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Abstract
The k-core of a hypergraph is the unique subgraph where all vertices have degree at least k and which is the
maximal induced subgraph with this property. We study the 2-core of a random hypergraph by probabilistic
analysis of the following edge removal rule: remove any vertices with degree less than 2, and remove all
hyperedges incident to these vertices. This process terminates with the 2-core. The hypergraph model studied
is an inhomogeneous model --- where the expected degrees are not identical. The main result we prove is that
as the number of vertices n tends to infinity, the number of hyperedges R in the 2-core obeys a limit law: R/n
converges in probability to a non-random constant.
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The k-core of a hypergraph is the unique subgraph where all vertices have degree at

least k and which is the maximal induced subgraph with this property. We study the

2-core of a random hypergraph by probabilistic analysis of the following edge removal

rule: remove any vertices with degree less than 2, and remove all hyperedges incident

to these vertices. This process terminates with the 2-core. The main result we prove

is that as the number of vertices n tends to infinity, the number of hyperedges R in

the 2-core obeys a limit law: 1
n
R converges in probability to a non-random constant.

More explicitly, given a > 0 we consider a hypergraph model with m independent

hyperedges on n vertices where the jth vertex is incident to each hyperedge with

probability asymptotically a
j
. We also fix an overall density cden > 0 and take limits

n→∞ with the ratio m/n tending to cden.

The result we prove is that R = βm + op(n) , where β = β(a, cden) denotes the

largest solution to the equation

log β = −a
∫ ∞
acdenβ

e−t

t
dt

when there is at least one solution, and β = 0 otherwise. For a ≥ 1, define c∗ by

c∗ =
log a

a
exp

(
a

∫ ∞
log a

e−t

t
dt

)
,

and for a < 1, let c∗ = 0. The size of the 2-core exhibits a phase transition from

β = 0 to β > 0 as cden varies from cden < c∗ to cden > c∗. This transition is continuous
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across c = c∗ when a = 1, and discontinuous when a > 1.
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Chapter 1

Motivation

The motivation for this thesis comes from answering a conjecture in probabilistic

number theory. The setting is studying the effectiveness of random algorithms for

integer factorization, such as Dixon’s random squares algorithm, the quadratic sieve

algorithm, and related algorithms which operate by finding perfect squares within

certain sequences of integers. In broadest terms, the conjecture asserts a sharp prob-

ability estimate for the appearance of these perfect squares.

The run time of these algorithms is influenced by this probability. Discoveries on

the run time of factoring algorithms holds considerable interest due to both factoriza-
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tion’s close historical relationship with studying number theory itself and its modern

relevance for encrypted communication. On this later point, encryption schemes

dependent on computationally difficult problems have enabled much of the digital

communication that has become ubiquitous today. And in practice, the most widely

used computational problem is prime factorization. Factorization is regarded as a

computationally difficult problem, and the unproven belief that this is so constitutes

the assurance of security to the encryption.

Let us describe the algorithms of interest. The general strategy is based on con-

gruences X2 ≡ Y 2 (mod n) between integers X and Y . Any such congruence might

lead to discovering a factor of n, as one has

0 ≡ X2 − Y 2 ≡ (X − Y ) (X + Y ) (mod n),

and assuming X 6= ±Y (mod n) we have that n does not divide X−Y or X+Y . In

this case, gcd(n,X − Y ) will be a proper divisor of n. This factors n into a product

of smaller integers, each of which we could then to attempt to factor further. To

define a complete factorization algorithm we must only decide on how to generate

(random) congruences. Both the run time of this generation process and the chance

that gcd(n,X − Y ) is nontrivial determines the run time of our algorithm, although

here it is the former that we are interested in.
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The generation process can be described as follows: generate a sequence of pseu-

dorandom positive integers a1, a2, . . . such that for each i there is some integer bi

with ai ≡ b2
i (mod n). Generating these ai’s is the first part towards creating a sin-

gle congruence X2 ≡ Y 2 (mod n). We do so by selecting a subsequence of the ai’s

whose product is a perfect square, ai1 · ai2 · · · aik = Y 2 for some Y . We call such a

subsequence a square dependence. Then Y 2 is congruent to X2 := (bi1 · bi2 · · · bik)
2,

as desired.

This same general process is used in a family of related algorithms: Dixon’s ran-

dom squares algorithm [7], the quadratic sieve [14], the multiple polynomial sieve [17],

and the number field sieve [2] (which uses a close facsimile of this process). Dixon’s

random squares algorithm corresponds to choosing each integer bi independently and

uniformly over {1, 2, . . . , n}, and then defining the integer ai by reducing b2
i to the

smallest positive residue modulo n. The distribution of ai is thus uniform over the

set of quadratic residues modulo n.

In analysis of the expected run time of Dixon’s random squares, it is typically

assumed that the distribution of each ai is essentially equivalent to being uniform

on the set {1, 2, . . . , n} in that the prime number theorem may be used to estimate

its statistical properties. See for example Dixon [7], who attributes this heuristic to

Richard Schroeppel. In the quadratic sieve and the other algorithms, the integers
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bi are in fact chosen deterministically and not randomly. Nevertheless the same

assumption that each integer ai is an independent, uniformly distributed integer is

the assumption by which one creates a heuristic analysis of the expected run times.

Observing this, Pomerance in [15, 16] formalized it as a problem worth studying in

its own right.

Pomerance’s Problem: Given an integer n > 0 and an iid sequence

a1, a2, . . . , am of positive integers chosen uniformly from {1, 2, . . . , n}, how large must

m = m (n) be so that there is a subset of these integers whose product is a perfect

square?

Due to an observation by David Moulton, a small variation on finding a square

dependence in Pomerance’s problem — where the ai’s are distributed uniformly — can

transfer results on Pomerance’s problem back to the original situation where the ai’s

are distributed uniformly on the quadratic residues. This gives a rigorous treatment

which completely avoids the unproven heuristic that integers ai distributed over the

quadratic residues have essentially the same statistical properties as those distributed

uniformly. Moulton’s observation is explained more fully in [5], but the key idea is that

a random variable ai distributed uniformly on G = (Z/nZ)∗ (an assumption which

changes the probabilities in Pomerance’s problem by only o (1)) can be considered a
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random variable b2
i gi where b2

i is uniformly distributed on the subgroup Q of quadratic

residues of G and where gi is an independent random variable uniformly distributed on

a set of representatives for the cosets G/Q. It is known that the time in Pomerance’s

problem for reaching the first square dependence is asymptotically the same as the

time for having many independent square dependences. This knowledge is enough to

imply that with high probability there is not only a square product of the ai’s, but

one for which the product of the gi’s multiplies to a quadratic residue as well.

To proceed further we need to describe the specific, intelligent method used by

algorithms to search for a square dependence. Ultimately, forming a product which

is a perfect square amounts to arranging for the primes dividing one ai with odd

multiplicity to be paired with like prime factors in other aj’s. But since this relies

on having a factorization of the integers ai’s at hand, some more subtlety is required;

if we consider only those ai’s whose prime factors are all relatively small (so called

smooth numbers 1) then the extra factorization work will not defeat the purpose of

the algorithm, with the tradeoff that square dependences involving the ai’s with large

prime factors will no longer be discovered. Pomerance’s question asks in a sense for

the more liberal answer of when there is a square dependence at all, although as we

1The term appears to be coined by Leonard Adleman. This technique of employing smooth

numbers for effective number theory algorithms occurs throughout the subject. The books [3] and

[18] provide good references.
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will see they are quite related.

Finding a square dependence has an equivalent formulation as a linear dependence

problem: associate to each integer ai the vector vi whose components are the mul-

tiplicities of each prime in the factorization ai. In other words, ai = Πjp
vi,j
j , where

pj denotes the jth prime number and vi,j denotes the jth component of vector vi. A

product of integers is a perfect square if and only if their associated prime multiplicity

vectors sum to zero mod 2. That is, a square dependence is equivalent to a linear

dependence over F2.

When one is working in the vector space Fn2 , a simple but effective linear algebra

idea (both as an algorithmic strategy and as a probability estimate) is to consider

instead the event that there are k + 1 vectors all of which have their non-zero com-

ponents residing in k components of Fn2 . Since these vectors reside in a subspace of

dimension k, such a set must necessarily be dependent.

Let π(x) denote the number of primes ≤ x. A number is said to be y-smooth if

every prime factor is ≤ y. Let Ψ(x, y) denote the number of y-smooth integers ≤ x.

In the factorization algorithms, the fruitful linear algebra idea is employed by fixing

y > 0 and considering only the ai which are y-smooth. These ai’s are filtered from the

rest of the sequence by a process called sieving (after which several of the algorithms
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are named). As a row vector, all non-zero components of vi reside in the first π(y)

columns. Once we obtain more than π(y) many y-smooth numbers, we know we will

have a square dependence. To find one such square dependence, Gaussian elimination

(or a more specialized algorithm such as Wiedemann’s sparse matrix method) may

be used on the matrix whose rows consist of the vectors vi.

In Pomerance’s Problem, let T denote the first time m for which a1, a2, . . . , am

contains a square dependence. A priori, Pomerance’s Problem is not concerned with

the effort required to factor each ai. Nevertheless, Schroeppel gave the following sim-

ple argument based on the smooth number approach in the late 1970’s (unpublished,

but referenced secondhand in papers such as [13]) that gives a good upper bound for

T . Each ai is y-smooth with probability Ψ(n, y) /n. Pick y0 > 0 which maximizes

this probability. The number of y0-smooth numbers in the sequence a1, a2, . . . , am is

binomially distributed with mean Ψ(n,y0)m
n

. If this mean is at least (1 + o (1))π(y0) —

which is to say if m ≥ (1 + o (1)) J0(n) where J0(n) := π(y0)n
Ψ(n,y0)

— then it follows (from

the concentration of the binomial distribution) that with high probability the number

of y0-smooth integers is at least π(y0) + 1. Thus T ≤ J0(n) with high probability.

Estimates for the non-random quantity J0(n) are known [5] and in the limit n→

7



∞, it admits the estimate

J0(n) = exp

(√(
2 + o (1)

)
log n log log n

)
.

In recent work published in 2012, Croot, Granville, Pemantle and Tetali [5] proved

that T satisfies, with high probability,

π

4
e−γ
(
1 + o (1)

)
J0(n) ≤ T ≤ e−γ

(
1 + o (1)

)
J0(n) .

This theorem gives the best known bounds on T . Pemantle et al. conjectured that

the threshold for T is sharp in the sense that the constant π
4
e−γ in lower bound could

be increased to match the constant e−γ in the upper bound.

Conjecture 1.1. For every ε > 0,

P
(
T ∈

[(
1− ε

)
e−γJ0,

(
1 + ε

)
e−γJ0

])
= 1− o (1)

as n→∞.

Resolving this conjecture is the main motivation referred to earlier. This is an

interesting problem to solve not only because it would indicate a sharp threshold for

Pomerance’s Problem, but because it would also inform a great deal about the best

techniques for designing these algorithms.
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To explain, the proof of the upper bound in [5] considers a larger event—compared

to Schroeppel’s proof—which implies a square dependence. The idea is that consid-

ering the numbers ai which are not y-smooth is still useful for finding π(y) + 1 many

y-smooth numbers, one just needs for these non-smooth numbers to be multiplied

together appropriately so that their large prime factors with odd multiplicities are

paired to become even. In terms of the row vectors vi, we must form appropriate lin-

ear combinations so as to cancel (mod 2) all non-zero components in columns whose

index is greater than π(y). Such a linear combination corresponds to creating an ad-

ditional y-smooth number (essentially y-smooth at least — a y-smooth number times

a perfect square), which speeds the search for π(y) + 1 such numbers.

The details of their argument in fact narrow this event in a couple ways: (1) by

limiting which nonsmooth ai’s are considered to only those with large primes below

some threshold My (as the larger M is, the less useful it is for creating additional y-

smooth numbers), and (2) by limiting the manner by which one attempts to form the

appropriate combinations to produce the additional y-smooth numbers. A proof of

Conjecture 1.1 would tell us that this specific, relatively narrow event for a square de-

pendence in fact asymptotically captures the full event. When designing an algorithm

then, there would be little purpose in casting a wider search for square dependences

that arise from unusual combinations of ai’s. See [4] for a fuller discussion on practical
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considerations.
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Chapter 2

Scope of This Work

2.1 Hypergraphs and 2-cores

Formally, a hypergraph on a vertex set V is a collection E of subsets of V . The

elements e ∈ E are called hyperedges. The degree of a vertex is the number of

hyperedges which contain it. The k-core of a hypergraph is the unique subgraph

where all vertices have degree at least k and which is the maximal induced subgraph

with this property.

The k-core of any hypergraph can be obtained by iterating the following edge

11



removal rule: remove any vertices v with degree less than k, and remove all hyperedges

incident to these vertices. Since the graph is finite this must eventually terminate

with the unique maximal subgraph whose vertices all have degree at least k.

The scope of this thesis concerns the size of the 2-core for a particular random

hypergraph model related to Pomerance’s Problem. Compared to existing literature

[12, 10, 9], the new wrinkle captured by the random hypergraph model studied is

inhomogeneity—where the degree distribution on vertices is not identical. Rather,

the expected degree sequence has a power law tail. Let n denote the size of the vertex

set V . A summary of the main result we prove, Theorem (2.1), is that as n tends to

infinity, the number of hyperedges R in the 2-core obeys a limit law: 1
n
R converges

in probability to an explicit, non-random constant. Further, the theorem details the

value of this constant and threshold for it being nonzero through explicit expressions

of the parameters of the model.

