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Abstract
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vectors have sparse representations in a certain basis. We propose an iterative thresholding algorithm that can
estimate the subspaces spanned by leading left and right singular vectors and also the true mean matrix
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data-driven and robust to heavy-tailed noises. Simulations and a real data example further show its
competitive performance. The dissertation contains two chapters. For the ease of the delivery, Chapter 1 is
dedicated to the description and the study of the practical methodology and Chapter 2 states and proves the
theoretical property of the algorithm under Gaussian noise.
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ABSTRACT

SINGULAR VALUE DECOMPOSITION FOR HIGH DIMENSIONAL DATA

Dan Yang

Andreas Buja and Zongming Ma

Singular value decomposition is a widely used tool for dimension reduction

in multivariate analysis. However, when used for statistical estimation in high-

dimensional low rank matrix models, singular vectors of the noise-corrupted matrix

are inconsistent for their counterparts of the true mean matrix. We suppose the

true singular vectors have sparse representations in a certain basis. We propose an

iterative thresholding algorithm that can estimate the subspaces spanned by lead-

ing left and right singular vectors and also the true mean matrix optimally under

Gaussian assumption. We further turn the algorithm into a practical methodol-

ogy that is fast, data-driven and robust to heavy-tailed noises. Simulations and

a real data example further show its competitive performance. The dissertation

contains two chapters. For the ease of the delivery, Chapter 1 is dedicated to the

description and the study of the practical methodology and Chapter 2 states and

proves the theoretical property of the algorithm under Gaussian noise.
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CHAPTER 1

METHODOLOGY

1.1 Introduction

Singular value decompositions (SVD) and principle component analyses (PCA)

are the foundations for many applications of multivariate analysis. They can be

used for dimension reduction, data visualization, data compression and informa-

tion extraction by extracting the first few singular vectors or eigenvectors; see,

for example, Alter et al. (2001), Prasantha et al. (2007), Huang et al. (2009),

Thomasian et al. (1998). In recent years, the demands on multivariate methods

have escalated as the dimensionality of data sets has grown rapidly in such fields

as genomics, imaging, financial markets. A critical issue that has arisen in large

datasets is that in very high dimensional settings classical SVD and PCA can have

poor statistical properties (Shabalin and Nobel 2010, Nadler 2009, Paul 2007, and

Johnstone and Lu 2009). The reason is that in such situations the noise can over-

whelm the signal to such an extent that traditional estimates of SVD and PCA

loadings are not even near the ballpark of the underlying truth and can there-
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fore be entirely misleading. Compounding the problems in large datasets are the

difficulties of computing numerically precise SVD or PCA solutions at affordable

cost. Obtaining statistically viable estimates of eigenvectors and eigenspaces for

PCA on high-dimensional data has been the focus of a considerable literature; a

representative but incomplete list of references is Lu (2002), Zou et al. (2006),

Paul (2007), Paul and Johnstone (2007), Shen and Huang (2008), Johnstone and

Lu (2009), Shen et al. (2011), Ma (2011). On the other hand, overcoming similar

problems for the classical SVD has been the subject of far less work, pertinent

articles being Witten et al. (2009), Lee et al. (2010a), Huang et al. (2009) and

Allen et al. (2011).

In the high dimensional setting, statistical estimation is not possible without

the assumption of strong structure in the data. This is the case for vector data un-

der Gaussian sequence models (Johnstone, 2011), but even more so for matrix data

which require assumptions such as low rank in addition to sparsity or smoothness.

Of the latter two, sparsity has slightly greater generality because certain types of

smoothness can be reduced to sparsity through suitable basis changes (Johnstone,

2011). By imposing sparseness on singular vectors, one may be able to “sharpen”

the structure in data and thereby expose “checkerboard” patterns that convey

biclustering structure, that is, joint clustering in the row- and column-domains of

the data (Lee et al. 2010a and Sill et al. 2011). Going one step further, Witten and

Tibshirani (2010) used sparsity to develop a novel form of hierarchical clustering.

So far we implied rather than explained that SVD and PCA approaches are

not identical. Their commonality is that both apply to data that have the form

of a data matrix X = (xij) of size n × p. The main distinction is that the

PCA model assumes the rows of X to be i.i.d. samples from a p-dimensional
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multivariate distribution, whereas the SVD model assumes the rows i = 1, 2, ..., n

to correspond to a “fixed effects” domain such as space, time, genes, age groups,

cohorts, political entities, industry sectors, ... . This domain is expected to have

near-neighbor or grouping structure that will be reflected in the observations xij

in terms of smoothness or clustering as a function of the row domain. In practice,

the applicability of either approach is often a point of debate (e.g., should a set

of firms be treated as a random sample of a larger domain or do they constitute

an enumeration of the domain of interest?), but in terms of practical results the

analyses are often interchangeable because the points of difference between the

SVD and PCA models are immaterial in the exploratory use of these techniques.

The main difference between the models is that the SVD approach analyzes the

matrix entries as structured low-rank means plus error, whereas the PCA approach

analyzes the covariation between the column variables.

In modern developments of PCA, interest is focused on “functional” data anal-

ysis situations or on the analog of the “sequence model” (Johnstone, 2011) where

the columns also correspond to a structured domain such as space, time, genes, ... .

It is only with this focus that notions of smoothness and sparseness in the column

or row domain are meaningful. A consequence of this focus is the assumption that

all entries in the data matrix have the same measurement scale and unit, unlike

classical PCA where the columns can correspond to arbitrary quantitative vari-

ables with any mix of units. With identical measurement scales throughout the

data matrix, it is meaningful to entertain decompositions of the data into signal

and fully exchangeable noise:

X = Ξ + Z , (1.1)

where Ξ = (ξij) is an n × p matrix representing the signal and Z = (zij) is

3



an n × p random matrix representing the noise and consisting of i.i.d. errors as

its components. In both PCA and SVD approaches, the signal is assumed to

have a multiplicative low-rank structure: Ξ = UDV ′ =
∑r

l=1 dlulv
′
l, where for

identifiability it is assumed that rank r < min(n, p), usually even “�” such as

r = 1, 2 or 3. The difference between SVD and PCA is, using ANOVA language,

that in the SVD approach both U and V represent fixed effects that can both be

regularized with smoothness or sparsity assumptions, whereas in functional PCA

U is a random effect. As indicated above, such regularization is necessary for large

n and p because for realistic signal-to-noise ratios recovery of the true U and V may

not be possible. — Operationally, estimation under sparsity is achieved through

thresholding. In general, if both matrix dimensions are thresholded, one obtains

sparse singular vectors of X; if only the second matrix dimension is thresholded,

one obtains sparse eigenvectors of X ′X, which amounts to sparse PCA.

A few recent papers propose sparsity approaches to the high dimensional SVD

problem: Witten et al. (2009) introduced a matrix decomposition which constrains

the l1 norm of the singular vectors to impose sparsity on the solutions. Lee et al.

(2010a) used penalized LS for rank-one matrix approximations with l1 norms of

the singular vectors as additive penalties. Both methods use iterative procedures

to solve different optimization problems. [We will give more details about these

two methods in Section 1.3.] Allen et al. (2011) is a Lagrangian version of Witten

et al. (2009) where the errors are permitted to have a known type of dependence

and/or heteroscedasticity. These articles focus on estimating the first rank-one

term given by d̂1, û1, v̂1 by either constraining the l1 norm of û1 and v̂1 or adding

it as a penalty. To estimate d̂2, û2, v̂2 for a second rank-one term, they subtract

the first term d̂1û1v̂
′
1 from the data matrix X and repeat the procedure on the

residual matrix. There exists further related work on sparse matrix factorization,

4



for example, by Zheng et al. (2007), Mairal et al. (2010) and Bach et al. (2008),

but these do not have the form of a SVD. In our simulations and data examples we

use the proposals by Witten et al. (2009) and Lee et al. (2010a) for comparison.

Our approach is to estimate the subspaces spanned by the leading singular

vectors simultaneously. As a result, our method yields sparse singular vectors

that are orthogonal, unlike the proposals by Witten et al. (2009) and Lee et al.

(2010a). In terms of statistical performance, simulations show that our method

is competitive with the better performing of the two proposals, which is generally

Lee et al. (2010a). In terms of computational speed, our method is faster by at

least a factor of two compared to the more efficient of the two proposals, which

is generally Witten et al. (2009). Thus we show that the current state of the

art in sparse SVDs is “inadmissible” if measured by the two metrics ‘statistical

performance’ and ‘computational speed’: our method closely matches the better

statistical performance and provides it at a fraction of the better computational

performance. In fact, by making use of sparsity at the initialization stage, our

method also beats the conventional SVD in terms of speed.

Lastly, our method is grounded in asymptotic theory that comprises minimax

results which we describe in Chapter 2. A signature of this theory is that it is not

concerned with optimization problems but with a class of iterative algorithms that

form the basis of the methodology proposed here. As do most asymptotic theories

in this area, ours relies heavily on Gaussianity of noise, which is the major aspect

that needs robustification when turning theory into methodology with a claim to

practical applicability. Essential aspects of our proposal therefore relate to lesser

reliance on the Gaussian assumption.

The present chapter is organized as follows. Section 1.2 describes our method
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for computing sparse SVDs. Section 1.3 shows simulation results to compare the

performance of our method with that of Witten et al. (2009) and Lee et al. (2010a).

Section 1.4 applies our and the competing methods to real data examples. Finally,

Section 1.5 discusses the results and open problems.

1.2 Methodology

In this section, we give a detailed description of the proposed sparse SVD method.

To start, consider the noiseless case. Our sparse SVD procedure is motivated

by the simultaneous orthogonal iteration algorithm (Golub and Van Loan 1996,

Chapter 8), which is a straightforward generalization of the power method for

computing higher-dimensional invariant subspaces of symmetric matrices. For an

arbitrary rectangular matrix Ξ of size n × p with SVD Ξ = UDV ′, one can find

the subspaces spanned by the first r (1 ≤ r ≤ min(n, p)) left and right singular

vectors by iterating the pair of mappings V 7→ U and U 7→ V with Ξ and Ξ′ (its

transpose), respectively, each followed by orthnormalization, until convergence.

More precisely, given a right starting frame V (0), that is, a p × r matrix with r

orthonormal columns, the SVD subspace iterations repeat the following four steps

until convergence:

(1) Right-to-Left Multiplication: U (k),mul = ΞV (k−1)

(2) Left Orthonormalization with QR Decomposition: U (k)R
(k)
u = U (k),mul

(3) Left-to-Right Multiplication: V (k),mul = Ξ′U (k)

(4) Right Orthonormalization with QR Decomposition: V (k)R
(k)
v = V (k),mul

(1.2)

The superscript (k) indicates the k’th iteration, and mul the generally non-orthonormal
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intermediate result of multiplication. For r = 1, the QR decomposition step re-

duces to normalization. If Ξ is symmetric, the second pair of steps is the same

as the first pair, hence the original orthogonal iteration algorithm for symmetric

matrices is a special case of the above algorithm.

The problems our approach addresses are the following: For large noisy ma-

trices in which the significant structure is concentrated in a small subset of the

matrix X, the classical algorithm outlined above produces estimates with large

variance due to the accumulation of noise from the majority of structureless cells

(Shabalin and Nobel, 2010). In addition to the detriment for statistical estimation,

involving large numbers of structureless cells in the calculations adds unnecessary

computational cost to the algorithm. Thus, shaving off cells with little apparent

structure has the promise of both statistical and computational benefits. This is

indeed borne out in the following proposal for a sparse SVD algorithm.

1.2.1 The FIT-SSVD Algorithm:

“Fast Iterative Thresholding for Sparse SVDs”

Unsurprisingly, the algorithm to be proposed here involves some form of thresh-

olding, be it soft or hard or something inbetween. All thresholding schemes reduce

small coordinates in the singular vectors to zero, and additionally such schemes

may or may not shrink large coordinates as well. Any thresholding reduces vari-

ance at the cost of some bias, but if the sparsity assumption is not too unreal-

istic, the variance reduction will vastly outweigh the bias inflation. The obvious

places for inserting thresholding steps are right after the multiplication steps. If

thresholding reduces a majority of entries to zero, the computational cost for the

subsequent multiplication and QR decomposition steps is much reduced as well.
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Input:
1. Observed data matrix X.
2. Target rank r.
3. Thresholding function η.
4. Initial orthonormal matrix V (0) ∈ Rp×r.
5. Algorithm f to calculate the threshold level γ = f(X,U, V, σ̂) given
(a) the data matrix X, (b) current estimates of left and right singular
vectors U, V , and (c) an estimate of the standard deviation of noise σ̂.
(Algorithm 3 is one choice.)
Output: Estimators Û = U (∞) and V̂ = V (∞).

1 Set σ̂ = 1.4826 MAD (as.vector(X)).
repeat

2 Right-to-Left Multiplication: U (k),mul = XV (k−1).

3 Left Thresholding: U (k),thr = (u
(k),thr
il ), with u

(k),thr
il = η

(
u

(k),mul
il , γul

)
,

where γu = f(X,U (k−1), V (k−1), σ̂).

4 Left Orthonormalization with QR Decomposition: U (k)R
(k)
u = U (k),thr.

5 Left-to-Right Multiplication: V (k),mul = X ′U (k).

6 Right Thresholding: V (k),thr = (v
(k),thr
jl ), with v

(k),thr
jl = η

(
v

(k),mul
jl , γvl

)
,

where γv = f(X ′, V (k−1), U (k), σ̂).

7 Right Orthonormalization with QR Decomposition: V (k)R
(k)
v = V (k),thr.

until Convergence;

Algorithm 1: FIT-SSVD

The iterative procedure we propose is schematically laid out in Algorithm 1.

In what follows we discuss the thresholding function and convergence criterion

of Algorithm 1. Subsequently, in Sections 1.2.2–1.2.4, we describe other important

aspects of the algorithm: the initialization of the orthonormal matrix, the target

rank, and the adaptive choice of threshold levels.

Thresholding function At each thresholding step, we perform entry-wise thresh-

olding. In our modification of the subspace iterations (1.2) we allow any thresh-

olding function η(x, γ) that satisfies |η(x, γ)− x| ≤ γ and η(x, γ)1|x|≤γ = 0, which

includes soft-thresholding with ηsoft(x, γ) = sign(x)(|x| − γ)+, hard-thresholding

8



with ηhard(x, γ) = x1|x|>γ, as well as the thresholding function used in SCAD (Fan

and Li, 2001). The parameter γ is called the threshold level. In Algorithm 1, we

apply the same threshold level γul (or γvl) to all the elements in the lth column of

U (k),mul (or V (k),mul, resp.). For more details on threshold levels, see Section 1.2.4.

Convergence criterion We stop the iterations once subsequent updates of the

orthonormal matrices are very close to each other. In particular, for any ma-

trix H with orthonormal columns (that is, H ′H = I), let PH = HH ′ be the

associated projection matrix. We stop after the kth iteration if max{‖PU(k) −

PU(k−1)‖2
2, ‖PV (k) −PV (k−1)‖2

2} ≤ ε, where ε is a pre-specified tolerance level, chosen

to be ε = 10−8 for the rest of this chapter. [‖A‖2 denotes the spectral norm of A.]

1.2.2 Initialization algorithm for FIT-SSVD

In Algorithm 1, we need a starting frame V (0) such that the subspace it spans has

no dimension that is orthogonal to the subspace spanned by the true V . Most

often used is the V frame provided by the ordinary SVD. However, due to its

denseness, computational cost and inconsistency (Shabalin and Nobel, 2010), it

makes an inferior starting frame. Another popular choice is initialization with a

random frame, which, however, is often nearly orthogonal to the true V and thus

requires many iterations to accumulate sufficient power to converge. We propose

therefore Algorithm 2 which overcomes these difficulties.

The algorithm is motivated by Johnstone and Lu (2009) who obtained a con-

sistent estimate for principal components under a sparsity assumption by initially

reducing the dimensionality. We adapt their scheme to the two-way case, and we

weaken its reliance on the assumption of normal noise which in real data would
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Input:
1. Observed data matrix X.
2. Target rank r.
3. Degree of “Huberization” β (typically 0.95 or 0.99),

that defines a quantile of the absolute values of entries in X.
4. Significance level of a selection test α.
Output: Orthornormal matrices Û = U (0) and V̂ = V (0).

1 Subset selection:
Let δ be the β-quantile of the absolute values of all the entries in X.
Define Y = (yij) by yij = ρ(xij, δ), where ρ(x, δ) is the Huber ρ function:
ρ(x, δ) = x2 if |x| ≤ δ and 2δ|x| − δ2 otherwise.

Select a subset I = {i1, i2, ...} of rows according to the next four steps:
− Let ti =

∑p
j=1 yij for i = 1, . . . , n.

