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Theory of the Bulk Photovoltaic effect in oxides, and First-Principles
Computational Design of Materials with Bulk Dirac Points

Abstract
Non-centrosymmetric crystals -- especially polar materials -- are capable of producing electric current in
response to uniform illumination. This is called the bulk photovoltaic effect (BPVE), which we show can be
identified with ``shift current'' theory. Shift currents exhibit unique physics, which are discussed and clarified.
A discrete form of the expression required for numerical implementation is derived that allows for robust and
efficient calculation from first-principles calculations. The response for BaTiO3 and BiFeO3

is calculated and found to agree well with experiment, and careful analysis of the computed response reveals
how the magnitude depends on structural and chemical properties, providing criteria for the search for and
design of

materials with large response. Additionally, the unique properties of shift currents allow for pure spin
photocurrents in antiferromagnets with appropriate symmetry. We predict that these spin currents can be
observed in BiFeO3 and hematite (Fe2O3), and calculate the expected response. Topological insulators are a
class of materials that are bulk insulators with metallic surface states that take the form of helical Dirac cones
protected by time-reversal symmetry. Here we explore phenomena that occur near or at the transition
between the trivial and topological insulating phase. In Bi2Se3, the relationship between the topological gap
and material strain is investigated and used to explore the topological phase transition. At the critical strain,
there exists a bulk 3D Dirac point that is analogous to the 2D Dirac points in graphene, and may be expected
to exhibit similar properties. However, this 3D Dirac point is not robust and can be

easily gapped by perturbations. We propose that a 3D Dirac point marking a topological phase transition may
be protected by spatial symmetries,

and outline the constraints under which symmetry groups may contain materials with such points. Based on
first principles calculations, we propose BiO2

in the β-cristobalite structure as a metastable 3D Dirac semimetal.
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ABSTRACT

THEORY OF THE BULK PHOTOVOLTAIC EFFECT IN OXIDES, AND

FIRST-PRINCIPLES COMPUTATIONAL DESIGN OF MATERIALS WITH BULK

DIRAC POINTS

Steve M. Young

Andrew M. Rappe

Non-centrosymmetric crystals – especially polar materials – are capable of producing elec-

tric current in response to uniform illumination. This is called the bulk photovoltaic effect

(BPVE), which we show can be identified with “shift current” theory. Shift currents ex-

hibit unique physics, which are discussed and clarified. A discrete form of the expression

required for numerical implementation is derived that allows for robust and efficient calcu-

lation from first-principles calculations. The response for BaTiO3 and BiFeO3 is calculated

and found to agree well with experiment, and careful analysis of the computed response

reveals how the magnitude depends on structural and chemical properties, providing crite-

ria for the search for and design of materials with large response. Additionally, the unique

properties of shift currents allow for pure spin photocurrents in antiferromagnets with ap-

propriate symmetry. We predict that these spin currents can be observed in BiFeO3 and

hematite (Fe2O3), and calculate the expected response. Topological insulators are a class

of materials that are bulk insulators with metallic surface states that take the form of helical

Dirac cones protected by time-reversal symmetry. Here we explore phenomena that occur

near or at the transition between the trivial and topological insulating phase. In Bi2Se3,

the relationship between the topological gap and material strain is investigated and used to

explore the topological phase transition. At the critical strain, there exists a bulk 3D Dirac

point that is analogous to the 2D Dirac points in graphene, and may be expected to exhibit

similar properties. However, this 3D Dirac point is not robust and can be easily gapped
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by perturbations. We propose that a 3D Dirac point marking a topological phase transition

may be protected by spatial symmetries, and outline the constraints under which symmetry

groups may contain materials with such points. Based on first principles calculations, we

propose BiO2 in the β-cristobalite structure as a metastable 3D Dirac semimetal.
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11.9 The Dirac point wavefunctions for (a) BiO2 and (b) spinel-derived struc-

tures. In BiO2 the Bi s-states strongly hybridize with O p-states, which

mediate the Bi-Bi interaction. In the spinel structure, the oxygen atoms are

arranged differently, and the Bi atoms must interact directly. This is most

effectively accomplished by the Bi p-orbitals. In both cases, there are two

degenerate states related by the non-symmorphic symmetry operation that

enables the FDIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

11.10The s-states of bismuth behave essentially as lone pairs, while the unpaired

p-electron of each bismuth participates in a delocalized bonding state sim-

ilar to those in conjugated carbon chains. . . . . . . . . . . . . . . . . . . . 188

xx



Chapter 1

Introduction

1.1 Bulk Photovoltaic Effect

The bulk photovoltaic effect (BPVE) refers to the generation of intrinsic photocurrents

that can occur in single-phase materials lacking inversion symmetry [8, 9, 10, 11]. Fer-

roelectrics – materials that possess intrinsic, switchable polarization – exhibit this effect

strongly, producing current in response to unpolarized, direct illumination. Traditionally,

photovoltaic materials are heterogeneous, doped structures, relying on the electric field at

a p-n junction to separate photoexcited electrons and holes. By contrast, the bulk pho-

tovoltaic effect can be observed even in pure homogeneous samples, as with BaTiO3 [1].

Despite initial promise, several problems have discouraged efforts to apply it to the problem

of solar energy collection. Early explorations revealed low energy conversion efficiency, in

part due to the high band-gaps possessed by most know ferroelectrics. Additionally, despite

several proposed mechanisms, the physical origin remained unclear [12, 13, 14, 15]. In

combination with the relative abundance of cheap energy in the last decades of the twentieth

century, interest in the phenomenon dissipated. However, recent emphasis on alternative

energy technologies and the observation of the effect in novel visible-light-band-gap ferro-
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electrics has renewed interest in the effect, though the origins of their photovoltaic prop-

erties are considered unresolved. Attention has been focused on interface effects, crystal

orientation, and the influence of grain boundaries and defects, while any bulk photovoltaic

contributions have been largely ignored [16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

Recently, anomalous photovoltaic effects have been demonstrated in the multiferroic

BiFeO3, with reported efficiencies as high as 10% [26, 4, 5]. Furthermore, the availabil-

ity of efficient ab initio methods and rapidly increasing computing power has opened up

the possibility of designing and tuning materials to have more desirable properties, such

as reduced band-gaps and stronger photovoltaic response. However, as long as the latter

remains poorly understood, materials engineering efforts will be hampered. In Part I we

explore the BPVE contribution. We provide a derivation of the theory of the so-called

“shift current” with an emphasis on physical clarity, and provide strong evidence that it

explains the BPVE. We highlight the material properties upon which BPVE most strongly

depends, and using this insight propose several novel materials with significant predicted

response. Finally, we show that the shift current mechanism is capable of generating pure

spin photocurrents, and predict materials in which it is likely to be observed.

1.2 Topological Insulators

Phase transitions have long been identified with the breaking/reforming of symmetries.

Two phases are distinguished by the value of an order parameter associated with the sym-

metry that distinguishes them; for the symmetry preserving phase the order parameter is

zero, and for the symmetry-broken phase it becomes non-zero. In recent years, however,

there has been an explosion of interest in phases of matter classified instead by topology

The first known topological phase was the integer quantum hall state, properly identified in

1980 [27]. When a thin semiconductor was subjected to intense magnetic fields, the Hall
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voltage became quantized. Furthermore, the resistivity was observed to be nonzero only

for transitions between quantum levels. In 1982, Thouless, et al [28] demonstrated that the

effect could be described by a winding around the bulk electronic states. Alternative (but

equivalent) explanations of varying sophistication appeared [29, 30], but, put simply, each

bulk electronic state can be characterized by some number of vortices, and the number of

these vortices is related to the number of current-carrying channels that appear at the edge.

Since the bulk of the material was insulating and channels only ran one direction, the car-

riers could not be backscattered, and no dissipation was possible. As a result, the voltage

would be exactly quantized as an integer multiple of e2/h. It was later pointed out using

a graphene model that a magnetic field was not strictly necessary; merely breaking time-

reversal symmetry was sufficient to create such gapless edge states [31]. In 2005 [32, 33]

it was shown that in graphene spin-orbit coupling could effectively give rise to two pairs

of Haldane states; as long as time-reversal symmetry was preserved, these states could not

interact and a Dirac point would be required to exist at the Γ point. These states were topo-

logically protected and could be described by a Z2 invariant. Any time-reversal-preserving

adiabatic deformation that did not close the gap in the bulk could not change the phase of

a system. More specifically, the topological phase is reached when the bulk gap closes,

the electronic states of the conduction band and valence band interchange, and the gap re-

opens with the states inverted. At the surface of the material, a spatial transition is made

to the trivial state. This demands that the system become metallic at some point, yielding

the requisite surface states. Since then topological insulators have been intensely studied,

both theoretically and experimentally [33, 32, 7, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43],

and new types of topological phases and topological phenomenon have been suggested and

explored as well. While most investigations have focused on fundamental physical prop-

erties, the unique properties of the topological insulating phase suggest several practical

applications, including spintronics and quantum computation [44, 45, 46, 47]. However,
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significant progress towards technological applications will require deep understanding of

the dependence of the fundamental physics on material structure and composition. In Part

II, we explore the effects of strain on the topological phase, and consider the possibility

of finding or engineering Dirac semimetals, materials held at the critical point between

topological phases by crystallographic symmetry.
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Chapter 2

Methods

Unless otherwise specified, all ab initio calculations were performed using plane-wave

Density Functional Theory (DFT) with the Generalized Gradient Approximation (GGA)

[48] and norm-conserving, designed non-local pseudopotentials produced using the OPIUM

package [49, 50]. An energy cutoff for the wavefunction basis of 50 Ry was set. Cal-

culations were performed including relativistic effects, including spin-orbit coupling, as

appropriate. Crystal structure graphics were generated using VESTA [51].
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Part I

The Bulk Photovoltaic Effect in Polar

Oxides
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Chapter 3

Background: Optical Response in

Crystals

3.1 Position and Momentum Operators for Bloch States

The translational symmetry inherent to crystalline systems allows the energy eigenstates

to be separated into a function unk(r) with the periodicity of the lattice modulated by a

unitary scalar eik·r

|ψnk⟩ = eik·r̂ |nk⟩

ψnk(r) = eik·runk(r)

For a system containing Ni period units in dimension i, it is clear that ki is constrained

to be 2πmi

Ni
Gi, where mi are integers and Gi are reciprocal lattice vectors. At each k the

functions unk(r) are eigenstates, indexed by n of a Hamiltonian

Ĥk =
1

2me

|k+ p̂|2 + V̂ (r)
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that lives in a Hilbert space encompassing the Wigner-Seitz Cell with periodic boundary

conditions. We will often work in the “bulk” limit, where Ni → ∞ and k becomes con-

tinuous, so that unk → un(k). We draw attention to the behavior of the momentum and

position operators in periodic systems.

⟨ψn′k′| p̂ |ψnk⟩ =
∫
d3r d3r′

⟨
ψn′k′

∣∣r′⟩ ⟨r′| p̂ |r⟩
⟨
r
∣∣ψnk

⟩
= −

∫
d3r

⟨
ψn′k′

∣∣r⟩ i~∇r

⟨
r
∣∣ψnk

⟩
= −

∫
d3rψ†

n′k′(r)i~∇rψnk(r)

= −
∫
d3r e−ik′·ru†n′k′(r)i~∇re

ik·runk(r)

= ~k
∫
d3rψ†

n′k′(r)ψnk(r)−
∫
d3r e−i(k′−k)·ru†n′k′(r)i~∇runk(r)

= δnn′δkk′~k− δkk′ ⟨n′k′| p̂ |nk⟩

In the bulk limit

⟨ψn′(k′)| p̂ |ψn(k)⟩ = δnn′δ(k− k′)~k− δ(k− k′) ⟨n′k′| p̂ |nk⟩

We observe that only states at the same k-point have nonzero momentum coupling. Diag-

onal elements of the momentum matrix, which reflect the group velocity of a Bloch state,

are determined purely by k, while off-diagonal elements are determined by the momentum

coupling of the bands’ periodic components.

The position operator is less straightforward. Intuitively, we can see that defining the

“position” of a periodic function is problematic. However, we are not without recourse. It

is convenient here to begin in the bulk limit and then revert to the discrete case. Naively,
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our position element is

⟨ψn′(k′)| r̂ |ψn(k)⟩ =
∫
d3r d3r′

⟨
ψn′(k′)

∣∣r′⟩ ⟨r′| r̂ |r⟩ ⟨r∣∣ψn(k)
⟩

=

∫
d3r

⟨
ψn′(k′)

∣∣r⟩ r ⟨r∣∣ψn(k)
⟩

=

∫
d3rψn′(k′, r)†rψn(k, r)

By inspection it is apparent that the result will depend on our choice of cell boundary.

Instead [52], we note that

∇kψn(k, r) = ∇k

[
eik·run(k, r)

]
= irψn(k, r) + eik·r∇kun(k, r)

and write the position element as

⟨ψn′(k′)| r̂ |ψn(k, r)⟩ = −i
∫
d3rψ†

n′(k
′, r)∇kψn(k, r)

+

∫
d3r e−i(k′−k)·ru†n′(k

′, r)i∇kun(k, r)

= −i∇k

∫
d3rψn′(k′, r)†ψn(k, r)

+ δ(k− k′)

∫
d3ru†n′(k

′, r)i∇kun(k, r)

= −iδnn′∇kδ(k− k′)

+ δ(k− k′) ⟨n′k′| i∇k |nk⟩ (3.1)

As with momentum, the expression is nonzero only for k′ = k. If n ̸= n′ then the result is

well-defined, as only the second term obtains. However – consistent with our expectations

when attempting to find the moment of a periodic state’s density – the case of n = n′

appears problematic. For one, applying a unitary transformation un(k, r) → eiθ(k)(k, r)
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results in

∫
d3ru†n′(k, r)i∇kun(k, r) →

∫
d3ru†n′(k, r)i∇k

[
eiθ(k)un(k, r)

]
→ eiθ(k)

[∫
d3ru†n′(k, r)i∇kun(k, r)−∇kθ(k)

]

Perhaps more alarming than this apparent loss of gauge invariance is the first term, which

contains the derivative of a delta function and does not possess intrinsic meaning. How-

ever, we observe two things: the overall gauge invariance is actually restored by the first

term, when we consider the precise expression that generated it, and the expression can be

rendered meaningful if it appears in an integral with another function of k. In particular,

for an arbitrary function g(k)

∫
d3k′ g(k′)∇k′

∫
d3rψ†

n(k, r)ψn(k
′, r)

= −
∫
d3k′

[∫
d3rψ†

n(k, r)ψn(k
′, r)

]
∇k′g(k′)

= −
∫
d3k′ δ(k− k′)∇k′g(k′)

= −∇kg(k)

so that

∫
d3k′ g(k′) ⟨kn| r̂ |k′n⟩ = i∇kg(k) + g(k) ⟨nk| i∇k |nk⟩ (3.2)

Similarly,

∫
d3k′ g(k′) ⟨k′n| r̂ |kn⟩ = −i∇kg(k) + g(k) ⟨nk| i∇k |nk⟩ (3.3)
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To obtain the discrete limit, we note that

dA

dk
= A

d lnA

dk
= A lim

∆k→0

lnA(k +∆k)− lnA(k)

∆k
= A lim

∆k→0
ln
A(k +∆k)

lnA(k)

1

∆k

allowing us to rewrite the above equations as

lim
∆k′→0

∑
|∆k′|g(k′) ⟨kn| r̂ |k′n⟩

= lim
∆k→0

1

|∆k|

[
ig(k) ln

g(k+∆k)

ln g(k)

+ g(k)

∫
d3run(k, r)iun(k, r)

ln
∫
d3ru†n(k, r)un(k+∆k, r)

ln
∫
d3ru†n(k, r)un(k, r)

]
= lim

∆k→0

1

|∆k|

[
ig(k) ln

g(k+∆k)

ln g(k)
+ ig(k) ln

⟨
n′k′∣∣n(k+∆k)

⟩ ]

We note that ⟨n′k′| i∇k |nk⟩ is the celebrated Berry connection, and for compactness will

represent it by χn(k) in what follows.

Finally, we may relate position and momentum elements using Heisenberg’s equations

of motion

dr̂

dt
=

1

~

[
Ĥ, r̂

]
1

me

p̂ =
1

~

(
Ĥr̂− r̂Ĥ

)
1

me

⟨ψn′(k)| p̂ |ψn(k)⟩ =
1

~
⟨ψn′(k)| Ĥr̂ |ψn(k)⟩ −

1

~
⟨ψn′(k)| r̂Ĥ |ψn(k)⟩

⟨ψn′(k)| p̂ |ψn(k)⟩ =
me

~
[En′(k)− En(k)] ⟨ψn′(k)| r̂ |ψn(k)⟩ (3.4)

This expression is only well-defined for off-diagonal elements of the momentum and posi-

tion operators.
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3.2 Light-Matter Interaction

The interaction of electromagnetic (EM) radiation with matter is inherently time-dependent,

and the evolution of the system will be governed by the time-dependent Schroedinger equa-

tion. For a two-state system we may solve this analytically, but in more complex cases, we

must resort to approximation. From Schroedinger’s equation

d |ψ⟩ = − i

~
Ĥ |ψ(t)⟩ dt

|ψ(t+ dt)⟩ =
(
1− i

~
Ĥ
)
|ψ(t)⟩

It is convenient at this point to leave the Schroedinger picture and apply the evolution due

to the unperturbed Hamiltonian to the operators instead of the wavefunctions. This mix

of Schroedinger and Heisenberg pictures is called the interaction picture, and allows us

to think about and compute the evolution of the system due only to the interaction. In

general, ÂI = e−
i
~ Ĥ

(0)tÂe
i
~ Ĥ

(0)t for an operator Â. The operator Û(t) = 1− i
~Ĥ

Idt evolves

the system infinitesimally at time t; applying iteratively to effect finite-time evolution and

collecting terms

. . . Û(t′3)Û(t
′
2)Û(t

′
1)
∣∣Ψ(0)

⟩
= . . . (1− i

ĤI(t′3)

~
dt′3)(1− i

ĤI(t′2)

~
dt′2)(1− i

ĤI(t′1)

~
dt′1)

∣∣Ψ(0)
⟩

=
∣∣Ψ(0)

⟩
−
∑
t1

(
i
ĤI(t1)

~
dt1

)∣∣Ψ(0)
⟩
−
∑
t1,t2

(
ĤI(t2)

~
ĤI(t1)

~
dt1dt2

)∣∣Ψ(0)
⟩
. . .

=
∣∣Ψ(0)

⟩
−
∫ t

−∞

(
i
ĤI(t1)

~
dt1

)∣∣Ψ(0)
⟩

−
∫ t

−∞

∫ t2

−∞

(
ĤI(t2)

~
ĤI(t1)

~
dt1dt2

)∣∣Ψ(0)
⟩
. . .
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The finite time evolution is an infinite sum over different orders of interaction, with each

term an integral over all possible sequences of events with proper time ordering. The first-

order term accounts for the total effect of the perturbation on the unperturbed system, the

second-order term describes the effect of the perturbation on states that have already been

perturbed once, and so on.

