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Crystal-Amorphous Transformation Via Defect-Templating in Phase-
Change Materials

Abstract
Phase-change materials (PCM) such as GeTe and Ge-Sb-Te alloys are potential candidates for non-volatile
memory applications, because they can reversibly and rapidly transform between a crystalline phase and an
amorphous phase with medium-range order. Traditionally, crystal-amorphous transformation in these
materials has been carried out via melt-quench pathway, where the crystalline phase is heated beyond its
melting point by the rising edge of an electric pulse, and the melt phase is quenched by the falling edge into a
glassy phase. Formation of an intermediate melt phase in this transformation pathway requires usage of large
switching current densities, resulting in energy wastage, and device degradation issues. Furthermore, melt-
quench pathway is a brute force strategy of amorphizing PCM, and does not utilize the peculiar structural
properties in crystalline phase. It will be beneficial from a device perspective that crystal-amorphous
transformation is carried out via subtler solid-state pathways.

Single-crystalline nanowire phase-change memory, owing to its lateral geometry and large volumes of active
material, offers a platform to construct a crystal-amorphous transformation pathway via gradually increasing
disorder in the crystalline phase, and study it. Using in situ transmission electron microscopy on GeTe and
Ge2Sb2Te5 systems, we showed that the application of an electric pulse (heat-shock) creates dislocations in
the PCM that migrate with the hole-wind force, and interact with the already existing ferroelectric boundaries
in case of GeTe, changing their nature. We adapted novel tools such as optical second harmonic generation
polarimety to carefully study these defect interactions. These defects accumulate at a region of local
inhomogeneity, and upon addition of defects beyond a critical limit to that region via electrical pulsing, an
amorphous phase "nucleates". We also studied the effect of defect dynamics on carrier transport using
temperature dependent transport measurements in GeTe, which transforms from a metal to a weakly localized
metal to finally an Andersons insulator, upon defect accumulation, prior to amorphization. Taking lessons
from these fundamental studies, we defect-engineered GeTe into insulating crystalline states as the starting
crystalline states, and demonstrated orders of magnitude drop in the power densities required for switching,
compared with those required for melt-quench pathway.
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ABSTRACT 
 

CRYSTAL-AMORPHOUS TRANSFORMATION PATHWAY VIA DEFECT 

TEMPLATING IN PHASE-CHANGE MATERIALS 

Pavan Nukala 

Ritesh Agarwal 

Phase-change materials (PCM) such as GeTe and Ge-Sb-Te alloys are potential 

candidates for non-volatile memory applications, because they can reversibly and rapidly 

transform between a crystalline phase and an amorphous phase with medium-range order. 

Traditionally, crystal-amorphous transformation in these materials has been carried out 

via melt-quench pathway, where the crystalline phase is heated beyond its melting point 

by the rising edge of an electric pulse, and the melt phase is quenched by the falling edge 

into a glassy phase. Formation of an intermediate melt phase in this transformation 

pathway requires usage of large switching current densities, resulting in energy wastage, 

and device degradation issues.  Furthermore, melt-quench pathway is a brute force 

strategy of amorphizing PCM, and does not utilize the peculiar structural properties in 

crystalline phase.  It will be beneficial from a device perspective that crystal-amorphous 

transformation is carried out via subtler solid-state pathways.  

Single-crystalline nanowire phase-change memory, owing to its lateral geometry 

and large volumes of active material, offers a platform to construct a crystal-amorphous 

transformation pathway via gradually increasing disorder in the crystalline phase, and 
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study it. Using in situ transmission electron microscopy on GeTe and Ge2Sb2Te5 systems, 

we showed that the application of an electric pulse (heat-shock) creates dislocations in 

the PCM that migrate with the hole-wind force, and interact with the already existing 

ferroelectric boundaries in case of GeTe, changing their nature. We adapted novel tools 

such as optical second harmonic generation polarimety to carefully study these defect 

interactions.  These defects accumulate at a region of local inhomogeneity, and upon 

addition of defects beyond a critical limit to that region via electrical pulsing, an 

amorphous phase “nucleates”. We also studied the effect of defect dynamics on carrier 

transport using temperature dependent transport measurements in GeTe, which 

transforms from a metal to a weakly localized metal to finally an Andersons insulator, 

upon defect accumulation, prior to amorphization. Taking lessons from these 

fundamental studies, we defect-engineered GeTe into insulating crystalline states as the 

starting crystalline states, and demonstrated orders of magnitude drop in the power 

densities required for switching, compared with those required for melt-quench pathway.  
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differently. Reprinted with permission from ref 98. © American Physical Society, 2006. 
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GeTe (i) to a meta-stable amorphous phase (iv) proposed in ref 110 (Reprinted and 
adapted with permission from ref 110.  ©Macmillan Publishers Ltd, 2011. B) Free-
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electrical line of the holder. (B) Schematic of the configuration for the electrical 
measurement units. All electrical measurements were performed with Keithley 2602 (I-V 
analyzer), Keithley 2700 (switching box), and Keithley 3401 (pulse-generator).  (C) 
JEOL 2010F TEM where the in situ holder and the electrical measurement units are 
connected to enable in situ TEM measurements.  
 
Figure 2.3: (A) Schematic diagram illustrating multiple steps to fabricate phase change 
nanowire devices on an electron transparent membrane for simultaneous electrical and 
structural/chemical measurements. (B) Electron micrographs showing nanowire device 
capped in SiOx at different length scales. 
 
Figure 2.4: Equilibrium structure of Ge2Sb2Te5 calculated through density functional 
theory. Spacing of 3.31 Ao corresponds to van der Waals interaction between Te atoms in 
those planes.  This structure was obtained by relaxing the super-cell structure proposed 
by Sun et.al, (ref 6) using conjugate gradient algorithm (ref 7). Calculations were 
performed by Xiaofeng Qian and Ju Li.  
 
Figure 2.5: Structural characterization of Ge2Sb2Te5 nanowires in the pristine state. (A) 
SAD of the VLS grown Ge2Sb2Te5 nanowires confirming single crystallinity as well as 
hcp structure. (B) HRTEM image of the single crystalline nanowires. The arrow indicates 
the growth axis. (C) Schematic atomistic picture of the hcp Ge2Sb2Te5 nanowire when 
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Figure 2.6: Real-time structural evolution of Ge2Sb2Te5 nanowire device during its 
operation.(A to J) represents “forward-bias”, (K to T) represents “reverse-bias”, i.e. a 
reversed polarity. (A) Programming curve under forward bias. Arrows on programming 
curve are representative points where DF-TEM images are reported (from B to I). (B to I) 
Snapshots of dark-field DF-TEM images obtained from the movie during electrical 
switching: (B-E) individual dislocation formation (F-I), dislocations moving in the 
direction of the white arrow. (G,H) correspond to points where resistance dips. DF-TEM 
images show evolution of a dislocation cloud. Following the resistance dip regime, 
amorphization occurred at the dislocation-jamming region (red arrow) in (I). (J) Larger 
area DF-TEM image of the nanowire device after the amorphization. (K) Programming 
curve when polarity is reversed. (L-S) Snapshots from a movie recorded during the 
reverse-bias. The dislocation cloud behind the jamming region was first relieved (L-O); 
move towards the negative bias, and subsequently jam elsewhere (P-S). (T) Larger area 
DF-TEM image of the nanowire device after the “reverse-bias” amorphization . Scale 
bar; (B-I and L-S) 100 nm. (J and T) 500 nm.  
 
Figure 2.7: Dislocation jamming observed on Ge2Sb2Te5 notched-nanowire device. (A) 
Dislocation contrast is seen mostly on the positive polarity side of the notched-nanowire 
device. The negative polarity side is relatively clean. (B) HRTEM analysis of the formed 
dislocation.  
 
Figure 2.8: Results of DFT (density functional theory) calculations for shear stress (G) 
and the maximum generalized-stacking-fault (GSF) energy (γ) for different slip-
characters in hexagonal Ge2Sb2Te5. (Red- Te, Green-Ge, Purple-Sb).  
 
Figure 2.9: GSF energies for different stacking configurations shown as a function of slip 
displacement in basal and prismatic planes.  
 
Figure 2.10: Schematics illustrating dislocation-glide dynamics in Ge2Sb2Te5. (A-B) 
Illustrate condensation of vacancies to form two different kinds dislocation loops (similar 
in energy) with bergers vectors –a3 and a1 respectively. (C-D) illustrates the domino-
cascade glide of both kinds of loops. (E) shows the conversion of one loop into the other 
by nucleating a shear loop, so that the average direction of glide is the direction of hole-
wind force. 
 
Figure 2.11: Schematic showing the formation of a dislocation template that cuts across 
the nanowire. (Figure made by Ju Li). 
 
Figure 3.1: (A) SEM image of the as grown nanowires on a silicon substrate. (B) XRD 
characterization of the wires from (A) Rhombohedral distortion is evident from splitting 
up of the (111) peak as (111) and , and (022) as (022) and . (C) TEM image 
of a representative single nanowire device. This image was obtained by stitching bright 
field images in different regions of the nanowire. Scale bar is 100 nm (D) Virgin state 

(111) (022)
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selected area electron diffraction pattern from the region bounded by blue lines in (C). 
The pattern has been indexed in an FCC nomenclature, with  as the zone axis.  
 
Figure 3.2: (A) Schematic of a {100} twin boundary and the polarization vectors in the 
domains that the boundary separates. The simulated diffraction pattern shows a spot 
splitting in the <112> direction when looked along the zone axis (a body diagonal). (B) 
Schematic of a {110} twin boundary, and when looked at along the zone axis which 
contains the twin plane, we observe spot splitting in the<110> direction perpendicular to 
the habit plane.  
 
Figure 3.3: (A) Representative of a nanowire grown along <110> direction. It shows 
{100} twins, since the spot splitting is in <112> direction. (B) Representative of a 
nanowire grown along <100> direction. This shows a spot splitting in <110> direction, 
and the incoherent {110} twin boundaries were imaged using high-resolution TEM.  
 
Figure 3.4: (A) Programming curve during crystal-amorphous transformation. (B-M) 
Snapshots of a DFTEM movie in sequence. (B-E), top panel indicated in programming 
curve show reorganization of pre-existing {100} boundaries to cause {110} domain 
boundaries. (F-I), middle panel shows migration of dislocations interacting with {110} 
domain boundaries just nucleated. The blue arrows indicate dislocations, the white 
arrows indicate the hole-wind force direction. (J-M), bottom panel shows nucleation of 
more dislocations and their migration to the notch until a final amorphization event.  
 
Figure 3.5: (A) Diffraction pattern of GeTe nanowire in the virgin state obtained from 
the shaded region away from the notch. It reveals the existence of {100} domain 
boundaries to start with. (B) Diffraction pattern after pulsing suggesting reorganization of 
{100} domain boundaries to {110} domain boundaries. 
 
Figure 3.6: Snapshots from in situ dark-field TEM movie recorded during the second 
cycle of crystal-amorphous transformation. Blue arrows indicate clear dislocation lines 
migrating in the direction of the hole-wind force. White arrows indicate interesting 
contrast changes. (A) Dislocations and {110} twin boundaries. (B) Dislocations migrate, 
reorganizing the {110} twin boundary structure. (C) More dislocations, and changes in 
contrast owing to dislocation clouds. (D) Clear loops of dislocations are observed and 
intersecting defects near the notch. (E) Intersecting boundaries at the notch (jammed 
region) changing the contrast. (F) Amorphization event.  
 
Figure 3.7: Diffuse spots observed in diffraction pattern obtained from the region very 
close to the notch after defect-template is formed. 
 
Figure 3.8: (A) Programming curve of a representative GeTe device on which in situ 
TEM experiment was performed. (B-E) Snapshots of a movie recorded while the device 
is being programmed, showing the nucleation of {110} domain boundaries (DB) and 
their reorganization assisted by motion of dislocations along the hole-wind force. 

[111]
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Figure 3.9: A) Programming curve of the device.  A1-A5 are the points in the curve after 
which dark field (DF) images along with SAD were acquired. (B) at A1, which is similar 
to the virgin state. (C) at A2, where DF image shows a {110} domain boundary contrast. 
DF images were obtained from the diffraction spot bounded by blue rectangle. SAD 
shows spot splitting (circled in white) along the growth direction. (D) at A3, DF image 
shows contrast from two intersecting set of fringers. SAD shows spots splitting along the 
growth direction (circled in white), and along another <110> direction (circled in red), 
indicating two different sets of APBs. (E) at A4, DF shows smearing of fringe contrast 
while SAD shows extra spots and spot splitting. (F) at A5, SAD shows a clear splitting of 
the spot in the first order of reflections.  
 
Figure 3.10:  (A) Comparison between bulk plasmonic peaks of virgin GeTe devices and 
devices where APBs are formed, revealing an increase of 1 eV upon programming, and 
this corresponds to vacancy condensation. (B) Schematic explaining how vacancy 
clustering and condensation results in an APB.  
 
Figure 3.11: Schematic showing parallel set of (11-1) planes, with respect to the 
nanowire growth direction [1-10], which is the hole wind force direction. Red atoms are 
Ge, and yellow Te, and parallel columns of Ge and Te are not in the same plane (plane of 
the paper). The Ge plane in which vacancies will cluster upon application of heat-shocks 
is shaded in red (B) Schematic showing creation of APB via collapse of Te planes 
adjacent to the shaded plane in (A) by a shift in the hole-wind force direction by δr. This 
is viewed in the TEM along the [111] direction, to which the APB is neither parallel nor 
perpendicular.  
 
Figure 3.12: (A) Vector diagram illustrating domain boundaries based on polarizations 
of individual domains. This suggests that a reorganization of {100} FEB to {110} FEB 
should involve an inversion of one of the domains. (B) Schematic showing how APB 
nucleation near a domain boundary in one of the domains can ease the polarization 
reversal relaxations in the domain.   
 
Figure 3.13: Schematic illustration of (A) slip on basal plane (111) , (B) (001) [100] slip, 

and (C) (1-1-2) [11-0] slip in GeTe. 
 
Figure 3.14: 2D GSF plot in the (222) plane showing that dislocation migration by 
splitting up into partials (red path) is energetically more efficient than direct dislocations. 
(B) GSF plots for different slip systems, and (C) their corresponding tabulation. 
 
Figure 3.15: FEM simulations of transient temperature profiles upon application of a 4V 
electrical pulse with device characteristics similar to D1 (device in Figure 3.6), and D2 
(device in Figure 3.9). 200 ns pulse was applied on D1 (A), and 50 ns pulse was applied 
on D2 (B) Spatial profiles of temperature were plotted 40 ns after the pulse is removed, 
which is when the maximum temperatures are attained. Temporal profiles are shown at 
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the mid point of the nanowire, which is spatially always at the highest temperature at 
every time.  
 
Figure 3.16: Collage of in situ TEM bright field movie snapshots from different devices 
which are not capped. All of them show dislocation migration. Device in (A) shows the δ 
fringe contrast as routinely observed in all the capped devices, and rearrangement of 
these fringes facilitated by dislocation motion. Device in (B) demonstrates dislocations 
(cloud) leaving the surface and forming a bulge (green arrow), possibly an extreme case 
of step formation. Red arrow shows the development of δ fringes after morphological 
changes. Device in (C) clearly shows the motion of both individual dislocations and a 
dislocation cloud, but there is no evidence of δ fringe contrast.  
 
Figure 3.17: (A) Programming curve for the device on which in situ Fourier space 
imaging has been performed while being programmed. (B) SAD of the virgin state of the 
device. (C to F) are SAD snapshots of a video (movie S3) recorded during programming. 
C to F are indicated on the programming curve (C). Indexed forbidden spots are shown in 
red. FCC nomenclature has been used to index spots. In this nomenclature, an allowed 
spot is a plane represented as (hkl), where h,k,l are all odd or even together (same parity). 
If they have a mixed parity, then that spot is a forbidden reflection. Split spots are circled 
in white and indexed.  
 
Figure 3.18: Diffraction evolution showing no significant changes during an IV sweep. !

Figure 4.1: (A) 2D schematic illustrating a symmetric environment about an induced 
atomic dipole of interest (shaded in green) in materials with inversion symmetry upon 
interaction of a material with electromagnetic wave. (B) Schematic illustrating a net force 
due to dipole-dipole interaction (red line) on the dipole of interest in a material with no 
inversion symmetry. The force is the same when induced dipoles flip by 180o, which 
means that this force (and hence the response) oscillates with double the frequency of the 
fundamental and half its wavelength.   
 
Figure 4.2. Home-built optical SHG setup (courtesy, Dr. Mingliang Ren) showing the 
path of fundamental onto the sample inside the cryostat, and that of SHG signal from the 
sample to the detector.   
 
Figure 4.3: TEM data and SHG polarimetry results on CdS (wurtzite) nanowires. (A) 
Growth axis is along c-axis, (B) Growth axis is perpendicular to c-axis, (C) Growth axis 
at an angle to c-axis. Scale bars correspond to 100 nm. 
 
Figure 4.4: Different response of TE-excited second harmonic generation (SHG) from 
different regions of a twinned CdTe nanobelt. (A) Bright field TEM micrograph of the 
twinned nanobelt. Dark field TEM micrograph (inset) exhibits a non-uniform domain 
pattern. Scale bar: 200 nm. (B) SAED pattern confirming the twinned structure of the 
nanobelt. (C-F) Polarization properties of TE-excited SHG signal (I2ω) from different 
excitation regions as marked in (A). 
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Figure 4.5: (A) Schematic showing nanowire growth direction, and domain 
nomenclature. (B) Schematic showing stacking twin domains with different stacking 
sequences along the polarization direction, one obtainable from the other by a rotation of 
180o about the polarization direction ([111], blue arrow).  
 
Figure 4.6: Description of the lab frame of reference (A) and crystal frame of reference 
(B). 
 
Figure 4.7: Schematic of a nanowire sample with Ag coating lying on a TEM compatible 
SiN chip on which SHG experiments were performed. Light was shone in the direction 
indicated, and SHG was measured in the reflection mode.  
 
Figure 4.8: (A) SHG polarimetry experiment shown in perspective with TEM diffraction 
pattern. SHG signal is measured at all the <1-10> polarizations for all the domains. 
(Inset) shows the dark field SHG signal (510 nm) when fundamental at 1020nm is shone 
onto the nanowire. (B) SHG intensities (normalized) at all the three polarizations plotted 
as a function of fundamental polarization angle. Data from a virgin nanowire shown in 
(A). The solid lines show fits to equation 4. (C) Material constants evaluated from 12 
different virgin nanowires on which SHG analysis was performed. They are very 
consistent, acting as a positive check for the validity of the analysis. 
 
Figure 4.9: (A) Optical micrograph images with the nanowire device seen from the back 
side of the membrane (B) SHG intensities (normalized) at all the three polarizations 
plotted as a function of fundamental polarization angle at position 1 in the virgin state 
and the programmed state of the device shown in (A). (C) Volume fractions showing a 
significant inversion of the δ2 domains with respect to the other domains.   
 
Figure 4.10: SHG polarimetry intensity profiles on another nanowire at a particular 
region before and after programming. We see a significant inversion of δ2 domains with 
respect to the other domains.  
 
Figure 4.11: Nanowire grown along <100> with zone axis <110> clearly showing 
splitting corresponding to stacking twins.  
 
Figure 5.1: A) Plot of temperature vs. resistance (T-R) of the nanowire in both virgin 
state (blue circles) and programmed state (red squares) from 5-240 K, clearly indicating a 
change in slope of the TCR upon programming. (Inset) zoomed in virgin state’s T-R plot 
clearly indicating positive TCR and saturating resistance as temperature approaches 0 K, 
or metallic behavior. (B) The programming curve for the device whose T-R 
characteristics are shown in (A). (Inset) SEM micrograph of the device. Scale bar, 1 . 
 
Figure 5.2: (A) Programming curve of the device, which is carried out between the 
extreme electrodes (Inset) SEM micrograph of the device, showing the two segments, I 

µm
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and II. Scale bar, 2 . T-R measurements were conducted on each individual segment 
at P1, P2 and P3 points. In segment II, apart from a very little initial increase in the 
steady state resistance, it remains unaffected by programming (B) T-R plots of segment I 
in its virgin state (black dots) after programming up to P1, P2, P3 (red squares, green 
diamonds, blue triangles respectively). All significant changes in resistance of the total 
wire come from this segment. (C) T-R plots of segment II in its virgin state (black dots) 
and after programming up to P1, P2, P3 (red squares, green diamonds, blue triangles 
respectively). TCR of segment II is also unaffected by programming across extreme 
electrodes. 
 
Figure 5.3: (A) Temperature vs. corrected resistance of the disordered region (at P2 from 
segment I, Figure 5.2A) showing characteristics of a dirty metal. (B) Temperature vs. 
corrected resistance corresponding to the disordered region (at P3 from segment I, Figure 
5.2A. The TCR (red circles and inset) shows the formation of an insulating phase due to 
the variable range hopping (VRH) mechanism of conduction, indicating a metal-insulator 
transition (MIT). The orange arrow indicates heating cycle. The insulating phase 
transforms to a metallic phase upon annealing above 340 K. The blue arrow indicates 
cooling cycle, (C) Schematic of the disorder induced metal to dirty metal to insulator 
transition. Addition of APBs adds localized states (orange) close to the band edge and 
also moves  closer to . Weak localization effects take place when approaches 

 but is still on the extended side (blue region) (dirty metal state represented in (A)). 
When goes past into the localized states, MIT takes place, and VRH conduction 
mechanism is observed (state represented in (B)). 
 
Figure 5.4: Abrupt amorphization observed, without accessing the intermediate 
insulating/Fermi glass state upon not controlling the pulse amplitude to controllably add 
defects into the defect templated region. 
 
Figure 5.5: Another representative device’s temperature-resistance characteristics when 
transformed from metal to dirty metal to an insulating state, all prior to amorphization. 
 
Figure 6.1. Structural analysis and transport measurements on GeTe nanowires with 
defects pre-induced by irradiation with 2MeV He+ ions at different dosages (A) Bright 
field TEM image showing stacking faults/APBs and dislocation loops induced randomly 
in a nanowire irradiated with a dosage of 45 µC/cm

2
 (Inset) DFTEM image of ordered set 

of boundaries created during electrical pulsing in a representative device, illustrating the 
difference between random nature of defects created by ion irradiation, and ordered 
nature of them created by electrical pulsing. (B,C) HRTEM images of a nanowire before 
ion-irradiation, and after irradiation with a dosage of 100 µC/cm

2
 showing defect 

tetrahedra. (d) BFTEM image of a nanowire ion-irradiated with large fluences (1800 
µC/cm

2
). (E,F,G) Zoomed in, DFTEM images of different regions marked in (D), all 

showing lot of intersecting defects, a structural feature that corresponds to electron 
localization.  

µm

Ef Em Ef

Em

Ef Em
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Figure 6.2: (A) Saturation resistivity (ρ0) plots as a function of dosage on four 
representative nanowires (NW 1,2,3,4), showing an increase in ρ0 with dosage, in the 
metallic state. (Inset) Scanning electron microscope image of a representative multiple 
probe nanowire devices on which transport measurements were performed. (B) 
Temperature coefficient of resistivity (TCR) plots as a function of dosage on four 
representative nanowires (NW1,2,3,4), showing an initial increase in TCR followed by a 
subsequent decrease with dosage in the metallic state. (C)Plasmonic spectroscopy data 
obtained from 15 nanowires before and after ion irradiation showing a shift in plasmonic 
peak, and hence a decrease in hole carrier concentration; and this can explain the initial 
increase in TCR (D) Temperature-resistance plots for NW3 at 700 µC/cm2 (magenta) and 
1800 µC/cm2 (green), signifying a metal-insulator transition. (Inset) Variable range 
hopping (VRH) conduction behavior observed at 1800 µC/cm2, confirming an insulating 
state. (E) Temperature-resistance plots for NW4 at 1800 µC/cm2 (orange) and 3600 
µC/cm2 (blue), signifying a metal-dirty metal transition. (Inset) Power law conduction 
behavior observed for NW2 and 4 at 3600 µC/cm2 confirming dirty-metallic nature. (F) 
NW3 showed a stable value of resistance at 200oC, and this means that a stable insulating 
state for operational purposes has been engineered as a starting state for switching.  
 
Figure 6.3: Scaling behavior of switching properties of nanowire devices with pre-
induced defects at different dosages (A) Switching current density vs. Length of the 
device plots at low dosages, 0, 300 and 700 µC/cm2. Trends in switching can be classified 
into two regimes, and within every regime switching current density increases with 
device length. After a critical device length (lc) there is a transition into another regime 
characterized by a sudden drop in switching currents. lc indicated in black, maroon and 
blue circles for 0, 300 and 700 µC/cm2, respectively, and decreases with increasing 
dosage. Switching current densities at any particular length increase with dosage upto 
700 µC/cm2.  (B) Temperature vs. time profile of heat shock at the central point of the 
nanowires with differing lengths and 100 nm diameter; when a 100 ns, 0.4 mA current 
pulse is applied- calculated using finite element modeling; showing the severity of heat 
shocks in shorter devices than longer ones. (C) Plot showing amorphization current 
density as a function of device length for devices engineered into states where localized 
electrons dominate transport via irradiating at very high dosages (1800, 3600 µC/cm2). 
Upon comparison with non-irradiated devices (black data points), these devices show a 
drastic reduction in switching current densities, enabling very low current switching for 
large devices. The switching currents are indicated, and the device volumes and 
comparison with devices switching via melt-quench is shown in the table in (D). 
 
Figure 6.4: Threshold switching, recrystallization and electronic properties of 
recrystallized phases. (A) I-V sweep from 0 to 0.5 V on a device which is already in the 
amorphous phase with compliance current (Ic) set at 50 µA. Recrystallization followed by 
threshold switching happens at 0.5V. Low bias resistance measurement on the 
recrystallized phase (~10 kΩ) is shown in the inset. (B) Amorphous and crystalline phase 
resistances were cycled repeatedly for 12 times (inset). The temperature dependence of 
conductivity measurements are compared between defect-engineered starting insulating 
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crystalline phase, recrystallized phase after one cycle of switching and after 12 cycles of 
switching. All the recrystallized phases show similar transport behavior suggesting 
reliable and repeatable switching. 
 
Figure 6.5: Demonstration of multiple resistance states. (a) Programming curve (voltage 
pulse amplitude vs. steady state resistance) while programming defect-engineered 
crystalline phase (state 1) into amorphous phase. When 50 ns pulses were applied, the 
transformation is sudden, whereas when 20 ns pulses were applied (despite the distorted 
current pulse shape, Figure 6.9) there is a continuous transformation with access to 
several intermediate resistance states (state 2, 3 and amorphous phase). Here, adding 
defects controllably to the jammed defect-templated region creates the intermediate 
resistance states. (b) Voltage sweep from 0-1 V (green data points) shows a threshold-
switching event of the amorphous phase to state 3 at <1 V with compliance current (Ic) 
set at 5 µA. A second sweep starting from state 3 (red data points), shows a drop in 
current at ~0.01 V corresponding to amorphization event, and the amorphous phase 
subsequently converts to state 2 after a threshold switching event to state 2. Another 
voltage sweep from 0-1 V starting with state 2 (blue data points), again shows a drop in 
the current at ~0.01 V, signifying amorphization - and the amorphous phase subsequently 
undergoes threshold switching and transformation to state 1, which resembles the as-
engineered insulating crystalline state by pre-induced defects. The arrows in the figure 
correspondingly indicate carrier-wind force assisted amorphization and threshold 
switching events (c) Repeatable switching measurements, with every cycle consisting of 
a 150 ns, 0.3 V pulse transforming state 1 to amorphous phase, followed by I-V sweeps 
until state 1 is eventually retrieved; and between every cycle Ic is randomly set to 50 µA, 
or 10 µA or 5 µA. When Ic =50 µA, amorphous phase always switches to state 1 directly, 
and when Ic =5 and 10 µA intermediate metastable states become accessible. Here, the 
intermediate resistance states are created by controllably removing defects (annealing) 
from the jammed defect-templated region.   
 
Figure 6.6: (A)!(Magneta) Voltage sweep on an intermediate state until 0.002 V showing 
a drastic drop in the current at  ~0.001 V (~0.1 µA). (Brown) A second voltage sweep 
confirming that the drop in current in the earlier sweep is because of an amorphization 
event, and is not a field dependent reversible effect; and in this voltage sweep, the 
amorphous phase is threshold switched to another intermediate state (Ic=5 µA).  (B) 
Structural model showing the transformation of the intermediate states during a voltage 
sweep. At low currents (~0.1 µA), hole wind force is sufficient to add more defects to the 
already jammed-defect templated region and amorphize it. After the threshold-switching 
event, there is a large current (Ic) which Joule heats the amorphous phase and the 
surrounding jammed region transforming it into either state 1 or 2 or 3 depending on the 
value of Ic.  
 
