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Decision Making in Networked Systems

Abstract
Living in a networked world, human agents are increasingly connected as advances in technology facilitates
the flow of information between and the availability of services to them. Through this research, we look at
interacting agents in networked environments, and explore how their decisions are influenced by other
people's decisions. In this context, an individual's decision may be regarding a concrete action, e.g., adoption
of a product or service that is offered, or simply shape her opinion about a subject. Accordingly, we investigate
two classes of such problems.

The first problem is the dynamics of service adoption in networked environments, where one user's adoption
decision, influences the adoption decision of other users by affecting (positively or negatively) the benefits
that they derive from the service. We consider this problem in the context of "User-Provided Connectivity", or
UPC. The service offers an alternative to traditional infrastructure-based communication services by allowing
users to share their "home base" connectivity with other users, thereby increasing their access to connectivity.
We investigate when such services are viable, and propose a number of pricing policies of different
complexities. The pricing policies exhibit differences in their ability to maximize the total welfare created by
the service, and distributing the welfare between different stakeholders.

The second problem is the spread of opinions in a networked environment, where one agent's opinion about
an issue, influences and is influenced by that of other agents to whom she is connected. We are particularly
interested in the role that people's adherence to specific groups or parties may play in how final opinions are
formed. We approach this problem using a model of interactions inspired by the Ising spin-glass model from
classical Physics. We consider two related but distinct settings, and show that when party memberships
directly influence user interactions, even slightest statistical partisan biases result in partisan final outcomes:
where everyone in a party shares the same opinion, opposite to that of the other party. On the other hand, if
party membership plays an indirect role in biasing agent interactions, then there is room for intra-party
heterogeneity of opinions.
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ABSTRACT

Decision Making in Networked Systems

Mohammad Hadi Afrasiabi

Roch Guérin

Living in a networked world, human agents are increasingly connected as advances in

technology facilitates the flow of information between and the availability of services to

them. Through this research, we look at interacting agents in networked environments,

and explore how their decisions are influenced by other people’s decisions. In this context,

an individual’s decision may be regarding a concrete action, e.g., adoption of a product

or service that is offered, or simply shape her opinion about a subject. Accordingly, we

investigate two classes of such problems. The first problem is the dynamics of service

adoption in networked environments, where one user’s adoption decision, influences the

adoption decision of other users by affecting (positively or negatively) the benefits that

they derive from the service. We consider this problem in the context of “User-Provided

Connectivity”, or UPC. The service offers an alternative to traditional infrastructure-based

communication services by allowing users to share their “home base” connectivity with other

users, thereby increasing their access to connectivity. We investigate when such services are

viable, and propose a number of pricing policies of different complexities. The pricing

policies exhibit differences in their ability to maximize the total welfare created by the

service, and distributing the welfare between different stakeholders. The second problem

is the spread of opinions in a networked environment, where one agent’s opinion about an

issue, influences and is influenced by that of other agents to whom she is connected. We

are particularly interested in the role that people’s adherence to specific groups or parties

may play in how final opinions are formed. We approach this problem using a model of

interactions inspired by the Ising spin-glass model from classical Physics. We consider two

related but distinct settings, and show that when party memberships directly influence

user interactions, even slightest statistical partisan biases result in partisan final outcomes:

where everyone in a party shares the same opinion, opposite to that of the other party. On

the other hand, if party membership plays an indirect role in biasing agent interactions,

then there is room for intra-party heterogeneity of opinions.
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Chapter 1

Introduction

Individuals1 living in the networked modern world interact with each other in a variety of

ways. They consume and share information, goods and services, whereby influencing each

other’s decisions and behaviors [33]. These interactions complicate the decision-making

patterns in networked settings, and there has been growing interest in understanding and

predicting such patterns [28,35,36], which require consideration of how individuals perceive

and react to external influences, or “externalities”.

The concept of externalities (also called “network effect”) has been traditionally used

for modeling the adoption of goods and services in networked settings [27]. A product

with positive externalities, for example, is one that becomes more appealing as more people

use it. In this research, we study2 various problems in networked settings where individuals

face complex positive and negative externalities, and investigate how the tug of war between

different types of externalities shapes individuals’ decisions and behaviors in those settings.

In this context, an individual’s decision may be regarding a concrete action, e.g., adoption

of a new product or service that is offered, or simply shape her opinion regarding a subject.

In both cases, the person’s decision includes a component that is contributed by others.

Accordingly, we investigate two classes of such problems.

1We may use the terms “individual”, “person” and “agent” interchangeably to refer to an entity in a
networked setting, as may be represented by a “node” in the network’s graph.

2 This dissertation is based on work with Roch Guérin and Santosh Venkatesh, parts of which has
appeared in [1–6].
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The first problem is the dynamics of service adoption in networked environments, where

one user’s adoption decision influences the adoption decisions of other users by affecting

(positively or negatively) the benefits that they derive from the service. We consider this

problem in the context of “User-Provided Connectivity, or UPC, which we introduce in

Section 1.1 with full investigation given in Chapter 3.

The second problem is the spread of opinions in networked environments, where one

agent’s opinion about an issue, influences and is influenced by that of other agents to whom

she is connected. We are particularly interested in the role that people’s adherence to

specific groups or parties may play in how final opinions are formed. We introduce this

problem in Section 1.2, with full investigation provided in Chapter 4.

In Chapter 2 we review the related work in this area.

1.1 Adoption of service in user-provided connectivity

Network services often exhibit positive and negative externalities that affect users’ adoption

decisions. One such service is “user-provided connectivity” or UPC. The service offers an

alternative to traditional infrastructure-based communication services by allowing users to

share their “home base” connectivity (see [64] for an example) with other users, thereby

increasing their access to connectivity.

More users mean more connectivity alternatives, i.e., a positive externality, but also

greater odds of having to share one’s own connectivity, i.e., a negative externality. The tug

of war between positive and negative externalities together with the fact that they often

depend not just on how many but also which users adopt, make it difficult to predict the

service’s eventual success. We explore this issue, and investigate not only when and why

such services may be viable, but also explore how pricing can be used to effectively and

practically realize them.

Towards this goal, we develop a simple model that helps understand how the different

factors interact and affect the adoption of a UPC service and the total welfare (sum of users’

utility and provider’s profit) it creates, and how that welfare can be efficiently distributed

2



between users and the service provider. To maintain analytical tractability, the model makes

a series of simplifying assumptions, many of which may arguably not hold in practice.

However, the analysis affords insight that, as we demonstrate, remains valid even under

more general settings. Specifically, our main contributions consist of

• Formulating and solving a simple model that captures key features of a UPC type of

service;

• Characterizing when and how the service’s total welfare, or value, is maximized;

• Identifying practical pricing policies that realize a different trade-off between optimiz-

ing welfare and distributing it between stakeholders.

• Numerically validating the robustness of the findings, when relaxing the simplifying

assumptions on which the model relies.

1.2 Opinion formation in biased networks

Social interactions commonly take place in a networked setting where an individual’s opinion

is influenced by the opinions of others. We allow this influence to be positive or negative,

biased by partisan affiliations of connected individuals. Such signed influences are akin to

the positive and negative externalities described earlier for the adoption of a UPC service.

Our work explores the role of partisan influence in the emergence of consensus opinions in

social network settings.

We study a network of nodes where each node holds an opinion — a binary state that

may update over time under the influence of a node’s neighbors. Nodes have biased affinities,

which logically partition the network into distinct parties. Nodes in the same party tend

to have a positive influence on each other, but the extent to which this holds varies across

nodes and depends on the chosen affinity model.

We consider two variations on an Ising spin-glass network model (from classical physics)

that investigate opinion formation in such biased affinity systems. These models differ in

how they determine the pairwise influence between nodes.

3



The first of these in what we term the random influence model randomly selects the

influence two nodes exert on each other based on their respective party affiliation. The

second, a profile-based model, relies on a profile, a κ-bit vector of ±1 entries based on the

node’s known positions regarding each of κ independent topics. In this model the similarity

of the profiles of two nodes determines whether they have a positive or negative influence

on each other’s opinions.

We investigate the formation of opinions under both models and characterize their fixed

points (equilibria). We show that while these systems always converge to a fixed point,

they differ in their number and types of fixed points. Under a direct party impact as in

the random influence model, opinions nearly always converge to a partisan outcome with

parties settling on unanimous, antagonistic positions. In the profile-based model, the shift

from a direct to an indirect role in how party affiliation impacts decisions translates into

significant differences in the type of outcomes that can arise. In particular, party unanimity

is not the norm anymore.

While we initially assume that all nodes are connected (full graph) and also that all

nodes are members of one of two parties, with nodes from the same party more likely to

exhibit a positive affinity bias, we later relax these assumption. Specifically, we introduce

two set of modifications to our models. We first study the effect of a third group of nodes,

e.g., independent nodes who have unbiased affinities towards other nodes, irrespective of

party affiliations. We then consider the impact of additional structure, in the form of an

Erdős-Rényi graph (as opposed to a full graph), that determines which nodes interact with

each other.

4



Chapter 2

Related works

The types of problems described in Chapter 1, that exhibit interconnected agents and

mutual interactions, belong to a broader set of questions that naturally emerge in networked

settings and have become prevalent in many different areas, e.g., economics, social science,

biology, engineering and political science. The growing importance of, and interest in, such

questions is behind the emergence of “Network Science” as a new independent field [27,33,

50,76].

The breadth of topics that network science spans also means that multi-disciplinary

approaches are typically needed when tackling problems [37,47,68]. This is well illustrated

in our work, which relies on techniques from marketing research and statistical physics to

tackle the problems of service adoption and opinion formation in the presence of party biases

that it is concerned with. Similarly, researchers from seemingly disparate backgrounds have

contributed to the field of network science. In the past decade, a number of books have

aggregated the various studies in this field [33,51,54,72,90]. Such books provide a thorough

review of the different techniques for study of network systems, as well as their implications

and predictions.

In the next two sections we provide a more specific review of the literature as related to

the particular problems that we study, namely, where the “externalities” play a prominent

role in the system.

5



2.1 Adoption of products and services

The service adoption process that we introduce in Chapter 3 involves settings that are

studied under the umbrella of systems theory and/or game theory in various fields, from

engineering [8,13,46,83] to economics [9]. In the language of the latter, our work considers

a forward looking monopolistic service provider who tries to optimally price a service and

offers it to a set of heterogeneous myopic users, who in turn play a best-response dynamics

game until the system potentially reaches a pure-strategy Nash equilibrium.

Best-response dynamics [41] in game theory refers to scenarios where agents repeatedly

improve their choice until a Nash equilibrium is reached. Such a procedure provides a

plausible path to realizing a Nash equilibrium of the system, whence the agents are said

to “learn the equilibrium” [78]. Learning in game theory is also considered in [40], and is

closely related to the subjects of potential games [14,69] and evolutionary game theory [87].

Another related area in game theory consists of the works on the concept of “price of

anarchy” [59], which is similar in flavor to our discussion in Section 3.7.3 on sub-optimal

welfare realization.

In studying systems with heterogeneous users and in the presence of externalities, it

is common [7, 21, 25, 81] to assume some knowledge of the state of the system, e.g., users’

characteristics, or ”types”, for the other users and the provider. For instance, [25] assumes

that the monopolist has complete knowledge of the graph structure and therefore is able to

measure the individual network characteristics of each user. Similarly, [7] assumes that the

seller knows the probability distribution for the users’ valuation of the good, and that the

knowledge of the state of the system can propagate to users. In our analytical models too,

we assume that while the provider does not have knowledge of the individual user types,

it knows their probability distribution1. We also assume that users know the state of the

system, as the level of adoption and the type of current adopters can be inferred by a user

by observing the available service coverage and the roaming traffic that goes through one’s

1Such information can be obtained, for example, using techniques from marketing research as discussed
in [45].

6



home base. As such, our models represent a game with “incomplete information”, since

while the distribution of users’ utility function is known, individual users’ utilities are not.

Also, users have “perfect information”, in that they know the moves previously made by

all other players.

An important property of the adoption models that we introduce is that they exhibit

both positive and negative externalities. There is a vast literature investigating the effect of

externalities, often called network effects [34,62,63], but the majority of these works focus on

either positive or negative externalities separately. For example, [24] investigates the impact

of positive externalities on the product adoption decisions of individuals. The effect of

positive externalities on the competition between technologies is considered in [39,55,56] and

extended to include converters and switching costs in several other works, e.g., [30,38,53,82].

Conversely, the impact of negative externalities, e.g., from congestion, has been extensively

investigated in the context of pricing for both communication networks [43, 57, 66, 75, 85]

and transportation systems [16,23,58,73].

The topic of optimal pricing for systems with both positive and negative externalities is

less studied and seems to have been first addressed in [29] that sought to optimize a com-

bination of provider’s profit and consumers’ surplus. Different pricing strategies were con-

sidered, including flat pricing and pricing strategies that account for the product “amount”

consumed by a user, i.e., akin to the usage-based pricing model of Section 3.5. Other works

have been primarily conducted in the context of the theory of clubs first formally introduced

in [22] (see [10, 77, 80] for more recent discussions). A club has a membership that shares

a common good or facility, e.g., a swimming pool, so that increases in membership have

a positive effect (externality) by lowering the cost share of the common good, e.g., lower

maintenance costs of the shared swimming pool. At the same time, a larger membership also

has a negative, congestion-like effect, e.g., a more crowded swimming pool. In general, the

co-existence of positive and negative externalities implies an optimal membership size (see

also [52] for a recent interesting investigation that contrasts the outcomes of self-forming

and managed memberships).
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Club-like behaviors also manifest themselves in file-sharing peer-to-peer (p2p) systems.

In a file-sharing p2p system, more peers increase the total resources available to store

content. However, unless enough peers are willing to share their resources, more peers can

also translate into a higher load on those peers willing to serve files to others, and/or a

longer time for locating a desired file. This has then triggered the investigation of incentive

mechanisms to ensure that enough peers share their resources, e.g., BitTorrent “tit-for-tat”

mechanism [31] or [32] that also explores a possible application to a wireless access system

similar in principle to the one we consider in Chapter 3.

Our model differs from these earlier works in important ways. First and foremost, it in-

troduces a model for individual adoption decisions of a service, which allows for heterogene-

ity in the users’ valuation of the service. In particular, certain users (roaming users) have a

strong disincentive to adoption when coverage/penetration is low, while others (sedentary

users) are mostly insensitive to this factor. Conversely, this heterogeneity is also present in

the negative externality associated with an increase in service adoption. Its magnitude is

a function of not just the number of adopters, but their identity as well, i.e., roaming or

sedentary users. The presence of heterogeneity in how users value the service and how they

affect its value is a key aspect of a UPC–like service; one that influences its value and how

to price it to realize this value.

2.2 Formation and spread of opinions

Tools from statistical physics have been adapted for use in economics, models of neural

computation, as well as to offer models of social interactions in network settings [15, 20,

71, 74]. In the latter setting, the phenomenon of community structure in social networks

and graphs has seen some attention in the literature. Community structure refers to the

presence of modular groups in networks where individual members inside a community are

highly connected but connections between members of different communities are sparse or

non-existent. In particular, members of any one community exert little or no influence on

members of other communities.
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Works in this area include [44], which uses centrality indices in graphs to detect com-

munity structure, [18] which identifies mechanisms to generate networks with community

structure, and [60] which studies the formation of opinions in these settings.

These works reflect the tendency of individuals in a society to assemble in smaller groups

that are not necessarily connected. They do not, however, capture partisan interactions

between parts of a society, where individuals from different groups co-mingle and interact

in a manner shaped by their respective party or group, in the process exerting positive and

negative influences on each other.

Various models of positive and negative interactions in a spin glass framework have also

been considered in the literature [15, 19]. In these settings agents are considered to be sta-

tistically exchangeable with no a priori biases in the strengths of their random interactions

with other agents. These models lead to the characteristic disorder-induced phase transi-

tions of spin glass models but do not in themselves make provision for partisan behaviour

in opinion formation.

A variety of other models of opinion formation in sociological settings have been con-

sidered in the literature. These include the energy-driven Ising spin glass model, the voter

model, the Szanjd model, and the bounded-confidence model [17, 26, 65, 67, 79, 86]. These

models all feature agents influencing each other’s opinions in a number of different ways.

While the posited mechanisms vary, agent interactions in these models are a priori unbiased

and their influence on each other is only through the prism of their opinions; there is no

party or group structure influencing interactions. As we shall see in Chapter 4, fundamen-

tally different behaviours arise when interactions are influenced, however slightly, by an

over-arching party structure.
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Chapter 3

User-Provided Connectivity

3.1 Introduction

There is no denying that we are a networked society, and many networked goods or services

exhibit strong externalities, i.e., a change — positive or negative — in the value of one unit

of good, as more people use those goods. For example, Metcalfe’s law [27, p.71] captures

the positive effect on a network value of having more users, while the increased congestion

that arises from the added traffic contributes a negative externality. Externalities, and

more generally the benefits derived from goods or services, vary across users, i.e., exhibit

heterogeneity. This makes predicting the impact of externalities difficult, especially when

positive and negative forces interact. A basic question of interest is then to determine

(ahead of time) if and how offerings of goods or services that exhibit positive and negative

externalities will succeed or fail.

The original motivation for this work was answering this question for a specific service,

namely, user provided connectivity or UPC. The goal of UPC is to address the rising thirst

for ubiquitous data connectivity fueled by the fast growing number of capable and versatile

mobile devices. This growth has taxed the communication infrastructure of wireless carriers

to the point where it is threatening their continued success [91]. Addressing this issue

calls for either upgrading the infrastructure; a costly proposition, or exploring alternatives
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for “off-loading” some of the traffic. WiFi off-load solutions (e.g., as embodied in the

Hotspot2.0 initiative of the WiFi Alliance and the Next Generation Hotspot (NGH) of

the Wireless Broadband Alliance) offer a possible option, of which FON1 demonstrated a

possible realization. FON users purchase an access router (FONERA) that they use for

their own local broadband access, but with the agreement that a (small) fraction of their

access bandwidth can be made available to other FON users. In exchange, they receive the

same privilege2 when roaming, i.e., can connect through the access points of other FON

users.

Under a UPC scheme, connectivity grows “organically” as more users join the network

and improve its coverage, and the challenge is to determine if it can reach sufficient critical

mass to be viable. Consider for example a FON-like service starting with no users. This

makes the service unattractive to users that value ubiquitous connectivity highly, e.g., users

that roam frequently, because the limited coverage offers little connectivity beyond that of a

user’s “home base”. On the other hand, sedentary users are mostly insensitive to the initial

minimal coverage, and if the price is low enough can derive positive utility from the service;

hence join. If enough such (sedentary) users join, coverage may increase past a point where

it becomes attractive to roaming users who will start joining. This would then ensure rapid

growth of the service, were it not for a negative dimension to that growth.

Specifically, as more roaming users join, they compete for connectivity and may en-

counter increasingly congested access points. Conversely, sedentary users end-up having to

share their home access more frequently. This may be sufficient to convince them to drop

the service (unlike roaming users, they do not see much added value from the better cov-

erage). The resulting reduction in coverage would in turn affect roaming users, who could

then also start leaving. Hence, after an initial period of growth, the service may experience

a decline.

The extent to which such behaviors arise depends on many factors, and in particular

1http://www.fon.com. See also AnyFi (www.anyfinetworks.com) or previously KeyWifi, and also more
recently Comcast [64] for similarly inspired services.

2Alternatively, they can also be offered some form of compensation.
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the trade-off between service cost and users’ sensitivity to the positive and negative aspects

of a growing user-base. Making the service “free” would clearly maximize adoption, but

unless other revenue sources are available, e.g., ads, is unlikely to allow it to be viable.

Increasing the service price could affect (lower) adoption, but may improve its viability.

More generally, service pricing offers a “control knob” that can be used to realize a variety

of objectives, e.g., maximizing overall value or welfare, or maximizing provider’s profit, etc.

This control knob can be complex and involve offering the service at a different price to

each user, i.e., discriminatory pricing [11], or very basic, e.g., fixed pricing, and there is

typically a trade-off between how well objectives can be met and the complexity of the

control (pricing) used to meet them.

In this chapter we develop a simple model that helps understand how these factors

interact and affect the adoption of a UPC service and the welfare (sum of users’ utility

and provider’s profit) it creates, and how that welfare can be efficiently distributed between

users and the service provider. To maintain analytical tractability, the model makes a series

of simplifying assumptions, many of which may arguably not hold in practice. However,

the analysis affords insight that, as we demonstrate, remains valid even under more general

settings. Specifically, this chapter’s main contributions consist of

• Formulating and solving a simple model that captures key features of a UPC type of

service;

• Characterizing when and how the service’s total welfare, or value, is maximized;

• Identifying practical pricing policies that realize a different trade-off between optimiz-

ing welfare and distributing it between stakeholders.

• Numerically validating the robustness of the findings, when relaxing the simplifying

assumptions on which the model relies.

The rest of the chapter is structured as follows. Section 3.2 presents the model we

rely on to capture the properties of a UPC service. Section 3.3 explores when and how

the service value (total welfare) is maximized. Section 3.4 introduces the role of pricing in

realizing different goals for the service, with subsequent sections dedicated to specific pricing
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policies, i.e., usage-based (Section 3.5), hybrid (Section 3.6), and fixed-price (Section 3.7).

Section 3.9 discusses generalizations and robustness of the findings. A summary of the

chapter’s findings is provided in Section 3.10.

3.2 Model Formulation

This section introduces a model that captures key aspects of adoption of a UPC-like service

by users. We first present the general form of the model in Section 3.2.1. We then intro-

duce a series of simplifying assumptions in Section 3.2.2 to obtain a simpler model that is

analytically tractable. Verifying that the findings afforded by this simplified model remain

valid in more general situations calls for a two-prong approach: (1) An explicit solution is

developed that offers a qualitative understanding of and insight into what drives the success

(or failure) of UPC systems; (2) The robustness of those findings is then numerically tested

under configurations that emulate more general settings, i.e., where the model’s simplifying

assumptions are relaxed and errors are present in the estimation of its parameters.

3.2.1 General form

Given the expected organic growth of a UPC service, the interplay between the coverage

it realizes and its ability to attract more users is of primary interest. The service coverage

κ depends on the level x of adoption in the target user population, and determines the

odds that users can obtain connectivity through the service while roaming. Users are

heterogeneous in their propensity to roam, as captured through a variable θ, 0 ≤ θ ≤ 1. A

user’s exact θ value is private information, but its distribution (over the user population)

is known. A low θ indicates a sedentary user while a high θ corresponds to a user that

frequently roams. Hence, θ determines a user’s sensitivity to service coverage.

As commonly done [24], a user’s service adoption decision is based on the utility she

derives from the service; she decides to adopt if that utility is positive. A user’s utility is

denoted as U(Θ, θ), where θ is the roaming propensity of the user herself, and Θ identifies
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the current set of adopters. The general form of U(Θ, θ) is given in Eq. (3.1).

U(Θ, θ) = F (θ, κ) +G(θ, m)− p(Θ, θ) , (3.1)

where m is the volume of roaming traffic generated3 by the current set of adopters Θ.

F (θ, κ) reflects the overall utility of connectivity, either at home or roaming, while

G(θ, m) accounts for the negative impact of roaming traffic. Finally, p(Θ, θ) is the price

charged to the user θ when the adopters’ set is Θ.

Note that the price p(Θ, θ) is a control parameter that affects service adoption, i.e., it

can be endogenized to achieve specific objectives. In this chapter, we explore the use of

pricing to maximize total welfare and/or profit. Other parameters are exogenous and can

be estimated, e.g., using techniques from marketing research as discussed in [45], but not

controlled.

Building on Eq. (3.1), users adopt the service only if their utility is positive, and are

myopic when evaluating the utility they expect to derive from the service, i.e., they do not

anticipate the impact of their own decision on other users’ adoption decisions. However,

adoption levels affect coverage, and as coverage changes, so does an individual user’s utility

and, therefore, her adoption decision.

The level of adoption x is given by

x = |Θ| ,
∫
θ∈Θ

f(θ) dθ,

where f(θ) is a density function and reflects the distribution of roaming characteristics over

the user population.

In the next section, we specialize the different terms in the utility function of Eq. (3.1).

3Each user is assumed to generate one unit of traffic, whether at home or roaming.
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3.2.2 Assumptions and the simplified model

For analytical tractability, we make several assumptions regarding the form and range of

the parameters of Eq. (3.1) (Section 3.9 explores the impact of relaxing these assumptions).

First, a user’s propensity to roam, as measured by θ, is taken to be uniformly distributed

in [0, 1], i.e.,

f(θ) = 1, 0 ≤ θ ≤ 1.

This implies that given a set of adopters Θ, the adoption level, x is

x =

∫
θ∈Θ

dθ . (3.2)

Conversely, assuming that every user contributes one unit of traffic, the volume of roaming

traffic m generated by current adopters is given by

m =

∫
θ∈Θ

θ dθ . (3.3)

Next, we assume that the distributions of users over the service area and their roaming

patterns are uniform. A uniform distribution of users implies that the adoption level x also

measures the availability of connectivity to roaming users, hence κ = x. Similarly, uniform

roaming patterns mean that roaming users (and traffic) are evenly distributed across users’

home bases, i.e., all see the same connectivity while roaming. Therefore, we can write the

function F (θ, κ) as

F (θ, κ) = (1− θ) γ + θ rx . (3.4)

The parameter γ ≥ 0 measures the utility of basic home connectivity, while r ≥ 0 reflects

the utility of roaming connectivity.4 The latter needs to be weighed by the ”odds” that

such connectivity is available, which are proportional to the current service coverage κ = x.

Hence, rx is the (true) utility of roaming connectivity, when the level of coverage is κ = x.

4The range of the values of roaming connectivity is taken to be r ≥ γ, i.e., the value of roaming
connectivity is at least as high as that of home connectivity.
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The additional factors 1 − θ and θ in Eq. (3.4) capture the impact of a user’s roaming

characteristic in how it uses, and therefore values, home and roaming connectivity. Specif-

ically, a user with roaming characteristic θ splits its connectivity time in the proportions θ

and 1− θ between roaming and home connectivity, respectively.

Further, the impact of roaming traffic is assumed proportional to its volume m, which

based on the assumption of uniform roaming patterns, is equally distributed across adopters’

home bases. Specifically, the (negative) utility associated with roaming traffic consuming

resources in the home base of users is proportional to −cm , c ≥ 0. Roaming traffic affects

equally the users whose home base it uses, and the roaming users seeking connectivity

through it. Hence, all users experience the same impact of the form −θcm − (1 − θ)cm =

−cm, so that G(θ, m) is5

G(m) = −cm .

Under these assumptions, a user’s utility is of the form

U(Θ, θ) = γ − cm+ θ (r x− γ)− p(Θ, θ) . (3.5)

In the next section, we characterize the total welfare that can be created by a UPC

service as a function of the service parameters (exogenous and endogenous).

3.3 Total Welfare

In this section, we characterize the total welfare (value) a UPC service can create for

its adopters and provider. Adopters’ welfare is through the utility they derive from the

service, while the provider’s welfare is from what it charges adopters for the service. Using

the model introduced in the previous section, we derive analytical conditions under which

the total welfare is maximized. As argued earlier, the benefit of such analytical solutions

is in providing insight into when and why the service may be valuable (worth deploying).

5The range of the coefficient of roaming traffic, c, is taken to be 0 ≤ c < r, i.e., it is lower than the max
roaming utility.
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The validity of that insight is tested under more general conditions in Section 3.9.

To compute the maximum welfare, we first obtain the optimal set of adopters Θ∗(x) for

any given adoption level x, and then solve for the optimal x.

3.3.1 Optimal Adoption Set for Given Adoption Level

For a given adoption level x, we seek the set of adopters Θ, |Θ| = x, that maximizes welfare.

Provider’s welfare (or profit) WP can be written as

WP (Θ) =

∫
θ∈Θ

(p(Θ, θ)− e) dθ , (3.6)

where p(Θ, θ) is the price charged to a user with roaming characteristic θ given a set Θ of

existing adopters, and e is the per customer cost of providing the service, e.g., as incurred

from billing, customer service, or equipment cost subsidies6. Conversely users’ welfare is

given by

WU (Θ) =

∫
θ∈Θ

U(Θ, θ) dθ . (3.7)

The service welfare, V (Θ), is the sum of these two quantities.

V (Θ) = WU (Θ) +WP (Θ)

=

∫
θ∈Θ

(
U(Θ, θ) + p(Θ, θ)− e

)
dθ.

(3.8)

For notational purposes, we denote the integrand in Eq. (3.8) by v(Θ, θ),

v(Θ, θ) , U(Θ, θ) + p(Θ, θ)− e ,

which can be interpreted as the individual value adopter θ contributes to the service. Using

6Note that this cost is ultimately born by the users, as it affects the price the provider charges for the
service.
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Eq. (3.5) we can rewrite Eq. (3.8) as

V (Θ) =

∫
θ∈Θ

(
γ + θ (rx− γ)− cm− e

)
dθ. (3.9)

Characterizing optimal welfare for a given adoption level x, therefore calls for identifying

the set Θ∗(x) of adopters of cardinality x, |Θ∗| = x, which maximizes Eq. (3.9). This is the

subject of the next lemma, which is proved in Appendix A.9 in a more general form.

Lemma 1. For any adoption level x, maximum welfare is always obtained with a set of

adopters Θ∗(x) that exhibit contiguous roaming characteristics. Specifically, Θ∗(x) is of the

form

Θ∗(x) =


Θ∗1(x) = [0, x) if x < γ

r−c ,

Θ∗2(x) = [1− x, 1] if x ≥ γ
r−c .

(3.10)

3.3.2 Optimal Adoption Level

From Lemma 1, we obtain the optimal welfare V ∗(x) , V (Θ∗(x)) given any adoption level

x. Following the partition of Eq. (3.10) into two cases x ∈ [0, γ
r−c) and x ∈ [ γ

r−c , 1], we

consider separately the cases of V (Θ∗1(x)) and V (Θ∗2(x)).

Using Eq. (3.10) in Eq. (3.3) gives for x ∈ [0, γ
r−c),

m(Θ∗1(x)) =

∫ x

θ=0
θdθ =

x2

2
,

and therefore by and Eq. (3.9)

V (Θ∗1(x)) =
r − c

2
x3 − γ

2
x2 + (γ − e)x.

Similarly, for x ∈ [ γ
r−c , 1], the roaming traffic corresponding to Θ∗2(x) is

m(Θ∗2(x)) =

∫ 1

θ=1−x
θdθ =

1

2

(
2x− x2

)
,
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and therefore by Eq. (3.9)

V (Θ∗2(x)) = −r − c
2

x3 + (
γ

2
+ r − c)x2 − ex.

Combining the above expressions, the optimal service value V ∗(x) , V (Θ∗(x)) for a given

adoption level x is given by

V ∗(x) =


r−c

2 x3 − γ
2x

2 + (γ − e)x if x < γ
r−c

− r−c
2 x3 + (γ2 + r − c)x2 − ex if x ≥ γ

r−c ,

where Θ∗(x) and x are related by Eq. (3.10).

Given V ∗(x), we can then solve for the value x∗ that maximizes V ∗(x). The computa-

tions are mechanical in nature and are given in Appendix A.2, with Fig. 3.1 illustrating x∗

as a function of γ and e (for r − c = 1).

The solution can be partitioned into two different regimes based on the value of γ. When

γ ≤ r− c (corresponding to γ ≤ 1 in Fig. 3.1), optimal adoption is either x∗ = 1 or x∗ = 0,

depending on the service cost e. If the service cost is low (e < γ+r−c
2 ), then maximum

welfare occurs for x∗ = 1, and it is

V ∗(x = 1) =
γ + r − c

2
− e. (3.11)

Conversely, if the service cost is high (e ≥ γ+r−c
2 ), then it overshadows any benefit or

utility the service produces and it is impossible to create positive welfare. In this case, the

“optimal” adoption is x∗ = 0.

In contrast, when γ > r − c (corresponding to γ > 1 in Fig. 3.1), intermediate values

0 < x∗ < 1 are possible (the gradient-shaded region of Fig. 3.1). This is because as γ

increases, sedentary users start to derive more utility and progressively become the dominant

value contributors. Therefore a set of (mostly) sedentary adopters can make a large positive

welfare contribution. Furthermore, because this value is negatively affected by roaming

19



traffic, the optimal adoption level discourages frequently roaming users. Note that r − c

gives a tentative measure of the “net” importance of roaming (roaming utility factor less

roaming traffic factor), and as such the condition γ > r− c describes a system where home

connectivity has a higher value than the overall (“net”) effect of roaming connectivity. Such

a system may arguably not be a prime candidate for UPC services.

In summary, the main finding that emerges from the results of this section is that when

a UPC service can generate significant positive value, that value is typically maximized at

full adoption (or close to full adoption7) Section 3.9 numerically tests the validity of this

finding when the model’s assumptions are relaxed.

While this section explored the relationship between service adoption and total welfare,

and identified adoption sets that maximize total welfare, the next section focuses on how to

realize such outcomes. As we shall see, this greatly depends on the flexibility of the pricing

policy used.

