

3.3 Computational methodology for predicting structural 

consequences of ALK-TKD mutations with low false positives 

Our results establish ALK as an important therapeutic biomarker for patients with neuroblastoma; 

yet it remains a significant challenge to identify cancer-driving mutations. Biochemical and 

functional cellular analyses confirmed the differential effects of mutations, and thus the varied 

sensitivity to ALK inhibition. These findings argue that differentiating between driver mutations 

and the passenger mutations will be important for guiding targeted therapy, the key being able to 

define which ALK mutations observed in the clinic are likely to be activating, and therefore 

indications that ALK inhibitors would be of value. There are currently several available informatics 

tools used to predict the functional consequences of patient-derived mutations. These include 

PolyPhen-2 (Adzhubei et al., 2010), SIFT (Kumar et al., 2009), and the consensus classifier 

PredictSNP (Bendl et al., 2014), all of which estimate consequences of mutations based on 

sequence conservation and other criteria. Although they may have value for identifying loss-of-

function mutations, these conservation-based algorithms are not logically appropriate for 

predicting gain-of-function in oncogenic kinase domain (Gnad et al., 2013).  Indeed, a recent 

analysis of more than 400 activating substitutions in kinases (Molina-Vila et al., 2014) revealed 

that most driver mutations in oncogenic kinases are not associated with conserved residues at all.  

This (understandably) disappointing performance of existing computational methods in 

distinguishing neutral from deleterious mutations in cancer underlines a need for developing 

computational modeling and simulation approaches for understanding the consequences of 

mutations in cancer from a mechanistic point of view. The laboratory of our collaborator, Ravi 

Radhakrishnan, simulated molecular dynamics (MD) trajectories for ALK TKD variants in the 
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inactive and active conformations based on available ALK-TKD crystal structures, and analyzed 

the resulting MD trajectories for three key structural properties: hydrogen-bonding networks, 

hydrophobic interactions, and principal component analysis. A mutation is predicted to be 

activating overall if one or more of these analyses suggests that it is activating, as follows: 

• Hydrogen-bonding network: A simple scoring function was created to analyze whether each 

mutation promotes distinct sets of key intramolecular hydrogen bonds network characterizing the 

‘active-like’ or ‘inactive-like’ ALK TKD conformation. As mentioned in Chapter 1 (Figure 1.4), key 

autoinhibitory interactions between αC helix and short helix of activation loop of ALK TKD are 

absent in active conformations, and their relief will correlate with kinase activation. 

• Hydrophobic interaction network: Disruption of the key autoinhibitory hydrophobic interactions 

was also assessed, by monitoring the solvent-accessible surface area (SASA) of relevant 

residues throughout the MD simulations. Mutations that increase SASA of the hydrophobic core 

are scored as activating.  In order to determine whether each mutation destabilizes the inactive 

state relative to the active state, Free energy perturbation (FEP) simulations were also used. 

• Principal component analysis (PCA): PCA revealed correlated global motions across the MD 

trajectory. The top 10 dominant modes for the active conformation show considerably greater 

motion than in the inactive ALK TKD. Each mutation with a top eigenvalue above 200Å2 was 

scored as activating. 

  The computational analysis of the patient derived-mutations that we also assessed for 

biochemical effects and transforming capacity is summarizes in Table 3.1. In order to minimize 

the risk of bias, both sides of the approach – computational analysis and in vitro biochemical/ 

cellular studies – were performed without knowledge of the other. Importantly, every mutation 

analyzed (except R1231Q) was predicted by the PolyPhen-2 algorithm to be ‘deleterious’, 

whereas the structurally cognizant approach used by the Radhakrishnan laboratory suggests a 

very different functional picture. The MD-based approach predicts that only around 50% of the 
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mutations will be activating, and agrees quite well with our experimental studies (Table 3.1). 

There is still room for improvement, but these data suggest that the MD-based computational 

approach has significant promise for accurately predicting the biochemical effects, transforming 

capacity and responsiveness to targeted pharmacologic ALK inhibition, complementing traditional 

experiments. 

 

 

Table 3.1 Computational predictions of effects of ALK TKD mutations (Bresler et al., 2014) 
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3.4 Ongoing collaborative efforts to improve a predictive model with 

iteration between biochemical/cellular studies and MD-based 

computational analysis of mutated ALK TKDs 

So far we have studied the biochemical consequences of a wide variety of ALK kinase domain 

mutations in parallel with studies of their transforming abilities, as well as computational studies of 

their structural effects.  Armed with increasing number of experimental data, we are now 

developing a computational methodology for mechanistic profiling of ALK mutations in 

neuroblastoma, which facilitate the prediction of effects of new clinically emerging mutations.  The 

approach we are taking is iteration between MD simulations and new experimental studies of a 

spectrum of ALK mutations in order to improve our current computational analysis – which 

predicts ~ 75% of transforming mutations and silent mutations – enabling future prediction of 

oncogenic driver mutations with low false positive rates.  

          Two different collections of ALK-TKD mutations are currently being studied for kinetic 

profiling using the peptide phosphorylation assay and for oncogenic transformation capacity using 

the focus formation assay (Figure 3.4) with no prior knowledge of the computational analysis to 

minimize bias. The preliminary data from these studies are reported here. The first collection 

(Figure 3.4A) is a mixture of oncogenic driver mutations with silent or passenger mutations as 

predicted by computational analysis: C1156Y, G1269A, F1174S, R1279Q, F1098V, Y1278E, 

Y1278S, Y1282E, Y1283E, E1161A (Figure 3.4A). Among these 10 tested mutations, F1174S 

and Y1278S are highly transforming as assessed by focus formation in NIH3T3 cells, which is 

consistent with their in vitro kcat values, 364.6 min-1 (40-fold increase compared to WT) and 276.5 

min-1 (31-fold increase compared to WT) respectively. Our previous experiments (Figures 3.2 and 

3.3) argue that the catalytic activity of the nonphosphorylated ALK-TKD is an excellent predictor 

of ALK’s oncogenic transformation capacity in NIH3T3 cells. And increase of 4~5-fold of the kcat 

values of the nonphosphorylated ALK TKD appears sufficient for NIH 3T3 cell transformation. By 
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contrast, C1156Y has a kcat value of 27.63 min-1, which only represents a 3-fold increase, does 

not induce oncogenic transformation in NIH 3T3 cells. However it is possible that there might be a 

threshold of detection using this assay. Further assessment of full spectrum of ALK TKD variants 

comparing their biochemical and cellular studies would be helpful. The second collection includes 

the following 11 mutations found in Vietnamese patients and are shown in Figure 3.4B: Y1096A, 

C1097A, D1163N, I1170V, G1202R, R1212C, R1213C, E1242K, A1251T, F1271L, Y1278A. 