Figure 6.7: Electronic characterization of all the states. (A) T-0.25 vs. log(S) plots, –where 
‘S’ is the conductance– showing that states 1,2, and 3 exhibit VRH conduction behavior 
with slopes becoming steeper from 1 to 3. (B) Conduction behavior of the amorphous 
phase plotted as log S vs. T-1, showing activated behavior at high temperatures, and VRH 
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behavior at low temperatures. (Inset) log I (current) shows a linear dependence on V0.5 in 
the amorphous phase, a characteristic of Poole-Frenkel conduction behavior. (C) Band 
diagrams showing the relative postion of Fermi level (Ef) in all the observed states. From 
state 1 to the amorphous phase, Fermi level progressively moves up into lesser density of 
trap states, until Ef  gets pinned to the mid-gap in the amorphous phase.  
 
Figure 6.8: (A) Retention measurements on the amorphous phase, carried out at 175, 
180, 185 and 190oC, and the black, blue, maroon and red dotted lines show the incubation 
times for crystal formation at these temperatures respectively. (B) Retention 
measurements on an intermediate state, carried out at 70, 80, 90oC, and solid lines are a 
guide to the eye, showing incubation and growth regimes. (C)Activation energy plots for 
both amorphous and the Fermi glass intermediate resistance state.  
 
Figure 6.9: Current response (green) for an applied voltage pulse (red) of 0.5V, 50 ns in 
(a) and 1V, 20 ns pulse in (b). 
 
Figure 7.1: (A) Resistivities of NiCr alloys as a function of increasing Cr concentration 
starting from pure Ni. Data reprinted with permission from ref 1.© WILEY-VCH Verlag 
GmbH & Co. KGaA, 1973 (B) Resistivites of GeTe-Sb2Te3 alloys as a function of 
increasing Sb2Te3 concentration. Data on GeTe is our unpublished data on nanowires. 
Data on other compounds is collected and replotted from various sources (ref 6-17). 
 
Figure 7.2: In the pseudo-binary phase diagram between GeTe-Sb2Te3, the various 
stoichiometric line compounds such as Ge1Sb4Te7, Ge1Sb2Te4, and Ge2Sb2Te5, exist. 
Reprinted with permission from ref 19. © AIP Publication LLC, 1991. 
 

Figure 7.3: Thermal transport channels in a regular crystal, and in Fermi glass. 
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1. Phase-change memory: Introduction 

This chapter is reprinted in parts from “P. Nukala & R. Agarwal. Semiconducting 

nanowires: from next generation electronics to sustainable energy (ed Jie Xiang, Wei Lu) 

Ch. 3, 111-166 (Royal Society of Chemistry, 2014)” with permission from  Royal Society 

of Chemistry. © 2014, RSC  

1.1 What is phase-change memory and why use it? 

‘Universal memory’ refers to an ideal computer memory that combines the ultrafast 

read/write times, power efficiency and high endurance of a DRAM (dynamic random 

access memory) with the non-volatility and data retention capabilities of a hard-drive. 

The search for universal memory is an actively pursued subject of research1. The current 

solid-state memory technology using flash memories provides encouragement towards a 

search for universal memory. Flash memories are non-volatile i.e. retain information for a 

long time (~10 years) after the removal of the power source. Since they read information 

in a ‘random’ fashion, their read times are much faster than conventional hard drives, but 

comparable to volatile DRAMs. Flash memories (NAND flash with extended MOSFET 

design) work on the principle of creating charges on the floating gate (state 1), and 

discharging the floating gate (state 0) 2. Writing (or charge creation) involves hot carrier 

injection through the insulating oxide, which requires high voltages (10-12 V). Erasing 

(or discharging) involves capacitive discharge, which means capacitive power losses, and 

a micro-millisecond discharge time. These characters make flash memories power 

inefficient as well as slow (writing and erasing speed wise) compared to a conventional 

DRAM 3. Most of these inefficiencies in flash memories can be traced back to their 
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mechanism of switching via charge transfer. So a logical next step towards looking for a 

universal memory is to find systems that switch between two states without involving 

charge transfer.  Recent advances in materials research brought several potential 

candidates into limelight 4-6, which can be classified as ferroelectric RAM (Fe RAM), 

magnetic RAM (MRAM), resistive RAM (RRAM), STTRAM (spin torque transfer 

RAM), and phase-change RAM (PRAM), whose performances are compared in the table 

shown in Figure 1.1.  

  

Figure 1.1: Table comparing different computer memory technologies. Information was 
gathered from ITRS 2009 7.  

Phase-change materials (PCM) are those classes of materials, which rapidly 

(within tens of nanoseconds) and reversibly change their structure from a crystalline 

phase with long-range order to an amorphous phase – upon the application of an external 
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stimulus such as an electrical or a laser pulse. PCMs comprise of chalcogenide-based 

semiconductors such as GeTe, Ge2Sb2Te5 (GST), Sb2Te3, and AgInSbTe (AIST). The 

measurable properties that change significantly as a result of this reversible and rapid 

structural phase-change are the material resistivity and optical reflectivity (see Figure 

1.2.), which makes the PCM good candidates for applications involving encoding 

information (computer memory and optical memory applications). PRAMs potentially 

offer good switching properties such as endurance, low-power reading and writing, and 

rapid switching, on par with the widely used DRAMs; but unlike the DRAMs, they are 

non-volatile and serve as alternatives to the currently existing flash (non-volatile) 

memory technology (Figure 1.1.1.). Hence PRAMs are prospective candidates for a 

universal memory, and thus- deservedly so- attracted a lot of research in the past few 

decades.   

 

 

 

 

 

 

 

Figure 1.2: Schematic of voltage pulse induced structural phase-change in PCMs. A set 
pulse is a long low-amplitude pulse, which heats the amorphous phase of the PCM above 
its crystallization temperature, and crystallizes it. The RESET pulse is a short large-
amplitude pulse, which melts and quenches the crystalline phase of the PCM to an 
amorphous phase. The amorphous phase of PCM is characterized by high resistance and 
low reflectivity, whereas the crystalline phase of PCM is characterized by low resistance 
and higher reflectivity. 
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1.2 Evolution of PCM memory technology: historical timeline 

Stanford Ovshinsky, a great innovator, in 1969 first reported the existence of 

some amorphous semiconductors containing arsenic or tellurium combined with III or IV 

group elements that can be reversibly switched electronically from their low conducting 

state to a high conducting state using electrical bias 8. The evolution of this electronic 

switching to a structural phase-change between amorphous (high-resistance) and 

crystalline (low-resistance) phases has been later discovered 9,10. Early demonstrations of 

phase-change behavior have been on complex alloys such as Te48As30Si12Ge10, 11 which 

required tens of microseconds time to switch. PCMs did not occupy their space in 

technology until Yamada and coworkers from Panasonic in 1987 12 demonstrated high 

speed rewritable switching (100 ns) in certain alloys of Ge, Sb and Te.  They used 

nanosecond laser pulses for switching from amorphous to crystalline phase and back, and 

this immediately led to the creation of optical disc (compact disc (CD) and digital 

versatile disk (DVD)) technology. DVDs work on the principle of crystalline phase and 

amorphous phase having a 30% difference in optical reflectivity. Yamada et al., later 13 

showed that some thermodynamic line compounds along the pseudo-binary line of GeTe-

Sb2Te3 phase diagram showed the best switching properties, thus discovering important 

PCMs such as Ge2Te2Sb5 and GeSbTe4. Later in 1997, Tominaga and coworkers 14 

discovered the potential of Ag-In-Sb-Te (AIST) as a technologically important phase-

change memory material, used as an active material in the present day blu-ray 

technology. It has been understood through thermal simulations 15 that a low power laser 

pulse heats amorphous phase in PCM films beyond the crystallization temperature (Tc) to 

switch to a crystalline (SET) phase. Once in crystalline phase, a high-power laser pulse 
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melts and quenches the crystalline phase causing it to re-amorphize (or RESET) (see 

Figure 1.2).  

Inspired by the success of PCMs in the DVD technology, and Ovshinsky’s reports 

of electrical switching in these materials, academia and industry began to envision PCMs 

as the prospective universal computer memory 16. CMOS compatible device-design (thin-

film devices) strategies were constructed and subsequently bettered 17, with an aim to 

efficiently Joule heat to melt and quench the crystalline phase, and heat to crystallize the 

amorphous phase– using electrical (voltage or current) pulses.  

Melting and quenching is a conventional metallurgical process of glass formation 

(amorphous materials), silicate glasses- in particular 18,19; and is most commonly 

employed pathway to carry out the crystal-amorphous transformation in PCM. The idea 

is to cool the melt at high cooling rates ( ) so that the atoms lock 

themselves up in a metastable disordered configuration (amorphous), rather than diffuse 

to a more stable ordered (crystalline) phase. A natural question that arises is, if melt-

quench is such a standard way to cause amorphization, why only use it on chalcogenide 

semiconductors for memory applications? Amongst many other reasons one of the 

answers stems out from the fact that the thermal conductivity of chalcogenide 

semiconductors in crystalline phase is very low (0.5 -1.5 W/mK) 20,21, which makes it 

possible to melt the crystalline PCM with relatively low currents (see Figure 1.3). 

However, to dissipate this heat accumulated by the melt (i.e. to quench), the surrounding 

material needs to have high thermal conductivity (14). The design of a PCM cell hence 

involves an optimization between high thermal conductivity surroundings and a low 

105 −108K / sec
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thermal conductivity active material itself; in other words, an optimization between 

switching time and the power used for switching.  

The active material that changes phase is a very small part of the entire thin-film 

device. Initial designs included a heater right below the active material of the PCM thin-

film device. One such design, called the mushroom design or the standard OUM- Ovonic 

unified memory- design, is shown in Figure 1.3(A). In this design, the active material is 

surrounded by a silicon oxide layer, electrode (e.g. tungsten) and a heater 22; and when 

current is passed through the heater (TiN is a typical heater material), melt-quench takes 

place in a region shaped like a mushroom near the heater (see Figure 1.3(A)), through 

both Joule heating as well as Peltier effect 23.  

 

 

 

 

 

 

 

Figure 1.3: Important PCM devices in the timeline of evolution of the PCM technology. 
(A) Schematic of a heater based ovonic unified memory (OUM) cell. (B) Scanning 
electron microscope (SEM) image of a phase-change memory bridge device. Reprinted 
with permission from ref 24.  ©AIP Publication LLC, 2009. 
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The need for low power switching has led to the design of one-dimensional PCM 

devices, as a part of strategies to reduce power consumption via device miniaturization. 

The OUM design has been subsequently improved with the proposal of phase-change line 

memory devices by Lankhorst et al 25 (more in section 3). Raoux et.al., improved the 

power efficiency and scalability of PRAM devices by fabricating ultrathin ‘phase-change 

bridge’  devices 26 (see Figure 1.3(B)). No heater is used in these designs, and the active 

material-electrode assembly is embedded in a silicon oxide film, which is a good heat 

sink. This design ensures that maximum temperature is built up at the center of the 

bridge, thus making it the region where melting and quenching and hence phase-change 

occurs. Heat loss mechanisms in line and bridge devices are minimal, since the contact 

area of the active material with the electrodes is small, resulting in better power 

efficiency in these devices than in the conventional OUMs.  

1.3 Scaling studies on phase-change memory: reduced dimensions and the 

rise of bottom up processing 

Researchers have taken a two-pronged approach to study scaling in thin-film (2D) 

PCM devices (OUMs). One approach is to reduce the contact area of the electrode to the 

film, hence packing more bits in a given volume 27-30; the other is to reduce the volume of 

the film itself 31-36. Lacaita 28 has shown a linear scaling behavior with a reduction in 

contact area in OUM devices. However, at lower values of the contact area there is an 

enhanced thermal cross talk between various bits, i.e. heat from a crystalline bit of the 

PRAM array, which is about to change its phase, can affect the nearby amorphous bits. 

This would lead to an overall poor performance of the PRAM array, though individual 
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bits may still pass the endurance tests; thus nullifying the good effects of scaling. Lacaita 

28 has demonstrated scaling upto ~20 nm diameter of the contact electrodes.  

Recently Xiong, et al., 30 have come up with a new strategy for extreme scaling 

using contact area reduction approach. They used ultra-thin carbon nanotube electrodes 

(CNT, 6-8 nm diameter), and lithographically created nanogaps, to define the active 

region of the PCM film. Till date, Xiong et al., 30 demonstrated the smallest active phase-

change memory cell where they were able to exploit the excellent conduction properties 

of CNT electrodes, and demonstrated a drastic reduction in write/erase currents and 

threshold voltages. The use of low currents and confined heating in the aforementioned 

design using CNT electrodes might reduce the thermal crosstalk in a PCM array. 

However, this has not been demonstrated experimentally yet, on a multi-bit device. So, 

the concern of thermal crosstalk still remains in the strategy of scaling by reducing the 

electrode contact area with the active material.  

The other approach towards studying scaling has been to reduce the size of the 

PCM itself 37-39. Raoux et al.,37 studied the amorphous-to-crystalline transformation of 

various PCM thin film systems upon heating, as a function of their thickness. They found 

that with the decrease of film thickness the crystallization temperatures increase, 

suggesting that amorphous phase is more stable than the crystalline phase at lower film 

thicknesses.  However, an opposite trend has been measured for GeSb nanodots, 

suggesting the role of dimensionality in phase-change. In Ge2Sb2Te5 thin films, below a 

certain film thickness (<3.6 nm) the fcc phase is no longer formed and Ge2Sb2Te5 

crystallizes in its stable hexagonal crystal structure. Below 3 nm film thickness, however, 



" 9"

no crystallization was observed. On ultra-thin Ge2Sb2Te5 samples (1-5 nm) Gotoh et al., 

40 demonstrated a minimum crystallite diameter of 10 nm, by switching an as-deposited 

amorphous film using an AFM tip. This crystalline dot however, was not even stable for 

a few minutes. Slightly larger crystalline marks (~20 nm) were stable for a few hours. 

Though using slightly thicker films (~20-24 nm), Hamann 39 and co-workers have shown 

a high recording density of  3.3Tb/inch2, the concerns about film stability in crystalline 

phase with reduced film thicknesses exist. 

As mentioned in the earlier paragraph, Raoux et al. performed scaling 

experiments on GeSb nanodots37 and have shown that the transformation temperature 

(amorphous-to-crystalline) decreases with decreasing size of the nanodots (a trend 

opposite to that of thin films). This suggests an improved stability of the crystalline phase 

at smaller sizes, with a change in the dimension of the PCM. Taking a cue from these 

results, researchers developed lateral 1D PCM 17,25 structures (phase-change lines and 

phase-change bridges) and 0D nanocrystalline phase-change memory devices and studied 

their improved performance. In their work Lankhorst et al., 25 using electron beam 

lithography have carefully structured a thin film PCM (Sb doped GeTe) into lines that 

end on both sides into bigger pads (Figure 1.4). Owing to its design, maximum 

temperature and hence phase-change will occur at the center of the phase-change line 

(active material) during switching. Lankhorst et al., 25 demonstrated the scaling properties 

by reducing both the length as well as the cross-section of the phase-change line, and 

have shown remarkably low power switching properties (<2 V threshold voltage, < 50 ns 

write pulse width, <200 A write currents) on these line devices.  µ
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Figure 1.4: Concept of a phase-change line memory device. Adapted and reprinted from 
ref 25. ©Macmillan Publishers Ltd., 2006. 

Raoux et al., 17  adapted the phase-change line design to ultrathin GeSb (<5 nm) 

PCM thin-films devices to make phase-change bridge devices. The basic concept of these 

devices was explained in an earlier section (section 1.1).  Raoux et al., 17,26 have shown 

dramatic reduction in set and reset currents upon reducing both the width as well as the 

length of phase-change bridge devices. For example, phase-change bridge devices which 

are 50 nm long, 3 nm thick and 20 nm wide show a reset current as low as 90 , 

whereas 50 nm long, 3 nm thick and 100 nm wide, shows a 0.4 mA reset currents 

(compare with thin-film PCM devices of similar thicknesses and electrode separation 

which reset at few milli amperes of current). 

  As will be discussed in chapter 6 of the current thesis, while these scaling 

strategies have led to reduction in absolute currents or power in switching, the power 

required to switch a unit volume of the material (power density) was not significantly 

improved. A well-known device degradation mechanism in PCMs is because of chemical 

segregation and severe electromigration 41-45, owing to the use of high power densities to 

µA
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carry out crystal-amorphous transformation especially via melt-quench pathway.  The 

polycrystalline nature of the PCMs synthesized using top-down processing along with the 

top-down processing compound to this problem with grain boundaries enhancing 

electromigration 46. The present author strongly believes that it is electromigration related 

device degradation issues that have precluded PCMs from getting a break in commercial 

non-volatile memory industry. "

At this juncture, the need of the hour was to find a PCM morphology that avoids 

these problems of device degradation, and combines it with the wonderful scaling 

properties of 1D PCM described thus far. Phase-change nanowires grown via bottom up 

processing are single-crystalline (lesser effects of electromigration), and also one-

dimensional, and hence have been obvious candidates to further PCMs towards 

commercial memory applications. Owing to their confined, lateral, single-crystalline, 

defect-free geometry; bottom-up grown nanowire PCMs also act as model systems for 

understanding the complex structure-property relationship in PCMs.  

1.3.1 Bottom up synthesis of various nanowire phase-change memory systems 

Vapor-liquid-solid (VLS) mechanism is a standard method of synthesizing single-

crystalline nanowires with superior electrical and optical properties47-63, first proposed by 

Wagner and Ellis in 1964 47. In VLS based growth, initially the substrate is covered with 

a metal catalyst (gold colloid for most systems) and is placed at an appropriate 

temperature zone of the furnace, in the downstream side of the carrier gas (Ar). In the 

synthesis of PCM nanowires, the precursor is typically a bulk material in powder form, 

which is heated to temperatures where it sublimates. Thus the precursor in vapor form (V 
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in VLS) is transported by the carrier gas to the substrate with catalyst (Au colloids) and at 

temperatures greater than the eutectic melting point of colloid-precursor alloy (liquid 

phase catalyst, L in VLS), the vapor phase precursor dissolves in the liquid phase 

catalyst. Super saturation of this precursor results in precipitation (nucleation) and growth 

of material into a single crystalline nanowire (solid, S, in VLS), whose diameter is 

controlled by the size of the colloid. Barring the kinetics of formation of initial nucleus 

during the single-crystalline wire growth, VLS is a well-understood process in general48-

53. 

Several researchers have reported the growth of nanowire phase-change memory 

via VLS mechanism with optimized furnace temperature, pressure and mass flow rate 54-

59, which required consideration of various thermodynamic parameters. For example, in 

the synthesis of Ge-Sb-Te nanowire alloys, consideration of phase diagrams for Au-Ge-

Sb-Te becomes important. However, no such complex phase diagrams exist, and hence 

some good estimates about optimizing growth conditions such as process temperatures 

can be obtained from the pseudobinary phase diagrams available for Au-Ge, Au-Sb, Au-

Te and GeTe-Sb2Te3 systems. Consideration of relevant phase diagrams can provide a 

reasonable starting point for synthesis of complex nanowires rather than random guessing 

of process conditions." Figure 1.5 shows a collage of several nanowire PCM systems,"

Ge15Sb85, GeTe, Sb2Te3 and Ge2Sb2Te5, fabricated via VLS 54-59 process. The as-grown 

nanowires are pure single-crystals and do not suffer from issues such as phase-

segregation, which suggests that the growth conditions in these works have been 

remarkably well optimized.   



" 13"

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Structural and chemical characterization of various bottom-up synthesized 
single-crystalline PCM nanowire systems.(A-D)Morphological and structural 
characterization of Ge2Sb2Te5 (GST) nanowires. (A) Scanning electron microscope 
(SEM) image of as-grown Ge2Sb2Te5 nanowires. (B,C) EDAX (energy dispersive x-ray 
spectroscopy) analysis showing uniform presence of Ge,Sb, and Te throughout the 
nanowire.(D) Bright field TEM image of an as-grown Ge2Sb2Te5 nanowire. Inset on the 
left-top shows an HRTEM (high resolution TEM) image showing single-crystallinity. 
Inset on the right-bottom shows a selected area diffraction (SAD) pattern also confirming 
single-crystalline growth of Ge2Sb2Te5. Reprinted (adapted) with permission from ref 60. 
©2006, American Chemical Society. (E) Chemical characterization using EDAX of 
Ge15Sb75 nanowires. Reprinted (adapted) with permission from ref 56. © 2009, American 
Chemical Society. (F) SEM image of as-grown sample of GeTe nanowires on a silicon 
substrate. (G) X-ray diffraction analysis on batch of wires shown in (F). This shows a 
clear rhombohedral distortion in GeTe, by virtue of (021) and (202) peaks splitting. (H) 
HRTEM and selected area diffraction of as-grown GeTe nanowires, showing single-
crystallinity (I) EDS analysis confirming the presence of Ge and Te in equal proportions. 
Reprinted (adapted) with permission from ref 54,55. © 2009, American Chemical Society. 

 

Metalorganic chemical vapor deposition (MOCVD) based VLS techniques were 

developed by Longo and coworkers 61-63 with the aim to achieve better controllability in 
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synthesis of phase-change nanowires. Longo et al., have also reported growth of single-

crystalline nanowire phase-change memory in meta-stable structures at room 

temperatures (e.g. GeTe in fcc phase). To be able to study scaling properties using these 

bottom-up grown nanowires, it is important to be able to control the diameter of 

nanowires during growth. Jennings et al., 54 showed diameter control in the fabrication of 

GeTe nanowires grown via VLS. Though in theory, the size of the nanowire is controlled 

just by the size of the Au colloid, often at high temperatures these colloids Ostwald ripen 

64 to form bigger colloids. This explains why Yu et al., started with a colloid size of 5-10 

nm and ended up with nanowires and nanohelices of diameter ~60-80 nm 65. Also, an 

important parameter to optimize is the growth temperature. Too low a temperature, 

results in a lot of undercooling of the vapor, and hence lot of unnecessary nucleation and 

microcrystal formation. Very high temperatures result in catalyst ripening and hence 

thicker nanowires. Low mass flow of carrier gas, and low pressure affect the nanowire 

morphology for worse (starving the nanowire from material). High mass flow rates, on 

the other hand result in very sparse nanowire formation, as the rate of precursor depletion 

from the system is greater than rate at which precursor interacts with the colloid; which 

underlines the importance of material supply at an optimal rate. This suggests a need to 

optimize the mass flow rate, the pressure and the quantity of precursor for efficient 

growth of single-crystalline nanowire phase-change memory. Taking all these factors into 

consideration and taking lessons from non-optimized growth, Jennings et al. 54 were 

successfully able to controllably synthesize GeTe nanowires of uniform diameters. The 

minimum diameter of GeTe nanowires that Jennings et al., 54 synthesized was ~20 nm. 

An open problem in this field currently is to be able to controllably grow sub-20 nm 
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phase-change nanowires via VLS. This is where understanding the initial nucleation 

kinetics in VLS process 48-53 becomes important for such a complex chemical system, 

hence making it a subject of active research, both theoretically as well as experimentally. 

Bottom-up grown nanowires also exhibit different useful morphologies. By 

controlling the temperature of the substrate, Meister et al., 66 have successfully fabricated 

GeTe and Sb2Te3 nanowires and nanohelices. Owing to the kinked nature of the 

nanohelices, phonon transport in these structures can be efficiently hindered without 

affecting the electron transport. Hence bottom-up synthesized 1D single-crystalline 

structures may also be used in the area of thermoelectrics. GeTe, GeSb, Ge-Sb-Te alloys 

and Sb2Te3 discussed so far are all p-type semiconductors. Sun and co-workers reported 

the synthesis and characterization of the first known n-type nanowire phase-change 

memory, i.e. In2Se3 single-crystalline nanowires (40-80 nm diameter)67. Lee et al., 68  

synthesized radial heterostructures comprising of Sb2Te3 core, and GeTe shell- useful for 

applications in multi-level switching. 

Lee and coworkers 69, and Jung et al., 60 demonstrated excellent switching 

capability of VLS grown phase-change (GeTe and Ge2Sb2Te5 respectively) nanowires. 

The as-synthesized single-crystalline Ge2Sb2Te5 nanowire devices fabricated by Jung et 

al., 60  show ohmic behavior (red circles in Figure 1.6A) with a low resistance. Upon 

programming these nanowires1, i.e. applying  a series of current pulses (100 ns) with 

increasing amplitude upto 0.43 mA (red circles in Figure 1.6B), the nanowire devices 

undergo switching to an amorphous state, a high resistive state as signified by the I-V 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
1"The process of application of a train of voltage/current pulses with increasing amplitude will be referred 
to as ‘programming’ for the rest of this thesis."
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curve at low bias (<1.1 V) in Figure 1.6A (blue squares). Upon increasing the applied 

bias beyond 1.1 V (Vth) in the amorphous phase, the current rises sharply owing to the 

threshold switching followed by recrystallization of the nanowire (low resistive SET 

state). This work demonstrated that the single-crystalline nanowire PCM synthesized 

through bottom up techniques undergoes reversible phase transition from amorphous 

(RESET) to crystalline (SET) state, and also show threshold switching, a unique 

character of PCM.  

Threshold switching is an electronic transition in which a high-resistance 

amorphous phase switches into a low-resistance amorphous phase upon the application of 

electric field. Associated with this transition during an I-V sweep, is a substantial 

increase in the current passing through the system, and hence increased Joule heating, 

which subsequently recrystallizes the amorphous phase, by heating it above the 

crystallization temperature. Several theories have been proposed to explain the 

mechanism of threshold switching.  Karpov et al., 70 described this process as a field-

dependent nucleation and growth of a crystalline (low resistive) filament in the 

amorphous phase. Piravano et al., 29 suggested that this phenomena is purely electronic 

and explained it as being analogous to impact ionization and sudden carrier multiplication 

in semiconductors under high fields. While, the exact mechanism is still under active 

research, experimentally it is well known that threshold switching happens just before 

amorphous-to-crystal transformation, and is precursor to crystallization.  
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Figure 1.6: Demonstration of reversible switching between crystalline and amorphous 
phase in bottom up synthesized single-crystalline Ge2Sb2Te5 nanowires; and threshold 
switching in the amorphous phase. (A) Red circles describe the current (I)-voltage (V) 
characteristics of crystalline Ge2Sb2Te5 nanowire devices. Blue squares show the 
phenomena of threshold switching from in the amorphous phase of Ge2Sb2Te5 nanowire 
devices, eventually transforming to a crystalline phase. Inset shows the SEM image of the 
Ge2Sb2Te5 nanowire device.  Reprinted by permission from ref57. ©Macmillan Publishers 
Ltd, 2007. (B) Red circles show switching of Ge2Sb2Te5 nanowire device from crystalline 
to amorphous phase of upon the application of a series of current pulses, and blue squares 
shows recrystallization of the amorphous phase. Reprinted (adapted) with permission 
from ref 60. ©2006, American Chemical Society. 

Figure 1.6B shows typical switching behavior of Ge2Sb2Te5 nanowires upon the 

application of current pulses of varying amplitude for both crystalline (SET) and 

amorphous (RESET) states. Amorphization took place with the application of a 100 ns 

current pulse above 0.43 mA.  Recrystallization, however, required longer current pulse 

of lesser amplitude compared to the amorphization pulse (300 ns, 0.25 mA). 

Significantly, the amorphization (RESET) current of 0.43 mA is much lower than the 

value (2.0 mA) currently achieved in commercial PRAM devices utilizing Ge2Sb2Te5 thin 

films 71.  

By being able to switch Ge2Sb2Te5 nanowires, Sun and co-workers reported data 

encoding (nano-barcodes) on these nanowires by localized heating through focused 
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electron beam 72. Through in situ TEM heating experiments, Sun et al., 73 reported that 

nanowire GeTe phase-change memory (40-80 nm diameter) melts and sublimates at 

much lesser temperatures (Tm=390-460oC) than its bulk counterparts However, the effect 

of ultrahigh vacuum, heating rates and e-beam damage inside the TEM, all of which 

contribute towards reduction in melting point, was not commented upon. Similar 

experiments were performed on In2Se3 nanowires and a suppression of melting point 

from 890oC to 680oC was reported on these systems too 67. However, concerns about the 

general validity of the melting points reported from heating inside the TEM remain. Yim 

et al.,74 performed independent set of in situ TEM heating experiments on GeTe , and 

they concluded that the depression in melting point happens only at the Au (catalyst)-

GeTe interface and not in the region of the nanowire where there is no Au contamination. 

Apart from the role of contamination and size of the nanowire, they have also semi-

quantitatively determined the positive role of ledge density and high indexed faces of the 

GeTe nanowires in enhancing the sublimation kinetics.  