− Let µ̂ = median(t1, ..., tn) and ŝ = 1.4826 MAD(t1, ..., tn).
− Calculate p-values: pi = 1− Φ( ti−µ̂

ŝ
), where Φ is the CDF of N(0, 1).

− Perform the Holm method on the p-values at family-wise error rate α,
and let I be the indices of the p-values that result in rejection.

Select a subset of columns J similarly.
Form the submatrix XIJ of size |I| × |J |.

2 Reduced SVD: Compute r leading pairs of singular vectors of the submatrix
XIJ .
Denote them by uI1, . . . ,u

I
r (|I| × 1 each) and vJ1 , . . . ,v

J
r (|J | × 1 each).

3 Zero-padding: Create U (0) = [u
(0)
1 , . . . ,u

(0)
r ] (n× r) and

V (0) = [v
(0)
1 , . . . ,v

(0)
r ] (p× r),

such that u
(0)
Il = uIIl , u

(0)
Icl = 0 , v

(0)
Jl = vJJl , v

(0)
Jcl = 0.

Algorithm 2: Initialization algorithm for FIT-SSVD.

result in too great a sensitivity to even slightly heavier tails than normal. To this

end we make use of some devices from robust estimation. The intent is to perform

a row- and column-preselection (Step 1) before applying a classical SVD (Step 2)

so as to concentrate on a much smaller submatrix that contains much of the signal.

We discuss the row selection process, column selection being analogous.

Signal strength in rows would conventionally be measured under Gaussian as-

sumptions with row sums of squares and tested with χ2 tests with p degrees of

freedom. As mentioned this approach turns out to be much too sensitive when

applied to real data matrices due to isolated large cells that may stem from heavier

10



than normal tails. We therefore mute the influence of isolated large cells by Hu-

berizing the squares before forming row sums. We then form approximate z-score

test statistics, one per row, drawing on the CLT since we assume p (the number of

entries in each row) to be large. Location and scale for the z-scores are estimated

with the median and MAD (“median absolute deviation”, instead of mean and

standard deviation) of the row sums, the assumption being that over half of the

rows are approximate “null rows” with little or no signal. If the signal is not sparse

in terms of rows, this procedure will have low power, which is desirable because

it biases the initialization of the iterative Algorithm 1 toward sparsity. Using ro-

bust z-score tests has two benefits over χ2 tests: they are robust to isolated large

values, and they avoid the sensitivity of χ2 tests caused by their rigid coupling of

expectation and variance. Finally, since n tests are being performed, we protect

against over-detection due to multiple testing by applying Holm’s (1979) stepwise

testing procedure at a specified family-wise significance level α (default: 5%). The

end result are a set of indices I of “significant rows”. — The same procedure is

then applied to the columns, resulting in an index set J of “significant columns”.

The submatrix XIJ is then submitted to an initial reduced SVD. It is this initial

reduction that allows the present algorithm to be faster than a conventional SVD

of the full matrix X when the signal is sparse. The left and right singular vectors

are of size |I| and |J |, respectively. To serve as initializations for the iterative

Algorithm 1, they are expanded and zero-padded to length n and p, respectively

(Step 3). — This concludes the initialization Algorithm 2.
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1.2.3 Rank estimation

In Algorithm 1, a required input is the presumed rank of the signal underlying

X. In practice, we need to determine the rank based on the data. Proposals for

rank estimation are the subject of a literature with a long history, of which we

only cite Wold (1978), Gabriel (2002), and Hoff (2007). The proposal we chose

is the bi-cross-validation (BCV) method by Owen and Perry (2009), but with a

necessary twist.

The original BCV method was proposed for low-rank matrices with dense

singular vectors. Thus, we apply it to the submatrix XIJ obtained from the

initialization Algorithm 2, instead of X itself. The submatrix should have much

denser singular vectors and, even more importantly, much higher signal to noise

ratio compared to the full matrix. In simulations not reported here but similar

to those of Section 1.3, BCV on XIJ yielded consistent rank estimation when the

signal was sufficiently strong for detection in relation to sparsity and signal-to-

noise ratio.

1.2.4 Threshold levels

The tuning parameters γ in the thresholding function η(x, γ) are called “thresh-

old levels”; they play a key role in the procedure. At each thresholding step in

Algorithm 1, a (potentially different) threshold level needs to be chosen for each

column l = 1, ..., r of U (k) and V (k) to strike an acceptable bias-variance trade-

off. In what follows, we focus on U (k), while the case of V (k) can be obtained by

symmetry.
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The goal is to process the iterating left and right frames in such a way as

to retain the coordinates with high signal and eliminate those with low signal.

To be more specific, we focus on one column u
(k),mul
l = Xv

(k−1)
l . Recall that X

is assumed to admit an additive decomposition into a low-rank signal plus noise

according to model (1.1). Then a theoretically sensible (though not actionable)

threshold level for u
(k),mul
l would be γul = E[‖Zv

(k−1)
l ‖∞], where Z is the additive

noise matrix, and ‖Zv
(k−1)
l ‖∞ is the maximum absolute value of the n entries in

the vector Zv
(k−1)
l . The signal of any coordinate in u

(k),mul
l with value less than

γul could be regarded low since it is weaker than the expected maximum noise

level in the l’th rank given that there are n rows.

The threshold γul as written above is of course not actionable because it in-

volves knowledge of Z, but we can obtain information by leveraging the (presum-

ably large) part of X that is estimated to have no or little signal. This can be done

as follows: Let Lu be the index set of rows which have all zero entries in U (k−1),

and let Hu be its complement; define Lv and Hv analogously. We may think of Lu

and Lv as the current estimates of low signal rows and columns. Consider next

a reordering and partitioning of the rows and columns of X according to these

index sets:

X =

XHuHv XHuLv

XLuHv XLuLv

 . (1.3)

Since the entries in v
(k−1)
l corresponding to Lv are zero, only X:Hv (of size n ×

|Hv|, containing the two left blocks in (1.3)) is effectively used in the right-to-left

multiplication of the iterative Algorithm 1. We can therefore simulate a “near-

null” situation in this block by filling it with random samples from the bottom

right block which we may assume to have no or only low signal: XLuLv ≈ ZLuLv .
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Denote the result of such “bootstrap transfer” from XLuLv to X:Hv by Z̃∗ (n×|Hv|).

Passing Z̃∗ through the right-to-left multiplication with v
(k−1)
l we form Z∗v

(k−1)
Hvl

,

which we interpret as an approximate draw from Zv
(k−1)
l . We thus estimate

‖Zv
(k−1)
l ‖∞ with ‖Z∗v(k−1)

Hvl
‖∞, and E[‖Zv

(k−1)
l ‖∞] with a median of ‖Z∗v(k−1)

Hvl
‖∞

over multiple bootstraps of Z∗.

In order for this to be valid, the block XLuLv needs to be sufficiently large in

relation to X:Hv . This is the general problem of the “m out of n” bootstrap, which

was examined by Bickel et al. (1997). According to their results, this bootstrap is

generally consistent as long as m = o(n). Hence, when the size |Lu||Lv| of the ma-

trix XLuLv is large, say, larger than n|Hv| log(n|Hv|), we estimate E[‖Zv
(k−1)
1 ‖∞]

by the median of M bootstrap replications for sufficiently large M . When the

condition is violated, |Hv| tends to be large, the central limit theorem takes effect,

and each element of Zv
(k−1)
1 would be close to a normal random variable. Thus,

the expected value of the maximum is near the asymptotic value
√

2 log n times

the standard deviation. — We have now fully defined the threshold γul to be used

on u
(k),mul
l . The thresholds for l = 1, ..., r are then collected in the threshold vector

γu = (γu1, ..., γur)
′.

A complete description of the scheme is given in Algorithm 3. Based on an

extensive simulation study, setting the number of bootstrap replications to M =

100 yields a good balance between the accuracy of the threshold level estimates

and computational cost.
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Input:
1. Observed data matrix X ∈ Rn×p;

2. Previous estimators of singular vectors U (k) ∈ Rn×r, V (k) ∈ Rp×r;
3. Pre-specified number M of bootstraps;
4. Estimate of the standard deviation of noise σ̂.
Output: Threshold level γ ∈ Rr.

1 Subset selection: Lu = {i : u
(k)
i1 = ... = u

(k)
ir = 0},

Lv = {j : v
(k)
j1 = ... = v

(k)
jr = 0},

Hu = Lcu, Hv = Lcv;
2 if |Lv||Lu| < n|Hv| log(n|Hv|) then

3 return γ = σ̂
√

2 log(n)1 ∈ Rr ;

else
4 for i← 1 to M do
5 Sample n|Hv| entries from XLuLv and reshape them into a matrix

Z̃ ∈ Rn×|Hv |;

6 B = Z̃V
(k)
Hv : ∈ Rn×r;

7 Ci: = (‖B:1‖∞, ‖B:2‖∞, . . . , ‖B:r‖∞)′;

8 γl = median(C:l);
9 return γ = (γ1, ..., γr)

′.

Algorithm 3: The threshold level function f(X,U, V, σ̂) for Algorithm 1. As
shown, the code produces thresholds for U . A call to f(X ′, V, U, σ̂) produces
thresholds for V .

1.2.5 Alternative methods for selecting threshold levels

In methods for sparse data, one of the most critical issues is selecting threshold

levels wisely. Choosing thresholds too small kills off too few entries and retains

too much variance, whereas choosing them too large kills off too many entries and

introduces too much bias. To navigate this bias-variance trade-off, we adopted in

Section 1.2.4 an approach that can be described as a form of testing: we established

max-thresholds that are unlikely to be exceeded by any U - or V -coordinates under

the null assumption of absent signal in the corresponding row or column of the

data matrix.

To navigate bias-variance trade-offs, other commonly used approaches include
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various forms of cross-validation, a version of which we adopted for the different

problem of rank selection in Section 1.2.3 (bi-cross-validation or BCV according

to Owen and Perry (2009)). Indeed, a version of cross-validation for threshold

selection is used by one of the two competing proposals with which we compare

ours: Witten et al. (2009) leave out random subsets of the entries in the data

matrix, measure the differences between the fitted values and the original values

for those entries, and choose the threshold levels that minimize the differences.

Alternatively one could use bi-cross-validation (BCV) for this purpose as well, by

leaving out sets of rows and columns and choosing the thresholds that minimize

the discrepancy between the hold-out and the predicted values. However, this

would be computationally slow for simultaneous minimization of two threshold

parameters. Moreover, the possible values of the thresholds vary from zero to

infinity, which makes it difficult to choose grid points for the parameters. In order

to avoid such issues, Lee et al. (2010a) implement their algorithm by embedding

the optimization of the choice of the threshold level inside the iterations that

calculate ul for fixed vl and vl for fixed ul (unlike our methods, theirs fits one

rank at a time). They minimize a BIC criterion over a grid of order statistics of

current estimates. This idea could be applied to our simultaneous space-fitting

approach, but the simulation results in Section 1.3 below show that the method

of Lee et al. (2010a) is computationally very slow.

1.3 Simulation results

In this section, we show the results of numerical experiments to compare the

performance of FIT-SSVD with two state-of-the-art sparse SVD methods from

the literature (as well as with the ordinary SVD). In contrast to FIT-SSVD which
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acquires whole subspaces spanned by sparse vectors simultaneously, both compari-

son methods are stepwise procedures that acquire sparse rank-one approximations

d̂lûlv̂
′
l successively; for example, the second rank-one approximation d̂2û2v̂

′
2 is

found by applying the same method to the residual matrix X − d̂1û1v̂
′
1, and so

on. For both methods it is therefore only necessary to describe how they obtain

the first rank-one term.

• The first sparse SVD algorithm for comparison was proposed by Lee et al.

(2010a) [referred to from here on by their initials, “LSHM”]. They obtain a

first pair of sparse singular vectors by finding the solution to the following

l1 penalized SVD problem under an l2 constraint:

min
u,v,s

(
‖X − suv′‖2

F + sλu‖u‖1 + sλv‖v‖1

)
. subject to ‖u‖2 = ‖v‖2 = 1.

LSHM solve this problem by alternating between the following steps till

convergence:

(1) ũl = ηsoft(Xvoldl , λu) , unewl ← ũl
‖ũl‖2

,

(2) ṽl = ηsoft(X
′unewl , λv) , vnewl ← ṽl

‖ṽl‖2
.

• The second sparse SVD algorithm for comparison with our proposal is the

adaptation of the penalized matrix decomposition scheme by Witten et al.

(2009) to the sparse SVD case [referred to as “PMD-SVD” from here on].

They obtain the first pair of sparse singular vectors by imposing simultaneous

l1 and l2 constraints on both vectors:

min ‖X − duv′‖2
F , subject to ‖u‖2 = ‖v‖2 = 1, ‖u‖1 ≤ su, ‖v‖1 ≤ sv .
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The PMD-SVD algorithm iterates between the following two steps until

convergence:

(1) u =
ηsoft(Xv, δu)

‖ηsoft(Xv, δu)‖2

,

where δu is chosen by binary search such that ‖u‖1 = su ,

(2) v =
ηsoft(X

′u, δv)

‖ηsoft(X ′u, δv)‖2

,

where δv is chosen by binary search such that ‖v‖1 = sv .

To make fair comparisons, we use the implementations by their original authors

for both LSHM (Lee et al., 2010b) and PMD-SVD (Witten et al., 2010). The

tuning parameters are always chosen automatically by the default methods in

their implementations. For FIT-SSVD, we always use η = ηhard in Algorithm 1,

Huberization β = 0.95 and Holm family-wise error rate α = 0.05 in Algorithm 2,

and M = 100 bootstraps in Algorithm 3. We did try different values of α, β and

M in FIT-SSVD, and the results are not sensitive to these choices. Thus, in our

experience there is no need for cross-validated selection of these parameters.

In what follows, we report simulation results for situations in which the true

underlying matrix has rank one and two, respectively. Throughout this section,

the rank of the true underlying matrix is assumed known.

1.3.1 Rank-one results

In this part, we generate data matrices according to model (1.1) with rank r = 1,

n = 1024 and p = 2048, the singular value d1 ranging in {50, 100, 200}, and iid

noise Zij ∼ (µ=0, σ2=1). At first glance d1 = 50 may appear like an outsized

signal strength, but it actually is not: The expected sum of squares of noise is
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E[‖Z‖2
F ] = np ≈ 2 million, whereas the sum of squares of signal is a comparably

vanishing ‖d1u1v
′
1‖2
F = d2

1 = 2500, for a signal-to-noise ratio S/N = 0.0012 (which

makes the failure of the ordinary SVD in these tasks less surprising). Even d1 =

200 amounts to a S/N = 0.012 only.

As mentioned in the introduction, the FIT-SSVD method was motivated by

theoretical results that were based on Gaussian assumptions (Yang et al., 2011); it

is therefore a particular concern to check the robustness of the method under noise

with heavier tails than Gaussian. To this end we report simulation results both

for N(0, 1) and
√

3/5 t5 noise, the latter also having unit variance (the purpose of

the factor
√

3/5).

For the construction of meaningful singular vectors we use a functional data

analysis context: We choose functions gleaned from the literature and represent

them in wavelet bases where they feature realistic degrees of sparsity. In Figure 1.1,

Plot (a) (“peak”) shows the graph of a function with three peaks, evaluated at

1024 equispaced locations, while Plot (b) (“poly”) shows a piecewise polynomial

function, evaluated at 2048 equispaced locations. Both functions create dense

evaluation vectors but sparse wavelet coefficient vectors. [In all simulation results

reported below, we use Symmelet 8 wavelet coefficients (Mallat, 2009).] Multi-

resolution plots of the wavelet coefficients are shown in Plots (c) (“wc-peak”) and

(d) (“wc-poly”) of Figure 1.1. We choose u1 and v1 to be the wavelet coefficient

vectors wc-peak and wc-poly, respectively.

