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Modeling Breast Cancer Dormancy and Recurrence Following
Oncogenic Pathway Inhibition

Abstract
Breast cancer recurrence is the primary cause of mortality in breast cancer, and although advances have been
made in the treatment of primary breast cancer, recurrent breast cancer remains uncurable. Targeted therapy
has had a major impact on survival across multiple cancer types, including breast cancer, however patients
who respond to targeted therapy ultimately relapse. Residual disease, the tumor cells that survive initial
therapy, represent an attractive therapeutic target, however little is known about the biology of these cells. We
use mouse models of breast cancer to investigate the phenotype of residual disease that survives targeted
therapy, and to explore approaches to inhibit tumor recurrence. Residual disease exhibits cellular dormancy in
models driven by distinct oncogenic pathways. Gene expression profiling reveals that residual tumor cells are
enriched for a phenotype associated with normal and neoplastic stem-like cells, but are not enriched for
tumor initiative cells. Interventions that inhibit inflammatory signaling inhibit tumor recurrence, however
increasing inflammation promotes tumor recurrence. Inflammatory macrophages may be leukocytes that
promote inflammation and drive recurrence in these models. Together, our findings present a more
comprehensive picture of residual tumor cells surviving targeted therapy, and suggest possible therapeutic
strategies for targeting residual disease that gives rise to cancer recurrence.
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ABSTRACT 

 

MODELING BREAST CANCER DORMANCY AND                                                                              

RECURRENCE FOLLOWING ONCOGENIC PATHWAY INHIBITION 

Jason R. Ruth 

Lewis A. Chodosh, MD, PhD 

Breast cancer recurrence is the primary cause of mortality in breast cancer, and although 

advances have been made in the treatment of primary breast cancer, recurrent breast cancer 

remains uncurable.  Targeted therapy has had a major impact on survival across multiple cancer 

types, including breast cancer, however patients who respond to targeted therapy ultimately 

relapse.  Residual disease, the tumor cells that survive initial therapy, represent an attractive 

therapeutic target, however little is known about the biology of these cells.  We use mouse 

models of breast cancer to investigate the phenotype of residual disease that survives targeted 

therapy, and to explore approaches to inhibit tumor recurrence.  Residual disease exhibits cellular 

dormancy in models driven by distinct oncogenic pathways.  Gene expression profiling reveals 

that residual tumor cells are enriched for a phenotype associated with normal and neoplastic 

stem-like cells, but are not enriched for tumor initiative cells.  Interventions that inhibit 

inflammatory signaling inhibit tumor recurrence, however increasing inflammation promotes tumor 

recurrence.  Inflammatory macrophages may be leukocytes that promote inflammation and drive 

recurrence in these models.  Together, our findings present a more comprehensive picture of 

residual tumor cells surviving targeted therapy, and suggest possible therapeutic strategies for 

targeting residual disease that gives rise to cancer recurrence. 
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CHAPTER 1 

  

Breast Cancer Dormancy and Recurrence Following Oncogenic Pathway Inhibition 

Breast cancer 

Breast cancer is the most prevalent cancer among women worldwide [1].  Almost 40,000 women 

in the United States will succumb to this disease in 2013, and it is the second most frequent 

cause of cancer-related deaths among women in the developed world [1, 2].  Improvements in 

diagnosis and treatment of breast cancer have led to a dramatic increase in the survival of breast 

cancer patients since the 1970s [2], however these gains have primarily come from successful 

resection of early stage breast cancers that have not spread [3].  As a result of improved 

treatment of early breast cancer, nearly three million women in the United States are breast 

cancer survivors, and these women are at risk of breast cancer recurrence [4].  In contrast to 

primary breast cancer, recurrent breast cancer is incurable, and consequently represents the 

primary cause of mortality among breast cancer patients. 

A broad understanding of breast cancer can be achieved by identifying epidemiological and 

clinical parameters that impact incidence and survival.  Disease incidence and outcome are each 

functions of a large number of parameters.  Various epidemiological factors impact both breast 

cancer risk and clinical prognosis, including sex, age, and genetic background, among many 

others [2, 5-8].  Females have a greater than 100-fold higher risk of developing breast cancer 

than men [5].  Age also has a major impact, as the probability of developing breast cancer before 

the age of 40 years old is almost one eighth of the risk of developing breast cancer between the 

ages 60-69 years old [2].  Genetic background may impact breast cancer risk as the combination 

of many germline variations with a small impact on cancer incidence [9], or the presence of 

germline mutations that confer a major increase in the risk of developing breast cancer, such as 

mutations in BRCA1 or BRCA2 [10]. 
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Additionally, certain clinical, histopathological, and molecular qualities of the cancer itself are 

major determinants of a patient’s prognosis.  For example, tumor grade is a number given by a 

pathologist analyzing a hematoxylin and eosin-stained section, which incorporates tubule 

formation, nuclear grade, and mitotic rate, in order to provide prognostic information about a 

patients’ particular tumor [11].  Tumor stage is determined by the TNM staging system, wherein 

tumor size and local invasion (T), lymph node involvement (N), and presence of metastatic 

disease (M) are synthesized to evaluate tumor stage [12].  Higher tumor grade or tumor stage are 

each associated with a poor prognosis.  Both grade and stage are critical components to 

determining the proper clinical management for a particular breast cancer patient. 

Beyond the use of epidemiological and clinical parameters, stratifying breast cancer by its 

molecular etiology provides an indispensable approach for understanding and treating this 

malignancy.  Like all cancers, breast cancer is driven by alterations in several key cellular 

processes, resulting from genomic alterations that activate oncogenic pathways driving 

tumorigenesis [13].  Whereas qualities such as tumor size and extent of dissemination are 

determined largely by the length of time a tumor has developed within a patient prior to 

presentation, tumor subtypes largely reflect the oncogenic pathways driving the tumor.  One can 

broadly define breast cancer using either histopathological subtypes, molecular subtypes defined 

through gene expression profiling, or genomic subtypes using genomic mutation data. 

Histopathological subtype is broadly defined by expression of the hormone receptors estrogen 

receptor (ER) and progesterone receptor (PR), and expression of the human epidermal growth 

factor receptor 2 (HER2).  Using expression of these receptors, breast cancer can be classified 

into three major types, hormone receptor positive, HER2 positive, or triple negative breast cancer 

(TNBC), wherein a tumor does not express sufficient levels of either hormone receptor or HER2 

in order to qualify as one of those subtypes.  Targeted therapy against hormone receptor positive 

tumors includes selective estrogen receptor modulators and aromatase inhibitors, both of which 

ultimately decrease signaling through the estrogen receptor in order to treat cancer.  Analogously, 

patients with HER2-positive breast cancer receive treatments that block signaling through HER2, 
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such as the tyrosine kinase inhibitor (TKI) lapatinib, or a combination of the anti-HER2 antibodies 

trastuzumab and pertuzumab. 

In the early 2000s, recurrent molecular subtypes of breast cancer were identified in a landmark 

study that used unsupervised hierarchical clustering to identify breast cancer subtypes based on 

gene expression profiles [14].  Tumors in these subtypes respond differently to chemotherapy 

[15].  A general role for gene expression profiles in clinical management manifests through a 

gene expression profile that is used as a predictive test to drive treatment decisions in early stage 

ER-positive breast cancer [16]. 

An alternative method of identifying molecular drivers behind breast cancer has recently emerged 

in profiling genomic alterations in tumors.  Early profiling efforts revealed that breast cancer has a 

greater degree of heterogeneity than may have been expected prior to genomic profiling [17].  

Recent studies across multiple cancer types indicate that genetic heterogeneity may underlie 

resistance, and genomic profiling is a critical component in the identification of therapies suitable 

for specifically targeting a patient’s cancer, generally referred to as targeted therapies.  Wide 

recognition for the potentially transformative role of genomic profiling and targeted therapy is 

evidenced by the success of Foundation Medicine, a company whose primary product platform is 

targeted deep sequencing of a panel of cancer-related genes.  Less than two years after raising 

Series A funding, Foundation Medicine went public with a one billion dollar initial public offering in 

September 2013. 

Oncogenic pathway inhibition – Clinical impact and disease resistance 

Cancer researchers have long sought to develop anti-cancer compounds with progressively 

greater specificity and sensitivity, in hopes of prolonging both survival and quality of life in cancer 

patients.  This tenet was present even in Sydney Farber’s use of anti-folates to treat acute 

lymphoblastic leukemia (ALL) in 1948 [18], however chemotherapies such as anti-folates 

generally have broader side effect profiles than targeted therapies.  Recent years have seen a 

dramatic shift away from the development of novel chemotherapeutics in favor of targeted 

therapies developed against specific molecular targets critical to oncogenic pathway activity. 
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Reflecting this shift towards an increased use of targeted therapies, the number of new molecular 

entity (NME) approvals by the FDA for targeted therapies has increased dramatically in recent 

years.  Whereas only three targeted therapies (rituximab, trastuzumab, and imatinib) were given 

the NME designation over the span of 1997 – 2002, a total of seventeen targeted therapies were 

approved as NMEs from 2011 – 2013 (Figure 1.1).  These targeted therapies have a major 

positive impact on overall survival (OS) for cancer patients.  The anti-HER2 antibody trastuzumab 

can result in greater than 30% improvement in five year OS compared to chemotherapy alone 

[19].  Despite the significant gains to recurrence-free survival (RFS) and OS afforded by the first 

targeted therapies, many patients ultimately developed recurrent disease [20, 21].  Unfortunately, 

recurrent disease is frequently refractory to previous therapies that had been used in a particular 

patient, and thereby is frequently fatal. 

As a consequence of the frequency of recurrent disease, the increase in NME approvals from 

2011 – 2013 reflects in part the development of drugs intended to be administered in conjunction 

with, or after treatment failure of, the targeted therapies that first appeared over a decade ago.  

Examples of these new drugs include pertuzumab and ponatinib.  Trastuzumab works in part 

through inhibition of HER2:HER2 homodimers [22].  In contrast, pertuzumab inhibits HER2:HER3 

heterodimerization, and administration of pertuzumab in combination with trastuzumab and 

docetaxel in the neoadjuvant setting improved median progression-free survival (PFS) by 6.1 

months vs trastuzumab-docetaxel alone (12.4 months PFS with trastuzumab-docetaxel vs.  18.5 

months PFS with pertuzumab-trastuzumab-docetaxel, p<0.001) [23].  While pertuzumab is 

intended to be administered in conjunction with trastuzumab to inhibit HER2 signaling in patients 

with breast cancer, ponatinib is intended to be given as a single agent after treatment failure with 

a tyrosine kinase inhibitor, such as imatinib, in order to block signaling through the Philadelphia 

chromosome in patients with Philadelphia chromosome-positive ALL [24].  Administration of 

ponatinib resulted in a 54 percent major hematologic response when administered to patients 

with Philadelphia chromosome-positive chronic phase-ALL who were previously intolerant or 

resistant to treatment with imatinib [24].  Despite the improvement in survival that these newer 

targeted therapies provide, many patients develop recurrent disease. 
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To develop therapies that can prevent disease relapse, researchers have investigated both the 

biology of recurrent tumors, as well as the biology of residual disease. 

A major challenge in treating recurrent disease is the diversity of mechanisms that can underlie 

treatment resistance, suggesting that although targeted therapies inhibiting single pathways may 

be sufficient to treat a specific molecular subtype of cancer, many different strategies will be 

required to treat the address the many molecular subtypes associated with resistance.  Examples 

of mechanisms that recurrent tumors exploit to resume growth following targeted therapy include 

mutation or amplification of the drug target, increasing signaling through bypass pathways, 

defects in growth arrest or survival, or cell state alterations such as an epithelial-to-mesenchymal 

transition (EMT) [25].  p95-HER2, a truncated 95kDa isoform of HER2 that lacks the trastuzumab 

binding region, is associated with resistance to trastuzumab therapy, but remains susceptible to 

treatment with the anti-HER2 TKI lapatinib [27, 28].  Other mutations to HER2 exist as well [25].  

Bypass signaling has been reported in the setting of trastuzumab resistance, by receptor tyrosine 

kinases (RTKs) signaling through EGFR, HER3, IGF-1R, or MET, and by mutations in 

downstream signaling components such as PI3K/AKT or loss of PTEN [29-32].  Alternatively, 

alterations that promote cell cycle entry, such as Cyclin E amplification and down-regulation of 

cyclin-dependent kinase inhibitor p27 may also underlie trastuzumab resistance [33-34].  Reports 

in non-small cell lung cancer (NSCLC) reveal that recurrent tumors may also exhibit tumor cells 

with an alteration in cell state, such as EMT, or alternatively NSCLC may also recur as small cell 

lung cancer [35]. 

Given the pleiotropic mechanisms underlying tumor recurrence, it would be desirable to define a 

single biological phenotype that generally describes all tumor cells responsible for resistance, 

such that inhibition of this phenotype or state may have a broad impact on cancer progression.  

One such general endpoint is represented by the idea of ‘cancer stem cells’ a broad term 

generally used to describe a rare subpopulation of tumor cells that both give rise to other tumor 

cells, and are more resistant to therapy than the bulk population of tumor cells.  Perhaps because 

the idea of a single cell type that underlies all resistance is such an appealing Achilles’ heel of 



6 
 

cancer, a plurality of studies assume residual breast cancer is likely comprised of tumor cells with 

stem cell-like properties [36], whereas it actually remains unclear whether residual disease in 

breast cancer is maintained by such a population.  In the case of breast cancer patients treated 

with neoadjuvant therapy targeted against the estrogen receptor, residual tumor cells have been 

identified locally within breast tissue upon surgical resection [37].  These residual tumor cells are 

identified by expression of CK8, and express phenotypic markers correlated with both a 

mesenchymal and a stem cell phenotype.  While this study supports a role for a stem cell-like 

population in disease resistance, a recent study using alternative methodology of isolating 

residual tumor cells arrives at a different conclusion.  Microfluidic chips coated with antibodies to 

capture cells in the blood expressing EpCAM, EGFR, and HER2, were used to identify circulating 

tumor cells in patients undergoing therapy, and assessed epithelial or mesenchymal phenotype of 

captured cells from mRNA in situ immunohistochemistry [38].  In this study, the authors they find 

that residual breast cancer cells may either be enriched for an epithelial phenotype, or a 

mesenchymal phenotype.  Consequently, it is clear that residual disease can’t generally be 

described as consistently either mesenchymal or epithelial, but instead that the result may be 

context dependent. 

Taken together, these reports reveal that the use of targeted therapies has dramatically improved 

outcomes in cancer patients, and newer generation therapies will continue to strengthen these 

gains.  In spite of this progress, patients frequently relapse.  Analysis of tumor recurrence reveals 

a breadth of resistance mechanisms, posing a challenge for the development of therapeutic 

strategies that will impact large percentages of patients.  However, it is possible that residual 

disease across different cancer types may harbor unifying characteristics, although residual 

disease is challenging to identify and isolate in vivo.  Thus, targeting residual disease is an 

attractive strategy to prevent tumor recurrence, but more investigation is required to describe the 

phenotype of residual disease. 
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Immunity and inflammation in recurrence 

A role for the immune system and inflammation in cancer progression is well established, and 

several clinical studies have demonstrated that therapeutically targeting either specific 

components of the immune system, or inflammation in general, can improve survival for cancer 

patients.  Clinical trials using checkpoint blockade inhibitors targeting PD-1 and CTLA-4 have 

resulted in major improvements in the OS of patients with melanoma, NSCLC, and renal cell 

carcinoma [39, 40].  In breast cancer, trastuzumab works in part through antibody-dependent cell-

mediated cytotoxicity [41].  Anti-inflammatory drugs may also have a major impact on cancer 

progression, as evidenced by a greater than 50% reduction in relative risk of breast cancer 

recurrence identified in the Nurse’s Health Study for breast cancer patients taking daily aspirin 

following initial therapy [42].  Together, these data support increased research into the 

mechanisms underlying the relationship between immunity, inflammation, and cancer 

progression, and suggest that therapies targeting the immune system may have a major impact 

on breast cancer recurrence. 

Breast cancer recurrence 

For patients with breast cancer, following initial diagnosis, early stage breast cancers are locally 

resected, whereas patients with locally advanced breast cancers may receive neoadjuvant 

chemotherapy prior to surgery, in order to permit surgical resection of their cancer.  Metastatic 

breast cancer is unlikely to be cured, and therefore goals of treatment in this setting are 

prolongation of survival and quality of life [43].  Patients whose primary tumors have been 

surgically removed may then undergo adjuvant therapy, in order to delay or prevent disease 

recurrence by eliminating subclinical disseminated disease.  At this point, patients may receive 

targeted therapies based on their tumor’s histopathological subtype, such as tamoxifen to inhibit 

ER or trastuzumab and pertuzumab to inhibit HER2.  For patients who are not candidates for one 

of these therapies, they may have their tumors sequenced, in order to identify targeted therapies 

that would provide the maximum efficacy.  Despite efforts to choose targeted therapies with the 
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maximum efficacy for any particular patient, many patients treated with targeted therapies 

ultimately recur, and succumb to their recurrent disease.   

Breast cancer recurrence can be categorized as either locoregional recurrence, or distant 

recurrence.  Survival following locoregional recurrence is generally superior to survival following 

distant recurrence.  Following breast conservation therapy, local recurrence usually occurs within 

the breast, whereas following mastectomy, local recurrence occurs in the chest wall.  Regional 

recurrence indicates a recurrence in regional lymph nodes.  Ten-year overall survival rates 

following local recurrence after breast conservation therapy is as high as 80%, however five-year 

overall survival rates for patients with recurrence in the chest wall or regional lymph nodes are up 

to 52% or 28%, respectively [44].  Patients with distant recurrence are not likely to be cured.  

Although targeted therapies have led to improvements in OS for these patients [45, 46], the five-

year OS for breast cancer patients with metastatic disease is only 22% [47].  Factors that are 

prognostic for OS at primary tumor presentation are generally prognostic for RFS, given that 

distant disease recurrence is the primary cause of breast cancer-related mortality in these 

patients.  Residual tumor cells that survive therapy are termed minimal residual disease (MRD), 

and are responsible for cancer recurrence.   

Different breast cancer subtypes exhibit different recurrence kinetics.  While TNBC and HER2-

positive breast cancer predominantly recur within 5 years of initial therapy, hormone receptor-

positive breast cancer has a nearly-constant rate of cancer recurrence for 20 years [48].  As 

recurrent disease arises from residual disease that survives initial therapy, disease relapse up to 

20 years after initial treatment is consistent with reports detecting MRD in patients decades after 

initial therapy [48]. 

Given that recurrent breast cancer is generally incurable, therapies that eliminate residual breast 

cancer prior to acquisition of a recurrent phenotype may decrease the rate of recurrence and 

thereby improve OS for breast cancer patients.  Given the heterogeneity of oncogenic pathways 

driving tumor progression, and the diversity of resistance mechanisms that have been described, 

it would be useful to identify biological qualities shared by residual disease in different settings.  
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Considering clinical evidence suggesting MRD may be dormant prior to tumor recurrence in 

patients with a long recurrence latency, dormancy may offer a therapeutic target in these patients.  

However it is unclear whether dormancy plays a role in tumor recurrence where the latency 

period is not decades long. 

Residual disease and cancer dormancy – Incidence and relevance to recurrence 

To develop approaches for preventing tumor recurrence, recent clinical efforts have aimed to 

better understand the incidence and biology of residual disease.  Residual disease can be 

detected as circulating tumor cells (CTCs) in the blood, or disseminated tumor cells (DTCs) in the 

bone marrow, by identifying cells expressing tumor-specific markers.  Indeed, the 2008 FDA 

approval of the CELLSEARCH platform for detecting CTCs, using the epithelial marker EpCAM, 

represents both the widespread acceptance of the clinical importance of detecting residual 

disease as well as a general reliance on epithelial markers for this process [49].  The ability to 

detect MRD has revealed that dissemination can occur early in tumorigenesis, such that up to 

40% of early-stage breast cancer patients harbor DTCs [50].  Studies have found that the 

presence of MRD following treatment is an independent prognostic indicator for poor RFS in 

breast cancer [51], suggesting that this residual disease may give rise to recurrent tumors.  This 

finding may apply outside of breast cancer as well, as subsequent studies have demonstrated a 

connection between detectable MRD and outcome in other cancer types as well [52-59].  In spite 

of the paramount clinical importance of understanding the biology of residual disease in order to 

develop approaches to prevent recurrence, the biology of MRD remains largely unknown. 

Growth rates of breast cancers that recur after a long period of latency are inconsistent with a 

Gompertzian growth model following initial therapy, and therefore a period of tumor dormancy 

has been proposed to explain long recurrence latency of breast cancer [60, 61].  The idea that 

residual disease is dormant is supported by analyses showing that DTC in the bone marrow of 

breast cancer patients are frequently Ki67 negative [62-65].  More recently, long recurrence 

latencies have been identified for patients with melanoma [66], renal cell carcinoma [67], and 
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other cancer types as well [68, 69], suggesting that dormancy may occur in these malignancies 

as well. 

In spite of the large number of patients with MRD, the association between MRD and recurrence, 

and clinical evidence that MRD is dormant, it remains unclear whether dormancy offers an 

attractive therapeutic target.  First, growing tumors may be comprised predominantly of tumor 

cells that are Ki67 negative [70, 71].  Hence, analysis of Ki67 alone may be insufficient to prove 

that DTCs are dormant.  These cells may instead represent the non-proliferative fraction of a 

tumor, or alternatively exhibit cell cycle arrest for a reason other than dormancy, such as 

senescence.  Further, while patients with hormone receptor positive breast cancer may exhibit a 

latency period of more than two decades prior to recurrence, many breast cancer patients recur 

within the first few years after treatment, and thus it remains unclear whether residual disease in 

these patients undergoes dormancy prior to recurrence.  Indeed, as tumors with a diameter 

smaller than 1 cm are below the detection limits for modern imaging modalities [72], and the 

efficacy of adjuvant chemotherapy is predicated on the idea that subclinical disseminated disease 

is actively growing, it is likely that many patients harbor proliferative residual disease at the time 

they initially receive therapy.  Thus, demonstrating the relevance of cancer dormancy to cancer 

recurrence in a broader population of cancer patients remains a critical task. 

Residual disease and cancer dormancy – Biology 

If a large fraction of the residual disease that gives rise to recurrent tumors is dormant, and thus 

dormancy offers an attractive therapeutic target, the next task – developing therapeutic 

approaches to eliminate dormant tumor cells or maintain them in a dormant state in order to 

prevent recurrence – remains challenging due to the paucity of information on the in vivo biology 

of dormancy.  Dormancy can be divided into two categories, tumor mass dormancy and cellular 

dormancy or quiescence [73].  Tumor mass dormancy occurs when a proliferating population of 

tumor cells is unable to grow at a Gompertzian rate due to a countervailing level of cell death 

caused by a lack of vasculature (angiogenic dormancy), or an anti-tumor immune response 

(immunological dormancy).  Cellular dormancy occurs when tumor cells have exited the cell cycle 
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for a prolonged period of time, and thus the tumor does not grow.  Clinical identification of DTCs 

that lack the proliferation marker Ki67 supports a role for cellular dormancy in MRD and tumor 

progression.  The following section will focus on the biology of cellular dormancy in order to 

provide a background necessary for contextualizing subsequent findings in this thesis. 

Recent studies have begun to elucidate microenvironmental factors that can contribute to 

dormancy of solitary disseminated breast cancer cells in various microenvironments, including the 

bone marrow.  Mesenchymal stem cells (MSCs) within the bone marrow reside in a quiescent 

state within their niche, and can lead to cell cycle arrest of nearby immune cells that had 

previously been activated, similar mechanisms may contribute to dormancy of tumor cell in the 

bone marrow [74].  Indeed, recent data from in vitro co-culture studies demonstrate that, in an 

analogous manner, bone marrow MSCs may induce a dormant state in breast cancer cells by 

signaling through exosomal miR-23b [75].  A separate publication recently found that stable 

vasculature can promote tumor cell dormancy through secretion of thrombospondin-1, whereas 

sprouting neovasculature triggers dormant tumor cell proliferation through periostin and TGF-β1 

[76].  While these studies support their in vitro findings by correlating in vivo expression of 

components of the molecular pathways identified in vitro with the presence of disseminate tumor 

cells, it remains a possibility that the molecular mechanisms identified in these studies that are 

able to regulate dormancy in vitro are not the exact same as those that actually regulate 

dormancy in vivo.  Thus, studies that systematically examine pathways activated or inactivated in 

dormant tumor cells in vivo may provide a more accurate understanding of the biology of 

dormancy. 

Outside of the bone marrow, several studies have identified dormant isolated breast cancer DTCs 

in lungs or liver [77, 78].  In an attempt to identify molecular mechanisms underlying dormancy of 

DTCs in the lung, a recent study indicates that bone morphogenic protein (BMP) signaling may 

promote dormancy, whereas the inhibitor of BMP signaling Coco may allow dormant tumor cells 

to resume growth [79].  Additional studies of breast cancer DTCs in cortical bone indicate that 

recruiting monocytes to sites of micrometastases may trigger outgrowth of bone metastases from 
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previously indolent disease [80].  These studies suggest that a wide variety of mechanisms may 

regulate escape from dormancy. 

Beyond studies in models of breast cancer, other models have also contributed towards a more 

thorough understanding of cellular dormancy.  A series of experiments with human head and 

neck squamous cell carcinoma (HNSCC) cells in chicken chorioallantoic membranes revealed a 

role for urokinase plasminogen activator receptor (uPAR) in cellular dormancy.   When expressed 

at high levels, uPAR activates the fibronectin receptor integrin α5β1, which binds to fibronectin in 

order to organize complexes with focal adhesion kinase or EGFR that up-regulate the ratio of 

activated ERK to activated p38, maintaining tumor cells in a proliferative state [81-83].  In 

contrast, when low levels of uPAR are present in tumor cells, the disorganized fibronectin fibrils 

cannot bind to integrin α5β1, leading to a low ratio of activated ERK to activated p38, thus 

promoting tumor cell dormancy [81-82].  Following with the line of reasoning that a low ratio of 

active ERK to active p38 can induce dormancy, recent work with dormant HNSCC cells in mouse 

bonne marrow suggests that TGF-β2 signaling through a TGF-β3 complex can promote 

dormancy by activating p38, which leads to dormancy by up-regulating the transcriptional 

repressor DEC2 and repressing the transcription factor FOXM1 [84]. 

