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Regulation of Adipocyte Transcription by PPARgamma Ligands

Abstract
Rosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed its widespread clinical
use. Rosi functions as a high-affinity ligand for PPARgamma, the adipocyte-predominant nuclear receptor
(NR). The classic model of NR action, involving binding of ligand to the NR on DNA, explains positive
regulation of gene expression, but both ligand-dependent transcriptional repression and indirect regulation
are not well understood. We have addressed these issues by studying the direct effects of rosiglitazone on gene
transcription, using global run-on sequencing (GRO-seq). Rosi-induced changes in gene body transcription
were pronounced after 10 minutes and correlated with steady-state mRNA levels as well as with transcription
at nearby enhancers (eRNAs). Up-regulated eRNAs occurred almost exclusively at PPARg binding sites, to
which rosi treatment recruited coactivators including MED1, p300, and CBP, without changes in binding of
the corepressor NCoR. By contrast, down-regulated eRNAs fell in sites devoid of PPARg but enriched for a
variety of other TFs in the C/EBP and AP-1 families. These enhancers lost coactivator binding upon rosi
treatment, suggesting that rosi treatment causes redistribution of coactivators to PPARg sites and away from
enhancers containing other TFs, leading to transcriptional repression at these eRNAs and their target genes.
We also investigated the function of MRL-24, a compound that has been shown to lack PPARg transactivation
activity and regulate a distinct subset of PPARg target genes while functioning as an equally effective insulin
sensitizer as rosi. Though our goal was to identify whether MRL-24 regulates the same functional enhancers
marked by eRNAs as rosi, we instead found that MRL-24 does not control a distinct subset of target genes,
but rather acts as a partial agonist for PPARg. Together, these studies further our understanding of
transcriptional regulation by modulation of PPARg activity, including insights into determining functional
enhancers and mechanisms of transcriptional repression by activation of a NR.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Pharmacology

First Advisor
Mitchell A. Lazar

Subject Categories
Genetics | Molecular Biology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1456

http://repository.upenn.edu/edissertations/1456?utm_source=repository.upenn.edu%2Fedissertations%2F1456&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

REGULATION OF ADIPOCYTE TRANSCRIPTION BY PPAR 

LIGANDS 

 

Sonia E. Step 

 

A DISSERTATION 

in 

Pharmacology 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

 

2014 

 

Supervisor of Dissertation: 

 

   

______________________________   

Mitchell A. Lazar, M.D., Ph.D.   

Sylvan Eisman Professor of Medicine 

 

       

Graduate Group Chairperson: 

 

 

______________________________ 

Julie A. Blendy, Ph.D. 

Professor of Pharmacology 

 

 

Dissertation Committee: 

Gerd Blobel, M.D., Ph.D., Frank E. Weise III Professor of Pediatrics 

Klaus H. Kaestner, Ph.D., Thomas and Evelyn Butterworth Professor in Genetics 

Patrick Seale, Ph.D., Assistant Professor of Cell and Developmental Biology 

Kyoung-Jae Won, Ph.D., Research Assistant Professor of Genetics 



ii 

 

ACKNOWLEDGMENTS 

I would first like to thank my advisor Mitch for his guidance and mentorship over the last 

several years. His enthusiasm and support have pushed me to become a better student, 

scientist and critical thinker. I am also lucky to have had the opportunity to be a part of 

his lab, which is full of smart, passionate, and supportive scientists. I am grateful for 

these colleagues and friends in the Lazar Lab, past and present. Among them, I especially 

need to thank a few people who have contributed directly to this work. Andreas Prokesch 

began the troubleshooting and technical optimization of the GRO-seq protocol when I 

first started in the lab, and generously taught me everything he knew. Dave Steger 

mentored me during my rotation, and has continued to for four more years. He also 

performed a couple of the ChIP-seq experiments included here, and provided guidance 

with many others. Jill Marinis and I worked together on the eRNA knock-down 

experiments. Eric Chen provided valuable technical support and advice.  

 

Our bioinformatics collaborators, Hee-woong Lim and Kyoung-Jae Won, did great 

computational work. Our partnership with them has been a great example of a fruitful 

collaboration between wet lab biologists and computational biologists.  

 



iii 

 

I would also like to thank my thesis committee: Gerd Blobel who served as my chair, 

Klaus Kaestner, Patrick Seale, and Kyoung-Jae Won. I am grateful for their time, critical 

feedback, and advice.     

 

I would like to acknowledge the Pharmacology Graduate Group, particularly Vlad 

Muzykantov and Julie Blendy, as well as Sarah Squire, for their help and support.  

 

On the personal side, I first and foremost need to thank my parents for everything they 

have done for me over the past 28 years. From immigrating to the US 24 years ago, to 

helping me develop an interest and curiosity in science, to their constant love and support 

– everything they have done has helped me get to where I am today and I am truly 

grateful. I am indebted too to my grandparents, who helped raise me and taught me the 

values of hard work, dedication, and humility. I am also thankful that my brother has 

been, and will always be, by my side. Last, but certainly not least, I would like to thank 

Joel for his endless support and encouragement during the ups and downs of this journey, 

and for helping me in a million ways big and small to get to this point.  

 

  



iv 

 

ABSTRACT 

REGULATION OF ADIPOCYTE TRANSCRIPTION BY PPAR 

LIGANDS 
 

Sonia E. Step 

Mitchell A. Lazar 

 

Rosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed 

its widespread clinical use.  Rosi functions as a high-affinity ligand for PPAR, the 

adipocyte-predominant nuclear receptor (NR).  The classic model of NR action, 

involving binding of ligand to the NR on DNA, explains positive regulation of gene 

expression, but both ligand-dependent transcriptional repression and indirect regulation 

are not well understood.  We have addressed these issues by studying the direct effects of 

rosiglitazone on gene transcription, using global run-on sequencing (GRO-seq). Rosi-

induced changes in gene body transcription were pronounced after 10 minutes and 

correlated with steady-state mRNA levels as well as with transcription at nearby 

enhancers (eRNAs).  Up-regulated eRNAs occurred almost exclusively at PPAR binding 

sites, to which rosi treatment recruited coactivators including MED1, p300, and CBP, 

without changes in binding of the corepressor NCoR.  By contrast, down-regulated 

eRNAs fell in sites devoid of PPAR but enriched for a variety of other TFs in the C/EBP 

and AP-1 families. These enhancers lost coactivator binding upon rosi treatment, 

suggesting that rosi treatment causes redistribution of coactivators to PPAR sites and 

away from enhancers containing other TFs, leading to transcriptional repression at these 
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eRNAs and their target genes. We also investigated the function of MRL-24, a compound 

that has been shown to lack PPAR transactivation activity and regulate a distinct subset 

of PPAR target genes while functioning as an equally effective insulin sensitizer as rosi. 

Though our goal was to identify whether MRL-24 regulates the same functional 

enhancers marked by eRNAs as rosi, we instead found that MRL-24 does not control a 

distinct subset of target genes, but rather acts as a partial agonist for PPAR. Together, 

these studies further our understanding of transcriptional regulation by modulation of 

PPAR activity, including insights into determining functional enhancers and 

mechanisms of transcriptional repression by activation of a NR.  
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1.1 Diabetes and thiazolidinediones  

Diabetes is a chronic disease that presents a growing burden on human health and the 

world economy. An estimated 347 million people worldwide have diabetes, and this 

number is expected to grow significantly in the coming decades (Danaei et al. 2011). Of 

the drugs used to treat diabetes, thiazolidinediones (TZDs) are the only class that 

functions primarily by improving insulin sensitivity. This class includes rosiglitazone 

(Avandia) and pioglitazone (Actos). Several large-cohort studies have demonstrated the 

efficacy of TZDs in improving glycemic control and preventing diabetes (Kahn et al. 

2006; DeFronzo et al. 2011), but other trials showed an association with adverse effects, 

including cardiovascular risk, fractures, and bladder cancer (Nissen and Wolski 2007; 

Colhoun et al. 2012; Neumann et al. 2012). Based on these studies, in 2010 the FDA 

placed restrictions on the prescription and use of rosiglitazone (rosi), due primarily to 

concerns of increased risk of myocardial infarction. However, the FDA reversed this 

decision in 2013 after a randomized study designed specifically to assess cardiovascular 

risk on rosi was reanalyzed and no increased risk of heart attack or death was found 

(Mahaffey et al. 2013). These clinical studies demonstrate that TZDs have tremendous 

potential to aid in glycemic control, but their adverse effects have hindered widespread 

use. Gaining a better understanding of their mechanism of action may help in developing 

better drugs with fewer side effects.  
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1.2 The function of the nuclear receptor PPAR  

1.2a Enhancer function and regulation 

Specialization of cells in development and signal response is critical for organismal 

function. This regulation depends on the ability of cells to activate specific gene 

expression patterns in response to environmental cues. Enhancers are the key genetic 

elements that control cell-specific gene expression; they were first described as DNA 

elements that act over a distance and in any orientation to increase gene expression 

(Banerji et al. 1981). Though most of our knowledge about enhancer function comes 

from studies of individual loci, novel techniques have recently allowed for the detection 

of putative enhancer elements genome-wide and across cell types. Enhancers are usually 

a few hundred base pairs long, located in distal intergenic regions, and lack a unifying 

sequence composition (Buecker and Wysocka 2012). They do, however, contain specific 

recognition sequences for transcription factor (TF) binding. Tens of thousands of putative 

enhancers have been identified in different cell types, based on markers including histone 

modifications, coactivator occupancy, or TF binding (Xie and Ren 2013). 

 

Such studies have also demonstrated that many different TFs tend to colocalize on a 

genome-wide scale in a given cell type (Chen et al. 2008), whereas the same factor in 

different cell types or across developmental stages binds in different locations (Odom et 

al. 2004). Enhancer activity appears to depend on relatively simple combinations of 

lineage-determining transcription factors (Heinz et al. 2010). Cooperative binding of 
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transcription factors to closely clustered response elements in closed chromatin regions 

increases chromatin accessibility to additional TFs, and causes the recruitment of 

coactivators such as histone remodeling complexes. Specific histone marks have been 

linked to active enhancers, including H3K4me1, H3K27ac, and H3K9ac (Buecker and 

Wysocka 2012). Thus, genome-wide studies that aim to define enhancer elements 

generally rely on the enrichment of these histone marks, the presence of coactivators such 

as CBP and p300, the occupancy of RNA Polymerase II, or the strong binding of a 

lineage-determining TF.  

 

Though several mechanisms have been proposed for communication between a distal 

enhancer and its target promoter, the one with the most supporting evidence is the model 

of spatial colocalization, in which the enhancer and promoter are physically brought 

together, with the intervening chromatin looped out (Kleinjan and van Heyningen 2005). 

The presence of chromatin looping has now been tested in many models by experiments 

such as chromatin conformation capture (3C) (Dekker et al. 2002). These chromatin 

loops are believed to drive the specificity of enhancer-promoter interactions, as well as 

the phenomenon of transcription at enhancers, described below.   

 

1.2b Nuclear receptors 

Years after their anti-diabetic effects were established in animal models, TZDs were 

shown to be high-affinity ligands for the TF peroxisome proliferator-activated receptor  
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(PPAR) (Lehmann et al. 1995), a member of the nuclear receptor (NR) superfamily. 

NRs are a large family of mostly ligand-dependent transcription factors that regulate 

many aspects of physiology, including development and metabolism (Mangelsdorf et al. 

1995).  

 

All NRs share the same basic structure. The N-terminus contains the A/B domain, 

followed by the DNA binding domain (DBD), the hinge region, and the ligand binding 

domain (LBD) at the C-terminus (Helsen et al. 2012). The DBD consists of two zinc-

finger elements, which confer sequence specificity to the hexanucleotide response 

element that each NR recognizes, known as a half-site. The LBD contains an interior 

pocket specific to the ligand it binds, as well as a ligand-dependent activation function 

domain (AF-2). AF-2 consists of several helices including helix 12, and is capable of 

recruiting transcriptional coactivators (Shiau et al. 1998). Ligands regulate the 

recruitment of coactivators via the LBD by altering the conformation of helix 12. In the 

absence of agonist, the conformation of the LBD creates a different binding surface, 

favoring corepressor recruitment (Bain et al. 2007).  

 

The NR family is divided into three classes (Bain et al. 2007). The first class is steroid 

receptors, including estrogen receptor (ER), androgen receptor (AR), and glucocorticoid 

receptor (GR). These NRs are located in the cytoplasm in the absence of ligand, and the 

presence of ligand causes them to dissociate from heatshock proteins, translocate to the 
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nucleus, and bind to their response elements. The second class is the thyroid/retinoid 

family, which includes thyroid receptor (TR) and retinoic acid receptor (RAR). These 

NRs are constitutively bound to DNA, and the presence of ligand causes a 

conformational change in helix 12, leading to the recruitment of coactivators and 

activation of transcription. The last class is that of orphan nuclear receptors, such as 

REV-ERB and ROR, which were discovered based on sequence homology and have no 

known physiological ligands. Many orphan nuclear receptors have been “adopted” since 

their discovery when their ligands were identified.  

 

NRs regulate transcription through ligand-controlled recruitment of coregulators. Most 

coregulators function as multi-unit protein complexes that regulate transcription by 

modifying chromatin (Millard et al. 2013). The best-understood chromatin modifications 

include histone acetylation and DNA methylation. Coactivator complexes often include 

histone acetyltransferases (HATs), such as CBP and p300, as well as other factors that 

recruit transcriptional machinery or favor promoter looping. Corepressor complexes often 

contain the nuclear corepressors NCoR and SMRT, as well as histone deacetylases 

(HDACs).  

 

1.2c The role of PPAR in TZD function and insulin sensitivity 

The expression of PPAR is dramatically induced during adipogenesis and the gene is 

expressed predominantly in adipose tissue (Chawla and Lazar 1994; Tontonoz et al. 
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1994a). PPAR is necessary (Rosen et al. 1999) and sufficient (Tontonoz et al. 1994b) for 

adipogenesis, and is also critical for the functions of mature adipocytes including lipid 

metabolism, adipokine secretion, and insulin sensitivity (Rangwala and Lazar 2004).  

 

PPAR, like most NRs, is a ligand-dependent transcription factor (Glass and Rosenfeld 

2000). TZDs contribute to insulin sensitivity by acting on adipose tissue PPAR to 

regulate gene transcription both positively and negatively. For example, TZDs induce 

insulin sensitizing factors adiponectin (Maeda et al. 2001) and FGF-21 (Moyers et al. 

2007), while suppressing the expression of genes promoting insulin resistance, including 

TNF(Hofmann et al. 1994, resistin (Steppan et al. 2001), and retinol binding protein 4 

(Yang et al. 2005). The most potent TZD in the clinic is rosi (Lehmann et al. 1995), 

which has durable antidiabetic effects but, unfortunately, its use has been limited by its 

toxicities. Because PPAR expression in adipose tissue is required for the in vivo 

systemic insulin sensitizing effects of TZDs (Chao et al. 2000; He et al. 2003), it is 

critical to understand how rosi binding to PPAR modulates gene expression.  