3.4 Role of Pricing

The analysis of Section 3.3 characterizes maximum service welfare, but does not offer a

constructive method to realize it. As shown in Eq. (3.5), adoption and, therefore, welfare,

depend on p(Θ, θ). Hence, maximizing welfare calls for identifying a suitable pricing policy.

Moreover, the price p(Θ, θ) is also the parameter that determines how welfare is divided

between users and the provider. For example, if p(Θ, θ) = e, then the provider is only

compensated for its expenses e (its profit is WP (Θ) = 0) and the entire welfare is realized

as user’s utility, WU (Θ) = V (Θ). Conversely, if p(Θ, θ) = v(Θ, θ) + e, then U(Θ, θ) = 0,

i.e., users derive zero utility (strictly speaking, prices would be set to ensure an infinitesimal

but positive utility) and all of the welfare is realized as provider’s profit, WP (Θ) = V (Θ).

Other pricing schemes are possible that distribute welfare between users and the provider.

7Specifically in more general cases where coverage “saturates” with adoption, the maximum total welfare
may predictably be realized at slightly below full adoption. The reason is reaching full adoption in that case
would add more roaming traffic without meaningfully improving coverage. Details are given in Appendix A.2.
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Figure 3.1: Regions of optimal adoption for maximum system value. Parameters are r = 1.6
and c = 0.6 (and therefore r− c = 1). The gradient-shaded area corresponds to 0 < x∗ < 1,
whereas the solid black and white areas correspond to x∗ = 1 and x∗ = 0, respectively.

(a) θ0 = 0 (b) θ0 = 0.4 (c) θ0 = 1

Figure 3.2: System value contributed by user θ0 as a function of x. Parameters are γ =
0.8, e = 0, c = 0.6, b = 0, r = 1.6.

For example, a price of the form

p(Θ, θ) = v(Θ, θ) + e− δ

= (1− θ)γ + θrx− cm− δ ,
(3.12)

which is an instance of a discriminatory pricing policy, leaves every user with a positive
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(a) x = 0.2 (b) x = 0.5 (c) x = 1

Figure 3.3: System value contribution across users, at different adoption levels. Parameters
are γ = 0.8, e = 0, c = 0.6, b = 0, r = 1.6.

utility U(Θ, θ) = δ > 0, hence realizing the optimal adoption level8 x = 1. Therefore,

the optimal welfare V ∗(1) of Eq. (3.11) is realized and by using U([0, 1], θ) in Eq. (3.7) it

follows that the users’ overall welfare is

WU ([0, 1]) = δ .

This means that without affecting adoption, we can pick any δ > 0 to freely vary WU ([0, 1])

in the range (0, V ∗(1)], and accordingly by Eq. (3.8),

WP ([0, 1]) = V ∗(1)−WU ([0, 1]). (3.13)

In short, this policy realizes two important goals

• Optimal welfare, and

• Flexible welfare distribution.

Such a discriminatory pricing policy is, however, difficult to implement in practice as it

requires knowledge of individual user characteristics (θ) that may not be readily available9,

8When optimal adoption is not at x = 1, optimal welfare can still be realized by setting a high price for
users who should not adopt.

9Even if the provider has full knowledge of individual user characteristics θ, it may not be acceptable to
charge users differently.
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and also results in a price that varies with the adoption level x. This heterogeneity across

both users and adoption levels is illustrated in Figs. 3.2 and 3.3, that plot v(Θ, θ) as a

function of θ and x.

In the following sections, we introduce pricing policies that offer a different trade-off

between realizing maximum welfare, distributing it arbitrarily, and practicality.

3.5 Usage-based Pricing Policy

As mentioned above, a discriminatory pricing policy can both maximize total welfare and

distribute it arbitrarily between users and the provider. It is, however, difficult to implement

in practice. This section proposes a usage-based pricing scheme that mimics the behavior

of the discriminatory policy, but makes it feasible in practice. Under a usage-based pricing

scheme, users are charged based on how often they connect at home and while roaming. We

present next the structure of usage-based pricing, how it is able to capture key aspects of

discriminatory pricing, and also the insight that the analysis of the pricing policy affords.

3.5.1 Pricing Structure

In a UPC service, usage has two components, home usage denoted by zh, and roaming usage

denoted by zr. A usage-based pricing policy may assign different prices to these two usage

types. Assuming that ph and pr are unit prices for home and roaming usage, respectively,

a user is charged

pz(zh, zr) = zh · ph + zr · pr − a, (3.14)

where a corresponds to fixed usage allowance that may be given to each user, e.g., akin to

the free minutes commonly included in cellular phone plans.

Eq. (3.14) states what a user pays for the service as a function of her usage. Next,

we express this cost in terms of the user and service model of Section 3.2. This calls for

characterizing how roaming characteristics θ and the service coverage x affect a user’s home

and roaming usages.
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By definition, θ denotes a user’s propensity to roam, i.e., how often she is roaming

versus at home. However, because a roaming user successfully connects only where there is

coverage, her “typical” roaming usage is only zr(x, θ) = θx. Conversely, her typical home

usage is simply zh(θ) = 1 − θ (home connectivity is always available). Replacing zh and

zr in Eq. (3.14) by the typical roaming and home usages zr(x, θ) and zh(θ) of a user with

roaming characteristics θ, we obtain the following expression for what she will typically be

charged for using a UPC service with a coverage level of x

pz(x, θ) = ph(1− θ) + pr θx− a. (3.15)

Eq. (3.15) has three parameters ph, pr and a that affect service adoption, i.e., which users

derive positive utility. Given our goal of emulating the discriminatory pricing policy of

Eq. (3.12) and by comparing it to Eq. (3.15), we choose ph = γ and pr = r, which yields

the following usage-based pricing scheme

pz(x, θ) = γ(1− θ) + rθx− a. (3.16)

We note that the only difference between Eq. (3.16) and the discriminatory pricing of

Eq. (3.12) is in the terms a versus cm − δ, where the former is constant while the latter

depends on the level of roaming traffic m. As we shall see next, this difference is minor, and

the usage-based pricing policy of Eq. (3.16) is capable of realizing both maximum welfare

and flexibility in how welfare is distributed across users and the provider.

3.5.2 Maximal Service Adoption

Using Eq. (3.16) in Eq. (3.5) gives the following expression for the utility derived by user θ

from adopting the service

U(Θ, θ) = a− cm. (3.17)
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We next use Eq. (3.17) to identify the adoption equilibria under usage-based pricing. We

say a set of adopters Θ comprises an equilibrium when

U(Θ, θ) > 0, if θ ∈ Θ, and

U(Θ, θ) ≤ 0, if θ 6∈ Θ.

Then,

Proposition 1. Under the usage-based pricing policy of Eq. (3.16), full adoption, x = 1,

is the unique equilibrium if a > c/2, and is not an equilibrium if a ≤ c/2.

Proof. Recall that c ≥ 0, and note that at any adoption level x (corresponding to an

adopters’ set Θ such that |Θ| = x), the roaming traffic m satisfies m ≤ 1/2. Hence,

cm ≤ c/2 and Eq. (3.17) yields that U(Θ, θ) ≥ a − c/2. Consequently U(Θ, θ) > 0 if

a − c/2 > 0. This is true for all values of θ and Θ, i.e., all users have positive utility at

all adoption levels. Therefore no other equilibrium can exist, since that would mean for

some Θ̂ 6= [0, 1], and for θ 6∈ Θ̂ the utility is negative, which is contradictory. This proves

sufficiency.

On the other hand, if a ≤ c/2, then by Eq. (3.17) we have U(Θ, θ) ≤ c/2 − cm. But

at full adoption m = 1/2 and therefore U([0, 1], θ) ≤ 0, which means [0, 1] cannot be an

equilibrium. This completes the proof.

Proposition 1 implies that the usage-based pricing policy maximizes total welfare by

realizing full adoption10, provided the provider sets the usage allowance a higher than the

threshold c/2. The threshold’s value c/2 is clearly specific to the assumptions on which

the model is predicated. However, as we will see in Section 3.9, such a threshold condition

is present under more general conditions. In particular, as long as the usage allowance a

is larger than a threshold a0, full adoption is the unique equilibrium, while if a ≤ a0, full

adoption is then not an equilibrium.

We explore next the policy’s ability to distribute welfare between users and the provider.

10Assuming that the parameters are such that total welfare is maximized at x = 1.
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3.5.3 Welfare Distribution

From Eq. (3.17), the utility of user θ at full adoption is

U([0, 1], θ) = a− c

2
·

Combining this expression with Eq. (3.7) gives the overall user welfare

WU ([0, 1]) = a− c

2
,

with provider’s profit given accordingly by Eq. (3.13).

This means that we can pick any a > c/2 without affecting adoption, and therefore

freely vary both WU ([0, 1]) and WP ([0, 1]) in the full range [0, V ∗(1)).

Although, as mentioned earlier, the usage-based policy does not perfectly emulate the

discriminatory policy of Eq. (3.12), it coincides with it at full adoption through the change

of variables δ , a − c/2. Hence, a usage-based pricing policy offers a practical solution to

realize optimality and flexibility (in distributing welfare).

Those benefits notwithstanding, implementing usage-based pricing calls for monitoring

(logging) usage, which incurs a cost. In addition, some users may prefer the predictability

of fixed pricing (independent of usage), even in cases where it may be less advantageous

for them [61], i.e., result in a lower utility. This is particularly so in the case of home-

connectivity, for which fixed pricing is often the norm. For instance, Time Warner recently

announced [84] that its customers would always retain the option of a flat-rate monthly

pricing for broadband Internet access, with usage-based plans being optional.

For those reasons, we consider next a hybrid pricing policy that combines fixed and

usage-based pricing, and evaluate the trade-offs it imposes.
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3.6 Hybrid Usage-based Pricing Policy

Consider a pricing policy that combines a fixed price for home connectivity, and a usage-

based price for connectivity while roaming.

3.6.1 Pricing Structure

Using notation similar to Section 3.5.1, let zr denote the roaming usage of a user. The total

hybrid usage-based price that a user is charged is then

py(zr) = ph + zr · pr, (3.18)

where the price of home usage is fixed (independent of usage) at ph and identical for all

users11, and as before pr is the unit usage price while roaming.

The only user-dependent term in Eq. (3.18) is, therefore, her roaming usage. Recalling

the discussion of Section 3.5.1, the typical roaming usage zr(x, θ) of a user with roaming

profile θ when the service coverage is x is equal to θx. Hence, the typical cost to a user

with profile θ for the service is given by

py(x, θ) = ph + pr θx, (3.19)

Next, we investigate if and how ph and pr can be set to again emulate the discriminatory

policy of Eq. (3.12), or more importantly achieve the same outcomes, namely, maximum

welfare and flexibility in allowing distribution of welfare across users and the provider. As

per the discussion of Section 3.4, the former calls for selecting ph and pr so as to ensure full

adoption, i.e., x = 1.

11Note that the usage allowance a is now included in ph.
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3.6.2 Maximal Service Adoption

Given the price structure of Eq. (3.19), the utility of a user can be obtained from Eq. (3.5)

as

U(Θ, θ) = γ − cm− ph + θ(rx− γ − xpr).

By applying the change of variables

δh = γ − c

2
− ph and δr = r − γ − pr ,

U(Θ, θ) can be rewritten as

U(Θ, θ) =
c

2
− cm+ δh + θ(x(δr + γ)− γ). (3.20)

Note that δh corresponds to the net residual utility for home connectivity at full adoption,

and conversely δr is the corresponding quantity for roaming connectivity.

The next Lemma provides conditions under which full adoption is an equilibrium.

Lemma 2. Under the hybrid pricing of Eq. (3.19), full adoption, x = 1, is an equilibrium

if and only if δh > 0 and δr > −δh.

Proof. At full adoption we have Θ = [0, 1], x = 1 and m = 1/2. Therefore the utility of

Eq. (3.20) becomes

U([0, 1], θ) = δh + θδr.

For Θ = [0, 1] to be an equilibrium, all users must have positive utility. This implies

δh + θδr > 0 , ∀θ ∈ [0, 1].

Since this is a linear function of θ, the inequality holds if and only if it is satisfied for both

θ = 0 and θ = 1, i.e., δh > 0 and δh + δr > 0.

The conditions of Lemma 2 state that full adoption, x = 1, is possible only if the fixed

28



Figure 3.4: Utility of a user with θ = 1 as a function of coverage under hybrid pricing for
γ = 1, c = 0.7, δh = 0.05 and δr = 0.01.

price ph for home connectivity is not too high, i.e., δh > 0⇒ ph < γ − c
2 , and the roaming

usage-based price pr is no higher than the net roaming value at full adoption, r− c
2 , minus

the price ph already charged for home connectivity, i.e., δr > −δh ⇒ pr < r − c
2 − ph.

Unlike the conditions of Proposition 1 that ensured positive utility for all users at all

levels of coverage, Lemma 2 does not include such guarantees. In particular, and as illus-

trated in Fig. 3.4 for the θ = 1 user, the utility of a user can vary from negative to positive

as coverage increases, with a cross-over value of x ≈ 0.85 in the case of Fig. 3.4. The θ = 1

user, therefore, adopts only once coverage exceeds 0.85. Hence, her adoption depends on

the adoption of enough other users (x > 0.85). In general, and as hinted at in Fig. 3.3, users

with low θ values have higher utility at low coverage, and are therefore the ones joining

the service when it is first offered. As they do, the service becomes more valuable for users

with higher θ values, whose utility may then become positive allowing them to adopt. This

progression can, however, stall before full adoption is reached, i.e., adoption may stop at a

level x < 1. This can arise even under the conditions of Lemma 2, as Lemma 2 does not

guarantee the uniqueness of the x = 1 equilibrium.
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As shown in Appendix A.3, when the conditions of Lemma 2 hold, x = 1 is the unique

equilibrium if and only if γ satisfies

γ < c+ 2δh + 2
√

(c/2 + δh)(δr + δh). (3.21)

This then ensures that adoption increases monotonically until reaching full adoption. The

condition of Eq. (3.21) can be combined with Lemma 2 to obtain the equivalent of Propo-

sition 1 for the hybrid pricing policy.

Proposition 2. Under the hybrid pricing of Eq. (3.19), full adoption, x=1, is the unique

equilibrium if and only if

• When γ < c : δh > 0 and δr > −δh

• When γ ≥ c : δh > 0 and δr > −δh and

δh >
γ2

4(γ + δr − c/2)
− c/2. (3.22)

Proof. As a result of the two conditions δh > 0 and δr > −δh and because c ≥ 0 it follows

that 2δh + 2
√

(c/2 + δh)(δr + δh) in Eq. (3.21) is always positive. Therefore Eq. (3.21)

always holds if γ < c, without further constraints on the values of δh and δr.

On the other hand, when γ ≥ c, δh and/or δr need to be large enough to ensure that

Eq. (3.21) is satisfied. Specifically, algebraic manipulation of Eq. (3.21) in this case yields

Eq. (3.22).

Proposition 2 states that when x = 1 is an equilibrium under hybrid pricing, it can

coexist with other equilibria when the value of home connectivity utility is high enough,

i.e., γ ≥ c and the condition of Eq. (3.22) is not satisfied. Focusing on cases when x = 1

maximizes total welfare, e.g., e is low enough, this means that it is possible for the provider

to set prices ph and pr (and consequently δh and δr) for which full adoption is feasible, i.e.,

the conditions of Lemma 2 are satisfied, without ever being able to reach this target. This
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Figure 3.5: Final adoption level for the hybrid pricing policy, and identification of the
boundaries demarcating the regions associated with the conditions of Proposition 2. The
straight line corresponds to γ = c = 0.8, and the curved line captures the condition of
Eq. (3.22). The system’s parameters are c = 0.8, δr = 0, with γ and δh values varying.

occurs when the provider’s choice of prices allows the emergence of a second equilibrium

x̃ < 1, where adoption stops upon reaching it.

As Proposition 2 indicates though, it is possible to avoid such outcomes by properly

selecting prices (parameters δh and δr) to comply with Eq. (3.22). This is illustrated in

Fig. 3.5, which plots the system’s final adoption as γ and δh vary for the case c = 0.8

(initial adoption is set to x = 0, and for simplicity we assume δr = 0 and focus on the

impact of varying δh). The figure confirms (straight boundary line at γ = c = 0.8 in the

figure) that when γ < c = 0.8, any value of δh > 0 results in full adoption. It also shows

that when γ ≥ c = 0.8, the system only converges to full adoption when δh further satisfies

the condition of Eq. (3.22) (corresponding to δh values that lie to the right of the curved

boundary line in the figure).

The conditions of Proposition 2 are clearly specific to the assumptions on which the

model is predicated. However, we will see in Section 3.9 that the very same behavior

arises under more general settings; specifically, a second, sub-optimal equilibrium (x̃ < 1)

can arise whenever the value of home connectivity exceeds a certain threshold, and in the

process prevent the system from reaching its intended target of full adoption. In addition,
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overcoming this issue can again be accomplished by adjusting prices, albeit to different

values than those of Proposition 2.

We note that the aspect of adjusting (lowering) prices to ensure full adoption begs the

question of what would motivate the provider to do so. We explore this issue next in the

broader context of the hybrid pricing policy’s ability to distribute welfare between users

and the provider. We first explore the pricing policy’s ability to support arbitrary welfare

distribution at full adoption, including maximizing the provider’s profit, and then focus on

the extent to which the conditions of Proposition 2 constrain this ability, and what options

are available to overcome those limitations.

3.6.3 Welfare Distribution

As before, we focus on scenarios for which total welfare is maximized at full adoption, i.e.,

combinations that, as illustrated in Fig. 3.1, correspond to a low enough cost e relative to

the other system’s parameters γ, c, and r. We explore first whether, once at full adoption

(and maximum total welfare), the hybrid pricing policy allows an arbitrary distribution of

welfare (as the usage-based policy did), from maximum user welfare to maximum provider

profit.

Lemma 2 identifies the constraints that pricing must satisfy to ensure that full adoption

is an equilibrium, i.e., δh > 0 and δr > −δh. Combining Eq. (3.20) and Eq. (3.7) gives the

following expression for the users’ welfare WU ([0, 1]) at full adoption

WU ([0, 1]) = δh +
δr
2
, (3.23)

with according to Eq. (3.13) and Eq. (3.11), the provider’s profit given by

WP ([0, 1]) =
γ + r − c

2
− e−

(
δh +

δr
2

)
. (3.24)

Realizing maximum user welfare calls for choosing prices such that WP ([0, 1]) = 0, which
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according to Eq. (3.24) implies

δh +
δr
2

=
γ + r − c

2
− e.

This can be readily accomplished by choosing values of δh and δr that also satisfy Lemma 2,

e.g., δh = ε > 0, and δr = γ+ r− c− 2e− 2ε > −ε, where ε is arbitrarily small. Conversely,

maximizing the provider’s profit calls for setting prices that extract (nearly) all the value

users realize from the system, i.e., set both δh and δr equal to arbitrarily small positive

values (this again satisfies the conditions of Lemma 2, namely, δh > 0 and δr > −δh).

Intermediate distributions of welfare are also feasible simply by adjusting the values of

δh and δr. Consider for example a scenario where a regulator wants all users to see the

same utility value α > 0. From Eq. (3.20) the utility of a user with roaming parameter θ is

given by

U([0, 1], θ) = δh + θδr = α .

Eliminating the dependency on θ to ensure that all users see the same utility requires δr = 0,

which then implies δh = α > 0 that again satisfies the conditions of Lemma 2. Hence, we

see that once at full adoption (and assuming full adoption maximizes welfare), the hybrid

pricing policy, like the usage-based policy, is capable of achieving any arbitrary distribution

of welfare between users and the provider. However as made explicit in Proposition 2,

reaching full adoption can, as reflected in Eq. (3.22), impose additional conditions on pricing,

which may preclude some welfare distribution configurations. In particular, maximizing the

provider’s profit, which as just discussed calls for setting both δh and δr to arbitrarily small

positive values, readily conflicts with the conditions of Eq. (3.22).

A possible approach suggested by the discussion of Section 3.6.2, is for the provider to

offer an introductory pricing that satisfies the conditions of Proposition 2; thereby enabling

full adoption to be reached. The motivation for the provider to do so is that once full (or

nearly full12) adoption has been reached, it can then switch to a pricing scheme that allows

12See Appendix A.3 for details on how early the service provider can end the introductory pricing phase.
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it to extract a higher profit.

In the next section, we introduce a third family of pricing policies that seeks to eliminate

all dependency on monitoring a user’s usage; therefore simplifying implementation and

possibly facilitating user acceptance.

3.7 Fixed Price Policy

This section considers a pricing policy based on a fixed price that covers both home and

roaming connectivity.

As mentioned earlier, the use of a fixed price is not uncommon for home connectivity,

but it is arguably less so for wireless roaming access which is the other component of the

service we consider. Nevertheless, a number of wireless carriers do offer fixed-price wireless

services [89]. Hence it is of interest to investigate the impact such a pricing policy might

have on their ability to maximize profit and on the welfare the system realizes.

3.7.1 Pricing Structure

Pricing is independent of usage and based on a single parameter p,

p(Θ, θ) = p, ∀Θ, θ. (3.25)

We investigate if and how p can be set to realize maximum welfare and flexibility in dis-

tributing it across stakeholders. As per the discussion of Section 3.4, the former (typically)

calls for selecting p so as to ensure full adoption, i.e., x = 1.

3.7.2 Maximum Service Adoption

Given Eq. (3.5) and the price structure of Eq. (3.25), the utility of user θ is

U(Θ, θ) = γ − p− cm+ θ (r x− γ) . (3.26)
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Cases [0, γ/r) [γ/r, 1]

1 — —

2 • —

2’ � —

3 — •
3’ — �

4 •, ◦ —

5 — •, ◦
6 •, ◦ •
7 • •, ◦
8 •, ◦ •, ◦

Table 3.1: Equilibria combinations under fixed pricing

The following Lemma then gives the condition under which full adoption is an equilibrium.

The proof is in Appendix A.4.

Lemma 3. Under the fixed price policy of Eq. (3.25), full adoption is an equilibrium if and

only if p < γ − c/2.

Note that as was the case with Lemma 2, the condition of Lemma 3 does not imply

uniqueness of the x = 1 equilibrium. In fact, as shown in Appendix A.4, under fixed pricing

there may be as many as four equilibria, spanning combinations of stable, unstable, periodic,

or chaotic equilibria. Table 3.1 summarizes possible combinations, with (•) denoting stable

equilibria, (◦) unstable equilibria, (�) equilibria associated with an “orbit” that can be

either convergent, periodic, or chaotic, and (—) the absence of equilibria.

Ensuring that x = 1 is the unique (stable) equilibrium, and therefore that the service

always reaches full adoption, calls for additional constraints on p beyond those of Lemma 3.

These constraints are formalized in the next Proposition, which mirrors the conditions of

Proposition 1 for usage-based pricing. The proof is again in Appendix A.4.

Proposition 3. Under the fixed price policy of Eq. (3.25), full adoption, x = 1, is the
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unique equilibrium if and only if

p < min

(
γ − c/2, γ − γ2

4r − 2c

)
.

The conditions of Proposition 3 ensure that total welfare is maximized under a fixed

price policy. Next, we see if and how these conditions limit the policy’s ability to distribute

welfare between users and the provider.

3.7.3 Welfare Distribution

From Eq. (3.26), the utility of user θ at full adoption is

U([0, 1], θ) = (1− θ)γ + θr − p− c/2 ,

which when combined with Eq. (3.7), gives the following expression for user welfare

WU ([0, 1]) =
γ + r − c

2
− p ,

with Eq. (3.13) correspondingly giving the provider’s profit as

WP ([0, 1]) = p− e .

As before, flexibility in distributing welfare calls for being able to vary WU ([0, 1]) across the

full range (0, V ∗(1)], where V ∗(1) = γ+r−c
2 − e. Clearly, this cannot be achieved without

violating the conditions of Proposition 3, e.g., WU ([0, 1]) = 0 calls for p = γ+r−c
2 ≥ γ − c/2

(recall that r ≥ γ). Therefore the service is not capable of realizing full adoption and

maximizing the provider’s profit (see Appendix A.4 for a full discussion).

Under hybrid pricing, we suggested the use of introductory prices to first realize full

adoption, and then perform the desired welfare allocation. Unfortunately, this is not suf-

ficient under fixed pricing, as certain welfare allocations are incompatible with not just

Proposition 3, but also Lemma 3. In particular and as mentioned above, WU ([0, 1]) ≈ 0
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calls for a price p ≥ γ− c/2 that violates the conditions of both the Lemma and the Propo-

sition. Hence, after an introductory price expires, it forces a drop in adoption below x = 1

and prevents welfare maximization.

In other words, the simplicity of the fixed price policy comes at a cost in terms of

its ability to simultaneously maximize and distribute welfare. The concern is that this

limitation may result in sub-optimal welfare realizations (and lower service coverage), as

the provider may be tempted to set prices to maximize profit.

Figure 3.6: Relative profit drop from profit maximization to welfare maximization (fixed-
price policy γ = 1, r = 2 and e = 0.3).

Fig. 3.6 helps assess the extent to which this may be a risk. It plots as a function of c

and for a combination of parameters γ = 1, r = 2, and e = 0.3, the relative difference in

profit between a profit maximizing choice of p and one that yields the best possible profit

while also maximizing welfare, i.e., maintaining x = 1. The figure indicates that as long as

c remains relatively small (compared to γ and r), the incentive to deviate from a welfare

maximizing price is small. As a matter of fact, when c is very small maximizing profit and

welfare coincide even though welfare cannot be entirely realized as profit (this is an intrinsic

limitation of the fixed-price policy). As the negative impact of roaming traffic, c, grows

larger, it however becomes increasingly tempting (profitable) for the provider to deviate
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from a welfare maximizing strategy and set a price that keeps adoption low. Arguably

though, such scenarios where users are highly sensitive to the (negative) impact of roaming

traffic are inherently not conducive to the large-scale deployment of a UPC like service.

The analysis of this section and its illustration in Fig. 3.6, are clearly dependent on the

specific assumptions of the model. However, as demonstrated in Section 3.9, the findings

hold even under more general conditions.

In summary, although the fixed price policy exhibits clear limitations in its ability to

jointly maximize welfare and profit, its simplicity still makes it an attractive candidate, at

least in scenarios where users are relatively insensitive to the negative aspects of a UPC

service (small c values). In addition and as discussed in Appendix A.4, setting the price to

maximize profit can be “risky,” as the optimal price is such that small errors in parameter

estimation can produce a dramatic collapse in adoption and consequently profit13. This

should make the safer welfare maximization policy more appealing to the service provider.

3.8 Subsidies and pricing by user choice

As we saw, while a UPC service can generate significant value, fully realizing it calls for

relatively complex pricing. In this section we show that successful outcomes under any

pricing policy often require the ability to subsidize a subset of users, which could in turn

render pricing even more complex. We then propose the Price choice policy, that seeks to

realize another effective compromise between pricing complexity and the policy’s ability to

maximize system value and extract profit. We illustrate the benefits of the proposed policy

by demonstrating when and how it outperforms previously proposed policies.

3.8.1 The Need for Subsidies

We showed in Section 3.3 that under the adoption model of Eq. (3.5), the total system

value is generally14 maximized at full adoption, i.e., when all users adopt the service. An

13In other words, the underlying optimization is inherently fragile.
14 That is, when the per-user service implementation cost, e, is not too high.
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important goal for a pricing policy is, therefore, achieving full adoption, while also enabling

the service provider to recoup most of the service value as profit. As we shall see now, this

may require subsidizing a subset of users to achieve full adoption, and therefore maximum

service value.

Before we proceed, it will be helpful to rewrite Eq. (3.5) as

U(Θ, θ) = Ui(Θ, θ)− p(Θ, θ) , (3.27)

where

Ui(Θ, θ) = γ (1− θ) + θ r x− cm.

is the value or intrinsic utility the user derives from the service.

Eq. (3.27) readily shows that full adoption, i.e., Θ = [0, 1], implies15 p([0, 1], θ) <

Ui([0, 1], θ), ∀θ ∈ [0, 1]. An immediate consequence of this observation is that subsidies

are needed, i.e., p([0, 1], θ) < 0, whenever Ui([0, 1], θ) ≤ 0 for some θ value. The next

proposition characterizes when this arises and the users to which it applies.

Proposition 4. Users requiring subsidies at full adoption have roaming characteristics that

satisfy

θ < θ∗ ,
cm∗ − γ
r − γ

, (3.28)

where m∗ is the volume of roaming traffic m at full adoption.

Proof. The proof is immediate from Eq. (3.5) with x = 1 (full adoption) and m = m∗ (note

that r − γ > 0).

We note that from Eq. (3.28), the set of users requiring subsidies, ΘS = [0, θ∗], is empty

only if θ∗ < 0 ⇔ cm∗ < γ. This is intuitive since cm∗ < γ implies that the impact of

roaming traffic at full adoption is less than the utility of basic home connectivity. However,

when this condition is not satisfied, subsidies are required to offset the impact of roaming

15Note that this is a necessary condition for full adoption, and may not be sufficient. In particular, it
does not guarantee that the system reaches full adoption, which depends on adoption dynamics.
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traffic for users that derive little or no benefits from the service’s roaming feature, i.e., users

with low θ values.

We also note that the distribution of θ can affect the number of users requiring subsidies,

|ΘS |, in subtle ways. In particular, increasing (decreasing) the roaming propensity of some

users, e.g., by creating a mode near θ = 1 (θ = 0), will on one hand decrease (increase) the

number of users below θ∗, but on the other hand increase (decrease) the roaming traffic16

m∗ and in the process increase (decrease) θ∗.

3.8.2 Complexities of Service Pricing

We saw earlier that a pricing policy determines the service cost, p(Θ, θ), for each user. The

pricing policy is a control knob a service provider can use to affect users’ adoption decisions

and control profit. A sophisticated pricing policy may allow the provider to both maximize

overall service value and recoup more of that value as profit (e.g., usage-based pricing policy

of Section 3.5). Such a sophisticated policy is, however, likely to be complex, which may

translate into a higher cost and in the process affect profit.

To better assess the impact of a pricing policy cost, it is useful to split the service

implementation cost e of Eq. (3.9) in two components e = ê + ẽ, where ê is the basic

deployment cost of the service, e.g., network equipment and operation, while ẽ is dedicated

to the billing costs that depend on the particular pricing policy. Different pricing policies

will have different ẽ values.

We now note that the usage-based pricing policy of Section 3.5 has two major disad-

vantages. The first is its complexity that contributes to a high billing cost, i.e., ẽu � ẽf ,

which could lower overall profit in spite of the policy’s ability to extract all service value

as profit. The second important disadvantage is that when Eq. (3.28) yields a non-empty

set of users requiring subsidies, the usage-based pricing calls for “cashback” payments to

those users, i.e., those whose allowance a exceeds their (home and roaming) usage. Having

to handle such cases further increases the service’s billing complexity and cost, and could

16m∗ =
∫ 1

θ=0
θ f(θ) dθ, where f(θ), θ ∈ [0, 1] denotes the probability density of θ.
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also negatively affect users’ usage patterns, i.e., by creating an incentive to consume less.

Hence, although some service providers have recently announced such a service option [42],

it remains highly unusual. The more common version of the usage-based policy is, therefore,

one with “no cashbacks,” which will however be unable to realize full service adoption when

subsidies are needed.

On the other hand, the simple fixed price policy of Section 3.7 often falls short of realizing

full adoption, in addition to yielding a much lower profit than feasible (because it does not

differentiate between users). however, its predictability of price may lead to higher user

satisfaction [61]. Moreover, its billing cost ẽf is low, which contributes to increasing profit.

In the next section we introduce a pricing policy, the price choice policy, aimed at

the shortcomings of the fixed price and usage-based policies. The policy seeks to, on one

hand, improve on the fixed price policy when it comes to realizing profit. On the other

hand, it targets a lower billing complexity than the usage-based policy, as well as a subsidy

mechanism that avoids direct cashbacks and instead gives low θ users the ability to offset

the impact of roaming traffic.

3.8.3 Price choice policy

The price choice policy gives all users the option to choose between two pricing schemes.

The two options for pricing under this policy are:


p1(Θ, θ) = ph, (option 1)

p2(Θ, θ) = ph + pr · θx− bm, (option 2)

(3.29)

where, as before, the adoption level x and volume of roaming traffic m are functions of

adoption set Θ. Users pick the option that yields the lowest price for them.

In option 1 users do not pay for roaming usage (as with FON), while in option 2 roaming

usage (as measured by θx) is charged at a unit price of pr. In return, option 2 compensates

users for the roaming traffic (m) their home access carries, at a rate of b per unit of traffic.

This offers a mechanism to subsidize users that see little value in the roaming feature of
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the service, and are negatively affected by having to share their home access with other

(roaming) users. In addition, the subsidy is directly related to the “service” rendered by

those users (the amount of roaming traffic they carry) rather than in the form of a cashback

for unused usage.

Both price options boast a fixed flat price for home usage, denoted by ph, as was the

case with the hybrid pricing policy of Section 3.6. In addition to that, the availability of

options in the price choice policy may improve users’ satisfaction with the service [61].