Before going into more detail, let us illustrate the relationship with the subject

of the previous chapter. Denote by V the set of vertices {1, 2, . . . , n}, which may be

viewed as the index set for the n scalar components of a vector in Fn2 . A bijective

correspondence from sequences v1, v2, . . . , vm of vectors in Fn2 to hypergraphs on V is

given by turning each vector vi into a hyperedge ei consisting of the components of

vi which are nonzero.
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A vector which, in the language of hyperedges, contains a degree 1 vertex is

necessarily independent to all other vectors. Passing to the 2-core of the original

hypergraph recursively strips away all such vectors. Any linearly dependent set of

vectors must therefore also be a subset of the vectors in the 2-core.

Moreover, there is strong reason to believe that Conjecture 1.1 can be resolved

by understanding relatively simple properties of the 2-core of the associated random

vectors. This reasoning is discussed in the next section, and for the present discussion

we will summarize: what has been shown in many other models [8, 6, 11, 1] (properly

translated to the current setting) is that with high probability the dependence of

the 2-core coincides with the event that the number of hyperedges, m′, in the 2-core,

exceeds the number of vertices, n′, in the 2-core. This is another instance of the fruitful

linear algebra idea of chapter 1, but where we are considering a distinctly different

set of vectors (the vectors in the 2-core here, as opposed to the y-smooth numbers

and any additional y-smooth numbers which are reachable from combinations).

Returning to Pomerance’s Problem, the sequence of integers a1, a2, . . . , am gives

rise to a sequence of vectors in Fn2 , v1, v2, . . . , vm via their prime exponents. In turn

these vectors define a random hypergraph. The random hypergraph model we study

in this paper is an approximate version of this distribution.
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Let us demonstrate how one might arrive at an approximate model: when n is

large, the probability that a prime p divides ai is approximately 1/p, and this proba-

bility is approximately independent of another prime q dividing ai. If the prime p is

large then 1/p is also the approximate probability that p divides ai with odd multi-

plicity (and therefore would represent a nonzero component in vi). So the associated

random hypergraph is one where the vertices are indexed by prime numbers, have

degree distributions which are weakly dependent, and have expected degree decaying

roughly as m
p

.

The model we study (to be defined in section 2.3) simplifies this by first treating

the vertices as having independent degree distributions, and second by smoothing

and simplifying the rate at which this expected degree m
p

decreases. If we were to

index our vertices sequentially j = 1, 2, . . . then we have the expected degree as m
pj

for vertex j, where pj is the jth prime number. By the prime number theorem, the

jth prime is asymptotically j log j, and so this expectation is asymptotically m
j log j

.

The simplification taken in our model is to consider expected degrees asymptotically

equal to m
j

.

14



2.2 The Size of the 2-core as a Proxy for Depen-

dence

What is remarkable is that in many cases a relatively simple property of the size

of the 2-core determines with high probability (whp) whether a sequence of vectors

v1, v2, . . . , vm are linearly independent over F2. This is best understood by considering

the following dual satisfiability problem. Denote by A the m × n matrix whose

rows are the vectors vi and let b ∈ Fm2 be a random vector chosen uniformly and

independently. If the random system of linear equations Ax = b is unsatisfiable then

the vectors are surely dependent. Conversely, if the vectors are dependent then A

has rank m − s for s > 0. The probability of b lying in the column space of A is

thus reduced to 2−s. From these two observations it is easy to see that if m crosses a

threshold for which the satisfiability problem transitions from being satisfiable whp

to unsatisfiable whp, then the associated vector dependence problem also transitions

from being independent whp to dependent whp.

In the dual satisfiability problem, it is not difficult to show that passing to the

2-core (also known as pure literal elimination) does not affect satisfiability of the

system but will tend to decrease the dimension of the kernel. So when there is

at least one solution there will be fewer of them. Probabilistically, this means the

15



expected number of solutions is brought closer to the probability that there is at least

one solution. One therefore expects that the second moment method applied to the

2-core will yield sharper threshold bounds than the original system. In many models

this has been carried out rigorously (although not yet in our inhomogeneous model),

as we now discuss.

Consider choosing vectors randomly according to the uniform distribution over

vectors with a fixed number k ≥ 3 of nonzero components. The main result in [8]

(phrased as the equivalent 3-XORSAT problem) considers k = 3 and shows that whp

the satisfiability of the 2-core coincides with the event that the number of hyperedges,

m′, in the 2-core, exceeds the number of vertices, n′, in the 2-core. This result is also

believed to hold for k > 3 as demonstrated in [6, 11] (whose complete proof is subject

to a small analytic conjecture). One half of these results is immediate: if m′ > n′ then

in terms of vectors there are more vectors than nonzero components—they are surely

dependent. The nontrivial part is that when m′ ≤ (1− ε)n′ the 2-core is satisfiable

whp. Finally, the satisfiability threshold of random 3-SAT was established in [1], and

again this was done by proving the satisfiability of the 2-core coincides with this same

size threshold. While 3-SAT is not a linear system, the result does further strengthen

the belief that simple properties of the 2-core will capture the satisfiability threshold

in many models.
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As discussed at the end of the previous section, the hypergraph model we will

consider serves as an approximation to Pomerance’s problem. The sharp thresholds

given in our main result is a major first step towards resolving the threshold for

dependence and ultimately resolving Pomerance’s problem. It is interesting to note

that in Theorem (2.1), the parameter cden of our model has the critical value cden =

e−γ for the threshold of the 2-core’s size, which is already quite suggestive of the

connection to Conjecture 1.1. In fact, the story so far is even more telling: in this

hypergraph, m′/n′ transitions from less than 1 to greater than 1 as cden crosses this

threshold.

2.3 Main Results

We consider a probability space Ω with measure P whose elements are hypergraphs on

the n element set V = {0, 1, . . . , n− 1} with at most m hyperedges. The probability

measure for the hypergraph is given by generating m iid subsets of V , denoted as

e1, e2, . . . , em, representing the potential hyperedges (there will be strictly less than

m hyperedges if any subset ei is empty). The distribution of a single subset e is

given by deciding independently whether each vertex j ∈ V will be a member of e,

and importantly this probability is not the same for each vertex. Instead, we’d like

17



to adjoin vertex j to e with probability asymptotically equal to a
j

where a > 0 is a

constant. To ensure this is a proper probability (i.e. between 0 and 1), we take the

probability to be a
2a+j

= 1

2+ j
a

.

The edge density of a hypergraph is the number of hyperedges divided by the

number of vertices. We will consider the size n of our vertex set to tend to infinity

with m/n −→ cden so that the expected density (proportional to m/n) is tending to

a limit. Formally, P = Pn,a,cden and when we take limits n→∞ we do so with a and

cden fixed, and with m = m(n) a fixed function of n. We say Xn = op(f(n)) if for all

ε > 0, P (|Xn| > εf(n))→ 0 as n→∞.

Theorem 2.1 (Main Theorem). Let R denote the number of edges in the 2-core,

and let β = β(a, cden) denote the largest solution to the equation

log β = −a
∫ ∞
acdenβ

e−t

t
dt

when there is at least one solution, and define β = 0 otherwise. Then

R = βm+ op(n) ,

excluding the case cden = c∗ when a > 1 (see below). Furthermore, there are 3 distinct

cases for how β behaves:

1. If a < 1, then β > 0 for all cden > 0.

18



2. For a = 1 :

Subcritical case: If cden ≤ e−γ then β = 0, and so R = op(n).

Supercritical case: If cden > e−γ then β > 0. Here, β ↓ 0 as cden ↓ e−γ.

3. For a > 1 :

Define c∗ > 0 by

c∗ =
log a

a
exp

(
a

∫ ∞
log a

e−t

t
dt

)
.

Subcritical case: If cden < c∗ then β = 0, and so R = op(n).

Supercritical case: If cden > c∗ then β > 0. Here, β ↓ log a
ac∗

> 0 as cden ↓ c∗.

Figure 2.1: Plot of β versus cden, showing transition behavior at c∗. From left to

right: a < 1, a = 1, and a > 1.

The theorem can be organized into a phase diagram (Figure 2.3) where we plot β

as a function of cden.

To summarize, 1
m
R represents the fractional size of the 2-core compared to original

hypergraph, and this converges in probability to a constant β. As the edge parameter
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cden is increased from 0 there are one of three situations depending on a. When a < 1

the positivity of β says that the 2-core is always a positive fraction of the graph,

whereas when a ≥ 1 the 2-core represents a vanishing fraction of the graph until cden

crosses a threshold c∗, after which it is a positive fraction. The behavior near the

threshold is different still for a = 1 versus a > 1 with the later having a discontinuous

jump from a small 2-core to a 2-core that is not only giant, but also already as large

as log a
ac∗

m.

Informal Discussion of the Degree Distribution and the Removal Map

The degree distribution of a vertex inside some interval [xn, (x+ ε)n] converges to

a Poisson random variable with mean acden
x

. In general, for any intensity function

λ(x) : [0, 1] −→ R we may consider a random hypergraph on
{

1
n
, 2
n
, . . . , 1

}
where

the degree distribution of vertex x is an independent Poisson with mean λ(x). With

λ(x) = acden
x

we expect that the trajectory of the process on the Poisson graph to

approximate the process on the original graph.

Consider now how the removing edges map affects the degree distribution of the

vertices. At each step, first a random set B of degree 1 vertices is removed. Since

the hypergraph has iid hyperedges with independent vertices, each v ∈ B lies in

20



a uniformly random hyperedge. So conditional on B, each hyperedge is incident

to a binomially distributed number of degree 1 vertices (with success probability

|B| divided by the number of hyperedges). This gives some random fraction p of

hyperedges that will survive (those incident to zero such vertices). We can summarize

the randomness thusly: at each step a random set B of vertices is removed, and

from |B| a random edge survival fraction p is generated. The vertices outside of B

have a degree distribution that has first been truncated to be at least 2, and then

independently thinned with retention probability p.

It is well known that the distribution of a thinned Poisson with mean λ is again a

Poisson with mean pλ. In a similar vein, if we take a Poisson random variable and ap-

ply a sequence of truncations and thinnings (each with its own retention probability)

then the resulting distribution is easy to describe: when this distribution is truncated

once more it will be that of a truncated Poisson with mean pλ, where p is the prod-

uct of the retention probabilities used in the sequence. Therefore we can summarize

the randomness of the Poisson graph after i steps as choosing a single random total

thinning parameter p. All vertices have their degree distribution truncated to be at

least 2, and then independently thinned with retention probability p.

This nice compatibility of Poisson vertex degrees with truncation and thinning

makes it tempting to formalize a simple deterministic approximation to the removal
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process. For now, a rough description will suffice. Condition on the number bi of

degree 1 vertices at step i as well as the number mi of hyperedges remaining after i

steps. The distribution of hyperedges removed in the next step is modeled by placing

bi independent balls into mi boxes. We remove a hyperedge as part of the removal

step if its box contains at least one ball. In the situation where bi/mi tends to a limit

then the number of balls in each box is an (unrelated) Poisson random variable with

mean λi = bi/mi. So the fraction of surviving hyperedges is tending to the probability

e−bi/mi that this Poisson variable is zero. Assuming some sort of concentration around

the expectations involved we get a deterministic real sequence modeling the number of

hyperedges: mi+1 = miEie
−bi/mi where the expectation operator uses the distribution

of the process on Poisson graph with total thinning parameter mi/m.

Chapter Organization

The organization of the rest of this paper is as follows. First, in chapter 3 we prove

that the removal process is described by a Markov chain. We note the removal map is

a deterministic map, and thus the sequence of hypergaphs produced by the removal

rule is a process with deterministic transitions starting from one random initial state.

If instead we observe random variables at each step which do not reveal the entire

graph, then the sequence of successive values of these variables would have random
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transitions. For variables with Markovian transitions, this becomes a feasible way to

study the process.

Following chapter 3, the main argument can be summarized as a series of successive

arguments: (1) that the Markov chain has transitions approximated by modeling the

vertices as having Poisson degrees distributions which are truncated and thinned, (2)

that for log n many steps the Markov chain has a trajectory which fluctuates around

the trajectory of a deterministically evolving process, (3) the deterministic process

tends to a limiting 2-core whose size is as described by the Main Theorem, and finally

(4) the size of the hypergraph after only log n steps faithfully represents the size of

limiting 2-core. This is the section-by-section content of the main chapter, chapter

5. The prior chapter, chapter 4 contains supporting Lemmas of probability estimates

for the first section of chapter 5.
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Chapter 3

Properties of the Removal Map

Let r : Ω −→ Ω denote the map on hypergraphs which removes all hyperedges con-

taining a degree 1 vertex. The purpose of this chapter is to relate the probability

measure P and the pushforward measure P ◦ r−1 = P (r−1 ). The result is a gen-

eralization what is referred to as “maintenance of uniformity” in [8] and the Markov

degree sequence in [12, 9].

Notationally, P will refer to a probability measure on Ω, with extra hypotheses

on P introduced as needed. So in this chapter only, the specific probability measure

P from chapter 2.3 will not be referenced by P , although the results in this chapter
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can be applied to it as a special case.

As should be expected from working in a rather general setting, the proofs in

this chapter use elementary arguments. The more complicated analysis involved in

theorem 2.1 are in the following chapters.

It is preferable to represent hypergraphs as incidence matrices for this chapter. A

binary matrix with columns indexed by V and rows indexed by E can be viewed as

a collection of (possibly empty) subsets of V : each row e ∈ E represents the set of

vertices whose column has a non-zero entry in row e. The collection of such subsets

which are non-empty gives a hypergraph on V (whose hyperedges additionally come

equipped with distinct labels from E 2)

In this chapter we let Ω denote the set of all m×n binary matrices, and P will be a

measure on Ω directly. It is important that we have chosen to represent hypergraphs

as incidence matrices with possibly empty rows so that the removal map r : Ω −→ Ω

defines a pushforward measure P ◦r−1 that correctly represents the distribution after

one removal step of a random initial hypergraph.