 

Among the antidiabetic drugs, TZDs are unique in their ability to effectively improve 

insulin sensitivity. The major organs that respond to insulin are skeletal muscle, liver, and 

adipose tissue but the direct effects of TZDs are believed to be mainly in adipose tissue 

for several reasons. First, adipose tissue has by far the highest levels of PPAR, about 

ten-fold higher than in muscle (Chawla et al. 1994). Second, mice lacking adipose tissue 
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or PPAR in adipose do not respond to TZD treatment (Chao et al. 2000; He et al. 2003). 

Fat-specific PPAR knock-out mice have almost complete lipoatrophy and severe insulin 

resistance (Wang et al. 2013). Mice lacking PPAR in liver or muscle, however, retain 

their response to the insulin sensitizing effects of PPAR (Matsusue et al. 2003; Norris et 

al. 2003). These results indicate that TZDs act primarily on adipose tissue, which in turn 

signals to the peripheral tissues to improve insulin sensitivity.  

 

1.2d Transcriptional regulation by PPAR 

There are two PPAR isoforms, 1 and 2. They are nearly identical except for different 

N-terminals due to different start sites and first exons (Chawla et al. 1994; Tontonoz et al. 

1994a), and they are believed to have the same function. PPAR binds to specific DNA 

sequences known as PPAR response elements (PPREs) and heterodimerizes with another 

nuclear receptor, retinoid X receptor (RXR). Studies into the genome-wide binding of 

PPAR and members of the CCAAT/enhancer-binding protein (C/EBP) family 

demonstrated that these TFs bind cooperatively near most genes up-regulated during 

adipogenesis, suggesting that they coordinate the activation of genes that determine 

adipocyte biology (Lefterova et al. 2008; Nielsen et al. 2008). Bioinformatic analysis of 

PPAR:RXR binding sites in these studies showed that the heterodimer binds selectively 

to a degenerate direct repeat 1 (DR1) element, in which two direct repeats of the NR half-

site (AGGTCA) are separated by one nucleotide. Binding of rosi to PPAR results in the 

increased recruitment of coactivators, including SRC-1, CBP, p300, and MED1, that 
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function to induce gene expression (Westin et al. 1998; Gelman et al. 1999; Ge et al. 

2002; Bugge et al. 2009). 

 

1.3 MRL-24 as a non-agonist ligand of PPAR 

Some alternative mechanisms have been proposed to explain how TZDs exert their 

antidiabetic effects. In a mouse model of diet-induced obesity, Cdk5 was shown to 

specifically phosphorylate PPAR at Ser-273 in adipose tissue (Choi et al. 2010). Though 

this modification did not alter general PPAR transcriptional activity, it resulted in altered 

transcription of a subset of target genes. Treatment with TZDs inhibited this 

phosphorylation both in vivo and in vitro. The phosphorylation was also inhibited by 

MRL-24, a PPAR ligand that is a poor agonist in transactivation assays but an effective 

anti-diabetic agent in mice (Acton et al. 2005). Indeed, treating mice with MRL-24 in 

these studies improved glucose tolerance but only caused differential gene expression 

changes in a subset of PPAR target genes. These studies suggested that some PPAR 

pathways exist that may be able to dissociate the positive metabolic effects from the 

adverse effects seen with TZDs.  
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1.4 Mechanisms of nuclear receptor-mediated transcriptional repression 

1.4a Transrepression 

Though binding of rosi to PPAR results in recruitment of coactivators to increase gene 

expression, the mechanism by which rosi represses transcription is not well understood. 

Genes repressed by rosi are likely to play an important role in its metabolic effects, 

including genes such as TNF and resistin. There are several mechanisms that may 

explain NR-mediated transcriptional repression.  

 

One such suggested mechanism is transrepression, which has been demonstrated in the 

setting of rosi-treated macrophages (Pascual et al. 2005). In these cells, the corepressor 

NCoR is recruited to pro-inflammatory genes, including some chemokines and inducible 

nitric oxide synthase, by TFs such as AP-1 and NF-B. Treatment with the endotoxin 

lipopolysaccharide (LPS) causes activation of these genes through dismissal of the 

corepressor complex and recruitment of a coactivator complex. Co-treatment with rosi 

and LPS, however, causes transrepression: rosi causes SUMOylation of PPAR, which 

tethers to NCoR, prevents its dismissal from the gene promoter, and blocks gene 

activation. This mechanism, however, has not been shown in other cell types, has only 

been demonstrated at individual genes rather than genome-wide, and only explains the 

ability of rosi to block LPS-mediated gene induction, rather than the ability of rosi to 

repress genes directly (Glass and Saijo 2010). 

 



11 

 

A very similar transrepression mechanism was confirmed for liver X receptor (LXR) in 

macrophages, which represses an overlapping but separate set of inflammatory genes. 

Similar to PPAR, ligand-dependent SUMOylation of LXR blocks NCoR clearance from 

the promoter, preventing gene induction (Ghisletti et al. 2007). 

 

A number of studies have also found that glucocorticoid receptor (GR) can have 

suppressive effects on immune function through transrepression. In one study, GR was 

able to suppress inflammatory gene activation by recruiting the coactivator GRIP1 

(Rogatsky et al. 2002). Though usually a coactivator, GRIP1 functions as a corepressor in 

a complex with GR tethered to AP-1 or NF-B and blocks activation of immune genes. 

Other mechanisms for transrepression by GR have been suggested, including that GR 

tethering to NF-B blocks its ability to recruit the essential coactivator IRF3 (Ogawa et 

al. 2005) and positive transcription elongation factor b (pTEFb) (Luecke and Yamamoto 

2005), both of which are required for activation of gene transcription. 

 

1.4b Ligand-dependent corepressor recruitment 

In some cases, nuclear receptors that normally function as transcriptional activators have 

been shown to repress transcription by recruiting corepressor complexes. For example, in 

microglia and astrocytes in the brain, the orphan nuclear receptor Nurr1 inhibits 

activation of inflammatory genes by docking to NF-B and recruiting the CoREST 

corepressor complex (Saijo et al. 2009). In another study more relevant to adipocyte 
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biology, TZDs were shown to repress certain “visceral white” genes (and promote the 

“browning” phenotype) by recruiting the corepressors CTBP1 and CTBP2 to C/EBP, 

and PPAR was required for this process (Vernochet et al. 2009). Additionally, the 

cofactor RIP140 was shown to be able to function as a corepressor and inhibit 

transcription by binding to nuclear receptors including TR and ER (Lopez et al. 1999).  

 

1.4c Competitive binding 

In another mechanism, nuclear receptors can inhibit transcription by competing for the 

same binding site as another transcription factor that may be a stronger transactivator in 

that context. For example, glucocorticoids antagonize E2-stimulated ER gene 

expression in MCF-7 cells. When the cells were co-treated with dexamethasone and E2, 

GR was found to bind to estrogen binding sites, displacing ER and its coactivator 

steroid receptor coactivator 3 (SRC3), leading to the repression of ER target genes 

(Karmakar et al. 2013). Binding of GR to these sites requires protein-protein interactions 

with ER, FOXA1, and AP1. Similarly, estrogen-related receptor alpha (ERR) 

suppresses the expression of the hydroxysteroid sulfotransferase gene SULT2A1 in 

human liver carcinoma HepG2 cells by competing for binding to inverted repeat IR2 and 

DR4 elements with other nuclear receptors, including vitamin D receptor (VDR) and 

constitutive androstane receptor (CAR) (Huang et al. 2011). In other cases, a NR binds to 

a response element that overlaps the binding site for another TF, precluding binding and 

leading to transcriptional repression. This has been demonstrated at the osteocalcin 
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promoter, in which the GRE overlaps with the TATA box such that GR binding prevents 

binding of TFIID (Stromstedt et al. 1991). Similarly, during adipogenesis ROR can 

block induction of the perilipin gene by binding to a response element that overlaps with 

the PPAR element in the promoter, thus blocking PPAR-mediated gene transcription 

(Ohoka et al. 2009). 

 

1.4d Coactivator redistribution 

Another important proposed mechanism to explain transcriptional repression driven by 

TFs is coactivator redistribution, also referred to as “squelching.” This model posits that 

general coactivators are at a limiting concentration in the nucleus such that when one TF 

is activated and recruits additional coactivators, those coactivators are necessarily lost 

from other TFs, leading to transcriptional repression. This idea has been around for more 

than 25 years, since Mark Ptashne demonstrated that overexpressing GAL4 in yeast 

inhibited transcription of genes lacking GAL4 binding sites (Gill and Ptashne 1988). 

They attributed this inhibition to the ability of GAL4 to sequester away key components 

of the transcriptional machinery and termed this phenomenon “squelching.” Since then, 

coactivator redistribution has been demonstrated in many models, though primarily in in 

vitro systems relying on overexpression.   

 

It was later shown, for example, that activation of a number of nuclear receptors 

(including retinoic acid receptor [RAR], RXR, ER, and thyroid hormone receptor [TR]) 
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and subsequent inhibition of AP-1 depend on the coactivators CBP and p300, apparently 

as a result of their limiting concentration (Kamei et al. 1996). Similarly, in LNCaP cells 

the coactivator CBP was shown to be necessary for androgen receptor (AR) function and 

its ability to inhibit AP-1 function, likely due to its limiting amount (Fronsdal et al. 

1998). There is also evidence that PPAR may cause transcriptional repression through 

coactivator redistribution: in macrophages, PPAR inhibits gene induction by LPS, and 

this effect is dependent on the ability of PPAR to interact with CBP (Li et al. 2000). 

Another study demonstrated that RAR and RXR can inhibit transactivation by the TF 

serum response factor (SRF) because of competition for a limiting concentration of p300 

and the coactivator SRC-1 (Kim et al. 2001). 

 

All of the studies mentioned above were performed in in vitro systems, with methods 

including overexpression and pull-downs to determine binding interactions, and 

luciferase assays to measure transactivation, often at a single gene promoter.  However, a 

more recent paper demonstrated this effect using chromatin immunoprecipitation (ChIP) 

for endogenous TFs and coactivators on DNA on a genome-wide scale (He et al. 2012). 

In this study, estradiol (E2) treatment of MCF-7 cells caused not only an increase in ER 

binding, but also an increase in DNaseI hypersensitivity (DHS), a measure of chromatin 

accessibility, at the same sites, as well as increased transcription at nearby genes. Sites 

bound by the TF FOXA1 but not ER, however, had a decrease in DHS. The change in 

DHS is linked not to changes in FOXA1 binding strength but to changes in binding of the 



15 

 

coactivator NCOA3. On a genome-wide level, sites with ER binding and E2-increased 

DHS have increased NCOA3 binding, while sites with FOXA1 but not ER and E2-

decreased DHS have decreased NCOA3 levels. This supports a model in which E2 

treatment causes recruitment of the coactivator NCOA3 to ER sites, leading to a loss of 

coactivator from other TFs such as FOXA1 and subsequent transcriptional repression.  

 

1.5 GRO-seq and non-coding RNAs 

1.5a GRO-seq and nascent transcripts 

Global run-on followed by sequencing (GRO-seq) is a technique that identifies nascent 

transcripts in a genome-wide manner (Core et al. 2008). This approach can detect near-

instant changes in transcription levels, allowing the discrimination of direct 

transcriptional targets from secondary ones. It also provides stranded information to 

detect sense and anti-sense transcripts, including divergent transcription. Importantly, it 

also allows for the discovery of novel, un-annotated transcripts outside of RefSeq genes.  

 

For example, GRO-seq was used to determine the immediate effects of estrogen on the 

transcriptome of MCF-7 cells (Hah et al. 2011). Estrogen was found to rapidly and 

transiently regulate 25% of the transcriptome, including many previously unannotated 

transcripts, with many transcripts regulated as early 10 minutes after treatment. One of 

the classes of regulated transcripts was intergenic transcripts; among those, the ones that 
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fell in ER enhancers were mostly up-regulated by E2 treatment, while the others were 

mostly down-regulated. As expected, regulation of nascent protein-coding transcripts 

correlated with steady-state levels of the corresponding mRNA, as measured by 

microarray or RT-qPCR, but with temporal delay. rRNA and tRNA genes were also 

increased, suggesting an up-regulation of protein biosynthetic machinery in response to 

estrogen treatment. In addition, genes that were up-regulated after 10 or 40 minutes of 

treatment were significantly enriched for ER binding sites within 10kb of the 

transcription start site (TSS), whereas those up-regulated after 160 minutes were not, 

suggesting that these were in many cases secondary targets.  

 

GRO-seq has also been used in several instances (Wang et al. 2011; Hah et al. 2013; Lam 

et al. 2013; Li et al. 2013) to identify enhancer RNAs, which are described in more detail 

below in section 1.5b and 1.5c.  

 

1.5b lncRNA and eRNA function 

Novel technologies of the genomic era have demonstrated that much more of the 

mammalian genome is transcribed than the 1-2% occupied by coding genes. These non-

coding transcripts have been termed the “dark matter” of the genome (Johnson et al. 

2005). One class of non-coding transcripts is long non-coding RNAs (lncRNAs), which 

are defined as intergenic transcripts longer than 200 bp. Thousands of lncRNAs have 

been identified so far and the number is growing (Cabili et al. 2011). There are many 
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examples of well-characterized lncRNAs that play an important role in development or 

disease, including Xist in X-inactivation (Sotomaru et al. 2002) and HOTAIR in trans-

acting gene regulation (Gupta et al. 2010). Nevertheless, the vast majority of lncRNAs 

are not evolutionarily conserved, are expressed at very low levels, and may represent 

transcriptional noise (Struhl 2007). 

 

For the lncRNAs that have been shown to have a biological function, several mechanisms 

have been demonstrated, including interactions with protein, RNA, and DNA. lncRNAs 

can recruit protein complexes via specific RNA:protein interactions, such as in the case 

of Xist, which interacts with the polycomb repressive complex to silence one of the X 

chromosomes in vertebrates (Zhao et al. 2008). A lncRNA can also act as a scaffold, 

bringing two or more proteins together into a complex; for example, HOTAIR brings 

together several components of a repressive complex through specific modular 

interactions with its 5’ and 3’ ends (Tsai et al. 2010). lncRNAs can also interact with 

other RNAs, including by binding to an mRNA in an antisense manner to regulate its 

translation or degradation (Carrieri et al. 2012), or by acting as a “sponge” for a miRNA 

and thereby regulating expression of the corresponding mRNA (Cesana et al. 2011). 

Lastly, lncRNAs can act as guides or decoys to regulate transcription or epigenetic 

modifications. For example, the lncRNA NeST acts as a guide for the histone H3 lysine 4 

methyltransferase complex and brings it to specific loci (Gomez et al. 2013), whereas 

Lethe functions as a decoy by binding to components of the NF-B complex and 

preventing them from binding to gene promoters (Rapicavoli et al. 2013).  
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A sub-family of lncRNAs that are transcribed from enhancer elements, known as 

enhancers RNAs (eRNAs), have also been of particular interest. Enhancers depend on the 

binding of lineage-determining TFs, which recruit chromatin remodeling complexes to 

activate transcription (Heinz et al. 2010).  

 

Though transcription originating from an enhancer element was first demonstrated close 

to 25 years ago at the locus control region near the beta-globin gene (Collis et al. 1990), 

the genome-wide pervasiveness of enhancer transcription only became clear in 2010 due 

to high-throughput techniques (De Santa et al. 2010; Kim et al. 2010). eRNAs can be 

poly-adenylated or non-polyadenylated and can be either unidirectional or bidirectional 

(Kim et al. 2010; Hah et al. 2011; Wang et al. 2011). They are transcribed from putative 

enhancer regions, which can be characterized by high levels of H3K4me1 and H3K27ac, 

binding of CBP and p300, and binding of lineage-determining TFs (Heintzman et al. 

