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Changes in Oxygen Tension Rapidly and Reversibly Regulate
Macrophage Nitric Oxide Production

Abstract
Macrophage nitric oxide (NO) production and hypoxia coexist during wound healing, and have been
implicated in the pathogenesis and pathophysiology of multiple disease states including sepsis and cancer.
Macrophages stimulated with pathogen associated molecular patterns (PAMPs) produce NO via inducible
nitric oxide synthase (iNOS) from molecular O2, L-arginine, and NADPH. The first aim of this research was
to characterize the degree and duration of hypoxia which would limit NO production by PAMPs stimulated
macrophages. The second aim was to identify the contributing mechanism(s). Using a novel forced
convection cell culture system, we demonstrated that NO production was rapidly (within seconds) and
reversibly regulated by physiological and pathophysiological O2 tensions (pO2). The effect of pO2 on NO
production was not mediated by changes in iNOS protein concentration or iNOS dimerization, implicating
limitation of the reactant(s) as the predominant causative mechanism. In addition to O2 limitation, hypoxia
has the potential to affect NADPH and L-arginine availability. In PAMPs stimulated macrophages, NADPH is
predominantly produced by the oxidative pentose phosphate cycle (OPPC). NO production directly
correlated with OPPC activity over a wide range of pO2, and inhibition of NO production with the specific
iNOS inhibitor, 1400W, significantly decreased OPPC activity. OPPC activity increased significantly in
response to chemically mediated oxidative stress irrespective of pO2, and NO production was unaffected by
increasing cellular oxidative stress, indicating that NADPH availability for NO production was not limited by
hypoxia. L-arginine is required for iNOS dimerization, and iNOS dimerization was maintained or increased
during hypoxic exposure, suggesting sufficient L-arginine was available. Furthermore, the effect of L-arginine
depletion on NO production was much slower than the response observed due to changes in pO2. In
conclusion, decreased O2 availability is the predominant mechanism responsible for rapidly and reversibly
limiting NO production by PAMPs stimulated macrophages exposed to acute hypoxia.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

First Advisor
Cynthia M. Otto

Second Advisor
Cameron J. Koch

Keywords
inducible nitric oxide synthase, substrate limitation, NO consumption, reactive nitrogen mediated stress,
oxidative stress, inflammation

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/17

http://repository.upenn.edu/edissertations/17?utm_source=repository.upenn.edu%2Fedissertations%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages


Subject Categories
Cell Biology | Cellular and Molecular Physiology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/17

http://repository.upenn.edu/edissertations/17?utm_source=repository.upenn.edu%2Fedissertations%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages




 ii

DEDICATION 

I dedicate this thesis to my grandmother, 

Ms. Dorothy Matern 

whose battle with breast cancer ended too soon, 

and who inspired me to pursue biomedical research. 

And 

To my family and friends for all of their love and support. 



 iii

ACKNOWLEDGEMENTS 

 

This work would not have been possible without the guidance and support of Dr. 

Cynthia M. Otto, Dr. James E. Baumgardner, Dr. Cameron J. Koch, Dr. Stephen W. 

Tuttle, Dr. Sydney Evans, Dr. Harry Ischiropoulos, Dr. Vladimir Muzykantov, Dr. 

Andrew Gow, Dr. Michael Atchison, Ms. Julia Fox, and Ms. Virginia Good.  Financial 

support was provided by the VMSTP program at the University of Pennsylvania, the 

American Heart Association (AHA 0515359U), and the National Institutes of Health 

(NIH CA92108 and NIH T32 CA009677-17). 



 iv

ABSTRACT 

CHAGES IN OXYGEN TENSION RAPIDLY AND REVERSIBLY REGULATE 

MACROPHAGE NITRIC OXIDE PRODUCTION 

Mary A. Robinson 

Advisors: Cynthia M. Otto and Cameron J. Koch 

 

Macrophage nitric oxide (NO) production and hypoxia coexist during wound 

healing, and have been implicated in the pathogenesis and pathophysiology of multiple 

disease states including sepsis and cancer.  Macrophages stimulated with pathogen 

associated molecular patterns (PAMPs) produce NO via inducible nitric oxide synthase 

(iNOS) from molecular O2, L-arginine, and NADPH.  The first aim of this research was 

to characterize the degree and duration of hypoxia which would limit NO production by 

PAMPs stimulated macrophages.  The second aim was to identify the contributing 

mechanism(s).  Using a novel forced convection cell culture system, we demonstrated 

that NO production was rapidly (within seconds) and reversibly regulated by 

physiological and pathophysiological O2 tensions (pO2).  The effect of pO2 on NO 

production was not mediated by changes in iNOS protein concentration or iNOS 

dimerization, implicating limitation of the reactant(s) as the predominant causative 

mechanism.  In addition to O2 limitation, hypoxia has the potential to affect NADPH and 

L-arginine availability.  In PAMPs stimulated macrophages, NADPH is predominantly 

produced by the oxidative pentose phosphate cycle (OPPC).  NO production directly 

correlated with OPPC activity over a wide range of pO2, and inhibition of NO production 

with the specific iNOS inhibitor, 1400W, significantly decreased OPPC activity.  OPPC 

activity increased significantly in response to chemically mediated oxidative stress 
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irrespective of pO2, and NO production was unaffected by increasing cellular oxidative 

stress, indicating that NADPH availability for NO production was not limited by hypoxia.  

L-arginine is required for iNOS dimerization, and iNOS dimerization was maintained or 

increased during hypoxic exposure, suggesting sufficient L-arginine was available.  

Furthermore, the effect of L-arginine depletion on NO production was much slower than 

the response observed due to changes in pO2.  In conclusion, decreased O2 availability is 

the predominant mechanism responsible for rapidly and reversibly limiting NO 

production by PAMPs stimulated macrophages exposed to acute hypoxia. 
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INTRODUCTION

Macrophage NO Production

Macrophages are found throughout vertebrate and invertebrate tissues at all stages 

of life.  They mediate tissue development and maintenance, and innate (pathogen pattern 

recognition) and adaptive (antigen presentation to T cells) immunity, but are also 

implicated in many disease states (208).  The mononuclear phagocytic system classifies 

adult vertebrate macrophages based on their tissue phenotype and currently includes: 

inflammatory macrophages (M1 macrophages, aka classically activated macrophages), 

alternatively activated macrophages (M2 macrophages), dendritic cells, and tissue-

resident macrophages such as alveolar macrophages (lung), osteoclasts and bone marrow 

macrophages (bone), microglia (brain), Langerhans cells (dendritic cells in the skin), 

crypt macrophages (intestine), Kupffer cells (liver), uterine dendritic cells and uterine 

macrophages (208).  

Macrophages are bone marrow derived myeloid cells, and are continuously 

repopulated (84).  Repopulation commonly occurs by extravasation and differentiation of 

monocytes from systemic circulation; half of the blood monocytes leave systemic 

circulation daily (84).  Two populations of monocytes have been identified in circulation, 

one which responds to inflammation (M1 and M2 macrophages, dendritic cells), and one 

which repopulates noninflamed tissues (resident macrophages, some dendritic cells eg. 

Langerhans cells) (84).  Thus, the monocyte lineage and the tissue microenvironment 

dictate monocyte extravasation, differentiation, and macrophage phenotype.
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Macrophages exposed to bacterial and parasitic components, collectively termed 

pathogen associated molecular patterns (PAMPs), and to cytokines such as interferonγ 

(IFNγ), were among the first macrophages to be investigated as part of the innate immune 

system, and are referred to as classically activated or M1 macrophages (123, 208).  A key 

component of the M1 macrophage phenotype is the production of nitric oxide (NO) by 

inducible nitric oxide synthase (iNOS) from molecular O2, L-arginine, and NADPH (148, 

155, 245).  The ability of M1 macrophages to produce NO is essential for the effective 

elimination of several types of infections (6, 94, 96, 215, 265).  However, dendritic cells 

(233), microglia cells (14, 210, 234), and some tumor associated macrophages (typically 

thought to be M2 macrophages) (102), have also been demonstrated to upregulate iNOS, 

suggesting NO production and its effects may not be limited to M1 macrophages.  In our 

studies of NO production, two stimuli known to induce macrophage iNOS were utilized: 

lipopolysaccharide (LPS) and IFNγ.

LPS is the primary component of the outer membrane of gram-negative bacteria 

(5).  LPS binding to CD14 and TLR4/MD2 on the macrophage cell surface results in 

signaling through multiple adaptor proteins including Src kinases, protein kinase C, PI3-

kinase, mitogen activated protein kinases, phospholipase D, Gi/Go proteins, protein 

kinase A, FKBP12-rapamycin-associated protein, MyD88, IRAK, and TRAF6 (5, 25). 

Signaling through these proteins activates the transcription factors, NFκB, C/EBP, AP-1 

(5, 25), and even HIF1 in normoxic differentiated macrophages (31, 195).  NFκB, NF-

IL6 (a C/EBP transcription factor), and HIF1 have been shown to bind to regions in the 

iNOS promoter and upregulate iNOS transcription (63, 95, 126, 163, 170, 181, 205, 288).

2



IFNγ is produced by activated T lymphocytes and natural killer cells, and acts in a 

paracrine manner on macrophages (19, 60).  IFNγ binds to the IFNγ receptor, which 

signals through the adaptor proteins JAK2, MEK1/2, and Erk1/Erk2 to activate the 

transcription factor STAT1α (19, 29).  STAT1α binds to the iNOS promoter (80, 170, 

288), and to the IRF-1 promoter (146), at the gamma-interferon activated site.  STAT1α 

and IRF-1 binding to the iNOS promoter is necessary for IFNγ mediated upregulation of 

iNOS transcription (80, 139, 170, 174).

LPS and IFNγ treatment of macrophages results in the upregulation of iNOS 

mRNA by 3 hours, and protein by 6 hours, with maximal protein concentration and 

activity observed at 24 hours (4, 61).  NO production continues for up to 2 days (9), at 

which point the cells die via apoptosis (8, 224), most likely mediated by the continued 

exposure to nitrosative stress (103, 173).  iNOS cleavage and degradation by calpain 1 

(267, 268) and the ubiquitin-proteosome pathway (189) occurs with a half life of 1 ½ 

hours in atmospheric O2 (145), suggesting continuous production of the enzyme is 

necessary to enable this prolonged NO production.  For the experiments described herein, 

we chose to investigate the effects of acute hypoxia at 24 hours after LPS and IFNγ 

stimulation of RAW 264.7 cells, a macrophage-like transformed cell line, to ensure 

robust and reproducible NO production.

Coexistence of Macrophage NO Production and Hypoxia in vivo

Molecular O2 is a cosubstrate for NO production (148, 155), thus the partial 

pressure of oxygen (pO2) has the potential to affect macrophage function in vivo. 

Physiological tissue pO2 measurements are 5 to 71 Torr (23, 32, 37, 42, 87, 88, 124, 129, 
3



159, 253, 254, 263, 266, 281, 282), indicating that even in the absence of hypoxia (pO2 < 

the normal pO2 for the tissue), macrophages are exposed to a wide range of pO2. 

Macrophages are exposed to hypoxia when tissue pO2 decreases due to cardiovascular 

compromise and/or overwhelming metabolic demand, such as in the wound environment 

(116, 194, 213, 236) and in multiple inflammatory diseases: sepsis (118, 122), cancer (37, 

38, 69, 70, 79, 111, 166), hypoxia-mediated pulmonary hypertension (154, 225), hypoxic 

brain injury (125, 196, 220), congenital heart defects (72), necrotizing enterocolitis (45), 

sleep apnea (75, 119, 295), asthma (17, 132, 289), cerebrovascular stroke (160), and 

atherosclerosis (28, 34, 43).  Three examples will be discussed: wound healing, sepsis, 

and cancer.

The pO2 measured in the center of the wound environment can be as low as 0 to 2 

Torr (225).  Wound healing is typically thought to occur in three stages: inflammation, 

proliferation, and maturation (285).  Consistent with this model, macrophages have been 

shown to to express iNOS for the first 24 to 72 hours of healing, and to become the 

predominant cell type within the wound on days 3 to 5 (211).  iNOS knockout mice have 

delayed wound healing, which can be improved with gene transfer of the human iNOS 

gene via an adenoviral vector (293), indicating that the presence of iNOS influences 

wound healing.  Nitrite and nitrate, metabolites of NO, are increased in the wound fluid 

isolated from a sponge model of wound healing during the first 24 to 48 hours (177). 

However, hypoxia (~ 0 Torr) has been shown to limit wound macrophage NO production 

in vitro, and to result in the redirection of L-arginine metabolism to arginase (7).  Further 

investigation of NO production by macrophages expressing iNOS in a hypoxic 
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environment is required to better understand how macrophages produces NO during 

wound healing.

Improper wound healing and bacterial invasion into systemic circulation can lead 

to the development of sepsis, a systemic inflammatory response (36).  The progression of 

sepsis to acute respiratory distress syndrome (ARDS) and multiorgan failure (MOF) is 

one of the most frustrating syndromes to treat in human and animal emergency rooms and 

intensive care units due to the rapidity of its progression (within 24 to 48 hours), and to 

the high mortality rate in this patient population (20 to 50% in humans, 60% in dogs) (24, 

64, 76, 175, 185, 228, 248).  Patients initially become locally hypoxic due to the 

redirection of blood flow to the vital organs and increased metabolic demand, and 

subsequently become systemically hypoxic due to circulatory and pulmonary collapse 

(118).  NO production by PAMPs stimulated macrophages has been implicated in this 

progression (44, 252).  

Excessive amounts of nitrosylated and nitrated proteins, markers of endogenous 

NO production (91, 262), have been detected in urine, plasma, and affected organs from 

septic patients (86, 89, 140, 197, 243).  iNOS has been demonstrated to directly bind, 

nitrosylate, and increase the activity of cycloxygenase-2, even in the presence of 

oxyhemoglobin, an extracellular NO scavenger (137).  Alternatively, some nitrated 

proteins have impaired function e.g. surfactant protein A can no longer aggregate lipids 

(101).  The NO metabolite, peroxynitrite, inhibits oxygen consumption by alveolar type 

II cells (113), and mediates pulmonary cell damage and death (90).  The ensuing hypoxia 

due to impaired pulmonary gas exchange is exacerbated by the concurrent circulatory 

dysfunction due to macrophage NO production.  iNOS has a Vmax that is 5 fold greater 
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than the Vmax for endothelial NOS (eNOS) and neuronal NOS (nNOS) (214).  Thus, one 

of the major mechanisms contributing to generalized vasodilatation and septic shock is 

the larger amount of NO produced by macrophages in similar tissue microenvironments 

as endothelial cells (118, 252).

Because of these negative effects of NO production, nonspecific NOS inhibitors 

(i.e. inhibition of iNOS, eNOS, and nNOS) were tested in animal models of sepsis (55, 

77, 133-135, 183, 198, 244, 256, 257), and in human Phase I (97, 117), II (21, 272), and 

III (167) clinical trials.  Although effective in preventing the decrease in blood pressure 

observed due to septic shock (21, 55, 97, 133-135, 167, 244, 272), in the Phase III 

clinical trial patient mortality was ultimately increased, and the trial was terminated prior 

to completion (167).  Specific inhibitors of iNOS have been shown to have some benefit 

in animal models (151, 161, 176, 199, 221, 249).  However, bacterial sepsis in iNOS 

knockouts results in increased mortality (54), or no survival advantage (152, 193), 

probably due to the role of macrophage NO production in innate and adaptive immunity 

(6, 94, 96, 215, 265).  Thus, even specific inhibition of iNOS needs to be carefully 

evaluated for its utility in treating septic patients.  Macrophage NO production may 

already be limited due to the tissue hypoxia, and more information is needed to enable the 

development of NO targeted therapeutic strategies for sepsis.