These mutated ALK variants exhibit different degrees of transforming ability in NIH3T3 cells 

which likely reflect their different catalytic activities. The experimental analysis (biochemical and 

cellular studies) with at least three independent experiments is near completion and will be 

compared to the data from the computational analysis. Our studies will provide valuable 

mechanistic insight into how ALK is regulated, and will also provide the groundwork for guiding 

more refined targeted therapy in neuroblastoma patients. 
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Figure 3.4 Ongoing cellular transformation studies of ALK-TKD variants using NIH3T3 

focus formation assays 

These are preliminary results of focus formation assays for (A) a collection of oncogenic driver 

and silent or passenger mutations as predicted by computational analysis and (B) mutations 

found in sequencing project in Vietnam. (Left) A representative focus formation assay in NIH 3T3 

cells transfected with intact ALK variants or empty vector (pcDNA 3.1) is shown. For better 

visualization cells were stained with crystal violet. Quantitation of the data presented in (Right).  
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3.5 ALK variants found in neuroblastoma are differentially sensitive 

to the inhibitor crizotinib 

Our previously published studies indicated that the relative crizotinib sensitivities of ALK variants 

found in neuroblastoma may simply reflect their ATP-binding affinities, with reduced KM, ATP 

(higher ATP-binding affinity) predicting crizotinib resistance for F1174L-mutated ALK, for example 

(Bresler et al., 2011b). We explored two strategies to overcome this problem. In the first, we 

tested a series of second-generation ALK kinase inhibitors (Figure 3.5), anticipating that their 

structural differences might allow some to show selective (or improved) inhibition of F1174L-

mutated ALK, as has been suggested for other ALK variants (Fontana et al., 2015). As we failed 

to find any inhibitors that satisfied this criterion, our second approach was to investigate the 

impact of globally increasing the affinity of drug-binding to all ALK variants – made possible by 

using the highly potent  ALK/ROS1 inhibitor PF-06463922 (T. W. Johnson et al., 2014; Zou et al., 

2015). We hypothesized that a drug with substantially increased ALK-binding affinity might be 

capable of inhibiting all ALK variants at readily achievable drug concentrations, and that this 

feature might negate the effects of primary resistance mutations.  In other words, even when 

some ALK variants bind the drug more weakly than others, if all have drug-binding affinities that 

allow them to be saturated with readily achievable drug concentrations, primary resistance will be 

negated. We show here that PF-06463922 does indeed have substantially greater potency than 

crizotinib as an ALK inhibitor in vitro, across all neuroblastoma mutations tested. Most 

importantly, PF-06463922 also showed excellent activity against full-length oncogenic ALK 

variants in preclinical in vivo models of ALK-driven neuroblastoma where crizotinib fails. Through 

biochemical, cell-based, xenograft and patient-derived xenograft (PDX) studies, we demonstrate 

that PF-06463922 has unprecedented activity as a single agent against ALK mutants, including 

those with primary crizotinib resistance, thus positioning PF-06463922 as the lead ALK inhibitor 

for clinical development in ALK- driven neuroblastoma. 
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Figure 3.5 Inhibitor sensitivities of ALK-TKD WT, F1174L, and R1275Q 

In order to identify which of the next-generation ALK tyrosine kinase inhibitors is most potent 

against the widest range of ALK mutants (to decide which should progress clinically), IC50 values 

at 2mM ATP were determined using the radioactive in vitro assay and compared side-by-side.  

The compounds are numbered rather than named, because the MTA agreements under which 

they were obtained prohibits side-by-side comparison in published work.  However, since none of 

the five new compounds appeared dramatically different from crizotinib, we did not pursue any of 

them. 

 

3.6 Identification of the next-generation ALK/ROS1 inhibitor PF-

06463922 as capable of overcoming primary resistance to crizotinib 

in ALK-driven neuroblastoma 

In our earlier studies, we were able to recapitulate the differential crizotinib sensitivity of F1174L 

and R1275Q ALK variants in vitro, using kinase assays (Bresler et al., 2011b). We also showed 

above (Figure 3.3) that the transforming ability of ALK variants correlates most closely with in 
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vitro kcat values for the non-phosphorylated kinase domain of the receptor – implying that 

activation of this species is key for oncogenesis. Unfortunately, a preliminary screen through a 

series of second-generation ALK inhibitors (Figure 3.5) failed to identify an inhibitor that differed 

significantly from crizotinib in its relative ability to inhibit R1275Q, F1174L, and F1245C variants 

of the non-phosphorylated ALK tyrosine kinase domain (ALK-TKD) in vitro. The ALK/ROS1 

inhibitor PF-06463922 stood out starkly in these assays, however, by yielding uniquely low IC50 

values. As previously pointed out (Zou et al., 2015), PF-06463922 is more potent against wild-

type ALK than crizotinib, alectinib, or ceritinib (included in Figure 3.5) by 4-fold or more when Ki 

values are compared. In our in vitro experiments, PF-06463922 gave IC50 values for inhibition of 

F1174L- and F1245C-mutated ALK that were significantly lower than those seen with crizotinib 

even for the crizotinib sensitive R1275Q variant (Figure 3.6A and 3.6B). Indeed, measured IC50 

values for PF-06463922 were approximately 5-fold lower than those for crizotinib for all variants 

and were actually limited in this assay by the concentration of kinase protein required to measure 

activity of unphosphorylated ALK-TKD (50 nM). Estimated Ki values from our data using the 

equations of Cha (Cha, 1975) are less than 0.2 nM for inhibition of mutated ALK-TKD by PF-

06463922, compared with 6 to 10 nM for crizotinib inhibition, Ki values consistent with previous 

reports using different methods and different sets of mutations (T. W. Johnson et al., 2014; Zou et 

al., 2015).  

 These data show that PF-06463922 is a very potent inhibitor for multiple mutated full-

length ALK variants seen in neuroblastoma, as also reported for acquired resistance mutations 

seen in cytoplasmic ALK fusion proteins in lung cancer and elsewhere (T. W. Johnson et al., 

2014; Mologni et al., 2015; Zou et al., 2015). We hypothesized that this significantly increased 

potency and/or affinity of PF-06463922, compared with other ALK inhibitors in development, 

might be sufficient to negate the consequences of differential sensitivity of ALK variants to kinase 

inhibitors. 
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Figure 3.6 In vitro Inhibition profiles of non-phosphorylated ALK-TKD mutants against (A) 

Crizotinib and (B) PF-0643922. 

PF-06463922 exhibits superior inhibitory activity against all tested ALK-TKD variants in kinase 

assays.  In vitro inhibition profiles of purified non-phosphorylated ALK-TKD protein (at 50 nM) 

harboring the noted mutations with crizotinib (A) and PF-06463922 (B).  Inhibitor concentration 

was varied from 0 to 25,600 nM, with ATP present at 2 mM, and substrate peptide was held at 

0.5 mM, as described (Bresler et al., 2011a).  Results are plotted as mean ± SD for at least three 

independent experiments.  As discussed in the text, the IC50 values obtained in this experimental 

format correspond to Ki values in the 6-10 nM range for crizotinib, and the 0.2 nM range for PF-

06463922. 