2One would usually consider the set of all hypergaphs on V as just the plain collection of all

subsets of V , and using incidence matrices is similar to considering an ordered collection of subsets

of V . Any single hypergraph is represented in multiple ways according to how to the hyperedges are

ordered as rows of the matrix.
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3.1 General Properties

We begin with a section that is nonprobabilistic, and therefore requires no assumption

on P .

For any ω ∈ Ω define A(ω) ⊆ [n] to be the set of column indices whose columns

contain at least one non-zero entry, define B(ω) ⊆ [n] to be set of column indices

whose columns contain exactly one non-zero entry, and define R(ω) ⊆ [m] to be the

set of row indices whose rows contain at least one entry.

For any ω1, ω2 ∈ Ω define ω1 tω2 to be the matrix sum ω1 +ω2 if R(ω1) and R(ω2)

are disjoint, and undefined otherwise. In terms of hypergraphs, ω1 t ω2 represents a

union of two hypergraphs, but is undefined if there would be two hyperedges sharing

the same label. Statements involving ω1tω2 implicitly assume the quantity is defined.

This notation is useful for referring to elements in the inverse image r−1ω, since if

ω1 ∈ r−1(ω2) then there is a unique decomposition ω1 = s t ω2.

Theorem 3.1 (Functional Properties). Let ω1, ω2 ∈ Ω. Then:

1. A(ω1 t ω2) = A(ω1) ∪ A(ω2).

2. B(ω1 t ω2) = [B(ω1) \ A(ω2)] ∪ [B(ω2) \ A(ω1)].
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3. R(ω1 t ω2) = R(ω1) ∪R(ω2).

Proof. The proof is straightforward and immediate after expanding definitions.

Theorem 3.2 (Characterization of the Inverse Image). Let k ≥ 0. For ω ∈ Ω define

S(ω) ⊆ Ω as the unique set such that {s t ω : s ∈ S(ω)} = r−kω. Then S(ω) depends

only on A(ω), B(ω), and R(ω).

Let m1 ⊆ m2 ⊆ [m]. For ω ∈ Ω such that R(ω) ⊆ m1, define r−km2m1
ω =

{s t ω : s ∈ Sm2m1(ω)} where Sm2m1(ω) = {s ∈ S(ω) : R(s) = m2 \m1}. Then Sm2m1(ω)

depends only on A(ω) and B(ω).

Comments. The notation r−km2m1
defines a mapping r−km2m1

: Ω −→ 2Ω named by the

symbol r−km2m1
, but it is not the inverse image of a map Ω −→ Ω. The side condition

R(s) = m2 \m1 in Sm2m1(ω) indicates that we have restricted the inverse image r−kω

so that only a prespecified set of rows, m2 \m1, is removed by rk in rk(s t ω).

Some motivation is in order. The first part of this theorem is the key property

for proving the triple (A,B,R) is a Markov chain (case (1) of Theorem 3.4 from the

next section). However in the probability space we intend to work with in chapter 5,

there is something inconvenient about a Markov chain involving R: conditioning that

some row is not the zero row introduces dependence among the entries of that row.

27



Contrast with conditioning that some row is not a deleted row—the difference being

that an initially zero row no longer counts—which does not introduce dependence.

The second part of Theorem 3.2 is the key property for proving we do in fact get a

Markov chain using the non-deleted rows in place of the non-zero rows in our Markov

chain triple (case (2) of Theorem 3.4).

Proof of Theorem 3.2. Begin with k = 1. Let ω ∈ Ω be given. s ∈ S(ω) if and only

if all of the following hold:

1. R(s) and R(ω) are disjoint, ensuring s t ω is defined.

2. B(ω) ⊆ A(s), ensuring no row of ω is removed by r in r(s t ω).

3. Every row of R(s) contains an non-zero entry in some column from B(s)\A(ω),

ensuring every row of R(s) is removed by r in r(s t ω).

This is evidently determined by A(ω), B(ω), and R(ω) alone.

Refer to conditions (1)-(3) as Γ(s, ω). In general for k > 1 the same argument

applies and r−kω is the set of all s1 t s2 t . . . t sk t ω which satisfy the conditions

Γ(si, si+1 t si+2 t . . . t sk t ω) for i = 1, 2, . . . , k. Making repeated use of Theorem

3.1, these conditions are expressible in terms of A(ω), B(ω), and R(ω).
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For Sm2m1(ω) the argument only needs to be adapted by replacing condition 1 with

the condition R(s) = m2 \m1.

3.2 Independent Rows

Assume now that P is a measure where the rows of the matrix are independent

(corresponding to hypergraphs generated by a sequence of independent hyperedges).

Given ω, s ∈ Ω, P (ω t s) can be expressed as a product of weights P1(ω)P2(s) for ω

and s. That is, view Ω as a product space of row sets Ω1 × Ω2 × · · · × Ωm with P

represented as product measure µ1×µ2× · · · ×µm. Formally, defining the functions

P1 and P2 in terms of the µi’s is a rather arbitrary construction — even with the

most natural definition we must somehow decide how any empty rows of ω t s get

“assigned” to ω and s for purposes of contributing to the weight of P1(ω) or P2(s).

It will be desirable that P1 is defined consistently so that it is a probability measure

on certain subsets of Ω.

We consider two ways to proceed: (1) Partition Ω via R, and when R(ω) = m1

define P1(ω) = Πi∈m1µi(ωi). Then P1 is defined over all Ω and is a probability measure

on any partition {ω : R(ω) = m}. (2) Presuppose R(ω) ⊆ m1 and define P1(ω) =
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Πi∈m1µi(ωi). Then P1 is defined over just a single fixed subset {ω : R(ω) ⊆ m1} and

is a probability measure on this set.

We are going to consider both definitions (1) and (2) simultaneously. A small

amount of flexibility in notation permits a single argument to handle both cases.

These two cases correspond to the two parts of Theorem 3.4.

Definitions : Let r−i0 denote either r−i or r−im2m1
depending on whether we consider

case (1) or case (2). Let S0 denote the corresponding choice for S or Sm2m1 , and let

X0 denote the corresponding choice for (A,B,R) or (A,B). Define Xi = X0(riω),

Ri(ω) = R(riω), Ri,j = Ri\Rj and X ′i = (Ai, Bi, R0,i). Let k ≥ 0 and let E denote the

event {X0 = x0, X1 = x1, . . . , Xk−1 = xk−1} or
{
X ′0 = x′0, X

′
1 = x′1, . . . , X

′
k−1 = x′k−1

}
depending on whether we consider case (1) or case (2).

For ω ∈ Ω we can compute

P
(
r−k0 ω | E

)
=
∑

s∈S0(ω)

P (ω t s | E) =
∑

s∈S0(ω)

P (ω t s) 1ωts∈E (P (E))−1

=
∑

s∈S0(ω)

P1(ω)P2(s) 1ωts∈E (P (E))−1 .

Factor P1(ω) out of the sum, and express the remainder as zk(ω) giving

P
(
r−k0 ω | E

)
= zk(ω)P1(ω) . (3.1)

In the case r−k0 = r−k, the proportionality factor zk(ω) is a function of A(ω), B(ω),
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and R(ω) by Theorems 3.1 and 3.23, while in the case r−k0 = r−km2m1
, zk(ω) is a function

of A(ω) and B(ω). If additionally P respects permutation of rows (or columns), then

zk(ω) depends on R(ω) only up to cardinality (respectively, zk(ω) depends on A(ω)

and B(ω) only up to their cardinalities). Independence of columns plays no special

role. Requiring permutable rows is equivalent to requiring identically distributed rows

since we’ve already assumed independence.

We know that on an appropriate subset P1 is a probability measure. Let Qk denote

the measure P ( | E). The function zk is the Radon-Nikodym derivative of Qk with

respect to P1. If we restrict these two probability measures, via conditioning, to a

subset where the Radon-Nikodym derivative is constant then the restricted measures

must in fact be equal. That is, an equation like (3.1) says P1 and Qk ◦ r−k0 are

conditionally the same measure, conditioned on the random variable zk. We phrase

this observation as the following lemma.

Lemma 3.3 (Pushforward Lemma). Let k ≥ 0, and let Qk and zk be as defined

above. Let F be an event on which zk is constant. Then, when the conditional

probabilities are defined,

Qk

(
r−k0 | r−k0 F

)
= P1( | F ) .

3This requires X0 to be the particular triple (A,B,R), and not simply any variable with respect

to which (A,B,R) is measurable. A generalization in that direction is possible if the variable also

satisfies an analogue of theorem 3.1.
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Proof. The proof is just a fully explicated version of the observation preceding the

statement. Summing (3.1) over ω ∈ F to find the constant, we have z = zF =

Qk

(
r−k0 F

)
/P1(F ) on F . For any event T , use (3.1) again this time summing over

ω ∈ T ∩ F to get Qk

(
r−k0 T ∩ r−k0 F

)
= zFP1(T ∩ F ). Substitute for zF in this last

equation and rearrange to get the theorem.

Theorem 3.4 (Markov Theorem).

1. Let Xi = (Ai, Bi, Ri). The sequence X0, X1, . . . is a Markov chain with transi-

tion kernel p(x0, x1) = P (X1 = x1 | X0 = x0) .

2. Let X ′i = (Ai, Bi, R0,i). The sequence X ′0, X
′
1, . . . is a Markov chain with tran-

sition kernel p(x0, x1) = P (X ′1 = x1 | X ′0 = x0) .

Proof. Let Y0 denote a random variable such that σ(X0) ⊆ σ(Y0), which will be chosen

later. Define Yk = Y0◦rk. Let F denote the event {Y0 = y}, so that r−kF = {Yk = y}

and r−km2m1
F = {Yk = y}∩ {R0 \Rk = m2 \m1}. Since X0 is a measurable function of

Y0, zk is constant on F . Lemma 3.3 states

P
(
r−k0 | E, r−k0 F

)
= P1( |Y0 = y) . (3.2)

To prove 1, let i ≥ 0 be given. We take r−k0 = r−k and Y0 = X0 in equation

(3.2), and for these choices we recall E = {X0 = x0, . . . , Xk−1 = xk−1} and r−kF =
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{Yk = y}. Evaluate the probability measures in equation 3.2 on the event {X1 = x}.

Finally, instantiate the resulting equation for both k = i and k = 0 to establish

P (Xi+1 = x | X0 = x0, . . . , Xi−1 = xi−1, Xi = y) = P1(X1 = x|X0 = y)

P (X1 = x | X0 = y) = P1(X1 = x|X0 = y) .

The equality of the left hand sides proves the Markov property.

To prove 2, much is the same until the final step. Let i ≥ 0 be given and let

x′, y′ ⊆ [n]× [n]× [m] be given (x′ and y′ will play the same roles as x and y in the

proof of 1). Denote x′ by (x,m), where m ⊆ [m]. We take r−k0 = r−km2m1
and Y0 = X0

in equation (3.2), and for these choices we recall E =
{
X ′0 = x′0, . . . , X

′
k−1 = x′k−1

}
and r−km2m1

F = {Xk = y}∩ {R0 \Rk = m2 \m1}. Pick y,m2, and m1 so that r−km2m1
F =

{X ′k = y′}. Evaluate the probability measures in equation 3.2 on the event {X ′1 = x′′}

where x′′ = (x,∆m) and ∆m = m \ (m2 \m1). Finally, instantiate the resulting

equation for both k = i and k = 0 to establish

P
(
r−im2m1

{X ′1 = x′′} | X ′0 = x′0, . . . , X
′
i−1 = x′i−1, X

′
i = y′

)
= P1(X ′1 = x′′|X0 = y) (3.3a)

P
(
r−0
m2m1
{X ′1 = x′′} | X ′0 = y′

)
= P1(X ′1 = x′′|X0 = y). (3.3b)

Note for any k ≥ 0, one has

r−km2m1
{X ′1 = x′′} = {Xk+1 = x,Rk,k+1 = ∆m, R0,k = m2 \m1}
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which by choice of ∆m (namely that ∆m∪ (m2 \m1) = m) is also the event
{
X ′k+1 = x′

}
∩

{R0,k = m2 \m1}. This later event regarding R0,k is already conditioned on by the

left hand sides of equations 3.3 (by the conditioning X ′k = y′, where k = i and k = 0).

Therefore

P
(
X ′i+1 = x′ | X ′0 = x′0, . . . , X

′
i−1 = x′i−1, X

′
i = y′

)
= P1(X ′1 = x′′|X0 = y)

P (X ′1 = x′ | X ′0 = y′) = P1(X ′1 = x′′|X0 = y) .

The equality of the left hand sides proves the Markov property.

In chapter 5, we will be using the Markov chain from case (2). Conditioning on

an event like R0,k = m2 \ m1 conditions on the set of rows (edges) which have been

removed after k steps, but it does not stipulate whether any rows in m1 were originally

empty. For our probability space this has the advantage (over conditioning on Rk)

that it preserves the independence of the events {j ∈ ei}i∈m1
.

