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The Function of Hedgehog and Wnt Signaling Pathways in Otic
Development

Abstract
The inner ear is a complex sensory organ essential for hearing and balance. During embryonic development,
the inner ear depends on signaling information originating from the embryonic hindbrain to establish
dorsoventral and anteroposterior identity. The Hedgehog (Hh) and Wnt signaling pathways are active in the
hindbrain and implicated in otic development, but their exact mechanisms of action remained unclear. We
investigated the function of Hh in ear development using a mouse model where we conditionally inactivated
Hh signaling in the otic vesicle, a transient embryonic structure that gives rise to the inner ear, while leaving
nearby Hh dependent tissues unaffected. We found Hh signaling within the otic vesicle functions to establish
ventral otic identity and drive the proliferation of cochlear-vestibular ganglion (cvg) neuroblasts that will
innervate the ear. We identified presumptive Hh target genes in the developing inner ear using microarrays.
Several of these presumptive Hh targets are known to function in ear development or hearing. We also
identified many novel targets that have not been characterized in the ear. Many of these novel presumptive Hh
target genes are expressed in the ventral otic vesicle, a region that will give rise to the cochlear duct. To
interrogate the function of Wnt signaling in ear development, we used a Wnt responsive inducible Cre
recombinase (TopCreERT2) to genetically label cells at different stages of ear development. We found cells
that make up dorsal, vestibular, structures and cvg neurons are Wnt responsive for prolonged periods of ear
development. In the cochlear duct, we found both sensory and support cells originate from a Wnt responsive
population. Surprisingly, we found the Wnt responsive population of cochlear progenitors was also labeled
using a cre recombinase expressed from the Gbx2 locus. TopCreERT2 and Gbx2 expression overlap in the
dorsomedial wall of the otic vesicle, suggesting this region is a likely source for auditory cells.
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ABSTRACT

THE FUNCTION OF HEDGEHOG AND WNT SIGNALING PATHWAYS IN OTIC 

DEVELOPMENT

Alexander S. Brown

Douglas J. Epstein

The inner ear is a complex sensory organ essential for hearing and balance. 

During embryonic development, the inner ear depends on signaling information 

originating from the embryonic hindbrain to establish dorsoventral and 

anteroposterior identity. The Hedgehog (Hh) and Wnt signaling pathways are 

active in the hindbrain and implicated in otic development, but their exact 

mechanisms of action remained unclear. We investigated the function of Hh in 

ear development using a mouse model where we conditionally inactivated Hh 

signaling in the otic vesicle, a transient embryonic structure that gives rise to the 

inner ear, while leaving nearby Hh dependent tissues unaffected. We found Hh 

signaling within the otic vesicle functions to establish ventral otic identity and 

drive the proliferation of cochlear-vestibular ganglion (cvg) neuroblasts that will 

innervate the ear. We identified presumptive Hh target genes in the developing 

inner ear using microarrays. Several of these presumptive Hh targets are known 

to function in ear development or hearing. We also identified many novel targets 

that have not been characterized in the ear. Many of these novel presumptive Hh 

target genes are expressed in the ventral otic vesicle, a region that will give rise 

to the cochlear duct. To interrogate the function of Wnt signaling in ear 
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development, we used a Wnt responsive inducible Cre recombinase 

(TopCreERT2) to genetically label cells at different stages of ear development. 

We found cells that make up dorsal, vestibular, structures and cvg neurons are 

Wnt responsive for prolonged periods of ear development. In the cochlear duct, 

we found both sensory and support cells originate from a Wnt responsive 

population. Surprisingly, we found the Wnt responsive population of cochlear 

progenitors was also labeled using a cre recombinase expressed from the Gbx2 

locus. TopCreERT2 and Gbx2 expression overlap in the dorsomedial wall of the 

otic vesicle, suggesting this region is a likely source for auditory cells.
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Chapter 1: Introduction

Function of the inner ear

The ability to detect gravity, and its counterpart acceleration, is present 

throughout the animal kingdom. To this end, different detection schemes have 

been employed throughout evolution ranging from simple structures like 

Johnston’s organ in insects1, 2 to the complex, multipart vertebrate inner ear.

Mechanosensory cells

! The basic information gathering unit of the inner ear is the 

mechanosensory hair cell (Figure 1.1). These highly specialized cells are 

polarized with actin based protrusions lining the apical surface. These actin 

based microvilli, termed stereocilia, are the site of mechanosensation3, 4.  The 

distribution of stereocilia on the apical surface of the cell is not random. Instead, 

they form in a cluster or chevron, as a result the majority of sterocilia have a 

common orientation5. The common orientation of steociliary bundles makes hair 

1

Figure 1.1: Mechanosensory hair cells
In the mouse, mechanosensory hair cells are located within the inner ear (A). Displacement is detected 
by stereocilia, which are arranged in different patterns for vestibular (B) and auditory (C) hair cells. 
Movement of the stereocilia leads to an influx of calcium and potassium ions, which depolarizes the hair 
cell (D). Depolarization causes the release of glutamate (blue), exciting neurons which signal to higher 
processing centers. 



cells most sensitive to particular vectors of displacement6, 7. The tips of stereocilia 

are physically linked together, and this linkage is essential for hearing8. The tip 

links do not force stereocilia to move as a group, a property due to their physical 

structure independent of their tip links9. Instead, displacing the stereocilliary 

bundle pulls on the tip links causing ion channels of uncertain identity to open. 

The newly opened channels allow calcium and potassium ions to enter the cell10. 

This influx of cations depolarizes the cell leading to a local increase of Ca2+ at 

the base of the hair cell adjacent to the synapse. The local increase of calcium 

causes the release of glutamate containing vesicles into the synapse11, 12, 

completing the transduction of mechanical energy to neural impulse. The 

stereociliary bundle is an exquisitely sensitive motion detector, displacing it as 

little as 600 pm leads to detectible changes in membrane voltage potential13.

! Hair cells located in the  inner ear synapse with neurons in the VIIIth 

cranial nerve, which carries information to the auditory or vestibular nucleus in 

the central nervous system. Although an individual sensory hair cell is capable of 

transducing motion into neural impulses, the functions of hearing and balance 

depend on a variety of additional cell types and the physical structure of the ear 

itself.

The vestibular system

! In mammals, the inner ear contains six groups of sensory hair cells, five 

that detect acceleration and one that detects sound (Figure 1.2). The structures 

that detect acceleration are located in the dorsal half of the ear termed the 
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vestibulum. Vestibular 

structures can be further 

divided into the three cristae,  

each housed in an ampulla 

located at the base  of a 

semicircular canal, that 

detect angular acceleration 

(Fig. 1.2 blue shading), and 

the utricule and saccule that 

detect linear acceleration 

and gravity (Fig. 1.2 green 

shading).  The hair cells of 

the utriclular and saccular maculae are covered with otoconia, a mixture of 

protein and CaCO3 crystals14 whose mass imparts inertia. The inertia of the 

otoconia makes the utricle and saccule sensitive to gravity and linear 

acceleration15. Alternatively, the cells in each crista are covered by a cupula, a 

protein matrix that helps distribute the force imparted by circulating endolymph 

within the semicircular canal. Angular acceleration, for example a turn of the 

head, displaces endolymph within the canals which stimulates ampullar hair 

cells7.  The inner ear is the organ that perceives balance, and to do so each 

vestibular structure must function correctly. Blocking only the formation of the 

lateral semicircular canal severely disrupts balance in mice16, and improper 

stimulation of the lateral ampulla in humans results in benign paroxysmal 

3

Figure 1.2: Sensory patches of the mammalian inner ear
The vestibulum contains  structures to detect gravity (green), and 
angular acceleration (blue). The auditory apparatus (magenta) 
detects sound. Anterior semicircular canal (asc), lateral 
semicircular canal (lsc), posterior semicircular canal (psc),  utricle 
(u), saccule (s), cochlear duct (cd), endolymphatic duct (ed).



positional vertigo (bppv). Fortunately, bppv is readily treated by a specific series 

of head movements designed to reposition rouge otoconia particles that may 

have drifted into the lateral canal17. The use of semicircular canals in the inner 

ear is evolutionarily ancient with examples spread across at least 500 million 

years of evolution ranging from lamprey to human18, 19. 

The auditory system

In mammals the auditory organ, the cochlear duct, contains a stripe of 

mechanosensory hair cells along its length that respond to different frequencies 

of sound (Fig 1.2 magenta shading). The structure of the cochlear duct, and 

within it the organ of Corti that houses the hair cells (Figure 1.3), plays an 

essential role in hearing. Amphibians and birds hear using an analogous 

structure, the basal papilla, which also houses a collection of sensory cells but in 

a different arrangement than the cochlea.

4

Figure 1.3: Organ of Corti
The organ of Corti is housed within the cochlear duct and contains hair cells. (A) Schematic cross 
section through an embryonic organ of Corti. At this stage of development mature cells are present, but 
tissue wide remodeling still needs to occur for optimal hearing. (B) a confocal micrograph showing hair 
cells (blue) and neurons (red). inner hair cell (ihc), pillar cell (p), outer hair cell (ohc), deiter’s cells (d), 
henson’s cells (h).



! The incredible sensitivity of the mammalian cochlea is due to three 

characteristics: the ability of hair cells to detect tiny displacements, the physical 

structure of the cochlea to dissect complex sounds into pure tones, and the 

movement of outer hair cells to physically amplify sounds. 

! The cochlear duct houses three fluid filled channels,  the scala vestibule, 

scala media, scala tympani (Fig. 1.3A). Vibrations that makeup sound are 

transduced by the middle ear to generate waves of pressure in the endolymph of 

the scala vestibule and scala media, which displace the basilar membrane 

housing the organ of Corti. Each frequency of sound creates a different pressure 

wave along the length of the cochlear duct. These different pressure waves, 

maximally displace a unique region of the basilar membrane20, allowing a limited 

section of cochlear to respond a unique frequency of sound. Frequency 

selectivity creates a tonotopic map, where basal regions of the cochlear duct 

respond to high frequency sound, while more apical regions respond to 

increasingly lower frequencies. This tonotopic map is reflected in the innervation 

pattern of the cochlear nucleus in the brainstem. Each frequency of sound 

detected by different hair cells leads to a spatially distinct innervation pattern21. 

! Although changing the mechanical properties of the basilar and tectoral 

membranes alters resonant properties of the ear, the physical structure of the 

cochlea is not the sole cause of hair cell stimulation. An additional active 

amplification step22 increases sensitivity 100 fold using force generated by the 

outer hair cells. For this amplification step, changes in transmembrane voltages 

causes outer hair cells change their length and move their stereocilia at a 

5



frequency that matches a sound stimulus23, 24. This increases the amplitude of 

stimulation on the inner hair cell. These differences in hair cell properties, where 

inner hair cells detect vibration and outer hair cells amplify vibration, are reflected 

in their innervation patterns. Inner hair cells are synapsed by multiple afferent 

spiral ganglion neurons, while multiple outer hair cells can be innervated by a 

single efferent neuron (Fig. 1.3B).

! Of all the sensory systems, the inner ear has the finest temporal resolution 

where hair cells respond on the order of microseconds25, and exquisite sensitivity 

with the ability to detect acceleration as small as 10-6g26.  Despite all the 

complexities of the inner ear, its embryonic origin and development is controlled 

by a limited number of cell signaling pathways. These pathways are often used 

repeatedly during development to create remarkably different cells and tissues 

depending on the time and context of signal activity.  A variety of genetic studies 

and embryo extirpation experiments support roles for the Hedgehog and Wnt 

signaling pathways in establishing dorsoventral polarity in the ear27, 28, which in 

turn, guides the formation of the vestibulum and cochlear duct29.

The Hedgehog signaling pathway

Since its discovery in the fruit fly Drosophila Melanogaster30, the Hedgehog 

signaling pathway has been found to function in the patterning, proliferation and 

differentiation of many organs and tissues. Damage to the Hedgehog pathway 
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frequently results in birth defects and a variety of cancers, making the pathway 

medically important. In the context of the developing ear, the ligand Sonic 

Hedgehog (Shh)29, 27, the transducing protein Smoothened (Smo)31, and the 

transcriptional effectors Gli2 and Gli332 have been studied experimentally.

! Although core components of the Hedgehog pathway are conserved from 

fly to human, important differences have evolved among species. In all cases, 

the first step of a cell’s response to hedgehog signaling begins at the cell 

membrane when the a ligand, Hedgehog in flies, or any of the three ligand Sonic 

7

Figure 1.4: The Hedgehog signaling pathway
In the cell on the left, the Hh pathway is inactive because it has not received any ligand. Gli is 
phophorylated and proteolyitically cleaved into a transcriptional repressor. The cell on the right is exposed 
to ligand, allowing Ptc to clear from the cilia and be internalized. This allows Smo to move onto the cilia, 
and recruit Sufu and Gli to the cilia tip. Full length Gli protein accumulates, and a labile fraction is able to 
enter the nucleus and serve as a transcriptional activator. Two direct targets of Hh signaling are Ptc1 and 
Gli1.



Hedgehog (Shh), Indian Hedgehog (Ihh), Desert Hedgehog (Dhh) proteins in 

mammals33-35, binds a complex of receptor proteins.  This receptor complex must 

contain the twelve pass transmembrane protein Patched (Ptc), which 

antagonizes Hh signal transduction in the absence of ligand36. In the absence of 

Ptc, unrestrained Hh signaling occurs which can lead to lethal embryonic defects. 

Less severe cases of Ptc disruption result in Gorlin’s syndrome which is 

characterized by increased frequencies of basal cell carcinoma37, 38 and 

medulloblastoma39. Ptc was originally characterized as the primary Hh receptor40, 

41. However, an increasing number of co-receptors have been found to be 

necessary for signal transduction, including Ihog and Boi42 in fly and their 

mammalian homologs Cdo and Boc43, as well as vertebrate specific co-receptors 

Gas144, 45 and LRP246.

! Structurally Ptc is similar to cholesterol transport proteins like NPC-147, 

and bacterial RND permeases48.  Despite the apparent similarity to membrane 

transport proteins the exact mechanism of Ptc activity is unclear. However, Ptc 

has been observed to function in a catalytic  manner49 that may involve lipid or 

sterol intermediates50. Further support for the idea that Ptc functions to modulate 

the levels of  small molecules comes from the structure of antagonists to the Ptc 

target Smoothened (Smo). The first discovered Smo antagonist, cyclopamine51, a 

steroidal alkaloid isolated from veratum californicum was identified for causing 

cyclopia in offspring of pregnant livestock that consumed the plant52 53. Additional 

small molecule Smo antagonists have been discovered54, but their divergent 

structures give little insight to the identity of a potential endogenous regulator. 
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! Hh binding to the Ptc complex relieves antagonism of the eight pass 

transmembrane protein Smoothened (Smo). Smo activity is essential for Hh 

signal transduction55. At this point, the hedgehog pathway begins to diverge 

between flies and vertebrates. In flies, active Smo antagonizes an intracellular 

complex containing the kinesin Costal256, 57, the kinases PKA58 and Fused (Fu)59, 

and the novel protein Suppressor of Fused (Sufu)60. When this protein complex 

functions in the absence of Hh, it sequesters and phosphorylates the zinc finger 

transcription factor Cubitus Interruptus (Ci)61, 62. Ci contains an N-terminal 

transcriptional repression domain and a C-terminal activation domain, allowing it 

to function as a transcriptional activator or repressor in a signal dependent 

manner63, 64.  The phosphorylation of Ci marks the C-terminus for degradation65 

creating a truncated repressor isoform consisting of the N-terminal repressor 

domain and DNA binding zinc fingers. 

! In vertebrates, the primary cilium is an essential site of hedgehog 

signaling. The cilium is a microtubule based organelle that protrudes from the cell 

surface and functions as a signaling center and as a sensor for the local 

environment. The requirement for cilia in Hedgehog signal transduction was 

initially discovered in mouse embryos mutant for members of the IFT family of 

ciliary transport proteins66, 67. These mutants had poorly formed or missing cilia 

and phenotypically resembled embryos mutant for Gli transcription factors, the 

three vertebrate homologs of Ci68. These observations lead to a model where: In 

response to ligand, Ptc is displaced from the cilium69. Clearance of Ptc is 

followed by an accumulation of Smo the cilium70, ciliary Smo then activates 

9



through an unknown mechanism71 leading to an accumulation of effector proteins 

such as Sufu and full length Gli proteins, at the cilia tip72. Sufu directly interacts 

with Gli proteins to promote the formation of truncated Gli repressor isoforms and 

assists in forming labile Gli activator isoforms73. Divergently from flies, Sufu 

serves as a prominent vertebrate inhibitor of hedgehog signaling74. However, 

Sufu successfully antagonizes signaling in the absence of cilia75, calling into 

question whether the accumulation of effector proteins at the cilia tip plays a 

functional role in signal transduction. Other aspects of hedgehog signal 

transduction appear well conserved. The Costal2 homolog Kif776-78 functions in a 

complex with PKA, CK1 and GSK3 to mark Gli for degradation65, or to establish 

labile full length transcriptional activator.