 

3.7 PF-06463922 induces complete tumor regression in patient-

derived and cell line- derived xenografts with and without primary 

resistance to crizotinib  

The data in Figure 3.6 suggest that F1245C-mutated ALK should resemble F1174L-mutated ALK 

in its primary resistance to crizotinib – consistent with limited clinical data (Mosse et al., 2013) – 
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but that tumors driven by all three hotspot ALK variants should respond to PF-06463922. To test 

these hypotheses, we compared in vivo efficacies of PF-06463922 and crizotinib in crizotinib-

naïve PDXs harboring F1174L or F1245C ALK mutations (COG-N-453x and Felix-PDX, 

respectively), as well as cell line – derived xenografts utilizing SH-SY5Y cells (F1174L) or NB-

1643 cells (R1275Q). Tumor-bearing animals  were treated by oral gavage with either 5 mg/kg 

PF-06463922  twice daily (b.i.d.) or 100 mg/kg crizotinib once daily (qd). Two of the models 

(Felix-PDX and SH-SY5Y) were treated for 6 weeks, whereas the new COG-N-453x PDX and 

NB-1643, both  slightly more sensitive to crizotinib, were treated for longer (8.1 and 8.9 weeks, 

respectively). Crizotinib and PF-06463922 at these doses were both well tolerated. As expected, 

crizotinib alone at 100 mg/kg/day demonstrated limited inhibition of tumor growth in these models. 

Crizotinib delayed growth in both PDXs (Figure 3.7A and  3.7B), such that tumor volume at any 

given time was approximately 30% of that seen in vehicle-treated mice. The SH-SY5Y (F1174L) 

xenograft showed no response to crizotinib (Figure 3.7C). In contrast, the NB-1643 (R1275Q) 

xenograft showed  an initial response with essentially no tumor growth for 3.5 weeks when 

treated with crizotinib – as previously described (Bresler et al., 2011b) – although significant 

tumor growth was seen after 4 weeks  (Figure 3.7D).   

            Contrasting with these limited, or transient, responses  to 100 mg/kg/day crizotinib, 

treatment with 10 mg/kg/day  PF-06463922 (5 mg/kg b.i.d.) resulted in rapid (within 2–3  weeks) 

and sustained complete tumor regression for the duration of treatment in all xenografts (red 

curves in Figure 3.7; and Table 3.2). After PF-06463922 treatment was stopped,  animals were 

further monitored for tumor progression by observation and palpation. Mice that had been treated 

with 10 mg/kg/day PF-06463922 remained in complete remission, with no discernible tumor 

growth for a further 4.8 weeks (COG-N-453x), 7.1 weeks (Felix-PDX), 5 weeks (SH-SY5Y), and 4 

weeks (NB-1643), as shown in Figure 3.8. Thus, xenografts harboring the de novo crizotinib-

resistant ALK F1174L mutation exhibited unprecedented antitumor responses to single-agent 

ALK inhibition therapy with PF-06463922, as did a PDX harboring the F1245C  mutation.   
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Figure 3.7 In vivo efficacy studies comparing PF-06463922 to crizotinib.  

PF-06463922 induces complete tumor regression in PDX and xenograft models of crizotinib- 

resistant and crizotinib- sensitive neuroblastoma. Subcutaneously implanted neuroblastoma 

tumors were monitored in CB17 SCID mice treated with 10 mg/kg/day PF-06463922 (solid red 



	  
	  

89	  

line and squares), 100 mg/kg/day crizotinib (dashed blue line and triangles), or vehicle (solid 

black line and diamonds). Data are shown only for the duration of treatment in each case. Study 

end points for survival analysis (right) are shown using Kaplan – Meier curves (median ± SEM; n 

= 10 for each data point). A mixed- effects linear model was used for analysis of statistical 

significance of tumor growth delay. Kaplan – Meier curves for EFS were compared using a log-

rank test, with P < 0.05 taken as indicating significance (see Table 3.2). These experiments were 

performed by N.R. 

 

	  

	  

Table 3.2 Statistical analysis for in vivo efficacy studies in PDXs from COG-N-453x and 

Felix cells, and xenografts from SH-SY5Y and NB-1643 cells 
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Figure 3.8 In vivo effects of crizotinib and PF-06463922 on event-free survival  (EFS) in 

neuroblastoma PDX and xenograft models.  

Female CB17 SCID mice bearing:  (A), COG-N-453x (ALK-F1174L); (B), Felix-PDX (ALK-

F1245C); (C), SH-SY5Y (ALK-F1174L); and  (D), NB-1643 (ALK-R1275Q) were treated with 

vehicle (black curves and diamonds), 100 mg/kg/day crizotinib (blue curves and triangles), or 10 

mg/kg/day PF-06463922 (red curves  and squares). EFS is plotted for the period during treatment 

(as in Fig 3.7) and for a period of 4-7  weeks after cessation of therapy. Remarkably, no 

discernible tumor growth could be detected  in any of the PF-06463922-treated mice during the 

period of monitoring. These experiments were performed by N.R. 
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 Given these rapid and complete responses to 10mg/ kg/day PF-06463922 shown in 

Figure 3.7, we also evaluated a lower dose of 3 mg/kg/day (1.5 mg/kg b.i.d.) in both the Felix-

PDX (F1245C) and SH-SY5Y (F1174L) xenografts. As shown in Figure 3.9 and Table 3.3, this 

lower PF-06463922 dose was still substantially more effective than a 33-fold higher dose of 

crizotinib. In the SH-SY5Y xenograft (Figure 3.9B), 3 mg/kg/day PF-06463922 induced complete 

regression within 6 weeks of treatment (compared with 2–3 weeks for 10 mg/kg/ day PF-

06463922). The lower dose of PF-06463922 caused significant growth delay in Felix-PDX (Figure 

3.9A), with tumors remaining palpable throughout treatment and showing little further growth after 

approximately 4 weeks. PF-06463922 at both dosing levels significantly prolonged event-free 

survival (EFS) relative to control and crizotinib arms in SH-SY5Y and Felix xenografts (Figure 3.9 

and Table 3.3).  

 

 

Table 3.3 Statistical analysis for Felix-PDX and SH-SY5Y in vivo efficacy studies testing 

two doses of PF-06463922 (10 mg/kg/day and 3 mg/kg/day)  
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Figure 3.9 In vivo efficacy studies comparing PF-06463922 treatment at 10 mg/kg/day 

(5 mg/kg BID) and 3 mg/kg/day (1.5 mg/kg BID) with crizotinib treatment at 100 mg/kg QD 

in (A) Felix-PDX xenografts and (B) SH-SY5Y xenografts.  

Tumor volumes are plotted over 6 weeks of continuous treatment (Median ± S.E.M., n=10 for 

each data point), as are Kaplan-Meier survival curves. A mixed-effects linear model was used to 

assess statistical significance analysis of tumor growth delay, and EFS Kaplan-Meier curves were 

compared by using log-rank test, * p<0.05 (see Table 3.2).  These experiments were performed 

by N.R.	  	  
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3.8 PF-06463922 efficiently inhibits ALK phosphorylation in vivo  

To compare the effects of the two ALK inhibitors on ALK activity, we used immunoblotting to 

analyze pALK levels in tumor lysates from NB-1643 xenografts treated with vehicle, PF-

06463922, or crizotinib. Tumors were harvested after 3 days of drug treatment, 1 hour after the 

last dose. As shown in Figure 3.10, pALK was essentially undetectable in tumors from the PF-

06463922-treated mice, whereas tumors from crizotinib-treated mice retained significant ALK 

phosphorylation. Interestingly, crizotinib appeared to suppress ALK phosphorylation at Y1278 

(Figure 3.10A), which lies in the activation loop of the TKD, more completely than at Y1604 

(Figure 3.10B), which lies in the regulatory C-terminal tail of the receptor. In contrast, PF-

06463922 at 10 mg/kg/day almost completely suppressed phosphorylation at both sites. Thus, 

consistent with its more potent inhibition of in vivo growth of ALK-dependent tumors, PF-

06463922 appears to suppress ALK phosphorylation more effectively than crizotinib, even at a 

10-fold lower daily dose.  