The Markov chain from case (1) is the chain which appears in the literature

(referenced in the opening paragraph of this chapter). In the case of the k-core as

opposed to the 2-core, the Markov chain would need to be amended by considering

the sets of vertices of degrees 1, 2, . . . , k − 1 and greater equal k − 1 instead of just

1 and greater equal 1 (naturally one has the freedom to choose, for example, ≥ k

instead of ≥ k − 1, as these two collection of state variables would have the same
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sigma fields). Besides changing the Markov chain itself, the proofs in this chapter

would only need a minor alteration by stating the equivalent version of Theorem 3.1

for these state variables (so that for all the degree sets Di involved, Di(ω1 t ω2) is

expressible as combinations of Dj(ω1)’s and Dj(ω2)’s).

Proofs of the Markov property from the literature are either given by stating the

general principles involved (leaving the details to be checked and without stating the

minimal set of assumptions from the model that are actually used) or else are proven

using explicit computation of the probabilities involved, i.e. by finding the combina-

torial formulae which count the number of hypergraphs with a given property (which,

as this chapter demonstrates, is always unnecessary for independent hyperedges).

The hypergraph models referenced from the literature have some form of depen-

dence built in to the hyperedge distribution, arising from conditioning on the size of

the hyperedge or conditioning on the degree sequence of the hypergraph itself. They

also exhibit homogeneity between vertices, so that the cardinalities of the degree sets

in the chain may be used instead of the sets themselves. Finally, they also exhibit an

overall symmetry so that P ( | Xk = xk) is uniform on the subset of hypergraphs with

{Xk = xk} (dubbed “maintenance of uniformity”). The fact that for our model we

must work with the sets A and B (and not their cardinalities) as well as nonuniform

distributions presents greater complication.
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3.3 Removing One Hyperedge at Each Step

In section 5.4 we will want to consider a removal process which iterates a random

edge removal rule: choose a uniformly random vertex of degree 1, and remove the

hyperedge incident to it. This section establishes that the results of the sections 3.1

and 3.2 carry over to this process just as well.

The random removal rule is formalized by supplementing our old probability space

with an iid sequence of uniform variables on [0, 1]. Each random variable represents

the randomness we use to decide which vertex of degree 1 to remove at each step.

Define then a new probability space Ω = [0, 1]N × Ω. The new probability measure

P = µ × PΩ on Ω is given as the product µ = L × L · · · of uniform (Lebesgue)

measure L on each component [0, 1] and a probability measure PΩ on the component

Ω (playing the role of the old probability measure P of the previous section).

We can provide a high level overview of this section in a few sentences. The key

property of sections 3.1 and 3.2 is that fiber r−kω is an amalgam of ω with a set S(ω)

whose dependence on ω factors through a small set of variables. Since the removal

rule is now random, the first difference in this section is that the fiber is additionally

an amalgam of the slice of U(s, ω) ⊆ [0, 1] which represents the realizations where

we do happen to transition from s t ω to ω by r. The second difference is that this
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slice is not at all a function of the smaller set of variables — but the probability of

the slice still is — which is what is needed for zk from equation 3.1 to be a function

of the smaller set of variables. The rest of this section provides a fuller account of

the details. The goal though is still to appeal to modification of the of the previous

proofs once the new set of definitions is formalized.

Denote elements of Ω as ({ui} , ω). Define r : Ω −→ Ω via ({ui} , ω) 7→ ({ui+1} , ru1ω),

where for each u ∈ [0, 1], ru is a fuction Ω −→ Ω so that ruω represents removal of

single edge — depending on u and ω — if ω contains at least 1 degree vertex (and

ruω = ω if all vertices have degree at least 2). For example, if ω contains 2 vertices

of degree 1, then ruω removes the first if u ≤ 1/2 and the second if u > 1/2. For

a fully explicit definition, we shall fix for each ω ∈ Ω an arbitrary partition of [0, 1]

into |B(ω)| disjoint subsets of equal measure. When |B(ω)| 6= 0 and u lies in the nth

partition then ruω denotes the removal of the nth edge contain a degree 1 vertex.

The next theorem is the analogue of Theorem 3.2 for the random removal rule.

Notation: For u ∈ [0, 1], v = (v1, v2, . . . ) ∈ [0, 1]N, let u�v denote (u, v1, v2, . . . ) ∈

[0, 1]N.

Theorem 3.5. Let k ≥ 0. For ω ∈ Ω define S(ω) ⊆ Ω and for each s ∈ S(ω) define

37



U(s, ω) ⊆ [0, 1] as the unique sets so that

⋃
v∈[0,1]N

{(u � v, s t ω) : s ∈ S(ω) , u ∈ U(s, ω)} = r−k
(

[0, 1]N × {ω}
)
.

Let m1 ⊆ m2 ⊆ [m]. For (v, ω) ∈ Ω such that R(ω) ⊆ m1, define

r−km2m1
(v, ω) = {(u � v, s t ω) : s ∈ Sm2m1(ω) , u ∈ U(s, ω)} .

where Sm2m1(ω) = {s ∈ S(ω) : R(s) = m2 \m1}.

Then

1. S(ω) depends only on A(ω), B(ω), and R(ω).

2. L(U(s, ω)) depends only on s, A(ω), and B(ω).

3. Sm2m1(ω) depends only on A(ω) and B(ω).

Proof. The proof is by induction on k and repeated use of Theorem 3.1 just as in the

proof of Theorem 3.2. The arguments themselves only need to be adapted slightly.

For example, to prove 1 in the case k = 1, we change condition 1 to be that R(s) is

either a single row disjoint from R(ω) or the empty set. And to prove 2 in the case

k = 1, we have L(U(s, ω)) = B(stω)∩A(s)
B(stω)

= B(s)\A(ω)
B(stω)

, which depends only on s, A(ω),

and B(ω).
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The rest of this section mirrors the development of section 3.2. Assume that P is

a measure with independent rows. We again consider two cases, corresponding to the

cases where r−k0 denotes either r−k or r−km2m1
(each of which now refer to the functions

defined in this section).

We will copy the notation for random variables of section 3.2 (Ai, Bi, Ri, Ri,j, Xi,

and X ′i) for our new probability space by regarding them as functions of Ω (and

not Ω). Define π2 : Ω → Ω by π2({ui} , ω) = ω. Then, for example, Xi ◦ π2 is a

random variable on Ω. For each k ≥ 0 we also copy the notation for the event E ⊆

Ω as {X0 = x0, X1 = x1, . . . , Xk−1 = xk−1} or
{
X ′0 = x′0, X

′
1 = x′1, . . . , X

′
k−1 = x′k−1

}
depending on whether we consider case (1) or case (2).

The biggest change from section 3.2 is the argument that precedes the Pushforward

Lemma. We now have that for ω ∈ Ω,

P
(
r−k0 π−1

2 ω | π−1
2 E

)
=
∑

s∈S0(ω)

L(U(s, ω))PΩ(ω t s | E)

=
∑

s∈S0(ω)

L(U(s, ω))PΩ(ω t s) 1ωts∈E (PΩ(E))−1

=
∑

s∈S0(ω)

L(U(s, ω))P1(ω)P2(s) 1ωts∈E (PΩ(E))−1

= zk(ω)P1(ω) .
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The conclusion that zk(ω) depends only on A(ω), B(ω), and R(ω) in case (1) and

only on A(ω) and B(ω) in case (2) is now justified using Theorem 3.5. The rest of

section 3.2 follows a nearly identical development, and we only state the results.

Lemma 3.6 (Pushforward Lemma). Let k ≥ 0, let zk be as defined above, and let

F be an event on which zk is constant. Then, when the conditional probabilities are

defined,

P
(
r−k0 π−1

2 | π−1
2 E, r−k0 π−1

2 F
)

= P1( | F ) .

Theorem 3.7 (Markov Theorem).

1. Let Xi = (Ai, Bi, Ri). The sequence X0 ◦π2, X1 ◦π2, . . . is a Markov chain with

transition kernel p(x0, x1) = P (X1 = x1 | X0 = x0) .

2. Let X ′i = (Ai, Bi, R0,i). The sequence X ′0 ◦ π2, X
′
1 ◦ π2, . . . is a Markov chain

with transition kernel p(x0, x1) = P (X ′1 = x1 | X ′0 = x0) .
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Chapter 4

Preliminary Lemmas

This chapter contains simple probability estimates which are needed later in the

course of the main proofs when we compare the Markov chain to the Poisson chain.

It is convenient to have these stated here separately for they are statements which

can be understood independently of the main probability space and the proofs can

be skipped or deferred without loss of understanding.

Theorem 4.1 (Balls in Boxes). Let X1, X2, . . . , Xb be iid with Xi uniformly dis-

tributed on {1, 2, . . . ,m} and let Y = m − | {X1, X2, . . . , Xb}| . Then, uniformly in

b,

P
(∣∣∣Y −me− b

m

∣∣∣ ≥ s
)
≤ 2e−

s2

4b
+O( sb),
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as m→∞ and b
m

ranges over any compact subset of [0,∞).

As will be the case in all proofs, the implicit sense of convergence (namely, uni-

formity) meant by any O ( · )’s used in the proof is the explicit sense of convergence

used in the statement.

Proof. Y is given by

Y =
m∑
i=1

1i/∈{X1,X2,...,Xb}

and so taking expectations,

EY = m

(
1− 1

m

)b
= meb(−

1
m

+O( 1
m2 ))

= me−
b
m

+O( 1
m) = me−

b
m +O (1) .

The tail bound comes from McDiramid’s inequality, since the outcome of any one of

the random variables Xi affects Y by 1.

Theorem 4.2 (Poisson Approximation). For any λ ≥ 0 and m ≥ 0 let X be dis-

tributed as Bin(m,λ/m). Let k ≥ 0, then uniformly in λ,

P (X = k) =
λk

k!
e−λ +O

(
1

m

)
as m→∞ and λ/m ranges over any compact subset of [0, 1).

Remark 4.1. The assumption is not that λ tends to a limit. The result includes

λ→∞, λ = 0, and anything in between. It is naturally not uniform in k.
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Proof. The proof is direct but careful consideration of the type of convergence is

needed during some steps:

P (X = k) =

(
m

k

)(
λ

m

)k (
1− λ

m

)m−k
=
m(k)

k!

λk

mk

(
1− λ

m

)m(
1− λ

m

)−k
=
λk

k!

(
1− λ

m

)m
(1 + o (1))

=
λk

k!
e
m
(
− λ
m
−
∣∣∣O(

λ2

m2

)∣∣∣)
(1 + o (1))

=
λk

k!
e
−λ−

∣∣∣O(
λ2

m

)∣∣∣
(1 + o (1))

=
λk

k!
e−λ

(
1 +O

(
λ2

m

))
=
λk

k!
e−λ +O

(
1

m

)
.

In the last step we have used that λk+2e−λ is a bounded function of λ, and hence is

O (1).

For more complex Poisson limits let us introduce the probability generating func-

tion ϕλ,p(z) where λ, p ≥ 0 and

ϕλ,p(z) =
eλp(z−1) − λpze−λ − (1 + λ (1− p)) e−λ

1− (1 + λ) e−λ
.

This is the pgf for (Z1|Z1 + Z2 ≥ 2) where Z1 is distributed as poisson(λp) and Z2

is distributed as poisson(λ (1− p)). By the thinning lemma, this distribution is also

the result of independent thinning of (Z|Z ≥ 2) with retention probability p where Z

is distributed as poisson(λ).

Notation: Let
[
zk
]
f(z) denote the coefficient of zk in the power series expansion
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of f(z), and set ϕk(λ, p) :=
[
zk
]
ϕλ,p(z).

Theorem 4.3 (Poisson Approximation 2). For any 0 ≤ p ≤ 1, λ ≥ 0 and m ≥ 0, let

X be distributed as Bin(mp, λ/m), Y be distributed as Bin(m (1− p) , λ/m), and Z

distributed as (X|X + Y ≥ 2). Let k ≥ 0. Then, uniformly in λ and p,

P (Z = k) = ϕk(λ, p) +O

(
1

m

)

as m→∞, λ/m ranges over a compact subset of [0, 1), and p ranges over a compact

subset of (0, 1).

Proof. The idea is to express the point probabilities for Z in terms of that of X and

Y , and then use the previous theorem twice, once for X (with λ 7→ λp, m 7→ mp) and

once for Y (with λ 7→ λ (1− p) , m 7→ m (1− p)). This will give the right estimate

under the limits mp→∞ and m (1− p)→∞, which are equivalent to m→∞ given

the restriction on p.
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Chapter 5

The Size of the 2-core from the

Removal Process

This chapter contains the main results. We let mi = m − |R0,i| denote the number

of surviving edges at step i, bi = |Bi| denote the number of degree 1 vertices, and we

let deg (i)(j) denote the degree of vertex j at step i.

Let V̂
(i)
k denote the random counting measure for the number of degree k vertices

at step i. That is, the measure assigned to a set of vertices W ⊆ {0, 1, . . . , n− 1}

is the number of degree k vertices in W at step i. Let the random measures V
(i)
k
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denote the pushforward of V̂
(i)
k by the map j 7→ j/n from {0, 1, . . . , n− 1} −→ [0, 1].

Equivalently, V
(i)
k is the random measure on [0, 1] defined by

V
(i)
k =

n−1∑
j=0

δ j
n
1deg (i)(j)=k

where δx is the Dirac delta measure located at x. We also employ notation such as V
(i)
≥2

for
∑

k≥2 V
(i)
k . The motivation behind the measures V

(i)
k is that they are equivalent

encodings of the sets of vertices of a given degree. When we discuss the trajectory

of the markov chain (mi, Ai, Bi), we will need to speak of two trajectories being near

one another. For sets of vertices, the nearness of two sets will be formulated through

the signed measure equal to the difference of the two measures.

Finally we will write, for example, Pmi,Ai,Bi for the conditional probability

P ( |mi, Ai, Bi).