! The endpoint of the hedgehog signaling pathway is the differential 

expression of target genes in response to relative levels of Gli-activator and Gli-

repressor proteins. Using differential activator/repressor activity generates many 

possible responses to ligand and allows Hedgehog to function as a morphogen, 

specifying different cell fates in a time and concentration dependent manner79. 

Shh emanating from the floor plate and notochord specifies different classes of 

neurons along the dorsoventral axis of the neural tube. In this case, different 

concentrations of Shh are reflected in different amounts of Gli-activator or Gli-

repressor activity80-82. A similar logic is seen in the developing limb bud, where 

Shh originating from the zone of polarizing activity (ZPA)35 establishes a gradient 

of Gli3 repressor activity to specify individual digits83. The hedgehog receptor and 

negative pathway regulator Ptc is a direct transcriptional target of hedgehog 

10



signaling, establishing a negative feedback loop84. This regulatory loop prevents 

runaway signaling, and may function to help a cell interpret different levels 

hedgehog ligand85.

The Wnt Signaling Pathway

The Wnt signaling pathway has many more ligands and receptors than the 

hedgehog pathway, as well as multiple extracellular signaling inhibitors86-88. This 

plethora of ligand, receptor, and inhibitor combinations feed into a pathway that 

can have multiple readouts including changes in transcription, cytoskeletal 

11

Figure 1.5: The Wnt signaling pathway
In the canonical Wnt/β-catenin pathway the cadherin subunit β-catenin is phosphorylated and degraded 
by a cytoplasmic destruction complex consisting of the scaffold protein Axin2, APC and Ck1, Gsk3β 
kinases, while TCF/LEF family members bind DNA in complex with Groucho transcriptional repressors. In 
the presence of Wnt ligand, Dvl recruits Axin to the cell membrane disrupting the β-catenin destruction 
complex. β-catenin accumulates and enters the nucleus where it displaces Groucho and activates 
transcription. Within Planar Cell Polarity (PCP) pathway, a Wnt ligand binds Frz, which recruits Dvl to 
modulate the function of Rho/Rac kinases, ultimately resulting in remodeling of hte actin cytoskeleton. 
The localization of active Dvl is in part restricted by Vangl, and Prickled (Pk) activity.



remodeling, and activation of heterotrimeric G proteins to modulate intracellular 

calcium levels 89-92. 

! Wnt ligands are lipid modified proteins93 that interact with one or more of 

the 10 Frizzled (Frz) receptors94 and the obligate co-receptor LRP5/695-97. 

Mammals have 19 Wnt ligands, which are expressed in partially overlapping 

patterns, and there seems to be some variability as to how a given ligand or 

receptor activates the Wnt pathway98. Once ligand is bound, Frz recruits 

disheveled (Dlv)99, which in turn recruits the tumor suppressor adenomatous 

polyposis coli (APC)100and the scaffold protein Axin2101. This recruitment of APC 

and Axin to the cell membrane disrupts the β-catenin destruction complex. The β-

catenin destruction complex consisting of APC, Axin102, Glucose Synthase 

Kinase 3β (Gsk3β)103, Casein kinase I (CKI)104-106 phosphorylates the 

cytoskeletal protein β-catenin, leading to its ubiquitylation and degradation107. 

The disruption of the destruction complex in the presence of Wnt signal leads to 

an accumulation of β-catenin, allowing it to enter the nucleus and interact with 

TCF/LEF transcription factors108-110. The recruitment of β-catenin to TCF/LEF 

displaces Groucho corepressors111-113, activating transcription. This 

transcriptional activation can be detected by increased expression of Axin114 or 

the use of reporter constructs driven by synthetic promoters consisting of 

multimerized TCF/LEF consensus binding sites115, 116.

! In addition to the canonical β-catenin mediated pathway, some Wnt 

ligands function through the planar cell polarity (PCP) pathway during ear 

development117, 118. The PCP pathway shares several key mediators of Wnt 
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signaling with the β-catenin pathway including Frz119 and Dlv120-122, but can signal 

through a Rho123, Rac124, Jun-kinase125, cascade to control the cytoskeleton. 

Ultimately, a cell displays polarized distribution of PCP effector proteins, where 

Frz,Dlv are enriched in a domain distinct from the effector proteins Prk, and 

Vangl126-128. This molecular polarity is then reflected in the shape and 

organization of the cell giving rise to tissue wide properties. 

! In vertebrates, the most striking examples of tissue wide organization due 

to PCP signaling are convergent extension movements necessary for neural tube 

closure, cochlear duct outgrowth, and the the orientation of hair cells within the 

cochlear duct.

Development of the inner ear

Morphogenesis

A variety of fate mapping experiments in chick and mouse reveal that an 

overwhelming majority of the cells that make up the inner ear come from a 
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FIgure 1.6 Early otic Development
Transverse sections through the developing hindbrain show ear development starts as the otic placode 
(A, orange). As development progresses the placode invaginates to form the otic cup (B) and neuroblasts 
begin to delaminate (yellow). The otic cup closes to form the otic vesicle (C), and delaminating 
neuroblasts begin to aggregate to form the cochlear vestibular ganglion (cvg).  (D)The otic vesicle begins 
to elongate along the dorsoventral axis, generating the endolymphatic duct (ed) and cochlear duct (cd).



common embryonic origin, the ectoderm adjacent to the developing hindbrain. 

Series of heterotopic grafting experiments, where different regions of ectoderm 

are replaced within age matched embryos, revealed that amphibians and fish 

have large regions of ectoderm competent to contribute to the ear. This 

competency is largely due to the activity of several Wnt and Fgf signals, whose 

identity varies between organisms. In zebrafish Fgf8 and Fgf3 are necessary for 

otic induction129, a role filled in the mouse by Fgf3 and Fgf10130, 131, and Fgf19 

and Wnt8c in chick132. In mouse, the region of otic competency is gradually 

restricted and a portion of the ectoderm thickens creating the otic placode by 10 

somites of age. The choice between otic placode and cranial ectoderm seems to 

be  governed by Wnt/β-catenin signaling, as ectopic activation of the pathway 

leads to expanded placodes at the expense of ectoderm and inhibited Wnt 

signaling results in microvesicles that arrest early in development133.

 ! As otic development progresses roughly to the 15 somite stage, the 

placode beings to invaginate forming the otic cup. Fate mapping experiments in 

chick show that cells are already organized into presumptive dorsal, ventral, 

anterior and posterior regions at this time point134. This presumptive 

regionalization is reinforced by extirpation experiments in salamander and chick, 

where rotating the otic placode resulted in defects in structures along the 

anteroposterior axis, but not along the dorsoventral axis.  Rotating the otic 

vesicle a few hours later resulted in defects along the dorsoventral axis135, 136. 

These results suggest that the anteroposterior axis becomes fixed in 

development before the dorsoventral axis.  The ability for both axes to be 
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reprogrammed from an initial pattern to that of its host suggests the developing 

ear receives positional information from nearby tissues. Although the invaginating 

otic placode displays regionalized gene expression and restricted cell fates, there 

remains a possibility for additional cell movement. Cells have been observed 

migrating into the otic vesicle137, 138, while fish forgo otic cup formation all 

together, instead relying on cavitation to hollow a mass of cells into the otic 

vesicle139.

! The factors responsible for axis specification and the development of otic 

structures may vary between species. In mouse and chick, Wnt signals 

emanating from the dorsal hindbrain28 and Hedgehog emanating from the ventral 

neural tube and notochord29, 27 establish the dorsoventral axis in the otic vesicle, 

while a wave of retinoic acid signaling imparts anteroposterior polarity140. 

Conversely, in frogs and fish, hedgehog activity largely establishes posterior 

identity141-143, and promotes ventromedial identity144 while Fgf signaling 

establishes anterior identity145. This is use of different signaling pathways to 

create an evolutionarily conserved organ is somewhat puzzling. A role for Hh 

signaling in auditory development is common among each of these examples, 

yet significant differences remain. One commonality is that Hh is required for the 

cochlear duct in mammals, and the fish auditory organ, the posterior macula. 

Additionally, in both mice and fish Hh promotes the proliferation of cvg 

progenitors. Yet Shh antagonizes hair cell formation in mice146, while Hh 

promotes late forming saccular hair cells in fish through the regulation of atoha1 

expression142. These differences should not be brushed off as simply an example 
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of convergent evolution. These molecular differences likely help explain the 

dramatic morphological differences in auditory structures between tetrapods and 

teleost fish, but more study is required for a full understanding of the molecular 

mechanisms that pattern the otic vesicle.

! The ventral outgrowth that gives rise to the cochlear duct is governed by 

at least two overlapping signaling pathways. Hedgehog signaling within the otic 

vesicle establishes ventral otic identity establishing gene expression patterns to 

support cochlear duct outgrowth31, 27. As the cochlear duct develops, Gli-activator 

activity is required for full elongation32. Cochlear duct outgrowth also depends on 

convergent extension governed by Wnt5a118, Wnt7117, and multiple PCP effector 

proteins147-149. Although Wnt and Hh both coordinate cochlear duct outgrowth, 

there are distinct differences in their mutant phenotypes. Altering Hh activity 

truncates the cochlear duct and induces ectopic patches of sensory hair cells, but 

does not cause hair cell orientation defects within the organ of Corti146. 

Perturbing PCP signaling also truncates the cochlear duct, but differs from Hh by 

randomizing hair cell orientation within the organ of Corti.

! The dorsal outgrowths that give rise to the semicircular canals will 

undergo an even more dramatic series of morphogenetic changes. The initial 

domain of the canals is defined by the expression of the homeobox transcription 

factor Dlx5150. The cells that makeup a region within the growing out pouches, 

termed the fusion plate, will ultimately die or be resorbed into the canal proper. 

The action of the fusion plate depends on the expression of Netrin1 (Ntn1)151, but 

the mechanism that restricts Ntn1 to the fusion plate is not fully understood16. 
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Nonetheless, Ntn1 expression is necessary for the wave of apoptosis152 and 

possibly cell movement that create the canals. Surprisingly, canal formation does 

not seem to be affected by mutations in PCP components, indicating that the 

dramatic morphogenesis that occurs in the developing canals functions 

independently of PCP signaling.

Neurogenesis

! Like the majority of inner ear cells, the neurons that innervate the ear trace 

their origin to the otic placode. The presumptive neurogenic domain that contains 

the cells that create in the anteroventral region of the otic placode and vesicle. 

This region is initially defined by the expression of the neurogenic master 

regulator Neurogenin 1 (Ngn1)153. Cells within this neurogenic domain proliferate, 

then express NeuroD154 and begin to delaminate from the otic vesicle. After 

delaminating, neuroblasts begin to express Islet-1 (Isl1)155 and cease to 

proliferate. The newly delaminated neuroblasts aggregate to form the cochlear-

vestibular ganglion (cvg), which will ultimately split, giving rise to the spiral 

ganglion innervating the cochlea and Scarpa’s ganglion innervating the 

vestibulum. The exact process that selects a neuroblast for auditory of vestibular 

fate is poorly understood. Fate mapping studies showed auditory neurons are 

generated slightly later in development than vestibular neurons156, and birth 

dating studies reached similar conclusions157.

! During development an overabundance of inner ear neurons are 

generated. These excess neurons compete for survival factors expressed by 

their target tissues. Only a handful of survival factors have been implicated in cvg 
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maturation. These include brain derived neurotrophic factor (bdnf) and 

neurotrophin 3(Nt3). Mutants lacking both factors have an almost complete loss 

of inner ear neurons158. The amount of pruning following this overproduction of 

neuroblasts is remarkable. In the cvg up to half of all neurons born will fail to 

receive sufficient trophic support die during development159, 160.

The prosensory domain

! The medial wall of the developing cochlear duct contains a region fated to 

give rise to auditory hair cells, termed the prosensory domain. This region 

consists of an  equivalence group defined by the expression Sox2161  and Notch 

signaling components. The presumptive hair cells express high levels of notch 

ligands Dll1162, Jagged2, Jagged1163, which signal through Notch1 in adjacent 

support cells164. Differential notch activity in the prosensory domain limits the 

number of sensory hair cells through a classic lateral inhibition mechanism. As 

presumptive hair cells begin to differentiate, they begin to express Atoh1, a factor 

necessary and sufficient for hair cell fate165, 166, while cells with high levels of 

Notch activity become support cells, and maintain high levels of the cell cycle 

inhibitor P27kip1167, 168. Several factors in addition to Sox2 and Notch function 

within the prosensory domain. Shh has been shown to antagonize Notch activity 

in the prosensory domain and limit the number of sensory hair cells146, and Wnt/

β-catenin signaling is sufficient to transform auditory hair cells to a vestibular fate 

in chick169. Regardless of the identity of input signals, the entire prosensory 

domain undergoes terminal mitoses by e15.5157, and further growth growth is 

largely a function of tissue remodeling.
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Chapter 2: Requirements for Hedgehog signaling 

in otic development

Introduction 

The mammalian inner ear is a sensory organ with dual roles in sound and 

motion detection. The partitioning of these functions within the inner ear to 

auditory and vestibular components occurs early in embryonic development, 

allowing each of these senses to operate independently170. The auditory portion 

of the inner ear, the cochlea, derives from the ventral outgrowth of the otic 

vesicle, which progressively extends and coils as it matures.  Mechanosensory 

hair cells lining the cochlear duct from base to apex respond to sound waves in a 

tonotopic manner, and transmit information along auditory (spiral) neurons to 

sound processing centers in the brain21, 171. Vestibular structures, on the other 

hand, mostly derive from dorsal out-pockets of the otic vesicle and through 

incompletely understood mechanisms are sculpted into the three semicircular 

canals, utricle and saccule170, 172. Sensory patches associated with each of these 

structures detect angular movements of the head (semicircular canals) and linear 

acceleration along the horizontal (utricle) and vertical (saccule) planes. Vestibular 

neurons innervating each of these sensory patches transmit sensory information 

to visual, vestibular and proprioceptive centers to coordinate balance173. 

The hindbrain is a critical source of signals necessary for dorsoventral 

patterning of the otic vesicle and subsequent morphogenesis into auditory and 
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vestibular components29, 174-176, 28, 177. Members of the Wnt and Hedgehog (Hh) 

families play prominent roles in establishing dorsoventral identity within the otic 

epithelium. Wnt1 and Wnt3a secreted from the dorsal hindbrain regulate the 

expression of dorsal otic determinants, such as the homeodomain transcription 

factors Dlx5 and Dlx6 28, 178. Consequently, vestibular morphogenesis is 

completely impaired in Wnt1-/-;Wnt3a-/- mutants28. Sonic hedgehog (Shh), 

secreted from the floor plate of the hindbrain and notochord, opposes the 

dorsalizing effects of Wnts by repressing Dlx5, and activating ventral otic genes, 

including the transcriptional regulators Otx2 and Pax227, 28. The failure to regulate 

the ventral otic program in Shh-/- embryos results in cochlear agenesis179-181, 27, 

182.  Interestingly, Shh-/- embryos also display profound deficits in vestibular 

development including, malformations of the semicircular canals, utricle, saccule 

and endolymphatic duct. Each of these morphological defects can be traced back 

to alterations in otic vesicle patterning genes27.  For example, the misexpression 

of Otx1 and Gbx2 in the Shh mutant otocyst likely explains the absence of the 

lateral semicircular canal and endolymphatic duct, respectively183, 184.

 Shh also functions in inner ear neurogenesis. The cochlear and vestibular 

neurons that make up the VIIIth cranial nerve originate from progenitors in the 

anteroventral region of the otic vesicle that express Ngn1, a neural determinant 

required for their specification153. The establishment of the neurogenic domain is 

one of the earliest signs of asymmetry along the anteroposterior axis of the otic 

vesicle. The T-box containing transcription factor Tbx1, is expressed in a 

complementary pattern to Ngn1 and is required to restrict the neurogenic domain 
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to the anterior portion of the otocyst185. Shh-/- embryos show a significant 

reduction in Ngn1 expression, suggesting a possible involvement in the 

regulation of anteroposterior identity within the otic vesicle, although the 

underlying mechanism has not been elucidated27. 

What remains uncertain from these previous studies is the extent to which 

the inner ear phenotype in Shh-/- embryos can be attributed to a direct loss of 

Shh signaling within the otic epithelium versus an indirect consequence that the 

absence of Shh has on tissues surrounding the inner ear. The hindbrain and 

periotic mesenchyme are sources of other signals essential for inner ear 

development that are also disrupted in Shh-/- embryos29, 186, 176, 187, 27, 28, 188, 189.  