A third example of macrophage exposure to hypoxia is within tumors.  Hypoxia 

has been documented in 50 to 60% of all solid tumors (166), and has been shown to 

correlate with poor clinical outcome (37, 38, 69, 70, 79, 111, 166).  Chronic 

inflammation has been linked to the development of cancer (162), and while tumor 

associated macrophages (TAM) are predominantly thought to have an M2 phenotype, 
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they have been demonstrated to express iNOS (235).  Tumor cells themselves can also 

express iNOS (12, 104, 261), and increased serum nitrite and nitrate levels correlated 

with poor survival in lung cancer patients (56).  However, some studies have shown that 

NO can inhibit tumorigenesis and metastasis, and whether NO is beneficial or detrimental 

has been proposed to depend on the location, degree, and timing of NO production (283, 

284).  

Anti-tumorigenic properties of NO include inhibition of mitochondrial respiration 

(65, 246) and the induction of apoptosis (103, 173).  Pro-tumorigenic properties include 

genotoxic effects (71), increased iron uptake (66, 106, 255), promotion of angiogenesis 

(12, 261), and promotion of tumor growth and metastasis (50, 83, 207, 291).  The p53 

status of the tumor is one mechanism which appears to determine whether NO is pro- or 

anti-tumorigenic.  p53 positive tumor cells typically undergo apoptosis due to NO 

exposure, whereas p53 negative cells have increased VEGF production, resulting in the 

promotion of angiogenesis (283).  

In normoxic cells, NO increases VEGF production via HIF-1α stabilization, DNA 

binding, and transcriptional activity (138, 204, 222, 223).  However, in hypoxic cells, NO 

decreased HIF-1α stabilization and HIF-1 activity (3, 114, 165, 238, 269), suggesting the 

presence of hypoxia can affect the pro- versus anti-tumorigenic status of NO.  Hypoxia 

also stimulates VEGF production via HIF1 activation (15, 231, 274) and increases iron 

uptake (51, 255).  A better understanding of the hypoxic effects on macrophage NO 

production is needed to elucidate how hypoxia and NO interact and contribute to cancer 

development and progression.
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In summary, NO producing macrophages are exposed to a wide range of pO2, and 

the requirement of molecular O2 for NO production (148, 155) suggests that tissue pO2 

has the potential to influence macrophage NO generation.  The presence of macrophage 

NO production is a double edged sword for most diseases: some effects are beneficial 

while others are detrimental to the host.  The affect of macrophage NO production on 

patient outcome (quality of life, and life vs. death) often seems to depend on the location, 

timing, and degree of NO production, all of which will be affected by tissue pO2.  Thus, 

understanding the effects of pO2 on macrophage NO production is essential to 

understanding the pathogenesis of multiple diseases.

Hypoxic Affects on NO production and iNOS in vitro

The effect of hypoxia on iNOS activity has been investigated in numerous models 

(1, 2, 13, 46, 67, 110, 136, 179, 182, 202, 214, 296).  Consistent with the role of 

molecular O2 as a cosubstrate (148, 155), NO production uniformly was decreased during 

hypoxia.  However, the degree and duration of hypoxia required for this decrease, and the 

mechanisms mediating this effect, have not been clearly defined.

The apparent KmO2 for isolated iNOS has been reported to be 6.3 ± 0.9 µM (5 ± 

0.6 Torr) (214), 130 µM (93 Torr) (1), and 135 µM (96 Torr) (67).  There are three 

possible mechanisms explaining the differences between the studies: 1) the source of 

iNOS, 2) the method of measurement, and 3) the method of pO2 control.  When NO was 

scavenged with oxyhemoglobin, the apparent KmO2 was reduced approximately 4 fold 

from 130 µM (93 Torr) to 42 µM (30 Torr) (1).  Abu-Soud et al. propose that the removal 

of NO feedback inhibition by the scavenging of NO with oxyhemoglobin mediates the 
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shift they measured in the apparent KmO2 (1, 247).  However, details regarding the 

contribution of additonal O2 by oxyhemoglobin, a factor which could also cause a shift 

toward a lower apparent KmO2, are not available.

The apparent KmO2 in stimulated macrophages has been investigated in two 

studies.  In one study, nitrite was measured following treatment with LPS and IFNγ for 

24 hours at various pO2, and a calculated apparent KmO2 of 10.8 ± 2.0 % (77 ± 1.4 Torr) 

was reported (179).  Under similar culture conditions, Otto and Baumgardner measured a 

hypoxia mediated decrease in iNOS activity at the conclusion of the exposure period (18 

hours) via the citrulline assay in cell lysates at atmospheric O2, suggesting an effect of 

pO2 on the specific activity and/or the amount of active iNOS, in addition to reactant 

limitation (202).  After normalizing nitrite production for changes in iNOS activity, and 

accounting for the O2 diffusion gradient from the headspace gas to the cell surface, their 

estimate for the apparent KmO2 at the cell surface was 14 Torr (202).  Thus, the reported 

apparent KmO2 for iNOS spans a wide range (5 Torr to 96 Torr), making it difficult to 

assess which pO2 could regulate NO production in vivo.

The duration of hypoxia required for decreased macrophage NO production has 

not been previously investigated.  Prior studies relied on indirect measurement of NO 

after 18 to 24 hours of concurrent exposure to LPS, IFNγ, and hypoxia (179, 202). 

Therefore, the effects of hypoxia on iNOS upregulation could not be separated from the 

effects due to reactant limitation.  The amount of active iNOS, and the iNOS velocity, 

during the 24 hour period may vary tremendously because of hypoxic effects on iNOS 

mRNA, iNOS protein concentration, iNOS dimerization, and reactant availability.
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Hypoxic induction of iNOS is mediated by the transcription factor, HIF-1 (126, 

205).  HIF-1 is a dimer composed of HIF-1α and HIF-1β subunits.  Both subunits are 

constitutively expressed in most tissues (280).  However, the HIF-1α protein is rapidly 

degraded via the ubiquitin-proteosome pathway in the presence of O2 (59, 229, 230). 

Hypoxia increases HIF-1 DNA binding to the iNOS hypoxia responsive element (HRE), 

which upregulates iNOS transcription (126), (205).  Upregulation of iNOS in rat primary 

cardiac myocytes was measured at 12 hours (126).  In contrast, hypoxic exposure 

durations ≤ 24 hours did not increase iNOS mRNA in the CRL-2192 alveolar 

macrophage cell line or in rat lungs (4).  Exposure of rats to hypoxia (10% inspired pO2) 

for 3 weeks increased iNOS mRNA in the lung (147, 198).  These results suggest the 

temporal effects of hypoxia on iNOS mRNA depends on the cell type.  Co-stimulation of 

CRL-2192 alveolar macrophages with LPS or IFNγ and hypoxia, or treatment of rats with 

LPS immediately prior to hypoxia (9% inspired pO2), expedited the upregulation of iNOS 

mRNA in the macrophages and in the lung, respectively, with an observed effect as early 

as 3 hours (4).

Hypoxic upregulation of iNOS mRNA has not always resulted in increased iNOS 

protein concentration.  iNOS protein was decreased in LPS, IFNγ, and hypoxia stimulated 

RAW 264.7 cells (24 hours (202)), and in TNFα, IL1β, and hypoxia stimulated rat 

pulmonary artery cells (296).  In contrast, iNOS protein was increased in LPS or IFNγ 

and hypoxia stimulated CRL-2192 macrophages (4) and ANA-1 macrophages (182), and 

in the lungs of rats treated with LPS, and then with 3, 6, or 12 hours of hypoxia (9% O2) 

(4).  Rats maintained in hypoxia (10% O2) for 3 weeks were also shown to have increased 

iNOS protein in their lungs (154).  Thus, the degree and duration of hypoxia, cytokine 
10



concentration, combination of cytokines, and/or cell type appear to determine whether 

upregulated iNOS mRNA correlates with increased iNOS protein concentration.

Following the upregulation of iNOS mRNA and protein expression, dimerization 

is necessary for NO production (20).  Dimerization requires BH4 (20, 147, 209, 260, 

275), heme (20, 239), and L-arginine (20).  Preliminary data in our laboratory measured a 

decrease in the iNOS dimer:monomer ratio in RAW 264.7 cells costimulated with LPS, 

IFNγ, and hypoxia (24 hours), which was fully reversible by L-sepiapterin, a 

pharmacologic source of BH4 (201).  Cytokine stimulation increases macrophage BH4 

concentration via increased activity of the rate limiting enzyme, GTP cyclohydrolase I 

(85, 276-278).  Thus, these preliminary results suggest hypoxia may limit BH4 

availability despite increased activity of GTP cyclohydrolase I.

Hypoxic Affects on NADPH and L-arginine availability

In addition to O2 substrate limitation, hypoxia has been reported to affect NADPH 

and L-arginine availability.  NADPH is produced by the oxidative pentose phosphate 

cycle (OPPC) in LPS and IFNγ stimulated macrophages (58).  An association between 

NADPH production by glucose 6 phosphate dehydrogenase (G6PD), the rate limiting 

enzyme of the OPPC, and NO production has previously been demonstrated in 

macrophages (57, 112, 180, 258), and pharmacologic inhibition of OPPC activity or 

G6PD deficiency was shown to significantly impair NO production (112, 180, 258). 

Classical studies have measured increased [NADPH] in response to short term hypoxia 

due to the absence of oxidizing agents (99, 127, 227, 259).  More recently, however, 

decreased [NADPH] was measured in denuded bovine coronary arteries following brief 
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exposure to hypoxia (~ 8 to 10 Torr, 20 minutes (100)).  The effect of hypoxia on 

macrophage OPPC activity and [NADPH] has not been investigated.

The concentration of L-arginine in cell culture media (JBMEM: 300 µM, MEM: 

700 µM) is well above the apparent Km for arginine (2.8 µM; (245)), and is not expected 

to be limiting for these studies.  In addition, LPS and hypoxia increase the mRNA of the 

arginine transporter, MCAT-2B (169), suggesting cellular L-arginine import is increased. 

However, hypoxia (24 hours) alone and in combination with LPS has also been shown to 

upregulate macrophage arginase (7, 169), which has been proposed to compete with 

iNOS for L-arginine as a substrate (48, 108, 250).  Inhibition of arginase can increase NO 

production by stimulated macrophages, and vice versa (109).  However, the interplay 

between iNOS and arginase is cell specific (226), cytokine specific (107, 270), and time 

dependent (270).

Specific Aims

In summary, hypoxia has the potential to alter macrophage NO production by 

multiple mechanisms.  Due to the difficulties of culturing cells at defined pO2, and the 

difficulties of measuring NO production directly, previous studies were not able to 

evaluate the effects of an abrupt change in pO2 on NO production.  Therefore, the first 

aim of this work was to measure macrophage NO production directly, and in real time, 

during precise and accurate step changes in pO2 using a novel forced convection cell 

culture system (Chapter 1).  A decrease in NO production could be mediated by 

limitation of the reactant(s) or an effect on iNOS itself.  Limitation of molecular O2 is the 

most intuitive mechanism.  However, hypoxic exposure has also been documented to 
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affect the amount of active iNOS, and the availability of NADPH and L-arginine. 

Therefore, the second specific aim of this work was to investigate the contribution of 

these alternate mechanisms to the regulation of NO production during acute hypoxia 

(Chapters 1, 2, and 3).
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ABSTRACT

NO production by inducible nitric oxide synthase (iNOS) is dependent on O2 

availability.  The duration and degree of hypoxia which limit NO production are poorly 

defined in cultured cells.  To investigate short term O2-mediated regulation of NO 

production, we used a novel forced convection cell culture system to rapidly (response 

time = 1.6 seconds) and accurately (± 1 Torr) deliver specific O2 tensions (from < 1 to 

157 Torr) directly to a monolayer of LPS and IFNγ stimulated RAW 264.7 cells while 

simultaneously measuring NO production via an electrochemical probe.  Decreased O2 

availability rapidly (≤ 30 seconds) and reversibly decreased NO production with an 

apparent KmO2 of 22 (SD 6) Torr (31 µM) and a Vmax of 4.9 (SD 0.4) nmol/min·106 cells. 

To explore potential mechanisms of decreased NO production during hypoxia, we 

investigated O2-dependent changes in iNOS protein concentration, iNOS dimerization, 

and cellular NO consumption.  iNOS protein concentration was not affected (p = 0.895). 

iNOS dimerization appeared to be biphasic (6 Torr (p ≤ 0.008) and 157 Torr (p ≤ 0.258) 

> 36 Torr), but did not predict NO production.  NO consumption was minimal at high O2 

and NO tensions and negligible at low O2 and NO tensions.  These results are consistent 

with O2 substrate limitation as a regulatory mechanism during brief hypoxic exposure. 

The rapid and reversible effects of physiological and pathophysiological O2 tensions 

suggest that O2 tension has the potential to regulate NO production in vivo.
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INTRODUCTION

Macrophage NO production via inducible nitric oxide synthase (iNOS) is a key 

component of the cellular inflammatory response (33, 172).  In vivo, in vitro, and isolated 

enzyme experiments have clearly demonstrated the dependence of NO production on O2 

tension for all 3 of the NOS isoforms (1, 2, 13, 46, 67, 110, 136, 179, 182, 202, 214, 

296).  Normal non-pulmonary tissue O2 tensions range from 5 to 71 Torr (23, 37, 42, 124, 

129, 263, 282), and systemic and/or tissue hypoxia develops during several inflammatory 

diseases (42, 75, 122), extending the range for tissue macrophages to even lower levels. 

Alveolar macrophages can be exposed to O2 tensions ranging from approximately 30 

Torr (mixed venous O2 tension with atelectasis) to over 650 Torr (with O2 therapy) (279). 

Thus, macrophages must function over a wide range of physiologic and 

pathophysiological O2 tensions, and O2 tension has the potential to regulate macrophage 

NO production (67, 179, 202, 214).  It is currently unknown, however, if the macrophage 

response to changing O2 tension is rapid enough for O2 to play a role in the regulation of 

NO production.

Prior studies have explored the long-term effects (18 and 24 hours) of culture PO2 

(partial pressure of O2) on nitrite production in LPS and IFNγ stimulated RAW 264.7 

cells, but estimates of the apparent KmO2 have varied considerably.  McCormick et al. 

reported an apparent KmO2 of 10.8% (77 Torr) for the PO2 in the headspace gas (179).  In 

contrast, Otto and Baumgardner estimated the apparent KmO2 at the cell surface to be 14 

Torr, after normalizing to iNOS activity and accounting for the O2 diffusion gradient 

through the media layer (202).  This wide range of reported KmO2 may be in part due to 
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difficulties in accurately controlling headspace (202, 242) and cellular (22, 202) PO2 in 

conventional cell culture. 

No prior studies of macrophage NO production explored the effects of short-term 

exposure to different O2 tensions, primarily due to the limitations of conventional cell 

culture and NO analysis methods.  First, diffusion of O2 through the media covering cells 

cultured in dishes can be slow, requiring as long as 30 minutes for a change in headspace 

PO2 to be translated to the cell surface (10, 22).  Second, the sensitivity of nitrite 

measurement via the Griess method, which integrates NO production over the period of 

the experiment, is not adequate for short time periods with less NO accumulation (121, 

179, 202).