The price choice policy can also be expected to reduce billing costs ẽp compared to the

usage-based policy, as the provider no longer needs to track users’ home usage. Roaming

usage still needs to be tracked, but only for users who choose pricing option 2.

The lower complexity and deployment cost of the price choice policy, however, means

that this policy cannot convert all of the system value to profit (it suffers from the same

limitation as the fixed price policy for users that choose pricing option 1). This happens

mostly when γ is small, as the provider is then forced to use a small home price ph to attract

users. The next proposition offers a lower bound on the amount of system value the price

choice policy is unable to convert to profit.

Proposition 5. Assume γ is strictly less than r−cm∗, such that r−cm∗−γ = κ > 0, where,

as before, m∗ denotes the volume of roaming traffic at full adoption. Then the amount ṽ of

system value that the price choice policy cannot convert to profit is lower-bounded as

ṽ >
κ2

2(r − γ)
,

Proof. Consider the service when adoption is zero, i.e., x = 0 and m = 0. Users’ utility

under either pricing option is given by U({}, θ) = γ(1 − θ) − ph. In order for anyone to

adopt the service, it is then necessary that ph < γ. Using this condition in the utility and

price functions at full adoption, gives the result after some algebraic manipulation.

The inevitable profit drop of Proposition 5 notwithstanding, the price choice policy may

still outperform (profit-wise) the usage-based pricing policy because of its lower cost. As
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Figure 3.7: Maximum feasible basic profit under different pricing policies compared to
maximum system value. Basic cost is ê = 0.1, but billing costs ẽ are not yet considered.

we shall see, it may also strictly outperform the usage-based policy, irrespective of cost,

when the usage-based policy operates in the “no-cashback” mode. Finally, it typically also

outperforms the fixed-price policy because of its ability to achieve a higher service value.

We illustrate those claims in the next section using a number of service configurations.

3.8.4 Comparing the performance of price choice policy

This section numerically compares the maximum profit under the price choice policy to that

under the usage-based and fixed price policies, which provides insight into the regimes where

each policy is more profitable than others. In the figures, we take the system parameters

to be r = 1.6 and ê = 0.1 (as γ varies), and assuming that θ has a uniform distribution, we

obtain m∗ = 0.5. These are representative values and perturbing them does not change the

overall nature of the results. Also in order to highlight the effect of subsidies as described

in Proposition 4, we use a relatively large c, taken to be c = 1.4.

Fig. 3.7 plots, as a function of γ, the maximum feasible basic profit (provider’s profit

after subtracting the basic costs ê but before subtracting the billing costs ẽ) under the three

different pricing policies of Section 3.8.2, and compares them to the maximum system value

(maximum system value is an upper-bound on the feasible basic profit under any policy).
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Figure 3.8: Maximum feasible net profit under price choice and usage-based policies when
ê = 0.1, and ẽu − ẽp = 0.1

We showed in Section 3.5 that the usage-based pricing policy with subsidies (not plotted)

is able to achieve a basic profit equal to the system value across all γ values. However,

as Fig. 3.7 shows, the usage-based pricing policy without subsidies fails to achieve such a

high basic profit when γ is small (more precisely, when |ΘS | as described by Eq. (3.28) is

non-empty.)

For small values of γ, the fixed price policy yields a basic profit higher than that of the

usage-based policy without subsidies. The reason is, in this regime, a fixed-price policy only

attracts a limited number of sedentary users who generate minimal roaming traffic, hence

reducing the need for subsidies. However, the fixed price policy yields inferior basic profits

for a wide range of larger γ values as it cannot differentiate between users to recoup all of

the system value.

On the other hand, the price choice policy improves the basic profit in comparison to

the usage-based policy without subsidies for small γ values, and also remains competitive

for larger γ. This is because as γ increases towards r = 1.6, the provider may increase the

flat home usage price ph of the price choice policy without hindering adoption.

The basic profits plotted in Fig. 3.7, however, do not account for the differences in each

policy’s billing cost. As discussed before, different pricing policies have different billing
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(a) Between usage-based
without subsidies and price
choice policies (ẽu2 − ẽp)

(b) Between usage-based
with subsidies and price
choice policies (ẽu1 − ẽp)

(c) Between price choice
and fixed price policies (ẽp−
ẽf )

Figure 3.9: The threshold ẽ gap between a high-cost and a low-cost pricing policy, Param-
eters are r = 1.6, c = 1.4, and ê = 0.1.

costs ẽ and this will impact how the optimal net profit under different policies compare to

each other. For instance, assume that the billing cost ẽu for the usage-based policy is larger

than the billing cost ẽp for the price choice policy, by a margin of 0.1, i.e., ẽu − ẽp = 0.1.

Then the corresponding plots for their maximum net profit is as shown in Fig. 3.8. We see

that with this value of “ẽ gap”, the price choice policy always outperforms the usage-based

policy without subsidies, and even outperforms the usage-based policy with subsidies for

most γ values.

We can quantify the threshold value of ẽ gap between any two pricing policies. The

threshold gives the maximum difference between the billing costs of a high-ẽ policy and

a low-ẽ policy, such that the high-ẽ policy still generates more net profit. Fig. 3.9 shows

this threshold value for three different pairs of policies. For instance. Fig. 3.9b shows the

threshold ẽ gap between the usage-based policy with subsidies, and the price choice policy,

i.e., the threshold for ẽu1− ẽp. From the figure we see that the threshold gap is larger than

0.1 only for 0.2 < γ < 0.5, and that is also the interval in Fig. 3.8 where the usage-based

policy with subsidies outperforms the price choice policy (recall that in Fig. 3.8 we have

ẽu1 − ẽp = 0.1).

3.9 Generalizations and Robustness

The user adoption model reflected in the utility function of Eq. (3.5) is obviously highly

stylized and predicated on various simplifying assumptions, namely,
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(a) Total welfare: optimal adoption
for maximum system value. Com-
pare to Fig. 3.1.

(b) Usage-based pricing policy: values of
usage allowance a for which the system
goes to full adoption.

(c) Hybrid pricing policy: final adoption
level as a function of the parameters γ
and δh. Compare to Fig. 3.5.

(d) Fixed price policy: relative profit
drop from profit maximization to
welfare maximization. Compare to
Fig. 3.6.

Figure 3.10: Impact of relaxing modeling assumptions on the main findings. [1- Coverage κ
is a concave function of adoption x that saturates as x increases; 2- Users have a non-linear
utility function; 3- Users’ roaming characteristics has a non-uniform distribution].
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• A user’s propensity to roam, θ, is uniformly distributed in [0, 1],

• A user’s utility is a specific linear function of coverage κ and volume of roaming traffic

m,

• Adoption, x, accurately measures coverage κ,

• All users see the same coverage and contribute the same amount of traffic while

roaming.

Similarly, the different pricing policies discussed in this chapter rely on these assump-

tions, as well as on an implicit knowledge (by the service provider) of the range and values

of the different system parameters. This clearly raises valid questions regarding whether

our findings hold outside this framework.

This section, and more generally Appendix A.6, seeks to address this issue. It nu-

merically investigates the extent to which relaxations of modeling assumptions and the

introduction of estimation errors in the system’s parameters affect the results. As ex-

pected, modifying the models’ assumptions produces quantitative changes in the outcomes.

However, as we show next, their main qualitative findings remain valid.

More specifically, the investigation demonstrates the robustness of our findings (sum-

marized in the next section) against a broad range of perturbations. Results are presented

here only for representative scenarios, with the full set of results available in Appendix A.6.

The rest of this section is structured as follows. Section 3.9.1 restates the chapter’s

main findings for completeness. The methodology behind the robustness tests is outlined

in Section 3.9.2, while an illustrative example is presented in Section 3.9.3.

3.9.1 Main findings and insight

We briefly recall the main findings that emerged from the results of this chapter’s simple

model.

• Maximum total welfare: Whenever the system is capable of generating value, this

value is maximized at full (or close to full) adoption;
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• Usage-based pricing: Realizing the system’s maximum value under a usage-based

pricing policy calls for ensuring that users are offered a usage allowance that exceeds

a minimum threshold a.

• Hybrid usage-based pricing: When the value of home connectivity is high, the hybrid

pricing policy may not achieve maximum system value (because of the emergence of

a sub-optimal equilibrium) unless prices are sufficiently discounted (high values for

parameters δh and δr). Such discounts prevent the service provider from maximizing

profit, unless it resorts to an introductory pricing scheme;

• Fixed pricing: Under a fixed price policy, profit and welfare maximization strate-

gies typically differ unless the penalty associated with allowing roaming traffic (the

parameter c) is small.

3.9.2 Robustness testing methodology

In testing for robustness, we consider perturbations to the assumptions, parameters and

functional expressions of our model. Because those perturbations affect the model’s an-

alytical tractability, their impact is evaluated by means of numerical simulations. The

simulations also consider the effect of different types of errors in the estimation of system

parameters on which the service provider relies when designing pricing strategies. We de-

scribe next the dimensions along which we perturb the original model. Additional details

can again be found in Appendix A.6.

• Non-uniform roaming distributions We consider different probability distributions

for a user’s propensity to roam, θ. In particular, we consider distributions with both low

and high roaming modes (fewer or more users that roam frequently).

• Modified user utility functions The original model assumes a specific functional

expression for users’ utility that grows linearly with coverage (x) and decreases linearly with

the volume of roaming traffic (m). We relax the linearity assumption, and also consider

two different utility functions inspired by the models of [70].
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• Coverage saturation The original model assumes that coverage increases linearly with

service adoption. We relax this assumption and consider a saturation effect for coverage,

i.e., coverage is now a concave function of adoption, which captures that adequate coverage

may be realized with less than 100% adoption.

• Users heterogeneity We consider a scenario where users belong to two “types” with

different “profiles.” The type of a user affects that user’s utility as well as the volume of

roaming traffic she generates.

3.9.3 Robustness tests

Because of space limitations, we only report on the outcome of one experiment that combines

the first three perturbations of the previous section, namely, a non-uniform roaming distri-

bution with a mode towards high roaming values, a non-linear utility function for users17,

and coverage that increases faster than adoption, i.e., saturates before full adoption. We

omit including different types of users in the experiment, as this additional perturbation

typically masks the effect of the others. Results reporting on its effect can, however, be

found in Appendix A.6, together with results for different utility functions and a range of

other scenarios.

Fig. 3.10 displays the results of the evaluation. It consists of four sub-figures, with each

sub-figure corresponding to one of the findings summarized in Section 3.9.1, and illustrating

the extent to which the corresponding finding has been affected. As we discuss next, the

figures illustrate that while quantitative changes can be observed, the overall qualitative

outcomes remain similar, thereby demonstrating the robustness of the findings. A similar

conclusion held across the broader range of scenarios found in Appendix A.6.

Consider first Fig. 3.10a that mirrors Fig. 3.1, namely, plots the adoption level that

maximizes total welfare as a function of the system parameters γ and e. The figure illustrates

that, as in the original model, when the system can generate positive value (the system cost

17Super-linear in a user’s sensitivity to roaming traffic m, and sub-linear in her sensitivity to coverage x,
i.e., U(Θ, θ) = γ − cm1.2 + θ (r x0.8 − γ)− p(Θ, θ).
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e is not too high), this is achieved at or near full adoption. The wider “intermediate” area

that shows welfare being maximized slightly below full adoption is intuitive in light of the

assumption of coverage saturation for the system, i.e., reaching full adoption adds more

roaming traffic without meaningfully improving coverage.

Fig. 3.10b in turn displays that under the usage-based pricing policy, the system still

exhibits the characteristic “threshold behavior,” which had been identified in the original

model. Specifically, the pricing policy needs to offer users a certain minimum usage al-

lowance, a, to successfully realize full adoption, and therefore maximum welfare. The exact

value of a is clearly different from that predicted by the original model, but the overall

behavior is still present.

Fig. 3.10c corresponds to Fig. 3.5. It shows that, as before, when the value of home

connectivity γ is large, the hybrid pricing policy exhibits regimes where a sub-optimal

equilibrium (x̃ < 1) can arise, thereby preventing the system from reaching full adoption.

Overcoming this issue can again be accomplished by appropriately discounting the service

prices. The discount values are obviously different, but the mechanism is the same.

Finally, Fig. 3.10d parallels Fig. 3.6. It displays for the fixed price policy, the gap in

profit between profit maximizing and welfare maximizing strategies. As before, the gap is

small when the parameter c is small, and grows large as c increases.

The above results offer evidence that the findings of this chapter hold under more general

settings than those of the specific and relatively simple model used to preserve analytical

tractability. As mentioned earlier, further evidence of this robustness can be found in

Appendix A.6, which also investigates the impact of various errors in the provider’s estimates

for the different system parameters.

3.10 Conclusion

The work presented in this chapter was motivated by the emergence of UPC services that

feature both positive and negative externalities, and more importantly (negative) external-

ities that depend not just on the number of adopters, but also on which users have adopted.
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The goal was to develop an understanding of the conditions under which such services may

succeed and the “welfare” (value) they are able to generate.

As expected given the service’s strong positive externality, welfare is typically maximized

when adoption is maximum. More interestingly, maximum adoption and welfare can be

achieved through relatively simple pricing policies that also afford complete flexibility in

deciding how welfare is to be distributed between users and the provider of the service. Of

interest is the fact that pricing according to service usage is sufficient to capture differences

in how users value the service, and successfully realize both maximum welfare and arbitrary

welfare distribution.

The relative simplicity of usage-based pricing notwithstanding, it involves monitoring

overhead and may face acceptance challenges on the part of users. This motivated the

investigation of alternate policies, which offer a different trade-off between implementation

considerations, welfare maximization, and flexibility in welfare distribution.

We demonstrated that when users’ valuation of basic home connectivity γ is small

relative to the impact of roaming traffic cm, there are a group of users that will need to be

given monetary incentives (irrespective of the particular pricing policy), otherwise a UPC

system will not reach full adoption.

The chapter’s main contributions are in offering new insight into the viability of UPC-

like services, as well as simple (pricing) mechanisms to facilitate their successful and effective

deployment.
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Chapter 4

Opinion Formation in Ising

Networks

4.1 Introduction

Ising spin-glass-inspired models of interactions borrowed from statistical physics have been

adapted for use in economics, models of neural computation, and in social network set-

tings [15, 20, 71, 74]. In this chapter we describe a variation on this theme with a view

to understanding essential features of opinion formation in social networks in a sanitized

setting.

Consider a fully connected network of n nodes, where node i holds a binary (for or

against) opinion xi ∈ {−1, 1} about an issue under consideration. A node’s opinion evolves

over time as a function of its own opinion and that of its network neighbors. A neighbor’s

opinion is weighed based on its influence. Neighbors have a symmetric influence on each

other which depends on their level of affinity. Affinity is biased positively or negatively

based on nodes’ party affiliations. Nodes from the same party are more likely to exhibit

a positive affinity bias. This chapter investigates the extent to which such party-based

influence biases affect opinion formation, and in particular which opinions emerge in each

party at equilibrium.
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The two models considered in this chapter differ in how the inter-nodal influences are

specified. In the random influence model, neighborhood influences are selected randomly

to be positive or negative with a bias based on party affiliation. Two principals from the

same party are more likely to have a positive affinity, while the influence on each other of

two principals from different parties is more likely to be negative. The second of the models

we consider, the profile-based model, specifies affinities in a more nuanced fashion. In this

model each node comes equipped with a profile—a vector of positions on a fixed set of prior

issues with nodes in the same party more likely to take similar positions on those issues.

Inter-nodal influences in this setting are determined based on profile similarity.

The two models share common properties, and in particular, opinions in both models

always converge to stable equilibria. However, they also exhibit significant differences. Of

most interest is the fact that with high probability the random influence model gives rise to

a partisan outcome with nodes in each party converging to a common opinion opposed to

that of nodes in the other party. In contrast, the profile-based model permits a more diverse

set of distinct fixed points, with the opinion equilibrium driven by the initial distribution

of opinions in each party.

4.2 Embedding a Party Structure in an Ising Network

Model of Interaction

In this section we first introduce the basic Ising model, and explain how a party structure

can be embedded in that model. Finally we show that in case of a two-party setting, we

can use symmetries to simplify the analysis of the model.

4.2.1 Ising Model

The basic Ising model is a stochastic system which specifies a dynamics on the vertices

{−1,+1}n of the n-dimensional cube. The system is characterized by a symmetric stochastic

matrix [wij ] of interaction weights. At any time the state of the system is represented by
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a state vector x = (x1, . . . , xn) ∈ {−1,+1}n which represents a collection of spins or, in

the current context, opinions in a community of n interconnected principals labelled with

indices 1 to n. Updates to the state are performed asynchronously according to some update

schedule: at each update epoch (only) one node i is selected and a state update xi 7→ xu
i

performed according to the sign of a linear form of the node’s current inputs,1

xu
i = sgnSi = sgn

 n∑
j=1

wijxj

 , (4.1)

and all other nodal states are kept unchanged. We refer to Si = Si(x) as the update sum

for node i. In our context xj is the (current) opinion of node j, wij denotes the weight of

the influence node j has on node i, and xu
i represents the updated opinion of node i. The

updates determine a dynamics x(0) 7→ x(1) 7→ x(2) 7→ · · · in the state space of vertices

where, at any update epoch, the new state x(l+ 1) differs from the previous state x(l) in at

most one coordinate (if the node update actually resulted in a change in sign). The specific

update schedule is not critical for our purposes; it suffices if each state is updated infinitely

often with probability one. A simple deterministic update schedule with this property is

a round-robin schedule of state updates; a stochastic example is provided by a random

update schedule where the node whose state is to be updated is selected randomly and

independently at each update epoch. Call any such update schedule honest.

We assume throughout that the matrix [wij ] of interaction weights is symmetric, wij =

wji, and wii is non-negative. In the context of interacting principals in a social network

this models a situation where inter-agent influences are bilateral and symmetric, each agent

having a positive self-reinforcement. A key classical result in this setting says that under

any honest update schedule the system dynamics converges to a fixed point (see [15, 49]).

A state x∗ is a fixed point (or equilibrium) of the system if, and only if, it satisfies2 the

1For definiteness, set sgn(0) = −1.
2There is an irritating possibility of the sum being zero in which case the adopted convention of the

sign function becomes important. But this has an exponentially small probability and we will ignore this
nuisance. Alternatively, assume n is even.
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stationary system of update equations

x∗i = sgn

 n∑
j=1

wijx
∗
j

 (1 ≤ i ≤ n)

i.e., each update sum Si(x) =
∑

j wijxj has the same sign as xi. This leads to the following.

Fixed point criterion. A state x is a fixed point of the system if, and only if, xiSi(x) > 0

for each i.

As Si(−x) = −Si(x), it follows that if x is a fixed point then so is −x, and vice versa.

Thus, fixed points appear in pairs. It is now naturally of interest to characterize the number

and nature of such equilibria.

4.2.2 Party Structure

In the classical Ising paradigm, the weights {wij , 1 ≤ i < j ≤ n } are independent, standard

normal random variables. We consider a variation on this theme where there is an embedded

party structure with individuals within a party more likely to have a positive influence on

each other, while individuals across party lines tend to have a neutral or negative influence

on each other.

The general setting is as follows. The nodes {1, . . . , n} are partitioned into, say, m

groups G1, . . . , Gm which determine party memberships in a multi-party system. For each

group Gk, the intra-group interaction weights {wij , i < j, (i, j) ∈ Gk ×Gk } form a system

of (positively biased) exchangeable random variables. Likewise, inter-group interaction

weights {wij , (i, j) ∈ Gk ×Gl } form systems of (negatively biased) exchangeable random

variables. The nature of the dynamics is now, of course, determined by the specifics of the

interaction distributions.

We restrict our attention in this chapter to a symmetric two-party system leaving ex-

tensions for elsewhere. In the setting at hand, {G1, G2} is a partition of the nodes into

memberships in two parties. We suppose further that the intra-party distributions are the

same for both parties, that is to say, {wij , i < j, (i, j) ∈ G1 ×G1 or (i, j) ∈ G2 ×G2 } is a
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system of (positively biased) exchangeable random variables, and the inter-party distribu-

tions are complementary, that is to say, the negatives of the inter-party interaction weights

have the same distributions as the intra-party interaction weights. Consequently, if we

define

w̃ij ,


wij i < j, (i, j) ∈ G1 ×G1 or (i, j) ∈ G2 ×G2

−wij i < j, (i, j) ∈ G1 ×G2 or (i, j) ∈ G2 ×G1,

then { w̃ij , i < j } is a system of positively biased exchangeable random variables. Therefore,

the symmetries inherent in the situation permit us to simplify exposition and consider an

equivalent single party system (though it should be borne in mind that these algebraic

simplifications will not be available when there are more than two parties). Next, we briefly

sketch the argument.

4.2.3 Single-Party Isometry

Begin with a two party partition {G1, G2} and an associated symmetric stochastic system

of weights [wij ]. Form a new membership partition {G′1, G′2} by moving one member, say,

k from G2 into G1, G′1 = G1 ∪ {k} and G′2 = G2 \ {k}, associating with the new partition

a new symmetric system of weights [w′ij ] where w′ij = wij if i 6= k and j 6= k, w′kk = wkk,

and w′jk = −wjk for j 6= k, by simply negating the weights of all the interconnections

incident on k. We may now establish an isomorphism between dynamics in the {G1, G2} and

{G′1, G′2} systems by putting states x = (x1, . . . , xn) in the {G1, G2} system into one-to-one

correspondence with states x′ = (x′1, . . . , x
′
n) in the {G′1, G′2} system, where x′ is obtained

from x by setting x′j = xj if j 6= k and x′k = −xk. It is now easy to verify that the update

sums in the two systems starting with states x and x′, respectively, satisfy S′j(x
′) = Sj(x) if

j 6= k and S′k(x
′) = −Sk(x), and so a dynamics x(0) 7→ x(1) 7→ x(2) 7→ · · · in the {G1, G2}

system is exactly mirrored by the dynamics x′(0) 7→ x′(1) 7→ x′(2) 7→ · · · in the {G′1, G′2}

system, the symmetry of the distributions ensuring that all probabilities are preserved.

By iterating the process we end up with a single party system with weights { w̃ij , i < j }

forming an exchangeable system of random variables with a positive bias. The new system is
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stochastically equivalent to the original two party system, the dynamics in the two systems

being isomorphic. The single party formulation provides the greatest transparency in the

statement of the results and the proofs and we assume without comment henceforth that we

are dealing with an equivalent single party system of nodes where the weights { w̃ij , i < j }

form a system of exchangeable random variables. Also for notational purposes, we shall

simply use {wij , i < j } to denote the weights.

4.3 Random Influence Model

The interaction model most closely related to the classical Ising model of Gaussian influences

is to consider a system of independent variables with a drift. And the simplest of these arises

when we have signed Bernoulli influences. Next we formally introduce the random influence

model.

4.3.1 Model Formulation

Suppose 1/2 < p ≤ 1 and let {wij , i < j } be a system of signed Bernoulli trials with success

parameter p: P{wij = 1} = p and P{wij = −1} = 1 − p. [In the equivalent two party

system, the intra-party weights are +1 with probability p (and −1 with probability 1− p)

for both parties, while the inter-party weights are +1 with probability 1− p (and −1 with

probability p). In other words, two nodes are likely to positively influence each other if they

belong to the same party; they are likely to negatively influence each other if they belong to

different parties.] The algebra is simplest if there are no self-interactions, wii = 0, and we

so assume. Extensions of this simple model to varying distributions and self-reinforcement

may be handled by tweaking this basic framework and are provided in Section 4.3.5.
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4.3.2 Main Results

We begin by a characterization of the dominant fixed points in this setting. In view of the

fixed point criterion, we see that, for any given state x ∈ {−1,+1}n,

P{x is a fixed point} = 1−P

(
n⋃
i=1

xiSi(x) ≤ 0

)
.

Write x+ = (1, 1, . . . , 1) for the vector all of whose components are +1 and in increasing

compaction of notation, write Si(x
+) = S+

i for the partial sums corresponding to state x+.

Naturally enough, we expect x+ and x− = −x+ to be fixed points. And this is indeed the

case (in a suitable probabilistic interpretation). Identifying the dependence on n explicitly,

write P+ = P+
n for the probability that x+ is a fixed point.

Theorem 1. Fix any 0 < δ < 1 and suppose

p ≥ 1

2
+

√
log(n/δ)

2(n− 1)
.

Then P+
n ≥ 1 − δ. In particular, if p > 1/2 is bounded away from 1/2, then P+

n → 1 as

n→∞.

Proof. If the system is in state x+ the partial sums are given by

x+
i S

+
i = S+

i =
∑
j 6=i

wijx
+
j =

∑
j 6=i

wij .

The sum on the right represents a random walk with a positive drift. As the signed Bernoulli

variables wij have expectation 2p−1, everything sets up nicely for an application of Hoeffd-

ing’s inequality [48, Theorem 2] (see [88, Section XVI.1] for the particular version considered

here). We hence obtain

P(x+i S
+
i ≤ 0) = P

∑
j 6=i

(wij − (2p− 1)) ≤ −(n− 1) (2p− 1)


≤ exp

(
− (n− 1)2 (2p− 1)2

2(n− 1)

)
= exp

(
−2(n− 1)

(
p− 1

2

)2
)
.
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By Boole’s inequality, it follows that

P

(
n⋃
i=1

(
x+
i S

+
i ≤ 0

))
≤

n∑
i=1

P
(
x+
i S

+
i ≤ 0

)
≤ n. exp

(
−2(n− 1)

(
p− 1

2

)2
)
≤ δ

for the given selection of p.

Our proof shows that the probability that x+, hence also x−, is a fixed point converges

very fast indeed, exponentially in n, to one. In the rest of this chapter we refer to these

states as partisan states. [The corresponding states in the equivalent two party model are

states where all nodes in a party have an identical opinion which is opposed to the common

opinion of the nodes in the other party.]

We can do a little better, the mechanism of proof permitting a characterization of the

region of attraction around the fixed points x+ and x−. The term region of attraction is

a little vague; more precisely, we would like to estimate the probability that a given initial

state x is mapped, eventually, over possibly many asynchronous steps, into, say, the fixed

point x+, and determine for what range of Hamming distances d(x,x+) we obtain a high

probability convergence to the fixed point.

The situation with respect to x+ and x− is symmetric. Suppose, for definiteness, that

an initial state vector x is at Hamming distance 0 < m < n/2 from x+. Write Bm for the

set of all
(
n
m

)
such states x,

Bm = {x : d(x,x+) = m }.

For any x in Bm, let M(x) be the set of m nodes that have different opinions under x and

x+, that is to say,

M(x) = { i : xi 6= x+
i }.

In an expressive terminology, we call these nodes non-conforming. Now, let Si(x) be the
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update sum of node i under state x ∈ Bm,

Si(x) = −
∑

j∈M(x)

wij +
∑

j /∈M(x)

wij .

A preliminary estimate of the probability that all nodes have positive update sum under

state x ∈ Bm sets the stage.

Lemma 4. Fix any m < n/2 and suppose x ∈ Bm. Then

P

(
n⋂
i=1

(Si(x) > 0)

)
≥ 1− n · exp

(
− (n− 1− 2m)2 (2p− 1)

2

2(n− 1)

)
.

Proof. By Boole’s inequality, we see that

P

(
n⋂
i=1

(Si(x) > 0)

)
= 1−P

(
n⋃
i=1

Si(x) ≤ 0

)

≥ 1−
n∑
i=1

P (Si(x) ≤ 0) .

(4.2)

The event {Si(x) ≤ 0} occurs if, and only if,

−
∑

j∈M(x)

wij +
∑

j /∈M(x)

wij ≤ 0. (4.3)

(Bear in mind that wii = 0.) Now first consider a node i ∈ M(x). Then the left side of

Eq. (4.3) is the sum of n − 1 random variables with mean (n + 1 − 2m)(2p − 1). Another

application of Hoeffding’s inequality shows then that

P (Si(x) ≤ 0) ≤ exp

(
−(n+ 1− 2m)2 (2p− 1)2

2(n− 1)

)
[i ∈M(x)]. (4.4)

Next, consider a node i /∈M(x). Then the left side of Eq. (4.3) is the sum of n−1 random

variables with mean (n− 1− 2m)(2p− 1). Hoeffding’s inequality hence shows that

P (Si(x) ≤ 0) ≤ exp

(
−(n− 1− 2m)2 (2p− 1)2

2(n− 1)

)
[i /∈M(x)]. (4.5)

60



Comparing Eq. (4.4) and Eq. (4.5) we see that

P (Si(x) ≤ 0) ≤ exp

(
−(n− 1− 2m)2 (2p− 1)2

2(n− 1)

)
(4.6)

for all i. Substituting the bound on the right into Eq. (4.2) completes the proof.

The introduction of a little notation and terminology helps streamline the results. Fix

0 < p < 1 and on the interval α ∈ [0, 1/2] define the function

f(α) = 2(1− 2α)2(p− 1/2)2 − h(α)

where, with logarithms to base e, h(·) is the binary entropy function (in nats) defined by

h(α) = −α log(α)− (1− α) log(1− α).

The function 2(1 − 2α)2(p − 1/2)2 is decreasing in the interval α ∈ [0, 1/2] while h(α) is

increasing in this interval. It follows that f(α) decreases monotonically from a value of

f(0) = 2(p − 1/2)2 > 0 at α = 0 to a value of f(1/2) = − log 2 < 0 at α = 1/2. By the

intermediate value theorem of calculus, it follows that f has a unique root α0 = α0(p) in

the interior of the interval (0, 1/2) at which f(α0) = 0. Fig. 4.1 shows the dependence of

α0 on p.

Say that a state x lies in the attraction region of the partisan fixed point x+ if, starting

with x as the initial state, the state updates converge, eventually, to the fixed point x+.

Write A+(x) for the event that x is in the attraction region of x+.

Theorem 2. Select any small, positive ε. Fix any 1/2 < p < 1 and any value 0 < α <

α0(p). If x is any state with d(x,x+) ≤ αn, then P(A+
x ) > 1− ε whenever n is sufficiently

large.

Proof. Suppose that the system is at a state x ∈ Bm for some m ≤ αn and the event⋂n
i=1{Si(x) > 0} occurs. Now consider an arbitrary sequence of (asynchronous) opinion

updates according to the update rule specified in Eq. (4.1). Since all of the update sums
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Figure 4.1: Lower-bound on the radius of attraction region for the partisan fixed points as
a function of p.

are positive, the first node to change its opinion is a non-conforming node that becomes

conforming, the update moving the system to a state x′ ∈ Bm−1. At this point we say

that one round of updates has happened, and the system has shrunk one step towards the

(closer) partisan fixed point. We denote by Rx the event that the system moves from a

particular state x ∈ Bm to any state x′ ∈ Bm−1 in one round of updates. It is now clear

that the occurrence of the event
⋂n
i=1{Si(x) > 0} implies the occurrence of Rx and so, by

lemma 4, we obtain

P (Rx) ≥ P

(
n⋂
i=1

{Si(x) > 0}

)
≥ 1 − n · exp

(
−2n

(
1− 2α− 1

n

)2

(p− 1/2)2

)
,

or, what is the same thing,

P (Rcx) ≤ n · exp

(
−2n

(
1− 2α− 1

n

)2

(p− 1/2)2

)
.
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Another deployment of Boole’s inequality shows now that

P

( ⋃
x∈Bm

Rcx

)
≤
(
n

m

)
n · exp

(
−2n

(
1− 2α− 1

n

)2

(p− 1/2)2

)

≤ exp(h(α) · n)√
n

n · exp

(
−2n

(
1− 2α− 1

n

)2

(p− 1/2)2

)

=
√
n · exp

[
n

(
h(α)− 2

(
1− 2α− 1

n

)2

(p− 1/2)2

)]
.

(4.7)

The expression on the right bounds from above the probability that at least one of the

states x ∈ Bm fails to demonstrate the shrink property Rx. One more application of Boole’s

inequality now gives

P

 ⋃
m≤αn

⋃
x∈Bm

Rcx

 ≤ ∑
m≤αn

P

( ⋃
x∈Bm

Rcx

)

≤ n ·P

( ⋃
x∈Bm

Rcx

)
≤ n · n

1
2 . exp(−n · fn(α)), (4.8)

where fn(α) = 2(1− 2α− 1/n)2 (p− 1/2)2 − h(α).

For every choice of 0 < ε ≤ 1, the right side of Eq. (4.8) is strictly less than ε if

3
2 log(n)− log(ε)

n
< fn(α).

Since the left side of this inequality goes to 0 as n grows large, if fn(α) is bounded away

from zero then there exists n(ε) such that for all n ≥ n(ε),

P

 ⋃
m≤αn

⋃
x∈Bm

Rcx

 < ε.

It now remains to be shown that if α < α0 then fn(α) > 0 is bounded away from zero

for n sufficiently large. Arguing as for f(α), we see that fn(α) is strictly decreasing in the

interval 0 ≤ α ≤ 1
2 −

1
2n and goes from fn(0) = 2(1 − 1/n) (p− 1/2)2 > 0 at α = 0 to

fn
(

1
2 −

1
2n

)
< 0 at α = 1

2 −
1

2n . By the intermediate value theorem again, it follows that fn
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has exactly one root α0,n in the interior of the interval
[
0, 1

2 −
1

2n

]
. But fn(α) differs from

f(α) only in a term of order 1/n and, by examination, it is clear that α0,n = α0 +O(n−1). It

follows that if α < α0 then α < α0,n for sufficiently large n and this concludes the proof.