Thus, their misregulation could also explain the inner ear defects observed in 

Shh-/- mutants. 

The best evidence in support of Shh acting directly on the otic epithelium 

comes from the observation that Gli1, a transcriptional target of the Shh pathway, 

is expressed in a graded manner along the dorsoventral axis of the otocyst, with 

higher levels detected ventrally, closer to the source of Shh, and lower levels 

tapering off dorsally32. While suggestive, this result does not resolve the 

functional significance of this signaling gradient.   The analysis of single and 

compound mutants in Gli2 and Gli3, the transcriptional mediators of Shh 

signaling, support a model whereby reciprocal gradients of Gli activator and Gli 

repressor function are required to shape inner ear morphology along the entire 

dorsoventral axis in response to Shh32.  Of particular interest was the finding that 

vestibular, but not auditory, defects could be prevented in Shh-/- mutants by 
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removing a wild type allele of Gli3 (Shh-/-;Gli3+/-). This result suggests that Shh 

promotes vestibular morphogenesis by reducing Gli3 repressor function32. 

However, it does not address the tissue specificity of this action. Recovery from 

the vestibular defects in Shh-/-;Gli3+/- embryos could equally be explained by the 

reduction of Gli3 repression in the inner ear as it could the neural tube, which 

also shows improvements in patterning and morphology compared to Shh-/- 

embryos32, 81.

In order to distinguish between the primary requirements for Shh in inner 

ear development from its secondary roles in surrounding tissues, we generated 

conditional mutants in which Smoothened (Smo), an essential Hh signal 

transduction component, was selectively inactivated in the otic epithelium 

(Smoecko). Our results demonstrate that Shh acts directly on the otic epithelium to 

regulate ventral target genes that are necessary for the outgrowth of the cochlear 

duct and saccule. On the other hand, the development of dorsal otic derivatives 

is indirectly dependent on Shh, as these vestibular structures were absent or 

malformed in Shh-/- mutants but maintained in the ears of Smoecko embryos. The 

role of Hh signaling in cochlear-vestibular ganglion (cvg) formation is more 

complex, as it is dependent on both direct and indirect signaling mechanisms. 

Our data suggest that the loss of cvg neurons in Shh-/- animals is partly due to an 

increase in Wnt responsiveness in the otic vesicle (indirect signaling), resulting in 

the ectopic expression of Tbx1 in the neurogenic domain and subsequent 

repression of Ngn1 transcription. An unanticipated role for Shh as a mitogen for 

cvg progenitors was also revealed in our analysis of Smoecko embryos (direct 
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signaling). These data contribute to a better understanding of the intrinsic and 

extrinsic signaling properties of Shh during inner ear development.  

Materials and Methods

Animals

Foxg1Cre/+ and Smoloxp/loxp mouse lines were described elsewhere190, 191. Smoloxp/

loxp mice were maintained on a mixed Swiss-Webster, C57BL6/J background. Shh

+/- 192 and RosaGfp/Gfp 193 mice were obtained from Jackson Labs (Bar Harbor, 

ME). Tbx1+/- mice were provided by J. Epstein194. Topgal mice were provided by 

E. Fuchs115.

Immunohistochemistry

For immunohistochemistry, embryos were fixed in 4% paraformaldehyde for 1 

hour, cryoprotected in 30% sucrose overnight, mounted in OCT embedding 

media (Sakura Finetek Torrence, CA) and snap frozen. Embryos were sectioned 

at 14 μm and stained with DAPI and the following antibodies: Mouse anti-Islet 1 

(DSHB) 1:100, Rabbit anti-Phospho Histone H3 (Cell Signaling Technology, 

Danvers, MA) 1:1000, Rabbit anti-cleaved caspase 3 (Cell Signaling Technology) 

1:1000, Rabbit anti-MyosinVIIa (Proteus Biosciences Ramona, CA) 1:300, 

Mouse anti-Neurofilament (DSHB) 1:200, Chicken anti-GFP (Aves Labs, Tigard, 

OR) 1:1000, Mouse anti-Gata3 (Santa Cruz Biotechnology, Santa Cruz, CA) 

1:50. Primary antibodies were detected with one of the following secondary 

antibodies: Donkey anti-mouse IGG conjugated to Cy3 (Jackson 

ImmunoResearch West Grove, PA) or Alexa488 (Molecular Probes Eugene, OR); 
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Donkey anti-Rabbit IGG conjugated to Cy3 or Alexa488; or Goat anti-Chicken 

IGG conjugated to Alexa488. 

In situ hybridization

For section in situ hybridization, embryos were processed in the same manner as 

for immunohistochemistry. Sections were rehydrated in PBS containing 0.1% 

Tween-20, and hybridization was performed as in 195. For antibody detection after 

in situ hybridization the following modifications were made:  Proteinase K 

treatment was omitted. After completion of the BM purple reaction, slides were 

washed three times in PBS-Tween, fixed for 10 minutes with 4% 

paraformaldehyde then washed three times in PBS-Tween. Slides were then 

incubated in primary antibody and the immunohistochemistry protocol was 

followed. Whole mount in situ hybridization was carried out as in 196 using 

digoxigenin –UTP labeled riboprobes.

Embryo culture

Embryo roller culture was performed as described in 197. Briefly, E9.5 embryos 

were collected in ice-cold L-15 media without damaging the yolk sac. Embryos 

were grown under 95% O2: 5% CO2 at 37°C in 100% rat serum (Gemini Bio-

Products, West Sacramento CA) supplemented with 0.175 mg/ml glucose, 2 mM 

glutamine, 1x Penn-Strep. Embryos were re-gassed every 12 hours. LiCl 

treatment: embryos carrying a TopGal transgene were cultured with increasing 

amounts of LiCl to determine an optimal concentration (50 mM LiCl) that 

maximized Wnt reporter activity without excessive toxicity (data not shown). Fgf 
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inhibitor:  3mg/ml EMD341603 dissolved in DMSO was added to culture media to 

a final concentration of 25µM.

Inner ear paint fill

Inner ear paint fills were performed essentially as described in 172, with the 

exception that White-out Plus (Bic Corp. Milford CT) was used to fill the inner 

ears instead of latex paint.

Cell counts

The total number of cells in the cvg was determined by counting Isl1+, cRet- cells 

in each sequential section through the entire otic vesicle. Bright field images of 

section in situ hybridizations were inverted, assigned a color and merged with 

DAPI and antibody channels in Image J. Cells were hand counted using the cell 

counter plug-in in Image J.

Area measurements

To determine the percent of otic vesicle expressing Tbx1, the area of positive 

staining in lateral whole-mount views was traced in ImageJ and measured, and 

then divided by the total area of the otic vesicle.

Results

Inactivation of Hedgehog signaling in the otic epithelium

To determine the specific requirements of Hedgehog (Hh) signaling in the 

inner ear, we generated embryos in which a floxed allele of Smo (Smoloxp), an 

essential mediator of Hh signaling, was selectively inactivated in the otic 

epithelium using the Foxg1cre/+ mouse line190, 191.  The Foxg1cre/+ line was 
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particularly advantageous for our 

studies because it is active in all otic 

progenitors well in advance of when 

Shh signaling is known to be required 

in the otic vesicle190, 27. Moreover, cre 

showed negligible expression in tissues 

surrounding the otic vesicle including 

the neural tube and periotic 

mesenchyme (Fig. 2.1). In all 

experiments described below, at least 

three to five Foxg1cre/+; Smoloxp/- 

embryos (herein referred to as Smoecko 

for ear conditional knockout of Smo) 

were compared to an equal number of control littermates (Foxg1cre/+; Smoloxp/+ 

and Smoloxp/-). No differences were seen in ear morphology or vesicle patterning 

between Foxg1cre/+ and Foxg1+/+ genotypes.

We first assessed the effect of deleting Smo in the inner ear by examining 

the expression of Gli1 and Ptc1, two transcriptional targets of Hh signaling. In 

control embryos, Gli1 expression initiated weakly at E9.5 in the ventral most 

region of the otic vesicle (Fig. 2.2A, n=4). At this stage, Ptc1 was not yet detected 

in the otic epithelium despite its strong expression in other Shh responsive cell 

types, including the ventral neural tube and periotic mesenchyme (Fig. 2.2C, 

n=3). By E10.5, Shh signaling intensified resulting in robust Gli1 and Ptc1 
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Figure 2.1: Foxg1Cre activity
A transverse section through an E10.5 Foxg1Cre/

+;RosaGfp/+ embryo stained for GFP (green), Isl1 
(red) and Dapi (blue). Gfp expression indicates 
robust cre activity in the otic vesicle (OV) while 
Isl1 labels the presumptive cvg and motor 
neurons in the neural tube (NT).  Little cre activity 
can be detected in the periotic mesenchyme and 
neural tube.



staining in ventral regions of the otic vesicle and along the medial wall in a 

ventral (high) to dorsal (low) gradient (Fig. 2.2E,G,n=3 and 3, respectively) and 

32. Smoecko embryos consistently failed to express Gli1 and Ptc1 in the otic 

epithelium at both stages analyzed, yet robust expression of these markers was 

observed in the neural tube and periotic mesenchyme (Fig. 

2.2B,D,F,H,n=4,3,3,3).  Therefore, the disruption to Hh signaling was both 

specific and complete in the inner ears of Smoecko embryos. 
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Figure 2.2: Inactivation of Hedgehog signaling in Smoecko otic vesicles.  
In situ hybridization for Gli1 (A,B,E,F) and Ptc1 (C,D,G,H) on transverse sections through the otic vesicle 
of control and Smoecko embryos. Arrowheads indicate staining within the otic epithelium. At E9.5, Gli1 was 
detected in the otic epithelium of control (A), but not Smoecko (B) embryos. Ptc1 was not detected in the 
otocyst of either control (C), or Smoecko (D) embryos at this stage. By E10.5, both Ptc1 and Gli1 were 
detected in the otic epithelium of control (E,G), but not Smoecko (F,H) embryos. Ptc1 and Gli1 were also 
detected in the neural tube and periotic mesenchyme of control and Smoecko embryos. Abbreviations: D, 
dorsal; L, lateral; nt, neural tube; ov, otic vesicle; pom, peri-otic mesenchyme.



Cochlear, but not vestibular, morphogenesis is dependent on direct Hh 

signaling within the otic epithelium

Shh-/- embryos show profound vestibular and auditory defects including 

cochlear agenesis, missing or malformed semicircular canals, as well as absence 

of the utricle, saccule and endolymphatic duct (Fig. 2.3A,C).  If these defects are 

wholly attributed to the loss of Shh signaling in the otic epithelium, then they 

should be recapitulated in Smoecko embryos. On the other hand, if some, or all, of 

these phenotypes result from secondary consequences of perturbing Shh 

signaling in tissues surrounding the inner ear, then they should be milder in 

Smoecko embryos. 

We visualized the gross anatomy of Smoecko and control inner ears by 

paint-fill at E15.5 (Fig. 2.3A,B). At this stage, the morphology of the inner ear has 

reached near full maturity in wild type embryos. The vestibulum, comprising the 
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Figure 2.3: Cochlear, but not vestibular, morphogenesis is directly dependent on Hh signaling.  
Medial view of inner ear paint fills at E15.5. (A) Control inner ears reveal the morphology of the anterior, 
posterior and lateral semicircular canals (asc,psc,lsc), endolymphatic duct (ed), common crus (cc) utricle 
(u) saccule (s), and cochlear duct (cd). (B) Smoecko inner ears lacked a cochlear duct and saccule, but all 
other structures were present. (C) Shh-/- inner ears possessed an anterior semicircular canal, but all other 
structures were missing. The asterisk marks a large cystic structure.



three semicircular canals, utricle, saccule, endolymphatic duct and common crus 

were readily discerned, and the cochlear duct had elongated and coiled 1.5 turns 

(Fig. 2.3A). Ventral ear structures, namely the cochlear duct and saccule, were 

entirely absent in Smoecko embryos (n=14 ears), a phenotype similar to that 

observed in Shh-/- mutants (Fig. 2.3B,C). Remarkably, all dorsal otic derivatives, 

including the semicircular canals, utricle and endolymphatic duct, were present in 

Smoecko embryos (Fig. 2.3B).  The appearance of dorsal vestibular structures in 

Smoecko embryos contrasts with the pronounced vestibular dysmorphology 

observed in Shh-/- mutants and suggests that dorsal otic derivatives are not 

directly dependent on Shh for their development.  Conversely, the consistent loss 

of ventral inner ear structures in Smoecko and Shh-/- embryos suggests that Shh 

signaling, acting directly on the otic epithelium, is required for cochlear duct 

outgrowth and saccule formation.

Direct Hh signaling within the otic epithelium establishes ventral otic 

identity

At E10.5, the otic vesicle displays regionalized patterns of gene 

expression that mark competency domains for subsequent development into 

distinct adult structures170, 198. Several of these otic patterning genes are 

misexpressed in Shh-/- embryos27. In order to distinguish the genes that are 

dependent on Hh signaling within the otic epithelium from those that are 

misregulated due to the secondary effects of disrupting Shh in neighboring 

tissues, we surveyed their expression by in situ hybridization in Smoecko embryos. 
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Pax2, Otx2 and Gata3 are three transcription factors expressed in partially 

overlapping domains in the ventral otocyst, which are necessary for cochlear 

duct development179, 180, 199, 200, 181, 182. Pax2 is broadly expressed throughout the 

otic placode before becoming restricted to the ventromedial wall of the otic 

vesicle (Fig. 2.4A and data not shown). Otx2 is also expressed in the ventral 

region of the otocyst (Fig. 2.4B). The pattern of Gata3 expression at early stages 

of otic development is dynamic, but is then localized to the elongating cochlear 

duct and spiral ganglion (Fig. 2.4C) and 199. Each of these genes was previously 

30

Figure 2.4: Loss of ventral otic markers in Smoecko embryos. 
In situ hybridization on transverse sections through the otic vesicle of control (A,B,C,D,E,F), Smoecko 
(G,H,I,J,K,L) and Shh-/-(M,N,O,P,Q,R) embryos at E10.5. Arrowheads point to ventral otic expression of 
(A)Pax2, (B)Otx2, and (C)Gata3 in control embryos, which was absent in Smoecko (G,H,I) and Shh-/-

(M,N,O) embryos. Otx1 expression in the lateral wall of the otocyst of control embryos (D) was not 
altered in Smoecko mutants (J), but shifted ventrally in Shh-/-(P). The expression of dorsal otic markers 
Gbx2 (E,K) and Dlx5 (F,L) was similar between control and Smoecko embryos. The ventral extent of Dlx5 
expression is marked by red lines (F,L,R). The inner ear schematic is color coded to reflect the 
requirement of genes for particular structures. 



shown to be downregulated in Shh-/- embryos (Fig. 2.4 M-O) and 27. A 

comparable reduction in the expression of Pax2, Otx2 and Gata3 was observed 

in Smoecko embryos (Fig. 2.4G-I, n=3), suggesting that Shh signaling within the 

otic vesicle is required for ventral otic identity and subsequent cochlear duct 

morphogenesis. 

Otx1 is expressed in the lateral wall of the otic vesicle at E10.5 and is 

required for lateral semicircular canal formation (Fig. 2.4D)183, 201, 202.  A 

significant ventral shift in the expression of Otx1 was observed in the otic vesicle 

of Shh-/- embryos (Fig. 2.4P), which likely explains the absence of the lateral 

semicircular canal in these mutants27. In Smoecko embryos, Otx1 was properly 

localized to the lateral wall of the otocyst, indicating that Hh signaling within the 

otic epithelium is not required for lateral otic identity (Fig. 2.4J, n=3). This result 

also suggests that the lateral semicircular canal defect in Shh-/- embryos is an 

indirect consequence of perturbing Shh signaling in tissues adjacent to the inner 

ear. 

The additional vestibular dysmorphologies observed in the ears of Shh-/- 

mutants can also be explained by patterning changes in the otic vesicle.  For 

instance, the expression of Gbx2, a homeodomain containing transcription factor 

required for endolymphatic duct formation184, is not maintained in the 

dorsomedial otocyst of Shh-/- mutants (Fig. 2.4Q) and 27. Moreover, the dorsal 

otic expression of Dlx5, a homeodomain containing transcription factor required 

for semicircular canal development203, 150, 204 is expanded ventrally in Shh-/- 

embryos in a Wnt dependent manner (Fig. 2.4R)28. These observations 
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suggested that Shh was necessary for the expression of certain dorsal otic genes 

(Gbx2), while antagonizing the expression of others (Dlx5, Topgal). However, the 

regulation of these dorsal otic genes by Shh appears to be indirect as neither is 

misexpressed in Smoecko embryos (n=3) (Fig. 2.4E,F, K,L).  These data also 

indicate that the antagonistic interaction between Shh and Wnt signaling 

pathways responsible for setting up the dorsoventral axis of the otocyst does not 

stem from a cell intrinsic mechanism within the otic epithelium, but must reside 

from interplay between these pathways outside of the ear.  