2009). 

 

Interestingly, eRNAs are dynamically regulated in a signal-dependent manner, including 

in response to depolarization of neurons (Kim et al. 2010) or estrogen treatment in breast 

cancer cells (Hah et al. 2011). Additionally, signal-dependent changes in eRNA levels are 

highly correlated with corresponding changes in transcription of nearby genes. Several 

hypotheses for the role or function of eRNAs have been postulated (Natoli and Andrau 
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2012), some or all of which may be true for different eRNAs. The first is that eRNAs are 

noise, reflecting the collision of transcriptional machinery with accessible genomic 

regions, or with regions that are brought close to promoters through chromatin looping. 

The second is that the process of eRNA transcription may be important in changing 

chromatin accessibility at specific sites. Lastly, the eRNA transcripts themselves may be 

functional, by interacting with RNA or protein in cis or trans to regulate transcription 

similarly to lncRNAs.  

 

In the past two years, there has been mounting evidence for the last hypothesis: that 

eRNAs may function to promote transcription of nearby genes. Targeted ablation of 

eRNAs by small interfering RNA (siRNA), antisense oligonucleotides (ASO), and locked 

nucleic acids (LNA) caused decreased expression of nearby genes in several models 

(Lam et al. 2013; Li et al. 2013; Melo et al. 2013; Mousavi et al. 2013). Furthermore, 

artificially tethering an eRNA to a promoter increased transcription of the target gene 

(Melo et al. 2013). The question of how eRNAs may be contributing to enhancer function 

or increasing gene transcription still remains open, though potential mechanisms include 

increased chromatin looping and increased recruitment of transcriptional machinery, 

chromatin modifiers, or coregulators (Lam et al. 2014). 
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1.5c eRNAs mark functional enhancers 

Despite several examples of eRNAs functioning to promote target gene transcription, 

controversy remains as to whether the vast majority of eRNAs have a functional role. 

Independent of the question of whether eRNA transcripts serve a function, however, there 

is increasing evidence that eRNA transcription marks functional enhancers. For example, 

ER binding sites containing eRNAs are enriched for enhancer elements compared to 

binding sites without eRNAs, including coactivator binding, H3K4me1, DNase I 

hypersensitivity, and chromatin looping by chromatin interaction analysis by paired-end 

tag sequencing (ChIA-PET) (Hah et al. 2013). Furthermore, using eRNAs as predictors 

of enhancer function is more effective than using H3K4me1 or H3K27ac, where the 

measure of enhancer function is either chromatin looping or CBP occupancy. 

Additionally, blocking eRNA elongation with flavopiridol does not affect enhancer 

function, suggesting that at least in the case of the specific enhancers tested in this 

experiment, the eRNA transcript is not critical for enhancer function. The first paper to 

describe genome-wide eRNA transcription also noted that knocking out a gene promoter 

ablates the associated eRNA, which suggests that an interaction with the promoter, such 

as a chromatin loop, is necessary for eRNA production (Kim et al. 2010). Lastly, another 

study also showed in both IMR90 and mESC cells that eRNA transcription is a more 

reliable indicator of enhancer activity than H3K27ac is, where enhancer activity was 

defined by transcription of the nearest gene (Zhu et al. 2013). Together these studies 

suggest that in the context of tens of thousands of putative enhancers defined by TF 

binding or chromatin marks, eRNA production can serve as a useful marker of functional 
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enhancers that are actually playing a role in regulating gene transcription in a signal-

dependent manner.  

 

1.6 Aims of thesis 

It has been known for many years that TZDs bind to PPAR in adipose tissue, causing an 

improvement in insulin sensitivity. Though their molecular target is known, however, the 

molecular mechanism of TZD action is still not well understood. The aim of this thesis is 

to expand our understanding of the transcriptional regulation of adipocytes by TZDs and 

PPAR.  

 

Previous methods to identify gene targets of rosi treatment relied on microarray or RNA-

seq, which measure steady-state mRNA levels after a longer period of time. This 

conflates immediate transcriptional targets with secondary, indirect targets. In Chapter 2, 

direct transcriptional targets of rosi treatment are identified by using GRO-seq after short 

time points of rosi treatment. This allows us to determine the relationship between 

nascent pre-mRNA targets and steady-state mRNAs, identify gene targets that are likely 

due to secondary effects, and confirm that virtually all direct transcriptional up-regulation 

is due to PPAR activity.  
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In Chapter 3, eRNAs are identified and used to determine functional regulatory elements 

that are important to rosi-regulation. Though rosi has previously been shown to cause a 

dismissal of corepressors and a recruitment of coactivators at certain sites (Guan et al. 

2005), changes in coregulator occupancy has never been demonstrated genome-wide, and 

the effects of rosi on histone marks were unknown. Furthermore, there has been very 

little insight into rosi-mediated repression of gene transcription. In this aim, the 

regulation of eRNAs is used to focus on functional enhancers and correlated with other 

changes – coactivator and corepressor recruitment, histone marks, and binding of other 

TFs – to gain a better understanding of the mechanisms of transcriptional regulation by 

rosi in a dynamic manner. 

 

The promise of insulin-sensitizing effects of TZDs along with concern for their serious 

adverse effects have driven a continued interest in studying selective PPAR modulators, 

or SPPARMs. For example, the compound MRL-24 has been demonstrated to improve 

insulin sensitivity in mice despite lacking agonist ability in transactivation studies and 

activating a distinct subset of PPAR target genes (Choi et al. 2010). In Chapter 4, 

transcriptional regulation by MRL-24 is studied in a different model of adipocytes in an 

attempt to confirm its unique set of target genes and determine whether it acts by 

regulating a distinct group of PPAR enhancers. In this aim, we demonstrate that at least 

in the 3T3-L1 model of adipocytes, MRL-24 does not in fact up-regulate a unique set of 

target genes, but rather acts as a partial agonist to regulate many of the same genes as rosi 

but to a lesser degree. Chapter 5 summarizes the studies and discusses future directions.  
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CHAPTER 2: Regulation of nascent gene transcripts and mRNAs by 

rosiglitazone 
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2.1 Introduction 

PPAR is a nuclear receptor that is dramatically induced during adipogenesis and 

expressed predominantly in adipose tissue (Chawla and Lazar 1994; Tontonoz et al. 

1994a).  It is necessary (Rosen et al. 1999) and sufficient (Tontonoz et al. 1994b) for 

adipogenesis, and also critical for the functions of mature adipocytes, including lipid 

metabolism, adipokine secretion, and insulin sensitivity (Rangwala and Lazar 2004). 

PPAR binds near most adipogenic genes as a heterodimer with RXR (Lefterova et al. 

2008; Nielsen et al. 2008).  

 

PPAR, like most NRs, is a ligand-dependent transcription factor (Glass and Rosenfeld 

2000). High affinity ligands for PPAR include the TZDs (Lehmann et al. 1995), which 

are insulin-sensitizing drugs (Nolan et al. 1994). TZDs contribute to insulin sensitization 

by acting on adipose tissue to regulate gene transcription both positively and negatively.  

For example, TZDs induce insulin sensitizing factors adiponectin (Maeda et al. 2001) and 

FGF-21 (Moyers et al. 2007), while suppressing the expression of genes promoting 

insulin resistance, including TNF (Hofmann et al. 1994), resistin (Steppan et al. 2001), 

and retinol binding protein 4 (Yang et al. 2005).  The most potent TZD in the clinic is 

rosiglitazone (rosi) (Lehmann et al. 1995), which has durable antidiabetic effects but, 

unfortunately, has toxicities that limit its widespread use (Kung and Henry 2012; 

Ahmadian et al. 2013). Because PPAR expression in adipose tissue is required for the in 

vivo systemic insulin sensitizing effects of TZDs (Chao et al. 2000; He et al. 2003), it is 

critical to understand how rosi binding to PPAR modulates gene expression. 
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Many studies have used transcriptome analysis to infer the effects of rosi on steady state 

gene expression in adipocytes (Li and Lazar 2002; Sears et al. 2007; Choi et al. 2010; 

Rong et al. 2011).  However, steady state mRNAs levels are determined both by their 

rates of transcription and degradation. Here, for the first time, we have directly measured 

rates of adipocyte transcription genome-wide, using global run-on followed by 

sequencing (GRO-seq) (Core et al. 2008).  We find that rosi rapidly up- or downregulates 

the transcription of thousands of adipocyte genes, and this regulation correlates highly 

with steady state mRNA regulation. We can also separate out direct gene targets that are 

up-regulated within 30 minutes or 1 hour of treatment from other genes that are not direct 

targets but are up-regulated at later time points, suggesting indirect or non-transcriptional 

regulation.  

 

2.2 Materials and Methods 

2.2a Cell Culture 

3T3-L1 cells were obtained from American Type Culture Collection and grown in 

DMEM (Invitrogen) supplemented with 10% fetal bovine serum (Tissue Culture 

Biologics), 100 U/ml penicillin and 100 μg/ml streptomycin (Invitrogen). Two days post-

confluence differentiation media was added, consisting of growth media with 1 μM 

dexamethasone, 10 μg/ml human insulin, and 0.5 mM 3-isobutyl-1-methylxanthine 

(Invitrogen). Cells were differentiated as described previously (Lefterova et al. 2008), by 



26 

 

growth in differentiation media for 2 days, followed by growth media with insulin for 2 

days, followed by growth media only. When indicated, mature 3T3-L1 adipocytes were 

treated with 1μM rosiglitazone (Biomol) dissolved in DMSO. 

 

2.2b Gene expression analysis 

RNA was isolated from cells using TRIzol (Invitrogen), followed by the RNeasy Mini 

Kit (Qiagen). RT-PCR was performed using 1 μg RNA (Applied Biosystems) following 

manufacturer’s instructions, and qPCR was performed using primers listed in Table 2.1 

using Power SYBR Green Master Mix (Applied Biosystems) on the PRISM 7500 and 

7900HT instruments (Applied Biosystems). Analysis was performed using the standard 

curve method, and all genes were normalized to the housekeeping gene Arbp. For the 

microarray, RNA integrity was examined using an Agilent 2100 Bioanalyzer. RNA 

samples (150 ng) with RNA integrity number >7 were used for target amplification and 

labeling via the Ambion WT Expression kit (#4411974) and Affymetrix WT Terminal 

Labeling kit (#900671) following manufacturer’s protocol. Mouse Gene 1.1 ST Array 

Plates (#901418, Affymetrix) were used for microarray hybridization, wash, stain and 

scan with GeneTitan hyb-wash-stain kits (#901622, Affymetrix) and a GeneTitan 

instrument. GeneTitan scanner data were collected with default parameters and further 

analyzed using Partek Genomics Suite. Data were normalized using default RMA 

method. For each gene, an average was taken across replicates for the comparative 

analysis with GRO-seq gene transcriptional level. 
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2.2c GRO-seq library preparation 

GRO-seq was performed as previously described (Core et al. 2008; Wang et al. 2011). 

Cells were washed twice with ice-cold PBS, then swelled in swelling buffer (10 mM Tris 

pH 7.5, 2 mM MgCl2, 3 mM CaCl2) for 5 min on ice. Cells were centrifuged at 400g for 

10 min, then resuspended in lysis buffer (swelling buffer with 10% glycerol and 1% 

Igepal) and incubated on ice for 5 min. Nuclei were washed twice with lysis buffer, then 

resuspended in freezing buffer (50 mM Tris pH 8.3, 40% glycerol, 5 mM MgCl2, 0.1 mM 

EDTA). Nuclei were counted, pelleted, and 5 x 10
6
 nuclei were resuspended in 100 μl 

freezing buffer. For each library, run-on was performed on 4 tubes of 5 x 10
6
 nuclei.  

 

For the run-on, cells were mixed with an equal volume of run-on buffer (10 mM Tris pH 

8.0, 5 mM MgCl2, 1 mM DTT, 300 mM KCl, 20 units of SUPERase-In, 1% Sarkosyl, 

500 μM ATP, GTP and Br-UTP, 2 μM CTP) and incubated for 5 min at 30°C. Nuclear 

RNA was extracted with TRIzol (Invitrogen) and precipitated with NaCl and ethanol 

overnight. The pellet was resuspended in water and the RNA was DNase treated 

(Ambion) for 30 min. RNA was hydrolyzed using fragmentation reagents (Ambion) for 

13 min at 70°C and purified through a Micro Bio-Spin p-30 column (Bio-Rad) according 

to manufacturer’s instructions. RNA was treated with 1.5μl T4 polynucleotide kinase 

(New England Biolabs) for 1h at 37°C, then with an additional 1μl for 1h more. RNA 

was denatured for 5 min at 65°C.  
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Anti-BrU agarose beads (Santa Cruz) were rotated for 1h in blocking buffer (0.5x SSPE, 

1 mM EDTA, 0.05% Tween-20, 0.1% PVP, and 1 mg/ml BSA). Run-on RNA was 

rotated with beads for 1h, followed by washes twice in binding buffer (0.5x SSPE, 1 mM 

EDTA, 0.05% Tween-20), twice in low salt buffer (0.2x SSPE, 1 mM EDTA, 0.05% 

Tween-20), once in high salt buffer (0.5x SSPE, 1 mM EDTA, 0.05% Tween-20, 

150 mM NaCl), and twice in TET buffer (TE pH 7.4, 0.05% Tween-20). BrU-labeled 

RNA was eluted from the beads four times for 15 min with 100 μl elution buffer pre-

heated to 42°C. RNA was ethanol-precipitated overnight.  

 

Precipitated RNA was resuspended in water, denatured, and treated with poly(A)-

polymerase (NEB) for 30 min at 37°C. cDNA synthesis was performed as described 

previously (Wang et al, Nature 2011) using oNTI223 primer ((5′-

pGATCGTCGGACTGTAGAACTCT;CAAGCAGAAGACGGCATACGATTTTTTTTT

TTTTTTTTTTTVN-3′) where the p indicates 5′ phosphorylation, ‘;’ indicates the abasic 

dSpacer furan and VN indicates degenerate nucleotides. The reaction was treated with 3 

μl exonuclease I (Fermentas) for 15 min at 37°C, followed by 2 μl 1M NaOH for 20 min 

at 98°C, and neutralized with 1μl 2M HCl. cDNA was run on 10% TBE-urea gel, then 

products were excised and eluted from shredded gel pieces for 4h in TE + 0.1% Tween 

and precipitated in ethanol overnight. First-strand cDNA was circularized with 

CircLigase (Epicentre), denatured for 10 min at 80°C, and relinearized with APE I 

(NEB). Linearized DNA was amplified by PCR using Phusion Hot Start II Kit, according 

to manufacturer’s instructions. The oligonucleotide primers oNTI200 (5′-
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CAAGCAGAAGACGGCATA-3′) and oNTI201 (5′-

AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGACG-3′) were 

used for amplification. The PCR product was run on a 10% TBE gel and eluted as before. 