The perturbing potential due to radiation-matter interaction is obtained by replacing the

conjugate momentum with the canonical momentum, so that p̂ → p̂ − eÂ. Under this

substitution, representing the kinetic energy operator by T̂ ,

T̂ =
1

2me

∣∣∣p̂− eÂ
∣∣∣2

=
1

2me

|p̂|2 − e

2me

(
p̂ · Â+ Â · p̂

)
+

1

2me

∣∣∣Â∣∣∣2
The interaction with the EM field now conveniently appears as a perturbation. A common

approximation that we shall adopt is the dipole approximation, wherein the last term is

dropped. Under the Coulomb gauge, p̂ and Â commute, so that our perturbation is now

V̂ = − e

me

Â · p̂

Quite frequently it is appropriate to use the classical description of the EM field. How-

ever, while our final results are not sensitive to this approximation, we will nonetheless

move forward with a fully quantized description of radiation for clarity. Adopting second-

quantization formalism and the interaction picture

V̂ I(t) = −
∑
n′,n′′

⟨n′′| e

me

nA(ω) · p̂ |n′⟩ ĉ†n′′ ĉn′

×
[
e−i(−ω−ωn′′+ωn′ )tâ†(ω) + e−i(ω−ωn′′+ωn′ )tâ(ω)

]
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where ĉn annihilates the electronic state indexed by n, and â(ω) and â†(ω) annihilate and

create, respectively, a photon of frequency ω and polarization direction given by nA(ω)

(where we set |nA(ω)| =
√

~
2ϵ0ω

). We have implicitly imposed the long-wavelength ap-

proximation, assuming that we will deal with radiation of wavelengths much longer than

the atomic scale.

The infinitesimal-time evolution operator is then

Û(t) = 1− i
V̂ I(t)

~
dt

3.3 Linear Response

We will first examine the linear response of a system to EM radiation. The linear response

describes the dielectric behavior of the electronic system, including absorption. Further-

more, as will be seen later, the shift current response, though formally second-order, is in

some sense a property of linear excitations.

Applying the infinitesimal-time-evolution operator once to a non-interacting ground

state
∣∣Ψ(0)

⟩
=
∣∣∣Ψ(0)

EM

⟩ ∣∣∣Ψ(0)
el

⟩
,

∣∣Ψ(1)
⟩
= Û(t1)

∣∣Ψ(0)
⟩

=
∣∣Ψ(0)

⟩
+
i

~
∑
n′,n′′

⟨n′| e

me

nA(ω) · p̂ |n′′⟩ e−i(ω−ωn′+ωn′′ )t1 â(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
dt1

+
i

~
∑
n′,n′′

⟨n′| e

me

nA(ω) · p̂ |n′′⟩ e−i(−ω−ωn′+ωn′′ )t1 â†(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
dt1

The two terms correspond to emission and absorption. We will apply the rotating-wave
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approximation and consider only absorption. The current is

J(ω, t) =
⟨
Ψ(0)

∣∣ Û(t1)†ĴI(t)Û(t1)
∣∣Ψ(0)

⟩
=

1

~2
∑
n′,n′′

[ ⟨
Ψ(0)

∣∣ ĉ†n′′ ĉn′ â†(ω)ei(ω−ωn′+ωn′′ )t1 ⟨n′′| e

me

nA(ω) · p̂ |n′⟩

× ĴI(t) ⟨n′| e

me

nA(ω) · p̂ |n′′⟩ e−i(ω−ωn′+ωn′′ )t1 â(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩ ]
dt21

+
i

~
∑
n′,n′′

[ ⟨
Ψ(0)

∣∣ ĴI(t) ⟨n′| e

me

nA(ω) · p̂ |n′′⟩

× e−i(ω−ωn′+ωn′′)t1 â(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
− c.c.

]
dt1

The first term vanishes, as it is simply the expected current of an eigenstate. Since

ĴI(t) = − e

me

p̂I(t) = − e

me

∑
m′,m′′

⟨m′| p̂ |m′′⟩ ei(ωm′−ωm′′ )tĉ†m′ ĉm′′

we have

J(ω, t) =− e

me

i

~
∑
n′,n′′

∑
m′,m′′

⟨
Ψ(0)

∣∣ ĉ†m′ ĉm′′ ⟨m′| p̂ |m′′⟩ ei(ωm′−ωm′′ )t ⟨n′| e

me

nA(ω) · p̂ |n′′⟩

× e−i(ω−ωn′+ωn′′ )t1 â(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
dt1 + c.c.

=− e

me

i

2~
∑
n′,n′′

fn′′ [1− fn′ ] ⟨n′′| p̂ |n′⟩ ⟨n′| e

me

A0 · p̂ |n′′⟩

× ei(ωn′′−ωn′ )te−i(ω−ωn′+ωn′′)t1dt1 + c.c.

where we have used
⟨
Ψ

(0)
EM

∣∣∣nA(ω)â(ω)
∣∣∣Ψ(0)

EM

⟩
≈ A0

2
. We will now integrate over all

allowed events. For the integral to be well-behaved, we must multiply the integrand by an

exponential eηt and only allow η → 0 (i.e., take the adiabatic limit) after performing the
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integration.

J(ω, t) =− e

me

i

2~
∑
n′,n′′

fn′′ [1− fn′ ] ⟨n′′| p̂ |n′⟩ ⟨n′| e

me

A0 · p̂ |n′′⟩

× e−i(ωn′′−ωn′ )t lim
η→0

∫ t

−∞
eηte−i(ω−ωn′−ωn′′ )t1dt1 + c.c.

=− e

me

i

2~
∑
n′,n′′

fn′′ [1− fn′ ] ⟨n′′| p̂ |n′⟩ ⟨n′| e

me

A0 · p̂ |n′′⟩

× e−iωt lim
η→0

eηt
1

−i(ω − ωn′ + ωn′′) + η
+ c.c.

=− e

me

i

2~
∑
n′,n′′

fn′′ [1− fn′ ] ⟨n′′| p̂ |n′⟩ ⟨n′| e

me

A0 · p̂ |n′′⟩

× e−iωt

[
iP 1

ω − ωn′ + ωn′′
+ πδ(ω − ωn′ + ωn′′)

]
+ c.c.

Since d
dt
A0e−iωt = −iωA0e−iωt = E0e−iωt

J(ω, t) =

(
e

me

)2
1

2~ω
∑
n′,n′′

fn′′ [1− fn′ ] ⟨n′′| p̂ |n′⟩ ⟨n′|E0 · p̂ |n′′⟩

× e−iωt

[
iP 1

ω − ωn′ + ωn′′
+ πδ(ω − ωn′ + ωn′′)

]
+ c.c.
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Polarization can be obtained by noting that J = dP
dt

, so that

P(ω, t) =

(
e

me

)2
1

2~ω2

∑
n′,n′′

fn′′ [1− fn′ ] ⟨n′′| p̂ |n′⟩ ⟨n′|E0 · p̂ |n′′⟩

× e−iωt

[
−P 1

ω − ωn′ + ωn′′
+ iπδ(ω − ωn′ + ωn′′)

]
+ c.c.

Pi(ω, t) =

(
e

me

)2
1

~ω2

∑
n′,n′′

fn′′ [1− fn′ ] ⟨n′′| pi |n′⟩ ⟨n′| pj |n′′⟩

×
[
P 1

ωn′ − ωn′′ − ω
+ iπδ(ω − ωn′ + ωn′′)

]
E0

j

2
e−iωt + c.c.

Pi(ω, t) =ϵ0ℜ
[
χij(ω)E

0
j (ω, t)

]
χ is the dielectric function, and the permittivity ϵ = 1 + χ. The expression above reveals

several important features of χ. First, it obeys the Kramers-Kronig relations, which are a

consequence of preserving causality. We observe that this arises automatically from prop-

erly performing the time integral. Second, the real and imaginary components correspond

to virtual and resonant excitations, respectively. The latter may result in real absorption

events, and therefore dissipation, while the former may not. We can confirm this by noting

that work may only be done via the imaginary component:

W =

∫
dP

dt
· E(ω, t)dt

=

∫
ϵ0ω

∣∣E0(ω)
∣∣2 [χℑ cos2(ωt)− χℜ sin(ωt) cos(ωt)

]
dt

=
ϵ0
2

∣∣E0(ω)
∣∣2 χℑt
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We may derive an expression for the absorption coefficient from Maxwell’s Equations

∇ · E = 0

∇ ·B = 0

∇× E = −1

c

∂B

∂t

∇×B =
µ

c
σℜE+

µ

c
ϵℜ
∂E

∂t

where E remains the electric field, B is the magnetic field, µ is the permeability, c is the

speed of light, ϵℜ is the real permittivity, and σ is the real conductivity. Since

σE = Tr
(
ρ̂Ĵ
)
= Tr

(
ρ̂
∂P̂

∂t

)

where J is current density, we have

σℜ = ℜ (−iωχ) = ωϵℑ

Manipulating to produce second-order differential equations for E

∇×∇× E = −1

c

∂∇×B

∂t

∇×∇× E = − µ

c2
ωϵℑ

∂E

∂t
− µ

c2
ϵℜ
∂2E

∂t2

∇(∇ · E)−∇2E = − µ

c2
ωϵℑ

∂E

∂t
− µ

c2
ϵℜ
∂2E

∂t2

−∇2E = − µ

c2

(
ωϵℑ

∂E

∂t
+ ϵℜ

∂2E

∂t2

)

Now, supposing a solution of the form E0eik·re−iωt, where k is a complex wavevector, we
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arrive at

(k · k) = µ

c2
ω2
(
iϵℑ + ϵℜ

)
Solving for k (assuming propagation direction Z)

k2z =
µ

c2
ω2
(
iϵℑ + ϵℜ

)
kz =±

√
µ

c
ω


√√√√√(ϵℜ)2 + (ϵℑ)2 + ϵℜ

2
+ i

√√√√√(ϵℜ)2 + (ϵℑ)2 − ϵℜ

2


From Beer’s law

I ∝ |E(z)|2 =
∣∣E0
∣∣2 e−2kℑz z

I = I0e−2kℑz z = I0e−αz

Thus, the absorption coefficient is defined as

α = 2kℑz = 2

√
µ

c
ω

√√√√√(ϵℜ)2 + (ϵℑ)2 − ϵℜ

2

3.4 Conventional photovoltaics

Traditionally, photovoltaic effects rely on thermally excited carriers being separated and

prevented from recombining by an electric field. In the most common case, a p-n junction

is created by interfacing a hole-doped semiconductor with one that is electron-doped. The

chemical potential of the electron-doped region lies above that of the hole-doped region,

and electrons will flow into holes until the resulting electric field balances the chemical
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potential gradient. Carriers excited in the region near the interfaces respond to this field

and separate, reducing the likelihood of recombination. However, these carriers must obey

detailed-balance; as a result the photovoltaic efficiency is fundamentally constrained, and

the photovoltage cannot exceed the band-gap. As we shall see, shift current is a non-linear

effect, and the carriers violate the principle of detailed-balance, allowing for photovoltages

well above the band-gap.

20



Chapter 4

Shift Current

The theory of shift current was first introduced over 30 years ago. It is a second-order op-

tical effect, and may be derived from time-dependent perturbation theory. Previous treat-

ments, however, rely on a classical EM field and/or the density matrix formalism [13, 15,

53]. For the following we will use an explicitly quantized EM field, and operate at the level

of the wavefunction; while the resulting expression is identical, we feel this approach more

readily reveals the underlying physics.

4.1 Derivation and Physical Interpretation

For a non-interacting ground state
∣∣Ψ(0)

⟩
=
∣∣∣Ψ(0)

EM

⟩ ∣∣∣Ψ(0)
el

⟩
we are interested in the result

of second-order processes

∣∣Ψ(2)
⟩
= Û(t2)Û(t1)

∣∣Ψ(0)
⟩

We can expect two contributions to arise: one from terms that combine two positive or

negative frequency waves, and one from terms with both positive and negative frequency

components. The former constitutes second harmonic generation and generates emission
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of doubled frequency. The latter, however, will result in zero-frequency – or dc-like –

emission, rather than an oscillating dipole. While this contribution is usually classified

as optical rectification, which results in a static polarization, a portion of such terms will

conspire to produce current. Expanding,

∣∣Ψ(2)
⟩
=Û(t2)Û(t1)

∣∣Ψ(0)
⟩

=
∣∣Ψ(0)

⟩
− i

~
∑
n′,n′′

⟨n′| e

me

nA(ω) · p̂ |n′′⟩
[
e−i(−ω−ωn′+ωn′′ )t1 â†(ω)

+e−i(ω−ωn′+ωn′′ )t1 â(ω)
]
ĉ†n′ ĉn′′

∣∣Ψ(0)
⟩
dt1

− i

~
∑

n′′′,n′′′′

⟨n′′′| e

me

nA(ω) · p̂ |n′′′′⟩
[
e−i(−ω−ωn′′′+ωn′′′′ )t2 â†(ω)

+e−i(ω−ωn′′′+ωn′′′′ )t2 â(ω)
]
ĉ†n′′′ ĉn′′′′

∣∣Ψ(0)
⟩
dt2

− 1

~2
∑
n(i)

⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩

×
[
e−i(−ω−ωn′′′′+ωn′′′ )t1e−i(−ω−ωn′+ωn′′ )t2 â†(ω)â†(ω)

+e−i(ω−ωn′′′′+ωn′′′ )t1e−i(ω−ωn′+ωn′′ )t2 â(ω)â(ω)
]

× ĉ†n′ ĉn′′ ĉ†n′′′′ ĉn′′′
∣∣Ψ(0)

⟩
dt1dt2

− 1

~2
∑
n(i)

⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩

×
[
e−i(ω−ωn′′′′+ωn′′′ )t1e−i(−ω−ωn′+ωn′′ )t2 â†(ω)â(ω)

+e−i(−ω−ωn′′′′+ωn′′′ )t1e−i(ω−ωn′+ωn′′ )t2 â(ω)â†(ω)
]

× ĉ†n′ ĉn′′ ĉ†n′′′′ ĉn′′′
∣∣Ψ(0)

⟩
dt1dt2

We see that there are terms corresponding to single photon absorption(emission), two pho-

ton absorption(emission), and net zero photon absorption, as expected. Taking the current,
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and keeping only the terms (ω,−ω)

J(ω, t) =
⟨
Ψ(0)

∣∣ Û(t1)†Û(t2)†ĴI(t)Û(t2)Û(t1)
∣∣Ψ(0)

⟩
=

1

~2
∑
n(i)

[ ⟨
Ψ(0)

∣∣ ĉ†n′′′′ ĉn′′′ â(ω)ei(−ω−ωn′′′+ωn′′′′ )t2

× ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩ ĴI(t) ⟨n′| e

me

nA(ω) · p̂ |n′′⟩

× e−i(−ω−ωn′+ωn′′)t1 â†(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2

+
1

~2
∑
n(i)

[ ⟨
Ψ(0)

∣∣ ĉ†n′′′′ ĉn′′′ â†(ω)ei(ω−ωn′′′+ωn′′′′ )t2

× ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩ ĴI(t) ⟨n′| e

me

nA(ω) · p̂ |n′′⟩

× e−i(ω−ωn′+ωn′′ )t1 â(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2

− 1

~2
∑
n(i)

[ ⟨
Ψ(0)

∣∣ ĴI(t) ⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩

× e−i(ω−ωn′′′′+ωn′′′ )t1e−i(−ω−ωn′+ωn′′ )t2

× â†(ω)â(ω)ĉ†n′ ĉn′′ ĉ†n′′′′ ĉn′′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2

− 1

~2
∑
n(i)

[ ⟨
Ψ(0)

∣∣ ĴI(t) ⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩

× e−i(−ω−ωn′′′′+ωn′′′ )t1e−i(ω−ωn′+ωn′′ )t2

× â(ω)â†(ω)ĉ†n′ ĉn′′ ĉ†n′′′′ ĉn′′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2
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Since ĴI(t) = − e
me

p̂I(t) = − e
me

∑
m′,m′′ ⟨m′| p̂ |m′′⟩ ei(ωm′−ωm′′ )tĉ†m′ ĉm′′

J(ω, t) =− e

me

1

~2
∑

n(i),m′,m′′

[
ei(ωm′−ωm′′)te−i(−ω−ωn′+ωn′′)t1e−i(ω−ωn′′′′+ωn′′′ )t2

× ⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩ ⟨m′| p̂ |m′′⟩

×
⟨
Ψ(0)

∣∣ ĉ†n′′′′ ĉn′′′ â(ω)ĉ†m′ ĉm′′ â†(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2

− e

me

1

~2
∑

n(i),m′,m′′

[
ei(ωm′−ωm′′)te−i(ω−ωn′+ωn′′ )t1e−i(−ω−ωn′′′′+ωn′′′ )t2

× ⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩ ⟨m′| p̂ |m′′⟩

×
⟨
Ψ(0)

∣∣ ĉ†n′′′′ ĉn′′′ â†(ω)ĉ†m′ ĉm′′ â(ω)ĉ†n′ ĉn′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2

+
e

me

1

~2
∑

n(i),m′,m′′

[
ei(ωm′−ωm′′ )te−i(ω−ωn′′′′+ωn′′′ )t1e−i(−ω−ωn′+ωn′′ )t2

× ⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩ ⟨m′| p̂ |m′′⟩

×
⟨
Ψ(0)

∣∣ ĉ†m′ ĉm′′ â†(ω)â(ω)ĉ†n′ ĉn′′ ĉ†n′′′′ ĉn′′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2

+
e

me

1

~2
∑

n(i),m′,m′′

[
ei(ωm′−ωm′′ )te−i(−ω−ωn′′′′+ωn′′′ )t1e−i(ω−ωn′+ωn′′ )t2

× ⟨n′| e

me

nA(ω) · p̂ |n′′⟩ ⟨n′′′′| e

me

nA(ω) · p̂ |n′′′⟩ ⟨m′| p̂ |m′′⟩

×
⟨
Ψ(0)

∣∣ ĉ†m′ ĉm′′ â(ω)â†(ω)ĉ†n′ ĉn′′ ĉ†n′′′′ ĉn′′′
∣∣Ψ(0)

⟩
+ c.c.

]
dt1dt2

Each of the four terms is nonzero under only two sets of (nontrivial) conditions. In the

first two terms, which arise from the superposition of two different absorptions, either

n′′′′ = n′′, m′ = n′′′, and m′′ = n′, or n′′′′ = m′′, m′ = n′′, and n′′′ = n′. In the last two

terms, which arise from absorptions followed by emissions, either n′′′′ = n′′, m′ = n′′′,

and m′′ = n′, or n′′′′ = m′′, m′ = n′′, and n′′′ = n′. In both cases, the first set of
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conditions correspond to electron excitations, and the second to hole excitations. Since

⟨Ψ0
EM|nA(ω)nA(ω)â

†(ω)â(ω) |Ψ0
EM⟩ ≈ A0A0

4
, we let V 0 = e

me
A0(ω) · p̂, and the current

becomes

J(ω, t) =

− e

me

1

4~2
∑

n′,n′′,n′′′

[
ei(ωn′′′−ωn′ )te−i(±ω−ωn′+ωn′′ )t1e−i(∓ω−ωn′′+ωn′′′ )t2

× ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩ fn′′ (1− fn′′′) (1− fn′) + c.c.

]
dt1dt2

+
e

me

1

4~2
∑

n′,n′′,n′′′′

[
ei(ωn′′−ωn′′′′ )te−i(±ω−ωn′+ωn′′ )t1e−i(∓ω−ωn′′′′+ωn′ )t2

× ⟨n′| V̂ 0 |n′′⟩ ⟨n′′′′| V̂ 0 |n′⟩ ⟨n′′| p̂ |n′′′′⟩ (1− fn′) fn′′fn′′′′ + c.c.

]
dt1dt2

+
e

me

1

4~2
∑

n′,n′′,n′′′

[
ei(ωn′′′−ωn′ )te−i(±ω−ωn′′+ωn′′′ )t1e−i(∓ω−ωn′+ωn′′)t2

× ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩ fn′′′ (1− fn′′) (1− fn′) + c.c.

]
dt1dt2

− e

me

1

4~2
∑

n′,n′′,n′′′′

[
ei(ωn′′−ωn′′′′ )te−i(±ω−ωn′′′′+ωn′ )t1e−i(∓ω−ωn′+ωn′′ )t2

× ⟨n′| V̂ 0 |n′′⟩ ⟨n′′′′| V̂ 0 |n′⟩ ⟨n′′| p̂ |n′′′′⟩ (1− fn′′) fn′fn′′′′ + c.c.