1.3.2 Scaling and switching studies on nanowire phase-change memory  

Analogous to the contact area scaling studies in thin-film PCM devices 28, Jung 

et.al., performed scaling studies on single-crystalline VLS grown Ge2Te2Sb5 nanowires 57 

by varying the cross-sectional area (diameter) of the nanowires . They found that as the 

diameter of the nanowire keeps decreasing, the writing current required to switch the 

nanowires to an amorphous phase decreases quite drastically (in Figure 1.7A,B), compare 

0.16 mA required for a 30 nm thick nanowire vs. 1.3 mA required for a 200 nm thick 

wire), which is the same behavior reported in PCM thin-film literature 28. 
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Figure 1.7: Size dependent switching characteristics of Ge2Sb2Te5 nanowire devices. (A) 
Crystalline to amorphous programming curves of Ge2Sb2Te5 nanowires as a function of 
size. (B) Writing current (red circles, current value where crystalline-to-amorphous 
phase-change occurs) and power (blue) dependence on Ge2Sb2Te5 nanowire thickness. 
Both the parameters reduce with the nanowire thickness demonstrating scaling in 
Ge2Sb2Te5 nanowire memory devices. Reprinted and adapted with permission from ref57. 
©Macmillan Publishers Ltd, 2007 

Starting with a 1D heat equation in steady state , where k is the 

thermal conductivity of the nanowire,  is the electrical resistivity of the nanowire, J is 

the current density, and X denotes the coordinate in the length direction of the 

nanowires– with a series of simplifying assumptions, Jung and coworkers 75 argued that 

writing current I is proportional to , where is the difference between melting 

temperature and room temperature, and  are radius and length (geometric factors) of 

the nanowire respectively; hence justifying the linear dependence of writing current on 

the contact area. Writing power also has the same dependence on geometry of the 

nanowire. Hence, this equation should also mean that writing voltage (V=IR) should be 

independent of geometry, given the geometric dependence of resistance (R) itself  (

), which as we will see in chapter 3 is not. Moreover, the heat equation was 

k d
2T
dX 2 = ρJ 2

ρ

ΔT r2

l
ΔT

r l

R ~ ρl
r2
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solved in a steady state configuration by Jung and coworkers 75, and this is wrong for the 

current process where heat shocks via electrical pulses and transients become important. 

Scaling analysis performed on GeTe nanowires by Lee and co-workers 76 also 

suggested similar trends as observed in Ge2Sb2Te5 nanowires. However, when compared 

with Ge2Sb2Te5, GeTe exhibits poor switching properties. Figure 1.8A shows a 

comparison between programming curves of 100 nm thick Ge2Sb2Te5 and GeTe 

nanowire devices. Clearly, it can be seen that GeTe requires higher writing currents than 

Ge2Sb2Te5. Figure 1.8B shows that the scaling performance of Ge2Sb2Te5 is consistently 

better in comparison to GeTe. The better switching property of Ge2Sb2Te5 than GeTe is a 

well-known fact even in case of thin-film devices 77, owing to Ge2Sb2Te5 having higher 

resistivity and lower melting point than GeTe (Tm,Ge2Sb2Te5=617oC, Tm,GeTe=725oC) 13,73,78. 

All these facts perfectly fit the theory that Ge2Sb2Te5 can melt-quench with lesser power 

than GeTe. The catch, however lies in the assumption that the pathway for crystal-

amorphous transformation in nanowire phase change memory is melt-quench.  
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Figure 1.8: Comparison of size-dependent switching behavior between single-crystalline 
GeTe and Ge2Sb2Te5 nanowire devices. (A) Red open circles, and blue open circles are  
the programming curves of  100 nm thick Ge2Sb2Te5 and GeTe nanowire devices 
showing crystalline-to-amorphous transformation.  Closed circles (red and blue) show the 
programming curve for amorphous-to-crystal transformation. Observe the superior 
switching properties of Ge2Sb2Te5 nanowire devices in comparison to GeTe nanowire 
devices (B) Plot comparing the writing currents for crystal-to-amorphous transformation 
as a function of nanowire thickness between Ge2Sb2Te5 (red) and GeTe (blue) nanowire 
devices Reprinted with permission from ref 58. ©Elsevier, 2008.  

 

1.4  Crystal-amorphous transformation pathways 

1.4.1 Melt-quench pathway 

Melt-quench pathway is very commonly used to carry out crystal-amorphous 

transformation in PCMs, and involves a complete loss of information on order when a 

melt-phase with short-range order79 is initially created from a crystalline phase with long-

range order. Subsequently, during quenching some information about order is recreated, 

as amorphous phase in PCM is known to have sub-critical nuclei and hence medium-

range order80, suggesting that obtaining an amorphous phase through the melt phase is 
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inefficient. Hence it is desirable to search for subtler transformation pathways, which 

directly transform long-range ordered crystalline phase to a medium-range ordered 

amorphous phase, without involving the melt-phase. Moreover, as commented earlier, 

melt-quench pathway is not unique to PCM, and does not utilize the peculiar structural 

properties that PCMs in crystalline phase offer to carry out the crystal-amorphous 

transformation. To be able to design subtler pathways to carry out crystal-amorphous 

transformation, it is important to understand these unique structural features in PCMs. 

1.4.2 Phase-change materials: general aspects of structure in crystalline phase 

Several phase-change material systems have been developed by researchers, most 

of which contain an element from group VI (chalcogen) 81,82. GeTe, Ge2Sb2Te5, GeSbTe4, 

In2Se3, Sb2Te3, Bi2Te3, GeSeTe2, AgSbSe2, and Ag-In-Sb-Te (AIST) 83-90 form some 

examples. Doping these materials (with nitrogen, oxygen, silver) to create new alloys 

with lower melting points and better phase-change memory properties is an active field of 

research, and immensely expands the spectrum of PCMs 41,91,92. A notable exception of a 

PCM that does not contain any chalcogen (group VI element) is GeSb 17,93.  

Every known PCM exhibits at least two crystalline phases; one is a meta-stable 

cubic phase and the other one is a more stable trigonal phase. We will begin this 

discussion with GeTe system, a well-studied simple binary PCM system, but with the 

basic structural details that are quite general with respect to any other PCM.  

Ferroelectric and paraelectric phases, and the bonding scheme: The more stable 

form of GeTe exists in a rhombohedral (trigonal) structure (R3m) with  at α = 88.350
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room temperature (very slightly distorted from a rock salt structure) 94,95. As is the case 

with solids of group V and group VI elements (Te, Se, black P, As), GeTe also shows 

Peierls instability 9. Peierls instability is an electronic instability against long-range order, 

leading to a change in the pattern of bonding, viz.- creation of longer and shorter bonds 96 

both of which are covalent in nature. Rhombohedral (trigonal) distortion in GeTe occurs 

as a result of the system trying to efficiently pack these long and short bonds, and this 

leads to a net ferroelectric polarization in GeTe along the [111] direction.  Since Peierls 

distortion is a common phenomenon in all the chalcogenide-based phase-change 

materials, a phase that can effectively incorporate this distortion is the trigonal phase, 

hexagonal in case of Ge2Sb2Te5 97 and In2Se3 
90, and rhombohedral in case of GeTe, 

Sb2Te3 
89, and GeSb.  

From the work of Edwards et al. 98 it is known that the bonding in GeTe is purely 

p-type. From the electronic configurations of Ge and Te, we understand that Ge has two 

valence p-electrons and Te has four; and when put together they can form 3 covalent 

bonds as per the 8-N rule. However, structurally Ge is displaced from the center of the 

octahedron formed by Te atoms (and vice-versa); and this implies the existence of six 

bonds per every Ge atom (or Te atom) three of which are short or actual covalent bonds 

(considered for satisfaction of the 8-N rule), and three of which are long bonds– that may 

be interpreted as covalent bonds between the back-lobes of bonding p-orbitals. Creation 

of six bonds from six electrons requires some degree of bond delocalization, or as per 

Pauling 99, a ‘resonant’ character for every Ge-Te bond 100,101. Shportko et al., 

101explained the origin of high electronic polarizabilities in crystalline phase, and a huge 

difference in optical reflectivities between crystalline and amorphous phases as a 



" 24"

consequence of this resonance bonding. Effects of resonance bonding are more 

pronounced in a meta-stable cubic phase of phase-change materials, because of lesser 

distortions 102.  

The high-temperature meta-stable phases in all the PCM systems have rock salt 

like close packing, and are stabilized at higher temperatures. Chattopadhay and 

coworkers94 performed in situ neutron diffraction experiments on rhombohedral GeTe; 

upon heating they observed that near the rhombohedral-cubic (ferroelectric-paraelectric) 

phase transition at 705 K, the lattice parameter ( ) undergoes a discontinuous change 

(Figure 1.9A), and the distortion of Ge from octahedral site ( ) and the rhombohedral 

angle ( ) respectively approach 0 and 90o (Figure 1.9B,C) rapidly. Neutron diffraction 

(ND) studies however, provide average information on structure and fail to give any 

insights on the local structure and associated changes. Matsunaga and coworkers 103 

probed the local structure using XAFS (x-ray absorption fine structure) and showed that 

GeTe retains its rhombohedral distortions above 705 K (Figure 1.9D). The nature of the 

ferroelectric to paraelectric transition at 705 K is not a displacive one, as the ND studies 

suggest; but rather an order-disorder kind of transition. This means that the meta-stable 

structure looks cubic on an average, but locally at a unit cell scale, still retains its 

rhombohedral nature. This is not just true in case of GeTe, but also applies to other 

compositions of Ge-Sb-Te alloys 100.  
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Figure 1.9: In situ neutron diffraction (ND) and x-ray absorption fine structure (XAFS) 
experiements on GeTe to determine the local structure, and models showing GeTe 
structure in various phases. (A-C) is ND data of crystalline GeTe thin-films. It describes 
the transition from a rhombohedral phase to a high temperature cubic phase. At the 
transition temperature (705K), (A) shows that the lattice parameter ‘a’ changes 
discontinuously, (B) shows that  (distortion from rock salt structure) and (C) shows 
that  (deviation of the unit cell angle from 90o) decrease rapidly and continuously 
towards zero. Reprinted with permission from ref 94. © IOP Publishing, 1987. (D) Data 
obtained from XAFS measurements on GeTe, which shows local structure (at a unit-cell 
scale) in GeTe still has rhombohedral distortion, or long bonds and short bonds still exist 
beyond 705 K. Reprinted with permission from ref103. © AIP Publishing LLC, 2011. (E-
F) show the ball and stick models of rhombhohedral and cubic GeTe respectively. Red 
atoms are Ge, yellow is Te, Te atoms nearest to structural Ge vacancy are colored 
differently. Reprinted with permission from ref 98. © American Physical Society, 2006. 

 

Defects and metallicity: Another important feature in GeTe (and all the PCM) is 

the presence of unusually large concentration of intrinsic structural Ge vacancies (

Δx
Δα
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) 98,104. A very preliminary understanding of this fact is that the bonding p-

orbitals of individual atoms are at an angle of (and not ), by virtue of the 

rhombohedral distortions of atoms in the structure, resulting in energy expense of these 

orbitals that is relaxed through the creation of point defects. It has been theoretically 

demonstrated by Edwards et.al. 98  that Ge vacancies are the easiest of the defects to form 

in GeTe, and electronically these vacancies act as p-type dopants. As can be understood 

from the ball and stick models in Figure 1.9E,F, a Ge vacancy creates a deficiency of an 

s-state in the valence band (and not of any p-states), and 4 electrons; hence creating 2 

holes in the valence band. Thus the presence of large concentration of structural Ge 

vacancies render GeTe p-type metallic.  

So in summary, low-temperature stable crystalline GeTe- a model PCM, is both 

metallic owing to structural defects, and ferroelectric owing to bonding heirarachy (with 

resonance character of bonds); and this is a rare combination of properties in any 

material. Ge2Sb2Te5 is a more important PCM owing to its excellent switching properties 

and hence a more widely used PCM. However, by virtue of having three elements, the 

structure of Ge2Sb2Te5 is slightly more complicated to comprehend. Ge2Sb2Te5 consists 

of a cationic sub-lattice of Ge and Sb, and an anionic sub-lattice of Te. While we will 

describe the salient structural attributes of Ge2Sb2Te5 in detail at a later chapter, for now 

it suffices to say that basic structural details present in GeTe are also present in 

Ge2Sb2Te5 i.e. presence of a stable hexagonal (trigonal) and a meta-stable rock salt phase, 

Peierls distortion of both Ge-Te and Sb-Te bonds, p-character of bonding (as against sp3 

in wurtzite and zinc-blende structures which are not PCMs), high electronic 

1019
cm3

940 900
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polarizabilities in crystalline state explainable through resonance bonding, and presence 

of structural vacancies (at cationic sites). In fact, these are the essential qualities for a 

good PCM, and define a design guidelines for new PCMs102,105,106.  

1.4.3 Distortion-based pathway for crystal-amorphous transformation  

There were a lot of suggestions by various workers in the field to carry out 

crystal-amorphous transformation in a non melt-quench pathway. Extended x-ray 

absorption fine structure (EXAFS) studies on Ge2Sb2Te5 suggested that an umbrella-flip 

reaction of Ge in octahedral position (responsible for order in crystalline phase) to Ge in 

tetrahedral position (in amorphous phase), is responsible for crystal-to-amorphous 

transformation107. This was, however, later proved inconsistent through x-ray diffraction 

(XRD) and neutron diffraction studies performed on both crystalline and amorphous 

phases 108. Wuttig and co-workers alluded to the role of intrinsic defects in PCM in 

crystal-amorphous transformation pathways 109. A direct suggestion, however, came from 

a theoretical work of Kolobov et al., who suggested that long range order in PCMs owing 

to bonding hierarchy can be collapsed to a medium range amorphous crystal via a 

distortion based pathway. Starting from a crystalline phase in GeTe (stage (i) in Figure 

1.10A), Kolobov and coworkers110 introduced random displacements in the atomic 

positions of both Ge and Te atoms in their theoretical framework, introducing distortions 

in the crystal. They showed that beyond a critical distortion (stage iii in Figure 1.10A), 

long-range order of the initial phase collapses and the structure relaxes in an amorphous 

phase (stage iv in Figure 1.10A), thus theoretically demonstrating a subtler, distortion-

based solid-state transformation pathway from crystalline to amorphous phase (Figure 
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1.10B). They also showed that this pathway is a consequence of bonding hierarchy in 

PCMs, and does not happen in a system such as NaCl, which does not possess this 

bonding hierarchy. 

 

Figure 1.10: A) Distortion based pathway starting from a stable crystalline phase in 
GeTe (i) to a meta-stable amorphous phase (iv) proposed in ref 110 (Reprinted and 
adapted with permission from ref 110.  ©Macmillan Publishers Ltd, 2011. B) Free-energy 
landscape comparing the melt-quench pathway with the distortion based subtler pathway 
for crystal-amorphous transformation (ref. 111). 

1.4.4 Mysterious crystal-amorphous transformation pathway in nanowire phase 

change memory 

While the nanowire PCM devices show good switching behavior from a 

crystalline phase to an amorphous phase and back upon programming their crystal-

amorphous transformation pathway remained elusive, and not consistent with the 

materials kinetics picture of a melt-quench pathway. Kinetics of melt formation from a 

solid requires that the liquid phase should first form on the surface of the solid at the 

melting temperature112. Subsequent quenching in nanowire geometry would suggest that 
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amorphous and crystalline phases are electrically in parallel to each other in a lateral 

device configuration (Figure 1.11A), and this would suggest a gradual transition from 

crystalline to the amorphous phase.  However, all the works on nanowire PCM switching 

reported an abrupt transition from crystal to amorphous phase upon programming (Figure 

1.10A, for e.g.). Transmission electron microscopy (TEM) analysis post amorphization 

revealed a very thin amorphous mark cutting across the cross-section of the nanowire 

device, thus creating a crystal-amorphous-crystal geometry in series (Figure 1.11 B,C,D). 

This suggests that crystal-amorphous transformation in confined single-crystalline PCM 

nanowire systems adopts a pathway different than melt-quench, and the investigation of 

this pathway is a focus of this thesis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: (A) Schematic of the expected morphology of the nanowire if 
amorphization happens through regular melt-quench pathway. (B) TEM image of the 
Ge2Sb2Te5 nanowire device, amorphized by application of voltage pulses. The 
amorphous mark cuts across the nanowire. (C) HRTEM image of the amorphous mark 
shown in (B), showing no structure. (D) Schematic of the observed morphology post-
amorphization. Adapted from ref 113. 
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1.5 Overview of the thesis 

The earlier part (chapters 2, 3, 4, 5) of the thesis deals with the understanding of 

this mysterious pathway from structural, electronic and energetic perspectives. Chapters 2 

and 3 describe the microstructural aspects of this pathway on Ge2Sb2Te5 and GeTe 

systems respectively. In situ TEM technique was developed and utilized to understand in 

real time the microstructural changes in these nanowire systems during programming 

(application of electrical pulses).  It will be shown that this transformation pathway 

consists of creation and migration of extended defects, and hence will be referred to as a 

defect-based pathway. We also draw inferences about the role of pre-existing structural 

defects such as Ge vacancies (metallicity), and bonding hierarchy (ferroelectricity) in this 

defect-based amorphization pathway. To particularly investigate the interaction between 

the extended defects created during the pathway, and pre-existing ferroelectric domains 

in a model PCM system such as GeTe, we developed an optical second harmonic 

generation (SHG) polarimetry based technique complimenting our in situ TEM analyses. 

This technique will be described in detail in chapter 4, and atomic scale information 

about bond distortions responsible for amorphization will be inferred from changes to the 

domain polarizations during this pathway measured using SHG.  

Chapter 5 describes the electronic evolution of GeTe during this defect based 

crystal-amorphous transformation pathway. Using temperature dependent transport 

measurements, we discover electron localization effects in transport, and a metal to 

insulator transition in GeTe, prior to amorphization. We correlate these measurements to 

our in situ TEM structural characterization, to draw a structure-electronic property 
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correlation. The role of interaction between localized electrons and the lattice (phonons) 

in amorphization (collapse of long range order) will be alluded to.  

The latter part of this thesis, chapter 6, describes materials engineering 

approaches to utlilize the lessons learnt from fundamental studies on the defect-based 

pathway, and construct a power efficient switching strategies. We describe our efforts to 

pre induce extended defects in GeTe using high energy He+ ion bombardment, and 

initially prepare GeTe in electronic states where localization effects are dominant. We 

then report out studies on switching and scaling properties for the reversible 

transformation between this engineered crystalline state to amorphous phase, and discuss 

the energy efficiency in such a defect-engineering approach. This work also led to the 

discovery of multiple insulating states obtainable reversibly by finely tuning the Fermi 

level using defects. The implications of these findings in the context of low power 

computation, and neuromorphic computation will be discussed.  

Finally in chapter 7, we propose certain ideas that are an extension of the work 

presented in this thesis. We will discuss how the good switching properties in phase 

change materials such as Ge-Sb-Te alloys may be explained just from a chemical 

disordering of GeTe and electron localization framework, thus suggesting a deeper 

electronic reasoning that influences switching properties, which transcends the structural 

details of individual alloys.  We will also suggest that such defect-based strategies can be 

potentially useful in the search for better thermoelectric materials. We will discuss 

reasons as to why operating in regimes where localized electrons dominate transport 

might be good from a thermoelectric perspective.  
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2. Defect templated amorphization pathway in Ge2Sb2Te5 

nanowire phase change memory: a microstructural study 

1. This chapter is reprinted in parts from “P. Nukala & R. Agarwal. Semiconducting 

nanowires: from next generation electronics to sustainable energy (ed. Jie Xiang, Wei 

Lu) Ch. 3, 111-166 (Royal Society of Chemistry, 2014)” with permission from  Royal 

Society of Chemistry. © 2014, RSC 

2.  Most of the results are published in and are reprinted with permission from “S. W. 

Nam, H-S. Chung, Y. C. Lo, L. Qi, J. Li, A. T. C.Johnson, Y. Jung, P. Nukala, R. Agarwal, 

Electrical wind force-driven and dislocation-templated amorphization in phase-change 

nanowires. Science 336, 1561-1566, (2012)”. © 2012, AAAS.  

Ge2Sb2Te5 (GST) is a very commonly used phase change material owing to its 

better switching properties in the entire spectrum of PCMs. We observed the structural 

evolution of GST upon programming to an amorphous phase (applying electrical pulses) 

real time inside the TEM. In this chapter we describe our results of in situ TEM structural 

evolution studies on GST, and try to understand the crystal-amorphous transformation 

pathway from a microstructure evolution perspective.  

2.1 Synthesis of single-crystalline GST nanowires 

Single crystalline GST nanowires were synthesized using the metal catalyst 

mediated vapor–liquid–solid (VLS) process 1,2. Ge2Sb2Te5 ((GeTe)2(Sb2Te3)1)is a line 

compound in the pseudo-binary phase diagram of GeTe and Sb2Te3. Hence we synthesize 

the nanowires of Ge2Sb2Te5 starting with GeTe and Sb2Te3 as the precursors. Bulk GeTe 

and Sb2Te3 powders (99.99%, Sigma-Aldrich) were separately located inside a horizontal 

tube furnace in different temperature zones, with GeTe (Tm=724 oC) powder at the center 
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of the furnace and Sb2Te3 (Tm=617 oC) at the downstream side. The silicon substrate 

coated with sputtered-Au/Pd film was placed at the downstream side of the furnace (~20 

cm away from the middle). The furnace was heated to 670 °C with a carrier gas Ar flow 

rate of 130 sccm and 100 torr total pressure for an hour. After the growth, the furnace 

was slowly cooled down to room temperature. The as-grown nanowires were 

characterized by scanning electron microscopy (SEM, FEI DB strata 235 FIB) and 

transmission electron microscopy (TEM, JEOL 2010F, 200 kV) equipped with EDS 

(Energy Dispersive Spectroscopy).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: (A) Three zone tube furnace based CVD set up used for carrying out VLS 
process based nanowire synthesis. (B) SEM image of as-grown GST nanowires on the 
substrate. (C) EDX analysis confirming the growth of Ge2Sb2Te5 nanowires.  
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2.2. In situ TEM: experimental set up and device fabrication 

 We performed in situ TEM experiments with an in situ holder with electrical 

feed-throughs built by AT Charlie Johnson group at Penn, as an interface between the 

TEM and the external electronics (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: In situ TEM electrical measurement set-up to study in real time structural 
dynamics of PCMs during switching from crystalline to amorphous phase. (A) In situ 
TEM holder with electrical feed throughs on which the nanowire devices on the 
membrane platform were mounted. Au-wire was connected between the device and the 
electrical line of the holder. (B) Schematic of the configuration for the electrical 
measurement units. All electrical measurements were performed with Keithley 2602 (I-V 
analyzer), Keithley 2700 (switching box), and Keithley 3401 (pulse-generator).  (C) 
JEOL 2010F TEM where the in situ holder and the electrical measurement units are 
connected to enable in situ TEM measurements.  
 

In situ structural characterization requires fabrication of devices on electron beam 

transparent substrates, compatible with the in situ TEM holder. For this, a membrane 

consisting of just the SiNx film was lithographically patterned and etched, on an LPCVD 

(low pressure chemical vapor deposition) coated SiNx on Si substrate. Trenches were 
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created on this membrane using focused-ion beam technique, and devices were conFigure 

2.d out of the nanowires lying across these trenches, thus rendering them e-beam 

transparent. The complete details of this fabrication process are outlined in Figure 2.3, 

following which the nanowire devices were passivated with ~10 nm SiOx deposited 

using ALD.  

The capping layer passivates the phase change nanowires from oxidation of Ge, 

which is easily corrodible. Furthermore, it acts as a good heat sink preventing the 

nanowire PCM from overly heating up. 

  

 

Figure 2.3: (A) Schematic diagram illustrating multiple steps to fabricate phase change 
nanowire devices on an electron transparent membrane for simultaneous electrical and 
structural/chemical measurements. (B) Electron micrographs showing nanowire device 
capped in SiOx at different length scales. 
 
2.3. Structural details of crystalline GST 

The more stable form of Ge2Sb2Te5 is a layered compound of two units of GeTe 

and a unit of Sb2Te3 arranged in a hexagonal close packed structure 3,4 (Figure 2.4). A 



! 45!

unit cell of Ge2Sb2Te5 contains 9 layers of atoms, along the [0001] direction, starting and 

ending with a Te layer, which implies that there should be Te-Te bonds between every 

two unit-cells. This Te-Te bond is a weak van der Waals interaction, which can play a 

significant role in the microstructural evolution during amorphization. Another way of 

looking at this stable structure is to imagine an ordered layer of Ge vacancies between 

every two unit-cells. Zhang et al., found that vacancies in Ge-Sb-Te films annealed at 

higher temperatures (closer to equilibrium structure) are more ordered than vacancies in 

Ge-Sb-Te films annealed at lower temperatures 5. Generalizing these observations we can 

comment that not all the intrinsic Ge vacancies in Ge2Sb2Te5 nanowires form ordered 

layers (instead some of them exist as random intrinsic vacancies) if they are not 

synthesized at conditions close to the thermodynamic equilibrium, as is the case with 

VLS process- a kinetically controlled growth process. Hence, VLS grown single-

crystalline Ge2Sb2Te5 nanowires may be thought of as having a large concentration of 

intrinsic Ge vacancies, some of them forming ordered vacancy planes, and the others 

random.  

 

 

 
 
 
 
 
 
 
Figure 2.4: Equilibrium structure of Ge2Sb2Te5 calculated through density functional 
theory. Spacing of 3.31 Ao corresponds to van der Waals interaction between Te atoms in 
those planes.  This structure was obtained by relaxing the super-cell structure proposed 
by Sun et.al, 6 using conjugate gradient algorithm 7. Calculations were performed by 
Xiaofeng Qian and Ju Li.  
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Figure 2.5 shows the structural characterization of the as-grown Ge2Sb2Te5 

nanowires using VLS process described above used for in situ TEM analysis. Selected 

area diffraction (SAD) (Figure 2. 5(A)) patterns obtained in the [0001] (c-axis) zone, and 

HRTEM images (Figure 2. 5(B)), suggest that these nanowires are defect-free single-

crystals 8. A quick comment on the diffraction pattern is that the planes that are in the 

zone of [0001] (prismatic planes, or the planes that contain the c-axis) are the ones that 

show up on the SAD pattern, and hence structural dynamics involving only these planes 

can be observed during device operations.  The six-fold symmetry in the SAD patterns 

comes from the six-fold symmetry of the c-axis1.  

 
Figure 2.5: Structural characterization of Ge2Sb2Te5 nanowires in the pristine state. (A) 
SAD of the VLS grown Ge2Sb2Te5 nanowires confirming single crystallinity as well as 
hcp structure. (B) HRTEM image of the single crystalline nanowires. The arrow indicates 
the growth axis. (C) Schematic atomistic picture of the hcp Ge2Sb2Te5 nanowire when 
viewed through the c-axis, as is done in the TEM (atomic projection on the viewing 

plane) , . Blue arrow represents the growth direction .  

 
 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!It should be noted that the 3-fold symmetry of the [111] axis in cubic structures also shows a 6-fold 
symmetry in SAD. Fourier transforms always show inversion symmetry.!

a1 =
1
3
[2110] a2 =

1
3
[1210] [1010]
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2.4. In situ TEM microstructural studies on GST: Results 

A train of voltage pulses with increasing amplitude (programming) separated by 2 

seconds was applied on GST nanowire devices, while the structural changes were 

simultaneously recorded using dark field TEM imaging. Steady-state resistances were 

measured one second after the application of every voltage pulse using a d.c. bias of 0.02 

V. The programming curve (Figure 2.6(A)) shows an initial dip in the value of resistance 

above 5 V, and a subsequent rise of resistance towards amorphization above 6.7 V. This 

is a general feature in the programming curve observed across all the devices that were 

tested. Figure 2.6 (B-J) shows DF images of structural evolution recorded during 

programming at certain points on the programming curve (indicated in Figure 2.6 (A)). 

During the initial stages of programming, i.e. upto 5.8 V on the programming curve, 

DFTEM images show a development of dislocation line contrast (Figure 2.6 (B-E)). 

Upon increasing the voltage above 5.8 V, it can be observed that these dislocations move 

in the direction of polarity with the carrier-wind force driving them (Ge2Sb2Te5 is a p-

type semiconductor, hence carrier-wind force is hole-wind force). Beyond 6.5 V the 

dislocation mobility reduced, followed by formation of highly entangled network of 

dislocations (Figure 2.6 (G and H)). Further accumulation of dislocations in this region 

results in jamming of the dislocations, and subsequent addition of dislocations to the 

jammed region increases the resistance of the device, eventually collapsing the structure 

leading to amorphization (Figure 2.6 (I)). Hence, a huge cloud of dislocations (Figure 2.6 

(J)) precedes the amorphous mark (Figure 2.6 (I)). To confirm the polarity dependence of 

dislocation motion, the nanowire device was programmed with voltage pulses applied 

with a reversed polarity (Figure 2.6(K)).  
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Figure 2.6: Real-time structural evolution of Ge2Sb2Te5 nanowire device during its 
operation.(A to J) represents “forward-bias”, (K to T) represents “reverse-bias”, i.e. a 
reversed polarity. (A) Programming curve under forward bias. Arrows on programming 
curve are representative points where DF-TEM images are reported (from B to I). (B to I) 
Snapshots of dark-field DF-TEM images obtained from the movie during electrical 
switching: (B-E) individual dislocation formation (F-I), dislocations moving in the 
direction of the white arrow. (G,H) correspond to points where resistance dips. DF-TEM 
images show evolution of a dislocation cloud. Following the resistance dip regime, 
amorphization occurred at the dislocation-jamming region (red arrow) in (I). (J) Larger 
area DF-TEM image of the nanowire device after the amorphization. (K) Programming 
curve when polarity is reversed. (L-S) Snapshots from a movie recorded during the 
reverse-bias. The dislocation cloud behind the jamming region was first relieved (L-O); 
move towards the negative bias, and subsequently jam elsewhere (P-S). (T) Larger area 
DF-TEM image of the nanowire device after the “reverse-bias” amorphization . Scale 
bar; (B-I and L-S) 100 nm. (J and T) 500 nm.  