Ngn1 expression is not directly dependent on Hh signaling

The neurons that make up the VIIIth cranial nerve and innervate the 

sensory patches within the inner ear originate from a common progenitor pool in 

the anteroventral region of the otic vesicle. The bHLH transcription factor, Ngn1, 
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Figure 2.5: Neurogenic patterning is indirectly regulated by Shh. 
Lateral surface views of embryos stained by whole mount in situ hybridization for Ngn1 (A-D), and Tbx1 
(E-H) at E9.5 arranged by genotype. In control embryos, Ngn1 (A) marks the neurogenic domain, 
whereas, Tbx1 (E) shows a complementary pattern of expression. In Shh-/- embryos, Ngn1 expression 
was reduced (B), while Tbx1 was expanded into the anterior otocyst (F). Shh-/-;Tbx1+/- embryos, showed 
restored expression of Ngn1 (C), despite the partial expansion of Tbx1 into the presumptive neurogenic 
domain (G). Smoecko embryos revealed a similar pattern of expression for Ngn1 (D), and Tbx1 (H) 
compared to controls. Schematic of embryo shows orientation of otic vesicle in panels (A-H).



is expressed in these neuroblast progenitors (Fig. 2.5A), and is required for their 

specification153. The spatial restriction of Ngn1 to the anteroventral otic domain is 

mediated, in part, by the repressive action of Tbx1, a T-box containing 

transcription factor expressed in a complementary pattern to Ngn1 (Fig. 2.5E) 

and 185.  In Tbx1-/- embryos, Ngn1 is ectopically expressed resulting in the 

posterior expansion of neuroblast progenitors185.

Previous studies demonstrated that Ngn1 expression is greatly reduced in 

Shh-/- embryos, causing a significant reduction to the size of the cochlear-

vestibular ganglia (cvg) (Fig. 2.5B, n=3) and 27.  However, the mechanism 

underlying the regulation of Ngn1 transcription by Shh was unclear.  Novel insight 

to this problem came from our observation that Tbx1 expression had expanded 

into the neurogenic domain of Shh-/- mutant otic vesicles (Fig. 2.5E-G, n=5).  This 

raised the possibility that the failure to repress Tbx1 is an effect of the loss of 

Shh, and not Ngn1 function. Alternatively, the downregulation in Ngn1 may have 

prompted the expansion of Tbx1. Since Tbx1 was not expanded in the otic 

vesicle of Ngn1-/- mutants, the latter prospect was ruled out (data not shown). To 

address the former possibility, we generated embryos lacking a wild type allele of 

Tbx1 on a Shh-/- mutant background.  We reasoned that if Tbx1 was responsible 

for the repression of Ngn1 in Shh-/- embryos, then reducing its dosage should 

restore Ngn1 transcription.  Notably, the pattern of Ngn1 expression in 

Shh-/-;Tbx1+/- embryos was greatly enhanced compared to Shh-/- mutants and 

closely resembled that of controls (Fig. 2.5C, n=3). Thus, Shh indirectly regulates 

Ngn1 by restricting Tbx1 from the neurogenic domain.  
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We next determined whether the repression of Tbx1 from the neurogenic 

domain was a direct or indirect action of Shh on the otic epithelium. Both Tbx1 

and Ngn1 were properly localized to their respective otic territories in Smoecko 

embryos (Fig. 2.5D,H, n=3 and 6, respectively), arguing that their misregulation 

in Shh-/- mutants was a secondary consequence of disrupting Shh signaling in 

tissues extrinsic to the inner ear.

Opposing roles for Wnt and Fgf signaling pathways in cvg neurogenesis 

If Shh is not acting directly on the otic epithelium to regulate the 

anteroposterior positioning of the neurogenic lineage, then what is the 

responsible signal(s)?  Select members of the Wnt and Fgf families appeared to 

be excellent candidates based on prior studies.  For instance, Wnts secreted 

from the dorsal hindbrain were shown to partially suppress the neurogenic 

lineage28. Whereas, Fgfs were shown to both repress and activate neuronal 

determinants in the otic epithelium205-207. In Fgf3-/-; Fgf10-/- mouse embryos, 

neuroblast progenitors were ectopically expressed in the posterior otocyst207. 

Conversely, the pharmacological inhibition of Fgf signaling in the chick otic 

vesicle caused a dramatic reduction in the expression of Ngn1 and NeuroD and a 

corresponding loss of cvg neurons206.  These seemingly contradictory results 

may be attributed to species-specific differences in Fgf signaling activity and/or 

temporal differences in Fgf ligand utilization.

To investigate whether modulation of Wnt or Fgf signaling pathways could 

mimic aspects of the Shh-/- neurogenic phenotype, we cultured wild type mouse 

34



embryos in the presence or absence of the canonical Wnt signaling agonist, LiCl 

208, or Fgf signaling antagonist, EMD 341608 209, and assayed the expression of 

Ngn1 and Tbx1.  Wild type embryos harvested at E9.5 and cultured in control 

media for 18 hours showed proper anterior and posterior expression of Ngn1 and 

Tbx1, respectively (Fig. 2.6A,D, n=8/9 and 17/20, respectively).  However, when 

embryos were cultured in either LiCl (n=5/5) or EMD 341608 (n=6/8), they 

showed a consistent and profound downregulation of Ngn1 in the anterior otocyst 

(Fig. 2.6B,C). These results confirm that Wnt signaling antagonizes, while Fgf 

signaling is necessary for, Ngn1 expression in the mouse otocyst. Interestingly, 

the anterior otic expansion of Tbx1 was only observed in embryos cultured in LiCl 

(n=6/8), and not EMD 341608 (n=0/15) (Fig. 2.6E-G, P<0.001, unpaired t-test). 

Thus, heightened Wnt signaling better recapitulated the a/p polarity defects 

observed in Shh-/- embryos than did Fgf inhibition.  The upregulation of canonical 
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Figure 2.6: Extrinsic signals regulate Tbx1 expression. 
Lateral surface views of embryos stained by whole mount in situ hybridization for Ngn1 (A-C), and Tbx1 
(D-F), after being cultured for 18 hours in the presence of control media (A,D), 50 mM LiCl (B,E), or 25 
μM of the FgfR inhibitor EMD 341603 (C,F).  Control embryos showed a normal pattern of Ngn1 (A) and 
Tbx1 (D,G). Embryos cultured in LiCl showed reduced Ngn1 expression (B), concomitant with an anterior 
expansion of Tbx1 (E,G).  In contrast, embryos cultured in the FgfR inhibitor showed a severe reduction 
in Ngn1 (C), with no change in the domain of Tbx1 expression (F,G). (G) Quantification of the area of the 
otic vesicle expressing Tbx1 in terms of percentage. Error bars represent S.E.M., NS not statistically 
significant by unpaired t-test.



Wnt signaling in the otic vesicles of Shh-/- embryos is a fitting explanation for the 

anterior expansion of Tbx1 and consequent reduction in Ngn1 transcription 28.  

Shh is a mitogen for cvg progenitors

To determine if Shh has other functions in cvg formation we quantified the 

number of Isl1+ neurons in Smoecko embryos at E10.5 (36-38 somites), 

corresponding to the midway point of cvg neurogenesis (Fig. 2.7).  Double 

labeling studies were performed with c-Ret, to distinguish the cvg (Isl1+, cRet-) 

36

Figure 2.7: CVG formation depends on direct and indirect Hh signaling. (A-D) Transverse sections 
through the anterior region of the otic vesicle of E10.5 embryos arranged by genotype were stained for 
Isl1 (red) and cRet (green). Neurons of the cochlear-vestibular ganglia (cvg) (Isl1+, cRet-) were 
distinguished from the adjacent geniculate ganglia (gg) (Isl1+, cRet+) by the absence of cRet staining. 
Control embryos (A), showed a greater number of cvg neurons compared to Smoecko mutants (B). An 
even greater reduction of cvg neurons was observed in Shh-/- embryos (C). The number of cvg neurons in 
Shh-/-;Tbx1+/- embryos (D), was increased compared to Shh-/- embryos, and comparable to that observed 
in Smoecko mutants.  (E) Quantification of the total number of cvg neurons in embryos from each genotype 
is shown. Error bars represent S.E.M., NS not statistically significant using Tukey-Kramer multiple 
comparisons test.



from the nearby neural-crest derived geniculate ganglia (Isl1+, cRet+) 210, 155. 

Smoecko embryos displayed a 47% reduction in the number of Isl1+ cvg neurons 

(1661+/- 51, n=3) compared to control littermates (3529 +/- 86, n=4), indicating 

that Hh signaling has an additional function within the otic epithelium to regulate 

an aspect of cvg neurogenesis that is distinct from its role in controlling Ngn1 

expression (Fig. 2.7A,B,E). Interestingly, the number of cvg neurons was not 

significantly different between Shh-/-;Tbx1+/- (2039+/- 146, n=3) and Smoecko 

embryos (Tukey-Kramer multiple comparisons test) (Fig. 2.7B,D,E), implying that 

the further reduction in cvg neurons in Shh-/-  (899+/- 95, n=3) compared to 

Smoecko embryos, was indeed due to the decrease in Ngn1 expression (Fig.

2.7B,C,E). 

Shh signaling is essential for the proliferation and survival of several 

populations of neurogenic progenitors211-213. To determine whether Shh functions 

as a mitogen or survival factor for cvg neuroblasts, we compared the number of 

mitotically active (phospho-Histone H3+) and apoptotic (activated Caspase-3+) 

cells in distinct otic regions between Smoecko and control embryos at E9.5 (23 
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Figure 2.8: A mitogenic role for Hh on cvg progenitors. Transverse sections through control (A), and 
Smoecko (B) embryos at the 23 somite-stage stained for Isl1 (red) and phospho-histone H3 (green). (C) 
The number of Isl+ cvg neurons and proliferating neuroblasts was significantly reduced in Smoecko 
embryos compared to control littermates, whereas the total number of phospho-histone H3+ cells  
throughout the otic vesicle was unchanged. Error bars are S.E.M., NS not statistically significant by 
unpaired t-test.



somite stage), shortly after otic vesicle closure. While the total number of 

mitotically active cells throughout the otic epithelium not statistically  different 

between Smoecko (96+/-7 cells) and control embryos (112+/-7 cells), a significant 

reduction in the number of phospho-Histone H3+ cells was observed in Smoecko 

embryos when only the anteroventral domain was considered (43+/-4 vs. 69+/-5 

cells, p<0.05 unpaired t test) (Fig. 2.8A-C, n=4). The reduction in proliferating otic 

neuroblasts in Smoecko embryos correlated with a deficit in cvg neurons, which 

was readily apparent at E9.5 (Fig. 2.8A-C). The number of apoptotic cells did not 

differ between Smoecko and control embryos (data not shown). Taken together, 

these results indicate that Shh is necessary for the proliferation of neurogenic 

progenitors in the inner ear.

Auditory and vestibular neurons are specified in Smoecko embryos

The cvg comprises a heterogeneous population of presumptive auditory 

and vestibular neurons. Lineage tracing studies suggest that the fate of these 

inner ear neurons is decided early, possibly prior to their delamination from the 

otic vesicle156. Shh plays a prominent role in assigning identity to neuronal 

progenitors in the ventral neural tube214. To address whether Shh functions in a 

similar capacity to promote the fate of vestibular and auditory neurons, we 

evaluated cell-type specific properties of the remaining neurons in Smoecko 

embryos.  Unfortunately, no molecular markers have been described that 

distinguish auditory from vestibular neurons at progenitor stages of their 

development. We therefore examined unique aspects of their identity after their 
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physical separation into spiral (auditory) and vestibular ganglia. At E13.5, spiral 

neurons can be identified by their expression of the Gata3 transcription factor, 

which also marks the prosensory domain of the cochlear duct (Fig. 2.9A,E)199, 215. 

A population of cells expressing Gata3 was observed in Smoecko embryos, 

despite the absence of a cochlear duct (Fig. 2.9C,G). Unlike control embryos, 

however, the Gata3+ cells from Smoecko mutants also stained positively for 

activated Caspase-3 (Fig. 2.9C,G), suggesting that spiral neurons were specified 
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Figure 2.9: Specification of both spiral and vestibular neurons in Smoecko embryos.
Transverse sections through embryos at E13.5 (A,C,E,G) and E15.5 (B,D,F,H) stained for active 
Caspase 3 (green) and Gata3 (red). (E,F,G,H) are higher magnification views of the regions outlined by 
white boxes in (A,B,C,D). (A,E) In control embryos at E13.5, Gata3 staining was observed in the spiral 
ganglia (sg) and prosensory domain of the cochlear duct (cd), which showed negligible amounts of 
apoptosis. By E15.5, the cochlear duct had completed an additional coil (B) and there was limited 
apoptosis in the spiral ganglia (F). In E13.5 Smoecko embryos, Gata3 staining was observed in the vicinity  
of the spiral ganglia (C,G) despite the absence of a cochlear duct. These neurons were apoptotic and 
stained strongly for active caspase 3. By E15.5, only a few remaining Gata3+ spiral ganglion neurons 
were detected in Smoecko embryos (D,H), which were Caspase 3+. (I-L) Transverse sections through the 
utricle (I,K) and posterior ampula (J,L) at E18.5. Both control (I,J) and Smoecko (K,L) embryos displayed 
MyoVIIa+ hair cells (green) innervated by Neurofilament+ neurons (red). Abbreviations: lsc, lateral 
semicircular canal; s, saccule.



in the absence of Hh signaling but subsequently underwent apoptosis. By E15.5, 

the Gata3+, Caspase-3+ cell population was dramatically reduced compared to 

control littermates (Fig. 2.9B,F,D,H), and by E18.5, Gata3+ cells could no longer 

be detected in Smoecko embryos (data not shown).  The timing of the death of 

spiral neurons in Smoecko ears is consistent with when they normally become 

dependent on Bdnf and NT-3, two neurotrophins secreted from cochlear hair 

cells, which are required for their survival158.

The innervation of vestibular hair cells by vestibular neurons was 

evaluated by immunostaining with antibodies against Myosin VIIa and 

Neurofilament, respectively, at E18.5. Vestibular hair cells in all three cristae and 

the utricular macula showed proper patterns of innervation in Smoecko embryos 

compared to control littermates (Fig. 2.9I-L).  These data indicate that Hh 

signaling is not required for the specification of vestibular hair cells or the 

neurons that innervate them. 

Discussion

Ventral, but not dorsal, otic identity is dependent on direct Hh signaling in 

the otic epithelium

Previous work described an essential role for Shh, secreted from the 

notochord and floor plate of the hindbrain, in shaping inner ear development 

along its dorsoventral axis29, 27. However, given the pleiotropic nature of Shh 

function, it was unclear from these studies whether Shh dependent phenotypes 

were directly attributed to a blockade in Shh signaling within the otic epithelium, 
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or instead, were due to the loss of secondary signals from Shh responsive 

tissues surrounding the inner ear. 

To determine which aspects of otic development are dependent on direct 

Hh signaling we generated Smoecko embryos, in which only the otic epithelium 

was prevented from responding to Hh, and compared them to Shh-/- mutants. 

The occurrence of cochlear and saccular agenesis in both Smoecko and Shh-/- 

embryos indicated that these otic phenotypes were directly attributed to impaired 

Shh signaling within the ventral otocyst. Our data further showed that Shh 

promotes ventral otic identity by regulating the expression of Pax2, Otx2, and 

Gata3, which are downregulated in both Shh-/- and Smoecko mutants (see model 

in Fig 2.10A-C).  

Our unanticipated finding that Smoecko embryos did not exhibit any of the 

other vestibular defects observed in Shh-/- mutants (absence or malformation of 

semicircular canals, utricle and endolymphatic duct) suggests that Shh signaling 

in the dorsal otocyst is dispensable for vestibular morphogenesis. In keeping with 

these findings was our observation that a select number of dorsal otic genes (e.g. 

Dlx5, Gbx2), which were misregulated in Shh-/- embryos, were appropriately 

expressed in Smoecko mutants (Fig. 2.10). Given these results, the validity of the 

prevailing model that a graded distribution of Shh signaling activity patterns the 

extent of the dorsoventral axis of the otic vesicle is drawn into question (see 

below).