]
dt1dt2
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The use of ±/∓ is meant to indicate that the two sign configurations are to be summed

over. Relabeling indices to simplify

J(ω, t) =− e

me

1

4~2
∑

n′,n′′,n′′′

[
ei(ωn′′′−ωn′ )te−i(±ω−ωn′+ωn′′)t1e−i(∓ω−ωn′′+ωn′′′ )t2

× ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩

× [fn′′ (1− fn′′′) (1− fn′)− (1− fn′′) fn′fn′′′ ] + c.c.

]
dt1dt2

+
e

me

1

4~2
∑

n′,n′′,n′′′

[
ei(ωn′′−ωn′′′ )te−i(±ω−ωn′+ωn′′ )t1e−i(∓ω−ωn′′′+ωn′ )t2

× ⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩

× [fn′′ (1− fn′) (1− fn′′′)− (1− fn′′) fn′fn′′′ ] + c.c.

]
dt1dt2

It is now clear that each electron excitation is matched with a hole excitation moving in

the opposite direction. However, in the above expression, the current appears to oscillate.

The promised dc-like response is recovered only after performing the integration over all

second-order processes.
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The total current is

J(ω) =− e

me

1

4~2

[ ∑
n′,n′′,n′′′

[fn′′ (1− fn′′′) (1− fn′)− (1− fn′′) fn′fn′′′ ]

× ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩

× e−i(ωn′−ωn′′′ )t

∫ t

−∞

∫ t2

−∞
e−i(±ω−ωn′+ωn′′ )t1e−i(∓ω−ωn′′+ωn′′′ )t2dt1dt2 + c.c.

]

+
e

me

1

4~2

[ ∑
n′,n′′,n′′′

[fn′′ (1− fn′) (1− fn′′′)− (1− fn′′) fn′fn′′′ ]

× ⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩

× e−i(ωn′′′−ωn′′ )t

∫ t

−∞

∫ t2

−∞
e−i(±ω−ωn′+ωn′′ )t1e−i(∓ω−ωn′′′+ωn′ )t2dt1dt2 + c.c.

]

Letting V̂ 0 → eηtV̂ 0 (i.e., a slowly-turned-on interaction), and performing the integration

J(ω) =
e

me

1

4~2

[ ∑
n′,n′′,n′′′

[fn′′ (1− fn′′′) (1− fn′)− (1− fn′′) fn′fn′′′ ]

× ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩

× e2ηt
1

(±ω − ωn′ + ωn′′) + iη

1

(ωn′′′ − ωn′) + 2iη
+ c.c.

]

− e

me

1

4~2

[ ∑
n′,n′′,n′′′

[fn′′ (1− fn′) (1− fn′′′)− (1− fn′′) fn′fn′′′ ]

× ⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩

× e2ηt
1

(±ω − ωn′ + ωn′′) + iη

1

(ωn′′ − ωn′′′) + 2iη
+ c.c.

]

Each individual second-order process contributes both a constant phase factor and an evolv-

ing oscillation. Processes occurring at different times interfere with each other, resulting
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in a net phase of zero and a nonzero factor proportional to the detuning frequency. To

emphasize: the overall coherent state, and by extension the current, exists continuously for

the duration of the illumination, and is formed by the temporal interference of individual

interaction processes.
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Manipulating indices

J(ω) =
e

me

1

4~2
∑

n′,n′′,n′′′

⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩

× e2ηt
1

(ωn′′′ − ωn′) + 2iη

1

(±ω − ωn′ + ωn′′) + iη

×

[
fn′′ (1− fn′′′) (1− fn′)− (1− fn′′) fn′fn′′′

− fn′ (1− fn′′) (1− fn′′′) + (1− fn′) fn′′fn′′′

]

− e

me

1

4~2
∑

n′,n′′,n′′′

⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩

× e2ηt
1

(ωn′′ − ωn′′′) + 2iη

1

(±ω − ωn′ + ωn′′) + iη

×

[
fn′′ (1− fn′) (1− fn′′′)− (1− fn′′) fn′fn′′′

− fn′ (1− fn′′′) (1− fn′′) + (1− fn′) fn′′′fn′′

]

=
e

me

1

4~2
∑

n′,n′′,n′′′

⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩ [fn′′ − fn′ ]

× e2ηt
1

(ωn′′′ − ωn′) + 2iη

1

(±ω − ωn′ + ωn′′) + iη

− e

me

1

4~2
∑

n′,n′′,n′′′

⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩ [fn′′ − fn′ ]

× e2ηt
1

(ωn′′ − ωn′′′) + 2iη

1

(±ω − ωn′ + ωn′′) + iη
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Taking the limit

J(ω) = lim
η→0

e

me

1

4~2
∑

n′,n′′,n′′′

e−2ηt [fn′ − fn′′ ]
1

(±ω − ωn′ + ωn′′) + iη

×

(
⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩ 1

(ωn′′′ − ωn′) + 2iη

− ⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩ 1

(ωn′′ − ωn′′′) + 2iη

)

=
e

me

1

4~2
∑

n′,n′′,n′′′

[fn′ − fn′′ ]

[
P 1

±ω − ωn′ + ωn′′
− iπδ(±ω − ωn′ + ωn′′)

]

×

(
⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩

[
P 1

ωn′′′ − ωn′
− iπδ(ωn′′′ − ωn′)

]

− ⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩
[
P 1

ωn′′ − ωn′′′
− iπδ(ωn′′ − ωn′′′)

])

If time reversal symmetry prevails, we may eliminate several terms. If, for the two terms

of the summed-over expression, ωn′′′ = ωn′ or ωn′′ = ωn′′′ , then the corresponding term

contains diagonal elements of the momentum matrix, whose contributions must vanish

under time-reversal. If both the initial excitation and overall process are off-resonant, then

the contribution to the current would come from the real parts of the products of momentum

matrix elements; only the imaginary parts can be nonzero under time-reversal. However,

a resonant initial excitation but off-resonant overall process provides a contribution due to
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these imaginary parts, and may be nonzero. This leaves

J(ω) =
e

me

iπ

4~2
∑

n′,n′′,n′′′

[fn′ − fn′′ ] δ(±ω − ωn′ + ωn′′)

×

(
⟨n′| V̂ 0 |n′′⟩ ⟨n′′| V̂ 0 |n′′′⟩ ⟨n′′′| p̂ |n′⟩ P 1

ωn′′′ − ωn′

− ⟨n′′′| V̂ 0 |n′⟩ ⟨n′| V̂ 0 |n′′⟩ ⟨n′′| p̂ |n′′′⟩ P 1

ωn′′ − ωn′′′

)

Thus, the shift current results from the modification of the superposition between excited

and ground states that results from resonant linear absorption. The system proceeds to a

virtual state via the second, off-resonant interaction; this state carries the current. Upon

(adiabatic) removal of illumination, the system is constrained to relax to either of the states

coupled by the initial excitation, in the same way that an off-resonant linear absorption

must relax to the ground state.
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(a) (b)
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Figure 4.1: In (a) a perfect cavity with periodic boundary conditions there is a steady-state

population of photons associated with a standing EM wave of the kind assumed for the

present treatment. If (b) a slab of materials is introduced, some portion of the photons

will become entangled with electronic transitions, reducing the population of photons in

the cavity and perturbing the electrons of the material from their ground-state-Hamiltonian

eigenstates. If the material has appropriately-broken inversion symmetry, then these per-

turbed electronic states will have a net velocity, creating a current. In the absence of scatter-

ing and in the low-intensity limit, this is a constant current, and the coherent states persist

indefinitely. In the event of scattering, the electron may return to the ground state, or oc-

cupy a thermalized excited state. In the former case, the electron will rapidly be re-excited

into a coherent, current-carrying state. In the latter case, the return to the current-carrying

state is delayed by the lifetime of the excited state; the current is not limited by scattering

per se, but by the proportion of carriers that are in thermalized excited states.
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While the illumination persists, the electron and hole are coherently coupled with the

light, forming a quasiparticle with fixed net momentum. The current does not evolve from

a field accelerating excited electrons through a medium; it is instead an intrinsic property

of this quasiparticle. To see this, let us consider a situation very different from the context

that photovoltaics are found in: the idealized case of an optical cavity containing a shift-

current-active material without dissipation. Without the material, the electromagnetic field

is described by a single-mode, standing – rather than traveling – wave, the condition under

which our expression is actually derived (Fig. 4.1(a)). With the material introduced, the

population of the mode in the cavity is reduced, with a portion of the photons bound into

quasiparticles with the electrons and holes of the material (Fig. 4.1(b)). This is a steady

state of the system, with the quasiparticles carrying a constant current. If scattering is in-

troduced and a particular carrier is thermalized, the electron halts, and either returns to the

time-independent ground state, with the photon returning to the cavity, or absorbs the pho-

ton and comes to rest in an excited state; this latter case provides the means for dissipation.

If we assume that those returning to the ground state very rapidly reform quasiparticles,

then the current is a function of the intensity and thermalized carrier population. This ex-

plains why the shift current expression provides a good description of current magnitude,

despite including no scattering terms: the current is only mitigated to the extent that there

are free excited carriers, the number of which are usually small compared to total number

of electrons.

Since the current is due to the component of the wavefunction arising from the pertur-

bation of the initial excited state by the field, it is useful to express the current as a property

of this initial excitation. First, we shall explicitly adopt the Bloch formalism, so that our
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states are now a function of k. Our expression becomes

J(ω) =
e

me

iπ

4~2
∑

n′,n′′,n′′′

∫
d3k′

∫
d3k′′

∫
d3k′′′

× [fn′(k′)− fn′′(k′′)] δ(±ω − ωn′(k′) + ωn′′(k′′))

×

[
⟨n′k′| V̂ 0 |n′′k′′⟩ ⟨n′′k′′| V̂ 0 |n′′′k′′′⟩ ⟨n′′′k′′′| p̂ |n′k′⟩ P 1

ωn′′′(k′′′)− ωn′(k′)

− ⟨n′′′k′′′| V̂ 0 |n′k′⟩ ⟨n′k′| V̂ 0 |n′′k′′⟩ ⟨n′′k′′| p̂ |n′′′k′′′⟩ P 1

ωn′′(k′′)− ωn′′′(k′′′)

]
(4.1)

Noting the appearance of the expression

⟨n′k′| p̂ |nk⟩ P 1

ωn′(k′)− ωn(k)

and that one of the indices appears nowhere else in the term, we find we may simplify

the expression using Eq. (3.4). Since we wish to integrate over the principle part of the

expression on the LHS of Eq. (3.4), which results in the exclusion of the pole occurring at

n = n′ and k = k′, we must explicitly exclude the corresponding term from our integral

on the RHS.

∑
n′

∫
d3k′ |n′k′⟩ P ⟨n′k′| p̂ |nk⟩

mei (ωn′(k′)− ωn(k))

=
∑
n′

∫
d3k′ |n′k′⟩ ⟨n′k′| r̂ |nk⟩ − lim

ϵ→0

∫ k+ϵ

k−ϵ

d3k′ |nk′⟩ ⟨nk′| r̂ |nk⟩

∑
n′

∫
d3k′ |n′k′⟩ P ⟨n′k′| p̂ |nk⟩

mei (ωn′(k′)− ωn(k))

= r̂ |nk⟩ − lim
ϵ→0

∫ k+ϵ

k−ϵ

d3k′ ⟨nk′| r̂ |nk⟩ |nk′⟩ (4.2)
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Inserting this into Eq. (4.1) we obtain

J(ω) = −

{
eπ

4~2
∑
n′,n′′

∫
d3k′

∫
d3k′′

× [fn′(k′)− fn′′(k′′)] δ(±ω − ωn′(k′) + ωn′′(k′′))

×
[
⟨n′k′| V̂ 0 |n′′k′′⟩ ⟨n′′k′′| V̂ 0r̂ |n′k′⟩

− ⟨n′′k′′| r̂V̂ 0 |n′k′⟩ ⟨n′k′| V̂ 0 |n′′k′′⟩
]}

+

{
eπ

4~2
∑
n′,n′′

∫
d3k′

∫
d3k′′

× [fn′(k′)− fn′′(k′′)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× lim
ϵ→0

[∫ k′+ϵ

k′−ϵ

d3k′′′ ⟨n′k′| V̂ 0 |n′′k′′⟩ ⟨n′′k′′| V̂ 0 |n′k′′′⟩ ⟨n′k′′′| r̂ |n′k′⟩

−
∫ k′′+ϵ

k′′−ϵ

d3k′′′ ⟨n′′k′′′| V̂ 0 |n′k′⟩ ⟨n′k′| V̂ 0 |n′′k′′⟩ ⟨n′′k′′| r̂ |n′′k′′′⟩

]}

Since

⟨n′′k′′| r̂V̂ 0 |n′k′⟩ ⟨n′k′| V̂ 0 |n′′k′′⟩ − ⟨n′k′| V̂ 0 |n′′k′′⟩ ⟨n′′k′′| V̂ 0r̂ |n′k′⟩

= ⟨n′′k′′|
[
r̂, V̂ 0

]
|n′k′⟩ ⟨n′k′| V̂ 0 |n′′k′′⟩

= ⟨n′′k′′|A0 · [r̂, p̂] |n′k′⟩ ⟨n′k′| V̂ 0 |n′′k′′⟩

= i~A0δn′n′′δ(k′ − k′′) ⟨n′k′| V̂ 0 |n′′k′′⟩

the first group of terms is zero for allowed transitions.
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Noting that ⟨nk| p̂ |n′k′⟩ = 0 when k ̸= k′, we find that

J(ω) =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× ⟨n′k| V̂ 0 |n′′k⟩ lim
ϵ→0

[∫ k+ϵ

k−ϵ

d3k′′′ ⟨n′′k| V̂ 0 |n′k′′′⟩ ⟨n′k′′′| r̂ |n′k⟩

−
∫ k+ϵ

k−ϵ

d3k′′′ ⟨n′′k′′′| V̂ 0 |n′k⟩ ⟨n′′k| r̂ |n′′k′′′⟩
]

(4.3)

Naively taking the limit would result in position expectation values of the Bloch states. The

appropriate action is to use Eqs. (3.2) and (3.3)

Inserting these into Eq. (4.3), with the momentum elements serving as functions g, we

obtain

J(ω) =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× ⟨n′k| V̂ 0 |n′′k⟩
[(

−i∇k′′′=k ⟨n′′k| V̂ 0 |n′k′′′⟩+ ⟨n′′k| V̂ 0 |n′k⟩χn′(k)
)

−
(
i∇k′′′=k ⟨n′′k′′′| V̂ 0 |n′k⟩+ ⟨n′′k| V̂ 0 |n′k⟩χn′′(k)

)]
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Setting ϕn′′n′(k) to be the phase of ⟨n′′k| p̂ |n′k⟩ (and consequently ⟨n′′k| V̂ 0 |n′k⟩)

J(ω) =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

×
(
−⟨n′k| V̂ 0 |n′′k⟩ i∇k ⟨n′′k| V̂ 0 |n′k⟩

− ⟨n′k| V̂ 0 |n′′k⟩ ⟨n′′k| V̂ 0 |n′k⟩ [χn′′(k)− χn′(k)]
)

=
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

×
(
−⟨n′k| V̂ 0 |n′′k⟩ i∇ke

iϕn′′n′ (k)
∣∣∣⟨n′′k| V̂ 0 |n′k⟩

∣∣∣
−⟨n′k| V̂ 0 |n′′k⟩ ⟨n′′k| V̂ 0 |n′k⟩ [χn′′(k)− χn′(k)]

)
=
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

×
(
⟨n′k| V̂ 0 |n′′k⟩

[
⟨n′′k| V̂ 0 |n′k⟩∇kϕn′′n′(k)

−eiϕn′′n′ (k)i∇k

∣∣∣⟨n′′k| V̂ 0 |n′k⟩
∣∣∣]

−⟨n′k| V̂ 0 |n′′k⟩ ⟨n′′k| V̂ 0 |n′k⟩ [χn′′(k)− χn′(k)]
)

Dropping the imaginary parts yields

J(ω) =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× ⟨n′k|V 0 · p̂ |n′′k⟩ ⟨n′′k|V 0 · p̂ |n′k⟩ [∇kϕn′′n′(k)− χn′′(k) + χn′(k)]
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or, written as a response tensor, where we have again used the relation between the vector

potential and electric field,

Jq(ω) = σrsq(ω)E
0
r (ω)E

0
s (ω)

σrsq(ω) = eπ

(
e

2me~ω

)2 ∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× ⟨n′k| p̂r |n′′k⟩ ⟨n′′k| p̂s |n′k⟩
[
{∇kϕn′′n′(k)}q − χn′′;q(k) + χn′;q(k)

]
(4.4)

We now have an expression that gives the current in terms of the states composing the su-

perposed state of the initial excitation. The sum over current contributions from rotation of

this linearly excited state into other states by the second interaction that appears in Eq. (4.3)

has been shown equivalent to

Rn′′,n′(k) = ∇kϕn′′n′(k)− χn′′(k) + χn′(k) (4.5)

and now appears multiplied by the strength of linear absorption. This has been called the

shift vector [13] and has units of distance. That it is a distance should not be taken to be

physically significant. This arises since the current contributions of the sum it represents

are weighted by the inverse of their detuning frequency; this weighting factor with units

of time applies physically to the coefficient of the wavefunction components. More physi-

cally, one can consider the net velocity acquired by the excited component of the carrier’s

wavefunction, which may be loosely identified as the carrier velocity. The magnitude of
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this component is given by the resonant part of the first-order term

∣∣Ψ(1)
⟩
=
∣∣Ψ(0)

⟩
+

∫ t

−∞

(
i
HI(t1)

~
dt1

) ∣∣Ψ(0)
⟩

=
∣∣Ψ(0)

⟩
+

∫ t

−∞

i

2~
∑
n′,n′′

⟨n′′| e

me

nA · p̂ |n′⟩ ĉ†n′′ ĉn′

×
[
e−i(−ω−ωn′′+ωn′ )tâ†(ω) + e−i(ω−ωn′′+ωn′ )tâ(ω)

] ∣∣Ψ(0)
⟩

=
∣∣Ψ(0)

⟩
+
iπ

2~
∑
n′,n′′

δ(ω − ωn′′ + ωn′) ⟨n′′| e

me

nA · p̂ |n′⟩ ĉ†n′′ ĉn′ â(ω)
∣∣Ψ(0)

⟩
For periodic systems this becomes

∣∣Ψ(1)
⟩
=
∣∣Ψ(0)

⟩
+
iπ

2~
∑
n′,n′′

∫
d3k δ(ω − ωn′′(k) + ωn′(k))

× ⟨n′′k| e

me

nA · p̂ |n′k⟩ ĉ†n′′(k)ĉn′(k)â(ω)
∣∣Ψ(0)

⟩
=
∣∣Ψ(0)

⟩
+
iπ

2

∑
n′,n′′

∫
d |En′′(k)− En′(k)|

× δ(Eω − En′′(k) + En′(k))Dn′,n′′(En′′(k)− En′(k))

× ⟨n′′k| e

me

nA · p̂ |n′k⟩ ĉ†n′′(k)ĉn′(k)â(ω)
∣∣Ψ(0)

⟩
=
∣∣Ψ(0)

⟩
+
iπ

2
Dn′,n′′(Eω) ⟨n′′k| e

me

nA · p̂ |n′k⟩ ĉ†n′′(k)ĉn′(k)â(ω)
∣∣Ψ(0)

⟩

where Dn′,n′′(E) is the density of transitions of energy E between bands n′ and n′′. In

the last term, k is now the k-point where En′′(k) − En′(k) = Eω. The magnitude of the

first-order perturbation is then

π2

4
Dn′,n′′(Eω)

2 ⟨n′k|V 0 |n′′k⟩ ⟨n′′k|V 0 |n′k⟩
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and the velocity, taking the integral for the same transition, is

vn′,n′′(k) =
1

e

J(ω,k)
π2

4
Dn′,n′′(Eω)2 |⟨n′′k|V 0 |n′k⟩|2

vn′,n′′(k) =
Rn′′,n′(k)

Dn′,n′′(Eω)π~
(4.6)

We can see that the velocity is directly related to the shift vector, with a factor determined

by the density of transitions.