 

Figure 3.10 PF-06463922 abrogates ALK phosphorylation more effectively than crizotinib 

in vivo.  

Mice harboring NB-1643 xenografts (n = 3 per arm) were treated for 3 days with vehicle, crizotinib 

(100 mg/kg qd), or PF-06463922 (5 mg/kg b.i.d., 10 mg/kg/day). Tumors were harvested 1 hour 

after the final drug treatment, and subjected to immunoblotting, using antibodies against pY1278 

in the activation loop of the kinase (A) or pY1604 in the C-terminal regulatory tail (B), alongside 

control blots for total ALK and β-actin (lower panels). These experiments were performed by N.R. 
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3.9 PF-06463922 inhibits growth of ALK-mutated neuroblastoma cell 

lines at approximately 20- to 125- fold lower concentrations than 

crizotinib  

To compare PF-06463922 and crizotinib over a broader range of ALK-driven tumors, we 

assessed their abilities to inhibit growth of a range of cell lines in vitro, employing a CellTiter-Glo 

luminescent cell viability assay. As shown in Figure 3.11 and Table 3.4, IC50 values measured for 

PF-06463922 in neuroblastoma cell lines dependent on R1275Q-mutated ALK were 51-fold (NB-

1643) and 19-fold (LAN-5) lower than those measured for crizotinib (Figures 3.11A and 3.11B), 

which themselves were approximately 310 nM. Importantly, IC50 values for PF-06463922 

inhibition of cell lines driven by the ALK-resistant F1174L ALK variant were also much lower – 

falling in the range of 12.7 nM to 26.6 nM, which is approximately 30-fold lower than measured for 

crizotinib (Figure 3.11C–F and Table 3.4). A similar difference was also seen for Felix cells, 

driven by the F1245C variant (Figure 3.11G). Whereas a small (~3-fold) difference in IC50 

appeared to be sufficient to explain the relative crizotinib resistance of tumors and cell lines 

driven by F1174L-mutated ALK in neuroblastoma compared with those driven by R1275Q 

(Bresler et al., 2011b), the overall higher potency of PF-06463922 appears to render such 

differences irrelevant, so that both tumor cell lines (Figure 3.11) and xenografts (Figure 3.7) 

driven by the F1174L variant are sensitive to PF-06463922. The same appears to be true for the 

F1245C variant. Similar results were seen for NB-1 cells, driven by amplified wild-type ALK, with 

IC50 values of 256 nM and 5.2 nM for crizotinib and PF-06463922, respectively (Figure 3.11H). 

Three other interesting observations emerge from this study. First, the difference in IC50 

values for crizotinib and PF-06463922 was even greater (>100-fold) for the NCI-H3122 lung 

cancer cell line driven by the EML4–ALK fusion (Figure 3.11I and Table 3.4), suggesting that the 

presence of the TKD in the intact receptor might slightly limit the potency of PF-06463922. 

Second, in agreement with previous studies (Zou et al., 2015), PF-06463922 was less toxic than 

crizotinib in cell lines that are not dependent on ALK for growth (Figure 3.11J and 3.11K), 
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consistent with its high selectivity (T. W. Johnson et al., 2014). Third, PF-06463922 treatment did 

not cause complete growth inhibition in cell lines with R1275Q, F1174L, or F1245C mutations, 

whereas crizotinib did. One possible explanation for the plateau in PF-06463922 activity might be 

its higher specificity for ALK and ROS1 (K. Johnson et al., 2011), with limited off-target effects. 

The additional diminution of cell viability with crizotinib might arise from its ability to inhibit other 

kinases, including c-Met and RON (Cui et al., 2011), which could possibly contribute to tumor cell 

growth. A similar phenomenon was seen in several lung cancer cell lines driven by ALK fusion 

proteins harboring resistance mutations (Zou et al., 2015).  

 

Table 3.4 PF-06463922 is potent against ALK-mutated NB cell lines in vitro. 

Mean (n=3) IC50 values (± SD) for crizotinib and PF-06463922 are listed for 10 NB cell lines 

harboring the indicated ALK aberrations, plus one NSCLC cell line (NCI-H3122). Fold increases 

in the IC50 values with crizotinib over those measured for PF-06463922 are also listed in the right-

most column.  
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Figure 3.11 PF-06463922 inhibits viability of neuroblastoma cell lines at concentrations 

corresponding to clinically relevant doses (≤100 nM).  

Dose response curves for the effects of crizotinib (dashed blue curves) and PF-06463922 (red 

curves) on cell viability are shown for a series of neuroblastoma cell lines driven by R1275Q-

mutated ALK (A and B), F1174L-mutated ALK (C–F), F1245C-mutated ALK (G), and amplified 
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wild-type ALK (H). NCI-H3122 cells, driven by an ALK translocation, are shown for comparison 

(I), as well as two cell lines that are not ALK dependent (J and K). Data points are plotted as 

means ± SD for at least three different experiments, with blue triangles for crizotinib and red 

squares for PF-06463922. The IC50 curves for individual experiments are also plotted, with mean 

IC50 values obtained over the three experiments listed in Table 3.4. RLU, relative light unit. These 

experiments were performed by N.R. 

3.10 Comparison of effects on ALK phosphorylation in cell lines 

In an effort to correlate the lower IC50 values seen for PF-06463922 in cell viability studies in 

Figure 3.11 with ALK inhibition, we also compared the effects of PF-06463922 and crizotinib on 

ALK phosphorylation in neuroblastoma cell lines harboring different ALK variants (Figure 3.12A 

and B). Both inhibitors substantially diminished ALK phosphorylation at Y1278 (in the activation 

loop of the kinase). Consistent with the lower IC50 values observed for PF-06463922 for effects 

on viability of R1275Q-expressing NB-1643 cells, the pALK signal was almost completely 

abolished at 100 nM PF-06463922, although some signal remained with the equivalent 

concentration of crizotinib (Figure 3.12A). Similarly, at any given concentration of drug, PF-

06463922 treatment appeared to promote greater diminution of the pALK signal than crizotinib in 

F1174L-expressing SH-SY5Y cells (Figure 3.12B). It is interesting, however, that the difference 

between PF-06463922 and crizotinib was more stark for the EML4–ALK-driven NCI-H3122 lung 

cancer cell line (Figure 3.12C), as also seen in the cell viability studies. Indeed, across the board, 

as listed in Table 3.4, IC50 values for PF-06463922 in cell viability studies were approximately 10-

fold higher for the ALK-dependent neuroblastoma cell lines (10–30 nM) than for the ALK-

translocated lung cancer line (IC50 = 2.8 nM). Zou and colleagues(Zou et al., 2015) recently 

reported PF-06463922 IC50 values in the 2 to 3 nM range for cells driven by EML4–ALK fusions, 

but higher values (similar to those seen for neuroblastoma cells) in the cells expressing mutated 

EML4–ALK. In all cases, however, the superior potency of PF-06463922 was such that the IC50 

values were sufficient to predict clinical efficacy. 
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Figure 3.12 PF-06463922 displays on-target activity in neuroblastoma and NSCLC cells.  