5.1 Approximations of the Removal Chain’s Single

Step Transitions

Theorem 5.1 (0th-step). Let k ≥ 0.
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(i) For any interval U ⊆ [0, 1] and as n→∞,

E

∫
U

dV
(0)
k =

∫
U

λ(x)k

k!
e−λ(x) dV

(0)
≥0 (x) +O (1)

= n

∫
U

dµk +O (1) ,

where λ(x) = acden
x

and µk is the non-random measure with Lebsegue density

dµk
dL

(x) =
λ(x)k

k!
e−λ(x) dµk

dL
(0) = 0.

(ii) There exists c ≥ 0 so that

P

(
sup 0≤t≤1

∣∣∣∣ ∫ 1

t

dV
(0)
k − E

∫ 1

t

dV
(0)
k

∣∣∣∣ ≥ s

)
≤ 2e−cs

2/n.

We will need to quote a general result about the maximum of a random walks.

Lemma 5.2. Let Sn = X1+X2+· · ·+Xn where the Xi are independent 0-1 Bernoulli

variables. Let Yn = Sn − ESn, and let Mn = sup 1≤i≤nYi. Then there exists c > 0 so

that

P (Mn ≥ s) ≤ 2e−cs
2/n.

Proof of Theorem 5.1. To prove (i), let U = [u1, u2] ⊆ [0, 1] be given. Write λ̂j for
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am
2a+j

, and λj for λ(j/n) = am
j

, and let ϕ(λ) = λk

k!
e−λ. We have

EV
(0)
k (U) = E

∑
j : j/n∈U

1deg (0)(j)=k

=
∑

j : j/n∈U

(
ϕ
(
λ̂j

)
+O

(
1

m

))
=

∑
j : j/n∈U

ϕ
(
λ̂j

)
+O (1)

=
∑

j : j/n∈U

(
ϕ(λj) +O

(
1

n

))
+O (1)

= n

 ∑
j : j/n∈U

ϕ(λj)
1

n

+O (1) .

To explain the Poisson estimate, see Theorem 4.2. We claim the Riemann sum

in parentheses is
∫ u2
u1

λ(x)k

k!
e−λ(x) du + O

(
1
n

)
. Indeed, the sum converges since the

integrand is continuous and the error in approximating a definite integral
∫ b
a
f(u) du

can be bounded by general considerations to be at most

(#terms) |f ′(z)| (max step size)2 /2

for some z ∈ [a, b]. Such an error term is O
(

1
n

)
in our case. This shows overall

EV
(0)
k (U) = nµk(U) +O (1).

To prove (ii), we note this is exactly an instance of Lemma 5.2 where the sequence

X1, X2, . . . is the sequence 1deg (0)(n−1)=k, 1deg (0)(n−2)=k, . . . .

Remark 5.1. Using the identity V
(0)
≥2 = V

(0)
≥0 − V

(0)
1 − V (0)

0 where V
(0)
≥0 =

∑n−1
j=0 δj/n,

the theorem can be applied to give a tail estimate for V
(0)
≥2 . This is somewhat subtle
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since the theorem, not being uniform in k, apparently cannot be used to estimate an

expression like
∑m

k=2 V
(0)
k .

Theorem 5.1 provides a sense in which the random initial state (the 0th transition)

of the removal chain differs from the expected empirical distribution where we model

the graph as having independent Poisson degrees. The next task is to provide a

similar statement for how the removal chain at step i+ 1 differs from step i (the ith

transition).

The degree of a vertex j post removal of the edges Ri,i+1 is given by

deg (i+1)(j) = 1j∈Ai\Bi
∑

e∈[m]\R0,i\Ri,i+1

1j∈e. (5.1)

Consider a vertex j ∈ Ai \ Bi. Using the Markov property (part 2 of Theorem 3.4)

we get that under Pmi,Ai,Bi the indicators {1j∈e}e∈[m]\R0,i
are identically distributed

Bernoullis and dependent only up to their sum being at least 2. This remains true

conditional on Ri,i+1 — under Pmi,Ai,Bi , the vertices in Ai\Bi are independent of those

in Bi, and hence independent with Ri,i+1. Using this fact together with equation (5.1),

we have that the distribution of deg (i+1)(j) under Pmi,Ai,Bi,Ri,i+1
only depends onRi,i+1

up to cardinality, and so deg (i+1)(j) has the same distribution under Pmi,Ai,Bi,mi+1
as

it has under Pmi,Ai,Bi,Ri,i+1
. Note this distribution is described by Theorem 4.3.

We formulate two theorems to describe the ith transition, Theorems 5.3 and 5.4.
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In both theorems we express how the random transition differs from an expected

empirical distribution for Poisson-type degrees, more specifically where the degrees are

given by independent, truncated Poisson random variables (representing conditioning

that the vertex lies in Ai) that are subsequently thinned (representing the edges Ri,i+1

which are removed). The difference between the two theorems is that in the first

we speak about probabilities conditioned on mi+1, effectively treating the thinning

probability as a free parameter. In the second theorem we only condition on step i,

so that the amount of thinning is itself random.

In the second theorem, we compare the random transition to an expected empirical

distribution where the comparison model treats the number of degree 1 vertices in

any fixed hyperedge as Poisson distributed with mean bi/mi. This gives 1−e−bi/mi as

the fraction of edges which are removed, or simply e−bi/mi as the thinning parameter

in the comparison model.

Notation. In the statement of the following theorem and elsewhere, an expression

“g • ξ” where g(x) is a function and ξ is a measure denotes the measure A 7→∫
A
g(x) dξ(x).

Theorem 5.3 (1-step). For every i ≥ 0 define random variables ui by

mi+1 = mie
− bi
mi + ui
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and for every i ≥ 0 and k ≥ 0 define random signed measures ξ
(i)?
k and ξ

(i)
k by

V
(i+1)
k = 1k=0V

(i)
≤1 + ϕk

(
λ(i), pi?

)
• V (i)
≥2 + ξ

(i)?
k

and

V
(i+1)
k = 1k=0V

(i)
≤1 + ϕk

(
λ(i), pi

)
• V (i)
≥2 + ξ

(i)
k

where λ(i)(x) = λ(x)mi
m

, pi? = mi+1

mi
, and pi = e

− bi
mi .

(i) As mi →∞ and for bi/mi bounded above,

Pmi,Ai,Bi(|ui| ≥ s) ≤ 1bi>02e
− s2

4bi
+O

(
s
bi

)

uniformly in i ≥ 0.

(ii) Let k ≥ 0. There exists c ≥ 0 so that as mi →∞, mi −mi+1 →∞,

Pmi,Ai,Bi,mi+1

(
sup 0≤t≤1

∣∣∣∣ ∫ 1

t

dξ
(i)?
k

∣∣∣∣ ≥ s

)
≤ 2e

− cs
2

n
+O

(
s
mi

)

uniformly in i ≥ 0, s ≥ 0.

As will be the case in all proofs, the implicit sense of convergence (namely, uni-

formity) meant by any O ( · )’s used in the proof is the explicit sense of convergence

used in the statement.

Proof. The proof of part (i) is provided by Theorem 4.1. The prove part (ii), we

follow the structure of Theorem 5.1. For convenience, let Pi? denote Pmi,Ai,Bi,mi+1
.
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Let k ≥ 0 and U = [u1, u2] ⊆ [0, 1] be given. Writing λ
(i)
j for λ(i)(j/n) = mi/j, then

Ei?V
(i+1)
k (U) = Ei?

∑
j/n∈U

1j∈Ai\Bi1deg (i+1)(j)=k

=
∑
j/n∈U

1j∈Ai\BiPi?
(
deg (i+1)(j) = k

)
=
∑
j/n∈U

1j∈Ai\Bi

(
ϕk

(
λ

(i)
j , pi?

)
+O

(
1

mi

))

=

∫
U

ϕk
(
λ(i), pi?

)
dV

(i)
≥2 +O

(
n

mi

)
.

To explain the probability estimate, see Theorem 4.3 (with m 7→ mi, λ 7→ λ
(i)
j ,

p 7→ pi? , and λ
m
≤ a

2
) recalling the discussion preceding the present theorem about

the law of deg (i+1)(j).

Finally, to get the tail bound we use that the same tail bound in Theorem 5.1 holds

here. We can account for an extra deviation O
(

n
mi

)
by replacing s 7→ s − O

(
n
mi

)
,

which gives the bound in the theorem.

Theorem 5.4 (Combined 1-step). Let k ≥ 0. There exists c1, c2 > 0 so that as

mi →∞, bi →∞, bi/mi bounded above,

Pmi,Ai,Bi

(
sup 0≤t≤1

∣∣∣∣ ∫ 1

t

dξ
(i)
k

∣∣∣∣ ≥ s

)
≤ 4e

− s2

c1bi∨c2n
+O

(
s
mi

)
+O

(
s
bi

)

uniformly in i ≥ 0, s ≥ 0.

Proof. The theorem has proper conditions for part (i) of Theorem 5.3 to hold. We
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also claim that the conditions on mi and bi imply that mi−mi+1 →∞. Importantly

then, the Pmi,Ai,Bi,mi+1
-probability upper bound in part (ii) of Theorem 5.3 holds here

as Pmi,Ai,Bi-probability bound. The justification is that the Pmi,Ai,Bi-probability can

be expressed by integrating this Pmi,Ai,Bi,mi+1
-probability against the law of mi+1.

And since the upper bound on the integrand is uniform in mi+1, it carries through as

an upper bound on the integral.

Let f(x) = 1t≥x. The proof now is to combine the tail bounds from part (i) and

part (ii) using that

∣∣∣∣ ∫ f dξ
(i)
k

∣∣∣∣ > s⇒
∣∣∣∣ ∫ f dξ

(i)?
k

∣∣∣∣ > s/2 or

∣∣∣∣ ∫ f d
(
ξ

(i)
k − ξ

(i)?
k

)∣∣∣∣ > s/2. (5.2)

The function ϕk = ϕk(λ, p) has bounded partial derivative ∂ϕk
∂p

over the domain

λ ≥ 0 and 0 ≤ p ≤ 1. Therefore the deviation
∣∣ϕk(λ(i), pi?

)
− ϕk

(
λ(i), pi

)∣∣ is at most

some c1 > 0 times |pi? − pi| = |ui| . We conclude

∣∣∣∣ ∫ f d
(
ξ

(i)
k − ξ

(i)?
k

)∣∣∣∣ ≤ c1 |ui| .

Taking the union bound of the right hand side of (5.2) gives the upper bound in

the theorem.
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5.2 The Event that the Removal Chain Mimics a

Fixed Trajectory

Our next goal is to describe the deviation of the removal chain’s random trajectory

from some fixed, deterministic trajectory. Theorems 5.4 and 5.3 provide a determin-

istic limit law for the single step transitions of the removal chain. The candidate limit

law for a cumulative number of transitions i has the form suggested by iterating the

single step limit law. Put simply, the limit at time i is obtained by performing the

deterministic transitions 0 → 1 → 2 → . . . → i according to right hand sides of the

previous theorems, discarding the error terms ui and ξ
(i)
k . We may think of the it-

erated limit itself being a (deterministically) evolving process, or more appropriately

as a discrete time dynamical system.

Let us begin by unambiguously defining what deterministic sequence is being

suggested by providing a (non-random) real sequence mdeter,i, and for each k ≥ 0 a

sequence of (non-random) measures, V
(i)
deter,k where the intended interpretation is that

mi fluctuates around mdeter,i, and V
(i)
k fluctuates around V

(i)
deter,k.

Notation. Recall that an expression “g•ξ” where g(x) is a function and ξ is a measure

denotes the measure A 7→
∫
A
g(x) dξ(x).
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Given an initial value mdeter,0 and initial measures V
(0)
deter,0, V

(0)
deter,1, V

(0)
deter,≥2, we

inductively define for i ≥ 0 and k ≥ 0

mdeter,i+1 = mdeter,ipdeter,i (5.3a)

V
(i+1)
deter,k = 1k=0V

(i)
deter,≤1 + ϕk(νi, pdeter,i) • V (i)

deter,≥2 (5.3b)

where

pdeter,i = e
− bdeter,i
mdeter,i (5.4)

bdeter,i = V
(i)
deter,1([0, 1]) (5.5)

νi(x) =
acdenmdeter,i

xmdeter,0
(5.6)

V
(i)
deter,≥2 = V

(0)
deter,≥0 − V

(i)
deter,1 − V

(i)
deter,2. (5.7)

The definition we are taking is that the terms of the sequences mdeter,i and V
(i)
deter,k

are functions mdeter,i : S0 −→ R+ and V
(i)
deter,k : S0 −→ M of the initial conditions,

where S0 = R+ ×M3 and M is the set of finite signed measures on [0, 1]. We also

generalize these definitions by defining augmented functions mdeter,i : S0×S i −→ R+

and V
(i)
deter,k : S0 × S i −→ M where S = R ×M2. The 3i additional parameters —

denoted udeter,i, ξ
(i)
deter,0, and ξ

(i)
deter,1 — represent linear offsets at each step, that is

mdeter,i+1 = mdeter,ipdeter,i + udeter,i (5.8a)

V
(i+1)
deter,k = 1k=0V

(i)
deter,≤1 + ϕk(νi, pdeter,i) • V (i)

deter,≥2 + ξ
(i)
deter,k. (5.8b)
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The explicit purpose of the generalized definitions is that if we were to evaluate

the functions mdeter,i, V
(i)
deter,0, and V

(i)
deter,1 with the corresponding random variable

in each parameter — meaning take the evaluations mdeter,0 7→ m0, V
(0)
deter,k 7→ V

(0)
k ,

udeter,j 7→ uj, ξ
(j)
deter,k 7→ ξ

(j)
k — then mdeter,i = mi, V

(i)
deter,0 = V

(i)
0 , and V

(i)
deter,1 = V

(i)
1

surely.