4.2 Observables

In order to compare our calculations to experiment we must provide the same quantities that

will be measured for real systems. These are primarily the current density as a function of

light intensity (rather than field as produced by our derivation), and the Glass coefficient,

which obtains for macroscopically thick samples.

To convert the current density to a response to intensity, we use the relation for energy

density of an EM wave:

u(ω) =
ϵ0ϵ

ℜ

2
|E(ω)|2

Since the energy flux is depends on the speed of light in the sample

I(ω) = u(ω)
c

n
=
ϵ0ϵ

ℜc

2n
|E(ω)|2

where n is refractive index of the material in question.
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The shift current response tensor becomes

σ̄rsq(ω) =
eπn

2ϵ0ϵℜc

(
e

me~ω

)2 ∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× ⟨n′k| p̂r |n′′k⟩ ⟨n′′k| p̂s |n′k⟩
[
{∇kϕn′′n′(k)}q − χq,n′′(k) + χq,n′(k)

]

We note that this expression requires some care when r ̸= s. For convenience we may

write a transition intensity as

In′′,n′;rs(k, ω) = π
n

2ϵ0ϵℜc

(
e

me~ω

)2 ∑
n′,n′′

∫
d3k ⟨n′k| p̂r |n′′k⟩ ⟨n′′k| p̂s |n′k⟩

× [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

so that

σ̄rsq(ω) =e
∑
n′,n′′

∫
d3k In′′,n′;rs(k, ω)Rn′′,n′;q(k)

Determining the total current in a sample is complicated by the attenuation of incident

illumination as it travels through the material. In the limit of a thick sample that will com-

pletely absorb the illumination, the current can be obtained from the Glass coefficient [10]

Jq(ω) =
σ̄rrq(ω)

αrr(ω)

Ir(ω)W = Grrq(ω)Ir(ω)W (4.7)

where α is the absorption coefficient, and W is the sample width. Thus, the current density

tensor and Glass coefficient describe the response in the regimes of infinitely thin and

infinitely thick samples, respectively.

However, the Glass coefficient provides additional information about the response. In
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the limit where ϵℑ << ϵℜ,

α ≈ ω

cn
ϵℑ = 2~ω

∑
n′,n′′

∫
dk In′,n′′(k, ω)

and the Glass coefficient becomes

Grrq(ω) =
e

2~ω

∑
n,n′

∫
dk In,n′;rr(k, ω)Rn,n′;q(k)∑
nn′

∫
dk In,n′;rr(k, ω)

The Glass coefficient is therefore closely related to the weighted average shift vector, and

allows us to estimate the contribution of both terms in the shift current expression.

4.3 Numerical Implementation

In the case of a degeneracy, the second-order resonances apply to degenerate blocks of

states. Rather than the matrix elements that appear in (4.1), we seek to manipulate matrix

blocks such that our expression is invariant under rotations of degenerate subspaces. Sup-

pose that n and n′ now refer to sets of degenerate bands, which are indexed by α, β, etc.

Then we can write a block of an operator B̂ as

B̂nn′(k,k′) =


⟨nα(k)| B̂ |n′

α(k
′)⟩ ⟨nα(k)| B̂

∣∣n′
β(k

′)
⟩

· · ·

⟨nβ(k)| B̂ |n′
α(k

′)⟩ ⟨nβ(k)| B̂
∣∣n′

β(k
′)
⟩

· · ·
...

... . . .


and a block of the overlap matrix as

Ŝn(k,k
′) =


⟨
nαk

∣∣nα(k
′)
⟩ ⟨

nαk
∣∣nβ(k

′)
⟩

· · ·⟨
nβk

∣∣nα(k
′)
⟩ ⟨

nβk
∣∣nβ(k

′)
⟩

· · ·
...

... . . .


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with this, Eq. (4.1) becomes

J =
e

me

iπ

4~2
∑

n′′′ ̸=n′′,n′

∫
d3k′

∫
d3k′′

∫
d3k′′′

×
(
Tr
{
V̂ 0
n′n′′(k′,k′′)V̂ 0

n′′n′′′(k′′,k′′′)p̂n′′′n′(k′′′,k′)
} 1

ωn′′′(k′′′)− ωn′(k′)

−Tr
{
V̂ 0
n′′′n′(k′′′,k′)V̂ 0

n′n′′(k′,k′′)p̂n′′n′′′(k′′,k′′′)
} 1

ωn′′(k′′)− ωn′′′(k′′′)

)
× [fn′(k′)− fn′′(k′′)] δ(±ω − ωn′(k′) + ωn′′(k′′))

Eq. (4.2) becomes

∑
n′

∫
d3k′ |n′k′⟩ P p̂n′n(k

′,k)

mei (ωn′(k′)− ωn(k))
= r̂ |nk⟩ − lim

ϵ→0

∫ k+ϵ

k−ϵ

d3k′ r̂nn(k
′,k) |nk′⟩

and Eqs. (3.2) and (3.3) are

∫
d3k′

∫
d3k′ g(k′)r̂nn(k,k

′) = i∇k′=k [g(k
′)Sn(k,k

′)]

g(k′)r̂nn(k
′,k) = −i∇k′=k [g(k

′)Sn(k
′,k)]

With our generalized equations in hand we apply the same procedure as for the non-

degenerate case. The final expression will be

J =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

×∇k′′′=kℑTr

{
V̂ 0
n′′n′(k,k)Sn′(k,k′′′)V̂ 0

n′n′′(k′′′,k)

+ V̂ 0
n′n′′(k,k′′′)Sn′′(k′′′,k)V̂ 0

n′′n′(k,k)

}
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In the continuous case we can evaluate this easily for any arbitrary selection of the degen-

erate states. In the discrete case, we are again faced with the problem of securing gauge

invariance. The derivative of the logarithm of a (square) matrix can be taken by expanding

the log as a Taylor series

Tr

{
B̂
d ln B̂

dk

}
= Tr

{
B̂

(
dB̂

dk
+

1

2

dB̂

dk
(B̂ − 1) +

1

2
(B̂ − 1)

dB̂

dk
...

)}

= Tr

{
B̂

(
dB̂

dk
+
dB̂

dk
(B̂ − 1)...

)}

= Tr

{
B̂
dB̂

dk

1

B̂

}

= Tr

{
dB̂

dk

}

Thus, Tr
{
∇B

}
= Tr

{
B∇ lnB

}
and

J =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

×ℑTr

{
V̂ 0
n′′n′(k,k)V̂ 0

n′n′′(k,k)∇k′′′=k ln
[
V̂ 0
n′′n′(k,k)Sn′(k,k′′′)V̂ 0

n′n′′(k′′′,k)
]

+ V̂ 0
n′n′′(k,k)V̂ 0

n′′n′(k,k)∇k′′′=k ln V̂
0
n′n′′(k,k′′′)Sn′′(k′′′,k)V̂ 0

n′′n′(k,k)

}

J =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× lim
∆k→0

1

|∆k|
ℑTr

{
V̂ 0
n′′n′(k,k)V̂ 0

n′n′′(k,k) ln
[
−V̂ 0

n′′n′(k,k)V̂ 0
n′n′′(k,k)

+V̂ 0
n′′n′(k,k)Sn′(k,k+∆k)V̂ 0

n′n′′(k+∆k,k)
]

+ V̂ 0
n′n′′(k,k)V̂ 0

n′′n′(k,k) ln
[
−V̂ 0

n′n′′(k,k)V̂ 0
n′′n′(k,k)

+V̂ 0
n′n′′(k,k+∆k)Sn′′(k+∆k,k)V̂ 0

n′′n′(k,k)
]}
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Since V̂ 0
n′n′′(k,k)V̂ 0

n′′n′(k,k) will be real, this leaves

J =
eπ

4~2
∑
n′,n′′

∫
d3k [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× lim
∆k→0

1

|∆k|
ℑTr

{
V̂ 0
n′′n′(k,k)V̂ 0

n′n′′(k,k)

× ln
[
V̂ 0
n′′n′(k,k)Sn′(k,k+∆k)V̂ 0

n′n′′(k+∆k,k)
]

+ V̂ 0
n′n′′(k,k)V̂ 0

n′′n′(k,k)

× ln
[
V̂ 0
n′n′′(k,k+∆k)Sn′′(k+∆k,k)V̂ 0

n′′n′(k,k)
]}

The last term may appear to be problematic, as the log may be applied to a singular matrix.

However, this only occurs when the matrix V̂ 0
n′′n′(k,k)V̂ 0

n′n′′(k,k) has one or more zero

eigenvalues; as this term multiplies the log, the contribution from the responsible states is

zero. Such states can be removed during calculation. Dropping the limit, we obtain the

response tensor

σrsq = eπ

(
e

me~ω

)2 ∑
n′,n′′

∑
k

Vk [fn′(k)− fn′′(k)] δ(±ω − ωn′(k′) + ωn′′(k′′))

× 1

∆kq
ℑ

(
Tr
{
p̂r;n′′n′(k,k)p̂s;n′n′′(k,k)

ln
[
p̂r;n′′n′(k,k)Ŝn′(k,k+∆k)p̂s;n′n′′(k+∆k,k)

]}
+ Tr

{
p̂s;n′n′′(k,k)p̂r;n′′n′(k,k)

ln
[
p̂s;n′n′′(k,k+∆k)Ŝn′′(k+∆k,k)p̂r;n′′n′(k,k)

]})

where Vk is a volume element of our discretized reciprocal space.
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Chapter 5

Experimental Comparison and

Validation

In order to test the hypothesis that BPVE is explained primarily by shift current, we com-

pare calculated results with those in the literature. The material in this section appears in

Refs. [54] and [55].

5.1 BaTiO3

For bulk, single-crystal BaTiO3, experimental spectra are available for energies near the

band gap [56, 1]. The total current in a bulk crystal for light incident normal to the current

direction can by computed using Eq. (4.7), which applies to samples of sufficient thick-

ness to absorb all incident light. We obtained the light intensity and crystal dimensions

from [1, 57], which were ≈ 0.35 − 0.6 mW/cm2 and 0.1-0.2 cm, respectively. In Fig. 5.1,

the experimental current response from [1] is compared to the response computed using

shift current theory. Despite the uncertainty in experimental parameters, the agreement is

striking, in both magnitude and spectrum profile, for both tensor elements. This includes
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the difference of sign between the majority of the transverse and longitudinal response,

which is unusual [15], as well as the small positive region of the longitudinal response near

the band edge.

We emphasize that these calculations not only reproduce the magnitude of response,

but its idiosyncratic features as well. Because this theory reproduces all the salient features

found in the experiments, this comparison provides strong evidence that shift current is the

correct description of the bulk photovoltaic effect.
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Figure 5.1: For BaTiO3, the experimental current [1] and computed current (this work), for

transverse (xxZ) and longitudinal (zzZ) electric field orientation, as a function of energy

above their respective bandgaps. The solid lines are calculated results for a choice of ex-

perimental parameters of 0.5 mW/cm2 illumination intensity and 0.15 cm sample width.

The shaded regions are bounded by the results using experimental parameters in the given

range that provide the lowest and highest response.
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5.2 BiFeO3

BiFeO3 (BFO) is a well-known multiferroic material that displays both large

(90 µC/cm2) polarization and weak ferromagnetism [58]. Furthermore, it possesses a rel-

atively small band gap (2.74 eV) that falls in the visible spectrum [2]. This presents a

major advantage over other ferroelectric oxides with large band gaps (typically ≈3.5 eV).

There has been a flurry of interest in BiFeO3 as a photovoltaic, highlighting it as a viable

candidate for ferroelectric-based photovoltaic devices [26, 4, 5, 59, 3].

However, the origin of the observed photovoltaic properties is not quite clear. Recently,

large photovoltages have been observed opposite the direction of material polarization in

BFO [4, 5]. The photovoltage was attributed to the periodic domain walls acting to both

separate and collect photoexcited carriers. The strong dependence of photovoltage on den-

sity of domain walls supports this hypothesis. However, while the bulk photovoltaic effect,

as observed in crystals such as LiNbO3, was discarded as a primary mechanism for the

large photovoltages, the existence and impact of such an effect could not be ruled out or

quantified. Indeed, other studies of BFO evaluated the photovoltaic response parallel [59]

and perpendicular [3] to the ferroelectric polarization direction and observed substantial

photocurrent generation, strongly suggesting that this effect should be significant even in

samples with domain walls. The photocurrent in BFO has also been reported as being gen-

erated uniformly throughout the sample, consistent with a bulk effect [60]. Understanding

the contributions of various mechanisms involved in the response collinear with material

polarization is difficult, as the experiments cannot separate the bulk photovoltaic effect

from polarization dependent mechanisms like those in Refs. [4] and [5]. Presently, we cal-

culate the shift current response for BFO, showing good agreement with the results from

Ref. [3] and providing estimates of the photocurrents collinear with the material polariza-

tion. Using these results we are able to determine the impact of the bulk photovoltaic effect
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on the system studied in Refs. [4] and [5], explaining its apparent absence.
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Figure 5.2: The rhombohedral unit cell of bismuth ferrite with the polarization direction

denoted by the gold arrow. The two iron atoms are coordinated by distorted octahedral

oxygen cages, rotated in opposite directions. The structure is only slightly distorted from

the cubic perovskite structure, so the pseudo-cubic unit-cell, shown in the inset in relation

to the rhombohedral unit cell, is often used to represent the structure.
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BFO belongs to space group R3c. Shown in Fig. 5.2 is the primitive (10 atom) unit

cell with the polarization direction along [0001] (z direction), as well as the relation to

the pseudo-cubic unit cell sometimes used, for which the polarization is along the [111]

direction. BFO is nearly a G-type anti-ferromagnetic (AFM) material; however, it is found

that there is spin canting in the xy plane (perpendicular to the polarization direction) [61].

Because of the small magnitude (≈0.1 µB per unit cell), this spin canting is ignored in

the present work, and only spin-polarized calculations are performed. The experimental

geometry is used for calculations throughout.

In the coordinates of this geometry, a third rank tensor, such as the shift current response

tensor, must have the form

σ =


0 0 0 0 σyzY −σyyY

−σyyY σyyY 0 σyzY 0 0

σxxZ σxxZ σzzZ 0 0 0

 (5.1)

where the electric field degrees of freedom have been condensed to a single dimension, as

in Voigt notation. For clarity, we show the tensor index corresponding to current direction

in uppercase, while the indices giving the light polarization are in lowercase. We note

that the above tensor is Cartesian, such that the rhombohedral lattice vectors in terms of

Cartesian coordinates are, by convention, A⃗1 =
(

a
2
,− a

2
√
3
, c
3

)
, A⃗2 =

(
0, a√

3
, c
3

)
, A⃗3 =(

−a
2
,− a

2
√
3
, c
3

)
.

Due to the well-known tendency of DFT calculations to underestimate the localization

of the d-orbital electrons, the DFT+U method is used in the calculation, including an effec-

tive Hubbard Ueff=U − J in the Hamiltonian. In order to choose the proper Ueff value, the

imaginary permittivity was calculated in the long wavelength approximation with different

Ueff values and compared to experiment. Shown in Fig. 5.3 (a) are the real and imagi-

nary permittivity, with experimental data taken from Ref. [2]. We find that the calculation
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with GGA+Ueff = 5 eV best matches the experimental imaginary permittivity(dielectric

loss) for energies near the band-gap, especially the energies of the t2g and eg peaks. As is

commonly the case with DFT calculations, due in part to absence of quasiparticle correc-

tions [62], the magnitude of the permittivity is substantially overestimated. This has been

observed in hematite as well [63, 64], which is structurally and chemically similar to BFO.

For additional calibration, we calculate the gap using the same method in Ref. [2], shown

in Fig. 5.3(b), and find that the calculated value underestimates the experimental gap by

0.16 eV.
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Figure 5.3: In (a), the calculated components of the permittivity, ϵ, are compared to ex-

periment. In (b), the calculated band-gap is shown to be 2.58 eV, 0.16 eV less than the

experimentally determined value of 2.74 eV [2].
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Figure 5.4: The calculated Glass coefficient (a),GyyY , and bulk photovoltaic coefficient (b),

σyyY , are shown, with the experimental values marked for comparison [3].
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Shown in Fig. 5.4 are the calculated photovoltaic tensor elements and Glass coefficients

that yield current in the Y direction in the plane normal to the polarization axis, compared

with the experimental results from Ref. [3].

We have adjusted our results to account for the slightly lower band-gap, shifting them

right by 0.16 eV. Compared to the experimental measurements of Glass coefficient and

shift current tensor (GyyY =4.48×10−10 cm/V and σyyY =1.1×10−4 V−1 around the photon

energy of 2.85 eV in Ref. [3]), our results agree very well.
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Figure 5.5: The experimental setup of Refs. [4] and [5]. The film shown in (a) is composed

of alternating domains with polarizations of adjacent domains at 71◦ angles to one another.

Presently we label one domain with the letter ‘R’ and the color green, and the other with

the letter ‘L’ and the color blue. Large photovoltages and photocurrents are observed when

electrodes, shown in gold, are placed parallel to the domains. No response is observed

when the electrodes are perpendicular to the domains (not shown). In (b) the orientation

of the pseudo-cubic unit cell and polarization for each domain is shown, along with the

principal axes of the experimental coordinate frame.
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In Ref. [4], the photovoltaic response to unpolarized light is measured in a thin film

with parallel 71◦ domain walls. The orientation of domains in the experimental setup is

shown in Fig. 5.5. The net material polarization is normal to the domain walls, and the

photocurrent is measured both parallel and perpendicular to the in-plane component of net

material polarization, while photovoltage is measured only parallel to the in-plane com-

ponent of net material polarization. While high response in the antiparallel direction is

observed for polydomain samples, with photovoltage scaling linearly with domain density,

little or no photovoltage is detected for monodomain crystals, and negligible photocur-

rent is measured perpendicular to net polarization, supporting the proposed mechanism

of domain-wall driven generation of large photovoltages. However, based on the results

for photocurrent in the plane normal to the polarization obtained in Ref. [3], the authors

speculate that the bulk photovoltaic response along the polarization direction should be

significant. This view is supported by their studies of the photocurrent parallel to polariza-

tion [59].
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Figure 5.6: The photovoltaic response tensor elements for current collinear with the mate-

rial polarization.
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Figure 5.7: The relationship between the principal axes of the material coordinates and the

lab coordinates (x̄, ȳ, z̄) in Fig. 5.5. The zR and zL axes are parallel to the polarization in

their respective domains, the xR and xL are in the x̄z̄ plane, and yR and yL complete the

orthogonal bases.