Libraries were sequenced on an Illumina hi-Seq2000 with sequencing primer 5′-

CGACAGGTTCAGAGTTCTACAGTCCGACGATC-3′. 

 

2.2d GRO-seq data processing 

First, adapter and poly-A sequence were trimmed off from the raw tags, then remaining 

tags were converted into FASTA format before alignment. Trimmed tags were aligned to 

the mouse genome, mm8, using Bowtie (Langmead et al. 2009) with the following 

options: inputs were in FASTA format (-f), three mismatches were allowed for each tags 

(-v 3), and only uniquely mapped tags were retained (-m 1). All the alignments were 

adjusted to 50bp by extending toward 3’-end if their size is shorter than that to make 

libraries comparable. For the visualization of GRO-seq data, we pooled two replicates for 

each time point then extended each tag to 150bp to make smooth profiles. bedGraph files 

were generated first using genomeCoverageBed command in BEDTools suite (Quinlan 

and Hall 2010) for plus and minus strands separately and they were converted to bigwig 

format using bedGraphToBigWig command in BLAT suite (Kent et al. 2010). 

 

2.2e ChIP-seq data processing 

For PPAR, we used two public PPARChIP-seq data sets, GSM340799 and 

GSM678393 (Nielsen et al. 2008; Schmidt et al. 2011) from Gene Expression Omnibus, 
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where all the redundant tags were eliminated in each data set and then the remaining tags 

were pooled into a single data set. Peak-calling was performed using findPeaks command 

in Homer (Heinz et al. 2010). After initial calling, all the peaks were resized to 200 bp, 

then a 2 RPM cut-off was applied to select strong peaks. 

 

2.2f Gene transcription analysis 

To determine rosi-induced regulation of gene transcription, we used normalized tag 

counts within a window between +0.5 kb and 12 kb of transcription start site (TSS) to 

capture acute changes and yet minimize the bias from paused signal at promoters. When 

counting tags, we ignored the tags aligned onto rRNA, snoRNA, snRNA, or tRNA to 

avoid any false contribution to gene body GRO-seq signal due to these highly abundant 

elements. To identify rosi-regulated genes, we performed an exact test with edgeR 

package (Robinson et al. 2010) for each time point, 10 min, 30 min, 1h, and 3h using 0 

min as a control. Genes were considered rosi-regulated if FDR < 0.05 at any time point, 

but those with low GRO-seq signal (< 0.5 RPKM) or poor gene body coverage (< 70%) 

at every time point were discarded before downstream analysis. Temporal patterns of 

rosi-induced regulation were graphically presented by hierarchical clustering, where 

GRO-seq levels were RPKM-normalized and 1−(correlation coefficient) were used as a 

distance measure between genes. Initial dendrogram was first created based on Ward’s 

criterion using fastcluster R package (Müllner 2011) then subjected to optimal leaf 

ordering (Bar-Joseph et al. 2001). In the visualization of clustering heatmaps, RPKM 
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values were converted into log2(fold-change over 0 min) for intuitive color representation 

of up or down regulation.  

 

2.3 Results 

2.3a Rosiglitazone rapidly and robustly regulates gene transcription in adipocytes. 

GRO-seq (Core et al. 2008; Wang et al. 2011) was used to measure nascent gene 

transcription in mouse 3T3-L1 adipocytes and after treatment with rosi for 10 min, 30 

min, 1h and 3h.   The Fabp4 locus, a classic adipocyte PPAR gene target (Spiegelman 

and Green 1980; Rival et al. 2004), showed increased transcription with rosi treatment 

(Figure 2.1A).  By contrast, transcription from the Rgs2 gene body was rapidly repressed 

by rosi (Figure 2.1B), consistent with the behavior of the mRNA (Sears et al. 2007).  

Overall, 1,951 annotated RefSeq genes were transcriptionally regulated by rosi at one or 

more of the time points tested (Figure 2.1C). Interestingly, 71% of regulated nascent 

transcripts were repressed whereas only 29% were activated by rosi. 

 

2.3b Regulation of nascent gene transcription by rosi correlates with changes in mRNA 

levels. 

To assess the temporal and gene-specific relationship between nascent gene transcription 

and steady-state mRNA levels, we determined the adipocyte transcriptome using gene 

expression microarrays after 30 min, 1h, 2h, 6h, 12h, 24h, 36h, and 48h of rosi treatment, 

with 3 biological replicates at each time point (Figure 2.2). While the nascent 
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transcription of many genes was regulated as early as 10 and 30 minutes after rosi, very 

few mRNA transcripts changed during this time period and for at least 2 hours after rosi 

treatment.  This was not surprising, as the time required to reach new steady state levels 

is related to the rate of degradation rather than the rate of synthesis (Schimke and Doyle 

1970).  However, the correlation between nascent transcription and steady-state mRNA 

levels was high at later time points, with the greatest correlation noted between the 

transcription regulation at 3h and the mRNA regulation measured 6h after rosi. The lower 

correlation with later microarray time points suggests that steady-state regulation at these 

later times may be dependent on secondary transcriptional changes occurring later than 

3h of treatment.  

 

2.3c Some target genes may be regulated non-transcriptionally or by secondary effects. 

Comparing rosi-regulation of pre-mRNAs and their corresponding steady-state mRNAs 

by RT-qPCR suggests that despite the high correlation between transcription and mRNA 

(Figure 2.2), many genes may also be regulated by different mechanisms or on different 

timescales. While Fabp4 pre-mRNA is rapidly induced, Gyk pre-mRNA is not 

significantly regulated despite induction of the mRNA, and Acaa1b pre-mRNA is not 

significantly induced until later time points (Figure 2.3). These results suggest alternative 

mechanisms that may regulate a subset of PPAR target genes, such as induction of 

secondary transcription factors, or non-transcriptional regulation of mRNA degradation.  
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2.3d Up-regulated genes are enriched for strength, number, and proximity of PPAR 

binding sites. 

PPAR binding is critical for the regulation of gene body transcription. Upregulated 

genes were statistically significantly enriched for PPAR sites closer to the transcription 

start site (TSS) compared to downregulated or unregulated genes (Figure 2.4A). 

Furthermore, upregulated genes had significantly more PPAR binding sites within 

100kb of the TSS (Figure 2.4B).  

 

2.4 Conclusions 

These studies provide a higher resolution and more dynamic portrait of rosi-regulated 

gene transcription than previously possible. Earlier reports of rosi-regulated gene 

expression using microarray or PolII ChIP-seq found a few hundred regulated genes, with 

half or slightly more than half of those being upregulated by rosi (Choi et al. 2010; 

Haakonsson et al. 2013). In contrast, we find that transcription is regulated at almost 

2,000 gene bodies, more than two-thirds of which are repressed in response to ligand 

treatment.  We believe this increased sensitivity arises from the GRO-seq technique, as 

well as from the use of multiple time points to capture various dynamics of direct 

transcriptional regulation. 

 

Rosi regulates nascent gene transcription within 10 minutes of treatment, and this 

correlates well with steady state mRNA regulation. The correlation is delayed, as 
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expected, since changes in gene body transcription precede those of the mRNAs, and 

because the time to reach a new steady state mRNA level is independent of the rate of 

synthesis and dependent solely on the mRNA half-life (Schimke and Doyle 1970).  Thus, 

while transcription changes quickly, very few changes in steady state mRNA levels are 

seen earlier than 2h of rosi treatment. Interestingly, the highest correlation between 

transcription and steady state mRNA is seen at the 3h GRO-seq and 6h microarray time 

point, with a correlation coefficient of 0.773. Comparing the transcriptional regulation 

after 3h of rosi with later microarray time points leads to lower and lower correlations at 

later time points, suggesting that changes in mRNA levels after 24h or 36h are controlled 

in part by early transcriptional changes, but also by other effects that we cannot detect by 

GRO-seq after 3h of rosi treatment.   

 

One phenomenon that may contribute to later mRNA changes that are not explained by 

early transcriptional changes is secondary transcriptional regulation. It is possible that 

among the many targets that rosi regulates, there may be genes that encode TFs. Even if 

these are among its directly up-regulated targets, it would still take hours until their 

protein levels increase. These TFs may then bind to DNA and regulate transcription after 

12 to 24h of rosi treatment or later. This kind of secondary transcriptional regulation may 

be important to the effects of longer rosi treatments on mRNA levels, and thus critical for 

the physiological effects of rosi. As discussed in Section 5.2a, future studies could 

investigate these presumed secondary effects that may contribute to the effects of rosi. 

GRO-seq at later time points such as 24 or 36 hours would provide important additional 



35 

 

information, such as which genes are regulated at later time points, and the mechanism of 

these effects. Analysis of regulated eRNAs at later time points, similar to the work 

described in Chapter 3, may suggest which enhancers and therefore which transcription 

factors play a role in secondary effects of rosi.  

 

In Figure 2.4, qPCR of pre-mRNAs and their corresponding mRNAs suggests that some 

important targets may be regulated non-transcriptionally. Mechanisms to explain this 

post-transcriptional regulation could include regulation of mRNA degradation pathways. 

For example, both microRNAs and lncRNAs have been implicated in regulating mRNA 

stability and degradation. miRNAs function as components of RNA-induced silencing 

complexes (RISCs) by base pairing to mRNAs and either targeting them for degradation 

or blocking their translation into protein (Filipowicz et al. 2008). In order for the changes 

we are interested in to be detectable by microarray, they would have to involve the first 

pathway: the mRNAs being targeted for degradation. Mechanisms for this effect include 

the ability of the RISC complex to cause deadenylation or decapping of the transcript, 

which ultimately leads to mRNA degradation by general machinery (Eulalio et al. 2008). 

lncRNAs have also been shown to be involved in regulation of mRNA stability. They can 

act as a miRNA “sink” by binding to it and blocking its ability to bind and degrade its 

mRNA target (Mercer et al. 2009), or bind complementarily to the mRNA itself to 

regulate its stability (Atianand and Fitzgerald 2014).  
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Therefore, a possible mechanism for post-transcriptional regulation by rosi is the direct 

regulation of miRNA or lncRNA transcripts by rosi treatment, which in turn would 

regulate mRNA stability and degradation. We did not investigate whether miRNAs or 

lncRNAs are regulated by rosi, though it is possible because at least one class of non-

coding RNAs – eRNAs – are. In another model of NR-mediated transcriptional 

regulation, estrogen treatment of breast cancer cells caused regulation of 37% of 

annotated miRNA precursor transcripts (Hah et al. 2011) at early time points of 

treatment. These mechanisms could be explored further to better understand regulation of 

steady state mRNAs by secondary or non-transcriptional means.  
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Figure 2.1 Rosiglitazone rapidly and robustly increases and represses gene 

transcription in adipocytes. 

Rosi regulation of RefSeq adipocyte gene transcription as measured by GRO-seq. GRO-seq 

was performed on mature 3T3-L1 adipocytes treated for 0, 10m, 30m, 1h, or 3h with rosi. (A) 

Increased transcription at the Fabp4 locus with rosi treatment. (B) The Rgs2 gene shows 

repressed transcription upon rosi treatment.  (C) Heatmap shows 1,951 genes that displayed a 

significant change in transcription (FDR <.05) due to rosi treatment in at least one time point. 
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Figure 2.2 Nascent gene transcript regulation by rosi correlates with regulation of 

steady-state mRNAs. 

Level of mRNA regulation (from microarray data) vs. gene body transcript regulation 

(from GRO-seq) is plotted at each time point. The Pearson correlation coefficient is given 

for each pair of time points.  
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Figure 2.3 Some steady-state mRNAs may also be regulated on different timescales 

or non-transcriptionally. 

Levels of pre-mRNA and steady-state mRNA for several genes of interest as measured 

by RT-PCR. 
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Figure 2.4 Positive gene regulation by rosi is associated with number and proximity 

of nearby PPAR sites. 

(A) Distance from TSS to the nearest called PPAR site in genes that are up-regulated by 

rosi, down-regulated by rosi, and unchanged.  p < 10
-10

 for up-regulated versus 

unchanged genes by χ
2
 test. (B) Number of PPAR sites within 100kb of the TSS for the 

three groups of genes. .  p < 10
-10

 for up-regulated versus unchanged genes by χ
2
 test. 
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Table 2.1 List of primers for gene expression 

Name Forward Sequence Reverse Sequence 

Fabp4 

mRNA  

CACTTTCCTTGTGGCAAAGC AATGTGTGATGCCTTTGTGG 

Fabp4 

pre-

mRNA 

ATCGGGAATTTCAGCATGAC  TCAAGCCCTGGTATTTCTGG 

Pdk4 

mRNA 

ATCATCTTTGGTGGCCGTAG CATGGCTGCTCCTACAAACA 

Pdk4 pre-

mRNA 

TAACTATGCCGTGCACCAAA AAAGGCTCAAGGGGAAGAGA 

 

Gyk 

mRNA 

CCCATCCTTCTCTTGGGAAT GTACCAGCTCGACACGTTTTT 

Gyk pre-

mRNA 

TGCTTGCTCACAGCTAGGAA GAAGCATGGGCTTTTAGCAG 

Acaa1b 

mRNA 

ATTCCCATGGTTCCCTCTCT GCTGGTGGCATCAGAAATG 

Acaa1b 

pre-

mRNA 

GCAGCAGTTCAGGGATTCTC 

 

CCCAAACCCTTGACTGACAT 

Arbp 

mRNA 

CCGATCTGCAGACACACACT ACCCTGAAGTGCTCGACATC 
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CHAPTER 3: The role and rosi-regulation of enhancers and eRNAs 

 

 

 

 

 

 

 

 

 

Published in part in Genes & Development, 2014 May 1;28(9):1018-28.  

 

 

The text, figures, and legends in this chapter were the work of Sonia Step with the 

following exceptions. Jill Marinis performed the eRNA ablation experiments shown in 

Figure 3.6. The C/EBP and C/EBP ChIP-seq experiments are the work of David 

Steger, and the NCoR ChIP-seq was performed by Seo-Hee You. Hee-woong Lim 

conducted the data processing and bioinformatics analyses.   
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3.1 Introduction 

PPAR binds at many thousands of sites in the genome (Lefterova et al. 2008; Nielsen et 

al. 2008), yet it is difficult to determine which of these sites play an important role in 

regulating gene transcription in response to rosi. Previous studies have relied on mapping 

every PPAR binding site to its nearest gene to determine trends of regulation 

(Haakonsson et al. 2013). These studies also showed that PPAR binding is largely 

unaffected by rosi treatment, though occupancy at some sites is slightly increased. This 

leaves the question of what causes rosi-dependent transcriptional changes.  

 

There has been some evidence that changes in coactivator and corepressor occupancy 

may be involved in rosi-mediated regulation. Early studies showed that rosi causes 

dismissal of corepressors and recruitment of coactivators to individual sites in the 

genome (Guan et al. 2005). More recently, a paper demonstrated that binding of the 

coactivators MED1 and CBP is increased at PPAR sites near genes that are up-regulated 

by rosi (Haakonsson et al. 2013). However, about half of rosi-regulated genes are actually 

repressed rather than increased, and none of these studies contributed any insight into 

rosi-mediated transcriptional repression. 

 

eRNAs have garnered much interest in the last few years, as they have been shown to 

contribute to transcription of their target gene (Lam et al. 2013; Li et al. 2013; Melo et al. 
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2013). Additionally the production of eRNAs have been demonstrated to mark functional 

enhancers, as measured by other markers of enhancers or by transcription of the nearest 

gene (Hah et al. 2013; Zhu et al. 2013). 