Dorsal otic patterning does not require discrete levels of Gli-R
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Figure 2.10: A model depicting the direct and indirect roles of Shh during otic development. (A) In 
wild type embryos at E10.5, Shh secreted from the floor plate and notochord signals directly to the otic 
epithelium to regulate ventral otic identity (Gata3, Pax2, Otx2) and proliferation of Ngn1+ neuroblasts. Shh 
also acts outside of the ear (dashed line) to restrict canonical Wnt signaling activity to the dorsal otocyst 
(red). This indirect role of Shh is also important for preventing Tbx1 (blue) from being expressed in the 
neurogenic domain (magenta).  The schematic of a morphologically mature inner ear (E18.5) is shown to 
the right. Color-coding of vestibular (red) auditory (yellow) and neuronal cell types matches their 
developmental origin in the otic vesicle. (B) In Smoecko embryos, the otic epithelium is no longer 
responsive to Shh, resulting in the loss of ventral otic identity (Gata3, Pax2, Otx2) and a reduction in the 
number of proliferating Ngn1+ neuroblasts, reflected by the smaller cvg. However, Shh dependent 
functions outside the ear (indirect signaling) are maintained. The loss of ventral otic identity results in 
cochlear and saccular agenesis at E18.5, but the remaining vestibular structures are intact, including their 
pattern of innervation. (C) In Shh-/- embryos, all Shh signaling activity is lost (both direct and indirect). 
Consequently, ventral otic identity is compromised and Wnt signaling is no longer restricted to the dorsal 
otocyst. The heightened Wnt responsiveness in the ear causes expanded domains of Dlx5 ventrally, and 
Tbx1 anteriorly, which alters vestibular development and cvg neurogenesis at E18.5. 



The observation that Gli1 is expressed in a graded manner along the 

dorsoventral axis of the ear supported the hypothesis that a gradient of Hh 

activity patterns the otocyst32. According to this model, the loss of Shh signaling 

causes levels of Gli-Repressor (Gli-R) to increase at the expense of Gli-Activator 

(Gli-A), resulting in otic patterning defects and consequent inner ear 

dysmorphologies32. The failure of cochlear duct outgrowth in Shh-/- and Smoecko 

embryos, which are predicted to have high ratios of Gli3R:GliA in ventral otic 

regions, is in agreement with this model. Moreover, the restoration of vestibular 

development in Shh-/-;Gli3+/- embryos was taken as evidence in favor of a lower 

ratio of Gli3R:GliA being required for the patterning of dorsal, compared to 

ventral, otic structures. However, the absence of vestibular defects in Smoecko 

embryos does not fit the hypothesis that graded Hh signaling is responsible for 

patterning the entirety of the dorsoventral otocyst. The presence of a well-formed 

vestibulum in Smoecko embryos indicates that higher levels of Gli3-R in the dorsal 

otocyst do not influence vestibular development. Instead, we attribute the cause 

of the vestibular dysmorphologies displayed by Shh-/- embryos to secondary 

consequences of disrupting Shh signaling in periotic tissues. The rescue of 

dorsal otic structures in Shh-/-;Gli3+/- embryos can be viewed in a similar manner, 

where removing one allele of Gli3 partially rescues Shh dependent cell types and 

secondary signals present in the hindbrain, which influence dorsal vestibular 

morphogenesis. Therefore, if graded Hh signaling is acting on the otic epithelium, 

it is only necessary for patterning ventral otic structures.
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Cvg neuroblasts are directly dependent on Shh for their proliferation

Our study unmasked a previously unappreciated role for Shh in regulating 

the expansion of cvg progenitors. This mitogenic role for Shh is similar to that 

demonstrated for other neuronal cell types in the cerebellum and ventral neural 

tube211, 216, 212, 213, 217. Proliferation was reduced in the neurogenic domain of 

Smoecko embryos by 47%. The resulting deficit in cvg progenitors did not 

selectively eliminate one class of neurons as both vestibular and spiral neurons 

were present in Smoecko embryos.  Interestingly, the vestibular neurons in 

Smoecko embryos innervated their sensory targets in the cristae and maculae, 

whereas the auditory neurons failed to survive, likely due to a lack of trophic 

support normally provided by cochlear hair cells158. 

It is intriguing to speculate why a normal pattern of vestibular innervation 

was achieved in Smoecko embryos, despite the significant reduction in cvg 

neurons.  As with many neuronal cell types, progenitors are usually generated in 

excess, which over time undergo apoptosis after failing to compete for a limited 

number of synaptic targets. The process of eliminating surplus neurons by cell 

death is highlighted in Bax-/- mice, which lack a key apoptotic regulator, and have 

a 83% increase in vestibular ganglia160. In chick, 24% of vestibular neurons 

undergo apoptosis during synapse formation, suggesting that this mechanism is 

not limited to mammals159. Given the large fraction of vestibular neurons that are 

normally lost to cell death, the reduction in cvg neurons in Smoecko embryos is not 

likely to profoundly affect the elaboration of vestibular neural circuitry.
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Tbx1 expression is indirectly regulated by Shh

An additional role for Shh in regulating cvg neurogenesis was indicated by 

the reduced expression of Ngn1 in the anteroventral otic region of Shh-/- embryos 

27. We now show that Shh signaling does not regulate Ngn1 transcription directly, 

but rather is required to restrict Tbx1, a known repressor of Ngn1, from the 

neurogenic domain185. This conclusion is supported by the observation that Ngn1 

expression and many of the cvg neuroblasts are restored in Shh-/-;Tbx1+/- 

compound mutants (Figs. 2.5,2.7).   Nevertheless, the anterior otic expansion of 

Tbx1 appears to be a secondary consequence of losing Shh, since Tbx1 and 

Ngn1 were unaffected in Smoecko embryos. We determined that heightened Wnt 

signaling is likely responsible for this neurogenic phenotype, given that it 

correlates with the anterior otic expansion of Tbx1 in both Shh-/- mutants and 

embryos treated with LiCl (Fig. 2.6; and 28).

The antagonism of Wnt signaling by Shh is not mediated in a cell 

autonomous manner within the otocyst. Therefore, the negative interaction 

between these two pathways must take place in tissues extrinsic to the ear (Fig. 

2.10B,C). One way this might occur is if Shh limits the range of Wnt ligands 

secreted from the neural tube. Wnt1 and Wnt3a in the dorsal hindbrain are 

known to regulate Dlx5 expression in the dorsal otocyst28. The range of these 

Wnts appeared to expand in Shh-/- embryos as evidenced by the ventralized 

expression of Dlx5, as well as the Wnt responsive Topgal reporter28.  A similar 

mechanism may also explain the anterior expansion of Tbx1 in the otic vesicles 

of Shh-/- embryos (Fig. 2.10C).
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While the upregulation of Wnt signaling activity may explain the 

anteroposterior polarity defects observed in the otic vesicle of Shh-/- embryos, it 

remains unclear what role Wnts normally play in the regulation of Tbx1 

expression.  The conditional inactivation of β-catenin, a transcriptional mediator 

of canonical Wnt signaling, at early stages of otic development caused a 

profound reduction in the size of the otic vesicle, yet Tbx1 expression remained 

properly localized218. Interestingly, retinoic acid was recently shown to positively 

regulate Tbx1 expression in the posterior domain of the otic vesicle140. Thus, Wnt 

signaling may only impact on Tbx1 expression in the absence of Shh, whereas 

retinoic acid normally activates Tbx1 in the otic epithelium.

The regulation of Tbx1 by Shh is context dependent. As described above, 

Shh negatively regulates Tbx1 in the neurogenic domain of the otic epithelium. 

However, within the pharyngeal and periotic mesoderm Shh promotes Tbx1 

expression219, 27, 189. Mice lacking Tbx1 in the periotic mesoderm show reduced 

expression of Cyp26 family members, which regulate the catabolism of retinoic 

acid186. Consequently, retinoic acid signaling is upregulated in the otic epithelium 

of these mice, resulting in cochlear outgrowth defects. Therefore, cochlear 

development is dependent on Shh signaling in both the otic epithelium and 

periotic mesenchyme.

! In summary, we found that Shh signaling acting directly on the otic 

epithelium is necessary for the establishment of ventral otic identity and 

the proliferation of cvg neural progenitors. We found that Shh acting in 

periotic tissues regulates the anterior-posterior expression of Tbx1 in the 
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otic vesicle, possibly through a canonical Wnt intermediate.  Overall these 

studies contribute to the understanding of Shh signaling in the developing 

ear and refute the idea that discrete amounts of Gli-Repressor activity is 

required for vestibular development.

Chapter 3: Hedgehog target genes in otic 

development

Introduction

! Hedgehog signaling within the mammalian inner ear is necessary for the 

establishment of ventral otic identity and the formation of auditory structures31, 220, 

27. However, the targets of Hh in the ear, and by extension the mechanism of Hh 

action within the ear, remain unknown. To address the mechanism of Hh action in 

the ear we have investigated gene expression levels in Smoecko mutant otic 

vesicles. Hedgehog signaling is disrupted specifically in the Smoecko  otic vesicle 

leaving adjacent Hedgehog responsive tissues unperturbed.  Smoecko mutants 

lack ventral otic identity and auditory structures, while retaining a properly formed 

vestibulum31, suggesting the dorsal and ventral domains of the inner ear can 

form independently. Since Smoecko  mutants specifically lack ventral, but not 

dorsal otic tissue, we reasoned that genes with reduced expression in Smoecko 

mutants when compared to control litter-mates likely function during cochlear 

duct formation. We used microarrays to interrogate gene expression levels in otic 

vesicles isolated from the surrounding mesenchyme shortly after the start of 
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cochlear duct outgrowth at E11.5 (Fig. 3.1). We identified many genes known to 

have reduced expression in Smoecko mutants including: Smo, Gli1, Ptc1, Pax2, 

Otx231. We also found many genes essential for auditory function had reduced 

expression in Smoecko mutants. Based on the positive identification of genes 

known either to be altered in Smoecko mutants or function in the ear, we are 

optimistic that novel genes identified by this approach likely function during ear 

development. We failed to detect a significant difference in levels of dorsally 

expressed genes including Gbx2 or Dlx5, consistent with our previous study of 

Smoecko mutants. Genes with increased expression in Smoekco mutants included 

several with mesenchymal function such as Foxc2221.

 

Materials and Methods

Animals:

Foxg1Cre/+, Smoloxp/loxp and ShhP1 mouse lines were described elsewhere190, 191, 

27. Smoloxp/loxp mice were maintained on a mixed Swiss-Webster, C57BL6/J 

background. Shh+/- 192 mice were obtained from Jackson Labs (Bar Harbor, ME). 

Cag-GFP mice were described in 222, and obtained from the Campbell lab, 

University of Cincinnati. 

Tissue isolation:

Otic vesicles were microdissected at E11.5 from Foxg1Cre/+;Smoloxp/-;Cag-GFP+/- 

and Foxg1Cre/+;Smoloxp/+;Cag-GFP+/-  litter-mates in ice cold PBS. Isolated 

vesicles were treated for 10 min with 2 mg/ml collagenase P (Roche, 

Indianapolis, IN)  to disrupt the periotic mesenchyme, then further removed from 
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mesenchyme using forceps. Otic vesicles were then submerged in RNAlater 

(Qiagen Valencia, CA) at 4°C.

RNA isolation and Microarray analysis

Total RNA was extracted using RNAeasy kit (Qiagen Valencia, CA). Quality was 

assessed using a Nanodrop2000 (Thermo Scientific Wilmington, DE) to confirm 

the A260/280 was greater than 1.9, The RNA Integrity Number, a measure of 

sample quality,  was determined to be above 9 using a Pico RNA chip (Agilent 

Bioanalyzer Pico assay). cDNA was generated using WT-Ovation RNA 

amplification system (NuGEN San Carlos, CA) and hybridized to to GeneChip 

Mouse Gene 1.0ST array (Affymetrix Santa Clara, CA). Signal intensity was 

determined using an Axon GenePix 4000B scanner (Molecular Devices 

Sunnyvale, CA) in the University of Pennsylvania MicroArray Core facility.

qPCR

Otic vesicles were dissected from E9.5 embryos using tungsten needles. E18.5 

whole brain and whole ears were dissected with forceps. Total RNA was 

extracted using Trizol (Invitrogen Carlsbad, CA) according to manufacturers 

instructions. cDNA was synthesized using an Applied Biosystems High capacity 

cDNA kit (Applied Biosystems Carlsbad, CA) according to manufacturers 

instructions. Two step real time quantitative PCR was performed on an Applied 

Biosystems 7900 thermocycler using Applied Biosystems SYBR green master 

mix according to manufacturers instructions. Primers used are listed in Table 3.1. 

Relative expression was determined by comparing to GapDH using the ΔΔCT 

method established in 223.
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Section In situ hybridization

For in situ hybridization, embryos were fixed in 4% paraformaldehyde 1 hour, 

cryoprotected in 30% sucrose overnight and embedded in OCT embedding 

media (Sakura Finetek Torrence, CA) and snap frozen. Embryos were sectioned 
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Gene 
Name

Forward Primer Reverse Primer Size

GapDH CCTCGTCCCGTAGACAAAATG TGTAGTTGAGGTCAATGAAGGG

Sox2  ACATGATGGAGACGGAGCTGAA
GCC

TCATGGGCCTCTTGACGCGGT

Irx3 CGCAGCCGCCTATGCTCGG ACCAGAGCAGCGTCCAGATGGT

Irx5 CTCGCCCGGCTACAACTCGC GCCCAGAGGTGCTGCATAAGG
G

RorB CCAGGCACCAGCAGCTAGGAC GTCGTGGCCACAGGGTGACG

Emx2 CCCGTCCACCTTCTACCCCTGG GGACGGCGAGAAGGCGGTT

Otx2 GGCACAGCTCGACGTTCTGGAA
G

TGGCGGCACTTAGCTCTTCGAT
TC

ThrB TGCAGTCGCCACCGCACTC ACCCTGTGGCTTTGTCCCCACA

Eya4 ATCCCTCCCCACCTCCGGACA  TCCGGAGCCCGAGAGTCACAG

Brip1 CGCCCGTGCTGTCATAACCGT TGACGGCCAGGCAGAAGACCT

Isl1 TCTGCCGTGCAGACCACGATG TGGCTGCCTAGCCGAGATGGG

Pax2 GGCTGCTAGCCGAGGGCATC GAACGATGGTGTGGCCGGGG

Tceal1 TGGCCCGTATCCGCCCTCAA GCGGCTCCGTTTTGCCTTCC

Zfp691 AACTTGGGCTTCAGTTTTGCCAC
CT

GGGACGCTGCTCCTTCTCGC

Six1 ACGCCAGCCACTCGGAGTCTA GCGCGGCTGCTCCTAACCC

Nr0B1 TGCGGTCCAGGCCATCAAGAGT ATGTATTTCACGCACTGCAGGC
CA

Nr2f1 GCTGCCTCAAAGCCATCGTGC TGCCAAAGCGGCTGGGCTG

Chd7 ACGGACTGTCCTGAGCTGCGT GGGTCCCGGTCAGCAGGACTT

Tox3 GGCCGAGGCAAACAACGCCT GGAGGAGGCGTGATCGGTGGA

Elp4 TCCTGTGGCTACATGAGGCTGCT TCCCCATAACGGTGAGCCAAGG
T

Table 3.1 qPCR primers



at 14 μm. Sections were rehydrated in PBS containing 0.1% Tween-20, and 

hybridization was performed as in 195.

Results

Identification of genes with reduced expression in Smoecko mutants

To confidently identify differentially expressed genes, we limited our analysis to a 

5% false discovery rate (Appendix 1). This threshold yielded 138 genes with 

reduced expression in Smoecko mutants, and 173 genes with increased 

expression. Searching for gene ontology (GO) terms describing the molecular 

function of these genes using the GOTERM_MF_FAT database in the DAVID 

bioinformatic resource224, 225 revealed that genes with reduced expression in 

Smoecko mutants, and genes with increased expression in Smoecko mutants are 

enriched for slightly different molecular functions (Figure 3.2). 
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Figure 3.1 Loss of ventral tissue in Smoecko otic vesicles
Microdissected E11.5 Foxg1cre/+;Smoloxp/+,cag-GFP+/- otic vesicles (A) display an elongating cochlear duct. 
Foxg1cre/+;Smoloxp/-,cag-GFP+/- otic vesicles completely lack cochlear duct (B). This complete lack of ventral 
tissue reduces the overall length of the otic vesicle, quantified in (C).