A certain perspective is useful for motivating what comes next. Suppose we are

given two random variables X and Y related by a function, Y = f(X). Knowing

a Lipschitz constant for f allows us to bound the deviation in Y under any event

which stipulates a maximum deviation of X. In our context, Y is any one of the

three random variables mi, V
(i)

0 , or V
(i)

1 and the analogue of X is the collection of

variables m0, V
(0)
k , uj, and ξ

(j)
k . We have laid the groundwork by describing the events

which stipulate a maximum deviation of X (Theorems 5.3, 5.4) and specifying the

(multivariate) functions relating X and Y (the functions mdeter,i and V
(i)
deter,k).

Theorem 5.5. For any η > 0 there exists L > 0 such that for all i ≥ 0 the functions

mdeter,i, V
(i)
deter,0, and V

(i)
deter,1 of 3i + 4 variables have Lipschitz constant Li in each

parameter. This is subject to the functions being restricted to the domain Di−1(η),
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defined as follows:

Ei(η) =

{
V

(i)
deter,≥2([0, 1])

mdeter,i
≤ η,

bdeter,i
mdeter,i

≤ η

}
(5.9)

Di(η) =
⋂

1≤j≤i

Ej(η) . (5.10)

Notes. The notation in (5.9) defines a subset of S0 × SN in an abbreviated fashion.

For example, by the set
{

bdeter,i
mdeter,i

≤ η
}

we mean

{
(s0, s1, s2, . . . ) ∈ S0 × SN :

bdeter,i (s0, s1, s2, . . . )

mdeter,i (s0, s1, s2, . . . )
≤ η

}
,

where s0 =
(
mdeter,0, V

(0)
deter,0, V

(0)
deter,1, V

(0)
deter,≥2

)
and sj =

(
udeter,j , ξ

(j)
deter,0, ξ

(j)
deter,1

)
for j ≥ 1. Then,

Di(η) = D×S∞ where D is a nontrivial subset of S0×S i. We defer introducing the

notion of Lipschitz for measure valued arguments until the proof.

The following Lemmas will be referred to in the proof of Theorem 5.5.

Lemma 5.6. Let f(x, y) = xe−y/x. Then ∂f
∂x

and ∂f
∂y

are bounded for x, y ≥ 0.

Proof. Let z = y/x. The theorem follows from using ∂f
∂x

= e−y/x− y
x
e−y/x = (1− z) e−z

and ∂f
∂y

= −e−y/x = −e−z, both of which are easily seen to be bounded functions of

z ≥ 0.

Lemma 5.7. The functions λ∂ϕ0

∂λ
, λ∂ϕ1

∂λ
, p∂ϕ0

∂p
, p∂ϕ1

∂p
are bounded for λ ≥ 0 and

0 ≤ p ≤ 1.
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Proof. First, straightforward calculations give

λ
∂ϕ0

∂λ
=
λp
(
e−λp − e−λ

)
+ λ2p

(
e−λ − pe−λp

)
1− (1 + λ) e−λ

+
λ2e−λ

(
λp
(
e−λp − e−λ

))
(1− (1 + λ) e−λ)2

λ
∂ϕ0

∂λ
=
−λp

(
e−λp − e−λ

)
+ λ2 (1− p) e−λ

1− (1 + λ) e−λ
−
λ2e−λ

(
e−λp − (1 + λ (1− p)) e−λ

)
(1− (1 + λ) e−λ)2

p
∂ϕ1

∂p
=
λp
(
e−λp − e−λ

)
− λ2p2e−λp

1− (1 + λ) e−λ

p
∂ϕ0

∂p
=
−λp

(
e−λp − e−λ

)
1− (1 + λ) e−λ

.

Using the following Taylor expansions in λ,

λp
(
e−λp − e−λ

)
= λ2p (1− p)− λ3 1

2
p
(
1− p2

)
+ λ4 1

6
p
(
1− p3

)
+ · · ·

λ2p
(
e−λ − pe−λp

)
= λ2p (1− p)− λ3p

(
1− p2

)
+ λ4 1

2
p
(
1− p3

)
+ · · ·

e−λp − (1 + λ (1− p)) e−λ = λ2 1

2
(p− 1)2 + λ3 1

6
(p− 1)2 (p+ 2)

+ λ4 1

24
(p− 1)2 (p2 + 2p+ 3

)
+ · · ·

1− (1 + λ) e−λ = λ2 1

2
− λ3 1

3
+ λ4 1

8
· · · ,

one gets

(
1− (1 + λ) e−λ

)2
λ
∂ϕ0

∂λ
= λ5 1

12
p (p− 1) (3p− 1)− λ6 1

12
p
(
2p3 − 3p+ 1

)
+ · · ·(

1− (1 + λ) e−λ
)2
λ
∂ϕ0

∂λ
= −λ5 1

12
p (1− p)2 (3p− 1) + λ6 1

24
p (1− p)2 (p+ 2) + · · ·(

1− (1 + λ) e−λ
)
p
∂ϕ1

∂p
= −λ2p (2p− 1) + λ3 1

2
p
(
3p2 − 1

)
+ · · ·

(
1− (1 + λ) e−λ

)
p
∂ϕ0

∂p
= λ2p (1− p)− λ3 1

2
p
(
1− p2

)
+ · · · .
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This allows us to compare the leading order of λ in the numerators and denomi-

nators of λ∂ϕ0

∂λ
, λ∂ϕ1

∂λ
, p∂ϕ0

∂p
, and p∂ϕ1

∂p
. One deduces that these functions are bounded

near λ = 0. Away from λ = 0 matters are simpler since the denominators in λ∂ϕ0

∂λ
,

λ∂ϕ1

∂λ
, p∂ϕ0

∂p
, p∂ϕ1

∂p
are bounded away from zero. And so the lemma follows from the

more basic observation that λke−λ and λke−λp are bounded.

Lemma 5.8. Let ξ be a finite signed measure on [0, 1].

(i) sup f

∫ 1

0
f dξ = sup t

∫ 1

t
dξ where f ranges over monotonically increasing func-

tions satisfying 0 ≤ f ≤ 1.

(ii) inf f
∫ 1

0
f dξ = inf t

∫ 1

t
dξ where f ranges over monotonically increasing func-

tions satisfying 0 ≤ f ≤ 1.

(iii) Let M be an upper bound for the absolute value of both quantities in (i) and

(ii). Let ϕ : [0, 1] −→ R with ϕ(0) = a be a function of bounded variation C. Then∣∣∣∣ ∫ 1

0

ϕdξ

∣∣∣∣ ≤ |a| ∣∣∣∣ ∫ 1

0

dξ

∣∣∣∣ + CM.

Proof. We will prove (i) and (iii), as the proof for (ii) is similar to (i).

Proof of (i): It suffices to prove the claim for step functions f . The statement in

(i) asserts that a maximizer of sup f

∫ 1

0
f dξ may be taken to be either f = 0 or else
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a function f with 2 steps. Given a function f with n > 2 steps, let I1, I2 ⊆ [0, 1]

denote the smallest and second smallest steps of nonzero height. Define a new step

function g with n− 1 steps by adjusting the value of f on the interval I1: if ξ(I1) > 0

then define g(I1) = f(I2), otherwise define g(I1) = 0. The function g then satisfies∫ 1

0
f dξ ≤

∫ 1

0
g dξ and has fewer steps.

Proof of (iii): The Jordan decomposition for functions of bounded variation per-

mits us to write ϕ as the difference of two increasing functions. In particular, we

take ϕ = ϕ(0) +C1f1 −C2f2 where C1, C2 ≥ 0 and f1 and f2 are positive, increasing

functions satisfying 0 ≤ fi ≤ 1. Then C1 + C2 ≤ C, the total variation of ϕ. Using

this expression for ϕ,

∫ 1

0

ϕdξ =

∫ 1

0

a dξ + C1

∫ 1

0

f1 dξ − C2

∫ 1

0

f2 dξ

≤
∫ 1

0

a dξ + C1 sup t

∫ 1

t

dξ − C2 inf t

∫ 1

t

dξ.

This shows

∫ 1

0

ϕdξ ≤ |a|
∣∣∣∣ ∫ 1

0

dξ

∣∣∣∣ + (C1 + C2)M,

and the complementary lower bound follows from a similar argument applied to −ϕ.

Discussion. The proof of Theorem 5.5 is based around an argument for multivariable

functions which is a generalization of a much more readily phrased argument for single
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variable functions: for a one variable function f(x) with Lipschitz constant L then

the ith iterate f (i)(x) has Lipschitz constant which grows exponentially as Li. In the

multivariate setting one may have a Lipschitz constant associated to each parameter

of the function f(x1, x2, . . . ). The multivariate generalization of nested composition

may be described by a kind of rooted tree: rooted trees where each vertex v is labeled

by a n-ary function gv, with n = nv depending on v, such that nv is the number of

descendants of v. It is preferable to speak of the functions themselves as the vertices,

although strictly speaking the use of labels allows distinct vertices to be labeled by the

same function. The tree describes a nested composition through the interpretation

that the descendants h1, h2, . . . , hn of a vertex g correspond to composing these n

functions into each argument of g. So the root vertex f represents the outermost

function and the height of the tree indicates the deepest level of nesting of function

arguments inside f . Here we are considering 0-ary functions to be simply values,

indicating that the sequence of compositions stops in that argument.

In one variable, the ith iterate f (i)(x) is represented by a chain (a 1-ary tree)

with i+ 1 vertices. Each edge corresponds to a Lipschitz constant L, and the unique

path from the root to the leaf of the chain has i edges. The product of the Lipschitz

constant for each edge in this path gives Li and this is the Lipschitz constant for

the nested composition. In the multivariate setting, the Lipschitz constant for a
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parameter x is given by summing the corresponding product over all paths starting

from the root and ending with a leaf labeled by x. For a tree of height i there are

at most exponentially many (in i) such paths if the tree has bounded degree. And

each path contributes at most an exponential factor Li if all edges in the tree have a

common Lipschitz constant L.

Proof of Theorem 5.5. Consider four rooted trees which are rooted by mdeter,i, bdeter,i,

V
(i)
deter,0, V

(i)
deter,1 for some fixed i. Each tree consists of internal vertices labeled by

mdeter,j, bdeter,j, V
(j)
deter,0, V

(j)
deter,1 where 1 ≤ j ≤ i and leaves labeled by mdeter,0, bdeter,0,

V
(0)
deter,0, V

(0)
deter,1, V

(0)
deter,≥2, udeter,i, ξ

(j)
deter,0 ξ

(j)
deter,1 where 0 ≤ j ≤ i − 1. The descendant

relations are such that the trees represent the nested composition recursively specified

by equations (5.8).

We need to address how the discussion regarding Lipschitz constants and nested

composition of multivariate functions is compatible with measure valued functions

and arguments. For simplicity, we will specialize the answer to just the particular

trees involved in the present theorem.

Consider the measure valued function Tf :M−→M defined by ξ 7→ f •ξ. Assign

the norm ‖·‖ :M−→ R defined as ξ 7→
∣∣∣ sup t

∫ 1

t
dξ
∣∣∣ ∨ ∣∣∣ inf t

∫ 1

t
dξ
∣∣∣ to the spaceM
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of signed measures. Should the inequality
∣∣∣ ∫ 1

0
ϕdξ

∣∣∣ ≤ L ‖ξ‖ hold, we will interpret4

it as saying that Tϕ has Lipschitz constant L on the one dimensional domain of signed

measures {cξ : c ∈ R}. Every edge in our rooted trees representing composition of a

measure parameter in fact represents either an application of Tϕ for some function

ϕ or it represents an application of ξ 7→
∫ 1

0
ϕdξ (these are the edges which directly

lead to bdeter,i).

The strategy then is to show each edge in our rooted tree has Lipschitz constant

L in this extended sense.

Lemma 5.6 provides the Lipschitz condition for mdeter,i+1 as a function of mdeter,i

and bdeter,i.

Define functions λ(mi, bi) = cdenmi
xm

and p(mi, bi) = e
− bi
mi for the purpose of viewing

ϕ = ϕk(λ, p) as a function of two variables mi and bi. Using Lemma 5.7 and the chain

rule, we get ∂ϕk
∂mi

= O
(

1
mi

+ bi
m2
i

)
and ∂ϕk

∂bi
= O

(
1
mi

)
. Using the domain assumption,

this provides the Lipschitz condition for V
(i+1)
deter,0 and V

(i+1)
deter,1 as functions of mdeter,i and

bdeter,i.

4This is definition is not exactly an instance of Lipschitz, since we are using a seminorm µ 7→∣∣∣ ∫ 1

0
dµ
∣∣∣ for the range.
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Finally, as stated earlier, we must consider the family of transformations {Tϕ}ϕ∈C

where ϕ varies over some class C of functions. Our goal is to show this family of

transformations has a uniform Lipschitz constant. However the nature of finding a

uniform Lipschitz constant requires constraints on the class of functions C depending

on the domain of measures. To illustrate, note the total variation
∫
d |ξ| is repre-

sentable as |Tϕξ| for some function ϕ which varies as +1 or −1 according to the sign

of the measure ξ. For our signed measures ξ
(i)
k from Theorem 5.3, the total variation

is O (n) while the norm is roughly of order
√
n. So a large enough family, e.g. one

which includes all bounded functions ϕ, will have Lipschitz constant of order
√
n —

an inadequate result.