For each simulated scenarios, we ran 100 simulations, applied each algorithm

under comparison, and summarized the results in terms of median and MAD-

based standard error. The criteria which we use for comparison of the methods

are best explained with reference to Table 1.1, where we report the results for iid
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Figure 1.1: (a) peak: three-peak function evaluated at 1024 equispaced loca-
tions; (b) poly: piecewise polynomial function evaluated at 2048 equispaced loca-
tions; (c) wc-peak: discrete wavelet transform (DWT) of the three-peak function;
(d) wc-poly: DWT of the piecewise polynomial function. In Plot (c) and (d), each
vertical bar is proportional in length to the magnitude of the Symmlet 8 wavelet
coefficient at the given location and resolution level.

losses d1 FIT-SSVD LSHM PMD-SVD SVD
median MAD median MAD median MAD median MAD

Lspace(u1, û1)
50 0.0513 0.0009 0.0669 0.0014 0.0783 0.0007 0.5225 0.0034

100 0.0127 0.0003 0.0159 0.0004 0.0254 0.0002 0.1114 0.0005
200 0.0036 0.0001 0.0044 0.0001 0.0102 0.0000 0.0264 0.0001

Lspace(v1, v̂1)
50 0.0958 0.0008 0.1095 0.0016 0.1399 0.0008 0.6330 0.0025

100 0.0325 0.0004 0.0385 0.0005 0.0566 0.0003 0.1878 0.0006
200 0.0112 0.0001 0.0131 0.0002 0.0241 0.0001 0.0499 0.0001

L(Ξ, Ξ̂)
50 0.1454 0.0014 0.1726 0.0019 0.3280 0.0016 2.2217 0.0082

100 0.0457 0.0004 0.0549 0.0007 0.0973 0.0003 0.3709 0.0009
200 0.0149 0.0001 0.0177 0.0003 0.0364 0.0001 0.0805 0.0002

‖û1‖0
50 24 0.1483 22 0.2965 242.5 1.4085 1024 0

100 34 0.1483 32 0.2965 372.5 1.4085 1024 0
200 43 0.1483 41 0.2965 577.0 1.3343 1024 0

‖v̂1‖0
50 18 0.2965 14 0.2965 535.0 2.2239 2048 0

100 40 0.2965 38 0.4448 854.5 1.7050 2048 0
200 66 0.4448 64 0.6672 1303.0 2.0756 2048 0

time
50 0.3364 0.0096 36.7316 0.4497 2.0578 0.0129 1 0

100 0.4401 0.0209 30.8268 0.3305 1.9607 0.0124 1 0
200 0.5685 0.0360 23.7639 0.2542 1.9274 0.0102 1 0

Table 1.1: Comparison of four methods in the rank-one case: u1 is wc-peak, v1 is
wc-poly, and the noise is iid N(0,1).
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N(0, 1) noise Z:

• The first block examines the estimation accuracy of the left singular vector,

with the three rows corresponding to three different values of d1. Following

Ma (2011), we define the loss function for estimating the column space of U

for a general rank-r by Lspace(U, Û) = ‖PU − PÛ‖2
2 , where PU = UU ′ is the

projection matrix onto the subspace spanned by the columns of U (which is

of size n× r and has orthonormal columns, U ′U = Ir). In the rank-one case

here, the loss reduces to sin2 ∠(u1, û1).

• The second block in Table 1.1 reports the loss for right singular vectors.

• The third block shows the scaled recovery error for the low-rank signal matrix

Ξ = UDV ′, defined as L(Ξ, Ξ̂) = ‖Ξ̂− Ξ‖2
F/‖Ξ‖2

F . Here, Ξ̂ = ÛD̂V̂ ′ and

D̂ = diag(d̂1, . . . , d̂r) with diagonal entries being d̂l = û′lXv̂l.

• The fourth and fifth panels of Table 1.1 show the sparsity of the solutions

measured by ‖û1‖0 and ‖v̂1‖0, that is, the number of nonzero elements in

the estimates.

• The last block shows timing results as a fraction or multiple of the ordinary

SVD.

The results are as follows:

• From the first three blocks we see that FIT-SSVD uniformly outperforms the

other methods with respect to the three statistical criteria. While LSHM

is not far behind FIT-SSVD, PMD-SVD lags in several cases by a factor

of two or more. The ordinary SVD fails entirely for low signal strength as

the results for d1 = 50 illustrate, impressing the need to leverage sparsity

21



in such situations. Rather expectedly, all methods achieve better statistical

accuracy as the signal strength d1 increases

• As for the sparsity metrics, FIT-SSVD and LSHM produce similar levels

of sparsity, while PMD-SVD estimators are much denser. The results also

suggest that as the signal strength d1 gets stronger, the three sparse SVD

methods estimate more coordinates.

• Finally, the timing results indicate that FIT-SSVD is faster than all other

methods, the ordinary SVD included. LSHM stands out as slower than FIT-

SSVD by factors of over 40 to over 100. PMD-SVD is more competitive but

still at least a factor of three slower than FIT-SSVD. The variation in time

for PMD-SVD is small because the majority is spent in cross-validation.

To examine the effect of heavy-tailed noise, we report in Table 1.2 the simula-

tion results when the entries of the noise matrix Z are distributed iid
√

3/5 t5, all

else being the same as in Table 1.1. [Recall that the scaling factor
√

3/5 is used

to ensure unit variance.] The statistical performance for all methods is worse than

in Table 1.1. In terms of the statistical metrics, the performances of FIT-SSVD

and LSHM are in a statistical dead heat, whereas PMD-SVD trails behind by as

much as a factor of two in the case of high signal strength, d1 = 200. Again, FIT-

SSVD and LSHM have comparable sparsities, whereas PMD-SVD is much denser.

In terms of computation time, again FIT-SSVD is uniformly fastest, followed by

PMD-SVD which trails by factors of over two to over five, and LSHM being orders

of magnitude slower (by factors of 28 to 110).
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losses d1 FIT-SSVD LSHM PMD-SVD SVD
median MAD median MAD median MAD median MAD

Lspace(u1, û1)
50 0.0802 0.0015 0.0819 0.0017 0.0907 0.0011 0.5405 0.0037

100 0.0177 0.0003 0.0180 0.0004 0.0282 0.0003 0.1115 0.0006
200 0.0048 0.0001 0.0047 0.0001 0.0108 0.0001 0.0262 0.0002

Lspace(v1, v̂1)
50 0.1193 0.0014 0.1191 0.0018 0.1560 0.0014 0.6432 0.0039

100 0.0451 0.0005 0.0415 0.0007 0.0601 0.0003 0.1870 0.0006
200 0.0145 0.0002 0.0137 0.0002 0.0249 0.0001 0.0498 0.0002

L(Ξ, Ξ̂)
50 0.1944 0.0024 0.1937 0.0028 0.3719 0.0028 2.2624 0.0107

100 0.0625 0.0007 0.0600 0.0009 0.1041 0.0005 0.3706 0.0011
200 0.0192 0.0002 0.0187 0.0002 0.0378 0.0001 0.0805 0.0002

‖û1‖0
50 20 0.2965 21.5 0.3706 235.0 1.5567 1024 0

100 31 0.1483 33.0 0.2965 364.0 1.8532 1024 0
200 40 0.1483 41.0 0.2965 569.5 2.0015 1024 0

‖v̂1‖0
50 13 0.1483 14.0 0.2965 526.0 2.0015 2048 0

100 31 0.2965 38.5 0.5189 841.5 2.1498 2048 0
200 56 0.2965 64.5 0.6672 1307.5 2.2980 2048 0

time
50 0.3714 0.0190 41.0695 0.9339 2.0826 0.0046 1 0

100 0.8072 0.0652 30.5216 0.3774 2.0187 0.0039 1 0
200 0.8238 0.0710 23.0527 0.2554 1.9520 0.0048 1 0

Table 1.2: Comparison of four methods in the rank-one case: u1 is wc-peak, v1 is
wc-poly, and the noise is iid

√
3/5 t5.

1.3.2 Rank-two results

We show next simulation results for data according to model (1.1) with r = 2,

and again n = 1024 and p = 2048. The singular values (d1, d2) range among the

pairs (100, 50), (200, 50), and (200, 100). The singular vectors are u1 = wc-peak,

v1 =wc-poly, u2 = wc-step, and v2 = wc-sing, the properties of the latter two

vectors being shown in Figure 1.2.

Table 1.3 reports the results from 100 repetitions when the noise is iid N(0, 1).

In terms of statistical metrics, FIT-SSVD always outperforms LSHM though not

hugely. PMD-SVD does slightly better than FIT-SSVD for Lspace(U, Û), but much

worse for Lspace(V, V̂ ) and L(Ξ, Ξ̂). This is due to the special type of cross-

validation used in the package PMA: the parameters su, sv are set to be propor-

tional to each other after being scaled according to the dimensionality,
√
n and

√
p, which essentially reduces the simultaneous cross-validation on two parameters

to one. Therefore, PMD-SVD actually enforces the same level of sparsity on û
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Figure 1.2: (a)step: step function evaluated at 1024 equispaced locations,
(b)sing: single singularity function evaluated at 2048 equispaced locations,
(c)wc-step: DWT of step function, (d)wc-sing: DWT of single singularity func-
tion.

and v̂.

In terms of sparsity of the estimators, the fourth and fifth blocks show the

cardinality of the joint support of the estimated singular vectors, which indicate

that FIT-SSVD and LSHM are again about comparable, and PMD-SVD is much

denser as in the rank-one case. [We do not compare the losses and the l0 norms

for individual singular vectors because LSHM and PMD-SVD do not produce

orthogonal singular vectors.]

Finally, in terms of computation time, FIT-SSVD dominates again, and the

differences become somewhat more pronounced than in the rank-one case. In the

high signal scenario, d1 = 200 and d2 = 100, FIT-SSVD gets a boost because by

avoiding the costly bootstrap in Algorithm 3 because Condition 2 is satisfied and

the much cheaper normal approximation on Line 3 of Algorithm 3 can be used

to compute the threshold level. Since LSHM repeats its scheme on the residual
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losses d1 d2 FIT-SSVD LSHM PMD-SVD SVD
median MAD median MAD median MAD median MAD

Lspace(U, Û)
100 50 0.1163 0.0010 0.1413 0.0021 0.1022 0.0009 0.5315 0.0037
200 50 0.1148 0.0013 0.1422 0.0018 0.1007 0.0009 0.5265 0.0027
200 100 0.0376 0.0003 0.0443 0.0006 0.0321 0.0003 0.1114 0.0005

Lspace(V, V̂ )
100 50 0.0514 0.0009 0.0596 0.0010 0.1230 0.0008 0.6376 0.0029
200 50 0.0506 0.0009 0.0601 0.0011 0.1259 0.0006 0.6293 0.0023
200 100 0.0144 0.0002 0.0172 0.0003 0.0538 0.0002 0.1870 0.0005

L(Ξ, Ξ̂)
100 50 0.0691 0.0006 0.0825 0.0007 0.1403 0.0004 0.7439 0.0017
200 50 0.0234 0.0001 0.0285 0.0002 0.0529 0.0001 0.2070 0.0005
200 100 0.0228 0.0001 0.0261 0.0002 0.0483 0.0001 0.1387 0.0003

| ∪21 supp(ûl)|
100 50 49 0.2965 45.0 0.4448 479 1.1861 1024 0
200 50 56 0.2965 49.0 0.2965 649 1.5567 1024 0
200 100 77 0.2965 73.5 0.5189 657 1.3343 1024 0

| ∪21 supp(v̂l)|
100 50 54 0.2965 50.5 0.3706 1158.0 2.2239 2048 0
200 50 78 0.2965 74.5 0.5189 1486.5 2.1498 2048 0
200 100 81 0.4448 82.5 0.5930 1623.0 2.1498 2048 0

time
100 50 1.1675 0.0829 64.7840 0.6037 2.7991 0.0141 1 0
200 50 1.4572 0.1011 55.6839 0.5436 2.7018 0.0142 1 0
200 100 0.8000 0.0668 54.2361 0.2363 2.6429 0.0073 1 0

Table 1.3: Comparison of four methods for the rank-two case, and the noise is
iid N(0, 1).

matrix to get the second layer of SVD, computation time doubles. As for PMD-

SVD, since the time is mainly spent in cross-validation and the same penalty

parameter is used for different ranks, the increase in time is not obvious.

1.4 Real data examples

All the methods mentioned above require sparse singular vectors (with most entries

close to zero). One source of such data is two-way functional data whose row and

column domains are both structured, for example, temporally or spatially, as

when the data are time series collected at different locations in space. Two-way

functional data are usually smooth as functions of the row and column domains.

Thus, if we expand them in suitable basis functions, such as an orthonormal

trigonometric basis, the coefficients should be sparse (Johnstone, 2011).
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1.4.1 Mortality rate data

As our first example we use the US mortality rate data from the Berkeley Human

Mortality Database (http://www.mortality.org/). They contain mortality rates

in the United States for ages 0 to 110 from 1933 to 2007. The data for people

older than 95 was discarded because of their noisy nature. The matrix X is of size

96 × 75, each row corresponding to an age group and each column to a one-year

period. We first pre- and post- multiply the data matrix with orthogonal matrices

whose columns are the eigenvectors of second order difference matrices of proper

sizes; the result is a matrix of coefficients of the same size as X. The rank of

the signal is estimated to be 2 using bi-crossvalidation (Section 1.2.3). We then

applied FIT-SSVD, LSHM, PMD-SVD and ordinary SVD to get the first two pairs

of singular vectors. Finally, we transformed the sparse estimators of the singular

vectors back to the original basis to get smooth singular vectors.

The estimated number of nonzero elements in each singular vector (before the

back transformation) is summarized in Table 1.4: none gives very sparse solutions.

This is reasonable, because the mortality rate data is of low noise and for data

with no noise we should just use the ordinary SVD. Because this data is of small

size, it only takes a few seconds for all the algorithms. The plot of singular vectors

for all the methods are shown in Figures 1.3 to 1.7. The red dashed line in the left

plot is for FIT-SSVD, in the middle for LSHM, and on the right for PMD-SVD.

We use the wider gray curve for the ordinary SVD as a reference.

Figure 1.3 shows the first left singular vector plotted against age. The curve

û1 shows a pattern for mortality as a function of age: a sharp drop between age

0 and 2, then a gradual decrease till the teen years, flat till the 30s, after which
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FIT-SSVD LSHM PMD-SVD SVD
‖û1‖0 82 48 96 96
‖û2‖0 86 56 7 96
‖v̂1‖0 66 45 75 75
‖v̂2‖0 70 45 43 75

Table 1.4: Mortality data: number of nonzero coordinates in the transformed
domain for four methods.

begins an exponential increase. Figure 1.4 zooms into the lower left corner of

Figure 1.3 to show the details between age 0 and 10. LSHM, as always turns

out to be the sparsest (or smoothest) among the three iterative procedures in

the transformed (or original) domain. We believe that FIT-SSVD and PMD-SVD

make more sense based on a parallel coordinates plot of the raw data (not shown

here), in which the drop in the early age appears to be sharp and therefore should

not be smoothed out. Figure 1.5 shows the first right singular vectors plotted

against year. It implies that mortality decreases with time. All of the panels show

a wiggly structure, with LSHM again being the smoothest. Here, too, we believe

that the zigzag structure is real and not due to noise in the raw data, based again

on a parallel coordinate plot of the raw data. The zigzags may well be systematic

artifacts, but they are unlikely to be noise.
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Figure 1.3: Mortality data: plot of û1. Panel (a): FIT-SSVD vs. SVD; Panel (b):
LSHM vs. SVD; Panel (c): PMD-SVD vs. SVD.

The second pair of singular vectors is shown in Figures 1.6 and 1.7: They
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Figure 1.4: Mortality data: Plot of û1. Zoom of the lower left corner of Figure
1.3. Everything else is the same as in Figure 1.3.
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Figure 1.5: Mortality data: Plot of v̂1. Everything else is the same as in Figure 1.3.
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correct the pattern that the first pair of singular vectors does not capture. The

contrast mainly focuses on people younger than 2 or between 60 and 90 where û2

is positive. Also, v̂2 has extreme negative or positive values towards the both ends,

1940s and 2000s. Together, they suggest that babies and older people had lower

mortality rates in the 1940s and higher mortality rates in the 2000s than what

the first component expresses. One final aspect to note is the strange behavior

of û2,PMD−SV D, recalling that û1,PMD−SV D, v̂1,PMD−SV D, v̂2,PMD−SV D all follow

the ordinary SVD very closely. We think this is again due to the cross-validation

technique they use.
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Figure 1.6: Mortality data: plot of û2. Everything else is the same as Figure 1.3.
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Figure 1.7: Mortality data: plot of v̂2. Everything else is the same as Figure 1.3.

Huang et al. (2009) also used the mortality data from 1959 to 1999 to illustrate

their version of regularized SVDs to get smooth singular vectors by adding second

order difference penalties. If we compare the results shown in this section with
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theirs, our solutions lack the smoothness of their solutions, but we think we recover

more information from the data by capturing not only the general trend but also

local details such as year-to-year fluctuations.

1.4.2 Cancer data

We consider next another data example where some sparse structure may be ex-

pected to exist naturally. The cancer data used by Lee et al. (2010a) (who in turn

have them from Liu et al. (2008)) consists of the gene expression levels of 12,625

genes for 56 cases of four different types of cancer. It is believed that only a part

of the genes regulate the types and hence the singular vectors corresponding to

the genes should ideally be sparse. We apply the four SVD methods directly to

the raw data without change of basis.