Forced convection cell culture utilizes a continuous flow of media to deliver O2 

and nutrients directly to the cell monolayer, and to remove waste products (22).  Because 

this method of cell culture overcomes the limitations of extracellular O2 diffusion, it is 

ideally suited for measuring the effects of rapid changes in O2 tension.  In addition, the 

system used for the present study controls O2 tensions with an accuracy of about 1 Torr, 

and permits rapid, direct measurement of changes in NO in the effluent using a sensitive 

electrochemical probe (216, 217). Thus, the first goal of our current study was to use this 

recently developed method to accurately define the PO2 dependence of NO production by 

LPS and IFNγ stimulated RAW 264.7 cells, after brief exposures to a range of 

physiological and hypoxic O2 tensions.

The second goal of our study was to evaluate three mechanisms that could alter 

NO production after brief hypoxic exposures.  The oxygen atom in NO is derived from 

molecular O2 (148, 155).  Prior cell culture studies which used long term exposures to 
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varying O2 tensions, and studies with isolated nitric oxide synthases (NOS), have 

emphasized the potential role of O2 as a rate-limiting substrate (67, 179, 202, 214).  O2 

has also been shown to participate in more complex interactions with the NOS enzyme 

than simple substrate dependence (247).  These mechanisms could operate on a short 

enough time scale to alter NO production after brief hypoxic exposures.  There are, 

however, several additional opportunities for changes in PO2 to rapidly influence NO 

production.  Our goal was to evaluate three of these additional mechanisms: changes in 

the cellular levels of inducible NOS (iNOS) protein, changes in iNOS dimerization, and 

changes in cellular NO consumption.  We hypothesized that: 1) brief hypoxic exposures 

would reduce NO production by reducing iNOS protein; 2) brief hypoxic exposures 

would reduce NO production by reducing iNOS dimerization; and 3) brief hypoxic 

exposures would reduce NO production and release from the cell by increasing 

intracellular consumption of NO.

MATERIALS AND METHODS

Forced Convection Cell Culture.

RAW 264.7 cells (American Type Culture Collection, Manassas, VA) were 

cultured using a novel forced convection cell culture system as described previously (22). 

Briefly, cells were aspirated through a ProNectin® F-coated (0.1mg/ml; Sigma, St Louis, 

MO) 0.53 mm diameter, 10 cm long fused-silica capillary column (Alltech, Deerfield, 

IL), allowed to adhere for 15 minutes, and cultured with forced convection in air with 5% 

CO2 for 18 to 22 hours in the presence of 1 µg/ml LPS (E. coli O111:B4; Sigma) and 100 
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U/ml CHO-derived recombinant mouse IFNγ (Cell Sciences, Canton, MA) in DMEM 

(Gibco, Carlsbad, CA) supplemented with 5% heat-inactivated FBS (LONZA, Visp, 

Valais, Switzerland) and 1% antibiotic/antimycotic (penicillin, streptamycin, fungizone; 

Life Technologies, Gaithersburg, MD).  Following stimulation, the column of cells was 

transferred to the forced convection cell culture system (Figure 1).

Experiments were performed in a minimal essential media (JBMEM: 140 mM 

NaCl, 1.4 mM CaCl2, 5.3 mM KCl, 4.4 mM Dextrose, 25 mM HEPES, 0.3 mM L-

arginine, and 0.1% heat-inactivated FBS (LONZA)) equilibrated with 0, 0.7, 3.6, 8.4, 

15.2, 25.8, 38.0, 85.3, or 159.6 Torr O2 (5% CO2, balance N2) from certified premixed 

compressed gas cylinders (AirGas, Allentown, PA).  Corresponding estimates of average 

cellular PO2, after accounting for cellular O2 consumption, were 0, < 1, 1, 6, 13, 24, 36, 

83, or 157 Torr O2 (22).  Upon completion of experiments, the fluid was briefly switched 

to PBS equilibrated with the experimental O2 tension, and then the column of cells was 

removed from the system and immediately frozen at -70°C.

Measurement of Effluent NO Tension.

NO was detected using a 2 mm NO electrode (NOP, World Precision Instruments, 

Sarasota, FL) filled with a CO2 insensitive electrolyte (World Precision Instruments).  To 

enable calibration of the NO electrode, the forced convection cell culture system was 

adapted to allow defined amounts of NO (input NO) to be added to the fluid stream 

(Figure 1).  Deionized H2O (dH2O) was deoxygenated via a membrane equilibrator with 

certified ultra high purity N2 (AirGas), then equilibrated via a second membrane 

equilibrator with 2000 ppm NO in N2 (AirGas).  As in our prior report (6), function of all 
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membrane equilibrators was tested by confirming flow independence of the measured gas 

partial pressure in the equilibrator effluent.  Defined amounts of 2000 ppm NO-

containing dH2O were injected into the fluid stream using a syringe pump (Harvard 

Apparatus, Holliston, MA).  The electrode was calibrated with input PNO of 19, 40, 79, 

160, 319, and 500 ppm at the beginning of each day.  In the forced convection system, 

the measured 0-95% time constant for the probe was 27 seconds.  Due to NO probe 

baseline drift during experiments, the NO probe baseline was measured regularly (i.e. ≤ 5 

minute intervals) to allow for manual baseline correction of the data.

All NO measurements were performed in JBMEM, which was designed to 

minimize media NO consumption while maintaining cell viability.  To evaluate NO 

consumption by JBMEM, the forced convection system depicted in Figure 1 was 

modified by inserting two lengths of fused silica (13 cm and 30 cm) between the NO 

input site (labeled T in Figure 1) and the outlet valve (labeled B in Figure 1), resulting in 

exposure of NO to the media for 9 and 18 seconds, respectively.  The NO signal was 

recorded for each exposure duration at two input PNO (160 and 320 ppm), and at three PO2 

(0, 40 and 80 Torr).  PO2 dependence of NO consumption in JBMEM was further 

investigated after restoring the system to the configuration of Figure 1 (i.e. 16 cm of 

tubing between the NO input and the inlet valve, labeled A in Figure 1, and 10 cm of 

tubing between the inlet valve and the outlet valve) in the absence of cells at five PNO (40, 

79, 160, 319, 500 ppm) and six PO2 (0, 15, 26, 38, 85, 160 Torr).  To test if JBMEM was 

sufficient to support cell viability, RAW 264.7 cells were seeded onto 6 well plates (9.5 

cm2) and cultured in a humidified incubator (room air, 37°C, 5% CO2) in either DMEM 

or JBMEM.  Viability was measured by Trypan blue staining after 2, 6 or 18 hours of 
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culture.  Cells were evaluated with and without stimulation (1 µg/ml LPS and 100 U/ml 

IFNγ initiated 18 hours prior to seeding).

Electrophoresis and Immunoblotting.  

Cell lysates were prepared from columns by aspirating ice cold protease-inhibitor 

containing hypotonic lysis buffer (PIB: 10 µM phenylmethylsulfonyl fluoride (ICN 

Biochemical, Aurora, OH), 5 µg/ml aprotinin (Sigma), and 5 µg/ml pepstatin (Amresco, 

Solon, OH) in dH2O) through each column.  Cell lysate protein concentrations were 

measured using the Biorad DC protein assay (Hercules, CA).

Proteins (10 µg) were separated on a 7.5% Tris-HCl gel using SDS PAGE or low 

temperature SDS PAGE (LT SDS PAGE) as previously described (287), except the final 

β-mercaptoethanol concentration for samples subjected to LT SDS PAGE was 0.1% 

(v/v).  Proteins were transferred to polyvinylidene fluoride (ImmobilonTM-FL 0.2µm; 

Millipore, Bedford, MA) and immunoblotted for iNOS (1:1000 to 1:2000; NOS2 M19 

sc650, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and the loading control, Raf-1 

(1:200 to 1:500; Raf-1 sc227, Santa Cruz Biotechnology, Inc.).  Primary antibodies were 

immunocomplexed with IRDyeTM 800 goat anti-rabbit (1:20,000; Rockland, Gilbertsville, 

PA).  Proteins were detected, documented, and analyzed using an Odyssey Imaging 

System and software (LiCor Biosciences, Lincoln, NE).

Cellular NO Consumption.

Endogenous NO production by LPS and IFNγ stimulated RAW 264.7 cells 

cultured in the forced convection system was inhibited by a 36 to 48 minute exposure to 
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100 µM N-[[3-(aminomethyl)phenyl]methyl]-ethanimidamide, dihydrochloride (1400W; 

Cayman Chemical, Ann Arbor, MI) in JBMEM lacking L-arginine.  Maximal NO 

inhibition by 1400W (86 SD 7 % of basal NO production; n = 8), was expedited by 3 to 4 

periods of stopped flow for 5 minutes followed by 7 minutes of flow.  Once maximal 

inhibition of endogenous NO production was achieved, cells were returned to JBMEM 

with L-arginine and were sequentially exposed to input PNO of 40, 79, 160, 319, 500, and 

0 ppm in the presence of 6, 36, or 83 Torr O2.  Average effluent PNO was recorded for 

each input PNO once steady state was achieved, and was compared to average effluent PNO 

recorded on the same day for the same input PNO in the absence of cells.  The difference 

between effluent PNO with cells and without cells for each input PNO was assumed to be 

due to the net result of NO consumption and residual endogenous NO production. 

Testing for zero order, first order, or higher order dependence of NO consumption on PNO 

and PO2 was performed, and the data were analyzed, by considering a mass balance on 

the cell column:

(NO entering the column) – (NO leaving the column) = consumption – production 

Production represents the small amount of residual cellular NO production that was not 

inhibited by 1400W treatment.  Consumption represents overall cellular degradation of 

NO from all irreversible and slowly reversible reactions, for example reaction with 

superoxide to form peroxynitrite (30, 115), conversion to nitrate via the iNOS futile 

pathway (247), nitrosylation, nitration and oxidation of proteins (92), autoxidation (74, 

164), and other reactions (74, 212).
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Our analysis assumes that NO production is independent of NO concentration, 

since the range of NO concentrations we studied is below the range associated with NO 

feedback inhibition of inducible nitric oxide synthase (iNOS) (1).  Consumption is 

modeled, as a starting point, as first order in both NO and O2 (251).  It is known that 

autoxidation is second order in NO and first order in O2 (74), but the reaction is too slow 

to consume NO before it reaches the electrode.  Additionally, our data were calibrated to 

the effluent PNO detected for the five input PNO in JBMEM in the absence of cells and O2. 

Therefore, the detected NO consumption in our experiments is expected to be dominated 

by intracellular consumption reactions.  The mass balance on the column of cells 

becomes

QαNO(PNOi-PNOe) = kcN (PO2)(PNO) – f(PO2)kpN

Where: Q is the media flow rate through the column (4.27x10-6 L/sec)

αNO is the NO solubility in media at 37°C (2.13x106 pM/Torr) (271)

PNOi is the NO partial pressure in media entering the column (Torr)

PNOe is the NO partial pressure in media leaving the column (Torr)

kc is the consumption rate constant (pmol NO/ cell·sec·Torr2)

PO2 is the average oxygen partial pressure for cells in the column

PNO is the average NO partial pressure for cells in the column

f(PO2) is the functional dependence of NO production on PO2

kp is the maximal NO production for each column at high PO2 (pmol NO/ 

cell·sec)
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N is the number of cells in the column

Statistics.

Comparison of means were tested by a one way ANOVA for each PNO for PO2 

dependent NO consumption in the absence of cells (Figure 2), a two way ANOVA for the 

effects of DMEM versus JBMEM over time on cell survival (Table 2), and a three way 

ANOVA for the effects of input PNO, PO2 and exposure time on NO degradation in 

JBMEM using SigmaStat version 3.1.  All other statistics were performed using 

GraphPad InStat version 3.06 for Windows 95, GraphPad Software, San Diego, CA, 

www.graphpad.com.  Changes in NO production with repeated cycling between 0 and 36 

Torr O2 (Figure 3A) were tested by linear regression.  The apparent Km and Vmax were 

calculated by SigmaPlot Enzyme Kinetics Module 1.1 using a Michaelis-Menten non-

linear analysis (Figure 3C).  Comparison of means for iNOS protein concentration data 

(Figure 4) were tested by one-way ANOVA.  Comparison of means for iNOS 

dimerization data (Figure 5) were tested by pair-wise t-tests with a Bonferroni correction. 

Testing of the NO consumption model was performed with linear regression as described 

in Appendix A.
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RESULTS

Characteristics of JBMEM.

In the absence of O2 and cells, NO was rapidly consumed in DMEM by many of 

its components (Table 1), consistent with previous reports(39, 47, 131).  Consumption of 

160 and 320 ppm NO in JBMEM was investigated in the absence of cells at 0, 40, and 80 

Torr O2 by varying exposure duration.  Exposure duration (9 versus 18 seconds) and PO2 

had no effect on the measured NO signal (n ≥ 2; p = 0.516 and p = 0.201, respectively), 

indicating negligible consumption by the media for exposures less than 18 seconds. 

Consistent with these observations, PO2 dependent NO consumption in JBMEM was not 

detectable for any of the input PNO investigated with the system in its standard 

configuration as depicted in Figure 1, with a 15 second transit time from the NO input to 

the NO electrode (Figure 2; n = 3; 500 ppm, p = 0.152; 319 ppm, p = 0.264; 160 ppm, p = 

0.370; 79 ppm, p = 0.951; 40 ppm, p = 0.468).  For all subsequent experiments, NO 

consumption during the approximately 3.5 second average transit time from the cells to 

the NO electrode was therefore considered negligible.

In unstimulated cells, there was a small but significant reduction of cell viability 

with JBMEM (Table 2; p = 0.028).  There was no detectable effect of time (p = 0.074) or 

interaction between media type and time (p = 0.601).  In cells cultured with LPS and 

IFNγ, no significant effect of media (p = 0.364) or time (p = 0.894) was detected.

Effect of O2 tension on effluent PNO.

Steady-state NO release by LPS and IFNγ stimulated RAW 264.7 cells exposed to 

36 Torr O2 was 3.08 (SD 1.14) nmol/min·106 cells (n = 5).  Unstimulated cells did not 
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produce detectable NO (data not shown).  Exposure of the cells to 0 Torr O2 decreased 

effluent PNO within 30 seconds to an undetectable amount (Figure 3A).  Similarly, within 

30 seconds of re-exposure to 36 Torr O2, effluent PNO was greater than or equal to the 

initial measured concentration.  Repeated cycling between 0 Torr (2 minutes) and 36 Torr 

O2 (3 minutes) consistently produced these rapid changes in effluent PNO with a 

cumulative 10% increase in effluent PNO over a period of 40 minutes (p < 0.0001, n = 2). 

Unstimulated cells subjected to identical cycling patterns between 0 Torr and 36 Torr O2 

for 40 minutes did not produce detectable NO (data not shown).

Exposure of LPS and IFNγ stimulated RAW 264.7 cells to a range of O2 tensions 

elicited corresponding changes in effluent PNO, which predominantly followed a 

Michaelis-Menten kinetic model (Figure 3B).  A non-linear analysis computed an 

apparent KmO2 of 22 (SD 6) Torr and Vmax of 4.9 (SD 0.4) nmol/min·106 cells (n = 5, R2 = 

0.80).  A slight deviation from a smooth monotonic function is apparent between 6 and 

36 Torr O2 (Figure 3C).

Effect of O2 tension on iNOS.