 

Initially, voltage pulses of pulse width 500 ns were applied to the nanowire upto 5 

V when the accumulated dislocation cloud during the previous programming event is 
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slowly relieved (Figure 2.6 (L-O)). Later on, when voltage pulses of 800 ns were applied 

the relieved dislocation cloud moved in the opposite direction– until jamming and 

amorphization take place (Figure 2.6 (P-S)). These set of experiments show the creation 

of dislocations, their propagation in the direction of hole-wind force, jamming-transition 

at a region of local in homogeneity, and eventual structural collapse- during 

programming.  

To better visualize the amorphization switching process, we sculpted a notch in a 

nanowire suspended over the trench (see Figure 2.7(A)) to be able to localize the phase-

change process at the notch. Notch is a morphological inhomogeneity at which both the 

stress and heat (from the voltage pulse) is concentrated, and hence is a very likely region 

for dislocation jam to take place. DFTEM analysis of a programmed notched nanowire 

device (Figure 2.7(A)), clearly shows a high density of dislocations predominantly on the 

positive-electrode side of the notch, reconfirming the polarity dependence of dislocation 

flow. Also important to appreciate is the fact that the notch– as intended– acted as a 

geometrical constriction, arresting the flow of the mobile dislocations and allowing for 

imaging the dislocation jam.  
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Figure 2.7: Dislocation jamming observed on Ge2Sb2Te5 notched-nanowire device. (A) 
Dislocation contrast is seen mostly on the positive polarity side of the notched-nanowire 
device. The negative polarity side is relatively clean. (B) HRTEM analysis of the formed 
dislocation.  
 
2.5. Discussion 

A good question to ask at this juncture is, why are dislocations created and what is the 

nature of these dislocations? The answer stems from the fact that every voltage pulse 

(current shock) applied to Ge2Sb2Te5 nanowire device acts as a heat-shock. Rising pulse 

of a heat shocks in materials create vacancies (point defects), and cluster them, and the 

falling pulse condenses the vacancy clusters beyond a particular size to create vacancy 

loops (or dislocations) 9, and this is analogous to the creation of Frank loops in f.c.c. 

metals. While at this point, the phenomena of vacancy condensation seems the most 

likely hypothesis for formation of dislocations, in the next chapter we show experimental 

proof of this on a much simpler GeTe system.   It is possible that owing to a potential 

barrier at the electrode-nanowire interface, most of these vacancy clusters are created 

near the electrode. However, vacancy cluster generation far from the electrode is also not 

unlikely. The vacancy loops, hence created, migrate along suitable glide planes, 

following the rules of dislocation glide in Ge2Sb2Te5. 
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G (GPa) γ (mJ/m2)

Basal Plane [2#1#10]'(a#axis'direction) 5.1 10.1

Basal Plane [10#10] (NW'growth'direction) 3.8

Prismatic Plane [0001] (c#axis'direction) 7.7 172.18

2110⎡ ⎤⎣ ⎦ 1010⎡ ⎤⎣ ⎦ [ ]0001

A B C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: Results of DFT (density functional theory) calculations for shear stress (G) 
and the maximum generalized-stacking-fault (GSF) energy (γ) for different slip-
characters in hexagonal Ge2Sb2Te5. (Red- Te, Green-Ge, Purple-Sb).  
 

Dislocation glide in a plane by displacements less than unit cell parameter causes 

a series of stacking fault configurations, most of them unstable 9. These stacking faults 

have a 2D defect energy associated with them called the generalized stacking fault energy 

(GSF). The GSF of the most (globally) unstable configuration created during a 

dislocation glide (maximum GSF energy encountered during dislocation glide) 

determines the ease of dislocation glide (maxima in Figure 2.9). Our collaborators from 

Prof Ju Li group at MIT, calculated the GSF energies for different planes in Ge2Sb2Te5 

using ab-initio calculations 10;  and their results are outlined in Figure 2. 8. For example, 

GSF on the basal plane was computed by considering five primitive unit cells along the 

[0001] axis, and displacing them along the Te-Te basal plane in  direction 

(closest packed direction on the basal plane).  

<1120 >
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Figure 2.9: GSF energies for different stacking configurations shown as a function of slip 
displacement in basal and prismatic planes.  
 

GSF energies of Ge2Sb2Te5 system in ten different configurations created by the 

slip in the basal and prismatic planes in  and c=[0001] directions respectively 

are shown in Figure 2. 9. The maximum GSF energy barrier in the basal plane is just 10 

, and this is absolutely a very small barrier for dislocation glide– comparable to 

the maximum GSF values of  bonded planes in graphene. This is understandable as 

basal slip involves breaking Te-Te bonds, which are bonded physically through weak van 

der Waals attraction. Slip on prismatic planes, on the other hand, involves breaking 

covalent bonds. Prismatic slip in Ge2Sb2Te5 has maximum GSF energy ~170 , 

comparable to that of metals (Cu ~ 170  11), where slip through dislocation motion 

is a common mode of deformation. This suggests that dislocation glide along the (1010  ) 

prismatic planes is also easy; and the reason for this also can be traced back to the layered 

structure of GST along the c-axis.  

a1 = [2110]

mJ
m2

π

mJ
m2

mJ
m2
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2.5.1. Model for crystal-to-amorphous transition in Ge2Sb2Te5 phase-change 

nanowires: electrical wind-force driven and dislocation templated amorphization  

The aforementioned results allow proposal of a following model to explain the 

polarity dependent dislocation dynamics in Ge2Sb2Te5. In describing this model, we will 

follow the nomenclature described in Figure 2.5 (C). Application of heat shocks 

condenses vacancies and creates vacancy loops. A vacancy loop may be visualized as 

being created by removing the atoms from C’D’ in Figure 2.10 (A) and sticking the 

atoms at CD to C’D’.  The burgers vector of the thus created loop is b1=-a3. This simplest 

such loop has four segments, two in the basal plane, and two in the prismatic plane.  

Another energetically similar vacancy loop can be created by removing the atoms from 

C’D’ in Figure 2.10(B) and sticking the atoms at DE to C’D’. This has four segments too, 

two in the basal plane and two in prismatic plane. The burgers vector of the thus created 

loop is b2=a1. Note that the direction of hole-wind force is b1+b2= . Upon the 

application of hole-wind force, dislocation loops with burgers vector b1 glide like a 

domino cascade as shown in Figure 2.10(C). Similarly dislocation loops with burgers 

vector b1 glide as shown in Figure 2.10(D). It has been shown through GSF calculations 

in the earlier section that the glide of dislocations in prismatic and basal planes is very 

easy. Also, it is very much possible as demonstrated in Figure 2.10 (E) that dislocations 

with burgers vector b1 and the ones with burgers vector b2 can toggle between each other 

by nucleating a shear loop with no energy cost. This suggests that on an average 

dislocations move along the growth direction or direction of hole-wind force or b1+b2=

. 

 
 

[1010]

[1010]
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Figure 2.10: Schematics illustrating dislocation-glide dynamics in Ge2Sb2Te5. (A-B) 
Illustrate condensation of vacancies to form two different kinds dislocation loops (similar 
in energy) with bergers vectors –a3 and a1 respectively. (C-D) illustrates the domino-
cascade glide of both kinds of loops. (E) shows the conversion of one loop into the other 
by nucleating a shear loop, so that the average direction of glide is the direction of hole-
wind force.  
 

These prismatic dislocation loops, which glide on an average along the direction 

of hole-wind force, sink other vacancies in the crystal, which results in them expanding. 

If in addition, intrinsic Ge vacancies are sunk by these dislocations, the nature of pre-

existing point defects will be changed (wrong bonds will be created), and this can lead to 

important consequences in the electronic structure in PCM (see chapter 5). During their 

journey when the dislocations encounter a region of local inhomogeneity (defined by a 

notch, for example) their mobility reduces. Analogous to traffic flow on a highway, the 

reduction in mobility of certain dislocations will lead to reduction in mobility of all the 
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following dislocations. This creates an entangled network of dislocations, whose 

mobilities reduce owing to the entanglement, and with the piling up of more dislocations 

in this region, eventually these dislocations jam, analogous to a 1D traffic jam situation 

12,13. Effectively, the jammed network of entangled dislocations, create a microstructural 

template that cuts through the entire cross-section of the nanowire as shown in Figure 

2.11.  

  

 
  
 
 
 
Figure 2.11: Schematic showing the formation of a dislocation template that cuts across 
the nanowire. (Figure made by Ju Li). 
 

Dislocation by itself is disorder at the length scale of a unit-cell. Transporting 

these dislocations to a local region translates to accumulating atomic disorder from all 

over the crystal at that particular region. This will disrupt the structure at a length scale of 

the entangled network of dislocations. The strength of disruption of order depends upon 

the number of dislocation cores in the jammed region. Hence as more and more 

dislocations keep accumulating at the jammed region (through more voltage pulsing), 

there will come a stage when the local structure collapses. This structural collapse may be 

interpreted as a ‘nucleation’ event for the amorphous phase. The nucleation of an 

amorphous phase through dislocation cores is a well-established phenomenon in the 

literature of mechanical milling of solids 14-17. 

We also observed that despite all this dislocation dynamics, there is no 

appreciable change in composition of the nanowires. This suggests that main contribution 
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to the extreme electromigration observed in polycrystalline materials comes from grain 

boundaries and underlines the advantage of using bottom-up processes single-crystalline 

PCM nanowire devices. These observations of voltage-pulse induced dislocation 

formation, and carrier-wind force assisted dynamics leading to jamming and 

amorphization relate for the first time, the microstructural evolution in PCM with the 

device properties. Furthermore, this work suggests that a similar mechanism could 

operate in polycrystalline PCM materials, as the grain boundaries themselves are efficient 

sinks and sources of dislocations.  

2.6. Summary and conclusions 

We have clearly shown the role of microstructural templating with dislocations 

during amorphization of Ge2Sb2Te5 nanowires; the precise mechanism of formation of an 

amorphous phase still needs to be determined. Dislocation templating may be responsible 

for amorphization in one of the following ways: 

a) Dislocations keep accumulating at the jammed region, continuously increasing the 

disorder to a stage where the local region loses its long-range order. This is a pure solid-

state transformation, meaning that amorphous phase is directly nucleated from the 

dislocation cores.  

b) The accumulation of dislocations at the jammed region could potentially lower 

the melting point of the jammed region, so that a low-amplitude voltage pulse could pre-

melt and quench the region to an amorphous phase. This still amounts to a melt-quench 

process, except that defects play a very important role in heavily suppressing the melting 

point of the PCM.  
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The former mechanism implies that defect-templated amorphization is purely a 

solid-state process; where as the latter implies that it is still a melt-quench process, but 

aided by defects. This work so far is a microstructural study of the defect-templated 

amorphization process, and remains agnostic about resolving which of these two 

mechanisms is the correct one. However, to advertise ahead of time, we do resolve this in 

chapter 5 in favor of the former mechanism through experiments involving pre-inducing 

defects into the nanowires and then switching it.  
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3. Defect templated amorphization pathway in GeTe : view 

points at different length scales 

Reproduced in part with permission from “P. Nukala, R. Agarwal, X. Qian, M-H. Jang, S. 

Dhara, K. Kumar, A. T. C. Johnson, J. Li, R. Agarwal, Direct observation of metal-

insulator transition in single-crystalline germanium telluride nanowire memory devices 

prior to amorphization. Nano Letters 14, 2201-2209, (2014).” © 2014, ACS 

To understand the defect-templated crystal-amorphous transformation beyond 

microstructure evolution, and probe the changes in bonding scheme and electronic 

structure along the pathway, it is important to work with a simple, well-understood PCM 

system. GeTe is a simple binary compound PCM, whose structural and electronic 

properties are well understood (described in section 1.4.1), and hence is the material 

system of choice for the work that follows from this chapter onwards.  

3.1 Synthesis and preliminary characterization of single-crystalline GeTe 

nanowires 

GeTe nanowires were synthesized using the metal catalyst mediated vapor–

liquid–solid (VLS) process. Bulk GeTe (Tm=724 oC) powder (99.99%, Sigma-Aldrich) 

was placed at the center of the horizontal tube furnace. Silicon substrate coated with 

evaporated Au film was placed at the downstream side of the furnace (~20 cm away from 

the middle). The furnace was ramped to 720 °C with a flow of Ar gas (15 sccm) at 

120 Torr pressure and maintained for 1 hour. After the growth, the furnace was slowly 

cooled down to room temperature. The as-grown nanowires were characterized by 

scanning electron microscopy (SEM, FEI DB strata 235 FIB), X ray diffraction (XRD, 
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Rigaku), and transmission electron microscopy (TEM, JEOL 2010F, 200 kV, JEOL 

2100) equipped with EDS (Energy Dispersive Spectroscopy). 

XRD was carried out in the θ-2θ mode on a substrate containing as-grown 

nanowires, and revealed that GeTe nanowires have rhombohedral crystal structure as 

evident from the splitting of the (111) and (022)1 peaks (Figure 3.1B). Selected area 

diffraction (SAD) using TEM revealed the single-crystalline nature of these nanowires, 

with the growth axis being <110>. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: (A) SEM image of the as grown nanowires on a silicon substrate. (B) XRD 
characterization of the wires from (A) Rhombohedral distortion is evident from splitting 
up of the (111) peak as (111) and (111) , and (022) as (022) and (022) . (C) TEM image 
of a representative single nanowire device. This image was obtained by stitching bright 
field images in different regions of the nanowire. Scale bar is 100 nm (D) Virgin state 
selected area electron diffraction pattern from the region bounded by blue lines in (C). 
The pattern has been indexed in an FCC nomenclature, with [111]  as the zone axis.  
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!We will be using nomenclature of the cubic system by considering rhombohedral structure as distorted 
f.c.c.!
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3.2 Ferroelectric domains and domain boundaries in GeTe 

We have seen in chapter 1, that the stable structure of GeTe is a rhombohedron, a 

distorted f.c.c. structure along one of its four body diagonals; resulting in a net 

polarization along that direction. The four body diagonals with the possibility of two 

polarization directions along each body diagonal (with an angle of 180o between them), 

can give rise to eight different ferroelectric domains which in general coexist in as-grown 

samples, owing to elastic energy minimization. Growth of single domain samples is 

kinetically a challenging task, and would require clever synthesis techniques1-3. Hence 

the GeTe nanowires synthesized using vapor-liquid-solid process, though are single-

crystalline; show multiple ferroelectric domains and domain boundaries between 

neighboring domains. The ferroelectric domain boundaries (FEBs) in GeTe, analogous to 

those in BiFeO3 -an important ferroelectric material- may be classified into 71o (100) or 

109o (110) or 180o  (111) FEBs depending upon the angle between the polarization 

vectors on either side of the domain boundary4. 

We also analyzed the signatures of different kinds of twin boundaries in the 

diffraction pattern when looked along different zone axes, and in particular we report the 

<111> zone axis in Figure 3.2. The {110} twin boundaries, which are in the plane of the 

zone axis show a signature in the diffraction pattern in the form of some spots splitting in 

the <110> direction perpendicular to the boundary. The magnitude of this splitting 

increases for higher order spots. In the dark field or bright field imaging, this is reflected 

as a δ fringe pattern, with individual domains showing significantly different contrast 

from each other5. The {100} boundaries show a spot splitting of certain spots in a <112> 

direction, and so do the {110} boundaries not in the zone axis. This analysis was obtained 
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by overlaying two domains with different nature of boundaries and calculating the 

diffraction pattern for the same. The inversion boundaries or the 180o boundaries on the 

other hand do not show any significant effects in diffraction.  

 

Figure 3.2: (A) Schematic of a {100} twin boundary and the polarization vectors in the 
domains that the boundary separates. The simulated diffraction pattern shows a spot 
splitting in the <112> direction when looked along the zone axis (a body diagonal). (B) 
Schematic of a {110} twin boundary, and when looked at along the zone axis which 
contains the twin plane, we observe spot splitting in the<110> direction perpendicular to 
the habit plane.  
 
 While most of our as-grown nanowires are along <110> direction and watched 

along <111> direction in the TEM, we do occasionally (for reasons not analyzed still) get 

growth along <100> direction, and these wires can be watched along <110> direction. 

Through our diffraction analysis, we observe that in all the nanowires grown along 

<110> direction, {100} type of twins are predominantly present, in those grown along 

<100> direction {110} boundaries are predominantly present (see Figure 3.3). The 

reasons for these growth trends are not investigated yet in a systematic manner.  
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Figure 3.3: (A) Representative of a nanowire grown along <110> direction. It shows 
{100} twins, since the spot splitting is in <112> direction. (B) Representative of a 
nanowire grown along <100> direction. This shows a spot splitting in <110> direction, 
and the incoherent {110} twin boundaries were imaged using high-resolution TEM.  
 
3.3  In situ TEM studies on crystal-amorphous transformation in GeTe  

Device fabrication procedure for in situ TEM analysis was similar to what was 

described in section 2.1. To enhance device stability and to protect it from exposure to 

atmosphere, a thin layer of SiOx (15 nm) was deposited conformally on the devices using 

atomic layer deposition (ALD). Here we present our analysis based on in situ TEM 

movies recorded on different GeTe devices grown along <110> during programming, in 

bright-field and dark-field imaging modes, and in Fourier space (selected area 

diffraction).  

3.3.1 In situ TEM on GeTe notched and capped devices: defect evolution 

 Figure 3.4A shows the programming curve of a GeTe nanowire device, 

programmed using 200 ns pulses from as-grown crystalline state to an amorphous phase. 

The nanowire device was notched using FIB to localize the amorphization site.  
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Figure 3.4: (A) Programming curve during crystal-amorphous transformation. (B-M) 
Snapshots of a DFTEM movie in sequence. (B-E), top panel indicated in programming 
curve show reorganization of pre-existing {100} boundaries to cause {110} domain 
boundaries. (F-I), middle panel shows migration of dislocations interacting with {110} 
domain boundaries just nucleated. The blue arrows indicate dislocations, the white 
arrows indicate the hole-wind force direction. (J-M), bottom panel shows nucleation of 
more dislocations and their migration to the notch until a final amorphization event.  
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 We recorded a movie demonstrating microstructural changes during the 

programming of this device in dark-field TEM mode, and the snapshots are presented in 

Figure 3.4 (B-M). 

The following observations can be made from the sequence of images in Figure 3.4:  

1. Upon application of electrical pulses, pre-existing {100} boundaries first 

reorganize creating {110} boundaries, which are in the zone axis, and hence are clearly 

illuminated. This is revealed from the change in diffraction pattern obtained from the 

bottom part of the wire before and after programming (Figure 3.5).  

2. We simultaneously observe some dislocation activity too, and in particular-given 

the contrast conditions, we could identify the nucleation of a few dislocations (Figure 3.4 

I , for e.g.) from the GeTe-SiOx interface which migrate in the direction of hole-wind 

force until eventually amorphization takes place (white mark in Figure 3.4M).  

 

 

 

 

 

 

 
 
 
 
 
Figure 3.5: (A) Diffraction pattern of GeTe nanowire in the virgin state obtained from 
the shaded region away from the notch. It reveals the existence of {100} domain 
boundaries to start with. (B) Diffraction pattern after pulsing suggesting reorganization of 
{100} domain boundaries to {110} domain boundaries.  
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We note that post amorphization, the contrast of the {110} twin boundaries and 

the associated domains is more well pronounced. Hence we decided to recrystallize the 

amorphous mark, and observe again the second event of crystal-amorphous 

transformation under the same imaging conditions- with a hope to get more information.  

 

Figure 3.6: Snapshots from in situ dark-field TEM movie recorded during the second 
cycle of crystal-amorphous transformation. Blue arrows indicate clear dislocation lines 
migrating in the direction of the hole-wind force. White arrows indicate interesting 
contrast changes. (A) Dislocations and {110} twin boundaries. (B) Dislocations migrate, 
reorganizing the {110} twin boundary structure. (C) More dislocations, and changes in 
contrast owing to dislocation clouds. (D) Clear loops of dislocations are observed and 
intersecting defects near the notch. (E) Intersecting boundaries at the notch (jammed 
region) changing the contrast. (F) Amorphization event.  
 

The following extra observations can be made from the snapshots gathered from 

the second crystal-amorphous transformation experiment: 

Amorphization 
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1. Clearly dislocations (line contrast) and dislocation clouds migrate from domain to 

domain and interact with the domain boundaries causing their reorganization. Domain 

boundaries themselves lose their sharp contrast upon interaction with dislocations.  

2. At later stages during programming, intersecting defects are seen near the notch, 

and this is followed by amorphization. Intersecting defects (Figure 3.6(D-F)) form the 

defect templated ‘jamming’ region along which amorphization takes place, and with 

increasing number of defects in this defect template, the contrast of the defects smears 

out. After the amorphous mark is formed, we performed diffraction in the defect-

templated region, and not surprisingly we observed large diffraction spot sizes (compare 

with the central spot, Figure 3.7), a consequence of lot of randomness, nevertheless- 

single-crystalline.  

 

 

 

 

 

 
 
 
Figure 3.7: Diffuse spots observed in diffraction pattern obtained from the region very 
close to the notch after defect-template is formed. 
 
3.2.2 In situ TEM on unnotched and capped GeTe nanowire devices: defect 

evolution 

To isolate the effects of notch created using FIB, we performed similar set of in 

situ TEM experiments on devices, which are not notched.  Figure 3.8 shows the defect 
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evolution in the initial stages of programming with 50 ns electric pulses (not 200 ns as in 

the earlier device) on one such unnotched device, recorded in bright field TEM mode.  

 

 

Figure 3.8: (A) Programming curve of a representative GeTe device on which in situ 
TEM experiment was performed. (B-E) Snapshots of a movie recorded while the device 
is being programmed, showing the nucleation of {110} domain boundaries (DB) and 
their reorganization assisted by motion of dislocations along the hole-wind force. 
 

From the electron micrographs, we observe the formation of δ fringes 

corresponding to {110} domain boundary, when the pulse amplitude exceeded 0.9V 

(Figure 3.8). These defects reorganize via dislocation migration in the direction of the 

polarity or in the direction of the carrier wind force, upon further programming, similar to 

the observations on the notched devices.   
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Figure 3.9: A) Programming curve of the device.  A1-A5 are the points in the curve after 
which dark field (DF) images along with SAD were acquired. (B) at A1, which is similar 
to the virgin state. (C) at A2, where DF image shows a {110} domain boundary contrast. 
DF images were obtained from the diffraction spot bounded by blue rectangle. SAD 
shows spot splitting (circled in white) along the growth direction. (D) at A3, DF image 
shows contrast from two intersecting set of fringers. SAD shows spots splitting along the 
growth direction (circled in white), and along another <110> direction (circled in red), 
indicating two different sets of APBs. (E) at A4, DF shows smearing of fringe contrast 
while SAD shows extra spots and spot splitting. (F) at A5, SAD shows a clear splitting of 
the spot in the first order of reflections.  
 

On another unnotched device we applied 50 ns pulses (Figure 3.9A) until a stage 

where defect jamming takes place but prior to amorphization, and this time recorded both 

the SAD as well as dark-field images at different points along the programming curve.  

!
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The programming curve shows three regimes of resistance trends with applied pulse 

voltage: the first one where device steady state resistance is almost constant (A1-A2), the 

second one where it shows an increase (A3-A4), and the third one where there is a 

discontinuous jump in resistance (A5). At point A1 (Figure 3.9B), SAD and DF image do 

not show any significant changes from the virgin state. However, at point A2 (Figure 

3.9C), DF image shows a clear {110} domain boundary contrast, while SAD shows the 

corresponding spot splitting along the growth direction. It will be shown in a later section 

that dislocation motion glide in {111}<110> slip system is easy in GeTe, and since the 

carrier wind force is in a <110> direction, they first migrate with the carrier wind.  

Domain boundaries, owing to their fault energy, reduce the mobility of dislocations that 

pass through them, and once enough dislocations accumulate in a local region of 

inhomogeneity, dislocation migration along the carrier wind force direction (growth 

direction) becomes energetically unfavorable. Instead the system then activates 

dislocation slip in other {111} slip-planes along the non-growth direction (other <110> 

directions). This glide in the non-growth direction can generate other domains, and hence 

domain boundaries, creating intersecting contrast of domain boundaries. In A3 (Figure 

3.9D), DF image shows the intersection of two sets of {110} domain boundaries as 

evidenced from intersecting fringes as well as spot splitting in two different directions in 

SAD. Compare this with Figure 3.6E, where we more likely show the intersection of a 

{110} domain boundary with {100} domain boundary. Further dislocation activity 

induces more distortions, and generates more domains, causing the intersection of more 

than 3 sets of domain boundaries in A4 (Figure 3.9E) – and this results in smearing of the 

diffraction contrast due to large disorder. Smearing of APB contrast is an effect of loss of 
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coherence of scattered electrons owing to heavy disorder6. At this stage, the diffraction 

pattern shows extra spots between first and second order of reflections, owing to a heavy 

disruption of order in the observed zone- and this is a signature of dislocations and 

stacking faults.  Further programming discontinuously increased the resistance by 3  

in a span of 3 pulses to reach A5 (Figure 3.9A). Corresponding SAD data now shows 

spot splitting in the first order of reflections (Figure 3.9F), indicating a build up of large 

disorder. Notice that a clearer observation of important features was possible using this 

device, as the pulse width (50 ns) and amplitudes were low- and so is the energy supplied 

to the system slowing down the defect dynamics.  

 

3.4 Discussion 

Microstructurally, the mechanism of amorphization in GeTe is similar to the one 

observed in GST, i.e. defect templated amorphization; and thus this pathway for crystal-

amorphous transition is quite a general one for nanowire PCM systems. Owing to the 

simple structure and composition of GeTe we can observe and characterize the complex 

interactions between dislocations and ferroelectric boundaries (FEB). Dislocation 

generation is most likely based on vacancy condensation, which we will assess in this 

section in detail, and these vacancy loops interact with the pre-existing {100} FEBs 

converting them to {110} boundaries. Hole-wind force or the transfer of momentum from 

carriers to the dislocations helps them migrate, accumulate at a region of local 

inhomogeneity creating a template of intersecting defects, along which amorphization 

takes place.  

 

KΩ
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3.4.1 Vacancy condensation 

The dislocations (or stacking faults) in GeTe are most likely created due to 

vacancy condensation during the application of electrical pulses (which act as heat 

shocks). This hypothesis can be verified indirectly, if one can measure and observe a 

decrease in vacancy concentration in the system, before and after electrical pulsing. Here 

we remind our readers that GeTe has a large concentration of intrinsic Ge vacancies 

(~1019-1020/cm3)7, and each vacancy is responsible for creation of 2 holes in the valence 

band. Hence to measure the changes in the vacancy concentration we resorted to 

measuring the changes in the hole carrier concentration before and after the formation of 

δ fringe contrast.  

Bulk plasmon resonance frequency in a p-type material is directly related to the 

bound electron density as  ω p
2 ~ Nbound  8. So an increase in the bulk plasmonic frequency 

means an increase in the bound electron density in the material system, and this by 

definition of a hole means a reduction in the hole concentration. Using electron energy 

loss spectroscopy (EELS) we compared the bulk plasmonic peak of GeTe nanowire 

devices before and after the formation of fringe contrast. The bulk plasmonic peak 

increases by 1 eV from 16.4 eV to 17.4 eV (Figure 3.10A), upon appearance of the fringe 

contrast; and this corresponds to reduction in hole concentration or Ge vacancy 

concentration by ~11%.  

The rising segment of the voltage pulse, increases the temperature of the system, 

and this collects and clusters intrinsic Ge vacancies in a {111} plane9. As per Deringer 

and coworkers9, vacancy clusters are stable up until a critical cluster size, beyond which 
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the system becomes locally unstable (at 0K). When the Ge vacancy cluster size exceeds 

the critical size, during the falling segment of the pulse (quenching), the cluster 

condenses via local collapse of two adjacent Te planes, creating a vacancy loop, and in 

this case it an anti-phase boundary (APB, Figure 3.10B)- a 2D translational fault bounded 

by partials. It must be noted that we predominantly discuss intrinsic structural Ge 

vacancy condensation because of their large concentration (~1019-1020/cm3)7 , and not the 

other random thermally generated vacancies generated through heat (whose concentration 

can be estimated as ~1017/cm3 at 650oC).  