Before we proceed it may be proper to discuss briefly some modeling ambigui-

ties posed by this dataset as it is not a priori clear whether a PCA or SVD model

is more appropriate. It might be argued that the cases really should be considered

as being sampled from a population, hence PCA would be the proper analysis,

with the genes representing the variables. The counter argument is, however, that

the cases are stratified, and the strata are pure convenience samples of sizes that

bear no relation to the sizes of naturally occurring cancer populations. A dual

interpretation with genes as samples and cases as variables would be conceivable

also, but it seems even more far fetched in the absence of any sampling aspect

with regard to genes. In light of the problems raised by any sampling assumption,

it would seem more appropriate to condition on the cases and the genes and adopt

a fixed effects view of the data. As a result the SVD model seems less problematic

than either of the dual PCA models.
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FIT-SSVD LSHM PMD-SVD SVD
| ∪3

l=1 supp(ûl)| 4688 4545 12625 12625
| ∪3

l=1 supp(v̂l)| 56 56 54 56

Table 1.5: Cancer data: summary of cardinality of joint support of three singular
vectors for four methods.

We first attempted to estimate the rank of the signal using bi-crossvalidation

(Section 1.2.3), but it turns out that the rank is sensitive to the choice of α (Holm

family-wise error) and β (Huberization quantile) in Algorithm 2, ranging from

r=3 to r=5. We decided to use r = 3 because this is the number of contrasts

required to cluster the cases into four groups. Also, this is the rank used by Lee

et al. (2010a), which grants comparison of their and our results.

On a different note, running LSHM on these data with rank three took a

couple of hours, which may be a disincentive for users to seek even higher ranks.

The hours of run time of LSHM compares with a few minutes for PMD-SVD and

merely a few seconds for FIT-SSVD. (In addition, LSHM’s third singular vectors

do not seem to converge within 300 iterations.)

Table 1.5 summarizes the cardinalities of the union of supports of three singular

vectors for each method. For the estimation of left singular vectors corresponding

to different genes, the PMD-SVD solution is undesirably dense, while FIT-SSVD

and LSHM give similar levels of sparsity. For the estimation of right singular

vectors corresponding to the cases, we would expect that all cases have their own

effects rather than zero, so it is not surprising that the estimated singular vectors

are dense.

Figure 1.8 shows the scatterplots of the entries of the first three right singular

vectors for the four methods. Points represent patients, each row represents one

method, and each column corresponds to two of the three singular vectors. The
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four known groups of patients are easily discerned in the plots. A curiosity is

the cross-wise structure produced by PMD-SVD, where the singular vectors are

nearly mutually exclusive: if one coordinate in a singular vector is non-zero, most

corresponding coordinates in the other singular vectors are zero. The other three

methods, including the ordinary SVD, agree strongly among each other in the

placement of the patients. The agreement with the ordinary SVD is not a surprise

as p = 56 is a relatively small column dimension on which sparsity may play a

less critical role compared to the row dimension with n = 12625. Yet, the three

sparse methods give clearer evidence that the carcinoid group (black cirlces) falls

into two subgroups than the ordinary SVD. According to FIT-SSVD and LSHM

the separation is along v̂3 (center and right hand plots), whereas according to

PMD-SVD it is by lineup with v̂1 and v̂2, respectively (left hand plot).

Figure 1.9 shows checkerboard plots of the reconstructed rank-three approxi-

mations, layed out with patients on the vertical axis and genes on the horizontal

axis. Each row of plots represents one method, and the plots in a given row show

the same reconstructed matrix but successively ordered according to the coordi-

nates of the estimated left singular vectors û1, û2 and û3. There are fewer than

5000 genes shown for FIT-SSVD and LSHM, because the rest are estimated to be

zero, whereas all 12,625 genes are shown for PMD-SVD and SVD (Table 1.5). We

can see clear checkerboard structure in some of the plots, indicating biclustering.

In spite of the strong similarity between the patient projections for FIT-SSVD

and LSHM in Figure 1.8, there is a clear difference between these methods in

the reconstructions in Figure 1.9: The FIT-SSVD solution exhibits the strongest

block structure in its û2-based sort (center plot, top row), implying the strongest

evidence of clustering among its non-thresholded genes. Since these blocks con-

sist of many hundreds of genes, it would surprisingly suggest that the differences
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Figure 1.8: Cancer data: Scatterplots of the entries of the first three right singular
vectors v̂l, l = 1, 2, 3 for four methods. Points represent patients. Black circle:
Carcinoid; Red triangle: Colon; Green cross: Normal; Blue diamond: SmallCell.
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between the four patient groups run into the hundreds, not dozens, of genes.

In spite of the differences in checkerboard patterns in Figure 1.9, the three left

singular vectors are highly correlated between FIT-SSVD and LSHM: corr = 0.985,

0.981, and 0.968, respectively, and the top 20 genes with largest magnitude in the

estimated three left singular vectors of FIT-SSVD overlap with those of LSHM

except for one gene in the second singular vector. These shared performance

aspects notwithstanding, the two methods differ hugely in computing time, FIT-

SSVD taking seconds, LSHM taking a couple of hours.

1.5 Discussion

We presented a procedure, called FIT-SSVD, for the fast and simultaneous extrac-

tion of singular vectors that are sparse in both the row and the column dimension.

While the procedure is state of the art in terms of statistical performance, its

overriding advantage is sheer speed. The reasons why speed matters are several:

(1) Faster algorithms enable the processing of larger datasets. (2) The use of

SVDs in data analysis is most often for exploratory ends which call for unlimited

iterations of quickly improvised steps — something that is harder to achieve as

datasets grow larger. (3) Sparse multivariate technology is still a novelty and

hence at an experimental stage; if its implementation is fast, early adopters of the

technology have a better chance to rapidly gain experience by experimenting with

its parameters. (4) If a statistical method such as sparse SVD has a fast imple-

mentation, it can be incorporated as a building block in larger methodologies, for

example, in processing data arrays that are more than two-dimensional. For these

reasons we believe that fast SVD technology is of the essence for its success.
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Figure 1.9: Cancer data: Image plots of the rank-three approximations∑
l=1,2,3 d̂lûlv̂

′
l whose values are gray-coded. Each image is laid out as cases

(= rows) by genes (= columns). The same rank-three approximation is shown
three times for each method (left to right), each time sorted according to a differ-
ent ûl (l = 1, 2, 3). (The mapping of the rank-three approximation values to gray
scales is by way of a rank transformation, using a separate transformation for each
image. Rank transformations create essentially uniform distributions that better
cover the range of gray scale values.)
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A unique opportunity for sparse approaches is to achieve faster speed than

standard non-sparse approaches when the structure in the data is truly sparse.

Our algorithm achieves this to some extent through initialization that is both

sparse and smart: sparse initialization consists of a standard SVD of smaller size

than the full data matrix, while smart (in particular: non-random) initialization

reduces the number of iterations to convergence. A statistical benefit is that

inconsistent estimation by the standard SVD on large data matrices with weak

signal is avoided. — An imperative for fast implementations is avoiding where

possible such slow devices as cross-validation. A considerable speed advantage

we achieve is through relatively fast (non-crossvalidated) selection of thresholding

levels based on an analytical understanding of their function.

Our proposal has conceptual and theoretical features that are unique at this

stage of the development of the field: (1) FIT-SSVD extracts r orthogonal left-

and right-singular vectors simultaneously, which puts it more in line with stan-

dard linear dimension reduction where orthogonal data projections are the norm.

In addition, simultaneous extraction can be cast as subspace extraction, which

provides a degree of immunity to non-identifiability and slow convergence of in-

dividual singular vectors when some of the first r underlying singular values are

nearly tied: since we measure convergence in terms of distance between successive

r-dimensional subspaces, our algorithm does not need to waste effort in pinning

down ill-determined singular vectors as long as the left- and right-singular sub-

spaces are well-determined. Such a holistic view of the rank-r approximation is

only available to simultaneous but not to successive extraction. (2) FIT-SSVD is

derived from asymptotic theory that preceded its realization as a methodology:

For Gaussian noise in the model (1.1), we (Yang et al., 2011) showed that our

algorithm with appropriately chosen parameters achieves the rate of the mini-
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max lower bound. In other words, in a specific parameter space, our algorithm

is asymptotically optimal in terms of minimizing the maximum possible risk over

the whole parameter space.

As for future work, the current state of the art raises several questions. For one,

it would be of interest to better understand the relative merits of the currently pro-

posed sparse SVD approaches since they have essential features in common, such

as power iterations and thresholding. Another natural question arises from the fact

that sparse SVDs build on the sequence model: many methods for choosing param-

eters from the data have been shown to be asymptotically equivalent to first order

in the sequence model (see, e.g., Haerdle et al. (1988)), including cross-validation,

generalized cross-validation, Rice’s method based on unbiased estimates of risk,

final prediction error, and the Akaike information criterion. Do these asymptotic

equivalences hold in the matrix setting for sparse SVD approaches? How does the

choice of the BIC in LSHM compare? Also, our algorithm and underlying theory

allow a wide range of thresholding functions: Is there an optimal choice in some

sense? Further, there exists still a partial disconnect between asymptotic theory

and practical methodology: The theory requires a strict rank r model, whereas

by all empirical evidence the algorithm works well in a “trailing rank” situation

where real but small singular values exist. Finally, there is a robustness aspect

that is specific to sparse SVD approaches: heavier than normal tails in the noise

distribution generate “random factors” caused by single outlying cells. While we

think we have made reasonable and empirically successful choices in drawing from

the toolkit of robustness, we have not provided a theoretical framework to justify

them. — Just the same, even if the proposed FIT-SSVD algorithm may be subject

to some future tweaking, in the substance it has the promise of lasting merit.
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CHAPTER 2

THEORY

2.1 Introduction

Singular value decomposition (SVD) is widely used in multivariate analysis for

dimension reduction, data visualization, data compression and information ex-

traction in such fields as genomics, imaging, financial markets, etc. However,

when used for statistical estimation in high-dimensional low rank matrix models,

singular vectors of the noise-corrupted matrix are inconsistent for their counter-

parts of the true mean matrix Shabalin and Nobel (2010). To achieve consistency

in estimation and better interpretability, in addition to low-rankness, we further

assume that the true singular vectors have sparse representations in a certain basis.

Sparse SVD in high dimensions has been studied by several recent papers.

Witten et al. (2009) introduced penalized matrix decomposition which constrains

the l1 norm of the left and right singular vectors to impose sparsity on the solutions.

Lee et al. (2010a) used penalized least squares for rank-one matrix approximations

38



with l1 norms of the singular vectors as additive penalties. Both papers focus on

obtaining the first pair of singular vectors. The subsequent pairs are then obtained

by repeating the same procedure on the residual matrices. This may cause non-

identifiability and non-orthogonality issues, and theoretical properties of resulting

estimators are not well understood.

The goal of this chapter is to provide a theoretically optimal and computa-

tionally efficient solution to the high dimensional SVD problem. In particular, we

propose an iterative thresholding estimation procedure, which has the following

distinctive features. First, it does not involve any optimization criterion and is

based on a simple matrix computation method. Second, it estimates the subspaces

spanned by the leading singular vectors simultaneously as well as the true mean

matrix, as opposed to the previous one-pair-at-a-time methods. Hence, it yields

orthogonal sparse singular vectors. Last but not least, under normality assump-

tion, the resulting estimators achieve near optimal minimax rates of convergence

and adaptivity.

2.2 Model

In this section, we formally give the basic model assumptions as well as the loss

functions. We further describe the property of the classical SVD given the model

assumptions, which motivates the introduction of the sparsity assumption on the

singular vectors. Meanwhile, we clarify the relationship between the SVD and

Principal Component Analysis (PCA).
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2.2.1 Basic Model

We now lay out the model assumptions. To start with, we assume the data matrix

is the sum of signal and fully exchangeable noise:

X = M + Z . (2.1)

In 2.1, the signal matrix M = (mij) is of dimension pu by pv and has a mul-

tiplicative low-rank structure, i.e., the SVD: M = UDV ′ =
∑r

l=1 dlulv
′
l, where

the singular values satisfy that d1 ≥ · · · ≥ dr and 1 ≥ dr
d1
≥ c0 > 0. The two

orthogonal singular vector matrices U = [u1, . . . ,ur], V = [v1, . . . ,vr] are both

deterministic. The rank r � min(pu, pv) is assumed to be fixed in later asymptotic

analysis and known throughout. Moreover, the noise matrix Z = (zij) consists of

i.i.d. N(0, σ2) errors as its components.

Convention: throughout this chapter, we will use ‖X‖ to denote matrix spec-

tral norm, ‖X‖F Frobenius norm, and ‖u‖ vector l2 norm.

2.2.2 Loss Functions

Depending on one’s interest, there are two possible loss functions.

The first goal is, given the noise-corrupted matrix X, to denoise the observed

data table and recover the true mean matrix M . To assess the performance of an

estimator M̂ , an appropriate loss function is

LM(M̂,M) =
‖M̂ −M‖2

F

‖M‖2
F

, (2.2)
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which is scale invariant because of the existence of the denominator.

One may be also interested in estimating the singular vectors U, V since SVD is

often used as the first step analysis and the followup research mainly relies on the

singular vectors. A question immediately raises: should we estimate each singular

vector or them as a whole? We decide to aim at the subspaces the singular vectors

span for two reasons. First, if the singular values are identical, then the singular

vectors are not identifiable, but the subspace they span is. Second, most of the

applications focus on projection which depends only upon the subspace not each

singular vector.

To measure the accuracy of such a subspace estimator, we consider the pro-

jection matrix which is uniquely defined for any given subspace. The distance

between two subspaces is specified as the spectral norm of the difference between

the true and the estimated projection matrices

LU(Û , U) = ‖PÛ − PU‖
2 = sin2(α) , (2.3)

where α is the largest canonical angle between the subspaces U and Û . We define

LV (V̂ , V ) similarly. See Golub and Van Loan (1996) for the details of such distance

measures. In the special case when r = 1, the loss function (2.3) is simply squares

sine of the angle between two unit vectors. Note that the squared sine loss and the

squared error loss for estimating a single vector is closely related: sin2 ∠(û,u) =

‖û − sign(〈û,u〉)u‖2(2 − ‖û − sign(〈û,u〉)u‖2/2)/2. If one of the two losses is

close to zero, then these two have approximately the same value by a factor of

2. Because of the equivalence of the loss functions, it is natural to see in the

subsequent sections that the minimax convergence rate boils down to squared

bias and variance. Note that by definition, (2.3) measures the largest possible
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discrepancy between the projections of any unit vector onto the two subspaces,

hence clearly we have the following relationship LU(Û , U) ≥ sin2 ∠(û,u).

2.2.3 Connection with PCA

SVD and PCA have a lot in common and do differ from each other.

To begin with, their commonality is that both apply to data that have the

form of a data matrix X = (xij). Their main distinction is that PCA assumes

that the rows of X are iid samples from a p-dimensional multivariate distribution,

the columns and the rows correspond to variables and cases respectively, whereas

the SVD assumes each row has its own “fixed effect”, such as space, time, genes,

age groups, and so on, so is each column, and the roles of the rows and columns

are switchable. See Chapter 1 (Yang et al., 2011) for more comparisons.

Hence, they have distinct models: SVD assumes low-rank means plus noise,

whereas PCA analyzes the covariance between the column variables. We use the

notations pu × pv to denote the dimensionality for SVD on purpose to suggest

the symmetry of the SVD problem as opposed to the asymmetry of the PCA

problem where the convention is to use n× p. The reason is because the matrices

M,U,D, V are all deterministic and the increase of the number of the rows will

incur the increase of the number of the parameters, which we usually use p to

represent. For the same reason, it is not hard to arrive at the conclusion that as

pu, pv grow, the estimation problem becomes more difficult.

For clarity, it is necessary to specifically write down the model for PCA

X = UDV ′ + Z , (2.4)
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where everything is exactly the same as the SVD model except that here all the

entries of U are random rather than fixed and they are iid N(0, 1), which makes

the rows of X iid multivariate normal Np(0,Σ = V D2V ′ + σ2I).

2.2.4 Rate of Convergence for Classical SVD

Under the setting of Section 2.2.1, the following theorem by Shabalin and Nobel

(2010) states the phase transition phenomenon for classical SVD.

Theorem 1 (Shabalin and Nobel, 2010). Under model (2.1), fix the rank r of

the mean matrix M , and let pu → ∞, pv → ∞, pu/pv → c ∈ (0,∞). For

the l’th singular value, define a (limiting, size-adjusted) signal-to-noise ratio by

ρ2
l = limpu,pv→∞

d4l /σ
4

pupv
. Let v̂cl be the l’th singular vector of X, where the superscript

c stands for “classical”, then we have

sin2 ∠(vl, v̂
c
l )

a.s.→


1, if ρ2

l ≤ 1, (2.5a)

1 + ρl
√
c

ρ2
l + ρl

√
c
, otherwise, (2.5b)

Replacing c by c−1 gives the result for ûl.

Remarks:

• The classical SVD will be consistent if and only if max(pu,pv)

d21/σ
2 → 0, which

implies that the signal to noise ratio has to be extremely strong for the

classic SVD estimates to be consistent. In particular, d2
1/σ

2 at least has to

go to infinity as the dimensions grow.