Identification of putative Shh dependent transcription factors
!
! The development of the inner ear depends on gene regulatory cassettes, 

which can function in parallel, sequentially or iteratively. At otic vesicle stages, at 

least two different regulatory cassettes function in parallel to promote cochlear 

duct formation. One regulatory cassette is defined by the transcription factor 

Eya1, and its target Six1226. Six1-/- mutants lack a cochlear duct and have 

dramatic vestibular defects227. The morphological defects present in Six1-/- 

mutants are preceded by reduced Fgf3, Fgf10 and Gata3 expression. However, 

loss of Six1 function does not impact the expression of  the essential cochlear 
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Figure 3.2 GO Terms enriched in Smoekco dataset
Molecular function gene ontology (GO) terms identified using the GOTERM_MF_FAT database are 
shown for genes with reduced expression (green) or increased expression (red) in Smoecko mutants. 
Yellow represents terms shared by both classes of genes.



duct factor Pax2227, 228. Another regulatory cassette implicated in cochlear duct 

formation depends on Shh.  The Shh dependent cassette also modulates the 

expression of Fgf3, Fgf10 and Gata3, but includes Pax231, 27. After initial cochlear 

duct outgrowth, the Eya1/Six1 cassette is employed in the prosensory domain of 

the cochlear duct to specify hair cells229, demonstrating that these regulatory 

networks can be used iteratively during organogenesis.

! We identified 19 genes with reduced expression in Smoekco otic vesicles 

reported to function in transcription. The complete lack of ventral tissue in the 

E11.5 Smoecko otic vesicle (Fig 3.1),  likely perturbs both Shh dependent 

regulatory cassettes, as well as regulatory cassettes that function in parallel. To 

determine whether any of these genes are putative targets of Hh signaling, we 

employed co-expression analysis. The first defects detectible when Hh signaling 

is ablated in the inner ear are a failure to maintain Pax2 expression27 and 

reduced proliferation in the neurogenic domain that produces the neurons that 

make up the cvg31. These deficits begin to manifest shortly after otic vesicle 

closure, at 23 somites of development. We reasoned that genes that display low 

expression at this early time point, and robust expression at later points in 

development, may be regulated by Hh. Conversely, genes with robust expression 

at this early point may function in parallel to Hh signaling, or depend on an 

earlier, previously unappreciated, Hh signal.

! To determine which transcriptional regulators with reduced expression in 

Smoecko mutants were likely Hh targets we evaluated their relative expression 

levels by qPCR in otic vesicles isolated at 19-22 somite stages (E9.5) shortly 
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before otic vesicle closure, as well as whole ear and whole brain cDNA libraries 

prepared from e18.5 tissue, a stage when all cell types present in the mature ear 

have differentiated (Fig 3.3). 

! Of the genes evaluated, Sox2 and Thyroid Hormone Receptor β (Thrβ) 

stood out for having low expression at E9.5. Sox2, functions within the 

developing cochlear duct to establish the prosensory domain and generate 

sensory hair cells161. Thrβ is essential for the proper formation of the tectoral 

membrane and the maturation of cochlear hair cells230, 231. Unsurprisingly, these 

two genes clustered together (Fig. 3.4). The low expression level of these genes 

shortly after otic vesicle closure, and their known requirement in hair cell 

development, suggest they are putative Hh targets. 

Categorizing genes by co-expression

!  Eight of the nineteen genes evaluated by qPCR display robust expression 

at early otic vesicle stages function during ear development, or are previously 

known to be expressed in the developing ear. Their pattern of clustering may 

help elucidate the role of the seven remaining genes with no previously reported 

otic function. Several clusters seem to group based on expression patterns. Isl1 

and Nr2f1 group together. Isl1 is expressed in the cvg and prosensory wall of the 

cochlear duct155, and is important for the development of multiple types of 

neurons232, while Nr2f1 is also expressed in the prosensory wall of the cochlear 

duct233, and functions in cochlear duct elongation and sensory cell 

specification234. Both Isl1 and Nr2f1 are expressed in the prosensory wall of the 

cochlear duct, but not the otic vesicle, and cluster together accordingly (Fig 3.4). 
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Several more intriguing comparisons are 

established between genes with known otic 

function. Emx2 and Otx2 are expressed in 

the ventral otic vesicle, are essential in ear 

development235, 236, 181, and cluster together. 

Irx3 and Irx5 are IrxB group genes, that are 

expressed in the ventral otic vesicle237, 238, 

but have no previously reported otic 

function. The seeming success of grouping 

genes with known otic activity, suggests this 

approach may help characterize novel otic 

genes. One particularly promising result is 

the grouping of the known gene Pax2 and 

the novel gene Brip1. Followup experiments 

show Brip1 is expressed in the ventromedial 

otic vesicle  (Fig. 3.5) in a pattern 

overlapping Pax2.

" Grouping genes based on co-expression is one method to impose order 

on a chaotic list of genes, and in doing so, generate testable hypotheses. The 

clusters displayed in Figure 3.4 are fascinating, but will require considerable 

validation. The grouping of Pax2 and Brip1, combined with their overlapping 

expression pattern, suggests they may be subject to similar regulatory controls. 

Brip1 expression will need to be evaluated in Smoecko or Shh-/- mutants to 
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Figure 3.4 Clustering of transcription 
effectors based on expression pattern
Factors were clustered based on average 
linkage using E9.5, E18.5 and whole brain 
expression levels.



determine whether, like Pax2, it requires Shh to maintain expression. Similarly, 

the grouping of Eya4, Irx3, Irx5 with Six1 is intriguing, but they too will have to be 

evaluated in Hh mutants to determine whether Eya4, Irx3, Irx5 function in parallel 

to Shh like Six1.

Ventral expression of down regulated genes

! To complement our qPCR studies, we evaluated the spatial distribution of 

transcripts in wild-type embryos shortly after the initiation of cochlear duct 

outgrowth at E11.5. We selected genes for evaluation by the fold change 

between mutant and control tissue with the assumption that  genes with the most 

dramatic fold change would be best detected by in situ hybridization. 

! We validated our list of genes by examining the expression of several 

genes known to function in the developing cochlea. Six1, Eya1, and Jag1 had 

reduced expression in Smoecko otic vesicles, and are known to function in the 

prosensory domain of the cochlear duct239, 163 during hair cell specification. We 

confirmed Six1, Eya1, Jag1 are expressed in the ventromedial wall of the otic 

vesicle (Fig. 3.5). We found novel expression of several genes within the 

prosensory domain including: Carbonic anhydrase 13 (Car13), Family member 

107a (Fam107a), Growth arrest specific 2 (Gas2), Brac1 interacting protein C-

terminal helicase 1(Brip1), Anoctamin 1 (Ano1), and Protocadherin 11 x-linked 

(pcdh11x). These genes represent a variety of cellular processes. Carbonic 

anydrases catalyze the reaction of CO2 and water and are best know for 

catalyzing the release of CO2 from red blood cells, and can also regulate pH. 

Car13 is a cytoplasmic protein, whose exact function remains unknown, is 
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expressed in a variety of cell types including oligodendrocytes240. Fam107a was 

initially identified as a tumor suppressor241, 242, but has also been shown to 

function as an actin bundling protein that modulates synapse formation in 

response to stress243. Gas2 seems to function as a microtubule binding protein 

that  antagonizes cell division244. Brip1 functions to help repair double stranded 

DNA breaks245, and has been implicated in Fanconi Anemia246. Ano1 is a chloride 

channel, a family that regulates cell size and osmotic pressure. However Ano1-/-  

mice fail to thrive and die by 1 month of age, but their inner ears have not been 

evaluated247. Pchd11x is a member of the protocadherin superfamily of cell 

adhesion proteins, and is expressed at high levels in the brain248. Interestingly, 

Pcdh11x has been implicated in non-syndromic language delay249, but it remains 

unclear whether Pcdh11x functions in auditory processing or another aspect of 

language. 

! Although the exact functions of Car13, Fam107a, Gas2, Ano1, Pcdh11x in 

the ear remains unknown, they serve as a starting point for a better 

understanding of the cellular processes occurring during sensory formation. 

Conclusions

! We have used microarrays to identify genes with reduced expression in  

Smoecko otic vesicles, and in doing so generated a list of genes enriched for 

expression in the developing cochlear duct. Many of these genes have been 

shown to be essential for inner ear development and hearing, and many more 

are expressed in the ventral otic vesicle but have not been functionally evaluated. 
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The presence of multiple genes implicated in otic development and human 

disease make us confident that our list of genes with reduced expression in 

Smoecko mutants likely includes many novel factors essential for otic 

development.

! We have started to investigate the Hh dependent gene regulatory network 

necessary for cochlear duct formation. Based on co-expression data we have 

identified candidate Hh targets (Rorβ, Nr2f1, Nr0b1) as well as candidate genes 

that depend on Hh for continued expression (Brip1). However, a full evaluation of 

these candidates in Smoecko and ShhP1 mutant embryos is required. To truly 

generate a list of direct Hh targets a different approach is necessary. One 

possibility would be to identify direct Hh targets using ChIP-seq to determine the 

genome wide occupancy of Gli1250, 251, a constitutive Gli activator.

! The inaccessibility of the mammalian inner ear has been a barrier to fully 

understanding the cellular processes that give rise to the organ of Corti. So far, 

we have evaluated only 20% of gene identified by our microarray studies, and 

found at least six genes with unappreciated expression in the ventral inner ear. 

These genes are distributed across a broad range of cellular processes including 

ion transport, pH regulation, and control of the cytoskeleton. These genes 

represent exciting targets for further study, which should ultimately increase our 

understanding of how the inner ear develops. 
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Chapter 4: A Fate Map of Wnt responsive cells

Introduction

! Fate mapping experiments using TopCreERT2 to indelibly label Wnt/β-

catenin responsive cells early in development and visualize what tissues they 

populate later revealed an unexpected contribution of Wnt responsive cells to the 

cochlear duct28. Although Wnts function within the otic placode132, 133 and are 

necessary for the formation of dorsal otic structures28, their role in the cochlea is 

mysterious. Wnt signaling has been implicated in cochlear duct formation. Wnt5a 

and Wnt7 function through the PCP pathway to modulate the convergent 

extension movements that drive later cochlear duct outgrowth117, 118. Wnt/β-

catenin signaling may also function earlier in cochlear duct formation, as shown 

by the truncated cochlea in Wnt1-/-;Wnt3a-/- mutant mice28. However, it remains 

unclear whether truncated cochlea present in Wnt1-/-;Wnt3a-/- mutants is due to a 

requirement for Wnt/β-catenin signaling in early cochlear duct formation, or is a 

secondary consequence of defects elsewhere in the embryo. Wnt signaling may 

also function in hair cell specification. Forced activation of the Wnt/β-catenin 

pathway in chick, using degradation resistant β-catenin, was sufficient to induce 

ectopic hair cells in the cochlea and to transform auditory hair cells to a vestibular 

morphology169. These disparate lines of evidence suggest Wnts may be active in 

the cochlear duct, but this later cochlear function has been masked by the 

requirements for Wnt early in placode formation and otic vesicle patterning. To 
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better understand the role of Wnt/β-catenin signaling in the cochlear duct we 

used TopCreERT2 to construct a fate map of Wnt responsive cells in the ear.

Materials and Methods

Animals

RosaGfp/Gfp 193 and RosaLacZ/LacZ 252 mice were obtained from Jackson Labs (Bar 

Harbor, ME). TopCreERT2, Gbx2CreER/+ and TopGal mice were described 

elsewhere 115, 184, 28. 

Cre activation

Pregnant dams were fed 150μg/g body weight tamoxifen (Sigma Aldrich St. 

Louis ,MO) dissolved in corn oil by oral gavage. 

Immunohistochemistry

The heads of E18.5 embryos were bisected and the brain removed, fixed in 4% 

paraformaldehyde for 3 hours then the otic capsul was dissected out, 

cryoprotected in 30% sucrose overnight, mounted in OCT embedding media 

(Sakura Finetek Torrence, CA) and snap frozen. Embryos were sectioned at 14 

μm and stained with DAPI and the following antibodies: Rabbit anti-MyosinVIIa 

(Proteus Biosciences Ramona, CA) 1:300, Chicken anti-GFP (Aves Labs Tigard, 

OR) 1:1000, Rabbit anti-Prox1 1:500 (Chemicon Billerica, MA). Primary 

antibodies were detected with one of the following secondary antibodies: Donkey 

anti-mouse IGG conjugated to Cy3 (Jackson ImmunoResearch West Grove, PA) 

or Alexa488 (Molecular Probes Eugene, OR); Donkey anti-Rabbit IGG 
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conjugated to Cy3 or Alexa488; or Goat anti-Chicken IGG conjugated to 

Alexa488.

Wholemount cochlear preparations

The heads of E18.5 embryos were bisected and the brain removed, then fixed in 

4% paraformaldehyde for 3 hours. The membranous labyrinth was dissected, 

and sensory patches were exposed by opening opening the ampulae, maculae, 

and cochlear duct with forceps. Dissected tissue was then treated using the 

same antibodies as sections, mounted on slides and imaged using a Leica SP2 

confocal microscope.

Xgal staining

The heads of E18.5 embryos were bisected, the brain removed, and fixed in 4% 

paraformaldehyde for 1 hour. Bisected heads were then incubated in at 37°C 

overnight, and post fixed 3 hours in 4% paraformaldehyde. The otic capsul was 

dissected, dehydrated in a graded methanol series, and cleared using a 1:2 

solution of benzyl alcohol:benzyl benzoate. Cleared ears were imaged on a Leica  

dissecting microscope.

Fluorescent in situ hybridization

Section in situs were performed as in31 with the following modifications: Slides 

were incubated in PBS containing 0.3%H2O2 0.1% Tween-20 for 30 minutes to 

quench endogenous peroxidase activity. Digoxigenin-UTP and flourescein-UTP 

labeled probes were hybridized to tissue. Tissue was then incubated with HRP 

conjugated anti-Fluorescein (1:100), and detected with fluorescein tyramide 

signal amplification (Perkin-Elmer Waltham, MA). After  detection, slides were 
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fixed in 4% paraforaldehyde, washed 3 times in PBS-Tween, incubated in PBS-

Tween-H2O2, washed three times in PBS-tween then incubated with HRP 

conjugated anti-digoxigenin. Signal was detected with tetramethylrhodamine 

tyramide signal amplification. Embryos were cleared using ScaleU2253 and 

imaged on a Leica SP2 laser scanning confocal microscope.

Multiphoton imaging and embryo culture

E9.5 TopCre;RosaGfp/+ embryos were collected in ice-cold L-15 media without 

damaging the yolk sac. Yolk sacs were opened with forceps without damaging 

major blood vessels. Embryos were grown in 35mm Mat-tek glass bottom dishes

in a Cell Biosystems stage top environmental chamber under 95% O2: 5% CO2 at 

37°C in 100% rat serum (Gemini Bio-Products, West Sacramento CA) 

supplemented with 0.175 mg/ml glucose, 2 mM glutamine, 1x Penn-Strep. 

Culture media was circulated using a peristaltic pump.

Embryos were imaged using a chameleon femtosecond pulsed IR laser tuned to 

880nm excitation fitted to a Zeiss LSM510 microscope using a 20x objective in 

the non-descanned detection mode. Excitation laser power was adjusted for the 

depth of the sample to minimize exposure and phototoxicity.

Results

Wnt responsive cells contribute to the cochlear duct

During otic development Wnt ligands are expressed in nearby tissues including 

the neural tube , and in the otic vesicle itself254. To determine whether the 

observed contribution of Wnt responsive cells to the cochlear duct reflects a 
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temporally restricted response, possibly to a single Wnt ligand, or a more general 

response to the variety of ligands present over time we labeled Wnt responsive 

cells at different points during development and evaluated their fate. We found 

that labeling at E8.5, during early placode formation, revealed a broad 

contribution of Wnt responsive cells to many tissues within the ear (Fig. 4.1A). 

This contribution included both auditory and vestibular hair cells, support cells, 

neurons, and the epithelia that makes up the semicircular canals. Labeling at 

later time points gradually restricted the tissues and cell types containing Wnt 

responsive cells. Inducing recombination at E9.5 reduced the contribution of 

labeled cells to the cochlear duct (Fig. 4.1B), while inducing recombination at 

E10.5 almost completely abolished labeling of cochlear cells while having little 

impact on the contribution of labeled cells to the vestibulum or spiral ganglion 

(Fig. 4.1C). The only ventral cells labeled by inducing recombination at E11.5 or 

later in development are spiral ganglion neurons (Fig. 4.1 D,E,F).
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Figure 4.1: Temporal dependent contribution of Wnt responsive cells to the cochlear duct
Whole mount views of Xgal stained TopCre;RosalacZ/+ inner ears where tamoxifen was administered at the 
stated time to induce recombination. Administering tamoxifen at E8.5 labeled the semicircular canals, 
endolymphatic duct, cochlear duct and inner ear neurons (A). Administering tamoxifen at E9.5 (B) 
produced similar results. Inducing recombination at E10.5 caused robust labeling in vestibular structures, 
with little labeling  in the cochlear duct (C). Ventral labeling seen at E10.5 is largely the spiral ganglion. 
 Administrations at E11.5 (D), E12.5 (E), E13.5 (F) caused labeling in the endolymphatic duct and 
vestibulum. The only ventral labeling is present in the spiral ganglion. anterior semicircular canal asc, 
posterior semicircular canal psc, endolymphatic duct ed, common cruz cc, spiral ganglion sg, cochlear 
duct cd, posterior vestibular ganglion pvg.