 

We use GRO-seq to identify thousands of bidirectional, intergenic eRNAs, detect those 

that are regulated by rosi, and use these to categorize functional enhancers of rosi-

mediated transcription. By focusing exclusively on these functional enhancers rather than 

all PPAR sites, we examine the contributions of coactivator occupancy and other TFs to 

transcriptional regulation. We find that rosi-upregulated eRNAs occur at sites of strong 

PPAR binding to which coactivators such as MED1, CBP, and p300 are recruited. 

Remarkably, however, downregulation of eRNA transcription occurs at sites that are 

devoid of PPAR but enriched for C/EBP and AP-1 family members. MED1 and other 

coactivators are dismissed at these downregulated sites, strongly supporting a mechanism 

of negative regulation involving coactivator redistribution upon rosi binding to PPAR. 

 

 

3.2 Materials and Methods 

3.2a Cell culture 

3T3-L1 cells were cultured as described in Chapter 2. 
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3.2b GRO-seq library preparation 

GRO-seq libraries were prepared as described in Chapter 2.  

 

3.2c ChIP-qPCR and ChIP-seq 

ChIP was performed as described previously (Steger et al. 2008). Cells were crosslinked 

with 1% formaldehyde for 15 minutes, followed by quenching with 1/20
th

 volume of 

2.5M glycine and washed with 1x PBS. Cells were scraped down, transferred to a 1.5ml 

tube, and pelleted by centrifugation for 5 minutes at 300g at 4°C. Cells were resuspended 

in 1ml ChIP buffer (50mM Tris-HCl, 500mM NaCl, 1mM EDTA, 1% Triton X-100, 

0.1% NaDOC, 0.1% SDS, and complete protease inhibitor tablet) and probe sonicated 3 

times for 10 seconds at power 4, rested on ice, then probe sonicated 3 times for 10 

seconds at power 6. Samples were centrifuged at maximum speed for 5 minutes at 4°C, 

and the interlayer was removed to a fresh tube, avoiding the lipid top layer. This 

clarification was repeated twice. Immunoprecipitation was performed at 4°C overnight 

with the appropriate antibody, then bound to Sepharose A beads. Crosslinking was 

reversed at 65°C overnight, then samples were digested with Proteinase K, and the DNA 

was isolated using phenol/chloroform. Precipitated DNA was analyzed by qPCR. The 

following antibodies were used in this study: C/EBP (sc-61x, Santa Cruz), C/EBP (sc-

150x, Santa Cruz), FOSL2 (sc-13017x, Santa Cruz), JUND (sc-74x, Santa Cruz), ATF2 

(sc-6233x, Santa Cruz), MED1 (A300-793A, Bethyl), H3K27ac (ab4729, Abcam), CBP 

(sc-369x, Santa Cruz), p300 (sc-585x, Santa Cruz), and NCoR (rabbit polyclonal, 

generated in-lab). Primer sequences used for ChIP-qPCR are provided in Table 3.2. ChIP 
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DNA was prepared for sequencing according to the amplification protocol provided by 

Illumina. Next generation sequencing of ChIP-seq libraries were performed by the 

Functional Genomics Core at the University of Pennsylvania, including preprocessing 

and alignment of the raw tags. 

 

3.2d eRNA expression 

RNA isolation, reverse transcription, and qRT-PCR were performed as described in 

Chapter 2. Primer sequences used to detect eRNA levels are listed in Table 3.1. 

 

3.2e ChIP-seq data analysis 

All the ChIP-seq tags for C/EBPα, FOSL2, ATF2, JUND, NCoR and MED1 were 

aligned to mouse genome, mm8, using Bowtie with options, ‘-k 1 -m 1 --best –strata’, 

and all the redundant tags were eliminated except one before downstream analysis. Peak-

calling was performed using findPeaks command in Homer (Heinz et al. 2010). After 

initial calling, all the peaks were resized to 200 bp, then 2 RPM cut-off was applied for 

C/EBPα, FOSL2, ATF2, and JUND to select strong peaks and 1 RPM cut-off was applied 

for MED1, CBP, p300 and NCoR because of their indirect genomic binding. 
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3.2f FAIRE (Formaldehyde-Associated Isolation of Response Elements) 

Cells were crosslinked as for ChIP, and nuclei were isolated by probe sonication. Nuclei 

were sonicated in the Bioruptor (7.5 minutes on medium, 30 seconds on/30 seconds off). 

Samples were spun for 10 minutes at maximum speed, then lysates were pooled. An 

aliquot was removed for input, then lysates were extracted 3 times with 

phenol/chloroform in PhaseLock tubes. The aqueous phase was removed, and incubated 

at 65°C overnight. Samples were digested with Proteinase K, and then DNA was 

precipitated as during ChIP and analyzed by qPCR. Primer sequences are listed in Table 

3.2.  

 

3.2g Transfection 

For ablation of eRNA by siRNA, antisense oligo (ASO), and locked nucleic acid (LNA), 

mature differentiated 3T3-L1 adipocytes were electroporated using Amaxa Cell Line L 

(program A-033, Lonza). One quarter of a 10-cm dish of cells was treated with 200 pmol 

of ASO or LNA, or 350 or 700pmol siRNA as indicated (sequences in Table 3.3) and 

plated onto one well of a 12-well dish. Cells were harvested 24-30h post-transfection and 

RNA was isolated. 

 

3.2h eRNA analysis 

For eRNA analysis, we defined an enhancer as an intergenic center of a bidirectional 

transcript. After pooling both replicates to improve transcript coverage for each time 
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point, we identified all the putative transcripts in plus and minus strands using the 

findPeaks command in Homer. Two start sites of a plus transcript and a minus transcript 

were paired together if their distance is less than 1kb, and then their midpoint was defined 

as a center of a bidirectional transcript. Any of these centers were discarded if they are 

located within 2kb from RefSeq genes or Satellite regions to avoid potential bias from 

gene body transcripts or abundant signal from Satellite regions. To investigate rosi-

induced eRNA regulation, we used a similar pipeline as the gene transcript analysis 

described in Chapter 2, with the following differences. When counting tags for eRNA, we 

considered 2kb window only around the previously defined enhancer and summed plus 

and minus tags. Coverage cut-off was not applied, but the 0.5RPKM cut-off was still 

applied. Among eRNAs that passed the cut-off, those with FDR < 0.05 was considered 

rosi-regulated and the others were considered non-regulated. For the clustering analysis, 

we used log2(fold-change over untreated) in each time point and Euclidean distance. 

Initial dendrogram was created by Ward’s criterion then further subjected to optimal leaf 

ordering. De novo motif search was performed using HOMER more than once for a 

given set of genomic loci, and the consensus motifs were considered for downstream 

analysis only if they appear consistently with significant p-value. 
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3.3 Results 

3.3a Adipocyte eRNAs are regulated by rosi treatment and correlated with regulation of 

the nearest gene. 

In addition to gene body transcription, GRO-seq revealed robust bidirectional transcripts 

at enhancers, or eRNAs (Core et al. 2008; Kim et al. 2010), which were identified and 

quantified in an unbiased, genome-wide analysis (Figure 3.1). For example, bidirectional 

eRNAs were identified at enhancers upstream of the Fabp4 locus, and their transcription 

was observed to be upregulated by rosi (Figure 3.2A). Indeed, unbiased de novo calling 

of bidirectional intergenic transcripts confirmed that the transcription of many eRNAs 

was strongly and rapidly regulated by rosi, and downregulated eRNAs greatly 

outnumbered upregulated eRNAs (Figure 3.2B).  This was similar to the effect of rosi on 

gene body transcription and, as has been observed in other systems (De Santa et al. 2010; 

Kim et al. 2010), the effect of rosi on eRNA transcription correlated strongly with 

transcription at the nearby gene bodies (Figure 3.3). The correlation was confirmed at 

eRNA/gene body pairs by qPCR, which also demonstrated that eRNA induction often 

preceded gene induction (Figure 3.4A). The correlation was validated at repressed 

eRNA/gene pairs as well (Figure 3.4B).  Though intragenic eRNAs were excluded from 

downstream analysis because of difficulties in identifying them reliably, we observed that 

many follow a similar pattern of correlation with the target gene (Figure 3.5).    
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3.3b Ablation of eRNA transcripts has no effect on transcription of nearby genes.  

To test whether the eRNA transcript has a functional role in increasing gene transcription, 

we ablated eRNAs using several methods and tested levels of the eRNA, its target gene, 

and a distant non-target gene as a control using qRT-PCR. Targeting an eRNA near the 

Tusc5 gene (a relatively well-conserved eRNA) for degradation using an antisense 

oligonucleotide (ASO) led to robust suppression of eRNA levels, but no statistically 

significant effect on Tusc5 mRNA (Figure 3.6A). Similarly, targeting an eRNA upstream 

of Fabp4 for degradation by locked nucleic acid (LNA) gapmers resulted in a large 

decrease in eRNA levels, and though a small decrease was measured in Fabp4 mRNA, 

this decrease was seen in off-target genes as well, such as Pparg2 (Figure 3.6B). Using 

siRNA to ablate the same Fabp4 eRNA had some minor effects on Fabp4 mRNA at 

higher concentrations, but again off-target effects were seen at the Pparg2 gene as well 

(Figure 3.6C).  

 

3.3c Down-regulated eRNAs are devoid of PPAR and are enriched for several C/EBP 

and AP-1 factors. 

Since rosi is known to positively regulate PPAR activity and transcription of its target 

genes, we investigated the differential regulation of eRNAs by PPAR and other 

transcription factors. Indeed, upregulated eRNAs were extremely likely to have PPAR 

bound nearby (85%), much more so than unregulated or downregulated eRNAs (Figure 

3.7A). In fact, downregulated eRNAs were relatively devoid of PPAR binding, as will 
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be discussed below. Furthermore, strong PPAR binding as measured by total normalized 

tag counts from ChIP-seq was enriched at upregulated eRNAs, but not at downregulated 

eRNAs, relative to unregulated eRNAs (Figure 3.7B). PPAR binding sites that overlap 

with eRNAs had higher PPAR occupancy than those that lack eRNAs, further 

suggesting that enhancers with eRNAs are more likely to be functional (Figure 3.7C).  

 

In contrast to the upregulation of transcription by rosi, PPAR strength of binding was 

not enriched at rosi-repressed eRNAs. Though 23.6% of downregulated eRNAs had 

PPAR bound (Figure 3.7A), this percent was far less than at unregulated eRNAs, and 

the binding tended to be extremely weak (Figure 3.7B). Moreover, unlike upregulated 

genes, the number, strength, and proximity of PPAR binding were not enriched near the 

TSS of downregulated genes relative to unchanged genes (Figures 2.4A, 2.4B). Together 

these data strongly suggest that PPAR does not mediate the repression of eRNA and 

gene body transcription by rosi directly, i.e., by binding in cis with the regulated gene 

body, as was the case at the majority of rosi-upregulated eRNAs.  

 

To investigate which transcription factors may be involved in rosi-mediated 

transcriptional repression, we performed motif analysis at sites containing regulated 

eRNAs. Consistent with enrichment of PPAR at upregulated eRNAs, de novo motif 

finding analysis at sites of rosi-induced eRNAs revealed strong enrichment for a 

sequence that is highly similar to the canonical PPAR/RXR binding site (Figure 3.8A). 
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In contrast, de novo motif analysis of sites with downregulated eRNAs produced two 

highly enriched motifs that most resembled a C/EBP:AP-1 hybrid motif and the canonical 

AP-1 motif (Figure 3.8B).  ChIP-seq analysis for C/EBP and AP-1 factors that are 

abundant in adipocytes revealed significant enrichment at downregulated eRNAs of 

C/EBP, C/EBP, FOSL2, JUND, and ATF2. (Figure 3.9A). A higher percentage of 

downregulated eRNAs, compared to upregulated and nonregulated, had these C/EBP and 

AP-1 factors bound (Figure 3.9B). Interestingly, although C/EBP has been shown to be 

enriched near genes repressed after rosi treatment (Vernochet et al. 2009; Haakonsson et 

al. 2013), in our data the enrichment was higher for other factors, including FOSL2 and 

JUND (Figure 3.9). The finding that both C/EBP factors and all three AP-1 factors are 

enriched at downregulated sites suggests that each of these factors, potentially along with 

other TFs but notably not PPAR, is located at eRNAs in cis with gene bodies whose 

transcription is negatively regulated by rosi and may be involved in transcriptional 

repression.   

 

3.3d Rosi-mediated transcriptional repression may be mediated in part by redistribution 

of coactivators. 

The strength of C/EBP and AP-1 binding did not change upon rosi treatment (Figure 

3.10), suggesting that it was not a change in TF occupancy that was driving rosi-mediated 

transcriptional repression. Instead, we hypothesized that the repression could be related to 

coactivator redistribution to the rosi-bound PPAR.  ChIP-seq for the general coactivator 

MED1 was performed in the presence and absence of rosi. We then determined the sites 
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of MED1 occupancy that contained eRNAs, and whether these eRNAs were up- or 

downregulated by rosi. As expected, MED1 recruitment to sites of PPAR binding at 

upregulated eRNAs was increased by rosi (Figure 3.11A).   

 

Remarkably, 1h of rosi treatment decreased MED1 recruitment at sites of downregulated 

eRNA transcription despite the general absence of PPAR at these sites (Figure 3.11B). 

These results were confirmed at several representative sites of up- and downregulated 

eRNAs by MED1 ChIP-qPCR (Figure 3.11C). On average, upon rosi treatment MED1 

recruitment significantly decreased at downregulated eRNAs and increased at 

upregulated eRNAs relative to unregulated eRNAs (Figure 3.11D). Furthermore, 

redistribution of a coactivator to upregulated sites and away from repressed sites was not 

limited to only MED1. ChIP-seq for the coactivators CREB-binding protein (CBP) and 

p300 in the presence and absence of rosi showed a modest but consistent and statistically 

significant redistribution upon rosi treatment similar to MED1 (Figures 3.12A, 3.12B). 

Notably, occupancy of the corepressor NCoR was not altered upon rosi treatment (Figure 

3.12C), suggesting that transcriptional repression may be driven by redistribution of 

coactivators, rather than replacement of coactivators with corepressors. Surprisingly, we 

did not observe significant changes in H3K27ac or chromatin accessibility by FAIRE at 

sites of eRNAs regulated after 1h of rosi treatment, although we cannot rule out changes 

in chromatin marks at later time points (Figure 3.13). 
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3.4 Conclusions 

eRNAs are of great interest, as they have been shown to contribute to enhancer function 

and influence transcription at the target gene body (Kaikkonen et al. 2013; Lam et al. 

2013; Li et al. 2013; Melo et al. 2013). However, we found no effect of eRNA ablation – 

whether by siRNA, LNA, or ASO – on transcription of nearby genes. This suggests that 

at least not all eRNAs have a functional role in promoting gene transcription. It is 

possible that those that resemble long non-coding eRNAs more closely – longer, 

unidirectional, poly-A tailed, etc – are more likely to play a functional role in 

transcription.  