 

Figure 3.10:  (A) Comparison between bulk plasmonic peaks of virgin GeTe devices and 
devices where APBs are formed, revealing an increase of 1 eV upon programming, and 
this corresponds to vacancy condensation. (B) Schematic explaining how vacancy 
clustering and condensation results in an APB.  
 

3.4.2 π-Fringe contrast from APBs obfuscated by {110}-boundary contrast 

 The next question is, can we identify APBs using TEM? For a nanowire 

synthesized along [1-10] direction, and viewed along [111] direction, 2D defects created 

by removing a layer of Ge atoms in {11-1} planes, not perpendicular to the zone axis, are 
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illuminated as fringes in diffraction contrast TEM (Figure 3.11A). When the Ge vacancy 

cluster size goes beyond a criticality, the Te planes adjacent to the vacancy cluster 

collapse by shifting along the hole-wind force direction, condensing the vacancy cluster. 

This creates an APB which displaces crystals on either side of the fault by a translational 

lattice vector, δr=[1-10]/4 (Figure 3.11B). The structure of APB itself can be imagined as 

a series of Te antisites.  

 

Figure 3.11: Schematic showing parallel set of (11-1) planes, with respect to the 
nanowire growth direction [1-10], which is the hole wind force direction. Red atoms are 
Ge, and yellow Te, and parallel columns of Ge and Te are not in the same plane (plane of 
the paper). The Ge plane in which vacancies will cluster upon application of heat-shocks 
is shaded in red (B) Schematic showing creation of APB via collapse of Te planes 
adjacent to the shaded plane in (A) by a shift in the hole-wind force direction by δr. This 
is viewed in the TEM along the [111] direction, to which the APB is neither parallel nor 
perpendicular.  
 

In a two beam diffraction condition, imaged with g=(20-2) and the transmitted 

beam (000), the fault creates a phase difference α= 2π(g. δr)=π in the structure factor 

between the two regions of the crystal which creates interference fringes, or π fringes10.  

APBs are translational defects and do not show an effect on the diffraction pattern. 

However, the δ fringe contrast obtained from {110} twin boundaries also shows similar 

features as π fringes, and this obfuscates our APB analysis using TEM.  
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3.4.3 APB + {100} FEB interaction 

Our first clue about formation of an APB comes indirectly from the conversion of 

{100} FEBs to {110} FEBs during the initial stages of programming. In conventional 

ferroelectric materials, which are also insulating such domain boundary reorganization 

routinely happens via the application of an electric field. GeTe, however is a metallic 

ferroelectric material, a rare combination of properties7. Owing to the large conductivity 

of GeTe (metallic in nature), the external field applied via electric pulses is screened from 

individual domains by large concentration of free carriers preventing any field-induced 

domain reorganization (see section 3.5.3 for an experimental proof that electric field does 

nothing in GeTe). So the explanation of the initial conversion of {100} FEBs to {110} 

FEBs is not straightforward.  

 

 
Figure 3.12: (A) Vector diagram illustrating domain boundaries based on polarizations 
of individual domains. This suggests that a reorganization of {100} FEB to {110} FEB 
should involve an inversion of one of the domains. (B) Schematic showing how APB 
nucleation near a domain boundary in one of the domains can ease the polarization 
reversal relaxations in the domain.   
 

From Figure 3.12 (A), we see that for a {100} FEB between two domains- say γ 

and δ, to reorganize into a {110} FEB, one of the domains (say δ) should invert its 
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polarization. A nucleation of an APB (Ge vacancy condensation) in a {111} plane close 

to the domain boundary in one of the domains can facilitate a slight reorganization of 

bonding hierarchy scheme and polarization inversion in that domain (Figure 3.12(B)). 

We dedicate the next chapter to discuss a new tool, optical second harmonic generation 

(SHG) polarimetry, we developed to verify the domain inversion hypothesis. To advertise 

ahead of time, our SHG analysis indeed shows a significant domain inversion of one of 

the domains during the initial stages of programming (upon formation of the fringe 

contrast). This is most likely a result of APB nucleation via Ge vacancy cluster 

condensation, and serves as an indirect experimental proof for the same.      

 

3.4.4 Fault migration and GSF calculations 

Prof. Ju Li’s group at MIT, performed the ab initio total energy calculations to 

estimate GSF values for dislocation slip in different planes in GeTe based on first-

principles density functional theory (DFT) using the Vienna Ab-initio Simulation 

Package (VASP) with the projector augmented wave (PAW) method 32 and a plane-wave 

basis with the kinetic energy cutoff of 227.5 eV 33. Exchange-correlation functional in the 

Perdew–Berke–Ernzerhof (PBE)34 form within the generalized-gradient approximation 

(GGA)35 was used in all DFT calculations. The low temperature rhombohedral structure 

of GeTe crystal was fully relaxed by using Γ-centered 8×8×8 Monkhorst–Pack k-point 

sampling and a convergence criteria of 5×10-7 eV/atom and the maximum residual force 

less than 0.01 eV/ Å. Using the relaxed ground-state crystal structure, we set up three slab 

models (shown in Figure 3.13) for the generalized-stacking-fault (GSF) energy 

calculations on three different slip planes, i.e.; (111), (1-1-2) , and (001). We adopted the 
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Γ-centered 5×5×1, 3×3×1, and 4×4×1 Monkhorst–Pack k-point sampling schemes for the 

slips on three different planes (111), (1-1-2) , and (001), respectively. The total energy of 

each relaxed structure was calculated again with the more accurate tetrahedron zone 

summation with the Blöchl correction.  The convergence criteria of 1×10-5 eV was used 

for both ionic and electronic relaxations. For the slip on (222) basal plane, we slid the top 

half of the supercell along both crystalline x and y direction on a 10×10 grid, and 

calculated the corresponding two-dimensional GSF energy surface, from which the GSF 

energy curves for both the direct and partial dislocation paths were obtained. For the slip 

on (002) and (-2-24) planes, the top half of the corresponding supercell is slid along its 

closed packed direction ((002) [100]/2 and (-2-24)[1-10]/2 and obtained the GSF energy 

curve.  

 
 

 
 
Figure 3.13: Schematic illustration of (A) slip on basal plane (111) , (B) (001) [100] slip, 

and (C) (1-1-2) [11-0] slip in GeTe. 
 

The GSF calculations can be used as a guide to understand APB migration with 

transfer of momentum from the carriers as a driving force for their migration. The 

migration of APBs takes place via the migration/glide of partial dislocations that bound 

the APB whose slip system is (222)[1-10]/2, analogous to the migration of dislocations 

we studied in GST in chapter 2. The 2D GSF calculations shown in Figure 3.14 suggest 
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that these partials cannot glide directly in [1-10]/2 direction (GSF= ), but 

should rather split into [1-10]/6+[10-1]/6+[1-10]/6+[0-11]/6 for an easier migration along 

[110]/2 direction (GSF=217mJ m2 , compare with GST- 172.18 mJ m2 ) .   In addition, 

the presence of ~8% Ge vacancies is expected to reduce the GSF further, which would 

enable facile movement of dislocations in the direction of carrier wind-force. 

Furthermore, calculations were also reported for dislocation motion in other slip systems 

too (Figure 3.14B), and this anisotropy can guide our expectations about switching in 

nanowires grown along <100> directions. 

 

Figure 3.14: 2D GSF plot in the (222) plane showing that dislocation migration by 
splitting up into partials (red path) is energetically more efficient than direct dislocations. 
(B) GSF plots for different slip systems, and (C) their corresponding tabulation.  
 

To summarize the above discussion, application of a heat shock through electric 

pulse creates APBs via Ge vacancy condensation. These APBs interact with the pre-

existing {100} ferroelectric boundaries, reorganizing them as {110} boundaries. The 
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partials surrounding the APBs migrate in the direction of hole-wind force interacting with 

the {110} FEBs. These partials accumulate at a local region, and interact with the FEBs 

so as to create intersecting FEBs. Hence these intersecting FEBs and dislocations form 

the structure of the defect template. Adding more dislocations to this template eventually 

‘nucleates’ the amorphous phase, cutting sharply across the nanowire.   

 

3.5 Supplementary checks, simulations and experiments: tieing the loose 

ends 

3.5.1 Quantification of heat shocks 

We performed finite element simulations to calculate the transient temperature 

profiles upon application of electrical pulse (4V) to the devices shown in Figure 3.6 and 3. 

9 (D1 and D2 respectively). We note that both these devices amorphized below 4V, and 

while the 200 ns pulses were applied on the former, 50 ns pulses were applied on the 

latter, with trailing and falling edges being 2.5 ns each. We simulated the geometry of the 

GeTe nanowires (thermal conductivity, k=0.5 W/mK; thermal diffusivity, α=5x10-3 

cm2/sec; and electrical resistivity ρ=0.4 mΩ cm) as long bars with square cross-section– 

the diameter of the nanowire being the width and height of the bar. The ends of the 

nanowire devices were considered to be the heat sinks (electrode regions), and the entire 

device was embedded in an SiOx dielectric of thickness 15 nm (k=1.6 W/mK, α=0.1 

cm2/sec). The substrate effects were not considered in these simulations, which means 

that the temperatures estimated from these simulations will be over-estimated. Primary 

heat loss mechanisms were conduction through the nanowire as well as the surrounding 

oxide into the heat sinks. Radiation effects were not considered, and given the small 
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temperature rise above room temperature- not considering these effects will over estimate 

the reported temperatures slightly. Joule heating mechanism was considered as the sole 

heat source, and thermoelectric effects that will introduce a slight asymmetry in the 

temperature profiles were ignored. It must however be noted that these effects become 

important only for high temperatures, and at the moderate increase in temperatures we 

report they are insignificant11. 

The temperature profiles at 240 ns (40 ns after the pulse is removed when 

maximum temperature is attained) in D1, and at 90 ns in D2 are shown in Figure 3.15 

A,B (insets). The maximum temperature spatially occurs at the center of the nanowire, 

and it is ~400oC in D1 and ~140oC in D2, both much below the melting temperature of 

GeTe (Tm =716oC). The temporal temperature profiles shown in Figure 3.15 suggest that 

owing to the large thermal capacity of these nanowires (large switching volume), the 

quench times are in the order of tens of microseconds, and not a few nanoseconds as is 

the case with very small volumes (for e.g. ~80 nm x 30 nm x 5nm) of thin film PCMs12, 

which also easily attain melting temperatures at such pulse voltages. These simulations 

show that defect-templated amorphization pathway can be carried out without involving 

severe changes in temperatures (low T/Tm values), and this can potentially mitigate issues 

of chemical segregation and device failure.  
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Figure 3.15: FEM simulations of transient temperature profiles upon application of a 4V 
electrical pulse with device characteristics similar to D1 (device in Figure 3.6), and D2 
(device in Figure 3.9). 200 ns pulse was applied on D1 (A), and 50 ns pulse was applied 
on D2 (B) Spatial profiles of temperature were plotted 40 ns after the pulse is removed, 
which is when the maximum temperatures are attained. Temporal profiles are shown at 
the mid point of the nanowire, which is spatially always at the highest temperature at 
every time.  
  

3.5.2 In situ TEM analyses on uncapped nanowires during application of electric 

pulses 

 Capping GeTe nanowire devices with SiOx improves the device stability, and to 

understand how this happens we performed in situ TEM studies on devices without the 

oxide capping. On all the devices we studied using in situ TEM, we were clearly able to 

see dislocation migration (Figure 3.16). Devices also show the creation of {110} FEBs; 

however, the switching instability in most devices arises because the nanowire 

morphology itself changes owing to dislocations exiting from one of the surfaces (bulge 

in Figure 3.16B), hindering them from switching to an amorphous phase- and this did not 

happen with a protective oxide coating.  

A B 
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Figure 3.16: Collage of in situ TEM bright field movie snapshots from different devices 
which are not capped. All of them show dislocation migration. Device in (A) shows the δ 
fringe contrast as routinely observed in all the capped devices, and rearrangement of 
these fringes facilitated by dislocation motion. Device in (B) demonstrates dislocations 
(cloud) leaving the surface and forming a bulge (green arrow), possibly an extreme case 
of step formation. Red arrow shows the development of δ fringes after morphological 
changes. Device in (C) clearly shows the motion of both individual dislocations and a 
dislocation cloud, but there is no evidence of δ fringe contrast.  
 

! We also studied in situ the evolution of diffraction pattern itself on certain 

devices. SAD patterns recorded from the device during programming from its virgin state 

(Figure 3.17B) show that some forbidden spots appear and disappear as a function of 

applied voltage pulses, while some spots elongate, split, and subsequently heal 

themselves (Figure 3.s 17C-F). All these changes happen in the spots corresponding to 

higher order reflections possibly indicating structural distortions at a length-scale less 

than the lattice parameter. Apart from dynamic diffraction effects which defects produce, 

appearance of forbidden spots can also be a result of perturbation in long-range structural 
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order caused by presence of dislocation cloud, and their disappearance is as a result of 

migration of these dislocations from the region of interest during the initial stages of 

programming. Spot splitting in diffraction is a characteristic of 2D defects15, i.e. stacking 

faults or APBs surrounded by partial dislocations in this case (this device did not show 

any δ fringe contrast in the real space). The migration of APBs from the region of 

observation during the initial stages of programming can explain the disappearance of 

spot splitting. 

!

Figure 3.17: (A) Programming curve for the device on which in situ Fourier space 
imaging has been performed while being programmed. (B) SAD of the virgin state of the 
device. (C to F) are SAD snapshots of a video (movie S3) recorded during programming. 
C to F are indicated on the programming curve (C). Indexed forbidden spots are shown in 
red. FCC nomenclature has been used to index spots. In this nomenclature, an allowed 
spot is a plane represented as (hkl), where h,k,l are all odd or even together (same parity). 
If they have a mixed parity, then that spot is a forbidden reflection. Split spots are circled 
in white and indexed.  
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3.5.3 Proof that field effects are screened from domains in GeTe  

 Owing to its metallic nature, when an external electric field is applied on GeTe it 

is screened by the carriers from individual ferroelectric domains. The unambiguous proof 

of this came from our in situ TEM experiment on a capped nanowire device, where we 

performed a d.c. IV sweep from 0 to 4 V, and apart from minor contrast differences in 

diffraction due to a possible rotation of the sample, nothing happened to the diffraction 

pattern until the device broke (Figure 3.18). This verifies that it is the heat shock from 

electric current that is important in creating defects, and not the electric field. #

 

Figure 3.18: Diffraction evolution showing no significant changes during an IV sweep.  

!

3.6  Conclusions 

In this chapter we showed the structural characterization of crystal-amorphous 

transformation pathway in single-crystalline nanowire GeTe PCM, primarily using in situ 

TEM techniques. The mechanism of amorphization is a defect-templated mechanism, as 

is the case with GST, but with complex interplay between domain boundaries, anti-phase 

boundaries and dislocations. We hope to have demonstrated a flavor of how peculiar 

0 V, 0 A 
3.8 V, 1.1m A Device failed 

at ~3.8V 
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features in PCM such as bonding hierarchy, and presence of intrinsic structural point 

defects (Ge vacancies) play a role in this transformation. The logical next step is to 

perform a thorough electronic property characterization during this pathway, and 

correlate them with structure. This is the content of chapter 5, but in the next chapter, 

however, we discuss our adaptation of a novel tool viz. optical second harmonic 

generation polarimetry to the case of GeTe, to derive complimentary information to TEM 

about ferroelectric domain evolution during crystal-amorphous transformation.  
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4. Determination of ferroelectric domain dynamics during 

crystal-amorphous transformation using optical second harmonic 

generation (SHG) polarimetry 

4.1 Optical second harmonics: crystal orientation sensitivity 

When electromagnetic radiation is incident upon a material, it induces a 

polarization (P), which depends on the incident field, and may be written as:            

  

 

where E is the incident electric field and χ (i ) is an ‘i+1’th order tensor, which determines 

the ‘i’th order polarization response from the material. In particular, the second order 

response is an experimentally easy to obtain response, and χ (2)  is material property that 

determines this response. . In frequency space, , and this means 

that the second harmonic signal can be probed at 2ω (double the frequency) or half the 

wavelength of incident optical wave, referred to from here on as the fundamental. χ (2)  

itself is sensitive to material symmetry, and is zero in centrosymmetric crystals1,2. In non-

centrosymmetric crystals, however, χ (2) ’s crystallography dependence can be smartly 

used to determine crystal rotations and reflections in a single-crystalline material.   

To model this phenomenon simply, we can assume the polarization response as 

coming from a non-linear electron spring. If this spring is stretched by an external force 

provided by an electric field, with damping ignored, it experiences a restoring force given 

by Fres = −kx − k (2)x2 − k (3)x3 − ...  and the associated potential energy is given as 

P(2ω ) = χ (2)E(ω ).E(ω )

 P = P0 + ε0χeE(t)+ χ (2)E(t)2 + χ (3)E(t)3 + ...
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U = 1
2
kx2 + 1

3
k (2)x3 + 1

4
k (3)x3 + ... . With x=x0ei ω t,  k(2) is the SHG tensor χ (2) , and in a 

centrosymmetric material where U(x)=U(-x), k(2)=0. However, this simple model does 

not clearly explain the real physical picture of how second harmonics is generated, and 

why the SHG signal is sensitive to material crystallography1,3.  

More physically, when a fundamental wave is incident on a material it creates 

oscillating atomic dipoles by displacing the center of the negative charge in every 

individual atom from the center of positive charge4. The forced oscillation of these 

dipoles generates linear response (and normal modes) in a material, often modeled with 

the materials refractive index. Second harmonic response is a result of a dipole-dipole 

interaction when a material is incident with high power fundamental light. As 

schematically shown in Figure 4.1A, if there is an inversion center in a material, by 

definition, the atomic arrangement about this center in symmetric. For e.g. in any f.c.c. 

material, the inversion center coincides with one of the atomic positions; and upon 

shining light and inducing dipoles, the net force on an atomic dipole (inversion center, 

shaded in green in Figure 4.1A) due to the surrounding dipoles is zero owing to their 

symmetric arrangement. In structures with no centrosymmetry (ferroelectric materials, 

for e.g.), a net force acts on every atomic dipole due to surrounding dipoles. In Figure 

4.1B, we consider the case where centrosymmetry in Figure 4.1A is broken by distorting 

the atomic dipole of interest from the inversion center. This results in a net force from 

surrounding dipoles on the atomic dipole of interest. This force between both these 

dipoles when they are in a certain configuration is exactly the same as the force between 

them when they are flipped by 180o (Figure 4.1B, force on the dipole of interest is 

indicated in red), or when forcing functions (fundamental wave) phase shifts by π. This 
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means that the material response due to dipole-dipole interaction force has a wavelength, 

which is half of the fundamental or double its frequency; and hence is a “second 

harmonic” response. Clearly, the local environment around a dipole of interest (distortion 

direction in the schematic in Figure 4.1B) determines the force on it due to the 

surrounding dipoles, and this is how the SHG response has crystal-orientation specificity.  

 
Figure 4.1: (A) 2D schematic illustrating a symmetric environment about an induced 
atomic dipole of interest (shaded in green) in materials with inversion symmetry upon 
interaction of a material with electromagnetic wave. (B) Schematic illustrating a net force 
due to dipole-dipole interaction (red line) on the dipole of interest in a material with no 
inversion symmetry. The force is the same when induced dipoles flip by 180o, which 
means that this force (and hence the response) oscillates with double the frequency of the 
fundamental and half its wavelength.   
 

4.2. SHG polarimetry on nanostructures 

Optical SHG based techniques have been well developed on different single-

crystalline ferroelectric materials in various modes of operation to derive quantitative 

domain information in these materials1,3,5.  The predominant modes of operation include 

SHG imaging where one can image individual domains using the SHG signal, and far 

field SHG polarimetry. The former cannot be used to image nanodomain structures 

owing to the diffraction limit in optical imaging. In the latter, one can infer quantitative 

domain information from the dependence of SHG signal polarization on fundamental 
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wave polarization. In this chapter, we develop an SHG based polarimetry technique on 

single-crystalline as-grown GeTe first to obtain domain fraction information, and utilize 

the same in devices during crystal-amorphous transformation.  

4.2.1 Experimental set-up 

 A home built SHG polarimetry set-up in our lab is shown in Figure 4.2. For these 

measurements, a tunable femtosecond pulsed Ti: sapphire laser (Chameleon), ranging 

from 680 nm to 1080 nm with ~140 fs pulse width and 80 MHz repetition rate, was 

controlled by a half waveplate (HWP) and focused (spot size ~2 µm) onto individual 

nanowires/nanonbelts by means of a home-built microscope equipped with a ×60, 0.7 NA 

objective (Nikon). The SHG signals were imaged by a cooled charge-coupled device 

(CCD) and measured by a spectrometer (Acton) with a 300 groove mm-1 500 nm blaze 

grating with a CCD detector  (Princeton instruments) with a spectral resolution of 0.1 nm. 

A polarizer was placed in front of the detector to analyze the anisotropic SHG (Figure 

4.2).  

 

 

 

 

 

 

 

Figure 4.2. Home-built optical SHG setup (courtesy, Dr. Mingliang Ren) showing the 
path of fundamental onto the sample inside the cryostat, and that of SHG signal from the 
sample to the detector.   
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4.2.2 SHG polarimetry results on CdS and CdTe 

My colleagues Dr. Minliang Ren and Rahul Agarwal, have adapted SHG 

polarimetry and successfully demonstrated the capability of this technique on II-VI 

nanostructures (CdS, CdTe) to provide crystallographic information, using the set-up 

shown in Figure 4.2. It must be noted that the χ (2) of these materials is well characterized 

in bulk. These structures contain tetrahedral bonding between cations and anions, as in 

the case of diamond or Si. However, Si (or diamond) possesses an inversion symmetry 

center, which is the center of a Si-Si bond, whereas a similar position in II-VI materials 

has a group II element on one side, and a group VI on the other breaking the 

centrosymmetry. Hence these II-VI materials, which are non-ferroelectric, owing to the 

loss of centrosymmetry, give an SHG signal, which was analyzed by my colleagues to 

obtain crystallography sensitive information and compared with the TEM results. Here 

are some quick excerpts and lessons from their work:  

Optical SHG on CdS nanowire system (wurtzite) reveals the nanowire 

orientation: In order to validate the SHG characterization technique for nanostructures, 

we started with the simple case of single crystalline wurtzite CdS (non-centrosymmetric) 

nanowires, which were first analyzed via TEM and later through optical SHG. For 

generality, we studied CdS nanowires with three different growth orientations: c-axis 

parallel to NW’s long-axis (c//NW, α0=0), perpendicular to NW’s long-axis (c�NW, 

α0=90°) and at an angle relative to NW’s long-axis (c�NW, 0<α0<90⁰). In all the cases 

of different growth axes, when the fundamental wave is polarized along the nanowire 

(transverse magnetic, TM) SHG is also polarized along the nanowire (TM). However, 

when the fundamental is polarized perpendicular to the nanowire (transverse electric, 
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TE), regardless of the growth axis, the SHG signal always follows the c-axis of the 

nanowire- consistent with our mathematical analysis (Figure 4.3).  

 

Figure 4.3: TEM data and SHG polarimetry results on CdS (wurtzite) nanowires. (A) 
Growth axis is along c-axis, (B) Growth axis is perpendicular to c-axis, (C) Growth axis 
at an angle to c-axis. Scale bars correspond to 100 nm. 
 

Optical SHG on CdTe nanowire system is sensitive to the type of stacking twins 

and the volume fraction of twin domains: CdTe nanostructures, in contrast to CdS 

nanostructures, are typically synthesized in a zinc-blende structure in which twin domains 

exist based on different stacking sequences along the [111] direction viz abcabc… (A 

domain) or acbacb… (B domain) 6. Depending on the chirality of the anionic tetrahedra 

centered with a cation of stacking sequence abcabc…(domain A), each domain can exist 

in A(+) or A(-) configurations, and their coexistence results in an APB along the (111) 

plane at the boundary. Twin boundaries between domains with cationic stacking 

sequences abcabc… (domain A) and acbacb… (domain B)  may be classified as upright 

if domain A(+) is obtained from domain B(+) via a rotation of 180o about [111] direction, 

and inverted if a reflection operation transforms A(+) to B(-). The !tensor for each of 

these four domains (A(+/-), B(+/-)) is different in a fixed lab frame of reference, and 

hence the contribution from different domains to the total SHG signal is different. 

and  in the lab frame can be obtained via suitable transformations from crystal 

χ (2)
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Aχ±
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frame, and it can be shown mathematically that SHG intensity as a function of SHG 

polarization angle θ and the fundamental wave polarization angle θ0, may be given as : 

 

 

where f1 and f2 are known functions, and x is a fitting parameter which depends on the 

volume fractions (Vi) of individual domains at θ0=90o (TE polarized fundamental) as  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Different response of TE-excited second harmonic generation (SHG) from 
different regions of a twinned CdTe nanobelt. (A) Bright field TEM micrograph of the 
twinned nanobelt. Dark field TEM micrograph (inset) exhibits a non-uniform domain 
pattern. Scale bar: 200 nm. (B) SAED pattern confirming the twinned structure of the 
nanobelt. (C-F) Polarization properties of TE-excited SHG signal (I2ω) from different 
excitation regions as marked in (A). 
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Figure 4.4A is a bright field TEM micrograph (inset: dark field TEM micrograph) 

of one such twinned CdTe nanobelt displaying distinct twin domains, and different 

domain fractions in different regions. Twinning is also confirmed by the SAED pattern 

with superimposed diffraction spots from the two crystallographically distinct twin 

domains (A and B) (Figure 4.4B).  The domains A and B are stacked alternatively along 

the [111] direction, forming the domain boundaries (or twin planes) perpendicular to 

[111]. In the SHG measurement, we measured the SHG signal under TE excitation (along 

the long-axis, or perpendicular to [111]) at four different points on the nanobelt, Q1, Q2, 

Q3, and Q4  (Figure 4.4C-F). We find at Q1 with x = – 0.36 and therefore 

+A(or –A) seems to dominate over +B (or –B). Similarly, at Q2 with x = 

0.92, showing that +B (or –B) dominates over +A (or –A). At Q3,  and , 

leading to the equivalent fraction of +A (or –A) and +B (or –B). In contrast,  

and  at Q4, which indicates that domain +B (or –B) dominates over 

domain –A (or +A).  From the above analysis of the SHG signal, we can conclude that 

±A and ±B exist in twinned CdTe nanobelts simultaneously but randomly, as commonly 

observed in other materials7,8.  

It is important to note that SHG polarimetry can easily distinguish the polarity of 

domains (+/-) and hence between inversion and upright twin boundaries, which 

diffraction contrast and phase contrast TEM cannot (unless analytically complicated 

convergent beam diffraction techniques are used). Hence SHG has been successfully 

developed on II-V1 nanostructures for gathering quantitative information about twin 

domains, and their polarity. With the success of these experiments serving as the 

  RA RB = 1.68

  RA RB = 0.21

0x ≈   RA RB ≈1

3.57x =

  RA RB = −0.43
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inspiration, we have decided to adapt the SHG polarimetry technique to a more 

complicated case of GeTe.  

4.3. SHG polarimetry on single-crystalline <110> synthesized GeTe 

nanowires 

4.3.1. Nomenclature: ferroelectric and stacking domains 

  As discussed in the earlier chapter (section 3.2), GeTe in rhombohedral 

phase can have 8 different ferroelectric domains based on 8 polarization <111> directions. 

GeTe nanowires are grown along <110> whose cross-section is a parallelogram 

comprising of two sets {111} planes (lets call them top, bottom; and in, out – Figure 

4.5A). Before proceeding into the methodology of SHG polarimetry on GeTe we define 

some nomenclature to address all of the individual domains that contribute to the SHG 

signal (Figure 4.5A).  The domain with the zone axis (optical viewing direction) as the 

polarization axis will be called α(+), and the polarization direction Pα(+) (zone axis, which 

is perpendicular to the {111} facet with which the nanowire contacts the surface of the 

substrate or the top/bottom facets).  α(-) will be the inversion domain of α(+) with 

polarization direction P α(-) flipped by 180o.  Similarly β(+/-) will be the inversion pair of 

domains whose polarization directions P β (+/-) are perpendicular to the in/out {111} facets. 

Domains γ(+/-) and δ(+/-) have polarization directions Pγ(+/-), Pδ(+/-) which are the other 

two <111> directions, not perpendicular to any of the nanowire facet (Figure 4.5A). 

  The story, however, does not end there. As in the case of CdTe there can 

be two stacking domains (cationic stacking of ABCABC…, and ACBACB… along the 

polarization direction) within every ferroelectric domain, which are related to each other 

by a rotation by 180o about the polarization direction (Figure 4.5B). As noted in the case 
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of CdTe, these domains have different ’s in the lab frame, and contribute to the total 

SHG signal differently. Let us refer to the ABCABC…stacking domain as domain ‘1’ 

and ACBACB…stacking domain as domain ‘2’. So all in all, the SHG signal come from 

16 different domains, viz. α(+,-/1,2), β(+,-/1,2), γ(+,-/1,2), δ(+,-/1,2).  