Consider then the particular chains in our rooted trees where every vertex of the

chain is labeled by a measure. Such a chain of height k necessarily represents an

expression of the form ϕ(1) . . . ϕ(k) • ξ for some sequence of functions ϕ(i), and if the

chain is not maximal then the parent of the chain is some vertex bdeter,j appearing as

an expression
∫

[0,1]
ϕ(1) . . . ϕ(k) dξ.

We complete the proof by showing, for every such chain, this integral is at most

Lk ‖ξ‖. In our situation, the class of functions C we must serve consists of k-fold

products of functions ϕ0(νi(x) , pdeter,i) and ϕ1(νi(x) , pdeter,i). Essentially, the special

property in our favor is that the total variation of the functions in this class is well
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controlled, and along the lines of Lemma 5.8 this will produce a Lipschitz bound.

Working with the k-fold products directly instead of the individual transforma-

tions Tϕ makes the presentation easier, but the high level interpretation of what we

are showing can be abstracted as saying the family {Tϕ}ϕ∈C has uniform Lipschitz

constant L over a particular domain of measures, and that Tϕ(ξ) does not leave this

domain.

We note that Lemma 5.8 can be stated in greater generality. First, the total varia-

tion of a function ϕ does not change if the domain is reparametrized by precomposing

ϕ with a smooth invertible function. And so the domain [0, 1] assumption may be

replaced by a domain [0,∞), and the endpoint assumption ϕ(0) = 0 may be replaced

by lim x→∞ϕ(x) = 0.

For functions f, g of bounded variation both satisfying the endpoint condition

a = 0, one has TV(fg) ≤ TV(f) TV(g). Therefore a family of k-fold products of

functions will have total variation uniformly bounded by Lk provided L bounds the

total variation of the individual functions.

Each function ϕ(x) = ϕk(νi(x) , pdeter,i) is a reparametrization of ϕ(λ) =

ϕk(λ, pdeter,i). The functions f(λ) = ϕk(λ, p) where 0 ≤ p ≤ 1 is a constant have
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uniformly bounded total variation: TV(f) ≤
∫∞

0

∣∣∂f
∂λ

∣∣ dλ and it follows from Lemma

5.7 that
∣∣∂f
∂λ

∣∣ has tails of order O
(
e−λ
)
.

Evaluate the functions mdeter,i, V
(i)
deter,0, and V

(i)
deter,1 with the same initial conditions

as the removal chain and with the corresponding random variables for each offset

parameter: mdeter,0 7→ m0, V
(0)
deter,k 7→ V

(0)
k , udeter,j 7→ uj, ξ

(j)
deter,k 7→ ξ

(j)
k . We may also

consider the set Di(η) a random event in this way, which we shall denote as Devent
i (η)

to avoid abuse of notation. More explicitly, Devent
i (η) is defined as the inverse image

of Di(η) by the map Ω −→ S0×S∞ which is defined componentwise by the functions

(i.e. random variables) Ω −→ R and Ω −→ M given by m0, V
(0)
k , uj, and ξ

(j)
k .

Theorem 5.5 says that on the event Devent
i−1 (η) the deviation of the removal chain from

the deterministic trajectory at time i is at most LiKi−1, where

kI,j = |uj|

kII,j = sup t∈[0,1]

∣∣∣ξ(j)
0 ([t, 1])

∣∣∣
kIII,j = sup t∈[0,1]

∣∣∣ξ(j)
1 ([t, 1])

∣∣∣
kj = kI,j ∨ kII,j ∨ kIII,j

Ki = sup j≤ikj.

Theorem 5.9. Ki = Op (
√
n log n) as n→∞, uniformly in i ≥ 0.
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Proof. The exponential tail bounds from Theorems 5.4 and part (i) of 5.3 on the

random variables kj tell us that these variables are individually of size O (
√
n log n)

with exceptional probability that is o
(

1
n

)
. Since there are only O (n) many variables

involved, a union bound on the exceptional events gives an exceptional probability of

o (1).

5.3 The Deterministic System’s Trajectory

The goal of this section is to analyze the limit of the deterministic process. We

specialize our initial conditions to mdeter,0 = cdenn and V
(0)
deter,k = nµk where µk is the

measure from part (iii) of Theorem 5.1, and set udeter,i = 0, ξ
(i)
deter,k = 0. For this

section, n is always fixed and limits are as i→∞. Let βi = mdeter,i

m
, which denotes the

proportion of hyperedges still remaining after step i.

Lemma 5.10. V
(i)
deter,≥2 has Lebesgue density

dV
(i)
deter,≥2

dL
(x) = P ( Poiss(νi(x)) ≥ 2 ) .

Proof. Proof by induction. When i = 0 the statement comes from the definition of

µk. Assume the result holds for some i > 0. By equation (5.3b), one gets V
(i+1)
deter,≥2 =
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ϕ≥2(νi, βi) • V (i)
deter,≥2. Using the induction hypothesis and the definition of ϕ,

dV
(i+1)
deter,≥2

dL
(x) = ϕ≥2(νi(x) , pdeter,i)P ( Poiss(νi(x)) ≥ 2 )

=
1− (1 + νi(x) pdeter,i) e

−νi(x)pdeter,i

1− (1 + νi(x)) e−νi(x)
P ( Poiss(νi(x)) ≥ 2 )

= 1− (1 + νi(x) pdeter,i) e
−νi(x)pdeter,i

= P ( Poiss(νi(x) pdeter,i) ≥ 2 ) .

Lemma 5.11 (Recurrence for βi). For all i ≥ 0,

log βi+1 = −a
∫ ∞
acdenβi

e−t

t
dt.

Proof. We begin by organizing some equations:

bdeter,0 = n

∫ 1

0

ν0(x) e−ν0(x) dx (5.11)

bdeter,i = n

∫ 1

0

ν0(x) βi
(
e−ν0(x)βi − e−ν0(x)βi−1

)
dx for i ≥ 1 (5.12)

log βi+1 = −
(
bdeter,i
mdeter,i

+ · · · +
bdeter,0
mdeter,0

)
. (5.13)

Equations (5.11) and (5.12) come the definition (5.5) for bdeter,i, Lemma 5.10, and

use of the identities νi = ν0βi and νipdeter,i = ν0βi+1. Equation (5.13) comes from

rewriting definition (5.3a) for mdeter,i as log βi+1 = − bdeter,i
mdeter,i

+ log βi and iteration.

When bdeter,i is divided by mdeter,i, the integrals in (5.11) and (5.12) have an overall
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factor of nβi
mdeter,i

= 1
cden

, leading to a telescoping sum in (5.13) which simplifies to

log βi+1 = − 1

cden

∫ 1

0

ν0(x) e−ν0(x)βi dx.

We perform the substitution t = ν0(x) βi = acdenβi
x

in this last integral (giving

dt = − tdx
x

= − t2dx
acdenβi

) to complete the proof.

From the defining equation (5.3a) for mdeter,i, one has βi+1 = βie
−bdeter,i/mdeter,i .

Evidently then, βi is a decreasing, non-negative sequence and therefore converges to

some β∞ ≥ 0 as i→∞. So either β∞ = 0 or else β∞ is a solution to the equation

log β = −a
∫ ∞
acdenβ

e−t

t
dt. (5.14)

If this equation has any solutions, then they are all strictly less than β0 = 1. Let

β′ denote a credible candidate for β∞: the largest solution if there is any, and zero

otherwise. We may rewrite the recurrence of Lemma 5.11 as the fix point iteration of

f(β) where

f(β) = exp

(
−a
∫ ∞
acdenβ

e−t

t
dt

)
, (5.15)

and of course the fixed points of f are the solutions to (5.14). Since f(1) < 1, the

portion of the graph y = f(β) with β′ < β ≤ 1 lies below the line y = β, from which

we may conclude βi converges to β′ — that is, β∞ = β′.
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The proof of the next theorem requires the following simple lemma.

Lemma 5.12 (Exponential Integral).

∫ ∞
x

e−t

t
dt = −γ − log x+ h(x)

where h : R≥0 −→ R≥0 is a bijection with h(0) = 0.

Proof. Using log x =
∫ x

1
1
t
dt we have h(x) = γ+

∫∞
1

e−t

t
dt+

∫ x
1

1−e−t
t

dt. From this and

integral tables, h(0) = 0. Differentiating, h′(x) = 1−e−x
x

> 0, so that h is monotonic.

Since h(x) = γ + o (1) + log x as x → ∞, the range of h includes all non-negative

reals.

For purposes that will become clear during the following proof, define βmin = log a
acden

.

Theorem 5.13 (Limiting Proportion of Hyperedges).

1. Case a < 1: β∞ > 0, with β∞ ↓ 0 as cden ↓ 0.

2. Case a = 1:

If cden ≤ e−γ then β∞ = 0.

If cden > e−γ then β∞ > 0 with β∞ ↓ 0 as cden ↓ e−γ.

3. Case a > 1:
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If cden < c∗ then β∞ = 0.

If cden = c∗ then β∞ = βmin = log a
acden

.

If cden > c∗ then β∞ > log a
ac∗

> βmin with β∞ ↓ log a
ac∗

as cden ↓ c∗.

Proof. Rewrite (5.14) by setting θ = acdenβ to get the equivalent equation

log θ + a

∫ ∞
θ

e−t

t
dt = log (acden) . (5.16)

As cden varies, the right hand side expression, log acden, varies over R. The range of the

left hand side expression, H(θ), determines the existence or non-existence of solutions

for θ, and hence solutions for β (take note, however, the solutions for θ and β are not

linearly related as functions of cden). Observe that as θ →∞, H(θ) = log θ + O (1) .

Using Lemma 5.12 to expand the integral near 0, we have

H(θ) = (1− a) log θ − aγ + ah(θ) ,

revealing that near θ = 0, H(θ) = (1− a) log θ +O (1).

Considering a < 1, this behavior at 0 and ∞ implies that for every cden > 0 there

exists a solution.

Considering a > 1, this behavior at 0 and ∞ implies H(θ) has an absolute mini-

mum, and so has no solution if log (acden) is less than this minimum. Differentiating,
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H ′(θ) is zero at θ∗ := log a. Substituting θ 7→ θ∗ into (5.16) gives the critical value

of cden = c∗ (where c∗ is as defined in Theorem 2.1), below which β∞ = 0. This

establishes β∞ = βmin when cden = c∗. For cden > c∗, the largest solution θ is to the

right of the minimum θ∗, which is equivalent to β∞ > βmin.

Finally considering a = 1, equation (5.16) simplifies to

h(θ) = γ + log (cden) .

By the properties of h from Lemma 5.12, this has a unique positive solution precisely

when cden > e−γ.

Return now to any a > 0. It only remains to prove monotonicity of β∞ as a

function of cden. Differentiating equation (5.14) by cden,

1

β

dβ

dcden

= ae−acdenβ
(

1

β

dβ

dcden

+
1

cden

)
.

So the equation provides dβ∞
dcden

> 0 whenever ae−acdenβ∞ < 1. It is useful for now

and later to notice ae−acdenβ < 1 is equivalent to β > βmin = log a
acden

, and β∞ > βmin is

equivalent to β∞ > β∗ where

β∗ = inf {β∞(cden) : β∞(cden) > 0, cden > 0} .

Note though that βmin depends on both a and cden, while β∗ depends only a. These
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equivalences prove β∞(cden) is strictly increasing except for the established intervals

on which it is constantly zero.

We say a sequence xi → x∞ converges exponentially if there exists C > 0 so that

|xi − x∞| = O
(
e−Ci

)
, and converges super-exponentially if − log |xi − x∞| = ω(i).

Theorem 5.14 (Rate of Convergence for βi).

1. Case a < 1: bdeter,i
mdeter,i

→ 0 and βi converges exponentially.

2. Case a = 1:

If cden ≤ e−γ then bdeter,i
mdeter,i

→ − γ − log cden.

If cden > e−γ then bdeter,i
mdeter,i

→ 0.

If cden 6= e−γ then βi converges exponentially.

3. Case a > 1:

If cden < c∗ then bdeter,i
mdeter,i

→∞ and βi converges super-exponentially.

If cden ≥ c∗ then bdeter,i
mdeter,i

→ 0.

If cden > c∗ then βi converges exponentially.
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Proof. Taking the derivative of f(β) from (5.15),

f ′(β) =
f(β)

β
ae−acdenβ.

We recall from the fix point discussion preceding (5.15) that f(β) ≤ β when β ≥ β∞.

Also note that ae−acdenβ < 1 when β > βmin. So under the condition β∞ > βmin, one

has f ′(β) < 1 for all β ≥ β∞. This says f is a contraction mapping and βi converges

exponentially. The condition β∞ > βmin covers the cases: a < 1; a = 1, cden > e−γ;

and a > 1, cden > c∗.

Since − log βi+1

βi
= bdeter,i

mdeter,i
, either expression converges to 0 when β∞ > 0. This

accounts for all limits bdeter,i
mdeter,i

→ 0 in the statement of the theorem.

Now, combining lemmas 5.11 and 5.12 we get

log
βi+1

βi
= a (γ + log (acden)− h(acdenβi)) + (a− 1) log βi, (5.17)

which when β∞ = 0 says that as i→∞,

log
βi+1

βi
= a (γ + log (acden)) + (a− 1) log βi + o (1) .

Considering the case a = 1, β∞ = 0 we conclude − log βi+1

βi
= bdeter,i

mdeter,i
→ γ + log cden.

If additionally cden < e−γ, then γ + log cden < 0 and βi converges exponentially.