To summarize, the states x+ and x− are fixed points (with high probability) for large

n, each having a large (linear in n) region of attraction. The estimates can be improved

but the results are intuitive (and limiting) and we won’t expend any further effort in this

direction.

4.3.3 Numerical Results

The analysis in Section 4.3.2 formally identifies a high-probability region of attraction to

a partisan fixed point, and establishes the connection between p and the frequency of con-

vergence. We can numerically verify this, and also that the results of Section 4.3.2 are

conservative. For instance, Fig. 4.2 considers sample systems of population n = 30, and

plots the frequency3 of convergence to x+ or x− as the strength of party bias varies in

1/2 < p ≤ 1 and as the initial opinion mix increases from 0 (corresponding to all nodes

having the same opinion, e.g., x+), to 0.5 (corresponding to the maximum opinion mix,

an even split between +1 and −1 opinions). This figure confirms that at any given level

of opinion mix, the frequency of convergence to the partisan fixed points grows with the

strength of party bias, i.e., the probability of a positive edge-weight between members of

the same party, p. In particular, the figure suggests that there exists a threshold interval of

p values above which convergence frequency is very high. A trivial case is obtained when

p = 1; it can be verified (see Section 4.3.4) that at this value a partisan outcome is always

achieved and the system converges quickly4.

The analysis also showed that the probabilistic attraction region grows linearly with n.

The growth of this attraction region with n is depicted through further simulations given in

Fig. 4.3. The figure shows curves that are similar in nature to the right-most cross section

3As measured by simulation over 50, 000 different samples in the probability space.
4In one “round” of updates.
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Figure 4.2: For the Random Influence model, the frequency of convergence to a partisan
state is plotted as a function of the initial dissent δ and the strength of party bias p in a
population of size n = 30. The simulation shows results aggregated over 50,000 random
network initializations for each value of the abscissae δ and p.

of Fig. 4.2 (corresponding to an initial opinion mix close to 0.5), but for four different

population sizes. Specifically, four networks of sizes 30, 100, 400 and 1000 are considered.

As before, edge weights are determined by a Bernoulli variable with success probability

p. Once a specific p value is chosen, we consider 50, 000 different random realizations of

the edge weights each with a random initial state. A random initial state is obtained by

randomly assigning +1 or −1 opinions to the nodes (with probability 1/2). The system

then starts the update process and eventually converges to a fixed point. At that point

we compute the fraction of time that the outcome is one of the partisan fixed points. This

fraction is plotted in Fig. 4.3 for different p values. The figure again illustrates the presence

of a “threshold effect,” where, for moderate population sizes, a partisan outcome rapidly

arises when p exceeds 1/2.
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Figure 4.3: Phase transition to partisan fixed points in the Random Influence model: The
frequency of convergence to a partisan state is plotted as a function of the strength of party
bias p with population size n as a parameter. Each point on the graphs represents the
empirical mean of 50,000 random trials with (randomly chosen) initial states at maximum
dissent.

To summarize, the two partisan fixed points x+ and x− have large probabilistic regions

of attraction that dominate the space of possible states; as n becomes large, this dominance

occurs for smaller values of p. Therefore, as n or p increases, we should see more and

more nodes of the same opinion in each party, the population of nodes holding the majority

opinion growing to potentially span the whole party.

4.3.4 Special Cases

In this section we consider the special case where the probability of a positive edge-weight

between members of the same party is p = 1. As mentioned earlier, In this case we will

show that the partisan outcome is always achieved and the system converges quickly5. As

before and without loss of generality, taking |G1| = n and |G2| = 0 , we have a graph where

5In one “round” of updates.
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all the edge-weights between nodes are +1. As a result, the update sum for any node i is

Si =
n∑
j=1

wij xj =
n∑
j=1

xj , ∀i.

Therefore sgn(Si) is that of the majority opinion6. Hence, node i does not change its

opinion if it is already aligned with that of the majority, and adopts the majority’s opinion

if it is not. The majority opinion is, therefore, unchanged (possibly strengthened), and

the next node’s update proceeds in a similar fashion. This continues until all nodes have

updated their opinion, at which point they all belong to the majority. The final outcome

is a partisan state with every node having the same opinion. This is consistent with our

previous findings.

4.3.5 Generalizations

In this section we consider extensions to the Random Influence model and outline their

effect, with proofs often relegated to the appendices.

Modified edge-weights w

First, an examination of the proofs of Theorems 1 and 2 reveals that both readily extend to

settings where there is self-reinforcement, i.e., wii > 0, and also to settings where the signed

Bernoulli variables wij arise from different Bernoulli processes and hence have different

probabilities.

Specifically, denote Wmin = mini{wii}, where wii is the self-weight of node i and can

be non-zero, and pmin = mini,j{pij}, where we have assumed that every edge-weight wij is

drawn from a different Bernoulli random variable, each with a probability pij of being +1.

A modified version of Theorem 1 can then be obtained (see Appendix B.1), which states

6As before, the case of Si = 0 requires special care.
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that for any 0 < δ < 1,

P+
n ≥ 1− δ, if pmin ≥

1

2
− Wmin

2(n− 1)
+

√
log(n/δ)

2(n− 1)
.

Similarly, Theorem 2 can also be shown to hold after modifying the quantity α0 to now be

the unique solution of f(α, p) = 0, defined as

f(α, p) = 2

[
(1− 2α− 1/n) (pmin − 1/2)− Wmax

2n
− α∆max

]2
+ α log(α) + (1− α) log(1− α) ,

where pmin is as defined before, Wmax = maxi{wii}, and

∆max = max
i

{
max
j
{pij} −min

j
{pij}

}
.

Zealots

Another extension to the basic Random Influence model is one that includes zealot nodes.

Zealots are nodes that put extremely large values on their own opinion and therefore never

change it. They, hence, influence the other nodes without getting influenced by them.

Let the attraction radius of the partisan fixed points in the absence of zealots be αn, and

assume that the total number of zealots in the network is z. Then it can be shown that the

attraction region of the partisan fixed points is at least αn− z.

Independent Group

We consider the presence of a group of independents Ga, in addition to the two parties

G1 and G2. The independents have non-biased affinities towards every other node in the

network, i.e., the interaction weights {wij , i ∈ Ga} between a node i ∈ Ga and any other

node j in the network form a system of signed Bernoulli trials with success parameter

P{wij = 1} = 1/2. In this case the arguments of section 4.2.3 can still be used to merge the

two parties G1 and G2 into one party Gb. However, the model may not be further simplified

and we are left with one biased party Gb and the group of independents. Let the size of the
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Figure 4.4: The fraction of time that the system converges to a meta-partisan fixed point,
from a random, non-biased starting point when 1/2 of the nodes are independents.

biased party be |Gb| = nb and the size of the group of independents be |Ga| = na = n− nb.

In the presence of independents, the partisan states are no longer guaranteed to be fixed

points of the system. This is because we cannot identify the opinions of the independent

nodes with high probability. Therefore, we create a notation to be able to state the results

for the members of the biased party only. Specifically, we define xµ+ as a meta-partisan

state, for which xi = +1, ∀i ∈ Gb. Note that under xµ+ the independent nodes can take any

opinion and therefore there are a total of 2na such meta-partisan states. For a meta-partisan

state, a modified version of Theorem 1 can now be obtained (see Appendix B.2), which states

that, starting from any of the meta-partisan states xµ+, there is a high probability P̂+ that

the system remains within the set of the meta-partisan states indefinitely.

We can also numerically investigate the convergence frequency to the meta-partisan

fixed points in the presence of independents. The results are shown in Fig. 4.3.5 in which

a phase transition is evident, similar to that in Fig. 4.3.
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Graphs with Erdős-Rényi structure

The analysis of Section 4.3.2 was for a fully-connected graph, where all nodes interact with

each other. In this section, we will consider a graph with Erdős-Rényi structure G(n, ρ),

where n is, as before, the number of nodes in the graph (or the number of agents), and an

edge between any two nodes exists independently with a probability ρ > 0. This system can

be thought about as one where wij ∈ {−1, 0, +1}, and it is easy to verify that the single-

party isometry argument of Section 4.2.3 still holds. Hence, we can take the edge-weight

probabilities to be

P{wij = +1} = ρ · p,

P{wij = −1} = ρ · (1− p), and

P{wij = 0} = 1− ρ.

Therefore, if ρ is relatively large (e.g., , a constant arbitrary number, not shrinking with

n), then we can use the above probabilities in the derivations of Section 4.3.2 to obtain

equivalent results.

However, a more careful analysis allows us to do better, obtaining results even if the

ρ , ρn values asymptotically decrease towards 0 as n becomes large. That is what we aim

for in the rest of this section. In particular, we will outline the steps to derive a version of

Theorems 1 for the Erdős-Rényi graph with asymptotically small ρ , ρn. Similar steps can

be taken for obtaining a version of Theorem 2.

Let Ni be the neighborhood set of node i, i.e.,

Ni = {j | wij 6= 0, 1 ≤ j ≤ n},

and denote the size of this neighborhood set by |Ni|. The expected value of |Ni| is ρn. Let

Aε denote the event that |Ni| is in the εn–vicinity of its expected value, where ε = αρ for
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some fixed 0 < α < 1. Therefore,

Aε : −εn ≤ |Ni| − ρn ≤ εn.

We define a function f(α) on 0 < α < 1, as f(α) = c

(
(1 + α) log(1 + α)− α

)
where c is a

constant 0 < c ≤ 1. It is easy to verify that f(α) > 0 on its domain.

We are now set to start with a lemma, which provides a bound on the probability that

Acε, the complement of Aε, occurs.

Lemma 5. The probability that |Ni| lies outside the εn–vicinity of its expected value satisfies

P (Acε) ≤ 2 exp (−nρf(α)) .

Proof. Let I(wij) be an indicator function for existence of the edge wij , i.e.,

I(wij) =


1, if wij 6= 0 (wij exists),

0, if wij = 0 (wij does not exist),

Therefore the expected value of I(wij) is ρ, and we can use Chernoff’s inequality (see [88,

Section XVII.1] to get

P (|Ni| − ρn > εn) = P

∑
j 6=i

I(wij) > nρ (1 + α)


≤ exp

(
−nD

(
ρ(1 + α), ρ

))
,

(4.9)

where D(·, ·) is the relative entropy function between two Bernoulli distributions with the

given success probabilities, and can be written as

D

(
ρ(1 + α), ρ

)
= ρ(1 + α) log(1 + α) + (1− ρ (1 + α)) log

(
1− ρ (1 + α)

1− ρ

)
= (1 + α) log(1 + α) ρ+ (1− (1 + α) ρ) log

(
1− ρ (1 + α)

1− ρ

)
.

(4.10)
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We can write the series expansion for log(·) to get

log

(
1− ρ (1 + α)

1− ρ

)
= − αρ

1− ρ
− α2 ρ2

2 (1− ρ)2
− α3 ρ3

3 (1− ρ)3
− · · · .

Using the expansion in Eq. (4.10) gives

D

(
ρ(1 + α), ρ

)
= (1 + α) log(1 + α) ρ− αρ

1− ρ
+O

(
ρ2
)

= (1 + α) log(1 + α) ρ− αρ+O
(
ρ2
)

> c

(
(1 + α) log(1 + α)− α

)
ρ

= ρ f(α),

where the constant c is chosen appropriately to account for the higher order terms O
(
n2
)
.

Use the above in Eq. (4.9), and similarly compute the probability P (|Ni| − ρn < −εn) to

conclude the proof.

We now provide the steps necessary to obtain a result similar to that of Theorem 1. As

before, we shall start with the partial sums, x+
i S

+
i . If the system is in state x+ the partial

sums are given by

x+
i S

+
i = S+

i =
∑
j∈Ni

wijx
+
j =

∑
j∈Ni

wij .

The sum on the right represents a random walk with a positive drift, and will depend on

the specific value of Ni. Therefore, we condition the rest of the computation on the value
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of Ni.

P(x+
i S

+
i ≤ 0) = P

∑
j∈Ni

wij ≤ 0


= P

∑
j∈Ni

wij ≤ 0

∣∣∣∣∣∣ Aε
×P(Aε) + P

∑
j∈Ni

wij ≤ 0

∣∣∣∣∣∣ Acε
×P(Acε)

≤ P

∑
j∈Ni

wij ≤ 0

∣∣∣∣∣∣ Aε
× 1 + 1×P(Acε)

(4.11)

Where Acε is the complement of the event Aε, and its probability was computed in Lemma 5.

On the other hand, and remembering that ε < ρ, an application of Hoeffding’s inequality

as before gives

P

∑
j∈Ni

wij ≤ 0

∣∣∣∣∣∣ Aε
 ≤ P

∑
j∈Ni

wij ≤ 0

∣∣∣∣∣∣ |Ni| = ρn− εn


≤ exp

(
−2n(ρ− ε)

(
p− 1

2

)2
)
.

(4.12)

Using Eq. (4.12) and Lemma 5 in Eq. (4.11) gives

P(x+
i S

+
i ≤ 0) ≤ exp

(
−2nρ (1− α)

(
p− 1

2

)2
)

+ 2 exp (−nρf(α)) . (4.13)

Now we can, as before, use Boole’s inequality to get

P

(
n⋃
i=1

(
x+
i S

+
i ≤ 0

))
≤

n∑
i=1

P
(
x+
i S

+
i ≤ 0

)
≤ n · exp

(
−2nρ (1− α)

(
p− 1

2

)2
)

+ 2n · exp (−nρf(α)) .

Now we can pick specific values of 0 < α < 1 and obtain suitable asymptotic results.
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4.4 Profile-Based model

The Random Influence model is attractive in its simplicity and elegance, and as shown in

the previous section, results in opinions which conform along party lines. Somewhat more

nuanced and varied opinion formations arise in the profile-based model that we describe

next.

4.4.1 Model Formulation

In the profile-based model each node i has a profile πi = (πi1, . . . , πiκ) ∈ {−1,+1}κ where

each entry in the profile takes a positive (+1) or negative (−1) value based on the node’s

known position regarding one of κ independent topics. The influence weight wij between

two nodes is specified as the inner product of their profiles, i.e.,

wij = πi · πj =
κ∑
k=1

πikπjk.

We suppose that the profile bits are randomly chosen for each node and independently across

nodes. Reusing notation for success probabilities, suppose 1/2 < p < 1. The sequence of

profile bits {πij , 1 ≤ j ≤ κ, 1 ≤ i ≤ n } then constitutes a family of independent, signed

Bernoulli variables with success parameter p: P{πij = +1} = p, P{πij = −1} = 1− p. By

symmetry, the collection of weights {wij , 1 ≤ i < j ≤ n } forms an exchangeable system of

random variables in the de Finetti sense, each weight wij having a positive bias.

Our description is for the equivalent single party formulation of section 4.2.3. In the

two party formulation, the profile bits for members of one party are ±Bernoulli(p) while the

profile bits for members of the other parts are ±Bernoulli(1− p). Thus, if i and j are nodes

in the same party then wij is likely to be positive; if they are from different parties then

wij is likely to be negative. The equivalence between the two formulations is as outlined in

Section 4.2.3.
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Π0 = (−1, −1 − 1)

Π1 = (−1, −1 + 1)

Π2 = (−1, +1 − 1)

Π3 = (−1, +1 + 1)

Π4 = (+1, −1 − 1)

Π5 = (+1, −1 + 1)

Π6 = (+1, +1 − 1)

Π7 = (+1, +1 + 1)

Table 4.1: Profile vectors for κ = 3.

4.4.2 Cluster-Based Analysis

For a profile size of κ, there are 2κ distinct profile types, each associated with distinct profile

vectors, Πν , 0 ≤ ν < 2κ. It is useful to index the profile vectors according to their entries,

such that Πν = 2bν − 11×κ, where bν is the binary vector7 representation of decimal ν,

and 11×κ is the 1× κ vector of all 1s. For instance, the all “−1” profile is denoted by Π0,

and the all “1” profile is denoted by Π2κ−1 . For the case of κ = 3, we have listed all the 2κ

different profile types in table 4.1.

Nodes that have the same profile type can be grouped into what we term a cluster. Let

cluster Cν be the set of all nodes whose profile is equal to Πν . In what follows we show

that nodes in the same cluster always converge to the same opinion. Therefore, given a

partitioning of nodes into clusters, cluster opinions fully describe the state of the system,

so that fixed points only need to be characterized at the cluster level, i.e., what opinion

prevails in each cluster.

Proposition 6. At equilibrium, nodes in a cluster all have the same opinion.

Proof. Let i and j be any two nodes in Cν . Per the fixed point criterion, at equilibrium,

the update sums for i and j satisfy xiSi > 0 and xjSj > 0. Noting that πi = πj = Πν and

7If needed, higher-order zeros are appended on the left to make bν of the length κ.
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using it in the inner product wik = πi · πk, we have

0 < xiSi = xi

n∑
k=1

wikxk

= xi

n∑
k=1

(Πν · πk)xk

= xi
∑
k 6=i, j

(Πν · πk)xk +
(
x2
i + xi xj

)
(Πν ·Πν)

= xi
∑
k 6=i, j

(Πν · πk)xk + κ
(
x2
i + xixj

)
, xiS + κ(xixj + 1),

where S stands for the sum
∑

k 6=i, j (Πν · πk)xk. Likewise,

0 < xjSj = xj
∑
k 6=j, i

(Πν · πk)xk + κ
(
x2
j + xjxi

)
= xjS + κ(xjxi + 1).

Now suppose the proposition is not true, i.e., xixj = −1. Then we replace xixj = −1 and

xj = −xi in the above equations to get xiS > 0 and −xiS > 0. This is a contradiction and

completes the proof.

Let cν denote the size (number of nodes) of cluster Cν and let c be the vector of cluster

sizes, c = (c0, . . . , c2κ−1). Furthermore, write Xν for the common opinion of cluster Cν

and let X be the vector of all cluster opinions X = (X0, . . . , X2κ−1). Then,

Corollary. Given a vector of cluster sizes, cluster opinions fully describe the system at

equilibrium up to a re-labelling of the nodes.

Proof. Consider any specific vector of realized cluster sizes c = (c0, . . . , c2κ−1). We intro-

duce a nominal labelling of nodes, which labels the cν nodes in cluster Cν as
∑ν−1

η=0 cη +

1,
∑ν−1

η=0 cη + 2, . . . ,
∑ν−1

η=0 cη + cν . For this nominal labeling, Proposition 6 states that the

cluster opinions X determine the opinions of all nodes and hence the state of the system.

We shall refer to this state as the nominal state corresponding to c and X. Note, however,
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that for a given combination of cluster sizes c, there are n!/
∏2κ−1
η=0 cη! different permutations

of nodes and therefore labels that realize those cluster sizes. Each such permutation corre-

sponds to a different state, which can, however, be mapped to the corresponding nominal

state simply by relabelling its nodes.

Hence, in the rest of this chapter we only consider the system’s nominal states, which

we simply refer to as states for conciseness. As a result, the state of the system can now

be fully described solely by the vector of cluster opinions X = (X0, . . . , X2κ−1). State X

is stable if all clusters are stable, i.e., their updated opinion equals their current opinion.

The updated opinion of cluster Cν can be obtained considering any of its member nodes.

Specifically,

Lemma 6. A state X is a fixed point if and only if,

Xν = sgn

(
2κ−1∑
ν′=0

(Πν ·Πν′) cν′Xν′

)
, 0 ≤ ν ≤ 2κ − 1.

The stability of a state X is, therefore, determined by the vector of realized cluster sizes

c = (c0, . . . , c2κ−1).

Using a simple combinatorial counting argument, lemma 6 proffers a crude upper bound

of 22κ , the maximum number of cluster–level states, for the number of possible fixed points.

While the bound is not particularly sharp, it is already informative: the number of fixed

points in the profile-based model is bounded. As we shall see, the number of fixed points

is not trivially small nor are they so large (growing with n) that analysis is fruitless. The

number of fixed points falls in the Goldilocks zone of not too many and not too few.

Lemma 7, that follows, shows that the bound 22κ can be improved by considering

symmetries across clusters.

Recall for the νth profile vector that Πν = 2bν − 11×κ, where bν is the binary vector

representation of decimal ν, and 11×κ is the 1× κ vector of all 1s.

Lemma 7. At equilibrium, clusters Cν and C2κ−1−ν have opposite opinions.
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Proof. For the respective profiles Πν and Π2κ−1−ν corresponding to these clusters, we have

Πν + Π2κ−1−ν = 2bν − 11×κ + 2b2κ−1−ν − 11×κ

= 2 (bν + b2κ−1−ν − 11×κ)

= 2 (11×κ − 11×κ) = 0,

and as a result

Πν = −Π2κ−1−ν .

Furthermore, since the system is at equilibrium, updated and current opinions are identical.

Therefore using lemma 6 we have

Xν = sgn

(
2κ−1∑
ν′=0

(Πν ·Πν′) cν′Xν′

)

= − sgn

(
2κ−1∑
ν′=0

(Π2κ−1−ν ·Πν′) cν′Xν′

)

= −X2κ−1−ν .

This concludes the proof.

Lemma 7 establishes that any fixed point is of the form X = [XL,−XL], where XL

is a vector of size 2κ−1 consisting of −1 and +1 entries only. Then we have the following

theorem which is an improvement over the bound 22κ that we previously discussed..

Theorem 3. The number of fixed points is upper-bounded by 22κ−1
.

For a fixed κ, Theorem 3 gives a constant upper-bound on the number of fixed points

which does not depend on the number of nodes n. In the case of κ = 3 this upper bound is

22κ−1
= 16, and those 16 possible fixed points are listed in table 4.2.

As we shall see later, even the bound given in Theorem 3 is not particularly tight; several

of these states may not be feasible fixed points. For instance, a numerical experiment for

the case of κ = 3 shows that the number of realized fixed points is less than 22κ−1
= 16,

and changes with p. The result is shown in Fig. 4.5.
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state index X0 X1 X2 X3 X4 X5 X6 X7

0 −1 −1 −1 −1 +1 +1 +1 +1

1 +1 −1 −1 −1 +1 +1 +1 −1

2 −1 +1 −1 −1 +1 +1 −1 +1

3 +1 +1 −1 −1 +1 +1 −1 −1

4 −1 −1 +1 −1 +1 −1 +1 +1

5 +1 −1 +1 −1 +1 −1 +1 −1

6 −1 +1 +1 −1 +1 −1 −1 +1

7 +1 +1 +1 −1 +1 −1 −1 −1

8 −1 −1 −1 +1 −1 +1 +1 +1

9 +1 −1 −1 +1 −1 +1 +1 −1

10 −1 +1 −1 +1 −1 +1 −1 +1

11 +1 +1 −1 +1 −1 +1 −1 −1

12 −1 −1 +1 +1 −1 −1 +1 +1

13 +1 −1 +1 +1 −1 −1 +1 −1

14 −1 +1 +1 +1 −1 −1 −1 +1

15 +1 +1 +1 +1 −1 −1 −1 −1

Table 4.2: Opinions of different clusters (opinion Xν corresponds to to cluster Cν) under
all 16 potential fixed points (indexed 0 to 15) for κ = 3

As per Lemma 6, whether a specific state is a fixed point depends on the particular

realization of the cluster sizes c, which are stochastic values. However, in the following we

establish that with probability approaching 1, expected values of cluster sizes are sufficient

to characterize feasible fixed points.

4.4.3 Concentration at the Cluster Level

In this section we first compute the expected sizes of the clusters, then we will show that

these expected values can be used to characterize feasible fixed points.

Since the probability distribution of every profile entry is known, the probability µν that

a node profile is of a certain type Πν can be readily computed. For κ = 3, for example,8

µ0 = q3 and µ1 = q2p, where q = 1− p. Expected cluster sizes can now be easily computed

8 Considering the single-party equivalent model.
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(a) n = 400 and p = 0.8 (b) n = 2000 and p = 0.8 (c) n = 100 and p = 0.9

Figure 4.5: Probability mass function of the number of observed fixed points for κ = 3.

as follows.

Let Ij(Π) be an indicator random variable which takes value +1 if πj = Π, and 0 if

πj 6= Π. It is clear that E (Ij(Πν)) = µν . Furthermore, the size cν of cluster Cν can be

written in the form

cν = |Cν | =
n∑
j=1

Ij(Πν). (4.14)

By additivity, the expected cluster size is hence given by

E(cν) =
n∑
j=1

E (Ij(Πν)) =
n∑
j=1

µν = nµν .

In any realization of the profile vectors, cluster sizes will vary around these expected

values, and these variations can conceivably affect the set of possible fixed points. Fig. 4.5

illustrates this by plotting the distribution of the number of fixed points obtained across

a set of 10, 000 realizations for κ = 3 and different combinations of n and p. We see that

while, as expected, the upper bound of 16 holds, the number of observed fixed points varies

as a function of p. More interesting though is the fact that as n increases for a constant

p (Fig. 4.5a and Fig. 4.5b), the number of observed fixed points appears to concentrate

on fewer values. We formalize this insight next, starting with a lemma that bounds the

probability of cluster size variations around their mean value.
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Lemma 8. The fractional cluster size cν/n is concentrated at its mean value µν . Specifi-

cally: fix any ε > 0. Then

P
(∣∣∣cν
n
− µν

∣∣∣ ≤ ε) ≥ 1− 2 exp
(
−2nε2

)
.

Proof. Start from Eq. (4.14) and note that since the profiles πj and πj′ of nodes j 6= j′ are

independent of one another, Ij(Πν) and Ij′(Πν) are also independent for any ν. Therefore

Eq. (4.14) expresses cν as the sum of n independent random variables, each of which satisfies

Ij(Πν) ∈ {0, 1}. This allows for an application of Hoeffding’s inequality (Theorem 1 of [48]),

which gives

P
(cν
n
− µν ≥ ε

)
≤ exp

(
−2nε2

)
and

P
(cν
n
− µν ≤ −ε

)
≤ exp

(
−2nε2

)
.

An application of Boole’s inequality shows hence that

P
(∣∣∣cν
n
− µν

∣∣∣ ≥ ε) ≤ 2 exp
(
−2nε2

)
.

Taking the complement of both sides finishes the proof.

Now that we know cν/n is close to µν , we will show that for identifying the possible

outcomes it typically suffices to only investigate the expected value of cluster sizes, nµν , or

the expected fractional size, µν .

To facilitate the statement of the result and its derivation, we define an update sum Sν

for cluster Cν based on lemma 6. Specifically,

Sν ,
2κ−1∑
ν′=0

(Πν ·Πν′)

κ

cν′

n
Xν′ . (4.15)

We have scaled Sν by a factor κ · n > 0 from the expression in lemma 6, which does not

change its sign and therefore does not change any of the update decisions. Note that the
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expected value of the term
cν′
n on the right is µν which is a function of p, the probability

that a profile entry is positive. Therefore, taking the expected values from both sides of

this equation, shows that the expected value Sν of the update sum is a function of state X

as also of p, and it will be useful to take explicit note of this by writing Sν = Sν(X, p). It

will also be convenient to define

σ(p) , min
0≤ν≤2κ−1

X∈{−1,+1}2κ

∣∣Sν(X, p)
∣∣ .

Theorem 4. For any p such that σ(p) > 0, the probability Qn that the set of fixed points

of the system under actual cluster sizes cν is the same as that under expected cluster sizes

nµν is bounded from below by

Qn ≥ 1− 2κ+1 exp

(
−n
(
σ(p)

2κ

)2
)
.

In particular, Qn → 1 as n→∞.

Proof. In the proof of Lemma 8 we saw that the probability that any of the cν values lies

outside [µν − ε, µν + ε] is bounded by 2 exp
(
−2nε2

)
. By Boole’s inequality we see that

the probability that at least one of the cν values lies outside that interval is bounded by

2κ × 2 exp
(
−2nε2

)
. Taking complements we obtain

P

(⋂
ν

{∣∣∣cν
n
− µν

∣∣∣ ≤ ε}) ≥ 1− 2κ+1 exp
(
−2nε2

)
.

Now consider Eq. (4.15), and note that replacing
cν′
n with µν′ can introduce an error of at

most ε to each term in the sum and at most ε2κ to the total sum. Therefore

P

(⋂
ν

{∣∣Sν − Sν∣∣ ≤ ε2κ}) ≥ 1− 2κ+1 exp
(
−2nε2

)
. (4.16)
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If σ(p) 6= 0, then we can pick ε < σ(p)
2κ , e.g., ε = σ(p)

2κ+1/2 and Eq. (4.16) becomes

P

(⋂
ν

{∣∣Sν − Sν∣∣ ≤ σ(p)
})
≥ P

(⋂
ν

{∣∣Sν − Sν∣∣ ≤ ε2κ})

≥ 1− 2κ+1 exp

(
−n
(
σ(p)

2κ

)2
)
.

But
∣∣Sν − Sν∣∣ ≤ σ(p) means that Sν and Sν have the same sign. Since the sign of the

update sums determines the dynamics of the system, this concludes the proof.

Note that at any point p such that σ(p) = 0 the condition of Theorem 4 does not

hold. However, the zeros of σ(p) are determined by the zeros of the constituent polynomials

comprising the update sums and so are finite in number by the pigeonhole principle. It

follows that σ(p) is strictly positive except at a finite set of p values.

Corollary. Except for a finite set of p values, the set of fixed points in a profile-based

network with random cluster sizes is, with probability approaching one as n→∞, the same

as that for a deterministic profile-based network with cluster sizes fixed at their expected

values.

As a result of Theorem 4 and the corollary, we can describe the fixed points of the

profile-based model in a compact way. In the following we formulate an explicit matrix

equation for these fixed points. As before, let Πi, i = 0, ..., 2κ − 1, be the ith profile type

of length κ. Then we can represent the system by a graph of 2κ nodes, where each node

represents a cluster. The influence of cluster j on cluster i is determined by the combined

effect of the expected size µj of cluster j together with the inner product (Πj ·Πi). These

effects are lumped into the weighted edge from j to i which we denote by

aij = µj (Πj ·Πi) , i, j = 0, ..., 2κ − 1.
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The adjacency matrix A = [aij ] for the graph of clusters can now be written in the form



κpκ p(κ−1)qΠ1 ·Π0 p(κ−2)q2Π2 ·Π0 . . .

pκΠ0 ·Π1 κp(κ−1)q . . .

...
...

. . .

pκΠ0 ·Π2κ−1 . . .


whence the fixed points of the system are the solution to the system of simultaneous equa-

tions specified by

sgn(AX) = X,

where X is the vector of cluster opinions, and the signum operation applied to a vector is

to be interpreted component-wise. Note that as per the Corollary of Proposition 6, this

equation describes the nominal fixed points of the system, not the specific node opinions.

We solved the above system of equations for different values of of κ and p, and the

result is reported in what follows. Specifically, Table 4.3 is for a profile size of κ = 3, and

determines, for all of the states previously given in Table 4.2, whether or not the state is

a fixed point, and if so, for what values of p. We classify the fixed points of Table 4.3

according to the size of the p interval in which the fixed point is feasible, or persists. As

such, we name the states 1, 2, 4, 11, 13 and 14 the “weakly persistent” fixed points. States

0, 3, 5, 10, 12 and 15 are the “moderately persistent” fixed points, and finally the “strongly

persistent” fixed points are states 7 and 8.

A distinguishing aspect of the profile-based model is that dissent from the majority

position is present in all three types of fixed points. This is made precise in the following

Theorem 5. For profiles of size κ = 3, the number of dissenting nodes is of order n for

all three types of fixed points. More precisely, if p represents the strength of party bias and

q = 1 − p, then the fraction of dissenting nodes is, with probability approaching one as

n → ∞, equal to q3 + 2qp2 + q2p, q3 + 2q2p + qp2, and q3 + 3q2p, for weakly persistent,

moderately persistent, and strongly persistent fixed points, respectively.
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state index p ∈ (0.5, 0.78) p ∈ (0.78, 0.86) p ∈ (0.86, 1)

0 feasible feasible

1 feasible

2 feasible

3 feasible feasible

4 feasible

5 feasible feasible

6

7 feasible feasible feasible

8 feasible feasible feasible

9

10 feasible feasible

11 feasible

12 feasible feasible

13 feasible

14 feasible

15 feasible feasible

Table 4.3: Feasibility range for each of the fixed points (for κ = 3)

The proof requires nothing more than a careful tabulation of the sizes of dissenting

clusters for fixed points of each type; we provide the details in the Appendix.

Fig. 4.6 illustrates Theorem 5 by showing the extent of intra-party dissent for each of the

three types of fixed points. While intra-party dissent is most pronounced in the ephemeral

fixed points it is present even in the strongly persistent fixed points: the departure from

unanimity persists, albeit as an irritating minority to a partisan majority, at any level of

bias short of certainty.

Fig. 4.7 plots the number of fixed points for three different values of κ. As expected

from Theorem 6 for κ = 3 and κ = 5, when p gets sufficiently close to 1 only two fixed

points remain feasible. In the case of the even number κ = 4, however, the number of fixed

points never drops to 2. This is because, again by Theorem 6, there are some clusters that

are not forced to change their opinions, and therefore they maintain some level of diversity.