 
 
Figure 4.5: (A) Schematic showing nanowire growth direction, and domain 
nomenclature. (B) Schematic showing stacking twin domains with different stacking 
sequences along the polarization direction, one obtainable from the other by a rotation of 
180o about the polarization direction ([111], blue arrow).  

 

4.3.2. Methodology 

 In trying to develop an SHG polarimetry methodology in GeTe, we encountered 

the following issues upfront, to mitigate which- we had to design complex experiments: 

1. SHG signal in GeTe comes from 16 different domains, and not 4 unlike in case of 

CdTe. So to quantify the domain fractions, we need to design experiments that give as 

much information as possible about these 16 independent domain fractions.  

2. It turns out that these 16 domain fractions are not the only unknowns that need to 

be determined. The material constants in the  tensor have never been characterized 

before for GeTe.  in the Voigt notation for any material with R3m symmetry written 

with respect to the 3 fold symmetry axis as axis ‘3’ is given as: 

χ (2)

χ (2)

χ (2)

! <1-10> 

Pα(1,2/+,-) 

Pβ(1,2/+,-) 
Pγ(1,2/+,-) 

Pδ(1,2/+,-) 

A 

B 

C 

A 

C 

B 

A 
B 
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There are 4 unknown material constants in this tensor, which also add to the complexity 

of the analysis.  

3. In case of GeTe, axis 3 is the polarization direction in a domain, axis 1 is the 

<110> perpendicular to the polarization direction, and axis 2 is a <112> direction, 

selected such that this coordinate system is a right-handed system. Since is written in 

this crystal frame, different domains in the lab frame have different , and so if we 

aim to characterize in GeTe in the most straightforward manner for the first time- we 

need standard single-domain samples, and none of the research groups anywhere in the 

world has reported the synthesis of such sample. The best GeTe samples available at our 

disposal are single-crystalline nanowires, which are atleast better than the polycrystalline 

thin films for SHG purposes. 

   With all these difficulties in mind, to develop SHG polarimetry experiments on 

GeTe, it is important to first evaluate SHG contributions of individual domains, and how 

they mix to give the final signal. We first define two frames of reference: lab frame and 

the crystal frame. Lab frame is defined as shown in Figure 4.6A, where the x-axis is the 

growth axis of the nanowire (NW), z-axis is the zone axis (k of the fundamental), and the 

y-axis is defined such that x,y,z form a right handed coordinate system. In a crystal frame 

however, the polarization direction, [111], is the Z-axis, <1-10> direction perpendicular 

to the polarization direction is the X-axis, and a <11-2> direction is the Y-axis, again 

such that X,Y,Z form a right-handed coordinate system (Figure 4.6B). Note that owing to 

χ (2)

χ (2)

χ (2)

χ (2) =
0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;
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the three-fold symmetry along the [111] direction (polarization direction), there will be 3 

ways in which we can choose the X and Y axes (X=[0-11] or [10-1] or [1-10]), and this 

property will come in handy to simplify the analysis.  

Figure 4.6: Description of the lab frame of reference (A) and crystal frame of reference 
(B). 
 
   In every domain, we first transform the fundamental wave electric field vector 

from the lab frame into the crystal frame, solve for the SHG polarization vector using the 

equation in the crystal frame, and then transform this vector back 

to lab frame- and experimentally we will measure the x-component of this vector, i.e. x-

polarized SHG. In the lab frame the fundamental wave can be described in a phasor 

notation (with Φ being the fundamental wave polarization angle, with the NW long axis 

as Φ=0 ) as:  

 

 

 

P(2ω ) = χ (2)E(ω ).E(ω )

E =
E1
E2
E3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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⎡

⎣

⎢
⎢
⎢

⎤

⎦
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⎥
⎥
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1. Contribution of α domains to x-polarized SHG signal:  For α domains (α(+,-/1,2)), the 

crystallographic frame is the same as the lab frame. If we assume for α(+,1) domain 

to be 

χ (2,α (1,+ )) = d22
0 0 0 0 a −1
−1 1 0 a 0 0
b b c 0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, where a,b,c are the unknown material 

constants; then  by carrying out a rotation operation by 180o about axis 3, we obtain 

χ (2,α (2,+ )) = d22
0 0 0 0 a 1
1 −1 0 a 0 0
b b c 0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. Also for the inversion domains α(-/1,2), s 

are given as χ (2,α (1,− )) = −χ (2,α (1,+ )) and χ (2,α (2,− )) = −χ (2,α (2,+ )) . Now, by performing

for each of these α domains, we obtain 

Px (2ω ,α ) = d22 sin2φ[(Vα (1,+ ) −Vα (1,− ) )− (Vα (2,+ ) −Vα (2,− ) )] , where Vi is the volume of 

domain ‘i’. From here on for convenience we refer to (Vα (1,+ ) −Vα (1,− ) ) as α1, and 

(Vα (2,+ ) −Vα (2,− ) )  as α2, and likewise with β1,2, γ1,2 and δ1,2.  

So the contribution of α domains to x-polarized SHG signal is 

Px0 (2ω ,α ) = d22 sin2φ[α1 −α 2 ] .  

2. Contribution of β, γ and δ domains to x-polarized (0o) SHG signal: For β domains, the 

crystal axis can be obtained from the lab axis with a rotation vector, Rβ, given as  

 

 

 

 

χ (2)

χ (2)

P(2ω ) = χ (2)E(ω ).E(ω )

Rβ =

1 0 0

0 1
3

−2 2
3

0 2 2
3

1
3

⎛
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⎜
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⎟
⎟
⎟
⎟



! 100!

So P(2ω ,β ) can be calculated as Rβ
−1(χ (2,β (1,2/+,− ))RβE) by transformation of 

fundamental wave ‘E’ to the crystal frame first, evaluation of SHG signal in the crystal 

frame, and transforming it back to the lab frame. This gives 

Px0 (2ω ,β ) = d22 sin2φ 1
3(β1 − β2 )+

2 2
3 a(β1 + β2 )

⎡
⎣⎢

⎤
⎦⎥

. This is a purely sin 2Φ 

dependence. Similarly P(2ω ,γ )and P(2ω ,δ )can be evaluated where  

 

!
!

and  
!
!
!

Px0 (2ω ,γ ) = d22 sin2φ (0.24a + 0.31b − 0.31c)(γ 1 + γ 2 )− 0.22(γ 1 −γ 2 )[ ]
+d22 sin

2φ (−0.41a + 0.64b + 0.18c)(γ 1 + γ 2 )− 0.06(γ 1 −γ 2 )[ ]
+d22 cos

2φ (0.41a + 0.27b + 0.54c)(γ 1 + γ 2 )− 0.19(γ 1 −γ 2 )[ ]
 

and 
!
Px0 (2ω ,δ ) = d22 sin2φ (−0.24a − 0.31b + 0.31c)(δ1 +δ 2 )+ 0.22(δ1 −δ 2 )[ ]
+d22 sin

2φ (−0.41a + 0.64b + 0.18c)(δ1 +δ 2 )− 0.06(δ1 −δ 2 )[ ]
+d22 cos

2φ (0.41a + 0.27b + 0.54c)(δ1 +δ 2 )+ 0.19(δ1 −δ 2 )[ ]
!

Finally,! Px0 (2ω ) = Px0 (2ω ,α )+ Px0 (2ω ,β )+ Px0 (2ω ,γ )+ Px0 (2ω ,δ ) [Equation 1], 

and this! is a very messy expression with too many unknowns (domain fractions, and 

material constants), and too few equations. Note the simple contributions to the signal 

from α and β domains, and the more complicated contributions from γ and δ. 

3. Contributions of individual domains to 60o polarized (w.r.t. NW long axis) SHG signal 

Now, if we choose our lab axis, such that x, y axis are rotated by 60o in plane (x60, 

y60) and ‘z’ remains as before, we note that nothing happens to the signal from α domains 

Rγ =

1
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1
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⎟
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because of the three fold symmetry in this domain about the z-axis. However, there will 

be a cyclic permutation between β, γ and δ domains interms of contribution to the SHG 

signal, and now γ domain will have a pure sin 2Φ dependence, where as the other two 

depend on all the second order sine and cosine functions. In some sense, this polarization 

makes the γ and α domains special, compared to the other two. The following expressions 

can be written then from these permutations: 

Px−60 (2ω ,α ) = d22 sin2(φ − 60)[α1 −α 2 ]  

Px−60 (2ω ,γ ) = d22 sin2(φ − 60) 13(γ 1 −γ 2 )+
2 2

3 a(γ 1 + γ 2 )
⎡
⎣⎢

⎤
⎦⎥

 

Px−60 (2ω ,δ ) = d22 sin2(φ − 60) (0.24a + 0.31b − 0.31c)(δ1 +δ 2 )− 0.22(δ1 −δ 2 )[ ]
+d22 sin

2(φ − 60) (−0.41a + 0.64b + 0.18c)(δ1 +δ 2 )− 0.06(δ1 −δ 2 )[ ]
+d22 cos

2(φ − 60) (0.41a + 0.27b + 0.54c)(δ1 +δ 2 )− 0.19(δ1 −δ 2 )[ ]
!

Px−60 (2ω ,β ) = d22 sin2(φ − 60) (−0.24a − 0.31b + 0.31c)(β1 + β2 )+ 0.22(β1 − β2 )[ ]
+d22 sin

2(φ − 60) (−0.41a + 0.64b + 0.18c)(β1 + β2 )− 0.06(β1 − β2 )[ ]
+d22 cos

2(φ − 60) (0.41a + 0.27b + 0.54c)(β1 + β2 )+ 0.19(β1 − β2 )[ ]
!

and Px−60 (2ω ) = Px−60 (2ω ,α )+ Px−60 (2ω ,β )+ Px−60 (2ω ,γ )+ Px−60 (2ω ,δ ) [Equation 2] 
!
!

4. Contributions of individual domains to 120o polarized (w.r.t. NW long axis) SHG 

signal: Finally, for 120o SHG polarization δ will give a simple sin 2Φ contribution, 

whereas β and γ do not. α domains contributions have no effect owing to three fold 

symmetry, where as δ, β and γ’s contributions are a cyclic permutation of the previous 

case.  

Px−120 (2ω ,α ) = d22 sin2(φ −120)[α1 −α 2 ]  

Px−120 (2ω ,δ ) = d22 sin2(φ −120) 13(δ1 −δ 2 )+
2 2

3 a(δ1 +δ 2 )
⎡
⎣⎢

⎤
⎦⎥

 

!
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Px−120 (2ω ,β ) = d22 sin2(φ −120) (0.24a + 0.31b − 0.31c)(β1 + β2 )− 0.22(β1 − β2 )[ ]
+d22 sin

2(φ −120) (−0.41a + 0.64b + 0.18c)(β1 + β2 )− 0.06(β1 − β2 )[ ]
+d22 cos

2(φ −120) (0.41a + 0.27b + 0.54c)(β1 + β2 )− 0.19(β1 − β2 )[ ]
 

!
Px−120 (2ω ,γ ) = d22 sin2(φ −120) (−0.24a − 0.31b + 0.31c)(γ 1 + γ 2 )+ 0.22(γ 1 −γ 2 )[ ]
+d22 sin

2(φ −120) (−0.41a + 0.64b + 0.18c)(γ 1 + γ 2 )− 0.06(γ 1 −γ 2 )[ ]
+d22 cos

2(φ −120) (0.41a + 0.27b + 0.54c)(γ 1 + γ 2 )+ 0.19(γ 1 −γ 2 )[ ]
!

 Finally,!Px−120 (2ω ) = Px−120 (2ω ,α )+ Px−120 (2ω ,β )+ Px−120 (2ω ,γ )+ Px−120 (2ω ,δ ) [Equation 
3]!

!
!

! So the philosophy behind all this messy algebra by measuring the SHG signal 

along different <1-10> directions in the x-y plane of the lab frame is to isolate the 

contributions from the domains whose polarizations are perpendicular to the <1-10> 

direction (lets call them special domains) and the domains whose polarizations are not, 

based on their volume fractions.  α is always a special domain; β, γ or δ become the 

second special for SHG signal polarizer at 0, 60o, 120o respectively.  This determined our 

experimental procedure, and the subsequent fitting algorithm to evaluate both the 

material constants as well as the domain fractions in GeTe.  

4.3.3. Sample preparation and experimental procedure 

Since SHG is a non-linear effect, any appreciable signal will be measured only 

when the power of the fundamental wave is very large (~10s of milli Watts). This is 

detrimental for GeTe because the heat generated upon high power laser irradiation 

damages GeTe nanowires. To avoid this problem, a good heat sink is necessary, and we 

used Ag (thermal conductivity of ~400W/mK) as a heat sink. As-grown thick GeTe 

(>500 nm) nanowires were transferred onto the membrane on our in situ TEM compatible 

chips, and following the confirmation and selection of wires grown along <110> with 
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zone axis <111>, we deposited ~100 nm of Ag using e-beam evaporation (Figure 4.7). 

Nanowires need to be thick so as to avoid the effects of anisotropy in in coupling and out 

coupling of light9,10.  

 

 

 

 

 

 

Figure 4.7: Schematic of a nanowire sample with Ag coating lying on a TEM compatible 
SiN chip on which SHG experiments were performed. Light was shone in the direction 
indicated, and SHG was measured in the reflection mode.  

 

Light (1020 nm) was shone from the back side of the membrane (transparent) 

onto the nanowires coated with Ag, and intensity of SHG signal (510 nm) polarized at 0o 

(along the nanowire), 60o and 120o was measured as a function of fundamental wave 

polarization which was varied continuously from -180o to 180o with respect to the 

nanowire long axis (Figure 4.8A). These intensities are normalized with the square of 

fundamental wave powers at every polarization, and are fit to the following expression 

(Figure 4.8B): 

!!!!!!!!!!!! I(2ω ,θ ) = [Aθ cos
2(φ −θ )+ Bθ sin

2(φ −θ )+Cθ sin2(φ −θ )]
2 !%!Equation 4,  

where θ=0, 60 or 120o, and I(2ω ,θ ) = [Px−θ (2ω )]
2  evaluated from equations 1,2 and 3 in 

the previous subsection. Equation 4, yields 9 fitting parameters (Aθ=0,60,120, B θ=0,60,120, C 

θ=0,60,120), and when compared with the coefficients of cos2(ϕ-θ), sin2(ϕ-θ) and sin2(ϕ-θ) 
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in equations 1,2, and 3 these fitting parameters are bilinear equations in volume fractions 

and material constants.  

!
!

!
Figure 4.8: (A) SHG polarimetry experiment shown in perspective with TEM diffraction 
pattern. SHG signal is measured at all the <1-10> polarizations for all the domains. 
(Inset) shows the dark field SHG signal (510 nm) when fundamental at 1020nm is shone 
onto the nanowire. (B) SHG intensities (normalized) at all the three polarizations plotted 
as a function of fundamental polarization angle. Data from a virgin nanowire shown in 
(A). The solid lines show fits to equation 4. (C) Material constants evaluated from 12 
different virgin nanowires on which SHG analysis was performed. They are very 
consistent, acting as a positive check for the validity of the analysis.  
 
 Solving these bilinear equations (using MATLAB) yield material constants b/a 

and c/a, and domain volume fractions xi=1,2 =
βi

α1 −α 2

, yi=1,2 =
γ i

α1 −α 2

, zi=1,2 =
δ i

α1 −α 2

. We 
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performed this analysis on 12 different as-synthesized GeTe nanowires, and the measured 

material constants of all these nanowires (b/a, c/a) are very consistent (Figure 4.8C), and 

this is one of the checks for the validity of this technique.    

!
4.4. SHG polarimetry on GeTe nanowire devices: understanding defect 

interactions during crystal-amorphous transformations at an atomic scale 

4.4.1 Results 

  GeTe nanowire devices were fabricated on in situ TEM compatible SiN 

membrane chips on a membrane window ~300 nm thick, with a fabrication procedure 

detailed in section 2.1. The membrane was then thinned down to 50 nm using reactive ion 

etching from the backside, and a thin spacer layer of 15 nm Al2O3 (κ=40W/mK) is 

deposited on the devices using ALD (this will insulate the nanowires from the Ag heat 

sink), and preliminary TEM data was obtained in this device configuration. Once the 

devices in <110> orientation with <111> zone axis were selected, a Ag heat sink of 100 

nm was deposited on the top of these nanowires, and SHG was performed by shining 

light from below- as shown in Figure 4.7.  

  GeTe nanowire devices were programmed upto amorphization, and SHG 

polarized signals were measured in different regions of the nanowire (positions 1 and 2 in 

Figure 4.9A), and compared with the virgin state. After programming the device shown 

in Figure 4.9A, while from position 2 we obtained a very weak SHG signal with which 

none of the analysis mentioned above was possible, position 1 showed some changes 

compared to the virgin state (Figure 4.9B). Following the analysis procedure described in 

the previous section, we obtained the material constants in virgin state as b/a=0.96 and 

c/a=-1.39; and those in the programmed state at position 1 as b/a=0.89, c/a=-1.36. These 
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values are very consistent with the range of material constant values shown in Figure 4.8. 

More importantly, the values of domain fraction, however show a significant inversion of 

the δ domains (Figure 4.9C).  

 

Figure 4.9: (A) Optical micrograph images with the nanowire device seen from the back 
side of the membrane (B) SHG intensities (normalized) at all the three polarizations 
plotted as a function of fundamental polarization angle at position 1 in the virgin state 
and the programmed state of the device shown in (A). (C) Volume fractions showing a 
significant inversion of the δ2 domains with respect to the other domains.   
 

Similar observations were made on 4 more different nanowire devices, one of 

which is shown in Figure 4.10. Note the significant qualitative changes in the lobe 

structure of the SHG intensity profiles, especially for the SHG polarizer along the 

nanowire in both Figures 4.9 and 4.10 (for the other two polarizations we observe 
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changes mostly related to the intensities). The physical significance of this is not yet 

clear, though.  

 

 
Figure 4.10: SHG polarimetry intensity profiles on another nanowire at a particular 
region before and after programming. We see a significant inversion of δ2 domains with 
respect to the other domains.  
 
4.4.2 Discussion 

The weak SHG signal from position 2 in the device shown in Figure 4.9 is because of 

a large density of intersecting defects (jammed region in Figures 3.6, 3.7, 3.9 in chapter 

3), which on an average takes GeTe close to a structure with spherical symmetry (as in 

amorphous phase materials, which do not give SHG). We also remind the readers that, as 

per our TEM analysis initially {100} domain boundaries reorganize into {110} domain 

boundaries. Now we know from SHG analysis at position 1 (position which when 
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corresponded to TEM micrographs shows {110} domain boundaries, Figure 3.6-chapter 

3) that this is a consequence of significant inversion of one of the domains, i.e. δ 

domains, which illuminates {110} boundaries between γ(+) and δ(-) domains.  

 Finally, we conclude this discussion by commenting that the decrease in vacancy 

concentration observed from plasmonic spectroscopy (Figure 4.10, chapter 3), combined 

with the current SHG analysis which shows a significant domain inversion that explains 

the initial reorganization of {100} boundaries into {110} boundaries upon programming, 

lends credence to the hypothesis suggested in chapter 3 (Figure 3.12) that a vacancy 

condensed plane (APB) is triggering this reorganization. 

4.5. Supplementary checks and experiments 

 It must be noted that our SHG analysis was consistent in terms of predicting the 

material constants only when one assumes the existence of stacking domains and twin 

boundaries. The existence of these domains in GeTe is unknown, and we did not initially  

pay enough attention towards finding them using TEM prior to the SHG analysis. In 

other words, SHG polarimetry predicted the existence of these domains, and it will be 

another validity check for the analysis if we can find these twin boundaries using TEM. 

The best zone axis to observe these is however, the <110> zone axis, and not the <111> 

where this information can be confused with the fine structure in diffraction caused by 

the presence of stacking faults. We looked for these boundaries in some of the as-grown 

nanowires whose zone axis is already <110>, or by tilting them so that the zone axis 

becomes <110>. Figure 4.11 shows diffraction patterns of a representative nanowire 

where we find the spot splitting in the <111> direction corresponding to the existence of 

stacking twins and twin domains.  
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!
!
!
!
!
!
!
!
!
!
!
!

Figure 4.11: Nanowire grown along <100> with zone axis <110> clearly showing 
splitting corresponding to stacking twins.  

!
!

4.6. Summary and conclusions 

! We developed an SHG polarimetry methodology on GeTe, and for the first time 

determined some of the material constants in the third order χ(2) tensor. Using this 

analysis we showed that there is a significant domain inversion of one of the domains 

during the application of electrical pulses, which is why the {100} domain boundaries 

reorganize into {110} boundaries, as seen using TEM. Along with the proof for vacancy 

condensation, the SHG analysis lends credence to the hypothesis that APBs are formed 

during electrical pulsing of GeTe, and are responsible for the domain inversion that 

results in domain boundary reorganization. Finally, SHG analysis has predicted the 

existence of stacking twin domains in GeTe, which we confirmed using electron 

diffraction on as-grown wires with <110> as the zone axis.  

 

 

<111> 
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5. Metal-insulator transition in GeTe nanowire phase change 

memory during crystal-amorphous transformation pathway, prior 

to amorphization 

 Reproduced in part with permission from “P. Nukala, R. Agarwal, X. Qian, M-H. 

Jang, S. Dhara, K. Kumar, A. T. C. Johnson, J. Li, R. Agarwal, Direct observation of 

metal-insulator transition in single-crystalline germanium telluride nanowire memory 

devices prior to amorphization. Nano Letters 14, 2201-2209, (2014).” © 2014, ACS 

 Thus far in this thesis, we understood the defect templated crystal-amorphous 

transformation from a structural evolution perspective. We showed that various types of 

defects are created through heat shocks, they migrate driven by carrier wind-force, and 

accumulate at a region of local inhomogeneity until amorphization takes place eventually. 

So a natural question that arises then is, how does all this defect dynamics affect the 

electronic properties of PCM, GeTe - in particular? In other words how does the band-

structure evolve during the crystal-amorphous transformation pathway?  

5.1 Electronic properties of GeTe 

 Crystalline GeTe in both cubic as well as rhombohedral phases is p-type metallic 

owing to the presence of large concentration of intrinsic Ge vacancies, which act as p-

type dopants1,2.  From a band-structure point of view, it is estimated theoretically1,2 that 

the Fermi level (Ef) is 0.1-0.5 eV inside the valence band. The amorphous phase of GeTe, 

however, behaves as an intrinsic semiconductor with the Fermi level (Ef) pinned to the 

middle of the band gap (mobility gap) 3. It will be interesting to look at the evolution of 

the Fermi level during the crystal-amorphous transformation pathway.  
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5.2 Temperature dependence of resistance behavior as a mesoscopic probe for 

understanding electron transport 

 Based on the electronic properties, all materials may be classified as metals and 

insulators- with metals being defined as materials with finite resistance at 0K, and 

insulators being defined as materials with infinite resistance at 0K. In metals, carriers 

near Ef participate in conduction, with a slight external voltage sufficient to excite these 

carriers to available states just above Ef  and start drifting. The resistance to the electron 

flow comes either from phonon scattering or defect scattering. At sufficiently high 

temperatures (>~50K in GeTe) the resistance of metallic materials increases linearly with 

increase in temperature, and at lower temperatures it saturates. This is because the 

electron mean free path ( ) is determined by electron-phonon scattering at higher 

temperatures (linear regime) and decreases with more scattering events (increasing 

temperature) increasing the resistance of the material; and it is determined by defect 

scattering at lower temperatures (saturation regime), which is temperature independent.  

 On the other hand, all insulators can show different modes of conduction, viz. carrier 

excitation across different bands followed by conduction, carrier conduction through 

traps, trap-band excitation etc. All these mechanisms are arrested at 0K, suggesting the 

need for thermal activation of carriers for participating in conduction, owing to which all 

the insulators show a decreasing resistance with increasing temperature.  The exact nature 

of carrier conduction, however, can be determined only after understanding the exact 

dependence of resistance on temperature.  

l
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 Thus the mesoscopic temperature-resistance measurements are very important to 

understand the nature of electron transport in a material, and perhaps also infer finer 

details about the structure.  

5.3 Device fabrication and results 

 For temperature-resistance measurements, we require clean contacts without any 

damage. Hence we used e-beam lithography based process, and not FIB which damages 

the contacts. GeTe nanowires were dry transferred onto an insulating thermal oxide 

coated silicon substrate with pre-defined markers. Contacts to the nanowire were defined 

by electron-beam lithography (Ellionix, ELS-7500) and metallized by evaporating Ti-Au 

(10 nm-120 nm). A thin protective oxide of SiOx (15nm) was deposited using atomic 

layer deposition to cap the nanowires. These devices were tested using Lakeshore TTPX 

cryogenic probe station. Electrical measurements were performed with Keithley 2602 (I-

V analyzer/ Source meter), Keithley 2700 (Data acquisition, DAQ), and Keithley 3401 

(pulse-generator). 

 The temperature-dependent resistance data (Figure 5.1A, blue curve) of a virgin (un-

programmed) GeTe nanowire device (Figure 5.1B, inset) displays a positive temperature 

coefficient of resistance (TCR, slope of temperature-resistance plot at higher 

temepratures), i.e. the resistance decreases linearly with decreasing temperature until ~50 

K, and then approaches a saturation value (Figure 5.1A, inset) as the temperature 

approaches absolute zero. This is characteristic of metallic behavior, as is expected for 

crystalline GeTe 4. However, after programming the nanowire (amplitude range; 0.1 to 

1.8 V, 50 ns pulses) (Figure 5.1B), concomitant with a stage where the device steady 

state resistance shows a drastic increase with applied pulse voltage, the TCR of the same 
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device now becomes negative (Figure 5.1A, red squares), which demonstrates a change 

in the metallic nature of conduction.  

 We noted in chapter 3 that in the programming curve the steady state resistance of 

the device is constant during the initial stages of defect migration. But when the defect 

intersection and accumulation starts to happen there is drastic increase in device 

resistance with applied voltage pulses. The change in slope of temperature-resistance plot 

happens at this stage too, providing a clue that this change in metallic nature of 

conduction may be because of defect accumulation, and build up of lot of disorder in a 

local region.  

 

Figure 5.1: A) Plot of temperature vs. resistance (T-R) of the nanowire in both virgin 
state (blue circles) and programmed state (red squares) from 5-240 K, clearly indicating a 
change in slope of the TCR upon programming. (Inset) zoomed in virgin state’s T-R plot 
clearly indicating positive TCR and saturating resistance as temperature approaches 0 K, 
or metallic behavior. (B) The programming curve for the device whose T-R 
characteristics are shown in (A). (Inset) SEM micrograph of the device. Scale bar, 1 . 
 

 If the change in TCR, and hence the metallic nature of GeTe were due to defect 

accumulation in a local region, then these changes in electronic properties should result 

µm

A!
B!
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from that local region in the nanowire, and the rest of the nanowire should remain 

metallic as in the virgin state. Remember that in the our measurements reported thus far, 

the defect-intersection region is electrically in series with the rest of the nanowire; and 

hence if we can design multiple electrodes on the nanowire and segment it into several 

devices, we can confine this local region to just one segment of the nanowire. Figure 

5.2A shows one such multi-electrode device with two segments, which was programmed 

between the extreme electrodes (programming curve in Figure 5.2A). Temperature-

dependent resistance measurements of individual segments were obtained at 

representative points labeled P1, P2, and P3 in Figure 5.3A. After reaching P1, the TCR 

of the device was measured, and then the device was reprogrammed (between extreme 

electrodes) starting at ~1.6 V, (this process was repeated after P2). As can be seen in 

Figure 5.2A, the increase in resistance of the entire wire becomes drastic from P1, which 

necessitated the pull back and careful control of the pulse amplitude in order to avoid 

amorphization of the device. It was observed that almost all the increase in the resistance 

values observed in the programming curve came from segment I, and not II (see 

individual resistances at P4-P6 in Figure 5.2A). Similarly, temperature dependence of 

resistance of segment II (Figure 5.2C) at P1, P2 and P3 essentially remains the same, 

clearly demonstrating that programming did not affect this segment electronically. 