O2 tension did not influence iNOS protein concentration (Figure 4, n ≥ 4, p = 

0.895), but did influence the bands thought to contain iNOS dimers (Figure 5, n = 3).  In 

the western blot derived from the partially denaturing gel, three bands were present: a 

band corresponding to the expected monomer molecular weight (~130 kD) (49), a band 

corresponding to the expected dimer molecular weight (~260 kD), and an unexpected 

band of much higher molecular weight (≥ 500 kD).  Compared to 36 Torr, the ratio of the 

260 kD band to the 130 kD band was significantly increased in lysates from samples at 6 
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Torr (p = 0.003).  A similar finding was observed for the ratio of the 500 kD band to the 

130 kD band (p = 0.008).  The ratios also appeared to increase in lysates from samples at 

157 Torr, but the increase did not achieve statistical significance (260 kD ratio p = 0.258, 

500 kD ratio p = 0.129).

Effect of NO and O2 tension on cellular NO consumption.

Following 1400W inhibition of endogenous NO production (Figure 6A), LPS and 

IFNγ stimulated RAW 264.7 cells at 6, 36, or 83 Torr O2 were exposed to five input PNO 

(Figure 6B).  Data are presented in Figure 6C as the ratio of effluent PNO with cells to 

effluent PNO without cells.  Net cellular NO consumption, as indicated by a ratio less than 

1, was evident at input PNO of 160, 319, and 500 ppm in PO2 of 36 and 83 Torr. 

Calculations based on known autoxidation rate constants (74, 164) estimated that 

autoxidation within the cells could account for a maximum of 3% of the measured NO 

consumption.  Cellular consumption was negligible at a PO2 of 6 Torr, regardless of the 

input PNO.  Net cellular NO production resulted in a ratio greater than 1 for the lower two 

input PNO (40 and 79 ppm) delivered in the lower two PO2 (36 and 83 Torr).  The amount 

of NO production was consistent with the residual cellular NO that was not inhibited by 

1400W.  Immediately following 1400W treatment, mean cellular NO production was 

14% (SD 7) (n = 8) of initial NO production.  By the end of the experiment, cellular 

production increased to 24% (SD 6) (n = 7) of initial NO production.  The relationship 

between net cellular NO consumption and PNO was most consistent with 1st order kinetics. 

NO consumption also correlated positively with PO2 in a 1st order-dependent manner at 

all PNO.  The overall consumption constant (kc) for the model was 0.038 pmol NO/sec·106 
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cells·Torr2 [12.7 (mmol NO)/(sec·106 cells·M2)].  Details of the consumption model are 

presented in Appendix A.
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DISCUSSION

Our study examined the effects of brief exposures to O2 tensions, ranging from < 

1 Torr to 157 Torr, on the production and release of NO by stimulated macrophages. 

Decreased PO2 rapidly and reversibly decreased NO production, with an apparent KmO2 

of 22 (SD 6) Torr.  Short term hypoxic exposures did not affect iNOS protein levels, but 

did influence iNOS dimerization.  Surprisingly, however, iNOS dimerization did not 

predict NO production.  NO consumption was small at high cellular O2 and NO tensions 

and was negligible at low O2 and NO tensions.

Our measured apparent KmO2 is within the range of values reported previously for 

long term exposures in macrophage cell culture (179, 202), and for the isolated iNOS 

enzyme (1, 67, 214).  It is also well within the range of PO2 that would be required for O2 

tension to regulate NO production in vivo, as has been suggested previously (1, 67, 179, 

202, 214).  Our study additionally demonstrated, however, that precisely controlled 

changes in extracellular O2 tension altered NO production by intact isolated cells within 

seconds, and that this effect was immediately reversible.  A slow response, or an 

irreversible response, would have argued against any role for the regulation of NO 

production by PO2 changes in intact cells. Instead, the effect on cellular NO production 

was rapid and reversible, further supporting a significant regulatory role for O2 tension in  

vivo.

Several studies have investigated PO2 dependence of NO production in intact 

tissues, and in vivo.  NO production has been shown to be rapidly decreased by hypoxia 

when the primary enzyme responsible for NO production was thought to be endothelial 
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NOS (eNOS) (110, 136), iNOS (67), or neuronal NOS (nNOS) (292).  O2-mediated 

intracellular kinetics and regulatory mechanisms, however, are difficult to evaluate in  

vivo and in tissue models due to the complications of tissue structure and O2 delivery 

dynamics.  Tissues are by definition composed of several different cell types with the 

potential for expression of several different NOS isoforms, and it is often difficult to 

unequivocally define which isoform is primarily responsible for producing the measured 

NO.  For example, in bronchial airways each isoform is expressed in different cells (35, 

67), and in different regions of the same cells (35, 290).  This could have important 

effects on total NO production, as the KmO2 for each isoform varies markedly in isolated 

enzyme studies (1, 214).  Although tissue and in vivo studies are not directly comparable 

to our cell culture study, they do support the concept that NO production can be rapidly 

regulated by changes in O2 tension in vivo.

We are not aware of any prior cell culture studies of NO production during brief 

exposure to hypoxia for the direct comparison to our results.  Two prior studies, however, 

investigated the effects of long term exposure ( ≥ 18 hours) to multiple O2 tensions on 

nitrite production by RAW 264.7 cells concurrently stimulated with LPS and IFNγ (179, 

202).  McCormick et al. measured cellular nitrite production following 24 hours of 

exposure to various headspace O2 tensions ranging from 1% to 21% (7 to 150 Torr).  The 

decrease in nitrite production at low O2 tensions was well described by a hyperbolic 

curve fit, and the apparent KmO2 for the headspace gas was 10.8% (77 Torr) (179).  Otto 

and Baumgardner measured cellular nitrite production following 18 hours of exposure to 

various headspace O2 tensions ranging from 1 to 677 Torr.  Nitrite production decreased 

with decreasing O2 tension throughout the entire range.  iNOS activity in cell lysates, 
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defined by citrulline production in room air at 25°C, also showed substantial dependence 

on cellular PO2 prior to lysis, suggesting an effect of O2 tension on specific activity 

and/or the amount of active iNOS.  After normalizing nitrite production for changes in 

iNOS activity, and accounting for the O2 diffusion gradient from the headspace gas to the 

cell surface, their estimate for the apparent KmO2 at the cell surface was 14 Torr (202). 

Studies of long term exposures to different O2 tensions are not strictly comparable to the 

short term exposures of the current study due to the many factors that could change 

slowly over time.  For example, O2 dependent changes in the transcription and translation 

of iNOS (4, 126, 179, 181, 182, 202), as well as of other relevant proteins (e.g. mediators 

of arginine metabolism (169)), would be expected to take several hours (4) and could 

substantially influence NO production in long term exposures, yet have minimal impact 

in short term exposures.

Three prior studies have investigated the apparent KmO2 for isolated iNOS.  Using 

a steady state kinetics approach, Rengasamy and Johns measured citrulline production at 

various PO2 by iNOS within a RAW 264.7 cell lysate.  In their system, O2 tension was 

rigidly controlled in the headspace gas by use of continuous gas flows, and the reaction 

mixture was constantly stirred to minimize diffusion gradients.  They reported an 

apparent KmO2 for iNOS of 6.3 µM, for a solution temperature of 37°C (214).  Using a 

rapid equilibrium kinetics approach, Abu-Soud et al. and Dweik et al. studied the effects 

of O2 tension on purified recombinant mouse iNOS by measuring the rate of NADPH 

oxidation spectroscopically, in a closed system at 25°C (1, 67).  They reported an 

apparent KmO2 of 130 µM (1) and 135µM (67).  When the NO produced was scavenged 

with oxyhemoglobin, however, the measured KmO2 was reduced approximately 4 fold to 
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42 µM (1).  The difference between these values was shown to be due to direct feedback 

inhibition of iNOS by NO, an effect that has been demonstrated for all 3 NOS isoforms 

(247).

In our experiments using forced convection cell culture, the flowing media 

continuously removed NO as it was produced, thereby minimizing NO accumulation. 

Our results, therefore, are most comparable to the isolated enzyme experiments that either 

continuously removed NO with flowing headspace gas in an open system (Rengasamy 

and Johns, KmO2 6.3 µM (214)), or scavenged NO with oxyhemoglobin in a closed 

system(Abu Soud et al., KmO2 42 µM (1)).  The apparent KmO2 we measured for intact 

cells was 22 (SD 6) Torr (31 µM based on an Ostwald solubility coefficient of 0.0271 ml 

O2 BTP/ml water-atm at 37°C (273)).  Unlike the isolated enzyme, within intact cells 

several mechanisms in addition to substrate dependence and product feedback inhibition 

could acutely alter NO production after a change in PO2.  We investigated 3 potential 

mechanisms: changes in iNOS protein levels, iNOS dimerization, and cellular NO 

consumption.

iNOS protein levels were not influenced by brief hypoxic exposures.  Hypoxia 

has been shown to induce increased expression of iNOS mRNA and protein via HIF 1α-

dependent regulation (126, 181, 182).  Acute changes in PO2, however, would not be 

expected to acutely increase iNOS protein production because transcription and 

translation have been shown to take up to 6 hours to change after an appropriate stimulus 

(4).  To our knowledge, the effect of hypoxia on iNOS degradation has not been 

investigated.  The iNOS half life in room air, however, was approximately 1.6 hours in 
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several cell types (145).  Our results showing that brief hypoxic exposures have little 

impact on iNOS protein are consistent with these previous studies.

iNOS dimerization was influenced by brief exposure to various O2 tensions, but 

surprisingly did not correlate with changes in NO production.  The changes in 

dimerization appeared to be biphasic (6 Torr and 157 Torr > 36 Torr), and were 

consistent for the 260 kD band, the expected size for iNOS dimers (49), and for the 500 

kD band, an undefined iNOS-containing protein complex.  Our data for NO production as 

a function of cellular O2 tension (Figure 3C), and data from a prior study on iNOS 

activity as a function of O2 tension (202), show deviations from a smooth monotonic 

function in that range of PO2, that may in part be related to the biphasic changes we 

observed in dimerization.  Decreased NO production despite a large increase in iNOS 

dimerization during hypoxia could be due to O2 substrate limitation, limitation of another 

substrate or cofactor during hypoxia, and/or the generation of inactive dimers.

Cellular NO consumption was negligible at all but the highest PO2 and PNO, with 

an overall consumption constant of 0.038 pmol NO/sec·106 cells·Torr2 [12.7 (mmol NO)/

(sec·106 cells·M NO·M O2)].  There are many possible intracellular reactants that can 

directly consume NO, and correspondingly, there are many possible reaction kinetics for 

cellular NO consumption (93, 150, 212).  Our data is most consistent with first order 

dependence in NO and O2, most similar to the findings of Thomas et al. (251).  Our 

consumption rates are at the low end of the reported range for various cell types (0.050 to 

1.61 pmol NO/sec·106 cells·Torr2) (81, 251), but are consistent with a previous report of 

LPS and IFNγ stimulated RAW 264.7 cells (0.011 pmol NO/sec·106 cells·Torr2 (190); 

see Appendix B for conversion of consumption constants to comparable units).
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In summary, we used a novel forced convection cell culture system to precisely 

regulate cellular O2 tensions in the range of < 1 Torr to 157 Torr.  In an LPS and IFNγ 

stimulated macrophage cell line, decreases in cellular PO2 reduced NO production within 

seconds, an effect which was immediately reversible with restoration of the original PO2. 

The apparent KmO2 for this oxygen dependence was 22 (SD 6) Torr (31 µM).  The 

changes in NO production were not explained by the effects of cell PO2 on iNOS protein 

levels, iNOS dimerization, or consumption of NO.  The rapid effects of cellular PO2 on 

macrophage NO production are consistent with regulation of NO production by O2 

substrate limitation.  The apparent KmO2 in intact cells and the kinetics of the PO2 

dependence suggest that O2 substrate limitation could play a dynamic role in the 

regulation of NO production by iNOS in vivo.
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APPENDIX A: NO Consumption Model

For each individual column, studied at a fixed PO2, QαNO(PNOi-PNOe) was plotted 

against PNO (Figure S1) to assess for linear dependence that would indicate that first order 

kinetics in NO are appropriate.  The negative intercept on this plot is production, i.e. 

intercept = -f(PO2)kpN, which could be of any functional form (for example the 

Michaelis-Menten fit in Figure 3).  The only assumption required about production for 

this analysis of NO consumption is that the production is independent of PNO.  

For the experiments at higher PO2 (36 and 83 Torr) in figure S1, a linear fit is 

clearly adequate, and the slopes were significantly different from zero.  At lower PO2, as 

the slope of this relationship approaches zero, the power to detect a slope significantly 

different from zero is reduced.  As expected, the trend for a linear relationship did not 

result in a slope significantly different from zero (p ≥ 0.122) for the PO2 = 6 Torr data 

sets.

For each column, the best fit slope (b1) of the QαNO(PNOi-PNOe) versus PNO data was 

divided by PO2 and plotted against PO2 (Figure S2).  First order dependence in PO2 

predicts that b1/PO2 should be independent of PO2.  The data of figure S2 are consistent 

with a constant b1/PO2 that is independent of PO2, confirmed by a best fit regression 

slope not significantly different from zero (p = 0.422).

The best estimate of the overall consumption constant kcN was estimated from a 

weighted average of the b1/PO2 values in figure S2 that accounts for the fact that the 

confidence in parameter estimates is increased at higher PO2.  The weighted average 

assigned weights in direct proportion to PO2.  The resulting best estimate for kcN was 

0.0186 pmol NO/sec·Torr2.
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Finally, cell number for these experiments was estimated from representative 

measurements of total protein after lysis of cells from the columns, combined with a 

previously established relationship between cell number and protein for RAW 264.7 cells 

(202): 

N = -1.99x104 + 7.09x106(protein)

where protein is in mg. Average cell number for these experiments was 4.9x105.

The overall NO consumption rate constant, normalized to cell number, is 

NO consumption = 0.038  (pmol NO)/(sec·106 cells·Torr NO·Torr O2)

    = 12.7 (mmol NO)/(sec·106 cells·M NO·M O2)
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APPENDIX B: Conversion of kc Units for Comparison to Previous Studies

Thomas et al. reported NO consumption data for cultured rat hepatocytes (251). 

NO consumption was first order in both NO concentration and O2 concentration, with a 

rate constant of 5.38x10-4 M-1·sec-1·(cell/ml)-1.  For an NO solubility at 37°C of 2.13 µM/

Torr (271) and an O2 solubility at 37°C of 1.40 µM/Torr (273), the equivalent rate 

constant in units compatible with our reported value is 1.61 pmol/sec·106 cells·Torr2.

Nalwaya and Deen reported NO consumption data for stimulated RAW 264.7 

cells (190).  NO consumption was treated as first order in NO and zero order in O2, with a 

rate constant of 0.6 sec-1.  They measured NO consumption over a range of PO2. Taking 

as an approximation a PO2 in the middle of this range at 100 Torr, with an NO solubility 

as above, and with their estimate of cell volume of 8.8x10-13 L/cell, the equivalent rate 

constant is 0.011 pmol/sec·106 cells·Torr2.

Gardner et.al. reported NO consumption data for several cell types (81).  NO 

consumption values, in compatible units, ranged from 0.050 to 0.52 pmol/sec·106 

cells·Torr2.
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Figure 1.