• PCA has similar phase transition phenomenon. See Johnstone and Lu

(2009), Paul and Johnstone (2007), and Nadler (2009). However, the con-
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dition for classical PCA to be consistent is quite different: p

n
d4
l
/σ4

1+d2
l
/σ2

→ 0.

We once again can see the difference between SVD and PCA. The num-

ber of rows of the matrix in the SVD setting pu and in the PCA setting n

play opposite roles. Moreover, in the PCA setting the signal strength d2
1/σ

2

can shrink as long as the number of observations n increases fast enough to

counterbalance the effect of the increase of the number of covariates p for

the classical PCA to be consistent.

2.2.5 Sparsity Assumptions for the Singular Vectors

In view of the inconsistency result of the classical SVD in the presence of noise

when the signal is weak, we hope the data matrix has extra structure that we

can take advantage of to improve our estimation. The extra structure that we are

interested in is the sparsity of the singular vectors, which requires the singular vec-

tors to be concentrated in a smaller subset of the coordinates and thus essentially

reduces the effective number of parameters from the order of pu, pv to a smaller

one.

Formally speaking, we adopt the concept of weak lq ball from Gaussian se-

quence literature (Johnstone, 2011) to quantify the sparsity level. For any p-vector

u, we say that u belongs to the weak lq ball of radius s, denoted by u ∈ wlq(s), if

|u|(i) ≤ si−1/q , (2.6)

where |u|(i) is the i-th largest element, in the absolute sense. For 0 < q < 2,

condition (2.6) implies rapid decay of the ordered coefficients of u, and hence

describes its sparsity.
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In the context of functional data analysis, we can think of the singular vectors

as vectors of the discrete wavelet coefficients of some smooth functions spanned

onto some sufficiently regular basis functions. For example, if a function belongs

to the Besov space Bα
p,p′ , then its wavelet coefficients will belong to a weak lq ball

(Donoho, 1993; Johnstone, 2011). Therefore, sparsity has more generality than

smoothness to a certain extent.

One may want to impose lq constraint rather than wlq constraint to define the

sparsity. In fact, we have the following relation of inclusion between these two

constraints wlq(s
′) ⊂ lq(s) ⊂ wlq(s) for s′ < s, because of which we will focus on

wlq balls for minimax upper bound and restrict attention to lq balls to derive the

minimax lower bound later.

Finally, combining the low rank mean assumption and the weak lq ball concept,

the parameter spaces characterized by the quadruple (su, qu, sv, qv) is defined to

be

Θ(su, qu; sv, qv) = {M = UDV ′ : U ′U = I, V ′V = I,

D = diag(d1, . . . , dr) > 0, (2.7)

ul ∈ wlqu(su),vl ∈ wlqv(sv)} .

Of course, the parameters (su, qu, sv, qv) in (2.7) can be potentially different for

each layer of the SVD dlulvl. In other words, they may have their own subscripts

l to suggest different levels of sparsity. All the theorems and proofs in this chapter

will carry through with the extra subscripts. For simplicity, we suppose they are

the same.

From now on, we will further assume that the standard deviation of the normal
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noise σ equals 1 because only the signal to noise ratio matters. In the case σ is

known, we can scale the data by dividing the matrix by σ. If it is unknown, it

can be estimated rather easily, say, by a robust estimate of the standard deviation

of all the entries of the data matrix, treating the signal entries as outliers be-

cause of the sparsity assumption. This estimate can be further refined by a rough

understanding of the locations of the signals in the matrix; see Section 2.4.3 for

details.

2.3 Minimax Lower Bound

In this section, a lower bound on the minimax risk of estimating span(U), span(V ),M

over the parameter space (2.7) is derived under the model (2.1) with the loss func-

tions defined as in (2.2, 2.3).

Theorem 2. There exists a constant c, such that for any possible estimator Ũ , M̃

of U,M ,

inf
Ũ

sup
M∈Θ(su,qu;sv ,qv)

EMLU(Ũ , U) ≥ cmuε
2 , (2.8a)

inf
M̃

sup
M∈Θ(su,qu;sv ,qv)

EMLM(M̃,M) ≥ c(mu ∨mv)ε
2 , (2.8b)

where mu and ε2 are defined by

mu = min{d2
1, pu, s̄

qu
u d

qu
1 }, ε2 = d−2

1 , (2.9)

where s̄quu = squu − 1.

Moreover, if there are numeric constants K1, K2 > 0, α ∈ (0, 1), such that

s̄quu d
qu
1

(log(pu ∨ pv))qu/2
≤ min{K1

d2
1

log(pu ∨ pv)
, K2p

α
u} . (2.10)
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Then

mu =
s̄quu d

qu
1

(log(pu ∨ pv))qu/2
, ε2 =

log(pu ∨ pv)
d2

1

. (2.11)

The minimax lower bound for estimating V can be obtained by replacing the sub-

script u by v accordingly.

Remarks:

• Although the two terms mu, ε
2 vary on a case by case basis (2.9, 2.11), the

lower bound (2.8) is always the product of these two quantities: intuitively,

ε2 can be thought of as the average error per coordinate estimated and mu

as the “effective” number of “significant” coordinates to be estimated.

To make the terminology “effective” and “significant” more clear, one has to

understand the worst case configuration first, which is theM ∈ Θ(su, qu; sv, qv)

that attains the supreme risk supM∈Θ(su,qu;sv ,qv) and should be the most dif-

ficulty one to for any procedure to estimate. In the proof of Theorem 2 in

Section 2.6.1, we will see that the worst case configuration is that the singu-

lar vectors have many coordinates of the size a constant times either 1/d1 or
√

log pu/d1 depending on whether condition (2.10) is satisfied or not and the

rest coordinates are exactly zero except for one coordinate that is close to

1. In this configuration, mu is simply the number of non-zero coordinates,

that is, although there are pu coordinates in total, we only need to estimate

mu of them. That is why we call it the “effective” dimension.

This understanding of the lower bound further suggests that for any proce-

dure, if it is optimal, it should be able to extract coordinates of magnitude

larger than the one stated above. In the proof of the mimimax upper bound
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(Section 2.6.3) which bounds the risk of our procedure (will be given in

the next section), we will show that such coordinates will be estimated and

there are mu of them, and the rest coordinates with smaller magnitude will

be estimated by zero even if they are not exactly zero.

• The complicate part of the theorem is that mu varies depending on the rela-

tive size of following quantities d2
1, pu, s̄

qu
u d

qu
1 ,

s̄quu dqu1
(log(pu∨pv))qu/2

. We next explain

why these quantities come into play one by one. To start, d2
1 is the “signal-to-

noise” ratio since we set σ2 = 1 in Section 2.2.5, which makes 1/d2
1 a sensible

quantity in ε2 because it can be seen as the “noise-to-signal” ratio and fulfills

the duty as σ2 in a normal mean problem. We then move to pu, which is

the dimension of the data matrix and hence the largest possible number of

non-zero coordinates. The third one s̄quu d
qu
1 comes from the wlq(s) sparsity

constraint since it involves su, qu and it is the maximum possible number of

nonzero coordinates of size 1/d1 that satisfies the wlq ball condition. The

last one is similar as the third one except that it captures the number of

nonzero coordinates of size
√

log pu/d1 instead. In all, mu is always upper

bounded by the quantities discussed above.

• Understanding these quantities can facilitate our understanding of the whole

theorem. Situation (2.9) actually embodies three lower bounds, together

with the lower bound in (2.11), we have four cases. We will explain them in

detail now.

1. Low signal case: mu = d2
1 < min{pu, s̄quu d

qu
1 }. If d2

1 is so small that it

is less than min{pu, s̄quu d
qu
1 }, then the lower bound muε

2 is a constant,

which implies that no algorithm can ever achieve consistency because

signal is not strong and the sparsity is not prominent enough at the
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same time. Note that it has certain overlap with Theorem 1 for that

when d2
1 < pu, Theorem 1 shows almost sure inconsistency (2.5a), but

Theorem 2 shows the inconsistency over the whole parameter space.

On the other hand, Theorem 1 is limited to the situation pu/pv → c,

whereas Theorem 2 does not confine itself to this situation.

2. Dense case: mu = pu < min{d2
1, s̄

qu
u d

qu
1 }. In this case, the signal is

strong enough for consistency since d2
1 > pu, but the sparsity constraint

does not take effect because s̄quu d
qu
1 > pu, which makes every coordinate

of the singular vector non-zero and to be estimated. The lower bound

is pu/d
2
1, which is the same as the convergence rate of the classical SVD

in (2.5b), which suggests the minimaxity of the classical SVD in the

dense case when the signal is strong enough.

3. Sparse case: mu = s̄quu d
qu
1 < min{d2

1, pu}. Here, s̄quu d
qu
1 < pu, and the

sparsity constraint is active. As long as the signal is sufficiently strong

d2
1 > s̄quu d

qu
1 , no matter whether d2

1 > pu or not, it is possible for recovery.

If d2
1 > pu, classical SVD can get consistent estimate, but not optimal.

If d2
1 < pu, classical SVD is no longer consistent, but procedures taking

advantage of the sparsity structure can achieve consistency.

4. Super sparse case (2.11): mu = O(pαu), 0 < α < 1, which suggests

that the fraction of non-zero coordinates goes to zero as the dimension

increases, whereas for the other three cases, the fraction can be non-

vanishing. This super sparsity makes estimation harder by a factor of
√

log pu because of the uncertainty of the location of the nonzero coordi-

nates. Under this circumstance, the optimal procedure can only detect

signal larger than
√

log(pu ∨ pv)/d1 rather than 1/d1 for the other three

cases, which makes the error per coordinate ε2 equal log(pu ∨ pv)/d2
1.
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Other aspects of the super sparse case remain the same as of the sparse

case. Looking ahead, Theorem 3 about the minimax upper bound of

our procedure in Section 2.5.1 precisely achieves this lower bound and

proves the minimax optimality of our procedure.

• A parallel minimax lower bound for the estimation problem for the PCA

model (2.4) is given by Paul and Johnstone (2007) Theorem 2(b), which also

contains four identical cases as ours, but the proofs for the first three cases

and the super sparse case are intertwined and more involved. Our proofs

separates the worst case configuration for (2.9) and (2.11), are more straight-

forward, have more analogy with the traditional non-parametric function

estimation settings and Gaussian sequence model and can be easily adjusted

to prove their results.

2.4 Estimation Scheme

In Section 2.3, we develop the minimax lower bound, which gives the benchmark

for the sparse SVD problem. In this section, we will systematically describes the

estimation strategy and in the next section, we shall derive the upper bound for our

estimation method and establish its optimality by comparing it to the benchmark.

Recalling that our goal is to estimate the subspaces spanned by the leading

singular vectors rather than each singular vector 2.2.2, our estimation scheme

originates from an iterative algorithm that can be used to calculate the classical

singular vectors simultaneously; see Section 2.4.1. To impose sparsity, in Section

2.4.2, we modify the iterative algorithm in each iteration by thresholding small

entries to zero, which we call iterative thresholding algorithm (IT) for sparse
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SVD and is our final proposal to the sparse SVD problem. To start the iterative

algorithm, an initialization algorithm is provided in Section 2.4.3.

Note that Chapter 1, which is purely methodological, proposes an algorithm

called FIT-SSVD that modifies the IT algorithm in the current chapter to cope

with non-normal noise. Although simulation and real data studies demonstrate

that FIT-SSVD performs well empirically, it does not have theoretical guarantee

for non-normal noise. For completeness and clarity of the current chapter, in

spite of a certain degree of repetitiveness, we will fully describe the IT algorithm,

which although does not adapt to non-normal noise excellently, but is theoretically

minimax optimal under normal noise assumption.

It is also worth noting that the IT algorithm for sparse SVD is a two way

generalization of the IT for sparse PCA problem by Ma (2011). Simply put, the

asymmetry is handled by performing the IT algorithm for sparse PCA problem

twice with the observed data matrix and its transpose, which can be seen more

clearly in Section 2.4.1 and 2.4.2.

2.4.1 Two-way Orthogonal Iteration Algorithm

This subsection is devoted to explaining an iterative algorithm to perform the task

of classical SVD. To that end, we begin with the so-called orthogonal iteration al-

gorithm (See Golub and Van Loan (1996), Chapter 8), that is a generalization of

the power method for calculating multiple dimensional invariant subspaces of sym-

metric matrices by replacing normalization step in the power method by orthonor-

malization. Going one step further, for an arbitrary asymmetric or rectangular

matrix Mpu×pv with SVD UDV ′, in order to compute the subspaces spanned by
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the leading r left and right singular vectors, one can generalize the orthogonal iter-

ation algorithm even more by alternating the orthogonal iteration algorithm with

M and its transpose M ′ until convergence. To be more explicit, starting with an

orthonormal matrix V
(0)
pv×r, repeating the the following four steps until convergence

will produce sequences of orthonormal matrices U (k), V (k) that become closer and

closer to U and V respectively:

(1) Right-to-Left Multiplication: U (k),mul = MV (k−1)

(2) Left Orthonormalization with QR Decomposition: U (k)R
(k)
u = U (k),mul

(3) Left-to-Right Multiplication: V (k),mul = M ′U (k)

(4) Right Orthonormalization with QR Decomposition: V (k)R
(k)
v = V (k),mul

The superscript (k) indicates the k’th iteration, and mul the generally non-orthonormal

intermediate output of multiplication step. For r = 1, the QR decomposition step

for orthonormalization reduces to normalization step in the power method. If the

matrix M is symmetric, the first two and last two steps are the same, making the

original orthogonal iteration algorithm a special case of the two way orthogonal

iteration algorithm.

In the noiseless case, it is easy to verify that the above procedure will converge

to the classical SVD of the matrix M by mimicking the proof in Chapter 8 of

Golub and Van Loan (1996) given that the starting point V (0) is regular enough,

which will be clarified in Section 2.4.3. However, both Theorem 1 and 2 show

that in the low signal case, the above procedure applied directly to the observed

data matrix X = M + Z, equivalent to the classical SVD, fails to estimate the

underlying truth consistently because of the overwhelming noise. The problem

with the procedure is that under the sparsity assumption, only a small subset

of the large noisy matrix contains most of the structure, but the classical SVD
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estimates all the coordinates including those from the structureless cells, resulting

in unnecessary and huge accumulation of noise. Along with the drawback of

the poor statistical property, the above procedure is computationally inefficient

because it involves all the seeming noise entries. One solution is to trim those cells

that might come from noise, which has the potential of reducing the variance as

well as increasing the computational speed. This heuristic motivates our proposal

for the sparse SVD problem in the next subsection.

2.4.2 IT Algorithm for Sparse SVDs

The key innovation in the IT algorithm is the addition of the thresholding step,

which is unsurprisingly incorporated to kill off the coordinates that are likely noise.

The thresholding steps are inserted between the multiplication and the orthonor-

malization steps, which makes a majority of the entries zero and dramatically

reduces the computational time for subsequent orthonormalization and multipli-

cation steps. Although the thresholding steps will reduce the variance at the price

of some bias, so long as the sparsity assumption is sensible, the reduced variance

will hopefully dominate the inflated bias. The algorithm is schematically laid out

in Algorithm 4

In Algorithm 4, the left and right thresholding steps threshold the intermediate

output from the previous multiplication steps elementwisely and generate the in-

termediate result U (k),thr, V (k),thr whose entries may contain many zeros. We allow

any thresholding function η(x, γ) that satisfies |η(x, γ)−x| ≤ γ and η(x, γ)1|x|≤γ =

0, which includes soft-thresholding with ηsoft(x, γ) = sign(x)(|x| − γ)+, hard-

thresholding with ηhard(x, γ) = x1|x|>γ, as well as the thresholding function used

in SCAD (Fan and Li, 2001). The parameter γ in the thresholding function η(x, γ)
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Input:
1. Observed data matrix X.
2. Target rank r.
3. Thresholding function η and constants γu, γv.
4. Initial orthonormal matrix V (0) ∈ Rp×r.
Output: Estimators Û = U (∞) and V̂ = V (∞).
repeat

1 Right-to-Left Multiplication: U (k),mul = XV (k−1).

2 Left Thresholding: U (k),thr = (u
(k),thr
il ), with

u
(k),thr
il = η

(
u

(k),mul
il , γu

√
log(pu ∨ pv)

)
.

3 Left Orthonormalization with QR Decomposition: U (k)R
(k)
u = U (k),thr.

4 Left-to-Right Multiplication: V (k),mul = X ′U (k).

5 Right Thresholding: V (k),thr = (v
(k),thr
jl ), with

v
(k),thr
jl = η

(
v

(k),mul
jl , γv

√
log(pu ∨ pv)

)
.