These studies are predicated on a model wherein dormancy occurs when individual tumor cells 

metastasize to new sites, but fail to give rise to macrometastases because they undergo cellular 

dormancy.  The above models do not show, however, that isolated dormant tumor cells that 

become dormant at metastatic sites subsequently give rise to recurrences in vivo, as they usually 

rely on ex vivo manipulation to switch dormant cells to a proliferative state.  As dormancy is 

primarily of interest because it may represent a state that tumor cells pass through prior to 

recurrence, it is critical that studies investigating residual disease use models that demonstrate 

spontaneous recurrence following a period of dormancy in vivo. 

The breadth of mechanisms that may underlie dormancy across these different settings raises the 

possibility that different therapeutic strategies would be required to target dormancy in different 
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settings.  From a therapeutic development perspective, this is less attractive than the idea of a 

single mechanism or pathway common to all dormant tumor cells. 

Towards the end of identifying a single conserved mechanism describing residual disease across 

multiple settings, the ‘cancer stem cell’ theory posits the existence of cancer stem cells (CSCs), 

which suggests that a single population of tumor cells is responsible both for primary tumor 

development, metastatic outgrowth, and resistance to therapy, and further that this tumor cell 

population typically exhibits extremely low levels of proliferation consistent with dormancy [85].  

As the CSC theory proposes that CSCs are the only cells capable of giving rise to tumors, the 

identification of tumor cell populations enriched for tumor initiating cells (TICs) is a means to 

identify tumor cell populations enriched for putative CSCs.  This assay has identified 

CD44+CD24- breast cancer cells as a putative breast cancer stem cell population [86].  Recent 

reports demonstrate that breast cancer cells that have undergone an EMT exhibit a CD44+CD24- 

surface phenotype, and are enriched for TICs [87].  Taking these ideas together in the context of 

the aforementioned clinical findings, it is appealing to conceive that dormant tumor cells exhibit a 

mesenchymal morphology, survive therapy, and give rise to tumors at metastatic sites.  Indeed, it 

has been proposed that EMT may be associated with dormancy due to its association with stem-

like cancer cells [88, 89].  Some clinical reports support the idea that residual disease may have 

either a phenotype associated with TICs, such as CD44+CD24- breast cancer cells [90], or be 

enriched for tumor cells with a mesenchymal phenotype [37].  However, alternate studies indicate 

that residual disease may not necessarily acquire a mesenchymal phenotype [38], and thus the 

phenotype of residual disease remains unclear.  This may reflect in part the challenge of 

unambiguously identifying residual tumor cells that survive therapy and have completely lost 

expression of epithelial markers after complete EMT, however methods for detecting residual 

disease in humans still rely on markers present in primary tumor cell populations that may no 

longer be expressed by residual tumor cells. 

Separate studies using inducible transgenic mouse models suggest that residual disease may be 

enriched for dormant tumor cells that express markers associated with a stem cell phenotype, 
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however these studies fail to use markers that unambiguously identify residual tumor cells, and 

consequently it is difficult to determine whether they provide an unbiased picture of residual 

disease [91, 92].  Further, these studies do not investigate angiogenic insufficiency or 

senescence, so it remains unclear whether residual disease in these models is truly dormant.  

Additionally, as neither of these models is reported to demonstrate spontaneous tumor 

recurrence, it is unclear whether the findings from these models can be applied to residual 

disease that gives rise to recurrent tumors.  Interestingly, the report of Ki67 negative residual 

disease in models driven by two distinct oncogenes expressed in two different cells of origin 

together suggest that exit from the cell cycle may be a general quality of residual tumor cells that 

survive targeted therapy. 

Together, the above studies demonstrate that a wide variety of mechanisms may control tumor 

cell dormancy.  Critically, none of the above studies investigating dormancy demonstrate the 

presence of a dormant tumor cell population that subsequently gives rise to recurrence in vivo.  

Additionally, while some evidence supports the idea that residual disease may be enriched for a 

stem cell-like phenotype following oncogenic pathway inhibition, previous studies have not used 

unambiguous markers such as fluorescent proteins to identify residual tumor cells, and thus it 

remains unclear whether they represent an analysis of all residual tumor cells, or only those that 

express markers present on tumor cells in the primary tumors.  Thus, models that allow 

unambiguous identification of dormant residual tumor cells that give rise to recurrence could 

significantly improve our understanding of residual disease that survives oncogenic pathway 

inhibition.  

Residual disease and cancer dormancy – Therapeutically targeting dormant disease 

Although the best strategy to eliminate dormant tumor cells or prevent dormant tumor cells from 

re-entering the cell cycle is unclear, a wide array of approaches have emerged.  Strategies to kill 

residual tumor cells include targeting the cytoskeleton of dormant tumor cells [93], reactivation of 

metabolic demand in residual cells unable to increase biosynthetic capability [94], inhibition of the 

limited transcriptional machinery [95], or using high throughput screening methods to 
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systematically identify methods to kill dormant tumor cells.  Alternatively, therapies that maintain 

dormant tumor cells in a quiescent state may also prevent tumor recurrence.  Towards this end, 

strategies that target the pathways maintaining tumor cells in a dormant state, or epigenetic drugs 

that can induce a dormancy-like state, have been proposed as another type of dormant-targeted 

therapy [96].  A strategy that is less clearly dormancy-specific is targeting kinases involved in 

recurrent tumor growth [97], although referring to this as a dormancy-targeting therapy may be 

technically incorrect as the therapy’s efficacy is predicated on preventing growth of recurrent 

tumors, and as such can’t be distinguished from therapies targeting escape pathways active in 

recurrent tumors. 

As approaches to therapeutically target dormant disease continue to emerge and mature, models 

that exhibit dormancy prior to recurrence in vivo will be critical to their preclinical testing.  

Consequently, characterizing the biology of dormant residual disease that gives rise to recurrence 

in vivo may provide important insights into such therapies.  

Dissertation objectives 

Residual disease gives rise to recurrence, however little is known about the generalizable 

qualities of residual disease in vivo, thus making it difficult to detect and target.  Clinical data 

suggest that isolated DTCs unable to give rise to metastases may generally exhibit a dormant 

phenotype, however whether residual disease that gives rise to recurrent tumors exhibits 

dormancy remains unknown, thus the potential efficacy of targeting dormancy remains unclear.  

Further, the molecular profile of dormant residual disease that gives rise to recurrence in vivo 

remains unknown, limiting our ability to target residual disease.  The goals of this dissertation are 

to provide insight into the relevance and biology of cellular dormancy as a general characteristic 

of MRD, to identify generalizable qualities associated with residual disease, and to test 

therapeutic strategies that prevent the recurrence of residual disease. 

Objective 1: Identify generalizable qualities of residual disease across two models of breast 

cancer driven by different oncogenes 
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Using fluorescent protein to track tumor cells, we identified dormant residual disease present at 

sites that previously harbored tumors.  Immunofluorescence (IF) staining and intravital labeling 

demonstrated that outgrowth of residual disease is not limited by angiogenic insufficiency.  

Dormant tumor cells located in minimal residual lesions can be identified both at local sites in 

HER2/neu and Wnt1-driven murine models of breast cancer, and also at metastatic sites in these 

models.  Additionally, we demonstrate that human breast cancer displays a dormant phenotype 

following oncogenic pathway inhibition in vivo.  Thus, we identify dormancy as a candidate 

generalizable quality of residual disease. 

We also use gene expression profiling of residual tumor cells in the HER2/neu and Wnt1 models 

in order to determine similarities between the molecular profiles of dormant residual disease in 

models driven by different oncogenes.  This analysis revels a dramatic overlap between the 

profile of residual disease in these two different models, including enrichment for gene expression 

profiles associated with normal and neoplastic stem-like cells.  In spite of previous reports 

indicating that an EMT is associated with a dormant stem-like population of tumor cells, we find 

that only residual tumor cells in the HER2/neu model exhibit EMT.  Surprisingly, we find that 

residual disease is not enriched for primary TICs but may be enriched for recurrent tumor TICs, 

thereby suggesting an evolution of TIC populations in response to targeted therapy. 

Objective 2: Elucidate the role of the immune system and inflammation in dormancy and 

recurrence 

Our investigation into the generalizable qualities of residual disease revealed that macrophages 

are recruited to local HER2/neu residual disease.  Macrophages may promote cancer growth and 

resistance to therapy, however their impact on dormant residual disease remains unknown.  We 

hypothesized that macrophages promote breast cancer recurrence through local inflammatory 

signaling, and thus that either abrogating inflammatory signaling or ablating macrophages within 

residual disease would inhibit tumor recurrence.  We investigated the impact of both modulating 

inflammation and macrophage ablation on tumor recurrence latency to test our hypothesis. 
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We identified strategies that promote both inflammation and tumor recurrence, and found that 

dexamethasone administration inhibited tumor recurrence at doses that also ablated 

macrophages.  Methods targeting c-fms-based signaling were able to ablate the majority of 

macrophages within residual disease, however their impact on tumor recurrence was very small 

in comparison to the impact of dexamethasone.  We found that dexamethasone ablated pro-

inflammatory CD11c+ macrophages, whereas c-fms-targeted therapy did not ablate this 

macrophage population, thus providing a tenable explanation for the different efficacy of 

dexamethasone and c-fms-targeted therapy. 
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Figure Legend 

Figure 1.1.  Cumulative Number of Targeted Therapy New Medical Entity (NME) Approvals 

by the FDA 

 

Figure showing the cumulative number of FDA NME approvals from 1996 – 2013. 
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CHAPTER 2 

 

Modeling Cancer in Mice 

Introduction to cancer models 

Cancer models are a primary tool in the cancer researcher’s armamentarium, as they allow 

systematic manipulation of known parameters in order to test specific hypotheses related to 

cancer.  Ideally, these models faithfully recapitulate the molecular and cellular mechanisms 

driving cancer progression in humans, can be experimentally manipulated to precisely answer 

questions about these mechanisms, and provide reproducible results either between investigators 

or over a period of time.  In practice, generating cancer models that meet these ideals is 

challenging for several reasons, including the biologically heterogeneity of cancer, and the 

complexity of performing experiments in the incompletely-understood multiparametric space 

defining biological systems.  This can limit the applicability of models, and thus in order to model 

various elements of cancer progression, a variety of cancer models have been developed, 

including in vitro cell culture, in vivo animal models, and in silico computational representations. 

While all of these models have strengths and weaknesses, animal models are uniquely capable 

of recapitulating all the major stages of cancer progression on a cellular level within a single 

system.  Given that 99% of proteins in humans have homologs in mice, the housing and 

maintenance cost per animal are lower for mice than for larger animals, and the wide variety of 

tools available to genetically manipulate mice, mice represent the most widely adopted animal 

model for studying cancer.  Various types of mouse models exist, including genetically 

engineered mouse models of human cancer (hereafter referred to as GEMMs, although broadly 

defined GEMMs may also refer to non-cancer models), xenograft models, and allograft models.  

Whereas we will discuss xenograft and allograft mouse models later in this text, we will first focus 

on genetically engineered mouse models, due to their central role in this work.  As this thesis 

focuses predominantly on in vivo work in mouse models, we will not discuss the use of non-

mouse animal models, or non-animal models of cancer such as in vitro systems. 



20 
 

Genetically engineered mouse models (GEMMs) 

The first report of a GEMM was published in 1984 [98], and from that time, scientists have used 

GEMMs for various applications including validating oncogenes or tumor suppressors, and 

studying tumorigenesis in situ [99].  The ability of GEMMs to provide important insights into 

human cancer is highlighted by recent efforts using these models in co-clinical trials to investigate 

mechanisms underlying drug efficacy, and to discover clinically relevant biomarkers [99]. 

GEMMs currently used in research have been optimized to recapitulate human tumorigenesis by 

using spatial and temporal control of gene expression to recapitulate phenotypes of cancers 

driven by a plethora of clinically relevant oncogenic drivers, resulting in models that closely 

recapitulate human tumorigenesis.  The tools used to develop transgenic mouse models of 

cancer have been examined extensively elsewhere [99], but will be briefly reviewed here.  

Techniques to control gene expression spatially include both driving oncogene expression 

through a tissue-specific promoter and viral gene delivery, the latter of which can also temporally 

control gene expression.  Additional methods to temporally control gene expression include the 

use of tetracycline-regulated promoters, and the estrogen receptor fusion system.  For example, 

a model where expression of the reverse tetracycline transactivator (rtTA) is controlled by the 

mouse mammary tumor virus long terminal repeat (MMTV) allows doxycycline-dependent 

expression of downstream oncogenes specifically in mammary epithelial cells [100].  Transgenic 

models also permit inclusion of reporters that allow monitoring of gene expression, such as firefly 

luciferase downstream of an oncogene to monitor oncogene activity, or tracking of individual 

tumor cells through expression of fluorescent proteins such as green fluorescent protein (GFP), 

yellow fluorescent protein (YFP) or tdTomato.  Newer efforts to develop transgenic models 

include using RNAi in lieu of knockouts [101], chimeric organ transplantation models [102], and 

humanized knock-in mouse models [103]. 

In spite of efforts made to optimize the similarities between GEMMs and human cancer, GEMMs 

differ from human cancer in several key metrics.  Differences in the size of mice compared to 

people result in difficulty when modeling many parameters related to size, such as the size of a 
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tumor relative to the organ from which it arises or a tumor’s growth rate, and thereby latency and 

spread prior to detection.  While approximately 99% of mouse proteins have human homologs, 

sequence differences in these proteins, as well as different molecular circuitry regulating the 

expression of these proteins, makes molecular findings in mice difficult to systematically 

extrapolate to humans [104].  The mutational background of tumors that arise in GEMMs may not 

reflect that of human cancer, and given that resistance in human cancer can arise from genomic 

alterations, this represents a critical hurdle to the use of GEMMs to predict biology of resistance 

in humans.  The germline background of mice is also constrained to homogenous inbred strains 

that fail to reflect the massive genetic diversity of germline variations defining the human 

genomes from which human cancers arise.  While GEMMs are not always predictive, work is 

underway to ‘further improve the predictive potential of GEMMs in clinical studies.’ 

In spite of differences between GEMMs and human cancer, a wide range of studies indicate that 

GEMMs will remain an important tool for studying clinically relevant questions in cancer 

progression.  The cure for acute promyelocytic leukemia (APL) was developed in part through 

experimentation in GEMMs, due to the ability of these models to recapitulate response to therapy 

of the human disease [104, 105].  Putative mechanisms underlying the efficacy of several 

immune therapies have been identified in GEMMs [106, 107].  GEMMs were used to identify a 

role for both the loss of HER2 in previously HER2-positive breast cancer, as well as EMT, in 

cancer recurrence several years prior to when these phenomenon were observed in recurrent 

cancer in humans [108].  Additional studies reveal a critical role of GEMMs for studying the 

biological roles of drug targets and identifying alternative mechanisms underlying resistance to 

therapy [103], for identifying mechanisms underlying tumor resistance to therapy [99, 105, 109-

113].  Thus, GEMMs may be useful models to study both the role of the immune system in 

cancer, as well as mechanisms underlying resistance to targeted therapy. 

Non-GEMM animal models  

Mouse models other than GEMMS, such as xenograft and allograft models, provide alternative 

approaches to modeling cancer in mice, and are associated with unique strengths and 
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drawbacks.  These models involve implantation of tumor cells into host mice.  Orthotopic 

implantation of tumors cells, wherein tumor tissue is implanted into the organ associated with that 

tumor type, is preferred because the microenvironmental signals impacting the implanted tumor 

cells are more likely to be analogous to those impacting an autochthonous tumor.  An example of 

orthotopic implantation is implantation of breast cancer cells into the mammary gland of a mouse.  

A less desirable alternate approach is ectopic implantation, wherein tumor cells are implanted into 

a site not normally associated with the normal growth of those tumor cells.  An example of an 

ectopic implantation is subcutaneous implantation of breast cancer cells.  Other mouse models 

for cancer, including carcinogen-induced and spontaneous cancer models, are discussed in detail 

elsewhere but their discussion is not pertinent to this thesis [99]. 

Xenograft models involve the use of human cancer cells to grow cancer in mice, and extremely 

immunocompromised mice are often used in order to minimize the mouse host’s anticancer 

immune response to the implanted cells.  Human cancer cells in mice can contain the same 

genetic mutations and express the same proteins present in cancers in patients, and thus the 

efficacy of therapeutics targeting human proteins may be more faithfully recapitulated when 

generating orthotopic tumors using human tumor cells than mouse tumor cells.  The term 

‘xenograft’ model used in isolation frequently refers to the use of a human cancer cell line 

cultured in plastic prior to injection in mice.  In vitro culture acts as a bottleneck that can skew the 

phenotype of tumor cells away from the phenotype they demonstrate in humans.  In contrast, a 

newer method of establishing xenografts, implanting complete human cancer – including stroma 

– directly into mice, can result in both faithful recapitulation of the genotype of the donor tumor, as 

well as generation of a human stroma derived from the donor tumor stroma.  This approach 

allows investigators to generate biological replicates of the same donor tumor, and thus perform 

controlled experiments in order to test hypotheses about the donor tumor.  While GEMMs and 

human cancer cell lines may exhibit genomic alterations that do not reflect precisely the 

mutations found in cancer patients, patient-derived xenograft (PDX) models are thought to more 

faithfully recapitulate these mutations, and thus may be useful for identifying genomic alterations 

that underlie resistance in vivo.  A significant disadvantage to the use of PDX models is that it can 
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be challenging to manipulate the tumor cells in order to test experimental hypotheses, as 

methods for tumor cell manipulation – such as overexpression or knockout of target proteins – 

are typically designed for in vitro culture.  Another disadvantage to xenograft models is that 

dramatically immunocompromised mice such as NOD/scid/Il2γnull (NSG) mice are more likely to 

allow engraftment and growth of tumor cells than mildly immunocompromised mice such as nu/nu 

mice, which dramatically curtails the potential for studying immunity in cancer progression in 

these models. 

In contrast to xenograft models, allograft models involve implantation of cancer cells arising from 

a mouse into a separate host mouse.  The host mouse may either be immunocompromised, or 

alternatively may be from the same strain and genotype, called a syngeneic allograft.  While 

these models may not recapitulate the specific mutational aberrations present in human cancers, 

and mouse proteins may lack exact homology to their closest human homologs thereby 

inaccurately representing the efficacy of therapeutics developed to target human cancer cells, 

these models have several advantages over xenograft models.  The ligands and receptors on the 

implanted tumor cells will be from the same species as the microenvironmental factors that 

support the growth of the implanted tumor cells, thus the impact of the microenvironment on 

tumor cells will more accurately represent what would be present in an autochthonous tumor than 

would be the case for a xenograft tumor.  Further, the use of syngeneic hosts enables 

investigators to produce syngeneic tumors in multiple animals with a fully intact immune system, 

thereby providing a system well-suited to test hypotheses about the role of immunity in cancer. 

Disadvantages of allograft models and GEMMs relative to xenograft models can be partially 

overcome.  Using therapeutics developed against mouse proteins, homologous to therapeutics 

developed against human proteins, allows one to perform preclinical testing in GEMM and 

allograft mouse models with intact immune systems.  There are also circumstances in which 

therapeutics used in humans have pharmacodynamic profiles in mice analogous to those in 

humans, which further permits preclinical testing in mouse models. 
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CHAPTER 3 

  

Modeling Dormant Residual Disease and Breast Cancer Recurrence 

The vast majority of breast cancer deaths are due to disease relapse following a period of clinical 

remission after treatment.  In this regard, a cardinal feature of human breast cancers is the 

survival and persistence of residual tumor cells in a latent state despite treatment of the primary 

tumor.  These surviving tumor cells, termed MRD, serve as the reservoir from which recurrent 

breast cancers arise.  At present, little is known about the biology of MRD or the nature of the 

latent state in which they reside.  Using conditional transgenic mouse models for human breast 

cancer driven by either HER2/neu or Wnt1, we demonstrate that residual tumor cells surviving 

oncogenic pathway inhibition exhibit cellular dormancy at local as well as metastatic sites.  In an 

analogous manner, we find that human breast cancer cells are quiescent following targeted 

therapy in vivo.  Residual tumor cells from both HER2/neu and Wnt1-induced tumors exhibit a 

gene expression program characteristic of normal and neoplastic mammary stem cells and 

cellular quiescence, whereas EMT transition occurred in HER2/neu, but not Wnt1, residual 

disease.  Surprisingly, while both HER2/neu and Wnt1 residual tumor cells displayed phenotypic 

properties associated with tumor initiating cells (TICs), functional assays revealed that residual 

tumor cells were not enriched for primary tumor TICs , but were instead enriched for TICs 

capable of giving rise to recurrent tumors.  Together, our data reveal that targeted therapies 

predicated on oncogene addiction give rise to a small population of dormant tumor cells that are 

capable of re-entering the cell cycle and giving rise to recurrent tumors, and suggest that cellular 

dormancy represents a potential therapeutic target for preventing recurrent breast cancer. 

Modeling oncogenic pathway inhibition  

The recent increase in the clinical adoption of targeted therapies, in combination with the 

dramatic rate of relapse following targeted therapy, have spurred investigation into the biology of 

residual disease that survives therapy and gives rise to tumor recurrence.  Importantly, while 

primary breast cancers can be cured, recurrent breast cancers cannot.  Thus, therapeutic 
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targeting of MRD could represent an attractive approach to reducing breast cancer recurrence by 

depleting the reservoir of residual tumor cells that persists following therapy, or otherwise 

preventing them from giving rise to recurrent cancers.  Unfortunately, little is known about the 

biology of MRD or the pathways that govern the behavior of these cells. 

Mounting clinical evidence suggests that tumor dormancy may offer a therapeutic window through 

which to target MRD and thereby prevent tumor recurrence [114-117].  For example, DTCs in the 

bone marrow or circulating tumor cells (CTCs) in the blood of cancer patients have been reported 

to be quiescent and to persist throughout treatment, suggesting that recurrent cancers may arise 

from dormant tumor cells [118-120].  Nevertheless, it is also possible that tumor relapse in 

patients results from proliferative, yet subclinical, micrometastases that survive therapy.  If true, 

this would suggest that dormancy is unlikely to constitute a useful therapeutic target.  In light of 

this uncertainty, determining whether dormancy plays a role in tumor cell survival and recurrence 

is essential for understanding whether MRD represents a stage of neoplastic progression that 

would be vulnerable to therapies targeting cellular dormancy. 

At present, remarkably little is known about the biology of dormancy.  This reflects difficulties in 

identifying and isolating dormant tumor cells in humans, as well as the general lack of animal 

models for studying dormancy in vivo.  To this end, we previously described doxycycline-

dependent conditional transgenic mouse models for breast cancer in which HER2/neu, Wnt1, or 

c-MYC pathway inhibition results in the regression of primary mammary tumors to a non-palpable 

state, persistent MRD, and eventual relapse following a latent period of remission [108, 121, 122].  

Notably, recurrent tumors arising in the HER2/neu-induced tumor model were frequently HER2-

negative and had undergone an EMT.  In an analogous manner, clinical observations have 

subsequently revealed that recurrent cancers, as well as MRD, can exhibit phenotypes distinct 

from the primary tumors from which they arose, both with respect to EMT and to the loss of HER2 

expression in breast cancers that were previously HER2+ [37, 123, 124].  These findings highlight 

the plasticity of neoplastic progression and suggest that conditional transgenic mouse models 
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may provide a tractable approach to identifying residual tumor cells and elucidating mechanisms 

of cancer progression following therapy [108, 125, 126]. 

The biological properties of residual tumor cells that give rise to recurrent cancers following a 

variable latency period have not, as yet, been described in vivo.  In principle, at least three types 

of tumor dormancy have been described that could potentially contribute to the latent period of 

MRD prior to tumor recurrence: angiogenic dormancy, cellular dormancy and immunological 

dormancy.  At present, however, the nature of the latent state in which residual tumor cells reside 

following oncogenic pathway inhibition are unknown.  As such, an improved understanding of 

tumor dormancy will be required to enable the rational design of strategies for detecting and 

eliminating MRD.   

To address this critical gap in knowledge, we now report the use of conditional transgenic mouse 

models for HER2/neu and Wnt1-induced breast cancers to identify features of MRD in vivo that 

are shared for tumors driven by different oncogenes.  By combining cell sorting with gene 

expression profiling, we demonstrate that residual tumor cells that survive oncogenic pathway 

inhibition in vivo exhibit cellular dormancy and express markers characteristic of mammary stem 

cells.  We further demonstrate cellular dormancy at metastatic sites in tumor-bearing mice, and in 

human breast cancer xenografts treated with anti-HER2 therapies.  Contrary to expectation, 

however, limiting dilution assays revealed that residual tumor cells are not enriched for primary 

TICs.  In aggregate, our observations suggest that cellular dormancy may be a general feature of 

residual tumor cells surviving oncogenic pathway inhibition and provide new insights into 

biological properties of MRD relevant to their detection and elimination. 

The kinetics of tumor recurrence following oncogene inhibition suggest dormant residual 

disease 

We previously described conditional bitransgenic mouse models for HER2/neu and Wnt1-induced 

mammary tumorigenesis that recapitulate key features of breast cancer progression as it occurs 

in patients, including primary tumor formation, response to therapy, and a variable latency period 

prior to spontaneous tumor recurrence [108, 121, 127].  In these models, doxycycline 
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administration induces oncogene expression in the mammary epithelium resulting in the 

formation of primary mammary adenocarcinomas.  Analogous to the treatment of human cancers 

with targeted therapies, doxycycline withdrawal in tumor-bearing mice results in oncogenic 

pathway inhibition followed by primary tumor regression due to oncogene addiction [121, 127].  

However, similar to the phenomena of resistance and relapse in patients treated with targeted 

therapies, most mice develop spontaneous recurrent tumors following a variable period of 

latency.  As such, these models provide an opportunity to study the phenotype of residual tumor 

cells that survive targeted therapy and are capable of giving rise to tumor recurrence. 

To identify characteristics of residual tumor cells that are shared between HER2/neu and Wnt-1-

driven tumor models, we first wished to determine whether the kinetics of tumor recurrence are 

similar in these models.  Therefore, we monitored tumor-bearing MMTV-rtTA;TetO-HER2/neu 

(MTB;TetO-HER2/neu) and MMTV-rtTA;TetO-Wnt1 (MTB;TetO-Wnt1) bitransgenic mice in which 

primary tumors had regressed to a non-palpable state following oncogenic pathway inhibition.  

Consistent with previous observations, tumors recurred with stochastic kinetics following 

oncogenic pathway inhibition in both the HER2/neu and Wnt1 models (Figure 3.1A, C). 