Forced convection cell culture system.  Adherent RAW 264.7 cells were cultured at 37°C 

on the inside of a fused-silica column (inset).  The media, delivered by forced convection 

via a roller pump, was partially degassed by prewarming to 40°C, and then was 

equilibrated with calibrated compressed gas mixtures ranging from 0 to 157 Torr O2 (5% 

CO2, balance N2) inside one of two gas equilibrators (labeled Gas Equilibrator 1 and 2). 

Rapid changes in O2 tension or media components were enabled by a switching valve 

upstream from the column of adherent cells (labeled A).  NO in the media stream 

(effluent NO) was measured by an NO electrode (WPI) located downstream from a 

second switching valve (labeled B) that permitted assay of media from the cells or a 
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bypass.  The bypass loop allowed for regular electrode baseline measurements.  A 

syringe pump controlled the delivery of deoxygenated, deionized H2O equilibrated with 

2000 ppm NO (balance N2) into a T connector (labeled T) inserted into the media stream 

from gas equilibrator 2.  The addition of specific NO tensions (input NO) enabled 

calibration of the NO electrode and evaluation of cellular NO consumption. Figure 

adapted from Baumgardner and Otto (6).
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Figure 2.

NO Consumption by Media.  Oxygen dependence of the signal at the NO electrode was 

measured as a function of NO tension in minimal essential media (JBMEM) in the 

absence of cells.  Each bar represents the mean (SD) of the NO probe signal (pA) for 

JBMEM at five input PNO and six PO2 (n = 3).  Because the conversion of NO to its stable 

end products (NO2 and NO3) is O2 dependent, the results imply that NO consumption by 

the media is negligible.
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Figure 3.

Effect of PO2 on NO Production.  A. Representative tracing of NO (ppm) released by 

LPS and IFNγ stimulated RAW 264.7 cells during rapid switching between 0 and 36 Torr 

O2.  Cells were repeatedly exposed to 0 Torr O2 for 2 minutes, then 36 Torr O2 for 3 

minutes for a combined total of 40 minutes (n = 4).  Arrows indicate probe baseline, 

which was measured at the beginning and end of the experiments via the bypass loop.  B. 

Representative tracing from one of five experiments in which LPS and IFNγ stimulated 

RAW 264.7 cells were exposed to eight O2 tensions ranging from < 1 to 157 Torr in a 
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randomized order, while effluent NO (ppm) was measured electrochemically.  In between 

each O2 tension, cells were exposed to 0 Torr O2.  The numerical values above each 

plateau represent the estimated mean cellular PO2.  C. Michaelis-Menten plot.  The 

calculated KmO2 was 22 (SD 6) Torr.  The calculated Vmax was 4.9 (SD 0.4) nmol/min·106 

cells.
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Figure 4.

Effect of O2 tension on iNOS protein concentration.  Representative western blot of SDS-

PAGE gel for inducible nitric oxide synthase (iNOS) in LPS and IFNγ stimulated RAW 

264.7 cells exposed to 6, 36, or 157 Torr O2 for 40 minutes.  iNOS signal was normalized 

to RAF-1, a constitutively expressed protein.  The bar graph presents the mean (SD) of 

the iNOS to RAF-1 ratio at each PO2 (n ≥ 4).  (-) Unstimulated RAW 264.7 cells exposed 

to 36 Torr O2 for 40 minutes.
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Figure 5.

Effect of O2 tension on iNOS dimerization.  A. Western blot of low temperature SDS-

PAGE gel for inducible nitric oxide synthase (iNOS) in LPS and IFNγ stimulated RAW 

264.7 cells exposed to 6, 36, or 157 Torr O2 for 40 minutes.  M = Hi-Mark pre-stained 

molecular weight marker (Invitrogen, Carlsbad CA).  RA = RAW 264.7 cells grown in 

room air.  CL = RAW 264.7 cells cultured in room air and treated with 10 µM 

clotrimazole, an inhibitor of iNOS dimerization (232), for 30 minutes prior to and during 

stimulation with LPS and IFNγ for 8 hours.  Stim = RAW 264.7 cells were unstimulated 

(-) or stimulated (+) for 18 hours with LPS and IFNγ.  Flow = RAW 264.7 cells grown in 

culture dishes (-) or with forced convection (+).  B. Bars represent the mean (SD) of the 

260 kD to 130 kD ratio (n = 3).  * p = 0.003 compared to 36 Torr.  C. Bars represent the 

mean (SD) of the 500 kD to 130 kD ratio (n = 3).  * p = 0.008 compared to 36 Torr.

44



Figure 6.

Effect of NO and O2 tension on cellular NO consumption.  A. Representative tracing of 

1400W inhibition of NO produced by LPS and IFNγ stimulated RAW 264.7 cells (n = 

12).  Cells were switched from JBMEM to 100 µM 1400W in JBMEM lacking L-

arginine (labeled 1400W).  Effluent PNO was measured approximately every 10 minutes 

for 2 minutes (labeled NO).  B. Representative tracing showing effluent PNO measured 

during sequential exposure of 1400W-inhibited cells to 40, 79, 160, 319, and 500 ppm 
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input PNO as labeled, and 0 ppm NO (labeled Cell NO; n = 8).  O2 tension was 6 Torr.  C. 

Cellular NO consumption by LPS and IFNγ stimulated RAW 264.7 cells treated with the 

iNOS inhibitor 1400W was measured as a function of O2 and NO tension.  Each bar 

represents the mean (SD) of the ratio of the effluent PNO with cells to the effluent PNO 

without cells for five input PNO and three PO2 (n ≥ 2).  Reference line = 1.  Ratios < 1 = 

net NO consumption.  Ratios > 1 = net NO production.
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Figure S1.

47



Dependence of cellular NO consumption on NO tension.  Plots of QαNO(PNOi-PNOe) versus 

PNO for individual columns at 6, 36, or 83 Torr O2.  The lines represent the linear 

regression.
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Figure S2.
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Dependence of cellular NO consumption on PO2.  Plot of b1/PO2 versus PO2 (n ≥ 2), 

where b1 =  the best fit slope of the QαNO(PNOi-PNOe) versus PNO data presented in Figure 

S1.
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Table 1.  NO Consumption in DMEM.

Component % Consumption
DMEM (Gibco) 99.9
GibcoTM essential 

amino acid mixture (1X)

72

NaHCO3 (3700 mg/L) 48
Glucose (4500 mg/L) 36
Glucose (1000 mg/L) 15
NaCl (6400 mg/L) 7
deionized H2O 0

Using the forced convection cell culture system and NO electrode, effluent NO was 

measured in DMEM and select components after a 29 second exposure to 80 ppm input 

NO in the absence of cells and O2.  The signal generated by the exposure of deionized 

H2O at 0 Torr O2 to 80 ppm NO was designated 0% consumption.
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Table 2.  Cell survival in DMEM and JBMEM.

Time (hours)
Media 2 6 18

DMEM (U) 95.1 (2.7) 97.4 (0.9) 90.2 (3.9)
DMEM (S) 94.8 (0.9) 94.5 (1.3) ND
JBMEM (U) 91.2 (4.7) 90.9 (2.3) 88.0 (5.1)
JBMEM (S) 94.0 (0.4) 94.4 (0.5) ND

RAW 264.7 cells were cultured for 2, 6, or 18 hours in DMEM or JBMEM with (S) or 

without (U) stimulation (1 µg/ml LPS and 100 U/ml IFNγ initiated 18 hours prior to 

seeding; n = 3).  Percent survival was measured via Trypan blue staining.  Data are 

presented as mean (SD).  ND = not determined.
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ABSTRACT

Stimulated macrophages produce nitric oxide (NO) via inducible nitric oxide 

synthase (iNOS) using molecular O2, L-arginine, and NADPH.  Exposure of 

macrophages to hypoxia decreases NO production within seconds due to limitation of the 

reactant(s).  Conflicting data exist regarding the effect of pO2 on NADPH production via 

the oxidative pentose phosphate cycle (OPPC).  Therefore, the present studies were 

developed to determine whether NADPH could be limiting for NO production under 

hypoxia.  Production of NO metabolites (NOx) and OPPC activity by RAW 264.7 cells 

was significantly increased by stimulation with lipopolysaccharide (LPS) and interferon γ 

(IFNγ) at pO2 ranging from 0.07% to 50%.  OPPC activity exhibited a linear dependence 

on NOx production at pO2 > 0.13%.  Increased OPPC activity by stimulated RAW 264.7 

cells was significantly reduced by 1400W, an iNOS inhibitor.  OPPC activity was 

significantly increased by concomitant treatment of stimulated RAW 264.7 cells with 

chemical oxidants, hydroxyethyldisulfide or pimonidazole, at 0.07% and 50% O2, 

without decreasing NOx production.  These results are the first to demonstrate the 

relationship between NO production and OPPC activity over a wide range of pO2, and to 

rule out limitations in OPPC activity as a mechanism by which NO production is 

decreased under hypoxia.
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INTRODUCTION

Nitric oxide (NO) production is a key component of the macrophage response 

during inflammation (33, 172).  Macrophages stimulated by pathogen associated 

molecular patterns (PAMPs) produce NO from molecular O2, L-arginine, and NADPH 

via inducible nitric oxide synthase (iNOS) (245).  NO production clearly depends on the 

partial pressure of O2 (pO2) (179, 202, 218), and the estimated cellular KmO2 (14 Torr 

(202) to 77 ± 1.4 Torr (179)) is within the physiological range (5 to 71 Torr (23, 37, 42, 

124, 129, 263, 282)).  Systemic and/or tissue hypoxia develops during several 

inflammatory diseases (42, 75, 122), extending the pO2 range for tissue macrophages to 

even lower levels, and potentially limiting NO production in vivo.  Acute exposures to 

hypoxia have been shown to rapidly (within seconds) and reversibly decrease NO 

production by PAMPs stimulated macrophages without decreasing iNOS protein or 

assembly (218), providing evidence for the dynamic regulation of NO production by 

substrate limitation.  While molecular O2 is clearly limiting, an effect of hypoxia on the 

electron donor NADPH represents a second potential mechanism that has not been 

investigated in macrophages.

NADPH is constitutively produced by NADP+ dependent malic enzyme and 

isocitrate dehydrogenase.  When NADPH oxidation exceeds the capacity of these 

enzymes to reduce the substrate, however, the increase in [NADP+] activates glucose-6-

phosphate dehydrogenase (G6PD), the initial and rate limiting enzyme of the oxidative 

pentose phosphate cycle (OPPC) (68).  An association between NADPH production by 

G6PD and the production of NO has previously been demonstrated in endothelial cells 

(156-158), an insulin-producing pancreatic beta cell line (RINm5F) (98), and 
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macrophages (57, 112, 180, 258).  In macrophages, stimulation with PAMPs was found 

to elicit a parallel increase in OPPC activity (153, 177, 191) and NO production (57), by 

increasing G6PD activity and metabolic flux through the OPPC, rather than via the malic 

enzyme (58).  Moreover, pharmacologic inhibition of OPPC activity or G6PD deficiency 

was shown to significantly impair NO production by stimulated macrophages (112, 180, 

258).

Reduction of NADP+ via the OPPC does not require molecular O2.  Classical 

studies have measured increased [NADPH] in response to short term hypoxia due to the 

absence of metabolically-generated oxidizing agents (99, 127, 227, 259).  More recently, 

however, [NADPH] was found to be significantly decreased in denuded bovine coronary 

arteries following brief exposure to hypoxia (~ 8 to 10 Torr, 20 minutes (100)).  This 

effect was attributed to increased glycolytic flux, resulting in the redirection of substrate 

(glucose-6-phosphate) away from the OPPC.  However, OPPC activity was not directly 

measured in these experiments.  These results suggest NADPH availability may be 

limited during acute hypoxia in some tissues and/or cell types.

NADPH production via the OPPC maintains the cellular redox equilibrium (16). 

Therefore, to investigate whether OPPC activity was limited during acute hypoxia, the 

cells were simultaneously exposed to hydroxyethyldisulfide (HEDS) or pimonidazole 

(PIMO) to pharmacologically induce oxidative stress by two distinct mechanisms.  HEDS 

is a low molecular weight, cell permeable disulfide that is reduced by exchange reactions 

with glutathione and other cellular thiols.  These oxidized cellular thiols are subsequently 

reduced by NADPH-dependent glutathione and thioredoxin reductases (18, 26, 27). 
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PIMO is reduced by cytochrome P450 enzymes, which also utilize NADPH to provide 

reducing equivalents (264).

The primary goal of this study was to investigate the relationship between pO2 

(0.07% to 50%), NO production, and OPPC activity in PAMPs stimulated and 

unstimulated macrophages (Figure 1).  We chose to study RAW 264.7 cells due to the 

extensive literature on the pO2 dependence of NO production in these cells (179, 202, 

218), and due to their abundant and persistent NO production (61).  We hypothesized that 

4 hours of hypoxia would decrease NO production and OPPC activity without affecting 

iNOS concentration or iNOS dimerization.  Second, we hypothesized that pO2 would not 

affect the response of OPPC activity to chemically-induced oxidative stress via HEDS or 

PIMO.  Our results suggest that pO2, and not NADPH availability, affects NO production 

by PAMPs stimulated macrophages during acute hypoxia.
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METHODS

Cell Culture

RAW 264.7 cells (American Type Culture Collection, Manassas, VA) were 

maintained at 37°C 5% CO2 in DMEM (Invitrogen, Carlsbad, CA) supplemented with 

10% FBS (HyClone, Logan, Utah) and 1% antibiotic/antimycotic (penicillin, 

streptamycin, amphotericin B; Invitrogen) for up to 10 passages.  For experiments, 106 

cells were plated on 20 mL glass vials (inner diameter ~ 24 mm), or 1.5 x 106 cells were 

spot platted on 50 mm glass dishes (143).  Glass dishes and vials were cleaned and fired 

at 420°C, then treated with 75 mM sodium carbonate (Fisher, Fair Lawn, NJ) and 15% 

FBS for 1 hour at 37°C, treated with 0.2% gelatin (BioRad, Richmond, CA) for 20 

minutes, and dried under UV light prior to plating the cells.  Cells were then cultured 

overnight with 3 mL of MEM (Invitrogen, 11095) supplemented with penicillin, 

streptomycin, 15% FBS, non-essential amino acids, and 1 mM pyruvate.  Stimulation of 

RAW 264.7 cells was performed by treating cells overnight (at least 18 hours) with 1 µg/

mL LPS (E. coli O111:B4; Sigma) and 100 U/mL CHO-derived recombinant mouse 

IFNγ (Cell Sciences, Canton, MA).  Immediately prior to experiments, the media was 

replaced with 1 mL of low glucose (2 mM) MEM buffered with 25 mM HEPES (i.e. 

instead of sodium bicarbonate to prevent saturation of the filter paper with unlabeled CO2 

during the measurement) and containing 5% FBS, non-essential amino acids, 1% 

penicillin and streptomycin, and 2 mM glutamine.  HEPES-buffered media pH was not 

affected by pO2 or any of the other treatment conditions (data not shown).  Where 

indicated, NOx production was inhibited by treating cells with 100 µM N-[[3-

(aminomethyl)phenyl]methyl]-ethanimidamide, dihydrochloride (1400W; Cayman 
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Chemical, Ann Arbor, MI) in the absence of L-arginine for one and one half hours 

immediately prior to switching to low glucose media.  To chemically induce oxidative 

stress, 2 mM hydroxyethyldisulfide (HEDS) or 2 mM pimonidazole (PIMO) were added 

to the low glucose media.

pO2 Control with Thin Film Cell Culture

RAW 264.7 cells were cultured at 0.07%, 0.13%, 0.24%, 0.61%, 2%, 10%, or 

50% O2 for 4 hours at 37°C in vials or dishes contained in leak proof aluminum 

chambers, which enabled precise control of headspace pO2 as previously described (142-

144, 259).  Briefly, glass vials were capped with a rubber stopper containing a center well 

(Kimble Chase, Vineland, NJ) with a 1 × 0.5 cm Whatman GF/B glass-fiber filter soaked 

with 100 µL 5% KOH (259).  A 25G 5/8 inch needle was inserted into the stopper to 

enable slow gas exchange during the evacuations and pressurizations for oxygen control, 

while limiting gas exchange under the constant pressure conditions during the subsequent 

incubation (259).  Vials or dishes were placed in aluminum chambers and subjected to a 

series of gas exchanges with N2 or O2 to produce the desired headspace pO2.  Chambers 

were warmed to 37°C and shaken continuously to ensure adequate gas exchange between 

the headspace and the media throughout the experiment (4 hours).  The pO2 in the 

chambers was measured at the end of the incubation period using a polarographic oxygen 

electrode.  However, the pO2 in the headspace of each vial was not directly accessible. 