68



The calculated response tensor elements yielding current in the material polarization

direction are shown in Fig. 5.6. The direction is uniformly parallel, rather than antiparallel,

to the material polarization, and similar in magnitude to the in-plane response. These results

appear to confirm that the bulk photovoltaic effect constitutes a meaningful contribution to

the response observed in the experimental setup. However, the geometry of the system

shown in Fig. 5.5, especially the orientation of the domain polarization to the incident

illumination, suggests a more complicated picture, as many different tensor elements will

contribute to the observed response. As evident from Eq. 5.1, some of these elements have

opposite sign from one another, allowing for the possibility that significant cancellations

may occur. To properly calculate the response, the field of the incoming radiation must

first be expressed in the coordinate system of the material as used to express the response

tensor. For both domains,

E(θ) = E0


cos(θ)

sin(θ)
√

1
3

sin(θ)
√

2
3

 (5.2)

for light with wavevector parallel to ȳ and polarization angle θ to xL/xR. In accordance

with Malus’s law, upolarized light can be decomposed into any two fields of perpendicular

polarization; we select θ to be 0◦ and 90◦ for both domains. After computing the response

in the material frame, we must rotate the current density vector back into the lab coordinate

system. Thus, for unpolarized, overhead illumination, the total response can be calculated

as

Jl =R
R
lk

(
σijk

Ei(0
◦)Ej(0

◦) + Ei(90
◦)Ej(90

◦)

2

)
+RL

lk

(
σijk

Ei(0
◦)Ej(0

◦) + Ei(90
◦)Ej(90

◦)

2

)
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where RR and RL rotate from the principal axes of the two domain types, denoted as

(xR, yR, zR) and (xL, yL, zL) and shown in green and blue respectively in Fig. 5.7, to ex-

perimental coordinates, denoted as (x̄, ȳ, z̄) and shown in red, where z̄ is parallel to the

in-plane component of net material polarization, ȳ is normal to the film surface, and x̄ is

orthogonal to ȳ and z̄, forming a right-handed coordinate system. In the barred system

xR =

(
1√
2
, 0,

1√
2

)
xL =

(
1√
2
, 0,− 1√

2

)
yR =

(
− 1√

6
,

√
2

3
,
1√
6

)
yL =

(
1√
6
,

√
2

3
,
1√
6

)

zR =

(
− 1√

3
,− 1√

3
,
1√
3

)
zL =

(
1√
3
,− 1√

3
,
1√
3

)
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Figure 5.8: The calculated current densities per light intensity in the lab frame of the BFO

film, with the experimental value from Ref. [4] marked by the red dashed line. The current

in the x̄ direction, parallel to the domain walls, vanishes, while much of the remaining

current is directed toward the bottom of the sample.

72



The components of the total current in the lab frame are shown in Fig. 5.5(a). The

current in the x̄ direction – parallel to the domain walls – vanishes, in agreement with

experiment. The current in the z̄ direction is substantial, however, and proceeds in the op-

posite direction of the experimental response, indicating that the two photovoltaic effects

partially cancel. The magnitude of this component is a large fraction of the experimen-

tally measured current, suggesting that the reduction in current may be significant. In the

single-domain case, where the impact of carrier separation at domain walls is suppressed,

one might expect a photovoltage in the opposite direction, but experimentally negligible

photovoltage was observed. However, a large portion of the current is directed to the lower

surface, especially in a thin film geometry. Upon illumination, layers of carriers will form

on the surfaces, allowing any charge imbalances between electrodes to rapidly equilibrate

without domain wall traps in between. Thus, any shift current in the z̄ direction will be

prevented from sustaining a photovoltage in that direction, due to the conductivity of the

surfaces resulting from the ȳ directed photovoltage. This is also consistent with the obser-

vation of significant photocurrent obtained in Ref. [26], where the orientation of the crystal

to the incident light is the same, but current is measured in the direction perpendicular to

that of the setup in Ref. [4].

We have reconciled the large bulk photovoltaic response found in Refs. [3] and [5] with

the apparent negligible contribution evinced in Ref. [4] through first principles calculations.

Importantly, we find that the bulk photovoltaic effect will partially cancel domain-wall

driven carrier separation, indicating that even higher efficiencies may be possible. Effective

photovoltaic materials may be found which take advantage of a domain wall structure of

the kind explored in Refs. [4] and [5], especially as a mechanism of trapping carriers,

but relying on the bulk photovoltaic effect to contribute to carrier separation, rather than

suppress it.
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Chapter 6

Relationship to Material Properties

Having established with reasonable certainty that the shift current is the dominant compo-

nent of BPVE, we turn our attention to the question of how it is influenced by the material’s

structure and chemistry. While Eq. (4.4) allows us to calculate the response, it contains few

clues about the dependence on material properties. As demonstrated, the response depends

on the strength of linear excitations, which are at least familiar, and the mysterious quan-

tity of shift vector. Since the carrier velocity is proportional to the shift vector, as shown

in Eq. (4.6), it is vital to understand what determines its magnitude. A natural place to

start is clarifying the relationship to material polarization. It is apparent that there is no di-

rect, mechanistic dependence of response on material polarization, as is the case for many

mechanisms to which photovoltaic effects in ferroelectrics have been attributed. However,

shift current requires broken inversion symmetry, which here derives from the lattice dis-

tortion that produces ferroelectric polarization, suggesting that the response may appear to

depend on polarization in some fashion. Unfortunately, the mathematical form of the shift

vector does not reveal a straightforward relationship between the magnitude of symmetry

breaking, and the resulting shift current response.
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6.1 Numerical Study

The content of this section appears in Ref. [54]. To investigate the connection to material

polarization, we studied a systematic family of structures based on PbTiO3. Starting with

the cubic perovskite in the paraelectric structure, we rigidly displaced oxygen ions along

a single Cartesian axis by amplitudes ranging from 0.01 to 0.09 lattice vectors, without

otherwise altering the geometry. The spectra of shift current and aggregate shift vector are

shown in Fig. 6.1 for several displacements. The results indicate a complex relationship

between shift current and material polarization. As Fig. 6.1 shows, with soft mode ampli-

tude 0.01, the shift current at 3.2 eV above band-gap is negative; with amplitude 0.07, the

shift current reverses direction, resulting in a change of -200%. With amplitude 0.01, there

is a negative peak at 3.8 eV; with amplitude 0.07, the peak shifts to 4.2 eV and is four times

the size, for an increase of over 300%. However, in the intervening frequency range, the

response is relatively small at all displacements.

Next, we turn our attention to the integrated shift vector R̄Z(ω). The changes in shift

vector are of special interest, since the symmetry constrains the overall shift current ex-

pression via the shift vector. The integrated shift vector spectrum echoes the overall current

response, but contains some distinct features. The increase in current from 4-5 eV does not

appear to result from increased shift vector length, but from stronger coincidence of high

transition intensity and large shift vectors. In fact, the overall shift vector changes little with

displacement. However, from 7.5-8.5 eV, the integrated shift vector changes dramatically,

suggesting that at some points in the Brillouin zone the oxygen displacement substantially

alters the shift vector. Changes to the overall response are thus a combination of changes

both to shift vector and associated intensity.
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Figure 6.1: The overall current susceptibility and aggregated shift vector R̄ are shown for

PbTiO3 with varying polarization.
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To understand these results, the electronic bands participating in transitions in these

frequency ranges were examined directly. For the 4-5 eV range, examples of the transitions

and associated Bloch states that dominate are shown in Fig. 6.2(a) at 0.01 and 0.09 lattice

vector displacements. For this transition, the shift vector is 0.6 Å at displacement of 0.01,

and 1.0 Å at 0.09. The valence state is largely composed of oxygen p-orbitals, while the

conduction state is essentially a titanium dxy state. The states, like the shift vectors, are

largely unchanged by the oxygen displacement.

However, the transitions in the higher energy range are notably different. Shown in

Fig. 6.2(b) are examples of the dominant transitions in the 7.5-8.5 eV range. The shift

vector is large and positive (32.3 Å) for 0.01 lattice vector displacement, and large but neg-

ative (-22.7 Å) at 0.09 displacement. The participating valence state can be characterized as

bonding between the Ti and O atoms collinear with polarization, while the conduction state

features Ti-O anti-bonding. These results point not to a simple dependence on material

polarization, but to a dependence of shift current on the extent of localization of the initial

and final states, which in turn depends on atomic displacement. Transitions between states

that do not experience bonding interactions in the direction of ferroelectric polarization

manifest short shift vectors and insensitivity to oxygen displacement.
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Figure 6.2: (a) The non-bonding Bloch states of PbTiO3 are involved in a transition that is

insensitive to material polarization, with a shift vector length change from 0.6 Å to 1.0 Å as

O sublattice displacement increases from 0.01 to 0.09, and (b) a transition from bonding to

antibonding gives a shift vector that is highly sensitive to material polarization, with shift

vector length change from 32.4 Å to -22.7 Å for increasing O sublattice displacement.
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6.2 Analytical Model

Using a simple tight-bonding model, we will derive an analytical expression for the shift

current, illuminating its dependence on system properties and corroborating our empirical

study. Since we are interested in quantities that depend on the phase of the Bloch functions,

we must construct our eigenstates with care. In general, for a basis composed of orbital-like

functions ϕj(r) centered at rj in the unit cell

ψn(k, r) =
∑
lj

eik·Rlunj(k)φj(k, r−Rl)

where Rl are lattice vectors, and

φj(k, r) = eik·rϕj(r)

We can see that Eq. (3.1) give the correct expression for the periodic position elements

⟨nk′| r̂ |nk⟩ =
∑
l′lj′j

e−ik′·Rl′eik·Rlu†nj′(k
′)unj(k) ⟨φj′(k, r−Rl′)| r̂ |φj(k, r−Rl)⟩

=
∑
l′lj′j

u†nj′(k
′)unj(k) ⟨ϕj′(r−Rl′)| r̂ |ϕj(r−Rl)⟩

=
∑
lj

u†nj(k
′)unj(k) (Rl + rj)

= −i ⟨nk|∇k |nk⟩+ iδ(k− k′)
∑
j

u†nj(k
′)∇kunj(k)

= −i∇kδ(k− k′) + iδ(k− k′)
∑
j

u†n′j(k
′)∇kunj(k)
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and our momentum elements are

⟨n′k′| P̂ |nk⟩ =
∑
l′lj′j

u†n′j′(k
′)unj(k)e

i(k−k′)·r ⟨ϕj′(r−Rl′)|k− i∇r |ϕj(r−Rl)⟩

= ~kδ(k− k′)δn′n

− ~δ(k− k′)
∑
lj′j

u†n′j′(k
′)unj(k) ⟨ϕj′(r−Rl)| i∇r |ϕj(r)⟩

The shift vector can then be written as

Rn′n(k) = χn(k)− χn′(k)− i
∇k ⟨n′k′| P̂ |nk⟩
⟨n′k′| P̂ |nk⟩

=
∑
j

u†nj(k)∇kunj(k)−
∑
j

u†n′j(k)∇kun′j(k)

+

∑
lj′j i∇k

[
u†n′j′(k)unj(k)

]
⟨ϕj′(r−Rl)| i∇r |ϕj(r)⟩∑

lj′j u
†
n′j′(k)unj(k) ⟨ϕj′(r−Rl)| i∇r |ϕj(r)⟩

In particular, we can consider a very simple 1D model with two sites, similar to the Su-

Schrieffer-Heeger model. We label the sites A and B, giving them different on-site poten-

tials, and introduce asymmetry via the hopping terms. We include higher-order hopping

terms between the two site types that we assume to decay exponentially

H(k) = ϵc†AcA − ϵc†BcB + t

[
e∆eik

R
2

∑
l

e−(τ−ik)lR + e−∆e−ikR
2

∑
l

e−(τ+ik)lR

]
c†BcA

+ t

[
e−∆eik

R
2

∑
l

e−(τ−ik)lR + e∆e−ikR
2

∑
l

e−(τ+ik)lR

]
c†AcB

We have set Rl → lR, where R is now the primitive lattice vector, and assigned ∆ and τ

to represent the asymmetry and hopping decay, respectively. The sums can be expressed in
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closed form, yielding

H(k) = ϵc†AcA − ϵc†BcB

+ 2t
cosh(∆) cos

(
kR

2

)
sinh

(
τ R

2

)
− i sinh(∆) sin

(
kR

2

)
cosh

(
τ R

2

)
e−τ R

2 [cosh(τR)− cos(kR)]
c†BcA

+ 2t
cosh(∆) cos

(
kR

2

)
sinh

(
τ R

2

)
+ i sinh(∆) sin

(
kR

2

)
cosh

(
τ R

2

)
e−τ R

2 [cosh(τR)− cos(kR)]
c†AcB

Letting

Ω(k) = 2t
cosh(∆) cos

(
kR

2

)
sinh

(
τ R

2

)
+ i sinh(∆) sin

(
kR

2

)
cosh

(
τ R

2

)
e−τ R

2 [cosh(τR)− cos(kR)]

Θ(k) = arctan

[
sin

(
k
R

2

)
tanh(∆)

tanh
(
τ R

2

)]

The energy and wavefunctions can be written as

E+(k) = −E−(k) =

√
ϵ2 + |Ω(k)|2

ψ±(k) =
∑
l

eiklR
[
u±A(k)φA(r − lR) + u±B(k)φB(r − lR)

]
u+A(k) =

eiΘ(k)

√
2

√
1 +

ϵ

E(k)
u−A(k) =

eiΘ(k)

√
2

√
1− ϵ

E(k)

u+B(k) =
1√
2

√
1− ϵ

E(k)
, u−B(k) = − 1√

2

√
1 +

ϵ

E(k)
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We can now write the momentum as

P±(k) =
∑
l

u+†
A (k)u−A(k) ⟨ϕA(r − lR)| i ∂

∂r
|ϕA(r)⟩

+
∑
l

u+†
B (k)u−B(k) ⟨ϕB(r − lR)| i ∂

∂r
|ϕB(r)⟩

+
∑
l

u+†
A (k)u−B(k) ⟨ϕA(r − lR)| i ∂

∂r
|ϕB(r)⟩

+
∑
l

u+†
B (k)u−A(k) ⟨ϕB(r − lR)| i ∂

∂r
|ϕA(r)⟩

P±(k) =
1

2

√
1−

(
ϵ

E(k)

)2

×
∑
l

[
⟨ϕA(r − lR)| i ∂

∂r
|ϕA(r)⟩ − ⟨ϕB(r − lR)| i ∂

∂r
|ϕB(r)⟩

]
− e−iΘ(k)

2

(
1 +

ϵ

E(k)

)∑
l

⟨ϕA(r − lR)| i ∂
∂r

|ϕB(r)⟩

+
eiΘ(k)

2

(
1− ϵ

E(k)

)∑
l

⟨ϕB(r − lR)| i ∂
∂r

|ϕA(r)⟩

Assuming that the magnitude of the momentum overlaps are governed by ∆ and τ with

strength proportional to a constant C, we obtain

P±(k) = i~C
sinh(∆)

e−τ R
2 sinh

(
τ R

2

) [e−iΘ(k)

2

(
1 +

ϵ

E(k)

)
− eiΘ(k)

2

(
1− ϵ

E(k)

)]
P±(k) = ~C

sinh(∆)

e−τ R
2 sinh

(
τ R

2

) [sin(Θ) + i
ϵ

E(k)
cos(Θ)

]
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and the shift vector is (taking only the real part)

R±(k) = −
[
1

2

(
1− ϵ

E(k)

)
∂Θ

∂k
− 1

2

(
1 +

ϵ

E(k)

)
∂Θ

∂k

]
+ i

1

P±(k)

∂P±

∂k

R±(k) =
ϵ

E(k)

∂Θ

∂k
+ i

P †±(k)

|P±(k)|2

(
∂P±

∂Θ

∂Θ

∂k
+
∂P±

∂E

∂E

∂k

)
R±(k) =

[
1− sin2(Θ) + cos2(Θ)

sin2(Θ) + ϵ
E(k)

2 cos2(Θ)

]
ϵ

E(k)

∂Θ

∂k

+

[
sin(Θ) cos(Θ)− sin(Θ) cos(Θ) ϵ

E(k)
2

sin2(Θ) + ϵ
E(k)

2 cos2(Θ)

]
∂E

∂k

R±(k) =

[
1− 1

sin2(Θ) + ϵ
E(k)

2 cos2(Θ)

]
ϵ

E(k)

∂Θ

∂k

+
sin(Θ) cos(Θ)

sin2(Θ) + ϵ
E(k)

2 cos2(Θ)

[
1− ϵ

E(k)

2
]
∂E

∂k

The first term ensures gauge invariance; the effect of an arbitrary gauge only appears in this

term; thus both terms are gauge independent.
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Figure 6.3: The (a) lower energy band for different values of the higher-order-hopping

decay constant τ , and the shift vector in units of primitive lattice vector for different values

of (b) τ and (c) asymmetry coefficient ∆. In all cases, the hopping constant t is taken to be

twice the on-site energy ϵ. The effect of significant higher-order hopping is to increase and

decrease the band dispersion at Γ and the Brillouin zone edge, respectively, and to increase

the shift vector at Γ. The shift vector has a roughly linear dependence on the asymmetry.
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In Fig. 6.3 we have plotted the energy band and shift vector for different values of ∆

and τ . As seen in 6.3(a), the energy dispersion increases with larger τ as one expects, but

interestingly the shape also changes, resulting in a sharp peak at Γ for small τ . This sharp

dispersion is associated with increased shift vectors, seen in 6.3(b), which are increase

considerably as higher-order hopping becomes significant. The effect is most pronounced

at Γ since long-range hopping benefits favorably from a phase that only varies slowly in

space.

It is clear that there are two main drivers of high carrier velocity: delocalization and

asymmetry of electronic states involved in a transition. The highest shift vectors and great-

est potential for significant current occur when electronic states are relatively diffuse, and

symmetry breaking of the lattice is able to induce corresponding asymmetry of the wave-

functions. While material polarization will be correlated with shift vector length, it will

be only weakly. Materials design efforts should focus on materials with strongly covalent

bonding between diffuse orbitals that lie on atoms experiencing large displacements.
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Chapter 7

Design of Materials with Large BPVE

Response

7.1 Design Strategy

In the previous chapter we revealed the dependence of shift vector magnitude on the chemi-

cal and structural properties of materials. Large shift vectors were characterized by valence

and/or conduction states that are both strongly asymmetric and delocalized in the current

direction. In this regard, many distorted perovskite (ABO3) ferroelectrics are crippled by

the presence of d0 cations enclosed in octahedral oxygen cages. The conduction states are

dominated by t2g-like d-states that are largely non-bonding. Coupled with the tendency for

d states to localize, the result is that both shift vectors and transition response are very weak

near the band-gap.
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Figure 7.1: The current density response for LNO and BFO are shown in (a) and (c),

respectively. The Glass coefficients of LNO and BFO appear in (b) and (d), respectively.

In all cases, only the response in the direction of material polarization is shown, for both

perpendicular (xxZ) and parallel (zzZ) light polarization.
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We investigated systems that involve both large distortions to oxygen cages, reducing

the non-bonding character of any d0 states, as well as d10 cations with s and/or p states in

near the band edge. It has already been noted that d10 cations can dramatically improve the

activity of photocatalysts [65]. We found the most promising candidates to be polar oxides

taking the distorted ilmenite structure, with d10s0 cations Pb4+ and Bi5+. This structure

can also be obtained by distorting the perovskite structure rhombohedrally, and allowing

polar distortions along and oxygen-cage rotations about ⟨111⟩. Notable ferroelectrics with

this structure include LiNbO3 (LNO) and BiFeO3 (BFO), which we discussed previously.

LNO is known for its large non-linear optical response, and was one of the first materi-

als in which the bulk photovoltaic effect was observed and studied [9, 66, 67]; however,

its band-gap is well outside the visible spectrum [68]. BFO has garnered much attention

recently for its multiferroic behavior [58] and low band-gap of about 2.74eV [2], which

has led to explorations of its photovoltaic response [26, 4, 5, 59, 3]. We have used these as

benchmarks for the present study. In all of these cases, as with the archtypical ferroelectrics

BaTiO3 and PbTiO3, the LUMO are dominated by cation d-states, and have very similar

response magnitudes.

Wavefunctions were generated using QUANTUM ESPRESSO [69]. For PbNiO3, a

Hubbard U of 4.6eV was used, as in [6]. For band-gaps, self-consistent GW calculations

using ABINIT were performed on a 4 × 4 × 4 grid. The present results are for the ex-

perimental structure in the case of PbNiO3, and computationally relaxed structures for the

other materials.