A recent study using inducible mouse models for lymphoma and leukemia suggested that long-

term tumor regression following oncogenic pathway inhibition may require the adaptive immune 

system [128].  To determine whether adaptive immunity is required for sustained regression of 

mammary adenocarcinomas in the HER2/neu or Wnt1 models, we injected limited passage tumor 

cells generated from primary mammary tumors arising in MTB;TetO-HER2/neu (HER2/neu-

Prim1) and MTB;TetO-Wnt1 (Wnt1-Prim1) mice into the mammary fat pads of 

immunocompromised female nu/nu mice maintained on doxycycline.  Following primary tumor 

formation, doxycycline was withdrawn to induce oncogene down-regulation and tumor regression.  

Mice bearing fully regressed orthotopic tumors were then monitored for tumor recurrence.   

Orthotopic primary tumors recurred with stochastic kinetics following a variable latency period, 

paralleling our findings in intact MTB;TetO-HER2/neu and MTB;TetO-Wnt1 mice (Figure 3.1B, D).  

Notably, orthotopic tumors recurring after either short or long intervals exhibited similar growth 
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rates – a feature that was also observed for recurrent tumors arising in intact mice (Figure 3.1E).  

These data demonstrate that the kinetics of tumor recurrence in orthotopic mouse models parallel 

those in intact mice and further indicate that a competent adaptive immune system is not required 

for sustained periods of tumor regression of up to 200 d following oncogenic pathway inhibition in 

genetically engineered mouse models. 

Our observation that the growth rates of recurrent tumors – in both intact and orthotopic mouse 

models – are independent of the length of the latent period that preceded their detection was 

reminiscent of observations in breast cancer patients suggesting the potential existence of a 

dormant phase between the treatment of primary tumors and their subsequent recurrence at local 

or distant sites [115].  Therefore, to address whether mice bearing fully regressed mammary 

tumors harbor dormant residual disease, we first readministered doxycycline to intact MTB;TetO-

HER2/neu mice whose primary tumors had regressed to a non-palpable state following 

doxycycline withdrawal, but had not exhibited spontaneous tumor recurrences when maintained 

off doxycycline for a period of six months.   

Following doxycycline re-administration and re-expression of the HER2/neu transgene, all mice 

developed recurrent tumors at the original sites of their primary tumors within two weeks, but did 

not develop tumors at other sites (Figure 3.1F).  This finding demonstrates that essentially all 

mice bearing tumors that have regressed to a non-palpable state harbor residual cancer cells that 

are capable of giving rise to recurrent tumors.  Moreover, since the median latency for 

spontaneous tumor recurrence was 17 wk, and since more than a year was required for 95% of 

mice to recur, the observation that HER2/neu transgene reactivation resulted in the appearance 

of recurrent tumors within 2 wk strongly suggests that mice bearing fully regressed primary 

mammary tumors harbor dormant residual disease.   

Minimal residual lesions contain residual tumor cells 

The molecular analysis of dormant residual tumor cells first requires their identification and 

isolation.  To identify residual cancer cells, doxycycline was withdrawn from tumor-bearing 

MTB;TetO-HER2/neu and MTB;TetO-Wnt1 mice to induce oncogenic pathway inhibition and 
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tumor regression.  Mice were sacrificed 56 d following doxycycline withdrawal and carmine 

staining was performed on whole-mounted mammary glands that either did, or did not, harbor 

tumors prior to doxycycline withdrawal.  This analysis revealed the presence of abnormal 

histological lesions in mammary glands that had previously harbored a primary tumor, but not in 

mammary glands that had not harbored tumors (Figure 3.2A, B arrows).  Hematoxylin and eosin 

(H&E) staining of tissue sections from previously tumor-bearing glands revealed that residual foci 

were densely cellular (Figure 3.2C, D). 

To determine whether abnormal foci observed in whole mounts and histological sections 

contained residual tumor cells that had survived oncogenic pathway inhibition, or were instead 

composed of host stromal cells or residual scar tissue, doxycycline-dependent primary tumor 

cells derived from HER2/neu and Wnt1 primary tumors were stably transduced to express H2B-

eGFP and injected orthotopically into the mammary glands of female nu/nu mice maintained on 

doxycycline.  Following primary tumor formation, doxycycline was withdrawn to induce tumor 

regression and mice were sacrificed 56 d later.   

H&E staining of histological sections from residual lesion-bearing mammary glands revealed 

cellular foci within a dense eosinophilic extracellular matrix (ECM) similar to those identified in 

intact mice (Figure 3.2E).  Fluorescence microscopy confirmed the presence of eGFP-labeled 

tumor cells within these residual foci, which we term minimal residual lesions (MRLs) (Figure 

3.2F). 

As metastatic breast cancer is the primary cause of mortality for this disease, we also wanted to 

establish models for systemic metastases.  Towards this end, we performed intracardiac injection 

of HER2/neu-Prim1 tumor cells into the left ventricle of nu/nu mice on doxycycline.  Injection into 

the left ventricle allows tumor cells to bypass the lungs, which otherwise serve as the primary 

metastatic site for the majority of tumor cells injected intravenously.  Using this system, we were 

able to generate systemic metastases in the nu/nu mice, which we observed both with 

bioluminescence firefly luciferase imaging (Figure 3.3A) and with GFP fluorescence upon gross 

dissection (Figure 3.3C).  Consistent with our previous observations of metastatic disease [127], 
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luciferase activity was completely diminished following doxycycline withdrawal, indicating that the 

oncogene can be turned off at metastatic sites following doxycycline withdrawal (Figure 3.3B). 

To develop a model of systemic metastases in which tumor cells specifically express fluorescent 

proteins, but that had been minimally manipulated in vitro, we crossed MTB;TetO-HER2/neu mice 

with TetO-TurboCre (TTC);Rosa26-lox-stop-lox-YFP (rYFP) mice to generate MTB;TetO-

HER2/neu;TTC;rYFP mice in which doxycycline administration results in the inducible expression 

of both HER2/neu and cre recombinase specifically in mammary epithelial cells.  Consequently, 

doxycycline treated mice harbor fluorescent mammary epithelial cells, due to Cre-mediated 

excision of the stop cassette preceding YFP, that HER2/neu-induced mammary 

adenocarcinomas with yield fluorescently-labeled tumor cells.  Alternatively, the fluorophore 

tdTomato was used in place of the fluorophore YFP in some mice, as tdTomato is dramatically 

brighter than YFP.  Enzymatically digested primary doxycycline-dependent tumors from these 

quadtransgenic reporter mice were injected orthotopically into nu/nu mice to generate ‘no culture’ 

orthotopic models, i.e. orthotopic models that had not been cultured, analogous to an allograft 

version of a PDX model. 

Mice bearing no culture orthotopic tumors developed systemic metastases (Figure 3.4).  There 

was a wide range of tumor growth rates across all tumors injected from the same donor, and the 

orthotopic tumors that grew the slowest on doxycycline gave rise to the greatest number of 

metastases in locations other than the lung.  In general, 1 out of 5 mice would have primary 

orthotopic tumors that grew sufficiently slow to generate liver metastases, and bone marrow 

metastases.  While primary metastases formed in mice on doxycycline (Figure 3.4A), upon 

doxycycline withdrawal, metastases regressed and left disseminated residual lesions in different 

organs, including lung, liver, and bone marrow (Figure 3.4B, C). 

Given our observations that these mice can develop systemic disease, we next wanted to know 

whether we could use these mouse models to study CTCs and DTCs, due to the fact that there is 

a large clinical interest in these populations but the biology connecting these populations to 

residual disease that gives rise to recurrence is poorly understood.  We first investigated whether 
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MTB/TAN/TTC/rYFP mice could be used to study these populations.  Flow cytometry revealed 

that peripheral blood leukocytes from MTB/TAN/TTC/rYFP mice expressed YFP (Figure 3.5).  

This occurred only in mice that had both the MTB, TTC, and rYFP transgenes (Figure 3.5A, data 

not shown).  Presumably this occurred due to promiscuous activity from the MMTV-LTR promoter 

in the MTB transgene, as previous studies have indicated that MMTV-LTR may be active in 

leukocyte populations.  MTB/oncogene mice do not develop hematological malignancies, 

because the expression of oncogenes in leukocytes is vanishingly small even in the presence of 

doxycycline.  Thus we were surprised that YFP fluorescence occurs in the absence of 

doxycycline in leukocytes.  This speaks in part to the strength of the Cre-based reporter system, 

and suggests that even low level MMTV activation of Cre is sufficient to lead to excision of the 

stop locus upstream of YFP.  This phenomenon did not occur in all MTB/TAN/TTC/rYFP mice, 

and some mice exhibited YFP expression in only a fraction of their peripheral blood leukocytes 

(data not shown).  Upon establishing orthotopic no culture tumors with this system, the extreme 

rarity of CTC and DTCs combined made it challenging to reliably distinguish fluorescent reporter 

tumor cells from leukocyte doublets in vivo (data not shown). 

As an alternative approach to identify CTC and DTCs, we established orthotopic H2BeGFP-

labeled HER2/neu-Prim1 tumors in nu/nu mice.  Upon generation of primary doxycycline-

dependent bilateral tumors with a mean diameter of 4cm, we were able to use flow cytometry of 

blood drawn from a right ventricle cardiac puncture to identify a large number of CTCs in some of 

these mice (Figure 3.6A, B).  Fluorescence imaging for Hoechst and GFP on sections of frozen 

decalcified bone revealed DTCs (Figure 3.6 C-F).  We then performed flow cytometry for GFP+ 

events on additional nu/nu mice with smaller tumor burdens (‘small tumor’ = 5mm diameter, ‘large 

tumor’ = 15mm diameter), and found a small number of GFP+ events in the blood and bone 

marrow (Figure 3.6 G).  We also identified events in the blood and bone marrow at various stages 

of dormancy and tumor recurrence.  Due to the small number of events identified in these studies, 

it was not possible to definitively say that these events were indeed tumor cells and were not 

simply rare events with high levels of autofluorescence. 
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Residual tumor cells exhibit cellular dormancy 

Based on the stochastic kinetics of mammary tumor recurrence that we observed in MTB;TetO-

HER2/neu and MTB;TetO-Wnt1 mice, as well as the similar growth rates exhibited by recurrent 

tumors irrespective of their latency to recurrence, we hypothesized that residual tumor cells 

surviving oncogene down-regulation exhibit cellular dormancy.  To test this hypothesis, we 

generated orthotopic primary tumors from H2B-eGFP-labeled HER2/neu-Prim1 cells and 

sacrificed mice bearing primary tumors at 0, 28 d or 56 d following oncogene down-regulation.   

IF for Ki67 performed on tissue sections from primary tumors and MRLs revealed Ki67 

expression in 0.25% and 0.17% of residual tumor cells at 28 d and 56 d following HER2/neu 

down-regulation, respectively (Figure 3.7A, D).  In contrast, primary tumor cells exhibited rates of 

Ki67 positivity that were greater than 40-fold higher (p-value primary tumor: vs.  28 d MRL = 

0.011; primary tumor vs.  56 d MRL = 0.029).  This finding indicates that residual tumor cells are 

quiescent following oncogene down-regulation. 

In order to distinguish slow cycling cells from tumor cells undergoing prolonged cell cycle arrest, 

as would be anticipated for dormant tumor cells, we evaluated tumor cell proliferation rates over 

extended periods of time.  Orthotopic primary tumors and MRLs were generated, as above, from 

H2B-eGFP-labeled HER2/neu-Prim1 or Wnt1-Prim1 tumor cells in nu/nu mice and osmotic 

pumps were then employed to deliver bromodeoxyuridine (BrdU) for 2 wk to label cells that 

underwent DNA synthesis during that period. 

Whereas greater than 90% of HER2/neu-Prim1 tumor cells were labeled with BrdU over the 2 wk 

period prior to sacrifice, fewer than 9% of HER2/neu-Prim1 residual tumor cells incorporated 

BrdU over the same time period (Figure 3.7B, E).  In an analogous manner, greater than 95% of 

Wnt1-Prim1 tumor cells were labeled with BrdU over a 2 wk period, while fewer than 8% of Wnt1-

Prim1 residual tumor cells incorporated BrdU during this same period (Figure 3.7C, F).  These 

findings suggest that residual tumor cells from either HER2/neu or Wnt1-induced mammary 

tumors reside in a latent G0-like state following oncogene down-regulation, or are extremely slow 

cycling. 
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The finding that the vast majority of residual tumor cells fail to incorporate BrdU over extended 

periods of time did not distinguish between the possibility that residual tumor cells were dormant 

– existing in a reversible state of cell cycle arrest – and the possibility that these cells had 

irreversibly exited the cell cycle as might occur if cells had undergone senescence or terminal 

differentiation.  To address this question, we generated orthotopic primary tumors and MRLs from 

H2B-eGFP-labeled HER2/neu-Prim1 or Wnt1-Prim1 tumor cells and then re-administered 

doxycycline to mice for 72 hr.  Mice were then injected with BrdU 2 hr prior to sacrifice in order to 

label proliferating cells.   

In both the HER2/neu-Prim1 and Wnt1-Prim1 models, residual tumor cells in MRLs in which 

oncogene expression had been reactivated incorporated BrdU at rates similar to primary tumor 

cells.  In contrast, residual tumor cells within MRLs in which oncogene expression had not been 

reactivated incorporated BrdU at ~20-fold lower rates (Figure 3.7G-J; p-value <0.001 for dormant 

residual tumor cells vs.  primary tumor cells or vs.  reinduced residual tumor cells in both 

HER2/neu and Wnt1 models).  Together, these findings demonstrate that residual tumor cells 

exist in a reversible state of cell cycle arrest following oncogenic pathway inhibition, suggesting 

that these cells exhibit cellular dormancy.   

As cellular dormancy is also associated with a low rate of apoptosis, we used IF to quantify the 

number of tumor cells in the HER2/neu model that expressed the apoptosis marker cleaved 

caspase-3 (CC-3).  While primary tumor cells exhibited more than 2% CC-3 expression, dormant 

residual tumor cells rarely expressed CC-3 at 28d after doxycycline withdrawal, and no residual 

tumor cells expressed CC-3 56 days after doxycycline withdrawal (Figure 3.7 K, L).  This finding 

further supports the possibility that residual tumor cells are dormant. 

Residual disease is well vascularized and is not hypoxic 

Our findings to this point suggested that the latent period between primary tumor regression and 

spontaneous tumor recurrence might be explained if residual tumor cells existed in a state of 

cellular dormancy.  In contrast, prior reports have suggested that sustained tumor regression 

following oncogenic pathway inhibition may be attributable to a lack of functional vascularization 
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[129, 130].  Angiogenic dormancy refers to the state in which ongoing cellular proliferation is 

counterbalanced by hypoxia-induced apoptosis resulting from inadequate vascularization [131].  

Although the extremely low rates of proliferation that we observed in residual tumor cells within 

MRLs suggested a model other than angiogenic dormancy, this finding did not exclude the 

possibility that hypoxia due to a limiting blood supply might contribute to the dormant state of 

residual tumor cells. 

To assess the state of vascularization within MRLs, we first performed IF for the endothelial cell 

marker CD31 on tissue sections from MRLs harvested from orthotopic HER2/neu-Prim1 and 

intact MTB;TetO-Wnt1 mouse tumor models.  This analysis demonstrated that both HER2/neu 

and Wnt1 residual lesions are densely vascularized (Figure 3.8A, B).  Indeed, CD31 staining 

revealed that the density of blood vessels within MRLs is similar to, or greater than, that present 

within actively growing primary tumors (Figure 3.8B). 

The pattern of CD31 staining that we observed in MRLs was consistent with the maintenance of a 

competent microvasculature following tumor regression.  However, CD31 staining could not 

definitively demonstrate that blood vessels within MRLs were functional.  To address this, mice 

bearing orthotopic MRLs generated from H2B-eGFP-labeled HER2/neu-Prim1 tumor cells 28 d 

following HER2/neu down-regulation were intravenously (i.v.) injected with Lectin-Streptavidin-

AlexaFluor647 (Lectin-AF647) to label patent blood vessels.  Virtually all CD31 staining co-

localized with Lectin-AF647, demonstrating that blood vessels within MRLs are well perfused 

(Figure 3.9). 

Though the above data suggested that MRLs contain a patent and robust vasculature, we could 

not exclude the possibility that regions of hypoxia existed within MRLs.  To address this, we 

generated mice bearing orthotopic MRLs from H2B-eGFP-labeled HER2/neu-Prim1 tumor cells 

and intravenously injected those mice with Lectin-AF647, Hoechst 33342 and pimonidazole prior 

to sacrifice.  Pimonidazole forms covalent adducts with proteins in hypoxic microenvironments 

(pO2<10mmHg) and is sufficiently sensitive to detect physiological hypoxia surrounding hepatic 

veins [132].   



35 
 

IF to detect pimonidazole adducts in control experiments revealed that, as anticipated, such 

adducts were present within low-oxygen tension regions of the liver adjacent to hepatic veins 

(Figure 3.8C, arrowhead), but absent from well-oxygenated regions adjacent to the hepatic 

arterial vasculature (Figure 3.8C, arrow).  Strikingly, virtually no pimonidazole staining was 

observed in MRLs examined from multiple animals, indicating that residual tumor cells within the 

MRL are not present within a hypoxic microenvironment (Figure 3.8C). 

As some prior reports have suggested that diffusion of small molecules out of blood vessels may 

be limited within a desmoplastic environment [133], Hoechst 33342 was injected into MRL-

bearing mice to assess whether the absence of pimonidazole staining might be due to restricted 

diffusion of pimonidazole within MRLs.  Specifically, the distribution of i.v.  injected Hoechst 

33342 was evaluated by fluorescence microscopy in order to visualize the ability of small 

molecules to diffuse within the MRL.  Livers from mice bearing MRLs served as positive controls.  

Intravenously injected Hoechst 33342 efficiently labeled the nuclei of cells in both livers and 

MRLs, indicating that small molecules within the circulation can diffuse out of the vasculature and 

gain access to residual tumor cells within MRLs (Figure 3.8C). 

In aggregate, data from both HER2/neu and Wnt1 tumor models support the hypothesis that 

MRLs are well-vascularized with a patent vasculature, and that dormant residual tumor cells 

within MRLs are not hypoxic.  Accordingly, these findings suggest that the dormant state of 

residual tumor cells observed following oncogenic pathway inhibition is not due to the limited 

delivery of oxygen or nutrients resulting from an inadequate blood supply. 

Residual metastatic tumor cells recapitulate features of local residual disease 

As distant recurrence is the primary cause of mortality from breast cancer, we wished to 

determine whether our findings were also true for micrometastatic disease.  We therefore asked 

whether, following oncogenic pathway inhibition, residual lung metastases demonstrated cellular 

dormancy in the context of a well-vascularized microenvironment.   

Fluorescent primary tumors from doxycycline-induced MTB;TetO-HER2/neu;TTC;rYFP mice were 
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enzymatically dissociated and injected orthotopically into nu/nu mice.  Mice that developed 

orthotopic primary tumors also harbored lung metastases.  Doxycycline was withdrawn from a 

cohort of these mice to induce regression of lung metastases, as previously reported [127], and 

lung metastases in mice on doxycycline were compared to residual metastatic foci 28 d following 

doxycycline withdrawal. 

Lung metastases in tumor-bearing mice maintained on doxycycline were histopathologically 

similar to primary tumors and were composed of well-delineated epithelial and stromal 

compartments (Figure 3.10A).  In contrast, residual YFP+ tumor cells were scattered throughout 

an eosinophilic stroma within metastatic foci that had regressed in the lungs of mice in which 

HER2/neu had been down-regulated.  IF for Ki67 revealed that the majority of tumor cells within 

metastases were Ki67+ in mice on doxycycline, whereas metastatic tumor cells within residual 

foci were uniformly Ki67-negative (Figure 3.10B). 

Consistent with our observations in local residual disease, staining for CD31 revealed that 

residual metastatic foci in the lungs of tumor-bearing mice were well-vascularized (Figure 3.10C).   

Human breast cancer cells exhibit quiescence following targeted therapy 

Given that murine mammary tumor cells exhibit cellular dormancy following oncogene pathway 

inhibition, we reasoned that residual human breast cancer cells that survive targeted oncogenic 

pathway inhibition might also be dormant.  To address this possibility, we generated orthotopic 

xenografts from GFP-labeled BT474M1 breast cancer cells in NOD/scid/Il2γnull (NSG) mice that 

had been oophorectomized and implanted subcutaneously with 17β-estradiol pellets.  All mice 

developed orthotopic tumors at sites of injection.  Consistent with the identity of BT474M1 tumor 

cells as a HER2-dependent breast cancer cell line, IF revealed that tumor cells in the primary 

tumor expressed HER2 (Figure 3.11A).  Tumors also gave rise to a large number of 

micrometastases, comprised of individual GFP+ tumor cells seeding the lungs of these mice 

(Figure 3.11B).  In spite of analyzing a large number of tissue sections, metastases with more 

than 1 or 2 cells in isolation were not observed, suggesting that these tumor cells were not able to 

grow in the lung.  Following the development of 1cm tumors, HER2 signaling was inhibited by 
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triplet anti-HER2 therapy comprised of Trastuzumab, Pertuzumab, and Lapatinib, and estrogen 

receptor (ER) signaling was down-regulated by removal of 17β-estradiol pellets (Figure 3.12A).  

Tumors treated with combination anti-HER2 and anti-ER therapy rapidly regressed to a non-

palpable state, whereas untreated tumors continued to grow (Figure 3.12B).  Mice were sacrificed 

72 hr after treated tumors had regressed to a non-palpable state 

Fluorescence microscopy performed on sections from mammary glands that had previously 

harbored tumors revealed scattered GFP+ residual tumor cells (Figure 3.12C-D).  In light of our 

observations of cellular dormancy in residual HER2/neu-Prim1 tumor cells, we next asked 

whether residual BT474M1 tumor cells that survived targeted therapy are quiescent.  IF for Ki67 

revealed that scattered residual tumor cells were predominantly quiescent, with only ~2% 

expressing Ki67 (Figure 3.12C, E).  In contrast, greater than 25% of untreated primary tumor cells 

were Ki67+.  These findings suggest that residual human breast cancer cells that survive targeted 

therapy are quiescent, and provide a conceptual link between murine residual disease following 

oncogene down-regulation and residual human breast cancer cells following targeted therapy. 

We next asked whether the microenvironment of quiescent residual human breast cancer 

xenografts was similar to that seen in dormant residual disease in the mouse.  IF staining for 

CD31 in BT474M1 residual lesions revealed a rich vasculature (Figure 3.12D).  Together, our 

findings suggest that quiescent residual tumor cells residing in a well-vascularized 

microenvironment may be a general feature of residual disease following oncogenic pathway 

inhibition. 

Residual disease juxtaposed with normal mammary ducts is not dormant 

While observing residual disease, labeled for 2 weeks with BrdU, 56d after doxycycline 

withdrawal in HER2/neu-Prim1 orthotopic residual lesions in nu/nu mice, we identified a small 

number of residual lesions with regions of GFP+ tumor cells that were uniformly BrdU+ (Figure 

3.13).  We found that these tumor cells surrounded normal mouse mammary ducts, identified as 

cells that did not express GFP but expressed epithelial cytokeratins as stained by a pan-

cytokeratin antibody (Figure 3.13).  Staining for the mesenchymal tumor cell marker PDGFR-β 
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revealed that these tumor cells exhibited a mesenchymal phenotype (Figure 3.14A-C).  To 

determine whether this phenomenon was an event that promoted tumor recurrence, we 

performed a recurrence assay using HER2/neu-Prim1 orthotopic tumors in syngeneic TAN 

monotransgenic mice that either had the normal mammary epithelium surgically removed (fat pad 

clearing surgery) prior to puberty, or that had a sham surgery (Figure 3.14D).  The mammary fat 

pads in mice that underwent fat pad clearing surgery would presumably not contain the normal 

mammary ducts that gave rise to these duct-juxtaposed proliferative foci, and thus allowed us to 

test whether this phenomenon promoted tumor recurrence.  Mammary fat pad clearing did not 

delay the time to recurrence in this model, instead there was a trend towards an increased rate of 

recurrence in mice with fat pad clearing, although this result was not statistically significant 

(Figure 3.14E). 

We then looked at local residual disease in the BT474M1-GFP model, and identified a similar 

phenomenon, wherein residual BT474M1-GFP tumor cells that were encapsulated inside of 

normal mouse mammary ducts (between red arrows) expressed much higher levels of Ki67 

(white arrows) than the scattered BT474M1-GFP residual tumor cells that were not juxtaposed 

with normal mouse mammary duct (Figure 3.14 F-I). 

Together, these findings suggest that signaling from normal parenchymal or stromal tissue may 

allow residual cells to enter the cell cycle.  This may occur through signaling of growth factors 

(e.g. PDGF) through RTKs on the surface of residual tumor cells (e.g. PDGFR-β).  This finding is 

consonant with a previously published role for microenvironmental signaling in impacting residual 

disease following targeted therapy [134]. 

Gene expression profiling of residual tumor cells reveals enrichment for genes associated 

with dormancy 

Our finding that tumor cells surviving oncogenic pathway down-regulation are quiescent within a 

richly vascularized, non-hypoxic microenvironment suggested that these cells exist in a state of 

cellular, rather than angiogenic, dormancy.  The in vivo molecular profile of dormant tumor cells 

that survive treatment and give rise to recurrent tumors has not been reported, and the 
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mechanisms maintaining these cells in a quiescent state are largely unknown.  While disparate 

mechanisms that promote quiescence have been identified in some model systems, it is unclear 

whether these mechanisms are relevant to dormant tumor cells that survive therapy and give rise 

to recurrent tumors in vivo.   

To assess the molecular phenotype of residual tumor cells and to identify candidate mechanisms 

potentiating cellular dormancy in the context of oncogenic pathway inhibition, we performed gene 

expression profiling on purified dormant residual tumor cells that were isolated using 

fluorescence-assisted cell sorting (FACS).  Using no culture orthotopic MTB/TAN/TTC/rYFP 

residual lesions, we found that approximately 618 residual tumor cells were required in order to 

obtain the minimum 500pg RNA, with RNA integrity number >7.0, necessary for whole 

transcriptome amplification prior to genome expression profiling (Figure 3.15, Table 3.1).  H2B-

eGFP-labeled HER2/neu-Prim1 or Wnt1-Prim1 tumor cells were injected into the mammary fat 

pads of nu/nu mice and the resulting orthotopic primary tumors, MRLs at 28 d post HER2/neu 

down-regulation, and recurrent tumors were harvested, enzymatically digested, and GFP+ tumor 

cells were FACS-isolated.  RNA isolated from GFP+ tumor cells, as well as GFP- stromal cells 

isolated from recurrent tumors, was used to perform microarray expression profiling (Figure 

3.16A). 