Considering the case a > 1, β∞ = 0 we conclude − log βi+1

βi
= bdeter,i

mdeter,i
→ ∞ and βi

converges super-exponentially.
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Lemma 5.15.

V
(i)
deter,≥2([0, 1])

mdeter,i
=

1− e−acdenβi
cdenβi

V
(i)
deter,2([0, 1])

mdeter,i
=

1

2
ae−acdenβi .

Proof. From the definition,

V
(i)
deter,≥2([0, 1]) = n

∫ 1

0

1− (1 + ν0(x) βi) e
−ν0(x)βi dx

V
(i)
deter,2([0, 1]) = n

∫ 1

0

1

2
ν2

0(x) β2
i e
−ν0(x)βi dx.

Perform the substitution t = ν0(x) βi = acdenβi
x

(giving dt = − tdx
x

= − t2dx
acdenβi

) to get

V
(i)
deter,≥2([0, 1]) = n acdenβi

∫ ∞
acdenβi

1− (1 + t) e−t

t2
dt

V
(i)
deter,2([0, 1]) = n acdenβi

∫ ∞
acdenβi

1

2
e−t dt =

n

2
acdenβie

−acdenβi .

For the first expression, we can employ the identity

1− (1 + t) e−t

t2
=

∫ 1

0

se−st ds

and use Fubini’s Theorem to derive the integration formula

∫ b

a

1− (1 + t) e−t

t2
dt =

∫ 1

0

∫ b

a

se−st dt ds

=

∫ 1

0

e−sa − e−sb ds =
1

a

(
1− e−a

)
− 1

b

(
1− e−b

)
.
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We will say that the deterministic system lies in Di(η) if the sequences mdeter,j,

V
(j)
deter,0, and V

(j)
deter,1 satisfy the bounds of (5.9) for 0 ≤ j ≤ i — formally, if

(s0, 0, 0, . . . ) is an element of Di(η) ⊆ S0 × SN, where s0 ∈ S0 is defined by

s0 =
(
mdeter,0, V

(0)
deter,0, V

(0)
deter,1, V

(0)
deter,≥2

)
and these later quantities being as defined in the

beginning of this chapter.

Corollary 5.16.

(i) If a and cden are such that β∞ = 0, then for all ε > 0 there exists η > 0 and

i > 0 such that for all n ≥ 1, mdeter,i < εn and the deterministic system lies in

Di−1(η).

(ii) Unless a > 1 and cden < c∗, there exists η > 0 such that for all n ≥ 1 and i ≥ 0

the deterministic system is contained in Di(η).

Proof. An important observation is that mdeter,i and V
(0)
deter,k are homogenous functions

of their parameters mdeter,0, V
(0)
deter,0, V

(0)
deter,1, V

(0)
deter,≥2 — if these initial conditions at

i = 0 are scaled by some α, then the entire sequence for all i > 0 is scaled by

α. Because our initial conditions are scaled by n, the trajectory of the sequence

mdeter,i

n
= cdenβi is independent of n and likewise the exit time of the set Di(η) is a

function of i but not n.
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For (i), we may pick i so that cdenβi < ε (since β∞ = 0) and choose the smallest

set Di−1(η) which contains the trajectory of the deterministic system up to time i−1.

For (ii), the sequence bdeter,i
mdeter,i

converges by Theorem 5.14. The sequence

1
mdeter,i

V
(i)
deter,≥2([0, 1]) increases to a limit which is at most a by Lemma 5.15. Take

η to be a common bound on both sequences.

We remark that for all i ≥ 0 such that the deterministic system is contained

in Di(η), the bound bdeter,i
mdeter,i

≤ η implies that mdeter,i+1 ≥ e−ηmdeter,i, bounding the

exponential rate decay for mdeter,i. For any such i and any 0 < σ < 1, it follows that

there exists ε > 0 such that mdeter,i ≥ nσ whenever i ≤ ε log n.

5.4 The 2-Core and the Limiting State of the Re-

moval Chain

Theorem 5.17.

(i) Let ε > 0, and let η and i be as in (i) of Corollary 5.16 for this ε. Then as
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n→∞,

P (Devent
i (η)) = 1− o (1) .

(ii) Let η0 be as in (ii) of Corollary 5.16, and let η > η0 ∨ c−1
den. Then there exists

ε > 0 so that for i ≤ ε log n and as n→∞,

P (Devent
i (η)) = 1− o (1) .

Proof. The strategy is to estimate the differences z1 = bdeter,i
mdeter,i

− bi
mi

and z2 =
V

(i)
deter,≥2([0,1])

mdeter,i
−

V
(i)
2 ([0,1])

mi
. Our hypotheses inform us the deterministic system lies in Di(η0), so the

event that these random differences are sufficiently small will contain the event

Devent
i (η). The differences z1 and z2 can each be represented as deviations of the

function f(x, y) = y
x
, which has partial derivatives ∂f

∂x
= − y

x2
and ∂f

∂y
= 1

x
.

On the event Devent
i−1 (η) and excluding an additional event Ei of exceptional prob-

ability o
(

1
n

)
according to Theorem 5.9, the quantities mi, bi, and V

(i)
≥2 ([0, 1]) deviate

at most LiKi−1 from the deterministic quantities. Let σ1, σ2 ∈ (0, 1), to be chosen

later. Let ε1 > 0 be as in the remarks following Corollary 5.16 so that mdeter,i > nσ1 .

Let ε2 > 0 be sufficiently small so that Li = O (nσ2) for i ≤ ε2 log n. Let h(n) = η∨1
nσ1

,

which is greater than η∨1
mdeter,i

for i ≤ ε1 log n.

For the remaining part of the proof we consider i ≤ (ε1 ∧ ε2) log n. By bound-
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ing the first derivatives of f over
{

(x, y) ∈ R2 : x ≥ 0, y ≥ 0, y
x
≤ η
}

, one obtains

the bound |zk| ≤ O (hLiKi−1) holding on the event Devent
i−1 (η) ∩ Ec

i of the preceding

paragraph. As O (hLiKi−1) = O
(
n

1
2

+σ2−σ1 log n
)

, let us pick σ1 and σ2 so that this

exponent is negative. With this choice and with n sufficiently large, Devent
i−1 (η) ∩ Ec

i

contains the event that the differences z1 and z2 are both small, which in turn contains

the event Devent
i (η).

In other words, we have shown the symmetric difference Devent
i−1 (η)⊕Devent

i (η) has

probability 1 − o
(

1
n

)
. It follows that Devent

i (η) ⊕ Devent
0 (η) has probability 1 − o (1).

For η > c−1
den, one has ηm > n, and so Devent

0 (η) has probability 1.

Proof of Main Theorem 2.1 for special cases: Let R once again denote lim i→∞mi,

the number of hyperedges in the 2-core. Let ε > 0 be given. We will prove the cases

of the Main Theorem which assert R = o (n) by showing R ≤ εn with probability

tending to one as n→∞. Pick η and i as in (i) of Corollary 5.16 so that mdeter,i <
ε
2
n.

Let L be as in Theorem 5.5 for η, so that if we stop the process at i, then with high

probability mi = mdeter,i + O (LiKi−1). This becomes mi = mdeter,i + O (
√
n log n), as

i is fixed.

Using the simple observation that R ≤ mi, we get R ≤ mi = ε
2
n + O (

√
n log n),

which is less than εn for n sufficiently large.
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For the other cases when β∞ > 0 we seek to prove R = β∞m+ o (n), for we have

already proved in Theorem 5.13 facts about c and β which align with the cases in the

Main Theorem. (Note that unlike Theorem 5.13, the Main Theorem does not assert

any statement for the case c = c∗ when a > 1). While we know quite well how the

process mimics the deterministic system up to some time i = ε log n, we do not yet

know if the number of edges mi at time i mimics the number of edges in the 2-core.

To this end we need to consider what happens between time i and reaching the 2-core

so that the simple observation R ≤ mi may be improved to R = mi + o (n). We will

adopt a different approach and look at a slowed down removal process where only

one vertex with degree 1 is removed at a time, the vertex being chosen uniformly

at random. This may lead to vertices being removed in a very different order than

the original process, but the terminal state—the 2-core of the original hypergraph—

remains the same.

Let Si denote the number of vertices with degree 1 after i steps of this new process

and let T denote the stopping time when there are no more degree 1 vertices present.

To be precise, our definition depends on a choice of an initial hypergraph. (The

eventual intention is to run the original process for ε log n iterations and use the

resulting hypergraph as the starting hypergraph for the small step process, but this

does not concern our definition of Si.) Time indexing in the new process therefore
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begins anew, in the sense that i counts the number of small steps (as opposed to total

number of steps) and likewise T denotes inf {i : Si = 0} (as opposed to the total

time). Since each step of the slowed down process changes the number of hyperedges

by 1, the result we are after is that Si converges to 0 quickly—in time T = o (n).

Such a result means that the number of hyperedges R in 2-core differs from mi by

o (n).

In the small step process, let us denote by v
(i)
k the number of vertices of degree k

after i steps and by ri the number of hyperedges after i steps (so ri deterministically

decreases by 1).

Suppose vertex v in hyperedge e is removed at step i. The increment Si+1 − Si

decreases by the number of degree 1 vertices in e (including v itself) and increases by

the number of degree 2 vertices in e. The latter is distributed as the sum of Bernoulli

variables (one for each degree 2 vertex) with success probability 2
ri

.

So the process Si lends the following conservative approximation (from the point

of view of convergence to 0): at every step it decreases by 1 minus a binomial random

variable, or more explicitly Si+1 − Si ≤ −1 + Bin
(
v

(i)
2 , 2

ri

)
. At time i = 0, we may

approximate the expectation of this binomial using the deterministic system. From

Lemma 5.15,
2V

(i)
deter,2([0,1])

mdeter,i
= ae−acdenβi which is strictly less than 1 provided βi > βmin.

81



This holds for all cases with β∞ > 0 once the case c = c∗ is excluded for a > 1.

Therefore E (S1 − S0) < 0, and moreover Lemma 5.15 informs us that it is uniformly

(in n) bounded away from 0.

We want to establish a simple condition for when E [St+1 − St | Ft] is negative

and bounded away from 0. Since the possibility of t = T precludes it being strictly

less than 0, we more precisely seek for every 0 < σ < 1 some ε > 0 so that

E [St+1 − St | Ft] ≤ − ε1T>t holds for all t < nσ. With each step, v
(i)
2 may in-

crease (if the hyperedge being removed contained degree 3 vertices), which acts to

slow the convergence of Si. We rely on another conservative approximation: there

are at most n degree 3 vertices, so at each step v
(i)
2 increases by at most Bin

(
n, 3

ri

)
.

Essentially speaking, this is O (1) at each step, which over the course of o (n) many

steps will not slow the process significantly.

These thoughts in mind, we define a new process Si, coupled so that Si ≥ Si

and Si+1 − Si ≥ Si+1 − Si, which we achieve by defining the new increments as

Si+1 − Si = −1 + Bin
(
Ui,

2
ri

)
where Ui+1 − Ui = Bin

(
n, 3

ri

)
. With the bound

E (Ut − Ui) ≤ 3tn
rt

= o (n), it follows that E
(
St+1 − St

)
≤ E

(
S1 − S0

)
+ o

(
n
rt

)
. For

β∞ > 0 one has r0 = Ω(n), and so rt = Ω(n)− t = Ω(n). Therefore o
(
n
rt

)
= o (1).
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Lemma 5.18. Given 0 < σ < 1, there exists y > 0 and δ > 0 such that

E [exp (y (St+1 − St)) | Ft] ≤ exp (−δ1T>t)

for all t ≤ nσ.

Proof. Let f(y) denote E [exp (y (St+1 − St)) | Ft]. The expectation exists since, for

example, 0 ≤ Si ≤ n for any i. The Taylor expansion for f(y) is given by

f(y) = f(0) + yE [St+1 − St | Ft] + · · · .

Since f(0) = 1, the function g(y) = log f(y) has Taylor expansion

g(y) = yE [St+1 − St | Ft] + · · · .

Considering then the behavior of g(y) near 0, it attains a negative local minimum −δ

at some y > 0.

Theorem 5.19. Suppose S0 = O (nσ1) for some 0 < σ1 < 1. Then T = O (S0) .

Proof. The proof is a general martingale argument. Pick σ1 < σ < 1 and let y and

δ be as in the Lemma for this σ. Let M i = exp
(
ySi +

∑i−1
j=0 δ1T>j

)
, and let Mi =

M i∧nσ which is a supermartingale with respect to Fi. One has the Markov bound

P (T > t) ≤ I −1EMt∧T , where I = inf T>tMt∧T . Being a supermartingale, EMt∧T ≤

EM0 = exp (yS0). And inf T>tMt∧T = inf T>tMt ≥ exp (δ (t ∧ nσ)). Together,
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P (T > t) ≤ exp (yS0 − δ (t ∧ nσ)). This probability may be made small by choosing

t = CS0 (which is o (nσ), and so passes through the min function) for a sufficiently

large constant C.

Proof of Main Theorem 2.1, remaining cases: Pick η and ε > 0 as in (ii) of Corollary

5.16. Let L be as in Theorem 5.5 for η, so that if we stop the process at i = ε log n, then

with high probability mi = mdeter,i +O (LiKi−1). Now pick instead i = ε1 log n where

0 < ε1 < ε is chosen sufficiently small depending on L so that mi = mdeter,i + o (n).

For this i, one has bi = O (nσ) for some 0 < σ < 1. Using Theorem 5.19,

R = mi + O (bi) = mi + o (n). And as i → ∞, we have mi = β∞m + o (n). Putting

these last two estimates together, R = β∞m+ o (n).
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