 

We were able to detect adipocyte eRNAs, on a genome-wide level, and quantification of 

their basal and rosi-regulated rates of transcription revealed a high correlation between 

eRNA transcription and transcription at the nearby genes. At rosi-upregulated eRNAs, 

PPAR binding was highly enriched and was actually required for eRNA transcription. 

Upregulation of gene body transcription by rosi was correlated with recruitment of the 

coactivators MED1, CBP, and p300 to the site of eRNA transcription, in agreement with 

a recent study that found MED1 was recruited to PPAR binding sites (Haakonsson et al. 

2013). Thus, activation of gene transcription by rosi fits a general model of NR function 

in which ligand binding facilitates the recruitment of coactivators to PPAR bound in cis 

with a regulated gene body. The site of PPAR binding functions as an enhancer, 

generating eRNAs that correlate with the level of gene body transcription.  The effect is 
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greatest when multiple strong PPAR binding events occur in relatively close proximity 

to the TSS.  

 

In contrast, rosi-downregulated eRNAs are quite different.  They are depleted of PPAR 

binding compared to background levels, but are enriched for other TFs, especially 

members of the C/EBP and AP-1 TF families. Nevertheless, despite the fact that PPAR 

is not bound in the vicinity, rosi treatment leads to dismissal of the coactivators from 

these sites. This suggests that a primary mechanism of rosi-dependent transcriptional 

repression involves squelching of essential coactivators from enhancers lacking PPAR. 

Consistent with this, the induction of the PPAR-dependent, rosi-induced eRNAs 

preceded the downregulation of non-PPAR-dependent eRNAs. 

 

In contrast to upregulated enhancers, which depend upon activation of PPAR and 

recruitment of coactivators such as MED1, downregulated sites where MED1 binding 

was lost were enriched for TFs other than PPAR. This suggests that, in principle, any TF 

driving transcription at a PPAR-independent enhancer would be susceptible to the 

repressive effects of rosi redistributing coactivators to PPAR.  Indeed, this may explain 

why the downregulated enhancers are enriched for binding of multiple factors, including 

C/EBP, C/EBP, FOSL2, ATF2, and JUND. Of these, only C/EBP has previously 

been implicated in rosi-mediated transcriptional repression (Vernochet et al. 2009; 

Haakonsson et al. 2013), and notably, in our studies C/EBP was less enriched at 

downregulated sites relative to the AP-1 TFs.  
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A role for coactivator redistribution, or squelching, has been previously suggested to 

explain transcriptional repression by NRs, but most of those studies were performed 

using transfection to overexpress receptors or coactivators, and used reporter genes as 

readouts (Kamei et al. 1996; Fronsdal et al. 1998; Lee et al. 2000; Li et al. 2000; Kim et 

al. 2001; Zhang and Teng 2001; Manna and Stocco 2007; He et al. 2012; Pascual-Garcia 

et al. 2013). This model gained further support recently with evidence that the 

endogenous coactivator NCOA3 is lost from sites of diminished DNase I hypersensitivity 

upon E2 hormone treatment in MCF-7 cells (He et al. 2012). Here our analysis of eRNAs 

has allowed us to focus on regulated enhancers and interrogate this mechanism in the 

context of the endogenous genome and TFs in adipocytes, where the only manipulation 

was treatment with the PPAR ligand, and to link the coactivator redistribution to 

changes in transcriptional levels of both eRNAs and genes. 

 

We found five C/EBP and AP-1 transcription factors enriched at down-regulated eRNAs, 

and the coactivator redistribution mechanism we propose suggests that any transcription 

factor other than PPAR could lose its coactivators and drive transcriptional repression 

upon rosi treatment. Further studies should investigate whether all of these transcription 

factors, and others, indeed play an equal role in transcriptional down-regulation. 

Furthermore, the fact that eRNA regulation correlates so highly with regulation of the 

target gene may be evidence of a physical interaction between enhancer and promoter, 
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such as a chromatin loop. Studies such as chromatin conformation capture (3C) could 

determine whether the strength of looping is altered at sites with regulated eRNAs.  

 

The strength of our approach lies in using regulated eRNAs to identify functional 

enhancers, which allows unbiased, de novo detection of novel important factors. In fact, 

our lab has recently used a very similar approach to identify enhancers and factors that 

drive circadian transcription in the liver (Fang et al. 2014). These methods could be 

extended to many other systems and questions.  
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Figure 3.1 eRNAs are transcribed in adipocytes. 

Genome-wide average signal of intergenic bidirectional transcripts in untreated 

adipocytes from the plus and minus strands. 
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Figure 3.2 Adipocyte eRNAs are regulated by rosi.  

(A) Two bidirectional eRNAs are transcribed at enhancers upstream of the Fabp4 TSS 

and up-regulated by rosi treatment. eRNA centers are indicated by arrows. (B) Heatmap 

showing all rosi-regulated eRNAs found in an unbiased manner (N=2251).   
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Figure 3.3 eRNA regulation and gene regulation are correlated on a genome-wide 

level. 

Correlation between rosi-regulated eRNAs and the regulation of the nearby gene for all 

pairs of matching time points (N=462). For each gene, eRNAs within 100kb of the TSS 

were included in the analysis.  
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Figure 3.4 Examples of correlation between eRNA and gene regulation.  

(A) Correlation between gene and eRNA rosi regulation as measured by RT-qPCR for 

four example genes: Fabp4, Pdk4, Acaa1b, and Ppargc1b. N=3; error bars indicate SEM. 

(B) Repression at regulated eRNAs and nearby genes is confirmed by RT-qPCR for three 

example genes: Angpt1, Jun, and Nr1d1. N=3; error bars indicate SEM.  



62 

 

 

Figure 3.5 Examples of intragenic eRNAs that correlate with gene regulation. 

(A) Screenshot of the Angptl4 gene locus. Approximate eRNA center is indicated by the 

arrow. (B) Screenshot of the Pparg gene locus. Approximate eRNA center is indicated by 

the arrow. 
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Figure 3.6 Ablation of individual eRNAs has no effect on transcription of the nearest 

gene. 

(A) qRT-PCR for the eRNA near Tusc5, Tusc5 mRNA, and Pparg2 mRNA as a control 

after ablation of the eRNA with an antisense oligonucleotide. (B) qRT-PCR for the eRNA 

upstream of Fabp4, Fabp4 mRNA, and Pparg2 mRNA after ablation of the eRNA with 

locked nucleic acid (LNA) gapmers. (C) qRT-PCR for the eRNA upstream of Fabp4, 

Fabp4 mRNA, and Pparg2 mRNA after ablation of the eRNA with siRNA. 
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Figure 3.7 Rosi-up-regulated eRNAs are enriched for PPAR binding, but down-

regulated ones are depleted of it.  

(A) Percentage of up-regulated, down-regulated, and unregulated eRNA sites that overlap 

with a called PPAR peak from ChIP-seq. (B) Total PPAR tag count, in reads per 

million (RPM), within 1kb of up-regulated, down-regulated, and unregulated eRNA sites. 

(*) p = 7.7 x 10
-95

 versus unregulated sites; (**) p = 1.8 x 10
-20

 versus unregulated sites. 

(C) Occupancy of PPAR in RPM is plotted at sites that contain or do not contain an 

eRNA.  
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Figure 3.8 Up- and down-regulated eRNAs are enriched for different motifs. 

(A) Top hit from HOMER de novo motif search at up-regulated eRNAs. The closest 

known motif, the DR1 motif, is shown for reference. The enrichment for this motif was 

45% at the target sites and 13.5% in the background sites. (B) Top two hits from HOMER 

de novo motif search at down-regulated eRNAs. The closest known motif for each is 

shown for reference.  
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Figure 3.9 Down-regulated eRNAs are enriched for binding of C/EBP, C/EBP, 

FOSL2, JUND, and ATF2.  

(A) Total tag counts in reads per million (RPM) within 1kb of the center of the regulated 

eRNAs from ChIP-seq for the following factors: C/EBP, C/EBP, FOSL2, JUND, and 

ATF2. (*) p < 4.6 x 10
-5

. (**) p < 10
-10

. (B) Percentage of regulated eRNAs that overlap 

with called peaks of C/EBP, C/EBP, FOSL2, JUND, and ATF2.  
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Figure 3.10 Strength of binding of C/EBP and AP-1 factors does not change upon 

rosi treatment. 

ChIP-qPCR at several strong binding sites for C/EBP, C/EBP, FOSL2, JUND, and 

ATF2 before and after 1h of rosi treatment. Primer sequences are listed in Table 3.2.  
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Figure 3.11 MED1 binding is increased upon rosi treatment at up-regulated eRNA 

sites and decreased at down-regulated sites. 

(A) Scatter plot comparing MED1 binding strength in reads per million (RPM) with and 

without 1h of rosi treatment, with sites containing an up-regulated eRNA highlighted in red. 

(B) Scatter plot comparing MED1 binding strength with and without 1h of rosi treatment, 

with sites containing a down-regulated eRNA highlighted in blue. (C) MED1 ChIP-qPCR at 

sites with up-regulated or down-regulated eRNAs. N = 5. Error bars indicate SEM. (*) p < 

0.05; (**) p < 0.01; (***) p < 0.005 by paired t-test. (D) Box plot showing average log2 of 

fold change in MED1 occupancy upon rosi treatment at sites of regulated eRNAs. (**) p < 

10-15.  
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Figure 3.12 The coactivators CBP and P300 are also redistributed upon rosi 

treatment, but the corepressor NCoR is not.  

(A) Box plot showing average log2 of fold change in CBP occupancy at up-regulated, 

down-regulated, and unregulated eRNA sites. (**) p < 10
-15

. (B) Box plot showing 

average log2 of fold change in P300 occupancy at up-regulated, down-regulated, and 

unregulated eRNA sites. (**) p < 10
-15

. (C) Box plot showing average log2 of fold change 

in NCoR occupancy at up-regulated, down-regulated, and unregulated eRNA sites. N.S. = 

not statistically significant.  
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Figure 3.13 Rosi does not cause changes in levels of H3K27ac or open chromatin as 

measured by FAIRE.  

(A) ChIP-qPCR for H3K27ac at enriched sites before and after 1h of rosi treatment. 

Primers sequences are listed in Table 3.2. (B) FAIRE-qPCR at several regulated sites 

before and after 1h of rosi treatment. Primer sequences are listed in Table 3.2. 
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Table 3.1 List of primers for eRNA and gene expression 

Name Forward Sequence Reverse Sequence 

Fabp4  

pre-

mRNA 

ATCGGGAATTTCAGCATGAC AATGTGTGATGCCTTTGTGG 

Fabp4 

eRNA 

TGAGTCCCCCACTTGCTTTA CACCCTGTAAGGCTGGTGAT 

 

Pdk4 pre-

mRNA 

TAACTATGCCGTGCACCAAA AAAGGCTCAAGGGGAAGAGA 

Pdk4 

eRNA 

TTAACAAAGAAAACAGGCAA

CA 

CATCAGTACCCTCAAAACACAA

A 

Acaa1b  

pre-

mRNA 

GCAGCAGTTCAGGGATTCTC CCCAAACCCTTGACTGACAT 

Acaa1b 

eRNA 

ACAGCAGGTGTGGTGACTTG TGCATCCTTGAGGAACAAGA 

Ppargc1b  

pre-

mRNA 

TGAATGCACAGTGGTTTGGT TGTACCCGCCACACAAGTAA 

Ppargc1b 

eRNA 

TCTATTGTTAGGCTGTGAAA

CATT 

TATGCATCCCCAGTCCTCAT 

Angpt1  

pre-

mRNA 

ACGATGTAAGTCCGGCAGAA TGCTTTAAGCGTACAACCAAAA 

Angpt1 

eRNA 

CCATTTACAGCCAACGGTCT CCAAACTATTTGCTCCTGGTG 

Jun  

pre-

mRNA 

GGTCCCTGCTTTGAGAATCA GCAGACACTTTGGTTGAAAGC 

Jun 

eRNA 

GAAGTTGAGCGGGTTTGAGA TTCCAGGTACAGCACACTGC 

Nr1d1  

pre-

mRNA 

AGGCAGGGCAACCTTAAAAT TGAAACCATAGCCGGGTAAC 

Nr1d1 

eRNA 

CAGAAGATTCTCCTCCCGTA

AA 

AGAGCATCCAAGCCTGACAA 

Tusc5 

eRNA 2 

TTCAAAACAAAACCCCCTTT GAATTATTCCCCGTGATCCA 

Tusc5 CCCCTGCTGCACACTACTTC TTACCTGGTCCTTGCCATTG 

Fabp4 

eRNA 

GGAAACCCACACAAGCTGTT GGGCATGGCATACAGAAACT 

Fabp4 CACTTTCCTTGTGGCAAAGC AATGTGTGATGCCTTTGTGG 
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Pparg2 TGGGTGAAACTCTGGGAGAT

TC 

GAGAGGTCCACAGAGCTGATTC

C 

Arbp CCGATCTGCAGACACACACT ACCCTGAAGTGCTCGACATC 

 

Table 3.2 List of primers for ChIP-qPCR and FAIRE-qPCR 

Name Forward Sequence Reverse Sequence 

C/EBP up1 AGCCAGGGAATCTGCTTAG

G 

TGGCATTGCATGTTATTGCT 

C/EBP up2 TGTCACAACTACTAACCCT

GTTGA 

TGTCCCCATGACAACTAATGA 

C/EBP up4 GCCTCTCGAAATGTTTGTC

C 

GCCAGACAGAATGGAAGCA 

C/EBP up5 CTGTACCTTTTTGGCCTTGG CTCACATGCTGGAAACCTCA 

C/EBP down2 GGCCAAATCAGTTCCTGAA

A 

GTTGTGGGGAGTGAAGCAAT 

C/EBP down3 GGGCTTGGAGACTGTAGCT

G 

CTCTGGCTCCTTGAGCAATC 

C/EBP down4 CTCAGTTGCTCCCTTTCACC GGCAACTCTTTTCCCTCCTC 

C/EBP down6 AGCGCAGACTCCCTCTAAT

G 

CAACGGTTTCAAAACCCAGA 

ATF2 site 1 CATCAGGAAGTTGGCCTCT

G 

GGCTTTCCTCTGCTTCTCCT 

ATF2 site 2 CGAACTCCAGGGATTTTCT

G 

GCAAACCGTGGTCCTTTCTA 

ATF2 site 3 GGACAGCGGAGTTCTCTAG

C 

TGAGAATAGCATGCAGTGTGC 

ATF2 site 4 CGCGTCTTGATTGGTCACT AGGCAGGTGTCCTGGTCTC 

ATF2 site 5 TCATCCTGTGAGCCTGATT

G 

CATCCCACATTCATCCACTG 

FOSL2/JUND 

site 1 

GGAAAAGCCACACCCTACA

A 

GGGACTTTCTTCAGGAGCCTA 

FOSL2/JUND 

site 2 

GCCAGAGCATGGGTTTTCT

A 

TTGGACAGGCCATGTGACTA 

FOSL2/JUND 

site 3 

AGCTACCAAGTGACTGCCA

AG 

TTGAGCAGCGTGATGAAATC 

FOSL2/JUND 

site 4 

GACTCATTTCCCAGCTGAC

C 

CAATTCAAAAGGGGAACTCG 

FOSL2/JUND 

site 5 

ATGATGCAATTGGGCTCCT CTGACTGTGCTGGCTGACTC 

Fabp4 site 1 AATGTCAGGCATCTGGGAA GACAAAGGCAGAAATGCACA 
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C 