Principal component analysis revealed tight clustering between biological replicates from each 

FACS-isolated cell population, and further indicated that residual tumor cells exhibit a gene 

expression pattern that is unique compared to either primary or recurrent tumor cells (Figure 

3.16B).  To identify functionally related groups of genes that were differentially expressed within 

residual tumor cells compared to either primary or recurrent tumors, DAVID gene ontology 

analysis was performed on genes differentially up- or down-regulated in residual tumor cells 

compared to all other tumor cell types for both the HER2/neu and Wnt1 models.  Genes down-

regulated in residual tumor cells in each of these data sets were dramatically enriched for 

ribosomal- and cell cycle-related gene sets (Table 3.2).  Indeed, consistent with our observation 

that residual tumor cells are quiescent, transcripts for cyclins and cyclin-dependent kinases were 
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down-regulated as much as 90% in residual tumor cells (Figures 3.16C).  As ribosomal 

biogenesis can be regulated by mTOR activity [135], we quantified mTOR pathway activity using 

a previously described method [136].  This revealed significant down-regulation of mTOR 

pathway activity in both HER2/neu and Wnt1 residual tumor cells compared to their 

corresponding primary or recurrent tumors (Figure 3.16D, E).  Conversely, differentially up-

regulated transcripts in residual tumor cells were enriched for secretory and ECM gene sets, 

including genes such as fibronectin (Table 3.3).  Consistent with this, IF for collagen type-I and 

fibronectin revealed an abundant desmoplastic stroma within MRLs, whereas collagen type-IV 

expression was restricted to blood vessels (Figure 3.17A-F).  Performing the same staining on 

tissue sections of residual no culture MTB/TAN/TTC/rYFP metastases and on BT474M1-GFP 

residual disease, we observed strikingly similar findings in both of these models to what was 

observed in local dormant HER2/neu residual disease (3.17G-O).  Interestingly, while collagen 

type-IV was localized to blood vessels in BT474M1-GFP residual disease (Figure 3.17O), it was 

located throughout the whole ECM of residual metastases (Figure 3.17L). 

In light of our observation that proliferation-related transcripts are markedly down-regulated in 

residual tumor cells, we sought to identify candidate mechanisms that might potentiate cellular 

dormancy.  In this regard, the transcriptional repressor Dec2 exhibited the greatest up-regulation 

amongst all transcription factors, and the transcription factor Foxm1 was significantly down-

regulated, in residual tumor cells in both the HER2/neu and Wnt1 models.  Previous in vitro 

analyses of dormant squamous carcinoma cell lines have suggested uPAR down-regulation, or 

up-regulation of TGFβ-II/TGFβR-III signaling, as a cause of a low ERK:p38 signaling ratio that up-

regulates DEC and down-regulates FOXM1 [137, 138].  Consistent with these in vitro 

observations, we found that residual tumor cells in vivo up-regulated Tgfbr3 (TGFβR-III), as well 

as its ligand Tgfb2 (TGFβ-II), and markedly down-regulated Plaur (uPar) compared to either 

primary or recurrent tumor cells (Figure 3.16G). 

Additionally, we found that Thrombospondin-1 (Thsb1) was up-regulated ~3-fold in residual tumor 

cells in both the HER2/neu and Wnt1 models (p-values <0.01).  Thsb1 has been implicated in 



41 
 

promoting dormancy of isolated breast cancer cells unable to form metastases upon seeding 

metastatic sites in xenograft models [137], however data supporting a role in dormant residual 

disease that survives therapy and gives rise to recurrence has not been reported.   

Our finding – that molecular mechanisms mediating dormancy in disparate models intended to 

replicate the conditions of isolated DTCs might contribute to dormancy of residual tumor cells that 

survive therapy and give rise to recurrent tumors – suggested that quiescent tumor cells may 

possess similar molecular features in multiple biological contexts.  In support of this possibility, we 

found that a dormancy gene expression signature, derived from a p38-induced in vitro dormancy 

model in combination with an in vivo angiogenic dormancy model [139], was significantly up-

regulated in dormant residual tumor cells compared to all other cell types (Figure 3.16F). 

Together, these findings reveal that dormant tumor cells surviving oncogenic pathway inhibition 

exhibit molecular features analogous to those observed in disparate models of dormant tumor 

cells.  This suggests that the molecular mechanisms regulating dormancy may be conserved 

across dormant tumor cells derived from distinct cancer types and driven by distinct oncogenic 

pathways, and in differing biological contexts. 

No culture models fail to recapitulate gene expression or genomic alterations of intact 

tumors 

We next wanted to extend our findings to a model that had been minimally manipulated in vitro, 

so generated no culture orthotopic tumors in nu/nu mice using MTB/TAN/TTC/rYFP donors’ 

primary tumors.  Prior to extending our gene expression analysis findings to this model, we 

wanted to determine whether these orthotopic tumors faithfully recapitulated their quadtransgenic 

donor tumors.  For mutational analysis, we performed both array comparative genomic 

hybridization (aCGH) to analyze copy number alterations and deletions, and whole exome 

sequencing to identify non-synonymous mutations.  To analyze gene expression, as we had done 

before for the H2B-eGFP-labeled HER2/neu-Prim1 and Wnt1-Prim1 models, we sorted out 

YFP+DAPI-CD45- tumor cells from the primary intact donor tumor and from the resulting primary 
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orthotopic tumors, and performed gene expression analysis with RNA-Seq on the FACS-isolated 

tumor cells. 

Surprisingly, although tumors from intact mice had been injected orthotopically into nu/nu mice, 

including both tumor and stromal cells that had never been cultured in vitro, there were significant 

and reproducible differences between the no culture orthotopic tumors and the primary intact 

donor tumors from which they arose.  aCGH analysis revealed that orthotopic no culture tumors 

had up to several thousand-fold more copy number gains, but up to several-hundred fold fewer 

copy number loses (Table 3.4).  Several copy number gains that were exclusively detected in 

orthotopic primary tumors were identified across all of the orthotopic tumors, independent of the 

donor tumor, but were not identified in any of the donor tumors (Figure 3.18A).  Mutational 

profiling revealed a loss of non-synonymous mutations in the majority of orthotopic tumors arising 

from 2 of the 3 donor tumors, and a maintenance of the same number of mutations in orthotopic 

tumors from a third donor (Figure 3.18B).  Unsupervised hierarchical clustering of these 

mutations revealed that the intact tumors clustered together along with 4 of the 9 orthotopic 

tumors, but that the remaining 5 orthotopic tumors with few mutations clustered separately 

(Figure 3.18C).  PCA of gene expression analysis on FACS-isolated tumor cells revealed that 

intact donor tumors clustered together well, however they did not cluster with orthotopic tumors, 

and orthotopic tumors clustered together with other tumors from the same donor, but not across 

donors (Figure 3.18D).  Gene expression pathway analysis of the pathways up-regulated and 

down-regulated in orthotopic tumors compared to primary tumors (Figure 3.18E) revealed that 

several pathways were repeatedly up-regulated in orthotopic tumors compared to intact tumors, 

including pathways associated with proliferation, Met, Myc, and TGF-β (Figure 13.8F). 

Together these data reveal the surprising result that orthotopic tumors generated by injecting 

whole tumor digest directly from a donor tumor into a nu/nu mouse recipient do not recapitulate 

the mutational or gene expression profiles of their donor tumors.  It seems unlikely that these 

mutations were newly acquired in the time between digestion of the primary tumor and growth of 

the resulting orthotopic tumors.  Thus, a plausible explanation for these findings is the existence 
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of subclones that are well-suited for growth in the orthotopic model.  One possible explanation for 

the recurrent copy number gains and losses is that these alterations promote tumor cell growth in 

an orthotopic setting by augmenting growth related pathways that are recurrently up-regulated, 

including Myc and Met.  These may be present in orthotopic tumors and absent from intact 

tumors because of the particular barriers that need to be overcome for a tumor cell to grown 

during orthotopic injection, such as surviving digestion into a single cell suspension and surviving 

the host immune response to orthotopic injection.  Given that an analogous strategy – injecting 

whole tumors from patients into immunocompromised mice - is used to generate PDX mouse 

models, these results warrant caution in interpreting results found from PDX models, and suggest 

that further study is necessary to better characterize PDX systems. 

Gene expression profiling in the no culture orthotopic model 

We next performed gene expression profiling on FACS-isolated tumor cells from primary, 

residual, and recurrent tumors in order to determine whether results in this model would 

recapitulate what we had seen in the HER2/neu-Prim1 and Wnt1-Prim1 models. 

First we wanted to determine whether recurrent tumors in this model displayed a mesenchymal 

phenotype, as was the case for intact tumors and orthotopic HER2/neu-Prim1 tumors.  We 

analyzed the phenotype of recurrent tumors in nu/nu mice injected orthotopically with 

MTB/TAN/TTC/rYFP tumor cells that had not been cultured in vitro.  While practically all recurrent 

tumors in intact MTB/TAN mice display a mesenchymal phenotype, a subset of recurrent tumors 

in the no culture orthotopic system displayed an epithelial phenotype as identified by IF (Figure 

3.19A-C).  These epithelial recurrent tumors appear to have reactivated the HER2/neu oncogene, 

as they display staining for HER2 by IF, and also express greater than 500,000-fold more 

luciferase activity than other recurrent tumors of the same size (Figure 3.19B, D).  Thus, all 

recurrent tumors in subsequent analyses were first determined to have a mesenchymal 

phenotype prior to analysis. 

For each of 8 donor tumors arising in MTB/TAN/TTC/rYFP mice, tumor cells from primary 

doxycycline-dependent tumors were injected orthotopically and bilaterally into 20 nu/nu mice on 
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doxycycline.  All 320 injected sites developed primary tumors.  4 nu/nu mice with orthotopic 

primary tumors arising from each of the 8 donor tumors were sacrificed, tumors were 

enzymatically digested, and RNA was acquired from FACS-isolated primary tumor cells.  The 

remaining 16 mice from each cohort were deinduced.  For each cohort, 6 mice were sacrificed 

with residual lesions 28 days after doxycycline withdrawal, and all 12 residual lesions were 

digested and tumor cells were FACS-isolated for RNA.  Over 80% of residual lesions did not yield 

a sufficient number of tumor cells necessary to perform WTA and gene expression profiling.  Of 

the remaining 20 tumors (on 10 mice) in each cohort, only 4 cohorts developed at least 3 

recurrent tumors with a mesenchymal phenotype.  Recurrent tumor cells were FACS-isolated 

from all recurrent tumors that arose in these mice.  From 8 donors, only 1 series of orthotopic 

primary, residual, and recurrent tumors had at least 3 residual lesion samples with >618 tumor 

cells, and at least 3 mesenchymal recurrent tumors. 

Pathway analysis of FACS-isolated tumor cells revealed that, consistent with our observations in 

the HER2/neu-Prim1 and Wnt1-Prim1 models, mTOR pathway activity was significantly 

decreased in dormant tumor cells, whereas residual tumor cells also exhibited a high dormancy 

score (Figure 3.20).  Also in line with our observations in the previously analyzed models, DAVID 

analysis of differentially expressed genes revealed up-regulation of genes associated with 

disulfide bonds, secreted and signal pathways, and down-regulation gene families associated 

with proliferation (Table 3.5).  Interestingly, extracellular matrix gene groups were not up-

regulated in this model, and residual tumor cells did not display enrichment for an EMT signature 

(Table 3.5).  Consistent with our expectation that Dec2 plays a critical role in dormant tumor cells, 

we found that it was the most up-regulated transcription factor in dormant tumor cells compared 

to primary and recurrent tumor cells. 

These findings further corroborate several of our earlier observations in the HER2/neu-Prim1 and 

Wnt1-Prim1 models, in particular the down-regulation of biosynthetic activity in dormant tumor 

cells, and the possibility that Dec2 plays a key role in regulating dormant residual tumor cells that 

survive oncogenic pathway inhibition. 
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Dormant residual HER2/neu tumor cells exhibit a mesenchymal phenotype 

While residual disease in the setting of neoadjuvant chemotherapy or hormonal therapy in 

patients has been reported to be enriched for a mesenchymal phenotype [37], whether residual 

tumor cells are enriched for a mesenchymal phenotype following oncogene pathway inhibition is 

unknown.  To address this, we investigated the expression of transcripts encoding epithelial and 

mesenchymal proteins in FACS-isolated tumor cells.  Transcripts associated with a mesenchymal 

phenotype, including Cdh2 (N-Cadherin), were up-regulated in residual HER2/neu tumor cells 

compared to primary tumor cells, whereas transcripts associated with an epithelial phenotype, 

including Epcam, and Krt8 (Cytokeratin 8) were down-regulated in residual tumor cells (Figure 

3.21A).  In contrast, residual tumor cells in the Wnt1 model did not up-regulate the mesenchymal 

marker Cdh2, but did up-regulate the epithelial markers Epcam and Cdh1 (E-Cadherin), as well 

as the myoepithelial marker Krt14 (CK14) (Figure 3.21B).  Consistent with their expression in 

both myoepithelial and mesenchymal cells, Pdgrfb and Acta2 were also up-regulated in both 

HER2/neu and Wnt1 residual disease (Figure 3.21).  Together, these data suggest that dormant 

residual disease in the HER2/neu model may be enriched for tumor cells that have undergone 

EMT, whereas dormant residual disease in the Wnt1 model may be enriched for tumor cells with 

a myoepithelial phenotype. 

To directly address the mesenchymal versus epithelial phenotype of residual disease in the 

HER2/neu and Wnt1 models, we generated primary tumors and MRLs from H2B-eGFP labeled 

HER2/neu-Prim1 and Wnt1-Prim1 tumor cells.  Sections of primary tumors and MRLs were 

stained for the luminal epithelial marker CK8 as well as the myoepithelial marker CK14.  As 

anticipated, primary tumor cells in both the HER2/neu and Wnt1 models expressed the epithelial 

marker CK8, and a subset of tumor cells in the Wnt1 tumor expressed the myoepithelial marker 

CK14 (Figure 3.22A, B).  In contrast, residual HER2/neu tumor cells lost expression of epithelial 

marker CK8, whereas residual Wnt1 tumor cells expressed CK8 and CK14 (Figure 3.22A, B).   

To determine whether residual tumor cells might display a mesenchymal phenotype, we 

performed IF for the mesenchymal markers PDGFR-β and S100A4 (fibroblast-specific protein-1).  
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Residual HER2/neu-Prim1 tumor cells expressed both PDGFR-β (Figure 3.22D) and FSP-1 

(Figure 3.23).  Tumor cells in the residual lesion that expressed either the mesenchymal marker 

S100A4 or the epithelial marker CD24 were admixed throughout the residual lesion (Figure 3.23). 

To confirm the mesenchymal phenotype of HER2/neu residual tumor cells, we performed IF using 

a pan-cytokeratin antibody as well as 7 additional epithelial markers, including CK5, CK18, CK19, 

EpCAM, E-Cadherin, P-Cadherin, and p63.  Whereas expression of each of these epithelial 

markers was detectable in normal mammary ducts, their expression was undetectable in the vast 

majority of residual HER2/neu tumor cells (Figure 3.22E-T).  These data confirm that residual 

HER2/neu tumor cells have undergone EMT and generally lack expression of epithelial-specific 

markers. 

The presence of tumor cells within HER2/neu residual neoplastic lesions that exhibit some 

features of EMT raised the possibility that a pre-existing population of mesenchymal-like tumor 

cells within HER2/neu primary tumors might be enriched in residual disease following oncogene 

down-regulation.  To address this possibility, we performed multicolor flow cytometry on orthotopic 

H2B-eGFP-labeled HER2/neu-Prim1 primary tumors and MRLs to evaluate expression of the 

epithelial marker CD24 in combination with either PDGFR-β or CD49e as markers of the 

mesenchymal-like phenotype.  Flow cytometry identified rare populations of CD24–PDGFR-β+ 

and CD24–CD49e+ primary tumor cells that were dramatically enriched in MRLs following 

HER2/neu down-regulation (Figure 3.24A-D).  We were also able to identify epithelial and 

mesenchymal populations in HER2/neu-Prim1 tumor cells in vitro (Figure 3.24E), indicating that 

mesenchymal tumor cells in orthotopic tumors may arise either through EMT in vivo, or from this 

pre-existing population of mesenchymal tumor cells present in vitro. 

Together, these findings demonstrate that HER2/neu-induced primary tumor cells are 

predominantly epithelial, but contain a small population of mesenchymal-like tumor cells that is 

dramatically enriched among those tumor cells that survive HER2/neu down-regulation and 

persist in MRLs in a dormant state.  In contrast, both primary and residual tumor cells from Wnt1-

induced tumors express epithelial markers characteristic of luminal and myoepithelial cells. 
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We wanted to determine whether residual tumor cells in intact quadtransgenic 

MTB/TAN/TTC/rYFP mice also exhibited EMT.  IF staining for CK5 and CK8 revealed cytokeratin-

negative, spindle-shaped tumor cells (Figure 3.25).  Flow cytometry on intact residual tumor cells 

revealed a large population of YFP+CD45-DAPI- tumor cells that were EpCAM-CD24-

PDGFRβ+CD49e+, consistent with a mesenchymal phenotype (Figure 3.26B-D). 

Finally, we wanted to know whether residual tumor cells at metastatic sites also exhibited EMT in 

the HER2/neu model following doxycycline withdrawal.  IF of tissue sections from residual 

metastases-bearing lungs in nu/nu mice with no culture orthotopic MTB/TAN/TTC/rYFP tumors 

revealed that residual tumor cells at metastatic sites had lost expression of CK8 and acquired 

expression of vimentin, consistent with an EMT phenotype, analogous to our observations for 

local residual disease (data not shown). 

Mesenchymal tumor cell markers CD49e and PDGFR-β are markers of poor recurrence-

free survival in HER2+ breast cancer 

As tumor cells with mesenchymal features have been associated with treatment resistance and 

disease progression, we reasoned that elevated expression of CD49e and/or PDGFR-β in HER2+ 

breast cancers might be associated with an increased risk of relapse in breast cancer patients.  

First, we asked whether residual human breast cancer showed down-regulation of the epithelial 

marker EpCAM and up-regulation of the mesenchymal marker CD49e.  We found that EpCAM 

was significantly down-regulated, while CD49e was significantly up-regulated in residual disease 

(Figure 3.27A).  Also, decreased EpCAM was correlated with increased CD49e expression in 

these samples (Figure 3.27B), consistent with an enrichment for mesenchymal disease following 

therapy.  To test whether enrichment for mesenchymal markers was prognostic for poor RFS, we 

performed a multivariate meta-analysis across 14 publicly available clinical data sets containing 

information on HER2 status, gene expression data, clinical outcomes, tumor grade, and tumor 

size.  10-year RFS analysis was performed as a continuous function of the levels of expression of 

the mesenchymal markers (CD49e and PDGFR-β) and epithelial markers (EpCAM and CD24) 

that were previously used to identify epithelial and mesenchymal tumor cells by flow cytometry in 
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MTB;TetO-HER2/neu;TTC;rYFP mice. 

Multivariate Cox hazard ratio analysis was performed on HER2+ breast cancers and was 

adjusted for tumor grade and tumor size.  For patients with HER2+ breast cancer, expression of 

each of the mesenchymal markers CD49e and PDGFR-β was associated with a higher 

probability of recurrence in both 10-year RFS analyses, whereas neither EpCAM nor CD24 was 

associated with RFS after 10 years of follow-up (Figure 3.27C-F). 

These results indicate that expression of PDGFR-β and CD49e are independent indicators for 

decreased RFS in patients with HER2+ breast cancer and, when taken together with our findings 

in mice, raise the possibility that this association may reflect the presence of mesenchymal-like 

tumor cells that are resistant to treatment. 

Dormant residual tumor cells express a mammary stem cell signature 

Tumor cells that undergo EMT may acquire properties of normal mammary stem cells in some 

models [140].  Therefore, we evaluated whether residual tumor cells that survive oncogene down-

regulation exhibit a gene expression profile similar to that of normal mammary stem cells.  

Indeed, in both Wnt1-Prim1 and HER2/neu-Prim1 models, genes reported to be enriched in 

human mammary stem cells were significantly up-regulated in dormant residual tumor cells 

compared to all other tumor cell types (Figure 3.28A, B, p-value HER2/neu: 2.7E-24, p-value 

Wnt1: 1.3E-14) [141].  Consistent with this, the normal human mammary stem cell marker CD10 

[142] was up-regulated nearly 25-fold in HER2/neu residual tumor cells, and ~7-fold in Wnt1 

residual tumor cells, compared to all other FACS-isolated tumor cells (Data not shown).   

As stem-like properties of TICs may be distinct from those of normal mammary stem cells, we 

also investigated the expression of genes associated with neoplastic human mammary stem-like 

cells [143, 144].  Expression analysis revealed that residual tumor cells in both HER2/neu and 

Wnt1 models were enriched for genes up-regulated in tumorigenic breast cancer stem-like cells 

(Figure 3.28C, D, p-value HER2/neu: 0.001, p-value Wnt1: 4.7E-21) [145].  Additionally, the 

putative breast cancer stem cell marker Aldh1a3 was up-regulated in residual tumor cells in both 
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the HER2/neu (~2-fold (FDR<0.05) and Wnt1 models (~5-fold (FDR<10-6) [146] (data not shown).  

Collectively, these findings indicate that dormant tumor cells that survive HER2/neu or Wnt1 

down-regulation exhibit a gene expression profile with similarities to normal mammary stem cells 

as well as tumorigenic breast cancer cells. 

Residual Wnt1 tumor cells are enriched for cells with normal mammary stem cell 

properties 

Our previous observations led us to propose that residual tumor cells may have properties of 

normal mammary stem cells, such as the ability to give rise to a mammary tree.  Consistent with 

this possibility, we observed YFP+ structures with mammary duct morphology growing out of 

MTB/TWNT/TTC/rYFP no culture orthotopic residual lesions, in many residual lesions less than 

10 weeks after doxycycline withdrawal (Figure 3.29A).  These structures were not observed in 

over 30 MTB/TAN/TTC/rYFP residual lesions more than 32 weeks after deinduction (Figure 

3.29B).  A key feature of normal mammary stem cells is their ability to reconstitute a mammary 

ductal tree when injected into a mammary fat pad that has been cleared of epithelial cells.  To 

determine whether residual tumor cells were enriched for cells with normal mammary stem cell 

properties, we injected 1,000 tumor cells from either primary tumors or residual lesions into 

cleared mammary fat pads in syngeneic TAN/TTC/rYFP mice.  After 2 months, more than half of 

the sites injected with residual lesion tumor cells formed mammary epithelial ductal trees, 

whereas only 2 of 12 sites formed ductal trees when injected with tumor cells from a primary 

tumor (Figure 3.29 C-D). 

Residual HER2/neu tumor cells are not enriched for primary TICs 

Our observations that residual tumor cells are capable of giving rise to recurrent tumors, possess 

mesenchymal features, and are enriched for transcripts associated with normal mammary stem 

cells as well as tumorigenic breast cancer cells, suggested the possibility that residual tumor cells 

might be functionally enriched for TICs.  To test this hypothesis in a model with minimal ex vivo 

manipulation, we used MTB;TetO-HER2/neu;TTC;rYFP mice to isolate fluorescently labeled 

tumor cells in autochthonous tumors that had not been cultured in vitro. 
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To validate this model, we first addressed whether residual tumor cells in MTB;TetO-

HER2/neu;TTC;rYFP mice were enriched for mesenchymal tumor cells compared to primary 

tumor cells, as we had observed in HER2/neu-Prim1 orthotopic tumors.  Indeed, primary tumor 

cells in MTB;TetO-HER2/neu;TTC;rYFP mice were predominantly CD24+EpCAM+Cd49e-

PDGFRβ- (7.4-fold enrichment vs.  residual lesion, p-value <0.001), demonstrating an epithelial 

phenotype, whereas residual tumor cells were predominantly CD24-EpCAM-CD49e+PDGFRβ+ 

(3-fold enrichment vs.  primary tumor, p-value <0.001), reflecting a mesenchymal phenotype 

(Figure 3.26B-E).  These findings indicate that residual lesions derived from primary tumors 

arising in MTB;TetO-HER2/neu;TTC;rYFP mice, as well as residual lesions derived from 

HER2/neu-Prim1 orthotopic tumors tumor cells, are enriched for tumor cells with mesenchymal-

like properties. 

Next, we asked whether residual tumor cells are functionally enriched for TICs by performing 

limiting dilution experiments on YFP+CD45-DAPI- tumor cells isolated from primary tumors (n=3) 

or residual lesions (n=3) arising in MTB;TetO-HER2/neu;TTC;rYFP mice.  Isolated viable tumor 

cells were injected into the mammary fat pads of nu/nu mice on doxycycline, and mice were 

monitored for 4 months for tumor development.  TIC frequency was calculated based upon the 

fraction of mice that developed tumors when injected with a given number of tumor cells [147].  

Whereas injection of 50,000 tumor cells from each of the 3 primary tumors tested resulted in 

tumor formation at 100% of injected sites, injection of an equivalent number of tumor cells 

isolated from 2 of the 3 residual lesions tested failed to give rise to any tumors at any of the 8 

sites injected after 4 months (Table 3.6).  The remaining residual lesion exhibited a TIC frequency 

similar to that observed for one of the primary tumors.  These findings raise the possibility that 

residual tumor cells may not be enriched for TICs compared to primary tumor cells. 

The extremely wide range of TIC frequencies observed among primary tumors, and among 

residual lesions, suggested that factors such as somatic genetic heterogeneity between tumors 

might influence TIC frequency.  To control for this possibility, we generated matched pairs of 

syngeneic orthotopic primary tumors and residual lesions by orthotopically injecting tumor cells 
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from doxycycline-dependent primary tumors arising in MTB;TetO-HER2/neu;TTC;rYFP mice into 

nu/nu mice on doxycycline.  We then withdrew doxycycline from a cohort of mice bearing primary 

tumors to generate syngeneic orthotopic residual lesions from the same donor tumor.   

Using these syngeneic pairs of orthotopic primary tumors and residual lesions, we performed 

limiting dilution experiments to quantify the TIC frequency in primary tumors and residual lesions 

generated from the same intact donor tumor.  As before, while substantial variation was observed 

in TIC frequencies for different primary tumors, in no case were TICs enriched in tumor cells 

isolated from residual lesions compared to tumor cells isolated from the corresponding syngeneic 

primary tumor (Table 3.7).  Specifically, for the two donor primary tumors analyzed, the TIC 

frequencies of primary tumor cells were ~18-fold and 1,000-fold higher than the TIC frequencies 

in residual tumor cells from the same donor tumor, and these results were statistically significant.   