6 Right Orthonormalization with QR Decomposition: V (k)R
(k)
v = V (k),thr.

until Convergence;

Algorithm 4: IT Algorithm for Sparse SVDs

is called the threshold level and is set to be
√

log(pu ∨ pv) times large enough con-

stants γu, γv whose values will be specified later. The threshold level also remains

the same across all the iterations and the columns. The order of the threshold

level
√

log(pu ∨ pv) is crucial in the minimax analysis for the upper bound of the

risk of IT. In practice, we stop the iterations once the subsequent updates of the

orthonormal matrices are close to each other, say, in the sense that their distance

defined similarly as in (2.3) is below some tolerance level.

Another proposition for the place to insert the thresholding step is after the QR

decomposition step, which is turned down for several reasons. We want to main-

tain orthonormality for the upcoming multiplication step. Further, orthonormal

estimation for U, V will make the estimation of D,M easier. Lastly, the compu-

tational cost for the QR decomposition step is reduced with the thresholding step

coming first.
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If the input matrix X is symmetric, the last three steps in Algorithm 4 will

be the same as the first three, the output of the algorithm will be an estimate for

the leading eigenspace. Furthermore, the three steps resemble the IT algorithm

for sparse PCA problem (Ma, 2011).

2.4.3 Initialization Algorithm for Sparse SVDs

Algorithm 4 requires a proper starting frame V (0) whose span has no dimension

that is orthogonal to the subspace spanned by the true V , otherwise the algorithm

will not get close to the truth no matter after how many iterations. Mathemati-

cally, we demand V ′V (0) has no zero singular values. People often use the classical

SVD as a candidate for V (0), which is however inferior because it is not only com-

putationally expensive for large data, but also asymptotically orthogonal to the

true V (Theorem 1) and needs many iterations to accumulate sufficient power to

converge. We therefore propose an initialization algorithm to address these issues.

Algorithm 5 is motivated by Johnstone and Lu (2009) who obtained a consis-

tent estimate for the sparse PCA problem by initially reducing the dimensionality

which is achieved by focusing on a submatrix of the sample covariance matrix. We

adapt their idea to the two-way case: we first select a subset of rows and columns

(Step 1), perform the classical SVD on the reduced submatrix afterwards (Step

2), and expand the left and right singular vectors of size of the reduced matrix

to their original size by padding zeros to the coordinates that are not selected in

the first step (Step 3). The second and third steps are trivial. We will mainly

give some intuition on how we select the rows, the selection of the columns being

analogous.
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Input:
1. Observed data matrix X.
2. Target rank r.
3. User-specified large enough constants αu, αv.
Output: Orthornormal matrices Û = U (0) and V̂ = V (0).

1 Subset selection:
Let I and J be the subsets of indices,

I = {i :
∑pv
j=1 x

2
ij

pv
≥ 1 + αu

√
log(pu∨pv)

pv
} ,

J = {j :
∑pu
i=1 x

2
ij

pu
≥ 1 + αv

√
log(pu∨pv)

pu
} .

(2.12)

Form the submatrix XIJ of size |I| × |J |.
2 Reduced SVD: Compute r leading pairs of singular vectors of the submatrix
XIJ .
Denote them by uI1, . . . ,u

I
r (|I| × 1 each) and vJ1 , . . . ,v

J
r (|J | × 1 each).

3 Zero-padding: Create U (0) = [u
(0)
1 , . . . ,u

(0)
r ] (pu × r) and

V (0) = [v
(0)
1 , . . . ,v

(0)
r ] (pv × r),

such that u
(0)
Il = uIIl , u

(0)
Icl = 0 , v

(0)
Jl = vJJl , v

(0)
Jcl = 0.

Algorithm 5: Initialization algorithm for sparse SVDs

To understand Step 1, consider the simplest setting when r = 1, in which case

xij = d1ui1vj1 + zij. The goal is to distinguish the significant rows from the rest.

We intend to keep the i-th row if |ui1| is large enough. All of the information

about ui1 is contained in the i-th row, which is a multivariate normal random

variable with mean d1v1ui1 and identity covariance matrix. We want to eliminate

the impact of v1 on the selection of ui1. Note that v1 has unit norm, which makes

the squared l2 norm of the i-th row follow a non-central chi-square distribution

with degree of freedom pv and non-centrality parameter
∑pv

j=1 d
2
1u

2
i1v

2
j1 = d2

1u
2
i1

that does not depend on v1 any more, which is denoted by χ2
pv(d

2
1u

2
i1) thereafter.

By law of large number, χ2
pv(0)/pv → 1. If ui1 is not near 0, then χ2

pv(d
2
1u

2
i1)/pv

will be away from 1, biased upwards (2.12). Hence, we can tell the magnitude of

ui1 by differentiating between the central and non-central chi-square distribution.

As for the appearance of the term
√

log(pu∨pv)
pv

in (2.12), it is inherently determined
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by the tail behavior of the chi-square distribution and the best one can hope for.

2.5 Minimax Upper Bound

We have so far established the minimax lower bound as the benchmark in Section

2.3 and described our estimation procedure in Section 2.4, we now turn to the

asymptotic property of the IT algorithm in this section. Moreover, the initializa-

tion algorithm 5 itself can be a crude estimator, in what follows, we will also give

an upper bound for its risk and conclude that although it is consistent but not

optimal.

2.5.1 Upper Bound for the IT Algorithm

We first state the theorem for the upper bound result for the IT algorithm under

model(2.1) and parameter space (2.7) with respect to the loss functions (2.2, 2.3)

defined earlier.

Theorem 3. Let Û , V̂ be the output of Algorithm 4 with initialization Algo-

rithm 5. Define M̂ = ÛD̂V̂ ′, where D̂ = diag(d̂1, . . . , d̂r) with d̂l = û′lXv̂l. If

squu

(√
pu log(pu∨pv)

d21

)1−qu/2

= o(1) and sqvv

(√
pv log(pu∨pv)

d21

)1−qv/2

= o(1), there exists

constant C, s.t.,

sup
M∈Θ(su,qu;sv ,qv)

EMLU(Û , U) ≤ C(mu ∨mv)ε
2 , (2.13a)

sup
M∈Θ(su,qu;sv ,qv)

EMLM(M̂,M) ≤ C(mu ∨mv)ε
2 , (2.13b)

where ε2 ∼ log(pu∨pv)

d21
, mu ∼ squu d

qu
1

(
1

log(pu∨pv)

)qu/2
and mv accordingly.
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Remarks:

• Recall that the two critical quantities ε2,mu that determine the minimax

lower bound in the super sparse case are of exactly the same form as those

in Theorem 3. Consequently, the minimax risk of the sparse SVD problem

satisfies that if mu = O(pαu), 0 < α < 1, then

infŨ supM∈Θ(su,qu;sv ,qv) EMLU(Ũ , U) � muε
2 ,

infM̃ supM∈Θ(su,qu;sv ,qv) EMLM(M̃,M) � (mu ∨mv)ε
2 .

and the IT estimators are minimax rate optimal in the super sparse case.

• Let us compare the upper bound with the lower bound results for the other

three cases mentioned in Section 2.3. For the low signal case, no method can

achieve consistency, neither can IT, because the right hand side of (2.13) is

not o(1). For the sparse case, the rate of convergence of IT is slower than

the lower bound by a factor of logarithm (log(pu ∨ pv))1−qu/2, which makes

our method near optimal. For the dense case, when the classical SVD is

minimax, it is illuminating to compare the asymptotic supremum risk of IT

with that of the classical SVD. When the dimensions are sufficiently large,

such that pu ≥ squu

(
log(pu∨pv)

d21

)−qu/2
, one can replace the upper bound in

(2.13) by (pu∨pv) log(pu∨pv)
d2

which is slower than the rate of classical SVD by a

factor of log(pu ∨ pv).

• Further note that our estimators do not require knowledge of the parameters

(su, qu; sv, qv) and hence are adaptive.

• As we briefly mentioned in the remarks after Theorem 2, comparing the

lower and upper bound results side by side reveals and the proof of Theorem
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3 confirms that all of the coordinates of the singular vectors of size of order√
log(pu ∨ pv)/d1 will be included in the final estimators and the smaller

coordinates will be zeroed out. This is the core of the proof.

2.5.2 Upper Bound for the Initialization Algorithm

We will then give the upper bound for the supremum risk of the initialization

Algorithm 5 under the same model assumptions, parameter spaces, and loss func-

tions.

Theorem 4. Let Û (0), V̂ (0) be the output of Algorithm 5. If squu

(√
pu log(pu∨pv)

d21

)1−qu/2

=

o(1) and sqvv

(√
pv log(pu∨pv)

d21

)1−qv/2

= o(1), then there exists constant C, s.t.,

supM∈Θ(su,qu;sv ,qv) EMLU(Û (0), U)

≤ C

(
squu

(√
pu log(pu∨pv)

d21

)1−qu/2

+ sqvv

(√
pv log(pu∨pv)

d21

)1−qv/2
)
.

(2.14)

Similar result holds for V .

Remarks:

• Theorem 4 shows that we need a looser condition for the initialization algo-

rithm to be consistent, namely, squu

(√
pu log(pu∨pv)

d21

)qu/2
→ 0 as opposed to

pu∨pv
d21
→ 0, which is required for the classical SVD to be consistent.

• It is obvious that the upper bound in (2.14) is much slower than the one for

IT in (2.13) and does not achieve the minimax lower bound in (2.8), that

makes the initialization algorithm not optimal.
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• The upper bounds for the classical SVD, the initialization algorithm and

IT involve pu∨pv
d21

,

√
pu log(pu∨pv)

d21
, log(pu∨pv)

d21
respectively. It is interesting to note

that “ladder” relationship between them.

• The convergence rate

√
pu log(pu∨pv)

d21
solely depends on the rate of threshold

level
√

log(pu∨pv)
pv

in Step 1 of Algorithm 5. The proof of the theorem in

Section 2.6.2 will further confirms that only the coordinates whose order are

larger than (pu log(pu∨pv))1/4

d1
can be identified by the subset selection procedure.

Those signals that are not extremely high but still above

√
log(pu∨pv)

d1
will be

immersed in the noise, resulting in huge bias in the estimator. One may

wonder if this is the case, why cannot we lower the threshold level in Step

1 to achieve a better result? The quick answer is the original threshold

level is the lowest such that we can tell the central and non-central chi-

square distribution apart by concentration inequality, which means there is

no space for improvement for an algorithm this simple.

2.6 Proofs

In what follows, we prove the main results Theorems 2, 4, 3 in Sections 2.6.1,

2.6.2, 2.6.3 respectively. A few technical proofs of the lemmas used in this section

are deferred to the Appendix. Throughout this section, we denote by C, c generic

constants that may vary from place to place.
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2.6.1 Proof of Theorem 2

Observing the inclusion relationship between lq and weak lq balls lq(s) ⊂ wlq(s), let

us define a new parameter space that is a subset of the original one Θ′(su, qu; sv, qv) ⊂

Θ(su, qu; sv, qv) by

Θ′(su, qu; sv, qv) = {M = UDV ′ : U ′U = I, V ′V = I,

D = diag(d1, . . . , dr) > 0, (2.15)

ul ∈ lqu(su),vl ∈ lqv(sv)} .

Together with the fact that LU(Û , U) is trivially lower bounded by LU(û1,u1), we

will prove (2.8) by showing that

inf
ũ1

sup
M∈Θ′(su,qu;sv ,qv)

EMLU(ũ1,u1) ≥ cmuε
2 , (2.16a)

inf
M̃

sup
M∈Θ′(su,qu;sv ,qv)

EMLM(M̃,M) ≥ c(mu ∨mv)ε
2 . (2.16b)

The proofs of the two parts (2.9) and (2.11) in Theorem 2 use two different

well-known techniques: Assouad’s Lemma and Fano’s Lemma respectively. In

order to use both of the general machinery, it is necessary to obtain a finite num-

ber of parameters that belong to the parameter space Θ′(su, qu; sv, qv) (2.15) and

meanwhile serve as the worst case configuration. The minimax lower bound for

estimating the subspace spanned by the singular vectors U (2.16a) and the whole

matrix (2.16b) are proved by the same worst case configuration and will be proved

together later.
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Proof of (2.9) in Theorem 2. We shall use Assouad’s lemma (see Lemma

3 in the Appendix) to prove (2.9). To this end, we shall create the worst case

parameters in the following way. Let mu = pu−r and ρu ∈ (0, 1), the exact values

of which are to be specified later in Table 2.1 for different cases discussed in the

remarks after Theorem 2. In addition, let el denote the pu- or pv-vector depending

on the context where the l-th coordinate is 1 and the rest are all zeros.

First, we construct a finite collection of models as the following: for any γ =

(γ1, . . . , γmu) ∈ Γ = {0, 1}mu , let

M(γ) = d1u1(γ)v′1 +
r∑
l=2

dlulv
′
l ∈ Rpu×pv ,

where ul = el for l = 2, . . . , r, vl = el for l = 1, . . . , r, and

u1(γ) =
√

1− ρ2
ue1 + ρu

1
√
mu

mu∑
h=1

(2γh − 1)er+h .

Clearly, {ul, l = 1, . . . , r} and {vl, l = 1, . . . , r} are two sets of orthonormal vectors

for any γ. For each fixed γ,

u1(γ) = (
√

1− ρ2
u, 0, . . . , 0︸ ︷︷ ︸

r−1

,± ρu√
mu

, . . . ,± ρu√
mu︸ ︷︷ ︸

mu

, 0, . . . , 0︸ ︷︷ ︸
pu−r−mu

)′

could be viewed as a perturbation of e1 = (1, 0, . . . , 0)′ and for h = 1, . . . ,mu,

u1,r+h is always of size ρu√
mu

and is positive if γh = 1 and is negative if γh = 0.

In order to apply Assouad’s Lemma, we will consider two metrics: for Rpu×pv ,

the metric dM between two matrices is given by the Frobenius norm

dM(M̃,M) = ‖M̃,M‖F ; (2.17)
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for Rpu , the metric dU between two vectors is defined by

dU(ũ1,u1) = sin∠(ũ1,u1) . (2.18)

Note that there are two free parameters in the above construction: (i) ρu,

the magnitude of the perturbation, and (ii) mu, the number of coordinates that

are perturbed. To embed this finite collection as a subset of our uniformity class

Θ′(su, qu; sv, qv), we impose on ρu and mu the condition

(1− ρ2
u)
qu/2 + ρquu m

1−qu/2
u ≤ squu , (2.19)

and so for any γ, u1(γ) ∈ lqu(su), and {M(γ), γ ∈ Γ} ⊂ Θ′(su, qu; sv, qv).

Next, we compute the quantities that appear in the lower bound in Assouad’s

Lemma. Define H(γ, γ′) to be the Hamming distance, which counts the number

of positions at which γ and γ′ differ. Because for any γ 6= γ′ with H(γ, γ′) = k,

there will be k different entries between u1(γ) and u1(γ′), we have

d2
M(M(γ),M(γ′)) = ‖M(γ)−M(γ′)‖2

F

= d2
1‖u1(γ)− u1(γ)‖2

= d2
1k

(
2ρu√
mu

)2

= k
4d2

1ρ
2
u

mu

,

d2
U(u1(γ),u1(γ′)) = sin2 ∠(u1(γ),u1(γ′))

= 1− cos2 ∠(u1(γ),u1(γ′))

= k
2ρ2

u

mu

.
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Therefore, we obtain that

min
H(γ,γ′)≥1

d2
M(M(γ),M(γ′))

H(γ, γ′)
=

4d2
1ρ

2
u

mu

,

min
H(γ,γ′)≥1

d2
U(u1(γ),u1(γ′))

H(γ, γ′)
=

2ρ2
u

mu

.

In addition, for each γ, we have a probability measure Pγ in terms of the matrix

normal distribution Npu×pv(M(γ), Ipu ⊗ Ipv). It is straightforward to verify that

for any γ 6= γ′ with H(γ, γ′) = 1, the Kullback-Leibler divergence between Pγ

and Pγ′ is KL(Pγ, Pγ′) = 2d2
1ρ

2
u/mu. By the inequality ‖P ∧ Q‖ ≥ 1

2
exp−KL(P,Q)

(Tsybakov 2009, Lemma 2.6), this leads to

min
H(γ,γ′)=1

‖Pγ ∧ Pγ′‖ ≥
1

2
exp

(
−2d2

1ρ
2
u

mu

)
.

With the last two displays, Assouad’s Lemma implies that

inf
M̃

sup
γ∈Γ

E22‖M̃ −M(γ)‖2
F ≥ 4d2

1ρ
2
u

mu

mu

2

1

2
exp

(
−2d2

1ρ
2
u

mu

)
,

inf
ũ1

sup
γ∈Γ

E22 sin2 ∠(ũ1,u1) ≥ 2ρ2
u

mu

mu

2

1

2
exp

(
−2d2

1ρ
2
u

mu

)
.