Fabp4 site 2 GTGGAAGCTGAAGCTGCTG

T 

GTCCCTGGGAATGATTTGTG 

MED1 site 1 CCCCACTGTTGCAAAAATC

T 

CCCTGGCCTACAAGAGCTTA 

MED1 site 2 TTAAAAGAACGAGCCCCAA

A 

AATGGCTTGCAAAACTCCAC 

MED1/H3K27 

site 3 

AATGGTTGGAGGCCAGTAA

A 

AGTTGGAAGCGTTCATTGCT 

MED1/H3K27 

site 4 

TTTCCCCAGGAAAGTTCAG

A 

CCCTGAGATGAGGTTGGTTG 

MED1 site 5 GCATTTCTCAGCCAGGAGT

C 

GGCACAGAGGAAGCTCAGTC 

MED1/H3K27 

site 6 

GCACTATTGCGTTCCCTTTC TGGCTAGGTCCAAGGACAAC 

Pparg-122k AGCTTTGCTGGCTAGAGGT

G 

TTTCGCAGAACTGAGGTTGA 

Angptl4 PPRE CTGAAACTGCATGCCTCAA

G 

TTCCTGTCTGCCTGTCACTG 

Pdk4 PPRE AGAGTTCTCTGGGGGAAAG

G 

CCACTTGGGCAACAGAATTT 

Arbp TCATCCAGCAGCAGGTGTT

TGACA 

GGCACCGAGGCAACAGTT 

Ins TGCTTGCTGATGGTTTTTGA CAGAGAGGAGGTGCTTTGGT 

 

Table 3.3 List of sequences for ASO, LNA, and siRNA 

Name Sequence 

asNTC TAGCGACTAAACACATCA 

as Tusc5 PPRE1 eRNA GTTATCTCTCCAGTGCCCA 

as Tusc5 PPRE2 eRNA GCATTCGTCTCCAGGCTTT 

LNA gapmer1 ATCAGGCCACCACTATGTA 

LNA gapmer 2 TGCTTTCAGAAACGGGAACT 

NTC si UAGCGACUAAACACAUCA 

Fabp4 eRNA si1 AUGGCAUACAGAAACUGCCCCUUGAGCAGUUUCUU 

Fabp4 eRNA si2 AAAUUUGUUAUUGGCAGAAAGUCCCUCUGCCAAUA

A 
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CHAPTER 4: Regulation of adipocyte transcription by MRL-24 
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4.1 Introduction 

Alternative mechanisms have been suggested to explain the dysregulation of PPAR 

signaling in obesity or diabetes and subsequent improvement by TZD treatment. In one 

such model, PPAR is phosphorylated at Ser273 by Cdk5. This phosphorylation is 

increased in adipose tissue by high fat diet or pro-inflammatory treatments such as 

TNF, but blocked by TZDs (Choi et al. 2010). The phosphorylation is also effectively 

blocked by a compound called MRL-24, which binds to PPAR and improves glucose 

tolerance but lacks agonist activity in a PPAR transactivation assay. In both the adipose 

tissue of MRL-24-treated mice and in a cell culture model of differentiated fibroblasts 

treated with MRL-24, the compound did not activate the majority of expected PPAR 

target genes that are up-regulated with rosi, but instead up-regulated a unique subset of 

target genes. Understanding these differentially regulated gene targets may be critical to 

dissociating the positive anti-diabetic effects of these drugs from the adverse effects.  

 

The same group followed up this work with another paper in which they created other 

novel synthetic compounds that bind to PPAR and block its Cdk5-mediated 

phosphorylation, but lack classical transcriptional agonism (Choi et al. 2011). They 

showed that one such compound, SR1664, had potent anti-diabetic activity in vivo 

without causing some of the adverse effects that plague TZDs, including weight gain, 

fluid retention, and inhibiting bone formation in culture. A separate group developed 

another compound, called GQ-16, that retains similar insulin-sensitizing effects to rosi 
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without causing weight gain or edema (Amato et al. 2012). It acts as a partial PPAR 

agonist in transactivation and adipogenesis studies and inhibits Cdk5-mediated 

phosphorylation of PPAR in vivo. Hydrogen/deuterium exchange studies and molecular 

dynamics modeling suggest that GQ-16 binds differently than rosi, and is less effective at 

stabilizing helix 12 in its active conformation. Lastly, a compound called INT131 was 

shown clinically to improve blood glucose in diabetic patients without associated weight 

gain or fluid retention (DePaoli et al. 2014). This is discussed in more detail in Section 

5.2d.  

 

These studies still leave many questions unanswered about the mechanistic link between 

phosphorylation of PPAR and its transcriptional activity. This mechanism may still 

involve regulated recruitment of coregulators, similar to the way rosi functions as 

described in Chapter 3. We sought to further explore the regulation of transcription by 

MRL-24, with the eventual goal of using MRL-24-regulated eRNAs to identify whether 

it functions by regulating the same group of enhancers as rosi or distinct ones, and 

whether the altered phosphorylation of PPAR causes differential recruitment of 

coactivators to drive transcriptional changes. However, we find that in the 3T3-L1 model 

of adipocytes, MRL-24 does not up-regulate the previously described unique set of target 

genes distinct from rosi. Instead, its function resembles that of a partial agonist: it 

regulates many of the same targets as rosi, but less robustly. 
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4.2 Materials and Methods 

4.2a Cell culture 

Cells were cultured as described in Chapter 2, and treated with 1M rosiglitazone 

(Biomol) or 1M MRL-24 (Merck) when stated.  

 

4.2b Gene expression analysis 

RNA was isolated from cells and analyzed by microarray or qRT-PCR as described in 

Chapter 2. Primer sequences used for qPCR are listed in Table 4.1.  

 

4.3 Results 

4.3a Previously identified MRL-24-specific gene targets are not differentially regulated 

in our model. 

MRL-24 was previously demonstrated to selectively increase transcription of a subset of 

PPAR target genes (Choi et al. 2010). To test these findings in our model, adipocytes 

were treated for 24h with 1M rosi or MRL-24, and then gene expression levels of the 

putative MRL-24-specific genes were tested by qRT-PCR. Unexpectedly, none of these 

genes were robustly increased by MRL-24 (Figure 4.1). To confirm that the treatments 

worked, and to investigate whether MRL-24 is able to agonize classical PPAR target 

genes similar to rosi, qRT-PCR was performed with gene expression primers to known 

rosi target genes. MRL-24 increased expression of these genes to a comparable level as 
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did rosi (Figure 4.2), suggesting that both drugs were active and had many of the same 

transcriptional effects.  

 

4.3b Microarray comparing effects of MRL-24 and rosi does not identify any MRL-24-

specific target genes. 

To further investigate whether there were any gene targets specific to MRL-24 and not 

rosi, microarray was performed on untreated adipocytes as well as those treated with 

1M rosi or MRL-24 for 24h (Figure 4.3). Each point represents a gene regulated by at 

least one drug, with fold-change over the untreated control plotted for rosi on the x-axis 

and for MRL-24 on the y-axis. The very high correlation between the two treatments (r = 

0.79) suggests that on a genome-wide level, the two drugs regulate most of the same gene 

targets. The relatively low slope of 0.47 suggests that while MRL-24 targets many of the 

same genes as rosi, it up-regulates them to lower degree, similar to a partial agonist.  

 

To further test whether any of the genes that fall above the best-fit line may in fact be 

robust MRL-24-specific targets, the samples were tested by qRT-PCR with primers to 

those genes. When performed on the same cDNA samples as used for the microarray, 

qRT-PCR confirmed MRL-24-specific regulation (Figure 4.4A), but when repeated in an 

independent experiment the result was not replicated (Figure 4.4B), suggesting that the 

MRL-24-specific regulation was an artifact of the original experiment, and no robustly 

MRL-24-specific genes could be found by microarray.  
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Since the results in Chapter 3 support the idea that eRNA regulation can provide valuable 

insight into which enhancers are regulated by a TF ligand, we examined whether MRL-

24 regulates any eRNAs differently than rosi, and whether this could provide any 

information about its mechanism. Very preliminary evidence suggests that while rosi up-

regulates eRNAs associated with its target genes (such as Pdk4 and Fabp4), MRL-24 may 

not be regulating these eRNAs (Figure 4.5) despite regulating the same target genes 

(Figure 4.2).  

 

4.4 Conclusions 

Much attention has been devoted to the development and study of selective PPAR 

modulators, or SPPARMs, with the hope that we may be able to dissociate the positive 

metabolic effects of TZDs from their adverse effects. MRL-24 has been shown to 

regulate only a selective subset of PPAR target genes, and this was thought to explain its 

favorable risk/benefit profile. We were unable to confirm any of its unique target genes, 

though this could be due in part to different cell culture models. The experiments we 

performed were all done in the 3T3-L1 cell culture model of adipocytes. In contrast, the 

published studies on MRL-24 were performed either in vivo, in which mice were treated 

with MRL-24 and then their white adipose tissue was harvested and studied, or in vitro 

but in a different cell culture model (Choi et al. 2010). Their gene expression studies 

were performed in a cell culture model in which mouse embryonic fibroblasts from 
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PPAR-null mice were cultured, FLAG-PPAR was retrovirally overexpressed, cells 

were selected, and the cells were differentiated into adipocytes with the hormonal 

cocktail of dexamethasone, insulin, and isobutylmethylxanthine. Clearly this cell culture 

model is considerably different from the model of 3T3-L1 adipocytes, and it is thus not 

surprising that many genes may be regulated differently in the two models. What is 

surprising, however, is that MRL-24, which was shown to selectively regulate a group of 

genes in differentiated MEFs, did not uniquely regulate any genes at all in our model. Not 

only were we unable to identify any robustly selective MRL-24 gene targets, but the drug 

behaved very similar to a partial agonist, regulating most of the same genes as rosi but to 

a lesser extent. 

 

Despite the lack of MRL-24 specific genes, the drug could still be functioning through a 

different mechanism than rosi. GRO-seq on MRL-24-treated cells followed by 

identification of regulated eRNAs could identify differentially regulated or selective 

enhancers. We could not identify any MRL-24-specific genes, though this could be in 

part due to our model, 3T3-L1 cells, which may not adequately reflect the behavior of 

adipocytes in vivo. Nevertheless, this preliminary data suggests that MRL-24 may not 

truly be a selective enough ligand to dissociate favorable physiologic effects from 

adverse ones.  
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We could not confirm any unique target genes for MRL-24, or find any evidence that it 

behaves as a SPPARM. Nevertheless, there are other SPPARMs currently being studied 

or in clinical development that hold more promise. For example, a compound called 

INT131 has shown promise in early clinical studies for improvement of blood glucose 

without the associated toxicities of TZDs (DePaoli et al. 2014), and biochemical studies 

suggest that it functions as a SPPARM. Studies investigating how this compound and 

others regulate transcription using GRO-seq and ChIP-seq could shed more light on their 

mechanisms of action, including which functional enhancers they regulate and whether 

they drive transcriptional changes through the redistribution of coactivators. This is 

discussed in more detail in Section 5.2d.  
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Figure 4.1 Previously defined MRL-24-specific genes are not specific targets in this 

model. 

mRNA levels of genes previously identified as selectively up-regulated by MRL-24 but 

not rosi were measured by qRT-PCR in control adipocytes and adipocytes treated for 24h 

with rosi or MRL-24.  
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Figure 4.2 Most classic adipogenic PPAR target genes are regulated by MRL-24 to 

comparable levels as by rosi. 

Levels of classic PPAR target genes were measured by qRT-PCR in adipocytes and 

adipocytes treated for 24h with rosi or MRL-24.  
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Figure 4.3 MRL-24 regulates most of the same gene targets as rosi on a genome-

wide level. 

Scatterplot representing mRNA regulation in adipocytes treated for 24h with rosi or 

MRL-24 over control as measured by microarray. The slope of the best-fit line is 0.47.  
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Figure 4.4 Potential MRL-24-specific genes from microarray are artifacts of the 

experiment. 

(A) qRT-PCR for several genes determined to be MRL-24-specific from the microarray 

in Figure 4.3 in the same RNA samples used for the microarray. Fabp4 was used as a 

control. (B) qRT-PCR for the same genes in an independent experiment of adipocytes 

treated for 24h with rosi MRL-24. (*) p < 0.05; (**) p < 0.01; (***) p < 0.005.  



86 

 

 

 

 

Figure 4.5 Preliminary evidence suggests that enhancers may be differentially 

regulated by MRL-24. 

qRT-PCR for mRNAs (mPdk4, mFabp4), pre-mRNAs (gPdk4, gFabp4, gAntpl4) and 

nearby eRNAs in adipocytes treated for 24h with rosi or MRL-24. 
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Table 4.1 List of primers for eRNA and gene expression 

Name Forward Sequence Reverse Sequence 

Chemerin GTGGACTATCCGGCCTA

GAA 

GTGCACAATCAAACCAAAC

G 

Nr3c1 CTGGACGGAGGAGAAC

TCAC 

GGACAACCTGACTTCCTTGG 

Txnip AGGCCTCATGATCACCA

TCT 

GGTCTCAGCAGTGCAAACA

G 

Adipsin CTCCTGGCCACCCAGAA

T 

GCTGTCAGAATGCACAGCTC 

Arhgap23 GTTGACCGCAGAGATGA

AGG 

CCTGTAGCTCAGCCAAGTCC 

Itgav TTGCCCTCCTTCTACAAT

CC 

ATTCGCCGTGGACTTCTTC 

Usp9x CATCTTGCAGAGACCAT

TGC 

TTTGTTGGGTTCGCCATATT 

Ptprs TGATATTCACATTCCCA

CCG 

ATCACCTGCCAACCTCTACG 

Fabp4 CACTTTCCTTGTGGCAA

AGC 

AATGTGTGATGCCTTTGTGG 

Cd36 TCAGAAGCAGGAAGGG

AGTG 

ATTGCACAAGGCACACAAA

G 

Pck1 AGGCCTCCCAACATTCA

TTA 

GATCATAGCCATGGTCAGCA 

Pdk4 ATCATCTTTGGTGGCCG

TAG 

CATGGCTGCTCCTACAAACA 

Cidec ATTGTGCCATCTTCCTCC

AG 

ATCATGGCTCACAGCTTGG 

Tfrc CAGTCCAGCTGGCAAAG

ATT 

GTCCAGTGTGGGAACAGGT

C 

Ucp3 GTTCCTTTGCTGCCTATG

GA 

TACCCAACCTTGGCTAGACG 

Cyr61 TTTACAGTTGGGCTGGA

AGC 

CACCGCTCTGAAAGGGATCT 

Lrp2bp TTTCAAGTGCATTGTCT

GGG 

TATTATGATGGGCTGGGGAC 

gPdk4 TAACTATGCCGTGCACC

AAA 

AAAGGCTCAAGGGGAAGAG

A 

Pdk4_eRNA+1 GGACAGAGGCCCAAAT

GTTA 

CTTGTGAAGCAGACCCAGTG 

Pdk4_eRNA+2 AGAGTTCTCTGGGGGAA

AGG 

CCACTTGGGCAACAGAATTT 
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Pdk4_eRNA-1 CTATGGCTGGCACTGGA

GTT 

TCCCCTCCTTTTGACTCTCA 

gFabp4 ATCGGGAATTTCAGCAT

GAC 

AATGTGTGATGCCTTTGTGG 

Fabp4_eRNA217 AACATCCGAATCAACCG

TTC 

GGTGGGACAAACAAAATTC

C 

Fabp4_eRNA192 TGAGTCCCCCACTTGCT

TTA 

CACCCTGTAAGGCTGGTGAT 

gAngptl4 ACCCAAGGCCAGAATCT

CTT 

TTGCTGTCATCTGGCAACTC 

ePparg_up213 AGAGCTCTTACCCAGCA

GAGA 

GCACACCAGGCAAGTGCTA

T 

Arbp CCGATCTGCAGACACAC

ACT 

ACCCTGAAGTGCTCGACATC 
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CHAPTER 5: Discussion and future directions 
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5.1 Summary and discussion 

In the studies summarized above, we have further elucidated the effects of PPAR 

ligands on adipocyte transcription. In Chapter 2, we examined the immediate and direct 

effects of rosi on gene transcription using GRO-seq. We found thousands of rapidly 

regulated genes, 2/3 of which were down-regulated by rosi. These regulated nascent 

transcripts are highly correlated with changes in steady-state mRNA levels as identified 

by microarray, but with a temporal delay. Interestingly, the correlation between nascent 

transcript and steady-state mRNA level waned at later microarray time points, after 12 or 

24h, suggesting that steady-state levels likely have other contributing factors besides 

direct transcriptional changes, as discussed in Section 5.2a below.  