However, TCR of segment I (Figure 5.2B) reduced from 0.43  in virgin state to 0.24

 upon programming up to P1, and to 0.15 at P2. After P2, the resistance of 

segment I increased discontinuously by an order of magnitude (from 800  to 9 ) 

within a span of just two voltage pulses (~1.8V) to reach P3, which is achievable only 

through controlled voltage pulsing to avoid amorphization. At P3, the resistance of 

Ω
K

Ω
K

Ω
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segment I displays strong temperature dependence and decreases non-linearly with 

temperature. The exact conduction characteristics at P2 and P3 of segment 1 in the next 

section.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: (A) Programming curve of the device, which is carried out between the 
extreme electrodes (Inset) SEM micrograph of the device, showing the two segments, I 
and II. Scale bar, 2 . T-R measurements were conducted on each individual segment 
at P1, P2 and P3 points. In segment II, apart from a very little initial increase in the 
steady state resistance, it remains unaffected by programming (B) T-R plots of segment I 
in its virgin state (black dots) after programming up to P1, P2, P3 (red squares, green 
diamonds, blue triangles respectively). All significant changes in resistance of the total 
wire come from this segment. (C) T-R plots of segment II in its virgin state (black dots) 
and after programming up to P1, P2, P3 (red squares, green diamonds, blue triangles 
respectively). TCR of segment II is also unaffected by programming across extreme 
electrodes.  
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 Similar data are obtained from other devices, which demonstrates that electronic 

changes occur locally in the nanowire, and this is intimately linked to the defects 

accumulating in a local region in the nanowires above a certain voltage threshold during 

the programming 5. 

5.4. Discussion and analysis 

 To characterize the electronic states of GeTe as it undergoes programming (prior to 

amorphization), temperature-dependent resistance data acquired from segment I ( 2µm  

long) of the device shown in Figure 5.3A at P2 and P3 were further analyzed. The 

resistance of the local disordered region contributing to the change in TCR of the 

programmed device at each temperature was estimated by subtracting the metallic phase 

resistance (a very small component) from the total resistance. At P2 (corrected resistance 

of the local region is shown in Figure 5.3A), three distinct regimes can be identified: at 

temperatures >50 K, resistance decreases linearly with increasing temperature, saturates 

in the 10-50 K region, and shows a rapid increase for temperatures <10 K. Similar 

behavior is also observed in a short (1 µm ) programmed device shown in Figure 5.1B 

even without correcting for the resistance of the disordered region, owing to the relatively 

large contribution of resistance from the local disordered region (~200-300 nm) to the 

total resistance.  The three regimes, linear, saturation and rapid increase marked in Figure 

5.3A are consistent with the characteristics of a ‘dirty metal’6-10, which refers to a 

disordered metal, displaying the effects of incipient (weak) localization7-10. Weak 

localization is a quantum-mechanical effect, where the electrons form standing waves by 

constructively interfering between two time reversed trajectories after undergoing 

multiple scattering by defects, the amplitude of which increases with defect density7,9, 
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thereby giving rise to residual resistivity, (saturation regime). The saturation regime 

(Figure 5.3A) at low temperatures (10-50 K) is observed because temperature does not 

have much effect on quantum interference as long as the carrier mean free path ( ) due 

to phonon scattering is greater than the phase correlation length ( )8. Increasing the 

temperature reduces , and at higher temperatures when , carrier scattering by 

phonons reduces the effect of weak localization7-10 resulting in decreased resistance, 

which explains the linear regime in Figure 5.3A, and the negative TCR associated with it.   

     However, below 7 K (Figure 5.3A) there appears to be a divergence in the 

resistance; but given the small magnitude of resistance increase, we believe it may not be 

an actual divergence as expected from an insulating state3. Anomalies in the behavior of 

dirty metals at very low temperatures can be explained by considering possible electron-

electron correlation effects7,11, which have also been recently demonstrated in PCM12. 

Therefore, GeTe until state P2 is in the ‘dirty metal’ limit, which is very close to the 

metal-insulator transition (MIT), but is still metallic.  

 What remains to be seen is if further addition of disorder to GeTe in a dirty metal 

state can lead to an insulating state, i.e.; disorder-induced electronic localization3,13 of 

states close to the mobility edge,   3, i.e.; Anderson’s localization. A material is an 

insulator with thermally activated conduction if  is located in these localized states 

and a metal if the is in the extended states (Figure 5.3C). There will be a metal-

insulator transition (MIT) if the sign of  changes3. However, the sign of 

for GeTe in the ‘dirty metal’ limit (P2 in Figure 5.2A) remains negative ( inside the 

valence band) and it is still metallic6. 
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 Following P2 (Figure 5.2A), a couple of pulses at ~1.8 V increased the resistance of 

the device by an order of magnitude (800 -9 K ), to state P3, which showed a 

stronger (as compared to P2) and non-linear dependence of resistance on temperature 

(Figure 5.2B). Figure 5.3B shows the temperature vs. corrected resistance characteristics 

of the state P3, with a conduction mechanism that fits the variable range hopping 

(VRH14) model ( , where is the material conductivity) from 100-340 K. 

VRH describes conduction of electrons via quantum-mechanical tunneling between the 

localized states, which means that has effectively crossed  and moved into the 

localized states, corresponding to a metal to insulator transition (MIT). It is worth 

mentioning here that the insulating phase is electronically and structurally different from 

the amorphous phase of GeTe. Amorphous GeTe also displays VRH conduction at low 

temperatures (<200 K) 15, but changes to Poole-Frenkel mechanism ( )15,16 

above 200 K, with activation energy for conduction being equal to half the band gap 

energy. This is indicative of being pinned in the mid-gap, a typical characteristic of 

chalcogenide glasses3. The insulating phase demonstrated here shows VRH conduction 

up to higher temperatures (340 K) and no Arrhenius conduction behavior, indicating that 

 is still close to the valence band-edge (though above the mobility edge). Structurally, 

the insulating phase is a single-crystalline phase with long-range order as evidenced by 

diffraction, and not amorphous (chapter 3, Figure 3.7). Upon annealing, this insulating 

(Anderson localized) phase is not stable beyond 70oC  (Figure 5.3B), while the 

amorphous phase in GeTe is stable in a much larger temperature window (~230 °C)4,17.  
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Figure 5.3: (A) Temperature vs. corrected resistance of the disordered region (at P2 from 
segment I, Figure 5.2A) showing characteristics of a dirty metal. (B) Temperature vs. 
corrected resistance corresponding to the disordered region (at P3 from segment I, Figure 
5.2A. The TCR (red circles and inset) shows the formation of an insulating phase due to 
the variable range hopping (VRH) mechanism of conduction, indicating a metal-insulator 
transition (MIT). The orange arrow indicates heating cycle. The insulating phase 
transforms to a metallic phase upon annealing above 340 K. The blue arrow indicates 
cooling cycle, (C) Schematic of the disorder induced metal to dirty metal to insulator 
transition. Addition of APBs adds localized states (orange) close to the band edge and 
also moves  closer to . Weak localization effects take place when approaches 

 but is still on the extended side (blue region) (dirty metal state represented in (A)). 
When goes past into the localized states, MIT takes place, and VRH conduction 
mechanism is observed (state represented in (B)). 
 
 The model described in Figure 5.3C, explains the observations of conduction 

mechanisms at different regimes of disorder, making one-to-one correspondence between 

structural changes and electronic changes. Virgin state in GeTe shows p-type metallicity, 

with . Upon application of voltage pulses, dislocations and APBs formed due 
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to vacancy condensation migrate along the carrier wind force direction and eventually 

jam at a particular region in the nanowire. As a result, the disorder in GeTe keeps piling 

up at this local region in the form of Te antisites. Antisites introduce localized electronic 

states near the band (mobility) edge and moves Ef  towards these states1. Initially 

antisites are ordered as APBs, and this corresponds to a regime on the programming 

curve where resistance gradually increases with voltage. With controlled programming, 

Te antisites become disordered as different sets of boundaries (APBs, dislocation and 

FEBs) intersect (P2 in Figure 5.2A), and this corresponds to the region in the 

programming curve that shows a rapid increase in resistance with voltage. Electronically, 

this is a ‘dirty metal’ where the single-crystalline metallic nanowire shows effects of 

weak localization; nevertheless, is still metallic (  remains negative). GeTe keeps 

getting ‘dirtier’ with addition of more disorder in a controlled fashion, until it approaches 

the Anderson’s limit. Further controlled programming takes the system to an insulating 

phase (MIT) characterized in the programming curve by a discontinuous increase in 

resistance by an order of magnitude (P3 in Figure 5.2A), with Ef  now in the energy 

region of localized states ( ) and this phase exhibits VRH conduction, a 

signature of conduction in localized states. Structurally, this phase is still single-

crystalline but perturbed by heavy local disorder.  

5.5. Supplementary results 

 Notice that we could observe the insulating state only upon precisely monitoring and 

adjusting the pulse voltage (at 50 ns), the procedure that we have been calling “controlled 

programming”. By controlled programming with 50 ns voltage pulses, we were able to 

add defects to the defect templated region in a controllable fashion, which allowed us to 

Ef − Em

Ef − Em > 0
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access the electronic metastable states that exist in the crystal-amorphous transformation 

pathway. If “controlled programming” is not performed, the long-range crystalline order 

collapses into a stabler amorphous phase (compared to the insulating phase) abruptly 

without forming the intermediate Fermi glass or the insulating state as shown for a device 

in Figure 5.4.  

  

! !
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Figure 5.4: Abrupt amorphization observed, without accessing the intermediate 
insulating/Fermi glass state upon not controlling the pulse amplitude to controllably add 
defects into the defect templated region.  
 
 It is important to mention here that upon programming, weak localization behavior 

was observed on all the 25 devices we tested, whereas through careful programming we 

were successfully able to convert 70% of the devices into insulating phase (as indicated 

by the discontinuous resistance change in the programming curve) without amorphizing 

them. The temperature-resistance behavior of another representative device, which 

underwent transition from metal to dirty metal to insulating states is shown in Figure 5.5.  
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Figure 5.5: Another representative device’s temperature-resistance characteristics when 
transformed from metal to dirty metal to an insulating state, all prior to amorphization. 
 

5.6. Summary and Conclusions 

 In this chapter we studied the evolution of electronic band structure of GeTe during 

the crystal-amorphous transformation pathway. As-grown crystalline GeTe has a Fermi 

level inside the valence band, whereas the amorphous phase has its Fermi level pinned to 

the mobility gap.  We showed that with defects accumulating in a local region of the 

nanowire, the Fermi level of the crystal starts moving towards the mobility edge. When 

Ef is close to the mobility edge (Em), effects of weak localization are seen in carrier 

transport, and this state is called the “dirty metallic state”. In this state, which is still 

metallic, phonons help carriers in transport rather than impede them. Further addition of 

defects to the templated region induces a metal-insulator transition (MIT) forming a 

metastable Fermi glass/ Andersons insulating state, where Ef moves above Em into the 

traps. In this state trapped carriers contribute towards conduction by hopping from trap to 

trap activated again by phonons. Further addition of defects collapses the long-range 

order, and forms an amorphous mark.  
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  That an insulating phase precedes the collapse of long-range order raises 

interesting suggestions about the role of strong electron-lattice interaction in the 

structural collapse. In the insulating phase where VRH conduction takes place, lattice 

distortions (phonons) help carrier conduction; and there is a possibility of a polaron- a 

coupled carrier-phonon quasi-particle- formation3. This coupling means that electron 

transport also effects the lattice distortions, and that itself can induce critical bond-

distortions to amorphize the material as predicted by Kolobov and coworkers18 (discussed 

in chapter 1). So, the defect-templated amorphization that we observe could be one of the 

ways of achieving distortion-triggered amorphization proposed by Kolobov and 

coworkers18. It must be mentioned that another way of inducing critical distortions in the 

bonding hierarchy of PCM is through the generation of coherent phonons, and this is an 

active area of research in the field19-21.  
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6. Ultra low-power and multistate switching in GeTe via defect 

engineering  

6.1 Motivation 

One of the problems with PCMs is the use of high programming currents during 

the crystal-amorphous transformation achieved conventionally via melt-quench 

process1,2; and reducing the active device volumes (miniaturization) has been pursued as 

a potential solution to mitigate this problem3-8. While reports on phase-change line and 

bridge devices demonstrated lesser currents by shrinking the volume of the PCM 

directly4,5,8; works on PCM devices with carbon nanotube electrodes6,7, showed very little 

programming currents (few µA) by minimizing the contact areas and hence the active 

device volumes (for instance device active volume is 35 nm x 3 nm x 3 nm in ref.6). 

Though these miniaturization strategies reduce the switching currents, the power 

densities (power per unit volume of the material) required for the crystal-amorphous 

transformation was little affected, and hence device failure problems arising out of over 

heating and chemical segregation still remained. Alternate approaches to reducing the 

writing currents include chemically modifying the PCMs to lower their melting point, by 

doping them with elements such as nitrogen or silicon9,10.  Here we ask the question, is it 

possible to utilize the lessons learnt from the fundamental studies performed thus far on 

defect-templated amorphization pathway, which most likely does not involve the 

formation of melt-phase (which we will rigorously prove in this chapter, see also section 

2.5), and design materials engineering strategies to address the issue of usage large power 

densities?  
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It is important to note that the defect-templated amorphization pathway11,12, the 

energy in electrical pulses is used for both the creation and migration of extended defects; 

suggesting from a structural standpoint that if a large density extended defects are pre-

induced, energy expense for both creation and migration of the defects, can be massively 

reduced, and this translates to reduction in switching currents. From an electronic 

standpoint, if GeTe can be engineered in stable dirty metallic or insulating electronic 

states via pre inducing defects, enhanced electron-lattice interaction can induce the 

critical bond distortions required for structural collapse, and this can be energetically 

more efficient27.  

Here, we show that pre-inducing defects using He+ ion irradiation can engineer 

GeTe into stable dirty-metallic and insulating states, and report crystal-amorphous 

switching currents as low as 8 µA for volumes of nanowires as large as 320nm x 80nm x 

80nm. Furthermore, we illustrate scaling of switching currents with device volumes, and 

demonstrate reversible and repeatable switching from these engineered crystalline states 

to amorphous phase. Our results on the amorphous-crystalline transformation on these 

defect engineered devices using d.c. IV sweeps show very low threshold switching 

voltages (<1V). We also explore several electronically different metastable intermediate 

resistance (insulating) states, which can be reliably obtained by changing 

(adding/removing) the defect concentration in the immobile defect templated region. 

6.2 Experimental procedure 

Multiple electrode GeTe nanowire devices were fabricated using e-beam 

lithography and lift-off based procedure (described in the previous chapter), and 

encapsulated with 30 nm of SiO2 12. Some devices were also fabricated on in situ TEM 
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compatible membrane chip platform for TEM analysis. To pre-induce defects, all the 

devices were irradiated using 2 MeV He+ ions, in a Rutherford Backscattering (RBS) set-

up, at different dosages, and beam currents not exceeding 30 nA,13 so that defects are 

created through knock-on damage, without any chemical changes. 

6.3 Crystal-amorphous transformation: reduction in power densities 

6.3.1 Defect pre-induction, and introduction of localization effects in carrier 

transport 

 

Figure 6.1. Structural analysis and transport measurements on GeTe nanowires with 
defects pre-induced by irradiation with 2MeV He+ ions at different dosages (A) Bright 
field TEM image showing stacking faults/APBs and dislocation loops induced randomly 
in a nanowire irradiated with a dosage of 45 µC/cm

2
 (Inset) DFTEM image of ordered set 

of boundaries created during electrical pulsing in a representative device, illustrating the 
difference between random nature of defects created by ion irradiation, and ordered 
nature of them created by electrical pulsing. (B,C) HRTEM images of a nanowire before 
ion-irradiation, and after irradiation with a dosage of 100 µC/cm

2
 showing defect 

tetrahedra. (d) BFTEM image of a nanowire ion-irradiated with large fluences (1800 
µC/cm

2
). (E,F,G) Zoomed in, DFTEM images of different regions marked in (D), all 

showing lot of intersecting defects, a structural feature that corresponds to electron 
localization.  
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 Upon irradiating as-grown single-crystalline defect-free GeTe nanowires (Figure 

6.1B) with He+ ions at modest dosages (40-100 µC/cm2), we observe the formation of 

dislocation loops, 2D defects (stacking faults/anti-phase boundaries) and defect 

tetrahedra– formed due to vacancy/interstitial supersaturation (Figure 6.1A, C)14.  It is 

important to identify that these defects are spatially created throughout the nanowire in a 

random fashion, unlike the ordered set of defects created during the application of low-

amplitude voltage pulses (inset of Figure 6.1A) 12. For irradiation at higher dosages 

(>1800 µC/cm2 or 1016 ions/cm2), however, we observe that entire nanowire is replete 

with intersecting 2D defects (as illustrated in different regions of a representative 

nanowire in Figure 6.s 1D-G), hinting that carrier localization effects may dominate 

transport at this stage12.    

To determine whether dirty-metallic and/or insulating states were engineered in 

as-grown metallic nanowire devices by pre-inducing defects, we performed temperature 

dependent resistivity measurements on the nanowire devices after exposure at every 

dosage; and resistivity was evaluated by subtracting the contact resistance measured in a 

multiple probe configuration (inset of Figure 6.2A) from the total device resistance, 

followed by multiplying with an appropriate geometric factor (ρ=RA/L, ρ is the 

resistivity of the material, R is the resistance, A is the cross sectional area of the device, 

and L is the length of the device) . In the metallic state, the resistivity increases linearly 

with temperature at higher temperatures, but saturates to a constant value (ρ0, saturation 

resistivity) below a certain temperature when defect scattering dominates over phonon 

scattering 12. ρ0, hence, depends on the defect density, and conversely can be used as a 

measurable metric for defect density. As illustrated for representative devices in Figure 
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6.2A, ρ0 increases with increasing dosage (upto ~1015 ions/cm2), indicating an increasing 

pre-induced defect density.  

Another quantity which is sensitive to the defect density in metallic state, is the 

slope of temperature-resistivity plots in the linear regime (temperature coefficient of 

resistivity, TCR), which generally decreases with increasing defect density 15,16. In all our 

devices, however, TCR shows an initial increase (upto 50 µC/cm2), followed by a 

subsequent ‘expected’ decrease (Figure 6.2B). TCR in the metallic phase, apart from 

depending on defect density, also depends upon the carrier concentration and effective 

mass, as described in ref. 16. The carrier effective mass increases with increasing defect 

density. Also, we confirmed through plasmonic spectroscopy17 (Figure 6.2C),  a 

reduction in the hole-carrier concentration upon ion irradiation, and pre-introduction of 

defects. Both the decrease in hole concentration as well as increase in carrier effective 

mass contribute towards an increase in TCR, and this explains its initial rise. 

Furthermore, the decrease in hole concentration suggests an intrinsic Ge vacancy 

condensation in the creation of extended defects by knock on damage18.  

At higher dosages (>1016 ions/cm2), structurally corresponding to intersecting 

APBs spatially spread across the entire nanowire (Figure 6.1D-G), resistivity of all the 

tested devices shows a non-linear decrease with increasing temperature, demonstrating a 

transformation from a metallic state to a dirty metallic or an insulating state.  The exact 

dosage at which this happens varies from device to device. As illustrated in Figure 6.2D 

and E, representative device, NW3, undergoes transformation to an insulating state 

demonstrating variable range hopping (VRH) conduction (inset Figure 6.2D) at 1.1x1016 

ions/cm2, and representative devices NW2 and 4 undergo metal- dirty metal 
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transformation at 2.2x1016 ions/cm2, demonstrating a power law conduction (σ~T0.5)– a 

characteristic of metals showing weak localization effects19. Thus, pre-inducing defects 

using ion-irradiation is an ideal recipe to engineer GeTe in stable insulating or dirty 

metallic.  

 

 

Figure 6.2: (A) Saturation resistivity (ρ0) plots as a function of dosage on four 
representative nanowires (NW 1,2,3,4), showing an increase in ρ0 with dosage, in the 
metallic state. (Inset) Scanning electron microscope image of a representative multiple 
probe nanowire devices on which transport measurements were performed. (B) 
Temperature coefficient of resistivity (TCR) plots as a function of dosage on four 
representative nanowires (NW1,2,3,4), showing an initial increase in TCR followed by a 
subsequent decrease with dosage in the metallic state. (C)Plasmonic spectroscopy data 
obtained from 15 nanowires before and after ion irradiation showing a shift in plasmonic 
peak, and hence a decrease in hole carrier concentration; and this can explain the initial 
increase in TCR (D) Temperature-resistance plots for NW3 at 700 µC/cm2 (magenta) and 
1800 µC/cm2 (green), signifying a metal-insulator transition. (Inset) Variable range 
hopping (VRH) conduction behavior observed at 1800 µC/cm2, confirming an insulating 
state. (E) Temperature-resistance plots for NW4 at 1800 µC/cm2 (orange) and 3600 
µC/cm2 (blue), signifying a metal-dirty metal transition. (Inset) Power law conduction 
behavior observed for NW2 and 4 at 3600 µC/cm2 confirming dirty-metallic nature. (F) 
NW3 showed a stable value of resistance at 200oC, and this means that a stable insulating 
state for operational purposes has been engineered as a starting state for switching.  
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These starting defect-engineered states showed no change in resistance at 200oC 

for ~36 hours (Figure 6.2F), suggesting that they are stable for operational purposes. It is 

important to note here that insulating phase obtained via electrical pulsing was not stable 

beyond 70oC; and this shows the role of homogenously pre-induced defects in stabilizing 

the insulating phase. 

6.3.2. Switching and scaling studies on devices with pre-induced defects 

To verify the idea that pre-inducing defects will be beneficial for power-

reduction, we studied the switching (amorphization) and scaling properties of the 

nanowire devices as a function of the dosage. We amorphized our devices by applying a 

train of voltage pulses (~50 ns) of increasing amplitude, separated by 1 s (so as to allow 

complete thermalization between two pulses), on the devices until resistance increases 

abruptly by a couple of orders of magnitude.  

In Figure 6.3A we plot switching current densities (js) as a function of device 

lengths (ld) at various low dosages, noting that this plot encompasses the complete 

information on size (length and cross-sectional area) dependence of switching currents. 

At dosages upto 700 µC/cm2 (Fig. 2a), we observe the following trends in switching 

behavior: (i) js increases with increasing ld  upto a critical length, lc, demonstrating 

volume scaling of switching current, (ii) js suddenly drops at lc and subsequently 

increases again with length, and (iii) lc itself decreases with increasing dosage. 

 To understand the size scaling of switching currents in every regime, we 

performed finite element simulations of heat-shocks from electrical pulses– which are 

responsible for defect creation, migration and eventual amorphization11– using 

COMSOL20. It must be noted that the validity of size scaling of switching properties in 
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defect-templated amorphization pathway is not very intuitive. Upon the application of a 

current pulse, every device shows a time varying temperature profile, with the maximum 

temperature reached at the center of the nanowire device (see chapter 3), much below the 

melting point of GeTe.  However, the quenching time upon the removal of current pulse 

increases with increasing length of the device (Figure 6.3B), indicating that heat shock 

and hence the defect activity created from a current pulse in shorter devices is more 

severe than the ones created by the same current pulse in longer devices. Hence, under a 

valid assumption that the defect density required for amorphization is size independent, 

longer devices require higher currents to achieve this critical density than shorter devices, 

and this explains the scaling of switching currents with device length.   

The pre-induced defects and the defects created by the heat shock during 

electrical pulsing, migrate with application of electric wind force and accumulate at a 

region of local inhomogeneity– defined by structural, morphological or thermal factors, 

which impede the motion of defects 13,23. Beyond a critical concentration of defect pile-up 

in this local region, an amorphous mark nucleates24, and it is easy to argue statistically 

that longer devices have more of such inhomogeneities than the shorter ones. Hence, 

longer devices may be treated as many short segments with a defect-templating location 

in each of them– all trying to amorphize simultaneously– the shortest segment 

determining the ease of switching. The sudden drop of switching current at a critical 

length, lc, is consistent with the understanding that devices just longer than lc have one 

extra defect-templating location and hence an extra shorter segment than the devices just 

shorter than lc. Furthermore, since pre-induced defects act as natural inhomogeneities, it 

is easy to create multiple jamming locations in devices with pre-induced defects than the 
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ones without them; and this is reflected as decrease of lc with increasing dosage (Figure 

6.3A)  

 
Figure 6.3: Scaling behavior of switching properties of nanowire devices with pre-
induced defects at different dosages (A) Switching current density vs. Length of the 
device plots at low dosages, 0, 300 and 700 µC/cm2. Trends in switching can be classified 
into two regimes, and within every regime switching current density increases with 
device length. After a critical device length (lc) there is a transition into another regime 
characterized by a sudden drop in switching currents. lc indicated in black, maroon and 
blue circles for 0, 300 and 700 µC/cm2, respectively, and decreases with increasing 
dosage. Switching current densities at any particular length increase with dosage upto 
700 µC/cm2.  (B) Temperature vs. time profile of heat shock at the central point of the 
nanowires with differing lengths and 100 nm diameter; when a 100 ns, 0.4 mA current 
pulse is applied- calculated using finite element modeling; showing the severity of heat 
shocks in shorter devices than longer ones. (C) Plot showing amorphization current 
density as a function of device length for devices engineered into states where localized 
electrons dominate transport via irradiating at very high dosages (1800, 3600 µC/cm2). 
Upon comparison with non-irradiated devices (black data points), these devices show a 
drastic reduction in switching current densities, enabling very low current switching for 
large devices. The switching currents are indicated, and the device volumes and 
comparison with devices switching via melt-quench is shown in the table in (D). 



! 136!

 We also note that at a particular device length for dosages upto 700 µC/cm2 

(Figure 6.3A), the switching current densities increase with increasing pre-induced defect 

density, contrary to the expectation that pre-induced defects would reduce the switching 

currents. We can understand this behavior from the in situ TEM analysis presented in 

chapter 3 (Figure 3.6) on notched devices, where there are pre-induced defects 

originating from Ga+ ion beam irradiation using FIB. These defects possibly impede the 

APB assisted reorganization of {100} boundaries into {110} boundaries, and this 

requires more work to be done on the system, which manifests itself as higher switching 

currents.  

However, at higher dosages (>1016 ions/cm2), where the effects of electron 

localization are pronounced i.e. the devices are prepared in either stable insulating or 

dirty metallic states, the switching currents drastically reduce. As illustrated in Figure 

6.3C, at a dosage of 2.2x1016 ions/cm2, the switching currents of devices whose active 

volumes are as large as 100nm x 100nm x 900nm, are as low as 14 µA; and for smaller 

devices (80 nm x 80 nm x 320 nm) they are as low as 8 µA. These absolute values are 

already better than low-power phase-change bridge devices4 switched via the 

conventional melt-quench mechanism, and which are smaller in volume than the 

nanowire devices in the current work by ~10000 times. Although these absolute values 

are slightly more than 5 µA crystal-amorphous switching currents reported in PCM 

devices with carbon nanotube electrodes which are also ~10000 times smaller than our 

devices and switched via melt-quench strategy, 6 a simple estimation of “power densities” 

input into the system for switching as i2R/V, where ‘i’ is the switching current, ‘R’ is the 

device resistance and ‘V’ is the device volume shows that power densities for switching 
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the devices in this work are atleast 105 times smaller than the power densities of the 

devices in ref 6 (Figure 6.3C,D). With volume scaling also demonstrated on these 

devices, the absolute powers required for switching very small volumes of active PCM6 is 

significantly low in this approach, hence potentially mitigating issues such as thermal 

cross talk and chemical segregation.  

In melt-quench pathway, the form of energy from an electric pulse that is used 

towards amorphization is heat; i.e. energy transferred completely from carriers to 

phonons, increasing the temperature of the lattice until it eventually melts. So 

amorphization involves a lot of wasted energy in the form of heat. Our defect engineering 

strategy is a completely different way of reducing the energy consumption, where we 

reduce the energy density of the crystal-amorphous transformation by engineering 

localized states (insulating/Fermi glass states) in crystalline phase as the starting state. In 

insulating crystalline state, there is a constant exchange of energy between carriers and 

phonons: localized carriers transfer energy to phonons, and phonons in turn transfer 

energy back to carriers helping them hop from trap to trap (VRH-variable range 

hopping). Unlike in the melt-quench strategy this is not complete one-way transfer of 

carrier energy into lattice vibrations. This carrier-phonon coupling induces lattice 

distortions just to a required extent to energetically stabilize the system in an amorphous 

phase, consistent with the critical bond distortion picture suggested by Kolobov and 

coworkers21. More importantly, because of constant exchange of energy input into the 

system between carriers and phonons, not much of it is wasted as heat but is utilized 

towards amorphization; hence justifying the low energy densities required for crystal-

amorphous transformation.  
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6.4. Reversible switching and multiple resistance states 

To verify the reversible switching behavior on the devices engineered in 

electronic states that show localization effects, we examined the amorphous-crystal 

transformation via threshold switching22 by applying voltage controlled d.c. IV sweeps. 

When the compliance current in the circuit is set to 50 µA, threshold switching followed 

by crystallization through Joule heating of the amorphous mark takes place at voltages 

<1V for all the tested devices (representative data shown in Figure 6.4 A).  