Additionally, the depth of the medium layer in the vials did not conform to the “thin-

layer” model that was originally developed in 50 mm glass dishes (143).  Thus, in 

separate experiments, we added 100 µM EF5 to both dishes and vials, and assayed for 
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EF5 adducts using flow cytometry as previously described (141, 142) in order to directly 

assess cellular pO2.  Note that in the experiments presented, pO2 is defined as the % of 

oxygen in 1 atmosphere of dry gas at 37°C (i.e. 100% = 760 mm of Hg).

  

NOx Measurement

Nitrite, nitrate, and nitrosothiols (NOx) were measured in media or cell lysates by 

injecting 20 µL into a reaction chamber containing a VCl3/HCl mixture (0.4 g VCl3 in 50 

mL 1 N HCl) heated to 90°C.  The resulting NO was continuously flushed with helium 

into a Sievers Nitric Oxide Analyzer 280i (GE Analytical Instruments, Boulder, CO) for 

reaction with ozone and measurement via chemiluminescence.  Quantification was 

performed by comparison to standards prepared with NaNO2.

Electrophoresis and Immunoblotting

Cell lysates were prepared by washing cell monolayers with ice cold cell rinse 

(6.8 g/L NaCl, 400 mg/L KCl, 122 mg/L NaH2PO4 anhydrous, 1 g/L glucose, 25 mM 

HEPES, pH 7.2), and then scraping cells into 0.4 mL ice cold protease-inhibitor 

containing hypotonic lysis buffer (1:1000 Protease Inhibitor Cocktail P8340 (Sigma-

Aldrich, St. Louis, MO), 10 µM phenylmethylsulfonyl fluoride (Sigma-Aldrich) in 

dH2O).  Lysates were subjected to 3 freeze/thaw cycles (-70°C).  Cell lysate protein 

concentration was measured using the Biorad DC protein assay (Hercules, CA).  Proteins 

(5 µg) were separated on a 7.5% Tris-HCl gel using SDS PAGE or low temperature SDS 

PAGE (LT SDS PAGE) as previously described (218), transferred to polyvinylidene 

fluoride (ImmobilonTM-FL 0.45 µm; Millipore, Bedford, MA), and immunoblotted for 
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iNOS (1:2000; NOS2 M19 sc650, Santa Cruz Biotechnology, Inc., Santa Cruz, CA).  β 

actin (1:20,000; Monoclonal anti-β actin Clone AC-15 A5441, Sigma-Aldrich) was used 

as the loading control.  Primary antibodies were immunocomplexed with IRDyeTM 800 

goat anti-rabbit or goat anti-mouse (1:10,000; Rockland, Gilbertsville, PA).  Proteins 

were detected, documented, and analyzed using an Odyssey Imaging System and 

software (LiCor Biosciences, Lincoln, NE).

OPPC and TCA Activity

RAW 264.7 cells were cultured in the presence of 2 mM glucose labeled in either 

the 1-14C or 6-14C position at a specific activity of 200 µCi/mmol glucose in 1 ml of 

bicarbonate-free MEM.  At the completion of each experiment, the vials were removed 

from the aluminum chambers, the needle was removed from the rubber stopper, and 

cellular metabolism was stopped by injection of 100 µL 6 N acetic acid into the media; 

the acidification step also releases CO2 from the medium into the gas phase.  14CO2 was 

collected on a 5% KOH saturated filter overnight at room temperature.  The filter was 

removed and the 14CO2 was counted with a Packard liquid scintillation counter.  TCA 

activity leads to release of 14CO2 from either the 1-14C or 6-14C position of glucose, while 

OPPC activity causes release of 14CO2 only from the 1-14C position.  Thus, OPPC activity 

was calculated using parallel vials and subtracting 14CO2 produced in the presence of 6-

14C glucose from the 14CO2 produced in the presence of 1-14C glucose.
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Statistics

The apparent Km and Vmax values were calculated by SigmaPlot Enzyme Kinetics 

Module 1.1 using a Michaelis-Menten non-linear analysis.  Comparison of means were 

tested by ANOVA for the effect of pO2 on measured values, and by two way ANOVA for 

the effect of pO2 and treatment on measured values.  Data presented are mean ± SD.
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RESULTS

Control of Cellular pO2

Cellular pO2 was regulated using a modified version of the Thin Film Culture 

Method developed in our laboratory (143).  To ensure the modified method (i.e. glass 

vials with rubber stopper and needle) provided the same pO2 at the cellular level, we 

compared the cellular pO2 in glass dishes with the cellular pO2 in glass vials via the 

measurement of EF5 protein adducts (Figure 2).  The formation of EF5-protein adducts 

increases as the pO2 decreases in a quantitative manner, thus permitting an accurate 

measurement of cellular pO2 because the pO2 is constant between the gas and liquid 

phases (143).  The pO2 dependence of EF5 binding for RAW 264.7 cells incubated on 

glass dishes was similar to results from other cultured cell lines (141).  Importantly, the 

EF5 binding for cells in glass vials closely paralleled EF5 binding for cells on glass 

dishes (Figure 2).

pO2 dependence of NOx production

NOx, iNOS protein levels, and iNOS dimerization were measured using the thin 

film cell culture method and low glucose media required for the OPPC measurements. 

The results obtained in low glucose media were similar to previous cell culture systems 

(Figure 3 and references (202, 218)).  Cumulative NOx released into the media by LPS 

and IFNγ-stimulated RAW 264.7 cells fit a Michaelis-Menten kinetic model with a KmO2 

of 0.66 ± 0.12 % (5 ± 1 Torr) and a Vmax of 25.2 ± 1.0 nmol/106 cells (R2 = 0.91, Figure 

3A).  NOx measured in cell lysates from LPS and IFNγ-stimulated RAW 264.7 cells 

exposed to 50% O2 for 4 hours was 3.5 ± 1.1 nmol/106 cells, 13% of NOx detected in the 
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media.  In the absence of LPS and IFNγ stimulation, RAW 264.7 cells did not produce 

detectable NOx (data not shown).  pO2 did not alter iNOS protein concentration (Figure 

3B) or iNOS dimerization (Figure 3C).  Stimulation of RAW 264.7 cells with LPS and 

IFNγ decreased total protein isolated from the vials by 30%, consistent with previous 

reports (200, 218).  pO2 alone did not affect cell adhesion as visualized by light 

microscopy, or the amount of total protein isolated from the vials (data not shown).

pO2 dependence of OPPC Activity

Unstimulated RAW 264.7 OPPC activity exhibited a biphasic response to pO2 

(Figure 4A), with a decrease between 0.07% and 2% O2 and a 2.5 fold increase between 

10% and 50% O2.  Stimulation of RAW 264.7 cells with LPS and IFNγ for 18 hours 

significantly increased OPPC activity at all pO2 (p < 0.001).  OPPC activity correlated 

directly with NOx production for pO2 greater than 0.13% O2 in LPS and IFNγ stimulated 

cells (Figure 4B).  Treatment of LPS and IFNγ stimulated RAW 264.7 cells with 1400W, 

an iNOS inhibitor, completely inhibited NOx production (Table 1), and significantly 

decreased OPPC activity to levels observed without LPS and IFNγ treatment (p < 0.001; 

Figure 4A, Table 1).  1400W also decreased OPPC activity in unstimulated RAW 264.7 

cells (Table 1) and unstimulated RAW 264.7 cells treated with PIMO (data not shown) at 

50% O2, but not 2% and 0.07% O2, suggesting possible nonspecific effects of the 

treatment at 50% O2.  Treatment of RAW 264.7 cells with LPS and IFNγ decreased TCA 

activity (Table 1), consistent with NOx-mediated respiratory inhibition (reviewed by 

(40)).  Treatment with 1400W, however, did not reverse the observed affect on TCA 

activity at any pO2 (Table 1).
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OPPC Challenge with HEDS and PIMO

To further increase oxidative challenge, RAW 264.7 cells were treated with 

HEDS or PIMO, two chemical oxidants, which operate by distinct mechanisms.  HEDS 

or PIMO both increased OPPC activity significantly in RAW 264.7 cells at either 0.07% 

O2 and 50% O2 (p < 0.001, Figure 5).  Stimulation of RAW 264.7 cells with LPS and 

IFNγ did not alter the magnitude of the increase in OPPC activity induced by HEDS or 

PIMO treatment.  NOx production was measured during OPPC challenge to determine 

whether NO production was maintained despite chemical oxidant stress (i.e. to assess 

whether OPPC capacity was able to accommodate both processes).  NOx production by 

LPS and IFNγ stimulated RAW 264.7 cells was not affected by HEDS treatment at 

0.07% O2 or 50% O2 (Figure 6).  PIMO, a nitroimidazole, was detected by the nitric 

oxide analyzer (2 mM PIMO in media generated the equivalent signal of 3.6 µM 

NaNO2).  Even after correcting for this signal, however, NOx measurements were 

significantly increased in PIMO treated LPS and IFNγ stimulated RAW 264.7 cells at 

0.07% O2 (p < 0.05) and 50% O2 (p < 0.001), suggesting PIMO might be metabolized to 

nitrite, nitrate, or nitrosothiols (178).
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DISCUSSION

Increased NOx production and increased OPPC activity were observed over a 

wide range of pO2 (0.07% to 50% O2) in LPS and IFNγ stimulated RAW 264.7 cells, 

consistent with previous reports of a relationship between NO production and NADPH 

oxidation in atmospheric O2 (57, 98, 112, 156-158, 180, 258).  Moreover, inhibition of 

NO production significantly decreased OPPC activity at all pO2 investigated, suggesting 

that the majority of the increased OPPC activity observed in stimulated RAW 264.7 cells 

was directly related to NO and/or reactive nitrogen species production.  Hypoxia did not 

inhibit the ability of the OPPC to respond to chemically mediated oxidative stress 

induced by HEDS or PIMO, and HEDS did not inhibit NOx production in stimulated 

cells.  These results demonstrate that OPPC activity is not limiting for NO production by 

stimulated RAW 264.7 cells irrespective of pO2.

The pO2 dependence of NOx production was well fit by a Michaelis-Menten 

model, and the measured KmO2 (0.66% or 5 Torr) was within the range reported 

previously (5 Torr to 96 Torr) (1, 67, 179, 202, 214, 218).  Despite substantial differences 

in experimental methodology, these data are consistent with our previous results using 

forced convection cell culture (22 Torr) (218), and our previous data from cell 

monolayers grown in dishes for 18 hours, after correction for iNOS activity and media 

depth (14 Torr) (202).  The data are also consistent with measurements made by 

Rengasamy and Johns using RAW 264.7 cell lysates and a steady state system (5 Torr) 

(214).  In contrast, rapid equilibrium studies with recombinant iNOS reported apparent 

KmO2 values of 93 Torr (1) and 96 Torr (67).  At present, the reasons underlying the > 10 

fold higher apparent KmO2 measured with recombinant iNOS are unclear.  Regardless, the 
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range of pO2 found in vivo (5 to 71 Torr (23, 37, 42, 75, 122, 124, 129, 263, 282)) has the 

potential to significantly and rapidly affect NO production, as suggested previously (1, 

67, 179, 202, 214, 218).

The pO2 dependence of NOx production was not due to changes in iNOS protein 

levels or iNOS dimerization, consistent with our previous studies of short-term hypoxia 

(40 minutes) (218).  Multiple studies have documented the affects of long-term (18 to 24 

hours) hypoxia on iNOS upregulation via HIF 1α (126, 181, 182).  Increased expression 

of iNOS protein due to hypoxia, however, requires incubations greater than or equal to 6 

hours (4).  The half-life of iNOS in atmospheric O2 is approximately 1.6 hours (145), but 

the effect of hypoxia on stability of the protein has not been investigated.  Based on the 

present study, we conclude that short-term hypoxia (i.e. < 4 hours) has negligible effects 

on the balance between transcription, translation, assembly, and degradation of iNOS.

Several previous studies have investigated the effects of short term hypoxia on 

NADPH and/or OPPC activity (99, 100, 127, 227, 259), but we have found no prior 

studies that examined the pO2 dependence of OPPC activity in macrophages. 

Interestingly, OPPC activity in unstimulated RAW 264.7 cells exhibited a biphasic pO2 

dependence in contrast to our previous work in HT1080 (human fibrosarcoma) and A549 

(human lung carcinoma) cells (259).  One potential source of NADP+ under hypoxia is 

the mitochondrial transhydrogenase.  The decrease in mitochondrial respiration observed 

under severe hypoxia results in elevated glycolytic flux, to maintain [ATP].  Hypoxic 

glycolysis produces lactate and NAD+.  Mitochondrial transhydrogenase couples 

reduction of NAD+ to oxidation of NADPH (128).  This reaction has been shown to 

increase under anaerobic conditions (241).  We propose that the NADP+ produced by the 
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mitochondrial transhydrogenase catalyzed reaction resulted in the stimulation of OPPC 

activity that we observed under hypoxia.  While we are examining this hypothesis more 

thoroughly, it is important to note that the increase of OPPC activity between 2% and 

0.07% for unstimulated RAW 264.7 cells under hypoxia, though statistically significant, 

is relatively small compared to the increase observed between 10% and 50% O2, or 

compared to the increase observed in LPS and IFNγ stimulated cells.

Stimulation of RAW 264.7 cells with LPS and IFNγ significantly increased OPPC 

activity at all pO2, thus extending previous reports for PAMPs stimulated macrophages in 

atmospheric O2 (58, 153, 191, 192).  These results are consistent with our results 

previously obtained in tumor cells (259), and conform with the classical view of 

decreased metabolic flux through the OPPC under hypoxia (99, 127, 227), whereby 

removal of O2 leads to a reducing environment.  For example, Scholz et al. measured an 

increase in NADPH fluorescence in rat liver within seconds of exposure to near anoxic 

pO2, and measured a new steady state within minutes (227).  Treatment with the iNOS 

inhibitor, 1400W, significantly reversed the affect of LPS and IFNγ stimulation at all 

pO2, suggesting the increase in OPPC activity was to accommodate NO production 

and/or the neutralization of reactive nitrogen mediated stress.  Although NADPH may 

also be consumed by NADPH oxidase (149), or even by iNOS to produce superoxide 

(247), superoxide release by LPS and IFNγ stimulated RAW 264.7 cells is reported to 

only occur within the first hour after stimulation (203), and to be only 6 % of NO 

production (11, 190).