The behaviors in figures 4.7a and 4.7b show a monotone decrease of number of fixed

85



Figure 4.6: Intra-party dissent at equilibria when interactions are based on biased profiles.
The relative size of the dissenting minority within the parties is plotted as a function of the
strength of party bias p for each of the three fixed point classifications in the case of profiles
of size κ = 3. (a) Weakly persistent fixed points. (b) Moderately persistent fixed points.
(c) Strongly persistent fixed points.

points as p increases. This could suggest that as p becomes larger, the increasing disparity

in cluster sizes results in elimination of fixed points. While this intuition is valid for small

κ, it does get violated as κ becomes larger and the interactions become more complicated.

For instance, Fig. 4.7c gives evidence for a counter example where there is a rise in the

number of fixed points at a specific p value. The presence of such instances was analytically

and numerically verified.

In the rest of this section we compute the number of fixed points for p values close to

1, and show that for such p values the cluster sizes become so disproportionate that the

diversity in opinions gets eliminated. In particular, when p is sufficiently large, the opinions

of most clusters at equilibrium will be determined be the opinion of one dominant cluster.

Let C(λ) denote a cluster whose profile has exactly λ entries that are +1 (and, hence,

κ− λ entries that are −1).

Theorem 6. There exists p∗ < 1 such that for all p in the interval p∗ ≤ p < 1, and with

probability approaching 1 as n grows large, the opinion of any cluster C(λ) agrees with that
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(a) κ = 3 (b) κ = 4 (c) κ = 5

Figure 4.7: The expected number of fixed points in the profile-based model. As seen in (c),
this number is not monotone in p.

of C(κ) if λ > κ/2 and disagrees with that of C(κ) if λ < κ/2. Moreover, the opinions of

clusters of type C(κ/2) are unaffected9 by the ensemble of clusters of other types.

Proof. The expected size of (the only) C(κ) is pκ which eventually outgrows that of all other

clusters combined, as p approaches 1. Since any cluster with λ < κ/2 or λ > κ/2 has a

non-zero edge-weight to C(κ), this cluster contributes a dominant effect and determines the

opinion of C(λ), either positively or negatively, based on the sign of their edge-weight. The

proof for C(κ/2) is in appendix B.3.

Based on Theorem 6, while the opinion of cluster C(κ) determines that of clusters with

λ > κ/2 and λ < κ/2 entries taking value +1 in their profiles, it does not determine the

opinions of clusters with λ = κ/2. The latter are centric clusters that have exactly κ/2

entries of +1 in their profiles and are only present when κ is an even number. This is

because the centric clusters incur an overall zero influence from the outside world if p is

large enough. Consequently, those clusters can decide independently of the rest of the

network.

9 Only for even κ. Also, when the cluster sizes are not exactly the expected values, the outside effect on
clusters of type C(κ/2) is non-zero but negligible.
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Figure 4.8: Convergence to fixed points of different types for the Profile-based model: The
frequency of convergence to each of the three types of fixed points is plotted as a function of
the initial dissent δ and the strength of party bias p when κ = 3. Each point was obtained
by aggregating 50,000 random initializations in a population of size n = 100. (A) Weakly
persistent fixed points. (B) Moderately persistent fixed points. (C) Strongly persistent
fixed points.

4.4.4 Numerical Results

In this section we use numerical experiments to observe the convergence frequency to, and

attraction region of, each of the three types of fixed points that we earlier identified for

κ = 3.

Fig. 4.8 sheds more light on the convergence rate to the three types of fixed points

for κ = 3. While the strongly persistent fixed points become more dominant as the party

bias increases, the ephemeral (weakly and moderately persistent) fixed points have a non-

negligible influence when the bias is small. (Figs. 4.6 and 4.8 in tandem clarify the relation

between the initial and final levels of dissent.)

Note that Fig. 4.8 may not be very informative about the attraction regions of the fixed

points. Such a plot is given in Fig. 4.9, where the axes measure the distance from the

specified fixed points, rather than measuring the initial dissent.

4.4.5 Special Cases

In this subsection, we analyze the system for some special cases of profile length. In the

event that a manual analysis becomes too lengthy to perform, we have used computational

tools to facilitate the solution. Proofs are in appendix B.4.
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(a) A weakly persistent equi-
librium

(b) A moderately persistent
equilibrium

(c) A strongly persistent
equilibrium

Figure 4.9: Statistical attraction region for the three types of fixed points when κ = 3.
Each point was obtained by aggregating 1,000 random initializations in a population of size
n = 100.

Proposition 7. Profile of size 1. For any network size n, the profile-based model with

profile size κ = 1 has exactly two stochastic fixed points. Note that when κ = 1, the profile

vector πi is just a scalar.

The case κ =∞ presents another extreme of profile size.

Proposition 8. Profile of size ∞. Suppose κ = κn grows sufficiently rapidly with n so that

κn =
2n2

(4p2 − 4p+ 1)2 (log(n) + log(n+ 1)).

Then with probability tending to one as n→∞, the only fixed points are the pair of partisan

fixed points x+ and x−.

A very large historical record captured in the profile has the effect of smoothing out all

the wrinkles in the dynamics and collapsing the fixed points to two.

Note that while both κ = 1 and κ =∞ result in only two fixed points, the compositions

of these fixed points are very different—stochastic in one case, deterministic in the other.

As κ grows from 1 to ∞, the nature of the fixed points changes gradually and a range of

diverse and interesting possibilities appear for finite κ values. Next we consider a few finite

κ values.
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Πa = (+1, +1)

Πb = (−1, −1)

Πc = (+1, −1)

Πd = (−1, +1)

Table 4.4: Profile types for κ = 2

Profile of size 2.

If κ = 2, any profile is one of the four types given in Table 4.4, where we have labeled

them with indices a, b, c and d. Nodes with types a and b behave regardless of nodes with

types c and d, and vice versa. This is because those profiles have an inner product of zero

which results in zero edge-weight. As a result, nodes with types a and b will behave similar

to the κ = 1 case, demonstrating two different outcomes. Similarly, nodes with types c and

d will demonstrate two different outcomes. Overall, the results are independent of the value

of p; we obtain four different fixed points which are determined stochastically, i.e., based

on the specific initialization of profile values.

4.4.6 Generalizations

In this section we consider extensions to the Profile-based model and outline their effect,

with proofs often relegated to the appendices.

Modified Probability for Profile Entries

Since each profile entry of a node reflects the node’s position on one of κ independent topics,

a natural extension to this section’s model is obtained by assuming different probability

distributions for each of the κ profile bits. For example, consider that for any node i the entry

k of the profile is a signed Bernoulli variable with success parameter pk: P{πik = +1} = pk,

P{πik = −1} = 1− pk. Under this modification, it can be shown that the relative sizes of

the clusters change, but the results still hold.
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Zealots

Inclusion of zealots in the profile-based model is more challenging than it is in the Random

Influence model. In particular, assessing the effect of zealots depends not only on how they

are distributed across clusters, but it is also rendered more difficult by the fact that their

presence invalidates Proposition 6. Hence, unlike the Random Influence model, we are not

able to incorporate the zealots in the profile-based model.

Independent Group

An extension to the profile-based model is one in which there is a group of independent

nodes. For these nodes, each profile bit is chosen randomly with probability 1/2. The

presence of such a population changes the cluster sizes and hence by lemma 6 changes the

fixed points of the system. Although a very large independent population can considerably

change the count of fixed points seen in Fig. 4.7, the general results of this section hold

even in the presence of independents.

Graphs with Erdős-Rényi structure

Introducing an Erdős-Rényi graph structure for the profile-based model is challenging, as

such a structure conflicts with the native structure that exists in the profile-based model,

and modifies important aspects of the current model that our analysis relied upon. The

reason for the conflict, is that the current profile-based model has a type of structure that is

natively implemented. For instance, if the inner product of the profiles between two nodes

is zero, then the two nodes do not influence each other. This is somewhat similar to the

disconnection effect that an Erdős-Rényi graph brought to the Random Influence model.

The native structure of the profile-based model goes beyond the first order mutual

interactions, and as shown in Appendix B.3, there can be relatively large clusters that are

wholly (in effect) disconnected from the rest of the graph.
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4.5 Conclusion

To summarize, when interactions are directly influenced by party biases then, even for the

slightest of biases, p = 1/2 + ε, if the population is large enough, the two partisan states

dominate the space: even high levels of initial dissent are quickly extinguished and opinions

converge to one of the partisan fixed points.

The mere fact of party membership, however tenuous, is sufficient to drive a tendency

of the party to cohere. There is a marked tendency to unanimity within parties if the

influence of party affiliation on interactions is direct. However, dissent is enabled when the

influence of party affiliation is indirect. Other sociological factors, of course, will modulate

this tendency to cohere but the existence of such a strong driving force based on party

membership alone explicates a fundamental mechanism at work in the dynamics of opinion

formation in a precise and quantifiable way.

When the interactions are indirectly influenced by party biases, there is more variety

in the outcomes. The lessons that we draw from the relatively small profile of κ = 3 carry

over to larger values of κ though the complexity of the fixed point structure ineluctably

increases as shown in Fig. 4.7. The following features hold in general: (i) Small party biases

lead to the most unconstrained systems characterized by a bounded number of possible

stable opinion mixes. (ii) As the bias p increases the possible behaviors are generally more

constrained and in the limit of large p the behavior is dictated by a few dominant fixed

points. (iii) All fixed points contain minority dissenting positions though the dissenting

fraction is small if the party bias is large.

Extensions to many parties, varying strengths of party influences, the presence of inde-

pendents and zealots, self-reinforcement, and localized interactions where considered, which,

often follow readily without a significant change in the essential nature of the results.
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Appendix A

Extras for UPC models

A.1 Discrete Dynamics

In this section we propose a discrete dynamic platform and formally describe how the

equilibria of the UPC system are determined over this platform. With Eq. (3.5) in place, it

is possible to investigate the dynamics of user adoption over time. We formulate a discrete-

time model that evaluates user adoption decisions at successive epochs. For simplicity1,

at epoch (n + 1) all users are assumed to know the system state produced by adoption

decisions at epoch n. Users with a non-negative utility then proceed to adopt. Specifically,

the utility at epoch (n+ 1), Un+1(Θ, θ), of a user with roaming value θ is given by

Un+1(Θ, θ) = γ − cmn + θ (r xn − γ)− p(Θ, θ) , (A.1)

where xn and mn are the adoption level and volume of roaming traffic produced by adoption

decisions at epoch n.

Using Eq. (A.1) and denoting H(x) ≡ xn+1 as a function of x ≡ xn, we can characterize

the evolution of H(x) and identify adoption equilibria. Equilibria can be interior equilibria,

i.e., correspond to x ∈ (0, 1), or boundary equilibria, i.e., associated with x = 0 or x = 1.

1Numerical results confirm that a more realistic, diffusion-based adoption model produces similar results.
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Interior equilibria satisfy the equation

H(x) = x . (A.2)

Boundary equilibria need not satisfy Eq. (A.2) and instead verify either xn = 0 ≥ xn+1 or

xn = 1 ≤ xn+1.

(a) γ = 0.8, e = 0.75, c = 0.6, b =
0, r = 1.6. In this case, the optimal
value is achieved at x = 1 (Correspond-
ing to the dark solid-colored region in
Fig. 3.1).

(b) γ = 1.3, e = 1.145, c = 0.6, b =
0, r = 1.6. In this case, the optimal
value is achieved at x ≈ 0.14 (Corre-
sponding to the gradient-colored region
in Fig. 3.1).

Figure A.1: System’s total value as a function of x for different sets of parameters.

A.2 Derivations for the Optimal Total Welfare

Section 3.3.2 identified the optimal total welfare for a given adoption level x as

V ∗(x) =


r−c

2 x3 − γ
2x

2 + (γ − e)x if x < γ
r−c

− r−c
2 x3 + (γ2 + r − c)x2 − ex if x ≥ γ

r−c ·
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Denote the above two expressions by V ∗1 (x) and V ∗2 (x) for x < γ
r−c and x ≥ γ

r−c , respectively

(shown in Fig. A.1a as dashed line and solid line, respectively).

Finding the maximum welfare is done in two steps. We first compute the maximum of

each function V ∗1 (x) and V ∗2 (x), and then find the global maximum by comparing the two

local maxima.

A.2.1 Maximum of V ∗1 (x)

For easy reference, we repeat the expression of V ∗1 (x) here.

V ∗1 (x) =
r − c

2
x3 − γ

2
x2 + (γ − e)x , x <

γ

r − c
.

It is easy to find the roots of this expression as


x = 0

x =
γ
2
±
√
γ2

4
−2(γ−e)(r−c)
r−c ,

(A.3)

if they exist (are real numbers). Also its derivative is

∂V ∗1 (x)

∂x
=

3

2
(r − c)x2 − γx+ γ − e, (A.4)

and the two roots of
∂V ∗1 (x)
∂x are given by


x11 =

γ−
√
γ2−6(γ−e)(r−c)

3(r−c)

x12 =
γ+
√
γ2−6(γ−e)(r−c)

3(r−c) ·
(A.5)

In order to find the maximum total welfare in x < γ
r−c regime, we take a step-by-step

approach, with each step expressed in a lemma.

Lemma 9. if e ≥ γ, then V ∗1 (x) ≤ 0 for all values of x ∈ [0, γ
r−c ].

Proof. First assume that e > γ. From Eq. (A.3) and since r − c > 0, the condition e > γ
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guarantees that V ∗1 (x) has indeed three roots, x1 < 0, x2 = 0 and x3 >
γ
r−c . On the other

hand, at x = 0 the derivative of V ∗1 (x) is g−e < 0. Therefore V ∗1 (x) goes from 0 to negative

values for x > 0, and may not become non-negative again until its next root at x3 >
γ
r−c .

Moreover, if e = γ, then the three roots of Eq. (A.3) are x1 = 0, x2 = 0, and x3 = γ
r−c .

At x = 0 the second derivative of V ∗1 (x) is −γ. Therefore, as before, V ∗1 (x) goes from 0 to

negative values for x > 0, and may not become non-negative again until its next root at

x = γ
r−c .

This lemma shows that total welfare is not positive for x < γ
r−c if e ≥ γ. We next look

at the case where e < γ.

Lemma 10. If e < γ, then the maximum of V ∗1 (x) over values of x ∈ [0, γ
r−c ] happens at

either x = x11 (if it is real) or x = γ/(r − c).

Proof. If e < γ it can be easily verified that x11 > 0 and x12 <
2γ

3(r−c) < γ/(r − c) (if they

are real). Since V ∗1 (x) is an increasing function of x except for x11 < x < x12, the desired

result follows.

consequently, we deduce that if x11 and x12 are imaginary, then the maximum of V ∗1 (x)

over values of x ∈ [0, γ
r−c ] happens at x = γ/(r − c). More precisely, if e satisfies

f3 : e < γ − γ2

6(r − c)
, (A.6)

then the maximum of V ∗1 (x) over values of x ∈ [0, γ
r−c ] happens at x = γ/(r − c).

A.2.2 Maximum of V ∗2 (x)

For easy reference, we repeat the expression of V ∗2 (x) here.

V ∗2 (x) = −r − c
2

x3 + (
γ

2
+ r − c)x2 − ex , x ≥ γ

r − c
.
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It is easy to find the roots of this expression as


x = 0

x =
γ
2

+r−c∓
√

(γ/2+r−c)2−2e(r−c)
r−c ,

(A.7)

if they exist (are real numbers). Also its derivative is

∂V ∗2 (x)

∂x
= −3

2
(r − c)x2 + (γ + 2r − 2c)x− e. (A.8)

We now have the following lemma.

Lemma 11. If the roots of
∂V ∗2 (x)
∂x are imaginary, then V ∗2 (x) is always negative on its

domain.

Proof. If the roots are not real then the expression for derivative always has the same sign

as of its first coefficient, −3
2(r − c). Since r − c > 0, then the derivative is always negative,

and therefore V ∗2 (x) is a decreasing function of x. On the other hand, since V ∗2 (x = 0) = 0,

therefore V ∗2 (x) < 0, ∀x ∈ [γ/(r − c), 1).

The two roots of
∂V ∗2 (x)
∂x are given by


x21 =

γ+2r−2c−
√

(γ+2r−2c)2−6e(r−c)
3(r−c)

x22 =
γ+2r−2c+

√
(γ+2r−2c)2−6e(r−c)
3(r−c) ·

(A.9)

By algebraic manipulation we can show that these two roots are imaginary if and only if γ

satisfies

−2(r − c)−
√

6e(r − c) < γ < −2(r − c) +
√

6e(r − c).

But the first inequality is always satisfied by positivity of γ. Therefore the roots in Eq. (A.9)

are imaginary if and only if γ satisfies

γ < −2(r − c) +
√

6e(r − c),
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or equivalently the roots in Eq. (A.9) are real if and only if γ satisfies

f2 : γ ≥ −2(r − c) +
√

6e(r − c), (A.10)

which, by lemma 11 is required for positivity of V ∗2 (x).

Now, lets see what happens when Eq. (A.10) is satisfied and therefore the roots of

∂V ∗2 (x)
∂x are real. Since r − c > 0, the derivative is always negative except in between its

roots. Then note that as for the smaller root, x21 > 0. So
∂V ∗2 (x)
∂x < 0 at a neighborhood

of x = 0 and therefore V ∗2 (x) is decreasing until a value larger than x = 0. After that,

V ∗2 (x) starts increasing again until x = x22 where it again starts to decrease and continues

to decrease indefinitely. Considering that V ∗2 (x = 0) = 0, we deduce that if V ∗2 (x) has a

positive maximum in x ∈ [γ/(r− c), 1) then it happens at min{1, x22}. On the other hand,

and considering that [γ/(r− c), 1) is only non-empty if γ ≤ r− c, we can perform algebraic

manipulations to show that in its valid domain, x22 < 1 if and only if e > γ + (r − c)/2.

Therefore, for all values of

f1 : γ ≥ e− (r − c)/2, (A.11)

the maximum of V ∗2 (x) happens at x = 1 or x = 0, and is the bigger of r−c+γ
2 − e or 0,

respectively.

As mentioned before, we finally compare the maxima of V ∗1 (x) and V ∗2 (x) for the common

parameter ranges. For instance, when Eq. (A.6) is satisfied, it can be shown that Eq. (A.11)

is also satisfied, and the bigger of the two maxima happens at x = 1. Completing the steps

and using numerical comparisons when necessary, results in Fig. 3.1.

A.3 Derivations for Hybrid Usage-Based Policy

Section 3.6 presented the hybrid usage-based pricing policy that combines a fixed price for

home connectivity, and a usage-based price for connectivity while roaming.
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Also, Lemma 2 provided conditions under which full adoption x = 1 is an equilibrium.

However, that Lemma did not guarantee the uniqueness of x = 1 equilibrium. Indeed, the

progression of adoption levels towards x = 1 can stall before full adoption is reached. We

explore next when this arises (assuming that the conditions of Lemma 2 hold).

A.3.1 Condition for uniqueness of x = 1 equilibrium

Consider a scenario where not all users have positive utility when coverage is low, so that

only a subset Θ 6= [0, 1] of users initially adopt. This initial adoption triggers other users to

re-evaluate their utility U(Θ, θ), which then determines a new set of adopters Θnew, such

that Θnew = { θ | U(Θ, θ) > 0 }. Basic algebraic manipulation yields that Θnew comprises

either all users (if x(δr+γ)−γ ≥ 0), or users that verify θ < c/2−cm+δh
γ−x(δr+γ) (if x(δr+γ)−γ < 0),

where x and m are determined by the (old) set of adopters Θ. This implies that for any

adoption level x, 0 ≤ x ≤ 1, the set Θ of adopters is [0, x]. Using Eq. (3.3), this set yields a

roaming traffic of the form m = x2

2 , which using Eq. (3.20) characterizes the utility of user

θ as

U(Θ, θ) =
c

2
(1− x2) + δh + θ(x(δr + γ)− γ).

Consequently, the new level of adoption xnew = |Θnew| can be expressed as a function

of the previous level x. Letting H(x) , xnew and solving for U(Θ, θ) > 0 gives2

H(x) =


c/2(1−x2)+δh
γ−x(δr+γ) if x(δr + γ)− γ < 0

1 if x(δr + γ)− γ ≥ 0·

Adoption equilibria satisfy H(x) = x, and can, therefore, be characterized by solving this

equation. It can be shown that

Lemma 12. when the conditions of Lemma 2 hold, x = 1 is the unique equilibrium if and

2For notational simplicity, we omit the constraints which ensure that like x,H(x) is lower-bounded by 0
and upper-bounded by 1.
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only if γ satisfies

γ < c+ 2δh + 2
√

(c/2 + δh)(δr + δh).

Proof. It is easy to see that the second expression for H(x) satisfies H(x) = x only at x = 1,

and therefore if there are any equilibria at x < 1, they must satisfy H(x) = x for the first

expression of H(x), i.e.,

H1(x) ,
c/2(1− x2) + δh
γ − x(δr + γ)

= x for x(δr + γ)− γ < 0.

We first show that if γ satisfies the condition of the Lemma, then no such equilibria may

exist at x < 1.

Basic algebraic manipulation turns the above equation into

Q(x) , (γ + δr − c/2)x2 − γx+ c/2 + δh = 0,

which is a quadratic equation in x and for simplicity we denote it by Q(x) = 0. We then

compute the discriminant for this equation as

∆x = γ2 − 4(c/2 + δh)(γ + δr − c/2)

= γ2 − γ(2c+ 4δh)− 4(c/2 + δh)(δr − c/2),

which, in turn, is a quadratic polynomial in γ. The roots of the discriminant are

γ1 = c+ 2δh − 2
√

(c/2 + δh)(δr + δh) and

γ2 = c+ 2δh + 2
√

(c/2 + δh)(δr + δh)

and the discriminant is negative for γ values in the range (γ1, γ2).

Now consider one such γ value in the range (γ1, γ2), which is arbitrarily close to γ2, i.e.,
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γ = γ2 − ε for an arbitrarily small ε > 0. Therefore, the coefficient of x2 in Q(x) becomes

γ + δr − c/2 =
(
c+ 2δh + 2

√
(c/2 + δh)(δr + δh)− ε

)
+ δr − c/2

= c/2 + (δh + δr) + δh + 2
√

(c/2 + δh)(δr + δh)− ε,

which is guaranteed to be positive if ε is chosen small enough, e.g., ε = (δh + δr)/2. (Note

that −ε is the only negative term in this expression.) On the other hand, by the previous

discussion, ∆x is negative at γ = γ2 − ε. Therefore at γ = γ2 − ε we have Q(x) > 0, ∀x

(Of course, by ∀x we mean values of x for which H(x) = H1(x), i.e., those which satisfy

x(δr + γ)− γ < 0).

Furthermore, the only terms in Q(x) that depend on γ are γ(x2 − x). Therefore since

x2 − x < 0, ∀x, it follows that Q(x), ∀x is a decreasing function of γ. Hence for any

γ′ ≤ (γ2 − ε) we also have Q(x) > 0, ∀x, which means H1(x) 6= x, and it follows that x < 1

may not be an equilibrium.

Lemma 12 then ensures that adoption increases monotonically until reaching full adop-

tion. The condition of this Lemma was previously referred to in Eq. (3.21).

A.3.2 Depiction of temporary pricing

Fig. A.2 shows the final adoption level for the hybrid pricing policy under the original model.

The figure illustrates the presence of a region of (γ, δh) values where the system does not

go to full adoption, and shows that by increasing the discount factor δh we can avoid that

region, hence realizing full adoption.

This can be seen from the three sample points indicated by pins in Fig. A.12a. Pin a

indicates a point where the system reaches full adoption. Pin b, on the other hand, is at a

point where the system converges to a lower equilibrium and full adoption is not possible.

However, by increasing the value of δh, we move to Pin c where, once again, the system

converges to full adoption. The details of system’s convergence at each pin is described
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Figure A.2: Final adoption level for the hybrid usage-based pricing policy, as γ and δh
vary, with pins corresponding to figures Fig. A.3a, Fig. A.3b and Fig. A.3c, respectively.
Parameters are c = 0.8, δr = 0, with different γ and δh values.

(a) γ = 0.8, δh = 0.01 (b) γ = 1, δh = 0.01 (c) γ = 1, δh = 0.05

Figure A.3: H(x) for the hybrid usage-based pricing policy. Fig. (a) has a single equilibrium
at full adoption. Fig. (b) has parameter values which result in sub-optimal equilibria.
Fig. (c) has the same parameter γ as Fig. (b), but a higher δh, and shows how increasing
δh eliminates the sub-optimal equilibria. Parameters are c = 0.8, δr = 0, with different γ
and δh values.

below.

Fig. A.3 plots the function H(x) under the original model for three values of (γ, δh)

pair. Figures A.3a, A.3b and A.3c correspond to the three pins in Fig. A.12a, respectively.

Fig. A.3a corresponds to a scenario where the multiple-equilibria problem does not exists.

Fig. A.3b however, has this problem, and by adjusting its δh parameter we are able to

eliminate the equilibria at x < 1, which results in Fig. A.3c. In the cases of Figs. A.3a

and A.3c, the system (starting from zero adoption) will eventually go to full adoption,
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while in the case of Fig. A.3b the presence of the stable equilibrium xs means the final

adoption level will be x(∞) = xs u 0.7.

A.4 Fixed Price Policy

The simplest pricing policy is one with a single fixed and flat-rate price, i.e., p(Θ, θ) = p.

With this pricing policy, Eq. (A.1) becomes

Un+1(Θ, θ) = γ − p− cmn + θ (r xn − γ) . (A.12)

Since a user’s utility is a function of the adoption set Θ, evaluating the system state calls

for first characterizing Θ. The next proposition allows us to understand the composition of

Θ.

Proposition 9. For all choices of p, γ and c, the set of adopters is characterized by a range

of θ values of the form [0, θ̂ ] or [θ̂, 1], 0 ≤ θ̂ ≤ 1.

Proof. From Eq. (A.12), we have:

Un(Θ, θ) = βn−1 + θαn−1 ,

where βn−1 = γ − p− cmn−1 and αn−1 = r xn−1 − γ. For a user to have a positive utility,

and therefore adopt, its θ value must satisfy θαn−1 > −βn−1. This translates into different

conditions depending on the sign and value of αn−1.

If αn−1 < 0, i.e., xn−1 < γ/r, θ needs to satisfy θ < −βn−1/αn−1. Hence, the set of

adopters at epoch n is either empty or corresponds to users with θ values in an interval

of the form [0, θ̂n), where θ̂n = (−βn−1/αn−1)[0,1] and we have used the notation (x)[0,1] to

denote the projection of x on the interval [0, 1].

If αn−1 > 0, i.e., xn−1 > γ/r, θ must now satisfy θ > −βn−1/αn−1. In this scenario, the

set of adopters at epoch n is again either empty or corresponds to users with θ values in an

interval of the form (θ̂n, 1] where θ̂n = (−βn−1/αn−1)[0,1].
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Finally, if αn−1 = 0, i.e., xn−1 = γ/r, then Un(θ) = βn−1, ∀ θ ∈ [0, 1]. The set of

adopters in this last case is either the empty set (if βn−1 ≤ 0) or the entire interval [0, 1] (if

βn−1 > 0).

As a result of proposition 9, we shall capture the adopters’ set Θn at epoch n through

an adoption vector, Xn, that includes the number of adopters, xn, and specifies their θ

values through a simple binary variable. Using Eq. (A.12) and denoting H(X) ≡ Xn+1 as a

function of X ≡ Xn, we want to characterize the evolution of H(X) and identify adoption

equilibria. We will drop the Θ notation hence forth and simply denote the utility under a

flat-rate price at epoch n by Un(θ).

From the proof of Proposition 9, we derive expressions for xn, for the three possible

conditions on αn−1.

xn =


θ̂n if xn−1 < γ/r (A.13a)

1− θ̂n if xn−1 > γ/r (A.13b)

I[βn−1], if xn−1 = γ/r (A.13c)

As mentioned before, proposition 9 also establishes that the adoption state at epoch n,Xn,

can be represented as a two-dimensional vector Xn = (xn, yn), where yn is a binary variable

that indicates the “type” of adoption interval of Proposition 9. Specifically,

yn =


0 if adopters ∈ [0, θ̂n), i.e., xn−1 < γ/r

1 if adopters ∈ [θ̂n, 1], i.e., xn−1 ≥ γ/r
(A.14)

where we arbitrarily took yn to be 1 for the case where xn−1 = γ/r. We also note that as

shown in the proof of Proposition 9, the value of yn solely depends on xn−1, i.e., yn = 0

when xn−1 < γ/r and yn = 1 when xn−1 ≥ γ/r. In other words, the identity of adopters at

epoch n depends on the number of adopters at epoch (n− 1).

The rest of this section is devoted to characterizing equilibria and the dynamics that

lead to them. We start with a number of preliminary results on which the derivations rest.
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A.4.1 Preliminary Results

Assume that when the service is introduced at n = 0 there are no adopters; thus x0 = 0

and m0 = 0. At the next epoch, n = 1, the utility U1(θ) of a user with roaming value θ is

U1(θ) = γ − p− θ γ

At epoch 1 adopters consist, therefore, of users with a θ value such that θ < (γ − p)/γ.

Hence, x1 = (γ − p)/γ when γ ≥ p, and x1 = 0 otherwise. In other words and as stated in

Proposition 10, a positive adoption requires γ > p, i.e., the price cannot exceed the utility

that users derive from home base connectivity. This is likely to hold in practice, e.g., the

price of basic Internet connectivity is such that many have adopted the service even in the

absence of a roaming option. Throughout the analysis this condition is assumed to hold.

Note that under this assumption, x = 0 can not be an equilibrium.

Proposition 10. Starting from an initial state of zero adoption, non-zero adoption is

possible only if γ > p.

In the next proposition, we formally establish that the vector Xn fully characterizes the

adoption process, namely, that mn can be computed once Xn is known.

Proposition 11. The vector Xn = (xn, yn), together with the parameters γ, p, r and c,

are sufficient to compute a user’s utility at epoch (n+ 1) as expressed in Eq. (A.12).

Proof. From Eq. (A.1), a user’s utility at epoch (n+ 1) depends on γ, p, r, c, xn, and mn.

It therefore suffices to show that mn can be computed based on γ, p, r, c, xn, and yn. We

consider separately the cases yn = 0 and yn = 1.

If yn = 0, adopters are users with θ ∈ [0, θ̂n), so that θ̂n = xn and mn is given by:

mn =

∫ xn

0
θ dθ =

1

2
x2
n , if yn = 0 (A.15)

Conversely, when yn = 1 adopters are users with θ > θ̂n. Thus θ̂n = 1− xn and mn is given
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by

mn =

∫ 1

1−xn
θ dθ =

1

2
(−x2

n + 2xn) , if yn = 1 (A.16)

This establishes that, Un+1(θ) can be computed based on Xn and the parameters γ, p, r

and c. Note that this also ensures that Xn+1 can be computed, and therefore the evolution

of the adoption process can be tracked.

A.4.2 Characterizing Adoption Evolution

We now turn to exploring the evolution of the adoption vector Xn. Our goal is to charac-

terize adoption dynamics and identify eventual equilibria. As mentioned earlier, equilibria

are either solutions of

H(X) = X, (A.17)

or boundary points of the interval [0, 1]. The main difficulty in solving Eq. (A.17) stems

from the fact that Xn is a two-dimensional vector. In particular, although Eqs. (A.15)

and (A.16) show that a user’s utility at epoch (n+1) is solely a function of xn, the choice of

which equation to use depends on yn or in other words on xn−1, i.e., Un+1(θ) is a function

of both xn and xn−1.

As a result, exploring adoption dynamics calls for accounting for adoption levels in

the previous two epochs. This is reflected in the approach we describe next. Specifically,

we consider separately the cases yn = 0 (xn−1 < γ/r) and yn = 1 (xn−1 ≥ γ/r), and

correspondingly introduce the notation H1(x) ≡ H(x, 0) and H2(x) ≡ H(x, 1) to investigate

the evolution of adoption in these two scenarios. As we shall see, these two cases will each

be divided in two further sub-cases.

Adoption Evolution under H1(x), i.e., yn = 0

In this scenario, Eq. (A.15) is used to compute Un+1(θ), which when combined with Eq. (A.1)

gives

Un+1(θ) = γ − p− c

2
x2
n + θ (r xn − γ) . (A.18)
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Eq. (A.18) allows us to determine the adoption threshold θ̂n+1 at epoch (n+ 1), i.e., the θ

value such that Un+1(θ̂n+1) = 0 :

θ̂n+1 =
γ − p− c

2x
2
n

γ − r xn
.

To compute the new system state Xn+1 at epoch (n+ 1), we distinguish between the cases

yn+1 = 0 and yn+1 = 1, with Eq. (A.13) correspondingly identifying the expression of xn+1.