We consider only current response in the direction of material polarization for both

perpendicular (xxZ) and parallel (zzZ) light polarization, as these are the only tensor ele-

ments that can contribute to response to unpolarized light. For ease of comparison we mark

baseline values reflecting the magnitude of response of our benchmark materials, shown in

Fig. 7.1. These are, for the current density and Glass coefficient, respectively, 5×10−4V−1
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and 5× 10−9cm/V.
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Figure 7.2: The band structures of (a) PbNiO3, (a) PbMg1/2Zn1/2O3, and (a) BiLiO3.
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7.2 First-principles calculations of PbNiO3,

PbMg1/2Zn1/2O3, and BiLiO3

We present the calculated results of three materials: PbNiO3, PbMg1/2Zn1/2O3, and BiLiO3.

The first has been synthesized [70], and the latter two are similar in composition to known

materials. All three satisfy our requirements of low band-gap, d10 cations, and large polar

distortions. Furthermore, as seen in Fig. 7.2, all three have qualitatively the same band

structure, featuring highly dispersive conduction bands, in contrast to the usual case of d0

perovskite derivatives. As we will show, this arises due to unfilled s-like – rather than d-

like – states composing the conduction band, and has profound consequences for the bulk

photovoltaic response.
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Figure 7.3: (a) and (b) give the projected density of states for PbNiO3. The unfilled half

of eg of the high-spin d8 nickel appears as a sharp peak above the unfilled lead s-orbitals,

which have strongly hybridized with oxygen p-orbitals, resulting in a low band-gap (1.2eV

in HSE [6]). This also effects a large (c) current density response, and a very large (d) Glass

coefficient.

98



PbNiO3 has recently been synthesized [70] and explored theoretically [6]. Like BFO,

it is antiferromagnetic with weak spin-canting, and possesses an even larger polarization,

calculated at 100 µC/cm2 [6]. Its band-gap is even lower than BFO, with HSE predicting

1.2eV [6]. In BFO, bismuth has oxidation state 3+, so that its s orbital is filled, and the

exchange splitting of iron determines the gap. However, in PbNiO3, lead is 4+, and its

s-states appear lower in energy than the nickel exchange splitting, resulting in a distinct

electronic profile. This can be clearly seen in the projected density of states (Fig. 7.3(a)):

the lowest conduction band is almost entirely Pb s and O p states, while the d-states only

appear in the valence band and higher in the conduction manifold. While this serves to

dramatically lower the band-gap, a further result of this is a Glass coefficient over an order

of magnitude larger than the baseline. The current density is modest by comparison, though

it still exceeds the baseline, indicating large shift vectors with relatively low absorption.
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Figure 7.4: Relevant projected densities of states for PbMg1/2Zn1/2O3 are shown in (a)

and (b). The valence band is formed almost entirely from oxygen p-orbitals, and the con-

duction band is hybridized Pb s and O p-states. This results in a band-gap that is quite

low, (c) high current density response, and (d) a very large Glass coefficient. Significantly,

the response is antiparallel to material polarization.
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HgPbO3 [71] and ZnSnO3 [72, 73] are known to take the ilmenite and LiNbO3 struc-

tures, respectively, however, the first is metallic and the second has too high of a band-gap

and only modest photovoltaic response. We first calculated the response of the structure

ZnPbO3, but found it to be borderline metallic, despite promising response; to raise the

gap we substituted Mg for half of the Zn. Once again, as seen in Fig. 7.4(b), hybridized

Pb s states compose the lowest unfilled band. The magnitude of the response is quite high,

but interestingly, in the opposite direction of most materials, including our benchmark ma-

terials and the aforementioned PbNiO3. We recall from Chapter 3 that in striped-domain

BFO [4, 5] the BPVE response is in the opposite direction of the current generated by the

polarization at the domain walls, partially canceling it. However, PbMg1/2Zn1/2O3 in the

same configuration would generate responses that add rather than cancel, potentially allow-

ing for significant overall response. While the band-gap is actually lower than is preferable

for solar energy collection, we emphasize that by tuning the composition, as done here in a

coarse way, it may be possible to raise the band-gap without substantially diminishing the

response.

BiLiO3 is known to exist in a structure with edge-sharing oxygen octahedra [74]. How-

ever, our calculations place the LiNbO3-type structure nearby in energy, at only about

0.01eV per atom higher; additionally, NaBiO3 is known to take the closely-related ilmenite

structure [74]. In light of this we consider it highly possible that the proposed structure can

be synthesized.

As shown in Fig. 7.5(a) and Fig. 7.5(b), the electronic structure is very similar to the

previous two materials. As with Pb-containing compounds, the low-lying hybridized Bi s-

states form the lowest unfilled bands, though the Bi s proportion is lower than that of Pb s

in the aforementioned materials. Possibly as consequence, the dispersion of the conduc-

tion band is reduced compared to PbNiO3 and PbMg1/2Zn1/2O3 (Fig. 7.2), and the BPVE

response is somewhat different: while the Glass coefficient is not as large as the two lead-
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containing materials, the photocurrent density is higher, indicating increased absorption.

Additionally, the band gap is larger, with GW predicting 1.7-1.8eV, positioned almost per-

fectly with respect to the visible spectrum.
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Figure 7.5: The density of states for BiLiO3, shown in (a) and (b), is dominated by bismuth

and oxygen (c). The band gap is dictated by transitions from O p to hybridized Bi s states.

The band gap is modest (1.7eV in GW). The current density response, shown in (c) is quite

high, with a somewhat high (d) Glass coefficient, indicating strong absorption in addition

to long shift vectors.
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Band gap Maximum Maximum
Glass coefficient current density
×10−9cm/V ×10−4V−1

LiNbO3 3.7eV [68] 6 5
BiFeO3 2.74eV [2] 5 5
PbNiO3 1.2eV(HSE) [6] 80 13
PbMg1/2Zn1/2O3 - 115 20
BiLiO3 1.7eV(GW) 30 45
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Table 7.1: The band gap and response characteristics of the presented materials, along with

LiNbO3 and BiFeO3 for comparison.
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In all three cases, the transitions occur between states dominated by cation s-states

and oxygen cage p-states. If we view the oxygen cage as a single site, then along the

axis of polarization these structures resemble a doubled cell of the tight-binding model

of the last chapter. Folding the model band structure appropriately and superimposing it

on the conduction band of PbNiO3 (Fig.7.6), we see that the two match excellently for a

significant amount of higher-order hopping. This provides strong evidence that the above

model, especially the long-range hopping, captures the important physics governing the

shift vector, in agreement with our empirical study, and the strength of the present results

validates our materials design approach.
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Figure 7.6: The model band structure folded back to reflect a supercell, with the ab initio

calculated valence band of PbNiO3. The value of τ represented is 1.4, reflecting a signifi-

cant amount of higher-order-hopping.
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We have presented several polar oxides in the LiNbO3 structure with strong BPVE re-

sponse and low band gaps, summarized in Table 7.1. One is already known to exist, and

two we propose as targets for synthesis. The compositions, featuring Pb4+ or Bi5+, were

chosen for the absence of d-states at the band edge, and instead have conduction bands

formed by low-lying s-states hybridized with oxygen p-states. In addition to creating sig-

nificantly lower band gaps, this makes for large, diffuse orbitals and results in strongly

delocalized states; combined with large polar distortions, they effect significant shift cur-

rent response that is over an order of magnitude higher than that previously known. Given

the minimal contributions from the other cations, the possibility of tuning the response via

composition without altering its fundamental character is strongly suggested. Additionally,

one material, PbMg1/2Zn1/2O3, has response anti-parallel to material polarization, making

it an excellent candidate for use in the structure described in Refs [4] and [5].
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Chapter 8

Spin Bulk Photovoltaic Effect

Spintronics - the use of electronic devices relying on the manipulation of spin rather than

charge - promises to play an important role in the development of future electronic and

computing devices [75]. However, precise control of electron spin, including the gener-

ation of spin-filtered currents, presents a difficult challenge. There are four main mecha-

nisms for spin current generation currently known: spin-Hall effects [76, 77, 78], illumi-

nation with circularly polarized light [15, 79, 80, 81], subband splitting due to spin-orbit

coupling [82, 83, 84, 85, 86], and, recently, the spin-Seebeck effect [87]. While pure spin

current generation has been achieved using linearly polarized light, the subband splitting

created by spin-orbit effects is required, along with strong inversion symmetry breaking,

which constrains the strength of the response. In this chapter we add a new mechanism:

spin separation in antiferromagnets by linearly polarized light. Neither spin-orbit coupling

nor inversion symmetry breaking is required, making entirely distinct classes of materials

candidates for application. The contents of this chapter were published as Ref. [88]
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8.1 Symmetry Constraints

So far, we have only considered the charge current generated by the shift current mech-

anism. One can consider up and down spin electrons separately, but in the presence of

time-reversal symmetry and negligible spin-orbit interaction, these are required to respond

identically, and only charge currents are generated. However, when antiferromagnetic ma-

terials are considered, a new possibility emerges. The spin centers may produce opposite

responses to the illumination, generating a net charge current of zero, and a net spin current.
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Figure 8.1: A non-centrosymmetric lattice, like the one shown in (a), will generally exhibit

the bulk photovoltaic effect. When a copy of the lattice related by mirror symmetry is

added, shown in (b), the total current will be zero. However, if the two sublattices have

opposite spin, represented dichromatically in (c), a pure spin current will result.
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This is illustrated by the two-dimensional toy system in Fig. 8.1. Shown in (a) is a

square lattice decorated by triangles. The lattice breaks inversion symmetry, and in general

will produce a bulk photovoltaic response. However, suppose we add as a sublattice a

duplicate of the original lattice, related to it by a symmetry operation. In (b) this is shown

for a mirror symmetry. The additional sublattice will produce a bulk photovoltaic response

that is the mirror of the response of the first lattice, canceling it. If, however, we turn

on opposite spins for the two sublattices, as indicated by the coloring in (c), the currents

produced by the two lattices will have opposite spin, resulting in pure spin current.

The procedure for determining the crystal classes that allow for this effect is similar to

that for the charge bulk photovoltaic effect; however, the Shubnikov group – specifically,

the black-and-white, or dichromatic group [89] – must be used instead of the space group.

Shubnikov groups consist of the space group operations, a subset of which are multiplied

by an additional operation of antisymmetry. It is important to note that these are distinct

from double groups. The unit cell is divided into sections of two types, often denoted as

“black” or “white”, which interchange upon application of antisymmetry. In this case, our

black/white are spin up/down, so the antisymmetry operation can be identified with time

reversal. As seen in Fig. 8.1 above, the crystal may be antisymmetric under a given sym-

metry operation (e.g. inversion), but if the time reversal operator is applied, the combined

operation is a member of the symmetry group. Formally,

M = H + θ(G−H)

Where M is the magnetic group, θ is the time reversal operation, G is the space group of

the lattice, and H is the invariant subgroup of G that respects spin symmetry.

Each magnetic group has a principal representation analogous to the operation pos-

sessing the full symmetry of the crystal when magnetic ordering is excluded. Only tensor
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elements or linear combinations thereof that belong to this principal representation are al-

lowed to be nonzero. For a third-rank tensor, this requires that the representation generated

by taking the cube of the vector representation contain the principal representation.

Since the symmetry of a tensor is dependent only on a space group’s isogonal point

group, we restrict our analysis to the point groups. The magnetic groups that derive from

a given point group can be determined from the parent point group’s character table: for

each invariant subgroup H there is a one-dimensional representation that has positive char-

acter for the operations inH only and becomes the principal representation of the magnetic

group. The character tables for these child magnetic groups can be determined, but since

we are only interested in the principal representation, we need only the monochromatic

group tables to identify the representation associated with reduction of symmetry to H .

However, one additional consideration must be made: the magnetic group must also be

able to host antiferromagnetism. In some cases, the magnetic point group will not ad-

mit antiferromagnetism, but a non-symmorphic space group for which the point group is

isogonal can. Using this we can identify all the dichromatic groups that allow the spin pho-

tovoltaic effect. Further analysis can reveal which tensor elements belong to the principal

representation. Fortunately, this has already been performed for the piezomagnetic effect,

which has identical symmetry properties [89].

We propose that these spin currents will be generated by the shift current mechanism.

It is important to remember that the phenomenon is distinct from other photovoltaic ef-

fects; rather than excited carriers being split by an electric field, current is produced by

coherent excitations that have themselves a non-zero net momentum. This momentum is

a function of the reciprocal lattice vector, and therefore must reflect the symmetry of the

Brillouin zone. Thus, while the preceding symmetry argument demonstrates that a spin

photovoltaic effect may exist in principle, the unique properties of the shift current suggest

it as a mechanism by which such an effect can physically manifest.
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In the case of a spin-polarized system, the calculation is performed for spin up and spin

down bands separately, so that

σS
rsq(ω) =σrsq,↑(ω)− σrsq,↓(ω)

σrsq,↑/↓(ω) =eπ

(
e

me~ω

)2 ∑
n′,n′′

∫
d3k

⟨
n′
↑/↓k

∣∣ p̂r ∣∣n′′
↑/↓k

⟩ ⟨
n′′
↑/↓k

∣∣ p̂s ∣∣n′
↑/↓k

⟩
×
[
fn′

↑/↓
(k)− fn′′

↑/↓
(k)
]
δ
(
±ω − ωn′

↑/↓
(k) + ωn′′

↑/↓
(k)
)

×

[
∂ϕn′′

↑/↓n
′
↑/↓

(k,k)

∂kq
− χn′′

↑/↓q
(k) + χn′

↑/↓q
(k)

]
(8.1)

It is evident that the symmetry effects above are introduced through the intrinsic sym-

metry of the supplied electronic states, so that Eq. (8.1) is general; with the addition of time

reversal symmetry it reduces to Eq. (4.4).

8.2 First-principles calculations of BFO and hematite

We have computed the spin photovoltaic response for the well-known antiferromagnets

NiO, Fe2O3 (hematite), and the multiferroic BiFeO3 (BFO). The wavefunctions used for the

response calculations were generated using the Quantum ESPRESSO package [69]. Due

to the well-known inability of DFT to model Mott insulator systems correctly, Hubbard

U terms were added for hematite [90] and BFO [91]. Charge densities were generated on

8×8×8 k-point grids and used to generate wavefunctions on finer grids as necessary.

The magnetic group for NiO derives from the A2u representation of point group Oh.

There are no third rank tensor elements that belong to this representation, so the crystal

will have no spin bulk photovoltaic effect. Calculations were performed and confirm the

absence of any response.
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Hematite [90] has space group 167, with point group D3d, while BFO has space group

161, with point group C3v. The two materials both take the ilmenite structure, with BFO,

shown in Fig. 8.2(a), experiencing a ferroelectric distortion. It is worth noting that inversion

symmetry will kill any charge bulk photovoltaic effect in hematite, whereas BFO has been

demonstrated to have a large bulk photovoltaic effect [3, 91]. In both cases the magnetic

group is associated with the reduction to C3 symmetry, deriving from the representations

A2g(hematite) and A2(BFO), so that a glide plane relates the up and down spins. As is

evident in Fig. 8.2(b), which shows the oxygen cages viewed along the material polarization

direction, the environments of these two spin centers differ by the direction of distortion

of the coordinating oxygen atoms, converting what would otherwise be a mirror symmetry

to a glide plane, and introducing a chirality into the structure. This is crucial, as it ensures

that flipping the spins switches chirality, allowing a spin current to exist.
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(a)

(b)
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Figure 8.2: (a) shows the primitive unit cell for BFO, with the oxygen cages colored

according to the spin of the iron atoms they enclose. Hematite takes a very similar structure,

with iron in place of bismuth and no ferroelectric distortion. (b) shows the oxygen cages

viewed along the polarization direction. The mirror components of the glide planes are

shown by the blue dashed lines. From this view it is clear that reversing the distortion of

the oxygen cages has the same effect as inverting the spins; the current generated under one

oxygen cage distortion is the mirror of that generated by the opposite distortion, leading

to spin current along the X axis. There may also be charge current in other directions

depending on the symmetry, as in BFO.
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We note that bismuth ferrite possesses significant spin-orbit coupling which introduces

spin canting and weak ferromagnetism. While the photovoltaic response calculation can

be performed with the full spinorial wavefunctions without much difficulty, in the presence

of large spin-orbit interaction the result no longer conforms to a rigorous definition of

spin current [92]. However, in the present context the effect is relatively small, so for our

calculation we impose antiferromagnetic ordering, and compute the spin current for this

approximation to the spin structure.

Tensor elements that are antisymmetric under the glide plane operation survive, and are

σhematite =


σS
11 −σS

11 0 σS
41 0 0

0 0 0 0 −σS
41 −σS

11

0 0 0 0 0 0


for hematite, and

σBFO =


σS
11 −σS

11 0 σS
41 σ52 −σ22

−σ22 σ22 0 σ52 −σS
41 −σS

11

σ13 σ13 σ33 0 0 0


for BFO, with charge photovoltaic response elements included for completeness.
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Figure 8.3: (a) displays the spin and charge current spectra for hematite in direction xxX

(σS
11) and (b) shows the spectra in zxY (σS

14). The total charge currents vanish in all direc-

tions for hematite.
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Figure 8.4: Spin and charge photovoltaic tensor elements for BiFeO3 in the xxX direction

(σS
11) and the zxY direction (σS

14) are shown in (a) and (b). Compared with them is the

charge current in yyY direction (σ22).
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The spectra for the unique elements are shown for hematite in Fig. 8.3, and for BFO in

Fig. 8.4, with the charge photovoltaic response for comparison. The spin response for both

materials is of a similar magnitude to the charge response of BFO, indicating that it should

be easily observable.

We consider hematite to be the preferred material for measuring the spin bulk photo-

voltaic effect, as it cannot produce charge photocurrents, is uncomplicated by spin-orbit

effects, has a lower band-gap, and is more readily available than BFO.
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Part II

Computational Design of Materials at or

near Topological Phase Transitions
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Chapter 9

Background: Topological Phases

Here we provide a brief summary of the classification of topological phases, followed by a

discussion of topological phase transitions.

9.1 Classification of Topological phases

The integer quantum hall effect can be understood theoretically by considering a two-

dimensional system in the strong magnetic field limit as described by Landau [28, 29].

The bulk system is then described by degenerate sets of bands called Landau levels; the

degeneracy and separation of which is determined by the strength of the field. It is within

the bulk gaps that the quantized hall voltage and dissipationless edge currents appear.

As mentioned previously, the response of these states depends on a term which must

take an integer value. In particular, it can be shown that [28]

σxy =
e2

h

1

2πi

∑
n

∫ ∫
dkxdky {∇k × χn(k)}z =

e2

h

1

2πi

∮
dkℜχn;z(k) (9.1)

where χn is the Berry connection of the nth band. Eq. (9.1) is known as the Chern number,

and is a topological invariant of the U(1) space in which the quantum hall states live [30].
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From Stokes theorem, we can see that the Chern number is only nonzero when the “flow”

of the Berry connection over the magnetic BZ is rotational; i.e., it cannot be a global single-

valued analytic function. It can be shown that these obstructions are related to those exist-

ing in Landau levels above and below. At the edge, these obstructions must be repaired,

manifesting as gapless states running between Landau levels [30].

The topological insulating state is not described by a nonzero Chern number; however,

similar physics obtains. We follow closely the description appearing in Ref. [93], though

the notation is slightly different. The relevant topological number – the Z2 invariant – may

be described by a “time-reversal” polarization, which is just the difference in the Berry

phase polarization of two Kramers degenerate bands. We consider a pair of such bands (in

one dimension for now), related by time-reversal as

|1,−k⟩ = −eiθ(k)Θ |2, k⟩

|2,−k⟩ = eiθ(−k)Θ |1, k⟩

where Θ is the time-reversal operator. It is important to note that time-reversal symmetry

is not fully enforced at this point, due to the presence of the phase relation θ(k). The

time-reversal polarization is then

P = − 1

2π

∫ π

0

dk∇k [−θ(−k) + θ(k)] mod 2

It can be shown that this expression is gauge invariant. It is evident that P = 0 for θ(k) = 0.