Observe that ‖M(γ)‖2
F =

∑r
l=1 d

2
l for any γ ∈ Γ, together with the assumption

that the singular values are of the same order 1 ≥ dr
d1
≥ c > 0, the last display

then leads to

inf
M̃

sup
γ∈Γ

EMLM(M̃,M) ≥ cρ2
u exp

(
−2d2

1ρ
2
u

mu

)
,

inf
ũ1

sup
γ∈Γ

EMLU(ũ1,u1) ≥ cρ2
u exp

(
−2d2

1ρ
2
u

mu

)
,

To further investigate the right side, define s̄u such that s̄quu = squu − 1. Note that

s̄u � su. We specify the values of mu and ρ2
u in three different cases as follows.
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Case Condition mu ρ2
u

Low signal d2
1 ≤ min{pu − r, s̄quu d

qu
1 } d2

1
mu
d21

= 1

Dense pu − r ≤ min{d2
1, s̄

qu
u d

qu
1 } pu − r mu

d21

Sparse s̄quu d
qu
1 ≤ min{d2

1, pu − r} s̄quu d
qu
1

mu
d21

Table 2.1: Three different cases for minimax lower bound.

Observe that in all of the three cases, condition (2.19) is always satisfied.

Combining these three cases, we obtain that

inf
M̃

sup
M∈Θ′(su,qu;sv ,qv)

EMLM(M̃,M) ≥ inf
M̃

sup
γ∈Γ

EMLM(M̃,M(γ)) ≥ cρ2
u = cmuε

2 ,

inf
ũ1

sup
M∈Θ′(su,qu;sv ,qv)

EMLU(ũ1,u1) ≥ inf
ũ1

sup
γ∈Γ

EMLU(ũ1,u1(γ)) ≥ cρ2
u = cmuε

2 ,

where ε2 = 1/d2
1. By symmetry, the same inequality holds if the right side is

replace by mvε
2 for the second inequality. This completes the proof.

Proof of (2.11) in Theorem 2. The technical tool for proving the second part

of Theorem 2 is Lemma 4 which is equivalent to Fano’s Lemma.

Throughout the proof, let mu be the largest even number which is no greater

than s̄quu (d2
1/ log pu)

qu/2. Without loss of generality, let us assume that mu ≥ 2.

Clearly, mu � squu (d2
1/ log pu)

qu/2.

To construct the metric space in Lemma 4, let P = {p(j) : j = 1, . . . , n} be a

maximal subset of binary sequences of length pu which satisfies the following three

constraints:

1. For all j, p
(j)
i = 0, i = 1, . . . , r;

2. For all j, |{i : p
(j)
i = 1}| = mu;

3. For all j 6= k, |{i : p
(j)
i = p

(k)
i = 1}| ≤ mu/2.
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In other words, each p(j) ∈ P has exactly mu entries equal to 1, all of which are

scattered at the (r+1)-th to the pu-th coordinates, and all the rest are zeros. Any

two different elements in P have less than half of their 1’s overlapped.

Note that the condition 2.10 implies that mu � pαu = o(pu − r). Applying

Lemma 5 with p = pu − r and m = mu leads to

log n & mu log pu . (2.20)

We are now in the position to construct the metric space in Lemma 4. Indeed,

let

Θsub = {Mj, j = 0, 1, . . . , n}

be a collection of pu × pv matrices with rank r. Here M0 =
∑r

l=1 dlulv
′
l with

ul = el and vl = el, for l = 1, . . . , r. Moreover, for j = 1, . . . , n, let

Mj = d1u
(j)
1 v1 +

r∑
l=2

dlulv
′
l,

with ul = el for l = 2, . . . , r, and vl = el for l = 1, . . . , r, and u
(j)
1 =

√
1− ρ2

ue1 +

ρu√
mu

p(j), where p(j) ∈ (P ) and ρu ∈ (0, 1) is to be specified later. As before, each

u
(j)
1 , similarly as u1(γ) in the proof for (2.9), could be viewed as a perturbation

of e1. However, the differences between these two perturbations are: first of all,

in the previous proof, the locations of the perturbation are known to be from

r + 1-th to r +mu-th coordinate, the locations of the perturbation of the current

constructions could be anywhere from r + 1-th to pu-th coordinate; secondly, the

signs of the perturbation of the previous proof are unknown and depending on
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the values of γ, the signs of the current perturbation are always positive; lastly,

although the sizes of the perturbations are both ρu√
mu

, the definitions of the ρu and

mu in the two perturbations are different, by a factor of logarithm.

The metrics dM on Rpu×pv or dU on Rpu are defined the same as before (2.17)

or (2.18).

So, for any 0 ≤ j 6= k ≤ n,

dM(Mj,Mk) = ‖Mj −Mk‖F = d1‖u(j)
1 − u

(k)
1 ‖ ≥

d1ρu√
2

dU(u
(j)
1 ,u

(k)
1 ) = sin∠(u

(j)
1 ,u

(k)
1 ) ≥ ρu√

2

(2.21)

The inequality holds because the construction of P ensures that p(j) and p(k), and

hence u
(j)
1 and u

(k)
1 , differ at at least mu/2 coordinates. Finally, let PMj

be the

matrix normal distribution Npu×pv(Mj, Ipu ⊗ Ipv), then for any j 6= 0, PMj
� PM0 ,

and

KL(PMj
, PM0) =

d2
1

2
‖u(j)

1 − u
(0)
1 ‖2

=
d2

1

2

(
(1−

√
1− ρ2

u)
2 +mu

(
ρu√
mu

)2
)

(2.22)

≤ d2
1ρ

2
u .

The last inequality holds because
√

1− x ≥ 1− x for x ∈ [0, 1] and ρ2
u ∈ [0, 1].

Set

ρ2
u = c

mu log pu
d2

1

(2.23)

for a small enough numeric constant c. Then the condition (2.10) of the theorem

implies that ρ2
u < 1 and that the lq ball constraint (2.19) is satisfied. So, for any
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j, u
(j)
1 ∈ lqu(su) and Θsub ⊂ Θ′(su, qu; sv, qv) ⊂ Θ(su, qu; sv, qv). In addition, the

cardinality of the sub parameter space (2.20) implies that

1

n

n∑
j=1

KL(PMj
, PM0) ≤ d2

1ρ
2
u = cmu log pu ≤ β log n,

for some β ∈ (0, 1/8). Here the first inequality comes from the bound of the KL

divergence (2.22), the equality comes from the definition of ρ2
u in (2.23) and the

second inequality comes from (2.20).

Therefore, for any estimator ũ1 and M̃ , we apply Lemma 4 together with (2.21)

to obtain

max
M∈Θsub

PM

(
‖M̃ −M‖2

F ≥
d2

1ρ
2
u

8

)
≥

(
1− 2β −

√
2β

n

)
> 0 ,

max
M∈Θsub

PM

(
sin2 ∠(ũ1,u1) ≥ ρ2

u

8

)
≥

(
1− 2β −

√
2β

n

)
> 0 .

Since Θsub ⊂ Θ(su, qu; sv, qv), and ‖Mj‖2
F =

∑
d2
l for any Mj ∈ Θsub, we conclude

that

inf
M̃

sup
M∈Θ(su,qu;sv ,qv)

EMLM(M̃,M)

≥ inf
M̃

max
M∈Θsub

EMLM(M̃,M)

≥ d2
1ρ

2
u

8
∑
d2
l

inf
M̃

max
M∈Θsub

PM

(
‖M̃ −M‖2

F ≥
d2

1ρ
2
u

8

)
& ρ2

u

� mu log pu
d2

1

� muε
2 ,
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where ε2 = log pu
d21

. Similarly, we have

inf
ũ1

sup
M∈Θ(su,qu;sv ,qv)

EMLU(ũ1,u1) & muε
2 .

By symmetry, repeating the proof with perturbations of v1 will complete the proof.

2.6.2 Proof of Theorem 4

In this subsection, we will prove Theorem 4, which is the upper bound for the risk

of the initialization algorithm 5.

The proof contains three major steps. In the first step, we analyze the subset

selection step 1, and relate the subset I defined in (2.12) to other subsets that

are easier to handle with. The second step requires a detailed study of the other

subsets defined in the first step, which will be the basis of the further analysis of

the classical SVD on the reduced matrix in the third step.

Step 1. We will solely focus on the properties related to U and everything will

carry over for V .

Let us first define the following random variables: the squared l2 norm of each

row of the observed data matrix X

tui =

pv∑
j=1

X2
ij ,

and the following quantity that can be thought of the scaled sum of the squares
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of the i-th row of U

θui =
r∑
l=1

d2
l u

2
il .

Then we know that these random variables follow non-central chi-sqaure distribu-

tions with degree of freedom pv and non-centrality parameters θui

tui ∼ χ2
pv(θui) .

Recall that the subset of coordinates that are selected in (2.12) depend on the

values of tui’s, which are random. Let us define two closely related deterministic

subsets that depend on the values of θui’s as following

I± =

{
i : θui ≥ a∓pv

√
log(pu ∨ pv)

pv

}
, (2.24)

where a∓ are large enough constants.

Note that

I±

⊂ ∪rl=1

{
i : u2

il ≥ a∓
pv
d2
l

√
log(pu ∨ pv)

pv

}
(2.25)

= ∪rl=1

{
i : uil &

(pu log(pu ∨ pv))1/4

d1

}
,

where the rate of the last term is the same as we mentioned in the remarks after

Theorem 4.

Our goal is to establish a “bracketing” relationship (will be accurate in Lemma

1 shortly) so that performing SVD on the random sub-matrix XIJ can be closely
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related to performing SVD on the deterministic sub-matrices XI+J+ and XI−J−

in Step 3.

Lemma 1. I, I± defined in (2.12, 2.24) satisfy

I− ⊂ I ⊂ I+ (2.26)

with probability 1.

The proof of Lemma 1 is given in the Appendix A.1.1.

Step 2. Before analyzing the classical SVD step, we first derive a bound on the

cardinality of the subsets I± using the wlq(s) constraint in the parameter space

(2.7). The key message we pursue is that under that sparsity assumption, very few

coordinates will be kept in the initialization algorithm, and the resulting variance

of the retained coordinates will be shown of a much smaller order than the squared

bias term.

From (2.25), we obtain

|I±| ≤ r|{i : u2
il ≥ a∓

pv
d2
l

√
log(pu ∨ pv)

pv
}|

≤ r|{i : s2
ui
−2/qu ≥ a∓

pv
d2
l

√
log(pu ∨ pv)

pv
}| (2.27)

. squu

(
d2

1√
pv log(pu ∨ pv)

)qu/2

,

where the second inequality comes from the definition of weak lq ball (2.6) and

the last step relies on the assumption that the rank r is constant.

Another key quantity that will be used in Step 3 is the squared bias, that is

71



induced by focusing only on the large coordinates and estimating the rest by zero.

Let g be the solution to s2
ug
−2/qu = a+

pv
d2l

√
log(pu∨pv)

pv
, then g = O

((
s2ud

2
1√

pv log(pu∨pv)

)qu/2)
.

We then bound the sum of the squares of the coordinates that are not selected for

the l-th singular vector

‖UI−cl‖2 =
∑
i/∈I−

u2
il

≤
∑

i:u2il≤a+
pv
d2
l

√
log(pu∨pv)

pv

u2
il

≤
∑
i

u2
il ∧ a+

pv
d2
l

√
log(pu ∨ pv)

pv

≤
∑
i

s2
ui
−2/qu ∧ a+

pv
d2
l

√
log(pu ∨ pv)

pv

≤
∫
y

s2
uy
−2/qu ∧ a+

pv
d2
l

√
log(pu ∨ pv)

pv
dy

. s2
ug

1−2/qu + a+
pv
d2
l

√
log(pu ∨ pv)

pv
g

. squu

(√
pv log(pu ∨ pv)

d2
1

)1−qu/2

= o(1) , (2.28)

where the first inequality comes from the definition of I−, the third one comes

from the weak lq constraint, the last equality is from the condition in Theorem 4.

Note that the rate of ‖UI−cl‖2 is exactly what we want to prove on the right

hand side of the inequality (2.14) in Theorem 4.

Step 3. Given what we have obtained so far, we shall finally apply Lemma 7

in the appendix to prove Theorem 4. To this end, set A and B in Lemma 7 as
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follows

A = UDV ′ ,

B =

 XIJ 0

0 0

 =

 UI:DV
′
J : 0

0 0

+

 ZIJ 0

0 0

 .

Then the perturbation matrix is

E = B − A = −

 0 UI:DV
′
Jc:

UIc:DV
′
J : UIc:DV

′
Jc:

+

 ZIJ 0

0 0

 . (2.29)

And we have the following bound on the spectral norm of the perturbation matrix

E.

Lemma 2. Define E as in (2.29), we have with high probability converging to 1,

‖E‖2 . d2
1s
qu
u

(√
pv log(pu ∨ pv)

d2
1

)1−qu/2

+ d2
1s
qv
v

(√
pu log(pu ∨ pv)

d2
1

)1−qv/2

.

Based on the condition in Theorem 4, we further know that ‖E‖2 = o(d2
1).

Based on the specification of A,B,E and Lemma 2, let us apply Lemma

7. First of all, Σ0(A) = 0 and we therefore have α = 0 in (A.2). Secondly,

σmin(Σ1(B)) ≥ σmin(Σ1(A)) − ‖E‖ = dr − ‖E‖ from the definition of A and

Lemma 2. Hence, we can set δ = dr −‖E‖ and we get O(δ) = O(d1)− o(d1). The

definition of ε in (A.3) can be trivially upper bounded by ‖E‖, which, together
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with (A.4), leads to

LU(Û (0), U) = ‖Û (0)Û (0)′ − UU ′‖2

≤ ε2

δ2

.
‖E‖2

d2
1

. squu

(√
pu log(pu ∨ pv)

d2
1

)1−qu/2

+ sqvv

(√
pv log(pu ∨ pv)

d2
1

)1−qv/2

,

with probability converging to 1. Since the loss function (2.3) if always bounded

above by 1, the high probability can converge to 1 fast enough to make the state-

ment of the theorem true.

2.6.3 Proof of Theorem 3

This section is dedicated to the proof of Theorem 3, which provides the upper

bound of the risk of the IT algorithm. We will first prove the risk for estimating the

subspace (2.13a), whose establishment will further proves the risk for estimating

the mean matrix (2.13b).

In the proof of Theorem 4 in Section 2.6.2 (especially the proof of Lemma 2), it

can be seen that the rate of convergence is determined by the tradeoff between two

parts: squared bias ‖UI−cl‖2 and variance |I
+|
d21

. For the initialization algorithm,

the former dominates the latter by a factor of
√
pu ∨ pv log(pu ∨ pv) because the

cutoff point for the signal that we can detect is (pu∨pv log(pu∨pv))1/4

d1
. In this section,

we will prove that the IT algorithm introduced in Section 2.4.2 will recover signal

larger than

√
log(pu∨pv)

d1
, which makes the squared bias and variance off by only a

logarithmic factor.
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In parallel with the definition of I±, we define the subsets of coordinates that

are of high signals as

Hu = ∪rl=1

{
i : u2

il ≥ bu
log(pu ∨ pv)

d2
1

}
,

Hv = ∪rl=1

{
j : v2

jl ≥ bv
log(pu ∨ pv)

d2
1

}
.

And let Lu = Hc
u, Lv = Hc

v where H stands for high signal and L stands for low

signal. We call a procedure an oracle one if it has the knowledge of Hu, Hv and

use superscript o to indicate oracle quantities.

The proof will be decomposed intro three steps. First, we will show that the

classical SVD of the oracle matrix (which will be defined later) achieves the desired

rate of convergence. Second, we verify that the output of the IT algorithm with

the oracle knowledge is close to the classical SVD of the the oracle matrix. Third,

it is proved that the actual IT algorithm behaves like the IT algorithm with the

oracle knowledge.

Step 1. We begin by analyzing the properties of Hu, Lu (Replacing u by v will

produce the corresponding result for V and will be skipped thereafter). By the

same calculations as in (2.27) and (2.28), we obtain the upper bounds on the size

of the high signal subset and the squared l2 norm of the low signal coordinates

mu
def
= |Hu| ≤ squu

(
log(pu ∨ pv)

d2
1

)−qu/2
, (2.30)

‖ULul‖2 ≤ squu

(
log(pu ∨ pv)

d2
1

)1−qu/2

, (2.31)

Define A,B,E as in the proof of Theorem 4 with I, J replaced by Hu, Hv
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respectively. Utilizing the same tricks in the proof of Lemma 2 in A.1.3, it can be

shown that with large probability,

‖E‖2 . d2
1‖ULul‖2 + d2

1‖VLvl‖2 + |Hu|+ |Hv| = o(d2
1) .

Suppose the SVD of the oracle matrix

Xo =

 XHuHv 0

0 0


is U oDoV o′ .