As HER2/neu residual lesions were enriched for mesenchymal tumor cells compared to primary 

tumors, we considered the possibility that mesenchymal tumor cells within residual lesions might 

not be enriched for TICs, but that residual epithelial tumor cells – which constitute only a minority 

of tumor cells in residual lesions – might exhibit an increased TIC frequency.  To address this 

possibility, we isolated epithelial (EpCAM+CD49e-) tumor cells from an intact MTB;TetO-

HER2/neu;TTC;rYFP primary tumor and residual lesion, and performed limiting dilution 

experiments to measure the TIC frequency of epithelial tumor cells from primary tumors and 

residual lesions.   

Consistent with our observations above quantifying TIC frequency in HER2/neu primary tumors 

and residual lesions, we found that epithelial tumor cells from residual lesions were not enriched 

for TICs compared to epithelial tumor cells from primary tumors (Table 3.8).  These findings 

suggest that the failure to observe TIC enrichment among residual tumor cells is not a 

consequence of changes in the epithelial vs.  mesenchymal composition of primary tumors 

compared to residual lesions.   
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When taken together, our observations indicate that residual tumor cells that survive HER2/neu 

down-regulation in HER2/neu-induced mammary tumors are not enriched for TICs compared to 

primary tumor cells. 

Residual Wnt1 tumor cells are not enriched for primary TICs 

We next asked whether the observation that HER2/neu residual tumor cells are not enriched for 

TICs would also be true for Wnt1-induced mammary tumors using an analogous approach in 

MTB;TetO-Wnt1;TTC;rYFP mice.  As CD24+Thy1+ mammary tumor cells from MMTV-Wnt1 mice 

have previously been reported to possess TIC properties, we first performed a limiting dilution 

experiment to ask whether CD24+Thy1+ tumor cells in Wnt1-driven primary tumors were 

enriched for TICs compared to non-CD24+Thy1+ tumor cell populations [148, 149].  Consistent 

with prior reports, we found that CD24+Thy1+ tumor cells were enriched ~10-fold for TICs 

compared to non- CD24+Thy1+ tumor cell subsets (Figure 3.26F).   

To assess whether residual Wnt1 tumor cells were enriched for TICs, we next determined 

whether residual tumor cells that had survived Wnt1 pathway down-regulation were enriched for 

CD24+Thy1+ tumor cells compared to primary tumor cells.  Flow cytometry performed on primary 

tumors and residual lesions from MTB;TetO-Wnt1;TTC;rYFP mice revealed that tumor cells within 

residual lesions were enriched ~8-fold for CD24+Thy1+ tumor cells compared to primary tumors 

(Figure 3.26G-H, p-value = 0.002).  Indeed, whereas <5% of primary tumor cells were 

CD24+Thy1+, ~40% of residual tumors cells exhibited a CD24+Thy1+ phenotype. 

The above results suggested that residual tumor cells surviving oncogenic pathway inhibition in 

MTB;TetO-Wnt1;TTC;rYFP mice are enriched for cells with a cell surface phenotype that has 

been associated with TICs in primary tumors.  However, these experiments did not address 

whether residual tumor cells are, in fact, functionally enriched for TICs.  To address this question, 

we performed limiting dilution studies using sorted YFP+CD45-DAPI-tumor cells isolated from 

primary tumors and residual lesions arising in MTB;TetO-Wnt1;TTC;rYFP mice.  Contrary to 

expectations based upon enrichment for CD24+Thy1+ cells in residual lesions, we observed a 4-

fold decrease in TIC frequency in residual tumor cells compared to primary tumor cells (Table 
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3.9).  Thus, despite our observations that CD24+Thy1+ primary tumor cells are enriched 10-fold 

for TICs compared to non-CD24+Thy1+ tumor cells, and that CD24+Thy1+ tumor cells are 

enriched 8-fold in residual lesions compared to primary tumors, we did not observe functional 

enrichment for TICs in Wnt1 residual disease. 

While this result was consistent with our observation that residual HER2/neu tumor cells are not 

enriched for TICs, we wished to extend these findings by addressing the possibility that genetic 

heterogeneity among tumors might result in differing TIC frequencies for different donor tumors.  

Accordingly, we generated syngeneic pairs of orthotopic primary tumors and residual lesions in 

nu/nu mice from individual tumors arising in MTB;TetO-Wnt1;TTC;rYFP mice using an approach 

analogous to that performed above for MTB;TetO-HER2/neu;TTC;rYFP mice.  Limiting dilution 

studies were then performed using YFP+CD45-DAPI- tumor cells isolated from syngeneic 

orthotopic primary tumors or residual lesions.  This analysis revealed that, for each of the donor 

tumors tested, residual Wnt1 tumor cells exhibited ~ 7- to 11-fold lower TIC frequencies 

compared to primary tumor cells (Table 3.10).  These findings further support the conclusion that 

residual tumor cells are not enriched for TICs relative to primary tumor cells in Wnt1-induced 

mammary tumors, and are consistent with the lack of enrichment for TICs that we observed in 

residual tumor cells in HER2/neu-induced mammary tumors. 

In aggregate, our data using tumor cells isolated directly from intact mice, or from syngeneic pairs 

of orthotopic primary tumors and residual lesions, suggest that residual tumor cells are not 

enriched for TICs in either the HER2/neu or Wnt1-induced tumor models.   

Residual disease may be enriched for recurrent tumor TICs  

Despite our finding that residual tumor cells do not appear to be enriched for TICs compared to 

primary tumor cells in the setting of oncogene activation (i.e.  when injected into nu/nu mice 

maintained on doxycycline), we considered the possibility that residual tumor cells might be 

enriched for TICs in the setting of oncogene inactivation.  If true, this would be consistent with our 

observation that – when maintained off doxycycline for long periods of time – mice bearing fully 

regressed HER2/neu or Wnt1 mammary tumors eventually develop spontaneous tumor 
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recurrences that do not express the initiating oncogene (e.g.  HER2/neu or Wnt1) [108, 121].  

That is, assays for TICs performed in the presence of oncogene activation may detect TICs 

capable of forming primary tumors, whereas assays for TICs performed in the absence of 

oncogene activation may detect TICs capable of forming recurrent tumors.  In this regard, 

enrichment for cells in primary tumors capable of giving rise to recurrent tumors (i.e.  recurrent 

tumor TICs) might occur during primary tumor regression induced by doxycycline withdrawal by 

virtue of the apoptotic elimination of primary tumor cells that could not survive oncogenic pathway 

down-regulation.    

To address this question, we generated orthotopic primary tumors from H2B-eGFP HER2/neu-

Prim1 tumor cells and isolated primary tumor cells from tumor-bearing mice on doxycycline, as 

well as residual tumor cells from mice bearing fully regressed tumors maintained off doxycycline.  

Each set of primary or residual tumor cells was injected into cohorts of nu/nu mice that were 

maintained either on or off doxycycline.   

Consistent with our observations in intact MTB;TetO-HER2/neu;TTC;rYFP mice, we did not 

observe enrichment for TICs among residual tumor cells when injected into mice on doxycycline.  

In contrast, when injected into nu/nu mice not on doxycycline, we observed a ~7-fold increase in 

TIC frequency among residual tumor cells compared to primary tumor cells (Table 3.11).  These 

findings raise the intriguing possibility that TICs for primary tumors and recurrent tumors may be 

distinct and that HER2/neu down-regulation results in enrichment for recurrent tumor TICs, but 

not primary tumor TICs. 

Residual lesion expression of proteins for transcripts up-regulated in residual disease 

Identification of dormant tumor cells in humans is challenging in large part due to the lack of 

positive markers for dormancy.  Given our observation that particular transcripts were repeatedly 

up-regulated in residual tumor cells compared to primary and recurrent tumor cells, we wanted to 

know whether these might serve as markers of dormancy tumor cells.  The majority of proteins 

whose transcripts were up-regulated in residual disease showed expression in both normal 

mammary epithelial cells and residual lesion cells (Figure 3.30A).  Dec2 was expressed at 
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various levels in tumor cells in primary tumors, and showed slight enrichment in nuclei (Figure 

3.30B, left).  In contrast, Dec2 was expressed at high levels in the nucleus of residual lesion 

tumor cells, consistent with a role for Dec2 in transcriptional regulation of dormant residual tumor 

cells (Figure 3.30B, left).  These findings suggest that nuclear expression of Dec2 may serve as a 

protein marker for dormant tumor cells in clinical samples. 

Discussion 

Defining the biology of MRD is an important, but elusive, goal with important implications for the 

prevention and treatment of recurrent cancers.  Using genetically engineered mouse models for 

human breast cancer driven by two different oncogenic pathways, we report in vivo evidence that 

tumor cells surviving targeted therapy exhibit cellular dormancy following oncogenic pathway.  

Residual tumor cells exhibit reversible cell cycle arrest following oncogenic pathway inhibition 

despite the presence of a robust and functional vasculature, irrespective of the presence or 

absence of an adaptive immune system, and without exhibiting signs of senescence.  Consistent 

with this, gene expression profiling of residual tumor cells isolated in vivo following oncogenic 

pathway inhibition revealed clear evidence of cellular quiescence.  In an analogous manner, we 

found evidence for cellular dormancy in mice bearing xenografted human breast cancer cells 

treated with targeted therapies, and in mice bearing residual metastatic disease following 

oncogenic pathway inhibition – novel observations of particular clinical interest given that distant 

recurrence is the primary cause of mortality among breast cancer patients.  In aggregate, we 

conclude that residual tumors cells that survive targeted down-regulation of a dominant 

oncogenic pathway exist in a state of cellular dormancy, and that recurrent tumor outgrowth in 

this context is limited neither by angiogenic insufficiency nor by the immune system.   

In providing the first expression profiling analysis of purified residual tumor cells and along with 

matched primary and recurrent tumor cells, one of the most important findings of the present 

study is its clear demonstration that residual tumor cells represent a distinct tumor cell state that 

has little resemblance to actively growing primary or recurrent tumors.  This has significant 

implications for both the detection and treatment of residual disease.  Given the unique 
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phenotype of residual tumor cells, it seems likely that phenotypic markers specific to primary or 

recurrent tumor cells may fail to detect some – or perhaps even many –residual tumor cells.  In 

an analogous manner, therapeutic approaches predicated on the increased proliferative or 

metabolic activity commonly associated with actively growing tumor cells may fail to impact the 

long-term survival or regrowth of residual tumor cells that are quiescent.  These findings extend in 

vitro findings that residual tumor cells express a unique phenotype [150], and further indicate a 

need for strategies to more effectively detect and target residual disease. 

Notably, dormant residual tumor cells in both the Wnt1 and HER2/neu models were enriched for 

expression signatures associated with normal, as well as neoplastic, mammary stem-like cells.  

Residual tumor cells in each of these models were also enriched for phenotypes reported to be 

associated with TICs – EMT in the case of HER2/neu, and a CD24+Thy1+ cell surface phenotype 

in the case of Wnt1.  Despite these suggestive phenotypic traits, however, functional studies 

revealed that residual tumor cells were not enriched for primary tumor TICs, whether isolated 

directly from transgenic mice or from mice bearing syngeneically paired orthotopic primary tumors 

and residual disease.  These findings suggest that the phenotypes of TICs may differ in primary 

tumors and MRD, and imply that caution may be indicated in attempting to infer functional 

properties of residual tumor cells based upon cell surface phenotypes defined in TICs in primary 

tumors. 

Although residual tumor cells failed to show enrichment for TICs relative to primary tumor cells in 

the setting of oncogene activation, tumor cells isolated from residual lesions were enriched for 

TICs capable of giving rise to recurrent tumors in the setting of oncogene inhibition.  This 

intriguing finding suggests that the evolution of tumors, from primary to recurrent, may be driven 

by distinct TIC populations.  The possibility that different TIC populations support primary versus 

recurrent tumor growth is supported by our prior findings that recurrent tumors in MTB;TetO-

HER2/neu mice exhibit a phenotype distinct from primary tumors [108].  This, in turn, is consistent 

with clinical reports indicating that recurrent tumors may exhibit a phenotype distinct from primary 

tumors [37, 123, 124].  In aggregate, our data suggest that the underlying basis for this 
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phenotypic shift may result from a change in the TIC populations driving primary versus recurrent 

tumor growth. 

Interestingly, while residual disease in both HER2/neu and Wnt1 mouse models exhibited a gene 

expression profile enriched for features of normal and neoplastic human mammary stem-like 

cells, we only observed enrichment for tumor cells with an EMT phenotype in HER2/neu residual 

disease, and not in Wnt1 residual disease, despite the association between EMT and stem-like 

cells reported in some contexts [140].  While some clinical reports indicate that residual disease 

may be enriched for tumor cells with a mesenchymal phenotype [37], observations in circulating 

tumor cells suggest that residual tumor cells with an epithelial phenotype disease may be 

enriched in certain therapeutic settings [38].  Consequently, our findings that HER2/neu residual 

disease is enriched for cells exhibiting EMT, whereas Wnt1 residual disease is not, and that 

neither HER2/neu nor Wnt1 residual disease is enriched for primary tumor TICs, suggests that 

the properties of TICs, mammary stem cells and EMT may not be tightly linked or, at the very 

least, are likely to be context-dependent. 

Despite the dramatic differences between the HER2/neu and Wnt1 oncogenic pathways, and 

between the cellular phenotype of tumors driven by each of these oncogenes [121, 127], residual 

tumor cells in both models exhibited a prolonged, but reversible, cell cycle arrest following 

oncogenic pathway inhibition.  Indeed, in each model greater than 90% of primary tumor cells – 

but fewer than 10% of residual tumors cells – entered S-phase over a two-week period.  

Nevertheless, upon oncogene reactivation for as little as 72 h, residual tumor cells in each model 

re-entered the cell cycle and entered S-phase at rates comparable to primary tumor cells.  While 

prior reports have demonstrated the presence of residual tumor cells that are non-proliferative 

following oncogenic pathway inhibition, neither senescence nor angiogenic insufficiency have 

been addressed as contributing factors.  This, coupled with the absence of a lineage tracing 

fluorescent marker to unambiguously label residual tumor cells, as well as the fact that tumors do 

not recur in these models, has hampered definitive identification of the characteristics of residual 

disease and the determination of whether cellular dormancy is a significant contributing factor to 
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preventing tumor outgrowth [92, 93].  Nonetheless, the identification of non-proliferative residual 

disease following oncogenic pathway inhibition in Myc-driven pancreatic cancers and in 

Hedgehog-driven basal cell carcinomas highlights the possibility that dormancy is a conserved 

response to targeted therapy independent of the oncogene or cell of origin.   

Remarkably, despite the fact that prior studies investigating dormancy have been conducted in 

disparate experimental models, including chicken chorioallantoic membrane assays and in vitro 

cell culture, we find strong evidence for similarities between these previously identified pathways 

and gene expression signatures and properties of dormant tumor cells that we have identified in 

two separate genetically engineered mouse models for dormant residual disease capable of 

giving rise to recurrent tumors.  Indeed, the remarkable similarities between the gene expression 

profiles of residual tumor cells from HER2/neu and Wnt1 mammary tumors, coupled with 

significant overlap in dormancy-related gene expression profiles between these models and 

previously described models of X and Y cancers, raises the intriguing possibility that dormancy 

may be regulated by similar molecular mechanisms independent of the driving oncogene or 

cancer type.   

Importantly, though dormant disseminated tumor cells are often assumed to be the source from 

which recurrent tumors arise, little preclinical or clinical evidence exists demonstrating a 

precursor-product relationship between dormant isolated tumor cells and recurrence.  In this 

regard, it is possible that dormant MRD in the bone marrow is correlated with systemic disease 

burden, but that these cells themselves do not give rise to recurrent tumors.  In contrast, the 

efficacy of adjuvant chemotherapy in delaying recurrence demonstrates that subclinical 

proliferative metastases may underlie disease recurrence in some patients.  As such, our 

observation that primary tumor cells that survive oncogenic pathway inhibition exist in a dormant 

state prior to recurrence provides new evidence that dormancy is a potential therapeutic target 

with direct relevance to preventing tumor recurrence. 
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Remarkable similarities in findings from Wnt1 and HER2 models and its implications for 

generalizability 

While inter-tumor heterogeneity, due to a plethora of oncogenic drivers within and across tissue 

types, represents a major obstacle for cancer treatment, the remarkable similarity between gene 

expression profiles of residual disease in the HER2/neu and Wnt1 models suggests that 

therapeutic strategies useful for targeting dormant residual disease in tumors driven by one 

oncogene may apply to dormant residual disease in tumors driven by other oncogenes.  

Strikingly, in spite of our observation of EMT in only one of two residual disease models, the top 

10 clusters of down-regulated genes, and the top 3 clusters of up-regulated genes, ranked by 

DAVID enrichment score for either HER2/neu or Wnt1 residual disease were also found in the top 

clusters from the other genotype.  Therapeutic strategies suitable for targeting dormant tumor 

cells may therefore be more productively focused on pathways regulated similarly across models 

driven by different oncogenes, or arising from different cells of origin.  For example, strategies to 

eliminate dormant residual tumor cells might target secreted proteins or extracellular matrix 

components that are up-regulated in dormant disease, thereby potentially disrupting pro-survival 

tumor cell-microenvironment interactions.   

Together, our observations indicate that residual cancer cells exhibit a unique phenotype that may 

underlie resistance to therapy, as well as provide insights into more effective therapeutic 

strategies. 
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Figure 3.1.  Kinetics of Tumor Recurrence Suggest a Latent Phase 

 

(A-D) Kaplan-Meier curves showing recurrence-free survival (RFS) for (A) MTB;TetO-HER2/neu 

intact, (B) HER2/neu-Prim1 orthotopic, (C) MTB;TetO-Wnt1 intact, and (D) Wnt1-Prim1 orthotopic 

models.  (E) Recurrent tumor growth curves from MTB;TetO-HER2/neu orthotopic tumors with 

different recurrence latencies.  (F) Tumor growth curves following doxycycline re-administration to 

intact MTB;TetO-HER2/neu mice that previously harbored primary tumors that had not 

spontaneously recurred. 
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Figure 3.2.  Identification of Residual Tumor Cells Following Oncogenic Pathway Inhibition 

 

(A, B) Carmine staining of mammary glands following oncogenic pathway inhibition in 

bitransgenic (A) MTB;TetO-HER2/neu and (B) MTB;TetO-Wnt1 models.  Lymph nodes are 

designated with an asterisk (*).  (C, D) Hematoxylin and eosin-stained sections of intact (C) 

MTB;TetO-HER2/neu and (D) MTB;TetO-Wnt1 MRLs.  (E, F) Hematoxylin and eosin-stained 

sections (left) and fluorescence microscopy of H2B-eGFP-labeled tumor cells (right) in orthotopic 

(E) HER2/neu-Prim1 and (F) Wnt1-Prim1 MRLs.  Scale bars (A, B): 750μm, (C-F): 250μm. 
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Figure 3.3.  Systemic Metastases with Intracardiac Injection of HER2/neu-Prim1 Tumor 

Cells 

 

(A, B) Bioluminescence imaging of a nu/nu mouse following intarcardiac injection of HER2/neu-

Prim1 tumor cells either (A) on doxycycline continuously for 30 days following injection or (B) 12 

days after doxycycline withdrawal.  (C) Brightfield (left) and GFP fluorescence (right) imaging of 

liver (top), brain (center) or lungs (bottom) of a nu/nu mouse on doxycycline sacrificed 30 days 

after intracardiac injection of HER2/neu-Prim1 tumor cells. Scale bar (C): 750μm 
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Figure 3.4.  Systemic Metastases in Cre-driven YFP and tdTomato Fluorescent Reporter 

Mice 

 

(A) Brightfield (left) and YFP fluorescence (right) images of lungs from an MTB/TAN/TTC/rYFP 
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mouse on doxycycline with lung metastases.  (B) Brightfield (top) and tdTomato fluorescence 

(bottom) images of liver (left) and lung (right) bearing residual metastases 28d after doxycycline 

withdrawal.  (C) Fluorescence microscopy image of Hoechst and tdTomato fluorescence in a 

tissue section showing residual DTCs 28d after doxycycline withdrawal. Scale bar (A-B): 750μm, 

(C): 100μm 
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Figure 3.5.  Peripheral Blood Leukocytes in MTB/TAN/TTC/rYFP Model Express YFP 

 

(A) Flow cytometry of unstained FSC-Ahi peripheral blood leukocytes from MTB/TAN (left), 

TAN/TTC/rYFP (middle), or MTB/TAN/TTC/rYFP (right) mice that are either never induced (top) or 

induced for more than 1 month (bottom).  (B) Flow cytometry of FSC-Ahi peripheral blood 

leukocytes from MTB/TAN/TTC/rYFP that were never induced and were stained for CD45 and 

CD11b. 
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Figure 3.6.  CTCs and DTCs in Orthotopic HER2/neu-Prim1 Model 

 

(A) Flow cytometry of unstained peripheral blood from non-tumor bearing nu/nu mouse (left) and 

H2B-eGFP-labeled HER2/neu-Prim1 tumor bearing nu/nu mouse (right) for GFP vs FSC-A.  (B) 

Quantification of the number of GFP+ CTCs recovered from intracardiac puncture of tumor 
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bearing or non-tumor bearing mice.  (C-F) Fluorescence microscopy imaging of Hoechst and 

GFP fluorescence in tissue sections showing GFP+ DTCs in mouse femurs femur (DTCs are at 

arrows in panel F).  (G) Quantification of the average number of ostensible CTCs recovered per 

ml of blood across mice bearing H2B-eGFP-labeled HER2/neu-Prim1 primary tumors, residual 

disease, or recurrent tumors. 
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Figure 3.7.  Residual Tumor Cells are Quiescent 

 

(A) Immunofluorescence (IF) staining for Ki67 on sections from H2B-eGFP-labeled orthotopic 

HER2/neu-Prim1 primary tumors (PT, left) and residual lesions (RL) 28 d (middle) or 56 d (right) 

after HER2/neu de-induction.  (B, C) IF staining for BrdU on sections from H2B-eGFP-labeled 

HER2/neu-Prim1 (B)  or Wnt1-Prim1 (C) orthotopic primary tumors (left) or MRLs 28 d after 
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oncogene deinduction (right) in mice labeled with BrdU for 2 wk prior to sacrifice.  (D) 

Quantification of the percent of H2B-eGFP-labeled tumor cells staining positive for Ki67 in (A).   

(E, F) Quantification of the percent of H2B-eGFP-labeled tumor cells staining positive for BrdU in 

(B, C), respectively.  (G, H) IF staining for BrdU on sections from H2B-eGFP-labeled orthotopic 

primary tumors (left), or MRLs 28 d after deinduction (middle) or 72 hr following reinduction 

(right).  Mice were labeled with BrdU for 2 hr prior to sacrifice.  (I, J) Quantification of the percent 

of H2B-eGFP-labeled tumor cells staining positive for BrdU in (G, H), respectively.  (K) IF staining 

for cleaved caspase-3 (CC-3) on sections from H2B-eGFP-labeled HER2neu-Prim1 orthotopic PT 

(left), RL 28d (middle) or RL 56d (right) after HER2/neu de-induction.  (L) Quantification of the 

percent of H2B-eGFP-labeled tumor cells staining positive for CC-3 in (K).  Scale bars (A-C, G, H, 

K): 50μm, (K): 100μm.  ***p-value vs.  primary tumor (PT) <0.001.   

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Figure 3.8.  Minimal Residual Lesions are Well-Vascularized and Not Hypoxic 

 

(A) H&E (left) and IF staining for CD31 (right) on sections of a representative HER2/neu-Prim1 

orthotopic MRL.  (B) IF staining for CD31 on sections of an intact MTB;TetO-Wnt1 primary tumor 

(left) or MRL (right).  (C) Fluorescence microscopy of liver (top) or orthotopic MRL (bottom) from 

same mouse for H2B-eGFP, intravenously injected Hoechst 33342 and Lectin-AF647, and 

immunofluorescence staining for pimonidazole.  Arrowhead denotes area positive pimonidazole 

staining surrounding hepatic vein; arrow denotes absence of pimonidazole staining surrounding 

hepatic artery.  Scale bars: 100μm for all images shown. 
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Figure 3.9.  CD31 Co-localizes with Intravenously Injected Lectin-AF647 

 

(A-F) Fluorescence microscopy for Hoechst (blue, A), IF for CD31 (red, B), H2B-eGFP (Green, 

D), lectin-AF647 (Yellow, E), merge of CD31 and Lectin-AF647 (C), or merge of all channels (F) 

on H2B-eGFP-labeled orthotopic HER2/neu-Prim1 MRL.  Scale bar 100μm for all images shown 
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Figure 3.10.  Residual Metastases Exhibit Cellular Dormancy 

 

(A-D) Lung metastasis in MTB;TetO-HER2/neu;TTC;rYFP mouse on doxycycline (top) or residual 

lung metastasis following doxycycline withdrawal (bottom).  (A) Hematoxylin and eosin-stained 

sections (left) or YFP fluorescence microscopy (right).  (B) IF for Ki67 (left) or Ki67, YFP and 

Hoechst (right).  (C) IF for YFP, Hoechst, and CD31.  Scale bars (A): 250μm, (B-C): 100μm. 
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Figure 3.11.  Human Breast Cancer Xenografts Develop Micrometastases in Lung 

 

(A) IF staining for GFP, Hoechst, HER2, or a merge of these three channels, on BT474M1-GFP 

orthotopic primary tumors.  (B) Brightfield, (left) or fluorescence (middle) gross images of lung, or 

fluorescence microscopy of lungs from mice with BT474M1-GFP tumors bearing 

micrometastases.  Scale bars (A): 100μm, (B left, middle): 750μm, (B right): 50μm. 
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Figure 3.12.  Human Breast Cancer Xenografts Exhibit Quiescence Following Targeted 

Therapy 

 

(A) Schematic of generation of xenograft primary tumors and MRLs following targeted therapy.  