However, if we choose any continuous function θ that winds around 2π, then P = 1. Now,

suppose we choose the following shape for θ(k), which can be smoothly deformed to or
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from any choice with the same P :

θ(k) =

 −2k −π < k ≤ 0

0 0 < k ≤ π

this clearly has P = 1. However, we now slowly turn on the full time-reversal symmetry

constraint

|1,−k⟩ = −Θ |2, k⟩

|2,−k⟩ = Θ |1, k⟩

Now, θ(k) must be a multiple of 2π everywhere in the BZ. As shown in Fig. 9.1, this

cannot be achieved while preserving P without making θ(k) discontinuous. As an aside,

we also note that for any gauge transformation, which may wind by a multiple of 2π, that

is applied to one of our wavefunctions must now also introduce a gauge transformation in

its counterpart, restricting the winding of θ to a multiple of 4π. This means that P cannot

be changed by any such gauge transformation, and that the two possible values of P are

distinct.
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Figure 9.1: The phase relating two Kramers degenerate bands is shown evolving as it is

adiabatically transformed to obey the constraint from time-reversal symmetry that the phase

be an integer multiple of 2π. As seen, if the phase winds by 2π when going around the

BZ, there must be a gauge discontinuity when the wavefunctions are fully time-reversal

symmetric.
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We may construct a Z2 invariant by extending our system to two dimensions, and con-

sidering P for the two pairs of paths of the kind above that now exist between time-reversal

invariant coordinates. Letting our previous coordinates be along an x-axis, and our new

dimension be the y-axis

Z2 = (−1)[Pky=0+Pky=π]

Z2 = −1 marks a topological insulator. We note that if both time-reversal polarizations

are 1, they may annihilate one another via gauge transformation. Thus, a nontrivial Z2 in-

dex results from time-reversal symmetry obstructing a globally-defined gauge, in a similar

fashion to the Chern number.

Since a two-dimensional material has four time-reversal symmetric points in its BZ, it

has one Z2 invariant. A three-dimensional material has eight such points, and is charac-

terized by four Z2 invariants: three can be obtained from the three planes of four points

(excluding Γ) that may be constructed, and the fourth using all eight points [7]. Fi-

nally, we note that there are additional ways of understanding the topological insulating

state and the Z2 invariant that are not discussed here. Some of these can be found in

Refs. [94, 34, 95, 96].

A third topological state that we consider is a Weyl point [97]. This is characterized by

a single point degeneracy of two spinful bands, with linear dispersion in all three directions.

Near this degeneracy it may be described by the Hamiltonian

H = vijσikj (9.2)

where σi are the Pauli matrices. We note that it spans all three Pauli matrices, such that any

additional term will simply shift the degeneracy, rather than break it. This property arises

because the degeneracy constitutes a discontinuity that prevents a single-valued gauge from
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being defined for either band. As such, it may be characterized by a Chern number, where

in this case the path of Eq. (9.1) becomes a surface enclosing the degeneracy.

9.2 Topological Phase Transition

We now consider the topological insulator transition. A topological insulator is created by

a spin-orbit-driven exchange of states between appropriate valence and conduction bands

in a portion of the BZ. This introduces the obstruction to a global gauge as mentioned

above. Since the gap must close for this to happen (it is an adiabatic process), the transition

between the topological and trivial insulating phases must be marked by a metallic state.

In the simplest case, where the system is inversion-symmetric, this will appear as a single

Dirac point. Near the phase transition, one may construct a low energy theory that takes

the form of a Dirac Hamiltonian

H = vijγikj +mγm (9.3)

We note that this is a four-band model where the γi are three mutually anti-commuting

Dirac matrices. For a mass m of zero, it is clear that at k = 0 the system will be character-

ized by a four-fold degeneracy, with linear dispersion in all directions. Unlike the two-band

Weyl Hamiltonian, however, there are γm that can gap the system. In particular, there will

be two additional Dirac matrices that anticommute with γi. Thus, for such an appropriate

Dirac matrix γm, a nonzero mass-term m will introduce a gap; however, the sign of m

determines which states become the conduction or valence band. Therefore, for a proper

γm, there is a topological insulator transition that is characterized by a change in sign of the

mass and concomitant inversion of the conduction and valence bands. At the interface of

a topological and trivial insulator (of which vacuum is an example), the mass necessarily
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changes sign, and at some point there must be a Dirac-like state where the bands invert and

the obstruction a single-valued phase is removed. It is worth emphasizing that, as with the

integer quantum Hall effect, these surface states follow from the bulk electronic structure,

and cannot be gapped without destroying the bulk state, either by allowing the value of

the mass term in the bulk to change sign, or by removing the protection of time-reversal

symmetry [7].

As an aside, it is worth considering what happens if we introduce a time-reversal-

symmetry breaking term into Eq. (9.3). Such a term will necessarily commute with at

least one of the γi and cannot totally gap this system; instead, when m is small compared

to the strength of time-reversal violation, the Dirac point splits into (at least) two Weyl

points at some k and −k. Since there are no further Dirac matrices that anticommute with

all of those present in the augmented Hamiltonian, the system cannot be perturbatively

gapped, reflecting the nontrivial topology of the Weyl points. The system will only gap

when m grows large enough; as the mass increases the Weyl points approach one another

and annihilate, allowing a gap to open.

In what follows we explore systems at or near the type of bulk transition where time-

reversal symmetry is preserved. We may use strain as an external parameter for tuning

the effective mass term, and we investigate the conditions under which the transition state

having effective mass zero can be protected by crystallographic symmetry.
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Chapter 10

The Effects of Strain on the Topological

Gap

10.1 Bismuth Selenide

In this chapter, we investigate the use of strain as a means of tuning the topological insulat-

ing phase of bismuth selenide. Though not without flaws, Bi2Se3 is relatively chemically

stable, easy to synthesize, and exhibits a robust topological phase. Combined with the

existing theoretical and experimental studies, [41, 42, 98, 99, 100, 101, 102, 103, 104] it

has emerged as the prototypical topological insulator. Using ab initio methods, we have

evaluated the elastic properties of Bi2Se3 and their connection to the properties of its topo-

logical insulating phase; the direct band-gap at the Γ point, where band inversion occurs,

responds to elastic deformation in a way that can be described by adapting the formalism of

continuum mechanics. The critical strain at which the topological phase transition occurs

was predicted using the derived band-gap stress and stiffness tensors and observed in the

computed band structure as a Dirac cone. The content of this section appears in Ref. [105]
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Figure 10.1: The (a) crystal structure of Bi2Se3 consists of hexagonal planes of Bi and Se

stacked on top of each other along the z-direction. A quintuple layer with Se1-Bi-Se2-Bi-

Se1 is indicated by the square bracket, where (1) and (2) refer to different lattice positions.

The (b) primitive cell of Bi2Se3 is rhombohedral.
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The bulk crystal structure of Bi2Se3 is rhombohedral with space group D5
3d (R3̄m, No.

166) [106], shown in Fig. 10.1. The primitive unit cell has two Bi and three Se atoms, and

the atomic plane arrangement is Se(1)-Bi-Se(2)-Bi-Se(1), where Se(1) and Se(2) indicate

the two different types of selenium atom in the crystal. In the hexagonal supercell, the

structure can be described as quintuple layers (QL) (square region in Fig. 10.1 of atoms

stacked along the trigonal axis (three-fold rotational axis).

DFT calculations were performed using Quantum-Espresso [69]. The lattice parameters

were taken from experiments (a = 4.138 Å and c = 28.64 Å) [106]. After fixing the lattice

parameters to their experimental values, the atomic coordinates were relaxed to generate

the reference structure. It should be noted that the calculations give significant, nonzero

stress for the crystal in this geometry.

Various strains were applied relative to the reference structure, including positive and

negative uniaxial and shear strains up to 2%, as well as several combinations thereof. The

atomic lattice coordinates were relaxed for each strain configuration, and the total and band-

gap energies were computed both with and without spin-orbit coupling. Multiple regression

analysis was performed to find the linear and quadratic dependence of the energy on strain

tensor components. This yielded the elastic stiffness and stress tensors.

It is known that in bismuth selenide the topological index distinguishing ordinary in-

sulating from topological insulating behavior is controlled by band inversion at the Γ

point. Thus, a band-gap stress σΓ and band-gap stiffness cΓ were defined as the linear

and quadratic coefficients relating the Γ point band-gap to strain, by the same procudure

used to determine the elastic tensors.

∆EΓ
g (ϵ) = 1

2
cΓijklϵijϵkl + σΓ

ij(0)ϵij (10.1)
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In both cases, only the tensor elements unique under the symmetry operations of the space

group of bismuth selenide (R3̄m, No. 166) were allowed as degrees of freedom. The

stiffness and stress tensors, in Voigt notation, must have the forms

c =



c11 c12 c13 c14 0 0

c12 c11 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14 c66


, σ =



σ1

σ1

σ3

0

0

0


(10.2)

The band structure of Bi2Se3 and related compounds have been theoretically predicted [42,

43, 107, 108] and experimentally observed [40, 41]. In our calculations, the band-gap

of the unrelaxed, experimental structure of Bi2Se3 is 0.3 eV, which is consistent with the

experimental data and other calculations. [40, 98, 99] Fig. 10.2 shows the band structure

with and without spin-orbit interaction, and both are in excellent agreement with previous

results. [43]
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Figure 10.2: Band structure in the reference strain state of Bi2Se3 (a) excluding spin-orbit

effect (NSO) and (b) including spin-orbit effects (SO). The dashed line indicates the Fermi

level.
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10.2 Band-gap response to strain

The computed elastic and band-gap tensor components are given in Table 10.1 and Ta-

ble 10.2, respectively. First, we note that the gap stress shown in Table 10.2 for strain nor-

mal to the plane of the quintuple layers(σΓ
3 ) is much higher than for strain in the plane(σΓ

1 ),

which is consistent with the notion that inter-layer interactions are more important in de-

termining the band-gap than intra-layer interactions. Second, we observe the change in

sign of σΓ when spin-orbit interactions are turned off or on. This is to be expected because

the spin-orbit interaction leads to an inversion of the conduction and valence bands. Thus,

strain reduces the bandgap for the trivial (un-inverted) phase and increases the gap for the

topological (inverted) phase. Third, the magnitude of the gap stress is larger when spin-

orbit interactions are present. From a tight-binding perspective, compressive strain not only

strengthens the Coulombic interaction between sites, increasing the associated hopping co-

efficient and reducing the conventional gap, but also magnifies the spin-orbit effect and its

hopping coefficient, increasing the topological gap. Thus, comparing the gap stress with

and without spin-orbit interactions provides some insight into the effects of strain on the

essential physics of the system.
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Element Coefficient (GPa)

c11 91.8 ± 1.0
c33 57.4 ± 1.4
c44 45.8 ± 1.0
c66 56.2 ± 1.8
c12 36.6 ± 1.2
c13 38.6 ± 2.0
c14 24.2 ± 1.8
σ1 -3.447 ± 0.007
σ3 -1.977 ± 0.010
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Table 10.1: The unique elements of the elastic stiffness and stress tensors of Bi2Se3. Spin-

orbit coupling has been included.
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NSO SO
Element Coefficient (eV) Coefficient (eV)
cΓ11 -67.8 ± 2.6 35.4 ± 5.6
cΓ33 55.4 ± 3.6 -60.1 ± 7.6
cΓ44 -58.0 ± 2.6 23.4 ± 5.6
cΓ66 -126.6 ± 4.4 69.4 ± 9.6
cΓ12 60.2 ± 3.2 -33.8 ± 6.8
cΓ13 6.4 ± 4.2 -12.6 ± 10.8
cΓ14 -70.0 ± 4.2 45.6 ± 9.0
σΓ
1 0.16 ± 0.017 -1.67 ± 0.037
σΓ
3 4.33 ± 0.023 -5.27 ± 0.051

147



Table 10.2: The unique elements of the Γ band-gap stiffness and stress tensors excluding

(NSO) or including (SO) spin-orbit coupling
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Figure 10.3: Band structure of Bi2Se3 near the Γ point as ⟨111⟩ uniaxial strain from 5% to

9% drives the topological phase transition.
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Using the above tensors, we can predict that the topological phase transition will occur

at 6.4% uniaxial strain in the ⟨111⟩ direction. In Fig. 10.3, the onset of the topological

insulating phase at 7% strain can be observed through changes in the band structure as

strain increases. At the transition point, the Dirac cone characteristic of the phase transition

is distinctly observable. Of course, such strains are difficult to achieve experimentally.

According to the computed elastic tensors, around 2 GPa of uniaxial tensile stress would

be required to drive the phase transition, well past the yield stress. However, large strains

may be possible by introducing internal stress through chemical substitution.
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Bi2Se3(reference) Bi2Se3(strained) Bi2Te3(reference)
Lattice a = 4.138 a = 4.358 a = 4.358
parameters(Å) , c = 28.64 c = 30.46 c = 30.46
Anion
radius (Å) 1.98 1.98 2.21
NSO Gap (eV) 0.02 0.31 0.20
SO Gap (eV) 0.42 -0.06 0.63
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Table 10.3: Comparison of reference Bi2Se3, Bi2Se3 strained to match reference Bi2Se3

lattice, and reference Bi2Te3. Spin-Orbit(SO) and Non-Spin-Orbit(NSO) Γ-point gaps for

all three structures are calculated.
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Bi2Te3 is a very similar compound to Bi2Se3, differing only in substitution of the larger

tellurium in place of selenium, which increases the size of the lattice by about 6%. It is also

a topological insulator with band inversion occurring at the Γ point. Given the similarity,

one may ask if it is reasonable to view Bi2Te3 as intrinsically strained Bi2Se3. To test this

hypothesis, we performed a comparison of Bi2Te3 to strained Bi2Se3.

In order to generate an appropriate reference structure for comparison, Bi2Te3 was re-

laxed under identical external stress as the reference Bi2Se3. The results are shown in

Table 10.3. The computed lattice parameters of Bi2Te3 are in good agreement with ex-

periment. The Bi2Se3 lattice was then strained to match that of reference Bi2Te3. Using

the gap stiffness and stress tensors, the band-gap of this strained Bi2Se3 was calculated

and compared to the computed band-gap of Bi2Te3. Without spin-orbit interaction, the

strained Bi2Se3 band-gap is similar to the band-gap of reference Bi2Te3. However, with

spin-orbit interaction turned on, the gaps are dramatically different: in the strained Bi2Se3,

the topological gap closes, but in Bi2Te3 the topological gap is quite large. This suggests

that spin-orbit effects are strongly dependent on the chemical identity of the anion, and that

treating Bi2Te3 as strained Bi2Se3 fails to capture the essential physics.

Strain is therefore an important parameter for influencing the topological insulating

phase and can, in principle, drive the system through the topological insulating phase tran-

sition. While it may be possible to tune the band-gap with external stress, more interesting

is the potential for inducing strain via chemical substitution. Viewing bismuth telluride

as chemically strained bismuth selenide, however, fails dramatically, hinting at a complex

relationship between chemical composition, material structure, and the physics underlying

the topological insulating phase.
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Chapter 11

Three-dimensional Dirac Semimetals

As we have seen, the transition between topological and trivial insulating phases is marked

by a three-dimensional Dirac point. In addition to driving systems through this state, it is

also of interest itself. We expect that a material at such a critical point, with a Dirac point

comprising the only Fermi surface, would exhibit a wide range of interesting and possibly

useful phenomena. In graphene, a number of striking properties, including high carrier

mobilities, have been observed to arise from its two-dimensional Dirac points, and we may

ask if a material with one or more three-dimensional Dirac points – which we shall call

a Dirac semimetal – would display the same or analogous behavior. To be specific, in a

Dirac semimetal, the conduction and valence bands contact only at discrete (Dirac) points

in the Brillouin zone (BZ), dispersing linearly in all directions around these critical points.

In this chapter we determine the preconditions for a symmetry protected Dirac point, and

propose several materials that would have Dirac points as the sole Fermi surface. Much of

this chapter’s content appears in [109].

In general, a Dirac point is described by the Hamiltonian of Eq. (9.3) with m = 0.

A useful way to think about a Dirac point is as two coincident Weyl points, which are

described by Eq. (9.2). The Weyl Hamiltonian describes two linearly dispersing bands,
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rather than the four of the massless Dirac Hamiltonian, that are degenerate at a point. As

mentioned, provided det[vij] ̸= 0, the Weyl point is robust against perturbations because

it uses all three Pauli matrices; any additional term will merely shift the location of the

degeneracy. It is worth noting that graphene, when treated as spinless (as it often is), is

actually a two-dimensional Weyl point described by only two Pauli matrices, and as such

may be gapped by a term involving the unused Pauli matrix.

The Chern number describing this Weyl point takes values sgn(det[vij]) = ±1. If a

Weyl point occurs at some BZ momentum k, time reversal (T) symmetry requires that an-

other Weyl point occur at −k with equal Chern number. However, the total Chern number

associated with the entire Fermi surface must vanish, and there must exist two more Weyl

points of opposite Chern number at k′ and −k′. Inversion (I) symmetry requires that Weyl

points at k and −k have opposite Chern number. Hence, under both T and I symmetries,

k = k′ and the effective Hamiltonian involves four linearly dispersing bands around k.

This is the Dirac Hamiltonian, and it is not robust against perturbations because there are

additional 4× 4 Dirac matrices that can be used to open a gap at the Dirac point.

The Fermi surface of a Dirac semimetal consists entirely of such point-like (Dirac) de-

generacies. The phase transition between a topological and a normal insulator with inver-

sion symmetry is identified with a single Dirac point [110, 105] (Ref. [111] demonstrates

such a Dirac point degenerate with massive bands.) If either inversion or time-reversal

symmetry is broken, the Dirac point separates into Weyl points and one obtains a Weyl

semimetal (Fig. 11.5(c)). These Weyl points switch partners and combine to form another

Dirac point before combining to form another Dirac point. The topological nature of Weyl

points gives rise to interesting properties such as Fermi-arc surface states [97] and pressure

induced anomalous Hall effect [112]. Recent proposals to design a Weyl semimetal have

been predicated upon the existence of a parent Dirac semimetal which splits into a Weyl

semimetal by breaking I [96] or T-symmetry [113]. Ref. [114] demonstrates the existence
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of bulk chiral fermions due to crystal symmetry in single space-groups.

11.1 Symmetry Constraints

As discussed, Dirac points that arise in a topological phase transition exist at single points

in parameter space and are not robust. In general, two Weyl points with opposite Chern

numbers annihilate each other unless their degeneracy is otherwise protected. It is natural

to ask, then, if we can stabilize the bulk Dirac point, both to exploit its interesting features,

and as a starting point for obtaining topological phases. In particular, can we protect the

Dirac point(s), and the Dirac semimetal phase, via crystallographic symmetry? In this

section, we outline the conditions for such a protected Dirac point to exist, and describe the

physical and chemical nature of this state in a Dirac semimetal.

First, we shall describe the requirements for the existence of four-dimensional irre-

ducible representations (FDIR), a necessary (but not sufficient) condition for a symmetry-

protected Dirac point. Formally, we are interested in FDIRs of double space groups at

points k that carry a Chern number of zero. The latter is necessary since these are to be

the only Fermi surface and time-reversal symmetry is preserved. The Chern number of a

degenerate representation can be determined up to an integer by the rotation eigenvalues of

the valence bands. Electron states spanning an FDIR are equivalent to a p 3
2

quadruplet that

exhibits eigenvalues e±i3π/n, e±iπ/n for a 2π/n rotation symmetry. Rotation eigenvalues of

states at time-reversed momenta about the degenerate point are complex conjugates. There-

fore the FDIR will carry Chern numbers ±1 mod n for one valence band and ±3 mod n

for the other with total Chern number ±4 mod n or ±2 mod n for the FDIR. This is

zero only for n = 1, 2, 4. If the conduction and valence bands are distinct in a small region

around k, the Chern number of the FDIR will be non-zero if the little group Gk contains

a 2π/3 or 2π/6 rotation symmetry. The cubic groups all contain FDIRs that exist at the Γ
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point; however, these are all protected by 2π/3 rotation symmetry, eliminating them from

consideration. As an example, HgTe, which has zincblende structure, has such a FDIR at

Γ at the Fermi energy.