(A) NB-1643, (B) SH-SY5Y, and (C) NCI-H3122 cells were treated with increasing concentrations 

of crizotinib or PF-06463922. Levels of ALK autophosphorylation at Y1278 in the kinase 

activation loop were analyzed by Western blotting 24 hours after treatment, as described in 

Methods. 	  
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3.11 Inhibition of NIH 3T3 cell transformation by mutated ALK 

To compare the effects of the two ALK inhibitors on mutated ALK variants all in a common cell 

background, we also analyzed their ability to inhibit ALK-mediated transformation of NIH 3T3 cells 

in focus formation assays, as described previously (Bresler et al., 2014). As shown in Figure 

3.13A–C, PF-06463922 was substantially more effective than crizotinib at blocking 

transformation/focus formation induced by ALK with any of the three hotspot mutations. IC50 

values were consistently 5- to 10-fold lower for PF-06463922 than for crizotinib, consistent with 

experiments in all other in vitro and in vivo contexts described here. It is interesting, however, that 

NIH 3T3 cells expressing the R1275Q variant were significantly more sensitive to both drugs than 

cells expressing F1174L- or F1245C- mutated ALK. Indeed, the IC50 values for inhibition of focus 

formation in R1275Q-expressing cells (Figure 3.13A) were lower than in F1174L-expressing cells 

(Figure 3.13B) by 3.1-fold and 4.3- fold for crizotinib and PF-06463922, respectively. These 

numbers are greater than can be explained based on in vitro IC50 values or Ki 
values for the two 

variants (Figure 3.6) or on their relative Km, ATP values (Bresler et al., 2011b). In turn, these data 

suggest that there is an additional characteristic of R1275Q-mutated ALK that may render tumors 

driven by it more sensitive to ALK inhibitors. Possibilities would include altered trafficking rates 

and/or signaling specificity, for example (Mazot et al., 2011). A key finding, however, is that the 

IC50 values measured with PF-06463922 for all variants were lower than those measured for 

crizotinib with the crizotinib-sensitive R1275Q variant. 
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Figure 3.13 PF-06463922 is more effective than crizotinib in inhibiting NIH 3T3 cell 

transformation by mutated ALK variants.  

Inhibition of NIH-3T3 cell transformation in focus formation assays is shown for transfections with 

ALK harboring: the R1275Q mutation (A), the F1174L mutation (B),  and the F1245C mutation 

(C). The individual inhibition curves are shown for 3 to 4 experiments in each case for both 

crizotinib (blue dashed curves) and PF-06463922 (red solid curves), with data points from all 

experiments superimposed on the plots. Mean IC50 values (±SD) for crizotinib and PF-06463922, 

respectively, were 7.5 nM and 0.6 nM for R1275Q, 23.2 nM and 2.8 nM for F1174L, and 13.8 nM 

and 3.0 nM for F1245C.  

 

3.12 Conclusions 

Although our work, and that of others, has positioned ALK as the first tractable oncogene for 

targeted therapy in neuroblastoma, it is now clear that not all ALK mutations impart oncogenic 

dependency (Bresler et al., 2014; Tucker et al., 2015). Moreover, susceptibility of ALK-driven 

tumors and cell lines to crizotinib differs according to the underlying mutation (Bresler et al., 

2011b; Chand et al., 2013), with mutations at two of the three hotspots (F1174 and F1245) 

apparently causing primary resistance to ALK kinase inhibition with crizotinib (Bresler et al., 2014; 

Bresler et al., 2011b). Consistent with this, whereas marked antitumor activity was observed in 

the Children’s Oncology Group (COG) phase I trial of crizotinib in pediatric patients with diseases 

caused by ALK translocations, far fewer objective responses were seen in patients with ALK-
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mutated neuroblastoma (Mosse et al., 2013). We therefore sought alternative ALK inhibition 

strategies to overcome this intrinsic resistance. Here, we report that the superior potency of PF-

06463922 as an ALK kinase inhibitor delivers impressive activity across a range of in vitro and in 

vivo preclinical studies in which significant resistance is detected with all other inhibitors that we 

have tested, including crizotinib (Bresler et al., 2011b). Effective doses of PF-06463922 were 10- 

to 30-fold lower than those required for crizotinib in these preclinical studies. In particular, we 

show that PF-06463922 has notable and unparalleled single agent antitumor activity (even at 3 

mg/kg/day) in PDX models of ALK-mutated neuroblastoma for which the underlying ALK 

mutations were known to be associated with primary resistance to crizotinib. Moreover, treatment 

with PF-06463922 abrogates pALK more completely than crizotinib in xenograft tumors harboring 

the crizotinib-sensitive R1275Q mutation (in NB-1643 xenografts), and promotes sustained 

complete regressions without subsequent tumor regrowth. With the caveat that the mouse 

models used here are xenografts, rather than transgenic or orthotopic models, these data indicate 

that PF-06463922 will have much broader utility against ALK-driven neuroblastoma than any 

other ALK inhibitor that we have investigated, largely as a result of the substantially increased 

affinity for its target.  

 PF-06463922 is currently being investigated in a phase I/ II clinical trial (NCT01970865) 

for patients with advanced non–small cell lung carcinoma (NSCLC) harboring ALK or ROS1 

molecular alterations (Zou et al., 2015). Although most patients with ALK-translocated NSCLC 

derive substantial clinical benefit from crizotinib, some of these patients derive no benefit due to 

intrinsic resistance, and others derive initial benefit but subsequently acquire resistance through 

secondary ALK mutations or other mechanisms (Solomon et al., 2014). PF-06463922 was 

discovered using structure-guided efforts to maintain potency across a range of resistance 

mutations and to optimize physicochemical properties (T. W. Johnson et al., 2014). It is a potent 

macrocyclic ALK inhibitor with good absorption, distribution, metabolism, and excretion, as well 

as a low propensity for P-glycoprotein–mediated efflux and considerably improved central 
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nervous system penetration. PF-06463922 was also designed and optimized to penetrate the 

blood–brain barrier and has shown strong distribution in the central nervous sys- tem in 

preclinical studies (K. Johnson et al., 2011). This is also likely to be a highly favorable attribute for 

use of PF-06463922 in neuroblastoma that recurs at this site (Kramer et al., 2001).  