OPPC activity correlated linearly with NOx production above 0.13% O2, with a 

slope of approximately 2, suggesting that for each molecule of NOx measured, 4 
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molecules of NADPH were consumed.  NO production is reported to require 1.5 

molecules of NADPH per NO molecule (reviewed by (247)), leaving a theoretical excess 

of 2.5 NADPH molecules.  One possibility for this excess is that NADPH is required to 

maintain cellular redox equilibrium in the presence of reactive oxygen and nitrogen 

mediated stress (reviewed by (16, 73)).  Another possibility is a limitation associated with 

our measurements: NOx does not account for all NO metabolites, or for the NO released 

into the gas phase of the vial.  Since the thin film culture system is designed to keep the 

gas phase in equilibrium with the liquid phase, it is not technically possible to confine 

NO to the media.  Because NO production was not measured via radiolabeled L-arginine, 

it is impossible to calculate the amount of NO released into the gas phase.  Therefore, the 

absolute relationship between NO, NOx production, and NADPH consumption remains 

to be addressed by additional studies.

Because OPPC activity decreased with pO2, we investigated whether OPPC 

activity was limited by hypoxia.  HEDS and PIMO are chemical oxidants that induce 

oxidative stress by mechanisms that are not dependent on pO2 (18, 26, 27, 264).  Thus, 

these compounds were used to challenge the OPPC in RAW 264.7 cells under hypoxia. 

Treatment with HEDS or PIMO significantly increased OPPC activity under all 

conditions tested including hypoxia.  To further investigate the relationship between 

OPPC activity and NOx production, we measured NOx production in LPS and IFNγ 

stimulated RAW 264.7 cells exposed to HEDS, and found that NOx production was 

maintained despite this chemical challenge to the OPPC.  Therefore, we conclude that 

OPPC activity is not limiting for NO production in stimulated RAW 264.7 cells.
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In summary, OPPC activity was increased following stimulation with LPS and 

IFNγ at all pO2 investigated in RAW 264.7 macrophages, a response which appears to be 

a direct consequence of NO production.  OPPC activity under conditions of chemically 

mediated oxidative stress (i.e. HEDS or PIMO treatment) was not limited by hypoxia, nor 

was it limiting for NO production under any of the conditions investigated.  Finally, we 

conclude that O2 substrate limitation is the primary mechanism responsible for decreased 

NO production by LPS and IFNγ stimulated macrophages exposed to acute hypoxia.
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Figure 1.

Schematic of the relationship investigated between NOx production and OPPC activity. 

The production of 1 molecule of NO consumes 1.5 NADPH molecules (247).  The NO 

metabolites (NOx) measured in this study include nitrite, nitrate, and nitrosothiols in the 

extracellular media (see Methods).  The OPPC produces 2 molecules of NADPH per 

molecule of CO2 released.  OPPC activity was measured as the production of 14CO2 from 

14C-labeled glucose minus the 14CO2 produced by the TCA cycle (see Methods).
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Figure 2.

EF5 binding in Glass Dishes versus Vials.  RAW 264.7 cells were cultured for 3 hours in 

the presence of 100 µM EF5 at 0.03%, 0.14%, 0.21%, 0.59%, 1.04%, 1.91%, or 11.7% 

O2.  RAW 264.7 cells were labeled with an EF5-specific Cy5 antibody and EF5 binding 

was measured by flow cytometry of a single cell suspension.  Results across experiments 

were normalized to a positive control.  Note that in the experiments presented, pO2 is 

defined as the % of oxygen in 1 atmosphere of dry gas at 37°C (i.e. 100% = 760 mm of 

Hg).
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Figure 3.

NOx production, iNOS protein concentration, and iNOS dimerization in LPS and IFNγ 

stimulated RAW 264.7 cells cultured with Thin Film Cell Culture.  LPS and IFNγ 

stimulated RAW 264.7 cells were exposed to 0.07%, 0.13%, 0.24%, 0.61%, 2%, 10%, or 

50% O2 (balance N2) for 4 hours using Thin Film Cell Culture.  A. Media NOx were 

converted to NO via reaction with vanadium chloride and measured with a Sievers Nitric 

Oxide Analyzer (see Methods).  Data presented are mean ± SD. (n ≥ 3).  B, C. 

Representative western blots of an SDS-PAGE gel (B) and a low temperature SDS-

PAGE gel (C) for iNOS and β actin. (n ≥ 3).  (R) RAW 264.7 cells grown in atmospheric 
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O2.  (+) RAW 264.7 cells treated with LPS and IFNγ for at least 18 hours prior to 

exposure to the designated pO2.  (-) RAW 264.7 cells not treated with LPS and IFNγ. 

(M) BioRad Kaleidoscope Prestained Standards (BioRad, Hercules CA).
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Figure 4.

Correlation between OPPC activity and NOx production.  A. RAW 264.7 cells (closed 

circles), LPS and IFNγ stimulated RAW 264.7 cells (open circles), or LPS and IFNγ 

stimulated RAW 264.7 cells pretreated with the iNOS inhibitor, 1400W at 100 µM (open 

triangles) were incubated with 1-14C glucose or 6-14C glucose in parallel experiments at 

0.07%, 0.13%, 0.24%, 0.61%, 2%, 10%, or 50% O2 (balance N2).  Cumulative OPPC 

activity was calculated by subtracting 14CO2 produced in the presence of 6-14C glucose 
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(TCA Activity) from 14CO2 produced in the presence of 1-14C glucose (OPPC Activity + 

TCA Activity).  OPPC activity by LPS and IFNγ stimulated RAW 264.7 cells was 

significantly different from RAW 264.7 cells and LPS and IFNγ stimulated RAW 264.7 

cells + 1400W at all pO2 (p < 0.001).  At this concentration (100 µM), 1400W did not 

completely inhibit the enhanced OPPC activity resulting from LPS and IFNγ stimulation. 

Data presented are mean ± SD. (n ≥ 4)  B. Linear regression of OPPC activity and NOx 

production (data shown in Figure 2).  y = [b1]x + [b0]
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Figure 5.

OPPC Challenge with HEDS and PIMO.  OPPC activity of RAW 264.7 cells and LPS 

and IFNγ stimulated RAW 264.7 cells was measured during treatment with one of two 

chemical oxidants, HEDS (2 mM) or PIMO (2 mM), at 0.07% and 50% O2 for 4 hours. 

(*) Significant effect of HEDS or PIMO treatment on OPPC activity versus no treatment 

(p < 0.001).  Data presented are mean ± SD. (n = 4) 
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Figure 6.

NOx production during OPPC challenge with HEDS and PIMO.  RAW 264.7 cells and 

LPS and IFNγ stimulated RAW 264.7 cells were treated with 2 mM HEDS or 2 mM 

PIMO during a 4 hour exposure to 0.07% or 50% O2.  Media NOx were converted to NO 

via reaction with vanadium chloride and measured with a Sievers Nitric Oxide Analyzer. 

PIMO data were corrected for the signal of PIMO in media (3.64 nmol).  A statistically 

significant effect of HEDS or PIMO on NOx versus no treatment was calculated where 

indicated (* p < 0.05, ** p < 0.001).  Data presented are mean ± SD. (n ≥ 3).
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Table 1.  Effect of 1400W on RAW 264.7 NOx Production, OPPC activity, and TCA 

activity.  

% pO2 0.07 0.07 2 2 50 50

1400W - + - + - +

NOx

nmol/106 cells

NS 1.5 ± 2.1 ND 0.1 ± 1.1 ND 0.2 ± 0.3 ND

S 4.9 ± 3.0 * 0.0 ± 0.5 † 15.5 ± 2.8 * ND 26.4 ± 1.5 * 0.3 ± 1.3 †

OPPC

nmol CO2/106 cells

NS 14.7 ± 3.8 ‡ 10.7 ± 1.7 7.4 ± 0.9 5.0 ± 1.9 25.1 ± 7.9 ‡ 9.7 ± 1.0 §

S 25.0 ± 2.2 a 13.1 ± 0.4 b 59.0 ± 4.8 a 18.8 ± 1.9 a,b 71.8 ± 7.3 a 27.9 ± 5.3 a,b

TCA

nmol CO2/106 cells

NS 0.3 ± 0.1 0.2 ± 0.02 1.7 ± 0.4 4.9 ± 0.4 c 4.1 ± 2.9 5.78 ± 2.9

S 0.4 ± 0.1 0.3 ± 0.01 0.6 ± 0.04 0.3 ± 0.04 d 0.6 ± 0.04 d 0.3 ± 0.1 d

RAW 264.7 cells were stimulated (S), or not (NS), with 1 µg/mL LPS and 100 U/mL 

IFNγ prior to exposure to 4 hours of 0.07%, 2%, or 10% O2 with Thin Film Cell Culture. 

RAW 264.7 cells were treated with 100 µM 1400W (+), or not (-), for 1 ½ hours prior to 

Thin Film Cell Culture.  (ND) = not determined.  (*) Effect of LPS and IFNγ treatment 

on media NOx (0.07% p < 0.05; 2% and 50% p < 0.001).  (†) Effect of 1400W treatment 

on media NOx (0.07% p < 0.01, 50% p < 0.001).  (‡) Effect of pO2 on RAW 264.7 OPPC 

activity (0.07% and 50% > 2%, p < 0.05).  (§) Effect of 1400W treatment on RAW 264.7 

cells OPPC activity (p < 0.001).  (a) Effect of LPS and IFNγ treatment on OPPC activity 

(p < 0.001).  (b) Effect of 1400W treatment on OPPC activity by LPS and IFNγ 

stimulated RAW 264.7 cells (p < 0.001). (c) Effect of 1400W on TCA activity (p < 0.05). 

(d) Effect of LPS and IFNγ treatment on TCA activity (Without 1400W p < 0.01, With 

1400W p < 0.001).  Data presented are mean ± SD. (NOx n ≥ 3, OPPC n ≥ 4, TCA n ≥ 

2).
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CHAPTER 3.

EFFECT OF CHANGING EXTRACELLULAR L-ARGININE 

CONCENTRATION ON MACROPHAGE NO PRODUCTION

Mary A. Robinson

Unpublished Data
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INTRODUCTION

L-arginine is a substrate for NO production by iNOS; the nitrogen in NO is 

derived from either of the guanidino nitrogens of L-arginine (120, 206).  Pharmacological 

inhibition of iNOS can be obtained in vivo and in vitro with 1400W, an L-arginine analog 

that contains an amidine and an amine substituted for the guanidino groups (82).  Once 

1400W binds to the L-arginine binding site, it is slowly reversible with a dissociation 

constant (Kd) of 7 nM (82).  L-arginine competes directly with 1400W binding to iNOS 

with a binding constant (Ks) of 2.2 µM (82), similar to the iNOS apparent Km for 

arginine (2.8 µM (245)).  The concentration of L-arginine in the cell culture media used 

for our studies was 300 (JBMEM) and 700 µM (MEM).  Therefore, in the studies 

describe in Chapters 1 and 2, incubations with 1400W were performed in media prepared 

without L-arginine to optimize inhibition kinetics.  Inhibition of NO production by 

exposure to 1400W (100 µM) in media prepared without L-arginine was measured 

directly in the forced convection cell culture system (Chapter 1, Figure 6B).  To 

differentiate the effect of 1400W on NO production from the effect of changing the 

extracellular L-arginine concentration, NO production was also measured in real time 

during exposure to L-arginine deficient media.  This experiment revealed some 

interesting kinetics of L-arginine removal and replacement.
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METHODS

RAW 264.7 cells (American Type Culture Collection, Manassas, VA) were 

cultured using the forced convection cell culture system described in Chapter 1 Methods 

(22).  Cells were stimulated overnight (18 to 24 hours) with 1 µg/ml LPS (E. coli 

O111:B4; Sigma) and 100 U/ml CHO-derived recombinant mouse IFNγ (Cell Sciences, 

Canton, MA).  Then, cells were perfused with a minimal essential media (JBMEM: 140 

mM NaCl, 1.4 mM CaCl2, 5.3 mM KCl, 4.4 mM Dextrose, 25 mM HEPES, 0.3 mM L-

arginine, and 0.1% heat-inactivated FBS (LONZA)) and NO production was measured 

with an NO electrode as described in Chapter 1 Methods.  Once baseline NO production 

was established, the cells were perfused with L-arginine deficient media (JBMEM 

without L-arginine) for 1 hour.  The cells were returned to L-arginine replete media, and 

the effect on NO production was measured.  The pO2 for these experiments was 36 Torr 

O2.
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RESULTS AND DISCUSSION

Perfusing the cells with L-arginine deficient media decreased NO production, but 

did not eliminate it (Figure 1).  NO production achieved a new steady state within 15 

minutes at approximately 20% of the initial NO production level.  One hour later, when 

the cells were returned to L-arginine replete media, NO production immediately (within 

seconds) recovered to the initial measured level (Figure 1).

These results suggest that the majority of the L-arginine utilized for NO 

production by LPS and IFNγ stimulated RAW 264.7 cells was transported into the cell, 

and are consistent with previous observations of extracellular L-arginine usage for NO 

production by some cell types and tissues (171, 294).  They also indicate that transport 

into the cell was fast (within seconds), relative to the rate of intracellular L-arginine 

metabolism (minutes).  MCAT-2B, a member of the cationic amino acid transporter 

family, is upregulated by LPS stimulation of macrophages (52, 53), making this 

transporter a possible candidate for mediating the L-arginine influx.  The forced 

convection cell culture system could be a useful tool to investigate possible MCAT-2B 

involvement, and the potential requirement for extracellular L-arginine.

One limitation of this experiment is that the L-arginine deficient media contained 

0.1% FBS.  Plasma concentrations of L-arginine are typically 50 to 200 µM (286), and 

could explain the residual NO production observed; residual NO production was ~ 75 

nM, and L-arginine concentration due to the addition of 0.1% FBS is estimated to be as 

high as 200 nM.  However, intracellular conversion of L-citrulline to L-arginine via 

argininosuccinate synthase and argininosuccinate lyase is also possible (186, 187).  These 

experiments need to be repeated in media without L-arginine or FBS to evaluate the 
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contribution of intracellular L-arginine supply to NO production by LPS and IFNγ 

stimulated RAW 264.7 cells.

The effect of hypoxia on the kinetics of L-arginine transport and metabolism was 

not investigated.  Hypoxia has also been shown to upregulate MCAT-2B mRNA (169), 

which would theortically increase L-arginine influx.  In contrast, both hypoxia (24 hours) 

alone and in combination with LPS has been shown to upregulate macrophage arginase 

(7, 169), which has been proposed to compete with iNOS for L-arginine as a substrate 

(48, 108, 250).  Inhibition of arginase can increase NO production by stimulated 

macrophages, and vice versa (109).  However, IFNγ stimulation of RAW 264.7 cells did 

not induce arginase (270), and costimulation of RAW 264.7 cells with LPS and IFNγ 

prevented arginase upregulation by an unknown mechanism (270).  Thus, minimal 

arginase should have been present in RAW 264.7 cells following overnight stimulation 

with LPS and IFNγ as described for this experiment and in Chapters 1 and 2.