(B) Tumor volume for mice treated with vehicle control or with combination Lapatinib (L), 

Trastuzumab (T), Pertuzumab (P), and estrogen deprivation (ED).  (C) IF staining for Ki67, GFP 

and Hoechst on sections of BT474M1-GFP primary tumor (left), or residual disease (right).  (D) IF 

staining for CD31, GFP, and Hoechst, on sections of BT474M1-GFP primary tumor (left) or 

residual lesion (right), showing either CD31 alone (top), or CD31 in combination with GFP and 
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Hoechst (bottom).  (E) Quantification of the percent of GFP-labeled BT474M1 tumor cells staining 

positive for Ki67 from (C), on sections from primary tumors (PT) or residual lesions (RL).  ***p-

value vs.  primary tumor cells < 0.001.  Scale bars (C): 50µm, (D): 100μm 
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Figure 3.13.  Proliferative Residual Tumor Cells are Juxtaposed with Normal Mouse 

Mammary Duct in HER2/neu-Prim1 model)  

 

(A, B) IF staining for GFP (green), Pan-Cytokeratin (Pan-CK, white), or BrdU (red), following 2 wk 
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BrdU exposure prior to sacrifice, 56d after doxycycline withdrawal, in tissue sections of H2B-

eGFP-labeled HER2/neu-Prim1 residual lesions in nu/nu mice.  Yellow and orange colors show 

overlap of BrdU with GFP.  Scale bars: 250μm 
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Figure 3.14.  Proliferative Residual Tumor Cells are Juxtaposed with Normal Mouse 

Mammary Duct in HER2/neu-Prim1 Model 

 

(A-B) IF staining for GFP (green), Pan-Cytokeratin (Pan-CK, white), or BrdU (red), following 2 wk 
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BrdU exposure prior to sacrifice in center of residual lesion (A) or tumor cells near BrdU+ normal 

mammary ducts near residual lesion (B).  IF staining for GFP (green), Hoechst (blue) and 

PDGFR-β (red) of normal mammary duct near residual lesion (C).  Experimental schematic (D) 

and recurrence-free-survival results (E) for TAN monotransgenic mice bearing HER2/neu-Prim1 

tumors following sham surgery or fat pad clearing surgery.  (F-I) BT474M1-GFP residual disease 

either scattered (F, H) or juxtaposed to normal mouse mammary gland cells encapsulated inside 

ducts (G, I), stained for GFP (blue) and either CK8 (green) and CK14 (red, F, G), or Hoechst 

(white) and Ki67 (Red, H, I).  Scale bars: 100μm 
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Figure 3.15.  Analysis of RNA Isolated from MTB/TAN/TTC/rYFP No Culture Orthotopic 

Residual Lesions 

 

Agilent Bioanalyzer 2100 analysis of 2μl of RNA (of 12μl total isolated RNA) isolated from minimal 

residual lesion tumor cells in MTB/TAN/TTC/rYFP no culture orthotopic residual lesions, showing 

number of tumor cells isolated per residual lesion (x-axis) compared to RNA integrity number 
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(RIN) (A, E), total RNA yield from 12μl (B, F), ribosomal RNA (rRNA) ratio (C, G), or RNA yield 

per cell (D, H).  Data shown either for all samples (A-D), or samples with RNA quality eligible for 

WTA with rRNA ratio>0 and RIN>7 (E-H).  Linear fit for total RNA yield vs number of tumor cells 

(F). 
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Figure 3.16.  Residual Tumor Cells Express Genes Associated with Dormancy 

 

(A) Schematic for isolation and analysis of primary tumor cells (green), dormant residual tumor 

cells (red), recurrent tumor cells (blue), and stromal cells from recurrent tumors (yellow).  (B) Dot 

plot showing first (PC1) and second (PC2) principal components from principal component 
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analysis of gene expressed in FACS-isolated primary tumor cells, dormant residual tumor cells, 

and recurrent tumor cells from HER2/neu-Prim1 (left) and Wnt1-Prim1 (right) models.  (C, F) Bar 

graphs showing mean expression level and standard error of the mean (SEM) for genes 

associated with cell cycle (C), or dormancy (F).  (E, G) Dormancy score (E) and mTOR signature 

score (G) for HER2/neu (left) and Wnt1 (right) models, with primary tumors (PT), residual lesions 

(RL), recurrent tumors (RT), and recurrent tumor stroma (RS) absolute values (colored circles) or 

mean values (black lines).  (H) Heat map showing hierarchical clustering based upon expression 

of ribosomal protein genes for primary tumor cells (PT), dormant residual tumor cells (RL), 

recurrent tumor cells (RT), and recurrent tumor stromal cells (RS). 
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Figure 3.17.  Dormant Residual Disease Resides in Desmoplastic Stroma 

 

IF staining for Fibronectin (A, D, G, J, M), collagen type-I (B, E, H, K, N), or collagen type-IB (C, F, 

I, L, O), on tissue sections from HER2/neu-Prim1 residual lesions (A-C), normal mammary gland 

(D-F), MTB/TAN/TTC/rYFP primary metastasis (G-I), MTB/TAN/TTC/rYFP residual metastasis (J-

L), or BT474M1-GFP residual lesion (M-O).  Mammary gland (D-F) is labeled for duct (D) and 
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lumen (Lu). 
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Figure 3.18.  Comparison of Intact Donors to No Culture Orthotopic Tumors with Array 

Comparative Genomic Hybridization (aCGH) and Whole Exome Sequencing (WES) on Bulk 

Tumor Tissue and RNA-Seq on FACS-isolated Tumor Cells 
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(A) Copy Number Variation analysis of aCGH data showing copy number gains (orange) or copy 

number losses (green) at loci in genomic DNA isolated from donor (D) or orthotopic (O1-O3) 

tumors from the same donor tumor (Donor1-Donor3), or germline DNA from an FVB or Ts65Dn 

control.  (B) Quantification of number of genes with non-synonymous mutations in donor (blue, D) 

or orthotopic (orange, O1-O3) tumors from the same donor (Donor1-Donor3).  (C) Unsupervised 

hierarchical clustering based on mutations from (B), showing either orthotopic or intact donor 

tumors resulting from the same donor (see legend).  (D) Principal component analysis (PCA) of 

genome-wide expression data for FACS-isolated tumor cells from donor or orthotopic tumors from 

the same donor (see legend).  (E) Gene expression pathway activity measured for Stat5 (Stat5), 

proliferation (Prolif), cMET (MET), Wnt, Notch, Myc, TGF-β1 and TGF-β3 (TGFB), EMT or mTOR.  

(F) Statistical analysis of (E) comparing expression in orthotopic tumors to donor tumors for 

donors 1-3 (D1-D3), showing down-regulation of pathways (-) or up-regulation of pathways (+) in 

orthotopic tumors compared to intact donors.  One symbol p-value <0.05, two symbols p-value 

<0.01, three symbols p-value <0.001. 
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Figure 3.19.  Expression of HER2/neu and Epithelial Markers in Some No Culture 

Orthotopic Recurrent Tumors 

 

(A-C) IF staining on tissue sections of MTB/TAN/TTC/rYFP no culture orthotopic primary (top) or 
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recurrent tumors (bottom) in nu/nu mice, showing Hoechst (blue) and (A) EpCAM, CK18, and 

merge of EpCAM (red) and CK18 (green); (B) CK8, HER2, and merge of CK8 (green) and HER2 

(red); or (C) E Cadherin, CK14, and marge of E Cadherin (green) and CK14 (red).  (D) 

Bioluminescence imaging of a 4x4 recurrent tumor that did not appear to reactivate HER2/neu 

expression (left) or a 4x4 recurrent tumor that appeared to reactivate HER2/neu expression.  

Scale bars 100μm for (A-C). 
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Figure 3.20.  Pathway Scores for No Culture Orthotopic MTB/TAN/TTC/rYFP Donor and 

Orthotopic Primary Tumor, Residual Lesion, and Recurrent Tumor 

 

(A-F) Pathway scores for intact MTB/TAN/TTC/rYFP donor primary tumor (black), orthotopic 
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primary tumors (green), orthotopic residual lesions (red), or orthotopic recurrent tumors (blue) for 

gene expression signatures associated with proliferation (A), c-Myc activity (B), TGF-β1 and TGF-

β3 signaling (C), EMT (D), mTOR activity (E), or dormancy (F).  (G) p-values for student’s t-test 

comparing pathway scores of primary tumor (PT) or recurrent tumor (RT) to residual lesion (RL). 
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Figure 3.21.  Residual Tumor Cells from HER2/neu but not Wnt1 Models Express Genes 

Associated with EMT 

 

(A, B) Bar graphs showing mean expression level and standard error of the mean (SEM) for 

genes associated with EMT in HER2/neu (A) or Wnt1 (B) models. 
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Figure 3.22.  HER2/neu-Prim1 but not Wnt1-Prim1 Residual Disease is Enriched for 

Mesenchymal Tumor Cells 

 

(A-C) IF staining for Hoechst (blue) and H2B-eGFP (green) along with luminal epithelial marker 

CK8 (red, top) or myoepithelial marker CK14 (red, bottom), on sections of H2B-eGFP-labeled 

orthotopic HER2/neu-Prim1 (A) or Wnt1-Prim1 (B) primary tumor (left), residual lesion 28 d after 
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doxycycline withdrawal (right), or normal mammary gland (C).  (D-G) IF staining for PDGFRβ 

(red), Hoechst (blue) and GFP (green) on residual lesion 28d after doxycycline withdrawal.  (E-T) 

IF staining for Hoechst (blue) and H2B-eGFP (green) along with epithelial markers (red) CK5 (E, 

M), CK18 (F, N), CK19 (G, O), Ep-CAM (I, Q), E-Cadherin (J, R), P-Cadherin (K, S), and p63 (L, 

T), or with a Pan-CK antibody (H, P), on sections of MRLs from H2B-eGFP-labeled orthotopic 

HER2/neu-Prim1 tumors (E-L)) or normal mammary ducts (M-T).  Scale bars 200μm for (A-C), 

50μm for D (left) and (E-T, scale bar shown in T), 20μm for D (right). 
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Figure 3.23.  Distribution of Mesenchymal Tumor Cells in HER2/neu-Prim1 Residual Lesion 

 

IF staining for H2B-eGFP (blue), mesenchymal marker S100A4 (Fibroblast-specific Protein 1, 

green), and CD24 (red). Scale bars 250μm 

 



96 
 

Figure 3.24.  Flow Cytometry Analysis of EMT in HER2/neu-Prim1 cells in vitro and in vivo 

 

(A-D) Flow cytometry analysis of GFP+DAPI- tumor cells from H2B-eGFP-labeled HER2/neu-

Prim1 primary tumors (A, C) or residual lesions (B, D), staining for either CD49e vs CD24 (A, B) 

or PDGFR-β vs CD24.  (E) Flow cytometry staining of HER2/neu-Prim1 (54074), HER2neu-Prim2 

(99142), or HER2/neu-Rec1 tumor cells in vitro for intracellular vimentin vs.  extracellular EpCAM. 
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Figure 3.25.  Identification of Residual Tumor Cells Lacking Epithelial Markers in Intact 

Mice 

 

(A-C) IF staining on tissue sections of MTB/TAN/TTC/rYFP intact residual lesions for Hoechst 

(blue), YFP (green), CK8 (red) or CK5 (white), showing spindle-shaped YFP+ tumor cells that 
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lack expression of epithelial markers CK5 and CK8 (red arrows in panel C).  (D-F) Images of H&E 

staining of intact residual lesions show reproducible features, including a mesenchymal core 

(green arrow), abnormal ductal morphology (blue arrows), and a corona of lymphocytes (red 

arrows).  Scale bars 100μm for (A-C, E, F), 300μm for (D). 
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Figure 3.26.  Residual Disease is Enriched for Rare Tumor Cell Subpopulations Present in 

Primary Tumors 

 

(A) Flow cytometry for EpCAM and CD49e on YFP+ CD45-DAPI- singlet tumor cells in 

MTB/TAN/TTC/rYFP primary tumor cells (left) or dormant residual tumor cells (right).  (B, C) Flow 

cytometry on populations in (A) for CD24 and PDGFR-β expression on CD49e-EpCAM+ primary 

tumor cells (B) or CD49e+EpCAM- residual tumor cells (C).  (D) Quantification of percent CD49e-

EpCAM+ or CD49e+EpCAM- tumor cells in primary tumors or residual lesions, using gates from 

(A), in MTB/TAN/TTC/rYFP mice.  (E) Limiting dilution assay of CD24+Thy1+ tumor cells, or non-

CD24+Thy1+ tumor cells, from MTB/TWNT/TTC/rYFP primary tumors.  (F) Flow cytometry for 

CD24 and Thy1 expression on YFP+CD45-DAPI- singlet tumor cells in MTB/TWNT/TTC/rYFP 

primary tumor cells (left) or residual tumor cells (right).  (G) Quantification of percent 

CD24+Thy1+ or non-CD24+Thy1+ tumor cells in primary tumors or residual lesions, using gates 
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from (G), in MTB/TWNT/TTC/rYFP mice.  **p value vs.  primary tumor (PT) <0.01, ***p value vs.  

PT <0.001. 
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Figure 3.27.  Mesenchymal Markers Identified in HER2/neu Residual Disease are 

Prognostic for Poor Recurrence-Free Survival in HER2+ Breast Cancer 

 

(A) Gene expression data for CD49e (Itga5) or EpCAM prior to (Pre-tx) and following (Post-tx) 

neoadjuvant therapy.  (B) Change in expression of EpCAM (y-axis) and CD49e (x-axis) between 
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Pre-Tx and Post-Tx time points in breast cancer patients.  (C-F) 10 year recurrence-free survival 

(RFS) meta-analysis of 12 data sets of HER2+ breast cancer, adjusted for tumor grade and size, 

based on expression levels of Itga4 (CD49e, C), Pdgfrb (PDGFR-β, D), Cd24 (E), or Epcam (F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



103 
 

Figure 3.28.  Genes Associated with Stem-like Cells are Up-regulated in Residual Lesion 

Tumor Cells in HER2/neu and Wnt1 Models 

 

(A-B) Gene expression in residual lesion tumor cells relative to primary and recurrent tumor cells 

showing genes previously identified as up-regulated in normal mammary stem cells (left) or 

neoplastic mammary stem-like cells (right) and differentially expressed in residual tumor cells 

(FDR<0.1) for HER2/neu (A) or Wnt1 (B) models. 
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Figure 3.29.  Residual Tumor Cells from MTB/TWNT/TTC/rYFP No Culture Orthotopic 

Tumors Give Rise to Mammary Epithelial Trees 

 

(A-B) YFP+ residual disease showing branching mammary epithelial tree from 

MTB/TWNT/TTC/rYFP residual disease 9 weeks after de-induction (A) but not in 

MTB/TAN/TTC/rYFP residual disease more than 32 weeks after deinduction.  (C) Carmine 

stained mammary fat pad shows mammary duct arising in cleared fat pad injected with 1000 

residual lesion tumor cells (left) but not in cleared fat pads injected with 1000 primary tumor donor 
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cells (right).  (D) Quantification of the number of cleared fat pads injected with residual lesion or 

primary tumor cells that give rise to mammary epithelial trees. 
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Figure 3.30.  Immunohistochemistry (IHC) for Proteins Identified by Up-regulation of Genes 

in Analysis of Residual Disease 

 

(A) IHC for thrombospondin-1 (top) or Gjb2 (bottom), two proteins whose transcripts were up-

regulated in residual disease for which a commercially available antibody was also available, 
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reveals expression of these proteins both in normal mammary gland epithelial cells (left) and in 

HER2/neu-Prim1 residual lesions (right).  (B) IHC for Dec2 in primary tumors (left) or residual 

lesions (right) shows heterogeneous nuclear staining in primary tumors and residual lesions.  

Scale bars 100μm for (A, B). 
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Table 3.1.  Agilent Bioanalyzer Analysis Results of RNA from FACS-isolated Tumor Cells 

from Residual Lesions in vivo 

 

Results for running Agilent Bioanalyzer 2100 with ‘Pico’ chips using RNA from FACS-isolated 

tumor cells sorted out of fluorescently labeled residual lesions in vivo. 

 

 

 

 

 

 



109 
 

Table 3.2.  Gene Sets Down-regulated in Dormant Residual Tumor Cells in HER2/neu-Prim1 

and Wnt1-Prim1 Models 

 

Clusters of SP-PIR Keywords identified by DAVID functional ontology analysis of genes down-

regulated in dormant residual tumor cells compared to all other cell types (false discovery rate 

(FDR)<0.1, fold-change (FC) >1.5-fold). 
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Table 3.3.  Gene Sets Up-regulated in Dormant Residual Tumor Cells in HER2/neu-Prim1 

and Wnt1-Prim1 Models 

 

Clusters of SP-PIR Keywords identified by DAVID functional ontology analysis of genes up-

regulated in dormant residual tumor cells compared to all other cell types (FDR<0.1, FC >1.5-

fold). 
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Table 3.4.  Copy Number Variation (CNV) Analysis of Gene Sets Up-regulated in Dormant 

Residual Tumor Cells 

 

CNV analysis of aCGH data showing copy number gains or copy number losses in genomic DNA 

isolated from donor or orthotopic tumors from the same donor tumor, or germline DNA from an 

FVB or Ts65Dn control.   
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Table 3.5.  Gene Sets Differentially Regulated in Dormant Residual Tumor Cells 

 

Clusters of SP-PIR Keywords identified by DAVID functional ontology analysis of genes up-

regulated (left) or down-regulated (right) in dormant residual tumor cells compared to all other cell 

types, in MTB/TAN/TTC/rYFP no culture orthotopic model (FDR<0.1, FC >1.5-fold). 
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Table 3.6.  TIC Frequency Calculation for All Tumor Cells in Intact MTB/TAN/TTC/rYFP 

Primary Tumors or Residual Lesions 

 

Calculation of TIC frequencies for all YFP+ CD45-DAPI- singlet tumor cells from either 

MTB/TAN/TTC/rYFP primary tumors or residual lesions, injected into nu/nu mice on doxycycline. 
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Table 3.7.  TIC Frequency Calculation for All Tumor Cells in Syngeneic Orthotopic 

MTB/TAN/TTC/rYFP Primary Tumors or Residual Lesions 

 

Calculation of TIC frequencies for all YFP+ CD45-DAPI- singlet tumor cells from syngeneic 

orthotopic primary tumors or residual lesions in nu/nu mice generated from the same 

MTB/TAN/TTC/rYFP donor tumors, injected into nu/nu mice on doxycycline. 
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Table 3.8.  TIC Frequency Calculation for EpCAM+CD49e- Tumor Cells in Intact 

MTB/TAN/TTC/rYFP Primary Tumors or Residual Lesions 

 

Calculation of TIC frequencies for epithelial singlet tumor cells (EpCAM+CD49e-YFP+CD45-

DAPI- singlets) from either MTB/TAN/TTC/rYFP primary tumors or residual lesions, injected into 

nu/nu mice on doxycycline. 
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Table 3.9.  TIC Frequency Calculation for All Tumor Cells in Intact MTB/TWNT/TTC/rYFP 

Primary Tumors or Residual Lesions 

 

Calculation of TIC frequencies for all YFP+ CD45-DAPI- singlet tumor cells from either 

MTB/TWNT/TTC/rYFP primary tumors or residual lesions, injected into nu/nu mice on 

doxycycline. 
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Table 3.10.  TIC Frequency Calculation for All Tumor Cells in Syngeneic Orthotopic 

MTB/TWNT/TTC/rYFP Primary Tumors or Residual Lesions 

 

Calculation of TIC frequencies for all YFP+ CD45-DAPI- singlet tumor cells from syngeneic 

orthotopic primary tumors or residual lesions in nu/nu mice, generated from the same 

MTB/TWNT/TTC/rYFP donor tumors, injected into nu/nu mice on doxycycline. 
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Table 3.11.  TIC Frequency Calculation for All Tumor Cells from H2B-eGFP-labeled 

Orthotopic HER2/neu-Prim1 Primary Tumors or Residual Lesions  

 

Calculation of TIC frequencies for all GFP+CD45-DAPI- singlet tumor cells from H2B-eGFP-

labeled HER2/neu-Prim1 primary tumors or residual lesions, injected into nu/nu mice either on 

doxycycline or not on doxycycline. 
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Methods 

Statistics 

Unless otherwise noted, all statistical analyses providing a p-value were conducted using 

student’s two-sided T-test assuming homoscedastic variance, performed in Excel (Microsoft).  

Mice 

Animal care and experiments were performed with the approval of, and in accordance with, 

guidelines of the University of Pennsylvania IACUC.  Bitransgenic and nude mice were generated 

and tumors were induced, deinduced, monitored for tumor recurrence, and sacrificed as 

described [108, 121, 126].  NSG mice were acquired from Jackson Laboratory (stock #005557).  

For HER2 blockade, NSG mice were administered 100mg/kg Lapatinib by oral gavage 5 

days/week and 20mg/kg Trastuzumab and 20mg/kg Pertuzumab three times per week. 

Tissue Culture and Reagents 

Primary tumor cells were cultured, and stable H2B-eGFP expression was achieved as described 

[108, 126]. 

BT474-M1 tumor cells were a generous gift from Dr. Mien-Chie Hung.  Cells were grown as 

above, in media consisting of 10% fetal bovine serum (FBS, Gibco), 1% Penicillin/Streptomycin in 

Dulbecco’s modified eagle’s medium (DMEM)/F12 (GIBCO 11330-032).  Stable GFP expression 

was achieved by transduction with GFP Bsd Lentiviral particles (Gentarget, LVP001) followed by 

culture in media containing 10µg/ml blasticidin. 

Orthotopic Recurrence Assay 

Recurrence assays were performed as described [108]. Recurrence-free survival curves were 

displayed as Kaplan-Meier survival curves using Prism 5.03 (Graph Pad Software, Inc). 

Intravital Labeling 

Intravital labeling was performed as a series of intravenous (i.v.) injections prior to sacrifice.  

Pimonidazole HCl (HypoxyprobeTM-1, NPI Inc.) was resuspended in phosphate buffered saline 

(PBS) at 20μg/μl, and injected i.v. at 60mg/kg 90 min prior to sacrifice.  Hoechst 33342 

(230001000, Thermo Fisher Scientific Inc.) was resuspended in PBS at 5μg/μl and injected i.v. at 

20mg/kg 15 min prior to sacrifice.  Lectin-AF647 was prepared by resuspending 1mg 
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Lycopersicon Esculentum Lectin (B-1175, Vector Labs, Inc) in 425μl of PBS and mixing with 75μl 

of Streptavidin, AlexaFluor® 647 Conjugate (S-32357, Life Technologies Corporation).  Lectin-

AF647 was centrifuged briefly to remove protein aggregates and was injected i.v. 10 min prior to 

sacrifice.  Mammary glands bearing MRLs 28d following oncogene deinduction, as well as livers 

from same mice, were harvested at sacrifice and placed directly into Optimal Cutting Temperature 

(OCT, Tissue-Tek, VWR).   

Immunofluorescence and Direct Fluorescence 

Normal mammary glands or mammary glands bearing MRLs were harvested, embedded in OCT 

compound, and frozen.  8μm tissue sections were either fixed and permeabilized in dehydrated 

acetone at -20°C for 10 min, or fixed in 4% paraformaldehyde for 10 min at room temperature 

(RT) and permeabilized in 0.1% Triton-X-100 in PBS for 20 min.  Following fixation and 

permeabilization, sections were washed 2x5 min in PBS, blocked for 1 hr with 10% normal goat 

serum with 3% BSA in PBS and incubated overnight (O/N) at 4°C with primary antibody diluted in 

blocking buffer.  Primary antibodies used to stain tissues fixed in paraformaldehyde were: CD31 

(1:200, AB28364, AbCam), CK5 (1:1000, PRB-160P, Covance), CK14 (1:10,000, PRB-155P, 

Covance), CK19 (1:50, AB15463, AbCam), Pan-CK Ab (1:100, SC-15367, Santa Cruz), E-

Cadherin (1:100, 13-1900, Zymed), P-Cadherin (1:50, 13-200, Zymed), p63 (1:500, AB53039, 

AbCam), Collagen Type-I (1:250, AB34710, AbCam), Ki67 (1:50, M7249, Dako), and BrdU 

(1:200, OBT0030, AbD Serotec).  Primary antibodies used to stain tissues fixed in acetone were: 

Ep-CAM (1:100, 14-5791, eBioscience) and CK18 (1:100, NB110-56910, Novus Biologicals).   

For BrdU staining, following fixation and permeabilization, sections were incubated with 2N HCl 

for 10 min at 25°C and then 20 min at 37°C, followed by incubation in 0.1M sodium tetraborate for 

15 min, and then blocked (as above) and stained with primary antibody.  For staining of tissues 

with primary antibodies raised in mice, specifically those against Fibronectin (1:200, 610077, BD 

Transduction), the M.O.M.TM Immunodetection Kit (Vector Laboratories) was used with 

Avidin/Biotin Blocking Kit (Vector Laboratories).  Following O/N incubation with primary antibody, 

tissues were washed 2x10 min in PBS, and incubated for 1 hr at RT with AlexaFluor-conjugated 

secondary antibody (1:1000 dilution, Life Technologies Corporation).  Sections were then washed 
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10 min in PBS, 10 min in PBS with a 1:10,000 dilution of Hoechst 33258 (Sigma-Aldrich Co.), and 

5 min in PBS.  Sections were mounted in ProLong® Gold Antifade Reagent (Molecular Probes®, 

Life Technologies Corporation), sealed with clear nail polish, and allowed to dry.   

Slides were imaged with a Leica TCS SP5 (Leica Microsystems) confocal microscope using Leica 

Application Suite Advanced Fluorescence (LAS AF, Leica Microsystems) software.  Images 

showing Ki67 or BrdU staining of H2B-eGFP-labeled HER2/neu-Prim1 tumor cells in Figure 3.7 is 

presented as a masked image, wherein a binary mask is generated from the GFP channel and 

applied to the Ki67 or BrdU channel, so that only Ki67 or BrdU co-staining with tumor cells is 

shown.  For all images used for quantification, either the entire MRL, or 1mm x 1mm of the 

primary tumor, was imaged as a mosaic image. 

Image Quantification 

Images were quantified using CellProfiler (Broad Institute) software.  Briefly, to quantify Ki67 or 

BrdU, a mask was generated (as above) using H2B-eGFP nuclei from a mosaic image.  The 

number of nuclei that stained positive for Ki67 or BrdU was determined using this mask.  The 

fraction of tumor cells expressing BrdU or Ki67 was calculated as the total number of nuclei that 

stained positive for Ki67 or BrdU divided by the total number of nuclei. 

Flow Cytometry and Fluorescence-activated Cell Sorting (FACS) 

Immediately following harvest, tissues from mice were digested enzymatically using 

collagenase/hyaluronidase (Stemcell Technologies) for 90 min at 37ºC, followed by pipetting 

vigorously in DNAse (Worthington Biochemical Corporation) and Dispase (Stemcell 

Technologies) for 5 min at 37C.  Tissue digests were strained through a 40μm filter (BD Falcon).  