 Our results show that PF-06463922 inhibits various oncogenically mutated ALK variants 

with subnanomolar Ki values in vitro, and with IC50 values in the 10 nM range in cell viability 

assays. As in very recently reported preclinical studies of ALK-driven lung cancers (Zou et al., 

2015), the activity of PF-06463922 did not vary significantly depending on the underlying ALK 

mutation – arguing that it will have a very broad potency in ALK-driven neuroblastomas, as well 

as in lung cancer. The in vivo responses to PF-06463922 that we report are unprecedented in 

ALK-driven neuroblastoma models and argue for the expedited clinical development of PF-

06463922 in this disease. As is typically the case with single-agent therapies against oncogene-

addicted cancers, acquired resistance to PF-06463922 is likely to arise, and future studies will 

need to identify the mechanisms of resistance. It is important to note, however, that the major 

challenge for targeted therapy in ALK-driven neuroblastoma has been overcoming de novo 

resistance, and our data show that this is achieved with PF-06463922. We are therefore now 

poised to fast-track the development of PF-06463922 to maximize clinical benefit in the subset of 

patients with ALK-driven neuroblastoma.  

	  

3.13 Experimental Procedures 

3.13.1 Plasmid Construction 

DNA encoding kinase domain residues 1090-1416 of human ALK was amplified by using primers 

that included an N-terminal hexahistidine tag and SpeI/NotI restriction sites. Mutations were 

introduced using the QuickChange method (Stratagene), and the PCR product was subcloned 
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into pFastBac1 for protein expression in Sf9 cells. For focus formation assays, full-length ALK 

variants were subcloned into the MigR1 vector (BioPioneer, Inc.).  

3.13.2 Recombinant protein expression and purification 

Spodoptera frugiperda Sf9 cells at 1.5-2 x 106 /ml were infected with recombinant baculovirus, 

and harvested by centrifugation after 3 days. Cells expressing histidine-tagged ALK variants were 

lysed by sonication in 100ml of lysis buffer (50mM Na phosphate buffer, pH 8.0, 300 mM NaCl, 

10mM imidazole, 4mM β-mercaptoethanol, and protease inhibitor cocktail (Roche)). After 

centrifugation at 40,000 x g for 30 minutes to remove insoluble cell debris, the supernatant was 

incubated with Ni-NTA agarose beads (Qiagen) for 1 hour at 4oC. The Ni-NTA beads were 

washed with 50 column volumes of lysis buffer, pH 8.0 containing 20mM imidazole and bound 

ALK TKD protein was eluted in lysis buffer, pH 8.0 containing 300mM imidazole. Eluted ALK TKD 

protein was incubated with 1mM YopH phosphatase for 12 hours at 4oC to reverse 

autophosphorylation occurred during expression, and purified as described (Zhang et al., 1992). 

YopH was removed using a cation exchange column after reducing NaCl concentration to 100 

mM. Eluted protein was then further purified using a butyl sepharose HP column (GE Healthcare) 

equilibrated with 1M (NH4)2SO4, 25mM HEPES pH 7.0, 150 mM NaCl and 2mM DTT (HIC buffer 

A) and eluting with a 20 column volume linear gradient to 0 M (NH4)2SO4, 25mM HEPES pH 7.0, 

150 mM NaCl and 2mM DTT (HIC buffer B). ALK TKD protein was then subjected to a final step 

of size exclusion chromatography using a Superdex 200 or Superose 6 column (GE Healthcare) 

equilibrated in 25 mM HEPES pH 7.4m 150 mM NaCl, 4 mM DTT.	  

3.13.3 Peptide phosphorylation assays 

In vitro kinase assay measuring γ-32P incorporation into substrate was performed as described 

(Bresler et al., 2011b) with peptide mimic of ALK activation loop with sequence: biotin-

ARDIYRASYYRKGGCAMLPVK (CanPeptide). Enzyme concentrations for unphosphorylated 

ALK-TKD variants were fixed at 50nM. Under the assay condition, reaction rates were linear with 
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respect to enzyme concentration and time. Assays were performed in 100 mM HEPES pH 7.4, 

150 mM NaCl, 2mM DTT, 10 mM MgCl2 and 0.5 mg/ml BSA at 25oC. Km, ATP was measured by 

varying ATP concentration from 0.015625 mM to 2mM at saturating peptide condition (1mM), Km, 

peptide and kcat were measure by varying peptide concentration from 0.015625 mM to 2mM at 

excess ATP (2mM). Samples were taken at each time point, spotted onto phosphocellulose paper 

(Upstate Biotechnology) and quenched with 0.5 % phosphoric acid. Liquid scintillator was used to 

measure incorporated radioactivity of each phosphocellulose paper. Initial rates were determined 

for linear portion of the enzyme reaction (when < 10% substrate depletion or product formation), 

normalized for enzyme concentration, and fit to the Michaelis-Menten equation (vo = 

vmax[S]/(Km+[S])) using GraphPad Prism 5.0.	  

3.13.4 In vitro analysis of ALK-TKD variants Inhibition  

Inhibition profiling of ALK kinase inhibitors was assessed by radioactive peptide phosphorylation 

assay using a peptide mimic of the ALK activation loop with sequence: biotin-

ARDIYRASYYRKGGCAMLPVK (CanPeptide) as described (Bresler et al., 2011b). In vitro 

inhibition assays monitored incorporation of P32 from γ-32P ATP and enzyme concentration for 

proteins was fixed at 50 nM. Assays were performed in 100 mM HEPES pH 7.4, 150 mM NaCl, 

2mM DTT, 10 mM MgCl2 and 0.5 mg/ml BSA at 25oC, and initiated by mixing equal volumes of 

solutions containing ALK-TKD (2X protein mix) and substrates (2X substrate mix). Substrate mix 

was prepared with inhibitor (2-fold serial dilution) prior to mixing so that final concentration of 

inhibitor covers broad range between 0 and 25,600 nM. Concentrations of peptide and ATP were 

held fixed at 0.5 mM and 2 mM respectively. After 1 hour of phosphorylation reaction at RT, 

aliquots were taken and spotted onto phosphocellulose paper (Upstate Biotechnology) to capture 

peptide followed by immediate quenching with 0.5 % phosphoric acid. Incorporated radioactivity 

was measured by scintillation counter after extensive washing and drying of each 

phosphocellulose paper. All data were normalized to the no-inhibitor reaction after subtracting 

background counts from no-enzyme reaction, and were fitted to Log (inhibitor) vs. response 
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nonlinear regression curve to find the absolute IC50 in GraphPad Prism 5.0. Triplicate 

experiments were run, and mean values were reported with standard deviation.  

3.13.5 In vivo efficacy studies 

The Felix and COG-N-453x PDXs and the SH-SY5Y and NB-1643 cell line – derived xenografts 

were implanted subcutaneously into the right flanks of female CB17 SCID mice (Taconic 

Biosciences). PDX tumors were established in the laboratory of Dr. C. Patrick Reynolds and 

obtained through the Children’s Oncology Group Cell Culture and Xenograft Repository. For 

single-agent treatment arms, mice were randomized into statistically identical cohorts at a median 

starting tumor volume of 200 to 300 mm3 with 10 mice per group. Crizotinib (100 mg/kg qd), PF-

06463922 (10 mg/kg/day, 5 mg/kg b.i.d. or 3 mg/kg/day, 1.5 mg/kg b.i.d.), and their respective 

vehicles were administered by oral gavage at 100 µL/10 g of body weight for a minimum of 6 

weeks. Vehicle control mice were given 0.5% methylcellulose and 0.5% Tween-80 in water every 

day, and hydrochloric acid vehicle in water equimolar to the highest PF-06463922 concentration 

twice daily. Tumor size was measured two to three times a week by a digital caliper, and volume 

was calculated by spheroid formula (p/6) × d3, where d represents the mean diameter. According 

to the Institutional Animal Care and Use Committee (IACUC) protocol, mice were removed from 

the study and euthanized once tumors reached 3 cm3. This study was approved by The 

Children’s Hospital of Philadelphia (CHOP) IACUC protocol #IAC-15-000643.  