When yn+1 = yn = 0, both xn and xn−1 are below γ/r. Therefore even when xn+1 is

above γ/r, the set of adopters at epoch (n+ 1) is still of the form [0, θ̂n+1). Since both xn

and xn+1 consist of the same type of adopters, we say that adoption stays in the “home”

region, and for convenience introduce the notation xn+1 ≡ H1h(x). Eq. (A.13a) then states

that xn+1 = θ̂n+1, so that

H1h(x) =
γ − p− c

2x
2

γ − r x
. (A.19)

When yn+1 = 1 and yn = 0, we have xn ≥ γ/r while xn−1 was below γ/r, and the set of

adopters at epoch (n + 1) is of the form (θ̂n+1, 1]. We denote this configuration as xn+1

being in the “away” region, and correspondingly introduce the notation xn+1 ≡ H1a(x).

Eq. (A.13b) then states that xn+1 = 1− θ̂n+1, so that

H1a(x) =
c
2x

2 − r x+ p

γ − r x
(A.20)

Adoption Evolution under H2(x), i.e., yn = 1

In this scenario, Eq. (A.16) is used in equation Eq. (A.1), which gives:

Un+1(θ) = γ − p− c

2
(−x2

n + 2xn) + θ(r xn − γ) . (A.21)

As before, from Eq. (A.21) we find the adoption threshold θ̂n+1 for which Un+1(θ̂n+1) = 0.

This gives:

θ̂n+1 =
γ − p− c

2(−x2
n + 2xn)

γ − r xn
.
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Following the approach used for H1(x), we consider separately the cases where yn+1 = 1

and yn+1 = 0.

When yn+1 = yn = 1, adopters at epoch (n + 1) remain characterized by a range

θ > θ̂n+1, which as before we term the home region. Similarly, we let xn+1 ≡ H2h(x), which

using Eq. (A.13b) gives

H2h(x) =
c
2x

2 + (r − c)x− p
r x− γ

(A.22)

When yn+1 = 0 and yn = 1, xn is now below γ/r while xn−1 was above γ/r, and the set

of adopters at epoch (n+ 1) is of the form [0, θ̂n+1). We again denote this configuration as

xn+1 being in the awayregion, with the corresponding notation xn+1 ≡ H2a(x). Eq. (A.13a)

gives

H2a(x) =
c
2x

2 − cx+ γ − p
γ − r x

(A.23)

In summary, the adoption state at epoch (n + 1), Xn+1, has been characterized by

considering the four possible combinations of adoption levels in epochs (n − 1) and n. In

the next sections, these results are leveraged to identify possible equilibria and characterize

adoption dynamics.

A.4.3 Characterizing Equilibria

This section leverages the results of Section A.4.2 to identify the type of equilibria to which

adoption can converge. Consistent with the discussion of the previous section, we introduce

the notation Hh(x) for the function defined as H1h(x) in the interval [0, γ/r) and as H2h(x)

in the interval [γ/r, 1], and Ha(x) for the function defined as H2a(x) in [0, γ/r) and as

H1a(x) in [γ/r, 1].

Since any equilibria must satisfy yn+1 = yn, we can rule out half of the combinations of

the previous section. Specifically, when yn = 0, only vectors of the form Xn+1 = (H1h(x), 0)

need to be considered. Conversely, when yn = 1, candidate equilibria must be of the

form (H2h(x), 1). Equilibria, therefore, correspond to either points x ∈ (0, γ/r) that verify

H1h(x) = x, points x ∈ [γ/r, 1) that verify H2h(x) = x, the point x = 0 if H1h(0) ≤ 0, or
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the point x = 1 if H2h(1) ≥ 1.

We therefore explore the relative positions of the functions H1h(x) and H2h(x) with

respect to x, and their possible intersections with x. Intersections identify equilibria or

fixed points, while the position of H1h(x) and H2h(x) relative to x determines the “nature”

of these fixed points, i.e., stable, or unstable, or associated with orbits either periodic or

chaotic3. The derivations are mechanical and can be found in Appendix A.5. We distinguish

between stable fixed points (•) with monotonic trajectories (towards the fixed point inside

its attraction region), unstable fixed points (◦) again with monotonic trajectories (away

from the fixed point), and fixed points associated with an “orbit” (�) that can be either

convergent, periodic, or chaotic for different (p, l) pairs. Table 3.1 summarizes possible

combinations of equilibria in each of the intervals [0, γ/r) and [γ/r, 1], where — denotes the

absence of fixed point in that interval.

Case 1 of Table 3.1 corresponds to a scenario where no fixed point exists. We discuss later

when and why this arises, but adoption patterns essentially never stabilize. Cases 2, 2′, 3

and 3′ are instances where a single fixed point exists in either [0, γ/r) or in [γ/r, 1]. In

Cases 2 and 3, the fixed point corresponds to a stable equilibrium, while in Cases 2′ and 3′

it can be associated with more complex trajectories that need not converge, e.g., exhibit

periodic orbits or chaotic adoption patterns. Cases 4 and 5 correspond to a scenario with

both a stable and an unstable equilibrium in either [0, γ/r) or in [γ/r, 1], with the adoption

always converging to the stable fixed point. Cases 6 and 7 exhibit different combinations

of equilibria in [0, γ/r) or in [γ/r, 1], with one having a single stable equilibrium and the

other having both a stable and an unstable equilibrium. The important feature of these two

latter cases is the presence of two stable equilibria, one in [0, γ/r) and the other in [γ/r, 1].

As a result, final adoption levels can differ based on initial adoption values, i.e., they can

vary based on the level of seeding when the service was first offered. A similar situation is

present in Case 8, where the two ranges both have a stable and an unstable equilibrium.

In the next section, we characterize the trajectories associated with the different combi-

3If either x = 0 or x = 1 are equilibria, they are stable equilibria.
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nations of Table 3.1, while Section A.4.5 articulates implications for a UPC service offering.

A.4.4 Classifying Adoption Dynamics

Table 3.1 readily identifies several possible patterns of adoption. Specifically, adoption

dynamics can be of the form:

i) Absence of convergence to an equilibrium. This arises in Cases 1, 2′, and 3′. In Case 1,

this is independent of the initial adoption level, as the absence of a fixed point gives

rise to chaotic adoption patterns that never converge. The situation is more subtle in

Cases 2′ and 3′, for which a fixed point does exist. However, even when a small region of

attraction exists around this fixed point, adoption trajectories typically remain outside

of it, and orbit around it in either periodic or chaotic manner. Such patterns are

common in dynamical systems [12]. The derivations that led to the identification of

those trajectories as well as an illustrative example can again be found in Appendix A.5.

The conditions under which they arise are discussed in Section A.4.5;

ii) Convergence to a single stable equilibrium in either [0, γ/r) or [γ/r, 1], independent of

initial penetration. This arises in Cases 2, 3, 4, and 5, where a single stable equilibrium

exists in the entire adoption range. In those cases, adoption proceeds monotonically

towards the equilibrium, either increasing or decreasing depending on the value of the

initial adoption level. As it does not affect the final outcome, seeding is of no benefit

in these scenarios;

iii) Convergence to one of two stable equilibria in [0, γ/r) or [γ/r, 1], dependent on initial

penetration. This arises in Cases 6, 7, and 8, where a stable equilibrium exists in both

[0, γ/r) and [γ/r, 1]. These are instances where seeding may be of value, as it can affect

the final adoption level. In particular, a high enough level of seeding can allow the

service to realize a much higher final adoption (in [γ/r, 1] as opposed to [0, γ/r)). As

in Case ii), trajectories are monotonic towards the final adoption level.

111



The trajectories of the three types of possible outcomes that have been identified can be

easily constructed using a standard cobweb plot4 based on the functions Hh(x) and Ha(x).

For illustration purposes, we consider an example associated with Case 8 from Table 3.1,

which involves stable and unstable equilibria in both [0, γ/r) and [γ/r, 1]. The shapes of the

corresponding functions Hh(x) (solid line) and Ha(x) (dash-dot line) are shown in Fig. A.4,

together with three adoption trajectories associated with different initial adoption levels.

In the first scenario, there are no initial adopters, i.e., x0 = 0, and adoption increases

monotonically until it reaches about 10%, the stable equilibrium in [0, γ/r). In the second

scenario, seeding has been used to create an initial adoption level x0 ≈ 35%. As we can see,

this is not enough to prevent adoption from declining back to 10%, the stable equilibrium

in [0, γ/r). To avoid such an outcome, seeding needs to be further increased, as done in the

third scenario where initial adoption is set to around 46%. In this case, the adoption trajec-

tory enters the interval [γ/r, 1] and eventually converges to the higher adoption equilibrium

in that interval (around 85%). The trajectory also illustrates the use of the function Ha(x)

when first entering [γ/r, 1] from [0, γ/r). We note that although a high level of adoption is

ultimately realized, the associated seeding “cost” is high.

In the next section, we characterize how system parameters, in particular the price

p, map to different equilibria and trajectories, and identify possible implications for UPC

service offerings.

A.4.5 Interpretations

Recall that adoption trajectories and equilibria are determined by the “shape” of the func-

tions Hh(x) and Ha(x) and how they intersect the line x. The shape of those functions

depends in turn on the parameters γ, c, r, and p (see Eqs. (A.19) and (A.22)). As a result,

it is no surprise that both adoption outcomes and trajectories are determined by values of

these parameters and in particular, for any γ and r value, associated with distinct “regions”

of the (p, c)−plane, i.e., contiguous ranges of p and c values. Fig. A.5 identifies the regions

4See http://code.google.com/p/cobweb2008/ for an illustrative applet.
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Figure A.4: Hh(x) (solid) and Ha(x) (dash-dot) for Case 8.

of the (p, c)−plane that map to the ten combinations of table 3.1, and correspondingly

Behaviors i), ii), and iii) used earlier to classify adoption dynamics. The boundaries of

those regions are derived from constraints on the parameters, with Table A.1 providing the

corresponding functional expressions. Details on the derivations are again in Appendix A.5.

Behavior i)

This maps to regions 1, 2′ and 3′ of Fig. A.5, and is associated with configurations that do

not yield convergence to an adoption equilibrium.

Region 1 consists of relatively low values of p but rather large values of c. This produces

the following dynamics: When there are few or no users in the network, coverage is low

and frequently-roaming users find the service unattractive despite the low p. In contrast,

sedentary users are unaffected by the limited coverage, so that the low p value entices them

to adopt. As they adopt, coverage improves and the service becomes attractive to roaming

users. With more users adopting, coverage continues improving. The associated growth

in roaming traffic, however, starts to negatively affect sedentary users that derive little
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Figure A.5: Regions of the (p, c) plane corresponding to different combinations of equilibria
as given by Table 3.1. This is a sample illustration for γ = 1 and r = 2.

benefits from the improved coverage. This leads some of them to disadopt, which reduces

coverage so that eventually roaming users start leaving as well. Once roaming traffic has

been sufficiently reduced, the service becomes again attractive to sedentary users, and the

cycle repeats.

A similar, though more nuanced process is at work in regions 2′ and 3′. Region 2′ also

boasts large c values (c ≥ r), and in the portion of that region where large values of p are

allowed, it displays similar adoption patterns as region 1 to which it is adjacent. However,

when p is allowed to be large, the negative effect of c never gets a chance to manifest

itself. The large p prevents enough sedentary users from adopting, and the service never

garners enough coverage to become attractive to frequently-roaming users. In this case,

adoption converges to a low value in [0, γ/r). As p decreases, the region of attraction of the

equilibrium shrinks, and non-converging adoption patterns emerge.

The behavior in region 3′ is similar, albeit for an equilibrium in [γ/r, 1]. Specifically,

region 3′ combines small positive p values and very large c values. The small value of p
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f1 c = 2r − γ2

2(γ−p)

f2 c = 2r2(γ−p)
2rγ−γ2

f3 c = 2r2(γ−p)
γ2

f4 c = γ + r − p−
√
p2 + 2p(r − γ)

f5 c = r

Table A.1: Boundaries for regions of solution in fixed price policy

means that many users want to adopt. The very large c value, however, implies that only

frequently roaming adopters derive enough benefits from the large coverage to compensate

for the penalty of roaming traffic. As a result, the most sedentary users disadopt. When

p is sufficiently small, this disadoption is small enough to not affect coverage to the point

where frequently-roaming users start leaving as well. However, as p increases, coverage

may decrease enough to trigger an exodus of frequently-roaming user, and create cyclical

patterns of adoption and disadoption as in region 1.

Behavior ii)

Regions 2 and 4 of Fig. A.5 have a stable equilibrium in [0, γ/r) to which adoption converges.

The regions correspond to relatively high p values and relatively high values of c. The high

p value is such that few sedentary users adopt and coverage never gets high enough to make

the service attractive to frequently-roaming users. Hence, adoption saturates at a low level

of penetration. Seeding will not help, as the rather high c value is too much of an impact

even for frequently roaming users.

Conversely, in regions 3 and 5 of Fig. A.5 adoption converges to a single stable equi-

librium in [γ/r, 1]. The regions correspond to relatively low values of p and comparatively

low c values. The low p value initially attracts sedentary users that are not deterred by the

limited coverage, and once enough of them have adopted frequent roamers start joining.

Because the impact of increasing roaming traffic is relatively low, few sedentary users leave

and adoption stabilizes at a high level.
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Behavior iii)

Regions 6, 7 and 8 of Fig. A.5 exhibit a stable equilibrium in both [0, γ/r) and [γ/r, 1]. In

these cases, adoption converges to either equilibrium as a function of the initial adoption

level (seeding). The three regions share relatively high p values and similarly small c values.

When initial adoption (coverage) is low, frequently-roaming users are not interested in

the service and the high p value limits the number of sedentary users who adopt. Hence,

adoption saturates at a low level. In contrast, if seeding has produced enough initial coverage

to attract frequent roamers, they will start adopting in spite of the high p value. As their

number grows and coverage continues improving, some sedentary users will also adopt

because of the relatively low impact that they incur from roaming traffic through their

home base. As a result, overall adoption eventually stabilizes at a high level.

Figure A.6: Adoption Outcomes as a Function of p and c, when γ = 1 and r = 2

The behaviors identified in this section are illustrated in Fig. A.6 that plots the “final”

adoption levels for different (p, c) pairs starting from an initial adoption level of x0 = 0. In

scenarios where adoption does not converge, i.e., Behavior i), the adoption level reported in

the figure was sampled at a particular iteration. The figure clearly identifies the regions of

the (p, c) plane that correspond to chaotic or at least non-converging adoption (regions 1, 2′,

and 3′), low adoption (regions 2 and 4, as well as regions 6, 7, and 8 since x0 = 0 was used),

and regions of high adoption (regions 3 and 5).
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A.4.6 Optimal Pricing for Provider’s Profit

In a flat-price policy, all users pay the same price p. Therefore, the provider’s profit (or

welfare) Π(p) that was introduced in section 3.3.1 as WP (Θ) becomes

Π(p) = (p− e)x. (A.24)

The UPC provider’s goal is to select p so as to maximize its profit at equilibrium5, i.e.,

once adoption has stabilized6. In other words, the provider seeks to identify p∗ such that

Π(p∗) = max
p
{Π(p)} .

Note that in Eq. (A.24) the service adoption level x is itself a function of p and the

exogenous parameters of Eq. (A.12). Π(p) can, therefore, be expressed as a function with

p as its only variable. More precisely, because adoption equilibria have different functional

expressions depending on whether adoption is low or high, we also have two distinct ex-

pressions for Π(p). The first is associated with an equilibrium in the low-adoption region,

while the second corresponds to an equilibrium in the high-adoption region.

For the sake of analytical tractability, we keep Π as a function of x (rather than p).

This yields two expressions, Π
(1)
L (x) and Π

(1)
H (x), for the provider’s profit corresponding to

equilibria in [0, 1/2) (low adoption), and [1/2, 1] (high adoption). Derivations are mechanical

in nature, and the resulting expressions are given in Eqs. (A.25) and (A.26) for completeness.

Π
(1)
L (x) =

4− c
2

x3 − x2 + (γ − e)x (A.25)

Π
(1)
H (x) =

c− 4

2
x3 + (3− c)x2 (A.26)

+(γ − e− 1)x

Both equations are cubic polynomials in x. Differentiating them yields expressions for the

5This forces a price selection that ensures the existence of an equilibrium.
6Note that this implicitly assumes a recurring pricing model, as is common with most service offerings.
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x values that maximize them, i.e., x̂L and x̂H .

The next step calls for determining which of Π
(1)
L (x̂L) and Π

(1)
H (x̂H) is higher, and

consequently decide how to best price the service. The answer can change based on the

combination of exogenous parameters, e.g., the service’s intrinsic value, γ, the impact of

roaming traffic, c, and the value of the service cost e. For instance, it can be shown that

the γ value at which high-adoption becomes more profitable than low-adoption increases

with c. This is intuitive since a larger c means that sedentary users are more sensitive to

roaming traffic. Hence, the service needs to be intrinsically more valuable to allow enough

of them to join and stay as roaming traffic grows with adoption.

A.5 Derivations of Equilibria under the Fixed Price Policy

The intersections of Hh(x) and x correspond to interior equilibria in adoption levels, i.e.,

equilibria in (0, 1), and the relative positions of Hh(x) and x at x = 0 and x = 1 determine

whether or not either are boundary equilibria. We consider equilibria in the intervals [0, γ/r)

and [γ/r, 1] separately. During the analysis we may use k , γ−p for notational conciseness.

A.5.1 Equilibria in [0, γ/r)

From Eq. (A.19), H1h(0) = k/γ > 0, given the earlier assumption that k > 0. Therefore,

the condition H1h(0) ≤ 0 is never met and x = 0 is not an equilibrium. Next, we consider

interior points, i.e., points in (0, γ/r).

From Eq. (A.19), H1h(x) = x yields

(
− c

2
+ r
)
x2 − γ x+ k = 0 . (A.27)

We assume −c/2 + r > 0 or 2r > c, which is a reasonable and hardly restrictive assumption

in our model; This means that at full adoption, the most frequently roaming user (with

θ = 1) will derive more utility from the ability to roam than be impacted by the external

roaming traffic. Under the assumption that 2r > c, Eq. (A.27) has (at most) two roots
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given by

x =
γ ±
√

∆1

2r − c

where ∆1 = γ2 + 2kc− 4kr. The inequality H1h(x) < x holds (only) between the two roots.

We distinguish three cases:

i) ∆1 < 0 or c < 2r − γ2

2k .

In this case, Eq. (A.27) does not have any roots and H1h(x) > x holds ∀x ∈ [0, γ/r). In

other words, there are no equilibria in [0, γ/r). A sample illustration can be seen in Fig. A.5

where we have chosen γ = 1 and r = 2. This criterion corresponds to the points in the (p, c)

plane where c < f1. The functional expressions of the different curves are given in Table A.1.

ii) ∆1 = 0 or c = 2r − γ2

2k

In this case Eq. (A.27) holds at x = γ
2r−c = 2k/γ, so H1h(x) and x touch once in [0, γ/r) if

k < γ2

2r . In this case, there is only one equilibrium x1 ∈ [0, γ/r) which is easily seen to be

stable from the left and unstable from the right. This is because Hh(x) > x when x < x1

(adoption levels increase towards x1 in each iteration), and Hh(x) > x when x > x1 as well

(adoption levels continue increasing once x1 is exceeded).

iii) ∆1 > 0 or c > 2r − γ2

2k

In this case Eq. (A.27) has two real roots, so that H1h(x) and x intersect twice. These two

intersections may or may not indeed be in [0, γ/r). Next, we determine conditions for either

of these intersections to lie in [0, γ/r) and characterize the equilibria they give rise to.

Intersection x1s

Intersection x1s is the smaller of the two roots of Eq. (A.27) and is given by:

x1s =
γ −

√
γ2 + 2kc− 4kr

2r − c
. (A.28)
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For x1s to be an equilibrium, it must be in the interval [0, γ/r). The earlier assumptions

k > 0 and 2r > c ensure that x1s > 0. For x1s < γ/r we need:

−γ(r − c)
r

<
√
γ2 + 2kc− 4kr

This is trivially true if r − c > 0. If on the other hand r − c < 0, we need

γ2 c2 − (2r γ2 + 2r2k)c+ 4k r3 < 0 . (A.29)

The left side is a quadratic equation in c and the inequality holds between the two (possible)

roots, which are given by:

c =
(rγ2 + r2k)∓

√
(rγ2 − r2k)2

γ2

=
(rγ2 + r2k)∓ |rγ2 − r2k|

γ2
.

Based on the sign of rγ2 − r2k the interval between the two roots of Eq. (A.29) can be

specified. We have

c ∈


(

2r2k
γ2

, 2r
)

if γ2 ≥ rk(
2r, 2r2k

γ2

)
if γ2 < rk.

But because of our previous assumption that 2r > c, the second case above cannot happen.

This shows that when ∆1 > 0, the intersection x1s will be an equilibrium in [0, γ/r) if

either c < r or c ∈
(

2r2k
γ2

, 2r
)

and k ∈ [0, γ2/r]. These criteria correspond to (p, c) being in

Regions 2′, 2, 4, 6, 7 and 8 of Fig. A.5, again with the functional expressions of the different

curves given in Table A.1.

When (p, c) is in any of the Regions 2, 4, 6, 7 or 8, then x1s can be shown to be a

stable equilibrium. This is because x1s > Hh(x) > x (adoption increases towards x1s

in the next iteration), and x1s < Hh(x) < x (adoption decreases towards x1s in the next

iteration). On the other hand if (p, c) is in the Region 2′, then x1s is an “orbital” equilibrium.
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An orbital equilibrium may have a non-empty region of attraction7, but exhibit cyclical

adoption patterns (periodic or chaotic) outside of that neighborhood. Orbital behaviors

arise when Hh(x) > x1s > x (adoption increases beyond x1s in the next iteration), and

Hh(x) < x1s < x (adoption drops below x1s in the next iteration). This gives rise to cyclical

trajectories, which may or may not converge to x1s depending on the slope of H1h(x) at

x = x1s and the initial distance between x and x1s. Note also that if H1h(x) > γ/r for some

x < x1s, the next adoption level will be determined using H2a(x) instead of H1h(x), since

we have left the interval [0, γ/r).

Intersection x1u

Intersection x1u is the larger of the two roots of Eq. (A.27) and is given by

x1u =
γ +

√
γ2 + 2kc− 4kr

2r − c
.

Again, for x1u to be an equilibrium, it must be in [0, γ/r). Since 2r − c > 0, we have

x1u > x1s > 0, and therefore we only need to verify when the condition x1u < γ/r holds.

For this we need: √
γ2 + 2kc− 4kr <

γ(r − c)
r

.

This never holds if r − c < 0. When r − c > 0, the condition becomes

γ2 c2 − (2r γ2 + 2r2k)c+ 4k r3 > 0 .

which is the symmetric of Eq. (A.29), and thus it holds for values of c outside the roots of

the corresponding quadratic equation.

We also note that equilibrium x1u is unstable. This is because Hh(x) < x when x < x1u

(adoption levels keep decreasing once they have dropped below x1u), and Hh(x) > x when

x > x1u (adoption levels keep increasing once they have exceeded x1u).

To summarize, in Case iii), i.e., in the case of c > 2r − γ2

2k there can possibly be two

7A neighborhood of x1s so that for values of x in that neighborhood, trajectories converge to x1s.
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equilibria in [0, γ/r). When c > r, the root x1s is the only equilibrium in [0, γ/r) if the

condition c ∈ [2r2k
γ2

, 2r] is also satisfied (Region 2′ in Fig. A.5); Otherwise, no equilibrium

is present in this interval (The portion of Region 1 in Fig. A.5 for which c > f1). When

c < r, both x1s and x1u can be equilibria if c < 2r2k
γ2

(Regions 4, 8 and 6 in Fig. A.5), and

otherwise x1s is the only equilibrium in [0, γ/r) (Regions 2 and 7 in Fig. A.5). Again the

functional expressions of the different curves are given in Table A.1.

A.5.2 Equilibria in [γ/r, 1]

For the boundary point x = 1 we use Eq. (A.22) and see that:

H2h(1) =
− c

2 + k + r − γ
r − γ

=
− c

2 + k

r − γ
+ 1 .

Therefore the full adoption level, x = 1, will be an equilibrium if and only if −c/2 + k ≥ 0.

We will now consider the interior points, i.e., the points in [γ/r, 1).

From the equation H2h(x) = x we get:

−
(
r − c

2

)
x2 + (γ + r − c)x− p = 0. (A.30)

Assuming r − c/2 > 0 as before, Eq. (A.30) exhibits (at most) the two roots given by

x =
−(γ + r − c)±

√
∆2

−(2r − c)

where

∆2 = (γ + r − c)2 − 2p(2r − c)

= c2 − 2(γ − p+ r)c+ (γ + r)2 − 4pr.

The inequality H2h(x) > x holds8 only between these two (possible) roots. We again

distinguish three cases:

8Note that since x ∈ [γ/r, 1], the denominator of H2h(x) is positive.
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i) ∆2 < 0

This is equivalent to

c ∈
(
−p+ γ + r −

√
Q , −p+ γ + r +

√
Q
)

where

Q = p2 + 2p(r − γ).

In this case, Eq. (A.30) does not have any roots and H2h(x) < x holds ∀x ∈ (γ/r, 1]. In

other words, there are no equilibria in (γ/r, 1].

ii) ∆2 = 0

This is equivalent to

c = −p+ γ + r ∓
√
p2 + 2p(r − γ)

and in this case Eq. (A.30) holds at x = γ+r−c
2r−c . Therefore the two curves H2h(x) and x touch

once in (γ/r, 1] if c < r. In this case, there is only one equilibrium x2 ∈ (γ/r, 1] which is

easily seen to be stable from the right and unstable from the left. This is because Hh(x) < x

when x > x2 (adoption levels decreases towards x1 in each iteration), but Hh(x) < x when

x < x2 as well (adoption levels keep decreasing if x goes below x1).

iii) ∆2 > 0

This is equivalent to

c 6∈
[
−p+ γ + r −

√
Q , −p+ γ + r +

√
Q
]

where as before

Q = p2 + 2p(r − γ).

In this case Eq. (A.30) has two real roots, and as a result it is possible for H2h(x) and x

to intersect twice in [0, γ/r]. Next, we characterize the equilibria that these two possible

intersections, x2u and x2s, can give rise to.
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Intersection x2u

Intersection x2u is the smaller of the two roots of Eq. (A.30) and is given by:

x2u =
γ + r − c−

√
(γ + r − c)2 − 2p(2r − c)

2r − c
.

In order for x2u to be an equilibrium, it must be in the interval (γ/r, 1]. It can be easily

verified (under the assumptions already made for parameters c, γ and r) that x2u ≤ 1

always holds if the root exists. For x2u to be greater than γ/r we need:

√
(γ + r − c)2 − 2p(2r − c) < (r − γ)

r − c
r

For this equation to hold, it is necessary that r − c > 0. If this is the case we then need

(2rγ − γ2)c2 + (−6γr2 + 2γ2r + 2pr2)c+ 4r3(γ − p) < 0 (A.31)

which holds between the roots of the corresponding quadratic equation, which are given by:

c =
(3γr2 − γ2r − pr2)∓ (γr2 − γ2r + pr2)

2rγ − γ2
.

= 2r and
2r2(p− γ)

2rγ − γ2

(A.32)

This implies that x2u is an equilibrium in (γ/r, 1] if both 2r2(γ−p)
2rγ−γ2 < c < r and c < −p +

γ + r −
√
p2 + 2p(r − γ), where we have taken into consideration the fact that when c < r

the inequality c > −p+ γ + r+
√
p2 + 2p(r − γ) cannot hold. These criteria correspond to

Regions 5, 8 and 7 in Fig. A.5 with the functional expressions of the different curves given

in Table A.1.

When these conditions are satisfied, x2u can be shown to be an unstable equilibrium.

This is because Hh(x) < x when x < x2u (adoption levels keep decreasing once they have

dropped below x2u), and Hh(x) > x when x > x2u (adoption levels keep increasing once
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they have exceeded x2u).

Intersection x2s

Intersection x2s is the larger of the two roots of Eq. (A.30) and is given by

x2s =
γ + r − c+

√
(γ + r − c)2 − 2p(2r − c)

2r − c
. (A.33)

Again, for x2s to be an equilibrium, it must be greater than γ/r. Note that x2s < 1 is not

necessary, since a x2s value that is larger than 1 will be projected down to the boundary

point x = 1. For x2s > γ/r we need:

−(r − γ)
r − c
r

<
√

(γ + r − c)2 − 2p(2r − c) .

This always holds if r − c > 0. When c > r, the condition becomes

(2rγ − γ2)c2 + (−6γr2 + 2γ2r + 2pr2)c+ 4r3(γ − p) > 0

which is the symmetric of the inequality in Eq. (A.31), and thus it holds for values of

c outside the roots of the corresponding quadratic equation. This condition reduces to

c < 2r2(γ−p)
2rγ−γ2 (Region 3′ in Fig. A.5).

Thus x2s results in an equilibrium if (p, c) is in any of the Regions 3, 3′, 5, 6, 7 and 8 of

Fig. A.5.

When (p, c) is in any of the Regions 3, 5, 6, 7 and 8, then x2s can be shown to be

a stable equilibrium. This is because x2s > Hh(x) > x (adoption increases towards x2s

in the next iteration), and x2s < Hh(x) < x (adoption decreases towards x2s in the next

iteration). On the other hand if (p, c) is in the Region 3′, then x2s is an “orbital” equilibrium.

An orbital equilibrium may have a non-empty region of attraction9, but exhibit cyclical

adoption patterns (periodic or chaotic) outside of that neighborhood. Orbital behaviors

arise when Hh(x) > x2s > x (adoption increases beyond x2s in the next iteration), and

9A neighborhood of x2s so that for values of x in that neighborhood, trajectories converge to x2s.
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Hh(x) < x2s < x (adoption drops below x2s in the next iteration). This gives rise to

cyclical trajectories, which may or may not converge to x2s depending on the slope of

H2h(x) at x = x2s and the initial distance between x and x2s.

To summarize, as for the equilibria in [γ/r, 1], when c < 2r2(γ−p)
2rγ−γ2 , the root x2s is the

only equilibrium in (γ/r, 1] (Regions 3′, 3 and 6 in Fig. A.5). When c > 2r2(γ−p)
2rγ−γ2 , both x2s

and x2u equilibria will exist if the condition c < min(r, −p+γ+r−
√
p2 + 2p(r − γ)) is also

satisfied (Regions 5, 7 and 8 in Fig. A.5). Otherwise, no equilibrium is present in (γ/r, 1]

(Regions 1, 2′, 2 and 4 in Fig. A.5)

A.6 Model perturbations for robustness testing

Our original models make specific assumptions with regards to the magnitude and range

of various parameters, functional expressions of the user utilities, and the extent to which

information is considered to be known to the service provider. In order to gauge how

much these assumptions affect the models’ results and more importantly findings, as well

as determine how robust the findings are to variations in those assumptions, we consider a

series of perturbations to the original models that relax/modify one or more of those specific

assumptions.

In this section, we describe perturbations that directly affect the parameters and func-

tional expressions of the models. All scenarios are investigated by means of numerical

simulations, and the results are presented in Appendix A.7 (See Appendix A.9 for one ex-

ample of analytical generalization). Appendix A.7 also evaluates the impact of another

type of perturbations, namely, that of errors in estimates of the model’s parameters on the

part of the service provider. Overall, the results demonstrate that our main findings are

relatively robust to a wide range of perturbations.
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A.6.1 User propensity to roam θ

Our original models assume that users’ propensity to roam, θ, follows a uniform distribution,

i.e., it is uniformly distributed in [0, 1]:

f(θ) = 1, 0 ≤ θ ≤ 1.

We introduce a perturbation to that assumption by considering different probability dis-

tributions for the roaming variable θ. There are obviously many possible distributions to

choose from; we consider two representative examples, one with a higher density of seden-

tary users, and the other with a higher density of roaming users. These two choices cover

the effect of both overestimating and underestimating roaming patterns. We present next

the details of these two distributions.

The distributions are truncated and modified versions of an exponential distribution,

and their density functions are plotted in Fig. A.7. The low-mode distribution with a mode

at x = 0 has a density function

fLow-Mode(x;λ) =
λ

1− e−λ
e−λx, 0 ≤ x ≤ 1, λ > 0,

where the parameter λ is taken to be λ = 1.5. Conversely the high-mode distribution with

a mode at x = 1 has a density function

fHigh-Mode(x;λ) =
λ

eλ − 1
eλx, 0 ≤ x ≤ 1, λ > 0,

where the parameter λ is again taken to be 1.5.

As mentioned earlier, Appendix A.7 presents the results on how these perturbations

affect the findings of Chapter 3.
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(a) Low-mode: Truncated exponential dis-
tribution with parameter λ = 1.5. (high
concentration of sedentary users.)

(b) High-mode: Inverted truncated expo-
nential distribution with parameter λ = 1.5.
(high concentration of roaming users.)

Figure A.7: Density functions and sample realizations for for non-uniform θ distributions.

A.6.2 Modified user utility functions

The original model assumes a specific functional expression for users’ utility that grows

linearly with coverage κ (as measured10 by x) and decreases linearly with the volume of

roaming traffic m.

We first relax the linear dependency assumption, and then consider two different utility

functions inspired by the Web Browsing Model and the File Transfer Model of [70]. As

before, Appendix A.7 presents the results of this investigation.