Single-cell suspensions were stained with fluorophore-conjugated antibodies for 30 min at 4ºC in 

1%BSA and 5mM Ethylenediaminetetraacetic acid disodium salt (EDTA) in PBS.  Antibodies used 

were: CD45;AF700 (1:50, 560510, BD Biosciences), CD49e;PE (1:50, 557447, BD Pharmingen), 

CD24;Pe-Cy7 (1:200, 560536, BD Biosciences), EpCAM;APC-Cy7 (1:50, 118218, BioLegend), 

and PDGFR-β;APC (1:50, 17-1402, eBiosciences).  Cells were washed twice in FACS diluent 

(PBS with 1% bovine serum albumin (BSA, Sigma) and 5mM EDTA (Sigma)), and resuspended 

in FACS diluent with 1µg/ml DAPI (Sigma-Aldrich Co.) for identifying viable cells.  Compensation 
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was performed using AbCTM anti-mouse bead kit (A10344, Life Technologies Corporation) and 

anti-rat/hamster bead kit (A10389, Life Technologies Corporation), according to manufacturer’s 

instructions.  Flow cytometry was performed on a BD FACSCantoTM system using BD 

FACSDivaTM software (BD Biosciences). 

Data were analyzed using FlowJo.  Dead cells, debris, and doublets were removed by 

sequentially analyzing gates for DAPI, SSC-A vs. FSC-A, SSC-W vs. SSC-H and FSC-W vs. 

FSC-H staining, respectively. 

With the exception of enzymatic digest at 37ºC, all steps for flow cytometry, FACS, and limiting 

dilution experiments were performed at 4ºC.  For tumors harvested from mice bearing a YFP-

reporter, tumor cells were defined as YFP+CD45-DAPI- cells, excluding all dead cells, debris, and 

doublets as above. 

Expression Analysis of Purified Tumor and Stromal/Immune Cells 

Tissue digestion was performed as above for flow cytometry, with the exceptions that digestion in 

collagenase/hyaluronidase was limited to 20 min.  Tissue/cells were maintained on ice or at 4ºC 

for all other steps prior to resuspension in Trizol after sorting, in order to minimize transcriptional 

changes.  To further minimize transcriptional changes, antibody staining was omitted and sorting 

was based on GFP expression and DAPI staining. 

Removal of dead cells, debris, and doublets, was performed as above for flow cytometry.  Cell 

sorting was performed on a BD FACSVantage cell sorter.  Cells were sorted into complete media 

(including doxycycline for primary tumor cells), chilled to 4ºC, and maintained on ice.  

Immediately following sorting, cells were pelleted and resuspended in TRIZOL.  

Phenol/chloroform extraction was used in conjunction with the QIAGEN RNeasy kit to isolate 

mRNA.  Isolated RNA was analyzed on an Agilent Bioanalyzer, and only samples with an RNA 

integrity number of at least 7.0 were selected for subsequent amplification and expression 

analysis.  500pg of RNA was used as the input for whole transcriptome amplification (WTA) with 

NuGEN Ovation Pico WTA V2.0 kits.   

An expression heat map of ribosomal protein gene expression was generated using GENE-E 

(www.broadinstitute.org/cancer/software/GENE-E/). 
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CHAPTER 4 

 

Modeling the Impact of Immune Modulation on Breast Cancer Recurrence 

The immune system is a critical player in the development and progression of cancer.  Whereas 

the immune system may promote tumor growth through inflammatory signaling in some cancers, 

it may alternatively serve a critical role in the elimination of cancer in other settings [13].  Recent 

clinical trials with checkpoint blockade inhibitors have revealed a central role for therapies that 

activate the immune system, however the impact of directly activating antigen presenting cells 

with anti-CD40 stimulatory antibodies on breast cancer recurrence remains unknown.  

Alternately, results from the Nurses’ Health Study indicate that daily intake of aspirin 

(acetylsalicylic acid) is associated with a dramatic decrease in tumor recurrence, though the 

biological basis for this observation is unclear.  Anti-cancer therapies may also elicit different 

immune responses, which can have a significant impact on subsequent treatment with immune-

based therapies.  Given the increasing importance of immune-oncology and the dramatic rise in 

the use of targeted therapy in the clinic, we investigated the role of the immune system and 

inflammation in residual disease following oncogenic pathway inhibition. 

Characterization of leukocytes in residual disease 

Prior observation of mesenchymal residual tumor cells revealed a complex inflammatory infiltrate 

surrounding residual tumor cells (Figure 3.25).  To identify the phenotype of these residual tumor 

cells we performed IF for macrophage marker F4/80 and T-cell marker CD3 on tissue sections of 

residual lesions in intact quadtransgenic MTB/TAN/TTC/rYFP mice.  In regions previously 

identified to harbor mesenchymal tumor cells (Figure 3.25), we identified large numbers of 

macrophages juxtaposed with dormant residual tumor cells, as well as a corona of T cells (Figure 

4.1A).  This pattern was seen repeatedly in areas with mesenchymal residual tumor cells, and 

could be discretized into sections with mesenchymal residual tumor cells and macrophages 

(Figure 4.1B, region a), sections with abnormal ductal morphology and T-cell infiltration 
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surrounding the macrophages (Figure 4.1B, region b), and areas with no apparent residual tumor 

cells or recurrent pattern of inflammatory infiltrate (Figure 4.1B, region c). 

Previous reports have indicated that macrophage invasion in primary tumors is associated with 

poor prognosis [151-153].  These reports look at expression of either CD68 or CD163 in breast 

cancer patients but did not explore alternate transcripts specific to macrophages, and did not 

stratify patients to determine the prognostic impact of these markers on breast cancer subtypes.  

Combining survival data from several publicly available datasets as before (Figure 3.27), we 

asked whether expression of macrophage related markers was prognostic for poor RFS and 

stratified our results by breast cancer subtype, as well as grade and lymph node status.  

Consistent with prior reports, we identified increased expression of CD68 and CD163 as 

correlated with poor 5- and 10-year RFS (Figure 4.2A, E).  Interestingly, for both CD68 and 

CD163, these markers were prognostic for poor RFS only in breast cancer patients with estrogen 

receptor positive (ER+) breast cancer who had received treatment, whereas they associated with 

improved outcome in patients with ER- breast cancer who had been treated with systemic 

therapy, and did not hold the same prognostic value in patients who had not been treated with 

systemic therapy (Figure 4.2A, E).  Increased expression of alternate markers specific to 

macrophages, including CSF1R and CD14, were not associated with poor RFS, and both were 

instead associated with improved RFS in patients with ER- breast cancer (Figure 4.2 C, D).  

Similarly, the myeloid marker CD11b and the M1 macrophage-associated marker CD11c – which 

is also a marker for dendritic cells – were associated with improved RFS in patients with ER- 

breast cancer (Figure 4.2 B, F).  These findings indicate that, while increased expression of the 

macrophage markers CD68 and CD163 are prognostic for poor RFS in ER+ breast cancer, 

macrophage-associated markers are associated with improved RFS in ER- breast cancer.  

Interestingly, increased expression of CSF1R was associated with improved RFS even in patients 

with ER+ breast cancer, a finding that is consonant with recent preclinical results suggesting 

CSF1R inhibition may promote metastases in some models of breast cancer [154].  Differences in 

survival when looking at alternate markers that should be specific to macrophages, such as 

CD68, CSF1R, and CD14, suggest that while the proteins associated with these transcripts are 
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used as markers specific to all macrophages, different transcripts may be associated with 

heterogeneous macrophage subpopulations. 

While these data suggested a complex role for macrophage biology in primary tumors, they did 

not inform whether macrophages present in residual disease are critical for tumor recurrence.  To 

determine whether macrophages are involved in tumor recurrence, we looked at transcript levels 

of macrophage-related markers in recurrent tumors compared to primary tumors in mouse 

models.  We identified 8 different macrophage markers as significantly up-regulated in recurrent 

tumors compared to primary tumors, in tumors driven by three different oncogenes: HER2/neu, 

Wnt1, and c-Myc (Figure 4.3A).  These data suggested that macrophages were associated with 

tumor recurrence in breast cancer models driven by different oncogenes. 

To better phenotype and study macrophages, we used an orthotopic model of HER2/neu-Prim1 

tumor cells labeled with H2B-eGFP, and this model facilitates both easier identification of residual 

disease, and studies in larger cohorts of mice in a shorter time frame than is possible with intact 

animals.  IF staining revealed that residual lesions in HER2/neu-Prim1 tumors in nu/nu mice 

harbored a large number of F4/80+ macrophages, similar to the intact system (Figure 4.3B).  To 

determine the relative proportion of different myeloid populations in residual lesions, we used flow 

cytometry to phenotype CD45+CD11b+ leukocytes in residual lesions.  The majority of myeloid 

cells were Ly6C-Ly6G-, and expressed F4/80 and CD115 (CSF1R), consistent with a 

macrophage phenotype (Figure 4.3C), suggesting that macrophages were the primary myeloid 

cell population in residual disease. 

We previously observed that residual lesions exposed to BrdU for 2 weeks contained a large 

number of BrdU-positive non-tumor cells.  If these cells were macrophages, it would raise the 

possibility that the residual lesion macrophages were either locally proliferative, or were newly 

generated myeloid cells recruited from a distant site.  If either of these was the case, they would 

open the opportunity to inhibit macrophage proliferation in, or recruitment to, the residual lesion.  

Thus, we used flow cytometry to investigate the uptake of BrdU over 2 weeks by myeloid cells in 

the residual lesion.  CD45+CD11b+Ly6C-Ly6G-F4/80+CD115+ macrophages and 
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CD45+CD11b+Ly6C-Ly6G-F4/80+CD115+ resident monocytes incorporated BrdU at a more than 

3-fold higher rate than dormant residual tumor cells or than CD45+CD11b+Gr1+ myeloid-derived 

suppressor cells (MDSCs) (Figure 4.3D), supporting the idea that macrophages either proliferated 

in, or were recruited to, dormant residual lesions. 

Finally, to further characterize macrophages in residual lesions, we performed IF for CD163, 

CD206, Ym1, and RELMα (Fizz1).  These markers are generally associated with ‘alternatively 

activated’ macrophages, a phenotype that has been associated tumor associated macrophages 

(TAMs) in previous reports [155].  Macrophages inside the residual lesion expressed CD206, but 

only macrophages around the border of the residual lesion expressed CD163, and no 

macrophages near the residual lesion expressed Ym1 or RELMα (Figure 4.3 E-I).  We also 

observed CD206 expression in red pulp macrophages, which are not alternatively activated 

macrophages, and thus it was unclear that expression of CD206 alone was sufficient to indicate 

that residual lesion macrophages were alternatively activated (Figure 4.3E). 

Together, these results provide a picture of residual lesion macrophages as a dynamic population 

that do not express markers of alternatively activated macrophages sometimes associated with 

TAMs. 

Activating macrophages with anti-CD40 antibodies does not inhibit tumor recurrence 

Our results indicated that macrophages comprised the major leukocyte population in residual 

disease.  Recent reports indicate that antibodies stimulating CD40 on macrophages can activate 

them in a manner that inhibits tumor progression in desmoplastic pancreatic tumors [156].  As 

residual lesions are highly desmoplastic (Figure 3.17), we hypothesized that activation of 

macrophages with the anti-CD40 antibody FGK45 might inhibit tumor recurrence in mice following 

oncogenic pathway inhibition. 

Prior to administering FGK45, we wanted to know whether tumor cells expressed CD40, and thus 

whether FGK45 might bind directly to the tumor cells, as this would complicate our subsequent 

interpretation of results.  Using both flow cytometry and IF, we found that while leukocytes in 
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primary tumors and residual lesion-juxtaposed lymph nodes expressed CD40, primary tumor cells 

and residual lesion tumor cells did not express CD40 (Figure 4.4).  As leukocytes expressed 

CD40, we next asked whether macrophages would express an activated phenotype upon 

treatment with anti-CD40 antibodies.  To test this, we administered FGK45 or isotype control to 

mice bearing regressing tumors 72 hours after doxycycline withdrawal, and harvested tumors 

from these mice 60 hours after FGK45 administration.  Macrophages in regressing tumors 

showed increased expression of activation markers CD86 and CD40, but not MHC-II, after 

stimulation with FGK45 (Figure 4.5). 

As FGK45 administration inhibits pancreatic tumor progression concurrent with a depletion of 

pancreatic tumor stroma, we examined tumor stroma in mice treated with FGK45, at the same 

time point where macrophages had also shown increased expression of activation markers CD40 

and CD86.  Collagen type-I and Masson’s trichrome staining did not reveal any differences in 

ECM density between treated and untreated mice (Figure 4.6A, B).  These results, as well as the 

lack of increased MHC-II activation on FGK45-stimulated macrophages, were inconsistent with 

results observed in the previous study in pancreatic cancer [156].  However, as FGK45-treated 

macrophages increased their expression of activation markers CD40 and CD86, this suggested 

that the macrophages may have been sufficiently activated to have an impact on tumor 

progression, and we thus asked whether FGK45 administration impacted tumor recurrence. 

We administered a single dose of FGK45 or isotype control to either intact MTB/TAN mice, or 

orthotopic HER2/neu-Prim1 tumors in syngeneic TAN mice, either 72 hours after doxycycline 

withdrawal, or 4 weeks after doxycycline withdrawal, and monitored mice for recurrence (Figure 

4.6C).  Intact MTB/TAN mice treated with FGK45 72 hours after doxycycline administration 

showed a decreased recurrence latency, while no other cohort demonstrated a change in time to 

recurrence (Figure 4.6D, E).  These results were surprising, as we had originally hypothesized 

that administration of a stimulatory anti-CD40 antibody would inhibit tumor recurrence, consistent 

with its role for inhibiting pancreatic cancer in mice and humans. 
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To follow up on these results, we wanted to know whether the increased rate of recurrence was 

due to the presence of macrophages or T-cells.  We repeated the previous experiment in 

MTB/TAN mice with administration of FGK45 72 hours after doxycycline withdrawal, and mice 

were either ablated for macrophages with clodrolip, or ablated for T-cells with a combination of 

anti-CD4 and anti-CD8 antibodies (Figure 4.6F).  Strikingly, none of the mice recapitulated the 

decreased recurrence latency that was seen in the first study (Figure 4.6G). 

Given the relatively small number of animals used in the intact MTB/TAN studies (n=10 per 

cohort), the most likely explanation for our observation in Figure 4.6D is that the result was a 

random event.  In this cohort, all mice recurred by 130 days, which is approximately the mean 

recurrence latency for MTB/TAN mice as a population (Figure 3.1), thus it is not implausible that 

all mice would develop recurrent tumors by that time in a cohort of 10 mice.  Additionally, 

including both MTB/TAN and syngeneic orthotopic models, we followed recurrence in four cohorts 

of mice, thereby increasing our chance of seeing a false positive result. 

Impact of non-steroidal anti-inflammatory drugs (NSAIDs) on tumor recurrence 

Recent analysis of data from the Nurses’ Health Study indicates that daily NSAID intake may 

significantly delay the time to tumor recurrence in breast cancer patients [157].  Previous studies 

investigating a link between aspirin intake and primary breast cancer incidence identified 

decreased rates of ER+ breast cancer in women regularly using NSAIDs [158].  This connection 

was attributed to the impact of blocking COX activity with aspirin or other NSAIDs on estrogen 

production from aromatase [159], and no impact was seen on ER- breast cancer.  The findings 

from the Nurse’s Health Study were especially interesting because they suggested that daily 

aspirin intake inhibited breast cancer recurrence in both ER+ and ER- breast cancer, thus 

suggesting that NSAID intake inhibited breast cancer recurrence through an as-of-yet unidentified 

mechanism. 

We considered the possibility that administration of NSAIDs might inhibit cancer recurrence in 

HER2/neu-Prim1 orthotopic tumors, and that these models may be useful to identify the 

mechanism underlying aspirin’s protective effect in women with breast cancer.  As macrophages 
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can exhibit an inflammatory phenotype, and macrophages constitute the major leukocyte 

population of residual lesion in our model, it is possible that if macrophages impact recurrence, 

they could do so through promoting inflammation near residual tumor cells.  In support of a role 

for COX inhibitors, such as NSAIDs, in abrogating tumor recurrence in our models, we observed 

that COX2 staining on blood vessels and leukocytes by IF in H2B-eGFP-labeled HER2/neu-Prim1 

residual lesions in nu/nu mice (Figure 4.7A).  As NSAIDs inhibit prostaglandin synthesis, we also 

examined gene expression of prostaglandin synthesis-related genes in primary and recurrent 

tumors, in models driven by either HER2/neu, Wnt1, or c-Myc oncogenes.  We found an increase 

in transcripts associated with prostaglandin synthesis, including COX1, COX2, and PTGES, as 

well as transcripts associated with prostaglandin signaling, PTGER2 and PTGER4 (Figure 4.7B), 

supporting the possibility that NSAIDs may impact tumor recurrence in these models through its 

effect on prostaglandin signaling. 

To test whether NSAIDs might have an impact on tumor recurrence, we performed a recurrence 

assay on nu/nu mice bearing orthotopic H2B-eGFP-labeled HER2/neu-Prim1 tumors, given 

drinking water that either did or did not contain high-dose aspirin (60mg/kg/day).  There was not a 

significant difference between times to recurrence in the two cohorts (Figure 4.7C).  We 

subsequently found prior reports indicating that mice metabolize aspirin at a significantly higher 

rate than rats or humans, raising the possibility that aspirin was not an effective NSAID in mice 

[160].  It was also possible that an intact immune system was required in order to see an impact 

of COX inhibition on tumor recurrence.  To address both of these possibilities, we performed 

recurrence studies in both nu/nu mice bearing HER2/neu-Prim1 orthotopic tumors, and also 

MTB/TAN mice, where mice in both studies were randomized to receive either indomethacin in 

drinking water, or drinking water alone.  While both studies showed a trend towards an increase 

in RFS, only the study in HER2/neu-Prim1 orthotopic tumors in nu/nu mice was statistically 

significant (Figure 4.7 D, E). 
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The magnitude of the delay in time to recurrence is significantly smaller than was seen in the 

results from the Nurses’ Health Study, thus it was unclear that these models were ideally suited to 

identify a role for NSAIDs in breast cancer recurrence. 

Dexamethasone inhibits cancer recurrence at doses that also ablate macrophages 

As macrophages are the primary myeloid population in residual disease in our models, and 

macrophage-related transcripts were increased in recurrent tumors relative to primary tumors, we 

hypothesized that ablation of macrophages might inhibit tumor recurrence.  A previous report 

used dexamethasone to eliminate macrophages [161], consistent with dexamethasone’s role as a 

broadly immunosuppressive corticosteroid. 

To determine whether macrophage ablation with dexamethasone inhibited tumor recurrence, we 

performed a recurrence assay in both intact MTB/TAN and HER2/neu-Prim2 orthotopic tumors in 

nu/nu mice, treated either with 80mg/kg (mpk) dexamethasone or vehicle control.  In both studies, 

we observed a dramatic decrease in recurrence in cohorts treated with dexamethasone (Figure 

4.8A, B).  Given the high dose used in these studies, we wanted to know whether lower doses of 

dexamethasone also inhibited recurrence, and whether doses that inhibited recurrence tracked 

with doses that also ablated macrophages.  To answer these questions, we performed a 

recurrence assay using HER2/neu-Prim1 orthotopic tumors in nu/nu mice enrolled into one of 5 

cohorts, either a control cohort, or a cohort administered one of four doses of dexamethasone: 

80mpk, 10mpk, 1mpk or 0.1mpk.  Mice treated with 80mpk or 10mpk dexamethasone exhibited 

statistically significant delays in time to recurrence compared to control cohorts, but the same 

effect was not seen at lower doses of dexamethasone (Figure 4.8C).  Consistent with our 

hypothesis that macrophages in the minimal residual lesion promote recurrence, we observed 

that only doses of dexamethasone that also led to a significant decrease in the number of 

macrophages, determined by quantification of IF staining on tissue sections of residual lesions, 

had an impact on tumor recurrence (Figure 4.8D).  Orthotopic residual lesions that never 

recurred, in mice treated with 80mpk dexamethasone for more than 200d, displayed a 

significantly lower number of cells than residual lesions observed 28d after doxycycline 
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withdrawal in untreated mice (Figure 4.8E).  Consistent with broad immunosuppression, lymph 

nodes in these mammary glands displayed significant signs of atrophy, lacking germinal centers 

(Figure 4.8F). 

Our findings supported the possibility that ablating macrophages inhibits tumor recurrence, 

however as dexamethasone is a broadly immunosuppressive drug, it remained unclear whether 

the delay in recurrence we observed was due to the impact of dexamethasone on macrophages. 

Macrophage-specific ablation and tumor recurrence 

As a first step to determine whether macrophage-specific ablation delayed tumor recurrence, we 

sought methods that could ablate macrophages in residual lesions with greater specificity than 

dexamethasone.  Towards this end, we considered the use of liposome-encapsulated clodronate 

(clodrolip), a well-established method to systemically ablate macrophages [162].  While this 

method robustly ablated splenic macrophages, it did not ablate macrophages within the residual 

lesion (Figure 4.9 A).  Next, we considered the possibility that residual lesion macrophage 

precursors were GR1+ monocytes.  Administration of RB6-8C5, an antibody against GR1, 

ablated over 99% of peripheral blood monocytes (Figure 4.9 C, D).  We performed a recurrence 

study with HER2/neu-Prim1 orthotopic tumors in nu/nu mice treated either with RB6-8C5 or an 

isotype control antibody.  Ablation of GR1 expressing cells did not inhibit tumor recurrence 

(Figure 4.9E) and did not ablate F4/80 macrophages in the residual lesion (data not shown). 

Interestingly, we observed that mice treated with chronic RB6-8C5 developed massive 

splenomegaly (Figure 4.10A).  In general, the size of recurrent HER2/neu-Prim1 orthotopic tumor 

in an untreated nu/nu mouse at time of sacrifice is directly proportional to the size of the mouse’s 

spleen (Figure 4.10B).  In spite of this correlation, we found that mice treated with chronic RB6-

8C5 developed massive splenomegaly prior to the development of recurrent tumors (Figure 

4.10C).  In contrast, mice treated with 80mpk or 10mpk dexamethasone had small spleens at 

time of recurrence, however mice treated with 1mpk or 0.1mpk dexamethasone did not have 

significantly smaller spleens upon tumor recurrence (Figures 4.10C-E).  These data suggest that, 

while RB6-8C5 may have depleted a population of peripheral blood cells that can act as 
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macrophage precursors, chronic administration of the antibody may also lead to splenomegaly, 

possibly due to increased production of leukocyte populations. 

As a next step to specifically ablate macrophages, we identified methods that ablate 

macrophages in a c-fms-dependent manner.  c-fms is the gene encoding CSF1R, an 

indispensable receptor for the maturation and development of macrophages, and strategies 

targeting c-fms through antibodies or genetic-based ablation methods can be used to selectively 

eliminate macrophages.  Thus, we tested the efficacy of the anti-c-fms antibody M279 compared 

to an isotype control for ablating F4/80+ macrophages in HER2/neu-Prim1 orthotopic residual 

lesions, and found that the vast majority of macrophages were ablated, with some residual 

lesions showing practically no macrophages following M279 treatment (Figure 4.11A).  We also 

used a second approach for ablating macrophages in a c-fms-dependent manner in intact 

MTB/TAN mice, by crossing these mice to transgenic ‘Macrophage ablation through fas-induced 

apoptosis,’ or Mafia, mice.  The Mafia transgene contains a fusion protein product and GFP 

reporter both downstream of a c-fms-dependent promoter [163].  Upon administration of a small 

molecule dimerizing agent, AP20187, the cell membrane-localized protein product from the Mafia 

transgene dimerizes and initiates apoptotic signaling through the cell’s Fas-induced apoptosis 

pathway.  The GFP reporter allows easy identification of c-fms+ macrophages.  Upon 

administration of AP20187, more than 80% of CD45+CD11b+c-fms-GFP+ macrophages in 

residual disease-bearing mammary glands from MTB/TAN/Mafia mice were ablated (Figure 

4.11B). 

Using these two c-fms-dependent macrophage ablation methods, we performed a recurrence 

assay in HER2/neu-Prim1 orthotopic tumors in nu/nu mice with the anti-c-fms antibody M279 

(Figure 4.11C), and in MTB/TAN/Mafia mice with AP20187 (Figure 4.11D).  Both studies showed 

a trend towards a delay in recurrence in mice treated with macrophage ablating methods 

compared to controls, however only the result from the anti-c-fms antibody ablation study was 

statistically significant (Figure 4.11E-F). 
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The delay in recurrence with c-fms-dependent macrophage ablation was modest compared to the 

impact of dexamethasone-induced macrophage ablation.  To better understand this discrepancy 

we investigated the phenotype of residual lesion macrophages in residual lesions 28 days after 

doxycycline withdrawal from these two models.  As the anti-c-fms antibody has been reported to 

be ineffective against inflammatory macrophages [164], we stained for the inflammatory 

macrophage marker CD11c in parallel with F4/80.  Residual lesions from control residual lesions 

28d after doxycycline withdrawal showed a dense infiltrate of macrophages, many of which were 

CD11c+ (Figure 4.11G, left).  In dexamethasone-treated residual lesions, almost no F4/80+ 

macrophages were present, and none of these macrophages expressed CD11c (Figure 4.11G, 

middle).  In contrast, while few macrophages were also present in residual lesions from M279-

treated mice, these macrophages uniformly displayed a CD11c+ phenotype (Figure 4.11G, right).  

Taken together, these findings suggest that the presence of CD11c+F4/80+ inflammatory 

macrophages in M279-treated mice may account for the relatively modest results seen with anti-

c-fms therapy relative to dexamethasone, and thereby suggest that elimination of pro-

inflammatory CD11c+F4/80+ macrophages may allow for more complete inhibition of tumor 

recurrence. 

Inflammation and tumor recurrence 

Our aforementioned results begin to suggest that CD11c+F4/80+ macrophages may promote 

recurrence.  To test whether inflammation may generally promote recurrence, we performed a 

recurrence assay with HER2/neu-Prim1 orthotopic tumors in nu/nu mice, in which mice were 

randomly assigned to a cohort that would have local inflammation induced within the residual 

lesion, or a cohort that would simply remain under observation with no other intervention.  To 

induce inflammation, we injected 50ul of sterile saline using a fresh sterile syringe directly into the 

residual lesion of the nu/nu mouse every third day.  To ensure that the needle tip was inside the 

residual lesion, the needle was inserted and removed from the mammary gland several times in 

order to identify a region that resisted insertion of the needle.  Presumably, the relatively high 

levels of ECM in the residual lesion make it more difficult to insert a needle into the residual lesion 
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than into other parts of the mammary gland, therefore this method allowed accurate localization 

of residual disease inside of a mammary gland without surgical intervention. 