The duration of hypoxia required to upregulate arginase, and the effect of 

combined stimulation with LPS, IFNγ, and hypoxia on arginase expression and activity, 

have not been investigated.  Because maximal arginase mRNA and protein upregulation 

by LPS (240, 270), cAMP (188), and dexamethasone (188) requires approximately 12 

hours, it is unlikely that the hypoxic exposures used in our experiments (Chapter 1: 40 

minutes; Chapter 2: 4 hours) were long enough to elicit an increase in arginase. 

Furthermore, L-arginine is required for iNOS dimerization, which was either increased 

(Chapter 1) or maintained (Chapter 2) with hypoxia in our experiments.  Therefore, L-

arginine availability for iNOS does not appear to be compromised by arginase in the 

experiments described in Chapters 1 and 2.
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In summary, these data suggest that NO production predominantly depended on 

the continuous transport of extracellular L-arginine into the cell, and that the rate of 

transport was faster than the rate of utilization under these conditions.  Although the 

effects of hypoxia on L-arginine transport and metabolism were not investigated, the 

maintenance of iNOS dimerization in Chapters 1 and 2 implied that L-arginine 

availability for iNOS was not affected by acute hypoxia.  Further study of the 

mechanisms and kinetics of L-arginine transport and metabolism by macrophages in the 

forced convection cell culture system could help elucidate the physiology of L-arginine 

supply for NO production.
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Figure 1.

Effect of Changing Extracellular L-Arginine Concentration on Macrophage NO 

production.  Representative tracing of NO production by LPS and IFNγ stimulated RAW 

264.7 cells exposed to L-arginine deficient media (* 240 seconds), and then returned to 

L-arginine replete media (* 3980 seconds) using the forced convection cell culture 

system.  NO production was continuously measured via an NO electrode; arrows on the x 

axis indicate probe baseline checkpoints.  Data were baseline corrected.  N = 2.
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DISCUSSION

Acute Hypoxic Regulation of NO Production

The ability of macrophages to migrate to sites of infection, injury, and disease 

results in their exposure to multiple pO2 [Physiological: 5 to 71 Torr (23, 32, 37, 42, 87, 

88, 124, 129, 159, 253, 254, 263, 266, 281, 282); Pathophysiological: 0 to 20 Torr (37, 

38, 69, 70, 72, 79, 111, 116, 118, 122, 130, 166, 194, 213, 236, 237)].  Thus, 

macrophages are required to operate over a much wider range of pO2 than most cell 

types.  The studies presented herein are the first to demonstrate the rapidity (seconds) at 

which NO production is affected by changes in pO2, the reversible nature of those 

changes, and confirm that these changes are occurring within the physiological and 

pathophysiological range.  This rapid and reversible decrease in NO production following 

exposure to acute hypoxia (≤ 4 hours) is due to O2 substrate limitation, and not effects on 

iNOS concentration, iNOS dimerization, NADPH availability, or L-arginine availability.

No previous cell culture studies have investigated NO production during acute 

hypoxia for direct comparison to these results.  The measured apparent KmO2 values 

(Chapter 1: 22 ± 6 Torr (218), Chapter 2: 5 ± 1 Torr), however, are within the range of 

values reported previously for long term hypoxic exposures ( ≥ 18 hours) of LPS and 

IFNγ stimulated macrophages (14 Torr (202), 77 ± 1.4 Torr (179)), and for the isolated 

iNOS enzyme (5 ± 0.6 Torr (214), 93 Torr (1), 96 Torr (67)).  They are also well within 

the range of pO2 required for the regulation of NO production in vivo (0 to 71 Torr (23, 

32, 37, 38, 42, 69, 70, 72, 79, 87, 88, 111, 116, 118, 122, 124, 129, 130, 159, 166, 194, 

213, 236, 237, 253, 254, 263, 266, 281, 282).  The rapidity and reversibility of the 
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response within the physiological and pathophysiological pO2 range suggests that 

changes in tissue pO2 in vivo will significantly affect macrophage NO production, as has 

been suggested previously (1, 67, 179, 202, 214).    

Two prior studies investigated the effects of long term hypoxic exposures on 

nitrite production by RAW 264.7 cells concurrently stimulated with LPS and IFNγ (179, 

202).  McCormick et al. measured an apparent KmO2 for the headspace gas of 10.8 ± 2.0 

% (77 ± 1.4 Torr) (179).  Otto and Baumgardner measured a similar pO2 dependence in a 

comparable system, but did not calculate an apparent KmO2 from the nitrite data directly 

(202).  Instead, they measured iNOS protein concentration and activity, and found that 

iNOS protein concentration and activity also decreased as pO2 decreased.  Thus, the 

changes in nitrite were reflective of changes in the specific activity and/or the amount of 

active iNOS, as well as effects due to substrate limitation.  After normalizing nitrite 

production to changes in iNOS activity, and accounting for the O2 diffusion gradient from 

the headspace gas to the cell surface, the estimated apparent KmO2 at the cell surface was 

14 Torr (202), similar to the apparent KmO2 values measured in these studies of acute 

hypoxia (Chapter 1: 22 ± 6 Torr (218), Chapter 2: 5 ± 1 Torr).

Acute hypoxia did not affect iNOS protein concentration, and iNOS dimerization 

was either increased (Chapter 1) or maintained (Chapter 2).  These results are consistent 

with a previous study showing that costimulation with LPS and hypoxia requires a 

minimum of 3 hours and 6 hours to affect iNOS mRNA and protein, respectively (4). 

Therefore, the key difference between the regulation of NO production by acute hypoxia 

and long term hypoxia appears to be the absence of sufficient time for acute hypoxia to 

influence iNOS mRNA and protein concentration.  The mechanism for increased iNOS 
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dimerization observed in cells cultured with forced convection is not known.  Regardless, 

decreased NO production despite increased iNOS dimerization further suggests that 

substrate limitation is the primary mechanism mediating decreased NO production during 

acute hypoxia.

O2 substrate limitation, not decreased NADPH or L-arginine availability, is the 

primary mechanism mediating decreased NO production during acute hypoxia. 

Macrophage OPPC activity linearly correlated with NO production at all pO2, consistent 

with previous studies in atmospheric O2 (58, 153, 191, 192).  OPPC activity was 

decreased during acute hypoxia due to the absence of NO production; treatment with 

1400W, a specific iNOS inhibitor, significantly reduced OPPC activity in LPS and IFNγ 

stimulated macrophages at all pO2.  Chemically mediated oxidative stress (HEDS or 

PIMO) significantly increased OPPC activity under all conditions tested including 

hypoxia, and did not affect NO production (HEDS).  These results are consistent with our 

measurements in tumor cells (259), and conform with the classical view of decreased 

metabolic flux through the OPPC under hypoxia (99, 127, 227), whereby removal of O2 

leads to a reducing environment.  They additionally demonstrate that the absence of 

molecular O2 is not limiting for OPPC activity.

The affect of hypoxia on L-arginine transport and metabolism was not measured 

directly.  However, L-arginine is required for iNOS dimerization (20).  Thus, the increase 

(Chapter 1) or maintenance (Chapter 2) of iNOS dimerization measured in these studies 

suggests L-arginine was not limiting.  These results were expected, because the 

concentration of L-arginine in the media used for these studies (JBMEM: 300 µM, MEM: 

700 µM) was much greater than the L-arginine apparent Km (3 µM) (245).  Interestingly, 

89



the removal of L-arginine also rapidly and reversibly decreased NO production to 20% of 

basal levels (Chapter 3).  NO production decreased more slowly upon the removal of L-

arginine (minutes) than upon the removal of O2 (seconds), also suggesting the hypoxia 

mediated decrease in NO production was not due to limited L-arginine influx.  In 

contrast, restoration of L-arginine immediately (seconds) enabled NO production to 

resume at levels equivalent to the initial measured level.  The forced convection cell 

culture system promises to be a useful tool for studying the effect of changes in 

extracellular L-arginine transport on NO production.

In summary, changes in physiological and pathophysiological pO2 rapidly and 

reversibly regulate macrophage NO production via O2 substrate limitation.  Acute 

hypoxia did not alter iNOS protein concentration, increased or maintained iNOS 

dimerization, and did not limit NADPH availability.  Because long term hypoxic 

exposure mediates changes in NO production via effects on iNOS protein in addition to 

substrate limitation, identifying the degree and duration of hypoxia in vivo will be critical 

to assessing its influence on physiological and pathophysiological macrophage NO 

production.

Implications for Macrophage NO Physiology and Pathology

Several macrophage phenotypes produce NO (14, 102, 210, 233, 234), and NO 

production is essential for eliminating certain types of bacterial and parasitic infections 

(6, 94, 96, 215, 265).  However, tissue pO2 varies widely, and tissues become hypoxic in 

the wound environment, and during many inflammatory diseases such as sepsis and 

cancer (116, 194, 213, 236).  The studies presented herein suggest that NO production by 

90



macrophages will be rapidly limited by low pO2 in vivo.  Additionally, changes in 

extracellular L-arginine could rapidly affect macrophage NO production in vivo.

The center of the wound environment is hypoxic and depleted of L-arginine (7, 

225).  NO production and L-arginine metabolism by wound macrophages are affected by 

hypoxia.  During hypoxia, wound macrophages metabolize L-arginine by arginase 

instead of iNOS (7).  This switch is thought to mediate the transition from the 

inflammatory phase of wound healing to the proliferative phase (99).  However, once 

angiogenesis and revascularization restore O2 to the wound, redirection of L-arginine 

back to iNOS may result in overlap of the inflammatory phase and the proliferative 

phase, as has been proposed previously (105).  Spatial and temporal measurements of 

tissue pO2, NO production, and angiogenesis during wound healing would provide further 

insight into the sequence, duration, and overlap of these events.

Sepsis is by definition a systemic inflammatory response to infection (36), and 

can be thought of as a systemic wound.  iNOS expressing macrophages in the heart, lung, 

liver, and kidney have been observed via immunohistochemistry during the first 24 hours 

in a rat endotoxemia model (44), which is similar to when of iNOS expressing 

macrophages appear in a localized wound (24 to 72 hours) (211).  Also similar to the 

wound environment, septic patients become hypoxic (118), and L-arginine plasma 

concentrations decrease (78), albeit by different mechanisms.  The results described 

herein suggest that macrophage NO production may be limited in septic patients due to 

decreased O2 and L-arginine availability, as previously proposed (1, 7, 41, 62, 67, 94, 

168, 179, 202, 214, 219).  Spatial and temporal measurements of pO2, NO production, 

and L-arginine concentration and turnover in septic models and/or patients are necessary 
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to verify these results in vivo.  If these findings are confirmed, diminished macrophage 

function as a result of hypoxia and L-arginine depletion could promote overwhelming 

infection, making it questionable as to whether specific iNOS inhibitors will provide 

therapeutic value for patients in septic shock.  Preventing circulatory collapse, while 

enabling macrophages to fight off the infection, may be a more appropriate therapeutic 

strategy for patients in the later stages of sepsis.

Chronic inflammation and hypoxia correlate with tumor development and 

progression (37, 38, 69, 70, 79, 111, 162, 166).  The results herein suggest that 

macrophage, and possibly tumor, NO production will be rapidly and reversibly limited 

within hypoxic areas.  Similar to wound macrophages, TAM in a hypoxic environment 

may preferentially metabolize L-arginine via arginase (7).  Arginase production of 

ornithine promotes cell growth, and may enable tumor growth (184).  Furthermore, the 

results herein suggest that NO production could be restored once angiogenesis improves 

O2 delivery to the tumor.  Thus, spatial and temporal measurements of pO2, NO 

production, and ornithine production, and identification of the cell types involved, are 

needed to verify these results in vivo, and could further our understanding of how these 

factors contribute to tumor progression and metastasis.

Conclusions

The pO2 dependence of NO production occurs within the physiological and 

pathophysiological range.  Acute hypoxia rapidly and reversibly decreases macrophage 

NO production.  O2 substrate limitation is responsible for decreased NO production 

during acute hypoxic exposures; no effects were attributable to changes in iNOS protein 
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concentration, iNOS dimerization, NADPH availability, or albeit indirectly, L-arginine 

availability.  The primary differences observed between long term hypoxia and acute 

hypoxia appear to be the additional affects of long term hypoxia on iNOS mRNA and 

protein concentration.  Modification of extracellular L-arginine concentration also rapidly 

and reversibly regulates macrophage NO production.  Acute hypoxia did not appear to 

limit L-arginine availability.  However, the effects of short and long term hypoxia on L-

arginine transport and metabolism requires further investigation.  Both tissue pO2 and L-

arginine concentration may significantly influence macrophage NO production and 

function in vivo.  Further studies of the tissue microenvironment, and its effects on 

macrophage NO production, are required to understand its contribution to the 

pathogenesis of disease.
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APPENDIX:  HYPOXIC CELL CULTURE

Challenges of Hypoxic Cell Culture

Hypoxic cell culture is typically performed using an airtight chamber in which the 

gas phase overlying the media, or headspace gas, is tightly controlled.  There are several 

limitations to this system that limit accurate and precise delivery of O2 to the cells.  When 

the media is not stirred, the poor solubility of O2 in media forces investigators to use a 

long equilibration time to acquire hypoxic conditions (22).  Diffusion of oxygen through 

the media is so slow, that the predicted pO2 calculated based on diffusion alone (i.e. in the 

absence of convection currents) is 0 Torr at 1 mm below the media surface for a 

headspace gas of 40 Torr (22).  Thus, convection currents, due to temperature gradients 

and vibrational changes in the environment, are responsible for the majority of the O2 

delivery to the cell monolayer.  Since these currents depend on the environment, the 

resulting pO2 at the cell monolayer is highly variable within and between cultures, as was 

confirmed in our laboratory (202).  Another common problem experimenters face is that 

many of the materials commonly used for conventional cell culture absorb O2 from room 

air and release substantial amounts into the media during “controlled” anoxia (242). 

These limitations were overcome using the two cell culture systems described below.

Forced Convection Cell Culture

The forced convection cell culture system (Chapter 1, Figure 1) uses 

countercurrent exchange to equilibrate the media with a gas mixture before pumping the 
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media through a capillary tube containing the adherent cells (22).  None of the materials 

used in this system absorb or release O2.  Thus, accurate and precise amounts of O2 can 

be delivered to the cells, and immediate changes between pO2 can be performed.  The 

outflow from this system immediately flows past two ports where various probes can be 

inserted.  In these studies, a NO probe was used to record real-time NO production by the 

cells.  The response time and sensitivity of the probe is such that physiologic changes in 

NO can be detected with as few as 1 X 106 cells in less than 5 seconds from its 

production.  One disadvantage of this system is the limited number of cells (1 X 106), and 

thus limited sample material (protein and RNA) available for analysis.

Thin Film Cell Culture

The thin film cell culture system uses reduced media volume and constant mixing 

to accurately deliver O2 to a cell monolayer (143).  The headspace pO2 is controlled by 

placing the glass dishes or vials into leak proof aluminum chambers, and subjecting them 

to a series of gas exchanges with N2 or O2 to produce the desired headspace pO2 (142-

144, 259).  Chambers are warmed to 37°C and shaken continuously to ensure adequate 

gas exchange between the headspace and the media throughout the experiment.  The pO2 

in the chambers is measured at the end of the incubation period using a polarographic O2 

electrode.  Additionally, EF5, a nitroimidazole, can be used to verify that the cellular pO2 

is equivalent to the headspace pO2 (141, 142).  One disadvantage of this system is the 

slower equilibration time between the headspace pO2 and the O2 tension at the cell 

monolayer (~ 30 minutes).
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