The original utility function is stated in Eq. (3.5), which we restate below for conve-

nience.

U(Θ, θ) = γ − cm+ θ (r x− γ)− p(Θ, θ)
10As mentioned before, in Section A.6.4 we do numerically consider scenarios where coverage κ is not

equal to x and instead saturates as x grows).
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Non-linear utility function

In order to relax the linear dependency assumption, we consider the following “perturbed”

utility function:

U(Θ, θ) = γ − cm1.2 + θ (r x0.8 − γ)− p(Θ, θ) .

The non-linear terms m1.2 and x0.8 are arguably only one of many possible types of non-

linearities, but they offer a reasonable evaluation of the effect of non-linearities.

Next we introduce two different utility functions inspired by the models of [70].

Upper-bounded roaming

The Web Browsing Model from [70] considers a utility that increases with the connection

duration, as long as the connection duration is not longer than an upper-bound τ (which is

the duration that a user intends to browse the web).

In the context of [70] the connection duration is the main contributor to a user’s utility,

while in our model the roaming frequency θ determines the rate at which a user accesses

the higher-valued roaming connectivity. Therefore the connection duration of [70] readily

maps to roaming frequency in our model.

Hence, in order to emulate the Web Browsing Model from [70], we modify our original

utility function to upper-bound the roaming frequency of the users. In a manner similar

to Eq. (1) of [70] which includes a term min(T, τ), we replace the roaming factor θ with

min(θ, τ).

The new utility function is then given by

U(Θ, θ) =

γ − cm+ min(θ, τ) · (r x− γ)− p[Θ, min(θ, τ)],

(A.34)

where 0 < τ < 1. In the numerical tests of Section A.7 we take τ = 0.8.
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Minimum useful coverage

The File Transfer Model from [70] considers a utility function with a threshold behavior, i.e.,

it yields zero value when the connection duration is too short to download a file. Therefore

the connection duration has to be longer than a certain threshold to yield a positive utility.

As mentioned before, in our context, users’ utility is directly related to the ability to

connect while roaming. Therefore, to emulate the File Transfer Model from [70], we mod-

ify our utility function to implement a threshold behavior based on roaming connectivity.

Namely, a user experiences zero roaming utility, unless the odds of roaming connectivity

are above a certain threshold, or equivalently, the system’s coverage κ is above a threshold

κth.

The new utility function is then

U(Θ, θ) = γ − cm+ θ (r κ̂− γ)− p(Θ, θ) (A.35)

where κ̂ is the perceived level of coverage and is given by

κ̂ =


0 if x < κth,

x if x ≥ κth.

The threshold κth satisfies 0 < κth < 1. In the numerical tests of Section A.7 we use

κth = 0.2.

A.6.3 Heterogeneous population

In the original models, users are assumed to all have the same utility function, and share

a common profile in how much traffic they generate, including while roaming. We relax

those assumptions by considering a scenario where users belong to two types with different

“profiles.” The type of a user, T1 or T2, affects that user’s utility and the volume of roaming

traffic she generates as a function of her roaming parameter θ.

Users are randomly assigned a given type, so that the user population is divided into
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two groups of identical size. The utility functions of users of type T1 and type T2 are then

given by:

U(Θ, θ) =
γ − cm+ θ (r x− γ)− p(Θ, θ) for T1 users

1.1 γ − cm+ θ (0.9 r x− 1.1 γ)− p(Θ, θ) for T2 users.

In other words, users of type T2 exhibit a difference of 10% with type T1 users in how much

more (less) they value home (roaming) connectivity (they have a larger γ and smaller r).

Moreover, a user’s type also affects the volume of traffic she generates while roaming, as

follows

Contribution to roaming traffic =


θ for T1 users

θ0.7 for T2 users,

In other words, given two users of types T1 and T2 with the same roaming parameter θ, the

user of type T2 generates more roaming traffic while roaming (since θ0.7 > θ for θ ∈ [0, 1]).

As mentioned earlier, this can account for differences induced by the type of equipment

each type of users uses (e.g., tablet vs. smartphone). The overall roaming traffic m is then

given by

m =

∫
T1

θf(θ) dθ +

∫
T2

θ0.7f(θ) dθ .

Results are again presented in Appendix A.7.

A.6.4 Coverage saturation

The original models assume that coverage κ increases linearly with the level x of service

adoption. In particular, we assume that κ = x. In this section, we relax this assumption and

consider a saturation effect for coverage. This means that while coverage initially expands

in proportion to the adoption level x, its growth slows down (“levels off”) as x grows large.

In order to capture this effect, we assume a relation between coverage and adoption of the
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form κ = sin(π2x) (see Fig. A.8). Results illustrating how this difference in the evolution of

coverage affects the conclusions of Chapter 3 are again in Appendix A.7.

Figure A.8: Coverage saturates as adoption x grows large.

A.7 Numerical simulations

Appendix A.6 introduced a series of perturbations to our original models. In this Appendix,

we report on the results of numerical simulations used to investigate the impact of those

perturbations. The results demonstrate that the findings of Chapter 3 are robust with

regards to those perturbations and errors in the modelling assumptions.

Recall that the main findings of Chapter 3 belong to two broad categories. The first

is concerned with the system’s ability to create value, i.e., the total system welfare. They

establish that when the system is capable of creating positive value, the maximum of that

value is often realized at full adoption. The second category of findings is concerned with

realizing that potential: how to use pricing schemes to realize the optimal adoption level

and the corresponding total welfare, as well as distribute the total welfare between the users

and the provider.

In testing the robustness of that second group of findings, i.e., those regarding pricing

schemes, it is important to specify how much knowledge the provider has about potential
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discrepancies between the model it is using to determine (optimal) prices, and the actual

model and its parameters. This is because that knowledge will affect the provider’s ability

to set prices that realize its goals. Therefore, throughout this section, when presenting

results related to pricing policies, we also specify the extent to which the provider is aware

of the perturbations.

For purposes of clarity, we consider each one of the perturbations of Appendix A.6 in

isolation, i.e., we perturb one aspect of the model while keeping others intact, and report

on its impact on the findings of Chapter 3. We discuss first how different perturbations

affect our main conclusions regarding total system welfare.

A.7.1 Optimal total welfare

The main finding of Chapter 3 when it comes to total system welfare was that total welfare

(value) is usually maximized when the adoption level is either x = 1 or x = 0. In other

words, whenever the system is capable of generating positive value, this positive value is

realized at full adoption x = 1.

The result was obtained under the simplifying assumptions of the system’s model, but

in this section we demonstrate that even under more general conditions, i.e., when various

aspects of the original model are perturbed,11 this finding remains valid.

A.7.1.(a) Original model

A plot of the optimal adoption level x for maximizing system value was given in Chapter 3

for the original model, and is repeated for convenience in Fig. A.9a. The figure indeed shows

that for most values of parameters γ and e, the optimal adoption level is either x = 1 or

x = 0. An optimal adoption level of x = 0 means that the system cannot create positive

value.

A.7.1.(b, c) Modified roaming distribution

We changed the distribution of the roaming parameter θ as per the description of Sec-

11Note that because total welfare is only concerned with the system’s overall value and not how to realize
it, the extent to which the service provider is aware of any discrepancies between the model and the actual
system has no impact.
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(a) Original model (b) Low-mode θ distribu-
tion with parameter λ =
1.5.

(c) High-mode θ distribu-
tion with parameter λ =
1.5.

(d) Non-linear utility func-
tion

(e) Upper-bounded roaming
(τ = 0.8)

(f) Minimum useful cover-
age (κth = 0.2)

(g) Heterogeneous popula-
tion

(h) Coverage saturation
with adoption

Figure A.9: Values of optimal adoption x for maximum total welfare under different per-
turbations. Parameters are r = 1.6 and c = 0.6 (and therefore r − c = 1).
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tion A.6.1. Under this perturbation, Figs. A.9b and A.9c demonstrate that the maximum

total welfare is again mostly achieved at either x = 1 or x = 0.

Other remarks

Figs. A.9b and A.9c identify the region in the γ − e plane where a positive total welfare

is possible. The regions in the two figures are slightly different: For large values of home

connectivity utility γ, the system with more sedentary users (Fig. A.9b) can tolerate a larger

deployment cost e while still yielding a positive value. For instance when γ = 2, the system

with more sedentary users (Fig. A.9b) allows e / 1.6, whereas the system with a large

roaming population (Fig. A.9c) allows only e / 1.4. This is intuitive as a higher population

of sedentary users means more people will enjoy the high home connectivity utility.

On the other hand, for small values of γ the roles are reversed. The system with more

roaming users (Fig. A.9c) can tolerate a larger deployment cost e while still yielding a pos-

itive value. For instance when γ = 0, the system with more sedentary users (Fig. A.9b)

allows e / 0.4; however, the system with a large roaming population (Fig. A.9c) is under-

standably less affected by the small home connectivity utility γ, and allows e / 0.6.

A.7.1.(d) Non-linear utility functions

We now consider the effect of non-linearities in users’ utility functions using the utility

function introduced in Section A.6.2. The resulting optimal adoption level for maximizing

total welfare is given in Fig. A.9d. It shows that the maximum total welfare continues to

be achieved mostly at either x = 1 or x = 0.

A.7.1.(e) Utility function with upper-bounded roaming

We used the new utility function given in Section A.6.2 with an upper-bound value of

τ = 0.8. Under this new utility function, Fig. A.9e displays the optimal adoption level x.

Although the figure exhibits small differences with Fig. A.9a, it shows that the maximum

total welfare continues to be achieved mostly at either x = 1 or x = 0.

A.7.1.(c) Utility function with minimum useful coverage

We use the new utility function of Section A.6.2 with a threshold value of κth = 0.2. Under
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this new utility function, Fig. A.9f demonstrates that the maximum total welfare is again

mostly achieved at either x = 1 or x = 0, in a manner very similar to Fig. A.9a.

Fig. A.9f is almost identical to Fig. A.9a, because the values of optimal adoption x in

Fig. A.9a mostly correspond to a coverage level that is already above the coverage threshold

κth, and therefore are not affected by imposing the criterion of minimum useful coverage

in Fig. A.9f. Therefore the regions of Fig. A.9a where the optimal adoption is at x = 0 or

x > κth are exactly replicated in Fig. A.9f. This constitutes most of the points in the figure.

(g) Heterogeneous population

In this section, we consider the effect of a heterogeneous user population, as per the two-type

user population of Section A.6.3. Recall that a user’s type affects both her utility function

and the roaming traffic she generates. Fig. A.9g reports the adoption levels associated with

maximum welfare for such a configuration. It again shows that the maximum total welfare

is usually achieved at either x = 1 or x = 0.

A.7.1.(h) Coverage saturation with adoption

The last perturbation we consider involves a scenario where coverage saturates as the system

approaches full adoption x = 1 (as described in section A.6.4). The results are shown in

Fig. A.9h.

Fig. A.9h highlights some minor differences with our original findings of Fig. A.9a.

Specifically, while maximum total welfare is still often achieved at either x = 1 or x = 0, an

intermediate region has emerged for which the optimal adoption level, while still high and

close to 1, is nevertheless slightly lower. The difference is small and quite intuitive, as we

explain next.

Recall the two effects of increasing adoption. On one hand, an increase in adoption im-

proves total welfare, both because it improves coverage, which favorably affects the utility of

all users, and because the new users themselves contribute to the total welfare. On the other

hand, more users means more roaming traffic, which adversely affects all users’ utility and,

therefore, welfare. The combined contributions of these opposing effects determines whether

higher adoption increases or decreases total welfare. When coverage saturates earlier, new
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(a) Original model (b) Low-mode θ distribution with param-
eter λ = 1.5.

(c) High-mode θ distribution with pa-
rameter λ = 1.5.

(d) Non-linear utility function

(e) Upper-bounded roaming (τ = 0.8) (f) Minimum useful coverage (κth = 0.2)

(g) Heterogeneous population (h) Coverage saturation with adoption

Figure A.10: Usage-based pricing policy: values of usage allowance a for which full adoption
x = 1 is the (unique) equilibrium of the system, under different perturbations. Parameters
are c = 0.8, γ = 1, r = 1.6.

users still contribute to the system welfare, but their impact on improving coverage is now

diminished while the negative contribution of their roaming traffic is unchanged. Hence, it

is to be expected that under a model where coverage saturates before full adoption, max-

imum welfare may be realized slightly below full adoption as seen in the “blue” region of

Fig. A.9h.
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A.7.2 Usage-based pricing

Under the original model, we concluded that for the usage-based pricing policy, full adoption

x = 1 is the unique equilibrium of the system if and only if the usage allowance a is larger

than a threshold value.

In this section we demonstrate that even under more general conditions, i.e., when

various aspects of the original model are perturbed12, this finding remains valid.

Throughout the simulations of this section, we fix the parameters c = 0.8, γ = 1, r = 1.6

and find the final adoption level that the system converges to, as the value a of usage

allowance varies. By observing the final adoption level we can determine whether x = 1 is

the unique equilibrium of the system. The details of the simulations are as follows: At each

value of a, we start the system from zero adoption. After each iteration in the simulation,

users evaluate their utility and those with a positive utility adopt. The simulation stops

once consecutive iterations yield the same set of adopters. At this point the final adoption

level is recorded.

A.7.2.(a) Original model

Under the original model of Chapter 3, full adoption x = 1 is the unique equilibrium if and

only if the value of usage allowance satisfies a > c/2 (Proposition 2). This is illustrated

in Fig. A.10a which shows the values of a for which full adoption x = 1 is the unique

equilibrium (recall that c/2 = 0.4). The figure shows that there exists a threshold value a0

such that for a > a0, full adoption x = 1 is the unique equilibrium of the system, and for

a < a0, full adoption is not an equilibrium.

A.7.2.(b, c) Modified roaming distribution

12 Unlike section A.7.1 that only dealt with maximizing the system value, this section and all subsequent
ones are concerned with pricing the service. Prices are set by the provider, and as a result the information
available to the provider about the system’s characteristics is important. In the remainder, we therefore
mention not only perturbations to the original model, but also the provider’s knowledge of those perturba-
tions.
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Provider’s knowledge of the perturbations:

The provider does not have any knowledge about the modified θ distribution and assumes

the θ distribution is still uniform.

The roaming distribution is modified as per the description of Section A.6.1. We see

from Figs. A.10b and A.10c that under the two new roaming distributions of Section A.6.1

(low and high mode), the outcome is similar to that of the original model, i.e., there exists

a threshold value such that for values of a above it x = 1 is the unique equilibrium, and for

values of a below it, x = 1 is not an equilibrium.

A.7.2.(d) Non-linear utility function

Provider’s knowledge of the perturbations:

The provider does not have any knowledge about the non-linearity of the utility function

and assumes the original function is valid.

We now consider the effect of non-linearities in the utility function, as discussed in

Section A.6.2. The outcome is shown, again as a function of the usage allowance a,

in Fig. A.10d, which exhibits a similar pattern as Fig. A.10a, i.e., there exists a threshold

value such that for values of a above it x = 1 is the unique equilibrium of the system and

for values of a below it, x = 1 is not an equilibrium.

A.7.2.(e) Utility function with upper-bounded roaming

Provider’s knowledge of the perturbations:

The provider does not have any knowledge about the modified utility function and as-

sumes the original function is valid.

We use the new utility function of Section A.6.2 with an upper-bound value of τ = 0.8.

We see from Fig. A.10e that under this new utility function, the outcome is similar to that

of the original model, i.e., there exists a threshold value, albeit a different one, such that

for values of a above it x = 1 is the unique equilibrium, and for values of a below it, x = 1

is not an equilibrium.
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Figure A.11: Results for more drastic changes in the minimum useful coverage (κth = 0.6).
Values of usage allowance a in the usage-based pricing policy for which full adoption x = 1
is the (unique) equilibrium of the system. Parameters are c = 0.8, γ = 1, r = 1.6.

A.7.2.(f) Utility function with minimum useful coverage

Provider’s knowledge of the perturbations:

The provider does not have any knowledge about the modified utility function and as-

sumes the original function is valid.

As before, we use the new utility function of Section A.6.2 with a coverage threshold of

κth = 0.2. We see from Fig. A.10f that under this new utility function, the outcome is very

similar to that of the original model, i.e., there exists a threshold in the values of usage

allowance a, such that for values of a above it x = 1 is the unique equilibrium, and for

values of a below it, x = 1 is not an equilibrium.

In fact, the allowance threshold value in Fig. A.10f is identical to that of the origi-

nal model in Fig. A.10a. This is because, as shown in Appendix A.8, the outcome of the

usage-based pricing is very robust to this change in the utility function. Nevertheless, differ-

ences in the outcome would naturally arise under more drastic changes, i.e., by considering

significantly larger values for the coverage threshold.

For instance, as the value for the coverage threshold κth is changed to κth = 0.6 (roaming

users do not consider the system valuable until coverage exceeds 60%), differences appear

in the adoption outcomes. This is shown in Fig. A.11. Nevertheless, the figure also shows

that even under this more drastic change, the overall behavior remains consistent with that

of the original model.

A.7.2.(g) Heterogeneous population
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Provider’s knowledge of the perturbations:

The provider does not have any knowledge about users of type 2 and assumes that

everyone is a type 1 user.

This scenario assumes that the users’ population is heterogeneous and split into two sub-

populations of different type, as described in Section A.6.3. Fig. A.10g reports the results,

which are again consistent with those of the original model, i.e., there exists a threshold

value such that for values of a above it x = 1 is the unique equilibrium of the system and

for values of a below it, x = 1 is not an equilibrium.

A.7.2.(h) Coverage saturation with adoption

Provider’s knowledge of the perturbations:

The provider is not assumed to have any knowledge of the coverage saturation (of course,

in practice the provider may be able to estimate coverage, but the simulations do not

assume such knowledge).

As with the case of optimal welfare, the last perturbation we consider involves a scenario

where coverage saturates as the system approaches full adoption x = 1 (as described in

section A.6.4). The results are shown in Fig. A.10h, and again yield a similar outcome as

in the original model, i.e., there exists a threshold value such that for values of a above it

x = 1 is the unique equilibrium of the system and for values of a below it, x = 1 is not an

equilibrium.

We also note that unlike what happened with optimal welfare where optimal adoption

could end-up slightly lower than full adoption, the threshold value is unchanged when

compared to that of the original model. This is because the usage based pricing (by its

nature) does not require knowledge of the actual service coverage by the provider, and is,

therefore, insensitive to errors in the coverage level.
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A.7.3 Hybrid pricing tests with partial provider’s knowledge

Under the original model, we concluded that for the hybrid pricing policy, there are values

of home connectivity utility γ for which the system has an equilibrium at x < 1, which

would prevent the system from reaching full adoption, hence resulting in a sub-optimal total

welfare. The hybrid pricing policy, however, offers a way to eliminate the lower equilibria

and allow the system to reach full adoption. This is possible by adjusting the value of the

discount parameters δh or δr (for simplicity, we focus on adjusting δh).

In this section, we demonstrate that even under more general conditions, i.e., when

various aspects of the original model are perturbed, the system also exhibits regimes where

a sub-optimal equilibrium (x < 1) can arise, thereby preventing the system from reaching

full adoption. In addition, overcoming this issue can again be accomplished by adjusting

the value of δh, albeit typically with a different discount value.

Throughout the simulations of this section, we fix the parameters c = 0.8, δr = 0 and

find the final adoption level, denoted by x(∞), as we vary γ and δh values. The details

of the simulations are as follows: At each point (γ, δh), we start the system from zero

adoption. After each iteration in the simulation, users evaluate their utility and those with

a positive utility adopt. The simulation stops once consecutive iterations yield the same set

of adopters. At this point the final adoption level is recorded.

Moreover, throughout the simulations, the price parameters of the hybrid policy are

computed as:

ph = γ − c α− δh, and

pr = r − γ − δr,

where α is the estimate for overall intensity of roaming traffic m at full adoption (for the

original model we had α = 1/2, which gives ph = γ − c/2 − δh). The simulations of

this section assume that the provider can accurately estimate the value of α. (We will

further eliminate this assumption in section A.7.4 where we assume that the provider has

no knowledge of α.)
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(a) Original model. (b) Low-mode θ distribution with
parameter λ = 1.5.

(c) High-mode θ distribution with
parameter λ = 1.5.

(d) Non-linear utility function

(e) Upper-bounded roaming (τ =
0.8)

(f) Minimum useful coverage (κth =
0.2)

(g) Heterogeneous population (h) Coverage saturation with adop-
tion

Figure A.12: Final adoption level for the hybrid pricing policy under different perturbations.
Parameters are c = 0.8, δr = 0, with γ and δh values varying.
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A.7.3.(a) Original model

Fig. A.12a shows the final adoption level for the hybrid pricing policy under the original

model. The figure illustrates the presence of a region of (γ, δh) values where the system

does not go to full adoption, and shows that by increasing the discount factor δh we can

avoid that region, hence realizing full adoption.

A.7.3.(b, c) Modified roaming distribution

Provider’s knowledge of the perturbations:

The simulations assume that the provider can accurately estimate α (the intensity of

roaming traffic m at full adoption). We relax this in section A.7.4. Other than that, the

provider does not have any knowledge about the modified θ distribution.

The roaming distribution is modified as per the description of Section A.6.1. We see

from Figs. A.12b and A.12c that adoption outcomes are similar to those of the original

model, i.e., the system exhibits regimes where the final adoption is at a sub-optimal level

x < 1, and that full adoption can be realized by adjusting the value of δh.

As expected, the level of discount δh required to realize full adoption is different in

Fig. A.12b and Fig. A.12c, as the exact amount depends on the exact specifications of the

system. However, the overall behavior is similar.

A.7.3.(d) Non-linear utility function

Provider’s knowledge of the perturbations:

The provider does not have any knowledge about the non-linearity of the utility function

and assumes the original function is valid.

We now consider the effect of non-linearities in the utility function as introduced in

section A.6.2. The final adoption level is given in Fig. A.12d, which again yields a similar

outcome, i.e., the system exhibits regimes where the final adoption is at a sub-optimal level

x < 1, but full adoption can be realized by adjusting the value of the discount δh.

A.7.3.(e) Utility function with upper-bounded roaming
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Figure A.13: Result for more drastic changes in the utility function with upper-bounded
roaming (τ = 0.15). Compare to Fig. A.12e.

Provider’s knowledge of the perturbations:

The simulations assume that the provider can accurately estimate α (the intensity of

roaming traffic m at full adoption). We relax this in section A.7.4. Other than that, the

provider does not have any knowledge about the new utility function.

We use the new utility function of Section A.6.2 with an upper-bound value of τ = 0.8.

We see from Fig. A.12e that adoption outcomes under this new utility function are very

similar to those of the original model, i.e., the system exhibits regimes where the final

adoption is at a sub-optimal level x < 1, and that full adoption can be realized by adjusting

the value of δh.

Note that, as mentioned above, the exact values of discount δh required to realize full

adoption in Fig. A.12e, are very close to that of the original model (Fig. A.12a). However,

greater differences would obviously arise under more drastic changes, i.e., by considering a

significantly smaller upper-bound value τ .

For instance, as the value for the upper-bound τ of Section A.6.2 is changed to τ = 0.15

(no user roams more than 15% of the time), greater differences arise. This is shown in

Fig. A.13. Nevertheless, the figure also shows that even under this more drastic change, the

overall behavior remains consistent with that of the original model.

A.7.3.(f) Utility function with minimum useful coverage
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Provider’s knowledge of the perturbations:

The provider does not have any knowledge about the new utility function.

We use the new utility function of Section A.6.2 with a threshold value of κth = 0.2. We

see from Fig. A.12f that adoption outcomes under this new utility function are very similar

to those of the original model, i.e., the system exhibits regimes where the final adoption is

at a sub-optimal level x < 1, and that full adoption can be realized by adjusting the value

of δh.

Note that, as mentioned above, the exact values of discount δh required to realize full

adoption in Fig. A.12f, are very close to that of the original model (Fig. A.12a). However,

as seen earlier, greater differences would obviously arise under more drastic changes, i.e.,

by considering a significantly larger threshold value κth.

For instance, as the value for the threshold κth of Section A.6.2 is changed to κth = 0.4

(roaming users do not consider the system valuable until coverage exceeds 40%), greater

differences arise. This is shown in Fig. A.14. Nevertheless, the figure also shows that even

under this more drastic change, the overall behavior remains consistent13 with that of the

original model.

Figure A.14: Result for more drastic changes in the utility function with minimum useful
coverage κth = 0.4. Compare to Fig. A.12f.

13 The yellow stripes in Fig. A.14 correspond to points where the system does not converge to an equilib-
rium. However, we still have the previous behavior, i.e., as δh increases, full adoption becomes the unique
equilibrium of the system.
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A.7.3.(g) Heterogeneous population

Provider’s knowledge of the perturbations:

The provider does not have any knowledge about the users of type T2 and assumes

that everyone is a user of type T1. But the simulations assume that the provider can

accurately estimate α (the intensity of roaming traffic m at full adoption). We relax this

in section A.7.4.

In this section, we consider the effect of a heterogeneous user population, as per the

two-type user population of Section A.6.3. The results are shown in Fig. A.12g. We see

that again the system exhibits regimes where the final adoption is at a sub-optimal level

x < 1, but that we can still realize full adoption by adjusting the value of the discount δh.

There are, however, unavoidable differences between Fig. A.12g and Fig. A.12a. Notably,

we now need a positive discount (δh ' 0.18) to reach full adoption at all γ values. This

is because the provider is totally unaware of the existence of the type T2 users, which

introduces relatively big errors in the pricing policy. As a result and because we need to

compensate for those large errors, reaching full adoption now requires a bigger discount

factor δh than before. In general, the larger the errors in the assumptions used to set

prices, the bigger the discount “margin” required to compensate for them. Nevertheless,

the structure of the system remains unchanged.

A.7.3.(h) Coverage saturation with adoption

Provider’s knowledge of the perturbations:

The provider is not assumed to have any knowledge of the coverage saturation (of course,

in practice they can measure the coverage if they want to, but our simulations do not

assume that knowledge).

As before, we consider a scenario where coverage saturates as the system approaches full

adoption x = 1 (see Section A.6.4). The results for this scenario are shown in Fig. A.12h

that displays a somewhat different structure from the other figures, namely, the system

appears to always reach full adoption even with a discount of δh = 0. This is, however, not
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surprising given that at any adoption level the coverage is higher than in the original model

(the saturating coverage function has a concave shape). As a result of this higher coverage,

more users find the service useful, and hence adopt, eventually resulting in full adoption.

Nonetheless, the analysis of Chapter 3 can help us understand this result as well. For

instance, consider the case of zero discounts, i.e., δh = δr = 0. The utility function for each

user becomes

U(Θ, θ) = c (α−m) + θ γ(κ− 1).

As before, α is the estimate for the roaming traffic m at full adoption, so that α − m is

non-negative. Similarly, because coverage κ is less than or equal to 1, it follows that (κ−1)

is negative (or 0). Because coverage saturates earlier, the term θ γ(κ − 1) is greater than

in the original model, hence enticing more roaming users to adopt, therefore facilitating

reaching full adoption14.

A.7.4 Hybrid pricing tests with zero provider’s knowledge

Provider’s knowledge of the perturbations:

The provider does not have any knowledge about any of the perturbations in this section.

This section presents simulations similar to those of the previous section, with the

difference that we assume that the provider has no knowledge of the system’s parameters.

Specifically, we relax the assumption that the provider can accurately estimate the actual

level of roaming traffic m generated at full adoption. The results are given in Fig. A.15 that

parallels Fig. A.12.

Note that Figures. A.15d, A.15f and A.15h are identical to their counterparts in Fig. A.12.

The reason is that the perturbations associated with the scenarios of those three figures do

not alter the value of m at full adoption. Hence, the provider still estimates the correct

value for m. The same does not hold for the other scenarios and Figures (b), (c), (e) and

14Obviously, a scenario where coverage proceeds more slowly as adoption increases, i.e., a convex rather
than concave coverage function, would have the opposite effect.
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(g) differ from their counterparts in Fig. A.12. However, in spite of those differences, they

exhibit similar overall behaviors, i.e., they display regimes where a sub-optimal equilibrium

x < 1 arises, but full adoption can still be realized by adjusting the value of the discount

δh.

The differences between Fig. A.15 and Fig. A.12 are not surprising, as the perturbations

now result in more severe errors in the pricing policy, due to the complete lack of insight

by the provider about the system. These larger errors work in favor of full adoption in (b)

and (e), and against it in (c) and (g). As expected, differences in errors result in different

necessary discount values, even if the overall pattern and structure are preserved.

A.7.5 Fixed price policy

Provider’s knowledge of the perturbations:

The provider does not have any knowledge about any of the perturbations in this section.

Under the original model and the fixed price policy, a profit maximizing strategy would

often differ from a welfare maximizing one. In Chapter 3 we quantified this gap by comparing

the overall profit under both types of strategies. The gap was small when the parameter c

was small, but grew large as c increased.

In this section, we demonstrate that even under more general conditions, i.e., when

various aspects of the original model are perturbed, this finding remains valid.

Throughout the simulations of this section, we fix the parameters γ = 1, r = 2 and

e = 0.3 and consider a range of c values. The details of the simulations are as follows:

At each point, we iterate over different values of p to find the price p∗ that maximizes the

provider’s profit with no constraint, as well as the price p̂ that maximizes provider’s profit

with the constraint that the total welfare is also maximized. We denote the corresponding

values of maximum profit by W ∗P and ŴP , respectively. We then compute the relative profit
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drop from profit maximization to welfare maximization as

Profit difference =
W ∗P − ŴP

W ∗P
× 100%.

Fig. A.16 compares the resulting profit drops for both the original model and the seven

different perturbations introduced in Appendix A.6. The figure illustrates that the overall

behavior is similar across all scenarios, i.e., there is no profit difference for small values of

c, but the gap increases rapidly as c increases beyond some moderate threshold value.
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Same as Fig. A.12a

(a) Original model (b) Low-mode θ distribution with
parameter λ = 1.5.

(c) High-mode θ distribution
with parameter λ = 1.5.

Same as Fig. A.12d

(d) Non-linear utility function

(e) Upper-bounded roaming (τ =
0.8)

Same as Fig. A.12f

(f) Minimum useful coverage
(κth = 0.2)

(g) Heterogeneous population

Same as Fig. A.12h

(h) Coverage saturation with
adoption

Figure A.15: Final adoption level for the hybrid pricing policy (the provider does not know
m at full adoption) under different perturbations. Parameters are c = 0.8, δr = 0, with γ
and δh values varying.

151



(a) Original model (b) Low-mode θ distribu-
tion with parameter λ =
1.5.

(c) High-mode θ distribu-
tion with parameter λ =
1.5.

(d) Non-linear utility func-
tion

(e) Upper-bounded roaming
(τ = 0.8)

(f) Minimum useful cover-
age (κth = 0.2)

(g) Heterogeneous popula-
tion

(h) Coverage saturation
with adoption

Figure A.16: Relative profit drop from profit maximization to welfare maximization (fixed-
price policy γ = 1, r = 2 and e = 0.3).
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A.8 Usage-based pricing and utility functions with

minimum useful coverage

In this section we analyze user adoption under the usage-based pricing policy and the utility

function with minimum useful coverage rule.

Putting the usage-based price function of Eq. (3.16) into the utility function of Eq. (A.35),

the utility for user θ is found as

U(Θ, θ) =


a− cm− rθx if x < κth,

a− cm if x ≥ κth.

(A.36)

In order to analyze the adoption dynamics in this case, we assume that at each “de-

cision time”, only the most ”eager” of the users adopts (or disadopts) the service. Such

a “diffusion-like” adoption mechanism prevents artifacts such as sudden oscillation in the

adoption level for the current case.

We first note that by Eq. (A.36), at any adoption level x, the users with smaller roaming

frequency θ have higher utility. Therefore, the adoption interval is always of the form [0, x],

and consequently m = x2/2. Therefore the utility function of Eq. (A.36) becomes

U(Θ, θ) =


a− c x22 − rθx if x < κth,

a− c x22 if x ≥ κth.

(A.37)

We want to find the conditions under which full adoption x = 1 is the unique equilibrium

and the adoption levels eventually reach this equilibrium. Now assume that adoption levels

are initially at x = 0. Because of the low adoption level, user utilities are given by the first

expression in Eq. (A.37). As adoption levels increase, we want to consistently have the user

with θ = x+ see a positive utility, hence adopt the service. The worst case happens for the
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user with θ = κ−th, who at the time of her decision sees a utility of

U(x ≈ κth, θ = κth) = a− (c/2)κth − rκth

= a− κth(c/2 + r).

Therefore we obtain the extra condition a > κth(c/2 + r) for x = 1 to be a unique

equilibrium. Consequently, we get a modified form of proposition 1.

Proposition 12. Under the usage-based pricing policy of Eq. (3.16), and a utility function

with minimum useful coverage rule given in Eq. (A.35), full adoption, x = 1, is the unique

equilibrium if a > max{c/2, κth(c/2 + r)}, and is not an equilibrium if a ≤ c/2.