3.13.6 Statistical analysis of in vivo efficacy studies 

A linear mixed-effects model was used to test the difference in the rate of tumor volume change 

over time between different groups. The model included group, day, and group-by-day interaction 

as fixed effects and included a random intercept and a random slope for each mouse. A 

significant group-by-day interaction would suggest that the tumor volume changes at different 

rates for the comparison groups. The model used vehicle group as the reference group and 

created separate group indicators and interaction terms for other groups. Appropriate contrast 
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statements were created to compare the two groups other than the vehicle group. If a mouse was 

sacrificed or removed for biologic or biochemical analysis, the tumor volume was considered 

missing on the days afterward. EFS curves were estimated using the Kaplan–Meier method and 

were compared using the log-rank test. Event includes death and tumor size exceeding 3 cm3 

(mouse sacrificed). Mice that were removed for biologic or biochemical analysis were considered 

censored at the time of removal. 

3.13.7 Cell line and reagents 

All neuroblastoma cell lines [SH-SY5Y, KELLY, 415-IMDM, NBSD, Felix, NB-1643, LAN-5, NB-1, 

NB-EBc1, and SK-N-BE(2)C] were obtained in March 2013 from the CHOP cell bank, which is 

routinely genotyped by short tandem repeat (STR) analysis and tested for Mycoplasma. Annual 

genotyping (AmpFLSTR Identifiler Kit) of these lines and a single nucleotide polymorphism array 

analysis (Illumina H550) were performed to ensure maintenance of cell identity. The NSCLC cell 

line NCI-H3122 was generously provided by Jeffrey Engelman (Massachusetts General Hospital, 

Boston, MA) in March 2014. Cell lines were maintained at 37°C and 5% CO2 and cultured in 

RPMI-1640 media supplemented with 10% FBS, 1% l-glutamine, 1% penicillin/streptomycin, and 

0.1% gentamycin (as per provider protocol, gentamycin was not used for NCI-H3122). Felix, 

which was established from the same postmortem sample as Felix-PDX, was grown in Iscove’s 

modified Dulbecco’s medium (IMDM) base media with 20% FBS, 1% l-glutamine, and 1% insulin, 

transferrin, and selenium (ITS; Sigma Aldrich).  

3.13.8 In vitro pharmacologic growth inhibition 

Crizotinib and PF-06463922 were provided by Pfizer, Inc. The drugs were reconstituted in 100% 

DMSO to a stock concentration of 10 mM and stored at −80°C. Pfizer, Inc., verified the 

concentrations of the stocks by mass spectrometry. Cells were plated at a density of 3,000 cells 

per well in triplicate in black clear-bottom tissue culture–treated 96-well plates (VWR) and treated 

24 hours later with a 4-log dose range of inhibitor and a DMSO control. To ensure optimal 
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solvation, serial drug dilutions were performed in DMSO and then diluted further in starving media 

(0.04% FBS in RPMI or IMDM base media) before treatment. Plates were incubated for 120 

hours before measuring ATP levels using the CellTiter-Glo luminescent cell viability assay 

(Promega) according to the manufacturer’s protocol. Luminescence was measured three times 

per plate with a GloMax-Multi Microplate Multimode Reader (Promega) to produce an average 

reading for each well. Viability assays were repeated three times per cell line. To generate IC50 

values, the data were analyzed as follows: luminescence readings were normalized to media-only 

background wells and expressed as percentages of the DMSO-treated control wells. GraphPad 

Prism 5.0 was used to plot percent luminescence against inhibitor concentration (logarithmic 

scale). IC50 values and dose–response curves were then generated using the log10(inhibitor) 

versus response nonlinear regression, defining IC50 as the concentration that achieves half-

maximal effect where complete killing was not observed.  

3.13.9 Focus formation assays 

For focus-formation assays, full-length ALK variants were subcloned into the MigR1 vector 

(BioPioneer, Inc.). Low-passage NIH 3T3 cells (typically <15) at approximately 60% to 70% 

confluence were transfected with full-length mutated ALK constructs using Lipofectamine 2000 

(Invitrogen) according to the manufacturer’s protocol. Cells were then allowed to recover for 2 

days and were transferred to 6-well plates. Each well was then topped off with medium containing 

DMSO as vehicle control or the appropriate concentration of the inhibitor in DMSO (covering 4–5 

logs). Medium (DMEM with GlutaMAX with 5% calf serum) was then changed every 3 days with a 

fresh inhibitor. Focus formation typically took 10 to 14 days. Cells were fixed in 3.7% 

formaldehyde in phosphate-buffered saline (PBS) for 5 minutes and then stained with 0.05% 

crystal violet in distilled water for 30 minutes in order to count foci. The number of foci per well 

was normalized to the result seen in the DMSO control well. The half-maximal inhibitory 

concentration (IC50) was then determined from nonlinear regression analysis of a log10(inhibitor) 

versus response curve using GraphPad Prism 5.0. Each independent experiment was performed 
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in triplicate at least, and mean values are reported with standard deviation. Western blot analysis 

in parallel with transfections showed similar levels of expression for the different mutants.  

3.13.10 Western blot analysis 

Between 2 × 106 and 3 × 106 cells were plated in 100 × 20 mm tissue culture dishes, allowed to 

attach for 24 hours, treated, and harvested on ice. Pellets were washed twice with ice-cold PBS 

and stored at −80°C until lysis. Cells were lysed with hypotonic lysis (10 mM Tris/HCl, 10 mM 

NaCl, 1% Triton, 1 mM EGTA, pH 7.4) buffer with 1% protease/phosphatase inhibitor cocktail 

(Cell Signaling Technology), incubated on ice for at least 15 minutes, and then spun in a 

microcentrifuge at top speed at 4°C for 5 minutes. Protein from the supernatant was quantified 

using the Bicinchoninic Acid (BCA) Assay (Thermo Scientific). Lysates (50 µg protein) were 

separated on NuPAGE Novex 4% to 12% Bis-Tris gels (Life Technologies) at 130 volts, then 

transferred to polyvinylidene difluoride membranes (Millipore) at 4°C at 30 volts. Membranes 

were blocked in 5% milk or 5% bovine serum albumin fraction V, heat shock (Roche) for 

phospho-proteins in 1xTris-buffered saline and Tween 20 (TBST) for 45 minutes at room 

temperature, and then incubated with primary anti- bodies overnight at 4°C. All primary antibodies 

were diluted 1:1,000, except for the β-actin antibodies (1:5,000). ALK pY1604, ALK pY1278, and 

ALK antibodies were purchased from Cell Signaling Technology, and the β-actin antibody was 

purchased from Santa Cruz Biotechnology. Membranes were washed for 10 minutes three times 

in 1× TBST before a 45-minute incubation at room temperature with the secondary antibody. 