 Contrasting the temporal sensitivity of labeling in the cochlear duct, the anterior 

and posterior semicircular canals and both auditory and vestibular neurons could 

be labeled at each time point evaluated, however we found minimal contribution 

of labeled cells to the lateral crista. 

TopCre activity is present in multiple cochlear cell types

The prosensory domain of the cochlear duct consists of an equivalence group of 

Sox2+ cells161 that will give rise to both hair cells and support cells in response to 

differential levels of Notch signaling activity164. To determine whether an early 

exposure to Wnt activity biased cells towards low levels of Notch activity resulting 

in a sensory fate, or high levels of Notch activity resulting in a support cell fate we  

determined the contribution of TopCreERT2 labeled cells to sensory or support 

populations.
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Figure 4.2: Sensory and support cells originate from a Wnt responsive progenitor
Labeling in the cochlear duct appeared stochastic, never achieving 100% efficiency. Inducing 
recombination at E7.75 robustly labeled sensory hair cells (A) and support cells (E), as well as spiral 
ganglion neurons and cells throughout the greater epithelial ridge. Labeling remained robust when 
recombination was induced at E8.5 (B,F). The amount of labeled cells in the cochlear duct started to 
decrease at E9.5 (C,G), and labeled cells no longer contributed to the cochlea by E11.5 (D,H). spiral 
ganglion sg, greater epithelia ridge ger, inner hair cell ihc, outer hair cells ohc.



! Sensory hair cells can readily be identified by the expression of atypical 

motor protein Myosin VIIa255, while support cells are identifiable by expression of 

the transcription factor Prox1256. We identified cells in TopCreERT2;RosaGfp/+ 

embryos based on the colocalization of GFP and MyoVIIa or Prox1, and 

quantified their relative abundance. We found that inducing recombination at 

E7.75 labeled inner hair cells, outer hair cells  and support cells within the 

cochlear duct with a 60% efficiency. This efficiency is reduced to labeling 5% of 

hair cells by E10.5 with no bias between inner and outer hair cells (data not 

shown).

! The cochlear duct is organized in a tonotopic manner, where cells near the 

apex detect low frequency sound and cells near the base detect high frequency 

sound. This sensitivity gradient is mirrored by a temporal gradient of hair cell 

maturation. Birth dating studies suggest that hair cells leave the cell cycle in a 

wave that moves from the apex to the base of the cochlea157 while morphological 

observations find that hair cells mature first in the base of the cochlea followed by  

the apex257. To determine whether prior Wnt responsiveness correlated with a 

given maturation time or cell cycle exit we evaluated the distribution of labeled 

hair cells along the length of the cochlear duct. We found no bias in the 

distribution of labeled cells (data not shown).

Wnt responsive cells likely do not migrate ventrally in the otic epithelium

! One hypothesis to explain the ventral contribution of TopCreERT2 labeled 

cells is that they move ventrally within the otic epithelium, possibly in response to 
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a chemoattractant or chemorepulsant cue. To test this hypothesis we imaged 

cells within TopCreERT2;RosaGfp/+ otic vesicles using multiphoton microscopy. 

We were unable to detect ventral cell movement within the otic epithelium (Fig. 

4.2A,B). However, we did observe ventral cell migration in nearby neural crest 

cells (Fig 4.2B, white arrowheads).

! The absence of detectible cell migration ventrally could be attributed to 

problems with our embryo culture system. As a complementary approach, we 

evaluated the distribution of GFP+ cells marked by TopCreERT2, and the 
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Figure 4.3 Presumptive ventral movement is restricted to the anterior otic vesicle
A depth coded lateral view shows Topcre  activity is not uniformly distributed throughout the otic vesicle, 
instead it is restricted to the medial wall and extends further ventrally in the anterior otic vesicle (A,B). 
Multiphoton live imaging failed to detect cell movement within the medial wall of the otic vesicle. Cells 
outside the otic vesicle were observed to migrate ventrally during this time (B, white arrowheads). In 
transverse sections, cre activity visualized by GFP expression extends further ventrally in anterior parts of 
the otic vesicle (C). The localization of Topcre activity (GFP) closely correlates with Cre transcript in the 
posterior vesicle (F,G,H). In the anterior vesicle, GFP extends further ventrally than Cre transcript (C,D,E, 
red bracket).



distribution of Cre transcript at otic cup stages. We reasoned, a migratory 

behavior would be reflected by a ventral expanse of GFP+,Cre- cells. 

! We found that inducing recombination at E7.75 or E8.5 was sufficient to 

label the otic vesicle. At 17 somites of development (E9.0), we found a close 

correlation between GFP and Cre expression in the posterior and middle 

sections of the otic cup (Fig. 4.2F,G,H). In the most anterior sections of the otic 

cup GFP expression extended slightly further than Cre expression (Fig. 

4.2C,D,E). 

! It remains unclear whether the extension of GFP beyond the domain of 

Cre in the most anterior parts of the otic vesicle is due to a role for cell movement  

within the otic placode, or a result of the transition from otic placode to otic cup. 
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Figure 4.4: Contribution of Gbx2Cre/+ cells to the cochlear duct
Inducing recombination at E8.5, otic placode stage, (A) results in labeled cells contributing to all otic 
structures at E18.5. Inducing recombination at late otic cup stages, E9.5, (B) marks cells that selectively 
contribute to the endolymphatic duct, cochlear duct, utricle and saccule. Labeling at E10.5 (C), marks the 
endolypmatic duct, cochlear duct and saccule. By E11.5 the cochlear duct starts to outgrow from the otic 
vesicle, and recombination induced at this time only contributes to the endolymphatic duct (D). anterior 
semicircular canal asc, posterior semicircular canal psc, endolymphatic duct ed, common cruz cc, 
cochlear duc cd, utricle u, saccule s.



Contribution of Gbx2 fate mapped cells to the cochlear duct

! The transcription factor Gbx2 is expressed in the dorsomedial wall of the 

otic vesicle and is essential for the formation of the endolymphatic duct184. We 

found that cells labeled with Gbx2Cre contribute to the endolyphatic duct as 

expected based on the mutant phenotype. Surprisingly, we found cells labeled 

using Gbx2Cre  between E8.5 and E10.5 also contributed to the sensory wall of 

the cochlear duct (Fig. 4.4A,B,C). This contribution of labeled cells to the 

cochlear duct is temporally responsive, with cochlear labeling being lost by E11.5 

while endolymphatic duct labeling is maintained (Fig. 4.4D). The unexpected 

contribution of Gbx2cre/+ cells to the cochlear duct suggests the spatial origin of 

auditory hair cells resides in the Gbx2 expression domain in the dorsomedial  

wall of the otic vesicle.

A population of TopCre+, Gbx2+, Ngn1- cells are cochlear sensory 

progenitors

! Our fate mapping data suggest that TopCreERT2 and Gbx2Cre label a 

population of cells that will later populate the prosensory domain in the cochlear 

duct. Gbx2 are broadly expressed in the otic placode before being restricted to 

the dorsal otic vesicle258, which likely explains the contribution of early labeled 

cells to many otic structures and a gradual restriction of labeled tissue over time. 

To better define the region of the otic vesicle that gives rise to sensory cells 

within the cochlear duct, we examined the distribution of TopCreERT2 and Gbx2 

transcripts at E9.5, the last time point where both Cres contribute to the cochlear 

duct. We also compared the expression of TopCreERT2 and Gbx2 transcripts to 
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Ngn1. Fate mapping studies using a Ngn1Cre that is expressed in the 

anteroventral wall of the otic vesicle were unable to robustly label cochlear duct 

progenitors156, 259. We reasoned that the region of otic vesicle that expresses 

Gbx2 and TopCreERT2 is likely enriched for cochlear duct progenitors, while the 

region that expresses TopCreERT2 and Ngn1 is likely enriched for cvg 

progenitors. 

! We compared the expression of TopCreERT2, Gbx2, Ngn1 transcripts 

using fluorescent in situ hybridization. Surprisingly, Ngn1 expression did not 

appear to overlap with TopCreERT2 despite the strong TopCreERT2 activity in 

the cvg. Instead, Ngn1 and TopCreERT2 seem to be expressed in adjacent 

domains within the otic vesicle, and TopCreERT2 is robustly transcribed in 

neuroblasts that have delaminated from the otic vesicle and no longer express 

Ngn1 (Fig. 4.5A). We also found that Gbx2 and Ngn1 expression also do not 
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Figure 4.5 TopCre, Gbx2 expression do not overlap with Ngn1
Z projections and orthogonal views of two color fluorescent whole mount in situ hybridizations 
demonstrate that Gbx2 and Ngn1 transcripts are expressed in spatially distinct regions of the otic cup 
(A). Ngn1 and TopCre expression follow a similar distributions, where Cre is restricted to the 
dorsomedial wall of the otic cup, and to the cvg neuroblasts that have already delaminated, while Ngn1 
is largely restricted to the anteroventralateral section of the otic cup (B). Gbx2 and TopCre expression 
colocalizes in the medial wall of the otic vesicle (C), marking the domain of cochlear sensory 
progenitors.



overlap at E9.5 (Fig 4.5B), while TopCreERT2 and Gbx2 expression do overlap 

in the dorsomedial wall of the otic vesicle (Fig 4.5C). These results validate the 

idea that cochlear progenitors originate from the medial wall of the otic vesicle, 

but lack the resolution to determine their origin along the anteroposterior axis.

! The transition from otic cup to otic vesicle has been best described in 

chick where cells from the rim of the closing otic cup are excluded from the 

ventromedial wall of the otic vesicle, a region that ultimately gives rise to auditory 

hair cells134. Further studies in chick found cells in the posterolateral quadrant of 

the otic placode were most likely to contribute to the chick analog of the cochlea, 

the basal papilla260. Together these two studies provide a rough fate map of the 

closing otic cup where auditory sensory cells likely originate from a posterior 

section of the ventromedial wall of the otic cup. Our studies suggest a similar 

regionalization occurs in mouse. We find TopCreERT2 and Gbx2cre, activity are 

the earliest markers for a population of cells that contain auditory hair cell 

progenitors.

Conclusions

! Fate mapping studies and embryo extirpation experiments in chick support 

a regionalization of the otic placode. However, the extent of these domains has 

not been defined at high resolution, and few comparable studies have been 

conducted in mouse. Using inducible Cre recombinases expressed in different 

domains of the otic placode and otic vesicle to indelibly label cells, we have 

identified the medial wall of the otic vesicle as a region that develops into the 
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sensory wall of the cochlear duct. These results suggest the regionalization seen 

in the chick otic vesicle also applies to mammals.

! We have demonstrated TopCreERT2  is active in cells that contribute to 

the sensory wall of the cochlear duct and the spiral ganglion. Since labeling 

appears stochastic, TopCreERT2 will likely serve as a useful tool to study cell 

autonomous processes within the cochlear duct and spiral ganglion. 

Chapter 5: Summary and Future Directions

	
 The developing inner ear employs a host of cell signaling pathways and 

morphogenetic processes making it an ideal organ to study basic biology, while 

the near universal penetrance of age related hearing loss makes the ear a 

medically relevant organ system. 

! Amphibians and birds are capable of regenerating auditory hair cells lost 

to insult261-263, while mammals are not. This difference in regenerative capacity 

suggests the inability to regenerate hair cells evolved sometime after mammals 

and birds diverged roughly 200 million years ago18. The ability for non-mammals 

to regrow hair cells also suggests that changing the activity of a select number of 

genes might return mammalian cells to their ancestral state and allow hair cell 

regeneration.  One tissue that may provide insight into reactivating quiescent 

cells is the mammalian musculature. In striated muscle, mature cells are 

terminally differentiated and regeneration occurs through the activation of an 

endogenous stem cell pool. The major barrier to muscle cells re-entering the cell 

cycle and regenerating are the tumor suppressor genes Rb and Ink4a. 
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Genetically removing both genes allows myocytes to proliferate and integrate into 

mature muscle fiber264. Perhaps a similar mechanism occurs in the ear, which 

expresses multiple cell cycle inhibitors during development. Deleting Rb alone, or 

deleting Ink4d in combination with p27, is sufficient to induce proliferation in 

cochlear cells, but they undergo apoptosis265, 257. All three factors have not been 

inhibited in the cochlea, so it may be possible that the apoptosis seen in 

response to mutating a single gene is a direct result of the activity of other tumor 

suppressors. In the event that reactivating proliferation in cochlear cells proves 

impractical, an alternative approach to treating hair cell loss may be through 

transplanting progenitor cells. There is hope for this approach since embryonic 

stem cells, and induced pluripotent stem cells (iPS), can be differentiated into 

functional hair cells266. However, cell transplantation will have to overcome 

several major hurdles to be a viable therapy including: the requirement that hair 

cells be placed in the correct position and orientation within the cochlea, as well 

as innervated correctly in order to function. Regardless of the approach, 

replacing sensory hair cells will require a better understanding of the 

mechanisms of inner ear development and a deeper understanding of terminal 

differentiation and cell cycle arrest.

	
 Although the majority of molecular pathways that govern inner ear 

development have been identified, much remains to be learned about how they 

function and interact to control the growth of the ear. The Wnt and Hedgehog 

pathways are both used several times during ear development. They initially 

were thought to have both synergistic and antagonistic interactions in the 
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establishment of dorsoventral polarity28. We have been able to show the 

antagonistic interaction between Wnt and Shh during otic vesicle patterning does 

not occur in the ear itself. Instead, Shh likely promotes the expression of a Wnt 

antagonist in peri-otic tissue. We were unable to definitively identify this Wnt 

inhibitor, but the Wnt antagonist Sfrp2 is a strong candidate. Sfrp2 has been 

shown to be a target of Shh in the somite267, and we did observe altered Sfrp2 

expression in the neural tube of Shh-/- mutants.

! The Hedgehog and Wnt pathways also interact to mediate cochlear duct 

outgrowth. Hh signaling within the otic vesicle is necessary for the initiation of 

cochlear duct outgrowth31, and Gli-Activator function mediates full extension of 

the cochlear duct32. Concurrently, Wnt/βcatenin signaling is active in cells that 

contribute to the prosensory wall of the cochlear duct (28 and Chapter 4), and 

Wnt5a, Wnt7 dependent convergent extension completes the elongation of the 

cochlear duct117, 118. Exactly how these pathways interact during cochlear duct 

outgrowth remains unclear, and several confusing examples exist within the 

literature. Cilia function in both Hh and PCP pathways268, 269. Yet perturbing ciliary 

function in the otic vesicle results in a PCP phenotype characterized by hair cell 

orientation defects and a truncated cochlear duct270 rather than a Hh phenotype 

of shortened cochlear duct and altered hair cell numbers32, 146. Perhaps the 

apparent lack of Hh phenotype in conditional ciliary mutants is an effect of the 

timing of recombination and kinetics of ciliary protein turnover. In this case cilia 

would be fully disrupted after Hh is required, but not before PCP requirements 

have passed. Alternatively, the lack of Hh phenotypes in conditional ciliary 
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mutants may reveal the limitations and possible pleiotropic effects of using small 

molecule Hh inhibitors in organ culture to study sensory cell formation and global 

gene knockouts to study the requirements for Gli-activator function in cochlear 

duct outgrowth.  Nonetheless, PCP effector genes have been shown to influence 

ciliary structure and Hedgehog signal transduction271, 272, suggesting there are 

more interactions between these pathways to be understood.

 A role for Hh signaling in auditory development is not limited to amniotes, 

but also extends to lower vertebrates. In zebrafish and frogs, Hh signaling is 

required for the development of the posterior macula, a sensory organ with 

auditory function, as well as its associated innervation141-143 . While the reliance 

on Hh signaling for auditory development appears to be conserved across phyla, 

there are more differences than similarities in how the Hh pathway is used to 

fulfill this function.  Firstly, in mice and chicken, Shh patterns the otic vesicle 

along its dorsoventral axis to promote cochlear duct morphogenesis29, 27 . This 

contrasts with the role of Hh signaling in zebrafish, which patterns the otocyst 

along its anteroposterior axis to promote the development of the posterior 

saccular and lagenar maculae141, 142 . Not surprisingly, these species-specific 

requirements of Hh do not depend on the same complement of target genes.  