Note that if the threshold κth is such that c/2 ≥ κth(c/2+r), then the system’s adoption

behavior is the same as the original model. On the other hand, If c/2 < κth(c/2 + r), then

for c/2 < a < κth(c/2 + r), full adoption x = 1 is an equilibrium but not unique.

A.9 Contiguity of the optimal adoption set

In this section we provide analytical proof for a more general form of Lemma 1. Namely, in

a setting where the users’ propensity to roam, θ, has a general arbitrary distribution f(θ)

in [0, 1].

Under a general distribution, the adoption level x, the roaming traffic m and the total

welfare V (Θ) should be computed based on their general expressions, as follows.

x(Θ) =

∫
θ∈Θ

f(θ) dθ, (A.38)

m(Θ) =

∫
θ∈Θ

θ f(θ) dθ , (A.39)

V (Θ) =

∫
θ∈Θ

v(Θ, θ) f(θ) dθ. (A.40)

The next Lemma then gives the generalization of Lemma 1.

Generalization of Lemma 1. Under an arbitrary roaming distribution with density f(θ)
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and for any adoption level x, maximum welfare is always obtained with a set of adopters

Θ∗(x) that exhibit contiguous roaming characteristics. Specifically, Θ∗(x) is of the form

Θ∗(x) =


Θ∗1(x) = [0, x) if x < γ

r−c ,

Θ∗2(x) = [1− x, 1] if x ≥ γ
r−c .

(A.41)

Proof. For any given adoption level x, consider an arbitrary realization Θold of adopters

such that |Θold| = x. Now take any two intervals N1 and N2 from [0, 1] such that

N1 = [θ1, θ1 + ε1), N1 ∩ Θold = ∅,

N2 = [θ2, θ2 + ε2), N2 ⊂ Θold

where θ2 > θ1, ε1 > 0 and ε2 is selected such that

x(N1) = x(N2) , ε, (A.42)

x(·) being the coverage generated by a particular set as defined by Eq. (A.38). The above

conditions mean that everyone in N1 is a non-adopter and everyone in N2 is an adopter,

and the population of these two sets is the same, taken to be ε. Construct a new set of

adopters by having everyone in N1 adopt and everyone in N2 disadopt,

Θnew = (Θold ∪N1)\N2,

where \ indicates the set difference operation. We investigate next the change ∆ in welfare

when the adopers’ set changes from Θold to Θnew, i.e.,

∆ , V (Θnew)− V (Θold). (A.43)
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Using Eq. (A.40) and splitting the bounds of the integral, we can write

V (Θold) =

∫
Θold

v(Θold, θ) f(θ) dθ

=

∫
Θold\N2

v(Θold, θ) f(θ) dθ +

∫
N2

v(Θold, θ) f(θ) dθ,
(A.44)

and similarly

V (Θnew) =

∫
Θnew

v(Θnew, θ) f(θ) dθ

=

∫
Θnew\N1

v(Θnew, θ) f(θ) dθ +

∫
N1

v(Θnew, θ) f(θ) dθ,
(A.45)

Note that

Θold\N2 = Θnew\N1 = Θold ∩Θnew,

and therefore we can use Eq. (A.44) and Eq. (A.45) in Eq. (A.43) to get

∆ = ∆1 + ∆2, where

∆1 ,
∫

Θnew∩Θold

(
v(Θnew, θ)− v(Θold, θ)

)
f(θ) dθ, and

∆2 ,
∫
N1

v(Θnew, θ) f(θ) dθ −
∫
N2

v(Θold, θ) f(θ) dθ.

Moreover, from Eq. (3.9) we have

v(Θold, θ) = γ + θ (rxold − γ)− cmold − e,

where xold and mold are the adoption level and the volume of roaming traffic corresponding

to Θold. Similarly,

v(Θnew, θ) = γ + θ (rxnew − γ)− cmnew − e,

with xnew and mnew defined respective to Θnew. Note that as a result of the condition in
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Eq. (A.42), we have xold = xnew = x. Therefore

∆1 = −
∫

Θnew∩Θold

c
(
mnew −mold

)
f(θ) dθ

= −c
(
mnew −mold

)∫
Θnew∩Θold

f(θ) dθ

= −c (m(N1)−m(N2)) (x− ε)

and

∆2 = (γ − cmnew − e)
∫
N1

f(θ) dθ + (rx− γ)

∫
N1

θ f(θ) dθ

− (γ − cmold − e)
∫
N2

f(θ) dθ − (rx− γ)

∫
N2

θ f(θ) dθ

= (γ − cmnew − e)ε+ (rx− γ)m(N1)− (γ − cmold − e)ε− (rx− γ)m(N2)

= −εc (m(N1)−m(N2)) + (rx− γ) (m(N1)−m(N2)) ,

Where m(·) is as given by Eq. (A.39). Thus, we compute ∆ as

∆ = −cx (m(N1)−m(N2)) + (rx− γ)(m(N1)−m(N2))

= (m(N2)−m(N1))(cx− rx+ γ).

(A.46)

We also have

m(N2) =

∫ θ2+ε2

θ2

θ f(θ) dθ

> θ2

∫ θ2+ε2

θ2

f(θ) dθ = θ2

∫ θ1+ε1

θ1

f(θ) dθ

> (θ1 + ε1)

∫ θ1+ε1

θ1

f(θ) dθ

>

∫ θ1+ε1

θ1

θ f(θ) dθ = m(N1),

where θ2 > θ1 + ε1 holds since by construction N1 and N2 are mutually exclusive.

Consequently m(N2) − m(N1) > 0, and Eq. (A.46) indicates that ∆ > 0 if and only

if x < γ
r−c . But a ∆ > 0 (positivity independent of the specific choices of N1 and N2)
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means that welfare always increases if an interval of high-θ users leave and a same-size

interval of low-θ users join. Repeating this for multiple intervals of suitable sizes will

create a contiguous set of adopters in [0, x) that generates more welfare than any other set.

Similarly, the case of ∆ ≤ 0 creates15 a contiguous set of adopters in the other end of [0, 1]

interval, i.e., [1− x, 1].

The generalization of Lemma 1 characterizes the structure of optimal adoption set for

any given x and establishes that is a contiguous set of adopters.

15 When ∆ = 0, this optimal contiguous Θ is not the only optimum.
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Appendix B

Extras for Ising models

B.1 Modified edge-weights in Random Influence Model

Theorems 1 and 2 were stated based on zero self-weight wii = 0 for the nodes and a uniform

p value for all edge-weights. Similar results hold even if wii = Wi > 0, and every edge-

weight wij arises from a different Bernoulli process, each with a probability pij of being +1.

Denote Wmin = mini{Wi}, and pmin = mini,j{pij}. A modified version of Theorem 1 can

then be obtained as follows.

Theorem 7. Fix any 0 < δ < 1 and suppose

pmin ≥
1

2
− Wmin

2(n− 1)
+

√
log(n/δ)

2(n− 1)
.

Then P+
n ≥ 1− δ. In particular, if pmin > 1/2 is bounded away from 1/2, then P+

n → 1 as

n→∞.

Proof. Similar to the steps in the proof of Theorem 1 we have

P(x+
i S

+
i ≤ 0)

= P

Wi +
∑
j 6=i

(wij − (2pij − 1)) ≤ −
∑
j 6=i

(2pij − 1)
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≤ exp

−
(
Wi +

∑
j 6=i(2pij − 1)

)2

2(n− 1)


≤ exp

−
(
Wi +

∑
j 6=i(2pi,min − 1)

)2

2(n− 1)


≤ exp

(
−

(n− 1)2( Wi
n−1 + 2pi,min − 1)2

2(n− 1)

)

= exp

(
−2(n− 1)

(
Wi

2(n− 1)
+ pi,min −

1

2

)2
)
,

where pi,min = minj{pij}. Continuing in the steps of the proof of Theorem 1, we get

P

(
n⋃
i=1

(
x+
i S

+
i ≤ 0

))

≤
n∑
i=1

P
(
x+
i S

+
i ≤ 0

)
≤

n∑
i=1

exp

(
−2(n− 1)

(
Wi

2(n− 1)
+ pi,min −

1

2

)2
)

≤
n∑
i=1

exp

(
−2(n− 1)

(
Wmin

2(n− 1)
+ pmin −

1

2

)2
)

= n · exp

(
−2(n− 1)

(
Wmin

2(n− 1)
+ pmin −

1

2

)2
)

where pmin = mini{pi,min} = mini,j{pij} and Wmin = mini{Wi}. This means that

P

(
n⋃
i=1

(
x+
i S

+
i ≤ 0

))
≤ δ,

for the given selection of pmin.

Next we derive a modified version of Lemma 4.
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Lemma 13. Fix any m < n/2 and suppose x ∈ Bm. Then

P

(
n⋂
i=1

(Si(x) > 0)

)

≥ 1− n · exp

(
− [(n− 1− 2m) (2pmin − 1)−Wmax − 2m∆max]2

2(n− 1)

)
.

In these expressions,

pi,min = min
j
{pij},

pmin = min
i,j
{pij},

Wmax = max
i
{Wi},

and ∆max = max
i
{∆i}.

where ∆i = pi,max, − pi,min. Furthermore, and in order to get a simpler expression, W >

pi,min − 1/2 is assumed.

Proof. Following the same steps as in the proof of lemma 4, for i ∈M(x) we get

P (Si(x) ≤ 0) ≤ exp

(
− (t1)2

2(n− 1)

)
for i ∈M(x),

where

t1 , −
∑

j∈M(x),
j 6=i

(2pij − 1) +
∑

j /∈M(x)

(2pij − 1)−Wi > 0.

We note that

t1 ≥ −
∑

j∈M(x),
j 6=i

(2pi,max − 1) +
∑

j /∈M(x)

(2pi,min − 1)−Wi

= (n+ 1− 2m)(2pi,min − 1)−Wi − 2(m− 1)∆i

≥ (n− 2m)(2pi,min − 1)−Wi − 2m∆i

≥ (n− 1− 2m)(2pi,min − 1)−Wi − 2m∆i.
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Similarly, for i /∈M(x) we get

P (Si(x) ≤ 0) ≤ exp

(
− (t2)2

2(n− 1)

)
for i /∈M(x),

where

t2 , −
∑

j∈M(x)

(2pij − 1) +
∑

j /∈M(x),
j 6=i

(2pij − 1)−Wi > 0.

We note that

t2 ≥ −
∑

j∈M(x)

(2pmax,i − 1) +
∑

j /∈M(x),
j 6=i

(2pmin,i − 1)−Wi

= (n− 1− 2m)(2pi,min − 1) +Wi − 2m∆i

≥ (n− 1− 2m)(2pi,min − 1)−Wi − 2m∆i.

Hence we have

t1, t2 ≥ (n− 1− 2m)(2pi,min − 1)−Wi − 2m∆i,

and as a result

∀i, P (Si(x) ≤ 0)

≤ exp

(
− [(n− 1− 2m) (2pi,min − 1)−Wi − 2m∆i]

2

2(n− 1)

)

≤ exp

(
− [(n− 1− 2m) (2pmin − 1)−Wmax − 2m∆max]

2

2(n− 1)

)
,

Where pmin = mini{pi,min} = mini,j{pij}, and ∆max = maxi{∆i}. An application of union

bound and conjugation, as done in the proof of lemma 4, will conclude the proof.

We conclude with the modified version of Theorem 2, which is identical to it except for

the value of α0(p).

Theorem 8. Select any tiny, positive ε. Fix any 1/2 < p < 1 and any value 0 < α < α0(p).

If x is any state with d(x,x+) ≤ αn, then P(A+
x ) > 1 − ε whenever n is sufficiently large.
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The value α0(p) is the solution to

f(α, p) = 0,

where

f(α, p) = 2

[
(1− 2α− 1/n) (pmin − 1/2)− Wmax

2n
− α∆max

]2
+ α log(α) + (1− α) log(1− α).

Proof. Using the result of lemma 13 and following the same steps as in the proof of Theo-

rem 2, we see that

P (Rcx)

≤ n · exp

(
−

4n2
[
(1− 2α− 1

n
)
(
pmin − 1

2

)
− Wmax

2n
− α∆max

]2
2(n− 1)

)

≤ n · exp

(
−2n

[
(1− 2α− 1

n
)

(
pmin −

1

2

)
− Wmax

2n
− α∆max

]2)
.

The rest of the proof is the same as that of Theorem 2.

B.2 Independents in the Random Influence Model

This section analyzes the Random Influence model in the presence of a group of indepen-

dents Ga in addition to the two parties G1 and G2 that were described in section 4.2.2.

The independents have non-biased affinities towards every node in the network, i.e., the

interaction weights {waij , i ∈ Ga} between a node i ∈ Ga and any node j in the network

form a system of signed Bernoulli trials with success parameter P{waij = 1} = 1/2.

In this case the arguments of section 4.2.3 can still be used to merge the two parties into

one party Gb. However, the model may not be further simplified and we are left with one

party Gb and the independents. As before, the interaction weights {wbij , i, j ∈ Gb, i ≤ j}

between two nodes1 i, j ∈ Gb form a system of signed Bernoulli trials with success parameter

p = P{wbij = 1} > 1/2.

Let the size of the party be |Gb| = nb and the size of the independent group be |Ga| =
1For conciseness of representation, we assume that self-weights wii are of the same nature as cross-weights.

Generalizations to this can be easily obtained.
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Figure B.1: The fraction of time that the system converges to a meta-partisan fixed point,
when 1/2 of the total 1000 nodes are independents, and the fraction of the times that the
system converges to a partisan fixed point, when there are 500 party members without any
independents. In both cases, the number of party members is 500. Also in both cases we
pick random, non-biased starting points.

na = n − nb. Define a meta-partisan state xµ+ (with positive polarity) as any state2 for

which xµ+
i = +1, ∀i ∈ Gb and define Si(x

µ+) = Sµ+
i . A meta-partisan state xµ+ is similar

to the partisan state x+ of section 4.3 with regards to the party nodes i ∈ Gb, but allows

for any opinion at the independent nodes i ∈ Ga. Therefore there are a total of 2na different

meta-partisan states (with positive polarity) which we index by 1 ≤ µ ≤ 2na . In the

remainder of this section we show that starting from any of the meta-partisan states xµ+,

there is a high probability P̂+ that the system remains within the set of the meta-partisan

states indefinitely.

Let Eµ+ be the exit event for the meta-partisan state xµ+, which occurs if xµ+ updates

to a non-meta-partisan state, i.e., there exists at least one party member i ∈ Gb such that

2 Similar to the partisan states defined in section 4.3, a meta-partisan state may be defined with positive
or negative polarity. Here we concentrate on the states xµ+ with positive polarity. The negative-polarity
states are symmetrical to the positive-polarity ones and can be similarly discussed.

164



Figure B.2: The fraction of time that the system converges to a meta-partisan fixed point,
when a fraction 0.90 of the total 4000 nodes are independents At each p value, 5 different
initializations of edge-weights are considered and for each of those, 5 initialization of random
opinions.

xµ+
i Sµ+

i ≤ 0. Specifically

Eµ+ =
⋃
i∈Gb

xµ+
i Sµ+

i ≤ 0. (B.1)

The next Theorem determines the probability of the exit event.

Theorem 9. Assume p is large enough so that

nb (2p− 1)− na ≥ 0. (B.2)

Then at any meta-partisan state xµ+, the probability of the exit event defined by Eq. (B.1)

satisfies the following inequality.

P
(
Eµ+

)
≤ nb · exp

(
− [nb (2p− 1)− na]2

2nb

)
.

Proof. If the system is in the meta-state xµ+ then the partial sums for any node i ∈ Gb are
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given by

xµ+
i Sµ+

i = Sµ+
i =

∑
j∈Gb

wbijx
µ+
j +

∑
j∈Ga

waijx
µ+
j

=
∑
j∈Gb

wbij +
∑
j∈Ga

waijx
µ+
j

≥
∑
j∈Gb

wbij − na.

The sum on the right represents a random walk with a positive drift, and −na is a lower-

bound (worst case) for the effect from the independents. The signed Bernoulli variables wbij

have expectation 2p− 1. From the above it results that

P(xµ+
i Sµ+

i ≤ 0) ≤ P

∑
j∈Gb

wbij − na ≤ 0


= P

∑
j∈Gb

(
wbij − (2p− 1)

)
≤ na − nb (2p− 1)

 .

From Eq. (B.2) we have

[na − nb (2p− 1)] ≤ 0,

and the Hoeffding’s inequality can therefore be used as before. We obtain

P(xµ+
i Sµ+

i ≤ 0) ≤ exp

(
− [nb (2p− 1)− na]2

2nb

)
.

By Boole’s inequality, it follows that

P

 ⋃
i∈Gb

(
xµ+
i Sµ+

i ≤ 0
) ≤∑

i∈Gb

P
(
xµ+
i Sµ+

i ≤ 0
)

≤ nb · exp

(
− [nb (2p− 1)− na]2

2nb

)
.
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Corollary. Separate deterministic calculations easily show that if p = 1 and na < nb then

P (Eµ+) = 0.

We note that if none of the meta-partisan states yields to the exit event, then the system

does remain within the set of the meta-partisan states indefinitely (but the inverse is not

true). Therefore the probability of the latter is at least as high as the probability of the

former, i.e.,

P̂+ ≥ 1−P

2na⋃
µ=1

Eµ+

 . (B.3)

Now assume na = εn (and nb = (1− ε)n). Then the following theorem shows how P̂+ can

be made arbitrarily large.

Theorem 10. Fix any 0 < δ < 1 and suppose

p ≥ 1

2
+

ε

2(1− ε)
+

√
ε log 2 + log((1−ε)n/δ)

n

2(1− ε)
. (B.4)

Then P̂+ ≥ 1− δ. In particular, if p > 1/2 is bounded away from (and more than)

pε =
1

2
+

ε

2(1− ε)
+

√
ε log 2

2(1− ε)
, (B.5)

then P̂+ → 1 as n→∞.

Proof. From Eq. (B.3) we use Boole’s inequality to obtain

P̂+ ≥ 1−
2na∑
µ=1

P
(
Eµ+

)
.

Since Theorem 9 holds for all values of µ, and since the condition in Eq. (B.4) subsumes

the condition in Eq. (B.2), we can apply Theorem 9 to the above equation to get

P̂+ ≥ 1− 2nanb · exp

(
− [nb (2p− 1)− na]2

2nb

)
.
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Figure B.3: Lower bound of p required for P̂+
n→∞ → 1 as given by Eq. (B.5). Note that

according to the corollary to Theorem 10, even where Eq. (B.5) gives a pε > 1, a value of

p = 1 guarantees that P̂+ = 1 ≥ 1− δ provided that ε < 1/2.

Replacing na = εn and nb = (1− ε)n in the above gives

P̂+ ≥ 1− 2εn(1− ε)n · exp

(
− n (2p− 2εp− 1)2

2(1− ε)

)

≥ 1− δ,

where the last inequality holds for the given selection of p from Eq. (B.4).

Corollary. Following the corollary to Theorem 9, it is again straight forward to show that

if p = 1 and ε < 1/2, then P̂+ = 1.

Fig. B.3 plots pε from Eq. (B.5) as a function of ε.

B.3 Isolation of centric clusters

When κ is an even number, there are centric clusters that have exactly κ/2 entries of +1

in their profiles. The next proposition shows that these centric clusters are not affected by
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the dominance effect of Theorem 6.

Proposition 13. There exists p∗ < 1 such that ∀p, p∗ ≤ p < 1, the overall ifnfluence of

the outer world on the clusters of type C(κ/2) is zero.

Proof. We will separately consider the effect of clusters C(λ) with different values of λ 6= κ/2

over clusters of type C(κ/2). Without loss of generality, consider a C(κ/2) cluster with a

profile of the form [+1, +1, . . . , −1, −1], i.e., all the +1 entries are in the beginning of the

profile. Now for any C(λ), let λ1 be the number of +1 entries in the profile of C(λ) from

position 1 to κ/2. Furthermore, let λ2 be the number of +1 entries from position κ/2 + 1

to κ. Obviously, we have λ1 + λ2 = λ. We will denote such a cluster by C(λ1, λ2).

Without loss of generality, we assume that λ < κ/2. If that is not the case, one can

redefine λ as the number of −1 entries in the profile, and the following steps will still hold.

The edge-weight between C(λ1, λ2) and C(κ/2) is

λ1 − (κ/2− λ1)− λ2 + (κ/2− λ2) = 2(2λ1 − λ).

Moreover, there are a total of
(κ/2
λ1

)(κ/2
λ2

)
clusters of type C(λ), and all of them have the

same opinion x(λ) by Theorem 6. Moreover, they all have the same expected size pλq(κ−λ).

Therefore the total influence of clusters C(λ) over a cluster C(κ/2) can be written as

Γ(λ) =

λ∑
λ1=0

2(2λ1 − λ)

(
κ/2

λ1

)(
κ/2

λ2

)
pλq(κ−λ)

= 2pλq(κ−λ)
λ∑

λ1=0

(2λ1 − λ)

(
κ/2

λ1

)(
κ/2

λ2

)
.

Now it suffices to show that

λ∑
λ1=0

λ

(
κ/2

λ1

)(
κ/2

λ2

)
=

λ∑
λ1=0

2λ1

(
κ/2

λ1

)(
κ/2

λ2

)
. (B.6)
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We start from the right hand side of Eq. (B.6),

RHS =
λ∑

λ1=0

2λ1

(
κ/2

λ1

)(
κ/2

λ2

)

=
λ∑

λ1=0

2λ1

(
κ/2

λ1

)(
κ/2

λ− λ1

)
,

and apply the change of variable t = λ− λ1 to get

RHS =
0∑
t=λ

2(λ− t)
(
κ/2

λ− t

)(
κ/2

t

)

=
λ∑
t=0

2(λ− t)
(
κ/2

t

)(
κ/2

λ− t

)

=

λ∑
λ1=0

2(λ− λ1)

(
κ/2

λ1

)(
κ/2

λ− λ1

)
.

Adding up the two equivalent expressions above, gives

2× RHS =
λ∑

λ1=0

2λ

(
κ/2

λ1

)(
κ/2

λ− λ1

)

=
λ∑

λ1=0

2λ

(
κ/2

λ1

)(
κ/2

λ2

)
.

Therefore

RHS =
λ∑

λ1=0

λ

(
κ/2

λ1

)(
κ/2

λ2

)
= LHS.

This concludes the proof.

B.4 Proof for special cases of profile-based model

Profile of size 1

The following theorem says that for κ = 1, the system has only two fixed points. After that,

we consider a profile of length 2 and a profile that is very large. Note that when κ = 1, the
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profile vector πi is just a scalar and πi = πi1.

Proposition 7. For any network size n, the profile-based model with profile size κ = 1

has exactly two fixed point that are stochastic, i.e., they are determined by the specific

realization of profile values, as given in Eq. (B.7).

xa : xai =


+1 if πi = +1

−1 if πi = −1

(B.7a)

xb : xbi =


−1 if πi = +1

+1 if πi = −1

(B.7b)

Proof. Profile vectors of size 1 are simply scalars πi = ±1. Consider a state x at a Hamming

distancem to xa. Note that such a state has n−m a-conforming nodes that are in accordance

with xa, and m b-conforming nodes that are in accordance with xb.

Now take i to be any of the m b-conforming nodes with xi = xbi = −πi. The update

sum for this node is

Si =
∑
j 6=i

πiπjxj = πi
∑
j 6=i

πjxj

= πi

 ∑
j:xj=xaj

πjxj +
∑

j:xj=x
b
j ,

j 6=i

πjxj



= πi

 ∑
j:xj=xaj

(+1) +
∑

j:xj=x
b
j ,

j 6=i

(−1)


= πi ((n−m)− (m− 1))

= πi(n− 2m+ 1).

If

m <
n+ 1

2
, (B.8)
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then Sign (πi(n− 2m+ 1)) = Sign (πi) = πi and therefore node i will update its opinion xi

to match xai = πi and become a-conforming, i.e.,

xnew
i = xai = πi.

So the number of b-conforming nodes is reduced to m− 1. Furthermore, If m > n+1
2 , then

Sign (πi(n− 2m+ 1)) = −Sign (πi) = −πi and therefore node i will remain b-conforming,

i.e.,

xnew
i = xi = xbi = −πi.

So the number of b-conforming nodes remains m.

On the other hand, if i is an a-conforming node with xi = xai = πi, then the update sum

for this node is

Si =
∑
j 6=i

πiπjxj = πi
∑
j 6=i

πjxj

= πi

 ∑
j:xj=x

a
j ,

j 6=i

πjxj +
∑

j:xj=xbj

πjxj



= πi

 ∑
j:xj=x

a
j ,

j 6=i

(+1) +
∑

j:xj=xbj

(−1)


= πi ((n−m− 1)− (m))

= πi(n− 2m− 1).

If

m <
n− 1

2
, (B.9)

then Sign (πi(n− 2m− 1)) = Sign (πi) = πi and therefore node i will remain a-conforming,

i.e.,

xnew
i = xi = xai = πi.
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So the number of b-conforming nodes stays at m. Furthermore, If m > n−1
2 , then

Sign (πi(n− 2m+ 1)) = −Sign (πi) = −πi

and therefore node i will become b-conforming, i.e.,

xnew
i = xbi = −πi.

So the number of b-conforming nodes in increased to m+ 1.

Combining the above results, we see that if the system starts from a state with m <

min
{
n+1

2 , n−1
2

}
= n−1

2 b-conforming nodes, under an arbitrary sequence of node updates

that ensures every node is visited in finite time, all of the b-conforming nodes will eventually

be met and transformed into an a-conforming node. At each such incident the number of

b-conforming nodes decreases by 1 unit, until it becomes zero and the system converges to

xa.

On the other hand, if the system starts from a node with m > max
{
n+1

2 , n−1
2

}
= n+1

2

b-conforming nodes, under an arbitrary sequence of node updates that ensures every node is

visited in finite time, all of the a-conforming nodes will eventually be met and transformed

into a b-conforming node. At each such incident the number of b-conforming nodes increases

by 1 unit, until it becomes n and the system converges to xb.

x will converge to


xa if m < n−1

2 ,

xb if m > n+1
2 .

(B.10)

If m is any integer n−1
2 ≤ m ≤ n+1

2 , the convergence outcome depends on the first

node to update, and the value assumed for Sign(0). For example, if n is even, then the

only integer in
[
n−1

2 , n+1
2

]
is n/2. With m = n/2 b-conforming nodes, if the first node to

update is a b-conforming one, then m < n+1
2 is satisfied and it will become a-conforming,

changing m to n/2 − 1. The system will hence converge to xa by Eq. (B.10). If, on the
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other hand, the first node to update is an a-conforming one, then m > n−1
2 is satisfied and

it will become b-conforming, changing m to n/2 + 1. The system will hence converge to xb

by Eq. (B.10).

Proposition 7 showed that with profiles being of the extreme size κ = 1, the outcome

of the system is either of the two fixed points that are determined wholly by the particular

realization of profile values. Next we study another extreme profile size, κ =∞.

Profile of size ∞

Proposition 8. or any network size n, and with arbitrarily large probability, the profile-

based model with profile size κ sufficiently larger than 2n2

(4p2−4p+1)2
(log(n) + log(n+ 1)), has

exactly two fixed points that are determined by the party affiliation of the nodes, as given

in Eq. (B.11).

xa : xai =


+1 if i ∈ G1

−1 if i ∈ G2

(B.11a)

xb : xbi =


−1 if i ∈ G1

+1 if i ∈ G2

(B.11b)

Proof. We first show that the relative sizes of G1 and G2 do not affect the result, and in

particular, we can assume that all nodes belong to G1 without loss of generality, i.e., n1 = n

and n2 = 0. In order to show this, we will use the result of Section 4.2.3 iteratively. In what

follows, we show that the discussion of Section 4.2.3 is indeed applicable.

Consider any two nodes i and j both from party G1. The kth entry of their profiles, πik
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and πjk, each have a probability p of being positive. Therefore

P (πikπjk = 1) = p2 + (1− p)2

= 2p2 − 2p+ 1

, p̃,

and

P (πikπjk = −1) = 2p(1− p)

= −2p2 + 2p

= 1− p̃.

Now consider a node j′ from party G2. Since πj′k has a probability (1−p) of being positive,

we have

P
(
πikπj′k = 1

)
= 2p(1− p)

= 1− p̃,

and

P
(
πikπj′k = −1

)
= p2 + (1− p)2

= p̃.

Consequently, (−πikπj′k) has the same probability distribution as (πikπjk). As a result,

−ŵij′ = −1

κ

κ∑
k=1

πikπj′k

=
1

κ

κ∑
k=1

−πikπj′k
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has also the same probability distribution as

w̌ij =
1

κ

κ∑
k=1

πikπjk.

Therefore the result of Section 4.2.3 is applicable, and by iteratively applying it, we can

assume that all the nodes belong to party G1.

Since profile entries with different k indices are independent of each other, the product

πikπjk, ∀k, makes a set of k independent Bernoulli random variables that take values +1

and −1 with probabilities p̃ and 1− p̃. Therefore we can use Hoeffding’s inequality to bound

the probability that
∑κ

k=1 πikπjk deviates from its mean. Before we proceed, we find its

expected value, E(·), as

E

(
κ∑
k=1

πikπjk

)

=

κ∑
k=1

E (πikπjk)

=
κ∑
k=1

(P (πikπjk = 1)−P (πikπjk = −1))

=
κ∑
k=1

(
4p2 − 4p+ 1

)
= κ

(
4p2 − 4p+ 1

)
, κµ,

Where µ , 4p2 − 4p + 1 is the expected value of πikπjk, and µ > 0 for p > 1/2. For any
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ε > 0 we have by Hoeffding’s inequality,

P

(
κ∑
k=1

πikπjk ≥ (µ+ ε)κ

)

= P

(
κ∑
k=1

πikπjk ≤ (µ− ε)κ

)

= P

(
κ∑
k=1

(πikπjk − µ) ≤ −εκ

)

≤ exp

(
−ε

2κ2

2κ

)
= exp

(
−ε

2κ

2

)
,

which bounds the value of wij = 1
κ

∑κ
k=1 πikπjk to the interval (µ− ε, µ+ ε) with high

probability. More accurately, let Dij(ε) be the event that wij deviates from this interval.

We have

∀i, j, P (Dij(ε)) , P ((wij ≤ µ− ε) ∪ (wij ≥ µ+ ε))

≤ P (wij ≤ µ− ε) + P (wij ≥ µ+ ε)

≤ 2 exp

(
−ε

2κ

2

)
.

The above relation is for a specific i and j. Now the probability that of all the different

{i, j} pairs, at least one of the edge-weights wij deviates from the interval (µ− ε, µ+ ε), is

P

⋃
i>j

Dij(ε)

 ≤∑
i>j

P (Dij(ε))

≤ n(n+ 1) exp

(
−ε

2κ

2

)
. (B.12)

For κ large enough, this probability goes to 0 and therefore with a high probability, all of

wij values are inside (µ− ε, µ+ ε), i.e., the probability

P

⋂
i>j

[Dij(ε)]
c

 ≥ 1− n(n+ 1) exp

(
−ε

2κ

2

)
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will go to 1. Note that this is the measure of the set of different profile realizations for

which, all wij values are bounded in (µ− ε, µ+ ε). Now assume that one of these profile

realizations has indeed happened, and consider any state x with a Hamming distance m

from xa. Under this state, the update sum of a node i with xi = xai can be written as

Si =
∑

j:xj=x
a
j ,

j 6=i

wijxj +
∑

j:xj 6=xaj

wijxj

=
∑

j:xj=x
a
j ,

j 6=i

wij −
∑

j:xj 6=xaj

wij

≥ (n−m− 1)(µ− ε)− (m)(µ+ ε)

= µ(n− 2m− 1− nε/µ+ ε/µ),

which is positive for

m <
n− 1− ε/µ(n− 1)

2
. (B.13)

On the other hand, for a node i with xi 6= xai , the update sum is

Si =
∑

j:xj=xaj

wijxj +
∑

j:xj 6=xaj ,
j 6=i

wijxj

=
∑

j:xj=xaj

wij −
∑

j:xj 6=xaj ,
j 6=i

wij

≥ (n−m)(µ− ε)− (m− 1)(µ+ ε)

= µ(n− 2m+ 1− nε/µ+ ε/µ).

which is positive for

m <
n+ 1− ε/µ(n− 1)

2
. (B.14)

If ε/µ(n − 1) < 1, then Eq. (B.13) and Eq. (B.14) are equivalent to Eq. (B.9) and

Eq. (B.8). Moreover, since all the wij values are bounded, the computations that lead

to Eq. (B.13) and Eq. (B.14) stay valid as the system evolves. Therefore by the same
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arguments as in the proof of Proposition 7, convergence to the proposed fixed points is

obtained.

It only remains to show that even for such small ε values, the expression in Eq. (B.12)

still goes to 0 as κ increases. In particular, ε = µ/n satisfies ε/µ(n− 1) < 1. For this ε we

have

n(n+ 1) exp

(
−ε

2κ

2

)
= n(n+ 1) exp

(
−κµ

2

2n2

)
.

We can take κ � 2n2

µ2
(log(n) + log(n + 1)) sufficiently large to make the above expression

arbitrarily small. This concludes the proof.
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