 
Figure 6.4: Threshold switching, recrystallization and electronic properties of 
recrystallized phases. (A) I-V sweep from 0 to 0.5 V on a device which is already in the 
amorphous phase with compliance current (Ic) set at 50 µA. Recrystallization followed by 
threshold switching happens at 0.5V. Low bias resistance measurement on the 
recrystallized phase (~10 kΩ) is shown in the inset. (B) Amorphous and crystalline phase 
resistances were cycled repeatedly for 12 times (inset). The temperature dependence of 
conductivity measurements are compared between defect-engineered starting insulating 
crystalline phase, recrystallized phase after one cycle of switching and after 12 cycles of 
switching. All the recrystallized phases show similar transport behavior suggesting 
reliable and repeatable switching. 
 

More importantly, the recrystallized phase after several cycles of reset (crystal-

amorphous transformation by application of a 150 ns, 0.3V pulse) and set (amorphous-

crystal transformation by voltage controlled I-V sweep) operations, show similar 
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resistance, temperature dependence of resistance and low amorphization currents as the 

starting defect-engineered insulating crystalline phase (Figure 6.4 B).   

The defect-engineered crystalline states where carrier localization dominates 

transport, structurally corresponds to the entire nanowire device being replete with 

intersecting extended defects, or defect-templates. Upon the application of electrical 

pulses to this state, more defects will migrate with momentum and energy transferred 

from the carriers, and accumulate at one (or more) of these templates increasing the local 

defect concentration13,24. A critical defect concentration would lead to the collapse of 

long-range order or ‘nucleation’ of the amorphous mark; however, the question remains 

whether some intermediate metastable resistance states in crystalline phase can be 

accessed as the defect concentration at a template increases from an initial value towards 

criticality. Figure 6.5A shows a comparison of a nanowire device defect-engineered into 

an insulating crystalline state of resistance ~10 kΩ (state 1) being programmed into 

amorphous phase by the application of train of 20 ns and 50 ns voltage pulses with 

increasing amplitude separated from each other by 1 s.  Programming with 50 ns pulses 

abruptly nucleates the amorphous phase suggesting that the energy in the 50 ns pulses is 

sufficient to migrate and accumulate defects beyond critical concentration at a region in 

the defect template. However, with 20 ns pulses there is lower energy transfer resulting in 

controlled defect accumulation and access to several intermediate metastable resistance 

states in crystalline phase as a function of defect concentration at the template, before 

eventual amorphization (thermal stability of intermediate and amorphous phases is 

discussed in section 6.4.3). For the purpose of the discussion that follows we will refer to 
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the electronic states in the crystalline phase with resistances ~10 kΩ, ~40 kΩ and ~70 kΩ 

as states 1, 2 and 3 respectively (Fig 4a). 

To understand whether these intermediate resistance states can be reversibly 

obtained starting from an amorphous phase, we crystallized the amorphous mark via d.c. 

I-V sweeps setting a very low compliance current (Ic) of 5 µA.  For the device switched 

to amorphous phase (Fig 4a), upon a voltage sweep from 0 to 1 V (green data in Figure 

6.5B), the amorphous phase first transforms to an intermediate metastable resistance state 

(70 kΩ, state 3). Upon a second voltage sweep from 0 to 1 V on the 70 kΩ intermediate 

resistance state, we observe a sudden drop in current at 0.02 V (~0.1 µA), followed by a 

threshold switching event to another intermediate metastable resistance state (red data in 

Figure 6.5B) with resistance of 40 kΩ, state 2. Another voltage sweep from 0-1 V on the 

40 kΩ resistance state shows a similar drop in current at 0.02 V, followed by a switching 

event to the starting electronic state, state 1 (10 kΩ, blue data in Figure 6.5B).  

To ensure reliability in the formation of all the demonstrated states (states 1-3 and 

amorphous phase), we switched these devices for 160 cycles, where every cycle involved 

the following steps: (i) switching state 1 to a high-resistance amorphous phase by the 

application of a 150 ns, 0.3 V (~30 µA) pulse, (ii) switching back to state 1 from the 

amorphous phase via sweeping d.c. voltage from 0 to 1 V –multiple times, if necessary 

(depending on the value of Ic). We changed the compliance current values (Ic) between 

cycles to confirm the dependence of formation of intermediate states on Ic (Figure 6.5C). 

When Ic is set to 50 µA, we observe only two states: a high resistance amorphous state (≥ 

1 MΩ), and state 1– a low-resistance crystalline state (~10 kΩ, state 1).  
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Figure 6.5: Demonstration of multiple resistance states. (a) Programming curve (voltage 
pulse amplitude vs. steady state resistance) while programming defect-engineered 
crystalline phase (state 1) into amorphous phase. When 50 ns pulses were applied, the 
transformation is sudden, whereas when 20 ns pulses were applied (despite the distorted 
current pulse shape, Figure 6.9) there is a continuous transformation with access to 
several intermediate resistance states (state 2, 3 and amorphous phase). Here, adding 
defects controllably to the jammed defect-templated region creates the intermediate 
resistance states. (b) Voltage sweep from 0-1 V (green data points) shows a threshold-
switching event of the amorphous phase to state 3 at <1 V with compliance current (Ic) 
set at 5 µA. A second sweep starting from state 3 (red data points), shows a drop in 
current at ~0.01 V corresponding to amorphization event, and the amorphous phase 
subsequently converts to state 2 after a threshold switching event to state 2. Another 
voltage sweep from 0-1 V starting with state 2 (blue data points), again shows a drop in 
the current at ~0.01 V, signifying amorphization - and the amorphous phase subsequently 
undergoes threshold switching and transformation to state 1, which resembles the as-
engineered insulating crystalline state by pre-induced defects. The arrows in the figure 
correspondingly indicate carrier-wind force assisted amorphization and threshold 
switching events (c) Repeatable switching measurements, with every cycle consisting of 
a 150 ns, 0.3 V pulse transforming state 1 to amorphous phase, followed by I-V sweeps 
until state 1 is eventually retrieved; and between every cycle Ic is randomly set to 50 µA, 
or 10 µA or 5 µA. When Ic =50 µA, amorphous phase always switches to state 1 directly, 
and when Ic =5 and 10 µA intermediate metastable states become accessible. Here, the 
intermediate resistance states are created by controllably removing defects (annealing) 
from the jammed defect-templated region.   
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However, when Ic is set to 10 µA, we consistently observe amorphous state first 

transforming into an intermediate resistance state (state 2) with the first voltage sweep, 

and then to state 1 with another voltage sweep from 0-1 V. When Ic is further reduced to 

5 µA, we observe amorphous phase to state 1 transformation in every cycle requiring 

three voltage sweeps from 0-1 V, with the first two voltage sweeps accessing the 

intermediate resistance states (states 3 and 2), and the final sweep transforming these 

intermediate states to state 1 (as observed for the device in Figure 6.5B).  

6.4.1. Defect-templated amorphization is a pure solid-state transformation process 

The sudden drop in current (or increase in resistance) upon voltage sweep in the 

intermediate states (state 2 and 3) at ~0.1 µA current (Figure 6.5A, red and blue curves) 

corresponds to amorphization of these states (see Figure 6.6 for confirmation that this is a 

permanent structural change and not a field induced reversible drop in current). Until 

now, we remained agnostic about the exact nature of amorphization after the formation of 

entangled defect-template in the defect-templated amorphization pathway. While adding 

more disorder through hole-wind force to the already heavily disordered defect-templated 

region, can collapse the local structure to an amorphous state without invoking the liquid 

phase; there is also a possibility that defect-template could tremendously reduce the local 

melting point, with the heat in the voltage pulse sufficient to melt and quench this 

templated region. Here, by being able to amorphize the metastable defect-templated 

structure through very low d.c. currents (~0.1 µA , and not a pulse), we removed the 

possibility of quenching, convincingly showing that it is just the hole-wind force that is 

responsible for defect accumulation, and the crystal-amorphous transformation is 

completely solid-state.  
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Figure 6.6: (A)!(Magneta) Voltage sweep on an intermediate state until 0.002 V showing 
a drastic drop in the current at  ~0.001 V (~0.1 µA). (Brown) A second voltage sweep 
confirming that the drop in current in the earlier sweep is because of an amorphization 
event, and is not a field dependent reversible effect; and in this voltage sweep, the 
amorphous phase is threshold switched to another intermediate state (Ic=5 µA).  (B) 
Structural model showing the transformation of the intermediate states during a voltage 
sweep. At low currents (~0.1 µA), hole wind force is sufficient to add more defects to the 
already jammed-defect templated region and amorphize it. After the threshold-switching 
event, there is a large current (Ic) which Joule heats the amorphous phase and the 
surrounding jammed region transforming it into either state 1 or 2 or 3 depending on the 
value of Ic.  
 

Amorphous mark (which cuts across the cross-section of the nanowire) is a region 

in the defect template13, where the defect concentration exceeded a critical limit leading 

to a local collapse of crystallinity. This mark recrystallizes via Joule heating following 

threshold switching similar to recrystallization behavior of the amorphous phase formed 

from melting and quenching the crystals. Following recrystallization, heat also provides a 

driving force for homogenization of defects thus reducing the defect concentration in the 
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defect-template (Figure 6.6B). Ic (maximum current that can pass through the device) is 

an experimental parameter to control the Joule heating, and at Ic=50 µA there is enough 

heat to completely homogenize the defects in the template with respect to the background 

defect-density (defect density in state 1), transforming the amorphous phase to state 1. At 

lower Ic (10 and 5 µA), following recrystallization event, there is just enough heat in the 

system to partially reduce the defect concentration in the template trapping it in an 

intermediate resistance state.   

6.4.2. Electronic characterization of the intermediate states 

To understand the differences in various observed resistance states (states 1, 2, 3 

and amorphous phase) from an electronic viewpoint, we performed temperature 

dependent resistance measurements on devices prepared in these states; and data on a 

representative device is shown in Figure 6.7A. States 1, 2 and 3 (~10 kΩ, ~40 kΩ, ~70 

kΩ respectively) show variable range hopping (VRH) conduction, where conductance S 

depends on temperature as S ~ exp −A
T 0.25( ) , with ‘A’, the temperature independent 

prefactor, increasing from 2 to 2.4 to 3.4 from states 1 to 3 (Fig 5a). , 

where ‘α’ is the inverse of carrier localization length, ‘k’ is the Boltzmann constant, and 

N(Ef) is the density of states at the Fermi level (Ef). The increase in ‘A’ from states 1 to 3, 

is a result of decrease in localization length (or increase in ‘α’) implying a progression of 

carrier transport (or Ef) from shallow to deeper traps27. On the other hand, the conduction 

characteristics of the amorphous phase show VRH behavior at low temperatures which 

changes to Poole-Frenkel like behavior at higher temperatures (Figure 6.7B), with 

 and current density  (V is the applied voltage, see inset of 

A = α 3

kN(Ef )
⎛
⎝⎜

⎞
⎠⎟
0.25

S ~ exp − 1T( ) j ~ exp V 0.5( )
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Figure 6.7B) 28-30. This is typical behavior of a chalcogenide glass system15,31, where the 

Ef is pinned to the middle of the mobility gap.  

 

Figure 6.7: Electronic characterization of all the states. (A) T-0.25 vs. log(S) plots, –where 
‘S’ is the conductance– showing that states 1,2, and 3 exhibit VRH conduction behavior 
with slopes becoming steeper from 1 to 3. (B) Conduction behavior of the amorphous 
phase plotted as log S vs. T-1, showing activated behavior at high temperatures, and VRH 
behavior at low temperatures. (Inset) log I (current) shows a linear dependence on V0.5 in 
the amorphous phase, a characteristic of Poole-Frenkel conduction behavior. (C) Band 
diagrams showing the relative postion of Fermi level (Ef) in all the observed states. From 
state 1 to the amorphous phase, Fermi level progressively moves up into lesser density of 
trap states, until Ef  gets pinned to the mid-gap in the amorphous phase.  
 

These results are consistent with the model illustrated in Figure 6.7C, where in 

state 1 the Ef is just above the mobility edge (Em) among shallow traps. Adding more 

defects to this state shifts the Fermi level (Ef) up into slightly deeper traps, trapping the 

system in a metastable state, (state 2). Controlled addition of defects allows access to 

more resistive metastable intermediate states, where Ef shifts deeper into the mobility gap 

(state 3, for e.g.), and this process continues until an amorphous phase is reached where 

Ef is pinned to the mid-gap30,31. In the reverse process (amorphous-crystal 

transformation), by controlled annealing (removal) of defects from the defect-template 
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region via Joule heating, Ef moves down towards the mobility edge and shallow traps 

accessing all the crystalline intermediate resistance states. We demonstrated that an 

experimental parameter to control the addition of defects is the pulse-width (Figure 

6.7A), and a parameter to control the removal of these defects is compliance current 

(Figure 6.7C). It is important to note here that multiple resistance states in PCM have 

been reported in some of the other works32-36, where various states can be created by 

controlling the relative volumes of the amorphous and crystalline states, the only two 

physically different states; and this is fundamentally different from the multiple 

‘electronic’ states shown in the crystalline phase shown in this work.  

It is important to note here that, in the context of neuromorphic computation, 

multiple resistance states in PCM have been reported in some of the other works30-34, 

where various states can be created by controlling the relative volumes of the amorphous 

and crystalline states, the only two physically different states.  This is however, a 

fundamentally different way of obtaining multiple ‘electronic’ states shown which arise 

out of defect introduction or removal from the jammed defect-templated region.  

6.4.3. Thermal stability of the intermediate states 

Finally, we examined the thermal stability of the amorphous phase and an 

intermediate state –a limiting factor that determines the data non-volatility, by performing 

high temperature retention measurements, as commercial memory applications warrant 

high-temperature performance8. Isothermal crystallization from an amorphous phase or 

an intermediate state shows an initial incubation regime (no change in resistance) 

corresponding to the time required for the formation of a critical nucleus of the crystal, 

followed by a growth regime 35 (Figure 6.8A, B). We consider data retention times at a 
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particular temperature as the incubation times, and in both intermediate state and the 

amorphous phase, the incubation time-temperature plots show an Arrhenius behavior 

(t~exp(Ea/kT), Figure 6.8C) 36, with the amorphous phase displaying excellent thermal 

stability, extrapolated to ~3.1 years for device operations at 115oC.  The intermediate 

state is however, not very stable for high temperature operations i.e. for operations at 

40oC, extrapolated stability is 3.1 years, where as for operations at 70oC it is barely 20 

minutes; and improving the thermal stability of these intermediate electronic states is an 

interesting problem for future work.  

 

Figure 6.8: (A) Retention measurements on the amorphous phase, carried out at 175, 
180, 185 and 190oC, and the black, blue, maroon and red dotted lines show the incubation 
times for crystal formation at these temperatures respectively. (B) Retention 
measurements on an intermediate state, carried out at 70, 80, 90oC, and solid lines are a 
guide to the eye, showing incubation and growth regimes. (C)Activation energy plots for 
both amorphous and the Fermi glass intermediate resistance state.  
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6.5. Supplementary checks 

Since we are commenting on the currents required for switching, and comparing it 

with the works of others, it is important that we verify that the voltage pulse provided to 

the device, and the current pulse generated in it are well-behaved. For this we performed 

dynamic current measurements using a 500 MHz Tektronix DPO3052 digital 

oscilloscope, when voltage pulses of different magnitudes are applied on the devices. 

Applied voltage pulse was measured by connecting the device was in parallel to the 50 Ω 

input channel 1 of the oscilloscope; and the current response was measured by measuring 

the voltage drop across a 50 Ω resistor connected in series with the device, and in parallel 

with a second 50 Ω input channel of the oscilloscope. Figure 6.9 shows that for a 50 ns 

applied voltage pulse, the current is mostly at a steady value during the voltage pulse, 

given by the ratio of applied voltage (V) and the resistance measured after removing the 

pulse (R); and hence can be approximated as a rectangular pulse of amplitude V/R, which 

is what we did in section 6.2. For a 20 ns voltage pulse, however, the reflections 

corresponding to slight changes in the voltage pulse dominate, and the rectangular current 

pulse assumption is no longer a valid one. We used 20 ns pulses in context of formation 

of formation of intermediate states starting from state 1, and hence did not quantify the 

dynamic currents in that case.  
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Figure 6.9: Current response (green) for an applied voltage pulse (red) of 0.5V, 50 ns in 
(a) and 1V, 20 ns pulse in (b). 
 
6.6. Conclusions 

In conclusion, we demonstrated that the power efficiency of defect-templated 

approach for crystal-amorphous transformation in GeTe is greatly improved through 

engineering the as-prepared metallic GeTe, in stable dirty metallic or insulating states by 

pre-inducing defects via ion-irradiation. The minimum switching current for this 

transformation that we observed was as low as 8 µA for voluminous devices (dimensions: 

80nm x 80nm x 320nm), and the power densities are much better than the best reported 

low-power devices operated through melt-quench strategy6. These devices displayed 

excellent reversibility (threshold switching at <1V) and endurance. We illustrated that 

starting from an as-engineered insulating crystalline nanowire (state 1), by controlled 

addition of defects into a local region with immobile defects of large density, using very 

short electrical pulses, some metastable intermediate electronic states become accessible; 

and the same can be reliably attained starting from an amorphous phase and removing 

defects from the same local region by controlled Joule heating achieved via controlling 

the compliance current in a voltage sweep. The demonstrated resistance states themselves 

differ electronically and structurally (in terms of defect densities) from each other; unlike 

0.5 V, 50 ns pulse A B 

1 V, 20 ns pulse 
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the multiple states reported in some other works, which differ from each other in terms of 

volumes of the crystalline and amorphous phases31-34. Improving the stability of these 

intermediate states could be of great interest in the context of neuromorphic 

computation31,32. Additionally, with our demonstration of scaling of switching properties 

in the defect-templated approach, we believe that architectures based on short line 

devices fabricated from ultra-thin nanowire PCM, engineered into electronic states that 

show localization behavior by pre-inducing defects, is very encouraging for ultra-low 

power memories and novel computation strategies. 

 Multiple resistance states find their application for efforts on alternate 

computational paradigms such as neuromorphic computation31,32. In PCM, there are some 

reports on multiple resistance states obtained by controlling the volume fractions of the 

amorphous phase (created from melt-quench approach) and the crystalline phase30-34. Our 

results demonstrate that in the defect-templated approach too, multiple resistance states 

can be reliably obtained in a power-efficient way by controlled defect addition and 

removal– making this very relevant for ultra-low power and non von-Neumann 

computation propositions5. 
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7. Future directions and outlook  

In this thesis, we have shown the interesting features of defect-templated 

amorphization and the localization physics encountered along crystal-amorphous the 

transformation pathway from both a fundamental materials science perspective, and 

device engineering perspective to build energy efficient PCM devices. The lessons learnt 

from this work can be utilized to study several interesting problems, both in the direction 

of basic science as well as device engineering. We conclude this thesis by proposing two 

of our favorite problems (ideas): a) understanding the good switching properties of Ge-

Sb-Te alloys based on a chemical disordering of GeTe, and a carrier weak localization 

framework, and b) extending defect-engineering strategies towards a search for better 

thermoelectric materials, working under the hypothesis that Fermi glass state is good for 

thermoelectric properties.   

7.1 Chemical disordering of GeTe with Sb2Te3: understanding Ge-Sb-Te 

alloys in the framework of disorder  

The resistivity of an alloy of two metals in general, is not the average of 

resistivities of individual metals, but greater than both of them. This is shown on several 

metal alloys through the pioneering work of Mooij1; and in particular the results on Ni-Cr 

alloys are reproduced in Figure 7.1A. Ni1-xCrx alloys can exist in three different crystal 

structures based on the value of x (% of Cr composition); i.e. for x<0.5 they exist in FCC 

structure; for 0.5<x<0.75- an ‘X’ phase; and for x>0.75, a BCC phase. Based on the 

resistivity measurements as a function of x on several alloys, A1-xBx (where A and B are 

metals, Figure 7.1A), Mooij made an important observation that the resistivity of these 

alloys is independent of the crystal structure, and hence suggests that so is the 
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phenomenon responsible for increase of resistivity in alloys when compared to pure 

metals1. Several workers later found this as being a result of weak localization in electron 

transport owing to introducing ‘chemical disorder’ in a metal while alloying2-5. Weak 

localization is a quantum-mechanical effect, where the electrons form standing waves by 

constructively interfering between two time reversed trajectories after undergoing 

multiple scattering by defects, the amplitude of which increases with increasing 

disorder2,5. These electron standing waves do not participate in transport thus increasing 

the resistivity of the material. Furthermore, phonons can scatter with these weakly 

localized electron waves, thus randomly dephasing them, and allowing them to 

participate in transport. Hence increasing temperature enhances conductivity contribution 

from weakly localized electron waves, which is opposite effect to what happens in 

delocalized (metallic) systems with propagating electron waves where resistivity 

increases with increasing temperature. Hence weak localization effects also reduce the 

TCR (in addition to increasing the resistivity), as observed by Mooij; and this 

phenomenon is independent of the crystal structure of the alloy, and more dependent on 

the disordering effects of alloying.  
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Figure 7.1: (A) Resistivities of NiCr alloys as a function of increasing Cr concentration 
starting from pure Ni. Data reprinted with permission from ref. 1. © WILEY-VCH Verlag 
GmbH & Co. KGaA, 1973 (B) Resistivites of GeTe-Sb2Te3 alloys as a function of 
increasing Sb2Te3 concentration. Data on GeTe is our unpublished data on nanowires. 
Data on other compounds is collected and replotted from various sources6-17. 
 

In Figure 7.1B, we plotted the resistivities of several pseudo binary alloys of 

GeTe-Sb2Te3, collected from some of our work on GeTe and several other works6-17 from 

the literature- making sure that all the alloys are metallic in nature  (positive TCR), and in 

their stable trigonal structure (cubic structure is a more disordered form of trigonal 

structures18 and shows insulating behavior16, hence is not a part of this discussion). It can 

be seen that all the alloys associated with the GeTe-Sb2Te3 pseudo binary system (Figure 

7.2), follow the trends in resistivity shown by Mooij on regular alloys of metals such as 

NiCr. This raises a very important question: can the electronic properties of Ge-Sb-Te 

alloys in their crystalline phase, and their crystal-amorphous transformation behavior be 

understood from a framework of chemically disordering GeTe via alloying with Sb2Te3 

and weak localization effects, without worrying about the structural details of the 

individual alloys? Our previous work on comparative switching studies between GeTe 

and Ge2Sb2Te5
13 nanowire PCMs has revealed that Ge2Sb2Te5 undergoes a crystal-

amorphous transformation at much less switching power than GeTe.  We know from 

A 
B 
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chapter 6 that localization effects reduce the energy for crystal-amorphous 

transformation. So an important question is, are the energy friendly switching properties 

of Ge2Sb2Te5 than GeTe fundamentally a result of Ge2Sb2Te5 being chemically more 

disordered, and hence possessing dominant effects of weak localization?  

To verify this we propose to synthesize different line compounds in the GeTe-

Sb2Te3 psuedo binary phase diagram (Figure 7.2), and compare statistically the 

programming currents for crystal-amorphous transformation with that of GeTe. Our 

group reported the synthesis of Ge2Sb2Te5, GeSb2Te4 and Ge1Sb4Te7 nanowire systems 

via VLS process10, by using GeTe and Sb and Te as the precursors. While the 

temperature and position of GeTe (650oC) precursor always remained the same for all the 

line compounds of Ge-Sb-Te, the temperature of Sb and Te precursors, and as a result the 

vapor pressure and the reactant quantity in vapor phase of Sb  and Te increased from 

Ge2Sb2Te5 to Ge1Sb4Te7. Our group also demonstrated the capability to obtain Ge-Sb-Te 

based alloys starting with GeTe and Sb2Te3 as the precursor elements12,13.   

 

 

 

 

 

 

 
Figure 7.2: In the pseudo-binary phase diagram between GeTe-Sb2Te3, the various 
stoichiometric line compounds such as Ge1Sb4Te7, Ge1Sb2Te4, and Ge2Sb2Te5, exist. 
Reprinted with permission from ref 19. © AIP Publication LLC, 1991. 
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It must be noted that the room temperature resistivities collected from various 

sources on different Ge-Sb-Te alloys in Figure 7.1B, may suffer from issues such as 

polycrystallinity, damage due to making contacts via focused ion beam deposition etc. So 

it is critical that we do these measurements on clean single-crystalline nanowire devices 

fabricated via e-beam lithography (just as the measurements reported by us on GeTe), 

and electronically characterize them thoroughly via temperature dependent resistance 

measurements. We intend to systematically measure the room temperature resistivity, the 

saturation resistivity and the TCR values of all these alloys and compare them with those 

of GeTe to look for hints of weak localization. One of our groups previous works already 

compared programming currents between GeTe and Ge2Sb2Te5
13

 and showed that crystal-

amorphous transformation in Ge2Sb2Te5 is energetically more efficient than that in GeTe. 

We wish to extend these comparative studies systematically to other alloys too 

(GeSb2Te4, GeSb2Te7), and understand if chemical disordering and weak localization are 

the fundamental reasons for energy efficient crystal-amorphous transformation. In 

addition to the chemical disorder, if we pre-induce extended defects physically using 

high-energy He+ ion bombardment, it can lead to further reduction in the energy for the 

pathway (as described for GeTe in chapter 6). From a device perspective we also wish to 

study the reversibility, endurance and device failure mechanisms for these alloy systems 

(Ge2Sb2Te5, GeSb2Te4, GeSb2Te7) as was done for GeTe in chapter 6.  
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7.2  Thermoelectric applications: localization physics and defects 

Thermoelectric materials convert heat, a wasteful form of energy, into electrical 

voltage, a useful form of energy. A good thermoelectric material is parameterized by the 

ZT Figure 7.of merit, which is defined as ZT = S
2σ
κ

, where S is the Seebeck coefficient 

or propensity of charge carriers to transport entropy, σ is the electrical conductivity of the 

material, and κ is the material thermal conductivity20. The problem, however is all these 

three material parameters are related to each other, and that makes materials design to get 

better ZTs by controlling each of these parameters individually, difficult.   

For e.g., to start with, let us discuss the ratio σ/κ.  κ =κ e +κ l , where κe  is the 

electronic thermal conductivity, and κl is the lattice thermal conductivity. Efforts towards 

minimizing thermal conductivity are mostly aimed at minimizing κl by creating large 

lattices of materials (such as clatherates), and promoting heat transport through optical 

phonon modes (higher order phonons), which show more impediments in transport20. 

Even under the most optimistic assumption that κl  is made zero by very clever materials 

design strategies, the ratio σ/κ fundamentally reaches its maximum at σ/κe, and this 

number is determined by Lorentz factor (L; σ/κe=1/LT)- which is more or less similar for 

all materials; owing to L being the property of the free-carrier gas (mostly independent of 

material in which the gas is present). The question is, can we beat this and search for 

materials with better thermoelectric performance? 

We wish to go beyond just inducing defects and propose defect-induced 

localization and Fermi-glass states in PCMs with large carrier concentration as an answer 

to this problem. Let us take a re look at the treatment of thermal conductivity from a basic 

circuits perspective. The moment we write the equation, κ =κ e +κ l ; we are saying that 
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heat input into a system is carried by two independent channels, electron (free carrier) 

channel and lattice (phonon) channel (Figure 7.3A). To model this, we can think of an 

electron channel as being in parallel to the phonon channel, and hence the net thermal 

resistance (Rth) of the system is given by 1Rth
= 1

Rth−electrons
+ 1

Rth−phonons
 (which is the 

same as saying their conductivities add up). Because of the independence of these 

channels, even if one were able to make the phonon channel infinitely resistive, that 

channel is ignored heat conducts through electron channel. The thermal resistance of this 

channel is proportional to its electrical resistance, fixing the upper cap of σ/κ.  

In a Fermi-glass state, however, where localized electrons are responsible for 

transport (heat and charge), the electron channel and phonon channel are no longer 

independent. It is a strongly coupled system, which means phonons help in electron 

transport and vice versa (may be through a polaron formation, about which we have no 

proof, yet). This means that now these channels can be modeled as being in series (Figure 

7.3B) with Rth = Rth−electrons + Rth−phonons ; and so now, 1κ = 1
κ e

+ 1κ l
or σ κ =σ κ e

+σ κ l
. 

If we still assume the validity of Weidmann Franz law (for simplicity, though there is no 

longer a free electron gas in the system) and the Lorentz factor proportionality between σ 

and κe; κl and σ can be independently tuned: a degree of freedom which has been missing 

in search for good thermoelectric materials. Finally since entropy input into the system 

cannot bypass the electron channel owing to their strong coupling with phonons, we 

expect an increase in the Seebeck coefficient also.  
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 So based on this we propose a Fermi-glass, structurally crystalline material with 

large unit cell parameters (to reduce κl) as a direction in which this search needs to focus. 

Based on the work presented in this thesis PCMs can be tuned into Fermi-glass, 

structrually crystalline states by pre-inducing defects. Furthermore, complex PCMs with 

large unit cells such as Ge-Sb-Te alloys (which are engineered into Fermi glass states) are 

good starting points for expanding the spectrum of thermoelectric materials.  

 

Figure 7.3: Thermal transport channels in a regular crystal, and in Fermi glass. 
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