Goat anti-rabbit and goat anti-mouse secondary antibodies were purchased from Cell Signaling 

Technology and diluted 1:5,000 in 5% milk in 1× TBST. Membranes were washed again three 

times before developing. If necessary, membranes were stripped with a 0.1 M glycine, 0.5% 

Tween 20 (pH 2.5) buffer for two 15-minute incubations.  
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3.13.11 Western blot analysis of xenograft tumors 

At a median starting tumor volume of 200 to 300 mm3, NB-1643– engrafted mice were 

randomized into groups of three and treated with either vehicle, crizotinib (100 mg/kg qd), or PF-

06463922 (10 mg/kg/day, 5 mg/kg b.i.d.). Tumors were collected and snap-frozen in liquid 

nitrogen after 3 days of treatment, 1 hour after the final dose was administered. Tumors were 

homogenized in hypotonic lysis buffer with 10% protease phosphatase inhibitor cocktail in a ratio 

of 2,000 µL lysis buffer: 0.5 g tumor. Protein (150 µg), as assessed using the BCA assay, was 

loaded onto gels to detect pALK.  
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Conclusions and Future directions 
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Over the past quarter century, receptor tyrosine kinases (RTK) signaling has been extensively 

investigated. Integrative investigations of their genetics, cell biology, biochemistry and structural 

biology have guided the establishment of a general mechanism of RTK regulation and activation; 

and these findings have impacted to the discovery and application of numerous important 

therapeutics for diseases arising from aberrant regulation of RTKs. However, as discussed in 

Chapter 1, the mechanisms of activation for individual RTKs have distinctive differences in detail 

– even though they do share key common features. Understanding this mechanistic diversity is 

crucial for guiding precise therapeutic intervention. Further analysis of the uncharacterized human 

RTKs that comprise almost half of this family is also needed to complete our view of how RTKs 

function. 

 In Chapter 2, I described investigations of the conformational selectivity of EGFR/ErbB 

family targeted tyrosine kinase inhibitors (TKI).  The influence of the kinase’s conformational state 

on inhibitor sensitivity is an important but poorly understood concept in drug discovery. Despite 

the general assumption that the Type I EGFR inhibitor erlotinib binds selectively to the active 

configuration of the EGFR tyrosine kinase domain, computational studies of inhibitor-stabilized 

EGFR conformations suggested that this inhibitor can bind equally well to either the active or 

inactive configurations. This led to my crystallographic investigations of whether erlotinib can bind 

to either ‘state’ – which revealed that erlotinib can indeed bind to the inactive as well as the active 

state.  Using EGFR kinase variants that adopt either the active or inactive configurations in 

crystals, we also determined that the novel ErbB2 inhibitor 55A – identified and optimized by our 

collaborator in cell-based screens targeting the relevant conformation of kinase in its endogenous 

environment  – selectively binds the active state of the kinase. This observation could have 

important clinical utility.  These findings argue that the relative abilities of different inhibitors to 

bind to different kinase conformations and to mutationally activated EGFR variants is likely to be 

more complicated than previously thought. This dichotomy seems unlikely to simply reflect 

stabilization of different conformational states of EGFR-TKD, but is rather likely to reflect more 
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complicated conformational and dynamic characteristics of the kinase and its variants such as 

differences in inhibitor dissociation or cycling rates. These new considerations for inhibitor binding 

have important clinical implications, illuminating new avenues for extending the relative success 

of EGFR-targeted TKIs in NSCLC to other cancers.  Other activating (and resistance) mutations 

may show an even wider range of specificities. More extensive analysis is required to identify the 

differences between these groups of inhibitors, which will be beneficial for determining which 

inhibitors to apply in the clinic based on the way in which EGFR has been aberrantly activated. 

Monitoring differences in inhibitor binding kinetics for a series of reversible inhibitors utilizing a 

fluorescent affinity probe for the ATP-binding site – as has been done to compare binding to 

different EGFR mutants in lung cancer and glioblastoma (Barkovich et al., 2012) – would be one 

approach for gaining insight into the likely effects of different inhibitors on newly discovered 

oncogenic alleles – for EGFR and other RTKs.  

          In Chapter 3, my thesis examines the biochemical and cellular analysis of ALK activation 

and inhibition, as numerous activating mutations in the ALK gene have been implicated in 

neuroblastoma. Since the discovery of the ALK oncogene as a tractable molecular target in 

neuroblastoma, considerable progress has been made in understanding how different mutations 

activate the ALK kinase domain, and how they alter inhibitor sensitivity. After establishing the pre-

clinical rationale for therapeutic stratification of neuroblastoma patients based on ALK genomic 

status, we have analyzed biochemical consequences of the full spectrum of ALK variants in 

parallel with functional cellular studies and computational studies of their structural effects. These 

findings have provided a basis for distinguishing oncogenic mutations from non-oncogenic 

mutations, which is important for the use of ALK inhibitors in the clinic, and for providing a 

mechanistic basis to understand/validate how clinically observed ALK mutations activate the 

kinase when accompanied by proper structural understanding of how ALK TKD is regulated. In 

order to decipher how ALK kinase becomes activated in normal signaling and how other 

activating mutations mimic this, structural studies of ALK TKD in its active states – 

phosphorylated form and mutationally activated form – are crucial to advance our understanding 
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of regulations of ALK at the molecular-level in path for drug discovery and for guiding for 

treatment, as individual ALK mutations exhibit different sensitivities to inhibitors. In addition, 

identification of a novel ligand and potential co-receptors for ALK likely offers important insights 

into human ALK signaling and further therapeutic intervention.  We also present our ongoing work 

on developing a complementary computational tool to facilitate prediction of the effects of new 

clinically emerging ALK mutations on its transforming ability and drug sensitivity by iteration 

between computational prediction and experimentation. Our computational model with successive 

improvement will serve as a valuable tool toward personalized cancer therapy by enabling rapid 

and accurate prediction of the functional status of newly identified mutations.  

 Among the 3 hot spot ALK mutations found in neuroblastoma, the F1174L and F1245C 

mutations confer intrinsic resistance to the currently available FDA-approved drug crizotinib, 

presenting a serious clinical obstacle. Therefore, our goal was to identify a potent inhibitor that is 

effective in treating preclinical models of primary resistance, as well as, in crizotinib-sensitive ALK 

mutants. Biochemical studies of currently available second-generation ALK inhibitors revealed the 

high inhibitory potency of PF-06463922 on phosphorylation (activation) of recombinant ALK-TKD 

variants harboring the three most frequently observed mutations. Furthermore, we demonstrated 

that PF-06463922 is remarkably active in inhibiting oncogenic transformation in NIH3T3 cells, 

xenografts and PDXs harboring both crizotinib-sensitive and insensitive ALK point mutations. Our 

data argue for the expedited translation of these findings to the clinic for pediatric neuroblastoma 

– and clinical trials are now being initiated. As is typically the case with single-agent therapies 

against oncogene-addicted cancers, acquired resistance to PF-06463922 is likely to arise.  Given 

its potent anti-tumor activity at low concentrations in vitro and in vivo, PF-06463922 is an 

excellent candidate for use in combinatorial therapies with traditional chemotherapeutics. 
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