 

In Chapter 3, we used GRO-seq to identify regulated eRNAs. We could not demonstrate 

any role for these eRNAs in promoting transcription of the target gene, despite several 

recent studies that suggest this function (Lam et al. 2013; Li et al. 2013; Melo et al. 2013; 

Mousavi et al. 2013). We did, however, use these regulated eRNAs to determine 

functional enhancers. By focusing exclusively on the functional enhancers, we were able 

to identify changes in coactivator occupancy that would not have been identifiable by 

determining all TF binding sites genome-wide. We found that enhancers containing an 

up-regulated eRNA are driven by PPAR, while enhancers with down-regulated eRNAs 

are depleted of PPAR but are enriched for other TFs, including members of the C/EBP 

and AP-1 families. Additionally, in response to rosi treatment the coactivators MED1, 
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CBP, and p300 are recruited to sites of up-regulated eRNAs and lost from sites with 

down-regulated eRNAs. These findings suggest a mechanism wherein rosi treatment 

causes increased recruitment of coactivators to PPAR sites and away from sites 

containing other TFs, leading to transcriptional repression at these sites and at their target 

genes. This suggests that, in principle, any TF driving transcription at an enhancer 

lacking PPAR would be susceptible to the loss of coactivators and subsequent 

transcriptional repression.  Indeed, this may explain why the down-regulated enhancers 

are enriched for binding of multiple factors, including C/EBP, C/EBP, FOSL2, ATF2, 

and JUND. 

 

These studies shed light onto the mechanisms by which rosi affects adipocyte 

transcription, especially the ways in which it leads to transcriptional repression, a 

phenomenon of which we previously had very little understanding. In addition, we 

believe that the approach we took in these studies – using regulated eRNAs to identify 

functional enhancers, and focusing on these sites to identify enriched motifs, critical TFs, 

and changes in coactivators – could be applied to many other questions of transcriptional 

regulation. In other systems in which a signal or cue causes transcriptional changes 

through unknown mechanisms, this method can be taken to discover key enhancers and 

TFs that are driving the changes. For example, the Lazar lab recently used a similar 

approach to identify enhancers and TFs that are important for circadian regulation of 

transcription in the liver (Fang et al. 2014). 
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In Chapter 4, we sought to determine whether differential gene regulation by MRL-24 

was driven by differential use of enhancers, and whether the mechanism of its 

transcriptional regulation was distinct from that of rosi. However, we found that in our 

adipocyte model MRL-24 did not regulate a unique subset of gene targets, but rather 

functioned similarly to a partial PPAR agonist. This difference in results is likely 

attributable to differences in cell culture models, and studying it further in vivo may 

clarify its effects.  

 

5.2 Future directions 

5.2a Identifying secondary targets of rosi 

In Chapter 2, we determined that although nascent gene transcription is highly correlated 

with steady-state mRNA levels after 6 to 12 hours of rosi treatment, this correlation is 

weaker when nascent transcription from GRO-seq is compared to later microarray time 

points. This suggests that steady-state mRNA levels that are reached after 24h of rosi 

treatment are determined not only by direct transcriptional changes due immediately to 

rosi treatment, but by other factors as well, which may include secondary transcriptional 

changes and non-transcriptional regulation such as changes in mRNA degradation rates. 

Though we gained many mechanistic insights by examining early direct changes due to 

rosi treatment, studying later, secondary effects is equally important because these are the 

changes that ultimately contribute to the function and phenotype of rosi treatment. Thus, 
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determining which genes are controlled by rosi at later, steady-state time points and the 

mechanisms of this regulation are important future directions.  

 

An important follow-up experiment would be to perform GRO-seq on adipocytes treated 

with rosi for a longer period of time, such as 24 or 36 hours. First of all, this would 

identify genes that are transcribed as a downstream response to rosi treatment, and these 

would be expected to correlate more strongly with later time points from the microarray 

experiment. It would also distinguish genes that are secondary transcriptional targets 

from those that are regulated in a non-transcriptional manner, such as through 

degradation rates. Lastly, analysis of eRNAs at later time points of rosi treatment would 

identify functional enhancers that are regulating these downstream gene targets. Similar 

to the approach we took in Chapter 3, motif analysis of the enhancers that are regulated at 

later time points may help identify TFs that are induced by rosi treatment and control 

downstream gene transcription. If such a TF is identified that putatively controls long-

term steady-state response to rosi, its role could be verified by ablating its expression and 

testing whether this blocks secondary responses to rosi treatment. It would also be 

interesting to explore how these downstream regulated enhancers control both 

transcriptional activation as well as repression, and whether repression of secondary gene 

targets is through an effect similar to coactivator redistribution as shown in Chapter 3, or 

through a different mechanism.  
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5.2b Connecting coactivator redistribution to transcriptional regulation 

In Chapter 3 we demonstrated that rosi treatment causes a redistribution of coactivators 

(including MED1, CBP, and p300) to enhancers containing PPAR and away from 

enhancers containing other TFs. We observed no change in the occupancy of the 

corepressor NCoR or in levels of the histone mark H3K27ac at those sites where 

coactivator levels changed. A clear next question is how exactly changes in coactivator 

occupancy are leading to changes in transcription.  

 

Coactivators are known to promote transcription mainly through a few different 

functions: modifying chromatin, recruiting components of the transcriptional machinery, 

and promoting long-range looping between the enhancer and promoter (Carlsten et al. 

2013; Grunberg and Hahn 2013). When coactivators are redistributed in response to rosi, 

one of these mechanisms – or a novel one – must be at play to regulate subsequent 

changes in transcription. The coactivators CBP and p300, which we showed were 

redistributed, are known to function as histone acetyltransferases (Schiltz et al. 1999), 

suggesting a role for histone acetylation in connecting coactivator occupancy to 

transcription. However, our finding that H3K27ac levels do not change at a few 

enhancers where eRNAs are regulated suggests that chromatin modification may not be 

the primary mechanism of transcriptional regulation, although this is far from conclusive. 

We only tested levels of this chromatin mark at a few sites, so making genome-wide 

conclusions could be premature. We also only tested one time point – after 1h of rosi 

treatment – but this mark may be changing later, or it may in fact be changing even 
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earlier (since we see eRNA changes as soon as after 10 minutes of rosi), then normalizing 

back to basal levels. Testing other chromatin marks, as well as at more enhancer sites and 

at different time points may elucidate a role for chromatin modifications in the link 

between coactivator occupancy and transcriptional changes.  

 

The other mechanisms, including differential recruitment of transcriptional machinery 

should be tested as well. For example, the Mediator complex has been shown to interact 

directly with Pol II, and is required for transcription (Soutourina et al. 2011). CBP and 

p300 interact with the basal transcription factors TATA-binding protein (TBP) and TFIIB 

(Yuan et al. 1996).  This suggests the mechanism that upon redistribution of these 

coactivators, they in turn differentially bind and recruit elements of the basal 

transcriptional machinery, leading to changes in transcription. Binding of Pol II, TBP, 

TFIIB, and other factors could be tested by ChIP. However, most of the regulated 

functional enhancers we identified were distal from genes, tens or even hundreds of 

kilobases away from the TSS. Therefore, changes in recruitment of the transcriptional 

machinery to these sites would explain regulation of eRNA transcription, but would not 

explain changes in gene transcription without additional information about long-range 

chromatin interactions between enhancers and gene promoters.   

 

Thus, studying chromatin loops between enhancers and promoters, and how they may 

change upon rosi treatment, would be an important component of further understanding 
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this transcriptional regulation. The first goal would be to determine which enhancers loop 

to which gene promoters, to identify each enhancer’s target gene. This would be a much 

more conclusive way of determining enhancer-gene pairs, compared to relying on using 

the nearest regulated gene for each enhancer, as we had to do in Chapter 3 due to the lack 

of chromatin looping data. The existence and regulation of chromatin loops could be 

explored at a few select enhancers and promoters by chromatin conformation capture 

(3C) or circular chromosome conformation capture (4C), although ideally all chromatin 

loops in the genome would be identified by Hi-C (Dekker et al. 2013). Another important 

question would be whether rosi modifies gene transcription levels by regulating the 

strength of the chromatin loops, or whether the loops stay the same but recruitment of 

additional transcription factors is what drives the transcriptional changes. Since the 

Mediator complex has been implicated in the formation of chromatin loops (Carlsten et 

al. 2013), and we demonstrated a rosi-dependent redistribution of the Mediator subunit 

MED1 at regulated enhancers, we would hypothesize that rosi treatment may indeed 

strengthen enhancer-promoter loops at up-regulated sites, and weaken them at down-

regulated sites. These studies would mechanistically link changes in coactivator binding 

to changes in eRNA and gene transcription. 

 

5.2c Determinants of functional enhancers 

In Chapter 3, we identified 2,251 distal enhancers with regulated eRNAs; these are the 

enhancers we termed “functional.” However, they make up a relatively small fraction of 

all putative enhancers as defined by TF binding sites. For example, we had 14,604 
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PPAR binding sites in our data set, in which sites were called after pooling reads from 

two published cistromes (Nielsen et al. 2008; Schmidt et al. 2011), and similar numbers 

for other TFs bound in adipocytes, including the members of the C/EBP and AP-1 

families described in Chapter 3. Only a small number of these sites produce eRNAs. This 

can be explained in part by the fact that we only called eRNAs at intergenic sites for 

technical reasons, while TFs bind at many intronic sites. Nevertheless, even when 

considering just intergenic TF binding sites, those with eRNAs make up only about half 

of the total in the case of PPAR (Step et al. 2014). 

 

Thus, an important follow-up question is: what distinguishes the relatively small number 

of “functional” enhancers from the rest of the thousands of TF binding sites? What 

feature determines whether a putative enhancer produces an eRNA? We know that part of 

the answer involves strength of binding of the TF: PPAR sites with eRNAs tend to be 

strong sites than those without eRNAs (Step et al. 2014). However, this is unlikely to be 

the whole explanation, since the trend is strong but not overwhelming. Perhaps there is a 

factor that is able to bind to certain TF binding sites but not others, and is able to act 

together with the TF to recruit coactivators and other factors to drive eRNA transcription. 

To investigate this, all putative enhancers could be divided into two groups: those that 

produce an eRNA and those that do not. Then, the presence of an eRNA can be correlated 

with binding of other known TFs in adipocytes, to determine whether colocalization of 

another factor with PPAR is necessary for the production of an eRNA at an enhancer. 
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Motif searches could also be performed around enhancers that do or do not contain 

eRNAs to determine if response elements for a given TF are enriched around one group 

or the other. Identifying what distinguishes functional enhancers from other TF binding 

sites would be important not only in understanding rosi-mediated regulation of 

adipocytes, but also transcription in any other cell type in response to a stimulus.  

 

5.2d Other compounds that differentially regulate PPAR

As discussed in Chapter 1, TZDs are able to potently improve insulin sensitivity and 

lower glucose levels, but have been linked to multiple safety issues. Because of these 

effects, there has been much interest in the development of selective PPAR modulators, 

or SPPARMs, small molecules that would agonize the TF in a way that would lead to 

differential gene expression. The goal of these SPPARMs would be to retain the insulin-

sensitizing effects of TZDs but without the unwanted side effects of full receptor 

activation (Higgins and Depaoli 2010). 

  

In Chapter 4, we studied MRL-24, which had been described as a ligand of PPAR that 

regulates a distinct subset of target genes yet still functions as an effective insulin 

sensitizer in vivo. Instead, we found that in our cell culture model of adipocytes, MRL-24 

did not have any unique gene targets, but rather functioned by regulating most of the 

same genes as rosi but to a lesser degree. Nevertheless, other SPPARMs are still being 

investigated, including a compound called INT131. A clinical study recently showed that 
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INT131 demonstrated reductions in HbA1c (glycated hemoglobin, a time-averaged 

measure of blood glucose levels) comparable to pioglitazone, with less fluid 

accumulation and weight gain (DePaoli et al. 2014). This exciting result suggests that 

PPAR may still be a relevant target for new drug development for diabetes treatment. 

Biochemical and cell-based studies suggest that INT131 may be acting as a SPPARM: 

treatment of 3T3-L1 preadipocytes with this drug caused very little adipogenesis or lipid 

accumulation, whereas rosi treatment caused full differentiation. It also induced most 

adipogenic genes to a much smaller extent than did rosi. Finally, an in vitro assay that 

measures the strength of interaction between the PPAR LBD and coactivators 

demonstrated that while rosi causes a large increase in recruitment of coactivators such as 

SRC2, CBP, and p300, INT131 had a much smaller effect (Motani et al. 2009). 

 

However, it should be noted that all of these effects are equally consistent with INT131 

acting as a partial agonist. Genome-wide transcriptional studies of its effects would be 

better able to discern between a partial agonist and a SPPARM. GRO-seq should be 

performed on adipocytes treated briefly with INT131, and its direct transcriptional effects 

compared to that of rosi. If it is truly a SPPARM, a distinct group of immediate gene 

targets should be differentially regulated by the two compounds, whereas if it is a partial 

agonist, most of the same genes would be regulated but to different degrees. Additionally, 

it would be interesting to analyze eRNAs in this GRO-seq experiment to determine 

whether INT131 is regulating the same group of functional enhancers as rosi, or a distinct 

subset. This would also contribute to the understanding of INT131 as either a SPPARM 
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or a partial agonist. Finally, measuring changes in coactivator occupancy upon INT131 

treatment would demonstrate whether it acts similarly to rosi, by redistributing 

coactivator binding genome-wide to regulate transcription both positively and negatively. 

It would also be crucial to investigate whether any differences between the mechanisms 

of action of the two compounds are related to the differences in their toxicity profiles.   
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