Using HER2/neu-Prim1 orthotopic tumors in nu/nu mice, we began saline injection 3 days after 

doxycycline withdrawal, and repeated every three days (q3d).  Residual lesions harvested 28d 

after doxycycline withdrawal from mice chronically injected with saline produced higher levels of 

the pro-inflammatory cytokine IL6 than residual lesions from uninjected mice (Figure 4.12A).  We 

then performed a recurrence assay using orthotopic HER2/neu-Prim1 tumors in nu/nu mice, and 

upon doxycycline withdrawal, randomly enrolled mice into cohorts to either be injected chronically 

with saline q3d, or to remain uninjected (Figure 4.12B).  Mice chronically injected with saline 

demonstrated a faster rate of recurrence than mice that were uninjected (Figure 4.12C), 

suggesting that inflammation promotes recurrence in this model. 

Discussion 

Together, our results portray a complex phenotype of leukocytes present in residual disease 

following oncogenic pathway inhibition.  Across multiple studies, treatments that promote 

inflammation or activate macrophages promote recurrence, whereas studies that inhibit 

inflammation or deplete macrophages protect mice against recurrence.  These results are 

generally consistent with clinical observations that anti-inflammatory drugs inhibit tumor 

recurrence in breast cancer patients, although they do not address the specific pharmacological 

mechanism by which NSAIDs might inhibit tumor recurrence in breast cancer patients. 

Our observation that macrophages are recruited to residual lesions is consistent with reports that 

demonstrate recruitment of macrophages in a c-fms-dependent manner to breast cancer 

following treatment with cytotoxic chemotherapy [151].  In this study, c-fms-dependent ablation 

improved overall survival when given in combination with cytotoxic chemotherapy, paclitaxel.  

Alternately, a study showing that anti-CD40 macrophage activation following cytotoxic 

chemotherapy with gemcitabine can dramatically inhibit tumor growth [156].  We did not observe 

a dramatic decrease in time to recurrence using either c-fms-dependent macrophage ablation or 

macrophage stimulation with an anti-CD40 antibody.  One possible explanation for the 
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differences between our findings and previous reports is that doxycycline withdrawal in our 

models most closely represents oncogenic pathway inhibition with targeted therapy, but may not 

have the immunological impact as chemotherapy.  As various chemotherapies may have either 

immune stimulatory or immunosuppressive effects [165], this may account for a proportion of the 

differences we see between our results and results in systems using chemotherapy. 

Indeed, the use of macrophage-ablating therapies in combination with antibody-based targeted 

therapies may inhibit the efficacy of these targeted therapies, given that macrophage-stimulatory 

agents can promote the activity of drugs such as trastuzumab and rituximab [166]. 

Nonetheless, our observations with dexamethasone-based macrophage ablation provide the 

exciting possibility that appropriately ablating inflammatory macrophages may dramatically inhibit 

tumor recurrence in some settings. 
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Figure 4.1.  Distribution of Leukocyte Populations Relative to Mesenchymal Residual 

Tumor Cells 

 

(A, B) IF imaging for Hoechst, tumor cell marker YFP, macrophage marker F4/80, or T-cell marker 

CD3, in a tissue section of a residual lesion from an intact MTB/TAN/TTC/rYFP mouse.  (B) 
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Labels for different regions repeatedly identified across multiple residual lesions, including a 

region with mesenchymal tumor cells and macrophages (a), a region with abnormal ducts and T-

cells (b), and a region with disorganized mammary fat pad morphology showing extensive 

autofluorescence and inflammatory infiltrate (c).  Scale bars 100μm for all images. 
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Figure 4.2.  Association Between Macrophage-related Transcripts and Recurrence-free 

Survival (RFS) for Breast Cancer Patients 

 

Association between increased expression of macrophage-related transcripts and 5 year (left) or 

10 year (right) recurrence-free survival, showing prognostic impact for overexpression of either 
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CD68 (A), CD11b (B), CSF1R (C), CD14 (D), CD163 (E), or CD11c (F) on either all patients (All); 

patients stratified by high estrogen receptor (ER) expression (ER+) or low ER expression (ER-); 

high HER2 expression (HER2+) or low HER2 expression (HER2-); a combination of ER and 

HER2 expression status; presence (Node+) or absence (Node-) of disseminated tumor cells in 

lymph nodes; grade 3 (G3), or grades 1-2 (G1+G2) disease; or molecular subtype.   
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Figure 4.3.  Evidence Supporting a Role for Macrophages in Tumor Progression in 

Transgenic Mouse Models of Breast Cancer 

 

(A) Expression of macrophage-related transcripts in primary or recurrent tumors in HER2/neu, c-
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Myc, and Wnt1;p53+/- models of breast cancer.  (B) IF on tissue section of an H2B-eGFP-labeled 

HER2/neu-Prim1 orthotopic residual lesion in a nu/nu mouse for Hoechst (blue), H2B-eGFP 

(green), or macrophage marker F4/80 (red).  (C) Flow cytometry to identify different myeloid cell 

(CD45+CD11b+) populations in a HER2/neu-Prim1 orthotopic residual lesion in a nu/nu mouse.  

(D) Flow cytometry on different myeloid populations or tumor cells to quantify 2 week uptake of 

BrdU.  (E-H) IF to phenotype residual lesion macrophage populations.  (I) Quantification of 

different macrophage populations.  Scale bars 100μm for (B), 50μm for (E), 25μm for (F), 10μm 

for (G, H). 
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Figure 4.4.  Residual Lesion Leukocytes but not Tumor Cells Express CD40 

 

(A, B) Flow cytometry for either fluorescence-minus one (FMO) control staining or CD40 

expression on CD45+GFP- leukocytes (A) or CD45-GFP+ tumor cells (B) in MTB/TAN recurrent 

tumors.  (C) IF showing CD40 staining in non-germinal center regions of lymph nodes.  (D) IF 

showing CD40 staining in lymph node, but not in adjacent residual lesion tumor cells.  Scale bars 

300μm for (C), 100μm for (D). 
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Figure 4.5.  Macrophages are Activated by anti-CD40 Antibody FGK45 

 

(A) Flow cytometry for macrophage activation markers CD86 or CD40, or IgG2a isotype control, 

on DAPI-CD45+CD11b+Ly6c-Ly6g- macrophages in tumors from MTB/TAN mice 72 hours after 

deinduction, either treated with an anti-CD40 antibody FGK45 (orange and red lines) or treated 

with an isotype control antibody (blue and green).  (B) Quantification of expression of 

macrophage activation markers on IgG2a control antibody treated or FGK45-treated mice, from 

(A). 
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Figure 4.6.  Impact of Treatment with FGK45 on ECM Protein Expression and Recurrence 

Latency 

 

(A, B) IF for CK8 (green) and collagen-type I (red) (A) or brightfield images of Masson’s 
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Trichrome (B) images tumors 60 hours after treatment with FGK45 or isotype control, 

administered 72 hours after doxycycline withdrawal in MTB/TAN mice.  (C) Experimental 

schematic showing timing of administration of either FGK45 or isotype control antibody; 72 hours 

or 4 weeks after doxycycline withdrawal.  (D, E) Kaplan-Meier curves displaying RFS in either 

MTB/TAN mice (D) or HER2/neu-Prim1 syngeneic tumors in TAN monotransgenic mice (E), 

according to experimental schematic in (C).  (F) Schematic for follow-up experiment including 

systemic ablation of either macrophages or T-cells, prior to and following administration of FGK45 

antibody.  (G) Kaplan-Meier curves displaying RFS of MTB/TAN mice treated according to (F).  

Scale bars 100μm for (A, B). 
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Figure 4.7.  Evidence Supporting a Role for COX Signaling in Tumor Progression in 

Transgenic Mouse Models of Breast Cancer 

 

(A) IF on tissue section of an H2B-eGFP-labeled HER2/neu-Prim1 orthotopic residual lesion in a 

nu/nu mouse for Hoechst (blue), H2B-eGFP (green), or COX2 (red).  (B) Expression of 

macrophage-related transcripts in recurrent tumors relative to primary tumors (p-values in 

parenthesis), in HER2/neu, c-Myc (MTB/TOM), and Wnt1;p53+/- models of breast cancer.  (C) 

Kaplan-Meier curves displaying RFS for nu/nu mice bearing HER2/neu-Prim1 orthotopic tumors 
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treated with chronic high dose aspirin starting at time of doxycycline withdrawal.  (D, E) Kaplan-

Meier curves displaying RFS in either HER2/neu-Prim1 tumors in nu/nu mice (D) or MTB/TAN 

mice (E) treated with chronic indomethacin starting at time of doxycycline withdrawal. 
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Figure 4.8.  Dexamethasone Inhibits Tumor Recurrence at Doses that Ablate Macrophages 

within Residual Lesions 

 

(A, B) Kaplan-Meier curves displaying RFS in either MTB/TAN mice (A) or HER2/neu-Prim2 

tumors in nu/nu mice (B) treated with chronic 80 mg/kg dexamethasone starting at time of 

doxycycline withdrawal.  (C) Kaplan-Meier curves displaying RFS in HER2/neu-Prim1 tumors in 
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nu/nu mice treated with different doses of dexamethasone or vehicle control.  (D) Quantification 

of the number of macrophages present in residual lesions from mice treated with different doses 

of dexamethasone, as measured by intensity of F4/80 staining on tissue sections.  (E, F) H&E 

staining of residual lesion (E) or lymph node (F) displaying atrophic morphology in mice treated 

with 80mg/kg dexamethasone.  Scale bars 500μm for (E, F). 
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Figure 4.9.  Impact of Clodronate Liposomes or anti-GR1 antibody on RFS 

 

(A) IF on tissue section of an H2B-eGFP-labeled HER2/neu-Prim1 orthotopic residual lesion in a 

nu/nu mouse for Hoechst (blue), H2B-eGFP (green), or F4/80 (red).  (B) Flow cytometry of GR1 

and CD11b on CD45+DAPI- leukocytes peripheral blood from nu/nu mice following retreatment 

with anti-GR1 antibody after a previous treatment one month earlier.  (C) Quantification of 

depletion of GR1+ monocytes from (B).  (D) Kaplan-Meier curves displaying RFS in HER2/neu-

Prim1 tumors in nu/nu mice treated with chronic anti-GR1 antibody or isotype control, starting at 
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deinduction.  Scale bars 100μm for (A). 
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Figure 4.10.  Spleen Size is Increased by anti-GR1 Treatment and Decreased by 

Dexamethasone 

 

(A) Images showing representative spleens from mice treated with either isotype control antibody 

or anti-GR1 antibody RB6-8C5.  (B) Dot plot showing correlation between spleen weight (g) and 

tumor volume (mm3).  (C) Dot plot showing spleen weight vs tumor volume for mice treated with 
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anti-GR1 antibody, dexamethasone, clodrolip, or untreated control mice data from (A).  (D) Bar 

plot showing spleen weight for mice treated with different doses of dexamethasone, control IP 

injections of saline, or indomethacin in drinking water.  (E) p-values for bar graphs in (D), vs 

control.  Scale bars 1cm for (A). 
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Figure 4.11.  c-fms-dependent Macrophage Ablation Results in a Small Delay in Tumor 

Recurrence 

 

(A) IF for Hoechst (blue), H2B-eGFP (green), or F4/80 (red) on tissue sections of H2B-eGFP-

labeled HER2/neu-Prim1 orthotopic residual lesions in nu/nu mice treated either with isotype 

control antibody or with anti-c-fms antibody.  (B) Flow cytometry on residual disease-bearing 
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mammary glands 4 weeks after doxycycline withdrawal in MTB/TAN/Mafia mice after 4 weeks of 

treatment with either vehicle or AP20187.  (C) Experimental schematic showing timing of anti-c-

fms antibody administration to nu/nu mice bearing HER2/neu-Prim1 tumors following doxycycline 

withdrawal.  (D) Experimental schematic showing timing of administration of AP20187 dimerizing 

agent to MTB/TAN/Mafia mice following doxycycline withdrawal.  (E) Kaplan-Meier curves 

displaying RFS for (C).  (F) Kaplan-Meier curves displaying RFS for (D).  (G) IF for Hoechst 

(blue), H2BeGFP (blue), F4/80 (red), or CD11c (green).  Scale bars 100μm for (A, G). 
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Figure 4.12.  Chronic Intramammary Saline Injections Increase Residual Lesion IL6 and 

Promote Recurrence 

 

(A) Bar graph showing quantification of ELISA for IL6 from residual lesions either injected every 3 

days (q3d) with saline or uninjected, 28 days after doxycycline withdrawal.  (B) Experimental 

schematic showing timing of chronic saline injection.  (C) Kaplan-Meier curves displaying RFS in 

HER2/neu-Prim1 tumors in nu/nu mice either injected into residual lesion with q3d saline or 

uninjected.  * = p-value<0.05 
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Methods 

Statistics 

Unless otherwise noted, all statistical analyses providing a p-value were conducted using 

student’s two-sided T-test assuming homoscedastic variance, performed in Excel (Microsoft). p-

values for survival analyses of Kaplan-Meier curves were analyzed attained with Wilcoxon rank-

sum test, performed in Prism 5 (Graphpad). 

Mice 

Animal care and experiments were performed with the approval of, and in accordance with, 

guidelines of the University of Pennsylvania IACUC.  Bitransgenic and nude mice were generated 

and tumors were induced, deinduced, monitored for tumor recurrence, and sacrificed as 

described [108, 121, 126].  Mafia mice were previously described [163]. 

Tissue Culture and Reagents 

Primary tumor cells were cultured, and stable H2B-eGFP expression was achieved as described 

[108, 126]. 

Orthotopic Recurrence Assay 

Recurrence assays were performed as described [108]. Recurrence-free survival curves were 

displayed as Kaplan-Meier survival curves using Prism 5.03 (Graph Pad Software, Inc). 

Immunofluorescence and Direct Fluorescence 

Normal mammary glands or mammary glands bearing MRLs were harvested, embedded in OCT 

compound, and frozen.  8μm tissue sections were either fixed and permeabilized in dehydrated 

acetone at -20°C for 10 min, or fixed in 4% paraformaldehyde for 10 min at room temperature 

(RT) and permeabilized in 0.1% Triton-X-100 in PBS for 20 min.  Following fixation and 

permeabilization, sections were washed 2x5 min in PBS, blocked for 1 hr with 10% normal goat 

serum with 3% BSA in PBS and incubated overnight (O/N) at 4°C with primary antibody diluted in 

blocking buffer.  Primary antibodies used to stain tissues fixed in paraformaldehyde were: F4/80 

(1:50, AB6640, Abcam), GFP (1:1000, NB100-1770, Novus Biologicals), CD3 (1:100, ab5690, 

Abcam).  Primary antibodies used to stain tissues fixed in acetone were: F4/80 (1:500, AB6640, 

Abcam), GFP (1:1000, NB100-1770, Novus Biologicals), CD3 (1:100, ab5690, Abcam), CD163 
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(1:50, SC-33560, Santa Cruz), CD206 (1:500, MCA2235, AbD Serotec), RELMa (1:20, ab39626, 

Abcam), Ym1 (1:20, 1404, StemCell Technologies), CD40 (1:50, sc-16933, Santa Cruz), 

Collagen-I (1:250, AB34710, Abcam), CK8 (1:50, , Developmental Studies Hybridoma Bank 

Uuniversity of Iowa), COX2 (1:500, ab15191, Abcam), CD11c (1:10, 550283, BD Pharmingen).   

Slides were imaged with a Leica TCS SP5 (Leica Microsystems) confocal microscope using Leica 

Application Suite Advanced Fluorescence (LAS AF, Leica Microsystems) software. 

Flow Cytometry 

Immediately following harvest, tissues from mice were digested enzymatically using 

collagenase/hyaluronidase (Stemcell Technologies) for 90 min at 37ºC, followed by pipetting 

vigorously in DNAse (Worthington Biochemical Corporation) and Dispase (Stemcell 

Technologies) for 5 min at 37C.  Tissue digests were strained through a 40μm filter (BD Falcon).  

Single-cell suspensions were stained with fluorophore-conjugated antibodies for 30 min at 4ºC in 

1%BSA and 5mM Ethylenediaminetetraacetic acid disodium salt (EDTA) in PBS.  Antibodies used 

were: CD45 (1:200, 560510, BD Biosciences), CD11b (1:500, 101241, BioLegend), Ly6C (1:100, 

128029, BioLegend), Ly6G (1:250, 562700, BD Biosciences), CD115 (1:50, 46-1152, 

eBioscience), F4/80 (1:50, 25-4801, eBioscience), CD40 (1:50, 553791, BD Biosciences), IgG 

Isotype control (1:50, 553989, BD Biosciences), CD86 (1:50, 553692, BD Biosciences), MHC-II 

(1:1000, 558593, BD Biosciences).  Cells were washed twice in FACS diluent (PBS with 1% 

bovine serum albumin (BSA, Sigma) and 5mM EDTA (Sigma)), and resuspended in FACS diluent 

with 1µg/ml DAPI (Sigma-Aldrich Co.) for identifying viable cells.  Compensation was performed 

using AbCTM anti-mouse bead kit (A10344, Life Technologies Corporation) and anti-rat/hamster 

bead kit (A10389, Life Technologies Corporation), according to manufacturer’s instructions.  Flow 

cytometry was performed on a BD FACSCantoTM system using BD FACSDivaTM software (BD 

Biosciences). 

Data were analyzed using FlowJo.  Dead cells, debris, and doublets were removed by 

sequentially analyzing gates for DAPI, SSC-A vs. FSC-A, SSC-W vs. SSC-H and FSC-W vs. 

FSC-H staining, respectively. 

With the exception of enzymatic digest at 37ºC, all steps for flow cytometry, FACS, and limiting 
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dilution experiments were performed at 4ºC.   
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CHAPTER 5 

 

Summary and Future Directions 

Summary 

Breast cancer is the second leading cause of cancer-related mortality among women worldwide, 

and breast cancer recurrence represents the final step in breast cancer progression for the 

majority of breast cancer patients.  In spite of the paramount importance of preventing breast 

cancer recurrence, little is known about the biology of residual disease that gives rise to 

recurrence.  Due to the increasingly widespread use of targeted therapies in the clinic, the need 

to define the phenotype of residual disease that gives rise to recurrence following targeted 

therapy is increasingly urgent.  Simultaneously, the advent of immuno-oncology therapies in the 

clinic has had a major impact across multiple cancer types, however the relationship between the 

immune system and residual disease following targeted therapy remains poorly understood.  In 

this thesis, we identify novel biological aspects of tumor cells that survive targeted therapy, and 

identify possible roles for targeted macrophage ablation in preventing tumor recurrence.  The 

advances presented here represent a step towards a more complete understanding of residual 

disease that survives oncogenic pathway inhibition, however significant work remains before 

these findings can be said to be of importance to human breast cancer 

Future directions for characterizing residual disease 

While our finding of dormancy in residual disease argues that dormant residual disease may be 

an attractive therapeutic target because it is a conserved response across multiple models of 

oncogenic inhibition in GEMMs, several key questions remain.  These can be divided into two 

main areas: clinical validation and functional validation. 

Clinical validation  

Replicating our finding – that residual tumor cells surviving oncogenic pathway inhibition exhibit 

cellular dormancy – in humans, is a critical step that if successful, would justify the investment of 
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greater time and resources into the use of these models to study dormancy with the goals of 

developing methods to identify and eliminate dormant residual disease in humans.  Validation 

would consist of both determining the proportion of residual disease in a typical patient that is 

dormant, and evaluating these dormant tumor cells in order to determine whether dormant tumor 

cells in humans have similar biological qualities to dormant residual disease in out mouse 

models.   

What tumor tissue would be used for clinical validation?  Ideally, this should be performed on the 

residual tumor cells that give rise to recurrence in patients, though as it is unclear how to 

prospectively identify this population of tumor cells in a patient, it should then be accomplished in 

a manner that systematically evaluates all residual disease in a given patient.  Again, it is unclear 

how to do this, as the only residual disease that can be identified in patients with no evidence of 

disease is typically DTCs in bone marrow or CTCs in blood.  While these tumor cell populations 

are correlated with poor outcomes, it is unclear that they give rise to recurrent tumors in patients, 

or that they generally represent all residual disease in a patient.  Nonetheless, as they represent 

an identifiable manifestation of MRD in patients, DTCs or CTCs are one of the best available 

options for clinical validation of our findings.  An alternative tissue source for residual disease to 

validate findings is residual disease, local or metastatic, that shows complete and sustained 

regression upon neoadjuvant or adjuvant systemic targeted therapy.  Given that residual tumor 

cells at local or metastatic sites show cellular dormancy in our models, it would be useful to 

identify patients receiving combination targeted therapy to maximally inhibit an oncogenic 

pathway, who also have surgically resectable residual disease following systemic therapy.  Any 

source of residual disease would need to be compared to control tumor tissue, preferably both 

primary disease and any available metastases.  Following identification of sources of tumor cells 

for analysis, tumor cells should be isolated to ensure that stromal cells do not contaminate the 

tumor cell samples. 

Residual disease would subsequently need to be evaluated for whether it was dormant, and if it 

was dormant, whether it shared qualities of dormant residual disease with the mouse models 
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discussed here.  Some approaches that were taken to conclusively demonstrate dormancy in 

these mouse models would not be feasible in human disease, such as 2 week BrdU uptake.  

However, gene expression profiling of dormant tumor cells in our models conclusively 

demonstrated dormancy through broad down-regulation of families of genes associated with 

mitosis and biosynthesis.  Thus, an attractive approach would be to perform gene expression 

profiling on residual tumor cells to both determine whether they were dormant and, if dormant, 

provide a basis for comparison of dormancy in human to mouse models.  Unfortunately this would 

only work well if the population of tumor cells analyzed is predominantly dormant prior to 

performing gene expression profiling, which would be difficult to evaluate due to the lack of 

markers available to identify dormant tumor cells in humans. 

Identification of reproducible protein markers for dormant tumor cells in these mouse models 

could facilitate development of immunohistochemical or flow cytometric approaches to evaluate 

dormancy of human tumor cells on a per-cell basis in a high-throughput manner, thus permitting 

comparison between dormancy in human tumor cells and dormant in mouse tumor cells.  Genes 

that are repeatedly up-regulated in residual tumor cells across models would be suitable 

candidates to evaluate for protein expression in residual tumor cells compared to other tumor 

cells. 

To begin making progress towards these ends, we have developed partnerships with clinical 

collaborators to evaluate isolated residual tumor cells from breast cancer patients, and compare 

these cells to primary or metastatic tumor cells from the same patients. 

Functional validation 

Functional validation is also crucial in order to identify keystone genes and pathways that regulate 

both dormancy and survival of dormant tumor cells, and ultimately to provide conclusive evidence 

for the functional relevance of dormancy.  While we observe that the vast majority of residual 

tumor cells are dormant, it remains possible that a small subpopulation of residual tumor cells 

have biological properties distinct from the majority dormant population, and that it is this small 

subpopulation that is responsible for recurrence, and not the dormant tumor cells.  Thus, methods 
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that specifically eliminate dormant tumor cells are necessary to definitively demonstrate that 

dormant tumor cells contribute to recurrence. 

Knockdown of genes recurrently up-regulated in dormant tumor cells, such as Dec2, and 

subsequent evaluation of the impact of knockdown on recurrence latency, should provide a 

reproducible approach to evaluating the role of particular genes in dormancy and recurrence.  

Beyond Dec2, transcription factors or kinases that are associated with families of up-regulated 

genes identified in residual tumor cells compared to proliferative tumor cells will also be key 

targets to investigate through evaluation of the impact of knockdown of a gene of interest on 

tumor recurrence latency. 

High-throughput screening with an in vitro model of dormancy could help identify strategies to 

eliminate dormant tumor cells.  To facilitate in vitro work, we are currently evaluating the similarity 

between an in vitro dormancy model developed in our lab, and in vivo dormancy in residual tumor 

cells. 

Following both clinical and functional validation, therapies targeting dormant tumor cells that also 

have an impact on tumor recurrence in these preclinical mouse models could serve as candidates 

to be used to target dormant tumor cells in the clinic. 

Future directions for studying immune response associated with dormant residual disease 

Our findings surrounding the role of inflammation and macrophages in dormant residual disease 

similarly require clinical and functional validation.  However, the first step to take is to determine 

whether CD11c+F4/80+ macrophages promote tumor recurrence.   

Role for CD11c+F4/80+ macrophages in recurrence 

To evaluate whether these leukocytes are necessary for tumor recurrence, we plan to perform 

bone marrow transplant from CD11c-DTR mice into nu/nu mice.  The resulting nu/nu;CD11c-DTR 

chimeras will be able to be ablated of all CD11c+ cells upon administration of diphtheria toxin, 

thus permitting functional evaluation of the role of CD11c+F4/80+ macrophages in tumor 
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dormancy and recurrence.  This study should involve four arms: a control treatment arm, an anti-

c-fms antibody alone arm, a diphtheria toxin (to ablate CD11c+F4/80+ macrophages) alone arm, 

and a combined anti-c-fms plus diphtheria toxin arm, to ablate both non-inflammatory 

macrophages and inflammatory macrophages in the residual lesion. 

Beyond this study, it would be useful to identify pharmacological targets that could be used to 

eliminate CD11c+F4/80+ macrophages from residual disease, which would also spare CD11c+ 

dendritic cells.  Presumably the presence of dendritic cells near tumor cells has a positive impact 

on tumor progression due to the role of dendritic cells as antigen presenting cells, and this 

possibility is supported by the positive prognostic impact of increased CD11c expression levels in 

primary breast cancers (Figure 4.2).  A possible approach to specifically therapeutically target 

inflammatory macrophages would be to inhibit cytokine receptors necessary to recruit these 

leukocytes to residual lesions, or to eliminate cells using antibodies targeting as-yet-unidentified 

specific markers for these immune cells. 

Clinical validation 

If we functionally demonstrate that CD11c+F4/80+ leukocytes potentiate tumor recurrence, 

validating this finding in samples from breast cancer patients would be an important next step.  

Due to the small spatial scale of residual disease, and the potential for leukocyte populations 

surrounding, but not juxtaposed with, residual tumor cells (such as CD163+ macrophages in the 

HER2/neu-Prim1 orthotopic residual lesion or CD3+ T-cells in the intact MTB/TAN/TTC/rYFP 

residual lesion), it would be necessary to use tissue sections to determine the organization of 

leukocyte populations relative to tumor cells.  This may best be achieved by analysis of local 

residual disease following neoadjuvant therapy, as it is not feasible to acquire tissue sections 

containing CTCs or DTCs from living patients.  Evaluation of this tissue for the presence of 

CD11c+F4/80+ leukocytes would be an important first step, however it is possible that the 

functional role that these inflammatory leukocytes play in murine residual disease is filled in by 

alternate pro-inflammatory actors.  Given the clinical evidence from the Nurses’ Health Study 
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suggesting a role for inflammation in breast cancer recurrence, further evaluation of leukocyte 

populations present in residual disease should remain a priority for breast cancer research. 
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