Secondly, significant differences exist in the manner that Hh signaling regulates 

sensory epithelial development. In the mouse cochlea, Hh functions to repress 

hair cell formation146 . Whereas, in zebrafish, Hh specifies late forming saccular 

hair cells through the regulation of atoh1a expression in the posterior otic 

region142 . Finally, the Hh dependent regulation of cvg progenitor proliferation is a 
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common feature shared between mice and fish31, 142 . However, additional 

neurogenic roles for Hh, including the spatial segregation of utricular and 

saccular otic neurons along the anteroposterior axis, and the conferring of 

specificity to their patterns of innervation, have solely been adapted for 

zebrafish142 .  Given the distinct morphologies of the auditory structures in mice 

and zebrafish, it is not unexpected that signaling pathways such as Hh will elicit 

different developmental outcomes. The comparative analyses of the auditory 

organs in these and other species should be helpful in identifying additional 

signals that cooperate with Shh to promote cochlear duct outgrowth in amniotes. 

! Several lines of evidence support a requirement for Wnt signaling in 

vestibular morphogenesis273, 28, but the pleiotropic nature of many Wnt mutants 

makes determining the function of Wnt in auditory development more 

challenging. Conditionally ablating β-catenin in the otic placode133or otic vesicle218 

arrests development before cochlear duct outgrowth, preventing an analysis of 

the requirement for Wnt signaling in sensory cell specification. Modulating the 

activity of Wnt ligands emanating from the hindbrain generates a less severe 

mutant phenotype that highlights the requirements for Wnt signaling in 

establishing dorsal otic identity. Wnt1-/-;Wnt3a-/- mutant mice lack all vestibular 

structures and have a severely truncated cochlear duct28, while performing a 

comparable experiment in chick by removing the embryonic hindbrain abolishes 

the vestibulum and has minimal effect on auditory organ,the basal papilla29. 

These subtle differences in results may be due to the differing approaches taken 

to abolish hindbrain Wnt signals.
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!  To truly assay the role for Wnt/β-catenin in auditory development, 

experimental manipulations have to avoid perturbing the early roles for Wnt in 

placode formation and establishing dorsal otic identity. A few lines of evidence 

point to requirements for Wnt signaling later in otic development. Increasing Wnt 

activity in chick after dorsoventral polarity has been established using a 

degradation resistant β-catenin resulted both in ectopic hair cells in the basal 

papilla and a transformation of auditory hair cells to a vestibular morphology169. 

Two additional studies tie β-catenin to regulating hair cell fate. The master hair 

cell regulator Atoh1, is in part regulated by a 3‘ enhancer containing Tcf/Lef 

responsive elements274. The greater epithelia ridge, a transient structure adjacent 

to the inner hair cell, is competent to give rise to ectopic hair cells275 and contains 

a transient population of cells that express the Wnt target Lgr5 and differentiate 

into hair cells in culture229. Together these three studies suggest a role for Wnt/β-

catenin signaling in auditory hair cell specification, but elucidating the function of 

Wnt signaling in vivo and mechanism of action require further studies.

! We have been able to unmask previously unappreciated roles for 

Hedgehog signaling in driving the proliferation of cvg neuroblasts and 

establishing ventral otic identity independent of dorsal or lateral identity. We have 

identified dozens of presumptive Hedgehog target genes that are expressed in 

the developing cochlear duct. In doing so we have laid the groundwork for a 

better understanding of the gene regulatory networks and cell biological 

processes that control the formation of auditory structures. Finally, we have used 
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fate mapping studies to define the domain in the otic vesicle that gives rise to 

auditory sensory cells.
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Appendix 1: Smoecko microarray results
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Gene Symbol RefSeq Fold-Change
Otx2 NM_144841 -7.61759
Clu NM_013492 -5.50419
Rorb NM_001043354 -5.35633
Fst NM_008046 -4.76437
Slc27a2 NM_011978 -4.19096
Muc15 NM_172979 -3.95275
Slc39a8 NM_001135149 -3.46418
Car13 NM_024495 -3.32742
Pcdh11x NM_001081385 -3.30586
Sall1 NM_021390 -3.03052
1600029D21Rik NM_029639 -2.89138
Moxd1 NM_021509 -2.76587
Gas2 NM_008087 -2.72027
Gm414 NM_001018031 -2.69983
Tacstd2 NM_020047 -2.68471
Cdkn1a NM_007669 -2.61984
Emx2 NM_010132 -2.60864
E330013P04Rik NR_026942 -2.56787
Fgf18 NM_008005 -2.53177
Fat3 NM_001080814 -2.46979
Calml4 NM_138304 -2.34371
Rspo2 NM_172815 -2.3196
Vmo1 NM_001013607 -2.29987
Pls1 NM_001033210 -2.29572
9930013L23Rik NM_030728 -2.22254
Thrb NM_009380 -2.19971
Smo NM_176996 -2.15013
Ano1 NM_178642 -2.12321
Fam107a NM_183187 -2.10726
Eya1 NM_010164 -2.09774
Ptch1 NM_008957 -2.09006
Eya4 NM_010167 -2.06935
Crym NM_016669 -2.05948
Capn6 NM_007603 -2.05097
Brip1 NM_178309 -2.0403
Isl1 NM_021459 -2.0009
AK220484 NM_001083628 -1.99688
Frem1 NM_177863 -1.98346
Irgm1 NM_008326 -1.95945
Gipc2 NM_016867 -1.95169
IAP element encoding integrase X16670 -1.92717
Gm4638 XM_001480931 -1.92717
Fam102b ENSMUST00000046924 -1.91413
4933436C20Rik ENSMUST00000034183 -1.90247
Pgf NM_008827 -1.90108
Itih5 NM_172471 -1.81822
Pax2 NM_011037 -1.81296
AK220484 NM_001083628 -1.78556



Gene Symbol RefSeq Fold-Change
Gpr98 NM_054053 -1.73681
Mpzl2 NM_007962 -1.73328
Dsp NM_023842 -1.71659
Ephb1 NM_173447 -1.70214
Trdn NM_029726 -1.70112
Lect1 NM_010701 -1.70004
Sox2 NM_011443 -1.64665
Atp1b1 NM_009721 -1.64236
Nr0b1 NM_007430 -1.63853
C330024D21Rik NR_015582.1 -1.63533
Emb NM_010330 -1.61383
Rhpn2 NM_027897 -1.59696
Trdn NM_029726 -1.5944
BC048679 ENSMUST00000073406 -1.58141
Epha7 NM_010141 -1.57672
Fgf20 NM_030610 -1.56852
Gli1 NM_010296 -1.55559
Lad1 NM_133664 -1.55358
Kcnh8 NM_001031811 -1.54047
Irx5 NM_018826 -1.53744
Cldn10 NM_021386 -1.53615
Gramd1b NM_172768 -1.53604
Gpld1 NM_008156 -1.52982
Ckmt1 NM_009897 -1.52977
Nr2f1 NM_010151 -1.52779
2610018G03Rik NM_133729 -1.52342
Elp4 NM_023876 -1.51896
B930095G15Rik BC096543 -1.51484
Dsel NM_001081316 -1.51143
Wfdc2 NM_026323 -1.49639
Cubn NM_001081084 -1.48416
Sfrp1 NM_013834 -1.48144
Myo7a NM_008663 -1.47525
Cldn10 NM_023878 -1.47171
Erbb3 NM_010153 -1.47162
Kif5c NM_008449 -1.47054
Tmem30b NM_178715 -1.46492
Cdca7l NM_146040 -1.46464
Matn1 NM_010769 -1.46421
Gldc NM_138595 -1.46318
Chd7 NM_001081417 -1.46093
Dennd4a NM_001162917 -1.45503
Socs2 NM_007706 -1.45094
Trpc4 NM_016984 -1.44682
Sulf1 NM_172294 -1.44531
Cuedc2 NM_024192 -1.44114
Capg NM_007599 -1.43697
Plch1 NM_183191 -1.43655
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Gene Symbol RefSeq Fold-Change
Tox3 NM_172913 -1.43517
Tceal1 NM_146236 -1.42433
Ninl NM_207204 -1.42199
Bmpr1b NM_007560 -1.41843
Jag1 NM_013822 -1.41265
Itgb8 NM_177290 -1.40677
Irx3 NM_008393 -1.40231
Dtna NM_207650 -1.36429
Acer2 BC051923 -1.36231
Ccnjl NM_001045530 -1.36106
Ramp3 NM_019511 -1.35873
Gm8584 XR_033495 -1.35465
Prr15 NM_030024 -1.35352
Grtp1 NM_025768 -1.35273
Rragb NM_001004154 -1.35129
Uevld NM_001040695 -1.34868
Cpd NM_007754 -1.3485
Mylk NM_139300 -1.34495
Hook1 NM_030014 -1.34097
Nek1 NM_175089 -1.32747
Tmem144 NM_027495 -1.32559
Pdgfa NM_008808 -1.30931
Got1 NM_010324 -1.30446
Rspo3 NM_028351 -1.30068
Obfc2a NM_028696 -1.3005
Krt18 NM_010664 -1.29666
Glrx NM_053108 -1.28438
Krtcap3 NM_027221 -1.28346
4933415A04Rik ENSMUST00000056256 -1.28131
Fzd7 NM_008057 -1.27146
Ppp1r9a NM_181595 -1.26946
1110012J17Rik NM_001114098 -1.26854
Kit NM_001122733 -1.26826
Sms NM_009214 -1.2592
Nnat NM_010923 -1.24473
Zfp691 NM_183140 -1.2436
Chd7 NM_001081417 -1.24055
Six1 NM_009189 -1.23963
Cdh2 NM_007664 -1.2316
Slc12a6 NM_133649 -1.21004
Rfesd NM_178916 -1.18822
Fam60a NM_019643 -1.14921
Gvin1 NM_029000 1.18735
Map3k3 NM_011947 1.18969
Lats2 NM_015771 1.19871
Tpm1 NM_024427 1.20196
Spnb2 NM_175836 1.20331
Acap2 NM_030138 1.20598
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Gene Symbol RefSeq Fold-Change
Lgals3bp NM_011150 1.22855
Cbln1 NM_019626 1.24815
Add1 NM_001102444 1.24819
Pcdh1 NM_029357 1.27764
Apbb2 NM_009686 1.28488
Gm13305 NM_001099348 1.28789
Il11ra1 NM_010549 1.28812
Axin2 NM_015732 1.28856
Junb NM_008416 1.29419
Tmem35 NM_026239 1.30184
Gng2 NM_010315 1.30294
Epb4.1l2 NM_013511 1.30779
C130074G19Rik NM_178692 1.31867
Bag3 NM_013863 1.32158
Unc5c NM_009472 1.33203
B2m NM_009735 1.33289
Dixdc1 NM_178118 1.33848
Gm12164 XR_031806 1.33863
Igfbp4 NM_010517 1.33962
Zfp521 NM_145492 1.34308
Srpx NM_016911 1.34619
Prkg2 NM_008926 1.34741
1200009O22Rik BC043099 1.34823
Zfp36l2 NM_001001806 1.35892
Rbp4 NM_001159487 1.36587
St5 NM_001001326 1.36683
Glt8d4 NM_198612 1.37219
Cachd1 NM_198037 1.37697
Synpo NM_001109975 1.38297
Crtap NM_019922 1.38416
Fkbp14 NM_153573 1.38444
Pdzrn3 NM_018884 1.40346
Cadm2 NM_178721 1.4053
Gm5098 ENSMUST00000104904 1.41528
Ccnd2 NM_009829 1.41567
St6galnac6 NM_016973 1.41994
Dock5 NM_177780 1.42836
Peg3 NM_008817 1.42905
Notum NM_175263 1.43013
Cald1 NM_145575 1.43952
C630028N24Rik NM_177351 1.44169
Cdh11 NM_009866 1.44285
Ifitm3 NM_025378 1.46089
Wnt5a NM_009524 1.46492
Arhgap28 NM_172964 1.46567
Gamt NM_010255 1.46778
Itpripl2 NM_001033380 1.47258
Phactr2 NM_001033257 1.47795
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Gene Symbol RefSeq Fold-Change
Twist2 NM_007855 1.47968
Ebf3 NM_001113415 1.48304
Gng12 NM_025278 1.48544
Grm8 NM_008174 1.48607
Elk3 NM_013508 1.48955
Thra NM_178060 1.48981
Nab1 NM_008667 1.48989
Cited1 NM_007709 1.49555
Cgnl1 NM_026599 1.49691
Aff2 NM_008032 1.49737
Fbn2 NM_010181 1.4976
Slc40a1 NM_016917 1.4984
Prex2 NM_029525 1.50506
Maged2 NM_030700 1.50813
Reck NM_016678 1.50819
Erg NM_133659 1.51337
Zic4 NM_009576 1.51422
Msn NM_010833 1.52026
Fkbp7 NM_010222 1.53517
Sema6d NM_199241 1.53625
Plagl1 NM_009538 1.54153
Plxnd1 NM_026376 1.55206
Emp1 NM_010128 1.56248
Gm15498 ENSMUST00000110990 1.57463
Ttc28 ENSMUST00000100894 1.57557
Tubb6 NM_026473 1.58189
Pcdh18 NM_130448 1.5882
Tanc2 NM_181071 1.59032
Trim9 NM_053167 1.6026
Tbc1d2b NM_194334 1.60315
Fmod NM_021355 1.60383
Tmem119 NM_146162 1.61182
Blvra NM_026678 1.61449
Lef1 NM_010703 1.61685
Ebf2 NM_010095 1.62012
Lama2 NM_008481 1.6217
Ednrb NM_007904 1.62225
Mmp2 NM_008610 1.62261
6330442E10Rik BC079613 1.62945
Cpxm2 NM_018867 1.64293
Mecom NM_021442 1.64562
Dab1 NM_177259 1.66426
Atp6v0d2 NM_175406 1.69078
Cdgap NM_020260 1.70624
Inpp4b NM_001024617 1.70866
4933409K07Rik BC059060 1.70955
Tmsb15a NM_030106 1.72141
Corin NM_016869 1.7244
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Gene Symbol RefSeq Fold-Change
Zcchc24 NM_001101433 1.72709
Rftn2 NM_028713 1.72961
4933409K07Rik BC059060 1.73211
Pou3f4 NM_008901 1.73706
Gap43 NM_008083 1.74198
Scube1 NM_022723 1.74331
Slc38a4 NM_027052 1.74794
Ets1 NM_011808 1.75828
Arhgap29 NM_172525 1.76559
Dab2 NM_023118 1.77935
Foxp2 NM_053242 1.79091
Crispld1 NM_031402 1.79181
4933409K07Rik BC059060 1.79896
Col12a1 NM_007730 1.80282
Anxa6 NM_013472 1.80389
4933409K07Rik BC059060 1.81173
Timp3 NM_011595 1.81275
Islr NM_012043 1.82877
Ctsc NM_009982 1.84875
Plk2 NM_152804 1.85285
Anxa2 NM_007585 1.85977
Kank4 NM_172872 1.86288
Heg1 NM_175256 1.87375
Lgals1 NM_008495 1.89683
Zic2 NM_009574 1.89837
4933409K07Rik BC072647 1.91697
Cd93 NM_010740 1.93647
Egfl6 NM_019397 1.94426
Pcolce NM_008788 1.98985
Zim1 NM_011769 2.00726
Aard NM_175503 2.01453
Fbn1 NM_007993 2.06432
Zeb2 NM_015753 2.07184
Zic1 NM_009573 2.0774
Gng8 NM_010320 2.10779
Sepp1 NM_009155 2.11273
Pdgfrb NM_001146268 2.11583
Tmem45a NM_019631 2.13286
6230427J02Rik BC115538 2.1435
Nrp1 NM_008737 2.14489
Leprel1 NM_173379 2.15066
Nid1 NM_010917 2.15527
Abca9 NM_147220 2.15866
Bgn NM_007542 2.19578
Arhgdib NM_007486 2.33324
Twist1 NM_011658 2.34709
Foxd1 NM_008242 2.36302
Lix1 NM_025681 2.38287
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Gene Symbol RefSeq Fold-Change
Aplnr NM_011784 2.39194
Bmp5 NM_007555 2.42594
9030425E11Rik NM_133733 2.42609
Cdh5 NM_009868 2.45582
Apod NM_007470 2.51276
Anxa3 NM_013470 2.59438
Pdgfra NM_011058 2.60061
Epha3 NM_010140 2.62098
Rhoj NM_023275 2.64151
Ebf2 NM_010095 2.70925
Tgfbi NM_009369 2.71426
Prrx1 NM_175686 2.80316
Ppbp NM_023785 2.82878
Lix1l ENSMUST00000062058 2.83123
A430107O13Rik BC151018 2.87507
Hoxa2 NM_010451 2.90103
Mecom NM_007963 3.04467
4930466F19Rik ENSMUST00000098116 3.04883
Lrrc17 NM_028977 3.07445
Fli1 NM_008026 3.11411
Foxc2 NM_013519 3.56397
Lepr NM_001122899 3.60172
Pf4 NM_019932 3.67285

Confirmed in SmoEcko
Ventral (this study)
Mesenchyme (this study)
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