The only other FDIRs that may occur do so on BZ boundaries of non-symmorphic space

groups. Non-symmorphic space-groups contain point group operations coupled with non-

primitive lattice translations. For example, inversion interchanges the FCC sub-lattices in

the diamond space-group. Representations of non-symmorphic space-groups at momenta

inside the BZ momenta are obtained from regular representations, while those at the sur-

face BZ momenta are obtained from projective representations of the associated crystal

point group. The factor system of the projective representation is chosen to implement

the required non-primitive translation corresponding to the non-symmorphic point group

operation [115]. A theorem by Schur guarantees that projective representations of a group

can be obtained by restricting to the group elements the regular representations of a larger

group called the central extension group [115]. The central extension of a group is obtained

by taking its product with another finite Abelian group. The important point to emphasize

is that representations of non-symmorphic space-groups are obtained from representations

of central extensions of the 32 point groups. Central extension groups exhibit FDIRs even

without three-fold rotations in the original point group. This allows for Dirac points to exist

in three dimensions as symmetry-allowed degeneracies.

While the rigorous justification for FDIRs at BZ boundaries, summarized above, is quite

abstract, here we provide a simple conceptual picture. A non-symmorphic crystal may be

thought of as a supercell of a symmorphic crystal in which the pure translation symmetry

of the component primitive cells has been broken. The translational symmetry only holds

when combined with one or more point group symmetries. When one creates a supercell

from a primitive cell, the BZ is reduced; if one has the band structure of the primitive

cell (Fig. 11.1(a)), the band structure of a supercell may be constructed by “folding” it in
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reciprocal space to lie within the new BZ (Fig. 11.1(b)). This yields a degeneracy where

the folding occurred, at the new BZ boundary. Breaking translational symmetry removes

this degeneracy, typically introducing a gap (Fig. 11.1(c)). However, if a point k has,

as a symmetry, a non-symmorphic operation that includes the translational symmetry, it

essentially does not see that it has been broken, and the degeneracy remains.
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Figure 11.1: If a material with band structure shown in (a) has its unit cell doubled, the

Brillouin zone is folded back along the dotted lines, and becomes (b). If the translational

symmetry is broken (c), the degeneracy at the boundaries is gapped. However, if the trans-

lational symmetry is preserved as part of a non-symmorphic operation, then at the k that

has the point group symmetry of the operation, it is as though the translational symmetry

still holds, and the degeneracy is protected.
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To realize a Dirac-like dispersion in the vicinity of an FDIR, some of the matrix ele-

ments ⟨ψi|p̂|ψj⟩, where |ψi⟩ span the FDIR, must be non-zero. This is guaranteed if the

symmetric Kronecker product of the FDIR with itself contains the vector representation of

the central extension group to which the FDIR belongs [116]. We restrict to the symmet-

ric part of the Kronecker product because matrix elements ⟨ψi|p̂|ψj⟩ correspond to level

transitions between states spanning the same representation [117]. Finally, the allowed

representations in the vicinity of an FDIR should be such that each band disperses with

non-zero slope in all directions. This is possible only if the valence band is distinct from

the conduction band everywhere except at the Dirac point. Fig. 11.2 illustrates the various

possible ways in which an FDIR can split linearly.

Thus, a 3D double space-group must satisfy the following criteria to allow a Dirac point:

It must admit four-dimensional irreducible representations (FDIRs) at some point k in the

BZ such that the four bands degenerate at k disperse linearly in all directions around k and

the two valence bands carry zero total Chern number. If the little group Gk at k contains a

three-fold or a six-fold rotation symmetry and the valence and conduction bands around k

are non-degenerate, the Chern number of the FDIR is guaranteed to be non-zero. This rules

out symmorphic space-groups with FDIRs because they contain three-fold rotations. This

also rules out interior BZ momenta because non-symmorphic little groups without three-

fold rotations exhibit FDIRs only on the boundary of the BZ [115]. To guarantee linear

dispersion of bands around k, the symmetric kronecker product [Rk × Rk] of the FDIR

with itself must contain the vector representation of Gk [116]. Finally, away from k, the

FDIR must split so that the valence and conduction bands are non-degenerate everywhere

except at k (Fig. 11.2).

We apply the above criteria to two important space-groups. The space-group of dia-

mond (227, Fd3m) exhibits FDIRs RΓ at Γ and RX at X . GΓ contains three-fold rotation

symmetry and [RΓ × RΓ] does not contain the vector representation of GΓ. Therefore, the
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Γ point in a diamond lattice cannot host a Dirac point. RX is a projective representation

of GX which does not have any three-fold rotations because all the point group operations

in GX are those of the group D4h. [RX × RX ] contains the vector representation of GX .

Finally, RX splits into either two doublets or four singlets away from X (Figs. 11.2(a)

and 11.2(b)). Therefore, the X point in space-group 227 is a candidate to host a Dirac

semimetal if its FDIR can be elevated to the Fermi level. The Dirac point at X in the FKM

model is spanned by states belonging to RX (Fig. 11.4(d)).

The zincblende lattice (space-group 216, F4̄3m) has an FDIR R′
Γ at Γ and the little

group G′
Γ has a three-fold rotation symmetry. [R′

Γ ×R′
Γ] contains the vector representation

of G′
Γ. Mirror symmetry in G′

Γ requires R′
Γ to split into a two-fold degenerate representa-

tion and two non-degenerate representations along the (111) axis, which is also the sym-

metry axis for the three-fold rotation. Time reversal symmetry requires that the two-fold

degenerate band remain flat along the (111) axis, Fig. 11.2(d). Thus the lowest band carries

Chern number 0, while the two flat bands carry 1 and -1. Therefore the dispersion of R′
Γ is

not Dirac-like along (111).
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Figure 11.2: Linear splitting of four-fold degenerate irreducible representations (FDIRs). If

the symmetric kronecker product of an FDIR with itself contains the vector representation

of the group to which the FDIR belongs, it will split in one of the four possible ways

displayed above. (a) The FDIR splits into two two-fold degenerate bands. This situation is

realized at the X point of the FCC Brillouin zone in a diamond lattice. (b) The FDIR splits

into four non-degenerate bands. This situation arises at the Γ point in zincblende if mirror

symmetry is broken (although the FDIR in zincblende develops a non-zero Chern number

due to three-fold rotation symmetry at Γ). (c) The FDIR splits into two non-degenerate and

one two-fold degenerate band with linear dispersion. (d) The splitting of the FDIR at Γ

in zincblende. The two-fold degenerate band is constrained to be flat, implying quadratic

dispersion along that direction. The Chern number of this representation is zero in spite of

a three-fold rotation symmetry because the conduction and valence bands are degenerate

away from Γ.
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In HgTe, which takes the zincblende lattice, the degenerate valence and conduction

states at Γ span R′
Γ and constitute the entire Fermi surface. It is known that in HgTe the

valence and conduction bands disperse linearly in two directions around Γ and quadrati-

cally in a third (Fig. 11.2(d) and Ref. [117]). One might ask if a perturbation might turn

HgTe into a Dirac semimetal. However, the zincblende lattice does not satisfy the criteria

for 3D Dirac points as outlined above, so HgTe cannot host a Dirac semimetal. (a) Γ is an

interior point of the BZ and the little group at Γ contains a three-fold rotation. (b) Mirror

symmetry requires two bands to be degenerate along the ⟨111⟩, axis but since the Chern

number must vanish, the degenerate bands must be flat and consist of a conduction and a

valence band. This is why we see quadratic dispersion along the ⟨111⟩ axis. (c) Break-

ing mirror symmetry splits the degenerate flat band but then the Fermi surface develops

other non-Dirac like pockets to compensate for the non-zero Chern number. (d) Breaking

three-fold rotation symmetry splits the degeneracy at Γ entirely and the material becomes

a topological insulator [39].

11.2 Proposed Materials and Physical Mechanism

Although crystallographic symmetries determine whether 3D Dirac points can exist, phys-

ical and chemical considerations dictate whether they arise at the Fermi level without ad-

ditional non-Dirac like pockets in the Fermi surface. In the FKM model, the Dirac point

at X appears at the Fermi energy. However, in known materials on a diamond lattice the

s-states appear below the Fermi energy. In realistic systems, additional orbitals hybridize

with these s-states and bands cross the Fermi level at other points besides X . The problem

is especially severe in space-group 227: without spin, the line V from X to W is two-fold

degenerate. With spin-orbit coupling, this line splits weakly for lighter atoms so the bands

dispersing along this line can hybridize and introduce additional Fermi surface. Forcing
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species with s1 valence states on the diamond lattice would fail to realize the FKM model.

Indeed, ab initio calculations with group I elements and gold show that the splitting along

V is insufficient to overcome this dispersion. In some cases, additional bands crossed the

Fermi level.

We consider derivatives of the diamond lattice that remain in space-group 227. We

place additional atoms in the lattice such that the configuration of added species allows its

valence orbitals to either belong to the FDIR of interest, or appear away from the Fermi

energy of the final structure. If the new species can split the nearby p states of the existing

atoms away from the s levels, band crossing at the Fermi level can be avoided.
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Figure 11.3: (a) Band structure of β-cristobalite SiO2. Energy bands are plotted relative to

the Fermi level. Each band is two-fold degenerate due to inversion symmetry. The FDIR

(highlighted) at −4.5 eV is split into two linearly dispersing bands between X and Γ while

the two degenerate bands alongX andW are weakly split. This FDIR is buried deep below

the Fermi level. (b) The β-cristobalite structure of SiO2. Silicon atoms are arranged on a

diamond lattice, with oxygen atoms sitting midway between pairs of silicon.
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One such structure is β-cristobalite SiO2 (Fig. 11.3(b)), which consists of silicon atoms

on a diamond lattice with oxygen atoms midway between each pair of silicon atoms [118].

Oxygen atoms have two consequences: part of the O p-shell strongly hybridizes with the Si

p-states, moving them away from the Si s-states, while the remaining O p-states hybridize

with the Si s-states. A Dirac point can be realized by an Si s−O p bonding/anti-bonding set

of states. Fig. 11.3(a) shows that the Si s−O p bands are present and take a configuration

similar to the valence and conduction bands in the FKM model, but appear well below the

Fermi energy. Additionally, the bands are nearly degenerate along the line V from X to W

due to weak spin-orbit coupling.
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Figure 11.4: Band structures of (a) AsO2, (b) SbO2, and (c) BiO2 in the β-cristobalite struc-

ture, and (d) s-states on a diamond lattice in the tight-binding model of Ref. [7]. Energy

bands are plotted relative to the Fermi level. Each band is two-fold degenerate due to in-

version symmetry. Insets: with increasing atomic number of the cation, spin-orbit coupling

widens the gap along the line V fromX toW . In BiO2 and SbO2, the dispersion around the

X point is linear in all directions indicating the existence of Dirac points at X . BiO2 and

SbO2 are Dirac semimetals because their Fermi surface consists entirely of Dirac points.
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Heavier atoms substituting Si both widen this gap and bring the FDIR of interest at X

to the Fermi level. Fig. 11.4 shows the band structures of compounds β-cristobalite XO2

where X = As/Sb/Bi. The change in chemical identity promotes the X s−O p four-fold

degeneracy at X to the Fermi level, and stronger spin-orbit coupling widens the gap along

V . BiO2 bears striking similarity to the FKM model, with linearly dispersing bands in a

large energy range around a Dirac point at the Fermi level. Our calculations show that the

phonon frequencies for β-cristobalite BiO2 at Γ are positive, so it is a metastable structure.

Further calculations reveal that it becomes unstable under uniform compression exceeding

2GPa, which represents a stability barrier of approximately 0.025eV per atom. On this ba-

sis, the possibility of synthesis appears promising. However, Bi2O4 is also likely to take the

cervantite structure (after Sb2O4, which has similar stoichiometry [119]) which is 0.5 eV

per atom lower in energy as compared to β-cristobalite and 60% smaller in volume. There-

fore, we conclude that β-cristobalite BiO2 would be metastable if synthesized, although

preventing it from directly forming the cervantite structure would be challenging.
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Figure 11.5: 3D Dirac semimetal in β-cristobalite BiO2. (a) Brillouin zone (BZ) of the

FCC lattice. The plane highlighted in gray joins the three symmetry-related X points.

Other high symmetry points are also indicated. (b) Conduction and valence bands of β-

cristobalite BiO2 are plotted as functions of momentum on the plane highlighted in gray on

the left. Each band is two-fold degenerate due to inversion symmetry. Dirac points appear

at the center of the three zone faces of the BZ. (c) Dirac, Weyl and insulating phases in the

diamond lattice. (1) The states at the Dirac point at X span a four-dimensional projective

representation of the little group at X which contains a four-fold rotation accompanied by

a sub-lattice exchange operation. (2) Four Weyl points on the zone face due to a small

inversion breaking perturbation. The Chern number of each Weyl point is indicated. (3)

Two Weyl points appear on the line from X to W for a T-breaking Zeeman field B oriented

along that direction. B oriented along other directions gaps all the Dirac points by break-

ing enough rotational symmetry that no two-dimensional representations are allowed. (4)

Gapped phase obtained by breaking the four-fold rotation symmetry or by applying a mag-

netic field in any direction except along x̂, ŷ, or ẑ. The insulating phase can be a normal,

strong or weak topological insulator [7].
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Figure 11.6: BiAl2O4 in the spinel structure is shown in (a). The polyhedra represent the

oxygen cages coordinating the cations, with the oxygen atoms located at the vertices. For

clarity, the atoms themselves are not shown explicitly. The (b) band structure reveals a

clear Dirac point at X with high dispersion in all directions.
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Next, we consider the spinel structure, also in space group 227. The spinel structure,

shown in Fig. 11.6(a), has the composition AB2O4, where A=Mg and B=Al for the epony-

mous mineral. The species A sits on a diamond lattice and is tetrahedrally coordinated by

oxygen; the species B sit at octahedrally coordinated sites. Starting from the mineral spinel

and proceeding as in the case with the β-cristobalite structure, we find that BiAl2O4 pro-

vides a high-quality Dirac point at X (Fig. 11.6(b)). However, this structure is highly

unstable. In fact, despite several cation choices, we were unable to identify a meta-stable

Dirac semimetal with this structure.

However, there is a lower-symmetry derivative of the spinel structure that can mani-

fest a Dirac semimetal. Orthorhombic space group 74 is a descendant of 227 by way of

141. Two of the degenerate FDIRs of 227 are gapped, leaving one point capable of host-

ing a Dirac point. The composition of this distorted spinel structure is ABB′O4, where

the symmetry between the B-sites has been broken. Known examples are VLiCuO4 [120]

and GeMnMnO4 [121]. We have identified three metastable compositions with this struc-

ture: BiMgSiO4, BiZnSiO4, and BiInAlO4. Their crystal and band structures are shown in

Fig. 11.7.
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Figure 11.7: The crystal structures, with oxygen atoms implied at polyhedral vertices, and

band structures for BiMgSiO4 ((a) and (b)), BiZnSiO4 ((c) and (d)), and BiInAlO4 ((e)

and (f)). We note that the geometries and electronic structures of BiMgSiO4 and BiZnSiO4

appear to be almost identical. In all cases, there is high dispersion away from the Dirac

point, which comprises the only Fermi surface.
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Interestingly, all three of the structures indicate a nominal oxidation state of 2+ for

bismuth, in contrast to 4+ in the case of BiO2. Density of states calculations confirm

that in the latter case it is the bismuth p-orbitals that are contributing to the Dirac point.

To understand this difference, we inspect the wavefunctions directly. For clarity, cartoon

representations of the Dirac point states are shown in Fig. 11.9.

In both cases, there exists a pair of states (neglecting spin) that are degenerate and re-

lated by the non-symmorphic symmetry operation(s), as symmetry dictates. These states

lie on zig-zag chains of bismuth atoms. In cubic BiO2, such chains can be identified run-

ning in all three dimensions (corresponding to each X point), and are visible by inspection

of Fig. 11.3(b), and each orientation hosts a state of the kind shown in Fig. 11.9(a). In

the orthorhombic distorted spinel, only one of the chains retains the appropriate symmetry;

these can be seen more clearly in the view of the BiZnSiO4 cyrstal structure in Fig. 11.8.

For BiO2, oxygen atoms lie along the Bi-Bi bonds, mediating the interaction between their

s-states. However, in the distorted spinel structures, the oxygen atoms lie between the Bi-Bi

bonds. The bismuth atoms must interact directly, and the s-states do so only weakly, flat-

tening the band that they form, and compromising the quality of the associated Dirac point.

The oriented p-orbitals are able to interact strongly, as shown in Fig. 11.9(b), resulting in

significant dispersion away from the Dirac point.
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Figure 11.8: A 2×2×1 supercell of BiZnSiO4. Zig-zag chains of bismuth are clearly seen

running through channels created by surrounding oxygen cages of Zn and Si. The Bi-Bi

bonds shown are quite short at 3.2Å
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Figure 11.9: The Dirac point wavefunctions for (a) BiO2 and (b) spinel-derived structures.

In BiO2 the Bi s-states strongly hybridize with O p-states, which mediate the Bi-Bi inter-

action. In the spinel structure, the oxygen atoms are arranged differently, and the Bi atoms

must interact directly. This is most effectively accomplished by the Bi p-orbitals. In both

cases, there are two degenerate states related by the non-symmorphic symmetry operation

that enables the FDIR.
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We may gain further insight by constructing a Lewis dot structure for the distorted

spinel case, shown in Fig. 11.10. There is a lone pair for each s-orbital, and a single

p-electron participating in bonding. Since there is no preferred direction, the bonding is

essentially characterized by two resonance structures, as in a conjugated diene, or, in two

dimensions, graphene.

The physical – rather than just the mathematical – nature of the Dirac semimetal state

is now clear. Like in the Su-Schrieffer-Heeger model [122], our Dirac point is described

by two degenerate states that gap if the symmetry is broken by biasing the bismuth bonds

so that they tend towards dimers. No Peierls instability occurs because this is not partic-

ularly favorable; in the insulating limit bismuth must take an oxidation state of 2+. The

metallic-like bonding is actually preferred, as it avoids this awkward oxidation state. Thus,

the bismuth chains can be thought of as charged metallic wires running through what is oth-

erwise an insulator. The unusual nominal oxidation state of bismuth is required; otherwise

the system will be unstable relative to a fully insulating state.
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Figure 11.10: The s-states of bismuth behave essentially as lone pairs, while the unpaired

p-electron of each bismuth participates in a delocalized bonding state similar to those in

conjugated carbon chains.
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We assert that these features are indicative of general rules for Dirac semimetals. First,

symmetry must allow for an isolated Dirac point. Second, the structure must contain at least

one high-Z atom with an unpaired electron. Third, the other atoms of the lattice should be

as small as possible and should be arranged to allow or mediate strong interactions between

the high-Z atoms. Fourth, the nominal oxidation state implied for the high-Z atom must

be unfavorable, and the oxidation states of the other atoms should be well-defined. Finally,

the high-Z atoms should form an extended structure within the lattice. These conditions

allow for a quasi-metallic state associated with the Dirac point on the high-Z sub-structure,

while minimizing metallic behavior elsewhere in the BZ.
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