Plugging in (2.30) and (2.31) and applying Lemma 7 again, we have

L(U o, U) + L(V o, V )

.
‖E‖2

d2
1

. squu

(
log(pu ∨ pv)

d2
1

)1−qu/2

+ sqvv

(
log(pu ∨ pv)

d2
1

)1−qv/2

(2.32)

Step 2. Let us first clarify what the IT algorithm with oracle knowledge is ex-

actly. We initialize the IT algorithm with U (0),o and V (0),o which are the outputs of

Algorithm 5 with input Xo. We then construct sequences of orthonormal matrices

U (k),o and V (k),o for k = 1, . . . by implementing the IT algorithm, also with input

Xo. The goal is to justify that L(U o, U (∞),o) is upper bounded by the same rate

as in the theorem.

For convenience, denote the largest canonical angle between the column spaces

of two matrices U1, U2 by θ(U1, U2). Then we have the following results
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1. The angles satisfy the inequalities

sin θ(U o, U (k),o) ≤ % tan θ(V o, V (k−1),o) + ωu sec θ(V o, V (k−1),o) ,

sin θ(V o, V (k),o) ≤ % tan θ(U o, U (k),o) + ωv sec θ(U o, U (k),o) ,

where % = dor+1/d
o
r and O(ωu) = O(

√
mu log(pu∨pv)

do1
). These two inequal-

ities recursively characterize the evolvement of the angles θ(V o, V (k−1),o),

θ(U o, U (k),o), θ(V o, V (k),o), . . . .

2. If sin2 θ(V o, V (k−1),o) . ω2
u(1−%)−2, so is sin2 θ(U o, U (k),o); if sin2 θ(U o, U (k),o) .

ω2
v(1− %)−2, so is sin2 θ(V o, V (k),o).

3. Otherwise, the sine of the sequence of the angles will keep decaying

sin2 θ(U o, U (k),o)/ sin2 θ(V o, V (k−1),o) ≤ c,

sin2 θ(V o, V (k),o)/ sin2 θ(U o, U (k),o) ≤ c, 0 < c < 1 ,

The proof of the last three claims can be obtained by mimicking the proof of

Proposition 6.1 in Ma (2011).

Following the proof of Proposition 6.2 further, one can show that

sin2 θ(V o, V (∞),o), sin2 θ(U o, U (∞),o) . ω2
v(1− %)−2 ∨ ω2

u(1− %)−2 .
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Since %→ dr+1

dr
= 0 and

ω2
u → O(

mu log(pu ∨ pv)
d2

1

)

. squu

(
log(pu ∨ pv)

d2
1

)−qu/2 log(pu ∨ pv)
d2

1

= squu

(
log(pu ∨ pv)

d2
1

)1−qu/2

,

The last two displays together prove that

L(U o, U (∞),o) + L(V o, V (∞),o) . (squu ∨ sqvv )

(
log(pu ∨ pv)

d2
1

)1−qu/2

. (2.33)

See Yang et al. (2012) for the complete proof of Step 2 and 3.

Step 3. Now that we have acquired the two bounds (2.32) and (2.33), what is

left is to check that

U (k),o = U (k), V (k),o = V (k) , (2.34)

which is equivalent to verify that

U
(k)
Lu: = 0, V

(k)
Lv : = 0 . (2.35)

For k = 0, since the deterministic subsets clearly satisfy that

I+ ⊂ Hu, J
+ ⊂ Hv ,

and we have the bracketing relation, Lemma 1, so (2.34) is correct with high

probability for k = 0.
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We next prove (2.35) by induction. For i ∈ Lu,∀j,

|XiHvV
(k)
Hvj
| = |(Ui:DV ′Hv : + ZiHv)V

(k)
Hvj
|

= |(Ui:DV ′Hv : + ZiHv)(V
o
Hv :V

o′

Hv : + (V o
Hv :V

o′

Hv :)
⊥)V

(k)
Hvj
|

≤ |(Ui:DV ′Hv : + ZiHv)V
o
Hvj|(1 + o(1))

≤ (|djuij|+ |ZiHvV o
Hvj|)(1 + o(1))

≤ (|djuij|+ |N(0, 1)|)(1 + o(1))

.
√

log(pu ∨ pv) ,

with high probability. The first inequality is due to V o′
Hv :

⊥
V

(k)
Hvj

= o(1), V o′
Hv :V

(k)
Hvj
≤

1. The second last uses the induction and the independence of ZiHv , i ∈ Lu and

V o
Hvj

. The last one comes from the definition of Lu and the tail behavior of normal

distribution.

All the statements in this section with high probability can be made to with

probability 1−(pu ∨ pv)−2 as long as we choose the constants carefully to make the

probabilities summable. Together with the fact that the loss function is bounded

above by 2. The high probability statement can be turned into expectation, which

finishes the proof.

Combining (2.32, 2.33, 2.34), with triangle inequality and Jensen’s inequality

completes the proof of (2.13a).

We next turn to the proof of (2.13b). To start, we first derive the convergence
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rate of the estimated singular values

d̂l = û′lXv̂l

=
r∑

ν=1

û′luνdνv̂
′
lvν + û′lZv̂l

= dl(1 +O(LU(ûl,ul)))(1 + o(1)) + (
√
mu ∨mv +

√
mvl)(1 + o(1))

= dl(1 +O(

√
mu ∨mv

dl
)) .

We next bound the Frobenius loss function (2.2) by the the spectral norm loss

function (2.3), whose upper bound is already approved.

‖ÛD̂V̂ ′ − UDV ′‖2
F

= tr(D̂2) + tr(D2)− 2tr(DV ′V̂ D̂Û ′U)

= tr(D̂2) + tr(D2)− 2tr(DD̂)

+2tr(DD̂)− 2tr(DD̂Û ′U)

+2tr(DD̂Û ′U)− 2tr(DV ′V̂ D̂Û ′U)

= tr((D̂ −D)2) + 2tr(DD̂(I − Û ′U)) + 2tr(D̂Û ′UD(I − V̂ ′V ))

≤ tr((D̂ −D)2 + 2tr(DD̂)‖I − Û ′U‖2 + 2tr(DD̂)‖I − V̂ ′V ‖2

=
r∑
l=1

(dl − d̂l)2 + 2
r∑
l=1

dld̂l(‖I − Û ′U‖2 + ‖I − V̂ ′V ‖2)

=
r∑
l=1

d2
lO(

mu ∨mv

d2
l

) + 2
r∑
l=1

d2
l (1 +O(

√
mu ∨mv

dl
))(‖I − Û ′U‖2 + ‖I − V̂ ′V ‖2)

=
r∑
l=1

d2
l [O(

mu ∨mv

d2
l

) +O(‖I − Û ′U‖2 + ‖I − V̂ ′V ‖2)]

=
r∑
l=1

d2
lO(‖I − Û ′U‖2 + ‖I − V̂ ′V ‖2) ,
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which together with (2.13a) and ‖UDV ′‖2
F =

∑r
l=1 d

2
l completes the proof.
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Appendix A

AUXILIARY RESULTS

A.1 Auxiliary Results

The following technical tool for establishing (2.9) in Theorem 2 is from Assouad

(1983).

Lemma 3 (Assouad’s Lemma). Let Γ = {0, 1}m be the set of all binary sequences

of length m, applicable to the problem of estimating an arbitrary quantity θ(γ)

belonging to a metric space with metric d. Let {Pγ, γ ∈ Γ} be a set of 2m probability

measures and H(γ, γ′) =
∑m

i=1 |γi − γ′i| be the Hamming distance, which counts

the number of positions at which γ and γ′ differ. For any estimator θ̂ based on an

observation from a distribution in the collection {Pγ, γ ∈ Γ},

sup
γ∈Γ

2sEds(θ̂, θ(γ)) ≥ min
H(γ,γ′)≥1

ds(θ(γ), θ(γ′))

H(γ, γ′)
· m

2
· min
H(γ,γ′)=1

‖Pγ ∧ Pγ′‖ .

Here, ‖Pγ ∧ Pγ′‖ is the total variation affinity, defined as ‖P ∧Q‖ =
∫

(p ∧ q)dµ.
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The next lemma is used in proving (2.11) in Theorem 2, which is Theorem 2.5

in Tsybakov (2009).

Lemma 4 (Tsybakov (2009)). For n ≥ 2, let Θ = {θ0, θ1, . . . , θn} be a metric

space with metric d, such that d(θj, θk) ≥ 2δ > 0 for all j 6= k. Consider a

collection of distributions {Pθ, θ ∈ Θ} which satisfies that Pθj � Pθ0 for all j 6= 0,

and that

1

n

n∑
j=1

KL(Pθj , Pθ0) ≤ β log n, for some β ∈ (0, 1/8).

Suppose θ̂ is an estimator based on an observation from a distribution in the above

collection, then

max
θ∈Θ

Pθ
(
d(θ̂, θ) ≥ δ

)
≥

√
n

1 +
√
n

(
1− 2β −

√
2β

log n

)
> 0.

The following counting lemma is also used in the proof of (2.11) in Theorem

2.

Lemma 5 (Paul and Johnstone (2007), Lemma 7). Let p be a positive number

and 0 < m ≤ p be an even number. Let B be a maximal set of {0, 1}p such that

1. for any b ∈ B, |{i : bi = 1}| = m, and

2. for any pair b, b̃ ∈ B, |{i : bi = b̃i = 1}| ≤ m/2.

If m = o(p) as p→∞, then log |B| & m log p.

The following lemma is used in the proof of the “bracketing” Lemma 1, which

in turn is used in the proof of Theorem 4. This lemma is the large deviation result

for non-central chi-square distribution.
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Lemma 6 (Noncentral Chi-square tail). There exists constant C, such that for

noncentral chi-square distribution,

P (χ2
n(nµ2)− n− nµ2 ≥ nε) ≤ exp(−Cnε2) ,

P (χ2
n(nµ2)− n− nµ2 ≤ −nε) ≤ exp(−Cnε2) .

(A.1)

The following lemma is used in the proof of Theorem 4, which bounds the

difference between the subspaces spanned by the singular vectors of one matrix

and its perturbation.

Lemma 7 (Wedin (1972)). Suppose two matrices A and B = A + E have the

following SVDs

A = U1(A)Σ1(A)V ′1(A) + U0(A)Σ0(A)V ′0(A) ,

B = U1(B)Σ1(B)V ′1(B) + U0(B)Σ0(B)V ′0(B) .

Assume that

σmin(Σ1(B)) ≥ α + δ , σmax(Σ0(A)) ≤ α , (A.2)

for some α ≥ 0, δ > 0. Take

ε = max{‖U0(A)′EV1(B)‖, ‖U1(B)′EV0(A)‖} , (A.3)

then we have

‖U1(A)U ′1(A)− U1(B)U ′1(B)‖ ≤ ε
δ
,

‖V1(A)V ′1(A)− V1(B)V ′1(B)‖ ≤ ε
δ
.

(A.4)
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Note that since ‖X‖ = ‖−X‖ for any matrix X, we can switch the role of A and

B in the definition of ε by setting A = B + (−E).

We have the following lemma that gives the bound of the spectral of a random

matrix.

Lemma 8 (Davidson and Szarek (2001)). Let Z be a pu× pv random matrix with

iid N(0, 1) entries, when pu ≤ pv,

P

(
‖Z‖
√
pv

> 1 +
√
pu/pv + t

)
≤ exp(−pvt2/2) .

A.1.1 Proof of Lemma 1

We will prove the two inclusion properties separately.

P (I− 6⊆ I)

≤ puP (
tui
pv
≤ 1 + αu

√
log(pu ∨ pv)

pv
, θui ≥ a+pv

√
log(pu ∨ pv)

pv
)

≤ puP (χ2
pv(θui)/pv ≤ 1 + αu

√
log(pu ∨ pv)

pv
, θui ≥ a+pv

√
log(pu ∨ pv)

pv
)

≤ puP (χ2
pv(θui)/pv − 1− θui/pv ≤ (αu − a+)

√
log(pu ∨ pv)

pv
,

θui ≥ a+pv

√
log(pu ∨ pv)

pv
)

≤ puP (χ2
pv(θui)/pv − 1− θui/pv ≤ (αu − a+)

√
log(pu ∨ pv)

pv
)

. pu exp(−pvC(αu − a+)2 log(pu ∨ pv)
pv

)

. pu(pu ∨ pv)−a
′
,
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where in the last step a+ can be large enough to make a′ > 2 and a+ > αu. Here,

all the inequalities are straightforward, the second last step is by applying the

concentration inequality of the non-central chi-square distribution in Lemma 6.

Similarly,

P (I 6⊆ I+) ≤ puP (χ2
pv(θui)/pv ≥ 1 + αu

√
log(pu ∨ pv)

pv
, θui ≤ a−pv

√
log(pu ∨ pv)

pv
)

≤ puP (χ2
pv(θui)/pv − 1− θui/pv ≥ (αu − a−)

√
log(pu ∨ pv)

pv
)

. pu exp(−pvC(αu − a−)2 log(pu ∨ pv)
pv

)

. pu(pu ∨ pv)−a
′′
,

where a− is less than αu, which in turn can be large enough to make a′′ > 2.

Therefore,

∑
P (I− 6⊆ I) + P (I 6⊆ I+) <∞ .

By Borel-Cantelli Lemma, (2.26) holds.

A.1.2 Proof of Lemma 6

In order to prove (A.1), we will use Bernstein Inequality with sub-exponential

random variables. To this end, let us first give the related definitions of sub-

Gaussian and sub-exponential distributions.

Definition 1 (Sub-gaussian). We say a random variable Y is sub-gaussian if there
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is K > 0, such that

(E|Y |p)1/p ≤ K
√
p , ∀p ≥ 1 ,

and the sub-gaussian norm of Y , denoted by ‖Y ‖ψ2, is defined to be the smallest

K that satisfies the property, i.e.,

‖Y ‖ψ2 = sup
p≥1

p−1/2(E|Y |p)1/p .

Definition 2 (Sub-exponential). We say a random variable Y is sub-gaussian if

there is K > 0, such that

(E|Y |p)1/p ≤ Kp , ∀p ≥ 1 ,

and the sub-exponential norm of Y , denoted by ‖Y ‖ψ1, is defined to be the smallest

K that satisfies the property, i.e.,

‖Y ‖ψ1 = sup
p≥1

p−1(E|Y |p)1/p .

Let Xi be iid N(µ, 1), because it is well known that a Gaussian random variable

is a sub-Gaussian random variable, we know that Xi is sub-Gaussian. Due to the

fact that a random variable is sub-Gaussian iff its square is sub-exponential, we

know that X2
i ∼ χ2

1(µ2) is sub-exponential. Furthermore, it can be easily verified

that centering does not affect the property of sub-exponential. Hence, the mean

zero random variable defined as Yi
def
= X2

i − 1 − µ2 is also sub-exponential. Let
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K = ‖Y ‖ψ1 , by Bernstein inequality,

P

(
|

n∑
i=1

Yi| ≥ εn

)
≤ 2 exp

(
−cmin

(
ε2

K2
,
ε

K

)
n

)
. (A.5)

Plugging in the definition of Yi and observing that
∑
X2
i ∼ χ2

n(nµ2) proves the

desired result.

A.1.3 Proof of Lemma 2

Note that from the definition of E in (2.29), we have

‖E‖ ≤ ‖UI:DV ′Jc:‖+ ‖UIc:DV ′J :‖+ ‖UIc:DV ′Jc:‖+ ‖ZIJ‖

.
r∑
l=1

(dl‖UIl‖‖VJcl‖+ dl‖UIcl‖‖VJl‖+ dl‖UIcl‖‖VJcl‖) +
√
|I|+

√
|J |

by Lemma 8

.
r∑
l=1

(dl‖VJ−cl‖+ dl‖UI−cl‖+ dl‖UI−cl‖‖VJ−cl‖) +
√
|I+|+

√
|J+|

by Lemma 1

. d1‖VJ−cl‖+ d1‖UI−cl‖+
√
|I+|+

√
|J+| by (2.28)

= o(d1) , by (2.28) and (2.27) ,

with probability converging to 1.
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By the convexity of the map x 7→ x2, and plugging in (2.28) and (2.27), we get

‖E‖2 . d2
1‖VJ−cl‖2 + d2

1‖UI−cl‖2 + |I+|+ |J+|

. d2
1s
qu
u

(√
pv log(pu ∨ pv)

d2
1

)1−qu/2

+ d2
1s
qv
v

(√
pu log(pu ∨ pv)

d2
1

)1−qv/2

+squu

(
d2

1√
pv log(pu ∨ pv)

)qu/2

+ squu

(
d2

1√
pv log(pu ∨ pv)

)qu/2

. d2
1s
qu
u

(√
pv log(pu ∨ pv)

d2
1

)1−qu/2

+ d2
1s
qv
v

(√
pu log(pu ∨ pv)

d2
1

)1−qv/2

,

which completes the proof.
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